
Digital Research Inc.
INCORPORATING USER'S MANUAL • PROGRAMMER'S MANUAL - LANGUAGE REFERENCE MANUAL

GSXHANDBOOK

Digital Research Inc.

Pt HI ISHI RS Bl IMITI D

GSX
HANDBOOK

GLENTOP PUBLISHERS LTD

ISBN 1 85181 056 0

Printed by the Wembley Press Ltd., Reading and London

DIGITAL
RESEARCH

GSX-86
Graphics Extension
User’s Guide

COPYRIGHT

Copyright © 1984 by Digital Research Inc. All rights reserved. No part of this
publication may be reproduced, transmitted, transcribed, stored in a retrieval
system, or translated into any language or computer language, in any form or by
any means, electronic, mechanical, magnetic, optical, chemical, manual or
otherwise, without the prior written permission of Digital Research Inc., Post Office
Box 579, Pacific Grove, California, 93950.

Readers are granted permission to include the example progams, either in whole
or in part, in their own programs.

DISCLAIMER

Digital Research Inc. makes no representations or warranties with respect to the
contents hereof and specifically disclaims any implied warranties of merchantability
or fitness for any particular purpose. Further. Digital Research Inc. reserves the
right to revise this publication and to make changes from time to time in the content
hereof without obligation of Digital Research Inc. to notify any person of such
revision or changes.

TRADEMARKS

CP/M. CP/M-86. and Digital Research and its logo are registered trademarks of
Digital Research Inc. GSX-86, DR Draw. DR Graph, Concurrent CP/M. and TEX
are trademaks of Digital Research Inc. Anadex is a registered trademark of Anadex.
Inc. Centronics is a registered trademark of Centronics Data Computer, datasouth
is a trademark of datasouth computer corporation. DEC is a registered trademark
of Digital Equipment Corporation. Diablo is a registered trademark of Diablo
Systems. Incorporated. Epson is a registered trademark of Epson America.
Incorporated. Hercules Graphics Card is a trademark of Hercules Computer
Technology. Hewlett-Packard is a registered trademark of Hewlett-Packard Corp
oration. IBM is a registered trademark of International Business Machines.

Mannesmann Tally is a registered trademark of Mannesmann Tally Corporation.
Mannesmann Tally MT160 is a trademark of Mannesmann Tally Corporation.
Microsoft is a registered trademark of Microsoft Corporation. Okidata and
MicroLine are trademarks of Okidata Corporation. Philips is a registered trademark
of Philips Kommunikations Industrie AG. Plantronics is a registered trademark of
Plantronics. Colorplus is a trademark of Plantronics. Polaroid is a registered
trademark of the Polaroid Corporation. Palette is a trademark of Polaroid
Corporation. Printronix is a registered trademark of Printronix. Incorporated. MVP
is a trademark of Printronix, Incorporated. Summagraphics is a registered
trademark of Summagraphics Corporation. SummaMouse is a trademark of
Summagraphics Corporation.

Second Edition: March 1984

Foreword
INTRODUCTION This GSX-86 Graphics Extension User's Guide

explains the features of GSX-86, Graphics System
Extension for microcomputer operating systems.
GSX-86 lets you use graphic applicatons an many
types of printers, plotters and graphics cards. GSX-86
supports the following operating systems:

• CP/M family
• MS -DOS
• PC DOS

If you are a new user of GSX-86, this guide helps you
install GSX-86 on your microcomputer system so that
you can use your graphics applications with the many
devices GSX-86 supports.

GSX-86 GSX-86 adds graphic capability and a device
independent operating environment to supported
operating systems. After you install GSX-86, your
system has the following features:

• You can use many types of plotters, printers, and
other gaphics devices.

• You can use applications that use GSX-86 on
many types of microcomputers.

• You can use graphic applicatons such as DR
Graph and DR Draw to create high-quality
presentation and creative graphics. DR Graph
allows you to graph and plot data by making
simple menu selections. DR Draw allows you to
draw complex graphic designs with your
microcomputer.

V

HOW THIS GUIDE IS
ORGANIZED

This guide is organized in four seetions. Section 1
describes how GSX-86 works. Section 2 tells you how
to start GSX-86. Sections 3 and 4 describe and give
information on using GINSTALL, the GSX-86 in
stallation program.

CONVENTIONS This guide uses several conventions:

• For clarity, commands and keystrokes you enter
are capitalized and appear in boldface type.
However, you do not need to capitalize com
mands.

• The CONTROL key is represented by the symbol
'. This symbol followed by an alphabetic character
means that you must press the CONTROL key
and the alphabetic character key simultaneously.
For example,"W means that you must press the
CONTROL key and the W key simultaneously.

vi

Table of Contents

1 Overview

Introduction 1-1

How GSX-86 Works 1-1
Device Drivers 1-1
GINSTALL 1-2

Starting Your System 1-2

2 Starting GSX-86

Introduction 2-1

Installing GSX-86 2-1
GSX-86 Command 2-1

Deleting GSX-86 2-3

Error Messages 2-4

Installation Checklist 2-5

3 Introduction to GINSTALL

Introduction 3-1

Assignment File 3-1

System Requirements 3-1

Using GINSTALL Menus 3-1
Selecting Options 3-2
Correcting Typing Errors 3-2
Returning to the MAIN MENU 3-2
GINSTALL on the Default Drive 3-2

Starting GINSTALL 3-2

SPECIFY DISK DRIVES MENU 3-3

vii

Table of Contents (continued)

4 GINSTALL Functions

Introduction 4-1

MAIN MENU Functions 4-1

Additional Menus 4-2

Selecting Devices lor Addition 4-3

Select Device Category Menu 4-3
Error Message 4-4
Device Menus 4-4
Special Keystrokes 4-9
SELECT and INFO Modes 4-10
Subsequent Menus 4-11
SELECT MOUSE OPTION Menu 4-12
MOUSE COMMUNICATION PORT Menu 4-13
PLOTTER, PRINTER and CAMERA

COMMUNICATION PORT Menus 4-14
SET PRIMARY DEVICE Menu 4-15

Changing the Primary Device 4-15

Selecting Devices for Deletion 4-16
SELECT DEVICE FOR DELETION Menu 4-17

Display Device Selections 4-17

Updating your Selections 4-20
Changing Device Drive Diskettes 4-21
GINSTALL Not In Default Drive 4-22
Warning Messages 4-22

Existing to Operating System 4-25
Error Message 4-25

APPENDIX

A GSX-86 Error Messages
Error Messages A-l

viii

Tables and Figures

Tables

2-1. Commands to Start GSX-86 2-2
2-2. Commands to Delete GSX-86 2-3

4-1. Deviee Menu Keystrokes 4-10

Figures

3-1. SPECIFY DISK DRIVES 3-3

4-1. MAIN MENU 4-2
4-2. SELECT DEVICE CATEGORY FOR ADDITION 4-3
4-3. DISPLAY MONITORS 4-5
4-4. PLOTTERS 4-6
4-5a. PRINTERS Page 1 4-7
4-5 b. PRINTERS Page 2 4-8
4-6. CAMERAS 4-9
4-7. IBM Color Adapter MONOCHROME MODE 4-11
4-8. SELECT MOUSE OPTION FOR DISPLAY MONITOR 4-12
4-9. MOUSE COMMUNICATION PORT 4-14
4-10. SET PRIMARY DEVICE 4-16
4-11. SELECT DEVICE FOR DELETION 4-17
4-12. Initial CURRENT DEVICE SELECTIONS 4-18
4-13. New CURRENT DEVICE SELECTIONS 4-19
4-14a. Deleting and Adding Deviee Driver Files 4-20
4-14b. Writing the Assignment File 4-21
4-15. Maximum Deviee Number Warning 4-23
4-16. Minimum Deviee Number Warning 4-24

IX

Section 1
Overview

INTRODUCTION This section describes how GSX-86 works with your
microcomputer. The concepts in this section provide
background information for the procedures described
in later sections.

HOW GSX-86 WORKS Most graphic devices such as monitors, printers, and
plotters draw lines, fill in areas, and produce text
differently. GSX-86 manages the differences among
these devices and ensures that graphic applications
using GSX-86 can communicate with a variety od
devices.

Applications written for GSX-86 use the GSX-86
subroutine library, which provides a standard graphic
programming interface. GSX-86 also provides device
drivers that translate the calls generated by the
application to fit the peculiarities of each device. For
more details on programming with GSX-86, refer to
the GSX-86 Graphics Extension Programmer's Guide.

Device Drivers Because each graphic device is mechanically and
electronically different, each requires a special pro
gram to communicate with your computer. This
program is called a device driver.

GSX-86 gives you a library of device drivers that
allows you to use many devices with your
microcomputer.

i-i

GSX-86 User’s Guide GINSTALL

GINSTALL GINSTALL, the GSX-86 device driver installation
program, tells you what device drivers are in the
device driver library. You can use GINSTALL to
select devices that match the devices on your mic-
orcomputer. After you select devices, GINSTALL
creates an assignment file and installs the assignment
file and the device drivers on the diskette you specify,
which is usually the application diskette.

If you change the devices on your micocomputer,
GINSTALL lets you delete and add the appropriate
device drivers.

Note: Unless you have a diskette, usually your ap
plication diskette, that contains an assignment file and
device drivers that match the devices on your com
puter, you need to use GINSTALL before you use
GSX-86. Section 3 contains instructions on how to use
GINSTALL.

STARTING YOUR
SYSTEM

Set up the monitor, printer, plotter, and any other
devices. Refer to your microcomputer and operating
system manuals for details on how to install devices
and start your system.

Before your use GSX-86, make duplicates of any
GSX-86 distribution diskettes. Use the format and
copy programs for your operating system. Refer to
your operating system manual for instructions on the
appropriate procedures and commands.

After you make the duplicates, store the distribution
diskettes in a safe place away from heat, magnets,
humidity, dust and extreme temperature changes.
Use the duplicates as your GSX-86 work diskettes.

You are now ready to turn to Section 2, "Starting
GSX-86."

End of Section 1

1-2

Section 2
Starting GSX-86

INTRODUCTION This section explains how you start GSX-86 and delete
GSX-86 from memory. A checklist is included in case
you have a problem starting GSX-86.

INSTALLING GSX-86 Before using a graphic application that requires
GSX-86, an assignment file and device drivers that
match your devices must be on your application
diskette and GSX-86 must be installed.

Some applications contain an assignment file and a
preconfigured set of device drivers that might match
the devices on your microcomputer. Refer to the
description of the application to learn whether it
comes with device drivers or whether you must use
GINSTALL to install device drivers. If the
application diskette contains device drivers, ensure
that they match the devices on your microcomputer.
If you have different devices, you must use
GINSTALL before you install GSX-86.

Some applications install GSX-86 for you. Refer to
the instructions on starting your application to learn
whether you must start GSX-86 or whether the
application starts it for you.

GSX-86 COMMAND The command you use to install GSX-86 differs
depending on the microcomputer operating system
you use. Table 2-1 shows the commands for each
operating system GSX-86 supports.

2-1

GSX-86 User’s Guide Installing GSX-86

Table 2-1. Commands to Start GSX-86

Operating System Command

CP/M86 ® GRAPHICS
Concurrent CP/M™ GRAPHICS
PC DOS GSX
MS-DOS GSX

After you start your system and the operating system
prompt is on your monitor, type the command to start
GSX-86 in the following form:

<dl>:COMMAND <d2>

The <dl> symbol represents the drive identifier of the
disk driver where GSX-86 is located. COMMAND
represents the command you use to start GSX-86 on
your operating system. The <d2> symbol represents
the drive identifier of the disk drive where the
assignment file and the device drivers are located. In
most cases, the diskette in <d2> is your application
diskette. Examples follow.

1. You are using CP/M-86. GSX-86 is on the diskette
in drive A, the default drive. Your application
diskette, which contains the assignment file and
device drivers, is in drive B. In response to the
operating system prompt, you type

GRAPHICS B:

2. You are using PC DOS or MS-DOS. GSX-86 is
on the diskette in drive B. Drive A. the default
drive, contains your application diskette,
assignment file, and device drivers. In response
to the operating system prompt, you type

B:GSX A:

GSX-86 User’s Guide Installing GSX-86

3. You are using Concurrent CP/M. GSX-86 is on
the diskette in drive A, the default drive. The
diskette in drive A also contains the application,
assignment file, and device drivers. In response
to the operating system prompt, you type

GRAPHICS

When you start GSX-86, it is loaded into memory.
After GSX-86 is loaded, a copyright message appears
on your monitor. You are ready to start your applica
tion.

DELETING GSX-86 When you are not using GSX-86, you can free the
memory space used by GSX-86. To do this, ensure the
operating system prompt is on your monitor. Then
type the command to delete GSX-86 from memory.
Table 2-2 shows the commands.

Table 2-2. Commands to Delete GSX-86

Operating System Command

CP/M-86
Concurrent CP/M
PC DOS, version

2.0 and above
MS-DOS, version

2.0 and above

GRAPHICS N
GRAPHICS N

GRAPHICS N

GRAPHICS N

If you are using versions of PC DOS and MS-DOS that
precede 2.0, you restart your system to delete GSX-
86. To do this, turn the power off on your computer
or press and hold the CONTROL, ALTERNATE,
and DELETE keys; then release all three keys
simultaneously.

Note: Before restarting your system, you should exit
the application and save any files you have created.

2-3

GSX-86 User’s Guide Deleting GSX-86

When you use a command to delete GSX-86 from
memory, a copyright notice appears on your monitor
followed by the message

GSX-86 is not installed

You can also receive the above message if you cannot
install GSX-86.

ERROR MESSAGES When you start GSX-86, you can receive error
messages. The format of the messages differs accord
ing to your operating system. CP/M-86 echoes what
you type followed by a question mark, ? Concurrent
CP/M echoes what you type followed by a question
mark, ?, and a brief message. PC DOS and MS-DOS
tell you that you entered a bad command or filename.

If you receive any of the above error messages when
you start GSX-86, one of the following conditions
exists:

• You typed the command incorrectly.

• GSX-86 is not on the diskette in the drive you
identified in the command.

Either retype the command or insert the diskette that
contains GSX-86 in the correct drive.

Refer to Appendix A for a description of error
messages and steps you can take to correct the errors.

2-4

GSX-86 User's Guide Installation Checklist

INSTALLATION
CHECKLIST

If you have a problem, starting GSX-86, use the
checklist below to ensure you have completed all
necessary steps.

• Are the display monitor, printer, plotter and other
devices properly attached to your computer?

• Is the operating system prompt on your monitor?

• Is the diskette containing GSX-86 in the disk drive
you specified in the command to start GSX-86?

• Did you specify the correct drive identifier of the
drive where the assignment file and device drivers
are located?

• Did you type the correct command to start GSX-
86?

End of Section 2

2-5

Section 3
Introduction to GINSTALL

INTRODUCTION GINSTALL. the GSX-S6 device driver installation
program, lets you install device drivers for a variety
of display monitors, printers, plotters, and specially
designed computer output cameras for use with
graphic applications that use GSX-S6.

GINSTALL provides menus from which you can
select drivers for the devices you are using.
GINSTALL uses your menu selections to create or
update the assignment file, described below.

ASSIGNMENT FILE The assignment file, named ASSIGN.SYS, lists the
device drivers of the devices you select, and com
municates this information to GSX-86.

GINSTALL creates or updates the assignment file on
the application diskette or, if the application diskette
does not have sufficient space for these files, on
another diskette.

SYSTEM
REQUIREMENTS

To use GINSTALL, your system must contain either:

• two floppy diskette drives

• a hard disk drive and one floppy diskette drive

USING GINSTALL
MENUS

GINSTALL contains menus that let you do the
following:

• select a device for addition to the assignment file

• select a device for deletion from the assignment
file

• display the current device selections

3-1

GSX-86 User's Guide Using GINSTALL Menus

• update the assignment file

• exit GINSTALL and return to the operating
system

Selecting Options GINSTALL displays two types of menus: numbered
lists and queries.

To select an option from a numbered list, type its
number after the prompt

Enter Option Number -

and press the RETURN key.

The query menus require a Yes or No response. Type
Y or N, and press the RE TURN key

Correcting Typing Errors If you mistype a response, use the BACKSPACE key
to move the cursor to its original position. The
BACKSPACE key does not erase characters. Type
the correct response over the error, and press the
RETURN key.

Returning to the
MAIN MENU

All of the numbered list menus that follow the MAIN
MENU let you press the ESCAPE (ESC) key to
return to the MAIN MENU. When you do,
GINSTALL cancels any selection in process.

GINSTALL on the
Default Drive

Before you start GINSTALL, insert the diskette
containing GINSTALL in the default drive. If you
have copied GINSTALL to a hard disk, set your
default drive to the hard disk.

STARTING GINSTALL To start GINSTALL, type the following command in
response to the operating system prompt:

GINSTALL

3-2

GSX-86 User’s Guide Starting GINSTALL

When GINSTALL starts, a copyright message,
followed by a brief description of GINSTALL, ap
pears on your monitor. Press the RETURN key to
display the first menu.

SPECIFY DISK
DRIVES MENU

GINSTALL’S first menu, SPECIFY DISK DRIVES,
in Figure 3-1, asks you to identify the drives containing
the application diskette and the device drive diskette.
If the application diskette does not have sufficient
space for the assignment file and device driver files,
you can use another diskette in place of the applica
tion diskette.

SPECIFY DISK DR IDES

Enter drive containing your
application work disk.

Enter driue containing the
device driver disk.

Figure 3-1. SPECIFY DISK DRIVES

3-3

GSX-86 User’s Guide Starting GINSTALL

Type the drive identifier for the drive containing the
diskette on which GINSTALL will create or update
the assignment file and device driver files, and press
the RETURN key. The drive identifier can be a letter
from A to P.

Type the drive identifier for the drive containing the
device driver diskette, and press the RETURN key.
After a pause the MAIN MENU appears. The MAIN
MENU and its functions are described in Section 4.

End of Section 3

3-4

Section 4
GINSTALL Functions

INTRODUCTION This section describes the functions contained in
GINSTALL’S MAIN MENU. The functions are
described in order in which they appear on the menu.

MAIN MENU FUNCTIONS The MAIN MENU functions let you do the following:

• add devices to the assignment file

• delete devices from the assignment file

• display the current selections in the assignment file

• update the assignment file and copy device driver
files to the application diskette

• exit GINSTALL and return to the operating
system

The MAIN MENU is illustrated in Figure 4-1.

4-1

GSX-86 User’s Guide MAIN MENU Functions

Figure 4-1. MAIN MENU

To select a function from the MAIN MENU, type its
option number after the Enter Option Number
prompt, and press the RETURN key

ADDITIONAL MENUS When you select the SELECT DEVICE FOR AD
DITION or the SELECT DEVICE FOR DELE
TION function, GINSTALL displays additional
menus. These menus arc named and described in the
descriptions of the two SELECT functions.

4-2

GSX-86 User’s Guide MAIN MENU Functions

SELECTING DEVICE
FOR ADDITION

The SELECT DEVICE FOR ADDITION function
lets you add devices to the assignment file. However,
GINSTALL does not change the assignment file or
copy device driver files until you return to the MAIN
MENU and choose the UPDATE APPLICATION
WORK DISK function.

SELECT DEVICE
CATEGORY Menu

The first menu you see when you select option number
1 from the MAIN MENU is the SELECT DEVICE
CATEGORY FOR ADDITION Menu, illustrated in
Figure 4-2.

Figure 4-2. SELECT DEVICE CATEGORY FOR ADDITION

To select one of the device categories type its option
number. Press the RETURN key. GINSTALL then
displays the device menu for the category you
selected.

4-3

GSX-86 User's Guide MAIN MENU Functions

Error Message You can receive the following error message when
selecting a device category. GINSTALL displays the
message at the bottom of the SELECT DEVICE
CATEGORY FOR ADDITION Menu.

Selected category is full. You must delete a device
from the category before adding another.
Press RETURN when ready to proceed.

The assignment file has a limit to the number of
devices in each device category that it can contain. If
you try to select a category that contains its limit.
GINSTALL displays the above message.

Press the RETURN key to return to the MAIN
MENU. To delete a device, use the SELECT
DEVICE FOR DELETION function, MAIN MENU
selection number 2.

Device Menus The device menus for display monitors, plotters,
printers, and cameras list the devices for which driver
files exist. An option number precedes a brief
description of each device. Figures 4-3 through 4-6 are
examples of typical device menus.

To select a device from the menu, type its option
number after the Enter Option Number prompt, and
press the RETURN key.

4-4

GSX-86 User’s Guide MAIN MENU Functions

DISPLAY MONITORS

Op ti ans

1 IBM Color Adaptor COLOR MODE
2 IBM Color Adaptar MONOCHROME MODE
3 Plantronics PC+ COLORPLUS Adaptar
4 Harculas Graphics Card
5 Artist 2 Graphics Card

''Z: paga down
''C: salact/info

~U: paga up
ESC: go to Main Manu

Entar Option Numbar Moda SELECT

Figure 4-3. DISPLAY MONITORS

4-5

GSX-86 User’s Guide MAIN MENU Functions

Op tions

1 Hewlett Packard 7470A/7475A Plotter
2 Houston Instruments Models DMP-29/4X
3 Strobe Models 100/200/260 Plotter

Z: page down
C: select/info

: page up
ESC: go to Main Menu

Enter Option Number — £ Mode

Figure 4-4. PLOTTERS

4-6

GSX-86 User's Guide MAIN MENU Functions

PRINTERS

Opti oni

1 IBM/Epson Graphic« Printers HI RES
2 IBM/Epson Graphics Printers LO RES
3 Diablo Model 0150 Color Ink Tet
4 Transtar Color Printer
5 Okidata MicroLine 82A/83A/84/92/93
6 C. Itoh Model 8510A
7 Anadex Models DP-9001A,9501 A,9625A
8 Centronics Models 351/352/353
9 Data South Model DS180
10 Digital Equipment Model LA100
11 Digital Equipment Model LA50
12 IOS (Monochrome) Prism 80/132/480
13 Mannesmann Tally MT160 HI RES MODE

''Z: page down
~C: select/info

^U: page up
ESC: go to Main Menu

Enter Option Number -|| Mode SELECT

Figure 4-5a. PRINTERS Page 1

4-7

GSX-86 User’s Guide MAIN MENU Functions

Figure 4-5b. PRINTERS Page 2

4-8

GSX-86 User’s Guide MAIN MENU Functions

Figure 4-6. CAMERAS

Special Keystrokes At the bottom of the device menu screen you see a
small informational panel describing several
keystrokes you can use. Table 4-1 names the
keystrokes and describes their actions.

4-9

GSX-86 User’s Guide MAIN MENU Functions

TABLE 4-1. DEVICE MENU KEYSTROKES

KEYSTROKE ACTION

Z Displays next page of menu. For example, the
printer menu (Figure 4-5a and 4-5b) is two pages
long. If no next page exists,"Z has no effect.

"W Displays previous page of menu. If no previous
page exists,"W has no effect.

"C Switches between SELECT and INFO modes
described below.

Esc Cancels current selection and returns to MAIN
MENU.

SELECT AND INFO
Modes

For each device menu, GINSTALL supports two
modes, SELECT and INFO. A reverse video
rectangle at the bottom of the menu tells you the
current mode.

When the rectangle says SELECT, you can select a
device by typing its option number and then pressing
the RETURN key.

To change from SELECT to INFO mode, press’C. In
INFO mode, when you type an option number and
press the RETURN key, GINSTALL displays in
formation describing the device. Figure 4-7 shows an
example.

4-10

GSX-86 User’s Guide MAIN MENU Functions

IBM Color Hdapter MONOCHROME MODE

Orlu«r File Name: IBMBLMP2.SYS Size:14K

Plot Area: 9 inches X 7 inches
640 pixels X 200 pixels

Comments:
This driver is for the IBM color graphic
adapter card. It provides two colors at
a resolution of 640H x 200U pixels.

Press RETURN when ready to proceed

Figure 4-7. IBM Color Adapter MONOCHROME MODE

Subsequent menus

To return to the device menu, press the RETURN
key. You remain in INFO mode.

You cannot select a device while you are in INFO
mode. To return to SELECT mode, press C

The type of device you select determines which menus
GINSTALL displays next. For example, if you select
a display monitor, you see one or more of the
following menus:

• SELECT MOUSE OPTION FOR DISPLAY
MONITOR

• MOUSE COMMUNICATION PORT
a SET PRIMARY DEVICE

4-11

GSX-86 User’s Guide MAIN MENU Functions

If you select a plotter, printer or camera you see one
or more of the following menus:

• PLOTTER, PRINTER, or CAMERA COM
MUNICATION PORT

• SET PRIMARY DEVICE

Each of these menus is described in this section

SELECT MOUSE
OPTION Menu

When you select a display monitor. GINSTALL
displays the SELECT MOUSE OPTION FOR DIS
PLAY MONITOR Menu, in Figure 4-8. In addition
to listing several mice, the menu gives you the option
of not using a mouse.

OPTION FOR DISPLAY MONITOR

Op fions

1 No Mouse
2 Microsoft Mouse (requires)MOUSE.COM
3 PC Mouse by Mouse Systems Corp.
4 SummaMouse

Enter Option Number —
ESCAPE: return to Main Menu

Figure 4-8. SELECT MOUSE OPTION FOR DISPLAY MONITOR

4-12

MOUSE.COM

GSX-86 User’s Guide MAIN MENU Functions

If you select the Microsoft Mouse, you must copy the
file MOUSE.COM to your application diskette.
MOUSE.COM is supplied on a diskette that comes
with the Microsoft Mouse.If you select a mouse that
comes with its own interface board and communica
tion port (such as the Microsoft Mouse) or the No
Mouse option, GINSTALL does one of the following:

• Displays the SET PRIMARY DEVICE Menu, if
the assignment file already lists a display monitor.
The SET PRIMARY DEVICE menu is described
later in this section.

• Completes the selection and returns you to the
MAIN MENU, if the assignment file does not
already list a display monitor.

If you select one of the other mouse options,
GINSTALL displays the MOUSE COMMUNICAT
ION PORT Menu, below.

MOUSE
COMMUNICATION
PORT Menu

With this menu you identify the communication port
to which the mouse is connected. Without this
information. GSX-S6 does not know where to look for
mouse input. Figure 4-9 shows a MOUSE COM
MUNICATION PORT menu.

4-13

MOUSE.COM
MOUSE.COM

GSX-86 User’s Guide MAIN MENU Functions

MOUSE COMMUNICATION PORT

Options

1 Communication Port #1
2 Communication Port #2

Enter Option Number -J
ESCAPE: return to Main Menu

Figure 4-9. MOUSE COMMUNICATION PORT

After you select the communication port,
GINSTALL either:

• Displays the SET PRIMARY DEVICE Menu, if
the assignment file already lists a display monitor.
The SET PRIMARY DEVICE menu is described
later in this section.

• Completes the selection and returns you to the
MAIN MENU, if the assignment file does not
already list a display monitor.

4-14

GSX-86 User's Guide MAIN MENU Functions

PLOTTER, PRINTER,
and CAMERA
COMMUNICATION
PORT Menus

If you select a plotter, printer or camera, GINSTALL
displays a communication port menu immediately
after you select the device. The menu identifies the
port to which the plotter, printer, or camera is
connected. Without this information, GSX-86 does
not know where to send plotter, printer, or camera
output.

Type the communication port’s option number, and
press the RETURN key.

If the assignment file already lists a plotter, printer,
or camera, GINSTALL displays the SET PRIMARY
DEVICE menu.

However, if the assignment file does not list another
plotter, printer, or camera, the selection is complete.
GINSTALL returns you to the MAIN MENU.

SET PRIMARY
DEVICE Menu

The SET PRIMARY DEVICE Menu lets you name
the newly-selected device as the primary device for its
category. The primary device is the device that an
application uses when the assignment file lists more
than one device of any type.

For example, if your system has two display monitors,
the application directs all output to the primary
display unless:

• The application permits you to direct output to a
secondary device

• You explicitly direct the output to the secondary
device.

Changing the
Primary Device

The SET PRIMARY DEVICE Menu, in Figure
4-10, identifies the device category, the primary
device, and the device you just selected. The prompt
asks if you want the new device to become the
primary device. Type Y (Yes) or N (No), and press
the RETURN key.

4-15

GSX-86 User’s Guide MAIN MENU Functions

Figure 4-10. SET PRIMARY DEVICE

If you type Y, the new device becomes the primary
device.

If you type N. the current primary device remains the
primary device.

After you respond to the SET PRIMARY DEVICE
menu, the selection is complete. GINSTALL returns
you to the MAIN MENU.

