
(

FlexOS ™ 286 Version 1.31

Release Note 01

May 1987

/) i

\l ec r7 l;:..~ LT H l C 1 'b - coc C - C 0 C I I.. I "2.>

Contents

Section tells you the contents of the
development environment, and how to boot up
disks and then install it on your hard disk.

disks, the necessary
FlexOS from the floppy

Section 2 tells you how to use the bootscript, how to link FlexOS
modules, how to build a non-bootable system, and how to use the
ATLSID debugger.

Section 3 describes two new features in Version 1.31, shared memory
and removable subdrivers.

Section 4 describes three demonstration programs that show some of
the capabilities of the Virtual Device Interface.

Section 5 lists the known problems in Version 1.31.

Section 6 contains a list of errors or omissions in the FlexOS
documentation set.

Copyright© 1g87 Digital Research Inc. All rights reserved Digital Research, CP/M, and
the Digital Research logo are registered trademarks of D1g1tal Research Inc. Concurrent.
Concurrent PC DOS, FlexOS, and LIB-86 are trademarks of Digital Research Inc. IBM
and PC AT are registered trademarks of International Business Machines. Intel is a
registered trademark of Intel Corporation Zenith is a registered trademark of Zenith
Data Systems. MetaWare and High C are trademarks of MetaWare Incorporated. Mouse
Systems is a trademark of Mouse Systems Corporation

1073-1001-002

2

SECTION 1

GENERAL SYSTEM INFORMATION

1.1 FlexOS System Software

FlexOS 286 Version 1.31 software is shipped on six 5 1/4 inch quad
density (1.12 Mb) disks organized into three distinct product
assemblies: ~oftware Developer_fi!, Qri~~r__Writ~J __ ~_UQQleme_nt, and
OEM Redistribution Kit.

1.1.1 Disk Contents

Generally, the files are grouped into subdirectories according to their
purpose or use. The README files list the files according to these
groups and provide subdirectory definitions. In addition, explanations
of the files for the MAKE utility and linker are provided in README.
We recommend printing out and reviewing the contents of the
README file as soon as possible.

Each product assembly has a set of files appropriate to the tasks that
purchasers will need to do. The Software Developer Kit supports
creation of applications that use the FlexOS SVCs and run under
FlexOS. This package does not contain FlexOS source code, or license
further distribution of FlexOS.

The Driver Writer Supplement supports development of hardware
drivers for specific applications. The kit provides the FlexOS system
object files, driver source, and link scripts. This package does not
license further distribution of FlexOS.

The OEM Redistribution Kit consists of the disks in the Software
Developer Kit and Driver Writer Supplement and a license to distribute
FlexOS. You can also purchase FlexOS system source code; contact
your Digital Research ... sales office for further information.

1-1

Development Environment Release Note

1.2 Development Environment

Two executable versions of FlexOS are provided in the Software
Developer Kit and OEM Redistribution Kit: one boots FlexOS from
floppy disk, and the other boots FlexOS from a hard disk. These
versions of FlexOS require this hardware to run:

• An IBM PC AT or a 100% compatible IBM AT clone with an E2
stepping of the 80286 processor {for DOS emulation)

• A 20 or 30 Mb hard disk with up to 4 partitions
•A Quad density (1.2 Mb) 5 1/4 inch disk drive
• A serial port with the same adress as COM1 under MS-DOS™
• A centronics-compatible port with the same address as PRN

under MS-DOS
• 1.1 Mb of RAM allocated as follows

- 512Kb on the mother board
- 128Kb low (mapped by hardware switches to be contiguous

with the mother board 512Kb)
- 512Kb high (mapped by hardware switches to 1 Mb)

• An IBM Color Graphics Adapter (CGA), monochrome mode only, or
• An IBM Enhanced Graphics Adapter (EGA), low resolution only

Optionally, a Zenith® Z-29 terminal connected to the serial port, if you
want to develop multi-user applications

1.3 Booting FlexOS

Turn on the computer, then insert the disk marked

Developer Kit #1

in drive A and close the door. The system loaded includes the DOS
front end {MS-DOS version 2.1 compatible) and the beta version of the
FlexOS multitasking Virtual Device Interface (VDI). Refer to the EJ~x0$
User's Guide for instructions on creating windows and running the
FlexOS utilities.

