
OPERATING SYSTEM

MANUAL

[!ill DIGITAL RESEARCH™

CP/M®
OPERATING SYSTEM

MANUAL

[!ill DIGITAL RESEARCH™
P.o. Box 579
Pacific Grove, California 93950

COPYRIGHT

Copyright © 1976, 1977, 1978, 1979, and 1982 by Digital Research. All rights reserved.
No part of this publication may be reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or computer language, in any form or by
any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise,
without the prior written permission of Digital Research; Post Office Box 579, Pacific
Grove, California 93950.

DISCLAIMER

Digital Research makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness for
any particular purpose. Further, Digital Research reserves the right to revise this publica­
tion and to make changes from time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research. MP/M, MAC, and SID are trade­
marks of Digital Research. Z-80 is a trademark of Zilog, Inc.

First Printing: July 1982

CONTENTS

• CP/M FEATURES AND FACiLITIES......................... 1

1.1 Introduction .. 1
1.2 Functional Description ... 3

1.2.1 General Command Structure. 3
1.2.2 File References .. 3

1.3 Switching Disks... 5
1.4 Built-in Commands.. 6

1.4.1 ERA.. 6
1.4.2 DIR.. 6
1.4.3 REN.. 7
1.4.4 SAVE... 8
1.4.5 TYPE... 8
1.4.6 USER ... '. 8

1.5 Line Editing and Output Control 9
1.6 Transient Commands '.................. 9

1.6.1 STAT .. '..... 10
1.6.1 ASM. .. 15
1.6.3 LOAD '. 16
1.6.4 PIP... 17
1.6.5 ED.. 23
1.6.6 SYSGEN .. 24
1.6.7 SUBMIT .. '. 25
1.6.8 DUMP '. 27
1.6.9 MOVCPM. 27

1.7 BOOS Error Messages .. 29
1.8 Operation of CP/M on the MDS 30

2 ED 33

2.1 Introduction to ED ... 33
2.1.1 ED Operation .. 33
2.1.2 Text Transfer Functions 35
2.1.3 Memory Buffer Organization 35
2.1.4 Line Numbers and ED Start Up 36
2.1.5 Memory Buffer Operation 37
2.1.6 Command Strings 38
2.1.7 Text Search and Alteration 39
2.1.8 Source Libraries .. 42
2.1.9 Repetitive Command Execution 42

2.2 ED Error Conditions ... 43
2.3 Control Characters and Commands 44

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

3 CP/M ASSEMBLER 47

3.1 Introduction ... 47
3.2 Program Format :........... 48
3.3 Forming the Operand .. '.' . 49

3.3.1 Labels•................................. ~ 50
3.3.2 Numeric Constants 50
3.3.3 Reserved Words. • 50
3.3.4 String Constants 51
3.3.5 Arithmetic and Logical Operators 52
3.3.6 Precedence of Operators 52

3.4 Assembler Directives ... 53
3.4.1 The ORG Directive 54
3.4.2 The END Directive 54
3.4.3 The EQU Directive ~ . 55
3.4.4 The SET Directive 55
3.4.5 The IF and ENDIF Directives 56
3.4.6 The DB Directive 57
3.4.7 The OW Directive 57
3.4.8 The OS Directive 57

3.5 Operation Codes•....................................... 58
3.5.1 Jumps, Calls, and Returns 58
3.5.2 Immediate Operand Instructions. 59
3.5.3 Increment and Decrement Instructions 60
3.5.4 Data Movement Instructions 60

, . 3.5.5 Arithmetic Logic Unit Operations 61
3.5.6 Control Instructions 62

3.6 Error Messages .. 62
3.7 A Sample Session .. 63

4 CP/M DYNAMIC DEBUGGING TOOL 69

4.1 Introduction ... ~ . 69
4.2 DDT Commands ... 71 ,

4.2.1 The A (Assembly) Command............................ 71
4.2.2 The 0 (Display) Command 72
4.2.3 The F (Fill) Command 72
4.2.4 The G (Go) Command.................................. 72
4.2.5 The I (Input) Command 73
4.2.6 The L (List) Command. 74
4.2.7 The M (Move) Command 74
4.2.8 The R (Read) Command 74
4.2.9 The S (Set) Command 75
4.2.10 The T (Trace) Command 75
4.2.11 The U (Untrace) Command 76
4.2.12 The X (Examine) Command............................ 76

4.3 Implementation Notes .. 77
4.4 An Example ' . 78

5 CP /M 2 SYSTEM INTERFACE................................. 89

5.1 , Introduction ... 89
5.2 Operating System Call Conventions 91
5.3 A Sample File-to-File Copy Program 110
5.4 A Sample File Dump Utility 113
5.5 A Sample Random Access Program 117
5.6 System Function Summary...................................... 124

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESfARCH

6 CP/M ALTERATION.. 127

6.1 Introduction ... 127
6.2 First Level System Regeneration ~. 128
6.3 Second Level System Generation ~ 131
6.4 Sample GETSYS and PUTSYS Pr"ogram 134
6.5 Diskette Organization .. 136
6.6 The BIOS Entry Points ... 137
6.7 A Sample BIOS .. 143
6.8 A Sample Cold Start Loader. 143
6.9 Reserved Loca tions in Page Zero 144
6.10 Disk Parameter Tables. 145
6.11 The DISKDEF Macro Library 148
6.12 Sector Blocking and Deblocking 152

APPENDIXES
A
B
C
o
E
F
G
H
I

INDEX

The MDS Basic I/O System (BIOS)
A Skeletal CBIOS
A Skeletal GETSYS/PUTSYS Program ~
The MDS-800 Cold Start Loader for CP/M 2
A Skeletal Cold Start Loader
CP/M Disk Definition Library
Blocking and Deblocking Algorithms
Glossary "
CP/M Messages

..

FIGURES

153
175
187
191
197
201
209
219
235

245

2.1 Overall ED Operation ... 34
2.2 Memory Buffer Organization .. 34
2.3 Logical Organization of Memory Buffer 36

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

1
CP 1M Features and

Facilities

1.1 Introduction
CP/M is a monitor control program for microcomputer system development that uses

floppy disks or Winchester hard disks for backup storage. Using a computer system based
upon Intel's BOBO microcomputer, CP/M provides a general environment for program
construction, storage, and editing, along with assembly and program check-out facilities.
An important feature of CP/M is that it can be easily altered to execute with any
computer configuration that uses an Intel BOBO (or Zilog Z-BO) Central Processing Unit
and has at least 20K bytes of main memory with up to 16 diskette drives. A detailed
discussion of the modifications required for any particular hardware environment is
given in Chapter 6. Although the standard Digital Research version operates on a
single-density Intel MDS BOO, several different hardware manufacturers support their
own input-output drivers for CP/M.

The CP/M monitor provides rapid access to programs through a comprehensive file
management package. The file subsystem supports a named file structure, allowing
dynamic allocation of file space as well as sequential and random file access. Using this file
system, a large number of programs can be stored in both source and machine­
executable form.

CP/M 2 is a high-performance, single-console operating system that uses table-driven
techniques to allow field reconfiguration to match a wide variety of disk capacities. All
fundamen tal file restrictions are removed, maintaining upward compatibility from pre­
vious versions of release 1. Features of CP/M 2 include field specification of one to sixteen
logical drives, each containing up to eight megabytes. Any particular file can reach the full
drive size with the capability of expanding to thirty-two megabytes in future releases.
The directory size can be field-configured to contain any reasonable number of entries,
and each file is optionally tagged with read/only and system attributes. Users of CP/M 2
are physically separated by user numbers, with facilities for file copy operations from one
user area to another. Powerful relative-record random access functions are present in
CP/M 2 that provide direct access to any of the 65536 records of an eight-megabyte file.

CP/M also supports a powerful context editor, Intel-compatible assembler, and
debugger subsystems. Optional software includes a powerful Intel-compatible macro
assembler, symbolic debugger, along with various high-level languages. When coupled

ALL INFORMATlON PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 1

with CP/M's Console Command Processor, the resulting facilities equal or excel similar
large computer facilities.

CP/M is logically divided into several distinct parts:

BIOS

BDOS

CCP

TPA

Basic 110 System (hardware-dependent)

Basic Oisk Operating System

Console Command Processor

Transient Program Area

The BIOS provides the primitive operations necessary to access the diskette drives
and to interface standard peripherals (teletype, CRT, paper tape reader/punch, and
user-defined peripherals). They can be tailored by the user for any particular hardware
environment by "patching" this portion of CP/M. The BOOS provides disk management
by controlling one or more disk drives containing independent file directories. The BOOS
implements disk allocation strategies that provide fully dynamic file construction while
minimizing head movement across the disk during access. The BOOS has entry points
that include the following primitive operations, which can be programmatically accessed:

SEARCH

OPEN

CLOSE

RENAME

READ

WRITE

SELECT

Look for a particular disk file by name.

Open a file for further operations.

Close a file after processing.

Change the name of a particular file.

Read a record from a particular file.

Write a record to a particular file.

Select a particular disk drive for further opera tions.

The CCP provides a symbolic interface between the user's consoie and the remainder
of the CP/M system. The CCP reads the console device and processes commands, which
include listing the file directory, printing the contents of files, and controlling the
operation of transient programs, such as assemblers, editors, and debuggers. The stand­
ard commands that are available in the CCP are listed in Section 1.2.1.

The last segment of CP/M is the area called the Transient Program Area (TPA). The
TPA holds programs that are loaded from the disk under command of the CCP. Ouring
program editing, for example, the TPA holds the CP/M text editor machine code and data
areas. Similarly, programs created under CP/M can be checked out by loading and
executing these programs in the TP A.

Any or all of the CP/M component subsystems can be "overlaid" by an executing
program. That is, once a user's program is loaded into the TPA, the CCP, BOOS, and
BIOS areas can be used as the program's data area. A "bootstrap" loader is programmati­
cally accessible whenever the BIOS portion is not overlaid; thus, the user program need
only branch to the bootstrap loader at the end of execution and the complete CP/M
monitor is reloaded from disk.

The-CP/M operafing system is partitioned into distinct modules, including the BtOS
portion that defines the hardware environment in which CP/M is executing. Thus, the
standard system is easily modified to any nonstandard environment by changing the
peripheral drivers to handle the custom system.

2 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

t .2 Functional Description
The user interacts with CP/M primarily through the CCP, which reads and interprets

commands entered through the console. In general, the CCP addresses one of several
disks that are on-line (the standard system addresses up to sixteen different disk drives).
These disk drives are labeled A through P. A disk is "logged in" if the CCP is currently
addressing the disk. To clearly indicate which disk is the currently logged disk, the CCP
always prompts the operator with the disk name followed by the symbol ">" indicating
that the CCP is ready for another command. Upon initial start-up, the CP/M system is
brough t in from disk A, and the CCP displays the message

CP/M VER m.m

where m.m is the CP/M version number. All CP/M systems are initially set to operate in a
20K memory space, but can be easily reconfigured to fit any memory size on the host
system (see Section 1.6.9). Following system sign-on, CP/M automatically logs in disk A,
prompts the user with the symbol "A>" (indicating that CP/M is currently addressing
disk" A"), and waits for a command. The commands are implemented at two levels:
built-in commands and transient commands.

1 .2.1 General Command Structure

Built-in commands are a part of the CCP program itself, while transient commands
are loaded into the TPA from disk and executed. The built-in commands are

ERA

DIR

REN

SAVE

Erase specified files.

List file names in the directory.

Rename the specified file.

Save memory contents in a file.

TYPE Type the contents of a file on the logged disk.
\.J.-"$ E. ~

Most of the commands reference a particular file or group of files. The form of a file
reference is specified below.

1 .2.2 File References

A file reference identifies a particular file or group of files on a particular disk attached
to CP/M. These file references are either "unambiguous" (ufn) or "ambiguous" (afn). An
unambiguous file reference uniquely identifies a single file, while an ambiguDus file
reference is satisfied by a number of different files.

File references consist of two parts: the primary filename and the filetype. Although
the file type is optional, it usually is generic; that is, the file type "ASM," for example, is
used to denote that the file is an assembly language source file, while the primary
filename distinguishes each particular source file. The two names are separated by a".",
as shown below:

filename.typ

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 3

where filename is the primary filename of eight characters or less, and typ is the file type
of no more than three characters. As mentioned above, the name

filename

is also allowed and is equivalent to a file type consisting of three blanks. The characters
used in specifying an unambiguous file reference cannot contain any of the spe.cial
characters

<>·,;:=?*[]-%I() /'\

while all alphanumerics and remaining special characters are allowed.
An ambiguous file reference is used for directory search and pattern matching. The

form of an ambiguous file reference is similar to an unambiguous reference, except the
symbol"?" can be interspersed throughout the primary and secondary names. In various
commands throughout CPIM, the "?" symbol matches any character of a file name in the
"?" position. Thus, the ambiguous reference

·X?Z.C?M

is satisfied by the unambiguous file names

XYZ.COM

and

X3Z.CAM

Note that the ambiguous reference

* *

is equivalent to the ambiguous file reference

???????? ???

while

filename.*

and

*.typ

are abbreviations for

fi lename. ???

and

???????? .typ

respectively. As an example,

4 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

is interpreted by the CCP as a command to list the names of all disk files in the directory,
while

A>DIR X.Y

searches only for a file by the name X.Y. Similarly, the command

A>DIR X?Y.C?M

causes a search for all (unambiguous) file names on the disk that satisfy this ambiguous
reference.

The following file names are valid unambiguous file references:

x
X.Y

XYZ

XYZ.COM

GAMMA

GAMMA.1

As an added convenience, the programmer can generally specify the disk drive name
along with the file name. In this case, the drive name is given as a letter A through P
followed by a colon (:). The specified drive is then "logged in" before the file operation
occurs. Thus, the following are valid file names with disk name prefixes:

A:X.Y B:XYZ

P:XYZ.COM B:X. A?M

C:GAMMA

C:*. ASM

All alphabetic lower case letters in file and drive names are translated to upper case when
they are processed by the CCP.

1.3 Switching Disi{s
The operator can switch the currently logged disk by typing the disk drive name (A

through P) followed by a colon (:) when the CCP is waiting for console input. Thus, the
sequence of prompts and commands below can occur after the CP/M system is loaded
from disk A:

CP/M VER 2.2

A>DIR · List all files on disk A.

A: SAMPLE ASM SAMPLE PRN

A>B:

B>DIR *. ASM

B: DUMP ASM FILES ASM

B>A:

Switch to disk B.

· List all" ASM" files on B.

..

· Switch back to A.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 5

1 A Built-in Commands

The file and device reference. forms described can ~ow be used to fully specify the
structure of the built-in commands. The user should 4ssume the following abbreviations
in the description below: '

ufn

afn

unambiguous file reference

ambiguous file reference

Recall that the CCP always translates lower case characters to upper case characters
internally. Thus, lower case alphabetics are treated as if they are upper case in command
names and file references.

lA.l ERA afn

The ERA (erase) command removes files from the currently logged in disk (Le., the
disk name currently prompted by CP/M preceding the 1/>"). The files that are erased are
those that satisfy the ambiguous file refere~ce cifn. The following examples illustrate the
use of ERA:

ERA X.Y

ERA X.*

ERA *. ASM

ERA X?Y.C?M

ERA *.*

ERA B:*.PRN

lA.2 DIR afn

The file ,named X.Y on the currently logged disk is
reIl10ved from the disk directory and the space is
returned.

All files with primary name X are removed from the
curr~n t disk.

All files with secondary name ASM are removed
from the current disk.

All files on the current disk that satisfy the ambigu­
ous reference X?Y.C?M are deleted.

Erase all files on the current disk (in this case the
CCP prompts the console with the message

ALL FILES (YIN)?

that requires a Y response before files are actually
removed).

All files on drive B that satisfy the ambiguous refer­
ence???????? .PRN are deleted, independently of
the currently logged disk.

The DIR (directory) command causes the names of all files that satisfy the ambiguous
file name afn to be listed at the console device. As a special case, the command

DIR

6 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

lists the files on the currently logged disk (the command "OIR" is equivalent to the
command "OIR *.*"). Valid OIR commands are

DIR X.Y

DIR X?Z.C?M

DIR ??Y

Similar to other CCP commands, the afn can be preceded by a drive name. The
following OIR commands cause the selected drive to be addressed before the directory
search takes place.

DIR B:

DIR B:X.Y

DIR B:*. A?M

If no files on the selected diskette satisfy the directory request, the message "NO
FILE" is typed at the console.

t A.3 REN ufn1 =ufn2

The REN (rename) command ~llows the user to change the names of files on disk. The
file satisfying ufn2 is changed to ufnl. The currently logged disk is assumed to contain
the file to rename (ufn2). The user can also type a left-directed arrow instead of the equal
sign if the console supports this graphic character. Examples of the REN command are

REN X.Y=Q.R The file Q.R is changed to X.Y.

REN XYZ.COM=XYZ.XXX The file XYZ.XXX is changed to XYZ.COM.

The operator precedes either ufnl or ufn2 (or both) by an optional drive address. If
ufnl is preceded by a drive name, then ufn2 is assumed to exist on the same drive.
Similarly, if ufn2 is preceded by a drive name, then ufnl is assumed to exist on that drive
as well. The same drive must be specified in both cases if both ufnl and ufn2 are preceded
by drive names. The REN commands below illustrate this format.

REN A:X.ASM=Y.ASM

REN B:ZAP.BAS=ZOT.BAS

REN B:A.ASM=B:A.BAK

The file Y.ASM is changed to X.ASM on drive
A.

The file ZOT.BAS is changed to ZAP.BAS on
drive B.

The file A.BAK is renamed to A.ASM on drive
B.

If ufnl is already present, the REN command will respond with the error "FILE
EXISTS" and not perform the change. If ufn2 does not exist on the specified diskette, the
message "NO FILE" is printed at the console.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 7

1 AA SAVE n ufn

The SAVE command places n pages (256-byte blocks) onto disk from the TP A and
names this file ufn. In the CP/M distribution system, the TPA starts at 100H (hexadec­
imal) which is the second page of memory. The SAVE command must specify 2 pages of
memory if the user's program occupies the area from 100H through 2FFH. The machine
code file can be subsequently loaded and executed. Examples are

SAVE 3 X.COM

SAVE 40 Q

SAVE 4 X.Y

Copies 100H through 3FFH to X.COM.

Copies 100H through 28FFH to Q (note that 28 is
the page count in 28FFH, and that 28H = 2*16+8 =
40 decimal).

Copies 100H through 4FFH to X.Y.

The SAVE command can also specify a disk drive in the ufn portion of the command, as
shown below.

SAVE 10 B:ZOT.COM

1 A.S TYPE ufn

Copies 10 pages (100H through OAFFH) to the file
ZOT.COM on drive B.

The TYPE command displays the contents of the ASCII source file ufn on the
currently logged disk at the console device. Valid TYPE commands are

TYPE X.Y

TYPE X.PLM

TYPE XXX

The TYPE command expands tabs (clt-I characters), assuming tab positions are set at
every eighth column. The ufn can also reference a drive name.

TYPE B:X.PRN The file X.PRN from drive B is displayed.

1A.6 USER n

The USER command allows maintenance of separate files in the same directory and
takes the form

USER n

where n is an integer value in the range 0 to 15. On cold start, the operator is automati­
cally "logged" into user area number 0, which is compatible with standard CP/M 1
directories. The operator may issue the USER command at any time to move to another
logical area within the same directory. Drives that are logged-in while addressing one
user number are automatically active when the operator moves to another; a user
number is simply a prefix that accesses particular directory entries on the active disks.

The active user number is maintained until changed by a subsequent USERcommand,
or until a cold start when user 0 is again assumed.

8 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

1 .5 Line Editing and Output Control
The CCP allows certain line editing functions while typing command lines.

ctl-C

ctl-E

ctl-H

ctl-J

ctl-M

ctl-R

ctl-U

ctl-X

ctl-Z

rub/del

CP/M system reboot when typed at start of line.

Physical end of line: carriage is returned, but line is not sent until
the carriage return key is depressed.

Backspace one character position.

Terminate current input (line feed).

Terminate current input (carriage return).

Retype current command line: types a "clean line" following charac­
ter deletion with rubouts.

Delete the entire line typed at the console.

Same as ctl-D.

End input from the console (used in PIP and ED).

Delete and echo the last character typed at the console.

The control functions ctl-P and ctl-S affect console output.

ctl-P Copy all subsequent console output to the currently assigned list
device (see Section 1.6.1). Output is sent to the list device and the
console device until the next ctl-P is typed.

ctl-S Stop the console output temporarily. Program execution and out­
put continue when the next character is typed at the console (e.g.,
another ctl-S). This feature stops output on high speed consoles,
such as CRT's, in order to view a segment of output before
continuing.

The ctl-key sequences are obtained by depressing the control and letter keys simul­
taneously . Further, CCP command lines are generally up to 255 characters in length; they
are not acted upon until the carriage return key is typed.

1.6 Transient Commands
Transient commands are loaded from the currently logged disk and executed in the

TPA. The transient commands for execution under the CCP are below. Additional
functions are easily defined by the user (see Section 1.6.3).

STAT

ASM

LOAD

DDT

List the number of bytes of storage remaining on the currently
logged disk, provide statistical information about particular files,
and display or alter device assignment.

Load the CP/M assembler and assemble the specified program from
disk.

Load the file in Intel "HEX" machine code format and produce a file
in machine executable form that can be loaded into the TPA (this
loaded program becomes a new command under the CCP).

Load the CP/M debugger into TPA and start execution.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 9

PIP

ED

SYSGEN

SUBMIT

DUMP

MOVCPM

Load the Peripheral Interchange Program for subsequent disk file
and peripheral transfer operations.

Load and execute the CP/M text editor program.

Create a new CP/M system diskette.

Submit a file of commands for batch processing.

Dump the contents of a file in hex.

Regenerate the CP/M system for a particular memory size.

Transient commands are specified in the same manner as built-in commands, and addi­
tional commands are easily defined by the user. For convenience, the transient command
can be preceded by a drive name that causes the transient to be loaded from the specified
drive into the TPA for execution. Thus, the command

B:STAT

causes CP/M to temporarily "log in" drive B for the source of the STAT transient, and
then return to the original logged disk for subsequent processing.

The basic transient commands are listed in detail below.

1.6.1 STAT

The STAT command provides general statistical information about file storage and
device assignment. It is initiated by typing one of the following forms:

STAT

STAT "command line"

Special forms of the" command line" allow the current device assignment to be examined
and altered. The various command lines that can be specified are shown, with an
explanation of each form to the right.

STAT

10

If the user types an empty command line, the STAT
transient calculates the storage remaining on all
active drives, and prints a message

d: R/W, SPACE: nnnK

or

d: R/O, SPACE: nnnK

for each active drive d:, where R/W indicates the
drive can be read or written, and RIO indicates the
drive is read only (a drive becomes RIO by explicitly
setting it to read only, as shown below, or by inad­
vertently changing diskettes without performing a
warm start). The space remaining on the diskette in
drive d: is given in kilobytes by nnn.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

STAT d:

STAT afn

STATd:afn

STAT d:=R/O

If a drive name is given, then the drive is selected
before the storage is computed. Thus, the com­
mand liST A T B:" could be issued while logged into
drive A, resulting in the message

BYTES REMAINING ON B: nnnK

The command line can abo specify a set of files to be
scanned by STAT. The files tha t satisfy afn are
listed in alphabetical order, with storage require­
ments for each file under the heading

RECS BYTS EX D:FILENAME.TYP

rrrr bbbK ee d:filename.typ

where rrrr is the number of 128-byte records allo­
cated to the file, bbb is the number of kilobytes
allocated to the file (bbb=rrrr*128/1024), ee is the
number of 16K extensions (ee=bbb/16), d is the
drive name containing the file (A ... P), filename is
the (up to) eight-character primary filename, and
typ is the (up to) three-character filetype. After
listing the individual files, the storage usage is
summarized.

The drive name can be given ahead of the afn. The
specified drive is first selected, and the form liST AT
afn" is executed.

This form sets the drive given by d to read only,
remaining in effect until the next warm or cold
start takes place. When a disk is read only, the
message

BOOS ERR ON d: READ ONLY

will appear if there is an attempt to write to the
read-only disk d:. CP/M waits until a key is
depressed before performing an automatic warm
start (at which time the disk becomes R/W).

The STAT command allows control over the physical to logical device assignment (see
the IOBYTE function described in Chapters 5 and 6). There are four logical peripheral
devices tha t are, at any particular instant, each assigned one of several physical peripheral
devices. The four logical devices are

CON:

RDR:

PUN:

LST:

The system console device (used by CCP for communication with
the opera tor)

The paper tape reader device

The paper tape punch device

The output list device

The actual devices attached to any particular computer system are driven by subrou­
tines in the BIOS portion of CP/M. Thus, the logical RDR: device, for example, could

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 1~

actually be a high speed reader, teletype reader, or cassette tape. To allow some flexibility
in device naming and assignment, several physical devices are defined below:

TTY:

CRT:

BAT:

UC1:

PTR:

UR1:

UR2:

PTP:

UP1:

UP2:

LPT:

UL1:

Teletype device (slow speed console)

Cathode ray tube device (high speed console)

Batch processing (console is current RDR:, output goes to current
LST: device)

User-defined console

Paper tape reader (high speed reader)

User-defined reader #1

User-defined reader #2

Paper tape punch (high speed punch)

User-defined punch #1

User-defined punch #2

Line printer

User-defined list device #1

It is emphasized that the physical device names mayor may not actually correspond to
devices that the names imply. That is, the PTP: device may be implemented as a cassette
write operation if the user wishes. The exact correspondence and driving subroutine is
defined in the BIOS portion of CP/M. In the standard distribution version of CP/M, these
devices correspond to their names on the MDS 800 development system.

The command

STAT VAL:

produces a summary of the available status commands, resulting in the output

Temp RIO Disk d:$R/O

Set Indicator: filename.typ $R/O $RIW $SYS $DIR

Disk Status: DSK: d:DSK

lobyte Assign:

which gives an instant summary of the possible ST AT commands and shows the permiss­
ible logical-to-phy~ical device assignments:

CON: = TTY: CRT: BAT: UC1:

RDR: = TTY: PTR: UR1: UR2:

PUN: = TTY: PTP: UP1: UP2:

LST: = TTY: CRT: LPT: UL 1:

The logical device to the left takes any of the four physical assignments shown to the
right. The current logical to physical mapping is displayed by typing the command

STAT DEV:

12 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

producing a list of each logical device to the left and the current corresponding physical
device to the right. For example, the list might appear as

CON: = CRT:

RDR: = UR1:

PUN: = PTP:

LST: = TTY:

The current logical to physical device assignment is changed by typing a STAT command
of the form

STAT Id1 = pd1, Id2 = pd2 , ... , Idn = pdn

where ldl through ldn are logical device names and pdl through pdn are compatible
physical device names (Le., ldi and pdi appear on the same line in the "VAL:" command
shown above). Valid STAT commands that change the current logical to physical device
assignments are

STAT CON:=CRT:

STAT PUN: = TTY:, LST:=LPT:, RDR:=TTY:

The command form

STAT d:filename.typ $S

where "d:" is an optional drive name and "filename.typ" is an unambiguous or ambiguous
file name, produces the output display format

Size

48

55

65536

Recs

48

55

128

Bytes

6k

12k

16k

Ext Acc

1 RIO A:ED.COM

1 RIO (A:PIP.COM)

2 R/W A:X. DA T

where the $S parameter causes the "Size" field to be displayed. (Without the $S, the Size
field is skipped, but the remaining fields are displayed.) The Size field lists the virtual file
size in records, while the "Recs" field sums the number of virtual records in each extent.
For files constructed sequentially, the Size and Recs fields are identical. The "Bytes" field
lists the actual number of bytes allocated to the corresponding file. The minimum
allocation· unit is determined at configuration time; thus, the number of bytes corre­
sponds to the record count plus the re~aining unused space in the last allocated block for
sequential files. Random access files are given data areas only when written, so the Bytes
field contains the only accurate allocation figure. In the case of random access, the Size
field gives the logical end-of-file record position and the Recs field counts the logical
records of each extent. (Each of these extents, however, may contain unallocated "holes"
even though they are added into the record count.) The "Ext" field counts the number of
physical extents allocated to the file. The Ext count corresponds to the number of
directory entries given to the file. Depending on allocation size, there can be up to 128K
bytes (8 logical extents) directly addressed by a single directory entry. (In a special case,
there are actually 256K bytes that can be directly addressed by a physical extent.)

The Acc field gives the RIO or R/W file indicator that is changed using the commands
shown. Similarly, the parentheses shown about the PIP.COM filename indicate that it

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 13

has the "system" indicator set, so that it will not be listed in OIR commands. The four
command forms

STAT d:filename.typ $R/O

STAT d:filename.typ $RIW

STAT d:filename.typ $SYS

STAT d:filename.typ $DIR

set or reset various permanent file indicators. The R/O indicator places the file (or set of
files) in a read-only status until changed by a subsequent STAT command. The R/O status
is recorded in the directory \Yith the file·so that it remains R/O through intervening cold
start operations. The R/W indicator places the file in a permanent read/write status. The
SYS indicator attaches the system indicator to the file, while the OIR command removes
the system indicator. The "filename.typ" may be ambiguous or unambiguous, but files
whose attributes are changed are listed at the console when the change occurs. The drive
name denoted by "d:" is optional.

When a file is marked R/O, subsequent attempts to erase or write into the file result in
a terminal BOOS message

BDOS Err on d: File R/O

The BOOS waits for a console input before performing a subsequent warm start (a
"return" is sufficient). The command form

STAT d:DSK:

lists the drive characteristics of the disk named by /I d:" that is in the range A:, B:, .,,' P:. The
drive characteristics are listed in the format

d: Drive Characteristics

65536: 128 Byte Record Capacity

8192: Kilobyte Drive Capacity

128: 32 Byte Directory Entries

0: Checked Directory Entries

1024: Records/ Extent

128: Records/ Block

58: Sectors/ Track

2: Reserved Tracks

where "d:" is the selected drive, followed by the total record capacity (65536 is an
eight-megabyte drive), followed by the total capacity listed in kilobytes. The directory
size is listed next, followed by the "checked" entries. The number of checked entries is
usually identical to the directory size for removable media, because this mechanism is
used to detect changed media during CP/M operation without an intervening warm start.
For fixed media, the number is usually zero, because the media are not changed without at
least a cold or warm start. The number of records per extent determines the addressing
capacity of each directory entry (1024 times 128 bytes, or 128K in the previous example).
The number of records per block shows the basic allocation size (in the example, 128
records/block times 128 bytes per record, or 16K bytes per block). The listing is then
followed by the number of physical sectors per track and the number of reserved tracks.

14 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

For logical drives that share the same physical disk, the number of reserved tracks can be
quite large because this mechanism is used to skip lower-numbered disk areas allocated to
other logical disks. The command form

STAT DSK:

produces a drive characteristics table for all currently active drives. The final STAT
command form is

STAT USR:

which produces a list of the user numbers that have files on the currently addressed disk.
The display format is

Active User: 0

Active Files: 0 1 3

where the first line lists the currently address~d user number, as set by the last CCP
USER command, followed by a list of user numbers scanned from the current directory.
In this case, the active user number is a (default at cold start), 'with three user numbers
that have active files on the current disk. The operator can subsequently examine the
directories of the other user numbers by logging-in with USER lor USER 3 commands,
followed by a DIR command at the CCP level.

t .6.2 ASM ufn

The ASM command loads and executes the CP/M 8080 assembler. The ufn specifies a
source file containing assembly language statements where the file type is assumed to be
ASM and is not specified. The following ASM commands are valid:

ASM X

ASM GAMMA

The two-pass assembler is automatically executed. Assembly errors that occur during the
second pass are prin ted a t the console. : .

The assembler produces a file

X.PRN

where X is the primary name specified in the ASM command. The PRN file contains a
listing of the source program (with imbedded tab characters if presel1t in the source
program), along with the machine code generated for each statement ~nd dia~nostic error
messages, if any. The PRN file is listed at the console u~ing the TYPE command, or sent to
a peripheral device using PIP (see Section 1.6.4). The user should note that the PRN file
contains the original source program, augmented by miscellaneous assembly information
in the leftmost 16 columns (program addresses arid hexadecimal machine code, for
example). The PRN file serves as a backup for the original source fit'e. If the source file is
accidentally removed or destroyed, the PRN file can be edited (see Chapter 2) by remov­
ing the leftmost 16 characters of each line. This is done by issuing a single editor"macro"
command. The resulting file is identical to the original source file and can be renamed
(REN) from PRN to ASM for subsequent editing and assembly. The file

X.HEX

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 15

is also produced, which contains 8080 machine language in Intel "HEX" format suitable
for subsequent loading and execution (see Section 1.6.3). For complete details of CP/M's
assembly language program, see Chapter 3.

The source file for assembly is taken from an alternate disk by prefixing the assembly
language file name by a disk drive name. The command

ASM B:ALPHA

loads the assembler from the currently logged drive and processes the source program
ALPHA.ASM on drive B. The HEX and PRN files are also placed on drive B in this case.

t .6.3 LOAD ufn

The LOAD command reads the file ufn, which is assumed to contain "HEX" format
machine code, and produces a memory image file that can subsequently be executed. The
file name ufn i~ assumed to be of the form

X.HEX

and only the filename X need be specified in the command. The LOAD command creates a
file named

X.COM

that marks it as containing machine executable code. The file is actually loaded into
memory and executed when the user types the filename X immediately after the prompt­
ing character ">" printed by the CCP.

Generally the CCP reads the filename X following the prompting character and looks
for a built-in function name. If no function name is found, the CCP searches the system
disk directory for a file· by the name

X.COM

If found, the machine code is loaded into the TPA, and the program executes. Thus, the
user need only LOAD a hex file once; it can be subsequently executed any number of
times by typing the primary name. In this way the user can "invent" new commands in the
CCP. {Initialized disks contain the transient commands as COM files, which are deleted at
the user's option.} The operation takes place on an alternate drive if the file name is
prefixed by a drive name. Thus

LOAD B:BETA

brings the LOAD program into the TP A from the currently logged disk and operates
upon drive B after execution begins.

The user should note that the BET A.HEX file must contain valid Intel format
hexadecimal machine code records (as produced by the ASM program, for exa~ple) that
begin at 100H of the TPA. The addresses in the hex records must be in ascending order;
gaps in unfilled memory regions are filled with zeroes by the LOAD command as the hex
records are read. Thus, LOAD must be used only for creating CP/M standard "COM"
files that operate in the TP A. Programs that occupy regions of memory other than the
TPA are loaded under DDT.

16 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

1.6A PIP

PIP is the CP/M Peripheral Interchange Program that implements the basic media
conversion operations necessary to load, print, punch, copy, and combine disk files. The
PIP program is initiated by typing one of the following forms:

(1) PIP

(2) PIP 'command line'

In both cases PIP is loaded into the TPA and executed. In form (I), PIP reads command
lines directly from the console, prompted with the "*" character, until an empty command
line is typed (Le., a single carriage return is issued by the operator). Each successive
command line causes some media conversion to take place according to the rules shown
below. Form (2) of the PIP command is equivalent to the first, except that the single
command line given with the PIP command is automatically executed, and PIP terminates
immediately with no further prompting of the console for input command lines. The
form of each command line is

destination = source#1, source#2, ... , source#n

where "destination" is the file or peripheral device to receive the data and "source#l, ... ,
source#n" is a series of one or more files or devices that are copied from left to right to the
destination.

When multiple files are given in the command line (Le., n> I), the individual files are
assumed to contain ASCII characters, with an assumed CP/M end-of-file character (ctl-Z)
at the end of each file (see the 0 parameter to override this assumption). Lower case
ASCII alphabetics are internally translated to upper case to be consistent with CP/M file
and device name conventions. Finally, the total command line length cannot exceed 255
characters (ctl-E can be used to force a physical carriage return for lines that exceed the
console width).

The destination and source elements are unambiguous references to CP/M source
files with or without a preceding disk drive name. That is, any file can be referenced with a
preceding drive name (A: through P:) that defines the particular drive where the file may
be obtained or stored. When the drive name is not included, the currently logged disk is
assumed. The destination file can also appear as one or more of the source files, in which
case the source file is not altered until the entire concatenation is complete. If it already
exists, the destination file is removed if the command line is properly formed (it is not
removed if an error condition arises). The following command lines (with explanations to
the right) are valid as input to PIP:

X=y

X=Y,Z

X.ASM=Y.ASM,Z.ASM,FIN.ASM

NEW.ZOT=B:OLD.ZAP

Copy to file X from file Y, where X
and Yare unambiguous file names;
Y remains unchanged.

Concatenate files Y and Z and copy
to file X, with Y and Z unchanged.

Create the file X.ASM from the
concatenation of the Y, Z, and FIN
files with type ASM.

Move a copy of OLD.ZAP from
drive B to the currently logged
disk; name the file NEW.ZOT.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 17

B:A.U = B:B.V,A:C.VV,D.X Concatenate file B. V from drive B
with C.W from drive A and D.X.
from the logged disk; create the file
A.U on drive B.

For convenience, PIP allows abbreviated commands for transferring files between
disk drives. The abbreviated forms are

PIPd:=afn

PIP d1:=d2:afn

PIP ufn = d2:

PIP d1:ufn = d2:

The first form copies all files from the currently logged disk that satisfy the afn to the
same files on drive d (d = A ... P). The secohd form is equivalent to the first, where the'
source for the copy is drive d2 (d2 = A ... P). The third form is equivalent to the command
"PIP d1 :ufn=d2 :ufn" that copies the file given by ufn from drive d2 to the file ufn on drive d1 :.

The fourth form is equivalent to the third, where the source disk is explicitly given by d2 :.

The source and destination disks must be different in all of these cases. If an afn is
specified, PIP lists each ufn that satisfies the afn as it is being copied. If a file exists by the
same name as the destination file, it is removed on successful completion of the copy and
replaced by the copied file.

The following PIP commands give examples of valid disk-to-disk copy operations:

B:=*.COM

A:=B:ZAP.*

ZAP.ASM=B:

B:ZOT.COM=A:

B:=GAMMA.BAS

B:=A:GAMMA.BAS

Copy all files that have the secondary name
"COM" to drive B from the current drive.

Copy all files that have the primary name
"ZAP" to drive A from drive B.

Equivalent to ZAP.ASM=B:ZAP.ASM

Equivalent to B:ZOT.COM=A:ZOT.COM

Same as B:GAMMA.BAS=GAMMA.BAS

Same as B:GAMMA.BAS=A:GAMMA.BAS

PIP allows reference to physical and logical devices that are attached to the CP/M
system. The device names are the same as given under the STAT command, along with a
number of specially named devices. The logical devices given in the STAT command are

CON: (console), RDR: (reader), PUN: (punch), and LST: (list)

while the physical devices are

TTY: (console, reader, punch, or list)

CRT: (console, or list), UC1: (console)

PTR:(reader), UR1: (reader), UR2: (reader)

PTP:(punch), UP1: (punch), UP2: (punch)

LPT: (list), UL 1: (list)

(The "BAT:" physical device is not included, since this assignment is used only to indicate
that the RDR: and LST: device .. are used for console input/output.)

18 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

The RDR, LST, PUN, and CON devices are all defined within the BIOS portion of
CP/M, and are easily altered for any particular I/O system. (The current physical device
mapping is defined by IOBYTE; see Chapter 6 for a discussion of this function). The
destination device must be capable of receiving data (i.e., data cannot be sent to the
punch), and the source devices must be capable of generating data (i.e., the LST: device
cannot be read).

The additional device names that can be used in PIP commands are

NUL:

EOF:

INP:

OUT:

PRN:

Send 40 "nulls" (ASCII o's) to the device (this can be issued at the
end of punched ou tpu t).

Send a CP/M end-of-file (ASCII ctl-Z) to the destination device
(sent automatically at the end of all ASCII data transfers through
PIP).

Special PIP input source that can be patched into the PIP program:
PIP gets the input data character-by-character by CALling location
103H, with data returned in location 109H (parity bit must be zero).

Special PIP output destination that can be patched into the PIP
program: PIP CALLs location 106H with data in register C for each
character to transmit. The user should note that locations 109H
through 1FFH of the PIP memory image are not us·ed and can be
replaced by special purpose drivers using DDT (see Chapter 4).

Same as LST: except that tabs are expanded at every eighth charac­
ter position, lines are numbered, and page ejects are inserted every
60 lines with an initial eject (same as using PIP options [t8np]).

File and device names can be interspersed in the PIP commands. In each case, the
specific device is read until end-of-file (ctl-Z for ASCII files, and end-of-data for non­
ASCII disk files). Data from each device or file are concatenated from left to right until
the last data source has been read. The destination device or file is written using the data
from the source files, and an end-of-file character ktl-Z) is appended to the result for
ASCII files. If the destination is a disk file, a temporary file is created ($$$ secondary
name) that is changed to the actual file name only on successful completion of the copy.
Files with the extension "COM" are always assumed to be non-ASCII.

The copy operation can be aborted at any time by depressing any key on the keyboard
(a return suffices). PIP will respond with the message "ABORTED" to indicate that the
operation has not been completed. If any operation is aborted, or if an error occurs during
processing, PIP removes any pending commands that were set up while using the
SUBMIT command.

PIP performs a special function if the destina tion is a disk file with type "HEX" (an Intel
hex-formatted machine code file), and the source is an external peripheral device, such as
a paper tape reader. In this case, the PIP program checks to ensure that the source file
contains a properly formed hex file, with legal hexadecimal values and checksum records.
When an invalid input record is found, PIP reports an error message at the console and
waits for corrective action. It is usually sufficient to open the reader and rerun a section of
the tape (pull the tape back about 20 inches). When the tape is ready for the reread, a
single carriage return is typed at the console, and PIP will attempt another read. If the
tape position cannot be properly read, the user continues the read (by typing a return
following the error message), and enters the record manually with the ED program after
the disk file is constructed. For convenience, PIP allows the end-of-file to be entered from
the console if the source file is an RDR: device. In this case, the PIP program reads the
device and monitors the.keyboard. If ctl-Z is typed at the keyboard the read operation is
terminated normally.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 19

Valid PIP commands are

PIP LST: = X.PAN

PIP

*CON:=X.ASM,Y.ASM,Z.ASM

*X. H EX=CON:, Y .HEX,PTA:

(carriage return)

PIP PUN:=NUL:,X.ASM,EOF:,NUL:

Copy X.PRN to the LST device and
terminate the PIP program.

Start PIP for a sequence of com­
mands (PIP prompts with 11*").

Concatenate three ASM files and
copy to the CON device.

Create a .HEX file by reading the
CON (until a ctl-Z is typed), fol­
lowed by data from Y.HEX and
PTR until a ctl-Z is encountered.

Single carriage return stops PIP.

Send 40 nulls to the punch device;
copy the X.ASM file to the punch,
followed by an end-of-file (ctl-Z)
and 40 more null characters.

The user can also specify one or more PIP parameters, enclosed in left and right square
brackets, separated by zero or more blanks. Each parameter affects the copy operation,
and the enclosed list of parameters must immediately follow the affected file or device.
Generally, each parameter can be followed by an optional decimal integer value (the Sand
Q parameters are exceptions). Valid PIP parameters are

20

B

On

E

F

Gn

H

L

Block mode transfer: data are buffered by PIP until an ASCII x-off
character (ctl-S) is received from the source device. This allows
transfer of data to a disk file from a continuous reading device, such
as a cassette reader. Upon receipt of the x-oft PIP clears the disk
buffers and returns for more input data. The amount of data that
can be buffered depends on the memory size of the host system (PIP
will issue an error message if the buffers overflow).

Delete characters that extend past column n in the transfer of data
to the destination from the character source. This parameter is
generally used to truncate long lines that are sent to a (narrow)
printer or console device.

Echo all transfer operations to the console as they are being
performed.

Filter form feeds from the file. All imbedded form feeds are
removed. The P parameter can be used simultaneously to insert
new form feeds.

Get File from user number n (n in the range 0-15).

HEX data transfer: all data are checked for proper Intel hex file
format. Nonessential characters between hex records are removed
during the copy operation. The console will be prompted for correc­
tive action in case errors occur.

Ignore 1/:00" records in the transfer of Intel hex format file (the I
parameter automatically sets the H parameter).

Translate upper case alphabetics to lower case.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

N Add line numbers to each line transferred to the destination, start­
ing at one and incrementing by 1. Leading zeroes are suppressed,
and the number is followed by a colon. If N2 is specified, leading
zeroes are included and a tab is inserted following the number. The
tab is expanded if T is set.

o Object file (non-ASCII) transfer: the normal CPIM end-of-file is
ignored.

Pn Include page ejects at every n lines (with an initial page eject). If n = 1
or is excluded altogether, page ejects occur every 60 lines. If the F
parameter is used, form feed suppression takes place before the.
new page ejects are inserted.

Qstz Quit copying from the source device or file when the string s
(terminated by ctl-Z) is encountered.

R Read system files.

Sstz Start copying from the source device when the string s (terminated
by ctl-Z) is encountered. The Sand Q parameters can be used to
"abstract" a particular section of a file (such as a subroutine). The
start and quit strings are always included in the copy operation.

Tn

U

v

w
z

If the user selects form (2) of the PIP command, the CCP translates
strings fOllowing the Sand Q parameters to upper case. Form (1) of
the PIP invocation does not perform the automatic upper case'
transla tion.

(1) PIP

(2) PIP 'command line'

Expand tabs (ctl-I characters) to every nth column during the
transfer of characters to the destination from the source.

Translate lower case alphabetics to upper case during the copy
operation.

Verify that data have been copied correctly by rereading after the
write operation (the destination must be a disk file).

Write over RIO files without console interrogation.

Zero the parity bit on input for each ASCII character.

Valid PIP commands that specify parameters in the file transfer are

PIP X.ASM=B:[v]

PIP LPT:=X.ASM[nt8u]

PIP PUN:=X.HEX[i],Y.ZOT[h]

Copy X.ASM from drive B to the current
drive and verify that the data were properly
copied.

Copy X.ASM to the LPT: device; number each
line, expand tabs to every eighth column, and
translate lower case alphabetics to upper case.

First copy X.HEX to the PUN: device and
ignore the trailing ":00" record in X.HEX;
continul'! the transfer of data by reading
Y.ZOT, which contains HEX records, includ­
ing any ":00" records it contains.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 21

PIP X.LlB = Y.ASM [sSUBRI:tz qJMP L3tz]

PIP PRN:=X.ASM[p50]

Copy fro~ the file Y.ASM into the file X.LIB.
Start the cop'y when the string "SUBRI:" has
been found, and quit copying after the string
"]lvIP L.3" is encountered.

Send X.ASM to the LST: device with line
numbers, tabs expanded to every eighth
column, and page ejects at every 50th line.
The ~ssumed parameter list for a PRN file is
nt8p60; p50 overrides the default value.

Under normal operation, PIP will not o~erwrite a fiie that is set to a permanent RIO
status. If an attempt is made to overwritE;? an RIO file, the prompt

DESTINATION FILE IS RIO, DELETE (YIN)?

is issued. If the operator responds with the character "y" the file is overwritten. Other-
wise, the response "

** NOT DELETED **

is issued, the file transfer is sl<ipped, and PIP continues with the next operation in
sequence. To avoid the pro'mpt and response in the case of RIO file overwrite, the
command line can include the W parameter .

PIP A:=B:*.COM[W]

which copies all nonsystem files to the A drive from the B drive and overwrites any RIO
files in the process. If the operation involves several concatenated files, the W parameter
need only be included with th~ 'ast file in the list,' as in the example

PIP A.DAT = B.DAT,F:N~W.DAT,G:OLD.DAT[W]

Files with the system attribute can be includeq in PIP transfers if the R parameter is .
included; otherwise, system files are not recognized. The command line

PIP ED.COM = B:ED.COM[R]

for example, reads the ED.COM file from the B drive, eyen if it h~s been marked as an
RIO and system file. The system fil~ attributes are copied, if present.

Downward compatibility with pr~vious versions of CPIM is only maintained if the file
does not exceed one megabyte, no file attributes are set, and the file is created by user O. If
compatibility is required with nonstandard (e.g~, "double density") versions of 1.4, it may
be necessary to select 1.4 compatibility mode when constructing the internal disk
parameter block. (See Chapter 6 ahd' fefer to Section 6.10, which describes BIOS
differences.) ,

Note: To copy files into another user area, PIP.COM must be located in that user area.
Follow the procedure shown below to make a copy of PIP.COM in another user area.

USER 0 Log-in user o.
DDT PIP.COM (note PIP size s) Load PIP to memory.

GO Return to CCP.

USER 3 Log-in user 3.

SAVE s PIP.COM

22 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

where s is the integral number of memory "pages" (256-byte segments) occupied by PIP.
The number s can be determined when PIP.COM is loaded under DDT, by referring to
the value under the NEXT display. If, for example, the next available address is 1000,
then PIP.COM requires 1C hexadecimal pages (or 1 times 16 + 12 = 28 pages), and the
value of sis 28 in the subsequent save. Once PIP is copied in this manner, it can be copied
to another disk belonging to the same user number through norm'al PIP transfers .

• . 6.5 ED ufn

The ED program is the CP/M system context editor that allows creation and alteration
of ASCII files in the CP/M environment. Complete details of operation are given in
Chapter 2. ED allows the operator to create and operate upon source files that are
organized as a sequence of ASCII characters, separated by end-of-line characters (a
carriage-return line-feed sequence). There is no practical restriction on line length (no
single line can exceed the size of the working memory) that is defined by the number of
characters typed between carriage returns. The ED program has a number of commands
for character string searching, replacement, and insertion that are useful in creation and
correction of programs or text files under CP/M. Although the CP/M has a limited
memory work space area (approximately 5000 characters in a 20K CP/M system), the file
size that can be edited is not limited, since data are easily "paged" through this work area.

If it does not exist, ED creates the specified source file and opens the file for access. If
the source file does exist (see the A command), the programmer "appends" data for
editing. The appended datq can then be displayed, altered, and written from the work area
back to the disk (see the W command). Particular points in the program. can be automati­
cally paged and located by context (see the N command), allowing easy access to particular
portions of a large file.

Given that the operator has typed

ED X.ASM

the ED program creates an intermediate work file with the name

X.$$$

to hold the edited data during the ED run. Upon completion of ED, the X.ASM file
(original file) is renamed to X.BAK, and the edited work file is renamed to X.ASM. Thus,
the X.BAK file con tains the original (unedited) file, and the X.ASM file contains the newly
edited file. The operator can always return to the previous version of a file by removing
the most recent version and renaming the previous version. If the current X.ASM file has
been improperly edited, the sequence of commands below will reclaim the backup file.

DIR X.*

ERA X.ASM

REN X.ASM=X.BAK

Check to see that BAK file is available.

Erase most recent version.

Rename the BAK file to ASM.

The operator can abort the edit at any point (reboot, power failure, ctl-C, or Q command)
without destroying the original file. In this case, the BAK file is not created and the
original file is always in tact.

The ED program allows the user to edit the source on one disk and create the backup
file on another disk. This form of the ED command is

ED ufn d:

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 23

where ufn is the name of the file to edit on the currently logged disk and d is the name of
an alternate drive. The ED program reads and processes the source file and writes the
new file to drive d using the name ufn. After processing, the original file becomes the
backup file. If the operator is addressing disk A, the following command is valid:

ED X.ASM B:

This edits the file X.ASM on drive A, creating the new file X.$$$ on drive B. After a
. successful edit, A:X.ASM is renamed to A:X.BAK, and B:X.$$$ is renamed to B:X.ASM.
For convenience the currently logged disk becomes drive B at the end of the edit. The user
should note that if a file named B:X.ASM exists before the editing begins, the message

FILE EXISTS

is printed at the console as a precaution against aCcidentally destroying a source file. The
operator first erases the existing file and then restarts the edit operation.

Similar to other transient commands, editing can take place on a drive different from
the currently logged disk by preceding the source file name by a drive name. Examples of
valid edit requests are

ED A:X.ASM

ED B:X.ASM A:

1.6.6 SYSGEN

Edit the file X.ASM on drive A, with new file and
backup on drive A.

Edit the file X.ASM on drive B to the temporary file
X.$$$ on drive A. After editing, change X.ASM on
drive B to X.BAK and change X.$$$ on drive A to
X.ASM.

The SYSGEN transient command allows generation of an initialized diskette contain­
ing the CP/M operating system. The SYSGEN program prompts the console for com­
mands by interacting as shown.

24

SYSGEN cr

SYSGEN VERSION m.m

SOURCE DRIVE NAME
(OR RETURN TO SKIP)

SOURCE ON d THEN TYPE RETURN

Initiate the SYSGEN program.

SYSGEN sign-on message.

Respond with the drive name (one
of the letters A, B, C, or D) of the
disk containing a CP/M system,
usually A. If a copy of CP/M
already exists in memory due to a
MOVCPM command, type a car­
riage return only; Typing a drive
name d will cause the response:

Place a diskette containing the
CP/M operating system on drive d
(d is one of A, B, C, or D). Answer
by typing a carriage return when
ready.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

FUNCTION COMPLETE

DESTINATION DRIVE NAME
(OR RETURN TO REBOOT)

DESTINATION ON d
THEN TYPE RETURN

FUNCTION COMPLETE

System is copied to memory. SYS­
GEN will ~hen prompt with:

If a diskette is being initialized~
place the new disk into a drive and
answer with the drive name. Oth­
erwise, type a cr and the system
will reboot from drive A. Typing
drive name d will cause SYSGEN
to prompt with:

Place new diskette into drive d;
type return when ready.

New diskette is initialized in drive
d.

The "DESTINATION" prompt will be repeated until a single carriage return is typed at
the console, so that more than one disk can be initialized.

