MP/M II™
Operating System

PROGRAMMER'S GUIDE

Copyright @ 1981

Digital Research
P.0. Box 579
801 Lighthouse Avenue
Pacific Grove, CA 93950
(408) 649-3896
TWX 910 360 5001

All rights reserved

COPYRIGHT

Copyright © 1981 by Digital Research. All rights
reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or
computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written
permission of Digital Research, Post Office Box 579,
Pacific Grove, California, 93950. The reader is granted
permission to include the example programs, either in
whole or in part, in his own programs.

DISCLAIMER

Digital Research makes no representations or warranties
with respect to the contents hereof. Further, Digital
Research reserves the right to revise this publication
and to make changes from time to time in the content
hereof without obllgatlon of Digital Research to notify
any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.
CP/NET, MP/M, MP/M II, LINK-80, RMAC, and XREF are
trademarks of Digital Research. 280 is a registered
trademark of Zilog, Inc.

ii

FOREWORD

MP/M II™ is a multi-user operating system for microcomputers
that use the Intel 8080, the Zilog 280®, or similar 8-bit type
architecture. It will support multi-terminal access with multi-
programming at each terminal. It uses the same Basic Disk Operating
System (BDOS) as CP/M® thus assuring compatibility of existing
programs running under CP/M.

The minimum hardware environment for MP/M II must include an 8080
or 280 processor, 32K bytes of random access memory (RAM), a system

console, and a real-time clock. A typical MP/M II kernel occupies
approximately 15K bytes.

This manual describes the programming interface to MP/M II. It
gives a general description of the modules that make up the operating
system, the manner in which MP/M II manages the memory resource and
monitors running processes, as well as detailed descriptions of all
the system entry points. Also included are descriptions of several
utility programs that are useful for creating and debugging programs
under MP/M II. This manual is not intended as a tutorial. Therefore,
familiarity with the material covered in the User's Guide and with
processor architecture and assembly language in general is required.

iii

TABLE OF CONTENTS

1 Introduction to MP/M II

1.1

1.2

Overview of MP/M II Features . . o « o»

MP/M II NUClEUS ¢ « o o o o o o « o » o

MNP N

Process Dispatching .
Queue Management . .
Flag Management . .

Device Polling

L] . .
o e »
°
s o ®

. . . .

° L] ° °
L] ° L L]

N Ut W -

Memory Management . . .« ¢ o o
System Timing Functions

R Rl T =

MP/M II Memory Structure . . « « o « =
Terminal Message Process . . « « o o &
Command Line Interpreter « ¢ &«
Transient Programs . ¢ « + « « « « o« &
Resident System Processes . . . + « « o

BDOS and XDOS Calling Conventions . . .

BDOS Interface
BDOS Console and List I/0 Interface . .
BDOS File System . ¢ « ¢ ¢ o o « o o @

File Naming Conventions
Disk Drive and File Organization
File Control Block Definition .
User Number Conventions
Directory Labels and XFCBs
File Passwords
File Date and Time Stamps
File Open Modes
File Security . « « « ¢« + + &
Concurrent File Access
Multi-Sector I/0 « o o ¢ ¢ o =
XI0S Blocking and Deblocking .
Reset, Access and Free Drive .
BDOS Error Handling

L]

NN DN DN NN NN

o »
o = O 00 O U W)

> WK O

e & & ¢ 6 © o o
s & & 85 @ & a o
e e o ¢
* o o o
e e o © ¢ o

N NN DN NN DN DN N
o L] L]

(] L] ®

. ® L] .

Console and List Device Management

°

* . L] L]

s e o o

« .

. - L] -

L] . * L]

e o o @

« o o o

e s © o

o o o o * e o o

s o o o

e o 8 @

* e L) .

e
= O WM -3 A

e
% I

18
19

23
24

26
28
29
33
34
36
37
38
39
41
43
43
44
47

TABLE OF CONTENTS

(continued)

Base Page Initialization

BDOS Function Calls . ¢« ¢ ¢ « o o o o &

Interface
Introduction . . & 4 4 ¢« ¢ &+ 4 ¢ o o
Process Descriptor Data Structure . . .

Queue Data StruCtUresS . ¢« « o o o o o

3.3.1 Circular QuUeues . . « « « « « =
3.3.2 Linked Queues . . . v ¢ o o o
3.3.3 User Queue Control Block
3.3.4 Queue Naming Conventions

Memory Descriptor Data Structure . . .
System Data Page . « o ¢ ¢ o & o o o &
XDOS Internal Data Segment . + . . o
XDOS Error Handling . . ¢ o ¢ o« o o o o

XDOS Function Calls ¢« ¢ « ¢ o« o o o =«

Overview . o« ¢ ¢ o o ¢ o o o o o o o o

Program Fotmat . . . L L3 L . °© * . L] o
Forming the Operand « « « . .

Labels ¢« ¢ & ¢ ¢ o o o o o o o o
Numeric Constants
Reserved Words . « « ¢ o« « o & &
String Constants . . « « « « o .
Arithmetic and Logical Operators
Precedence of Operators

S S g e
e o o o o o
W W Ww

o o o »
(o) O IS VYR S I

Assembler Directives . ¢« ¢ ¢« o o « o+
The ORG Directive

1
2 The END Directive . . + ¢ « + =
3 The EQU Directive . . . « . . .

vi

53
57

111
111

116

116
118
120
121
121
122

124

125
126

151

153

154

154

154
155

156
157

158
159

160
160

161

The
The
The
The
The

b B
* o o
* o

N O S

o L]

0 ~J AU >

TABLE OF CONTENTS

(continued)

SET Directive

IF and ENDIF

DB Directive
DW Directive . « . « &
DS Directive . « . . .

Operation Codes . . . ¢ ¢ & « o .

Error Messages . . ¢ ¢ < ¢ o o+

RDT Overview

Invoking RDT

© ° . ° ° o e . e 3

© ° ° ® o e ° ° ° °

RDT Command Conventions

Terminating RDT . ¢ o & o ¢ « o &

RDT Commands

The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The

® ® ® °
L] L] L] e

L) L]

b s o b = O 00] OV U B W N

U N O

® ®
vt LTtV LV Ly LYot T i

® ° L] L L o
e o o0 ¢ o e

Gty Lt LT vy Ly Lyt inn

® o s O
e o o o

XECHVDZIZHOLU WP

(Assemble) Command .

Directives

(Bitmap Bit Set/Reset)

(Display) Command .
(Fill) Command . . .
(Go) Command
(Input File) Command
(List) Command . . .
(Move) Command . . .
{(Normalize) Command
(Read) Command . . .
(Set) Command . . .
(Trace) Command . .
{Untrace) Command .
(Value) Command . .
(Write) Command . .

.
®
°
o
]
3
.
.

e o . . .

Command

] ° . .

L] L] L[] L] e . L] ° L] ® L]

e. o o e e © e © o e

o o o o s o o @

s o o o e o ® o e o ®

(Examine CPU State) Command .

vii

e e e o e o e o Y

® ° L[] L] L[] o

5 ®

* o o o s ®

161
162

163
163

164
164

171

173
173

174
175

175

175
175
176
176
177
177
178
178
178

179
179

180
181

181
181

182

TABLE OF CONTENTS

(continued)

Other Programming Utilities

6.1 GENHEX . & ¢ ¢ ¢ o ¢ o o o o o &
6.2 GENMOD . . ¢ ¢ ¢ o o o o« o o o &
6.3 PRLCOM . . . ¢ ¢ o o o o o o« o
6.4 DUMP . ¢ ¢ o ¢ o o o o o o o o =

6 . 5 LOAD . L] 3 . 3 . ° ° L] . . ° . .

PRL Pile Generation
7. l PRL Format L] L] L] . L]] L] L] L] ® *

7.2 Generating a PRL . . « « ¢ + «

RSP Generation

8.1 RSPs and Resident System Procedures

8.2 Generating an RSP . . « « o o o o
8.3 RSP Code + ¢ ¢ ¢ ¢ o s« « o o o o«

8.4 Banked RSPS « « o« « o o o o o o« .

SPR Generation

9.1 System Page Relocatable Files . .

9.2 Generating an SPR . . ¢« o « « « &

viii

183
183

184
184

185

187
187

191
191
191
192

193
193

m o 0 W P

o Q =

APPENDIXES

Flag Assignments . . « « o « « &
Process Priority Assignments . .
BDOS Function Summary . « « o .
XDOS Function Summary
Sample Page Relocatable Program
Sample Resident System Process .
Acronyms and Conventions
GloSsSary -« o o o s o s o o o o o

ASCII and Hexadecimal Conversions

ix

195
197
199
201
203
209
213
215

SECTION 1

INTRODUCTION TO MP/M II

1.1 Overview of MP/M 1II Features

MP/M II is a microcomputer operating system that supports
multiple terminals with multi-programming at each terminal. Upward-
compatible with CP/M, MP/M II presents a CP/M interface to each
terminal. In fact, most CP/M programs can run without modification
under MP/M II. However, MP/M II is not limited to this model. Using
MP/M II's powerful multi-programming capability, a single terminal can
initiate more than one program. In addition, the system functions
used by MP/M II to control the multi-programming environment are
available to application programs. As a result, MP/M II supports
extended features beyond the CP/M model such as communication between
and synchronization of independently running programs.

Under MP/M II, there is an important distinction between a
program and a process. A program is simply a block of code residing
somewhere in memory or on disk; it is essentially static. A process,
on the other hand, is dynamic, and can be thought of as a "logical
machine" that not only executes the program's code, but also executes
code in the operating system. When MP/M II loads a program, it also
creates a process that is associated with the loaded program.
Subsequently, it is the process, rather than the program that controls
all access to the system's resources. Thus, MP/M II monitors the
process, not the program. This distinction is a subtle one, but vital
to understanding the operation of the system as a whole.

Programs running under MP/M II fall into three categories: CP/M
programs, MP/M II system processes, and MP/M II Resident System
Processes. The first category consists of CP/M-like programs that
MP/M II loads into an available memory segment. MP/M II supports from
1l to 7 memory segments or partitions that can be loaded with programs.
Once loaded and initiated, a program becomes associated with a process
that is maintained by the MP/M II real-time nucleus.

The second category consists of MP/M II system processes that
perform operating system tasks. For example, the Command Line
Interpreter (CLI), is the system process that loads and initiates user
programs.

The final category consists of those processes that can be
optionally integrated into MP/M II during system generation, thus
becoming a part of the system. These processes are called Resident
System Processes (RSPs). With RSPs, users can write custom processes
and include them in the system along with those supplied with MP/M II
(see Section 1.7 and Section 8). All processes running under MP/M II
compete for the CPU and other system resources on a priority basis
under control of the real-time nucleus.

MP/M II Programmer's Guide 1.1 Overview of MP/M Il Features

The following list briefly summarizes MP/M II's capabilities.

° Multi-terminal support. MP/M II supports up to 16
terminals. Also, a single process can access multiple
terminals.

° Multi-programming at each terminal. Any system console can
initiate multiple programs or processes. In addition, a
process can generate sub-processes.

. Support for bank-switched memory. MP/M II's memory segments
can either reside in common memory or be distributed through
separate memory banks, thereby extending the system's
effective memory capacity.

° Inter-process communication, synchronization, and mutual
exclusion. These functions are provided by queues.

) Logical interrupt mechanism using flags. This allows MP/M
II to interface with any physical interrupt structure.

) System timing functions. These functions enable processes
running under MP/M II to compute ellapsed times, delay
execution for specified intervals, and to access and set the
current date and time. In addition, the user can schedule
programs to be run by date and time. The system timing is
also used to provide round-robin scheduling of compute-bound
processes executing at the same priority.

® User-selected options at system generation time. The
available options include the number of system consoles, the
number, size, and location of memory segments, and the
maximum number of files and locked records supported by the
system at one time. Also, the user can select which RSPs to
include with MP/M II during system generation.

Functionally, MP/M II is composed of three distinct modules: the
Basic Disk Operating System (BDOS), the Extended Disk Operating System
(XDOS), and the Extended I/O System (XIOS). The MP/M II BDOS 1is an
upward-compatible version of the single-user CP/M BDOS. In most
cases, CP/M programs that make BDOS calls for I/0 or direct BIOS calls
for printer and console I/0, can run under MP/M II without
modification. However, MP/M II's BDOS is extended to provide support
for multiple console and list devices. In addition, the file system
is extended to provide services required in multi-user environments.

MP/M II Programmer's Guide 1.1 Overview of MP/M II Features
Two major extensions to the file system are:

° File locking. Normally, files opened under MP/M II cannot
be opened or deleted by other users. This feature prevents
accidental conflicts with other users.

° Shared access to files. As a special option, independent
users can open the same file in shared or unlocked mode.
MP/M II supports record locking and unlocking commands for
files opened in this mode, and protects files opened in
shared mode from deletion by other users.

The XDOS module gives MP/M II its multi-programming capabilities.
It contains the real-time nucleus that monitors the execution of
processes and arbitrates conflicts for the system's resources. It
also includes the Terminal Message Process (TMP) which reads and
echoes command lines for the system consoles, and the Command Line
Interpreter (CLI) which accepts TMP command lines and initiates user
pPprograms and RSPs. The XDOS also contains the set of extended MP/M I1I
functions that can be accessed by user programs.

The XIOS module is similar to the CP/M BIOS module but is
extended in several ways. Primitive functions such as console I/0 are
modified to support multiple consoles. Several new primitive
functions support MP/M II's additional features. Also, new facilities
are added to eliminate wait loops. The XIOS is the hardware-dependent
module that defines MP/M I1's interface to a particular hardware
environment. Although a standard XI0OS is supplied by Digital
Research, the XIOS is usually customized to support the user's own
hardware environment. Note: Processes running under MP/M II can make
direct XIOS calls only for console and list I/0.

When MP/M II is configured for a single console and is executing
a single program, its speed approximates that of CP/M. The overhead
of the MP/MII dispatcher in such an environment will be 7 to 15% In
environments where either multiple processes and/or users are running,
the speed of each individual process is degraded in proportion to the
amount of I/0 and compute resources required. A process that performs
a large amount of I/O in proportion to computing exhibits only minor
speed degradation. This also applies to a process that performs a
large amount of computing, but is running concurrently with other
processes that are largely I/O-bound. On the other hand, significant
speed degradation occurs in those environments where more than one
compute-bound process is running.

MP/M II Programmer's Guide : 1.2 MP/M II Nucleus

1.2 MP/M II Nucleus

MP/M II is controlled by a real-time multi-tasking nucleus that
resides within the XDOS module. This nucleus performs process
dispatching, memory management, and system timing tasks. It also
performs queue management, flag management, device polling, and
console and list device management. The following sections describe
these functions in greater detail. Many of the system functions that
perform these tasks can also be called by user programs with the XDOS
functions.

Although MP/M II is a multi-processing operating system, at any
given point in time, only one process has access to the CPU resource.
Unless it is specifically written to communicate or synchronize
execution with other processes, it runs unaware that other processes
may be competing for the system's resources. Eventually, the system.
suspends the process from execution and gives another process the
opportunity to run.

1.2.1 Process Dispatching

The primary task of the nucleus is transferring the CPU resource
from one process to another. This task is called dispatching and is
performed by a part of the nucleus called the Dispatcher. Under MP/M
II, each process is associated with a data structure called a Process
Descriptor (see Section 3.2). The Dispatcher uses this data structure
to save and restore the current state of a running process. Every
process in the system resides in one of three states: ready, running,
or suspended. A ready process is one that is waiting for the CPU
resource. A suspended process is one that is waiting for the CPU
resource. A suspended process is one that is waiting for some other
system resource or a defined event. A running process is one that the
CPU is currently executing.

A dispatch operation for-a running process can be described as
follows:

1) The Dispatcher suspends the process from execution and
stores the current state in the Process Descriptor.

2) The Dispatcher scans all the suspended processes on the
Ready List and selects the one with the highest priority.

3) The Dispatcher restores the state of the selected process
from its Process Descriptor and gives it the CPU resource.

4) The process executes until it makes a system call, or an
interrupt, or a tick of the system clock occurs. Then,
dispatching is repeated.

MP/M II Programmer's Guide 1.2 MP/M II Nucleus

Only processes that are placed on the Ready List are eligible for
selection during dispatch. By definition, a process is on the Ready
List if it is waiting for the CPU resource only. Processes waiting
for other system resources cannot execute until their resource
requirements are satisfied. Under MP/M II, a process is blocked from
execution if it is waiting for:

®¢ a queue message so that it can complete a read gqueue
operation.

° space to become available in a queue so it can complete a
queue write operation.

° a system flag to be set.