1-2

""--- /

'

Release Note FlexOS Hard Disk Installation

1.4 FlexOS Hard Disk Installation

The INSTALL file transfers system files onto your hard disk so you can
boot from the hard disk rather than from a floppy. Simply run the
INSTALL file or files. As with the README files, there are three
different INSTALL files. The OEM Redistribution Kit requires running of
all three of these INSTALL files to create a complete system. If you
are unsure of which INSTALL file you need, print out the README file
on the first disk. It will list the INSTALL file or files you need to run.

WARNING

You must have a 20 or 30 megabyte hard disk to develop FlexOS 286.
FlexOS allows you up to four partitions on a 30 Mbyte hard disk.
However, if you purchased the OEM source kit. you must reserve one
partition of 20 Mbytes for FlexOS Accordingly, if you have a 20 Mbyte
hard disk and you purchased the OEM source kit, it must be
unpartitioned.

Furthermore, if you are going to change the partitioning on the hard
.'/' disk before you install FlexOS, you MUST do a physical format of the ..
~ hard disk first. If you do not. you may obtain unpredictable results.

End of Section 1

(~

1-3

Release Note

1-4

(.

Release Note SECTION 2

GENERAL SYSTEM INFORMATION

2.1 System Configuration

Certain portions of FlexOS can be defined during system initialization
in the bootscript. For example, systems with sufficient memory can
install a RAM disk from the script or add serial ports. Refer to listing
3.1 on page 3-9 of the flexOS Sy:>t~rn_J3ulg~ for an example of a
bootscript.

The basic bootscript is a user-editable file named CONFIG.BAT. The
distribution bootscript is on Developer Kit disk # 1.

Other portions of FlexOS are defined in CONFIG.SYS This module
specifies, for example, the resource managers and drivers to be loaded
with the system. The source of CONFIG.SYS is the C language file,
CONFIG.C.

Refer to the FlexOS User's Guide to modify CONFIG.BAT, and refer to
the FlexOS System Guide, section 3.3, to modify the CONFIG.C file.

2.2 FlexOS Library Modules

FlexOS is built primarily from library modules. There are three main
libraries:

• COMLIB.L86 contains nonconfigurable modules
• ATLIB.L86 contains configurable driver modules
• FILESYS.L86 contains the file system manager

The optional DOS front end and the VDI are built from their own
libraries.

The Drj_y_E2_i:_Vlfri!§.r Supplement provides the object sources and sample
input files for building all these libraries, and for building the DOS
front end and the VDI Refer to the README files for for discriptions
of input and object files.

2-1

SECTION 2 Release Note

2.2.1 Linking FlexOS Modules

The files DISP286.0BJ, CONFIG.OBJ, ACONFAT.OBJ, CLOCK.OBJ, and
CLOCKAT.OBJ are linked together with the modules in the ATLIB.L86,
FILESYS.L86, and COMLIB.L86 libraries to form FlexOS.

The Driver Writer Supplement provides linker input files for creating
bootable and non-bootable versions of FlexOS. Link the system using
the ATLINK.INP input file to create a non-bootable system for
debugging drivers.

There are four linker input files for making different types of FlexOS
systems:

Filename ---

BOOTAT.INP
BOOT ALL.I NP
BOOTFE.INP
BOOTGIF.INP

filE! __ ()f ~~tern generated

FlexOS with DOS front end and VDI
Complete FlexOS system with DOS front end and VDI
FlexOS with DOS front end only
FlexOS with VDI only

To build a bootable system, process the output file from the linker
with the FIX286.286 utility, then write the resulting file to the boot disk
using the SYS.286 utility or FORMAT.286 under FlexOS.

2.3 Building a Non-Bootable System For Debugging

First, link the system with ATLINK.INP. This creates RTM.CMD, a
loadable version of FlexOS, and RTM.SYM, its corresponding symbol
table. Next, boot Concurrent DOS (either version 4.1 or 5.0) and
execute ATLD.CMD under it. ATLD automatically loads the debugger
ATLSID.CMD, which in turn loads RTM.CMD and RTM.SYM for execution.
The debugger executes from the attached serial terminal; Concurrent
DOS runs on the primary console.

Note: The non-bootable system runs the debugger on the serial
terminal, so it is necessary to connect it.

2-2

Release Note SECTION 2

The version of ATLD provided runs under Concurrent DOS version 4.1
on an IBM PC AT equipped with one quad density floppy disk drive and
one 20 megabyte hard disk. If your hardware configuration differs from
this, or if you want to run ATLD.CMD under Concurrent PC-DOS
version 5.0, refer to the file ATLD.DOC for an explanation of the
procedure to follow.