Upon completion of a successful system generation, the new diskette contains the
operating system and only the built-in commands are available. A factory-fresh, IBM­
compatible diskette appears to CP/M as a diskette with an empty directory; therefore, the
operator must copy the appropriate COM files from an existing CP/M diskette to the
newly constructed diskette using the PIP transient.

The user can copy all files from an existing diskette by typing the PIP command

PIP B: = A: *.*[v]

which copies all files from disk drive A to disk drive B and verifies that each file has been
copied correctly. The name of each file is displayed at the console as the copy operation
proceeds.

The us~r should note that a SYSGEN does not destroy the files that already exist on a
diskette; it only constructs a new operating system. If a diskette is being used only on
drives B through P and will never be the source of a bootstrap operation on drive A, the
SYSGEN need not take place .

• . 6.7 SUBMIT ufn parm#1 ... parm#n

The SUBMIT command allows CP/M commands to be batched for automatic process­
ing. The ufn given in the SUBMIT command must be the file name of a file that exists on
the currently logged disk, with an assumed file type of "SUB." The SUB file contains
CP /M prototype commands with possible parameter substitution. The actual parameters
parm#l ... parm#n are substituted into the prototype commands, and, if no errors occur,
the file of substituted commands are processed sequentially by CP/M.

The prototype command file is created using the ED program, with interspersed "$"
parameters of the form

$1 $2 $3 ... $n

corresponding to the number of actual parameters that will be included when the file is
submitted for execution. When the SUBMIT transient is executed, the actual parameters
parm#l ... parm#n are paired with the formal parameters $1 ... $n in the prototype
commands. If the numbers of formal and actual parameters do not correspond, the

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 25

submit function is aborted with an error message at the console. The SUBMIT function
creates a file of substituted commands with the name

$$$.SUB

on the logged disk. When the system reboots (at the termination of the SUBMIT), this
command file is read by the CCP as a source of input rather than the console. If the
SUBMIT function is performed on any disk other than drive A, the commands are not
processed until the disk is inserted into drive A and the system reboots. The user can
abort command processing at any time by typing a rubout when the command is read and
echoed. In this case the $$$.SUB file is removed and the subsequent commands come
from the console. Command processing is also aborted if the CCP detects an error in any
of the commands. Programs that execute under CP/M can abort processing of command
files when error conditions occur by erasing any existing $$$.SUB file.

To introduce dollar signs into a SUBMIT file, the user may type a "$$" which reduces
to a single "$" within the command file. An up-arrow symbol" 1\" may precede an
alphabetic character x, which produces a single ctl-x character within the file.

The last command in a SUB file can initiate another SUB file, allowing chained batch
commands.

Suppose the file ASMBL.SUB exists on disk and contains the prototype commands

ASM $1

DIR $1.*

ERA *.BAK

PIP $2:=$1.PRN

ERA $1.PRN

and the command

SUBMIT ASMBL X PRN

is issued by the operator. The SUBMIT program reads the ASMBL.SUB file, substituting
"X" for all occurrences of $1 and "PRN" for all occurrences of $2. This results in a
$$$.SUB file containing the commands

ASM X

DIR X.*

ERA *.BAK

PIP PRN:=X.PRN

ERA X.PRN

which are executed in sequence by the CCP.
The SUBMIT function can access a SUB file on an alternate drive by preceding the file

name by a drive name. Submitted files are only acted upon when they appear on drive A.
Thus it is possible to create a submitted file on drive B that is executed at a later time when
inserted in drive A.

An additional utility program called XSUB extends the power of the SUBMIT facility
to include line input to programs as well as the console command processor. The XSUB
command is included as the first line of the submit file. When it is executed, XSUB
self-relocates directly below the CCP. All subsequent submit command lines are pro­
cessed by XSUB so that programs that read buffered console input (BOOS function 10)

26 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

recejve their input directly from the submit file. For example, the ~ SA VER.SUB can
contain the submit lines

XSUB

DDT

1$1.COM

R

ge(
SAVE 1 $2.COM

with a subsequent SUBMIT command

A>SUBMIT SAVER PIP Y

that substitutes X for $1 and Y for $2 in the command stream. The XSUB program loads,
followed by DDT, which is sent to the command lines PIP.COM, R, and GO, thus
returning to the CCP. The final command SAVE 1 Y.COM is processed by the CCP.

The XSUB program remains in memory and prints the message

(xsub active)

on each warm start operation to indicate its presence. Subsequent submit command
streams do not require the XSUB, unless an intervening cold start has occurred. The user
should note that XSUB must be loaded after the optional CP/M DESPOOL utility, if both
are to run simultaneously.

1.6.8 DUMP ufn

The DUMP program types the contents of the disk file (ufn) at the console in
hexadecimal form. The file contents are listed sixteen bytes at a time, with the absolute
byte address listed to the left of each line in hexadecimal. Long typeouts can be aborted by
pushing the rubout key during printout. (The source listing of the DUMP program is
given in Chapter 5 as an example of a program written for the CP/M environment.)

1.6.9 MOVCPM

The MOVCPM program allows the user to reconfigure the CP/M system for any
particular memory size. Two optional parameters can be used to indicate the desired size
of the new system and the disposition of the new system at program termination. If the
fLrst parameter is omitted or an //*// is given, the MOVCPM program will reconfigure the
system to its maximum size, based upon the kilobytes of contiguous RAM in the host
system (starting at OOOOH). If the second parameter is omitted, the system is executed,
but not permanently recorded; if-//*// is given, the system is left in memory, ready for a
SYSGEN operation. The MOVCPM program relocates,a memory image of CP/M and
places this image in memory in preparation for a system generation operation. The
command forms are

MOVCPM Relocate and execute CP/M for management of the
current memory configuration (memory is exam­
ined for contiguous RAM, starting at IOOH). On

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 27

MOVCPM

MOVCPM

MOVCPM

The command

MOVCPM

n

* *

n *

completion of the relocation, the new system is
executed but not permanently recorded on the
diskette. The system that is constructed contains a
BIOS for the Intel MDS 800.

Create a relocated CP/M system for management
of an n kilobyte system {n must be in the range of 20
to 64L and execute the system as described.

Construct a relocated memory image for the cur­
rent memory configuration, but leave the memory
image in memory in preparation for a SYSGEN
operation.

Construct a relocated memory image for an n kilo­
byte memory system, and leave the memory image
in preparation for a SYSGEN operation.

for example, constructs a new version of the CP/M system and leaves it in memory, ready
for a SYSGEN operation. The message

READY FOR 'SYSGEN' OR
'SAVE 34 CPMxx.COM'

is printed at the console upon completion, where xx is the current memory size in
kilobytes. The operator can then type

SYSGEN

SOURCE DRIVE NAME
(OR RETURN TO SKIP)

DESTINATION DRIVE NAME
(OR RETURN TO REBOOT)

DESTINATION ON B,
THEN TYPE RETURN

Start the system generation.

Respond with a carriage return to skip the
CP/M read operation since the system is
already in memory as a result of the previous
MOVCPM operation.

Respond with B to write new system to the
diskette in drive B. SYSGEN will prompt
with:

Ready the fresh diskette on drive B and type a
return when ready.

If the user responds with" A" rather than "B" above, the system will be written to drive A
rather thanB. SYSGEN will continue to type the prompt

DESTINATION DRIVE NAME (OR RETURN TO REBOOT)

until the operator responds with·~ single carriage return, which stops the SYSGEN
program with" a system reboot.

28 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

The user can then go through the reboot process with the old or new diskette. Instead
of performing the SYSGEN operation, the user can type

SAVE 34 CPMxx.COM

at the completion of the MOVCPM function, where "xx" is the value indicated in the
SYSGEN message. The CP/M memory image on the currently logged disk is in a form
that can be "patched." This is necessary when operating in a nonstandard environment
where the BIOS must be altered for a particular peripheral device configuration, as
described in Chapter 6.

Valid MOVCPM commands are

MOVCPM 48

MOVCPM 48 *

MOVCPM

Construct a 48K version of CP/M and start
execution.

Construct a 48K version of CP/M in preparation
for permanent recording; response is

READY FOR 'SYSGEN' OR
'SAVE 34 CPM48.COM'

Construct a maximum memory version of CP/M
and start execution.

The newly created system is serialized with the number attached to the original
diskette and is subject to the conditions of the Digital Research Software Licensing
Agreement.

1.7 BDOS Error Messages
There are three error situations that the Basic Disk Operating System intercepts

during file processing. When one of these conditions is detected, the BOOS prints the
message:

BOOS ERR ON d: error

where d is the drive name and "error" is one of the three error messages:

BAD SECTOR

SELECT

READ ONLY

The "BAD SECTOR" message indicates that the disk controller electronics has
detected an error condition in reading or writing the diskette. This condition is generally
caused by a malfunctioning disk controller or an extremely worn diskette. If the user
finds that the CP/M reports this error more than once a month, the state of the controller
electronics and the condition of the media should be checked.The user can also encounter
this condition in reading files generated by a controller produced by a different manufac­
turer. Even though controllers are claimed to be IBM-compatible, one often finds small
differences in recording formats. The MOS-800 controller, for example, requires two
bytes of one's following the data CRC byte, which is not required in the IBM format. As a
result, diskettes generated by the Intel MOS can be read by almost all other IBM­
compatible systems, while disk files generat~d on other manufacturers' equipment will
produce the "BAD SECTOR" message when read by the MOS. Recovery from this
condition is accomplished by typing a ctl-C to reboot (the safest course), or a return,

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 29

which ignores the bad sector in the file operation. The user should, however, note that
typing a return may destroy diskette integrity if the operation is a directory write. The
user should be sure to have adequate backups in this case.

The "SELECT" error occurs when there is an attempt to address a drive beyond the
range supported by the BIOS. In this case, the value of d in the error message gives the
selected drive. The system reboots following any input from the console.

The i'READ ONLY" message occurs when there is an attempt to write to a diskette or
file that has been designated as read only in a STAT command or has been set to
read only by the BOOS. The operator should reboot CP/M by using the warm start
procedure (ctl-C) or by performing a cold start whenever the diskettes are changed. If a
changed diskette is to be read but not written, BOOS allows the diskette to be changed
without the warm or cold start, but internally marks the drive as read only. The status of
the drive is subsequently changed to read/write if a warm or cold start occurs. On issuing
this message, CP/M waits for input from the console. An automatic warm start takes
place following any input.

1.8 Operation of CP 1M on the MDS
This section gives operating procedures for using CP/M on the Intel MDS microcom­

puter development system. Basic knowledge of the MDS hardware and software systems
is assumed.

CP/M is initiated in essentially the same manner as Intel's ISIS operating system. The
disk drives are labeled 0 through 3 on the MDS, corresponding to CP/M drives A through
0, respectively. The CP/M system diskette is inserted into drive 0, and the BOOT and
RESET switches are depressed in sequence. The interrupt 2 light should go on at this
point. The space bar is then depressed on the system console, and the light should go out
(if it does not, the user should chee)< connections and baud rates}. The BOOT switch is
turned off, and the CP/M sign-on message should appear at the selected console device,
followed by the "A>" system prompt. The user can then issue the various resident and
transient commands.

The CP/M system can be restarted (warm start) at any time by pushing the INT 0
switch on the front panel. The built-in Intel ROM monitor can be initiated by pushing the
INT 7 switch (which generates an RST 7), except when operating under DDT, in which
case the DDT program gets control instead.

Diskettes can be removed from the drives at any time, and the system can be shut
down during operation without affecting data integrity. The user must not remove a
diskette and replace it with another without rebooting the system (cold or warm start)
unless the inserted diskette is "read only."

As a result of hardware hang-ups or malfunctions, CP/M may type the message

BOOS ERR ON d: BAD SECTOR

where d is the drive that has a permanent error. This error can occur when drive doors are
opened and closed randomly, followed by disk operations, or can be caused by a diskette,
drive, or controller failure. The user can optionally elect to ignore the error by typing a
single return at the console. The error may produce a bad data record, requiring reinitiali­
zation of up to 128 bytes of data. The operator can reboot the CP/M system and try the
operation again.

Termination of a CP/M session requires no special action, except that it is necessary to
remove the diskettes before turning the power off to avoid random transients that often
make their way to the drive electronics.

30 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Factory-fresh, IBM-compatible diskettes should be used rather than diskettes that
have previously been used with any ISIS version. In particular, the ISIS "FORMAT"
operation produces nonstandard sector numbering throughout the diskette. This non­
standard numbering seriously degrades the performance of CP/M and will operate
noticeably slower than the distribution version. If it becomes necessary to reformat a
diskette (which should not be the case for standard diskettes), a program can be written
under CP/M that causes the MDS 800 controller to reformat with sequential sector
numbering (1-26) on each track.

IBM-compatible 8-inch diskettes in general do not need to be formatted. However,
514-inch diskettes will need to be formatted.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 31

2
ED

2.t Introduction to ED

ED is the·context editor for CP/M, and is used to create and alter CP/M source files.
ED is initiated in CP/M by typing

ED filename

or

ED filename. typ

In general, ED reads segments of the source file given by filename or filename.typ into the
central memory, where the file is manipulated by the operator and subsequently
written back to disk after alterations. If the source file does not exist before editing, it is
created by ED and initialized to empty. The overall operation of ED is shown in Figure 2.1.

2.1.1 ED Operation

ED operates upon the source file, denoted in Figure 2.1 by x.y, and passes all text
through a memory buffer where the text can be viewed or altered (the number of lines
that can be maintained in the memory buffer varies with the line length, but has a total
capacity of about 5000 characters in a 20K CP/M system). Text material that has been
edited is written into a temporary work file under command of the operator. Upon
termination of the edit, the memory buffer is written to the temporary file, followed by
any remaining (unread) text in the source file. The name of the original file is changed
from x.y to x.BAK so that the most recent previously edited source file can be reclaimed if
necessary (see the CP/M commands ERASE and RENAME). The temporary file is then
changed from x.$$$ to x.y, which becomes the resulting edited file.

The memory buffer is logically between the source file and working file as shown in
Figure 2.2.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 33

Figure 2.1 Overall ED Operation

I
After I (E)
Edit I

+

Memory Buffer

,nsertl
(I)

I Type

~(T)

r-c-=--' ~I

L~J

0= memory buffer

0= disk file

I
After I (E)
Edit I

+

Figure 2.2 Memory Buffer Organization

34

Source File

1 First Line

2 Appended --------
3 Lines --------

SP .. I
I
I
I Unprocessed
I Source
I Lines
I
I --------

Memory Buffer

1 First Line

2 Buffered

Text

I MP.
I
I
I Next I Append

I
I

,I I
I I
I Free I Next

I Memory I Write

I Space I
I I
I -------- I

SP = Source Pointer
MP = Memory Pointer
TP = Temporary Pointer

1

2

Temporary File

First Line

Processed

Text

I

Free File I
Space I

I
I I
1 ______ --,

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

2.t.2 Text Transfer Functions

Given that n is an integer value in the range 0 through 65535, several single letter ED
commands transfer lines of text from the source file through the memory buffer to the
temporary (and eventually final) file. Single letter commands are shown in upper case,
but can be typed in either upper or lower case.

nA

nW

E

H

o

Q

Append the next n unprocessed source lines from the source file at
SP to the end of the memory buffer at MP. Incremen t SP and MP by
n. If upper case translation is set (see the U command) and the A
command is typed in upper case, all input lines will automatically be
translated to upper case.

Write the first n lines of the memory buffer to the temporary file
free space. Shift the remaining lines n+l through MP to the top of
the memory buffer. Increment TP by n.

End the edit. Copy all buffered text to temporary file and copy all
unprocessed source lines to temporary file. Rename files as des­
cribed previously.

Move to head of new file by performing automatic E command.
Temporary file becomes the new source file, the memory buffer is
emptied, and a new temporary file is created (equivalent to issuing
an E command, followed by a reinvocation of ED using x.y as the file
to edit).

Return to original file. The memory buffer is emptied, the tempor­
ary file is deleted, and the SP is returned to position 1 of the source
file. The effects of the previous editing commands are thus
nullified.

Quit edit with no file alterations, return to CP/M.

There are a number of special cases to consider. If the integer n is omitted in any ED com­
mand where an integer is allowed, then 1 is assumed. Thus, the commands A and W
append one line and write one line, respectively. In addition, if a pound sign (#) is given in the
place of n, then the integer 65535 is assumed (the largest value for n that is allowed). Since
most reasonably sized source files can be contained entirely in the memory buffer,
the command #A is often issued at the beginning of the edit to read the entire source file
to memory. Similarly, the command #W writes the entire buffer to the temporary file.
Two special forms of the A and W commands are provided as a convenience. The
command oA fills the current memory buffer at least half full, while oW writes lines until
the buffer is at least half empty. An error is issued if the memory buffer size is exceeded.
The operator can then enter any command (such as W) that does not increase memory
requirements. The remainder of any partial line read during the overflow will be brought
into memory on the next successful append.

2.t.3 Memory Buffer Organization

The memory buffer can be considered a sequence of source lines brought in with the A
command from a source file. The memory buffer has an associated (imaginary) character
pointer CP that moves throughout the memory buffer under command of the operator.
The memory buffer appears logically as shown in Figure 2.3 where the dashes represent
characters of the source line of indefinite length, terminated by carriage-return «cr»
and line-feed «If» characters, and CP represents the imaginary character pointer. The

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 35

user should note that the CP is always located ahead of the first character of the first line,
behind the last character of the last line, or between two characters. The current line CL
is the source line that contains the CPo

Figure 2.3 Logical Organization of Memory Buffer

Memory Buffer

first
line

current
line CL

last
lirie

---------<cr> <If>

---------<cr><lf>

---~----<cr><If>

---------<cr><lf>

2.1.4 Line Numbers and ED Start-up

ED produces absolute line number prefixes that can be used to reference a line, or
range of lines. The absolute line number is displayed at the beginning of each line when
ED is in "insert mode" (see the I command in Section 2.1.5), where each line number takes
the form

nnnnn:

where nnnnn is an absolute line number in the range of 1 to 65535. If the memory buffer
is empty or if the current line is at the end of the memory buffef, nnnnn appears as 5
blanks.

The user may reference an absolute line number by preceding any command by a
number followed by a colon, in the same format as the line number display. In this case,
the ED program moves the current line reference to the absolute line number, if the line
exists in the current memory buffer. The line denoted by the absolute line number must
be in the memory buffer (see the A command). Thus, the command

345:T

is interpreted as "move to absolute 345, and type the line." Absolute line numbers are
produced only during the editing process and are not recorded with the file. In particular,
the line numbers will change following a del,eted or expanded section of text.

The user may also reference an absolute line number as a backward or forward
distance from the current line by preceding the absolute number by a colon. Thus, the
command

:400T

36 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

is interpreted as "type from the current line number through the line whose absolute
number is 400." Combining the two line reference forms, the command

345::400T

for example, is interpreted as "move to absolute line 345, then type through absolute line
400." Absolute line references of this sort can precede any of the standard ED commands.

Line numbering is controlled by the "V" (Verify line numbers) command. Line num-
bering can be disabled by typing the" -V" command. . .

If the file to edit does not exist, ED types the message

NEW FILE

The user must enter an "i" command so that text can be inserted into the memory buffer
by typing input lines terminated by carriage-returns. A single ctl-Z character returns ED
to command mode.

2. t .5 Memory Buffer Operation

When ED begins, the memory buffer is empty. The operator may either append lines
(A command) from the source file or enter the lines directly from the console with the
insert command

ED then accepts any number of input lines, where each line terminates with a <cr> (the
<If> is supplied automatically), until a control-z (denoted by 1z) is typed by the operator.
The CP is positioned after the last character entered. The sequence

I<cr>

NOW IS THE<cr>

TIME FOR<cr>

ALL GOOD MEN<cr>

1z

leaves the memory buffer as

NOW IS THE<cr><If>

TIME FOR<cr><If>

ALL GOOD MEN<cr><If>

Generally, ED accepts c~mmand letters in upper or lower case. If the command is
upper case, all input values associated with the command are translated to upper case. In
particular, if the "I" command is typed, all input lines are automatically translated
internally to upper case. The lower case form of the "i" command is most often used to
allow both upper and lower case letters to be entered.

Various commands can be issued that manipulate the CP or display source text in the
vicinity of the CPo The commands shown below with a preceding n indicate that an

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 37

optional unsigned value can be specified. When preceded by ±, the command can be
unsigned, or have an optional preceding plus or minus sign. As before, the pound sign (#)
is replaced by 65535. If an integer n is optionat but not supplied, then n = I is assumed.
Finally, if a plus sign is optionaL but none is specified, then + is assumed.

±B Move CP to beginn~ng of memory buffer if + and to bottom if -.

±nC Move CP by ±n characters (moving ahead if +), counting the
<cr><l£> as two distinct characters.

±nD Delete n characters ahead of CP if plus and behind CP if minus.

±nK Kill (Le., remove) ±n lines of source text using CP as the current
reference. If CP is not at the beginning of the current line when K is
issued, the cparacters before CP remain if + is specified, while the
characters after CP remain if - h; given in the command.

±nL If n = 0, move CP to the beginning of the current line (if it is not
already there). If n =1= 0, first inove the CP to the beginning of the
current line and then mov~ it to the beginning of the line that is n
lines down (if +) or' up (if -). The CP will stop at the top or bottom of
the memory buffer if too large a value of n is specified.

±nT If n = 0, type the contents of the current line up to CPo If n = I, type
the contents of the current line from CP to the end of the line. If
n>l, type the cur;ent line along with n - I lines that follow, if + is
specified. Similarly, if n>l and -"is given, type the previous n lines up
to the CPo Any key can be depressed to abort long type-outs.

±n Equivalent to ±nL T, which moves up or down and types a single
line.

2.1.6 Comman~ Strings

Any number of commands can be typed contiguously (up to the capacity of the console
buffer) and are executed only after tpe <cr> is typed. Thus, the operator may use the
CP/M console line editing operation to manipulate the input command line:

38

ctl-C

ctl-E

ctl-H

ctl-J

ctl-M

ctl-R

ctl-U

ctl-X

ctl-Z

rub/del

CP/M system reboot when typed at start of line.

Physical end of line: carriage is returned, but line is
not sent until the carriage return key is depressed.

Backspace one character position.

Terminate current input (line feed).

Terminate current input (carriage return).

Retype current command line: types a "clean line"
following· character deletion with rubouts.

Delete the entire line typed at the console.

Same as ctl-U.

End input from the co~sole (used in PIP and ED).

Delete and echo the last character typed at the
console.

ALL INFORMATION PRESENTEDHERE IS PROPRIETARY TO DIGITAL RESEARCH

Suppose the memory buffer contains the characters shown in the previous section,
with the CP following the last character of the buffer. The command strings shown
below produce the results shown to the right. Use lower case command letters to avoid
automatic translation of strings, to upper ca,se.

Command String

1. B2T<cr>

2. 5COT<cr>

3. 2L-T<cr>

4. -L#K<cr>

5. I<cr>
TIME TO<cr>
INSERT<cr>
tz

6. -2L#T<cr>

7. <cr>

Effect Resulting Memory Buffer

Move to beginning A NOW IS THE<cr><lf>
of buffer and type lQ1TIME FOR<cr><If>
2 lines: ALL GOOD MEN<cr><If>
'NOW IS THE
TIME FOR'

Move CP 5
characters and type
the beginning

NOW I S THE <cr><If>

~
of the line
'NOW I'

Move two lines
down and type
previous line
'TIME FOR'

NOW IS THE<cr><If>
TIME FOR<cr><If>

A.ALL GOOD MEN<cr><If>

~
Move up one line,
delete 65535 lines
that follow

NOW IS THE<cr><If> I\.
l£!:1

Insert two lines NOW IS THE<cr><If>
of text with auto- TIME TO<cr><If>
matic translation INSERT<cr><If>1\.
to upper case ~

Move up two lines NOW IS THE<cr><lf>
and type 65535 TIME TO<cr><If>
lines ahead of CPJ\.INSERT<cr><If>
'NOW IS TH E' [f!1

Move down one line NOW IS THE<cr><lf>
and type one line TIME TO<cr><If>
'INSERT' INSERT<cr><If>

~
2. t . 7 Text Search and Alteration

ED also has a command that locates strings within the memory buffer. The command
takes the form

nF s <cr>
or

nF s tz

where s represents the string to match, followed by either a <cr> or ctl-Z, denoted by tz.
ED starts at the current position of CP and attempts to match the string. The match is
attempted n times, andJ:,if successful, the CP is moved directly after the string. If the n
matches are not successful, the CP is not moved from its initial position. Search strings
can include ctl-L, which is replaced by the pair of symbols <cr> <If>.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 39

The following commands illustrate the use of the F command:

Command String

1. B#T<cr>

2. FS T<cr>

3. FltzOTT

Effect Resulting Memory Buffer

Move to begin- NOW IS THE<cr><If>
ning and type ~TIME FOR<cr><If>
entire buffer ALL GOOD MEN<cr><lf>

Find the end of
the string'S T'

Find the next 'I'
and type to the
CP; then type the
remainder of the
current line:
'ME FOR'

NOW IS TJ\. HE<cr> <If>

~
NOW IS THE<cr><lf>
TIl'\.. ME FOR<cr><If>

l0:]
ALL GOOD MEN<cr><If>

An abbreviated form of the insert command is also allowed, which is often used in
conjunction with the F command to make simple textual changes. The form is

I S tz
or

I 5 <cr>
where s is the string to insert. If the insertion string is terminated by a tz, the string is
inserted directly following the CP, and the CP positioned directly after the string. The
action is the same if the command is followed by a <cr> except that a <cr><lf> is
automatically inserted into the text following the string. Consider the following com­
mand sequences as examples of the F and I commands:

1.

2.

3.

Command String
BITHIS IS tz<cr>

Effect
Insert 'THIS IS'
at the beginning
of the text

Resulting Memory Buffer
TH IS IS ANOW THE <cr><If>

o
TIME FOR<cr><If>
ALL GOOD MEN<cr><If>

FTIMEtz-4DIPLACElz<cr> Find 'TIME' and
delete it; then
insert 'PLACE'

THIS IS NOWTHE<cr><If>
PLACE A FOR<cr><If>

[Q!j

3FOlz-3D5D1
CHANGEStz<cr>

ALL GOOD MEN<cr><If>

Find third THIS IS NOWTHE<cr><If>
occurrence of '0' PLACE FOR<cr><If>
(i.e., the second '0' ALL CHANGES/\. <cr><If>
in GOOD), delete ~
previous 3
characters and the
subsequent 5 charac-
ters; then insert
'CHANGES'

4. -8CISOURCE<cr> Move back 8 THIS IS NOW THE<cr> <If>
characters and PLACE FOR<cr><If>
insert the line ALL SOURCE<cr><If>
'SOURCE<cr><If>' A CHANGES<cr><If>

l£!1
ED also provides a single command that combines the F and I commands to perform

simple string substitutions. The command takes the form

n S 51 tz 52 <cr>
or

n S 51 tz 52 tz

40 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

and has exactly the same effect as applying the following command string a total of n
times:

F 51 tz-kDl52 <cr>
or

F 51 tz-kDl52 tz

where k is the length of the string. That is, ED searches the memory buffer starting at the
current position of CP and successively substitutes the second string for the first string
until the end of buffer or until the substitution has been performed n times.

As a convenience, a command similar to F is provided by ED, which automatically
appends and writes lines as the search proceeds. The form is

n N 5 <cr>
or

n N 5 tz

which searches the entire source file for the nth occurrence of the strings (the user should
recall that F fails if the string cannot be found in the current buffer). The operation of the
N command is precisely the same as F except in the case that the string
cannot be found within the current memory buffer. In this case, the entire memory
content is written (i.e., an automatic #W is issued). Input lines are then read until the
buffer is at least half full or the entire source file is exhausted. The search continues in
this manner until the string has been found n times or until the source file has bee~
completely transferred to the temporary file.

A final line editing function, called the juxtaposition command, takes the form

n J 51 tz 52 tz 53 <cr>
or

with the following action applied n times to the memory buffer: search from the current
CP for the next occurrence of the string sl' If found, insert the string s2' and move CP to
follows2' Then delete all characters following CP up to (but not including) the string s3'
leaving CP directly after s2' If s3 cannot be found, then no deletion is made. If the current
line is

NOW IS THE TIME<cr><If>

the command

JW tzWHATtztl<cr>

results in

NOW WHAT <cr If>

(The user should recall that tl (ctl-L) represents the pair <cr><lf> in search and
substitute strings.)

The number of characters allowed by ED in the F, 5, N, and J commands is limited to
100 symbols. .

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 41

2.1.8 Source Libraries
It

ED also allows the inclusion of source libraries during the editing process with the R
command. The form of this command is

R filename fz
or

R filename <cr>

where filename is the primary filename of a source file on the disk with an assumed
file type of 'LIB'. ED reads the specified file, and places the characters into the memory
buffer after CP, in a manner similar to the I command. Thus, if the command

RMACRO<cr>

is issued by the operator, ED reads from the file MACRO.LIB until the end-of-file and
automatically inserts the characters into the memory buffer.

ED also includes a "block move" facility implemented through the X (Xfer) command.
The form

nX

transfers the next n lines from the current line to a temporary file called

X$$$$$$.LI B

which is active only during the editing process. In general, the user can reposition the
current line reference to any portion of the source file and transfer lines to the temporary
file. The transferred lines accumulate one after another in this file and can be retrieved by
simply typing

R

which is the trivial case of the library read command. In this case, the entire transferred
set of lines is read in to the memory buffer. The user should note that the X command does
not remove the transferred lines from the memory buffer, although a K command can be
used directly after the X, and the R command does not empty the transferred LIB file.
That is, given that a set of lines has been transferred with the X command, they can be
reread any number of times back into the source file. The command

ox

is provided, however, to empty the transferred line file.
The user should note that upon normal completion of the ED program through Q or

E, the temporary LIB file is removed. If ED is aborted through ctl-C, the LIB file will exist
if lines have been transferred, but will generally be empty (a subsequent ED invocation
will erase the temporary file).

2.1.9 Repetitive Command Execution

The macro command M allows the ED user to group ED commands together for
repeated evaluation. The M command takes the form

n M CS <cr>
or

n M CS fz

.42 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

where C5 represents a string of ED commands, not including another M command. ED
executes the command string n times if n>1. If n=O or I, the command string is exe­
cuted repetitively until an error condition is encountered (e.g., the end of the memory
buffer is reached with an F command).

As an example, the following macro changes all occurrences of GAMMA to DELTA
within the current buffer, and types each line that is changed

MFGAMMAfz-5DIDELTAfzOTT<cr>

or equivalently

MSGAMMAfzDELTAfzOTT<cr>

2.2 ED Error Conditions
On error conditions, ED prints the message "BREAK X AT C" where X is one of the

error indicators shown below:

? Unrecognized command.

> Memory buffer full (use one of the commands 0, K, N, 5, or W to
remove characters); F, N, or 5 strings too long.

Cannot apply command the number of times specified (e.g., in F
command).

o Cannot open LIB file in R command.

If there is a disk error, CP/M displays the following message:

BOOS ERR on d: BAD SECTOR

The operator can choose to ignore the error by pressing the return key at the console (in
this case, the memory buffer data should be examined to see if they were incorrectly
read), or the user can reset the system by ctl-C and reclaim the backup file if its exists. The
file can be reclaimed by first typing the contents of the BAK tile to ensure that it contains
the proper information

TYPE x.BAK

where x is the file being edited. Then remove the primary file

ERA x.y

and rename the BAK file

REN x.y=x.BAK

The file can then be reedited, starting with the previous version.
ED also takes file attributes into account. If the operator attempts to edit a read/only

file, the message

** FILE IS READ/ONLY **

ALL IN FORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 43

appears at the console. The file can be loaded and examined, but cannot be altered.
Normally the operator simply ends the edit session and uses STAT to change the file
attribute to R/W. If the edited file has the "system" attribute set, the message

'SYSTEM' FILE NOT ACCESSIBLE

is displayed and the edit session is aborted. Again, the STAT program can be used to
change the system attribute, if desired.

2.3 Control Characters and Commands
The following tabulation summarizes the control characters and commands available

in ED:

Control Character

ctl-C

ctl-E

ctl-H

ctl-J

ctl-L

ctl-R

ctl-U

ctl-X

ctl-Z

rub/del

nA

±B

±nC

±nD

E

nF

H

I

nJ

±nK

±nL

nM

nN

Command

Function

System reboot

Physical <cr><If> (not actually entered in
command)

Backspace

Logical tab (cols 1, 9, 16, ...)

Logical <cr><If> in search and substitute
strings

Repeat line

Line delete

Line delete

String terminator

Character delete

Function

Append lines

Begin or bottom of buffer

Move character positions

Delete characters

End edit and close files (normal end)

Find string

End edit, close and reopen files

I nsert characters, use i if both upper and
lower case characters are to be entered

Place strings in juxtaposition

Kill lines

Move down/up lines

Macro definition

Find next occurrence with autoscan

44 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

o
±nP

Q

R

nS

±nT

±u

±V

OV

nW

nZ

±n

Return to original file

Move and print pages

Quit with no file changes

Read library file

Substitute strings

Type lines

Translate lower to upper case if U, no trans­
lation if-U

Verify line numbers, or show remaining free
character space

A special case of the V command, OV, prints
the memory buffer statistics in the form

free/total

where free is the number of free bytes in the
mem.ory buffer (in decimal) and total is the
size of the memory buffer

Write lines

Wait (sleep) for approximately n seconds

Move and type (±nL T).

Because of common typographical errors, ED requires several potentially disastrous
commands to be typed as single letters, rather than in composite commands. The
commands

E(end), H(head), O(original), Q(quit)

must be typed as single letter commands.
The commands I, J, M, N, R, and 5 should be typed as i, j, m, n, r, and s if both upper and

lower case characters are used in the operation, otherwise all characters are converted to
upper case. When a command is entered in upper case, ED automatically converts the
associated string to upper case, and vice-versa.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 45

3
CP/M Assembler

3.1 Introduction
The CP/M assembler reads assembly language source files from the diskette and

produces 8080 machine language in Intel hex format. The CP/M assembler is initiated by
typing

ASM filename

or

ASM filename.parms

In both cases, the assembler assumes there is a file on the diskette with the name

filename.ASM

which contains an 8080 assembly language source file. The first and second forms shown
above differ only in that the second form allows parameters to be passed to the assembler
to control source file access and hex and print file destinations.

In either case, the CP/M assembler loads and prints the message

CP/M ASSEMBLER VER n.n

where n.n is the current version number. In the case of the first command, the assembler
reads the source file with assumed file type ASM and creates two output files

filename.HEX

and

filename.PRN

The HEX file contains the machine code corresponding to the original program in Intel
hex format, and the PRN file contains an annotated listing showing generated machine

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 47

code, error flags, and source lines. If errors occur during translation, they will be listed in
the PRN file as well as at the console.

The form ASM filename parms can be used to redirect input and output files from
their defaults. In this case, the parms portion of the command is a three-letter grouP.that
specifies the origin of the source file, the destination of the hex file, and the destination of
the print file. The form is

filename.p1 p2p3

where pI, p2, and p3 are single letters

P1: A,B, ... , P designates the disk name that contains the source file

p2: A,B, ... , P designates the disk name that will receive the hex file

Z skips the generation of the hex file

p3: A,B, ... , P designates the disk name that will receive the print file

X places the listing at the console

Z skips generation of the print file

Thus, the command

ASM X.AAA

indica tes that the source file (X.ASM) is to be taken from disk A and tha t the hex (X.HEX)
and print (X.PRN) files are also to be created on disk A. This form of the command is
implied if the assembler is run from disk A. That is, given that the operator is currently
addressing disk A, the above command is equivalent to

ASM X

The command

ASM X.ABX

indicates that the source file is to be taken from disk A, the hex file is to be placed on disk
B, and the listing file is to be sent to the console. The command

ASM X.BZZ

takes the source file from disk B and skips the generation of the hex and print files (this
command is useful for fast execution of the assembler to check program syntax).

The source program format is compatible with the IntelSOSO assembler (macros are
not implemented in ASM; see the optional MAC macro assembler). There are certain
extensions in the CP/M assembler that make it somewhat easier to use. These extensions
ate described below.

3.2 Program Format
An assembly language program acceptable as input to the assembler consists of a

s~quence of statements of the form

line# label operation operand ;comment

48 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

where any or all of the fields may be present in a particular instance. Each assembly
language statement is terminated with a carriage return and line feed (the line feed is
inserted automatically by the ED program), or with the character !, which is treated as an
end-of-line by the assembler (thus, multiple assembly language statements can be writ­
ten on the same physical line if separated by exclamation mark symbols).

The line# is an optional decimal integer value representing the source program line
number, and ASM ignores this field if present.

The label field takes the form

identifier

or

identifier:

and is optional, except where noted in particular statement types. The identifier is a
sequence of alphanumeric characters where the first character is alphabetic. Identifiers
can be freely used by the programmer to label elements such as program steps and
assembler directives, but cannot exceed 16 characters in length. All characters are
significant in an identifier, except for the embedded dollar symbol ($), which can be used
to improve readability of the name. Further, all lower case alphabetics are treated as if
they were upper case. The following are all valid instances of labels

x

x:

X1Y2

xy

yxl:

X1x2

long$name

longer$named$data:

x234$5678$9012$3456:

The operation field contains either an assembler directive or pseudo-operation, or an
8080 machine operation code. The pseudo-operations and machine operation codes are
described below.

The operand field of the statement, in general, contains an expression formed out of
constants and labels, along with arithmetic and logical operations on these elements.
Again, the complete details of properly formed expressions are given below.

The comment field contains arbitrary characters following the; symbol until the next
real or logical end-of-line. These characters are read, listed, and otherwise ignored by the
assembler. The CP/M assembler also treats statements that begin with an * in column one
as comment statements, which are listed and ignored in the assembly process.

The assembly language program is formulated as a sequence of statements of the
above form, terminated by an optional END statement. All statements following the
END are ignored by the assembler.

3.3 Forming the Operand
To describe the operation codes and pseudo-operations completely, it is necessary first

to present the form of the operand field, since it is used in nearly all statements.
Expressions in the operand field consist of simple operands {labels, constants, and
reserved words}, combined in properly formed subexpressions by arithmetic and logical
operators. The expression computation is carried out by the assembler as the assembly
proceeds. Each expression must produce a 16-bit value during the assembly. Further, the
number of significant digits in the result must not exceed the intended use. That is, if an
expression is to be used in a byte move immediate instruction/the most significant 8 bits
of the expression must be zero. The restriction on the expression significance is given
with the individual instructions.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 49

3.3.1 Labels

As discussed above, a label is an identifier that occurs on a particular statement. In
general, the label is given a value determined by the type of statement that it precedes. If
the label occurs on a statement that generates machine code or reserves memory space
(e.g., a MOV instruction or a OS pseudo-operation), the label is given the value of the
program address that it labels. If the label precedes an EQU or SET, the label is given the
value that results from evaluating the operand field. Except for the SET statement, an
identifier can label only one statement.

When a label appears in the operand field, its value is substituted by the assembler.
This value can then be combined with other operands and operators to form the operand
field for a particular instruction.

3.3.2 Numeric Constants

A numeric constant is a 16-bit value in one of several bases. The base, called the radix
of the constant, is denoted by a trailing radix indicator. The radix indicators are

8

o
o
o
H

binary constant (base 2)

octal constant (base 8)

octal constant (base 8)

decimal constant (base 10)

hexadecimal constant (base 16)

Q is an alternate radix indicator for octal numbers since the letter 0 is easily confused
with the digit O. Any numeric constant that does not terminate with a radix indicator is
assumed to be a decimal constant.

A constant is thus composed as a sequence of digits, followed by an optional radix
indicator, where the digits are in the appropriate range for the radix. That is, binary
constants must be composed of 0 and 1 digits, octal constants can contain digits in the
range 0-7, while decimal constants contain decimal digits. Hexadecimal constants contain
decimal digits as well as hexadecimal digits A (100), B (lID), C (120), 0 (130), E (140),
and F (150). The user should note that the leading digit of a hexadecimal constant must be
a decimal digit to avoid confusing a hexadecimal constant with an identifier (a leading 0
will always suffice)' A constant composed in this manner must evaluate to a binary
number that can be contained within a 16-bit counter, otherwise it is truncated on the
right by the assembler. Similar to identifiers, imbedded $ signs are allowed within
constants to improve their readability. Finally, the radix indicator is translated to upper
case if a lower case letter is encountered. The following are all valid instances of numeric
constants

50

1234

1234H

33770

12340

OFFEH

Ofe3h

11008

33770

1234d

3.3.3 Reserved Words

1111$0000$1111$00008

33$77$220

Offffh

There are several reserved character sequences that have predefined meanings in the

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

operand field of a statement. The names of 8080 registers are given below. When they are
encountered, they produce the values shown to the right.

A 7

B 0

C

D 2

E 3

H 4

L 5

M 6

SP 6

PSW 6

(Again, lower case names have the same values as their upper case equivalents.) Machine
instructions can also be used in the operand field and evaluate to their internal codes. In
the case of instructions that require operands, where the specific operand becomes a part
of the binary bit pattern of the instruction (e.g., MaV A,B), the value of the instruction
(in this case MaV) is the bit pattern of the instruction with zeroes in the optional fields
(e.g., Mav produces 40H)

When the symbol $ occurs in the operand field (not imbedded within identifiers and
numeric constants), its value becomes the address of the next instruction to generate, not
including the instruction contained within the current logical line.

3.3A String Constants

String constants represent sequences of ASCII characters and are represented by
enclosing the characters within apostrophe symbols ('). All strings must be fully con­
tained within the current physical line (thus allowing! symbols within strings) and must
not exceed 64 characters in length. The apostrophe character itself can be included within
a string by representing it as a double apostrophe (the two keystrokes "), which becomes a
single apostrophe when read by the assembler. In most cases, the string length is
restricted to either one or two characters (the DB pseudo-operation is an exception), in
which case the string becomes an 8- or 16-bit value, respectively. Two character strings
become a 16-bit constant, with the second character as the low order byte, and the first
character as the high order byte.

The value of a character is its corresponding ASCII code. There is no case translation
within strings, and thus both upper and lower case characters can be represented. The
user should note, however, that only graphic (printing) ASCII characters are allowed
within strings.

Valid strings are

'A' 'AB' 'ab' 'e'
II 'a',1 "" ""
'Walla Vvalla Wash.'
'She said "Hello" to me.'
'I said "Hello" to her:'

which represent

A AB ab e
a'

Walla Walla Wash.
She said "Hello" to me
I said "Hello" to her

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 51

3.3.5 Arithmetic and Logical Operators

The operands described above can he combined in normal algebraic notation using any
combination of properly formed operands, operators, and parenthesized expressions.
The operators recognized in the operand field are

a+b

a-b

+b

-b

a * b

alb

a MOD b

NOT b

a AND b

a OR b

a XOR b

a SHL b

a SHR b

unsigned arithmetic sum of a and b

unsigned arithmetic difference between a and b

unary plus (produces b)

unary minus (identical to 0 - b)

unsigned magnitude multiplication of a and b

unsigned magnitude division of a by b

remainder after a I b

logical inverse of b (all Os become Is, Is become Os), where b is
considered a 16-bit value

bit-by-bit logical and of a and b

bit-by-bit logical or of a and b

bit-by-bit logical exclusive or of a and b

the value that results from shifting a to the left by an amount b,
with zero fill

the value that results from shifting a to the right by an amount b,
with zero fill.

In each case, a and b represent simple operands (labels, numeric constants, reserved
words, and one or two character strings) or fully enclosed parenthesized subexpressions
such as

10+20 10h+37Q LI 13 (L2+4) SHR 3

('a' and 5fh) + '0' ('8'+8) OR (PSW+M)

(1+(2+c)) shr (A-(8+1))

Note that all computations are performed at assembly time as 16-bit unsigned operations.
Thus, -1 is computed as 0-1, which results in the value offffh (Le., allIs). The resulting
expression must fit the operation code in which it is used. For example, if the expression is
used in an ADI (add immediate) instruction, the high order 8 bits of the expression must
be zero. As a result, the operation ADI -1 produces an error message (-1 becomes offffh,
which cannot be represented as an 8-bit value), while ADI (-1) AND OFFH is accepted by
the assembler since the AND operation zeroes the high order bits of the expression.

3.3.6 Precedence of Operators

As a convenience to the programmer, ASM assumes that operators have a relative
precedence of application that allows the programmer to write expressions without
nested levels of parentheses. The resulting expression has assumed parentheses that are
defined by the relative precedence. The order of application of operators in unparenthe­
sized expressions is listed below. Operators listed first have highest precedence (they are
applied first in an unparenthesized expression), while operators listed last have lowest

52 AlL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

precedence. Operators listed on the same line have equal precedence, and are applied
from left to right as they are encountered in an expression

* / MOD SHL SHR

- +

NOT

AND

OR XOR

Thus, the expressions shown to the left below are interpreted by the assembler as the
fully parenthesized expressions shown to the right

a*b+c

a+b*c

a MOD b * c SHL d

a OR b AND NOT c + d SHL e

(a * b) + c

a + (b * c)

((a MOD b) * c) SHL d

a OR (b AND (NOT (c + (d SHL e))))

Balanced parenthesized subexpressions can always be used to override the assumed
parentheses; thus, the last expression above could be rewritten to force application of
operators in a different order as

(a OR b) AND (NOT c) + d SHL e

resulting in the assumed parentheses

(a OR b) AND ((NOT c) + (d SHL e))

An unparenthesized expression is well-formed only if the expression that results from
inserting the assumed parentheses is well-formed.

3A Assembler Directives
Assembler directives are used to set labels to specific values during the assembly,

perform conditional assembly, define storage areas, and specify starting addresses in the
program. Each assembler directive is denoted by a pseudo-operation that appears in the
operation field of the line. The acceptable pseudo-operations are

ORG

END

EQU

SET

IF

ENDIF

DB

set the program or data origin

end program, optional start address

numeric "equate"

numeric" set"

begin conditional assembly

end of conditional assembly

define data bytes

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 53

DW

DS

define data words

define data storage area

The individual directives are detailed below.

3A.. The ORG Directive

The ORC statement takes the form

label ORG expression

where "label" is an optional program identifier and expression is a l6-bit expression,
consisting of operands that are defined before the ORC statement. The assembler begins
machine code generation at the location specified in the expression. There can be any
number of ORC statements within a particular program, and there are no checks to
ensure that the programmer is not defining overlapping memory areas. The user should
note that most programs written for the CP/M system begin with an ORC statement of
the form

ORG 100H

which causes machine code generation to begin at the base of the CP/M transient
program area. If a label is specified in the ORC statement, the label is given the value of
the expression {this label can then be used in the operand field of other statements to
represent this expression}.

3A.2 The END Directive

The END statement is optional in an assembly language program, but if it is present it
must be the last statement {all subsequent statements are ignored in the assembly}. The
two forms of the END directive are

label END

label EN D expression

where the label is again optional. If the first form is used, the assembly process stops, and
the default starting address of the program is taken as 0000. Otherwise, the expression is
evaluated, and becomes the program starting address {this starting address is included in
the last record of the Intel formatted machine code hex file, which results from the
assembly}. Thus, most CP/M assembly language programs end with the statement

END 100H

resulting-in the default starting address of 10aH {beginning of the transient program
area}.

54 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

3A.3 The EQU Directive

The EQU (equate) statement is used to set up synonyms for particular numeric values.
The form is

label EQU expression

where the label must be present and must not label any other statement. The assembler
evaluates the expression; and assigns this value to the identifier given in the label field.
The identifier is usually a name that describes the value in a more human-oriented
m_anner. Further, this name is used throughout the program to "parameterize" certain
functions. Suppose data received from a teletype appear on a particular input port and
data are sent to the teletype through the next output port in sequence. The series of
equate statements could be used to define these ports for a particular hardware
environment

TTYBASE

TTYIN

TTYOUT

EQU 101-:

EQU TTYBASE

EQU TTYBASE+1

;BASE PORT NUMBER FOR TTY

;TTY DATA IN

;TTY DATA OUT

At a later point in the program, the statements that access the teletype could appear as

IN TTYIN ;READ TTY DATA TO REG-A

OUT TTYOUT ;WRITE DATA TO TTY FROM REG-A

making the program more readable than if the absolute I/O ports had been used. Further,
if the hardware environment is redefined to start the teletype communications ports at
7FH instead of lOH, the first statement need only be changed to

TTYBASE EQU 7FH ;BASE PORT NUMBER FOR TTY

and the program can be reassembled without changing any other statements.

3A.4 The SET Directive

The SET statement is similar to the EQU, taking the form

label SET expression

except that the label can occur on other SET statements within the program. The
expression is evaluated and becomes the current value associated with the label. Thus,
the EQU statement defines a label with a single value, while the SET statement defines a
value that is valid from the current SET statement to the point where the label occurs on
the next SET statement. The use of the SET is similar to the EQU statement, but is used
most often in controlling conditional assembly.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH ss

3A.S The IF and ENDIF Directives

The IF and ENDIF statements define a range of assembly language statements that are
to be included or excluded during the assembly process. The form is

I F expression

statement#1

statement#2

. statement#ri

ENDIF

Upon encountering the IF statement, the assembler evaluates the expression following
the IF (all operands in the expression must be defined ahead of the IF statement). If the
expression evaluates to a nonzero value, then statement#l through statement#n are
assembled; if the expression evaluates to zero, the statements are listed but not
assembled. Conditional assembly is often used to write a single "generic" program that
includes a number of possible run-time environments, with only a few specific portions of
the program selected for any particular assembly. The following program segments, for
example, might be part of a program that communicates with either a teletype or a CRT
console (but not both) by selecting a particular value for TTY before the assembly begins.

TRUE
FALSE

TTY

TTYBASE
CRTBASE

CONIN
CONOUT

CONIN
CONOUT

EQU
EQU

EQU

EQU
EQU
IF

EQU
EQU
ENDIF

IF

EQU
EQU

ENDIF

IN

OUT

OFFFFH
NOT TRUE

TRUE

10H
20H
TTY

TTYBASE
TTYBASE+1

NOT TTY

CRTBASE
CRTBASE+1

CONIN

CONOUT

;DEFINE VALUE OF TRUE
;DEFINE VALUE OF FALSE

;TRUE IF TTY, FALSE IF CRT

;BASE OF TTY 1/0 PORTS
;BASE OF CRT 1/0 PORTS
;ASSEMBLE RELATIVE TO
;TTYBASE
;CONSOLE INPUT
;CONSOLE OUTPUT

;ASSEMBLE RELATIVE TO
;CRTBASE
;CONSOLE INPUT
;CONSOLE OUTPUT

;READ CONSOLE DATA

;WRITE CONSOLE DATA

In this case, the program would assemble for an environment where a teletype is
connected, based at port loH. The statement defining TTY could be changed to

TTY EQU FALSE

and, in this case, the program would assemble for a CRT based at port 20H.

S6 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

3A.6 The DB Directive

The DB directive allows the programmer to define initialized storage areas in single
precision (byte) format. The statement form is

label DB e#1, e#2, ... , e#n

where e#l through e#n are either expressions that evaluate to 8-bit values (the high
order bit must be zero) or are ASCII strings of length no greater than 64 characters.
There is no practical restriction on the number of expressions included on a single
source line. The expressions are evaluated and placed sequentially into the machine code
file following the last program address generated by the assembler. String characters are
similarly placed into memory starting with the first character and ending with the last
character. Strings of length greater than two characters cannot be used as operands in
more complicated expressions. The user should note that ASCII characters are always
placed in memory with the parity bit reset (o). Also, there is no translation from lower to
upper case within strings. The optional label can be used to reference the data area
throughout the remainder of. the pr"ogram. Examples of valid DB statements are

data:

sign-on:

DB
DB

DB
DB

0,1;2,3,4,5
data and Offh,5,377Q,1 +2+3+4

'please type your name',cr,lf,O
'AB' SHR 8, 'C', 'DE' AND 7FH

3A.7 The DW Directive

The OW statement is similar to the DB statement except double precision (two byte)
words of storage are initialized. The form is

label DW e#1, e#2, ... , e#n

where e#l through e#n are expressions that evaluate to 16-bit results. The user should
note that ASCII strings of one or two characters are allowed, but strings longer than two
characters are disallowed. In all cases, the data storage is consistent with the 8080
processor: the least significant byte of the expression is stored first in memory, followed
by the most significant byte. Examples are

doub: DW
DW

Offefh,doub+4,signon-$,255+255
'a', 5, 'ab','CD', 6 shl 8 or lib.

3A.8 The DS Directive

The OS statement is used to reserye an area of uninitialized memory, and takes the
form

label DS expression

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 57

where the label is optional. The assembler begins subsequent code generation after the
area reserved by the OS. Thus, the OS statement given above has exactly the same effect
as the statement

label: EQU $;LABEL VALUE IS CURRENT CODE LOCATION
ORG $+expression ;MOVE PAST RESERVED AREA

3.5 Operation Codes
Assembly language operation codes form the principal part of assembly language

programs and form the opera tion field of the instruction. In general, ASM accepts all the
standard mnemonics for the Intel 8080 microcomputer, which are given in detail in Intel's
"8080 Assembly Language Programming Manual." Labels are optional on each input line.
The individual operators are listed briefly in the following sections for completeness,
although it is understood that the Intel manuals should be referenced for exact operator
details. In the following tables,

e3

e8

e16

represents a 3-bit value in the range 0-7 which can be one of the
predefined registers A, B, C, 0, E, H, L, M, SP, or PSW.

represents an 8-bit value in the range 0-255.

represents a 16-bit value in the range 0-65535.

These expressions can be formed from an arbitrary combination of operands and opera­
tors. In some cases, the operands are restricted to particular values within the allowable
range, such as the PUSH instruction. These cases will be noted as they are encountered.

In the sections that follow, each operation code is listed in its most general form, along
with a specific example, with a short explanation and special restrictions.

