
GE~/3 Programmer's Toolkit""

Release 3.1 Supplement

[Q] DIGITAL RESEARCH ®

GEM@/3 Programmer's ToolkifM

Release 3.1 Supplement

Copyright© 1989 Digital Research Inc. All rights reserved. GEM is a registered trademark
and Desktop, Draw Plus, FlexOS, Programmer's Toolkit, and XlGEM are trademarks of
Digital Research Inc. Turbo C and the Turbo Assembler are registered trademarks of
Borland International, Inc. MetaWare and High C are trademarks of MetaWare Inc. Atari
is a registered trademark of Atari Inc. Ventura Publisher is a registered trademark of
Ventura Software, Inc. Xerox is a registered trademark of Xerox Corporation. Bitstream
and Fontware are registered trademarks of Bitstream, Inc. PostScript is a registered
trademark of Adobe Systems, Inc. Hewlett-Packard and LaserJet are registered
trademarks of Hewlett-Packard Corporation. IBM is a registered trademark and VGA and
Personal System/2 are trademarks of International Business Machines Corporation.
Epson is a registered trademark of Seiko Epson Corporation. Microsoft is a registered
trademark of Microsoft Corporation. Mouse Systems and PC Mouse are trademarks of
Mouse Systems Corporation. Summamouse, SummaSketch, and Summagraphics are
trademarks of SummaGraphics Corp.

Foreword

This supplement updates the information contained in the documentation
set of GEM® Programmer's Toolkit™. Recent changes to the toolkit software
have both enhanced existing features and added new functionality.

The GEM 3.1 Programmer's Toolkit Supplement describes the new install
library utility (INSTLIB), new function calls added to the GEM programming
libraries, and updates to the GEM Applications Environment Services (AES)
and GEM Virtual Device Interface (VDl).

In Chapters 1 and 2 of this supplement, there is information C)bout how to
use the new install library utility to install the sources of the new GEM bind­
ings on your hard disk. You can choose from any of the following C lan­
guage compilers and versions:

• Borland Turbo C® - 1.0 to 2.0
• Microsoft® C Compiler - S.x
• Meta Ware ™ High CTM - 1.4 and 1.5
The installation utility also lets you select which libraries you want to install.
How you choose to have the libraries built depends on optimization.

Chapters 2 through 8 deal with the new function calls added to the GEM
Programming libraries. The library descriptions are divided into these
categories:

• Extended Object Library
• Extended Raster Library
• Tr<)nsformation Library
• Miscellaneous Library
• DOS Library
• Expanded Memory System (EMS) Library
Chapters 9 through 12 contain the information required to bring the GEM
Application Environment Services Reference Guide and the GEM Virtual
Device Interface Reference Guide up to Release 3.1 of the GEM system
software (GEM/3).

GEM/3 Programmer's Toolkit Supplement iii

Contents

1

2

Installation
Starting the Install Library Application (INSTUB.APP)

Selecting the Compiler
Selecting Library Organization
Selecting Libraries
Installing the Libraries
Editing PORTAB.H

Compiler Notes
Turbo C ••••••.•.•.••

TURBOC.CFG (TCC Configuration File)
Examples ••••••••.•••
BUILTINS.MAK (MAKE Definition File)

Microsoft C • • • • • . • . • . . .
TOOLS.INI (Microsoft C Initialization File)
Examples ••••••••.•••
INCLUDE and LIB (Microsoft C Environment Variables) ••••

Meta Ware High C ••••••.••••.•.••
Meta Ware MAKE •••••.••••.•••
Runtime Startup for High C(INIT.OB]) •••••.•
CALUNT Function of MetaWare High C (CALUNT.OBJ)
Memory Model Constraints

Compiling the Bindings

3 Extended Object Library
OB_D 0 STATE
OB_UND 0 STATE
OB_ISSTATE
OB_DOFLAG
OB_UNDOFLAG
OB_ISFLAG
OB_XYWH
OB_GET_TEXT ••••
OB_SET_TEXT
OB_DRAW_DIALOG
OB_UNDRAW_DIALOG

GEM/3 Pr()grammers Toolkit Supplement

• 1-1
• 1-3
.1-4

· 1-7
• 1-7

• 2-1
• 2-1
• 2-2
• 2-3
• 2-4
• 2-4
• 2-4
• 2-5
· 2-6
• 2-6
· 2-7
• 2-7
• 2-7
• 2-8

• 3-2
• 3-3
• 3-4
• 3-5
• 3-6
• 3-7
• 3-8
• 3-9
3-10
3-11
3-12

v

Contents

4 Extended Raster . Library
RC_EQUAL
RC_COPY • • • • • • •
RC_INTERSECT • • • •
RC_INSIDE • • • • • . • • • •
RC_GRECT_TO_ARRAY

5 Transformation Library
X_SXFORM
X_SASPECT ••
X_YTOX
X_UDX_XFORM
X_UDY_XFORM
X_DUX_XFORM
X_DUY_XFORM
X_UDX_SCALE
X_UDY_SCALE
X_DUX_SCALE
X_DUY_SCALE •
X_MVL_DIV .

6 Miscellaneous Library
FARDR_START
FARDR_END

7

FARDR_CS
FORM_EXDO
FIX_ICON
EVNT_EVENT

DOS Function Library
DOS_CHDIR
DOS_GDIR
DOS_GDRV
DOS_SDRV
DOS_SDTA
DOS_GDTA
DOS_SFIRST

. . . • • 4-2
4-3
4-4
4-5
4-6

• • • • • 5-2
5-3
5-4
5-5
5-6

• • • • • • • • • 5-7
5-8
5-9

• • • 5-10
• 5-11
• 5-12

• • • • • • 5-13

6-2
6-3
6-4
6-5
6-6
6-7

7-2
7-3
7-4
7-5
7-6
7-7
7-8

vi GEM/3 Programmers Toolkit Supplement

Contents

DOS_SNEXT · · . • 7-9
DOS_OPEN · · · 7-10
DOS_CLOSE · · · · · 7-11
READ_PIECE · · · · · 7-12
DOS_READ · · · · · · 7-13
DOS_LSEEK · . · · · · 7-14
DOS_WAIT · · · · 7-15
DOS_ALLOC · · . · · · · · · · 7-16
DOS_AVAIL 7-17
DOS_FREE · · · · · 7-18
DOS_SPACE · · · · · · 7-19
DOS_RMDIR · · · 7-20
DOS_CREATE · · · · 7-21
DOS_MKDIR · · · · · · · · · 7-22
DOS_DELETE · · · · · · · · · 7-23
DOS_RENAME · · · · 7-24
WRITE_PIECE · · · · · 7-25
DOS_WRITE · · . · · · · 7-26
DOS_CHMOD · · · · 7-27
DOS_SETDT · · . · 7-28
DOS_GETDT · · · 7-29
DOS_EXEC . 7-30
DOS_GETDATE · · · 7-31
DOS_SETDATE · · · · · · · · · · · · 7-32
DOS_GETTIME · · · · 7-33
DOS_SETIIME · · · · · · · · 7-34
DOS_VERSION 7-35

8 EMS Library
EMS_INST • 8-2
EMS_ERRCODE · · · · • 8-3
EMS_NUM_PAGE · · · · · • 8-4
EMS_FREE_P AGE · • 8-5
EMS_FRAME_SEG · · · · · • 8-6
EMS_ALLOC · · • 8-7
EMS_MAP • 8-8

GEM/3 Programmers Toolkit Supplement vii

Contents

9

EMS_FREE ••••
EMS_ VERSION
EMS_SA VE_MAP • . •
EMS_RESTORE_MAP
EMS Error Codes

GEM AES and VOl Update
GEM AES Supplement

MENU_CLICK •..
MENU_BAR
Event Library Calls

GEM VDI Supplement
Changes and Corrections
GDOS Modifications
V _OPNWK (1H)
V JUSTIFIED (B-AH)
Memory Form Definition Block
VQ_EXTND (66H) ••.•
V _PLINE(6H) and V _FILLAREA(9H)
VSF _XPERIMETER (68H)
V _ALPHA_TEXT (5-19H)
.OUT File Format • . . .
Font Header Format
B it Image File Format
Bit Image File Data Format
V_COPIES (5-1CH)
V _ETEXT (B-BH) • • • .
V_ORIENT (5-1B) ••.•

. V_TRAY(5-1D) ••••
VST_EX_LOAD_FONTS (77H)
V_SET _APP _BUFF (FFFF-6H)
V _BEZ_ON (B-CH)
V _BEZ_OFF (B-CH)
V_BEZ (6-CH)
V _BEZ_FILL (9-CH)

• • • • 8-9
· • • • . • • • • 8-10

• • 8-11
• 8-12

. • • • • 8-13

. • . . • • • . • • • • 9-1
9-2
9-3

• • • • 9-4
9-5
9-5
9-7
9-9

· 9-11
· 9-13
• 9-14

• • • • • • • • • 9-16
• • • • • • • • • 9-17

• 9-18
• 9-19
• 9-20
• 9-22
• 9-23
• 9-25
• 9-26

• • • . • . • • • 9-28
• 9-29
• 9-30
• 9-32

. • 9-34
• • • . • • • • • 9-35

. . • . • 9-36
. . • • 9-38

viii GEM/3 Programmers Toolkit Supplement

V _BEZ_QUAL (S-63H) • • •
VS_BKCOLOR (5-66H)
VS_ GRAYOVERRIDE (8SH)
V_PAT_ROTATE(86H)
V _SETRGBI (5-4844H)
V _ TOPBOT (5-4845H) . • .

Contents

· - . · . . .
• • 1# •

V _PS_HALFfONE (5-20H) ••• •

940
9-41
9-42
9-43
9-44
9-4S
9-46

10 Files and Devices Update
DDF Files ••••

Sample DDF Files
CNF Files ••••
GEM Font Drivers ••••••
Hewlett-Packard Soft Font Drivers
PostScript Driver • • • •
ATM Files ••••.••••

11 GEM Setup Text Files
GEMSETUP.MSG
Pointer Codes • • • •
GEMSETUP.TXT

Device Names •

GEM/3 Programmers Toolkit Supplement

, .
. . . . · . .

. • • · . . . • • •

· · . .
~ . .. ~ . . . ·

· .

10-1
10-4
10·7
lo.7
10-8

• 10-10
• 10-12

· .,. .

11·1
11·2
11-4
11·7

ix

Section 1
Installation

Before you can install the new libraries, you must install the GEM system
software on your hard disk according to the instructions listed the GEM@/3
DesktopTM Installation Guide. Once you have successfully installed the GEM
Desktop, you will use the GEM Install application INSTALL.APP to install
the Install Library application (INSTLIB.APP).

Follow these basic steps to generate GEM bindings for your compiler from
sources.

1. Install the GEM system software.

2. From the GEM Desktop, run INSTALL.APP to install the Install Library
application (INSLIB.APP). The Desktop will automatically create a folder
(directory) called TOOLKIT off of the root directory of the drive you
specify.

3. Start INSTLIB.APP.

4. Select the compiler you want to use.

5. Select how you want the library organized.

6. Select the libraries you want to use.

After the installation procedures are complete, you must edit one file
(PORTAB.H) to ensure that the correct compiler is selected for the bindings.

Starting the Install Library Application (INSTLIB.APP)

Use INSTLIB.APP, the install library application, to install the sources of the
GEM bindings on your hard disk for use with your favorite compiler.

1. Type GEM at the DOS prompt to load the GEM Desktop.

2. Change the directory to \ TOOLKIT\BINDINGS on the drive where you
have installed the Programmer's Toolkit.

GEM/3 Programmer's Toolkit Supplement 1-1

Starting the Install Library Application (INSTUB.APP)

1-2

3. Double-click on the INSTLIB.APP icon. You will see the following screen
displayed:

1101 6EM PrograPllllerJs Toolkit
Librar~ Installation Utilit~

I\.£LEASE 3. I. AUGUST $1>

COPipiler
Hodd
libraries 6EMlJ_AESJ 6EHl3_UDI, EKpanded_MePlD~,

Operatin9_SystePlJ Enhanced_Objects J

Raster Functions, TransforPlationsJ
Miscellaneous J

Note the information box at the bottom of this screen. The first time you load
INSTLIB.APP, all the libraries are installed, but the Compiler and Model
fields are unassigned. The next time you load INSTLIB.APP, all three fields
will be cleared so you can select new options if you have modified the bind­
ings.

When you are ready to select your compiler type and library model, click on
Installation in the menu bar to see the Installation Menu. There are four com­
mands in the Installation Menu:

• Compiler
• Library model
• Libraries
• Install

GEM/3 Programmer's Toolkit Supplement

Selecting the Comp!ler Starting the Install Library Application (lNSTUB.APP)

If this is your first installation, you will notice that the Libraries option is
grayed-out; this is because all the libraries will be installed for you automat­
ically. The next time you load INSTLIB.APP, this option will be available. To
continue with the installation process, click on the Compiler option in the In­
stallation Menu.

Note: The dialog handling in INSTLIB.APP differs from standard GEM
dialog handling. INSTLIB.APP has been built with the new FORM_EXDO
call that comes with version 3.1 of the GEM Programmer's Toolkit. With this
new dialog handling, you can press Ctrl-A, Ctrl-B, Ctrl-C and so on to select
buttons in dialogs. You can press Shift-Enter instead of Enter to automat­
ically select the default button, and press the End key to automatically cancel
the current operation.

Selecting the Compiler

After you select Compiler from the Installation Menu, you will see this
dialog.

To install the sources,
select one of the three
compilers by clicking on
its button. Click on the
compiler of your choice
to highlight your selec­
tion.

Click on the OK button to
continue; otherwise, click
on Cancel to return to the
INSTLIB Main Menu.

Digital Research - Binding-Installation

Which (-coRpiler do 90U want to use?

Turbo-C I 1-1 _M:,:S--"-C'----', 1 High-C

Cancel

After you select your compiler, it will be listed in the information box at the
Main Menu.

GEM/3 Programmer's Toolkit Supplement 1-3

Starting the Install Library Application (INSTLlB.APP) Selecting Library Organization

1-4

Selecting Library Organization

From INSTLIB's Main Menu, click on Installation in the menu bar. From the
Installation Menu, select the Library model command; you will see this
dialog.

Before selecting the library model, you should be aware that you will need at
least 6 megabytes of free disk space if you select the Separated library or­
ganization. If you select Common or Library, you will need at least 4
megabytes of free disk space. The compile time will vary depending on your
system configuration, but generally the compile time takes at least 1.5 hours.
Detailed descriptions of the binding options follow this section.

From this dialog, select how you want your library organized. Click once on
the binding installation of your choice. Double-click on any of the three
library buttons to see a brief description of the binding options.

When you have finished, click on the OK button to return to the Main Menu;
otherwise, click on the Cancel button. When you return to the Main Menu,
the Model field in the information box will reflect your selection.

If this is your first in-
stallation, you are
ready to select the In­
stall option from the In~
stallation Menu. When
you click on Install, the
installation process
begins; INSTLIB
provides on-screen
messages indicating
which files are being
written to your hard
disk. The sources will

Digital Research - Binding-Installation

How would you prefer to install
~our 6EMl3-Bindings?

~-=(o=m=~o=n __ ~1 ~I ~[=l=br=ar~v~~1 ~I -=Se~p=ar=a=te=d~

Cancel OK

be copied onto your hard disk in \ TOOLKIT\GEMLIB in the appropriate
subdisrectories.

When the installation process is complete, you will see a message telling you
to modify the PORTAB.H file. For more information, refer to uEditing POR­
TAB.H" later in this section.

GEM/3 Programmer's Toolkit Supplement

Selecting Library Organization Starting the Install Library Application (INSTLIB.APP)

COMMON
If you select COMMON, each collection of library routines are held in one
source file; the entire GEM library will contain only seven files. This is how
the earlier version of the toolkit handled bindings. The disadvantage of this
method is that if you write a small application, all the AES and/ or VDI func­
tions are linked in with the application. This can cause applications to grow
unnecessarily large because routines that are not called are still included.

The COMMON installation requires the least disk space and compile time.
About 24 files will be created (including header and ancilliary files).

LIBRARY

If you select LIBRARY, the larger sources (AESBIND and VDIBIND) are split
into several modules containing functions that are part of a specific category
(SHEL_???, APPL_???, and so on). Use this option to save space if you are
not using specific libraries. If you use APPL_INIT, APPL_ WRITE or any
other APPL_ calls, then all the routines in that category will be bound to the
application regardless of whether they are called or not.