° a console or list device to become available.

° a specified number of system clock ticks before it can be

removed from the system Delay List.

° an I/0 event to be completed.

These situations are discussed in more detail in the following
Sections.

MP/M II is a priority-driven system. This means that the
Dispatcher selects the highest priority ready process and gives it the
CPU resource. Processes with the same priority are "round-robin"
scheduled. That is, they are given equal CPU time slices when
executing CPU bound code. With priority dispatching, control is never
passed to a lower priority process if there is a higher priority
process on the Ready List. Since high priority compute-bound
processes tend to monopolize the CPU resource, it is advisable to
lower their priority to avoid degrading overall system performance.
In addition, compute-bound processes can make XDOS Dispatch calls
periodically to promote sharing of the CPU resource in those systems
that do not support a clock. When a process makes a Dispatch call,
the call appears as a null operation to the process, but allows other
processes to gain access to the CPU resource.

MP/M II requires that at least one process be running at all
times. To ensure this, the system maintains the IDLE process on the
Ready List so it can be dispatched if there are no other processes
available. The IDLE process runs at a very low priority and is never
blocked from execution. It does not perform any useful task, but
simply gives the system a process to run when no other ready processes
exist.

MP/M II Programmer's Guide 1.2 MP/M II Nucleus

1.2.2 Queue Management

Queues perform several critical functions for processes running
under MP/M II. They are used for communicating messages between
processes, for synchronizing process execution, and for mutual
exclusion. Queues are special data structures, implemented in MP/M II
as "memory files" that contain room for a specified number of fixed-
length messages (see Section 3.3). Like files, queues are made,
opened, deleted, read from, and written to with XDOS function calls.
When a queue is created with the XDOS Make Queue command, it is
assigned an 8~character name that identifies the queue in XDOS Open
Queue commands. As the name implies, messages are read from a Qqueue
on a first-in, first-out basis.

A process can read messages from a queue or write messages to a
queue in two ways: conditionally or unconditionally. If no messages
exist in the queue when a conditional read is performed, or the queue
is full when a conditional write is performed, the system returns an
error code to the calling process. On the other hand, if a process
performs an unconditional read from an empty Qqueue, the system
Suspends the process from execution until another process writes a
message to the queue. A process suspended in this manner is placed on
the queue's Dequeue list. A similar situation occurs when a process
makes an unconditional write to a full queue. A process suspended in
this way is placed on the queue's Enqueue list., MP/M II uses these
Enqueue/Dequeue lists to synchronize process execution.

When more than one process resides on a queue's Enqueue or
Dequeue list, preference i1s given to the higher priority process.
Conflicts involving processes with the same priority are resolved on a
first-come first-serve basis.

Mutual exclusion queues are a special type of queue under MP/M
II. They contain one message of zero length and are assigned a name
beginning with the upper-case letters, MX. In effect, a mutual
exclusion queue is a binary semaphore. Mutual exclusion queues ensure
that only one process has access to a resource at a time. Access to a
resource protected by a mutual exclusion queue takes place as follows:

1) The process issues an unconditional Read Queue call from the
queue protecting the resource, thereby suspending itself
until the message is available.

2) The process accesses the protected resource.
3) The process writes the message back to the queue when it has
finished using the protected resource, thus freeing the

resource for other processes.

As an example, the disk system mutual exclusion queue, MXdisk, ensures
that processes serially access the BDOS file system.

MP/M II Programmer's Guide 1.2 MP/M II Nucleus

Mutual exclusion queues have one other feature that is different
from normal queues. When a process reads a message from a mutual
exclusion queue, the nucleus saves the address of the Process
Descriptor for the process reading the message in a two-byte buffer
area of the queue. If the process is aborted while it owns the mutual
exclusion message, the nucleus automatically writes the message back
to the queue for the aborted process, thus enabling other processes to
gain access to the protected resource.

1.2.3 Flag Management

MP/M II's nucleus uses flags for signaling and synchronizing
processes with defined events. Processes access the system's flags
with the XDOS functions, Flag Set and Flag Wait. Internally, a flag
can reside in two states: set or reset. The reset state is further
divided into two categories:

° No process is waiting for the flag to be set.

. A process is waiting for the flag to be set, and blocked
from execution until it is set.

Note: Two processes are not allowed to wait on the same flag. This
is an error situation referred to as flag "under-run". Similarly, a
process attempting to set a flag that is already set is another error
situation, called flag "over-run".

Flags provide a logical interrupt system independent of the
physical interrupt system of the microcomputer. They are primarily
intended for use by the XIOS module to support the Interrupt Handler.
For example, when the Interrupt Handler receives a physical interrupt
indicating an I/0 operation is complete, it sets a flag and branches
to the Dispatcher. A process suspended from execution because it 1is
waiting for the flag to be set, is placed on the Ready List, making it
eligible for selection during dispatch. Once dispatched, the process
can assume the I/0 operation is complete.

MP/M II supports 32 flags, several of which are reserved. For
example, Flag 1 is reserved for the system clock tick. Because of
their limited number, their use by the XIOS module, and the single-
process nature of their design, flags should not be used in
application software except in very special situations. In most
cases, process communication and synchronization are better
accomplished with queues.

MP/M II Programmer's Guide 1.2 MP/M II Nucleus

1.2.4 Device Polling

Device polling is another mechanism a process can use to wait for
an I/0 or external event without using flags or consuming the CPU
resource with a programmed delay loop. Polling is implemented in the
XI0S module exclusively. For example, assuming that the XIOS supports
polled console input, when a process makes a BDOS console input call,
the process eventually reaches the XIOS console input routine where
the actual hardware-dependent input operation is performed. Before
performing the input operation, the nucleus tests to see if a
character is ready for input. If it is ready, the nucleus performs
the input operation and execution of the process continues. If a
character is not ready, the process must wait. In a single-user
environment under CP/M, the BIOS can simply loop on console status
until a character is read. Under MP/M II, this technique cannot be
used because it consumes the CPU resource. If the looping process has
a high priority, any other lower-priority processes on the Ready List
are denied the CPU resource. -

Device polling avoids this situation because the Dispatcher makes
the console status test. If a character is not ready, the XIOS makes
an XDOS Poll call. This suspends the running process on the system
Poll List. Subsequently, in every dispatch operation, the Dispatcher
makes a single console status call for the process. When the status
call indicates a character is ready, the nucleus removes the process
from the Poll List and places it on the Ready List. Thus device
polling is one of the ways a process can wait for an external or I/0
event to occur without monopolizing the CPU resource.

1.2.5 Console and List Device Management

Console and List devices are special resources under MP/M II.
When the system gives a console or list device to a process, it
internally stores the address of the Process Descriptor, thereby
recording ownership of the device by that process. If another process
attempts to use the device, the nucleus suspends the calling process
and places it on the device's Wait List. It remains on this list
until the process owning the device either terminates execution or
detaches from the device. When this occurs, the nucleus selects the
highest priocrity waiting process, gives it the device, places it on
the Ready List, and performs a dispatch.

Processes can own more than one console or list device. Fields
within the Process Descriptor designate which device is to be used in
I/0 operations. A process gains ownership of a device by a mechanism
called attaching. If a process attaches a device when the device is
free, the process gains ownership of the device. Otherwise, the
process is suspended from execution, as described above. As an
option, a process can conditionally attach to a device in which case
it is notified if another process owns the device. Conditional
attachment gives a process more control over its own execution instead
of leaving it up to the nucleus. Thus a process can avoid being
suspended when it does not depend on a specific device.

MP/M II Programmer's Guide 1.2 MP/M II Nucleus

1.2.6 Memory Management

The MP/M II nucleus can manage from one to eight memory segments.
These segments are of fixed length, and used primarily as regions for
loading transient programs. The partitions are page-aligned, which
means that they must begin on a page boundary. Because a page is
defined as 256 bytes, a page boundary always begins at an address
where the low-order byte is 0. The nucleus manages the memory
resource with XDOS functions that allocate and free memory segments.
Figure 1-1 illustrates how memory is organized under MP/M II.

Top of Memory

P — e c e +
| MP/M II l
(Common) | Operating |
| System I
| |
| I
Top of Banked |-==c-ceeee-- I o + Fmmm———— +
Memory | I \ /7777771 177777771
I ! 1 /7777771 \//7/////)
| Segment 0 | 177777771 \ /777777
| | V77777771 \//////71
! I \////7/77] V1777771
! I V77777771 \//7////7)
| MP/M II I \////7/71 V77777771
(Bank Switched)| Extension | V//7/7//7/71 \//////71
e | V77777771 177777771
/77777777777 L /7777771 V7777771
\ /77777777777 1\ /7777771 1\ /7777771
V /77777777777 L /7777771 V /777777
\/////7/7////77] V77777771 \ /7777771
Low \//7/7///7//777) 1 /7777771 \//7//77]
Memory 1 /777777777771 \/7//7///771 \/7/7//77/1
e + e + fommm e +
Bank 0 Bank 1 Bank N

FPigure 1-1.

MP/M Memory Organization

The shaded areas represent those regions that can support memory
segments. If bank-switched memory is not used, available memory is

restricted to bank zero. The total number of memory segments,
addition to their size and bank locations,

options. Segment 0, however, is a special segment reserved for system
modules and RSPs. It always resides immediately below the operating

system region in bank 0.

In bank-switched systems,

common memory. In addition,

the operating system module resides in
all Process Descriptors and dJueues must
reside in the common memory region.

Typically, the common memory size

in
are system generation

MP/M II Programmer's Guide 1.2 MP/M II Nucleus

is 16K but the size can vary on systems capable of switching memory in.
units smaller than 16K. As a result, the typical maximum memory
segment size is 48K. The largest user memory segment that can be
allocated to bank 0 is usually much less than this value.

More than one memory segment can be defined in a single bank.
Memory segments that do not begin at 0 can only be used to execute
page relocatable (PRL) programs. Memory segments beginning at 0, can
execute COM or PRL programs.

1.2.7 System Timing Functions

MP/M Il's system timing functions include: keeping the time of
day, delaying the execution of a process for a specified period of
time, and scheduling programs to be loaded from disk and executed.
The XDOS internal process, CLOCK, provides the time of day for the
system. This process issues Flag Wait calls on the system one second
flag, Flag 2. When the XIOS Interrupt Handler sets this flag, it
wakes up the CLOCK process which then increments the internal time and
date. Subsequently, the CLOCK process makes another Flag Wait call
and suspends itself until the flag is set again. MP/M II provides
functions that allow the user to set and access the internal date and
time. 1In addition, the BDOS uses the internal time and date to record
when a file is updated, created, or last accessed.

The XDOS Delay function replaces the typical programmed delay
loop for delaying process execution. The Delay function requires that
a tick be supported in the XIOS and that Flag 1, the system tick flag,
be set every 16 to 20 milliseconds (usually 60 times a second). When
a process makes a Delay call, it specifies the number of ticks it is
to be suspended from execution. The system maintains the address of
the Process Descriptor for the process on an internal Delay List along
with its current delay tick count. A system process, TICK, waits on
the tick flag and decrements this delay count on each system tick.
When the delay count goes to zero, the process is removed from the
Delay List and placed on the Ready List.

MP/M II can schedule the execution of a transient program or a
Resident System Process only if the Resident System Process, SCHED, is
~included at system generation time.

10

MP/M II Programmer's Guide 1.3 MP/M II Memory Structure

1.3 MP/M II Memory Structure

The memory structure of the MP/M II operating system is shown in
Figure 1-2.

High D it T + (==t ==t
Memory | SYSTEM.DAT | |

-—== Common
Memory

o ———————— e ———

--- Memory Segment 0
Bank 0

Low e s 2 e e o e a2 +

|
|
|
|
|
!
]
|
|
]
|
|
|
| BNKXIOS.SPR | | <=~

!
|
|
|
|
|
|
|
|
|
|
Memory | CONSOLE.DAT | |
-+

Pigure 1-2. MP/M II Memory Structure

The exact memory addresses of each of the memory segments shown above
vary witp the MP/M II version and depend on the user specifications
made during the system generation process.

If the host system is bank-switched, the modules above the
BNKXIOS.SPR module must reside in common memory. Common memory is
always accessible no matter what bank is used. The modules below the
BNKXIOS.SPR module must reside in bank 0, which is defined as the bank
of memory active when MP/M II is loaded. The BNKXIOS.SPR module
itself can reside partly in common memory and partly in bank 0. If
bank-switching is not used, then all of memory is common. The memory
segments shown in Figure 1-2 are described below.

The SYSTEM.DAT segment contains 256 bytes used by the MP/M II

GENSYS to dynamically configure the system. After loading, the
system uses this area for storage of system data such as submit flags.

11

MP/M II Programmer's Guide 1.3 MP/M II Memory Structure

See Section 3.5 for the details of the SYSTEM.DAT segment.

The size of the TMPD.DAT segment depends on the number of
consoles specified for the system during the system generation
process. MP/M II supports from 1 to 16 consoles, and associated with
each console is a Terminal Message Processor (TMP), identified as TMPO
through TMP15. The TMP provides the command line support for each
console. Each console uses 64 bytes within the TMPD.DAT segment to
contain a TMP Process Descriptor. The size of the USERSYS.STK segment
varies according to the number of consoles, as shown in Table 1l-1.

Table 1-1. TMPD.DAT Segment Size

Size Number of Consoles
000H No user system stacks
100H 1 to 4 consoles

200H S to 7 consoles

The USERSYS.STK segment is included 1if the user selects the
option to add system call user stacks during system generation. If
included, the system temporarily uses 64 bytes of stack space in this
segment when user programs make BDOS function calls. This option
allows users to run CP/M *,COM files under MP/M II. Some BDOS
function calls, especially console I/O functions, consume more stack
under MP/M II than CP/M. The system allocates space for user system
stacks from the USERSYS.STK segment for each user memory segment. The
size of the USERSYS.STK segment varies according to the number of
memory segments, as shown in Table 1-2.

Table 1-2. USERSYS.STK Segment Size

Size Number of Memory Segments
000H No user system stacks
100H l to 4 memory segments
200H 5 to 7 memory segments

The XIOSJMP.TBL segment is a copy of the first page of the
BNKXIOS.SPR module. It is required because the system divides the
BDOS module into two sub-modules, RESBDOS.SPR and BANKBDOS.SPR. The
RESBDOS module accesses the BNKXIOS via the XIOSJMP.TBL module. The
BANKBDOS module accesses the BNKXIOS module directly. The XIOSJMP.TBL
module is 256 bytes in length.

The RESBDOS.SPR segment contains the resident portion of the BDOS
module. The BDOS functions supported by this segment include those
not involved with the BDOS file system such as console and list I/O.
The RESBDOS.SPR segment is approximately OBOOH bytes in length.

12

MP/M II Programmer's Guide 1.3 MP/M II Memory Structure

The XDOS.SPR segment contains the MP/M II nucleus and the
extended disk operating system. This segment is approximately 2300H
bytes in length.

RSPs can use two segments within MP/M II. The first segment
resides in common memory, and exists only if one or more RSPs are
included during system generation. This common memory segment RSP
contains all RSP Process Descriptors and queues. The second segment,
named the BRS segment, exists in the non-common portion of memory
segment 0. It is present only when one or more banked RSPs are
included during system generation (See Section 1l.7).

The BNKXIOS.SPR module contains the user-customized Basic and
Extended I/0 System in page-relocatable format (PRL). It can extend
across the common memory boundary. In general, code supporting the
BDOS file system can reside in bank 0 while code supporting console
and list I/0 must reside in common memory. Refer to the MP/M II
System Guide for more information regarding the BNKXIOS module.

The BNKBDOS.SPR module contains the non-resident portion of the
BDOS module. All BDOS functions related to the file system are

supported by this segment. This segment is approximately 2300H bytes
in length.

The BNKXDOS.SPR module contains the non-resident portion of the
XDOS module. This segment will vary in length with MP/M II versilon.

The TMP.SPR module contains the code for the reentrant Terminal
Message Process. This module is approximately 300H bytes in length.

The BRS segment contains data and code used by banked RSPs that
does not have to be in common memory. Banked RSPs are valuable
because they minimize the common memory requirement.

The LCKLSTS.DAT segment is a special data structure that
maintains a record of open files and locked records on the system.
Each open file and locked record consumes a l0-byte entry in this
segment. The size of this segment is determined by parameters
specified during system generation. :

The size of the CONSOLE.DAT segment depends on the number of
consoles specified for the system during the system generation
process.,. MP/M II supports from 1 to 16 consoles, and associated with
each console is a Terminal Message Processor (TMP), identified as TMPO
through TMP15. The TMP provides the command line support for each
console. Each console uses 256 bytes within the CONSOLE.DAT segment
to contain the stack and buffers for its TMP. The code for the TMPs
is reentrant and resides within the TMP.SPR segment.