3.5.. Jumps, Calls, and Returns

The Jump, Call, and Return instructions allow several different forms that test the
condition flags set in the 8080 microcomputer CPU. The forms are

JMP e16 JMP L1 Jump unconditionally to label

JNZ e16 JNZ L2 Jump on nonzero condition to label

JZ e16 JZ 100H Jump on zero condition to label

JNC e16 JNC L 1 +4 Jump no carry to label

JC e16 JC L3 Jump on carry to label

JPO e16 JPO $+8 Jump on parity odd to label

JPE e16 JPE L4 Jump on even parity to label

JP e16 JP GAMMA Jump on positive result to label

JM e16 JM al Jump on minus to label.

CALL e16 CALL S1 Call subroutine unconditionally

CNZ e16 CNZ S2 Call subroutine on nonzero
condition

58 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CZ e16 CZ 100H Call subroutine on zero condition

CNC e16 CNC S1+4 Call subroutine if no carry set

CC e16 CC S3 Call subroutine if carry set

CPO e16 CPO $+8 Call subroutine if parity odd

CPE e16 CPE S4 Call subroutine if parity even

CP e16 CP GAMMA Call subroutine if positive result

CM e16 CM b1$c2 Call subroutine if minus flag.

RST e3 RST 0 Programmed restart, equivalen t to
CALL 8*e3, except one byte call.

RET Return from subroutine

RNZ Return if nonzero flag set

RZ Return if zero flag set

RNC Return if no carry

RC Return if carry flag set

RPO Return if parity is odd

RPE Return if parity is even

RP Return if positive result

RM Return if minus flag is set.

3.5.2 ·Immediate Operand Instructions

Several instructions are available that load single or double precision registers or
single precision memory cells with constant values, along with instructions that perform
immediate arithmetic or logical operations on the accumulator (register A).

MVI e3,e8

ADI e8

ACI e8

SUI e8

S81 e8

ANI e8

XRI e8

ORI e8

MV18,255

ADI1

ACIOFFH

Move immediate data to register
A, B, C, 0, E, H, L, or M (memory)

Add immediate operand to A with-
out carry

Add immediate operand to A with
carry

SU I L + 3 Subtract from A without borrow
(carry)

S81 LAND 118 Subtract from A with borrow
(carry)

ANI $ AND 7FH Logical "and" A with immediate
data

XR11111$OOOO8 "Exclusive or" A with immediate
data

ORI LAND 1 +1 Logical"or" A with immediate data

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH S9

CPI e8 CPI'a'

LXI e3,e16 LXI B,100H

Compare A with immediate data
(same as SUI except regist'er A not
changed).

Load extended immediate to regis­
ter pair (e3 must be equivalent to
B,D,H, or SP).

3.5.3 Increment and Decrement Instructions

The 8080 provides instructions for incrementing or decrementing single and double
precision registers. The instructions are

INR e3

OCR e3

INX e3

OCX e3'

INR E

OCR A

INX SP

OCX B

,Single precision increment register
(e3 produces one of A, B, C, 0, E,
H, L, M)

Single precision decrement regis­
ter (e3 produces one of A, B, C, 0,
E, H, L, M)

Double precision increment regis­
ter pair (e3 must be equivalent to
B,D,H, or SP)

Double precision decrement regis­
ter pair (e3 must be equivalent to
B,D,H, or SP).

3.5A Data Movement Instructions

Instructions that move data from memory to the CPU and from CPU to memory are
given below.

MOVe3,e3

LOAX e3

STAX e3

LHLO e16

SHLO e16

LOA e16

MOV A,B Move data to leftmost element
from rightmost element (e3 produ­
ces one of A,B,C,D,E,H,L, or M).­
MOV M,M is disallowed

LOAX B Load register A from computed
address (e3 must produce either B
or D)

ST AX 0 Store register A to computed
address (e3 must produce either B
or D)

LHLO L 1 Load HL direct from location e16
(double precision load to Hand L)

SHLO LS+x Store HL direct to location e16
(double precision store from Hand
L to memory)

LOA Gamma Load register A from address e16

60 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

STA e16 STA X3-5 Store register A into memory at
e16

POP e3 POP PSW Load register pair from stack, set
SP (e3 must produce one of B, 0,
H, or PSW)

PUSH e3 PUSH B Store register pair into stack, set
SP (e3 must produce one of B, 0,
H, or PSW)

IN e8 IN 0 Load register A with data from
port e8

OUTe8 OUT 255 Send data from register A to port
e8

XTHL Exchange data from top of stack
with HL

PCHL Fill program counter with data
from HL

SPHL Fill stack pointer with data from
HL

XCHG Exchange DE pair with HL pair

3.5.5 Arithmetic Logic Unit Operations

Instructions that act upon the single precision accumulator to perform arithmetic and
logic operations are

ADD e3

ADC e3

SUB e3

SBB e3

ANA e3

XRA e3

ORA e3

CMP e3

DAA

CMA

ADD B

ADC L

SUB H

SBB 2

ANA 1+1

XRAA

ORA B

CMP H

Add register given by e3 to accum­
ulator without carry (e3 must pro­
duce one of A, B, C, 0, E, H, or L)

Add register to A with carry, e3 as
above

Subtract reg e3 from A without
carry, e3 is defined as above

Subtract register e3 from A with
carry, e3 defined as above

Logical "and" reg with A, e3 as
above

"Exclusive or" with A, e3 as above

Logical" orl/ with A, e3 defined as
above

Compare register with A, e3 as
above

Decimal adjust register A based
upon last arithmetic logic unit
operation

Complement the bits in register A

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 61

STC

CMC

RLC

RRC

RAL..

RAR

DAD e3 DAD B

3.5.6 Control Instructions

Set the carry flag to 1

Complemen t the carry flag

Rotate bits left, (re)set carry as a
side effect (high order A bit
becomes carry)

Rotate bits right, (re)set carry as
side effect (low order A bit
becomes carry)

Rota te carry! A register to left
(carry is involved in the rotate)

Rotate carry!A register to right
(carry is involved in the rotate)

Double precision add register pair
e3 to HL (e3 must produce B, 0, H,
or SP).

The four remaining instructions categorized as control instructions are

HLT

DI

EI

NOP

Halt the 8080 processor

Disable the interrupt system

Enable the interrupt system

No operation.

3.6 Error Messages
When errors occur within the assembly language program, they are listed as single

character flags in the leftmost position of the source listing. The line in error is also
echoed at the console so that the source listing need not be examined to determine if
errors are present. The error codes are

D

E

L

N

o

P

62

Data error: element in data statement cannot be placed in the
specified data area.

Expression error: expression is ill-formed and cannot be computed
at assembly time.

Label error: label cannot appear in this context (may be duplicate
label).

Not implemented: features that will appear in future ASM versions
(e.g., macros) are recognized, but flagged in this version.

Overflow: expression is too complicated (Le., too many pending
operators) to be computed and should be simplified.

Phase error: label does not have the same value on two subsequent
passes through the program.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

R Register error: the value specified as a register is not compatible
with the operation code.

S

V

Syntax error: statement is not properly formed.

Value error: operand encountered in expression is improperly
formed.

Several error messages are printed that are due to terminal error conditions:

NO SOURCE FILE PRESENT

NO DIRECTORY SPACE

SOURCE FILE NAME ERROR

SOURCE FILE READ ERROR

OUTPUT FILE WRITE ERROR

CANNOT CLOSE FILE

3.1 A Sample Session

The file specified in the ASM com­
mand does not exist on disk.

The disk directory is full; erase files
tha t are not needed and retry.

Improperly formed ASM file name
(e.g., it is specified with? fields).

Source file cannot be read properly
by the assembler; execute a TYPE
to determine the poin t· of error.

Ou tpu t files cannot be wri tten
properly; most likely cause is a full
disk; erase and retry.

Output file cannot be closed; check
to see if disk is write protected.

The following se·ssion shows interaction with the assembler and debugger in the
development of a simple assembly language program. Thel arrow represents a carriage
return keystroke.
A>ASM SORT 1 Assemble SORT.ASM

CP/M ASSEMBLER - VER 1.0

015C Next free addre~s
003H USE FACTOR Percent of table used 00 to ff (hexadecimal)
END OF ASSEMBLY

A>DIR SORT. f

SORT ASM Source file
SORT BAK Backup from last edit
SORT PRN Print file (contains tab characters)
SORT HEX Machine code file
A>TYPE SORT.PRN1

I
SourceA~li_n_e ____ . ____ _

" SORT PROGRAM IN CP/M ASSEMBLY LANGUAGE

Machine code location
0100~

START AT THE BEGINNING OF THE TRANSIENT
PROGRAM AREA

ORG 100H

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 63

Generated machine code
0100 214601/s0RT: LXI H,SW. ;ADDRESS SWITCH TOGGLE
01033601 MVI M,1 ;SET TO 1 FOR FIRST ITERATION
0105 214701 LXI H,I ;ADDRESS INDEX
0108 3600 MVI M,O ;1 = 0

, COMPARE I WITH ARRAY SIZE
010A 7E
010B FE09
010D D21901

COMPL: MOV A,M ;A REGISTER = I

0110214601
0113 7EB7C20001

0118 FF

Truncated

0119 '"
5F16002148 CONT:

0121 4E792346

0125 23

,
0126 965778239E

012B DA3F01

,
012E B2CA3F01
0132 56702B5E
0136712B722B73

013B 21460134

CPI N-1 ;CY SET IF I < (N-1)
JNC CONT ;CONTINUE IF 1<= (N-2)

END OF ONE PASS THROUGH DATA
LXI H,SW ;CHECK FOR ZERO SWITCHES
MOV A, M! ORA A! JNZ SORT ;END OF SORT IF SW=O

RST 7 ;GO TO THE DEBUGGER INSTEAD OFREB

CONTINUE THIS PASS
ADDRESSING I, SO LOAD AV(I) INTO REGISTERS

MOV E, A! MVI D, O! LXI H, AV! DAD D! DAD D
MOV C, M! MOV A, C! INX H! MOV B, M
LOW ORDER BYTE IN A AND C, HIGH ORDER BYTE IN B

MOV HAND L TO ADDRESS AV(I+1)
INX H

COMPARE VALUE WITH REGS CONTAINING AV (I)
SUB M! MOV D, A! MOV A, B! INX H! SBB M ;SUBTRACT

BORROW SET IF AV(I+1) > AV(I)
JC INCI ;SKIP IF IN PROPER ORDER

CHECK FOR EQUAL VALUES
ORA D! JZ INCI ;SKIP IF AV(I) = AV(I+1)
MOV D, M! MOV M, B! DCX H! MOV E, M
MOV M, C! DCX H! MOV M, D! DCX H! MOV M, E

INCREMENT SWITCH COUNT
LXI H,8W! INR M

; INCREMENT I
013F 21470134C31NCI: LXI H,I! INR M! JMP COMP

, DATA DEFINITION SECTION
014600 SW: DB 0 ;RESERVE SPACE FOR SWITCH COUNT
0147 I: DS 1 ;SPACE FOR INDEX
0148 050064001 EAV: DW 5, 100,30,50,20,7, 1000,300, 100, -32767
OOOA = ~ EQU ($-AV)/2 ;COMPUTE N INSTEAD OF PRE

015C C'r"'\["), ~ END
A>TYPE SORT.HEX Equate value

:100110002146017EB7C20001 FF5F16002148011988 Machme code m
:10010000214601360121470136007EFE09D2190140 J' . .
:1 0012000194E79234623965778239EDA3F01 B2CAA7 HEX format

64 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

:1 00130003F015670285E71287228732146013421 C7
:07014000470134C30A01006E
:10014800050064001E00320014000700E8032C01B8
:04015800640001808E
:0000000000

}

Machine code in
HEX format

A>OOT 80RT.HEX, Start debug run

16K OOT VER 1.0
NEXT PC
015C 0000 Default address (no address on END statement)
-XP,

P=OOOO 1001 Change PC to 100

-UFFFF, Untrace for 65535 steps

COZOMOEOIO A=OO 8=0000 0=0000 H=OOOO 8=0100

-T1OI Trace 1016 steps

COZOMOEOIO A=01 8=0000 0=0000 H=0146 8=0100
COZOMOEOIO A=01 8=0000 0=0000 H=0146 8=0100
COZOMOEOIO A=01 8=0000 0=0000 H=0146 8=0100
COZOMOEOIO A=01 8=0000 0=0000 H=0147 8=0100
COZOMOEOIO A=01 8=0000 0=0000 H=0147 8=0100
COZOMOEOIO A=OO 8=0000 0=0000 H=0147 8=0100
C1 ZOM1 EOIO A=OO 8=0000 0=0000 H=0147 8=0100
C1Z0M1 EOIO A=OO 8=0000 0=0000 H=0147 8=0100
C1Z0M1 EOIO A=OO 8=0000 0=0000 H=0146 8=0100
C1Z0M1 EOIO A=01 8=0000 0=0000 H=0146 8=0100
COZOMOEOIO A=01 8=0000 0=0000 H=0146 8=0100
COZOMOEOIO A=01 8=0000 0=0000 H=0146 8=0100
COZOMOEOIO A=01 8=0000 0=0000 H=0146 8=0100
COZOMOEOIO A=01 B=OOOO 0=0000 H=0146 8=0100
COZOMOEOIO A=01 8=0000 0=0000 H=0147 8=0100
COZOMOEOIO A=01 8=0000 0=0000 H=0147 8=0100
-A100

0100 JC 119~
0110,

Change to a jump on carry

-XP,

Abort with rubout,
P=0100 LXI H,0146*0100

P=0100 LXI H,0146
P=0103 MVI M,01
P=0105 LXI H,0147
P=0108 MVI M, 00
P=010A MOV A, M
P=0108 CPI 09
P=0100 JNC 0119
P=0110 LXI H,0146
P=0113 MOV A, M
P=0114 ORA A
P=0115 JNZ 0100
P=0100 LXI H,0146
P=0103 MVI M,01
P=0105 LXI H, 0147
P=0108 MVI M,OO
P=010A MOV A, M*0108

Stopped at 10BH/

P=0108 1001 Reset program counter back to beginning of program

-T10, Trace execution for 10H steps
Altered instruction

COZOMOEOIO A=OO 8=0000 0=0000 H=0147 8=0100 P=0100 LXI H,0146
COZOMOEOIO A=OO 8=0000 0=0000 H=0146 8=0100 P=0103 MVI M,01
COZOMOEOIO A=OO 8=0000 0=0000 H=0146 8=0100 P=0105 LXI H,0147
COZOMOEOIO A=OO 8=0000 0=0000 H=0147 8=0100 P=0108 MVI M,OO
COZOMOEOIO A=OO 8=0000 0=0000 H=0147 8=0100 P=010A MOV A,M
COZOMOEOIO A=OO 8=0000 0=0000 H=0147 8=0100 P=0108 CPI 09
C1Z0M1EOI0 A=OO 8=0000 0=0000 H=0147 8=0100 P=0100 JC 0119------'
C1Z0M1 EOIO A=OO 8=0000 0=0000 H=0147 8=0100 P=0119 MOV E,A
C1Z0M1 EOIO A=OO 8=0000 0=0000 H=0147 8=0100 P=011A MVI 0,00

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 65

C1Z0M1 EOIO A=OO
C1Z0M1EOI0 A=OO
COZOM1 EOIO A=OO
COZOM1 EOIO A=OO
COZOM1 EOIO A=OO
COZOM1 EOIO A=05
COZOM1 EOIO A=05
-L100!

8=0000
8=0000
8=0000
8=0000
8=0005
8=0005
8=0005

D=OOOO
D=OOOO
D=OOOO
D=OOOO
D=OOOO
D=OOOO
D=OOOO

H=0147
H=0148
H=0148
H=0148
H=0148
H=0148
H=0149

0100
0103
0105
0108
010A
0108
010D
0110
0113
0114
0115
-Lf

LXI H,0146
MVI M,01
LXI H,0147
MVI M,OO
MOV A,M
CPI 09
JC-0119
LXI H,0146
MOV A,M
ORA A
JNZ 0100

List some code
from looH

0118 R8T 07 }
0119 MOV E,A List more
011A MVI D,OO
011 C LXI H,0148

-Abort list with rubout

8=0100 P=011C LXI H,0148
8=0100 P=011 F DAD D
8=0100 P=0120 DAD D
8=0100 P=0121 MOV C,M
8=0100 P=0122 MOV A,C
8=0100 P=1023 INX H
8=0100 P=0124 MOV 8,Ml0125

Automatic breakpoint /

-G,118f Start program from current PC (0125H) and run in real time to llBH

*0127 Stopped with an external interrupt 7 from front panel (program was
-T4; .. looping indefinitely)

Look at loopmg program m trace model

COZOMOEOIO A=38 8=0064 D=0006 H=0156 8=0100 P=0127 MOV D,A
COZOMOEOIO A=38 8=0064 D=3806 H=0156 8=0100 P=0128 MQV A,8
COZOMOEOIO A=OO 8=0064 D=3806 H=0156 8=0100 P=0129 INX H
COZOMOEOIO A=OO 8=0064 D=3806 H=0157 8=0100 P=012A 888 M*0128
-D148

,.Data are sorted, but program does not stop.
0148 05 00 07 00 14 00 1E 00
0150 32 00 64 00 64 00 2C 01 E8 03 01 8000 00 00 00 2.D.D.,

0160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ~

-GO f Return to CP/M

A> DDT 80RT. HEXf Reload the memory image

16K DDT VER. 1.0
NEXT PC
015C 0000
-XP

P=OOOO 100 f Set PC to beginning of program

66 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH .

-L 100, List bad OPCODE

0100 JNC 0119/
0110 LXI H,0146

-Abort list with rubout
-A 100; Assemble new OPCODE

0100 JC 119;

0110;

-L100; List starting section of program

0100 LXI H,0146
0103 MVI M,01
0105 LXI H,0147
0108 MVI M,OO

-Abort list with rubout
-A 103; Change switch initialization to 00

0103 MVIM,O,

0105,

-'" C Return to CP/M with ctl-C (Go works as well)

SAVE 1 SORT.COM,

A>OOT SORT.COM,

Save 1 page (256 bytes, from 100H to Iff H) on disk in case
there is need to reload later

16K DDT VER 1.0
NEXT PC

Restart DDT with saved memory image

0200 0100 COM file always starts with address 100H
-Gf Run the program from PC=looH

*0118
-0148

Programmed stop (RST 7) encountered

/Data properly sorted
0148 05 00 07 00 14 00 1E 00
0150 32 00 64 00 64 00 2C 01 E8 03 01 80 00 00 00 00 2.0.0

0160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

'"

-GO f Return to CP/M

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 67

A>ED SORT.ASM~ Make changes to original program

*N,O AZOTT;
MVI

Find nex t ",0"
M,O ;1 = 0

*-1 Up one line in text
LXI H, I ;ADDRESS INDEX

*-f Up another line
MVI M,1 ;SET TO 1 FOR FIRST ITERATION

*KT; Kill line and type next line
LXI H, I ;ADDRESS INDEX

*I~ Insert new line
MVI M,O ;ZERO SW

LXI H, I ;ADDRESS INDEX

*NJNC AZOT~
JNC*T~
CONT ;CONTINUE IF I <= (N-2)

*-2DIC AZOL T~
JC CONT ;CONTINUE IF I <= (N-2)

* E, r- Source from disk A
+ r- HEX to disk A

A>ASM SORT.AAZr Skip PRN file

CP/M ASSEMBLER - VER 1.0

015C Next address to assemble
003H USE FACTOR
END OF ASSEMBLY

A>DDT SORT.HEX;

16K DDT VER 1.0
NEXT PC
015C 0000
-G100,

*0118
-D148,

Test program changes

./ Da ta sorted
0148 05 00 07 00 14 00 1E 00
0150 32 00 64 00 64 00 2C 01 E8 03 01 80 00 00 00 00 2.D.D
0160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

-Abort with rubout

-GO, Return to CP/M-program checks OK.

68 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

4
CP/M Dynamic

Debugging Tool

4.1 Introduction
The DDT program allows dynamic interactive testing and debugging of programs

generated in the CP/M environment. Invoke the debugger with a command of one of the
following forms:

DDT

DDT filename.HEX

DDT filename.COM

where "filename" is the name of the program to be loaded and tested. In both cases, the
DDT program is brought into main memory in place of the Console Command Processor
(the user should refer to Chapter 5 for standard memory organization), and resides
directly below the Basic Disk Operating System portion of CP/M. The BOOS starting
address, located in the address field of the]MP instruction at location SH, is altered to
reflect the reduced Transient Program Area size.

The second and third forms of the DDT command perform the same actions as the
first, except there is a subsequent automatic load of the specified HEX or COM file. The
action is identical to the sequence of commands

DDT

Ifilename.HEX or lfilename.COM

R

where the I and R commands set up and read the specified program to test. (The user
should see the explanation of the rand R commands below for exact details.)

Upon initiation, DDT prints a sign-on message in the format

. DDT VER m.m

where m.m is the revision number.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 69

Following the sign-on message, DDT prompts the operator with the character "_" and
waits for input commands from the console. The operator can type any of several single
character commands, terminated by a carriage return to execute the command. Each line
of input can be line-edited using the standard CP/M controls

rubout

ctl-U

ctl-C

remove the last character typed

remove the entire line, ready for retyping

system reboot.

Any command can be up to 32 characters in length (an automatic carriage return is
inserted as the 33rd character), where the first character determines the command type

A

o
F

G

L

M

R

S

T

U

X

enter assembly language mnemonics with operands

display memory in hexadecimal and ASCII

fill memory with constant data

begin execution with optional breakpoints

set up a standard input file control block

list memory using assembler mnemonics

move a memory segment from source to destination

read program for subsequent testing-

substitute memory values

trace program execution

un traced program monitoring

examine and optionally alter the CPU ~tate.

The command character, in some cases, is followed by zero, one, two, or three hexade­
cimal values, which are separated by commas or single blank characters. All DDT numeric
output is in hexadecimal form. The commands are not executed until the carriage return
is typed at the end of the command.

At any point in the debug run, the operator can stop execution of DDT by using either
a ctl-C or Go (jmp to location OOOOH), and save the current memory image by using a
SAVE command of the form

SAVE n filename.COM

where n is the number of pages (256 byte blocks) to be saved on disk. The number of blocks
is determined by taking the high order byte of the address in the TP A and converting this
number to decimal. For example, if the highest address in the Transient Program
Area is 1234H, the number of pages is 12H or 18 in decimal. The operator could type a
ctl-C during the debug run, returning to the Console Command Processor level, followed
by

SAVE 18 X.COM

70 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

The memory image is saved as X.COM on the diskette and can be directly executed by
typing the name X. If further testing is required, the memory image can be recalled by
typing

DDTX.COM

which reloads the previously saved program from location 100H through page 18
(23FFH). The CPU state is not a part of the COM file; thus, the program must be
restarted from the beginning to test it properly.

4.2 DDT Commands
The individual commands are detailed below. In each case, the operator must wait for

the prompt character (-) before entering the command. If control is passed to a program
under test and the program has not reached a breakpoint, control can be returned to DDT
by executing a R5T 7 from the front panel. In the explanation of each command, the
command letter is shown in some cases with numbers separated by commas, and the
numbers are represented by lower case letters. These numbers are always assumed to be

. in a hexadecimal radix and from one to four digits in length (longer numbers will be
automatically truncated on the right).

Many of the commands operate upon a "CPU state" that corresponds to the program
under test. The CPU state holds the registers of the program being debugged and initially
contains zeroes for all registers and flags except for the program counter (P) and stack
pointer (5), which default to 100H. The program counter is subsequently set to the
starting address given in the last record of a HEX file if a file of this form is loaded (see the
I and R commands).

4.2.1 The A (Assembly) Command

DDT allows in-line assembly language to be inserted into the current memory image
using the A command, tha t takes the form

As

where s is the hexadecimal starting address for the inline assembly. DDT prompts the
console with the address of the next instruction to fill and reads the console, looking for
assembly language mnemonics (see the Intel 8080 Assembly Language Reference Card
for a list of mnemonics), followed by register references and operands in absolute
hexadecimal form. Each successive load address is printed before reading the console. The
A command terminates when the first empty line is input from the console.

Upon completion of assembly language input, the operator can review the memory
segment using the DDT disassembler (see the L command).

The user should note that the assembler/disassembler portion of DDT can be overlaid
by the transient program being tested, in which case the DDT program responds with an
error condition when the A and L commands are used.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 71

4.2.2 The D (Display) Command

The 0 command allows the operator to view the contents of memory in hexadecimal
and ASCII formats. The forms are

D

Ds

DS,f

In the first case, memory is displayed from the current display address (initially 100H) and
continues for 16 display lines. Each display line takes the form shown below

aaaa bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb cccccccccccccccc

where aaaa is the display address in hexadecimal and bb represents data present in
memory starting at aaaa. The ASCII characters starting at aaaa are to the right (repres­
ented by the sequence of c's), where nongraphic characters are printed as a period (.). The
user should note that both upper and lower case alphabetics are displayed, and will
appear as upper case symbols on a console device that supports only upper case. Each
display line gives the values of 16 bytes of data, with the first line truncated so that the
next line begins at an address that is a multiple of 16.

The second form of the 0 command is similar to the first, except that the display
address is first set to address s. The third form causes the display to continue from
address s through address f. In all cases, the display address is set to the first address not
displayed in this command, so that a continuing display can be accomplished by issuing
successive 0 commands with no explicit addresses.

Excessively long displays can be aborted by pushing the return key.

4.2.3 The F (Fill) Command

The F command takes the form

FS,f,c

where s is the starting address, f is the final address, and c is a hexadecimal byte constant.
DDT stores the constant c at address s, increments the value of s and tests against f. If s
exceeds f, the operation terminates, otherwise the operation is repeated. Thus, the fill
command can be used to set a memory block to a specific constant value.

4.2A The G (Go) Command

A program is executed using the G command, with up to two optional breakpoint
addresses. The G command takes the forms

72

G

Gs

GS,b

GS,b,c

G,b

G,b,c

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

The first form executes the program at the current value of the program counter in the
current machine state, with no breakpoints set (the only way to regain control in DDT is
through a RST 7 execution). The current program counter can be viewed by typing an X
or XP command. The second form is similar to the first except that the program counter
in the current machine state is set to address s before execution begins. The third form is
the same as the second, except that program execution stops when address b is encoun­
tered (b must be in the area of the program under test). The instruction at location b is not
executed when the breakpoint is encountered. The fourth form is identical to the third,
except that two breakpoints are specified, one at b and the other at c. Encountering either
breakpoint causes execution to stop, and both breakpoints are cleared. The last two forms
take the program counter from the current machine state and set one and two break­
points, respectively.

Execution continues from the starting address in real-time to the next breakpoint.
There is no intervention between the starting address and the break address by DDT. If
the program under test does not reach a breakpoint, control cannot return to DDT
without executing a RST 7 instruction. Upon encountering a breakpoint, DDT stops
execu tion and types

*d

where d is the stop address. The machine state can be examined at this point using the X
(Examine) command. The operator must specify breakpoints that differ from the pro­
gram counter address at the beginning of the G command. Thus, if the current program
counter is 1234H, then the commands

G,1234

and

G400,400

both produce an immediate breakpoint without executing any instructions.

4.2.5 The I (Input) Command

The I command allows the operator to insert a file name into the default file control
block at sCH (the file control block created by CP/M for transient programs is placed at
this location; see Chapter s). The default FCB can be used by the program under test as if
it had been passed by the CP/M Console Processor. The user should note that this file
name is also used by DDT for reading additional HEX and COM files. The form of the I
command is

Ifilename

or

lfilename.typ

If the second form is used and the filetype is either HEX or COM, subsequent R
commands can be used to read the pure binary or hex format machine code. (Section 4.2.8
gives further details.)

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESfARCH 73

4.2.6 The L (List) Command

The L command is used to list assembly language mnemonics in a particular program
region. The' forms are

L

Ls

LS,f

The first form lists twelve lines of disassembled machine code from the current list
address. The second form sets the list address to s and then lists twelve lines of code. The
last form lists disassembled code from s through address f. In all three cases, the list
address is set to the next unlisted location in preparation for a subsequent L command.
Upon encountering an execution breakpoint, the list address i~ set to the current value of
the program counter (G and T commands). Again, long typeouts can be aborted using the
return key during the list process.

4.2.7 The M (Move) Command

The M command allows block movement of program or data areas from one location
to another in memory. The form is

MS,f,d

where s is the start address of the move, f is the final address, and d is the destination
address. Data are first removed from s to d, and both addresses are incremented. If s
exceeds f, the move operation stops; otherwise, the move operation is repeated.

4.2.8 The R (Read) Command

The R command is used in conjunction with the I command to read COM and HEX
files from the diskette into the transient program area in preparation for-the debug run.
The forms are

R

Rb

where b is an optional bias address that is added to each program or data address as it is
loaded. The load operation must not overwrite any of the system parameters from oooH
through oFFH (Le., the first page of memory). If b is omitted, then b=oOOO is assumed.
The R command requires a previous I command, specifying the name of a HEX or COM
file. The load address for each record is obtained from each individual HEX record, while
an assumed load address of looH is used for COM files. The user should note that any
number of R commands can be issued following the I command to reread-the program
under test, assuming the tested program does not destroy the default area at sCH. Any
file specified with the file type "COM" is assumed to contain machine code-in pure binary
form (created with the LOAD or SAVE command), and all others are assumed to contain
machine code in Intel hex format (produced, for example, with the ASM command.)

74 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Recall that the command

DDT filename.filetype

which initiates the DDT program, is equivalent to the commands

DDT

-Ifilename.filetype

-R

Whenever the R command is issued, DDT responds with either the error indicator "?"
(file cannot be opened, or a checksum error occurred in a HEX file), or with a load message
taking the form

NEXT PC

nnnn pppp

where nnnn is the next address following the loaded program and pppp is the assumed
program counter (IOOH for COM files, or taken from the last record if a HEX file is
specified).

4.2.9 The S (Set) Command

The 5 command allows memory locations to be examined and optionally altered. The
form of the command is

Ss

where s is the hexadecimal starting address for examination and alteration of memory.
DDT responds with a numeric prompt, giving the memory location, along with the data
currently held in memory. If the operator types a carriage return, the data are not altered.
If a byte value is typed, the value is stored at the prompted address. In either case, DDT
continues to prompt with successive addresses and values until either a period (.) is typed
by the operator or an invalid input value is detected.

4.2.10 The T (Trace) Command

The T command allows selective tracing of program execution for 1 to 65535 program
steps. The forms are

T

Tn

In the first case, the CPU state is displayed and the next program step is executed. The
program terminates immediately, with the termination address displayed as

*hhhh

where hhhh is the next address to execute. The display address (used in the 0 command)
is set to the value of Hand L, and the list address (used in the L command) is set to hhhh.
The CPU state at program termination can then be examined using the X command.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 75

The second form of the T command is similar to the first, except that execution is
traced for n steps (n is a hexadecimal value) before a program breakpoint occurs. A
breakpoint can be forced in the trace mode by typing a rubout character. The CPU state is
displayed before each program step is taken in trace mode. The format of the display is the
same as described in the X command.

The user should note that program tracing is discontinued at the CP/M interface and
resumes after return from CP/M to the program under test. Thus, CP/M functions that
access I/O devices, such as the diskette drive, run in real-time, avoiding I/O timing
problems. Programs running in trace mode execute approximately 500 times slower than
real-time since DDT gets control after each user instruction is executed. Interrupt
processing routines can be traced, but commands that use the breakpoint facility (G, T,
and U) accomplish the break using an RST 7 instruction, which means that the tested
program cannot use this interrupt location. Further, the trace mode always runs the
tested program with interrupts enabled, which may cause problems if asynchronous
interrupts are received during tracing.

The operator should use the. return key to get control back to DDT during trace,
rather than executing an RST 7, to ensure that the trace for current instruction is
completed before interruption.

4.2.11 The U(Untrace) Command

The U command is identical to the Tcommand except that intermediate program steps
are not displayed. The untrace mode allows from 1 to 65535 (oFFFFH) steps to be
executed in monitored mode and is used principally to retain control of an executing
program while it reaches steady state conditions. All conditions of the T command apply
to the U command.

4.2.12 The X (Examine) Command

The X command allows selective display and alteration of the current CPU state for
the program under test. The forms are

X

Xr

where r is one of the 8080 CPU registers

C

Z

M

E

A

B

D

H

S

P

Carry flag

Zero flag

Minus flag

Even parity flag

Interdigit carry

Accumulator

BC register pair

DE register pair

HL register pair

Stack pointer

Program counter

(0/1)

(0/1)

(0/1)

(0/1)

(0/1)

(O-FF)

(O-FFFF)

(O-FFFF)

(O-FFFF)

(O-FFFF)

(O-FFFF)

76 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

In the first case, the CPU register state is displayed in the format

CfZfMfEflf A=bb B=dddd D=dddd H=dddd S=dddd P=dddd inst

where f is a 0 or 1 flag value, bb is a byte value, and dddd is a double-byte quantity
corresponding to the register pair. The "instil field contains the disassembled instruction,
which occurs at the location addressed by the CPU state's program counter.

The second form allows display and optional alteration of register values, where r is
one of the registers given above (C, Z, M, E, I, A, B, 0, H, 5, or P). In each case, the flag or
register value is first displayed at the console. The DDT program then accepts input from
the console. If a carriage return is typed, the flag or register value is not altered. If a value
in the proper range is typed, the flag or register value is altered. The user should note that
BC, DE, and HL are displayed as register pairs. Thus, the operator types the entire
register pair when B, C, or the BC pair is altered.

4.3 Implementation Notes
The organization of DDT allows certain nonessential portions to be overlaid to

gain a larger transient program area for debugging large programs. The DDT program
consists of two parts: the DDT nucleus and the assembler/disassembler module. The
DDT nucleus is loaded over the Console Command Processor, and, although loaded with
the DDT nucleus, the assembler/disassembler is overlayable unless used to assemble or
disassemble.

In particular, the BOOS address at location 6H (address field of the IMP instruction at
location 5H) is modified by DDT to address the base location of the DDT nucleus, which,
in turn, contains a IMP instruction to the BOOS. Thus, programs that use this address
field to size memory see the logical end of memory at the base of the DDT nucleus rather
than the base of the BOOS.

The assembler/disassembler module resides directly below the DDT nucleus in the
transient program area. If the A, L, T, or X commands are used during the debugging
process, the DDT program again alters the address field at 6H to include this module,
further reducing the logical end of memory. If a program loads beyond the beginning of
the assembler/disassembler module, the A and L commands are lost (their use produces a
"?" in response) and the trace and display (T and X) commands list the "instil field of the
display in hexadecimal, rather than as a decoded instruction.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESfARCH 77

4.4 An Example
The following example shows an edit, assemble, and debug for a simple program that

reads a set of data values and determines the largest value in the set. The largest value is
taken from the vector and stored into "LARGE" at the termination of the program

A>ED SCAN.ASM

LOOP
LOOP:

NFOUND

;1
:1
VECT:
LEN
LARGE:

t-Z
*BOP~

LOOP:

NFOUND:

Crea te source program;

"1" represents carriage return.

ORG

MVI
MVI
LXI
MOV
SUB
JNC

1-00H

B, LEN
C,O
H,VECT
A,M
C
NFOUND

;START OF TRANSIENT
;AREA;
;LENGTH OF VECTOR TO SCAN;
;LARGER_RST VALUE SO FAR,
;BASE OF VECTOR;
;GET VALUE;
;LARGER VALUE IN C?I
';JUMP IF LARGE'R VALUE NOT
:FOUNDI

NEW LARGEST VALUE. STORE IT TO C 1
MOV C, A
INX H
DCR B
JNZ LOOP

END OF SCAN, STORE C 1

;TO NEXT ELEMENTI
;MORE TO SCAN? I
;FOR ANOTHER I

MOV A. C ;GET LARGEST VALUE 1
STA LARGEI
JMP 0 ;REBOOT;

TEST DATA
2.0,4,3,5,6,1,5 DB

EQU
DS
END;

$-VECT ;LENGTH

ORG
MVI
MVI
LXI
MOV
SUB
JNC

100H
B,LEN
C,O
H,VECT
A,M
C
NFOUND

;LARGE:ST VALUE ON EXITI

;START OF TRANSIENT AREA
;LENGTH OF VECTOR TO SCAN
;LARGEST VALUE SO FAR
;BASE OF VECTOR
;GET VALUE
;LARGER VALUE IN C?
;JUMP IF LARGER VALUE NOT
; FOUND

NEW LARGEST VALUE, STORE IT TO C
MOV C,A
INX H
DCR B
JNZ LOOP
END OF SCAN, STORE C
MOV A,C
STA LARGE
JMP 0

TEST DATA

;TO NEXT ELEMENT
;MORE TO SCAN?
;FOR ANOTHER

;GET LARGEST VALUE

;REBOOT

78 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

VECT:
LEN
LARGE:

*Ef -- End of edit

DB
EQU
OS
END

A>ASM SCAN I Start Assembler

CP/M ASSEMBLER - VER 1.0

0122

2,0,4,3,5,6,1,5
$-VECT
1

;LENGTH
;LARGEST VALUE ON EXIT

002H USE FACTOR
END OF ASSEMBLY Assembly complete; lock at program listing

A>TYPE SCAN.PRN I
Code address Source program
0100..-- I
0100 0608 ~
0102 OEOO Machine code
0104 211901
0107 7E LOOP:
0108 91
0109 020001

010C 4F

ORG 100H ;START OF TRANSIENT AREA
MVI B,LEN ';LENGTH OF VECTOR TO SCAN
MVI C,O ;LARGEST VALUE SO FAR
LXI H,VECT. ;BASE OF VECTOR
MOV A,M ;GET VALUE
SUB C ;LARGER VALUE IN C?
JNC NFOUND ;JUMP IF LARGER VALUE NOT

;FOUND
NEW LARGEST VALUE, STORE IT TO C
MOV C, A

0100 23
010E 05
010F C20701

NFOUND:INX H
OCR B
JNZ LOOP

;TO NEXT ELEM ENT
;MORE TO SCAN?
;FOR ANOTHER

0112 79
0113 322101

0116 C30000
Code-da ta lis ting
truncated \

0119 0200040305\
0008 = Value of
0121 equate
0122

VECT:
LEN
LARGE:

END OF SCAN, STORE C
MOV A, C ;GET LARGEST VALUE
STA LARGE

JMP 0 ;REBOOT

TEST DATA
DB 2,0,4,3,5,6,1,5
EQU $-VECT ;LENGTH
OS 1 ;LARGEST VALUE ON EXIT
END

A> DDT SCAN.HEXI Start debugger using hex fo~mat machine code

DDT VER 1.0
NEXT PC Next instruction
0121 0000
-X, "Last load address + 1

to execute at
PC=o

I
COZOMOEOIO A=OO B~OOO 0=0000 H=OOOO S=0100 P=OOOO OUT 7F

-XPI Examine registers before debug run

P=OOOO 100 I Change PC to 100

-X I Look at registers again

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 79

COZOMOEOIO A=OO 8=0000 0=0000 H=OOOO S=0100 P=0100 MVI 8,08,
-L1001 I ~

PC changed. Next instruction

0100
0102
0104
0107
0108
0109
010C
0100
010E
0.10F
0112 -L,

MVI
MVI
LXI
MOV
SU8
JNC
MOV
INX
OCR
JNZ
MOV

0113 STA
0116 JMP
0119 STAX
011A NOP

8,08
C,OO
H,0119
A,M
C
0100
C,A
H
8
0107
A,C

0121
0000
8

0118 INR 8
011C INX 8
0110 OCR 8
011 E MVI 8,01
0120 OCR 8
0121 LXI 0,2200
0124 LXI H,0200

Disassembled machine
code at 100H
(see source listing
for comparison)

A little more machine
code. Note that pro­
gram ends at location
116 with a JMP to
0000. Remainder of
listing is assembly of
data.

to execute at PC=100

-A 1161 Enter in-line assembly mode to change the JMP to 0000 into a RST 7, which
will cause the program under test to return to DDT if 116H is ever executed.

0116 RST 7

01171 (Single carriage return stops assemble mode)

-L 1131 List code at 113H to check that RST 7 was properly inserted

0113
0116
0117
0118
0119
011A
0118
011C

STA
RST
NOP
NOP
STAX
NOP
INR
INX

-X f Look at registers

0121
07 in place of JMP

8

8
8

COZOMOEOIO A=OO 8=0000 0=0000 H=OOOO S=0100 P=0100 MVI 8,08
-TI

Execute Program for one stop. Initial CPU state, before lis executed

COZOMOEOIO A=OO 8=0000 0=0000 H=OOOO S=0100 P=0100 Mv,/8,08*10102
-TI Automatic breakpoint

80 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Trace one step again (note 08H in B)

COZOMOEOIO A=OO 8=0800 0=0000 H=OOOO 8=0100 P=0102 MVI C,00*0104
-T;

Trace again (Register C is cleared)
COZOMOEOIO A=OO 8=0800 0=0000 H=OOOO 8=0100 P=0104 LXI H,0119*0107
-T3, Trace three steps

COZOMOEOIO A=OO 8=0800 0=0000 H=0119 8=0100 P=0107 MOV A,M
COZOMOEOIO A=02 8=0800 0=0000 H=0119 8=0100 P=0108 8U8 C
COZOMOEOl1 A=02 8=0800 0=0000 H=0119 8=0100 P=0109 JNC 0100*0100

-0119; 0' I 'H A' 'b k' OH/ . ISP ay memory starting at 119, utomatIc rea pomt at 10

0119 02 00 04 03 05 06 01 , Prqgr,ap1 data / Lowercase x
0120 05 11 00 22 21 00 02 7E E8 77 13 23 E8 08 @ 81 , . , " ! " ,W, # , ®
0130 C2 27 01 C3 03 29 00 00 00 00 00 00 00 00 00 00,'" ,)
0140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0150 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0180 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0190 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01AO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

p~~a: ~r~:¥:sp)~y~~
inASCII with a"."
{~ :the: pp:sj~i~p: ~(
~~.ngt:~p'~i.c
cha'racters

01 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01CO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
-x f

Current CPU state"
COZOMOEOl1 A=02 8=0800 0=0000 H=0119 8=0100 P=0100 INX H
-T5f

Trace 5 steps from current CPU state
COZOMOEOl1 A=02 8=0800 0=0000 H=0119
COZOMOEOl1 A=02 8=0800 0=0000 H=011 A
COZOMOEOl1 A=02 8=0700 0=0000 H=011A
COZOMOEOl1 A=02 8=0700 0=0000 H=011 A
COZOMOEOl1 A=OO 8=0700 0=0000 H=011A
U5f

Trace without listing intermediate states

8=0100 P=0100 I NX H
8=0100 P=010E OCR 8
8=0100 P=010F JNZ 0107
8=0100 P=0107 MOV A,M
8=0100 P=0108 8U8 C*9-109

Automatic breakpoint /

COZ1MOE111 A=OO 8=0700 0=0000 H=011A 8=0100 P=0109 JNC 0100*0108
-X f

,CPU state at end of Us
COZOMOE111 A=04 8=0600 0=0000 H=0118 8=0100 P=0108 8U8 C
-G; Run program from current PC until completion (in real-time)

*0116 breakpoint at 116H, caused by executing RST 7 in machine code,
-Xf

CPU state at end of program
COZ1MOE111 A=OO 8=0000 0=0000 H=0121 8=0100 P=0116 R8T 07
-XPf
~ Examine and change program counter

P=0116 1001

-X;

COZ1 MOE111 A=OO 8=0000 0=0000 H=0121 8=0100 P=0100 MVI 8,08
-T10;

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 81

First data element
Current largest value

Trace 10 (hexadecimal) steps
Subtract for comparison C

COZ1 MOE111 A=OO B=0800 0 000 -0121 8=0100 P=0100 MVI B,08
COZ1 MOE:111 A=OO B=OOOO =000 H=0121 8=0100 P=0102 MVI C,O
COZ1 MOE111 A=OO B=08 0=0 0 H=0121 8=0100 P=0104 LXI H,O 19
COZ1 MOE111 A=OO B= 00 0- 000 H=0119 8=0100 P=0107 MOV
COZ1 MOE111 A=02 =0800 =0000 H=0119 8=0100 P=0108 8UB C
COZOMOEOl1 A 0 B=O 00 0=0000 H=0119 8=0100 P=0109 JNC 0100
COZOMOEOl1 A=02 B=0800 0=0000 H=0119 8=0100 P=0100 I H
COZOMOEOl1 A=02 B=0800 0=0000 H=011A 8=0100 P=010E CR B
COZOMOEOl1 A=02 B=0700 0=0000 H=011A 8=0100 P=010F JNZ 0107
COZOMOEOl1 A=02 B=0700 0=0000 H=011A 8=0100 P=010 MOV A,M
COZOMOEOl1 A=OO B=0700 0=0000 H=011A 8=0100 P=01 8 8UB C
COZ1 MOE111 A=OO B=0700 0=0000 H=011A 8=0100 P=O 09 JNC 0100
COZ1 MOE111 A=OO B=0700 0=0000 H=011A 8=0100 P= 100 INX H
COZ1MOE111 A=OO B=0700 0=0000 H=011B 8=0100 A-010E OCR B
COZOMOE111 A=OO B=0600 0=0000 H=011B 8=0100 =010F JNZ 0107
COZOMOE111 A=OO B=0600 0=0000 H=011B 8=010 P=0107 MOV A,M*0108

-A 1091 Insert a "hot patch" into Program should have moved the
the machine code value from A into C since A>C.

0109 JC 1001 to change the Since this code was not executed,

010CI
]NC to]C it appears that the]NC should

have been a]C instruction

-GOI Stop DDT so that a version of
the patched program can be saved

A>8AVE 1 8CAN.COM IProgram resides on first
page, so save 1 page.

A>OOT 8CAN.COM-I
. "..Restart DDT with the save memory

DDT VER 1.0 image to continue testing
NEXT PC
0200 0100
-L 100, List some code

0100 MVI B,08
0102 MVI C,OO
0104 LXI H,0119
0107 MOV A,M
0108 8UB C
0109 JC 0100 Previous patch is present in X.COM
010C MOV C,A
0100 INX H
010E OCR B
010F JNZ 0107
0112 MOV A,C
-XP,

P=0100I

82 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESfARCH

-T10I
Trace to see how patched version operates Data is moved from A to C

COZOMOEOIO A=OO 8=0000 0=0000 H=OOOO 8=01 P=0100 MVI 8,08
COZOMOEOIO A=OO 8=0800 0=0000 H=OOOO 100 P=0102 MVI C,OO
COZOMOEOIO A=OO 8=0800 0=0000 H=OOO 8=0100 P=0104 LXI H,0119
COZOMOEOIO A=OO 8=0800 0=0000 H= 19 8=0100 P=0107 MOV A,M
COZOMOEOIO A=@ 8=0800 0=0000 =0119 8=0100 P=0108 8U 8 C
COZOMOEOl1 A=02 =0800 0= 0 H=0119 8=0100 P=0109 JC 0100
COZOMOEOl1 A=02 8 800 =0000 H=0119 8=0100 P=010C MOV C,A
COZOMOEOl1 A=02 8=0 0=0000 H=0119 8=0100 P=0100 INX H
COZOMOEOl1 A=02 8=0802 0=0000 H=011A 8=0100 P=010E OCR 8
COZOMOEOl1 A=02 8=0702 0=0000 H=011A 8=0100 P=010F JNZ 0107
COZOMOEOl1 A=02 8=0702 0=0000 H=011A 8=0100 P=0107 MOV A,M
COZOMOEOl1 A=OO 8=0702 0=0000 H=011A 8=0100 P=0108 8U8 C
C1Z0M1 EOIO A=FE 8=0702 0=0000 H=011A 8=0100 P=0109 JC 0100
C1Z0M1 EOIO A=FE 8=0702 0=0000 H=011A 8=0100 P=0100 INX H
C1Z0M1 EOIO A=FE 8=0702 0=0000 H=0118 8=0100 P=OlOE OCR 8
C1Z0MOE111 A=FE 8=0602 0=0000 H=0118 8=0100 P=010F JNZ 0107*0107
-X I Breakpoint after 16 steps!

C1Z0MOE111 A=FE 8=0602 0=0000 H=0118 8=0100 P=0107 MOV A,M
-G,108, Run from current PC and breakpoint at 108H

*0108
-X I

/ Next data item
C1Z0MOE111 A=04 8=0602 0=0000 H=0118 8=0100 P=0108 8U8 C
-T f

Single step for a few cycles
C1Z0MOE111 A=04 8=0602 0=0000 H=0118 8=0100 P=0108 8U8 C*0109
-T I

COZOMOEOl1 A=02 8=0602 0=0000 H=0118 8=0100 P=0109 JC 0100*010C
-X,
COZOMOEOl1 A=02 8=0602 0=0000 H=0118 8=0100 P=010C MOV C,A
-G I Run to completion

*0116
-X I

COZ1 MOE111 A=03 8=0003 0=0000 H=0121 8=0100 P=0116 R8T 07
-8121, Look at the value of "LARGE"

0121 03, Wrong value!

0122 00,

0123 22,

0124 21,

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 83

0125001

0126 021

0127 7E/_

-L1001

0100
0102
0104
0107
0108
0109
010C
0100
010E
010F
0112
-L f

0113
0116
0117
0118
0119
011A
0118
011C
0110
011E
0120
-XPf

MVI
MVI
LXI
MOV
8U8
JC
MOV
INX
OCR
JNZ
MOV

8TA
R8T
NOP
NOP
8TAX
NOP
INR
INX
OCR
MVI
OCR

End of the S command

8,08
C,OO
H,0119
A,M
C
0100
C,A
H
8
0107
A,C

Review the code

0121
07

8

8
8
8
8,01
8

P=0116 1001 Reset the PC

-T ~
Single step, and watch data values

COZ1MOE111 A=03 8=0003 0=0000 H=0121 8=0100 P=0100 MVI 8,08*0102
-T I

COZ1 MOE111 A=03 8=0803 0=0000 H=0121 8=0100 P=0102 MVI C,00*0104
-T f

Count set" / "Largest" set
COZ1MOE111 A=03 8=0800 0=0000 H=0121 8=0100 P=0104 LXI H,0119*0107
-T f

/. Base address of data set
COZ1MOE111 A=03 8=0800 0=0000 H=0119 8=0100 P=0107 MOV A,M*0108
-T 1

/ First data item brought to A
COZ1 MOE111 A=02 8=0800 0=0000 H=0119 8=0100 P=0108 8U8 C*0109
-T f

COZOMOEOl1 A=02 8=0800 0=0000 H=0119 8=0100 P=0109 JC 0100*010C
-T f

84 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

COZOMOEOl1 A=02 B=0800 0=0000 H=0119 8=0100 P=010C MOV C,A*0100
-T I

/' First data item moved to C correctly
COZOMOEOl1 A=02 B=0802 0=0000 H=0119 8=0100 P=0100 INX H*010E
-T I

COZOMOEOl1 A=02 B=0802 0=0000 H=011A 8=0100 P=010E OCR B*010F
-T I

COZOMOEOl1 A=02 B=0702 0=0000 H=011A 8=0100 P=010F JNZ 0107*0107
-T I

COZOMOEOl1 A=02 B=0702 0=0000 H=011A 8=0100 P=0107 MOV A,M*0108
-T I

/ Second data item brought to A
COZOMOEOl1 A=OO B=0702 0=0000 H=011A 8=0100 P=0108 8UB C*0109
-T I

,;/ Subtract destroys data value that was loaded!
C1Z0M1EOI0 A=FE B=0702 0=0000 H=011A 8=0100 P=0109 JC 0100*0100
-T I

C1Z0M1EOI0 A=FE B=0702 0=0000 H=011A 8=0100 P=0100 INX H*010E
-L100,

0100
0102
0104
0107
0108
0109
010C
0100
010E
010F
0112
-A108,

MVI
MVI
LXI
MOV
8UB
JC
MOV
INX
OCR
JNZ
MOV

B,08
C,OO
H,0119

~'~ This should have been a CMP so that register A
0100 would not be destroyed.

C,A
H
B
0107
A,C

0108 CMP C1 Hot patch at l08H changes SUB to CMP

0109

-GO, Stop DDT for SAVE

A> 8AVE 1 8CAN.COM I Save memory image

A>OOT 8CAN.COMI Restart DDT

DDT VER 1.0
NEXT PC
0200 0100
-XP,

P=0100

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 85

0116
0117
0118
0119
011A

RST
NOP
NOP
STAX
NOP

07} Look at code to see if it was properly loaded
B (long typeout aborted with rubout)

-G,116 f Run from looH to completion

*0116
-XC ~ Look at carry (accidental typo)
C1f
-x ~ Look at CPU state

C1Z1MOE111 A=06 B=0006 0=0000 H=0121 S=0100 P=0116 RST 07
-S121, Look at "large"-it appears to be correct.

0121 06~

0122 OO~

0123 22

-GOf. Stop DDT

A>ED SCAN.ASM f Re-edit the source program, and make both changes

*NSUBI
*OLT~

ctl-Z, SUB
*SSUBJZCMPtZOL T,

CMP

JNC
*SNCtZCtZOL T I

JC

C ;LARGER VALUE IN C?

C ;LARGER VALUE IN C?

NFOUND ;JUMP IF LARGER VALUE NOT FOUND

NFOUND ;JUMP IF LARGER VALUE NOT FOUND

Re-assemble, selecting source from disk A
A>ASM SCAN.AAZ,--Hex to disk A

Print to Z (selects no print file)
CP/M ASSEMBLER VER 1.0

0122
002H USE FACTOR
END OF ASSEMBLY

86 All INFORMATION PRESENTED HERE IS PROPRIETARYTO DIGITAL RESEARCH

A>DDT SCAN.HEX I Re-run debugger to check changes

DDT VER 1.0
NEXT PC
0121 0000
-L 116,

0116

0119

011A
011 B

JMP

STAX

NOP
INR

- (rubout)

0000

B

B

Check to ensure end is still at 116H

-G 1 ~O, 116, Go from beginning with breakpoint at end

*0116 Breakpoint reached
-0121, Look at "LARGE"

-Correct value computed
0121 @roo 21 00 02 7E EB 77 13 23 EB DB 78 B1 ' ! ... W . # .. X .
0130 C2 27 C3 03 29 00 00 00 00 00 00 00 00 00 00 .' ...)
0140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

- (rubout) Aborts long type-out

GO, Stop DDT, debug session complete.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 87

5
CP 1M 2 System Interface

5. t. Introduction
This chapter describes CP/M, release 2, system organization including the structure

of memory and system entry points. The intention is to provide necessary information
required to write programs that operate under CP/M and that use the peripheral and disk
I/O facilities of the system.

