GEM’/3 Programmer’s Toolkit"

Release 3.1 Supplement

DIGITAL RESEARCH®

GEM’/3 Programmer’s Toolkit"

Release 3.1 Supplement

Copyright© 1989 Digital Research Inc. All rights reserved. GEM s aregistered trademark
and Desktop, Draw Plus, FlexOS, Programmer’s Toolkit, and X/GEM are trademarks of
Digital Research Inc. Turbo C and the Turbo Assembler are registered trademarks of
Borland International, Inc. MetaWare and High C are trademarks of MetaWare Inc. Atari
is a registered trademark of Atari Inc. Ventura Publisher is a registered trademark of
Ventura Software, Inc. Xerox is a registered trademark of Xerox Corporation. Bitstream
and Fontware are registered trademarks of Bitstream, Inc. PostScript is a registered
trademark of Adobe Systems, Inc. Hewlett-Packard and LaserJet are registered
trademarks of Hewlett-Packard Corporation. IBMis a registered trademark and VGA and
Personal System/2 are trademarks of International Business Machines Corporation.
Epson is a registered trademark of Seiko Epson Corporation. Microsoft is a registered
trademark of Microsoft Corporation. Mouse Systems and PC Mouse are trademarks of
Mouse aSr{stems Corporation. Summamouse, SummaSketch, and Summagraphics are
trademarks of SummaGraphics Corp.

Foreword

This supplement updates the information contained in the documentation
set of GEM® Programmer’s Toolkit™. Recent changes to the toolkit software
have both enhanced existing features and added new functionality.

The GEM 3.1 Programmer’s Toolkit Supplement describes the new install
library utility (INSTLIB), new function calls added to the GEM programming
libraries, and updates to the GEM Applications Environment Services (AES)
and GEM Virtual Device Interface (VDI).

In Chapters 1 and 2 of this supplement, there is information about how to
use the new install library utility to install the sources of the new GEM bind-
ings on your hard disk. You can choose from any of the following C lan-
guage compilers and versions:

* Borland Turbo C® —1.0to0 2.0
* Microsoft® C Compiler — 5.x
* MetaWare™ High C™ —14and 1.5

The installation utility also lets you select which libraries you want to install.
How you choose to have the libraries built depends on optimization.

Chapters 2 through 8 deal with the new function calls added to the GEM
Programming Libraries. The library descriptions are divided into these
categories:

» Extended Object Library

+ Extended Raster Library

* Transformation Library

* Miscellaneous Library

» DOS Library

» Expanded Memory System (EMS) Library

Chapters 9 through 12 contain the information required to bring the GEM
Application Environment Services Reference Guide and the GEM Virtual
Device Interface Reference Guide up to Release 3.1 of the GEM system
software (GEM/3).

GEM/3 Programmer’s Toolkit Supplement idi

Contents

1 Installation
Starting the Install Library Application INSTLIB.APP)1-1

Selecting the Compiler « v e e v v . .13
Selecting Library Organization e
Selecting Libraries

Installing the Libraries e 0
EditingPORTABH17

2 Compiler Notes

TurboC . . e e e e e e e e e w2
TURBOC.CFG (TCC Conflguratlon Flle) 25 |
Examples . . e e e e e e e e e 222
BUILTINS. MAK (MAKE Defuutlon Flle) D 2%

MicrosoftC 2
TOOLS.INI (chrosoft C Imtxahzatmn Flle) .2
Examples . . e e . .24

INCLUDE and LIB (chrosoftCEnvu'onment Vanables) e e . . .2-5
MetaWarenghC.'...................2-6

MetaWare MAKE . o e e e e e e e e . 276
Runtime Startup for High C (INIT OBJ) .. B 4
CALLINT Function of MetaWare ngh C (CALLINT OBI) R 24
Memory Model Constraints . . e e . 244

Compiling theBindings28

3 Extended Object lerary

" OB_DOSTATE . . . O 52
OB_LUNDOSTATE v v & v 4 v e e o e v v v v .33
OBISSTATE . . . v v v v v v v v v e e e e v e e v v .34
OBDOFLAG . . v & v v 4 4 ¢ v v « v ¢« « o « v o o« v .35
OBLUNDOFLAG . . . v v v v v v v 4 v s e e e e o o« .36
OB_ISFLAG . . v v v v v v v e v v e e e e e e e e W87
OB XYWH . . . & & v v e v v e e e v e e e e e v e v .38
OB_GET_TEXT . . v v v v v v 4 v v o v e e o v e v v .39
OB_SET_TEXT 310
OBDRAWDIALOG . . . v v 4 v v v 4 e e e e e e v 311
OB_UNDRAW.DIALOG + v v v v v o v v o « o« « 312

GEM /3 Programmiers Toolkit Supplement v

Contents

4 Extended Raster lerary ~
RC_EQUAL Y-]
RCCOPY ¢ v v v e v v v e s v e e e e v e e v 43
RC_INTERSECT & ¢« & v v v v v v v v v v v v o 44
RC_INSIDE . . . R B
RC_GRECT_TO_ ARRAY - 2

5 Transformation Library
XSXFORM ¢ v ¢ v o o v v o v v s v v o o o o B2
XSASPECT ¢ « ¢ ¢« o o « o o o s o o o« o o« « o b3
XYTOX . 0 v e v v v e 6 e e 4 e e e e e e e e s . . 54
XUDXXFORM & v ¢ ¢« ¢« o e s o« s o« o « « « - b5
XUDYXFORM ¢ 4 ¢« ¢ ¢ o ¢« o o o o« o o o+ o bb
XDUXXFORM v v v v v v v v v v v v s v u . 57
XDUYXFORM + « ¢« v v v v v v v v o oo+ . 58
XUDXSCALE ¢« v ¢ v ¢ ¢ v v v o v ¢« o oo+ 59
XUDYSCALE « « ¢ v v v v o v o« o « « «510
X DUXSCALE « ¢ ¢ o ¢ o v v o o v o o o« o511
XDUYSCALE ¢ v v v o v e v o o« « o512
XMULDIV v v v v v v v v v v v o oo . 513

6 Miscellaneous Library ,
"FARDR_START v ¢ ¢ e v v v o v o o o o+ 62
FARDREND ., ¢ ¢ o o0 v e v oo« . 63
FARDRCS . . . « v v v v v e s e e e v v i e e v v . 64
FORMEXDO ¢ ¢ ¢t v v e e oo . 65
FIX_ICON B]
EVNT_EVENT ¢ ¢ vt v v v o v o o v o o 67

7 DOS Function lerary
DOS_CHDIR . e D (]
DOS_GDIR ¢ v v v v v v e o v e o o v v W 73
DOS_GDRV . . . + v v v vttt e e e e e e e e, 7
DOSSDRV . . . « v v v v v v v i e e e e v o . 75
DOSSDTA « ¢« v v v v v v v e e v v v v . 76
DOS_GDTA « v v v v v v e e e v e e e 1T
DOS_SFIRST ¢ ¢ ¢ v v v v o v o o v v . 78

vi ~ GEM/3 Programmers Toolkit Supplement

Contents

DOS_SNEXT « v v v v v v v v v v e o e v o s 79
DOS_OPEN Y & [
DOSCLOSE ¢« . ¢ v v v v o e o e oo+ 711
READ PIECE ¢ v v v v v v o v v v v o v o 712
DOS_READ Y A K
DOS_LSEEK ¢ v v v v v v v e v o v« . 714
DOS WAIT ¢ ¢ v v v v v o« v v o« o o« . 7415
DOS_ALLOC ¢ v v v v v v v v e e e e . . 716
DOS_AVAIL ¢ v v v v v v o v v v e v o o 717
DOSFREE ¢ ¢ v ¢« v v v o v v v v o« . 718
DOSSPACE ¢ v v v v v v v v e v e v o« 719
DOS_RMDIR ¢ v v v v v v o v o o o o oo 720
DOS_CREATE e A |
DOSMKDIR ¢ v v v v v o v o v o o o o o 722
DOS_DELETE ¢« v « ¢ ¢ v v o o o o o o« « o 723
DOSRENAME ¢ v v v v v v o o o o o o o o« 724
WRITEPIECE ¢« ¢ ¢« v o v « o« « o« o« o 725
DOS_WRITE ¢ v v v v v v e o o o« o« 726
DOS_CHMOD O 794
DOS_SETDT ¢ ¢ v ¢ v v o o o« o o o o o+ o 728
DOS_GETDT « v ¢ v ¢ o o v o v o o« s o« o 729
DOS_EXEC ¢« v v v v v v v v v o o o o« o« « .« 730
DOS_GETDATE « v ¢ v v ¢ o v o o o o« o« 731
DOS_SETDATE + v v v v v v o o v o o o o o « 732
DOS_GETTIME ¢ « ¢ v o v o« o o o o o « « 733
DOS_SETTIME « « « v v o v o o o o o o o « 734
DOS VERSION + ¢« v ¢« ¢« « v o« o « « o 735

8 EMS Library
EMS_INST ¢ v v v v v v e e v e e e . .82
EMSERRCODE ¢ ¢ e o oo o+ . .83
EMS NUMPAGE ¢ v v v ¢« v v o o v« . .84
EMSFREEPAGE ¢ v ¢« v v o o o« .+ .85
EMS FRAMESEG ¢« ¢+ v e+« . .86
EMS_ALLOC ¢ . v v v v e v v e e e e . .87
EMS MAP ¢ v v v v v v v e e e e e . .88

GEM/3 Programmers Toolkit Supplement vii

Contents

EMS_FREE P -
EMS_VERSION O < 2 (1)
EMS SAVE MAP & ¢ ¢« ¢ v v v v e v e v o« « 811
EMS RESTORE_ MAP . . . ¢ ¢ ¢ v ¢ o v ¢« o o o« o o« o« « 812
EMSErmorCodes ¢ ¢« ¢ ¢ v 4« ¢ v v ¢ o« « « o« « . 813

9 GEM AES and VDI Update

GEM AES Supplement00 o000 91
MENU_CLICK ¢ v v v v v v v v e e e o 92
MENU_BAR S
EventLibraryCalls 94
GEM VDISupplement 95
Changes and Corrections 95
GDOS Modifications 97
V_OPNWK(H) ¢ o v o v v v v v v« 99
V_JUSTIFIED (B-AH) . . B S
Memory Form Definition Block S K
VQ_EXTND (66H) . . e e e e e e e e e . 4914
V_PLINE(6H) and V. FILLAREA(9H) - (4
VSF_XPERIMETER(68H)917
V_ALPHA _TEXTG-19H)918
OUTFileFormat99
FontHeaderFormat920
Bit Image File Format e e e e e e e e e e e e e e e s 922
Bit Image File Data Format e e e e e e e e e e e e e e 923
V_COPIESG-ICH) « . v v v o v v« 925
V_ETEXT(B-BH)« . .926
V_ORIENTG-1B) « . o v v v v v & v « v + 928

-~ V_TRAY (5-1D) .. e e e e e e e e e e e e 99
VST_EX_LOAD_FONTS (77H) e e e e e e e e e e e e 930
V_SET_APP_BUFF (FFFF-6H) e e e e e e e e e e e . 932
VBEZONB-CH93%
VBEZOFF(B-CH93
VBEZ(6CH)« v o v v v v v o« .936
VBEZFILLOCH)938

viii GEM/3 Programmers Toolkit Supplement

Contents

V_BEZ QUALG-63H) ¢« + v ¢« o « @ e s . 9-40
VS_BKCOLOR (5-66H) e e e e e e e e e e e e . 9-41
VS_GRAYOVERRIDE (85H) e e e e e e .« o . 9-42
V_PAT ROTATEB6H) ¢« ¢« v ¢« ¢« « o ¢ « « o+ 943
V_SETRGBI (5-4844H) e, S 1
V_TOPBOT(G-4845H) +« « ¢ « « o o« o o 9-45
V_PS_HALFTONEG-20H) v 4 « v « « & 9-46
10 Files and Devices Update
DDF Files . . . e e e e e e e e e e+« o o 101
Sample DDF Fxles e e e e e e e e ey e e e s . 10-4
CNF Files e e e e e e e e e e e e e e e e e e . 107
GEM Font Drivers . e e e e e e e e e e s e e o 107
Hewlett-Packard Soft Font Dnvers e e e e e e e e 4 e s « <« 108
PostScriptDriver ¢ « ¢ ¢ 4« 0 4 s . 4 » 1010
ATM Files » . . . a o . . [} « 0 . 10'12
11 GEM Setup Text Files
GEMSETUP.MSG . . N T b 2% |
PointerCodes e e e o o s e o« 112
GEMSETUP.TXT e s e 4 e s P § £
DeviceNames e s s o o e @ o o o 0 o 117

GEM/3 Programmers Toolkit Supplement _ ix

Section 1
Installation

Before you can install the new libraries, you must install the GEM system
software on your hard disk according to the instructions listed the GEM®/3
Desktop™ Installation Guide. Once you have successfully installed the GEM
Desktop, you will use the GEM Install application INSTALL.APP to install
the Install Library application (INSTLIB.APP).

Follow these basic steps to generate GEM bindings for your compiler from
sources.
1. Install the GEM system software.

2. From the GEM Desktop, run INSTALL.APP to install the Install Library
application (INSLIB.APP). The Desktop will automatically create a folder
(directory) called TOOLKIT off of the root directory of the drive you

specify.
Start INSTLIB.APP.
Select the compiler you want to use.

AN

Select how you want the library organized.
6. Select the libraries you want to use.

After the installation procedures are complete, you must edit one file
(PORTAB.H) to ensure that the correct compiler is selected for the bindings.

Starting the Install Library Application INSTLIB.APP)

Use INSTLIB.APP, the install library application, to install the sources of the
GEM bindings on your hard disk for use with your favorite compiler.

1. Type GEM at the DOS prompt to load the GEM Desktop.

2. Change the directory to \TOOLKIT\BINDINGS on the drive where you
have installed the Programmer’s Toolkit.

GEM/3 Programmer’s Toolkit Supplement | 1-1

Starting the Install Library Application (INSTLIB.APP)

3. Double-click on the INSTLIB.ATPP icon. You will see the following screen
displayed:

. GEM Programmer’s Toolkit
lerary Installation Utility

RELEASE 3.1, AUGUST &9

Compiler :

Hodel

Libraries : GEM/3_RES, GEM/3_UDI, Expanded_Memory,
Operanng Systen, Enhanced _Objects,
Raster_Functions, Transformations,
Miscellaneous,

Note the information box at the bottom of this screen. The first time you load
INSTLIB.APP, all the libraries are installed, but the Compiler and Model
fields are unassigned. The next time you load INSTLIB.APP, all three fields
will be cleared so you can select new options if you have modified the bind-
ings.

When you are ready to select your compiler type and library model, click on
Installation in the menu bar to see the Installation Menu. There are four com-
mands in the Installation Menu:

» Compiler

» Library model
» Libraries

» Install

GEM/3 Programmer’s Toolkit Supplement

Selecting the Compiler Starting the Install Library Application (INSTLIB.APP)

If this is your first installation, you will notice that the Libraries option is
grayed-out; this is because all the libraries will be installed for you automat-
ically. The next time you load INSTLIB.APP, this option will be available. To
continue with the installation process, click on the Compiler option in the In-
stallation Menu.

Note: The dialog handling in INSTLIB.APP differs from standard GEM
dialog handling. INSTLIB.APP has been built with the new FORM_EXDO
call that comes with version 3.1 of the GEM Programmer’s Toolkit. With this
new dialog handling, you can press Ctrl-A, Ctrl-B, Ctrl-C and so on to select
buttons in dialogs. You can press Shift-Enter instead of Enter to automat-
ically select the default button, and press the End key to automatically cancel
the current operation.

Selecting the Compiler

After you select Compiler from the Installation Menu, you will see this
dialog.

To install the sources,
select one of the three

compilers by clicking on
its button. Click on the

Digital Research - Binding-Installation

Which C-compiler do you want to use?

compiler of your choice

to highlight your selec- [Turbe-C 1 [WS-C 1 [High-C]
tion.

Click on the OK button to]

continue; otherwise, click
on Cancel to return to the
INSTLIB Main Menu.

After you select your compiler, it will be listed in the information box at the
Main Menu.

GEM /3 Programmer’s Toolkit Supplement 1-3

Starting the Install Library Application (INSTLIB.APP) \ Selecting Library Organization

Selecting Library Organization

From INSTLIB’s Main Menu, click on Installation in the menu bar. From the
Installation Menu, select the Library model command; you will see this
dialog.

Before selecting the library model, you should be aware that you will need at
least 6 megabytes of free disk space if you select the Separated library or-
ganization. If you select Common or Library, you will need at least 4
megabytes of free disk space. The compile time will vary depending on your
system configuration, but generally the compile time takes at least 1.5 hours.
Detailed descriptions of the binding options follow this section.

From this dialog, select how you want your library organized. Click once on
the binding installation of your choice. Double-click on any of the three
library buttons to see a brief description of the binding options.

