

KEN BARBIER has more than thirty years of experience in
electronics and computers and is self-employed as a writer and
consultant. In addition to writing numerous articles on computer
hardware, software, and applications, he has been involved
in designing, constructing, and programming data acquisition
systems for radio astronomy since 1969.

ASSEMBLY lANGUAGE PROGRAMMING

Ken Barbier

I SPECTRUM BOOK

Prentice-Hall, Inc" Englewood Cliffs, N.J. 07632

ISBN 0-13-18826.8-6

ISBN 0-13-.188250-3 {PBK.}

This book is available at a special discount when ordered in large quantities. Contact
Prentice-Hall, Inc., General Publishing Division, Special Sales, Englewood Cliffs, N.J.
07632.

CP/M is a trademark of Digital Research, Pacific Grove, CA 93950.
Teletype is a registered trademark of Teletype Corp., Skokie, IL.
DECwriter is a trademark of Digital Equipment Corp., Marlboro, MA 01753.
Z80 is a trademark of Zilog, Inc., Cupertino, CA 95014.

© 1983 by Prentice-Hall, Inc., Englewood Cliffs, N.J. 07632

All rights reserved. No part of this book.
may be reproduced in any form or
by any means without permission in writing
from the publisher.

A SPECTRUM BOOK

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Production coordination and interior design: Inkwell
Manufacturer: Cathie Lenard

Prentice-Hall International, Inc., London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall of Canada, Inc., Toronto
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books Limited, Wellington, New Zealand
Editora Prentice-Hall Do Brasil Ltda., Rio de Janeiro

Contents

Preface. xi

I THE COMPUTER SYSTEM
Introduction. 3
Learning by doing 5
Why assemble? '" 5
Required equipment. 6

1 Hardware Components of
The Computer System 7
Defining terms. 7
The computer operator. 9
The operator's console . 10
The computer. 12
The 8080 and its relatives . 13
Instructions in memory .. 14

v

vi Contents

Mass storage 15
Disk addressing. 16
Hard copy ... 18
Other peripherals. 19
A simple computer system .. 20

2 Software Components of
The Computer System............................ 22
Firmware monitor. 23
The operating system 26
Customizing CP/M. 27
Application programs . 28

Special memory areas.. 28

3 The CP/M-Based Computer. 31
Logical names and physical entities. 31
Selecting I/O devices. 32

II THE CP/M OPERATING SYSTEM

4 What the Operating
System Provides. 37
Named file handling. 38
Wildcards in file names. 40
Logical unit access. 41
Line editing . 42

5 Organization of CP/M............................. 44
Disk and I/O access primitives. 45
BDOS-the Basic Disk Operating System. 50
CBIOS-the Customized Basic Input/Output System. 52
CCP-the Console Command Processor. 56
Resident functions 57
Transient utilities . 60
User programs 62

6 Interfacing with CP/M............................ 63
The "giant hook" at location 5 . 63

Contents

III 8080 ASSEMBLY LANGUAGE
PROGRAMMING

vii

7 Assembly Language Programming. 69
Machine language. 69
Assembly language . 73
Hexadecimal numbers 77

8 The 8080 Microprocessor
And Its Relatives..................... 81
Characteristics of the 8080 . 82
The Intel 8085 . 84

The Zilog Z80 . 85
The National Semiconductor NSC800 87
Establishing a common ground. 87

9 Register Usage in the 8080 . 89
Register organization and data paths. 90
The M register. 93
Stack operations. 96
Register use by the user 98
Register use by the system. 100

10 Preserving the User's Environment............... 103
Establishing the user's stack. 104
Saving the user's register contents. 106
Calling BDOS . 107
Returning to CP/M. 107

IV A LIBRARY OF USER SUBROUTINES

11 Learning by Doing................................ 111
Getting to know ED. 111
Assembling the TEST program.. 115
Loading and running TEST. 118
Exercises. 119
More on ED . 120

viii Contents

12 Console Input/Output............................. 122
Program building blocks .. 122
CI:, CO:, and a test program. .. 125
Notes on the listing. .. 128
Even more ED. 130
Testing CPMIO .. 133

13 Buffered Input/Output...... 136
Saving old files .. 136
Library files. .. 137
CCRLF: starts a new line .. 141
COMSG: displays a line of text .. 142
CIMSG: gets a line from the operator. 144
Testing the subroutines. .. 146
Debugging with DDT. .. 147
Exercises 153

14 Tricky Techniques. 156
TWOCR:, a one line subroutine. .. 157
SPMSG: displays in-line messages. .. 157
GETYN: interrogates the operator. .. 159
How SPMSG: works.. 161
How GETYN: works.. 163
The end of I/O subroutines. .. 165

V DISK FILE ACCESS

15 The File Control Block............................ 169
Getting to know the FC B. .. 170
How CP/M uses the FCB. 172
Creating a disk file. 173
SHOFN: displays the TFCB file name. 175
Breaking up with ED. 177
Adding more .LIB files. 179
Merging files with PIP . 180
Testing SHOFN. 181

Contents ix

16 GET:
Reads a File from the Disk....................... 183
Find it fast in the directory. 184
Read the file into BUFFR 186
Back to you, ED . 188

17 PUT:
Writes a File onto the Disk.. 191
How PUT: works. 191
Subroutines do it all. 197

18 COpy,
the Main Program . 198
COPY LIB is the main program . 199
Computers can be friends . 200
Put it all together and go. 201
Exercises, experiments, and future projects. 202
On your own, now . 202

APPENDIXES

A American Standard Code
For Information Interchange (ASCII).............. 213

B 8080 Instruction Set............................... 216

Index... 222

Preface

"I shall on all subjects have a policy to recommend."

Ulysses S. Grant

Computer programs written in assembly language are alive and
well and can be found in live-actic,m arcade games, kitchen ap
pliances, outer space, and the winners' circle at computer chess
and Othello tournaments. Where compact object code and speed
of execution are critical, assembly language has no equal.

Learning assembly language has never been easy. Higher
level languages like BASIC, Fortran, and Pascal have been de
signed to be independent of the computer on which they are run
ning and to communicate in words most understandable to human
programmers. Assembly language, in contrast, forces the program
mer to think like the machine and to become intimate with the
hardware organization of the machine.

To achieve this, programmers of assembly language have to
study the internal structure of their computer, learn its instruction
set, and live within the constraints of its word size and mathemati-

xi

xii Preface

cal capabilities. They have to learn a new set of instructions for
each new computer, and they have to learn new operating pro
cedures for the edit, assemble, and debug programs on each new
computer.

In the past, before writing even the simplest program that
communicates with the operator's terminal, the programmer had
to know details of the hardware on which he was working-details
like input/output port addresses, status word addresses, and status
bit meanings. And these change from computer to computer.

The advent of the Control Program/Microcomputer (CP/M)
operating system has greatly simplified the learning process for the
beginning assembly language programmer. Using facilities pro
vided by the operating system, the programmer can write routines
that will communicate with input/output devices and mass storage
units on any computer system running CP/M. These assembly
language programs become "hardware independent" and therefore
portable.

No matter what make and model computer is used, the CP/M
assembly programmer will be working in a familiar environment.
When tackling a new assignment, he or she can use previously
created programs and subroutines that will greatly simplify the
new work requirements. And the programmer will be working
with system utility programs identical to those on the previous job.
CP/M makes all computers look alike.

This book assumes that the reader has no previous CP/M or
assembly language experience. It presents three major aspects of
assembly programming under CP/M: (1) an understanding of the
facilities and operation of CP/M and its utility programs; (2) an
understanding of the internal organization and instruction set of
the 8080 family of microprocessors; and (3) an understanding of the
proper design of assembly language programs.

Whether the reader is a programmer in a higher level lan
guage, an engineer, student, hobbyist, or just someone who needs
to make a computer control the real world in real time, he or she
will be able to learn all the fundamentals from this book. Since the
reader will be learning to use intimately integrated hardware and
software facilities of the microcomputer, the presentation of topics
in this book is also integrated.

From the first simple exercise in the Introduction, the reader
will be concurrently learning the details of the computer hardware:

Preface xiii

how to edit, assemble, and debug programs, and how to interface
those programs to the operating system. Since this requires that
the reader learn a lot of background material before beginning to
write programs, every effort has been made to present this mate
rial in an informal, entertaining style. Historical references are
made wherever they will help to explain a subject like binary
numbers or to account for strange, archaic names applied to mod
ern devices.

A few exercises are included that should be performed by all
readers. Other exercises are suggested, and the reader is free to
experiment with a CP/M based computer at any time in the learn
ing process. It can't be damaged from the operator's console.

When the background material has been absorbed, the reader
will be using the newly acquired knowledge to build up a set of
library subroutines that will be useful in any future programming
efforts. The editing, assembling, and testing of this library and the
demonstration programs that make use of it constitute the majority
of the exercises required of the reader. When these tasks are
finished, the reader will be ready to begin designing and writing
new and wonderful assembly language programs. Suggestions for
future projects are included.

Integrated with the more rigorous topics are comments, sug
gestions, rules, and edicts aimed at making the reader aware that a
properly constructed program requires more than just stringing
together a bunch of instructions that operate correctly. The goal of
these bits of advice is to instruct the programmer in the construc
tion of readable, modifiable, portable programs. The world already
has a sufficiency of the other kind.

Personal opinions like the above are mine, and I accept all
responsibility for them, but I am not at all reluctant to impose
them on the defenseless reader.

KEN BARBIER

Borrego Springs, California

THE COMPUTER
SYSTEM

Introduction

Even if you have never written a line of assembly language pro
gramming, sit down at the console of a CP/M based computer and
key in the following routine. Your keystrokes are those in boldface;
the other characters are displayed by CP/M. The "cr" symbol rep
resents your pressing the RETURN key on the console. Don't
worry about what the numbers mean for now.

A> DDTer
DDT VERS 1.4
·SIOOer
010001 OEer
0l0l B602er
0102 OF lEer
0103 C3 24er
0104 3D CDer
010501 05er
0106 43 OOer
0107 4F C3er

3

4 Introduction

0108 50 OOer
0109 59 OOer
010A 52 .er
-GIOOer
$
A>

Here you have used CP/M's Dynamic Debugging Tool (DDT)
to key in and execute a machine language program that displayed
the "$" on the console, and then returned to the CP/M operating
system. There are times when keying in such a routine might be
handy for testing parts of a computer. We could have sent the "$"
to another peripheral device, for instance, as a quick test of its
operation.

This same routine, written in assembly language, would look
like this:

LISTING I-I. Assembly language version of the demonstration
program.

BDOS EQU
WCONF EQU

ORG
MVI
MVI
CALL
JMP
END

5
2
100H
C,WCONF
E,' $'
BDOS
o

The use of mnemonics, like "JMP" for ."jump," makes assembly
language source code easier to read. Labels like "WCONF" for
"Write-on-the-Console Function" make the source program more
understandable.

When this source program is keyed into a disk file using CP/
M's ED. COM and is assembled by CP/M's ASM.COM, it will
produce the same machine language code that you typed in man
ually using DDT. With a short little routine like this, it might be
quicker to use DDT and machine language to perform this simple
function, but for any program of practical length, the editor and
assembler provide the most error-free method of program
generation.

Learning by doing

The purpose of this exercise is to illustrate the method by which
you will be learning assembly language programming and the CP/
M operating system. You will be writing, editing, assembling, and
debugging programs that interface with CP/M, as this one does.
This will provide you with the opportunity to see the results of
your learning efforts as you go along.

As with this example, your programming efforts will begin
with routines that output characters to, and read characters from,
the operator's console. After mastering techniques for interfacing
with input/output (I/O) devices like the console, you will be writing
programs that read and write disk files. Your learning of assembly
language programming will be integrated with learning the inter
nal structure of the CP/M operating system and how to interface
with it.

This book does not include any rigorous treatment of number
systems, binary arithmetic, or Boolean algebra. With modern mi
crocomputers, higher level languages are readily available for
mathematical operations. You will need to become familiar with
hexadecimal notation and simple logical operations, of course, and
instruction in these topics is integrated with the other subjects so
you won't have to struggle through a separate section devoted to
number theory.

Why assemble?

Assembly language programming is not dead. The ready availabili
ty of higher level languages for microcomputers has relegated as
sembly programming to those application areas where it is
indispensable: intimate interfacing with hardware, and for size
and time-critical operations.

Assembly language is still useful for writing programs for ded
icated controllers where program size must be minimized to re
duce costs. It also has applications where speed of execution is of
primary importance, as in animated displays for video games or
flight simulators, or in controlling high-speed machines like line
printers.

5

6 Introduction

And, as we will be seeing, learning assembly language pro
gramming can be both easy and enjoyable, given a friendly en
vironment. CP/M has provided that environment. As our little
exercise above has shown, it was possible to write this text and
include exercises like these that can be run on any make or model
of microcomputer, so long as it is running the CP/M operating
system. This standard operating system has made this book
possible.

In keeping with an encouraging, simple environment in
which to learn, this book has been written in an informal style. This
means you will have to put up with some bad puns and old jokes
from time to time. In keeping with the informal style, the word
data is herein used as a collective noun, avoiding such archaic
constructs as "if those data were a zero."