CP/M is logically divided into four parts, called the Basic I/O System (BIOS), the Basic
Disk Operating System (BOOS), the Console Command Processor (CCP), and the
Transient Program Area (TPA). The BIOS is a hardware-dependent module that defines
the exact low level interface with a particular computer system that is necessary for
peripheral device I/O. Although a standard BIOS is supplied by ~igital Research, explicit
instructions are provided for field reconfiguration of the BIOS to match nearly any
hardware environment (see Chapter 6). The BIOS and BOOS are logically combined into
a single module with a common entry point and referred to as the FOOS. The CCP is a
distinct program that uses the FOOS to provide a human-oriented interface with the
information that is cataloged on the backup storage device. The TPA is an area of memory
(i.e., the portion that is not used by the FOOS and CCP) where various nonresident
operating system commands and user programs are executed. The lower portion of
memory is reserved for system information and is detailed in later sections. Memory
organization of the CP/M system is shown below.

High
Memory
FBASE:

CBASE:

TBASE:

BOOT:

FDOS (BDOS+810S)

CCP

TPA

System Parameters

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 89

The exact memory addresses corresponding to BOOT, TBASE, CBASE, and FBASE
vary from version to version and are described fully in Chapter 6. All standard CP/M
versions, however, assume BOOT = OOOOH, which is the base of random access memory.
The machine code found at location BOOT performs a system "warm start," which loads
and initializes the programs and variables necessary to return control to the CCP. Thus,
transient programs need only jump to location BOOT to return control to CP/M at the
command level. Further, the standard versions assume TBASE = BOOT +OlOOH, which is
normally location OIOOH. The principal entry point to the FOOS is at location
BOOT +ooosH (normally OOOSH) where a jump to FBASE is found. The address field at
BOOT +0006H (normally 0006H) contains the value of FBASE and can be used to
determine the size of available memory, assuming that the CCP is being overlayed by a
transient program.

Transient programs are loaded into the TPA and executed as follows. The operator
communicates with the CCP by typing command lines following each prompt. Each
command line takes one of the forms:

command

command file1

command file1 file2

where "command" is either a built-in function such as OIR or TYPE or the name of a
transient command or program. If the c'ommand is a built-in function of CP/M, it is
executed immediately. Otherwise, the CCP searches the currently addressed disk for a
file by the name

command.COM

If the file is found, it is assumed to be a memory image of a program that executes in the
TPA and thus implicitly originates at TBASE in memory. The CCP loads the COM file
from the disk into memory starting at TBASE and can extend up to CBASE.

If the command is followed by one or two file specifications, the CCP prepares one or
two file control block (FCB) names in the system parameter area. These optional FCBs are
in the form necessary to access files through the FOOS and are described in the next
section.

The transient program receives control from the CCP and begins ~xecution, using the
I/O facilities of the FOOS. The transient program is "called" from the CCP. Thus, it can
simply return to the CCP upon completion of its processing or can jump to BOOT to pass
control back to CP/M. In the first case, the transient program must not use memory
above CBASE, while in the latter case, memory up through FBASE-l can be used.

The transient program can use the CP/M I/O facilities to communicate with the
operator's console and peripheral devices, including the disk subsystem. The I/O system
is accessed by passing a function number and an information address to CP/M through
the FOOS entry point at BOOT +ooosH. In the case of a disk read, for example, the
transient program sends the number corresponding to a disk read, along with the address
of an FCB to the CP/M FOOS. The FOOS, in turn, performs the operation and returns
with either a disk read completion indication or an error number indicating that the disk
read was unsuccessful.

90 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITALRESfARCH

5.2 Operating System Call Conventions
This section provides detailed information for performing direct operating system

calls from user programs. Many of the functions listed below, however, are accessed
more simply through the I/O macro library provided with the MAC macro assembler and
listed in the Digital Research manual entitled, MAC Macro Assembler: Language Manual and
Applications Guide.

CP/M facilities that are available for access by transient programs fall into two general
categories: simple device I/O and disk file I/O. The simple device operations include:

Read a Console Character

Write a Console Character

Read a Sequential Tape Character

Write a Sequential Tape Character

Write a List Device Character

Get or Set I/O Status

Print Console Buffer

Read Console Buffer

I nterrogate Console Ready

The FDOS operations that perform disk I/O are

Disk System Reset

Drive Selection

File Creation

File Open

File Close

Directory Search

File Delete

File Rename

Random or Sequential Read

Random or Sequential Write

I nterrogate Available Disks

I nterrogate Selected Disk

Set DMA Address

Set/Reset File Indicators.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 91

As mentioned above, access to the FDOS functions is accomplished by passing a
function number and information address through the primary point at location
BOOT +0005H. In general, the function number is passed in register C with the informa­
tion address in the double byte pair DE. Single byte values are returned in register A, with
double byte values returned in HL (a zero value is returned when the function number is
out of range). For reasons of compatibility, register A = L and register B = H upon return
in all cases. The user should note that the register passing conventions of CP/M agree
with those of Intel's PL/M systems programming language. CP/M functions and their
numbers are listed below.

0 System Reset 19 Delete File
1 Console Input 20 Read Sequential
2 Console Output 21 Write Sequential
3 Reader Input 22 Make File
4 Punch Output 23 Rename File
5 List Output 24 Return Login Vector
6 Direct Console I/O 25 Return Curren t Disk
7 Get I/O Byte 26 Set DMA Address
8 Set I/O Byte 27 Get Addr(Alloc)
9 Print String 28 Write Protect Disk

10 Read Console Buffer 29 Get R/O Vector
11 Get Console Status 30 Set File Attributes
12 Return Version Number 31 Get Addr{Disk Parms)
13 Reset Disk System 32 Set/Get User Code
14 Select Disk 33 Read Random
15 Open File 34 Write Random
16 Close File 35 Compute File Size
17 Search for First 36 Set Random Record
18 Search for Next 37 Reset Drive

40 Write Random with Zero Fill

(Functions 28 and 32 should be avoided in application programs to maintain upward
compatibility with CP/M.)

Upon entry to a transient program, the CCP leaves the stack pointer set to an
eight-level stack area with the CCP return address pushed onto the stack, leaving seven
levels before overflow occurs. Although this stack is usually not used by a transient
program (i.e., most transients return to the CCP through a jump to location ooooH), it is
sufficiently large to make CP/M system calls since the FDOS switches to a local stack at
system entry. The assembly language program segment below, for example, reads
characters continuously until an asterisk is encountered, at which time control returns to
the CCP (assuming a standard CP/M system with BOOT = ooooH).

BDOS EQU 0OO5H ;STANDARD CP/M ENTRY
CONIN EQU 1 ;CONSOLE INPUT FUNCTION

ORG 0100H ;BASE OF TPA
NEXTC: MVI C,CONIN ;READ NEXT CHARACTER

CALL BDOS ;RETURN CHARACTER IN <A>
CPI '*' ;END OF PROCESSING?
JNZ NEXTC ;LOOP IF NOT
RET ;RETURN TO CCP
END

92 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M implements a named file structure on each disk, providing a logical organization
that allows any particular file to contain any number of records from completely empty to
the full capacity of the drive. Each drive is logically distinct with a disk directory and file
data area. The disk file names are in three parts: the drive select code, the filename
consisting of one to eight nonblank characters, and the file type consisting of zero to three
nonblank characters. The file type names the generic category of a particular file, while
the filename distinguishes individual files in each category. The filetypes listed below
name a few generic categories that have been established, although they are somewhat
arbitrary.

ASM Assembler Source PLI PL/I Source File
PRN Printer Listing REL Relocatable Module
HEX Hex Machine Code TEX TEX Formatter Source
BAS Basic Source File BAK ED Source Backup
INT Intermediate Code SYM SID Symbol File
COM Command File $$$ Temporary File

Source files are treated as a sequence of ASCII characters, where each "line" of the
source file is followed by a carriage-return line-feed sequence (oDH followed by OAH),
Thus one 128-byte CP/M record could contain several lines of source text.,The end of an
ASCII file is denoted by a control-Z character (IAH) or a real end-of-file returned by the
.CP/M read operation. Control-Z characters embedded within machine code files (e.g.,
COM files) are ignored, however, and the end-of-file condition returned by CP/M is used
to terminate read operations.

Files in CP/M can be thought of as a sequence of up to 65536 records of 128 bytes each,
numbered from o. through 65535, thus allowing a maximum of 8 megabytes per file.
However, the user should note that although the records may be considered logically
contiguous, they may not be physically contiguous in the disk data area. Internally, all
files are divided into 16K byte segments called logical extents, so that counters are easily
maintained as 8-bit values. The division into extents is discussed in the paragraphs that
follow; however, they are not particularly significant for the programmer, since each
extent is automatically accessed in both sequential and random access modes.

In the file operations starting with function number IS, DE usually addresses a file
control block (FCB). Transient programs often use the default file control block area
reserved by CP/M at location BOOT +005CH (normally 005CH) for simple file opera­
tions. The basic unit of file information is a 128-byte record used for all file operations;
thus, a default location for disk I/O is provided by CP/M at location BOOT +0080H
(normally 0080H), which is the initial default DMA address (see function26). All direc­
tory operations take place in a reserved area that does not affect write buffers as was the
case in release I, with the exception of Search First and Search Next, where compatibility
is required.

The FCB data area consists of a sequence of 33 bytes for sequential access and a series
of 36 bytes in the case when the file is accessed randomly. The default FCB normally
located at 005CH can be used for random access files, since the three bytes starting at
BOOT +oo7DH are available for this purpose. The FCB format is shown with the
following fields:

Idr 111 112 II ~18 It1 It2 It3 lex 151 152 Ire IdO II ~dn ler IrOlr1 Ir21
00 01 02 ... 08 09 10 11 12 13 14 15 16 ... 31 32 33 34 35

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 93

where

dr

f1 ... f8

t1,t2,t3

ex

s1

s2

rc

dO ... dn

cr

rO,r1,r2

drive code (0-16)
o => use default drive for file
1 => auto disk select drive A,
2 => auto disk select drive B,

16=> auto disk select drive P.

contain the file name in ASCII upper case, with
high bit = 0

contain the file type in ASCII upper case, with high
bit = 0 tI', t2', and t3' denote the bit of these
positions,
tI' = 1 => Read/Only file,
t2' = 1 => SYS file, no DIR list

contains the current extent number, normally set
to 00 by the user, but in range 0-31 during file I/O

reserved for internal system use

reserved for internal system use, set to zero on call
to OPEN, MAKE, SEARCH

record count for extent "ex," takes on values frqm
0-127

filled-in by CP/M, reserved for system use

current record to read or write in a sequential file
operation, normally set to zero by user

optional random record number in cthe range 0-
6SS3S, with overflow to r2, rO, r1 constitute a 16-
bit value with low byte rO, and high byte r1

Each file being accessed through CP/M must have a cOl"responding FCB, which
provides the name and allocation information for all subsequent file operations. When
accessing files, it is the programmer's responsibility to fill the lower 16 bytes of the FCB
and initialize the cr field. Normally, bytes 1 through 11 are set to theASCII character
values for the file name and file type, while all other fields are zero.

FCBs are stored in a directory area of the disk, and are brought into central memory
before the programmer proceeds with file operations (see the OPEN and MAKE func­
tions). The memory copy of the FCB is updated as file operations take place and later
recorded permanently on disk at the termination of the file operation (see the CLOSE
command).

The CCP constructs the first 16 bytes of two optional FCBs for a transient by
scanning the remainder of the line following the transient name, denoted by file1 and
file2 in the prototype command line described above, with unspecified fields set to ASCII
blanks. The first FCB is constructed at location BOOT+oosCH and can be used as is for
subsequent file operations. The second FCB occupies the do ... dn portion of the first FCB
and must be moved to another area of memory before use. If, for example, the operator
types

PROGNAME B:X.ZOT V.ZAP

94 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

the file PROGNAME.COM is loaded into the TPA and the default FCB at BOOT +OOsCH
is initialized to drive code 2, file name X, and file type ZOT. The second drive code takes
the default value 0, which is placed at BOOT +006CH, with the file name Y placed into
location BOOT +006DH and file type ZAP located B bytes later at BOOT +007SH. All
remaining fields through cr are set to zero. The user should note again that it is the
programmer's responsibility to move this second file name and type to another area,
usually a separate file control block, before opening the file that begins at BOOT +oosCH,
because the open operation will overwrite the second name and type.

If no file names are specified in the original command, the fields beginning at
BOOT +ooSDH and BOOT +006DH contain blanks. In all cases, the CCP translates lower
case alphabetics to upper case to be consistent with the CP/M file naming conventions.

As an added convenience, the default buffer area at location BOOT +OOBOH is initial­
ized to the command line tail typed by the operator following the program name. The first
position contains the number of characters, with the characters themselves following the
character count. Given the above command line, the area beginning at BOOT +oOBoH is
initialized as follows:

BOOT +0080H:

-tOO +01 +02 +03 +04 +05 +06 +07 +08 f{)9 +A +B +C +0 +E
E " 'B' ':' 'X' '.' 'Z' '0' 'T' "'V' 'Z' 'A' 'p'

where the characters are translated to upper case ASCII with uninitialized memory
following the last valid character. Again, it is the responsibility of the programmer to
extract the information from this buffer before any file operations are performed, unless
the default DMA address is explicitly changed.

Individual functions are described in detail in the pages that follow.

Function 0: System Reset

Entry Parameters:
Register C: ooH

The system reset function returns control to the CP/M operating system at the CCP
level. The CCP reinitializes the disk subsystem by selecting and logging in disk drive A.
This function has exactly the same effect as a jump to location BOOT.

Function 1: Console Input

Entry Parameters:
Register C: OIH

Returned Value:
Register A: ASCII Character

The console input function reads the next console character to register A. Graphic
characters, along with carriage return, line feed, and back space (ctl-H) are echoed to the

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 95

console. Tab characters (ctl-I) move the cursor to the next tab stop. A check is made for
start/stop scroll {ctl-S} and start/stop printer echo {ctl-P}. The FOOS does not return to
the calling program until a character has been typed, thus suspending execution if a
character is not ready.

Function 2: Console Output

Entry Parameters:
Register C: o2H
Register E: ASCII Character

The ASCII character from register E is sent to the console device. As in function I,
tabs are expanded and checks are made for start/stop scroll and printer echo.

Function 3: Reader Input

En try Parameters:
Register C: o3H

Returned Value:
Register A: ASCII Character

The Reader Input function reads the next character from the logical reader into
register A (see the IOBYTE definition in Chapter 6). Control does not return until the
character has been read.

Function 4: Punch Output

Entry Parameters:
Register C: o4H
Register E: ASCII Character

The Punch Output function sends the character from register E to the logical punch
device.

Function 5: List Output

En try Parameters:
Register C: OSH
Register E: ASCII Character

The List Output function sends the ASCII character in register E to the logical listing
device.

96 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Function 6: Direct Console I/O

En try Parameters:
Register C: 06H
Register E: oFFH (input) or

char (output)

Returned Value:
Register A: char or status

Direct console I/O is supported under CP/M for those specialized applications where
basic console input and output are required. Use of this function should, in general, be
avoided since it bypasses all of CP/M's normal control character functions (e.g., control-S
and control-P). Programs that perform direct I/O through the BIOS under previous
releases of CP/M, however, should be changed to use direct I/O under BOOS so that they
can be fully supported under future releases of MP/M and CP/M.

Upon entry to function 6, register E either contains hexadecimal FF, denoting a
console input request, or an ASCII character. If the input value is FF, function 6 returns
A = 00 if no character is ready, otherwise A contains the next console input character.

If the input value in E is not FF, function 6 assumes that E contains a valid ASCII
character that is sent to the console.

Function 6 must not be used in conjunction with other console I/O functions.

Function 7: Get I/O Byte

En try Parameters:
Register C: 07H

Returned Value:
Register A: I/O Byte Value

The Get I/O Byte function returns the current value of 10BYTE in register A. See
Chapter 6 for 10BYTE definition.

Function 8: Set I/O Byte

Entry Parameters:
Register C: 08H
Register E: I/O Byte Value

The Set I/O Byte function changes the 10BYTE value to that given in register E.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 97

Function 9: Print String

Entry Parameters:
Register C: 09H
Registers DE: String Address

The Print String function sends the character string stored in memory at the location
given by DE to the console device, until a $ is encountered in the string. Tabs are
expanded as in function 2, and checks are made for start/stop scroll and printer echo.

Function 10: Read Console Buffer

'Entry Parameters:
Register C: oAH
Registers DE: Buffer Address

Returned Value:
Console Characters in Buffer

The Read Buffer function reads a line of edited console input into a buffer addressed
by registers DE. Console input is terminated when either input buffer overflows or a
carriage return or line feed is typed. The Read Buffer takes the form:

DE:+O +1 +2 +3 +4 +5 +6 +7 +8 ... +n
I mx Inc I c1 1 c2 1 c3 1 c4 1 c5 1 c6 1 c 7 1 •.. 1 ??I

where mx is the maximum number of characters that the buffer will hold (1 to 255) and nc
is the number of characters read (set by FDOS upon return), followed by the characters
read from the console. If nc < mx, then uninitialized positions follow the last character,
denoted by ?? in the above figure. A number of control functions are recognized during
line editing:

rub/del

ctl-C

ctl-E

ctl-H

ctl-J

ctl-M

ctl-R

ctl-U

ctl-X

removes and echoes the last character

reboots when at the beginning of line

causes physical end of line

backspaces one character position

(line feed) terminates input line

(return) terminates input line

retypes the current line after new line

removes current line

same as ctl-U.

The user should also note that certain functions that return the carriage to the leftmost
position (e.g., ctl-X) do so only to the column position where the prompt ended (in earlier

98 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

releases, the carriage returned to the extreme left margin). This convention makes
operator data input and line correction more legible.

Function 11: Get Console Status

En try Parameters:
Register C: oBH

Returned Value:
Register A: Console Status

The Console Status function checks to see if a character has been typed at the console.
If a character is ready, the value oFFH is returned in register A. Otherwise a OoH value is
returned.

Function 12: Return Version Number

Entry Parameters:
Register C: OCH

Returned Value:
Registers HL: Version Number

Function 12 provides information that allows version independent programming. A
two-byte value is returned, with H = 00 designating the CP/M release (H = 01 for MP/M),
and L = 00 for all releases previous to 2.0. CP/M 2.0 returns a hexadecimal 20 in register L,
with subsequent version 2 releases in the hexadecimal range 21, 22, through 2F. Using
function 12, for example, the user can write application programs that provide both
sequential and random access functions.

Function 13: Reset Disk System

Entry Parameters:
Register C: oDH

The Reset Disk Function is used to programmatically restore the file system to a reset
state where all disks are set to read/write (see functions 28 and 29), only disk drive A is
selected, and the default DMA address is reset to BOOT +0080H. This function can be
used, for example, by an application program that requires a disk change without a
system reboot.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 99

Function 14: Select Disk

Entry Parameters:
Register C: OEH
Register E: Selected Disk

The Select Disk function designates the disk drive named in register E as the default
disk for subsequent file operations, with E = 0 for drive A, 1 for drive B, and so on through
15, corresponding to drive P in a full 16 drive system. The drive is placed in an on-line
status, which activates its directory until the next cold start, warm start, or disk system
reset operation. If the disk medium is changed while it is on-line, the drive automatically
goes to a read/only status in a standard CP/M en~ironment (see function 28). FCBs that
specify drive code zero (dr = OOH) automatically reference the currently selected default
drive. Drive code values between 1 and 16, however, ignore the selected default drive and
directly reference drives A through P.

Function 15: Open File

Entry Parameters:
Register C: oFH
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

The Open File operation is used to activate a file that currently exists in the disk
directory for the currently active user number. The FDOS scans the referenced disk
directory for a match in positions 1 through 14 of the FCB referenced by DE (byte sl is
automatically zeroed), where an ASCII question mark (3FH) matches any directory
character in any of these PQsitions. Normally, no question marks are included, and bytes
ex and s2 of the FCB are zero.

If a directory element is matched, the relevant directory information is copied into
bytes do through dn of the FCB, thus allowing access to the files through subsequent read
and write operations. The user should note that an existing file must not be accessed until
a successful open operation is completed. Upon return, the open function returns a
directory code with the value 0 through 3 if the open was successful or oFFH (255
decimal) if the file cannot be found. If question marks occur in the FCB, the first matching
FCB is activated. Note that the current record (cr) must_be zeroed by the program if the
file is to be accessed sequentially from the first record.

100 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Function 16: Close File

Entry Parameters:
Register C: 10H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

The Close File function performs the inverse of the open file function. Given that the
FCB addressed by DE has been previously activated through an open or make function
(see functions 15 and 22), the close function permanently records the new FCB in the
referenced disk directory. The FCB matching process for the close is identical to the open
function. The directory code returned for a successful close operation is 0, I, 2, or 3, while
a OFFH (255 decimal) is returned if the file name cannot be found in the directory. A file
need not be closed if only read operations have taken place. If write operations have
occurred, however, the close operation is necessary to record the new directory informa­
tion permanently.

Function 17: Search for First

En try Parameters
Register C: IIH
Registers DE: FCB Address

Returned Value:
Regis ter A: Directory Code

Search First scans the directory for a match with the file given by the FCB addressed
by DE. The value 255 (hexadecimal FF) is returned if the file is not found; otherwise, 0, I,
2, or 3 is returned indicating the file is present. When the file is found, the current DMA
address is filled with the record containing the directory entry, and the relative starting
position is A * 32 (Le., rotate the A register left 5 bits, or ADD A five times). Although not
normally required for application programs, the directory information can be extracted
from the buffer at this position.

An ASCII question mark (63 decimal, 3F hexadecimal) in any' position from fl through
ex matches the corresponding field of any directory entry on the default or auto-selected
disk drive. If the dr field contains an ASCII question mark, the auto disk select function is
disabled and the default disk is searched, with the search function returning any matched
entry, allocated or free, belonging to any user number. This latter function is not
normally used by' application programs, but it allows complete flexibility to scan all
current directory values. If the dr field is not a question mark, the s2 byte is automatically
zeroed.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RF..SEARCH 101

Function 18: Search for Next

Entry Parameters:
Register C: 12H

Returned Value:
Register A: Directory Code

The Search Next function is similar to the Search First function, except that the
directory scan continues from the last matched entry. Similar to function 17, function 18
returns the decimal value 255 in A when no more directory !tems match:

Function 19: Delete File

Entry Parameters:
Register C: 13H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

The Delete File function removes files that match the FCB addressed by DE. The
filename and type may contain ambiguous references (i.e., question marks in various
positions), but the drive select code cannot be ambiguous, as in the Search and Search
Next functions.

Function 19 returns a decimal 255 if the referenced file or files cannot be found;
otherwise, a value in the range 0 to 3 is returned.

Function 20: Read Sequential

Entry Parameters:
Register C: 14H
Registers DE: FeB Address

Returned Value:
Register A: Directory Code

Given that the FCB addressed by DE has been activated through an open or make
function (numbers 15 and 22), the Read Sequential function reads the next 128-byte
record from the file into memory at the current DMA address. The record is read from
position cr of the extent, and the cr field is automatically incremented to the next record
position. If the cr field overflows, the next logical extent is automatically opened and the
cr field is reset to zero in preparation for the next read operation. The value ooH is
returned in the A register if the read operation was successful, while a nonzero value is
returned if no data exist at the next record position (e.g., end-of-file occurs).

102 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Function 21: Write Sequential

Entry Parameters:
Register C: 15H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

Given that the FCB addressed by DE has been activated through an open or make
function (numbers 15 and 22), the Write Sequential function writes the 128-byte data
record at the current DMA address to the file named by the FCB. The record is placed at
position cr of the file, and the cr field is automatically incremented to the next re~ord
position. If the cr field overflows, the next logical extent is automatically opened and the
cr field is reset to zero in preparation for the next write operation. Write operations can
take place into an existing file, in which case, newly written records overlay those that
already exist in the file. Register A = OoH upon return from a successful write operation,
while a nonzero value indicates an unsuccessful write caused by a full disk.

Function 22: Make File

Entry Parameters:
Register C: 16H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

The Make File operation is similar to the open file operation except that the FCB must
name a file that does not exist in the currently referenced disk directory (Le., the one
named explicitly by a nonzero dr code or the default disk if dr is zero). The FDOS creates
the file and initializes both the directory and main memory value to an empty file. The
programmer must ensure that no duplicate file names occur, and a preceding delete
operation is sufficient if there is any possibility of duplication. Upon return, register A = 0,
1,2, or 3 if the operation was successful and oFFH (255 decimal) if no more directory space
is available. The make function has the side effect of activating the FCB and thus a
subsequent open is not necessary.

Function 23: Rename File

Entry Parameters:
Register C: 17H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

The Rename function uses the FCB addressed by DE to change all occurrences of the
file named in the first 16 bytes to the file named in the second 16 bytes. The drive code dr

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 103

at position 0 is used to select the drive, while the drive code for the new file name at
position 16 of the FCB is assumed to be zero. Upon return, register A is set to a value
between 0 and 3 if the rename was successful and oFFH (255 decimal) if the first file name
could not be found in the directory scan.

Function 24: Return Log-in Vector

En try Parameters:
Register C: 18H

Returned Value:
Registers HL: Log-in Vector

The log-in vector value returned by CP/M is a 16-bit value in HL, where the least
significant bit of L corresponds to the first drive A and the high order bit of H corresponds
to the sixteenth drive, labeled P. A 0 bit indicates that the drive is not on-line, while a 1 bit
marks a drive that is actively on-line as a result of an explicit disk drive selection or an
implicit drive select caused by a file operation that specified a nonzero dr field. The user
should note that compatibility is maintained with earlier releases, since registers A and L
contain the same values upon return.

Function 25: Return Current Disk

Entry Parameters:
Register C: 19H

Returned Value:
Register A: Current Disk

Function 25 returns the currently selected default disk number in register A. The disk
numbers range from 0 through 15 corresponding to drives A through P.

Function 26: Set DMA Address

Entry Parameters:
Register C: lAH
Registers DE: DMA Address

DMA is an acronym for Direct Memory Address, which is often used in connection
with disk controllers that directly access the memory of the mainframe computer to
transfer data to and from the disk subsystem. Although many computer systems use
non-DMA access (Le., the data are transferred through programmed I/O operations), the
DMA address has, in CP/M, come to mean the address at which the 128-byte data record
resides before a disk write and after a disk read. Upon cold start, warm start, or disk

104 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

system reset, the DMA address is automatically set to BOOT +0080H. The Set DMA
function, however, can be used to change this default value to address another area of
memory where the data records reside. Thus, the DMA address becomes the value
specified by DE until it is changed by a subsequent Set DMA function, cold start, warm
start, or disk system reset.

Function 27: Get ADDR(Alloc)

En try Parameters:
Register C: IBH

Returned Value:
Registers HL: ALLOC Address

An allocation vector is maintained in main memory for each on-line disk drive.
Various system programs use the information provided by the allocation vector to
determine the amount of remaining storage (see the STAT program). Function 27
returns the base address of the allocation vector for the currently selected disk drive.
However, the allocation information may be invalid if the selected disk has been marked
read/only. Although this function is not normally used by application programs, addi­
tional details of the allocation vector are found in Chapter 6.

Function 28: Write Protect Disk

Entry Parameters:
Register C: ICH

The disk write protect function provides temporary write protection for the currently
selected disk. Any attempt to write to the disk before the next cold or warm start
operation produces the message:

BDOS ERR on d: RIO

Function 29: Get Read/Only Vector

Entry Parameters:
Register C: IDH

Returned Value:
Registers HL: R/O Vector Value

Function 29 returns a bit vector in register pair HL, which indicates drives that have
the temporary read-only bit set. As in function 24, the least significant bit corresponds to
drive A, while the most significant bit corresponds to drive P. The R/O bit is set either by
an explicit call to function 28 or by the automatic software mechanisms within CP/M that
detect changed disks.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 105

Function 30: Set File Attributes

Entry Parameters:
Register C: lEH
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

The Set File Attributes function allows programmatic manipulation of permanent
indicators attached to files. In particular, the R/O and System attributes (tI' and t2') can
be set or reset. The DE pair addresses an unambiguous file name with the appropriate
attributes set or reset. Function 30 searches for a match and changes the matched
directory entry to contain the selected indicators. Indicators fl' through f4' are not
currently used, but may be useful for applications programs, since they are not involved
in the matching process during file open and close operations. Indicators f5' through f8'
and t3' are reserved for future system expansion.

Function 31: Get ADDR(Disk Parms)

Entry Parameters:
Register C: lFH

Returned Value:
Registers HL: DPB Address

The address of the BIOS resident disk parameter block is returned in HL as a result of
this function call. This address can be used for either of two purposes. First, the disk
parameter values can be extracted for display and space computation purposes, or
transient programs can dynamically change the values of current disk parameters when
the disk environment changes, if required. Normally, application programs will not
require this facility.

Function 32: Set/Get User Code

Entry Parameters:
Register C:
Register E:

Returned Value:

20H
oFFH (get) or
User Code (set)

Register A: Current Code or
(no value)

An application program can change or interrogate the currently active user number
by calling function 32. If register E = oFFH, the value of the current user number is

106 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

returned in register A, where the value is in the range of 0 to 15. If register E is not oFFH,
the current user number is changed to the value of E (modulo 16).

Function 33: Read Random

Entry Parameters:
Register C: 21H
Registers DE: FCB Address

Returned Value:
Register A: Return Code

The Read Random function is similar to the sequential file read operation of previous
releases, except that the read operation takes place at a particular record number, selected
by the 24-bit value constructed from the 3-byte field following the FCB (byte positions rO
at 33, rl at 34, and r2 at 35). The user should note that the sequence of 24 bits is stored
with least significant byte first (rO), middle byte next (rl), and high byte last (r2). CP/M
does not reference byte r2, except in computing the size of a file (function 35). Byte r2
must be zero, however, since a nonzero value indicates overflow past the end of file.

Thus, the rO, rl byte pair is treated as a double-byte, or "word" value, which contains
the record to read. This value ranges from 0 to 65535, providing access to any particular
record of the 8-megabyte file. To process a file using random access, the base extent
(extent 0) must first be opened. Although the base extent mayor may not contain any
allocated data, this ensures that the file is properly recorded in the directory and is visible
in OIR requests. The selected record number is then stored in the random record field (rO,
rl), and the BOOS is called to read the record. Upon return from the call, register A either
contains an error code, as listed below, or the value 00, indicating the operation was·
successful. In the latter case, the current OMA address contains the randomly accessed
record. The user should note that contrary to the sequential read operation, the record
number is not advanced. Thus, subsequent random read operations continue to read the
same record.

Upon each random read operation, the logical extent and current record values are
automatically set. Thus, the file can be sequentially read or written, starting from the
current randomly accessed position. However, the user should note that, in this case, the
last randomly read record will be reread as one switches from random mode to sequential
read and the last record will be rewritten as one switches to a sequential write operation.
The user can, of course, simply advance the random record position following each
random read or write to obtain the effect of a sequential I/O operation.

Error codes returned in register A following a random read are listed below.

01 reading unwritten data

02 (not returned in random mode)

03 cannot close current extent

04 seek to unwritten extent

05 (not returned in read mode)

06 seek past physical end of disk

Error codes 01 and 04 occur when a random read operation accesses a data block that
has not been previously written or an extent that has not been created, which are
equivalent conditions. Error code 03 does not normally occur under proper system

ALL IN FORMA nON PR£5ENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 107

operation. If it does, it can be cleared by simply rereading or reopening extent zero as long
as the disk is not physically write protected. Error code 06 occurs whenever byte r2 is
nonzero under the current 2.0 release. Normally, nonzero return codes can be treated as
missing data, with zero return codes indicating operation complete.

Function 34: Write Random

Entry Parameters:
Register C: 22H
Registers DE: FCB Address

Returned Value:
Register A: Return Code

The Write Random operation is initiated similarly to the Read Random call, except
that data are written to the disk from the current DMA address. Further, if the disk
extent or data block that is the target of the write has not yet been allocated, the allocation
is performed before the write operation continues. As in the Read Random operation, the
random record number is not changed as a result of the write. The logical extent number
and current record positions of the file control block are set to correspond to the random
record that is being written. Again, sequential read or write operations can begin follow­
ing a random write, with the notation that the currently addressed record is either read or
rewritten again as the sequential operation begins. The user can also simply advance the
random record position following each write to get the effect of a sequential write
operation. The user should note that, in particular, reading or writing the last record of an
extent in random mode does not cause an automatic extent switch as it does in sequential
mode.

The error codes returned by a random write are identical to the random read opera­
tion with the addition of error code os, which indicates. that a new extent cannot be
created as a result of directory overflow.

Function 35: Compute File Size

En try Parameters:
Register C: 23H
Registers DE: FCB Address

Returned Value:
Random Record Field Set

When computing the size of a file, the DE register pair addresses an FCB in random
mode format (bytes rO, rl, and r2 are present). The FCB contains an unambiguous file
name that is used in the directory scan. Upon return, the random record bytes contain the
"virtual" file size, which is, in effect, the record address of the record following the end of
the file. Following a call to function 35, if the high record byte r2 is 01, the file contains the
maximum record count 65536. Otherwise, bytes rO and rl constitute a l6-bit value (rO is
the least significant byte, as before), which is the file size.

108 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Data can be appended to the end of an existing file by simply calling function 35 to set
the random record position to the end of file and then performing a sequence of random
writes starting at the preset record address.

The virtual size of a file corresponds to the physical size when the file is written
sequentially. If the file was created in random mode and "holes" exist in the allocation, the
file may in fact contain fewer records than the size indicates. For example, if only the last
record of an 8-megabyte file is written in random mode (Le., record number 65535), the
virtual size is 65536 records, although only one block of data is actually allocated.

Function 36: Set Random Record

En try Parameters:
Register C: 24H
Registers DE: FCB Address

Returned Value:
Random Record Field Set

The Set Random Record function causes the BOOS automatically to produce the
random record position from a file that has been read or written sequentially to a
particular point. The function can be useful in two ways.

First, it is often necessary initially to read and scan a sequential file to extract the
positions of various "key" fields. As each key is encountered, function 36 is called to
compute the random record position for the data corresponding to this key. If the data
unit size is 128 bytes, the resulting record position is placed into a table with the key for
later retrieval. After scanning the entire file and tabulating the keys and their record
numbers, the user can move instantly to a particular keyed rec'ord by performing a
random read, using the corresponding random record number that was saved earlier. The
scheme is easily generalized for variable record lengths, since the program need only
store the buffer-relative byte position along with the key and record number to find the
exact starting position of the keyed data at a later time.

A second use of function 36 occurs when switching from a sequential read or write
over to random read or write. A file is sequentially accessed to a particular point in the file,
function 36 is called, which sets the record number, and subsequent random read and
write operations continue from the selected point in the file.

Function 37: Reset Drive

Entry Parameters:
Register C: 25H
Registers DE: Drive Vector

Returned Value:
Register A: ooH

The Reset Drive function allows resetting of specified drives. The passed parameter is
a 16 bit vector of drives to be reset; the least significant bit is drive A:.

To maintain compatibility with MP/M, CP/M returns a zero value.

ALL IN FORMAll0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 109

Function 40: Write Random With Zero Fill

Entry Parameters:
Register C: 28H
Registers DE: FCB Address

Returned Value:
Register A: Return Code

The Write Random With Zero Fill operation is similar to Function 34, with the
exception that a previously unallocated block is filled with zeros before the data are
written.

5.3 A Sample File-to-File Copy Program
The program shown below provides a relatively simple example of file operations. The

program source file is created as COPY.ASM using the CP/M ED program and then
assembled using ASM or MAC, resulting in a HEX file. The LOAD program is used to
produce a COPY.COM file, which executes directly under the CCP. The program begins
by setting the stack pointer to a local area and proceeds to move the second name from the
default area at 006CH to a 33-byte file control block called OFCB. The OFCB is then
prepared for file operations by clearing the current record field. At this point, the source
and destination FCBs are ready for processing, since the SFCB at oosCH is properly set
up by the CCP upon entry to the COpy program. That is, the first name is placed into the
default FCB, with the proper fields zeroed, including the current record field at 007CH.
The program continues by opening the source file, deleting any existing destination file,
and creating the destination file. If all this is successful, the program loops at the label
COpy until each record has been read from the source file and placed into the destination
file. Upon completion of the data transfer, the destination file is closed and the program
returns to the CCP command level by jumping to BOOT.

sample file-to-file copy program

at the ccp level, the command

copy a:x.y b:u.v

copies the file named x.y from' drive
a to a file named u.v. on drive b.

0000 = boot equ OOOOh ; system reboot
0005 = bdos equ 0005h ; bdos entry point
005c = fcbl equ 005ch ; first file name
005c = sfcb equ fcbl ; source fcb
006c = fcb2 equ 006ch ; second file name
.0080 = dbuff equ 0080h ; default buffer
0100 = tpa equ 0100h ; beginning of tpa

0009 = printf equ 9 ; print buffer func#
OOOf = openf equ 15 ; open file func#
0010 = closef equ 16 ; close file func#

110 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

0013 = deletef equ 19 ; delete fi Ie fu nc#
0014 = readf equ 20 ; sequential read
0015 = writef equ 21 ; sequential write
0016 = makef equ 22 ; make file func#

0100 org tpa ; beginning of tpa
0100 311 b02 Ixi sp,stack ; local stack

move second file name to dfcb
01030e10 mvi c,16 ; half an fcb
0105116cOO Ixi d,fcb2 ; sou rce of move
0108 21 da01 Ixi h,dfcb ; destination fcb
010b 1 a mfcb: Idax d ; source fcb
010c 13 inx d ; ready next
010d 77 mov m,a ; dest fcb
010e 23 inx h ; ready next
010f Od dcr c ; count 16 ... 0
0110 c20b01 jnz mfcb ; loop 16 times

name has been removed, zero cr
0113 af xra a ; a = OOh
011432fa01 sta dfcbcr ; cu rrent rec = 0

source and destination fcb's ready

0117115cOO Ixi d,sfcb ; source file
011 a cd6901 call open ; error if 255
011d 118701 Ixi d,nofile ; ready message
01203c inr a ; 255 becomes 0
0121 cc6101 cz finis ; done if no file

source file open, prep destination
012411da01 Ixi d,dfcb ; destination
0127 cd7301 call delete ; remove if present

012a 11 da01 Ixi d,dfcb ; destination
012d cd8201 call make ; create the file
0130 119601 Ixi d,nodir ; ready message
01333c inr a ; 255 becomes 0
0134 cc6101 cz finis ; done if no dir space

source file open, dest file open
copy until end of file on source

0137 115cOO copy: Ixi d,sfcb ; source
013a cd7801 call read ; read next record
013d b7 ora a ; end of file?
013e c25101 jnz eofile ; skip write if so

not end of file, write the record
014111da01 Ixi d,dfcb ; destination
0144 cd7d01 call write ; write record
0147 11 a901 Ixi d,space ; ready message
014a b7 ora a ; 00 if write ok
014b c46101 cnz finis ; end if so

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 111

014e c33701 jmp copy ; loop until eof

eofile: ; end of file, close destination
015111da01 Ixi d,dfcb ; destination
0154 cd6e01 call close ; 255 if error
0157 21 bb01 Ixi h,wrprot ; ready message
015a 3c inr a ; 255 beco m es 00
015b cc6101 cz finis ; shouldn't happen

copy operation complete, end
015e 11 cc01 Ixi d,normal ; ready message

finis: ; write message given by de, reboot
0161 Oe09 mvi c,printf
0163 cd0500 call bdos ; write message
0166 c30000 jmp boot ; reboot system

system interface subroutines
(all return directly from bdos)

01690eOf open: mvi c,openf
016b c30500 jmp bdos

016e Oe10 close: mvi c,closef
0170 c30500 jmp bdos

01730e13 delete mvi c,deletef
0175 c30500 jmp bdos

01780e14 read: mvi c,readf
017a c30500 jmp bdos

017d Oe15 write: mvi c,writef
017f c30500 jmp bdos

01820e16 make: mvi c,makef
0184 c30500 jmp bdos

console messages
0187 6e6f20f nofile: db 'no source file$'
0196 6e6f209 nodir: db 'no directory space$'
01 a9 6f75741 space: db 'out of data space$'
01 bb 7772695 wrprot: db 'write protected?$'
01 cc 636f700 normal: db 'copy complete$'

data areas
01da dfcb: ds 33 ; destination fcb
01fa = dfcbcr equ dfcb+32 ; cu rrent record

01fb ds 32 ; 16 level stack
stack:

021 b end

112 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

The user should note that there are several simplifications in this particular program.
First, there are no checks for invalid file names that could, fot: example, contain ambigu­
ous references. This situation could be detected by scanning the 32-byte default area
starting at location OOSCH for ASCII question marks. A check should also be made to
ensure that the file names have, in fact, been included (check locations oosDH and o06DH
for nonblank ASCII characters). Finally, a check should be made to ensure that the s04rce
and destination file names are different. An improvement in speed could be obtained by
buffering more data on each read operation. One could, for example, determine the size
of memory by fetching FBASE from location ooo6H and using the entire remaining
portion of memory for a data buffer. In this case, the programmer simply resets the DMA
address to the next successive 128-byte area before each read. Upon writing to the
destination file, the DMA address is reset to the beginning of the buffer and incremented
by 128 bytes to the end as each record is transferred to the destination file.

SA A Sample File Dump Utility
The file dump program shown below is slightly more complex than the simple copy

program given in the previous section. The dump program reads an input file, specified in
the CCP command line, and displays the content of each record in hexadecimal format at
the console. Note that the dump program saves the CCP's stack upon entry, resets the
stack to a local area, and restores the CCP's stack before returning directly to the CCP.
Thus, the dump program does not perform and warm start at the end of processing.

0100
0005 =
0001 =
0002 =
0009 =
OOOb =

OOOf =
0014 =

005c =

0080 =

OOOd =
OOOa =

005c =
005d =
0065 =

0068 =

006b =

007c =

; DUMP program reads input file and displays hex
data

bdos
cons
typef
printf
brkf

openf
readf

fcb

buff

cr
If

fcbdn
fcbfn
fcbft

fcbrl

fcbrc

fcbcr
I

org 100h
equ 0005h = ;bdos entry point
equ 1 ;read console
equ 2 ;type function
equ 9 ;buffer print entry
equ 11 ;break key function

;(true if char
equ 15 ;file open
equ 20 ;read function

equ 5ch ;file control block
;address

equ 80h ;input disk buffer
;address

non graphic characters
equ Odh ;carriage return
equ Oah ;Iine feed

file control block definitions
equ fcb+O ;disk name
equ fcb+1 ;file name
equ fcb+9 ;disk file type (3

; ch aracters)
equ fcb+12 ;file's current reel

; number
equ fcb+15 ;file's record count (0 to

;128)128)
equ fcb+32 ;current (next) record

; number (0

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 113

007d = fcbln equ fcb+33 ;fcb length

set up stack
0100 210000 Ixi h,O
0103 39 dad sp

entry stack pointer in hi from the ccp
0104 221502 shld oldsp

set sp to local stack area (restored at
finis)

0107 315702 Ixi sp,stktop
read and print successive buffers

010a cdc101 call setup ;set up input file
010d feff cpi 255 ;255 if file not present
010f c21 b01 jnz openok ;skip if open is ok

file not there, give error message and
return

0112 11f301 Ixi d,opnmsg
0115 cd9c01 call err
0118 c35101 jmp finis ;to return

openok: ;open operation ok, set buffer index to
;end

011 b 3e80 mvi a,80h
011 d 321302 sta ibp ;set buffer pOinterto 80h

hi contains next address to print
0120210000 Ixi h,O ;start with 0000

gloop:
0123 e5 pushh ;save line position
0124 cda201 call gnb
0127 e1 pop h ; recall line position
0138 da5101 jc finis ;carry set by gn b if end

;file
012b 47 mov b,a

print hex values
check for line fold

012c 7d mova,1
012d e60f ani Ofh ;check low 4 bits
012f c24401 jnz nonum

print line number
0132 cd7201 call crlf

check for break key
0135 cd5901 call break

accum Isb = 1 if character ready
0138 Of rrc ;into carry
0139 da5101 jc finis ;don't print any more

013c 7c mova,h
013d cd8f01 call phex
01407d mova,1
0141 cd8f01 call phex

nonum:
0144 23 inx h ;to next line number

114 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

01453e20 mvi a,' ,

0147 cd6501 call pchar
014a 78 mova,b
014b cd8f01 call phex
014e c32301 jmp gloop

finis:
end of dump, return to cco
(note that a jmp to OOOOh reboots)

0151 cd7201 call crlf
01542a1502 Ihld oldsp
0157 f9 sphl

stack pointer contains ccp's stack
location

0158 c9 ret ;to the ccp

subroutines

break: ;check break key (actually any key will
;do)

0159 e5d5c5 push h! push d! push b; environment
; saved

015c OeOb mvi c,brkf
015e cd0500 call bdos
0161 c1 d1 e1 pop b! pop d! pop h; environment

restored
0164 c9 ret

pchar: ;print a character
0165 e5d5c5 push h! push d! push b; saved
01680e02 mvi c,typef
016a 5f move,a
016b cd0500 call bdos
016e c1 d1 e1 pop b! pop d! pop h; restored
0171 c9 ret

crlf:
01723eOd mvi a,cr
0174 cd6501 call pchar
01773eOa mvi a,lf
0179 cd6501 call pchar
017c c9 ret

pnib: ;print nibble in reg a
017d e60f ani Ofh ;Iow 4 bits
017f feOa cpi 10
0181 d28901 jnc p10

less than or equal to 9
0184 c630 \ adi '0'
0186 c38b01 jmp prn

greater or equal to 10
0189 c637 p10: adi 'a' - 10

ALL INFORMATION PRfSENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 115

018b cd6S01 prn: call pchar
018e c9 ret

phex: ;print hex char in reg a
018f fS pushpsw
0190 Of rrc
0191 Of rrc
0192 Of rrc
0193 Of rrc
0194 cd7d01 call pnib ;print nibble
0197 f1 pop psw
0198 cd7d01 call pnib
019b c9 ret

err: ;print error message
d,e addresses message ending with "$"

019c Oe09 mvi c,printf ;print buffer
;function

01ge cdOSOO call bdos
01 a1 c9 ret

gnb: ;get next byte
01a23a1302 Ida ibp
01 as fe80 cpi 80h
01 a7 c2b301 jnz gO

read another buffer

01 aa cdce01 call diskr
01 ad b7 ora a ;zero value if read ok
01 ae cab301 jz gO ;for another byte

end of data, return with carry set for eof
01 b1 37 stc
01 b2 c9 ret

gO: ;read the byte at buff+reg a
01 b3 Sf move,a ;Is byte of buffer index
01 b4 1600 mvi d,O ;dou ble precision

; index to de
01 b6 3c inr a ;index=index+1
01 b7 321302 sta ibp ;back to memory

pointer is incremented
save the current file address

01 ba 218000 Ixi h,buff
01 bd 19 dad d

absolute character address is in hi
01 be 7e mova,m

byte is in the accumulator
01 bf b7 ora a ;reset carry bit
01 cO c9 ret

setup: ;set up file
open the file for input

01 c1 af xra a ;zero to accum

116 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

01c2327cOO

01 c5 115cOO
01c80eOf
01ca cd0500

01cd c9

01 ce e5d5c5
01 d1 115cOO
01 d4 Oe14
01 d6 cd0500
01d9 c1d1e1
01 dc c9

01 dd 46494cO
01 f3 OdOa4eO

0213
0215

0217

0257

diskr:

sta fcbcr

Ixi d,fcb
mvi c,openf
call bdos

;clear cu rrent record

255 in accum if open error
ret

;read disk file record
push h! push d! push b
Ixi d,fcb
mvi c,readf
call bdos
pop b! pop d! pop h
ret

fixed message area
signon: db 'file dump version 2.0$'
opnmsg: db cr,lf,'no input file present on

disk$'

ibp:
oldsp:

stktop:

variable area
ds 2
ds 2

stack area
ds 64

end

;input buffer pointer
;entry sp valuefrom ccp

;reserve 32 level stack

5.5 A Sample Random Access Program
This chapter concludes with an extensive example of random access operation. The

program listed below performs the simple function of reading or writing random records
upon command from the terminal. Given that the program has been created, assembled,
and placed into a file labeled RANDOM. COM, the CCP level command

RANDOM X.DAT

starts the test program. The program looks for a file by the name X.DAT (in this
particular case) and, if found, proceeds to prompt the console for input. If not found, the
file is created before the prompt is given. Each prompt takes the form

next command?

and is followed by operator input, terminated by a carriage return. The input commands
take the form

nW nR Q

where n is an integer value in the range 0 to 65535, and W, R, and Q are simple command
characters corresponding to random write, random read, and quit processing, respec­
tively. If the W command is issued, the RANDOM program issues the prompt

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 117

type data:.

The opera tor then responds by typing up to 127 characters, followed by a carriage return.
RANDOM then writes the character string into the X.DAT file at record n. If the R
command is issued, RANDOM reads record number n and displays the string value at the
console. If the Q command is issued, the X.DAT file is closed, and the program returns to
the CCP. In the interest of brevity, the only error message is

error, try again.

The program begins with an initialization section where the input file is opened or
created, followed by a continuous loop at the label "ready" where the individual com­
mands are interpreted. The default file control block at OOSCH and the default buffer at
0080H are used in all disk operations. The utility subroutines then follow, which contain
the principal input line processor, called "readc." This particular program shows the
elements of random access processing, and can be used as the basis for further program
development.