The LIBRARY installation is a compromise of COMMON and SEPARATE. It
does not require a large amount of disk space and it significantly reduces
compile time. Applications built using the libraries created with this option
will not be fully size optimized. About 43 files will be created.

SEPARATED

If you select SEPARATED, all sources are split into several modules; each
module contains one function. Only those functions that are used in the ap­
plication source are bound to the application. This is how all standard·
libraries (like STDLIB of Microsoft C Compiler and Turbo C) are now built.

This kind of installation requires at least 6 Megabytes of disk space and
about one and a half hours to compile the bindings. A SEPARATED installa­
tion provides the greatest saving in terms of smaller applications. About 319
files will be created.

Note: If disk space is an issue and you do not intend to modify the source of
the bindings in the future, you can delete all the library source files after you
have built your GEM/3 libraries.

GEM/3 Programmer's Toolkit Supplement 1-5

Starting the Install Library Application (INSTUB.APP) Selecting Libraries

1-6

Selecting Libraries

If this is not your first installation, you have the option of installing a subset
of all the GEM libraries. With this feature, you can easily modify portions of
your the bindings. During the actual installation of the libraries, you can
choose not to overwrite the existing sources and save yourself a substantial
amount of time.

If you want to install all the GEM libraries or a subset, load INSTLIB.APP (as
described in "Starting the Installation Application" earlier in this section).

From the INSTLIB Main Menu, select Installation from the menu bar. From
the Installation Menu, click on the Libraries option. You will see this dialog.

Digital Research - Binding-Installation

Expanded l1ell'Jon

Transfomations

Cancel

Which libraries do 90U want
to install?

Enhanced_Objects

Miscellaneous'

All of then

Raster __ Functions

OK

From this dialog, select the libraries you want to install. Select any combina­
tion of libraries that you want. As you click on each button, it is highlighted.
If you double-click on a button, you will see a brief description of that library.

When you have selected all the libraries that you want to install, click on the
OK button; otherwise, click on Cancel.

You will return to the Main Menu. The Libraries field in the information box
will be updated to reflect your current library selections.

GEM/3 Programmer's Toolkit Supplement

Installing the Libraries Starting the Install Library Application (INSTUB.APP)

Installing the Libraries

To start the installation process, click on Install in the Installation Menu. IN­
STLIB.APP provides complete information about what is happening as it in­
stalls the libraries.

Editing PORT AB.H

When the source installation is complete, you will see a message instructing
you to edit PORT AB.H so the bindings agree with your compiler type. From
INSTLIB's Main Menu, select Quit from the File Menu.

The file PORTAB.H is located in \ TOOLKIT\INC. The identifier, which
specifies the compiler in use, is located at the beginning of this file. Set
#define for the selected compiler to 1 (one) and the other compiler's iden­
tifiers to 0 (zero). For example, if you selected Turbo C as your compiler, the
identifier would look like this:

#define
#define
#define

1

o
o

/*selected*/
/*not selected*/
/*not selected*/

Note: Remember to save PORTAB.H after you modify it.

GEM/3 Programmer's Toolkit Supplement 1-7

Section 2
Compiler Notes

The following notes provide information about how to use the GEM/3 bind­
ings with the supported compilers:

• TurboC
• Microsoft C
• HighC

TurboC

Using the GEM/3library with Turbo C is particularly well supported. To
use the library, however, you should be aware of the following information.

TURBOC.CFG (TCC Configuration File)

You must create a file named TURBOC.CFG in the directory where you have
installed Turbo C. This file holds options and directives which are used by
the Turbo C compiler (TCC.EXE) when it is started.

To use the GEM/3library, TURBOC.CFG must contain the following addi­
tional directives required for GEM/3 programming:

-ml or -ms

The -ml directive in TURBO.CFG tells TCC.EXE to use the large memory
model; -ms indicates the small memory model. It is recommended, that you
use the large model if you are not fully familiar with the procedure for writ­
ing GEM/3 applications or with operation of the GEM/3 Toolkit.

-X?:\TOOLKIT\INC

Replace the question mark (?) in the preceding example with the drive letter
that contains the GEM/3 bindings. This directive defines the include path
that TCC.EXE uses to search for header files. You can specify this directive as
many times as necessary. You should also specify the Turbo C include direc­
tory in TURBOC.CFG (for example -I?:\ TC\INCLUDE).

Note: Be sure that PORTAB.H is not located in the Turbo C include direc­
tory. If it is, you must either rename it or place the GEM/3 include directory
in front of the Turbo C include directory. This ensures that the PORTAB.H

GEM/3 Programmer's Toolkit Supplement 2-1

Turbo C Examples

file that comes with your GEM/3 Programmer's Toolkit is the one you use
for any GEM/3 development.

-L?:\TOOLKIT\GEMLIB

Replace the question mark (?) in the preceding example with the drive letter
that contains the GEM/3 bindings. This directive defines the path that
TCC.EXE uses to search for the GEM libraries. If you copy the GEM/3
library you built to the Turbo C library directory (?: \ TC\ LIB), then you will
not need to specify this line. You must specify the Turbo C library directory,
regardless of whether you specified the GEM library directory or not.

Note: Do not modify other lines in TURBOC.CFG if you are not familiar
wi th their meanings.

Examples

2-2

This example lists the contents of C: \ TC\ TURBOC.CFG for building a large
memory model library on Drive D with Turbo C installed on Drive C.

-ml.

-IC:\TC\INCLUDE
-ID:\TOOLKIT\INC
-LC:\TC\LIB
-LD:\TOOLKIT\GEMLIB

GEM/3 Programmer's Toolkit Supplement

BUILTINS.MAK (MAKE Definition File) Turbo C

BUILTINS.MAK (MAKE Definition File)

To use Turbo C's MAKE utility, you must create a file to hold the standard
rules MAKE uses for compiling and assembling your source files. The file
BUILTINS.MAK should be located at the same directory where your
MAKE.EXE is located and should contain the following:

.e.obj:
tee -e $*

• asm.obj :

tasm $* /J.IIX;

Note: Be sure that the spaces before "tcc" and "tasm" are created by pressing
the tab key, not the spacebar.

If you use Microsoft's Macro Assembler (MASM) as your assembler, replace
the Turbo Assemble:r®'s T ASM command with the MASM command:

Instead of:

masm $* /J.IIX;

Write:

tasm $* /J.IIX;

You must also modify the makefile for the Miscellaneous Library. Modify the
line that calls the assembler for building F ARDRA W.OBJ, including all text
between the second and third slashes (/ d_SMALL_) as follows.

tasm /dTC /d __ SMALL / mx fardraw.asm fardraw.obj

GEM/3 Programmer's Toolkit Supplement 2-3

MicrosoftC TOOLS.INI (Microsoft C Initialization File)

MicrosoftC

2-4

Using Microsoft C with the GEM/3library is as straightforward as using
Turbo C. Follow the steps below so that Microsoft C can find all the required
paths.

TOOLS.INI (Microsoft C Initialization File)

All Microsoft C utilities can read a common configuration file. This file is
named TOOLS.INI. The path to this file must be specified in the environment
variable INIT. For example, if the TOOLS.INI file is in E:\MSC\BIN, the vari­
able INIT should be set as:

SET INIT=E:\MSC\BIN

You can put .this command in a batch file, such as AUTOEXEC.BAT. The
TOOLS.INI file is created automatically when you invoke the toolkit installa­
tion utility INSTLIB.APP in \ TOOLKIT\BINDINGS. The environment vari­
able INIT is set automatically when you start MAKELIB.BAT.

If you have your own TooLS.INI file that you want to use, remove
TOOLS.INI from the GEMLIB directory and delete the following line from
MAKELIB.BA T:

SET INIT=\TOOLKIT\GEMLIB

Examples

You must edit TooLS.INI to set the compiler switch option to correspond to
the memory model you are building. The first example sets the compiler
switch option in TOOLS.IN! for the small memory model.

Edit TOOLS.INI for the small memory model like this:

[MAKE]

.c.obj:
cl -c -AS -Gs -Oas -Zl -I\TOOLKIT\INC $*.c

.asm..obj:
masm $* /DMSC /MX;

GEM/3 Programmer's Toolkit Supplement

INCLUDE and UB (Microsoft C Environment Variables)

In this example, edit TooLS.INI for the large memory model:

[MAKE]

.c.obj:
c1 -c -AL -Gs -Oas -Z1 -I\TOOLKIT\INC $*.c

.asm.obj:
masm $* /DMSC /'MX;

INCLUDE and LIB (Microsoft C Environment Variables)

You must also set the environment variables LIB and INCLUDE as follows
so Microsoft C can find the required header files and libraries:

SET INCLUDE = ?:\TOOLKIT\INC;?:\MSC\INCLUDE

and

SET LIB = ?:\MSC\LIB;?:\TOOLKIT\GEMLIB

Replace the question mark (?) in the preceding examples with the drive letter
that contains the header files and librariess.

Setting environment variables can cause the operating system error, "Out of
environment space." If this occurs, type the following line in your CON­
FIG.SYS file:

SHELL=COMMAND.COM/e:512/p

Save CONFIG.SYS and reboot your system. The SHELL command with
these parameters specified will increase your environment space, allowing
you to set all the needed environment variables for Microsoft C.

You must also modify the makefile for the Miscellaneous Library. Modify the
line that calls the assembler for building F ARDRA W.OBJ, including all text
between the second and third slashes (/ d __ SMALL __) as follows.

masm /dMSC /d __ SMALL __ /mx. fardraw.asm fardraw.obj

GEM/3 Programmer's Toolkit Supplement 2-5

Meta Ware High C Meta Ware MAKE

Meta Ware High C

2-6

There are a few restrictions when using this GEM/3 Programmer's Toolkit
with the Meta W are High C compiler that are described at the end of this sec­
tion. To use the GEM/3 bindings with MetaWare High C, you should be
aware of the following.

Meta Ware MAKE

Because Meta Ware does not have its own MAKE utility, you will have to ob­
tain one from another vendor. The makefiles for High C supplied with these
GEM/3 bindings are configured for the NDMAKE utility. NDMAKE can be
obtained from these sources:

US MAIL:

UUCP:

ARPANET:

BITNET:

D. G. Kneller
1032 Irving Street 439
San Francisco, CA 94122

... ucbvax!ucsfcgl!kneller

kneller@cgl.ucsf.edu

kneller@ucsfgl.BITNET

You can use any other MAKE u tiIi ty (for example Borland's or Microsoft's),
but you will have to edit the makefiles. Refer to the makefiles for GEM/3
bindings, Turbo C, or Microsoft C as an example.

Before you run MAKELIB.BAT, you must set up the High C compiler. To
configure the High C compiler, start CONFIG.EXE located in the High C
directory.

Specify the following settings (if necessary):

C Memory_model 'BIG'
D Tpages 150
M Ipath '?:\toolkit\inc\'
J Angle-include path '?:\HC\INCLUDE\'

Note: The 'BIG' memory model in High C corresponds to the 'LARGE'
memory model in Turbo C and Microsoft C.

GEM/3 Programmer's Toolkit Supplement

Runtime Startup for High C (INIT.OBI) Meta Ware High C

All the paths specified in the configuration must end with a backslash {\)i
otherwise High C will not find the paths. The question marks (?) should be
replaced with the drive letter on which the specified directories are located.

Runtime Startup for High C (INIT.OBJ)

When you install your High C compiler, the runtime startup code is built for
the MetaWare High C heap manager. Because GEM/3 also needs memory
for resources, you must assemble the INIT.ASM file located in the directory
\HC\UB\SRC.

Before assembling, edit INIT.ASM to define the following macros. Both state­
ments appear as comments in the assembler file, so be sure to remove the
semicolon at the beginning of each line.

iUSE_DOS_ALLOC = 1

This tells High C to use the DOS alloc-functions when enlarging the heap.

;STACK_S~ZE = XXXX

XXXX is the number of bytes you want to have available for the stack. 2000 is
a typical stack size for most applications. You must specify the size because
the stack is not automatically aligned when High C uses the DOS functions.

CALLI NT Function of MetaWare High C (CALLINT.OBJ)

Because Metaware High C allows functions to pop their own parameters,
you will also have to modify CALLINT.ASM located in \HC\LIB\SRC. At
the end of this source, you will find that call intO returns and pops two bytes
off the stack ("return 2"). Because the functions VDIO and GEM() also pop
their passed word, edit CALLINT.ASM and delete the digit 2 from the callint
statement.

Note: If you do not make this deletion, your system will crash!

Memory Model Constraints

Meta Ware High C parses differently than Microsoft C or Turbo C by parsing
the keyword 'far'. This makes it difficult to use High C to create GEM/3 bind­
ings for the small memory model without editing the binding sources.

GEM/3 Programmer's Toolkit Supplement 2-7

Compiling the Bindings Memory Model Constraints

To avoid this restriction, modify all definitions with the keyword 'far' as
described in the High C manual.

Creating Meta Ware High C bindings for the small memory model can be dif­
ficult. This is due to the runtime start-up module for High C (INIT.ASM).
INIT.ASM does not use DOS memory functions for heap management in the
small memory model. The bindings are created using the small memory
model. You can also bind an application. Because INIT.ASM does not free
any memory after loading the program, GEM is unable to obtain memory
from DOS for resources or variable data.

Compiling the Bindings

2-8

After you have modified PORT AB.H, change the current directory to
\ TOOLKIT\ GEMLIB and type the following command:

MAKELIB L

MAKELIB S

To build bindings for the large memory model

To build bindings for the small memory model

This command starts MAKELIB.BAT compiles all the binding sources and
creates the GEM library. Specifying the L or S parameter with the MAKELIB
command changes only the name of the library (L TCGEM.LIB to
STCGEM.LIB).

To ensure that your compiler is building the specified memory model,
modify either TURBOC.CFG (changing -ml to -ms) or TOOLS.INI (changing
-AL to -AS). For examples, refer to "TURBOC.CFG" or "TOOLS.INI" earlier
in this section for more information.

GEM/3 Programmer's Toolkit Supplement

Section 3
Extended Object Library

This section describes changes and additions to the Extended Object Library
provided with this revised GEM/3 Programmers Toolkit. The Extended Ob­
ject Library contains utility functions for the manipulation of object struc­
tures.

The descriptions assume a knowledge of GEM library call structures and
parameter conventions. For further details of these and other GEM system
calls, refer to the GEM Application Environment Services Reference Guide.

GEM/3 Programmer's Toolkit Supplement 3-1

OB DOSTATE

This function sets the specific state (SELECTED, HIDETREE, DISABLED,
and so on) in the word ob_state of an object.

Input Arguments

tree object tree that contains the specified object

index of object within tree index

state state to set in ob _state

Output Arguments

none

Sample Call to C Language Binding

VOID ob_dostate();

OBJECT FAR *tree;

WORD index, state;

ob_dostate(tree, index, state);

3-2 GEM/3 Programmer's Toolkit Supplement

OB UNDOSTATE

This function clears the specific state (SELECTED, HIDETREE, DISABLED,
and so on) in the word ob_state of an object.

Input Arguments
tree

index

state

Output Arguments

none

object tree that contains the specified object

index of object within tree

state to clear in ob _state

Sample Call to C Language Binding

VOID ob_undostate();

OBJECT FAR *tree;

WORD index, state;

ob_undostate(tree, index, state);

GEM/3 Programmer's Toolkit Supplement 3-3

OR ISSTATE

This function gets the'state (SELECTED, HIDETREE, DISABLED, and so on)
in the word ob_state of an object.

Input Arguments

tree

index

state

Output Arguments

ret

object tree that contains the specified object

index of object within tree

states to be tested

TRUE if state is set

FALSE if state is not set

Sample Call to C Language Binding

WORD ob_isstate();

OBJECT FAR *tree;

WORD index, state, ret;

ret = ob_isstate(tree, index,state);

3-4 GEM /3 Programmer's Toolki t Su pplement

DB DDFLAG

OB_DOFLAG

This function sets the specific flag (SELECTABLE, EXIT, TOUCHEXIT, and
so on) in the word ob _flag of an object.

Input Arguments

tree

index

flag

Output Arguments

none

object tree that contains the specified object

index of object within tree

flag to set in ob_flag

Sample Call to C Language Binding

VOID ob_doflag();

OBJECT FAR *tree;

WORD index, flag;

ob_dof1ag(tree, index, flag);

GEM/3 Programmer's Toolkit Supplement 3-5

OB UNDOFLAG

OB_UNDOFLAG

This function clears the specific flag (SELECTABLE, EXIT, TOUCHEXIT, and
so on) in the word ob_flag of an object.