When you have finished, click on the OK button to return to the Main Menu;
otherwise, click on the Cancel button. When you return to the Main Menu,
the Model field in the information box will reflect your selection.

If this is your first in-
stallation, you are

ready to select the In-

stall option from the In-
stallation Menu. When

Digital Research - Binding-Installation

you click on Install, the - How would vou prefer to install

’ your ndings?
installation process :
begins- INSTLIB [Comman] | Library | [Separated |
provides on-screen
messages indicating :
which files are being o]

written to your hard
disk. The sources will
be copied onto your hard disk in \TOOLKIT\GEMLIB in the appropriate
subdisrectories.

When the installation process is complete, you will see a message telling you
to modify the PORTAB.H file. For more information, refer to “Editing POR-
TAB.H" later in this section.

1-4

GEM/3 Programmer’s Toolkit Supplement

Selecting Library Organization Starting the Install Library Application (INSTLIB.APP)

COMMON
If you select COMMON, each collection of library routines are held in one
source file; the entire GEM library will contain only seven files. This is how
the earlier version of the toolkit handled bindings. The disadvantage of this
method is that if you write a small application, all the AES and /or VDI func-
tions are linked in with the application. This can cause applications to grow
unnecessarily large because routines that are not called are still included.

The COMMON installation requires the least disk space and compile time.
About 24 files will be created (including header and ancilliary files).

LIBRARY
If you select LIBRARY, the larger sources (AESBIND and VDIBIND) are split
into several modules containing functions that are part of a specific category
(SHEL_???, APPL_???, and so on). Use this option to save space if you are
not using specific libraries. If you use APPL_INIT, APPL_WRITE or any
other APPL_ calls, then all the routines in that category will be bound to the
application regardless of whether they are called or not.

The LIBRARY installation is a compromise of COMMON and SEPARATE. It
does not require a large amount of disk space and it significantly reduces
compile time. Applications built using the libraries created with this option
will not be fully size optimized. About 43 files will be created.

SEPARATED
If you select SEPARATED, all sources are split into several modules; each
module contains one function. Only those functions that are used in the ap-
plication source are bound to the application. This is how all standard
libraries (like STDLIB of Microsoft C Compiler and Turbo C) are now built.

This kind of installation requires at least 6 Megabytes of disk space and
about one and a half hours to compile the bindings. A SEPARATED installa-
tion provides the greatest saving in terms of smaller applications. About 319
files will be created.

Note: If disk space is an issue and you do not intend to modify the source of
the bindings in the future, you can delete all the library source files after you
have built your GEM/3 libraries.

GEM /3 Programmer’s Toolkit Supplement 1-5

Starting the Install Library Application (INSTLIB.APP) ' Selecting Libraries

Selecting Libraries

If this is not your first installation, you have the option of installing a subset
of all the GEM libraries. With this feature, you can easily modify portions of
your the bindings. During the actual installation of the libraries, you can
choose not to overwrite the existing sources and save yourself a substantial
amount of time.

If you want to install all the GEM libraries or a subset, load INSTLIB.APP (as
described in “Starting the Installation Application” earlier in this section). .-

From the INSTLIB Main Menu, select Installation from the menu bar. From
the Installation Menu, click on the Libraries option. You will see this dialog.

Digital Research - Binding-Installation I

Which libraries do you want
to install?

GEM/3 AES GEN/3 VDI
Expanded Hemory Enhanced Objects | Raster Functions "

Transformations Hiscellaneous '

[__All of them 1|
|_Cancel | Lo |

From this dialog, select the libraries you want to install. Select any combina-
tion of libraries that you want. As you click on each button, it is highlighted.
If you double-click on a button, you will see a brief description of that library.

When you have selected all the libraries that you want to install, click on the
OK button; otherwise, click on Cancel.

You will return to the Main Menu. The Libraries field in the information box
will be updated to reflect your current library selections. ‘

1-6

GEM/3 Programmer’s Toolkit Supplefnent

I nstalling the Libraries Starting the Install Librag Agh‘cation (INSTLIB.APP)

Installing the Libraries

To start the installation process, click on Install in the Installation Menu. IN-
STLIB.APP provides complete information about what is happening as it in-
stalls the libraries.

Editing PORTAB.H

When the source installation is complete, you will see a message instructing
you to edit PORTAB.H so the bindings agree with your compiler type. From
INSTLIB's Main Menu, select Quit from the File Menu.

The file PORTAB.H is located in \TOOLKIT\INC. The identifier, which
specifies the compiler in use, is located at the beginning of this file. Set
#define for the selected compiler to 1 (one) and the other compiler’s iden-
tifiers to 0 (zero). For example, if you selected Turbo C as your compiler, the
identifier would look like this:

fidefine TURBO_C 1 /*selected*/
#define MS C 0 /*not selected*/
#define HIGH C 0 /*not selected*/

Note: Remember to save PORTAB.H after you modify it.

GEM /3 Programmer’s Toolkit Supplement | 1-7

Section 2
Compiler Notes

The following notes provide information about how to use the GEM/3 bind-
ings with the supported compilers:

e TurboC
* Microsoft C
* HighC

Turbo C

Using the GEM/ 3 library with Turbo C is particularly well supported. To
use the library, however, you should be aware of the following information.

TURBOC.CFG (TCC Configuration File)

You must create a file named TURBOC.CFG in the directory where you have
installed Turbo C. This file holds options and directives which are used by
the Turbo C compiler (TCC.EXE) when it is started.

To use the GEM/3 library, TURBOC.CFG must contain the following addi-
tional directives required for GEM/3 programming;:

-ml or -ms
The -ml directive in TURBO.CFG tells TCC.EXE to use the large memory
model; -ms indicates the small memory model. It is recommended, that you

use the large model if you are not fully familiar with the procedure for writ-
ing GEM/ 3 applications or with operation of the GEM /3 Toolkit.

-I?:\TOOLKIT\INC

Replace the question mark (?) in the preceding example with the drive letter
that contains the GEM/3 bindings. This directive defines the include path
that TCC.EXE uses to search for header files. You can specify this directive as
many times as necessary. You should also specify the Turbo C include direc-
tory in TURBOC.CFG (for example -I?.\TC\INCLUDE).

Note: Be sure that PORTAB.H is not located in the Turbo Cinclude direc-
tory. If it is, you must either rename it or place the GEM/3 include directory
in front of the Turbo C include directory. This ensures that the PORTAB.H

GEM/3 Programmer’s Toolkit Supplement 2-1

Turbo C Examples

file that comes with your GEM/3 Programmer’s Toolkit is the one you use
for any GEM/3 development.
-L? : \TOOLKIT\GEMLIB

Replace the question mark (?) in the preceding example with the drive letter
that contains the GEM /3 bindings. This directive defines the path that
TCC.EXE uses to search for the GEM libraries. If you copy the GEM/3
library you built to the Turbo C library directory (2:\TC\LIB), then you will
not need to specify this line. You must specify the Turbo C library directory,
regardless of whether you specified the GEM library directory or not.

Note: Do not modify other lines in TURBOC.CFG if you are not familiar
with their meanings.

Examples

This example lists the contents of C:\TC\TURBOC.CFG for building a large
memory model library on Drive D with Turbo C installed on Drive C.

-ml

~IC:\TC\INCLUDE

-ID:\TOOLKIT\INC

-LC:\TC\LIB

-1D:\TOOLKIT\GEMLIB

2-2 GEM/3 Programmer’s Toolkit Supplement

BUILTINS MAK (MAKE Definition File) ___Turbo C

BUILTINS.MAK (MAKE Definition File)

To use Turbo C’s MAKE utility, you must create a file to hold the standard
rules MAKE uses for compiling and assembling your source files. The file
BUILTINS.MAK should be located at the same directory where your
MAKE.EXE is located and should contain the following:

.c.obj:

tec -c §*
.asm.obj:

tasm $* /MX;

Note: Be sure that the spaces before “tcc” and “tasm” are created by pressing
the tab key, not the spacebar.

If you use Microsoft’s Macro Assembler (MASM) as your assembler, replace
the Turbo Assembler®’s TASM command with the MASM command:

Instead of:

masm $* /MX;
Write:

tasm $* /MX;

You must also modify the makefile for the Miscellaneous Library. Modify the
line that calls the assembler for building FARDRAW.OB], including all text
between the second and third slashes (/d__ SMALL__) as follows.

tasm /dTC /d__ _ SMALL _ / mx fardraw.asm fardraw.obj

GEM/3 Programmer’s Toolkit Supplement ' 2-3

Microsoft C TOOLS.INI (Microsoft C Initialization File)

Microsoft C

Using Microsoft C with the GEM/3 library is as straightforward as using
Turbo C. Follow the steps below so that Microsoft C can find all the required
paths.

TOOLS.INI (Microsoft C Initialization File)

All Microsoft C utilities can read a common configuration file. This file is
named TOOLS.INL The path to this file must be specified in the environment
variable INIT. For example, if the TOOLS.INI file is in E:\MSC\BIN, the vari-
able INIT should be set as:

SET INIT=E:\MSC\BIN

You can put this command in a batch file, such as AUTOEXEC.BAT. The
TOOLS.INI file is created automatically when you invoke the toolkit installa-
tion utility INSTLIB.APP in \TOOLKIT\BINDINGS. The environment vari-
able INIT is set automatically when you start MAKELIB.BAT.

If you have your own TOOLS.INI file that you want to use, remove
TOOLS.INI from the GEMLIB directory and delete the following line from
MAKELIB.BAT:

SET INIT=\TOOLKIT\GEMLIB

Examples

You must edit TOOLS.INI to set the compiler switch option to correspond to
the memory model you are building. The first example sets the compiler
switch option in TOOLS.INI for the small memory model.

Edit TOOLS.INI for the small memory model like this:
[MAKE]
.c.obj:
cl -c -AS -Gs -0Oas -zl -I\TOOLKIT\INC $*.c
.asm.obj:
masm $* /DMSC /MX;

2-4 GEM/3 Programmer’s Toolkit Supplement

INCLUDE and LIB (Microsoft C Environment Variables)

In this example, edit TOOLS.INI for the large memory model:

[MAKE]
.c.obj:

cl -¢ -AL -Gs =-Oas -Z1 ~I\TOOLKIT\INC $*.c
.asm.obj:

masm $* /DMSC /MX;

INCLUDE and LIB (Microsoft C Environment Variables)

You must also set the environment variables LIB and INCLUDE as follows
so Microsoft C can find the required header files and libraries:

SET INCLUDE = ?:\TOOLKIT\INC;?:\MSC\INCLUDE
and ’
SET LIB = ?:\MSC\LIB;?:\TOOLKIT\GEMLIB

Replace the question mark (?) in the preceding examples with the drive letter
that contains the header files and librariess.

Setting environment variables can cause the operating system error, “Out of
environment space.” If this occurs, type the following line in your CON-
FIG.SYS file:

SHELL=COMMAND .COM/e:512/p

Save CONFIG.SYS and reboot your system. The SHELL command with
these parameters specified will increase your environment space, allowing
you to set all the needed environment variables for Microsoft C.

You must also modify the makefile for the Miscellaneous Library. Modify the
line that calls the assembler for building FARDRAW.OB]J, including all text
between the second and third slashes (/d__SMALL__) as follows.

masm /dMSC /d__ SMALL _ /mx fardraw.asm fardraw.obj

GEM /3 Programmer’s Toolkit Supplement 25

MetaWare High C MetaWare MAKE

MetaWare High C

There are a few restrictions when using this GEM /3 Programmer’s Toolkit
with the MetaWare High C compiler that are described at the end of this sec-
tion. To use the GEM /3 bindings with MetaWare High C, you should be
aware of the following.

MetaWare MAKE

Because MetaWare does not have its own MAKE utility, you will have to ob-
tain one from another vendor. The makefiles for High C supplied with these
GEM/3 bindings are configured for the NDMAKE utility. NDMAKE can be
obtained from these sources:

US MAIL: D. G. Kneller
1032 Irving Street 439
San Francisco, CA 94122

UUCP: ...ucbvax!ucsfcgl'kneller
ARPANET: kneller@cgl.ucsf.edu
BITNET: kneller@ucsfgl BITNET

You can use any other MAKE utility (for example Borland’s or Microsoft’s),
but you will have to edit the makefiles. Refer to the makefiles for GEM/3
bindings, Turbo C, or Microsoft C as an example.

- Before you run MAKELIB.BAT, you must set up the High C compiler. To
configure the High C compiler, start CONFIG.EXE located in the High C

directory.
Specify the following settings (if necessary):
c Memory model 'BIG’
D Tpages 150
M Ipath r2:\toolkit\inc\’
J Angle-include path * 2 :\HC\ INCLUDE\"

Note: The "BIG” memory model in High C corresponds to the '‘LARGE’
memory model in Turbo C and Microsoft C.

2-6 GEM /3 Programmer’s Toolkit Supplement

Runtime Startup for High C (INIT.OB]) MetaWare High C

All the paths specified in the configuration must end with a backslash (\);
otherwise High C will not find the paths. The question marks (?) should be
replaced with the drive letter on which the specified directories are located.

Runtime Startup for High C (INIT.OB}))

When you install your High C compiler, the runtime startup code is built for
the MetaWare High C heap manager. Because GEM/3 also needs memory
for resources, you must assemble the INIT.ASM file located in the directory
\HC\LIB\SRC.

Before assembling, edit INIT.ASM to define the following macros. Both state-
ments appear as comments in the assembler file, so be sure to remove the
semicolon at the beginning of each line.

;USE_DOS_ALLOC = 1
This tells High C to use the DOS alloc-functions when enlarging the heap.
;STACK_SIZE = XXXX

XXXX is the number of bytes you want to have available for the stack. 2000 is
a typical stack size for most applications. You must specify the size because
the stack is not automatically aligned when High C uses the DOS functions.

CALLINT Function of MetaWare High C (CALLINT.OB))

Because Metaware High C allows functions to pop their own parameters,
you will also have to modify CALLINT.ASM located in \HC\LIB\SRC. At
the end of this source, you will find that callint() returns and pops two bytes
off the stack ("return 2"). Because the functions VDI() and GEM() also pop
their passed word, edit CALLINT.ASM and delete the digit 2 from the callint
statement.

Note: If you do not make this deletion, your system will crash!

Memory Model Constraints

MetaWare High C parses differently than Microsoft C or Turbo C by parsing
the keyword ‘far’. This makes it difficult to use High C to create GEM/3 bind-
ings for the small memory model without editing the binding sources.

GEM/3 Programmer’s Toolkit Supplement 2-7

Compiling the Bindings Memory Model Constraints

To avoid this restriction, modify all definitions with the keyword "far’ as
described in the High C manual.

Creating MetaWare High C bindings for the small memory model can be dif-
ficult. This is due to the runtime start-up module for High C (INIT.ASM).
INIT.ASM does not use DOS memory functions for heap management in the
small memory model. The bindings are created using the small memory
model. You can also bind an application. Because INIT.ASM does not free
any memory after loading the program, GEM is unable to obtain memory
from DOS for resources or variable data.

Compiling the Bindings

After you have modified PORTAB.H, change the current directory to
\TOOLKIT\GEMLIB and type the following command:

MAKELIB L To build bindings for the large memory model

MAKELIB S To build bindings for the small memory model

This command starts MAKELIB.BAT compiles all the binding sources and
creates the GEM library. Specifying the L or S parameter with the MAKELIB
command changes only the name of the library (LTCGEM.LIB to
STCGEM.LIB).

To ensure that your compiler is building the specified memory model,
modify either TURBOC.CFG (changing -ml to -ms) or TOOLS.INI (changing
-AL to -AS). For examples, refer to “TURBOC. CFG” or “TOOLS.INI” earlier
in this section for more information.

2-8 GEM/3 Programmer’s Toolkit Supplement

Section 3
Extended Object Library

This section describes changes and additions to the Extended Object Library
provided with this revised GEM/3 Programmers Toolkit. The Extended Ob-
ject Library contains utility functions for the manipulation of object struc-
tures.

The descriptions assume a knowledge of GEM library call structures and
parameter conventions. For further details of these and other GEM system
calls, refer to the GEM Application Environment Services Reference Guide .

GEM /3 Programmer’s Toolkit Supplement 3-1

OB_DOSTATE

OB_DOSTATE

This function sets the specific state (SELECTED, HIDETREE, DISABLED,
and so on) in the word ob_state of an object.

Ihput Arguments
tree ~ object tree that contains the specified object
index index of object within tree
_state state to set in ob_state
Output Arguments
none

Sample Call to C Language Binding
VOID ob_dostate();

OBJECT FAR *tree;
WORD index, state;

ob_dostate(tree, index, state);

3-2 GEM/3 Programmer’s Toolkit Supplement

OB_UNDOSTATE

OB_UNDOSTATE

This function clears the specific state (SELECTED, HIDETREE, DISABLED,
and so on) in the word ob_state of an object.