The remaining memory is available for allocation to user memory
segments. The size, bank location, and number of user memory segments
are system generation options. MP/M II uses these memory segments to
load and execute transient programs.

MP/M II Programmer's Guide : 1.4 Terminal Message Process

1.4 Terminal Message Process

The Terminal Message Process (TMP) refers to one of a collection
of XDOS system processes that are associated with the system consoles.
BEach system console -has its own TMP designated as TMPO through TMP15.
The number of system consoles implemented depends on the number
supported in the XIOS and how many are specified during system
generation. Clearly, the number of system consoles cannot exceed the
number supported in the XIOS. However, a smaller number than the XIOS
supported maximum can be specified during system generation.

The system maintains the buffers, stack, and local variables for
the TMP in each system console's region of the CONSOLE.DAT segment.
The process descriptors for the TMP's are located in the TMPD.DAT
segment. The code, which is shared by all the TMP's, is a single re-
entrant routine within the TMP.SPR module. Thus, while each TMP
performs the same function for each system console, they compete with

each other as well as with any other running processes for the CPU
resource.

The TMP provides the command line support for system consoles
within MP/M II. This includes displaying the system prompt at the
console:

0A>

and reading the command line. The TMP reads the command line from one
of two sources: the console or a Submit file. Normally, it reads
from the console with the BDOS Read Buffer Input command.
Alternatively, it reads from the SN$.SUB file (N=the console number)
on the MP/M II system disk. This occurs only if the user has

previously entered a submit file at the console with the SUBMIT
facility.

After reading a command line, the TMP performs one of two actions
depending on the type of command entered. If the command line is a
new drive specification:

0A>B:

the TMP issues a BDOS Select Disk call to select the new drive. If
the system supports the newly selected drive, the TMP updates the
drive field of its Process Descriptor, displays the new prompt:

0B>
and waits for the next command line.

If the command is in any other form, the TMP assigns its console
to another system process, the Command Line Interpreter, (CLI). The
TMP then sends the command line along with fields specifying its
default drive, user number, list device and console number to the CLI
with the XDOS Send CLI Command. TMP then attempts to attach the
console. This suspends the TMP from execution because it no longer

MP/M II Programmer's Guide l.4 Terminal Message Process

owns the system console. When the console becomes free, the TMP
reissues the prompt and the cycle repeats.

Note: The command level default drive and current user number are
maintained in the TMP Process Descriptor for each system console.
This information is displayed in the system prompt. If an application
program changes the current disk or user number by making an explicit
BDOS call, the TMP Process Descriptor values are not changed. The
USER utility updates the TMP Process Descriptor user number when it
sets the user number to a new value. To do this, it locates the TMP
Process Descriptor associated with the console and updates its user
number field.

1.5 Command Line Interpreter

When the Command Line Interpreter (CLI) receives a command line
sent to it with the XDOS Send CLI Command, it interprets the command,
and initiates the requested transient program or RSP. Normally, the
TMP sends the command line to the CLI. However, other processes can
also use the Send CLI Command function. Also, the BDOS program Chain
function is implemented internally with the Send CLI Command. Note:
Any process making a Send CLI Command call must first assign its
console to the CLI.

The Send CLI Command function sends the command line to the CLI
by attempting to write the command line message to the system gqueue,
"CLIQY. The command line message contains the current disk, user
number, list device and system console number in addition to the ASCII
command line. The CLIQ is a single message queue with a lengthof 129
bytes. If the CLIQ already contains a command line message, the
nucleus suspends the process issuing the Send CLI Command, and places
it on the CLIQ's Enqueue List, where it remains until the CLI reads
the message. Once the CLI reads the message, the process must compete
with any others that may also reside on the Enqueue List for the
opportunity to write its message and regain the ready state. The
process with the highest priority that has been on the list the
longest always goes first.

The CLI accepts command line messages by reading the CLIQ. If
the queue is empty, the CLI is blocked from execution when it issues
the CLIQ read command. In this case, the CLI is suspended on the CLIQ
Dequeue List until another process issues a Send CLI Command, at which
point the CLI is removed from the Dequeue List and placed on the Ready
List. When it gets the CPU resource, the CLI's read queue operation
is completed and it receives the command line message.

15

MP/M II Programmer's Guide 1.5 Command Line Interpreter

The command line read by the CLI must be in ASCII and usually
takes the form: :

<command> <command tail>

where

<command> => {d:}filename{;password} or
=> dJueuename

<{command tail> => <file spec> or
=> <file spec><delimiter><file spec>

<file spec> => {d:}filename{.typ}{;password}

<delimiter> => one or more blanks or a tab or
one of the following: "=,/[1<"

d: => MP/M II drive specification, "A"
through "P"

filename => 1 to 8 character file name

typ => 1 to 3 character file type

password => 1 to 8 character password value

gueuename => 1 to 8 character queue name of

Resident System Process

Fields enclosed in curly brackets are optional. If there is no drive
specification {d:}, the current default drive is assumed. If the type
field {.typ} is omitted, a type field of all blanks is implied. If
the password field {;password} is omitted, a password field of all
blanks is implied. No type field is included in the <command> file
specification because the CLI assumes either a PRL or COM type.

After the CLI reads a command line, it performs the following
steps:

1) It parses the command line to pick up the <command> field.

2) If there is no drive specification or password field, the
CLI attempts to open a queue named by the command field. If
the queue open is successful, the CLI assumes the Qqueue
belongs to an RSP, and attempts to assign the console to
that RSP. If the RSP name is the same as its queue name,
the console assignment is made. In fact, this is the way a
RSP controls whether or not it receives the console resource
when it is initiated by the CLI. The CLI then writes the
<command tail> message along with the current disk, user
number, list device and system console number to the RSP's
queue. Because the RSP is typically blocked from execution

16

MP/M II Programmer's Guide 1.5 Command Line Interpreter

3)

4)

5)

6)

due to a queue read from its queue, this sequence initiates
the RSP for execution.

If the command field does not name a RSP queue, indicated by
an unsuccessful gqueue open or the presence of a drive
specification or password field, the CLI assumes it names a
file residing on the default or specified drive. It then
attempts to open the file, filename.PRL. If the open is
unsuccessful, it tries again with the file, filename.COM.
When the current user number is non-zero and the file to be
opened does not exist under that user number, the BDOS
attempts to open the file under user 0. The open operation
is successful if the file exists under user 0, and has the
system attribute set.

If neither open is successful and no explicit drive
reference was made, the CLI repeats the same sequence on the

‘MP/M II system drive. (The system drive is designated

during system generation). The CLI does not make this
second attempt if the system drive was referenced in the
first attempt. In addition, regardless of the file's user
number, only files with the system attribute set are
accepted in the second open sequence.

In all cases, if the file password specified in the
<command> field does not match the password of a file
protected in Read mode, a password error terminates the
CLI's open operation.

If the command file open is successful, the CLI performs
different actions depending on whether the opened file is of
type PRL or COM, For PRL files, the CLI selects the
smallest available memory segment which can fit the PRL the
file. For COM files, the CLI selects the first available
absolute memory segment to load the file. Note: More than
oneabsolute memory segment can exist in a bank-switched
system.

If no memory segment is available, the program loading by
the CLI is terminated and the system returns an error
message. Otherwise, the CLI loads the program into its
selected memory segment beginning at BASE+100H (BASE =
memory sSegment base address). If the command file is of the
PRL type and the selected memory segment is not absolute,
the CLI performs a relocation operation at this time (See
Section 1.6).

The locad operation can be aborted if a read error occurs, or
in the case of COM files, if the selected memory segment is
not large enough to contain the file.

Once the program has been loaded, the CLI initializes the
memory segment base page beginning at BASE+000H. The base

page initialization is covered in more detail in Section
2. 40

17

MP/M II Programmer's Guide 1.5 Command Line Interpreter

7) Once the base page is initialized, the CLI sets up a Process
Descriptor for the loaded program, and assigns the command
file name to the process. The CLI also sets the current
disk, user number, list device and console number fields of
the Process Descriptor to the values received in the command
line message, and gives the process a 20-byte stack. It
then initiates the transient program with an XDOS Create
Process call. The CLI is then ready to read the next
command line and repeat the cycle.

1.6 Transient Programs

Under MP/M II, a transient program is one that the CLI loads and
initiates. As the name transient implies, the program is not system
resident. The system must load it into an available memory segment
every time it executes.

MP/M II can execute two types of transient programs. The first
type, absolute programs, must run in an absolute memory segment. An
absolute memory segment is one that has a base address of zero (BASE =
0000H). The command files of absolute transient programs are
identified by a file type field of COM. A COM file contains the
absolute memory image of the file beginning at 100H. Thus, the CLI
loads a COM file into memory beginning at 100H. MP/M II COM files are
equivalent to those in CP/M.

The second type of transient program, Page Relocatable Programs
(PRLS), can run in relocatable or absolute memory segments. PRL
command files have a type field of PRL. A PRL file contains three
regions: a l-page header, a code region, and a relocation bit map.
The header has a field containing the length of the program's code
region and a field specifying the minimum amount of additional data
space required by the program. The CLI uses this information to
select a memory segment for the program. The code region contains the
code and initialized data for the program. The CLI loads the code
region into memory beginning at BASE+100H, where BASE is the memory
segment base address.

The bit map consists of a bit string where each bit corresponds
to a byte in the code region. The first bit corresponds to the first
byte, the one loaded into BASE+100H. Because the bit map immediately
follows the code region in a PRL file, the offset of the bit map
equals the program length value stored in the PRL header. Each bit
equal to 1 identifies the high byte of an address field that requires
relocation. During the program load operation, the CLI adds the high
byte or page offset of the address BASE to the bytes identified for
relocation by the bit map. This dynamically relocates the program and
allows it to run in relocatable memory segments. PRLs loaded into
absolute memory segments require no relocation. Note: It is not
possible to convert a COM file into a PRL file. However, the reverse

operation is possible and is performed with the utility, PRLCOM (see
Section 6.3).

18

MP/M II Programmer's Guide 1.6 Transient Programs

As part of the program load operation, the CLI initializes the
memory segment base page as follows:

BASE+000H : Direct XIOS and program termination jump
BASE+005H : BDOS and XDOS function jump

BASE+050H : Command file drive

BASE+051H : Password address of 1lst file in the command tail
BASE+053H : Password length of lst file in the command tail
BASE+054H : Password address of 2nd file in the command tail
BASE+056H : Password length of 2nd file in the command tail
BASE+05CH : Parsed FCB for 1lst file in the command tail
BASE+06CH : Parsed FCB for 2nd file in the command tail
BASE+080H : Command tail

During execution, a transient program makes BDOS or XDOS system
calls by calling BASE+5. Direct XIOS calls are made with the jump at
BASE+000H. Note: Direct XIOS calls are restricted to console and
list I/0. All memory within the segment below the address contained
in BASE+6 is available to the transient program. Thus, transient
programs can use this address to size memory. The remaining
information placed into the base page is data parsed out of the
command line. This information is provided as a convenience to the
programmer and is covered in detail in Section 2.

When the CLI initiates a transient program, it assigns a 20-byte
stack area to the process. This stack is initialized in such a way
that if the program returns to the system, its execution 1is
terminated. A process can also terminate execution with a jump to

BASE+000H, a BDOS System Reset call, or an XDOS Terminate Process
call.

1.7 Resident System Processes

Resident System Processes (RSPs) are optional processes that can
be included with MP/M II during system generation. There are two
types of RSPs: standard and banked. A standard RSP is a page-
relocatable file that has a filetype of RSP. When integrated into
MP/M II, a standard RSP resides in the common memory region. A banked
RSP consists of two page-relocatable files, both of which have the
same filename but have file type fields of RSP and BRS respectively.
When a banked RSP is included in MP/M II, the RSP file loads into
common memory, whereas the BRS file loads into memory segment 0 in
bank 0. Because all Process Descriptors and queues must reside in
common memory, the common module of a banked RSP contains its Process
Descriptor and any additional Process Descriptors and queues.

The memory segment field of an RSP's Process Descriptor
designates whether the RSP is standard or banked. Standard RSPs set
the memory segment field to FFH; banked RSPs set the field to zero.
When a RSP is selected during the system generation process, GENSYS

checks this field and, if set to 0, includes the BRS file in memory
segment 0.

19

MP/M II Programmer's Guide 1.7 Resident System Processes

RSPs load into memory as part of the MPMLDR operation, and are
initiated following the XIOS System Initialization call and prior to
the initialization of the TMPs. Once initiated, an RSP runs like any
other process in the system, competing for the CPU and other system
resources on a priority basis.

If a RSP is to be invoked as a built-in command from the console
command line, it must perform the following steps:

1) Make a queue with a message length sufficiently large to
accept the command tail. The name of the queue is the
command name of the RSP, Because the CLI converts command
lines to upper-case, RSP queue names must be upper-case. If
the CLI is to assign the console to the RSP, the RSP's
Process Descriptor name must be the same as its queue name.

2) Make an unconditional Read Queue call to the queue. This
suspends the RSP on its queue'’s Enqueue List until the CLI
writes it a command line message.

3) Perform its task by making BDOS and XDOS function calls
using the command line message containing the current drive,
user, list device and system console number obtained from
the queue read. Note: An RSP does not make system calls by
calling location 5. The system initializes the first two
bytes of a standard RSP and the first two bytes of the
common module of an extended RSP to contain the system entry
point address. The system sets the first two bytes of the
bank-zero module of a banked RSP to the beginning address
of its corresponding common module. RSPs must use these
addresses to make system calls.

4) After performing its task, the RSP must make an XDOS Detach

‘ Console call and an XDOS Detach List call if it is assigned

the console by the CLI. It then returns to step 2 and
awaits another command line.

Another special type of RSP is the Resident System Procedure. A
Resident System Procedure provides a method of serially using a block
of code as a system resource. A Resident System Procedure is set up
by a RSP. The process creates a queue with the name of the Resident
System Procedure and sends it a single two-byte message containing the
address of the procedure to be accessed serially. Once this is
accomplished, the RSP terminates itself.

The Resident System Procedure is accessed by opening the queue
and reading the two byte message to obtain the actual memory address
of the procedure. Because only one message resides in the queue, only
one process can gain access to the procedure. When the process leaves
the procedure, it writes the message containing the procedure address
back to the queue. This enables the next waiting process to use the
Resident System Procedure.

20

MP/M II Programmer's Guide 1.8 BDOS and XDOS Calling Conventions

1.8 BDOS and XDOS Calling Conventions

MP/M II's BDOS and XDOS system functions can be accessed by both
transient programs and RSPs. Transient programs make system calls via
the primary entry point at loeation BASE+005H, where BASE equals the
base address of the transient program's memory segment. Standard RSPs
obtain the system entry point address from the first two bytes of the
program. For banked RSPs, the first two bytes of the common module
contain the system entry point address. The first two bytes of the
bank-zero module contain the address of the common module.

MP/M II uses a standard protocol for system function calls. It
is the same protocol used by CP/M. 1In general, when making a system
call, register C contains the function number, and register pair DE
contains the information address. Functions return single-byte values
in register A, and double-byte values in register pair HL. Any system
call made with an out-of-range or non-supported function number
returns a OFFFFH in register pair HL. Note: CP/M returns with HL set
to 0 on invalid function calls. For compatibility, register A equals
L and register B equals H upon return in all cases. The register
passing conventions of MP/M II agree with those of Intel's PL/M
systems programming language,

When entering a transient program, the system sets the stack
pointer to a 1l0-level stack, with the address contained in BASE+00lH
pushed onto the stack. Thus, a return to the system is equivalent to
a jump to BASE+000H. Typically, this stack is sufficiently large to
handle system calls. However, most transient programs set up their
own stack and return to the system via a jump to location BASE+000H.
Because of the way RSPs are integrated into the system, they must set
up and initialize their own stack.

The programmer should be aware that BDOS and XDOS function calls
do not restore registers to their entry values upon return to the
calling program. The responsibility for saving and restoring any
critical register values rests with the calling process.

As an example, the following transient program illustrates how to
make system calls. This program reads characters continuously until
it encounters an asterisk, at which time it terminates execution by
returning to the system.