Input Arguments

tree object tree that contains the specified object

index of object within tree index

flag flag to set iri ob_flag

Output Arguments

none

Sample Call to C Language Binding

3-6

VOID ob_undoflag();

OBJECT FAR *tree;

WORD index, flag;

ob_undoflag(tree, index, flag);

GEM/3 Programmer's Toolkit Supplement

DB ISFLAG

This function gets the flag (SELECfABLE, EXIT, TOUCHEXIT, and so on) in
the word ob _flag of an object.

. Input Arguments

tree

index

flag

Output Arguments

ret

object tree that contains the specified object

index of object within tree

flags to be tested

TRUE if flag is set

FALSE if flag is not set

Sample Call to C Language Binding

WORD ob_isflag();

OBJECT FAR *tree;

WORD index, flag;

ret = ob_isflag(tree, index,flag);

GEM/3 Programmer's Toolkit Supplement 3-7

DB XYWH

This function returns the x,y,w,h rectangle of a given object. The function
takes a pointer to a structure of type GRECT; on return, this contains the
object's current x,y,w,h parameters.

Input Arguments

tree

index

object tree that contains specified object

index of object wi thin tree

prect far-pointer to a GRECT structure

Output Arguments

none

Sample Call to C Language Binding

VOID ob_xywh();

3-8

OBJECT FAR *tree;

WORD index;

GRECT FAR *prect;

ob_xywh(tree, index, prect);

GEM/3 Programmer's Toolki t Supplement

DB GET TEXT

This functions returns a far pointer to the string pointed to by an object struc­
ture within a tree. The function uses the object type when returning the cor­
rect pointer.

Note: Objects that contain text pointers are G_TEXT, G_FfEXT, G_BOX­
TEXT, G_FBOXTEXT, G_STRING, G_BUTTON and G_TITLE.

The clear parameter requests the function to initially clear the string; TRUE
clears and FALSE leaves the string unchanged.

Input Arguments

tree

index

clear

Output Arguments

ptr

object tree that contains specified object

index of object within tree

initially clear string?

far-pointer that points to the (cleared) string

Sample Call to C Language Binding

BYTE FAR. *ob_get_text () ;

OBJECT FAR *tree;

WORD index, clear;

BYTE FAR *ptri

ptr = ob_get_text(tree, index, clear)i

GEM/3 Programmer's ToolkitSupplement 3-9

DB SET TEXT

This function sets the text pointer of ail required object to the ptr parameter.
The object type is checked by the function before assigning the pointer.

Note: Objects that contain text pointers are G_TEXT, G_FTEXT, G_BOX­
TEXT, G_FBOXTEXT, G_S1RING, G_BUTTON and G_TITLE.

Input Arguments

tree

i.ndex

ptr

Output Arguments
none

object tree that contains the specified object

index of object within tree

far-pointer to a string

Sample Call to C Language Binding

VOID ob_set_text();

OBJECT FAR *tree;

WORD index;

BYTE FAR *ptr;

ob_set_text(tree, index, ptr);

3-10 GEM/3 Programmer's Toolkit Supplement

OB DRAW DIALOG

This function draws an entire dialog with an optional growing box. The func­
tion takes an x,y,w,h rectangle which specifies the smallest start box of the
growing rectangles. H the rectangle coordinates are all zero, the growing
boxes will not be drawn.

Input Arguments

tree

x, y, w, h

Output Arguments

none

object tree to be drawn

start growing rectangle

Sample Call to C Language Binding

VOID ob_draw_dialog();

OBJECT FAR *tree;

WORD x, y, w, h;

ob_draw_dialog(tree, x, y, w, h);

GEM/3 Programmer's Toolkit Supplement 3-11

OB UNDRAW DIALOG

OB_UNDRAW_DIALOG

This function removes a previously drawn dialog box from the screen and
draws an optional shrink box. The function takes an x,y,w,h rectangle which
specifies the smallest start box of the shrinking rectangles. If the rectangle
coordinates are all zero, the shrinking boxes will not be drawn.

Input Arguments

tree

x, y, w, h

object tree to be drawn

end shrinking rectangle

Output Arguments

none

Sample Call to C Language Binding

VOID ob_undraw_dialog();

OBJECT FAR *tree;

WORD x, y, w, h;

ob_undraw_dialog(tree, x, y, w, h);

3-12 GEM/3 Programmer's Toolkit Supplement

Section 4
Extended Raster Library

This section describes modifications and enhancements to the Extended
Raster Library provided with this revised GEM/3 Programmer's Toolkit.
The Extended Raster library contains utility functions to manipulate coor­
dinate structures (GREeT).

The descriptions assume a knowledge of GEM library call structures and
parameter conventions. For more information about these and other GEM
system calls, refer to the GEM Applications Environment Services Reference
Guide.

GEM/3 Programmer's Toolkit Supplement 4-1

RC EQUAL

This function compares two rectangles to see if they are equal or not. Two
pointers to structures of type GRECT are passed as parameters to this func­
tion.

~1)J?ut Arguments

precl, prec2

Output Arguments

ret

pointers to structures of type GRECf

TRUE if the rectangles are equal

FALSE if the rectangles are not equal

Sample Call to C Language Binding

WORD rc_equal();

4-2

GREeT FAR *precl, FAR *prec2;

ret = rc_equal(precl, prec2);

GEM/3 Programmer's Toolkit Supplement

RC COpy

RC_COPY

This functions copies the x,y,w,h coordinates of psbox to pdbox. The
parameters are both structures of type GRECT. This function is nothing more
than a structure copy.

Input Arguments

psbox, pdbox: pointer to source and destination GRECf

Output Arguments

none

Samp Ie Call to C Language Binding

VOID rc _copy 0 ;

GREeT FAR *psbox, FAR *pdbox;

rc_copy(psbox, pdbox);

GEM/3 Programmer's Toolkit Supplement 4-3

RC INTERSECT

This function computes the intersection of two rectangles. The intersection is
the area that is common to both rectangles.

The function returns TRUE, if there is a common area, and FALSE if there is
not. If a common area exists, its coordinates are returned in the GREeT struc­
turep2.

Input Arguments

pl

p2

coordinates of the first rectangle

coordinates of the second rectangle

Output Arguments

ret TRUE if there is an intersection

FALSE if there is no intersection

Sample Call to C Language Binding

WORD rc_intersect();

GREeT FAR *pl, FAR *p2;

WORD ret;

ret = rC_intersect(pl, p2);

4-4 GEM/3 Programmer's Toolkit Supplement

RC INSIDE

This function determines, whether a given x,y position is inside the given rec­
tangle. If x,y is inside prec, the function returns TRUE. If not, FALSE is
returned.

Input Arguments

x,y

prec

Output Arguments

ret

position to check

pointer to rectangle coordinates

TRUE if position is inside
FALSE if position is not inside

Sample Call to C Language Binding

WORD rc_inside () ;

GREeT FAR *prec;

WORD ret;

ret = rc_inside(x, y, prec);

GEM/3 Programmer's Toolkit Supplement 4-5

RC GRECT TO ARRAY

This function transfonns the supplied absolute coordinates of an xlyl, x21
array into a x,y,w,h rectangle form. Thexlyl, x2larray contains the upper­
left comer and the lower-right corner of a rectangle.

On return from the function, prec will hold the upper-left comer and the
width and height dimensions. .

Input Arguments

xy xlyl, x2l array

prec pointer to a structure of type GRECT

Output Arguments

none

Sample Call to C Language Binding

VOID rc_grect_to_array();

WORD FAR *xy;

4-6

GREeT FAR *prec;

rc_grect_to_array(prec, xy);

GEM/3 Programmer's Toolkit Supplement

Section 5
Transformation Library

This section describes enhancements and modifications to the Transfonna­
tion Library provided with this revised GEM/3 Programmer's Toolkit. The
Transformation library contains utility calls for manipulating coordinate sys­
tems.

The descriptions assume a knowledge of the GEM library call structures and
parameter conventions. For further details of these and other GEM system
calls, refer to the GEM Application Environment Services Reference Guide.

GEM/3 Programmer's Toolkit Supplement 5-1

~ .. sx~qRM

This function initializes the transformation library. A call to this function is
required before using the transformation calls, otherwise unpredictable
values will be returned.

The transformation library can be used for calculating the differences be­
tween device dependent coordinate and user coordinate systems. This call to
x_sxform sets up both coordinate systems.

Input Arguments

user_x, user-y, user_w, user_h

x,y,w,h rectangle which defines user coordinate space

deY_x, dev-y, dev_w, dev_h

x,y,w,h rectangle which defines device coordinate space

w_microns, h microns

width and height of a pixel in microns (found in
work_out[3] and work_out[4]). For more information, refer
to V _ OPNWI< in the GEM Virtual Device Interface Reference
Guide.

Output Arguments

ret TRUE if initialization is successful
FALSE if initialization fails

Sample Call to C Language Binding

WORD x_sxform();

5-2

WORD user_x, user-y, user_w, user_h;

WORD deY_X, devy, dev_w, dev_h;

WORD w_microns, h_microns;

x_sxform(user_x, user,y, user_w, user h, dey_X, devy,
dev_w, dev_h, w_microns, h_microns);

GEM/3 Programmer's ToolkitSupplement

X SASPECT

This function matches an aspect ratio on the device with one specified in
user units. The match is done in physical units rather than pixels, so a square
specified in user units will look square when displayed on the device. Cal­
culating the aspect ratio match in this manner compensates for devices
which have non-square pixels.

Input Arguments

user_w, user_h

Output Arguments

dev_w, dev_h

width and height in user coordinates

width and height in device coordinates

Sample Call to C Language Binding

WORD x_saspect () ;

WORD user_w, user_hi

WORD *dev_w, *dev_h;

x_saspect (user_w, user_h, dev_w, dev_h);

GEM/3 Programmer's Toolkit Supplement 5-3

X YTOX

This function returns the number of pixels in the x direction physically equal
to "y" number of pixels in the y direction.

Input Arguments

y

Output Arguments

x

number of pixels in the y direction

number of pixels in the x direction

Sample Call to C Language Binding

WORD xJtox();

WORD y, x;

x = x --.Yt0x (y) ;

5-4 GEM /3 Programmer's Toolkit Supplement

This function transforms an x value from user space into device space.

Input Arguments

user_x

Output Arguments

devx

x coordinate of user raster

x coordinate of device raster

Sample Call to C Language Binding

WORD x_udx_xformO i

WORD user_x, dey _ Xi

dey_X = x_ud:I:~form(user_x) i

GEM/3 Programmers Toolkit Supplement 5-5

X UDY XFORM

This function transforms a y value from user space into device space.

Input Arguments

userJ y coordinate of user raster

Output Arguments

devJ y coordinate of device raster

Sample Call to C Language Binding

WORD x_udy_xfor.m();

WORD userJ, dev-y;

devJ = x_udy_xfor.m(user-y);

5-6 GEM/3 Programmer's Toolkit Supplement

X DUX XFORM

This function transforms an x value from device space into user space.

Input Arguments

dev_x

Output Arguments

x coordinate of device raster

x coordinate of user raster

Sample Call to C Language Binding

WORD x_dux_xfoxmO;

WORD dev _x, user_x;

user_x = x_dux_xfoxm(dev_x);

GEM/3 Programmer's Toolkit Supplement 5-7

X DUY XFORM

This function transfonns a y value from device space into user space.

Input Arguments

devJ y coordinate of device raster

Output Arguments

userJ y coordinate of user raster

Sample Call to C Language Binding

WORD x_duy_xfor.m() ;

WORD devJ, userJ;

userJ = x_duy_xfor.m(devJ);

5-8 GEM/3 Programmer's Toolkit Supplement

x UDX SCALE

This function scales an x distance from user space into device space.

Input Arguments

user_dx

Output Arguments

dev_dx

x distance in user space

x distance in device space

Sample Call to C Language Binding

WORD x_udx_scale();

WORD user_dx, dev_dx;

dev_dx = x_udx_scale(user_dx);

GEM/3 Programmer's Toolkit Supplement 5-9

This function scales a y distance from user space into device space.

Input Arguments

user_dy y distance in user space

Output Arguments

dev_dy y distance in device space

Sample Call to C Language Binding

WORD x_udy_scale();

WORD user_dy, dev_dy;

dev_dy = x_udy_scale(user_dy);

5-10 GEM /3 Programmer's Toolkit Supplement

X DUX SCALE

This function scales an x distance from device space into user space.

Input Arguments

dev dx

Output Arguments

user_dx

x distance in device space

x distance in user space

Sample Call to C Language Binding

WORD x_dux_scale();

WORD dev_dx, user_dxi

user_dx = x_dux_scale(dev_dx);

GEM/3 Programmer's Toolkit Supplement 5-11

X DUY SCALE

This function scales a y distance from device space into user space.

Input Arguments

dev_dy y distance in device space

Output Arguments

user_dy y distance in user space

Sample Call to C Language Binding

WORD x_duy_scale();

WORD dey _ dy, user _ dy;

user_dy = x_duy_scale(dev_dy);

5-12 GEM/3 Programmer's Toolkit Supplement

X MUL DIV

This function allows you to get floating point accuracy without going to the
performance expense of floating point.

The calculation performed is: (((ml * 2 * m2) / dl) + 1) / 2

Input Arguments
ml, m2

dl

Output Arguments

result

multiplicators

divisor

result of the above calculation

Sample Call to C Language Binding

WORD x_mul_div();

WORD ma, m2, dl, result;

result = x_mul_div(ml, 102, dl);

GEM/3 Programmer's Toolkit Supplement 5-13

Section 6
Miscellaneous Library

This section describes modifications and enhancements to the Miscellaneous
Library provided with the revised GEM/3 Programmer's Toolkit.

These descriptions assume a knowledge of the GEM library call structures
and parameter conventions. For more infonnation about these and other
GEM system calls, refer to the GEM Application Environment Services Reference
Guide.

GEM/3 Programmer's Toolkit Supplement 6-1

This function allows a C programmer to use user-defined objects. For more
detailed infonnation about user-defined objects, refer to GEM Applications En­
vironment Services Reference Guide.

When using Digital Research® products X/GEMTM on FlexOS™ (and in some
Atari® environments) the pointer to the P ARMBLK structure is passed to the
drawing code on the stack. This allows access to it as a parameter from C.
GEM on DOS does not handle this similarly. Instead of passing the pointer
on the stack, GEM passes it in the register pair AX:BX.

The fardr_startO function lets you use this pointer in a C program. You
should call this function as the first action in your drawing code. The func­
tion will return the pointer to the P ARMBLK structure so that you can assign
its value to a local variable. The function also saves all AES registers, and sets
the segment registers to the application's data segment.

You must call fardr_endO before you leave your drawing code.

Input Arguments

none

Output Arguments

pb pointer to P ARMBLK -structure

Sample Call to C Language Binding

PARMBLK FAR *fardr_start();

PARMBLK FAR *pb;

pb = fardr_start();

6-2 GEM/3 Programmer's Toolkit Supplement

FARDR END

This functions restores the registers and segments previously saved by
fardr_startO, so that the AES finds the correct environment. .

This function directly returns control to the AES. All statements after the call
to fardr_endO will not be executed.

Input Arguments
ret

Output Arguments

none

return code which you want to give to the AES

Sample Call to C Language Binding

VOID fardr_end();

WORD ret;

fardr_end(ret);

GEM/3 Programmer's Toolkit Supplement 6-3

FARDR CS

FARDR_CS

This function returns the code segment value of your running application.
You will need this function when you are building small memory model ap­
plications with Microsoft C. Microsoft C does not allow you to cast a code
segment pointer from small to large memory model. If you want your
source portable between different compilers and memory models, assign
your drawing routine like this:

#if MS_C && M_I86SM

applblk.ab_code = MKFP(fardr_cs(), drawing_routine);

#else

applblk.ab_code = (WORD (FAR *) (»drawing_routine;

#endif

You will find an example of assigning your drawing rountine in this form in
USERDEF.C.

NOTE: This function is available only in the Microsoft C GEM library.

Input Arguments

none

Output Arguments

cs value current code segment

Sample Call to C Language Binding

UWORD fardr_cs();

UWORD cs_value;

cs value fardr_cs();

6-4 GEM/3 Programmer's Toolkit Supplement

FORM EXDO

This is nearly the original source of the AES function form_doO.1t has been
improved to allow the selection of objects by control keys.