SELECTING DEVICE
FOR DELETION

The SELECT DEVICE FOR DELETION function
lets you delete a device from the assignment file.
However. GINSTALL does not change the assign
ment file or delete device driver files until you return
to the MAIN MENU and choose the UPDATE
APPLICATION WORK DISK function.

4-16

GSX-86 User’s Guide MAIN MENU Functions

SELECT DEUICE FOR DELETION

1 IBM/Epson Graphics Printars HI RES
2 IBM Color Adaptar MONOCHROME MODE
3 IBM Color Adaptar COLOR MODE
4 Hawlatt Packard 7470A/7475A Plottar

Entar Option Numbar - |
ESCAPE: raturn to Main Manu

Figure 4-11. SELECT DEVICE FOR DELETION

Type the option number of the device you want to
delete, and press the RETURN key. GINSTALL
selects the device for deletion and returns you to the
MAIN MENU.

DISPLAY DEVICE
SELECTIONS

The DISPLAY CURRENT DEVICE SELECTIONS
function displays a list of the device drivers currently
selected for the assignment file. Figure 4-12 shows a
typical display.

4-17

GSX-86 User’s Guide MAIN MENU Functions

Figure 4-12. Initial CURRENT DEVICE SELECTIONS

To return to the MAIN MENU, press the RETURN
key.

If you select the DISPLAY function either

• before you add or delete any devices or
• immediately after you update the assignment file

you see the assignment file list as it currently exists
on your application diskette.

However, if you select the DISPLAY function after
adding or deleting devices, you see the assignment file
list as it would appear if you updated the assignment
file at that moment.

4-18

GSX-86 User’s Guide MAIN MENU Functions

For example, suppose Figure 4-12 shows the devices
currently listed in your assignment file. If you delete
the IBM®Color Adapter COLOR MODE display
monitor, you see the display shown in Figure 4-13 the
next time you select the DISPLAY function.

Figure 4-13. New CURRENT DEVICE SELECTIONS

Although the Color Adapter COLOR MODE
monitor no longer appears in the list GINSTALL does
not delete the device until you select the UPDATE
function.

4-19

GSX-86 User's Guide MAIN MENU Functions

UPDATING YOUR
SELECTIONS

The UPDATE/APPLICATION WORK DISK
function deletes and/or adds the devices you selected./

When you select the UPDATE function.
GINSTALL follows this sequence:

1. Deletes any device driver files you selected. The
name of the device currently being deleted flashes
on and off.

2. Adds any device driver files you selected. The
name of the device currently being added flashes
on and off.

3. Rewrites the assignment file.

Figures 4-14a and 4- 14b show you the display you see
on the monitor at two points during an update.

UPDATING APPLIChTIOU WORK DISK

DELETING:
IBM Color Adapter COLOR MODE

ADDING:
Hercule« Graphics Card
Polaroid Palette

Figure 4-14a. Deleting and Adding Device Driver Files

4-20

GSX-86 User’s Guide MAIN MENU Functions

UPDATING APPLICATION UOPb DISH

DELETING:
IBM Color Adaptor COLOR MODE

ADDING:
H«rcul«i Graphics Card
Polaroid Paletta

WRITING assignmant fila

Figure 4-14b. Writing the Assignment File

After deleting or adding device drivers and rewriting
the assignment file, GINSTALL displays the message

Press RETURN when ready to proceed

When you press the RETURN key, GINSTALL
returns you to the MAIN MENU.

Changing Device
Driver Diskettes

During an update, GINSTALL copies driver files
from a device driver diskette to a diskette you
specified when you started GINSTALL. If the needed
driver file is not on the current device driver diskette,
GINSTALL displays the following message:

4-21

GSX-86 User's Guide MAIN MENU Functions

Current selection not on this device driver library
disk. Please insert other device driver library disk.
Press RETURN when ready to proceed.

Remove the driver library diskette, insert the library
diskette that contains the driver file, and press the
RETURN key.

If you do not change diskettes, or if the diskette you
insert does not contain the needed driver file,
GINSTALL displays the following message when you
press the RETURN key.

ERROR; Current selection not found.
Device driver file: D:NNNNNNNN.SYS
This selection abandoned.
Press RETURN when ready to proceed.

D:NNNNNNNN.SYS is the driver identifier and
filename for the driver file of the device you selected.

GINSTALL abandons the current selection. When
you press the RETURN key, GINSTALL continues
the updates with the next driver file or writes the new
assignment file.

GINSTALL Not In
Default Drive

If the diskette containing GINSTALL is not in the
default drive when the update is complete,
GINSTALL displays the message:

Update complete. Please insert other device driver
library disk.
Press RETURN when ready to proceed.
Insert the diskette containing GINSTALL, and press
the RETURN key. The message disappears and the
RETURN key prompt moves below the dashed line.
Press the RETURN key again to return to the MAIN
MENU.

Warning Messages When you select the UPDATE APPLICATION
WORK DISK function. GINSTALL checks your
selections for the number of devices of each type. If
the updated assignment file contains:

• no display monitor

• more than two display monitors

4-22

GSX-86 User’s Guide MAIN MENU Functions

• more than one plotter, printer, or camera

GINSTALL then displays the warning messages in
Figures 4-15 and 4-16 before updating the application
diskette.

DARNING

Category: PRINTERS

liait application programs cannot usa mora
than a maximum numbar of devices from
this category.

Tha maximum for this category is: 1

You have selected: 2

Do you want to return to the Main Menu to
delete selections? (Y/N) ■

y

Figure 4-15. Maximum Device Number Warning

4-23

GSX-86 User’s Guide MAIN MENU Functions

WARNING

Category: DISPLAY MONITORS

Most application programs require at
least a minimum number of devices for
this category.

The minimum for this category is: 1

You have selected: 0

Do you want to return to the Main Menu to
make selections? (Y/N) B

Figure 4-16. Minimum Device Number Warning

The warnings give you the following information:

• the device category

• the maximum or minimum number of devices for
the category

• the number of devices you selected

The prompt at the end of the warning asks if you want
to return to the MAIN MENU to add or delete
selections. Type Y (Yes) or N(No), and press the
RETURN key.

4-24

GSX-86 User’s Guide MAIN MENU Functions

If you type Y, GINSTALL cancels the update request
and returns you to the MAIN MENU. To add a
device, select option number 1 from the MAIN
MENU. To delete a device, select option number 2
from the MAIN MENU.

If you type N (No), GINSTALL updates the assign
ment file according to your selections.

If you delete all you display monitors or if you have
less than the minimum number of devices requires in
another category, you might encounter one of the
following:

• you cannot install GSX-86

• you can install GSX-86 but cannot start your
application. Instead, you receive the following
message:

No graphics input, press RETURN

If cither situation occurs, you must return to
GINSTALL and add the missing device drivers.

EXIT TO OPERATING
SYSTEM

The EXIST TO OPERATING SYSTEM function
exits GINSTALL and returns you to the operating
system prompt on the current default drive.

Error Message If you select the EXIT function after you add or delete
devices, but before you update the assignment file,
GINSTALL displays the message:

DEVICES SELECTED TO ADD OR DELETE
Abandon selections? (Y/N) N

GINSTALL prompts an N for No. Press the
RETURN key, to return to the MAIN MENU. You
can then select option number 8 and update the
assignment file.

If you type Y for Yes over the N prompt, GINSTALL
abandons the pending selections and returns you to
the operating system.

End of Section 4

4-25

Appendix A
GSX-86 Error Messages

ERROR MESSAGES You can receive an error message when you use
GSX-86 for one of the following reasons:

• The wrong diskette is in the disk drive specified
in the error message.

• The file specified in the error message is damaged
and needs to be regenerated.

• Not enough memory for GSX-86 and device
drivers.

The error messages and solutions are discussed below.

d:ASSIGN.SYS not found
d:ffffffff.SYS not found
d:ffffffff.SYS close error

All of these error messages tell you that GSX-86
cannot find a file it needs. Generally, the file cannot
be found because the diskette in the drive specified
does not contain the file specified in the message.

The d represents the disk drive identifier.
ASSIGN.SYS is the name of the assignment file
GINSTALL creates. The ffffffff.SYS portion of a
message represents the filename of a missing file.

To correct the error, insert the diskette that contains
the ASSIGN.SYS file and the device driver files and
proceed.

A-1

GSX-86 User's Guide Error Messages

d:ASSIGN.SYS syntax error
d:ffffffff.SYS empty
d:ffffffff.SYS contains absolute segment

All of these error messages tell you the file specified
in the message is empty or damaged.

The d represents the disk drive identifier.
ASSIGN.SYS is the name of the assignment file
GINSTALL creates. The ffffffff.SYS portion of a
message represents the filename of the empty or
damaged file.

To restore the file, use GINSTALL to update the
diskette containing the file. Refer to the instructions
on using GINSTALL in Section 4 of this guide. After
you use GINSTALL, start GSX-86 and your applica
tion again.

Not enough memory for GSX-86

This error message tells you your computer does not
have enough Random Access Memory.

To use GSX-86 and your applications, you need to add
more Random Access Memory. The amount of
memory required varies with the computer operating
system, and applications you are using. Consult your
computer dealer for more details.

End of Appendix A

A-2

GSX™
Graphics Extension

Programmer’s Guide

Copyright ©1983

Digital Research
P.O. Box 579

160 Central Avenue
Pacific Grove, CA 93950

TWX 910 360 5001

All Rights Reserved

COPYRIGHT

Copyright © 1983 Digital Research Inc. All rights reserved. No part of this
publication may be reproduced, transmitted, transcribed, stored in a retrieval
system, or translated into any language or computer language, in any form or by
any means, electronic, mechanical, magnetic, optical, chemical, manual or
otherwise, without the prior written permission of Digital Research Inc., 60 Garden
Court, Box DRI, Monterey. California 93942.

DISCLAIMER

Digital Research Inc. makes no representations or warranties with respect to the
contents hereof and specifically disclaims any implied warranties of merchantability
or fitness for any particular purpose. Further, Digital Research Inc. reserves the
right to revise this publication and to make changes from time to time in the content
hereof without obligation of Digital Research Inc. to notify any person of such
revision or changes.

NOTICE TO USER

From time to time changes are made in the filenames and in the files actually
included on the distribution disk. This manual should not be construed as a
representation or warranty that such files or facilities exist on the distribution disk
or as part of the materials and programs distributed. Most distribution disks include
a “README.DOC“ file. This file explains variations from the manual which do
constitute modification of the manual and the items included therewith. Be sure to
read this file before using the software.

TRADEMARK

CP/M, CP/M-86, and Digital Research and its logo are registered trademarks of
Digital Research. DR Draw, DR Graph, GSX, and TEX arc trademarks of Digital
Research. IBM is a registered trademark of International Business Machines.
MS-DOS is a trademark of Microsoft Corporation.

* Second Edition: September 1983 *

Foreword
MANUAL OBJECTIVE This document describes the features and operation

of the Graphics System Extension (GSX™), Release
1.2. The manual explains what GSX does and how you
can use its graphics capabilities. It also explains how
GSX interfaces to your hardware environment and
how you can adapt GSX for your own unique graphics
devices.

INTENDED AUDIENCE This manual is intended for microcomputer program
mers as well as for system and application program
mers who are familiar with operating system and
graphics programming concepts.

MANUAL DESIGN This manual contains five sections, three appendixes,
a glossary, and an index. The following descriptions
will help you determine a reading path through the
manual.

Section 1 is an introduction to GSX. It describes the
features you need to know to run graphics application
programs.

Section 2 is a programmer’s overview of GSX. It
explains the GSX architecture and introduces the
components of GSX. It also describes how to use GSX
with application programs.

Section 3 describes the Graphics Device Operating
System (GDOS).

Section 4 describes the Graphics Input/Output System
(GIOS). It tells how to interface particular graphics
devices to GSX to provide device independence for
your application program.

Section 5 provides details about operating GSX and
how to integrate your application program with the
GSX facilities.

iii

Appendixes contain the following reference information:

Appendix A - GSX conventions for the CP/M®operating
system for 8080 microprocessors

Appendix B - GSX conventions for the CP/M- 86®,
IBM®PC DOS, and MS-DOS™ operating
systems for 8086 microprocessors

Appendix C - The Virtual Device Interface (VD1)
specification

The glossary follows with terminology unique to GSX.
Finally, an extensive index helps you use this document more
effectively.

Table of Contents
1 Introduction

About This Manual 1-1

GSX Benefits 1-1

GSX Functions 1-2

Transforming Points 1-2
Servicing Graphics Requests 1-4
Loading Device Drivers 1-4

2 Programmer’s Overview

Introduction 2-1

Graphics System Extension Architecture 2-1

Graphics Device Operating System (GDOS) 2-2
Graphics Input/Output System (GIOS) 2-2
Enabling Graphics 2-3

Graphics Mode Initialization 2-3

Application Programs 2-6

3 GDOS

Introduction 3-1

GDOS Functions 3-1

Graphics Calls 3-1
Dynamic Loading 3-1
Transforming Points 3-2

GDOS Calling Sequence 3-2

GDOS Opcodes 3-2

Loading GIOS Files 3-6

Assignment Table Format 3-7
Memory Management 3-8

v

Table of Contents (continued)
4 GIOS

Introduction 4-1

Purpose of GIOS 4-1

GIOS Functions 4-2

Virtual Device Interface Specification 4-2

Creating GIOS File 4-4

5 Operating Procedures

Introduction 5-1

GSX Distribution Files 5-1

Running Graphics Applications under GSX 5-1

Determining Memory Requirements 5-2

Debugging Graphics Applications under GSX 5-3

Writing a New Device Driver 5-3

Appendixes
A GSX Calling Conventions for CP/M

Introduction A-l

GSX Skeleton Device Driver A-l

FORMAT A-l

GDOS Calling Conventions A-3

vi

Appendixes (continued)
B GSX Calling Conventions for CP/M-86, IBM PC DOS, and MS-DOS

Introduction B-l

GDOS Calling Sequence B-l

Invoking Device Drivers B-3

Error Messages B-5
C Virtual Device Interface (VDI) Specification

Introduction C-l

Format C-l

Open Workstation C-4

Close Workstation C-9

Clear Workstation C-9

Update Workstation C-10

Escape C-10

ESCAPE: Inquire Addressable Character Cells C-12

ESCAPE: Enter Graphics Mode C-l 3

ESCAPE: Exit Graphics Mode C-l 3

ESCAPE: Cursor Up C-14

ESCAPE: Cursor Down C-14

ESCAPE: Cursor Right C-l 5

ESCAPE: Cursor Left C-l 5

ESCAPE: Home Cursor C-16

ESCAPE: Erase to End of Screen C-16

ESCAPE: Erase to End of Line C-17

ESCAPE: Direct Cursor Address C-17

ESCAPE: Output Cursor Addressable Text C-18

vii

Appendixes (continued)
ESCAPE: Reverse Video On C-19

ESCAPE: Reverse Video Off C-19

ESCAPE: Inquire Current Cursor Address C-20

ESCAPE: Inquire Tablet Status C-20

ESCAPE: Hard Copy C-21

ESCAPE: Place Graphic Cursor at Location C-21

ESCAPE: Remove Last Graphic Cursor C-22

Polyline C-23

Polymarker C-24

Text C-25

Filled Area C-26

Cell Array C-27

Generalized Drawing Primitive ((¡DP) C-29

Set Character Height C-33

Set Character Up Vector C-34

Set Color Representation C-35

Set Polyline Line Width C-37

Set Polyline Color Index C-37

Set Polymarker Type C-38

Set Polymarker Scale C-39

Set Polymarker Color Index (-40

Set Text Font C-41

Set Text Color Index C-42

viii

Appendixes (continued)
Set Fill Interior Style C-43

Set Fill Style Index C-44

Set Fill Color Index C-45

Inquire Color Representation C-46

Inquire Cell Array C-47

Input Loeator C-48

Input Valuator C-51

Input Choice C-53

Input String C-55

Set Writing Mode C-57

Set Input Mode C-59

Required Opcode CR T Devices C-60

Required Opcode for Plotters and Printers C-61

Tables and Figures

2-1. GSX Memory M;ip

Tables
3-1. CiSX Operation Codes 3-3

C-l. Sample Mode Status Returned C-49

C-2. Opcode lor CRT Devices C-60

C-3. Opcode for Plotters and Printers C-61

Figures
1-1. GSX Provides Device-Independent Graphics 1-3

2-5

Section 1
INTRODUCTION
ABOUT THIS MANUAL Section 1 identifies the features of GSX, the Graphics

System Extension for your operating system. It ex
plains what GSX does and how to use its graphics
functions.

This section is for you if you are a new user of GSX.
It assumes that your goal is to quickly hook up your
application programs to your system’s graphics
capability.

If you are a system or an application programmer
familiar with operating system concepts, this section
introduces you to GSX.

Section 2 through Section 5 provides all the details you
need to use GSX with your own unique graphics
devices.

GSX BENEFITS GSX adds graphics to your operating system, as
follows:

• GSX supports DR Graph..and DR Draw., two
products that extend your graphics capability. DR
Graph allows you to graph and plot data by making
simple menu selections. DR Draw lets you draw
complex graphics images.

• GSX opens a world of application software. You
can run any graphics application program that uses
GSX with several 8080 and 8086 microcomputer
operating systems.

• GSX promotes user portability. The interface be
tween you and GSX is identical to the interface
between you and your operating system.

• GSX provides a device-independent software
interface for your application programs. You will
not need to rewrite your programs if you decide to
use a printer instead of a plotter, for example.

1-1

GSX Programmer’s Guide GSX Functions

GSX FUNCTIONS All graphics devices arc not alike. Terminals, printers, and
plotters draw lines, fill in areas, and produce text differently.

With the Graphics System Extension for your operating
system, you do not have to worry about device differences,
because GSX handles all the differences and lets you talk to
the devices through your application program as if the devices
were all the same. GSX handles graphics requests and supplies
the right program to run the device you are using.

Transforming
Points

All computer graphics are displayed on a coordinate system.
GSX's job is to make sure the coordinate system that one
device uses matches the coordinate system used by another.
For example, with GSX your application program produces
the same graphics image on your printer that it does on your
CRT. I'he linetypes and character sizes are the same.

1-2

GSX Programmer’s Guide GSX Functions

Figure 1-1. GSX Provides Device-Independent Graphics

GSX Programmer’s Guide GSX Functions

Servicing
Graphics
Requests

Your application programs work with GSX through a
standard calling sequence. GSX translates these standard calls
to fit the peculiarities of each graphics device (a printer or
plotter, for example). The translation process makes your
application programs device-independent. The programs can
run on your system with the graphics device you are using.

For details about using GSX, refer to the GSX user’s guide
for your system.

Loading Device
Drivers

Each graphics device is mechanically and electrically
different, and requires a special program to run it. These
programs are called device drivers. GSX makes sure the right
driver is loaded into memory so you can use the device you
specify.

End of Section 1

1-4

Section 2
PROGRAMMER’S OVERVIEW
INTRODUCTION This section introduces the Graphics System Ex

tension architecture with its components and their
functions. Later sections describe each of these parts
in detail.

GRAPHICS SYSTEM
EXTENSION
ARCHITECTURE

GSX is the Graphics System Extension for
microcomputer operating systems. It incorporates
graphics capability into the operating system and
provides a host and device-independent interface for
your application programs. Graphics primitives are
provided for implementing graphics applications with
reduced programming effort. In addition, GSX
enhances program portability by allowing an applica
tion to run on any operating system with the GSX
option. GSX also promotes programmer portability
by providing a common programming interface to
graphics that is compatible with the most widely used
operating systems.

GSX is an integral part of your operating system.
Application programs interface to GSX through a
standard calling sequence. Drivers for specific
graphics devices translate the standard GSX calls to
the unique characteristics of the device. In this way,
GSX provides device independence, and the
peculiarities of the graphics device are not visible to
the application program.

GSX consists of two parts that work together to give
your system graphics capability:

• Graphics Device Operating System (GDOS)
• Graphics Input/Output System (GIOS)

2-1

GSX Programmer's Guide GSX Architecture

Graphics
Device Operating
Systems (GDOS)

The Graphics Device Operating System (GDOS)
contains the basic host and device-independent
graphics functions that can be called by your applica
tion program. GDOS provides a standard interface to
graphics that is constant regardless of specific devices
or host hardware, just as the disk operating systems
standardize disk interfaces. Your application program
accesses GDOS in much the same way that it accesses
the disk operating system.

GDOS performs coordinate scaling so that your
program can specify points in a normalized coordinate
space. It uses device-specific information to translate
the normalized coordinates into the corresponding
values for your particular graphics device.

Multiple graphics devices can be supported under
GSX within a single application. By referring to
devices with a workstation identification number, an
application program can send graphics information to
any one of several disk-resident devices. GDOS
dynamically loads a specific device driver when
requested by the application program, overlaying the
previous driver. This technique minimizes memory
size requirements since only one driver is resident in
memory at any time. For details see “LOADING
GIOS FILES“ in Section 3.

Graphics
Input/Output
System (GIOS)

The Graphics Input/Output System (GIOS) is similar
to any I/O system. It contains the device-specific code
required to interface your particular graphics devices
to the GDOS. GIOS consists of a set of device drivers
that communicate directly with the graphics devices
through the appropriate means. GSX requires a
unique device driver for each different graphics device
on your system. The term GIOS refers to the func
tional layer in GSX that holds the collection of
available device drivers. The particular driver that is
loaded into memory when required by your applica
tion is called a GIOS file. Although a single program
can use several graphics devices, GDOS loads only
one GIOS file at a time.

2-2

GSX Programmer’s Guide GSX Architecture

GIOS performs the graphics primitives of GSX con
sistent with the inherent capabilities of your graphics
device. In some cases, a device driver emulates
standard GDOS capabilities that are not provided by
the graphics device hardware. For example, some
devices require that dashed lines be simulated by a
series of short vectors generated in the device driver.

The GSX package contains drivers for many of the
most popular graphics devices for microcomputer
systems. However, you can install your own custom
device driver if necessary. We provide information in
Section 4, “GIOS,“ to help you write your driver. The
Virtual Device Interface (VDI) Specification in Ap
pendix C defines all the required functions and
parameter conventions.

Enabling Graphics A special command allows you to enable and disable
graphics functions from the command level of the
operating system. This command enables GSX by
loading GDOS and the default device driver and
establishing the proper links to the operating system
to allow an application program to access graphics
devices. When GSX is disabled, it relinquishes all
system memory space, leaving the maximum memory
for nongraphics programs.

You must initialize GSX with a graphics command
before running an application that uses GSX. Refer
to your GSX user’s guide for the GSX command that
your system uses.

GRAPHICS MODE
INITIALIZATION

Upon entering the graphics mode, the operating
system performs several actions. First, it brings
GDOS into memory along with the default driver, the
first device driver listed in the Assignment Table.

Next, it calls the GDOS, which intercepts GDOS calls
but passes operating system calls to the operating
system.

2-3

GSX Programmer’s Guide Graphics Mode Initialization

Finally, control returns to the operating system
command interface module, which waits for the next
operator command. Note that a warm start (usually
invoked by CTRL-Z) does not disturb the graphics
mode initialization. However, a cold start, or
hardware reboot, disables GSX, which requires you
to execute the GSX command after you reboot the
system.

Figure 2-1 shows the location of the components of
GSX after GSX graphics mode initialization.

When graphics mode is disabled, the memory used by
GDOS and the GIOS file is made available to user
programs, and control is returned to the operating
system user interface module.

2-4

GSX Programmer’s Guide Graphics Mode Initialization

AVAILABLE
MEMORY

OPERATING
SYSTEM

? GSX

Figure 2.1 GSX Memory Map

2-5

GSX Programmer’s Guide Application Programs

APPLICATION
PROGRAMS

With appropriate calls to GDOS, you can write your
application programs in assembly language or a
high-level language that supports the GSX calling
conventions. You can compile or assemble and link
programs containing GSX calls in the normal manner.

End of Section 2

2-6

Section 3
GDOS
INTRODUCTION This section describes the Graphics Device Operating

System (GDOS) in detail, including GDOS functions,
the GDOS calling sequence, and how device drivers
are loaded.

GDOS FUNCTIONS GDOS performs three functions during the execution
of a graphics application program:

• responds to GSX requests

• loads device drivers as required

• converts normalized coordinates to device
coordinates

Graphics Calls An application program accesses GDOS by making
calls to the operating system. Refer to Appendixes A
and B for GSX conventions for specific operating
systems.

Dynamic Loading Each time an application program opens a worksta
tion, GDOS determines whether the required device
driver is resident in memory. If not, GDOS loads the
driver from disk and services the graphics request.

3-1

GSX Programmer’s Guide GDOS Functions

Transforming
Points

The application program passes all graphics coordin
ates to GDOS as Normalized Device Coordinates
(NDC) in a range from 0 to 32,767 in both axes. Using
information passed from the device driver when the
workstation, or device, was opened, GDOS scales the
NDC units to the device coordinates. The full scale
NDC space is always mapped to the full dimensions
of your graphics device in each axis. This ensures that
all your graphics information appears on the display
surface regardless of the dimensions of the device.

GDOS CALLING
SEQUENCE

GSX gives you a standard way to access graphics
capabilities. This accessing method is called the
Virtual Device Interface (VDI) because it makes all
graphics devices appear “virtually“ identical.

The implementation of the VDI employs the conven
tional disk operating system calling sequence. The
application program calls GDOS by calling the op
erating system. For specific operating system calls,
refer to Appendixes A and B. The program passes
arguments to GDOS in a parameter list, which
consists of five arrays: a control array, an array of
input parameters, an array of input point coordinates,
an array of output parameters, and an array of output
point coordinates. The specific graphics function to be
performed by GDOS is indicated by an operation
code in the parameter list.

GDOS OPCODES Table 3-1 summarizes the GDOS opcodes. See
Appendix C for a detailed description of all the
operation codes including parameters.

3-2

GSX Programmer's Guide GDOS Opcodes

Table 3-1. GSX Operation Codes

Opcode Description
1

2

3

4

5

OPEN WORKSTATION initializes a graphics device (load driver
if necessary).

CLOSE WORKSTATION stops graphics output to this worksta
tion.

CLEAR WORKSTATION clears display device.

UPDATE WORKSTATION displays all pending graphics on
workstation.

ESCAPE enables special device-dependent operation.

ID Definition

1 1NOU1RE ADDRESSABLE CHARACTER CELLS
returns number of addressable rows and columns.

2 ENTER GRAPHICS MODE enters graphics mode.

3 EXIT GRAPHICS MODE exits graphics mode.

4 CURSOR UP moves cursor up one row.

5 CURSOR DOWN moves cursor down one row.

6 CURSOR RIGHT moves cursor right one column.

7 CURSOR LEFT moves cursor left one column.

8 HOME CURSOR moves cursor to home position.

9 ERASE TO END OF SCREEN erases from current cursor
position to end of screen.

10 ERASE TO END OF LINE erases from current cursor
position to end of line.

11 DIRECT CURSOR ADDRESS moves alpha cursor to
specified row and column.

3-3

GSX Programmer’s Guide GDOS Opcodes

Table 3-1. (continued)

Opcode Description

6

7

8

9

10

ID Definition

12 OUTPUT CURSOR ADDRESSABLE TEXT outputs
text at the current alpha cursor position.

13 REVERSE VIDEO ON displays subsequent text in
reverse video.

14 REVERSE VIDEO OFF displays subsequent text in
standard video.

15 INQUIRE CURRENT CURSOR ADDRESS returns
location of alpha cursor.

16 INQUIRE TABLET STATUS returns status of
graphics tablet.

17 HARDCOPY makes hardcopy.

18 PLACE GRAPHIC CURSOR AT LOCATION moves
cursor directly to specified location.

19 REMOVE GRAPHIC CURSOR does not dis
play cursor.

20-50 RESERVED (for future expansion).

51-100 UNUSED (and available).

POLYLINE outputs a polyline.

POLYMARKER outputs markers.

TEXT outputs text starting at specified position.

FILLED AREA displays and fills a polygon.

CELL ARRAY displays a cell array.

3-4

GSX Programmer’s Guide GDOS Opcodes

Table 3-1. (continued)

Opcode Description
11

12

13

14

15

16

17

18

19

20

21

22

GENERALIZED DRAWING PRIMITIVE displays a generalized
drawing primitive.

ID Definition

1 BAR

2 ARC

3 PIE SLICE

4 CIRCLE

5 PRINT GRAPHIC CHARACTERS

6-7 RESERVED (for future use)

8-10 UNUSED (and available)

SET CHARACTER HEIGHT sets text size.

SET CHARACTER UP VECTOR sets text direction.

SET COLOR REPRESENTATION defines the color associated
with a color index.

SET POLYLINE LINETYPE sets linestyle for polylines.

SET POLYLINE LINEWIDTH sets width of lines.

SET POLYLINE COLOR INDEX sets color for polylines.