ORG 000O0H
BASE EQU $;BEGINNING OF MEMORY SEGMENT
BDOS EQU BASE+0005H ;MP/M II SYSTEM ENTRY POINT
CONIN EQU 1 ;CONSOLE INPUT FUNCTION

ORG 100H ;BASE OF TRANSIENT PROGRAM AREA
NEXTC MVI C,CONIN ;READ NEXT CHARACTER FUNCTION #

CALL BDOS ;RETURN CHARACTER IN A

CPI Px! ;END OF PROCESSING

JINZ NEXTC ;LOOP IF NOT

RET ; TERMINATE PROGRAM

END

21

22

SECTION 2

THE BDOS INTERFACE

2.1 BDOS Console and List I/0 Interface

A primary design objective of MP/M II has been to achieve CP/M
compatibility. Thus, from the perspective of the applications program
there are only minor differences between CP/M and MP/M II with regard
to BDOS console and list I/0 functions. These differences are
described in Section 2.4, BDOS Function Calls.

Each program executing under MP/M II has a data structure called
a Process Descriptor which defines the characteristics of the process.
One byte of the Process Descriptor identifies the console and list I/0
device numbers currently being used by the process. The high-order 4
bits of this byte, labeled the CONSOLE/LIST field, contain the list
device number. The low-order 4 bits contain the <console device
number. The BDOS console and list I/0 functions obtain the
appropriate device number from the CONSOLE/LIST field of the Process
Descriptor to call the XIOS console or list subroutine.

A process must be attached to a console or list device to access
the device. This applies to both BDOS and direct XIOS function calls.
MP/M II intercepts all BDOS and direct XIOS function calls for the
console and list devices to determine if the specified device is
attached to the calling process. The function call is permitted only
if the device is currently unattached, or attached to the calling
process. If the device is attached to some other process, MP/M II
performs an XDOS Attach call for the specified device. The calling
Process then blocks, suspending execution, until the device 1is
detached from the process owning the device and the calling process is
the highest priority process requiring the device. Attaching a
specific device to a process can be done explicitly by making XDOS
Attach Console or Attach List calls, or implicitly by making BDOS and
direct XIOS function calls which in turn force device attachment.

MP/M II maintains tables of processes currently owning the
console and list devices. These tables contain Process Descriptor
addresses. It is thus possible for one process to own several console
or list devices by having its Process Descriptor address in several
table entries. Multiple devices can be attached by repeatedly using
the XDOS Set Console or Set List Device function call followed by an
XDOS Attach call. Later, when actual I/0 is to be performed, the
specific console or list device must be set in the Process Descriptor
byl?aking an appropriate XDOS Set Console or Set List Device function
call.

All console and list devices are detached from a process when it
terminates, allowing processes that were waiting for the devices to
resume execution.

23

MP/M II Programmer's Guide 2.1 BDOS Console and List I/O

While performing BDOS console I/0 functions, there are several
ASCII control characters that cause MP/M II to take specific actions.
The “C character can abort the process owning the console. The °D
character forces the process owning the console to detach from the
console, allowing another waiting process to gain access to the
console, and then attaches the console again before continuing. The
“8 and “Q characters are used to stop and re-start console display
output. The °S character will cause console display output to be
suspended. At that point a "Q can be typed to resume console display
output or a “C can be typed to abort the process owning the console.
Typing and other key when output has been suspended will cause MP/M II
to send the ASCII Bell character (°G) to the console.

2.2 BDOS File System

The Basic Disk Operating System (BDOS) supports a named file
system on one to sixteen logical drives. Each logical drive is
divided into two regions: a directory area and a data area. The
directory area defines the files that exist on the drive and
identifies the data area space that belongs to each file. The data
area contains the file data defined by the directory. The directory
area is subdivided into sixteen logically independent directories,
each identified by user numbers 0 through 15. 1In general, only files
belonging to the current user number are "visible" in the directory.
For example, the MP/M II DIR utility only displays files belonging to
the current user number.

The BDOS file system automatically allocates directory and data
area space when a file is created or extended and returns previously
allocated space to free space when a file is deleted. If no directory
or data space is available for a requested operation, the BDOS returns
an error to the calling process. These actions are transparent to the
calling process. As a result, the user does not need to be concerned
with directory and drive organization when using the file system
functions.

An eight-character filename field and a three character type
field identifies each file in a directory. An eight character
password can also be assigned to a file to protect it from
unauthorized access. All BDOS functions that involve file operations
specify the requested file by the filename and type fields. Multiple
files can be specified by an ambiguous reference. An ambiguous
reference uses one or more "?" marks in the name or type field to
indicate that any character matches that position. Thus, a name and
type specification of all "?"'s (equivalent to a command line file
specification of "*.*") matches all files in the directory that belong
to the current user number.

The BDOS file system supports four categories of functions: file
access functions, directory functions, drive related functions, and
miscellaneous functions. The file access category includes functions
to make (create) a new file, open an existing file and close an
exlisting file. 'Both the make and open functions activate the file for

24

MP/M Il Programmer's Guide 2.2 BDOS File System

subsequent access by read and write functions. After a file has been
opened, subsequent BDOS functions can read or write to the file,
either sequentially or randomly by record position. BDOS read and
write commands transfer data in 128 byte logical units, which is the
basic record size of the file system. The close function performs two
steps to terminate access to a file. First, it indicates to the file
system that the calling process has finished accessing the file. The
file then becomes available to other processes. In addition, the
function makes any necessary updates to the directory to permanently
record the current status of the file.

BDOS directory functions operate on existing file entries in a
drive's directory. This category includes functions to search for one
or more files, delete one or more files, rename a file, set file
attributes, assign a password to a file, and compute the size of a
file. The BDOS search and delete functions are the only functions
that allow ambiguous file references. All other directory and file
related functions require a specific file reference. The BDOS file
system does not allow a process to delete, rename, or set the
attributes of a file that is currently opened by another process.

BDOS drive-related functions include those which select a drive
as the default drive, compute a drive's free space, interrogate drive
status and assign a directory label to a drive. The directory label
for adrive controls whether file passwords are to be honored, and the
type of date and time stamping to be performed for files on the drive.
Also included in this category are functions to reset specified drives
and to control whether other processes can reset particular drives.
When a drive is reset, the next operation on the drive reactivates it
by logging it in. The function of the log-in operation is to
initialize the drive for file and directory operations. Under MP/M
II, a successful drive reset operation must be performed on drives
that support removeable media before changing disks.

Miscellaneous functions include those that set the current DMA
address, access and update the current user number, chain to a new
program, and flush the internal blocking/deblocking buffer. Also
included are functions to set the BDOS multi-sector count and the BDOS
error mode. The BDOS multi-sector count determines the number of 128-
byte records to be processed by BDOS read, write, record lock, and
record unlock functions. It can range from one to sixteen 128-byte
records; the default value is one. The BDOS error mode determines
whether the BDOS file system intercepts errors or returns all errors
to the calling process.

25

MP/M II Programmer's Guide 2.2 BDOS File System

The following list summarizes the operations performed by the
BDOS file system:

Disk System Reset
Drive Selection

File Creation

File Open

File Close

Directory Search

File Delete

File Rename

Random or Sequential Read
Random or Sequential Write
Interrogate Selected Disks
Set DMA Address N
Set/Reset File Indicators
Reset Drive

Access/Free Drive

Random Write With Zero Fill
Lock and Unlock Record

Set Multi-Sector Count

Set BDOS Error Mode

Get Disk Free Space

Chain To Program

Flush Buffers

Set Directory Label

Read and Write File XFCB
Set/Get Date and Time

Set Default Password
Return BDOS Serial Number

The following sections contain information on important topics
related to the BDOS file system. The reader should be familiar with
the content of these sections before attempting to use the BDOS
functions described individually in Section 2.4.

2.2.1 File Naming Conventions
Under MP/M II, filenames consist of four parts: the drive select
code (d), the filename field, the file type field, and the file
password field. The general format for a command line file
specification is shown below:
{d:}filename{.typ}{;password}
The drive select code field specifies the drive where the file is

located. The filename and type fields identify the file. The
password field specifies the password if a file is password protected.

26

MP/M II Programmer's Guide 2.2.1 File Naming Conventions

The drive, type, and password fields are optional and the
delimiters ":.;" are required only when specifying their associated
field. The drive select code can be assigned a value from "A" to "P"
where the actual drive codes supported on a given system is determined
by the XI0S implementation. When the drive code is not specified, the
current default drive is indicated. The filename field can contain
one to eight non-delimiter characters, the file type field, one to
three non-delimiter characters, and the password field, one to eight
non-delimiter characters. All alphabetic characters must be in
uppercase. In addition, all three fields are padded with blanks, if
necessary. Omitting the optional type or password fields implies a
field specification of all blanks.

The MP/M II Parse Filename function recognizes certain ASCII
characters as valid delimiters when it parses a file from a command
line. The valid characters are shown in Table 2-1.

Table 2-1. Valid Filename Delimiters
ASCII HEX EQUIVALENT

3A
2E
3B
3D
2C
2F
5B
5D
3C
3E

f§ =0 & oo

VA e N~

The Parse Filename function also excludes all control characters from
the file fields and translates all lower-case letters to upper case.

The characters "(" and ")" should be avoided in filename and type
fields because they are commonly used delimiters. The characters "*"
and "?" must not be used in filename and type fields unless they are
used to make an ambiguous reference. If the Parse Filename function
encounters a "*" in a file name or type field, it pads the remainder
of the field with "?" marks. For example, a filename of "X*.*" is
parsed to "X?2?2?27?22?2.222". The BDOS search and delete functions treat’
a "?" in the filename and type fields as follows: A "?" in any
position matches the corresponding field of any directory entry
belonging to the current user number. Thus, a search operation for
"X?222?2?2?22.22?2" finds all the current user files on the directory
beginning in "X". Most other file related BDOS functions treat the
presence of a "?" in the filename or type field as an error.

It is not mandatory to follow the file naming conventions of MP/M
II when creating or renaming a file with BDOS functions. However, the
conventions must be used if the file is to be accessed from a command
line. For example, the CLI cannot locate a command file in the
directory if its filename or type field contains a lower-case letter.

27

MP/M II Programmer's Guide 2.2.1 PFile Naming Conventions

As a general rule, the file type field names the generic category
of a particular file, while the filename distinguishes individual
files in each category. Although they are generally arbitrary, the

file types listed below name some of the generic categories that have
been established.

ASM Assembler Source PLI PL/I Source File

PRN Printer Listing REL Relocatable Module
HEX Hex Machine Code TEX TEX Formatter Source
BAS Basic Source File BAK ED Source Backup

INT Intermediate File SYM SID Symbol File

COM Command File $$$ Temporary File

PRL Page Relocatable RSP Resident Sys. Process
SPR Sys. Page Reloc. SYS System File

DAT Data File BRS Banked RSP File

2.2.2 Disk Drive and PFile Organization

The BDOS file system can support from one to sixteen logical
drives. The maximum file size supported on a drive is 32 megabytes.
The maximum capacity of a drive is determined by the data block size
specified for the drive in the XIOS. The data block size is the basic
unit in which the BDOS allocates disk space to files. Table 2-2
displays the relationship between data block size and drive capacity.

Table 2-2. Logical Drive Capacity

> > o —— —— D - — - — — - - ————— > — — — — - — —— - — — — — — ——— ———— - —— - ————

| ! 256 Kilobytes l
I | 64 Megabytes I
I 4K I 128 Megabytes |
| | 256 Megabytes I
| | 512 Megabytes l

Logical drives are divided into two regions: a directory area
and a data area. The directory area contains from one to sixteen
blocks located at the beginning of the drive. The actual number is
set in the XI0S. This area contains entries that define which files
exist on the drive. The directory entries corresponding to a
particular file define which data blocks in the drive's data area
belong to the file. These data blocks contain the file's records.
The directory area is logically subdivided into sixteen independent
directories identified as user 0 through 15. Each independent
directory shares the actual directory area on the drive. However, a
file's directory entries cannot exist under more than one user number.
In general, only files belonging to the current user number are
visible in the directory. ,

28

MP/M II Programmer's Guide 2.2.2 Disk Drive and Organization

Each disk file consists of a set of up to 242,144 128-byte
records. Each record in a file is identified by its position in the
file. This position is called the record's random record number. If
a file is created sequentially, the first record has a position of
zero, while the last record has a position one less than the number of
records in the file. Such a file can be read sequentially in record
position order beginning at record zero, or randomly by record
position. Conversely, if a file is created randomly, records are
added to the file by specified position. A file created in this way
is called "sparse” if positions exist within the file where a record
has not been written.

The BOS automatically allocates data blocks to a file to contain
its records on the basis of the record positions consumed. Thus, a
sparse file that contains two records, one at position zero, the other
at position 242,143, would consume only two data blocks in the data
area. ©Sparse files can only be created and accessed randomly, not
sequentially. Note that any data block allocated to a file is
permanently allocated to the file until the file is deleted. There is
no other mechanism supported by the BDOS for releasing data blocks
belonging to a file.

Source files under MP/M are treated as a sequence of ASCII
characters, where each "line"™ of the source file is followed by a
carriage~-return line-feed sequence (0DH followed by OAH). Thus a
single 128-byte record could contain several lines of source text.
The end of an ASCII file is denoted by a control-2 character (lAH) or
a real end of file, returned by the BDOS read operation. Control-Z
characters embedded within machine code files such as COM or PRL files
are ignored. The end of file condition returned by BDOS is used to
terminate read operations.

2.2.3 File Control Block Definition

The File Control Block (FCB) is a data structure used with the
BDOS file access and directory functions. All of these functions
reference an FCB to determine the file or files to be operated on.
Certain fields in the FCB are also used for invoking special options
associated with some functions. Other functions use the FCB to return
data to the calling process. Most importantly, when a process opens a
file and subsequently accesses it with read, write, lock, and unlock
record functions, the BDOS file system maintains the current file
state and position within the user's FCB. In addition, all BDOS
random I/0 functions specify the random record number with a 3-byte
field at the end of the FCB.

When making a file access or directory BDOS function call,
register pair DE must address a FCB. The length of the FCB data area
depends on the BDOS function. PFor most functions, the required length
is 33 bytes. For random I/0 functions and the Compute File Size
function, the FCB length must be 36 bytes. When either the BDOS Open
or Make File functions specify a file is to be opened in unlocked
mode, the FCB must be 35 bytes in length. The FCB format is shown on
the next page.

29

MP/M II Programmer's Guide 2.2.3

File Control Block Definition

- - - D - =D - . =) - -

- R - — ——— —— . D > D D -

Idr] £11£2]...1£8|t1]t2|t3lex|slls2)rc]d0]...ldnlcrlzr0]rl]|r2]

- D . = — —— ——— — —— — T = WD D - —— — T D - THD D - D D W WD D D, = T T O D D - — - —— ———

«e. 08 09 10 11 12 13 14 15 16 ... 31 32 33 34 35

00 01 02

f£l1...£8

tl,t2,t3

ex

cs

rs

rc

d0...dn

cr

rO0,rl,r2

drive code (0 - 156)

0 => use default drive for file
1 => auto disk select drive A,
2 => auto disk select drive B,

*» 0 @

16=> auto disk select drive P.

contain the file name in ASCII

upper case, with high bit

= 0

fl', o e fs' denOte the high"
order bit of these positions,
and are file attribute bits.

contain the file type in ASCII

upper case, with high bit

= 0.

tl', £2', and t3' denote the
high bit of these positions,
and are file attribute bits.

tl' = 1 => Read/Only file
t2' = 1 => System file
£t3' =1 => File has been archived

contains the current extent number,
normally set to 0 by the calling process, but
can range 0 - 31 during file I/O

contains the FCB checksum value for

open FCBs.

reserved for internal system use, set
to zero on call to OPEN, MAKE, SEARCH

record count for extent "ex"
takes on values from 0 - 128

filled-in by MP/M, reserved for

system use

current record to read or write in
a sequential file operation, normally
set to zero by the calling process when a

file is opened or created

optional random record number in the
range 0-242,143 (0 - 3FFFFH).
rO0,rl,r2 constitute a 18 bit value
with low byte r0, middle byte rl, and

high byte r2.

30

MP/M II Programmer's Guide 2.2.3 File Control Block Definition

Note: The 2-byte File ID is returned in bytes r0 and rl when a file
is successfully opened in unlocked mode (see Section 2.2.8).

For BDOS directory functions, the calling process must initialize
bytes 0 through 11 of the FCB before issuing the function call. The
Set Directory Label and Write File XFCB functions also require the
calling process to initialize byte 12. The BDOS Rename File function
requires the calling process to place the new file name and type in
bytes 17 through 27.