The function inspects the extended ob_type of an object. This should have
been previously set with an ASCII value which corresponds to the control
key sequence required to activate the object.

A value of one means Ctrl-A, two means Ctrl-B, and so on. The remaining
functionality is unchanged. For more information, refer to the source code of
form_exdo and FDTEST.APP. Additionally, see form_doO in the GEM Ap­
plication Environment Services Reference Guide.

Input Arguments

tree

edix

Output Arguments

ret

object tree containing the form to be handled

first editable field

the object which caused exit from the form

Sample Call to C Language Binding

WORD for.m_exdo();

OBJECT FAR *tree;

WORD edix;

WORD ret;

ret = for.m_exdo(tree, edix);

GEM/3 Programmer's Toolkit Supplement 6-5

FIX ICON

[hIS function converts all Icons and bit images contained in an object tree
from device-independent to device-dependent format.

The function takes as parameters the VDI handle of the previously opened
screen workstation, and a pointer to the tree containing the icons and/or bit
images.

!E.P.~~ Arguments

vdi handle

tree

VDI-handle of (virtual) workstation

pointer to an object tree

Output Arguments

none

Sample Call to C Language Binding

VOID fix_icon () ;

WORD vdi_handle;

OBJECT FAR *tree;

6-6 GEM/3 Programmer's Toolkit Supplement

EVNT EVENT

evnt_eventO is a short form of the evnt_multiO call. Instead of passing a lot
of parameters to it, you only have to pass a pointer to a structure of type
ME VENT (See your AES.H header file for a description of this structure).
Using evnt_eventO requires you to set only the structure members that are
used for the event you are waiting for. So if you want to receive only mes­
sages, all you have to do is, to set

mevent.e_flags = NO_MESAG;

and

mevent.e_mepbuf = msg;

where msg should be of type WORD msg[8]

Input Arguments

mevent

Output Arguments

event

structure of type MEVENT

events that occurred

Sample Call to C Language Binding

WORD evnt_event();

MEVENT mevent;

WORD event;

event = evnt_event(&mevent);

GEM/3 Programmer's Toolkit Supplement 6-7

Section 7
DOS Function Library

Section 7 describes the enhancements and modifications to the DOS Function
Library provided with the revised GEM/3 Programmer's Toolkit. The DOS
Function Library contains utility calls that let you bypass the standard C run­
time library so your applications can use the DOS interface for disk I/O.

These descriptions assume a knowledge of the GEM library call structures
and parameter conventions. For more information about these and other
GEM system calls, refer to the GEM Application Environment Services Reference
Guide.

GEM/3 Programmer's Toolkit Supplement 7-1

DOS CHDIR

DOS_CHOIR

Change directory. DOS-Call (hex) 3B.

Input Arguments

pdrvpath drive and path to be set

Output Arguments

ret TRUE if unable to change directory
FALSE if change directory is successful

Sample Call to C Language Binding

WORD dos_chdir();

BYTE FAR *pdrvpath;

WORD ret;

ret = dos_chdir(pdrvpath);

7-2 GEM/3 Programmer's Toolkit Supplement

DOS_GDIR

Get current directory. DOS-Call (hex) 47.

Input Arguments

drive

Output Arguments

pdrvpath

ret

o = default, 1 = A, 2 = B ...

pointer where path could be stored

TRUE if get current directory fails
FALSE if get current directory is successful

Sample Call to C Language Binding

WORD dos_gdirO;

WORD drive, ret;

BYTE FAR *pdrvpath;

ret = dos_gdir(drive, pdrvpath);

GEM/3 Programmer's Toolkit Supplement

DOS GDIR

7-3

DOS GDRV

Get current drive. DOS-Call (hex) 19.

Input Arguments

none

Output Arguments

drive current drive (0 = A, 1 = B, ...)

Sample Call to C Language Binding

WORD dos_gdrv();

WORD drive;

drive = dos_gdrv();

7-4 GEM/3 Programmer's Toolkit Supplement

Set current drive. DOS-Call (hex) DE.

Input Arguments

drive

Output Arguments

ret

drive to be set (0 = A, 1 = B, ...)

TRUE if set current drive fails
FALSE if set current drive is successful

Sample Call to C Language Binding

WORD dos_sdrvO;

WORD drive, ret;

ret = dos_sdrv(drive);

GEM/3 Programmer's Toolkit Supplement

DOS SDRV

7-5

DOS SDTA

Set disk transfer adress. DOS-Call (hex) lA.

Input Arguments

Idta

Output Arguments

ret

pointer to 44 bytes space

TRUE if set disk transfer address fails
FALSE if set disk transfer address is successful

Sample Call to C Language Binding

WORD dos_sdta()i

VOID FAR *ldta;

WORD ret;

ret = dos_sdta(ldta);

7-6 GEM/3 Programmer's Toolkit Supplement

DOS_GDTA

Get disk transfer adress. DOS-Call (hex) lA.

Input Arguments

none

Output Arguments

ldta pointer to current disk transfer buffer

Sample Call to C Language Binding

VOID FAR *dos_gdta()i

VOID FAR *ldtai

ldta = dos_gdta() i

GEM/3 Programmer's Toolkit Supplement

DOS GDTA

7-7

DOS SFIRST

DOS_SFIRST

Search first directory entry. DOS-Call (hex) 4E.

!nput Arguments

pspec

attr

Output Arguments

ret

pointer to path and wildcard

file attribute (must match)

TRUE if first directory entry is not found
FALSE if first directory entry is found

Sample Call to C Language Binding

WORD dos_dfirst();

BYTE FAR *pspec;

WORD attr, ret;

ret = dos_sfirst(pspec, attr);

7-8 GEM/3 Programmer's Toolkit Supplement

Search next directory entry. OOS-Call (hex) 4F.

Input Arguments

none

Output Arguments

ret TRUE if next directory entry is not found
FALSE if next directory entry is found

Sample Call to C Language Binding

WORD dos_snext();

WORD ret;

ret = dos_snext();

GEM/3 Programmer's Toolkit Supplement

DOS SNEXT

7-9

DOS OPEN

Open an existing file. DOS-Call (hex) 3D.

Input Arguments

pname pointer to path and filename

access o = read, 1 = write, 2 = read and write

Output Arguments

hancUe handle of opened file

Sample Call to C Language Binding

WORD dos_open();

BYTE FAR *pname;

WORD access, ret;

handle = dos_open(pname, access);

7-10 GEM/3 Programmer's Toolkit Supplement

DOS_CLOSE

Close previously opened or created file. DOS-Call (hex) 3E.

Input Arguments

handle

Output Arguments

ret

handle of opened file

TRUE if file is closed
FALSE if file cannot be closed

Sample Call to C Language Binding

WORD dos_close();

WORD handle, ret;

ret = dos_close(handle);

GEM/3 Programmer's Toolkit Supplement

DOS CLOSE

7-11

READ PIECE

READ_PIECE

Read a block of maximum 65535 bytes. DOS-Call (hex) 3F.

Input Arguments

handle

ant

pbuffer

Output Arguments

read

handle returned by dos_open or dos_create

number of bytes to be read

pointer to a buffer big enough to hold cnt bytes

number of bytes that have been read

Sample Call to C Language Binding

UWORD read-pieae();

WORD handle;

UWORD ant, read;

VOID FAR *pbuffer;

read = read-piece(handle, cnt, pbuffer);

7-12 GEM/3 Programmer's Toolkit Supplement

DOS READ

DOS_READ

Read a block larger than 65535 bytes. DOS_READ calls READ_PIECE
several times.

Input Arguments

hancUe

cnt

pbuffer

Output Arguments

read

handle returned by dos_open or dos_create

number of bytes to be read

pointer to a buffer big enough to hold cnt bytes

number of bytes that have been read

Sample Call to C Language Binding

LONG dos_readO ;

WORD hancUe;

LONG cnt, read;

VOID FAR *pbuffer;

read = dos_read(handle, cnt, pbuffer);

GEM/3 Programmer's Toolkit Supplement 7-13

DOS LSEEK

Move file pointer. DOS-Call (hex) 42.

Input Arguments

handle handle of opened file

smode

sofst

o = from beginning of file

1 = from current position

2 = from end of file

offset to be seeked to

Output Arguments

newofst new offset

Sample Call to C Language Binding

LONG dos_lseek();

WORD handle, smode;

LONG sofst, newofst;

newofst = dos_lseek(handle, smode, so£st);

7-14 GEM/3 Programmer's Toolkit Supplement

DOS_WAIT

Get termination code of subprocess. OOS-Call (hex) 4D ..

Input Arguments

none

Output Arguments

term.code termination code

Sample Call to C Language Binding

WORD dos_wait () ;

WORD te:rmcode;

term.code = dos_wait();

GEM/3 Programmer's Toolkit Supplement

DOS WAIT

7-15

DOS ALLOC

Allocate memory. DOS-Call (hex) 48.

Input Arguments

nbytes number of bytes to be allocated

Output Arguments

ptr pointer to allocated memory

Sample Call to C Language Binding

VOID FAR *dos_alloc()i

LONG nbytes;

VOID FAR *ptri

ptr = dos_alloc(nbyte~);

7-16 GEM/3 Programmer's Toolkit Supplement

Get amount of free memory. DOS-Call (hex) 48.

Input Arguments

none

Output Arguments

nfree number of free bytes

Sample Call to C Language Binding

LONG dos_avai1();

LONG nfreei

nfree = dos_avail()i

GEM/3 Programmer's Toolkit Supplement

DOS AVAIL

7-17

DOS FREE

DOS_FREE

Free previously allocated memory. DOS-Call (hex) 49.

Input Arguments

ptr

Output Arguments

ret

pointer to allocated memory

TRUE if unable to free memory
FALSE if memory is freed

Sample Call to C Language Binding

WORD dos_free 0 ;

VOID FAR *ptr;

ret = dos_free(ptr);

7-18 GEM/3 Programmer's Toolkit Supplement

Get disk free space. DOS-Call (hex) 36.

Input Arguments

drv

Output Arguments

ptotal.

pavail

ret

drive to be checked

pointer to a long (holds total of disk space)

pOinter to a long (holds available disk space)

TRUE if unable to get free disk space
FALSE if get free disk space is successful

Sample Call to C Language Binding

WORD dos_space();

WORD drv, ret;

LONG FAR *ptotal, FAR *pavail;

ret = dos_space(drv, ptotal, pavail);

GEM/3 Programmer's Toolkit Supplement

DOS SPACE

7-19

DOS RMDIR

Remove directory. DOS-Call (hex) 3A.

Input Arguments

ppath pointer to directory

Output Arguments

ret TRUE if unable to remove directory
FALSE if directory is removed

Sample Call to C Language Binding

WORD dos_r.mdir();

BYTE FAR *ppath;

WORD ret;

ret = dos_~ir(ppath);

7-20 GEM/3 Programmer's Toolkit Supplement

DOS_CREATE

Create a new file. DOS-Call (hex) 3C.

Input Arguments

pname

attr

Output Arguments

handl.e

pointer to path and filename

file's attribute

handle of opened file

Sample Call to C Language Binding

WORD dos_create();

BYTE FAR *pname;

WORD attr, ret;

handl.e = dos_create(pname, attr);

GEM/3 Programmer's Toolkit Supplement

DOS CREATE

7-21

DOS MKDIR

DOS_MKDIR

Create new directory. DOS-Call (hex) 39.

Input Arguments

ppath pointer to directory's name

Output Arguments

ret TRUE if unable to create directory
FALSE if directory created

Sample Call to C Language Binding

WORD dos _ mkdir () ;

BYTE FAR *ppath;

WORD ret;

ret = dos_mkdir(ppath);

7-22 GEM/3 Programmer's Toolkit Supplement

Delete a file. DOS-Call (hex) 41.

Input Arguments

pname

Output Arguments

ret

pointer to name of file to be deleted

TRUE if unable to delete file
FALSE if file is deleted

Sample Call to C Language Binding

WORD dos_delete();

BYTE FAR *pname;

WORD ret;

ret = dos_delete(pname);

GEM/3 Programmer's Toolkit Supplement

DOS DELETE

7-23

DOS RENAME

DOS_RENAME

Rename a file. DOS-Call (hex) 56.

Input Arguments

poname

pnname

Output Arguments

ret

pointer to name of file to be renamed

new file name

TRUE if unable to rename file
FALSE if file is renamed

Sample Call to C Language Binding

WORD dos_rename();

BYTE FAR *poname, FAR *pnname;

WORD ret;

ret = dos_delete(poname, pnname);

7-24 GEM/3 Programmer's Toolkit Supplement

Write a block of maximum 65535 bytes. DOS-Call (hex) 3F.

Input Arguments

handle

cnt

pbuffer

Output Arguments

write

handle returned by dos_open or dos_create

number of bytes to be written

pointer to buffer containing cnt bytes

number of bytes that have been written

Sample Call to C Language Binding

UWORD write-piece();

WORD handle;

UWORD cnt, write;

VOID FAR *pbuffer;

write = write-piece(handle, cnt, pbuffer);

GEM/3 Programmer's Toolkit Supplement

WRITE PIECE

7-25

DOS WRITE

DOS_WRITE

Write a block larger than 65535 bytes. DOS_WRITE calls WRITE_PIECE
several times.

Input Arguments

handle

cnt

pbuffer

Output Arguments

write

handle returned by dos_open or dos_create

number of bytes to be written

pointer to a buffer containing cnt bytes

number of bytes that have been written

Sample Call to C Language Binding

LONG dos_write();

WORD handle;

LONG cnt, write;

VOID FAR *pbuffer;

write = dos_write(handle, cnt, pbuffer);

7-26 GEM/3 Programmer's Toolkit Supplement

DOS_CHMOD

Change a file's attribute. DOS-Call (hex) 43.

Input Arguments

pname

tunc

attr

Output Arguments

nattr

pointer to path and filename

o = get attribute, 1 = set attribute

files new attribute

attribute that has been set

Sample Call to C Language Binding

WORD dos_chmod();

BYTE FAR *pname;

WORD tunc, attr, nattr;

nattr = dos_chmod(pname, func, attr);

GEM/3 Programmer's Toolkit Supplement

DOS CHMOD

7-27

DOS SETDT

DOS_SETDT

Set a file's date and time. DOS-Call (hex) 57.

Input Arguments

handle

time

date

Output Arguments

ret

handle of file (from dos_open or dos_create)

time to be set

date to be set

TRUE if unable to set file's date and time
FALSE if file's date and time are set

Sample Call to C Language Binding

WORD dos_setdt();

WORD handle, date, time, ret;

ret = dos_setdt(handle, time, date);

7-28 GEM/3 Programmer's Toolkit Supplement

DOS_GETDT

Get a file's date and time. DOS-Call (hex) 57.

Inpu t Arguments

handle

time

date

Output Arguments

ret

handle of file (from dos_open or dos_create)

time of file

date of file

TRUE if unable to get file's date and time
FALSE if able to get file's date and time

Sample Call to C Language Binding

WORD dos_qetdt();

WORD handle, FAR *date, FAR *time,.. ret;

ret = dos_qetdt(handle, time, date);

GEM/3 Programmer's Toolkit Supplement

DOS GETDT

7-29

DOS EXEC

DOS_EXEC

Call a subprocess. DOS-Call (hex) 4B.

Input Arguments

pname

para

envrn

Output Arguments

ret

pointer to name of file to be executed

pointer to parameters that should be passed

segment address of environment variables

TRUE if unable to call subprocess
FALSE if subprocess is called

Sample Call to C Language Binding

WORD dos_exec();

BYTE FAR *pname;

BYTE FAR *para;

awORD envrn;

WORD ret;

ret = dos_exec(pname, para, envrn);

7-30 GEM/3 Programmer's Toolkit Supplement

DOS_GETDATE

Get current date. DOS-Call (hex) 2A.

Input Arguments

yr

mo

dy

dw

Output Arguments

none

current year

current month

current day

day of week (sunday = 0)

Sample Call to C Language Binding

VOID dos_getdate()i

WORD FAR *yr, FAR *mo, FAR *dy, FAR *dw;

do s_get date (yr, mo, dy, dw);

GEM/3 Programmer's Toolkit-Supplement

DOS GETDATE

7-31

DOS SETDATE

Set date. DOS-Call (hex) 2B.

Input Arguments

yr

!nO

dy

Output Arguments

none

year to be set

month to be set

day to beset

Sample Call to C Language Binding

VOID dos_setdate();

WORD yr, mo, dy;

dos _ setdate (yr, mo, dy) i

7-32 GEM/3 Programmer's Toolkit Supplement

Get current time. DOS-Call (hex) 2C.