2.4 Using ATLSID

The ATLSID debugger is similar to the SID 286 debugger, and you will
recognize many of the same commands from that utility.

Invoke the ATLSID program by first booting up your developmemt
system, then type

ATLD

The ATLD loader looks for the RTM.CMD and RTM.SYM files, loads
ATLSID at segment OAOO, then loads FlexOS 1.31. at segment OA30.

Here is a list of the currently implemented ATLSID commands:

Display Memory

b<address >,<length >,<address>
d <address>, <address>
dw<address >,<address>
dll <address>,< offset>,< size>
dlw<address >,<offset>,< size>
I <address,address >
sr<address>,< length >,<value>

Examine Memory

s<address>
sw<address>
f <address>,< address>
fw<address >,<address>
m<address >,<length >,<value>

Compare memory
Display bytes
Display words
Display linked list by bytes
Display linked list by words
Disassemble code
Search for value

Display and set bytes
Display and set words
Fill memory bytes
Fill memory words
Move memory block

2-3

SECTION 2

Execute

g <address>,< address>,< address>
p <address>,< count>
t<count>
tw<count>
u<count>
x
c<address > ,parm,parm ...

Miscellaneous

h
h.symbol
h<value>
h<valuel >,<value2 >
n<name >,<address>
qi<port>
qiw<port>
qo<port>
qow<port>
y

2-4

Release Note

Go at address until break
Set passpoint
Trace instructions
Trace without calls
Trace without display
Display registers
Call a function

Display symbols
Display symbol offset
Hex-decimal conversion
Hex arithmetic
Add name to symbols
Input byte from port
Input word from port
Output byte to port
Output word to port
Reboot

Release Note SECTION 2

2.5 Adding Drivers

Digital Research® provides driver source code in the Driver Writer
Supplement and OEM Redistribution Kit for the target system:

• Floppy Disk Driver

• Hard Disk Driver

• Printer Driver

• Serial Driver

• RAMdisk Driver

• Mouse Driver

• Console Driver

Note: This code is subject to ongoing rev1s1ons and optimizations. It
is provided only as an example of how the driver code interfaces with
FlexOS.

Drivers in this release are linked into the system by including the
driver object files in the system build .INP files.

Alternatively, you can load drivers in the bootscript or load them
interactively with the DVRLOAD command. To load them interactively,
you must be a superuser.

When you make changes to files and recompile them, be sure the
object files you create do not write over object files of the same name
provided with this release.

All the C modules for Version 1.31 were compiled using Meta Ware TM

High C TM version 1.3. Because of parameter passing conventions and
other differences, you must also use High C to compile your driver
code.

End of Section 2

2-5

SECTION 2 Release Note

2-6

Release Note SECTION 3

NEW FEATURES IN VERSION 1.31

3.1 Shared Memory

Shared memory lets multiple processes share memory in the same
manner that Fortran programs use a COMMON routine. Processes can
also access specific physical memory locations, for dual ported RAM
or system ROMs.

The processes can share data regions with drivers for fast
communications in both protected and unprotected FlexOS
environments, and multiple user processes can share data regions with
each other. FlexOS grants access to shared memory only to those
user processes with access rights established during system
implementation.

There are two ways to access shared memory - through shared
memory files, which work like pipes, and through the new driver
services SHMEM and UN SHMEM.

With the SHMEM table (illustrated below), a driver or process can
create a Shared Data File specifying a name for the memory allocation,
a security word, and the size of the memory. A subsequent OPEN SVC
provides and verifies access to this file. The GET SVC returns a valid
address for the Shared Data Region, and the CLOSE SVC disables
access via this address.

Each shared data file also contains a semaphore, so drivers and
processes can synchronize usage through the READ and WRITE SVCs.

The Pipe Resource Manager disallows an open request of "sm:"
devices by any process with an rnid < > 0. This prevents a process on
a remote node of a network from gaining access to shared data. Note
that pipes are different in this respect: processes on one node can
access pipes on remote nodes.