SET POLYMARKER TYPE sets marker type for polymarkers.

SET POLYMARKER SCALE sets size for polymarkers.

SET POLYMARKER COLOR INDEX sets color for polymarkers.

SET TEXT FONT sets device-dependent text style.

SET TEXT COLOR INDEX sets color of text.

3-5

GSX Programmer’s Guide GDOS Opcodes

Table 3-1. (continued)

Opcode Description

23 SET FILL INTERIOR STYLE sets interior style for polygon fill
(hollow, solid, halftone pattern, hatch).

24 SET FILL STYLE INDEX sets fill style index for polygons.

25 SET FILL COLOR INDEX sets color for polygon fill.

26 INQUIRE COLOR REPRESENTATION returns color rep
resentation values of index.

27 INQUIRE CELL ARRAY returns definition of cell array.

28 INPUT LOCATOR returns value of locator.

29 INPUT VALUATOR returns value of valuator.

30 INPUT CHOICE returns value of choice device.

31 INPUT STRING returns character string.

32 SET WRITING MODE sets current writing mode (replace, overstrike,
complement, erase).

33 SET INPUT MODE sets input mode (request or sample).

LOADING GIOS FILES The GSX Virtual Device Interface refers to graphics
devices as workstations. Before a graphics device can
be used, it must first be initialized with an OPEN
WORKSTATION operation. This operation initial
izes the device with selected attributes, such as
linetype and color. It also returns information about
the device to GDOS.

When the OPEN WORKSTATION operation is
performed, GDOS determines whether the correct
GIOS file, or device driver, is currently in memory.
It does this by comparing the workstation ID specified
in the OPEN WORKSTATION call with the
workstation ID of the device whose driver is currently
loaded. If there is a match (if the correct GIOS file
is in memory), the OPEN WORKSTATION request
is serviced immediately.

3-6

GSX Programmer's Guide Loading GIOS Files

If a match does not occur, the GDOS must load the
correct GIOS file. To find it, GDOS refers to a data
structure called the Assignment Table, which contains
information about the available device drivers and
their location.

GDOS searches the Assignment Table for the first
device driver entry with a driver number that matches
the workstation ID requested in the OPEN
WORKSTATION call. If it finds the correct driver
entry, GDOS loads the new GIOS file where the
previous one was located. When the load is complete,
GDOS finishes the OPEN WORKSTATION opera
tion and returns to the calling program.

If there is no match in the Assignment Table when a
new driver is required, GDOS returns without loading
a driver, and the previous graphics device continues
to operate as the open workstation.

Assignment Table
Format

The Assignment Table consists entirely of text and
can be created or modified with any text editor. It
must reside in a file named ASSIGN.SYS on the drive
specified in the GSX graphics mode command or on
the current default drive if none is specified in the
command when GSX is operating. For each device
driver, there is an entry containing the driver number,
which specifies the workstation ID of the associated
device, and the name of the file containing the
associated graphics device driver. The name of the
device driver file can be any legal unambiguous
filename. Any device used during a graphics session
must have an entry in the Assignment Table
corresponding to the name of its associated driver.

3-7

GSX Programmer’s Guide Loading GIOS Files

The format for entries in the Assignment Table is as
follows:

DDXd:filename;comments

DD = logical driver number
X = space
d = disk drive code
filename = driver filename (valid unambiguous
filename of up to eight characters and filetype, .SYS
extension assumed as default)
comments = any text string

For example, valid entries in the Table would be as
follows:

21 A:PRINTR ; printer
11 A:DDPLOT ; plotter

1 B:CRTDRV ; system console
2 E:DRIVER.ABC

14 DRIVER2.SYS

Note: The driver filename can have any filetype;
however, .SYS is assumed if the filetype field is blank.
The drive specified in the GSX graphics mode com
mand is used as the default for driver filenames that
do not have an explicit drive reference. Extra spaces
can be inserted.

The following convention for assigning device driver
numbers, or workstation IDs, to graphics devices
ensures the maximum degree of device independence
within application programs. The convention for
driver numbers is as follows:

Device Number Device Type
1-10 CRT
11-20 Plotter
21-30 Printer
31-40 Metafile
41-50 Other devices

Assign the lowest device number within a device type
when you use only one device.

3-8

GSX Programmer’s Guide Loading GIOS Files

Memory Management When graphics mode is enabled, GSX allocates
memory for the first device driver in the Assignment
Table. This driver is referred to as the default device
driver. Subsequently, GDOS causes all new drivers
to be loaded into the same area where memory was
allotted for the original device driver. Ensure that the
first driver in the Assignment Table is the largest
driver to be loaded so that ample memory space is
allocated by the GSX loader for all subsequent
drivers. GSX returns an error to the caller and the new
driver is not loaded if an attempt is made to load a
driver larger than the default driver.

End of Section 3

3-9

Section 4
GIOS
INTRODUCTION This section describes the Graphics Input/ Output

System, or GIOS. With this information you can write
and install your own custom drivers for unique graphic
devices.

PURPOSE OF GIOS As we discussed earlier, GSX is composed of two
components: the Graphics Device Operating System
(GDOS) and the Graphics Input/Output System
(GIOS). GDOS contains the device-independent
graphics functions, while GIOS contains the device
dependent code. This division is consistent with the
philosophy of isolating device dependencies so that
the principal parts of the operating system are trans
portable to many systems. This also allows
applications to run independent of the specific devices
connected to the system. In this context, GIOS is
analogous to the I/O systems but pertains to graphics
devices only. GIOS contains a GIOS file, or device
driver, for each of the graphics devices on the system.
Each GIOS file contains code to communicate with
a single specific graphics device.

A difference between GIOS and I/O systems is that
whereas all device drivers contained within I/O
systems are resident in memory simultaneously, only
one graphics device driver is resident at any time. That
is, only one graphics device is active at a time,
although the active device can be changed by a request
from the application program. GDOS ensures that the
correct driver is in memory when required.

4-1

GSX Programmer’s Guide GIOS Functions

GIOS FUNCTIONS Each of the GIOS files uses the intrinsic graphics
capabilities of devices to implement graphics primi
tives for GDOS. In some cases, the graphics device
does not support all the GDOS operations directly,
and the driver must emulate the capability in
software. For example, if a plotter cannot produce a
dashed line, the driver must emulate it by converting
a single dashed line into a series of short vectors and
transmitting them to the plotter, giving the same end
result.

VIRTUAL DEVICE
INTERFACE
SPECIFICATION

Device drivers must conform to the GSX Virtual
Device Interface (VDI) Specification. The VDI
specifies the calling sequence to access device driver
functions as well as the syntax and semantics of the
data structures that communicate across the interface.

The application program passes arguments to device
drivers in a parameter list pointed to by the contents
of specific registers. The parameter list is in the form
of five arrays, as follows:

• control array
• array of input parameters
• array of input point coordinates
• array of output parameters
• array of output point coordinates

The application program specifies the graphics func
tion to be performed by a device driver with an
operation code in the control array.

All array elements are type INTEGER (2 bytes). All
arrays are 1-based; that is, the double-word address
at Parameter Block (PB) points to the first element
of the control array (contrl(l)). The meaning of the
input and output parameter arrays is dependent on the
opcode. See Appendix C, “Virtual Device Interface
Specification,“ for details.

4-2

GSX Programmer’s Guide Virtual Device Specification

The application program passes all graphics
coordinates to the device driver as device coordinates.
Using information passed from the device driver when
the workstation, or device, was opened, GDOS scales
the NDC coordinates, passed from the application to
the coordinates of the specific device.

The full-scale NDC space is always mapped to the full
dimensions of your graphics device in each axis. This
ensures that all your graphics information is visible on
the display surface regardless of the actual device
dimensions.

However, NDC space is larger than device space. For
example, the NDC space for a device is 32K by 32K
NDC units. The target device measures 640 by 200
pixels. The size of an NDC pixel is 51 by 164 NDC
units. When GSX returns the value of the pixel to an
application, the value of the bottom left corner of the
NDC pixel is returned by GSX. Therefore, to avoid
cumulative errors caused by round-off procedures in
your application, you should add an offset of one-half
an NDC pixel to the value returned by GSX when you
are transforming coordinates up and down GSX.

If your device has an aspect ratio that is not 1:1 (that
is, the display surface is not square) and you wish to
prevent distortion between your world coordinate
system and the device coordinate system, your
application must use different scaling factors in the X
and Y axes to compensate for the asymmetry of your
device. For example, if you are using a typical CRT
device with an aspect ratio of 3:4 (verticakhorizontal)
to produce a perfect square on the display, you would
draw a figure with 4000 NDC units vertically and 3000
NDC units horizontally. That is, the scaling factor for
the vertical dimension is 4/3 of the horizontal
direction. For most noncritical applications you need
not make this adjustment.

Details of the Virtual Device Interface, including
required and optional functions and arguments, are
included in Appendix C, “Virtual Device Interface
Specification.“

4-3

GSX Programmer’s Guide Creating a GIOS File

CREATING A GIOS
FILE

Device driver files that are part of GIOS must be in
standard executable command format so they can be
loaded by GDOS. These files may be renamed to
.SYS, the default filetype for GSX GIOS files. You
can write a device driver in any language as long as
the functions and parameter passing conventions
conform to the Virtual Device Interface Specification
given above. After assembling or compiling your
driver source, link it with any required external
subroutines and run-time support libraries to produce
a load module.

The name of a GIOS file can consist of eight
characters or less with a .SYS filetype. In addition, the
driver must be included in the Assignment Table,
which is a text file named ASSIGN.SYS on the current
default drive.

Refer to “Assignment Table Format“ in Section 3 for
more details about the ASSIGN.SYS and the correct
format for each entry.

End of Section 4

4-4

Section 5
OPERATING PROCEDURES
INTRODUCTION This section explains how to use GSX in your graphics

applications.

GSX DISTRIBUTION
FILES

When you receive your GSX distribution disk, first
check that all required files have been included.

Refer to your GSX user’s guide for procedures that
check and duplicate the distribution disk.

If any files are missing, contact your distributor to
receive a new disk. If all files are present, duplicate
the distribution disk using the PIP utility and store
your distribution disk in a safe place. Then, using the
duplicate disk, transfer the GSX files to a working
system disk. Always use the duplicate disk to generate
any new copies of GSX. Do not use the distribution
disk for routine operations.

RUNNING GRAPHICS
APPLICATIONS
UNDER GSX

To use the graphics features provided by GSX, you
must ensure that several conditions are met:

1. In your application program you must conform
to the GSX calling convention to access graphics
primitives. This involves making a call to the
operating system, which points to a parameter
list. This list provides information to GSX and
also returns information to the calling program.
The details of this procedure are contained in
Section 3, “GDOS,“ Section 4, “GIOS,“ and the
appendixes.

2. Enough stack space must be available for GSX
operations. This includes a buffer area for points
passed to GSX and some fixed overhead space.
The formula to determine the required stack
space is discussed below.

5-1

GSX Programmer’s Guide Running Graphics Applications

3. The required device drivers must be present on
the disk specified in the GSX graphics mode
command, or in the current default drive if no
drive is specified, when your program is ex
ecuted. Also, the Assignment Table
(ASSIGN.SYS) must contain the names of your
device drivers and a logical device number or
workstation ID that corresponds to the correct
device driver. The details of device driver and
Assignment Table requirements are included in
Section 3, “GDOS,“ and Section 4, “GIOS."

4. After successfully compiling or assembling and
linking your application program you can run it
just like any other program, but first you must
ensure that GSX is active. You can enable GSX
graphics with the GSX graphics mode command
documented in the GSX user’s guide for your
system.

DETERMINING
MEMORY
REQUIREMENTS

To determine the amount of stack space required to
run a given application, make the following
calculation:

GSX stack requirements:

Open workstation call = approximately 500 bytes

All others = Ptsin size + 128

Ptsin is the point array passed to the device driver
from the application program (two words for each
point).

The stack requirement is the largest of the two
resulting values. This stack space must be available
in the application program stack area.

The memory required by GDOS is less than 3
kilobytes. This is allocated when the GSX graphics
mode command is executed. Space for the default
device driver is also allocated at this time. The default
device driver should be the largest device driver so
that sufficient space is allocated for other drivers
loaded during execution of your application.

5-2

GSX Programmer’s Guide Debugging Graphics Application under GSX

DEBUGGING GRAPHICS
APPLICATIONS
UNDER GSX

Graphics programs can be debugged with a debugger,
as can any GSX application. The default device driver
and GDOS are loaded after the command has been
executed. Your graphics application program is
loaded in the normal manner for applications on your
operating system.

WRITING A NEW
DEVICE DRIVER

GSX is distributed with a number of device drivers for
popular graphics devices. If your devices are included
(refer to your GSX user’s guide for a summary of the
supported devices), you only need to edit the
Assignment Table file with a text editor to ensure that
it reflects the logical device number assignments that
you desire. However, if your device is not supported,
you must create a driver program that conforms to the
VDI specification. You can write a driver in any
language, but at least part of it is usually implemented
in assembler due to the low-level hardware interface
required.

Your driver must provide the functions listed as
required in the VDI specification and must observe
the VDI parameter passing conventions. In some
cases the capability specified by VDI is not available
in the graphics device and the function must be
emulated by the driver software. For example, dashed
lines can be generated by the driver if they are not
directly available in the device. The complete VDI
specification is in Appendix C, and the parameter
passing conventions are discussed in Section 3,
“GDOS,“ and Section 4, “GIOS.“

End of Section 5

5-3

Appendix A
GSX CALLING CONVENTIONS FOR CP/M
INTRODUCTION This appendix briefly outlines the components of a

skeleton device driver for GSX on CP/M for 8080
microprocessors. It also summarizes the GSX GDOS
calling conventions for CP/M.

GSX SKELETON The GSX skeleton device driver describes com-
DEVICE DRIVER ponents required for a CP/M system.

FORMAT Function: GSX skeleton device driver

Input Parameters contrl(l) - Opcode for driver function
contrl(2) - Number of vertices in array ptsin. Each

vertex consists of an x and a y
coordinate so the length of this array is
twice as long as the number of vertices
specified.

contrl(4) - Length of integer array intin
contrl(6-n) - Opcode dependent information

intin - Array of integer input parameters

ptsin - Array of input coordinate data

Output Parameters contrl(3) - Number of vertices in array ptsout.
Each vertex consists of an x and a y
coordinate so the length of this array is
twice as long as the number of vertices
specified.

contrl(5) - Length of integer array intout

contrl(6-n) - Opcode dependent information

intout - Array of integer output parameters

ptsout - Array of output coordinate data

A-l

GSX Programmer’s Guide Format

All data passed to the device driver is assumed to be
2-byte INTEGERS.

All coordinates passed to GSX are in Normalized
Device Coordinates (0-32767 along each axis). These
units are mapped to the actual device units (for
example, rasters for CRTs or steps for plotters and
printers) by GSX so that all coordinates passed to the
device driver are in device units.

Because both input and output coordinates are
converted by GSX, both the calling routine and the
device driver must ensure that the input vertex count
(contrl(2)) and output vertex count (contrl(3)) are set.
The calling routine must set contrl(2) to 0 if no x,y
coordinates are being passed to GSX. Similarly, the
device driver must set contrl(3) to 0 if no x,y
coordinates are being returned through GSX.

Because 0-32767 maps to the full extent on each axis,
coordinate values are scaled differently on the x and
y axes of devices that do not have a square display.

The BDOS call to access GSX and the GIOS in CP/M
is as follows:

BDOS opcode (in C register) for GSX call = 115

Parameter Block (address is passed in DE):

PB Address of contrl
PB+ls Address of intin
PB+2s Address of ptsin
PB+3s Address of intout
PB+4s Address of ptsout

s is the number of bytes used for each argument in the
parameter block. For CP/M, this is 2 bytes.

All opcodes must be recognized, whether they
produce any action or not. A list of required opcodes
for CRT devices, plotters, and printers follows the
specification. These opcodes must be present and
perform as specified. All opcodes should be
implemented whenever possible because this gives
better quality graphics.

A-2

GSX Programmer's Guide Format

For CP/M, device driver I/O is done through BDOS
(Basic Disk Operating System) calls. CRT devices are
assumed to be the console device. Plotters are
assumed to be connected as the reader or punch
device. Printers are assumed to be connected as the
list device.

GDOS CALLING
CONVENTIONS

The GDOS calling sequence is summarized below.

Function code (in register C) = 115 Parameter block
address in register DE

Parameter Block Contents:

PB Address of control array
PB+2 Address of input parameter array
PB+4 Address of input point coordinate array
PB+6 Address of output parameter array
PB+8 Address of output point coordinate array

Control Array on Input:

contrl(l) - Opcode for driver function
contrl(2) - Number of vertices in input point array
contrl(4) - Length of input parameter array
contrl(6-n) - Opcode dependent

Input Parameter Array:

intin - Array of input parameters

Input Coordinate Array:

ptsin — Array of input coordinates (each point
is specified by an X and Y coordinate
given in Normalized Device
Coordinates between 0 and 32,767)

End of Appendix A

A-3

Appendix B
GSX CALLING CONVENTIONS
FOR CP/M-86, IBM PC DOS, AND MS-DOS
INTRODUCTION

GDOS CALLING
SEQUENCE

This appendix outlines the GSX calling sequence for
the GDOS, the procedure for invoking device drivers,
and error messages when you use GSX on CP/M-86,
IBM PC DOS, and MS-DOS.

The GDOS calling sequence is outlined below.

Access via interrupt 224

Function code (in register Cx) = 0473h (hex)

Parameter block address in registers Ds-segment and
Dx-offset

Parameter Block Contents:

PB -- Double-word address of control array
PB+4 - Double-word address of input

parameter array
PB + 8 - Double-word address of input point

coordinate array
PB+12 - Double-word address of output

parameter array
PB+16- Double-word address of output point

coordinate array

Control Array on Input:

contrl(l) - Opcode for driver function
contrl(2) - Number of vertices (not coordinates) in

input coordinate point array (ptsin)
contrl(4) - Length of input parameter array
contrl(6-n) - Opcode dependent (intin)

B-l

GSX Programmer’s Guide GDOS Calling Sequences

Input Parameter Array:

intin - Array of input parameters (length of
array is opcode dependent and
specified in contrl(4))

Input Point Coordinate Array:

ptsin - Array of input coordinates (each point
is specified by an X and Y coordinate
pair given in Normalized Device
Coordinates between 0 and 32,767,
with length contrl(2)*2)

Control Array on Output:

contrl(3) - Number of vertices (not coordinates) in
output point array (ptsout)

contrl(5) - Number of elements in output
parameter array (intout)

contrl(6-n) -- Opcode dependent

Output Parameter Array:

intout - Array of output parameters (length of
array is opcode dependent)

Output Point Coordinate Array:

ptsout - Array of output coordinates (each point
is specified by an X and Y coordinate
pair given in Normalized Device
Coordinates between 0 and 32,767)
must be greater than the largest
possible value of contrl(5)*2.

B-2

GSX Programmer’s Guide GDOS Calling Sequences

All array elements are type INTEGER (2 bytes). All
arrays are 1-based; that is, the double-word address
at PB points to the first element of the control array
(control)). The meaning of the input and output
parameter arrays is dependent on the opcode. See
Appendix C, “Virtual Device Interface Specifica
tion,“ for details.

GDOS preserves the BP (base pointer) and DS (data
segment) registers. All other registers are subject to
change when returned from GDOS.

INVOKING DEVICE
DRIVERS

CGroup

Driver_Code

Device drivers are invoked with a Calif from GSX and
should return with a Retf. The driver must switch to
its own stack for internal use, except for an allowed
overhead for a few pushes to save the caller’s context.
The following entry procedure is recommended to
provide an error free calling sequence:

Group Driver_Code

CSeg
Public Driver

Driver: Mov
Mov

Ax.Sp
Bx,Ss

; Save caller's stack pointers

; Note that Mov Ss.xxx Mov Sp,xxx is not interruptible on 8086/8088.

Mov
Mov

Ss,StackBase
Sp,Offset Top_Stack

; Switch to driver’s stack

Push Bx ; Push caller’s stack pointer
Push Ax
Push Bp ; Save caller’s frame
Push Ds ; Save parameter pointer
Push Dx
Pushf ; Save caller’s direction flag

B-3

GSX Programmer’s Guide Invoking Device Drivers

; Invoke the driver. Ds:Dx points to the parameter block.
; It returns with a Retf.

; Top_Stack is defined in the last module linked in.

Calif Dd_Driver ; Invoke the driver with Ds:Dx

Popf ; Restore caller's direction flag
Pop Dx ; Restore caller’s Ds:Dx
Pop Ds
Pop Bp ; Restore caller’s stack frame
Pop Ax ; Restore caller's Ss:Sp
Pop Bx ; via
Mov Ss,Bx ; Bx
Mov
Retf

Sp,Ax ; and Ax

StackBase Dw Seg TopJStack

Dd__Driver_Code CSeg
Extrn Dd_Driver :Far

Stack SSeg
Rs 16 ; This module pushes 8 words

Extrn Top_Stack :Byte

End

After coding, assembling and linking your device
driver, you have a .CMD file if you use CP/M. First
change the filetype to .SYS using the CP/M
RENAME command or a similar command for your
operating system:

A>REN GIOSXX.SYS-GIOSXX.CMD

Then, to make this driver known to GSX, include its
name in the Assignment Table. This table is located
in file ASSIGN.SYS and is simply a text file with a
specific format containing the names of driver files
and the logical device numbers or workstation IDs
that you wish to associate with particular devices.
Refer to Section 3, "GDOS," or Section 4, "GIOS,"
for details.

B-4

GSX Programmer’s Guide Error Messages

ERROR MESSAGES In general, registers and flags (including the direction
flag) are not restored upon returning from a call to
GSX. The GIOS file will preserve the DS, SS and CS
registers and BP and SP, but it is not required to
preserve any others. GSX does not change any
registers as returned from the GIOS except during an
OPEN WORKSTATION command. In this case Ax
is modified to return status information (the flags are
also modified by this command).

The meaning of the contents of Ax on returning from
the OPEN WORKSTATION call is as follows:

AL=0 workstation opened successfully
AL=255 error condition-device driver not

loaded. In this case AH has a further
meaning:

AH
0 ASSIGN.SYS not found
1 Syntax error in ASSIGN.SYS
2 Device ID not found in ASSIGN.SYS
3 Close error on ASSIGN.SYS
4 Device driver file specified in

ASSIGN.SYS not found
5 Device driver file specified in

ASSIGN.SYS empty
6 Syntax error on file specified in

ASSIGN.SYS (that is, absolute code
segment or not .CMD format)

7 Not enough room for file specified

If a read error occurs during the transfer of a GIOS
file when an OPEN WORKSTATION call is in
progress, the application program is terminated, a
message is displayed, and control is returned to the
operating system user interface module. The follow
ing error messages can be displayed in response to
GSX calls:

GSX CS:IP GIOS load error on Id xxxxh (hex)

An error occurred while transferring the device driver
from disk. The value of the CS:IP and the device ID
are also shown.

B-5.

GSX Programmer’s Guide Error Messages

GSX CS:IP GIOS invalid

The currently loaded device driver is invalid. This
error probably occurred after a load error when the
application does not perform an OPEN
WORKSTATION command as the first graphics
operation.

GSX CS:IP Illegal function: (Cx)

An invalid function code (/0473h) was specified in
Cx. The erroneous code is displayed.

Refer to the GSX user’s guide for your system for
additional error messages output by GSX.

End of Appendix B

B-6

Appendix C
VIRTUAL DEVICE INTERFACE (VDI)
SPECIFICATION
INTRODUCTION

FORMAT

Input Parameters

Output Parameters

This appendix contains the specification of the Virtual
Device Interface (VDI). The VDI defines how device
drivers interface to GDOS, the device-independent
portion of GSX. The context for this document is from
the DEVICE DRIVER point of view. All coordinate
information is assumed to be in device coordinate
space.

Function: GSX graphics operation

contrl(l) - Opcode for driver function.
contrl(2) - Number of vertices in array ptsin. Each

vertex consists of an x and a y
coordinate pair so the length of this
array is twice as long as the number of
vertices specified.

contrl(4) - Length of integer array intin.
contrl(6-n) - Opcode dependent information.

intin - Array of integer input parameters,
ptsin - Array of input point coordinate data.

contrl(3) - Number of vertices in array ptsout.
Each vertex consists of an x and a y
coordinate pair so the length of this
array is twice as long as the number of
vertices specified. Other data may be
passed back here depending on the
opcode.

contrl(5) - Length of integer array intout.
contrl(6-n) - Opcode dependent information.

C-l

GSX Programmer’s Guide Format

Notes

intout -- Array of integer output point parameters,
ptsout - Array of output point coordinate data.

All data passed to the device driver is assumed to be
2-byte INTEGERS, including individual characters in
character strings.

All coordinates passed to GSX are in Normalized
Device Coordinates (0-32767 along each axis). These
units are then mapped to the actual device units (for
example, rasters for CRTs or steps for plotters and
printers) by GSX so that all coordinates passed to the
device driver are in device units.

Because both input and output coordinates are con
verted by GSX, both the calling routine and the device
driver must make sure that the input vertex count
(contrl(2)) and output vertex count (contrl(3)) are set.
The calling routine must set contrl(2) to 0 if no x,y
coordinates are are being passed to GSX. Similarly,
the device driver must set contrl(3) to 0 if no x,y
coordinates are being returned through GSX.
Coordinates returned by GSX arc assumed to be the
bottom left edge of the pixel. As a consequence,
points at the top and right edges of the device
coordinate system will not be at the edge of the
Normalized Device Coordinates (NDC) system. Ex
actly how far away they will be is device dependent.

Because 0-32767 maps to the full extent on each axis,
coordinate values are scaled differently on the x and
y axes of devices that do not have a square display.

All references to arrays are 1-based; that is,
subscripted element 1 is the first element in the array.

On calls to the GDOS the number of arguments
passed in the intin array (contrl(4)), and the maximum
size of the intout array (contrl(5)) should be set by the
application. On return to the GDOS by the GIOS the
number of arguments in the intout array should be set
by the GIOS. Refer to Appendixes A and B for
GDOS calling conventions for specific operating
systems.

C-2

GSX Programmer’s Guide Format

All opcodes must be recognized, whether or not they
produce any action. If an opcode is out of range then
no action is performed. A list of required opcodes for
CRT devices, plotters, and printers follows the
specification. These opcodes must be present and
perform as specified. All opcodes should be
implemented whenever possible since full
implementation gives better quality graphics.

Device driver I/O (that is, communication between
the device driver and the device via the system
hardware ports) is done through operating system
calls.

C-3

GSX Programmer’s Guide Open Workstation

OPEN WORKSTATION Initialize a graphic workstation.

Input contrl(l) -
contrl(2) -
contrl(4) —
intin -

intin(l) —

intin(2) -
intin(3) —
intin(4) —
intin(5) -
intin(6) -
intin(7) -
intin(8) -
intin(9) --
intin(lO) -

Opcode = 1
0
Length of intin = 10
Initial defaults (for example, linestyle
color and character size)
Workstation identifier (device driver
id). This value is used to determine
which device driver to dynamically load
into memory.
Linetype
Polyline color index
Marker type
Polymarker color index
Text font
Text color index
Fill interior style
Fill style index
Fill color index

Output contrl(3) -
contrl(5) —
intout(l) -

intout(2) -

intout(3) -

Number of output vertices = 6
Length of intout = 45
Maximum addressable width of
screen/plotter in rasters/ steps assuming
a 0 start point (for example, a resolution
of 640 implies an addressable area of
0-639, so intout(1)=639)
Maximum addressable height of
screen/plotter in rasters/ steps assuming
a 0 start point (for example, a resolution
of 480 implies an addressable area of
0-479, so intout(2)=479)
Device Coordinate units flag

0 = Device capable of producing
precisely scaled image (typically
plotters and printers)
1 = Device not capable of precisely
scaled image (CRTs)

intout(4) -

intout(5) -

Width of one pixel (plotter step, or
aspect ratio for CRT) in micrometers
Height of one pixel (plotter step, or
aspect ratio for CRT) in micrometers

C-4

GSX Programmer’s Guide Open Workstation

intout(6) — Number of character heights

0 = continuous scaling

intout(7) -- Number of linetypes
intoutf 8) -- Number of line widths
intout(9) - Number of marker types
intoutf 10) -- Number of marker sizes
intoutf 11)- Number of fonts intoutf 12) - Number

of patterns
intoutf 13) - Number of hatch styles
intoutf 14) - Number of predefined colors (must be

at least 2 even for monochrome
device). This is the number of colors
that can be displayed on the device
simultaneously.

intoutf 15)- Number of Generalized Drawing
Primitives (GDPs)

intoutf 16)-

intout(25) - Linear list of GDP numbers supported
-1 no more GDPs in list. Application
should search list until finding a -1 for
the desired GDP.

1 — bar
2 - arc
3 — pie slice
4 — circle
5 — ruling chars

intout(26)-
intout(35) - Linear list of attribute set associated
with each GDP

-1 - no more GDPs
0 - polyline
1 - polymarker
2 - text
3 - fill area
4 - none

intout(36) - Color capability flag

0 — no
1 — yes

intout(37) - Text rotation capability
flag

0 - no
1 - yes

C-5

GSX Programmer’s Guide Open Workstation

intout(38) -- Fill area capability flag

0 — no
1 - yes

intout(39) -
flag

Read cell array operation capability

0 -- no
1 - yes

intout(40) - Number of available colors (total
number of colors in color palette)

0 — continuous device
(morethan32767 colors)

2 - monochrome (black and white)
>2 — number of colors available

intout(41) - Number of locator devices available
intout(42) -- Number of valuator devices available
intout(43) -- Number of choice devices available
intout(44) - Number of string devices available
intout(45) - Workstation type

0 -- Output only
1 - Input only
2 - Input/Output
3 - Device independent segment

storage
4 - GKS Metafile output

ptsout(l) - 0
ptsout(2) - Minimum character height in device

units (not cell size)
ptsout(3) -- 0
ptsout(4) - Maximum character height in device

units (not cell size)
ptsout(5) -- Minimum line width in device units
ptsout(6) - 0
ptsout(7) - Maximum line width in device units
ptsout(8) - 0
ptsout(9) -- 0
ptsout(lO) — Minimum marker height in device units

(not cell size)

C-6

GSX Programmer’s Guide Open Workstation

ptsout(ll) — 0
ptsout(12) - Maximum marker height in device units

(not cell size)

The default color table should be set up differently for
a monochrome and a color device.

Monochrome CRT type devices

Index Color
0 Black

1 White

Monochrome Printer/Plotter devices

Index Color
0 White
1 Black

Color

Index Color
0 Black
1 Red
2 Green
3 Blue
4 Cyan
5 Yellow 6 Magenta
7 White

8-n White

C-7

GSX Programmer’s Guide Open Workstation

Other default values that should be set by the driver
during initialization are as follows:

(locator, valuator, choice,
string)

Character height = Minimum character height
Character up vector = 90 degrees counterclockwise

from the right horizontal (0
degrees rotation)

Line width = 1 device unit (raster, plotter
step)

Marker height = Minimum marker height
Writing mode = Replace
Input mode = Request for all input classes

Description The Open Workstation operation causes a graphics
device to become the current device for the
application program. The device is initialized with the
parameters in the input array and information about
the device is returned to GDOS. The graphic device
is selected, and, if it is a CRT, the screen is cleared
and the alpha device is deselected and blanked.

C-8

GSX Programmer’s Guide Close Workstation

CLOSE WORKSTATION Stop all graphics output to this workstation.

Input

Output

Description

contriti) - Opcode = 2
contrl(2) - 0

contrl(3) -- 0

The Close Workstation operation terminates the
graphics device properly and prevents any further
output to the device. If the device is a CRT, the alpha
device is selected, the screen is cleared, and the
graphics device is deselected and blanked. If the
device is a printer, then an update is executed.

CLEAR WORKSTATION Clear CRT screen or prompt for new paper on plotter.

Input contriti) - Opcode = 3
contrl(2) - 0

Output contrl(3) — 0

Description The Clear Workstation operation causes CRT screens
to be erased. If the device is a plotter without paper
advance, the operator is prompted to load a new page.
If the device is a printer a form feed is issued and then
an update is executed.

C-9

GSX Programmer’s Guide Update Workstation

UPDATE WORKSTATION Display all pending graphics on workstation.

Input contrl(l) - Opcode = 4
contrl(2) - 0

Output contrl(3) - 0

Description The Update Workstation operation causes all pending
graphics commands that are queued to be executed
immediately. The operation is analogous to flushing
buffers. For printer drivers this call must be used to
start output to the printer.

ESCAPE Perform device specific operation.

Input control) - Opcode = 5
contrl(2) - Number of input vertices
contrl(4) -- Number of input parameters
contrl(6) - Function identifier

1 = INQUIRE ADDRESSABLE
CHARACTER CELLS

2 = ENTER GRAPHICS MODE
3 = EXIT GRAPHICS MODE
4 = CURSOR UP
5 = CURSOR DOWN
6 = CURSOR RIGHT
7 = CURSOR LEFT
8 = HOME CURSOR
9 = ERASE TO END OF SCREEN
10 = ERASE TO END OF LINE
11 = DIRECT CURSOR ADDRESS
12 = OUTPUT CURSOR ADDRESSABLE

TEXT
13 = REVERSE VIDEO ON
14 = REVERSE VIDEO OFF
15 = INQUIRE CURRENT CURSOR AD

DRESS
16 = INQUIRE TABLET STATUS
17 = HARDCOPY
18 = PLACE GRAPHIC CURSOR AT

LOCATION
19 = REMOVE LAST GRAPHIC CURSOR
20-50 = UNUSED BUT RESERVED FOR FU

TURE EXPANSION
51-100 = UNUSED AND AVAILABLE FOR

USE

C-10

GSX Programmer’s Guide Escape

intin -

ptsin -

Function dependent information
(described on following pages)
Array of input coordinates for escape
function

Output contrl(3) —
contrl(5) -

Number of output vertices
Number of output parameters

intout -
ptsout --

Array of output parameters
Array of output coordinates

Description The Escape operation allows the special capabilities
of a graphics device to be accessed from the applica
tion program. Some escape functions above are
predefined, but others can be defined for your
particular devices. The parameters passed are depen
dent on the function being performed.

C-ll

GSX Programmer's Guide Escape

ESCAPE: INQUIRE
ADDRESSABLE
CHARACTER CELLS

Return the number of alpha cursor addressable -
columns and alpha cursor addressable rows.

Input contrl(2) - 0
contrl(6) - Function ID = 1

Output contrl(3) - 0

intoutfl) - Number of addressable rows on the
screen, typically 24 (-1 indicates cursor
addressing not possible)

intout(2) — Number of addressable columns on the
screen, typically 80 (-1 indicates cursor
addressing not possible)

Description This operation returns information to the calling
program about the number of vertical (rows) and
horizontal (columns) positions where the alpha cursor
can be positioned on the screen.

C-12

GSX Programmer’s Guide Escape

ESCAPE: ENTER
GRAPHICS MODE

Enter graphics mode if different from alpha mode.

Input contrl(2) - 0
contrl(6) - Function id = 2

Output contrl(3) - 0

Description This operation causes the graphics device to enter the
graphics mode if different than the alpha mode. Used
to explicitly exit alpha cursor addressing mode and to
transition from alpha to graphic mode properly. The
graphics device is selected and cleared. The alpha
device is deselected and blanked.

ESCAPE: EXIT
GRAPHICS MODE

Exit graphics mode if different from alpha mode.

Input contrl(2) — 0
contrl(6) — Function id = 3

Output contrl(3) - 0

Description The Exit Graphics operation causes the graphics
device to exit the graphics mode if different than the
alpha mode. Used to explicitly enter the alpha cursor
addressing mode and to transition from graphics to
alpha mode properly. The alpha device is selected and
cleared. The graphics device is deselected and
blanked.

C-13

GSX Programmer’s Guide Escape

ESCAPE: CURSOR UP Move alpha cursor up one row without altering
horizontal position.

Input contrl(2) — 0
contrl(6) - Function id = 4

Output contrl(3) -- 0

Description This operation moves the alpha cursor up one row
without altering the horizontal position. If the cursor
is already at the top margin, no action results.

ESCAPE: CURSOR
DOWN

Move alpha cursor down one row without altering
horizontal position.

Input contrl(2) - 0
contrl(6) - Function id = 5

Output contrl(3) -- 0

Description This operation moves the alpha cursor down one row
without altering the horizontal position. If the cursor
is already at the bottom margin, no action results.

C-14

GSX Programmer’s Guide Escape

ESCAPE: CURSOR
RIGHT

Move alpha cursor right one column without altering
vertical position.

Input contrl(2) — 0
contrl(6) — Function id = 6

Output contrl(3) - 0

Description The Cursor Right operation moves the alpha cursor
right one column without altering the vertical posi
tion. If the cursor is already at the right margin, no
action results

ESCAPE: CURSOR
LEFT

Move alpha cursor left one column without altering
vertical position.

Input contrl(2) - 0
contrl(6) — Function id = 7

Output contrl(3) — 0

Description The Cursor Left operation causes the alpha cursor to
move one column to the left without altering the
vertical position. If the cursor is already at the left
margin, no action results.

C-15

GSX Programmer’s Guide Escape

ESCAPE: HOME
CURSOR

Send cursor to home position.

Input contrl(2) - 0
contrl(6) - Function id = 8

Output contrl(3) - 0

Description This operation causes the alpha cursor to move to the
home position, usually the upper left corner of a CRT
display.

ESCAPE: ERASE TO
END OF SCREEN

Erase from current alpha cursor position to the end
of the screen.

Input contrl(2) - 0
contrl(6) -- Function id = 9

Output contrl(3) -- 0

Description This operation erases the display surface from the
current alpha cursor position to the end of the screen.
The current alpha cursor location does not change.

C-16

GSX Programmer’s Guide Escape

ESCAPE: ERASE TO
END OF LINE

Erase from the current alpha cursor position
to the end of the line.

Input contrl(2) — 0
contrl(6) - Function id = 10

Output contrl(3) — 0

Description This operation erases the display surface from the
current alpha cursor position to the end of the current
line. The current alpha cursor location does not
change.

ESCAPE: DIRECT
CURSOR ADDRESS

Move alpha cursor to specified row and column.

Input contrl(2) - 0
contrl(6) -- Function id = 11

intin(l) - Row number (1 - number of rows)
intin(2) - Column number (1 - number of

columns)

Output contrl(3) - 0

Description The Direct Cursor Address operation moves the
alpha cursor directly to the specified row and column
address anywhere on the display surface. Addresses
that are beyond the range that can be displayed on the
screen are set to the maximum row and/or column
accordingly.

C-17

GSX Programmer’s Guide Escape

Output text at the current alpha cursor position.ESCAPE:
OUTPUT CURSOR
ADDRESSABLE TEXT

Input contrl(2) - 0
contrl(4) -- Number of characters in character

string
contrl(6) - Function id = 12
intin -- Text string in ASCH

Output contrl(3) - 0

Description This operation displays a string of text starting at the
current cursor position. Alpha text characteristics are
determined by the attributes currently in effect (for
example, reverse video).

C-18

GSX Programmer's Guide Escape

ESCAPE: REVERSE
VIDEO ON

Display subsequent cursor addressable text in
reverse video.

Input contrl(2) -- 0
contrl(6) — Function id = 13

Output contrl(3) - 0

Description This operation causes all subsequent text to be
displayed in reverse video format; that is, characters
are dark on a light background.

ESCAPE: REVERSE
VIDEO OFF

Display subsequent cursor addressable text in
standard video.

Input contrl(2) - 0
contrl(6) — Function id = 14

Output contrl(3) - 0

Description This operation causes all subsequent text to be
displayed in normal video format; that is, characters
are light on a dark background.

C-19

GSX Programmer’s Guide Escape

ESCAPE: INQUIRE
CURRENT CURSOR
ADDRESS

Return the current cursor position.

Input contrl(2) -- 0
contrl(6) - Function id = 15

Output contrl(3) - 0

intout(l) - Row number (1 - number of rows)
intout(2) — Column number (1 - number of

columns

Description This operation returns the current position of the
alpha cursor in row, column coordinates.

ESCAPE: INQUIRE
TABLET STATUS

Return tablet status.

Input contrl(2) -- 0
contrl(6) - Function id = 16

Output contrl(3) - 0
intout(l) - tablet status

0 = tablet not available
1 = tablet available

Description This operation returns tablet status whether a graphics
tablet, mouse, joystick, or other similar devices are
connected to the workstation.

C-20

GSX Programmer’s Guide Escape

ESCAPE: HARD COPY Generate hardcopy.

Input contrl(2) -- 0
contrl(6) - Function id = 17

Output contrl(3) - 0

Description This operation causes the device to generate a
hardcopy. This function is very device specific and can
entail copying the screen to a printer or other attached
hardcopy device.

ESCAPE: PLACE
GRAPHIC CURSOR
AT LOCATION

Place a graphic cursor at specified location

Input contrl(2) -- 2
contrl(6) - Function id = 18
ptsin(l) - x-coordinate of location to place cursor
ptsin(2) -- y-coordinate of location to place cursor

Output contrl(3) - 0

Description Place Graphic Cursor at the specified location. This
is device dependent and can be an underbar, block,
or similar character. This cursor should be the same
type as used for request mode locator input. In this
way, if sample mode input is supported, the
application may use this call to generate the cursor for
rubber band type drawing. In memory mapped
devices, it is drawn in XOR mode so that it can be
removed. The cursor has no attributes; for example,
style or color index.

C-21

GSX Programmer’s Guide Escape

ESCAPE: REMOVE
LAST GRAPHIC CURSOR

Remove last graphic cursor/marker.

Input contrl(2) - 0
contrl(6) - Function id = 19

Output contrl(3) - 0

Description This operation removes the last graphic cursor placed
on the screen.

C-22

GSX Programmer’s Guide Polyline

POLYLINE

Input

Output a polyine to device.

device units (for example, rasters and

contrl(l) -- Opcode = 6
contrl(2) - Number of vertices (x,y pairs) in

polyline (n)
ptsin - Array of coordinates of polyline in

plotter steps)
ptsin(l) - x-coordinate of first point
ptsin(2) - y-coordinate of first point
ptsin(3) - x-coordinate of second point
ptsin(4) - y-coordinate of second point

ptsin(2n-l) - x-coordinate of last point
ptsin(2n) - y-coordinate of last point

Output contrl(3) - 0

Description This operation causes a polyline to be displayed on the
graphics device. The starting point for the polyline is
the first point in the input array. Lines are drawn
between subsequent points in the array. Make sure
that the lines exhibit the current line attributes: color,
linetype, line width. 0 length lines should be dis
played. A single coordinate pair should not be dis
played.

C-23

GSX Programmer’s Guide Polymarker

POLYMARKER Output markers to the device.

Input contrl(l) - Opcode = 7
contrl(2) - Number of markers
ptsin - Array of coordinates in device units (n)

(for example, rasters and plotter steps)
ptsin(l) - x-coordinate of first marker
ptsin(2) — y-coordinate of first marker
ptsin(3) — x-coordinate of second marker
ptsin(4) - y-coordinate of second marker

ptsin(2n-l) - x-coordinate of last marker
ptsin(2n) - y-coordinate of last marker

Output contrl(3) - 0

Description This operation causes markers to be drawn at the
points specified in the input array. Make sure the
markers display the current attributes: color, scale,
and type.

C-24

GSX Programmer’s Guide Text

TEXT Write text at specified position.

Input contrl(l) - Opcode = 8
contrl(2) - Number of vertices = 1
contrl(4) - Number of characters in text string
intin -- Word character string in ASCII units
ptsin(2) - y-coordinate of start point of text in

device units

Output contrl(3) — 0

Description This operation writes text to the display surface
starting at the position specified by the input
parameters. Note that the X.Y position specified is
the lower left corner of the character itself, not the
character cell. Also, make sure the text exhibits
current text attributes: color, height, character up
vector, font. Each word of the intin array contains
only one character. Any character code out of range
for the selected font should be mapped to a blank.

C-25

GSX Programmer’s Guide Filled Area

FILLED AREA Fill a polygon.

Input contrl(l) - Opcode = 9
contrl(2) - Number of vertices in polygon (n)
ptsin — Array of coordinates of polygon in

device units
ptsin(l) - x-coordinate of first point
ptsin(2) - y-coordinate of first point
ptsin(3) - x-coordinate of second point
ptsin(4) — y-coordinate of second point

ptsin(2n-l) - x-coordinate of last point
ptsin(2n) - y-coordinatc of last point

Output contrl(3) - 0

Description This operation fills a polygon specified by the input
array with the current fill color. Ensure the correct
color, fill interior style (hollow, solid, pattern or
hatch) and fill style index are in effect before doing
the fill.

If the device cannot do area fill, it must at least outline
the polygon in the current fill color. The device driver
must ensure that the fill area is closed by connecting
the first point to the last point.

A polygon with zero area should be displayed as a dot.
A polygon with only one endpoint should not be
displayed.

C-26

GSX Programmer’s Guide Cell Array

CELL ARRAY

Input

Output

Description

Display cell array.

contrl(l) - Opcode = 10
contrl(2) - 2
contrl(4) - Length of color index array
contrl(6) - Length of each row in color index array

(size as declared in a high level
language)

contrl(7) - Number of elements used in each row
of color index array

contrl(8) -- Number of rows in color index array
contrl(9) -- Pixel operation to be performed

1 - replace
2 -- overstrike
3 - complement (xor)
4 -- erase

intin(l) - Color index array (stored one row at
time)

ptsin(l) - x-coordinate of lower left corner in
device units

ptsin(2) - y-coordinate of lower left corner in
device units

ptsin(3) - x-coordinate of upper right corner in
device units

ptsin(4) - y-coordinate of upper right corner in
device units

contrl(3) - 0

The Cell Array operation causes the device to draw
a rectangular array which is defined by the input
parameter X,Y coordinates and the color index array.

C-27

GSX Programmer’s Guide Cell Array

The extents of the cell are defined by the lower
left-hand and the upper right-hand X,Y coordinates.
Within the rectangle defined by those points, the color
index array specifies colors for individual components
of the cell.

Each row of the color index array should be expanded
to fill the entire width of the rectangle specified if
necessary, via pixel replication. Each row of the color
index array should also be replicated the appropriate
number of times to fill the entire height of the
rectangular area.

If the device cannot do cell arrays it must at least
outline the area in the current line color.

C-28

GSX Programmer’s Guide Generalized Drawing Primitive

GENERALIZED
DRAWING PRIMITIVE
(GDP)

Output a primitive display element.

Input contrl(l) - Opcode = 11
contrl(2) - Number of vertices in ptsin
contrl(4) - Length of input array intin
contrl(6) - Primitive id

ptsin -

1 - BAR - uses fill area attributes
(interior style, fill style, fill color)

2 — ARC - uses line attributes (color,
linetype, width)

3 - PIE SLICE - uses fill area at
tributes (interior style, fill style,
fill color)

4 - CIRCLE - uses fill area attributes
(interior style, fill style, fill color)

5 - PRINT GRAPHIC CHARAC
TERS (RULING CHARACT
ERS)

6-7 are unused but reserved for future
expansion

8 - 10 are unused and available for use

Array of coordinates for GDP

ptsin(l) - x-coordinate of first point
ptsin(2) - y-coordinate of first point
ptsin(3) - x-coordinate of second point
ptsin(4) - y-coordinatc of second point

ptsin(2n-1) - x-coordinate of last point
ptsin(2n) — y-coordinate of last point

C-29.

GSX Programmer's Guide Generalized Drawing Primitive

intin -

BAR -

Data record

ARC AND
PIE SLICE

contrl(2) - 2 (number of vertices
contrl(6) — 1 (primitive ID)
ptsin(l) - x-coordinate of lower

left-hand corner of bar
ptsin(2) - y-coordinate of lower

left-hand corner of bar
ptsin(3) - x-coordinate of upper

right-hand corner of bar
ptsin(4) - y-coordinate of upper

right-hand corner of bar

- contrl(2) - 4 (number of vertices)

contrl(6) - 2 (ARC) or 3 (PIE
SLICE)

int in(1) - Start angle in tenths of
degrees (0-3600)

intin(2) -- End angle in tenths of
degrees (0-3600)

ptsin(1) -- x-coordinate of center
point of arc

ptsin(2) - y-coordinate of center
point of arc

ptsin(3) -- x-coordinate of start
point of arc on
circumference

ptsin(4) - y-coordinate of start
point of arc on
circumference

ptsin(5) -- x-coordinate of end
point of arc on
circumference

C-30

GSX Programmer's Guide Generalized Drawing Primitive

contrl(3) - (I

ptsin(6) — y-coordinate of end
point of arc on
circumference

ptsin(7) - Radius
ptsin(8) - 0

CIRCLE - contrl(2) - 3 (number of points)
contrl(6) — 4 (primitive id)
ptsin(l) -- x-coordinate of center

point of circle
ptsin(2) -- y-coordinate of center

point of circle
ptsin(3) - x-coordinate of point on

circumference
ptsin(4) - y-coordinate of point on

circumference
ptsin(5) — Radius
ptsin(6) - (I

PRINT GRAPHIC - For graphics on printer
CHARACTERS (such as Diablo and

Epson)
contrl(2) — 1 (number of points)
contrl(4) - Number of characters to

output
contrl(6) - 5 intin — Graphic

characters to output
ptsin(1) - x-coordinate of start

point of characters
ptsin(2) - y-coordinate of start

point of characters

Output

C-31.

GSX Programmer’s Guide Generalized Drawing Primitive

Description The Generalized Drawing Primitive (GDP) operation
allows you to take advantage of the intrinsic drawing
capabilities of your graphics device. Special elements
such as arcs and circles can be accessed through this
mechanism. Several primitive identifiers are
predefined and others are available for expansion.

The control and data arrays are dependent on the
nature of the primitive.

In some GDPs (Arc, Circle. Pie slice) redundant but
consistent information is provided. Only the
necessary information for a particular device need be
used. Also, all angle specifications assume that 0
degrees is 90 degrees to the right of vertical, with
values increasing in the counterclockwise direction.

C-32

GSX Programmer’s Guide Set Character Height

Set character height.SET CHARACTER
HEIGHT

Input contrl(l) - Opcode = 12
contrl(2) - Number of vertices = 1
ptsin(1) - 0
ptsin(2) -- Requested character height in device units
(rasters, plotter steps)

Output contrl(3) - Number of vertices = 2
ptsout(l) - Actual character width selected in device
units
ptsout(2) - Actual character height selected in device
units
ptsout(3) - Character cell width in device units
ptsout(4) - Character cell height in device units

Description This operation sets the current text character height
in Device Units. The specified height is the height of
the character itself rather than the character cell. The
driver returns the size of both the character and the
character cell. The character size is defined as the size
of an uppercase W. If the requested size does not
exist, a smaller size should be used.

10000010
10000010
10000010
10010010 CHARACTER CELL
10101010 HEIGHT HEIGHT
11000110

ORIGIN OF ROTATION 10000010 BASE LINE
00000000

10000010-
10000010
10000010
10010010
10101010
11000110

ORIGIN OF ROTATION 10000010-1
00000000-

CHARACTER
"HEIGHT

-BASE LINE

CELL
HEIGHT

C-33

GSX Programmer’s Guide Set Character Up Vector

SET CHARACTER UP
VECTOR

Set text direction.

Input contrl(l) - Opcode = 13
contrl(2) - 0
intin(1) - Requested angle of rotation of character

baseline (in tenths of degrees 0 - 3600)
intin(2) - Run of angle = cos (angle) * 100 (0-100)
intin(3) - Rise of angle = sin (angle) * 100 (0-100)

Output contrl(3) - 0
contrl(5) - 1
intout(l) - Angle of rotation of character baseline

selected (in tenths of degrees 0-3600)

Description This operation requests an angle of rotation specified
in tenths of degrees for the CHARACTER UP
VECTOR, which specifies the baseline for
subsequent text. The driver returns the actual up
direction that is a best fit match to the requested
value.

For convenience, redundant but consistent in
formation is provided on input. Only information
pertinent to a given device need be used. The angle
specification assumes that 0 degrees is 90 degrees to
the right of vertical (east on a compass), with angles
increasing in the counterclockwise direction.

90

ISO----------------- 0

270

C-34

GSX Programmer’s Guide Set Color Representation

SET COLOR
REPRESENTATION

Specify color index value.

Input contrl(l) - Opcode = 14
contrl(2) - 0
intin(l) - Color index
intin(2) - Red color intensity (in tenths of percent

0-1000)
intin(3) - Green color intensity
intin(4) - Blue color intensity

Output contrl(3) - 0

Description This operation associates a color index with the color
specified in RGB units. At least two color indexes are
required (black and white for monochrome). On a
monochrome device, any percentage of color should
be mapped to while. On color devices without
palettes, a simple remapping of the color indexes is
sufficient. On color devices with palettes, loading the
palette map is the proper operation. If the color index
requested is out of range, no operation is performed.

C-35

GSX Programmer’s Guide Set Polyline Linetype

SET POLYLINE
LINETYPE

Set polyline linetype.

Input contrl(l) - Opcode = 15
contrl(2) — 0
intin(l) - Requested linestyle

Output contrl(3) — 0
intout(l) — Linestyle selected

Description This operation sets the linetype for subsequent
polyline operations. The total number of linestyles
available is device dependent; however. 5 linestyles
are required: one solid plus four dash styles.

If the requested linestyle is out of range, use linestyle
1 (solid).

STYLE - 1 SOLID 1111111111111111
STYLE- 2 DASH 1111111000000000
STYLE - 3 DOT 11 1000001 1 100000
STYLE- 4 DASH,DOT 1111111000111000
STYLE- 5 LONG DASH 1111111111110000

C-36

GSX Programmer’s Guide Set Polyline Line Width

SET POLYLINE
LINE WIDTH

Set polyline line width.

Input contrl(l) — Opcode = 16
contrl(2) - Number of input vertices = 1
ptsin(l) — Requested line width in device units
ptsin(2) - 0

Output contrl(3) - Number of output vertices = 1
ptsout(l) - Selected line width in device units
ptsout(2) — ()

Description This operation sets the width of lines for subsequent
polyline operations. Any attempt to set the width
beyond the specified maximum will set it to the
maximum line width.

SET POLYLINE
COLOR INDEX

Set polyline color index.

Input contrl(l) - Opcode = 17
contrl(2) - 0
intin(l) - Requested color index

Output contrl(3) - 0
intoutfl) - Color index selected

Description This operation sets the color index for subsequent
polyline operations. The color signified by the index
is determined by the SET_COLOR_ REPRES
ENTATION operation. At least two color indexes
are required. Color indexes range from 0 to a device
dependent maximum. If the selected index is out of
range, use the MAXIMUM color index.

C-37

GSX Programmer’s Guide Set Polymarker Type

SET POLYMARKER
TYPE

Set polymarker type.

Input contrl(l) - Opcode = IS
contrl(2) - 0
intin(l) - Requested polymarker type

Output contrl(3) - (1
intout(1) - Polymarker type selected

Description This operation sets the marker type for subsequent
polymarker operations. The total number of markers
available is device-dependent; however, five marker
types are required, as follows:

1 - . Dot
2 - + Plus
3 - * Asterisk
4 - O Circle
5 - X Diagonal Cross

If the requested marker type is out of range, use type
3. Marker 1 should always be implemented as the
smallest dot that can be displayed.

C-38

GSX Programmer’s Guide Set Polymarker Scale

SET POLYMARKER
SCALE

Set polymarker scale (height).

Input contrl(l) - Opcode = 19
contrl(2) -- Number of input vertices = 1
ptsin(1) - 0
ptsin(2) - Requested polymarker height in device

units

Output contrl(3) -- Number of output vertices = 1
ptsouti 1) - (I
ptsout(2) --Polymarker height selected in device

units

Description This operation requests a polymarker heieht for
subsequent polymarker operations. The driver
returns the actual height selected. If the selected
heieht does not exist, use a smaller height.

C-3"

GSX Programmer’s Guide Set Polymarker Color Index

SET POLYMARKER
COLOR INDEX

Set polymarker color index.

Input control) - Opcode = 20
contrl(2) - 0
intin(l) -- Requested polymarker color index

Output contrl(3) - 0
intout(l) - Polymarker color index selected

Description This operation sets the color index for subsequent
polymarker operations. The value of the index is
specified by the COLOR operation. At least two color
indexes are required. If the index is out of range, use
the MAXIMUM color index.

C-40

GSX Programmer’s Guide Set Text Font

SET TEXT FONT Set the hardware text font.

Input contrl(l) - Opcode = 21
contrl(2) -- 0
intin(l) -- Requested hardware text font number

Output contrl(3) - 0
intout(l) - Hardware text font selected

Description This operation selects a character font for subsequent
text operations. Fonts are device-dependent and are
specified from 1 to a device-dependent maximum.

C-41

GSX Programmer's Guide Set Text Color Index

SET TEXT
COLOR INDEX

Set color index.

Input contrl(1) — Opcode = 22
contrl(2) - 0
intin(l) — Requested text color index

Output contrl(3) - 0
intout(l) - Text color index selected

Description This operation sets the color index for subsequent text
operations. At least two color indexes are required.
Color indexes range from (I to a device-dependent
maximum. 11 the selected index is out of range, use
the MAXIMUM index.