Input Arguments

hr

mi

se

hn

Output Arguments

none

curren t hour

current minute

current second

current hundredth of a second

Sample Call to C Language Binding

VOID dos_gettime();

WORD FAR *hr, FAR *mi, FAR *se, FAR *hn;

dos_gettime(hr, mi, se, hn)i

GEM/3 Programmer's Toolkit Supplement

DOS GETTIME

7-33

DOS SETTIME

DOS_SETTIME

Set time. DOS-Call (hex) 2D.

Input Arguments

hr

mi

se

hour to be set

minute to be set

second to be set

hn hundredth of a second to be set

Output Arguments

none

Sample Call to C Language Binding

VOID dos_settime();

WORD hr, mi, se, hn

dos_settime(hr, mi, se, hn);

7-34 GEM/3 Programmer's Toolkit Supplement

Get version of operating system. DOS-Call (hex) 30.

Input Arguments

vh

vl.

oem

user

Output Arguments

none

high word of version number

low word of version number

OEM code

user code

Sample Call to C Language Binding

VOID dos_version();

WORD FAR *vh, FAR *vl, FAR *oem, FAR *user;

dos_version (vh, vl, oem, user);

GEM/3 Programmer's Toolkit Supplement

DOS VERSION

7-35

Section 8
EMS Library

This section describes modifications and enhancements to the EMS (Ex­
panded Memory System) Library provided with the revised GEM/3
Programmer's Toolkit. The EMS Library contains utility calls for DOS­
specific expanded memory management.

The descriptions in this section assume a knowledge of the GEM library call
structures and parameter conventions. For more information about these and
other GEM system calls, refer to the GEM Application Environment Services Ref­
erence Guide.

GEM/3 Programmer's Toolkit Supplement 8-1

EMS INST

This functions checks whether an EMS manager is installed or not.

Input Arguments

none

Output Arguments

ret TRUE if EMS manager is installed
FALSE if EMS manager not present

Sample Call to C Language Binding

WORD ems_inst();

WORD ret;

ret = ems_inst();

8-2 GEM/3 Programmer's Toolkit Supplement

EMS ERRCODE

This functions returns the error code of the last EMS operation. The descrip­
tion of the EMS error codes is at the end of this section.

Inpu t Ar8...uments

none

Output Arguments

errcode see uEMS Error Codes" at the end of this section

Sample Call to C Language Binding

WORD ems_errcode();

WORD errcode;

errcode = ems_errcode();

GEM/3 Programmer's Toolkit Supplement 8-3

EMS NUM PAGE

This function returns the number of pages that are held by the EMS
manager. Each page has a size of 16 Kbytes.

Input Arguments

none

Output Arguments

npages number of 16 Kbyte pages

Sample Call to C Language Binding

WORD ems _ nwnJage () ;

WORD npages;

npages = ems_nwnJage();

8-4 GEM/3 Programmer's Toolkit Supplement

EMS FREE PAGE

This function returns the number of EMS pages that are still available.

Input Arguments

none

Output Arguments

fpages number of free EMS pages

Sample Call to C Language Binding

WORD ems_free-page()i

WORD fpagesi

fpages = ems_free-page()i

GEM/3 Programmer's Toolkit Supplement 8-5

EMS FRAME SEC

This function returns the segment address of the page frame. The page frame
segment is the base address where four pages of 16 Kbyte memory are
mapped.

Input Arguments

none

Output Arguments

baseframe segment address of base page frame

Sample Call to C Language Binding

WORD ems_frame_seg();

WORD baseframe;

baseframe = ems_frame_seg();

8-6 GEM/3 Programmer's Toolkit Supplement

EMS ALLOC

This function allows allocation of memory pages in the expanded memory
area. The function returns the EMS handle used to access allocated EMS
memory.

Input Arguments

npages

Output Arguments

handle

number of pages to allocate

> 0 Memory handle to use

FALSE if not enough memory available

Sample Call to C Language Binding

WORD ems_alloc();

WORD npages, handle;

handle = ems_alloc(npages);

GEM/3 Programmer's Toolkit Supplement 8-7

EMS MAP

Map logical page logp belonging to handle handle to physical page physp.

Input Arguments

handle

logp

physp

Output Arguments

ret

handle returned byems_alloc

number of logical page to be mapped

number of physical page to be mapped to logp

TRUE if map is successful
FALSE if map fails

Sample Call to C Language Binding

WORD emB_mapO;

WORD handle, logp, physp, ret;

ret = emB_map(handle, logp, physp);

8-8 GEM/3 Programmer's Toolkit Supplement

EMS_FREE

Free all pages that belong to the specified handle.

Inpu t Arguments

handle

Output Arguments

ret

EMS handle

TRUE if all pages are freed
FALSE if uable to free all pages

Sample Call to C Language Binding

WORD ems_free();

WORD handle, ret;

ret = ems_free(handle);

GEM/3 Programmer's Toolkit Supplement

EMS FREE

8-9

EMS VERSION

Return the version number of the EMS manager. The version number is
returned as a two digits. For example, 35 indicates version number 3.5.

Input Arguments

none

Output Arguments

version version number of EMS manager

Sample Call to C Language Binding

WORD ems_version();

WORD version;

version = ems_version();

8-10 GEM/3 Programmer's Toolkit Supplement

Save the state of the current mapping for a specified handle. This is useful
when dealing with more than one handle. The function lets you save the
mapping for different handles and then restore them as necessary.

Input Arguments

handle

Output Arguments

ret

handle for which mapping should be saved

TRUE if save is successful
FALSE if unable to save

Sample Call to C Language Binding

WORD em8_save_map();

WORD handle, ret;

ret = em8_save_map(handle);

GEM/3 Programmer's Toolkit Supplement 8-11

EMS RESTORE MAP

This is the opposite to the function EMS_SAVE_MAP. The function lets you
restore a previously saved mapping for a specified handle.

Input Arguments

handl.e

Output Arguments

ret

handle for which mapping should be restored

TRUE if restore is successful
FALSE if unable to restore

Sample Call to C Language Binding

WORD em8_restore_map();

WORD hancUe;

8-12 GEM/3 Programmer's Toolkit Supplement

EMS Error Codes

EMS Error Codes

Ox80

Ox8l

Ox82

Ox83

Ox84

Ox8S

Ox86

Ox8?

Ox88

Ox89

Ox8A

Ox8B

Ox8C

Ox8D

Ox8E

Ox8F

EMS manager damaged

EMS hardware error

unidentified error

unknown EMM handle

unknown EMM function

no more EMM handles

restore mapping error

more than the total number of pages requested

more pages requested than free

zero pages requested (only below version 4.0)

logical page out of range

physical page out of range

mapping save area full

mapping has already been saved

restore map handle not known

subfunction not known

GEM/3 Programmer's Toolkit Supplement 8-13

Section 9
GEM AES and VDI Update

GEM AES Supplement

This part of the supplement contains the information required to bring the
CEM Application Environment Services Reference Guide up to Release 3.1 of the
GEM system software (GEM/3). Changes to the GEM AES include:

• a new call, menu_click
• rewording of the descri ption of the menu_bar call
• restriction of the mouse button support of three Event Library calls

GEM/3 Programmer's Toolkit Supplement 9-1

GEM AES Supplement

Set or query whether menus are drop-down or pull-down.

Input Arguments

click Menu type

o Drop-down

1 Pull-down

setit Determines whether call queries or sets menu type

o Query

1 Set new value

Output Arguments

ret val Menu display mechanism

Sample Call to C Binding

WORD menu_click();
WORD click, setit;

o Drop down

1 Pull down

retval = menu_click(click, setit);

Parameter Block Binding

Control
control (0) = 37
control(l) = 2
control(2) = 1
control (3) = 0
control (4) = 0

Input
int_in(O) = click
int_in(l) = setit

Output
int_out(O)=retval

9-2 GEM/3 Programmer's Toolkit Supplement

MENLLBAR GEM AES Supplement

Activate or deactivate the application's menu bar.

The application should always call MENU_BAR to deactivate the menu bar
before making its APPLEXIT call.

Input Arguments

showit A code for whether the menu bar is activated or deactivated

o Menu bar deactivated

1 Menu bar activated

tree Address of the object tree that forms this menu

Output Arguments

retval A coded return message

o Error

1 No error

Sample Call to C Binding

WORD
WORD
LONG

menuJ>ar () ;
retval, showit;
tree;

retval = menu_bar(tree, showit);

Parameter Block Binding

Control
control (0) = 30
control(l) = 1
control (2) = 1
control (3) = 1
control (4) = 0

Input
int_in(O) = showit
addr_in(O) = tree

GEM/3 Programmer's Toolkit Supplement

Output
int_out(O)=retval

9-3

GEM AES Supplement Event Library Calls

9-4

Event Library Calls

The following Event Library call parameters identify the mouse button that
was activated at the time the user event occurred:

• EVNT_BUITON: the output argument pmb
• EVNT~OUSE: the output argument pmb

• EVNT~ULTI: the input argument bmsk

Note that for all these parameters, the GEM/3 system supports only the
value Ox0001, which identifies the left mouse button.

GEM/3 Programmer's Toolkit Supplement

Changes and Corrections GEM VDl Supplement

GEM VDI Supplement

This part of the supplement contains the information required to bring the
GEM Virtual Device Interface Reference Guide up to Release 3.1 of the GEM sys­
tem software (GEM/3).

Changes and Corrections

The following changes and corrections to the GEM VDl Reference Guide bring
it up to Release 3.1 specifications:

• GEM VOl no longer uses an ASSIGN .SYS file. You can disr~ard all of page
1-4 and the top of page 1-5 (to the heading liThe VOl Entry Foint").

• The paragraph and example input in the middle of page 2-15 should be
changed as fo Hows:
To load the VOl and start a VOl-only application (like a test program,
shell, or debugger), enter the following command:

GEMVDI -FILENAME

• In the sam.ple C langt!age program (page 2-18){ delete the two comment lines
that describe moditying ASSIGN.5YS. In adaition, the command that runs
SAMPLE.C is gemvdi -sample. exe.

• Correct Table 3-3 (page 3-4) as follows:
Color index 8 is light gray.
Color index 9 is dark gray.
Color index 13 is dark yellow.
Color index 14 is dark cyan.

• On page 4-21, the definition of the radius input argument should read
"Lengm of circle's radius in x-axis units."

• On page 5-25, the function name in the last sentence of the first paragraph is
incorrect. The correct function name is vst_loacLfonts (71H).

GEM/3 Programmer's Toolkit Supplement 9-5

9-6

Changes and Corrections

• F9r ~qJ..-.-attributes (page 8-7), the correct sample call to the C language
bIndIng IS as follows:

WORD vql_attributes();
WORD han~e, attrib[6];

vql_attributes(handle, attrib);

• The function call v_bit_image (page 9-26) applies only to the_printer: For
the screen, you must use raster operations (see Section 6 of the VDI guIde).

• The call v xbit_image, introduced in Release 3.01, is not supported in
Release 3.T. SUPR0rt lor bit image rotation is p'rovided in part by the
inclusion of file-fo-file image rotation in OUTPUT.APP.

GEM/3 Programmer's Toolkit Supplement

GDOS Modifications GEM VDI Supplement.

GDDS Modifications

Command line switches have been added to the command line to be
processed by GEMVDI.EXE and passed on to an application. The command
line uses this form:

GEMVDI APPNAME [parameter ...] [/S=screen] [/M=ab]
[/R=driver] [/I=info-path] [/F=font-path] [-program]

APPNAME

parameter ...

/S=screen

A GEM application .APP filename like DRAW or PUBLISHR.
A filename must be given if the command line uses any of
the parameters or switches described below.

The name of one or more data files, which are passed as
parameters of the first parameter specified. For example, the
command line GEMVDI DRAW PICTURE. GEM starts the
GEM® Draw Plus™ application and passes to the application
file DRAW.APP the filename PICTURE.GEM as the name of
a file to open.

The screen driver screen is loaded instead of the default
screen.

/M=ab The screen driver mouse configuration bytes (port and
mouse type) are overwritten. The port value (a) and mouse
type (b) are both patched to zero. (See the description later
in this supplement of the MOUSE ID field in the file GEM­
SETUP. TXT.)

/R=driver The driver identified by driver is made resident for debug­
ging purposes.

/ I=inf-path The GDOS creates font cacheing information files with the
extension .INF. If this parameter is specified, these files are
placed in the directory inf-path instead of
\GEMAPPS\FONTS.

/F=font-path Enables accessing fonts from directory font-path instead
of \GEMAPPS\FONTS.

GEM/3 Programmer's Toolkit Supplement 9-7

GEM VOl Supplement GODS Modifications

-program The VDI should run program instead of GEM.EXE. (In
Release 2.2 of the VDI, the delimiter was / instead of a
dash.) No parameters may be passed to programs that are
EXEC'd by the GDOS in this manner. If this argument is not
given, the command line runs the default program,
GEM.EXE, passing to it any parameters on the command
line. Note that switches are not passed to GEM.EXE.

9-8 GEM/3 Programmer's Toolkit Supplement

GEM VDl Supplement

V_OPNWK (lH)

(Page 3-2 of the GEM VDl Reference Guide)

v_opnwk now provides support for run-time selection of output destination
and page size, as well as providing feedback to the calling routine about es­
capement text and landscape rotation capability.

Additional Input Arguments

work_in [11] Output device type in the low-order byte:

work_in [101]

work_in [102]

o File

1 Serial port

2 Parallel port

3 Device-specific (direct)

255 No change to default

Page size index in the high-order byte:

o or 20 Letter size

5 Half size

10 B5 size

30 A4 size

40 Legal size

50 Double size

55 Broad sheet size

255 Use work_in [101] and work_in [102]

Output port/name:

If work_in [11] is set to 1 or 2, then work_in [12] con­
tains the port number. Otherwise, work_in [12+] contains
the output file name (full path) with one character per word
and null word terminator.

X page size in 1 /100's inch

Y page size in 1/100' s inch

GEM/3 Programmer's Toolkit Supplement 9-9

0EM VDl Supplement

.Modified Output Arguments

Set to 11 to indicate that escapement text is available; other­
wise set to 10.

Set to 11 to indicate that escapement text is the only kind of
text available on the device; otherwise set to 10.

In addition to the existing device type (0 - 4), -1 means
landscape output can be handled by the device without rota-
tion by the calling routine.

Sample Call to C Language Binding

WORD v_opnwk();
WORD work_in[103], work_out[57], handle;

v_opnwk(work_in, &handle, work_out);

Parameter Block Binding

Control
control (0) = 1
control(1} = 0
control(2) = 6
control (3) = 103
control (4) = 45
control(5} = 0
control (6) = handle

Input
intin(n) = wor~in[n],

where n = 0 thru 102

Output
intout(m)=wor~out[m],

where m = 0 thru 44
ptsout(i)=work_out[4S+i],

where i = 0 thru 11

9-10 GEM/3 Programmer's Toolkit Supplement

V_JUSTIFIED (B-AH) GEM VOl Supplement

V_JUSTIFIED (B-AH)

(Page 4-27 of the GEM VOl Reference Guide)

The mapping for unsupported characters has been changed from a question
mark to a blank space. See the fourth paragraph on page 4-27.

The information on page 4-28 has been changed considerably.

Input Arguments

hand1e

string

x

y

1ength

Output Arguments

char_width

Device handle

Word spacing flag:

OxO 0 0 0 Do not modify inter-word spacing and do
not return output infonnation.

OxO 0 0 1 Modify inter-word spacing but do not
return output information.

Ox80 0 0 Do not modify inter-word spacing, but do
return output information.

Ox8 0 0 1 Modify inter-word spacing and return out­
put information.

Character spacing flag:

OxO 0 0 0 Do not modify inter-character spacing.

OxOOOl Modify inter-character spacing.