Input Arguments
tree object tree that contains the specified object
index index of object within tree
state state to clear in ob_state
Output Arguments
none

Sample Call to C Language Binding
VOID ob_undostate():
OBJECT FAR *tree;
WORD index, state;
ob_undostate(tree, index, state):;

GEM/3 Programmer’s Toolkit Supplement 3-3

OB_ISSTATE

OB_ISSTATE

This function gets the state (SELECTED, HIDETREE, DISABLED, and so on)
in the word ob_state of an object.

Input Arguments
tree object tree that contains the specified object
index index of object within tree
state states to be tested
QOutput Arguments
ret TRUE if state is set

FALSE if state is not set

Sample Call to C Language Binding
WORD ob_isstate():
OBJECT FAR *tree;

WORD index, state, ret;

ret = ob_isstate(tree, index, state);

34 GEM/3 Programmer’s Toolkit Supplement

OB_DOFLAG

OB_DOFLAG

This function sets the specific flag (SELECTABLE, EXIT, TOUCHEXIT, and
so on) in the word ob_flag of an object.

Input Arguments
tree object tree that contains the specified object
index index of object within tree
flag flag to set in ob_flag
Output Arguments
none

Sample Call to C Language Binding
VOID ob_doflag();
OBJECT FAR *tree;
WORD index, flag;
ob_doflag(tree, index, flag);

GEM /3 Programmer’s Toolkit Supplement 35

OB_UNDOFLAG

OB_UNDOFLAG

This function clears the specific flag (SELECTABLE, EXIT, TOUCHEXIT, and
so on) in the word ob_flag of an object.

Input Arguments
tree object tree that contains the specified object
index index of object within tree
flag flag to set in ob_flag
Output Arguments
none

Sample Call to C Language Binding
VOID ob_undoflag():
OBJECT FAR *tree;

'WORD index, £flag;
ob_undoflag(tree, index, flag);

3-6 GEM/3 Programmer’s Toolkit Supplement

OB_ISFLAG

OB_ISFLAG

This function gets the flag (SELECTABLE, EXIT, TOUCHEXIT, and so on) in
the word ob_flag of an object.

. Input Arguments
tree object tree that contains the specified object
index index of object within tree
flag flags to be tested
Output Arguments
ret TRUE if flag is set

FALSE if flag is not set

Sample Call to C Language Binding
WORD ob_isflag():
OBJECT FAR *tree;
WORD index, flag;
ret = ob_isflag(tree, index, flag);

GEM/3 Programmer’s Toolkit Supplement 3-7

OB_XYWH

OB_XYWH

This function returns the x,y,w h rectangle of a given object. The function
takes a pointer to a structure of type GRECT; on return, this contains the
object’s current x,y,w,h parameters.

Input Arguments
tree object tree that contains specified object
index index of object within tree
prect far-pointer to a GRECT structure
QOutput Arguments
none

Sample Call to C Language Binding
VOID ob_xywh();
OBJECT FAR *tree;

WORD index;
GRECT FAR *prect;
ob_xywh (tree, index, prect):;

3-8) GEM/3 Programmer’s Toolkit Supplement

OB_GET_TEXT

OB_GET_TEXT

This functions returns a far pointer to the string pointed to by an object struc-
ture within a tree. The function uses the object type when returning the cor-
rect pointer.

Note: Objects that contain text pointers are G_TEXT, G_FTEXT, G_BOX-
TEXT, G_FBOXTEXT, G_STRING, G_BUTTON and G_TITLE.

The clear parameter requests the function to initially clear the string; TRUE
clears and FALSE leaves the string unchanged.

Input Arguments
tree object tree that contains specified object
index index of object within tree
clear initially clear string?
QOutput Arguments
ptr far-pointer that points to the (cleared) string

Sample Call to C Language Binding
BYTE FAR *ob get text();

OBJECT FAR *tree;

WORD index, clear;

BYTE FAR *ptr;

ptr = ob_get_text (tree, index, clear);

GEM /3 Programmer’s Toolkit Supplement 39

OB_SET_TEXT

OB_SET_TEXT

This function sets the text pointer of an required object to the pt x parameter.
The object type is checked by the function before assigning the pointer.

Note: Objects that contain text pointers are G_TEXT, G_FTEXT, G_BOX-
TEXT, G_FBOXTEXT, G_STRING, G_BUTTON and G_TITLE.

Input Arguments
tree object tree that contains the specified object
index index of object within tree
ptr far-pointer to a string
Output Arguments
none

Sample Call to C Language Binding
VOID ob_set_text():;
OBJECT FAR *tree;

WORD index;
BYTE FAR *ptr;

ob_set_text (tree, index, ptr);

3-10 GEM /3 Programmer’s Toolkit Supplement

OB_DRAW_DIALOG

OB_DRAW_DIALOG

This function draws an entire dialog with an optional growing box. The func-
tion takes an x,y,w/h rectangle which specifies the smallest start box of the
growing rectangles. If the rectangle coordinates are all zero, the growing

boxes will not be drawn.
Input Arguments
tree object tree to be drawn
X, ¥y, W, h start growing rectangle
Qutput Arguments
none

Sample Call to C Language Binding
VOID ob_draw_dialog();

OBJECT FAR *tree;
WORD x, y, w, h;
ob_draw_dialog(tree, x, y, w, h);

GEM/3 Programmer’s Toolkit Supplement - 311

OB_UNDRAW _DIALOG

OB_UNDRAW_DIALOG

This function removes a previously drawn dialog box from the screen and
draws an optional shrink box. The function takes an x,y,w,h rectangle which
specifies the smallest start box of the shrinking rectangles. If the rectangle
coordinates are all zero, the shrinking boxes will not be drawn.

Input Arguments
tree object tree to be drawn
x, y, w, h end shrinking rectangle
Qutput Arguments
none

Sample Call to C Language Binding
VOID ob_undraw_dialog();

OBJECT FAR *tree;
WORD x, y, w, h;

ob_undraw_dialog(tree, x, y, w, h);

3-12 GEM/3 Programmer’s Toolkit Supplement

Section 4
Extended Raster Library

This section describes modifications and enhancements to the Extended
Raster Library provided with this revised GEM/3 Programmer’s Toolkit.
The Extended Raster library contains utility functions to manipulate coor-
dinate structures (GRECT).

The descriptions assume a knowledge of GEM library call structures and
parameter conventions. For more information about these and other GEM
system calls, refer to the GEM Applications Environment Services Reference
Guide.

GEM /3 Programmer’s Toolkit Supplement 4-1

RC_EQUAL

RC_EQUAL

This function compares two rectangles to see if they are equal or not. Two
pointers to structures of type GRECT are passed as parameters to this func-
tion.

Input Arguments

precl, prec2 pointers to structures of type GRECT

Qutput Arguments .
ret TRUE if the rectangles are equal

FALSE if the rectangles are not equal

Sample Call to C Language Binding
WORD rc_equal();

GRECT FAR *precl, FAR *prec2;

ret = rc_equal (precl, prec2);

4-2 GEM/3 Programmer’s Toolkit Supplement

RC_COPY

RC_COPY

This functions copies the x,y,w,h coordinates of psbox to pdbox. The
parameters are both structures of type GRECT. This function is nothing more
than a structure copy.

Input Arguments
psbox, pdbox pointer to source and destination GRECT

Qutput Arguments
none

Sample Call to C Language Binding
VOID xc_copy():
GRECT FAR *psbox, FAR *pdbox;

rc_copy({psbox, pdbox);

GEM /3 Programmer’s Toolkit Supplement 4-3

RC_INTERSECT

RC_INTERSECT

This function computes the intersection of two rectangles. The intersection is
the area that is common to both rectangles.

The function returns TRUE, if there is a common area, and FALSE if there is
not. If a common area exists, its coordinates are returned in the GRECT struc-

ture p2.
Input Arguments
pl coordinates of the first rectangle
p2 coordinates of the second rectangle
Output Arguments
ret TRUE if there is an intersection

FALSE if there is no intersection

Sample Call to C Language Binding

WORD rc_intersect ()
GRECT FAR *pl, FAR *p2 ;
WORD ret;

ret = re¢_intersect (pl, p2);

44 GEM /3 Programmer’s Toolkit Supplement

RC_INSIDE

RC_INSIDE

This function determines, whether a given x,y position is inside the given rec-
tangle. If x,y is inside prec, the function returns TRUE. If not, FALSE is

returned.
Input Arguments
X,y position to check
prec pointer to rectangle coordinates
Output Arguments
ret TRUE if position is inside

FALSE if position is not inside

Sample Call to C Language Binding
WORD rc_inside();
GRECT FAR *prec;
WORD ret;

ret = rc_inside(x, y, prec);

GEM/3 Programmer’s Toolkit Supplement 4-5

RC_GRECT_TO_ARRAY

or————— —————

RC_GRECT_TO_ARRAY

This function transforms the supplied absolute coordinates of an xlyl, 'xzyz
array into a x,y,w,h rectangle form. The .xlyl, xzyzkarray contains the upper-
left corner and the lower-right corner of a rectangle.

On return from the function, prec will hold the upper-left corer and the
width and height dimensions.

Input Arguments

xy x'y!, x’y* array

prec pointer to a structure of type GRECT
Output Arguments

none

Sample Call to C Language Binding

VOID rc_grect to_array():
WORD FAR *xy;
GRECT FAR *prec;

rc_grect_to_array(prec, xy);

4-6 , GEM/3 Programmer’s Toolkit Supplement

Section 5
Transformation Library

This section describes enhancements and modifications to the Transforma-
tion Library provided with this revised GEM/3 Programmer’s Toolkit. The
Transformation Library contains utility calls for manipulating coordinate sys-
tems.

The descriptions assume a knowledge of the GEM library call structures and
parameter conventions. For further details of these and other GEM system
calls, refer to the GEM Application Environment Services Reference Guide.

GEM(/3 Programmer’s Toolkit Supplement 5-1

X _SXFORM

X_SXFORM

This functlon initializes the transformation library. A call to this function is
required before using the transformation calls, otherwise unpred ictable
values will be returned.

The transformation library can be used for calculating the differences be-
tween device dependent coordinate and user coordinate systems. This call to
x_sxform sets up both coordinate systems.

Input Arguments

user_ x, user y, user w, user h
x,y,w,h rectangle which defines user coordinate space

dev_x, dev y, dev_w, dev_h
x,y,w,h rectangle which defines device coordinate space

w_microns, h microns

width and height of a pixel in microns (found in
work_out[3] and work_out{4]). For more information, refer
to V_OPNWK in the GEM Virtual Device Interface Reference
Guide.

QOutput Arguments

ret TRUE if initialization is successful
FALSE if initialization fails

Sample Call to C Language Binding
WORD x_sxform();

WORD user x, user_ y, user_w, user_h;
WORD dev_x, dev_y, dev_w, dev_h;
WORD w_microns, h microns;

x_sxform(user_x, user,_y, user_w, user_h, dev_x, dev_ y,
dev_w, dev_h, w_microns, h microns);

52 GEM/3 Programmer’s Toolkit Supplement

X_SASPECT

X_SASPECT

This function matches an aspect ratio on the device with one specified in
user units. The match is done in physical units rather than pixels, so a square
specified in user units will look square when displayed on the device. Cal-
culating the aspect ratio match in this manner compensates for devices
which have non-square pixels.

Input Arguments

user w, user_h width and height in user coordinates
Output Arguments

dev_w, dev h width and height in device coordinates

Sample Call to C Language Binding
WORD x saspect ()’

WORD user w, user h;
WORD *dev w, *dev h;

xz_saspect (user_w, user h, dev_w, dev_h);

GEM/3 Programmer’s Toolkit Supplement 5-3

X _YTOX

X_YTOX

This function returns the number of pixels in the x direction physically equal
to "y" number of pixels in the y direction.

Input Arguments

y number of pixels in the y direction
Output Arguments

x number of pixels in the x direction

Sample Call to C Language Binding
WORD x ytox():;
WORD y, Xx;
x = x_ytox(y):

5-4 GEM/3 Programmer’s Toolkit Supplement

X_UDX_XFORM

X_UDX_XFORM

This function transforms an x value from user space into device space.

Input Arguments

user_x x coordinate of user raster
Qutput Arguments

dev_x x coordinate of device raster

Sample Call to C Language Binding
WORD x udx xform():;

WORD user x, dev x;

dev_x = x udx xform(user_ x);

GEM/3 Programmer’s Toolkit Supplement 5-5

X _UDY _XFORM

X_UDY_XFORM

This function transforms a y value from user space into device space.

Input Arguments

user_y y coordinate of user raster
Output Arguments

dev_y y coordinate of device raster

Sample Call to C Language Binding
WORD x_udy xform();

WORD user_y, dev_y;
dev_y = x udy xform(user_y):

5-6 GEM/3 Programmer’s Toolkit Supplement

X_DUX_XFORM

X_DUX_XFORM

This function transforms an x value from device space into user space.

Input Arguments

dev_x x coordinate of device raster
Output Arguments

user_x x coordinate of user raster

Sample Call to C Language Binding
WORD x dux xform();

WORD dev_x, user_x;

user_x = x dux xform(dev_x);

GEM/3 Programmer’s Toolkit Supplement 5-7

X_DUY _XFORM

X_DUY_XFORM

This function transforms a y value from device space into user space.

Input Arguments

dev_y y coordinate of device raster-
Output Arguments

user_y y coordinate of user raster

Sample Call to C Language Binding
WORD x duy xform();

WORD dev_y, user_Yy;
user_y = x_duy xform(dev_y);

5-8 GEM/3 Programmer’s Toolkit Supplement

X _UDX_SCALE

X_UDX_SCALE

This function scales an x distance from user space into device space.

Input Arguments

user_ dx x distance in user space
Output Arguments

dev_dx x distance in device space

Sample Call to C Language Binding
WORD x _udx scale():’

WORD user dx, dev dx;
dev_dx = x udx scale(user_dx);

GEM/3 Programmer’s Toolkit Supplement 59

X _UDY _SCALE

X_UDY_SCALE

This function scales a y distance from user space into device space.

Input Arguments

user_dy y distance in user space
Qutput Arguments

dev_dy y distance in device space

Sample Call to C Language Binding
WORD x udy_scale():

WORD user_ dy, dev_dy;

dev_dy = x udy scale(user dy):;

5-10 GEM /3 Programmer’s Toolkit Supplement

X_DUX_SCALE

X_DUX_SCALE

This function scales an x distance from device space into user space.

Input Arguments

dev_dx x distance in device space
QOutput Arguments

user_dx x distance in user space

Sample Call to C Language Binding
WORD x dux scale():

WORD dev_dx, user dx;

user_dx = x dux scale(dev_dx);

GEM/3 Programmer’s Toolkit Supplement 5-11

X_DUY_SCALE

X_DUY_SCALE

This function scales a y distance from device space into user space.

Input Arguments

dev_dy y distance in device space
Qutput Arguments v

user dy y distance in user space

Sample Call to C Language Binding
WORD x_duy scale():

WORD dev_dy, user_dy;

user_dy = x_duy scale(dev_dy)

5-12 GEM /3 Programmer’s Toolkit Supplement

X_MUL_DIV

X_MUL_DIV

This function allows you to get floating point accuracy without going to the
performance expense of floating point.

The calculation performed is: (((m1*2*m2) /d1)+1)/2

Input Arguments
ml, m2 multiplicators
di ~ divisor
QOuiput Arguments
result result of the above calculation

Sample Call to C Language Binding
WORD x mul div();
WORD ml, m2, dl, result;
result = x mul div(ml, m2, dl1);

GEM/3 Programmer’s Toolkit Supplement 5-13

Section 6
Miscellaneous Library

This section describes modifications and enhancements to the Miscellaneous
Library provided with the revised GEM/3 Programmer’s Toolkit.

These descriptions assume a knowledge of the GEM library call structures
and parameter conventions. For more information about these and other
GEM system calls, refer to the GEM Application Environment Services Reference
Guide.

GEM/3 Programmer’s Toolkit Supplement 6-1

FARDR_START

FARDR_START

This function allows a C programmer to use user-defined objects. For more
detailed information about user-defined objects, refer to GEM Applications En-
vironment Services Reference Guide.

When using Digital Research® products X/GEM™ on FlexOS™ (and in some
Atari® environments) the pointer to the PARMBLK structure is passed to the
drawing code on the stack. This allows access to it as a parameter from C.
GEM on DOS does not handle this similarly. Instead of passing the pointer
on the stack, GEM passes it in the register pair AX:BX.

The fardr_start() function lets you use this pointer in a C program. You
should call this function as the first action in your drawing code. The func-
tion will return the pointer to the PARMBLK structure so that you can assign
its value to a local variable. The function also saves all AES registers, and sets
the segment registers to the application’s data segment.

You must call fardr_end() before you leave your drawing code.