C-42

GSX Programmer’s Guide Set Fill Interior Style

SET FILL
INTERIOR STYLE

Set interior fill style.

Input contrl(l) -- Opcode = 23
contrl(2) - (I
intin(l) - Requested fill interior style

0 - Hollow (outline no fill)
1 - Solid
2 - Halftone pattern
3 - Hatch

Output contrl(3) - 0
intout(1) — Fill interior style selected

Description This operation sets the fill interior style to be used in
subsequent polygon fill operations. If the requested
style is not available, use Hollow. The style actually
used is returned to the calling program.

C-43

GSX Programmer’s Guide Set Fill Style Index

SET FILL STYLE
INDEX

Set fill style index.

Input contrl(l) - Opcode = 24
contrl(2) — 0
intin(l) - Requested fill style index for Pattern or

Hatch fill

Output contrl(3) — 0

intout(l) - fill style index selected for Pattern or
Hatch fill

Description Select a fill style based on the fill interior style. This
index has no effect if the interior style is either Hollow
or Solid. Indexes go from 1 to a device-dependent
maximum. If the requested index is not available, use
index 1. The index references a hatch style if the fill
interior style is hatch, or it references a halftone
pattern if the interior fill style is halftone pattern. For
consistency, the hatch styles should be implemented
in the following order:

1 - vertical lines
2 — horizontal lines
3 - +45° lines
4 — -45° lines
5 - cross
6 - X
>6 - device-dependent

You can implement halftone patterns for gray scale
shading with values 1 through 6. Value 1 is the
lightest, and 6 is the darkest.

C-44

GSX Programmer’s Guide Set Fill Color Index

SET FILL COLOR
INDEX

Set fill color index.

Input contrl(l) — Opcode = 25
contrl(2) - 0
intin(l) -- Requested fill color index

Output contrl(3) -- 0
intoutfl) — Fill color index selected

Description This operation sets the color index for subsequent
polygon fill operations. The actual RGB value of the
color index is determined by the SET-
COLOR-REPRESENTATION operation. At least
two color indexes are required. Color indexes range
from 0 to a device-dependent maximum. If the
selected index is out of range, use the MAXIMUM.

C-45

GSX Programmer’s Guide Inquire Color Representation

INQUIRE COLOR
REPRESENTATION

Return color representation.

Input contrl(l) - Opcode = 26
contrl(2) - 0
intin(l) — Requested color index
intin(2) - Set or realized flag

0 = set (return color values requested)
1 = realized (return color values realized

on device)

Output contrl(3) -- 0
intout(l) -- Color index
intout(2) -- Red intensity (in tenths of percent O-IO(XI)
intout(3) - Green intensity
intout(4) — Blue intensity

Description This operation returns the requested or the actual
value of the specified color index in RGB units.

Note: The device driver must maintain tables of the
color values that were set (requested) and the color
values that were realized. On devices that have a
continuous color range, one of these tables may not
be necessary. If the selected index is out of range, use
the values for the MAXIMUM color index.

C-46

GSX Programmer’s Guide Inquire Cell Array

INQUIRE CELL ARRAY

Input

Output

Description

Return cell array definition.

contrl(1) - Opcode = 27
contrl(2) - 2
contrl(4) - Length of color index array
contrl(6) - Length of each row in color index array
contrl(7) - Number of rows in color index array
ptsi n(1) - x-coordinate of lower left corner in device

units
ptsin(2) - y-coordinate of lower left corner in device

units
ptsin(3) - x-coordinate of upper right corner in

device units
ptsin(4) — y-coordinate of upper right corner in

device units

contrl(3) - 0
contrl(8) — Number of elements used in each row of

color index array
contrl(9) - Number of rows used in color index array
contrl(lO) - Invalid value flag

(I - If no errors
1 -- If a color value could not be

determined for some pixel

intout - Color index array (stored one row at
time)

-1 — Indicates that a color index could not
be determined for that particular
pixel

This operation returns the cell array definition of the
specified cell. Color indexes are returned one row at
a time, starting from the top of the rectangular area,
proceeding downward.

C-47

GSX Programmer’s Guide Input Locator

For REQUEST MODE

INPUT LOCATOR Return locator position.

Input contrl(l) - Opcode = 28
contrl(2) - Number of input vertices = 1
intin(l) — Locator device number

1 = keyboard
2 = mouse, joystick

ptsin(l) — Initial x-coordinate of locator in device
units

ptsin(2) — Initial y-coordinate of locator in device
units

Output contrl(3) - Number of output vertices = 1
contrl(5) - Length of intout array -- status

0 = request unsuccessful
>0 = request successful

intout(l) - Locator terminator
For keyboard terminated locator input,
this is the ASCII character code of the key
struck to terminate input. For input that
is not keyboard-terminated (such as from
a tablet or mouse), valid locator
terminators begin with <space> (ASCII
32) and increase from there. For instance,
if the puck on a tablet has 4 buttons, the
first button should generate a <space> as
a terminator, the second a <!> (ASCII 33),
the third a <“> (ASCII 34), and the fourth
a <#>(ASCII 35).

ptsout(l) - Final x-coordinate of locator in device
units

ptsout(2) - Final y-coordinate of locator in device
units

C-48

GSX Programmer’s Guide Input Locator

Description for
Request Mode

This operation returns the position in Device
Coordinates of the specified locator device. Upon
entry to the locator routine, a GRAPHIC cursor is
placed at the initial coordinate. The GRAPHIC
cursor is tracked with the input device until a
terminating even occurs, which can result from the
user pressing a key, or a button on a mouse. The
cursor is removed when the terminating event occurs.

For SAMPLE MODE

Input contrl(1) - opcode = 28
contrl(2) - Number of input vertices = 1
intin(l) - Locator device number

1 = keyboard
2 = mouse, joystick

Output Table C-l. Sample Mode Status Returned

Event ControlArray
(3) (5)

Coordinates Change 1 0
key Pressed;
Coordinates Not Changed 0 1
No Input 0 1

contrl(3) -- Number of output verticesOutput

1 = coordinate changed
0 = no coordinate changed

contrl(5) -- Length of intout array

0 = no terminating character
1 = terminating character returned

C-49

GSX Programmer’s Guide Input Loeator

Description for
Sample Mode

intout(l) -- Locator terminator if terminating event
occurs. For keyboard terminated locator
input, this is the ASCII character code of
the key struck to terminate input in the
low byte and 0 in the high byte. For input
that is not keyboard-terminated (such as
from a tablet or mouse), valid locator
terminators beein with 2(1 hex (ASCII 32)
and increase from there.

ptsout — Returned if coordinate changed
ptsout(l) - New x-coordinate of locator in device

units
ptsout(2) — New v-coordinatc of locator in device

units

Upon entry to the locator routine, NO cursor is
displayed. Input is sampled. If the coordinate
changed, it is returned and contrl(3) is set to I.
Contrl(5) is set to (). If a terminating event occurs, a
character is returned and contrl(5) is set to 1. Con-
trl(3) is set to 0. If nothing happens, neither a
character nor coordinate is returned.

('-5(I

GSX Programmer's Guide Input Valuator

For REQUEST MODE

INPUT VALUATOR Return value of valuator device.

Input contrl(l) - Opcode = 29
contrl(2) - 0
intin(2) - Initial value

Output contrl(3) - 0
contrl(5) - 1 length of intout array

intoutf 1) — Output value

intout(2) - Terminator
The terminating character is returned as
an ASCII character for keyboard input
with the high byte set to (I.

Description for
Request Mode

This operation returns the current value of the
valuator device. The initial value of the valuator is
incremented or decremented (typically with the Up
Arrow and Down Arrow keys) until a terminating
eharaeter is struck as follows:

• Pressing the Up Arrow key adds 10 to the
valuator.

• Pressing the Down Arrow key subtracts 10 from
the valuator.

However, when the Up and Down arrow keys are
pressed with the Shift key. the following occurs:

• Up Arrow key adds 1 to the valuator.

• Down Arrow key subtracts 1 from the valuator.

C-51

GSX Programmer’s Guide Input Valuator

For SAMPLE MODE

Input contrl(l) - opcode = 29
contrl(2) - 0

Output contrl(3) - 0
contrl(5) - Length of intout array status

0 = nothing happened
1 = valuator changed
2 = terminating character

intout(l) - New valuator value
intout(2) — Terminator if terminating

event occurred

Description for
Sample Mode

This operation returns the current value of the
valuator device. The valuator device is sampled. If the
valuator changed, the valuator value is incremented
or decremented as required. If a terminating event
occurred, the value is returned. If nothing happens,
no value is returned.

C-52

GSX Programmer’s Guide Input Choice

For SAMPLE MODE

INPUT CHOICE
For REQUEST MODE

Return choice device status keys.

Input contrl(l) - Opcode = 30
contrl(2) — 0
intin(l) - Choice device number

1 = function keys

> 1 = workstation-dependent

Output contrl(3) — 0
contrl(5) - 1

intout(l) - Choice number (range of valid numbers
beginning at 1 to workstation-dependent
maximum)

Description for
Request Mode

This operation returns the choice from the selected
choice device. Upon entry to the routine, the keys are
sampled until a valid choice key is pressed. This choice
is returned. The range for choice numbers begins at
1; its maximum value is device-dependent. Input
Choice is typically implemented as function keys.

Input contrl(l) - Opcode = 30
contrl(2) - 0
intin(l) - Choice device number

1 = function keys

> 1 = workstation-dependent

Output contrl(3) - 0
contrl(5) - Choice status

0 = nothing happened
1 = sample successful
2 = nonchoice key

intout(l) - Choice number if sample successful
intout(2) - Choice terminator if terminating event

occurs

C-53

GSX Programmer's Guide Input Choice

Description for
Sample Mode

This operation returns the choice status of the selected
choice device. Upon entry to the routine, input is
sampled. If input is available and it is a valid choice
key, it is returned. If input is available but it is not
from a choice key, it is returned as a terminating
event. The range of choice numbers begins at 1; its
maximum value is device-dependent.

C-54

GSX Programmer’s Guide Input String

INPUT STRING Return string from specified string device.

For REQUEST MODE

Input contrl(l) - Opcode = 31
contrl(2) - 0 if nonecho mode 1 if echo mode
intin(l) — String device number

1 = default string device (keyboard)
intin(2) - Maximum string length
intin(3) — Echo mode

0 = do not echo input characters
1 = echo input characters

ptsin(l) - x coordinate of echo area in echo mode
ptsin(2) -y coordinate of echo area in echo mode

Output contrl(3) - (1
contrl(5) - 1

0 = request unsuccessful
>0 = request successful

intout - Output string

Description for
Request Mode

This operation returns a string from the specified
device. Upon entry input is accumulated until a
carriage return is encountered or the intout array is
full. If echo mode is enabled, text should be echoed
to the screen with the current text attributes: color,
height, character up vector, and font.

C-55

GSX Programmer’s Guide Input String

For SAMPLE MODE

Input control) - Opcode = 31
contrl(2) - 0
intin(l) - String device number

1 = default string device (keyboard)

intin(2) - Maximum string length

Output contrl(3) - 0
contrl(5) - Length of output string

0 = sample unsuccessful (characters not
available)
>(l = sample successful (characters
available)

intout - Output string if sample successful

Description for
Sample Mode

This operation returns ;i string from the specified
device. Upon entry to the routine, input is sampled.
If data is available, it is accumulated. Input is sample
again. Input is accumulated until one of the following
occurs:

• Input is accumulated until it is no longer available

• A carriage return is encountered.

• The intout buffer is full.

Note that sample mode returns immediately as soon
as no input is available.

C-56

GSX Programmer’s Guide Set Writing Mode

SET WRITING MODE Set writing mode

Input contrl(1) - Opcode = 32
contrl(2) - 0
intin(l) - Writing mode

1 = replace
2 = transparent
3 = XOR (complement)
4 = erase

Output contrl(3) - 0
intout - Writing mode selected

Description This operation affects the way pixels from lines, filled
areas, and text are placed on the display.

The following arc descriptions of the four writing
modes used by the GSX:

• MASK is the line style mask.

• FORE is the selected color after mapping from
GSX.

• BACK is the color 0 after mapping from GSX
(default is black).

• OLD is the current PIXEL color value.

• NEW is the replacement color value.

C-57

GSX Programmer’s Guide Set Writing Mode

REPLACE MODE Replace mode is insensitive to the currently displayed
image. Any information already displayed is com
pletely replaced. The mask refers to the line style or
fill pattern.

Boolean
Expression NEW = (FORE and MASK) or (BACK and not

MASK)

TRANSPARENT
MODE

Transparent mode only affects the pixels where the
mask is one and these are changed to the FORE value.

Boolean
Expression NEW = (FORE and MASK) or (OLD and not

MASK)

XOR MODE XOR mode reverses the bits representing the color.

Boolean
Expression NEW = (FORE and MASK) XOR OLD

ERASE MODE Erase mode sets the display to the currently selected
background color where the mask value is one,
independent of the foreground color.

Boolean
Expression (NEW = BACK and MASK) or (OLD and not

MASK)

C-58

GSX Programmer’s Guide Set Input Mode

SET INPUT MODE Set input mode.

Input contrl(l) - Opcode = 33
contrl(2) - 0
intin(l)— Logical input device

1 = locator
2 = valuator
3 = choice
4 = string

intin(2) — Input mode

1 = request
2 = sample

Output contrl(3) - 0
intout(l) - Input mode selected

Description This operation sets the input mode for the specified
logical input device (locator, valuator, choice, string)
to either request or sample. In request mode, the
driver waits until an input event occurs before return
ing. In sample mode, the driver returns the current
status or location of the input device without waiting.

C-59

GSX Programmer’s Guide Required Opcode CRT Devices

REQUIRED OPCODE
FOR CRT DEVICES

The following opcodes and subfunctions are
required for CRT devices:

Table C-2. Opcode for CRT Devices

Opcode Description

1
2
3
4
5

6
7
«
9

10
11

Open workstation
Close workstation
Clear workstation
Update workstation
Escape

Id Definition

1 Inquire addressable
character cells

2 Exit graphics mode
3 Enter graphics mode
4 Cursor up
5 Cursor down
6 Cursor right
7 Cursor left
8 Home cursor
9 Erase to end of screen
10 Erase to end of line
11 Direct cursor address
12 Output cursor addressable text
15 Inquire current cursor address
18 Place graphic cursor
19 Remove graphic cursor

Polyline
Polymarker
Text
Filled area
Cell array
Graphic Drawing Primitive (GDP)

Id Definition

1 Bar Fill

C-60

GSX Programmer’s Guide Required Opcode CRT Devices

Table C-2. (continued)

Opcode Description

12
14
15
17
18
20
22
25
26
33

Set character height
Set color representation
Set polyline linetype
Set polyline color index
Set polymarker type
Set polymarker color index
Set text color index
Set fill color index
Inquire color representation
Set input mode (required only if
input locator, input valuator, input
choice, or input string is present)

REQUIRED OPCODE
FOR PLOTTERS AND
PRINTERS

The following opcodes and subfunctions are required
for plotters and printers:

Table C-2. Opcode for Plotters
and printers

Opcode Definition

1 Open workstation
2
3
4
5

Close workstation
Clear workstation
Update workstation
Escape

Id Definition

1 Inquire addressable character
cells

6
7
8
9
10
11

Polyline
Polymarker
Text
Filled area
Cell array
Graphic Drawing Primitive
(GDP)

C-61

GSX Programmer’s Guide Opcode for Plotters and Printers

Table C-2. (continued)

Opcode Description

12
14
15
17
18
20
22
25
26
33

Id Definition

1 Bar Fill

Set character height
Set color representation
Set polyline linetype
Set polyline color index
Set polymarker type
Set polymarker color index
Set text color index
Set fill color index
Inquire color representation
Set input mode (required only if
input locator, input valuator, input
choice, or input string is present)

Determining if an opcode that is not required is
available in a particular driver can be done in a couple
of ways. One way is to check the information about
available features returned from the OPEN
WORKSTATION opcode. Another way is to check
the selected value returned from an opcode against
the requested value. If the two values do not match,
then either the opcode was not available or the
requested value was not available, and a best fit value
was selected.

End of Appendix C

C-62

Glossary
assignment table Associates logical device numbers, called workstation

IDs, with specific GIOS files so that devices can be
referred to by number within the application program.
The Assignment Table resides in a text file called
ASSIGN.SYS and can be modified using any text
editor.

BDOS Basic Disk Operating System for the CP/M family of
operating systems. It contains the device-independent
portion of the file system. The device-dependent
interface of CP/M is the BIOS (Basic I/O System)
module.

coordinate scaling Transforms points from one space to another. In GSX
all point coordinates must be specified in Normalized
Device Coordinates with values between 0 and
32,767. GDOS then scales these coordinates into
values appropriate for your graphics device.

default device
driver

Largest driver loaded during a graphics session. It is
always the first driver named in the Assignment
Table.

device driver GIOS file that translates standard device
independent graphics operations to graphics specific
command sequences for a particular device. Device
drivers for graphics devices are contained in the GIOS
(Graphics I/O System) portion of GSX.

DR Draw Application program that provides an advanced
capability to create complex graphics.

DR Graph Application program that allows you to graph and plot
data by making simple menu selections.

function code Number that indicates to the operating system the
function that is being requested when a service call is
made.

GDOS Graphics Device Operating System, or GDOS, is the
device-independent portion of GSX. It services
graphics requests and calls GIOS to send commands
to graphics devices.

Glossary-1

GSX Programmer’s Guide Glossary

Generalized
Drawing
Primitive (GDP)

A display function used to address special
device capabilities such as curve drawing.

GIN Graphics Input mode

GIOS GIOS Graphics Input Output System, or GIOS, is the
device-dependent portion of GSX. GIOS files are the
individual device drivers which translate between a
particular device and the standard VDI conventions.

GKS Graphical Kernel System

graphics mode Entered by executing the GSX command from the
operating system's user interface module. This en
ables all graphics functions.

GSX Graphics System Extension, or GSX, is the graphics
extension to the 8()<S() and 8086 family of
microcomputer operating systems.

Graphical Kernel
System (GKS)

An international standard for the programming
interface to graphics from an application program.

graphics
Primitives

Basic graphics operations performed by GSX; for
example, drawing lines, markers, and text strings.

NDC Normalized Device Coordinates

normalized
device coordinate
space

Uniform virtual space by which a graphics application
program passes graphics information to a device.
GDOS translates between NDC space and the Dis
play Coordinates (DC) of a particular device.

normalized
device coordinates

Virtual space in which all point coordinates are
mapped to values between I) and 32.767. NDC space
serves as a common interlace between graphics
devices.

operation codes Passed to GDOS as part of a parameter list; indicates
which graphics operation is requested.

Glossary-2

GSX Programmer’s Guide Glossary

VDI Virtual Device Interface

virtual device
Interface

Standard interface between device-dependent and
device-independent code in a graphics environment.
VDI makes all device drivers appear identical to the
calling program. GSX is based on VDI, and all device
drivers written for GSX must conform to the VDI
specification.

workstation Graphics device with one display surface and zero or
more input devices.

workstation
identification
number (ID)

Logical unit number that specifies which graphics
device is currently active. Each device driver has an
associated workstation ID which is specified in an
Assignment Table in file ASSIGN.SYS.

End of Glossary

Glossary-3

Index

A

arc, 8-30
architecture, 2-1
array elements, 4-2
aspect ratio, 4-3
ASSIGN.SYS, 4-4
assignment table, 3-7
assignment table format, 3-7

BAR, 8-30

cell array, 8-27
circle, 8-31
coordinate scaling, 2-2

device drivers, 1-4
dynamic loading, 3-1

error messages, 7-5
escape function

arc, 3-6
bar, 3-6
circle, 3-6
cursor down, 3-6
cursor left, 3-6
cursor right, 3-6
cursor up, 3-6
direct cursor address, 3-6
enter graphicx mode, 3-3
erase to end of screen, 3-6
erase to end of line, 3-6
exit graphics mode, 3-6
hardcopy, 3-6
home cursor, 3-6
inquire addressable
character cells, 3-3

inquire current cursor
address, 3-6

inquire tablet status, 3-6
output cursor addressable

text, 3-6
pie slice, 3-6

place cursor at location,
3-6

print graphic characters,
3-6

remove cursor, 3-6
reserved, 3-6
reverse video on, 3-6
reverse video off, 3-6
unused, 3-6

escape
cursor down, 8-10, 8-14
cursor left, 8-10, 8-15
cursor right, 8-10, 8-15
cursor up, 8-10, 8-14
direct cursor address, 8-10,

8-17
enter graphics mode, 8-10,

8-13
erase to end of line, 8-10,

8-17
erase to end of screen,

8-10, 8-16
exit graphics mode, 8-10,

8-13
hardcopy, 8-10
home cursor, 8-10, 8-16
inquire addressable
character cells, 8-10,
8-12

inquire current cursor
address, 8-10, 8-20

inquire tablet status, 8-10,
8-20

output cursor addressable
text, 8-10, 8-18

place graphic cursor at
location, 8-10, 8-21

remove last graphic cursor,
8-10, 8-22

reverse video off, 8-10,
8-19

reverse video on, 8-10, 8-19

filled area, 8-26
functions, 1-2

Index-1

GDOS, 2-1
calling sequence, 3-2
functions, 3-1

generalized drawing primitive,
8-28

GIOS, 2-2
file
naming, 4-4

graphics
primitives, 2-3
requests, 1-4

GSX, 2-1

hard copy, 8-21

input
choice, 8-53
locator, 8-48
string, 8-55
valuator, 8-51

inquire
cell array, 8-47
color representation, 8-46

invoking device drivers, 7-3

loading GIOS files, 3-6

M
memory management, 3-8
memory requirements, 5-2

generalized drawing
primitive, 3-6

input choice, 3-6
input locator, 3-6
input string, 3-6
input valuator, 3-6
inquire cell array, 3-6
inquire color
representation, 3-6

open workstation, 3-3, 8-4
polyline, 3-6
polymarker, 3-6
set character height, 3-6
set character up vector, 3-6
set color representation,

3-6
set fill color index, 3-6
set fill interior style, 3-6
set fill style index, 3-6
set input mode, 3-6
set polyline color index,

3-6
set polyline linetype, 3-6
set polyline linewidth, 3-6
set polymarker type, 3-6
set polymarker scale, 3-6
set polymarker color index,

3-6
set text color index, 3-6
set text font, 3-6
set writing mode, 3-6
text, 3-6
update workstation, 8-10

pie slice, 8-30
plotters and printers, 8-61
polyline, 8-23
polymarker, 8-24
print graphic characters, 8-3]

normalized coordinate space,
2-2

Normalized Device Coordinates
NDC, 3-2

required opcode CRT Devices,
8-60

S

operation code scaling factor, 4-3
cell array, 3-6 set
close workstation, 3-3, 8-9 character height, 8-33
escape, 8-10 character up vector, 8-34
filled text, 3-6 color representation, 8-35

fill color index, 8-45
Index-2

fill interior style, 8-42
fill style index, 8-43
input mode, 8-59
polyline color index, 8-37
polyline line width, 8-37
polyline linetype, 8-36
polymarker color index, 8-40
polymarker scale, 8-38
polymarker type, 8-38
text color index, 8-42
text font, 8-41
writing mode, 8-57

stack requirements, 5-2

text, 8-24
transforming points, 3-2

Virtual Device Interface VDI,
3-2, 4-2

Index-3

GSX™
Graphics Extension

Programmer’s
Language Reference Manual

Copyright © 1983

Digital Research
P.O. Box 579 160 Central Avenue

Pacific Grove, CA 93950
TWX 910 360 5001

All Rights Reserved

COPYRIGHT

Copyright © 1983 by Digital Research. All rights reserved. No part of this
publication may be reproduced, transmitted, transcribed, stored in a retrieval
system, or translated into any language or computer language, in any form or by
any means, electronic, mechanical, magnetic, optical, chemical, manual or
otherwise, without the prior written permission of Digital Research, Post Office Box
579, Pacific Grove. California. 93950. Readers are granted permission to include
the example programs, either in whole or in part, in their own programs.

DISCLAIMER

Digital Research makes no representations or warranties with respect to the
contents hereof and specifically disclaims any implied warranties of merchantability
or fitness for any particular purpose. Further. Digital Research reserves the right
to revise this publication and to make changes from time to time in the content
hereof without obligation of Digital Research to notify any person of such revision
or changes.

TRADEMARKS

CBASIC. CP/M and CP/M-86 are registered trademarks of Digital Research.
CBASIC Compiler, CB-80, CB86. Concurrent CP/M, CP/M-80. Digital Research
C, Digital Research FORTRAN-77. GSX. GSX-80, GSX-86. LINK/MT+86.
Pascal/MT+. PASCAL/MT+80, PASCAL/MT+86. PL/I-80, PL/I-86, and TEX are
trademarks of Digital Research.

* First Edition: October 1983 *

Foreword
OBJECTIVE The Digital Research Graphics SystemExtension

(GSX™) provides your operatingsystem with adevice-
independent interface for your applicationprogram.
This manual, the GSX Graphics Extension Pro
grammer's Language Reference Manual (Release 2.0),
tells youto access the GSX from an application program
written in one of the following high-levellanguages:

Pascal/MT+™
Pascal/MT+86™
PL/I
PL/I-86™
Digital Research C (Small Memory Model)
Digital Research C (Large Memory Model)
CBASIC Compiler (CB86..)
Digital Research FORTRAN-77™
(Small Memory Model)
Digital Research FORTRAN-77
(Large Memory Model)

Refer to the GSX Graphics Extension User's Guide for
GSX set-up procedures. The GSX Graphics Extension
Programmer's Guide describes components of GSX: the
Graphics Device Operating System (GDOS) and the
Graphics Input/Output System (GIOS).

ORGANIZATION This manual is divided into six sections. Section 1
introduces you to accessing GSX with the languages in
the preceding list.

Section 2 shows you how to access GSX from Pas-
cal/MT+ and Pascal/MT+86. Section 3 describes how
to access GSX from PL/I and PL/I-86. Section 4
describes accessing GSX from Digital Research C in
both the Small and Large Models. Section 5 describes
how to access GSX from CBASIC Compiler. Section 6
describes how to access GSX from Digital Research
FORTRAN-77 in both the Small and Large Models.

iii

Table of Contents
1 Overview

Introduction 1-1

Distribution Files 1-2

2 Pascal/MT+

Introduction 2-1

Argument Passing 2-1

Pascal/MT+80 2-2
Pascal/MT+86 2-2

Array Declaration 2-3

Interface Routines From Pascal/MT+ 2-3

Pascal/MT+ Example 2-6

3 PL/I

Introduction 3-1

Argument Passing From PL/I To Assembly 3-1

Array Declaration 3-2

Interface Routine 3-2

PL/I Example 3-5

4 Digital Research C

Introduction 4-1

Argument Passing 4-1

Array Declaration 4-2

Interface Routine 4-2

Digital Research C Example 4-6

Table of Contents (continued)
5 CBASIC Compiler (CB86)

Introduction 5-1

Argument Passing 5-1

CB80 and CB86 5-1

6 FORTRAN-77

Introduction 6-1

Argument Passing 6-1

Array Declarations 6-2

Interface Routine 6-2

Digital Research FORTRAN-77 Example 6-6

Table, Figures, and Listings
Table

1-1. Distribution Files 1-2

Figures

2-1. Output from the Pascal/MT+86 Example 2-13

3-1. Output from the PL/I Example 3-14

4-1. Output from the Digital Research C Example 4-14

Listings

2-1. Pascal/MT+80 Interface Routine 2-4
2-2. Pascal/MT+86 Interface Routine 2-5
2-3. Pascal/MT+ Example Source Listing 2-7

vi

Table, Figures, and Listings (continued)

3-1. PL/I-80 Interface Routine 3-3
3-2. PL/I-86 Interface Routine 3-4
3-3. PL/I Example Source Listing 3-7

4-1. Digital Research C (Small Memory Model) 4-3
4-2. Digital Research C (Large Memory Model) 4-5
4-3. Example C Source Listing 4-7

5-1. CB80 Interface Routine 5-2
5-2. CB86 Interface Routine 5-3
5-3. CB86 Example Program 5-4

6-1. FORTRAN-77 (Small Memory Model) Interface Routine 6-3
6-2. FORTRAN-77 (Large Memory Model) Interface Routine 6-5
6-3. Example FORTRAN-77 Source Listing 6-6

vii

Section 1

OVERVIEW
INTRODUCTION This document is for you if you write graphics applica

tions in a Virtual Device Interface (VDI) environment
using Digital Research's Graphics System Extension
(GSX). You can develop your programs in an output
device-independent environment with GSX.