ASCII character string

x-coordinate of the text alignment point

y-coordinate of the text alignment point

Requested length of the string, in x-axis units

Width of each character in pixels

GEM/3 Programmer's Toolkit Supplement 9-11

GEM VDl Supplement V_JUSTIFIED (B-A/-D

Sample Call to C Language Binding

WORD v_justified();
WORD char_width(n);
WORD hand1e, X f y, length, word_space, char_space;
BYTE string(n);

v_justified (hand1e, x, y, string, 1ength,
word_space, char_space, char_width);

Parameter Block Binding

9-12

Control Input Output
control(O) = 11 intin(O) = wor~space intout(O) = char_width[O]
control(l) = 2 intin(l) = char_space
control(2) = 0 intin(n+2) = strinq[n]
control(3) = 2+n intout(n-1) =
control(4) = 0 if wor~space char_width [n-1]

equals OxOOOO or OxOOOl
control(4) = n if word-space

equals Ox8000 or Ox8001

control (5) = 10 ptsin(O) = x
control (6) = handle ptsin(l) = y

ptsin(2) = length
ptsin(3) = 0

Note: n represents the number of characters in the string.

GEM/3 Programmer's Toolkit Supplement

Memory Form Definition Block GEM VDI Supplement

Memory Form Definition Block

(Page 6-2 in the GEM VDI Reference Guide)

In the Memory Form Definition Block (MFDB), a 32-bit pointer specified as
-lL (Oxffff:Oxffff) defines the raster area as the quarter-screen buffer and indi­
cates that it is located in graphic memory.

When the quarter-screen buffer is in graphic memory, the only legal source
or destination of a bit copy operation-vro_cpyfm (6DH) for example-is
the screen. In other words, if one operand of a bit copy operation is graphic
memory, the other operand must be screen memory.

Graphic memory is memory that is accessible to the screen driver but not to
the operating system. Typically it is located on a graphics card. If the AES
has allocated the quarter-screen buffer to graphic memory, applications do
not have access to this memory.

GEM/3 Programmer's Toolkit Supplement 9-13

~EM_ VDI Suppl{,~nent VQ--EXTND (66H)

VQ_EXTND (66H)

(Page 8-14 in the GEM VDI Reference Guide)

Additional information for the availability of the quarter-screen buffer in
graphic memory can be obtained through vq_extnd. If the values of output
arguments work_out [26] and work_out [27] are non-zero, they repre­
sent the low word and high word, respectively, of the quarter-screen buffer
size in graphic memory.

Modified Ouput Arguments

9-14

work_out [21]

work_out [22]

work_out [23]

work_out [24]

work_out [25]

work_out [26]

work_out [27]

Extended pixel size units

o No extended precision pixel size information is
available

1 work_out [21] and work_out [22] give pixel
size in 0.1 micron units

2 work_out [21] and work_out [22] give pixel
size in 0.01 micron units

3 work_out [21] and work_out [22] give pixel
size in 0.001 micron units

Extended x dot size in work_out [20] units

Extended ydot size in work_out [20] units

x dots per inch

y dots per inch

Bit image rotation capabilities flag

o Not applicable

1 0-,90-, 180-, 270-degree bit image rotations

Low word of the quarter-screen buffer size

High word of the quarter-screen buffer size

GEM/3 Programmer's Toolkit Supplement

VQ-EXTND (66H) GEM VDI Supplement

worlLout [28] bit 1: Bezier capability

o driver has no Bezier capability

1 driver has Bezier capability

Sample Call to C Language Binding

WORD vq...extnd () ;
WORD handle, owf1ag, worlLout[S7]i

vq...eztnd(handle, ow£la9, worlLout)i

Parameter Block Binding

Control
control(O) • 102
control(l) • 0
control(2) • 6
control(3) • 1
control(4) • 45
control(5) • 0
control(6) • handle

Input
1nt1n(0) - owflag

GEM/3 Programmer's Toolkit Supplement

Output
~ntout(n) = wor~out[n]

where n = 0 thru 44
pstout (m) =
wor~out[m+45]

where m = 0 thru 11

9-15

GEM VDI Supplement v YLINE(6H) and V JILLAREA(9H)

9-16

v -PLINE(6H) and V JILLAREA(9H)

(Pages 4-4 and 4-10 in the GEM VDI Reference Guide)

The v--p1ine and v_fillarea calls have been extended to allow at least
1495 points. The actual maximum number is driver-dependent and can be
found in work_out [14] from the extended inquire information option of
the vCL-extnd call.

A non-zero intin count indicates the presence of a list of indices of IIjump
points," which means that multiple disconnected polygons are supported.

GEM/3 Programmer's Toolkit Supplement

VSF-XPERlA1ETER(68H) GEA1 VDI Supplement

VSF-XPERIMETER (68H)

This call is an extension of the existing vsf-perimeter call (see page 5-39
in the GEM VDI Reference Guide) that allows line style attributes to be used
for filled area outlines. Note that both calls use the same opcode value. They
are differentiated from each other by the INTIN count.

Input Arguments

hancUe Device handle

Perimeter visibility flag

o Tum perimeter outlining off

1 Tum perimeter outlining on

-1 Do not change perimeter outlining

Perimeter attributes flag

o Use normal fill color for perimeter

1 Use line style attributes for perimeter

Output Arguments

set-perimeter Selected perimeter visibility

Sample Call to C Language Binding

WORD vsf~rimeter;
WORD set-perimeter, hancUe, on_off, f_or_li

set-perimeter = vsf_xperimeter(hancUe, on_off, f_or_l)i

Parameter Block Binding

Control Input Output
control (0) = 104
control (1) = 0
control (2) = 0
control (3) = 2
control (4) = 1
control (5) = 0
control (6) = handle

intin(O) = on-off
intin(l) = f_or_1

intout(O) = set-perimeter

GpM/3 Programmer's Toolkit Supplement 9-17

GEM VDI Supplement V...ALPHA_TEXT (5-19H)

9-18

V-ALPHA-TEXT (5-19H)

(Page 9-31 in the GEM VDI Reference Guide)

Additions to currently defined control sequences:

<DC2> 6 Begin superscript

<DC2>7 End superscript

<DC2>8 Begin subscript

<DC2>9 End subscript

<DC2>A Begin letter-quality mode

<DC2>B End letter-quality mode

<DC2>C Begin expanded

<DC2>D End expanded

<DC2>E Begin light

<DC2>F End light

<DC2>G tbm <DC2>V Reserved - ignored by driver

<DC2>W Set pica

<DC2>X Set elite

<DC2>Y Set condensed

<DC2>Z Set proportional

GEM/3 Programmer's Toolkit Supplement

·OUT File Format GEM VDI Supplement

.OUT File Format

In addition to the control sequences described for the v_alpha_text call,
the .OUT file format uses the following command to insert graphics into the
output stream:

<ESC><ESC>GEM, x, y,w,h,D: \PATHNAME\FlLENAME.EXT

<ESC> refers to ADE value 27. x, y, w, and h are given in character cell units.
The origin of the graphics rectangle is relative to the current cursor position,
not the top left comer of the page .

. GEM/3 Programmer's 'toolkit Supplement 9-19

GEM VDl Supplement Font Header Fonnat

Font Header Format

The following modifications and additions have been made to the Font
Header Format (Table F-l).

Modified Fields

(Page F-5 in the GEM VDI Reference Guide)

Byte Number Description

o Font identifier, if the identifier is less than or equal to 255. If
the identifier is greater than 255, bit S in byte 67 should be
set to 1 to indicate that full_id is used (see F1ags definition
below). In this case, bytes 110 and 111 are used as the full
font identifier.

1 Weight:
Bi t 0 thicken (bold)
Bit 1 light
Bi t 2 skew (italic)
Bit 3 underline
Bit 4 outline
BitS shadow

9-20 GEM/3 Programmer's Toolkit Supplement

FontlieaderFonnat GEM VDI Supplement

Additional Fields

(Page F-6 in the GEM VDI Reference Guide)

Byte Number Description

66 - 67 Flags; additional values:
Bit 4 Set if font data is paged out to disk.
Bit 5 Set if font data in file is compressed.
Bit 13 Set if ful~id should be used.
Bit 14 -15 Reserved, must be zero.

88 - 91 next_seet-If the font data is broken into multiple sec­
tions, this pointer points to the next section. If the current
section is the last section, set to O.

The data can be broken into sections in the following man­
ner: a header identifying the characters described by the
data in the current section, a pointer to the next section, the
character data; a header for the next section, another pointer,
character data; and so on.

92 - 109 Reserved, must be zero.

110 - 111 full_id-full identification (~56) to use when bit 13 in
Flags is set. In this case, font_id in byte 0 will be ignored.

112 - 149 Reserved, must be zero.

150 - 151 eompressecLsize-If font data is compressed, this is the
number of bytes of compressed font data.

GEM/3 Programmer's Toolkit Supplement 9-21

~EM VDl Supplement Bit Image File Fonnat

9-22

Bit Image File Format

(Appendix G of the GEM VDI Reference Guide)

The description of WORD 7 of the bit image file header format (Table G-l) is
incorrect. The table should read as follows:

Word
o
1
2
3
4
5
6
7
8

Tab Ie G-l. Bit Image File Header Format

Contents
Image file version number
Heaaer length in words
Number of planes (source device bits per pixel)
Pattern definition lensth (number of oytes)
Source device pixel WIdth (microns)
Source device pixel height (microns)
Scan line width (pixels)
Number of scan fines
Bit image flag

The bit image file header (WORD 1) can be eight or nine words long. The op­
tional ninth word allows printer drivers to support the dithered display of
grayscale images. Drivers can accommodate files with or without the bit
image flag.

In files with a9-word header, bit 0 of word[8] has these possible values:

1 If a multi-plane image, planes are printed as gray
levels.

o If a multi-plane image, planes are printed as
colors.

If the file is not a multi-plane image, bit 0 of word[8] has no meaning.

In a multi-plane image with an 8-word file header (an uold-style" image file),
colors are printed as gray levels on a monochrome device, but the mapping
of the colors to gray levels is not specified and may be device-dependent.

The information beginning on the next page replaces page G-2 of the GEM
VDI Reference Guide.

GEM/3 Programmer's Toolkit Supplement

Bit Image File Data Format GEM VDI Supplement

Bit Image File Data Format

The bit image data is composed of descriptors for each scan line. (Word 7 of
the file header tells how many scan lines are in the file.) The scan line
descriptors are made up of the following:

• a vertical replication count, if the scan line is followed by one or more
identical lines

• encoded line descriptor data for each color plane
The vertical replication count is a WORD value formatted as follows:

Byte Contents

o NUL
1 NUL
2 FFHex
3 Count

The count indicates how many identical scan lines are defined by the descrip­
tor data following the vertical replication count.

The encoded data for each color plane follows the vertical replication count
and is presented in the following order:

first plane red
second plane

third plane
fourth plane

green
blue
gray

Data is always provided for all bit planes defined in WORD 2 of the file
header. The data is presented in any of three formats:

solid_run
pattern_run
bit_string

Note: Because scan line data is encoded in byte-wide packets (groups of
eight pixels), the number of pixels described for each bit plane of a scan line
is always a multiple of eight, as the following example demonstrates.

GEM/3 Programmer's Toolkit Supplement 9-23

GEM VDJ Supplement Bit Image File Data Format

9-24

This example is a simple illustration of the workings of the vertical replica­
tion count and scan line descriptor data. It uses a hypothetical image file in
which WORD 2 of the header is 00 01 (one color plane-in other words, a
monochrome screen driver), the scan line width (WORD 6) is 0028 (40
pixels), and the actual image is a solid horizontal line 34 pixels long and 4
pixels wide (four scan lines).

00 00 FF 04 84 80 01 CO

In the vertical replication count (00 00 FF 04), the count is 04, indicating
that the descri ptor data applies to four consecutive scan lines. The first
descriptor (84) is a solicLrun four bytes (32 pixels) long. The second
descriptor (80 01 CO) is a bit_string one byte long, containing two black
pixels and six blank pixels. The 32 pixels from the solicLrun and the two
pixels from the bit_string add up to the 34 pixels of the solid line, and the
remaining six pixels fill out the 40-pixelline.

If WORD 2 of the file header had indicated four color planes, the vertical
replication count would have been followed by descriptor pairs (solid_run
and bit_string) for each color plane in tum.

GEM/3 Programmer's Toolkit Supplement

V_COPIES (5-1CH) GEM VDI Supplement

This escape function allows the calling routine to specify the number of
copies to be made of each page. All pages output before the workstation is
closed are printed with the specified number of copies. This function applies
to printers only.

Input Arguments

handl.e

count

Device handle

Number of copies

Sample Call to C Language Binding

WORD v_copies();
WORDhandl.e, count;

v_copies (handl.e, count);

Parameter Block Binding

Control
control (0) = 5
control (1) = 0
control (2) = 0
control (3) = 1
control (4) = 0
control (5) = 28
control(6) = handle

Input
intin(O) = count

GEM/3 Programmer's Toolkit Supplement 9-25

GEM VDI Supplement V -ETEXT (B-BH)

V _ETEXT (B-BH)

This function writes each character of a text string relative to the specified
starting position. It is typically used to override the driver's default method
of justification. This function applies to printers and plotters only.

Input Arguments

handl.e

x

Y

string

offsets

Device handle

X-coordinate of starting position

Y -coordinate of starting position

Address of null-terminated text string

Address of WORD array of position offsets

Each offset is an x,y pair of signed integers that indicate the
position of the next character in the string relative to the
starting position. The first offset pair affects the position of
the first character in the string. Some drivers ignore the y
component of each pair, in which case y is assumed to equal
zero.

Sample Call to C Language Binding

WORD v_etext () ;
WORD handle, x, y, *offsets;
BYTE *string;

v_etext(handle, x, y, string, offsets)

9-26 GEM/3 Programmer's Toolkit Supplement

V -ETEXT (B-BH)

Parameter Block Binding

Control
oontrol(O) = 11
control (1) = length of

string + 1
control (2) = 0
control(3) = length of

string
control (4) = 0
control(S) = 11
control (6) = handle

Input
ptsin(O) = x
ptsin(l) = y
ptsin(2) = offsets[O]
ptsin(3) = offsets[l]

ptsin(2n+l) = offsets[2n-l]
intin(O) = string[O]

intin(n-l) = string[n-1]
where n = length of string

GEM/3 Programmer's Toolkit Supplement

GEM VDI Supplement

9-27

GEM VDJ Supplement

V_ORIENT (5-1B)

This escape function allows the calling routine to select one of two page
orientations: portrait (the default) or landscape. The function must be called
before the output of any primitives or attributes.

Input Arguments
handl.e

orientation

Device handle

Page orientation

o Portrait

1 Landscape

Sample Call to C Language Binding

WORD v_orient () ;
WORD han~e, orientation;

v_orient (handle, orientation);

Parameter Block Binding

Control

9-28

control(O) = S
control(l) = 0
control(2) = 0
control(3) = 1
control(4) = 0
control(S) = 27
control(6) = handle

Input
intin(O) = orientation

GEM/3 Programmer's Toolkit Supplement

GEM VDI Supplement

This escape function allows the calling routine to specify a paper tray or re­
quest manual feed. All pages output before the workstation is closed will be
printed using the specified paper tray source.

Input Arguments

handle

tray

Device handle

Paper tray selection:

-1 manual feed

o default paper tray

1 first optional paper tray

n nth optional paper tray (n > 0)

Sample Call to C Language Binding

WORD v_tray();
WORD handle, tray;

v_tray (handle, tray);

Parameter Block Binding

Control
control(O) = 5
control(l) = 0
control (2) = 0
oontrol(3) = 1
control(4) = 0
control(S) = 29
control(6) = handle

Input
intin (0) = tray

GEM/3 Programmer's Toolkit Supplement 9-29

GEM VDI Supplement VST -EJLLOADJONTS (77H)

VST_EX-LOAD-FONTS (77H)

This function is an extension of the existing vst_loacLfonts call (Page 3-
18 of the GEM VDI Reference Guide), with two additional input arguments to
provide control over font paging memory. The current defaults in units of
paragraphs are:

font~x font_free

for screens: 5120 (SOK) 0
for printers: 32767 640 (10K)

The GDOS attempts to allocate fontJDilx paragraphs or all of available
memory (whichever is smaller) less font_free paragraphs, and uses this
amount for font paging.

Depending on your needs, you can use either version of this call. Note that
both versions use the same opcode.

Input Arguments

handle Device handle

Reserved, must be zero select

Output Arguments

additional

Maximum number of paragraphs to allocate

Minimum number of paragraphs to leave free

Number of additional font identifiers

Sample Call to C Language Binding

WORD vst_e~load_fonts();
WORD handle, select, font_max, font_free;

9-30

additional = vst_e~loacLfonts(hand1e, select, font~x,
font_free) ;

GEM/3 Programmer's Toolkit Supplement

Parameter Block Binding

Control
contro1(O) = 119
contro1(1) = 0
concro1(2) = 0
contro1(3} = 3
contro1(4) = 1
contro1(5} = 0
contro1(6] = handle

Input
intin(O) = select
intin(l) = font~
intin[2) = font_free

GEM/3 Programmer's Toolkit Supplement

GEM VDI Supplement

Output
intout(O) = additional

9-31

GEM VDI Supplement V ~ET -APP -BUFF (FFFF-6H)

This call reserves a memory segment for use by GDOS extensions to produce
Bezier curves. When the application makes Bezier calls, the buffer set aside
by this call holds the polygon generated from the Bezier anchor points and
direction points.