Input Arguments

none

Output Arguments
pb pointer to PARMBLK-structure

Sample Call to C Language Binding
PARMBLK FAR *fardr start();

PARMBLK FAR *pb;
pb = fardr start():

6-2 GEM/3 Programmer’s Toolkit Supplement

FARDR_END

FARDR_END

This functions restores the registers and segments previously saved by
fardr_start(), so that the AES finds the correct environment.

This function directly returns control to the AES. All statements after the call
to fardr_end() will not be executed.

- Input Arguments
ret return code which you want to give to the AES

Qutput Arguments
none

Sample Call to C Language Binding
VOID fardr end():;
WORD ret;
fardr end(ret):

GEM/3 Programmer’s Toolkit Supplement 6-3

FARDR_CS

FARDR_CS

This function returns the code segment value of your running application.
You will need this function when you are building small memory model ap-
plications with Microsoft C. Microsoft C does not allow you to cast a code
segment pointer from small to large memory model. If you want your
source portable between different compilers and memory models, assign
your drawing routine like this:

#if MS C && M I86SM
‘applblk.ab_code

MKFP (fardr_cs(), drawing routine);

#else

applblk.ab _code = (WORD (FAR *) ())drawing routine;
#endif
You will find an example of assigning your drawing rountine in this form in
USERDEF.C. :

NOTE: This function is available only in the Microsoft C GEM library.

Input Arguments

none

Output Arguments
cs_value current code segment

Sample Call to C Language Binding
UWORD fardr cs():;

UWORD cs_value;

cs_value fardr cs();

6-4 GEM /3 Programmer’s Toolkit Supplement

FORM_EXDO

FORM_EXDO

This is nearly the original source of the AES function form_do(). It has been
improved to allow the selection of objects by control keys.

The function inspects the extended ob_type of an object. This should have
been previously set with an ASCII value which corresponds to the control
key sequence required to activate the object.

A value of one means Ctrl-A, two means Ctrl-B, and so on. The remaining
functionality is unchanged. For more information, refer to the source code of
form_exdo and FDTEST.APP. Additionally, see form_do() in the GEM Ap-
plication Environment Services Reference Guide .

Input Arguments
tree object tree containing the form to be handled
edix first editable field

OQutput Arguments
ret the object which caused exit from the form

Sample Call to C Language Binding
WORD form exdo():

OBJECT FAR *tree;
WORD edix;
WORD ret;

ret = form exdo(tree, edix);

GEM/3 Programmer’s Toolkit Supplement 6-5

FIX_ICON

—a——— —— — ——— — —

FIX_ICON

This function converts all icons and bit images contained in an object tree
from device-independent to device-dependent format.

The function takes as parameters the VDI handle of the previously opened
screen workstation, and a pointer to the tree containing the icons and/or bit

images.
Input Arguments
vdi_handle VDI-handle of (virtual) workstation
tree pointer to an object tree
Qutput Arguments
none

Sample Call to C Language Binding
VOID fix icon():

WORD vdi handle;
OBJECT FAR *tree;

fix icon(vdi handle, tree);

6-6 GEM/3 Programmer’s Toolkit Supplement

EVNT_EVENT

EVNT_EVENT

evnt_event() is a short form of the evnt_multi() call. Instead of passing a lot
of parameters to it, you only have to pass a pointer to a structure of type
MEVENT (See your AES.H header file for a description of this structure).
Using evnt_event() requires you to set only the structure members that are
used for the event you are waiting for. So if you want to receive only mes-
sages, all you have to do is, to set

mevent .e flags = MU _MESAG;

and

mevent .e mepbuf = msg;

where msg should be of type WORD msg|8]

Input Arguments ‘

mevent structure of type MEVENT
Qutput Arguments

event events that occurred

Sample Call to C Language Binding
WORD evnt_event () ;
MEVENT mevent;

WORD event;

event = evnt_event (&mevent) ;

GEM /3 Programmer’s Toolkit Supplement 6-7

Section 7
DOS Function Library

Section 7 describes the enhancements and modifications to the DOS Function
Library provided with the revised GEM/3 Programmer’s Toolkit. The DOS
Function Library contains utility calls that let you bypass the standard C run-
time library so your applications can use the DOS interface for disk [/O.

These descriptions assume a knowledge of the GEM library call structures
and parameter conventions. For more information about these and other
GEM system calls, refer to the GEM Application Environment Services Reference
Guide.

GEM/3 Programmer’s Toolkit Supplement 7-1

DOS_CHDIR

DOS_CHDIR

Change directory. DOS-Call (hex) 3B.

Input Arguments
pdrvpath drive and path to be set
Qutput Arguments
ret TRUE if unable to change directory

FALSE if change directory is successful

Sample Call to C Language Binding
WORD dos_chdir();
BYTE FAR *pdrvpath;
WORD ret;
ret = dos_chdir (pdrvpath);

7-2 GEM/3 Programmer’s Toolkit Supplement

DOS_GDIR

DOS_GDIR

Get current directory. DOS-Call (hex) 47.

Input Arguments
drive 0=default,1=A,2=B..

Output Arguments
pdrvpath pointer where path could be stored
ret TRUE if get current directory fails

FALSE if get current directory is successful

Sample Call to C Language Binding
WORD dos_gdir();
WORD drive, ret;
BYTE FAR *pdrvpath;
ret = dos_gdir(drive, pdrvpath);

GEM/3 Programmer’s Toolkit Supplement 7-3

DOS_GDRV

DOS_GDRV

Get current drive. DOS-Call (hex) 19.

Input Arguments

none

QOutput Arguments
drive currentdrive (0= A,1=B,..)

Sample Call to C Language Binding
WORD dos_gdrv();
WORD drive;

drive = dos_gdxv();

7-4 GEM/3 Programmer’s Toolkit Supplement

DOS_SDRV

DOS_SDRV

Set current drive. DOS-Call (hex) OE.

Input Arguments

drive drivetobeset(0=A,1=8,..)
Output Arguments

ret TRUE if set current drive fails

FALSE if set current drive is successful

Sample Call to C Language Binding
WORD dos_sdrv();
WORD drive, ret;
ret = dos_sdrv(drive);

GEM/3 Programmer’s Toolkit Supplement 7-5

DOS_SDTA

DOS_SDTA

Set disk transfer adress. DOS-Call (hex) 1A.

Input Arguments
ldta pointer to 44 bytes space
Output Arguments
ret TRUE if set disk transfer address fails

FALSE if set disk transfer address is successful

Sample Call to C Language Binding
WORD dos_sdta();
VOID FAR *ldta;

WORD ret;
ret = dos_sdta (1ldta):

7-6 GEM/3 Programmer’s Toolkit Supplement

DOS_GDTA

DOS_GDTA

Get disk transfer adress. DOS-Call (hex) 1A.

Input Arguments

none

Output Arguments
ldta pointer to current disk transfer buffer

Sample Call to C Language Binding
VOID FAR *dos_gdta();

VOID FAR *ldta;
ldta = dos_gdta():

GEM /3 Programmer’s Toolkit Supplement ‘ 7-7

DOS_SFIRST

DOS_SFIRST

Search first directory entry. DOS-Call (hex) 4E.

Input Arguments
pspec pointer to path and wildcard
attr file attribute (must match)
Qutput Arguments
ret TRUE if first directory entry is not found

FALSE if first directory entry is found

Sample Call to C Language Binding
WORD dos_dfirst():
BYTE FAR *pspec;

WORD attr, ret; _
ret = dos_sfirst (pspec, attr):

7-8 GEM/3 Programmer’s Toolkit Supplement

DOS_SNEXT

DOS_SNEXT

Search next directory entry. DOS-Call (hex) 4F.

Input Arguments

none

Output Arguments

ret TRUE if next directory entry is not found
FALSE if next directory entry is found

Sample Call to C Language Binding
WORD dos_snext () ;
WORD ret;

ret = dos_snext ()

GEM/3 Programmer’s Toolkit Supplement 79

DOS_OPEN

DOS_OPEN

Open an existing file. DOS-Call (hex) 3D.

Input Arguments

pname pointer to path and filename

access 0 =read, 1 = write, 2 = read and write
Output Arguments

handle handle of opened file

Sample Call to C Language Binding
WORD dos_open() ;

BYTE FAR *pname;
WORD access, ret;
handle = dos_open (pname, access);

7-10 GEM/3 Programmer’s Toolkit Supplement

DOS_CLOSE

DOS_CLOSE

Close previously opened or created file. DOS-Call (hex) 3E.

Input Arguments

handle handle of opened file
Qutput Arguments

ret TRUE if file is closed

FALSE if file cannot be closed

Sample Call to C Language Binding
WORD dos_close():
WORD handle, ret;

ret = dos_close (handle);

GEM/3 Programmer’s Toolkit Supplement 7-11

READ_PIECE

READ_PIECE

Read a block of maximum 65535 bytes. DOS-Call (hex) 3F.

Input Arguments _

handle handle returned by dos_open or dos_create

cnt number of bytes to be read

pbuffer pointer to a buffer big enough to hold ent bytes
Output Arguments

read number of bytes that have been read

Sample Call to C Language Binding
UWORD read_piece() ;
WORD handle;
UWORD cnt, read;
VOID FAR *pbuffer;

read = read piece (handle, cnt, pbuffer);

7-12 GEM/3 Programmer’s Toolkit Supplement

DOS_READ

DOS_READ
Read a block larger than 65535 bytes. DOS_READ calls READ_PIECE
several times.
Input Arguments
handle handle returned by dos_open or dos_create
cnt number of bytes to be read
pbuffer pointer to a buffer big enough to hold cat bytes
Output Arguments
read number of bytes that have been read

Sample Call to C Language Binding
LONG dos_read()
WORD handle;
LONG cnt, read;

VOID FAR *pbuffer;
read = dos_read(handle, cnt, pbuffer);

GEM/ 3 Programmer’s Toolkit Supplement 7-13

DOS_LSEEK

DOS_LSEEK

Move file pointer. DOS-Call (hex) 42.

Input Arguments
handle handle of opened file
smode 0 = from beginning of file
1 = from current position
2 = from end of file
sofst offset to be seeked to
Qutput Arguments

newofst new offset

Sample Call to C Language Binding
LONG dos_lseek():
WORD handle, smode;

LONG sofst, newofst;
newofst = dos lseek (handle, smode, sofst);

7-14 GEM/3 Programmer’s Toolkit Supplement

DOS_WAIT

DOS_WAIT

Get termination code of subprocess. DOS-Call (hex) 4D.

Input Arguments

none

Output Arguments
termcode termination code

Sample Call to C Language Binding
WORD dos wait ();

WORD termcode;

termcode = dos_wait();

GEM/3 Programmer’s Toolkit Supplement 7-15

DOS_ALLOC

DOS_ALLOC

Allocate memory. DOS-Call (hex) 48.

Input Arguments

nbytes number of bytes to be allocated
Output Arguments

ptr pointer to allocated memory

Sample Call to C Language Binding
VOID FAR *dos_alloc();
LONG nbytes:;

VOID FAR *ptr;
ptr = dos_alloc(nbytes):

7-16 GEM/3 Programmer’s Toolkit Supplement

DOS_AVAIL

DOS_AVAIL

Get amount of free memory. DOS-Call (hex) 48.

Input Arguments

none

Output Arguments

nfree number of free bytes

Sample Call to C Language Binding
LONG dos_avail();
LONG nfree;

nfree = dos_avail();

GEM/3 Programmer’s Toolkit Supplement 7-17

DOS_FREE

DOS_FREE

Free previously allocated memory. DOS-Call (hex) 49.

Input Arguments

ptx pointer to allocated memory
QOutput Arguments

ret TRUE if unable to free memory

FALSE if memory is freed

Sample Call to C Language Binding
WORD dos_free():
VOID FAR *ptr;

ret = dos_free(ptr);

7-18 GEM/3 Programmer’s Toolkit Supplement

DOS_SPACE

DOS_SPACE

Get disk free space. DOS-Call (hex) 36.

Input Arguments
drv drive to be checked

Output Arguments
ptotal pointer to a long (holds total of disk space)
pavail pointer to a long (holds available disk space)
ret TRUE if unable to get free disk space

FALSE if get free disk space is successful

Sample Call to C Language Binding
WORD dos_space();
WORD drv, ret;

LONG FAR *ptotal, FAR *pavail;
ret = dos_space(drv, ptotal, pavail):

GEM/3 Programmer’s Toolkit Supplement 7-19

DOS_RMDIR

DOS_RMDIR

Remove directory. DOS-Call (hex) 3A.

Input Arguments
ppath pointer to directory
Output Arguments
ret TRUE if unable to remove directory

FALSE if directory is removed

Sample Call to C Language Binding
WORD dos_rmdir();
BYTE FAR *ppath;
WORD ret;
ret = dos_rmdir(ppath);

7-20 GEM/3 Programmer’s Toolkit Supplement

DOS_CREATE

DOS_CREATE

Create a new file. DOS-Call (hex) 3C.

Input Arguments
pname - pointer to path and filename
attr file’s attribute

Output Arguments
handle handle of opened file

Sample Call to C Language Binding
WORD dos_create()

BYTE FAR *pname;
WORD attr, ret;

handle = dos_create(pname, attr);

GEM/3 Programmer’s Toolkit Supplement 7-21

DOS_MKDIR

DOS_MKDIR

Create new directory. DOS-Call (hex) 39.

Input Arguments

ppath pointer to directory’s name
OQOutput Arguments

ret TRUE if unable to create directory

FALSE if directory created

Sample Call to C Language Binding
WORD dos_mkdix();
BYTE FAR *ppath;
WORD ret;
ret = dos_mkdir (ppath);

7-22 GEM/3 Programmer’s Toolkit Supplement

DOS_DELETE

DOS_DELETE

Delete a file. DOS-Call (hex) 41.

Input Arguments

pname pointer to name of file to be deleted
Qutput Arguments

ret TRUE if unable to delete file

FALSE if file is deleted

Sample Call to C Language Binding
WORD dos_delete() ;
BYTE FAR *pname;

WORD ret;

ret = dos_delete (pname) ;

GEM/3 Programmer’s Toolkit Supplement » 7-23

DOS_RENAME

DOS_RENAME

Rename a file. DOS-Call (hex) 56.

Input Arguments
poname pointer to name of file to be renamed
pnname new file name

Output Arguments
ret TRUE if unable to rename file

FALSE if file is renamed

Sample Call to C Language Binding

WORD dos_rename () ;
BYTE FAR *poname, FAR *pnname;
WORD ret;

ret = dos_delete (poname, pnname);

7-24 GEM/3 Programmer’s Toolkit Supplement

WRITE_PIECE

WRITE_PIECE

Wirite a block of maximum 65535 bytes. DOS-Call (hex) 3F.

Input Arguments
handle handle returned by dos_open or dos_create
cnt number of bytes to be written
pbuffer pointer to buffer containing cnt bytes
QOutput Arguments
write number of bytes that have been written

Sample Call to C Language Binding

UWORD write piece();
WORD handle;

UWORD cnt, write;
VOID FAR *pbuffer;

write = write piece(handle, cnt, pbuffer);

GEM/3 Programmer’s Toolkit Supplement 7-25

DOS_WRITE

DOS_WRITE
Write a block larger than 65535 bytes. DOS_WRITE calls WRITE_PIECE
several times.
Input Arguments
handle handle returned by dos_open or dos_create
ent number of bytes to be written
pbuffer pointer to a buffer containing cnt bytes
Qutput Arguments
write number of bytes that have been written

Sample Call to C Language Binding
LONG dos_write();
WORD handle;

LONG cnt, write;
VOID FAR *pbuffer;

write = dos_write(handle, cnt, pbuffer);

7-26 GEM /3 Programmer’s Toolkit Supplement

DOS_CHMOD

DOS_CHMOD

Change a file’s attribute. DOS-Call (hex) 43.

Input Arguments
pname pointer to path and filename
func 0 = get attribute, 1 = set attribute
attr files new attribute

Output Arguments
nattr attribute that has been set

Sample Call to C Language Binding
WORD dos_chmod() ;
BYTE FAR *pname;

WORD func, attr, nattr;

nattr = dos_chmod(pname, func, attr);

GEM/3 Programmer’s Toolkit Supplement 7-27

DOS_SETDT

DOS_SETDT

Set a file’s date and time. DOS-Call (hex) 57.

Input Arguments
handle handle of file (from dos_open or dos_create)
time time to be set
date date to be set
OQOutput Arguments
ret TRUE if unable to set file’s date and time

FALSE if file’s date and time are set

Sample Call to C Language Binding
WORD dos_setdt ();

WORD handle, date, time, ret:;
ret = dos_setdt (handle, time, date);

7-28 GEM/3 Programmer’s Toolkit Supplement

DOS_GETDT

DOS_GETDT

Get a file’s date and time. DOS-Call (hex) 57.

Input Arguments
handle handle of file (from dos_open or dos_create)
time time of file
date date of file
Output Arguments
ret TRUE if unable to get file’s date and time

FALSE if able to get file’s date and time

Sample Call to C Language Binding
WORD dos_getdt ();
WORD handle, FAR *date, FAR *time, ret;

ret = dos_getdt (handle, time, date);

GEM/3 Programmer’s Toolkit Supplement 7-29

DOS_EXEC

DOS_EXEC

Call a subprocess. DOS-Call (hex) 4B.

