CP/M Plus™

(CP/M® Version 3)
Operating System

Programmer’s Guide

10
DIGITAL
RESEARCH"

CP/M Plus™

(CP/M® Version 3)
Operating System

Programmer’s Guide

COPYRIGHT

~ Copyright © 1982, 1983 by Digital Research. All rights reserved. No part of this
publication may be reproduced, transmitted, transcribed, stored in a retrieval system,
or translated into any language or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the
prior written permission of Digital Research, Post Office Box 579, Pacific Grove,
California, 93950.

This manual is, however, tutorial in nature. Thus, the reader is granted permission
to include the example programs, either in whole or in part, in his own programs.

DISCLAIMER

Digital Research makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness
for any particular purpose. Further, Digital Research reserves the right to revise this
publication and to make changes from time to time in the content hereof without
obligation of Digital Research to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research. CP/M 3, LINK-80, MAC,
MP/M, MP/M 11, and RMAC are trademarks of Digital Research. Intel is a registered
trademark of Intel Corporation.

The CP/M Plus (CPIM Version 3) Programmer’s Guide was prepared using the Dig-
ital Research TEX Text Formatter and printed in the United States of America.

First Edition: January 1983
Second Edition: April 1983

Foreword

CP/M® 3 is a microcomputer operating system designed for the Intel® 8080, Intel
8085, or other compatible microprocessor. To run CP/M 3, your computer must
have an ASCII console, which includes a keyboard and screen, or another display
device, from one to sixteen disk drives and a minimum of 32K of memory space. To
support additional memory beyond the 64K addressing limit of the processors listed
above, CP/M 3 can also support bank-switched memory. The minimum memory
requirement for a banked system is 96K.

This manual describes the programming environment of CP/M 3, and is written
for experienced programmers who are writing application software in the CP/M 3
environment. It assumes you are familiar with the system features and utilities described
in the CP/M Plus (CP/IM Version 3) Operating System User’s Guide and the
Programmer’s Utilities Guide for the CP/IM Family of Operating Systems. It also
assumes that your CP/M 3 system has been customized for your computer’s hard-
ware and is executing as described in the CP/M Plus (CP/M Version 3) Operating
System User’s Guide. If you need to customize your system, please refer to the CP/M
Plus (CP/M Version 3) Operating System System Guide.

Section 1 of this manual describes the components of the operating system, where
they reside in memory, and how they work together to provide a standard operating
environment for application programs. Section 2 describes how an application pro-
gram can call on CP/M 3 to perform serial input and output and manage disk files.
Section 3 provides a detailed description of each operating system function. Section
4 presents example programs.

The CP/M Plus (CP/M Version 3) Operating System Programmer’s Guide contains
five appendixes. Appendix A describes the CP/M 3 System Control Block, and defines
its fields. Appendix B supplies the format for the Page Relocatable Program. Appen-
dix C tells you how to generate System Page Relocatable files. Appendix D lists the
ASCII Symbol Table, and Appendix E summarizes BDOS functions.

i

Table of Contents

1 Introduction to CP/M 3

1.1
1.2

1.3

1.4

1.5
1.6

1.7

Banked and Nonbanked Memory Organization 1-2
System COmPONENtS ...cvvveruereisreriereeranenireeseseeesiaseessans 1-5
System Component Interaction and Communication 1-7
1.3.1 The BDOS and BIOS.......cociiiiiiiiiiiiiiiiiiininiannnn.. 1-7
1.3.2 Applications and the BDOS.........coovviviiiiiiiniinninn.n. 1-8
1.3.3 Applications and RSXs......ccoviiniiiiiiiiiineiiinneerinnan, 1-9
Memory Region Boundariesccovviiiiiiiiiiiiiiiiiiie, 1-9
Disk and Drive Organization and Requirements.................... 1-11
System OPeration.......eeeiiiunerieiuneeerenssessesiosscnsiasssenees 1-13
1.6.1 Cold Start Operation.........ooevveiveiriiiiiiiiiiiierneeenns 1-14
1.6.2 CCP Operation.......coevvviiiiiiiiiiesiiiueeerenneesiennnns 1-16
1.6.3 Transient Program Operation.........ccevvveevinneioreranans 1-22
1.6.4 Resident System Extension Operation.............c.o.oounnns 1-23
1.6.5 SUBMIT Operation.......ccovvvvviiiiiiiiiniiniiinnienennenns 1-26
System Control Blockccooviiiiiiiiiiiiiiiiiiii i 1-27

2 The BDOS System Interface

21
2.2

2.3

BDOS Calling Conventions «...cvveeerieriiiiiiiiiiiiinunneeeeeeioens 2-1
BDOS Serial Device I/O ..ooiiiiiiiiiiiiiiiieiiiiiiiniieniiiinens 2-2
2.2.1 BDOS Console /O ...cvviiiiiiiiiiiiiiiiiiie e cenennnnnens 2-3
2.2.2 Other Serial /O ..oiiiiiiiiiiiiiiiiiiiiiiiiciiee e neeeeiens 2-6
BDOS File Systemvveieeiiinneeeiiiiieneiniinenereenniesenananes 2-7
2.3.1 File Naming Conventionsc.oeeevveeerireearanennenn. 2-9
2.3.2 Disk and File Organizationccceviiivinniaiinnnnn.. 2-11
2.3.3 File Control Block Definitionccoceveiiinnivnnnnn... 2-13
2.3.4 File Attributesoovieiiiiiiii i e 2-16
2.3.5 User Number Conventions........oovveieiiiiinnnneeeerennnn. 2-18
2.3.6 Directory Labels and XFCBs........covvveviiiiiireenninnnns 2-19
2.3.7 File Passwords ..ooovvuiiineiiiiiiinriiiiiiiniierennnenns 2-21
2.3.8 File Date and Time Stampscevvveeiiienieieinnnnnn.. 2-23
2.3.9 Record Blocking and Deblocking.........c.covvvveviannnn... 2-25
2.3.10 Multi-Sector /Ooviiiiiiiiiiiiiiiii e cnieeenes 2-26
2.3.11 Disk Reset and Removable Media...........ccccvvvvnn.... 2-27
2.3.12 File Byte Counts.....couvveriueeirinueerinerinneeesearennnanns 2-28

Table of Contents (continued)

2.3.13 BDOS Error Handlingcocoviviiiiiiiiiiiniiiinniia. 2-28
2.4 Page Zero Initializationcoveeiveiieniennereninnerrennnnnenens 2-34

3 BDOS Function Calls

4 Programming Examples

4.1 A Sample File-To-File Copy Programcc.ccovvuviinieiinnnnes 4-1

4.2 A Sample File Dump Utility.......oooovviviiiinniiiiiiiiiiinan, 4-5

4.3 A Sample Random Access Programcccovvinviiiiiiinnnnne. 4-10

4.4 Construction of an RSX Programccocovvviiiiinnininnnnnn, 4-20

4.4.1 The RSX PrefiX..ceveeerieereeereeerecnesreerirenssnsnnsnnnens 4-21

4.4.2 Example of RSX Use....ccovvviiiiinniiiiiiiiniiiniinnnene. 4-22
Appendixes

A System Control Blockovvviiiiiiiiiiiiiiii i A-1

B PRL File Generationccocviuiieiiiienieneeineiieeneeeeseaieenennnen B-1

B.1 PRL FOrMAt .uvviiiiiiiiiiiiiiiieiiteieieeeeeiireeeneeeaneennaeennnns B-1

B.2 Generating @ PRLcooiiiiiiiiiiiiiiiiiiiiiiei i eneennnnns B-2

C SPR GENEratiOnccoiiuenueesereeseasoscasoeasnssesseeeeesseessnsennnes C-1

D ASCII and Hexadecimal Conversionsc.cccovevviriinennnennnnnnn.. D-1

E BDOS Function SUMMArYcvvevuiveeernireereniresensneseeensnoseeens E-1

2-1.
2-2.

2-4.
2-5.
2-6.

2-8.
2-9.
2-10.
2-11.
3-1.
3-2.

3-4.
3-5.
3-6.
A-1.
B-1.
D-1.

E-1.

Table of Contents (continued)

Tables

Valid Filename Delimitersoovveereernniiiireeerieeeereneennnnnns
Logical Drive Capacitycevvveerrureeerrerineeerronneierinnnneees
BDOS Interface Attributes.......oovvvveiiiiiinneeneieeeereeninennnns
Password Protection Modes.....ocoeeviiiiiiininninineeeieniinnnnnn.
BDOS Functions That Test for Password..........ccccevvevieannn..
SFCB Subfields Formatcoviiiiiiiiiiiiiiiiiiiiiiiiiiennienenens
Register A BDOS Error Codes.....c.cvvvvveirnieieiineiennnennenn.
BDOS Directory Codes.....covvrueieinerienueeaineerereeiuneenannens
BDOS Error Flagsoovvviviiiiiiiiiiiiiiiiiiiiiiiiiiiiiennneen,
BDOS Physical and Extended Errorscccvvvvvveiiiiinnnnnnn..
Page Zero Areas........ooovviiiiiiniiiiiiiiiiiiiiiiiiiiiiiene
Function 6 Entry Parameters...........ccoiviiunnrveneniennnnnnn.
Edit Control Characters (Nonbanked CP/M 3)
Edit Control Characters (Banked CP/M 3)........ccvvvvviinnnnnnn.
System Control BlocK.veuvrriereinienireiiniieenieeniennanns
Program Return Codesccevvvreiiiniiiiiiiniiinienneenieenenns
FCB FOrmMat. . vuuiiiieiiiinienrienenereereernrseneiessesssseneneesnes
SCB Fields and Definitions.ccovvreiriieeereeieeriennnnnnn.
PRL File FOrmat. ..c.cvvviieieniirenereniereeioiinnneereceeesenennnns
ASCII Symbolsvvieieiiiiiiiiii i e e
ASCII Conversion Table.......cccvviiriiiiiiiiiiiiiiiiinenenns

vii

Table of Contents (continued)

Figures
1-1. Nonbanked System Memory Organization...........ccovueennn... 1-2
1-2. Banked System Memory Organization..........c.cvvevevvrevnnnnenss 1-3
1-3. Banked Memory with Bank 1 in Contextccevvvennnnnnnn 1-4
1-4. CP/M 3 Logical Memory Organization..........ovvviuvereeeerenens 1-5
1-5. System Components and Regions in Logical Memory 1-6
1-6. System Modules and Regions in Logical Memory 1-10
1-7. Disk Organizationoooeeveieereretieneereronnseneresnensennns 1-12
1-8. RSX File FOrmat......oouvviiiininiiiniiiiniiniieinnnesieinnasensan 1-25
2-1. XFCB FOrmat.....c.cvuieiiieeierieroansssssessesarnsnsnosasssonses 2-19
2-2. Directory Label Formatccovvviiiiiiiniriiiniiiiiniinnennnnnen. 2-20
2-3. Directory Record with SFCB........cccivviiiiiriiiniiiinirannnnen. 2-23

Section 1
Introduction to CP/M 3

This section introduces you to the general features of CP/M 3 with an emphasis
on how CP/M 3 organizes your computer’s memory. The section begins by describing
the general memory organization of banked and nonbanked systems and defines the
programming environment they have in common. It then shows how CP/M 3 defines
memory space into standard regions for operating system modules and executing
programs. Subsequent paragraphs describe the components of the operating system,
how they communicate with each other and the application program, and in greater
detail where each component and program is located in memory. After a brief intro-
duction to disk organization, the final section gives examples of system operation.

CP/M 3 is available in two versions: a version that supports bank-switched mem-
ory, and a version that runs on nonbanked systems. CP/M 3 uses the additional
memory available in banked systems to provide functions that are not present in the
nonbanked version. For example, the banked version of CP/M 3 supports file pass-
words; the nonbanked version does not. However, because a nonbanked system
treats passwords the same way as a banked system does when password protection
is not enabled, an application program can run under either system without modifi-
cation.

DIGITAL RESEARCH™

1-1

2
[
.
—
—
-~
-
=
-
—

1.1 Banked/Nonbanked Organization CP/M 3 Programmer’s Guide

1.1 Banked and Nonbanked Memory Organization

The memory organization for a nonbanked CP/M 3 system is very simple, as
shown in Figure 1-1.

TOP OF MEMORY™
BUFFERS
(ORSH
TPA
LOW MEMORY /
(O000H) » AN 064

Figure 1-1. Nonbanked System Memory Organization

In the nonbanked organization, physical memory consists of a single, contiguous
region addressable from 0000H up to a maximum of OFFFFH (64K-1). The shaded
region below the operating system represents the memory space available for the
loading and execution of transient programs. The clear area above the operating
system represents space that GENCPM can allocate to the operating system for disk
record buffers and directory hash tables, as described in the CP/M Plus (CP/M Ver-
sion 3) Operating System System Guide. The minimum size of this area is determined
by the specific hardware requirements of the host microcomputer system.

DIGITAL RESEARCH™

CP/M 3 Programmer’s Guide 1.1 Banked/Nonbanked Organization

To expand memory capacity beyond the 64K address space of an 8-bit micropro-
cessor, CP/M 3 supports bank-switched memory in a special version called the banked
system, In the banked version, the operating system is divided into two modules: the
resident portion and the banked portion. The resident portion resides in common
memory; the banked portion resides just below the top of banked memory in Bank 0.
Figure 1-2 shows memory organization under the banked system.

TOP OF MEMORY »

BUFFERS
0O.S.
(COMMON) -
TOP OF BANKED » |~
MEMORY BANKED
0.s.
(BANK SWITCHED) —
LOW MEMORY NAAAAANAAS AAAAAAAAN
(0000H) » L
BANK 0 BANK 1 BANK N

Figure 1-2. Banked System Memory Organization

In Figure 1-2, Bank 0 is switched in or in context. The top region of memory, the
common region, is always in context; that is, it can always be referenced, no matter

what bank is switched in. Figure 1-3 shows memory organization when Bank 1 is in
context.

@ DIGITAL RESEARCH™

1-3

1.1 Banked/Nonbanked Organization CP/M 3 Programmer’s Guide

TOP OF MEMORY » ~

BUFFERS
0.S.
(COMMON) —
TOP OF BANKED p» — -
MEMORY BANKED
0.8.

(BANK SWITCHED) —

LAAAAAAAAA L,VWWW\)
LOW MEMORY

(0000H) ™

BANK 0 BANK 1 Cee BANK N

AN 065

Figure 1-3. Banked Memory with Bank 1 in Context

From a transient program’s perspective, Bank 1 is always in context. The operating
system can switch to Bank O or other banks when performing operating system
functions without affecting the execution of the transient program. Any bank-switch-
ing performed by the operating system is completely transparent to the calling pro-
gram. Because the major portion of the operating system resides in Bank 0 in banked
systems, more memory space is available for transient programs in banked CP/M 3
systems than in nonbanked systems.

The operating system uses the clear areas in Figures 1-2 and 1-3 for disk record
buffers and directory hash tables. The clear area in the common region above the
operating system represents space that can be allocated for data buffers by GENCPM.
Again, the minimum size of this area is determined by the specific hardware require-
ments of the host microcomputer system.

DIGITAL RESEARCH™

CP/M 3 Programmer’s Guide 1.1 Banked/Nonbanked Organization

The banked version of CP/M 3 requires a minimum of two banks, Bank 0 and
Bank 1, and can support up to 16 banks of memory. Bank numbers are generally
arbitrary with the following exceptions: Bank 0 is the system bank and is in context
when CP/M 3 is started. Bank 1 is the transient program bank, and must be contig-
uous from location zero to the top of banked memory. This requirement does not
apply to the other banks. However, common memory must be contiguous.

The size of the common region is typically 16K. The only size requirement on the
common region is that it must be large enough to contain the resident portion of the
operating system. The maximum top of memory address for both banked and non-
banked systems is 64K-1 (OFFFFH).

In summary, no matter how physical memory is configured, or whether the oper-
ating system is banked or nonbanked, CP/M 3 always organizes memory logically so
that to a transient program in any CP/M 3 system, memory appears as shown in
Figure 1-4.

TOP OF MEMORY »

BUFFERS

0.s.

LOW MEMORY
(0O000H) m- AN 081

Figure 1-4. CP/M 3 Logical Memory Organization

1.2 System Components

Functionally, the CP/M 3 operating system is composed of distinct modules. Tran-
sient programs can communicate with these modules to request system services. Fig-
ure 1-5 shows the regions where these modules reside in logical memory. Note that
from the transient program’s perspective, Figure 1-5 is just a more detailed version
of Figure 1-4.

DIGITAL RESEARCH™
1-5

1.2 System Components CP/M 3 Programmer’s Guide

HIGH MEMORY:

BIOS : BASIC INPUT/OUTPUT SYSTEM
BIOS_BASE:

BDOS : BASIC DISK OPERATING SYSTEM
BDOS_BASE:

LOADER : PROGRAM LOADER MODULE

LOADER_BASE:
RSX(s) : RESIDENT SYSTEM EXTENSIONS

RSX_BASE: 7
TPA : TRANSIENT PROGE%AM AREA
CCP : CONSOLE COMMAND PROCESSOR
0100H:
PAGE ZERO
0000H: AN 063

Figure 1-5. System Components and Regions in Logical Memory

The Basic Input/Output System, BIOS, is a hardware-dependent module that defines
the low-level interface to a particular computer system. It contains the device-driving
routines necessary for peripheral device V/O.

The Basic Disk Operating System, BDOS, is the hardware-independent module that
is the logical nucleus of CP/M 3. It provides a standard operating environment for
transient programs by making services available through numbered system function
calls.

The LOADER module handles program loading for the Console Command Proces-
sor and transient programs. Usually, this module is not resident when transient pro-
grams execute. However, when it is resident, transient programs can access this
module by making BDOS Function 59 calls.

Resident System Extensions, RSXs, are temporary additional operating system
modules that can selectively extend or modify normal operating system functions.
The LOADER module is always resident when RSXs are active.

DIGITAL RESEARCH™
1-6

CP/M 3 Programmer’s Guide 1.2 System Components

The Transient Program Area, TPA, is the region of memory where transient pro-
grams execute. The CCP also executes in this region.

The Console Command Processor, CCP, is not an operating system module, but is
a system program that presents a human-oriented interface to CP/M 3 for the user.

The Page Zero region is not an operating system module either, but functions
primarily as an interface to the BDOS module from the CCP and transient programs.
It also contains critical system parameters.

1.3 System Component Interaction and Communication

This section describes interaction and communication between the modules and
regions defined in Section 1.2. The most significant channels of communication are
between the BDOS and the BIOS, transient programs and the BDOS, and transient
programs and RSXs.

The division of responsibility between the different modules and the way they
communicate with one another provide three important benefits. First, because the
operating system is divided into two modules—one that is configured for different
hardware environments, and one that remains constant on every computer—CP/M 3
software is hardware independent; you can port your programs unchanged to differ-
ent hardware configurations. Second, because all communication between transient
programs and the BDOS is channeled through Page Zero, CP/M 3 transient programs
execute, if sufficient memory is available, independent of configured memory size.
Third, the CP/M 3 RSX facility can customize the services of CP/M 3 on a selective
basis.

1.3.1 The BDOS and BIOS

CP/M 3 achieves hardware independence through the interface between the BDOS
and the BIOS modules of the operating system. This interface consists of a series of
entry points in the BIOS that the BDOS calls to perform hardware-dependent primi-
tive functions such as peripheral device /O. For example, the BDOS calls the CONIN
entry point of the BIOS to read the next console input character.

A system implementor can customize the BIOS to match a specific hardware envi-
ronment. However, even when the BIOS primitives are customized to match the host
computer’s hardware environment, the BIOS entry points and the BDOS remain
constant. Therefore, the BDOS and the BIOS modules work together to give the CCP
and other transient programs hardware-independent access to CP/M 3’s facilities.

DIGITAL RESEARCH™

1.3 Component Interaction CP/M 3 Programmer’s Guide

1.3.2 Applications and the BDOS

Transient programs and the CCP access CP/M 3 facilities by making BDOS func-
tion calls. BDOS functions can create, delete, open, and close disk files, read or write
to opened files, retrieve input from the console, send output to the console or list
device, and perform a wide range of other services described in Section 3, “BDOS
Functions.”

To make a BDOS function call, a transient program loads CPU registers with
specific entry parameters and calls location 0005H in Page Zero. If RSXs are not
active in memory, location 0005H contains a jump instruction to location
BDOS_base + 6. If RSXs are active, location 0005H contains a jump instruction to
an address below BDOS_base. Thus, the Page Zero interface allows programs to run
without regard to where the operating system modules are located in memory. In
addition, transient programs can use the address at location 0006H as a memory
ceiling.

Some BDOS functions are similar to BIOS entry points, particularly in the case of
simple device I/O. For example, when a transient program makes a console output
BDOS function call, the BDOS makes a BIOS console output call. In the case of disk
I/O, however, this relationship is more complex. The BDOS might call many BIOS
entry points to perform a single BDOS file /O function.

Transient programs can terminate execution by jumping to location 0000H in the
Page Zero region. This location contains a jump instruction to BIOS_base + 3, which
contains a jump instruction to the BIOS warm start routine. The BIOS warm start
routine loads the CCP into memory at location 100H and then passes control to it.

The Console Command Processor is a special system program that executes in the
TPA and makes BDOS calls just like an application program. However, the CCP has
a unique role: it gives the user access to operating system facilities while transient
programs are not executing. It includes several built-in commands, such as TYPE and
DIR, that can be executed directly without having to be loaded from disk. When the
CCP receives control, it reads the user’s command lines, distinguishes between built-
in and transient commands, and when necessary, calls upon the LOADER module to
load transient programs from disk into the TPA for execution. Section 1.6.2 describes
CCP operation .in detail.

DIGITAL RESEARCH™
1-8

CP/M 3 Programmer’s Guide 1.3 Component Interaction

1.3.3 Applications and RSXs

A Resident System Extension is a temporary additional operating system module.
An RSX can extend or modify one or more operating system functions selectively.
As with a standard BDOS function, a transient program accesses an RSX function
through a numbered function call.

At any one time there might be zero, one, or multiple RSXs active in memory.
When a transient program makes a BDOS function call, and RSXs are active, each
RSX examines the function number of the call. If the function number matches the
function the RSX is designed to extend or modify, the RSX performs the requested
function. Otherwise, the RSX passes the function request to the next RSX. Noninter-
cepted functions are eventually passed to the BDOS for standard execution.

RSXs are loaded into memory when programs containing RSXs are loaded. The
CP/M 3 utility, GENCOM, can attach RSXs to program files. When attaching RSXs,
GENCOM places a special one page header at the beginning of the program file. The
CCP reads this header, learns that a program has attached RSXs, and loads the RSXs
accordingly. The header itself is not loaded into memory; it merely indicates to the
CCP that RSX loading is required.

The LOADER module is a special type of RSX that supports BDOS function 59,
Load Overlay. It is always resident when RSXs are active. To indicate RSX support
is required, a program that calls function 59 must have an RSX header attached by
GENCOM, even if the program does not require other RSXs. When the CCP
encounters this type of header in a program file when no RSXs are active, it sets the
address at location 0006H in Page Zero to LOADER_base+6 instead of
BDOS_base + 6.

1.4 Memory Region Boundaries
This section reviews memory regions under CP/M 3, and then describes some
details of region boundaries. It then relates the sizes of various modules to the space

available for the execution of transient programs. Figure 1-6 reviews the location of
regions in logical memory.

DIGITAL RESEARCH™

1-9

1.4 Region Boundaries CP/M 3 Programmer’s Guide

HIGH MEMORY:

BIOS : BASIC I/O SYSTEM
BIOS_BASE:

BDOS : BASIC DISK OPERATING SYSTEM
BDOS_BASE:

LLOADER : PROGRAM LOADER MODULE
LOADER_BASE:

RSX(1) : RESIDENT SYSTEM EXTENSION

RSX(N) : RESIDENT SYSTEM EXTENSION

RSX(N)_BASE:
) TPA - TRANSIENT PROGRAM AREA’/
;// '/ /) /) 7 / / /
JCCP : CONSOLE COMMAND PROCESSOR
0100H:
PAGE ZERO
0000H: AN 066

Figure 1-6. System Modules and Regions in Logical Memory

First note that all memory regions in CP/M 3 are page-aligned. This means that
regions and operating system modules must begin on a page boundary. A page is
defined as 256 bytes, so a page boundary always begins at an address where the low-
order byte is zero.

The term High Memory in Figure 1-6 denotes the high address of a CP/M 3
system. This address may fall below the actual top of memory address if space above
the operating system has been allocated for directory hashing or data buffering by
GENCPM. The maximum top of memory address for both banked and nonbanked
systems is 64K-1 (OFFFFH).

The labels BIOS_base, BDOS_base, and LOADER _base represent the base addresses
of the operating system regions. These addresses always fall on page boundaries. The
size of the BIOS region is not fixed, but is determined by the requirements of the
host computer system.