Sample Random Access Program for CP/M 2.0

0100 org 100h ;base of tpa

0000 = reboot equ OOOOh ;system reboot
0005 = bdos equ OOOSh ;bdos entry point

0001 = ,coninp equ 1 ;console input function
0002 = conout equ 2 ;console output function
0009 = pstring equ 9 ;print string until '$'
OOOa = rstring equ 10 ; read console buffer
OOOc = version equ 12 ;return version number
OOOf = openf equ 15 ;file open function
0010 = closef equ 16 ;close function
0016 = makef equ 22 ;make file function
0021 = readr equ 33 ;read random
0022 = writer equ 34 ;write random

OOSc = fcb equ OOSch ;default file control
;block

007d = ranrec equ fcb+33 ; random record position
007f = ranovf equ fcb+3S ;high order (overflow)

;byte
0080 = buff equ 0080h ;buffer address

OOOd = cr equ Odh ;carriage return
OOOa = If equ Oah ;line feed

Load SP, Set-Up File for Random Access

0100 31 bcOO Ixi sp,stack

version 2.0
01030eOc mvi c,version

118 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

0105 cd0500
0108 fe20
010a d21600

010d 111 bOO
0110 cddaOO
0113 c30000

01160eOf
0118 115cOO
011 b cd0500
011 e 3c
011 f c23700

01220e16
0124115cOO
0127 cd0500
012a 3c
012b c23700

012e 113aOO
0131 cddaOO
0134 c30000

0137 cde500
013a 227dOO
013d 217fOO
01403600
0142 fe51
0144 c25600

01470e10
0149115cOO
014c cd0500
014f 3c
0150 cab900
0153 c30000

versok:

call
cpi

bdos
20h

jnc versok
;version 2.0 or better?

bad version, message and go back
Ixi d,badver
call print
jmp reboot

correct version for random access
mvi c,openf ;open default fcb
Ixi d,fcb
call bdos
inr
jnz

a
ready

;err 255 becomes zero

cannot open file, so create it
mvi c,makef
Ixi d,fcb
call bdos
inr
jnz

a
ready

;err 255 becomes zero

cannot create file, directory full
Ixi d,nospace
call print
jmp reboot ;back to ccp

Loop Back to Ready After Each Command

ready:
file is ready for processing

call readcom ;read next command
shld ranrec ;store input record#
Ixi h,ranovf
mvi m,O ;clear high byte if set
cpi 'Q' ;quit?
jnz notq

quit processing, close file
mvi c,closef
Ixi d,fcb
call bdos
inr a ;err 255 becomes 0
jz error ;error message, retry
jmp reboot ;back to ccp

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 119

0156 fe57
0158 c289QO

015b 114dOO
015e cddaOO
0161 Oe7f
0163 218000

0166 c5
0167 e5
0168 cdc200
016b e1
016c c1
016d feOd
016f ca7800

0172 77
0173 23
01740d
0175 c26600

0178 3600

017a Oe22
017c 115cOO
017f cd0500
0182 b7
0183 c2b900
0186 c33700

0189 fe52
018b c2b900

018e Oe21
0190 115cOO
0193 cd0500
0196 b7
0197 c2b900

End of Quit Command, Process Write

notq:

rloop:

erloop:

not the quit command, random write?
cpi oW'
jnz notw

this is a random write, fill buffer until cr
Ixi d,datmsg
call print ;data prompt
mvi c,127 ;up to 127 characters
Ixi h,buff ;destination
; read next character to buff
push b ;save cou nter
push h ;next destination
call getchr ;character to a
pop h ;restore counter
pop b ; restore next to fi II
cpi cr ;end of line?
jz erloop
not end, store character
mov
inx
dcr
jnz

m,a
h
c
rloop

;next to fill
;counter goes down
;end of buffer?

end of read loop, store 00
mvi m,O

write the record to selected record number
mvi
Ixi
call
ora
jnz
jmp

c,writer
d,fcb
bdos
a
error
ready

;error code zero?
;message if not
;for another record

End of Write Command, Process Read

notw:
not a write command, read record?
cpi 'R'
jnz error

read random record
c,readr
d,fcb
bdos

;skip if not

mvi
Ixi
call
ora
jnz

a ;return code OO?
error

read was successful, write to console

120 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

019a cdcfOO
019d Oe80
019f 218000

01a27e
01a323
01a4 e67f
01a6 ca3700

01a9 c5
01aa e5
01ab fe20
01ad d4c800
01 bO e1
01 b1 c1
01 b2 Od
01 b3 c2a200
01 b6 c33700

01 b9 115900
01 bc cddaOO
01 bf c33700

01c20e01
01c4 cd0500
01c7 c9

01c80e02
01 ca 5f
01cb cd0500
01ce c9

01cf 3eOd
01 d1 cdc800
01d43eOa
01d6 cdc800
01 d9 c9

call crlf ;new line
mvi c,128 ;max 128 characters
Ixi h,buff ;next to get

wloop:
mov a,m ;next character
inx h ;next to get
ani 7fh ;mask parity
jz ready ;for another command

; if 00
push b ;save counter
push h ;save next to get
cpi ;graphic?
cnc putchr ;skip output if not
pop h
pop b
dcr c ;count=count-1
jnz wloop
jmp ready

End of Read Command, All Errors End Up Here

error:
Ixi
call
jmp

d,errmsg
print
ready

Utility Subroutines for Console 110

getchr:

putchr:

crlf:

; read next console character to a
mvi
call
ret

c,coninp
bdos

;write character from a to console
mvi c,conout
mov
call
ret

e,a
bdos

;character to send
;send character

;send carriage return line feed
mvi a,cr ;carriage return
call putchr
mvi a,lf ;line feed
call putchr
ret

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 121

print:
;print the buffer addressed by de until $

01 da d5 push d
01 db cdcfOO call crlf
01 de d1 pop d ;new line
01 df Oe09 mvi c,pstring
01e1 cd0500 call bdos ;print the string
01e4 c9 ret

readcom:
;read the next command line to the conbuf

01e5116bOO Ixi d,prompt
01e8 cddaOO call print ;command?
01eb OeOa mvi c,rstring
01ed 117aOO Ixi d,conbuf
01f0 cd0500 call bdos ;read command line

command line is present, scan it
01f3210000 Ixi h,O ;start with 0000
01f6117cOO Ixi d,conlin ;command line
01f91a readc: Idax d ;next command

;character
01fa13 inx d ;to next com mand

; position
01 fb b7 ora a ;cannot be end of

;command
01fc c8 rz

not zero, numeric?
01fd d630 sui '0'
01 ff feOa cpi 10 ;carry if numeric
0201 d21300 jnc endrd

add-in next digit
0204 29 dad h ;*2
02054d mov c,1
020644 mov b,h ;bc = valu~ * 2
0207 29 dad h ;*4
0208 29 dad h ;*8
0209 09 dad b ;*2 + *8 = *10
020a 85 add I ;+digit
020b 6f mov I,a
020c d2f900 jnc readc ;for another char
020f 24 inr h ;overflow
0210 c3f900 jmp readc ;for another char

endrd:
end of read, restore value in a

0213 c630 adi '0' ;command
0215 fe61 cpi 'a' ;translate case?
0217 d8 rc

lower case, mask lower case bits
0218 e65f ani 101$1111 b
021 a c9 ret

122 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

String Data Area for Console Messages

badver:
021 b 536f79 db 'sorry, you need cp/m version 2$'

nospace:
023a 4e6f29 db 'no directory space$'

datmsg:
024d 547970 db 'type data: $'

errmsg:
0259 457272 db 'error, try again.$'

prompt:
026b 4e6570 db 'next command? $'

Fixed 'and Variable Data Area

027a 21 conbuf: db conlen ;Iength of console buffer
027b consiz: ds 1 ;resulting size after read
027c conlin: ds 32 ; length 32 buffer
0021 = conlen equ $-consiz

029c ds 32 ;16 level stack
stack:

02bc end

Again, major improvements could be made to this particular program to enhance its
operation. In fact, with some work, this program could evolve into a simple data base
management system. One could, for example, assume a standard record size of 128 bytes,
consisting of arbitrary fields within the record. A program, called GETKEY, could be
developed that first reads a sequential file and extracts a specific field defined by the
operator. For example, the-command

GETKEY NAMES.OAT LASTNAME 10 20

would cause GETKEY to read the data base file NAMES.OAT and extract the "LAST­
NAME" field from each record, starting in position 10 and ending at character 20.
GETKEY builds a table in memory consisting of each particular LASTNAME field, along
with its 16-bit record number location within the file. The GETKEY program then sorts
this list and writes a new file, called LASTNAME.KEY, which is an alphabetical list of
LASTNAME fields with their corresponding record numbers. (This list is called an inverted
index in information retrieval parlance.)

If the programmer were to rename the program shown above as QUER Y and massage
it so that it reads a sorted key file into memory, the command line might appear as

QUERY NAMES.OAT LASTNAME.KEY.

Instead of reading a number, the QUERY program reads an alphanumeric string that is a
particular key to find in the NAMES.OAT data base. Since the LASTNAME.KEY list is
sorted, one can find a particular entry rapidly by performing a "binary search," similar to
looking up a name in the telephone book. That is, starting at both ends of the list, one
examines the entry halfway in between and, if not matched, splits either the upper half or

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 123

the lower half for the next search. The user will quickly reach the item he or she is looking
for and find the corresponding record number. The user should fetch and display this
record at the console, just as was done in the program shown above.

With some more work, the user can allow a fixed grouping size that differs from the
128-byte record shown above. This is accomplished by keeping track of the record
number as well as the byte offset within the record. Knowing the group size, one
randomly accesses the record containing the proper group, offset to the beginning of the
group within the record read sequentially until the group size has been exhausted.

Finally, one can improve QUERY considerably by allowing boolean expressions,
which compute the set of records that satisfy several relationships, such as a LAST NAME
between HARDY and LAUREL and an AGE lower than 45. Display all the records that fit
this description. Finally, if the user's lists are getting too big to fit into memory, he or she
should randomly access key files from the disk as well.

5.6 System Function Summary
FUNCTION FUNCTION INPUT OUTPUT
NUMBER NAM'E

Decimal Hex

0 0 System Reset C = OOH none
1 1 Console Input C = 01H A = ASCII char
2 2 Console Output E = char none
3 3 Reader Input A = ASCII char
4 4 Punch Output E = char none
5 5 List Output E = char none
6 6 Direct Console 1/0 C = 06H A = char or status

E = OFFH (input) or (no value)
OFEH (status) or
char (output)

7 7 Get 1/0 Byte none A = 1/0 Byte
Value

8 8 Set 1/0 Byte E = 1/0 Byte none
9 9 Print String DE = Buffer Address none

10 A Read Console Buffer DE = Buffer Console
Characters
in Buffer

11 B Get Console Status none A = OO/non zero
12 C Return Version Number none HL: Version

Number
13 D Reset Disk System none none
14 E Select Disk E = Disk Number none
15 F Open File DE = FCB Address FF if not fou nd
16 10 Close File DE = FCB Address FF if not fou nd

124 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

17 11 Search For First DE = FCB Address A = Directory
Code

18 12 Search For Next none A = Directory
Code

19 13 Delete File DE = FCB Address A = none
20 14 Read Sequential DE = FCB Address A = Error Code
21 15 Write Sequential DE = FCB Address A = Error Code
22 16 Make File DE = FCB Address A = FF if no DIR

Space
23 17 Rename File DE = FCB Address A = FF if not

found
24 18 Return Login Vector none HL = Login

Vector*
25 19 Return Current Disk none A = Current Disk

Number
26 1A Set DMA Address DE = DMA Address none
27 1B Get ADDR (ALLOC) none HL = ALLOC

Address *
28 1C Write Protect Disk none none
29 1D Get Read/only Vector none HL = R/O

Vector Value *
30 1E Set File Attributes DE = FCB Address A= none
31 1F Get ADDR (Disk Parms) none HL = DPB

Address
32 20 Set/Get User Code E = OFFH for Get User Number

E = 00 to OFH for Set
33 21 Read Random DE = FCB Address A = Error Code
34 22 Write Random DE = FCB Address A = Error Code
35 23 Compute File Size DE = FCB Address rO, r1, r2
36 24 Set Random Record DE = FCB Address rO, r1, r2
37 25 Reset Drive DE = Drive Vector A=O
38 26 Access Drive not supported
39 27 Free Drive not supported
40 28 Write Random with Fill DE = FCB A = Error Code

*Note that A = L, and B = H upon return.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 125

6
CP 1M 2 Alteration

6.t Introduction
The standard CP/M system assumes operation on an Intel MDS-800 microcomputer

development system, but is designed so the user can alter a specific set of subroutines that
define the hardware operating environment.

Although standard CP/M 2 is configured for single density floppy disks, field­
alteration features allow adaptation to a wide variety of disk subsystems from single drive
minidisks through high-capacity, "hard disk" systems. To simplify the following adapta­
tion process, it is assumed that CP/M 2 will first be configured for single density floppy
disks where minimal editing and debugging tools are available. If an earlier version of
CP/M is available, the customizing process is eased considerably. In this latter case, the
user may wish to review the system generation process and skip to later sections that
discuss system alteration for nonstandard disk systems.

To achieve device independence, CP/M is separated into three distinct modules:

BIOS

BOOS

CCP

basic I/O system, which is environment dependent

basic disk operating system, which is not dependent upon the hard­
ware configura tion

the console command processor, which uses the BOOS

Of these modules, only the BIOS is dependent upon the particular hardware. That is,
the user can "patch" the distribution version of CP/M to provide a new BIOS that
provides a customized interface between the remaining CP/M modules and the user's
own hardware system. This document provides a step-by-step procedure for patching a
new BIOS into CP/M.

All disk-dependent portions of CP/M 2 are placed into a BIOS, a resident "disk parameter
block," which is either hand coded or produced automatically using the disk definition
macro library provided with CP/M 2. The end user need only specify the maximum
number of active disks, the starting and ending sector numbers, the data allocation size,
the maximum extent of the logical disk, directory size information, and reserved track
values. The macros use this information to generate the appropriate tables and table
references for use during CP/M 2 operation. Deblocking information is provided, which

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 127

aids in assembly or disassembly of sector sizes that are multiples of the fundamental 128
byte data unit, and the system alteration manual includes general purpose subroutines
that use the deblocking information to take advantage of larger sector sizes. Use of these
subroutines, together with the table-drive data access algorithms, makes CP/M 2 a
universal data management system.

File expansion is achieved by providing up to 512 logical file extents, where each logical
extent contains 16K bytes of data. CP/M 2 is structured, however, so that as much as
128K bytes of data are addressed by a single physical extent (corresponding to"a single
directory entry) maintaining compatibility with previous versions while taking advan­
tage of directory space.

If CP/M is being tailored to a computer system for the first time, the new BIOS
requires some simple software development and testing. The standard BIOS is listed in
Appendix A and can be used as a model for the customized package. A skeletal version of
the BIOS given in Appendix B can serve as the basis for a modified BIOS. In addition to
the BIOS, the user must write a simple memory loader, called GETSYS, that brings the
operating system into memory. To patch the new BIOS into CP/M, the user must write
the reverse of GETSYS, called PUTSYS, which places an altered version of CP/M back
onto the diskette. PUTSYS can be derived from GETSYS by changing the disk read
commands into disk write commands. Sample skeletal GETSYS and PUTSYS programs
are described in Section 6.4 and listed in Appendix C. To make the CP/M system load
automatically, the user must also supply a cold start loader, similar to the one provided
with CP/M (listed in Appendices A and D). A skeletal form of a cold start loader is given in
Appendix E, which serves as a model for the loader.

6.2 First Level System Regeneration
The procedure to patch the CP/M system is given below. Address references in each

step are shown with "H" denoting the hexadecimal radix, and are given for a 20K CP/M
system. For larger CP/M systems, a "bias" is added to each address that is shown with a
"+b" following it, where b is equal to the memory size-20K. Values for b in various
standard memory sizes are

24K:

32K:

40K:

48K:

56K:

62K:

64K:

b = 24K - 20K = 4K = 1000H

b = 32K - 20K = 12K = 3000H

b = 40K - 20K = 20K = 5000H

b = 48K - 20K = 28K = 7000H

b = 56K - 20K = 36K = 9000H

b = 62K - 20K = 42K = A800H

b = 64K - 20K = 44K = BOOOH

It should be noted that the standard distribution version of CP/M is set for operation
within a 20K memory system. Therefore, the user must first bring up the 20K CP/M
system, then configure it for actual memory size (the user should see Section 6.3).

The user should:

1. Read Section 6.4 and write a GETSYS program that reads the first two tracks of a
diskette into memory. The program from the diskette must be loaded starting at
location 3380H. GETSYS is coded to start at location 100H (base of the TPA), as
shown in Appendix C.

128 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

2. Test the GETSYS program by reading a blank diskette into memory and check to
see that the data have been read properly and that the diskette has not been altered in
any way by the GETSYS program.

3. Run the GETSYS program using an initialized CP/M diskette to see if GETSYS
loads CP/M starting at 3380H (the operating system actually starts 128 bytes later at
3400H).

4. Read Section 6.4 and write the PUTSYS program. This writes memory starting
at 3380H back onto the first two tracks of the diskette. The PUTSYS program should
be located at 200H, as shown in Appendix C.

5. Test the PUTSYS program using a blank, uninitialized diskette by writing a
portion of memory to the first two tracks; clear memory and read it back using
GETSYS. Test PUTSYS completely, since this program will be used to alter CP/M on
disk.

6. Study Sections 6.5,6.6, and 6.7 along with the distribution version of the BIOS
given in Appendix A and write a simple version that performs a similar function for
the customized environment. Use the program given in Appendix B as a model. Call
this new BIOS by the name CBIOS {customized BIOS}. Implement only the primitive
disk operations on a single drive and simple console input/output functions in this
phase.

7. Test CBIOS completely to ensure that it properly performs console character
I/O and disk reads and writes. Be careful to ensure that no disk write operations occur
during read operations and check that the proper track and sectors are addressed on all
reads and writes. Failure to make these checks may cause destruction of the initialized
CP/M system after it is patched.

8. Re"ferringto the table in Section 6.5, note that the BIOS is placed between
locations 4AOOH and 4FFFH. Read the CP/M system using GETSYS and replace the
BIOS segment by the CBIOS developed in step 6 and tested in step 7. This replace­
ment is done in memory.

9. Use PUTSYS to place the patched memory image of CP/M onto the first two
tracks of a blank diskette for testing.

10. Use GETSYS to bring the copied memory image from the test diskette back
into memory at 3380H and check to ensure that it has loaded back properly (clear
memory, if possible, before the load). Upon successful load, branch to the cold start
code at location 4AooH. The cold start routine will initialize page zero, then jump to
the CCP at location 3400H, which will call the BOOS, which will call the CBIOS. The
CBIOS will be asked by the CCP to read sixteen sectors on track 2, and CP/M will type
11 A >", the system prompt.

If difficulties are encountered, use whatever debug facilities are available to trace
and breakpoint the CBIOS.

11. Upon completion of step la, CP/M has prompted the console for a command
input. Test the disk write operation by typing

SAVE 1 X.COM

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 129

(All commands must be followed by a carriage return.) CP/M responds with another
prompt (after several disk accesses)

A>

If it does not, debug the disk write functions and retry.

12. Test the directory command by typing

DIR

CP/M responds with

A: X COM

13. Test the erase command by typing

ERA X.COM

CP/M responds with the A prompt. This is now an operational system that only
requires a bootstrap loader to function completely.

14. Write a bootstrap loader that is similar to GETSYS and place it on track 0,
sector 1 using PUTSYS (again using the test diskette, not the distribution diskette).
See Sections 6.5 and 6.8 for more information on the bootstrap operation.

15. Retest the new test diskette with the bootstrap loader installed by executing
steps II, 12, and 13. Upon completion of these tests, type a control-C {control and C
keys simultaneously}. The system executes a "warm start" that reboots the system,
and types the A prompt.

16. At this point, there is probably a good version of the customized CP/M system
on the test diskette. Use GETSYS to load CP/M from the test diskette. Remove the
test diskette, place the distribution diskette (or a legal copy) into the drive, and use
PUTSYS to replace the distribution version with the customized version. The user
should not make this replacement if unsure of the patch because this step destroys the
system that was obtained from Digital Research.

17. Load the modified CP/M system and test it by typing

DIR

CP/M responds with a list of files that are provided on the initialized diskette. One file
is the memory image for the debugger

DDT.COM

Note that from now on, it is important always to reboot the CP/M system (ctl-C is
sufficient) when the diskette is removed and replaced by another diskette, unless the
new diskette is to be read only.

18. Load and test the debugger by typing

DDT

(See Chapter 4 for operating procedures.)

130 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

19. Before making further CBIOS modifications, practice using the editor (see
Chapter 2), and assembler (see Chapter 3). Recode and test the GETSYS, PUTSYS,
and CBIOS programs using ED, ASM, and DDT. Code and test a COpy program that
does a sector-to-sector copy from one diskette to another to obtain back-up copies of
the original diskette. (Read the CP/M Licensing Agreement specifying legal responsi­
bilities when copying the CP/M system.) Place the copyright notice

Copyright ©, 1979
Digital Research

on each copy that is made with the COpy program.

20. Modify the CBIOS to include the extra functions for punches, readers, and
sign-on messages, and add the facilities for additional disk drives, if desired. These
changes can be made with the GETSYS and PUTSYS programs or by referring to the
regeneration process in Section 6.3.

The user should now have a good copy of the customized CP/M system. Although the
CBIOS portion of CP/M belongs to the user, the modified version cannot be legally copied
for anyone else's use.

It should be noted that the system remains file-compatible with all other CP/M
systems (assuming media compatibility), which allows transfer of nonproprietary soft­
ware between CP/M users.

6.3 Second Level System Generation
Once the system is running, the user will want to configure CP/M for the desired

memory size. Usually a memory image is first produced with the "MOVCPM" program
(system relocator) and then placed into a named disk file. The disk file can then be loaded,
examined, patched, and replaced using the debugger and the system generation program.
(The user should refer to Chapter 1.)

The CBIOS and BOOT are modified using ED and assembled using ASM, producing
files called CBIOS.HEX and BOOT. HEX, which contain the code for CBIOS and BOOT
in Intel hex format.

To get the memory image of CP/M into the TPA configured for the desired memory
size, the user should type the command

MOVCPM xx *

where xx is the memory size in decimal K bytes (e.g., 32 for 32K). The response will be

CONSTRUCTING xxK CP/M VERS 2.0

READY FOR "SYSGEN" OR

"SAVE 34 CPMxx.COM"

An image of CP/M in the TP A is configured for the requested memory size. The memory
image is at location 0900H through 227FH (i.e., the BOOT is at 0900H, the CCP is at
980H, the BOOS starts at 1180H, and the BIOS is at 1F80H). The user should note that
the memory image has the standard MDS-800 BIOS and BOOT on it. It is now necessary
to save the memory image in a file so that the user can patch the CBIOS and CBOOT into
it:

SAVE 34 CPMxx.COM

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 131

The memory image created by the "MOVCPM" program is offset by a negative bias so
that it loads into the free area of the TPA, and thus does not interfere with the operation
of CP/M in higher memory. This memory image can be subsequently loaded under DDT
and examined or changed in preparation for a new generation of the system. DDT is
loaded with the memory image by typing:

DDT CPMxx.COM Load DDT, then read the CPM image.

DDT should respond with

NEXT PC
2300 0100

(The DDT prompt)

The user can then give the display and disassembly ~ommands to examine portions of the
memory image between 900H and 227FH. The user should note, however, that to find
any particular address within the memory image, one must apply the negative bias to the
CP/M address to find the actual address. Track 00, sector 01, is loaded to location 900H
(the user should find the cold start loader at 900H to 97FH); track 00, sector 02, is loaded
into 980H (this is the base of the CCP); and so on through the entire CP/M system load. In
a 20K system, for example, the CCP resides at the CP/M address 3400H, but is placed into
memory at 980H by the SYSGEN program. Thus, the negative bias, denoted by n,
sa tisfies

3400H + n = 980H, or n = 980H - 3400H

Assuming that twos complement arithmetic, n =. D580H, which can be checked by

3400H + D580H = 10980H = 0980H (ignoring high-order overflow).

Note that for larger systems, n satisfies

(3400H+b) + n = 980H, or
n = 980H - (3400H + b), or
n = D580H - b

The value of n for common CP/M systems is given below.

Memory Size Bias b Negative Offset n

20K OOOOH D580H - OOOOH = D580H
24K 1000H D580H - 1000H = C580H
32K 3000H D580H - 3000H = A580H
40K 5000H D580H - 5000H = 8580H
48K 7000H D580H - 7000H = 6580H
56K 9000H D580H - 9000H = 4580H
62K A800H D580H - A800H= 2D80H
64K BOOOH D580H - BOOOH = 2580H

If the user wants to locate the address x within the memory image loaded under DDT in a
20K system, first type

Hx, n Hexadecimal sum and difference

132 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

and DDT will respond with the value of x+n (sum) and x-n (difference). The first number
printed by DDT is the actual memory address in the image where the data or code are
located. The DDT command

H3400,OS80

for example, will produce 980H as the sum, which is where the CCP is located in the
memory image under DDT.

The user should type the L command to disassemble portions of the BIOS located at
(4AOOH+b)-n, which, when one uses the H command, produces an actual address of
IF80H. The disassembly command would thus be

L1F80

It is now necessary to patch in the CBOOT and CBIOS routines. The BOOT resides at
location 0900H in the memory image. If the actual load address is "n", then to calculate the
bias (m), the user types the command

H900,n Subtract load address from target address.

The second number typed by DDT in response to the command is the desired bias (m). For
example, if the BOOT executes at 0080H, the command

H900,80

will prod uce

09800880 Sum and difference in hex.

Therefore, the bias "m" would be 0880H. To read-in the BOOT, the user should give the
command

ICBOOT.HEX Input file CBOOT.HEX.

Then

Rm Read CBOOT with a bias of m (=900H-n).

The user may now examine the CBOOT with

L900

The user is now ready to replace the CBIOS by examining the area at IF80H where the
original version of the CBIOS resides and then typing

ICBIOS.HEX Ready the hex file for loading.

The user assumes that the CBIOS is being integrated into a 20K CP/M system and thus
originates at location 4AoOH. To locate the CBIOS properly in the memory image under
DDT, one must apply the negative bias n for a 20K system when loading the hex file. This
is accomplished by typing

ROS80 Read the file with bias DS80H.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 133

Upon completion of the read, the user should reexamine the area where the CBIOS has
been loaded (use an "L1FBO" command) to ensure that it was loaded properly. When
satisfied that the change has been made, the user should return from DDT using a
control-C or, "Go" command.

SYSGEN is used to replace the patched memory image back onto a diskette (the user
should utilize a test diskette until sure of the patch), as shown in the following interaction:

SYSGEN

SYSGEN VERSION 2.0

SOURCE DRIVE NAME
(OR RETURN TO SKIP)

DESTINATION DRIVE NAME
(OR RETURN TO REBOOT)

DESTINATION ON B,
THEN TYPE RETURN

FUNCTION COMPLETE
DESTINATION DRIVE NAME
(OR RETURN TO REBOOT)

Start the SYSGEN program

Sign-on message from SYSGEN

Respond with a carriage return to skip the
CP/M read operation since the system is
already in memory

Respond with "B" to write the new system to
the diskette in drive B

Place a scratch diskette in drive B, then type
return.

The user should place the scratch diskette in drive A and then perform a cold start to
bring up the newly configured CP/M system.

The new CP/M system is then tested and the Digital Research copyright notice is
placed on the diskette, as specified in the Licensing Agreement:

Copyrigh t ©, 1979
Digital Research

6A Sample GETSYS and PUTSYS Programs
The following program provides a framework for the GETSYS and PUTSYS pro­

grams referenced in Sections 6.1 and 6.2. The READSEC and WRITE SEC subroutines
must be inserted by the user to read and write the specific sectors.

GETSYS PROGRAM - READ TRACKS 0 AND 1 TO MEMORY AT 3380H
REGISTER USE

A (SCRATCH REGISTER)

B TRACK COUNT (0, 1)

C SECTOR COUNT (1,2, ... ,26)

DE (SCRATCH REGISTER PAIR)

HL LOAD ADDRESS

SP SET TO STACK ADDRESS

START: LXI SP,3380H ;SET STACK POINTER TO SCRATCH
;AREA

LXI H,3380H ;SET BASE LOAD ADDRESS
MVI B,O ;ST ART WITH TRACK 0

134 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESfARCH

RDTRK:

RDSEC:

MVI C,1

CALL READSEC
LXI 0,128

DAD 0
INR C
MOV A,C
CPI 27
JC RDSEC

;READ NEXT TRACK (INITIALLY 0)
;READ STARTING WITH SECTOR 1

;READ NEXT SECTOR
;USER-SUPPLIED SUBROUTINE
;MOVE LOAD ADDRESS TO NEXT 1/2
;PAGE
;HL = HL + 128
;SECTOR = SECTOR + 1
;CHECK FOR END OF TRACK

;CARRY GENERATED IF SECTOR < 27

ARRIVE HERE AT END OF TRACK, MOVE TO NEXT TRACK
INR B
MOV A,B ;TEST FOR LAST TRACK
CPI 2
JC RDTRK ;CARRY GENERATED IF TRACK < 2

ARRIVE HERE AT END OF LOAD, HALT FOR NOW
HLT

USER-SUPPLIED SUBROUTINE TO READ THE DISK
READSEC:

ENTER WITH TRACK NUMBER IN REGISTER B,
SECTOR NUMBER IN REGISTER C, AND

ADDRESS TO FILL IN HL

PUSH B
PUSH H

;SAVE BAND C REGISTERS
;SAVE HL REGISTERS

perform disk read at this point, branch to

label START if an error occurs

POPH
POPS
RET

END START

;RECOVER HL
;RECOVER BAND C REGISTERS
;BACK TO MAIN PROGRAM

This program is assembled and listed in Appendix B for reference purposes, with an
assumed origin of IOoH. The hexadecimal operation codes that are listed on the left may
be useful if the program has to be entered through the panel switches.

The PUTSYS program can be constructed from GETSYS by changing only a few
operations in the GETSYS program given above, as shown in Appendix C. The register
pair HL becomes the dump address (next address to write), and operations upon these
registers do not change within the program. The READSEC subroutine is replaced by a
WRITESEC subroutine, which performs the opposite function: data from address HL are'
written to the track given by register B and sector given by register C. It is often useful to
combine GETSYS and PUTSYS into a single program during the test and development
phase, as shown in Appendix C.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 135

6.5 Disi<ette Organization
The sector allocation for the standard distribution version of CP/M is given here for

reference purposes. The first sector (see the table on the following page) contains an
optional software boot section. Disk controllers are often set up to bring track 0, sector I,
into memory at a specific location (often location OOOOH). The program in this sector,
called BOOT, has the responsibility of bringing the remaining sectors into memory
starting at location 3400H+b. If the user's controller does not have a built-in sector load,
the program in track a, sector 1 can be ignored. In this case, load the program from track a,
sector 2, to location 3400H+b.

As an example, the Intel MDS-800 hardware cold start loader brings track a, sector I,
into absolute address 3000H. Upon loading this sector, control transfers to location
3000H, where the bootstrap operation commences by loading the remainder of track a
and all of track 1 into memory, starting at 3400H+b. The user should note that this
bootstrap loader is of little use in a non-MDS environment, although it is useful to
examine it since some of the boot actions will have to be duplicated in the user's cold start
loader.

Track#
00
00

00

00

01

Sector#
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
01
02
03
04
05
06
07
08
09

Page#

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Memory Address
(boot address)

3400H+b
3480H+b
3500H+b
3580H+b
3600H+b
3680H+b
3700H+b
3780H+b
3800H+b
3880H+b
3900H+b
3980H+b
3AOOH+b
3A80H+b
3BOOH+b
3B80H+b

3COOH+b
3C80H+b
3DOOH+b
3D80H+b
3EOOH+b
3E80H+b
3FOOH+b
3F80H+b
4000H+b
4080H+b
4100H+b
4180H+b
4200H+b
4280H+b
4300H+b
4380H+b
4400H+b
4480H+b

CP/M Module name
Cold Start Loader

CCP

CCP
BOOS

136 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

01 BOOS
07 BIOS

01 BIOS
01 BIOS

02-76 (directory and data)

6.6 The BIOS Entry Points

The entry points into the BIOS from the cold start loader and BOOS are detailed
below. Entry to the BIOS is through a "jump vector" located at 4AOOH+b, as shown below
(see Appendices A and B, as well). The jump vector is a sequence of 17 jump instructions
that send program control to the individual BIOS subroutines. The BIOS subroutines
may be empty for certain functions (i.e., they may contain a single RET operation) during
reconfiguration of CPIM, but the entries must be present in the jump vector.

The jump vector at 4AooH+b takes the form shown below, where the individual jump
addresses are given to the left:

4AOOH+b JMP BOOT ; ARRIVE HERE FROM COLD
START LOAD

4A03H+b JMP WBOOT ; ARRIVE HERE FOR WARM START

4A06H+b JMP CONST ; CHECK FOR CONSOLE CHAR
READY

4A09H+b JMP CONIN ; READ CONSOLE CHARACTER IN

4AOCH+b JMP CON OUT ; WRITE CONSOLE CHARACTER
OUT

4AOFH+b JMP LIST ; WRITE LISTING CHARACTER OUT

4A12H+b JMP PUNCH ; WRITE CHARACTER TO PUNCH
DEVICE

4A1SH+b JMP READER ; READ READER DEVICE

4A18H+b JMP HOME ; MOVE TO TRACK 00 ON
SELECTED DISK

4A1 BH+b JMP SELDSK ; SELECT DISK DRIVE

4A1EH+b JMP SETTRK ; SET TRACK NUMBER

4A21H+b JMP SETSEC ; SET SECTOR NUMBER

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 137

4A24H+b

4A27H+b

4A2AH+b

4A2DH+b

4A30H+b

JMP SETDMA

JMP READ

JMP WRITE

JMP LlSTST

JMP SECTRAN

; SET DMA ADDRESS

; READ SELECTED SECTOR

; WRITE SELECTED SECTOR

; RETURN LIST STATUS

; SECTOR TRANSLATE
SUBROUTINE

Each jump address corresponds to a particular subroutine that performs the specific
function, as outlined below. There are three major divisions in the jump table: the system
(re)initialization, which results from calls on BOOT and WBOOT; simple character I/O
performed by calls on CONST, CONIN, CON OUT, LIST, PUNCH, READER, and
LISTST; and diskette 110 performed by calls on HOME, SELDSK, SETTRK, SETSEC,
SETDMA, READ, WRITE, and SECTRAN.

All simple character I/O operations are assumed to be performed in ASCII, upper and
lower case, with high order (parity bit) set to zero. An end-of-file condition for an input
device is given by an ASCII control-z (lAH). Peripheral devices are seen by CP/M as
"logical" devices and are assigned to physical devices within the BIOS.

To operate, the BOOS needs only the CONST, CONIN, and CON OUT subroutines
(LIST, PUNCH, and READER may be used by PIP, but not the BOOS). Further, the
LISTST entry is currently used only by DESPOOL, the print spooling utility. Thus, the
initial version of CBIOS may have empty subroutines for the remaining ASCII devices.

The characteristics of each device are

CONSOLE

LIST

PUNCH

READER

The principal interactive console that communicates with the
operator, accessed through CONST, CONIN, and CONOUT;
typically, the CONSOLE is a device such as a CRT or teletype.

The principal listing device, if it exists on the user's system, is
usually a hard-copy device, such as a printer or teletype.

The principal tape punching device, if it exists, is normally a
high-speed paper tape punch or teletype.

The principal tape reading device, such as a simple optical
reader or teletype.

A single peripheral can be assigned as the LIST, PUNCH, and READER device
simultaneously. If no peripheral device is assigned as the LIST, PUNCH, or READER
device, the CBIOS created by the user may give an appropriate error message so that the
system does not "hang" if the device is accessed by PIP or some other user program.
Alternately, the PUNCH and LIST routines can just simply return, and the READER
routine can return with a lAH (ctl-Z) in register A to indicate immediate end-of-file.

For added flexibility, the user can optionally implement the "IOBYTE" function,
which allows reassignment of physical and logical devices. The IOBYTE function creates
a mapping of logical to physical devices that can be altered during CP/M processing (the
user should see the STAT command). The definition of the IOBYTE function corres­
ponds to the Intel standard as follows: a single location in memory (currently location
0003H) is maintained, called IOBYTE, which defines the logical to physical device map­
ping that is in effect at a particular time. The mapping is performed by splitting the

138 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

IOBYTE into four distinct fields of two bits each, called the CONSOLE, READER,
PUNCH, and LIST fields, as shown below.

IOBYTE AT 003H

most significant

LIST

bits 6, 7

PUNCH

bits 4, 5

least significant

READER CONSOLE

bits 2, 3 bits 0, I

The value in each field can be in the range 0-3, defining the assigned source or
destination of each logical device. The values that can be assigned to each field are given
below

CONSOLE field (bits 0,1)
o console is assigned to the console printer device (TTY:)
I consolf:! is assigned to the CRT device (CRT:)
2 batch mode: use the READER as the CONSOLE input, and the

LIST device as the CONSOLE output (BAT:)
3 user defined console device (UCI:)

READER field (bits 2,3)
o READER is the teletype device (TTY:)
I READER is the high speed reader device (PTR:)
2 user defined reader # I (URI:)
3 user defined reader # 2 (UR2:)

PUNCH field (bits 4,5)
o PUNCH is the teletype device (TTY:)
I PUNCH is the high speed punch device (PTP:)
2 user defined punch # 1 (UPI:)
3 user defined punch # 2 (UP2:)

LIST field (bits 6,7)
o LIST is the teletype device (TTY:)
1 LIST is the CRT device (CRT:)
2 LIST is the line printer device (LPT:)
3 user defined list device (ULI:)

The implementation of the IOBYTE is optional and affects only the organization of
the CBIOS. No CP/M systems use the IOBYTE (although they tolerate the existence of
the IOBYTE at location 0003H), except for PIP, which allows access to the physical
devices, and STAT, which allows logical-physical assignments to be made or displayed
(for more information, the user should see Chapter 1). In any case the IOBYTE imple­
mentation should be omitted until the basic CBIOS is fully implemented and tested; then
the user should add the IOBYTE to increase the facilities.

Disk I/O is always performed through a sequence of calls on the various disk access
subroutines tha t set up the disk number to access, the track and sector on a particular
disk, and the direct memory access (DMA) address involved in the I/O operation. After all
these parameters have been set up, a call is made to the READ or WRITE function to
perform the actual I/O operation. There is often a single call to SELDSK to select a disk
drive, followed by a number of read or write operations to the selected disk before
selecting another drive for subsequent operations. Similarly, there may be a single call to
set the DMA address, followed by several calls that read or write from the selected DMA
address before the DMA address is changed. The track and sector subroutines are always
called before the READ or WRITE operations are performed.

The READ and WRITE routines should perform several retries (10 is standard) before
reporting the error condition to the BOOS. If the error condition is returned to the
BOOS, it will report the error to the user. The HOME subroutine mayor may no!

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL JtESEARCH 139

actually perform the track 00 seek, depending upon controller characteristics; the impor­
tant point is that track 00 has been selected for the next operation and is often treated in
exactly the same manner as SETTRK with a parameter of 00.

The exact responsibilities of each entry point subroutine are given below.

BOOT

CONST

CONIN

The BOOT entry point gets control from the cold start loader
and is responsible for basic system initialization, including
sending a sign-on message (which can be omitted in the first
version). If the IOBYTE function is implemented, it must be
set at this point. The various system parameters that are set
by the WBOOT entry point m'ust be initialized, and control is
transferred to the CCP at 3400+b for further processing. Note
that register C must be set to zero to select drive A.

The WBOOT entry point gets control when a warm start
occurs. A warm start is performed whenever a user program
branches to location OOOOH, or when the CPU is reset from
the front panel. The CP/M system must be loaded from the
first two tracks of drive A up to, but not including, the BIOS
(or CBIOS, if the user has completed the patch). System
parameters must be initialized as shown below:

loca tion 0,1,2

location 3

location 4

location 5,6,7

Set to JMP WBOOT for warm
starts (oooH: JMP 4A03H+b)

Set initial value of IOBYTE, if
implemented in the CBIOS

High nibble = current user no; low
nibble = current drive

Set to JMP BOOS, which is the
primary entry point to CP/M for
transient programs. (0005H: JMP
3C06H+b)

(The user should refer to Section 6.9 for complete details of
page zero use.) Upon completion of the initialization, the
WBOOT program must branch to the CCP at 3400H+b to
(re)start the system. Upon entry to the CCP, register C is set
to the drive to select after system initialization. The WBOOT
routine should read location 4 in memory, verify that it is a
legal drive, and pass it to the CCP in register C.

The user should sample the status of the currently assigned
console device and return oFFH in register A if a character is
ready to read and ooH in register A if no console characters are
ready.

The next console character is read into register A, and the
parity bit is set (high order bit) to zero. If no console character
is ready, the user waits until a character is typed before
returning.

140 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CONOUT

LIST

PUNCH

READER

HOME

SELDSK

SETTRK

The user sends the character from register C to the console
output device. The character is in ASCIL with high order
parity bit set to zero. The user may want to include a time-out
on a line feed or carriage return, if the console device requires
some time interval at the end of the line (such as a TI Silent 700
terminal). The user can filter out control characters that cause
the console device to react in a strange way (a control-z causes
the Lear Seigler terminal to clear the screen, for example).

The user sends the character from register C to the currently
assigned listing device. The character is in ASCII with zero
parity bit.

The user sends the character from register C to the currently
assigned punch device. The character is in ASCII with zero
parity.

The user reads the next character from the currently assigned
reader device into register A with zero parity (high order bit
must be zero); an end-of-file condition is reported by return­
ing an ASCII control-z(IAH).

The user moves the disk head of the currently selected disk
(initially disk A) to the track 00 position. If the controller
allows access to the track 0 flag from the drive, the head is
stepped until the track 0 flag is detected. If the controller does
not support this feature, the HOME call is translated into a call
to SETTRK with a parameter of o.

The user selects the disk drive given by register C for further
operations, where register C contains 0 for drive A, 1 for drive
B, and so on up to 15 for drive P (the standard CP/M distribu­
tion version supports four drives). On each disk select,
SELDSK must return in HL the base address of a 16-byte area,
called the Disk Parameter Header, described in Section 6.10.
For standard floppy disk drives, the contents of the header and
associated tables do not change; thus, the program segment
included in the sample CBIOS performs this operation auto­
matically. If there is an attempt to select a nonexistent drive,
SELDSK returns HL=ooooH as an error indicator. Although
SELDSK must return the header address on each call, it is
advisable to postpone the physical disk select operation until
an I/O function (seek, read, or write) is actually performed,
since disk selects often occur without utimately performing
any disk I/O, and many controllers will unload the head of the
current disk before selecting the new drive. This would cause
an excessive amount of noise and disk wear. The least signifi­
cant bit of register E is zero if this is the first occurrence of the
drive select since the last cold or warm start.

Register BC contains the track number for subsequent disk
accesses on the currently selected drive. The sector number in
BC is the same as the number returned from the SECTRAN
entry point. The user can choose to seek the selected track at

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 141

SETSEC

SETDMA

READ

WRITE

LlSTST

this time or delay the seek until the next read or write actually
occurs. Register BC can take on values in the range 0-76
corresponding to valid track numbers for standard floppy disk
drives and 0-65535 for nonstandard disk subsystems.

Register BC contains the sector number (1 through 26) for
subsequent disk accesses on the currently selected drive. The
sector number in BC is the same as the number returned from
the SECTRAN en try po in t. The user can choose to send this
information to the controller at this point or delay sector
selection until a read or write operation occurs.

Register BC contains the DMA (disk memory access) address
for subsequent read or write 'operations. For example, if B =
ooH and C = BoH when SETDMA is called, all subsequent read
operations read their data into BoH through oFFH and all
subsequent write operations get their data from BoH through
oFFH, until the next call to SETDMA occurs. The initial DMA
address is assumed to be BoH. The controller need not actually
support direct memory access. If, for example, all data
transfers are through I/O ports, the CBIOS that is con­
structed will use the 12B-byte area starting at the selected
DMA address for the memory buffer during the subsequent
read or write operations.

Assuming the drive has been selected, the track has been set,
the sector has been set, and the DMA address has been speci­
fied, the READ subroutine attempts to read one sector based
upon these parameters and returns the following error codes
in register A:

o no errors occurred

1 nonrecoverable error condition occurred

Currently, CP/M responds only to a zero or nonzero value as
the return code. That is, if the value in register A is 0, CP/M
assumes that the disk operation was completed properly. If an
error occurs, however, the CBIOS should attempt at least 10
retries to see if the error is recoverable. When an error is
reported the BOOS will print the message "BOOS ERR ON x:
BAD SECTOR". The operator then has the option of typing
carriage-return to ignore the error, or ctl-C to abort.

The user writes the data from the currently selected DMA
address to the currently selected drive, track, and sector. For
floppy disks, the data should be marked as "nondeleted data"
to maintain compatibility with other CP/M systems. The error
codes given in the READ command are returned in register A,
with error recovery attempts as described above.

The user returns the ready status of the list device used by the
DESPOOL program to improve console response during its
operation. The value '00 is returned in A if the list device is not
ready to accept a character and oFFH if a character can be sent

142 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

SECTRAN

to the printer. A 00 value should be returned if LIST status is
not implemented.

The user performs logical to physical sector translation to
improve the overall response of CP/M. Standard CP/M sys­
tems are shipped with a "skew factor" of 6, where six
physical sectors are skipped between each logical read opera­
tion. This skew factor allows enough time between sectors for
most programs to load their buffers without missing the next
sector. In particular computer systems that use fast proces­
sors, memory, and disk subsystems, the skew factor may be
changed to improve overall response. However, the user
should mtaintain a single density IBM-compatible version of
CP/M for information transfer into and out of the computer
system, using a skew factor of 6. In general, SECTRAN
receives a logical sector number relative to zero in BC and a
translate table address in DE. The sector number is used as an
index into the translate table, with the resulting physical
sector number in HL. For standard systems, the table and
indexing code is provided in the CBIOS and need not be
changed.

6.7 A Sample BIOS
The program shown in Appendix B can serve as a basis for a user's first BIOS. The

simplest functions are assumed in this BIOS, so that the user can enter it through a front
panel, if absolutely necessary. The user must alter and insert code into the subroutines
for CONST, CONIN, CONOUT, READ, WRITE, and WAITIO subroutines. Storage is
reserved for user-supplied code in these regions. The scratch area reserved in page zero
(see section 6.9) for the BIOS is used in this program, so that it could be implemented in
ROM, if desired.

Once operational, this skeletal version can be enhanced to print the initial sign-on
message and perform better error recovery. The subroutines for LIST, PUNCH, and
READER can be filled out and the IOBYTE function can be implemented.

6.8 A Sample Cold Start Loader
The program shown in Appendix E can serve as a basis for a cold start loader. The disk

read function must be supplied by the user, and the program must be loaded somehow
starting at location 0000. Space is reserved for the patch code so that the total amount of
storage required for the cold start loader is 128 bytes. Eventually, the user will probably
want to get this loader onto the first disk sector (track 0, sector 1) and cause the con troller
to load it into memory automatically upon system start up. Alternatively, the cold start
loader can be placed into ROM, and above the CP/M system. In this case, it will be
necessary to originate the program at a higher address and key in a jump instruction at
system start up that branches to the loader. Subsequent warm starts will not require this
key-in operation, since the entry point WBOOT gets control thus bringing the system in
from disk automatically. The skeletal cold start loader has minimal error recover, which
may be enhanced in later versions.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 143

6.9 ReselVed Locations in Page Zero
Main memory page zero, between locations OoH and OFFH, contains several segments

of code and data that are used during CP/M processing. The code and data areas are given
below for reference

Locations
from to

OOOOH-0002H

0003H-0003H

0004H-0004H

OOOSH-0007H

OOOBH-0027H

0030H-0037H

003BH-003AH

003BH-003FH

0040H-004FH

OOSOH-OOS BH

OOSCH-007CH

007DH-007FH

0080H-OOFFH

Contents

Contains a jump instruction to the warm start entry
point at location 4A03H+b. This allows a simple pro­
grammed restart (JMP OOOOH) or manual restart from
the front panel.

Contains the Intel standard IOBYTE, which is optionally
included in the user's CBIOS, as described in Section 6.6.

Current default drive number (O=A,,,.,15=P).

Contains a jump instruction to the BOOS and serves two
purposes: IMP 0005H provides the primary entry point
to the BOOS, as described in Chapter 5, and LHLD
0006H brings the address field of the instruction to the
HL register pair. This value is the lowest address in
memory used by CP/M (assuming the CCP is being
overlaid). The DDT program will change the address
field to reflect the reduced memory size in debug mode.

(Interrupt locations 1 through 5 not used.)

(Interrupt location 6, not currently used; reserved.)

Restart 7; contains a jump instruction into the DDT or
SID program when running in debug mode for pro­
grammed breakpoints, but is not otherwise used by
CP/M.

(Not currently used; reserved.)

A 16-byte area reserved for scratch by CBIOS, but is not
used for any purpose in the distribution version of
CP/M.

(Not currently used; reserved.)

Default file control block produced for a transient pro­
gram by the Console Command Processor.

Optional default random record position.

Default 128-byte disk buffer (also filled with the com­
mand line when a transient is loaded under the CCP).

144 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

This information is set up for normal operation under the CP/M system, but can be
overwritten by a transient program if the BOOS facilities are not required by the
transient.

If, for example, a particular program performs only simple I/O and must begin
execution at location 0, it can first be loaded into the TPA, using normal CP/M facilities,
with a small memory move program that gets control when loaded (the memory move
program must get control from location 0100H, which is the assumed beginning of all
transient programs). The move program can then proceed to move the entire memory
image down to location 0 and pass control to the starting address of the memory load. If
the BIOS is overwritten or if location 0 (containing the warm start entry point) is
overwritten, the operator must bring the CP/M system back into memory with a cold
start sequence.

6.10 Disl< Parameter Tables
Tables are included in the BIOS that describe the particular characteristics of the disk

subsystem used with CP/M. These tables can be either hand-coded, as shown in the
sample CBIOS in Appendix B, or automatically generated using the DISKDEF macro
library, as shown in Appendix F. The purpose here is to describe the elements of these
tables.

In general, each disk drive has an associated (16-byte) disk parameter header that
contains information about the disk drive and provides a scratchpad area for certain
BOOS operations. The format of the disk parameter header for each drive is shown
below.

Disk Parameter Header
I XLT 10000 I 0000 I 0000 I DIRBUF I DPB I CSV I ALV I

16b 16b 16b 16b 16b 16b 16b 16b

where each element is a word (16-bit) value. The meaning of each Disk Parameter Header
(DPH) element is

XLT .

0000

DIRBUF

DPB

CSV

ALV

Address of the logical to physical translation vector, if used for
this particular drive, or the value OoooH if no sector transla­
tion takes place (i.e., the physical and logical sector numbers
are the same). Disk drives with identical sector skew factors
share the same translate tables.

Scratchpad values for use within the BOOS (initial value is
unimportant).

Address of a 128-byte scratchpad area for directory operations
within BOOS. All DPHs address the same scratchpad area.

Address of a disk parameter block for this drive. Drives with
iden tical disk characteristics address the same disk parameter
block.

Address of a scratchpad area used for software check for
changed disks. This address is different for each DPH.

Address of a scratchpad area used by the BOOS to keep disk
storage allocation information. This address is different for
each DPH.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 145

Given n disk drives, the DPHs are arranged. in a table whose first row of 16 bytes
corresponds to drive a, with the last row corresponding to drive n-l. The table thus
appears as

DPBASE:
------~----~----~----~----~----~----~----~

00 1 XLT 00 1 0000 1 0000 1 0000 1 DIRBUFI DBP 001 CSV 001 ALV 001
01 1 XL T 01 1 0000 1 0000 1 0000 1 DIRBUFI DBP 011 CSV 011 ALV 011

(and so on through)

n-1 1 XL Tn-1 1 0000 1 0000 1 0000 1 DIRBUFI DBPn-11 CSVn-11 ALVn-11

where the label DPBASE defines the base address of the DPH table.
A responsibility of the SELDSK subroutine is to return the base address of the DPH

for the selected drive. The following sequence of operations returns the table address,
with a ooooH returned if the selected drive does not exist.

NDISKS EQU 4 ;NUMBER OF DISK DRIVES

SELDSK: ;SELECT DISK GIVEN BY BC
LXI H,OOOOH ;ERROR CODE
MOV A,C ;DRIVE OK?
CPI NDISKS ;CY IF SO
RNC ;RET IF ERROR
;NO ERROR, CONTINUE
MOV L,C ;LOW(DISK)
MOV H,B ;HIGH(DISK)
DAD H ;*2
DAD H ;*4
DAD H ;*8
DAD H ;*16
LXI D,DPBASE;FIRST DPH
DAD D ;DPH(DISK)
RET

The translation vectors (XL Too through XL Tn-I) are located elsewhere in the BIOS,
and simply corre.spond one~for-one with the logical sector numbers zero through the
sector count 1. The Disk Parameter Block (DPB) for each drive is more complex. A
particular DPB, which is addressed by one or more DPHs, takes the general form

1 SPT 1 BSH 1 BLM 1 EXM 1 DSM 1 DRM 1 ALO 1 AL 1 1 CKS 1 OFF I
16b sb 8b sb 16b 16b sb 8b 16b 16b

where each is a byte or word value, as shown by the 8b or 16b indicator below the field.

SPT is the total number of sectors per track.

BSH is the data allocation block shift factor, determined by the data block
alloca tion size.

BLM is the data allocation block mask (2[BSH-l]).

EXM is the extent mask, determined by the data block allocation size and
the number of disk blocks.

DSM determines the total storage capacity of the disk drive.

146 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

DRM determines the total number of directory entries that can be stored
on this drive. (ALO,ALI determine reserved directory blocks.)

CKS is the size of the directory check vector.

OFF is the number of reserved tracks at the beginning of the (logical)
disk.

The values of BSH and BLM determine (implicitly) the data allocation size BLS, which is
not an entry in the DPB. Given that the designer has selected a value for BLS, the values
'ofBSH and BLM are shown in the tabulation below.

BLS BSH BLM
1024 3 7
2048 4 15
4096 5 31
8192 6 63

16384 7 127

where all values are in decimal. The value of EXM depends upon both the BLS and
whether the DSM value is less than 256 or greater th~n 255. For DSM < 256 the value of
EXM is given by:

BLS EXM
1024 a
2048 1
4096 3
8192 7

16384 15

For DSM > 255 the value of EXM is given by:

BLS EXM
1024 NJA
2048 a
4096 1
8192 3

16384 7

The value of DSM is the maximum data block number supported by this particular
drive, measured in BLS units. The product BLS times (DSM+l) is the total number of
bytes held by the drive and, of course, must be within the capacity of the physical disk, not
counting the reserved operating system tracks.

The DRM entry is the one less than the total number of directory entries that can take
on a 16-bit value. The values of ALa and ALl, however, are determined by DRM. The
values ALa and ALl can together be considered a string of 16-bits, as shown below.

ALO AL1

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

where position 00 corresponds to the high order bit of the byte labeled ALa and 15
corresponds to the low order bit of the byte labeled ALl. Each bit position reserves a data
block for number of directory entries, thus allowing a total of 16 data blocks to be

ALL IN FORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 147

assigned for directory entries (bits are assigned starting at 00 and filled to the right until
position 15). Each directory entry occupies 32 bytes, resulting in the tabulation below.

BLS
1024
2048
4096
8192

16384

Directory Entries
32 times # bits
64 times # bits
128 times # bits
256 times # bits
512 times # bits

Thus, if DRM = 127 (128 directory entries) and BLS = 1024, there are 32 directory entries
per block, requiring 4 reserved blocks. In this case, the 4 high order bits of ALo are set,
resulting in the values ALo = oFoH and ALI = bOH.

The CKS value is determined as follows: if the disk drive media is removable, then
CKS = (DRM+1)/4, where DRM is the last directory entry number. If the media are fixed,
then set CKS = 0 (no directory records are checked in this case).

Finally, the OFF field determines the number of tracks that are skipped at the
beginning of the physical disk. This value is automatically added whenever SETTRK is
called and can be used as a mechanism for skipping reserved operating system tracks or
for partitioning a large disk into smaller segmented sections.

To complete the discussion of the DPB, several DPHs can address the same DPB if
their drive characteristics are identical. Further, the DPB can be dynamically changed
when a new drive is addressed by simply changing the pointer in the DPH since the BOOS
copies the DPB values to a local area whenever the SELDSK function is invoked.

Returning back to the DPH for a particular drive, the two address values CSV and
AL V remain. Both addresses reference an area of uninitialized memory following the
BIOS. The areas must be unique for each drive, and the size of each area is determined by
the values in the DPB.

The size of the area addressed by CSV is CKS bytes, which is sufficient to hold the
directory check information for this particular drive. If CKS = (DRM+1)/4, one must
reserve (DRM+1)/4 bytes for directory check use. If CKS = 0, no storage is reserved.

The size of the area addressed by AL V is determined by the maximum number of data
blocks allowed for this particular disk and is computed as (DSM/8)+1.

The CBIOS shown in Appendix B demonstrates an instance of these tables for
standard 8-inch single density drives. It may be useful to examine this program and
compare the tabular values with the definitions given above.