Input Arguments
pname pointer to name of file to be executed
para pointer to parameters that should be passed
envrn segment address of environment variables
Output Arguments
ret TRUE if unable to call subprocess

FALSE if subprocess is called

Sample Call to C Language Binding
WORD dos_exec();

BYTE FAR *pname;
BYTE FAR *para;
UWORD envrn;
WORD ret;

ret = dos_exec(pname, para, envrn);

7-30 GEM/3 Programmer’s Toolkit Supplement

DOS_GETDATE

DOS_GETDATE

Input Arguments

yr
mo
dy
dw

Output Arguments

none

Get current date. DOS-Call (hex) 2A.

current year
current month
current day

day of week (sunday = 0)

Sample Call to C Language Binding

VOID dos_getdate();
WORD FAR *yr, FAR *mo, FAR *dy, FAR *dw;

dos_getdate(yr, mo, dy, dw);

GEM/3 Programmer’s Toolkit Supplement

7-31

DOS_SETDATE

DOS_SETDATE

Set date. DOS-Call (hex) 2B.

Input Arguments
yr year to be set
mo month to be set
dy day to be set
QOutput Arguments
none

Sample Call to C Language Binding
VOID dos_setdate();
WORD yr, mo, dy;

dos_setdate(yr, mo, dy):

7-32

GEM/3 Programmer’s Toolkit Supplement

DOS_GETTIME

DOS_GETTIME

Get current time. DOS-Call (hex) 2C.

Input Arguments

hr current hour

mi current minute

se current second

hn current hundredvt‘h of a second
Output Arguments

none

Sample Call to C Language Binding
VOID dos_gettime();
WORD FAR *hr, FAR *mi, FAR *se, FAR *hn;

dos_gettime (hr, mi, se, hn);

GEM /3 Programmer’s Toolkit Supplement 7-33

DOS_SETTIME

DOS_SETTIME

Input Arguments

hr
mi
se

hn

Output Arguments

none

Set time. DOS-Call (hex) 2D.

hour to be set
minute to be set
second to be set

hundredth of a second to be set

Sample Call to C Language Binding

VOID dos_settime();
WORD hr, mi, se, hn

dos_settime (hr, mi, se, hn);

GEM/3 Programmer’s Toolkit Supplement

DOS_VERSION

DOS_VERSION

Get version of operating system. DOS-Call (hex) 30.

Input Arguments
vh high word of version number
vl low word of version number
oem OEM code
user user code

Output Arguments
none

Sample Call to C Language Binding

VOID dos_version();
WORD FAR *vh, FAR *vl, FAR *oem, FAR *user;

dos_version(vh, vl, oem, user);

GEM/3 Programmer’s Toolkit Supplement 7-35

Section 8
EMS Library

This section describes modifications and enhancements to the EMS (Ex-
panded Memory System) Library provided with the revised GEM/3
Programmer’s Toolkit. The EMS Library contains utility calls for DOS-
specific expanded memory management.

The descriptions in this section assume a knowledge of the GEM library call
structures and parameter conventions. For more information about these and
other GEM system calls, refer to the GEM Application Environment Services Ref-
erence Guide.

GEM/3 Programmer’s Toolkit Supplement 8-1

EMS_INST

EMS_INST

This functions checks whether an EMS manager is installed or not.

Input Arguments

none

Output Arguments

ret TRUE if EMS manager is installed
FALSE if EMS manager not present

Sample Call to C Language Binding
WORD ems_inst ()’

WORD ret;

ret = ems_inst();

8-2 GEM /3 Programmer’s Toolkit Supplement

EMS_ERRCODE

EMS_ERRCODE

This functions returns the error code of the last EMS operation. The descrip-
tion of the EMS error codes is at the end of this section.

Input Arguments

none

Output Arguments

errcode see “EMS Error Codes” at the end of this section

Sample Call to C Language Binding
WORD ems errcode();

WORD errcode;

errcode = ems_errcode();

GEM/3 Programmer’s Toolkit Supplement 8-3

EMS_NUM_PAGE

EMS_NUM_PAGE

*This function returns the number of pages that are held by the EMS
manager. Each page has a size of 16 Kbytes.

Input Arguments

none

Output Arguments
npages number of 16 Kbyte pages

Sample Call to C Language Binding
WORD ems num page();

WORD npages;

npages = ems_num page():

8-4 GEM/3 Programmer’s Toolkit Supplement

EMS_FREE_PAGE

EMS_FREE_PAGE

This function returns the number of EMS pages that are still available.

Input Arguments

none

Output Arguments.

fpages number of free EMS pages

Sample Call to C Language Binding

WORD ems free page();
WORD fpages;

fpages = ems free page().

GEM/3 Programmer’s Toolkit Supplement 8-5

- EMS_FRAME_SEG

EMS_FRAME_SEG
This function returns the segment address of the page frame. The page frame
segment is the base address where four pages of 16 Kbyte memory are

mapped.

Input Arguments

none

Output Arguments
baseframe segment address of base page frame

Sample Call to C Language Bindihg

WORD ems frame seg();
WORD baseframe;

bagseframe = ems frame seg();

8-6 GEM/3 Programmer’s Toolkit Supplement

EMS_ALLOC

EMS_ALLOC

This function allows allocation of memory pages in the expanded memory
area. The function returns the EMS handle used to access allocated EMS

memory.
Input Arguments
npages number of pages to allocate
Output Arguments
handle > 0 Memory handle to use

FALSE if not enough memory available

Sample Call to C Language Binding
WORD ems_alloc ()

WORD npages, handle;

handle = ems_alloc (npages) ;

GEM/3 Programmer’s Toolkit Supplement : 8-7

EMS_MAP

EMS_MAP

Map logical page 1ogp belonging to handle handle to physical page physp.

Input Arguments

handle handle returned by ems_alloc

logp number of logical page to be mapped

physp number of physical page to be mapped to logp
Qutput Arguments

ret TRUE if map is successful

FALSE if map fails

Sample Call to C Language Binding
WORD ems_map () ;

WORD handle, logp, physp, ret;
ret = ems map (handle, logp, physp):

8-8 GEM /3 Programmer’s Toolkit Supplement

EMS_FREE

EMS_FREE

Free all pages that belong to the specified handle.

Input Arguments
handle EMS handle
Qutput Arguments
ret TRUE if all pages are freed

FALSE if uable to free all pages

Sample Call to C Language Binding
WORD ems_free();
WORD handle, ret;

ret = ems_ free (handle):

GEM /3 Programmer’s Toolkit Supplement

EMS_VERSION

EMS_VERSION

Return the version number of the EMS manager. The version number is
returned as a two digits. For example, 35 indicates version number 3.5.

Input Arguments

none

QOutput Arguments
version version number of EMS manager

Sample Call to C Language Binding
WORD ems version():;

WORD version;

version = ems version():;

8-10 GEM/3 Programmer’s Toolkit Supplement

EMS_SAVE_MAP

EMS_SAVE_MAP

Save the state of the current mapping for a specified handle. This is useful
when dealing with more than one handle. The function lets you save the
mapping for different handles and then restore them as necessary.

Input Arguments

handle handle for which mapping should be saved
Output Arguments

ret TRUE if save is successful

FALSE if unable to save

Sample Call to C Language Binding

WORD ems_save map();
WORD handle, ret;

ret = ems_save map (handle) ;

GEM/3 Programmer’s Toolkit Supplement 8-11

EMS_RESTORE_MAP

EMS_RESTORE_MAP

This is the opposite to the function EMS_SAVE_MAP. The function lets you
restore a previously saved mapping for a specified handle.

Input Arguments

handle handle for which mapping should be restored
Qutput Arguments

ret TRUE if restore is successful

FALSE if unable to restore

Sample Call to C Language Binding
WORD ems restore map();

WORD handle;

ret = ems restore map (handle);

8-12 GEM/3 Programmer’s Toolkit Supplement

EMS Error Codes

EMS Error Codes
0x80 EMS manager damaged
0x81 EMS hardware error
0x82 unidentified error
0x83 unknown EMM handle
0x84 unknown EMM function
0x85 no more EMM handles
0x86 restore mapping error
0x87 more than the total number of pages requested
0x88 more pages requested than free
0x89 zero pages requested (only below version 4.0)
0x8a logical page out of range
0x8B physical page out of range
0x8C mapping save area full
0x8D mapping has already been saved
0x8E restore map handle not known
0x8F subfunction not known

GEM/3 Programmer’s Toolkit Supplement 8-13

Section 9
GEM AES and VDI Update

GEM AES Supplement

This part of the supplement contains the information required to bring the
GEM Application Environment Services Reference Guide up to Release 3.1 of the
GEM system software (GEM/3). Changes to the GEM AES include:

* anew call, menu_click

+ rewording of the description of the menu_barx call

» restriction of the mouse button support of three Event Library calls

GEM /3 Programmer’s Toolkit Supplement 9-1

GEM AES Supplement MENU_CLICK

MENU_CLICK

Set or query whether menus are drop-down or pull-down.

Input Arguments
click Menu type
0 Drop-down
1 Pull-down
setit Determines whether call queries or sets menu type
0 Query
1 Set new value
Qutput Arguments
retval Menu display mechanism
0 Drop down
1 Pull down
Sample Call to C Binding

WORD menu_click():
WORD click, setit;

retval = menu_click(click, setit);

Parameter Block Binding

Control Input Qutput

control (0) 7 int_in (0) click int_out (0)=retval
control (1) int_in(l1) setit

control (2)
control (3)
control (4)

nwwnn
COHNW

9-2 GEM /3 Programmer’s Toolkit Supplement

MENU_BAR GEM AES Supplement

MENU_BAR

Activate or deactivate the application’s menu bar.

The application should always call MENU_BAR to deactivate the menu bar
before making its APPL_EXIT call.

Input Arguments
showit A code for whether the menu bar is activated or deactivated
0 Menu bar deactivated
1 Menu bar activated
tree Address of the object tree that forms this menu
Output Arguments
retval A coded return message
0 Error
1 No error
Sample Call to C Binding
WORD menu_bar();
WORD retval, showit;
LONG tree;

retval = menu_bar (tree, showit);

Parameter Block Binding
Control Input Output
control (0) 0 int_in(0) = showit int_out (0) =retval

control (1) addr_in(0) = tree
control (2)
control (3)

control (4)

L I
OHFPW

GEM/3 Programmer’s Toolkit Supplement 9-3

GEM AES Supplement Event Library Calls

Event Library Calls

The following Event Library call parameters identify the mouse button that
was activated at the time the user event occurred:

« EVNT_BUTTON: the output argument prub

» EVNT_MOUSE: the output argument pmb

» EVNT_MULTL: the input argument bmsk

Note that for all these parameters, the GEM/3 system supports only the
value 0x0001, which identifies the left mouse button.

9-4 GEM /3 Programmer’s Toolkit Supplement

Changes and Corrections GEM VDI Supplement

GEM VDI Supplement

This part of the supplement contains the information required to bring the
GEM Virtual Device Interface Reference Guide up to Release 3.1 of the GEM sys-
tem software (GEM/3).

Changes and Corrections

The following changes and corrections to the GEM VDI Reference Guide bring
it up to Release 3.1 specifications:

GEM VDIno lon,f;er uses an ASSIGNL.SYS file. You can disr%gard all of page
1-4 and the top of page 1-5 (to the heading “The VDI Entry Point”).

The paragraph and example input in the middle of page 2-15 should be
changed as follows:

To load the VDI and start a VDI-only application (like a test program,

shell, or debugger), enter the following command:

GEMVDI -FILENAME

In the sample Clanguage ro%am Q?age 2-18), delete the two comment lines
that describe modifying ASSIGN.SYS.” In addmon, the command that runs
SAMPLE.C isgemvdi -sample.exe.

Correct Table 3-3 (page 3-4) as follows:

Color index 8 is light gray.

Color index 9 is dark gray.

Color index 13 is dark yellow.

Color index 14 is dark cyan.

On page 4-21, the definition of the radius input argument should read
“Length of circle’s radius in x-axis units.”

On page 5-25, the function name in the last sentence of the first paragraph is
incorrect. The correct function name is vst_load_fonts (77H).

GEM/3 Programmer’s Toolkit Supplement 9-5

GEM VDI Supplement Changes and Corrections

» For vql_ attributes (page 8-7), the correct sample call to the C language
binding 1s as follows:

WORD vql_attributes();
WORD handle, attrib{e6]:;

vgl_attributes (handle, attrib);

* The function call v_bit_image (page 9-26) apgleies only to the printer. For
the screen, you must use raster operations (see Section 6 of the VDI guide).
* The call v_xbit_image, introduced in Release 3.01, is not supported in

Release 3.1, Support for bit image rotation is provided in part by the
inclusion of file-to-file image rotation in OUTPUT.APP. .

9-6 ‘ GEM /3 Programmer’s Toolkit Supplement

GEM VDI Supplement

GDOS Modifications

GDOS Modifications

Command line switches have been added to the command line to be
processed by GEMVDILEXE and passed on to an application. The command
line uses this form:

GEMVDI APPNAME [parameter...] [/S=screen] [/M=abl]
[/R=driver] [/I=info_path] [/F=font_path] [-program]

APPNAME

parameter. ..

/S=screen

/M=ab

/R=driver

/I=inf_path

/F=font_path

A GEM application .APP filename like DRAW or PUBLISHR.
A filename must be given if the command line uses any of
the parameters or switches described below.

The name of one or more data files, which are passed as
parameters of the first parameter specified. For example, the
command line GEMVDI DRAW PICTURE . GEM starts the
GEM® Draw Plus™ application and passes to the application
file DRAW.APP the filename PICTURE.GEM as the name of
a file to open.

The screen driver screen is loaded instead of the default
screen.

The screen driver mouse configuration bytes (port and
mouse type) are overwritten. The port value (2) and mouse
type (b) are both patched to zero. (See the description later
in this supplement of the MOUSE ID field in the file GEM-
SETUP.TXT.)

The driver identified by driver is made resident for debug-
ging purposes.

The GDOS creates font cacheing information files with the
extension .INF. If this parameter is specified, these files are

placed in the directory inf_path instead of
\GEMAPPS\FONTS.

Enables accessing fonts from directory £ont_path instead
of \GEMAPPS\FONTS.

GEM /3 Programmer’s Toolkit Supplement 9-7

GEM VDI Supplement GDOS Modifications

-program The VDI should run program instead of GEM.EXE. (In
Release 2.2 of the VDI, the delimiter was / instead of a
dash.) No parameters may be passed to programs that are
EXEC'd by the GDOS in this manner. If this argument is not
given, the command line runs the default program,
GEM.EXE, passing to it any parameters on the command
line. Note that switches are not passed to GEM.EXE.

9-8 ' GEM /3 Programmer’s Toolkit Supplement

V_OPNWK(1H)

GEM VDI Supplement

V_OPNWK (1H)

(Page 3-2 of the GEM VDI Reference Guide)

v_opnwk now provides support for run-time selection of output destination
and page size, as well as providing feedback to the calling routine about es-
capement text and landscape rotation capability.

Additional Input Arguments

work_in[11] Output device type in the low-order byte:

0
1
2
3
255

File

Serial port

Parallel port
Device-specific (direct)
No change to default

Page size index in the high-order byte:

0 or 20
5

10

30

40

50

55

255

Letter size

Half size

B5 size

Ad size

Legal size

Double size

Broad sheet size

Use work_in[101] and work_in[102]

work_ in[12+] Output port/name:

If work_in[11] issetto1or 2, then work_in[12] con-
tains the port number. Otherwise, work_in[12+] contains
the output file name (full path) with one character per word
and null word terminator.

work_in[101] X page size in 1/100’s inch

work_in[102] Y page size in 1/100’s inch

GEM/3 Programmer’s Toolkit Supplement 9-9

GEM VDI Supplement V_OPNWK (1H)

Modified Output Arguments

work_out [14] Setto 11 to indicate that escapement text is available; other-
wise set to 10.

work_out [24] Set to 11 to indicate that escapement text is the only kind of
text available on the device; otherwise set to 10.

work_out [44] In addition to the existing device type (0 - 4), -1 means
landscape output can be handled by the device without rota-
tion by the calling routine.

Sample Call to C Language Binding

WORD v_opnwk () ;
WORD work_in[103], work_out[57], handle;

. v_opnwk (work_in, &handle, work_out);

Parameter Block Binding
Control Input Output
control (0} = 1 intin(n) = work_in[n], intout (m) =work_out [m],
control(l) = 0 where n = 0 thru 102 where m = 0 thru 44
control (2) = 6 ptsout (i) =work_out [45+i],
control (3) = 103 where i = 0 thru 11
control(4) = 45
control(5) = 0
control (6) = handle

9-10 GEM/3 Programmer’s Toolkit Supplement

V_JUSTIFIED (B-AH) GEM VDI Supplement

V_JUSTIFIED (B-AH)

(Page 4-27 of the GEM VDI Reference Guide)

The mapping for unsupported characters has been changed from a question
mark to a blank space. See the fourth paragraph on page 4-27.