BDOS open or make function calls require the calling process to
initialize bytes 0 through 12 of the FCB before issuing a file open or
make function call. Normally, byte 12 is set to zero. In addition,
if the file is to be processed from the beginning using sequential
read or write functions, byte 32 (cr) must be zeroed. After an FCB is
activated by an open or make operation, the FCB should not be modified
by the user. Open FCBs are checksum verified to protect the integrity
of the file system. 1In general, if a process modifies an open FCB,
the net read, write, or close function call will return with a
checksum error. See Section 2.2.9 for more on FCB checksums.
Normally, sequential read or write functions do not require
initialization of an open FCB. However, random I/0 functions require
that a process set bytes 33 through 35 to the requested random record
number prior to making the function call.

File directory elements maintained in the directory area of each
disk drive have the same format as FCB's (excluding bytes 32 through
35), except for byte 0 which contains the file's user number. Both
the Open File and Make File functions bring these elements (excluding
byte 0) into memory in the FCB specified by the calling process. All
read and write operations on a file must specify an FCB activated in
this manner. Otherwise, a checksum error is returned. The BDOS
updates the memory copy of the FCB during file processing to maintain
the current position within the file. During file write operations,
the BDOS updates the memory copy of the FCB to record the allocation
of data to the file, and at the termination of file processing, the
Close File function permanently records this information on disk.
Note that data allocated to a file during file write operations is not
completely recorded in the directory until the calling process issues
a Close File call. Therefore, it is mandatory that a process which
creates or modifies files, close the files at the termination of any
write processing. Otherwise, data may be lost.

As a general rule under MP/M II, a process should close files as
soon as they are no longer needed, even if they have not been
modified. The BDOS file system maintains an entry in the system lock
list (LCKLSTS.DAT memory segment) for each file opened by each process
on the system. This entry is not removed from the system lock list
until the file is closed or the process owning the entry terminates.
The BDOS file system uses this entry to prevent other processes from
accessing the file unless the file was opened in a mode that supports
shared access. Normally, a process must close a file before other
processes on the system can access the file.

31

MP/M II Programmer's Guide 2.2.3 File Control Block Definition

Keep in mind that the space in the system lock list is a limited
resoure under MP/M II. If a process attempts to open a file and no
space exists in the system lock list, or the process exceeds the
process open file limit (specified during system generation), the BDOS
denies the open operation and usually aborts the calling process.

The high-order bits of the FCB filename (f1l',...,£8') and type
(el',t2',t3') fields are called attribute bits. Attributes bits are 1
bit boolean fields where 1 indicates on or true, and 0 indicates off
or false. Attribute bits have two functions within the file system:
as file attributes and interface attributes.

The file attributes (fl',...,f4' and tl',t2',t3') are used to
indicate that a file has a defined attribute. These bits are recorded
in a file's directory FCBs., File Attributes can only be set or reset
by the BDOS Set File Attributes function. When the BDOS Make File
function creates a file, it initializes all file attributes to zero.
A process can interrogate file attributes in an FCB activated by the
BDOS Open File function or in directory FCBs returned by the BDOS
Search For First and Search For Next functions. Note: the BDOS file
system ignores the file attribute bits when it attempts to locate a
file in the directory. :

The file attributes (tl',t2',t3') are defined by the file system
as follows:

tl': Read/Only attribute - The file system prevents write
operations to a file with the read/only attribute set.

t2': System Attribute - This attribute, if set, identifies the
file as a MP/M II system file. System files are not
normally displayed by the MP/M II DIR utility. In addition,
user zero system files can be accessed on a read/only basis
from other user numbers (see Section 2.2.8).

t3': Archive Attribute - This attribute is designed for user
- written archive programs. When an archive program copies a
file to backup storage, it sets the archive attribute of the
copied files. The file system automatically resets the
archive attribute of a directory FCB that has been issued a
write command. The archive program can test this attribute
in each of the file's directory FCBs via the BDOS Search and
Searchn functions. 1If all directory FCBs have the archive
attribute set, it indicates that the file has not been
modified since the previous archive. Note that the MP/M II
PIP utility supports file archival.

Attributes fl' through f£4' are available for definition by the user.

The interface attributes are £5' through £8'. These attributes
cannot be used as file attributes. Interface attributes f5' and f§°®
are used to request options for BDOS calls requiring an FCB address in
register pair DE. They are used by the BDOS Open, Make, Close,and
Delete File functions. Table 2-3 shows the f5' and £6' interface
attribute definitions for these functions.

32

MP/M II Programmer's Guide 2.2.3 File Control Block Definition

Table 2-3. BDOS Interface Attributes

D) D D D - - - - D D D - R T T D - D D > T D D —D - ——— - — - — ——— - . — D W D D — O~ ——- > - >

| Open function | £5' =1 : Open in unlocked mode]
| : £6' = 1 : Open in read/only mode |
| !
Make function	£5' =1 : Open in unlocked mode
	£6' =1 : Assign password to file
! Close function | £5' =1 : Partial Close |

| I
l | l

Delete function

D > € D D —D D D O D D D D o D =B D WD D D WD D D T D D D D AP A S T D D D D T D D D W D A) D DD D D D AT D D - -

The interface attributes are discussed in detail for each of the above
functions in Section 2.4. Attributes £5' and £4' are always reset
when control is returned to the calling process. Interface attributes
£7° and £8°' are reserved for internal use by the BDOS file system.

The BDOS search and delete functions allow multiple file
(ambiguous) reference. In general, a "?" in the filename, type, or
extent field matches any value in the corresponding positions of
directory FCBs during a directory search operation. The BDOS search
functions also recognize a "?" in the drive code field, and if
specified, they return all directory entries on the disk regardless of
user number including empty entries. A directory FCB beginning with
ESH is an empty directory entry.

2.2.4 User Number Conventions

The MP/M II User facility divides each drive directory into
sixteen logically independent directories, designated as user 0
through user 15. Physically, all user directories share the directory
area of a drive. In most other aspects, however, they are
independent. For example, files with the same name can exist on
different user numbers of the same drive with no conflict. However, a
single file cannot reside under more than one user number.

Only one user number is active for a process at one time, and the
current user number applies to all drives on the system. Furthermore,
the FCB format does not contain any field that can be used to override
the current user number. As a result, all file and directory
operations reference directories associated with the current user
number. However, it is possible for a process to access files on
different user numbers by setting the user number to the file's user
number with the BDOS Set User command prior to issuing the desired
BDOS function call for the file. Note that this technigque must be
used carefully. 1If a process attempts to read or write to a file
under a user number that is not the same as the user number that was
active when the file was opened, the BDOS file system returns a FCB
checksum error.

33

MP/M II Programmer's Guide 2.2.4 User Number Conventions

When the CLI initiates a transient program or RSP, its user
number is set to the value established by the process issuing the XDOS
Send CLI Command. Normally, the sending process is the TMP. However,
the sending process may be another process such as a transient program
that makes a BDOS Chain Program call. A transient program can change
its user number by making a BDOS set user call. Changing the user
number in this way does not affect the command line user number
displayed by the TMP. Thus, when a transient program that has changed
its user number terminates, the original user number for the console
is restored when the TMP regains control.

User 0 has special properties under MP/M II. With some
restrictions, the file system automatically opens a file under user
zero, if it is not present under the current user number. Of course,
this action is performed only when the current user number is not
zero. In addition, a file on user zero must have the system attribute
(£2') set to be eligible for this operation. This procedure allows
utilities that may include overlays and any other commonly accessed
files to be placed on user zero, but be available for access from
other user numbers. As a result, it eliminates the need for qopying
commonly needed utilities to all user numbers on a directory, and
gives the MP/M II user control over which user zero files are directly
accessible from other user numbers. Refer to Section 2.2.8 for more
information on this topic.

2.2.5 Directory Labels and XFCBs

The BDOS file system includes two special types of FCB's, the
XFCB and the Directory Label. The XFCB is an "extended" FCB that can
optionally be associated with a file in the directory. If present, it
contains the file's password field and date and time stamp
information. The format of the XFCB is shown below:

XFCB FORMAT

" - — —— ——_————) — - — — — -} ——— —— — — T — —— — " ———— — S — -

D > - —— — — D — —— - —— — —— - — — - — - — —— - —— —) - ——— — — — . — — — v ——

dr - drive code (0 - 16)
file - file name field
type - file type field

Pm - password mode

bit 7 - Read mode
bit 6 - Write mode
bit 5 - Delete mode

* - bit references are right to left,
relative to O
sl,s2,rc - reserved for system use
password - 8 byte password field (encrypted)
tsl - 4 byte creation or access time stamp field
ts2 - 4 byte update time stamp field

34

MP/M II Programmer's Guide 2.2.5 Directory Labels and XFCBs

An XFCB can be created for a file in two ways: automatically, as
part of the BDOS Make function or explicitly, by the BDOS function,
Write File XFCB. The BDOS file system does not automatically create
an XFCB for a file unless a Directory Label is present on the file's
drive. The BDOS Read File XFCB function returns a file's XFCB if it
exists in the directory. Note that in the directory, an XFCB is
identified by a drive byte value (byte 0 in the FCB) equal to 16 + N,
where N equals the user number.

The Directory Label specifies, for a drive, if passwords for
password protected files are to be required, if data and time stamping
for files is to be performed, and if XFCBs are to be created
automatically for files by the Make function. The format of the
Directory Label is similar to that of the XFCB as shown below:

DIRECTORY LABEL FORMAT

|dr| name | type |dlislis2lrc| password | tsl | ts2 |

D D T D D A A D T D I D D D D D D WD D D D D D D AT I D D A D D D T D D D D D D D WD D D D AL D T T D T

D - D X D D D > D D D S D T D D — D D I T I D D s D T D D HD D e A B AT D TS D - — — - -

dr - drive code (0 - 16)

name - Directory Label name

type - Directory Label type

dl - Directory Label data byte

bit 7 - require passwords for files
bit 6 - perform access time stamping
bit 5 perform update time stamping
bit 4 - Make creates XFCBs
bit 0 Directory Label exists
** - bit references are right to left,
relative to 0

sl,s2,rc - n/a

password - 8 byte password field (encrypted)
tsl - 4 byte creation time stamp field
ts2 - 4 byte update time stamp field

Only one Directory Label can exist in a drive's directory. The
Directory Label name and type fields are not used to search for a
Directory Label in the directory; they can be used to identify a
diskette or a drive. A Directory Label can be created or its fields
can be updated by the BDOS function, Set Directory Label. This
function can also assign a Directory Label a password. The Directory
Label password, if assigned, cannot be circumvented, whereas file
password protection is an option controlled by the Directory Label.
Thus, access to the Directory Label password provides a kind of super-
user status for that drive.

Note: The BDOS file system provides no function to read the Directory
Label FCB directly. However, the Directory Label data byte can be
read directly with the BDOS function, Return Directory Label. 1In
addition, the BDOS Search functions ("?" in FCB drive byte) can be
used to find the Directory Label on the default drive. In the

35

MP/M II Programmer's Guide 2.2.5 Directory Labels and XFCBs

directory, the Directory Label is identified by a drive byte value
(byte 0 in the FCB) equal to 32 (20H).

2.2.6 File Passwords

Files may be assigned passwords in two ways: by the Make File
function if the Directory Label specifies automatic creation of XFCBs
or by the Write File XFCB function. A file's password can also be
changed by the Write File XFCB function if the original password is
supplied. However, a file's password cannot be changed without the
original password even when password protection for the drive is
disabled by the Directory Label.

Password protection is provided in one of three modes. Table 2-4

shows the difference in access level allowed to BDOS functions when
the password is not supplied.

Table 2-4. Password Protection Modes

- —— D - —— . —— — —— - - -} ——) T — - - - ——— — - - ——— — T —— " —

deleted.

- — — 0 — —— - ———————— — — — — — — — - — ——— — —— —— - — - > — —— L VD > T — —— —— -~ - " =

| Password | Access level allowed when the password |
| Mode | is not supplied.]
1. Read | The file cammet be resd. |
; 2. Write : The f£ile can be read but not modified. ;
; 3. Delete ; The file can be modified but not }

If a file is password protected in Read mode, the password must be
supplied to open the file. A file protected in Write mode cannot be
written to without the password. A file protected in Delete mode
allows read and write access, but the user must specify the password
to delete the file, rename the file, or to modify the file's
attributes. Thus, password protection in mode 1 implies mode 2 and 3
protection, and mode 2 protection implies mode 3 protection. All
three modes require the user to specify the password to delete the
file, rename the file, or to modify the file's attributes.

If the correct password is supplied, or if password protection is
disabled by the Directory Label, then access to the BDOS functions is
the same as for a file that is not password protected. 1In addition,
the Search For First and Search For Next functions are not affected by
file passwords.

36

MP/M II Programmer's Guide 2.2.6 File Passwords

Table 2-5 lists the BDOS functions that test for password.

Table 2~5. BDOS Functions That Test For Password

| 15. Open File |
| 19, Delete File |
| 23. Rename File I
| 30. Set File Attributes]
| 100. Set Directory Label |
| 103. Write File XFCB |

D D D D D D D D D > " - — D ——————— — — — - ————— - ——— — —

File passwords are eight bytes in length. They are maintained in
the XFCB and Directory Label in encrypted form. To make a BDOS
function call for a file that requires a password, a process must
place the password in the first eight bytes of the current DMA or
specify it with the BDOS function, Set Default Password, prior to
making the function call. Note: the BDOS maintains the assigned
default password on a system console basis and retains it across
process termination.

2.2.7 PFile Date and Time Stamps

The BDOS file system can record when a file was created or last
accessed, and/or last updated. It records the creation stamp only
when an XFCB is automatically created by the Make File function. 1If
an XFCB is created by the Make File XFCB function, the creation stamp
is set to zero. The Close File function makes the update stamp if a
write operation is made to the file while the file is open. The Open
File function makes the access stamp if the file is successfully
opened. The creation date stamp is overwritten when access stamping
is performed because only two date and time fields reside in the XFCB
and the access and creation time stamps share the same field.

The drive's Directory Label determines the type of date and time
stamping supported for files on a drive. If a drive does not have a
Directory Label, or if it is read/only, or if the drive's directory
label does not specify date and time stamping, then no date and time
stamping for files is performed. 1In addition, a file must have an
XFCB to be eligible for date and time stamping. For the Directory
Label itself, time stamps record when it was created and last updated.
No access stamping for Directory Labels is supported.

A process can directly access the date and time stamps for a file
by using the Read File XFCB function. No mechanism is provided to
directly update XFCB date and time fields.

The BDOS file system uses the MP/M internal date and time when it
records a date and time stamp. On MP/M II systems that do not support
a clock, date and time stamps record the last initialized value for
the system date and time. The MP/M II TOD utility can be used to set
the system date and time.

37

MP/M II Programmer's Guide 2.2.8 File Open Modes

2.2.8 File Open Modes

The BDOS file system provides three different modes of opening
files. They are defined as follows:

locked mode:

A process can open a file in locked mode only if the file is not
currently opened by another process. Once open in locked mode,
no other process can open the file until it is closed. Thus, if
a process successfully opens a file in locked mode, that process
in effect owns the file until the file is closed or the process
terminates. Files opened in locked mode support read and write
operations unless the file is a read/only file (attribute tl'
set) or the file is password protected in Write mode and the
password is not supplied with the BDOS Open File call. 1In both
of these cases, only read operations to the file are allowed.
Note: 1locked mode is the default mode for opening files under
MP/M II.

unlocked mode:

A process can open a file in unlocked mode if the file is not
currently open, or if the file has been opened by another process
in unlocked mode. This mode allows more than one process to open
the same file. Files opened in unlocked mode support read and
write operations unless the file is a read/only file (attribute
tl' set) or the file is password protected in Write mode and the
password is not supplied with the BDOS Open File call. However,
when a file opened in unlocked mode is extended by a write
operation, the BDOS allocates space to the file in data block
units, not in 128 byte record units as is normally the case. The
BDOS record locking and unlocking functions are only supported
for files opened in unlocked mode.

When opening a file in unlocked mode, a process must reserve 35
bytes in the FCB, because the Open File function returns a 2-byte
value called the File ID in the r0 and rl bytes of the FCB. The
File ID is a required parameter for the BDOS record lock and
record unlock commands.

read/only mode:

A process can open a file in read/only mode if the file is not
currently opened by another process, or the file has been opened
by another process in read/only mode. This mode allows more than
one process to open the same file for read/only access.

The open function performs the following steps for files opened
in locked or read/only mode. If the current user is non-zero, and the
file to be opened does not exist under the current user number, the

38

MP/M II Programmer's Guide 2.2.8 File Open Modes

open function searches user zero for the file. If the file exists,
under user zero and the file has the system attribute (t2') set, the
file is opened under user zero. The open mode is automatically forced

to read/only when this is done. For more information on this, refer
to Section 2.2.4.