DIGITAL RESEARCH™
1-10

CP/M 3 Programmer’s Guide 1.4 Region Boundaries

The size of the BDOS region differs for the banked and nonbanked versions of
CP/M 3. In the banked version, the resident BDOS size is 6 pages, 1.5K. In the
nonbanked system, the BDOS size ranges from 31 pages, 7.75K, to 33 pages, 8.25K,
depending on system generation options and BIOS requirements.

RSXs are page aligned modules that are stacked in memory below LOADER_base
in memory. In the configuration shown in Figure 1-6, location 0005H of Page Zero
contains a jump to location RSX(N)_base + 6. Thus, the memory ceiling of the TPA
region is reduced when RSXs are active.

Under CP/M 3, the CCP is a transient program that the BIOS loads into the TPA
region of memory at system cold and warm start. The BIOS also loads the LOADER
module at this time, because the LOADER module is attached to the CCP. When the
CCP gains control, it relocates the LOADER module just below BDOS_base. The
LOADER module handles program loading for the CCP. It is three pages long.

The maximum size of a transient program that can be loaded into the TPA is
limited by LOADER_base because the LOADER cannot load a program over itself.
Transient programs may extend beyond this point, however, by using memory above
LOADER_base for uninitialized data areas such as I/O buffers. Programs that use
memory above BDOS_base cannot make BDOS function calls.

1.5 Disk and Drive Organization and Requirements

CP/M 3 can support up to sixteen logical drives, identified by the letters A through
P, with up to 512 megabytes of storage each. A logical drive usually corresponds to
a physical drive on the system, particularly for physical drives that support remova-
ble media such as floppy disks. High-capacity hard disks, however, are commonly
divided up into multiple logical drives. Figure 1-7 illustrates the standard organiza-
tion of a CP/M 3 disk.

DIGITAL RESEARCH™
1-11

1.5 Disk Organization CP/M 3 Programmer’s Guide

TRACK M

CP/M 3 DATA REGION
DATA TRACKS

CP/M 3 DIRECTORY REGION

TRACKN
CCP (OPTIONAL)

SYSTEM TRACKS CPMLDR

COLD BOOT LOADER

TRACK 0 AN 067

Figure 1-7. Disk Organization

In Figure 1-7, the first N tracks are the system tracks. System tracks are required
only on the disk used by CP/M 3 during system cold start or warm start. The
contents of this region are described in Section 1.6.1. All normal CP/M 3 disk access
is directed to the data tracks which CP/M 3 uses for file storage.

The data tracks are divided into two regions: a directory area and a data area. The
directory area defines the files that exist on the drive and identifies the data space
that belongs to each file. The data area contains the file data defined by the directory.
If the drive has adequate storage, a CP/M 3 file can be as large as 32 megabytes.

The directory area is subdivided into sixteen logically independent directories. These
directories are identified by user numbers O through 15. During system operation,
CP/M 3 runs with the user number set to a single value. The user number can be
changed at the console with the USER command. A transient program can change
the user number by calling a BDOS function.

The user number specifies the currently active directories for all the drives on the
system. For example, a PIP command to copy a file from one disk to another gives
the destination file the same user number as the source file unless the PIP command
- is modified by the [G] option.

DIGITAL RESEARCH™
1-12

CP/M 3 Programmer’s Guide 1.5 Disk Organization

The directory identifies each file with an eight-character filename and a three-
character filetype. Together, these fields must be unique for each file. Files with the
same filename and filetype can reside in different user directories on the same drive
without conflict. Under the banked version of CP/M 3, a file can be assigned an
eight-character password to protect the file from unauthorized access.

All BDOS functions that involve file operations specify the requested file by file-
name and filetype. Multiple files can be specified by a technique called ambiguous
reference, which uses question marks and asterisks as wildcard characters to give
CP/M 3 a pattern to match as it searches the directory. A question mark in an
ambiguous reference matches any value in the same position in the directory filename
or filetype field. An asterisk fills the remainder of the filename or filetype field of the
ambiguous reference with question marks. Thus, a filename and filetype field of all
question marks, ??22?2?2.2??, equals an ambiguous reference of two asterisks, *.*,
and matches all files in the directory that belong to the current user number.

The CP/M 3 file system automatically allocates directory space and data area space
when a file is created or extended, and returns previously allocated space to free
space when a file is deleted or truncated. If no directory or data space is available for
a requested operation, the BDOS returns an error to the calling program. In general,
the allocation and deallocation of disk space is transparent to the calling program.
As a result, you need not be concerned with directory and drive organization when
using the file system facilities of CP/M 3.

1.6 System Operation

This section introduces the general operation of CP/M 3. This overview covers
topics concerning the CP/M 3 system components, how they function and how they
interact when CP/M 3 is running. This section does not describe the total function-
ality of CP/M 3, but simply introduces basic CP/M 3 operations.

For the purpose of this overview, CP/M 3 system operation is divided into five
categories. First is system cold start, the process that begins execution of the operat-
ing system. This procedure ends when the Console Command Processor, CCP, is
loaded into memory and the system prompt is displayed on the screen. Second is the
operation of the CCP, which provides the user interface to CP/M 3. Third is transient
program initiation, execution and termination. Fourth is the way Resident System
Extensions run under CP/M 3. The fifth and final category describes the operation of
the CP/M 3 SUBMIT utility.

DIGITAL RESEARCH™
1-13

1.6 System Operation CP/M 3 Programmer’s Guide

1.6.1 Cold Start Operation

The cold start procedure is typically executed immediately after the computer is
turned on. The cold start brings CP/M 3 into memory and gives it control of the
computer’s resources. Cold start is a four-stage procedure.

In the first stage, a hardware feature, or ROM-based software associated with
system reset, loads a small program, called the Cold Boot Loader, into memory from
the system tracks of drive A (see figure 1-6). The Cold Boot Loader is usually 128 or
256 bytes long.

The Cold Boot Loader performs the second stage of the cold start process. It loads
the CP/M 3 loader program, CPMLDR, into memory from the system tracks of the
system disk and passes control to it. During this stage, the Cold Boot Loader can
also perform other tasks, such as initializing hardware dependent I/O ports.

CPMLDR performs the third stage in the cold start process. First, it reads the
CPM3.SYS file from the data area of the disk. The CPM3.SYS file, which is created
by the CP/M 3 system generation utility GENCPM, contains the BDOS and BIOS
system components and information indicating where these modules are to reside in
memory. Once CPMLDR has loaded the BDOS and BIOS into memory, it sends a
sign-on message to the console and passes control to the BIOS Cold Boot entry point.
If specified as a GENCPM option, CPMLDR can also display a memory map of the
CP/M 3 system.

CPMLDR is a small, self-contained version of CP/M 3 that supports only console
output and sequential file input. Consistent with CP/M 3’s organization, it contains
two modules, an invariant CPMLDR_BDOS, and a variant CPMLDR_BIOS that is
adapted to match the host microcomputer hardware environment. Cold start initiali-
zation of /O ports and similar functions can also be performed in the CPMLDR_BIOS
module during the third stage of cold start.

In the banked version of CP/M 3, these first three stages of the cold boot procedure
are performed with Bank O in context. The BIOS Cold Start function switches in
Bank 1 before proceeding to stage four.

DIGITAL RESEARCH™
1-14

CP/M 3 Programmer’s Guide 1.6 System Operation

The fourth and final stage in the cold start procedure is performed by the BIOS
Cold Start function, Function 0. The entry point to this function is located at
BIOS_base as described in Section 1.4. The BIOS Cold Start function begins by
performing any remaining hardware initialization, and initializing Page Zero. To
initialize Page Zero, the BIOS Cold Start function places a jump to BIOS_base + 3,
the BIOS Warm Start entry point, at location 0000H, and a jump to BDOS_base + 6,
the BDOS entry point, at location 0005H in memory.

The BIOS Cold Start function completes the fourth stage by loading the CCP into
the TPA region of memory and passing control to it. The CCP can be loaded from
one of two locations. If there is sufficient space in the system tracks for the CCP, it
is usually loaded from there. If there is not enough space in the system tracks, the
BIOS Cold Start function can read the CCP from the file CCP.COM.

On some banked systems, the CCP is also copied to an alternate bank, so that
warm start operations can copy the CCP into the TPA from memory. This speeds up
the system warm start operation, and makes it possible to warm start the system
without having to access a system disk.

When the CCP gains control, it displays a prompt that references the default disk.
If a PROFILE.SUB submit file is present on the default drive, the CCP executes this
submit file before prompting the user for a command.

At this point, the cold start procedure is complete. Note that the user number is
set to zero when CP/M 3 is cold started. However, the PROFILE submit file can set
the user number to another value if this is desirable.

The cold start procedure is designed so that the system tracks need to be initialized
only once. This is accomplished because the system track routines are independent of
the configured memory size of the CP/M 3 system. The Cold Boot Loader loads
CPMLDR into a constant location in memory. This location is chosen when the
system is configured. However, CPMLDR locates the BDOS and BIOS system com-
ponents in memory as specified by the CPM3.SYS file. The CCP always executes at
location 100H in the TPA. Thus, CP/M 3 allows the user to generate a new system
with GENCPM, and then run it without having to update the system tracks of the
system disk.

0 DIGITAL RESEARCH™

1-15

1.6 System Operation CP/M 3 Programmer’s Guide

1.6.2 CCP Operation

The Console Command Processor provides the user access to CP/M 3 facilities
when transient programs are not running. It also reads the user’s command lines,
differentiates between built-in commands and transient commands, and executes the
commands accordingly.

This section describes the responsibilities and capabilities of the CCP in some
detail. The section begins with a description of the CCP’s activities when it first
receives control from the Cold Start procedure. The section continues with a general
discussion of built-in commands, and concludes with a step-by-step description of
the procedure the CCP follows to execute the user’s commands.

When the CCP gains control following a cold start procedure, it displays the
system prompt at the console. This signifies that the CCP is ready to execute a
command. The system prompt displays the letter of the drive designated as the initial
default drive during GENCPM operation. For example, if drive A was specified as
the initial default drive, the CCP displays the following prompt:

A>

After displaying the system prompt, the CCP scans the directory of the default drive
for the file PROFILE.SUB. If the file exists, the CCP creates the command line
SUBMIT PROFILE; otherwise the CCP reads the user’s first command line by mak-
ing a BDOS Read Console Buffer function call (BDOS Function 10).

The CCP accepts two different command forms. The simplest CCP command form
changes the default drive. The following example illustrates a user changing the
default drive from A to B.

AxB:
B>

This command is one of the CCP’s built-in commands. Built-in commands are part
of the CCP. They reside in memory while the CCP is active, and therefore can be
executed without referencing a disk.

DIGITAL RESEARCH™
1-16

CP/M 3 Programmer’s Guide 1.6 System Operation

The second command form the CCP accepts is the standard CP/M command line.
A standard CP/M command line consists of a command keyword followed by an
optional command tail. The command keyword and the command tail can be typed
in any combination of upper-case and lower-case letters; the CCP converts all letters
in the command line to upper-case. The following syntax defines the standard CP/M
command line: :

<command> <command tail>

where
<command> => <filespec> or
<built-in>
<command tail> => (no command tail) or
<filespec> or <filespec><delimiter><filespec>
<filespec> => {d:}filename{.typ}{;password}
<built-in> => one of the CCP built-in commands
<delimiter> => one or more blanks or a tab or one of the
following:“ =,[]<>”
d: => CP/M 3 drive specification,A”through“P”
filename => 1 to 8 character filename
typ => 1 to 3 character filetype
password => 1 to 8 character password value

Fields enclosed in curly brackets are optional. If there is no drive {d:} present in a file
specification <filespec>, the default drive is assumed. If the type field {.typ} is omit-
ted, a type field of all blanks is implied. Omitting the password field {;password}
implies a password of all blanks. When a command line is entered at the console, it
is terminated by a return or line-feed keystroke.

Transient programs that run under CP/M 3 are not restricted to the above com-
mand tail definition. However, the CCP only parses command tails in this format for
transient programs. Transient programs that define their command tails differently
must perform their own command tail parsing.

DIGITAL RESEARCH™

1.6 System Operation CP/M 3 Programmer’s Guide

The command field must identify either a built-in command, a transient program,
or a submit file. For example, USER is the keyword that identifies the built-in com-
mand that changes the current user number. The CP/M 3 CCP displays the user
number in the system prompt when the user number is non-zero. The following
example illustrates changing the user number from zero to 15.

B>USER 15
1585

The following table summarizes the built-in commands.

Table 1-1. CP/M 3 Built-in Commands

Command Meaning

DIR displays a list of all filenames from a disk directory except those
marked with the SYS attribute.

DIRSYS displays a filename list of those files marked with the SYS
attribute in the directory.

ERASE erases a filename from a disk directory and releases the storage
occupied by the file.

RENAME renames a file.

TYPE displays the contents of an ASCII character file at your console
output device.

USER changes from one user number to another.

Some built-in commands have associated command files which expand upon the
options provided by the built-in command. If the CCP reads a command line and
discovers the built-in command does not support the options requested in the com-
mand line, the CCP loads the built-in function’s corresponding command file to
perform the command. The DIR command is an example of this type of command.
Simple DIR commands are supported by the DIR built-in directly. More complex
requests are handled by the DIR.COM utility.

DIGITAL RESEARCH™

CP/M 3 Programmer’s Guide 1.6 System Operation

All command keywords that do not identify built-in commands identify either a
transient program file or a submit file. If the CCP identifies a command keyword as
a transient program, the transient program file is loaded into the TPA from disk and
executed. If it recognizes a submit file, the CCP reconstructs the command line into
the following form:

SUBMIT <command> <command tail>

and attempts to load and execute the SUBMIT utility. Thus, the original command
field becomes the first command tail field of the SUBMIT command. Section 1.6.5
describes the execution of CP/M 3’s SUBMIT utility. The procedure the CCP follows
to parse a standard command line and execute built-in and transient commands is
described as follows:

1. The CCP parses the command line to pick up the command field.

2. If the command field is not preceded by a drive specification, or followed by
a filetype or password field, the CCP checks to see if the command is a CCP
built-in function. If the command is a built-in command, and the CCP can
support the options specified in the command tail, the CCP executes the
command. Otherwise, the CCP goes on to step 3.

3. At this point the CCP assumes the command field references a command file
or submit file on disk. If the optional filetype field is omitted from the com-
mand, the CCP usually assumes the command field references a file of type
COM. For example, if the command field is PIP, the CCP attempts to open
the file PIP.COM.

Optionally, the CP/M 3 utility SETDEF can specify that a filetype of SUB
also be considered when the command filetype field is omitted. When this
automatic submit option is in effect, the CCP attempts to open the command
with a filetype of COM. If the COM file cannot be found, the CCP repeats
the open operation with a filetype of SUB. As an alternative, the order of
open operations can be reversed so that the CCP attempts to open with a
filetype of SUB first. In either case, the file that is found on disk first deter-
mines the filetype field that is ultimately associated with the command.

If the filetype field is present in the command, it must equal COM, SUB or
PRL. A PRL file is a Page Relocatable file used in Digital Research’s multi-
user operating system, MP/M™. Under CP/M 3, the CCP handles PRL files
exactly like COM files.

DIGITAL RESEARCH™

1-19

1.6 System Operation CP/M 3 Programmer’s Guide

If the command field is preceded by a drive specification {d:}, the CCP attempts
to open the command or submit file on the specified drive. Otherwise, the
CCP attempts to open the file on the drives specified in the drive chain.

The drive chain specifies up to four drives that are to be referenced in sequence
for CCP open operations of command and submit files. If an open operation
is unsuccessful on a drive in the drive chain because the file cannot be found,
the CCP repeats the open operation on the next drive in the chain. This
sequence of open operations is repeated until the file is found, or the drive
chain is exhausted. The drive chain contains the current default drive as its
only drive unless the user modifies the drive chain with the CP/M 3 SETDEF
utility.

When the current user number is non-zero, all open requests that fail because
the file cannot be found, attempt to locate the command file under user zero.
If the file exists under user zero with the system attribute set, the file is
opened from user zero. This search for a file under user zero is made by the
BDOS Open File function. Thus, the user zero open attempt is made before
advancing to the next drive in the search chain.

When automatic submit is in effect, the CCP attempts to open with the first
filetype, SUB or COM, on all drives in the search chain before trying the
second filetype.

In the banked system, if a password specified in the command field does not
match the password of a file on a disk protected in Read mode, the CCP file
open operation is terminated with a password error.

If the CCP does not find the command or submit file, it echoes the command
line followed by a question mark to the console. If it finds a command file
with a filetype of COM or PRL, the CCP proceeds to step 4. If it finds a
submit file, it reconstructs the command line as described above, and repeats
step 3 for the command, SUBMIT.COM.

1-20

DIGITAL RESEARCH™

CP/M 3 Programmer’s Guide 1.6 System Operation

4. When the CCP successfully opens the command file, it initializes the follow-
ing Page Zero fields for access by the loaded transient program:

0050H : Drive that the command file was loaded from
0051H : Password address of first file in command tail
00353H : Password length of first file in command tail
0054H : Password address of second file in command tail
0056H : Password length of second file in command tail
005CH : Parsed FCB for first file in command tail
006CH : Parsed FCB for second file in command tail
0080H : Command tail preceded by command tail length

Page Zero initialization is covered in more detail in Section 2.4.

5. At this point, the CCP calls the LOADER module to load the command file
into the TPA. The LOADER module terminates the load operation if a read
error occurs, or if the available TPA space is not large enough to contain the
file. If no RSXs are resident in memory, the available TPA space is deter-
mined by the address LOADER_base because the LOADER cannot load over
itself. Otherwise, the maximum TPA address is determined by the base address
of the lowest RSX in memory.

6. Once the program is loaded, the LOADER module checks for a RSX header
on the program. Programs with RSX headers are identified by a return
instruction at location 100H.

If an RSX header is present, the LOADER relocates all RSXs attached to the
end of the program, to the top of the TPA region of memory under the
LOADER module, or any other RSXs that are already resident. It also updates
the address in location 0006H of Page Zero to address the lowest RSX in
memory. Finally, the LOADER discards the RSX header and relocates the
program file down one page in memory so that the first executable instruc-
tion resides at 100H.

7. After initializing Page Zero, the LOADER module sets up a 32-byte stack
with the return address set to location 0000H of Page Zero and jumps to
location 100H. At this point, the loaded transient program begins execution.

DIGITAL RESEARCH™

1-21

1.6 System Operation CP/M 3 Programmer’s Guide

When a transient program terminates execution, the BIOS warm start routine
reloads the CCP into memory. When the CCP receives control, it tests to see if RSXs
are resident in memory. If not, it relocates the LOADER module below the BDOS
module at the top of the TPA region of memory. Otherwise, it skips this step because
the LOADER module is already resident. The CCP execution cycle then repeats.

Unlike earlier versions of CP/M, the CCP does not reset the disk system at warm
start. However, the CCP does reset the disk system if a CTRL-C is typed at the
prompt.

1.6.3 Transient Program Operation

A transient program is one that the CCP loads into the TPA region of memory
and executes. As the name transient implies, transient programs are not system resi-
dent. The CCP must load a transient program into memory every time the program
is to be executed. For example, the utilities PIP and RMAC™ that are shipped with
CP/M 3 execute as transient programs; programs such as word processing and
accounting packages distributed by applications vendors also execute as transient
programs under CP/M 3.

Section 1.6.2 describes how the CCP prepared the CP/M 3 environment for the
execution of a transient program. To summarize, the CCP initializes Page Zero to
contain parsed command-line fields and sets up a 32-byte stack before jumping to
location 0100H to pass control to the transient program. In addition, the CCP might
also load RSXs attached to the command file into memory for access by the transient
program.

Generally, an executing transient program communicates with the operating sys-
tem only through BDOS function calls. Transient programs make BDOS function
calls by loading the CPU registers with the appropriate entry parameters and calling
location 0005H in Page Zero.

Transient programs can use BDOS Function 50, Call BIOS, to access BIOS entry
points. This is the preferred method for accessing the BIOS; however, for compatibil-
ity with earlier releases of CP/M, transient programs can also make direct BIOS calls
for console and list I/O by using the jump instruction at location 0000H in Page
Zero. But, to simplify portability, use direct BIOS calls only where the primitive level
of functionality provided by the BIOS functions is absolutely required. For example,
a disk formatting program must bypass CP/M’s disk organization to do its job, and
therefore is justified in making direct BIOS calls. Note however, that disk formatting
programs are rarely portable.

DIGITAL RESEARCH™
1-22

CP/M 3 Programmer’s Guide 1.6 System Operation

A transient program can terminate execution in one of three ways: by jumping to
location 0000H, by making a BDOS System Reset call, or by making a BDOS Chain
To Program call. The first two methods are equivalent; they pass control to the BIOS
warm start entry point, which then loads the CCP into the TPA, and the CCP
prompts for the next command.

The Chain to Program call allows a transient program to specify the next com-
mand to be executed before it terminates its own execution. A Program Chain call
executes a standard warm boot sequence, but passes the command specified by the
terminating program to the CCP in such a way that the CCP executes the specified
command instead of prompting the console for the next command.

Transient programs can also set a Program Return Code before terminating by
making a BDOS Function 108 call, Get/Set Program Return Code. The CCP initial-
izes the Program Return Code to zero, successful, when it loads a transient program,
unless the program is loaded as the result of a program chain. Therefore, a transient
program that terminates successfully can use the Program Return Code to pass a
value to a chained program. If the program terminates as the result of a BDOS fatal
error, or a CTRL-C entered at the console, the BDOS sets the return code to an
unsuccessful value. All other types of program termination leave the return code at
its current value.

The CCP has a conditional command facility that uses the Program Return Code.
If a command line submitted to the CCP by the SUBMIT utility begins with a colon,
the CCP skips execution of the command if the previous command set an unsuccess-
ful Program Return Code. In the following example, the SUBMIT utility sends a
command sequence to the CCP:

A>SUBMIT SUBFILE
A:COMPUTE RESULTS.DAT
AX:REPORT RESULTS.DAT

The CCP does not execute the REPORT command if the COMPUTE command sets
an unsuccessful Program Return Code.
1.6.4 Resident System Extension Operation

This section gives a general overview of RSX use, then describes how RSXs are
loaded, defines the RSX file structure, and tells how the LOADER module uses the
RSX prefix and flags to manage RSX activity.

DIGITAL RESEARCH™

1-23

1.6 System Operation CP/M 3 Programmer’s Guide

A Resident System Extension (RSX) is a special type of program that can be
attached to the operating system to modify or extend the functionality of the BDOS.
RSX modules intercept BDOS functions and either perform them, translate them into
other BDOS functions, or pass them through untouched. The BDOS executes non-
intercepted functions in the standard manner.

A transient program can also use BDOS Function 60, Call Resident System Exten-
sion, to call an RSX for special functions. Function 60 is a general purpose function
that allows customized interfaces between programs and RSXs.

Two examples of RSX applications are the GET utility and the LOADER module.
The GET.COM command file has an attached RSX, GET.RSX, which intercepts all
console input calls and returns characters from the file specified in the GET command
line. The LOADER module is another example of an RSX, but it is special because
it supports Function 59, Load Overlay. It is always resident in memory when other
RSXs are active.

RSXs are loaded into memory at program load time. As described in Section 1.6.2,
after the CCP locates a command file, it calls the LOADER module to load the
program into the TPA. The LOADER loads the transient program into memory
along with any attached RSXs. Subsequently, the loader relocates each attached RSX
to the top of the TPA and adjusts the TPA size by changing the jump at location
0005H in Page Zero to point to the RSX. When RSX modules reside in memory, the
LOADER module resides directly below the BDOS, and the RSX modules stack
downward from it.

The order in which the RSX modules are stacked affects the order in which they
intercept BDOS calls. A more recently stacked RSX has precedence over an older
RSX. Thus, if two RSXs in memory intercept the same BDOS function, the more
recently loaded RSX handles the function.

The CP/M 3 utility GENCOM attaches RSX modules to program files. Program
files with attached RSXs have a special one page header that the LOADER recognizes
when it loads the command file. GENCOM can also attach one or more RSXs to a
null command file so that the CCP can load RSXs without having to execute a
transient program. In this case, the command file consists of the RSX header fol-
lowed by the RSXs.

RSX modules are Page Relocatable, PRL, files with the file type RSX. RSX files
must be page relocatable because their execution address is determined dynamically
by the LOADER module at load time. RSX files have the following format:

DIGITAL RESEARCH™
1-24

CP/M 3 Programmer’s Guide 1.6 System Operation

END OF FILE:
PRL BIT MAP
RSX CODE
RSX PREFIX
0100H:
256 BYTE PRL HEADER
0000H: AN 080

Figure 1-8. RSX File Format

RSX files begin with a one page PRL header that specifies the total size of the RSX
prefix and code sections. The PRL bit map is a string of bits identifying those bytes
in the RSX prefix and code sections that require relocation. The PRL format is
described in detail in Appendix B. Note that the PRL header and bit map are removed
when an RSX is loaded into memory. They are only used by the LOADER module
to load the RSX.