3-1

Shared Memory

0 1 2 3 4
+--------+--------+--------+--------+

00 KEY
+--------+--------+--------+--------+

04
+ NAME +

08 I
+ +--------+--------+

oc SIZE
+--------+--------+--------+--------+

10 RESERVED SECURITY
+--------+--------+--------+--------+

14 USER I GROUP RESERVED
+--------+--------+--------+--------+

18 UBUFFER
+--------+--------+--------+--------+

lC SBUFFER
+--------+--------+--------+--------+

20H - Maximum Size of SHMEM Table

KEY Unique ID

Name

Must be 0

Size of Memory area in bytes

Security Word

User ID of Creator

Group ID of Creator

Release Note

NAME

RESERVED

SIZE

SECURITY

USER

GROUP

UBUFFER User Address of shared memory. This value is zero
if the table was obtained through the LOOKUP SVC
or if Read and Write access is not available.
Different processes may obtain unique addresses of
the same physical memory, which is only used by
the specific process or if the process is currently
mapped into context through the MAPU() driver
service.

3-2

Release Note Shared Memory

SBUFFER System address of shared memory. This value is
used by drivers and system processes independent
of process context

Device Type Ox 11

Device Name "sm:"

Table Number Oxl 1

SVC's supported CREATE, OPEN, READ, WRITE, CLOSE, DELETE, GET
and LOOKUP.

3-3

Shared Memory Release Note

3.1.1 Shared Memory Driver Services

Before a user process can share memory with other user processes, a
driver must map physical memory into system space through the
MAPPHYS() or SALLOC() driver services. Next, this system memory is "-,
mapped to user space through the SHMEM() driver service. (The
region is released with the UN_ SHMEM driver service.) This gives a
user process direct control of memory related devices.

SHare MEMory

BYTE *usr_addr. *sys_addr;
UWORD flags;

usr_addr = shmem(sys_addr, flags);

Parameters:

flags

bit 0: 0 = Read/Write buffer.
1 = Read Only buffer.

bits 1-15 are reserved.

sys_addr

System address obtained through SALLOC() or MAPPHYS().

Return Code:

usr addr

User buffer address. 0 Indicates failure.

The SHMEM driver service lets a user process address system memory
while running in user space.

3-4

/

Release Note Shared Memory Drivers

UN_ SHare MEMory

LONG ret;
BYTE *usr _addr;

ret = un_shmem(usr addr):

Parameters:

usr addr

User buffer address obtained through shmem().

Return Code:

retO indicated success; error code indicates bad usr addr.

The UN_ SHMEM() driver service reverses the function of a previous
SHMEM() call. After this call, the user process gets an exception if it
tries to i:irrpss sh;:irPrl mP.morv If the user orocess oasses an address
-· • - ~ - - - - - - - - - - -- - ~ I - I I

to UN_ SHMEM() that was not previously obtained through an SHMEM()
call, it receives an error.

3-5

Shared Memory Drivers Release Note

3.1.2 How to Use Shared Data Regions

A user process uses shared memory through shared data files, which
are managed by the Pipe Resource Manager and accessed through the
device name "sm:"

To create a shared data region a user process performs the following
calls:

fnum = s_create(O, flags. "sm:name", 0, security, size);
s_get(T SHMEM, fnum, &shmem, sizeof(shmem))
buff_ptr = shmem.ubuffer;

BUFF _PTR now points to the shared data.

If another user process wants to use the above shared data region it
performs the following calls:

fnum = s_open(flags, "sm:name");
s_get(T_SHMEM, fnum, &shmem, sizeof(shmem));
buff_ptrl = shmem.ubuffer;

All references to '''BUFF PTR1 will access the named shared data
region.

A driver could give a user process access to a ROM of length LENGTH
at address PHYS_ ADDR by using the following calls:

struct

LONG
phys_mem

1 ink, pstart, pl ength;
01, PHVS_ADDR, LENGTH};

sys_addr
usr addr

(BYTE *)mapphys(&phys_mem. 1);
shmem(sys addr, read only flag):

The user process would now have to use a SPECIAL() or GET() call to
receive the user buffer address from the driver.

If two user processes need to synchronize access to a shared data
region they could each make the following calls:

s read(O, fnum, "", 01, 01):
critical_code();
s write(O, fnurn, "", 01, 01):

I* Get exclusive access *I

I* Perform critical code *I

/* Release sernapnore */

FNUM is the file number of the shared data file obtained through the
CREATE or OPEN calls.

3-6

(

Release Note Using Shared Data Regions

When it no longer needs access to the shared data the user process
would the make the call:

s_close(O, fnum);

FNUM is the file number that was attained by the create or open calls.