The open function also performs the following action for files
opened in locked mode when the current user number is zero. If the
file exists under user zero and has the system (t2') and read/only
(tl') attributes set, the open mode is automatically set to read/only.
Thus, the read/only attribute controls whether a user zero system file
can be concurrently opened by a user-zero process and processes on
other user numbers when each process opens the file in the default
locked mode. If the read/only attribute is set, all processes open
the file in read/only mode and concurrent access of the file is
allowed. However, if the read/only attribute is reset, the user-zero
process opens the file in locked mode. If it successfully opens the
file, no other process can open it. If another process has the file
open, its open operation is denied.

Table 2-6 shows the definition of the FCB interface attributes
£5' and £6' for the BDOS Open File function.

Table 2-6. FCB Interface Attributes FS5' Fé6'
Open File Punction

£s' = o0, f6' = 0 - open in locked mode (default mode)
£5'-= 1, f6' = 0 - open unlocked mode
£5' = 0 or 1, £6' = 1 - open in read/only

Interface attribute f5' designates the open mode for the BDOS Make

File function. Table 2-7 shows the definition of the FCB interface
attribute £5' for the Make File function.

Table 2-7. FCB Interface Attribute F6°
Make PFunction

£5°'
£5°

0 - open in locked mode (default mode)
1 - open in unlocked mode

W

Note: the Make File function does not allow opening the file in
read/only mode.

2.2.9 File Security

In general, the security measures implemented in the BDOS file
system are intended to prevent accidental collisions between running
processes. It is not possible to provide total security under MP/M II
because the BDOS file system maintains file allocation information in
open FCBs in the user's memory region, and MP/M II does not support
memory protection. In the worst case, a program that "crashes" on

39

MP/M II Programmer's Guide 2.2.9 File Security

MP/M II can take down the entire system. Therefore, MP/M II requires

that all processes running on the system be "friendly." However, the
BDOS file system is designed to ensure that multiple processes can
share the same file system without interfering with each other. 1It
does this in two ways:

° it performs checksum verification of open FCBs.

° it monitors all open files and locked records via the system
lock list (LCKLSTS.DAT).

User FCBs are checksum validated before I/0 operations to protect
the integrity of the file system from corrupted FCBs. The Open File
and Make File functions compute and assign checksums to FCBs. The
Read, Write, Lock Record, Unlock Record and Close File functions
subsequently verify and recompute the checksums when the FCB changes.
If the BDOS detects an FCB checksum error, it does not perform the
requested command. Instead, it either terminates the calling process
with an error, or if the process is in BDOS return error mode (see
Section 2.2.13), it returns to the process with an error code.

The system lock list is established during the system generation
process at which time the user can establish the size of the list and
also define limits for the number of files a single process can open
and the number of records a single process can lock. Each time a
process opens a file or locks a record successfully, the BDOS file
system allocates an entry in the system lock list to record the fact.
The file system uses this information to:

® Prevent a process from deleting, renaming, or updating the
attributes of another process's open file.

. Prevent a process from opening a file currently opened by
another process unless both processes open the file in
locked or read/only mode.

° Prevent a process from resetting a drive on which another
process has an open file.

. Prevent a process from locking or updating a record
currently locked by another process. Refer to Section
2.2.10 for more information on record locking and unlocking.

For reasons of efficiency, the file system verifies only for certain
functions whether another process has the FCB specified file open.
These functions are: Open File, Make File, Delete File, Rename File,
and Set File Attributes. For open FCBs, the FCB checksum controls
whether the process can use the FCB. By definition, a valid FCB
checksum implies that the file has been successfully opened and an
entry for the f£ile resides in the system lock list. When a process
closes a file permanently, the file system removes the file from the
system lock list and invalidates its FCB checksum field.

40

MP/M II Programmer's Guide 2.2.9 File Security

There are several other situations where the file system removes
open file entries from the system lock list for a process. For
example, if a process makes a delete call for a file that it has open
in locked mode, the file system deletes the file and also removes the
file's entry from the system lock list. Deleting an open file is not
recommended practice under MP/M but is supported for files opened in
locked mode (the default open mode), to provide compatibility with
software written under earlier releases of MP/M and CP/M. Note that

the file system does not delete a file opened in unlocked or read/only
mode.

To ensure that the process does not use the FCB corresponding to
the deleted file, the file system subsequently checks all open FCBs
for the process to ensure that a lock list item exists for the FCB.
Each open FCB is checked the next time it is used. 1If a lock list
entry exists for the file, the operation is allowed to proceed.
Otherwise, an FCB checksum error is returned.

The file system performs this verification of open FCBs for all
situations where it purges an open file entry from the system lock
list. The following list describes these situations:

e A process deletes a file it has open in locked mode.
e A process renames a file it has open in locked mode.

e A process updates the attributes via the BDOS Set File Attributes
command of a file it has open in locked mode.

e A process issues a Free Drive call for a drive on which it has an
open file.

e A change in media is detected on a drive that has open files.
This situation is a special case because a process cannot control
whether it occurs and it can impact more than one process. Refer
to Section 2.2.13 for more information on this situation.

The automatic verification of open FCBs by the file system after
it purges a file entry from the system lock list can affect
performance. Each verification requires a directory search operation.
Therefore, it is strongly recommended that these situations be avoided
in new programs developed for MP/M II.

2.2.10 Concurrent File Access

More than one process can access the same file if each process
opens the file in the same shared access mode. BDOS supports two
shared access modes, unlocked and read/only. Read/only mode is
functionally identical to the default locked mode except that more
than one process can access the file and no process can change it.

41

MP/M II Programmer's Guide 2.2.10 Concurrent File Access

Files opened in unlocked mode present a more complex situation because
a file opened in this mode can be modified by multiple processes
concurrently. As a result, unlocked mode differs in some 1mportant
ways from the other open modes.

When a process opens a file in unlocked mode, the file system
returns a 2-byte field called the File ID in the r0 and rl bytes of
the FCB. The File ID is a required parameter of the BDOS Lock Record
and Unlock Record functions.

The file system supports two mechanisms that allow processes to
coordinate update operations on files open in unlocked mode. The
record locking and unlocking functions allow a process to establish
and relinquish temporary ownership of particular records. A record
lock does not prevent another process from reading the locked record;
only write and lock operations for other processes are intercepted.
As an alternative, the Test and Write function verifies the current
contents of a record before allowing the write operation to proceed.

The Record locking and unlocking functions and the Test and Write
function provide two fundamentally different approaches to record
update coordination. When a record is locked, the file system
allocates an entry in the system lock list, identifying the locked
record and associating it with the calling process. The Unlock Record
function removes the locked entry from the list. While the locked
record's entry exists in the system lock list, no other process can
lock or write to that record. Because the system lock list is a
limited resource under MP/M, a process is restricted regarding the
number of records it can lock.

The Test and Write function, on the other hand, performs its
verification at the I/0 level. 1In a single indivisible operation, it
verifies that the user's current version of the record matches the
version on disk before allowing the write operation to proceed. As a
result, it is not restricted like the Record Lock function. However,
record update coordination can usually be performed more efficiently
with the lock functions.

The BDOS file system performs additional steps for read and write
operations to a file open in unlocked mode. These added steps are
required because the BDOS file system maintains the current state of
an open file in the user's FCB. When multiple processes have the same
file open, FCBs for the same file exist in each processes' memory. To
ensure that all processes have current information, the file system
updates the directory immediately when an FCB for an unlocked file is
changed. In addition, the file system verifies error situations such
as end of file or reading unwritten data with the directory before
returning an error. As a result, read and write operations are less
efficient for files open in unlocked mode when compared to equivalent
operations for files opened in the default locked mode.

42

MP/M Il Programmer's Guide 2.2.10 Concurrent File Access

Extending a file is also a special situation for files opened in
unlocked mode. Normally, when a file is extended, the size of the
file is set to the random record number of the last record + 1.
However, when a file opened in unlocked mode is extended, the size of
the file is set to the random record number + 1 of the last 128 byte
record in the file's last data block. A process must keep track of
the actual last record of a file extended while open in unlocked mode,
if that is required.

2.2.11 Multi-Sector I/0

The BDOS file system provides the capability to read or write
multiple 128-byte records in a single BDOS function call. This multi-
sector facility can be visualized as a BDOS "burst" mode, enabling a
process to complete multiple I/0 operations without interference from
other running processes. The use of this facility in an application
program can improve its performance, and also enhance overall system
throughput. For example, the PIP utility performs its sequential I/0
with a multi-sector count of 8. Multi-sector I/0 has its greatest
impact, however, in the performance of sequential I/O processing on
MP/M II systems that support record blocking/deblocking in their XIOS.
Improved performance is achieved by eliminating the need for a large
percentage of XIOS physical record pre-read operations.

The number of records that can be supported with multi-sector I/O
ranges from one to sixteen. For transient programs, the default value
is one because the CLI initializes the multi-sector count of a
transient program to one when it initiates the program. The BDOS Set
Multi-Sector Count function can be used to set the count to another
value.

The multi-sector count determines the number of operations to be
performed by the following BDOS functions:

e Sequential Read and Write functions

e Random Read and Write functions including Write with Zero Fill
and Test and Write

e Record Lock and Record Unlock functions

If the multi-sector count is N, calling one of the above functions is
equivalent to making N function calls. If a multi-sector I/O0
operation is interrupted with an error, the file system returns the
number of 128-byte records successfully processed in the high-order
nibble of register H.

2.2.12 XIOS Blocking and Deblocking

An optional physical record blocking and deblocking facility can
be implemented as part of the XIOS when it is necessary to maintain
physical records on disk in units greater than 128-bytes. In

43

MP/M II Programmer's Guide 2.2.12 XIOS Blocking and Deblocking

general, record blocking and deblocking in the XIOS is transparent to

the BDOS file system as well as to programs that make BDOS file system
calls.

If this facility is implemented, then the XIOS sends data to or
receives data from the BDOS file system in logical 128-byte records,
but accesses the disk with a larger physical record size. The XIOS
uses an internal physical record buffer equal in size to the physical
record size to buffer logical records. The process of building up
physical records from 128-byte logical records is called blocking, and
1t is required for BDOS write operations. The reverse process is
called deblocking and it is required for BDOS read operations. For
BDOS write operations, the XIOS postpones the physical write operation
for permanent drives (see Section 2.2.13) if the write operation is
not to the directory. For BDOS read operations, the XIOS performs a
physical read only if the current physical record buffer does not
contain the requested logical record. 1In addition, if the physical
record is "pending" as the result of a previous write operation, the
XIOS performs a physical write operation prior to the read operation.

Postponing physical record write operations has implications for
some application programs. For those programs that involve file
updating, it is often critical to guarantee that the state of a file
on disk parallels the state of the file in memory after updating the
file. This is only an issue for systems that implement blocking and
deblocking because of the postponement of physical write operations.
If the system should crash while the physical buffer is pending, data
would be lost. To prevent this, the BDOS Flush Buffers function can

be invoked to force the write of any pending physical buffers in the
XIOS.

Note: The XDOS automatically calls this function when a process
terminates. In addition, the BDOS file system automatically makes a
Flush Buffers call in the Close File function.

2.2.13 Reset, Access and PFree Drive

The BDOS functions Disk System Reset, Reset Drive, Access Drive,
and Free Drive allow a process to control when a drive's directory is
to be reinitialized for file operations. When MP/M II is initiated by
MPMLDR, all drives are initialized to the reset state. Subsequently,
as drives are referenced, they are automatically logged-in by the file
system. The log-in operation initializes the drive for BDOS file
operations. In general, once a drive is logged-in, it is not
necessary to relog the drive unless a disk media change is to be made.
However, MP/M II requires that a successful drive reset be performed
for a drive before a media change. 1If a drive is in the reset state
when the media is changed, the next access to the drive logs in the
drive. Note that the Disk System Reset and Reset Drive functions have
similar effects except that the Disk System Reset function is directed
to all drives on the system. The user can specify any combination of
drives to be reset with the Reset Drive function.

44

MP/M II Programmer's Guide 2.2.13 Reset, Access and Free Drive

Under MP/M II, the drive reset operation is conditional in
nature. Generally speaking, the file system cannot reset a drive for
a process if another process has an open file on the drive. However,
the exact action taken by a drive reset operation depends on whether
the drive to be reset is permanent or removeable. MP/M II determines
whether a drive is permanent or removeable by interrogating a bit in
the drive's disk parameter block (DPB) in the XIOS (refer to the MP/M
II System's Guide for a detailed discussion of the DPB). A high-order
bit of 1 in the DPB checksum vector size field designates the drive as
permanent. Under MP/M II, a drive's designation is critical to the
reset operation, which is described below.

The BDOS first determines if there are any files currently open
on the drive to be reset. If there are none, the reset takes places.
Otherwise, if the drive is a permanent drive and if the drive is not
read/only, the reset operation is not performed but a successful
result is returned to the calling process. However, if the drive is
removeable or read/only, the file system determines whether other
processes have open files on the drive. If they do, the drive reset
operation is denied and an error code is returned to the calling
process. If all the files open on the drive belong to the calling
process, the file system performs a "qualified"” reset operation for
the drive and returns a successful result to the calling process.
This means that the next time the drive is accessed, the log-in
operation is only performed if a media change is detected on the

drive., The logic flow of the drive reset operation is shown in Figure
2—1 e

If the file system detects a media change on a drive after a
qualified reset, it purges all open files on the drive from the system
lock list and subsequently verifies all open FCBs in file operations
for the owning process (see Section 2.2.9). The drive is also
relogged-in. In all other cases where a media change is detected on a
drive, the file system performs the following steps: All open files
on the drive are purged from the system lock list, and all processes
owning a purged file are flagged for automatic open FCB verification.
The drive is then placed in read/only status. It is not relogged-in
until a drive reset is issued for the drive. Note: If a process
references a file purged from the system lock list in a BDOS command
that requires an open FCB, it is returned an FCB checksum error by the
BDOS file system.

The access Drive and Free Drive functions perform special actions
under MP/M II. The Access Drive function inserts a "dummy" open file
item into the system lock list for each specified drive. While that
item exists in the system lock list, the drive cannot be reset by
another process. The Free Drive function purges the open lock list of
all items including open file items belonging to the calling process
on the specified drives. Any subsequent reference to those files by a
BDOS function call requiring an open FCB results in a FCB checksum
error return. ’

45

MP/M II Programmer's Guide 2.2.13 Reset, Access and Free Drive

The BDOS function Write Protect Disk function has special
properties under MP/M II. This function can be used to set the
specified drive to read/only. However, MP/M II does not allow a
process to set a drive read/only if another process has an open file
on the drive. This applies to both removeable and permanent drives.
If a process has successfully set a drive read/only, it can prevent
other processes from resetting the drive by either opening a file on
the drive or issuing an Access Drive call for the drive. While the
open file or "dummy” item belonging to the process resides in the
system lock list, no other process can reset the drive to take it out
of read/only status.

e e DLt | vyes
| Open files |
| on drive ? A
| e | |

I !

| no |==——e—em—————— I

I | Drive | yes

I | removeable ? |

I | m—mmm e | I

| | no |

| | ==emm e | yes I

I | Drive R/0 ? | I

! | = e | |

| ! !

I | no |

| | l
| em e ! | = m=mmm e l e ittt !
| Reset | | Don't reset | | Open files | yes
| drive I | drive | | belong to |
R | | mmmm e | | another | I

| I | process ? | |

! | [n |

| l | no I

! l R l |

I I | Qualified | |

| I | reset ! |

| I | performed | |

| | | mm o | |

I | | !

I | | I

I | | |
| === I | | [=————mm———
| Disk | |] | Disk
| Reset R et |] Reset
| Success | | Denied

Figqure 2-1.

46

Disk System Reset

MP/M II Programmer's Guide 2.2.14 BDOS Error Handling

2.2.14 BDOS Error Handling

The BDOS file system has an extensive error handling capability.
When it detects an error, it can respond in three ways:

1) It can return to the calling process with return codes in
register A, H, and L identifying the error.

2) It can display an error message on the console and abort the
process.

3) It can diéplay an error message on the console and return to
the calling process as in method 1.