6.11 The DISI(DEF Macro Library
A macro library is shown in Appendix F, called DISKDEF, which greatly simplifies the

table construction process. One must have access to the MAC macro assembler, of
course, to use the DISKDEF facility, while the macro library is included with all CP/M 2
distribution disks.

A BIOS disk definition consists of the following sequence of macro statements:

MACUB

DISKS
DISKDEF
DISKDEF

DISKDEF

n
0, .. .
1, .. .

148 ALL INFORMATION PRESENTEDHERE IS PROPRIETARY TO DIGITAL RESEARCH

DISKDEF n-1

ENDEF

where the MACLIB statement loads the DISKDEF.LIB file (on the same disk as the BIOS)
into MAC's internal tables. The DISKS macro call follows, which specifies the number of
drives to be configured with the user's system, where n is an integer in the range 1 to 16.
A series of DISKDEF macro calls then follow that define the characteristics of each logical
disk, 0 through n-1 (corresponding to logical drives A through P). The DISKS and
DISKDEF macros generate the in-line fixed data tables described in the p"revious section
and thus must be placed in a nonexecutable portion of the BIOS, typically directly
following the BIOS jump vector.

The remaining portion of the BIOS is defined following the DISKDEF macros, with
the ENDEF macro call immediately preceding the END statement. The ENDEF (End of
Diskdef) macro generates the necessary uninitialized RAM areas, which are located in
memory above the BIOS.

The form of the DISKDEF macro call is

where

DISKDEF dn,fsc,lsc,[skf],bls,dks,dir,cks,ofs,[ol

dn

fsc

Isc

skf

bls

dks

dir

cks

ofs

[0]

is the logical disk number, 0 to n-l.

is the first physical sector number (0 or 1).

is the last sector number.

is the optional sector skew factor.

is the data allocation block size.

is the number of blocks on the disk.

is the number of directory entries.

is the number of "checked" directory entries.

is the track offset to logical track 00.

is an optional 1.4 compatibility flag.

The value dn is the drive number being defined with this DISKDEF macro invocation.
The fsc parameter accounts for differing sector numbering systems and is usually 0 or 1.
The lsc is the last numbered sector on a track. When present, the skf parameter defines
the sector skew factor, which is used to create a sector translation table accodrding to the
skew. .

If the number of sectors is less than 256, a single-byte table is created, otherwise each
translation table element occupies two bytes. No translation table is created if the skf
parameter is omitted (or equal to 0). The bls parameter specifies the number of bytes
allocated to each data block, and takes on the values 1024, 2048, 4096, 8192, or 16384.
Generally, performance increases with larger data block sizes since there are fewer
directory references and logically connected data records are physically close on the disk.
Further, each directory entry addresses more data and the BIOS-resident ram space is
reduced.

The dks parameter specifies the total disk size in bls units. That is, if the bls = 2048 and
dks = 1000, the total disk capacity is 2,048,000 bytes. If dks is greater than 255, the block
size parameter bls must be greater than 1024. The value of dir is the total number of
directory entries, which may exceed 255, if desired. The cks parameter determines the

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 149

number of directory items to check on each directory scan and is used internally to detect
changed disks during system operation, where an intervening cold or warm start has not
occurred (when this situation is detected, CP/M automatically marks the disk read/only
so that data are not subsequently destroyed).

As stated in the previous section, the value of cks =. dir when the medium is easily
changed, as is the case with a floppy disk subsystem. If the disk is permanently mounted,
the value of cks is typically 0, since the probability of changing disks without a restart is
low. The ofs value determines the number of tracks to skip when this particular drive is
addressed, which can be used to reserve additional operating system space or to simulate
several logical drives on a single large capacity physical drive. Finally, the [0] parameter is
included when file compatibility is required with versions of 1.4 that have been modified
for higher density disks. This parameter ensures that only 16K is allocated for each
directory record, as was·the case for previous versions. Normally, this parameter is not
included.

For convenience and economy of table space, the special form

DISKDEF i,j

gives disk i the same characteristics as a previously defined drive j. A standard four-drive
single density system, which is compatible with version 1.4, is defined using the following
macro invocations:

DISKS
DISKDEF
DISKDEF
DISKDEF
DISKDEF

ENDEF

4
0,1,26,6,1024,243,64,64,2
1,0
2,0
3,0

with all disks having the same paramete:r; values of 26 sectors per track (numbered 1
through 26), with 6 sectors skipped between each access, 1024 bytes per data block, 243
data blocks for a total of 243K-byte disk capacity, 64 checked directory entries, and two
operating system tracks.

The DISKS macro generates n DPHs, starting at the DPH table address DPBASE
generated by the macro. Each disk header block contains sixteen bytes, as described
above, and correspond one-for-one to each of the defined drives. In the four-drive
standard system, for example, the DISKS macro generates a table of the form:

DPBASE
DPEO:
DPE1:
DPE2:
DPE3:

EQU$
DW XL TO,OOOOH,OOOOH,OOOOH,DIRBUF,DPBO,CSVO,ALVO
DW XLTO,0000H,OOOOH,0000H,DIRBUF,DPBO,CSV1,ALV1
DW XL TO,0000H,0000H,0000H,DIRBUF,DPBO,CSV2,ALV2
DW XL TO,0000H,0000H,0000H,DIRBUF,DPBO,CSV3,ALV3

where the DPH labels are included for reference purposes to show the beginning table
addresses for each drive 0 through 3. The values contained within the DPH are described
in detail in the previous section. The check and allocation vector addresses are generated
by the ENDEF macro in the ram area following the BIOS code and tables.

The user should note that if the skf (skew factor) parameter is omitted (or equal to 0),
the transla tion table is omitted and a ooooH value is inserted in the XL T position of the
DPH for the disk. In a subsequent call to perform the logical to physical translation,
SECTRAN receives a translation table address of DE = OoooH and simply returns the
original logical sector from BC in the HL register pair. A translate table is constructed
when the skf parameter is present, and the (nonzero) table address is placed into the

ISO ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

corresponding DPHs. The tabulation shown below, for example, is constructed when the
standard skew factor skf = 6 is specified in the DISKDEF macro call:

XLTO: DB
DB

1,7,13,19,25,5,11,17,23,3,9,15,21
2,8,14,20,26,6,12,18,24,4,10,16,22

Following the ENDEF macro call, a number of uninitialized data areas are defined.
These data areas need not be a part of the BIOS that is loaded upon cold start, but must be
available between the BIOS and the end of memory. The size of the uninitialized RAM
area is determined by EQU statements generated by the ENDEF macro. For a standard
four-drive system, the ENDEF macro migh t produce

4C72 =

40BO =

013C =

BEGDAT EQU $
(data areas)

END OAT EQU $

DATSIZ EQU $-BEGDAT

which indicates that uninitialized RAM begins at location 4C72H, ends at 4DBoH-l, and
occupies 013CH bytes. The user must ensure that these addresses are free for use after
the system is loaded.

After modification, the user can utilize the STAT program to check drive characteris­
tics, since STAT uses the disk parameter block to decode the drive information. The
STAT command form

STAT d:DSK:

decodes the disk parameter block for drive d (d=A, ... ,P) and displays the values shown
below.

r: 128-byte record capacity
k: kilobyte drive capacity
d: 32-byte directory entries
c: checked directory entries
e: records/extent
b: records/block
s: sectors/track
t: reserved tracks

Three examples of DISKDEF macro invocations are shown below with corresponding
STAT parameter values (the last produces a full 8-megabyte system).

DISKOEF 0,1,58,,2048,256,128,128,2
r=4096, k=512, d=128, c=128, e=256, b=16, s=58, t=2

OISKOEF 0,1,58,,2048,1024,300,0,2
r=16384, k=2048, d=300, c=O, e=128, b=16, s=58, t=2

DISKOEF 0,1,58,,16384,512,128,128,2
r=65536, k=8192, d=128, c=128, e=1024, b=128, s=58, t=2

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 151

6. t 2 Sector Blocl<ing and Deblocl<ing
Upon each call to the BIOS WRITE entry point, the CP/M BDOS includes information

that allows effective sector blocking and deblocking where the host disk subsystem has a
sector size that is a multiple of the basic 128-byte unit. The purpose here is to present a
general-purpose algorithm that can be included within the BIOS and that uses the BDOS
information to perform the operations automatically.

On each call to WRITE, the BDOS provides the following information in register C:

a
1
2

=
=
=

normal sector write
write to directory sector
write to the first sector
of a new data block

Condition 0 occurs whenever the next write operation is into a previously written area,
such as a random mode record update, when the write is to other than the first sector of
an unallocated block, or when the write is not in!o the directory area. Condition 1 occurs
when a write into the directory area is performed. Condition 2 occurs when the first
record (only) of a newly allocated data block is written. In most cases, application
programs read or write multiple 128-byte sectors in sequence; thus, there is little
overhead involved in either operation when blocking and deblocking records, since
preread operations can be avoided when writing records.

Appendix G lists the blocking and deblocking algorithms in skeletal form (this file is
included on your CP/M disk). enerally, the algorithms map all CP/M sector read opera­
tions onto the host disk through an intermediate buffer that is the size of the host disk
sector. Throughout the program, values and variables that relate to the CP/M sector
involved in a seek operation are prefixed by sek, while those related to the host disk
system are prefixed by hst. The equate statements beginning on line 29 of Appendix G
define the mapping between CP/M and the host system, and must be changed if other
than the sample host system is involved.

The entry points BOOT and WBOOT must contain the initialization code starting on
line 57, while the SELDSK entry point must be augmented by the code starting on line 65.
The user should note that although the SELDSK entry point computes and returns the
Disk Parameter Header address, it does not physically select the host disk at this point (it
is selected later at READHST or WRITEHST). Further, SETTRK, SETTRK, and
SETDMA simply store the values, but do not take any other action at this point.
SECTRAN performs a trivial function of returning the physical sector number. .

The principal entry points are READ and WRITE, starting on lines 110 and 125,
respectively. These subroutines take the place of your previous READ and WRITE
operations.

The actual physical read or write takes place at either WRITEHST or READHST,
where all values have been prepared: hstdsk is the host disk number, hsttrk is the host
track number, and hstsec is the host sector number (which may require translation to a
physical sector number). The user must insert code at this point that performs the full
host sector read or write into or out of the buffer at hstbuf of length hstsiz. All other
mapping functions are performed by the algorithms.

This particular algorithm was tested using an 80-megabyte hard disk unit that was
originally configured for 128-byte sectors, producing approximately 35 megabytes of
formatted storage. When configured for 512-byte host sectors, usable storage increased
to 57 megabytes, with a corresponding 400% improvement in overall response. In this
situation, there is no apparent overhead involved in deblocking sectors, with the advan­
tage that user programs still maintain 128-byte sectors. This is primarily because of the
information provided by the BDOS, which eliminates the necessity for preread
operations.

152 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Appendix A: The MDS Basic I/O System (BIOS)

1 mds-800 i/o drivers for cp/m 2.2
2 (four drive single density version)
3
4 version 2.2 february, 1980
5

» 6 0016 = vers equ 22 ;version 2.2
r- 7 r
Z 8 copyright (c) 1980
0 9 digital research

! 10 box 579, pacific grove

0 11 california, 93950
z 12
-0
;;0 13 (Jl

Z 14 ffff = true equ offffh ;value of "true"
~ 15 0000 = false equ not true ;"false"
0
:::r 16 0000 = test equ false ; true if test bios
fT'I

17 ;;0
fT'I

Vi 18 if test
-0

19 bias 03400h ;base of ccp in test system 0 equ
-0 20 endif C!
~ 21 if not test »

22 0000 = bias OOOOh ;generate relocatable cp/m system ~ equ

0 23 endif
0 24 B
5! 25 1600 = patch equ 1600h
r 26
rn 27 1600 org patch

~ 28 0000 = cpmb equ $-patch ;base of cpm console processor
:::r 29 0806 = bdos equ 806h+cpmb ;basic dos (resident portioh)

...
U1
("J

~ 30 1600 = cpml equ $-cpmb ;Iength (in bytes) of cpm system (n
II:lo 31 002c = nsects equ cpml/128 ;number of sectors to load

32 0002= offset equ 2 ;number of disk tracks used by cp/m
33 0004 = cdisk equ 0004h ;address of last logged disk on warm start

~ 34 0080 = buff equ 0080h ;default buffer address
Z 35 OOOa = retry equ 10 ;max retries on disk i/o before error
0 36

~ 37 perform following functions
38 boot cold start

0
39 wboot warm start (save i/o byte) z

"'C 40 (boot and wboot are the same for mds) ::=c
rn 41 const console status Z
~ 42 reg-a = 00 if no character ready
0 43 reg-a = ff if character ready :r
('TI 44 conin console character in (result in reg-a) ;;c:I
('TI

conout console character out (char in reg-c) Vi 45
"'C 46 list list out (char in reg-c) 0
"'C 47 punch punch out (char in reg-c)
~

48 reader paper tape reader in (result to reg-a) ~ » 49 home move to track 00
~
0 50
0 51 (the following calls set-up the io parameter block for the
B 52 mds, which is used to perform subsequent reads and writes)
~ 53 seldsk select disk given by reg-c (0,1,2 ...) r-

rn 54 settrk set track address (0, '.' . 76) for subsequent read/write

~ 55 setsec set sector address (1, ... , 26) for subsequent read/write
56 setdma set subsequent dma address(initially 80h) :r
57
58 (read and write assume previous calls to set up the io parameters)
59 read read track/sector to preset dma address
60 write track/sector from preset dma address
61
62 jump vector for individual routines
63 1600 c3b316 jmp boot

64 1603 c3c316 wboote: jmp wboot
65 1606 c36117 jmp const
66 1609 c36417 jmp conin
67 160c c36a17 jmp conout
68 160f c36d17 jmp list
69 1612 c37217 jmp punch

» 70 1615 c37517 jmp reader
r

71 1618 c37817 jmp home r-
Z 72 161bc37d17 jmp seldsk a
! 73 161e c3a717 jmp settrk

74 1621 c3ac17 jmp setsec
0 75 1624 c3bb17 jmp setdma z

76 1627 c3c117 jmp read ""0
iQ

77 162a c3ca17 jmp write rn
2 78 162d c37017 jmp listst ; list status
~ 79 1630 c3b117 jmp sectran 0
:r 80 J'T1
iQ 81 maclib diskdef ;Ioad the disk definition library J'T1

Vi 82 disks 4 ;four disks ""0

0 83 1633+= dpbase equ $;base of disk parameter blocks
""0

84 1633+82160000 dpeO: dw xltO,OOOOh ;translate table ~
~ 85 1637+00000000 dw OOOOh,OOOOh ;scratch area »
~ 86 163b+6e187316 dw dirbuf, dpbO ;dir buff, parm block
0 87 163f+Od1gee18 dw csvO, alvO ;check, alloc vectors
0

88 1643+82160000 dpe1: dw xlt1,0000h ;translate table B
~ 89 1647+00000000 dw OOOOh,OOOOh ;scratch area
r-

90 164b+6e187316 dw dirbuf, dpb1 ;dir buff, parm block
~
~

91 164f+3c191 d19 dw csv1, alv1 ;check, alloc vectors

~ 92 1653+82160000 dpe2: dw xlt2,0000h ;translate table
::r 93 1657+00000000 dw OOOOh, OOOOh ;scratch area

94 165b+6e187316 dw dirbuf, dpb2 ;dir buff, parm block
95 165f+6b194c19 dw csv2, alv2 ;check, alloc vectors

~ 96 1663+82160000 dpe3: dw xlt3,0000h ;translate table 01
01 97 1667+00000000 dw OOOOh,OOOOh ;scratch area

~ 98 166b+6e187316 dw dirbuf, dpb3 ;check, alloc block 01
0\ 99 166f+9a197b19 dw csv3, alv3 ;dir buff, parm vectors

100 diskdef 0,1,26,6,1024,243,64,64, offset
101 1673+= dpbO equ $;disk parm block

~ 102 1673+1aOO dw 26 ;sec per track

Z 103 1675+03 db 3 ;block shift
a 104 1676+07 db 7 ;block mask

! 105 1677+00 db 0 ;extnt mask
106 1678+f200 dw 242 ;disk size-1

0 107 167a+3fOO dw 63 ;directory max z
"i::J 108 167c+cO db 192 ;allocO ;;a
rn 109 167d+00 db 0 ;alloc1
Z 110 167e+1000 dw 16 ;check size ~
0 111 1680+0200 dw 2 ;offset
:J:

112 1682+= xltO $;translate table I'T1 equ ;;a
I'T1 113 1682+01 db 1 Vi
"i::J 114 1683+07 db 7
0 115 1684+0d db 13 "i::J
;;a 116 1685+13 db 19
~ 117 1686+19 db 25
~ 118 1687+05 db 5
d 119 1688+0b db 11 0
5 120 1689+11 db 17
~ 121 168a+17 db 23 r-

~ 122 168b+03 db 3
~ 123 168c+09 db 9
~ 124 168d+Of db 15
::I 125 168e+15 db 21

126 168f+02 db 2
127 1690+08 db 8
128 1691 +Oe db 14
129 1692+14 db 20
130 1693+1 a db 26
131 1694+06 db 6

132 1695+0c db 12
133 1696+12 db 18
134 1697+18 db 24
135 1698+04 db 4
136 1699+0a db 10
137 169a+10 db 16
138 169b+16 db 22

» 139 diskdef 1,0
F 140 1673+= dpb1 equ dpbO ;equivalent parameters
Z
a 141 001f+= als1 equ alsO ;same allocation vector size

! 142 0010+= css1 equ cssO ;same checksum vector size
143 1682+= xlt1 equ xltO ;same translate table

0 144 diskdef 2, 0 z
" 145 1673+= dpb2 equ dpbO ;equivalent parameters
;;:tl

rn 146 001f+= als2 equ alsO ;same allocation vector size
Z 147 0010+= css2 equ cssO ;same checksum vector size
~
0 148 1682+= xlt2 equ xltO ;same translate table
:r 149 diskdef 3, 0 ['T1
;;:tl

1673+= dpb3 dpbO ;equivalent parameters ['T1 150 equ
Vi

" 151 001f+= als3 equ alsO ;same allocation vector size
0 152 0010+= css3 equ cssO ;same checksum vector size
" ;;:tl 153 1682+= xlt3 equ xltO ;same translate table
~ 154 endef occurs at end of assembly
~ 155 a 156 end of controller-independent code, the remaining subroutines
0
B 157 are tailored to the particular operating environment, and must
~ 158 be altered for any system which differs from the intel mds. r-

~ 159

~
160 the following code assumes the mds monitor exists at Of800h
161 and uses the i/o subroutines within the monitor

:r 162
163 we also assume the mds system has four disk drives

1--1 164 OOfd = revrt equ Ofdh ;interrupt revert port
01

165 OOfc = intc equ Ofch ;interrupt mask port 'I

I-l 166 00f3 = icon equ Of3h ;interrupt control port 01
(Xl

167 007E = inte equ 0111$1110b ;enable rst 0 (warm boot), rst 7 (monitor)
168
169 mds monitor equates

~ 170 f800 = mon80 equ Of800h ;mds monitor
r-
Z 171 ftof = rmon80 equ Oftofh ;restart mon80 (boot error)
0 172 f803 = ci equ Of803h ;console character to reg-a

! 173 f806 = ri equ Of806h ;reader in to reg-a
174 f809 = co equ Of809h ;console char from c to console out

0 175 f80c = po equ Of80ch ;punch char from c to punch device z
" 176 f80f = 10 equ Of80fh ;Iist from c to list device ;;0
IJ; 177 f812 = csts equ Of812h ;console status OOlff to register a Z
S 178

179 disk ports and commands :r:
'"" 180 0078 = base equ 78h ;base of disk command io ports ;:0

181 0078 = dstat equ base ;disk status (input) Vi

'" 182 0079 = rtype equ base+1 ;result type (input)
0 183 007b = rbyte equ base+3 ;result byte (input) '" ~ 184 ~ » 185 0079 = ilow equ base+1 ;iopb low address (output)
~
0 186 007a = ihigh equ base+2 ;iopb high address (output)
0 187
Ci 188 0004 = readf equ 4h ;read function
~ 189 0006 = writf equ 6h ;write function r

rn 190 0003 = recal equ 3h ;recalibrate drive

> 191 0004 = iordy equ 4h ;i/o finished mask
~ 192 OOOd = cr equ Odh ;carriage return :r:

193 OOOa = If equ Oah ;Iine feed
194
195 signon: ;signon message: xxk cplm vers y.y
196 169c OdOaOa db cr, If, If
197 if test
198 db '32' ;32k example bios
199 endif

200 if not test
201 169f 3030 db '00' ;memory size filled by relocator
202 endif
203 16a1 6b2043502f db 'k cp/m vers '
204 16ad 322e32 db vers/1 0+'0', vers mod 10+'0'
205 16bO OdOaOO db cr, If, 0

)- 206
F 207 boot: ;print signon message and go to ccp
Z 208 (note: mds boot initialized iobyte at 0003h) a
~

209 16b3310001 Ixi sp, buff+80h
210 16b6219c16 Ixi h, signon

0 211 16b9 cdd317 call prmsg ;print message
z 212 16bc af xra a ;clear accumulator
""0
it! 213 16bd 320400 sta cdisk ;set initially to disk a rn
Z 214 16cO c30f17 jmp gocpm ;go to cp/m
r;t 215 0
:I 216 rn
it! 217 wboot:; loader on track 0, sector 1, which will be skipped for warm rn
in 218 read cp/m from disk-assuming there is a 128 byte cold start
~

0 219 start
""0

220 ~

~ 221 16c3318000 Ixi sp, buff ;using dma-thus 80 thru ff available for stack
~ 222
a 223 16c60eOa mvi c, retry ;max retries
0 224 16c8 c5 push b Ci
~ 225 wbootO: ;enter here on error retries
r 226 16c9010000 Ixi b, cpmb ;set dma address to start of disk system
rn 227 16cc cdbb17 call setdma > 228 16cf OeOO mvi c,O ;boot from drive 0 ~
:r: 229 16d1 cd7d17 call seldsk

230 16d40eOO mvi c, 0
231 16d6 cda717 call settrk ;start with track 0

~ 232 16d90e02 mvi c, 2 ;start reading sector 2
01
10 233 16db cdac17 call setsec

I-l 234 0\
0 235 read sectors, cou nt nsects to zero

236 16de c1 pop b ;10-error count
237 16df 062c mvi b, nsects

~ 238 rdsec: ;read next sector

Z 239 16e1 c5 push b ;save sector count

a 240 16e2 cdc117 call read

~ 241 16e5 c24917 jnz booterr ;retry if errors occur
242 16e82a6c18 Ihld iod ;increment dma address

0 243 16eb 118000 Ixi d, 128 ;sector size z
"'0 244 16ee 19 dad d ;incremented dma address in hi
;::tl

rn 245 16ef 44 mov b, h
Z
S 246 16fO 4d mov c, I ;ready for call to set dma

::t
247 16f1 cdbb17 call setdma

1"'1 248 16f43a6b18 Ida ios ;sector number just read
;::tl
1"'1

16f7 fe1 a cpi 26 ;read last sector? Vi 249
"'0 250 16f9 da0517 jc rd1
0
"'0 251 must be sector 26, zero and go to next track
;::tl

~ 252 16fc 3a6a18 Ida iot ;get track to register a
> 253 16ff 3c inr a
~
0 254 17004f mov c, a ; ready for call

0 255 1701 cda717 call settrk
B 256 1704 af xra a ;clear sector number
~ 257 17053c rd1: inr a ;to next sector r-

~ 258 17064f mov c, a ; ready for call

~ 259 1707 cdac17 call setsec
260 170a c1 pop b ;recall sector count

::t
261 170b 05 dcr b ;done?
262 170c c2e116 jnz rdsec
263
264 done with the load, reset default buffer address
265 gocpm: ;(enter here from cold start boot)
266 enable rstO and rst7

267 170f f3 di
268 17103e12 mvi a, 12h ;initialize command
269 1712 d3fd out revrt
270 1714 af xra a
271 1715 d3fc out intc ;cleared
272 17173e7e mvi a, inte ;rstO and rst7 bits on
273 1719 d3fc out intc

j?! 274 171 b af xra a
r-

Z 275 171 c d3f3 out icon ;interrupt control
a 276

! 277 set default buffer address to 80h

0 278 171e 018000 Ixi b, buff
z 279 1721 cdbb17 call setdma

" 280 ;;0

rn 281 reset monitor entry points Z
r;l 282 17243ec3 mvi a, jmp
0 283 1726320000 sta 0 :c
fT1 284 1729 210316 Ixi h, wboote ;;0
fT1

Vi 285 172c 220100 shld 1 ;jump wboot at location 00

" 286 172f 320500 sta 5 0
" 287 1732 210608 Ixi h, bdos
;;0

~ 288 1735220600 shld 6 ;jmp bdos at location 5
» 289 if not test ~
0 290 1738323800 sta 7*8 ;jmp to mon80 (may have changed by ddt)
0 291 173b 2100f8 Ixi h, mon80
() 292 173e 223900 shld 7*8+1
~ 293 endif r-

m 294 leave iobyte set

> 295 previously selected disk was b, send parameter to cpm
~ 296 1741 3a0400 Ida cdisk ;Iast logged disk number
:c

297 17444f mov c, a ;send to ccp to log it in
298 1745 fb ei

t--I 299 1746 c30000 jmp cpmb
0\ 300 t--I

I-ol 301 error condition occurred, print message and retry 0\
N

302 booterr:
303 1749 c1 pop b ;recall counts
304 174a Od dcr c

~ 305 174b ca5217 jz booterO
r
Z 306 try again
(3 307 174e c5 push b

~ 308 174f c3c916 jmp wbootO
309

0 310 booterO: z
" 311 otherwise too many retries ;:tl

~ 312 1752215b17 Ixi h, bootmsg ("1"1 z 313 1755 cdd317 call prmsg r;t
0 314 1758 c30fff jmp rmon80 ;mds hardware monitor
J:
("1"1 315 ;:tl
("1"1

316 bootmsg: Vi

" 317 175b 3f626f6f74 db '?boot',O 0
" 318
;:tl

319 ~ :> 320 const: console status to reg-a
~
d 321 (exactly the same as mds call)
0 322 1761 c312f8 jmp csts
B 323
~ 324 conin: ;console character to reg-a r

rn 325 1764 cd03f8 call ci

> 326 1767 e67f ani 7fh ;remove parity bit
~ 327 1769 c9 ret
J:

328
329 conout: ;console character from c to console out
330 176a c309f8 jmp co
331
332 list: ;Iist device out
333 (exactly the same as mds call)
334 176d c30ff8 jmp 10

335
336 listst:
337 ;return list status
338 1770 af xra a
339 1771 c9 ret ;always~not ready
340
341 punch: ;punch device out

F= 342 (exactly the same as mds call) r-
Z 343 1772 c30cf8 jmp po
0 344

! 345 reader: ;reader character in to reg-a

0 346 (exactly the same as mds call)
z 347 1775 c306f8 jmp ri
" 348 i" rn

349 home: ;move to home position Z
;t 350 treat as track 00 seek
0

351 17780eOO mvi c, 0 :t
I'T1

352 177a c3a717 jmp settrk ~
Vi 353
" 354 seldsk: ;select disk given by register c 0
" 355 177d 210000 Ixi h, OOOOh ;return 0000 if error ~

~ 356 1780 79 mov a, c
> 357 1781 fe04 cpi ndisks ;too large? ~
0 358 1783 dO rnc ;Ieave hi = 0000
0 359
B 360 1784 e602 ani 10b ;00 00 for drive 0, 1 and 10 10 for drive 2, 3 ~ r- 361 1786 326618 sta dbank ;to select drive bank
~ 362 1789 79 mov a, c ;00, 01, 10, 11

~ 363 178a e601 ani 1b ;mds has 0, 1 at 78,2,3 at 88
:t 364 178c b7 ora a ;result OO?

365 178d ca9217 jz setdrive
366 17903e30 mvi a,00110000b ;selects drive 1 in bank

1-01
367 setdrive:
368 1792 47 Q\ mov b, a ;save the function Vol

~ 369 1793 216818 Ixi h, iof ;io function 0\
~ 370 17967e mov a, m

371 1797 e6cf ani 11001111 b ;mask out disk number
372 1799 bO ora b ;mask in new disk number

> 373 179a 77 mov m, a ;save it in iopb F
Z 374 179b 69 mov I, c a 375 179c 2600 mvi h, 0 ;hl=disk number

! 376 17ge 29 dad h ;*2
377 179f 29 dad h ;*4 0

z 378 17aO 29 dad h ;*8
" 379 17a1 29 dad h ;*16 ;:0

rn
380 17a2 113316 Ixi d, dpbase Z

S 381 17a519 dad d ;hl=disk header table address
::I 382 17a6 c9 ret
I'TI 383 ;:0

384 Vi

" 385 settrk: ;set track address given by c 0
" 386 17a7216a18 Ixi h, iot
22

387 17aa 71 mov m, c
~ 388 17ab c9 ret
~

389 0
0 390 setsec: ;set sector number given by c
B 391 17ac 216b18 Ixi h, ios
~ 392 17af71 mov m, c
Ui 393 17bO c9 ret

~ 394 sectran:
395 ;translate sector bc using table at de :r:
396 17b1 0600 mvi b, 0 ;double precision sector number in bc
397 17b3 eb xchg ;translate table address to hi
398 17b409 dad b ;translate (sector) address
399 17b5 7e mov a, m ;translated sector number to a
400 17b6326b18 sta ios
401 17b96f mov I, a ;return sector number in I
402 17ba c9 ret

403
404 setdma: ;set dma address given by regs b, c
405 17bb 69 mov I, c
406 17bc 60 mov h, b
407 17bd 226c18 shld iod
408 17cO c9 ret
409

~ 410 read: ;read next disk record (assuming disk/trkl sec/dma set)
Z 411 17c1 Oe04 mvi c, readf ;set to read function
0 412 17c3 cde017 call setfunc

! 413 17c6 cdf017 call waitio ;perform read function
414 17c9 c9 ret ;may have error set in reg-a 0

z 415
"'0 416
rn 417 write: ;disk write function Z
8 418 17ca Oe06 mvi c, writf

:t 419 17cc cde017 call setfunc ;set to write fu nction ...,
420 17cf cdf017 call waitio ~

Vi 421 17d2 c9 ret ;may have error set
"'0 422 0 423 "'0
~ 424 utility subroutines
~ 425 prmsg: ; pri nt message at h, I to 0
~

426 17d37e mov 0 a, m
0 427 17d4 b7 ora a zero?
5 428 17d5 c8 rz 5! 429 more to print r-

rn 430 17d6 e5 push h

~ 431 17d74f mov c, a
432 17d8 cd6a17 call conout :t
433 17db e1 pop h
434 17dc 23 inx h

I-l
435 17dd c3d317 jmp prmsg

Q'\ 436 (J1

... 437 setfunc: Q\
Q\

438 set function for next i/o (command in reg-c)
439 17eO 216818 Ixi h, iof ;io function address
440 17e37e mov a, m ;get it to accumulator for masking »
441 17e4 e6f8 ani 11111000b ;remove previous command r r

Z 442 17e6 b1 ora c ;set to new command a 443 17e777 mov m, a ;replaced in iopb

! 444 the mds-800 controller requires disk bank bit in sector byte

0 445 mask the bit from the current i/o function
z 446
"

17e8 e620 ani 00100000b ;mask the disk select bit
447 17ea 216b18 Ixi h, ios ;address the sector sel~ct byte '" ~

I'T1 448 17ed b6 ora m ;select proper disk bank z
r;1 449 17ee 77 mov m, a ;set disk select bit on/off 0
:r 450 17ef c9 ret I'T1

'" 451 I'T1

Vi 452 waitio:
" 0 453 17fO OeOa mvi c, retry ;max retries before perm error
" 454 rewait: '" ~ 455 start the i/o function and wait for completion »
~ 456 17f2 cd3f18 call intype ;in rtype
0 457 17f5 cd4c18 call inbyte ;clears the controller
0 458 0
~ 459 17f83a6618 Ida dbank ;set bank flags
r 460 17fb b7 ora a ;zero if drive 0, 1 and nz if 2, 3 rn 461 17fc 3e67 mvi a, iopb and offh ;Iow address for iopb >
'" 462 17fe 0618 mvi b, iopb shr 8 ;high address for iopb n
I 463 1800 c20b18 jnz iodr1 ;drive bank 1?

464 1803 d379 out ilow ;Iow address to controller
465 1805 78 mov a, b
466 1806 d37a out ihigh ;high address
467 1808 c31018 jmp waito ;to wait for complete
468
469 iodr1: ;drive bank 1
470 180b d389 out ilow+10h ;88 for drive bank 10

471 180d 78 mov a, b
472 180e d38a out ihigh+10h
473
474 1810 cd5918 waito: call instat ;wait for completion
475 1813 e604 ani iordy ;ready?
476 1815 ca1018 jz waito

» 477
r 478 check io completion ok r

Z 479 1818 cd3f18 call intype ;must be io complete (00) unlinked a 480 00 unlinked i/o complete, 01 linked i/o complete (not used)

! 481 io disk status changed 11 (not used)
0 482 181 b fe02 cpi 10b ; ready status change?
z 483 181 d ca3218 jz wready
" ;::v

484 (Jl
fTI 485 must be 00 in the accumulator z
~ 486 1820 b7 ora a 0
:::r 487 1821 c23818
fTI

jnz werror ;some other condition, retry
;::v 488 fTI

Vi

"
489 check i/o error bits

0 490 1824 cd4c18 call inbyte

" 491 1827 17 ral ;::v

~ » 492 1828 da3218 jc wready ;unit not ready
~ 493 182b 1f rar
0 494 182c e6fe ani 11111110b ;any other errors? (deleted data ok)
0 495 182e c23818 jnz werror Ci
~ 496
r 497 read or write is ok, accumulator contains zero ;::v
~ 498 1831 c9 ret
~ 499 ~
:::r 500 wready: ;not ready, treat as error for now

501 1832 cd4c18 call inbyte ;clear result byte
502 1835 c33818 jmp trycount

~ 503 0\
'l 504 werror: ;return hardware malfunction (crc, track, seek, etc.)

1-1 505 the mds controller has returned a bit in each position Q\
():)

506 of the accumulator, corresponding to the conditions:
507 0 -deleted data (accepted as ok above)
508 1 -crc error

» 509 2 -seek error
r

510 3 -address error (hardware malfunction) r

Z
511 4 -data over/under flow (hardware malfunction) 0

! 512 5 -write protect (treated as not ready)
513 6 -write error (hardware malfunction)

0 514 j -not ready z
'" 515 (accumulator bits are numbered 7 6 5 4 3 2 1 0) :;:0

rn 516
Z 517 it may be useful to filter out the various conditions,
~
0
:c 518 but we will get a permanent error message if it is not
I'" 519 recoverable. in any case, the not ready condition is :;:0
I'"

Vi 520 treated as a separated condition for later improvement
-::7

trycount: 0 521
-::7 522 register c contains retry count, decrement 'til zero :;:0

~ 523 18380d dcr c
~ 524 1839 c2f217 jnz rewait ;for another try
0 525
0 526 cannot recover from error B
~ 527 183c 3e01 mvi a,1 ;error code
r 528 183e c9 ret
rn 529
> 530 intype, inbyte, instat read drive bank 00 or 10
~ :c 531 183f 3a6618 intype: Ida dbank

532 1842 b7 ora a
533 1843 c24918 jnz intyp1 ;skip to bank 10
534 1846 db79 in rtype
535 1848 c9 ret
536 1849 db89 intyp1 : in rtype+10h ;78 for 0, 1 88 for 2, 3
537 184b c9 ret

538 o. ,
539 184c 3a6618 inbyte: Ida dbank
540 184f b7 ora a
541 1850 c25618 jnz inbyt1
542 1853 db7b in rbyte
543 1855 c9 ret

~ 544 1856 db8b inbyt1 : in rbyte+10h

Z 545 1858 c9 ret

a 546

~
547 18593a6618 instat: Ida dbank
548 185c b7 ora a

0 549 185d c26318 jnz insta1 z
-0 550 1860 db78 in dstat
~ rn 551 1862 c9 ret
2 552 1863 db88 insta1 : in dstat+10h
S 553 1865 c9 ret
J: 554 ...,
~

555 I'TI
v;

556 "'0

0 557 data areas (must be in ram)
"'0
~ 558 186600 dbank: db 0 ;disk bank 00 if drive 0, 1
~ 559 10 if drive 2,3
~ 560 iopb: ;io parameter block
0 561 1867 80 db 80h ;normal i/o operation
0
5 562 1868 04 iof: db readf ;io function, initial read

~ 563 1869 01 ion: db 1 ;number of sectors to read

rn 564 186a 02 iot: db offset ;track number

~
565 186b 01 ios: db 1 ;sector number
566 186c 8000 iod: dw buff ;io address

J: 567
568

1-4
569 define ram areas for bdos operation

0\ 570 endef
\0

"""" 571 186e+= begdat equ $
~
0 572 186e+ dirbuf: ds 128 ;directory access buffer

573 18ee+ alvO: ds 31
574 190d+ csvO: ds 16
575 191d+ alv1: ds 31

» 576 193c+ csv1: ds 16 r-r-
Z 577 194c+ alv2: ds 31
a 578 196b+ csv2: ds 16

! 579 197b+ alv3: ds 31
580 199a+ csv3: ds 16

0 581 19aa+= enddat $ z equ
" 582 013c+= datsiz equ $-begdat ;;:0

!Il 583 19aa end I'TI z
~
0
I als1 001f 141#
I'TI
;;:0 als2 001f 146# I'TI

in als3 001f 151#
" 0 alvO 18ee 87 573#
" alv1 191d 91 575# ;;:0

~ alv2 194c 95 577# »
~ alv3 197b 99 579#
0 base 0078 180# 181 182 183 185 186
0 bdos 0806 29# 287 C)
§;! begdat 186e 571# 582
r- bias 0000 19# 22#
~
> boot 16b3 63 207#

~ booterO 1752 305 310#
I booterr 1749 241 302#

bootmsg 175b 312 316#
buff 0080 34# 209 221 278 566
cdisk 0004 33# 213 296
ci f803 172# 325
co f809 174# 330

conin 1764 66 324#
conout 176a 67 329# 432
const 1761 65 320#
cpmb 0000 28# 29 30 226 299
cpml 1600 30# 31
cr OOOd 192# 196 205

»- css1 0010 142#
F css2 0010 147#
Z css3 0010 152# 0

! csts f812 177# 322
csvO 190d 87 574#

0 csv1 193c 91 576#
z csv2 196b 95 578# " '" csv3 199a 99 580# rn
['T'I datsiz 013c 582# z
~ dbank 1866 361 459 531 539 547 558# 0
I dirbuf 186e 86 90 94 98 572# ['T'I

'" dpbO 1673 86 101# 140 145 150 ['T'I

Vi dpb1 1673 90 140#
" '" dpb2 1673 94 145# 0
" dpb3 1673 98 150# '" ~ dpbase 1633 83# 380 »
~ dpeO 1633 84#
0 dpe1 1643 88#
0 dpe2 1653 92# Ci
~ dpe3 1663 96#
r dstat 0078 181# 550 552 '" rn enddat 19aa 581# >
'" false 0000 15# 16 n
I gocpm 170f 214 265#

home 1778 71 349#
icon 00f3 166# 275

~ ihigh 007a 186# 466 472 '1
~

~ ilow 0079 185# 464 470
~
N inbyt1 1856 541 544#

inbyte 184c 457 490 501 539#
insta1 1863 549 552#

» instat 1859 474 547#
r- inte OOfe 165# 271 273 r-
Z inte 007e 167# 272 a intyp1 1849- 533 536#

! intype 183f 456 479 531#
0 iod 186c 242 407 566#
z iodr1 180b 463 469#
""0
~ iof 1868 369 439 562# rn
1""'1 ion 1869 563# z
~ iopb 1867 461 462 560#
0
:::r iordy 0004 191# 475
1""'1
~ ios 186b 248 391 400 447 565# 1""'1

Vi iot 186a 252 386 564#
""0

0 If OOOa 193# 196 196 205
""0 list 176d 68 332# ~

~ » listst 1770 78 336#
~ 10 f80f 176# 334
0 mon80 f800 170# 291
0 nsects 002c 31# 237 5
~ offset 0002 32# 100 564
r- patch 1600 25# 27 28
~ po f80e 175# 343
~
~

prmsg 17d3 211 313 425# 435
:::r punch 1772 69 341#

rbyte 007b 183# 542 544
rd1 1705 250 257#
rdsee 16e1 238# 262
read 17e1 76 240 410#
reader 1775 70 345#
readf 0004 188# 411 562

recal 0003 190#
retry OOOa 35# 223 453
revrt OOtd 164# 269
rewait 17t2 454# 524
ri t806 173# 347
rmon80 ffOt 171# 314

» rtype 0079 182# 534 536
r- sectran 17b1 79 394# r-

Z seldsk 177d 72 229 354# a setdma 17bb 75 227 247 279 404#

~ setdrive 1792 365 367#
0 setfunc 17eO 412 419 437#
z setsec 17ac 74 233 259 390#
"" ;:0 settrk 17a7 73 231 255 352 385#
~
2 signon 169c 195# 210
~ test 0000 16# 18 21 197 200 289
0
:::r: true tfft 14# 15

1838 502 521# ;:0 trycount
Vi vers 0016 6# 204 204
"" 0 waito 1810 467 474# 476

"" waitio 17fO 413 420 452#
~

~ wboot 16c3 64 217#
~ wbootO 16c9 225# 308
0 wboote 1603 64# 284
0 werror 1838 487 495 504#
5
~ wready 1832 483 492 500#
r- write 17ca 77 417#
~ writf 0006 189# 418

~ xltO 1682 84 112# 143 148 153
:::r: xlt1 1682 88 143#

xlt2 1682 92 148#
xlt3 1682 96 153#

Joo-l
.......
~

Appendix B: A Sl<eletal CBIOS

>-r-
1 skeletal cbios for first level of cp/m 2.0 alteration r-

Z
2 a

! 3 0014 = msize equ 20 ;cp/m version memory size in kilobytes
4

0 5 "bias" is address offset from 3400h for memory systems z
6 than 16k (referred to as "b" throughout the text) " ;;:0

[Il 7
1""'1

0000 = bias (msize-20) *1024 z 8 equ
r;1
0 9 3400 = ccp equ 3400h+bias ;base of ccp
:r 10 3c06 = bdos equ ccp+806h ; base of bdos 1""'1
;;:0

11 4aOO = bios ccp+1600h ;base of bios 1""'1 equ
Vi

" 12 0004 = cdisk equ 0004h ;current disk number O=a, ... , 15=p
0 13 0003 = iobyte equ 0003h ;intel i/o byte
" ;;:0 14
~ 15 4aOO org bios ;origin of this program »
~ 16 002c = nsects equ ($-ccp)/128 ;warm start sector count
0 17
0 18 jump vector for individual subroutines Ci
~ 19 4aOO c39c4a jmp boot ;cold start
r-

20 4a03 c3a64a wboote: jmp wboot ;warm start ;;:0

~ 21 4a06 c3114b jmp const ;console status >
~ 22 4a09 c3244b jmp conin ;console character in
:r 23 4aOc c3374b jmp conout ;console character out

24 4aOf c3494b jmp list ;list character out
25 4a12 c34d4b jmp punch ;punch character out
26 4a15 c34f4b jmp reader ; reader character out

)0001
27 4a18 c3544b jmp home ; move head to home position ""l

U1

~ 28 4a1 b c35a4b jmp seldsk ;select disk 'I
0\ 29 4a1e c37d4b jmp settrk ;set track number

30 4a21 c3924b jmp setsec ;set sector number
31 4a24 c3ad4b jmp setdma ;set dma address

» 32 4a27 c3c34b jmp read ;read disk
r-r- 33 4a2a c3d64b jmp write ;write disk
Z a 34 4a2d c34b4b jmp listst ;return list status

! 35 4a30 c3a74b jmp sectran ;sector translate
36

0 37 fixed data tables for four-drive standard z
""" 38 ibm-compatible 8" disks
;;:I

G:: 39 disk parameter header for disk 00
Z 40 4a33 734aOOOO dpbase: dw trans, OOOOh r;t
0 41 4a37 00000000 dw OOOOh, OOOOh
J: 42 4a3 b f04c8d4a dw dirbf, dpblk 1""1
;;:I

43 4a3f ec4d704d dw chkOO, aliOO 1""1

Vi
44 disk parameter header for disk 01 '" 0 45 4a43 734aOOOO dw trans, OOOOh

""" ;;:I 46 4a47 00000000 dw OOOOh,OOOOh
~ 47 4a4b f04c8d4a dw dirbf, dpblk
~ 48 4a4f fc4d8f4d dw chk01, all01
0 49 disk parameter header for disk 02
0
5 50 4a53 734aOOOO dw trans, OOOOh
~ 51 4a57 00000000 dw OOOOh,OOOOh
r-

4a5 b f04c8d4a dw dirbf, dpblk rn 52

~ 53 4a5f Oc4eae4d dw chk02, all02

~ 54 disk parameter header for disk 03
::I 55 4a63 734aOOOO dw trans, OOOOh

56 4a67 00000000 dw OOOOh, OOOOh
57 4a6b f04c8d4a dw dirbf, dpblk
58 4a6f 1 c4ecd4d dw chk03, all03
59
60 sector translate vector

61 4a73 01070d13 trans: db 1,7, 13, 19 ;sectors 1, 2, 3, 4
62 4a77 19050b11 db 25, 5, 11, 17 ;sectors 5, 6, 7, 8
63 4a7b 1703090f db 23, 3, 9, 15 ;sectors 9, 10, 11, 12
64 4a7f 1502080e db 21,2,8,14 ;sectors 13, 14, 15, 16
65 4a83 141 a060c db 20, 26, 6, 12 ;sectors 17,18,19,20
66 4a87 1218040a db 18, 24, 4, 10 ;sectors 21, 22, 23, 24

):-
67 4a8b 1016 db 16, 22 ;sectors 25, 26 r-r-

Z 68
(3 69 dpblk: ;disk parameter block, common to all disks

~ 70 4a8d 1aOO dw 26 ;sectors per track

0 71 4a8f 03 db 3 ;block shift factor
z 72 4a90 07 db 7 ;block mask
""0

73 4a91 00 db 0 ;null mask ;::0

~ 74 4a92 f200 dw 242 ;disk size-1 I'T1 z
75 4a943fOO dw 63 ;directory max r;t

0
76 4a96 cO db 192 ;alloc 0 :::r

I'T1 77 4a97 00 db 0 ;alloc 1 ;:v
I'T1

Vi 78 4a981000 dw 16 ;check size
""0

79 4a9a 0200 dw 2 ;track offset 0
""0 80 ;:v

~ 81 end of fixed tables »
82 ~

a 83 individual subroutines to perform each function
0 84 boot: ;simplest case is to just perform parameter initialization
C)

85 4a9c af xra a ;zero in the accum ~ r- 86 4a9d 320300 sta iobyte ;clear the iobyte
rn 87 4aaO 320400 sta cdisk ;select disk zero
> 88 4aa3 c3ef4a jmp gocpm ;initialize and go to cp/m
~ 89 :::r

90 wboot: ;simplest case is to read the disk until all sectors loaded
91 4aa6318000 Ixi sp,80h ;use space below buffer for stack
92 4aa90eOO mvi c, 0 ;select disk 0

)-01 93 4aab cd5a4b call seldsk
""l 94 4aae cd544b call home ;go to track 00 ""l

~ 95 "I
():)

96 4ab1 062c mvi b, nsects ;b counts # of sectors to load
97 4ab30eOO mvi c, 0 ;c has the current track number
98 4ab51602 mvi d,2 ;d has the next sector to read

» 99 note that we begin by reading track 0, sector 2 since sector 1 r-r- 100 contains the cold start loader, which is skipped in a warm start
Z

101 4ab7210034 Ixi h, ccp ;base of cp/m (initial load point) a
! 102 load1: ;Ioad one more sector

103 4aba c5 push b ;save sector count, current track
a 104 4abb d5 push d ;save next sector to read z
"" 105 4abc e5 push h ;save dma address i" rn 106 4abd 4a mov c, d ;get sector address to register c
Z 107 4abe cd924b call setsec ;set sector address from register c r;j
0 108 4ac1 c1 pop b ;recall dma address to b, c
J: 109 4ac2 c5 push b ;replace on stack for later recall ..,.,
i" ..,., 110 4ac3 cdad4b call setdma ;set dma address from b, c
Vi

"" 111
i"
0 112 drive set to 0, track set, sector set, dma address set
"" i"

113 4ac6 cdc34b call read ~ » 114 4ac9 feOO cpi OOh ;any errors?
~ 115 4acb c2a64a jnz wboot ;retry the entire boot if an error occurs 0
0 116
Ci 117 no error, move to next sector
~ 118 4ace e1 pop h ;recall dma address r-
i" 119 4acf118000 Ixi d, 128 ;dma=dma+128 rn
> 120 4ad219 dad d ;new dma address is in h, I
~ 121 4ad3 d1 pop d ;recall sector address :c

122 4ad4 c1 pop b ;recall number of sectors remaining, and current trk
123 4ad505 dcr b ;sectors=sectors-1
124 4ad6 caef4a jz gocpm ;transfer to cp/m if all have been loaded
125
126 more sectors remain to load, check for track change
127 4ad914 inr d

128 4ada 7a mov a, d ;sector=27?, if so, change tracks
129 4adb fe1 b cpi 27
130 4add daba4a jc load1 ;carry generated if sector<27
131
132 end of current track, go to next track

» 133 4aeO 1601 mvi d, 1 ;begin with first sector of next track
r- 134 4ae20c inr c ;track=track+1 r-
Z 135 a 136 save register state, and change tracks

! 137 4ae3 c5 push b

0 138 4ae4 d5 push d
z 139 4ae5 e5 push h
"'" ;;:0 140 4ae6 cd7d4b call settrk ;track address set from register c (/l
I"T'I 141 4ae9 e1 pop h z
~ 142 4aea d1 pop d
0
:r 143 4aeb c1 pop b
I"T'I
;;:0 144 4aec c3ba4a jmp load1 ;for another sector I"T'I

Vi 145
"'" 0 146 end of load operation, set parameters and go to cp/m
"'" 147 gocpm: ;;:0

~ 148 4aef 3ec3 mvi a, Oc3h ;c3 is a jmp instruction »
~ 149 4af1 320000 sta 0 ;for jmp to wboot
0 150 4af421034a Ixi h, wboote ;wboot entry point
0 151 4af7220100 shld 1 ;set address field for jmp at 0 0
~ 152
r- 153 4afa 320500 sta 5 ;for jmp to bdos
;;:0

~ 154 4afd 21063c Ixi h, bdos ;bdos entry point
> 155 4bOO 220600 shld 6 ;address field of jump at 5 to bdos
~
:r 156

157 4b03018000 Ixi b,80h ;default dma address is 80h
158 4b06 cdad4b call setdma

~ 159
'! 160 4b09 fb ei ;enable the interrupt system \0

.....
4bOa 3a0400 Ida cdisk ;get current disk number CXl 161

0
162 4bOd 4f mov c, a ;send to the ccp
163 4bOe c30034 jmp ccp ;go to cp/m for further processing
164

~ 165
r

166 simple i/o handlers (must be filled in by user) z
(3 167 in each case, the entry point is provided, with space reserved

! 168 to insert your own code
169

0 170 const: ;console status, return Offh if character ready, OOh if not z
'" 171 4b11 ds 10h ;space for status subroutine
iO
rn 172 4b21 3eOO mvi a,OOh
Z 173 4b23 c9 ret
~
0 174
::I: 175 conin: ;console character into register a fTI
iO
fTI 176 4b24 ds 10h ;space for input routine
Vi
~ 177 4b34 e67f ani 7fh ;strip parity bit
f:) 178 4b36 c9 ret
'" C! 179
~
)0 180 conout: ;console character output from register c
~ 181 4b3779 mov a, c ;get to accumulator
0 182 4b38 ds 10h ;space for output routine 0
B 183 4b48 c9 ret
5! 184
r

list: ;Iist character from register c ~ 185

~
186 4b4979 mov a, c ;character to register a
187 4b4a c9 ret ;null subroutine

::I: 188
189 listst: ;return list status (0 if not ready, 1 if ready)
190 4b4b af xra a ;0 is always ok to return
191 4b4c c9 ret
192
193 punch: ;punch character from register c

194 4b4d 79 mov a, c ;character to register a
195 4b4e c9 ret ;null subroutine
196
197
198 reader: ;read character into register a from reader device
199 4b4f 3e1 a mvi a,1ah ;enter end of file for now (replace later)

~ 200 4b51 e67f ani 7fh ;remember to strip parity bit
Z 201 4b53 c9 ret
0 202

~ 203
204 i/o drivers for the disk follow 0 z 205 for now, we will simply store the parameters away for use

-0
206 in the read and write subroutines ;::0

(/l
207 Z

~ 208 home: ;move to the track 00 position of current drive
c

209 translate this call into a settrk call with parameter 00 :I
1""'1 210 4b540eOD mvi c,O ;select track 0 ;::0

"" Vi 211 4b56 cd7d4b call settrk
-0 212 4b59 c9 ret ;we will move to 00 on first read/write 0
-0 213
C!