When not making Bezier calls, the application has free access to this buffer.
A zero offset, segment, and size disable further use of this buffer and must be
called to prevent accidental use of this memory when the application exits.

In the absence of this call, the GDDS allocates memory via DOS calls as
needed. The size of the buffer varies according to the complexity of the
'Bezier-~ically around 9K bytes.

Input Arguments

offset

segment

nparagraphs

Output Arguments

address

Offset of buffer (first two bytes of addres s)

Segment address of buffer (last two bytes of address)

Number of paragraphs available

Start address of memory area

Sample Call to C Language Binding

VOID v_set_app-buff();
LONGHORD address;
WORD naparagraphs;

v_set_app_buff(&address, nparagraphs);

9-32 GEM /3 Programmer's Toolkit Supplement

V -.SET~PP -BUFF (FFFF-6H>

Parameter Block Binding

Control
control (0) = -1
control (1) = 0
control (2) = 0
control (3) = 3
control (4) = 0
control (5) = 6
control (6) = handle

Input
intin(O) = offset
intin(l) = segment
intin(2) = nparaqraphs

GEM/3 Programmer's Toolkit Supplement

GEM VDI Supplement

9-33

GEM VDI Supplement

This call enables the GooS Bezier capabilities. Note that while a handle is
provided and the associated device driver is called, the GOOS Bezier exten­
sion is enabled for all devices when this call is made. All current GEM 3.1
drivers ignore this calli its only effect is within the GooS itself.

Input Arguments

handle Device handle

Output Arguments

retval Maximum Bezier depth, a measure of the smoothness of the
curve. The value, which can range from 0 to 7, is an ex­
ponent of 2, giving the number of line segments that make
up the curve. Thus, if retval is 0, the curve is actually a
straight line (one line segment). If retval is 7, the curve is
made of 128 line segments.

Sample Call to C Language Binding

WORD vJ>ez_on () :
WORD handle, retval;

retval = v-pez_on(hancUe);

Parameter Block Binding

Control
control (0) = 11
control (1) = 1 (indicates ON)
control (2) = 0
control (3) = 0
control (4) = 4
control (5) = 13
control(6) = handle

9-34

Output
intout(O) = retval

GEM /3 Programmer's Toolkit Supplement

V JJELOFF (B-CH) GEM VDI Supplement

V _BEZ-OFF (B-CH)

This call disables the GOOS Bezier capabilities. Any memory allocated by
the GODS for Bezier-generated polygons is released at this time. (See
V '-sET~P _BUFF in this supplement for memory allocation information.)

Input Arguments

handle Device handle

Sample Call to C Language Binding

WORD v-Pez_off();
WORD handle

v-pez_off(handle);

Parameter Block Binding

Control
control (0) = 11
control (1) = 0 (indicates OFF)
control (2) = 0
control(3) = 0
control (4) = 0
control(S) = 13
control (6) = handle

GEM/3 Programmer's Toolkit Supplement 9-35

~';EM VDI Supplement V -BEZ (6-CH)

V_BEZ (6-CH)

This call dra ws an unfilled Bezier on the specified device.

Input Arguments

hand~e

count

xyarr

bezarr

Output Arguments

npts

nmove

minx

miny

maxx

maxy

Device handle

Number of vertices

Array of vertices

Array of vertex-type flags

bit 0 = 1

bit 1 = 1

first point in a 4-point Bezier segment (a
curve-the four points are two anchor points
and two direction points)

jump point-a point connecting two regions
without drawing a line between them
e'move to here" instead of "draw to here"}

Number of points in resulting polygon

Number of moves in resulting polygon

Minimum x extent of rectangle (''bounding box") surround­
ing the curve

Minimum y extent of boundIng box

Maximum x extent of bounding box

Maximum y extent of bounding box

Sample Call to C Language Binding

VOID v_bez();
WORD han~e, count, xyarr, extent;
CHAR bezarr;

v_bez(han~e, count, xyarr, bezarr, extent);

9-36 GEM/3 Programmer's Toolkit Supplement

V -13EZ (6-CH)

Parameter Block Binding

Control
6
count
2

Input
1nt1n(0) = bezarr
ptsin(O) = xyarr

control (0)
control (1)
control (2)
control (3)
control (4)
control (5)
control (6)

(count + 1)/2
6

= 13
= handle

GEM/3 Programmer's Toolkit Supplement

GEM VDI Supplement

Output
intout(O) = npts
1ntout(1) = nmove
intout(2) = reserved
intout(3) = reserved
intout(4) = reserved
intout(5) = reserved
ptsout(O) = minx
ptsout(l) = miny
ptsout(2) = maxx
ptsout(3) = maxy

9-37

GEM VDl Supplement V JJEZJILL (9-CH)

V _BELFILL (9-CH)

This call draws a filled Bezier on the specified device.

Input Arguments

handle

count

xyarr

bezarr

Output Arguments

npts

nmove

minx

miny

maxx

maxy

Device handle

Number of vertices

Array of vertices

Array of vertex-type flags

bit 0 = 1

bit 1 = 1

first point in a 4-point Bezier segment (a
curve-the four points are two anchor points
and two direction points)
jump point-a point connecting two regions
without drawing a line between them
("move to here" instead of "draw to here")

Number of points in resulting polygon

Number of moves in resulting polygon

Minimum x extent of rectangle ("bounding box") surround­
ing the curve

Minimum y extent of bounding box

Maximum x extent of bounding box

Maximum y extent of bounding box

Sample Call to C Language Binding

VOID v_bez_fill();
WORD handle, count, xyarr, extent;
CHAR bezarr;

v_bez_fill(handle, count, xyarr, bezarr, extent);

9-38 GEM/3 Programmer's Toolkit Supplement

V J3ELFILL (9-CH)

Paxameter Block Binding

Control
= 9
= count
= 2

Input
intin(O) = bezarr
ptsln(O) = xyarr

control (0)
control (1)
control (2)
control (3)
control (4)
control (5)
control (6)

= (count + 1)/2
= 6
= 13
= handle

GEM/3 Programmer's Toolkit Supplement

GEM VDI Supplement

Output
intout(O) = npts
intout(l) = nmove
intout(2) = reserved
intout(3) = reserved
intout(4) = reserved
intout(5) = reserved
ptsout (0) = minx
ptsout(l) = miny
ptaout(2) = max.x
ptsout(3) = maxy

9-39

GEM VDI Supplement V J3EZ_QUAL (5-63H)

This call specifies the speed/ quality tradeoff parameter for Beziers.

Input Arguments

handle Device handle

prcnt Requested speed/quality factor in percent

Output Arguments

actual Actual speed/ quality used

Samp Ie Call to C Language Binding

WORD v-Pez_qual();
WORD (handle, prcnt, actual);

v_be z_qua 1 (handle, prcnt, actual);

Parameter Block Binding

Control
control(O) = 5
control (1) = 0
control (2) = 0
control(3) = 3
control (4) = 1
control (5) = 99
control (6) = handle

Input
intin(O) = 32
intin(l) = 1
intin(2) = prcnt

Output
intout(O) = actual

9-40 GEM/3 Programmer's Toolkit Supplement

VS~KCOLOR (5-66H) GEM VDI Supplement

VS_BKCOLOR (5-66H)

This call sets the background color for the device associated with hancUe,
usually a camera device.

Input Arguments

hancUe

oolor

Device handle

Background color index

Sample Call to C Language Binding

VOID vs-pkoolor() :
WORD handle, oolor

vs-pkoolor(handle, color);

Parameter Block Binding

Control
control(O) = 5
control (1) = 0
control(2) = 0
control (3) • 1
control (4) = 0
control (5) = 102
control (6) I: handle

Input
intin(O) = color

GEM/3 Programmer's Toolkit Supplement 9-41

GEM VDJ Supplement VS_GRA YOVERRIDE (85H)

VS_GRA YOVERRIDE (85H)

This call overrides the gray level specified with the vsf_style call, patterns
2,1 through 2,8 (see page 5-36 of the GEM VDI Reference Guide). The applica­
tion should specify the closest index in the nonnal fill pattern set and follow
it with a vs_grayoverride call to "fine-tune" that gray level one devices
that support such fine tuning. This call is currently implemented in the Post­
Script® driver.

Input Arguments

hancUe

qrayval

Device handle

Gray value in tenths of a percent

o white

1000 black

Sample Call to C Language Binding

VOID vs_grayoverride();
WORD handle, grayval;

vs_grayoverride(hancUe, grayval);

Parameter Block Binding

Control
control(O) = 133
control (1) = 0
control(2) = 0
control(3) = 1
control (4) = 0
control (5) = 0
control(6) = handle

9-42 GEM/3 Programmer's Toolkit Supplement

V .Y AT .,.ROTATE (86H) GEM VDI Supplement

V-PAT_ROTATE (86H)

This call specifies pattern rotation angle. It is implemented only in printer
drivers and is restricted to multiples of 90 degrees.

Input Arguments

handle Device handle

angle Angle in tenths of a degree

Sample Call to C Language Binding

VOID v-pat_rotate();
WORD handle, angle;

v-pat_rotate(handle, angle);

Parameter Block Binding

Control
contro1(O) = 134
contro1(1) = 0
control (2) = 0
control (3) = 1
contro1(4) = 0
control (5) = 0
contro1(6) = handle

Input
intin(O) = angle

GEM/3 Programmer's Toolkit Supplement 9-43

GEM VDI Supplement V _SETRGBI (5-4844H)

V _SETRGBI (5-4844H)

This call overrides a previously set color specification with an RGB triple
(color devices) or intensity (monochrome devices). This call is currently im­
plemented only for the PostScript driver.

Input Arguments

handle Device handle

Primitive type

17 line

primtype

20 marker

22 text

25 fill

r Red component

g Green component

b Blue component

i Intensity

Sample Call to C Language Binding

VOID v_setrgbi();
WORD handle, primtype, r, q, b, i;

v_setrqbi(handle, primtype, r, q, b, i);

Parameter Block Binding

Control

9-44

control(O) = S
control (1) = 0
control(2) = 0
control (3) = S
control (4) = 0
control(S) = Ox4844
control (6) = bandle

Input
intin(O) = primtype
intin(l) = r
intin(2) = g
intin(3) = b
intin(4) = i

GEM/3 Programmer's Toolkit Supplement

V _TOPBOT (5-4845H) GEM VDI Supplement

V _TOPBOT (5-4845H)

This.call is an alternative to vst_height (page 5-20 of the GEM VDI Refer­
ence Guide). It uses top to bottom distance for text scaling, instead of top to
baseline distance.

Input and output arguments are the same as for vstJleight.

Sample Call to C Language Binding

VOID v_topbot();
WORD handle, height, char_width, char_height, cell_width,
cell_height;

v_topbot(handle, height, & char_width , &char-peight,
&cel~width, &cellJleiqht);

Parameter Block Binding

Control Input Output
control(O) = S
control (1) = 1
control (2) = 4
control (3) = 0
control (4) = 0
control(S) = Ox484S
control (6) = handle

ptsin(O) = 0
ptsin(l) = height

ptsout(O) = char_width
ptsout(l) = char-peight
ptsout(2) = cell_width
ptsout(3) = cell-peight

GEM/3 Programmer's Toolkit Supplement 9-45

~~f.M VDl Supplement V J>SJiALFTONE (5-20H)

This call controls the parameters for PostScript half tOning. It provides direct
access to analogous PostScript language parameters. It is implemented only
for the PostScript driver.

Input Arguments

hancUe Device handle

index

angle

frequency

Halftone type

o Dot screen

1 Line screen

2 Ellipse screen

3 Custom (user-defined)

Halftone screen angle

Halftone screen frequency

Sample Call to C Language Binding

VOID v-ps_halftone();
WORD handle, index, angle, frequency;

v-ps_halftone(hand1e, index, angle, frequency);

Parameter Block Binding

Control

9-46

control (0) = 5
control (1) = 0
control(2) = 0
control(3) = 3
control(4) = 0
control(5) = 32
control(6) = handle

Input
intin(O) = index
intin(l) = angle
intin(2) = frequency

GEM/3 Programmer's Toolkit Supplement

Section 10
Files and Devices Update

DDFFiles

Bitstream® Fontware® uses Device Description Files (DDF) to contain the
device-dependent information that is required for generating the correct
fonts in the correct format. DDF files also provide information about the
device for the user-interface portion of Fontware. In the following descrip­
tion of the fields that can occur in a DDF file, SIP indicates a field used in
both screen and printer DDF files and P indicates a field used only in a
printer DDF file.

menulabel SIP

manufacturer SIP

model SIP

printer SIP

unused

first part of menu label (used in the Printer Model
menu in Fontware)

last part of menu label (used in the Printer Model
menu in Fontware)

Screen I printer flag

o screen device

hdpi

vdpi

driverload

driver

SIP

SIP

SIP

SIP

1

o

1

printer device

horizontal dots per inch

vertical dots per inch

font management responsibility

Fonts are loaded and managed by GDOS font
manager.

Device driver loads and manages its fonts.

XeroX®Ventura Publisher® driver name that is
patched into the corresponding width table. This
name should be identical to the short name in the
zyxg patch area of the driver. See "Device
Names" at the end of this supplement.

GEM/3 Programmers Toolkit Supplement 10-1

DDF Files

fmt SIP identifies screen or printer font fonnat conversion
program

For example, if the value is this field is GEM, that
identifies the font conversion program as
CVTGEM.EXE. If the value is HPF, the conver-
sion program is CVTHPF.EXE. The value in this
field follows "CVT" in the conversion file pro-
gram name. The value must be GEM if the driver
uses the GDDS font manager.

makefon SIP unused-should be zero

usepfm SIP unused-should be zero

devkey SIP Seventh character of the font file name. By con-
vention, a unique letter is assigned by resolution.

devmode SIP eighth character of the font file name

In screen DDF files, P indicates a Portrait font and
L and Landscape font. In printer DDF files this
value is overridden by GENGEMIF.EXE.

maxbmap SIP maximum size used by font conversion program
specified by fmt (ab6ve)

maxoffset SIP maximum offset used by font conversion pro-
gram

minoffset SIP minimum offset used by font conversion program

maxcel1 SIP maximum size used by font conversion program

maxsw SIP maximum size used by font conversion program

gemext SIP font file extension (unused by devices that
manage their own fonts)

rle P run-length encoding-should be 1

kerning P kerning flag

0 nokeming

1 kerning

10-2 GEM/3 Programmers Toolkit Supplement

dtal P

dta2 P

dtbl P

dtb2 P

orientation P

hpJlig P

uses.izes P

usebco P

DDF Files

Specifies the first program of the intial stage of
font processing. Recommended value is v£ms,
which generates Ventura width tables.

Specifies the second program of the initial stage of
font processing. Recommended value is v£2wd,
which generates Ventura width tables.

Specifies the first program of the final stage of
font processing.

Specifies the second program of the final stage of
font processing.

generate Portrait and/ or Landscape fonts

generate Series II soft fonts (may be larger than
255 dots)

Not used by raster devices.

Not used by raster devices.

NOTE: The preferred naming convention for DDF files is that the file name
be the value found in the gemext field. See the sample files on the following
pages.

GEM/3 Programmers Toolkit Supplement 10-3

DDFFiles Sample DDF Files

Sample DDF Files

This is a listing of a sample DDF file for a VGA TM_type screen driver:

10-4

VGA.DDF

menu 1 abe l=vga
manufacturer=ibm
model=VGA
printer=O
hdpi=91
vdpi=91
driverload=O
driver=VGA
fmt=gem
makefon=O
usepfm=O
devkey=v
devmode=p
maxbmap=512
maxoffset=655
minof£set=-655
maxcell=655
maxsw=655
gemext=vga

GEM/3 Programmers Toolkit Supplement

Sample DDF Files DDFFiles

This is a listing of a sample DDF file for an Epson@ LQ-series printer.