This manual includes the following for each language:

• GSX parameter list array addresses
• calling sequences
• array declarations
• assembly language interface routines
• example of a source listing

You can compile and link your high-level language
application programs in the usual manner. Programs
written in Pascal/MT+, PL/I. and CBASIC can be
compiled in CP/M®, CP/M-86®, Concurrent CP/M, and
PC DOS operating systems without source modifica
tion. Programs written in Digital Research C and Digital
Research FORTRAN-77 can be compiled in the CP/M-
86 operating system without source modification.

The assembly language routines supplied, support the
GSX calling conventions and interface to your high-
level language with appropriate calls to the Graphics
Device Operating System (GDOS).

The example programs demonstrate how the GSX
functions can be easily accessed from the assembly
language interface routines to draw lines, insert text,
and so on.

i-i

GSX Reference Manual Distribution Files

DISTRIBUTION FILES Table 1-1 lists the files included on your distribution
disk.

Table 1-1. Distribution Files

Filename Contents

Assembly Routines and their Object Modules

GSXPASCL.I86
GSXPLI.A86
GSXSMALL.A86

GSXLARGE.A86

GSXCB80.ASM

GSXPASCL.ASM

GSXSMALL.A86

GSXLARGE.A86

Pascal/MT+86 to GSX-86™
PL/I-86 to GSX-86
Digital Research C to GSX-86
for C programs compiled as
Small Memory Model
Digital Research C to GSX-86
for C programs compiled as
Large Memory Model
CB80 to GSX-80™
GSXCB86.A86 CB86 to
GSX-86
Pascal/MT+80 to GSX-80
GSXPLI.ASM PL/I-80 to
GSX-80
FORTRAN-77 to GSX-86 for
FORTRAN-77 programs
compiled as Small Memory
Model
FORTRAN-77 to GSX-86 for
FORTRAN-77 programs
compiled as Large Memory
Model

Executable Program Files

DEMOP.CMD
DEMOPLI.CMD
DEMOC.CMD
TESTFILL.CMD

Pascal/MT+
PL/I
Digital Research C
8086 Assembly

Sample Program Source Files

DEMOP.SRC
DEMOPLI.PLI
DEMOC.C
DEMOCB.BAS
DEMOF.F77
GSXDATA.F77
TESTFILL.A86

Pascal/MT+
PL/I
Digital Research C
CBASIC ®
FORTRAN-77
FORTRAN-77
8086 Assembly

1-2

Section 2
Pascal/MT+
INTRODUCTION This section tells you how to access GSX from

Pascal/MT+. This section includes listings of the
assembly language interface routines to GSX from
Pascal/MT+80 and from Pascal/MT+86. A sample
source listing follows the assembly language interface
routines. Refer to the Pascal! MT+ Language Refer
ence Manual and the Pascal! MT+ Language Pro
grammer's Guide for more information about pro
gramming with Pascal/MT+.

The assembly language interface routine to GSX
allows users to make graphics calls directly from their
Pascai/MT+ programs. The sample Pascal/MT+
program and its graphics output show how to use this
interface module.

The interface routine sets the GDOS function code
0473 (HEX) in register CX, and the pointer to the
parameter list arrays in DS:DX before it calls your
disk operating system. Refer to the VDI specification
in the GSX Graphics Extension Programmer's Guide
for a detailed explanation of the parameter lists.

ARGUMENT PASSING Ptsout, intout, ptsin, intin, and contrl are the five
standard GSX parameter list array addresses. When
the application program calls the GSX interface
routine from Pascal/MT+, the following is the calling
sequence:

GSX (ptsout, intout, ptsin, intin, contrl) ;

Pascal/MT+ parameters are passed on the stack.
Upon entry to the GSX assembly language interface
routine, the top of the stack contains the return
address to the example program, followed by the
parameters stored in REVERSE order from the
calling sequence. The procedure is declared as
EXTERNAL in the Pascal/MT+ program and as
PUBLIC in the assembly language interface module.
The assembly language interface routine builds a
parameter block from the values on the stack and
passes the address of the parameter block to the
GDOS.

2-1

GSX Reference Manual Argument Passing

Pascal/MT+80 The stack upon entry to the interface module is as
follows:

Pascal/MT+80: one word addresses are passed

STACK : +0 Return Address
+ 2 Address of Control Array
+4 Address of Integer Input Array
+6 Address of Point Input Array
+8 Address of Integer Output Array
+ 10 Address of Point Output Array

Pascal/MT+86 The stack upon entry to the interface module is as
follows:

Pascal/MT+86: two word addresses are passed
(segment:offset)

STACK : +0 Return Address
+4 Address of Control Array
+8 Address of Integer Array
+ 12 Address of Point Input Array
+ 16 Address of Integer Output Array
+ 20 Address of Point Output Array

2-2

GSX Reference Manual Array Declaration

ARRAY DECLARATION Declare the GSX parameter list arrays as shown
below. The size of these parameter arrays depends on
your application memory requirements.

type
contrl_array : array 11 ..length—contrl] of integer ;
intin_array : array [1 ..length_intin] of integer ;
ptsin_array : array [1..Iength_ptsin] of integer ;
intout_array : array [1 ,.length_intout] of integer ;
ptsout_array : array |l..length_ptsout] of integer ;

External Procedure GSX (var ptsout: ptsout_jirray ;
var intout: intout_array ;
var ptsin: ptsin_array ;
var intin: intin_array ;

Note: The assembly interface module removes all
parameters from the stack before returning to the
calling routine.

INTERFACE ROUTINES The following are the assembly interface routines to
FROM PASCAL/MT+ GSX from Pascal/MT+80 and Pascal/MT+86.

2-3

GSX Reference Manual Interface Routine from Pascal/MT+

Listing 2-1. Pascal/MT+80 to GSX-80 Assembly Language
Interface Routine

.********5k*** ***

; INTERFACE to GSX-80 from PASCAL/MTPLUS *

*

• File Name : GSXPASCL.ASM (RMAC Source) *

; Calling Sequence : *

; GSX ptsout, intout, ptsin, intin, contrl) *

; arrays are passed as var params *

; NOTE the order of the calling sequence *

; Entry: return address on Stack+0 *

; pointer to array contrl on Stack+2 *

; pointer to array intin on Stack+4 *

; pointer to array ptsin on Stack+6
; pointer to array intout on Stack+8 *

; pointer to array ptsout on Stack+10 *

*

; Exit: return address on stack *

*

; Notes : calls bdos with <DE> points at the location of *

; param block in stack

,*:l::f:*;|<5|<:f«st:5k*************************5k ************ =k5k***5k*:k*5k*****

public GSX
BDOS equ 5
GSX:

Ixi h,2; Skip the return address on stack

k * *

dad sp ; Get pointer to the parameter address
xchg ; into DE
mvi C.73H ; GSX Function number
call BDOS ; Call BDOS

pop d ; get return address
Ixi h.10
dad sp ; clean up stack
sphl
xchg ; return address into HL
pchl

end

2-4

GSX Reference Manual Interface Routine from Pascal/MT+86

Listing 2-2. Pascal/MT+86 to GSX-86 Assembly Language
Interface Routine

*

INTERFACE TO GSX-86 FROM PASCAL/MT+86
*

File name: GSXPASCL.I86 (ASMT-86 Source)
*

Calling sequence : *
GSX (ptsout, intout, ptsin, intin, contrl) *

arrays are passed as var params *
*

Entry : return address on stack+0 *
pointer to array contrl on stack+2 *
pointer to array intin on stack+6 *
pointer to array ptsin on stack+10 *
pointer to array intout on stack+14 *
pointer to array ptsout on stack+18 *

*

Exit : return address on stack *

Notes : calls bdos with DS:DX points at the location of *
parameter block on stack *

*
Parameter Arrays Declared in Pascal program : *

type
param_array : array | 1 ..Array_size| of integer *
external *
procedure GSX(var ptsout. intout, ptsin, intin, *

contrl :param_array); *
*

Rather than move data off the stack, this routine points *
the data segment at the stack and dx at the position of the *
parameter block in the stack frame. Parameters are passed in *
reverse order to get them on the stack in the correct order *
for GDOS.

History : Sept. 28. 1983 rhk

public GSX
name pasgsx
assume cs:code, ds:data

data segment public
data ends
code segment public
GDOS equ 224

2-5

GSX Reference Manual Interface Routine from Pascal/MT+86

Listing 2-2. (continued)

Pascal/MT+ EXAMPLE

GSX proc
push
push

near
ds
es

; Save caller’s data segment register
; Save caller’s extra segment register

mov ax,ss ; Move stack segment into AX
mov ds,ax ; Set DS to SS
mov dx,sp ; Move stack pointer into DX
add dx,6 ; Add 6 to point past DS, ES and ret address
mov cx,473h ; GSX function number into CX
int GDOS ; Call GDOS

pop es ; Restore caller's segemtn registers
POP ds
ret 20 ; return and pop 5 array addresses off stack

GSX endp

code ends
end

The following listing is a Pascal/MT+ source program
that uses the assembly language interface module for
GSX. Compile the file DEMOP.SRC provided on the
distribution disk before you link it. Use the following
commands to compile and link this file.

A MT - 86 A:DEMOP
Pascal/MT+86 - Release 3.0 - March 8. 1982 Cop
yright (c) 1982 Digital Research

Note: After compiling, you must rename your file
from GSXPASCL.REL to GSXPASCL.ERL before
you can link it.

ALINKMT A:DEMOP,GSXPASCL,PASLIB/S
Link/MT+86..Release 3.0 - March 25, 1982 (c) Cop
yright 1982 by Digital Research

Note: You must run the GENGRAF utility to attach
the GSX-80 loader to your program in CP/M-80 as
follows:

A MTPLUS DEMOP
A LINKMT DEMOP,GSXPASCL,PASLIB/S
A GENGRAF DEMOP

2-6

GSX Reference Manual Pascal/MT + Example

Listing 2-3. Pascal/MT + Example Source Listing
(*********************************** ******************************
* *

*

* file name
* : demop.sre *

*
* purpose : demonstration program for PASCAL interfacing to GSX *

*
*

PASCAL MTPLUS and MT+86 *

*

* declares five GSX parameter arrays for - *

*
* control, integer in, points in, integer out, points out *

*

* calls : GSX (ptsout, intout, ptsin, intin, contrl) *

*
* Note the calling order of the 5 parameter arrays *

*

* to link
* : linkmt demop,gsxpascl,trancend,fpreals,paslib/s/d:7900 *

*

* history : 08 aug 1983 RK *

program demop ;
(* declare global types and constants for GSX *)
const

OPEN-CMD
CLOSE-CMD
clear_cmd

= 1 ;
= 2 ;
= 3 ;

PLINE_CMD = 6 ;
TEXT_CMD = 8 ;
FILAREA-CMD = 9 ;
GDP_CMD = H ;

TEXT_HGT_CMD = 12 ;

LINE_STYL_CMD = 15 ;
FILL_STYL_CMD = 23 ;
FILL_INDX_CMD = 24 ;

MAX_CNTL_VALS = It) ;
MAX INTIN_VALS = 80 ;
MAXJNTOUT_VALS = 45 ;
MAX_PTS_VALS = 100;

type
cntrl_array= array | l..MAX_CNTL_VALS] of integer ;
intin-array = array | 1 ,.MAX_INTIN_VALS] of integer;
intout-array = array [1 ,.MAX_JNTOUT_VALS] of integer;
ptsin-array = array | 1 ..MAX_PTS_VALS] of integer;
ptsout-array = array [1 ,.MAX_PTS_yALS | of integer;

2-7

GSX Reference Manual Pascal/MT + Example

Listing 2-3. (continued)

Lpoint = record
x,y:integer

end ; (* i-point record *)
i_rectangle = record

left,right,bottom,top:integer
end ; (* ¡„rectangle record *)

var
contrl : cntrl_array;(*global arrays for calling GSX *)
intin : intin_array;
intout : intout_array;
ptsin : ptsin_array;
ptsout : ptsout_array;
cur_dev : integer;
ch : char;

(* GSX procedure tools *)

external procedure GSXfvar ptsout
var intout :

: ptsout_array;
intout_array;

var ptsin : ptsin_array;
var intin : intin_array;
var contrl: cntrl_array) ;

(* draw text with current attributes
procedure draw_text(x, y : integer :

*)
; s : string) ;

var
i : integer ;

begin
contrl[1 | : = TEXT_CMD ;
contrl[2] := 1 ;
contrlj 4 j := lengthf s) ;
ptsin[1] := x ;
ptsin| 2] := y ;
for i := 1 to length(s) do

intin| i | := ord(s[i]) ;
GSX(ptsout, intout, ptsin, intin. contrl) ;

end ; (* procedure show_text *)

2-8

GSX Reference Manual Pascal/MT + Example

Listing 2-3. (continued)

(* load ptsin with rectangle (5) points *)
procedure draw_rect(rect : i „rectangle);
begin

contrl, 1] := PL1NE_CMD ;
contrl, 2] := 5 ;
with rect do

begin
ptsin 1 = left ;
ptsin 21 = bottom
ptsin 3] = right ;
ptsin 4] = bottom
ptsin 5 = right ;
ptsin 6 = top ;
ptsin 7] = left ;
ptsin S] = top ;
ptsin 9 = left ;
ptsin 10 := bottom
end (* with *)

GSX(ptsout, intout, ptsin, intin, contrl) ;
end ; (* procedure draw_rcct *)

(* show bar with current attributes *)
procedure Bar(rect : ¡„rectangle) ;
begin

contrl, 1 | := GDP_CMD ;
contrl, 2 j = 2 (* 2 points in ptsin *)
contrl, 4 | = 0 (* 0 points in intin *)
contrl, 6 | = 1 (* 1 = bar GDP *)
with rect do

begin
ptsin I 1 = left ;
ptsin 2 1 = bottom ;
ptsin 3 1 = right ;
ptsin 4| = top ;
end (* with *)

GSX(ptsout. intout, ptsin. intin, contrl) ;
end ; (* procedure Bar *)

2-9

GSX Reference Manual Pascal/MT + Example

Listing 2-3. (continued)

procedure draw_bar (lowx, wide : integer) ;
var

i_rect : i_rectangle ;
i : integer ;

begin
for i := 1 to 6 do
begin

with i_rect do
begin
left := lowx ;
bottom := lowx ;
right := lowx + wide ;
top := lowx + wide ;
end ;

set_attrib(fill_jndx_cmd, i) ; (* set fill index *)
bar(i_rect) ; (* bar fill *)
lowx := lowx + (wide div 2) ;

end ; (* for i *)
end ; (* procedure draw_bar *)

procedure set_txt_hgt(height : integer) ;
begin

contrlf 1] : = TEXT_HGT_CMD ;
contrlf 2] : = 1 ;
ptsinf 1]:=();
ptsin[2] := height ;
GSX(ptsout, intout, ptsin, intin, contrl) ;

end ; (* procedure se(_txt_hgt *)
procedure draw_line(xl, yl, x2, y2 : integer) ;
begin

contrlf 1] := PLINE_CMD ;
contrlf 2] := 2 ;
ptsin[1] := xl ;
ptsinf 2]:= yl ;
ptsinf 3] : = x2 ;
ptsinf 4 j := y2 ;
GSX(ptsout, intout, ptsin, intin, contrl) ;

end ; (* procedure draw_line *)
procedure set_attrib(emd, attribute : integer) ; (* use something else if *)
begin ("' want to get set style *)

contrlf 1] := emd ; (* back from GSX *)
contrlf 2 j := 0 ;
intinf 1] : = attribute ;
GSX(ptsout, intout, ptsin, intin, contrl) ;

end ; (* procedure set_attrib *)

2-10

GSX Reference Manual Pascal/MT+ Example

Listing 2-3. (continued)

procedure draw_border ;
var

i_rect : i_rectangle ;
begin

with j_rect do
begin
left := 0 ;
bottom := 0 ;
right : = 32767 ;
top := 32767 ;
end ;

Draw_rect(i_rect) ; (* rectangle around screen limits *)
end ; (* procedure draw_border *)

procedure exit_gsx ;
begin

contrlj 1 | := CLOSE CMD ;
contrlj 2 j := 0 ;
GSX(ptsout, intout, ptsin. intin. contrl) ;

end ; (* procedure exit_gsx *)

procedure clear_it ;
begin

contrlj 1 | := CLEAR.CMD ;
contrlj 2] := 0 ;
GSX(ptsout. intout, ptsin. intin. contrl) ;

end ; (* procedure clcar_it *)

procedure open_wk(dev_no : integer) ;
var

i : integer ; (* to load intin with defaults *)
begin

contrlj 1 | := OPEN-CMD ;
contrlj 2 j : = 0 ; (" no inpr
contrlj 4 j := 10 ; (" 10 inte;
intinj 1] := dev_no ;
for i := 2 to 10 do
intinj i | := 1 ; (' default
GSX(ptsout, intout, ptsin. intin, contrl) ;

= 0 ; (" no input coordinates *)
(" 10 integers in intin array *)

(* default attributes *)

end ; (* procedure open_wk *)

2-11

GSX Reference Manual Pascal/MT + Example

Listing 2-3. (continued)

procedure init.gsx ;
begin

writeln(’Which output device- ’) ;
writeln(’1 - CRT’) ;
writeln(’ll - Plotter’) ;
writeln('21 - Printer') ;
write(’? ’) ;
readln(cur_dev) ;
open_wk(cur_dev) ;

end ; (* procedure init_gsx *)

begin (* main program *)
Init_gsx ; (*Initialize graphics device *)
Clear_it ; (* clear display screen *)
Draw_border ; (* outline display area *)
Set_attrib (line_styl_cmd, 3) ; (* set line style *)
Draw_line (0, 0, 32767, 32767) ; (* draw a diagonal line *)
Set_txt_hgt (1000) ; (* set character height *)
Draw_text (16383, 16383. ’Pascal-GSX Demo’) ; (* output text *)
Set_attrib (fill_styl_cmd, 2) ; (* set fill style *)
Draw_bar (1200, 1200) ; (* draw bars *)
Set_attrib (fill_styl_cmd, 3) ; (* set fill style *)
Draw_bar (21968. 1200) ; (* draw bars *)
readln (ch) ; (* wait for a key stroke *)
Exit_gsx ; (* exit graphics 1)

end. (* main program *)

2-12

GSX Reference Manual Pascal/MT + Example

Figure 2-1. Output from the Pascal/MT+86 Example

End of Section 2

2-13

Section 3
PL/I
INTRODUCTION This section tells you how to access GSX from PL/I

and includes listings of the assembly interface routine
to GSX from PL/I-80 and from PL/I-86. A sample
source listing follows the assembly interface routines.
Refer to the PLU Language Reference Manual and the
PLU Language Programmer's Guide for more in
formation about programming with PL/I.

The assembly language interface routine to GSX
allows you to make graphics calls directly from PL/I
programs. The sample PL/I program and its graphics
output show how to use this interface module.

The interface routine sets the GDOS function code
0473 (HEX) in register CX, and the pointer to the
parameter list arrays in DS:DX before it calls your
disk operating system. Refer to the VDI specification
in the GSX Graphics Extension Programmer's Guide
for a detailed explanation of parameter lists.

ARGUMENT PASSING
FROM PL/I TO
ASSEMBLY

Contrl, intin, ptsin, intout, and ptsout are the five
standard GSX parameter list array addresses. When
calling the GSX assembly language interface routine
from your PL/I application program, the calling
sequence is the following: GSX (contrl, intin, pstin,
intout, ptsout) ; PL/I-86 uses the BX register to pass
parameters anywhere (the HL register in PL/I-80).
Upon entry to the GSX routine, the top of the stack
contains the return address, and the BX register
contains an address pointer to the parameter list. This
procedure is declared as EXTERNAL in the PL/I
program and as PUBLIC in the assembly interface
module.

3-1

GSX Reference Manual Argument Passing

The stack upon entry to the interface module is as
follows:

STACK : +0 Return Address

<BX> : +0 Address of C’ontrol Array
+2 Address of Integer Input Array
+4 Address of Point Input Array
+6 Address of Integer Output Array
+8 Address of Point Output Array

ARRAY DECLARATION The parameter list arrays and the assembly interface
modules can be declared in the following manner:

DECLARE
contrl_array(length_contrl)FIXEDBlN(15);
intin_array(length_intin)FIXEDBIN(15);
ptsin_array(length_ptsin)FIXEDBIN(15):
intout_array(length_intout)FlXEDBlN(15);
ptsout_array(length_ptsout)FIXEDBIN(15);

DECLARE GSX ENTRY
((length_contrl)FIXEDBIN(15),
((length intin)FIXEDBIN(15),
((length_ptsin)FIXEDBIN(15),
((length_intout)FIXEDBIN(L5),
((length ptsout)FIXEDBIN(15))EXTERNAL;

INTERFACE ROUTINE The following listing is the assembly language in
terface routine for PL/I-80 to GSX-80.

3-2

GSX Reference Manual Interface Routine

Listing 3-1. PL/I-80 to GSX-80 Assembly
Language Interface Routine

INTERFACE TO GSX-80 FROM PL/I-80

; File Name: GSXPLI. ASM (RMAC Source) *

; PL/I calling sequence : 1
; call GSX (contrl, intin, ptsin. intout, ptsout) ; *

; Entry : return address on stack+0
; pointer to array contrl in <HL>
; pointer to array intin in <HL> + 2 *
; pointer to array ptsin in <HL> + 4 *
; pointer to array intout in <HL> + 6
; pointer to array ptsout in <HL> + 8 *

; Exit : return address on stack *
. *
; Notes : calls bdos with <DE> points at the location of "
; parameter block *

; Parameter Arrays Declared in PL/I program :
; DECLARE paramjirray(arrayjength) FIXED BIN (15) ; *
; DECLARE GSX ENTRY
; ((contrLsize) FIXED BIN(15)
; (intin.size) FIXED BIN(15)
; (ptsin.size.2) FIXED BIN(15)
; (intout.size) FIXED BIN(15)
; (ptsout.size.2) FIXED BIN(15)) EXTERNAL ; *
. *
; Set up the GSX parameter array address pointer in <DE>
; and calls GDOS

; History : Sept. 28, 1983 rhk

. * * :|: Jfi :|: g :|: * * :|: * *
eseg

* * * * :|c * * * :|: :|; * * * * * * * * * * * * * :|: * * * :|: :fc * :|: :|: * :|: :|: =1: * * T T- :!= t

public GSX

BDOS equ 5
GSX :

xchg ; Address pointer to param block in DE
mvi c,l 15 ; load GSX function number
call BDOS ; Call BDOS
ret
end

3-3

GSX Reference Manual Interface Routine

Listing 3-2. PL/I-86 to GSX-86 Assembly Language
Interface Routine

*
INTERFACE TO GSX-86 FROM PL/I-86 *
File Name: GSXPLI.A86 (RASM86 Source)

*

PL/I calling sequence :
call GSX(contrl, intin. ptsin, intout, ptsout) ;

*

Entry : return address on stack+0
pointer to array contrl in <BX>
pointer to array intin in <BX> + 2
pointer to array ptsin in <BX> + 4
pointer to array intout in <BX> -1- 6
pointer to array ptsout in <BX> + 8

Exit : return address on stack *
Notes : calls bdos with DS:DX points at the location of *

parameter block

Parameter Arrays Declared in PL/I program :
DECLARE param array (array-length) FIXED BIN (15) ;
DECLARE Gsx ENTRY

((contrl size) FIXED BIN (15),
(intinjdze) FIXED BIN (15).
(ptsin size,2) FIXED BIN (15),
(intout size) FIXED BIN (15).
(ptsout jsize .2) FIXED BIN (15)) EXTERNAL ; 1

Set up the data segment and the offset address for the GSX
parameter block on the stack and calls GDOS
History : Sept. 28,1983 rhk

k *

cseg
public GSX

GDOS EOU 224
GSX:

Push bp ; Save caller BP
Push si ; Save caller SI
Push di ; Save caller DI
Push es ; Save caller ES

Setup GSX parameter block addresses on stack
BX points to the parameter block

3-4

GSX Reference Manual Interface Routine

Listing 3-2 (continued)

Push ss ; Points out array segment address
Push word ptr 8 (bx) ; Points out array offset address
Push ss ; Integer out array segment address
Push word ptr 6 (bx) ; Integer out array offset address
Push ss ; Points out array segment address
Push word ptr 4 (bx) ; Points out array offset address
Push ss ; Integer input array segment address
Push word ptr 2 (bx) ; Integer input array offset address
Push ss ; Control array segment address
Push word ptr 0 (bx) ; Control array offset address

Mov DX, SP ; DS:DX points to GSX parameter arrays
Mov CX, 0473h ; GSX Function number

Int GDOS ; Invoke the GDOS

Add sp, 20 ; Clean up stack
Pop cs ; Restore caller’s registers
Pop di
Pop si
Pop bp
Ret ; Return to the calling PL/I program

end

PL/I EXAMPLE Listing 3-3 is a PL/I source file that calls the GSX
assembly language interface routine. You must com
pile and link the PL/I source file with the following
commands:

A PLI DEMOPLI

PL/I-86 Compiler Version 1.(1
Serial No. xxxx-()()()()-()()()()() 1 All Rights Reserved
Copyright (c) 1982,1983

Compilation of: DEMOPLI

No Error(s) in Pass 1

No Error(s) in Pass 2

Code Size: 03CD
Data Size: 06E6

End of Compilation

3-5

GSX Reference Manual PL/I Example

A>

A> LINK86 DEMOPLI,GSXPLI

Link-86 7/15/83 Version 1.1
Serial No. XXXX-0000-654321 All Rights Reserved
Copyright (C) 1982,1983 DigitalResearch, Inc.,

CODE 02E25
DATA 00D8C

USE FACTOR: 04%

A> TYPE ASS1GN.SYS
01 dddsl80.cmd

A>GRAPHICS

GSX-86 Graphics System Extension 3 Aug 83 VI.2.
Serial No. XXXX-0000-654321 All rights reserved
Copyright (C) 1983 DigitalResearch, Inc.,

GSX-86 installed
DDDS180 .CMD is 14352 bytes long at 0472:0000
ADEMOPLI

Which output device -
1 - CRT
11 - Plotter
21 - Printer

Note: For CP/M-80, compile and link with the follow
ing commands:

APLI DEMOPLI
A LINK DEMOPLI, GSXPLI
AGENGRAF DEMOPLI

3-6

GSX Reference Manual PL/I Example

'***

Listing 3-3. PL/I Example Source Listing

/* */
1' File Name : demopli.pli */
/* */
/* Purpose : sample program demonstrating PL/I interfacing*/
/* to GSX */
/* */
/* calls : GSX(control, intin, ptsin, intout, ptsout) */
/* */
/* to link : Iink86 demopli.gsxpli */
r */
/* history : 11 Aug 1983 RHK */
/* *//*************** ** **/

GSX_DEMO_PLL
PROC OPTIONS (MAIN)

% REPLACE opcode
% REPLACE verticlesijn
% REPLACE verticles_out
% REPLACE intin.length
% REPLACE intout length
% REPLACE gdp.id”

BY 1;
BY 2;
BY 3;
BY 4;
BY 5;
BY 6;

/* Define opcodes lor the control array */

% REPLACE open_work_station BY 1
% REPLACE close_work_station BY 2
% REPLACE clear_work station BY 3
% REPLACE polyjine BY 6
% REPLACE graphic_text BY 8
% REPLACE filled.area BY 9
% REPLACE drawing_primitivc BY 11
% REPLACE set char_height BY 12
% REPLACE set line type BY 15
% REPLACE set filljtyle BY 23
% REPLACE sct_fill_style_index BY 24

3-7

GSX Reference Manual PL/I Example

Listing 3-3. (continued)

/* Define subscripts to the intin array for the open work station call */

% REPLACE open_station_id
% REPLACE openjine_type
% REPLACE open_line_color
% REPLACE open_marker_type
% REPLACE open_marker_color
% REPLACE open_text_font
% REPLACE open_text_color
% REPLACE open_fill_interior
% REPLACE open_fill_style
% REPLACE open_fill_color

BY 1
BY 2
BY 3
BY 4
BY 5
BY 6
BY 7
BY 8
BY 9
BY 10

DECLARE control (6) FIXED BIN (15) ;
DECLARE (intin(lOO), ptsin(100,2), intout (100),ptsout(100,2)) FIXED BIN (15)

DECLARE GSX ENTRY
((6) FIXED BIN (15)
(100)FIXED BIN(15)
(100,2)FIXED BIN(15)
(100)FIXED B1N(15)
(100,2) FIXED BIN (15) EXTERNAL

%REPLACE SCREEN_MIN_X by 0
SCREEN_MAX_X by 32767
SCREEN_MIN_Y by 0
SCREEN_MAX_Y by 32767

DECLARE (dev_unit x,dev_unit_y) FIXED BIN(15)
C CHAR (1)
DEVICE_DATA (100) FIXED BIN (15)