Required equipment

In addition to this book and a CP/M based computer, you should
have access to the manual set that accompanied the CP/M operat
ing system. One complete copy of the CP/M system disk and a nice
fresh clean empty disk should be dedicated to your exercises and
experiments. You will also want a copy of the "8080/8085 Assembly
Language Programming Manual," publication number 98-940,
available from Intel Corporation, Literature Department, 3065
Bowers Avenue, Santa Clara, CA 95051, for $17.

The Intel manual will not be required for you to start learning
the 8080 instruction set, but you should order one as soon as
possible. It is to microprocessor instructions what a dictionary is to
English words: a reference work to consult whenever you are not
really sure you u"nderstand just what an instruction is doing.

With these tools in hand you will be ready to learn how to
program in assembly language. Enjoy yourself. It is a lot of fun to
make the machine obey your every wish.

Hardw-are Components
Of the Computer
System

A good name is better than precious ointment.

Ecclesiastes

One of the greatest difficulties to be overcome by the newcomer in
any technical field is getting used to all the new terms. Technical
fields in particular develop jargons all their own. As if learning a
whole new vocabulary were not enough of a problem, the beginner
soon discovers that there are several different names for almost
every item he will be learning about.

Defining terms

For instance, the word terminal is applied to the giant building
where we are searched before boarding a plane, to the TV tube
with a keyboard attached that we use to communicate with a com
puter, and to a little round metal loop crimped on the end of a

7

8 Hardware Components of the Computer System

piece of wire inside that computer. Since we will try not to go
flying off in all directions, and since we are not going to be looking
inside computers in this book, we should have little trouble keep
ing track of the fact that terminal in this context refers to the device
through which we will be communicating with our computer.

But that terminal is referred to by a number of other names as
well. It will sometimes be called a console, a screen, a CRT, a
VDT, a CON, and a TTY. If, on you"r particular computer, it hap
pens to be composed of two parts, the terminal may be referred to
as a monitor and a keyboard. And a "Monitor" is also a particular
type of computer program. And so the confusion is propagated.

These examples are, of course, just the tip of the iceberg.
Since the field of human endeavor that we are going to be explor
ing does have so many conflicting, overlapping, and duplicated
terms, we will be selecting a subset of those terms in an attempt to
overcome some of the confusion. As we proceed through this book,
we will be defining the terms that we will be using, and we will be
avoiding the use of synonyms as much as possible.

Since the rest of the computer world has not standardized on
such a neat subset, it will be necessary to be aware of all the other
words which refer to the same items in our set. This requires that,
once we have become familiar with our own set of terms, we will
have to be aware that others with whom we talk will be using
different terms for the same items. Some of these different terms
will be defined in appropriate places throughout this book.

The list of terms we will be using in this book has been chosen
to be as close as possible to the words used in the manuals supplied
with the CP/M operating system. Since the language we will be
studying is the assembly language for the 8080 microprocessor, as
defined by the Intel Corporation, we will also be including words
compatible with the usage found in the Intel 8080/8085 Assembly
Language Programming Manual.

In the section following, we will be looking at the components
of a computer system, defining our terms, and building up the
vocabulary to be used throughout this book. Even if you are al
ready familiar with your computer and the CP/M operating sys
tem, it might not be a bad idea for you to read through the follow
ing section anyway, in order to get familiar with the words we will
be using.

The com pu ter operator

There are two classes of humans to be found sitting at computer
terminals: computer users and computer programmers. Some
times they are easy to tell apart. The user is the seven-year-old
battling Klingons. The programmer is the long-haired, unshaven,
bleary-eyed creature mumbling to himself. The distinction is made
here because there are so many programs intended to be used by
mere mortals (as opposed to programmers) that are so poorly de
signed that only a programmer can run them. One of the most
important lessons you will have to learn is to always keep in mind
that your programs not only have to work, they have to be usable
by mere mortals.

The time to start thinking of how to make your programs more
usable by nonprogrammers is right now, before one line of code
has been written. The more programs you write, the more you will
learn that what was obvious to you last year has now become a
forgotten detail. There is nothing more frustrating than to be un
able to run a program you yourself have written. It happens to all of
us, too.

The CP/M operating system provides us with the ability to
name programs, and call up the desired program by its name. All
we fallible humans have to remember, then, is what program
"NAME" will do when it does run. If that program has been prop
erly written, once CP/M has loaded it and executed it all required
operator inputs will be explicitly prompted for.

This approach may seem silly to you now. Surely you won't
forget how to operate your own program! Yes, you will. It happens
to all of us. So keep in mind right from the beginning that every
program worth writing is worth writing properly. And the first step
is to make every program usable by the proverbial "unsophisti
cated user."

After reading this book, you will surely become an expert
programmer who can understand the inner working of any pro
gram ever written, but keep in mind that your creations should be
usable by anyone, computer user or computer programmer.

Please note that we have now established definitions for "ter
minal," "computer operators," and the two subspecies "computer
users" and "computer programmers." That didn't hurt, did it?

9

FIGURE 1-1. The hardware components typically included in a small
microcomputer system. The smallest system that can run the CP/M·
operating system is sufficient for use in completing all of the
exercises in this book.

Console
Terminal

~

[]]]
CPU I ~ FlopPy di,k

'--___ --'. System

<----Mem_Ory I ~ Ll
Comp","" ~ t=:::::::J

Line Printer

The operator's console

10

The very earliest computers had operator's consoles consisting of
rows and rows of lights, switches, and patch cords. Programs were
input in the form of patterns of patch cords in plug boards, or we~e
keyed into switches bit by bit. When the operator was moved one
step back, and could communicate with the machine from a termi
nal device, the term "console" went along with him. Some com
puters of all sizes still include a switches-and-lights type of console,
but we will not consider that type of console in this book since the
context in which we are working assumes the existence of a console
terminal.

Back in those good old days the standard computer terminal
was the ASR-33 from the Teletype Corporation. About 300,000 of
these mechanical monsters have been produced, most of which are
used for sending messages in the telex network.

Because the ASR-33 was inexpensive, rugged, and included a
paper tape punch and reader in addition to its keyboard and
printer, it became the standard of the minicomputer industry as
the computer operator's console. Five years ago there were no
inexpensive CRT terminals, so all little computers came with an
interface suitable for the TTY. Since "ASR-33 Teletype" is a bit

FIGURE 1-2. A "switches-and-lights" type of computer front
panel console. No longer seen very often. this type of console
permitted the computer operator or programmer to access each
bit within a data or address word. Data was switched in one bit
at a time. and could be displayed one bit at a time. While this
type of operation is no longer necessary. it did make it easy to
visualize bit patterns within computer words.

long-winded, this ubiquitous terminal is called, in short, the
"TTY," as were others of its predecessors.

When the inexpensive microprocessor invaded the earth in
1975, the TTY was still the most inexpensive method for commu
nicating between human and machine. Some early microcompu
ters and most minicomputers wouldn't accept any other device as
their operator's console in those ancient times. And in those days
before floppy disks and CP/M, the paper tape punch 'and reader
sections of the TTY provided the only means of program and data
storage and retrieval on the smallest computers.

The microprocessor itself, which proVided the basis for inex
pensive computers, also brought about a revolution in the terminal
industry. With this smart integrated circuit (IC), it was possible to
build a terminal using an electronic keyboard instead of the TTy's
maze of motor, clutches, levers, and noise. The printing mecha
nism of the TTY was replaced by the silent screen of a TV type
cathode ray tube (CRT). The slow paper tape punch and reader on
the TTY have been replaced by the floppy disk, and now our CRT
terminal (or just "CRT" for short) provides us with reliable, silent,
and forgetful communications between human and computer. Now
just what diq I do forty lines back that caused all this trouble? With
the TTY, we could always pick up the paper from the floor and see
what we did wrong!

11

FIGURE 1-3. The ASR-33 from Teletype Corp. Once the
standard terminal for small computers, this slow, noisy
mechanical device has left a legacy in the device type
designations still found in the CP/M operating system. The
ASR-33 was the source of such terms as TTY, RDR. PUN, PTR.
and PTP still referred to by CP/M's STAT and PIP utilities.

Our more modern CRT doesn't give us that opportunity, but
at least now we know all about "console," "ASR-33," "TrY," and
"CRT."

The computer

12

Our human operator, sitting at his console terminal, is commu
nicating with a computer. Computers come in all sizes, from giant
"mainframes" through "mega-mini's" and just plain old "minicom
puters" down to our lowly microcomputer. At the heart of each of
these machines is a section of hardware designated the central
processing unit, or CPU. This designation dates from the days
when the CPU was a separate rack stuffed full of printed circuit
boards and heat. Another whole rack was needed to hold 16K

Hardware Components of the Computer System 13

words of memory. Later, as integrated circuits replaced discrete
devices (transistors, resistors, etc.), and became smaller and more
complex, it became possible to package a complete computer in a
single rack only six feet high. Now, of course, complete computers
can be held in one hand. Even so, inside each computer is a CPU.

It is the CPU that processes the data. Whether the CPU is
only a small portion of a single integrated circuit, or is a single
integrated circuit, or is a rack full of printed circuit boards, it is still
that part of the overall system that does all the manipulating of
data. The data may come from some other section of the computer,
and after processing be transferred to yet another, but the real
work is the task of the CPU.

The 8080 and its relatives

In our CP/M based computer system, the CPU is one member of
the 8080 microprocessor family, for CP/M is a program written for
the original 8080. The Intel 8080 microprocessor was not the first
micro, but its predecessors were so restricted in computing power
that their usefulness was limited to that of smart controllers, and
only a few brave souls tried to do any real computing with them.

The 8080 changed things suddenly when it became readily
available in early 1975. Here was a CPU contained in a single
integrated circuit package, selling for little more than $100 (in
1975; now less than $5), that executed an instruction set powerful
enough to support real data processing.

It was the instruction set of the 8080, rather than the chip
itself, that became an industry standard. As we will be seeing, the
8080 executes enough instructions to be both useful and easily
programmable. Advocates of other microprocessors will be quick
to point out the deficiencies in the 8080, proving only that you
can't satisfy all the people all the time. While not perfect, the 8080
instruction set is easy to learn and easy to use. And it has become
the industry standard.

The 8080 integrated circuit itself had more serious shortcom
ings. It was relatively slow, required three different power supply
voltages, and needed a couple of extra ICs to provide clocks and
system control. Retaining the 8080 instruction set, Intel later pro
duced the 8085 microprocessor.

14 Hardware Components of the Computer System

The 8085 greatly simplifies things for the hardware designer.
Simply connect a single +5 volt DC power supply, connect either
a crystal or a resistor-capacitor (RC) network between pins 1 and 2,
and the 8085 is ready to run. Of course it will need memory and
input/output (1/0) devices as well, but all micros require them.
)'he real improvement provided by the 8085 is in the simplification
of hardware design, and a great increase in operating speed.

While they are not produced by Intel, there are other mem
bers of the 8080 family that we will be looking at in some detail in
Part III. What we should keep in mind at this point is the fact that
CPIM is written using the 8080 instructions, so some member of
this family must be our CPU.

Instructions in memory

No CPU can operate unless we feed it instructions to execute.
These operation codes (opcodes) will be stored in memory, and the
CPU will fetch them from memory one at a time, decode the
operation requested, execute it, and fetch the next instruction in
turn. This set of instructions placed in memory in a ~eaningful
sequence (we hope!) constitutes a machine language program. The
CPU is a machine, so the opcodes have to be in a format under
standable by a machine. In the case of the 8080, that format is
"bytes" consisting of 8 binary digits, or "bits," apiece.

So, you might ask, how do we get the opcodes into memory to
begin with? The original technique involved keying in opcodes
using one of the switches-and-lights consoles. This is slow, error
prone, and a great impediment to progress. It wasn't long before
all microcomputers included a small program in read-only memory
(ROM) that would load our program automatically. This loader
program would read some input device, like the paper tape reader
on the TIT, and place the instructions it found into read-write
memory, from which they could later be fetched and executed.

In computers with a dedicated purpose, such as controllers or
hand-held digital games, all of the software required can be perma
nently placed in ROM. In a general purpose computer, we have to
be able to change the program and work with varying data. Bit
patterns which will be changing have to be stored in read-write
memory, or "RAM." Why "RAM" for Read-Write Memory, in-

Hardware Components of the Computer System 15

stead of "RWM?" Because that's the way it has always been. RAM
is an acronym for Random Access Memory. The distinction be
tween random access and sequential access memory (like our paper
tape) was made decades ago, and we are stuck with an inexact
acronym.

Just because it is not the best term we can't arbitrarily change
it. We still have to be able to communicate with other computer
users in terms they will understand, so RAM it is.

While we are on the subject of acronyms, two more you will
be needing refer to the major classes of ROM. A PROM is a Pro
grammable ROM. This is an Ie initially fabricated with no stored
program. By a process of fusing internal connections, we can
"burn" a desired bit pattern (our program) into a PROM. This is
fine once we are sure there are no errors in the program. Once
burned, the program stored in the PROM is there to stay. A more
useful device, and more expensive, is the EPROM. This Erasable
PROM allows us to store a program in an IC, test it, and later erase
the bit pattern and start over, if necessary.