The file system handles the majority of errors it detects via method
1. The kinds of errors the file system handles via methods 2 and 3
are called "physical"™ and "extended" errors. The BDOS Set Error Mode
function determines how the file system handles physical and extended
errors. The BDOS Error Mode can exist in three states. In the
default state, the BDOS displays the error message and terminates the
calling process (method 2). In return error mode, the BDOS returns
control to the calling process with the error identified in registers
A, H, and L (method 1). 1In return and display mode, the BDOS returns
control to the calling process with the error identified in registers
A, H, and L, and also displays the error message at the console
(method 3). Both the return modes ensure that MP/M II does not
terminate the process because of a physical or extended error. The
return and display mode also allows the calling process to take
advantage of the built-in error reporting of the BDOS file system.
Physical and extended errors are displayed on the Console in the
following format:

BDOS Err on d: error message
BDOS function: nn File: filename.type

where "d" is the name of the drive selected when the error condition
is detected; "error message" identifies the error; "nn" is the BDOS
function number, and "filename.type" identifies the file specified by
the BDOS function. If the BDOS function did not involve a FCB, the
file information is omitted..

The BDOS physical errors are identified by the following error
messages:

e Bad Sector
e Select
e File R/O
¢ R/0
The "Bad Sector" error results from an error condition returned to the

BDOS from the XIOS module. The file system makes XIOS read and write
calls to execute file related BDOS calls. If the XIOS read or write

47

MP/M II Programmer's Guide 2.2.14 BDOS Error Handling

routine detects an error, it returns an error code to the BDOS
resulting in this error.

The "Select"™ error also results from an error condition returned
to the BDOS from the XIOS module. The BDOS makes an XIOS Select Disk
call prior to accessing a drive to perform a requested BDOS function.
If the XIOS does not support the selected disk, it returns an error
code resulting in this error.

The "File R/O" error is returned whenever a process makes a write
operation to a disk that is in read/only status. A drive can be
‘Placed in read/only status explicitly with the BDOS Write Protect Disk
- function, or implicitly if the file system detects a change in media
on the drive.

The BDOS extended errors are identified by the following error
messages:

e File Opened in Read/Only Mode

e File Currently Opened
¢ Close Checksum Error
® Password Error

e File Already Exists

e Illegal ? in FCB

e Open File Limit Exceeded
e No Room in System Lock List

The "File Opened in Read/Only Mode" error is returned when a process
attempts to write to a file opened in read/only mode. A file can be
opened in read/only mode explicitly, or opened in read/only mode
implicitly in two ways. If a file is opened from user zero when the
current user number is non-zero, the file is opened in read/only mode.
In addition, if a file is password protected in write mode and the
password is not supplied with the open call, this error is returned if
an attempt is made to write to the file.

The "File Currently Open"™ error is returned when a process
attempts to delete, rename, or modify the attributes of a file opened
by another process. This error is also returned when a process
attempts to open a file in a mode incompatible with the mode in which
" the file was opened by another process.

The "Close Checksum Error"™ message is returned when the BDOS
detects a checksum error in the FCB passed to the file system with a
BDOS Close File call.

43

MP/M II Programmer's Guide 2.2.14 BDOS Error Handling

The "File Password" error is returned when the file password is
not supplied or is incorrect.

The "File Already Exists”" error is returned for the BDOS Make
%e and Rename File functions when the BDOS detects a conflict on

F
file name and type.

i
i

The "Illegal ? 1in FCB" error is returned whenever the BDOS
detects a "?" in the file name or type field of the passed FCB for the

BDOS Rename File, Set File Attributes, Open File, and Make File
functions.

The "Open File Limit Exceeded" error is returned when a process
exceeds the file lock limit specified in the system lock table during
system generation. The Open File, Make File, and Access Drive
functions can return this error.

The "No Room in System Lock List" error is returned when no room
for new entries exists within the system lock list. The capacity of
the system lock list is a system generation parameter. The Open File,
Make File, and Access Drive functions can return this error.

The following paragraphs describe the error return code
conventions of the BDOS file system functions. Most BDOS file system
functions fall into three categories in regard to return codes; they
return an Error Code, a Directory Code, or an Error Flag. The error
conventions are designed to allow programs written for earlier
versions of CP/M and MP/M to run without modification.

The following BDOS functions return an Error Code in register A.

20. Read Sequential

21. Write Sequential

33. Read Random

34. Write Random

40. Write Random w/Zero Fill
41, Test and Write Record
42, Lock Record

43. Unlock Record

The Error Code definitions for register A are shown in Table 2-8.

49

MP/M II Programmer's Guide 2.2.14 BDOS Error Handling

* %
* %

* %

*

* %

00
255
01

e o9 oo

02
03
04
05
06
07

08

80 €0 ss Ss s e e

09

10
11

12
13
14

05 o0 3 e

Table 2.8. BDOS Error Codes

Function successful

Physical error : refer to register H

Reading unwritten data

No available directory space (Write Sequential)
No available data block

Cannot close current extent

Seek to unwritten extent

No available directory space

Random record number out of range

Record match error (Test and Write)

Record locked by another process

(restricted to files opened in unlocked mode)
Invalid FCB (previous BDOS read or write call
returned an error code and invalidated the FCB)
FCB checksum error

Unlocked file unallocated block verify error
Process record lock limit exceeded

Invalid File ID

No room in BDOS internal lock table

- returned only for files opened in unlocked mode
- returned only by the Lock Record function
for files opened in unlocked mode

The following BDOS functions return a Directory Code

registe

r A:

ls.

16.
) 170

18.

19.
22.
23.
30.
100.

101.
102.

Open File

Close File

Search For First
Search For Next
Delete File

Make File

Rename File

Set File Attributes
Set Directory Label
Read File XFCB
Write File XFCB

in

The Directory Code definitions for register A are shown in Table 2-9.

Table 2-9. BDOS Directory Codes

00 - 03 : successful function
255 : unsuccessful function

With the exception of the BDOS search functions, Directory Code values
(0-3) have no significance other than to indicate a successful result.

However,

for the search functions,

a successful Directory Code

identifies the relative starting position of the directory element in
the calling process' current DMA buffer.

50

MP/M II Programmer's Guide 2.2.14 BDOS Error Handling

If the Set BDOS Error Mode function is used to place the BDOS in
return error mode, the following functions return an Error Flag on
physical errors:

14. Select Disk

35. Compute File Size
38, Access Drive

46. Get Disk Free Space
48. Flush Buffers

101. Return Directory Label Data

The Error Flag definition for register A is shown in Table 2-10.

Table 2-10. BDOO Error Flags

00
255

successful function
physical error : refer to register H

The BDOS returns register H values for all three of the above
categories in the following format:

——— > - —=n s > —

where N1 denotes the high order nibble and N2 denotes the low order

nibble. The following rules govern the assignment of values to Nl and
N2.

Nl = For functions that return Error Codes, the BDOS sets Nl to the
number of sectors successfully read or written before the error
is encountered. This information is returned only when a process
uses the Set Multi-Sector Count function to set the BDOS logical
sector count to a value other than one; otherwise the BDOS sets

Nl to zero. Successful read and write functions also set N1 to
Zero.

- Functions that return a Directory Code or an Error Flag set Nl to
zero.

N2 - The values contained in N2 identify BDOS physical and extended
errors. The BDOS returns values in N2 only if it is in one of
the return error modes; otherwise, it sets N2 to zero. Table 2-
11 lists the physical and extended error codes returned in N2.

51

MP/M II Programmer's Guide 2.2.14 BDOS Error Handling

Table 2-11. BDOS Physical and Extended Errors

00 - No error or not a register H error
01 - Bad sector : permanent error
02 - R/0 : read/only disk
03 - R/0 File : read/only file

- File Opened in Read/Only Mode
04 ~ Select : drive select error
05 - File Currently Open
06 - Close Checksum Error
07 - Password Error
08 - File Already Exists
09 - Illegal ? in FCB
10 - Open File Limit Exceeded
11 - No Room in System Lock List

Note: Register H is equal to zero if the called function is
succésstul. In addition, the BDOS sets N2 to zero when register A
returns a value other than 255. Except for functions that return
Directory Codes, if register A contains a value of 255 upon return, N2
identifies the error when the BDOS is in return error mode.

The following two functions represent a special case because they
return an address in registers H and L.

27. Get Addr(Alloc)
31. Get Addr(Disk Parms)

When the BDOS is in return error mode and it detects a physical error
- for these functions, it returns to the calling process with registers
A, H, and L all set to 255. Otherwise, they return no error code.

Under MP/M II, the following functions also represent a special
case.

13. Reset Disk System
28. Write Protect Disk
37. Reset Drive

These functions return to the calling process with registers A, H, and
L all set to 255 if another process has an open file or has made a
BDOS Access Drive call that prevents the reset or write protect
operation (see Section 2.2.13). If the BDOS is not in return error
mode, these functions also display an error message identifying the
process that prevented the requested operation.

52

MP/M II Programmer's Guide 2.3 Base Page Initialization

2.3 Base Page Initialization

The region of memory located from BASE+0000H to BASE+0OFFH is
called the base page of a memory segment (BASE = memory segment base
address). The base page contains several segments of code and data
that are used by transient programs while running under MP/M II. The
code and data areas are shown below for reference. All addresses are
relative to the beginning of the memory segment. '

Table 2-12. Base Page Areas

Locations Contents
from to
0000H - 0002H Contains a jump instruction to the XIOS

process termination entry point at XIOS BASE
+ 3. This entry point may also be used for
direct XIOS calls to the XIOS console
status, console input, console output, and
list output primitive functions.

0003H - 0004H (Reserved)

0005H - 0007H Contains a jump instruction to the BDOS and
XDOS, and serves two purposes: JMP 0005H
provides the primary entry point to the BDOS
and XDOS, and LHLD 0006H places the address
field of the jump instruction in the HL
register pair. This value (-1) is the
highest address of the memory segment
available to the transient program. Note:
The RDT program changes the address field to
reflect the reduced memory size in debug

mode.

0008E - 003AH Reserved interrupt locations for Restarts
1 -7

003BH - 004FH (not currently used - reserved)

0050H Identifies the drive from which the

transient program is read. A value of zero
designates the default drive, a value of one
to sixteen identifies drives A through P.

0051H - 00S52H Contains the address of the password field
of the first command-tail operand in the
default DMA buffer beginning at 0080H. The
CLI sets this field to zero if no password
for the first command-tail operand is
specified.

53

MP/M II Programmer's Guide 2.3 Base Page Initialization

Table 2-12. (continued)

Locations Contents
from to
0053H Contains the length of the password field

for the first command-tail operand. The CLI
also sets this field to zero if no password
for the first command-tail is specified.

0054H - 00S5S5H Contains the address of the password field
of the second command-tail operand in the
default DMA buffer beginning at 0080H. The
CLI sets this field to zero if no password
for the second command-tail operand 1is
specified.

0056H Contains the length of the password field

for the second command-tail operand. The
CLI also sets this field to zero if no
password fo the second command-tail is

specified.
0057H - 005BH (not currently used - reserved)

005CH - 007BH Default File Control Block (FCB) area 1
initialized by the CLI for a transient
program from the first command-tail operand
of the command line (if it exists).

006CH - 007BH Default File Control Block (FCB) area 2
initialized by the CLI for a transient
program from the second command-tail operand
of the command line (if it exists). Note:
this area overlays the last 16 bytes of
default FCB area 1. To use the information
in this area, the transient program must
copy it to another location before using FCB
area 1.

007CH - Q007CH Current record position of default FCB area
1. This field is used with default FCB area
1 in sequential record processing.

007DH - 007FH Optional default random record position.

This field is an extension of default FCB
area 1 used in random record processing.

0080H - OOFFH Default 128-byte disk buffer (also filled
with the command tail when the CLI loads a
transient program).

54

MP/M II Programmer's Guide 2.3 Base Page Initialization

The CLI initializes the base page prior to initiating a transient
program. The fields at BASE+0050H and above are initialized from the
command line invoking the transient program. The command line format
of a transient program usually takes the form:

<command> <command tail>

where

<command> => {d:}filename{;password}

<command tail> => (no command tail)
=> <file spec>
=> <file spec><delimiter><file spec>

<file spec> => {d:}filename{.type}{;password}

If a drive {d:} is specified in the <command> field, the CLI
initializes the command drive field at 0050H to the drive index (A =
l;, «e¢c 4 P = 168). Otherwise, it sets the field to zero.

The default FCB at 005CH is defined if a command tail is entered.
Otherwise, the fields at SCH, 68H to 6BH are set to binary zeros, the
fields from SDH to 67H are set to blanks. The fields at 51H through
53H are set if a password is specified for the first <file spec> of
the command tail. If not, these fields are set to zero.

The default FCB at 006CH is defined if a second <file spec>
exists in the command tail. Otherwise, the fields at 6CH, 78H to 7Bh
are set to binary zeros, the fields from S5DH to 67H are set to blanks.
The fields at 54H through 56H are set if a password is specified for

the second <file spec> of the command tail. If not, these fields are
set to zero.

Transient programs often use the default FCB at 005CH for file
operations. This FCB may even be used for random file access because
the three bytes starting at 007DH are available for this purpose.
However, a transient program must copy the contents of the default FCB
at 006CH to another area before using the default FCB at 005CH,
because an open operation for the default FCB at 005CH overwrites the
FCB data at 006CH.

The default DMA address for transient programs is BASE+00R20H.
The CLI also initializes this area to contain the command tail of the
command line. The first position contains the number of characters in
the command line, followed by the command line characters. The
command line characters are preceded by a leading blank and are
translated to ASCII upper-case. Because the 128~byte region beginning
at BASE+0080H is the default DMA, the BDOS file system moves 128-byte
records to this area with read operations and accesses 128-byte
records from this area with write operations. The transient program
must extract the command tail information from this buffer before
performing file operations unless it explicitly changes the DMA
address with the BDOS Set DMA Address function. The base page fields
of 0051H through 0056H locate the password fields of the first two

55

MP/M 11 Programmer's Guide

2.3 Base Page Initialization

file specifications in the command tail if they exist.

These fields

are provided so that transient programs are not required to parse the

command tail for password fields.

However, the transient program must
save the password, or change the DMA address before performing file
operations.

The following example illustrates the initialization of the
command line fields of the base page.
line is typed at the console:

Assume the following command

A:PROGRAM B:FILE.TYP;PASS C:FILE.TYP;PASSWORD

A hexadecimal dump of BASE+0050H to BASE+00A5H would show the base
page initialization performed by the CLI.

0050H: 01
0060H: 45

0070H: 45
0080H: 24

0090H: 53
OOAOQOH: 53

8D
20

20
20

20
57

00
20

20
42

43
4F

04
20

20
3A

3A
52

9D
20
20
46
46
44

00
54
54
49
49
00

08
59

59
4C

4C

00
50
50
45
45

00
00
00
2E
2E

56

00
00
00
54
54

00
00
00
59
59

00
00
00
50
50

02
03
00
3B
3B

46
46
00
50
50

49
49
00

41

4C
4C
00
53
53

C...'..‘G....FIL
E....TYP.....FIL
EceeoeTYPesceoecoon
. B:FILE.TYP;PAS
S C:FILE.TYP;PAS

SWORD.

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 0

2.4 BDOS Function Calls

e de de de e do K ke de e de e ke de de de e de de de e do de de de de e de de de ke de de o de ek de Kk ke

%* *
* FUNCTION 0: SYSTEM RESET *
* *
TRhhkkkhhhlhhhhihhhdhdohhhhhihhhhhidhihrkhhk®
* Entry Parameters: *
* Register C: O0OH *

dodededekkkhhhkdhhdhdhhhhkhhhhhhhidhrhtihhhhh®

The System Reset function terminates the calling process,
releasing all system resources owned by the process. 1In general, a
process can own one or more of the following resources: memory
segments, consoles, printers, mutual exclusion messages, and system
lock list entries that record open files and locked records. All
released resources become available to other processes on the system.
For example, if a system console is released by a terminating process,
it is usually given back to the console's TMP. This occurs when the
TMP is the highest priority process waiting for the console.

Normally, the System Reset function operates the same way under
MP/M II as it does under CP/M: the calling program terminates and the
user receives the command prompt. Note that the disk subsystem is not
reset by System Reset under MP/M II.

For transient programs, System Reset is equivalent to a jump to
BASE+0Q.

kkdehhhhddhhhhhhhbhdhkhdkdhhhohihhhhohhhhhhhkd

* %
* FUNCTION 1: CONSOLE INPUT *
%* . *
Fe % de Jo Jo Je do K de K Jo JeJe Fe dodo Je g dede ke de Kk de de K de de ke ke de g de o de do Fe ok K
* Entry Parameters: *
* Register C: O0lH *
%* *
* Returned Value: *
* %*

Register A: ASCII Character
khkkhdkhhhhhhhdhkdohdhkhrhhhhhkhhhhbhdidhkkddd

The Console Input function reads the next character from the
console device to register A. Most graphic characters, including
carriage return, line feed, and backspace (CONTROL-H) are echoed to
the console. Tab characters (CONTROL-I) are expanded in columns of 8
characters. However, the terminate process (CONTROL-C) and detach
process (CONTROL-D) characters are intercepted by the BDOS (see
Section 2.1). The BDOS does not return control to the calling process
until a character is typed, thus suspending execution if a character
is not ready.