DECLARE sign_on CHAR (80) VARYING
STATIC INITIAL (’PL/I-GSX Demo’)

3-8

GSX Reference Manual PL/I Example

Listing 3-3 Continued

*********** Mnin Prnrpdiirp *************************************

/* */
Call INIT_GSX; /* Initialise device */
Call CLEARJT; /* clear display surface */
Call DRAW.FRAME; /* outline display area */
Call SET_ATTRIB(set_line_type, 3) /* set Line Style */
Call DO_LINE (screen_min_x, screeivnin_y);

screen max x, screen_max_y) /* draw a diagonal line */
Call SET-FXTHGT (1000); /*Set character height */
Call DOjGRAPHIC_TEXT(16384,16384,SIGN ON) ;/*output text*/
Call SET_ATTRIB(set_fill_style,3); /*Set hatch fill style 7
Call Draw_bar (1200,1200); /*draw bars */
Call SET_ATTRIB(set_fill_style,2); /* Set pattern fill style */
Call Draw_Bar (21968,120(7);
GET EDIT(c) (A(l)); /»Wait for a keystroke */
call CLOSE; /»Exit graphics *7

/* */
7 * * * * * * * * End of Majn program */

DQ.LINE:
Proc(xl,yl,x2,y2);
Del (xl,yl,x2,y2) FIXED BIN(15);

Control (opcode) = poly_line;
/* no., of vertices in control array */
Control (verticesjn) = 2; 7 2 input points 7
/» line vertices in points input array »/
Ptsin (1,1) = xl;
Ptsin (1,2) = yl;
Ptsin (2,1) = x2;
Ptsin (2,2) = y2;
CALL GSX(Control,intin,ptsin,intout,ptsout);
End DOJ.1NE;

SETTEXTHGT:
Proc(height);
DCL height FIXED BIN (15);

control (opcode) = set_char_height;
/» call GSX with character height in point input array 7
control (verticesjn) = 1;
ptsin (1,1) = 0;
pstin (1,2) = height;
CALL GSX (control,intin,ptsin,intout,ptsout);

End SETTXT.HGT;

3-9

GSX Reference Manual PL/I Example

Listing 3-3 (continued)

DO_GRAPHIC_TEXT;
Proc (X,Y,STRING)
DCL (X,Y,I) FIXED BIN(15),

CCHAR(l),
stringCHAR(80)VARYING;

/* move each charactaer into integer input array */
Do 1=1 to length (string);

C = substr (string,!, 1);
intin(I) = rank (C);
End;

/* setup graphics text call */
control (opcode) = graphicjext;
/* no. of characters in integer input array */
control (intinjength) = length (string):
/* text position in point input array */
control verticesjn = 1
ptsin (1,1) = X;
ptsin (1,2) = Y;
CALL GSX (control, intin,ptsin, intout.ptsout);

End DO_GRAPHIC_TEXT;

DRAW.BAR:
Proc (X, WIDE);
DCL (X.WIDE.LOWX,I,left,bottom,right,top) FIXED BIN (15);

LOWX = X;
/* draw 6 bars */
Do 1=1 to 6;

left = LOWX;
bottom = LOWX;
right = LOWX + WIDE;
top = LOWX + WIDE;
/* set interior fill style index for next bar */
CALL Set_attrib (set_fill_style_index,i);
*/ call gdp bar with lower left and upper right vertices "’/
CALL Bar (left, bottom, right, top);
/* update to next bar position */
LOWX = LOWX + (WIDE I 2);
End;

END Draw_Bar;

3-10

GSX Reference Manual PL/I Example

Listing 3-3 (continued)
BAR:

Proc(left,bottom,right, top);
DCL (left,bottom,right,top) FIXED BIN (15);
control (opcode) = drawing primitive;
control (intinJcngth) = 0; /* no integer input in intin */
control (verticesjn) = 2; /* 2 points in ptsin */
control (gdp_id) = 1; /* gdp bar id = 1 */
/* lower left and upper right points in points input array */
ptsin (1,1) = left;
ptsin (1,2) = bottom;
ptsin (2,1) = right;
ptsin (2,2) = top;
CALL GSXfcontrol, intin, ptsin, intout, ptsout);

End BAR;

SET ATTRIB :
Proc (CMD.I):
DCL (CMD.I) FIXED BIN (15);

control (opcode) = CMD /* attribute command*/
/* indicates no points passed */
control (verticesjn) = 0;
control (intinjength) = 1;
/* pass the attribute value in integer input array */
intin (1) = I;
CALL GSX (control,intin,ptsin,intout,ptsout);

END SET_ATTRIB ;

DRAW.FRAME:
Proc;
control(opcode) = polyjine;
control(vertices in) = 5; /* 5 input points */
ptsin (1,1) = screen_min_x;
ptsin (1,2) = screenjnin_y;
ptsin (2,1) = screenjnaxjc;
ptsin (2,2) = screenjnin_y;
ptsin (3,1) = screenjnax_x;
ptsin (3,2) = screenjnax_y’;
ptsin (4,1) = screen_min_x;
ptsin (4.2) = screen_max_y;
ptsin (5,1) = screen_min_x;
ptsin (5,2) = scrcenjnin_y;
CAL GSX(control,intin,ptsin .intout,ptsout);

End DRAWL FRAME;

3-11

GSX Reference Manual PL/I Example

Listing 3-3 (continued)
INIT_GSX:

Proc;
DCL I FIXED BIN (15);
PUT SKIP LIST ('Which output device -’);
PUT SKIP LIST (’1 - CRT);
PUT SKIP LIST (’ll - Plotter’);
PUT SKIP LIST (’21 - Plotter’);
PUT SKIP LIST (’?’);
GET LIST (i);
Call Open (i);

END Init_gsx;

OPEN:
Proc(I);
DCL I FIXED BIN (15)

control (opcode) = open_work_station;
/* 10 input values in integer input array */
control (intinjength) = 10;
/* no points passed to GSX in open workstation call */
control (verticesjn) = 0;

/* open the requested workstation */
intin(open_stationjd) = i;
/* set up default parameters */
intin (open.line.type) = 1;
intin (openjine.color) = 1;
intin (open_fill_interior) = 1;
intin (open_fill_style) = 1;
intin (open_fill_color) = 1;
intin (open_text_color) = 1;
intin (open_text_font) = 1;
CALL GSX (control,intin,ptsin,device_data,ptsout);

dev_unit_x = 32767 I device_data (1) + 1;
dev_unit_y = 32767 / device_data (2) + 1;

END OPEN;
CLEARJT:

Proc;

control (opcode) = clear_work_station;
control (verticesjn) = 0;
CALL GSX (control,intin,ptsin,intout,ptsoutf);

END CLEARJT;

3-12

GSX Reference Manual PL/I Example

Listing 3-3 (continued)

CLOSE:
Proc;

control(opcode) = close_work_station;
control (vertices.in) = 0;
CALL GSX (control,intin,ptsin,intout,ptsout):

END CLOSE

END GSX.DEMO.PLL

3-13

GSX Reference Manual PL/I Example

PL/I —GSX Demo

Figure 3-1. Output from the PL/I Example

3-14

Section 4
Digital Research C
INTRODUCTION This section tells you how to access GSX from

Digital Research C. Included in this section
are listings of the assembly language
interface routine to GSX from Small and Large
Memory Models from Digital Research C. A
sample source listing follows the assembly
language interface routines. Refer to The C
Programming Language by Kernighan and Ritchie
and the C Language Programmer's Guide for the
CP/M-86 Family of Operating Systems for more
information about programming with Digital
Research C.

The assembly language interface routine to GSX
allows you to make graphics calls directly
from Digital Research C programs. The sample
Digital Research C program and its graphics
output show how to use this interface module.

The interface routine sets the GDOS function
code 0473 (HEX) in register CX, and the pointer
to the parameter list arrays in DS:DX before
it calls the disk operating system. Refer to
the VDI specification in the GSX Graphics
Extension Programmer's Guide for a detailed
explanation of the parameter lists.

ARGUMENT PASSING Contrl, intin, ptsin, intout, and ptsout are
the five standard GSX parameter list array
addresses. When your application program
calls the GSX interface routine from C, use
the following calling sequence:

GSX (contrl, intin, ptsin, intout, ptsout) ;

Parameters from the Digital Research C program
are passed on the stack. Upon entry to the GSX
assembly language interface routine, the top
of the stack contains the return address to
the example program, followed by the arguments
stored in the same order as in the calling
sequence. Refer to the C Language Programmer's
Guide for the CP/M-86 Family of Operating
Systems for more information on stacks and how
address space is allocated.

4-1

GSX Reference Manual Argument Passing

ARRAY DECLARATION

For example, upon entry to the GSX interface
routine from a Small Memory Model Digital
Research C program, one word addresses are
passed in the stack
in the following manner:

STACK : +0 Return Address
+2 Address of Control Array
+4 Address of Integer Input Array
+6 Address of Point Input Array
+8 Address of Integer Output Array
+10 Address of Point Output Array

The GSX parameter list arrays can be declared
in the Digital Research C program as in the
following example. The size of these parameter
arrays depends on your application memory
requirements.

int contri(length_contrl); /* input parameters */
int ptsin(length_ptsin); /* input coordinate data */
int ptsout(length_ptsout); /* output coordinate data */
int intin(length_intin): /* int input parameters */
int intout(length_intout); /* int output parameters */

INTERFACE ROUTINE The following listing is for the Digital
Research C, Small Memory Model.

4-2

GSX Reference Manual Interface Routine

Listing 4-1. Digital Research C (Small Memory Model) to GSX-86
Assembly Language Interface Routine

INTERFACE TO GSX-86 FROM C and FORTRAN-77 *

; (for Small Memory Model) *
*

; File name: GSXSMALL.A86 *
; *
; Calling sequence : *
; GSX (contrl,intin,ptsin,intout,ptsout) *
: *
; Entry: return address on stack-0 *

pointer
pointer

to array contrl on stack+2
stack+4

*
*to array intin on

pointer to array ptsin on stack+6 *
pointer to array intout on stack+8 *
pointer to array ptsout on stack+10 *

*
; Exit return address and parameters on stack *

unchanged *
*

; Notes : calls gdos with DS:DX points at the location *
of parameter block on stack *

*
: History: Sept. 28, 1983 rhk *

*

cseg
public GSX

GSX:
GDOS EQU 224

Push bp
mov bp.sp
Push si
Push di
Push es

Setup GSX parameter block

Push ss
Push word ptr 12[bp]
Push ss

Push word ptr 10[bp]
Push ss
Push word ptr 8[bp]
Push ss

Push word ptr 6[bp]

Push ss
Push word ptr 4[bp]

: Save caller BP.
; Create new stack frame.
; Save Caller SI.
; Save Caller DI.
: Save Caller ES.

addresses on stack.

: Points out array segment address
; Points out array offset address
; Integer out array segment

address
; Integer out array offset address
: Points out array segment address
: Points out array offset address
; Integer input array segment

address
; Integer input array offset

address
; Control array segment
; Control array offset address

4-3

GSX Reference Manual Interface Routine

Listing 4-1. (continued)

Mov DX, SP

Mov CX, 0473h

INT GDOS

; DS:DX points to GSX parameter
arrays

; GSX Function number

; Invoke the GDOS

end

Add sp, 20 ; Clean up stack
Pop es : Restore caller ES
Pop di ; Restore caller DI
Pop si ; Restore caller SI
Pop bp ; Restore caller BP
Ret ; Return.

The following listing is the interface to
GSX-86 from Digital Research C, Large Memory
Model.

4-4

GSX Reference Manual Interface Routine

Listing 4-2. Digital Research C (Large Memory Model) to GSX-86 Assembly
Language Interface Routine

INTERFACE TO GSX-86 FROM C and FORTRAN-77 *
; (Large Memory Model) *
; *
; File Name: GSXLARGE.A86 *
; *
; Calling sequence : *
; GSX (contrl, intin, ptsin, intout, ptsout) *

: Entry : return address on stack+0 *
pointer to array contrl on stack+4 *
pointer to array intin on stack+8 *
pointer to array ptsin on stack+12 *
pointer to array intout on stack+16 *
pointer to array ptsout on stack+20 **

: Exit : return address and parameters on stack *
*

; Notes: calls bdos with DS:DX points at the location *
of parameter block address on stack *

*
; History: Sept. 28. 1983 rhk *
; *
: This routine points the data segment at the stack *
; segment, and DX at the GSX parameter block on the stack *
; frame, returns to the calling program without moving *
; datas off the stack. *
: *
: *

Cseg
Public GSX

GDOS EQU 224
GSX:

Push ds ; Save caller DS.
Push bp ; Save caller BP.
Mov bp. sp : Create new stack frame.
Push es ; Save caller ES.
Push si : Save caller SI.
Push di : Save caller DI.

Mov ax. ss ; Move stack segment into ax
Mov ds, ax : Set DS to SS
Lea dx. 8[bp] : DX points to GSX parameter

Mov ex. 0473h
array address

; GSX function number into ex

4-5

GSX Reference Manual Interface Routine

Listing 4-2. (continued)

Int GDOS : Call GDOS
Pop di ; Restore caller DI
Pop si ; Restore caller SI
Pop es ; Restore caller ES
Pop bp ; Restore caller BP
Pop ds : Restore caller DS
Retf ; Return.

end

DIGITAL RESEARCH C The following listing is an example of a C
EXAMPLE source program that uses the assembly language

interface routine for GSX. To use this routine
you must compile and link the Digital Research
C source file with the following commands:

A> DRC DEMOC

Digital Research C Compiler
Serial No. XXXX-0000-654321
Copyright (c) 1983

8/08/83 Version 1.03
All Rights Reserved.

Digital Research,Inc.,

Digital Research C Version 1.03 -- Preprocessor

Digital Research C Version 1.03 -- Code Gen

democ.c: code:1149 static 94 extern: 1000

c>
C> LINK86 DEMOC, A : GSXSMLC

LINK-86 8/02/83
Serial No. XXXX-0000-654321
Copyright (c) 1982,1983

Version!.1
All Rights Reserved

Digital Research,Inc.,

CODE 05025
DATA 01280

USE FACTOR: 12%

OTYPE ASSIGN. SYS
21 a :dddsl80.cmd
01 a:ddcrt.

4-6

GSX Reference Manual Digital Research C Example

OGRAPHICS

GSX-86 Graphics System Extension
Serial No. XXXX-0000-654321
Copyright (C) 1983

3 Aug 83 VI.2
All Rights Reserved

Digital Research, Inc.,

GSX-86 installed
A:DDDS180 .CMD is 14352 bytes long at 0472:0000
C>
ODEMOC
Which output device -
1 - CRT
11 - Plotter
21 - Printer
?1 -

***/

Listing 4-3. Example C Source Listing

*/
File name : democ.c */

*/
Purpose : Sample C program interfacing to GSX using */

the assembly interface module */
*/

Calls : GSX (contrl,intin,ptsin,intout,ptsout) : */
“note“ Upper case character routine name in the call */

*/
To Link : link86 democ,gsxsmlc (for small memory model) */

*/
history : 15 Aug 1983 rhk */

*/
***/

/* define the opcodes for the control array */

«define 0PEN_W0RKSTATI0N 1
«define CL0SE_W0RKSTATI0N 2
«define CLEAR_WORKSTATION 3
«define POLYLINE 6
«define TEXT 8
«define FILL_AREA 9
«define DRAWING_PRIM 11
«define SET_CHAR_HEIGHT 12
«define SET_LINE_TYPE 15
«define SET_FILL_STYLE 23
«define SET_STYLE_INDEX 24

4-7

GSX Reference Manual Digital Research C Example

Listing 4-3. (continued)

/* define the intin array subscripts for open workstation defaults*/

»define WK_ID intin(O)
»define LINE_TYPE intin(l)
»define LINE_COLOR intin(2)
»define MARKER_TYPE intin(3)
»define MARKER_COLOR intin(4)
»define TEXT_FONT intin (5)
»define TEXT_COLOR intin(6)
»define FILL_STYLE intin(7)
»define FILL_INDEX intin(8)
»define FILL_COLOR intin(9)

/* define the subscripts to the control array */

»define OPCODE contrl(O)
»define N_PTSIN contrl(l)
»define N_PTSOUT contrl(2)
»define LEN_INTIN contrl(3)
»define LEN_INTOUT contrl(4)
»define GDP_ID contrl(5)
»define N_CHAR contrl(3)
»define TEXT_X_POS ptsin(O)
»define TEXT_Y_POS ptsin(l)

»define GDP_BAR 1
»define SOLID_LINE 1
»define DASHED_LINE 2
»define DOTTED_LINE 3
»define DASHED_DOTTED 4
»define HOLLOW_FILL 0
»define SOLID_FILL 1
»define PATTERN_FILL 2
»define HATCH_FILL 3

»define YES 1
»define NO 0
»define TRUE ! = 0
»define FALSE == 0

»define ZERO 0
»define ONE 1
»define TWO 2
»define THREE 3
»define FOUR 4
»define TEN 10

4-8

GSX Reference Manual Digital Research C Example

Listing 4-3. (continued)

((include <stdio. h>

int contrl[20] ; /* input parameters */
int ptsin([00] ; /* input coordinate data */
int ptsout[100] ; /* output coordinate data */
int intin([00] ; /* int input parameters */
int intout[100] ; /* int output parameters */

static int xmin - {0} ;
static int ymin - (0) ;
static int xmax = (32767) ;
static int ymax = {32767};

static int sign >4

cn

Ò

Q
 0 s Q

II C 0

main()
{
/* EXAMPLE PROGRAM demonstrating interface to GSX from C */
/* Link with assembly interface module */

int c ;

/*********** Main Procedure **************************************/

init_gsx() ; /* Open requested workstation */
clear_it () : /* Clear the display surface */
draw_frame () ; /* Outline the display area */
set attrib (SET LINE TYPE. DOTTED LINE) ; /* set line style */
do line (xmin,ymin,xmax,ymax) ; /* draw a diagonal line */
set_txt hgt (800) ; /* set character size */
do_text (16384.16384. sign on. 10) ; /* output text */
set attrib (SET FILL STYLE, 2) ; /* pattern fill */
drawbar (1200, 1200) /* draw bars */
set_attrib (SET_FILL_ STYLE, 3) ; /* hatch full */
draw_bar (21968.1200) ;
while (! BDOS(ll.O)) ; /* wait for a keyboard key */
close_it () ; /* Exit graphics */

)
/******** En(j of Main Program ************************************/

4-9

GSX Reference Manual Digital Research C Example

Listing 4-3. (continued)
/***** init GSX **/
; Get the graphics device id number */
: Open Graphics Device selected */

init_gsx ()
{
int device :

printf("Which output device -n") ;
printf("1 - CRTn") :
printf("11 -Plottern") ;
printf("21 -Printern") ;
printf("?") ;

scanf(”%d”, Gdevice) ;

/* * * ** *OPEN WORKSTATION ***/

OPCODE = OPEN_WORKSTATION ;
N_PTSIN = ZERO ;
LEN_INTIN = TEN ;

WK_ID = device ;

/* intin[l] - intin[10] contains the initial default settings */

LINE_TYPE = SOLID_LINE :
LINE_COLOR = ONE ;
MARKER_TYPE = ONE ;
MARKERCOLOR = ONE ;
TEXTFONT = ONE ;
TEXT_COLOR = ONE ;
FILL_STYLE = HOLLOW_FILL ;
FILL_INDEX = ONE ;
FILL_COLOR = ONE ;

GSX (contrl,intin,ptsin,intout,ptsout) ;
return;

/* * * ** *CLEAR WORKSTATION* * ***************************************/
clear_it ()
(

OPCODE = CLEAR_WORKSTATION ;
NPTSIN = ZERO ;
GSX (contrl,intin,ptsin,intout,ptsout) ;
return ;

} /* End of Clear workstation */

4-10

GSX Reference Manual Digital Research C Example

Listing 4-3. (continued)
/***** DRflw A FRAME around the display area **********************/
draw_frame ()
{

/* use polyline to draw the box */
OPCODE = POLYLINE ; /* polyline function id = 6 */
N_PTSIN = 5 ; /* 5 vertices passed in array ptsin */
ptsin[8] = ptsin[6] = ptsin[0] = xmin ;
ptsin[9] = ptsin[3] = ptsinfl] = ymin ;
ptsin[4] = ptsin[2] • xmax ;
ptsin[7] = ptsin[5] = ymax ;
GSX (contrl,intin,ptsin,intout,ptsout) ;
return ;
/* End of draw frame */

/***** SUPPORT OUTPUT PRIMITIVE ATTRIBUTE SETTINGS ***************/
set_attrib (cmd.inx)
int cmd.inx ;
{

OPCODE = cmd ; /* set attribute function id in control array */
N_PTSIN = ZERO ;
LEN_INTIN = ONE :
intinfO] = inx ; /* the index in array intin */
GSX (contrl,intin,ptsin,intout,ptsout) ;
return ;

) /* End of set attrib */

/***** DRAWS A SINGLE SEGMENTED LINE USING POLYLINE FUNCTION *****/
do line (xl,yl,x2,y2)
int xl,yl,x2,y2 ;
{

OPCODE = POLYLINE : /* polyline function id = 6 */
N_PTSIN = 2 ; /* 2 vertices */
ptsinfO] = xl :
ptsin[1] = yl ;
ptsin[2] = x2 ;
ptsin[3] = y2 ;
GSX (contrl,intin,ptsin,intout,ptsout) ;
return ;

)
/***** SET CHARACTER HEIGHT **************************************/
set_txt_hgt (height)
int height;
{

OPCODE = SET_CHAR_HEIGHT ;
N PTSIN = ONE;
ptsin[0] = ZERO ; /* input x coordinates =0 */
ptsin[l] = height ; /* input y coordinates = height */
GSX (contrl,intin,ptsin,intout,ptsout) ;
return ;

} /* End of set txt height */

4-11-

GSX Reference Manual Digital Research C Example

Listing 4-3. (continued)
/***** OUTPUT TEXT **/
do_text (x,y,string,len)
int x,y,string,(80) , len :
(

OPCODE = TEXT ;
N_PTSIN = ONE ;
N CHAR = len ;
TEXT_X_POS = x ;
TEXT_Y_POS = y ;
GSX (contrl,string,ptsin,intout,ptsout) ;
return :

) /* End of do text */

/***** DRAW 6 BARS USING GDP BAR FUNCTION *********************/
draw_bar (x, wide)
int x.wide ;
{
int i,left,bottom,right.top :

for (i=l; 1<7; i++) {
/* draw 6 bars */
left • bottom = x ;
right = top - x + wide ;
setattrib (SET_STYLE_INDEX, i) :
bar (left, bottom, right, top) ;
x = x + wide + (wide / 2) ;

)
return ;

} /* End draw bar */

bar (left, bottom, right, top)
int left, bottom, right, top ;
(

/* Use GDP BAR function */
OPCODE = DRAWING-PRIM ;
LEN—INTIN = ZERO ;
N_PTSIN = TWO ;
GDP—ID = ONE ; /* BAR ID = 1 */
/* lower left and upper right vertices passed in ptsin array */
ptsinfO] = left ;
ptsinfl] = bottom ;
ptsin[2] = right ;
ptsin[3] = top ;
GSX (contrl,intin,ptsin,intout.ptsout)
return ;

) /* End bar */

4-12

GSX Reference Manual Digital Research C Example

Listing 4-3. (continued)

/***** CLOSE WORKSTATION ***************************************/
close_it ()
{

OPCODE = CLOSEWORKSTATION ;
N_PTSIN = ZERO ;
GSX (contri,intin,ptsin,intout.ptsout) ;
return ;

} /* End of close workstation */

4-13

GSX Reference Manual Digital Research C Example

Figure 4-1. Output from the Digital Research C Example

4-14

Section 5
CBASIC COMPILER (CB86)
INTRODUCTION Digital Research CBASIC compiler includes an

extensive set of standard graphics functions. The
assembly language interface routine allows you to
access other GSX functions in addition to those
provided in CBASIC. Refer to the CBASIC Compiler
Graphics Guide for the graphics facilities supported.

ARGUMENT PASSING Ptsout, intout, ptsin, intin, and contrl are the five
standard GSX parameter list array addresses. When
the application program calls the GSX interface
routine from CBASIC, the calling sequence must be
the following:

GSX (ptsout, intout, ptsin, intin, contrl)

CBASIC parameters are passed on the stack. Arrays
are passed as VARPTR parameters. Upon entry to
the GSX assembly language interface routine, the top
of the stack contains the return address to the example
program, followed by the parameters stored in
REVERSE order from the calling sequence. The
procedure is declared as EXTERNAL in the CBASIC
program and as PUBLIC in the assembly language
interface routine builds a parameter block from the
values on the stack and passes the address of the
parameter block to the GDOS.

CB80 and CB86 The stack upon entry to the interface module is as
follows:

CB80 and CB86: one word addresses are passed

STACK :

+0 Return Address

+2 Address of Control Array

+4 Address of Integer Input Array

+ 6 Address of Point Input Array

+8 Address of Integer Output Array

+ 10 Address of Point Output Array

5-1

GSX Reference Manual CB80 and CB86

Listing 5-1. CB80 to GSX-80 Assembly Language Interface Routine

INTERFACE to GSX-80 from CBASIC **
File Name : GSXCB80.ASM (RMAC Source) **
Calling Sequence : *

GSX (ptsout,intout,ptsin,intin,contrl) arrays are passed as*
varptr parameters *

NOTE the sequence of call parameters *
*

Entry: return address on Stack+0 *
pointer to array contrl on Stack+2 *
pointer to array intin on Stack+4 *
pointer to array ptsin on Stack+6 *
pointer to array intout on Stack+8 *
pointer to array ptsout on Stack+10 **

Exit: return address on stack *
*

Notes: calls bdos with <DE> points at the location of param *
block in stack ***

public GSX

end

BDOS equ 5
GSX:

Ixi h,2 ; Skip the return address on stack
dad sp ; Get pointer to the parameter address
xchg ; Into DE
mvi C.73H ; GSX Function number into C
call BDOS ; Call GDOS

POP d ; Get return address
Ixi h,10 : Point pass the 5 parameter address
dad sp : Clean up stack
sphl : Update SP
xchg ; Put return address into HL
pchl ; Return

5-2

GSX Reference Manual CB80 and CB86

Listing 5-2. CB86 to GSX-86 Assembly Language Interface Routine
. **

*
; INTERFACE TO GSX-86 FROM CB86 *

; File name: GSXCB86.A86 **
; Calling sequence : *
; GSX (ptsout.intout,ptsin,intin,contrl) *
: arrays are passesd as varptr parameters *
; NOTE the calling sequence of the parameter list *

*
: Entry : return address on stack+0 *
; pointer to array contrl on stack+02 *
: pointer to array intin on stack+04 *
; pointer to array ptsin on stack+06 *
: pointer to array intout on stack+08 *
; pointer to array ptsout on stack+10 *
; *
; Exit return address on stack *

; Notes : calls GDOS with DS:DX points at the location of *
parameter block on stack *

: History : Oct. 06, 1983 rhk *
** *

cseg
public GSX
GDOS EQU 224

GSX: Push bp ; Save caller BP
mov bp, sp : Create new stack frame
Push si ; Save caller SI
Push di : Save caller DI
Push es ; Save caller ES

Setup GSX parameter block addresses on stack

Push ss Points out array segment address
Push
Push

word ptr 12[bp];
ss ;

Points out array offset address
Integer out array segment address

Push
Push

word ptr 10[bp];
ss ;

Integer out array offset address
Points out array segment address

Push
Push

word ptr 08[bp];
ss ;

Points out array offset address
Integer input array segment address

Push
Push

word ptr 06[bp];
ss ;

Integer input array offset address
Control array segment address

Push word ptr 04[bp]; Control array offset address

5-3

GSX Reference Manual CB80 and CB86

Listing 5-2. (continued)
Mov
Mov

DX, SP
CX, 0473h ;

; DS:DX points to GSX parameter arrays
GSX Function number

INT GDOS ; Invoke the GDOS
Add sp. 20 ; Clean up stack
Pop es ; Restore ES
Pop di ; Restore DI
Pop si ; Restore SI
Pop bp ; Restore BP
Cid ; Clear direction flag
Ret 10 ; Clean up stack, return to caller

end

Listing 5-3. CB86 Example Program

REM***
REM*
REM* file name : DEMOCB.BAS
REM*
REM* purpose : demonstration program for CBASIC Interfacing
REM* to GSX
REM* declares five GSX parameter arrays for -
REM* control, integer in, points in, integer out, points out
REM*
REM* calls : GSX (varptr(ptsout%). varptr(intout%), varptr(ptsin%),
REM* varptr(intin%), varptr(contrl%))
REM*
REM* to build : GSX-86 GSX-80
REM* CB86 DEMOCB CB80 DEMOCB
REM* LINK86 DEMOCB.GSXCB86 LK80 DEMOCB,GSXCB80
REM*
REM* history : Oct. 06, 1983 rhk
REM*
REM* **

DIM CONTRL%(9), INTIN%(44). PTSIN%(71), INT0UT%(44), PTS0UT%(39)
DIM PARAMADR%(4)

5-4

GSX Reference Manual CB80 and CB86

xl% = x% : x2% = x% + wide% : yl% = xl% : y2% = x2%
CALL set.attrib (24, i%)

Listing 5-3. (continued)
DEF GSX (ptsout.adr%, intout.adr%, ptsin.adr%,\

intin.adr%, cntrl.adr%) EXTERNAL
rem
FEND
DEF

Setup for GDOS calls

bar (xl%. yl%. x2%, y2%)

REM use General Drawing BAR Primitive

contrl%(0) = 11
contrl%(l) = 2
contrl%(3) = 0
contrl%(5) = 1
ptsin%(0) - xl%
ptsin%(1) = yl%
ptsin%(2) = x2%
ptsin%(3) = y2%
CALL GSX (paramadr%(4) , paramadr%(3), paramadr%(2),\

paramadr%(1), paramadr%(0))
RETURN

FEND
DEF set.attrib (fid%, inx%)

contrl%(0) = fid%
contrl%(l) = 0
contrl%(2) = 1
intin%(0) = inx%
CALL GSX (paramadr%(4), paramadr%(3), paramadr%(2).\

paramadr%(l), paramadr%(0))
RETURN

FEND
DEF drawbar (x%, wide%)

FOR i% = 1 TO 6

FEND

CALL bar(xl%, yl%. x2%, y2%)
x% = x% + (wide% / 2)

NEXT i%
RETURN

FEND
DEF doline (xl%, yl%, x2%, y2%)

contrl%(0) = 6
contrl%(l) = 2
ptsin%(0) = xl%
ptsin%(l) - yl%
ptsin%(2) = x2%
ptsin%(3) = y2%
CALL GSX (paramadr%(4), paramadr%(3), paramadr%(2),\

paramadr%(l) , paramadr%(0))
RETURN

5-5

GSX Reference Manual CB80 and CB86

Listing 5-3. (continued)
DEF drawfram (xl%, yl%, x2%, y2%)

contrl%(0) = 6
contrl%(l) = 5
ptsin%(0) = xl% : ptsin%(6) = xl% : ptsin%(8) = xl%
ptsin%(l) = yl% : ptsin%(3) = yl% : ptsin%(9) ■ yl%
ptsin%(2) « x2% : ptsin%(4) = x2%
ptsin%(5) =y2% : ptsin%(7) - y2%
CALL GSX (paramadr%(4) , paramadr%(3) , paramadr%(2), \

paramadr%(1), paramadr%(0))
RETURN

FEND
DEF gclear
REM Clear the Display surface

contrl%(0) = 3
contrl%(l) = 0
CALL GSX (paramadr%(4) , paramadr%(3) . paramadr%(2),\

paramadr%(l), paramadr%(0))
RETURN

FEND
DEF gelose

contrl%(0) = 2
contrl%(l) = 0
CALL GSX (paramadr%(4), paramadr%(3). paramadr%(2).\

paramadr%(1) , paramadr%(0))
RETURN

FEND
DEF gopen

contrl%(0) = 1
contrl%(l) » 0
contrl%(2) = 10
intin%(0) = wid% : intin%(l) ■ 1 : intin%(2) - 1
intin%(3) = 1 : intin%(4) = 1 : intin%(5) - 1
intin%(6) = 1 : intin%(7) = 1 : intin%(8) =1
intin%(9) - 1
CALL GSX (paramadr%(4) , paramadr%(3), paramadr%(2),\

paramadr%(1), paramadr%(0))
RETURN

FEND
DEF ginit

PRINT "Which output device
PRINT "1 - CRT"
PRINT ”11 - PLOTTER"
PRINT "21 - PRINTER"
INPUT wid%
PRINT "Open workstation £ ";wid%
RETURN

FEND

5-6

GSX Reference Manual CB80 and CB86

Listing 5-3. (continued)
REM Main Program
REM Setup PARAMADR with the Addresses of the GSX Parameter Arrays

PARAMADR%(0) = VARPTR(CONTRL*(0))
PARAMADR%(1) - VARPTR(INTIN%(0))
PARAMADR%(2) - VARPTR(PTSIN%(0))
PARAMADR%(3) - VARPTR(INTOUT%(0))
PARAMADR%(4) = VARPTR(PTSOUT%(0))

xmin% = 0
xmax% = 32767
ymin% = 0
ymax% = 32767

CALL ginit
CALL gopen
CALL drawfram (xmin%, ymin%, xmax%, ymax%)
CALL doline (xmin%, ymin%, xmax%, ymax%)
CALL set.attrib (23, 2)
CALL drawbar (1200, 1200)
CALL set.attrib (23, 3)
CALL drawbar (21968, 1200)
i% = CONCHAR%
CALL gelose

STOP
END

End of Section 5

5-7

Section 6
FORTRAN-77
INTRODUCTION

ARGUMENT PASSING

This section tells you how to access GSX from
FORTRAN-77. This section includes listings of
the assembly language interface routine to GSX
from Small and Large Memory Models from
FORTRAN-77. A sample source listing follows
the assembly language interface routines.
Refer to the Digital Research FORTRAN-77
Language Reference Manual for more
information about programming with FORTRAN-
77.

The assembly language interface routine to GSX
allows you to make graphics calls directly
from FORTRAN-77 programs. The sample FORTRAN-
77 program and its graphics output show how
to use this interface module.

The interface routine sets the GDOS function
code 0473 (HEX) in register CX, and the pointer
to the parameter list arrays in DS:DX before
it calls the disk operating system. Refer to
the VDI specification in the GSX Graphics
Extension Programmer's Guide for a detailed
explanation of the parameter lists.

Contrl, intin, ptsin, intout, and ptsout are
the five standard GSX parameter list array
addresses. When your application program
calls the GSX interface routine from FORTRAN-
77, use the following calling sequence:

GSX (contrl, intin, ptsin, intout, ptsout)

Parameters from the FORTRAN-77 program are
passed on the stack. Upon entry to the GSX
assembly language interface routine, the top
of the stack contains the return address to
the example program, followed by the arguments
stored in the same order as in the calling
sequence. Refer to the Digital Research
FORTRAN-77 Language Reference Manual for more
information on stacks and how address space
is allocated.

6-1

GSX Reference Manual Argument Passing

For example, upon entry to the GSX interface
routine from a Small Memory Model FORTRAN-77
program, one word addresses are passed in the
stack in the following manner:

STACK : +0 Return Address
+2 Address of Control Array
+4 Address of Integer Input Array
+6 Address of Point Input Array
+ 8 Address of Integer Output Array
+10 Address of Point Output Array

ARRAY DECLARATION The GSX parameter list arrays can be declared
in the FORTRAN-77 program as in the following
example. The size of these parameter arrays
depends on your application memory
requirements.

int contrl[length_contrl] ;
int ptsin[length_ptsin] ;
int ptsout[length_ptsout] ;
int intin[length_intin] ;
int intout[lengthintout] ;

INTERFACE ROUTINE The following listing is for the FORTRAN-77,
Small Memory Model.

6-2

GSX Reference Manual Interface Routine

Listing 6-1. FORTRAN-77 (Small Memory Model) to GSX-86
Assembly Language Interface Routine

*

INTERFACE TO GSX-86 FROM FORTRAN-77 *
(for Small Memory Model) w
File name: GSXSMALL.A86 *

*
Calling sequence : *

GSX (contrl, intin, ptsin, intout, ptsout) *

Entry : return address on stack+0 *
pointer to array contrl on stack+2 *
pointer to array intin on stack+4 *
pointer to array ptsin on stack+6 *
pointer to array intout on stack+8 *
pointer to array ptsout on stack+10 *

*
; Exit : return address and parameters on stack unchanged *

*
; Notes : calls gdos with DS:DX points at the location of *
; parameter block on stack t
• *
: *
; History : Sept. 28, 1983 rhk *
; *

cseg
public GSX

GDOS EQU 224
GSX:

Push bp ; Save caller BP.
mov bp, sp ; Create new stack frame.
Push si ; Save caller SI.
Push di ; Save caller DI.
Push es ; Save caller ES.

6-3

GSX Reference Manual Interface Routine

Listing 6-1. (continued)

Setup GSX parameter block addresses on stack

Push ss ; Points out array segment address
Push word ptr 12[bp] ; Points out array segment address
Push ss ; Integer out array segment address
Push word ptr 10[bp] ; Integer out array offset address
Push ss ; Points out array offset address
Push word ptr 8[bp] ; Points out array offset address
Push ss ; Integer input array segment address
Push word ptr 6 [bp] : Integer input array offset address
Push ss ; Control array segment address
Push word ptr 4 [bp] ; Control array offset address

Mov DX, SP ; DS:DX points to GSX parameter arrays
Mov CX. 0473h ; GSX Function number

INT GDOS ; Invoke the GDOS

Add sp, 20 ; Clean up stack
Pop es ; Restore caller ES .
Pop di ; Restore caller DI.
Pop si ; Restore caller SI.
Pop bp ; Restore caller BP.
Ret ; Return

end

The following listing is the interface to
GSX-86 from FORTRAN-77 , Large Memory Model.

6-4

GSX Reference Manual Interface Routine

Listing 6-2. FORTRAN-77 (Large Memory Model)
to GSX-86 Assembly Language Interface Routine

*
*

INTERFACE TO GSX-86 FROM C and FORTRAN-77 *
(Large Memory Model) *

*
Filename: GSXLARGE.A86 *

*
Calling sequence : *

GSX (contrl. intin. ptsin, intout, ptsout) *
*

Entry : return address on stack+0 *
pointer to array contrl on stack+4 *
pointer to array intin on stack+8 *
pointer to array ptsin on stack+12 *
pointer to array intout on stack+16 *
pointer to array ptsout on stack+20 *

*Exit : return address and parameters on stack t
*

Notes : calls bdos with DS:DX points at the location oE *
parameter block address on stack *

*
History : Sept. 28, 1983 rhk **
This routine points the data segment at the stack segment, *
and DX at the GSX parameter block on the stack frame, returns t
to the calling program without moving datas off the stack. *

*

Cseg
Public GSX

GSX:
GDOS EQU 224

Push ds ; Save caller DS.
Push bp ; Save caller BP.
Mov bp, sp : Create new stack frame.
Push es ; Save caller ES.
Push si ; Save caller SI.
Push di ; Save caller DI.

Mov ax, ss ; Move stack segment into ax
Mov ds, ax : Set DS to SS
Lea dx, 8[bp] : DX points to GSX parameter array

address
Mov ex, 0473h : GSX function number into ex

Int GDOS ; Call GDOS

6-5

GSX Reference Manual Interface Routine

Listing 6-2. (continued)

Pop di ; Restore caller DI
Pop si ; Restore caller SI
Pop es : Restore caller ES.
Pop bp ; Restore caller BP.
Pop ds ; Restore caller DS.
Retf : Return.

end

DIGITAL RESEARCH
FORTRAN-77
EXAMPLE

The following listing is an example of a FORTRAN-77
source program that uses the assembly language
interface routine for GSX.

Listing 6-3. Example FORTRAN-77 Source Listing

Q*A*«***t»«4*»AA*A***At*««*««t*it*it*t**1t*»i**«tA«»««»A**«t»«*A«A

c *

C File name : DEM0F77.F77 *
C *
C Purpose : Sample Fortran 77 program interfacing to GSX *
C using the assembly interface module, GSXSMALL.A86 *
C *
C Calls : GSX (contrl(l), intin(l) , ptsin(l), *
C intout(1), ptsout(l)) *
C *
C Uses : INCLUDE File "GSXDATA.F77" *
c :
C To link : link86 demof 77, gsxsmall (for small memory model) *
C «

C history : Oct. 04, 1983 rhk *
C *
C**

PROGRAM main

C* EXAMPLE PROGRAM demonstrating interface to GSX from Fortran 77
C* Link with assembly interface module, GSXSMALL.A86

^INCLUDE "GSXDATA.F77"

CHARACTER* 2 2 signon
CHARACTER*! reply

6-6

GSX Reference Manual FORTRAN-77 Example

Listing 6-3. (continued)

signon = 'Demo Fortran 77 - GSX'
xmin = 0
ymin = 0
xmax = 32767
ymax = 32767

C Open requested workstation
CALL initgsx

C Clear the display surface
CALL clearit

C Outline the display area
CALL drawframe

C Set line style to dotted line
CALL setattrib(SETLINETYPE, DOTTEDLINE)

C Draw a diagonal line
CALL doline (xmin, ymin, xmax, ymax)

C Set Character size
CALL settxthgt (800)

C Output text string
CALL dotext (8192, 16384, signon, 22)

C Set Fill pattern
CALL setattrib (SETFILLSTYLE, 2)

C Draw Bars
CALL drawbar (1200, 1200)

C Set Hatch fill style index
CALL setattrib (SETFILLSTYLE, 3)

C Draw more Bars
CALL drawbar (21968, 1200)

C Wait for a keyboard input
READ (5,900) reply

900 FORMAT (Al)

C Exit graphics
CALL closeit
STOP
END

C * End of Main Program ***************************************

6-7

GSX Reference Manual FORTRAN-77 Example

Listing 6-3. (continued)

C ***** INITGSX **
C * Get the graphics device id number
C * Open Graphics Device selected

SUBROUTINE initgsx

%INCLUDE 'GSXDATA.F77'

INTEGER*2 device

PRINT 'Which output device - '

PRINT ' 1 - CRT '
PRINT '11 - Plotter'
PRINT '21 - Printer'
PRINT ' ? '
READ (5,100) device

100 FORMAT (13)

C ***** OPEN REQUESTED WORKSTATION******************

OPCODE = OPENWORKSTATION
NPTSIN = ZERO
LENINTIN = TEN

WKID - device

C * Setup the initial default settings in integer input array
C * intin(l) - intin(lO)

LINETYPE = SOLIDLINE
LINECOLOR - ONE
MARKERTYPE = ONE
MARKERCOLOR = ONE
TEXTFONT = ONE
TEXTCOLOR - ONE
FILLSTYLE = HOLLOWFILL
FILLINDEX = ONE
FILLCOLOR = ONE

CALL GSX (contrl(l), intin(l), ptsin(l), intout(1), ptsout(1))
RETURN
END

6-8

GSX Reference Manual FORTRAN-77 Example

Listing 6-3. (continued)

C ***** CLEAR WORKSTATION **************************
SUBROUTINE clearit
%INCLUDE 'GSXDATA.F77'
OPCODE = CLEARWORKSTATION
NPTSIN = ZERO
CALL GSX (contrl(l), intin(l) . ptsin(l), intout(1), ptsout(l))
RETURN
END

c ***** DRAW A FRAME AROUND THE DISPLAY AREA ****

SUBROUTINE drawframe
%INCLUDE 'GSXDATA.F77'

C Use polyline to draw the box
OPCODE - POLYLINE

C Five vertices passed in array points input - ptsin
NPTSIN= 5
ptsin(l) = xmin
ptsin(2) = ymin
ptsin(3) = xmax
ptsin(4) - ymin
ptsin(5) = xmax
ptsin(6) = ymax
ptsin(7) = xmin
ptsin(8) = ymax
ptsin(9) = xmin
ptsin(lO) ■ ymin
CALL GSX (contrl(l), intin(l), ptsin(l), intout(1), ptsout(l))
RETURN
END

C ***** SUPPORT OUTPUT PRIMITIVE ATTRIBUTE SETTINGS ****

SUBROUTINE setattrib (cmd. inx)

INTEGER*2 cmd, inx

^INCLUDE 'GSXDATA.F77'

C Set attribute index function
OPCODE = cmd
NPTSIN = ZERO
LENINTIN = ONE
intin(1) = inx
CALL GSX (contrl(l), intin(l), ptsin(l), intout(1), ptsout(l))
RETURN
END

6-9

GSX Reference Manual FORTRAN-77 Example

Listing 6-3. (continued)

C ***** DRAWS a single segmented line using POLYLINE FUNCTION *
SUBROUTINE doline (xl, yl, x2, y2)
INTEGER*2x1, yl, x2, y2
%INCLUDE 'GSXDATA.F77'

OPCODE = POLYLINE
NPTSIN = 2
ptsin(O) = xl
ptsin(l) = yl
ptsin(2) = x2
ptsin(3) = y2
CALL GSX (contrl(l) , intin(l), ptsin(l), intout(1), ptsout(1))
RETURN
END

q ***** SET CHARACTER HEIGHT ***********************************
SUBROUTINE settxthgt (height)
INTEGER*2 height
%INCLUDE 'GSXDATA.F77'

OPCODE = SETCHARHEIGHT
NPTSIN = ONE

C Set points input X coordinate = 0
C Y coordinate = height in device units
ptsin(l) = ZERO
ptsin(2) = height
CALL GSX(contrl(l) , intin(l), ptsin(l), intout(l), ptsout(l))
RETURN
END

C ***** OUTPUT TEXT ***

SUBROUTINE dotext (x. y. string, len)

INTEGER*2 x, y, len, string(80)

%INCLUDE 'GSXDATA.F77'

OPCODE = TEXT
NPTSIN = ONE
NCHAR = len
TEXTXPOS = x
TEXTYPOS = y
CALL GSX (contrl(l), string(l), ptsin(l), intout(l), ptsout(l))
RETURN
END

6-10

GSX Reference Manual FORTRAN-77 Example

Listing 6-3. (continued)

c ***** draw 6 BARS USING GDP BAR FUNCTION ***********

SUBROUTINE drawbar (x, wide)

INTEGER*2 X, wide
INTEGER*2 left, bottom, right, top

%INCLUDE 'GSXDATA.F77'

DO 1000 i - 1, 6
C draw six Bars

left = x
bottom = x
right = x + wide
top = right
CALL setattrib(SETSTYLEINDEX, i)
CALL bar(left, bottom, right,top)
x = x + (wide / 2)

1000 CONTINUE

RETURN
END

SUBROUTINE bar (left, bottom, right, top)

INTEGER*2 left, bottom, right, top

^INCLUDE 'GSXDATA.F77'

C Use GDP BAR function

OPCODE = DRAWINGPRIM
LENINTIN = ZERO
NPTSIN = TWO
GDPID - ONE

C Lower left and upper right vertices passed in ptsin array
ptsin(l) =left
ptsin(2) » bottom
ptsin(3) - right
ptsin(4) - top
CALL GSX (contrl(l), intin(l), ptsin(l), intout(l), ptsout(l))
RETURN
END

6-11

GSX Reference Manual FORTRAN-77 Example

Listing 6-3. (continued)

C ***** CLOSE WORSTATION **********************

SUBROUTINE closeit

%INCLUDE 'GSXDATA.F77'

OPCODE = CLOSEWORKSTATION
NPTSIN = ZERO
CALL GSX (contrl(l), intin(l). ptsin(l), intout(1), ptsout(l))
RETURN
END

The following is the f ileGSXDATA. F77 for the
DEM0F77.F77 file.

C * Declare the five GSX parameter list arrays

INTEGER*2 contrl(20)
INTEGER*2 intin(100)
INTEGER*2 ptsin(lOO)
INTEGER*2 intout (100)
INTEGER*2 ptsout(lOO)
INTEGER* 2 xmin, ymin, xmax, ymax

C * common GSX PARAMETER array definitions

COMMON /GSXARRAY/ contrl, intin, ptsin, intout, ptsout
COMMON /EXTENT/ xmin, xmax, ymin, ymax

C Define the parameters for GSX opcodes

PARAMETER (OPENWORKSTATION = 1)
PARAMETER (CLOSEWORKSTATION = 2)
PARAMETER (CLEARWORKSTATION = 3)
PARAMETER (POLYLINE = 6)
PARAMETER (TEXT = 8)
PARAMETER (FILLAREA = 9)
PARAMETER (DRAWINGPRIM = 11)
PARAMETER (SETCHARHEIGHT = 12)
PARAMETER (SETLINETYPE =15)
PARAMETER (SETFILLSTYLE = 23)
PARAMETER (SETSTYLEINDEX = 24)

6-12

GSX Reference Manual FORTRAN-77 Example

Listing 6-3. (continued)

PARAMETER (GDPBAR = 1)
PARAMETER (SOLIDLINE = 1)
PARAMETER (DASHEDLINE = 2)
PARAMETER (DOTTEDLINE = 3)
PARAMETER (DASHEDDOTTED = 4)
PARAMETER (HOLLOWFILL » 0)
PARAMETER (SOLIDFILL = 1)
PARAMETER (PATTERNFILL = 2)
PARAMETER (HATCHFILL = 3)

PARAMETER (YES - 1)
PARAMETER (NO = 0)

PARAMETER (ZERO = 0)
PARAMETER (ONE = 1)
PARAMETER (TWO - 2)
PARAMETER (THREE = 3)
PARAMETER (FOUR = 4)
PARAMETER (TEN » 10)

C Define the integer input array entries for open workstation defaults

INTEGER*2 WKID, LINETYPE, LINECOLOR
INTEGER*2 MARKERTYPE, MARKERCOLOR
INTEGER*2 TEXTFONT, TEXTCOLOR
INTEGER*2 FILLSTYLE, FILLINDEX, FILLCOLOR

C Define equates to the control array entries

INTEGER*2 OPCODE, NPTSIN, NPTSOUT, NCHAR
INTEGER*2 LENINTIN, LENINTOUT, GDPI
INTEGER* 2 TEXTXPOS, TEXTYPOS

EQUIVALENCE (WKID, intin(l))
EQUIVALENCE (LINETYPE, intin(2))
EQUIVALENCE (LINECOLOR, intin(3))
EQUIVALENCE (MARKERTYPE, intin(4))
EQUIVALENCE (MARKERCOLOR, intin(5))
EQUIVALENCE (TEXTFONT, int in(6))
EQUIVALENCE (TEXTCOLOR, intin(7))
EQUIVALENCE (FILLSTYLE, intin(8))
EQUIVALENCE (FILLINDEX, intin(9))
EQUIVALENCE (FILLCOLOR, intin(10))

6-13

GSX Reference Manual FORTRAN-77 Example

Listing 6-3. (continued)

c*

EQUIVALENCE (OPCODE,contrl(1))
EQUIVALENCE (NPTSIN,contrl(2))
EQUIVALENCE (NPTSOUT,contrl(3))
EQUIVALENCE (LENINTIN,contrl(4))
EQUIVALENCE (LENINTOUT,contrl(5))
EQUIVALENCE (GDPID, contrl(6))
EQUIVALENCE (NCHAR, contrl(7))
EQUIVALENCE (TEXTXPOS, ptsin(l))
EQUIVALENCE (TEXTYPOS. ptsin(2))

End of Section 6

6-14

Index

A

address pointer to parameter
list, 3-1

address
control array, 2-1, 5-1
integer input array, 2-1,

5-1
argument passing
CBASIC, 5-1
Digital Research C, 4-1
FORTRAN-77, 6-1
Pascal/MT+, 2-1
PL/I, 3-1

array declaration
CB86, 5-1
Digital Research C, 4-2
FORTRAN-77, 6-2
Pascal/MT+, 2-3
PL/I, 3-2

array
control, 2-1, 5-1
integer input, 2-1, 5-1

arrays
parameter list, 2-1, 3-1,

4-1, 6-1

BX register, 3-1

calling conventions, 1-1
calling sequence

CBASIC, 5-1
Digital Research C, 4-1
FORTRAN-77, 6-1
Pascal/MT+, 2-1
PL/I, 3-1

calls to GDOS, 1-1
CB86, 5-1
CBASIC, 1-1
CBASIC Compiler, 5-1
compiler

CBASIC, 5-1
Digital Research C, 4-6
Pascal/MT+, 2-6
PL/I, 3-5

control array address, 2-1,
5-1

CP/M-80, 1-1
CP/M-86, 1-1
CX register, 2-1
D

declaration
array, Digital Research C,

4-2
array, FORTRAN-77, 6-2
array, Pascal/MT+, 2-3
array,PL/I, 3-2

declarations
array, CB86, 5-1

Digital Research C, 4-1
Digital Research C compiler,

4-6
Digital Research C linker, 4-6
direct graphics calls, 2-1,

3-1, 4-1, 6-1
distribution files, 1-2
DRC (Large Memory Model), 4-1
DRC (Small Memory Model), 4-1
F

FORTRAN-77, 6-1
FORTRAN-77 (Small Memory

Model), 6-1
FORTRAN-77(Large Memory

Model), 6-1
function code
GDOS, 2-1, 3-1, 4-1, 6-1

G
GDOS, 1-1
GDOS function code, 2-1, 3-1,

4-1, 6-1
graphics calls

direct, 2-1, 3-1, 4-1, 6-1
Graphics Device Operating

System, 1-1
Graphics System Extension, 1-1
GSX, 1-1
GSX routine, 3-1

INDEX-1

integer input array address,
2-1, 5-1

interface routine
Digital Research C, 4-1, 4-2
FORTRAN-77, 6-1, 6-2
Pascal/MT+, 2-1
PL/I, 3-1, 3-2

L
linker
Digital Research C, 4-6
Pascal/MT+, 2-6
PL/I, 3-5

listing
source, Digital Research C,

4-6
source, FORTRAN-77, 6-6
source, Pascal/MT+, 2-6
source, PL/I, 3-5

interface, FORTRAN-77, 6-1,
6-2

interface, Pascal/MT+, 2-1
interface, PL/I, 3-1, 3-2

routines
interface, 2-1

sequence
calling, CBASIC, 5-1
calling, Digital Research

C, 4-1
calling, FORTRAN-77, 6-1
calling, Pascal/MT+, 2-1
calling, PL/I, 3-1

source listing
Digital Research C, 4-6
FORTRAN-77, 6-6
Pascal/MT+86, 2-6
PL/I, 3-5

memory models, 4-1, 6-1
models

memory, 4-1, 6-1
P
parameter list arrays, 2-1,

3-1, 4-1, 6-1
parameter passing

CB86, 5-1
Pascal/MT+, 1-1, 2-1
passing

argument, CBASIC, 5-1
argument, Digital Research

C, 4-1
argument, FORTRAN-77, 6-1
argument, Pascal/MT+, 2-1
argument, PL/I, 3-1
parameter, 5-1

PL/I, 1-1, 3-1
PL/I compiler, 3-5
PL/I linker, 3-5

VDI, 1-1, 2-1, 3-1, 4-1, 6-1
Virtual Device Interface, 1-1

routine
GSX, 3-1
interface, Digital Research

C, 4-1, 4-2
INDEX-2

I

https://acpc.me/

CPC

[FRA] Ce document a été préservé numériquement à des fins éducatives et d'études, et non commerciales.
[ENG] This document has been digitally preserved for educational and study purposes, not for commercial purposes.
[ESP] Este documento se ha conservado digitalmente con fines educativos y de estudio, no con fines comerciales.

	GSX HANDBOOK
	GSX-86 Graphics Extension User’s Guide
	Foreword
	Table of Contents
	Tables and Figures
	Section 1 - Overview
	Section 2 - Starting GSX-86
	Section 3 - Introduction to GINSTALL
	Section 4 - GINSTALL Functions
	Appendix A - GSX-86 Error Messages

	GSX Graphics Extension Programmer’s Guide
	Foreword
	Table of Contents
	Appendixes
	Tables and Figures

	Section1 - Introduction
	Section 2 - PROGRAMMER’S OVERVIEW
	Section 3 - GDOS
	Section 4 - GIOS
	Section 5 - OPERATING PROCEDURES
	Appendix A - GSX CALLING CONVENTIONS FOR CP/M
	Appendix B - GSX CALLING CONVENTIONS FOR CP/M-86, IBM PC DOS, AND MS-DOS
	Appendix C - VIRTUAL DEVICE INTERFACE (VDI) SPECIFICATION
	Glossary
	Index

	GSX™ Graphics Extension Programmer’s Language Reference Manual
	Foreword
	Table of Contents
	Table, Figures, and Listings
	Section 1 - OVERVIEW
	Section 2 - Pascal/MT+
	Section 3 - PL/I
	Section 4 - Digital Research C
	Section 5 - CBASIC COMPILER (CB86)
	Section 6 - FORTRAN-77
	Index

	
✅ Raw HQ scan : Maxime CROIZER for ACME
✅ Cleaning/Restoration/Layout/OCR : ACME – https://acpc.me
✅ Thanks to Rafa CPCMANIACO for lending the book
✅ 2021-04-16