If the driver wanted to remove user access to the shared data it
created it would make the call:

un_shmem(usr_addr);

usr addr is the address obtained by the SHMEM() call.

3-7

Removable Subdrivers Release Note

3.2 Removable Subdrivers

FlexOS 286 version 1.31 adds the ability to remove subdrivers. This
feature is implemented through the standard, user DVRUNLK command
and supervisor INSTALL function. For example, the user enters the
subdriver device name in the DVRUNLK command to remove the
subdriver from a driver. Similarly, the programmer uses the INSTALL
SVC with the option field set to 0 and the devname field set to the
subdriver name address to remove a driver.

Subdrivers like drivers are set as removable or permanent in INSTALL
flag bit 5. When the bit is set the subdriver is marked as removable;
otherwise it should not be removable. Permanent versus removable
install status is reflected in the DEVICE Table's INSTAT field. For
subdrivers, the fields are defined as follows:

OxOO - Not installed
Ox01 - Requires subdriver
Ox02 - Owned by Miscellaneous Resource Manager
Ox03 - Permanent subdriver
Ox04 - Removable subdriver

Drivers are informed to remove a subdrive through the SUBDRIVE
function entry point. This entry point is now used both to associate
and disassociate a subdriver. To indicate which operation to perform,
bit 10 in the Access field is set as follows:

Bit 10: 0 = Install subdriver
1 = Uninstall subdriver

The remainder of the Access flags remain as defined in Table 4-4,
INSTALL Flags in the FlexOS System Guide.

The driver should then do what's necessary to remove the subdriver.
Note, however, that the driver can ignore the request, for example, if
the subdriver is currently in use. The following sample code illustrates
a SUBDRIVE routine that handles both installation and removal of the
subdriver.

3-8

(

Release Note Removable Subdrivers

LONG s_subdrvr(pb)
DPB *pb;
(

PHYSBLK *d:

if(pb->dp flags & Ox400)(-
sfree(sdev[pb->dp_optionll:
sdev[pb->dp_optionl = O;
return((((LONG)DVR_PORT << 16)
}

(LONG)DVR_SER)):

ser unit[pb->dp_option] = pb->dp_unitno;
pt_hdr[pb->dp unitno] =(DH*) pb->dp_swi;
pt_unit[pb->dp unitno] = pb->dp_option:

d = sdev[pb->dp_option] =
(PHYSBLK *) salloc((LONG)sizeof(PHYSBLK));

d->Qrear = d->Qfront = d->evpend
d->xoffed = d->Qlen = O;

return(E_SUCCESS):

The return code from the SUBDRIVE function should indicate the type
of subdriver required or 0, if no subdriver is required.

Typically, the SUBDRIVE routine is not the only portion of the driver
involved in the subdrive interface. For example, you should also free
the resources (for example, flags, pipes and memory for data
structures) used to enable device 1/0 when the remove command is
received. A general rule of thumb regarding subdriver removal is:
Everything done in INIT and SELECT to support device 1/0 should be
undone in UNINIT and FLUSH, respectively.

End of Section 3

3-9

Removable Subdrivers Release Note

3-10

Release Note SECTION 4

VOi DEMO PROGRAMS

Developer Kit disk #2 contains three programs that demonstrate the
capabilities of the Virtual Device Interface (VOi).

The three demo programs are:

thing [-I < # of points>]

This program draws a simple line-figure; it is useful for testing lines
and line colors. The -I switch tells thing to draw a design with the
specified number of points around the perimeter. By default, thing
draws the figures with from four to ten points around the perimeter.

polyline

This program 1s documented in the GEM VDi reference manuai.

logos

This program draws a number of Digital Research logos on the screen,
using the copy transparent function, draws DRl's slogan over that
using a one of the fonts loaded, and then cycles the colors on 16
color screens (on an EGA device).

All of these programs have the following switches in common:

-f device

-m

Sends output to the specified device instead of the
screen.

Emulate monochrome on color devices.

-c colors number Set the maximum number of colors to the argument.
If you specify too many colors, the number defaults
to the maximum available. -m overrides this switch.

4-1

SECTION 4 Release Note

End of Section 4

4-2

(

Release Note SECTION 5

KNOWN PROBLEMS

This section contains a list of known problems in FlexOS 286 Version
1.31 as of the time of release. The list is arranged in the order of
severity where the severity levels are defined as follows:

• Severity 3: Causes system to halt indefinitely and/or loss of data
integrity.

