
FlexOSM Supplement
for

® TM

Intel iAPX
286-based
Computers

COPYRIGHT

Copyright ... 1986 Digital Research Inc. All rights reserved. No part of this publication mav be
reproduced. transmitted. Ifanscribed. stored in a retrieval system. or translated into any language or
computer language. in any form Of bv any means,. electronic. mechanical. magnetic. oPtIcal. chemIcal.
manual or otherwise. without tl'le prior written pennission of DigItal Researel'l Inc .• 60 Garden Court.
BOil 01'11, Monterev. C.,lifomia 93942.

DISCLAIMER

DIGITAL RESEARCH INC. MAKES NO REPReSENTATIONS OR WARRANTIES WITH RESPECT TO THe
CONTENTS HEREOF AND speCIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNess FOR ANY PARTICULAR PURPose. Furtl'lef. Digital Research Inc. reserves the rigl'll to
revise this publication and 10 make changes from time to time In tl'le content nereof witl'lou! obligatIon
of Digital Research Inc. 10 notify any person of such revision or changes.

NOTICE TO USER

This manual sl'lould not ba construed as any raotesantatlon or warranty witl'l respect to tl'le software
named herein. Occasionallv changes or variations ellist in the software that are not reflected in the
manual. Generallv. if such changes or variatIons are known to ellist and to affect the product
significantlv. a release nOle or READMe. DOC tile accompanies the manual and distrobutlon diskls). In
that event, be sure to read the release note or READMe.DOC file before usmg the product.

TRADEMARKS

Digital Research, CP/M. and Ina Dig.tal Researcl'l logo are regIstered trademarks of DigItal Research
Inc. FlellOS is a trademark of DigItal Research Inc. We Make Computers Work is a service mark of
Digital Research Inc.

First Edition: November 1986

Foreword

This supplement contains processor-dependent information and
descriptions for the Intel@ iAPX'" 286 (80286) version of the FlexOS™
operating system.

Section 1 supplements the FlexOS Programmer's Guide. Refer to this
section for chip-specific information related to the use of Supervisor
Calls (SVCs) and program development.

Section 2 supplements the FlexOS System Guide. Refer to this section
for driver-related and system generation information.

Section 3 describes the FlexOS front end. Refer to this section for
guidelines for running certified applications and for writing new
applications to run under the FlexOS front end.

Section 4 describes the F!exOS Virtual Device Interface (VDI). Refer to
this section for information on device support and VDI configuration
and installation.

iii

Contents

1 Supplement to the Programmer's Guide
1.1 Supervisor Call Distinctions. 1-1

1.1.1 MALLOC................................. 1-1
1.1.2 CONTROL................................ 1-2
1.1.3 EXCEPTION Numbers. 1-4

1.2 Assembly Language Programming Tools and Conventions 1-5
1.2.1 Reserved File Extensions. 1-5
1.2.2 FlexOS Entry Mechanism. 1-7

1.3 Program toad Formats. 1-8
1.3.1 Code, Data, and Stack Group Descriptors. 1-9
1.3.2 Fix-Up Information. .. 1-10
1.3.3 Shared Run-Time Library Group Descriptor and
Program Format. .. 1- i i

1.4 Memory Models. .. 1-13

2 Supplement to the System Guide
2.1 Assembly Language Interface to Driver Entry Points. 2-1
2.2 Exiting an Interrupt Service Routine. 2-2
2.3 POLLEVENT Caveat. 2-2
2.4 System Generation Notes. 2-3

2.4.1 System Generation Utilities. 2-3
2.4.2 FLEX286.SYS File Format. 2-3
2.4.3 FLEX286.SYS Header Record Definition 2-4
2.4.4 FlexOS Data Header . 2-5

2.5 Sample Boot Loaders. 2-7
2.6 Console Driver I/O Functions. .. 2-21

3 FlexOS Front End
3.1 Running PC DOS Applications. 3-1

3.1.1 PC DOS Program Memory Allocation. 3-2
3.1.2 Memory Allocation -- ADDMEM 3-3

3.2 PC DOS Emulation Under FlexOS 1.3. 3-6
3.2.1 PC DOS BIOS Calls. 3-6

\I

Contents

3.2.2 Software Interrupts. 3-8
3.2.3 DOS Function Calls. 3-8
3.2.4 Guidelines for Application Writers. 3-10

3.3 Building and Installing the PC DOS front end 3-14
3.4 Known Problems. .. 3-15

4 VDI
4.1 Introduction................................... 4-1
4.2 Device Support. 4-1
4.3 FlexOS 286 VOl Configuration and Installation. 4-2

4.3.1 VOl Binding Library. 4-4
4.3.2 Specifying Device Numbers, Driver Files and Fonts. 4-4
4.3.3 Parameters to vs color. 4-6

4.4 FlexOS 286 VOl Application Notes. 4-7
4.5 FlexOS 286 VOl Restrictions . 4-8

Figures

1-1 Target Process 10 Data Structure 1-2
1-2 286 File Header Format. 1-9
1-3 Group Descriptor Format. 1-9
1-4 SRTL Group Format. .. 1-11
1-5 SRTL_IO Format. .. 1-12
1-6 XSRTL Header. .. 1-12
1-7 FlexOS Loader Memory Models. 1-13
2-1 FLEX286.SYS File. 2-4
2-2 FLEX286.SYS Header Record . 2-4
2-3 FlexOS Data Header. 2-6

vi

Contents

Tables

1-1 FlexOS to 80286 Software Interrupts. 1-4
1-2 Reserved File Extensions. 1-6
1-3 Group Descriptor Numbers. .. 1-10
1-4 SRTL_ID Fields. .. 1-12
2-1 FLEX286.SYS Header Record Fields. 2-5
2-2 Fields in FlexOS Data Header. 2-7
4-1 Graphic Device Numbers. .. 4-5
4-2 Parameters to vs_color . 4-6

Listings

1-1 Sample _osif Routine. 1-8
2-1 iAPX 8086/8088/80286 Assembler Interface Convention. . 2-1
2-2 Sample Boot Loader . 2-8
2-3 Sample Boot Partition Record .. 2-16

vii

SECTION 1

Supplement to the Programmer's Guide

This section describes the following 80286-specific aspects of FlexOS:

• supervisor call distinctions
• assembly-language programming tools, conventions, and interface
• program load formats
• memory models

1.1 Supervisor Call Distinctions

This section contains supplemental information for three SVC
descriptions in the Flex_9~_f>l()gf"£lDJmer's Guide:

• MALLOC
• CONTROL
• EXCEPTION

1.1.1 MALLOC

MALLOC adds heap memory in two ways: it expands an existing heap
or creates a new heap. On systems that are not memory-mapped,
MALLOC works only if contiguous memory is available above the
existing heap.

The architecture of the 80286 forces two restrictions on MALLOC use.
This does not affect MALLOC's argument definitions, values, and
parameter block. The restrictions are as follows:

• You cannot obtain a data segment larger than 64K bytes with one
call.

• MALLOC allocates data segments up to the nearest multiple of
64K bytes.

It is still possible to expand a data segment beyond 64K bytes by
using multiple MALLOC calls and specifying particular values for the
min and max fields of the Memory Parameter Block (MPB). For

1-1

1.1 Supervisor Call Distinctions FlexOS 286 Supplement

example, suppose that a program has a 50K byte data segment and
you want to expand this by 40K bytes. The program calls MALLOC
twice, specifying option 0 both times: first to allocate 14K bytes and
second to get the remaining 26K. The resulting 90K byte data
segment is physically contiguous.

This example assumes that you knew the exact number of bytes
before the next 64K boundary. In reality, this is not practical. The
solution is to set the MPB min value to 0 and the max value to the
total bytes desired in each MALLOC call. Between calls, subtract the
number of bytes actually allocated from the total amount requested.
(Recall that MALLOC returns the amount allocated in the MPB min
field.) Use the difference as the max value in your next MALLOC call.
Repeat this procedure until the data segment reaches the size required
by your program.

Note: MFREE is not similarly affected by 64K limits. MFREE releases
the entire amount of memory allocated to the data segment after the
starting address, regardless of its size.

1.1.2 CONTROL

FlexOS uses the &tpid value in your CONTROL call as a pointer to the
data structure shown in Figure 1-1. The address must be in user
memory space. All values are then set by FlexOS when CONTROL
option 1 (LOAD) is requested. All values are Read-Only. This
information is used by the debugger to connect symbols to logical
addresses.

o 2 3
+-------+-------+-------+-------+

o I pid

+-------+-------+-------+-------+
4 I bufsize

+-------+-------+-------+-------+
8 I cnt maxcnt

+-------+-------+-------+-------+
'2

buffer
n +-------+-------+-------+-------+

Figure 1-1. Target Process 10 Data Structure

1-2

FlexOS 286 Supplement 1.1 Supervisor Call Distinctions

The data structure's tpid fields are defined as follows:

pid

bufsize

cnt

maxcnt

buffer

The target process's process 10

The byte length of the Fixup Item buffer

Number of Fixup Items returned in the buffer.

Number of Fixup Items that exist for this load.

Sequential array of Fixup Items; each item is organized as
shown below (field descriptions follow):

o 2 3

+-------+-------+-------+-------+
o I logaddr

+-------+-------+-------+-------+
4 I offset

+-------+-------+-------+-------+
8 I ; d

+-------+-------+

logaddr: Logical address for the specified offset

offset: Byte offset from the group base

id: Group number for this fixup where:

o = Code group
1 = Data group
2 = Heap group
3 = Stack group

1-3

1.1 Supervisor Call Distinctions FlexOS 286 Supplement

Compare the cnt and maxcnt values to ensure that your buffer
contains all of the program's fixup items. If maxcnt is larger than cnt,
you have not made the buffer large enough.