There you have the basic components of your computer. The
CPU is one member of the 8080 family of microprocessors. A
loader program is stored in ROM (either a PROM or EPROM) and
will read our program into RAM. To accomplish this, of course, we
will need some kind of I/O device that communicates with mass
storage. Read on.

Mass storage

When the characteristics of the first real digital computer were
originally specified, it was decided that 4,000 words of storage
would be enough to provide for any conceivable computation. Of
course, each of those words was 40 bits long, and the machine was
intended for calculation only.

To implement our microcomputers, we have since bitten
those early long words into more manageable 8-bit bytes. When.
we need to calculate with similar precision, we just take a number
of bytes to chew on at one time. And we have since learned to
laugh at a computer with only 4K of RAM. That's just a toy!

Our 8080 family of micros can directly address 65,536 bytes of
memory. Since we work with binary numbers, we think in terms of

16 Hardware Components of the Computer System

powers of two. We will be looking into this in detail in Part III. For
now, just remember that two raised to the tenth power is 1024, and
using K (for the Greek "kilo") to designate thousands, 1024 bytes of
storage is abbreviated "1K." Sixty-four of these increments is all
the 8080 can address, and 64 X 1024 = 65,536. Or 64K, for short.

Main frame computers and even minicomputers do not have
such a restricted addressing range, but their owners have re
stricted purchasing power, and high-speed main memory is expen
sive. The need for lower cost "mass storage" is as old as the com
puter itself, and this term is just as ancient.

Mass storage refers to any type of external memory: tapes,
disks, drums, or even RAM when it is accessed at addresses out
side the main memory address space. On our CP/M based micro
computer, we have typically two floppy disk drives for mass stor
age, with anywhere from 70K bytes (on 5%" minifloppies) to a
couple of million bytes (M bytes) available on each drive.

As you might guess, main memory inside our computer is
addressed byte by byte using numbers from zero to 65535. Out on
our mass storage device our memory locations are not so easily
organized. It wouldn't be practical to try to keep track of millions of
bytes of memory if each byte had its own unique address.

Disk addressing

Data on disks is recorded in a number of circular tracks, with each
track broken up into a number of sectors. Each sector will have its
own address, such as "track 14 sector 23," and the data stored in
one .sector will be not one byte but a string of data bytes. These
strings are referred to as records, and each record in the original
CP/M system contained 128 bytes. Double and quad density flop
pies and hard disk drives may use other sizes of sectors, but we will
not have to concern ourselves with these details.

Neither will we have to remember that the data we want is on
disk drive 2 at track 32 sector 14. It is one of the functions of our
CP/M operating system to keep track of mass storage addressing
details. As computer users or programmers we will be creating
named files on our mass storage devices, and the operating system
will handle the disk space allocation. All we, or our programs, will
have to keep track of is the file name and the drive it is on.

FIGURE 1-4. Data organization on a typical eight-inch single density floppy
disk. Each of 76 tracks contains 26 sectors storing 128 eight-bit bytes of data.
Each sector can be identified by the disk controller by reading the
identification (ID) information contained in the address field that precedes
the data recorded in the sector.

" 4'0.?!
"'.1><;

04-

76 TRACKS

1.58"

-L c
c:

INDEX

+

I

DRIVE
SPINDEL

HOLE

SECTOR 1

SECTOR 3

SECTOR 1 DATA SECTOR 2 DATA

\

GAP GAP

ID SECTOR 2 ID
7 BYTES

I MARK I TRACK I S IDE I SECTOR I LENGTH I ~~ I a~ I

17

18

Hard copy

Hardware Components of the Computer System

While it is nice to know some of the details of mass storage
organization, thanks to CP/M we will not have to remember or
work with these details. We are living in a truly enlightened age!

Since the objective of this book is teaching assembly language
programming, and since assembly language programs are typically
long and detailed, it will be virtually impossible to operate without
some kind of hard copy peripheral. Back in the days of the TTY,
the hard copy we needed was unavoidable. You got a printed copy
of everything you typed and everything the computer output to the
console. Mistakes and all! Nowadays, when you hear the boss com
ing, you can scroll all the error messages off the top of your CRT
screen. Neat!

The TTY and its descendents, like the Decwriter and similar
printing terminals, print one character at a time. As we key in our
messages to the computer on a printing terminal, we will see each
keystroke echoed on the printer. Output from the computer will
appear to be printed a line at a time, but only because the comput
er can type faster than we can.

A line printer, in contrast, is built in such a way that it is
incapable of printing one character and then stopping. It will re
ceive characters and store them in a buffer until it receives a termi
nation character, usually a carriage return (CR). When it sees this
terminator, it will print the entire buffer in one pass of the print
head.

Line printers matching this description print at rates of from
50 or so to about 300 characters per second. Other types of line
printers use mechanisms other than a moving print head, and can
use up paper at astonishing rates. Trees hate these high speed line
printers.

In our typical CP/M based computer system we will assume
the presence of one of the lower priced line printers. The device
can in reality be the printer portion of your console terminal, if
your system is so configured, but it will be considered to be a
different device when we get to the discussion of device names in
Chap. 3. For now, just keep in mind that references to the line
printer are different than references to the printer on the console.

Hardware Components of the Computer System 19

Some CRT terminals have a printer port built into them, and
some all-in-one computer systems include a function known as
screen printing. A screen printer, or a screen printing function
using the line printer, allows you to save the contents of your CRT
screen on a hard copy device. While this can be a handy technique
for recording your mistakes for posterity, it is not a function built
into CP/M, so we will not assume that our example system includes
this tattle-tale.

Other peripherals

With its operator's console, CPU, memory, mass storage, and a
hard copy device, our CP/M based microcomputer is complete and
ready to perform. What other peripherals could we need?

If our floppy disk system conforms to one of the standard
formats, we could exchange programs and data with any other
computer, large or small, conforming to the same standard. This
will require transporting the disk between computers. Floppy
disks are ideal for this, as they can be mailed.

Too often, however, we will find a need to input data from
some source that does not have the capability of writing that data
onto a compatible disk. We would then require an additional input
device. The old standby is the paper tape reader. In addition to the
reader on the TTY, which clanks along reading 10 bytes per sec
ond, there are other types available that can read paper tape at up
to several hundred bytes per second. The complement of the paper
tape reader is, of course, the paper tape punch, the old standard
output device. These also come in various speeds, but cannot
match the speed of the fastest readers, since more mechanical
action is required to punch a hole in paper than to simply detect its
presence.

One reason for mentioning these two old-fashioned slow de
vices in the same context as our modern high speed CP/M based
computer is that, even if you never see either of them, you will be
encountering their names. The CP/M operating system was itself
generated on a computer that expected reader and punch to be the
most common input and output devices. Use of these device names
as the default names for I/O devices was inherited from this ma
chine. And we have all been sorry ever since.

20 Hardware Components of the Computer System

. Being able to read paper tape reduces our dependence on
floppy disk compatibility, but it is still limiting. Perhaps the most
universally compatible method of data exchange is the modem.
"Modem" is a contraction of "modulator-demodulator," which still
doesn't tell us much about the device. A modem is a device which
enables us to communicate with other computers over a telephone
line. It does this by modulating a carrier tone with our data in the
form of a bit stream at the send end, and demodulating the bits
from the carrier at the receive end.

With a modem connected to a computer on each end, and a
telephone circuit between, we can transfer data between any two
computers. Provided, of course, that the bit patterns used to rep
resent each character in the data stream are the same in both
computers. Here standardization has been achieved. We have a
standardized code, ASCII, which stands for American Standard
Code for Information Interchange. More on this subject later.

Other types of I/O devices are available in almost unlimited
number. Those that can "look like" a modem (to the computer,
anyway), and communicate in ASCII, can be hooked onto almost
any computer. Most, however, have specific interfacing conven
tions that suit them for use on one make of computer only. But we
need not worry about them now, as we are about to see.

A simple computer system

The computer system shown in Fig. 1-1 is the minimum hardware
configuration required for the exercises in this book. It is assumed
that the reader has access to such a system, with at least one floppy
disk drive. Only the minimum 16K RAM will be required, and
either some type of hard copy device or unlimited patience will be
necessary.

In the discussions that follow, we will be examining the CP/M
operating system in some detail, and then looking at the 8080
microprocessor as it appears to the programmer. With this back
ground material behind us, we will start to do some simple assem
bly language programming. We will be learning this language by
writing, editing, assembling, and debugging programs. This
should provide a much superior learning environment than the
traditional method of exhaustively studying a computer's instruc-

Hardware Components of the Computer System 21

tion set and hardware configuration before beginning the first
program.

In this chapter we have learned some of the terms we will be
using in discussing our computer system and how to program it.
We have looked at the components of a computer, and defined the
minimum system required for proceeding with the mastery of as
sembly language programming under the CP/M operating system.

22

Softvvore Components
Of the Computer
System

RE-DO FROM START

BASIC language error message

"Hardware" refers to those parts of the computer system that make
dents in the floor when you drop them. Computerists long ago
decided that the more expensive half of the computer system, the
programming, would be called "software." Not to be confused with
softwear.

Until the middle '70s most computer main memory was con
structed using magnetic cores. Core memory can retain its con
tents even with power off. It took a programming error to wipe out
all the contents of a core memory. When that happened, it was
back to the switches-and-lights console. A new copy of a loader
program then had to be reentered into the computer, and would in
turn be used to read in the operating system from some mass
storage device.

Since keying in a loader in this manner was very time-con
suming, this loader program was written to be as short as possible.

Software Components of the Computer System 23

No error checking frills were included. To insure that the operat
ing system was loaded properly, it was customary for this simple,
short loader to first read in a smart loader, that would then load the
system. The minimum loader came to be called a "bootstrap" load
er, since it allowed the system to pull itself up into memory by the
bootstraps.

The more inexpensive semiconductor memory rapidly re
placed core memory, and the most obvious failing of this new
technology is that semiconductor RAM loses its memory when the
power goes down. Even a little noise on the power line, or a sag in
line voltage, can wipe out the contents of semiconductor RAM.
Then it is back to the console and key in the bootstrap again.

Until manufacturers began putting the bootstrap loader into
ROM, that is. As EPROMS became available at reasonable prices,
the rows and rows of switches and lights began disappearing from
the front panels of microcomputers. Today, it is the rare exception
that includes this technology on the front panel.

Since "software" referred to the programs that were getting
wiped out all the time, a new term was needed to refer to the
contents of ROM. The ROMs contained programs, and therefore
software, but it wasn't as soft as the programs in RAM. Hence the
coined word "firmware." That is, software made harder by being
burned into ROM.

With these terms in mind, let's look at the soft- and firmware
components of our computer.

Firmware monitor

When a microprocessor Ie of the 8080 family is reset, which occurs
automatically on power up and can be accomplished manually in
case of disaster, it begins operation by fetching an instruction from
memory location zero. As we will see later, in a CP/M system the
low end of main memory address space must contain read-write
memory. If the CPU wants to fetch its first instruction from loca
tion zero, and CP/M wants RAM at location zero, and our RAM
forgets everything when power is off, how do we ever get our
computer to start up from cold?

Microcomputer designers had to resort to a hardware trick. A
bootup circuit is activated by the same reset signal that starts the

24 Software Components of the Computer System

cpu. This circuit makes the RAM at location zero "disappear,"
and substitutes a "shadow PROM." Depending on the make and
model of computer, one or more instructions are fetched from the
shadow PROM and executed. At some point in this execution se
quence, often immediately following the first instruction, the com
puter hardware is told that it is time to disconnect the shadow
PROM, and reinstate RAM at location zero.

In the simplest implementation of this procedure, the first
instruction that the cpu fetches from the shadow PROM is an
unconditional jump to the beginning of a monitor program in
ROM. This monitor ROM is usually located at the very top of the
main memory address space. When the cpu decodes this jump
instruction, it knows that it should fetch its next instruction from
the location jumped to. The cpu will begin its next instruction
fetch sequence by placing this new address on the computer's
address bus.

The address bus is the set of sixteen signal lines that contain
the bit pattern of the address of the next memory location to be
accessed for read or write. The bootup circuitry has only to detect
that the most significant bit of the address bus has been asserted.
This circuit then disables the shadow PROM, and reenables RAM
at the bottom of memory.

We do not want to get bogged down in hardware details in
this book, but this discussion is included here as the reset and
boot up procedures are pertinent to understanding the operation of
our computer. All we as computer operators will be aware of is that
turning power on, or hitting the reset switch, will get our machine
up and running.

We do not have to hit the reset switch. It is sufficient to press
it gently. But when a program blows up and manual reset is neces
sary it is customary to want to hit something, so these switches get
a real workout.

The result of this reset sequence is that the cpu begins fetch
ing instructions from our monitor PROM. "Monitor" is another old
computer term that is less than enlightening in modern context.
Your computer mayor may not have a monitor program in the
classical sense. Traditional monitor programs use the console to
communicate with the operator, and provide routines that enable
him to interact intimately with the computer hardware, as is neces
sary for diagnosing hardware failures and debugging assembly lan
guage programs.