• Severity 2: Can cause system failure, but the impact is less severe
and can generally be avoided with less difficulty.

• Severity 1: Does not cause system failure in most cases and has
less impact than severity 2 problems.

5.1 Severity 3 Problems

There are no known severity 3 problems in FlexOS Version 1.31.

5.2 Severity 2 Problems

Problem: Asynchronous non-destructive F _READ of keyboard enables
keyboard wait state.

An async non-destructive read of the keyboard should return
immediately to the calling process; instead, it acts as if it were a
synchronous read and waits until a key is pressed before returning. It
should return with an event mask.

Problem: Failure of pipelines

The command line:

'DIR I FIND "BAT" > TEST'

fails to produce complete output in the file 'TEST'. The problem is in
the SHELL (COMMAND.286), and the workaround is to add another
piped command to the command line. For example:

5-1

Severity 2 Problems Release Note

'DIR I FIND "BAT" I FIND "BAT" > TEST'

Problem: Day of week entry in the TIMEDATE table is incorrect.

Prompt $0 returns the wrong day.

Problem: Failing DVRLOAD does not free driver memory.

When an attempt is made to load a device driver, memory is allocated
in the system memory area before the driver code is read. The
resource manager does not deallocate the memory when it rejects the
driver on an error condition.

Problem: FORMAT/FDISK incompatibility.

If you attempt to FORMAT a hard disk partition made using the FDISK
utility, you may obtain unpredictable results. Physically format the
hard disk before partitioning the disk with FDISK.

Problem: SYS.286 utility searches wrong root directory for the
BLOAD286.IMG.

If SYS.286 is executed from a subdirectory of a bootable device that is
not the device the current system booted from, SYS.286 attempts to
access the wrong root directory.

Problem: SYS.286 overwrites files.

If you invoke SYS.286 in this syntax:

SYS C: A:YOURFILE.SYS

SYS copies YOURFILE on A: onto the C: drive, but it also transfers any
copy of FLEX286.SYS that might be on the A: drive, and it writes this
copy of Flex286 over YOURFILE.SYS. Use the COPY.286 utility instead.

Problem: SYS.286 overlooks COMMAND.286

SYS.286 does not transfer COMMAND.286 to the new system disk; it
must be done manually.

5-2

Release Note Severity 2 Problems

Problem: SYS and FORMAT -S do not copy all the files marked with
the hidden, system, and R/O attributes.

Copy the remaining files separately.

Problem: XON/XOFF does not function correctly in the serial port
driver, SDRV.DRV.

After a user or the system sends XON/XOFF multiple times to the
serial port driver, either XON/XOFF stops working or a system General
Protection Error occurs.

Prob.lem: LOADER shared-code checking insufficient

When executing a program that is designated as shared-code, the
source can be compiled and linked and re-executed inadvertantly while
the first copy is executing. In such a case, the loader will use the old
program's code and the new program's data. This can resuit in
anything from incorrect results to a catastrophic system failure.

Problem: No recovery of file size after a system crash.

If a system crash occurs during a file update. the size of the file as
indicated in the directory may not reflect the actual file size.

Problem: S _COMMAND SVC CHAIN option does not use PINFO data.

The S _COMMAND SVC CHAIN option does not use the NAME and
PRIORITY information from the PINFO parameter block. These fields
should replace the existing NAME and PRIORITY fields in the Process
Descriptor.

Problem: Passing bad array pointers or structure pointers to the VDI
can cause a GP error.

If you pass bad pointers to the Virtual Device Interface the most likely
result is a system failure (General Protection Error). Therefore, take
care to ensure that all pointers are valid.

5-3

Problems in Beta VDI

5.2.1 Problems in Beta VOi

EGA - VOi interaction

Release Note

If you are running multiple color VDI programs under EGA, the color
registers are not saved correctly during a screen switch.

Loading the mouse driver

If you have a loadable mouse driver, load it in CONFIG.BAT. If you load
it later, only the child virtual consoles receive a mouse.

Virtual console borders

When you close a virtual console with borders, some of the borders
may remain on the screen.

Writing to the borders of the top virtual console has no effect until
you make it the top console again.

You can open border files for a virtual console even if no border files
were defined.

Virtual console placement

When you create a virtual console, it appears on top of the other
consoles, even though it is not the active virtual console and should
have no view on the physical screen.