1.1.3 EXCEPTION Numbers

Table 1-1 shows how the exception numbers for the EXCEPTION SVC
correspond to the 80286 exception vectors.

Table 1-1. FlexOS to 80286 Software Interrupts

FlexOS 80286
EXCEPTION Vector

Number Condition Number

a Non-existent memory 12
1 Memory boundary error 9
2 Illegal instruction 6
3 Divide by zero 0
4 Bound exception 5
5 Overflow error 4
6 Privilege violation 13
7 Trace 1
8 Breakpoint 3
9 Floating-point exception 16
10 Stack fault 12
11 Emulated instruction group 0 7

12 - 18 Not used
19 - 255 Reserved

256+n TRAP vector number n 0-255
512 - 64K Reserved

1-4

FlexOS 286 Supplement Assembly Language Tools

1.2 Assembly Language Programming Tools and Conventions

The following tools are used with FlexOS to assemble, link, and debug
80286 assembly language programs.

RASM-86™ RASM-86 (relocatable assembler) processes an 8086,
80186, or 80286 assembly language source file, and
produces a machine language object file.

LINK 86™ LINK 86 combines relocatable object files into a command
file that is executable under FlexOS.

TM

L1B-86 LlB-86 creates library files of object modules and provides
a means for appending, replacing, selecting, and deleting
modules in an existing library file.

XREF-86™ XREF-86 uses the RASM-86 LST and SYM files to create a
cross-reference file showing symbol use in the program.
Provide in .EXE form to be run under the DOS front end.

SID-286™ SID-286 is a symbolic debugger.

The FlexOS 286 P1Q.ftcam-',!le(~~tl!iti~s Guide describes these tools and
the shared runtime library files. Note that all the tools except SID-286
are used for program development on computers with 8086, 8088,
80186, or 80286 microprocessors.

1.2.1 Reserved File Extensions

Table 1-2 lists the file extensions (also referred to as filetypes)
reserved for system use under FlexOS.

1-5

Assembly Language Tools FlexOS 286 Supplement

Table 1-2. Reserved File Extensions

Extension Meaning

A86 Source assembly language file

LST Output assembly language listing with error messages

XRF Cross-reference file showing symbols used throughout
program.

SYM Symbol file with user-defined symbols

OBJ Object file with Intel 8086 and 80286 relocatable object
code

L86 Indexed library file of commonly used object modules

INP input file of file names and options

LIN LINK 86 output file with line number symbols

MAP LINK 86 output file with segment information about
command file layout

286 Command file that runs directly under operating system

SRL Shared runtime library file

BAT Batch file

CMD Reserved for future use

EXE Reserved for future use

COM Reserved for future use

1-6

FlexOS 286 Supplement Assembly Language Tools

1.2.2 FlexOS Entry Mechanism

Entry into FlexOS is made by application code using INT 220 as the
entry point with two arguments passed in registers as shown:

Register
CX
AX
BX

Contents
SCV number
Low order word of parameter
High order word of parameter

The return code is passed back to the caller in registers as shown
below:

Register
AX
BX

Contents
Low order of return value
High order of return value

The meaning and use of the arguments and the return value are
described in the FlexOS PrQ.gr I1lme!'~LGuid_~~

The FlexOS entry point can be encapsulated for use by C programs by
the _osif function cal!. _osif is an assembly language routine that
invokes INT 220 with the proper arguments placed by the caller on the
stack. On return from INT 220, _osif in turn returns the return value in
registers according to the convention used by the language processor
used for the calling program. For MetaWare™ (High C, etc.) compiled
programs, the default convention (changeable by "pragmas") is to pass
the return value in DX:AX. Lattice uses AX:BX for returns. A sample
of _osif is shown in Listing X_X. This sample can be used with C
language programs compiled with the default MetaWare convention.

FlexOS can alternately be called via an SVC library of functions (such
as that supplied with language processors available for FlexOS) that
encapsulate not only the INT 220 instruction, but also the building of
the parameter blocks required by FlexOS. Once again, these functions
will return the return value in the processor's default return register
convention.

1-7

Assembly Language Toots FlexOS 286 Supplement

Listing 1-1. Sample _osif Routine

FlexOS Interface for Applications

OSINT EQU

cseg
public

OSIF: -
push
mov
mov
mov

220

OSIF -

bp
bp,sp
cX,6[b]
ax,8[bp]

FlexOS entry point
interrupt number

mov bx,10[bp]

FlexOs function in ex
Offset of pblk in AX
Segment of pblk in ex
Enter FlexOS int OSINT

FlexOS returns the return code in eX:AX.
Place it correctly for the convention used by the caller.

mov
xchg
pop
retf

end

dX,bx
aX,bx
bp

Return in DX:AX for High e
Return in AX:BX for Lattice

1.3 Program Load Formats

FlexOS's program load
libraries, and overlays.
libraries both consist
segments.

format supports shared code, shared runtime
Executable command files and shared runtime
of a file header followed by the program

Executable command files are characterized by the file extension .286.
The command file header is organized as illustrated in Figure 1-2.

1-8

FlexOS 286 Supplement Program Load Formats

OH 09H 12H lBH 24H 4SH 4AH 70H SOH
+-----+-----+-----+-----+-- --+------+-- --+-----+

I GOl I G02 I G03 I G04 IReservedlGDSRTLIReservedl Fur I
+-----+-----+-----+-----+-- --+------+-- --+-----+

Figure 1-2. 286 File Header Format

The header record is always 128 bytes. The 9-byte group descriptor
fields G01 through G04 describe the code, data, stack, and fix-up table
portions of the program to be loaded. Bytes 24H to 48H are reserved
and must be zero. GOSRTL is a different type of descriptor from the
GOn type, whose only function is to indicate that a shared run-time
library exists. Bytes 4AH to 70H are reserved and must be zero. The
FUI (fix-up information) is present only when there are fix-up items.

The code group follows immediately after the header unless the
program uses a shared runtime library (SRTL). When there is a SRTL,
the SRTL group follows the header.

All groups can use multiple segments.

Note: Overlays are a special class of command file that have only
code and data groups. They must be created by the linker so that all
code groups begin at zero paragraph addresses.

1.3.1 Code, Data, and Stack Group Descriptors

Figure 1-3 illustrates the group descriptor format.

OH 01H 03H 05H 07H 09H
+----------+----------+----------+----------+----------+

G TYPE I G_LENGTH I reserved I G MIN G MAX
+----------+----------+----------+----------+----------+

Figure 1-3. Group Descriptor Format

The G_TYPE field indicates the group descriptor type. Valid numbers
for this field are listed in Table 1-3

1-9

Program Load Formats FlexOS 286 Supplement

Table 1-3. Group Descriptor Numbers

Number Type

01H Code Group
02H Data Group
04H Stack Group
08H Fix-up Table
09H Code Group (Shared Code)
FFH Shareable run-time library (GOSRTL only)

G_LENGTH value indicates the number of paragraphs in the group. For
example, a G_LENGTH of 080H indicates a size of 0800H bytes.

The G_MIN and G_MAX fields define the minimum and maximum size
of the memory area to allocate to the group.

A command file must have one each of group types 1 or 9, 2, and 4.
Note that FlexOS requires that programs have a stack group. In Intel
xxx86 assembly language programs, declare a stack segment with an
SSEG statement.

If your program does not include a stack group, use the following
option and parameter when invoking LINK 86:

LlNK86 testfil [stack [add [nnn]]]

where nnn is a hex number of paragraphs in memory.

Group types 8 and FFH are optional. The code group must contain
relocatable 8086 or 80286 code. See Section 1.4 for a description of
FlexOS's user memory models.

1.3.2 Fix-Up Information

A G_ TYPE 8 descriptor is generated by the linker to describe the fix-up
table. This is only present if fix-ups are required. If fix-ups are not
required, there is no group type 8 and header bytes 70H through 7FH
are null.

The header does not have a fix-up group descriptor like the GOn type

1-10

FlexOS 286 Supplement Program Load Formats

described above. Instead, the linker places the value 80H in byte 7FH
of the header to indicate that fix-ups are needed and header bytes
7DH and 7EH are a word pointer to the fix-up table.

1.3.3 Shared Run-Time Library Group Descriptor and Program
Format

FlexOS supports the use of shared run-time libraries (referred to as
SRTLs). There are two components of this system:

• the shared file group descriptor in the calling program's file
header, and the SRTL group itself immediately following the
header

• the executable file with the SRTL code--these are referred to as
XSRTLs below.

The calling program's SRTL descriptor and group values are inserted
by the linker.

The indication that a shared run-time library file is used by the
program is made in the GDSRTL -byte at offset 48H in the calling
.program's header. The value is always FFH when an XSRTL is
necessary.

The SRTL group in the calling program is size-dependent upon the
number of library files used and is formatted as shown in Figure 1-4.

OH 2H 12H 14H

+------+------+------ -------+------+------+---
#SRTLS I#SRTL fix-upsl

+------+------+------ -------+------+------+---
\ /

\ /
Repeated #SRTLS times

Figure 1-4. SRTL Group Format

The #SRTLS field indicates the number of SRTL ID/#SRTL fix-up items
to follow. (The SRTL group length is equal to (#SRTLS X 12H) + 2.)

The #SRTL fix-ups indicate the number of fix-ups in this run time
library file.

1-11

Program Load Formats FlexOS 286 Supplement

Each SRTL_ID is 16 bytes long and formatted as shown in Figure 1-5.