57

MP/M‘II Programmer's Guide 2.4 BDOS Calls: Function 1

MP/M II performs an XDOS Attach Console call (function 146) for
the calling process if it does not own the console (see Section 2.1).

khdkkdedhhkhbhhhhhhhhrbhhkhhhhhhhhrhhhkhhrhdhd

%* *
* PFUNCTION 2: CONSOLE OUTPUT *
* *
khkdhrhhhhkRbrhkdhbhhhhkhhhhrhhhthdhhbhhhhhitd
* Entry Parameters: ok
* Register C: O2H *
* Register E: ASCII Character *
* *

hkhhhhhkhkhhhhkdhkhhdkhhhkthkhhhdkhhhkhhhhkhhhhhiks

The Console Output function sends the ASCII character from
register E to the console device. It expands tab characters
(CONTROL-I) in columns of 8 characters, and checks for start scroll
(CONTROL-S), stop scroll (CONTROL=-Q), terminate process (CONTROL-C),
and detach process (CONTROL-D) (see Section 2.1).

MP/M II performs an XDOS Attach Console call (function 146) for
the calling process if it does not own the console (see Section 2.1).

khkkhkhhhkkhkhhkhhhkhhhhbhkhddhhkhhhkhhhhhhhkhhhddx

* *
* FUNCTION 3: RAW CONSOLE INPUT *
* *
khdkdkhdhhhhhhkhdhhkhhkhhhkkhhkhkhhkhhkhkhhkhhdhiekhisx
* Entry Parameters: *
* Register C: 03H *
* *
* Returned Value: *
* Register A: ASCII Character *
* *
khkkhkkhhhkhdohhhhhhhhhhrhhhhkhdhhhrhhrhhhihd

The Raw Console Input function reads the next console character
to register A, It reads all characters including control characters,
without any testing or interpretation.

MP/M II performs an XDOS Attach Console call (Function 146) for
the calling process if it does not own the console (see Section 2.1).

MP/M II does not support the CP/M Reader Input function because

the system treats all character I/O devices such as the reader/punch
as consoles.

58

MP/M II Programmer's Guide ’ 2.4 BDOS Calls: Function 4

hdkdhhdehkhhhhhrhkhhhhhhhhkhhdhhhhhhhhhkhidd

* *
* FUNCTION 4: RAW CONSOLE OUTPUT *
* %
de e de o Je J de de de e de de o d de do de e de de de de do dode do de e do de e de g do ke de ke de de kK
* Entry Parameters: ‘ *
* Register C: O04H *
* Register E: ASCII Character *
* *

dkhhdehddhhhhkhhhhhkfedhhkrhhdodohiddddhddhhkihhkikk

_ The Raw Console Qutput function sends the ASCII character from
register E to the console device. It does not test the output

character; that is, tabs are not expanded and no checks are made for
control characters.

MP/M II performs an XDOS Attach Console call (function 146) for
the calling process if it does not own the console (see Section 2.1).

MP/M II does not support the CP/M Punch Output function.

kkkbhhhhthhhhhhhhkhkhhhkhkdhrhhkhhrhhhhokhhid®

* *
* FUNCTION 5: LIST OUTPUT *
* *
khkkkhhhkhhkhkdkkhhhkhhhkhkhhkiorhhkkhhkhhhhhkhkh®
* Entry Parameters: *
* Register C: O05H *
* Register E: ASCII Character *
* *

khkRkhkhhhhhhdhhhdkhhhldhhhhhhhhdkdkhhdhiis®

The List Output function sends the ASCII character in register E
to the list device.

MP/M II performs an XDOS Attach List call (function 158) for the
calling process if it does not own the list device (see Section 2.1).

59

MP/M I1 Programmef's Guide

2.4

BDOS Calls:

Function 6

hkdkhkhkhkkhhkhhhhhkhkhdhhdhhthhhhkhhthhhihs

* *
* PUNCTION 6: DIRECT CONSOLE I/O *
* *

% Je Je % Je Jo Je Je Je Jo e Je Jo Je Jo Jo de e Je e Jo de Je de e e do do de o de K o do o Fe e de de ke

* Entry Parameters:

Register C: O06H

Register E: OFFH (input/

status) or

OFEH (status) or
OFDH (input)
char (output)

Returned Value:
Register A: char or status

(no value)
dedhhkdehkdddehdhdkdohhdedhidhhhdhhkdhhihiihii

* % ok * N A * X X X
* F X F ok ¥ H ¥ * ¥ * F

MP/M II supports direct console I/0O for those specialized
applications where unadorned console input and output is required.

The programmer should use direct console I/0O carefully because it

bypasses all the normal control character functions.

Programs that

perform direct I/0 through the BIOS under previous releases of CP/M
should be changed to use direct I/0 under the new BDOS so that they
can be fully supported under future releases of MP/M and CP/M.

A Process calls Function 6 by passing one of four different

values in register E. These are summarized in Table 2-13, below.
Table 2-13. Function 6 Entry Parameters
Register Meaning
E value
OFFH console input/status command,
returns an input character; if no

character is ready, a value of zero

is returned.

OFEH console status command (On return,
register A contains 00 if no

character is ready;

contains FFH.)

OFDH console input command,

input character;

character is ready.

ASCII Function 6 assumes
character contains a valid ASCII character and

otherwise,

register

sends it to the console.

60

returns an
this function will
suspend the calling process until a

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 6

Note: MP/M II is not compatible with MP/M 1.1 in regard to
Function 6 with a parameter of E=FFH. Under MP/M 1.1 the direct
console input command (E=FFH) suspends the calling process until a
character is typed, whereas MP/M II returns immediately with a zero if
no character is available. To upgrade programs using Function 6 with
E=FFH under MP/M 1.1 to MP/M II, the direct input command E=FDH) must
be used. The change from MP/M 1.1 was required to achieve consistent

direct console I/0O handling between CP/M, MP/M II, CP/M-86 and MP/M-
86.

MP/M II performs an XDOS Attach Console call (Function 144) for
the calling process if it does not own the console (see Section 2.1).
MP/M II performs a dispatch if a direct console input/status command

(E=FFH) is made which returns a zero, indicating that a character is
not ready.

kkkkhkdkhhdhhhhhhkhhhhhhdhhhhhhhrhhhhkhhhkhihk®k

* *
*# FUNCTION 7: GET I/0 BYTE ®
* %

khkkhkhkhhhhhhhhhhkhkhhhhhkhkhhkhhhhkhkhhrhhrhhhrhkad

MP/M II does not support the Get I/O Byte function.

fkkhhhkbhhhhkihhhkhdhhhhhhhhhhhhhhhhhhhkhik

* *
* FUNCTION 8: SET I/0 BYTE *
* *

kbkRihhhhhhkrhhhdhhhhkikhhhrhihhhhhhhhehrohhhi

MP/M II does not support the Set I/0 Byte function.

khkRARRRThkkhkohkdhhdhhihrhkhkhkdohhthhhhhkhhhrd®

* %
* FUNCTION 9: PRINT STRING *
* *
khkRhhkhkkhkkdkhhhhhhhhhbhhhkhhkhhhhhkhhkhhhdtdhk*x
* Entry Parameters: *
* Register C: 0%H *®
* Registers DE: String Address *
* %*

khkhkdkhkhkhkhkhhhhddhhhhhhhhkhkhhhhhkhhdkhhrrhhkik

The Print String function sends the character string stored in
memory at the location addressed by register pair DE to the console
until it encounters a "$" in the string. Function 9 expands tab
characters (CONTROL-I) in columns of 8 characters. It also checks for
start scroll (CONTROL-S), stop scroll (CONTROL-Q), terminate process
(CONTROL-C) and detach process (CONTROL-D) (see Section 2.1).

51

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 9

MP/M II performs an XDOS Attach Console call (Function 146) for
the calling process if it does not own the console (see Section 2.1).

khdhdhhhdhhhtehhhhhhhhhhhhhhhkhhhhhhhhhhhit

* *
* FUNCTION 10: READ CONSOLE BUFFER *
* *
khkkhkhkhhhkhhhhrhhrhihhhhhhhddhhhddehhdhlhih
* Entry Parameters: *
* Register C: O0AH *
* Registers DE: Buffer Address *
* %
* Returned Value: *
* Console Characters in Buffer *
%* %*
Je Jo Je Jo Je Je & Jo e de e de Je de d de de ke de de d Fe K Jo Fo e Jo Je Fe Je Fe Jo Je Yo Ko Je Je Je ke Je ko e

The Read Console Buffer function reads a line of edited console
input to a buffer addressed by register pair DE. It terminates input
when the buffer is filled or when it encounters a return (CONTROL-M)
or a line feed (CONTROL~-J) character. The input buffer addressed by
DE has the following format:

DE: +0 +1 +2 +3 +4 +5 +6 +7 +8 . e e +n

O > > D > D D D D O) S D D D ey Y S T I D T D G CUD - — - — LD = O

D s s o D e T " A D A2 oy~ " — — = — — T — — D D - — D W D T - Y O D W -

where "mx" is the maximum number of characters which the buffer holds,
and "nc" is the number of characters placed in the buffer. The
characters entered by the operator follow the "nc" value. The value
"mx" must be set prior to making a Function 10 call and may range in
value from 1 to 255. Setting "mx"™ to zero is equivalent to setting
"mx" to one. The value "nc" is returned to the calling process and
may range from zero to "mx". If nc < mx, then uninitialized positions
follow the last character, denoted by "??" in the above figure. Note
that a terminating return or line feed character is not placed in the
buffer and not included in the count "nc".

62

MP/M Il Programmer's Guide 2.4 BDOS Calls: Function 10

Function 10 recognizes the edit control characters summarized

Table 2-14, below.

Table 2-14.

Character
rub/del

CONTROL=-C
CONTROL-E
CONTROL-H
CONTROL-J
CONTROL-M
CONTROL-P

CONTROL=-R
CONTROL-U

CONTROL-X

Console Buffer Edit Control Characters

Edit Control Function
removes and echoes the last character
reboots when at the beginning of line

causes physical end of line

backspaces one character position

(line feed) terminates input line
(return) terminates input line

echoes console output to the list device
retypes the current line after new line
removes current line after new line

backspaces to beginning of current line

in

The control functions that return the cursor to the leftmost position
(e.g., CONTROL-X) do so only to the column position where the prompt

ended (in earlier releases,

the cursor returned to the extreme left
margin). This convention simplifies data input and line correction.

MP/M II performs an XDOS Attach Console call (Function 146) for
the calling process if it does not own the console (see Section 2.1).

63

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 11

Rhkkhkdhhhhkdhhdhdhhhhkhhhhhhhhhkhhhddhkdkhhhhhhd

* *
* PUNCTION 1l: GET CONSOLE STATUS *
* *

khkkdkhkhhhdhhhhhhkhhhkdhkhhhhkedehhderkhhkhhhdhhhsh®
* Entry Parameters:
Register C: OBH

* ¥ ok * * W

*

*

* Returned Value:

* Register A: Console Status
%*
*

khkhdkhddhhhhdhhdhhhihhhhhdhhhkhdkhhhhhhkih®

The Get Console Status function checks to see if a character has
been typed at the console. If a character is ready, Function 11
returns the value 0lH in register A. If a character is not ready, it
returns a value of 00H.

MP/M II performs an XDOS Attach Console call (Function 146) for
the calling process if it does not own the console (see Section 2.1).

khkdhhhhkhhkhhkdkbkhkdhhhkhhhhrkhhhhhhrhkhhhhhhdrt

* *
* FUNCTION 12: RETURN VERSION NUMBER *
* *
khkkhkhkhdkhkhdhkhhhhhhhrhhhhhhhhhhkhhkhdhhhhhhrh
* Entry Parameters: *
* Register C: OCH *
* *
* Returned Value: *
* Registers HL: Version Number *
* *
khkkhhkhhkhhhkhhhkhhkhhrhdhdhhhhhdhhhhhkhhhhd*

The Return Version Number function provides information that
allows version independent programming. It returns a two-byte value
in register pair HL: H contains 0lH for MP/M and L contains 30H, the
BDOS file system version number. Function 12 is useful for writing
applications programs that provide both random and sequential file
access, and disabling the random access when operating under early
versions of CP/M.

XDOS Function 163 can be called to obtain the MP/M version
number.

64

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 13

dede Jo de de ke Je do de g de K de d e de de de de K ode g de ke K de de K de e e de de de dede ke ke ke ke ke Kk

* *
* FUNCTION 13: RESET DISK SYSTEM *
* *

khhkkhkhhkhhkhhddkhhkhhddhkkhhhdhhddhhdddkdihidnr

* Entry Parameters:
* Register C: ODH
*
*
*

Register A: Return Code

*
%*
%*
Returned Value: *
*
kR Rhhhhhhhhhhhhkhhhhihhhhkhhddiddddii

The Reset Disk System function restores the file system to a
reset state where all the disk drives are set to read/write (see

Functions 28 and 29), the default disk is set to drive A, and the
default DMA address is reset to BASE+0080H. This function can be
used, for example, by an application program that requires disk
changes during operation. Function 37 (Reset Drive) can also be used
for this purpose.

This function is conditional under MP/M II. If another process
has an open file on a removeable or read/only drive, the disk reset 1is
denied and no drives are reset.

Upon return, if the reset operation is successful, register A is
set to zero. Otherwise, register A is set to OFFH (255 decimal). If
the BDOS error mode is not Return Error mode (see Function 45), then
an error message is displayed at the console, identifying a process
owning an open file.

kRkkkkkhdhhhkdhhhhhhhhhkhhkhhhkhhhhhhrhthihdh

* *
* FUNCTION 14: SELECT DISK *
* *
kkkkdthdkhhhdhhhhhkhhhhhhhkhhodhhhhhhhhhhrdsk
* Entry Parameters: *

Register C: OEH
Register E: Selected Disk

* % % * * *

Register A: Error Flag
Register H: Physical Error

%*
%*
%*
% Returned Value:
Je
%*
**

The Select Disk function designates the disk drive named in
register E as the default disk for subsequent BDOS file operations.
Register E is set to 0 for drive A, 1 for drive B, and so forth
through 15 for drive P in a full 16 drive system. In addition,
function 14 logs in the designated drive if it is currently in the
reset state. Logging-in a drive activates the drive's directory until
the next disk system reset or drive reset operation.

65

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 14

FCBs that specify drive code zero (dr = 00H) automatically
reference the currently selected default drive. FCBs with drive code
values between 1 and 16, however, ignore the selected default drive
and directly reference drives A through P.

Upon return, register A contains a zero if the select operation
was successful. If a physical error was encountered, the select
function performs different actions depending on the BDOS error mode
(see Function 45). If the BDOS error mode is in the default mode, a
message identifying the error is displayed at the console and the
calling process is terminated. Otherwise, the select function returns
to the calling process with register A set to OFFH and register H set
to one of the following physical error codes:

01
04

Permanent error
Select error

fehhkhkhhhkhhhkhhdhdhddhhhhhdhdhhhdhkhkhdhdrdhs

* *
* PFUNCTION 15: OPEN FILE *
¥* *

khkhkkkdkhhhkhhhhhdhhhhhhdhhhhhhhhdhhdhddidiikihti
* Entry Parameters:
Register C: OFH
Registers DE: FCB Address

*

Register H: Physical or

Extended Error

*
Jo
%
* Returned vValue:
3
J
%*
Rhkhkkhkhhkdhhhhhhkdkhhhhhhhhhhhhhhhhhhrhhhhhrd

*
*
*
*
Register A: Directory Code *
%*
*
*

The Open File function activates the FCB for a file that exists
in the disk directory under the currently active user number or user
zero. The calling process passes the address of the FCB in register
pair DE, with byte 0 of the FCB specifying the drive, bytes 1 through
11 specifying the filename and type, and byte 12 specifying the
extent. Normally, byte 12 of the FCB is initialized to zero.
Interface attributes £5' and £6' of the FCB specify the mode in which
the file is to be opened as shown below:

f5' = 0, £6' = 0 - Open in locked mode (default)
£5' = 0, £6' = 0 - Open in unlocked mode
£5' = 0 or 1, £6' = 1 - Open in read/only mode

If the file is password protected in Read mode, the correct password
must be placed in the first eight bytes of the current DMA or have
been previously established as the default password (see Function
106). Note that the current record field of the FCB ("cr") must be

zeroe