The information on page 4-28 has been changed considerably.

Input Arguments
handle Device handle
word_space Word spacing flag:
0x0000 Do not modify inter-word spacing and do
not return output information.
0x0001 Modify inter-word spacing but do not
return output information.
0x8000 Do not modify inter-word spacing, but do
return output information.
0x8001 Modify inter-word spacing and return out-
put information.
char_space Character spacing flag:
0x0000 Do not modify inter-character spacing.
0x0001 Modify inter-character spacing.
string ASCII character string
x x-coordinate of the text alignment point
Y y-coordinate of the text alignment point
length Requested length of the string, in x-axis units
QOutput Arguments
char_width Width of each character in pixels

GEM/3 Programmer’s Toolkit Supplement 9-11

GEM VDI Supplement V_JUSTIFIED (B-AH)

Sample Call to C Language Binding

WORD v_justified():

WORD char_width(n);

WORD handle, x, y, length, word_space, char_space;
BYTE string(n);

v_justified(handle, x, y, string, length,
word_space, char_space, char_width);

Parameter Block Binding
Control Input Qutput
control (0} = 11 intin(0) = word_space intout (0) = char_width{[0]
control(l) = 2 intin (1) = char_space
control(2) =0 intin(n+2) = string[n] .
control (3) = 2+n intout (n-1) =
control (4) = 0 if word_space char_width[n-1]

equals 0x0000 or 0x0001
n if word space
equals 0x8000 or 0x8001

control (4)

control(5) = 10 ptsin(0) = x

control (6) = handle ptsin(l) =y
ptsin(2) = length
ptsin(3) =

Note: n represents the number of characters in the string.

9-12 GEM/3 Programmer’s Toolkit Supplement

Memory Form Definition Block GEM VDI Supplement

Memory Form Definition Block

(Page 6-2 in the GEM VDI Reference Guide)

In the Memory Form Definition Block (MFDB), a 32-bit pointer specified as
-1L (Oxf£ff:0xffff) defines the raster area as the quarter-screen buffer and indi-
cates that it is located in graphic memory.

When the quarter-screen buffer is in graphic memory, the only legal source

or destination of a bit copy operation—vro_cpy£fm (6DH) for example—is
the screen. Inother words, if one operand of a bit copy operation is graphic
memory, the other operand must be screen memory.

Graphic memory is memory that is accessible to the screen driver but not to
the operating system. Typically it is located on a graphics card. If the AES
has allocated the quarter-screen buffer to graphic memory, applications do
not have access to this memory.

GEM/3 Programmer’s Toolkit Supplement 9-13

GEM VDI Supplement VQ_EXTND (66H)

VQ_EXTND (66H)
(Page 8-14 in the GEM VDI Reference Guide)

Additional information for the availability of the quarter-screen buffer in
graphic memory can be obtained through vq_extnd. If the values of output
arguments work_out [26] and work_out [27] are non-zero, they repre-
sent the low word and high word, respectively, of the quarter-screen buffer
size in graphic memory.

Modified Quput Arguments
work_out [20] Extended pixel size units

0 No extended precision pixel size information is
available

1 work_out [21] and work_out [22] give pixel
size in 0.1 micron units

2 work_out [21] and work_out [22] give pixel
size in 0.01 micron units

3 work_out [21] and work_out [22] give pixel
size in 0.001 micron units

work_out [21] Extended x dot size in work_out [20] units
work_out [22] Extended y dot size in work_out [20] units
work_out [23] x dots per inch
work_out [24] y dots per inch

work_out [25] Bitimage rotation capabilities flag
] Not applicable
1 0-, 90-, 180-, 270-degree bit image rotations

work_out [26] Low word of the quarter-screen buffer size

work_out [27] High word of the quarter-screen buffer size

9-14 GEM/3 Programmer’s Toolkit Supplement

Vg_EXTND (66H) GEM VDI Suglement

work_out [28] bit 1: Bezier capability
0 driver has no Bezier capability
1 driver has Bezier capability

Sample Call to C Language Binding

WORD vq_extnd();
WORD handle, owflag, work out[57]:

vq_extnd (handle, owflag, work_out):

Parameter Block Binding
Control Input OQOutput
contrel (0) = 102 intin(0) = owflag intout (n) = work_out [n]
control(l) = O where n = 0 thru 44
control(2) = 6 : pstout (m) =
control (3) = 1 work_out [m+45]
control (4) = 45 where m = 0 thru 11

control (5) = 0
control (6) = handle

GEM/3 Programmer’s Toolkit Supplement 9-15

GEM VDI Supplement V_PLINE(6H) and V_FILLAREA(9H)

V_PLINE(6H) and V_FILLAREA(9H)

(Pages 4-4 and 4-10 in the GEM VDI Reference Guide)

The v_pline and v_fillarea calls have been extended to allow at least
1495 points. The actual maximum number is driver-dependent and can be
found in work_out [14] from the extended inquire information option of
the vg_extnd call.

A non-zero intin count indicates the presence of a list of indices of “jump
points,” which means that multiple disconnected polygons are supported.

9-16 GEM/3 Programmer’s Toolkit Supplement

VSF_XPERIMETER (68H) GEM VDI Supplement

VSE_XPERIMETER (68H)

This call is an extension of the existing vs£_perimeter call (see page 5-39
in the GEM VDI Reference Guide) that allows line style attributes to be used
for filled area outlines. Note that both calls use the same opcode value. They
are differentiated from each other by the INTIN count.

Input Arguments
handle Device handle
on_off Perimeter visibility flag
- 0 Turn perimeter outlining off
1 Turn perimeter outlining on
-1 Do not change perimeter outlining
f or 1 Perimeter attributes flag
0 Use normal fill color for perimeter
1 Useline style attributes for perimeter
Output Arguments

set_perimeter Selected perimeter visibility

Sample Call to C Language Binding

WORD vsf_ xperimeter;
WORD set_perimeter, handle, on_off, f_or_1;

set_perimeter = vsf_xperimeter (handle, on_off, £ _or_ 1):

Parameter Block Binding

Control Input Output

control (0) intin(0) = on_off intout (0) = set_perimeter
control (1) intin(l) = £f_orxr_1

control (2)
control (3)
control (4)
control (5)
control (6)

o
-

nawnuwnn
goOorRNOOH

andle

GEM/3 Programmer’s Toolkit Supplement 9-17

GEM VDI Supplement

V.. ALPHA_TEXT (5-19H)

V_ALPHA_TEXT (5-19H)

(Page 9-31 in the GEM VDI Reference Guide)
Additions to currently defined control sequences:

<DC2>6
<DC2>7
<DC2>8
<DC2>9
<DC2>A
<DC2>B
<DC2>C
<DC2>D
<DC2>E
<DC2>F
<DC2>V
<DC2>W
<DC2>X
<DC2>Y
<DC2>Z

<DC2>G thru

Begin superscript

End superscript

Begin subscript

End subscript

Begin letter-quality mode
End letter-quality mode
Begin expanded

End expanded

Begin light

End light

Reserved - ignored by driver
Set pica

Set elite

Set condensed

Set proportional

9-18

GEM/3 Programmer’s Toolkit Supplement

.OUT File Format v GEM VDI Supplement

.OUT File Format

In addition to the control sequences described for the v_alpha_text call,
the .OUT file format uses the following command to insert graphics into the
output stream:

<ESC><ESC>GEM, x,y,w, h,D: \PATHNAME \FILENAME . EXT

<ESC> refers to ADE value 27. x,y, w, and h are given in character cell units.
The origin of the graphics rectangle is relative to the current cursor position,
not the top left corner of the page.

* - GEM/3 Programmer’s Toolkit Supplement 9-19

GEM VDI Supplement ' Font Header Format

Font Header Format

The following modifications and additions have been made to the Font
Header Format (Table F-1).

Modified Fields
(Page F-5 in the GEM VDI Reference Guide)

Byte Number Description

0 Font identifier, if the identifier is less than or equal to 255. If
the identifier is greater than 255, bit 5 in byte 67 should be
set to 1 to indicate that £ull_idis used (see Flags definition
below). In this case, bytes 110 and 111 are used as the full
font identifier.

1 Weight:
Bit0 thicken (bold)
Bit1 light
Bit2 skew (italic)
Bit3 underline
Bit4 outline
Bit5 shadow

9-20 GEM/3 Programmer’s Toolkit Supplement

Font Header Format ' GEM VDI Supplement

Additional Fields
(Page F-6 in the GEM VDI Reference Guide)
66 - 67 Flags; additional values:
Bit4 Setif font data is paged out to disk.
Bit5 Setif font data in file is compressed.

Bit13 Setif full_id should be used.
Bit14-15 Reserved, must be zero.

88 - 91 next__sect—If the font data is broken into multiple sec-
tions, this pointer points to the next section. If the current
section is the last section, set to 0.

The data can be broken into sections in the following man-
ner: a header identifying the characters described by the
data in the current section, a pointer to the next section, the
character data; a header for the next section, another pointer,
character data; and so on.

92 ~ 109 Reserved, must be zero.

110 - 111 £ull_id—full identification (>256) to use when bit 13 in
Flags is set. In this case, font_id in byte 0 will be ignored.

112 - 149 Reserved, must be zero.

150 - 151 compressed_size—If font data is compressed, this is the
number of bytes of compressed font data.

GEM/3 Programmer’s Toolkit Supplement 9-21

GEM VDI Supplement Bit Image File Format

Bit Image File Format

(Appendix G of the GEM VDI Reference Guide)

The description of WORD 7 of the bit image file header format (Table G-1) is
incorrect. The table should read as follows:

Table G-1. Bit Image File Header Format

g

Image file version number

Header length in words

Number of planes (source device bits per pixel)
Pattern definition length (number of bytes)
Source device pixel width (microns)

Source device 1(‘Jixel height (microns)

Scan line widt (lpixels)

Number of scan lines

Bit image flag

oYU WN R

The bit image file header (WORD 1) can be eight or nine words long. The op-
tional ninth word allows printer drivers to support the dithered display of
grayscale images. Drivers can accommodate files with or without the bit
image flag.

In files with a 9-word header, bit 0 of word[8] has these possible values:

1 If a multi-plane image, planes are printed as gray
levels.

0 If a multi-plane image, planes are printed as
colors.
If the file is not a multi-plane image, bit 0 of word[8] has no meaning.

In a multi-plane image with an 8-word file header (an “old-style” image file),
colors are printed as gray levels on a monochrome device, but the mapping
of the colors to gray levels is not specified and may be device-dependent.

The information beginning on the next page replaces page G-2 of the GEM
VDI Reference Guide.

9-22

GEM/3 Programmer’s Toolkit Supplement

Bit Image File Data Format GEM VDI Supplement

— n——

Bit Image File Data Format

The bit image data is composed of descriptors for each scan line. (Word 7 of
the file header tells how many scan lines are in the file.) The scan line
descriptors are made up of the following;:

* a vertical replication count, if the scan line is followed by one or more
identical lines

* encoded line descriptor data for each color plane
The vertical replication count is a WORD value formatted as follows:

Byte Contents

0 NUL

1 NUL

2 FF Hex
3 Count

The count indicates how many identical scan lines are defined by the descrip-
tor data following the vertical replication count.

The encoded data for each color plane follows the vertical replication count
and is presented in the following order:

firstplane — red
second plane — §reen
third plane — blue
fourth plane — gray

Data is always provided for all bit planes defined in WORD 2 of the file
header. The data is presented in any of three formats:

solid _run

pattern_run

bit_string
Note: Because scan line data is encoded in byte-wide packets (groups of
eight pixels), the number of pixels described for each bit plane of a scan line
is always a multiple of eight, as the following example demonstrates.

GEM /3 Programmer’s Toolkit Supplement 9-23

GEM VDI Supplement Bit Image File Data Format

This example is a simple illustration of the workings of the vertical replica-
tion count and scan line descriptor data. It uses a hypothetical image file in
which WORD 2 of the header is 00 01 (one color plane—in other words, a
monochrome screen driver), the scan line width (WORD 6) is 00 28 (40
pixels), and the actual image is a solid horizontal line 34 pixels long and 4
pixels wide (four scan lines).

00 00 FF 04 84 80 01 CO

In the vertical replication count (00 00 FF 04), the count is 04, indicating
that the descriptor data applies to four consecutive scan lines. The first
descriptor (84) is a solid_run four bytes (32 pixels) long. The second
descriptor (80 01 C0) is a bit_string one byte long, containing two black
pixels and six blank pixels. The 32 pixels from the solid_run and the two
pixels from the bit_string add up to the 34 pixels of the solid line, and the
remaining six pixels fill out the 40-pixel line.

If WORD 2 of the file header had indicated four color planes, the vertical
replication count would have been followed by descriptor pairs (solid_run
and bit_string) for each color plane in turn.

9-24

GEM/3 Programmer’s Toolkit Supplement

V_COPIES (5-1CH) GEM VDI Supplement

V_COPIES (5-1CH)

This escape function allows the calling routine to specify the number of
copies to be made of each page. All pages output before the workstation is
closed are printed with the specified number of copies. This function applies

to printers only.
Input Arguments
handle Device handle
count Number of copies

Sample Call to C Language Binding

WORD v_copies():
WORD handle, count;

v_copies (handle, count);

Parameter Block Binding

Control Input

control (0) intin(0) = count
control (1)
control (2)
control (3)
control (4)
control (5)
control (6)

oHOOW

L2 I I O

28
bhandle

GEM/3 Programmer’s Toolkit Supplement 9-25

GEM VDI Supplement

V_ETEXT (B-BH)

Input Arguments

— e ——

V_ETEXT (B-BH)

This function writes each character of a text string relative to the specified
starting position. It is typically used to override the driver’s default method
of justification. This function applies to printers and plotters only.

handle
X
y
string

offsets

Device handle

X-coordinate of starting position
Y-coordinate of starting position
Address of null-terminated text string

Address of WORD array of position offsets

Each offset is an x,y pair of signed integers that indicate the
position of the next character in the string relative to the
starting position. The first offset pair affects the position of
the first character in the string. Some drivers ignore the y
component of each pair, in which case y is assumed to equal
zero.

Sample Call to C Language Binding

WORD v_etext ()
WORD handle,
BYTE *string;

y, *offsets;

v_etext (handle, x, y, string, offsets)

9-26

GEM/3 Programmer’s Toolkit Supplement

V_ETEXT (B-BH) GEM VDI Supplement

Parameter Block Binding

Control Input
control (0) = 11 ptein(0) = x
control (1) = length of ptsin(l) =y

string + 1 ptsin(2) = offsets[0]
control(2) = 0 ptsin(3) = offsets[1]
control (3) = length of

string .
control(4) = 0 ptsin(2n+l) = offsets[2n-1]
control (5) = 11 intin(0) = string[0]}
control (6) = handle .

intin(n-l) = string[n-1]
vhere n = length of string

GEM/3 Programmer’s Toolkit Supplement 9-27

GEM VDI Supplement : ‘ V_ORIENT (5-1B)

V_ORIENT (5-1B)

This escape function allows the calling routine to select one of two page
orientations: portrait (the default) or landscape. The function must be called
before the output of any primitives or attributes.

Input Arguments
handle Device handle
orientation Page orientation
0 Portrait
1 Landscape

Sample Call to C Language Binding

WORD v_orient ()
WORD handle, orientation;

v_orient (handle, orientation);

Parameter Block Binding
Control Input
control (0) intin(0) = orientation
control (1)
control (2)

control (3)
control (4)
control (5)
control (6)

nwonuwnun
voHOOW
<

=4
5
=
()

9-28 GEM/3 Programmer’s Toolkit Supplement

V_TRAY (5-1D) GEM VDI Supplement

V_TRAY (5-1D)

This escape function allows the calling routine to specify a paper tray or re-
quest manual feed. All pages output before the workstation is closed will be
printed using the specified paper tray source.

Input Arguments
handle Device handle .
tray Paper tray selection:

-1 manual feed
0 default paper tray
1 first optional paper tray
n nthoptional paper tray (n > 0)

Sample Call to C Language Binding

WORD v_tray()
WORD handle, tray;

v_tray(handle, tray):

Parameter Block Binding

Control Input

control (0) intin(0) = tray
control (1)
control (2)
control (3)
control (4)
control (5)
control (6)

LI L T I O
NOHOOWM
©o

1
3

GEM /3 Programmer’s Toolkit Supplement 9-29

GEM VDI Supplement VST_EX_LOAD_FONTS (77H)

VST_EX_LOAD_FONTS (77H)

This function is an extension of the existing vst_1load_£onts call (Page 3-
18 of the GEM VDI Reference Guide), with two additional input arguments to
provide control over font paging memory. The current defaults in units of

paragraphs are:
font_max font_free
for screens: 5120 (80K) 0
for printers: 32767 640 (10K)

The GDOS attempts to allocate £ont_max paragraphs or all of available
memory (whichever is smaller) less font._£ree paragraphs, and uses this
amount for font paging.