OH 8H OAH OCH OFH
+--- ---+-------+-------+-------+-------+---- ---+

Name I Majorversion #1 Minorversion #1 Flags ... I
+--- ---+-------+-------+-------+-------+---- ---+

Figure 1-5. SRTLJD Format

Table 1-4 describes the SRTLJD fields.

Field

Name

versions

Flags

Table 1-4. SRTL_ID Fields

Description

The name of the file as it appears in the directory, zero­
padded left to 8 bytes. Note that the XSRTL file extension
is always SRL.

Majorversion # and Minorversion # specify alternate SRTLs
for use by the loader.

This is a reserved field; the linker uses the rightmost 4 bits
and all others are zero.

The executable XSRTL file has a different program header than an
executable command file. As shown in Figure 1-6, the header has
group descriptors GD1 through GD4 and, at offset 60H, the file's
SRTL_ID as shown in Figure 1-5 above.

OH 09H 12H lBH 24H 60H 70H 7DH 80H
+-----+-----+-----+-----+-- --+-------+-- --+-----+

I GD1 I GD2 I GD3 I GD4 I ISRTL_IDI IFUI I
+-----+-----+-----+-----+-- --+-------+-- --+-----+

Figure 1-6. XSRTL Header

1-12

FlexOS 286 Supplement Program Load Formats

The code group follows immediately after the fix-up information.

1.4 Memory Models

The FlexOS loader creates one of two user memory models depending
on whether the system is memory mapped or non-memory mapped.
Figure 1-7 illustrates the two models. Note that on many memory
mapped systems, the stack is automatically extended upon overflow;
however, this is not true for non-memory mapped systems. Both
systems allow you to expand the heap with MALLOC when contiguous
memory is available above the existing heap.

High
Memory

+--------------------+
I Stack: preallocatedl
I for minimum I
+--------------------+

i i
\/

/\

II
+--------------------+
I Heap: preallocated I
I for minimum I
+--------------------+

+--------------------+
IData: fixed at load I
+--------------------+

+--------------------+
ICode: fixed at load I

Low +--------------------+
Memory

Memory Mapped System

/\

II
+---------------------+
i Heap: preal located
I for max i mum
+---------------------+
I Stack: preallocated I
I for maximum I
+---------------------+
I Data: fixed at load I
+---------------------+

+---------------------+
I Code: fixed at load I
+---------------------+

Non-memory Mapped System

Figure 1-7. FlexOS Loader Memory Models

1-13

Memory Models FlexOS 286 Supplement

The FlexOS loader allows programs to share code. Processes share
code groups when the code is loaded from the same command file.

FlexOS supports the 80286 small, medium, compact, and large memory
models. The models are defined as follows:

• Small: Separate code and data groups, each a maximum of 64K
bytes long. Stack and heap are within the data group.

• Medium: Code group consists of multiple segments, but the data
group is a maximum of 64K bytes long. Stack and heap are
within the data group.

• Compact: The maximum size of the code group is 64K bytes, the
data group consists of multiple segments, and the stack is
separate, with a 64K byte limit.

• Large: Code and data groups consist of multiple segments. Stack
and heap are within the data group.

End of Section 1

1-14

SECTION 2

Supplement to the System Guide

This section describes the following:

• assembly-language interface to driver entry points
• exiting an Interrupt Service Routine (ISR)
• caveat on calling POLLEVENT driver service
• video_init Routine Explanation
• system generation notes
• sample loader code
• Console Driver I/O functions

2.1 Assembly Language Interface to Driver Entry Points

Listing 2-1 presents the iAPX 8088/80286 assembly language interface
to FlexOS driver installation and 110 function entry points. The C
interface is defined in Section 4.3, "Entry Point Parameter Interface," of
the FlexOS System Guide.

Listing 2-1. iAPX 8086/8088/80286 Assembler Interface Convention

Calling Sequence:
push HI WORD
push LO_WORD
calIf function
add sp,4
mov LO_RET_CODE,ax
mov HI_RET_CODE,bx

Function Interface:

2-1

2.1 Assembly Language Interface

Function:
push
mov
mov
mov

mov
mov
pop
retf

Listing 2-1. (continued)

bp
bp,sp
HI_ARG,8[bpJ
LO_ARG,6[bp]

ax,LO_RET_CODE
bx,HI_RET_CODE
bp

2.2 Exiting an Interrupt Service Routine

FlexOS 286 Supplement

A FlexOS system based on an 80286 requires that you exit an Interrupt
Service Routine (ISR) by executing a far return with the appropriate
true or false value contained in register AX.

ISRs must establish their own data segment registers. FlexOS sets the
Code and Stack segments to be the ISR code and Global Interrupt
Stack. FlexOS also preserves register contents at the time of the
interrupt and restores them to these values when the ISR makes the
retfa r.

Detailed information on ISRs is provided in Section 5, "Driver Services,"
of the FlexOS System Guide.

2.3 POLLEVENT Caveat

You must preserve the register DS when you call the POLLEVENT
driver service. Poll routines are described in Section 5.3, "Device
Polling," of the FlexOS System Guide.

2-2

FlexOS 286 Supplement 2.4 System Generation Notes

2.4 System Generation Notes

This section supplements Section 3, "System Configuration", and
Section 12, "System Boot", of the FlexOS System Guide and contains
information about generating and cold booting a FlexOS system.

2.4.1 System Generation Utilities

The following utilities are used to generate a FlexOS system on
machines based on the 8086, 8088, and 80286 microprocessors:

• RASM-86 - Relocatable assembler

• C Compiler - Lattice™ C

• LINK 86 - Linker

• FIX-286T1
• - Generates an output file containing a relocated

operating system image from a relocatable operating system file.
Also creates the Global Descriptor Table (GOT) and Interrupt
Descriptor Table (lOT) and appends them to the data segment. If
you are generating a Real Mode system (indicated by the Ir
parameter on the FIX-286 command line), FIX-286 does not create
the GOT and lOT. FIX-286 expects the OS Data Header, described
in Section 2.4.4 below, to be the first item in the data segment.

The system generation utilities are fully described in the Programmer's
Utilities Guide for FlexOS.

2.4.2 FLEX286.SYS File Format

Figure 2-1 shows the layout of the FLEX286.SYS file generated by
FIX-286.

/

2-3

2.4 System Generation Notes FlexOS 286 Supplement

Header Record

Code Portion of the OS

Initialized Data Portion
of the OS

Figure 2-1. FLEX286.SYS File

2.4.3 FLEX286.SYS Header Record Definition

The format of the FLEX286.SYS header record generated by FIX-286 is
shown in Figure 2-2.

2-4

a 1 2 3
+--------+--------+--------+--------+

OOH Code Load Base Address
+--------+--------+--------+--------+

04H Code Length
+--------+--------+--------+--------+

08H Data Load Base Address
+--------+--------+--------+--------+

OCH Data Length

80H

+--------+--------+--------+--------+

Reserved
(56 Words)

+--------+--------+--------+--------+

Figure 2-2. FLEX286.SVS Header Record

FlexOS 286 Supplement 2.4 System Generation Notes

Table 2-1 defines the FLEX286.SYS header record fields.

Table 2-1. FLEX286.SYS Header Record Fields

Field Description

Code Load Base Segment and offset into which the operating system
code is to be loaded. The offset field of the
address is zero.

Code Length Length, in bytes, of the code segment.

Data Load Base Segment and offset into which the operating
system's initialized data is to be loaded. The offset
field of the address is always zero.

Data Length Length, in bytes, of the initialized data.

2.4.4 FlexOS Data Header

Figure 2-3 illustrates the FlexOS Data Header. This structure is at
offset 00 in the data segment.

2-5

2.4 System Generation Notes FlexOS 286 Supplement

OOH

o 2 3
+--------+--------+--------+--------+

GOT
L i mi t

GOT
Base Address

+--------+--------+--------+--------+
04H IGOT Basel GOT Zero

I Addressl Access I
+--------+--------+--------+--------+

OSH First GDT

OAH

Entry
+--------+--------+--------+--------+

lOT
Limit

lOT
Base Address

+--------+--------+--------+--------+
OEH IrOT Basel lOT Zero

I Addressl Access I
+--------+--------+--------+--------+

12H Code Load Base Address
+--------+--------+--------+--------+

16H Code Length
+--------+--------+--------+--------+

lAH Data Load Base Address
+--------+--------+--------+--------+

lEH Data Length
+--------+--------+--------+--------+

\
\ GOT

> Descriptor
/

/

\
\ rOT

> Descriptor
/

/

Figure 2-3. FlexOS Data Header

Table 2-2 defines the data header fields.

2-6

FlexOS 286 Supplement 2.4 System Generation Notes

Table 2-2. Fields in FlexOS Data Header

Field

GDT Limit

GDT Base

Description

The length of the Global Descriptor Table (GDT)
minus one word. FIX-286 allocates space for the
GDT based on this field.

The linear base address of the GDT. This field is
initialized by FIX-286.

GDT Access Byte Controls access to the GDT. Initialized by FIX-286.

First GDT Entry

IDT Limit

Offset of the next available GDT entry. This field is
initialized by FIX-286.

The length of the Interrupt Descriptor Table (IDT)
minus one word. FIX-286 allocates space for the
IDT based on this field.

IDT Base The linear base address of the IDT. This field is
initialized by FIX-286.

IDT Access Byte Controls access to the IDT table. This field is
initialized by FIX-286.

Code and data base addresses and lengths are defined in Table 2-1.

2.5 Sample Boot Loaders

Listing 2-2 is a sample loader for a PC DOS double-sided, 9 sector
disk. Listing 2-3 is a sample loader for a hard disk partition record.
Both loaders are for systems running FlexOS on 8086, 8088, and 80286
microprocessors.