The RSX prefix is a standard data structure that the LOADER module uses to
manage RSXs (see Section 4.4). Included in this data structure are jump instructions
to the previous and next RSX in memory, and two flags. The LOADER module
initializes and updates these jump instructions to maintain the link from location 6
of Page Zero to the BDOS entry point. The RSX flags are the Remove flag and the
Nonbanked flag. The Remove flag controls RSX removal from memory. The CCP
tests this flag to determine whether or not it should remove the RSX from memory
at system warm start. The nonbanked flag identifies RSXs that are loaded only in
nonbanked CP/M 3 systems. For example, the CP/M 3 RSX, DIRLBL.RSX, is a
nonbanked RSX. It provides BDOS Function 100, Set Directory Label, support for
nonbanked systems only. Banked systems support this function in the BDOS.

The RSX code section contains the main body of the RSX. This section always
begins with code to intercept the BDOS function that is supported by the RSX.
Nonintercepted functions are passed to the next RSX in memory. This section can
also include initialization and termination code that transient programs can call with
BDOS Function 60.

DIGITAL RESEARCH™
1-25

1.6 System Operation CP/M 3 Programmer’s Guide

When the CCP gains control after a system warm start, it removes any RSXs in
memory that have the Remove flag set to OFFH. All other RSXs remain active in
memory. Setting an RSX’s Remove flag to OFFH indicates that the RSX is not active
and it can be removed. Note that if an RSX marked for removal is not the lowest active
RSX in memory, it still occupies memory after removal. Although the removed RSX
cannot be executed, its space is returned to the TPA only when all the lower RSXs are
removed.

There is one special case where the CCP does not remove an RSX with the Remove
flag set to OFFH following warm start. This case occurs on warm starts following the
load of an empty file with attached RSXs. This exception allows an RSX with the
Remove flag set to be loaded into memory before a transient program. The transient
program can then access the RSX during execution. After the transient program
terminates, however, the CCP removes the RSX from the system environment.

As an example of RSX operation, here is a description of the operation of the GET
utility. The GET.COM command file has an attached RSX. The LOADER moves
this RSX to the top of the TPA when it loads the. GET.COM command file. The
GET utility performs necessary initializations which include opening the ASCII file
specified in the GET command line. It also makes a BDOS Function 60 call to
initialize the GET.RSX. At this point, the GET utility terminates. Subsequently, the
GET.RSX intercepts all console input calls and returns characters from the file speci-
fied in the GET command line. It continues this action until it reads end-of-file. At
this point, it sets its Remove flag in the RSX prefix, and stops intercepting console
input. On the following warm boot, the CCP removes the RSX from memory.

1.6.5 SUBMIT Operation
A SUBMIT command line has the following syntax:

SUBMIT <filespec> <parameters>

If the CCP identifies a command as a submit file, it automatically inserts the SUBMIT
keyword into the command line as described in Section 1.6.2.

DIGITAL RESEARCH™
1-26

CP/M 3 Programmer’s Guide 1.6 System Operation

When the SUBMIT utility begins execution, it opens and reads the file specified by
<filespec> and creates a temporary submit file of type $$$ on the system’s tempo-
rary file drive. GENCPM initializes the temporary file drive to the CCP’s current
default drive. The SETDEF utility can set the temporary file drive to a specific drive.
As it creates the temporary file, SUBMIT performs the parameter substitutions requested
by the <parameters> subfield of the SUBMIT command line. See the CP/M Plus
(CPIM Version 3) Operating System User’s Guide for a detailed description of this
process.

After SUBMIT creates the temporary submit file, its operation is similar to that of
the GET utility described in Section 1.6.4. The SUBMIT command file also has an
attached RSX that performs console input redirection from a file. However, the
SUBMIT RSX expands upon the simpler facilities provided by the GET RSX. Com-
mand lines in a submit file can be marked to indicate whether they are program or
CCP input. Furthermore, if a program exhausts all its program input, the next SUB-
MIT command is a CCP command, the SUBMIT RSX temporarily reverts to console
input. Redirected input from the submit file resumes when the program terminates.

Because CP/M 3’s submit facility is implemented with RSXs, submit files can be
nested. That is, a submit file can contain additional SUBMIT or GET commands.
Similarly, a GET command can specify a file that contains GET or SUBMIT com-
mands. For example, when a SUBMIT command is encountered in a submit file, a
new SUBMIT RSX is created below the current RSX. The new RSX handles console
input until it reads end-of-file on its temporary submit file. At this point, control
reverts to the previous SUBMIT RSX.

1.7 System Control Block

The System Control Block, SCB, is a 100 byte CP/M 3 data structure that resides
in the BDOS system component. The SCB contains internal BDOS flags and data,
CCP flags and data, and other system information such as console characteristics and
the current date and time. The BDOS, BIOS, CCP system components as well as
CP/M 3 utilities and RSXs reference SCB fields. BDOS Function 49, Get/Set System
C}Ilontrol Block, provides access to the SCB fields for transient programs, RSXs, and
the CCP.

DIGITAL RESEARCH™
1-27

1.7 System Control Block CP/M 3 Programmer’s Guide

However, use caution when you access the SCB through Function 49 for two
reasons. First, the SCB is a CP/M 3 data structure. Digital Research’s multi-user
operating system, MP/M, does not support BDOS Function 49. Programs that access
the SCB can run only on CP/M 3. Secondly, the SCB contains critical system param-
eters that reflect the current state of the operating system. If a program modifies these
parameters illegally, the operating system might crash. However, for application writ-
ers who are writing system-oriented applications, access to the SCB variables might
prove valuable.

For example, the CCP default drive and current user number are maintained in the
System Control Block. This information is displayed in the system prompt. If a
transient program changes the current disk or user number by making an explicit
BDOS call, the System Control Block values are not changed. They continue to reflect
the state of the system when the transient program was loaded. For compatibility
with CP/M Version 2, the current disk and user number are also maintained in
location 0004H of Page Zero. The high-order nibble contains the user number, and
the low-order nibble contains the drive.

Refer to the description of BDOS Function 49 in Section 2.5 for more information
on the System Control Block. The SCB fields are also discussed in Appendix A.

End of Section 1

DIGITAL RESEARCH™
1-28 '

Section 2
The BDOS System Interface

This section describes the operating system services available to a transient pro-
gram through the BDOS module of CP/M 3. The section begins by defining how a
transient program calls BDOS functions, then discusses serial I/O for console, list and
auxiliary devices, the file system, and Page Zero initialization.

2.1 BDOS Calling Conventions

CP/M 3 uses a standard convention for BDOS function calls. On entry to the
BDOS, register C contains the BDOS function number, and register pair DE contains
a byte or word value or an information address. BDOS functions return single-byte
values in register A, and double-byte values in register pair HL. In addition, they
return with register A equal to L, and register H equal to B. If a transient program
makes a BDOS call to a nonsupported function number in the range of 0 to 127, the
BDOS returns with register pair HL set to OFFFFH. For compatibility with MP/M,
the BDOS returns with register pair HL set to 0000H on nonsupported function
numbers in the range of 128 to 255. Note that CP/M 2 returns with HL set to zero
on all invalid function calls. CP/M 3’s register passing conventions for BDOS func-
tion calls are consistent with the conventions used by the Intel PL/M systems pro-
gramming language.

When a transient program makes a BDOS function call, the BDOS does not restore
registers to their entry values before returning to the calling program. The responsi-
bility for saving and restoring any critical register values rests with the calling program.

When the CCP loads a transient program, the LOADER module sets the stack
pointer to a 16 level stack, and then pushes the address 0000H onto the stack. Thus,
an immediate return to the system is equivalent to a jump to 0000H. However, most
transient programs set up their own stack, and terminate execution by making a
BDOS System Reset call (Function 0) or by jumping to location 0000H.

DIGITAL RESEARCH™
2-1

2.1 BDOS Calling Conventions CP/M 3 Programmer’s Guide

The following example illustrates how a transient program calls a BDOS function.
This program reads characters continuously until it encounters an asterisk. Then it
terminates execution by returning to the system.

bkdos equ 0005h iBDOS entry roint in Page Zero
conin equ i iBDOS console inPut function
H

ord 100h iBase of Transient Prodram Area
nextc: mvi csconin

call bdos iReturn character in A

cri ‘x! jEnd of processing?

Jnz nexte iLoor if not

ret iTerminate Prodram

end

2.2 BDOS Serial Device I/0

Under CP/M 3, serial device I/O is simply input to and output from simple devices
such as consoles, line printers, and communications devices. These physical devices
can be assigned the logical device names defined below:

CONIN: logical console input device
CONOUT: logical console output device
AUXIN: logical auxiliary input device
AUXOUT: logical auxiliary output device
LST: logical list output device

If your system supports the BIOS DEVTBL function, the CP/M 3 DEVICE utility
can display and change the assignment of logical devices to physical devices. DEVICE
can also display the names and attributes of physical devices supported on your
system. If your system does not support the DEVTBL entry point, then the logical to
physical device assignments are fixed by the BIOS.

In general, BDOS serial I/O functions read and write an individual ASCII charac-
ter, or character string to and from these devices, or test the device’s ready status.
For these BDOS functions, a string of characters is defined as zero to N characters
terminated by a delimiter. A block of characters is defined as zero to N characters
where N is specified by a word count field. The maximum value of N in both cases
is limited only by available memory. The following list summarizes BDOS serial
device I/O functions.

DIGITAL RESEARCH™

CP/M 3 Programmer’s Guide 2.2 BDOS Serial Device 1/0

Read a character from CONIN:

Read a character buffer from CONIN:

Write a character to CONOUT:

Werite a string of characters to CONOUT:

Write a block of characters to CONOUT:

Read a character from AUXIN:

Write a character to AUXOUT:

Write a character to LST:

Write a block of characters to LST:

Interrogate CONIN:, AUXIN:, AUXOUT: ready

CP/M 3 cannot run unless CONIN: and CONOUT: are assigned to a physical
console. The remaining logical devices can remain unassigned. If a logical output
device is not assigned to a physical device, an output BDOS call to the logical device
performs no action. If a logical input device is not assigned to a physical device, an
input BDOS call to the logical device typically returns a CTRL-Z (1AH), which
indicates end-of-file. Note that these actions depend on your system’s BIOS
implementation.

2.2.1 BDOS Console I/0

Because a transient program’s main interaction with its user is through the console,
the BDOS supports many console /O functions. Console /O functions can be divided
into four categories: basic console 1/O, direct console 1/O, buffered console input,
and special console functions. Using the basic console 1/O functions, programs can
access the console device for simple input and output. The basic console I/O func-
tions are:

1. Console Input - Inputs a single character
2. Console Output- Outputs a single character

9. Print String - Outputs a string of characters
11. Console Status - Signals if a character is ready for input
111. Print Block - Outputs a block of characters

The input function echoes the character to the console so that the user can identify
the typed character. The output functions expand tabs in columns of eight characters.

@ DIGITAL RESEARCH™
2-3

2.2 BDOS Serial Device I/0 CP/M 3 Programmer’s Guide

The basic I/O functions also monitor the console to stop and start console output
scroll at the user’s request. To provide this support, the console output functions
make internal status checks for an input character before writing a character to the
output device. The console input and console status functions also check the input
character. If the user types a CTRL-S, these functions make an additional BIOS
console input call. This input call suspends execution until a character is typed. If the
typed character is not a CTRL-Q, an additional BIOS console input call is made.
Execution and console scrolling resume when the user types a CTRL-Q.

When the BDOS is suspended because of a typed CTRL-S, it scans input for three
special characters: CTRL-Q, CTRL-C, and CTRL-P. If the user types any other
character, the BDOS echoes a bell character, CTRL-G, to the console, discards the
input character, and continues the scan. If the user types a CTRL-C, the BDOS
executes a warm start which terminates the calling program. If the user types a
CTRL-P, the BDOS toggles the printer echo switch. The printer echo switch controls
whether console output is automatically echoed to the list device, LST:. The BDOS
signals when it turns on printer echo by sending a bell character to the console.

All basic console I/O functions discard any CTRL-Q or CTRL-P character that is
not preceded by a CTRL-S character. Thus, BDOS function 1 cannot read a CTRL-
S, CTRL-Q, or CTRL-P character. Furthermore, these characters are invisible to the
console status function.

The second category of console I/O is direct console /0. BDOS function 6 can
provide direct console I/O in situations where unadorned console /O is required.
Function 6 actually consists of several sub-functions that support direct console input,
output, and status checks. The BDOS does not filter out special characters during
direct console I/O. The direct output sub-function does not expand tabs, and the
direct input sub-function does not echo typed characters to the console.

The third category of console I/O accepts edited input from the console. The only
function in this category, Function 10, Read Buffer Input, reads an input line from a
ouffer and recognizes certain control characters that edit the input. As an option, the
line to be edited can be initialized by the calling program.

In the nonbanked version of CP/M 3, editing within the buffer is restricted to the
last character on the line. That is, to edit a character embedded in the line, the user
must delete all characters that follow the erroneous character, correct the error, and
then retype the remainder of the line. The banked version of CP/M 3 supports
complete line editing in which characters can be deleted and inserted anywhere in the
line. In addition, the banked version can also recall the previously entered line.

DIGITAL RESEARCH™

CP/M 3 Programmer’s Guide 2.2 BDOS Serial Device 1/0

Function 10 also filters input for certain control characters. If the user types a
CTRL-C as the first character in the line, Function 10 terminates the calling program
by branching to the BIOS warm start entry point. A CTRL-C in any other position
is simply echoed at the console. Function 10 also watches for a CTRL-P keystroke,
and if it finds one at any position in the command line, it toggles the printer echo
switch. Function 10 does not filter CTRL-S and CTRL-Q characters, but accepts
them as normal input. In general, all control characters that Function 10 does not
recognize as editing control characters, it accepts as input characters. Function 10
identifies a control character with a leading caret, ", when it echoes the control
character to the console. Thus, CTRL-C appears as "C in a Function 10 command
line on the screen.

The final category of console /O functions includes special functions that modify
the behavior of other console functions. These functions are:

109. Get/Set Console Mode
110. Get/Set Output Delimiter

Function 110 can get or set the current delimiter for Function 9, Print String. The
delimiter is $, when a transient program begins execution. Function 109 gets or sets
a 16-bit system variable called the Console Mode. The following list describes the
bits of the Console Mode variable and their functions:

bit 0 : If this bit is set, Function 11 returns true only if a CTRL-C is typed at the
console. Programs that make repeated console status calls to test if execution
should be interrupted, can set this bit to interrupt on CTRL-C only. The
CCP DIR and TYPE built-in commands run in this mode.

bit 1 : Setting this bit disables stop and start scroll support for the basic console
I/O functions, which comprise the first category of functions described in
this section. When this bit is set, Function 1 reads CTRL-S, CTRL-Q, and
CTRL-P, and Function 11 returns true if the user types these characters. Use -
this mode in situations where raw console input and edited output is needed.
While in this mode, you can use Function 6 for input and input status, and
Functions 1, 9, and 111 for output without the possibility of the output
functions intercepting input CTRL-S, CTRL-Q, or CTRL-P characters.

bit 2 : Setting this bit disables tab expansion and printer echo support for Functions
2, 9, and 111. Use this mode when non-edited output is required.

@ DIGITAL RESEARCH™

2.2 BDOS Serial Device 1/0 CP/M 3 Programmer’s Guide

bit 3 : This bit disables all CTRL-C intercept action in the BDOS. This mode is

useful for programs that must control their own termination.

bits 8 and 9 : The BDOS does not use these bits, but reserves them for the CP/M 3
GET RSX that performs console input redirection from a file. With one
exception, these bits determine how the GET RSX responds to a program
console status request (Function 6, Function 11, or direct BIOS).

bit 8 = 0, bit 9 = 0 - conditional status

bit 8 = 0, bit 9 = 1 - false status

bit 8 = 1, bit 9 = 0 - true status

bit 8 = 1, bit 9 = 1 - do not perform redirection

In conditional status mode, GET responds false to all status requests except for a
status call preceded immediately by another status call. On the second call, GET
responds with a true result. Thus, a program that spins on status to wait for a
character is signaled that a character is ready on the second call. In addition, a
program that makes status calls periodically to see if the user wants to stop is not
signaled.

When a transient program begins execution, the Console Mode bits are normally
set to zero. However, the CP/M 3 utility GENCOM can attach an RSX header to a
COM file so that when it is loaded, the console mode bits are set differently. This
feature allows you to modify a program’s console I/O behavior without having to
change the program.

2.2.2 Other Serial I/O

The BDOS supports single character output functions for the logical devices LST:
and AUXOUT:, an input function for AUXIN:, and status functions for AUXIN:
and AUXOUT:. A block output function is also supported for the LST: device.
Unlike the console I/O functions, the BDOS does not intercept control characters or
expand tabs for these functions. Note that AUXIN: and AUXOUT: replace the
READER and PUNCH devices supported by earlier versions of CP/M.

DIGITAL RESEARCH™

2-6

CP/M 3 Programmer’s Guide 2.3 BDOS File System

2.3 BDOS File System

Transient programs depend on the BDOS file system to create, update, and main-
tain disk files. This section describes the capabilities of the BDOS file system in detail.
You must understand the general features of CP/M 3 described in Section 1 before
you can use the detail presented in this section.

The remaining introductory paragraphs define the four categories of BDOS file
functions. This is followed by a review of file naming conventions and disk and file
organization. The section then describes the data structure used by the BDOS file,
and directory oriented functions: the File Control Block (FCB). Subsequent discus-
sions cover file attributes, user numbers, directory labels and extended File Control
Blocks (XFCBs), passwords, date and time stamping, blocking and deblocking, multi-
sector I/O, disk reset and removable media, byte counts, and error handling. These
topics are closely related to the BDOS file system. You must be familiar with the
contents of Section 2 before attempting to use the BDOS functions described individ-
ually in Section 3.

The BDOS file system supports four categories of functions: file access functions,
directory functions, drive related functions, and miscellaneous functions. The file
access category includes functions to create a file, open an existing file, and close a
file. Both the make and open functions activate the file for subsequent access by
BDOS file access functions. The BDOS read and write functions are file access func-
tions that operate either sequentially or randomly by record position. They transfer
data in units of 128 bytes, which is the basic record size of the file system. The close
function makes any necessary updates to the directory to permanently record the
status of an activated file.

DIGITAL RESEARCH™
2-7

2.3 BDOS File System CP/M 3 Programmer’s Guide

BDOS directory functions operate on existing file entries in a drive’s directory.
This category includes functions to search for one or more files, delete one or more
files, truncate a file, rename a file, set file attributes, assign a password to a file, and
compute the size of a file. The search and delete functions are the only BDOS func-
tions that support ambiguous file references. All other directory and file related func-
tions require a specific file reference.

The BDOS drive-related category includes functions that select the default drive,
compute a drive’s free space, interrogate drive status, and assign a directory label to
a drive. A drive’s directory label controls whether or not CP/M 3 enforces file pass-
word protection, or stamps files with the date and time. Note that the nonbanked
version of CP/M 3 does not support file passwords.

The miscellaneous category includes functions to set the current DMA address,
access and update the current user number, chain to a new program, and flush
internal blocking/deblocking buffers. Also included are functions that set the BDOS
multi-sector count, and the BDOS error mode. The BDOS multi-sector count deter-
mines the number of 128-byte records to be processed by BDOS read and write
functions. It can range from 1 to 128. The BDOS error mode determines how the
BDOS file system handles certain classes of errors.

Also included in the miscellaneous category are functions that call the BIOS directly,
set a program return code, and parse filenames. If the LOADER RSX is resident in
memory, programs can also make a BDOS function call to load an overlay. Another
miscellaneous function accesses system variables in the System Control Block.

DIGITAL RESEARCH™

CP/M 3 Programmer’s Guide

2.3 BDOS File System

The following list summarizes the operations performed by the BDOS file system:

Disk System Reset

Drive Selection

File Creation

File Open

File Close

Directory Search

File Delete

File Rename

Random or Sequential Read
Random or Sequential Write
Interrogate Selected Disks
Set DMA Address

Set/Reset File Attributes
Reset Drive

Set BDOS Multi-Sector Count
Set BDOS Error Mode

Get Disk Free Space

Chain to Program

Flush Buffers

Get/Set System Control Block
Call BIOS

Load Overlay

Call RSX

Truncate File

Set Directory Label

Get File’s Date Stamps and Password Mode

Write File XFCB

Set/Get Date and Time

Set Default Password

Return CP/M 3 Serial Number
Get/Set Program Return Code
Parse Filename

2.3.1 File Naming Conventions

Under CP/M 3, a file specification consists of four parts: the drive specifier, the
filename field, the filetype field, and the file password field. The general format for a

command line file specification is shown below:

{d:}Milename{.typH{;password}

DIGITAL RESEARCH™

2-9

2.3 BDOS File System CP/M 3 Programmer’s Guide

The drive specifier field specifies the drive where the file is located. The filename and
type fields identify the file. The password field specifies the password if a file is
password protected.

The drive, type, and password fields are optional, and the delimiters :.; are required
only when specifying their associated field. The drive specifier can be assigned a letter
from A to P where the actual drive letters supported on a given system are deter-
mined by the BIOS implementation. When the drive letter is not specified, the current
default drive is assumed.

The filename and password fields can contain one to eight non-delimiter charac-
ters. The filetype field can contain one to three non-delimiter characters. All three
fields are padded with blanks, if necessary. Omitting the optional type or password
fields implies a field specification of all blanks.

The CCP calls BDOS Function 152, Parse Filename, to parse file specifications
from a command line. Function 152 recognizes certain ASCII characters as valid
delimiters when it parses a file from a command line. The valid delimiters are shown
in Table 2-1.

Table 2-1. Valid Filename Delimiters

ASCII HEX EQUIVALENT
null 00
space 20
return 0D
tab 09
: 3A
. 2E
; 3B
= 3D
s 2C
[5B
] 5D
< 3C
> 3E
| 7C

DIGITAL RESEARCH™
2-10

CP/M 3 Programmer’s Guide 2.3 BDOS File System

Function 152 also excludes all control characters from the file fields, and translates all
lower-case letters to upper-case.

Avoid using parentheses and the backslash character, \, in the filename and filetype
fields because they are commonly used delimiters. Use asterisk and question mark
characters, * and ?, only to make an ambiguous file reference. When Function 152
encounters an * in a filename or filetype field, it pads the remainder of the field with

BDOS search and delete functions treat a ? in the filename and type fields as follows:
A ? in any position matches the corresponding field of any directory entry belonging

current user files on the directory beginning in X. Most other file related BDOS
functions treat the presence of a ? in the filename or type field as an error.

It is not mandatory to follow the file naming conventions of CP/M 3 when you
create or rename a file with BDOS functions. However, the conventions must be used
if the file is to be accessed from a command line. For example, the CCP cannot locate
a command file in the directory if its filename or type field contains a lower-case
letter.

As a general rule, the filetype field names the generic category of a particular file,
while the filename distinguishes individual files in each category. Although they are
generally arbitrary, the following list of filetypes names some of the generic categories
that have been established.

ASM Assembler Source PLI PL/I Source File

PRN Printer Listing REL Relocatable Module
HEX Hex Machine Code TEX TEX Formatter Source
BAS Basic Source File BAK ED Source Backup
INT Intermediate File SYM SID Symbol File
COM Command File $$$ Temporary File

PRL Page Relocatable DAT Data File

SPR Sys. Page Reloc. SYS System File

2.3.2 Disk and File Organization

The BDOS file system can support from one to sixteen logical drives. The maxi-
mum file size supported on a drive is 32 megabytes. The maximum capacity of a
drive is determined by the data block size specified for the drive in the BIOS. The
data block size is the basic unit in which the BDOS allocates disk space to files.

@DIGITAL RESEARCH™
2-11

2.3 BDOS File System CP/M 3 Programmer’s Guide

Table 2-2 displays the relationship between data block size and drive capacity.

Table 2-2. Logical Drive Capacity

Data Block Size Maximum Drive Capacity
1K 256 Kilobytes
2K 64 Megabytes
4K 128 Megabytes
8K 256 Megabytes
16K 512 Megabytes

Logical drives are divided into two regions: a directory area and a data area. The
directory area contains from one to sixteen blocks located at the beginning of the
drive. The actual number is set in the BIOS. This area contains entries that define
which files exist on the drive. The directory entries corresponding to a particular file
define those data blocks in the drive’s data area that belong to the file. These data
blocks contain the file’s records. The directory area is logically subdivided into six-
teen independent directories identified as user 0 through 15. Each independent direc-
tory shares the actual directory area on the drive. However, a file’s directory entries
cannot exist under more than one user number. In general, only files belonging to
the current user number are visible in the directory.

Each disk file consists of a set of up to 262,144 128-byte records. Each record in
a file is identified by its position in the file. This position is called the record’s random
record number. If a file is created sequentially, the first record has a position of zero,
while the last record has a position one less than the number of records in the file.
Such a file can be read sequentially in record position order beginning at record zero,
or randomly by record position. Conversely, if a file is created randomly, records are
added to the file by specified position. A file created in this way is called sparse if
positions exist within the file where a record has not been written.