ELQ.DDF

menulabel=Epson LQ Series
manufacturer=Epson
model=LQ
printer=l
hdpi=180
vdpi=180
driverload=O
dr.iver=Epson LQ
dtal=vfms
dta2=vf2wd
fmt=gem
makefon=O
usepfm=O
devkey--d
devmode=p
mazbmap=512
maxoffset=655
minoffset=-655
maxce11=655
maxsw=655
gemext=elq

GEM/3 Programmers Toolkit Supplement 10-5

DDF Files Sample DDF Files

10-6

This is a listing of a sample DDF file for a Hewlett-Packard® LaserJet® Series
II printer driver:

HPH.DDF

menulabel=HP LaserJet Series II - HP Softfonts
manufacturer=HP
model=LaserJet Series II - HP Softfonts
printer=l
hdpi=300
vdpi=300
driverload=l
driver=HP LJ+, 300 dpi
dtal=vfms
dta2=vf2wd
fmt=hpf
makefon=O
usepfm=O
devkey=l
devmode=p
maxbmap=512
maxoffset=655
minoffset=-655
maxcell=655
maxsw=655
gemext=hph
rle=l
kerning=l
orientation=2
hp_big=l

GEM/3 Programmers Toolkit Supplement

Sample DDF Files CNF Files

CNFFiles

All GEM 3.1 printer drivers read device- and system-dependent configura­
tion files that have filenames of the fonn ddd. CNF. ddd is a driver identifica­
tion taken from the driver filename, which uses the fonn PDddd9 . fff.
(fff is a font extension like VGA or EGA.) There are three kinds of CNF
files, used by GEM font drivers, Hewlett-Packard soft font drivers, and the
PostScript driver.

CNF files are pure ASCII text. Individual entries in the files use this format:

KEYWORD (P ARMl, P ARM2, P ARM3, ••.)

KEYWORD describes the function to be adjusted or included, and PARMI
P ARM2 P ARM3 ... are modifying or describing parameters. Parameters may
be separated by commas. Note that both the CNF files themselves and all
entries in the files are optional.

GEM Font Drivers

This is the format of a CNF file for a GEM font driver:

MARGINS

MARGINS (XL XR YT YB)

Sets margins that limit graphics output to printable area.

XL left margin in device units

XR right margin in device units

The XL and XR values typically default to 0.5" in
device units. For a 120 dpi printer, they would
equal 60.

YT top margin in device units

YB bottom margin in device units

The YT and YB values typically default to zero.

GEM/3 Programmers Toolkit Supplement 10-7

Hewlett-Packard Soft Font Drivers Sample DDF Files

Hewlett-Packard Soft Font Drivers

This is the format of a CNF file for a Hewlett-Packard soft font driver:

MARGINS

HFI

DOWNPATH

PERMFONT

MARGINS (XL XR YT YB)
HB'I (ON_OFF)
DOWNPATH (DIR)
PERMFONT(ID FILENAME)
FONTSPEC(FILENAME ID SIZE ATTR MAP)

Same function and parameters as in GEM font driver CNF
file.

Flag indicating whether HP Font Information (HFI) file
search is requested. HFI files should be located in the direc­
tory that contains the downloadable soft fonts.

ON_OFF = 0 driver search for HFI files disabled (the
default)

ON_OFF = 1 driver search for HFI files enabled

Identifies directory that contains HFI files and soft font files.

DIR Path name of directory. If a relative path
specification is given, it is taken as relative to the
directory that contains the driver. The default is
".", the directory containing the driver.

Indicates that the soft font has already been downloaded to
the printer. In that event, the driver examines the soft font
file for character width information but does not send the
font down to the printer. This keyword's parameters have
no default values.

ID soft font identifier

FILENAME soft font filename

10-8 GEM/3 Programmers Toolkit Supplement

Sample DDF Files

FONT SPEC

Hewlett-Packard Soft Font Drivers

An alternative to HFI files. Provides the driver with infor­
mation about a soft font that is available for downloading.

FILENAME

ID

SIZE

ATTR = 0

ATTR = 1

ATTR = 4

ATTR = 5

MAP = 0

MAP = 1

soft font filename (with no extension­
the driver will use .SFP and .SFL)

GEM font identifier

font size in points

font attribute: Normal

font attribute: Bold

font attribute: Italic

font attribute: Bold Italic

remap character set flag: HP character
set

remap character set flag: GEM/Ventura
character set

GEM/3 Programmers Toolkit Supplement 10-9

PostScript Driver Sample DDF Files

PostScript Driver

This is the format of the CNF file used by the PostScript driver:

MARGINS

PFI

PSFONTS

EOFTYPE

MARGINS (XL XR. YT YB)
PFI (ON_OFF)
PSFONTS (DIR)
EOFTYPE (TYPE)
IMGTYPE (TYPE)
COLTYPE (TYPE)
FONT (NAME ID ATTR MAP RESFLAG)

Same function and parameters as in GEM font driver CNF
file.

Flag indicating whether PostScript Font Infonnation (PFI)
file search is requested. PFI files should be located in the
directory that contains the downloadable PostScript ASCII
or binary format fonts.

ON_OFF = 0 driver search for PFI file disabled (the
default)

ON_OFF = 1 driver search for PFI file enabled

Identifies directory that contains PFI file and associated Post­
Script downloadable font files.

DIR Path name of directory. If a relative path
specification is given, it is taken as relative to the
directory that contains the driver. The default is
II.", the directory containing the driver.

Specifies the driver method to be used for marking end of
PostScript job/file.

TYPE = PC Ctrl-D is appended to the PostScript out­
put (the default)

TYPE = MAC no characters are appended to the Post­
Script output

10-10 GEM/3 Programmers Toolkit Supplement

Sample DDF Files

IMGTYPE

COLTYPE

FONT

PostScript Driver

Indicates how bitmap image data is to be translated into
PostScript.

METHOD = COMPACT

Image data is sent in a compressed form and is
decoded by the PostScript interpreter.

METHOD = FAST

Image data is decompressed before translation to
the appropriate PostScript string.

Specifies to driver whether "setrgbcolor" or "setgray" Post­
Script functions should be used.

COLOR Use "setrgbcolor" function (the default).

When the COLOR parameter is set, PostScript
handles mapping of colors to gray levels for
monochrome printers.

MONO Use "setgray" function.

Provides an alternative to supplying a PFI file for the Post­
Script font.

NAME Font PostScript name

ID GEM font identification number (for ex-
ample, 2 = Swiss)

ATTR = M font attribute: Normal

ATTR = B font attribute: Bold

ATTR = I font attribute: Italic

ATTR = BI font attribute: Bold Italic

MAP = TEXT character set re-encoding enabled

MAP = P I character set re-encoding disabled (for
symbol fonts)

RESFLAG = RES font is resident

RESFLAG = DOWN:filename

Font filename must be downloaded.

GEM/3 Programmers Toolkit Supplement 10-11

ATMFiles Sample DDF Files

ATMFiles

10-12

Alpha Text Mapping (ATM) files are used by non-Postscript printer drivers
to allow device-dependent and user-dependent mapping of characters above
the standard ASCII set. ATM files are used only for alpha text and they are
used only when the driver attempts to output characters in the range 128-
255. These files allow the system to use a single driver for printers with the
same graphics mode protocol but different alpha mode protocols or
capabilities. For example, the Hewlett-Packard Laserjet in its simplest form
cannot print the © or ® symbols, but if fitted with a "Legal" cartridge, it can
access these characters with the appropriate escape sequence. The A TM files
have a very simple fonnat in which all characters are represented by their
two-character hexadecimal representation. For example, decimal character
128 is written as 80. The following example, taken from EHI.ATM, illustrates
the syntax of these files:

80 1B52015C1B5200
81 1852027D185200
82 1852017B185200
83 61085E

The first number on each line is the character requested by the application.
The number sequence that follows identifies the set of characters that are
sent to the printer. Any character without an entry is transmitted to the
printer unchanged. In the example above, the GEM International character
set character a-with decimal value 131 or hexadecimal value 83-is trans­
lated by the driver into the sequence 61 08 5e: the character "a", a back­
space, and the character "AP.

GEM/3 Programmers Toolkit Supplement

Section 11
GEM Setup Text Files

The GEM Setup program uses two ASCII text files: GEMSETUP.MSG and
GEMSETUP.TXT. This note describes the format of these two files so you
can modify or translate the existing text files or create new ones.

GEMSETUP.MSG

GEMSETUP.MSG contains the messages, menus, and prompts the user sees
while running the GEM Setup program. Here are two excerpts from this file:

@PROMPTJTR
*** LINES: 4
{ Welcome to GEM Setup!

}

This program installs GEM/3 onto your computer.
Do you want to install GEM!3 for the first time or cbange an existing
GEM!3 installation?

@FLABJTR

The following strings are floppy disk labels.

*** LINES: 2

{GEM DESKTOP DISK
GEM STARTUP DISK
}

The file is made up of these elements:

• A pointer code that identifies how the following text will be used. These
12o1nters are delimited by an at-sign (@) and are linked to the code in
GEMSETUP.EXE. For that reason! {hey must not be changed. The pointer
codes are described fully later in thIS nole.

• A line count indicating how many lines of text are available at this point in
the p'rogram. For example, four hnes are available for the opening message
and first prompt. You can change the content of these lines, but you must
use the number of lines indicated: If you do not, all subsequent lines will be
offset by a number of lines, and the wrong prompts and messages will appear
on the screen.

GEM/3 Programmers Toolkit Supplement 11-1

Pointer Codes

• The prompt, message, or menu text that appears on the screen. This text is
set off by 15races (0) and must occupy the number of lines specified in the line
count.

• Optional comment text. This text is _placed between the pointer code and the
line count and is identified by the aosence of any delinuter character.

Pointer Codes

These are the pointer codes used by GEMSETUP.MSG:

@PROMPTJTR Prompts, queries, and messages that form the bulk of the
program's interaction with the user.

Menus of options from which the user can choose. A box,
check-mark, or other choice mechanism (it is system-depend­
ent) appears to the left of each option.

@FOOTER_PTR Footer lines that tell the user how to select options.

@HVOL_PTR Disk volume labels. These labels are used by the code to
identify the disk being used for a particular operation. The
string must be eleven characters long. If the number of char­
acters used is less than eleven, pad the inside of the string
with blank spaces. The first example below is correct; the
second example is incorrect. (The first line shows the charac­
tercount.)

12345678901
correct GEM SCRN
incorrect GEM SCRN

@HLABJTR Disk label strings. These strings are swapped into the text of
@PROMPT_PTR to identify for the user the disks required for
a given operation. The XX strings are placeholders for driver
pack label strings, which come from GEMSETUP. TXT on the
driver pack disk. Do not translate or alter the xx strings.

@KEYWORDS_PTR Unique characters for the GEMSETUP.TXT label strings. Do
not translate or alter.

11-2 GEM/3 Programmers Toolkit Supplement

Pointer Codes

@FLABJTR Floppy disk labels. These strings are swapped into the text
of @PROMPT_PTR to identify the disks created for a floppy
disk installation.

@FVOLJTR

@COPYJTR
@TOOJlANY
@D_SPACE

Floppy disk volume labels.

Messages displayed by the GEM Setup program.

The example below shows the first GEM Setup screen and identifies the
pointer codes for the types of text on the screen.

Welcome to GEM Setup!
This program insta1ls GEM/3 onto your computer.
Do you want to install GEM/3 for the first time or change an existing
GEM/3 installation?

[] INSTALL NEW CONFIGURATION
[] CHANGE EXISTING CONFIGURATION

Press t or ~ to move cursor, <ENTER> to choose, <ESC> to exit/cancel.

GEM/3 Programmers Toolkit Supplement 11-3

GEMSETUP.TXT

GEMSETUP.TXT

11-4

The GEMSETUP.TXT file contains the strings that describe the various
devices and their associated files. Here are two excerpts from GEM­
SETUP.TXT:

@SCREEN
{
I DESCRIPTION I IBM Enhanced Card & 16-Color Display (640x350)
ISHORT DESCRIEGA HiRes 16
IFILENAMEISDEHF8.EGA
ISRC DISKIGEM SCREEN DISK #1
IFNT WILDCRDI*.EGA
ILONG DESCRPI
Choose this entry if your system is equipped with an IBM Enhanced
Graphics Adapter card, with at least 128K of graphics memory on
the card, and an IBM enhanced color display. This 16-color
display offers a resolution of 640 horizontal by 350 vertical
pixels.
}

@PRINTER
{
I DESCRIPTION I Hewlett Packard Laserjet II Printer (300 x 300 Dots/Inch)
ISHORT DESCRIHP Laser II
IFILENAMEIPDHPUS.B30
ISRC DISKIGEM PRINTER DISK #3
IFNT WILDCRDI*.B30
ILONG DESCRPI
Choose this entry if you are using a Hewlett Packard Laserjet
II printer. This printer offers a print resolution of 300 x 300
dots per inch.
}

The descriptions are grouped according to the device:

@METAFlLE
@SCREEN
@PRINTER
@PLOTTER

Within each category, the device descriptions are delimited by braces, as
shown in the examples.

Each field name is delimited by a broken vertical bar (I I), which-with one
exception-is followed immediately by the field content. The exception is
the ''long description" field, whose content starts in column 1 of the next line.

GEM/3 Programmers Toolkit Supplement

GEMSETUP.TXT

These are the fields used in GEMSETUP. TXT:

DESCRIPTION

SHORT DESCR

FILENAME

SRC DISK

FNT WILDCRD

AUX FILE

FONT DISK

A brief description of the device. This strings appears in the
menus presented by GEM Setup. Maximum field length is
80 characters.

An even more brief description of the device. This string ap­
pears below the device's icon in the GEM Output program.
Maximum field length is 13 characters. See IIDevice Names"
on at the end of this section.

The filename for the device driver. This field is required.
Maximum field length is 13 characters.

The disk on which the driver is found. This string should
match one of the string names listed under @HLABJ?TR in
GEMSETUP.MSG. Maximum field length is 40 characters.

A string in the form * . EXT that identifies the file extension
used by the fonts associated with this device. Maximum
field length is 40 characters.

The filename (or names) of auxiliary files used by a printer.
These are typically configuration or text mapping files. If
this field lists more than one filename, the names are
separated by a semi-colon. Maximum field length is 67 char­
acters.

The disk on which printer fonts are found. This string
should match one of the string names listed under
@HLAB_PTRinGEMSETUP.MSG. Maximum field length is
40 characters.

GEM/3 Programmers Toolkit Supplement 11-5

GEMSETUP.TXT

MOUSE ID

LONG DESCRP

11-6

A unique one-byte code that identifies the mouse to the
screen driver. The mouse ID occupies the second byte fol­
lowing the string zyxg in the driver file. (The first byte is
the mouse port-OO for COM1, 01 for COM2.) Reserved
mouse 10' s are:

00 No mouse

01 Mouse Systems™ PC Mouse™ I SummaMouse™
I Compatibles

02 Bus Mouse (Requires file MOUSE.COM)

03 Microsoft Serial Mouse (RS232)

04 SummaSketch ™ 1201 Stylus-Type Tablet

05 SummaSketch 1201 Cursor-Type Tablet

06 SummaSketch 961 Stylus-Type Tablet

07 SummaSketch 961 Cursor-Type Tablet

08 Summagraphics™ MM1812 Stylus-Type Tablet

09 Summagraphics MM1812 Cursor-Type Tablet

10 (hex OA) IBM®personal Systeml2™ Mouse

A long description of the device. This text is displayed
when the user asks for help in GEM Setup. Maximum field
length is 80 characters per line, with a maximum of 20 lines.

GEM/3 Programmers Toolkit Supplement

Device Names GEMSETUP.TXT

Device Names

Ventura Publisher users can encounter an alert telling them that their printer
and width table are incompatible, even though the width table is the correct
one for the device.

This supposed incompatibility arises when the SHORT DESCR in the printer
driver does not match the device identification in the width table file. (This
identification is actually the driver field from the printer's DDF file and has
been embedded in the width table by Fontware.) Ventura compares the two
values and, if they do not match, returns the alert.

The alert is often more an annoyance than a sign of a true incompatibility.
The user can ignore the alert if the incompatibility is simply a matter of in­
consistencies in naming. For example, GEM printer drivers refer to the
Hewlett-Packard LaserJet Series II as HP Laser 300, and Ventura drivers
refer to it as HP LJ+, 300dpi.

To avoid this alert, make sure the SHORT DESCR and driver values are the
same.

GEM/3 Programmers Toolkit Supplement 11-7

5149-2374-001