2-7

2.5 Sample Boot Loaders FlexOS 286 Supplement

Listing 2-2. Sample Boot Loader

;*==*
;* VERSION 1.2 BOOT.A86 floppy or hard disk boot code *
;**
;* Sample Boot Loader

; *
*
*

;* This program loads the OS from a PCDOS double sided, 9 *
;* sector disk. The BPB variables (and extensions) are *
;* filled in by FORMAT. The CLBASE. DLBASE. CODELEN, and *
;* DATALEN variables are fi I led in by the SYS program. *
:* This program must be in 8080 model. The generation *
;* commands are: *
; *
; *
; *
; *

RASM86 BOOT
LINK86 SYS,BOOT [CODE[ORIGIN[O]l.DATA[ORIGIN[O]]

*
*
*
*

;**

LJMP_OFF

LCODE

lbase:

equ 7cOOh

cseg para
pub I i c I base
pub1 ic clbase
public sector_size

; *
;* Standard BPB

; *
jmp startldr

db 'OEMNAME 1 '
sector size dw 512 Bytes per Sector

db 2 Sectors per Cluster
res sects dw 1 Reserved Sectors -
fats db 2 Number of FATs
root -dir dw 112 Root Directory Entries

dw 720 Disk Size (i f O. see DR!
media - desc db OFDH Media Descriptor
fat size dw 2 FAT Size -
t rk size dw 9 Track Size -

2-8

extension below)

FlexOS 286 Supplement 2.5 Sample Boot Loaders

Listing 2-2. (continued)

num_heads dw
dw

2

o
Number of Heads
Hidden Sectors

clbase
codelen
dlbase
data1eii

dw
rd

rd
dw
rd
diN

o

1

0,0

n n u,u

; *
;* DRI extensions to BPB

; *
DRI extension to Hidden Sectors
If (WORD)disk size above is 0, this is
full (LONG).

dw 12 1st logical data sector fil led
in by FOF<MAT

dw 0 For large disks (not supported!)

; *
;* Code and Data LOAD info

; *

Code Load Base Address
Code Length in bytes
Data Load Base Address
Data 1 engtr, in bytes

start of loader code

startldr:
cld

relocate the loader to Top of Memory from 07CO:0000

i nt 12h
sub ax,3h
mov cl,6
shl ax,cl
mov eS,ax

;get amount of memory in K
;calculate base of where to move loader

xor di ,di
mov si,LJMP_OFF
mov cx,sector_size
shr cx,l

cli ;disable ints to handle old 808B bug
mov sS,ax
mov sp,2048
rep movs es:ax,cs:ax
sti

;copy loader to top of memory

2-9

2.5 Sample Boot Loaders FlexOS 286 Supplement

Listing 2-2. (continued)

mov aX,offset beginload
push es
push ax
retf ;return to beginload

begin loading the as into memory

beginload:
push cs
pop ds
movcl,4
movax.sector_size
shr aX,cl
mov para_sec_size,ax

initialize the disk driver

call init ;initial;ze the disk driver

read the code portion of the as in to memory

mov aX,codelen
mov dX,codelen+2
mov si,offset no
mov CX,15

mov bX,ax
or bX,dx

;get low order part of the length
;get high order part of the length

os mes

:test for zero code len
jnz os_present

jmp print loop
os present:

mov bx,sector_size
div bx
or dx,dx ! jz norema;nder

inc ax
noremainder:

2-10

les di,clbase ;get the Code Load Base address
mov dx,first_data sector
call read block ;parameters;n ax.dx and es:di

;returns the next sector to read in
:ax and es:di point to the last sector
:read in memory

puSh ax :save next sector

FlexOS 286 Supplement 2.5 Sample Boot Loaders

Listing 2-2. (continued)

read the data portion of the as in to memory

mov aX,datalen ;get low order part of the length
mov dX,datalen+2 ;get high order part of the length
mov bX,sector size -
div bx
or dX,dx jz noremainder2

inc ax
noremainder2:

les di,dlbase
pop dx
call read_block

;get the Data Load Base address
;restore next sector to read
;parameters in aX,dx and es:di
;returns the next sector to read

Start the loaded operating system

mov ds,word ptr dlbase+2
jmpf dword ptr clbase ;jump to the as

;**

; * Init - Initialize any hardware necessary *
;**
ini t:

in it 1 :

pUSh ax
push dx ;hd support
xor dX,dx ;hd support: assume flop disk dl->O
cmp media_desc,OfBh ;hd support: hard or flop disk?
jnz initl ;hd support
or dl ,Bah ;hd support: hard disk
xor
int
pop
pop
ret

aX,ax
13H
dx
ax

;initialize the disk driver
; hd support

2-11

2.5 Sample Boot Loaders FlexOS 286 Supplement

Listing 2-2. (continued)

;**
; *
; *
; *
; *
; *
; *
; *
; *
; *
; *
; *
; *
; *

Read Block - read consecutive sectors into memory

input:

output:

ax - number of sectors to read
dx - starting sector
eS:di - dma address
ax - next sector to read
es:di - dma address of last sector read

NOTE: This boot loader uses one byte to describe the
hard disk cylinder. This means you cannot place the
first record of the system image beyond cylinder 255.
This is not a problem if you place FlexOS in the *
first partition.

*
*
*
*
*
*
*
*
*
*
*

*
;**
read block: -

mov num sects,ax -
mov start Isec,dx
mov ax.es
mov c 1,4
shr di ,c I
add aX,di
mov es 9 ax
mov aX,dx
xor dX,dx
div trk size -
mov c I ,dl
inc cl
div byte ptr num heads -
mov ch,al
mov dh,ah
movax,es

read blocka:

2-12

test num_sects,OFFFFH
jz read_done

mov bx,trk_size
sub bl ,cl
inc bl
cmp num_sects,bx

ja dont adjust
mov bx,num_sects

;save input parameters

,normalize address to nnnn:OOOO
;to nnnn:OOOO for easy physical
;segment overflow checking

;compute starting head,
;cylinder and sector

;initialize sector to read

;initialize cylinder to read
;initialize head to read

;number of sectors to read

FlexOS 286 Supplement 2.5 Sample Boot Loaders

Listing 2-2. (continued)

d~nt_adjust:

push ax
mov ax,para_sec_size
mul bl
mov read_paras,ax
pop ax
and ah,OFH
add ax,read_paras
test ah,OFOH
jz not 1 oca 1 read

mov ax,para_sec_size
mov read_paras,ax

;test for physical segment
;overflow

mov bX,offset buffer_base
push es
push ds ! pop es
mov al,'
call read
pop es
xor di ,di
movsi.b.w:

push cx

;ES must always point to curdma

mov cx,sector_size
rep movsb
pop cx
jmps read_a_sector

not local_read:
moval,bl
xor bx.bx
ca 11 read

read_a_sector:

read_done:

add start lsec,ax
sub num_sects,ax
mov aX,es
add ax,read_paras
mov eS,ax
jmps read_blocka

mov aX,es
sub ax,para_sec_size
mov eS,ax
mov di,bx
mov aX,start lsec
ret

;bump the dma address by 1 sector

2-13

2.5 Sample Boot Loaders FlexOS 286 Supplement

Listing 2-2. (continued)

:**
; *
; *
; *

Read - the required sectors and perform retries as
necessary.

Return - AX = number of sectors read.

*
*
*

;**
read:

mov dl ,5
read_loop:

push ax
push dx
mov dl ,0
cmp media_desc,Of8h
jnz read_l
ordl,80h

read 1: mov ah,02H
int 13h

pop dx
pop ax
jnc no read error

dec dl
jz read_error

call init
jmps read loop

no_read_error:
xor ah,ah
add c 1, a 1

cmp cl ,byte ptr trk size

:5 retries if error

;hd support: assume flop disk
;hd support: hard or flop disk?
;hd support
;hd support: hard disk
;read n sector(sl

;restore sector count

; force reca 1 for retry

jbe read exit ;no track overflow
mov c 1,1

inc dh
cmp dh,byte ptr num heads
jb read_exit

mov dh,O
inc ch

read exit:
ret

read_error:

:no head overflow

mov si,offset error_string
mov CX,14

2-14

FlexOS 286 Supplement 2.5 Sample Boot Loaders

print loop:
lodsb
mov ah. 14
in t 10H

Listing 2-2. (continued)

loop print_loop
hIt loop:

hIt
jmps hIt loop

code end rb 0
org (((offset codeend - offset lbase) + Of h) and OfffOh)

dbase rb 0

error_string db
no os mes db

f i I I er db 0

'Disk liD Error'
'Non-System disk'

:place signature at sector end - 2

signature dw OAA55h ;generic IBM signature

data end

para sec_size
read_paras
start I sec
num_sects

buffer base

end

rw

equ
equ
equ
equ

equ

0

data end+O -
data end+2 -
data end+4 -
data end+6 -
data end+8 -

2-15

2.5 Sample Boot Loaders FlexOS 286 Supplement

Listing 2-3. Sample Boot Partition Record

;*==*
;* VERSION 1.3 HDBOOT.A86 Master boot partition record *
;**
;* Sample Boot Partition Record

: *
;* This FlexOS master boot strap loads and passes
;* control to any bootable DOS partition.

; *
;* The master boot strap searches its internal partition
;* table for a bootable partition entry. If it locates
;* a single bootable entry, the referenced sector is read
;* into memory at 0000:7COOH. The loaded sector must
;* contain a valid signature (AA55h) at offset address
;* lFEh from the load address. Program control is passed
;* to the loaded sector with a pointer (OS:S1) to the
;* original partition entry from which it was loaded.