214 seldsk: ;select disk given by register c ~
~ 215 4b5a 210000 Ixi h, OOODh ;error return code

0 216 4b5d 79 mov a,c
0 217 4b5e 32ef4c sta diskno
5 218 4b61 fe04 cpi 4 ;must be between 0 and 3
~ r 219 4b63 dO rnc ;no carry if 4, 5, ...
~ 220 disk number is in the proper range

~ 221 4b64 ds 10 ;space for disk select

:I 222 compute proper disk parameter header address
223 4b6e 3aef4c Ida diskno
224 4b71 6f mov I, a ;I=disk number 0, 1,2,3
225 4b722600 mvi h,O ;high order zero

I-l 226 4b7429 dad h ;*2 Q)
I-l

~ 227 4b7529 dad h ;*4 Q:)
N 228 4b7629 dad h ;*8

229 4b7729 dad h ;*16 (size of each header)
230 4b7811334a Ixi d, dpbase
231 4b7b 19 dad 0 ;hl= .. dpbase(diskno*16)

):- 232 4b7c c9 ret r-r-

Z 233
a 234 settrk: ;set track given by register c

~ 235 4b7d 79 mov a, c
236 4b7e 32e94c sta track

0 237 4b81 ds 10h ;space for track select z
" 238 4b91 c9 ret '" rn 239 Z
r;f 240 setsec: ;set sector given by register c
0 241 4b9279 mov a, c
J:
fT1 242 4b9332eb4c sta sector
'" fT1

243 4b96 ds 10h ;space for sector select Vi

" 244 4ba6 c9 ret
0
" 245
'" 246 sectran: ~ » 247 ;translate the sector given by bc using the
~
0 248 ;translate table given by de

0 249 4ba7 eb xchg ;hl=.trans
B 250 4ba809 dad b ;hl=.trans(sector)
~ 251 4ba96e mov I, m ;1 = trans(sector) r-

~ 252 4baa 2600 mvi h, 0 ;hl = trans(sector)

> 253 4bac c9 ret ;with value in hi
'" 254 ("\
J:

setdma: ;set dma address given by registers band c 255
256 4bad 69 mov I, c ;Iow order address
257 4bae 60 mov h, b ;high order address
258 4baf22ed4c shld dmaad ;save the address
259 4bb2 ds 10h ;space for setting the dma address

260 4bc2 c9 ret
261
262 read: ;perform ~ead operation (usually this is similar to write
263 so we will allow space to set up read command, then use
264 common code in write)

~ 265 4bc3 ds 10h ;set up read command
r 266 4bd3 c3e64b jmp waitio ;to perform the actual i/o Z
a 267

! 268 write: ;perform a write operation
269 4bd6 ds 10h ;set up write command

0 270 z
'" 271 waitio: ;enter here from read and write to perform the actual i/o ;;g
!Il 272 operation. return a OOh in register a if the operation completes
Z
~ 273 properly, and 01 h if an error occurs during the read or write
0 274 :::t
fTI 275 in this case, we have saved the disk number in 'diskno' (0, 1) ;;g
fTI

in 276 the track number in 'track' (0-76)
'" 0 277 the sector number in 'sector' (1-26)

'" 278 the dma address in 'dmaad' (0-65535) ;;g

~ 279 4be6 ds 256 ;space reserved for i/o drivers >'
~ 280 4ce63e01 mvi a, 1 ;error condition
0 281 4ce8 c9 ret ;replaced when filled- in
0
B 282
~ 283 the remainder of the cbios is reserved uninitialized
r

284 data area, and does not need to be a part of the ;;g
(/l

> 285 system memory image (the space must be available,
;;g

286 however, between "begdat" and "enddat"). n
:::t

287
288 4ce9 track: ds 2 ;two bytes for expansion
289 4ceb sector: ds 2 ;two bytes for expansion

~. 290 4ced dmaad: ds 2 ;direct memory address (Xl
("J

J-ol
291 4cef diskno: ds 1 ;disk number 0-15 0)

jj::;o

292
293 scratch ram area for bdos use
294 4cfO = begdat equ $;beginning of data area
295 4cfO dirbf: ds 128 ;scratch directory area :>

r 296 4d70 aIIOO: ds 31 ;allocation vector 0 r-
Z 297 4d8f all01 : ds 31 ;allocation vector 1
0 298 4dae a1l02: ds 31 ;allocation vector 2

! 299 4dcd a1l03: ds 31 ;allocation vector 3

0 300 4dec chkOO: ds 16 ;check vector 0
z 301 4dfc chk01 : ds 16 ;check vector 1
~
~ 302 AeOc chk02: ds 16 ;check vector 2 rn
Z 303 4e1c chk03: ds 16 ;check vector 3

S 304
:r: 305 4e2c enddat equ $;end of data area
1"'1

306 013c = datsiz $-begdat; ;size of data area ;::c equ 1"'1

Vi 307 4e2c end
""0

0
""0
2: aliOO 4d70 43 296#
~ all01 4d8f 48 297#
~ all02 4dae 53 298#
0 all03 4dcd 58 299# 0
B bdos 3c06 10# 154
5! begdat 4cfO 294# 306 r-

~ bias 0000 8# 9

> bios 4aOO 11# 15
~ boot 4a9c 19 84#
::I ccp 3400 9# 10 11 16 101 163

cdisk 0004 12# 87 161
chkOO 4dec 43 300#
chk01 4dfc 48 301#
chk02 4eOc 53 302#
chk03 4e1c 58 303#

conin 4b24 22 175#
conout 4b37 23 180#
const 4b11 21 170#
datsiz 013c 306#
dirbf 4cfO 42 47 52 57 295#

~
diskno 4cef 217 223 291#
dmaad 4ced 258 290#

Z dpbase 4a33 40# 230 a
! dpblk 4a8d 42 47 52 57 69#

enddat 4e2c 305#
0 gocpm 4aef 88 124 147# z
'" home 4b54 27 94 208#
;=g

iobyte 0003 13# 86 (/l
Z list 4b49 24 185#
~ listst 4b4b 34 189# 0
:::I: load1 4aba 102# 130 144 ...,
;=g

msize 0014 3# 8 ...,
Vi nsects 002c 16# 96 '" 0 punch 4b4d 25 193#
'" C! read 4bc3 32 113 262#

~ reader 4b4f 26 198#
~ sector 4ceb 242 289#
0 sectran 4ba7 35 246#
0
B seldsk 4b5a 28 93 214#
~ setdma 4bad 31 110 158 255#
r-

~ setsec 4b92 30 107 240#

~
settrk 4b7d 29 140 211 234#
track 4ce9 236 288#

:::I: trans 4a73 40 45 50 55 61#
waitio 4be6 266 271#
wboot 4aa6 20 90# 115

~ wboote 4a03 20# 150
~ write 4bd6 33 268# 01

Appendix C: A SI<eietai GETSYS/PUTSYS Program

0100

0014 =

0000 =
3400 =
3cOO =
4aOO =

0100318033
0103 218033
0106 0600

msize

combined getsys and putsys programs from
Sec 6.4
Start the programs at the base of the TPA

org 0100h

equ 20 ; size of cp/m in Kbytes

; "bias" is the amount to add to addresses for> 20k
(referred to as "b" throughout the text)

bias
ccp
bdos
bios

gstart:

rd$trk:

equ (msize-20)*1024
equ 3400h+bias
equ ccp+0800h
equ ccp+1600h

getsys programs tracks 0 and 1 to memory at
3880h + bias

register
a
b
c
d,e
tl I I
sp

Ixi sp,ccp-0080h
Ixi h,ccp-0080h
mvi b,O

usage
(scratch register)
track cou nt (0 ... 76)
sector count (1 ... 26)
(scratch register pair)
load address
set to track address

; start of getsys
; convenient place
; set initial load
; start with track
; read next track

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 187

01080e01

010a cd0003
010d 118000
0110 19
0111 Oc
0112 79
0113felb
0115 daOa01

0118 04
0119 78
011 a fe02
011 c da0801

011f fb
0120 76

0200

0200318033
0203218033
02060600

02080e01

020a cd0004
020d 118000
0210 19
0211 Oc
0212 79
0213 felb
0215 daOa02

0218 04
0219 78
021 a fe02
021c da0802

021f fb
022076

mvi c,1 ; each track start
rd$sec:

call read$sec ; get the next sector
Ixi d,128 ; offset by one sector
dad d , (hl=hl+128)
inr c ; next sector
mova,c ; fetch sector number
cpi 27 , and see if last
jc rdsec ; <, do one more

; arrive here at end of track, move to next track

inr" b
mova,b
cpi 2
jc rd$trk

; track = track+1
; check for last
; track = 2 ?
; <, do another

; arrive here at end of load, halt for lack of anything
; better

put$sys:

wr$trk:

wr$sec:

ei
hit
putsys program, places memory image
starting at
3880h + bias back to tracks 0 and 1
start this program atthe next page boundary
org ($+0100h) and OffOOh

Ixi sp,ccp-0080h ; convenient place
Ixi h,ccp-0080h ; start of dump
mvi b,O ; start with track

mvi c,1 ; start with sector

call write$sec ; write one sector
Ixi d,128 ; length of each
dad d ; <hl>=<hl> + 128
inr c ; <c> =<c> + 1
mava,c ; see if
cpi 27 ; past end of track
jc wr$sec ; no, do another

; arrive here at end of track, move to next track

inr b
mava,b
cpi 2
jc wr$trk

; track = track+1
; see if
; last track
; no, do another

done with putsys, halt for lack of anything
better

ei
hit

188 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGlT!\L RESEARCH

0300

0300 c5
0301 e5

0302

0342 el
0343 cl
0344 c9

0400

0400 c5
0401 e5

0402

0442 el
0443 cl
0444 c9

0445

; user supplied subroutines for sector read and write

read$sec:

move to next page boundary

org ($+0100h) and OttOOh

; read the next sector
; track in ,
; sector in <c>
; dmaaddr in <hi>

pushb
pushh

; user defined read operation goes here
ds 64

write$sec:

pop h
pop b
ret

org ($+0100h) and OftaOh ;another page
; boundary

; same parameters as read$sec

pushb
pushh

; user defined write operation goes here
ds 64

pop h
pop b
ret

; end of getsys/putsys program

end

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 189

Appendix D: The MDS-800 Cold Start Loader for CP/M 2

1 title mds cold start loader at 3000h'
» 2 r r

Z 3 mds-800 cold start loader for cp/m 2.0
a 4

~ 5 version 2.0 august, 1979
6

0 7 0000 = false equ 0 z
" 8 ffff true equ not false ;;:0

rn 9 0000 = testing equ false if true, then go to mon80 on errors
Z
r;t 10
0 11 if testing :::c
I'T1 12 bias equ 03400h ;;:0
I'T1

13 endif Vi

" 14 if not testing
0
" 15 0000 = bias equ OOOOh
;;:0

16 endif ~ » 17 0000 = cpmb equ bias ; base of dos load
~
a 18 0806 = bdos equ 806h+bias ;entry to dos for calls
0 19 1880 = bdose equ 1880h+bias ;end of dos load
Ci 20 1600 = boot equ 1600h+bias ;cold start entry point
~ 21 1603 = rboot equ boot+3 ;warm start entry point r

~ 22

> 23 3000 org 03000h ;Ioaded down from hardware boot at 3000H
~ 24 :::c

25 1880 = bdosl equ bdose-cpmb
26 0002 = ntrks equ 2 ;number of tracks to read
27 0031 = bdoss equ bdosl/128 ;number of sectors in dos

i-l 28 0019 = bdoso equ 25 ;number of bdos sectors on track 0 \0
i-l 29 0018 = bdos1 equ bdoss-bdoso ;number of sectors on track 1

""" '0
N

30

~ 31 f800 = mon80 equ of800h ;intel monitor base
Z 32 ffof= rmon80 equ offofh ;restart location for mon80
a 33 0078 = base equ 078h ;'base' used by controller

! 34 0079 = rtype equ base+1 ;result type

0 35 007b = rbyte equ base+3 ;result byte
z 36 007f = reset equ base+7 ;reset controller
"" 37 ;;:tI

rn 38 0078 = dstat equ base ;disk status port Z
~ 39 0079 = ilow equ base+1 ;Iow iopb address
0 40 007a = ihigh equ base+2 ;high iopb address J:
I'TI 41 OOff = bsw equ offh ; boot switch ;;:tI
I'TI

Vi 42 0003 = recal equ 3h ;recalibrate selected drive
"" 43 0004 = readf equ 4h ;disk read function 0
"" 44 0100 = stack equ 100h ;use end of boot for stack ;;:tI

~ 45
>' 46 rstart: ~
0 47 3000310001 Ixi sp,stack; ;in case of call to mon80
0 48 clear disk status
B 49 3003 db79 in rtype
~ r- 50 3005 db7b in rbyte
~ 51 check if boot switch is off
> 52 coldstart:
~ 53 3007 dbff in bsw ::t

54 3009 e602 ani 02h ;switch on?
55 300b c20730 jnz coldstart
56 clear the controller
57 300e d37f out reset ;Iogic cleared
58
59
60 30100602 mvi b,ntrks ;number of tracks to read
61 3012 214230 Ixi h,iopbo
62

63 start:
64
65 read first/next track into cpmb
66 30157d mov a,1
67 3016 d379 out ilow
68 30187c mov a,h

i?! 69 3019 d37a out ihigh
r- 70 301 b db78 waito: in dstat Z
0 71 301 d e604 ani 4

~
72 301f ca1 b30 jz waito
73

0 74 check disk status z
"" 75 3022 db79 in rtype ;;0

rn 76 3024 e603 ani 11 b
Z 77 3026 fe02 cpi 2 r;1
0 78
:r 79 if testing 1""1
~
1""1 80 cnc rmon80 ;go to monitor if 11 or 10 Vi
-::J 81 endif
0 82 if not testing
"" ;:a 83 3028 d20030 jnc rstart ;retry the load
~ 84 endif
~ 85
0 86 302b db7b in rbyte ;i/o complete, check status
0
0 87 if not ready, then go to mon80
5! 88 302d 17 ral r-

~ 89 302e dcOfff cc rmon80 ; not ready bit set

~
90 3031 1f rar ;restore
91 3032 e61e ani 11110b ;overrun/addr erriseek/crc/xxxx

:r 92
93 if testing
94 cnz rmon80 ;go to monitor

~ 95 endif
10

96 if not testing (,J

)o-l

97 3034 c20030 jnz rstart ; retry the load \()
~

98 endif
99

100
)- 101 3037 110700 Ixi d,iopbl ;Iength of iopb
r- 102 303a 19 dad d ;addressing next iopb r-
Z 103 303b 05 dcr b ;count down tracks a
!

104 303c c21530 jnz start
105

0 106
z 107 jmp to boot to print initial message, and set up jmps ""0 ..
;;tI 108 303f c30016 jmp boot rn
2 109
~ 110 parameter blocks 0
:r:
I'TI

111 3042 80 iopbo: db 80h ;iocw, no update
;;tI 112 304304 db readf ;read function I'TI

Vi 113 3044 19 db bdoso ;# sectors to read on track 0
""0

0 114 3045 00 db 0 ;track 0
""0

115 3046 02 db 2 ;start with sector 2 on track 0 ;;tI

~ 116 3047 0000 dw cpmb ;start at base of bdos >-
~ 117 0007 = iopbl equ $-iopbo
0 118
0

119 304980 iopb1: db 80h 5
~ 120 304a 04 db readf
r-

121 304b 18 db bdos1 ;sectors to read on track 1
~
> 122 304c 01 db 1 ;track 1

~ 123 304d 01 db 1 ;sector 1
J: 124 304e 800c dw cmpb+bdosO*128 ;base of second read

125
126 3050 end

base 0078 33# 34 35 36 38 39 40
bdos 0806 18#
bdoso 0019 28# 29 113 124
bdos1 0018 29# 121
bdose 1880 19# 25

>-
bdosl 1880 25# 27

r- bdoss 0031 27# 29 r-

Z bias 0000 12# 15# 17 18 19 20
"T'I

0 boot 1600 20# 21 108

! bsw OOff 41# 53

0 coldstart 3007 52# 55
z cpmb 0000 17# 25 116 124
" ;;:0 dstat 0078 38# 70
!/l
fT'I false 0000 7# 8 9 z
~ ihigh 007a 40# 69
0
J: ilow 0079 39# 67
fT'I iopbo 3042 61 111 # 117 ;;:0
fT'I

Vi iopb1 3049 119#
" 6 iopbl 0007 101 117#

" mon80 taOO 31#
;;:0

~ ntrks 0002 26# 60
» rboot 1603 21# ~
a rbyte 007b 35# 50 86
0 readf 0004 43# 112 120
B
~ recal 0003 42#
r- reset 007f 36# 57
rn rmon80 ffOf 32# 80 89 94
> rstart 3000 46# 83 97
~
I rtype 0079 34# 49 75

stack 0100 44# 47
start 3015 63# 104
testing 0000 9# 11 14 79 82 93 96

... true ffff 8#
'0 waito 301b 70# 72 (.n

0000

0014 =

Appendix E: A SI<eletal Cold Start Loader

; this is a sample cold start loader, which, when
; modified
; resides on track 00, sector 01 (the first sector on the
; diskette). we assume that the controller has loaded
; this sector into memory upon system start-up (this
; program can be keyed-in, or can exist in read/only
; memory
; beyond the address space of the cp/m version you are
; running). the cold start loader brings the cp/m system
; into memory at "Ioadp" (3400h + "bias"). in a 20k
; memory system, the value of "bias" is OOOOh, with
; large
; values for increased memory sizes (see section 2).
; after
; loading the cp/m system, the cold start loader
; branches
; to the "boot" entry point of the bios, which begins at
; "bios" + "bias." the cold start loader is not used un­
; til the system is powered up again, as long as the bios
; is not overwritten. the origin is assumed at OOOOh, an
; must be changed if the controller brings the cold start
; loader into another area, or if a read/only memory
; area
; is used.

org 0

msize equ 20

; base of ram in
; cp/m

; min mem size in
; kbytes

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 197

0000 =

3400 =,
4aOO =
0300 =
4aOO =
1900 =

0032 =

0000010200
0003 1632

0005 210034

0008 c36bOO

OOOb

006b 15
006c ca004a

006f 318000

0072 39

bias equ (msize-20) *1024

ccp equ 3400h+bias
bios equ ccp+1600h
biosl equ 0300h
boot equ bios
size equ bios+biosl-ccp

sects equ size/128

begin the load operation

cold:
Ixi b,2
mvi d,sects

Ixi h,ccp

; offset from 20k
; system
; base of the ccp
; base of the bios
; length of the bios

; size of cp/m
; system
; # of sectors to load

; b=O, c=sector 2
; d=# sectors to
; load
; base transfer
; address

Isect: ; load the next sector

insert inline code at this point to
read one 128 byte sector from the
track given in register b, sector
given in register c,
into the address given by <hi>

; branch to location "cold" if a read error occurs

user supplied read operation goes
here ...

j m p past$ patch ; remove this
; when patched

ds 60h

past$ patch:
; go to next sector if load is incomplete

dcr d ; sects=sects-1
jz boot ; head for the bios

more sectors to load

we aren't using a stack, so use <sp> as scratch
; register

to hold the load address increment

Ixi sp,128

dad sp

; 128 bytes per
; sector
; <hi> = <hi> +
128

198 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

00730c
0074 79
0075 felb

0077 da0800

007a Oe01
007c 04
007d c30800
0080

inr c
mova,c
cpi 27

jc Isect

; sector = sector + 1

; last sector of
; track?
; no, go read
; another

; end of track, increment to next track

mvi c,1
inr b
jmp Isect
end

; sector = 1
; track = track + 1
; for another group
; of boot loader

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 199

Appendix F: CP 1M Disi< Definition Library

1· . · , CP/M 2.0 disk re-definition library
2· . · ,
3· . Copyright © 1979

~
· ,

4· . Digital Research r · ,
Z 5· . · , Box 579
0 6· . Pacific Grove, CA

~
· ,

7· . 93950 · ,
8· .

0 · ,
z 9· . CP/M logical disk drives are defined using the · ,
"'" 10: ; macros given below, where the sequence of calls iiO
~
Z 11: ; is:
~ 12: ;
0 13: ; :r: disks n
1""'1 14: ; diskdef parameter-list-O ;:c
1""'1

iii 15: ; diskdef parameter-list-1
-0 16: ; 0
-0 17: ; diskdef parameter-list-n
~
~ 18: ; endef » 19: ; ~
a 20: ; where n is the number of logical disk drives attached
0 21: ; to the CP/M system, and parameter-list-i defines the
5 22: ; characteristics of the ith drive (i=0,1, ... ,n-1)
~ r 23: ;
~ 24: ; each parameter-list-i takes the form

~ 25: ; dn, fsc, Isc, [skf], bls,dks,dir,cks,ofs, [0]

:r: 26: ; where
27: ; dn is the disk number 0,1 , ... ,n-1
28: ; fsc is the first sector number (usually 0 or 1)
29: ; Isc is the last sector number on a track

N
30: ; skf is optional "skew factor" for sector translate

0 31: ; bls is the data block size (1024,2048, ... ,16384)
I-l

N 32: ; dks is the disk size in bls increments (word)
0

33: ; dir is the number of directory elements (word) N

34: ; cks is the number of dir elements to checksum
35: ; ofs is the number of tracks to skip (word)
36: ; [0] is an optional 0 which forces 16K/directory end

>- 37: ; r
r-

Z 38: ; for convenience, the form
a 39: ; dn,dm

~ 40: ; defines disk dn as having the same characteristics as
41: ; a previously defined disk dm.

0 z 42: ;
" 43: ; a standard four drive CP/M system is defined by ;N

rn 44: ; disks 4 1""'1
Z
-I 45: ; diskdef 0,1,26,6,1024,243,64,64,2 1""'1
0 46: ; dsk set 0 ::r:
1""'1 47: ; rept 3 ;N
1""'1

Vi 48:; dsk set dsk+1

" 49: ; diskdef %dsk,O 0
" 50: ; endm
;N

~ 51: ; endef
» 52: ; ~
0 53: ; the value of "begdat" at the end of assembly defines the
0 54: ; beginning of the uninitialize ram area above the bios,
0 55: ; while the value of "enddat" defines the next location
~
r 56: ; following the end of the data area. the size of this

~ 57: ; area is given by the value of "datsiz" at the end of the

> 58: ; assembly. note that the allocation vector will be quite
;N
n 59: ; large if a large disk size is defined with a small block ::r:

60: ; size.
61: ;
62: dskhdr macro dn
63: ;; define a single disk header list
64: dpe&dn: dw xlt&dn,OOOOh ;translate table

65: dw OOOOh,OOOOh ;scratch area
66: dw dirbuf,dpb&dn ;dir buff,parm block
67: dw csv&dn,alv&dn ;check, alloc vectors
68: endm
69: ;

~ 70: disks macro nd
Z 71: ;; define nd disks
0 72: ndisks set nd ;; for later reference

! 73: dpbase equ $;base of disk parameter blocks
74: ;; generate the nd elements 0 z 75: dsknxt set 0

"'0
76: rept nd :;tI

rn
77: dskhdr %dsknxt Z

r;t 78: dsknxt set dsknxc+1
0

79: endm J:
1""1 80: endm :;tI
1""1

Vi 81: ;
"'0 82: dpbhdr macro dn 0
"'0 83: dpb&dn equ $;disk parm block :;tI

~ 84: endm » 85: ; ~
0 86: ddb macro data, comment
0 87: ;; define a db statement
5 88: db data comment ~ r- 89: endm
~ 90: ;

~ 91: ddw macro data,comment
J: 92: ;; define a dw statement

93: dw data comment
94: endm
95: ;
96: gcd macro m,n

N 97: ;; greatest common divisor of m,n 0
("J 98: ;; produces value gcdn as result

N 99: ;; (used in sector translate table generation) 0
~ 100: gcdm set m ;;variable for m

101: gcdn set n ;;variable for n
102: gcdr set 0 ;;variable for r
103: rept 65535

f!! 104: gcdx set gcdm/gcdn
r- 105: gcdr set gcdm-gcdx*gcdn Z a 106: if gcdr = 0

~ 107: exitm
108: endif

0 109: gcdm set gcdn z
" 110: gcdn set gcdr ~

~ 111 : endm
Z 112: endm
~
0 113: ;
:r: 114: diskdef macro dn, fsc, Isc,skf, bls,dks,dir,cks,ofs, k16 1""1
;::c

generate the set statements for later tables 1""1 115: ;; u;

" 116: if nullsc
0 117: ;; current disk dn same as previous fsc
" ;::c 118: dpb&dn equ dpb&fsc ;equivalent parameters
~ » 119: als&dn equ als&fsc ;same allocation vector size
~ 120: css&dn equ css&fsc ;same checksum vector size
0 121: xlt&dn equ xlt&fsc ;same translate table 0
B 122: else
~ 123: secmax set Isc-(fsc) ;;sectors O ... secmax r-

m 124: sectors set secmax+1 ;;number of sectors

> 125: als&dn set (dks)/8 ;;size of allocation vector
~ 126: if ((dks) mod 8) ne 0
:r: 127: als&dn set als&dn+1

128: endif
129: css&dn set (cks)/4 ;;number of checksum elements
130: ;; generate the block shift value
131: blkval set bls/128 ;;number of sectors/ block

132: blkshf set 0 ;;counts right O's in blkval
133: blkmsk set 0 ;;fills with I's from right
134: rept 16 ;;once for each bit position
135: if blkval=1
136: exitm
137: endif
138: ;; otherwise, high order 1 not found yet
139: blkshf set blkshf+1
140: blkmsk set (blkmsk shl I) or I
141: blkval set blkval/2

» 142: endm
F 143: ;; generate the extent mask byte Z a 144: blkval set bls/1024 ;;number of kilobytes/ block

! 145: extmsk set 0 ;;fill from right with I's
146: rept 16

0 147: if blkval=1 z
""0 148: exitm "" IJl 149: endif Z
S 150: ;; otherwise more to shift

:::I:
151: extmsk set (extmsk shl I) or I

I'T1 152: blkval set blkval/2
~
Vi 153: endm
"'i::J 154: ;; may be double byte allocation 0
""0 155: if (dks) > 256
~ 156: extmsk set (extmsk shr I) ~
;l> 157: endif ~ a 158: ;; may be optional [0] in last position
0 159: if not nul k16
5 160: extmsk set k16
~ 161 : endif r-

~ 162: ;; now generate directory reservation bit vector

~ 163: dirrem set dir ;;# remaining to process

:I
164: dirbks set bls/32 ;;number of entries per block
1"65: dirblk set 0 ;;fill with I's on each loop
166: rept 16
167: if dirrem=O
168: exitm

N
169: endif 0

U1

N 170: ;; not complete, iterate once again 0
0\ 171: ;; shift right and add 1 high order bit

172: dirblk set (dirblk shr I) or 8000h
173: if dirrem > dirbks
174: dirrem set dirrem-dirbks

» 175: else r-r- 176: direem set 0 z
a 177: endif

'~ 178: endm
:j 179: dpbhdr dn ;;generate equ $
0 180: ddw %sectors,<;sec per track> z
"'" 181 : ddb %blkshf,<;block shift> ;::0

rn 182: ddb %blkmsk,<;block mask>
I'T1 z 183: ddb %extmsk,<;extnt mask>
~
0 184: ddw %(dks)-1 ,<;disk size-1 >
::I

185: ddw %(dir)-1 ,<;directory max> I'T1
;::0
I'T1 186: ddb %dirblk shr 8,<;allocO> Vi

"'" 187: ddb %dirblk and Offh,<;allocl>
0 188: ddw %(cks)/4,<;check size>
"'" ;::0

189: ddw %ofs, <; offset> ~ » 190: ;; generate the translate table, if requested
~ a 191 : if nul skf

0 192: xlt&dn equ 0 ;no xlate table
5 193: else
~ 194: if skf = 0 r-
;::0 195: xlt&dn equ 0 ;no xlate table rn
> 196: else
~ 197: ;; generate the translate table
::I

198: nxtsec set 0 ;;next sector to fill
199: nxtbas set 0 ;;moves by one on overflow
200: gcd %sectors,skf
201: ;; gcdn = gcd(sectors,skew)
202: neltst set sectors/gcdn
203: ;; neltst is number of elements to generate

204: ;; before we overlap previous elements
205: nelts set neltst ;;counter
206: xlt&dn equ $;translate table
207: rept sectors ;;once for each sector
208: if sectors < 256

>- 209: ddb % nxtsec+(fsc) r-r- 210: else Z a 211 : ddw %nxtsec+(fsc)

! 212: endif
213: nxtsec set nxtsec+(skf)

0 214: if nxtsec >= sectors z
" 215: nxtsec set nxtsec-sectors ;;:0

rn 216: endif
fTI z 217: ne!ts set nelts-1
~
0 218: if nelts = 0
:r 219: nxtbas set nxtbas+1 fTI
;;:0
fTI 220: nxtsec set nxtbas Vi

" 221: nelts set neltst
0 222: endif
" ;;:0 223: endm ~ :> 224: endif ;;end of nul fac test
~ 225: endif ;;end of nul bls test
0 226: endm 0
B 227: ;
~ 228: defds macro lab,space r-

m 229: lab: ds space

~
230: endm
231: ;

:::c 232: Ids macro Ib,dn,val
233: defds Ib&dn,%val&dn
234: endm
235: ;

N 236: endef macro 0
'l 237: ;; generate the necessary ram data areas

N
o
al

»
F
Z
a
~ o z
" ;:0

rn
Z
S
::t
~
I'TI

U1

" o
" ;:0 a »
~
o
o o
~
r-

~
>
~ :c

238: begdat
239: dirbuf:
240: dsknxt
241:
242:
243:
244: dsknxt
245:
246: enddat
247: datsiz
248: ;;
249:

equ $
ds 128 ;directory access buffer
set 0
rept ndisks ;;once for each disk
Ids alv, %dsknxt,als
Ids csv,%dsknxt,ccs
set dsknxt+1
endm
equ $
equ $-begdat
db 0 at this paint forces hex record
endm

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

0800 =
0200 =
0014 =
0004 =
0050 =

Appendix G: Blocl<ing and Deblocl<ing
Algorithms

sector deblocking algorithms for cp/m 2.0

utility macro to compute sector mask
smask macro hblk
.. compute log2(hblk), return @x as result
" .. (2 ** @x = hblk on return)
"
@y set hblk
@x set 0
., count right shifts of @y until = 1
"

rept 8
if @y = 1
exitm
endif

.. @y is not 1, shift right one position
" @y set @y shr 1
@x set @x + 1

endm
endm

cp/m to host disk constants

,
blksiz equ 2048 ;cp/m allocation size
hstsiz equ 512 ;host disk sector size
hstspt equ 20 ;host disk sectors/trk
hstblk equ hstsiz/128 ;cp/m sects/host buff
cpmspt equ hstblk * hstspt ;cp/m sectors/track

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 209

34 0003 = secmsk equ hstblk-1 ;sector mask
35 smask hstblk ;compute sector mask
36 0002 = secshf equ @x ;log2{hstblk)
37
38
39
40 bdos constants on entry to write
41
42
43 0000 = wrall equ 0 ;write to allocated
44 0001 = wrdir equ 1 ;write to directory
45 0002 = wrual equ 2 ;write to unallocated
46
47
48
49 the bdos entry points given below show the
50 code which is relevant to deblocking only.
51
52
53
54 diskdef macro, or hand coded tables go here
55 0000 = dpbase equ $;disk param block base
56
57 boot:
58 wboot:
59 ;enter here on system boot to initialize
60 0000 af xra a ;0 to accumulator
61 0001 326a01 sta hstact ;host buffer inactive
62 0004326c01 sta unacnt ;clear unalloc count
63 0007 c9 ret
64
65 home:
66 ; home the selected disk
67 home:
68 00083a6b01 Ida hstwrt ;check for pending write
69 OOOb b7 ora a
70 OOOc c21200 jnz homed
71 OOOf 326a01 sta hstact ;clear host active flag
72 homed:
73 0012 c9 ret
74
75 seldsk:
76 ;select disk
77 0013 79 mov a,c ;selected disk number
78 0014 326101 sta sekdsk ;seek disk number
79 00176f mov I,a ;disk number to hi
80 0018 2600 mvi h,O
81 rept 4 ;multiply by 16
82 dad h
83 endm
84 001a+29 dad h
85 001b+29 dad h
86 001c+29 dad h
87 001d+29 dad h
88 001 e 110000 Ixi d,dpbase ;base of parm block

210 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

89 0021 19 dad d ;hl=.dpb(curdsk)
90 0022 c9 ret
91
92 settrk:
93 ;set track given by registers bc
94 0023 60 mov h,b
95 0024 69 mov I,c
96 0025 226201 shld sektrk ;track to seek
97 0028 c9 j'et
98
99 setsec:

100 ;set sector given by register c
101 0029 79 mov a,c
102 002a 326401 sta seksec ;sector to seek
103 002d c9 ret
104
105 setdma:
106 ;set dma address given by bc
107 002e 60 mov h,b
108 002f 69 mov I,c
109 0030 227501 shld dmaadr
110 0033 c9 ret
111
112 sectran:
113 ;translate sector number bc
114 003460 mov h,b
115 0035 69 mov I,c
116 0036 c9 ret
117
118
119
120 the read entry point takes the place of
121 the previous bios definition for read,
122
123
124 read:
125 ;read the selected cp/m sector
126 0037 af xra a
127 0038326c01 sta unacnt
128 003b 3e01 mvi a,1
129 003d 327301 sta readop ; read operation
130 0040 327201 sta rsflag ;must read data
131 00433e02 mvi a,wrual
132 0045327401 sta wrtype ;treat as unalloc
133 0048 c3b600 jmp rwoper ;to perform the read
134
135
136
137 the write entry point takes the place of
138 the previous bios definition for write.
139
140
141 write:
142 ;write the selected cp/m sector
143 004b af xra a ;0 to accumulator

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 211

144 004c 327301 sta readop ; not a read operation
145 004f 79 mov a,c ;write type in c
146 0050327401 sta wrtype
147 0053 fe02 CPI wrual ;write unallocated?
148 0055 c26fOO jnz chkuna ;check for unalloc
149
150 write to unallocated, set parameters
151 00583e10 mvi a,blksiz/128 ;next unalloc recs
152 005a 326c01 sta unacnt
153 005d 3a6101 Ida sekdsk ;disk to seek
154 0060 326d01 sta unadsk ;unadsk = sekdsk
155 00632a6201 Ihld sektrk
156 0066226e01 shld unatrk ;unatrk = sectrk
157 00693a6401 Ida seksec
158 006c 327001 sta unasec ;unasec = seksec
159
160 chkuna:
161 ;check for write to unallocated sector
162 006f 3a6c01 Ida unacnt ;any unalloc remain?
163 0072 b7 ora a
164 0073 caaeOO jz alloc ;skip if not
165
166 more unallocated records remain
167 00763d dcr a ;unacnt = unacnt-1
168 0077326c01 sta unacnt
169 007a 3a6101 Ida sekdsk ;same disk?
170 007d 216d01 Ixi h,unadsk
171 0080 be cmp m ;sekdsk = unadsk?
172 0081 c2aeOO jnz alloc ;skip if not
173
174 disks are the same
175 0084216e01 Ixi h,unatrk
176 0087 cd5301 call sektrkcmp ;sektrk = unatrk?
177 008a c2aeOO jnz alloc ;skip if not
178
179 tracks are the same
180 008d 3a6401 Ida seksec ;same sector?
181 0090 217001 Ixi h,unasec
182 0093 be cmp m ;seksec = u nasec?
183 0094 c2aeOO jnz alloc ;skip if not
184
185 match, move to next sector for future ref
186 009734 inr m ;unasec = unasec+1
187 00987e mov a,m ;end of track?
188 0099 fe50 cpi cpmspt ;count cp/m sectors
189 009b daa700 jc noovf ;skip if no overflow
190
191 overflow to next track
192 00ge 3600 mvi m,o ;unasec = 0

193 OOaO 2a6e01 Ihld unatrk
194 00a323 inx h
195 00a4226e01 shld unatrk ;unatrk = unatrk+1
196
197 noovf:
198 ;match found, mark as unnecessary read
199 00a7 af xra a ;0 to accumulator

212 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

200 OOab 327201 sta rsflag ;rsflag = 0
201 OOab c3b600 jmp rwoper ;to perform the write
202
203 alloc:
204 ;not an unallocated record, requires pre-read
205 OOae af xra a ;0 to accum
206 OOaf 326c01 sta unacnt ;unacnt = 0
207 00b23c inr a ;1 to accum
208 00b3 327201 sta rsflag = 1 ;rsflag = 1
209
210
211
212 common code for read and write follows
213
214
'215 rwoper:
216 ;enter here to perform the read/write
217 00b6 af xra a ;zero to accu m
218 00b7327101 sta erflag ; no errors (yet)
219 OOba 3a6401 Ida seksec ;compute host sector
220 rept secshf
221 ora a ;carry = 0
222 rar ;shift right
223 endm
224 00bd+b7 ora a ;carry = 0
225 OObe+1f rar ;shift right
226 00bf+b7 ora a ;carry = 0
227 00cO+1f rar ;shift right
228 00c1 326901 sta sekhst ; host sector to seek
229

230 active host sector?
231 00c4 216a01 Ixi h,hstact ; host active flag
232 00c77e mov a,m
233 00c83601 mvi m,1 ;always becomes 1
234 OOca b7 ora a ;was it already?
235 OOcb caf200 jz filhst ;fill host if not
236
237 host buffer active, same as seek buffer?
238 OOce 3a6101 Ida sekdsk
239 00d1 216501 Ixi h,hstdsk ;same disk?
240 00d4 be cmp m ;sekdsk = hstdsk?
241 00d5 c2ebOO jnz nomatch
242
243 same disk, same track?
244 00d8216601 Ixi h,hsttrk
245 OOdb cd5301 call sektrkcmp ;sektrk ::: hsttrk?
246 OOde c2ebOO jnz nomatch
247
248 same disk, same track, same buffer?
249 00e1 3a6901 Ida sekhst
250 00e4 216801 Ixi h,hstsec ;sekhst = hstsec?
251 00e7 be cmp m
252 00e8 caOf01 jz match ;skip if match
253
254 nomatch:

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 213

255 ;proper disk, but not correct sector
256 OOeb 3a6b01 Ida hstwrt ; host written?
257 OOee b7 ora a
258 OOef c45f01 cnz writehst ;clear host buff
259
260 filhst:
261 ;may have to fill the host buffer
262 00f23a6101 Ida sekdsk
263 00f5326501 sta hstdsk
264 00f82a6201 Ihld sektrk
265 OOfb 226601 shld hsttrk
266 OOfe 3a6901 Ida sekhst
267 0101 326801 sta hstsec
268 01043a7201 Ida rsflag ; need to read?
269 0107 b7 ora a
270 0108 c46001 cnz readhst ;yes, if 1
271 010b af xra a ;0 to accum
272 010c 326b01 sta hstwrt ;no pending write
273
274 match:
275 ;copy data to or from buffer
276 010f 3a6401 Ida seksec ;mask buffer number
277 0112 e603 ani secmsk ;Ieast signif bits
278 01146f mov I,a ; ready to sh ift
279 0115 2600 mvi h,O ;double count
280 rept 7 ;shift left 7
281 dad h
282 endm
283 0117+29 dad h
284 0118+29 dad h
285 0119+29 dad h
286 011a+29 dad h
287 011 b+29 dad h
288 011c+29 dad h
289 011d+29 dad h
290 hi has relative host buffer address
291 011 e 117701 Ixi d,hstbuf
292 0121 19 dad d ;hl = host address
293 0122 eb xchg ;now in de
294 01232a7501 Ihld dmaadr ;get/put cp/m data
295 01260e80 mvi c,128 ;Iength of move
296 01283a7301 Ida readop ;which way?
297 012b b7 ora a
298 012c c23501 jnz rwmove ;skip if read
299
300 write operation, mark and switch direction
301 012f 3e01 mvi a,1
302 0131 326b01 sta hstwrt ;hstwrt = 1
303 0134 eb xchg ;source/dest swap
304
305 rwmove:
306 ;c initially 128, de is source, hi is dest
307 0135 1 a Idax d ;source character
308 0136 13 inx d
309 0137 77 mov m,a ;to dest

214 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364

0138 23 inx h
01390d dcr c ;Ioop 128 times
013a c23501 jnz rwmove

data has been moved to/from host buffer
013d 3a7401 Ida wrtype ;write type
0140 fe01 cpi wrdir ;to directory?
01423a7101 Ida erflag ;in case of errors
0145 cO rnz ;no further processing

clear host buffer for directory write
0146 b7 ora a ;errors?
0147 cO rnz ;skip if so
0148 at xra a ;0 to accum
0149326b01 sta hstwrt ; buffer written
014c cd5f01 call writehst
014f 3a7101 Ida erflag
0152 c9 ret

utility subroutine for 16-bit compare

sektrkcmp:

0153 eb
0154 216201
0157 1 a
0158 be
0159 cO

015a 13
015b 23
015c 1 a
015d be
015e c9

015f c9

writehst:

readhst:

;hl = .unatrk or .hsttrk, compare with sektrk
xchg
Ixi
Idax
cmp
rnz

h,sektrk
d
m

;Iow byte compare
;same?
; retu rn if not

low bytes equal, test high 1 s
inx d
inx h
Idax d
cmp
ret

m ;sets flags

writehst performs the physical write to
the host disk, readhst reads the physical
disk.

;hstdsk = host disk #, hsttrk = host track #,
;hstsec = host sect #. write "hstsiz" bytes
;from hstbuf and return error flag in erflag.
;return erflag non-:-zero if error
ret

; hstdsk = host disk #, hsttrk = host track #,
;hstsec = host sect #. read "hstsiz" bytes

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 215

365 ;into hstbuf and return error flag in erflag.
366 0160 c9 ret
367
368
369
370 uninitialized ram data areas
371
372
373
374 0161 sekdsk: ds 1 ;seek disk number
375 0162 sektrk: ds 2 ;seek track number
376 0164 seksec: ds 1 ;seek sector number
377
378 0165 hstdsk: ds 1 ;host disk number
379 0166 hsttrk: ds 2 ;host track number
380 0168 hstsec: ds 1 ;host sector number
381
382 0169 sekhst: ds -1 ;seek shr secshf
383 016a hstact: ds 1 ;host active flag
384 016b hstwrt: ds 1 ;host written flag
385
386 016c unacnt: ds 1 ;unalloc rec cnt
387 016d unadsk: ds 1 ;Iast unalloc disk
388 016e unatrk: ds 2 ;Iast unalloc track
389 0170 unasec: ds 1 ;Iast unalloc sector
390
391 0171 erflag: ds ;error reporti ng
392 0172 rsflag: ds 1 ;read sector flag
393 0173 readop: ds 1 ;1 if read operation
394 0174 wrtype: ds 1 ;write operation type
395 0175 dmaadr: ds 2 ;Iast dma address
396 0177 hstbuf: ds hstsiz ;host buffer
397
398
399
400 the endef macro invocation goes here
401
402
403 0377 end

216 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

alloc OOae 164 172 177 183 203#
blksiz 0800 29# 151
boot 0000 57#
chkuna 006f 148 160#
cpmspt 0050 33# 188
dmaadr 0175 109 294 395#
dpbase 0000 55# 88
erflag 0171 218 317 326 391#
filhst 00f2 235 260#
home 0008 65# 67#
homed 0012 70 72#
hstact 016a 61 71 231 383#
hstblk 0004 32# 33 34 35
hstbuf 0177 291 396#
hstdsk 0165 239 263 378#
hstsec 0168 250 267 380#
hstsiz 0200 30# 32 396
hstspt 0014 31# 33
hsttrk 0166 244 265 379#
hstwrt 016b 68 256 272 302 324 384#
match 010f 252 274#
nomatch OOeb 241 246 254#
noovf 00a7 189 197#
read 0037 124#
readhst 0160 270 362#
readop 0173 129 144 296 393#
rsflag 0172 130 200 208 268 392#
rwmove 0135 298 305# 312
rwoper 00b6 133 201 215#
secmsk 0003 34# 277
secshf 0002 36# 220
sectran 0034 112#
sekdsk 0161 78 153 169 238 262 374#
sekhst 0169 228 249 266 382#
seksec 0164 102 157 180 219· 276 376#
sektrk 0162 96 155 264 337 375#
sektrkcmp 0153 176 245 334#
seldsk 0013 75#
setdma 002e 105#
setsec 0029 99#
settrk 0023 92#
unacnt 016c 62 127 152 162 168 206 386#
unadsk 016d 154 170 387#
unasec 0170 158 181 389#
unatrk 016e 156 175 193 195 388#
wboot 0000 58#
wrall 0000 43#
wrdir 0001 44# 316
write 004b 141#
writehst 015f 258 325 355#
wrtype 0174 132 146 315 394#
wrual 0002 45# 131 147

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 217

Appendix H: Glossary

address: Number representing the location of a byte in memory. Within CP/M there are
two kinds of addresses: logical and physical. A physical address refers to an absolute and
unique location within the computer's memory space. A logical address refers to the
offset or displacement of a byte in relation to a base location. A standard CP/M program is
loaded at address OIOOH, the base value; the first instruction of a program has a physical
address of OlooH and a relative address or offset of OH.

allocation vector (ALV): An allocation vector is maintained in the BIOS for each logged
in disk drive. A vector consists of a string of bits, one for each block on the drive. The bit
corresponding to a particular block is set to one when the block has been allocated and to
zero otherwise. The first two bytes of this vector are initialized with the bytes ALo and
ALI on, thus allocating the directory blocks. CP/M Function 27 returns the allocation
vector address.

ALD, AL 1: Two bytes in the disk parameter block that reserve data blocks for the
directory. These two bytes are copied into the first two bytes of the allocation vector
when a drive is logged in. (See allocation vector.)

AL V: See allocation vector.

ambiguous filename: Filename that contains either of the CP/M wildcard characters, ?
or *, in the primary filename or the file type, or both. When you replace characters in a
filename with these wildcard characters, you create an ambiguous filename and can easily
reference more than one CP/M file in a single command line.

American Standard Code for Information I nterchange: See ASCII.

applications program: Program designed to solve a specific problem. Typical applications
programs are business accounting packages, word processing (editing) programs and
mailing list programs.

archive attribute: File attribute controlled by the high-order bit of the t3 byte (FCB+II)
in a directory element. This attribute is set if the file has been archived.

argument: Symbol, usually a letter, indicating a place into which you can substitute a
number, letter or name to give an appropriate meaning to the formula in question.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 219

ASCII:American Standard Code for Information Interchange. ASCII is a standard set of
seven-bit numeric character codes used to represent characters in memory. Each charac­
ter requires one byte of memory with the high-order bit usually set to zero. Characters
can be numbers, letters, and symbols. An ASCII file can be intelligibly displayed on the
video screen or printed on paper.

assembler: Program that translates assembly language into the binary machine code.
Assembly language is simply a set of mnemonics used to designate the instruction set of
the CPU. (See ASM in Section 3 of this manual.)

back-up: Copy of a disk or file made for safekeeping, or the creation of the duplicate
disk or file.

Basic Disk Operating System:See BOOS.

BOOS: Basic Disk Operating System. The BOOS module of the CP/M operating system
provides an interface for a user program to the operating system. This interface is in the
form of a set of function calls which may be made to the BOOS through calls to location
0005H in page zero. The user program specifies the number of the desired function in
registerC. User programs running under CP/M should use BOOS functions for all I/O
operations to remain compatible with other CP/M systems and future releases. The
BOOS normally resides in high memory directly below the BIOS.

bias: Address value which when added to the origin address of ycur BIOS module
prpduces IF80H, the address of the BIOS module in the MOVCPM image. There is also a
bias value that when added to the BOOT module origin produces 0900H, the address of
the BOOT module in the MOVCPM image. You must use these bias values with the R
command under DDT or SID when you patch a CP/M system. If you do not, the patched
system may fail to function.

binary: Base 2 numbering system. A binary digit can have one of two values: 0 or 1.
Binary numbers are used in computers because the hardware can most easily exhibit two
states: off and on. Generally, a bit in memory represents one binary digit.

Basic I nputJOutput System: See BIOS.

BIOS: Basic Input/Output System. The BIOS is the only hardware-dependent module of
the CP/M system. It provides the BOOS with a set of primitive I/O operations. The BIOS
is an assembly language module usually written by the user, hardware manufacturer or
independent software vendor, and is the key to CP/M's portability. The BIOS interfaces
the CP/M system to its hardware environment through a standardized jump table at the
front of the BIOS routine and through a set of disk parameter tables which define the disk
environment. Thus, the BIOS provides CP/M with a completely table-driven I/O system.

BIOS base: Lowest address'of the BIOS module in memory, that by definition must be
the first entry point in the BIOS jump table.

bit: Switch in memory that can be set to on (1) or off (0). Bits are grouped into bytes, eight
bits to abyte, which is the smallest directly addressable unit in an Intel 8080 or Zilog Z-80.
By common convention, the bits in a byte are numbered from right (0 for the low order
bit) to left (7 for the high order bit). Bit values are often represented in hexadecimal
notation by grouping the bits from the low order bit in groups of four. Each group of four
bits can have a value from 0 to 15 and thus can easily be represented by one hexadecimal
digit.

220 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

BLM: See block mask.

block: Basic unit of disk space allocation. Each disk drive has a fixed block size (BLS)
defined in its disk parameter block in the BIOS. A block can consist of lK, 2K, 4K, sK or
16K consecutive bytes. Blocks are numbered relative to zero so that each block is unique
and has a byte displacement in a file equal to the block number times the block size.

block mask (BLM): Byte value in the disk parameter block at OPB + 3. The block mask is
always one less than the number of 128 byte sectors that are in one block. Note: BLM = (2
** BSH) - 1.

block shift (BSH): Byte parameter in the disk parameter block at OPB + 2. Values for the
block shift and block mask (BLM) are determined by the block size (BLS). Note: BLM = (2
** BSH) - 1.

blocking & deblocking algorithm: In some disk subsystems the disk sector size is larger
than 128 bytes, usually 256, 512, 1024 or 2048 bytes. When the host sector size is larger
than 128 bytes, host sectors must be buffered in memory and the 128 byte CP/M sectors
must be blocked and deblocked by adding an additional module, the blocking and deblock­
ing algorithm, between the BIOS disk I/O routines and the actual disk I/O. The host
sector size must be an even multiple of 128 bytes for the algorithm to work correctly. The
blocking and deblocking algorithm allows the BOOS and BIOS to function exactly as if
the entire disk consisted only of 128 byte sectors, as in the standard CP/M installation.

BLS: Block size in bytes. See block.

boot: Process of loading an operating system into memory. A boot program is a small
piece of code that is automatically executed when you power-up or reset your computer.
The boot program loads the rest of the operating system into memory in a manner similar
to a person pulling himself up by his own bootstraps. This process is sometimes called a
"cold boot" or "cold start." Bootstrap procedures vary from system to system. The boot
program must be customized for the memory size and hardware environment that the
operating system manages. Typically, the boot resides on the first sector of the system
tracks on your system diskette. When executed, the boot loads the remaining sectors of
the system tracks into high memory at the location for which the CP/M system has been
configured. Finally, the boot transfers execution to the boot entry point in the BIOS jump
table so that the system can initialize itself. In this case, the boot program should be placed
at 900H in the SYSGEN image. Alternatively, the boot program may be located in ROM.

bootstrap: See boot.

BSH: See block shift.

BTREE: General purpose file access method that has become the standard organization
for indexes in large data base systems. BTREE provides near optimum performance over
the full range of file operations, such as insertion, deleti~n, search, and search next.

buffer: Area of memory that temporarily stores data during the transfer of information.

built-in commands: Commands that permanently reside in memory. They respond
quickly because they are not accessed from a disk.

byte: Unit of memory or disk storage containing eight bits. A byte can represent a binary
number between 0 and 255, and is the smallest unit of memory that can be addressed
directly in S bit CPUs such as the Intel 8080 or Zilog Z-80.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 221

CCP: Console Command processor. The CCP is a module of the CP/M operating system.
It is loaded directly below the BOOS module and interprets and executes commands
typed by the console user. Usually these commands are programs that the CCP loads and
calls. Upon completion, a command program may return control to the CCP if it has not
overwritt~n it. If it has, the program can reload the CCP into memory by a warm boot
operation initiated by either a jump to zero, BOOS system reset (function 0), or a cold
boot. Except for its location in high memory, the CCP works like any other standard
CP/M program; that is, it makes only BOOS function calls for its I/O ?perations.

CCP base: Lowest address of the CCP module in memory. This term sometimes refers to
the base of the CP/M system in memory, as the CCP is normally the lowest CP/M module
in high memory.

checksum vector (CSV): Contiguous data area in the BIOS, with one byte for each
directory sector to be checked, i.e., CKS bytes. (See CKS.) A checksum vector is initialized
and maintained for each logged in drive. Each directory access by the system results in a
checksum calculation that is compared with the one in the checksum vector. If there is a
discrepancy, the drive is set to read-only status. This feature prevents the user from
inadvertently switching disks without logging in the new disk. If the new disk is not
logged in, it is treated the same as the old one, and data on it may be destroyed if writing is
done.

CKS: Number of directory records to be checked summed on directory accesses. This is a
parameter in the disk parameter blo<;k located in the BIOS. If the value of CKS is zero,
then no directory records are checked. CKS is also a parameter in the diskdef macro
library, where it is the actual number of directory elements to be checked rather than the
number of directory records.

cold boot: See boot. Cold boot also may refer to a jump to the boot entry point in the
BIOS jump table.

COM: Filetype for a CP/M command file. See command file.

command: CP/M command line. In general, a CP/M command line has three parts: the
command keyword, command tail, and a carriage return. To execute a command, enter a
CP/M command line directly after the CP/M prompt at the console and press the carriage
return or enter key.

command file: Executable program file of file type COM. A command file is a machine
language object module ready to be loaded and executed at the absolute address of OlooH.
To execu'te a command file, enter its primary filename as the command keyword in a
CP/M command line.

command keyword: Name that identifies a CP/M command, usually the primary file­
name of a file of type COM, or a built-in command. The command keyword precedes the
command tail and the carriage return in the command line.

command syntax: Statement that defines the correct way to enter a command. The
correct structure generally includes the command keyword, the command tail, and a
carriage return. A syntax line usually contains symbols that you should replace with
actual values when you enter the command.

command tail: Part of a command that follows the command keyword in the command
line. The command tail can include a drive specification, a filename and/or file type, and
options or parameters. Some commands do not require a command tail.