Depending on your needs, you can use either version of this call. Note that
both versions use the same opcode.

Input Arguments
handle Device handle
select Reserved, must be zero
font_max Maximum number of paragraphs to allocate
font_f£free Minimum number of paragraphs to leave free
Output Arguments
additional Number of additional font identifiers

Sample Call to C Language Binding

WORD vst_ex load_fonts():;
WORD handle, select, font_max, font_free;

additional = vst_ex load fonts(handle, select, font_max,
font_free);

9-30 GEM/3 Programmer’s Toolkit Supplement

VST_EX_LOAD_FONTS (77H)

Parameter Block Binding

Controi

GEM VDI Supplement

Input

Qutput

control (0)
control (1)
control (2)
control(3)
control (4)
control (5)
control[6]

intin[O0]
intin[1]
intin[2]

select
font_max
font_free

intout (0) = additional

GEM /3 Programmer’s Toolkit Supplement

9-31

GEM VDI Supplement V_SET_APP_BUFF (FFPF-GH)

V_SET_APP_BUFF (FFFF-6H)

This call reserves a memory segment for use by GDOS extensions to produce
Bezier curves. When the application makes Bezier calls, the buffer set aside
by this call holds the polygon generated from the Bezier anchor points and
direction points.

When not making Bezier calls, the application has free access to this buffer.
A zero offset, segment, and size disable further use of this buffer and must be
called to prevent accidental use of this memory when the application exits.

In the absence of this call, the GDOS allocates memory via DOS calls as
needed. The size of the buffer varies according to the complexity of the
‘Bezier—typically around 9K bytes.

Input Arguments
offset Offset of buffer (first two bytes of address)
segment Segment address of buffer (last two bytes of address)

nparagraphs h Number of paragraphs available

QOutput Arguments
address Start address of memory area

Sample Call to C Language Binding

VOID v_set_app_buff();
LONGWORD address;
WORD naparagraphs;

v_set_app_buff (&address, nparagraphs);

9-32 GEM/3 Programmer’s Toolkit Supplement

V_SET_APP_BUFF (FFFF-6H) GEM VDI Supplement

Parameter Block Binding
Control Input
control(0) = -1 intin(0) = offset
control{l) = 0 intin(l) = segment
control(2) = 0 intin(2) = nparagraphs
control(3) = 3
control(4) = 0O
control(5) = 6

control (6) = handle

GEM /3 Programmer’s Toolkit Supplement 9-33

GEM VDI Supplement V_BEZ_ON (B-CH)

V_BEZ_ON (B-CH)

This call enables the GDOS Bezier capabilities. Note that while a handle is
provided and the associated device driver is called, the GDOS Bezier exten-
sion is enabled for all devices when this call is made. All current GEM 3.1
drivers ignore this call; its only effect is within the GDOS itself.

Input Arguments
handle Device handle
Output Arguments
retval Maximum Bezier depth, a measure of the smoothness of the

curve. The value, which can range from 0 to 7, is an ex-
ponent of 2, giving the number of line segments that make
up the curve. Thus, if retval is 0, the curve is actually a
straight line (one line segment). If retval is 7, the curve is
made of 128 line segments.

Sample Call to C Language Binding

WORD v_bez_on():
WORD handle, retval;

retval = v_bez_on(handle) ;

Parameter Block Binding
Control Qutput
control(0) = 11 intout (0) = retval
control(l) = 1 (indicates ON)
control(2) = 0
control (3) = 0
control(4) = 4
control (5) = 13
control (6) = handle

9-34 - GEM/3 Programmer’s Toolkit Supplement

V_BEZ_OFF (B-CH) GEM VDI Supplement

V_BEZ_OFF (B-CH)

This call disables the GDOS Bezier capabilities. Any memory allocated by
the GDOS for Bezier-generated polygons is released at this time. (See
V_SET_APP_BUFF in this supplement for memory allocation information.)

Input Arguments
handle Device handle

Sample Call to C Language Binding
WORD v_bez_off ().

WORD handle

v_bez_off (handle) ;
Parameter Block Binding

Control

control(0) = 11

control(l) = 0 (indicates OFF)

control(2) = 0

control(3) = 0

control(4) = 0

control{5) = 13

controel(6) = handle

GEM/3 Programmer’s Toolkit Supplement 9-35

i-EM VDI Supplement

V_BEZ (6-CH)

V_BEZ (6-CH)

This call draws an unfilled Bezier on the specified device.

Input Arguments
handle

count

xyarr

bezarr

Qutput Arguments
npts

nmove

minx

miny
maxx

maxy

Device handle
Number of vertices
Array of vertices

Array of vertex-type flags

bit 0 =1 first point in a 4-point Bezier segment (a

curve—the four points are two anchor points
and two direction points)

bit 1 =1 jump point—a point connecting two regions

without drawing a line between them
(“move to here” instead of “draw to here”)

Number of points in resulting polygon
Number of moves in resulting polygon

Minimum x extent of rectangle (“bounding box”) surround-
ing the curve

Minimum y extent of bounding box
Maximum x extent of bounding box

Maximum y extent of bounding box

Sample Call to C Language Binding

VOID v_bez():
WORD handle,
CHAR bezarr;

v_bez (handle,

count, xyarr, extent;

count, xyarr, bezarr, extent);

9-36

GEM/3 Programmer’s Toolkit Supplement

V_BEZ (6-CH) GEM VDI Supplement
Parameter Block Binding
Control Input Qutput
control(0) = 6 intin(0) = bezarr intout (0) = npts
control(l) = count ptsin(0) = xyarr intout (1) = nmove
control(2) = 2 intout (2) = reserved
control(3) = (count + 1)/2 intout (3) = reserved
control(4) = 6 intout (4) = reserved
control(5) = 13 intout (5) = reserved
control (6) = handle ptsout (0) = minx
ptsout (1) = miny
ptsout (2) = maxx
ptsout (3) = maxy

GEM /3 Programmer’s Toolkit Supplement

9-37

GEM VDI Supplement V_BEZ_FILL (9-CH)

V_BEZ_FILL (9-CH)

This call draws a filled Bezier on the specified device.

Input Arguments
handle Device handle
count Number of vertices
xyarr Array of vertices
bezarr Array of vertex-type flags
bit 0 =1 first point in a 4-point Bezier segment (a
curve—the four points are two anchor points
and two direction points)
bit 1 =1 jump point—a point connecting two regions
without drawing a line between them
(“move to here” instead of “draw to here”)
Output Arguments
npts Number of points in resulting polygon
nmove Number of moves in resulting polygon
minx Minimum x extent of rectangle (“bounding box”) surround-
ing the curve
miny Minimum y extent of bounding box
maxx Maximum x extent of bounding box
maxy Maximum y extent of bounding box

Sample Call to C Language Binding

VOID v_bez_£ill();
WORD handle, count, xyarr, extent;
CHAR bezarr;

v_bez_£ill (handle, count, xyarr, bezarr, extent);

9-38 ; GEM/3 Programmer’s Toolkit Supplement

V_BEZ_FILL (9-CH)

GEM VDI Supplement

Parameter Block Binding

Control Input Qutput

control(0) = 9 intin(0) = bezarr intout (0) = npts

control(l) = count ptsin(0) = xyarr intout (1) = nmove

control(2) = 2 intout (2) = reserved

control(3) = (count + 1)/2 intout (3) = reserved

control{4) = 6 intout (4) = reserved

control(5) = 13 intout (5) = reserved

control (6) = handle ptsout (0) = minx
ptsout (1) = miny
ptsout (2) = maxx
ptsout (3) = maxy

GEM /3 Programmer’s Toolkit Supplement

9-39

GEM VDI Supplement V_BEZ_QUAL (5-63H)

V_BEZ_QUAL (5-63H)

This call specifies the speed/quality tradeoff parameter for Beziers.

Input Arguments

handle Device handle

prent Requested speed/quality factor in percent
Qutput Arguments

actual Actual speed/quality used

Sample Call to C Language Binding

WORD v_bez_qual();
WORD (handle, prcnt, actual);

v_bez_qual (handle, prent, actual);

Parameter Block Binding

Control Input Output
control (0) 5 intin (0) 32 intout (0) = actual
control(l) 0 intin (1)
control (2) (o] intin(2)
3
1

wan
[

prent
control (3)
control (4)
control (5)
control (6)

9-40 GEM/3 Programmer’s Toolkit Supplement

VS_BKCOLOR (5-66H) GEM VDI Supplement

VS_BKCOLOR (5-66H)

This call sets the background color for the device associated with handle,

usually a camera device.
Input Arguments
handle Device handle
color Background color index

Sample Call to C Language Binding

VOID vs_ bkcolor():
WORD handle, color

vs_pkcolor (handle, color);

Parameter Block Binding
Control Input

control (0) intin(0) = color
control (1)
control (2)
control (3)
control (4)
control (5) 102

control (6) = handle

orooOoWm

GEM/3 Programmer’s Toolkit Supplement 9-41

GEM VDI Supplement , . VS_GRAYOVERRIDE (85H)

VS_GRAYOVERRIDE (85H)

This call overrides the gray level specified with the vs£_style call, patterns
2,1 through 2,8 (see page 5-36 of the GEM VDI Reference Guide). The applica-
tion should specify the closest index in the normal fill pattern set and follow
it with a vs_grayoverride call to “fine-tune” that gray level one devices
that support such fine tuning. This call is currently implemented in the Post-

Script® driver.
Input Arguments
handle Device handle
grayval Gray value in tenths of a percent
0 white
1000 black

Sample Call to C Language Binding

VOID vs_grayoverride() .
WORD handle, grayval;

vs_grayoverride (handle, grayval);

Parameter Block Binding -

Control

control (0)
control (1)
control (2)
control (3)
control (4)
control (5)
control (6)

w
w

wnnwenan
pPoorHoOH

andle

9-42 GEM/3 Programmer’s Toolkit Supplement

V_PAT_ROTATE (86H) GEM VDI Supplement

V_PAT_ROTATE (86H)

- This call specifies pattern rotation angle. It is implemented only in printer
drivers and is restricted to multiples of 90 degrees.

Input Arguments
handle Device handle
angle Angle in tenths of a degree

Sample Call to C Language Binding

VOID v_pat_rotate();
WORD handle, angle;

v_pat_rotate(handle, angle);

Parameter Block Binding
Control Input

control (0) intin(0) = angle
control (1)
control (2)
control (3)
control (4)
control (5)
control (6)

LI T T 1]
Pooroor
W
-

]
3

GEM/3 Programmer’s Toolkit Supplement 9-43

GEM VDI Supplement V_SETRGBI (5-4844H)
—

V_SETRGBI (5-4844H)

This call overrides a previously set color specification with an RGB triple
(color devices) or intensity (monochrome devices). This call is currently im-
plemented only for the PostScript driver.

Input Arguments
handle Device handle
primtype Primitive type
17 line
20 marker
22 text
25 fill
r Red component
g Green component
b Blue component
i Intensity

Sample Call to C Language Binding

VOID v_setrgbi():;
WORD handle, primtype, r, g, b, i;

v_setrgbi (handle, primtype, r, g, b, i)

Parameter Block Binding
Control Input
control(0) = 5 intin(0) = primtype
control(l) = 0 intin(l) = r
control(2) = 0 intin(2) = g
control(3) = 5 intin(3) = b
control(4) = 0 intin(4) = 1
control (5) = 0x4844
control (6) = handle

9-44 GEM/3 Programmer’s Toolkit Supplement

V_TOPBOT (5-4845H) GEM VDI Supplement

V_TOPBOT (5-4845H)

This call is an alternative to vst_height (page 5-20 of the GEM VDI Refer-
ence Guide). It uses top to bottom distance for text scaling, instead of top to
baseline distance.

Input and output arguments are the same as for vst_height.

Sample Call to C Language Binding

VOID v_topbot();
WORD handle, height, char) w:Ldth char_height, cell_width,
cell_height;

v_topbot (handle, height, &char_width, &char_height,
&cell_width, &cell_height);

Parameter Block Binding
Control Input Output
control(0) = 5 ptsin(0) = ptsout (0) = char_width
control(l) = 1 ptsin(l) = ight ptsout (1) = char_height
control(2) = 4 ptsout (2) = cell _width
control(3) =0 ptsout (3) = cell_height
control(4) =0
control (5) = 0x4845
control (6) = handle

GEM/3 Programmer’s Toolkit Supplement 9-45

GEM VDI Supplement

V_PS_HALFTONE (5-20H)

V_PS_HALFTONE (5-20H)

This call controls the parameters for PostScript halftoning. It provides direct
access to analogous PostScript language parameters. It is implemented only
for the PostScript driver.

Input Arguments

handle

index

angle

frequency

Device handle
Halftone type

0 Dot screen

1 Line screen

2 Ellipse screen

3 Custom (user-defined)
Halftone screen angle

Halftone screen frequency

Sample Call to C Language Binding

VOID v_ps_halftone():
WORD handle, index, angle, frequency;

v_ps_halftone (handle, index, angle, frequency):;

Parameter Block Binding
Control Input
control(0) = 5 intin{0) = index
control(l) = 0 intin(l) = angle
control(2) = 0 intin(2) = frequency
control(3) = 3
control(4) = 0
control {5) = 32

control (6)

E
B
[]

9-46

GEM/3 Programmer’s Toolkit Supplement |

Section 10

Files and Devices Update

DDF Files

Bitstream® Fontware® uses Device Description Files (DDF) to contain the
device-dependent information that is required for generating the correct
fonts in the correct format. DDF files also provide information about the
device for the user-interface portion of Fontware. In the following descrip-
tion of the fields that can occur in a DDF file, S/P indicates a field used in
both screen and printer DDF files and P indicates a field used only in a
printer DDF file.

menulabel

manufacturer
model
printer

hdpi

vdpi

driverload

driver

S/P
S/P

S/P

S/P

S/P
S/p
S/P

S/P

unused

first part of menu label (used in the Printer Model
menu in Fontware)

last part of menu label (used in the Printer Model
menu in Fontware)

Screen/printer flag

screen device

printer device

horizontal dots per inch
vertical dots per inch

font management responsibility

Fonts are loaded and managed by GDOS font
manager.

Device driver loads and manages its fonts.

Xerox® Ventura Publisher® driver name that is
patched into the corresponding width table. This
name should be identical to the short name in the
zyxg patch area of the driver. See “Device
Names” at the end of this supplement.

GEM/3 Programmers Toolkit Supplement | 10-1

DDF Files

frat

makefon
usepfm

devkey

devmode

maxbmap

maxoffset

minoffset
maxcell
maxsw

gemext

rle

kerning

S/P

S/pP
S/P
S/P

S/P

S/P

S/P

S/P
S/P
S/p
S/P

identifies screen or printer font format conversion
program

For example, if the value is this field is GEM, that
identifies the font conversion program as
CVTGEM.EXE. If the value is HPF, the conver-
sion program is CVTHPF.EXE. The value in this
field follows “CVT” in the conversion file pro-
gram name. The value must be GEM if the driver
uses the GDOS font manager.

unused—should be zero
unused—should be zero

Seventh character of the font file name. By con-
vention, a unique letter is assigned by resolution.

eighth character of the font file name

In screen DDF files, P indicates a Portrait font and
L and Landscape font. In printer DDF files this
value is overridden by GENGEMIF.EXE.

maximum size used by font conversion program
specified by £mt (above)

maximum offset used by font conversion pro-
gram

minimum offset used by font conversion program
maximum size used by font conversion program

maximum size used by font conversion program

font file extension (unused by devices that
manage their own fonts)

run-length encoding—should be 1

kerning flag
no kerning
kerning

10-2

GEM /3 Programmers Toolkit Supplement

DDF Files

dtal

dta2

dtbl

dtb2

orientation

hp_big

usesizes

usebco

Specifies the first program of the intial stage of
font processing. Recommended value is v£ms,
which generates Ventura width tables.

Specifies the second program of the initial stage of
font processing. Recommended value is v£2wd,
which generates Ventura width tables.

Specifies the first program of the final stage of
font processing.

Specifies the second program of the final stage of
font processing.

generate Portraitand/or Landscape fonts

generate Series II soft fonts (may be larger than
255 dots)

Not used by raster devices.

Not used by raster devices.

NOTE: The preferred naming convention for DDF files is that the file name
be the value found in the gemext field. See the sample files on the following

pages.

GEM/3 Programmers Toolkit Supplement 10-3

DDF Files

Sample DDF Files

Sample DDF Files

This is a listing of a sample DDF file for a VGA™-type screen driver:

VGA .DDF

menulabel=vga

manufacturer=ibm

model=VGA
printer=0
hdpi=91
vdpi=91
driverload=0
driver=VGA
fmt=gem
makefon=0
usepfm=0
devkey=v
devmode=p
maxbmap=512
maxoffset=655
ninoffset=-655
maxcell=655
maxsw=655
gemext=vga

104

GEM /3 Programmers Toolkit Supplement

Samgle DDF Files DDF Files

This is a listing of a sample DDF file for an Epson® LQ-series printer.
ELQ .DDF

menulabel=Epson LQ Series
manufacturer=Epson
model=LQ
printer=1

hdpi=180

vdpi=180
driverload=0
driver=Epson LQ
dtal=vfms
dta2=vf£2wd
fmt=gem

makefon=0

usepfm=0

devkey=d
devmode=p
maxbmap=512
maxoffset=655
minoffset=-655
maxcell=655
maxsw=655

gemext=elq

GEM/3 Programmers Toolkit Supplement 10-5

DDF Files Sample DDF Files

This is a listing of a sample DDF file for a Hewlett-Packard® LaserJet® Series
II printer driver:

HPH .DDF

menulabel=HP LaserJet Series II - HP Softfonts
manufacturer=HP
model=LaserJet Series II ~ HP Softfonts
printer=1l

hdpi=300

vdpi=300

driverload=1l
driver=HP LJ+, 300 dpi
dtal=vfms

dta2=vf2wd

fmt=hpf

makefon=0

usepfm=0

devkey=1

devmode=p

maxbmap=512
maxoffset=655
minoffset=-655
maxcell=655

maxsw=655

gemext=hph

rle=1

kerning=1
orientation=2
hp_big=1

10-6 GEM/3 Programmers Toolkit Supplement

Sample DDF Files CNF Files

CNF Files

All GEM 3.1 printer drivers read device- and system-dependent configura-
tion files that have filenames of the form ddd.CNF. ddd is a driver identifica-
tion taken from the driver filename, which uses the form PDAdd9 . £££.

(£££ is a font extension like VGA or EGA.) There are three kinds of CNF
files, used by GEM font drivers, Hewlett-Packard soft font drivers, and the
PostScript driver.

CNF files are pure ASCII text. Individual entries in the files use this format:

KEYWORD (PARMI1, PARM2, PARM3, ...)

KEYWORD describes the function to be adjusted or included, and PARM1
PARM?2 PARM3... are modifying or describing parameters. Parameters may
be separated by commas. Note that both the CNF files themselves and all
entries in the files are optional.

GEM Font Drivers

This is the format of a CNF file for a GEM font driver:
MARGINS (XL XR YT YB)
MARGINS Sets margins that limit graphics output to printable area.
XL left margin in device units
XR right margin in device units

The XL and XR values typically default to 0.5” in
device units. For a 120 dpi printer, they would
equal 60.

top margin in device units
bottom margin in device units
The YT and YB values typically default to zero.

5 i

GEM/3 Programmers Toolkit Supplement 10-7

Hewlett-Packard Soft Font Drivers Sample DDF Files

Hewlett-Packard Soft Font Drivers

This is the format of a CNF file for a Hewlett-Packard soft font driver:

MARGINS

HFI

DOWNPATH

PERMFONT

MARGINS (XL XR YT Y¥YB)

HFI (ON_OFF)

DOWNPATH (DIR)

PERMFONT (ID FILENAME)
FONTSPEC(FILENAME ID SIZE ATTR MAP)

Same function and parameters as in GEM font driver CNF
file.

Flag indicating whether HP Font Information (HFI) file
search is requested. HFI files should be located in the direc-
tory that contains the downloadable soft fonts.
ON_OFF = O driver search for HFI files disabled (the
default)

ON_OFF = 1 driver search for HFI files enabled

Identifies directory that contains HFI files and soft font files.

DIR Path name of directory. If a relative path
specification is given, it is taken as relative to the
directory that contains the driver. The default is
“.”, the directory containing the driver.

Indicates that the soft font has already been downloaded to
the printer. In that event, the driver examines the soft font
file for character width information but does not send the
font down to the printer. This keyword’s parameters have
no default values.

ID soft font identifier
FILENAME soft font filename

10-8

GEM/3 Programmers Toolkit Supplement

Sample DDF Files Heuwlett-Packard Soft Font Drivers

FONTSPEC An alternative to HFI files. Provides the driver with infor-
mation about a soft font that is available for downloading.
FILENAME soft font filename (with no extension—
the driver will use .SFP and .SFL)
ID GEM font identifier
SIZE font size in points
ATTR = 0 font attribute: Normal
ATTR = 1 font attribute: Bold
ATTR 4 font attribute: Italic
ATTR = 5 font attribute: Bold Italic
MAP = 0 remap character set flag: HP character
set
MAP = 1 remap character set flag: GEM/Ventura
character set

GEM/ 3 Programmers Toolkit Supplement 10-9

PostScript Driver Sample DDF Files

PostScript Driver

This is the format of the CNF file used by the PostScript driver:

MARGINS (XL XR YT YB)

PFI (ON_OFF)

PSFONTS (DIR)

EOFTYPE (TYPE)

IMGTYPE (TYPE)

COLTYPE (TYPE)

FONT (NAME ID ATTR MAP RESFLAG)

MARGINS Same function and parameters as in GEM font driver CNF
file.

PFI Flag indicating whether PostScript Font Information (PFI)
file search is requested. PFI files should be located in the
directory that contains the downloadable PostScript ASCII

or binary format fonts.
ON_OFF = 0 driver search for PFI file disabled (the
default)

ON_OFF = 1 driver search for PFI file enabled

PSFONTS Identifies directory that contains PFI file and associated Post-
Script downloadable font files.

DIR Path name of directory. If a relative path
specification is given, it is taken as relative to the
directory that contains the driver. The default is
“, the directory containing the driver.

EOFTYPE Specifies the driver method to be used for marking end of
PostScript job/file.

TYPE = PC Ctrl-Disappended to the PostScript out-
put (the default)

TYPE = MAC no characters are appended to the Post-
Script output

10-10 GEM/3 Programmers Toolkit Supplement

Sample DDF Files PostScript Driver

IMGTYPE Indicates how bitmap image data is to be translated into
PostScript.

METHOD = COMPACT

Image data is sent in a compressed form and is
decoded by the PostScript interpreter.

METHOD = FAST

Image data is decompressed before translation to
the appropriate PostScript string.

COLTYPE Specifies to driver whether “setrgbcolor” or “setgray” Post-
Script functions should be used.
COLOR Use “setrgbcolor” function (the default).

When the COLOR parameter is set, PostScript
handles mapping of colors to gray levels for
monochrome printers.

MONO Use “setgray” function.
FONT Provides an alternative to supplying a PFI file for the Post-
Script font.
NAME Font PostScript name

ID GEM font identification number (for ex-
ample, 2 = Swiss)

ATTR = M font attribute: Normal
ATTR = B font attribute: Bold

ATTR = I font attribute: Italic

ATTR = BI fontattribute: Bold Italic

MAP = TEXT character set re-encoding enabled _

MAP = PI character set re-encoding disabled (for
symbol fonts)

RESFLAG = RES fontis resident

RESFLAG = DOWN:filename

Font £ilename must be downloaded.

GEM /3 Programmers Toolkit Supplement 10-11

ATM Files Sample DDF Files

ATM Files

Alpha Text Mapping (ATM) files are used by non-Postscript printer drivers
to allow device-dependent and user-dependent mapping of characters above
the standard ASCII set. ATM files are used only for alpha text and they are
used only when the driver attempts to output characters in the range 128-
255. These files allow the system to use a single driver for printers with the
same graphics mode protocol but different alpha mode protocols or
capabilities. For example, the Hewlett-Packard Laserjet in its simplest form
cannot print the © or ® symbols, but if fitted with a “Legal” cartridge, it can
access these characters with the appropriate escape sequence. The ATM files
have a very simple format in which all characters are represented by their
two-character hexadecimal representation. For example, decimal character
128 is written as 80. The following example, taken from EHIL.ATM, illustrates
the syntax of these files:

80 1B52015C1B5200
81 1B52027D1B5200
82 1B52017B1B5200
83 61085E

The first number on each line is the character requested by the application.
The number sequence that follows identifies the set of characters that are
sent to the printer. Any character without an entry is transmitted to the
printer unchanged. In the example above, the GEM International character
set character &—with decimal value 131 or hexadecimal value 83—is trans-
lated by the driver into the sequence 61 08 5e: the character “a”, a back-
space, and the character “*”.

10-12 GEM /3 Programmers Toolkit Supplement

Section 11
GEM Setup Text Files

The GEM Setup program uses two ASCII text files: GEMSETUP.MSG and
GEMSETUP.TXT. This note describes the format of these two files so you
can modify or translate the existing text files or create new ones.

GEMSETUP.MSG

GEMSETUP.MSG contains the messages, menus, and prompts the user sees
while running the GEM Setup program. Here are two excerpts from this file:

@PROMPT_PTR

*** LINES: 4

{ Welcome to GEM Setup!
This program installs GEM/3 onto your computer.
Do you want to install GEM/3 for the first time or change an existing
GEM/3 installation?

éFLAB_PTR
The following strings are floppy disk labels.
*%% LINES: 2

{GEM DESKTOP DISK
GEM STARTUP DISK
}

The file is made up of these elements:

* A pointer code that identifies how the following text will be used. These
ointers are delimited by an at-51%n (@) and are linked to the code in
EMSETUP.EXE. For that reason, they must not be changed. The pointer

codes are described fully later in this note.

* A line count indicating how many lines of text are available at this point in
the pljo§ram For example, four lines are available for the opening message
and first prompt. You can change the content of these lines, but you must
use the number of lines indicated. If you do not, all subsequent lines will be
offs&elt by anumber of lines, and the wrong prompts and messages will appear
on the screen.

GEM/3 Programmers Toolkit Supplement 111

Pointer Codes

» The Frompt, message, or menu text that appears on the screen. This text is

seto
count.

f by braces ({}) and must occupy the number of lines specified in the line

= Optional comment text. This text is placed between the pointer code and the
line count and is identified by the absence of any delimiter character.

Pointer Codes

These are the pointer codes used by GEMSETUP.MSG:

@PROMPT_PTR

@CHOICE_PTR

@FOOTER_PTR
@HVOL_PTR

correct

Prompts, queries, and messages that form the bulk of the
program’s interaction with the user.

Menus of options from which the user can choose. A box,
check-mark, or other choice mechanism (it is system-depend-
ent) appears to the left of each option.

Footer lines that tell the user how to select options.

Disk volume labels. These labels are used by the code to
identify the disk being used for a particular operation. The
string must be eleven characters long. If the number of char-
acters used is less than eleven, pad the inside of the string
with blank spaces. The first example below is correct; the
second example is incorrect. (The first line shows the charac-
ter count.)

12345678901
GEM SCRN

incorrect GEM SCRN

@HLAB_PTR

@KEYWORDS__PTR

Disk label strings. These strings are swapped into the text of
@PROMPT_PTR to identify for the user the disks required for
a given operation. The XX strings are placeholders for driver
pack label strings, which come from GEMSETUP.TXT on the
driver pack disk. Do not translate or alter the XX strings.

Unique characters for the GEMSETUP.TXT label strings. Do
not translate or alter.

11-2

GEM /3 Programmers Toolkit Supplement

Pointer Codes

@FLAB_PTR

@FVOL_PTR

@COPY_PTR

@TOO_MANY
@D_SPACE

Floppy disk labels. These strings are swapped into the text
of @PROMPT_PTR to identify the disks created for a floppy
disk installation.

Floppy disk volume labels.
Messages displayed by the GEM Setup program.

The example below shows the first GEM Setup screen and identifies the
pointer codes for the types of text on the screen.

Welcome to GEM Setup!

This program installs GEM/3 onto your computer.

Do you want to install GEM/3 for the first time or change an existing
GEM/3 installation?

[] INSTALL NEW CONFIGURATION
[1 CHANGE EXISTING CONFIGURATION

Press T or | to move cursor, <ENTER> to choose, <ESC> to exit/cancel.

GEM/3 Programmers Toolkit Supplement 11-3

GEMSETUP.TXT

GEMSETUP.TXT

The GEMSETUP.TXT file contains the strings that describe the various
devices and their associated files. Here are two excerpts from GEM-
SETUP.TXT:

@SCREEN

{

| DESCRIPTION|IBM Enhanced Card & 16-Color Display (640x350)

| SHORT DESCR|EGA HiRes 16

|FILENAME | SDEHF'8 . EGA

| SRC DISK|GEM SCREEN DISK #1

|ENT WILDCRD|*.EGA

| LONG DESCRP |

Choose this entry if your system is equipped with an IBM Enhanced
Graphics Adapter card, with at least 128K of graphics memory on
the card, and an IBM enhanced color display. This 16-color
display offers a resolution of 640 horizontal by 350 vertical
pixels.

}

@PRINTER
{

| DESCRIPTION |Hewlett Packard Laserjet II Printer (300 x 300 Dots/Inch)
| SHORT DESCR|HP Laser II

| FILENAME | PDHPU8 . B30

| SRC DISK|GEM PRINTER DISK #3

|FNT WILDCRD|*.B30

| LONG DESCRP |

Choose this entry if you are using a Hewlett Packard Laserjet

IT printer. This printer offers a print resolution of 300 x 300

dots per inch.

}

The descriptions are grouped according to the device:

@METAFILE
@SCREEN
@PRINTER
@PLOTTER

Within each category, the device descriptions are delimited by braces, as
shown in the examples.

Each field name is delimited by a broken vertical bar (| |), which—with one
exception—is followed immediately by the field content. The exception is
the “long description” field, whose content starts in column 1 of the next line.

11-4 GEM/3 Programmers Toolkit Supplement

GEMSETUP.TXT

These are the fields used in GEMSETUP.TXT:

DESCRIPTION

SHORT DESCR

FILENAME

SRC DISK

FNT WILDCRD

AUX FILE

FONT DISK

A brief description of the device. This strings appears in the
menus presented by GEM Setup. Maximum field length is
80 characters.

An even more brief description of the device. This string ap-
pears below the device’s icon in the GEM Output program.
Maximum field length is 13 characters. See “Device Names”
on at the end of this section.

The filename for the device driver. This field is required.
Maximum field length is 13 characters.

The disk on which the driver is found. This string should
match one of the string names listed under @HELAB_PTR in
GEMSETUP.MSG. Maximum field length is 40 characters.

A string in the form * . EXT that identifies the file extension
used by the fonts associated with this device. Maximum
field length is 40 characters.

The filename (or names) of auxiliary files used by a printer.
These are typically configuration or text mapping files. If
this field lists more than one filename, the names are
separated by a semi-colon. Maximum field length is 67 char-
acters.

The disk on which printer fonts are found. This string
should match one of the string names listed under
@HLAB_PTR in GEMSETUP.MSG. Maximum field length is
40 characters.

GEM/3 Programmers Toolkit Supplement 11-5

GEMSETUP.TXT

MOUSE ID A unique one-byte code that identifies the mouse to the
screen driver. The mouse ID occupies the second byte fol-
lowing the string zyxg in the driver file. (The first byte is
the mouse port—00 for COM1, 01 for COM2.) Reserved

mouse ID’s are:
00 Nomouse
01 MouseSystems™ PC Mouse™ / SummaMouse™
/ Compatibles
02 Bus Mouse (Requires file MOUSE.COM)
03 Microsoft Serial Mouse (RS232)
04 SummaSketch™ 1201 Stylus-Type Tablet
05 SummaSketch 1201 Cursor-Type Tablet
06 SummaSketch 961 Stylus-Type Tablet
07 SummaSketch 961 Cursor-Type Tablet
08 Summagraphics™ MM1812 Stylus-Type Tablet
09 Summagraphics MM1812 Cursor-Type Tablet

10 (hex OA) IBM® Personal System/2™ Mouse

LONG DESCRP A long description of the device. This text is displayed
when the user asks for help in GEM Setup. Maximum field
length is 80 characters per line, with a maximum of 20 lines.

11-6

GEM/3 Programmers Toolkit Supplement

Device Names GEMSETUP.TXT

Device Names

Ventura Publisher users can encounter an alert telling them that their printer
and width table are incompatible, even though the width table is the correct
one for the device.

This supposed incompatibility arises when the SHORT DESCR in the printer
driver does not match the device identification in the width table file. (This
identification is actually the driver field from the printer’s DDF file and has
been embedded in the width table by Fontware.) Ventura compares the two
values and, if they do not match, retums the alert.

The alert is often more an annoyance than a sign of a true incompatibility.
The user can ignore the alert if the incompatibility is simply a matter of in-
consistencies in naming. For example, GEM printer drivers refer to the
Hewlett-Packard LaserJet Series Il as P Laser 300, and Ventura drivers
refer to it as HP LJ+, 300dpi.

To avoid this alert, make sure the SHORT DESCR and driver values are the
same.

GEM /3 Programmers Toolkit Supplement 11-7

5149-2374-001