; *
:* The generation command is:

; *
; *
; *

RASM86 HDBOOT

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

;**
publ ic hdboot
ROM BIOS CONSTANTS

FDSK INT equ 13h
BASIC INT equ ISh
VIDEO - INT equ 10h

DSK RESETF equ 0
DSK READF equ 2
VID COUTF equ 14

PARTITION TABLE INDEXES
PT BID HD equ 0
PT SEC CYL equ 2

2-16

;rom disk I/O entry
;rom basic entry

;disk reset command function
;disk read command function
;teletype char out function

;boot indicator / head
;sector / cylinder

FlexOS 286 Supplement 2.5 Sample Boot Loaders

Listing 2-3. (continued)

MISC. PROGRAM CONSTANTS
lOAD_OFF equ OOh ;MBl offset address
lOAD - SEG equ 7cOh ;MBl segment address
lJMP - OFF equ 7cOOh ;MBl jump offset
L.JMP - SEG equ OOr, ;MBl jump segment
RUN - OFF equ OOh ;MBl run offset address
RUN - SEG equ 60h ;MBl run segment address

eject
; loaded by the ROM boot strap to address OOOO:7COOh

HDBCODE CSEG para

hdboot:
c 1 i

mov ax,lOAD_SEG
mov ss.ax
mov ax ,lOAD_OFF
mov sp,ax
st i

Move master boot so that the DOS boot sector can be read
to OOOO:7COOh

cld
mov aX,lOAD SEG -
mov ds,ax
mov si, lOAD OFF -
mov ax.RUN SEG -
mov eS,ax
mov di ,RU-N OFF
mov CX,200h/2
rep movsw

;jmpf msboot exec ;ms_boot:
db Oeah
dw offset ms boot
dw RUN SEG

2-17

2.5 Sample Boot Loaders FlexOS 286 Supplement

Listing 2-3. (continued)

; Find a valid boot partition

mav axtcs
dS,ax
cx,4

;NOTE: OS = C5 !!!
;# of partitions to search

mov
mov
mov di .offset st_part tbl ;partition 1

find_boot part:
mov dX,PT BID HO[di 1 - -
cmp dl • BOh
jz found - boot _part
cmp d 1,0

jnz i nva 1 i d _part err
add d i ,16
loop find _boot_part

int BASIC INT

; Make sure all partitions are valid

mov
jmps

Chk_boot_part:

s i ,di
chk ne x t_par t

add di , 16
mov ax,PT_BID_HD[dil
cmp a 1 • BOh
jz
cmp
jnz

chk_next_part:

invalid_part_err
a 1,0

i nva 1 i d_part_err

loop chk_boot_part

Read DOS boot strap

;DL=boot indicator DH=D05 boot HEAD#
;boot this partition?
;if yes
;valid partition if 0
;else partition table garbaged

;check next partition

;ERROR no bootable partitions found

;save pointer to bootable partition

;error if >1 bootable partition

;error if garbage

(OX = head,drive of DOS boot 51 -> boot partition)

mov cx,5 ;# of retries on a error

2-18

FlexOS 286 Supplement 2.5 Sample Boot Loaders

Listing 2-3. (continued)

read_dos_boot 1 :
mov aX,LOAD SEG
mov eS,ax

bx,LOAD_OFF
ah,DSK_READF
al,1
cx

;DMA
;command
;always 1 sector

mov
mov
mov
push
mov
int
pop
jnc

cx,PT_SEC CVL[si]
FDSK INT
cx

;CH=l.s. 8 bits of cylinder
;CL=m.s. 2 bits of cyl. 6 bits
:sector

mov
int
loop

goto_dos boot

ah,DSK_RESETF
FDSK INT
read dos boot1

;no error

;reset

; ret ry read

mov
jmps

si ,offset rd_err_msg ;ERROR in loading operating system
msboot error

; jmpf
Pass control to DOS boot strap if found valid
(SI -> boot partition table)

goto dos boot:
cmp es:signature[bxl,OAA55h ;valid signature
jnz no_dos_err

db Oeah
dw LJMP OFF
dw LJMP SEG

no dos err:
mov si ,offset no_dos_msg ;ERROR no OS boot
jmps msboot error

invalid_part err: ;ERROR inval id partition
mov si .offset inval_part_msg

2-19

2.5 Sample Boot loaders FlexOS 286 Supplement

Listing 2-3. (continued)

Print error message and loop
(DS:S1 -> error msg '$'delimiter)

msboot error: -
lodsb
cmp

msboot err 1 : -
jz

push
mov
mov
int
pop
jmps

bootend
eject

; ERROR MESSAGES

mstart
i nva I part _msg
no - dos _msg
rd - err _msg
msend

aI, '$'

msboot - err1 ;loop until system reset

si
bx,7
ah,VID COUTF -
VIDEO INT ;teletype console output -
si
msboot

rb 0

rb
db
db
db
rb

- error

o
'Invalid partition table$'
'Missing operating system$'
'Error loading operating system$'
a

PARTITION TABLE MUST START AT OFFSET ADDRESS 01BEh

signature

2-20

org 01beh

db
db
db
db

0,0,0,0,0,0,0,0.0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0.0,0,0,0,0,0,0,0,0,0,0

Partition
1

2
3
4

dw OAA55h ;generic IBM signature

end

FlexOS 286 Supplement 2.6 Console Driver liD Functions

2.6 Console Driver I/O Functions

This information supplements the description of the Console Driver liD
functions in Section 7 of the FlexOS System Guide.

The video init routine in the model console driver initializes video
displays. It is used in three places to make changes to the current
display mode.

• It is called by the c init function to initialize the video controller
to the default display mode.

• It is called by Console driver's SPECIAL function 4 to reinitialize
the video controller when a different display mode is to take the
top position on the screen.

• It is called by the Console Resource Manager when VFRAMEs are
reordered and the VFRAME moving to the top does not match the
previous.

The video modes are tracked by the driver as a BYTE code. The tabie
below lists the assignment for values 0 through 7.

You may add new modes to video2up()init to enhance displays (a
1024 x 1024 color graphics mode, for example). However, mode values
o through 20 are reserved. The range of new mode values is 21
through 255.

2-21

2.6 Console Driver liD Functions

Value Description

a
1
2
3
4
5
6
7
8

9-13
14

15-128

2-22

40 x 25 B&W Character
40 x 25 Color Character
80 x 25 B&W Character
80 x 25 Color Character
320 x 200 Color Graphics
320 x 200 B&W Graphics
640 x 200 B&W Graphics
80 x 25 B&W Monochrome Card
720 x 348 B&W Hercules Card
Reserved
640 x 200 16 Color EGA Card
Reserved

End of Section 2

FlexOS 286 Supplement

SECTION 3

FlexOS Front End

The FlexOS front end allows certified PC DOS version 1.0 and 2.x
applications to run in the protected environment of a multitasking
operating system. This section provides guidelines for running the
certified applications and for writing new applications using PC DOS
functions to run under the FlexOS 1.3 front end.

Important: The PC DOS front end works only with the E2 version of
the iAPX 286.

3.1 Running PC DOS Applications

The indicated versions of the following PC DOS applications have been
verified by Digital Research® to run under FlexOS's front end.

Applicatioll

1_2_3™
MultiMate™
Level II Cobol ™
R:base 5000™
dBase IIITM

Version -----

lA
3.30, 3.31

2.1

1.0*

Manufacturer

LotusMDevelopment Corp.
MultiMate"'lnternational
Micro Focus™lnc.
MicrorimT~ Inc.
Ashton-Tate

*The tested version of dBase III was not copy protected. Because
unprotected versions are not generally available from a retail store,
contact Ashton-Tate to acquire it.

The PC DOS front end does not change or replace FlexOS's native
interface. The command line and commands operate exactly as
described in the FlexOS User's Guide. Although many FlexOS and PC
DOS utilities have the same names, you must use the utilities provided
with FlexOS.

Refer to the documentation that accompanies the application for
instructions on its use. Only FlexOS-specific notes are provided here.

3-1

3.1 Running PC DOS Applications FlexOS 286 Supplement

3.1.1 PC DOS Program Memory Allocation

PC DOS is a single-tasking operating system. Because only one task
is intended to run at a time, DOS allows a single program to occupy
all of user memory. There is no need to share memory because there
is never another program with which to share it.

FlexOS is a multitasking operating system in which several programs
are expected to coexist in the system. Therefore, memory must be
carefully allocated so that as many programs as possible can run at
the same time (see the description of the ADDMEM feature, below).

There are two types of executable PC DOS files, those with an
extension of EXE and those with an extension of COM. EXE files
provide FlexOS some loading information in a file header. This
information indicates the size of the EXE file, the size of the header,
the minimum amount of memory space the programmer wanted this
file to own in addition to the code size, and the maximum additional
amount to allocate. COM files have no header and provide no
information to FlexOS regarding the program's memory requirements.

FlexOS's loader uses the following characteristics to allocate memory
to EXE-type programs:

code size from the header
+ minimum extra from the header
+ 16K automatic allocation by FlexOS
+ user-defined ADDMEM

---.-----~"-

EXE load module size

FlexOS's loader uses the following characteristics to allocate memory
to COM-type programs:

3-2

size of .COM file
+ 20K automatic allocation FlexOS
+ user-defined ADDMEM

COM load module size

FlexOS 286 Supplement 3.1 Running PC DOS Applications

3.1.2 Memory Allocation -- ADDMEM

The ADDMEM feature of FlexOS's DEFINE command allows you to
control the amount of memory allocated to each PC DOS program
when the program is loaded. FlexOS applies the memory allocation on
a process family (FID) basis. An ADDMEM memory allocation applies
only to programs loaded under the virtual console on which the
DEFINE command was invoked. Regular users of PC DOS applications
should include a DEFINE ADDMEM command in their AUTOEXEC.BAT
file. .

The DEFINE command used to add memory has the following form:

DEFINE ADDMEM = n

where n specifies the amount of memory in kilobytes.

Programs you expect to use with large amounts of data (such as large
spreadsheets) will need extra memory space for the data. Programs
that load and execute other programs will also need ample space in
excess of their own code size. In both cases, define a large ADDMEM
value.

The applications described below (under "Application Guidelines") as
able to run multiple copies do so on systems supplied with sufficient
RAM in which to load those copies. FlexOS displays:

SHELL: Load Error

to indicate that the available RAM in your system is less than the load
module size as computed above. If a large ADDMEM value has been
defined, decrease it. The following message indicates the program
was not allocated enough memory in which to load:

SHELL: Memory bound exception

To solve the error in this case, increase the ADDMEM value.

Logical Drive B

On systems with one floppy drive, PC DOS and several PC DOS
applications assume that there is a second, logical drive, drive B. On
these systems, you should use FlexOS's ASSIGN command to direct
requests for drive B to drive A. The ASSIGN command line used to
direct requests for drive B to drive A is:

3-3

3.1 Running PC DOS Applications FlexOS 286 Supplement

A>ASSIGN B=A

See the FlexOS User's Guide for a complete description of the ASSIGN
command.

Applications Guidelines

Use the following guidelines when running the tested applications.

1-2-3 Version 1A

Recommended ADDMEM setting:

Run multiple copies?

Special Notes:

128 for LOTUS.COM
none required for 123.EXE
yes

• When starting 1-2-3 from a hard disk, the 1-2-3 floppy disk must
be in drive A. This is a requirement of 1-2-3.

• Although the Lotus Access Manager will run without ADDMEM set,
it needs extra memory to load 1-2-3. Be sure to set ADDMEM.

• To load a large spreadsheet, increase the ADDMEM setting as
needed.

• Graphics are supported on an IBM Color Graphics Adapter,
allowing graphs to be generated and displayed.

• PrintGraph may be used on either a Monochrome or Color Card,
but may not be run from a serial terminal.

• If 'you run 1-2-3 on a single-floppy drive system, remember to
ASSIGN all requests for drive B to drive A.

• The Lotus disk selection menus display consecutive drive letters
up to the alphabetically greatest drive name defined for the
system. For example, on a system with floppy drive A and hard
disk drive 0, the menus display choices for drives A, B, C, and D.

• 1-2-3 version 2 does not run on FlexOS.

3-4

FlexOS 286 Supplement 3.1 Running PC DOS Applications

RBase: 5000

Recommended ADDMEM setting: 64
Run multiple copies? no

Special Notes:

• FlexOS looks in the current directory for the file RBASE.DAT when
RBASE is initialized. If the file is not in that directory, it looks on
the system: disk. If system: is defined as a floppy, be sure you
have a disk in the drive .

• You cannot invoke applications from the RB5000 menu. Invoke the
applications from the command-line prompt rather than from the
menu.

Level " Cobol Version 2.1

Recommended ADDMEM setting: 64
Run multiple copies? yes

Special Note: Multiple copies of the Cobol compiler cannot access the
same source program simultaneously.

MultiMate Version 3.30 and 3.31

Recommended ADDMEM setting: 64,
Run multiple copies? yes

Special Note: You need a minimum of 1152K RAM to run two copies of
MultiMate.

dBase III Version 1.0

Recommended ADDMEM setting: 64
Run multiple copies? yes

3-5

3.1 Running PC DOS Applications FlexOS 286 Supplement

Special Notes:

• FlexOS looks in the current directory for the file CONFIG.DB when
dBase III is initialized. If the file is not in that directory, it looks on
the system: disk. If system: is defined as a floppy, be sure you
have a disk in the drive.

• Multiple copies of dBase III cannot edit the same database.

• The copy protected version of dBase III does not run.

• The dBase III Command Assistant directory menus display
consecutive drive letters up to the alphabetically greatest drive
name defined for the system. For example, on a system with
floppy drive A and hard disk drive 0, the menus display choices
for drives A, B, C, and D.

3.2 PC DOS Emulation Under FlexOS 1.3

This section lists the PC DOS BIOS calls and software interrupts
supported by FlexOS. Digital Research has validated FlexOS's support
of these functions by testing the certified applications. However, no
claim is made about the exact equivalence of each function and its PC
DOS counterpart, including those functions described as "supported."

Note: You cannot mix PC DOS with native FlexOS calls (SVCs) in the
same program.

3.2.1 PC DOS BIOS Calls

Int 10H Subfunctions

3-6

OH: Supported. Can also set mode by writing to CRT controller.
1 H: Supported. Sets no cursor if no cursor or a bad cursor

value specified, else sets blinking line cursor.
2H: Supported. Display page is ignored.
3H: Supported. Display page is ignored.
4H: Not supported.
5H: Not supported.
6H: Supported.
7H: Supported.

FlexOS 286 Supplement 3.2 PC DOS Emulation Under FlexOS 1.3

8H: Supported. Display page is ignored.
9H: Supported. Display page is ignored.

OAH: Supported. Display page is ignored.
OSH: Not supported.
OCH: Not supported.
ODH: Not supported.
OEH: Not supported.
OFH: Supported. Active display page is always zero.
13H: (AT only) Not supported.

Int 11 H: Supported. Returns 287 presence and initial video mode.
Returns following static values: ipl present

one floppy drive
high byte always O.

Int 12H: Supported. Returns memory allocated to current process.

Int 13H Subfunctions
DOH: Supported.
01 H: Supported.
02H: Supported.
03H: Supported with restrictions to maintain system integrity.
04H: Supported.
05H: Not supported.

Int 14H: Not supported.

Int 15H: Not supported.

Int 16H Subfunctions
OOH: Supported.
01 H: Supported.
02H: Returns zero.

Int 17H: Supported, but not fully tested.

3-7

3.2 PC DOS Emulation Under FlexOS 1.3

3.2.2 Software Interrupts

Int 20H:
Int 22H:
In~ 23H:
Int 24H:
Int 25H:

Supported.
Supported.
Supported.
Supported.
Supported.

FlexOS 286 Supplement

Int 26H:
Int 27H:

Supported with restrictions to maintain system integrity
Not supported

3.2.3 DOS Function Calls

Int 21 H Subfunctions
OOH: Supported.

3-8

01 H: Supported.
02H: Supported.
03H: Supported.
04H: Supported.
05H: Supported.
06H: Supported.
07H: Supported.
08H: Supported.
09H: Supported.
OAH: Supported.
OBH: Supported.
OCH: Supported.
OOH: Not supported.
OEH: Supported.
OFH: Supported.
10H: Supported.
11 H: Supported.
12H: Supported.
13H: Supported.
14H: Supported.
15H: Supported.
16H: Supported, cannot create read-only files
'7H: Supported.
18H: Returns zero.
19H: Supported.

FlexOS 286 Supplement 3.2 PC DOS Emulation Under FlexOS 1.3

lAH: Supported.
lBH: Supported.
lCH: Supported.
lDH: Returns zero.
1 EH: Returns zero.
1 FH: Not supported.
20H: Returns zero.
21H: Supported.
22H: Supported.
23H: Supported.
24H: Supported.
25H: Supported.
26H: Supported.
27H: Supported.
28H: Supported.
29H: Supported.
2AH: Supported.
2BH: Supported.
2CH: Supported.
2DH: Supported.
2EH: Not supported.
2FH: Supported.
30H: Supported.
31H: Not supported.
32H: Not supported.
33H: Set has no effect; Get returns TRUE.
34H: Not supported.
35H: Supported.
36H: Supported.
37H: Set has no effect; Get returns constant values.
38H: Not supported.
39H: Supported.
3AH: Supported.
3BH: Supported, defines default: at the process level.
3CH: Supported, cannot c.reate read-only files.
3DH: Supported.
3EH: Supported.
3FH: Supported.
40H: Supported.
41H: Supported.

3-9

3.2 PC DOS Emulation Under FlexOS 1.3 FlexOS 286 Supplement

42H: Supported.
43H: Supported.
44H: Subfunctions 0, 1, 6, 7 supported.
45H: Supported.
46H: Supported.
47H: Supported.
48H: Effective if function 4Ah is first called to

shrink memory allocation by the size desired.
49H: Supported.
4AH: Supported.
4BH: Not supported.
4CH: Supported.
4DH: Returns zero. Processes continue asynchronously.
4EH: Supported.
4FH: Supported.
50H: Supported.
51H: Supported.
52H: Not supported.
53H: Not supported.
54H: Returns zero.
55H: Supported.
56H: Supported.
57H: Supported.

3.2.4 Guidelines for Application Writers

The PC DOS emulator executes a PC DOS application in the 80286
protected mode. In this mode, an application is restricted from the
execution of some machine instructions and is restricted from
accessing any memory that is not assigned to it initially. Violation of
these restrictions results in a protection exception. In addition, there
are some minor instruction differences between the 8088/8086 and the
80286 that may be important to some programs.

3-10

FlexOS 286 Supplement 3.2 PC DOS Emulation Under FlexOS 1.3

To run under FlexOS, PC DOS applications must behave according to
the following rules.

The program must:

• Use PC DOS function calls to perform all system functions and
data I/O.

• Use the PC DOS system call to obtain additional memory.

• Limit direct BIOS calls (interrupt request to the BIOS) to the
following functions:

10H
11H
12H
13H
16H
17H

The program must not:

• Use instructions that are restricted to 80286 privileged mode.
These instructions are:

- IN, INS, OUT, and OUTS except to the CRT controller (the
emulator ignores all other of these instructions)

- CLI and STI (the emulator ignores these instructions)
- LOCK (causes program termination)
- HLT (causes program termination)
- all of the 80286 unique protection control instructions (cause

program termination)

• Jump to or call BIOS routines directly.

• Address PC DOS flags, data buffers, tables, work areas, etc.

• Address any memory that has not been assigned to the
application at load time.

3-11

3.2 PC DOS Emulation Under FlexOS 1.3 FlexOS 286 Supplement

• Set the video display mode any way other than with BIOS Int 10H,
subfunction 0 or by accessing the CRT controller with an OUT
instruction.

• Defile the PC DOS Reserved areas of the PSP and FCB.

Generally, you should not access absolute addresses in memory
directly. The only exceptions are the following virtual addresses:

• screen region buffers BOOOO-B3FFF (mono) and B8000-BBFFF
(color).

• zero page 0-5FF; however, do not depend on the values in
400-5FF.

For better program performance, avoid instructions that load segment
registers. These include the following instructions:

LOS
LES
POP sr
MOV sr, memreg
CALLF
RETF
JMPF

In addition, small model programs perform better than programs
written in the other models.

There are several operating differences between the 8088/8086 and
the 80286. Some of these differences are handled by FlexOS; others
are not. For more information on the differences between the
8088/8086 and the 80286, see the Int5lLiA~ 286Qp~rating System
Writer'S Guide and the Intel iAPX 286 Programmer's Reference Manual.
The following differences may affect program performance:

3-12

FlexOS 286 Supplement 3.2 PC DOS Emulation Under FlexOS 1.3

• Most instructions take fewer clock cycles on the 80286 than they
do on the 8088/8086.

• PUSH SP in the 80286 puts the value of SP from before the
instruction was executed onto the stack. POP SP works
accordingly.

• 80286 masks all shift/rotate counts to the low 5 bits (maximum 31
bits).

• Do not duplicate prefixes. (80286 sets an instruction length limit
to 10 bytes.)

• Do not rely on IDIV exceptions for quotients of 80H or 8000H.

• Instructions or data items may not wrap around a segment.

• Do not attempt to change the sense of any reserved or unused
bits in the flag word via IRET.

• Floating point exceptions appear as interrupt 2.

• Divide exceptions point at the DIV instruction.

3.3 Building and Installing the PC DOS front end

The PC DOS front end is linked into the bootable systems that have
been provided. The following front end files are included in the
Developer Kit Supplement:

BOOTFE .INP ATFELNK .INP FELIB .L86

The following files are included in the OEM Redistribution Kit:

MKFELIB .INP COMFE .OBJ COMFEU .OBJ
CRMBOOO .OBJ DOSFEl .OBJ DOSFE2 .OBJ
DOSFEINT.OBJ DOSINIT .OBJ DOSMAIN .OBJ
DOSMAN .OBJ EM86 .OBJ FEIO .OBJ
FEU .OBJ GP .OBJ LEXECOM .OBJ

3-13

3.3 Building and Installing the PC DOS front endFlexOS 286 Supplement

Perform the following procedures to generate a FlexOS system with
the PC DOS front end:

1. Edit the ICONF286.C file and make sure that there are no comment
delimiters around the statement:

#define DOSFE

This statement is at the beginning of the file.

2. Compile the file.

3. Link the system. To create a non-bootable system, use the
ATFELNK.lNP input file. To create a bootable system, use the
BOOTFE.lNP input file.

3.4 Known Problems

This section contains a list of known problems in the PC DOS Front
End as of the release of this document. The list is arranged in the
order of severity where the severity levels are defined as follows:

• Severity 1: Causes the system to halt indefinitely and/or the loss
of data integrity.

• Severity 2: Can cause system failure, but the impact is less severe
and can generally be avoided.

• Severity 3: Does not cause system failure in most cases and has
less impact than severity 2 problems.

There are no known Severity 1 problems in this release of the PC
DOS front end.

3-14

FlexOS 286 Supplement 3.4 Known Problems

Severity 2 Problem

MultiMate Backspace key is not operable on Document: line.

Severity 3 Problems

MultiMate

R:base 5000

Lower righthand arrows indicating Scroll and
Numlock status always point down. Automatic
underline indicator in same location is absent.

RCOMPILE menu border and one GATEWAY screen
draw incorrectly. The RBEDIT status line
occasionally wraps around to second line. The first
character of the RBEDIT screen display is blanked
when the cursor returns to it. One additional scroll
occurs per screen of directory display -- this
causes one line of the display to be lost.

General Emulation Problems

The following list of general DOS emulator problems is provided for
those who wish to enhance FlexOS's present level of DOS 2.1
emulation. This list is included as an aid to product planning. It is not
intended to be a complete list .

• An application that performs two null segment loads with an
access, but no non-null segment load in between, is terminated.
This problem affects 1-2-3 (Version 2.0) and Personal Editor. It
may also effect other applications that have not be tested by
Digital Research .

• Applications that write directly to the video map are not
supported on a serial terminal.

3-15

3.4 Known Problems FlexOS 286 Supplement

• Environmental strings are not supported.

• FlexOS does not support the Load or Execute a Program (4BH)
function.

• Hardware-specific coding could provide a higher level of Interrupt
l1H (Equipment Determination) implementation. See Section 3.2.1,
"PC DOS BIOS Calls".

End of Section 3

3-16

SECTION 4

VOl

4.1 Introduction

The FlexOS 286 Virtual Device Interface (VDI) provides a standardized,
device-independent graphics extension to the FlexOS 286 Supervisor
Calls (SVCs). The implementation and use of the VDI is documented in
the GEM™ Virtual Device Interface Reference Guide. This section

" ""

identifies the differences between the VOl documentation in that guide
and the VDI available on FlexOS 286.

4.2 Device Support

The FlexOS VDI supports the following VOl devices:

Display

Mouse

Printer

IBM PC Color Display or compatible monitor with an
IBM Color Graphics Adapter in Black and White 640
x 200 pixel resolution. The screen driver
CGASCR1.SYS is included in the VDIDRVR
subdirectory in the FlexOS 286 system disk set.

IBM PC Color Display or compatible monitor with an
IBM Enhanced Graphics Adapter or compatible with
16 colors and 640 x 200 pixel resolution. The screen
driver EGASCR1.SYS is included in the VDIDRVR
subdirectory in the FlexOS 286 system disk set.

The Mouse Systems™ mouse and SummaGraphics®
SummaMouse™ are supported via the FlexOS 286
Console and Port drivers that are always included
with the FlexOS 286 system.

IBM Graphics Printer MX-80 or compatible. Two
drivers, MX80PRL 1.SYS (low-resolution mode) and
MX80PRH 1,SYS (high-resolution mode), are included
in the VDIORVR subdirectory in the FlexOS 286
system disk set.

4-1

4.2 Device Support FlexOS 286 Supplement

Metafile To support this logical device, the METAFIL1.SYS is
included in the VOIORVR subdirectory in the FlexOS
286 system disk set.

4.3 FlexOS 286 VOl Configuration and Installation

This section lists the FlexOS 286 VOl Components and describes the
VOl installation procedures.

Note: You must have release 1.3 of the system to use the VOl
described in this book.

The following FlexOS 286 VOl software is included in the FlexOS 286
system disk set.

IBMLSSIO.FNT
IBMLSS36.FNT
IBMLTRIB.FNT
IBMHSSIO.FNT
IBMHSS36.FNT
IBMHTS14.FNT
EPSLSSIO.FNT
EPSLSS2B.FNT
EPSLTR14.FNT
EPSLTR36.FNT
E.PSHSS14.FNT
EPSHSS36.FNT
EPSHTR14.FNT
EPSHTR36.FNT
MX80PRLl.SYS
ASSIGN .SYS

IBMLSS14.FNT
IBMLTRIO.FNT
IBMLTR36.FNT
IBMHSS14.FNT
IBMHTR07.FNT
IBMHTRIB.FNT
EPSLSS14.FNT
EPSLSS36.FNT
EPSLTR20.FNT
EPSHSS07.FNT
EPSHSS20.FNT
EPSHTR07.FNT
EPSHTR20.FNT
CGASCRI .SYS
MXBOPRHl.SYS

Some other files needed in the system are:

BOOTGIF . INP
VDIBINDB.LB6
VDILIB .H
GMAN .C
GMAN .H

MKGIFLIB.INP
GIFLIB .LB6
CRMGSX .C
GMANL .C

all sources for the VOl drivers

4-2

IBMLSSIB.FNT
IBMLTR14.FNT
IBMHSS07.FNT
IBMHSSIB.FNT
IBMHTRIO.FNT
IBMHTR36.FNT
EPSLSS20.FNT
EPSLTRIO.FNT
EPSLTR2B.FNT
EPSHSSIO.FNT
EPSHSS2B.FNT
EPSHTRIO.FNT
EPSHTR2B.FNT
EGASCRl .SYS
METAFILl.SYS

ATGIFLNK. INP
VDIBIND .H
MISGSX .C
VDI .H

FlexOS 286 Supplement VOl Configuration and Installation

Perform the following procedures to generate a FlexOS 286 system
that includes the VOl:

1. Edit the CONFIG.H file to ensure that the graphics resource
manager is included by the statement

2. #define GIF

3. Compile CONFIG.C.

4. Edit IPORV.H to set port O's default baud rate to 1200 baud for the
mouse.

5. The (#define PTO_BAUO 7) sets the baud rate for port 0 to 1200.

6. Compile IPORV.C.

7. Edit ICORV.H to set console O's default configuration to own a
mouse device.

8. A mouse + numberpad are supported. #define CTOW FLGS AMOUSE + NUMPD -
#define CTO BUTS 3 The mouse has three buttons. -

2 Mi ekeys/per pi xe 1 on rows. #define CTO MR 2 -
#define CTO - MC 1 Miekeys/per pixel on eols.

9. Compile ICORV.C.

10. Make the ATLlB.L86 with the input file MKATLlB.INP.

11. Make sure a GIFLlB.L86 is in the current directory; if not create it
with the input file MKGIFLlB.INP.

12. Link the operating system using the input file ATGIFLNK.INP (for a
debuggable system) or BOOTGIF.INP (for a boatable system).

13. Create a directory VOIORVR on the SYSTEM: device. Place the VOl
drivers (CGASCR1.SYS, EGASCR1.SYS, METAFIL 1.SYS,
MX80PRL 1.SYS, and MX80PRH 1.S YS), font files (*.FNT), and
ASSIGN.SYS in the directory VDIORVR.

14. Define VOISYS: = SYSTEM:VOIORVRI to let the system know where
to find ASSIGN.SYS, the VOl drivers, and font files.

15. Edit CONFIG.BAT to add the following commands to load the
drivers at boot time. Note that REM is used as a comment.

4-3

VOl Configuration and Installation FlexOS 286 Supplement

rem Load the EGA VDr screen driver
dvrload vdiOl: system:/vdidrvr/egascrl.sys n
rem
rem Load the eGA VDr screen driver
rem dvrload vdiOl: system:/vdidrvr/cgascrl.sys n
rem
rem Load the EPSON VDr Lo Res printer driver
dvrload vdi21: system:/vdidrvr/mx80prll.sys n
rem
rem Load the EPSON VDr Hi Res printer driver
rem dvrload vdi21: system:/vdidrvr/mx80prhl.sys n
rem
rem Load the VDl metafile driver
dvrload vdi31: system:/vdidrvr/metafill.sys n
rem

16. Boot FlexOS 286 watching the CONFIG.BAT file execution to ensure
that the driver are loaded correctly. Then try executing some one
of the demo programs provided.

4.3.1 VOl Binding Library

The bindings library VOIBINOB.L86 is provided with the system for
FlexOS 286 applications making VOl calls.

You may now use OOLNK.BAT to link an application with the VOl
library.

4.3.2 Specifying Device Numbers, Driver Files and Fonts

A FlexOS 286 system configured with VOl reads the ASCII file
ASSIGN.SYS upon receiving an Open Workstation call from an
application program. It searches for a device number which matches
the requested device from the Open Workstation call. Once found, the
corresponding driver name and font names are read into a table for
future use by the application. You can edit the ASSIGN.SYS file to
change the names of the drivers and fonts. Use a semicolon (;) to
delimit comments.

The following table lists the ranges of device numbers that are
associated with different types of VOl devices in ASSIGN.SYS.

4-4

FlexOS 286 Supplement VOl Configuration and Installation

Table 4-1. Graphic Device Numbers

Oevice Numbers

Screen 01-10
Plotter 11-20
Printer 21-30
Metafile 31-40
Camera 41-50
Tablet 51-60

The ASSIGN.SYS file contains the following lines to assign a device
number and fonts to the FlexOS 286 VOl drivers.

01 EGASCR 1. SVS IBM Enhanced Card / Color Display (640x200) 16 color
IBMLSS10.FNT IBM 640 x 200 Swiss 10 Point
IBMLSS14.FNT IBM 640 x 200 Swiss 14 Point
IBMLSS18.FNT IBM 640 x 200 Swiss 18 Point
I BMLSS36. F~~'T IBM 640 200 Swiss 36 Point
IBMLTR10.FNT IBM 640 x 200 Dutch 10 Point
IBMLTS14.FNT IBM 640 x 200 Dutch 14 Point
IBMLTR18.FNT IBM 640 x 200 Dutch 18 Point
IBMLTR36.FNT IBM 640 x 200 Dutch 36 Point
21 MX80PRL1.SVS ;IBM/EPSON Graphics Pinters Lo Res mode (60x72 dots/in.)
EPSLSS07.FNT EPSON Lo Res (60x72 dots/inch) Swiss 07 Point
EPSLSS10.FNT EPSON Lo Res (60x72 dots/inch) Swiss 10 Point
EPSLSS14.FNT EPSON Lo Res (60x72 dots/inch) Swiss 14 Point
EPSLSS20.FNT EPSON Lo Res (60x72 dots/inch) Swiss 20 Point
EPSLSS28.FNT EPSON La Res (60x72 dots/inch) Swiss 28 Point
EPSLSS36.FNT EPSON Lo Res (60x72 dots/inch) Swiss 36 Point
EPSLTR07.FNT EPSON La Res (60x72 dots/inch) Dutch 07 Point
EPSLTR10.FNT EPSON Lo Res (60x72 dots/inch) Dutch 10 Point
EPSLTR14.FNT EPSON La Res (60x72 dots/inch) Dutch 14 Point
EPSLTR20.FNT EPSON Lo Res (60x72 dots/inch) Dutch 20 Point
EPSLTR28.FNT EPSON Lo Res (60x72 dots/inch) Dutch 28 Point
EPSLTR36.FNT EPSON Lo Res (60x72 dots/inch) Dutch 36 Point
31 METAFIL 1. SVS Metafi le dri ver.

4-5

VOl Configuration and Installation FlexOS 286 Supplement

4.3.3 Parameters to vs color

Note that when "500" is used below, it refers to any value greater than
zero and less than or equal to 500. Similarly, "1000" means any
number greater than 500.

Table 4-2. Parameters to vs_color

R G B Color

a a 0 Black
a a 500 Dark Blue
0 a 1000 Light Blue
0 500 0 Dark Green
0 500 500 Dark Cyan
a 500 1000 Light Blue
a 1000 a Light Green
a 1000 500 Light Green
a 1000 1000 Light Cyan
500 a a Dark Red
500 a 500 Dark Magenta
500 a 1000 Dark Magenta
500 500 a Dark Yellow
500 500 500 Gray
500 500 1000 Dark White
500 1000 a Dark Yellow
500 1000 500 Dark White
500 1000 1000 Light Cyan
1000 a a Light Red
1000 a 500 Light Red
1000 a 1000 Light Magenta
1000 500 0 Dark Yellow
1000 500 500 Dark White
1000 500 1000 Light Magenta
1000 1000 0 Light Yellow
1000 1000 500 Light Yellow
1000 1000 1000 White

4-6

FlexOS 286 Supplement FlexOS 286 VOl Application Notes

4.4 FlexOS 286 VOl Application Notes

The GEM Virtual Device Reference Guide should be consulted in order
to find out how to write VDI applications. FlexOS 286 VDI applications
are almost identical to those written to run on PC ~OS. There are
three differences:

1. On FlexOS 286, a call to the s_open FlexOS SVC should be added
just prior to the Open Workstation call as follows:

gdvr = s_open(Ox50,"vdiOl:");

where: gdvr - LONG driver number returned by s_open
Ox50 - requested permissions for s_open
vdiD 1: - device to be opened (typically loaded by a

OVRLOAD command in CONFIG.BAT) in this case
a screen driver.

2. Similarly, After the Close Workstation call, the following calls to
FiexOS SVCs shouid be added:

s_close(0 ,gdvr);
s_exit(OL) ;

This closes the device opened earlier and terminates the program
normally.

3. The application is compiled, then linked with the VDI binding
library, VDIBINDB.L86, and the standard C run-time library provided
with your C compiler.

In porting VDI applications written for PC DOS, you must in addition to
the steps above, convert the PC DOS calls into appropriate FlexOS SVC
calls provided through the standard C run-time library.

Programs access VOl drivers through the C language bindings. The
bindings transform the VOl calls into the FlexOS 286 SVC, S_GSX,
which is the entry into FlexOS 286 Graphics Interface.

A VOl application first makes the s_open call to open the connection
to the requested VDI driver (VOID 1 :). The application then makes the
VDI Open Workstation (v_opnwk). This executes the v_opnwk routine in
the VOl bindings library. v_opnwk then calls the GSX™SVC so that the
application can access the Graphics Interface.

A-7

FlexOS 286 VOl Application Notes FlexOS 286 Supplement

The Graphics Interface searches the ASSIGN.SYS file for the requested
driver number. It then loads the associated font names into the font
table. For a screen VOL the Graphics Interface calls the Console Oriver
SPECIAL function 4 (c_special) to initialize the screen to Graphics Mode
and creates a graphics virtual console. The VOl driver entry point is
then called with the required VOl parameters and the workstation is
initialized before returning to the application program.

All further VOl calls are handled in the same manner, using the device
handle returned by v_opnwk.

When the application makes the VOl Close Workstation call (v_clswk),
the Graphics Interface calls the VOl driver to clean up, and initializes
the screen to Character Mode. Upon returning, the application
performs the CLOSE SVC, severing the connection to the VOl driver,
VOID1:.

4.5 FlexOS 286 VOl Restrictions

The following list summarizes the restrictions of the FlexOS 286 VOl:

• FlexOS 286 permits only full-screen graphics windows. Character
windows and graphic windows cannot be simultaneously
displayed on the same screen.

• Text rotation is not supported.

• Exchange vector calls are not supported.

4-8

FlexOS 286 Supplement

• vrq_string
vsm_string

FlexOS 286 VOl Restrictions

These functions do not support the echo mode. Also FlexOS
screen VOls do not support the VOl standard character set in
Appendix 0 of the GEM VOl Reference Guide, but rather the
FlexOS 16-bit character set .

• Plotter and Camera device drivers have not been implemented.

End of Section 4

4-9