PRINTSCREEN function VCCREATE support

When the Window Manager starts the shell running during
PRINTSCREEN, it needs to obtain the virtual console file number to
transfer the screen buffer contents to the MALLOCed memory buffer.
In this one case, the COPY /ALTER call will accept the file number
returned by VCCREATE.

Cursor tracking in windows

Cursor tracking in windows does not work as it is documented in
version 1.31.

5-4

(

Release Note Problems in Beta VDI

RWAIT rectangles

You can wait for RWAIT rectangles outside the size of the parent
virtual console.

Virtual consoles outside parents

You can position virtual consoles outside their parents. In release 1.31
they are not clipped, but they will be in future versions.

MCTRL

The MCTRL is not implemented in version 1.31.

GENERAL CAUTION

We strongly discourage you from running PC-DOS programs that use
command line 1/0 redirection.

End of Section 5

5-5

DOCUMENTATION ERRATA Release Note

5-6

Release Note SECTION 6

DOCUMENTATION ERRATA

6.1 Fle>eOS User's Guide

The following are errors or omissions in the FlexOS User's Ql1Jc:Je, First
Edition November 1986:

Page 2-2

Page 2-5

Page 7-7

Page 7-25

Page 7-32

Page 7-53

Page 7-79

Window 1 is the dedicated message window. and
window 2 is the status window. The first window
that actually shows is window 3. When you pull up
the status window, you may not see them, but they
are there at all times.

The <HELP> key on the IBM AT is actually
CTRL-<INS>.

Fo!!owing the second paragraph in the explanation
add the following:

Note: Invoking a batchfile in the background causes
a shell to be invoked, and the shell, in turn, runs the
batchfile. Thus, the process ID returned is that of
the shell. Therefore, batchfiles cannot be stopped
with the CANCEL command, but the shell can be
stopped.

Omit the filetype CMD from the sentence reading "
. with the extension 286, 68K, CMD, COM, or EXE."

The paragraph should read, "When you copy a file.
the date and time of the source file are copied to
the destination file's directory information."

Delete the Note that states DISKCOPY will format an
unformatted disk while copying. This is incorrect;
DISKCOPY does not format an unformatted disk.

In the example, remove the "Press any key to begin"
line. LOGOFF does not issue any prompt.

6-1

SECTION 6

Page 7-85

Page 7-103

Page A-1

Release Note

Omit the filetype CMD from the sentence "These
files extensions include 286, 68K, CMD, CMD, COM,
and EXE."

Omit "(a-p)" after current drive.
limitation on drive name.

There is no

Change the sentence "Use CONFIG.BAT tset up the
LOGON/LOGOFF ... " to read "Use CONFIG.BAT to
set up the LOGON/LOGOFF ... "

The figure on page A-3 of the FlexOS System Guide is incorrect. It
should be:

bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A Key

6.3 FlexOS 286 Prografllmer's Utilities Guide

FIX-286 Cross-Reference Utility

FIX-286 is a system generation utility program that generates an
output file containing a relocated operating system image from a
relocatable operating system file in standard .286 format.

FIX-286 also creates the Global Descriptor Table (GOT) and Interrupt
Descriptor Table (IDT) and appends them to the data segment. If you
are generating a Real Mode system (indicated by the /r parameter on
the FIX-286 command line), FIX-286 does not create the GOT and IDT,
which are used in protected mode. FIX-286 expects the OS Data
Header to be the first item in the data segment.

6-2

Release Note SECTION 6

FIX-286 Command Syntax

FIX-286 is invoked using the command form:

FIX286 input.fil output.fil [-r]

For example, to create the system boot loader BLOAD286.IMG, first
assemble and link the BLOAD286.A86 file to create a BLOAD286.286
file, then enter:

FIX286 BLOAD286.286 BLOAD286.IMG -r

The BLOAD286.IMG file is then ready to be placed on the boot disk,
using the SYS.286 utility, to create a bootable disk.

FIX-286 also creates a protected mode system image from the
relocatable file produced by the loader. For example, link the
BOOTAT.IND file to produce BOOTPROT.286, then give the command:

FIX BOOTPROT.286 FLEX286.SYSH

" The resulting image file FLEX286.SYS is copied to a disk with a
bootloader image (BLOAD286.IMG) using the COPY.286 utility, or 1t 1s
placed on a disk with the SYS.286 utility.

End of Release Note

6-3