The BDOS automatically allocates data blocks to a file to contain its records on
the basis of the record positions consumed. Thus; a sparse file that contains two
records, one at position zero, the other at position 262,143, consumes only two data
blocks in the data area. Sparse files can only be created and accessed randomly, not
sequentially. Note that any data block allocated to a file is permanently allocated to
the file until the file is deleted or truncated. These are the only mechanisms supported
by the BDOS for releasing data blocks belonging to a file.

DIGITAL RESEARCH™
2-12

CP/M 3 Programmer’s Guide 2.3 BDOS File System

Source files under CP/M 3 are treated as a sequence of ASCII characters, where
each line of the source file is followed by a carriage return line-feed sequence, ODH
followed by 0AH. Thus a single 128-byte record could contain several lines of source
text. The end of an ASCII file is denoted by a CTRL-Z character, 1AH, or a real end
of file, returned by the BDOS read operation. CTRL-Z characters embedded within
machine code files such as COM files are ignored. The actual end-of-file condition
returned by the BDOS is used to terminate read operations.

2.3.3 File Control Block Definition

The File Control Block, FCB, is a data structure that is set up and initialized by a
transient program, and then used by any BDOS file access and directory functions
called by the transient program. Thus the FCB is an important channel for informa-
tion exchange between the BDOS and a transient program. For example, when a
program opens a file, and subsequently accesses it with BDOS read and write record
functions, the BDOS file system maintains the current file state and position within
the program’s FCB. Some BDOS functions use certain fields in the FCB for invoking
special options. Other BDOS functions use the FCB to return data to the calling
program. In addition, all BDOS random I/O functions specify the random record
number with a 3-byte field at the end of the FCB.

When a transient program makes a file access or directory BDOS function call,
register pair DE must address an FCB. The length of the FCB data area depends on
the BDOS function. For most functions, the required length is 33 bytes. For random
I/O functions, the Truncate File function, and the Compute File Size function, the
FCB length must be 36 bytes. The FCB format is shown on the next page.

DIGITAL RESEARCH™

2.3 BDOS File System CP/M 3 Programmer’s Guide

dr [f1] f2|...] £8| t1| t2]| 3| ex| s1| s2| rc| dO|..| dn| cr| rO| r1]| r2
00 01 02 ... 08 09 10 11 12 13 14 15 16 .. 31 32 33 34 35
where
dr drive code (0 - 16)

0 => use default drive for file
1 => auto disk select drive A,
2 => auto disk select drive B,

16=> auto disk select drive P.

f1...18 contain the filename in ASCII
upper-case, with high bit = 0.
f1°,..., 8’ denote the high-
order bit of these positions,
and are file attribute bits.

t1,t2,t3 contain the filetype in ASCII
upper-case, with high bit = 0.
t1’, t2°, and t3’ denote the
high bit of these positions,
and are file attribute bits.
tl’ = 1 => Read/Only file
t2> = 1 => System file
t3’ = 1 => File has been archived

ex contains the current extent number,
usually set to 0 by the calling program,
but can range 0 - 31 during file I/O

sl reserved for internal system use
s2 reserved for internal system use
rc record count for extent “ex”

takes on values from 0 - 255
(values greater than 128 imply
record count equals 128)

@ DIGITAL RESEARCH™
2-14

CP/M 3 Programmer’s Guide 2.3 BDOS File System

do...dn filled-in by CP/M 3, reserved for
system use
cr current record to read or write in

a sequential file operation, normally
set to zero by the calling program
when a file is opened or created

r0,r1,r2 optional random record number in the
range 0-262,143 (0 - 3FFFFH).
ro,rl,r2 constitute a 18 bit value
with low byte r0, middle byte r1, and
high byte r2.

For BDOS directory functions, the calling program must initialize bytes 0 through
11 of the FCB before issuing the function call. The Set Directory Label and Write
File XFCB functions also require the calling program to initialize byte 12. The Rename
File function requires the calling program to place the new filename and type in bytes
17 through 27.

BDOS open or make function calls require the calling program to intialize bytes 0
through 12 of the FCB before making the call. Usually, byte 12 is set to zero. In
addition, if the file is to be processed from the beginning using sequential read or
write functions, byte 32, cr, must be zeroed.

After an FCB is activated by an open or make operation, a program does not have
to modify the FCB to perform sequential read or write operations. In fact, bytes 0
through 31 of an activated FCB should not be modified. However, random 1I/O
functions require that a program set bytes 33 through 35 to the requested random
record number prior to making the function call.

File directory entries maintained in the directory area of each disk have the same
format as FCBs, excluding bytes 32 through 35, except for byte 0 which contains the
file’s user number. Both the Open File and Make File functions bring these entries,
excluding byte 0, into memory in the FCB specified by the calling program. All read
and write operations on a file must specify an FCB activated in this manner.

DIGITAL RESEARCH™

2-15

2.3 BDOS File System CP/M 3 Programmer’s Guide

The BDOS updates the memory copy of the FCB during file processing to maintain
the current position within the file. During file write operations, the BDOS updates
the memory copy of the FCB to record the allocation of data to the file, and at the
termination of file processing, the Close File function permanently records this infor-
mation on disk. Note that data allocated to a file during file write operations is not
completely recorded in the directory until the calling program issues a Close File call.
Therefore, a program that creates or modifies files must close the files at the end of
any write processing. Otherwise, data might be lost.

The BDOS Search and Delete functions support multiple or ambiguous file refer-
ences. In general, a question mark in the filename, filetype, or extent field matches
any value in the corresponding positions of directory FCBs during a directory search
operation. The BDOS search functions also recognize a question mark in the drive
code field, and if specified, they return all directory entries on the disk regardless of
user number, including empty entries. A directory FCB that begins with ESH is an
empty directory entry.

2.3.4 File Attributes

The high-order bits of the FCB filename, f1°,...,f8’, and filetype, t1°,t2°,t3’, fields
are called attribute bits. Attributes bits are 1 bit Boolean fields where 1 indicates on
or true, and 0 indicates off or false. Attribute bits indicate two kinds of attributes
within the file system: file attributes and interface attributes.

The file attribute bits, f1°,...,f4’ and t1°,t2°,t3’, can indicate that a file has a defined
file attribute. These bits are recorded in a file’s directory FCBs. File attributes can be
set or reset only by the BDOS Set File Attributes function. When the BDOS Make
File function creates a file, it initializes all file attributes to zero. A program can
interrogate file attributes in an FCB activated by the BDOS Open File function, or in
directory FCBs returned by the BDOS Search For First and Search For Next functions.

Note: the BDOS file system ignores file attribute bits when it attempts to locate a file
in the directory.

The file system defines the file attribute bits, t1°,t2°,t3’, as follows:

t1>: Read-Only attribute - The file system prevents write operations to a file with
the read-only attribute set.

DIGITAL RESEARCH™
2-16

CP/M 3 Programmer’s Guide 2.3 BDOS File System

t2’:

t3’:

System attribute - This attribute, if set, identifies the file as a CP/M 3 system
file. System files are not usually displayed by the CP/M 3 DIR command. In
addition, user-zero system files can be accessed on a read-only basis from other
user numbers.

Archive attribute - This attribute is designed for user written archive programs.
When an archive program copies a file to backup storage, it sets the archive
attribute of the copied files. The file system automatically resets the archive
attribute of a directory FCB that has been issued a write command. The archive
program can test this attribute in each of the file’s directory FCBs via the BDOS
Search and Search Next functions. If all directory FCBs have the archive attri-
bute set, it indicates that the file has not been modified since the previous
archive. Note that the CP/M 3 PIP utility supports file archival.

Attributes 1’ through f4” are available for definition by the user.

The interface attributes are indicated by bits £5° through {8’ and cannot be used as
file attributes. Interface attributes 5’ and f6’ can request options for BDOS Make
File, Close File, Delete File, and Set File Attributes functions. Table 2-3 defines options
indicated by the £5° and {6’ interface attribute bits for these functions.

Table 2-3. BDOS Interface Attributes

BDOS Function Interface Attribute Definition
16. Close File f5’ = 1 : Partial Close
19. Delete File 5’ = 1 : Delete file XFCBs
only
22. Make File f6> = 1 : Assign password to
file
30. Set File Attributes f6> = 1 : Set file byte count

Section 3 discusses each interface attribute in detail in the definitions of the above
functions. Attributes f5° and 6’ are always reset when control is returned to the
calling program. Interface attributes f7° and 8’ are reserved for internal use by the
BDOS file system.

DIGITAL RESEARCH™

2-17

2.3 BDOS File System CP/M 3 Programmer’s Guide

2.3.5 User Number Conventions

The CP/M 3 User facility divides each drive directory into sixteen logically inde-
pendent directories, designated as user 0 through user 15. Physically, all user direc-
tories share the directory area of a drive. In most other aspects, however, they are
independent. For example, files with the same name can exist on different user num-
bers of the same drive with no conflict. However, a single file cannot reside under
more than one user number.

Only one user number is active for a program at one time, and the current user
number applies to all drives on the system. Furthermore, the FCB format does not
contain any field that can be used to override the current user number. As a result,
all file and directory operations reference directories associated with the current user
number. However, it is possible for a program to access files on different user num-
bers; this can be accomplished by setting the user number to the file’s user number
with the BDOS Set User function before making the desired BDOS function call for
the file. Note that this technique must be used carefully. An error occurs if a program
attempts to read or write to a file under a user number different from the user
number that was active when the file was opened.

When the CCP loads and executes a transient program, it initializes the user num-
ber to the value displayed in the system prompt. If the system prompt does not
display a user number, user zero is implied. A transient program can change its user
number by making a BDOS Set User function call. Changing the user number in this
way does not affect the CCP’s user number displayed in the system prompt. When
the transient program terminates, the CCP’s user number is restored. However, an
option of the BDOS Program Chain command allows a program to pass its current
user number and default drive to the chained program.

User 0 has special properties under CP/M 3. When the current user number is not
equal to zero, and if a requested file is not present under the current user number,
the file system automatically attempts to open the file under user zero. If the file
exists under user zero, and if it has the system attribute, t2’, set, the file is opened
from user zero. Note, however, that files opened in this way cannot be written to;
they are available only for read access. This procedure allows utilities that may
include overlays and any other commonly accessed files to be placed on user zero,
but also be available for access from other user numbers. As a result, commonly
needed utilities need not be copied to all user numbers on a directory, and you can
control which user zero files are directly accessible from other user numbers.

@DIGITAL RESEARCH™
2-18

CP/M 3 Programmer’s Guide

2.3.6 Directory Labels and XFCBs

2.3 BDOS File System

The BDOS file system includes two special types of FCBs: the XFCB and the
Directory Label. The XFCB is an extended FCB that optionally can be associated
with a file in the directory. If present, it contains the file’s password. Note that
password protected files and XFCBs are supported only in the banked version of
CP/M 3. The format of the XFCB follows.

DR| FILE | TYPE (PM|[S1|S2|RC| PASSWORD RESERVED
00 01... 12 13 14 15 16...... 24
Figure 2-1. XFCB Format
dr - drive code (0 - 16)
file - filename field
type - filetype field
pm - password mode
bit 7 - Read mode
bit 6 - Write mode
bit 5 - Delete mode
** . bit references are right to left,
relative to 0
s1,s2,rc - reserved for system use
password - 8-byte password field (encrypted)
reserved - 8-byte reserved area

DIGITAL RESEARCH™

2-19

2.3 BDOS File System CP/M 3 Programmer’s Guide

An XFCB can be created only on a drive that has a directory label, and only if the
directory label has activated password protection. For drives in this state, an XFCB
can be created for a file in two ways: by the BDOS Make function or by the BDOS
Write File XFCB function. The BDOS Make function creates an XFCB if the calling
program requests that a password be assigned to the created file. The BDOS Write
File XFCB function can be used to assign a password to an existing file. Note that in
the directory, an XFCB is identified by a drive byte value, byte 0 in the FCB, equal
to 16 + N, where N equals the user number.

For its drive, the directory label specifies if file password support is to be activated,
and if date and time stamping for files is to be performed. The format of the Direc-
tory Label follows.

DR|NAME | TYPE [D1|S1|S2 |RC| PASSWORD | TS1|TS2

060 O01.. 09.. 12 13 14 15 16...... 24 . 28.

AN 070

Figure 2-2. Directory Label Format

dr - drive code (0 - 16)

name - Directory Label name
type - Directory Label type

dl - Directory Label data byte

bit 7 - require passwords for password
protected files

bit 6 - perform access time stamping

bit 5 - perform update time stamping

bit 4 - perform create time stamping

bit 0 - Directory Label exists

** - bit references are right to left,
relative to 0

sl,s2,rc - n/a

password - 8-byte password field (encrypted)
ts1 - 4-byte creation time stamp field
ts2 - 4-byte update time stamp field

DIGITAL RESEARCH™
2-20

CP/M 3 Programmer’s Guide 2.3 BDOS File System

Only one Directory Label can exist in a drive’s directory. The Directory Label name
and type fields are not used to search for a Directory Label; they can be used to
identify a disk. A Directory Label can be created, or its fields can be updated by
BDOS function 100, Set Directory Label. This function can also assign a Directory
Label a password. The Directory Label password, if assigned, cannot be circum-
vented, whereas file password protection is an option controlled by the Directory
Label. Thus, access to the Directory Label password provides a kind of super-user
status on that drive.

The nonbanked version of CP/M 3 does not support file passwords. However, it
does provide password protection of directory labels. The CP/M 3 RSX, DIRLBL.RSX,
which implements BDOS Function 100 in the nonbanked version of CP/M 3, pro-
vides this support.

The BDOS file system has no function to read the Directory Label FCB directly.
However, the Directory Label data byte can be read directly with the BDOS Function
101, Return Directory Label. In addition, the BDOS Search functions, with a ? in the
FCB drive byte, can be used to find the Directory Label on the default drive. In the
directory, the Directory Label is identified by a drive byte value, byte 0 in the FCB,
equal to 32, 20H.

2.3.7 File Passwords

Only the banked version of CP/M 3 supports file passwords. In the nonbanked
version, all BDOS functions with password related options operate the same way the
banked version does when passwords are not enabled.

Files can be assigned passwords in two ways: by the Make File function or by the
Write File XFCB function. A file’s password can also be changed by the Write File
XFCB function if the original password is supplied.

Password protection is provided in one of three modes. Table 2-4 shows the differ-
ence in access level allowed to BDOS functions when the password is not supplied.

DIGITAL RESEARCH™
2-21.

2.3 BDOS File System CP/M 3 Programmer’s Guide

Table 2-4. Password Protection Modes

Password Access level allowed when the password

Mode is not supplied.

1. Read The file cannot be read.

2. Write The file can be read, but not modified.

3. Delete The file can be modified, but not
deleted.

If a file is password protected in Read mode, the password must be supplied to open
the file. A file protected in Write mode cannot be written to without the password.
A file protected in Delete mode allows read and write access, but the user must
specify the password to delete the file, rename the file, or to modify the file’s attri-
butes. Thus, password protection in mode 1 implies mode 2 and 3 protection, and
mode 2 protection implies mode 3 protection. All three modes require the user to
specify the password to delete the file, rename the file, or to modify the file’s attributes.

If the correct password is supplied, or if password protection is disabled by the
Directory Label, then access to the BDOS functions is the same as for a file that is
not password protected. In addition, the Search For First and Search For Next func-
tions are not affected by file passwords.

Table 2-5 lists the BDOS functions that test for password.

Table 2-5. BDOS Functions That Test For Password

15. Open File
19. Delete File
23. Rename File
30. Set File Attributes
99. Truncate File
100. Set Directory Label
103. Write File XFCB

DIGITAL RESEARCH™
2-22

CP/M 3 Programmer’s Guide 2.3 BDOS File System

File passwords are eight bytes in length. They are maintained in the XFCB Direc-
tory Label in encrypted form. To make a BDOS function call for a file that requires
a password, a program must place the password in the first eight bytes of the current
DMA, or specify it with the BDOS function, Set Default Password, prior to making
the function call.

Note: the BDOS keeps an assigned default password value until it is replaced with a
new assigned value.

2.3.8 File Date and Time Stamps

The CP/M 3 File System uses a special type of directory entry called an SFCB to
record date and time stamps for files, When a directory has been initialized for date
and time stamping, SFCBs reside in every fourth position of the directory. Each SFCB
maintains the date and time stamps for the previous three directory entries as shown
in Figure 2-3.

FCB 1

FCB 2

FCB3

STAMPS FOR | STAMPS FOR | STAMPS FOR

et FCB 1 FCB 2 FCB 3

AN 068

Figure 2-3. Directory Record with SFCB

This figure shows a directory record that contains an SFCB. Directory records consist
of four directory entries, each 32 bytes long. SFCBs always occupy the last position
of a directory record.

The SFCB directory item contains five fields. The first field is one byte long and
contains the value 21H. This value identifies the SFCB in the directory. The next
three fields, the SFCB subfields, contain the date and time stamps for their corre-
sponding FCB entries in the directory record. These fields are 10 bytes long. The last
byte of the SFCB is reserved for system use. The format of the SFCB subfields is
shown in Table 2-6.

DIGITAL RESEARCH™

2-23

2.3 BDOS File System CP/M 3 Programmer’s Guide

Table 2-6. SFCB Subfields Format

Offset in Bytes SFCB Subfield Contents
0—3 Create or Access Date and Time Stamp field
4—7 Update Date and Time Stamp field
8 : Password mode field
9 : Reserved

An SFCB subfield contains valid information only if its corresponding FCB in the
directory record is an extent zero FCB. This FCB is a file’s first directory entry. For
password protected files, the SFCB subfield also contains the password mode of the
file. This field is zero for files that are not password protected. The BDOS Search and
Search Next functions can be used to access SFCBs directly. In addition, BDOS
Function 102 can return the file date and time stamps and password mode for a
specified file. Refer to Section 3, function 102, for a description of the format of a
date and time stamp field.

CP/M 3 supports three types of file stamping: create, access, and update. Create
stamps record when the file was created, access stamps record when the file was last
opened, and update stamps record the last time the file was modified. Create and
access stamps share the same field. As a result, file access stamps overwrite any create
stamps.

The CP/M 3 utility, INITDIR, initializes a directory for date and time stamping by
placing SFCBs in every fourth directory entry. Date and time stamping is not sup-
ported on disks that have not been initialized in this manner. For initialized disks the
disks’ Directory Label determines the type of date and time stamping supported for
files on the drive. If a disk does not have a Directory Label, or if it is Read-Only, or
if the disk’s Directory Label does not specify date and time stamping, then date and
time stamping for files is not performed. Note that the Directory Label is also time
stamped, but these stamps are not made in an SFCB. Time stamp fields in the last
eight bytes of the Directory Label record when it was created and last updated.
Access stamping for Directory Labels is not supported.

DIGITAL RESEARCH™
2-24

CP/M 3 Programmer’s Guide 2.3 BDOS File System

The BDOS file system uses the CP/M 3 system date and time when it records a
date and time stamp. This value is maintained in a field in the System Control Block
(SCB). On CP/M 3 systems that support a hardware clock, the BIOS module directly
updates the SCB system date and time field. Otherwise, date and time stamps record
the last initialized value for the system date and time. The CP/M 3 DATE utility can
be used to set the system date and time.

2.3.9 Record Blocking and Deblocking

Under CP/M 3, the logical record size for disk I/O is 128 bytes. This is the basic
unit of data transfer between the operating system and transient programs. However,
on disk, the record size is not restricted to 128 bytes. These records, called physical
records, can range from 128 bytes to 4K bytes in size. Record blocking and deblock-

ing is required on systems that support drives with physical record sizes larger than
128 bytes.

The process of building up physical records from 128 byte logical records is called
record blocking. This process is required in write operations. The reverse process of
breaking up physical records into their component 128 byte logical records is called
record deblocking. This process is required in read operations. Under CP/M 3, record
blocking and deblocking is normally performed by the BDOS.

Record deblocking implies a read-ahead operation. For example, if a transient
program makes a BDOS function call to read a logical record that resides at the
beginning of a physical record, the entire physical record is read into an internal
buffer. Subsequent BDOS read calls for the remaining logical records access the
buffer instead of the disk. Conversely, record blocking results in the postponement
of physical write operations but only for data write operations. For example, if a
transient program makes a BDOS write call, the logical record is placed in a buffer
equal in size to the physical record size. The write operation on the physical record
buffer is postponed until the buffer is needed in another I/O operation. Note that
under CP/M 3, directory write operations are never postponed.

Postponing physical record write operations has implications for some applications
programs. For those programs that involve file updating, it is often critical to guar-
antee that the state of the file on disk parallels the state of the file in memory after
the update operation. This is only an issue on systems where physical write opera-
tions are postponed because of record blocking and deblocking. If the system should
crash while a physical buffer is pending, data would be lost. To prevent this loss of
data, the BDOS Flush Buffers function, function 48, can be called to force the write
of any pending physical buffers.

DIGITAL RESEARCH™
2-25

2.3 BDOS File System CP/M 3 Programmer’s Guide

Note: the CCP automatically discards all pending physical data buffers when it
receives control following a system warm start. However, the BDOS file system
automatically makes a Flush Buffers call in the Close File function. Thus, it is suffi-

cient to close a file to ensure that all pending physical buffers for that file are written
to the disk.

2.3.10 Multi-Sector I/O

CP/M 3 can read or write multiple 128-byte records in a single BDOS function
call. This process, called multi-sector /O, is useful primarily in sequential read and
write operations, particularly on drives with physical record sizes larger than 128
bytes. In a multi-sector I/O operation, the BDOS file system bypasses, when possible,
all intermediate record buffering. Data is transferred directly between the TPA and
the drive. In addition, the BDOS informs the BIOS when it is reading or writing
multiple physical records in sequence on a drive. The BIOS can use this information
to further optimize the I/O operation resulting in even better performance. Thus, the
primary objective of multi-sector I/O is to improve sequential I/O performance. The
actual improvement obtained, however, depends on the hardware environment of the
host system, and the implementation of the BIOS.

The number of records that can be supported with multi-sector I/O ranges from 1
to 128. This value can be set by BDOS function 44, Set multi-sector Count. The
multi-sector count is set to one when a transient program begins execution. However,
the CP/M 3 LOADER module executes with the multi-sector Count set to 128 unless
the available TPA space is less than 16K. In addition, the CP/M 3 PIP utility also
sets the multi-sector count to 128 when sufficient buffer space is available. Note that
the greatest potential performance increases are obtained when the multi-sector count
is set to 128. Of course, this requires a 16K buffer.

The multi-sector count determines the number of operations to be performed by
the following BDOS functions:

m Sequential Read and Write functions
® Random Read and Write functions including Write Random with Zero Fill

If the multi-sector count is N, calling one of the above functions is equivalent to
making N function calls. If a multi-sector I/O operation is interrupted with an error
such as reading unwritten data, the file system returns in register H the number of
128-byte records successfully processed.

DIGITAL RESEARCH™
2-26

CP/M 3 Programmer’s Guide 2.3 BDOS File System

2.3.11 Disk Reset and Removable Media

The BDOS functions, Disk Reset (function 13) and Reset Drive (function 37) allow
a program to control when a disk’s directory is to be reinitialized for file operations.
This process of initializing a disk’s directory is called logging-in the drive. When
CP/M 3 is cold started, all drives are in the reset state. Subsequently, as drives are
referenced, they are automatically logged-in by the file system. Once logged-in, a
drive remains in the logged-in state until it is reset by BDOS function 13 or 37.
Following the reset operation, the drive is again automatically logged-in by the file
system when it is next used. Note that BDOS functions 13 and 37 have similar effects
except that function 13 is directed to all drives on the system. Any combination of
drives can be reset with Function 37.

Logging-in a drive consists of several steps. The most important step is the initiali-
zation of the drive’s allocation vector. The allocation vector records the allocation
and deallocation of data blocks to files, as files are created, extended, deleted, and
truncated. Another function performed during drive log-in is the initialization of the
directory check-sum vector. The file system uses the check-sum vector to detect media
changes on a drive. Note that permanent drives, which are drives that do not support
media changes, might not have check-sum vectors. If directory hashing has been
specified for the drive, a BIOS and GENCPM option, the file system creates a hash
table for the directory during log-in.

The primary use of the drive reset functions is to prepare for a media change on a
drive. Subsequently, when the drive is accessed by a BDOS function call, the drive is
automatically logged-in. Resetting a drive has two important side effects. First of all,
any pending blocking/deblocking buffers on the reset drive are discarded. Secondly,
any data blocks that have been allocated to files that have not been closed are lost.
An application program should close files, particularly files that have been written to,
prior to resetting a drive.

Although CP/M 3 automatically relogs in removable media when media changes
are detected, the application program should still explicitly reset a drive before
prompting the user to change disks.

DIGITAL RESEARCH™
2-27

2.3 BDOS File System CP/M 3 Programmer’s Guide

2.3.12 File Byte Counts

Although the logical record size of CP/M 3 is restricted to 128 bytes, CP/M 3 does
provide a mechanism to store and retrieve a byte count for a file. This facility can
identify the last byte of the last record of a file. The BDOS Compute File Size
function returns the random record number, plus 1, of the last record of a file.

The BDOS Set File Attributes function can set a file’s byte count. Conversely, the
Open function can return a file’s byte count to the cr field of the FCB. The BDOS
Search and Search Next functions also return a file’s byte count. These functions
return the byte count in the s1 field of the FCB returned in the current DMA buffer
{(see BDOS Functions Returned 17 and 26).

Note that the file system does not access or update the byte count value in file read
or write operations. However, the BDOS Make File function does set the byte count
of a file to zero when it creates a file in the directory.

2.3.13 BDOS Error Handling

The BDOS file system responds to error situations in one of three ways:

Method 1. It returns to the calling program with return codes in register
A, H, and L identifying the error.

Method 2. It displays an error message on the console, and branches to
the BIOS warm start entry point, thereby terminating execu-
tion of the calling program.

Method 3. It displays an error message on the console, and returns to
the calling program as in method 1.

The file system handles the majority of errors it detects by method 1. Two examples
of this kind of error are the file not found error for the open function and the reading
unwritten data error for a read function. More serious errors, such as disk I/O errors,
are usually handled by method 2. Errors in this category, called physical and extended
errors, can also be reported by methods 1 and 3 under program control.

mDIGITAL RESEARCH™
2-28

CP/M 3 Programmer’s Guide 2.3 BDOS File System

The BDOS Error Mode, which can exist in three states, determines how the file
system handles physical and extended errors. In the default state, the BDOS displays
the error message, and terminates the calling program, method 2. In return error
mode, the BDOS returns control to the calling program with the error identified in
registers A, H, and L, method 1. In return and display mode, the BDOS returns
control to the calling program with the error identified in registers A, H, and L, and
also displays the error message at the console, method 3. While both return modes
protect a program from termination because of a physical or extended error, the
return and display mode also allows the calling program to take advantage of the
built-in error reporting of the BDOS file system. Physical and extended errors are
displayed on the console in the following format:

CP/M Error on d: error message
BDOS function = nn File = filename.typ

where d identifies the drive selected when the error condition is detected; error mes-
sage identifies the error; nn is the BDOS function number, and filename.typ identifies
the file specified by the BDOS function. If the BDOS function did not involve an
FCB, the file information is omitted. Note that the second line of the above error
message is displayed only in the banked version of CP/M 3 if expanded error message
reporting is requested in GENCPM. It is not displayed in the nonbanked version of
CP/M 3.

The BDOS physical errors are identified by the following error messages:

® Disk I/O

® Invalid Drive

® Read-Only File
B Read-Only Disk

The Disk I/O error results from an error condition returned to the BDOS from the
BIOS module. The file system makes BIOS read and write calls to execute file-related
BDOS calls. If the BIOS read or write routine detects an error, it returns an error
code to the BDOS resulting in this error,

The Invalid Drive error also results from an error condition returned to the BDOS
from the BIOS module. The BDOS makes a BIOS Select Disk call prior to accessing
a drive to perform a requested BDOS function. If the BIOS does not support the
selected disk, the BDOS returns an error code resulting in this error message.

®@DIGITAL RESEARCH™

2-29

2.3 BDOS File System CP/M 3 Programmer’s Guide

The Read-Only File error is returned when a program attempts to write to a file
that is marked with the Read-Only attribute. It is also returned to a program that
attempts to write to a system file opened under user zero from a nonzero user
number. In addition, this error is returned when a program attempts to write to a
file password protected in Write mode if the program does not supply the correct
password.

The Read-Only Disk error is returned when a program writes to a disk that is in
read-only status. A drive can be placed in read-only status explicitly with the BDOS
Write Protect Disk function.

The BDOS extended errors are identified by the following error messages:

® Password Error
& File Exists
®m ? in Filename

The File Password error is returned when the file password is not supplied, or
when it is incorrect. This error is reported only by the banked version of CP/M 3.

The File Exists error is returned by the BDOS Make File and Rename File func-
tions when the BDOS detects a conflict such as a duplicate filename and type.

The ? in Filename error is returned when the BDOS detects a ? in the filename or
type field of the passed FCB for the BDOS Rename File, Set File Attributes, Open
_ File, Make File, and Truncate File functions.

The following paragraphs describe the error return code conventions of the BDOS
file system functions. Most BDOS file system functions fall into three categories in
regard to return codes: they return an Error Code, a Directory Code, or an Error
Flag. The error conventions of CP/M 3 are designed to allow programs written for
earlier versions of CP/M to run without modification.

The following BDOS functions return an Etror Code in register A.

20. Read Sequential

21. Write Sequential

33. Read Random

34, Write Random

40. Write Random w/Zero Fill

DIGITAL RESEARCH™
2-30

CP/M 3 Programmer’s Guide 2.3 BDOS File System

The Error Code definitions for register A are shown in Table 2-7.

Table 2-7. Register A BDOS Error Codes

Code Meaning
00 : Function successful
255 Physical error : refer to register H
01 : Reading unwritten data or no available directory space (Write
Sequential)
02 : No available data block
03 : Cannot close current extent
04 : Seek to unwritten extent
05 : No available directory space
06 : Random record number out of range
09 : Invalid FCB (previous BDOS close call returned an error code
and invalidated the FCB)
10 : Media Changed (A media change was detected on the FCB’s
drive after the FCB was opened)

For BDOS read or write functions, the file system also sets register H when the
returned Error Code is a value other than zero or 255. In this case, register H
contains the number of 128-byte records successfully read or written before the error
was encountered. Note that register H can contain only a nonzero value if the calling
program has set the BDOS Multi-Sector Count to a value other than one; otherwise
register H is set to zero. On successful functions, Error Code = 0, register H is also
set to zero. If the Error Code equals 255, register H contains a physical error code
(see Table 2-11).

DIGITAL RESEARCH™

2-31

2.3 BDOS File System CP/M 3 Programmer’s Guide

The following BDOS functions return a Directory Code in register A:

15.
16.
17.
18.
19.
22.
23.
30.
35.
99.

* 100.
102.
**103.

Open File

Close File

Search For First
Search For Next
Delete File

Make File

Rename File

Set File Attributes
Compute File Size
Truncate File

Set Directory Label
Read File Date Stamps and Password Mode
Write File XFCB

* - This function is supported in the DIRLBL.RSX in the nonbanked version of
CP/M 3.
** _ This function is supported only in the banked version of CP/M 3.

The Directory Code definitions for register A are shown in Table 2-8.

Table 2-8. BDOS Directory Codes

Code Meaning
00 — 03: successful function
255 : unsuccessful function

With the exception of the BDOS search functions, all functions in this category
return with the directory code set to zero on successful returns. However, for the
search functions, a successful Directory Code also identifies the relative starting posi-
tion of the directory entry in the calling program’s current DMA buffer.

2-32

DIGITAL RESEARCH™

CP/M 3 Programmer’s Guide 2.3 BDOS File System

If the Set BDOS Error Mode function is used to place the BDOS in return error
mode, the following functions return an Error Flag on physical errors:

14, Select Disk
46. Get Disk Free Space
48. Flush Buffers
98. Free Blocks
101. Return Directory Label Data

The Error Flag definition for register A is shown in Table 2-9.

Table 2-9. BDOS Error Flags

Code Meaning
00 : successful function
255 physical error : refer to register H

The BDOS returns nonzero values in register H to identify a physical or extended
error if the BDOS Error Mode is in one of the return modes. Except for functions
that return a Directory Code, register A equal to 255 indicates that register H iden-
tifies the physical or extended error. For functions that return a Directory Code, if
register A equals 255, and register H is not equal to zero, register H identifies the
physical or extended error. Table 2-10 shows the physical and extended error codes
returned in register H.

DIGITAL RESEARCH™

2-33

2.3 BDOS File System CP/M 3 Programmer’s Guide

Table 2-10. BDOS Physical and Extended Errors

Code Meaning

00 — no error, or not a register H error
01 — Disk I/O error

02 — Read-Only Disk

03 — Read-Only File or File Opened

under user zero from another user
number or file password protected
in write mode and correct pass-
word not specified.

04 — Invalid Drive : drive select error
07 — Password Error

08 — File Exists

09 — ? in Filename

The following two functions represent a special case because they return an address
in registers H and L.

27. Get Addr(Alloc)
31. Get Addr(Disk Parms)

When the BDOS is in return error mode, and it detects a physical error for these
functions, it returns to the calling program with registers A, H, and L all set to 255.
Otherwise, they return no error code.

2.4 Page Zero Initialization
Page Zero is the region of memory located from 0000H to 00FFH. This region

contains several segments of code and data that are used by transient programs while
running under CP/M 3. The code and data areas are shown in Table 2-11 for reference.

DIGITAL RESEARCH™
2-34

CP/M 3 Programmer’s Guide 2.4 Page Zero Initialization

Table 2-11. Page Zero Areas

Location

Contents

From To
0000H — O0002H

0003H — 0004H

0005H — 0007H

003BH — 004FH

0050H

0051H — 0052H

0053H

0054H — 0055H

0008H — 003AH Reserved interrupt locations for Restarts 1 - 7

Contains a jump instruction to the BIOS warm start entry
point at BIOS_base + 3. The address at location 0001H can
also be used to make direct BIOS calls to the BIOS console
status, console input, console output, and list output primitive
functions.

(Reserved)

Contains a jump instruction to the BDOS, the LOADER, or
to the most recently added RSX, and serves two purposes:
JMP 0005H provides the primary entry point to the BDOS,
and LHLD 0006H places the address field of the jump
instruction in the HL register pair. This value, minus one, is
the highest address of memory available to the transient
program.

(Not currently used - reserved)

Identifies the drive from which the transient program was load-
ed. A value of one to sixteen identifies drives A through P.

Contains the address of the password field of the first command-
tail operand in the default DMA buffer beginning at 0080H.
The CCP sets this field to zero if no password for the first
command-tail operand is specified.

Contains the length of the password field for the first command-
tail operand. The CCP also sets this field to zero if no password
for the first command tail is specified.

Contains the address of the password field of the second com-
mand-tail operand in the default DMA buffer beginning at
0080H. The CCP sets this field to zero if no password for the
second command-tail operand is specified.

DIGITAL RESEARCH™

2-35

2.4 Page Zero Initialization CP/M 3 Programmer’s Guide

Table 2-11. (continued)

0057H — 005BH

005CH — 007BH

006CH — 007BH

007CH

007DH — 007FH

0080H — O00FFH

Location Contents
From To
0056H Contains the length of the password field for the second com-

mand-tail operand. The CCP also sets this field to zero if no
password for the second command tail is specified.

(Not currently used - reserved)

Default File Control Block, FCB, area 1 initialized by the CCP
from the first command-tail operand of the command line, if
it exists.

Default File Control Block, FCB, area 2 initialized by the CCP
from the second command-tail operand of the command line,
if it exists.

Note: this area overlays the last 16 bytes of default FCB
area 1. To use the information in this area, a transient program
must copy it to another location before using FCB area 1.

Current record position of default FCB area 1. This field is used
with default FCB area 1 in sequential record processing.

Optional default random record position. This field is an exten-
sion of default FCB area 1 used in random record processing.

Default 128-byte disk buffer. This buffer is also filled with the
command tail when the CCP loads a transient program.

2-36

DIGITAL RESEARCH™

CP/M 3 Programmer’s Guide 2.4 Page Zero Initialization

The CCP initializes Page Zero prior to initiating a transient program. The fields at
0050H and above are initialized from the command line invoking the transient pro-
gram. The command line format was described in detail in Section 1.6.2. To sum-
marize, a command line usually takes the form:

<command> <command tail>

where
<command> => <file spec>
<command tail> => (no command tail)
= <file spec>
=> <file spec><delimiter><file spec>
<file spec> => {d:}ilename{.type} {;password}

The CCP initializes the command drive field at 0050H to the drive index, A = 1, ...,
P = 16, of the drive from which the transient program was loaded.

The default FCB at 005CH is defined if a command tail is entered. Otherwise, the
fields at 005CH, 0068H to 006BH are set to binary zeros, the fields from 005DH to
0067H are set to blanks. The fields at 0051H through 0053H are set if a password
is specified for the first <file spec> of the command tail. If not, these fields are set to
zero.

The default FCB at 006CH is defined if a second <file spec> exists in the com-
mand tail. Otherwise, the fields at 006CH, 0078H to 007BH are set to binary zeros,
the fields from 005DH to 0067H are set to blanks. The fields at 0054H through
0056H are set if a password is specified for the second <file spec> of the command
tail. If not, these fields are set to zero.

Transient programs often use the default FCB at 005CH for file operations. This
FCB may even be used for random file access because the three bytes starting at
007DH are available for this purpose. However, a transient program must copy the
contents of the default FCB at 006CH to another area before using the default FCB
at 005CH, because an open operation for the default FCB at 005CH overwrites the
FCB data at 006CH.

DIGITAL RESEARCH™
2-37

2.4 Page Zero Initialization CP/M 3 Programmer’s Guide

The default DMA address for transient programs is 0080H. The CCP also initial-
izes this area to contain the command tail of the command line. The first position
contains the number of characters in the command line, followed by the command
line characters. The character following the last command tail character is set to
binary zero. The command line characters are preceded by a leading blank and are
translated to ASCII upper-case. Because the 128-byte region beginning at 0080H is
the default DMA, the BDOS file system moves 128-byte records to this area with
read operations and accesses 128-byte records from this area with write operations.
The transient program must extract the command tail information from this buffer

before performing file operations unless it explicitly changes the DMA address with
the BDOS Set DMA Address function.

The Page Zero fields of 0051H through 0056H locate the password fields of the
first two file specifications in the command tail if they exist. These fields are provided
so that transient programs are not required to parse the command tail for password
fields. However, the transient program must save the password, or change the DMA
address before performing file operations.

The following example illustrates the initialization of the command line fields of
Page Zero. Assuming the following command line is typed at the console:

D>A: PROGRAMB:FILE TYPEJPASS CIFILE.TYPEiPASSWORD

A hexadecimal dump of 0050H to 00ASH would show the Page Zero initialization
performed by the CCP.

0050H: 0t BD 00 04 9D 00 08 00 00 00 00 00 02 46 49 4C +svvvwrrsre e FIL
00BOH: 45 20 20 20,20 54 59 50 00 00 00 00 03 46 49 4C Evvs o TYPuwuuoFIL
0070H: 45 20 20 20 20 54 59 50 00 00 00 00 00 00 00 00 Evss s TYPovsvvres
00BOH: 24 20 42 3A 46 49 4C 45 2E 54 59 50:.3B 50 41 33 + B:FILE.TYPiPAS
0080H: 53 20 43 3A 46 49 4C 45 ZE 54 59 50:3B 50 41 53 § C:FILE.TYP3PAS
00AOH: 33 57 4F 52 44 00 3 SWORD.,

End of Section 2

DIGITAL RESEARCH™
2-38

Section 3
BDOS Function Calls

This section describes each CP/M 3 system function, including the parameters a
program must pass when calling the function, and the values the function returns to
the program. The functions are arranged numerically for easy reference. You should
be familiar with the BDOS calling conventions and other concepts presented in Section 2
before referencing this section.

o
(g}
[and
.
Qo
=
O8]

BDOS FUNCTION 0: SYSTEM RESET

Entry Parameters:
Register C: 00H

The System Reset function terminates the calling program and returns control to
the CCP via a warm start sequence (see Section 1.3.2). Calling this function has the
same effect as a jump to location 0000H of Page Zero.

Note that the disk subsystem is not reset by System Reset under CP/M 3. The
calling program can pass a return code to the CCP by calling Function 108, Get/Set
Program Return Code, prior to making a System Reset call or jumping to location
0000H.

DIGITAL RESEARCH™
3-1

3 BDOS Calls: Function 1 CP/M 3 Programmer’s Guide

BDOS FUNCTION 1: CONSOLE INPUT

Entry Parameters:
Register C: 01H

Returned Value:
Register A: ASCII Character

The Console Input function reads the next character from the logical console,
CONIN;:, to register A. Graphic characters, along with carriage return, line-feed, and
backspace, CTRL-H, are echoed to the console. Tab characters, CTRL-], are expanded
in columns of 8 characters. CTRL-S, CTRL-Q, and CTRL-P are normally intercepted
as described below. All other non-graphic characters are returned in register A but
are not echoed to the console.

When the Console Mode is in the default state (see Section 2.2.1), Function 1
intercepts the stop scroll, CTRL-S, start scroll, CTRL-Q, and start/stop printer echo,
CTRL-P, characters. Any characters that are typed following a CTRL-S and preced-
ing a CTRL-Q are also intercepted. However, if start/stop scroll has been disabled
by the Console Mode, the CTRL-S, CTRL-Q, and CTRL-P characters are not inter-
cepted. Instead, they are returned in register A, but are not echoed to the console.

If printer echo has been invoked, all characters that are echoed to the console are
also sent to the list device, LST:.

Function 1 does not return control to the calling program until a non-intercepted
character is typed, thus suspending execution if a character is not ready.

DIGITAL RESEARCH™
3-2

CP/M 3 Programmer’s Guide 3 BDOS Calls: Function 2

BDOS FUNCTION 2: CONSOLE OUTPUT

Entry Parameters:
Registers C: 02H
E: ASCII Character

The Console Output function sends the ASCII character from register E to the
logical console device, CONOUT:. When the Console Mode is in the default state
(see Section 2.2.1), Function 2 expands tab characters, CTRL-], in columns of 8
characters, checks for stop scroll, CTRL-S, start scroll, CTRL-Q, and echoes charac-
ters to the logical list device, LST:, if printer echo, CTRL-P, has been invoked.

DIGITAL RESEARCH™
3-3

3 BDOS Calls: Function 3

CP/M 3 Programmer’s Guide

BDOS FUNCTION 3: AUXILIARY INPUT

Entry Parameters:
Register C: 03H

Returned Value:
Register A: ASCII Character

The Auxiliary Input function reads the next character from the logical auxiliary
input device, AUXIN:, into register A. Control does not return to the calling program
until the character is read.

~ @ DIGITAL RESEARCH™

CP/M 3 Programmer’s Guide 3 BDOS Calls: Function 4

BDOS FUNCTION 4: AUXILIARY OUTPUT

Entry Parameters:
Registers C: 04H
E: ASCI Character

The Auxiliary Output function sends the ASCII character from register E to the
logical auxiliary output device, AUXOUT:.

DIGITAL RESEARCH™

3-5

3 BDOS Calls: Function 5§ CP/M 3 Programmer’s Guide

BDOS FUNCTION 5: LIST OUTPUT

Entry Parameters:
Registers C: 05H
E: ASCII Character

The List Output function sends the ASCII character in register E to the logical list
device, LST:.

DIGITAL RESEARCH™
3-6

CP/M 3 Programmer’s Guide 3 BDOS Calls: Function 6

BDOS FUNCTION 6: DIRECT CONSOLE I/O

Entry Parameters:
Registers C: 06H
E: OFFH (input/status) or
OFEH (status) or
OFDH (input) or
char (output)

Returned Value:
Register A: char or status (no value)

CP/M 3 supports direct I/O to the logical console, CONIN:, for those specialized
applications where unadorned console input and output is required. Use Direct Con-
sole /O carefully because it bypasses all the normal control character functions.
Programs that perform direct I/O through the BIOS under previous releases of CP/M
should be changed to use direct I/O so that they can be fully supported under future
releases of MP/M and CP/M.

A program calls Function 6 by passing one of four different values in reglster E.
The values and their meanings are summarized in Table 3-1.

DIGITAL RESEARCH™

3 BDOS Calls: Function 6 CP/M 3 Programmer’s Guide

Table 3-1. Function 6 Entry Parameters

Register

E value Meaning

OFFH Console input/status command returns an input character; if no
character is ready, a value of zero is returned.

OFEH Console status command (On return, register A contains 00 if no
character is ready; otherwise it contains FFH.)

0FDH Console input command, returns an input character; this func-
tion will suspend the calling process until a character is ready.

ASCII Function 6 assumes that register E contains a valid ASCII char-

character acter and sends it to the console.

DIGITAL RESEARCH™
3-8

CP/M 3 Programmer’s Guide 3 BDOS Calls: Function 7

BDOS FUNCTION 7: AUXILIARY INPUT STATUS

Entry Parameters:
Register C: 07H

Returned Value:
Register A: Auxiliary Input Status

The Auxiliary Input Status function returns the value OFFH in register A if a
character is ready for input from the logical auxiliary input device, AUXIN:. If no
character is ready for input, the value O0H is returned.

DIGITAL RESEARCH™

3 BDOS Calls: Function 8

CP/M 3 Programmer’s Guide

BDOS FUNCTION 8: AUXILIARY OUTPUT STATUS

Entry Parameters:
Register C: 08H

Returned Value:
Register A: Auxiliary Output Status

The Auxiliary Output Status function returns the value OFFH in register A if the
logical auxiliary output device, AUXOUT?:, is ready to accept a character for output.

If the device is not ready for output, the value O0H is returned.

DIGITAL RESEARCH™

CP/M 3 Programmer’s Guide 3 BDOS Calls: Function 9

BDOS FUNCTION 9: PRINT STRING

Entry Parameters:
Registers C: 09H
DE: String Address

The Print String function sends the character string addressed by register pair DE
to the logical console, CONOUT:, until it encounters a delimiter in the string. Usu-
ally the delimiter is a dollar sign, $, but it can be changed to any other value by
Function 110, Get/Set Output Delimiter. If the Console Mode is in the default state
(see Section 2.2.1), Function 9 expands tab characters, CTRL-L, in columns of 8
characters. It also checks for stop scroll, CTRL-S, start scroll, CTRL-Q, and echoes
to the logical list device, LST:, if printer echo, CTRL-P, has been invoked.

DIGITAL RESEARCH™
3-11

3 BDOS Calls: Function 10 CP/M 3 Programmer’s Guide

BDOS FUNCTION 10: READ CONSOLE BUFFER

Entry Parameters:
Registers C: 0AH
DE: Buffer Address

Returned Value:
Console Characters in Buffer

The Read Console Buffer function reads a line of edited console input from the
logical console, CONIN:, to a buffer that register pair DE addresses. It terminates
input and returns to the calling program when it encounters a return, CTRL-M, or a
line feed, CTRL-], character. Function 10 also discards all input characters after the
input buffer is filled. In addition, it outputs a bell character, CTRL-G, to the console
when it discards a character to signal the user that the buffer is full. The input buffer
addressed by DE has the following format:

DE: +0 +1 +2 +3 +4 +5 +6 +7 +8 ... +n

mx|nc|cl|c2] c3|c4|c5|c6|c7| ... [??

where mx is the maximum number of characters which the buffer holds, and nc is
the number of characters placed in the buffer. The characters entered by the operator
follow the nc value. The value mx must be set prior to making a Function 10 call
and may range in value from 1 to 255. Setting mx to zero is equivalent to setting mx
to one. The value nc is returned to the calling program and may range from zero to
mx. If nc < mx, then uninitialized positions follow the last character, denoted by ??
in the figure. Note that a terminating return or line feed character is not placed in
the buffer and not included in the count nc.

If register pair DE is set to zero, Function 10 assumes that an initialized input
buffer is located at the current DMA address (see Function 26, Set DMA Address).
This allows a program to put a string on the screen for the user to edit. To initialize
the input buffer, set characters c1 through cn to the initial value followed by a binary
zZero terminator.

DIGITAL RESEARCH™

CP/M 3 Programmer’s Guide 3 BDOS Calls: Function 10

When a program calls Function 10 with an initialized buffer, Function 10 operates
as if the user had typed in the string. When Function 10 encounters the binary zero
terminator, it accepts input from the console. At this point, the user can edit the
initialized string or accept it as it is by pressing the RETURN key. However, if the
initialized string contains a return, CTRL-M, or a linefeed, CTRL-], character, Func-
tion 10 returns to the calling program without giving the user the opportunity to edit
the string.

The level of console editing supported by Function 10 differs for the banked and
nonbanked versions of CP/M 3. Refer to the CP/M Plus (CP/M Version 3) Operating
System User’s Guide for a detailed description of console editing. In the nonbanked
version, Function 10 recognizes the edit control characters summarized in Table 3-2.

Table 3-2. Edit Control Characters (Nonbanked CP/M 3)
Character Edit Control Function

rub/del Removes and echoes the last character; GENCPM can change
this function to CTRL-H

CTRL-C Reboots when at the beginning of line; the Console Mode can
disable this function

CTRL-E Causes physical end of line

CTRL-H Backspaces one character position; GENCPM can change this
function to rub/del

CTRL-] (Line-feed) terminates input line

CTRL-M (Return) terminates input line

CTRL-P Echoes console output to the list device

CTRL-R Retypes the current line after new line

CTRL-U Removes current line after new line

CTRL-X Backspaces to beginning of current line

DIGITAL RESEARCH™

3-13

3 BDOS Calls: Function 10 CP/M 3 Programmer’s Guide

The banked version of CP/M 3 expands upon the editing provided in the non-
banked version. The functionality of the two versions is similar when the cursor is
positioned at the end of the line. However, in the banked version, the user can move
the cursor anywhere in the current line, insert characters, delete characters, and
perform other editing functions. In addition, the banked version saves the previous
command line; it can be recalled when the current line is empty. Table 3-3 summa-
rizes the edit control characters supported by Function 10 in the banked version of
CP/M 3.

Table 3-3. Edit Control Characters (Banked CP/M 3)
Character Edit Control Function

rub/del Removes and echoes the last character if at the end of the line;
otherwise deletes the character to the left of the current cursor
position; GENCPM can change this function to CTRL-H.

CTRL-A Moves cursor one character to the left.

CTRL-B Moves cursor to the beginning of the line when not at the begin-
ning; otherwise moves cursor to the end of the line.

CTRL-C Reboots when at the beginning of line; the Console Mode can
disable this function.

CTRL-E Causes physical end-of-line; if the cursor is positioned in the
middle of a line, the characters at and to the right of the cursor
are displayed on the next line.

CTRL-F Moves cursor one character to the right.

CTRL-G Deletes the character at the current cursor position when in the
middle of the line; has no effect when the cursor is at the end of
the line.

CTRL-H Backspaces one character position when positioned at the end

of the line; otherwise deletes the character to the left of the
cursor; GENCPM can change this function to rub/del.

DIGITAL RESEARCH™

CP/M 3 Programmer’s Guide 3 BDOS Calls: Function 10

Table 3-3. (continued)

Character Edit Control Function

CTRL-J (Line-feed) terminates input; the cursor can be positioned any-
where in the line; the entire input line is accepted; sets the pre-
vious line buffer to the input line.

CTRL-K Deletes all characters to the right of the cursor along with the
character at the cursor.

CTRL-M (Return) terminates input; the cursor can be positioned any-
where in the line; the entire input line is accepted; sets the pre-
vious line buffer to the input line.

CTRL-P Echoes console output to the list device.

CTRL-R Retypes the characters to the left of the cursor on the new line.

CTRL-U Updates the previous line buffer to contain the characters to the
left of the cursor; deletes current line, and advances to new line.

CTRL-W Recalls previous line if current line is empty; otherwise moves
cursor to end-of-line.

CTRL-X Deletes all characters to the left of the cursor.

For banked systems, Function 10 uses the console width field defined in the System
Control Block. If the console width is exceeded when the cursor is positioned at the
end of the line, Function 10 automatically advances to the next line. The beginning
of the line can be edited by entering a CTRL-R.

When a character is typed while the cursor is positioned in the middle of the line,
the typed character is inserted into the line. Characters at and to the right of the
cursor are shifted to the right. If the console width is exceeded, the characters disap-
pear off the right of the screen. However, these characters are not lost. They reappear
if characters are deleted out of the line, or if a CTRL-E is typed.

DIGITAL RESEARCH™

3-15

3 BDOS Calls: Function 11 CP/M 3 Programmer’s Guide

BDOS FUNCTION 11: GET CONSOLE STATUS

Entry Parameters:
Register C: 0BH

Returned Value:
Register A: Console Status

The Get Console Status function checks to see if a character has been typed at
the logical console, CONIN:. If the Console Mode is in the default state (see
Section 2.2.1), Function 11 returns the value 01H in register A when a character is
ready. If a character is not ready, it returns a value of 00H.

If the Console Mode is in CTRL-C Only Status mode, Function 11 returns the
value 01H in register A only if a CTRL-C has been typed at the console.

DIGITAL RESEARCH™

3-16

CP/M 3 Programmer’s Guide 3 BDOS Calls: Function 12

BDOS FUNCTION 12: RETURN VERSION NUMBER

Entry Parameters:
Register C: OCH

Returned Value:
Register HL: Version Number

The Return Version Number function provides information that allows version
independent programming. It returns a two-byte value in register pair HL: H con-
tains OOH for CP/M and L contains 31H, the BDOS file system version number,
Function 12 is useful for writing applications programs that must run on multiple
versions of CP/M and MP/M.

DIGITAL RESEARCH™
3-17

3 BDOS Calls: Function 13 CP/M 3 Programmer’s Guide

BDOS FUNCTION 13: RESET DISK SYSTEM

Entry Parameters:
Register C: 0DH

The Reset Disk System function restores the file system to a reset state where all
the disk drives are set to read-write (see Functions 28 and 29), the default disk is set
to drive A, and the default DMA address is reset to 0080H. This function can be
used, for example, by an application program that requires disk changes during
operation. Function 37, Reset Drive, can also be used for this purpose.

DIGITAL RESEARCH™

3-18

CP/M 3 Programmer’s Guide 3 BDOS Calls: Function 14

BDOS FUNCTION 14: SELECT DISK

Entry Parameters:
Registers C: OEH
E: Selected Disk

Returned Value:
Registers A: Error Flag
H: Physical Error

The Select Disk function designates the disk drive named in register E as the
default disk for subsequent BDOS file operations. Register E is set to 0 for drive A,
1 for drive B, and so on through 15 for drive P in a full 16-drive system. In addition,
Function 14 logs in the designated drive if it is currently in the reset state. Logging-
in a drive activates the drive’s directory until the next disk system reset or drive reset
operation.

FCBs that specify drive code zero (dr = 00H) automatically reference the currently
selected default drive. FCBs with drive code values between 1 and 16, however,
ignore the selected default drive and directly reference drives A through P.

Upon return, register A contains a zero if the select operation was successful. If a
physical error was encountered, the select function performs different actions depend-
ing on the BDOS error mode (see Function 45). If the BDOS error mode is in the
default mode, a message identifying the error is displayed at the console, and the
calling program is terminated. Otherwise, the select function returns to the calling
program with register A set to OFFH and register H set to one of the following
physical error codes:

01 : Disk 1/0O Error
04 : Invalid drive

DIGITAL RESEARCH™

3-19

3 BDOS Calls: Function 15 E - CP/M 3 Programmer’s Guide

BDOS FUNCTION 15: OPEN FILE

Entry Parameters:
Registers C: OFH
DE: FCB Address

Returned Value:
Registers A: Directory Code
H: Physical or Extended Error

The Open File function activates the FCB for a file that exists in the disk directory
under the currently active user number or user zero. The calling program passes the
address of the FCB in register pair DE, with byte 0 of the FCB specifying the drive,
bytes 1 through 11 specifying the filename and filetype, and byte 12 specifying the
extent. Usually, byte 12 of the FCB is initialized to zero.

If the file is password protected in Read mode, the correct password must be
placed in the first eight bytes of the current DMA, or have been previously estab-
lished as the default password (see Function 106). If the current record field of the
FCB, cr, is set to OFFH, Function 15 returns the byte count of the last record of the
file in the cr field. You can set the last record byte count for a file with Function 30,
Set File Attributes. Note that the current record field of the FCB, cr, must be zeroed
by the calling program before beginning read or write operations if the file is to be
accessed sequentially from the first record.

If the current user is non-zero, and the file to be opened does not exist under the
current user number, the open function searches user zero for the file. If the file exists
under user zero, and has the system attribute, t2°, set, the file is opened under user
zero. Write operations are not supported for a file that is opened under user zero in
this manner.

DIGITAL RESEARCH™
3-20

CP/M 3 Programmer’s Guide 3 BDOS Calls: Function 15

If the open operation is successful, the user’s FCB is activated for read and write
operations. The relevant directory information is copied from the matching directory
FCB into bytes dO through dn of the FCB. If the file is opened under user zero when
the current user number is not zero, interface attribute f8’ is set to one in the user’s
FCB. In addition, if the referenced file is password protected in Write mode, and the
correct password was not passed in the DMA, or did not match the default pass-
word, interface attribute {7’ is set to one. Write operations are not supported for an
activated FCB if interface attribute {7° or {8’ is true.

When the open operation is successful, the open function also makes an Access
date and time stamp for the opened file when the following conditions are satisfied:
the referenced drive has a directory label that requests Access date and time stamp-
ing, and the FCB extent number field is zero.

Upon return, the Open File function returns a directory code in register A with the
value O0H if the open was successful, or FFH, 255 decimal, if the file was not found.
Register H is set to zero in both of these cases. If a physical or extended error was
encountered, the Open File function performs different actions depending on the
BDOS error mode (see Function 45). If the BDOS error mode is in the default mode,
a message identifying the error is displayed at the console and the program is termi-
nated. Otherwise, the Open File function returns to the calling program with register
A set to OFFH, and register H set to one of the following physical or extended error
codes:

01 : Disk I/O Error

04 : Invalid drive error

07 : File password error

09 : ? in the FCB filename or filetype field

DIGITAL RESEARCH™

3-21

3 BDOS Calls: Function 16 CP/M 3 Programmer’s Guide

BDOS FUNCTION 16: CLOSE FILE

Entry Parameters:
Registers C: 10H
DE: FCB Address

Returned Value:
Registers A: Directory Code
H: Physical or Extended Error

The Close File function performs the inverse of the Open File function. The calling
program passes the address of an FCB in register pair DE. The referenced FCB must
have been previously activated by a successful Open or Make function call (see
Functions 15 and 22). Interface attribute £5° specifies how the file is to be closed as
shown below:

£s’
fs’

0 - Permanent close (default mode)
1 - Partial close

A permanent close operation indicates that the program has completed file operations
on the file. A partial close operation updates the directory, but indicates that the file
is to be maintained in the open state.

If the referenced FCB contains new information because of write operations to the
FCB, the close function permanently records the new information in the referenced
disk directory. Note that the FCB does not contain new information, and the direc-
tory update step is bypassed if only read or update operations have been made to the
referenced FCB.

DIGITAL RESEARCH™

3-22

CP/M 3 Programmer’s Guide 3 BDOS Calls: Function 16

Upon return, the close function returns a directory code in register A with the
value O0H if the close was successful, or FFH, 255 Decimal, if the file was not found.
Register H is set to zero in both of these cases. If a physical or extended error is
encountered, the close function performs different actions depending on the BDOS
error mode (see Function 45). If the BDOS error mode is in the default mode, a
message identifying the error is displayed at the console, and the calling program is
terminated. Otherwise, the close function returns to the calling program with register
A set to OFFH and register H set to one of the following physical error codes:

01 : Disk I/O error

02 : Read/only disk
04 : Invalid drive error

DIGITAL RESEARCH™

3-23

3 BDOS Calls: Function 17 CP/M 3 Programmer’s Guide

BDOS FUNCTION 17: SEARCH FOR FIRST

Entry Parameters:
Registers C: 11H
DE: FCB Address

Returned Value:
Registers A: Directory Code
H: Physical Error

The Search For First function scans the directory for a match with the FCB addressed
by register pair DE. Two types of searches can be performed. For standard searches,
the calling program initializes bytes 0 through 12 of the referenced FCB, with byte 0
specifying the drive directory to be searched, bytes 1 through 11 specifying the file or
files to be searched for, and byte 12 specifying the extent. Usually byte 12 is set to
zero. An ASCII question mark, 63 decimal, 3F hex, in any of the bytes 1 through 12
matches all entries on the directory in the corresponding position. This facility, called
ambiguous reference, can be used to search for multiple files on the directory. When
called in the standard mode, the Search function scans for the first file entry in the
specified directory that matches the FCB, and belongs to the current user number.

The Search For First function also initializes the Search For Next function. After
the Search function has located the first directory entry matching the referenced FCB,
the Search For Next function can be called repeatedly to locate all remaining match-
ing entries. In terms of execution sequence, however, the Search For Next call must
either follow a Search For First or Search For Next call with no other intervening
BDOS disk-related function calls.

If byte 0 of the referenced FCB is set to a question mark, the Search function
ignores the remainder of the referenced FCB, and locates the first directory entry
residing on the current default drive. All remaining directory entries can be located
by making multiple Search For Next calls. This type of search operation is not
usually made by application programs, but it does provide complete flexibility to
scan all current directory values. Note that this type of search operation must be
performed to access a drive’s directory label (see Section 2.3.6).

@DIGITAL RESEARCH™
3-24

CP/M 3 Programmer’s Guide 3 BDOS Calls: Function 17

Upon return, the Search function returns a Directory Code in register A with the
value O to 3 if the search is successful, or OFFH, 255 Decimal, if a matching directory
entry is not found. Register H is set to zero in both of these cases. For successful
searches, the current DMA is also filled with the directory record containing the
matching entry, and the relative starting position is A * 32 (that is, rotate the A
register left 5 bits, or ADD A five times). Although it is not usually required for
application programs, the directory information can be extracted from the buffer at
this position.

If the directory has been initialized for date and time stamping by INITDIR, then
an SFCB resides in every fourth directory entry, and successful Directory Codes are
restricted to the values O to 2. For successful searches, if the matching directory
record is an extent zero entry, and if an SFCB resides at offset 96 within the current
DMA, contents of (DMA Address + 96) = 21H, the SFCB contains the date and
time stamp information, and password mode for the file. This information is located
at the relative starting position of 97 + (A * 10) within the current DMA in the
following format:

0 - 3 : Create or Access Date and Time Stamp Field
4 - 7 : Update Date and Time Stamp Field
8 : Password Mode Field

(Refer to Section 2.3.8 for more information on SFCBs.)

If a physical error is encountered, the Search function performs different actions
depending on the BDOS error mode (see Function 45). If the BDOS error mode is in
the default mode, a message identifying the error is displayed at the console, and the
cailing program is terminated. Otherwise, the Search function returns to the calling
program with register A set to OFFH, and register H set to one of the following
physical error codes:

01 : Disk I/O error
04 : Invalid drive error

DIGITAL RESEARCH™
3-25

3 BDOS Calls: Function 18 CP/M 3 Programmer’s Guide

2

BDOS FUNCTION 18: SEARCH FOR NEXT

Entry Parameters:
Register C: 12H

Returned Value:
Registers A: Directory Code
H: Physical Error

The Search For Next function is identical to the Search For First function, except
that the directory scan continues from the last entry that was matched. Function 18
returns a Directory code in register A, analogous to Function 17.

Note: in execution sequence, a Function 18 call must follow either a Function 17 or
another Function 18 call with no other intervening BDOS disk-related function calls.

@DIGITAL RESEARCH™
- 3-26

CP/M 3 Programmer’s Guide 3 BDOS Calls: Function 19

BDOS FUNCTION 19: DELETE FILE

Entry Parameters:
Registers C: 13H
DE: FCB Address

Returned Value:
Registers A: Directory Code
H: Extended or Physical Error

The Delete File function removes files or XFCBs that match the FCB addressed in
register pair DE. The filename and filetype can contain ambiguous references, that is,
question marks in bytes f1 through t3, but the dr byte cannot be ambiguous, as it
can in the Search and Search Next functions. Interface attribute {5’ specifies the type
of delete operation that is performed.

{5’
{5’

0 - Standard Delete (default mode)
1 - Delete only XFCBs

If any of the files that the referenced FCB specify are password protected, the correct
password must be placed in the first eight bytes of the current DMA buffer, or have
been previously established as the default password (see Function 106).

For standard delete operations, the Delete function removes all directory entries
belonging to files that match the referenced FCB. All disk directory and data space
owned by the deleted files is returned to free space, and becomes available for allo-
cation to other files. Directory XFCBs that were owned by the deleted files are also
removed from the directory. If interface attribute £5° of the FCB is set to 1, Function
19 deletes only the directory XFCBs that match the referenced FCB.

Note: if any of the files that match the input FCB specification fail the password

check, or are Read-Only, then the Delete function does not delete any files or XFCBs.
This applies to both types of delete operations.

DIGITAL RESEARCH™

3-27

3 BDOS Calls: Function 19 CP/M 3 Programmer’s Guide

In nonbanked systems, file passwords and XFCBs are not supported. Thus, if the
Delete function is called with interface attribute 5’ set to true, the Delete function
performs no action but returns with register A set to zero.

Upon return, the Delete function returns a Directory Code in register A with the
value O if the delete is successful, or OFFH, 255 Decimal, if no file that matches the
referenced FCB is found. Register H is set to zero in both of these cases. If a physical,
or extended error is encountered, the Delete function performs different actions
depending on the BDOS error mode (see Function 45). If the BDOS error mode is
the default mode, a message identifying the error is displayed at the console and the
calling program is terminated. Otherwise, the Delete function returns to the calling
program with register A set to OFFH and register H set to one of the following
physical or extended error codes:

01 : Disk I/O error

02 : Read-Only disk

03 : Read-Only file

04 : Invalid drive error
07 : File password error

@ DIGITAL RESEARCH™
3-28

CP/M 3 Programmer’s Guide 3 BDOS Calls: Function 20

BDOS FUNCTION 20: READ SEQUENTIAL

Entry Parameters:
Registers C: 14H
DE: FCB Address

Returned Value:
Registers A: Error Code
H: Physical Error

The Read Sequential function reads the next 1 to 128 128-byte records from a file
into memory beginning at the current DMA address. The BDOS Multi-Sector Count
(see Function 44) determines the number of records to be read. The default is one
record. The FCB addressed by register pair DE must have been previously activated
by an Open or Make function call.

Function 20 reads each record from byte cr of the extent, then automatically
increments the cr field to the next record position. If the cr field overflows, then the
function automatically opens the next logical extent and resets the cr field to O in
preparation for the next read operation. The calling program must set the cr field to
0 following the Open call if the intent is to read sequentially from the beginning of
the file.

Upon return, the Read Sequential function sets register A to zero if the read oper-
ation is successful. Otherwise, register A contains an error code identifying the error
as shown below:

01 : Reading unwritten data (end-of-file)
09 : Invalid FCB
10 : Media change occurred

255 : Physical Error; refer to register H

@ DIGITAL RESEARCH™
3-29

3 BDOS Calls: Function 20 CP/M 3 Programmer’s Guide

Error Code 01 is returned if no data exists at the next record position of the file.
Usually, the no data situation is encountered at the end of a file. However, it can
also occur if an attempt is made to read a data block that has not been previously
written, or an extent which has not been created. These situations are usually restricted
to files created or appended with the BDOS random write functions (see Functions
34 and 40).

Error Code 09 is returned if the FCB is invalidated by a previous BDOS close call that
returns an error.

Error Code 10 is returned if a media change occurs on the drive after the refer-
enced FCB is activated by a BDOS Open, or Make. Call.

Error Code 255 is returned if a physical error is encountered and the BDOS error
mode is Return Error mode, or Return and Display Error mode (see Function 45). If
the error mode is the default mode, a message identifying the physical error is dis-
played at the console, and the calling program is terminated. When a physical error
is returned to the calling program, register H contains one of the following error
codes:

01 : Disk I/O error
04 : Invalid drive error

On all error returns except for physical error returns, A = 255, Function 20 sets
register H to the number of records successfully read before the error is encountered.
This value can range from 0 to 127 depending on the current BDOS Multi-Sector
Count. It is always set to zero when the Multi-Sector Count is equal to one.

@ DIGITAL RESEARCH™
3-30

CP/M 3 Programmer’s Guide 3 BDOS Calls: Function 21

BDOS FUNCTION 21: WRITE SEQUENTIAL

Entry Parameters:
Registers C: 15H
DE: FCB Address

Returned Value:
Registers A: Error Code
H: Physical Error

The Write Sequential function writes 1 to 128 128-byte data records, beginning at
the current DMA address into the file named by the FCB addressed in register pair
DE. The BDOS Multi-Sector Count (see Function 44) determines the number of 128
byte records that are written. The default is one record. The referenced FCB must
have been previously activated by a BDOS Open or Make function call.

Function 21 places the record into the file at the position indicated by the cr byte
of the FCB, and then automatically increments the cr byte to the next record posi-
tion. If the cr field overflows, the function automatically opens, or creates the next
logical extent, and resets the cr field to 0 in preparation for the next write operation.
If Function 21 is used to write to an existing file, then the newly written records
overlay those already existing in the file. The calling program must set the cr field to
0 following an Open or Make call if the intent is to write sequentially from the
beginning of the file.

Function 21 makes an Update date and time for the file if the following conditions
are satisfied: the referenced drive has a directory label that requests date and time
stamping, and the file has not already been stamped for update by a previous Make
or Write function call.

DIGITAL RESEARCH™

3-31

3 BDOS Calls: Function 21 CP/M 3 Programmer’s Guide

Upon return, the Write Sequential function sets register A to zero if the write
operation is successful. Otherwise, register A contains an error code identifying the
error as shown below:

01 : No available directory space
02 : No available data block
09 : Invalid FCB
10 : Media change occurred
255 : Physical Error : refer to register H

Error Code 01 is returned when the write function attempts to create a new extent
that requires a new directory entry, and no available directory entries exist on the
selected disk drive.

Error Code 02 is returned when the write command attempts to allocate a new
data block to the file, and no unallocated data blocks exist on the selected disk drive.

Error Code 09 is returned if the FCB is invalidated by a previous BDOS close call
that returns an error.

Error Code 10 is returned if a media change occurs on the drive after the refer-
enced FCB is activated by a BDOS Open or Make call.

DIGITAL RESEARCH™
3-32

CP/M 3 Programmer’s Guide 3 BDOS Calls: Function 21

Error Code 255 is returned if a physical error is encountered and the BDOS error
mode is Return Error mode, or Return and Display Error mode (see Function 45). If
the error mode is the default mode, a message identifying the physical error is dis-
played at the console, and the calling program is terminated. When a physical error
is returned to the calling program, register H contains one of the following error
codes:

01 : Disk I/O error
02 : Read-Only disk
03 : Read-Only file or
File open from user 0 when
the current user number is non-zero or
File password protected in Write mode
04 : Invalid drive error

On all error returns, except for physical error returns, A = 255, Function 21 sets
register H to the number of records successfully written before the error was encoun-
tered. This value can range from 0 to 127 depending on the current BDOS Multi-
Sector Count. It is always set to zero when the Multi-Sector Count is set to one.

DIGITAL RESEARCH™

3-33

3 BDOS Calls: Function 22 CP/M 3 Programmer’s Guide

BDOS FUNCTION 22: MAKE FILE

~ Entry Parameters:
Registers C: 16H
DE: FCB Address

Returned Value:
Registers A: Directory Code
H: Physical or Extended Error

The Make File function creates a new directory entry for a file under the current
user number. It also creates an XFCB for the file if the referenced drive has a direc-
tory label that enables password protection on the drive, and the calling program
assigns a password to the file.

The calling program passes the address of the FCB in register pair DE, with byte 0
of the FCB specifying the drive, bytes 1 through 11 specifying the filename and
filetype, and byte 12 set to the extent number. Usually, byte 12 is set to zero. Byte
32 of the FCB, the cr field, must be initialized to zero, before or after the Make call,
if the intent is to write sequentially from the beginning of the file.

Interface attribute £6’ specifies whether a password is to be assigned to the created
file.

f6’
f6’

0 - Do not assign password (default)
1 - Assign password to created file

When attribute £6’ is set to 1, the calling program must place the password in the
first 8 bytes of the current DMA buffer, and set byte 9 of the DMA buffer to the
password mode (see Function 102). Note that the Make function only interrogates
interface attribute f6’ if passwords are activated on the referenced drive. In non-
banked systems, file passwords are not supported, and attribute f6 is never interrogated.

The Make function returns with an error if the referenced FCB names a file that
currently exists in the directory under the current user number.

DIGITAL RESEARCH™

3-34

CP/M 3 Programmer’s Guide 3 BDOS Calls: Function 22

If the Make function is successful, it activates the referenced FCB for file opera-
tions by opening the FCB, and initializes both the directory entry and the referenced
FCB to an empty file. It also initializes all file attributes to zero. In addition, Function
22 makes a Creation date and time stamp for the file if the following conditions are
satisfied: the referenced drive has a directory label that requests Creation date and
time stamping and the FCB extent number field is equal to zero. Function 22 also
makes an Update stamp if the directory label requests update stamping and the FCB
extent field is equal to zero.

If the referenced drive contains a directory label that enables password protection,
and if interface attribute £6” has been set to 1, the Make function creates an XFCB
for the file. In addition, Function 22 also assigns the password, and password mode
placed in the first nine bytes of the DMA, to the XFCB.

Upon return, the Make function returns a directory code in register A with the
value O if the make operation is successful, or OFFH, 255 decimal, if no directory
space is available. Register H is set to zero in both of these cases. If a physical or
extended error is encountered, the Make function performs different actions depend-
ing on the BDOS error mode (see Function 45). If the BDOS error mode is the
default mode, a message identifying the error is displayed at the console, and the
calling program is terminated. Otherwise, the Make function returns to the calling
program with register A set to OFFH, and register H set to one of the following
physical or extended error codes:

01 : Disk I/O error

02 : Read-Only disk

04 : Invalid drive error

08 : File already exists

09 : ? in filename or filetype field

DIGITAL RESEARCH™
3-35

3 BDOS Calls: Function 23 CP/M 3 Programmer’s Guide

BDOS FUNCTION 23: RENAME FILE

Entry Parameters:
Registers C: 17H
DE: FCB Address

Returned Value:
Registers A: Directory Code
H: Physical or Extended Error

The Rename function uses the FCB, addressed by register pair DE, to change all
directory entries of the file specified by the filename in the first 16 bytes of the FCB
to the filename in the second 16 bytes. If the file specified by the first filename is
password protected, the correct password must be placed in the first eight bytes of
the current DMA buffer, or have been previously established as the default password
(see Function 106). The calling program must also ensure that the filenames specified
in the FCB are valid and unambiguous, and that the new filename does not already
exist on the drive. Function 23 uses the dr code at byte 0 of the FCB to select the
drive. The drive code at byte 16 of the FCB is ignored.

DIGITAL RESEARCH™
3-36

CP/M 3 Programmer’s Guide 3 BDOS Calls: Function 23

Upon return, the Rename function returns a Directory Code in register A with the
value 0 if the rename is successful, or OFFH, 255 Decimal, if the file named by the
first filename in the FCB is not found. Register H is set to zero in both of these cases.
If a physical or extended error is encountered, the Rename function performs differ-
ent actions depending on the BDOS error mode (see Function 45). If the BDOS error
mode is the default mode, a message identifying the error is displayed at the console
and the program is terminated. Otherwise, the Rename function returns to the calling
program with register A set to OFFH and register H set to one of the following
physical or extended error codes:

01 : Disk 1O error

02 : Read-Only disk

03 : Read-Only file

04 : Invalid drive error

07 : File password error

08 : File already exists

09 : ? in filename or filetype field

DIGITAL RESEARCH™

3-37

3 BDOS Calls: Function 24 CP/M 3 Programmer’s Guide

BDOS FUNCTION 24: RETURN LOGIN VECTOR

Entry Parameters:
Register C: 18H

Returned Value:
Register HL: Login Vector

Function 24 returns the login vector in register pair HL. The login vector is a 16-
bit value with the least significant bit of L corresponding to drive A, and the high-
order .bit of H corresponding to the 16th drive, labelled P. A 0 bit indicates that the
drive is not on-line, while a 1 bit indicates the drive is active. A drive is made active
by either an explicit BDOS Select Disk call, number 14, or an implicit selection when
a BDOS file operation specifies a non-zero dr byte in the FCB. Function 24 maintains
compatibilty with earlier releases since registers A and L contain the same values
upon return.

DIGITAL RESEARCH™

3-38

CP/M 3 Programmer’s Guide 3 BDOS Calls: Function 25

BDOS FUNCTION 25: RETURN CURRENT DISK

Entry Parameters:
Register C: 19H

Returned Value:
Register A: Current Disk

Function 25 returns the currently selected default disk number in register A. The
disk numbers range from O through 15 corresponding to drives A through P.

DIGITAL RESEARCH™
3-39

3 BDOS Calls: Function 26 CP/M 3 Programmer’s Guide

BDOS FUNCTION 26: SET DMA ADDRESS

Entry Parameters:
Registers C: 1AH
DE: DMA Address

DMA is an acronym for Direct Memory Address, which is often used in connec-
tion with disk controllers that directly access the memory of the computer to transfer
data to and from the disk subsystem. Under CP/M 3, the current DMA is usually
defined as the buffer in memory where a record resides before a disk write, and after
a disk read operation. If the BDOS Multi-Sector Count is equal to one (see Function
44), the size of the buffer is 128 bytes. However, if the BDOS Multi-Sector Count is
greater than one, the size of the buffer must equal N * 128, where N equals the
Multi-Sector Count.

Some BDOS functions also use the current DMA to pass parameters, and to return
values. For example, BDOS functions that check and assign file passwords require
that the password be placed in the current DMA. As another example, Function 46,
Get Disk Free Space, returns its results in the first 3 bytes of the current DMA. When
the current DMA is used in this context, the size of the buffer in memory is deter-
mined by the specific requirements of the called function.

When a transient program is initiated by the CCP, its DMA address is set to
0080H. The BDOS Reset Disk System function, Function 13, also sets the DMA
address to 0080H. The Set DMA function can change this default value to another
memory address. The DMA address is set to the value passed in the register pair DE.
The DMA address remains at this value until it is changed by another Set DMA
Address, or Reset Disk System call.

DIGITAL RESEARCH™
3-40

CP/M 3 Programmer’s Guide 3 BDOS Calls: Function 27

BDOS FUNCTION 27: GET ADDR(ALLOC)

Entry Parameters:
Register C: 1BH

Returned Value:
Register HL: ALLOC Address

CP/M 3 maintains an allocation vector in main memory for each active disk drive.
Some programs use the information provided by the allocation vector to determine
the amount of free data space on a drive. Note, however, that the allocation infor-
mation might be inaccurate if the drive has been marked Read-Only.

Function 27 returns in register pair HL, the base address of the allocation vector
for the currently selected drive. If a physical error is encountered when the BDOS
error mode is one of the return modes (see Function 45), Function 27 returns the
value OFFFFH in the register pair HL.

In banked CP/M 3 systems, the allocation vector can be placed in bank zero. In
this case, a transient program cannot access the allocation vector. However, the
BDOS function, Get Disk Free Space (Function 46), can be used to directly return
the number of free 128-byte records on a drive. The CP/M 3 utilities that display a
drive’s free space, DIR and SHOW, use Function 46 for that purpose.

DIGITAL RESEARCH™

3-41

3 BDOS Calls: Function 28 CP/M 3 Programmer’s Guide

BDOS FUNCTION 28: WRITE PROTECT DISK

Entry Parameters:
Register C: 1CH

The Write Protect Disk function provides temporary write protection for the cur-
rently selected disk by marking the drive as Read-Only. No program can write to a
disk that is in the Read-Only state. A drive reset operation must be performed for a
Read-Only drive to restore it to the Read-Write state (see Functions 13 and 37).

DIGITAL RESEARCH™
3-42 '

CP/M 3 Programmer’s Guide 3 BDOS Calls: Function 29

BDOS FUNCTION 29: GET READ-ONLY VECTOR

Entry Parameters:
Register C: 1DH

Returned Value:
Register HL: R/O Vector Value

Function 29 returns a bit vector in register pair HL that indicates which drives
have the temporary Read-Only bit set. The Read-Only bit can be set only by a BDOS
Write Protect Disk call.

The format of the bit vector is analagous to that of the login vector returned by
Function 24. The least significant bit corresponds to drive A, while the most signifi-
cant bit corresponds to drive P.

DIGITAL RESEARCH™
3-43

3 BDOS Calls: Function 30 CP/M 3 Programmer’s Guide

BDOS FUNCTION 30: SET FILE ATTRIBUTES

Entry Parameters:
Registers C: 1EH
DE: FCB Address

Returned Value:
Registers A: Directory Code
H: Physical or Extended error

By calling the Set File Attributes function, a program can modify a file’s attributes
and set its last record byte count. Other BDOS functions can be called to interrogate
these file parameters, but only Function 30 can change them. The file attributes that
can be set or reset by Function 30 are f1’ through f4’, Read-Only, t1°, System, t2’,
and Archive, t3°. The register pair DE addresses an FCB containing a filename with
the appropriate attributes set or reset. The calling program must ensure that it does
not specify an ambiguous filename. In addition, if the specified file is password pro-
tected, the correct password must be placed in the first eight bytes of the current
DMA buffer or have been previously established as the default password (see Func-
tion 106).

Interface attribute 6’ specifies whether the last record byte count of the specified
file is to be set:

fe’
fe’

0 - Do not set byte count (default mode)
1 - Set byte count

If interface attribute 6’ is set, the calling program must set the cr field of the refer-
enced FCB to the byte count value. A program can access a file’s byte count value
with the BDOS Open, Search, or Search Next functions.

Function 30 searches the referenced directory for entries belonging to the current
user number that matches the FCB specified name and type fields. The function then
updates the directory to contain the selected indicators, and if interface attribute £6°
is set, the specified byte count value. Note that the last record byte count is main-
tained in byte 13 of a file’s directory FCBs.

DIGITAL RESEARCH™
3-44

CP/M 3 Programmer’s Guide 3 BDOS Calls: Function 30

File attributes t1’, t2°, and t3’ are defined by CP/M 3. (They are described in
Section 2.3.4.) Attributes f1” through {4’ are not presently used, but can be useful for
application programs, because they are not involved in the matching program used
by the BDOS during Open File and Close File operations. Indicators {5’ through {8’
are reserved for use as interface attributes.

Upon return, Function 30 returns a Directory Code in register A with the value 0
if the function is successful, or OFFH, 255 Decimal, if the file specified by the refer-
enced FCB is not found. Register H is set to zero in both of these cases. If a physical
or extended error is encountered, the Set File Attributes function performs different
actions depending on the BDOS error mode (see Function 45). If the BDOS error
mode is the default mode, a message identifying the error is displayed at the console,
and the program is terminated. Otherwise, Function 30 returns to the calling pro-
gram with register A set to OFFH, and register H set to one of the following physical
or extended error codes:

01 : Disk /O error

02 : Read-Only disk

04 : Select error

07 : File password error

09 : ? in filename or filetype field

DIGITAL RESEARCH™
3-45

3 BDOS Calls: Function 31 CP/M 3 Programmer’s Guide

BDOS FUNCTION 31: GET ADDR(DPB PARMS)

Entry Parameters:
Register C: 1FH

Returned Value:
Register HL: DPB Address

Function 31 returns in register pair HL the address of the BIOS-resident Disk
Parameter Block, DPB, for the currently selected drive. (Refer to the CP/M Plus
(CPIM Version 3) Operating System System Guide for the format of the DPB). The
calling program can use this address to extract the disk parameter values.

If a physical error is encountered when the BDOS error mode is one of the return
modes (see Function 45), Function 31 returns the value OFFFFH in the register pair
HL.

DIGITAL RESEARCH™
3-46

CP/M 3 Programmer’s Guide 3 BDOS Calls: Function 32

BDOS FUNCTION 32: SET/GET USER CODE

Entry Parameters:
Registers C: 20H
E: OFFH (get) or User Code (set)

Returned Value:
Register A: Current Code or
(no value)

A program can change, or interrogate the currently active user number by calling
Function 32. If register E = OFFH, then the value of the current user number is
returned in register A, where the value is in the range of 0 to 15. If register E is not
OFFH, then the current user number is changed to the value of E, modulo 16.

DIGITAL RESEARCH™

3-47

3 BDOS Calls: Function 33 CP/M 3 Programmer’s Guide

BDOS FUNCTION 33: READ RANDOM

Entry Parameters:
Registers C: 21H
DE: FCB Address

Returned Value:
Registers A: Error Code
H: Physical Error

The Read Random function is similar to the Read Sequential function except that
the read operation takes place at a particular random record number, selected by the
24-bit value constructed from the three byte, r0, r1, r2, field beginning at position
33 of the FCB. Note that the sequence of 24 bits is stored with the least significant
byte first, r0, the middle byte next, r1, and the high byte last, r2. The random record
number can range from 0 to 262,143. This corresponds to a maximum value of 3 in

byte r2.

To read a file with Function 33, the calling program must first open the base
extent, extent 0. This ensures that the FCB is properly initialized for subsequent
random access operations. The base extent may or may not contain any allocated
data. Function 33 reads the record specified by the random record field into the
current DMA address. The function automatically sets the logical extent and current
record values, but unlike the Read Sequential function, it does not advance the
current record number. Thus, a subsequent Read Random call rereads the same
record. After a random read operation, a file can be accessed sequentially, starting
from the current randomly accessed position. However, the last randomly accessed
record is reread or rewritten when switching from random to sequential mode.

If the BDOS Multi-Sector Count is greater than one (see Function 44), the Read
Random function reads multiple consecutive records into memory beginning at the
current DMA. The 10, rl1, and r2 field of the FCB is automatically incremented to
read each record. However, the FCBs random record number is restored to the first
record’s value upon return to the calling program.

DIGITAL RESEARCH™
3-48

CP/M 3 Programmer’s Guide 3 BDOS Calls: Function 33

Upon return, the Read Random function sets register A to zero if the read opera-
tion was successful. Otherwise, register A contains one of the following error codes:

01 : Reading unwritten data (end-of-file)
03 : Cannot close current extent
04 : Seek to unwritten extent
06 : Random record number out of range
10 : Media change occurred

255 : Physical Error : refer to register H

Error Code 01 is returned if no data exists at the next record position of the file.
Usually, the no data situation is encountered at the end of a file. However, it can
also occur if an attempt is made to read a data block that has not been previously
written.

Error Code 03 is returned when the Read Random function cannot close the
current extent prior to moving to a new extent.

Error Code 04 is returned when a read random operation accesses an extent that
has not been created.

Error Code 06 is returned when byte 35, r2, of the referenced FCB is greater than
3.

Error Code 10 is returned if a media change occurs on the drive after the refer-
enced FCB is activated by a BDOS Open or Make Call.

Error Code 255 is returned if a physical error is encountered, and the BDOS error
mode is one of the return modes (see Function 45). If the error mode is the default
mode, a message identifying the physical error is displayed at the console, and the
calling program is terminated. When a physical error is returned to the calling pro-
gram, register H contains one of the following error codes:

01 : Disk I/O error
04 : Invalid drive error

On all error returns except for physical errors, A = 255, the Read Random
function sets register H to the number of records successfully read before the error is
encountered. This value can range from 0 to 127 depending on the current BDOS
Multi-Sector Count. It is always set to zero when the Multi-Sector Count is equal to
one.

DIGITAL RESEARCH™ .
3-49

3 BDOS Calls: Function 34 CP/M 3 Programmer’s Guide

BDOS FUNCTION 34: WRITE RANDOM

Entry Parameters:
Registers C: 22H
DE: FCB Address

Returned Value:
Registers A: Error Code
H: Physical Error

The Write Random function is analagous to the Read Random function, except
that data is written to the disk from the current DMA address. If the disk extent or
data block where the data is to be written is not already allocated, the BDOS auto-
matically performs the allocation before the write operation continues.

To write to a file using the Write Random function, the calling program must first
open the base extent, extent 0. This ensures that the FCB is properly initialized for
subsequent random access operations. If the file is empty, the calling program must
create the base extent with the Make File function before calling Function 34. The
base extent might or might not contain any allocated data, but it does record the file
in the directory, so that the file can be displayed by the DIR utility.

The Write Random function sets the logical extent and current record positions to
correspond with the random record being written, but does not change the random
record number. Thus, sequential read or write operations can follow a random write,
with the current record being reread or rewritten as the calling program switches
from random to sequential mode.

Function 34 makes an Update date and time stamp for the file if the following
conditions are satisfied: the referenced drive has a directory label that requests Update
date and time stamping if the file has not already been stamped for update by a
previous BDOS Make or Write call.

DIGITAL RESEARCH™

3-50

CP/M 3 Programmer’s Guide 3 BDOS Calls: Function 34

If the BDOS Multi-Sector Count is greater than one (see Function 44), the Write
Random function reads multiple consecutive records into memory beginning at the
current DMA. The r0, r1, and r2 field of the FCB is automatically incremented to
write each record. However, the FCB’s random record number is restored to the first
record’s value when it returns to the calling program. Upon return, the Write Ran-
dom function sets register A to zero if the write operation is successful. Otherwise,
register A contains one of the following error codes:

02 : No available data block
03 : Cannot Close current extent
05 : No available directory space
06 : Random record number out of range
10 : Media change occurred
255 : Physical Error : refer to register H

Error Code 02 is returned when the write command attempts to allocate a new
data block to the file and no unallocated data blocks exist on the selected disk drive.

Error Code 03 is returned when the Write Random function cannot close the
current extent prior to moving to a new extent.

Error Code 05 is returned when the write function attempts to create a new extent
that requires a new directory entry and no available directory entries exist on the
selected disk drive.

Error Code 06 is returned when byte 35, r2, of the referenced FCB is greater than
3.

Error Code 10 is returned if a media change occurs on the drive after the refer-
enced FCB is activated by a BDOS Open or Make Call.

DIGITAL RESEARCH™

3-51

3 BDOS Calls: Function 34 CP/M 3 Programmer’s Guide

Error Code 255 is returned if a physical error is encountered and the BDOS error
mode is one of the return modes (see Function 45). If the error mode is the default
mode, a message identifying the physical error is displayed at the console, and the
calling program is terminated. When a physical error is returned to the calling pro-
gram, it is identified by register H as shown below:

01 : Disk I/O error

02 : Read-Only disk

03 : Read-Only file or
File open from user 0 when the current user number is nonzero or
File password protected in Write mode

04 : Invalid drive error

On all error returns, except for physical errors, A = 255, the Write Random
function sets register H to the number of records successfully written before the error
is encountered. This value can range from 0 to 127 depending on the current BDOS
Multi-Sector Count. It is always set to zero when the Multi-Sector Count is equal to
one.

DIGITAL RESEARCH™
3-52

CP/M 3 Programmer’s Guide 3 BDOS Calls: Function 35

BDOS FUNCTION 35: COMPUTE FILE SIZE

Entry Parameters:
Registers C: 23H
DE: FCB Address

Returned Value:
Registers A: Error Flag
H: Physical or Extended error

Random Record Field Set

The Compute File Size function determines the virtual file size, which is, in effect,
the address of the record immediately following the end of the file. The virtual size
of a file corresponds to the physical size if the file is written sequentially. If the file is
written in random mode, gaps might exist in the allocation, and the file might con-
tain fewer records than the indicated size. For example, if a single record with record
number 262,143, the CP/M 3 maximum is written to a file using the Write Random
function, then the virtual size of the file is 262,144 records even though only 1 data
block is actually allocated.

To compute file size, the calling program passes in register pair DE the address of
an FCB in random mode format, bytes r0, r1 and r2 present. Note that the FCB
must contain an unambiguous filename and filetype. Function 35 sets the random
record field of the FCB to the random record number + 1 of the last record in the
file. If the r2 byte is set to 04, then the file contains the maximum record count
262,144.

A program can append data to the end of an existing file by calling Function 35 to
set the random record position to the end of file, and then performing a sequence of
random writes starting at the preset record address.

Note: the BDOS does not require that the file be open to use Function 35. However,
if the file has been written to, it must be closed before calling Function 35. Other-
wise, an incorrect file size might be returned.

@ DIGITAL RESEARCH™
3-53

3 BDOS Calls: Function 35 CP/M 3 Programmer’s Guide

Upon return, Function 35 returns a zero in register A if the file specified by the
referenced FCB is found, or an OFFH in register A if the file is not found. Register H
is set to zero in both of these cases. If a physical error is encountered, Function 35
performs different actions depending on the BDOS error mode (see Function 45).
If the BDOS error mode is the default mode, a message identifying the error is
displayed at the console and the program is terminated. Otherwise, Function 35
returns to the calling program with register A set to OFFH, and register H set to one
of the following physical errors:

01 : Disk I/O error
04 : Invalid drive error

DIGITAL RESEARCH™
3-54

CP/M 3 Programmer’s Guide 3 BDOS Calls: Function 36

BDOS FUNCTION 36: SET RANDOM RECORD

Entry Parameters:
Registers C: 24H
DE: FCB Address

Returned Value: Random Record Field Set

The Set Random Record function returns the random record number of the next
record to be accessed from a file that has been read or written sequentially to a
particular point. This value is returned in the random record field, bytes r0, r1, and
r2, of the FCB addressed by the register pair DE. Function 36 can be useful in two
ways.

First, it is often necessary to initially read and scan a sequential file to extract the
positions of various key fields. As each key is encountered, Function 36 is called to
compute the random record position for the data corresponding to this key. If the
data unit size is 128 bytes, the resulting record number minus one is placed into a
table with the key for later retrieval. After scanning the entire file and tabularizing
the keys and their record numbers, you can move directly to a particular record by
performing a random read using the corresponding random record number that you
saved earlier. The scheme is easily generalized when variable record lengths are involved,
because the program need only store the buffer-relative byte position along with the
key and record number to find the exact starting position of the keyed data at a later
time.

A second use of Function 36 occurs when switching from a sequential read or
write over to random read or write. A file is sequentially accessed to a particular
point in the file, then Function 36 is called to set the record number, and subsequent
random read and write operations continue from the next record in the file.

DIGITAL RESEARCH™
3-55

3 BDOS Calls: Function 37 CP/M 3 Programmer’s Guide

BDOS FUNCTION 37: RESET DRIVE

Entry Parameters:
Registers C: 25H
DE: Drive Vector

Returned Value:
Register A: OOH

The Reset Drive function programmatically restores specified drives to the reset
state. A reset drive is not logged-in and is in Read-Write status. The passed parame-
ter in register pair DE is a 16-bit vector of drives to be reset, where the least signifi-
cant bit corresponds to the first drive A, and the high-order bit corresponds to the
sixteenth drive, labelled P. Bit values of 1 indicate that the specified drive is to be
reset.

@ DIGITAL RESEARCH™

3-56

CP/M 3 Programmer’s Guide 3 BDOS Calls: Function 38

BDOS FUNCTION 38: ACCESS DRIVE

Entry Parameters:
Register C: 26H

This is an MP/M function that is not supported under CP/M 3. If called, the file
system returns a zero in register A indicating that the access request is successful.

DIGITAL RESEARCH™
3-57

3 BDOS Calls: Function 39 CP/M 3 Programmer’s Guide

BDOS FUNCTION 39: FREE DRIVE

Entry Parameters:
Register C: 27H

This is an MP/M function that is not supported under CP/M 3. If called, the file
system returns a zero in register A indicating that the free request is successful.

DIGITAL RESEARCH™
3-58

CP/M 3 Programmer’s Guide 3 BDOS Calls: Function 40

BDOS FUNCTION 40: WRITE RANDOM WITH
ZERO FILL

Entry Parameters:
Registers C: 28H
DE: FCB address

Returned Value:
Registers A: Error Code
H: Physical Error

The Write Random With Zero Fill function is identical to the Write Random
function (Function 34) with the exception that a previously unallocated data block is
filled with zeros before the record is written. If this function has been used to create
a file, records accessed by a read random operation that contain all zeros identify
unwritten random record numbers. Unwritten random records in allocated data blocks
of files created using the Write Random function (Function 34) contain uninitialized
data.

DIGITAL RESEARCH™

3-59

3 BDOS Calls: Function 41

CP/M 3 Programmer’s Guide

BDOS FUNCTION 41:

TEST AND WRITE RECORD

Entry Parameters:
Registers C:
DE:

Returned Value:
Registers A:
H:

29H
FCB Address

Error Code
Physical Error

The Test and Write Record function is an MP/M II™ function that is not sup-
ported under CP/M 3. If called, Function 41 returns with register A set to OFFH and

register H set to zero.

3-60

DIGITAL RESEARCH™

CP/M 3 Programmer’s Guide 3 BDOS Calls: Function 42.

BDOS FUNCTION 42: LOCK RECORD

Entry Parameters:
Registers C: 2AH
DE: FCB Address

Returned Value:
Register A: OOH

The Lock Record function is an MP/M 1II function that is supported under CP/M 3
only to provide compatibility between CP/M 3 and MP/M. It is intended for use in
situations where more than one running program has Read-Write access to a com-
mon file. Because CP/M 3 is a single-user operating system in which only one pro-
gram can run at a time, this situation cannot occur. Thus, under CP/M 3, Function
42 performs no action except to return the value 00H in register A indicating that
the record lock operation .is successful.

DIGITAL RESEARCH™

3-61

3 BDOS Calls: Function 43 CP/M 3 Programmer’s Guide

BDOS FUNCTION 43: UNLOCK RECORD

Entry Parameters:
Registers C: 2BH
DE: FCB Address

Returned Value:
Register A: O0H

The Unlock Record function is an MP/M 1l function that is supported under
CP/M 3 only to provide compatibility between CP/M 3 and MP/M. It is intended for
use in situations where more than one running program has Read-Write access to a
common file. Because CP/M 3 is a single-user operating system in which only one
program can run at a time, this situation cannot occur. Thus, under CP/M 3, Func-
tion 43 performs no action except to return the value 00H in register A indicating
that the record unlock operation is successful.

DIGITAL RESEARCH™
3-62

CP/M 3 Programmer’s Guide 3 BDOS Calls: Function 44

BDOS FUNCTION 44: SET MULTI-SECTOR COUNT

Entry Parameters:
Registers C: 2CH
E: Number of Sectors

Returned Value:
Register A: Return Code

The Set Multi-Sector Count function provides logical record blocking under
CP/M 3. It enables a program to read and write from 1 to 128 records of 128 bytes
at a time during subsequent BDOS Read and Write functions.

Function 44 sets the Multi-Sector Count value for the calling program to the value
passed in register E. Once set, the specified Multi-Sector Count remains in effect until
the calling program makes another Set Multi-Sector Count function call and changes
the value. Note that the CCP sets the Multi-Sector Count to one when it initiates a
transient program.

The Multi-Sector Count affects BDOS error reporting for the BDOS Read and
Write functions. If an error interrupts these functions when the Multi-Sector is greater
than one, they return the number of records successfully read or written in register
H for all errors except for physical errors (A = 255).

Upon return, register A is set to zero if the specified value is in the range of 1 to
128. Otherwise, register A is set to OFFH.