222 '_ ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RfSfARCH

CON: Mnemonic that represents the CP/M console device (see console). For example, the
CP/M command "PIP CON:=TEST.SUB" displays the file TEST. SUB on the console
device. The explanation of the STAT command tells how to assign the logical device
CON: to various physical devices.

concatenate: Name of the PIP operation that copies two or more separate files into one
new file in the specified sequence.

concurrency: Execution of two processes or operations Simultaneously.

CONIN: BIOS entry point to a routine that reads a character from the console device.

CONOUT: BIOS entry point to a routine that sends a character to the console device.

console: Primary input/output device. The console consists of a listing device, such as a
screen or teletype, and a keyboard through which the user communicates with the
operating system or applications program.

Console Command Processor: See CCP.

CONST: BIOS entry point to a routine that returns the status of the console device.

control character: Nonprinting character combination. CP/M interprets some control
characters as simple commands such as line editing functions. To enter a control charac­
ter, hold down the CONTROL key and strike the specified character key.

Control Program for Microcomputers: See CP/M.

CP/M: Control Program for Microcomputers.An operating system that manages compu­
ter resources and provides a standard systems interface to software written for a large
variety of microprocessor-based computer systems.

CP/M 1.4 compatibility: For a CP/M 2 system to be able to read correctly single density
diskettes produced under a CP/M 1.4 system, the extent mask must be zero and the block
size IK. This is because under CP/M 2 an FCB may contain more than one extent. The
number of extents that may be contained by an FCB is EXM+I. The issue of CP/M 1.4
compatibility also concerns random file I/O. To perform random file I/O underCP/M 1.4,
you must maintain an FCB for each extent of the file. This scheme is upward compatible
with CP/M 2 for files not exceeding SI2K bytes, the largest file size supported under
CP/M 1.4. If you wish to implement random I/O for files larger than SI2K bytes under
CP/M 2, you must use the random read and random write functions (BOOS functions 33,
34 and 36). In this case, only one FCB is used, and if CP/M 1.4 compatibility is required,
the program must use the return version number function (BOOS function 12) to
determine which method to employ.

CP/M prompt: Characters that indicate that CP/M is ready to execute your next
command. The CP/M prompt consists of an upper-case letter (A-P) followed by a">"
character; for example, A>. The letter designates which drive is currently logged in as the
default drive. CP/M will search this drive for the command file specified, unless the
command is a built-in command or prefaced by a select drive command; for example,
B:STAT.

CP/NET: Digital Research network operating system enabling microcomputers to obtain
access to common resources via a network. CP/NETconsists of MP/M masters and CP/M
slaves with a network interface between them.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 223

CSV: See checksum vector.

cursor: One-character symbol that can appear anywhere on the console screen. The
cursor indicates the position where the next keystroke at the console will have an effect.

data file: File containing information that will be processed by a program.

deblocking: See blocking & deblocking algotithm .

. default: Currently selected disk drive and user number. Any command that does not
specify a disk drive or a user number references the default disk drive and user number.
When CP/M is first invoked, the default disk drive is drive A, and the default user number
is o.

default buffer: Default 12B-byte buffer maintained at OOBoH in page zero. When the
CCP loads a COM file, this buffer is initialized to the command tail; that is, any characters
typed after the COM file name are loaded into the buffer. The first byte at OOBOH
contains the length of the command tail, while the command tail itself begins at OOBIH.
The command tail is terminated by a byte containing a binary zero value. The I command
under DDT and SID initializes this buffer in the same way as the CCP.

default FeB: Two default FCBs are maintained by the CCP at oosCH and 006CH in page
zero. The first default FCB is initialized from the first delimited field in the command tail,
and the second default FCB is initialized from the next field in the command tail.

delimiter: Special characters that separate different items in a command line; for exam­
ple, a colon separates the drive specification from the filename. The CCP recognizes the
following characters as delimiters: . : = ; < > _ , blank, and carriage return. Several
CP/M commands also treat the following as delimiter characters: , [] () $. It is advisable to
avoid the use of delimiter characters and lower-case characters in CP/M file names.

DI.R: Parameter in the diskdef macro library that specifies the number of directory
elements on the drive.

DIR attribute: File attribute. A file with the DIR attribute can be displayed by a DIR
command. The file can be accessed from the default user number and drive only.

DIRBUF: 12B-byte scratchpad area for directory operations, usually located at the end of
the BIOS. DIRBUF is used by the BOOS during its directory operations. DIRBUF also
refers to the two-byte address of this scratchpad buffer in the disk parameter header at
DPbase + B bytes.

directory: Portion of a disk that contains entries for each file on the disk. In response to
the DIR command, CP/M displays the filenames stored in the directory. The directory
also contains the locations of the blocks allocated to the files. Each file directory element is
in the form of a 32-byte FCB, although one file may have several elements, depending on
its size. The maximum number of directory elements supported is specified by the drive's
disk parameter block value for DRM.

directory element: Data structure. Each file on a disk has one or more 32-byte directory
elements associated with it. There are four directory elements per directory· sector.
Directory elements may also be referred to as directory FCBs.

directory entry: File· entry displayed by the DIR command. Sometimes this term may
refer to a physical directory element.

224 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

disk, diskette: Magnetic media used for mass storage in a computer system. Programs
and data are recorded on the disk in the same way music can .be recorded on cassette tape.
The CP/M operating system must be initially loaded from disk when the computer is
turned on. Diskette refers to smaller capacity removable floppy diskettes, while disk may
refer to either a diskette, removable cartridge disk or fixed hard disk. Hard disk capacities
range from five to several hundred megabytes of storage.

diskdef macro library: Library of code that when used with MAC (the Digital Research
macro assembler) creates disk definition tables such as the DPB and DPH automatically.

disk drive: Peripheral device that reads and writes information on disk or diskettes.
CP/M assigns a letter to each drive under its control. For example, CP/M may refer to the
drives in a four-drive system as A, B, C, and D.

disk parameter block (OPB): Data structure referenced by one or more disk parameter
headers. The disk parameter block defines disk characteristics in the fields listed below:

SPT
BSH
BLM
EXM
DSM
DRM
ALO
ALI
CKS
OFF

The total number of sectors per track
The data allocation block shift factor
The data allocation block mask
The extent mask determined by BLS and DSM
The maximum data block number
Maximum number of directory entries-1
Reserves directory blocks
Reserves directory blocks
The number of directory sectors check summed
The number of reserved system tracks

The address of the disk parameter block is located in the disk parameter header at DPbase
+ OAH. CP/M Function 31 returns the DPB address. Drives with the same characteristics
may use the same disk parameter header, and thus the same DPB. However, drives with
different characteristics must each have their own disk parameter header and disk
parameter blocks. When the BOOS calls the SELDSK entry point in the BIOS, SELDSK

. must return the address of the drive's disk parameter header in registers HL.

disk parameter header (OPH): Data structure that contains information about the disk
drive and provides a scratchpad area for certain BOOS operations. The disk parameter
header contains six bytes of scratchpad area for the BOOS, and the following five
two-byte parameters:

XLT
DIRBUF
DPB
CSV
ALV

The sector translation table address
Directory buffer address
Disk parameter block address

. Checksum vector address
Allocation vector address

Given n disk drives, the disk parameter headers are arranged in a table whose first row of
16 bytes corresponds to drive 0, with the last row corresponding to drive n-1.

OKS: Parameter in the diskdef macro library specifying the number of data blocks on the
drive.

OMA: Direct memory access. DMA is a method of transferring data from the disk into
memory directly. In a CP/M system, the BOOS calls the BIOS entry point READ to read a
sector from the disk into the currently selected DMA address. The DMA address must be

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 225

the address of a 128-byte buffer in memory, either the default buffer at o08oH in page
zero, or a user-assigned buffer in the TPA. Similarly, the BOOS calls the BIOS entry
point WRITE to write the record at the current DMA address to the disk.

DN: Parameter in the diskdef macro library specifying the logical drive number.

DPB: See disk parameter block.

DPH: See disk parameter header.

DRM: 2-byte parameter in the disk parameter block at DPB + 7. DRM is one less than the
total number of directory entries allowed for the drive. This value is related to DPB bytes
ALO and ALl, which allocate up to 16 blocks for directory entries.

DSM: 2-byte parameter of the disk parameter block at DPB + 5. DSM is the maximum
data block number supported by the drive. The product BLS times (DSM+l) is the total
number of bytes held by the drive. This must n~t exceed the capacity of the physical disk
less the reserved system, tracks.

editor: Utility program that creates and modifies text files. An editor can be used for
creation of documents or. creation of code for computer programs. The CP/M editor is
invoked by typing the command ED next to the system prompt on the console.

EX: Extent number field in an FCB. See extent.

executable: Ready to be run by the computer. Executable code is a series of instructions
that can be carried out by the computer. For example, the computer cannot execute
names and addresses, but it can execute a program that prints all those names and
addresses on mailing labels.

execute a program: Start the processing of executable code.

EXM: See extent mask.

extent: 16K consecutive bytes in a file. Extents are numbered from 0 to 31. One extent
may contain I, 2, 4, 8 or 16 blocks. EX is the extent number field of an FCB and is a one
byte field at FCB + 12, where FCB labels the first byte in the FCB. Depending on the block
size (BLS) and the maximum data block number (DSM), an FCB may contain I, 2, 4, 8 or
16 extents. The EX field is normally set to 0 by the user but contains the current extent
number during file I/O. The term FCB folding describes FCBs containing more than one
extent. In CP/M version 1.4, each FCB contained only one extent. Users attempting to
perform random record I/O and maintain CP/M 1.4 compatibility should be aware of the
implications of this difference. See CP/M 1.4 compatibility.

extent mask (EXM): A byte parameter in the disk parameter block located at DPB + 3. The
value of EXM is determined by the block size (BLS) and whether the maximum data block
number (DSM) exceeds 255. There are EXM + 1 extents per directory FCB.

FCB: See file control block.

file: Collection of characters, instructions, or data that can be referenced by a unique
identifier. Files are usually stored on various types of media, such as disks, diskettes, or
magnetic tape. A CP/M file is identified by a file specification and resides on disk as a
collection of from zero to 65,536 records. Each record is 128 bytes and can contain either
binary or ASCII data. Binary files contain bytes of data that can vary in value from OH to

226 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

oFFH. ASCII files contain sequences of character codes delineated by a carriage return­
line feed combination; normally byte values range from oH to 7FH.The directory maps
the file as a series of physical blocks. Although files are defined as a sequence of
consecutive logical records, these records may not reside in consecutive sectors on the
disk. (see also block, directory, extent, record, sector).

file control block (FCB): Structure used for accessing files on disk. Contains the drive,
filename, file type, and other information describing a file to be accessed or created on the
disk. A file control block consists of 36 consecutive bytes specified by the user for file I/O
functions. FCB can also refer to a directory element in the directory portion of the
allocated disk space. These contain the same first 32 bytes of the FCB, but lack the current
record and random record number bytes.

filename: Name assigned to a file. A filename can include a primary filename of 1-8
characters and a file type. of 0-3 characters. A per:-iod separates the primary filename from
the filetype.

file specification: Unique file identifier. A complete CP/M file specification includes a
disk drive specification followed by a colon (d:), a primary filename of 1 to 8 characters, a
period and a file type of 0 to 3 characters. For example, b:example.tex is a complete CP/M
file specification.

filetype: Extension to a filename. A file type can be from 0 to 3 characters and must be
separated from the primary filename by a period. A file type can tell something about the
file. Some programs require that files to be processed have specific filetypes.

floppy disk: Flexible magnetic disk used to store' information. Floppy disks come Ln 5 1,4-

and 8-inch diameters.

FSC: Parameter in the diskdef macro library specifying the first physical sector number.
This parameter is used to determine SPT and build XLT.

~

hard disk: Rigid, platter-like, magnetic disk sealed in a container. A hard disk stores more
informa tion than a floppy disk.

hardware: Physical components of a computer.

hexadecimal notation: Notation for base 16 values using the decimal digits and letters A,
B, C, D, E & F to represent the 16 digits. Hexadecimal notation is often used to refer to
binary numbers. A binary number can be easily expressed as a hexadecimal value by
taking the bits in groups of 4 starting with the least significant bit, and expressing each
group as a hexadecimal digit, (o-F). Thus the bit value 1011 becomes oBH and 10110101
becomes oBSH.

hex file: ASCII-printable representation of a command (machine language) file.

hex file format: Absolute output of ASM and MAC for the Intel 8080 is a hex format file,
containing a sequence of absolute records that give a load address and byte values to be
stored, starting at the load address.

HOME: BIOS entry point which sets the disk head of the currently selected drive to the
track zero position.

host: Physical characteristics of a hard disk drive in a system using the blocking and
deblocking algorithm. The term "host" helps distinguish physical hardware characteris-

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 227

tics from CP/M's logical characteristics. For example, CP/M sectors are always 128 bytes,
although the host sector size may be a multiple of 128 bytes.

input: Data going into the computer, usually from an operator typing at the terminal or
by a program reading from the disk.

input/output: See 1/0.

interface: Object that allows two independent systems to communicate with each other,
as an interface between hardware and software in a microcomputer.

1/0: Abbreviation for input/output. Usually refers to input/output operations or rou­
tines handling the input and output of data in the computer system.

10BYTE: A one byte field in page zero, currently at location 0003H, that can support a
logical-to-physical device mapping for I/O. However, its implementation in your BIOS is
purely optional and mayor may not be supported in a given CP/M system. The IOBYTE is
easily set using the command:

STAT <logical device> = <physical device>

The CP/M logical devices are CON:, RDR:, PUN:, AND LST:; each of these can be
assigned to one of four physical devices. The IOBYTE may be initialized by the BOOT
entry point of the BIOS and interpreted by the BIOS I/O entry points CONST, CONIN,
CONOUT, LIST, PUNCH, and READER. Depending on the setting of the IOBYTE,
different I/O drivers may be selected by the BIOS. For example, setting LST:=TTY: might
cause LIST output to be directed to a serial port, while setting LST:=LPT: causes LIST
output to be directed to a parallel port.

K: Abbreviation for kilobyte. See kilobyte.

keyword: See command keyword.

kilobyte (K):. 1024 bytes or 0400H bytes of memory. This is a standard unit of memory.
For example, the Intel 8080 supports up to 64K of memory address space or 65,536 bytes.
1024kilqbytes equal one megabyte, or over one million bytes.

linker: Utility program used to combine relocatable object modules into an absolute file
ready for execution. For example, LINK-80 creates either a COM or PRL file from
relocatable REL files, such as those produced by PUI-80.

LIST: A BIOS entry point to a routine that sends a character to the list device, usually a
printer.

list device: Device such as a printer onto which data can be listed or printed.

L1STST: BIOS entry point to a routine that returns the ready status of the list device

loader: Utility program that brings an absolute program image into memory ready for
execution under the operating system, or a utility used to make such an image. For
example, LOAD prepares an absolute COM file from the assembler hex file output which
is ready to be executed under CP/M'.

logged in: Made known to the operating system, in reference to drives. A drive is logged
in when it is selected by the user or an executing process. It remains selected or logged in
until you change disks in a floppy disk drive or enter ctl-C at the command level, or until a
BOOS function 0 is executed.

228 ALL INFORMATION PRESENTED HERE IS PROPRIE.TARY TO DIGITAL RESEARCH

logical: Representation of something that mayor may not be the same in its actual
physical form. For example, a hard disk can occupy one physical drive, yet you can divide
the available storage on it to appear to the user as if it were in several different drives.
These apparent drives are the logical drives.

logical sector: See sector.

logical to physical sector translation table: See XL T.

LSC: Diskdef macro library parameter specifying the last physical sector number.

LST: Logical CP/M list device (usually a printer). The CP/M list device is an output-only
device referenced through the LIST and LISTST entry points of the BIOS. The STAT
command allows assignment of LST: to one of the physical devices: TTY:, CRT:, LPT:, or
UL1:, provided these devices and the IOBYTE are implemented in the LIST and LISTSi'
entry points of your CP/M BIOS module. The CP/NET command NETWORK allows
assignment of LST: to a list device on a network master. An example of how LST: is used
in a command: PIP LST:=TEST.SUB prints the file TEST.SUB on the list device.

macro assembler: Assembler code translator providing macro processing facilities.
Macro definitions allow groups of instructions to be stored and substituted in the source
program as the macro names are encountered. Definitions and invocations may be nested
and macro parameters can be formed to pass arbitrary strings of text to a specific macro
for substitution during expansion.

megabyte: Over one million bytes; 1024 kilobytes. See byte, kilobyte.

microprocessor: Silicon chip that is the central processing unit (CPU) of the microcom­
puter. The Intel 8080 and the Zilog Z-80 are microprocessors commonly used in CP/M
systems.

MOVCPM image: Memory image of the CP/M system created by MOVCPM. This image
may be saved as a disk file using the SAVE command or placed on the system tracks using
the SYSGEN command without specifying a source drive. This image varies, depending
on the presence of a one-sector or two-sector boot. If the boot is less than 128 bytes (one
sector), the boot begins at 0900H, the CP/M system at 0980H, and the BIOS at 1F80H.
Otherwise, the boot is at 0900H, the CP/M system at 1000H, and the BIOS at 2000H. In a
CP/M 1.4 system with a one-sector boot, the addresses are the same as for the CP/M 2
system-except that the BIOS begins at 1E80H instead of 1F80H.

MP/M: Multi-Programming Monitor control program. A microcomputer operating sys­
tem supporting multi-terminal access with multi-programming at each terminal.

mUlti-programming: The capability of initiating and executing more than one program
at a time. These programs, usually called processes, are time-shared, each receiving a slice
of CPU time on a "round-robin" basis. See concurrency.

nibble: One half of a byte, usually the high order or low order 4 bits in a byte.

OFF: Two byte parameter in the disk parameter block at DPB + 13 bytes. This value
specifies the number of reserved system tracks. The disk directory begins in the first
sector of track OFF.

OFS: Diskdef macro library parameter specifying the number of reserved system tracks.
See OFF.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 229

operating system: Collection of programs that supervises the execution of other pro­
grams and the management of computer resources. An operating system provides an
orderly input/output environment between the computer and its peripheral devices. It
enables user-written programs to execute safely. An operating system standardizes the
use of computer resources for the programs running under it.

option: One of many parameters that can be part of a command tail. Use options to
specify additional conditions for a command's execution.

output: Data that is sent to the console, disk, or printer.

page: 256 consecutive bytes in memory beginning on a page boundary, whose base
address is a multiple of 256 (IOOH) bytes. In hex notation, pages always begin at an
address with a least significant byte of zero.

page relocatable program: See PRL.

page zero: Memory region between ooaOH and olooH used to hold critical system
parameters. Page zero functions primarily as an interface region between user programs
and the CP/M BOOS module. Note: in non-standard systems this region is the base page
of the system and represents the first 256 bytes of memory used by the CP/M system and
user programs running under it.

parameter: Value in the command tail that provides additional information for the
command. Technically, a parameter is a required element of a command.

peripheral devices: Devices external to the CPU. For example, terminals, printers, and
disk drives are common peripheral devices that are not part of the processor but are used
in conjunction with it.

physical: Characteristic of computer components, generally hardware, that actually
exist. In programs, physical components can be represented by logical components.

primary filename: First 8 characters of a filename. The primary filename is a unique
name that helps the user identify the file contents. A primary filename contains 1 to 8
characters and can include any letter or number and some special characters. The primary
filename follows the optional drive specification and precedes the optional filetype.

PRL: . Page relocatable program. A page relocatable program is stored on diskette as a file
of type PRL. Page relocatable programs· are easily relocated to any page boundary and
thus are suitable for execution in a non-banked MP/M system.

program: Series of coded instructions that performs specific tasks when executed by a
computer. A program can be written in a processor-specific language or a high-:-Ievel
language that can be implemented on a number of different processors.

prompt: Any characters displayed on the video screen to help the user decide what the
next appropriate action is. A system prompt is a special prompt displayed by the operating
system. See CP/M prompt. The alphabetic character indicates the default drive. Some
applications programs have their own special prompts.

PUN: Logical CP/M punch device. The punch device is an output-only device accessed
through the PUNCH entry point of the BIOS. In certain implementations, PUN: can be a
serial device such as a modem.

PUNCH: BIOS entry point to a routine that sends a character to the punch device.

230 ALL INFORMA nON PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

RDR: Logical CP/M reader device. The reader device is an input-only device accessed
through the READER entry point in the BIOS. See PUN:.

READ: Entry point in the BIOS to a routine that reads 128 bytes from the currently
selected drive, track, and sector into the current DMA address.

READER: Entry point to a routine in the BIOS that reads the next character from the
currently assigned reader device.

read-only (R 0): Attribute that can be assigned to a disk file or a disk drive. When
assigned to a file, the read-only attribute allows you to read from that file but not write to
it. When assigned to a drive; the read-only attribute allows you to read any file on the disk,
but prevents you from adding a new file, erasing or changing a file, renaming a file, or
writing on the disk. The STAT command can set a file or'a drive to read-only. Every file
and drive is either read-only or read-write. The default setting for drives and files is
read-write, but an error in resetting the disk or changing media automatically sets the
drive to read-only until the error is corrected. See also ROM.

read-write (R W): Attribute that can be assigned to a disk file or a disk drive. The
read-write attribute allows you to read from and write to a specific read-write file or to
any file on a disk that is in a drive set to read-write. A file or drive can be set to either
read-only or read-write. .

record: Group of bytes in a file. A physical record consists of 128 bytes and is the basic
unit of data transfer between the operating system and the application program. A logical
record may vary in length and is used to represent a unit of information. Two 64 byte
"employee" records can be stored in one 128-byte physical record. Records are grouped
together to form a file. .

recursive procedure: Code that may call itself during execution.

reentrant procedure: Code that can be called by one process while another is already
executing it. Thus, reentrant code may be shared between different users. Reentrant
procedures must not be self-modifying; that is, they must be pure code and not contain
data. The data for reentrant procedures can be kept in a separate data area or placed on
the stack.

restart (RST): One-byte call instruction usually used during interrupt sequences and for
debugger break pointing. There are eight restart locations, RST 0 through RST 7, whose
addresses are given by the product of 8 times the restart number.

RO: See read-only.

ROM: Read-only memory. This memory can be read but not written and so is suitable for
code and preinitialized data areas only. .

RST: See restart.

RW: See read-write.

sector: In a CP/M system, a sector is always 128 consecutive bytes. A sector is the basic
unit of data read and written on the disk by the BIOS. A sector can be one 128-byte record
in a file or a sector of the directory. The BOOS always requests a logical sector number
between 0 and (SPT -1). This is typically translated into a physical sector by the BIOS
entry point SECTRAN. In some disk .subsystems, the disk sector size is larger than 128
bytes, usually a power of two such as 256, 512, 1024 or 2048 bytes. These disk sectors are

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 23]

always referred to as host sectors in CP/M, documentation and should not be confused
with other references to sectors, in which cases -the CP/M 128 byte sectors should be
assumed. When the host sector size is larger than 128 bytes, host sectors must be
buffered in memory and the 128 byte CP/M sectors must be blocked and deblocked from
them. This may be done by adding an additional module, the blocking and deblocking
algorithm, between the BIOS disk I/O routines and the actual disk 110.

sectors per track (SPT): A two byte parameter in the disk parameter block at OPB + O.
The BOOS makes calls to'the BIOS entry point SECTRAN with logical sector numbers
ranging between 0 and (SPT - 1) in register BC.

SECTRAN: Entry point to a routine in the BIOS that performs logical to physical sector
translation for the BOOS.

SELDSK: Entry point to a routine in the BIOS that sets the currently selected drive.

SETDMA: Entry point to a routine in the BIOS that sets the currently selected OMA
address. The OMA address is the address of a 128-byte buffer region in memory that is
used to transfer data to and from the disk in subsequent reads and writes.

SETSEC: Entry point to a routine in the BIOS that sets the currently selected sector.

SETTRK: Entry point to a routine in the BIOS that sets the currently selected track.

skew factor: Factor that defines the logical to physical sector number translation in XL T.
Logical sector numbers are used by the BOOS and range between 0 and (SPT -1). Data is
written in consecutive logical 128-byte sectors grouped in data blocks. The number of
sectors per block is given by BLS/128. Physical sectors on the disk media are also
numbered consecutively. If the physical sector size is also 128 bytes, a one-to-one
relationship exists between logical and physical sectors. The logical to physical translation
table (XL T) maps this relationship, and a skew factor is typically used in generating the
table entries. For instance, if the skew factor is 6, XL T will be:

Logical:
Physical:

o
1

1
7

2
13

3
19

4
25

5
5

6
11

25
22

The skew factor allows time for program processing without missing the next sector.
Otherwise, the system must wait for an entire disk revolution before reading the next
logical sector. The skew factor can be varied, depending on hardware speed and applica­
tion processing overhead. Note that no sector translation is done when the physical
sectors are larger than 128 bytes, as sector deblocking is done in this case. (See also sector,
SKF and XLT)

SKF: A diskdef macro library parameter specifying the skew factor to be used in building
XL T. If SKF is zero, no translation table is generated and the XL T byte in the OPH will be
OoOOH. ' ,

software: Programs thatcontain machine-readable instructions, as opposed to hardware,
which is the actual physical components of a computer.

source file: ASCII text file usually created with an editor, which is an input file to a
system program such as a language translator or text formatter.

SP: Stack pointer. See stack.

232 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

spooling: Process of accumulating printer output in a file while the printer is busy. The
file is printed when the printer becomes free; a program does not have to wait for the slow
printing process.

SPT: See sectors per track.

stack: Reserved area of memory where the processor saves the return address when a
call instruction is received. When a return instruction is encountered, the processor
restores the current address on the stack to the program counter. Data such as the
contents of the registers can also be saved on the stack. The push instruction places data
on the stack and the pop instruction removes it. An item is pushed onto the stack by
decrementing the stack pointer (SP) by 2 and writing the item at the SP address. In other
words, the stack grows downward in memory.

syntax: Format for entering a given command.

SYS: See system attribute.

SYSGEN image: Memory image of the CP/M system created by SYSGEN when a
destination drive is not specified. This is the same as the MOVCPM image, which can be
read by SYSGEN if a source drive is not specified. See MOVCPM image. '

system attribute (SYS): File attribute. You can give a file the system attribute by using
the SYS option in the STAT command or by using the set file attributes function (BOOS
function 12). A file with the SYS attribute is not displayed in response to a DIR command.
If you give a file with user number 0 the SYS attribute, you can read and execute that file
from any user number on the same drive. Use this feature to make your commonly used
programs available under any user number.

system prompt: Symbol displayed by the operating system indicating that the system is
ready to receive input. See prompt, CP/M prompt.

system tracks: Tracks reserved on the disk for the CP/M system. The number of system
tracks is specified by the parameter OFF in the disk parameter block (DPB). The system
tracks for a drive always precede its data tracks. The command S'TSGEN copies the CP/M
system from the system tracks to memory, and vice versa. The standard SYSGEN utility
copies 26 sectors from track 0 and 26 sectors from track 1. When the system tracks
c.ontain additional sectors or tracks to be copied, a customized SYSGEN must be used.

terminal: See console.

TPA: Transient program area. Area in memory where user programs run and store data.
This area is a region of memory beginning at OIOOH and extending to the base of the
CP/M system in high memory. The first module of the CP/M system is the CCP, which
may be overwritten by a user program. If so, the TP A is extended to the base of the CP/M
BOOS module. If the CCP is overwritten, the user program must terminate with either a
system reset (function 0) call or a jump to location zero in page zero. The address of the
base of the CP/M BOOS is stored in location 0006H in page zero, least significant byte
first.

track: Data on the disk media is accessed by combination of track and sector numbers.
Tracks form concentric rings on the disk; the standard IBM single-density diskettes
have 77 tracks. Each track consists of a fixed number of numbered sectors. Tracks are
numbered from 0 to one less than the number of tracks on the disk.

transient program area: See TPA.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESfARCH 233

upward compatible: Term meaning that a program created for the previously released
operating system (or compiler, etc.) runs under the newly released version of the same
operating system.

USER: Term used in CP/M and MP/M systems to distinguish distinct regions of the
directory.

user number: Number assigned to files in the disk directory so that different users need
only deal with their own files and have their "own" directories, even though they are all
working from the same disk. In CP/M, files can be divided into 16 user groups.

utility: "Tool." Program that enables the user to perform certain operations, such as
copying files, erasing files, and editing files. The utilities are created for the convenience
of programmers and users.

vector: Location in memory. An entry point into the operating system used for making
system calls or interrupt handling.

warm start: Program termination by: a jump to the warm start vector at location OOOOH, a
system reset (BOOS function 0), or a ctl-C typed at the keyboard. A warm start
reinitializes the disk subsystem and returns control to the CP/M operating system at the
CCP level. The warm start vector is simply a jump to the WBOOT entry point in the
BIOS.

WBOOT: Entry point to a routine in the BIOS used when a warm start occurs. A warm
start is performed when a user program branches to location OOOOH, when the CPU is
reset from the front panel, or when the user types ctl-C. The CCP and BOOS are reloaded
from the system tracks of drive A.

wildcard characters: Special characters that match certain specified items. In CP/M
there are two wildcard characters: ? and *. The ? can be substituted for any single
character in a filename, and the * can be substituted for the primary filename or the
file type, or both. By placing wildcard characters in filenames, the user creates an ambigu­
ous filename and can quickly reference one or more files.

word: 16-bit or two-byte value, such as an address value. Although the Intel 8080 is an
8-bit CPU, addresses occupy two bytes and are called word values.

WRITE: Entry point to a routine in the BIOS that writes the record at the currently
selected OMA address to the currently selected drive, track, and sector.

XL T: Logical to physical sector translation table located in the BIOS. SECTRAN uses
XL T to perform logical to physical sector number translation. XL T also refers to the
two-byte address in the disk parameter header at OPBASE + o. If this parameter is zero,
no sector translation takes place. Otherwise this parameter is the address of the transla­
tion table.

ZERO PAGE: See page zero.

234 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Appendix I: CP 1M Messages

Messages come from several different sources. CP/M displays error messages when
there are errors in calls to the Basic ~isk Operating System (BOOS). CP/M also displays
messages when there are errors in command lines. Each utility supplied with CP/M has its
own set of messages. The following lists CP/M messages and utility messages. One might
see messages other than those listed here if one is running an application program. Check
the application program's documentation for explanations of those messages.

Message

?

ABORTED

Meaning

DDT. This message has four possible meanings:
1) DDT does not understand the assembly language instruction.
2) The file cannot be opened.
3) A checksum error occurred in a HEX file.
4) The assembler/disassembler was overlayed.

PIP. You stopped a PIP operation by pressing a key.

ASM Error Messages

D Data error: data statement element cannot be placed in
specified data area.

E Expression error: expression cannot be evaluated during
assembly.

L Label error: label cannot appear in this context (might be
duplicate label).

N Not implemented: unimplemented features, such as macros,
are trapped.

o Overflow: expression is too complex to evaluate.
P Phase error: label value changes on two passes through

assembly.
R Register error: the value specified as a register is incompatible

with the code.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 235

BAD DELIMITER

Bad Load

Bdos Err. On d:

S Syntax error: improperly formed expression.
U Undefined label: label used does not exist.
V Value error: improperly formed operand encountered in an

expression.

ST AT. Check command line for typing errors.

CCP error message, or SAVE error message.

Basic Disk Operating System Error on the designated drive: CP/M
replaces d: with the drive specification of the drive where the error
occurred. This message is followed by one of the four phrases in the
situations described below.

Bdos Err On d: Bad Sector

This message appears when CP/M finds no disk in the drive, when
the disk is improperly formatted, when the drive latch is open, or
when power to the drive is off. Check fot one of these situations
and try again. This could also indicate a hardware problem or a
worn or improperly formatted disk. Press tC to terminate the
program and return to CP/M, or press the return key to ignore the
error.

Bdos Err On d: File RIO

Bdos Err On d: RIO

You tried to erase, rename, or set file attributes on a Read-Only file.
The file should first be set to Read-Write (RW) with the command:
"STAT filespec $R/W." .

Drive has been assigned Read Only status with a STAT command,
or the disk in the drive has been changed without being initialized
with a tC. CP/M terminates the current program as soon as you
press any key.

Bdos Err on d: Select

Break "x" at c

CP/M received a command line specifying a nonexistent drive.
CP/M terminates the current program as soon as you press any key.
Press return key or CTRL-C to recover.

ED. "x" is one of the symbols described below and c is the command
letter being executed when the error occurred.

Search failure. ED cannot find the string specified in an F, S, or
N command.

? Unrecognized command letter c. ED does not recognize the
indica ted command letter, or an E, H, Q, or 0 command is not
alone on its command line.

236 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

o The file specified in an R command cannot be found.

> Buffer full. ED cannot put any more characters in the memory
buffer, or the string specified in an F, N, or S command is too
long.

E Command aborted. A keystroke at the console aborted
command execution.

F Disk or directory full. This error is followed by either the disk
or directory full message. Refer to the recovery procedures
listed under these messages.

CANNOT CLOSE DESTINATION FILE- {filespec}

PIP. An output file cannot be closed. You should take appropriate
action after checking to see if the correct disk is in the drive and that
the disk is not write-protected.

Cannot close, RIO
CANNOT CLOSE FILES

CANNOT READ

CANNOT WRITE

Checksum error

CP/M cannot write to the file. This usually occurs because the disk
is wri te-protected.

ASM. An output file cannot be closed. This is a fatal error that
terminates ASM execution. Check to see that the disk is in the
drive, and that the disk is not write-protected.

DDT. The disk file written by a W command cannot be closed. This
is a fatal error that terminates DDT execution. Check if the correct
disk is in the drive and that the disk is not write-protected.

SUBMIT. This error can occur during SUBMIT file processing.
Check if the correct system disk is in the A drive and that the disk is
not write-protected. The SUBMIT job can be restarted after
rebooting CP/M.

PIP. PIP cannot read the specified source. Reader may not be
implemented.

PIP. The destination specified in the PIP command is illegal. You
probably specified an input device as a destination.

PIP. A hex record checksum error was encountered. The hex record
that produced the error must be corrected, probably by recreating
the hex file.

CHECKSUM ERROR
LOAD ADDRESS hhhh
ERROR ADDRESS hhhh
BYTES READ:
hhhh:

LOAD. File contains incorrect data. Regenerate hex file from the
source.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 237

Command Buffer Overflow

Command too long

SUBMIT. The SUBMIT buffer allows up to 2048 characters in the
input file.

SUBMIT. A command in the SUBMIT file cannot exceed 125
characters.

CORRECT ERROR, TYPE RETURN OR CTL-Z

PIP. A hex record checksum was encountered during the transfer of
a hex file. The hex file with the checksum error should be corrected,
probably by recreating the hex file.

DESTINATION IS RIO, DELETE (YIN)?

Directory full

Disk full

PIP. The destination file specified in a PIP command already exists
and it is Read Only. If you type Y, the destination file is deleted
before the file copy is done.

ED. There is not enough directory space for the file being written to
the destination disk. You can use the OXfilespec command to erase
any unnecessary files on the disk without leaving the editor.

SUBMIT. There is not enough directory space to write the
$$$.SUB file used for processing SUBMITs. Erase some files or
select a new disk and retry.

ED. There is not enough disk space for the output file. This error
can occur on the W, E, H, or X commands. If it occurs with X
command, you can repeat the command prefixing the filename with
a different drive.

DISK READ ERROR- {filespec}

PIP. The input disk file specified in a PIP command cannot be read
properly. This is usually the result of an unexpected end-of-file.
Correct the problem in your file.

DISK WRITE ERROR- {filespec}

DDT. A disk write operation cannot be successfully performed
during a W command, probably due to a full disk. You should either
erase some unnecessary files or get another disk with more space.

PIP. A disk write operation cannot be successfully performed dur­
ing a PIP command, probably due to a full disk. You should either
erase some unnecessary files or get another disk with more space
and execu te PIP again.

SUBMIT. The SUBMIT program cannot write the $$$.SUB file to
the disk. Erase some files, or select a new disk and try again.

ERROR: BAD PARAMETER

PIP. You en tered an illegal parameter in a PIP command. Retype the
en try correctly.

238 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESfARCH

ERROR: CANNOT OPEN SOURCE, LOAD ADDRESS hhhh

LOAD. Displayed if LOAD cannot find the specified file or if no
filename is specified.

ERROR: CANNOT CLOSE FILE, LOAD ADDRESS hhhh

LOAD. Caused by an error code returned by a BOOS function call.
Disk may be write-protected.

ERROR: CANNOT OPEN SOURCE, LOAD ADDRESS hhhh

LOAD. Cannot find source file. Check disk directory.

ERROR: DISK READ, LOAD ADDRESS hhhh

LOAD. Caused by an error code returned by a BOOS function call.

ERROR: DISK WRITE, LOAD ADDRESS hhhh

LOAD. Destination Disk is full.

ERROR: INVERTED LOAD ADDRESS, LOAD ADDRESS hhhh

LOAD. The address of a record was too far from the address of the
previously-processed record. This is an internal limitation of
LOAD, but it can be circumvented. Use DDT to read the hexfile
into memory, then use a SAVE command to store the memory
image file on disk.

ERROR: NO MORE DIRECTORY SPACE, LOAD ADDRESS hhhh

LOAD. Disk directory is full.

Error on line nnn message

FILE ERROR

FILE EXISTS

File exists, erase it

SUBMIT. The SUBMIT program displays its messages in the for­
mat shown above, where nnn represents the line number of the
SUBMIT file. Refer to the message following the line number.

ED. Disk or directory is full, and ED cannot write anything more on
the disk. This is a fatal error, so make sure there is enough space on
the disk to hold a second copy of the file before invoking ED.

You have asked CP/M to create or rename a file using a file specifi­
cation that is already assigned to another file. Either delete the
existing file or use another file specification.

REN. The new name specified is the name of a file that already
exists. You cannot rename a file with the name of an existing file. If
you want to replace an existing file with a newer version of the
same file, either rename or erase the existing file, or use the PIP
utility.

ED. The destination filename already exists when you are placing
the destination file on a different disk than the source. It should be
erased or another disk selected to receive the output file.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 239

** FILE IS READ/ONLY **

File Not Found

ED. The file specified in the command to invoke ED has the Read
Only attribute. ED can read the file so that the user can examine it,
but ED cannot change a Read Only file.

CP/M cannot find the specified file. Check that you have entered
the correct drive specification or that you have the correct disk in
the drive.

ED. ED cannot find the specified file. Check that you have entered
the correct drive specification or that you have the correct disk in
the drive.

STAT. STAT cannot find the specified file. The message might
appear if you omit the drive specification. Check to see if the correct
disk is in the drive.

FILE NOT FOUND- {filespec}

Filename required

hhhh??=dd

I nsufficient memory

Invalid Assignment

PIP. An input file that you have specified does not exist.

ED. You typed the ED command without a filename. Reenter the
ED command followed by the name of the file you want to edit or
create.

DDT. The?? indicates DDT does not know how to represent the
hexadecimal value dd encountered at address hhhh in 8080 assem­
bly language. dd is not an 8080 machine instruction opcode.

DDT. There is not enough memory to load the file specified in an R
or E command.

STAT. You specified an invalid drive or file assignment, or miss­
pelled a device name. This error message might be followed by a list
of the valid file assignments that can follow a filename. If an invalid
drive assignment was attempted the message "Use: d:=RO" is dis­
played, showing the proper syntax for drive assignments.

Invalid control character

SUBMIT. The only valid control characters in the SUBMIT files of
type SUB are - A through - Z. Note that in a SUBMIT file the
control character is represented by typing the circumflex, - , not
by pressing the control key.

INVALID DIGIT - {filespec}

PIP. An invalid hex digit has been encountered while reading a hex
file. The hex file with the invalid hex digit should be corrected,
probably by recreating the hex file.

240 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Invalid Disk Assignment

STAT. Might appear if you follow the drive specification with
anything except =R/O.

INVALID DISK SELECT

CP/M received a command line specifyirtg a nonexistent drive, or
the disk in the drive is improperly formatted. CP/M terminates the
current program as soon as you press any key.

INVALID DRIVE NAME (Use A, B, C, or D)

SYSGEN. SYSGEN recognizes only drives A, B, C and D as valid
destinations for system generation.

Invalid File Indicator

INVALID FORMAT

STAT. Appears if you do not specify RO, RW, DIR, or SYS.

PIP. The format of your PIP command is illegal. See the description
of the PIP command.

INVALID HEX DIGIT
LOAD ADDRESS hhhh
ERROR ADDRESS hhhh
BYTES READ:
hhhh

LOAD. File contains incorrect hex digit.

INVALID MEMORY SIZE

MOVCPM. Specify a value less than 64K or your computer's actual
memory size.

INVALID SEPARATOR

PIP. You have placed an invalid character for a separator between
two input filenames.

INVALID USER NUMBER

n?

PIP. You have specified a user number greater than 15. User
numbers are in the range a to 15.

USER. You specified a number greater than fifteen for a user area
number. For example, if you type USER 18<cr>, the screen displays
18?

NO DIRECTORY SPACE

ASM. The disk directory is full. Erase some files to make room for
PRN and HEX files. The directory can usually hold only 64 file­
names.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 241

NO DIRECTORY SPACE- {filespec}

NO FILE- {filespec}

PIP. There is not enough directory space for the output file. You
should either erase some unnecessary files or get another disk with
more directory space and execute PIP again.

DIR, ERA, REN, PIP. CP/M cannot find the specified file(or no
files exist.

ASM. The indicated source or include file cannot be found on the
indica ted drive.

DDT. The file specified in an R or E command cannot be found on
the disk.

NO INPUT FILE PRESENT ON DISK

No memory

DUMP. The file you requested does not exist.

There is not enough (buffer?) memory available for loading the
program specified.

NO SOURCE FILE ON DISK

SYSGEN. SYSGEN c"annot find CP/M either in CPMxx.com form
or on the system tracks of the source disk.

NO SOURCE FILE PRESENT

NO SPACE

No SUB file present

ASM. The assembler cannot find the file you specified. Either you
mistyped the filespecification in your command line, or the file is
not type ASM.

SAVE. Too many files are already on the disk, or no room is left on
the disk to save the information.

SUBMIT. For SUBMIT to operate properly, you must create a file
with filetype of SUB. The SUB file contains usual CP/M commands.
Use one command per line.

NOT A CHARACTER SOURCE

PIP. The source specified in your PIP command is illegal. You have
probably specified an output device as a source.

** NOT DELETED **

NOT FOUND

PIP. PIP did not delete the file, which may have had the R/O
attribute.

PIP. PIP cannot find the speCified file.

242 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

OUTPUT FILE WRITE ERROR

Parameter error

ASM. You specified a write-protected diskette as the destination
for the PRN and HEX files, or the diskette has no space left. Correct
the problem before assembling your program.

SUBMIT. Within the SUBMIT file of type sub, valid parameters are
$0 through $9.

PARAMETER ERROR, TYPE RETURN TO IGNORE

QUIT NOT FOUND

Read error

SYSGEN. If you press return, SYSGEN proceeds without process­
ing the invalid parameter.

PIP. The string argument to a Q parameter was not found in your
input file.

TYPE. An error occurred when reading the file specified in the type
command. Check the disk and try again. The STAT filespec com­
mand can diagnose trouble.

READER STOPPING

PIP. Reader operation interrupted.

Record Too Long

PIP. PIP cannot process a record longer than 128 bytes.

Requires CP/M 2.0 or later

XSUB. XSUB requires the facilities of CP/M 2.0 or newer version.

Requires CP/M 2.0 or newer for operation

PIP. This version of PIP requires the facilities of CP/M 2.0 or newer
version.

START NOT FOUND

PIP. The string argument to an S parameter can-not be found in the
source file.

SOURCE FILE INCOMPLETE

SYSGEN. SYSGEN cannot use your CP/M source file.

SOURCE FILE NAME ERROR

ASM. When you assemble a file, you cannot use the wildcard
characters * and? in the filename. Only one file can be assembled at
a time.

SOURCE FILE READ ERROR

ASM. The assembler cannot understand the information in the file

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 243

containing the assembly language program. Portions of another file
might have been written over your assembly language file, or
information was not properly saved on the diskette. Use the TYPE
command to locate the error. Assembly language files contain the
letters, symbols, and numbers that appear on your keyboard. If
your screen displays unrecognizable output or behaves strangely,
you have found where computer instructions have crept into your
file.

SYNCHRONIZATION ERROR

MOVCPM. The MOVCPM utility is being used with the wrong
CP/M system.

I'SYSTEM" FILE NOT ACCESSIBLE

You tried to access a file set to SYS with the STAT command.

** TOO MANY FILES **

STAT. There is not enough memory for STAT to sort the files
specified, or more than 512 files were specified.

UNEXPECTED END OF HEX FILE-{filespec}

PIP. An end-of-file was encountered prior to a termination hex
retord. The hex file without a termination record should be cor­
rected, probably by recreating the hex file.

Unrecognized Destination

Use: STAT d:=RO

PIP. Check command line for valid destination.

STAT. An invalid STAT drive command was given. The only valid
drive assignment in STAT is STAT d:=RO.

VERIFY ERROR:-{filespec}

PIP. When copying with the V option, PIP found a difference when
rereading the data just written and .comparing it to the data in its
memory buffer. Usually this indicates a failure of either the destina­
tion disk or drive.

WRONG CP/M VERSION (REQUIRES 2.0)

XSUB ACTIVE

SUBMIT. XSUB has been invoked.

XSUB ALREADY PRESENT

Your input?

SUBMIT. XSUB is already active in memory.

If CP/M cannot find the command you specified, it returns the
command name you entered followed by a question mark. Check
that you hav.e typed the command line correctly, or that the com­
mand you requested exists as a .COM file on the default or specified
disk.

244 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Absolute line number, 36
Access mode, 13
afn (ambiguous file reference), 3, 4, 6
Allocation vector, 105
Ambiguous file reference (afn), 3, 4, 6
ASM, 15, 47
Assembler, 15, 47
Assembler/disassembler module (DDT), 77
Assembly errors, 62
Assembly language mnemonics in DDT, 71, 74
Assembly language program, 49
Assembly language statement, 49
Automatic command processing, 25

Base, 50

INDEX

Basic Disk Operating System (BOOS), 2, 89, 127
Basic I/O System (BIOS), 2, 89, 127
BOOS (Basic ~isk Operating System), 2, 89, 127
Binary constants, 50
BIOS (Basic I/O System), 2, 89, 127
BIOS disk definition, 148
BIOS subroutines, 137
Block move command, 74
bls parameter, 149
BOOT, 90, 136, 140
BOOT entry point, 140
Breakpoint, 71, 73
Built-in commands, 3

Case translation,S, 6, 20, 21, 37, 39, 44, 45, 51, 95
CCP (Console Command Processor), 2, 69, 89, 127
CCP Stack, 92
Character pointer, 35
CKS parameter, 149
Close File function, 101
Code and data areas, 144
Cold start loader, 136, 140, 143
Combine files, 17
Command, 3
Command line, 90
Comment field, 49
Compute File Size function, 108
Condition flags, 58, 77
Conditional assembly, 56
CON IN, 140
CONOUT,141
CONSOLE, 138
Console Command Processor (CCP), 2,69, 89, 127
Console Input function, 95
Console Output function, 96
CONST,140
Constant, 50
Control characters, 44
Control functions, 9

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 245

Control-Z character, 93
Copy files, 17
CPU state, 71
cr (carriage return), 39
Create files, 23
Create system disk, 24
Creating COM files, 16
Currently logged disk, 3, 5, 10, 17, 25

Data allocation size, 147
Data block number, 147
DB statement, 57
DDT commands, 70, 133
DDT nucleus, 77
DDT prompt, 70
DDT sign-on message, 69
Decimal constant, 50
Default FCB, 73
Delete File function, 102
DESPOOL, 138
Device assignment, 11
DIR,6
DIR attribute, 14
dir parameter, 149
Direct console I/O function, 97
Direct Memory Address, 104
Directory, 6
Directory code, 100, 101, 102, 103
Disassembler, 71, 77
Disk attributes, 11
Disk drive name,S
Disk I/O functions, 99-110
Disk parameter block, 146
Disk parameter header, 145
Disk parameter table, 145
Disk statistics, 10
Disk-to-disk copy, 18
DISKDEF macro, 149
Diskette format, .31
DISKS macro, 150, 186
Display file contents, 8
dks parameter, 149
DMA,104
DMA address, 93
dn parameter, 149
DPBASE,146
Drive characteristics, 14
Drive select code, 94
Drive specification,S
OS statement, 57
DUMP, 27, 113
OW statement, 57

ED, 23, 33-45, 131
ED commands, 38, 44
ED errors, 43
Edit command line, 9
8080 CPU registers, 76
8080 registers, 51
end-of-file, 19, 93
END statement, 49, 54
ENDEF macro, 150
ENDIF statement, 56
EQU statement, 55

246 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

ERA,6
Erase files, 6
Error messagfs, 29, 43, 62, 153
Expression, 49
Extents, 13

FBASE,89
FCB, 93, 94
FCB format, 93, 94
FDOS (operations), 89, 91
File attributes, 14
File compatibility, 23
File control block (FCB), 93, 94
File expansion, 128
File extent, 93
File indicators, 14
File names, 3
Fiel reference, 3
File statistics, 10, 13
Filetype,93
Find command, 39
fsc parameter, 149

Get ADDR (AlIoc) function, 105
Get ADDR (Disk Parms) function, 106
Get Console Status, 99
Get I/O Byte function, 97
Get Read/Only Vector function, 105
GETSYS, 128, 134

Hexadecimal constant, 50
Hex files, 16, 19, 20, 47
HOME subroutine, 139, 141

Identifier, 49, 50
IF statement, 56
Initialized storage areas, 57
In-line assembly language, 71
Insert mode, 37
Insert string, 40
10BYTE function, 138,139

Jump vector, 137
Juxtaposition command, 41

Key fields, 109

Label field, 49
Labels, 48, 49, 58
Library read command, 42
Line-editing control characters, 38, 70, 98
Line-editing functions, 9
Line numbers, 36
LIST, 138, 141
List Output function, 96
LISTST,142
LOAD,16
Logged in, 3
Logical devices, 11, 18, 138
Logical extents, 93
Logical-physical assignments, 12, 139
Logical to physical device mapping, 138
Logical to physical sector translation, 143, 149
Isc parameter, 149

ALL INFORMAT10N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 247

Machine executable code, 16
Macro command, 42
Make File function, 103
Memory buffer, 33, 34, 35, 37
Memory image, 71, 131, 132
Memory image file, 16
Memory size, 27, 128, 132
MOVCPM, 27, 131, 132
Multiple command processing, 25

Negative bias, 132

[01 parameter, 149
Octal constant, 50
ofs parameter, 150
On-line status, 100
Open File function, 100
Operand field, 49-51
Operation field, 49-58
Operators, 52, 53, 58
ORC directive, 54

Page zero, 144
Patching the CP/M system, 128
Peripheral devices, 138
Physical devices, 12, 18, 139
Physical file size, 109
Physical to logical device assignment, 12, 139
PIP, 17
PIP devices, 19
PIP parameters, 20
Print String function, 98
PRN file, 47
Program counter, 71, 73, 76
Program tracing, 75
Prompt, 3
Pseudo-operation, 53
PUNCH, 138, 141
Punch Output function, 96
PUTSYS, 129, 135

Radix indicators, 50
Random access, 107, 108, 117
Random access files, 93
Random record number, 108
READ,142
Read Console Buffer function, 98
Read only, 14
Read/only status, 14
Read random error codes, 107
Read Random function, 107
READ routine, 139
Read Sequential function, 102
Read/write, 14
READER, 138, 141
Reader Input function, 96
REN,7
Rename file function, 104
Reset Disk function, 99
Reset Drive function, 109
Reset state, 99
Return Current Disk function, 104
Return Log-in Vector function, 104
Return Version Number function, 99
R/O, 14

248 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

RIO attribute, 106
RIO bit, 105
RIW, 14

SAVE,7
SA VE command, 70
Search for First function, 101
Search for Next function, 102
Search strings, 39
Sector allocation, 136
SECTRAN, 143
SELDSK, 139, 141, 146
Select Disk function, 100
Sequential access, 93
Set DMA address function, 104
Set File Attributes function, 106
SetlGet User Code function, 106
Set 110 Byte function, 97
Set Random Record function, 109
SET statement, 55
SETDMA,142
SETSEC, 142
SETTRK,141
Simple character 110, 138
Size in records, 13
skf parameter, 149, 150
Source files, 93
Stack pointer, 92
STAT, 10, 139, 151
Stop console output, 9
String substitutions, 40
SUBMIT,25
SYS attribute, 14
SYSGEN, 24, 134
System attribute, 44, 106
System parameters, 140
System (re)initialization, 138
System Reset function, 95

Testing and debugging of programs, 69
Text transfer commands, 35
TPA (Transient Program Area), 2,89
Trace mode, 76
Transient commands, 3, 9
Transient Program Area (TPA), 2, 89
Translate table, 150
Translation vectors, 146
TYPE,8

ufn, 3, 6
Unambiguous file reference, 3, 6
Uninitialized memory, 57
Untrace mode, 76
USER,8
USER numbers, 8, IS, 106

Verify line numbers command, 37, 45
Version independent programming, 99
Virtual file size, 108

Warm start, 90, 140
WBOOT entry point, 140
WRITE,142
Write Protect Disk function, 105
Write random error codes, 108

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 249

Write Random function, 108
Write Random with Zero Fill function, 110
WRITE routine, 142
Write Sequential function, 103

XSOB,26

250 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESfARCH

