
TM

MACRO ASSEMBLER:

LANGUAGE MANUAL and
APPLICATIONS GUIDE

[!Q] DIGITAL RESEARCH™

CP/M MAC MACRO ASSEMBLER

LANGUAGE MANUAL AND
APPLICAnONS GmDE

Copyright (e) 1977, 1978, 1979, 1980

Digi tal Research
Post Office Box 579
160 Central Avenue

Pacific Grove, CA 93950
(408) 649-3896

TWX 910 360 5001

All Rights Reserved

Copyright (c) 1977, 1978, 1979, 1980 by Digital
Research. All rights reserved. No part of this
publication may be reproduced, transmitted, trans
cribed, stored in a retrieval system, or translated into
any language or computer language, in any form or
by any means, electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the
prior written permission of Digital Research, Post
Office Box 579, Pacific Grove, California 93950.

This manual is tutorial in nature, however, and thus
permission is granted to reproduce or abstract the
example programs shown in enclosed figures for the
purposes of inclusion within the reader's progra ms.

Disclaimer

Digital Research makes no representations or war
ranties with respect to the contents hereof and specifi
cally disclaims any implied warranties of merchant
ability or fitness for anY' particular purpose. Further,
Digital Research reserves the right to revise this
publication and to make changes from time to time
in the content hereof without obligation of Digital
Research to notify any person of such revision or
changes.

Trademarks

CP 1M is a registered trademark of Digital Research.
MAC is a trademark of Digital Research.

Revision of November 1980

Table of Contents

1. MACRO ASSEMBLER .OPERATION UNDER CP/M 2

2. PROGRAM FORMAT 4

3. FORMING THE OPERAND 6
3.1. Labels 6
3.2. Numeric Constants 6
3.3. Reserved Words 7
3.4. String Constants 8
3.5. Arithmetic, Logical, and Relational Operators 8
3.6. Precedence of Operators 9

4. ASSEMBLER DmECTIVES 11
4.l. The ORG Directive 11
4.2. The END Directive 11
4.3. The EQU Directive 12
4.4 The SET Directive 12
4.5. The IF, ELSE, and ENDIF Directives 13
4.6. The DB Directive 16
4.7. The DW Directive 19
4.8. The DS Directive 19
4.9. The PAGE and TITLE Directives 20
4.10. A Sample Program using Pseudo Operations 21

5. OPERATION CODES 24
5.l. Jumps, Calls, and Returns 24
5.2. Immediate Operand Instructions 26
5.3. Increment and Decrement Instructions 26
5.4. Data Movement Instructions 28
5.5. Arithmetic Logic Unit Operations 30
5.6. Control Instructions 30

6. AN INTRODUCTION TO MACRO FACILITIES 32

7. IN LINE MACROS 37
7.l. The REPT-ENDM Group 37
7.2. The IRPC-ENDM Group 37
7.3. The ffiP-ENDM Group 41
7.4. The EXITM Statement 44
7.5. The LOCAL Statement 46

8. DEFINITION AND EVALUATION OF STORED MACROS 49
8.l. The MACRO-ENDM Group 49
8.2. Macro Invocation 49
8.3. Testing Empty Parameters 52
8.4. Nested Macro Definitions 57
8.5. Redefinition of Macros 59
8.6. Recursive Macro Invocation 61
8.7. Parameter Evaluation Conventions 63
8.8. The MACLm Statement 69

9. APPLICATIONS OF MACROS 70
9.l. Special Purpose Languages 70
9.2. Machine Emulation 81
9.3. Program Control Structures 105
9.4. Operating Systems Interface 135

10. ASSEMBLY PARAMETERS 160

11. DEBUGGING MACROS 163

12. SYMBOL STORAGE REQUIREMENTS 164

13. ERROR MESSAGES 166

Foreword

The CP/M macro assembler, called MAC, reads assembly language statements
from a diskette file and produces a "hex" format object file on the diskette suitable
for processing in the CP/M. environment, and is upward compatible from the standard
CP /M non-macro assembler (see the Digital Research manual entitled "CP/M Assembler
(ASM) User's Guide"). The facilities of MAC include assembly of Intel 8080 micro
computer mnemonics, along with assembly-time expressions, conditional assembly, page
formatting features, and a powerful macro processor which is compatible with the
standard Intel definition (MAC implements the mid-1977 revision of Intel's definition,
which is not compatible with previous versions). In addition, MAC will accept most
programs prepared for the Processor Technology Software #1 assembler, normally
requiring only minor modifications.

The macro assembler is supplied on a CP/M non-system diskette, along with a
number of standard library files. The macro assembler requires approximately 12K of
machine code and table space, along with an additional 2.5K of I/O buffer space.
Since the BDOS portion of CP/M is coresident with MAC, the minumum usable memory
size for MAC is approximately 20K. Any additional memory adds to the available
symbol table area, thus allowing larger programs to be assembled.

Upon receiving the MAC diskette, you should follow the steps given below

(a) place the MAC diskette into drive B, with a CP/M system diskette in
drive A. Copy the MAC.COM to drive A from drive B using PIP (see the CP/M
Features and Facilities Guide for PIP operation).

(b) Copy the SAMPLE.ASM program from drive B to drive A using the PIP
program.

(c) Remove the MAC diskette from drive B, and retain the diskette for future
backup (there are a number of "LIB" files which may be useful at a later time).

(d) Type "MAC SAMPLE" to execute the macro assembler (see Figure 1).
The macro assembler shOUld load and print the signon message. Upon completion, the
final program address is printed, followed by the "use factor" which indicates that the
assembly is complete.

(e) Type the "SAMPLE.PRN" and "SAMPLE.SYM" files, and compare with
Figure 1 to ensure that the assembler is executing properly, thus completing the MAC
test.

This manual is organized in three major sections. The first section describes
the simple assembler facilitjes of MAC which involve 8080 mnemonic forms, expressions,
and conditional assembly, similar to the discussion found in the ASM User's Guide. If
you are familiar with ASM, you may wish to skip over the first section, and start
reading Section 6. The second portion of this manual, beginning with Section 6,
describes the MAC macro facilities in some detail. Again, if you are familiar with
macros, you may wish to briefly skim these sections, and refer primarily to the examples
to get the "flavor" of the MAC facility. Section 10 discusses macro applications,
where common macro forms and programming practices are discussed. Again, it is
useful to skim the examples and refer back to the explanations for detailed discussions
of each program.

1

1. MACRO ASSEMBLER OPERATION UNDER CPIM

The user must first prepare a source program containing assembly language
statements using the ED program under CP 1M (see the Digital Research manual "CP lM
Context Editor (ED) User's Guide"), and then submit the assembly language file for
processing under MAC. Although the user may specify certain options (described under
"Assembly Parameters"), the usual invocation of MAC is simply

MAC filename

where "filename" corresponds to the assembly language file which was prepared using
ED, with an assumed (and unspecified) file type of "ASM." Upon completion of the
translation process, MAC leaves a file called "filename.HEX" containing the machine
code in Intel hexadecimal format which can subsequently be loaded (see the LOAD
command in the "CP/M Features and Facilities" manuaI), or tested under the CP/M
debugger (see the "CP/M Dynamic Debugging Tool (DDT) User's Guide"). In addition
to the HEX file, MAC also prepares a file named "filename.PRN" which contains an
annotated source listing, along with a file called "filename.SYM" which contains a
sorted list of symbols defined in the program.

Figure I provides an example of the output from MAC for a sample assembly
language program which is stored on the diskette under the name SAMPLE.ASM. The
macro assembler is executed by typing "MAC SAMPLE" followed by a carriage return.
Upon completion, the PRN, SYM, and HEX files will appear as shown in the figure.
The assembler listing file (PRN) includes a 16 column annotation at the left which
shows the values of literals, machine code addresses, and generated machine code.
Note that an equal sign (=) is used to denote literal values (see the EQU directive)
to avoid confusion with machine code addresses. In all cases, output files contain tab
characters (ASCII control-I) wherever possible in order to conserve diskette space. Tab
positions are assumed to be placed at every eight columns of the output line.

2

~

0100
0005 =
0002 =

0100 OE02
0102 1E3F
0104 CD0500
0107 C9
0108

Source Program (SAMPLE.ASM)

bdos
wchar

org
equ
equ
enter
write
mvi
mvi
ca II
ret
end

100h ;transient program area·
0005h ;bdos entry point
2 ;write character function

with ccp's return address in the stack
a single character (?) and return

c,wchar ;write character function
e, '?' ;character to write
bdos ;write the character

;return to the ccp
100h ;start address is 100h

Assembler Listing file (SAMPLE.PRN)

ORG 100H ;TRANSIENT PROGRAM AREA
BOOS EQU 0005H ;BooS ENTRY POINT
WCHAR EQU 2 ;WRITE CHARACTER FUNCTION

ENTER WITH CCP'S RETURN ADDRESS IN THE STACK
WRITE A SINGLE CHARACTER (?) AND RETURN
MYI C, WCHAR ; WR I TE CHARACTER FUNCT ION
MYI E '?' , . ;CHARACTER TO WRITE
CALL BOOS ;WRITE THE CHARACTER
RET ;RETURN TO THE CCP
END 100H ;START ADDRESS IS 100H

Assembler Sorted Symbol (SAMPLE.SYM)

0005 BOOS 0002 WCHAR

Assembler "Hex" Output file (SAMPLE.HEX)

:080100000E021E3FCD0500C9EF
:00010000FF

Figure 1. Sample ASM, PRN, SYM, and HEX Files from MAC.

2. PROGRAM FORMAT

A program acceptable as input to the macro assembler consists of a sequence
of statements of the form

line # label operation operand comment

where any or all of the elements may be present in a particular statement. Each
assembly language statement is terminated by a carriage return and line feed (the line
feed is inserted automatically by the ED program when the file is prepared), or with
the character n!n which is treated as an end of line by the assembler. ThUS, multiple
assembly language statements can be written on the same physical line if separated
by exclamation marks.

Statement elements are delimited by a sequence of one or more blank or tab
characters. Tab characters are preferred since the program element alignment is
automatically maintained in the output line at every eighth column, without requiring
extra blanks in the file. This not only conserves source file space, but also reduces
the listing file size since the tab characters are included in the PRN file. The tab
characters are not actually expanded until the file is printed or typed at the console.

The line# is an optional decimal integer value representing the source program
line n~mber, which is allowed on any source line in case the program is prepared with
a line editor which uses line numbers at the beginning of each statement. In all cases,
the optional line# is ignored by the assembler.

The label field takes the form

identifier or identifi er :

and is optional, except where noted in particular statement types. The identifier is
a sequence of alphanumeric characters (alphabetics, question marks, commercial atsigns,
and numbers) where the first character is alphabetic (including n?" and ,,@n). Identifiers
can be freely used by the programmer to label elements such as program steps and
assembler directives, but cannot exceed 16 characters in length. All characters are
significant in an identifier, except for the embedded dollar sign ($) which can be used
to improve readability of the name. Further, all lower case alphabetics are treated
as if they are upper case in an identifier. Note that the n:" following the identifier
in a label is optional (to maintain compatibility between the Intel and Processor
Technology versions). Thus, the following are all valid instances of labels

x xy
x? xyl:
xlx2 @123:
Gamma @GAMMA
x234$5678$9012$3456:

long$name
longer$named$data
??@@abcDEF
? AREWEHERE?

The operation field contains an assembler directive (pseudo operation), 8080
machine operation code, or a macro invocation with optional parameters. The pseudo
operations and machine operation codes are described below, while the macro calls are
delayed for later discussion.

4

The operand field of the statement, in general, contains an expression formed
from constant and label operands, with arithmetic, logical, and relational operations
upon these operands. Again, the complete details of properly formed expressions are
given in sections which follow.

The comment field is denoted by a leading u;u character, and contains arbitrary
characters until the next real or logical end of line. These character are read, listed,
and otherwise ignored in the assembly process. In order to maintain compatibility
with other assemblers, MAC also treats statements which begin with a "*" in the first
position as comment lines.

The assembly language program is thus a sequence of statements of the above
form, terminated optionally by an END statement. All statements following the END
are ignored by the assembler.

5

3. FORMING THE OPERAND

In order to completely describe the operation codes and pseudo operations, it
is necessary to first present the form of the operand field, since it is used in nearly
all statements. Expressions in the operand field consist of simple operands (labels,
constants, and reserved words), combined into properly formed subexpressions by
arithmetic and logical operators. The expression computation is carried out by the
assembler as the assembly proceeds. Each expression produces a 16-bit value during
the assembly. Further, the number of significant digits in the result must not exceed
the intended use. That is, if an expression is to be used in a byte move immediate
(see the MVI instruction), the absolute value of the operand must fit within an 8-bit
field. The restrictions on the expression significance are given with the individual
instructions.

3.1. Labels.

As discussed above, a label is an identifier which occurs on a particular statement.
In general, the label is given a value determined by the type of statement which it
precedes. If the label occurs on a statement which generates machine code or reserves
memory space (e.g., a MOV instruction or a DS pseudo operation), then the label is
given the value of the program address which it labels. If the label precedes an EQU
or SET, then the label is given the value which results from evaluating the operand
field. In the case of a macro definition, the label is given a text value (i.e., a
sequence of ASCn characters) which is the body of the macro definition. With the
exception of the SET and MACRO pseudo operations, an identifier can label only one
statement.

When a (non-macro) label appears in the operand field, its 16-bit value is
substituted by the assembler. This value can then be combined with other operands
and operators to form the operand field for a particular instruction. When a macro
identifier appears in the operation field of the statement, the text which is stored as
the value of the macro name is substituted in place of the name. In this case, the
operand field of the statement contains "actual parameters" which are substituted for
"dummy parameters" in the body of the macro definition. The exact mechanisms for
definition, invocation, and SUbstitution of macro text are given in later sections.

3.2. Numeric Constants.

A numeric constant is a 16-bit value in one of several number bases. The base,
called the radix of the constant, is denoted by a trailing radix indicator. The radix
indicators are:

B binary constant (base 2)
o octal constant (base 8)
Q octal constant (base 8)
D decimal constant (base 10)
H hexadecimal constant (base 16)

Q is an alternate radix indicator for octal numbers since the letter 0 is easily confused
with the digit O. Any numeric constant which does not terminate with a radix indicator
is assum ed to be a decimal constant.

6

A constant is thus composed as a sequence of digits, followed by an optional
radix indicator, where the digits are in the appropriate range for the radix. That is,
binary constants must be composed of 0 and 1 digits, octal constants can contain digits
in the range 0 - 7, while decimal constants contain decimal digits. Hexadecimal
constants contain decimal digits as well as hexadecimal digits A through H (correspond~ng
to the decimal numbers 10 through 15). Note, however, that the leading digit of a
hexadecimal constant must be a decimal digit in order to avoid confusing a hexadecimal
constant with an identifier (a leading 0 will always suffice). A constant composed in
this manner will produce a binary number which can be contained within a IS-bit
counter, truncated on the right by the assembler. Similar to identifiers, imbedded "$"
symbols are allowed within constants to improve their readability. Finally, the radix
indicator is translated to upper case if a lower case letter is encountered. The
following are all valid instances of numeric constants:

1234
1234H
33770

1234D
OFFFEH
Ofe3h

3.3. Reserved Words.

1l00B
33770
1234d

1l1l$0 0 00 $llll $0000 B
33$77$22Q
Offffh

There are several reserved character sequences which have predefined meanings
in the operand field of a statement. The names of 8080 registers are given below
which, when encountered, produce the corresponding value.

s~mbol value symbol value
A ----r B ----0
c 1 D 2
E 3 H 4
L 5 M 6

SP S PSW 6

Again, lower case names have the same values as their upper case equivalents. Machine
instructions can also be used in the operand field, and result in their internal codes.
In the case of instructions which require operands, where the specific operand becomes
a part of the binary bit pattern of the instruction (e.g., MOV A,B), the value of the
instruction is the bit pattern of the instruction with zeroes in the optional fields. For
example, the statement

LXI H,MOV

assembles an LXI H instruction with an operand equal to 40H (which is the value of
the MOV instruction with zeroes as operands).

When the symbol "$" appears in the operand field (not imbedded within identifiers
and numbers), its value becomes the address of the beginning of the current instruction.
For example, the two statements

X: JMP X
and

JMP $

. both produce a jump instruction to the current location. As an exception, the "$"
symbol at the beginning of a logical line can introduce assembly formatting instructions
(see "assembly parameters").

7

3.4. String Constants.

String constants represent sequences of graphic ASCII characters, and are
represented by enclosing the characters within apostrophe symbols ('). All strings must
be fully contained within the current physical line, with the "!" character within strings
treated as an ordinary string character. Each individual string must not exceed 64
characters in length, otherwise an error is reported. The apostrophe character itself
can be included within a string by representing it as a double apostrophe (the two
keystrokes ,,), which become a single apostrophe when read by the assembler.

Note that particular operation codes may require that the string length be no longer
than one or two characters. The LXI instruction, for example, will accept a character
string operand of one or two characters, while the CPI instruction will accept only a
one character string. The DB instruction, however, allows strings of length zero
through 64 characters in its list of operands. In the case of single character strings,
the value becomes the 8-bit Ascii code for the character (without case translation),
while two character strings produce a 16-bit value, with the second character as the
low order byte, and the first character as the high order byte. The string constant
'A' for example, is equivalent to 41H, while the two character string 'AB' produces the
16-bit value 4142H. The following strings are valid in various MAC statements:

'A' 'AB' 'ab' 'c' "" 'she ~aid "hello'"

There is one special case which must be considered inside string constants. As
discussed in later sections, the character "&" can be used to cause evaluation of dummy
arguments within macro expansions when they occur inside of string quotes. The exact
details of the SUbstitution process will be given in the discussion of macro definition
and call statements.

3.5. Arithmetic, Logical, and Relational Operators.

The operands described above can be combined in normal algebraic notation
using any combination of properly formed operands, operators, and parenthesized
expression. The operators recognized by MAC in the operand field are given below.
In general, the letters a and b represent operands which are treated as 16-bit unsigned
quantities in the range 0-65535. All arithmetic operators (+, -, *, I, MOD, SHL, and
SHR) produce a 16-bit unsigned arithmetic result, the relational operators (EQ, LT, LE,
GT, GE, and NE) produce a true (OFFFFH) or false (OOOOH) 16-bit result, and the
logical operators (NOT, AND, OR, and XOR) operate bit-by-bit on their operand(s)
producing a 16-bit result of 16 individual bit operations. The HIGH and LOW functions
alway produce a 16-bit result with a high order byte which is zero.

a+b produces the arithmetic sum of a and b, +b is b
a-b produces the -arithmetic difference between a and b, -b is O-b
a*b is the unsigned magnitude multiplication of a by b
alb is the unsigned magnitude division of a by b
a MOD b is the remainder after division of a by b
a SHL b produces a shifted left by b, with zero right fill
a SHR b produces a shifted right by b, with zero left fill
NOT b is the bit-by-bit logical inverse of b
a EQ b produces true if a equals b, false otherwise

8

a L T b produces true if a is less than b, false otherwise
a LE b produces true if a is less or equal to b, false otherwise
a GT b produces true if a is greater than b, false otherwise
a GE b produces true if a is greater or equal to b, false otherwise
a AND b produces the bitwise logical AND of a and b
a OR b produces the bitwise logical OR of a and b
a XOR b produces the logical exclusive OR of a and b
HIGH b is identical to b SHR 8 (high order byte of b)
LOW b is identical to bAND OFFH (low order byte of b)

In general, all computations are performed during the assembly process as I6-bit unsigned
operations, as described above. The resulting expression must fit the operation code
in which it is used. For example, the expression used in an ADI (add immediate)
instruction must fit into an 8-bit field, and thus the high order byte must be zero.
If the computed value does not fit the field, the assembler produces a value error for
that statement. As an exception to this rUle, 8-bit values which would normally be
considered "negative" are allowed in 8-bit fields under the following conditions: if the
program attempts to fill an 8-bit field with a 16-bit value which has all 1's in the high
order byte, and the "sign bit" is set, then the high order byte is truncated and no
error is reported. This particular condition arises when a negative sign is placed in
front of a constant. The value -2, for example, is defined (and computed) as 0-2
which produces the I6-bit value OFFFEH, where the high order byte (OFFH) contains
extended sign bits which are all l's, while the low order byte (OFEH) has the sign bit
set. Thus, the following instructions do not produce value errors in MAC:

ADI -1 ADI -15 ADI -127 ADI -128 ADI OFF80H

while the following instructions do produce value errors:

ADI 256 ADI 32768 ADI -129 ADI OFF7FH

The special operator NUL is used in conjunction with macro definition and
expansion operations, and must be the last operator in the operand field, preceding
only a single operand. The use and effects of the NUL operator are delayed until the
discussion of macros.

Expressions can generally be formed from simple operands such as labels, numeric
constants, string constants, and machine operation codes, or fully enclosed parenthesized
expressions such as:

10+20, 10H+37Q, Ll/3, (L2 + 4) SHR 3, ('a' and 5fh) + '0'
('BB' + B) OR (PSW + M), (l + (2+C» shr (A-(B + 1), (HIGH A) SHR 3

where blanks and tabs are ignored between the operators and operands of the expression.

3.6. Precedence of Operators.

As a convenience to the programmer, MAC assumes that operators have a
relative precedence of application which allows expressions to be written without nested
levels of parentheses. The resulting expression has assumed parentheses which are
defined by this relative precedence. The order of application of operators in

9

unparenthesized expressions is listed below. Operators listed first have highest prece
dence, and are applied first in an unparenthesized expression. Operators listed last
have lowest precedence, and are applied last. Operators listed on the same line have
equal precedence, and are applied from left to right as they are encountered in an
expression:

* / MOD SHL SHR
+ -

EQ LT LE GT GE NE
NOT
AND

OR XOR
HIGH LOW

Thus, the expressions shown below are equivalent:

a * b + c produces (a * b) + C

a + b * c produces a + (b * c)
a MOD b * c SHL d produces «a MOD b) * c) SHL D

a OR b AND NOT c + d SHLe produces a OR (b AND (NOT (c + (d SHL e»»

Ralanced parenthesized subexpressions can always be used to override the assumed
parentheses, and thus the last expression above could be rewritten to force application
of operators in a different order as sho_wn below:

(a OR b) AND (NOT c) + d SHL e

resulting in the assumed parentheses:

(a OR b) AND «NOT c) + (d SHL e»

Note that an unparenthesized expression is well-formed only if the expression which·
results from inserting the assumed parentheses is well-formed.

As a notational convenience, the following are equivalent:

<
<=
=
<>
>=
>

10

LT
LE
EQ
NE
GE
GT

4. ASSEMBLER DIRECTIVES

Assembler directives are used to set labels to specific values during assembly,
perform conditional assembly, define storage areas, and specify starting addresses in
the program. Each assembler directive is denoted by a pseudo operation which appears
in the operation field of the statement. The acceptable pseudo operations are given
below.

ORG
END
EQU
SET
IF
ELSE
ENDIF
DB
DW
DS
PAGE
TITLE

sets the program or data origin
terminates the physical program
performs a numeric "equate"
performs a numeric "set" or assignment
begins conditional assembly
is an alternate to a previous IF
marks the end of conditional assembly
defines data bytes or strings of data
defines words of storage (double bytes)
reserves uninitialized storage areas
defines the listing page size for output
enables pages titles and options

In addition to those listed above, there are several pseudo operations which are used
in conjunction with the macro processing facilities. Specifically, the MACRO, EXITM,
ENDM, REPT, IRPC, IRP, LOCAL, and MACLIB operations are reserved words, and
are fully described in separate sections which deal with macro processing. The
non-macro pseudo operations are detailed below.

4.1. The ORG Directive.

The ORG statement takes the form

label ORG expression

where "label" is an optional program label (i.e., an identifier followed by an optional
":"), and "expression" is a IS-bit expression consisting of operands which are defined
previous to the ORG statement. The assembler begins machine code generation at
the location specified in the expression. There can be any number of ORG statements
within a particular program, and there are no checks to ensure that the programmer
is not redefining overlapping memory areas. Note that most programs written for
CP 1M begin with an "ORG IOOH" statement which causes machine code generation to
begin at the base of the CP 1M transient program area.

If a label is specified in the ORG statement, then the label takes on the value
given by the expression, which is the next machine code address to assemble. This
label can then be used in the operand field of other statements to represent this
expressi on.

4.2. The END Directive.

The END statement is optional in an assembly language program, but if present
it must be the last statement. All statements following the END are ignored. The
two forms of the END statement are:

11

label END
label END expression

where the label is optional. If the first form is used, the assembly process stops, and
the default starting address of the program is taken as 0000. Otherwise, the expression
is evaluated and becomes the program starting address. This starting address is included
in the last record of the Intel format machine code "hex" file which results from the
assembly. Thus most CP/M assembly language programs end with the statement

END 100H

resulting in the default starting address of 100H, which is the beginning of the transient
program area.

4.3. The EQU Directive.

The EQU (equate) statement is used to name synonyms for particular numeric
values. The form is

label EQU expression

where the label must be present, and must not label any other statement. The
assembler evaluates the expression and assigns this value to the identifier given in the
label field. The identifier is usually a name which describes the value in a more
human-oriented manner. Further, this name can be used throughout the program as
a parameter for certain functions. Suppose, for example, that data received from a
Teletype appears on a particular input port, and data is sent to the Teletype through
the next output port in sequence. The series of equate statements that could be used
to define these ports for a particular hardware environment are shown below.

TTYBASE
TTYIN
TTYOUT

EQU 10H ;BASE TTY PORT
EQU TTYBASE ;TTY DATA IN
EQU TTYBASE+I ;TTY DATA OUT

At a later point in the program, the statements which access the Teletype could appear
as:

IN TTYIN
OUT TTYOUT

;R.EAD TTY DATA TO A
;WRITE DATA FROM A

making the program more readable than if the absolute I/O port addresses had been
used. If the hardware environment is later redefined to start the Teletype communica
tions ports at 7FH instead of 10H, the first statement need only be changed to:

TTYBASE EQU 7FH ;BASE PORT NUMBER FOR TTY

and the program can be reassembled without changing any other statements.

4.4. The SET Directive

The SET statement is similar to the EQU, taking the form

label SET expression

12

except that· the label, taken as a variable name, can occur on other SET statements
within the program. The expression is evaluated and becomes the current value
associated with the label. Thus, unlike the EQU statement where a label takes on a
single value throughout the program, the SET statement can be used to assign different
values to a name at different parts of the program. In particular, the SET statement
gives the label a value which is valid from the current SET statement to the point
where the label occurs on the next SET statement. The use of SET is similar to the
EQU, except that SET is used more often to control conditional assembly within macros.

4.5. The IF, ELSE, and ENDIF Directives.

The IF, ELSE, and ENDIF directives define a range of as.sembly language
statements which are to be included or excluded during the assembly process. The IF
and ENDIF statements alone can be used to bound a group of statements to be
conditionally assembled, as shown below:

IF expression
statement#l
statement#2

statement#n
ENDIF

Upon encountering the IF statement, the assembler evaluates the expression following
the IF (all operands in the expression must be defined ahead of the IF statement). If
the least significant bit of the expression is 1 then statement#l through statement#n
are assembled. If the least significant bit of the expression is zero, then the statements
are listed but not assembled.

Conditional assembly is often used to write a single "generic" program which
includes a number of possible alternative subroutines or program segments, where only
a few of the possible alternatives are to be included in any given assembly. Figures
2a and 2b give an example of such a program. Assume that a console device (either
a Teletype or CRT) is connected to an 8080 microcomputer through I/O ports. Due
to the electronic environment, the "current loop" Teletype is connected through ports
10H and llH, while the "RS-232" CRT is connected through ports 20H and 21H. The
program continually loops, reading and writing console characters. A single program
is shown which, when the condition is properly set, produces a program which operates
with either a Teletype (TTY is TRUE), or with a CRT (TTY is FALSE), but not both.
Figure 2a shows an assembly for the Teletype environment, while Figure 2b shows the
assembly for a CRT-based system. Note that the leftmost 16 columns are left blank
by the assembler when statements are skipped due to a false condition.

The ELSE statement can be used as an alternative to an IF statement, and must
occur between the IF and ENDIF statements. The form is:

IF expression
statement#l
statement#2

statement#n

13

CP/M MACRO ASSEM 2.0 #001 Teletype Echo Program

FFFF = TRUE EQU OFFFFH ;DEFINE "TRUE"
0000 = FALSE EQU NOT TRUE;DEFINE "FALSE"
FFFF = TTY EQU TRUE ;SET TTY ON
0010 = TTYBASE EQU 10H ;BASE OF TTY PORTS
0020 = CRTBASE EQU 20H ;BASE OF CRT PORTS

IF TTY ;ASSEMBLE TTY PORTS
TITLE 'Teletype Echo Program'

0010 = CONIN EQU TTYBASE ; CONSOLE INPUT
0011 = CONOUT EQU TTYBASE+1 ; CONSOLE OUT

ENDIF
IF NOT TTY ;ASSEMBLE CRT PORTS
TITLE 'CRT Echo Program'

....,. CONIN EQU CRTBASE ;CONSOLE IN
~ CONOUT EQU CRTBASE+1 ; CONSOLE OUT

ENDIF
;

0000 DB10 ECHO: IN CONIN ;READ CONSOLE CHARACTER
0002 D311 OUT CONOUT ;WRITE CONSOLE CHARACTER
0004 C30000 JMP ECHO
0007 END

Figure 2a. Conditional Assembly with TTY "True."

CP/M MACRO ASSEM 2.0 #001 CRT Echo Program

FFFF = TRUE EQU OFFFFH ;DEFINE "TRUE"
0000 = FALSE EQU NOT TRUE;DEFINE "FALSE"
0000 = TTY EQU FALSE ;SET CRT ON
0010 = TTYBASE EQU 10H ;BASE OF TTY PORTS
0020 = CRTBASE EQU 20H ;BASE OF CRT PORTS

IF TTY ;ASSEMBLE TTY PORTS
TITLE 'Teletype Echo Program'

CONIN EQU TTYBASE ;CONSOLE INPUT
CONOUT EQU TTYBASE+1 ;CONSOLE OUT

ENDIF
....... IF NOT TTY ;ASSE~mLE CRT PORTS
U1 TITLE 'CRT Echo Program'

0020 = CONIN EQU CRTBASE ;CONSOLE IN
0021 = CONOUT EQU CRTBASE+1 ;CONSOLE OUT

ENDIF
;

0000 DB20 ECHO: IN CON IN ;READ CONSOLE CHARACTER
0002 D321 OUT CONOUT ;\VRITE CONSOLE CHARACTER
0004 C30000 JMP ECHO
0007 END

Figure 2b. Conditional Assembly with TTY "False."

ELSE
statement#n+l
sta tern ent # n+2

statement#m
ENDIF

If the expression produces a non-zero (true) value, then statements 1 through n are
assembled, as before. In this case, however, statements n+l through m are skipped in
the assembly process. When the expression produces a zero value (false), statements
1 through n are skipped, while statements n+l through m are assembled. As an example,
the conditional assembly shown in Figure 2 could be rewritten as shown in Figure 3a.

Properly balanced IF's, ELSE's, and ENDIF's can be completely contained within the
boundaries of outer encompassing conditional assembly groups. The structure outlined
below shows properly nested IF, ELSE, and ENDIF statements:

IF exp#l
group#l
IF exp#2
group#2
ELSE
group#3
ENDIF
group#4
ELSE
group#5
IF exp#3
group # 6
ENDIF
group#7
ENDIF

where group 1 through 7 are sequences of statements to be conditionally assembled,
and exp# 1 through exp# 3 are expressions which control the conditional assembly. If
exp#l is true, then group#l and group#4 are always assembled, and groups 5, 6, and
7 will be skipped. Further, if exp#l and exp#2 are both true, then group#2 will also
be included in the assembly, otherwise group#3 will be included. If exp#l produces a
false value, groups 1, 2, 3, and 4 will be skipped, and groups 5 and 7 will always be
assembled. If under these circumstances, exp#3 is true then group#6 will also be
included with 5 and 7, otherwise it will be skipped in the assembly. A structure
similar to this is shown in Figure 3b, where literal true/false values are used to show
conditional assembly selection.

Conditional assembly of this sort can be nested up to eight levels (i.e., there
can be up to eight pending IF's or ELSE's with unresolved ENDIF's at any point in the
assembly), but usually becomes unreadable after two or three levels of nesting. The
nesting level restriction also holds, however, for pending IF's and ELSE's during macro
evaluation. Nesting level overflow will produce an error during assembly.

4.6. The DB Directive.

The DB directive allows the programmer to define initialized storage areas in
single precision (byte) format. The statement form is

16

CP/M MACRO ASSEM 2.0 #001 CRT Echo Program

FFFF = TRUE EQU OFFFFH ;DEFINE "TRUE"
0000 = FALSE EQU NOT TRUE;DEFINE "FALSE"
0000 = TTY EQU FALSE ;SET CRT ON
0010 = TTYBASE EQU 10H ;BASE OF TTY PORTS
0020 = CRTBASE EQU 20H ;BASE OF CRT PORTS

IF TTY ;ASSEMBLE TTY PORTS
TITLE 'Teletype Echo Program'

CONIN EQU TTYBASE ;CONSOLE INPUT
CONOUT EQU TTYBASE+1 ;CONSOLE OUT

ELSE ;ASSEMBLE CRT PORTS
TITLE 'CRT Echo Program'

0020 = CON IN EQU CRTBASE ;CONSOLE IN
0021 = CONOUT EQU CRTBASE+1 ;CONSOLE OUT

ENDIF
;

"""" 0000 DB20 ECHO: IN CON IN ;READ CONSOLE CHARACTER
-::I 0002 D321 OUT CONOUT ;WRITE CONSOLE CHARACTER

0004 C30000 JMP ECHO
0007 END

Figure 3a. Conditional Assembly Using "ELSE" for Alternate.

FFFF = TRUE EQU OFFFFH ;DEFINE "TRUE"
0000 = FALSE EQU NOT TRUE ;DEFINE "FALSE"

IF FALSE
MYI A,l
IF TRUE
MYI A,2
ELSE
MYI A,3
ENDIF
MYI A,4
ELSE

0000 3E05 MYI A,5
IF TRUE

0002 3E06 MYI A,6
ELSE .-
MYI A,7 00

ENDIF
0004 3E08 MYI A,8

ENDIF
0006 END

Figure 3b. Sample Program using Nested IF, ELSE, and ENDIF

label DB e#l, e#2, • • • , e#n

where the label is optional, and ell through e#n are either expressions which produce
8~bit values (the high order eight bits are zero, or the high order nine sign bits are
one's), or are ASCII strings of length no greater than 64 characters each. There is
no practical restriction on the number of expressions included on a single source line.
The expressions are evaluated and palced sequentially into the machine code following
the last program address generated by the assembler. String characters are similarly
placed into memory starting with the first character and ending with the last character.
Strings of length greater than two characters cannot be used as operands in more
complicated expressions (i.e., they must stand alone between the commas). Note that
ASCII characters are always placed in memory with the high order (parity) bit reset
to zero. Further, recall that there is no translation from lower to upper case within
strings. The optional label can be used to reference the data area throughout the
program. Examples of valid DB statements are:

data: DB 0,1,2,3,4,5,6
DB data and Offh,5,377Q,I+2+3+4

signon: DB > 'please type your name:',cr,lf,O
DB 'AB' SHR 8, 'C', 'DE' AND 7FH
DB HIGH data, LOW (signon GT data)

4.7. The DW Directive.

The DW statement is similar to the DB statement except double precision (two
byte) words of storage are initialized. The form is:

label DW ell, e#2, ••. , e#n

where the label is optional, and e#l through e#n are expressions which produce 16-bit
values. Note that Ascii strings of length one or two characters are allowed, but
strings longer than two characters are disallowed. In all cases, the data storage is
consistent with the 8080 processor: the least significant byte of the expression is
stored first in memory, followed by the most significant byte. The following DW
statements are examples of properly formed statements:

doub: DW Offefh, doub+4,signon-$,255+255
DW 'a', 5, 'AB', 'CD', doub LT signon

4.8. The DS Directive.

The DS statement is used to reserve an area of uninitialized memory, and takes
the form:

label DS expression

where the label is optional. The assembler begins subsequent code generation after
the area reserved by the DS. Thus, the DS statement given above has exactly the
same effect as the statement sequence:

19

label: EQU $;CURRENT CODE LOC
ORG $+expression ;MOVE PAST AREA

4.9. The PAGE and TITLE Directives.

The PAGE and TITLE pseudo operations give the programmer control over the
output formatting which is sent to the PRN file (or directly to the printer device).
The forms for the PAGE statement are:

PAGE
and

PAGE expression

If the PAGE statement stands alone, as in the first case above, the output page is
ejected to the top of form {i.e., an ASCn control-L (form feed) is sent to the output
file). The form feed is sent after the statement with PAGE has been printed, thus
the PAGE command is often issued directly ahead of major sections of an assembly
language program, such as a group of subroutines, to cause the next statement to
appear at the top of the following printer page.

The second form of the PAGE command is used to specify the output page size.
In this case, the expression which follows the PAGE pseudo operation determines the
number of output lines to be printed on each page. If the expression is zero, there
are no page breaks, and the print file is simply a continuous sequence of annotated
output lines. If the expression is non-zero, then the page size is set to the value of
the expression, and form feeds are issued to cause page ejects when this count is
reached for each page. The assembler initially assumes that

PAGE 56

is in effect, thus producing a page eject at the beginning of the listing, and at each
56 line increment.

The TITLE directive takes the form:

TITLE string-constant

where the string-constant is an ASCn string, enclosed in apostrophes, which does not
exceed 64 characters in length. If a TITLE pseudo operation is given during the
assembly, each page of the listing file is prefixed with the title line, preceded by a
standard MAC header. The title line thus appears as:

CP 1M MACRO ASSEM n.n #ppp string-constant

where n.n is the MAC version number, ppp is the page number in the listing, and
string-constant is the string given in the TITLE pseudo operation. MAC initially
assumes that the TITLE operation is not in effect. When specified, the title line,
along with the blank line which follows the title, are not included in the line count
for the page. Normally, no more than one TITLE statement is included in a particular
program. Similarly, no more than one PAGE statement. with the expression option is
normally included.

20

If a TITLE statement is included, and the symbol table is being appended to
the PRN file (see "assembly parameters"), then the SYM file also contains the specified
title at the beginning of the symbol listing, with page breaks given by either the
default or specified value of the PAGE statement.

4.10 A Sample Program using Pseudo Operations.

Figure 4 demonstrates the various pseudo operations available in MAC. The
sample program, called "typer," is intended to operate in the CP/M environment by
performing the simple function of selecting one of three messages for output at the
console. This program is created using the ED program, then assembled using MAC,
and then placed into "COM" file format using the CP/M LOAD function. Given that
these steps have been accomplished, typer is executed at the console command processor
level of CP/M by typing one of the commands:

typer a
typer b
typer c

to select message A, B, or C for printing. The typer program loads under the CCP,
and jumps to the label START where the 8080 stack is initialized. The typer program
then prints its "signon" message, which would appear as:

'typer' version 1.0

The program then retrieves the first character typed at the console following the
com mand "typer" which should be one of the letters A, B, or C. If one of these
letters is not specified, then typer "reboots" the CP/M system to give control back
to the CCP. If a valid letter is provided, typer selects one of the three messages
(MESS@.A, MESS@.B, or MESS@C) and prints it at the console before returning to CP/M.

Note that the TITLE and PAGE statements are used to produce a title at the
beginning of each page (form feeds were necessarily suppressed here), with a page size
of 20 lines, excluding the title lines. A number of EQU statements are used at the
beginning to improve readability of the program. Note that the exclaim symbol (0 is
used throughout the program to allow several simple assembly language statements on
the same line. Although multiple statements make the program more compact, they
often decrease the overall readability of the source program. Note also that the
program terminates without the END statement, which is only necessary if a starting
address is specified. The END statement is often included, however, to maintain
compatibility with other assemblers.

The DB statements labelled by SIGNON contain simple strings of characters, as
well as expressions which produce single byte values. The DW statement following
TABLE defines the base address of each string (corresponding to A, B, and C). Finally,
the DS statement at the end of the program reserves space for the stack defined
within the typer program.

21

N
N

CP/M MACRO ASSEM 2.0 #001 Typer Program

OOOA =
0000 =
0005 =
005C =
0002 =
OOOD =
OOOA =
0010 =
0100
0100 C31201

0103 7EB7C8
0106 5FOE02E5
010A CD0500E1
010E 23C30301

0112 31C101
0115 213701
0118 CD0301

011B 3A5DOO
011E D641
0120 FE03
0122 D20000

;
VERS
BOOT
BOOS
TFCB
WCHAR
CR
LF
STKSIZ

TITLE 'Typer Program'
PAGE 33
PRINT THE MESSAGE SELECTED BY THE INPUT cavJMAND A,B, OR C
EQU 10 ; VERS ION NUMBER N.N
EQU OOOOH ;REBOOT ENTRY POINT
EQU 0005H ;BDOS ENTRY POINT
EQU 005CH ;DEFAULT FILE CONTROL BLOCK (GET A,B, OR C)
EQU 2 ; WR I TE CHARACTER FUNCT ION
EQU ODH ;CARRIAGE RETURN CHARACTER
EQU OAH ;LINE FEED CHARACTER
EQU 16 ;SIZE OF LOCAL STACK (IN DOUBLE BYTES)

ORG
JMP

100H
START

;ORIGIN AT BASE OF TPA
; JUMP PAST THE MESSAGE SUBROUTINE

;
WMESSAGE:

;

;WRITE THE STRING AT THE ADDRESS GIVEN BY HL 'TIL 00
MOV A,M! ORA A! RZ ;RETURN IF AT 00
MOV E,A! MYI C,WCHAR! PUSH H ;READY TO PRINT
CALL BOOS! POP H ;CHARACTER PRINTED, GET NEXT
INX H! JMP WMESSAGE

START: ;ENTER HERE FROM THE CCP, RESET TO LOCAL STACK
LXI SP,STACK ;SET TO LOCAL STACK
LXI H,SIGNON ;WRITE THE MESSAGE
CALL WMES SAGE ; 'TYPER' VERS ION N. N

LDA
SUI
CPI
JNC

TFCB+1
'A'
TABLEN
BOOT

;GET FIRST CHAR TYPED AFTER NAME
;NORMALIZE TO 0,1,2
;<:XMPARE WITH THE TABLE LENGTH
;REBOOT IF NOT VALID

COMPUTE INDEX INTO ADDRESS TABLE BASED ON A'S VALUE

Figure 4. "Typer" Program Listing (Part A).

to.:>
c".)

CP/M MACRO ASSEM 2.0 #002 Typer Program

0125 5F
0126 1600
0128 214D01
012B 19
012C 19
012D 5E
012E 23
012F 56
0130 EB
0131 CD0301
0134 C30000

,
SIGNON:

0137 2774797065
0147 312E30
014A ODOAOO . ,

TABLE:
014D 5301670182
0003 = TABLEN . ,

MOV
MYI
LXI
DAD
DAD
MOV
INX
MOV
XCHG
CALL
JMP

E,A
D,O
H,TABLE
D
D
E,M
H
D,M

WMESSAGE
BOOT

DATA AREAS

; LOW ORDER INDEX
;EXTENDED TO DOUBLE PRECISION
;BASE OF THE TABLE TO INDEX
;SINGLE PRECISION INDEX
;DOUBLE PRECISION INDEX
;LOW ORDER BYTE TO E

;HIGH ORDER MESSAGE ADDRESS TO DE
;READY FOR PRINTOUT
;MESSAGE WRITTEN TO CONSOLE
; REBOOT , GO BACK TO CCP LEVEL

DB "'typer" version
DB VERS/10+'O', '.', VERS MOD 10 +'0'
DB CR,LF,O ;END OF MESSAGE

;OF MESSAGE BASE ADDRESSES
DW MESS@A,MESS@B,MESS@C
EQU ($-TABLE)/2 ;LENGTH OF TABLE

0153 7468697320MESS@A: DB
0167 796F752073MESS@B: DB
0182 7468697320MESS@C: DB

'this is message a',CR,LF,O
'you selected b this time' ,CR,LF,O
'this message comes out for c' ,CR,LF,O

01A1 DS STKSIZ*2 ;RESERVES AREA FOR STACK
STACK:

Figure 4. "Typer" Program Lisitng (Part B).

5. OPERATION CODES

Operation codes, found in the operation field of the statement, form the principal
components of assembly language· programs. In general, MAC accepts all the standard
mnemonics for the Intel 8080 microcomputer, which are given in detail in the Intel
manual "8080 Assembly language Programming Manual." Labels are optional on each
input line and, if included, take the value of the instruction address immediately before
the instruction is issued by the assembler. The individual operators are listed briefly
in the following sections in order to be complete, although it is understood that the
Intel documents should be referenced for exact operator details. In the discussion
which follows, the operation codes are placed into categories for discussion purposes,
followed by a sample assembly which shows the hexadecimal codes produced for each
operation. The following notation is used throughout the discussion:

e3 represents a 3-bit value in the range 0-7, which usually
takes one of the predefined register values A, B, C, D,
H, L, M, SP, or PSW.

e8 represents an 8-bit value in the range 0-255 (recall
that signed 8-bit values are also allowed in the range
-128 through +127)

e16 represents a I6-bit value in the range 0-65535

where e3, eS, and e16 can themselves be formed from an arbitrary combination of
operands and operators in a well-formed expression. In some cases, the operands are
restricted to particular values within the range, such as the PUSH instruction. These
cases will be noted as they are encountered.

5.1. Jumps, Calls, and Returns.

The jump, call and return instructions allow several different forms, as shown
in Figure 5. In some cases, the condition flags are tested to determine whether or
not the jump, call, or return is to be taken. The forms are shown below.

JMP e16
JNC e16
JPE e16

The call instructions are:

CALL e16
CNC e16
CPE e16

Thre return instructions are:

RET
RNC
RPE

JNZ e16
JC e16
JP e16

CNZ e16
CC e16
CP e16

RNZ
RC
RP

The restart instruction takes the form:

24

JZ e16
JPO e16
JM e16

CZ e16
CPO e16
CM e16

RZ
RPO
RM

CP 1M MACRO ASSEM 2.0 #001 8080 JUMPS, CALLS, AND RETURNS

0000 C31BOO
0003 C25COO
0006 CAOOOI
0009 D21FOO
OOOC DA4142
OOOF E21700
0012 EAODOO
0015 F24100
0018 FA1BOO

001B CD3600
001E C43800
0021 CCOOOI
0024 D43AOO
0027 DeOOOO
002A E43200
002D EC0900
0030 F44100
0033 FC4100

0036 C7
0037 DF

0038 C9
0039 CO
003A C8
003B DO
003C D8
003D EO
003E E8
003F FO
0040 F8

0002 =

L1:

Sl:

;

TITLE '8080 JUMPS, CALLS, AND RETURNS'

JUMPS ALL REQUIRE A 16 BIT OPERAND
JMP L1 ;JUMP UNCONDITIONALLY TO LABEL
JNZ L1+'A' ;JUMP ON NON ZERO TO LABEL
JZ 100H ;JUMP ON ZERO CONDITION TO LABEL
JNC L1+4 ;JUMP ON NO CARRY TO LABEL
JC 'AB' ;JUMP ON CARRY TO LABEL
JPO $+8 ;JUMP ON PARITY ODD TO LABEL
JPE L1/2 ;JUMP ON EVEN PARITY TO LABEL
JP GAMMA ;JUMP ON POSITIVE RESULT TO LABEL
JM LOW Ll ;JUMP ON MINUS TO LABEL

CALL OPERATIONS ALL REQUIRE A 16-BIT OPERAND
CALL SI ;CALL SUBROUTINE UNCONDITIONALLY
CNZ SI+X ;CALL SUBROUTINE IF NON ZERO FLAG
CZ 100H ;CALL SUBROUTINE IF ZERO FLAG
CNC Sl+4 ;CALL SUBROUTINE IF NO CARRY FLAG
CC Sl MOD 3;CALL SUBROUTINE IF CARRY FLAG
CPO $+8 ;CALL SUBROUTINE IF PARITY ODD
CPE Sl-$;CALL SUBROUTINE IF PARITY EVEN
CP GAMMA ;CALL SUBROUTINE IF POSITIVE
CM GAM$MA ;CALL SUBROUTINE IF MINUS FLAG

PROGRAMMED RESTART (RST) REQUIRES 3-BIT OPERAND
(RST X IS EQUIVALENT TO CALL X*8)
RST 0 ; "RESTART" TO LOCATION 0
RST X+1

RETURN
RET
RNZ
RZ
RNC
RC
RPO
RPE
RP
RM

INSTRUCTIONS HAVE NO OPERAND
;RETURN FROM SUBROUTINE
;RETURN IF NON ZERO
;RETURN IF ZERO FLAG SET
;RETURN IF NO CARRY FLAG
;RETURN IF CARRY FLAG SET
;RETURN IF PARITY IS ODD
;RETURN IF PARITY IS EVEN
;RETURN IF POSITIVE RESULT
;RETURN IF MINUS FLAG SET

X EQU 2
GAMMA:

0041 END

Figure 5. Assembly showing Jumps, Calls, Returns, and Restarts.

25

RST e3

and performs exactly the same function as the instruction "CALL e3*8" except" that
it requires only one byte of memory for the instruction.

Figure 5 shows the hexadecimal codes for each instruction, along with a short
comment on each line which describes the function of the instruction.

5.2. Immediate Operand Instructions.

Several instructions are available which load single or double precision registers
or single precision memory cells with constant values, along with instructions which
perform immediate arithmetic or logical operations on the accumulator (register A).
The "move immediate" instruction takes the form:

MVI e3,e8

where e3 is the register to receive the data given by the value e8. The expression
e3 must produces a value corresponding to one of the registers A, B, C, D, E, H, L,
or the memory location M which is addressed by the HL register pair.

The "accumulator immediate" operations take the form:

ADI e8
ANI e8

ACI e8
XRI e8

SUI e8
ORI e8

SBI e8
CPI e8

where the operation in always performed upon the accumulator using the immediate
data value given by the expression e8.

The "load extended immediate" instructions take the form:

LXI e3,e16

where e3 designates the register pair to receive the double precIsIon value given by
e16. The expression e3 must produce a value corresponding to one of the double
precision register pairs B, D, H, or SP.

Figure 6 shows the use of the accumulator immediate operations in an assembly
language program, along with a short comment describing the use of each instruction.

5.3. Increment and Decrement Instructions.

Instructions are provided in the 8080 repetoire for incrementing or decrementing
single and double precision registers. The instruction forms for single precision registers
are:

INR e3 DCR e3

where e3 produces a value corresponding to one of the registers A, B, C, D, H, L, or
M (corresponding to the byte value at the memory location addressed by HL). The
double precision instructions are:

26

~

-:i

CP/M MACRO ASSEM 2.0

TITLE

#001 IMMEDIATE OPERAND INSTRUCTIONS

'IMMEDIATE OPERAND INSTRUCTIONS'

0000 06FF

0002 C601
0004 CEFF
0006 D613
0008 DE10
OOOA E602
OOOC EE3C
OOOE F6FD

0010
L1:

MYI USES A REGISTER (3BIT) OPERAND AND 8-BIT DATA
MYI B,255 ;MOVE I~~DIATE A,B,C,D,E,H,L,M

ALL REMAINING IMMEDIATE OPERATIONS USE A REGISTER
ADI 1 ;ADD IMMEDIATE TO A W/O CARRY
ACI OFFH ;ADD IMMEDIATE TO A WITH CARRY
SUI L1+3 ;SUBTRACT FROlVI A W/O BORROW (CARRY)
SBI LOW L1 ;SUBTRACT FROM A WITH BORROW (CARRY)
ANI $ AND 7 ; LOGICAL "AND" WITH IMMEDIATE DATA
XRI 1111$00B;LOGICAL "XOR" WITH IMMEDIATE DATA
ORI -3 ; LOGICAL "OR" WITH IMMEDIATE DATA

END

Figure 6. Assembly using Immediate Operand Instructions.

CP/M MACRO ASSEM 2.0 #001 INCREMENT AND DECREMENT INSTRUCTIONS

0000 1C
0001 3D
0002 33
0003 OB
0004

TITLE 'INCREMENT AND DECREMENT INSTRUCTIONS'

INSTRUCTIONS
INR E
OCR A
INX SP
OCX B
END

REQUIRE REGISTER (3-BIT) OPERAND
;BYTE INCREMENT A,B,C,D,E,H,L,M
;BYTE DECREMENT A,B,C,D,E,H,L,M
;16-BIT INCREMENT B,D,H,SP
j16-BIT DECREMENT B,D,H,SP

Figure 7. Assembly containing Increment and Decrement Instructions.

INX e3 DCX e3

where e3 must be equivalent to one of the double precision register pairs B, D, H, or
SP.

Figure 7 shows a sample assembly language program which uses both single and
double precision increment and decrement operations.

5.4. Data Movement Instructions.

A number of 8080 instructions are placed in this category which move data
from memory to the CPU and from the CPU to memory. A number of register to
register move operations are also included. The single precision "move register"
instruction takes the form:

MOV e3,e3'

where e3 and e3' are expressions which each produce one of the single preCISIon
registers A, B, C, D, E, H, L, or M (corresponding to the memory location addressed
by HL). In all cases, the register named by e3 receives the 8-bit value given by the
register expression e3'. The instruction is often read as "move to register e3 from
register e3'." The instruction "MOV B,H" would thus be read as "move to register B
from register H." Note that the instruction MOV M,M is not allowed.

The single precision load and store extended operations take the form:

LDAX e3 ST AX e3

where e3 is a register expression which must produce one of the double preCISIon
register pairs B or D. The 8-bit value in register A is either loaded (LDAX) or stored
(STAX) from/to the memory location addressed by the specified register pair.

The load and store direct instructions operate either upon the A register for
single precision operations, or upon the HL register pair for double precision operations,
and take the forms:

LHLD e16 SHLD e16 LDA e16 STA e16

where e16 is an expression produces the memory address to obtain (LHLD, LDA) or
store (SHLD, STA) the data value.

The stack pop and push instructions perform double preCISIon load and store
operations, with the 8080 stack as the implied memory address. The forms are:

POP e3 PUSH e3

where e3 must evaluate to one of the double precision register pairs PSW, B, D, or
H.

The input and output instructions are also found in this category, even though
they receive and send their data to the electronic environment which is external to
the 8080 processor. The input instruction reads data to the A register, while the
output instruction sends data from the A register. In both cases, the data port is

28

~
co

CP /M MACRO ASSEM 2. 0

0000 78

0001 OA
0002 12

0003 2A1900
0006 221BOO
0009 3A1900
OOOC 326400

OOOF F1
0010 C5

0011 DB06
0013 D3FE

0015 E3
0016 E9
0017 F9
0018 EB

;
0019 D1 :
001B
0004 = X
0010

#001

TITLE

DATA/MEMORY/REGISTER MOVE OPERATIONS

'DATA/MEMORY/REGISTER MOVE OPERATIONS'

THE MOV INSTRUCTION REQUIRES TWO REGISTER OPERANDS
(3-BITS) SELECTED FROM A,B,C,D,E,H, OR M (M,M INVALID)

MOV A,B ;MOVE DATA TO FIRST REGISTER FROM SECOND

LOAD/STORE EXTENDED REQUIRE REGISTER PAIR B OR D
LDAX B ;LOAD ACCUM FROM ADDRESS GIVEN BY BC
STAX D ;STORE ACCUM TO ADDRESS GIVEN BY DE

LOAD/STORE DIRECT REQUIRE MEMORY ADDRESS
LHLD D1 ;LOAD HL DIRECTLY FROM ADDRESS D1
SHLD D1+2 ;STORE HL DIRECTLY TO ADDRESS D1+2
LDA D1 ;LOAD THE ACCUMULATOR FROM D1
STA D1 SHL 2;STORE THE ACCUMULATOR TO D1 SHL 2

PUSH AND POP REQUIRE PSW OR REGISTER PAIR FROM B,D,H
POP PSW ;LOAD REGISTER PAIR FROM STACK
PUSH B ;STORE REGISTER PAIR TO THE STACK

INPUT/OUTPUT INSTRUCTIONS REQUIRE 8-BIT PORT NUMBER
IN X+2 ; READ DATA FROM PORT NUMBER TO A
OUT OFEH ;WRITE DATA TO THE SPECIFIED PORT

MISCELLANEOUS REGISTER MOVE OPERATIONS
XTHL ;EXCHANGE TOP OF STACK WITH HL
PCHL ;PC RECEIVES THE HL VALUE
SPHL ;SP RECEIVES THE HL VALUE
XCHG ;EXCHANGE DE AND HL

END OF INSTRUCTION LIST
DS 2 ; roUBLE WORD TEMPORARY
OS 2 ; ANOTHER TEMPORARY
EQU 4 ;LITERAL VALUE
END

Figure 8. Assembly Using Various Register/Memory Moves.

given by the data value which follows the instruction:

IN e8 OUT e8

Various instructions are a part of the instruction set which transfer double
precision values between registers and the stack. These instructions are:

XTHL PCHL SPHL XCHG

Figure 8 lists these instructions in an assembly language program, along with a short
com ment on the use of each instruction.

5.5. Arithmetic Logic Unit Operations.

A number of instructions are included in the 8080 set which operate between
the accumulator and single precision registers, including operations upon the A .register
and carry flag. The accumlator/register instructions are:

ADD e3
ANA e3

ADC e3
XRA e3

SUB e3
ORA e3

SBB e3
CMP e3

where e3 produces a value corresponding to one of the single precision registers A,
B, C, D, E, H, L, or M, where the M "register" is the memory location addressed by
the HL register pair.

The accumulator/carry operations given below operate upon the A register, or
carry bit, or both.

DAA
RLC

CMA
RRC

STC
RAL

CMC
RAR

The actual function of each instruction is listed in the comment line shown in Figure
9.

The last instruction of this group is the double preCIsIon add instruction which
performs a 16-bit addition of a register pair (B, D, H, or SP) into the 16-bit value in
the HL register pair, producing the 16-bit (unsigned) sum of the two values which is
placed into the HL register pair. The form is:

DAD e3

5.6. Control Instructions.

The four remaining instructions in the 8080 set are categorized as control
instructions, and take the forms:

HLT DI EI Nap

and are used to stop the processor (HLT), enable the interrupt system (EI), disable the
interrupt system (DO, or perform a "no-operation" (Nap).

30

~

"""'

CP/M MACRO ASSEM 2.0 #001 ARITHMETIC LOGIC UNIT OPERATIONS

0000 80
0001 8D
0002 94
0003 99
0004 Al
0005 AF
0006 BO
0007 BC

0008 09

0009 27
OOOA 2F
OOOB 37
OOOC 3F
OOOD 07
OOOE OF
OOOF 17
0010 IF

0011

TITLE 'ARITHMETIC LOGIC UNIT OPERATIONS'

ASSUME OPERATION WITH ACCUMULATOR AND REGISTER,
WHICH MUST PRODUCE A, B, C, D, E, H, L, OR M

ADD
ADC
SUB
SBB
ANA
XRA
ORA
CMP

B
L
H
B+1
C
A
B
H

;ADD REGISTER TO A W/O CARRY
;ADD TO A WITH CARRY INCLUDED
; SUBTRACT FROM A W /0 BORROW
; SUBTRACT FROM A WITH BORROW
;LOGICAL "AND" WITH REGISTER
;LOGICAL "XOR" WITH REGISTER
;LOGICAL "OR" WITH REGISTER
;OOMPARE REGISTER, SETS FLAGS

DOUBLE ADD CHANGES HL PAIR ONLY
DAD B ;DOUBLE ADD B,D,H,SP TO HL

REMAINING OPERATIONS HAVE NO OPERANDS
DAA ;DECIMAL ADJUST REGISTER A USING LAST OP
CMA ;OOMPLEMENT THE BITS OF THE A REGISTER
STC ;SET THE CARRY FLAG TO 1
CMC ;COMPLEMENT THE CARRY FLAG
RLC ;8-BIT ACCUM ROTATE LEFT, AFFECTS CY
RRC ;8-BIT ACCUM ROTATE RIGHT, AFFECTS CY
RAL ;9-BIT CY/ACCUM ROTATE LEFT
RAR ;9-BIT CY/ACCUM ROTATE RIGHT

E~

Figure 9. Assembly Showing ALU Operations.

6. AN INTRODUCTION TO MACRO FACILITIES

The fundamental difference between the Digital Research "ASM" and "MAC"
assemblers is that ASM provides only the fundamental facilities for assembling 8080
operation codes, while MAC includes a powerful macro processing facility. In particular,
MAC implements the industry standard Intel macro definition, which includes the
following pseudo operations.

MACRO definitions allow groups of instructions to be stored and substituted in
the source program, as the macro names are encountered. Definitions and invocations
(macro "calls") can be nested, symbols can be constructed through concatenation (using
the special "&" operator), and locally defined symbols can be created (using the LOCAL
pseudo operation). Macro parameters can be formed to pass arbitrary strings of text
to a specific macro for sUbstitution during expansion. In addition, the MACLIB (macro
library) feature allows the programmer to define a particular set of macros, equates,
and sets for automatic inclusion in a program. A macro library can contain an
instruction set for another central processor, for example, which is not directly supported
by the MAC built-in mnemonics. The macro library may also include general purpose
input/output macros which are used in various programs which operate in the CP/M
environment to perform peripheral or diskette I/O functions.

IRPC, IRP, and REPT pseudo operations provide repetition of source statements
under control of a count or list of characters or items to be sUbstituted each time
the statements are re-read by the assembler. This feature is particularly useful in
generating groups of assembly language statements with similar structure, such as a
set of file control blocks where only the file type is changed in each statement.

In order to illustrate the power of a macro facility, consider the macro library
shown in Figure 10, which is assumed to reside in a diskette file called "MSGLIB.LIB."
This macro library contains macro definitions which have standard instruction sequences
for program startup, message typeout, and program termination. The program shown
in Figure 11 provides an example of the use of this macro library. The assembly
shown in Figure 11 lists both the macro calls and the statements in the macro expansions
which generate machine code. The statements which are marked by ,+, in Figure 11
are generated from the macro calls, while the remaining statements are a part of the
calling program.

As an introduction to MAC features, the macro invocation

ENTCCP 10

in Figure 11 shows a specific expansion of ENTCCP (enter from CCP) which is defined
in the macro library given in Figure 10. The macro call causes MAC to retrieve the
definition (i.e., the text between MACRO and ENDM in Figure 10) and sUbstitute this
text following the macro call in Figure 11. This particular macro performs the following
function: upon entry to the program from the CCP, the stack pointer (SP) is saved
into a variable called "@ENTSP" for later retrieval. The stack pointer is then reset
to a local area for the remainder of the program execution. The size of the local
stack is defined by the macro parameter which is named in the macro definition as
SSIZE (see Figure 10), and filled-in at the call with the value 10. The result is that
the ENTCCP macro reserves space for a local stack of SSIZE=10 double bytes (2*10
bytes) and, after sett ing up the stack, branches around this reserved area to continue
the program execution.

32

: SIMPLE
REBOOT EOU
TPA EQU
BOOS EOU
TYPE EQU
CR EOU
LF EQU

MACRO LIBRARY FOR MESSAGE TYPEOUT
0000H :WARM START ENTRY pOINT
0100H :TRANSIENT PROGRAM AREA
0A0SH :SYSTEM ENTRY POINT
2 :WRITE CONSOLE CHARACTER
0DH :CARRIAGE RETURN
0AH :LINE FEED

FUNCTION

MACRO DEFINITIONS
J
CHROUT MACRO

MVI
CALL
ENDM . ,

TYPEOUT
LOCAL
JMP

MSGOUT:
MOV
MOV
ORA
RZ
INX
PUSH
CHROUT
POP
JMP

PASTSUB:

:WRITE A CONSOLE CHARACTER FROM RE'GISTER A
C,TYPE ::TYPE FUNCTION
BOOS ::ENTER THE BOOS TO WRITE THE CHARACTER

MACRO ?MESSAGE :TYPE THE LITERAL MESSAGE AT THE CONSOLE
PASTSUB ::JUMP PAST SUBROUTINE INITIALLY
PASTSUB
::THIS SUBROUTINE IS USED TO PRINT THE MESSAGE STARTING AT HL 'TIL 0'
E,M ::NEXT CHARACTER TO E
A,E ::TO ACCUM TO TEST FOR 00
A : :=00?

::RETURN IF END OF MESSAGE
H ::OTHERWISE MOVE TO NEXT CHARACTER AND PRINT
H ::SAVE MESSAGE ADDRESS

H ::RECALL MESSAGE ADDRESS
MSGOUT :iFOR ANOTHER CHARACTER

:: REDEFINE THE TYPEOUT MACRO AFTER THE FIRST INVOCATION
TYPEOUT MACRO ??MESSAGE

LOCAL TYMSG ::LABEL THE LOCAL MESSAGE
LOCAL PASTM
LXI H,TYMSG ::ADDRESS THE LITERAL MESSAGE
CALL MSGOUT ::CALL THE PREVIOUSLY DEFINED SUBROUTINE
JMP PASTM

:: INCLUDE THE LITERAL MESSAGE AT THIS POINT
TYMSG: DB 'FROM CONSOLE: &??MESSAGE' ,CR,LF,0
:: ARRIVE HERE TO CONTINUE THE MAINLINE CODE
PASTM: EN OM

TYPEOUT <?MESSAGE>
ENDM

:
ENTCCP MACRO

LOCAL
LXI
DAD
SHLD
LXI
JMP
IF
DS
ELSE
DS
ENDIF

@STACK:
@ENTSP:
START: ENDM . ,
RETCCP MACRO

LHLD
SPHL
RET
ENDM . ,

ABORT MACRO
JMP
ENDM

"

SSIZE
START
Ho,0

:ENTER PROGRAM FROM CCP, RESERVE 2*SSIZE STACK LOCS
::AROUND THE STACK

SP :;SP VALUE IN HL
@ENTSP ::ENTRY SP
SP,@STACK::SET TO LOCAL STACK
START
NUL SSIZE
32 ::DEFAULT 16 LEVEL STACK

2*SSIZE

::LOW END OF STACK
DS 2 ; : ENTRY SP

:RETURN TO CONSOLE PROCESSOR
@ENTSP ::RELOAD CCP STACK

::BACK TO THE CCP

:ABORT THE PROGRAM
REBOO'l'

END OF MACRO LIBRARY

Figure 10. A Sample Macro Library.

33

CP/M MACRO ASSEM 2.0 f001

0100

0100+210000
0103+39
0104+222101
8187+312101
010A+C32301
010D+
0121+

TITLE

MACLIB
ORG
USE THE
ENTCCP
LXI
DAD
SHLD
LXI
JMP
DS

@ENTSP:
TYPEOUT

0123+C33401 JMP
0126+5E MOV
0127+B7 ORA
0128+C8 RZ
0129+23 INX
012A+E5 PUSH
012B+0E02 MVI
012o+C00500 CALL
0130+E1 POP
0131+C32601 JMP
0134+213001 LXI
0137+CD2601 CALL
013A+C36701 JMP
013D+46524F4D20??0003:

TYPEOUT
0167+217001 LXI
016A+CD2601 CALL
916D+C3ge01 JMP
0170+46524F4D20??0005:

TYPEOUT
019B+21A401 LXI
019E+CD2601 CALL
01Al+C3CE01 JMP
01A4+46524F4D20??0007:

81CE+2A2101
01Dl+F9
01D2+C9
01D3

RETCCP
LHLO
SPHL
RET
END

SAMPLE MESSAGE OUTPUT MACRO

~SAMPLE MESSAGE OUTPUT MACRO~

MSGLIB
TPA
MACRO
10

:INCLUDE THE MACRO LIBRARY
:ORIGIN AT THE TRANSIENT AREA

LIBRARY TO TYPE TWO MESSAGES
:ENTER PROGRAM, RESERVE 10 LEVEL STACK

H,8
SP
@ENTSP
SP,@STACK
??0001
2*10
DS 2
<THIS IS THE FIRST MESSAGE>
??0002

H
H
C,TYPE
BOOS
H
MSGOUT
H,??0003
MSGOUT
??0004
DB 'FROM CONSOLE: THIS IS THE FIRST MESSAGE',CR,LF,0
<THIS IS THE SECOND MESSAGE>
H,?10005
MSGOUT
??0006
DB 'FROM CONSOLE: THIS IS THE SECOND MESSAGE',CR,LF,0
<THIS IS THE THIRD MESSAGE>
H,?10007
MSGOUT
??0008
DB 'FROM CONSOLE: THIS IS THE THIRD MESSAGE',CR,LF,0
:RETURN TO THE CONSOLE COMMAND PROCESSOR
@ENTSP

Figure 11. A Sample Assembly using the MACLIB Facility.

34

Consider also the special macro statements which are used in Figure 10 within
the body of the ENTCCP macro. The "local" statement defines the label START which
is used within the macro body. Generally, each LOCAL statement causes the macro
assembler to construct a unique symbol (starting with "??") each time it is encountered.
Thus, multiple macro calls reference unique labels which do not interfere with one
another. To continue the example, ENTCCPalso contains a conditional assembly
statement which uses the "NUL" operator, which is used to test whether a macro
parameter has been supplied or not. In this case, the ENTCCP macro could be invoked
by:

ENTCCP

with no actual parameter, resulting in a default stack size of 32 bytes. If this seems
confusing, don't be concerned at this point because the individual sections which follow
give exact details and examples.

The TYPEOUT macro provides a more complicated example of macro use. Note
that this macro contains a redefinition of itself within the macro body. That is, the
structure of TYPEOUT is:

TYPEOUT MACRO ?MESSAGE

TYPEOUT MACRO ??MESSAGE

ENDM

ENDM

where the outer definition of TYPEOUT completely encloses the inner definition. The
outer definition is active upon the first invocation of TYPEOUT, but upon completion,
the nested inner definition becomes active.

In order to see the use of such a nested structure, consider the purpose of the
TYPEOUT macro. Each time it is invoked, TYPEOUT prints the message sent as an
actual parameter at the console device. The typeout process, however, can be easily
handled with a short subroutine. Upon the first invocation, we would like to include
the subroutine "inline," and then simply call this subroutine on subsequent invocations
of TYPEOUT. Thus, the outer definition of TYPEOUT defines the utility subroutine,
and then redefines itself so that the subroutine is called, rather than including another
copy of the utility subroutine.

It should be noted that macro definitions are stored in the symbol table area
of the assembler and thus each macro reduces the remaining free space. As a result,
MAC allows "double semicolon" comments which indicate that the comment itself is
to be ignored and not stored with the macro. Thus, comments with a single semicolon
are stored with the macro and appear in each expansion while comment with two
preceding semicolons are listed only when the macro is defined.

Figure 11 gives three examples of TYPEOUT invocations, with three messages
which are sent as actual parameters. Note that the LOCAL statement causes a unique
label to be created (??0002) in the place of "PASTSUB," which is used to branch around

35

the utility subroutine which is included inline between addresses 0126H and 0133H.
The utility subroutine is then called, followed by another jump around the console
message which is also included inline. Note, however, that subsequent invocations of
TYPEOUT use the previously included utility subroutine to type their messages. Again,
this may seem confusing, but it is worthwhile studying this example before continuing
into the exact details of macro definition and invocation in order to gain some insight
into macro facilities.

It should also be noted that, although the example shown here concentrates all
macro definitions in a separate macro library, it is often the case that macros are
defined in the mainline (.ASM) source program. In fact, many programs which use
macros do not use the external macro library facility at all.

There are many applications of macros which will be examined throughout the
remainder of this manual. Specifically, macro facilities can be used to simplify the
programming task by "abstracting" from the primitive assembly language levels. That
is, the programmer can define macros which provide more generalized functions that
are allowed at the pure assembly language level, such as macro languages for a given
applications (see Section 10), improved control facilities, and general purpose operating
systems interfaces. The remainder of this manual first introduces the individual macro
forms, then presents several uses of the macro facilities in realistic applications.

36

1. INLINE MACROS

The simplest macro facilities involve the REPT (repeat), IRPC (indefinite repeat
character), and mp (indefinite repeat) macro groups. All these forms -cause the
assembler to repetively re-read portions of the source program under control of a
counter or list of textual sUbstitutions. These groups are listed below in increasing
order of complexity.

7.1. The REPT-ENDM Group.

The REPT-ENDM group is written as a sequence of assembly language statements
starting with the REPT pseudo operation, and terminated by an ENDM pseudo operation.
The form is:

label: REPT expression
statement-l
statement-2

statement-n
label: ENDM

where the labels are optional. The expression following the REPT is evaluated as a
16-bit unsigned count of the number of times that the assembler is to read and process
statements 1 through n which are enclosed within the group.

Figure 12 shows an example of the use of the REPT group. In this case the
REPT-ENDM group is used to generate a short table of the byte values 5, 4, 3, 2,
and 1. Upon entry to the REPT, the value of NXTVAL is 5 which is taken as the
repeat count (even though NXTVAL changes within the REPT). Note that the macro
lines which do not generate machine code are not listed in the repetition, while the
lines which do generate code are listed with a "+" sign after the machine code address.
Full macro tracing is optional, however, using assembly parameters, as discussed in a
later section.

In general, if a label appears on the REPT statement, its value is the first
machine code address which follows. This REPT label is not re-read on each repetition
of the loop. The optional label on the ENDM is re-read on each iteration and thus
constant labels (not generated through concatenation or with the LOCAL pseudo
operation) will generate phase errors if the repetion count is greater than 1.

Properly nested macros, including REPT's, can occur within the body of the
REPT-ENDM group. Further, nested conditional assembly statements are also allowed,
with the added feature that conditionals which begin within the repeat group are
automatically terminated upon reaching the end of the macro expansion. Thus, IF and
ELSE pseudo operations are not required to have their corresponding ENDIF when they
begin within the repeat group (although the ENDIF is allowed).

7.2. The IRPC-ENDM Group.

Similar to the REPT group, the mpC-ENDM group causes the assembler to
re-read a bounded set of statements, taking the form

37

~
00

CP 1M MACRO ASSEM 2.0 #001 SAMPLE REPT STATEMENT

0100

0005 =
0100 DBOO
0102 FE05
0104 D20001
0107 211401
010A 5F
010B 1600
010D 19
010E 7E
010F D300
0111 C30001

0005 #

0114+05
0115+04
0116+03
0117+02
0118+01
0119

;
MAXVAL
RLooP:

;
NXTVAL
TABLE:

NXTVAL

ORG 100H ;BASE OF TRANSIENT AREA
TITLE 'SAMPLE REPT STATEMENT'
THIS PROGRAM READS INPUT PORT 0 AND INDEXES INTO A TABLE
BASED ON THIS VALUE. THE TABLE VALUE IS FETCHED AND SENT
TO OUTPUT PORT 0

EQU
IN
CPI
JNC
LXI
mv
MYI
DAD
mv
OUT
JMP

5
o
MAXVAL
RLooP
H,TABLE
E,A
D,O
D
A,M
o
RLooP

;LARGEST VALUE TO PROCESS
;READ THE PORT VALUE
;TOO LARGE?
;IGNORE INPUT IF INVALID
;ADDRESS BASE OF TABLE
;LOW ORDER INDEX TO E
;HIGH ORDER 00 FOR INDEX
;HL HAS ADDRESS OF ELEMENT
;FETCH TABLE VALUE FOR OUTPUT
; SEND TO THE OUTPUT PORT AND LOOP
; FOR ANOTHER INPUT

GENERATE A TABLE OF VALUES MAXVAL,MAXVAL-1, ... ,1
SET
REPT
DB
SET
ENDM
DB
DB
DB
DB
DB
END

MAXVAL ;START COUNTER AT MAXVAL
NXTVAL
NXTVAL ; FILL ONE (l\1ORE) ELEMENT
NXTVAL-1;;AND DECREMENT FILL VALUE

NXTVAL
NXTVAL
NXTVAL
NXTVAL
NXTVAL

;FILL ONE (l\1ORE) ELEMENT
;FILL ONE (l\1ORE) ELEMENT
;FILL ONE (l\1ORE) ELEMENT
;FILL ONE (l\1ORE) ELEMENT
;FILL ONE (l\1ORE) ELEMENT

Figure 12. A Srunple Program Using the REPT Group.

label: mpc identifier ,character-list
statement-1
statement-2

statement-n
label: ENDM

where the optional labels obey the same conventions as in the REPT-ENDM group.
The "identifier" is any valid assembler name, not including embedded "$" separators,
and "character-list" denotes a string of characters, terminated by a delimiter (space,
tab, end-of-line, or comment).

The mpc controls the re-read process as follows: the statement sequence is
read once for each character in the character-list. On each repetition, a character
is taken from the character-list and associated with the controlling identifier, starting
with the first and ending with the last character in the list. Thus, an IRPC header
of the form

mpc ?X,ABCDE

re-reads the statement sequence which follows (to the balancing ENDM) a total of
five times, once for each character in the list "ABCDE." On the first iteration, the
character "A" is associated with the identifier "?X" and on the' fifth iteration the
letter "E" is associated with the controlling identifier.

On each, iteration, the macro assembler SUbstitutes any occurrence of the
controlling identifier by the associated character value. Using the above IRPC header,
an occurrence of "?X" in the bounds of the IRPC-ENDM group is replaced by the
character "A" on the first iteration, and by "E" on the last iteration.

The programmer can use the controlling identifier to construct new text strings
within the body of the mpc by using the special "concatenation" operator, denoted
by an ampersand (&). Again using the above IRPC header, the macro assember would
replace "LAB&?X" by "LABA" on the first iteration, while "LABE" would be produced
on the final iteration. The concatenation feature is most often used to generate unique
label names on each iteration of the mpc re-read process.

Note, however, that the controlling identifier is not normally SUbstituted within
string quotes, since the controlling identifier could quite possibly occur as a part of
a quoted message. Thus, the macro assembler performs substitution of the controlling
identifier when it is either preceded and/or followed by the ampersand operator.
Further, recall that all alpha.betics outside string quotes are translated to upper case,
while no case translation occurs within string quotes. This requires that the controlling
identifier be not only preceded or followed by the concatenation operator within strings,
but must also be typed in upper case.

Figure 13 illustrates the use of the IRPC-ENDM group. Figure 13a shows the
original assembly language program, before processing by the macro assembler. Note
that the program is typed in both upper and lower case. Figure 13b shows the output
from the macro assembler, with the lower case alphabetics translated to upper case.
Three mpc groups are shown in this example. The first IRPC uses the controlling
identifier "reg" to generate a sequence of stack push operations which save the double
precision registers BC, DE, and HL. Again note that the lines generated by this group
are marked by a n+" sign following the machine code address.

39

OOOO+C5
0001+D5
0002+E5

0003+31
0004+41
0005+42
0006+24
0007+3F
0008+40

0009+E1
000A+D1
OOOB+Cl
OOOC C9
OOOD

construct a data table

; save relevant registers
enter: irpc reg,bdh

push reg ;;save reg
endm

initialize a partial ascii table
irpc c,lAb$?@

data&c: db '&C'
endm

registers
reg,hdb

restore
irpc
pop
endm
ret

reg ;;recall reg

end

Figure 13a. Original (.ASM) File with IRPC Example.

CONSTRUCT A DATA TABLE

; SAVE RELEVANT REGISTERS
ENTER: IRPC REG,BDH

PUSH REG ;;SAVE REG
ENDJ.\1
PUSH B
PUSH D
PUSH H

INITIALIZE A PARTIAL ASCII TABLE
IRPC C,lAB$?@

DATA&C: DB '&C'
ENDM

DATAl: DB ' 1 '
DATAA: DB 'A'
DATAB: DB 'B'
DATA$: DB '$,
DATA? : DB ' ? '
DATA@.: DB '@'

RESTORE REGISTERS
JRPC REG,HDB
POP REG ; ; RECALL REG
ENDM
POP H
POP D
POP B
RET
END

Figure 13b. Resulting (.PRN) file with JRPC Example.

40

The second IRPC shown in Figure 13 uses the controlling identifier "C" to
generate a number of single byte constants with corresponding labels. It is important
to observe that although the controlling variable was typed in lower case (see Figure
13a), it has been translated to upper case during assembly. Further, note that the
string '&C' occurs within the group and, since the controlling variable is enclosed in
string quotes, it must occur next to an ampersand operator and be typed in upper case
for the sUbstitution to occur properly. On each iteration of the IRPC, a label is
constructed through concatenation, and a "DB" is generated with the corresponding
character from the character-list.

It should be pointed out that sUbstitution of the controlling identifier by its
assoc'iated value could cause infinite SUbstitution if the controlling identifier is the
same as the character from the character-list. For this reason, the macro assembler
performs the SUbstitution and then moves along to read the next segment of the
program, rather than re-reading the SUbstituted text for another possible occurrence
of the controlling identifier. Thus, an IRPC of the form

IRPC C,lAC$?@

would produce
DATAC: DB 'C'

in place of the DB statement at the label DATAA in Figure 13b.

The last IRPC of Figure 13 is used to restore the previously saved double
precision registers, and performs the exact opposite function from the IPRC at the
beginning of the program.

One special case does occur, however, when the character-list is empty (i.e.,
when no characters occur following the "identifier," portion of the IRPC header). In
this case, the group of statements is read once, and any occurrence of the controlling
identifier is deleted when it is read (i.e., it is replaced by the "null string").

7.3. The IRP-ENDM Group.

The IRP (indefinite repeat) is similar in function to the IRPC, except that the
controlling identifier can take on a multiple character value. The form of the IRP
group is

label: IRP identifier,icl-1,cl-2, ..• ,cl-ni
statement-1
statement-2

statement-m
label: ENDM

where the optional labels obey the conventions of the REPT and IRPC groups. The
identifier controls the iteration as follows. On the first iteration, the character-list
given by "cl-1" is substituted for the identifier wherever the identifier occurs in the
bounded statement group (statements 1 through m). On the second iteration, cl-2
becomes the value of the controlling identifier. Iteration continues in this manner

41

until the last character-list, denoted by cl-n, is encountered and processed. Substitution
of values for the controlling identifier is subject to the same rules as in the IRPC
(note rules for SUbstitution within strings and concatenation of text using the ampersand
operator "&,,). One should also note that controlling identifiers are always ignored
within comments.

Figure 14 gives several examples of IRP groups. The first occurrence of the
IRP in Figure 14 is a typical use of this facility to generate a "jump vector" at the
beginning of a program or subroutine. The IRP assigns label names (INITIAL, GET,
PUT, and FINIS) to the controlling identifier "?LAB" and produces a jump instruction
for each label by re-reading the IRP group, substituting the actual label for the formal
name on each iteration.

The second occurrence of the IRP group in Figure 14 points out SUbstitution
conventions within strings (for both IRPC and IRP groups). The controlling identifier
"IS" takes on the values "A-ROSE" and "?" on the two iterations of the IRP group,
respectively. Note that the controlling identifier is replaced by the character-lists in
the two cases "&IS" and "IS&" inside the string quotes since they are both adjacent
to the ampersand operator. Note further that "is&" is not replaced because the
controlling identifier is typed in lower case, and there is no automatic translation to
upper case within strings. The occurrences of "IS" within the comments are not
substituted.

The last IRP group shows the effects of an empty character-list. The value of
the controlling identifier becomes the null string of symbols and, in the cases where
"?X" is replaced, produces the statement

DB n

which produces no machine code, and is therefore not listed in the macro expansion.
The three statements

DB '?x' DB '?X' DB '&'

appear in the expansions because the "?x" is typed in lower case (and thus is not
replaced), the '?X' does not appear next to an ampersand in the string (and is thus
not replaced), while in the last case only one of the double ampersands is absorbed in
the '&&?X&' string. In this last case, the two ampersands which surround "?X" are
removed since they occur immediately next to the controlling identifier within the
string.

Recall that substitution rules outside of string quotes and comments is much
less complicated: the controlling identifier is replaced by the current character-list
value whenever it occurs in any of the statements within the group. Further, the
ampersand opera tor can be placed before or after the controlling identifier to cause
the preceding or following text to be concatenated.

The actual forms for the character-lists (cl-l through cl-n) are more general
than stated here. In particular, bracket nesting is allowed as well as escape sequences
to allow delimiters to be ignored. The exact details of character-list forms are
discussed in the macro parameter sections.

42

OOOO+C30COO
0003+C34300
0006+C34600
0009+C34900

CREATE
IRP
JMP
ENDM
JMP
JMP
JMP
JMP

A "JUMP VECTOR" US ING THE IRP GROUP
?LAB,<INITIAL,GET,PUT,FINIS>
?LAB ; ;GENERATE THE NEXT JUMP

INITIAL
GET
PUT
FINIS

; INDIVIDUAL CASES

OOOC 211200
OOOF C35100

INITIAL:

CHRS:

0012+412D524F53
0022+412D524F53
o 0 3 2 + 3 F 2 049 5 3 2' 0
0038+3F2069736E

0043 C35100
;
GET:
;
PUT:
;

LXI
JMP
IRP
DB
DB
ENDM
DB
DB
DB
DB

JMP

JMP 0046 C35100

0049 C35100 FINIS: JMP

004C+3F78
004E+3F58
0050+26

0051 C9
0052

ENDCASE:

IRP
DB
DB
DB
DB
DB
ENDM
DB
DB
DB

RET
END

H,CHRS
ENDCASE
IS, <A-ROSE, ? >
'&IS IS IS&' ;IS IS &IS
, & lSi s n ' , t i s& '

'A-ROSE IS A-ROSE'
'A-ROSE isn"t is&'

; I SIS &1 S

'? IS ?' ;IS IS &IS
'? i s n ' , t i s& '

ENOCASE

ENDCASE

ENOCASE
?X, <>
, ?x'
, ?X'
'&?X'
'&?X&'
'&&?X&'

, ?x'
, ?X'
'&'

Figure 14. A Sample Program Using IRP.

43

7.4. The EXITM Statement.

The EXITM pseudo operation can occur within the body of a macro and, upon
encountering the EXITM statement, the macro assembler aborts expansion of the current
macro level. The EXITM pseudo operation occurs in the context

macro-heading
statement-1

label: EXITM

statement-n
ENDM

where the label is optional, and "macro-heading" denotes the REPT, IRPC, or IRP
group heading as described above. The EXITM statement can also be used with the
MACRO group, as discussed in later sections.

In order to be useful, the EXITM statement normally occurs within the scope
of a surrounding conditional assembly operation. If the EXITM occurs in the scope of
a false conditional test, the statement is ignored and macro expansion continues. If
the EXITM occurs within the scope of a true conditional, the expansion stops at the
point where the EXITM is encountered. Assembly statement processing continues after
the ENDM of the group aborted by the EXITM statement.

Two examples of the EXITM statement are shown in Figure 15. This figure
shows two IRPC's used to generated "DB" statements which do not exceed eight
characters in length. These IRPC's might occur within the context of another macro
definition, such as in the generation of CP 1M file control block (FCB) names. In both
cases, the variable "LEN" is used to count the number of filled characters. If the
count ever reaches eight characters, the EXITM statement is assembled under a true
condition, and the IRPC stops expansion.

The first IRPC generates the entire string "SHORT" since the length of the
character-list is less than eight characters. Each evaluation of "LEN = 8" produces
a false value and the EXITM is skipped. Thus, this IRPC terminates normally by
exhausing the character-list through its five repetitions.

The second IRPC stops generation at the eighth character of the list
"LONGSTRING" when the conditional "LEN EQ 8" produces a true value (note that "="
and "EQ" are equivalent operators), resulting in assembly of the EXITM statement.
The EXITM causes immediate termination of the expansion process.

The second IRPC also contains a conditional assembly without the balancing
ENDIF. In this case, the ENDIF is not required since the conditional begins within
the macro body. The ENDM serves the dual purpose of terminating unmatched IF's
as well as marking the physical end of the macro body.

44

SAMPLE USE OF THE EXITM STATEMENT WITH THE IRPC MACRO

THE FOLLOWING IRPC FILLS AN AREA OF MElVDRY WITH AT mST
EIGHT BYTES OF DATA:

;
0000 # LEN SET 0 ; INITIALIZE LENGTH TO 0

IRPC N,SHORT
DB '&N'

LEN SET LEN+1
IF LEN = 8
EXITM ;STOP MACRO IF AREA IS FULL
ENDIF
ENDM

0000+53 DB 'S '
0001+48 DB 'H'
0002+4F DB '0'
0003+52 DB 'R'
0004+54 DB 'T'

~ THE FOLLOWING MACRO PERFORMS EXACfLY THE SAME FUNCTIONS AS (,J1

SHOWN ABOVE, BUT ABORTS EXPANSION WHEN LENGTH EXCEEDS 8
;

0000 # LEN SET 0 ; INITIALIZE LENGTH COUNTER
IRPC N,LONGSTRING
DB '&N'

LEN SET LEN+l
IF LEN EQ 8
EXITM
ENDM

0005+4C DB 'L'
0006+4F DB ' 0'
0007+4E DB 'N'
0008+47 DB 'G'
0009+53 DB 'S'
000A+54 DB 'T'
000B+52 DB 'R'
000C+49 DB ' I '

OOOD END

Figure 15. Use of the EXITM statement in Macro Processing.

7.5. The LOCAL Statement.

It is often useful to "generate" labels for jumps or data references which are
unique on each repetition of a macro. This facility is available through the LOCAL
statement, which takes the form

macro-heading
label: LOCAL id-1,id-2, •.• ,id-n

ENDM

where the label is optional, "macro-heading" is a REPT, IRPC, or IRP heading as
discussed above (or a MACRO heading as discussed in following sections), and id-1
through id-n represent one or more assembly language identifiers which do not contain
embedded "$" separators. The LOCAL statement must occur within the body of a
macro definition. Although MAC allows the LOCAL statement to appear anywhere
within the macro body, it should appear immediately following the macro header to
be compatible with the standard Intel macro facility.

The action of the assembler upon encountering the LOCAL statement is to
create a new name of the form

??nnnn

for association with each identifier in the LOCAL list, where nnnn is a four digit
decimal value, assigned in ascending order starting at 0001. Whenever one of the
identifiers in the list is encountered, the corresponding created name is sUbstituted in
its place. Substitution occurs according to the same rules as the controlling identifier
in the IRPC and IRP groups.

The user should avoid the use of labels which begin with the two characters
"??" so that no conflicting names will accidentally occur. Further, symbols which
begin with "??" are not normally included in the sorted symbol list at the end of
assembly (see "assembly parameters" to override this default). Lastly, a total of 9999
LOCAL labels can be generated in any assembly, and an overflow error will occur if
more generations are attempted.

Figure 16a shows an example of a program which uses the LOCAL statement
to generate both data references and jump addresses. This program uses the CP/M
disk operating system to print a series of four generated messages, as shown in the
output from the program in Figure 16b. The program begins with "equates" which
define the disk system primary entry point, along with names for the non graphic
ASCn characters CR and LF (carriage return and line feed). The REPT statement
which follows contains a LOCAL statement with the identifiers X and Y which are
used throughout the body of the REPT group. On the first iteration, X's value becomes
??0001 which is the first generated label, while Y's value becomes ??0002. Note that
the SUbstitution for X and Y within the generated strings follows the rules stated for
controlling identifiers in previous sections. Upon completion, four messages are
generated along with four CALL's to the PRINT subroutine. At each call to PRINT,
the message address is present in the DE register pair. The subroutine loads the "print
string" function number into register C (C = 9) and calls the disk system to print the
string value.

46

0100
0005 =
OOOD =
OOOA =

BOOS
CR
LF

X:
Y:

0100+C31EOI
0103+7072696E74??0001:
011E+110301 ??0002:
0121+CD9101
0124+C34201
0127+7072696E74??0003:
0142+112701 ??0004:
0145+CD9101
0148+C36601
014B+7072696E74??0005:
0166+114BOI ??0006:
0169+CD9101
016C+C38AOI
016F+7072696E74??0007:
018A+116F01 ??0008:
018D+CD9101
0190 C9

;

ORG
EQU
EQU
EQU

100H
5
ODH
OAH

; BASE OF THE TRANS I ENT AREA
;BOOS ENTRY POINT
; CARR I AGE RETURN (ASC I I)
;LlNE FEED (ASCII)

SAMPLE PROGRAM SHOWING THE USE OF " LOCAL'

REPT
LOCAL
JMP
DB
LXI
CALL
ENDM
JMP
DB
LXI
CALL
JMP
DB
LXI
CALL
JMP
DB
LXI
CALL
JMP
DB
LXI
CALL
RET

4 ;REPEAT GENERATION 4 TIMES
X,Y ;;GENERATE TWO LABELS
Y ;JUMP PAST THE MESSAGE
'print x=&X, y=&Y',CR,LF,'$'
D,X ;.READY PRINT STRING
PRINT

??0002 ;JUMP PAST THE MESSAGE
'print x=??0001, y=??0002',CR,LF,'$'
D,??0001 ;READY PRINT STRING
PRINT
??0004 ;JUMP PAST THE MESSAGE
'print x=??0003, y=??0004',CR,LF,'$'
D,??0003 ;READY PRINT STRING
PRINT
??0006 ;JUMP PAST THE MESSAGE
'print x=??0005, y=??0006',CR,LF,'$'
D,??0005 ;READY PRINT STRING
PRINT
??0008 ;JUMP PAST THE MESSAGE
'print x=??0007, y=??0008',CR,LF,'$'
D,??0007 ;READY PRINT STRING
PRINT

0191 OE09
0193 CD0500
0196 C9
0197

PRINT: MVI
CALL
RET
END

C,9
BOOS

Figure 16a. Assembly Program using the LOCAL Statement.

print x=??0001, y=??0002
print x=??0003, y=??0004
print x=??0005, y=??0006
print x=??0007, y=??0008

Figure 16b. Output from Program of Figure 16a.

47

Upon completion of the program, control returns to the console command
processor (CCP) for further operations. This particular program uses the default stack
which is passed by the CCP (approximately 16 levels are available). Although this
example is primarily intended to show operation of the LOCAL statement, the reader
may wish to consult the CP 1M Interface Guide to determine aDOS interface conventions
in order to follow this example completely.

48

8. DEFINITION AND EVALUATION OF STORED MACROS

The "stored macro" facility of MAC allows the programmer to name a sequence
of assembly language "prototype" statements for selective inclusion at various places
throughout the assembly process. Macro parameters can be supplied in various forms
at the point of expansion which are sUbstituted as the prototype statement are re-read.
These parameters are generally used to tailor the individual macro expansion for a
particular case.

Although similar in concept to subroutine definition and call, macro processing
is purely textual manipulation at assembly time. That is, macro definitions causes
source text to be saved in the assembler's internal tables, and any particular expansion
involves manipulation and re-reading of the saved text. These concepts will become
clear as the individual macro forms are discussed.

In general, macro features can be combined in various ways to greatly 'enhance
the facilities which are available to the programmer. Specifically, the programmer
can easily manipulate generalized data definitions, macros can be defined for generalized
operating systems interface, simplified program control structures can be defined and
non standard instruction sets (such as the Z-80) can be supported. Finally, well designed
macros for a particular application can achieve a measure of machine independence.
All of these notions will be covered in the sections which follow.

8.1. The MACRO-ENDM Group.

The prototype statements for a stored macro are given in the macro body
enclosed by the MACRO and ENDM pseudo operations, taking the general form

macname

label:

MACRO d-1,d-2, .•. ,d-n
statement-1
statement-2

statement-m
ENDM

where the "macname" is any non conflicting assembly language identifier, d-1 through
d-n constitutes a (possibly empty) list of assembly identifiers without imbedded "$"
separators and statements-1 through m are the macro prototype statements. The
identifiers denoted by d-1 through d-n are called "dummy parameters" for this particular
macro and, although they must be unique among themselves, can generally be identical
to any program identifiers outside the macro body without causing a conflict. The
prototype statements may contain any properly balanced assembly language statements
or groups, including nested REPT's, IRP's, IRPC's, MACRO's and IF's.

The prototype statements are read and stored in' the assembler's internal tables
under the name given by "macname," but are not processed until the macro is expanded.
The expansion process is given in the following section.

As before, the label preceding the ENDM is optional.

8.2. Macro Invocation.

The macro text which is stored through a MACRO-END M group can be brought
out for processing through a statement of the form

49

label: macname a-l,a-2, .•. ,a-n

where the label is optional, and macname has previously occurred as the identifier on
a MACRO heading. The "actual parameters" a-I through a-n are sequences of characters,
separated by commas and terminated by a comment or end of line.

Upon recognition of the macname, the assembler first "pairs-off" each dummy
parameter in the MACRO heading (d-l through d-n) with the actual parameter text
(a-l through a-n) by associating the first dummy parameter with the first actual
parameter (d-l is paired with a-I), the second dummy is associated with the second
actual, and so forth until the list is exhausted. If more actuals are provided than
dummy parameters then the extras are ignored. If fewer actuals are provided then
the extra dummy parameters are associated with the empty string (i.e., a text string
of zero length). It is important to realize at this point that the value of a dummy
parameter is not a numeric value, but is instead a textual value consisting of a sequence
of zero or more ASCn characters.

After each dummy parameter is assigned an actual textual value, the assembler
re-reads and processes the previously stored prototype statements and substitutes each
occurrence of a dummy parameter by its associated actual textual value, according to
the same rules as the controlling identifier in an IRPC or IRP group.

Figures 17 and 18 pr<?vide examples of macro definitions and invocations. Figure
17 begins with the definition of three macros, called SAVE, RESTORE, and WCHAR.
The SAVE macro contains prototype statements which save the principal CPU registers
(PUSH PSW, B, D, and H), while the RESTORE macro restores the principal registers
(POP H, D, B, and PSW). The WCHAR macro contains the statements necessary to
write a single character at the console using a CP 1M BDOS call.

Note that the occurrence of the SAVE macro definition between MACRO and
ENDM causes the assembler to read and save the PUSH's, but does not assemble the
statements into the program. Similarly, the statements between the RESTORE MACRO
and corresponding ENDM are saved, as are the statements between the WCHAR MACRO
and ENDM group. The fact that the assembler is reading the macro definition is
indicated by the blank columns in the leftmost 16 columns of the output listing.

Referring to Figure 17, note that machine code generation starts following the
invocation of the SAVE macro. The proto~ype statements which were previously stored
are re-read and assembled, with a "+,, between the machine code address and the
generated code to indicate that the statements are being recalled and assembled from
a macro definition. Note that the SAVE macro has no dummy parameters in the
definition and thus there are no actual parameters required at the point of invocation.

The invocation of SAVE is immediately followed by an expansion of the WCHAR
macro. The WCHAR macro, however, has one dummy parameter, called CHR, which
is listed in the macro definition header. This dummy parameter represents the character
to pass to the BDOS for printing. In the first expansion of the WCHAR macro, the
actual parameter "H" becomes the textual value of the dummy parameter CHR. Thus,
the WCHAR macro expands with a substitution of the dummy parameter CHR by the
value H. Note that the use of CHR is within string quotes and thus must be typed
in upper case and preceded by the ampersand operator. Following the reference to
WCHAR, the Qrototype statements are listed with the "+,, sign to indicate that they
are generated by the macro expansion. .

50

0100
0005 =
0002 =

0100+F5
0101+C5
0102+D5
0103+E5

0104+0E02
0106+1E48
0108+CD0500

010B+OE02
010D+1E49
010F+CD0500

0112+E1
0113+D1
0114+C1
0115+F1
0116 C9
0117

ORG
BOOS EQU
CONOUT EQU

100H
5
2

;BASE OF TRANSIENT AREA
; BOOS ENTRY POINT
; CHARACfER OUT FUNCf ION

;
SAVE

;

MACRO ;SAVE ALL CPU REGISTERS
PUSH PSW
PUSH B
PUSH D
PUSH H
ENIlVI

RESTORE MACRO ;RESTORE ALL REGISTERS
POP H
POP D
POP B
POP PSW
ENDlVt

;
WCHAR MACRO am. ; WR I TE CHR TO OONSOLE

MVI
MVI
CALL
ENIlVI

C, CONOUT ; ; CHAR OUT FUNCT ION
E, '&CHR' ;;CHAR TO SEND
BDOS

MAIN PROGRAM STARTS HERE
SAVE ;SAVE REGISTERS UPON ENTRY
PUSH PSW
PUSH B
PUSH D
PUSH H
WCHAR H ;SEND 'H' TO OONSOLE
MY I C, CONOUT
MVI E, 'H'
CALL BDOS
WCHAR I ; SEND 'I' TO OONSOLE
MY I C, CONOUT
MVI E,'I'
CALL BDOS
RESTORE ;RESTORE CPU REGISTERS
POP H
POP D
POP B
POP PSW
RET ;RETURN TO CCP
END

Figure 17. Example of Macro Definition and Invocation.

51

The second invocation of WCHAR is similar to the first except that the dummy
parameter CHR is assigned the textual value I, causing generation of a MVI E,'I' for
this case.

After the listing of the second WCHAR expansion, the RESTORE macro is
invoked, causing generation of the POP statement to restore the register state. The
RESTORE is followed by a RET to return to the CCP following the character output.

This particular program thus performs the simple function of saving the registers
upon entry, typing the, two characters "HI" at the console, restoring the registers, and
then returns to the Console Com mand Processor. One should note that the SAVE and
RESTORE macros are used here for illustration, and are not required for interface to
the CCP since all registers are assumed invalid upon return from a user program.
Further, this program uses the CCP's stack throughout, which is only eight levels deep.

Figure 18 shows another macro for printing at the console. In this case, the
PRINT macro uses the operating system call which prints the entire message starting
at a particular address until the "$" symbol is encountered. The PRINT macro has a
slightly more complicated structure: two dummy parameters must be supplied in the
invocation. The first parameter, called N, is a count of the number of carriage-return
line-feeds to send after the message is printed. The second parameter, called MESSAGE,
is the ASCn string to print which must be passed as a quoted string in the invocation.
The LOCAL statement within the macro generates two labels denoted by PASTM and
MSG. When the macro expands, SUbstitutions will occur for the two dummy parameters
by their associated actual textual values, and for P ASTM and MSG by their sequentially
generated label values. The macro definition contains prototype statements which
branch past the message (to PASTM) which is included inline following the label MSG.
The message is padded with N pairs of carrriage-return line-feed sequences, followed
by the "$" which marks the end of the message. The string address is then sent to
the BDOS for printing at the console.

There are two invocations of the PRINT macro included in Figure 18. The
invocation sends two actual parameters: the textual value 2 is associated with the
dummy N, followed by a quoted string which is associated with the dummy parameter
MSG. Note that the second actual parameter includes the string quotes as a part of
the textual value. Note also that the generated message is preceded by a jump
instruction, and followed by N = 2 carriage-return line-feed pairs.

The second invocation of the PRINT macro is similar to the first, except that
the REPT group is executed N = 0 times, resulting in no generations of the carriage
return line-feed pairs.

Similar to Figure 17, the program of Figure 18 uses the Console Command
Processor's eight level stack for the BDOScalls. When the program executes, it types
the two messages, separated by two lines, and returns to the CCP.

8.3. Testing Empty Parameters.

Before continuing the discussion of macro definition and invocation, it is necessary
to discuss a particular operator, called the NUL operator, which is specifically designed
to allowing testing of null parameters (i.e., actual parameters of length zero). The

52

0100
;

0005 = BOOS
0009 = PMSG
0000 = CR
OOOA = LF

;
PRINT
; ;

MSG:

ORG

EQU
EQU
EQU
EQU

100H

5
9
OOH
OAH

;BASE OF THE TPA

; BOOS ENTRY PO I NT
;PRINT 'TIL $ FUNCTION
;CARRIAGE RETURN
;LINE FEED

MACRO N ,MESSAGE
PRINT MESSAGE, FOLLOWED BY N CRLF'S
LOCAL PASTM,MSG
JMP PASTM; ; JUMP PAST MSG
DB MESSAGE ;; INCLUDE TEXT TO WRITE
REPT N ;;REPEAT CRLF SEQUENCE
DB CR,LF
ENDM
DB '$, ; ;MESSAGE TERMINATOR

PASTM: LXI D,MSG; ;MESSAGE ADDRESS
MYI C,PMSG; jPRINT FUNCTION
CALL BOOS
ENDM

PRINT 2 , 'The rain in Spain goes'
0100+C31E01 JMP ??0001
0103+5468652072??0002: DB 'The rain in Spain goes'
0119+0DOA DB CR,LF
01IB+ODOA DB CR,LF
011D+24 DB ' $,
011E+I10301 ??0001: LXI D,??0002
0121+0E09 MYI C,PMSG
0123+CD0500 CALL BOOS

PRINT 0, 'mainly down the drain.'
0126+C34001 JMP ??0003
0129+6D61696E6C??0004: DB 'mainly down the drain. ,
013F+24 DB '$,
0140+112901 ??0003: LXI D,??0004
0143+0E09 MYI C,PMSG
0145+CD0500 CALL BOOS
0148 C9 RET

Figure 18. Sample Message Print-out Macro.

53

NUL operator is used in an expression as a unary operator, and produces a true value
if its argument is of length zero and a false value if the argument has length greater
than zero. Thus, the operator appears in the context of an arithmetic expression as:

. . . NUL argument

where the ellipses (•..) represent an optional prefixing arithmetic expression, and
"argument" is the operand used in the NUL test. Note that the NUL differs from
other operators since it must appear as the last operator in the expression. This is
due to the fact that the NUL operator "absorbs" all remaining characters in the
expression until the following comment or end of line is found. Thus, the expression

X GT Y AND NUL XXX

is valid since NUL absorbs the argument XXX (producing a false value) in the scan
for the end of line. The expression

X GT Y AND NUL

is also valid, however, since the argument following the NUL is empty, thus causing
NUL to return a true value since the end of line is immediately encountered in the
scan. Intervening blanks and tabs are ignored in this scanning process. The expression

X GT Y AND NUL M + Z)

is somewhat deceiving, but nevertheless valid even though it appears as if it is an
unbalanced expression. In this case, the argument following the NUL operator is the
entire sequence of characters "M + Z)" which is absorbed by the NUL operator in
scanning for the end of line. The value of "NUL M + Z)" is "false" since the sequence
is not empty.

Figure 19 gives several examples of the use of NUL in a particular program.
In the first case, NUL returns true since there is an empty argument following the
operator. Thus, the "true case" is assembled (as indicated by the machine code to
the left), and the "false case" is ignored. Sim ilarly, the second use of NUL in Figure
19 produces a false value since the argument is non-empty. Both uses of NUL, however,
are contrived examples, since NUL is really only useful within a macro group, as shown
in the definition of the NULMAC macro.

NUL MAC consists of a sequence of three conditional tests which demonstrate
the use of NUL in checking empty parameters. In each of the tests, a "DB" is
assembled if the argument is not empty, and skipped otherwise. Six invocations of
NUL MAC follow its definition, giving various combinations of empty and non-empty
actual parameters.

In the first case, NULMAC has no actual parameters and thus all dummy
parameters (A, B, and C) are assigned the empty sequence. As a result, all three
conditional tests produce false results since both A and B are empty, and B&C
concatenates two empty sequences, producing an empty sequence as a result.

The second invocation of NUL MAC provides only one actual parameter (XXX)
which is assigned to the dummy parameter A, while Band C are both assigned the

54

CJ1
CJ1

0000 7472756520

0009 7878782069

0017+61203D2058

0029+62203D2058
003B+6263203D20

004F+61203D2058
0061+6263203D20

0075+6263203020

0089+6263203020
009C

;
NULMAC

IF
DB
ELSE
DB
ENDIF

IF
DB
ELSE
DB
ENDIF

MACRO
IF
DB
ENDIF
IF
DB
ENDIF
IF
DB
ENIM

NULMAC
NULMAC
DB
NULMAC
DB
DB
NULMAC
DB
DB
NULMAC
DB
NULMAC
NULMAC
DB
END

NUL
'true case'

'false case'

NUL XXX
'xxx is nul'

'xxx is not nul'

A,B,C
NOT NUL A
'a = &A is not nul'

NOT NUL B
'b = &B is not nul'

NOT NUL B&C
'be = &B&C is not nul'

xxx
'a = XXX is not nul'
,XXX
'b = XXX is not nul'
'be = XXX is not nul'
XXX, ,YYY
'a = XXX is not nul'
'be = YYY is not nul'
, ,YYY
'be = YYY is not nul'
, , ,

" " , ,
'be = "~It is not nul'

Figure 19. Srunple Program using the NUL Operator.

empty sequence. Thus, only the "DB" for the first conditional test is assembled.

The third case is similar to the second, except that the actual parameters for
A and C are, omitted. Thus, the second and third conditionals both test "NOT NUL
XXX" which is true since B has the value XXX, and B&C produces the value XXX as
well.

The fourth invocation of NULMAC skips the actual parameter for B, but supplies
values for both A and C. Thus, the first and third test result in true values, while
the second conditional group is skipped.

The fifth invocation provides an actual parameter only for C. As a result, only
the third conditional is true, since B&C produces the sequence YYY.

The sixth invocation produces exactly the same result as the first, since all
three actual parameters are empty.

The final expansion of NULMAC in Figure 19 shows a special case of the NUL
operator. The expression

NUL' ,

(where the two apostrophes are in juxtaposition) produces the value true even though
there are two apostrophe symbols on the line following NUL and before the end of
line. Note that the value of A is the empty string in this case, while the value
assigned to both Band C consists of the two apostrophe characters side-by-side, which
is treated as a quoted string of length zero (even though it is a sequence of two
characters!). In this last expansion, the first conditional produces a false value since
A is associated with the empty sequence. The second conditional, however, evaluates
the form

NOT NUL' ,

which is the speciaJ case of NUL applied to a length zero quoted string (not a length
zero sequence, however). Because of the special treatment of the length zero quoted
string, this expression also produces a false result. The third conditional, however,
must be considered carefully: the original expression in the macro definition takes
the form

NOT NUL B&C

with Band C both associated with the sequence of length two given by two adjacent
apostrophes. Thus, the macro assembler examines

NOT NUL' '&' ,

or, after concatenation,
NOT NUL' , , ,

where the four apostrophes are juxtaposed. Considering only the four adjacent
apostrophes, the macro assembler considers this a quoted string which happens to
contain a single apostrophe, since double apostrophes within strings are always reduced

56

to a single apostrophe. As a result, the test produces a true value and the conditional
segment is assembled. If this all seems confusing, that's because it is. Fortunately,
these cases are very specialized, and are included here for completeness. Under normal
circumstances, the NUL operator is used only to test for missing arguments, as shown
in later examples (see Figure 22 for a particular case).

8.4. Nested Macro Definitions.

The MAC assembler allows the programmer to include nested macro definitions,
which take the form

macl MACRO macl-list

mac2 MACRO mac2-list

ENDM

ENDM

where "macl" is the identifier corresponding to the outer macro, and "mac2" is an
identifier corresponding to an inner nested macro which is wholly contained within the
outer macro. In this case, "macl-list" and "mac2-Iist" correspond to the dummy
parameter lists for macl and mac2, respectively. As before, labels are allowed on
the ENDM statements.

Recall that the statements contained within a macro definition are "prototype"
statements which are read and stored by the assembler, but not evaluated as assembly
language statements until the macro is expanded. Thus, in the form shown above,
only the macl macro can is available for expansion, since the assembler has stored
but not processed the body of macl which contains the definition of mac2. That is,
mac2 cannot be expanded until macl is first expanded revealing the definition of mac2.

Properly balanced imbedded macros of this form can be nested to any level,
but cannot be referenced until their encompassing macros have themselves been
expanded.

Figure 20 gives a practical example of nested macro definition and expansion.
This particular program writes characters to either the CP 1M console device or the
currently assigned list device, according to the value of the LISTDEV flag which is
set for the assembly. If the LISTDEV flag is true, then the assembly sends characters
to the listing device, otherwise the console is used for output. In either case, the
macro OUTPUT is produced which sends a single character to whatever device is
selected.

For purposes of illustration, the macro SETIO is used to construct the OUTPUT
macro. Note in Figure 20 that the OUTPUT macro is wholly contained within the
SETIO macro and, as a result, remains undefined until SETIO expands. Upon encountering
the invocation of SETIO, the macro assembler reads the prototype statements within
SETIO and, in the process, constructs the definition of the OUTPUT macro. Since
LISTDEV is true for this assembly, the OUTPUT macro becomes defined as

57

Con
00

0100
0000 =
FFFF =

FFFF =

0005 =
0002 =
0005 =

0100+lE2A
0102+0E05
0104+CD0500

0107+1E31
0109+0E05
010B+CD0500

010E+1E32
0110+0E05
0112+CD0500
0115 C9
0116

FALSE
TRUE

;
LISTDEV

;
BOOS
CONOUT
LISTOUT
;
SETIO
;
OUTPUT

ORG 100H ;BASE OF THE TPA
EQU OOOOH ;VALUE OF FALSE
EQU NOT FALSE ;VALUE OF TRUE
LISTDEV IS TRUE IF LIST DEVICE IS USED
FOR OUTPUT, AND FALSE IF CONSOLE IS USED
EQU TRUE

EQU
EQU
EQU

MACRO

MACRO
MVI
IF
MVI
ELSE
MVI
ENDIF
CALL
ENIlVl
OUTPUT
ENDM

SETIO
MVI
MVI
CALL
OUTPUT
MVI
MVI
CALL
OUTPUT
MVI
MVI
CALL
RET
END

5
2
5

;BOOS ENTRY POINT
;WRITE TO CONSOLE
;WRITE TO LIST DEVICE

; SETUP "OUTPUT" MACRO FOR LIST OR OONSOLE

CHAR
E,CHAR ;;READY THE CHARACTER FOR PRINTING
LISTDEV
C,LISTOUT

C,CONOUT

BOOS

f * f

E f * f ,
;SETUP THE 10 SYSTEM

C,LISTOUT
BOOS
f 1 f

E, f 1 '
C,LISTOUT
BOOS
f 2 '
E, f 2 f

C,LISTOUT
BOOS

Figure 20. Sample Program showing a Nested Macro Definition.

OUTPUT MACRO
MVI
MVI
CALL
ENDM

CHAR
E,CHAR
C,LISTOUT
BDOS

Note that the SETIO macro itself uses this newly created OUTPUT macro in its last
prototype statement to print a single "*,, at the selected device.

Following the invocation of SETIO, the invocations of OUTPUT are recognized
since its definition has been entered in the process of reading the prototype statements
of SETIO. These invocations send the characters "1" and "2" to the list device,
respectively.

8.5. Redefinition of Macros.

It is often useful to redefine the prototype statements of a particular macro
after the initial prototype statements have been entered. This is often simply a
particular case of the previous section, where the inner nested macro carries the same
name as the encompassing macro definition. Although this feature may seem somewhat
frivolous, there is one particular case where macro redefinition IS extremely useful:
if the m aero uses a subroutine then the subroutine can be included on the first expansion
and simply called in any remaining expansions. Thus, if the macro is never invoked
then the subroutine is not included in the program.

Figure 21 shows an example of macro redefinition. In this case, the macro
MOVE is defined which is intended to move byte values from a starting "source address"
to a target "destination address" for a particular number of bytes. The three dummy
parameters denote these three values: SOURCE is the starting address, DEST is the
destination address, and COUNT is the number of bytes to move (a constant in the
range 0-65535). The actions of the MOVE macro, however, are sufficiently complicated
that they should be performed through a subroutine, rather than inline machine code
each time MOVE is expanded.

Examining the structure of MOVE in Figure 21, note that it contains a properly
nested redefinition of MOVE, taking the general form:

MOVE MACRO SOURCE,DEST,COUNT

@MOVE subroutine
MOVE MACRO ?S, ?D, ?C

call to @MOVE
ENDM
invocation of MOVE
ENDM

The action of the assembler upon encountering the first invocation of MOVE is to
begin reading the prototype statements. Note, however, that the first expansion of
the MOVE includes the subroutine for the actual move operation, labelled by @MOVE
so that there is no name conflict (with a branch around the subroutine). MOVE then
redefines itself as a sequence of statements which simply call the out-of-line subroutine
each time it expands. In fact, the last statement of the original MOVE macro is an

59

0100

0100+C30E01
0103+79
0104+BO
0105+C8
0106+7E
0107+12
0108+23
0109+13
010A+OB
010B+C30301
010E+212701
0111+114001
0114+010500
0117+CD0301

011A+210030
011D+110010
0120+010015
0123+CD0301
0126 C9

M)VE
; ;
; ;

; ;

ORG 100H ;BASE OF TPA
MACRO SOURCE ,DEST ,COUNT
M)VE DATA FROM ADDRESS GIVEN BY 'SOURCE'
TO ADDRESS GIVEN BY 'DEST' FOR 'OOUNT' BYTES
LOCAL PASTSUB; ; LABEL AT END OF SUBROUTINE

JMP PASTSUB ; ; JUMP AROUND INLINE SUBROUTINE
@MOVE: ;; INLINE SUBROUTINE TO PERFORM lVDVE OPERATION
; ; HL IS SOURCE, DE IS DEST, BC IS OOUNT

M)V A , C ; ; LOW ORDER OOUNT
ORA B ;;ZERO OOUNT?
RZ ;;STOP MOVE IF ZERO REMAINDER
MOV A,M ;;GET NEXT SOURCE CHARACTER
STAX D ; ; PUT NEXT DEST CHARACTER
INX H ;;ADDRESS FOLLOWING SOURCE
INX D ;;ADDRESS FOLLOWING DEST
OCX B ; ; OOUNT=OOUNT-1
JMP @MOVE ; ; FOR ANOTHER BYTE TO MOVE

PASTSUB:
; ; ARRIVE HERE ON FIRST INVOCATION - REDEFINE lVDVE

?S,?D,?C ;;CHANGE PARM NAMES lVDVE MACRO

; ;
; ;

LXI
LXI
LXI
CALL
ENDM

H,?S ; ;ADDRESS THE SOURCE STRING
D,?D ;;ADDRESS THE DEST STRING
B , ? C ; ; PREP ARE THE OOONT
©MOVE ; ;lVDVE THE STRING

OONTINUE HERE ON THE FIRST INVOCATION TO USE
THE REDEFINED MACRO TO PERFORM THE FIRST MOVE
lVIOVE SOURCE ,DEST ,COUNT
ENDM

lVDVE
JMP
lVDV
ORA
RZ
lVDV
STAX
INX
INX
DCX

X1,X2,5 ;MOVE 5 CHARS FROM Xl TO X2
??0001
A,C
B

A,M
D
H
D
B
©MOVE
H,X1
D,X2
B,5
@MOVE
3000H,1000H,1500H
H,3000H
D,1000H
B,1500H
@MOVE

;BIG MOVER

0127 6865726520X1:
0140 7878787878X2:

JMP
LXI
LXI
LXI
CALL
lVDVE
LXI
LXI
LXI
CALL
RET
DB
DB

;RETURN TO THE OCP
'here is some data to move'
'xxxxxwe are!'

Figure 21. Sample Program showing Macro Redefinition.

60

invocation of the newly defined version. As indicated by this example, once a macro
has started expansion, it will continue to completion (or until EXITM is assembled),
even if it redefines itself.

It is important to note the use of ?S, ?D, and ?C in the above example. The
innermost MOVE macro uses the same sequence of three parameters for the source,
destination, and count. The dummy parameter names must differ, however, since they
would be substituted by their actual values if they were the same. This is due to the
fact that the inner MOVE macro is wholly contained within the outer macro and thus
parameter SUbstitution takes place irregardless of the context.

Macro storage is not reclaimed upon redefinition, however, since the macro
assembler performs two passes through the source program and saves any preceding
definitions for the second pass scan.

8.6. Recursive Macro Invocation.

A "recursive" macro x has the property that its prototype statements contain
invocations of macros which, in turn, invoke macros which eventually lead back to an
invocation of x. A particular case of recursion, called "direct recursion," occurs when
x invokes itself, as shown in the form below:

macname MACRO d-l, . , d-n

macname a-I, . . . , a-n

ENDM

Although this form is similar to the embedded macro definition discussed in the previous
section, note that "macname" is being expanded within its own definition, rather than
being redefined. Recursion is only useful, however, in the presence of conditional
assembly where various tests are made which prevent infinite recursion. In fact,
recursion is only allowed to sixteen levels before returning to complete the expansion
of an earlier level.

Figure 22 shows a situation where (indirect) recursive macro invocation is useful.
The macro WCHAR writes a character to the console device using the general-purpose
operating system macro CBDOS (call BDOS). CBDOS acts as an interface between
the program and the CP 1M system by performing the system function given by FUNC,
with optional "information address" INFO. In particular, CBDOS loads the specified
function to register C, then tests to see if the INFO argument has been supplied (using
the NUL operator). If supplied, INFO is loaded to the DE register pair. After register
setup, the BDOS is called, and the macro has completed its expansion.

Assume, however, that CBDOS has the additional task of inserting a carriage
return line-feed before writ'ing messages in the particular case that operating system
function 9 (write buffer until "$") has been specified. In this case, CBDOS uses the
WCHAR macro to send the carriage-return line-feed. Note, however, that the WCHAR
macro, in turn, uses CBDOS to send the character resulting in two activations of
CBDOS at the same time. The assembler holds the initial invocation of CBDOS until
the WCHAR macro has completed, then returns to complete the initial CBDOS expansion.

An important observation in the presence of recursion is that the values of the
dummy parameters are saved at each successive level of recursion, and restored when

61

0100

0005 =
0002 =
0009 =
OOOD =
OOOA =

0100+0E02
0102+116800
0105+CD0500

0108+0E02
010A+116900
010D+CD0500

0110+0E02
0112+110DOO
0115+CD0500
0118+0E02
011A+110AOO
011D+CD0500
0120+0E09
0122+112901
0125+CD0500
0128 C9

;
BOOS
CONOUT
MSGOUT
CR
LF
;
WCHAR
; ;

;
CBOOS
; ;
; ;
; ;
; ;

; ;

; ;

; ;

;
MSGADDR:

ORG 100H ;BASE OF TRANSIENT AREA
SAMPLE PROGRAM SHOWING RECURSIVE MACROS
EQU 0005H ; ENTRY TO BOOS
EQU 2 ; OONSOLE CHARACTER OUf
EQU 9 ;PRINT MESSAGE 'TIL $
EQU ODH ;CARRIAGE RETURN
EQU OAH ;LINE FEED

MACRO CHR
WR I TE THE CHARACTER CHR TO CONSOLE
CBOOS CONOUf,CHR ; ;CALL BOOS
ENDM

MACRO FUNC, INFO
GENERAL PURPOSE BOOS CALL MACRO
FUNC I S THE FUNCT ION NUMBER,
INFO IS THE INFORMATION ADDRESS OR NUL
CHECK FOR FUNCTION 9, SEND CRLF FIRST IF
IF FUNC=MSGOUT
PRINT CRLF FIRST
WCHAR CR
WCHAR LF
ENDIF
NOW PERFORM THE FUNCTION
MVI C,FUNC
INCLUDE LXI TO DE IF INFO NOT EMPTY
IF
LXI
ENDIF
CALL
ENDlVl

WCHAR
MVI
LXI
CALL
WCHAR
MVI
LXI
CALL
CBOOS
MVI
LXI
CALL
MVI
LXI
CALL
MVI
LXI
CALL
RET

NOT NUL INFO
D, INFO

~OOS

'h' ;SEND "H" TO OONSOLE
C,CONOUT
D, 'h'
BOOS
'if ;SEND 'I' TO CONSOLE
C,CONOUT
D, ' i '
BOOS
MSGOUT,MSGADDR ;SEND MESSAGE
C,CONOUT
D,CR
BOOS
C,CONOUT
D,LF
BOOS
C,MSGOUT
D,MSGADDR
BOOS

;TERMINATE PROGRAM

0129 616E64206C DB 'and lois$'
0132 END

Figure 22. Smmple Progrrum showing a Recursive Macro.

62

SO

that level of recursion is re-instated. In particular, re-entry into a macro expansion
through recursion does not destroy the values of dummy arguments held by previous
entry levels.

8.7. Parameter Evaluation Conventions.

There are a number of options which the programmer can exercise in the
construction of actual parameters, as well as in the specification of character-lists
for the IRP group. Although an actual parameter is simply a sequence of characters
placed between parameter delimiters, these options allow overrides where delimiter
characters themselves to become a part of the text. In general, a parameter x occurs
in the context:

label: macname < ••• , x , . • . >

where "macname" is the name of a previously defined macro, and the preceding label
is optional. The elipses IT ••• " represent optional surrounding actual parameters in the
invocation of macname. In the case of an IRP group, the occurrence of a character-list
x would be

label: IRP id, , x , • • •

where the label is again optional, and the elipses represent optional surrounding
character-lists for substitution within the IRP group where the controlling identifier
"id" is found. In either case, the statements could be contained within the scope of
a surrounding macro expansion. Hence, dummy parameter substitution could take place
for the encompassing macro while the actual parameter is being scanned.

The macro assembler follows the steps shown below in forming an actual
parameter or character-list:

(a) leading blanks and tabs (control-I) are removed if they occur in front of x.
After this "deblanking" has occurred,

(b) the leading character of x is examined to determine the type of scan
operation which is to take place;

(c) if the leading character is a string quote (apostrophe), then x becomes the
text up through and including the balancing string quote, using the normal string
scanning rules: double apostrophes within the string are reduced to a single apostrophe,
and upper case dummy parameters adjacent to the ampersand symbol are sUbstituted
by their actual parameter values. Note that the string quotes on either end of the
string are included in the actual parameter text. •

(d) If instead the first character is the left broken bracket "<" then the bracket
is removed, and the value of x becomes the sequence of characters up to, but not
including, the balancing right broken bracket" >" which does not become a part of x.
In this case, left and right broken brackets may be nested to any level within x, and
only the outer brackets are removed in the evaluation. Quoted strings within the
brackets are allowed, and SUbstitution within these strings follows the rules stated in
(c) above. Note that left and right brackets within quoted strings become a part of
the string, and are not counted in the bracket nesting within x. Further, the delimiter

63

characters comma, blank, semicolon, tab, and exclaim become a part of x when they
occur within the bracket nesting.

(e) If the leading character is a percent (%), then the sequence of characters
which follows is taken as an expression which is evaluated immediately as a l6-bit
value. The resulting value is converted to a decimal number and treated as an ASCn
sequence of digits, with left zero suppression (0-65535).

(f) If the leading character is neither a quote nor a left bracket nor a percent,
the (possibly empty) sequence of characters which fOllow, up to the next com rna, blank,
tab, semicolon, or exclaim symbol, becomes the value of x.

There is one important exception to the above rules: the single character
escape, denoted by an up-arrow, causes the macro assembler to read the immediately
following special (non alphabetic) character as a part of x without treating the character
as significant. The character which follows the up-arrow, however, must be a blank,
tab, or visible ASCn character. The up-arrow itself can be represented by two up
arrows in succession. If the up-arrow directly precedes a dummy parameter, then the
up-arrow is removed and the dummy parameter is not replaced by its actual parameter
value. Thus, the up-arrow can be used to prevent evaluation of dummy parameters
within the macro body. Note that the up-arrow has no special significance within
string quotes, and is si mply included as a part of the string.

Evaluation of dummy parameters in macro expansions must also be considered,
although this topic has been presented throughout the previous sections. Generally,
the macro assembler evaluates dummy parameters as follows:

(a) If a dummy parameter is either preceded or followed by the concatenation
operator (&), then the preceding and/or following "&" operator is removed, the actual
parameter is substituted for the dummy parameter, and the implied delimiter is removed
at the position(s) the ampersand occurs.

(b) Dummy parameters are replaced only once at each occurrence as the
encompassing macro expands. This prevents the "infinite substitution" which would
occur if a dummy parameter evaluated to itself.

In summary, parameter evaluation follows these rules:

*
*
*
*
*
*
*
*

leading and trailing tabs and blanks are removed
quoted strings are passed with their string quotes intact
nested brackets enclose arbitrary characters with delimiters
a leading percent symbol causes immediate numeric evaluation
an up-arrow passes a special character as a literal value
an up-arrow prevents evaluation of a dummy parameter
the U&U operator is removed next to a dummy parameter
dummy parameters are replaced only once at each occurrence

Figures 23, 24, and 25 show examples of macro definitions and invocations which
illustrate these points. In Figure 23, for example, two macros are defined, called
MACl and MAC2, which each have several dummy parameters. In this case, the macro
definitions are headed by "DB" statements in order to reveal the actual values which
are passed in each case. There is a single (mainline) invocation of MACl with the
actual parameters

64

MACRO PARAMETER EVALUATION
;
MAC 1 MACRO A,B,C,D,S

ENTER I NG MACRO 1:
DB '&A &B &C &0'
DB S

A: NOP
MVI B,1

C&1: NOP
.L&A&D: NOP

;
MAC 2

OOOF =
+

;
X

+ ;
0000+492020582B
0009+6B776F7465
000E+3610

LEAVING MACRO 1

ENDM

MACRO E,F,G,H,S

ENTERING MACRO 2:
DB '&E &F &G &H'
DB S
MYI M,H
MAC 1 E,F&M,A,H,S
LEAVING MACRO 2

ENDM

EQU
MAC 2

15
I , , X+l,

ENTER I NG MACRO 2:
DB 'I X+1 16'
DB 'kwote'
MYI M,16

% X + 1, 'kwo t e '

+
+

MAC 1 I ,M, I , 16 , 'kw 0 t e '

+ ;
0010+49204D2049
0018+6B776F7465
001D+00 I:
001E+3601
0020+00 11:
0021+00 LII6:

+
+
+
+
+

ENTERING MACRO 1:
DB 'I M I 16'
DB 'kwote'
NOP
MY I M,1
NOP
NOP
LEAVING MACRO 1

ENDM
LEAVING MACRO 2

+ ENDM
0022 END

Figure 23. Macro Parameter Evaluation Example.

65

I " X+1, % X + 1, 'kwote'

which assocates I with E, the null sequence with F, the sequence X + 1 with G, the
value 16 with H, and the literal string 'kwote' with S. MAC2 expands, filling the DB
and MVI instructions with the substituted values. . Before leaving MAC2, MAC1 is
invoked with the value of E (the sequence I), the concatenation of the dummy argument
F with the sequence M (producing "M" since F's value is null), along with the literal
value A, followed by the value of H (which is 16), and terminated by the value of S
(yielding the string 'kwote'). These values are associated with MAC1's dummy para
meters. Upon expanding MAC1, the DB statements are filled-out, followed by the
substitution of A as a label (producing A's value I). The MVI instruction references
memory since B's value is M. Note that the concatenation of C with 1 reduces to a
concatenation of A with 1 since C's value is A. The replacement of C by A constitutes
a SUbstitution of a single occurrence of a dummy parameter, and thus the A which is
produced is not itself replaced at this point. Finally, the literal value L is concatenated
to the value of A and D to produce the label LIl6.

Figure 24 illustrates the use of bracketed notation, using IRP's (indefinite repeats)
within two macros, called IRPMl, IRPM2, and IRPM3. Note that one bracket level
is removed in the first invocation of IRPMl, leaving the IRP list with one bracket
level (required in the IRP heading). Similarly, the IRPM2 invocation also eliminates
the outer bracket level, but these brackets are replaced at the IRP heading within
IRPM2. IRPM3 has three distinct dummy parameters which are reconstructed as a
single list at the IRP heading which it contains. IRPM4 shows the effect of passing
parameters through two macro invocation levels by accepting a single parameter X,
which is immediately passed along to the IRPMl macro. Note that the invocation
requires three bracket levels: the first is removed at the invocation of IRPM4, the
second level is removed at the nested invocation of IRPMl inside IRPM4, and the
innermost level is required at the IRP heading within IRPMl.

Figure 25 presents various combinations of bracketed actual parameters, quoted
strings, and escape sequences. The MACl macro has two parts: the first portion
includes a "DB" statement which shows the value of the first parameter X (if it is
not empty), and the second part produces the value of Y, if not empty. Note that
the first invocation includes a properly nested bracketed sequence for X, and an empty
parameter for Y. The second invocation sends a properly nested bracketed expression
for X which produces an empty value since no characters remain after the brackets
are removed. The second parameter includes a quoted string ('string of pearls') and
a hexadecimal value which becomes a part of the "DB" in MACl.

The third invocation of MACl passes a bracketed expression, which includes a
quoted string (i.e., the pair of adjacent apostrophes), followed immediately by a sequence
of ASCn characters. Note that the pair of apostrophes are passed intact since they
appear as an empty quoted string. In this case, the value of Y is empty. The
remaining examples show various cases of strings and escape sequences. In particular,
one must take care in passing quoted strings which themselves contain apostrophes,
since a pair of apostrophes is considered a single apostrophe at each evaluation level
in the sequence of macro invocations. Pay particular attention to the use of the
escape character to pass an unevaluated dummy parameter from MAC2 to the MACl
invocation.

66

IRPMl MACRO X · . INDEFINITE REPEAT MACRO , ,
IRP Y,X

Y: NOP
ENDM
ENDM

· ,
IRPMl «ONE,TWO,THREE»

£1100£11+£110 ONE: NOP
0001+£110 TWO: NOP
£110£112+£11£11 THREE: NOP

· ,
IRPM2 MACRO X

IRP Y,<X>
Y: NOP

ENDM
ENDM

· ,
IRPM2 <FOUR,FIVE,SIX>

£11£11£113+£110 FOUR: NOP
00£114+00 FIVE: NOP
0£IJ05+00 SIX: NOP

· ,
IRPM3 MACRO Xl,X2,X3

IRP Y,<Xl,X2,X3>
Y: NOP

ENDM
ENDM

· ,
IRPM3 SEVEN,EIGHT,NINE

£11006+00 SEVEN: NOP
£11007+00 EIGHT: NOP
00£118+0£11 NINE: NOP

;
IRPM4 MACRO X

IRPMl X
ENDM

· ,
IRPM4 «<TEN,ELEVEN,TWELVE»>

£11£1109+0£11 TEN: NOP
0£IJ£lJA+00 ELEVEN: NOP
£IJ£IJ£IJB+0£IJ TWELVE :. NOP
0£IJ£lJC END

Figure 24. Parameter Evaluation using Bracketed Notation.

67

C)

00

0000+3C4C454654

001F+737472696E

0030+412{IJ51554F

0046+7269676874

0057+6973207468

006B+4845524520

e00A+=
007E+3C
007F+41504152
0083+7768617427

: SAMPLE BRACKETED PARAMETERS, WITH ESCAPE CHARACTER

· ,
MACI MACRO

· ,

· ,

· ,

· ,

· ,

· ,

;

DB
IF
EXITM
ENDIF
DB
ENDM

MACI
DB

MACI
. DB

MACl
DB

MACl
DB

MACI
DB

MACI
DB

MAC2 MACRO
LOCAL

X EQU

· ,

DB
MAC!
ENDM

MAC2
??0001 EQU

DB
DB
DB

X,Y
.. &X' ; (ONE)
NUL Y

Y ; (TWO)

«LEFT SIDE> MIDDLE <RIGHT SIDE»
"<LEFT SIDE> MIDDLE <RIGHT SIDE>'

<>,<"string of pearls" ,34H>
"strinq of pearls' ,34H : (TWO)

<A QUOTE IS A , RIGHT?>
'A QUOTE IS A "', RIGHT?'

<>,<'riqht, but also "'''''>
"right, but also .. " ; (TWO)

: (ONE)

,<'is this' ,"' confusinq .. " .. ' ,63>
'is this" ,"'confusinq'''',63 : (TWO)

<HERE IS A 1> AND A ii>
'HERE IS A > AND A i' ; (ONE)

APAR,BPAR
X
10
APAR
TAPAR,BPAR

(X+5)*4,'what''''''''''s
10
(??{lJ001+5)*4
'APAR' ; (ONE)
'what"'s going on?"

going on?'

; (TWO)

; (ONE)

Figure 25. Examples of Macro Parameter Evaluation.

It is worthwhile examining the various parameters and their evaluations in Figure
25 to ensure that the rules for evaluation given in this section are consistent.

s.s. The MACLIB Statement.

The macro assembler allows the programmer to create and reference "macro
library" files which are external to the mainline program. The form of the macro
library reference is

MACLIB libname

where "libname" is an identifier which references a particular file "libname.LIB" which
is assumed to exist on the diskette. Macro libraries are in source program form, and
can thus be easily created and modified' by the programmer using the CP/M system
editor (ED).

In order to speed-up the assembly process, macro libraries are read only on the
first assembly pass. This places some restrictions on the use of the MACLIB statement,
as listed below:

(a) the statements included in the macro library cannot generate machine code.
For example, comments, EQU's, SET's, and MACRO definitions are allowed, while DB
statements outside macro definitions are not allowed.

(b) Macro libraries are not normally listed with the source program (although
there is an overriding parameter which can be supplied - see Assembly Parameters).

(c) All MACLIB statements must appear before the mainline program macro
definitions. Generally, the MACLIB statements are placed at the beginning of the
program, followed by the mainline declarations and machine code.

The principal advantage of the MACLIB feature is that the programmer can
predefine macros which enhance the facilities of the assembly language itself. For
example, the additional operations codes of the Zilog Z-SO microprocessor can be
defined in a macro library which is reference in a single statement

MACLIB ZSO

which causes the assembler to read the file "ZSO.LIB" from the diskette, containing
the necessary macros for Z-SO code generation. These macros can then be referenced
within the program intermixed with the usual SOSO mnemonics.

Normally, the "libname.LIB" file is assumed to exist on the currently logged
disk drive. The programmer can override this default condition using a special parameter
(L) when the macro assembler is started which redirects the ".LIB" references to a
different diskette (see Assembly Parameters).

Figures 10 and 11 show the use of the macro library facility, as introduced in
the initial macro discussion. The following sections contain additional examples of the
use of MACLIB in practical applications.

69

9. APPLICATIONS OF MACROS

The MAC assembler provides a powerful tool for microcomputer systems develop
ment through its macro facilities. In order to demonstrate this tool, a number of
applications of macros in the solution of practical problems are described in some
detail in the following sections. Four particular applications areas are considered:
use of macros in implementation of speCial-purpose languages, emulation of non-standard
machine architectures, implementation of additional control structures, and operating
systems interface macros.

9.1. Spec ial Purpose Languages.

A wide variety of microcomputer designs can be broadly classed as "controller"
applications. Specifically,~ the microcomputer is used as the controlling element in
sequencing and decision-making as real-time events are sampled and directed.

Typical applications of this sort include assembly line sensing and control, metal
machine control, data communications and terminal control functions, prodUction in
strumentation and testing, and traffic control systems.

In many cases, application programmers set up the sequence of operations that
the microprocessor is to carry-out in performing its particular task. In order to avoid
unnecesary details, the application programmer is not expected to know how to program
and debug microcomputer assembly language programs.

In this situation, it is useful to define a "language" through macros which suits
the particular application. The application programmer then uses these predefined
macros as the primitive language elements. If properly defined, the application language
is easily programmed, allowing considerable machine independence. That is, an applica
tion program written for a particular microprocessor can be used with another processor
by changing the definitions of the individual macros which implement the primitive
operations. Further, the macro bodies can incorporate debugging facilities for applica
tion development.

In order to illustrate the notion of language definition, consider the following
situation. Hornblower Highway Systems, Inc., produces "turnkey" traffic control systems
for cities throughout the country. Their hardware subsystems consist of various traffic
lights and sensors which are customized for the traffic layout in a particular city.
When Hornblower negotiates a contract, their engineers survey the intersections of the
city, and produee plans which show a configuration of their standard hardware for each
intersection, along with the "algorithms" required for traffic flow at that point.

The standard hardware items which Hornblower manufactures consist of the
following. Central and corner traffic lights which display green, yellow, and red (or
off completely), pushbutton' switches for pedestrian cross requests, road "treadles" for
sensing the presence of an automobile at an intersection, and a central controller box.

The central controller box contains an 8080 microcomputer connected through
external logic to relays which control the lights, and "latches" which holds the sensor
input information. The controller box also contains a time of day clock, which changes
on an hourly basis from 0 through 23. The 8080 processor in the controller box can
be configured for any particular intersection with up to 1024 bytes of programmable

70

read only memory (PROM) in 256 byte increments. Although random access memory
can be included in the controller box, Hornblower uses only ROM when possible.

Thus, the Hornblower engineers examine the hardware requirements for each
intersection in the city, and produce a set of hardware configuration plans which
intermix the various standard components. Programs are then written and debugged
which control each intersection, based upon predicted traffic patterns.

The intersection of Easy St. and Maria Ave., for example, controls minimal
traffic and thus consists of a controller box with a single central light. The "algorithm"
for this intersection is to simply alternate red and green lights between Easy and
Maria, with a "bias" toward Easy St., since traffic along Easy has measured higher in
the past surveys. Thus, the green light along Easy lasts for 20 seconds, while the
green along Maria last only 15 seconds. Given this situation, the application programmer
writes the following program:

,

HORNBLOWER HIGHWAYS SYSTEMS, INC.
INTERSECTIO N:

EASY ST .(N-S) / MARIA AVE. (E-W)

MACLIB

CYCLE: SETLITE
SETLITE
TIMER

INTERSECT ;LOAD MACROS

NS,GREEN
EW,RED
20 ; WAIT 20 SECS

CHANGE LIGHTS
SETLITE NS,YELLOW
TIMER 3 ;WAIT 3 SECS
SETLITE NS,RED
SETLITE EW,GREEN
TIMER 15 ;WAIT 15 SECS

CHANGE BACK
SETLITE EW,YELLOW
TIMER 3 ;WAIT 3 SECS
RETRY CYCLE

The macro library "INTERSECT.LIB" contains the macro definitions which implement
the "primitive" operations SETLITE and TIMER which set the central traffic light, and
time-out for the specified interval, respectively. Further, the RETRY macro causes
the traffic light to recycle on each light change. Note that the sequence of operations
is easy to write, and is completely machine independent.

Figure 26 gives an example of a macro library for "intersect" which assumes
the following hardware with an 8080 processor: the central traffic light is controlled
by the 8080 output port 0 (given by "light ff

), while the time of day clock is read from
port 3 ("clock"). Further, the north-south ("nsbits") of the central light are given by
the high order 4 bits of output port 0, while the east-west direction ("ewbits") is
specified in the low order 4 bits of output port O. When either of these fields is set
to 0, 1, 2, or 3, the light in that direction is turned off, or set to red, yellow, or
green, respectively. Thus, the SETLITE macro in Figure 26 accepts both a direction
(NS or EW), along with a color (OFF, RED, YELLOW, or GREEN), and sets the specified
direction to the appropriate color.

71

;
light
clock

;
nsbits
ewbits
;

macro library for basic intersection

input/output ports for light and clock
equ OOh ;traffic light control
equ 03h ;24 hour clock (0,1, .•. ,23)

constants for traffic light control
equ 4 ;north souuth bits
equ 0 ;east west bits

off equ o
1
2
3

;turn light off
red equ ;value for red light

;value for yellow light
;green light

yellow equ
green equ
;
setl.ite macro dir,color
; ; set I i g h t " d i sr " (n s , ew) to" color" (0 f f , red, ye I I ow , g r e en)

mvi a,color shl dir&bits ;;color readied
out light ;;sent in proper bit position
endm

;
timer macro seconds
;; construct inline time-out loop

local tl,t2,t3 ;;loop entries
mvi d,4*seconds ;;basic loop control

tl: mvi b,250 ;;250msec *4 = 1 sec
t2: mvi c,182 ;;182*5.5usec = Imsec
t3: dcr c ;;1 cy = .5 usec

jnz t3 ;;+10 cy = 5.5 usec
dcr b ;;count 250,249 •..
jnz t2 ;;loop on b register
dcr d ;;basic loop control
jnz tl ;;loop on d register

;; arrive here with approximately "seconds" secs timeout
endm

;
clock?
; ;

macro
jump to
local
in
i f
cpi
jnc
endif
cpi
jnc

low,high,iftrue
"if true" if clock is between low and high
iffalse ;;alternate to true case
clock ;;read real-time clock
not nul high ;;check high clock
high ;;equal or greater?
iffalse ;;skip to end if so

low ;;less than low value?
if true ;;skip to label if not

iffalse:
endm

;
retry
; ;

macro golabel
continue execution at "golabel"
jmp golabel
endm

Figure 26. Macro Library for Basic Intersection.

72

The TIMER macro in Figure 26 uses the internal cycle time of the 8080 processor
to construct an inline timing loop, based on the value of SECONDS. Note that this
loop is not generated as a subroutine, since Hornblower prefers not to include RAM
in the controller box (subroutines require return addresses in RAM).

In addition to the basic intersection macro library, Hornblower has also defined
macro libraries for all of the optional hardware components. Figure 27 a, for example,
is included when the intersection contains treadles in the street to detect automobiles,
while Figure 27b shows the macro library for pedestrian pushbuttons. In the case of
automotive treadles, the sensors are attached to input port 1 ("trinp") of the processor.
The treadles, however, require a "reset" operation which clears the latched value
through output port 1 ("trout") of the controlling 8080 processor. In any particular
intersection, the treadles are numbered clockwise from true north, labelled 0, 1, through
a maximum of 7 treadles. Each sensor and reset position of the treadle ports correspond
to one bit position, numbered from the least to most significant bit. Thus the treadle
#0 sensor is read from bit 0 of port 1, and reset by setting bit 0 of output port 1.
Similarly, treadle #1 uses bit position 1 of input and output port 1. The TREAD?
macro is invoked to sense the presence of a latched value for treadle "tr" and, if on,
the sensor is reset with control transferring to the label given by "if true. "

Figure 27b shows the macro library which processes pedestrian pushbuttons.
Hornblower's hardware is set up to sense the latched pedestrian switches on input port
o ("cwinp") as a sequence 1 's and D's in the least significant positions, corresponding
to the switches at the intersection. Thus, if there are four pedestrian switches, bit
positions 0,1,2, and 3 correspond to these switches. A "1" bit in any of these positions
indicates that the pushbutton has been depressed. Unlike the automotive treadles, the
crosswalk switch latches are all cleared whenever input port 0 is read. In addition
to these macro libraries, Hornblower has defined several additional libraries which
support optional hardware manufactured by their company.

The intersection of Bumpenram Boulevard and Lullabye Lane presents a somewhat
more complicated situation. Bumpenram Blvd. carries heavy traffic in an E-W direction
to and from the center of town. Lullabye Ln., however, feeds a residential portion
of the city, running perpendicular to Bumpenram in a N-S direction. The contracting
city has specified that the traffic control should he biased toward Bumpenram Blvd.
as follows: the traffic light must remain green along Bumpenram until the treadles
along Lullabye detect the presence of automobiles or until the pedestrian switches are
pushed. At that time, the light must change to allow the traffic to move N-S through
Lullabye Ln., allowing all traffic to clear before returning to the major E-W flow
along Bumpenram Blvd. Late night traffic along Bumpenram is not very heavy, so the
city has also specified that the E-W light flashes yellow and and N-S direction flashes
red between the hours of 2 and 5 AM.

The application program created by Hornblower for the Bumpenram Blvd. and
Lullabye Ln. intersection is shown in Figure 28. Each major cycle of the traffic light
enters at "CYCLE" where the time of day is tested. If between 2 and 5, then control
transfers to "NIGHT" where the yellow/red lights are flashed in the appropriate
directions. If not between 2 and 5 AM, the switches and treadles are sampled until
N-S traffic along Lullabye Ln. is sensed. If cross traffic is detected, the lights switch
until all the traffic is through. Sampling also stops if the time of day ever reaches
2 AJ.\t1.

73

;
trinp
trout
;

macro library for street treadles

equ
equ

01h
01h

;treadle input port
;treadle output port

tread? macro tr,iftrue
;; "tread?" is invoked to check if
;; treadle given by tr has been sensed.
;; if so, the latch is cleared and control
;; transfers to the label "if true"

; ;
local iffalse ;;in case not set

in
ani
jz
mvi
out
jmp

trinp ;;read treadle switches
1 shl tr ;;mask proper bit
iffalse ;;skip reset if 0
a,l shl tr ;;to reset the bit
trout ;;clear it
if true ;;go to true label

iffalse:
endm

;
cwinp
;
push?
; ;
; ;
; ;
; ;

; ;

Figure 27a. Macro Library for "treadle" Control.

macro library for pedestrian pushbuttons

equ OOh ;input port for crosswalk

macro if true
"push?" jumps to label "if true" when anyone
of the crosswalk switches is depressed. The
value has been latched, and reading the port
clears the latched values
in cwinp ;;read the crosswalk switches
ani (1 shl cwcnt) - 1 ;;build mask
jnz if true ;;any switches set?
continue on false condition
endm

Figure 27b. Macro Library for Corner Pushbuttons.

74

0004
0000
0001

0000

OOOC
0010

0014
001B
0029
0037
003E

0041
0045
0057
005B
005F

0071
007F

008D

0090
00A2

00A5
00A9
OOAD
OOBF
OOC3
OOC7
OOD9

=
=
=

INTERSECTION: BUMPENRAM BLVD / LULLABYE LN.

(WjNT EQU 4 ;SET TO 4 CROSSWALK SWITCHES
LULLO EQU 0 ;NAME FOR TREADLE ZERO
LULL 1 EQU 1 ;NAME FOR TREADLE ONE

MACLIB INTER ;BASIC INTERSECTION
MACLIB TREADLES ; INCLUDE TREADLES
MACLIB BUTTONS ; INCLUDE PUSHBUTTONS

CYCLE: ;ENTER HERE ON EACH MAJOR CYCLE OF THE LIGHT

SAMPLE:

SWITa.I:

CLOCK? 2,5,NIGHT ;SPECIAL FLASHING?
; NOT BETWEEN 2 AND 5 AM
SETLITE NS,RED ;RED LIGHT ON LULLABYE
SETLITE EW,GREEN ;GREEN ON BUMPENRAM

; SAMPLE
PUSH?
TREAD?
TREAD?
CLOCK?
RETRY

THE BUTTONS AND TREADLES
SWITCH ;ANYONE THERE?
LULLO,SWITCH ;TREADLE O?
LULL1,SWITCH ;TREADLE I?
2, ,NIGHT ;PAST 2 AM?
SAMPLE ;TRY AGAIN IF

CHANGE LIGHTS

NOT

; S~ONE IS WAITING,
SETLITE EW,YELLOW
TIMER 3
SETLITE EW,RED
SETLITE NS,GREEN
TIMER 23

; SLOW 'EM OOWN
;WAIT 3 SECONDS
;STOP 'EM
;LET 'EM GO
;FOR AWHILE

OONE?: ; IS ALL THE TRAFFIC THROUGH ON LULLABYE?

NOTOONE:

NIGHT:

TREAD? LULLO,NOTDONE ;TREADLE O?
TREAD? LULL1,NOTDONE ;TREADLE I?
;NEITHER TREADLE IS SET, CYCLE
RETRY CYCLE ; FOR ANOTHER LOOP

TIMER 5
RETRY DONE?

;THIS IS NIGHTTIME,
SETLITE EW,OFF
SETLITE NS,OFF
TIMER 1
SETLITE EW,YELLOW
SETLITE NS,RED
TIMER 1
RETRY CYCLE

;WAIT 5 SECONDS
;TRY AGAIN

FLASH LIGHTS
;TURN OFF
;TURN OFF
;WAIT WITH OFF
;TURN TO· YELLOW
;TURN TO RED
;LEAVE ON FOR 1 SEC
; GO AROUND AGA I N

Figure 28a. Traffic Control Algorithm using "-M" Option.

75

0004 =
0000 =
0001 =

0000+DB03
0002+FE05
0004+D20COO
0007+FE02
0009+D2A500

000C+3E10
000E+D300

0010+3E03
0012+D300

0014+DBOO
0016+E60F
0018+C24100

001B+DB01
001D+E601
001F+CA2900
0022+3E01
0024+D301
0026+C34100

0029+DB01
002B+E602
002D+CA3700
0030+3E02
0032+D301
0034+C34100

0037+DB03
0039+FE02
003B+D2A500

003E+C314(}0

Figure

INTERSECTION: BUMPENRAM BLVD / LULLABYE LN.

~T EQU 4 ;SET TO 4 CROSSWALK SWITCHES
LULLO EQU 0 ;NAME FOR TREADLE ZERO
LULL 1 EQU 1 ;NAME FOR TREADLE ONE

MACLIB INTER ;BASIC INTERSECTION
MACLIB TREADLES ; INCLUDE TREADLES
MACLIB BUTTONS ; INCLUDE PUSHBUTTONS

CYCLE: ; ENTER HERE ON EACH MAJOR CYCLE OF THE LIGHT
CLOCK? 2,5,NIGHT ;SPECIAL FLASHING?

; NOT BETWEEN 2 AND 5 AM
SETLITE NS,RED ;RED LIGHT ON LULLABYE

SETLITE EW,GREEN ;GREEN ON BUMPENRAM

SAMPLE: ; SAMPLE THE BUTTONS AND TREADLES
PUSH? SWITCH ;ANYONE THERE?

TREAD? LULLO, SWITCH ;TREADLE O?

TREAD? LULL1,SWITCH ;TREADLE 1?

CLOCK? 2, ,NIGHT ;PAST 2 AM?

RETRY SAMPLE ;TRY AGAIN IF NOT

28b. Intersection Algorithm with "*M" in Effect.

76

0041+3E02
0043+D300

0045+160C
0047+06FA
0049+0EB6
004B+OD
004C+C24BOO
004F+05
0050+C24900
0053+15
0054+C24700

0057+3E01
0059+D300

005B+3E30
005D+D300

005F+165C
0061+06FA
0063+0EB6
0065+0D
0066+C26500
0069+05
006A+C26300
006D+15
006E+C26100

0071+DB01
0073+E601
0075+CA7FOO
0078+3E01
007A+D301
007C+C39000

007F+DB01
0081+E602
0083+CA8DOO
0086+3E02
0088+D301
008A+C39000

008D+C30000

SWITCH:
; S<l\1EONE IS WA I T I NG , CHANGE LIGHTS
SETLITE EW, YELLOW ;SLOW 'EM DOWN
MYI A, YELLOW SHL EWBITS
OUT LIGHT
TIMER 3 ;WAIT 3 SEOONDS
MVI D,4*3

??0005: MWI B,250
??0006: M¥I C,182
??0007: DCR C

JNZ ??0007
OCR B
JNZ ??0006
OCR D
JNZ ??0005
SETLITE EW,RED ;STOP 'EM
MYI A,RED SHL EWBITS
OUT LIGHT
SETLITE NS,GREEN ;LET 'EM GO
MYI A,GREEN SHL NSBITS
OUT LIGHT
T IlVlER 23 ; FOR AWHI LE
MYI D,4*23

??0008: MYI B,250
??0009: MYI C,182
??0010: DCR C

JNZ ??0010
OCR B
JNZ ??0009
OCR D
JNZ ??0008

DONE?: ;IS ALL THE TRAFFIC THROUGH ON LULLABYE?
TREAD? LULLO , NOT DONE ;TREADLE O?
IN TRINP
ANI 1 SHL LULLO
JZ ??0011
MYI A,1 SHL LULLO
OUT TROUT
JMP NOTOONE
TREAD? LULLl,NOTOONE ;TREADLE I?
IN TRINP
ANI 1 SHL LULLI
JZ ??0012
MYI A,1 SHL LULLI
OUT TROUT
JMP NOTOONE
;NEITHER TREADLE IS SET, CYCLE
RETRY CYCLE ; FOR ANOTHER LOOP
JMP CYCLE

Figure 28c. Algorithm with Generated Instructions.

77

Figure 28a shows the assembly with no macro generated lines (controlled by the
n_Mn parameter - see Assembly Parameters). Although the machine code locations are
shown to the left, no 8080 machine code is listed. Figure 28b shows a segment of
this same program with machine code generation, but no 8080 mnemonics (controlled
by n*Mn), while Figure 28c shows another segment with normal macro generation. Note
that Figure 28a is the most readable to the application programmer, while Figures 28b
and 28c would be useful for macro debugging.

It should be noted that the resulting program requires no random access memory
for execution, since all temporary values are maintained in the 8080 registers. Further,
no subroutine calls take place and thus the 8080 stack is not used. Finally, the program
is less than 256 bytes, so it can be placed in a' single programmable read only memory
chip for a minimum memory/processor configuration.

Macro based languages of this sort can easily incorporate debugging facilities.
In the case of Hornblower, Inc., the principal algorithms are constructed and tested
in the CP/M environment by including debugging traces within each macro. In each
case, a debug "flag" is tested and, if true, machine code is generated to trace the
operation at the console, rather than actually executing the input/output calls. Figure
29 shows the modification required to the "INTER. LIB" file to include the debugging
code. Although only the SETLITE macro is shown, similar coding is easily included
for the remaining macros. Figure 29 includes the debug flag at the beginning of the
library (initially set FALSE), along with the appropriate equates for CP/M system calls.
If the debug flag is set to true by the application programmer, special trace calls are
included. Note" for example, that the SETLITE macro constructs a message of the
form

DIR changing to COLOR

where "DIR" and "COLOR" are the parameters sent to the macro. If debug remains
false in the application program, this trace code is not assembled.

Figure 30a shows an application program for a particular intersection where the
debug flag is set to TRUE after the macro library is included. As a result, each
macro expansion assembles a call to the CP/M operating system to trace the light
direction and color change, skipping the machine code which will eventually be assembled
to drive the actual Hornblower hardware.

The application programmer then uses CP/M to trace the operation of the
algorithm, which results in the print-out shown in Figure 30b. Each trace line
corresponds to an invocation of SETLITE with a specific direction and color, with the
appropriate wait time between print-outs.

Upon completion of the initial debugging under CP /1\1, the SET statement in the
application program is removed (the ORG may be removed as well), and the program
is re-assembled. This time, the CP/M traces are not included since the debug flag
remains FALSE. As a result, the actual Hornblower hardware interface is assembled
instead. The newly assembled program is then placed into PROM in the controller
box for that intersection and tested in its target enviroment.

78

· , true
false
debug
bdos
rchar
wbuff
cr
I f

;
light
clock

;
nsbits
ewbits

;
off
.. ed
yellow
green
;

macro library for basic intersection

global
equ
equ
set
equ
equ
equ
equ
equ

definitions for debug processing
Offffh ;value of true
not true;value of false
false ;initially false
5 ;entry to cp/m bdos
1 ;read character function
9 ;write buffer function
Odh ;carriage return
Oah ;line feed

input/output ports for light and clock
equ OOh ;traffic light control
equ 03h ;24 hour clock (0,1, .•• ,23)

bit positions for traffic light control
equ 4 ;north souuth bits
equ 0 ;east west bits

constant values
equ 0
equ 1
equ 2
equ 3

for the light control
;turn light off
;value for red light
;value for yellow light
;green light

setlite macro dir,color
;; set light given by "dir" to color given by "color"

if debug ;;print info at console
local setmsg,pastmsg
mvi c,wbuff ;;write buffer function
I xi d, s e tms g
call bdos ;;write the trace info
jmp pastmsg

setmsg: db cr,lf

pas tmsg:
db '&DIR changing to &COLOR $,

exi tm
endif
mvi
out
endm

a,color shl dir&bits ;;readied
light ;;sent in proper bit position

(remaining macros are identical to the previous figure,
but each contains trace information similar to "setlite")

Figure 29. Library Se~ent with Debug Facility.

79

00
o

0100

FFFF #

0100
0120
0142
0154
0177
0189
01A9
01CB
0100
0200
0212

DEBUG

CYCLE:

ORG
MACLIB
SET

SETLITE
SETLITE
TIMER
SETLITE
TIMER
SETLITE
SETLITE
TIMER
SETLITE
TIMER
RETRY

100H
INTER
TRUE

; READY FOR THE DEBUG RUN
;BASIC MACRO LIBRARY
;READY DEBUG TOGGLE

NS,RED
EW,GREEN
10
EW,YELLOW
2
EW,RED
NS,GREEN
10
NS,YELLOW
2
CYCLE

Figure 30a. Srunple Intersection Progrrun with Debug.

NS changing to RED
EW changing to GREEN
EW changing to YELLOW
EW changing to RED
NS changing to GREEN
NS changing to YELLOW
NS changing to RED
EW changing to GREEN
EW changing to YELLOW
EW changing to RED

Figure 30b. Debug Trace Printout.

This approach to macro based language facilities provides a simple tool for rapid
development and debugging of programs where high level languages are not available,
but a measure of machine independence is desired. The macros are easy to develop,
and the application programs are simple to write and debug.

9.2. Machine EmUlation.

A second application of macro processing is found in the "emulation" of a
machine operation code set which is different from the 8080 microprocessor. In
particular, a machine architecture is selected, based upon an existing or fictitious
operation code set, and a macro is written for each "opcode," taking the general form:

op MACRO d-l,d-2, ... , d-n
opcode emUlation
ENDM

where "op" is a mnemonic instruction in the emulated machine and the dummy
param eters d-I through d-n represent the optional operands required by "op." The
"macro body" includes 8080 instructions which carry-out the operation on the 8080
microprocessor. That is, the instructions within the macro body perform the same
function as the "op" with its arguments on the emulated machine.

Upon completion of the opcode macro definitions, a program can be written
using these opcodes, which expand to the equivalent 8080 instructions, but perform the
emulated machine operations.

In order to be specific, consider the situation encountered by Nachtflieger
Maschinenwerke, an internationally famous manufacturer and distributor of automated
machining equipment. Though incorporating microprocessors in controlling their equip
ment, Nachtflieger expects to build a custom LSI processor for their future products.
The processor, called the KDF-IO will be used primarly as an analog sensing and control
element in a larger electronic environment. As a result, the KDF-IO word size must
accommodate digital values corresponding to analog signals of up to twelve bits. In
order to allow computations on these twelve bit values, Nachtflieger engineers are
going to allow a full I6-bit word in the KDF-IO, along with a number of primitive
operations on these values. Externally, the KDF-IO will provide four analog to digital
(A-D) input "ports" which can be read by KDF-IO programs, along with four digital to
analog output ports (D-A) which can be written by the program. The KDF-IO will
automatically perform the A-D and D-A conversion at these ports.

Begin forward thinkers, the engineers at Nachtflieger have designed the KDF-IO
as a "stack machine," which is similar in concept to the Hewlett-Packard HP-65 hand
held programmable calculator, where data can be loaded to the top of a "stack" of
data elements, automatically "pushing" eXisting elements deeper onto the stack. Similar
to the Reverse Polish Notation (RPN) of an HP-65, arithmetic on the KDF-IO will be
performed on the topmost stacked elements, automatically absorbing the stacked
operands as the arithmetic is performed. Somewhat simpler than the HP-65, the
designers settle upon the following three-character operation codes for the KDF-IO:

SIZ n reserves n 16-bit elements as the maximum size of
the KDF-IO operand stack. This operation code
must be provided at the beginning of the program.

81

RDM

WRM 0

DUP

SUM

LSR n

JMP a

Reads the analog signal from input port i (0,1,2, or 3)
to the top of the stack, automatically pushing any

Writes the digital value from the top of the stack
to the D-A output port given by 0, (0,1,2, or 3).
The value at the stack top is removed.

The top of the KDF-10 stack is duplicated.

The top two elements of the KDF-10 stack are added,
both operands are removed, and the resulting sum is
placed on the top of the stack.

Performs a logical shift of the topmost stacked element
to the right by n bits (1,2, •.• ,15), replacing the
original operand by the shifted result. Note that
LSR n performs a division of the topmost stacked
value by the divisor 2n.

Branch directly to the program address given by the
label a.

Since the KDF-I0 does not exist (except in the fertile minds of Nachtflieger
engineers), the software designers have decided to use the macro facilites of MAC to
emulate the KDF-I0 using the 8080 microcomputer.

Figure 31 shows an example of a program for the KDF-I0 which was processed
by MAC using the macro library defined by the Nachtflieger software group. In this
situation, the KDF-I0 is connected to four temperature sensors which are attached at
strategic places on the machining equipment. The program continuously reads the four
input values from the A-D ports and computes their average value by summing and
dividing by four. This average value is then sent to D-A output port 0 where it is
used to set environmental controls.

Referring to Figure .31, the program begins by reserving a stack of 20 elements,
which is much larger than required for this application (a maximum of four elements
are actually stacked). The program then cycles following "LOOP," where the values
are read and processed. The four operations RDM 0, RDM 1, RDM 2, and RDM 3
read all four temperature sensors, placing their data values in the stack. The three
SUM operations which follow the read operations perform pairwise addition of the
temperature values, producing a single sum at the top of the stack. Since the average
value is desired, the LSR 2 operator is applied to the stack top to perform the division
by four. Finally, the resulting average is sent to the D-A port using the WRM 0
operation code. Control then transfers back to LOOP, where the entire operation is
performed again.

Since Nachtflieger designers are emulating KDF-10's using 8080's, they have
created the macro library file, called "STACK.LID" as shown in Figure 32. A macro
is shown in this figure for each of the KDF-I0 opcodes, starting with the SIZ operator.
In this case, the program origin is set (since this must be the first opcode in the
program), and the stack area is reserved. Note that double words of storage are

82

00
w

0000
012E
0132
0136
013A

013E
0140
0142

0144
0152
0156 C32E01

LOOP;

AVERAGE THE VALUES WHIGI ARE READ FROM ANALOG
INPUT PORTS, WRITE TIlE RESULTING VALUE TO ALL
THE D~A OUTPUT PORTS.

l\tlACLIB
SIZ
RDM
RDM
RDM
RDM

STACK
20
o
1
2
3

;READ THE STACK ~1ACHINE OPOODES
;CREATE 20 LEVEL OORKING STACK
;READ A-D PORT 0
;READ A-D PORT 1
;READ A-D PORT 2
;READ A-D PORT 3

ALL FOUR VALUES ARE STACKED, ADD THEM UP
SUM ;AD3+AD2
SUM; (AD3 + AD2) + AD1
SUM ;«AD3+AD2)+AD1)+ADO

SUM IS AT TOP OF THE STACK, DIVIDE BY 4
LSR 2 ; SHIFT RIGHT ThO = DIV BY 4
~WM 0 ;WRITE RESULT TO D-A PORT 0
JMP LOOP ;00 GET ANOTHER SET OF VALUES

Figure 31. A-D Averaging Program using "Stack Machine."

siz macro size
;; set "org" and create stack

local stack ;;label on the stack
org lOOh ;;at base of TPA
lxi sp,stack
jmp stack ;;past stack
ds size*2 ;;double precision

stack: endm
;
dup macro
;; duplicate top of stack

push h
endm

;
sum macro
;; add the top two stack elements

;
lsr
; ;

pop d ;;top-l to de
dad d ;;back to hI
endm

macro I en
logical shift right by len
rept len ; ;generate inline
xra a ; ;clear carry
mov a,h
rar ;; rotate wi th high
mov h,a
mov a, I
rar

0

mov I , a ; ; back wi th high bit

;
adcO
adcl
adc2
adc3
;
dacO
dacl
dac2
dac3
;

endm
endm

equ
equ
equ
equ

equ
equ
equ
equ

lO80h
lO82h
lO84h
lO86h

lO90h
lO92h
lO94h
lO96h

ram macro ?c

;a-d converter
;a-d converter
;a-d converter
;a-d converter

;d-a converter
;d-a converter
;d-a converter
;d-a converter

;; read a-d converter number "?c"

0
1
2
3

0
1
2
3

push h ;;clearthe stack
;; read from memory mapped input address

;
wrm
; ;

I hI d adc&?c
endm

macro ?c
write d-a converter number U?c"
shld dac&?c ;;value written
pop h ;;restore stack
endm

Figure 32. "Stack Machine" Opcode Macros.

84

reserved since a 16-bit word size is assumed. The DUP, SUM, and LSR operators
follow the SIZ macro. In each case, the KDF-10's stack top is assumed to be in the
8080's HL register pair. Further, each operation which pushes the KDF-10 stack causes
the element· in the 8080 HL pair to be pushed to the 8080 memory area reserved by
the SIZ opcode.

The DUP opcode simply pushes the HL register pair to memory, since the HL
pair is not altered in the 8080 during this operation. In the case of the SUM operator,
it is assumed that the KDF-10 programmer has somehow loaded two values to the
KDF-10 stack. Thus, it must be the case that the HL registers contain the most
recently loaded value, while the 8080 memory stack contains the next-to-most recently
stacked value. The POP D operation loads the second operand to the DE pair in the
8080 CPU, then the topmost value and next to top value are added using the DAD D
operation. The resulting operand goes into the HL register pair, which is necessary
in the KDF-10 emulation, since the top of the KDF-10 stack is located in the 8080's
HL register pair.

The LSR opcode is somewhat more complicated. Since the 8080 does not support
a double precision (I6-bit) right shift of the HL register pair, the values mUst go
through the accumulator. Thus, the LSR macro contains a REPT loop which generates
inline machine code for each right shift. The inIine machine code performs the right
shift by first clearing the carry (XRA A), followed by a high order right shift by one
bit (MOV A,H followed by RAR), then by a low order bit shift (MOV A,L followed by
RAR). Note that an intermediate bit may move from the high order byte to the low
order byte using the carry between high and low order byte shifts.

Referring to Figure 32, the RDM and WRM operation codes are defined by
"memory-mapped" input/output operations. That is, memory locations 1080H through
1087H are intercepted external to the 8080 microprocessor and treated as external
read operations. Thus, a load from location 1080H/1081H to HL is treated as a read
from A-D device 0, rather than from random access memory. This operation is simple
to perform in the KDF-10 emulation, since all program addresses are assumed to be
below 1000H, and thus any 8080 address bus values beyond 1000H must be memory
mapped I/O. As a result, ADCO through ADC3 correspond to the locations where A-D
values 0 through 3 are obtained. Similarly, the D-A output values which are written
to locations 1090H through 1097H are intercepted as memory mapped output values
which are sent to the D-A converters rather than random access memory. The RDM
instruction is emulated by simply performing an LHLD from the appropriate memory
mapped input address (constructed through concatenation of the dummy parameter).
The HL value is first pushed, since the KDF-10 RDM opcode performs this task
automatically, then the new value is loaded into the HL register pair. The WRM
opcode definition is similar, except the value to write is assumed to reside at the top
of the KDF-10 stack (and thus appears in the 8080 HL register pair). The value is
written to the memory mapped output location, and the value is removed from the
HL pair by restoring HL from the 8080 stack.

In order to see the actual code generated by each of these macros, Figure 33
shows the same averaging program as given in Figure 31, except that the generated
8080 instructions are interspersed throughout the listing file (Figure 33 is the usual
output from MAC, while Figure 31 was generated using the parameter ff-M" which
suppresses generated mnemonics). It is worthwhile cross-referencing Figures 31, 32,
and 33 to ensure that the macro expansion processes are clearly understood.

85

0100+
0100+312E01
0103+C32E01
0106+

012E+E5
012F+2A8010

0132+E5
0133+2A8210

0136+E5
0137+2A8410

013A+E5
013B+2A8610

013E+D1
013F+19

0140+D1
0141+19

0142+D1
0143+19

0144+AF
0145+7C
0146+1F
0147+67
0148+7D
0149+1F
014A+6F
014B+AF
014C+7C
014D+1F
014E+67
014F+7D
0150+1F
0151+6F

0152+229010
0155+E1
0156 C32E01

LOOP:

AVERAGE THE VALUES WHICH ARE READ FROM ANALOG
INPUT PORTS, WRITE THE RESULTING VALUE TO ALL
THE D-A OUTPUT PORTS.

MACLIB STACK ;READ THE STACK MACHINE OPCODES
SIZ 20 ; CREATE 20 LEVEL WORKING STACK
ORG 100H
LXI SP,??0001
JMP ??0001
DS 20*2
RDM 0 ;READ A-D PORT 0
PUSH H
LHLD ADCO
RDM 1 ;READ A-D PORT 1
PUSH H
LHLD ADC1
RDM 2 ;READ A-D PORT 2
PUSH H
LHLD ADC2
RDM 3 ;READ A-D PORT 3
PUSH H
LHLD ADC3

ALL FOUR VALUES ARE STACKED, ADD THEM UP
SUM ;AD3+AD2
POP D
DAD D
SUM ; (AD3 +AD2) +AD1
POP D
DAD D
SUM ; «AD3+AD2)+AD1)+ADO
POP D
DAD D

SUM IS AT TOP OF THE STACK, DIVIDE BY 4
LSR 2 ;SHIFT RIGHT TWO = DIV BY 4
XRA A
NDV A,H
BAR
NDV H,A
NDV A,L
BAR
NDV L,A
XRA A
ND,Y A,H
BAR
l.\DV H,A
NDV A,L
RAR
NDV L,A
WRM 0 ;WRITE RESULT TO D-A PORT 0
SHLD DACO
POP H
JMP LOOP ; GO GET ANOTHER SET OF VALUES

Figure 33. Averaging Program with Expanded Macros.

86

A particular problem arose at Nachtflieger MW, however, which had to be
rectified: although programs could be effectively written for the KDF-IO computer
using the 8080 emulation, they could not be effectively debugged. The program of
Figure 33, for example, could be tested under the CP/M debugger (see the CP/M DDT
Users Guide), but required monitoring and tracing at the 8080 machine code level. It
became clear that higher level debugging tools were necessary.

As a result, Nachtflieger designers added several "pseudo opcodes" which allow
debugging traces. The opcodes can be interspersed in the program, and selectively
enabled and disabled depending upon the debugging needs. In production, all debugging
traces would, of course, be disabled resulting only in absolute port I/O. The additional
debugging opcodes are listed below.

PRN msg Print the message given by "msg" at the debugging
console whenever the print trace is enabled. The
message must be enclosed in broken brackets.

DMP Print the value of the top element in the KDF-IO
stack (in hexadecimaI).

TRT t

TRF t

TRT P

TRF P

Set machine code trace option to true. Each time
a KDF-10 machine operation is executed, the ope ode
is printed, followed by the (approximate) KDF-IO
machine code address, followed by the top two
elements of the KDF-10 stack, in the format:

OPC oploc top top'

where OPC is the opcode, oploc is the location, top
is the top element, and top' is the second to the
top element, all in hexadecimal notation.

Disable the machine code trace. Only the KDF-10
instructions which physically appear between the TRT
and TRF opcodes are shown in the trace.

Enable the print/read tr.ace. PRN ope odes which
follow produce output at the debugging console,
and are otherwise treated as comments. Further,
RDM and WRM opcodes prompt and display data
at the debugging console.

Disable the print/read trace. Only the PRN, RDM,
and WRM instructions which physically appear
between TRT and TRF interact with the console.

The convention is also taken that the traces are initially disabled at the beginning of
the program, and must be explicitly enabled with TRT opcodes.

Figure 34 shows the averging program of Figure 31 with interspersed debugging
statements. Note that the opcodes TRT t and TRT p are executed at the beginning

87

0000
0103
0103
0103
012E
01F0
022C
0267
026A
02A5
02A8
02E3
02E6

0310
00 0324
00

0327
033B
033E
0352
0378

037B
0389
03Bl
0384
03EE
03F1

LOOP:

AVERAGING PROGRAM WITH INTERSPERSED DEBUG CODE

DSTACK
20
T
P
<TRACE
o

1

2

3

:READ THE STACK MACHINE OPCODES
:CREATE 20 LEVEL WORKING STACK
;MACHINE CODE TRACE ON
.: PRINT TRACE ON

FOR ~VERAGING PROGRAM>
: READ A-D PORT 0
;WRITE TOP OF STACK
;READ A-D PORT 1
;WRITE TOP OF STACK
: READ A-D PORT 2
;WRITE TOP OF STACK
; R.EAD A- D PORT 3
:WRITE TOP OF STACK

M1\CLIB
SIZ
TRT
TRT
PRN
RDM
DMP
RDM
DMP
RDM
DMP
ROM
DMP
PRN <FOUR VALUES HAVE BEEN READ>

ALL FOUR VALUES
SUM
DMP
SUM
DMP
SUM
PRN <VALUES
DMP

ARE STACKED, ADD THEM UP
:AD3+AD2
;WRITE FIRST SUM
: (AD3+AD2)+AD1
iWRITE SECOND SUM
:«AD3+AD2)+AD1)+AD0
HAVE BE EN ADDE D >
:WRITE SUM OF VALUES

SUM IS AT TOP OF THE STACK, DIVIDE BY 4
LSR 2 :SHIFT RIGHT TWO = DIV BY 4
PRN <AVERAGE VALUE CALCULATED>
DMP :WRITE AVERAGE VALUE
WRM 0 :WRITE RESULT TO D-A PORT 0
BRN LOOP :GO GET ANOTHER SET OF VALUES
XIT :EMIT EXIT CODE

Fiqure 34. Averaqinq Program with Debugqinq Statements.

of the program, thus enabling all trace options throughout the execution. The PRN
statement above the LOOP label prints the initial sign-on, while the DMP statements
after each read operation give the value of the A-D port. Upon completion of the
four element read, the PRN opcode is used to indicate this fact. Each SUM operator
is followed by a DMP opcode which shows the current sum. Finally, the PRN and
DMP opcodes are used to display the final average value which is being sent to D-A
port O. The "XIT" opcode shown at the end of the program will be introduced in the
paragraphs which follow.

Figure 35 shows the execution of the averaging program under DDT. Note that
the program headings appear at the points in the program where PRN opcodes are
placed. Further, the console is prompted for input in the case of an RDM opcode
(giving the absolute memory mapped input address in decimal), while the WRM instruction
produces a "D-A OUTPUT . ." message which shows the absolute memory mapped
output address as well as the data which is written. The opcodes are also traced
showing the opcode mnemonic, address, and top two stacked elements. The "RDM"
trace at the beginning, for example, shows the instruction address 01AD, which is in
the range of the first RDM of Figure 34 (012E and 01EF), and is followed by the two
values 0111 (i.e., the value just read) and C21D ("garbage" value, since only one element
is stacked). The trace is easily follo,wed at the KDF-10 level, showing each value
which is read-in, and the operations performed upon these values. Upon completion
of the debugging process under CP 1M, the TRT opcodes are removed and the program
is reassembled, leaving only the 8080 instructions required in the production machine.
Nachtflieger systems engineers then take the resulting program and test its operation
in a hardware environment.

Forward thinking though they W~l \:!, Nachtflieger engineers quickly realized that
the KDF-10 design had a number of deficiencies due to the paucity of arithmetic
operators and the total absence of conditional branching instructions. Further, there
was no provision for variable storage other than the stack. Thus, the KDF-11 naturally
evolved from the KDF-10, which incorporates these features. In particular, the operation
codes of the KDF-11 include:

DCL v,n Declare (i.e., reserve) storage for a variable by
the name v, with optional size n. If n is omitted,
then n = 1 is assumed. All DCL opcodes must fol
low the XIT opcode given below.

LIT c Load the value of the literal constant c to the top
of the KDF-11 stack.

VAL v,i,c Load the value of the variable v optionally indexed by
the variable i with the optional constant offset c.
VAL V loads the value of V to the top of the stack,
VAL V,I loads the value located at the address of
V plus the index value contained in I, while
V AL V,I,3 loads the value at location V plus the
index I, plus the constant index 3. In all cases, the
value is placed at the top of the KDF-11 stack.

STO v,i,c Similar to the VAL operator, the STO opcode stores
the value obtained from the KDF-11 stack to the

89

ddt aver.hex
DDT VERS 1.4
NEXT PC
0406 0000
-g100

TRACE FOR AVERAGING ~ROGRAM
A-D INPUT AT 4224 111
ROM 01AD 0111 C21D
(TOP)= 0111
A-D INPUT AT 4226 222
ROM 0255 0222 0111
(TOP)= 0222
A-D INPUT AT 4228 555
RDM 0293 0555 0222
(TOP)= 0555
A-D INPUT AT 4230 444
RDM 02D1 0444 0555
(TOP)= 0444
FOUR VALUES HAVE BEEN READ
SUM 0312 0999 0222
(TOP)= 0999
SUM 0329 OBBB 0111
(TOP)= OBBB
SUM 0340 O~C C21D
VALUES HAVE BEEN ADDED
(TOP)= OOCC
AVERAGE VALUE CALCULATED
(TOP)= 0333
D-A OUTPUT AT 4240 0333
WRM 03ne 793B C21D
A-D INPUT AT 4224

Figure 35. Sample Execution of "Average" using DDT.

90

DIF

GEQ a

BRN a

address given by v, plus the optional index i, plus
the optional constant index given by c. The top ele
ment of the KDF-11 stack is removed.

The DIF opcode subtracts the top element of the KDF-11
stack from the next-to-top element of the stack,
and replaces both operands by their difference.

The GEQ opcode tests the next to top element
(top') against the top of stack element (top),
and branches to the label given by "a" if top'
is greater than or equal to top. If not, program
control continues to the next opcode in sequence.

The BRN instruction replaces the JMP instruction
in the KDF-I0 architecture to allow complete
separation of the KDF-ll and 8080 machines.

Figures 36a, 36b, 36c, and 36d give the macro library which was constructed by the
Nachtflieger software group for KDF-l1 machine emulation. Note that over half of
the macro library implements trace and debugging functions (Figures 36a and 36b)
while the remaining components implement the KDF-l1 opcodes themselves. A brief
description is given below for each major section of this macro library, called
"DSTACK.LIB," before giving an example of its use.

Figure 36a shows the first portion of the macro library. Since this portion of
the library is principal1y concerned with debugging functions, it begins with CP/M
system calls, function numbers, and equates for non-graphic characters, similar to the
examples given earlier. Although these values are not necessary for operation of the
KDF-11, they are necessary for the debugging functions which operate when the TRT
opcode is in effect. Following the CP/M equates, the "toggles" DEBUGT and DEBUGP
are set to false (0 value), which reflect the conditions of the debugging switches given
by TRT and TRF. When DEBUGT is true (1 value), machine operation codes are
traced. Similarly, when DEBUGP is true, PRN, RDM, and WRM operations interact
with the console.

The PRN macro shown in Figure 36a (left), for example, produces an inline
message with a call to CP/M to write the message whenever the DEBUGP toggle is
true; otherwise the PRN produces no generated code.

The UGEN macro which follows PRN in Figure 36a is invoked the first time
that the debugging subroutines are required by trace or print/read opcodes. When
invoked, the UGEN macro produces several inline subroutines which are used throughout
the debugging process. If no trace or print/read functions are invoked during the
assembly, UGEN is not invoked and thus no inline subroutines are included for debugging.
If UGEN is invoked, the subroutines shown below are included inline:

@CH writes a single ASCII character to the console
@NB writes a single half-byte (nibble) to the console
@HX writes a full hexadecimal byte value at the console
@AD writes a full address (double byte) value with preceding

blank
@IN reads a hexadecimal value from the console to HL

91

co
t.:>

,
bdos
rchar
wchar
wbuff
tran
data
cr
If
,

macro library for a zero address machine

* begin trace/dump utilities *

egu
egu
egu
egu
egu
egu
egu
egu

0005h
1
2
9
100h
!l00h
0dh
0ah

; system entry
;read a character
;write character
;write buffer
;transient program area
;data area
;carriage return
;line feed

debugt set
debugp set

"0
o

;,trace debug set false
;;print debug set false

prn

msg:

pmsg:

ugen
J ,

@ch:

J
@nb:

, ,
@hx:

macro
print
if
local
jmp
db
db
push
lxi
mvi
call
pop
endif
endm

macro

pr
message 'pr' at console

debugp ;;print debug on?
pmsg,msg ;;local message
pmsg ;;around message
cr,lf ;;return carriage
I&PR$I ;;literal message
h ;;save top element of stack
d,msg ;;local message address
c,wbuff ;;write buffer Itil $
bdos ;;print it
h ;;restore top of stack

;;end test debugp

generate utilities for trace or dump
local psub
jmp psub ;;jump past subroutines
;;write character in reg-a
mov e,a
mvi c,wchar
jmp bdos ;;return thru bdos

;;write nibble in reg-a
adi 90h
daa
aci
daa
jmp

40h

@ch ;;return thru @~h

;;write hex value in reg-a
push psw ;;save low byte
rrc
rrc

; J
@ad

;
@in:

@in8:

if

@inl:

if
psub:
ugen

rrc
rrc
ani
call
pop
ani
jmp

; ;write
push
mvi
call
pop
mov
push
call
pop
mov
jmp

0fh
@nb
psw
0fh
@n.b

;;mask high nibble
;;print high nibble

;;print low nibble

address value in hI
h ';-;-save-varue
a, ;;leading blank
@ch ; ; ahead of address
h ;;high byte to a
a,h
h
@hx
h
a,l
@hx

;;copy back to stack
;;write high byte

;;low byte
;;write low byte

hex value to hl from console
a,' I ;;leading space
@ch lito console
h,0 ;;starting value
h ;;save it for char read

;;read
mvi
call
lxi
push
mvi
call
pop
sui
cpi

c,rchar ;;read character function
bdos ;;read to accumulator
h ;;value being built in hI

jc

10 1 ;;normalize to binary
10 ;;decimal?
@inl ;;carry if 0,1, ••• ,9

hexadecimal a, ••• ,f
IAI- l e l -10
16 ;;a through f?

may be
sui
cpi
rnc i;return with assumed cr

range, multiply by 4 and add "~in
rept
dad
endm
ora
mov
jmp

macro

4
h

1
l,a
@in0

; ;shift 4

; ;add digit
;;and replace value
;;for another digit

redef to include once
endm
ugen ;;generate first time
endm

* end nf trace/dump utilities *

Figure 36a. Stack Machine Macro Library.

,
trace

@tl:
@t2:
, ,
@tr:

, ,
psub:

trace

:nsg:

pmsg:

* begin trace(only) utilities *

macro cOde,mname
trace macro given by mname,
at location given by code
local psub
ugen ~~generate util i ties
jmp psub
ds 2 ~ ~ temp for reg-l
ds 2 ~ ~ temp for reg-2

~ ~trace macro call
bc=code address, de=message
shld @t1 ~ ~ store top reg
pop h ~:return address
xthl : :reg-2 to top
shld @t2 ::store to temp
push psw :;save flags
push b : :save ret address
:nvi c,wbuff : :pr int buffer func
call bdos : :pr int macro name
pop h ~ : code address
call @ad : :pr inted
Ihld ~tl : :top of stack
call ~ad ~ ~pr int.ed
lhld @t2 : ; top-l
call ~ad : :priilted
pcp ;JSW :: flags restored
pop d ::return address
lhld @t2 ::top-l
:Jush h ::restored
push d ;:return address
lhld @tl : :top of stack
ret

: :past subroutines

macro c,m
redefined trace, uses Itr
local pmsg ,msg
jmp pmsg
db cr,lf ::cr,lf
db • &M$ • : :mac name

lxi
lxi
call
endm

b,c
d ,msg
@tr

: :code address
; :macro name
: ito trace it

back to original macro level
trace code,mname
er.dm

trt :nacro f
, , turn on flag "f"
debug& f set I : :pr int/trace on

endm

trf macro f
" turn off flag "f"
debug& f set 0 ::trace/print off

endm

?tr macro m
check debuqt toggle before trace
if debugt
trace %$,m
endm

* end trace (only) utilities *

,
dmp

@dm:

@dm9:

, ,
@dt:

; ;
psub:

dmp

msg:

pmsg:
active

* begin dump(only) utilities *

macro vname,n
dump variable vname for
n elements (double bytes)
local psub ::past subroutines
ugen ::gen inline ro~tines
jmp psub ::past local subroutines
::dump utility program
de=msg address, c=element count
hl=base address to print
push h : :base address
push b ::element count
mvi c,wbuff ;;wRite buffer func
call bdos ;:message written
pop b ;;recall count
pop h ;;recall base address
mov a,c ;;end of list?
ora a
rz ;;return if so
dcr c ; :decrement count
mov e-,m ~~neKt item (low)
inx h
mov d,m : :next item (high)
inx h : : ready for next round
push h : :save pr int address
push b ;;save count
xchg : ~da ta ready
call @ad ; :pr int item value
jmp @dm0 : :for another value

; :dump
prn
push
call
pop
ret

top of stack
«top)=>

onl.y
;:" {TOP)="

h
@ad
h

macro ?v,?n

• -value of hI
;;top restored

redefine dump to use @dm utility
local pmsg ,:nsg
special case if null parameters
if nul vname
dump the top of the stack only
call @dt
exitm
endif
otherwise dump variable name
jmp pmsg
db cr,lf
db '&?V=S'
adr 1v
set 0
lxi d ,msg
if nul 1n
mvi e,l
else

c,?n

: :crl f
; :message
: : hl=address
::clear active flag
; :message to pr int
: ,use length 1

mvi
end if
call
endm
dmp
endm

@dm :ito perform the dump
::end of redefinition

vname,n

* ~nd dump (only) utilities, *

Figure 36b. Stack Machine Library (Con't).

93

co
~

* begin stack machine opcodes *
, ***
active $et 0 :active reqister flag

siz

, j

@stk

save

macro
org
create
set
lxi
endm

macro

size
tran ::set to transient area

a stack when "xit" encountered
size , ,save for data area
sp,stack

check to ensure "enter" properly set up
if stack ;,is it present?
endif

save macro
if
push
endif

active set
endm
save
endm

:
rest macro

restore
if
pop
end if

active set
endm

clear macro

:,redefine after initial reference
active 'Jelement in hI
h :,save it

1:- 1 J set- aeti-ve

the top element
not active
h :,recall to hI

1 ::mark as active

J J clear the top active element
rest ::ensure active

active set 0 ::cleared
endm

:
dcl macro vname,size
J : label the declaration
vname:

if nul size
ds 2 ::one word req'd
else
ds size*2 : :double words
endm

:
lit macro val
:: load literal value to top of stack

save ::save if active
lxi h,val ::load literal
?tr lit
endm

adr

, ,

val
; ;
: :

macro base,inx,con
load address of base, indexed by inx,
with constant offset given by con
save ::push if active
if nul inx&con
lxi h,base :;address of base
exitm ::simple address
endlf
must be inx and/or con
if nul inx
lxi h,con*2 ;:constant
else
lhld
dad
if
lxi
dad
endif
end if
lxi
dad
endm

inx
h
not nul
d,con*2
d

d,base
d

macro b,i,c

: : index to hI
::double precision
con
::double const
: : added to inx
: :not nul con
::nul inx
: : ready to add
::base+inx*2+con*2

get value of b+i+c to hI
check simple case of b only
if nul hc
save : :push if active
lhld b : : load di recti y
else
"adr" pushes active registers
adr b,i Ie ; raddr-ees in-hi
mov e,m ::low order byte
inx h
mov d,m ::high order byte
xchg : :back to hI
end if
?tr val : :trace set?
endm

inx

sto macro b,i,c
: : store the value of the top of stack
:; leaving the top element active

if nul i&c
rest : :activate stack
shld b ::stored directly to b
else
adr b,i,c
pop d : :value is in de
mov m,e :;low byte
inx h
mov m,d : :high byte
endif
clear : :mark empty
?tr sto ::trace?
endm

Figure 36c. :stack Machine Library (Con't).

CO
CJ1

sum

, ,

dif .. , ,

.. , ,

:
Isr
, ,

geq
J ;
: :

,
dup

:
brn

macro
rest ::restore if saved
add the top two stack elements
pop d : : top-l to de
dad d : :back to hI
?tr sum
endm

macro
compute difference between top elements
rest ::restore if saved
pop d ::top-l to de
mov a,e ::top-l low byte to a
sub I ::low order difference
mov l,a : :back to 1
mov a,d ::top-l high byte
sbb h ::high order difference
mov h,a : :back to h
carry flag may be set upon return
?tr dif
endm

macro len
logical shift right by len
rest ::activate stack
rept len ::generate inline
xra a ::clear carry
mov a,h
rar ::rotate with high 9
mov h,a
mov a,l
rar
mov l,a ::back with high bit
endm
endm

macro lab
jump to lab if (top-I) is greater or
equal to (top) element.
dif ::compute difference
clear -n-elea-r -act-i"e-
?tr geq
jnc lab ::no carry if greater
jz lab ::zero if equal
drop through if neither
endm

macro
duplicate
rest

the top element in the stack
::ensure active

push
?tr

h
dup

endm

macro addr
branch to address
jmp addr
endm

xi t macro
?tr
jmp
org
ds

xit
9
data
@stk*2

::trace on?
::restart at 0900
::start data area
: :obtained from" siz"

stack: endm

,
adc9
adcl
adc2
adc3

dac9
dacl
dac2
dac3
,

* memory mapped i/o section *

input values which are read as if in memory
equ 1989h :a-d converter 0
equ 1982h :a-d converter 1
equ 1984h :a-d converter 2
equ 1986h :a-d converter 3

equ
equ
equ
equ

1099h
1092h
1094h
1096h

:d-a converter 9
:d-a converter 1
;d-a converter 2
:d-a converter 3

rwtrace macro msg,adr
:: read or write trace with messaqe
:: given by "msg" to/from "adr"

;
rdm
: :

wrm

prn <msg at adr>
endm

macro ?c
read a-d converter number "?c"
save ::clear the stack
if debugp ::stop execution in ddt
rwtrace <a-d input >,% adc&?c
ugen ::ensure @in is present
call @in ::value to hI
shld adc&?c ::simulate memory input
else
read from memory mapped input address
lhld adc&?c
endif
?tr rdm ::tracing?
endm

macro ?c
write d-a converter number "?c"
rest ::restore stack
if debugp ::trace the output
rwtrace <d-a output>,% dac&?c
ugen 1 :-include subleuti.-ne~
call @ad : :write th€ \yalue
endif
shld
?tr
clear
endm

dac&?c
wrm ::tracing output?

::remove the value

* end of macro library *

Figure 36d. Stack Machine Library (Con't).

Upon including these subroutines, UGEN then redefines itself (see lower right of Figure
36a) to an empty macro body so that the subroutines will not be included upon
subsequent invocations of UGEN. This ensures that the inline subroutines will only be
included once, and only if they are required by the debugging macros.

Referring again to Figure 36c, the SIZ macro is similar the opcode defined for
the KDF-I0, except that the SIZE of the stack is saved for later declaration in the
data area (see th~ XIT opcode). The SAVE and REST macros are used throughout the
opcode macros to save and restore the HL register pair, based upon the ACTIVE flag.
The CLEAR macro, however, is used to mark the top element of the KDF-ll stack
as deleted.

Continuing with Figure 36c (Ieft), the DCL macro simply sets up the variable
name VNAME as a label, and follows the label by a DS which reserves the specified
number of double words. The DCL opcodes must all occur at the end of the KDF-ll
program, following the XIT opcode.

The LIT opcode is emulated with a macro which first SA VEs the stack top
(possibly generating an HL push). The literal value is then loaded directly into the
HL register pair. Note that the ACTIVE flag is set upon completion of this macro,
since SAVE always marks HL as active.

The ADR macro in Figure 36c (right) is a utility macro which is used in the
VAL, STO, and DMP opcodes to build the address of a particular variable (with optional
variable and constant offsets) in the HL register pair. Based upon the optional
parameters, ADR either loads the base address directly to the HL pair, or constructs
the address using HL and DE for indexing. Thus, the invocations of ADR shown to
the left below produce the machine code to the right below.

ADR X

ADR X,I

ADR X,I,3

ADR X,,3

LXI H,X

LHLD I
DAD H
LXI D,X
DAD D

LHLD I
DAD H
LXI D,6
DAD D
LXI D,X
DAD D

LXI H,6
LXI D,X
DAD D

thus leaving the final address for the optionally indexed variable in the HL register
pair. Note that the code within the ADR macro could be improved slightly in the
case that a constant offset is provided. That is, the invocations to the left below
could produce the machine code shown to the right below by redefining the ADR
macro.

96

ADR X,I,3

ADR X,,3

LHLD I
LXI D,X+6
DAD D

LXI H,X+6

It is a worthwhile exercise for the reader at this point to redefine ADR to generate
this improved machine code sequence.

The VAL and STO macros are shown in Figure 36c (right) which load a variable
value to the stack, or store the top of stack value to memory, respectively. Note
that ADR is used to construct the address of the variable whenever optional indexing
is specified. Otherwise, an LHLD or SHLD is used to directly access the variable.
Again, slight improvements in generated code could be obtained when only a constant
offset is provided with no variable index.

Note that the opcodes LIT, VAL, and STO all end with an invocation of the
?TR macro which, as discussed above, checks the DEBUGT flag. If true, the ?TR
macro invokes TRACE with the machine code address and opcode name for display at
the debugging console. The ?TR macro invocation produces no machine code trace
when DEBUGT is false.

Figure 36d contains a listing of the remainder of the "DSTACK.LIB" macro
library. The SUM opcode shown on the left first invokes REST to ensure t.hat the HL
register pair contains the topmost J{DF-II element. The second to top element is
then loaded to the DE pair and added to HL, producing an active KDF-II element in
HL. Note that ACTIVE is true at this point, since REST always leaves the flag set
to true.

The DIF opcode definition is similar to SUM, except the 8080 accumulator is
used to compute the I6-bit difference between the top two KDF-II stacked elements.

Referring to Figure 36d (left), the LSR macro defines the KDF-II logical shift
right operation. The REST macro is first invoked to ensure that HL is active, followed
by a repetition of the machine code required to perform a I6-bit right shift of the
HL register pair. In the case of a long shift, there will be a considerable amount of
inline machine code for the operation. Thus, it is a useful exercise for the reader to
redefine LSR so that it generates an inline subroutine to perform the shift operation
for values of LEN which are sufficiently large to warrant the subroutine call. Although
this will require a subroutine set up and call, the amount of generated code could be
reduced significantly for programs which make heavy use of the LSR operator.

The GEQ macro follows the LSR definition, and allows conditional branching to
the specified label address. GEQ begins by computing the difference between the top
two elements of the KDF-II stack which has the side-effect of setting the 8080 carry
bit if the next to top element exceeds the top element in the KDF-ll stack. Note
that the ?TR macro eventually leads to the @ TR subroutine where the status flags
(including the carry condition) are saved and restored. Otherwise, GEQ could not
generally count on the _ condition of the carry flag. Further, the 8080 A register
contains the least significant difference between DE and HL, hence the ORA H produces
a zero result if the difference is zero. To be complete, the KDF-ll should have a

97

complete range of conditional tests, allowing tests for equality (EQL), inequality (NEQ),
less-than (LSS)~ greater-than (GTR), and less-than-or-equal (LEQ). Although Nachtflieger
designers intend to include these opcodes in the KDF-12, it may be a worthwhile
exercise for the reader to implement these additional macros.

The DUP opcode in Figure 36d (bottom left) first ensures that the HL register
pair is active, then duplicates this value by pushing the HL pair to the 8080 stack,
thus emulating a KDF-ll stack push operation. Note that the HL pair is active at
the end of the DUP macro due to the invocation of REST.

The BRN and XIT macros follow GEQ in Figure 36d. The BRN macro simply
translates to a jump instruction in the 8080 while the XIT is slightly more complicated.
The XIT macro first invokes the ?TR macro to check for machine code tracing. A
"JMP 0" is t.hen emitted corresponding to a system restart in both CP/M and the
emulated KDF-l1 machine architecture. The XIT macro then produces an ~ "ORGTf
statement which restarts the assembly process in the data area of the emulated
environment (1000H, or 4096 decimaI). The area reserved for the stack is then set
up (recall that the SIZ macro saves the value of SIZE), followed by the declaration
of the label "STACK" at the base of this reserved area. Referring· back to Figure
36c (middle left), note that the SAVE macro includes the statement sequence

IF STACK ;;is it present?
ENDIF

which ensures that both the SIZ and XIT macros have been included in the assembly.
If the XIT macro had not been included, then the label "STACK" would not appear
(unless used in the KDF-ll program), and the "IF STACK" test would produce an
undefined operand (U) error. Further, if the XIT operator had been used, but the SIZ
had not, then the statement "DS SIZ*2" within XIT would produce an undefined operand
message. Although these tests are by no means complete, they will detect the most
common errors.

Figure 36d (right) also contains the definitions of both the RDM and WRM
opcodes, based upon the memory mapped input/output addresses defined by AD CO
through ADC3 for the A-D ports, and DACO through DAC3 for the D-A ports. The
RWTRACE (Read/Write Trace) macro is included for tracing the RDM and WRM macros
when DEBUGP is true. The MSG argument corresponds to either nA-D INPUT" for
the RDM opcode, or "D:..A OUTPUT" for the WRM opcode. The ADR argument
corresponds to the absolute decimal address where the memory mapped input/output
is taking place. Thus, RWTRACE simply constructs a trace message from its two
argments and passes this message to PRN for display at the debugging console.

The RDM macro reads the port given by the argument n?c" (0,1,2, or 3). The
HL register pair is pushed, if necessary, by the SAVE macro (leaving the active flag
set for the RDM). RDM then generates an invocation of the RWTRACE macro to
produce the trace message. Note that the argument % ADC&?C produces the numeric
value of one of ADCO, ADC1, ADC2, or ADC3 which is included in the trace message.
If the % were omitted, only the name, not the value, of the input port address would
be printed. Following the output message, UGEN is invoked to ensure that the utility
subroutines have been included inline. The call to @IN allows the programmer to type
a hexadecimal value for the simulated A-D input value,. which is subsequently stored
to memory and left in the HL register pair (with ACTIVE true). If DEBUGP is not

98

set 9 then the RDM macro simply loads the HL register pair from the appropriate
memory mapped input location. Finally, RDM invokes ?TR to check for possible opcode
tracing.

The WRM opcode is similar to the RDM opcode, except that the REST macro
is first invoked to ensure that the HL registers contain the top element of the KDF-ll
stack. This value is then displayed at the debugging console if DEBUGP is true, and
then sent to the appropriate memory mapped output location.

One particular application of the emulated KDF-ll machine shows the power
of this particular instruction set. As a small part of a machine control system, a
KDF-11 processor monitors the machine tool head motion. Nachtflieger engineers
connect A-D port 0 to a KDF-l1 processor which reads the instantaneous velocity of
the tool head at 1 millisecond (ms) intervals., The velocity is provided at the A-D
port in micrometer (urn) increments, and the processor is synchronized with the input
so that it halts until the 1 ms interval has eJapsed. Nachtflieger engineers also
guarantee that the tool head is in motion for no more than 100 ms before stopping.
Thus, with no variations in velocity, if the tool moved at the constant rate of 256
um/ms over '50 intervals of 1 ms each, the total distance travelled by the tool is

256 um/ms * 50 ms ;.= 1280 urn = 1.280 mrn

During its travel, however, the instantaneous velocity of the tool head varies
according to the roughness of the cut, wear on the parts, and start/stop intervals.
Nachtflieger uses the data collected during a particular cut to monitor these factors,
and displays machine operator information in both digital and analog forms. A primary
function of the KDF-11 processor in this particular case is to collect the instantaneous
velocities during a single cut, and hold these values for analysis as the tool returns
to its starting postition. Figure 37 shows a KDF-l1 program which includes the data
collection phase, as well as an analysis phase described below.

The data collection phase of Figure 37 occurs between the labels MOVE? and
COMP, while the analysis phase is found between labels COMP and ENDF. Note that
the program is bounded by the SIZ operator at the beginning, along with the XIT
operator at the end, followed by DCL opcodes which reserve data areas. This particular
program also includes debugging PRN, DMP, TRT, and TRF opcodes for checking out
the program.

Referrring to the DCL statements at the end of Figure 37, the "vector" V is
declared with length 100 (double bytes), which will hold the collected velocities, while
I and X are temporary values used during the collection and analysis phase. The
variable TOTAL is a result produced by the analysis as discussed below.

The program collects data by performing the following steps. The variable I is
first initialized to 0, corresponding to the first velocity V(O). The program then
examines the A-D input port for the first non-zero velocity, waiting for the tool head
to begin its travel. When the first non-zero velocity is read, the collection process
proceeds by storing the first value at V(O). The index value I is then moved along as
data items are read, with values placed into YO), V(2), and so-forth, until a zero value
is read, indicating the tool has ended its travel.

Referring to Figure 37, note that the KDF-11 opcodes list.ed before the label
MOVE? initialize the index I by loading a literal 0 value to the KDF-l1 stack, followed

99

8320 Ll'f 8
MACLIB DS'fACK :STACK MACHINE SIMULATION 8330 DUP ;TWO ZEROES

·0080 SIZ 50 ;50 LEVEL STACK 0331 STO I ;1=0
0103 TRT P :TURN ON PRN TRACE 0334 STO TOTAL :TOTAI,=0
0103 TR'l' T ;TURN ON CODE TRACE 0338 GETNXT: PRN <COMPUTING NEXT INTERVAL>
0103 PRN <COMPUTATION OF TOOL TRAVEL DISTANCE 035F Dt4P I
0136 Ll'f 0 ;INITIALIZE INDEX 0372 DMP TO'fAL
01D3 STO I ;1=8 0389 DMP <V, 1>,2
01E8 'fRF T :'l'URN CODE TRACE OFF 03A3 LIT 0 ;ZERO AT END

, LOOK FOR STARTING MOT·ION (NON ZERO VALUE) 03A6 VAL V, I :AT END?
MOVE?: ;READ A-D CONVERTER FOR NON ZERO 03B3 GEQ ENDF :0 GEQ X(I)?

01E8· RDM 0
0210 S'l'O X :HOLD TEMPORARILY No'r AT END OF INTERVAL, COMPUTE NEXT TRAPEZO
8213 VAL X ;RELOAD FOR TEST 83C8 VAL V,I
0216 LIT 1 ; X GEQ 1 TES'f 03CC VAL V,I,l :V{I) ,V(I+1)
02lA GEQ READ iX GEQ 1? 03DD SUM ;V(I)+V(I+l)
0227 BRN MOVE? iRETRY IF NOT 03DF LSR 1 ;(V(I)+V{I+l»/2

83£6 VAL TOTAL ;READY TOTAL
READ: 03EA SUM iTOTAL=TOTAL+TRAPEZOID

022A PRN <STORE FIRST/NEXT VALUE> 03EC STO TOTAL ;BACK TO SUM
8250 DMP X

I-' 029C VAL X iLOAD FIRST/NEXT VALUE 03EF VAL I ;1=1+1
0 029F STO V,I ; S'l'ORE TO THE ITH ELEMENT 03F2 I~IT 1
0 02AC VAL I ; 1 NCREMENT I 03F6 SUM

02Ai" LIT 1 03FB STO I :BACK TO I
02B3 SUM ;1+1 03FB BRN GETNXT
0285 S'1'O I ;1=1+1
0288 LI'f 8 i0, FOR 0 GTR X TEST 03FE ENDF: PRN <END OF COMPUTATION>
028B VAL X iZERO VALUE READ? 0420 DMP TOTAL
02BF GEQ COMP iCOMPUTE DISTANCE IF 0 0437 VAL TOTAL :LOAD FOR D-A OUTPUT
02CC RDM 0 ;REAO ANOTHER DATA ITEM 043A WRM 0 :WRITE D-A pORT
02F4 STO X iSAVE IT IN X 0462 XI'r
02F7 BRN READ iTO S'!'ORE AND TEST

DATA AREA
02£o'A COMP: PRN <VALUE ARE LOADED> 1164 DCL I :INDEX
031A DMP V,10 1166 DCL X :TEMPORARY

NOW COMPUTE DISTANCE TRAVELLED BY TOOL 1168 DCL V,100 ;VELOCITY VECTOR
1230 DCL TO'l'AL ;TOTAL DISTANCE

Figure 37. Program for Tool Travel Computation.

by a store into the variable I. In order to follow these operations, the TRT P and
TRT T traces are enabled. Note, however, that the TRF T opcode stops the machine
code trace immediately before the MOVE? label.

Following the MOVE? label, A-D port 0 is read and examined for the first non
zero value. Each time the port is read it is stored into the temporary variable X,
then reloaded and examined for a zero value. Since GEQ is the only comparison
operator in the KDF-11 machine, the test is "1 greater than or equal to X." Thus,
the branch is taken to READ whenever X is 1 or larger.

Upon encountering the READ label, the value X (just read from port 0) is stored
into VO), where I is zero. The value of I is then incremented by loading I to the top
of the KDF-11 stack, adding 1 (LIT 1, SUM),' and then storing the sum back into I.
After incrementing I, the program proceeds to check the end of the tool travel. X
is loaded to the top of the stack, and the test "0 greater than or equal to X" is
performed. If the condition is true, control transfers to the label COMP, where the
analysis phase begins. Otherwise, port 0 is read again and the value is stored into
the temporary X. Control then proceeds back to the READ label to store the next
velocity, and test for zero.

Before 100 intervals have elapsed, the RDM 0 produces a zero value which is
stored into X and subsequently stored into YO), for the current value of I. Thus, when
control arrives at the label COMP, the instantaneous velocities are stored in V,
terminated by a zero. At this point, the analysis of these collected velocities can
take place.

The single function which takes place in the analysis section of Figure 37 is
the computation of the distance travelled by the tool through this interval. In particular,
Nachtflieger engineers have determined that it is sufficient to compute the distance
travelled by the tool using the "trapezoidal rule" which approximates the actual distance
by summing the average of each adjacent pair of velocites. The sums are formed as
shown below:

+ +

where n is the last interval to sum. Thus, for example, if the velocity is constant
at 256 um/ms (which wouldn't occur in practice), then

VI = V 2 = . · · = V n = 256,

and the summing formula given above reduces to 256 * n. Given the example above
where n = 50 ms, the above formula produces the value 1.280 mm, as given earlier.
In general, the velocity values win not be constant, hence the numerical integration
given by the trapedzoidal rule is used to obtain an approximation.

The KDF-11 instructions shown in Figure 37 between the COMP and ENDF labels
perform the numeric integration given by the trapedzoidal rule. In general, the
te mporary I is used to index through the velocity vector V until the final zero value
is encountered. For each interval, the values of two adjacent velocities are summed
and divided by two. Each result is then summed into TOTAL, where the values are
accumulated until the final zero velocity is discovered.

101

The opcode sequence immediately following COMP places a zero value at the
top of the KDF-11 stack, then stores this value into both the index I and the accumulating
sum given by TOTAL. Ignoring the trace opcodes, the operations following GETNXT
read the starting point of the next interval to process into the stack, using VAL V,I
(value of V, indexed by I). If 0 is greater than or equal to this value then the
computation is complete and control goes to the label ENDF. Otherwise, the value
of V(I) is loaded to the KDF-11 stack, followed by the value of V(I+1). The loaded
values are then sum m ed (SU M) and divided by two (LSR 1), producing a value which
remains in the KDF-11 stack. TOTAL is then loaded and added to this partial sum
and the result is stored back to TOTAL. The index value I is then incremented to
the next interval and processing continues back at the loop header GETNXT.

Upon processing the final zero velocity, control reaches the ENDF label where
the distance travelled is written to D-A output port zero. The output value is sent
to external instrumentation which processes the result and displays the distance travelled
in a form which is readable by the tool operator.

Note that' debugging statements have been placed throughout the program which
can be used to trace the program execution. Figure 37 also contains TRT operators
which have enabled trace code generation, and thus this particular program, although
longer than the final production version, can be used to follow execution under CP/M.

Figure 3S shows the execution of the program of Figure ·37 under DDT. The
messages printed at the debugging console are a result of the PRN opcodes distributed
throughout the original program which were enabled through the TRT P opcode. Further,
the machine code trace was only enabled for the interval of two operation codes (LIT
and STO) at the beginning. In order to test this program, simple A-D values were
supplied at the console for the velocities:

Vo = 100H, V1 = 120H, V2 = 100H, V3 = SOH, V4 = 0

Upon detecting the final 0 value, the trace of Figure 38 shows the first 10 values of
V (the last 5 elements are "garbage" values), followed by a trace of the sum operations
for each interval. In each case, the pairs of values which are being added are displayed
(using the DMP opcode), followed by their summed value, along with the running total.
Upon completion of the distance computation, the value 320H is sent to the D-A output
port and displayed at the- console.

Upon completion of initial checks under CP/M, Nachtflieger programmers remove
the TRT and TRF statements from the KDF-ll program and reassemble producing only
the absolute input/output instructions required for machine tool control. The resulting
program, which produces much less code than the debugging version, is placed into the
equipment for further testing and evaluation.

Figure 39 is also proyided as an example of the listing which is produced when
all machine code operators are traced. Although the source program listing is not
shown, it is identical to Figure 37 except that the TRF T opcode is removed. Since
the complete trace is quite extensive, only a partial execution is shown in Figure 39.

In summary, Nachtflieger MW has derived several benefits from their emulation
of the KDF series stack machines. First, there is very little cost involved in designing

102

DDT INTEG.HEX
DDT VERS 1.4
NEXT PC
0465 0000
-G100

COMPUTATION OF TOOL TRAVEL DISTANCE
LIT 0139 0000 OF77
STO 01D6 0000 0000
A-D INPUT AT 4224 0
A-D INPUT AT 4224 100
STORE FIRST/NEXT VALUE
X= 0]00
A-D INPUT AT 4224 120
STORE FIRST/NEXT VALUE
X= 0120
A-D INPUT AT 4224 100
STORE FIRST/NEXT VALUE
X= 0100
A-D INPUT AT 4224 80
STORE FJRST/NEXrr VALUE
X= 0080
A-D INPUT AT 4224 0
STORE FIRST/NEXT VALUE
X= 0000
VALUE ARE LOADED
V= 0100 0120 0100 0080 OUOO 3Eeo BAll Cl~9 5EE1 5623
COMPUTING NEXT INTERVAL
1= 0000
'fOTAL= 0000
V,I= 01000120
OO~WUTING NEXT INTERVAL
1= 0001
TOTAL= 0110
v,r= 0120 0100
C'A)MPUT I NG NEXT INTERVAL
1= 0002
TOTAL= 0220
V,I= 0100 0080
(X>MPUTING NEXT INTERVAL
1= 0003
TOTAL= 02EO
V,I= 0080 0000
COMPUTING NEXT INTERVAL
1= 0004
TOTAL= 0320
V , I = 0 0 0 0 3 ECO
END OF OOMPUTATION
TOTAL= 0320
D-A OUTPUT AT 4240 0320

Figure 38. Sample Execution of "Distance" using DDT.

103

ddt integ.hex
DDT VERS 1.4
NEXT PC
0852 0000
-~100

OOMPUTATION OF TOOL TRAVEL DISTANCE
LIT 026E 0000 CAB1
STO 030B 0000 0000
A-D INPUT AT 128 0
ROM 0344 0000 0000
STO 0359 0000 0000
VAL 036E 0000 0000
LIT 0384 0001 0000
DIF 039D FFFF 0000
GEQ 03AF FFFF 0000
A-D INPUT AT 128 6
RDM 0344 0006 0000
STO 0359 0006 0000
VAL 036E 0006 0000
LIT 0384 0001 0006
DIF 039D 0005 0000
GEQ 03AF 0005 0000
STORE FIRST/NEXT VALUE
X= 0006
VAL 043F 0006 0000
STO 045E 016F 0000
VAL 0473 0000 0000
LIT 0489 0001 0000
SUM 049D 0001 0000
STa 04B2 0001 0001
VAL 04C7 0006 0001
A-D INPUT AT 128 0
RDM 0501 0000 0006
STO 0516 0000 0006
LIT 052B 0001 0006
DIF 0544 0005 0001
GEQ 0556 0005 0001
STORE FIRST/NEXT VALUE
X= 0000
VAL 043F 0000 0001
STO 045E 0171 0001
VAL 0473 0001 0001
LIT 0489 0001 0001
SUM 049D 0002 0001
STO 04B2 0002 0002
VAL 04C7 0000 0002
A-D INPUT AT 128
RDM 0501 0000 0000

Figure 39. Partial Listing of "Distance" with Full Trace.

104

and altering their machine architecture. In fact, current prices for 8080 microcomputers
may preclude the custom LSI version of the KDF-? machine. A second advantage of
the KDF emulation is that the KDF programs are highly independent from the host
processor 0 That iS9 given that a higher performance or less expensive processor becomes
available. to' Nachtfliegei\ the eXisting programs can be used intact by only changing
the macro definitions for each of the KDF opcodes and reassembling using MAC or
an eq~ivalefit macro proe:essofc LastlY9 machine emulation through macro defined
operation codes offers a distinct advantage over interpretive approaches since each
opcode translates to only a few host machine operations. Interpretive execution often
involves ratios of 1000 to 20,000 emulated instructions per host instruction, while
macro based opcodes are often in a ratio of less than 10 to 1. Further, interpretive
processors usually require run-time support consisting of a predefined general-purpose
subroutine package which is included for each and every program. Thus, for a wide
variety of microcomputer applications, machine emulation through macro defined op
codes offers distinct advantages over alternative approaches.

9.3. Program Control Structures.

Macro facilities can be used to provide program control statements which
resemble those found in many high-level languages. In general, program control
statements allow boolean tests and conditional branching based upon the outcome of
the boolean test. Further, label names which would normally be provided by the
programmer as the destination of a branch are automatically generated for the particular
statement.

In the paragraphs which follow, three typical control statements are presented
which allow simple conditional grouping (WHEN-ENDW), controlled iteration (DO
END DO), and case selection (SELECT-ENDSEL). In all three cases, the intention is
to define program control facilities which allow well-structured programming, resulting
in programs which are easier to write, debug, and maintain.

Two libraries are first introduced in order to provide a foundation for further
discussion. The I/O library shown in Figure 40 allows simple character input operations
along with full message output. The READ macro accepts a single character from
the console keyboard and stores this character into the variable given by the parameter
"VAR." The WRITE macro shown in Figure 40 takes an ASCII message as a parameter
and sends this message to the console output device preceded by a carriage-return
line-feed sequence. These simple I/O macros are stored on the diskette in the file
"SIMPIO.LIB" and are used in the examples which illustrate the control structures.

The second library used in the control structure examples is given in Figure 41.
Collectively, these macros define a number of boolean operations which are performed
upon 8-bit operands, providing the basic relational operations on unsigned integer values,
including:

LSS Less Than
LEQ Less Than or Equal To
EQL Equal To
NEQ Not Equal To
GEQ Greater or Equal
GTR Greater Than

105

· macro library for simple i/o ,
bdos equ 0005h :bdos entry
conin equ 1 :console input function
msgout equ 9 :print message til $
cr equ 0dh :carriage return
If equ 0ah :line feed
· , read macro var · . read a single character into var , ,

mvi c,conin :console input function
call bdos :character is in a
sta var
endm

· , write macro msg
· . write messaqe to console , ,

local msgl,pmsg
jmp -pmsg

msgl: db cr,lf : : leading crlf
db .. &MSG' ::inline message
db '$, : :message terminator

pmsq: mvi c ,msgout : :pr int message til $
lxi d ,.msgl
call bdos
endm

Figure 40. Simple I/O Macro Library.

106

test? · . , ,

tdig?

· ,

macro x,y
utiltity macro to qenerate condition codes
if not nul x ::then load x
Ida x ::x assumed to be in memory
endif
irpc
set
exitm
endm
if
sui
else
lxi
sub
endm

?y,y ::y may be constant operand
'&?y'-'0' ::first char digit?

::stop irpc after first char

tdiq? (= 9 ::y numeric?
Y : :yes, so sub immediate

h,y ::y not numeric
m ::so sub from memory

Iss macro x,y,tl
:: x Iss than y test,
: : transfer to tl (true label) if true,
:: continue if test is false

· ,

test? x,y ::set condition codes
jc tl
endm

leq macro x,y,tl
:: x less than or equal to y test

egl
· . , ,

Iss x,y,tl
j z tl
endrn

macro
x equal
test?
iz
endrn

x,v,tl
to y test
x,v
tl

neq macro x,y,tl
:: x not equal to y test

test? x,y

· ,

jnz tl
endm

qea macro x,y,tl
:: x qreater than or equal to y test

test? x,y
jnc tl
endm

qtr macro x,y,tl
:: x qreater than y test

local fl ::false label
test? x,y
jc fl
dcr a
jnc tl

fl: endm

Figure 41. Macro Library for Simple Comparison Operations.

107

In all cases, the macros accept three actual parameters, consisting of two data values
involved in the test (X and Y), along with a program label which receives control if
the boolean test produces a true value (TL). The first operand X can be a labelled
memory location containing an 8-bit value, and Y can be either a labelled 8-bit location
or a literal numeric value. If the first operand X is not supplied, then the value to
be tested is assumed to exist in the 8080 accumulator when the macro is entered.
Thus, for example, the macro invocation

LSS ALPHA,BETA,TRUECASE

compares the values stored at the labelled memory locations ALPHA and BETA (defined
by a DS or DB statement), and transfers to the program step labelled by TRUECASE
if ALPHA contains a value less than the value stored at BETA. The invocation

LSS ,BETA,TRUECASE

is similar, but compares the contents of the 8080 accumulator with the value, stored
at BETA. Finally, the invocation

LSS ALPHA,34, TR UECASE

compares ALPHA with the literal value 34 in the relational test.

Note that the macro TEST? is used throughout the macro library to construct
the relational test by first loading the initial operand X, if necessary. The second
operand type is then examined by executing an "IRPC" within the TEST? macro of
Figure 41 which extracts the first character of the Y operand. This first character
must be either numeric or alphabetic. If numeric, then the literal value is subtracted
from the accumulator, setting the 8080 condition codes. If the first character of Y
is non-numeric then the value is assumed to reside in memory. In this case, the HL
registers are set to the Y operand and the value at Y is subtracted from the accumulator
value. In any case, the 8080 condition codes are set as a result of the subtraction
operation. These condition codes are then used in the individual macros to produce
conditional jumps to the destination labels. These macros are collectively stored on
the diskette in a file named "COMPARE.LIB" for use in examples which follow.

Figure 42 shows an example of a program which uses both the SIMPIO and
COMPARE libraries. The purpose of this program is to successively read console
characters and print messages based upon the character which is typed. The program
begins by sending the sign-on message at the label CYCLE. A character is then read
and stored into X using the READ macro. The LSS test is used to determine if
lower-to-upper case translation is required (assuming the input is alphabetic). If X is
numerically less than 61H, which is the value of an upper case "A," then control
transfers to the label NOTRAN. Otherwise, the character is loaded to the accumulator,
the "upper case" bit is stripped from the character, and it is replaced in memory.
Following the label NOTRAN, the character is compared with the letters A, B, C, and
D. In each case, a message is typed corresponding to each letter. If one of these
four letters cannot be found, the message at ERROR is typed.

In comparing each letter, the macro NEQ is invoked with the first argument
corresponding to the character typed at the console (X), while the second argument
corresponds to the letter to match. Note that the "%" operator is used in each case

108

0100
0128

0133

0138 3Al102
013E E65F
0140 321102

0143
0148
0167 C3eJ001

016"A
0172
0180 C30001

0190
0198
01B3 C30e01

01B6
01BE
01D9
01EB C9

01EC
020E C30001

0211
0212

· ,

ORG
MACLIB
MACLIB

100H
SIMPIO :SIMPLE 10 LIBRARY
COMPARE :COMPARISON OPERATORS

CYCLE: WRITE <TYPE A CHARACTER FROM A TO D)
READ X

· , TEST FOR LOWER CASE ALPHABETIC
LSS X,61H,NOTRAN

· ,
· ,

ARRIVE HERE IF X IS GREATER OR EQUAL TO
A LOWER CASE .A (=61H), TRANSLATE
LOA X
ANI 5FH :CLEAR LOWER CASE BIT

:STORE BACK TO X STA X
NOTRAN:
: NOW CHECK CASES
;

· ,

NEO
WRITE
JMP

NOTA: NEO
WRITE
JMP

· ,
NOTB: NEO

WRITE
JMP

· ,
NOTC: NEO

WRITE
WRITE
RET

· ,
ERROR: WRITE

JMP

· ,
X: DS

END

X , % .. A .. , NOTA
<YOU TYPED AN A)
CYCLE

X,% "B" ,NOTB
<YOU TYPED A B)
CYCLE

X, % .. C ' , NOTe
<YOU TYPED A C)
CYCLE

X,%'D' ,ERROR
<YOU TYPED A D)
<BYE-I)

<NOT AN A, B, C, OR D)
CYCLE

1 :TEMP FOR CHARACTER

Fiqure 42. Single Character Processing using COMPARE.

109

to produce the numeric value of the character. This is necessary since the TEST?
macro expects either a number or a label value in the second argument position. The
program processes characters until a "D" is typed at which time it returns to the
console command processor. The intention here is to show the use of boolean tests
used by the control structure macros which follow.

Figure 42b shows a partial expansion of the macros given in the previous example.
The first message expansion is shown, along with the READ and NEQ macros. The
listing has been abstracted, however, and does not show the macro library statements
or the remainder of the program following the NOTA label.

The macro library shown in Figures 43a and 43b, called NCOMPARE, expands
upon the basic relational macros by allowing a "false branch" option. That is, .each
macro accepts four arguments: the X and Y operands, as before, as well as a "true
label" (TL) and "false label" (FL). It is assumed that either the TL or FL will be
supplied in any particular invocation of a relational operator, but not both. If the TL
is supplied, then the branch is taken if the relational operator produces a true result.
Conversely, if the TL label is absent but the FL label is supplied, then the branch to
FL is taken if the relational operation produces a false result. Thus, NCOMP ARE
expands upon the COMPARE library by allowing all of the relational operation as well
as their negations. Using the NCOMPARE library, for example, the macro invocation

LSS X,20, ,FALSELAB

branches to the label F ALSELAB if X is not less than the value 20. One should note
that the negation operations are accomplished within the NCOMPARE library by first
testing for a null TL operand and, if empty, the relational operation is reversed by
invoking the appropriate negated macro. For example, the LSS macro in Figure 43a
invokes the GEQ macro, which is equivalent t.o "not LSS" when the TL argument is
empty and supplies the FL argument to LSS as the TL label to GEQ. These negated
relational forms will be used within the control structures which are described below.

Figure 44a gives an example of the use of the NCOMP ARE library within a
particular program. This program is similar to the previous example, but instead
checks to insure that alphabetic translation only occurs within the proper range of
lower case letters. Following the label CYCLE, the character read from the console
is compared with a lower case "art (using the % operation to produce the equivalent
decimal value 97). Since the negated form of GEQ is used here, the label NOTRAN
receives control if X is not greater than or equal to %'a'. If X is greater than or
equal to %'a', program flow continues to the next test in sequence where X is compared
with a lower case "z" (%'z' = decimal 122). In this case, the normal form of GTR is
used and thus control transfers to NOTRAN if X is greater than %'z' which is above
the range of lower case alphabetics. If X is between %'a' and %'z', the character is
changed to upper case, as before, by removing the lower case bit and replacing X in
memory. Note that the indentation levels between the GEQ and GTR operations are
included for readability of the program.

Figure 44b shows the GEQ-GTR section of the program of Figure 44a with full
macro trace enabled (see Assembly Parameters). The trace in this figure shows the
transition from GEQ to the LSS operator, substituting the FL label in the place of
the TL label. Again, the macro library statements are not shown, and the listing
following the~OTRAN label is not present.

110

. , . . .
CYCLE: WRITE <TYPE A CHARACTER FROM A TO D)

0100+C32301 JMP ??0002
0103+0D0A ??0001: D8 CR,LF
0105+5459504520 DB 'TYPE A CHARACTER FROM A TO 0
0122+24 DB'$..
0123+0E09 ??0002: MVI C ,MSGOUT
0125+110301 LXI D,??0001
0128+C00500 CALL BOOS

012B+0E01
0120+CD0500
0130+321102

0133+3A1102
0136+D661
0138+0A43(IJ1

0138 3Al102
013E E65F
0140 321102

0143+3Al102
0146+0641
0148+C26A01

· ,

READ X
MVI C,CONIN ~CONSOLE INPUT FUNCTION
CALL BOOS :CHARACTER IS IN A
STA X
TEST FOR LOWER CASE ALPHABETIC
LSS X,61H,NOTRAN
LDA X
SUI 61H
JC NOTRA.N
ARRIVE HERE IF X IS GREATER OR EQUAL TO
A LOWER CASE A (=61H), TRANSLATE
LDA' X
A.NI 5FH
STA X

:CLEAR LOWER CASE BIT
:STORE BACK TO X

NOTRAN:
: NOW CHECK CASES
· ,

NEO
LDA
SUI
JNZ
WRITE

X, % .. A .. , NOTA
X
65
NOTA

014B+C35F01 JMP
<YOU TYPED AN A)
??0004

014E+0D0A ??0003:
0150+594F552054 DB
015E+24 DB
015F+0E09 ??0004:
0161+114E01 LXI
0164+C00500 CALL
0167 C30001 JMP

.
· ,
NOTA: NEQ

, . . .

DB CR,LF
'YOU TYPED AN A'
'$,
MVI C,MSGOUT
0,??0003
BOOS
CYCLE

x , % ' B ' , NOTB

Figure 42b. Partial Trace of Fiq 42a with Macro Generation.

111

~

~

~

· , · ,
test? · . , ,

tdig?

· ,
Iss · . , ,
· . , ,
· . , ,

· ,

macro library for 8-bit comparison operation

macro x,y
utiltity macro to qenerate condition codes
if not nul x ;;then load x
Ida x ;;x assumed to be in memory
endif
irpc
set
exitm
endm
if
sui
else
lxi
sub
endm

macro
x Iss
if tl
if tl
if
geq
else
test?
jc
endm

?y,y ;;y may be constant operand
'&?y'-'0' iifirst char digit?

;;stop irpc after first char

tdig? <= 9 ;;y numeric?
y i iyes, so sub immediate

h,y iiY not numeric
m ;;so sub from memory

x,y,tl,fl
than V test,
is present, assume true test
is absent, then invert test

nul tl
x,y,fl

x,y ;;set condition codes
tl

leq macro x,y,tl,fl
;; x less than or equal to y test

if nul tl
qeq
else
Iss
jz
endm

Figure 43a.

x,y,fl

x,y,tl
tl

Expanded NCOMPARE Comparison Operators.

eal macro x,y,tl,fl
:: x equal to y test

neg . . , ,

if nul tl
neq
else
test?
jz
endm

macro
x not
if
eql
else
test?
jnz
endm

x,y,fl

x,y
tl

x,y,tl,fl
equal to V test

nul tl
x,y,fl

x,y
tl

aea macro x,y,tl,fl
:: x qreater than or equal to y test

if nul tl
Iss x,y,fl
else
test? x,y
jnc tl
endm

qtr macro x,y,tl,fl
:: x greater than y test

if nul tl
leq x,y,fl
else
local gfl ::false label
test? x,y
jc gfl
dcr a
jnc tl

gfl: endm

Figure 43b. Expanded NCOMPARE Comparison Operators (Con't).

113

0100

0100
012B

0133

013B
0147 3AlOf2J2
014A E65F
0l4C 321D02

014F
0157
0173 C30001

0176
0l7E
0199 C3000l

019C
01A4
f2J1BF C300f2Jl

01C2
01CA
01E5
0lF7 C9

0lFR
021A C30001

0210
021E

Figure 44a.

· ,

ORG
MACLIB
MACLIB

CYCLE: WRITE
READ

1f2Jf2JH
SIMPIO :SIMPLE 10 LIBRARY
NCOMPARE:COMPARISON OPERATORS

<TYPE A CHARACTER FROM A TO D)
X

· , TEST
GEO
X IS

FOR LOWER CASE ALPHABETIC

· ,

· , NOTRAN:

X,%'a' "NOTRAN :BRANCH ON FALSE
GREATER OR EQUAL TO LOWER CASE A

GTR X,%'z' ,NOTRAN
LDA X
ANI 5FH :UPPER CASE
STA X :BACK TO X

· NOW CHECK CASES ,
· ,

NEQ X , % ' A ' , NOTA
WRITE <YOU TYPED AN A)
JMP CYCLE

· , NOTA: NEQ X, % 'B ' , NOTB
WRITE <YOU TYPED A B)
JMP CYCLE

· ,
NOTB: NEQ X , % ' C' , NOTC

WRITE <YOU TYPED A C)
JMP CYCLE

· ,
NOTC: NEQ X, % 'D'" , ERROR

WRITE <YOU TYPED A D)
WRITE <BYE"" 1)
R,ET

· ,
ERROR.: WRITE <NOT AN A, B, C, OR D)

JMP CYCLE
· ,
X: DS 1 :TEMP FOR CHARACTER

END

Sample Program usinq NCOMPARE Library.

114

+
+
+
+
+
+
+

0133+3A1D02
+
+
+
+
+

~0~9+t
+
+

0136+0661
+
+
+
+

0138+DA4FfH
+
+
+
+
+

+
+
+
+
+
+

0138+3A1D"'2
+
+
+
+
+

~001+'
+
+

013E+067A
+
+
+
+

0140+DA4701
0143+30
0144+D24F01

+
0147 3A1002
014A E65F'
014C 321D02

TEST
GEO
IF
LSS
IF
GEQ
ELSE
TEST?
IF
LOA
ENDIF
IRPC

TOIG? SET
EXITM
ENOM

TOIG? SET
EXITM
IF
SUI
ELSE
LXI
SUB
ENDM
JC
ENOM
ELSE
TEST?
JNC
ENOM
X IS

IF
LEO
ELSE
LOCAL
TEST?
IF
LDA
ENOlr
IRPC

TOIG? SET
EXITM
ENDM

'l'DIG? SET
EXITM
IF
SUI
ELSE
LXI
SUB
ENOM
JC
DCR
JNC

1?0003:

. ,
NOTRAN:

FOR LOWER CASE ALPHABETIC
X,%'a

,
, , NOT RAN : BRANCH ON FALSE

NUL
X,97,NOTRAN
NOL NOTRAN
X,97,

X,97
NOT NUL X
X

?y,97
"&?Y'-'~'

'9'-'~'

TOIG? <= 9
97

H,97
M

NOT RAN

X,97

GREATER OR EQUAL TO LOWER CASE A
GTR X, %' z ~ ,NOTRAN
NUL NOT RAN
X,122,

GFL
X,122
NOr.Ll NUL X
X

?Y,122
.. &?y" - ' 0 '

'1'-'0'

TDIG? <= 9
122

H,122
M

??0003
A
NOT RAN
ENDM
LOA X
ANI SFH ;UPPER CASE
STA X ;BACK TO X

Figure 44b. Segment of Fig 44a with "+M" Option.

115

Given the SIMPIO and NCOMPARE libraries, it is now possible to define the
first complete control structure, called the WHEN-ENDW group. The form of the
group is:

WHEN condition
statement-l
statement-2

statement-n
ENDW

where "condition" is a relational expression taking one of the forms

id,rel,id id,rel,number ,rel,id ,rel,number

and "id" is an identifier, "reI" is a relational operator (LSS, LEQ, EQL, NEQ, GEQ,
GTR), and "number" is a literal numeric value. Similar in form to the arguments of
the individual relational operators of the COMPARE library, the last two forms' shown
above assume the first argument is present in the 8080 accumulator. The mea.ning of
the WHEN-ENDW group is as follows: the condition following the WHEN is evaluated
as a relational expression, according to the rules stated with the COMPARE library.
If the condition produces a true result, then statement-l through statement-n are
executed. Otherwise, control transfers to the statement following the ENDW. Nested
WHEN-ENDW groups are allowed when they take the form:

WHEN .•.

WHEN

WHEN

ENDW

ENDW

ENDW

to arbitrary levels, where the " .•• n represent interspersed statements. Because of
the simplified implementation, nested parallel WHEN-ENDW groups are disallowed when
they take the form:

WHEN •..

ENDW

WHEN

ENDW

WHEN

ENDW

116

The implementation of the WHEN-ENDW group is based upon macros which "count"
WHEN-ENDW groups and generate branches and labels at the proper levels in the
structure.

Figure 45 shows the WHEN macro library, consisting of four macros GENWTST
(generate WHEN test), GENLAB (generate label), WHEN (beginning of WHEN group),
and ENDW (end of WHEN group). These macros, in turn, use the macros in the
NCOMPARE library shown previously and thus are assumed to exist in the user's
program as a result of a MACLIB NCOMPARE statement. Label generation is based
upon the WCNT (WHEN count) and WLEV (WHEN level) counters. WCNT is incremented
each time a WHEN is encountered, and WLEV keeps track of the number of WHEN's
which have occurred without corresponding ENDW's.

Upon encountering the first WHEN, the WCNT and WLEV counters are set to
zero, and the WHEN macro is redefined to generate the first WHEN test by invoking
GENWTST, using the relation R, operands X and Y, and WHEN counter WCNT. Note
that the value of weNT is passed to GENWTST rather than the characters "WCNT"
themselves:-Thus, at the first invocation of GENWTST, the dummy argument NUM
has the value O. The first argument to GENWT8T, called TST, corresponds to a
relational operation (L8S through GTR) and thus is invoked automatically within the
body of GENWTST, using the negated form of the relational since the TL argument
is empty. Again referring to the body of the GENWT8T macro in Figure 45, note
that the last argument, corresponding to the false label of the relational operation, is
the constructed label ENDW&num, where num has the value 0 initially, and successively
larger values on later invocations. Each time GENWTST is invoked, it generates a
relational test and a branch on false to a generated label. It is the responsibility of
the ENDW macro to produce the appropriate balanced label when encountered in the
program.

Referring back to the body of the WHEN macro in Figure 45, the WLEV level
counter is set to the current WeNT, and the WCNT is incremented in preparation for
the next WHEN statement. Similar to nearly all macros which redefine themselves,
the outer macro definition of WHEN invokes the newly created WHEN macro before
exit.

Upon encountering the an ENDW statement in the source program, the ENDW
macro first invokes GENLAB to generate the appropriate ENDW label. The first
argument to GENLAB is the label prefix ENDW, while the second argument is the
evaluated parameter %WLEV corresponding to the current ENDW label. If only one
WHEN statement had been encountered, for example, the value of WLEV would be
zero, and thus GENLAB would produce the label ENDWO which is the destination of
the earlier branch generated by an invocation of GENWT8T. Following the invocation
of GENLAB, WLEV is decremented to account for the fact that one more destination
label has been resolved.

As an example of the use of WHEN-ENDW, Figure 46a shows a sample program
which resembles the previous character scanning function, but uses the WHEN group
in the place of simple t.ests and branches. As before, a single character is read from
the console and first tested for possible case conversion. The statement "WHEN
X,GEQ,61H" causes the three statements which follow to be executed when X is greater
than or equal to 61H (lower case "a") and skipped otherwise. Further, the four WHEN
groups which follow each test for the specific characters A, B, C, or D. If an "An

117

· ,
· ,

macro library for "when" construct

: label generators
genwtst macro tst,x,y,num
~~ generate a "when" test (negated form),
:: invoke macro "tst" with parameters
:: x,y with jump to endw & num

tst x,y"endw&num
endm

genlab macro lab,num
" produce the label "lab" & "num H

lab&num:

· , · ,
when · . , ,
wcnt
when

wlev
wcnt

endw · . , ,

wlev · . , ,

endm

"when j, macros for start and end

macro xv,rel,yv
initialize counters first time
set 0 ::number of whens
macro
genwtst
set
set
endm
when
endm

macro

x,r,y
r,x,y,%wcnt
wcnt ::next endw to generate
wcnt+l ::nurnber of "whenUs

xv,rel,yv

generate the ending code for a "when"
genlab endw,%wlev
set wlev-l ::count current level down
wlev must not go below 0 (not checked)
endm

Figure 45. Macro Library for the WHEN Statement.

118

0100

0100
0128

0133
0138 3A1102
013E E65F
0140 321102
0143

0143
0148
0167 C30001
et16A

016A
0172
0180 C30001
0190

019~
0198
01B3 C30001
0186

0186
01BE
01D9
eJ1EB C9
01EC

01EC
020E C30001

0211

· ,

ORG
MACLIB
MACLIB
MACLIB

100H
SIMPIO :SIMPLE 10 LIBRARY
NCOMPARE:EXPANDED COMPARE OPS
WHEN :WHEN CONSTRUCT

CYCLE: WRITE <TYPE A CHARACTER FROM A TO D >
READ X

: TEST FOR LOWER CASE ALPHABETIC
WHEN X,GEO,61H
LDA X
ANI 5FH :CLEAR LOWER CASE BIT
STA X :STORE BACK TO X
ENDW

: NOW CHECK CASES
· ,

· ,

· ,

· ,

· ,

· ,
X:

WHEN
WRITE
JMP
ENDW

WHEN
WRITE
JMP
KNOW

WHEN
WRITE
JMP
ENOW

WHEN
WRITE
WRITE
RET
FNOW

WRITE
JMP

DS

X,EOL,%'A'
<YOU TYPED AN A>
CYCLE

X,EQL,%'B'
<YOU TYPED A B>
CYCLE

X,EQL,%'C'
<YOU TYPED A C>
CYCLE

x , EOI, , % ' D '
<YOU TYPED A D)
<BYE

A

!>

<NOT AN A, B, C, OR. D>
CYCLE

1 :TEMP FOR CHARACTER

Figure 46a. Sample WHEN Program with U_MH in Effect.

119

is typed, the corresponding WHEN group is executed, and control transfers back to the
CYCLE label where another character is read from the console. If the letter D is
typed, the program responds with two messages and returns to the console command
processor.

Figure 46b shows the same program with full macro trace enabled. This particular
portion of the program shows macro processing for the first WHEN-ENDW group only,
although the remaining groups are processed in a similar fashion. It is a worthwhile
exercise for the reader to determine that the nesting rules for WHEN groups are
properly stated, and that the restriction on nested parallel groups is, in fact, necessary.

form
A second control structure, called the DOWHILE-ENDDO group takes the general

DOWHILE condition
statement-l
statement-2

statement-n
ENDDO

where the "condition" and nesting rules are identical to the WHEN-ENDW group. The
DOWHILE group is sim ilar in concept to the WHEN group, except that statements 1
through n are executed repetitively as long as the condition remains true. That is,
the condition is evaluated when the DOWHILE is encountered in normal program flow.
If the· condition produces a false value, then control transfers to the statement following
the ENDDO. Otherwise, the statements within the group are executed until the ENDDO
is reached. Upon encountering the ENDDO, control transfers back to the DOWHILE
and the condition is evaluated again. Iteration continues through the group until the
condition produces a false value.

The macro library for the DOWHILE group is shown in Figure 47. In general,
the DOWHILE statement invokes the relational operator macros to produce the proper
sequence of tests and branches. Upon encountering the END DO, the proper label and
jump sequence is again generated. Note that the only essential difference in the
DOWHIL E and WHEN groups is that the location of the DOWHILE test must be labelled
and- a JMP instruction must be generated to this label at the end of each group.

Referring to Figure 47, GENDTST (generate DOWHILE test), GENDLAB (generate
DOWHILE label), and GENDJMP (generate DOWHILE jump) are all "label generators"
used in the macros which follow. Similar to the WHEN macro, DOWHILE uses the
counters DOC NT and DOLEV to keep track of the number of DOWHILE groups which
have .been encountered along with the current DOWHILE level, corresponding to the
number of unmatched DOWHILE's. The DOWHILE macro first generates the entry
label DTESTn, where n is the DO WHILE count. The conditional test is then generated,
similar to the WHEN macro, with a branch on false condition to the ENDDn label
which will eventually be generated by the ENDDO macro. Finally, the DOWHILE
macro increments the DOCNT counter in preparation for the next group.

The ENDDO macro in Figure 47 first generates the JMP instruction back to the
DOWHILE test, using the GENDLAB utility macro, and then produces the ENDDn label
which becomes the target of the jump on false condition. The form of the expanded
macros for one nested level thus becomes:

120

0000+.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

0133+3Al102
+
+
+
+
+

o ({Hl 6+*
+
+

0136+D661
+
+
+
+

(lJ138+DA4301
+
+
+
+
+
+

0000+#
0001+#

+
+

013B 3Al102
013E E6SF
0140 321102

· , . . .
· ,
: TEST FOR LOWER CASE ALPHABET1C

·

WHEN X,GEO,61H
WCNT SET 0
WHEN MACRO X,R,Y

GENWTST R,X,y,%WCNT
WLEV SET WCNT
WCNT SET WCNT+l

ENDM
WHEN X,GEO,61H
GENWTST GEO,X,61H,%WCNT
GEQ X,61H"ENDwe
IF NUL
LSS X,61H,ENDW0
IF NUL ENDWeJ
GEO X,61H,
EIJSE
TEST? X.,61H
IF NOT NUL X
LDA X
ENDIF
IRPC ?y,61H

TDIG? SET ' &?Y , - ' 0 '
EXITM
ENDM

TDIG? SET '6'-'0'
EXITM
IF TDIG? <= 9
SUI 61H
ELSE
LXI 8,61H
SUB M
ENDM
JC ENDWeJ
ENDM
ELSE
TEST? X,61H
JNC
ENDM
ENDM

WLEV SET weNT
weNT SET WCNT+1

ENDM
ENDM
LDA X
ANI SFH :CLEAR LOWER CASE BIT
STA x ;STORE BACK TO X
ENDW

, . . .
Figure 46b. Partial Listing of Fig 46a with "+M" Option.

121

· , macro library for "dowhile" construct
· ,
gendtst macro tst,x,y,num
:: generate a "dowhile" test

· ,
tst x,y"endd&num
endm

qendlab macro lab,num
:: produce the label lab & num
" for dowhile entry or exit
lab&num:

endm
:
qendjmp macro num
:: generate jump to dowhile test

jmp dtest&num
endm

:
dowhile macro xv,rel,yv
:: initialize counter
docnt set 8 :number of dowhiles · . I I

dowhile · . I I

· . I I

dolev
docnt

· I

macro x,r,y
qenerate the dowhile entry
gendlab dtest,%docnt
generate the conditional test
gendtst r,x,y,%docnt
set docnt ::next endd to
set docnt+l
endm
dowhile xV,rel,yv
endm

enddo macro
:: qenerate the jump to the test

qendjmp %dolev
:: generate the end of a dowhile

gendlab endd,%dolev
dolev set dolev-l

endm

generate

Figure 47. Macro Library for the DOWHILE Statement.

122

DTESTO:
conditional jump to ENDDO

DTEST1:
conditional jump to ENDD1

JMP DTEST1

ENDD1
JMP DTESTO

Figure 48a shows an example of a program which uses the DOWHIL E group.
Although this program differs slightly from the previous examples, the principal function
is the same: a STOP character is first read from the console, followed by a group
of statements which repetitively execute in search for the STOP character. Two
DOWHILE groups occur within the program. The first group checks each character
typed (X) to see if it matches the STOP character. If not ("DOWHILE X,NEQ,STOP"),
the statements up through the matching ENDDO are processed. If the value of X is
the character A, then the message "YOU TYPED AN A" is sent to the console.
Otherwise, the message "NOT AN A" is typed, followed by a check to see if the STOP
character was typed. If so, the messages "STOP CHARACTER" and "BYE!" appear at
the console. In this case, control continues through the ENDW's to the ENDDO and
back to the DOWHILE header. In this case, the "DOWHILE X,NEQ,STOP" produces a
false condition, and control transfers to the "XRA A" instruction following the ENDDO.

Referring again to Figure 48a, a second DOWHILE-ENDDO group is executed
which clears the normal CRT screen size of 23 lines. This is accomplished by first
setting X to the value zero, followed by a DOWHILE group VJhich checks the condition
"X,LSS,23" which iterates until X reaches the value 23. The WRITE statement within
the DOWHILE group produces only the carriage-return line-feed on each interation,
since the character sequence within the brackets is empty. Following the WRITE
statement, X is incremented by one, thus acting as a line counter. When X reaches
23, the "RET" statement following the matching ENDDO receives control, and the
program terminates by returning to the console processor. Note that the "DB" statement
for X provides the initial value zero so that the first DOWHILE executes at least one
time.

Figure 48b shows a portion of the program of Figure 48a, with partial macro
trace enabled. Note in particular that this trace does not sho'w the generated labels
ENDD1 and DTESTl since no machine code was generated on those lines (the "+M"
assembly parameter would show the labels, however). The locations of these labels
can be derived from the "hex" listing to the left by noting that the "JNC ENDD1"
produces the destination address "OlFF" corresponding to the "RET" statement, while
the "JMP DTESTl" produces the address "01 E2" corresponding to the "LDA X" instruction
at the beginning of the DOWHILE group.

The last control structure presented in this section is the SELECT-ENDSEL
group, which corresponds to the Fortran "computed GO-TO," the ALGOL "switch"
statement, and the PL/M "case" statement. The general form of the SELECT group
is

123

~
to.:)

~

0100

0100
0127

012F
0139
0159

0161
0169
0185

0185
0180
01A3
01AD
01C9
010B
010B
01DB

D1DE AF
01DF 320002
01E2
01EA
01F8 210002
01FB 34
01FC
01FF C9

0200 00
0201

· ,

· ,

· ,

· ,

· , · ,

;

ORG
MACLIB
MACLIB
MACLIB
MACLIB

100H
SIMPIO ;SIMPLE 10 LIBRARY
NCOMPARE;EXPANDED COMPARE OPS
WHEN :WHEN CONSTRUCT
OOWHILE :DOWHILE STATEMENT

WRITE <TYPE THE STOP CHARACTER: >
READ STOP
X = 0 FOR THE FIRST LOOP

DOWHILE X,NEO,STOP ;LOOK FOR STOP CHARACTER
WRITE <TYPE A CHARACTER: >
READ X

WHEN
WRITE
ENDW

X,EQL,%'A'
<YOU TYPED AN .A>

WHEN X,NEQ,%'A'
WRITE <NOT AN A>

ENDW
ENDDO

WHEN X,EQL,STOP
WRITE <STOP CHARACTER>
WRITE <BYE"" I>
ENDW

CLEAR
XRA

THE SCREEN (23 CRLF'S)
A

STA
DOWHILE
WRITE
LXI
INR
ENDDO
RET

X ;X=0
X,LSS,23
<>
H,X
M ;X=X+l

X: DB
STOP: DS

o
1

;EXECUTES "Oo.W~ILE" FIRST TIME
;STOP CHARACTER

Figure 48a. An Example using the DOWHILE Statement.

0lDE AF
0lDF 320002

0lE2+3A0002
0lE5+D6l7
0lE7+D2FF0l

0lEA+C3F00l
0lED+0D0A
0lEF+24
eJlF0+0E09
0lF2+llED0l
0lF5+CD050~
01F8 2l0~02
0lFB 34

0lFC+C3E20l
0lFF C9

Fiqure 48b.

. , CLEAR THE SCREEN (23 CRLF'S)
XRA A
STA X :X=0
OO~lHILE X, LSS, 23
LDA X
SUI 23
JNC ENDDl
WRITE <>
JMP ??0014

??0013: DB CR,LF
DB '$'

??~014: MVI C,MSGOUT
LXI D,??0013
CALL BDOS
IJXI H,X
INR M
ENDDO
JMP
RET

DTESTl

;X=X+l

Partial Listinq of Fiq 48a with Macro Generation.

125

SELECT id
statement-set-O
SELNEXT
statement-set-1
SELNEXT

SELNEXT
statement-set-n
ENDSEL

where "id" is a data label corresponding to an 8-bit value in memory, and statement
set 0 through n denote groups of statement separated by SELNEXT delimiters.

The action of the SELECT-ENDSEL group is as follows: the variable given in
the SELECT statement is taken as a "case" number assumed to be in the range 0
through n. If the value is 0, statement-set-O is executed and, upon completion of the
group, control transfers to the statement following the ENDSEL. If the variable has
the value 1, then statement-set-1 is executed. Similarly, if the variable produces a
value i between 0 and n, then statement-set-i receives control. There can be up to
255 groups of statements within each SELECT-ENDSEL group, and any number of
distinct SELECT-ENDSEL groups. Nested SELECT-ENDSEL groups are not allowed,
however. That is, a SELECT-ENDSEL group cannot occur within a statement-set
enclosed within an encompassing SELECT-ENDSEL group. As a convenience, the
variable following the SELECT can be omitted in which case the current 8080 accumu
lator content is used to select the proper case.

Figures 49a and 49b show the SELECT macro library which implements the
SELECT-ENDSEL group. The general strategy is to count the cases as they occur,
starting with the SELECT, delimited by NEXTSEL, and terminated by ENDSEL. As
the cases occur, a case label is generated which takes the form CASEn@m where n
counts the SELECT-ENDSEL groups, and m is the case number within group n. A
jump instruction is generated at the end of each case to the label ENDSn which marks
the end of the SELECT group number n. Upon encountering the end of the group, a
"select-vector" is generated which contains the address of each case within the group,
headed by the label SELVn, where n is again the group number. Machine code is thus
generated at the SELECT entry which indexes into the select vector, based upon the
SELECT variable, to obtain the proper case address. The first statement within the
case receives control based upon the value obtained from this vector.

The general form of the machine code generated for the first SELECT group
within a particular program (group n = 0) is:

LDA id
LXI SELVO
(index HL by id, and
load the address to HL)
PCHL

CASEO@O:
statement-set-O
JMP ENDSO

CASEO@1:
statement-set-1
JMP ENDSO

126

macro library for dselect~ construct

; label generators
genslxi macro
; ~ load hI

lxi
endm

num
with address of case list
h,selv&num

qencase macro num,elt
;; generate jrnp to end of cases

if elt gt 0
jmp ends&num ::past addr list
endif

" generate label for this case
case&num&@&elt:

endm

qenelt macro num,elt
;; qenerate one element of case list

dw case&num&@&elt
endm

qenslab macro num,elts
" generate case list
selv&num:
ecnt set

ecnt

rept
genelt
set
endm

, I generate
ends&num:

endm

o :;count elements
elts ;;qenerate dw's
num,%ecnt
ecnt+l

: :end of dw's
end of case list label

Figure 49a. Macro Library for SELECT Statement.

127

selnext macro
:: generate the next case

qencase %ccnt,%ecnt
:: increment the case element count
ecnt set ecnt+l

endm
:
select · . , ,
ccnt
select · . , ,

ecnt

· . , ,

· ,
endsel · . 1 ,

· . , ,
ccnt

macro var
generate case selection code
set 0 ::count "selects"
macro v ~;redefinition of select
select on v or accumulator contents
if not nul v
Ida v ;:load select variable
endif
genslxi %ccnt
mov
mvi
dad
dad
mov
inx

e,a
d,0
d
d
e .. m
h
d,m

:;generate the lxi h,selv#
;;create double precision
; ; v in d, e pa i r
;:single prec index
:;double prec index
:;low order branch addr
;:to hiqh order byte
;;hiqh order branch index
::ready branch address in hI
:;gone to the proper case
::element counter reset

mov
xchq
pchl
set
endm
invoke
select
selnext
endm

redefined select the first time
var

;:automatically select case 0

macro
end of select, generate case list
gencase %ccnt,%ecnt ::last case
genslab %ccnt,%ecnt ;;case list
increment "select" count
set ccnt+l
endm

Figure 49b. Library for SELECT Statement (Con't).

128

CASEO@n:
statement-set-n
JMP ENDSO

SELVO:
DW CASEO@O
DW CASEO@l

DW CASEO@n
ENDSO:

Figure 49a contains the label generators GENSLXI (generate SELECT LXI),
GENCASE (generate case labels, GENELT (generate select vector element), and
GENSLAB (generate SELECT labeI). Figure 49b contains the macro definitions for
SELNEXT (select next case), SELECT, and ENDSEL. Referring to Figure 49b, the
SELECT macro begins by zeroing CCNT which counts SELECT-ENDSEL groups and
then redefines itself, similar to the WHEN and DOWHILE macros. The redefined
SELECT macro then generates the select vector indexing operation by loading the
indexing variable, if necessary, and then fetches the specific case address. Note that
no machine code is generated to check that the indexing variable is within the proper
range. The PCHL at the end of this code sequence performs the branch to the selected
case. At the end of the redefined select macro, SELNEXT is invoked automatically
to delimit the first case in the SELECT group (otherwise SELECT would have to be
followed immediately by SELNEXT in the user program to generate the proper labels.
SELECT also zeroes the ECNT variable which counts the cases until ENDSEL is
encountered.

SELNEXT, shown at the top of Figure 49b, is invoked by the programmer to
delimit cases. The GENCASE utility macro is invoked which, in turn, generates a
JMP instruction for the previous group, if this is not group zero, and then produces
the appropriate case entry label. SELNEXT also increments the select element counter
ECNT to account for yet another case.

Upon encountering the ENDSEL, the last macro in Figure 49b, GENCASE is
again invoked to generate the JMP instruction for the last case. GENSLAB then
produces the select vector by first generating the SELVn label, followed by a list of
ECNT DW statements which have the case label addresses as operands.

Figure 50a gives an example of a simple program which uses two SELECT groups.
The first SELECT group executes one of five different MVI instructions based upon
the value of X. The second SELECT group assumes that the 8080 accumulator contains
the selector index, and executes one of three different MVI instructions. The program
of Figure 50a is used only to illustrate the generated control structures, and does not
itself produce any useful values as output. The sorted symbol table shown at the end
of the listing gives the generated label addresses for the individual cases.

Figure 50b shows a segment of the previous program with generated macro lines.
Note the case selection code following "SELECT X" and the selection vector at the
end of the listing.

Figure 50c gives a more complete trace of the SELECT-ENDSEL group, showing
the actions of the macros as they expand for the second SELECT-ENDSEL group of

129

MACLIB SELECT
0000 SELECT X
0010 3E00 MVI A,0
0012 SELNEXT
0015 3E01 MVI A,l
0017 SELNEXT
001A 3E02 MVI A,2
001C SEI .. NEXT
001F 3E03 MVI A,3
0021 SELNEXT
0024 3E04 MVI A,4
0026 ENDSEL . ,
0033 SELECT
0040 0600 MVI B,0
0042 SELNEXT

....,. 0045 0601 MVI B,l
~ 0047 SELNEXT
0 004A 0602 MVI B,2

004C ENDSEL
;

0055 X: DS 1

0010 CASE0@0 0015 CASE0@1 001A CASE0@2 801F CASE0@3 0024 CASE0@4
0029 CASE0@5 0040 CASE1@0 0045 CASEl@l 004A CASEl@2 004F CASE1@3
0033 ENDS0 8055 ENDSl 0029 SELV0 004F SELV1 0055 X

Figure 50a. Sample Program using SELECT with U_M +S" Options.

MACLIB SELECT
SELECT X

0000+3A5580 LDA X
0003+212900 LXI H,SELVe
0006+5F MOV E,A
0007+1600 MVI D,0
0009+19 DAD 0
000A+19 DAD D
000B+5E MOV E,M
000C+23 INX H
000D+56 MOV D,M
000E+EB XCHG
000F+E9 PCHL
0010 3E00 MVI A, eJ

SELNEXT
0012+C33300 JMP ENDS0
0015 3E01 MVI A,l

SELNEXT
0017+C33300 JMP ENDS0
001A 3E02 MVI A,2

SELNEXT
001C+C33300 JMP ENDS0
001F 3E03 MVI l-\ , 3

SELNEXT
0021+C33300 JMP ENDS0
0024 3E04 MVI A,4

ENDSEL
0026+C33300 JMP ENDS'"
0029+1000 DW CASE0@0
002B+1500 DW CASE0@1
eJ02D+1A00 DW CASE0@2
002F+IF00 DW CASE0@3
0031+2400 DW CASE0@4

Fiqure 50b. Segment of Fiq S0a with Mnemonics.

131

+
+
+
+

0033+214F00
+

0000+#
+
+
+
+
+
+

0001+#
+
+

0040 0600

+
+

0042+C35500
+
+
+

0002+1
+

+
+

0000+#
+
+
+
+
+

004F+4000
+

0001+#
+

0051+4500
+

0002+1
+

0053+4A00
+

0003+'
+
+
+

0002+#
+

Figure 50c.

SELECT
IF NOT NUL
LOA
ENOIF
GENSLXI %CCNT
LXI H,SELV1
ENOM · . .

(indexing code similar to Fig 50b)
· . .

BeNT SET o
%CCNT,%ECNT GENCASE

IF
JMP
ENOIF

" G'!' 0
ENDS!

CASE1@0:
ENOM

ECNT SET ECNT+!
ENOM
ENDM
MVI
SELNEXT
GENCASE
IF
JMP
ENDIF

B,0

%CCNT,%ECNT
1 GT 0
ENDSl

CASEl@1:
ENDt-l

ECN'!' SET
ENOM

ECNT+l

· . .
(remaining cases are similar) · . .

ENDSEL
GENSLAB %CCNT,%ECNT

SELVl:
ECNT SET 0

REPT 3
GENELT 1,%ECNT

ECNT SET ECNT+l
ENDM
GENELT l,%ECNT
D~l CASEl@0
ENOM

ECNT SET ECNT+l
GENELT l,%ECNT
OW CASEl@l
ENDM

ECNT SET ECNr!'+l
GENEt'l' 1, % ECNT
DW CASEl@2
ENDM

ECNT SET ECNT+l
ENDM

ENDSl:
ENDM

CCNT SET CCNT+ 1
ENDM

Segment of Fig 50a with "+M" Option.

132

Figure 50a. The listing has been edited to remove the case selection code, which is
listed in Figure 50b, as well as the code generated for case number 2. Figure 50c
should be cross-referenced with the SELECT macro library given in Figures 49a and
49b if confusion remains as to the actions of these macros.

It is now possible to show a complete program which uses the WHEN, DOWHILE,
and SELECT groups. Figure 51 shows a program which is similar in function to a
more complicated program which interacts with the console in executing single character
input commands. In fact, the two CP/M programs ED and DDT both take this general
form (see the ED and DDT Users Guides for details). That is, a single letter is used
to select a single action which may correspond to an edit request in the ED program,
or a debug request in DDT. Upon completion of each command, control returns back
to the main loop to accept another single letter com mand.

The program given in Figure 51 begins by loading the macro definitions for the
SIMPIO, NCOMPARE, WHEN, DOWHILE, and SELECT operations. Several messages
are then sent to the console device, fo11owed by a single DOWHILE-ENDDO group
which encompasses nearly the entire program. The DOWHILE group is controlled by
the X,NEQ, %'D' test and thus continues to loop while the X character is not the letter
D. On each iteration of the DOWHILE group, a single letter is read from the console
and converted to upper case, if necessary. In order to ensure that the letter is in
the proper range of values, two WHEN groups follow which convert illegal values to
the letter E, which will subsequently produce an error response.

Following the WHEN tests in Figure 51, the character must be in the range 'A'
through 'E'. Before indexing into the SELECT group, this value is "normalized" to the
absolute value 0 through 4 corresponding to each of the possible values. The SELECT
statement uses the value in the accumulator to select one of the five cases, producing
the appropriate response to the letters A through D, or an error response for the last
case. Upon completion of the SELECT group, control returns to the DOWHI.LE where
the last character typed is tested against the letter D. If X is not equal to the letter
D, the iteration continues. Otherwise, the DOWHILE completes and control returns
to the console processor.

The control structures presented in this section are representative of the forms
which can be implemented. Additional facilities, such as the controlled iteration found
in Fortran DO loops, or Algol FOR loops can be implemented using essentially the
same techniques used for the WHEN and DOWHILE. Further, Subroutine parameter
mechanisms which pass actual values to subroutines for assignment to formal parameters
can also be defined with macro libraries. Note also that it would be relatively easy
to include control structures for the stack machine given in the previous section, thus
allowing machine independent programming of control structures as well as arithmetic
operations.

133

0100

0100
0127
015C?J

0174
017C
019C

01A4
01AC 3ABF02E65F
01B4

01B4
01BC 3E4532BF02
0lCI

({IICI
01CC 3E4532BF02
0101

01Dl 3ABF02D641
0106
01E3
0204
0207
0228
022B
024C
024F
0270
0290
0293
02AE
028B

02BE C9

02BF 00

· " · ,

· ,

. ,
X:

ORG
MACLIB
MACLIB
MACLIB
MACLIB
MACLIB

100H :BEGINNING OF TPA
SIMPIO :SIMPLE READ/WRITE
NCOMPARE:COMPARISON OPS
WHEN : "WHEN" CONSTRUCT
DOWHILE :"DOWHILE" CONSTRUCT
SELECT :"SELECT" CONSTRUCT

USING THE CCP'S STACK, READ INPUT
CHARACTERS, UNTIL A ·z IS TYPED
WRITE <SAMPLE CONTROL STRUCTURES>
WRITE <TYPE SINGLE CHARACTERS FROM>
WRITE <A TO 0, If'1'LL STOP ON 0>

DOWHILE X,NEQ,%'D'
WRITE <TYPE A CHARACTER: >
READ X

WHEN X,GEQ,%'A'
LOA X! ANI 05FH! STA X :CONV CASE

ENDW

WHEN X,LSS,%'A'
MVI A,'E'! STA X :SET TO ERROR

ENDW

WHEN X,GTR,%'E'
MVI A,'E'! STA X :SET TO ERROR

ENDW

LDA X! SUI 'A' :NORMALIZE TO 0-4
SELECT :BASED ON X IN ACCUM

WRITE <YOU SELECTED CASE A>
SELNEXT
WRITE <YOU SELECTED CASE B>
SELNEXT
WRITE <YOU SELECTED CASE C>
SELNEXT
WRITE <YOU SELECTED CASE 0>
WRITE <SO I"M GOING BACKt!>
SELNEXT
WRITE <BAD CHARACTER>

ENDSEL
ENDDO

RET

DATA
DB

:BACK TO CCP

AREA
(21 ;X=00 INITIALLY

Figure 51. Program using WHEN, DOWHILE, and SELECT.

134

9.4. Operating Systems Interface.

In a general-purpose computing environment, macros are often used to provide
systematic and simplified mechanisms for programmatic access to operating system
functions. Throughout this document, the examples have shown various low-level calls
to the CP 1M operating system which implement function such as single character input,
single character output, and full message output. In each case, the macros simplify
the operations by performing the low-level register set-ups and calls which perform
the function.

The purpose of this section is to introduce more comprehensive operating system
interface macros, and specifically show a sample macro library which allows simplified
diskette file operations for sequential "stream" input/output operations. The principal
macros of this library which allow file access are listed below:

FILE
GET
PUT
FINIS
ERASE
DIRECT
RENAME

- set up a named file for subsequent disk operations
- read a single character from a specific data source
- send a character to a specific data destination
- terminate file access for a specific group of files
- remove a specific diskette file
- search for a specific file on the diskette
- rename a specific diskette file

Before introducing the macro 1ibrary which performs these functions, the operation of
each macro is described, followed by a simple example.

The FILE operation takes the form:

FILE mode,fileid,diskname,filename,filetype,buffsize,buffaddr

where the individual parameters of the FILE macro describe a particular file to be
accessed in the program. The parameter values for the FILE macro are:

mode

fHeid

diskname

filename

filetype

- infile (input file),
- outfiIe (output file),
- set file (set up file name for ancillary functions),

- file identifier for internal reference throughout
the program

- disk drive name (A, B, . . .) containing the file
being accessed, or empty if the default drive is
being used

- the (up to eight character) file name of the diskette
file being accessed; if "1" or "2" is specified, then
the first or second default file name is used,
respectively

- the (up to three character) file type of the file being
accessed; if"1" or "2" has been specified for the
filename parameter and an empty filetype is given,

135

buffsize

buffaddr

then the file type is taken from the selected default
file name, otherwise the type is set to blanks

- the size (in bytes) of the buffer area used for this
file; the value is rounded down to an integral
multiple of the diskette sector size; if the rounding
produces a result which is too small, or if the para
meter is empty, then only one sector is buffered.

- the address of the buffer area to be used during
accesses to this file; if empty, then the buffer
address is assigned automatically

The FILE sta.tement

FILE INFILE,ZOT,A,NAMES,DAT

for example, sets up the file "NAMES.DAT" on diskette drive A for subsequent. access.
Internal to the program, this file will be referenced by the name ZOT. Further, the
buffer address is a.ssigned automatically, and the buffer size is set to one sector
(normally 128 bytes). In general, larger buffers are useful in minimizing rotational
delay on the diskette due to "missed sectors" during the file operations. If the
"NAMES.DAT" file does not exist, an error message is sent to the console, and the
program is aborted. An output file can be created using the statement

FILE OUTFILE,ZAP ,B,ADDRESS,DAT, 1000

for example, which creates the file "ADDRESS.DAT" on drive B for subsequent output,
referenced internally by the name ZAP. In this case, the buffer size is set to 1000
bytes (rounded down to 7 * 128 = 896 bytes), and the base address of the buffer is
set automatically. The sample programs show alternative FILE options.

The GET macro invocation takes the form

GET device

where "device" specifies 8. simple peripheral or a diskette file defined by a previously
executed FILE statement. The GET statement reads one byte of data into the 8080
accumulator from the specified device. The possible device names are:

key
rdr
fileid

- console keyboard input
- reader device
- previously defined file identifier given in a FILE statement

The following GET invocations perform the functions shown to the right below.

GET KEY - read one keyboard character
GET RDR - read one reader character (see CP 1M Interface and

Alteration Guides for READER entry point definition)
GET ZOT - read one character from the file given by the in

ternal name ZOT (i.e., the NAMES.DAT file if the
above FILE statement had been executed)

136

The end of data can be detected in two ways: if the file contains character data,
the end of file is detected by comparing the individual characters with the standard
CP 1M end of file mark which is a control-Z (hexadecimal lAH). The GET function
also returns with the 8080 zero flag set to true if a real end of file is encountered
so that pure binary files can be read to the end of data.

The PUT macro performs the opposite function from the GET macro. The PUT
invocation takes the form:

PUT device

where "device" specifies a simple output peripheral or a diskette file defined previously
using the FILE macro. The possible device names are

con
pun
1st
fileid

- console display device
- system punch device
- system listing rlevice
- previously clefined output fUe irlentifier

The following PUT invocations perform the functions shown to the right bela,,!:

PUT
PUT
PUT
PUT

CON
PUN
LST
ZAP

- \vrite the accumula.tor character to the conso1e
- write the accumulator charact.er to the punch
- v.~rite the accumulator character to the list device
- write the accumulator character to the file

whose internal name is ZAP (i.e., the ADDRESS.DAT
file in the above example)

Note that the character in the accumulator is preserved during the invocation so that
it may be involved in further tests or macro invoca.tions following the PUT sta.tement.

The FINIS statement. is usee to close a file or set of files upon completion of
fHe access. In the case of an output file, the internal buffers are written to disk,
and the file name is per'manentJy recorded on the diskette for future access. The
form of the FINIS invocation is

FINIS filelist

where "fileUst" 1S a single internal name vlhich appeared previously in a fUe statement,
or a list of such file names enclosed within broken left and right brackets, and separated
by commas. Although it is not necessary to close input files with the FINIS statement,
it is good practice, since the file close operation may be required on future versions
of the macro library. An example of the FINIS statement is:

FINIS ZAP - write all buffers for the ZAP file, a.nd record the
file in the diskette directory; in the above example,
the ADDRESS.DAT file is closed.

The ERASE macro allows programmatic removal of a diskette file given by the
specified file identifier defined in a previous FILE statement. If the file identifier is
not used in a GET or PUT statement, then the FILE statement can have the mode

137

"setfile" which requires less program space than an "infile" or "outfile" parameter.
Specific cases of the ERASE statement will be given in the examples which follow.
In the simple case

ERASE ZOT

however, the file NAMES.DAT would be removed from the diskette, given the previous
FILE statement which defines ZOT.

The DffiECT macro is used to search for a specific file on the diskette. Similar
to the ERASE macro, the file identifier must be previously given in a FILE statement
using one of the three possible file modes. The DIRECT invocation sets the 8080 zero
flag to false if the file is present on the diskette. In both the ERASE and DIRECT
macros, the file identifiers can reference file names and types with embedded "?"
characters, similar to the normal CP 1M "DIR" command, where the question mark will
match any character in the file names being scanned. The macro invocation

DIRECT ZAP

for example, returns a non-zero flag if the file ADDRESS.DAT is present, and a zero
flag if the file is not present, given the original FILE statement involving the ZAP
file identifier.

The RENAME macro takes the form

RENAME newfile,oldfile

where "newfile" and Tfoldfile" are file identifiers which have appeared in previous FILE
statements. The rename macro changes the file name given by newfile to the file
name given by olrlfile. Similar to the ERASE and DIRECT macros, the file identifiers
"new file" and "old file" must appear in previously executed FILE statements, but may
have a mode of "setfile" if they are not used in GET or PUT macros. If the drive
names for t.he oldfile and newfile differ, then the drive name of the newfile is assumed.
The sequence of macro invocations

FINIS
ERASE
RENAME

ZAP
ZOT
ZOT,ZAP

;CLOSE "ZAP"
;REMOVE "ZOT"
;CHANGE NAMES

for example, first closes the ADDRESS.DAT file on drive B, then erases the NAMES.DAT
file on drive A. The RENAME macro then changes the ADDRESS.DAT file to the
name NAMES.DAT file on drive A.

Figure 52 shows the use of the FILE, GET, PUT, and FINIS macros in a working
program. The purpose of this program is to read an input file, specified at the console
command processor level as the first file name, and translate each lower case alphabetic
character to upper case. The output is sent to the file given as the second parameter
at the command level. Given that this program has been assembled, loaded, and stored
as "CASE.COM" on the diskette, a typical execution would be

CASE LOWER.DAT UPPER.DAT

138

SISS ORG 1S0H
· COpy FILE 1 TO FILE 2, CONVERT ,
· TO UPPER CASE DURING THE COpy ,
· AND ECHO TRANSACTION TO CONSOLE ,

MACLIB SEOIO :SEOUENTIAL I/O LIB
SSS0 = BOOT EOU 0000H : SYSTEM REBOOT
005F = UCASE BOU SFH :UPPER CASE BITS

· , 0100 317003 LXI SP,STACK
• DEFINE SOURCE FILE: ,
· INFILE = INPUT FILE ,
· SOURCE = INTERNAL NAME ,
· (NUL) = DEFAULT DISK ,
· I = FIRST DEFAULT NAME ,
· (NUL) = FIRST DEFAULT TYPE ,
• 2000 = BUFFER SIZE ,

0103 FILE INFILE,SOURCE,,1,,2000
· , · DEFINE DESTINATION FILE: I

· OUTFILE , = OUTPUT FILE
· DEST = INTERNAL NAME ,
· (NUL) = DEFAULT DISK ,
· 2 = SECOND DEFAULT NAME ,
· (NUL) = SECOND DEFAULT TYPE ,
· 2000 = BUFFER SIZE ,

01EC FILE OUTFILE,DEST,,2,,2000
· , · READ SOURCE FILE, TRANSLATE, WRITE DEST ,

02EA CYCLE: GET SOURCE
02ED FE1A CPI EOF :END OF FILE?
02EF CA0C03 JZ ENDCOPY :SKIP TO END IF SO

· ,
• NOT END C?F .. FILE, CONVERT TO UPPER CASE ,

02F2 FE61 CPI a ~BELOW LOWER CASE iIA"?
02F4 DAFE02 JC NOCONV ~ SKIP IF' SO
02F7 FE7B CPI *' z"+l :BELOW LOWER CASE .1 Z"?
02F9 D2FE02 JNC NOCONV :SKIP IF ABOVE

· MASK OUT LOWER CASE ALPHA BITS ,
02FC E65F ANI UCASE
02FE NOCONV: PUT CON :WRITE TO CONSOLE
0306 PUT DEST :AND TO DESTINATION FILE
0309 C3EA02 JMP CYCLE :FOR ANOTHER CHARACTER

· ,
ENDCOPY:

030C FINIS DEST :END OF OUTPUT
034D C30000 JMP BOOT ~BACK TO CCP

· , 0350 DS 32 :16 LEVEL STACK
STACK:
BUFFERS:

1270 = MEMSIZE EQU BUFFERS+@NXTB :PROGRAM SIZE
0370 END

Figure 52. Lower to Upper Case Conversion Program.

139

which causes the CASE.COM file to be loaded and executed in the transient program
area. Before execution, the console command processor passes LOWER.OAT as the
first default file name, and UPPER.OAT as the second file name (see the CP 1M
Interface Guide for exact details). Referring to Figure 52, the CASE program begins
by intializing the stack pointer to a local stack area in preparation for subsequent
subroutine calls which occur within the various macros in the SEQIO macro library.
The first. default file name is then taken as the SOURCE file, as defined in the first
FILE macro. The second FILE statement assigns the second default file name as an
output file with the internal name OEST. In both cases, the FILE statements open
the respective files and initialize the buffer areas consisting of 2000 bytes (rounded
down to a multiple of the sector size). Note that if the UPPER.OAT file already
exists, the second file stat.ement removes the existing file and creates a new UPPER.OAT
file before continuing. In either case, the appropriate error messages will appear at
the console if the files cannot be accessed or created in the FILE statements.

The CASE program's main loop is shown in Figure 52 between the CYCLE and
ENOCOPY labels. Each successive character is read from the SOURCE file (in this
case, LOWER.OAT) and tested to see if the character is in the range of a lower case
"a" to lower case "z." If in this range, the character is changed to upper case. At
the NOCONV label, the (possibly translated) character in the accumulator is sent to
the console device using the "PUT CON" macro and then sent to the OEST file (in
this case, UPPER.DAT). Looping continues back to the CYCLE label where another
character is read and translated. Since the data file is assumed to consist of a stream
of Ascii characters, the end of file is detected when a control-Z is encountered. When
this character is found, control transfers to the label ENDCOPY where the DEST file
is closed using the FINIS macro. Again note that errors in writing or closing the
DEST file will produce an error message at the console, and the program execution
will be aborted immedia.tely. Upon completion of the program, control is returned to
the console processor through a system reboot (JMP BOOT).

The SEQIO library macros assume that all file buffers are located at the end
of the user's program, as shown in Figure 52. In particular, the label BUFFERS must
appear a.s the last label in the user's program, and becomes the base of the buffers
al10cated automatically in the FILE statements. The actual memory requirements for
the program can be determined using an "EQU" as shown in Figure 52, with a statement
of the form

MEMSIZE EQU BUFFERS+@NXTB

which produces the equated value 1270H at the left of the listing. In this particular
case, the memory area beyond 1270H is not used by the program.

The macro library for SEQIO is shown in Figures 53a, 53b, 53c, 53d, and 53e,
which constitute the most comprehensive macro library shown in this manual. The
particular macro library contains an instance of nearly every macro facility available
in MAC, and thus it is useful to read and understand the operations contained in the
listing. The discussion below of SEQIO outlines the general functions of each macro,
but it is left to the reader to investigate the exact operation of the library.

The SEQIO segment shown in Figures 53a and 53b contain generally useful
equates and utility macros. The label FILERR at the beginning becomes the destination
of transfers upon encountering a file operation error and, since this is a SET statement,

140

I sequential file i/o library

filerr set
@bdos equ
@tfcb equ
@tbuf equ

1100h
IS0Sh
leSch
""8Sh

I bdos functions
@msg
@opn
@cls
@dir
@del
@frd
@fwr
@mak
@ren
@dma

equ 9
equ IS
equ 16
equ 17
equ 19
equ 20
equ 21
equ 22
equ 23
equ 26

,
@sect equ
eof equ
cr equ
If equ
tab equ
,
@key equ
@con equ
@rdr equ
@pun equ
@lst equ

128
lah
8dh
Bah
B9h

1
2
3
4
S

~reboot after error
~bdos entry point
~default file control block
~default buffer address

:send message
;file open
: file close
;directory search
: file delete
;file read operation
;file write operation
;file make
;file rename
;set dma address

:sector size
fend of file
;carriage return
;line feed
;horizontal tab

; keyboard
;console display
;reader
;punch
; list device

: keywords for Wfile" macro
in file equ 1 ;input file
outf ile equ 2 ;outputfile
setfile equ 3 :setup name only

,

the following macros define simple sequential
file operations:

fillnam macro fc,c
" fill the file name/type given by fc for c characters
@cnt set c : :max length

@cnt

I

irpc ?fc,fc ;;fill each character
may be end of count or nul name
if @cnt=0 or nul ?fc
exitm
endif
db
set
endm

'&?FC'
@cnt-l

pad remainder
rept @cnt
db ' ,
endm
endm

; : fill one more
~~decrement max length
;;of irpc ?fc

;;@cnt is remainder
~:pad one more blank
::of rept

filldef macro fcb,?fl,?ln
fill the file name from the default fcb
for length ?In (9 or 12)
local psub
jmp psub ;;jump past the subroutine

@def: ;;thlS subroutine fills from the tfcb (+16)
mov a,m ;;get next character to a
stax d :;store to fcb area
inx h
inx d
dcr c ;;count length down to "
jnz
ret

I I end
psub:
filldef

lxi
lxi

of

@def

fill subroutine

macro ?fcb,?f,?l
h .. @tfcb+?f : :either @tfcb or @tfcb+l6

mvi
call
endm

d,?fcb
c,?l
@def

::length = 9,12

filldef fcb,?fl,?ln
endm

fi11nxt macro
" initialize buffer and device numbers
@~xtb set " ;;next buffer location
@nxtd set @lst+l ;;next device number
fillnxt macro

endm
endm

141

..-!

.~
+-I
c::
Q)
::s
0'
Q)

00

fillfcb macro fid,dn,fn,ft,bs,ba
, I

, I

I I

, ,
, ,
, ,
, ,

I,
@c

@c

@c

@c

..
, I

fill the file control block with disk name
fid is an internal name for the file,
dn is the drive name (a ,b ••) , or blank
fn is the file name, or blank
ft is the file type
bs is the buffer size
ba is the buffer address
local pfcb

set up the file control block for the file
look for file name = 1 or 2
set 1 1:assume true to begin with
irpc ?c,fn 1:1ook through characters of name
if not ('&?C' • '1" or '&?C' = '2")
set I 1:clea~ if not 1 or 2
endm
@c is
if

true if fn = 1 or 2 at this point
@c 1:then fn • 1 or 2

fill from default area
if
set
else
set
endif
filldef
jmp
ds
fillnam
else
jmp
if
db
else
db
endif

nul ft ::type specified?
12 1:both name and type

9 only

fcb&fid,(fn-l)*16,@c ;:to select the fcb
pfcb ::past fcb definition
@c ;;space for drive/filename/type
ft,12-@c ;;series of db"s

pfcb
nul dn
o

;:past initialized fcb

: fuse default drive if name is zero

;;use specified drive

fillnam fn,8 ;:fill file name
now generate the file type with padded blanks
fillnam ft,3 ::and three character type
endif

fcb&fid equ $-12 ::beginning of thefcb

, I

@bs

I,
@bs

db 0 ;;extent field 00 for setfile
now define the 3 byte field, and disk map
ds 20 ::x,x,rc,dm0 ••• dmlS,cr fields

if fid&typ<=2 ::in/outfile
generate constants for infile/outfile
fillnxt ::@nxtb=0 on first call
if bs+I<@sect
bs not supplied, or too small
set @sect ;;default to one sector
else
compute even buffer address
set (bs/@sect)*@sect
end if

now
if

define buffer base address
nul ba

" use next address after @nxtb
fid&buf
I' count
@nxtb set

else
fid&buf

endif

set buffers+@nxtb
past this buffer

@nxtb+@bs

set ba

;; fid&buf is buffer address
fid&adr:

dw

fld&siz
fid&len:

dw
fid&ptr:

ds

fid&buf

equ @bs ;:literal size

@bs : ;buffer size

2 ;;set in infile/outfile
, , device number set

set
set
endif
endm

@&fid
@nxtd

pfcb:

@nxtd :;next device
@nxtd+l
::of fid&typ<=2 test

142

-;)
C:: o
C,,) -

file

, ,
J :
J:

. ,

macro md.fid.dn.fn.ft.bs.ba
create file using mode md:

infile = I input file
outfile ~ 2 output file
setfile = 3 setup feb

(see fillfcb for remaining parameters)
local psub.msg.pmsg
local pnd.eod.eob.pnc
construct the file control block

fid&typ
fHlfcb
if
exitm
endif

equ md :;set mode for later ref's
fid,dn.fn,ft,bs,ba
md-3 :;setup fcb only, so exit

file control block and related parameters
are created inline. now create io function
jmp psub :;past inline subroutine
if md-l ::input file

get&fid:
else

put&fid:
push
endif
lhld
xchg
lhld

psw :;save output character

fid&len :;load current buffer length

fid&ptr
a,l

., :de is length
;;load next to get/put to hI
;;compute cur-len

pnd:

, ,

, ,
eod:

emsg:

mov
sub e
mov a,h
sbb d ;;carry if next<length
jc pnc ;;carry if len gtr current
end of buffer, fill/empty buffers
lxi h,"
shld fid&ptr ;;clear next to get/put

next disk sector:
; ; fid&ptr to de

process
xchg
Ihid fid&len ;;do not exceed length

next to fill/empty, hI is max len de is
mov a,e :;compute next-len
sub 1 ;:to get carry if more
mov a,d
sbb h ;:to fill
jnc eob
carry
lhld

gen'ed, hence more to fill/empty
fid&adr ;;base of buffers

dad
xchg
mvi
call
lxi
if
mvi
else
mvi
endif
call
ora
jnz
not end
lxi
lhld
dad
shld
jmp

d ;;hl is next buffer addr

c,@dma ;;set dma address
@bdos :;dma address is set
d,fcb&fid ;;fcb address to de
md=l ;;read buffer function
c,@frd ;:file read function

c,@fwr ;;file write function

@bdos ;;rd/wr to/from dma address
a ;;check return code
eod ;;end of file/disk?
of file/disk, increment length
d,@sect :;sector size
fid&ptr ;:next to fill
d
fid&ptr ;;back to memory
pnd ;;process another sector

end of file/disk encountered
if md=l ; ; input fHe
lhld fid&ptr ;:length of buffer
shld fid&len ;;reset length
else
fatal
local
mvi
lxi
call
pop
jmp
db
db
db
endif

error, end of disk
emsq
c,@msg :;write the error
d ,emsq
@bdos
psw
f Herr
cr,lf
'disk
'$,

;;error to console
:;remove stacked character
:;usually reboots

full: &FIO'

143

. -+J
"s::
o
{)
"-'

, ,
eob:

pnc:
: 1

, ,
psub:

msg:

pmsg:

end of
lxi
mvi
call
lxi
shld

process
xchg
lhld
dad
xchg
if
lhld
mov
ora
mvi
rz
ldax
else

buffer, reset dma and pointer
d,@tbuf
c,@dma
@bdos
h,B
fid&ptr ::next to get

the next character
;;index. to get/put in de

fid&adr ::base of buffer
d :;address of char in hl

::address of'char in de
:;input processing differs
::for eof check

md-l
fid&len
a,l
h
a,eof

d

: : 0"""?

; fend of file?
::zero flag if so
;;next char in accum

store next character from accumulator
pop psw :;recall saved char
stax d ;;character in buffer
endif
Ihld fid&ptr :;index to get/put
inx h
shld fid&ptr :fPointer updated
return with non zero flag if get
ret

inline sUbroutine ; ;past
xra
sta
sta
lxi
shld
if
shld
mvi
else
lx!
shld

a
fcb&fid+12
fcb&fid+32
h,fid&siz
fid&len
md-l
fid&ptr
c,@opn

;;zero to acc

h,a
fid&ptr
c,@del

; ;clear extent
;;clear cur rec
;;buffer size
;;set buff len

; ; input file
;;cause immediate read
;;open file function
; ;output file
;;set next to fill
;;pointer initialized

mvi
lxi
call
mvi
endif

d,fcb&fid ;;delete file
@bdos ;;to clear existing file
c,@mak ;;create a new file

now open (if input), or make (if output)
lxi d,fcb&fid
call @bdos ;;open/make ok?
inr a ;;255 becomes 00
jnz pmsg
mvi c ,@msg
lxi d ,msg
call @bdos

;;print message function
; ;error message
;;printed at console

jmp filerr ; ito restart
db cr,lf
if md=l ;;input message
db 'no &FlD file'
else
db
endif

'no dir space: &FlD'

db '$'

endm

144

. -+'"

§
() --

.....
~
CJ1

finis
: :

: J

.. , ,
eob?:

peof:

msg:

pmsg:

erase

,

macro fid
close the file(s) given by fid
irp ?f,<fid>
skip all but output files
if ?f&typ=2
local eob?,peof,msq,pmsg
write all partially filled buffers
::are we at the end of a buffer?
lhld ?f&ptr ::next to fill
mov a,l ::on buffer boundary?
ani (@sect-l) and Offh
jnz peof ::put eof if not II
if @sect>255
check high order byte also
mova,h
ani (@sect-l) shr 8
jnz peof ::put eof if not ee
endif
arrive here if end of buffer, set length
and write one mare byte to clear buffs
shld ?f&len ::set to shorter length
mvi a,eof ::write another eof
push psw ::save zero flag
call put&?f
pop psw ::recall zero flag
jnz eob? ::non zero if more
buffers have been written, close file
mvi c,@cls
lxi d,fcb&?f ::ready for call
call @bdos

a ::255 if err becomes II
pmsg

inr
jnz
file
mvi
lxi
call
jmp
db
db
db

cannot be closed
C ,@msq

endif
endm
endm

macro
delete
irp
mvi
lxi
call
endm
endm

d,msg
@bdos
pmsg ::error message printed
cr,lf
'cannot close &?F'
'$,

: :of the irp

fid
the file(s) given by fid
?f,<fid>
c,@del
d ,fcb&?!
@bdos
: :of the irp

direct macro fid
:: perform directory search for file
:: sets zero flag if not present

Ixi d,fc6&fid
mvi c,@dir
call @bdos
inr a :10 if not present
endm

rename macro new,old
:: rename file given by ·old" to N new•

local psub,renO
:: include the rename subroutine once

jmp psub
'rens: ::rename subroutine, hI is address of

::old fcb, de is address of new feb
push h ::save for rename
lxi b,16 ::b=00.c=16
dad b ::hl = old fcb~16

ren0: Idax d ;:new fcb name
mov m,a ::to old fcb+16
inx d ::next new char
inx h ::next feb char
dcr c ::count down from 16
jnz renO
old name in first half, new in second half
pop d ::recall base of old name
mvi c.@ren ::rename function
call @bdos
ret ::rename complete

psub:
rename macro

Ixi
lxi
call
endm
rename
endm

n,o ::redefine rename
h,fcb&o ::old fcb address
d,fcb&n ::new fcb address
@rens ::rename subroutine

new,old

get
J :

put

r:

macro dev
read character from device
if @&dev (= @lst
simple input
mvi c,@&dev
call @bdos
else
call get&dev
endm

macro
write
if
simple
push
mvi
mov
call
pop
else
call
endm

dev
character from accum to device

@&dev <= @lst
output

psw ::save character
c,@&dev ::write char function
e,a ::ready for output
@bdos ::write character
psw ::restore for testing

put&dev

Figure 53e. Sequential File I/O Library (Con't).

may be changed in the user's program to "trap" error conditions rather than rebooting.
The use of FILERR is apparent throughout the macro library.

The equates which follow define the usual BDOS entry points and functions,
along with the diskette sector size (@SECT), and special non-graphic characters (EOF,
CR, LF, and TAB). The equates for @KEY through @LST are used in the GET and
PUT macros to determine the source or destination device. The INFILE, OUTFILE,
and SETFILE equates are used in the FILE macro as mnemonics for the file mode
attribute.

Referring again to Figure 53a, FILLN AM is a utility macro which is used in the
construction of a file control block. In particular, it accepts a file name or file type
along with a field size and builds a sequence of DB's which fill the name or type field
with padded blanks. FILLDEF is again a utility macro similar to FILLNAM, but fills
the file control block name or type field from the default file control block at. @TFCB
or @TFCB+16. FILLDEF is invoked to extract either the default file name (first 8
characters) or default file type (following 3 character field). Note that the FILLDEF
macro constructs an inline subroutine to perform the data move operation the first
time it is invoked and calls the inline subroutine (@DEF) upon subsequent invocations.

The last macro definition shown in Figure 53a is FILLNXT which is used to
initialize two assembly time variables: @NXTB and @NXTD. @NXTB is used to count
the accumulated size of buffers as they are automatically allocated in the FILE
statement, while @NXTD is used to count files in the FILE macro for later reference
in GET and PUT statements. They are included within a macro. so that they will be
properly initialized in the two successive passes of the macro assembler. FILLNXT
is invoked by the FILE macro where the expansion initializes @NXTB and @NXTD.
Note that FILLNXT then redefines itself as an empty macro so that subsequent FILE
invocations do' not reset the two counters.

A major utility macro, called FILLFCB, is shown in Fi.gure 53b. The primary
purpose of this macro is to construct a file control block in the CP 1M standard format,
where FID is the file identifier, DN is the disk name, FN is the file name, FT is the
file type, BS is the buffer size, and BA is the buffer address, as described in the FILE
statement above. Recall that some of these parameters may be empty, causing default
conditions to be selected. The FILLFCB macro begins by searching for a "1" or a "2"
as the FN parameter, indicating that either default name 1 or 2 is to be selected for
the file. Note that the IRPC loop involving ?C will result in a value of 1 for @C if
either FN=l or FN=2, and a value of 0 for @C if FN is not 1 or 2. The FILLFCB
macro then selects either the default name, or the user specified name along with the
default or user specified drive number. The equate for FCB&FID then produces the
address of the file control block for the file identifier followed by "DB 0" for the
extent field and "DS 20" for the remainder of the file control block. The reader may
wish to cross-reference the file control block format shown in the CP 1M Interface
Guide for exact formats.

The remainder of the FILLFCB macro, shown in the lower half of Figure 53b,
is devoted to storage allo'cation for buffer areas. The @BS variable is set to the
buffer size after rounding and size checks. FID&BUF then becomes the address of
the file's buffer area, and FID&ADR labels a nDW" containing this literal value.
FID&SIZ becomes the literal size of the buffer, and FID&LEN labels a "DW" containing
the literal size. FID&PTR is also allocated as a double byte which will subsequently

146

hold the buffer index to the next character to get or put in the file. All of these
values will be used in the file operations which occur later.

The principal file access macro, called FILE, is shown in Figure 53c, and is
used to set ·up the file control block, buffers, and access subroutines for a particular
file. Similar to the FILLFCB macro, the parameters FID, DN, FN, FT, BS, and BA
describe the particular characteristics of a file. The MD parameter, however, is
present to indicate the file mode and must have the value 1, 2, or 3. The FILE macro
begins by assigning the mode value to FID&TYP so that subsequent macros can determine
the type of access for this file. The FILLFCB macro is then invoked to construct
the file control block for this macro, and sets generally useful parameters for the file,
as discussed above. The FILE macro then generates either the label GET&FID or
PUT&FID for input and output files, respectively, followed by a subroutine which GET's
a single character or PUT's a single character for this file.

In general, the GET&FID reads a single character from the input buffer and,
when the input buffer is exhausted, fills the buffer area again in preparation for
following GET operations. Upon detecting a real end of file, the EOF character is
returned with the zero flag set. Similarly, the PUT&FID subroutine generated for
output files stores the accumulator character into the output buffer at the next
character position and, when the buffer is full, writes the sequence of sectors and
returns to accept more output characters. In the case of an output error, the appropriate
message is printed, and control transfers to FILERR which usually remains at OOOOH,
causing a system reboot.

The generated code which follows the label PSUB in Figure 53d is used to
initialize the file pointers to the proper positions for file access. The file extent. and
next record fields of the file control blocks are zeroed for both input. a.no output files.
In the case of an input file, the buffer index variable FID&PTR is set to the end of
the buffer, causing an immediate read operation when the first character is rea.d. In
the case of an output file, the FIO&PTR is set to zero, indicating that the next
position to fill is the first character of the output buffer. If the file is an output
file, any duplicate files are erased, and a new file is created. In both cases, the file
is opened upon completion of the FILE operation, and the buffer pointers are set for
the next GET or PUT invocation. Note tha.t the FILE statement is "executable" in
the sense that it must occur ahead of the GET or PUT statements for the file, and
performs its function ea.ch time control passes through the FILE machine code.

The FINIS, ERASE, DIRECT, REN AME, GET, and PUT macros are shown in
Figure 53e. The FINIS macro, shown on t.he left, serves to empty the output buffers
and close the file for output. Input files are skipped since no actions need take place
to close an input file. The main purpose of the FINIS macro is to fill the remaining
buffer segment (one sector size) with EOP's, then write the partially filled buffers.

The ERASE macro accepts a file identifier or list of file identifiers and
successively calls the BDOS to erase each file, while the DIRECT macro searches only
for a single file given by the file identifier FID. In the case of the DIRECT macro,
the non-zero flag is set if the file exists. No prechecks are made to see if the file
exists before the· ERASE operation takes place, although erasing a non-existant file is
of no consequence. The DIRECT macro can, of course, be used to check if a file
exists before the ERASE is executed if deemed necessary by the programmer.

147

The RENAME macro shown in Figure 53e (right) allows a file to be renamed
by accepting two file identifiers, denoted by NEW and OLD. These file identifiers
must correspond to the FCB names created by FILLFCB in an earlier FILE invocation,
and has the effect of renaming the OLD file to, the NEW file name. This is accomplished
within the RENAME macro through an inline subroutine, called @RENS, which is
included the first time the RENAME macro is invoked. The inline subroutine moves
the new file control block information (first 16 bytes) into the second half of the old
file name in the form required for a rename operation under CP/M (see the CP/M
Interface Guide). The BDOS is then called to perfor'm the rename function. Note
again that there is no check to ensure the old file exists before the rename takes
place.

The GET and PUT macros shown in Figure 53e are similar in structure: both
accept a device or file identifier as the formal parameter DEV, and perform the
corresponding input or output function on that device. If the device is a simple
peripheral, the BDOS is called directly to perform the input or output function. If
instead, the device na.me was created by a FILE macro, the corresponding GET&FID
or PUT&FID subroutine is called to accomplish the input or output operation. Note
that the accumulator is preserved (PUSH PSW) upon output to a simple peripheral
within the PUT macro, while the save/restore sequence is performed within the PUT&FID
subroutine if the destination is a diskette file.

Figures 54a, 54b, and 54c show the full expansion of a segment of the case
conversion program of Figure 52 (using the "+M" assembly parameter). Figure 54a
shows the invocation of FILE, followed by FILLFCB, again followed by FILLDEF. The
@DEF subroutine is included inline, and the FILLDEF macro is redefined to exclude
the subroutine. Upon completion of the FCB construction, the file parameters are
generated, as shown in Figure 54b, along with the beginning of· the GETSOURCE
subroutine. Note that the conditional assembly ignores the portions of this FILE macro
expansion which are related to output files while including the machine code for the
input SOURCE file. In each case, the "&FID" labels result in names with the prefix
or suffix "SOURCE" in order to associate the generated labels with this particular
internal name. Figure 54c contains the end of the PUTSOURCE subroutine, followed
by the machine code which initializes the file control block fields and buffer pointer.
Upon completion of the FILE macro, the SOURCE file is ready for access. In particular,
each .call to GETSOURCE reads one more character into the accumulator. Due to
the ~ength of the expanded macro form, the remainder of the case transJation program
is not shown.

In order to illustrate the facilities of the SEQIO macro library, two additional
programs are given. The first, called PRINT, formats the output from the macro
assembler for printing on the system line printer. The second, called MERGE, performs
a simple merge operation on two diskette files.

The PRINT program, shown in Figure 55, is executed under the console command
processor by typing

PRINT filename

where "filename" is the name of a previously assembled program. PRINT assumes that
there is a "PRN" file on the diskette, and possibly a "SYM" file on the same diskette
drive. The PRN file is first printed, with a form feed at the top of each 56 line

148

+
+

001H+=
+
+

0001+#
+
+
+
+
+
+
+
+
+

000C+t
+
+
+
+
+

0103+C30F01
+

0106+7E
0U17+12
0108+23
0109+13
010A+00
010B+C20601
010E+C9

+
+
+
+
+
+
+
+

010F+215C00
0112+111001
0115+0E0C
0117+C00601

+
+

011A+C34401
0110+

+
0000+.

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

0111)+=
0129+00
012A+

FILE
LOCAL
LOCAL

SOURCETYP
FILLFCB
LOCAL

@C SET
IRPC
IF

@C SET
ENDM
IF

@C SET
ENDM
IF
IF

@C SET
ELSE

@C SET

@OEF:

??0009:

ENOIF
FILLOEF
LOCAL
JMP

MOV
STAX
INX
INX
DCR
JNZ
RET

FILLOEF
LXI
LXI
MVI
CALL
ENOM
FILLOEF
LXI
LXI
MVI
CALL
E~DM
ENDM
JMP
OS

@CNT SET
IRPC
IF
EXITM
ENDIF
DB

@CNT SET
ENDM
IF
EXITM
REPT
DB
ENDM
ENDM
ELSE
JMP
IF
DB
ELSE
DB
ENDIF
FILLNAM
FILLNAM
ENDIF

FCBSOURCE
DB
OS

INFILE,SOURCE,,1,,2000
PSUB,MSG,PMSG
PNO,EOO,EOB,PNC
EQU INFILE
SOURCE"I,,2000,
PFCB
1
?C,1
NOT (',?C' = "1" OR ",?C" = "2')

"
NOT ("1' = ' l' OR "1" = .. 2 ')
o

@C
NUL
12

9

FCBSOURCE,(I-I)*16,@C
PSUB
??0009

A,M
D
B
D
C
@OEF

MACRO ?FCB,?F,?L
H,@TFCB+?F
D, ?FCB
C, ?L
@OEF

FCBSOURCE,(I-I)*16,@C
H,@TFCB+(I-I)*16
D,FCBSOURCE
C,@C
@OEF

??0008
@C

12-@C
?FC,
@CNT=0 OR NUL ?FC

"'?FC"
@CNT-l

@ CNT=0 OR NUL

??'r0~
NUL

" _ .. A .. +l

1,8
,3

EQU $-12
o
20

149

+ IF SOURCETYP<=2
+ FILLNXT

~~~~+t @NXTB SET 8 
9886+' @NXTD SET @LST+1 

+ FILLNXT MACRO 
+ ENDM 
+ ENDM 
+ IF 28~8+8<@SECT 
+ @8S SET @SECT 
+ ELSE 

9789 ... + @8S SET (2999/@SECT)*@SECT 
+ ENDIF 
+ IF NUL 

8379+* SOURCEBUF SET BUFFERS+@NXTB 
9788+# @NXTB SET @NXTB+@BS 

+ ELSE 
+ SOURCEBUF SET 
+ ENOl, 
+ SOURCEADR: 

813E+7983 DW SOURCEBUF 
8788+- SOURCESIZ EOU @BS 

+ SOURCELEN: 
9149+8997 DW @BS 

+ SOURCEPTR: 
8142+ DS 2 . 
~896+# @SOURCE SET @NXTD -:'" 
9997+* @NXTD SET @NXTD+1 r:: 

0 + ENDIF 0 + ?18~98: ENDM -+ IF INFILE=3 ~ 

+ EXITM c:: 
Q) 

+ ENOIF S 8144+C38481 JMP ??8981 bn 
+ IF INFILE=1 ~ + GETSOURCE: 
+ ELSE r:: 
+ PUTSOURCE: 0 .... 
+ PUSH PSW til c:: 
+ ENDIF Q:S 

9147+2A4981 LHLD SOURCE LEN ~ 
914A+EB XCHG ~ 
914B+2A4281 LHLD SOURCEPTR ~ 914E+7D MOV A,L ~ 
914F+93 SUB E ..... 
9158+7C MOV A,H ~ 

9151+9A SBB D Q) 
1'"'""1 

9152+DA9D81 JC 119997 0.. 
9155+219~98 LXI H,9 S 
9158+224291 SHLD SOURCEPTR Q:S 

00 + 1?9994: 
~15B+EB XCHG 

.0 915C+2A4991 LHLD SOURCE LEN 
~ 915F+7B MOV A,E an 

9169+95 SUB L 
Q) 

0i61+7A MOV A,D ~ 

9162+9C SBB B &, 
~163+D28FrH JNC 1?9996 .... 

~ 9166+2A3E91 LHLD SOURCEADR 
~169+19 DAD D 
916A+EB XCHG 
916B+9E1A MVI C,@DMA 
916D+C09599 CALL @BOOS 
0179+111081 LXI D,FCBSOURCE 

+ IF INFILE=l 
0173+~E14 MVI C,@FRD 

+ ELSE 
+ MVI C,@FWR 
+ ENDIF 

~n 75+CD~590 CALL @BDOS 
0178+B7 ORA A 
0179+C28991 JNZ ??~~95 
017C+118~00 LXI O,@SECT 
017F+2A4201 LHLD SOURCEPTR 
0182+19 DAD 0 
9183+2242~1 SHLO SOURCEPTR 
0186+C35B01 JMP ?1~004 

150 



+ 
+ 

0189+2A4291 
018C+224001 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

018F+118090 
0192+0E1A 
0194+CD0500 
0197+210090 
019A+224201 

+ 
rH9D+EB 
019E+2A3E01 
01A1+19 
01A2+EB 

+ 
91A3+2A4091 
flJ1A6+7D 
01A7+B4 
01A8+3E1A 
flJ1AA+C8 
01AB+1A 

+ 
+ 
+ 
+ 

01AC+2A4201 
01AF+23 
01B0+224201 
01B3+C9 

+ 
01B4+AF 
01B5+322991 
01B8+323D91 
01BB+218007 
flJ1BE+224001 

+ 
01C1+224201 
01C4+9E0F 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

01C6+111D01 
01C9+CD0500 
01CC+3C 
01CD+C2EC01 
01D0+0E09 
01D2+110B01 
liHD5+CD0500 
01D8+C30000 
01DB+000A 

+ 
01DD+6E6F20534F 

+ 
+ 
+ 

01EB+24 
+ 
+ 

??9995: 
IF 
LHLD 
SHLD 
ELSE 
LOCAL 
MVI 
LXI 
CALL 
POP 
JMP 

EMSG: DB 
DB 
DB 
ENDIF 

??0996: 
LXI 
MVI 
CALL 
LXI 
SHLD 

??0907: 

??0001: 

XCHG 
LHLD 
DAD 
XCHG 
IF 
LHLD 
MOV 
ORA 
MVI 
RZ 
LDAX 
ELSE 
POP 
STAX 
ENDIF 
LHLD 
INX 
SHLD 
RET 

XRA 
STA 

"51'1\ 
LXI 
XHLD 
IF 
SHLD 
MVI 
ELSE 
LXI 
SHLD 
MVI 
LXI 
CALL 
MVI 
ENDlF 
LXI 
CALL 
INR 
JNZ 
MVl 
LXI 
CALL 
JMP 

??0002: 

??0rHB: 

IF 
DB 
ELSE 
DB 
ENDIF 
DB 

ENDM 

151 

INFILE=l 
SOURCEPTR 
SOURCE LEN 

EMSG 
C,@MSG 
D,EMSG 
@BDOS 
PSW 
FILERR 
CR,LF 
'disk full: SOURCE' 
'$ , 

D,@TBUF 
C,@DMA 
@BDOS 
B,0 
SOURCEPTR 

SOURCEADR 
D 

lNFILE=l 
SOURCELEN 
A,L 
B 
A,EOF 

D 

PSW 
D 

SOURCEPTR 
H 
SOURCEPTR 

A 
FCBSOURCE+12 
-FCS"strtmCE"+ 37 
H,SOURCESIZ 
SOURCELEN 
INFILE=l 
SOURCEPTR 
C,@OPN 

B,0 
SOURCEPTR 
C,@DEL 
D,FCBSOURCE 
@BOOS 
C,@MAK 

D,FCBSOURCE 
@BOOS 
A 
??0003 
C,@MSG 
D,?10002 
@BDOS 
FILERR 
DB CR,LF 
INFILE=l 
'no SOURCE file' 

'no dir space: SOURCE' 

. ........ 
~ 
s= o 
U ......... 



page. If the SYM file eXists, it is also printed using the same formatting. If the 
files are sucessfully printed, they are both erased from the diskette. 

Referring to Figure 55, the PRINT program begins by saving the console 
processor's stack, with the intention of returning directly to the CCP, without a system 
reboot. The input printer file is then defined with a FILE statement which specifies 
the internal name PRINT, and obtains the file name from the console com mand line. 
The file type, however,- is set to PRN in this case. After performing an initial page 
eject, the program loops between the PRCYC (print cycle) and ENDPR (end print) 
labels by successively reading characters from the PRINT source, and writing to the 
printer through the LISTING subroutine. On detecting an end of file character, control 
transfers to the ENDPR label where the PRN file is erased from the diskette. 

As shown on the left of Figure 55, the program then checks for the presence 
of the SYM file by invoking the FILE macro with a SETFILE mode. This creates the 
proper file control block for the input file with type SYM, but does not create buffers 
nor does it open the file for access. Following the FILE macro, the DIRECT statement 
performs a directory search and, if the file is not present, control transfers to the 
ENDLST (end listing) label where execution terminates. 

If the SYM file eXists, the program proceeds to perform another page eject, 
and then opens the SYM file for access. It should be noted that the third FILE macro 
(Figure 55, left.) accesses the SYM file using the internal name SYMBOL, but shares 
the buffer areas of the PRINT file. This is possible since the. PRINT file has been 
erased at this point in the program and thus the buffers are available for use. 

If the SYM file is present, the program loops between the SYCYLE (symbol 
cycle) and ENDSY (end symbol) labels where characters are read from the SYMBOL 
file and again sent to the printer through the LISTING subroutine. Upon detecting 
the end of file, control passes to the ENDSY label where the SYM file is removed 
from the diskette. If no errors occur, control eventually reaches the ENDLST label 
where the printer page is ejected. The entry stack pointer is then retrieved from 
OLDSP, and control returns t.o the console command processor, thus completing execution 
of the PRINT program. 

The next program, called MERGE, is somewhat more complicated. The purpose 
of the MERGE program is to accept two file names as input, taking the general 
com mand form 

MERG E filename 

where "filename" is the name of a master file, with assumed file type of MAS, as 
well as an update name with assumed file type UPD. The files consist of text files 
with varying length records, starting with a six character numeric "sequence number" 
followed by textual material, and terminated with a carriage-return line-feed sequence. 
The lines of information in the master and update files are assumed to be in ascending 
numeric order according to their sequence numbers. The purpose of the MERGE 
program is to read these two files and "shuffle" the records together to form a new 
file consisting of numerically ascending sequence numbered lines. 

Upon completion of the merge operation, the newly merged file becomes the 
new master file: update records are properly interspersed within the new master file 

152 



....,. 
C.11 
~ 

fIl00 

000C 
0038 

0100 210000 
0103 39 
0104 22CF03 
0107 31CF03 

010A 

01F2 CD8A03 
0lF5 
flIF8 FEIA 
01FA CA0382 
8lFD CD5103 
02ae C3F501 

0203 

020B 
023A 
0243 CA3C03 

0246 CD8A03 
0249 

0326 
0329 FEIA 
032B CA3403 
032E CD5183 
0331 C32603 

0334 

033C CD8A03 
033F 2ACF03 
0342 F9 
0343 C9 

, 

ORG 100H 
MACLIB SEQIO ;SEQUENTIAL I/O LIB 
PRINT THE X.PRN AND X.SYM FILES ON THE 
LINE PRINTER WITH PAGE FORMATTING. 

FF EQU 8CH 
EQU 

:FORM FEED 
MAXLINE 56 ;MAX LINES PER PAGE 

SAVE THE ENTRY STACK POINTER 
LXI H,0 
DAD SP :ENTRY SP TO HL 
SHLD OLDSP :SAVE ENTRY SP 
LXI SP.STACK:SET TO LOCAL STACK 

FILE INFILE,PRINT"I,PRN,1088 
READ THE PRINT FILE UNTIL END OF FItg 
CALL EJECT :TOP OF PAGE 

PRCYC: GET PRINT 
CPI EOF 
JZ ENDPR ;SKIP IF END FILE 
CALL LISTING :WRITE TO LISTING DEV 
JMP PRCYC 

INDPR: :END OF PRINT FILE, DELETE IT 
ERASE PRINT 

, 

CHECK FOR THE OPTIONAL .SYM FILE 
FILE SETFILE,SYMCHK"I,SYM 
DIRECT SYMCHK ;IS IT THERE? 
JZ ENDLST ;SKIP SYMBOL IF SO 

SYMBOL FILE IS PRESENT, PAGE EJECT 
CALL EJECT ;TO TOP OF PAGE 
FILE INFILE,SYMBOL"I,SYM,1909,PRIN'BUF 

SYCYCLE: 

, 

GET 
CPI 
JZ 
CALL 
JMP 

ENDSY: ERASE 
: 
ENDLST: 

CALL 
LHLD 
SPHL 
RET 

SYMBOL 
EOF 
ENDSY SKIP TO END ON EOF 
LISTING SEND TO PRINTER 
SYCYCLE FOR ANOTHER CHAR 

SYMBOL :ERASE .SYM FILE 

;END OF LISTING - EJECT AND RETURN 
EJECT 
OLDSP ENTRY STACK POINTER 

RESTORE STACK POINTER 
TO CCP 

0344 
034C 210203 
034F 34 
0350 C9 

0351 FE0C 
0353 C25F03 
0356 AF 
9357 32D10) 
035A 32D283 
8350 3E0C 
035F FE0A 
0361 C27403 
0364 AF 
0365 320203 
0368 21D183 
836B 34 
036C 7E 
836D FE38 
836F D8 
8370 3600 
0372 3E0C 
0374 FE09 
0376 C28703 

0379 3E20 
037B CD4483 
037E 3A0203 
0381 E607 
0383 C27903 

0386 C9 

0387 C34403 

838A 3E0C 
038C C34403 

038F 

03CF 
030] 
0302 

03D3 

; UTILITY SUBROUTINES 
LISTOUT: 

;SENO A SINGLE CHARACTER TO THE PRINTER 
PUT LST 
LXI H,CHARC ;CflARACTER COUNTER 
INR M :INCREMENT POSITION 
RET 

: 
LISTING: 

:WRITE 
CPI 
JNZ 
XRA 
STA 
STA 
MVI 

CHARACTER FROM REG-A TO LIST DEVICE 
FF :FORM FEED? 

LIST0: CPI 
JNZ 
XRA 
STA 
LXI 
INR 
MOV 
CPI 
RC 

LIST0 
A 
LINKe 
CHARC 
A,FF 
LF 
LISTI 
A 
CHARC 
H,LINEC 
M 
A,M 
MAXLINE 

MVI M,0 
MVI A,FF 

LIST1: CPI TAB 
JNZ LIST2 

:CLEAR LINE COUNT 

CLEAR TAB POSITION 
RESTORE FORM FEED 
END OF LINE? 

:CLEAR TAB POSITION 

:LINE COUNTER 
: INCREMENTED 
:CHECK FOR END OF 
;LINE OVERFLOW? 
:RETURN IF NOT 
:CLEAR LINEC 
:SEND PAGE EJECT 
:TAB CHARACTER? 

PAGE 

, FEED BLANKS TO NEXT TAB POSITION 
TABOUT: MVI A." 

CALL LISTOUT 
LDA CHARC :CHARACTER POSITION 
ANI 7H ;MOD 8 
JNZ TABOUT :FOR ANOTHER BLANK 
ON CHARACTER BOUNDARY 
RET 

LIST2: :SIMPLE CHARACTER 
JMP LISTOUT ;PRINT AND RETURN 

, 
EJECT: :PERFORM PAGE EJECT 

MVI A,FF :FORM FEED 

STACK 

JMP LISTOUT 

DATA AREAS 
DS 64 

OLDSP DS 2 
LINEC DS 1 
CHARC DS 1 
, 
BUFFERS: 

END 

:32 LEVEL STACK 

ENTRY STACK POINTER 
LINE COUNTER 
CHARACTER COUNTER 

Figure 55. Program for Line Printer Page Formatting. 



according to numeric order, and any update record which matches a master record 
results in replacement of the master record by the update record. Upon successful 
completion of the merge operation, the original master file is renamed to have the 
extension MBK (master back-up), the original update file is renamed to the type UBK 
(update back-up), and the newly created file becomes the new MAS file. In this way, 
the operator can return to the backup files in case of error so that the source data 
is not destroyed. 

The MERGE program is shown in Figures 56a, 56b, and 56c. Utility subroutines 
are listed first in Figure 56a, including the DIGIT subroutine which tests for valid 
decimal digits in sequence numbers. The IRPC which follows the DIGIT subroutine 
generates two distinct subroutines, called READU and READM for reading the update 
and master files, respectively. The generation of these two subroutines has been 
suppressed in the listing (see the $+PRINT and $-PRINT inline parameters) to keep the 
listing short. In general, these two READ subroutines fill their respective sequence 
number buffers from the input source so that the merge operation can take place 
based upon the current sequence number values. Upon detecting an end of file, the 
sequence number is set to OFFH as a signal that the input source has been exhausted. 

The utility subroutines shown in Figure 56b include SEQERR, WRITESEQ, and 
COMPARE. The SEQ ERR subroutine reports an error condition when a non numeric 
character is detected in the sequence number field. Although the error reporting is 
somewhat spartan, sequence errors are easily found using the TYPE command on the 
master or update file. The WRITESEQ subroutine sends the buffered sequence number 
addressed by HL to the new file. WRITESEQ is called whenever the source for the 
next record has been determined. The COMPARE subroutine is used to determine the 
next source r~cord (master or update) by comparing the buffered sequence numbers 
from left to right while they are equal. If a mismatch occurs in the sequence number 
scan, COMPARE returns with the carry flag and zero flag set to indicate which file 
holds the next source record. 

Execution of the MERGE program begins following the START label in Figure 
56b where the update, master, and new files are defined. The UFILE and MFILE 
sources are defined with the same buffer sizes (as determined by the earlier USIZE 
and MSIZE equates). Both take their primary name from the default value specified 
at the CCP level by the operator. The new file is created as a temporary, with name 
TEMP and type $$$, but will be altered upon completion of the program to become 
the master file. 

The merge operation proceeds in Figure 56b as follows. First the READU and 
READM subroutines are called to fill the sequence number buffers. The loop between 
MERGE and ENDMERGE in Figure 56c is then repetitively executed until the merge 
is complete. On each iteration of this loop, the COMPARE subroutine is called to 
compare the buffered sequence numbers. If the update sequence number is smaller 
than the master sequence number, it is moved to the new file and data is copied from 
the update file to the new file until the end of the current record is encountered. 
Upon completion of the copy operation, the READU subroutine is called again to refill 
the update sequence number buffer. 

If the COMPARE subroutine instead detects equal sequence numbers, control 
transfers to the SAME label in Figure 56c where master record is deleted. Alternatively, 
the COMPARE subroutine will cause control to transfer to the MASLOW label when 

154 



0100 

0000 
0006 
03E8 
03E8 
0700 

0100 31EC05 
0103 C3C801 

0106 FE30 
0108 08 
0109 FE3A 
010B 3F 
fH0C C9 

ORG 100H 
FILE MERGE PROGRAM 
MACLIB SEQIO :SEQUENTIAL FILE I/O 

: 
BOOT EQU 0000H :SYSTEM REBOOT 
SEQSIZ EQU 6 :SIZE OF THE SEQUENCE 
USIZE 
MSIZE 
NSIZE 

. , 

EQU 
EQU 
EQU 

LXI 
JMP 

UTILITY 

1000 :UPDATE BUFFER SIZE 
USIZE :MASTER BUFFER SIZE 
USIZE+MSIZE :NEW BUFF SIZE 

SP,STACK 
START :TO PERFORM THE MERGE 

SUBROUTINES 

DIGIT: ;TEST ACCUMULATOR FOR VALID DIGIT 
RETURN WITH CARRY SET IF INVALID 
CPI "0 ' 
RC :CARRY IF BELOW 0 
CPI "9"+1 ;CARRY IF BELOW 10 
CMC :NO CARRY IF BELOW 10 
RET 

: ERROR MESSAGES FOR READU AND READM 
SEQERRU: 

t"s 

0100 7570646174 DB "update seq error',0 
SEQERRM: 

011E 6061737465 DB "master seq error',0 

GENERATE READU AND READM SUBROUTINES 
IRPC ?F,UM 

: INLINE SEQUENCE NUMBER BUFFER 
?F&SEQ: DB 0 :TO START PROCESSING 

OS SEQSIZ-1:REMAINING SPACE FOR SEQ# 
, 
READ&?F: 

LXI 
MOV 
INR 
RZ 

H,?F&SEQ 
A.M 
A 

:SEQUENCE BUFFER 
;IS IT FF (END FILE)? 
iFF BECOMES 00 
;SKIP THE READ 

READ THE SEQUENCE NUMBER PORTION 
MVI C,SEQSIZ :SIZE OF SEQUENCE t 

RD&?F&0: 

, 

PUSH H 
PUSH B 
GET ?F&FILE 
POP B 
POP H 
CPI EOF 
JZ EOF&?F 

;SAVE NEXT TO FILL 
:SAVE NUMBER COUNT 
;READ THE FILE 
:RECALL COUNT 
;RECALL NEXT FILL 
;END FILE? 

CALL DIGIT ;ASCII DIGIT? 
LXI D,SEQERR&?F :ERROR MESSAGE 
JC SEQERR ;SEQUENCE ERROR 
NO SEQUENCE ERROR, FILL NEXT DIGIT POSITION 
MOV M,A 
INX H 
OCR C 
JNZ RD&?F&0 
RET 

;NEXT TO FILL 
:COUNT=COUNT-1 
;FOR ANOTHER DIGIT 
:END OF FILL 

EOF&?F: :END OF FILE, SET SEQ# TO 0FFH 
A,0FFH MVI 

STA 
RET 
ENDM 

Figure 56a. 

?F&SEQ :SEQ# SET TO FF 

File Merge Program. 

155 



018F 1A 
0190 B.7 
0191 CA0088 

0194 05 
0195 
0190 01 
819E 13 
019F C38F81 

01A2 8E06 
01A4 7E 
01AS 23 
01A6 ES 
81A7 CS 
01A8 
81AB C1 
81AC E1 
tHAD 8D 
01AE C2A481 
01Bl C9 

01B2 112F01 
01BS 215F01 
01B8 8E06 
01BA lA 
01SS B~ 
01SC 08 
01BD cra 

01BE FEFF 
01C0 C8 
01Cl 13 
01C2 23 
01C3 8D 
01C4 C2BA01 
01C7 C9 

01C8 

0280 

038C 

047D CD3S01 
0480 CD6S01 

0483 CDB201 
0486 CAAD04 
0489 D2C804 

048C 212F01 
048F CDA201 

SEQERR: 
WRITE ERROR MESSAGE FROM (DE) TIL 88 
LDAX 0 
ORA A 
JZ BOOT 
OTHERWISE. MORE TO PRINT 
PUSH 0 
PUT CON JWRITE TO CONSOLE 
POP 0 
INX D 
JMP SEQERR ;FOR MORE CHARS . , 

WRITESEQ: 
JWRITE THE SEQUENCE NUMBER GIVEN BY HL 
JTO THE NEW FILE 
MVI C.SEQSIZ JSIZE OF SEot 

WRIT0: MOV A.M 
INX H :NEXT TO GET 
PUSH H : SAVE NEXT ADDR 
PUSH B :SAVE COUNT 
PUT NEW :WRITE TO NEW 
POP B JRECALL COUNT 
POP H :RECALL ADDRESS 
OCR C JCOUNT=COUNT-1 
JNZ WRIT0 :FOR ANOTHER CHAR 
RET 

COMPARE THE UPDATE SEQUENCE NUMBER WITH 
THE MASTER SEQUENCE NUMBER. SET: 

, 
COMPARE: 

LXI 
LXI 
MVI 

CLOOP: LDAX 
CMP 
RC 
RNZ 
ITEMS 
CPI 
RZ 
INX 
INX 
OCR 
JNZ 
RET 

: MAIN 
START: 

CARRY IF UPDATE < MASTER 
ZERO IF UPDATE = MASTER 
-ZERO IF UPDATE > MASTER 

O.USEQ 
H.MSEQ 
C,SEQSIZ 
D 
M 

ARE THE SAME, 
8FFH 

o 
H 
C 
CLOOP 

PROGRAM STARTS 

;UPDATE SEQt 
;MASTER SEQt 
;SEQUENCE SIZE 
JUPOATE DIGIT 
: UPDATE-MASTER 
:CARRY IF LESS 
:NZERO IF GTR 

CHECK FOR 0FFH 
:END OF FILE 
:BOTH ARE 0FFH 
JNEXT UPDATE 
:NEXT MASTER 
:COUNT DOWN 

HERE 

:FOR ANOTHER DIGIT 
;ZERO FLAG IF EQUAL 

;UPDATE FILE, WITH ASSUMED .UPD TYPE 
FILE INFILE,UFILE,.l,UPO,USIZE 
; 
:MASTER FILE, WITH ASSUMED TYPE .MAX 
FILE INFILE,MFILE,.l,MAS,MSIZE . 
:NEW FILE, TEMP.$$$ {RENAMED UPON EOF'S; 
FILE OUTFILE.NEW"TEMP,$$$,NSIZE . , 
CALL READU :INITIALIZE UPDATE RECORD 
CALL READM ;INITIALIZE MASTER RECORD 

lERGE: :MAIN MERGING LOOP 
CALL COMPARE :CARRY SET IF UPDATE<MASTER 
JZ SAME :ZERO IF IDENTICAL SEQ# 
JNC MASLOW :MASTER LOW? 

UPDATE SEQUENCE NUMBER IS LOW 
LXI B,USEQ :COPY SEQUENCE NUMBER 
CALL WRITESEQ:WRITE THE SEQUENCE # 

Figure 56b. File Merge Program (Con't). 

156 



0492 
0495 
0496 
0499 
049A 
949C 
049F 
04Al 
04A4 

04A7 
04AA 

04AD 
04B9 
04B2 

04B5 
04B8 
04BA 
04BD 
04BF 
04C2 
04C5 

04C8 
04CB 
04CE 
0401 
0402 
0405 
0406 
0408 
04DB 
04DD 
04E0 

04E3 
04E6 

04E9 

0529 
0558 

0560 

0580 
05AF 

05B7 

05C0 
05C9 

05CC 

146C 
05EC 

F5 

Fl 
FE0A 
CAA794 
FEIA 
CAA704 
C39204 

CD3501 
C38304 

3A5F01 
FEFF 
CAE994 

FEIA 
CAC204 
FE0A 
C2B504 
CD6591 
C38304 

215F91 
CDA291 

FS 

Fl 
FE0A 
CAE304 
FEIA 
CAE304 
C3CE04 

CD6501 
C38304 

C30000 

ULOOP: :UPDATE RECORD TO NEW FILE 
GET UFILE : CHARACTER TO A 
PUSH PSW ;SAVE IT 
PUT NEW :OUTPUT TO NEW FILE 
POP PSW :RECALL CHARACTER 
CPI LF :LINE FEED? 
JZ ENDUP 
CPI EOF 
JZ ENDUP 
JMP ULOOP :CYCLE IF NOT END REC 

: 
ENDUP: CALL READU :READ ANOTHER SEQ. 

JMP MERGE :FOR ANOTHER RECORD 

. , 
SAME: ;SEOUENCE NUMBERS ARE IDENTICAL 

LDA MSEQ :CHECK FOR 0FFH 
CPt 9FFH 
JZ ENDMERGE 

: NOT THE SAME r DELETE MASTER RECORD 
DELMAS: GET MFILE 

CPI EOF :END OF FILE? 
JZ GETMAS :GET SEOt FF 
CPI LF 
JNZ DELMAS :FOR ANOTHER CHAR 

GETMAS: CALL READM : TO NEXT RECORD 
JMP MERGE :FOR·ANOTHER 

, 
MASLOW: : MASTER SEQUENCE NUMBER IS LOW 

LXI B,MSEQ 
CALL WRITESEQ:SEQUENCE NUMBER 

MLOOP: GET MFILE 
PUSH PS'W :SAVE MASTER CHARAC'l'ER 
PUT NEW 
POP PSW :LF OR EOF? 
CPI LF 
JZ ENDMS 
CPI EOF 
JZ ENDMS 
JMP MLOOP :MORE TO COpy 

: 
ENDMS: CALL READM :READ NEW SEQ NUMBER 

JMP MERGE :TO MERGE ANOTHER 
, 
ENDMERGE: 

:CLOSE ALL FILES FOR RENAMING 
FINIS <UFILE,MFILE,NEW) 
:OLD MASTER FILE FOR ERASE/RENAME 
FILE SETFILE,OLDMAS"l,MBK 
ERASE OLDMAS 
:RENAME MASTER TO .MBK 
RENAME OLDMAS,MFILE 
, 
:OLD UPDATE FILE FOR ERASE/RENAME 

STACK: 

FILE SETFILE,OLDUPD"l,UBK 
ERASE OLDUPD 
:RENAME UPDATE TO .UBK 
RENAME OLDUPD,UFILE 
, 
:RENAME NEW TO MASTER FILE 
RENAME MFILE,NEW 
JMP BOOT 

DS 32 :16 LEVEL STACK 

: BUFFER AREA 
BUFFERS: 
MEMSIZE EQU BUFFERS+@NXTB 

END 
:END OF MEMORY 

Figure 56e. File Merge Program (Con't). 

157 



the master sequence number is low. In this case, the master sequence number and 
data record are copied to the new file in exactly the same manner as an update 
record. 

Upon completion of the merge operation (end of file detected in both the update 
and master files), control transfers to the ENDMERGE label where the files are closed 
and renamed. Following the· FINIS statement, the previous MBK file (possibly from 
an earlier execution) is· erased so that the current master (MAS) can be renamed to 
the master backup (MBK). Similarly, any previous UBK file is erased, and the current 
update file is renamed to become the new UBK file. Finally, the new file (TEMP.$$$) 
is renamed to become the new master file (MAS) before execution is stopped. 

Figure 57 shows an example of the files which are involved in a typical merge 
operation. In this application, the sequence numbers control the ordering of a list of 
names which is updated periodically. The NAMES.MAS file is the original master, 
which will be updated by merging the NAMES.UPD file, also shown in the figure. The 
merge operation is initiated by typing 

MERGE NAMES 

and, upon completion, produces the new NAMES.MAS shown to the right in Figure 57. 

The SEQIO library is typical of the interface one can construct to provide a 
higher-level interface between assembly language programs and their operating environ
ment. Although the library shown here performs only simple sequential file input/output, 
one can construct more comprehesive libraries for random access based upon this 
library. 

158 



~ 

~ 
co 

NAMES.MAS 

000100 ABERCROMBIE, SIDNEY 
800200 CARLS~AD, YOLANDA 
800300 EGGBERT, FBENIZER 
808480 GRAVELPAUGH, HORTENSE 
800500 ISENEARS, IGNATZ 
888'600 KRABNATZ, TILLY 
000700 MILLYWATZ, RICARDO 
800800 OPFATZ, ADOLPHO 
600980 QUAGMIRE, DONALD 
601000 TWITSWEET, LADNER 
801090 VERANDA, VERONICA 
801100 WILLOWANDER, PRATNEY 
801200 YUPPGANDER, MANNY 

NAMES.UPD· 

000110 BERNSWEIGER, ALFRED 
800200 CRUENCE, CLARENCE 
900210 DENNINGSKI, HUBERT 
800330 FINKLESTEIN, FRANK 
800410 HILLSENFIELDS, RANDOLPH 
800540 JOLLYFELLOW, JUNE 
800620 LAMBAA, WILLY 
800710 NEEBEND, ASTRID 
800820 PRATTWITZ, HEADY 
900930 RUBBLEMEYER, RUNYON 
600960 SWIGSTITTS, ULYSSIS 
801010 UMPLANDER, XAVIER 
601110 XYLOPH, ERHARDT 
801210 ZEPLIPPS, EGGERWORTZ 

Figure 57. Sample MERGE Disk Files. 

new NAMES.MAS 

000180 ABERCROMBIE, SIDNEY 
600110 BERNSWEIGER, ALFRED 
600200 CRUENCE, CLARENCE 
608218 DENNINGSKI, HUBERT 
600380 EGGBERT, EBENIZER 
000330 FINKLESTEIN, FRANK 
800400 GRAVELPAUGH, HORTENSE 
800410 HILLSENFIELDS, RANDOLPH 
800500 ISENEARS, IGNATZ 
800540 JOLLYFELLOW, JUNE 
800600 KRABNATZ, TILLY 
800620 LAMBAA, WILLY 
600700 MILLYWATZ, RICARDO 
800710 NEEBEND, ASTRID 
800800 OPFATZ, ADOLPHO 
800820 PRATTWITZ, HEADY 
000900 QUAGMIRE, DONALD 
800930 RUBBLEMEYER, RUNYON 
800968 SWIGSTITTS, ULYSSIS 
881008 TWITSWEET, LADNER 
801018 UMPLANDER, XAVIER 
801890 VERANDA, VERONICA 
801180 WILLOWANDER, PRATNEY 
801110 XYLOPH, ERHARDT 
801200 YUPPGANDER, MANNY 
901210 ZEPLIPPS, EGGERWORTZ 



10. ASSEMBLY PARAMETERS 

Assembly parameters can be included when the assembly begins to control various 
assembler functions. In general, the macro assembler is initiated with the name of 
the source file, followed by the assembly parameters, indicated by a preceding dollar 
symbol ($). The parameters are indicated by single controls which denote particular 
functions. The letter or digit shown to the left below corresponds to the function 
shown to the right. 

A controls the source disk for the .ASM file 
H controls the destination of the .HEX machine code file 
L controls the source disk for the .LIB files (see MACLm) 
M controls MACRO listings in the .PRN file 
P controls the destination of the .PRN file containing the listing 
Q controls the listing of LOCAL symbols 
S controls the generation and destination of the .SYM file 
1 controls pass 1 listing 

Any or all of the above parameters can be included. In the case of tl)e A, H, 
L, and S parameters, they are followed by the drive name to obtain or receive the 
data, where the drives are labelled A, B, • • . ,Z. By convention, the X disk 
corresponds to the user's console, the P disk corresponds to the system line printer 
(logical LIST device), and the Z disk corresponds to a null file which is not recorded. 
The following is a valid assembly parameter list following the· MAC command and 
source file name 

$PB AA HB SX 

which directs the .PRN file to disk B, reads the .ASM file from disk A, directs the 
.HEX file to the B disk, and sends the .SYM file to the user's console. Blanks are 
optional between parameter specifications. 

The parameters L, S, M, Q, and 1 can be preceded by either + or - symbols 
which enable or disable their respective functions. These functions are listed below 

+L list the input lines read from the macro library (see MACLIB) 
-L suppress listing of the macro library (default value) 
+S append the .SYM to the end of the .PRN output 
-S suppress the generation of the sorted symbol table 
+ M list all macro lines as they are processed during assembly 
-M suppress all macro lines as they are read during assembly 
* M list only "hex" genera ted by macro expansions 
+Q list all LOCAL symbols in the symbol list 
-Q suppress all LOCAL symbols in the symbol list 
+1 produce a listing file on the first pass (for macro debugging) 
-1 suppress listing on pass 1 (default) 

The following is an example of a valid assembly parameter list which uses a 
number of the parameter specifications given above: 

$PB+S-M HB 

160 



In this case, the .PRN file is sent to disk B with the symbol list appended (no .SYM 
file is created), all macro generations are suppressed, and the .HEX file is sent to 
disk B with the .PRN file. 

Note that the M parameter can be optionally preceded by the "*,, symbol which 
causes the assembler to list only macro generations which produce machine code, and 
is used to suppress the listing of the instructions which are produced (i.e., all positions 
beyond the hex fields are not listed). Under normal operation, the macro assembler 
lists only generations which produce machine code, along with the generated line. 

Given that disk d is the currently logged drive, the macro assembler defaults 
these parameters as follows: the .ASM and .LIB files are assumed to originate on 
drive d, the .HEX, .PRN, and .SYM files are sent to drive d, a symbol table is generated 
with LOCAL symbols suppressed (i.e., all symbols beginning with "??" are not listed), 
and macro lines which generate machine code are listed. Note, however, that the 
filename following the MAC command can be preceded by a drive name, in which case 
the P parameter overrides the drive name, if supplied. Whenever a parameter is 
repeated in the assembly parameter specification, the last value is always assumed. 
Valid assembly statements are shown below, assuming the file to be assembled is called 
"sample." 

MAC sample $PX+S-M 

assembles the file sampJe.ASM with listing to the consoJe, symbols at the console, and 
no list ing of genera ted macros. 

MAC A:sample $+S -m+q 

assembles sample.ASM from disk A, creating sample.PRN (with appended symbols) on 
the currently logged drive, suppressing generated macros, and listing symbols which 
begin with the characters "??" in addition to the normaJ1y listec symbols. 

MAC sample 

assembles sample.ASM from the currently logged drive, creating sample.PRN along 
with sample.SYM (containing the symbol table) and sample.HEX which holds the Intel 
format "hex" file in ASCII form. 

MAC sample $AB HA PB +Q +S +L *M 

assembles the sample.ASM file from drive B, produces the file sample.HEX on drive 
A, with the sample.PRN file on drive B. The symbol table includes ?? symbols, the 
symbol table is placed at the end of the .PRN file on drive B, the .LIB files are listed 
with the .PRN file as the .LIB files are read, and the instructions which correspond 
to generated macro lines are not included (although generated machine code is listed). 

In addition to the parameters shown above, the programmer can intersperse 
controls throughout the assembly language source or library files. Interspersed controls 
are denoted by a "$" in the first column of the input line, where the form shown to 
the left below corresponds to the action given to the right. 

161 



$-PRINT 
$+PRINT 
$-MACRO 
$+MACRO 
$*MACRO 

stops the output listing by discarding formatted lines 
enables the output printing when previously disabled 
disables genera ted macro lines, as in "-M" above 
enables full macro trace, as in "+M" above 
enables partial macro trace, as in "*M" above 

Since MAC allows each line to be optionally prefixed by a line number, the "$" control 
can be included directly following this line number, if desired. 

162 





11. DEBUGGING MACROS 

In completing the discussion of the macro assembler, it is worthwhile considering 
common debugging practices used in developing macros and macro libraries. One 
technique, called "iterative improvement," is often used in the design of programs, and 
is most useful in building macros. The basic idea of iterative improvement is that a 
small portion of the overall macro set is first implemented and tested before continuing 
to more complicated macros. In this way, errors can be isolated at each step as the 
macro evolve. Further, if errors occur in the macro generations after a small portion 
of the macro set has been improved, it is most likely the case that the error is being 
caused by the macros which were changed. 

In the case of the Hornblower Highway System macro libraries, for example, 
iterative improvement was used to evolved the final macro library. In particular, only 
the simplest macros were first implemented, including the SETLITE, TIMER, and RETRY 
macros (see Section 10.1). Debugging facilities were then added to these macros so 
that the programs could be traced at the console. Upon successful testing of the 
basic macro facilities, the PUSH?, CLOCK?, and TREAD? macros where individually 
written, added, and tested, resulting in the final macro library. 

At each step, the programmer can use the various assembly parameters to 
control the debugging information. If the macro generations are not producing the 
proper machine code, it may be necessary to obtain a full trace, using the u+M" option 
when MAC is started. If the program produces too much output with the full trace 
enabled, the programmer can use the n$+MACRO" and "$-MACRO" commands inter
spersed throughout the assembly language source program, resulting in full macro 
generation traces only in the regions selected for debugging consideration. 

If macro generation errors are caused by macro libraries, the programmer can 
use the n+L" parameter when MAC is started to cause the libraries to be included in 
the list ing as they are read. 

As a final consideration, it may be necessary to enable the first pass listing of 
the assembly language using the "+1" parameter. In this case, MAC will list the 
program as it is being read on the first pass as well as the second pass. Note, 
however, that the listing will contain spurious error messages on this pass which may 
disappear on the second pass. The principal purpose of the first pass listing parameter 
is to allow the programmer to view the macro generations on the two successive 
expansion passes to ensure that the assembler is processing the program in the same 
way in both cases. 

If a particular macro expands improperly, and the source of the error is not 
evident after examining various traces, it may be necessary to remove the offending 
macro from the program and create an isolated smaller test case where the error is 
reproduced. Full traces can then be examined to determine the source of the error 
and, after fixing the macro, it can be replaced in the larger program and retested. 

163 





12. SYMBOL STORAGE REQUMEMENTS 

The maximum program size which can be assembled by MAC is determined only 
by the symbol table storage requirements for the program. The symbol table itself 
occupies the region above the macro assembler in memory, up to the base of the 
CP/M operating system. Thus, the size of the symbol table depends upon the size of 
the current MAC version (approximately 12K program and data, plus 2.5K for I/O 
buffers) and the size of" the user's CP/M configuration. In any case, the symbol table 
size is dynamically determined by MAC upon startup, and fills as symbols are en
countered. In order to provide some insight regarding storage requirements, the basic 
item size for identifiers and macros is given below. 

A name used as a program label, data label, or variable in a SET or EQUATE 
requires 

N = L + 5 

bytes, where L is the length of the identifier name. Thus, the statement 

PORTVAL EQU 37FH 

makes an entry into the symbol table which occupies 

N = 7 + 5 = 12 bytes 

of symbol table space. Recall that LOCAL symbols take the form ??nnnn which 
generates a name of length L = 6. 

Macro storage is somewhat more complicated to compute. The general form 
is given by 

M=L+7+H+T 

where L is the macro name length, H is the parameter header storage requirement, 
and T is the macro text storage requirement, computed as 

H = P1 + P2 + . · · + Pn + n 

where P. is the length of the i th parameter name. The text length T is the number 
of charabters in the macro body, including tab and end of line characters. Reserved 
symbols, however, are reduced to a single byte, instead of their multi-character 
representations. The jump, call, and return on condition operators, however, require 
their full character representations. Comments starting with double semicolon are not 
included in the character count. In fact, the comment line is "backs canned" to remove 
preceding tab or blank characters in this case. For example, the macro 

LOADR MACRO 
MVI 
ENDM crlf 

REG,ALPHA ;FILL REGISTER crlf 
REG, '&ALPHA' ;;DATA crl! 

contains a macro header, followed by two macro lines, where each line is written, with 
tab characters (rather than spaces) and terminated by carriage-return line-feeds (crlf's). 

164 



In this case, the macro name length (LOADR) is five characters (L = 5), and 
the parameter name lengths are three characters (REG) and five characters (ALPHA), 
resulting in the parameter header storage requirement of 

H = PI + P2 + 2 = 3 + 5 + 2 = 10 bytes 

The first macro line contains a leading tab (one byte), the MVI instruction (reduced 
to one byte), another tab character (one byte), the operands REG,'&ALPHA' (twelve 
characters), and the end of line (two characters) for a total of seventeen bytes. Note 
that the comment, with the preceding tab, is removed from the line. The second line 
contains a tab (one byte), ENDM (one byte), and end of line (two .characters) for a 
total of four bytes. Summing the textua1 characters, the total is T = 21 bytes. As 
a result, the total macro storage for LOADP is 

M = L + 7 + H + T = 5 + 7 + 10 + 21 = 43 bytes 

No permanent storage is required for REPT's, IRPC's, or IRP's, although temporary 
storage in the symbol table is used while the groups are activeJy iterating. In particular, 
the characters contained within the group bounds (from the header to the corresponding 
ENDM) are stored in the symbol table in their literal form, with no reduction of 
reserved symbols to single bytes. Upon completion of the iteration, the storage is 
returned for other purposes. Similarly, active parameters for macro expansions require 
temporary storage in the symbol table which is returnee upon completion of the macro 
expansion. 

In any case, a symbol table overflow message win result if the total amount 
of free symbol table space is usee up. As mentioned previously, the user can regenerate 
the CP/M system, up to the maximum memor'y space of the 8080 processor, to increase 
the symbol table area. Note that the "percentage" of symbol table utilization is always 
printed at the console at the end of the assembly. The form of the printout is 

OhhE USE FACTOR 

where hh is a hexadecimal value in the rRnge 00 to FF, where 00 results from .9 near 
empty table, and FF lS produced for a nearly full table. The value 080H, for example, 
is printed when the symbol table is half full. The progrl1mmer should keep note of 
the use factor as a particular program is c1eveloped in oreer to guage the relative 
amount of free space as the program is enhanced. 

In many of the examples shovvn in this manual, macros include inline subroutines 
vvhich are generated at the first invocation and called upon subsequent invocations (see 
the TYPEOUT macro in Figure 10, for example). These subroutines can be included 
in the mainline program to reduce symbol table storage requirements, if necessary. 
In this case, the subroutines are assumed to exist when the macro is invoked the first 
time, and thus are not generated by the macro. 

165 



13. ERROR MESSAGES 

When errors occur within the assembly language program, they are listed as 
single character flags in the leftmost position of the source listing. The line in error 
is also echoed at the console so that the source listing need not be examined to 
determine if errors are present. The single character error codes are: 

B Balance error: macro doesn't terminate properly, or conditional assembly 
operation is ill-formed. 

C Comma error: expression was encountered, but not delimited properly 
from the next item by a comma. 

D Data error: element in a data statement (DB or DW) cannot be placed 
in the specified data area. 

E Expression error: expression is ill-formed and cannot be computed at 
assembly time. 

I Invalid character error: a non graphic character has been found in the 
line (not a carriage return, line feed, tab, or end of file); re-edit the file, delete the 
line with the I error, and retype the line. 

L 
labeI). 

Label error: label cannot appear in this context (may be a duplicate 

M Macro overflow error: internal macro expansion table overflow; may be 
due to too many nested invocations or infinite recursion. 

N Not implemented error: features which will appear in future MAC versions 
(e.g., relocation) are recognized, but flagged in this version. 

o Overflow error: expression is too complicated (i.e., too many pending 
operators), string is too long, or too many successive substitutions of a formal parameter 
by its actual value in a macro expansion. This error will also occur if the number 
of LOCAL labels exceeds 9999. 

P Phase error: label does not have the same value on two subsequent passes 
through the program, or the order of macro definition differs between two successive 
passes; may be due to MAC LIB which follows a mainline macro (if so, move the 
MACLIB to the top of the program). 

R Register error: the value specified as a register is not compatible with 
the operation code. 

S Syntax error: the fields of this statement are ill-formed and cannot be 
processed properly; may be due to invalid characters or delimiters which are out of 
place. 

U Undefined Symbol: a label operand in this statement has not been defined 
elsewhere in the program. 

V Value error: operand encountered in an expression is improperly formed; 
may be due to delimiter out of place or non-numeric operand. 

166 



Several error messages are printed at the console indicating terminal error 
conditions which abort the MAC execution. Whenever possible, the disk drive name, 
followed by the relevant file name is printed with the message. 

NO SOURCE FILE PRESENT: The source program file (.ASM) following the 
MAC command cannot be found on the specified diskette. Use the DIR command in 
the CCP to locate the source file. 

NO DIRECTORY SPACE: The diskette directory is full. Use the ERA command 
of the CCP to remove files which you do not need. There are often superfluous .HEX, 
.PRN, and .SYM files which can be removed. 

SOURCE FILE NAME ERROR: The form of the source file name is invalid, or 
not specified. The command form must be: 

MAC filename $assembly parameters 

where the "filename" is the (up to eight character) primary name of the source file, 
with an assum ed file type of ".ASl\l" (which is not specified). 

SOURCE FILE READ ERROR: The source file cannot be read properl~ by the 
macro assembler. Use the CCP TYPE command to display the file contents a'~ the 
console. 

OUTPUT FILE WRITE ERROR: An output file cannot be written properly, 
probably due to a full diskette. As in the directory full error above, use the CCP 
commands to erase unnecessary files from the diskette. 

CANNOT CLOSE FILE: An output file cannot be closed. The diskette may be 
write protected. 

UNBALANCED MACRO LIBRARY: A MACRO definition was started within a 
macro library, but the end of file was found in the library before the balancjng ENDM 
was encountered. Examine the macro library using the TYPE command of the CCP, 
or use the "+L" assembly parameter, to ensure that the library is properly balanced. 

INVALID PARAMETER: An invalid assembly parameter was found in the input 
line. The assembly parameters are printed at the console up to the point of the error. 

167 



Appendix 

8080 CPU INSTRUCTIONS IN OPERATION CODE SEQUENCE 

OP OP OP OP OP OP 
CODE MNEMONIC CODE MNEMONIC CODE MNEMONIC CODE MNEMONIC CODE MNEMONIC CODE MNEMONIC 

00 NOP 2B DCX H 56 MOV D,M 81 ADD C AC XRA H 07 RST 2 
01 LXI B,D16 2C INR L 57 MOV D,A 82 ADD 0 AD XRA L OS RC 
02 'STAX B 20 OCR L 58 MOV E,B S3 ADD E AE XRA M 09 - - -
03 INX B 2E MVI L,D8 59 MOV E,C 84 ADD H AF XRA A OA JC Adr 
04 INR B 2F CMA SA MOV E,O S5 ADD L BO ORA B DB IN OS 
05 DCR B 30 - - - 5B MOV E,E 86 ADD M B1 ORA C DC CC Adr 
06 MVI B,D8 31 LXI SP,D16 5C MOV E,H 87 ADD A B2 ORA D DD - - -
07 RLC 32 STA Adr 5D MOV E,L 8S ADC B B3 ORA E DE SBI DS 
08 - - - 33 INX SP 5E MOV E,M 89 AOC C B4 ORA H OF RST 3 
09 DAD B 34 INR M SF MOV E,A SA AOC D B5 ORA L EO RPO 
OA LDAX B 35 DCR M 60 MOV H,B SB ADC E B6 ORA M E1 POP H 
OB DCX B 36 MVI M,DS 61 MOV H,C SC AOC H B7 ORA A E2 JPO Adr 
oc INR C 37 STC 62 MOV H,D 8D ADC L BS CMP B E3 XTHL 
00 DCR C 3S - - - 63 MOV H,E 8E AOC M B9 CMP C E4 CPO Adr 
OE MVI C,DS 39 DAD SP 64 MOV H,H SF AOC A BA CMP D E5 PUSH H 
OF RRC 3A LDA Adr 65 MOV H,L 90 SUB B BB CMP E E6 ANI DS 
10 - - - 3B DCX SP 66 MOV H,M 91 SUB C BC CMP H E7 RST 4 
11 LXI D,D16 3C INR A 67 MOV H,A 92 SUB D BD CMP L ES RPE 
12 STAX D 3D DCR A 6S MOV L,B 93 SUB E BE CMP M E9 PCHL 
13 INX D 3E MVI A,OS 69 MOV L,C 94 SUB H BF CMP A EA JPE Adr 
14 INR D 3F CMC 6A MOV L,O 95 SUB L CO RNZ EB XCHG 
15 DCR D 40 MOV B,B 6B MOV L,E 96 SUB M C1 POP B EC CPE Adr 
16 MVI D,DS 41 MOV B,C 6C MOV L,H 97 SUB A C2 JNZ Adr ED - - -
17 RAL 42 MOV B,D 6D MOV L,L 9S SBB B C3 JMP Adr EE XRI OS 
18 - -- 43 MOV B,E 6E MOV L,M 99 SBB C C4 CNZ Adr EF RST 5 
19 DAD D 44 MOV B,H 6F MOV L,A 9A SBB D C5 PUSH B FO RP 
1A LDAX D 45 MOV B,L 70 MOV M,B 9B SBB E C6 ADI OS F1 POP PSW 
1B DCX D 46 MOV B,M 71 MOV M,C 9C SBB H C7 RST 0 F2 JP Adr 
1C INR E 47 MOV B,A 72 MOV M,D 90 SBB L CS RZ F3 DI 
1D DCR E 4S MOV C,B 73 MOV M,E 9E SBB M C9 RET Adr F4 CP Adr 
1E MVI E,DS 49 MOV C,C 74 MOV M,H 9F SBB A CA JZ F5 PUSH PSW 
1F RAR 4A MOV C,D 75 MOV M,L AO ANA B CB - - - F6 ORI DS 
20 - - - 4B MOV C,E 76 HLT A1 ANA C CC CZ Adr F7 RST 6 
21 LXI H,D16 4C MOV C,H 77 MOV M,A A2 ANA 0 CD CALL Adr FS RM 
22 SHLD Adr 40 MOV C,L 7S MOV A,B A3 ANA E CE ACI OS F9 SPHL 
23 INX H 4E MOV C,M 79 MOV A,C A4 ANA H CF RST 1 FA JM Adr 
24 INR H 4F MOV C,A 7A MOV A,D AS ANA L DO RNC FB EI 
25 DCR H 50 MOV D,B 7B MOV A,E A6 ANA M D1 POP D FC CM Adr 
26 MVI H,DS 51 MOV D,C 7C MOV A,H A7 ANA A D2 JNC Adr FO - - -
27 DAA 52 MOV D,D 7D MOV A,L AS XRA B D3 OUT OS FE CPI OS 
28 - -- 53 MOV D,E 7E MOV A,M A9 XRA C D4 CNC Adr FF RST 7 
29 DAD H 54 MOV O,H 7F MOV A,A AA XRA 0 D5 PUSH 0 
2A LHLD Adr 55 MOV D,L SO ADD B AB XRA E D6 SUI DS 

08 = constant, or logical/arithmetic expression that evaluates 
to an S bit data quantity. 

016 = constant, or logical/arithmetic expression that evaluates 
to a 16 bit data quantity. 

Adr = 16-bit address. 

Reproduced with Permission from Intel Corporation, Santa Clara, CA. 

168 