DIGITAL RESEARCH™

3-63

3 BDOS Calls: Function 45 CP/M 3 Programmer’s Guide

BDOS FUNCTION 45: SET BDOS ERROR MODE

Entry Parameters:
Registers C: 2DH
E: BDOS Error Mode

Returned Value: None

Function 45 sets the BDOS error mode for the calling program to the mode speci-
fied in register E. If register E is set to OFFH, 255 decimal, the error mode is set to
Return Error mode. If register E is set to OFEH, 254 decimal, the error mode is set
to Return and Display mode. If register E is set to any other value, the error mode is
set to the default mode.

The SET BDOS Error Mode function determines how physical and extended errors
(see Section 2.2.13) are handled for a program. The Error Mode can exist in three
modes: the default mode, Return Error mode, and Return and Display Error mode.
In the default mode, the BDOS displays a system message at the console that identi-
fies the error and terminates the calling program. In the return modes, the BDOS sets
register A to OFFH, 255 decimal, places an error code that identifies the physical or
extended error in register H and returns to the calling program. In Return and
Display mode, the BDOS displays the system message before returning to the calling
program. No system messages are displayed, however, when the BDOS is in Return
Error mode.

DIGITAL RESEARCH™
3-64

CP/M 3 Programmer’s Guide 3 BDOS Calls: Function 46

BDOS FUNCTION 46: GET DISK FREE SPACE

Entry Parameters:
Registers C: 2EH
E: Drive

Returned Value: First 3 bytes
of current DMA
buffer
Registers A: Error Flag
H: Physical Error

The Get Disk Free Space function determines the number of free sectors, 128 byte
records, on the specified drive. The calling program passes the drive number in
register E, with 0 for drive A, 1 for B, and so on, through 15 for drive P in a full 16-
drive system. Function 46 returns a binary number in the first 3 bytes of the current
DMA buffer. This number is returned in the following format:

fsO | fs1 | fs2

Disk Free Space Field Format

fs0 = low byte
fs1 = middle byte
fs2 = high byte

Note that the returned free space value might be inaccurate if the drive has been
marked Read-Only.

DIGITAL RESEARCH™

3-65

3 BDOS Calls: Function 46 CP/M 3 Programmer’s Guide

Upon return, register A is set to zero if the function is successful. However, if the
BDOS Error Mode is one of the return modes (see Function 45), and a physical error
is encountered, register A is set to OFFH, 255 decimal, and register H is set to one of

the following values:

01 - Disk I/O error

04 - Invalid drive error

DIGITAL RESEARCH™

3-66

CP/M 3 Programmer’s Guide 3 BDOS Calls: Function 47

BDOS FUNCTION 47: CHAIN TO PROGRAM

Entry Parameters:
Registers C: 2FH
E: Chain Flag

The Chain To Program function provides a means of chaining from one program
to the next without operator intervention. The calling program must place a com-
mand line terminated by a null byte, 00H, in the default DMA buffer. If register E is
set to OFFH, the CCP initializes the default drive and user number to the current
program values when it passes control to the specified transient program. Otherwise,
these parameters are set to the default CCP values. Note that Function 108, Get/Set
Program Return Code, can be used to pass a two byte value to the chained program.

Function 47 does not return any values to the calling program and any encoun-
tered errors are handled by the CCP.

DIGITAL RESEARCH™
3-67

3 BDOS Calls: Function 48 CP/M 3 Programmer’s Guide

BDOS FUNCTION 48: FLUSH BUFFERS

Entry Parameters:
Registers C: 30H
E: Purge Flag

Returned Value:
Registers A: Error Flag
H: Physical Error

The Flush Buffers function forces the write of any write-pending records contained
in internal blocking/deblocking buffers. If register E is set to OFFH, this function also
purges all active data buffers. Programs that provide write with read verify support
need to purge internal buffers to ensure that verifying reads actually access the disk
instead of returning data that is resident in internal data buffers. The CP/M 3 PIP
utility is an example of such a program.

Upon return, register A is set to zero if the flush operation is successful. If a
physical error is encountered, the Flush Buffers function performs different actions
depending on the BDOS error mode (see Function 45). If the BDOS error mode is in
the default mode, a message identifying the error is displayed at the console and the
calling program is terminated. Otherwise, the Flush Buffers function returns to the
calling program with register A set to OFFH and register H set to the following
physical error code:

01 : Disk I/O error
02 : Read/only disk
04 : Invalid drive error

®@ DIGITAL RESEARCH™
3-68

CP/M 3 Programmer’s Guide 3 BDOS Calls: Function 49

BDOS FUNCTION 49: GET /SET SYSTEM
CONTROL BLOCK

Entry Parameters:
Registers C: 31H
DE: SCB PB Address

Returned Value:
Registers A: Returned Byte
HL: Returned Word

Function 49 allows access to parameters located in the CP/M 3 System Control
Block (SCB). The SCB is a 100-byte data structure residing within the BDOS that
contains flags and data used by the BDOS, CCP and other system components. Note
that Function 49 is a CP/M 3 specific function. Programs intended for both MP/M 1I
and CP/M 3 should either avoid the use of this function or isolate calls to this
function in CP/M 3 version-dependent sections.

To use Function 49, the calling program passes the address of a data structure
called the SCB parameter block in register pair DE. This data structure identifies the
byte or word of the SCB to be updated or returned. The SCB parameter block is
defined as:

SCBPB: DB OFFSET i Offset within SCB
DB SET i OFFH if setting a bvte
i OFEH if setting a word
i OOIH - OFDH are reserved
i O0OOH if a det opPeration
DW VALUE i Brte or word value to be set

The OFFSET parameter identifies the offset of the field within the SCB to be updated
or accessed. The SET parameter determines whether Function 49 is to set a byte or
word value in the SCB or if it is to return a byte from the SCB. The VALUE
parameter is used only in set calls. In addition, only the first byte of VALUE is
referenced in set byte calls.

WDIGITAL RESEARCH™
3-69

3 BDOS Calls: Function 49

CP/M 3 Programmer’s Guide

Use caution when you set SCB fields. Some of these parameters reflect the current
state of the operating system. If they are set to invalid values, software errors can
result. In general, do not use Function 49 to set a system parameter if another BDOS
function can achieve the same result. For example, Function 49 can be called to
update the Current DMA Address field within the SCB. This is not equivalent to
making a Function 26, Set DMA Address call, and updating the SCB Current DMA
field in this way would result in system errors. However, you can use Function 49 to
return the Current DMA address. The System Control Block is summarized in the
following table. Each of these fields is documented in detail in Appendix A.

Table 3-4. System Control Block

Description

Offset
00 — 04
05
06 — 09
0A — OF
10 — 11
12 — 15
1A
1B
1C
1D — 21
22 — 23
24 — 25
26 — 27
28 — 29
2A — 2B
2C
2D
2E
2F
30 — 32
33 — 34
35 — 36
37
38
39 — 3B

Reserved For System Use
BDOS version number

User Flags

Reserved For System Use
Program Error return code
Reserved For System Use
Console Width (columns)
Console Column Position
Console Page Length
Reserved For System Use
CONIN Redirection flag
CONOUT Redirection flag
AUXIN Redirection flag
AUXOUT Redirection flag
LSTOUT Redirection flag
Page Mode

Reserved For System Use
CTRL-H Active

Rubout Active

Reserved For System Use
Console Mode

Reserved For System Use
Output Delimiter

List Output Flag

Reserved For System Use

3-70

@ DIGITAL RESEARCH™

CP/M 3 Programmer’s Guide

3 BDOS Calls:

Table 3-4. (continued)

Offset Description
3C—3D Current DMA Address
3E Current Disk
3F — 43 Reserved For System Use
44 Current User Number
45 — 49 Reserved For System Use
4A BDOS Multi-Sector Count
4B BDOS Error Mode
4C — 4F Drive Search Chain (DISKS A:,E:,F:)
50 Temporary File Drive
51 Error Disk
52 — 56 Reserved For System Use
57 BDOS flags
58 — 5C Date Stamp
5D — SE Common Memory Base Address
SF — 63 Reserved For System Use

Function 49

If Function 49 is called with the OFFSET parameter of the SCB parameter block
greater than 63H, the function performs no action but returns with registers A and

HL set to zero.

DIGITAL RESEARCH™

3-71

3 BDOS Calls: Function 50 CP/M 3 Programmer’s Guide

BDOS FUNCTION 50: DIRECT BIOS CALLS

Entry Parameters:
Registers C: 32H
DE: BIOS PB Address

Returned Value: BIOS RETURN

Function 50 provides a direct BIOS call through the BDOS to the BIOS. The
calling program passes the address of a data structure called the BIOS Parameter
Block (BIOSPB) in register pair DE. The BIOSPB contains the BIOS function number
and register contents as shown below:

BIOSPB: db FUNC i BIOS function no.

db AREG i A redister contents
dw BCREG i BC redister contents
dw DEREG i DE regdister contents
dw HLREG i HL redister contents

System Reset (Function 0) is equivalent to Function 50 with a BIOS function
number of 1.

Note that the register pair BIOSPB fields (BCREG, DEREG, HLREG) are defined
in low byte, high byte order. For example, in the BCREG field, the first byte contains
the C register value, the second byte contains the B register value.

Under CP/M 3, direct BIOS calls via the BIOS jump vector are only supported for
the BIOS Console I/O and List functions. You must use Function 50 to call any other
BIOS functions. In addition, Function 50 intercepts BIOS Function 27 (Select Mem-
ory) calls and returns with register A set to zero. Refer to the CP/M Plus (CP/M
Version 3) Operating System System Guide for the definition of the BIOS functions
and their register passing and return conventions.

DIGITAL RESEARCH™
3-72

CP/M 3 Programmer’s Guide 3 BDOS Calls: Function 59

BDOS FUNCTION 59: LOAD OVERLAY

- Entry Parameters:
Registers C: 3BH
DE: FCB Address

Returned Value:
Registers A: Error Code
H: Physical Error

Only transient programs with an RSX header can use the Load Overlay function
because BDOS Function 59 is supported by the LOADER module. The calling pro-
gram must have a header to force the LOADER to remain resident after the program
is loaded (see Section 1.3).

Function 59 loads either an absolute or relocatable module. Relocatable modules
are identified by a filetype of PRL. Function 59 does not call the loaded module.

The referenced FCB must be successfully opened before Function 59 is called. The
load address is specified in the first two random record bytes of the FCB, r0 and r1.
The LOADER returns an error if the load address is less than 100H, or if performing
the requested load operation would overlay the LOADER, or any other Resident
System Extensions that have been previously loaded.

When loading relocatable files, the LOADER requires enough room at the load ad-
dress for the complete PRL file including the header and bit map (see Appendix B).
Otherwise an error is returned. Function 59 also returns an error on PRL file load
requests if the specified load address is not on a page boundary.

Upon return, Function 59 sets register A to zero if the load operation is successful.
If the LOADER RSX is not resident in memory because the calling program did not
have a RSX header, the BDOS returns with register A set to OFFH and register H set
to zero. If the LOADER detects an invalid load address, or if insufficient memory is
available to load the overlay, Function 59 returns with register A set to OFEH. All
other error returns are consistent with the error codes returned by BDOS Function
20, Read Sequential.

DIGITAL RESEARCH™

3-73

3 BDOS Calls: Function 60 CP/M 3 Programmer’s Guide

BDOS FUNCTION 60: CALL RESIDENT SYSTEM
EXTENSION

Entry Parameters:
Registers C: 3CH
DE: RSX PB Address

Returned Value:
Registers A: Error Code
H: Physical Error

Function 60 is a special BDOS function that you use when you call Resident
System Extensions. The RSX subfunction is specified in a structure called the RSX
Parameter Block, defined as follows:

RSXPB: db FUNC i RSX Function number
db NUMPARMS i Number of word parameters
dw PARMETER! i Parameter 1
dw PARMETERZ 4§ Parameter 2

+

dw PARMETERn § Parameter n

RSX modules filter all BDOS calls and capture RSX function calls that they can
handle. If there is no RSX module present in memory that can handle a specific RSX
function call, the call is not trapped, and the BDOS returns OFFH in registers A and
L. RSX function numbers from 0 to 127 are available for CP/M 3 compatible soft-
ware use. RSX function numbers 128 to 255 are reserved for system use.

DIGITAL RESEARCH™
3-74

CP/M 3 Programmer’s Guide 3 BDOS Calls: Function 98

BDOS FUNCTION 98: FREE BLOCKS

Entry Parameters:
Register C: 62H

Returned Value:
Registers A: Error Flag
H: Physical Error

The Free Blocks function scans all the currently logged-in drives, and for each
drive returns to free space all temporarily-allocated data blocks. A temporarily-allo-
cated data block is a block that has been allocated to a file by a BDOS write
operation but has not been permanently recorded in the directory by a BDOS close
operation. The CCP calls Function 98 when it receives control following a system
warm start. Be sure to close your file, particularly any file you have written to, prior
to calling Function 98.

In the nonbanked version of CP/M 3, Function 98 frees only temporarily allocated
blocks for systems that request double allocation vectors in GENCPM.

Upon return, register A is set to zero if Function 98 is successful. If a physical
error is encountered, the Free Blocks function performs different actions depending
on the BDOS error mode (see Function 45). If the BDOS error mode is in the default
mode, a message identifying the error is displayed at the console and the calling
program is terminated. Otherwise, the Free Blocks function returns to the calling
program with register A set to OFFH and register H set to the following physical
error code:

04 : Invalid drive error

DIGITAL RESEARCH™

3-75

3 BDOS Calls: Function 99 CP/M 3 Programmer’s Guide

BDOS FUNCTION 99: TRUNCATE FILE

Entry Parameters:
Registers C: 63H
DE: FCB Address

Returned Value:
Registers A: Directory Code
H: Extended or Physical Error

The Truncate File function sets the last record of a file to the random record
number contained in the referenced FCB. The calling program passes the address of
the FCB in register pair DE, with byte O of the FCB specifying the drive, bytes 1
through 11 specifying the filename and filetype, and bytes 33 through 385, r0, r1, and
r2, specifying the last record number of the file. The last record number is a 24 bit
value, stored with the least significant byte first, r0, the middle byte next, r1, and the
high byte last, r2. This value can range from 0 to 262,143, which corresponds to a
maximum value of 3 in byte r2.

If the file specified by the referenced FCB is password protected, the correct pass-
word must be placed in the first eight bytes of the current DMA buffer, or have been
previously established as the default password (see Function 106).

Function 99 requires that the file specified by the FCB not be open, particularly if
the file has been written to. In addition, any activated FCBs naming the file are not
valid after Function 99 is called. Close your file before calling Function 99, and then
reopen it after the call to continue processing on the file.

DIGITAL RESEARCH™
3-76

CP/M 3 Programmer’s Guide 3 BDOS Calls: Function 99

Function 99 also requires that the random record number field of the referenced
FCB specify a value less than the current file size. In addition, if the file is sparse, the
random record field must specify a record in a region of the file where data exists.

Upon return, the Truncate function returns a Directory Code in register A with the
value 0 if the Truncate function is successful, or OFFH, 255 decimal, if the file is not
found or the record number is invalid. Register H is set to zero in both of these
cases. If a physical or extended error is encountered, the Truncate function performs
different actions depending on the BDOS error mode (see Function 45). If the BDOS
error mode is in the default mode, a message identifying the error is displayed at the
console and the program is terminated. Otherwise, the Truncate function returns to
the calling program with register A set to OFFH and register H set to one of the
following physical or extended error codes:

01 : Disk I/O error

02 : Read-Only disk

03 : Read-Only file

04 : Invalid drive error

07 : File password error

09 : ? in filename or filetype field

DIGITAL RESEARCH™
3-77

3 BDOS Calls: Function 100 CP/M 3 Programmer’s Guide

BDOS FUNCTION 100: SET DIRECTORY LABEL

Entry Parameters:
Registers C: 64H
DE: FCB Address

Returned Value:
Registers A: Directory Code
H: Physical or Extended Error

The Set Directory Label function creates a directory label, or updates the existing
directory label for the specified drive. The calling program passes in register pair DE
the address of an FCB containing the name, type, and extent fields to be assigned to
the directory label. The name and type fields of the referenced FCB are not used to
locate the directory label in the directory; they are simply copied into the updated or
created directory label. The extent field of the FCB, byte 12, contains the user’s
specification of the directory label data byte. The definition of the directory label
data byte is:

bit 7 - Require passwords for password-protected files
(Not supported in nonbanked CP/M 3 systems)
6 - Perform access date and time stamping
5 - Perform update date and time stamping
4 - Perform create date and time stamping
0 - Assign a new password to the directory label

If the current directory label is password protected, the correct password must be
placed in the first eight bytes of the current DMA, or have been previously estab-
lished as the default password (see Function 106). If bit 0, the low-order bit, of byte
12 of the FCB is set to 1, it indicates that a new password for the directory label has
been placed in the second eight bytes of the current DMA.

Note that Function 100 is implemented as an RSX, DIRLBL.RSX, in nonbanked
CP/M 3 systems. If Function 100 is called in nonbanked systems when the DIRLBL.RSX
is not resident, an error code of OFFH is returned.

DIGITAL RESEARCH™
3-78

CP/M 3 Programmer’s Guide 3 BDOS Calls: Function 100

Function 100 also requires that the referenced directory contain SFCBs to activate
date and time stamping on the drive. If an attempt is made to activate date and time
stamping when no SFCBs exist, Function 100 returns an error code of OFFH in
register A and performs no action. The CP/M 3 INITDIR utility initializes a directory
for date and time stamping by placing an SFCB record in every fourth entry of the
directory.

Function 100 returns a Directory Code in register A with the value 0 if the direc-
tory label create or update is successful, or OFFH, 255 decimal, if no space exists in
the referenced directory to create a directory label, or if date and time stamping was
requested and the referenced directory did not contain SFCBs. Register H is set to
zero in both of these cases. If a physical error or extended error is encountered,
Function 100 performs different actions depending on the BDOS error mode (see
Function 45). If the BDOS error mode is the default mode, a message identifying the
error is displayed at the console and the calling program is terminated. Otherwise,
Function 100 returns to the calling program with register A set to OFFH and register
H set to one of the following physical or extended error codes:

01 : Disk I/O error

02 : Read-Only disk

04 : Invalid drive error
07 : File password error

DIGITAL RESEARCH™

3-79

3 BDOS Calls:. Function 101 CP/M 3 Programmer’s Guide

BDOS FUNCTION 101: RETURN DIRECTORY
LABEL DATA

Entry Parameters:
Registers C: 65H
E: Drive

Returned Value:
Registers A: Directory Label
Data Byte
H: Physical Error

The Return Directory Label Data function returns the data byte of the directory
label for the specified drive. The calling program passes the drive number in register
E with 0 for drive A, 1 for drive B, and so on through 15 for drive P in a full sixteen
drive system. The format of the directory label data byte is shown below:

bit 7 - Require passwords for password protected files
6 - Perform access date and time stamping
5 - Perform update date and time stamping
4 - Perform create date and time stamping
0 - Directory label exists on drive

Function 101 returns the directory label data byte to the calling program in register
A. Register A equal to zero indicates that no directory label exists on the specified
drive. If a physical error is encountered by Function 101 when the BDOS Error mode
is in one of the return modes (see Function 45), this function returns with register A
set to OFFH, 255 decimal, and register H set to one of the following:

01 : Disk I/O error
04 : Invalid drive error

DIGITAL RESEARCH™
3-80

CP/M 3 Programmer’s Guide 3 BDOS Calls: Function 102

BDOS FUNCTION 102: READ FILE DATE STAMPS
AND PASSWORD MODE

Entry Parameters:
Registers C: 66H
DE: FCB Address

Returned Value:
Registers A: Directory Code
H: Physical Error

Function 102 returns the date and time stamp information and password mode for
the specified file in byte 12 and bytes 24 through 32 of the specified FCB. The calling
program passes in register pair DE, the address of an FCB in which the drive, file-
name, and filetype fields have been defined.

If Function 102 is successful, it sets the following fields in the referenced FCB:

byte 12 : Password mode field
bit 7 - Read mode
bit 6 - Write mode
bit 4 - Delete mode

Byte 12 equal to zero indicates the file has not been assigned a password. In non-
banked systems, byte 12 is always set to zero.

byte 24 - 27 : Create or Access time stamp field
byte 28 - 31 : Update time stamp field

The date stamp fields are set to binary zeros if a stamp has not been made. The

format of the time stamp fields is the same as the format of the date and time
structure described in Function 104.

DIGITAL RESEARCH™

3-81

3 BDOS Calls: Function 102 CP/M 3 Programmer’s Guide

Upon return, Function 102 returns a Directory Code in register A with the value
zero if the function is successful, or OFFH, 255 decimal, if the specified file is not
found. Register H is set to zero in both of these cases. If a physical or extended error
is encountered, Function 102 performs different actions depending on the BDOS
error mode (see Function 45). If the BDOS error mode is in the default mode, a
message identifying the error is displayed at the console and the calling program is
terminated. Otherwise, Function 102 returns to the calling program with register A
set to OFFH and register H set to one of the following physical or extended error
codes:

01 : Disk I/O error
04 : Invalid drive error
09 : ? in filename or filetype field

DIGITAL RESEARCH™
3-82

CP/M 3 Programmer’s Guide 3 BDOS Calls: Function 103

BDOS FUNCTION 103: WRITE FILE XFCB

Entry Parameters:
Registers C: 67H
DE: FCB Address

Returned Value:
Registers A: Directory Code
H: Physical Error

The Write File XFCB function creates a new XFCB or updates the existing XFCB
for the specified file. The calling program passes in register pair DE the address of an
FCB in which the drive, name, type, and extent fields have been defined. The extent
field specifies the password mode and whether a new password is to be assigned to
the file. The format of the extent byte is shown below:

FCB byte 12 (ex) : XFCB password mode
bit 7 - Read mode

bit 6 - Write mode

bit 5 - Delete mode

bit 0 - Assign new password to the file

If the specified file is currently password protected, the correct password must reside
in the first eight bytes of the current DMA, or have been previously established as
the default password (see Function 106). If bit O is set to 1, the new password must
reside in the second eight bytes of the current DMA.

DIGITAL RESEARCH™

3-83

3 BDOS Calls: Function 103 CP/M 3 Programmer’s Guide

Upon return, Function 103 returns a Directory Code in register A with the value
zero if the XFCB create or update is successful, or OFFH, 255 decimal, if no directory
label exists on the specified drive, or the file named in the FCB is not found, or no
space exists in the directory to create an XFCB. Function 103 also returns with OFFH
in register A if passwords are not enabled by the referenced directory’s label. On
nonbanked systems, this function always returns with register A = OFFH because
passwords are not supported. Register H is set to zero in all of these cases. If a
physical or extended error is encountered, Function 103 performs different actions
depending on the BDOS error mode (see Function 45). If the BDOS error mode is
the default mode, a message identifying the error is displayed at the console and the
calling program is terminated. Otherwise, Function 103 returns to the calling pro-
gram with register A set to OFFH and register H set to one of the following physical
or extended error codes:

01 : Disk I/O error

02 : Read-Only disk

04 : Invalid drive error

07 : File password error

09 : ? in filename or filetype field

DIGITAL RESEARCH™
3-84

CP/M 3 Programmer’s Guide 3 BDOS Calls: Function 104

BDOS FUNCTION 104: SET DATE AND TIME

Entry Parameters:
Registers C: 68H
DE: DAT Address

Returned Value: none

The Set Date and Time function sets the system internal date and time. The calling
program passes the address of a 4-byte structure containing the date and time speci-
fication in the register pair DE. The format of the date and time (DAT) data structure
is:

byte 0 - 1 : Date field

byte2 : Hour field

byte 3 : Minute field
The date is represented as a 16-bit integer with day 1 corresponding to January 1,
1978. The time is represented as two bytes: hours and minutes are stored as two
BCD digits.

This function also sets the seconds field of the system date and time to zero.

DIGITAL RESEARCH™

3-85

3 BDOS Calls: Function 105 CP/M 3 Programmer’s Guide

BDOS FUNCTION 105: GET DATE AND TIME

Entry Parameters:
Registers C: 69H
DE: DAT Address

Returned Value:
Register A: seconds
DAT set

The Get Date and Time function obtains the system internal date and time. The
calling program passes in register pair DE, the address of a 4-byte data structure
which receives the date and time values. The format of the date and time, DAT, data
structure is the same as the format described in Function 104. Function 105 also
returns the seconds field of the system date and time in register A as a two digit BCD
value.

DIGITAL RESEARCH™
3-86

CP/M 3 Programmer’s Guide 3 BDOS Calls: Function 106

BDOS FUNCTION 106: SET DEFAULT PASSWORD

Entry Parameters:
Registers C: 6AH
DE: Password Address

Returned Value: none

The Set Default Password function allows a program to specify a password value
before a file protected by the password is accessed. When the file system accesses a
password-protected file, it checks the current DMA, and the default password for the
correct value. If either value matches the file’s password, full access to the file is
allowed. Note that this function performs no action in nonbanked CP/M 3 systems
because file passwords are not supported.

To make a Function