FIGURE 2-1. A flowchart showing the sequence of operations
involved in starting up a typical microcomputer. While most of
these operations are transparent to the operator, assembly
language programmers working closely with the hardware and
software components of the computer have to be familiar with
this type of boot up sequence.

Reset
sequence

Monitor
PROM

loader

I
Bootstrap

loader

I
CP/M

J

Fetch first instruction
from shadow PROM

Read bootstrap from
disk A: track 0

sector 1

Disk:
error?

yes

Sign on and
run Moni.tor

25

26 Software Components of the Computer Syste~

If your computer does have a complete monitor, it may come
in handy in the future when we start writing assembly language
programs that can, in case of programmer error, "bomb" the whole
system, requiring us to hit that reset switch. The absence of a
monitor in PROM will not slow us down, however, as the CP/M
operating system includes DDT, the Dynamic Debugging Tool,
that will provide these same functions.

Another feature provided by some monitor PROMs is a set of
peripheral driver programs. These drivers are in the form of sub
routines that our programs can call, providing us with access to all
of the system peripherals without having to know any details of
their hardware addresses. Such drivers are often part of a software
system known as an 10CS, or Input/Output Control System. Once
again, an 10CS in PROM will not be necessary in a CP/M based
computer, as CP/M will provide us with equivalent functions.

What is not optional in our monitor PROM is some form of
loader program. Often the computer you will be using will assume
that a CP/M system disk is in drive zero, and power up or reset will
cause the operating system to be loaded and executed. In such a
system, the functioning and even the existence of the bootup cir
cuit and PROM become invisible. We simply push the button, and
CP/M comes up running.

If we remembered to place the system disk in the drive. The
right drive. Right side up.

The operating system

CP/M is, of course, the operating system in our computer. While
this program was originally written on, and for, the Intel MDS-800
microprocessor development system, it has since been adapted to
more computers of more different manufacturers than any other
operating system. As we will be seeing in Chap. 3, this has been
made possible by the ease with which CP/M can be adapted to
differing hardware environments.

While other aspects of computer hardware have been stan
dardized to some degree or other, there has never been agreement
on standard I/O port assignments. For instance, to transmit a char
acter from the computer to the console, a driver program must test
the status of the output port to which the console is attached, to see

Software Components of the Computer System 27

if it is ready to accept a character. If not, the driver must wait for a
not busy signal. Once the port announces it is ready to accept a
character, the driver outputs the character to the console output
port.

The physical port address for console status and data will
differ from one computer to another. The particular bit that is the
busy bit within the byte read as the console status will differ from
one machine to another. Its sense, whether one or zero for busy,
will also vary from one computer to another. It is possible for a
programmer to learn these hardware details for each computer he
works with, and embed hardware-specific drivers in his programs.
This practice has always been undesirable, as it restricts the use of
a program to a particular computer. With CP/M it is not necessary.

Much more complicated operations are involved in writing to
and reading from mass storage devices. As we mentioned before,
CP/M can be called upon to keep track of all the details required in
disk accesses, as well as operations through I/O ports.

Customizing CP/M

Since the computer user and/or programmer has been relieved of
the necessity for knowing these details, the hardware specific in
terfacing has had to be done when the operating system was adapt
ed to a particular hardware environment. But of course this sys
tem-to-hardware interfacing had to be done only one time. By one
of us assembly language programmers, most likely.

The user-to-system conventions built into CP/M are one of
the strong points of the operating system. All disk and I/O accesses
are passed through a single entry point into CP/M. To implement
this, function codes are passed in one register, and the data or
buffer address passed in other registers. Using these conventions,
it is possible to write programs that will run on any computer
hardware without modification.

It is sad but true that some programmers still do not take
advantage of these facilities provided by CP/M, and insist on using
hardware specific addresses in their programs. As we will be seeing
when we begin writing assembly language programs in Part IV,
this is never necessary. Since we will refuse to repeat the errors of
others, all of our programs will be completely portable.

Application programs

The firmware monitor will take some main memory address space,
and the resident portion of CP/M (depending on version) will take
up about 6K. There are also some special areas at the bottom of
RAM that are used by the operating system. The rest of the main
memory address space is available for user programs.

How much RAM is available to the user depends on how
much is installed in the computer. While the 8080 family can
address 64K, it is not often you find a system with the full 64K of
RAM. In the programming we will be doing from here to the end
of the book, the smallest possible CP/M system, residing in 16K
RAM, will be sufficient.

CP/M loads and executes user programs in RAM in an area
known as the "transient program area," or TPA. The TPA begins at
a fixed address, and includes all available RAM not required by
CP/M. In smaller systems, it may be necessary to overlay part of
CP/M to gain enough user workspace. The operating system has
been arranged so that this can be accomplished without interfer
ing with the disk and I/O access portions of the operating system.

All of the non-system software (the user programs) are re
ferred to as application programs. While we are in the process of
editing, assembling, and debugging our application programs we
will be using CP/M's editor (ED), assembler (ASM), loader
(LOAD), and debugger (DDT). These programs are also going to
be loaded into the TPA as we use them. Obviously, then, they will
not reside in memory all at the same time, and only DDT will
share main memory with our programs. DDT will have to be load
ed along with our application programs only until the programs are
fully operational.

Special memory areas

28

Down at the lowest addresses in our computer's RAM are locations
dedicated to vectors. Vectors, in this sense, are unconditional
jump instructions, like the one that got the CPU from its first
instruction fetch at location zero to the monitor in PROM. The
8080 family uses eight memory locations as vectors for hardware
interrupts. The Z80 and 8085 add other interrupt vectors. We do

FIGURE 2-2. A simplified memory map of a typical
microcomputer running the CP/M operating system. Actual
memory addresses are not shown as they will vary depending
on memory available and the size and version of CP/M
installed.

--*-- 65535

PROM

T

RAM

o

MONITOR

UNUSED
ADDRESS
SPACE

MONITOR RAM

CP/M
OPERATING

SYSTEM

TRANSIENT
PROGR»1

AREA
(TPA)

BUFFERS

L-.-_-_v_~_,;;_O-_RS_-_-___'1 BY~:S

0-2 K

Total RAM
less 7 - 9 K

256 Bytes

29

30 Software Components of the Computer System

not need to be concerned with the details of these vectors at this
time, so long as we keep in mind that our programs should not
disturb these memory areas.

Above the space devoted to vectors, CP/M establishes buffer
areas that we will be using when we interface our programs with
the operating system. On our memory map in Fig. 2-2 we see that
these areas all take up only 256 locations at the bottom of RAM,
and the TP A begins at the next available location.

Another special area within RAM may be dedicated to moni
tor functions. This area will vary from computer to computer, and
may not even be necessary in the machine you are using. Some
monitors use only a few locations, others may grab several K of
RAM for functions such as a memory mapped display image.

One of the responsibilities of the programmer who adapted
CP/M to your particular computer was to insure that the operating
system did not attempt to use any RAM space required by the
monitor or other computer-specific functions. For this reason you
will often see a machine running a 46K version of CP/M, for exam
ple, when 48K of RAM actually exists. The other 2K, it is safe to
assume, was required for other functions.

In this chapter we have discussed three basic types of pro
grams: the monitor, the operating system, and applications pro
grams. The memory map shows how these software elements fit
into memory in a CP/M based computer.

The CP/M-Based
COIIlputer

For the programming exercises in the remainder of this book, it is
assumed that you have access to a minimum size microcomputer
running some standard version (1.4, 2.0, 2.2) of the CP/M operat
ing system, as in Fig. 1-l. While features of more complex systems
will be discussed, only the devices shown will be required for the
exercises to follow.

In this section you have acquired a vocabulary compatible
with current usage in the microcomputer world. There are a myr
iad of other terms spoken by minicomputer users, and even more
in the world of the large mainframe computers. Now it is time to
reduce the size of even our minimum vocabulary, and start using
logical and physical device names as defined by CP/M and its
documentation.

Logical names and physical entities

Let us assume that you are sitting in front of your computer's
operator's console video display terminal. Meet your "CRT:." Isn't

31

32 The CPIM-Based Computer

that easier than "computer's operator's ... ?" "CRT:" implies a
physical device, in this case the tube with keyboard attached.
Since this terminal ... oops! Since this CRT: has been plugged
into the appropriate port on your computer to serve as the opera
tor's console, it has assumed the duties of logical device CON:.

Looking back at Fig. 1-1, we see only three other physical
devices attached to our computer. These are the line printer, or
LPT:, and two disk drives numbered 0 and 1 in the Intel MDS
tradition. The creators of CP/M did not establish any three-letter
plus-colon designations for the disk drives, so we will just number
the physical disk drives 0, 1, 2, etc. When we select a particular
drive we are using its logical device name, A:, B:, etc. Disk drive
logical names map one-to-one with physical names in our mini
mum system.

The same is not true for I/O devices in a CP/M system. As we
see in Fig. 3-1, we have four logical I/O devices that can be ac
cessed through the CP/M operating system. We have already dis
cussed logical device CON:, and we know from the discussion in
Chap. 1 that we will be using our LPT: to make listings of our
programs. So LPT: is connected as logical device LST:, for "list
device. "

Similarly, our general purpose input and output devices are
accessed through logical devices RDR: and PUN:. If we were using
the old fashioned paper tape reader and punch, we would refer to
them as PTR: and PTP:.

Selecting I/O devices

Under the heading "IOBYT Device Selectors" in Fig. 3-1 we see
the schematic representation of four selector switches. If real
switches were connected as shown, we could use them to switch
from one I/O device to another. For instance, our RDR: could
receive data from a card reader, or a paper tape reader, or the
receive side (Rx) of a modem, depending on the setting of the
RDR: switch.

As inherited from the MDS system, CP/M includes facilities
for selecting anyone of four physical devices for each logical de
vice. Rather than the real selector switches, this is done through
bit patterns stored in a one-byte memory location labeled 10BYT.

FIGURE 3-1. Logical to physical device mapping and selection in a CP/M
computer. While the schematic representations of the device selectors indicate
real switches. the switching is actually accomplished by selectively accessing
different device driver subroutines within the operating system in response to bit
patterns stored in the IOBYT.

Custowized
Basie
Input
OLitput
System
(CBIOS)

Basic
Disk

Op~raliIlg

3ystem
(BDOS)

CP/H

IOBYT
Device

Selectors

t-----().....

Logical Devices

0--

0--

Printing
Terminal

o~-----.~,-____ ~\ L I Reader
Card

0--

o

o
o

Tape
Reader

Tape
Punch

Line
Printer

Disk
Drive

o

Disk
Drive

1

Physical Devices

33

34 The CP/M-Based Computer

Leaving the physical devices all permanently connected to the
computer (if it had enough I/O ports!) and selecting them in soft
ware provides for more flexibility. Either the operator can make
the selection through the CP/M CON: interface, or we could allow
our programs to change the selections. Sometimes without telling
us!

It is an unusual system that would have all sixteen selector
inputs all tied to physical devices. Note that there is no require
ment for devices to be connected to the first available input on
each selector, so long as we know what device is attached for each
10BYT setting.

As you can see from this figure, a device such as the modem
that includes both send and receive functions must have the proper
settings in both the RDR: and PUN: sections of the 10BYT. The
CON: is the only bi-directionallogical device.

CP/M has facilities for changing device selections, either
through the same entry vector used by our machine language rou
tine in the Introduction, or by CON: operator action. We will be
discussing more of the names and their derivation in Chap. 5.

In our minimum system, however, we will never need to
change the 10BYT switches, and will only be using CRT: as CON:,
and LPT: as LST:.

THECPIM
OPERATING
SYSTEM ---------

What the Operating
System Provides

The services provided by the various hardware components of a
computer system like that shown in Fig. 1-1 are pretty obvious by
their very nature. The services provided by the various compo
nents of the software system are not so obvious, as we saw in the
preceding section.

Since the bootstrap PROM program accesses the floppy disk
system, as does CP/M itself, and since the computer may contain a
monitor program that can access the console and possibly other
peripherals, as does CP/M, it is obvious that there are more paths
than one to these devices. Since we can't reach out and touch each
part of the software system, or visually trace the interconnecting
cables, it is not as easy to keep track of what is happening within a
software system as it is in the hardware environment. Especially in
a software system as complicated as the one we are working with.

In this section, we will be looking at the CP/M operating
system as it appears to the operator and programmer. You will be
exercising a few of the built-in and transient commands prOVided
by CP/M, but there is no point in trying to exercise all of the

37

38 What the Operating System Provides

available commands in all their variations until you actually need to
use them in Sects. IV and V. However, if you want, you may use a
nice clean disk and experiment to your heart's content with creat
ing, deleting, renaming, and copying disk files using the instruc
tions which follow.

If you are sharing access to your CP/M based computer with
other users, you should be careful not to use any of their disks to
experiment upon. Otherwise, assembly language may not be the
only new language you will learn.

Named file handling

A file in a computer is like one in a file cabinet. It can contain just
about any sort of information, right or wrong, and the contents of a
file can be identified by a label. In the cabinet, the labels on file
folders can be of any reasonable length, and mayor may not actu
ally represent what is in the folder.

The name of a file in a CP/M system has a few constraints on
it, in comparison. If the creator of the file is lazy, the name could
become meaningless if it is not carefully chosen to remind him of
what is in the file. Don't start off by naming all of your experimen
tal programs "X.ASM" like some unfortunates have in the past!

CP/M allows each file name to be up to eight characters in
length. A file type of three characters is appended to the name,
following a period. In general form, this name/type is represented
by FILENAME.TYP in this book. When the files on a disk are
examined by using the DIR command, the period is not shown,
and the name is always padded out to eight characters with spaces,
to keep everything lined up. But you can use any number of char
acters up to eight in the name, and you don't have to type the
spaces.

There are also some constraints on the file . TYP as well. Some
types are fixed in meaning. ".ASM" is an assembly language source
program. ". CO M" is a command file that CP/M will load into
memory and execute whenever you type in its FILENAME follow
ing the prompt ">" that says CP/M is ready to accept a command.

You can create your own file types so long as you don't conflict
with the default types shown in Table 4-l. For instance, with CP/

What the Operating System Provides 39

M booted up from your system disk (see Intra.) in drive A:, place
your nice clean disk in drive B: and enter the command:

SAVE 0 B:-WORK.OOI

followed by a carriage return (CR). This will create an empty file
(zero blocks saved) with a name of -WORK and a "type" of 001, on
the disk in drive B. What kind of type is this?

It really isn't any kind of type. You have used the. TYP field
to number this disk as your first working disk. This empty file is
like the label on the front of the file cabinet. If there are lots of

TABLE 4-1. Standard file types for CP/M disk files. The. TYP
field of the file name should agree with established
designations for these default types. Other designations for
other types of files can be used at the computer operator's
discretion.

Standard Use
Defined by CP/M

Binary program image (Command)

Assembly language source program

Assembler program output (hexadecimal)

Assembler list output (print)

Editor input-saved (backup)

Temporary scratch file

Submit command file

Other Common Usage

BASIC language program

BASIC compiled program (intermediate)

Fortran source

Macro assembler source program

Relocatable compiler output

Data file

.TYP

.COM

.ASM

.HEX

.PRN

.BAK

.$$$

.SUB

.BAS

.INT

.FOR

.MAC

.REL

.DAT

40 What the Operating System Provides

users on your system, you might have included your initials in the
name, like -WORK-JJ.OOl for Jan Jones' first work disk. The lead
ing dash (-) flags this filename as special; not a real information
containing file.

CP/M allows you to create just about any kind of file name and
file type, and this little exercise was to demonstrate that some
thought should go into the selection of both. And it is a good idea to
start off by naming each of your disks with this kind of empty file
that will create a directory entry to provide identification for each
disk you use.

In addition to being able to create disk files from the console,
CP/M provides your programs with the same power. Files can be
created or deleted, or accessed for reading or writing, either from
the console or from within a user's programs, using the same nam
ing conventions in all cases.

Wildcards in file names

With your disks in the drives as above, enter the command DIR to
list the contents of the disk in drive A (a carriage return is assumed
following each command entered). "DIR" by itself lists all of the
files on the current disk. Now enter

DIR *.COM

and you will get a listing of only those directory entries with a file
type of .COM (for COMmand). The "*" is a wildcard that tells CP/
M to accept any FILENAME whatsoever. "*.COM" is equivalent
to "????????COM" where each "?" means "accept any letter in
this character position." Any number of ?'s can be used in a file
name in place of letters to help you search the disk directory for
sets of files with similar names.

Suppose you had been working on a program to play the game
of LIFE. In the process of updating the source program, you have
created a number of .ASM files: LIFE.ASM, LIFE-l.ASM,
LIFE-2.ASM, etc. You could find all of them by entering

DIR LIFE???? .ASM

What the Operating System Provides 41

or, if you are lazy, you could have entered

DIR L*.ASM

which is a little more ambiguous, and might also have included
LOAD.ASM or LOUSY.ASM if such existed on the disk.

LIFE.ASM is unambiguous. It tells CP/M that the file by that
FILENAME.TYP is the only one you are interested in. You can
specify files with more or less ambiguosity by including fewer let
ters and more ?' s, or go the whole route and use *. * and CP/M will
accept any file name and any file type it finds in the disk directory.

Yes, there is a use for *. * in the real world. In the command

PIP B:=A:*. *

we have told the Peripheral Interchange Program (PIP) to copy all
the files from drive A: onto the disk in drive B:. If you want, you
can do just that right now, and create a copy of the system disk
which is in drive A: onto your nice clean disk in drive B:.

In the course of discussing file names, file types, ambiguous
and unambiguous names, and wildcards, we have seen that several
CP/M utilities can be instructed to access files that have been
specified using the same formats and wildcards. All of the programs
accept all the wildcards and drive identifiers alike.

This is one of the most useful features of the operating system.
The same formats and options for specifying files are accepted by
all of the utility programs because all the programs use the same
file handler routines in CP/M. And we will be seeing in Sect. V
that your own programs can be just as flexible, using the same CP/
M supplied file access routines. CP/M provides the same options in
accessing named files for your programs as it does for itself. This is
one of the features of the system that leads to painless
programming.

Logical unit access

In Chap. 3 we discussed the mapping oflogical to physical devices.
CP/M provides both the console operator and user programs with

42

Line editing

What the Operating System Provides

simplified access to logical units, and thus to the selected physical
devices. From the console, the operator can specify a logical unit
within a command string such as

PIP PUN:=FILENAME.TYP

and have the named disk file sent to the physical device currently
attached as logical device PUN:. In this way the computer operator
could send a program source file to another computer using a
modem and a telephone connection.

Similarly, a program can access any of the logical devices as
well, without knowing what physical device may be connected.
This could allow a general purpose data communications program
to be used, with the operator specifying the physical to logical
assignment, for example. And finally, either the operator or the
user program can change the logical device assignments.

The mechanisms for making these accesses will be discussed
in Chap. 6, and again in detail in later chapters as actual applica
tions for the techniques are programmed. While it may sound
complicated to you at this point, you will be seeing that the careful
design of the operating system has simplified all these file and
device accesses, and the programmer is relieved of the tasks of
keeping track of physical devices and the locations of data on the
disks. CP/M is a nice place to work.

Since you have been keying in command lines like those listed
above, and will probably want to experiment with others as soon as
you are finished reading this chapter, it is time to discuss CP/M's
built-in line editing feature.

If you are keying in a command line in response to the CP/M
prompt ">" and make a single-keystroke error, you can back up
one character by hitting the DEL, DELETE, BS, or RUBOUT
key on your terminal. These four options are shown here as differ
ent keyboards have a different designation for this key. You may
have to experiment a little with your terminal; some have two of
the key names listed above but only one will work properly.

When CP/M sees the delete key code, it will not always be

What the Operating System Provides 43

able to back up the cursor on the screen, depending on version. If
your version does not back up and over-write the character, the
deletion is shown by the repetition of the character. Since this
clutters up the typed line with extra characters, you can review the
command line before terminating it with the usual carriage return
by entering the control code CTRL R.

A control code is entered by holding down the CTRL key
while pressing and releasing the letter key speCified. Then the
CTRL key is released. If you have made a number of keystroke
errors on a command line, and rubbed out the bad ones and re
typed the correct characters, the line as displayed on the CRT may
be indecipherable. To review it before executing it, type CTRL R
and it will be repeated as edited on the next line.

To give up, and abort the entire entry, type CTRL U or
CTRL X. If you have made too many errors on one line, this is
often the best way out. Give up! CTRL X! Retype the whole line
and be sure it is right.

These are about the only line editing controls you will ever
need, although there are others listed in the CP/M manuals. Don't
try to learn more than you need to start with.

As with so many other good features of CP/M, these line
editing controls are available to you the programmer, as well as to
you the operator. Your own programs can, and always should,
make use of this feature to provide a friendly environment for the
computer operator. Remember, he will often be you.

And again, to avoid overloading your brain at this point, the
details of how to easily include all these nice CP/M features will be
given in later chapters, as the time comes for you to write programs
that make use of them. Right now you might want to play around
with the commands discussed this far, and exercise the line editing
features. Then again, you might not want to. Do it anyway.

44

Organization
OfCPIM

We are all working together to one end,
some with knowledge and design,
and others without knowing what they do.

Marcus Aurelius Antoninus

Before we can look at the organization of CP/M and see how it
provides all the services listed in the previous chapter, we have to
take a quick look at some items that the operating system needs.
These needs include access to programs at the most primitive
level, that communicate with the physical devices through the
computer hardware. These driver routines have to be supplied
before CP/M can run, and are at the lowest level of all the software
in your computer system.

Eventually you will want to learn more details of this level so
that you can make additions to existing CP/M systems or adapt the
operating system to a new computer. These are a couple of the
interesting tasks that can be performed by the assembly language
programmer.

Disk and liD access primitives

In the first section we took a look at how data is stored on a disk,
and how a loader program somewhere in ROM is used to load the
operating system into the proper place in RAM. This loader is not
part of the operating system. It has to pre-exist somewhere in the
computer's memory so that we can get the operating system off the
disk and into memory.

This loader must be available when the power is first turned
on, and also when the operator hits the RESET switch. In addi
tion, this same loader, or a portion of it, will be used to "warm
start" the operating system. A warm start assumes that the system
has been running previously, so it will use the currently selected
disk drive, and will make no changes in the logical to physical
device mapping as defined by the contents of the IOBYT. A warm
start is used at the end of transient programs to reload CP/M, or in
response to the operator pressing CTRL C to abort a program in
case of trouble.

Obviously, the PROM based loader must contain routines
that permit accessing the disk at the most primitive level, in order
to position the head of the correct disk drive to the correct track
and sector where the beginning of the operating system will be
found, and then load the system into RAM. These same routines
will later be used by the operating system to perform the same
primitive functions. One of the tasks involved in adapting CP/M to
a particular computer is to connect the proper functions in CP/M to
the proper disk access primitives in PROM.

The same is true for I/O device accesses. CP/M does not know
the absolute addresses of all the I/O ports, so a computer specific
set of I/O device driver routines is required. Since no communica
tion with the CON: or other devices is required before the system
is loaded into RAM, it is customary to include the complete I/O
device access primitives within the proper area set aside in CP/M,
in the Customized Basic Input/Output System (CBIOS). These
driver routines will then be loaded from the disk along with CP/M.
But this is not always necessary, and I/O device drivers in PROM
could be used by CP/M.

In either case, a particular area within the operating system
has been set aside for a number of vectors that point to the proper
disk and I/O access primitives. These vectors are shown in Table
5-1.

45

FIGURE 5-1. The organization of the software elements within user programs,
the CP/M system, and the hardware-specific support routines in a typical
microcomputer. User programs. access all devices through the BDOS call vector,
and exit back to CP/M through the warm start upon completion. Power-up, reset,
and device driver functions are provided by primitive routines stored in read
only memory (ROM) within the computer. CP/M accesses these functions through
the CBIOS vectors.

p-R~1
RESE"'· .

LOADER
IN

PROM
...

SWITCH
WARM START LOCATION 0

-r
VECTOR

----.J

CP/H
SYSTEM

CCP,
BDOS,

~'OOSChlL I
&

CBIOS

USER r - - - --,
TRANSIENT VECTOR BDOS ENTRY I

PROGRA1'IS ~ 1000,,=,1 L _____ J

46

---....
JMP BOOT

JMP WBOOT

JMP CaNST

JMP CON IN

JMP CONOU

JMP LIST

JHP PUNCH

JMP READER

JMP HOllE

JMP SELDSK

JMP SETTRK

JMP SETSEC

JHP SETDHA

JMP READ

.IMP I-IRITE

CBIOS
VECTORS

BOOT TO CCP

WBOOT TO CCP

CBIOS START

Q1 UP ROUTINES

CaNST

CONIN ~£J, CONOU

-' J LIST ~

PUNCH r---- LO DC)
READER ..., l

CBIOS I/O I/O DEVIC
DRIVERS

ES

(may be part
of PROM)

HOME

~ SELDSK 0-

SETTRK ~ 3
SETSEC ~

SETDMA ~ L{
READ ~

WRITE /
DISK ACCESS
PRIMITIVES
(part of

DISK DRIVES

PROM)

47

48

TABLE 5-1. The Customized Basic Input/Output System (CBIOS)
within CP/M includes a set of standardized interfacing vectors.
that will remain in these relative locations for any version of CP/M
installed in any computer. This permits all customization to be
restricted to the subroutines accessed through these vectors.

ADDRS Vector Description/functions
System Load functions

3EOOH+b BOOT Enter after power on or RESET and after
system has been loaded from disk.

Display sign-on message. zero 10BYT
and DRIVE. set up low RAM vectors.
select current drive. go to CCP.

3E03H+b WBOOT Enter after CTRL C or IMP O. Load
system from disk.

Set up low RAM vectors. select current
drive. go to CCP.

1/0 Device Drivers

3E06H+b CONST Test CON: for keyboard character
ready.

3E09H+b CONIN Wait for and read CON: keyboard
character.

3EOCH+b CONOU Send one character to CON: display.
3EOFH+b LIST Send one character to LST: device.
3E12H+b PUNCH Send one character to PUN: device.
3E15H+b READER Wait for and input one RDR: character.

Disk Access Primitives

3E18H+b HOME Set current drive head to track O.
3EIBH+b SELDSK Select drive. store number in DRIVE.
3EIEH+b SETTRK Set current drive head to track

specified.
3E21H+b SETSEC Seek current drive to sector specified.
3E24H+b SETDMA Set RAM buffer start address for next

disk read or write.
3E27H+b READ Read selected disk. track. sector into

RAM buffer.
3E2AH+b WRITE Write contents of RAM buffer into se-

lected disk. track. sector.

b = BIAS = 400H for each 1K offset above 16K CP/M

Organization of CPIM 49

Each vector is a three byte jump instruction, JMP BOOT,
JMP WBOOT, etc. The addresses shown in the table are the abso
lute addresses for a 16K version of CP/M. The first vector points to
routines that get things running properly after the PROM loader
has bootstrapped in the CP/M system, and will be jumped to from
the PROM loader.

The BOOT routines will then display the "xx K CP/M ... "
sign-on message, zero the 10BYT and DRIVE select bytes in low
RAM, and set up the vectors at locations 0 and 5. BOOT then
jumps to the CCP.

The next vector points to WBOOT, for warm starts. WBOOT
is entered when the operator or a transient program wants the
system reloaded. Within the WBOOT routines the loader in
PROM will be called upon to reload the operating system. Then
WBOOT will rewrite the low RAM vectors, but will leave the
DRIVE and 10BYT selections as they were. WBOOT then jumps
to the CCP.

CP/M itself is activated when the Console Command Pro
cessor (CCP) is entered. It is CCP that prompts with the ">"
character and then waits for a command to be entered from the
CON: device.

CCP, other portions of CP/M, and user programs in the TPA
will all communicate with I/O devices through the next six vectors
shown in the table and Fig. 5-1. These vectors point to the driver
subroutines that do the decoding of 10BYT and perform the actual
communications between software and physical devices.

The seven disk access vectors follow in the table. You can see
from the descriptions of the routines pointed to by the vectors that
everything that can be done to a disk, at least from a program, can
be accomplished through these vectors and the primitive routines
that they access. An operator is still required to put the right disk
in the right drive, right side up. Humans can't all be replaced by
machines.

All that is required to adapt CP/M to a new computer is to
provide the loader in PROM and the 15 routines to be accessed
through these vectors. Since this has already been done on your
computer you don't need to understand the details of these pro
grams to use CP/M. But someday you may be involved in custom
izing these programs to add new I/O devices or adapt CP/M to a
new computer. The Digital Research CP/M manuals give all the
details you will need, and include sample programs.

BDOS-The Basic Disk Operating System

50

In the beginning a floppy disk sector held 128 bytes of data, plus
address and checksum information. Therefore the basic element of
disk storage is the 128 byte record. Also in the good old days,
assembly language programmers thought in terms of 256 byte
"memory pages," which in nice round hexadecimal numbers hold
100H bytes. In CP/M documentation, you will run across refer
ences to 128 byte sectors and records, 256 byte pages or "blocks,"
and lK byte "groups."

Double density and hard disks have physical sectors that can
be multiples of 128 bytes, so we will use terms that are indepen
dent of the size of a sector on disk, to avoid confusion. All you have
to remember is that

1 record = 128 bytes
1 block = 256 bytes = 2 records
1 group = 8 records = lK bytes.

Actually, you can usually let the system remember all of that.
Since CP/M is structured to make things easy for the user, all the
user needs to do is tell the system to read FILENAME.TYP into
the TPA. BDOS will handle the details.

The first detail will be to search the directory for the named
file. The name will be found in a directory entry that is the image
on disk of a File Control Block (FCB). Other information contained
in the FCB tells the system where to find the file on the disk, and
how big it is. The minimum increment of space on the disk that can
be allocated by CP/M is not one record, but is the lK byte group.
If a file contains only a single byte, it still takes up lK bytes on the
disk. If it contains lK + 1 bytes, on up to 2048 bytes, it will take up
two groups (2K) of disk space.

This seeming inefficiency is the price you pay for a system
that provides all the high level niceties that CP/M does. Between
the user with a file name, and the disk access primitives listed in
Table 5-1, stands BDOS to take care of all the little details.

Details like remembering what files have been erased, so that
their space on the disk can be reused. This is known as dynamic
disk space allocation, and is what keeps you from running off the
end of the disk all the time. BDOS maintains all the information

Organization of CP/M 51

required for this in the FCBs in the directory. User programs can
ask BDOS to look for files in the directory, read them into RAM,
write them from RAM to disk, or erase them.

In addition, the computer operator, working through PIP or
the CCP, can ask BDOS for these same services. And whether the
disk file access request comes from a user program or from the user
sitting at the console, BDOS will display all disk access errors on
the console.

In the next chapter we will be looking at how a user program
requests disk accesses from BDOS, and in Sect. V will be doing
just that. There is not much else you need to know about BDOS,
except that when it says

BDOS ERR ON B: BAD SECTOR

don't panic. Maybe you just forgot to put the disk in the drive. Of
course it is possible that there was a real disk error in drive B.
BDOS will try over and over to read or write a sector whenever it
encounters a checksum error. But its patience is limited, and after
a few retrys it will give up and display the message above.

The computer operator has two options at this point. If he
types a carriage return on the console, the error will be ignored. If
he types CTRL C, the system will be rebooted (warm start). You
can ignore read errors in text files, like assembler source files, and
recover the rest of the file. But don't ever ignore read errors when
loading a program from a .COM file. This is the binary image of
the program, and any error is usually fatal.

If you ever see the BDOS error message

BDOS ERR ON R: SELECT

or this message with any other illegal drive specified, it means your
program is totally lost, and has garbaged the DRIVE select byte at
location 4 in RAM. This means that it has probably garbaged lots of
other locations as well. NOW IS THE TIME TO HIT THE RE
SET BUTTON. You know you always wanted to!

A BDOS error of READ ONLY means that the disk you are
trying to write on is write protected by having its notch covered
(5W' disks) or uncovered (8" disks) or that you changed the disk
without letting CP/M know. If you have changed the disk, or if you

52 Organization of CP/M

pull it out and remove (replace) the sticker on the notch, hit CTRL
C and BDOS will reread the disk directories and then be able to
write again.

All of these error messages are displayed on the console
whether the source of the error is a program fault or human error.
When running a higher level language program, like Star Wars
written in BASIC, there is usually nothi~g you can do to recover
from BDOS errors. If the error is real and permanent, indicating a
defective floppy disk, recover as much data as you can from the rest
of the disk and then throw the disk away. Disks are cheap. Don't
risk your valuable software on a bad one. You did make a backup
copy, didn't you?

CBIOS-The Customized Basic Input/Output System

CP/M is an extremely well organized operating system. It is com
pact and easy to adapt to a new hardware environment. After
struggling through the first part of this chapter, you might not be in
total agreement that it is an easy system to learn.

One reason that there seems to be a lot of jumping around
from PROM to CBIOS to CCP to TPA is that the system was
written to run on a minimum computer, with only 16K bytes of
RAM required for version 1.4 of CP/M. To provide the user with
all of the required services and still allow him 10K of user work
space in the TPA required that CP/M make maximum use of the
available resources of the computer. The seemingly fragmented
organization of the system, as we see in Fig. 5-1, is actually evi
dence of its efficient organization.

It is also evidence of the features of CP/M that make it so
adaptable. Access to all disks and I/O devices can be made through
the single location 5 vector pointing to the BDOS entry point. All
other required vectors, the 15 CBIOS vectors, are grouped in one
place, and more than enough memory space is available immedi
ately above them for the incorporation of the customized drivers
that make CP/M run on your particular computer hardware.

Table 5-2 is the memory map of version 1.4 of CP/M installed
in a minimum 16K system. (The PROM is not shown, as it is part of
the hardware and its address and size will vary from computer to
computer.) The map shows the locations of all the vectors, RAM

Organization of CP/M 53

variables, and the parts of the operating system. BIAS is a value
that will be added to the absolute addresses shown for versions of
CP/M larger than 16K. The program can be resized from 16K to
64K in lK increments, to adapt it to any 8080 family of
microcomputer

All the other adapting required has been done in your system
in the CBIOS. In various articles, books, and manuals on CP/M
you will find "BIOS" and "CBIOS" used interchangeably. Since
some customizing is required for every computer CBIOS should
be the word to use.

TABLE 5-2. The memory map for version 1.4 of CP/M. All
memory usage below address 100 in hexadecimal remains the
same regardless of the installed size of the operating system.
The addresses for the moveable portion of CP/M are shown for a
lSK version. A bias value will be added to these addresses
depending on installed size.

Memory Address Contents Function
From To

OOOOH 0002H IMP WBOOT at 3EOOH + b Warm start vector

0003H IOBYT 110 selector

0004H DISK Disk selector

0005H 0007H IMP BOOS at 31OSH+b BOOS entry vector

0008H 0037H not used by CP/M Interrupt vectors

0038H 003AH IMP DDT DDT breakpoint

003BH OOSBH not used by CP/M

OOSCH 007FH TFCB Transient FCB

0080H OOFFH TBUFF Default RAM buffer

OlOOH 28FFH+b TPA Transient
programs

2900H + b 30FFH + b CCP Console
commands

3100H+b 3DFFH+b BOOS Disk operations

3EOOH + b 3E2CH + b CBIOS vectors See Table 5-1

3EOOH + b 3FFFH + b CBIOS 110 operations

b = BIAS = 400H for each lK offset above 16K CP/M

54 Organization of CP/M

Inside CBIOS are all the I/O drivers shown in Fig. 5-1. Not
repeated in this schematic diagram are the IOBYT selectors shown
in Fig. 3-1, but each of the drivers will have to decode its part of
IOBYT if this feature is enabled in your computer. This is another
option with CP/M; the IOBYT does not have to be used if multiple
1/0 devices are not installed.

If IOBYT is implemented, it takes the format shown in Fig.
5-2. Each of the four logical devices uses a two-bit field within

FIGURE 5-2. Subfields within the eight-bit IOBYT specify one of
four physical devices to be accessed by each of four logical
devices in a CP/M based computer. Minimum systems with few
peripheral devices do not need to implement the IOBYT. More
complicated systems can use it to simplify operator selection of
input/output devices. The device names shown were inherited
from the Intel MDS-BOO development system that spawned CP/M.

IOBYT L S T PUN R D R CON
Bit I I I I I I

7 6 5 4 3 2 1 0

! i
} ~,ol' 0 o = TTY:

0 1 = CRT:
I o = BAT:

I = UCI:

0 o = TTY: } 0 I = PTR:
I o = URI: Reader

1 1 = UR2:

0 o = TTY: } 0 I = PTP:
o = UPI: Punch
I = UP2:

0 o = TTY: } 0 I = CRT:
I o = LPT: List

1 I = ULI:

Organization of CP/M 55

IOBYT to select one of four physical devices. Each logical device
driver (CONIN, PUNCH, etc.) will have to read the current
IOBYT, mask out its two bits, and decode the bits to see which
device to communicate with.

All of this is straightforward, and any competent assembly
language programmer can write customized drivers using IOBYT.
What is not so easy to get used to is all the funny device names that
go along with use of the IOBYT. With your CP/M system disk in
the current drive, enter the CCP command

STAT VAL:

and you should see the following display:

CON: = TTY: CRT: BAT: UCl:
RDR: = TTY: PTR: URI: UR2:
PUN: = TTY: PTP: UPI: UP2:
LST: = TTY: CRT: LPT: ULl:

produced by the CP/M transient utility program STAT.
Back in Chap. 3 we saw that all kinds of goodies could be hung

onto our microcomputer, and selectively accessed for data trans
mission and reception. One handy device is the modem. If you
want to select the modem to be attached as the PUN: and RDR:,
how do you go about it?

In the list of devices shown by STAT VAL: we don't find any
physical device name like MOD: for modem. This is another hold
over from the days when CP/M was created. It was originally
programmed on an Intel Microcomputer Development System,
and all the logical and physical device names shown above are part
of the "MDS Syndrome."

We already know that the MDS expected that old mechanical
device, the ASR-33 Teletype, to be the default selection for all four
logical devices. Other physical device names handed down as part
of the syndrome include PTP: and PTR: for paper tape punch and
reader. If a user insists on connecting more modern devices, he has
to refer to them as the User Punch lor 2, and User Reader 1 or 2.
ULl: would be the User selected List device. At least Line
PrinTer and CRT: are included in the syndrome. But no MOD:.

Obviously, you would connect the modem to any available

56 Organization of CP/M

serial I/O port, and write a CBIOS driver for PUN: and RDR: that
would talk to the modem when UPI: and URI: were assigned to
the punch and reader logical devices. Or your CBIOS driver could
access the modem as TTY:, if it was your number one peripheral.

In any case, a customized driver has to be incorporated in
CBIOS, and the operator has to remember which funny name
refers to the modem. Until, that is, you learn enough about assem
bly language programming to be able to customize the names of
the devices in STAT. It can be done, but first you have to learn
more about the system, and then how to write assembly language
programs. That is a carrot dangling in front of you, in case you
didn't notice.

By the way, just what is a BAT:? On the MDS it was the paper
tape reader loaded up with a tape full of pre-punched console
commands. In the BATch mode, the paper tape was read one
command at a time, as though it was an operator issuing commands
to the system. Each command was then executed in tum, then the
next read from the PTR:. This allowed the operator time to go get a
cup of coffee, or go to lunch, or just mess around a little. The
computer could run batches of jobs unattended, getting all its
commands from the tape.

CP/M doesn't use this batch mode. It has an even smarter but
similar program known as SUBMIT. It reads commands from a
disk file, and does all kinds of smart things. Now we have to figure
out something else for BAT: to refer to. I'm sure you'll think of
something, even if you don't have a mother-in-law.

CCP-The Console Command Processor

After the CP/M system has been loaded into RAM from the disk,
CCP prompts the operator for a command line input by displaying
on the console the currently selected drive designation followed by
the "greater than" symbol: A>.

CCP expects to see a command consisting of the name of one
of the resident functions, or the FILENAME of a .COM file on
disk. In the latter case, the FILENAME can be preceded by a
drive designator like "B:" if the .COM file is not on the current
disk. If the resident function or . CO M program requires options to
be specified, they follow the command name on the same line,
separated by spaces. Options can be other file names, ambiguous

Organization of CP/M 57

or unambiguous, with or without drive designators. Options can
also be any other information required. The line editing features
discussed earlier are active while the operator is keying in the
command line.

CCP executes resident commands using the options spec
ified, and then prompts for another command line input. If the
command is not one of the resident commands, CCP assumes it is
the name of a . COM file on disk. In that case, CCP aids the author
of that transient program by setting up a default file control block,
containing the properly formatted name(s) of any files specified in
the command line, and a RAM buffer containing the entire text of
the command line, past the command name itself.

Suppose we have a program named COMPARE that com
pares the contents of two disk files and displays any differences
found between them. To keep the display from scrolling off the
screen faster than the operator can read it, the operator is given the
option of entering a directive to tell the program to pause following
the display of each miscompare. The operator invokes the program
by typing

COMPARE B:TEST.ASM B:TEST.BAK PAUSE

to see all the updates made to his program TEST following the last
edit session (TEST.BAK is the next to last version ofTEST.ASM,
automatically saved by the CP/M editor).

Here the programmer who wrote COMPARE uses the CCP
generated default file control block (TFCB in Table 5-2) to find the
two filenames that the program requires. Since the operator can
also specify another option, COMPARE will look in the command
line buffer (TBUFF in Table 5-2) to find the option.

CCP has saved the programmer a lot of effort by setting up
these two storage areas before loading and executing the transient
program. Another example of super service for the CP/M assembly
language programmer.

Resident functions

Given unlimited storage, all of the utility routines listed in Table
5-3 could reside permanently in the system area in the computer
memory. Then they could be executed instantaneously, rather

58 Organization of CP/M

TABLE 5-3. The utility functions provided by the CP/M operating
system are divided into two classes: those resident in memory
at all times, and those loaded into the transient program area.
These latter progams take up memory space only until their
functions are completed.

Resident Commands

ERA FILENAME. TYP (afn)

DIR

ERAse file(s)

Display disk DIRectory

DIR FILENAME. TYP (afn) Display DIRectory file(s)

REN FILENAME.TYP=FILENAME.TYP REName a file

SAVE xx FILENAME. TYP

TYPE FILENAME. TYP

SAVE contents of TPA on
disk

Display contents of a file

Transient Commands

STAT

STAT FILENAME.TYP (afn)

STAT VAL:

STAT DEV:

ED FILENAME. TYP

ASM FILENAME.shp

LOAD FILENAME

DUMP FILENAME. TYP

SUBMIT FILENAME x,y,z

MOVCPMyyw

SYSGEN

Display STATus of current
disk

Display STATus of file(s)

Display logical/physical
I/O

Display I/O assignments

EDit an ASCII file
ASseMble a program from

file

LOAD .HEX file to .COM
file

Display file in memory
DUMP format

SUBMIT batch processing

Generate re-sized system
Write moved system to

disk

(afn) = ambiguous file name(s) permitted
xx = size of file in 256 byte blocks
shp = disk drive for source, hex, and print files
x, Y,z = optional parameters
yy = size of resulting CP/M system
w = * option

Organization of CP/M 59

than being loaded into RAM from disk as they are required. The
alternative would be for all of the utilities to be . COM files on disk,
with none resident in the operating system.

Since either method would work, the division between resi
dent and transient utilities is strictly the result of a judgment deci
sion on the part of the designers of CP/M. Since resident functions
are not loaded from disk, they execute rapidly, but take up memo
ry space.

The resident function you will be using most often is DIR,
used to display your files on disk. DIR followed by a carriage
return will show all your files on the current disk. DIR followed by
a drive designation will list the contents of the disk directory in that
drive.

DIR can also be followed by a filename, ambiguous or unam
biguous, as discussed in Chap. 4, to verifY the presence of a partic
ular file or group of files.

ERA can also be invoked with the same options that work for
DIR. ERA *. BAK will clear your disk of all backup files.

ERA B:*.BAK

will do the same for all the backup files on drive B:. ERA must be
used with caution, since it causes a file to be erased, and the next
disk write will reuse the disk space made available by ERA. "ERA"
stands for "erase," of course, and has nothing to do with political
activities.

In Chap. 4 we used SAVE to create an empty file, just to put a
disk name in the directory . SAVE will also create a . CO M file by
moving the contents of the TP A onto disk, with the name specified.

SAVE 12 TEST.COM

will create a file containing 12 memory pages, or blocks of 256
bytes each. Obviously a topic for later discussion, when you are
actually writing transient programs.

REN allows you to rename a file, if you remember that in
assembly language programming a curious convention has been
handed down over the years. That convention is the practice of
specifying everything backwards, as in MVI C,WCONF, where
the C register is the destination, and WCONF is the source of a

60 Organization of CP/M

value to be moved into C. REN wants the same reverse sequence:

HEN B:GOODPHOG.COM=B:TEST.COM

and is here used to put the permanent name onto a transient
program that had been called TEST until it was fully debugged.
The programmer had better remember to rename TEST.ASM
now, too!

SAVE and REN don't get much use, normally. The final resi
dent command, TYPE, makes up for that. Like SAVE and REN,
TYPE requires an unambiguous file name as an option. It will type
out the contents of the named file on the console. TYPE can also be
used to list files on the line printer, by including the special control
CTRL P in the command line.

CTRL P is a toggle. Enter it once and everything that is
output to the console for display will be echoed to the LST: device
as well. Hit CTRL P again and the LST: output will stop. Since
everything displayed on the console will get printed when you use
this control, you won't get nice formatted printouts like those sup
plied by the PIP utility. But CTRL P is a handy way to get quick
program listings in conjunction with TYPE, and can be used with
DIR and STAT to list the contents of your disks.

Another toggle is CTRL S. If you TYPE a source program
listing, it will go scrolling past on the console so fast you won't be
able to read it all. Enter CTRL S once and the display will stop.
Again and it will resume flashing by. It is a shame that this control
is not on a single key. That would make it easier to use this handy
function.

When you become a proficient programmer you can write
your own customized version of BIOS, and you can implement a
similar pause control using a single key. Or better yet, you could
implement a speed control to slow the display down for listing long
files. Power to the programmer!

Transient utilities

Enter the command STAT *.COM and you will see why STAT is
not a resident function. The display shows the statistics of all
the .COM files on your disk, including STAT. COM itself. Look at

Organization of CP/M 61

the BYTS reported for STAT and you see why it is on disk and not
part of the system; it is too big.

STAT is used most often to allow you to check how much
space is left on a disk. If you are about to update TEST.ASM you
will want to know how big it is as well, so you can be sure that there
will be space enough on the disk for the new TEST.ASM as well as
TEST.BAK when you get through with your update editing
session.

STAT VAL: was used earlier to show all the possible I/O
devices, and STAT DEV: will show the current assignments, as
programmed into the 10BYT. STAT is also used to change those
assignments in systems using the 10BYT. For instance,

STAT LST:=LPT:

will set the list device part of 10BYT to binary 10 to signal CBIOS
that LPT: is the physical device to assign as the logical list device.
Well, you want to list on the line printer, don't you?

Since STAT can change the assignment for logical device
CON: as well, and since CON: is the source of the command and
the destination for the next CCP prompt, assigning another device
to CON: will cause your current console device to go dead as soon
as STAT makes the assignment. What to do if you try this when
there is no other console device plugged into the computer? Hit
the RESET switch. But remember that doing so will zero the
10BYT and reset all the device assignments to TTY:. You will
regain use of the original console, but lose any other reassignments
you might have made.

The other transient utilities supplied with CP/M will be dis
cussed as they are encountered in our learning-by-doing sessions
beginning in Part IV. If you must fill your head with details you
won't be using yet, you can skim through their descriptions in the
CP/M manuals. Since those manuals are the complete reference
works on the system, everything about all of the utility programs is
included in their discussions.

There is no need to try to learn everything about all of these
programs at this point. You will be introduced to as much informa
tion about them as you need at each step in the learning process.
But if questions should arise, remember that this book does not
replace the Digital Research manuals. Turn to them if you feel the
need.

User programs

62

Since the transient utilities are. COM files and are loaded into the
TPA for execution, and since we, the users of the CP/M based
computer, will be writing programs that also execute in the TPA, it
is obvious that there is no real difference in form between a "CCP
transient command" and a user program. The utilities supplied
with CP/M are referred to as transient commands in the manuals,
but as we have seen, all this means is that they are .COM files on
the system disk.

Our own programs will be accessed in the same manner; by
the entry of a command line into CCP following the CCP prompt.
As we have seen, CCP will parse that command line, and if it
contains one or two file names, will load them into the default file
control block. Other entries in the command line will be saved for
our program in TBUFF. Our program is then off to a flying start.

There are a number of other tasks that CP/M can perform for
our user programs. In the next chapter we will be seeing how to
organize our programs to make maximum use of the services that
CP/M provides.

Interfacing
With CP/M

The hypothetical COMPARE program in Chap. 5 could have been
written to be invoked with the simple CCP command COMPARE.
The program could then prompt the operator for the names of the
two files to be compared. The program would then have to parse
the file names as they were input, create file control blocks for
both, and then ask the operator for any of the other options
permitted.

Since the operating system can do all of this for us using a
single command line input with editing features, it makes no sense
to have these burdens placed on user programs. The system pro
vides a large number of labor saving facilities, and they should all
be made use of in your programs. That places the burden on you to
learn what is available and how to use it.

The "giant hook" at location 5
In Fig. 5-1 we see the user transient programs accessing all of the
facilities of CP/M through the BDOS CALL VECTOR that the
operating system wrote in memory location 5 (Table 5-2). This is

63

64 Interfacing with CP/M

the hook on which we hang all our requests for I/O and disk access
services. Since we are assembly language programmers, and know
the locations and operation of all the disk and I/O drivers in CBIOS
and the PROM, we could have used those drivers directly. But
that would be a poor programming practice.

For one thing, each different size and version of CP/M will
have the CBIOS vectors starting at a different absolute address,
and the user program would either have to figure out that address,
or be written to run under only one size of one version of CP/M.
Not too good for program portability. Since each version of CP/M
knows where its BDOS ENTRY is located in RAM, it can set up
the location 5 jump instruction to point to itself. Also, if any of the
PROM routines were called directly, the program would run on
only one hardware configuration.

The reason that this is being stressed here is that there is a
distressing number of programs being sold today that are written in
such a manner that it is difficult or impossible to adapt them to a
new hardware or software environment. As we are seeing, that is
not necessary. Programs can be written to run under any version of
CP/M on any computer. Simply hang your service requests on the
giant hook.

The services available from the system vary slightly from one
version of CP/M to another, although Digital Research has been
careful to avoid any conflicts when updating the operating system.
To avoid any yourself, you should limit your use of system func
tions to the subset listed in Table 6-1. These are all you will be
needing for quite some time in your programming efforts.

Way back in the Introduction, we loaded register C with a
function code, put our data in register E, and called BDOS at
location 5. This example performed a simple task; outputing one
character to the console. Much more complicated tasks are avail
able to us, ranging from the input or output of a whole text line, on
up to the reading or writing of one disk record.

All of the system service calls make use of a common set of
calling conventions. We have seen the simplest in our first pro
gramming exercise in the Introduction. More complicated func
tions will need to use more registers for passing parameters. We
will be investigating all of these in detail throughout the rest of the
book, as we make use of them.

Once again, we are discussing a topic in advance of your need

TABLE 6-1. The most commonly used disk and 1/0 access
functions provided by the CPIM operating system. All are
accessed through the single BDOS entry point vector stored in
memory location 5.

110 Device functions
Label Code function

RCONF 1 Read character from console device

WCONF 2 Write character to console device

RRDRF 3 Read character from reader device

WPUNF 4 Write character to punch device

WLSTF 5 Write character to list device

RIOBF 7 Read IOBYT from memory location 3
WIOBF 8 Write 10BYT to memory location 3
RBUFF 10 Read console edited line input

CRDYF 11 Check console for character ready

Disk Access functions

INITF 13 Initialize BDOS. select drive A:

DSELF 14 Log in and select drive d:

OPENF 15 Open a file for read or write

CLOSF 16 Close a file

FINDF 17 Find a file in the disk directory

NEXTF 18 Find next occurrence of a file

DELEF 19 Delete a file

READF 20 Read one disk record into memory

WRITF 21 Write one record from memory to disk

MAKEF 22 Create a disk directory entry

SDMAF 26 Set RAM buffer address for read or write

Additional functions are available but are not commonly used.

65

66 Interfacing with CP/M

to understand its details. This is to help you understand why the
given approach to each task is not always the one which seems most
straightforward. You can rest assured that any approach that seems
roundabout at first glance has a very good reason for existence.
Accept the dictates found in this book on blind faith, and the
reasons for them will be revealed later.

Acceptance on faith is necessary at times because there is so
much background material to learn before you can begin writing
your own programs. More follows in the next section. Through
necessity, discussions of hardware topics, software topics, and pro
gramming philosophy have had to be mixed together in this book.
This is to help you understand the big picture, and build your
understanding block by block.

Some blocks are hard, some are soft. They are each equally
necessary for you to understand.

8080 ASSEMBLY
LANGUAGE
PROGRAMMING

Assembly Language
Programming

x2 = X

George Boole

The binary number system uses digits that can assume only two
states. These states are represented by the numbers 0 and 1. The
equation X2 = X is true only if X = 0 or X = 1. On this basis
George Boole developed the rules of formal logic, or Boolean
algebra.

Machine language

The language that your computer understands is composed of bi
nary digits that can assume one of two states: either of two voltage
levels. These are variously referred to as logic high or low states, or
logic true or false states, or voltage or current on or off. We can
represent these two states by using the binary digits (bits) 0 and 1.

In the exercise in the Introduction, you keyed in a "machine

69

70 Assembly Language Programming

language" routine using DDT. While this use of the term machine
language is common, it is not strictly correct. The actual language
of the machine is composed of patterns of voltages that take one of
the two possible binary states.

While you need not concern yourself with what is going on
inside your computer in terms of voltages, you should have some
feeling for what those voltages are accomplishing. The computer
begins each instruction cycle by fetching an opcode from memory.
This eight-bit pattern is placed in the instruction register. In the
storage elements in this register, each bit will be at a high or a low
level depending on the instruction. This set of eight voltage levels
is the language the machine understands, strictly speaking.

In the exercise in the Introduction, we have taken the liberty
of referring to a hexadecimal representation of those voltages as
machine language. Well, we can't very well say that we want the
computer to execute OV OV OV OV 5V 5V 5V OV as our first opera
tion. We have to use some more human-readable form of repre
senting the contents of the instruction register following that first
fetch. Since we don't want to spell out the voltage levels for each
bit, we could use a shorthand, letting a zero represent a low level
(zero volt) state, and a one represent the high (five volt) state. Our
machine language opcode can now be represented as "00001110."
And this is, of course, the binary representation of our first opcode.

If we had to enter all our programs into the computer using
that old switches-and-lights type of console, this binary representa
tion would be quite workable since each binary digit (bit) of either
one or zero would correspond to one switch set either up or down.
This binary word would then look like a map of our switch settings.
And this is the way things were once done.

Today, writing programs in binary would soon wear out two
keys on your terminal and leave the others unused. And of course
it would be difficult for a human programmer to recognize more
than a few binary patterns on sight. So more tractable representa
tions of eight binary digits were developed. The first technique was
octal representation. Here the binary word is broken up into three
bit groups, starting from the binary point, or right end.

The rightmost three-bit group in our first opcode is 110. In
octal, if 000 is zero, then 001 is one, 010 is two, and 100 is four. You
can see that 110 must be six, since it is four and two. Using only
these basic patterns and their sums, we can represent numbers
from zero through seven with three bits. This is a set of eight

FIGURE 7-1. An eight-bit byte containing a bit pattern
expressed in octaL binary. and hexadecimal notation. The
decimal equivalent of this pattern is 14.

I 0 I I 6 I = 16Q

I 0 i 0 : o i 0 ! 1 i 1 ! 1 i 0 I = OOOOlllOB

I
0

I
E

I
= OEH

states, hence the name octal, based on the same root as octagon
and octopus.

To represent the entire eight-bit opcode in octal, we take the
six as the right most octal digit, next to the octal point. The next
three-bit group is 001, or one, and that goes to the left of the six.
This leaves only two bits for the most significant octal digit, and it is
zero. So our opcode in octal is 016.

Now that we can write 00001110 as 016 in octal shorthand, we
have made opcode patterns more human-readable, but have re
moved ourselves one more level from those voltage patterns inside
the machine. But we are making things easier on the human ele
ment in the computer system.

There are those of us who once felt that it was regress and not
progress when hexadecimal notation came along. It is not as easy to
learn as octal, but it does make the representation of longer words
a little simpler. We will be getting into hex, as it is known for short,
in more detail later. For now, let's just take a quick peek at hex
notation. We saw that eight bits doesn't break up evenly in octal,
since we had groups of three, three, and two bits. The next step up
from octal notation is hexadecimal, where we break up our eight
bits into two four-bit groups. Now we need more symbols, which is
where hex starts confusing us by mixing numbers with letters.

With four bits in each group, we need 16 symbols to repre
sent each different hexadecimal digit. Hexadecimal means, of
course, "six and ten." We ten-fingered humans had already in
vented zero through nine as symbols to use for counting, and hex
notation borrows the first six letters, A through F, as additional
number symbols. When we were evaluating binary bit positions to
establish our octal digits, we said 000 = zero, 001 = 1, 010 = 2,
and 100 = 4. Obviously then 1000 must be eight! And in hex, 1001

71

72 Assembly Language Programming

= 9, 1010 = A, 1011 = B, etc., on up to 1111 = F. We see here
that eight (or 1000) plus two (or 0010) equals A. That makes A in
hex (written OAH) the same number as 12 in octal, and 10 in
decimal. And on up to OFH = 17Q = 15D.

Note in the above representations that if a hex number starts
with a letter, we precede it with a zero (not an "oh") so everyone
and every computer knows it is not an alphabetic word. We follow
it with H as a tag meaning the value is in hex. Octal doesn't include
letters, so leading zeros are never necessary, but our tag is "Q"
instead of "oh" so it can't look like a zero. If we just write "15"
without any tag we can expect everyone to assume that a decimal
number is meant.

Discussions of number systems using differing bases are usu
ally full of equations and confusions. Well, you can't have every
thing in a book this size. By the way, if OCT 31 = DEC 25, does
that mean Halloween = Christmas?

The subject under discussion here is machine language. We
have digressed a little to look at the common means for represent
ing an eight-bit byte, which we then refer to as machine language.
It is as close as we can come to the real language of the machine
without using eight voltmeters and a door on the top of our CPU
IC. In the rest of this book we will forget octal and be using binary
and hex numbers exclusively, as is conventional in 8080 systems.

Since an eight-bit byte divides evenly into two hex digits, it is
obvious that a 16-bit value divides evenly into four hex digits. We
saw in Chap. 2 that a 16-bit address bus can select any memory
address from 0 through 65535, so it is easy to guess that OFFFFH
= 65535. Eight bits can represent any value from 0 through 255, so
OFFH = 255. Our machine, with its 8080 family CPU, will concern
itself with eight-bit opcodes and data values and 16-bit address
values, neatly represented by two- and four-hex-digit numbers.

Back in our exercise in the Introduction, we keyed hex values
for 10 eight-bit bytes into memory starting at hex address 100. This
is our machine language program. All 10 of these bytes were not
opcodes. The first byte, when decoded by the CPU, informed the
CPU that it should fetch the next eight-bit value from memory and
load it into register C. We will be studying registers in Chapter 9;
for now just keep in mind that some opcodes are followed by eight
bits of data, and yet others are followed by 16 bits of address.

The CPU will know, when it decodes the first opcode,

FIGURE 7-2. Instructions executed by the 8080 family of
microprocessors can consist of one, two, or three bytes fetched
from successive memory locations. When the first (ope ode) byte
is fetched, it is decoded by the CPU to determine if it is a stand
alone (single-byte) opcode, or if another byte of data or two
more bytes of address data must also be fetched. The
instruction decoder will then increment the Program Counter by
the correct amount to point to the next opcode in the program.

Program
Counter

PC:

PC:

PC:

1
1------+-1
t

OPCODE

1 ,

~
I

DATA

,---------------------------B I ADDRESS LSB II ADDRESS MSB I ,-----'-------,

whether the next memory address will contain another opcode, or
eight bits of data, or the first eight bits of a 16-bit address. Since a
single instruction can consist of an opcode alone, or an opcode
followed by one byte of data, or an opcode followed by two bytes of
address, a machine language program will have more bytes in it
than there are lines of code in the assembly language program that
produced it.

Assembly language

Beginning with the true machine language of voltage levels within
the CPU IC, we have progressed up through representations of
that language expressed in binary bits and on up through hexadeci
mal codes. After a little experience with assembly language, you
will learn to read these hex codes. You will find yourself translating
from "OEH" to "MVI C" subconsciously. You will understand that

73

74 Assembly Language Programming

MVI C means to MoVe an Immediate value into register C. And
you will know that the next machine language byte in memory will
contain that immediate value. This process of mental translation
from the hex code to the assembly language mnemonic can be
called "disassembling" the program, because it is just exactly the
opposite of what the assembler does.

This discussion so far has been oriented from the bottom up.
Let's look at the process now from the top down. We start with the
programmer's initial definition of the task: To send the character
"$" to the CON: device. We know from Chap. 6 that we can do this
most easily by using a BDOS system call. This call is made through
memory location 5, so we first define absolute memory location 5
as symbolic location BDOS:

LISTING 7-1. The assembly language
version of the demonstration program
from the Introduction.

BOOS EQU
WCONF EQU

ORG
MVI
MVI
CALL
JMP
END

5
2
100H
C,WCONF
E, '$'
BOOS
o

Defining this symbol instead of just using "5" as the instruc
tion operand within the body of the program insures that we can
use this same routine with other operating systems that might have
a different absolute location for system calls. Simply change the 5
in the definition of the symbol and the assembler will use the new
value wherever it finds the symbol name used as an operand.
Similarly the symbol for the "write this character on the console
function" is assigned the mnemonic WCONF. This symbol could
be anything you like, within the constraints set by the writers of
the assembler. In the case of CP/M's ASM, you can use up to 16
characters. The symbol should be meaningful and help you to
remember what the function performs.

Since this program will run as a transient program, it will be
loaded into the TPA at hexadecimal address 100. So we use the
assembler pseudo-operation aRC to direct ASM to create a ma-

Assembly Language Programming 75

chine language program that will run when loaded into memory at
location lOOH. ORC is called a "pseudo-operation" because it does
not translate into a machine language operation. It is a directive to
ASM telling it where in memory this program will execute.

Now we enter the program proper. To implement a system
call we load register C with the proper function code, which we
have symbolized as WCONF. Next we need to put the ASCII code
for "$" into the E register. Again we MVI, but this time into E. We
could have looked up the hex or decimal value for "$" in the table
in Appendix A, and defined it as a symbol just as we defined
WCONF. But since an equivalent table is included in ASM we
don't have to. We just tell the assembler to do the lookup for us by
including the desired character in quotes.

The next line performs the system call, and CP/M will decode
the function in register C and send the contents of register E to the
CON:. Following this action CP/M will return to the calling pro
gram at the next location in the program. The ball is now back in
the programmer's court, and he can't just drop it! The program is
over and now must transfer CPU control somewhere, so it is usual
to jump back to CP/M at the CCP entry. This can be accomplished
by an unconditional jump (JMP) to location 0, wherein is stored our
vector to return to CCP.

The last line in our program is another pseudo-op, END. This
lets the assembler know that no more source code is to be pro
cessed. Since this program, consisting of symbols, mnemonics,
pseudo-ops, and absolute values, is what we feed into ASM, it is
known as the assembly language source code. The assembler will
read it twice, and generate an output file listing the original source
program and the machine language it has generated:

LISTING 7-2. The assembler output print
(.PRN) file of the program in List. 7-1.

0005 BDOS EQU 5
0002 WCONF EQU 2
0100 ORG 100H
0100 OE02 MVI C,WCONF
0102 1 E24 MVI E, '$'
0104 CD0500 CALL BOOS
0107 C30000 JMP 0
010A END

76 Assembly Language Programming

This output file consists of the machine language program in
human-readable format, and the source program. The whole idea
for having ASM is to allow us to write programs in a source format
that humans can understand, and then have ASM generate the
program in a format the machine can understand. But the two
portions of this file, the machine language in hex and the source
code, are neither one understandable to the computer!

This file is strictly for giving the programmer a listing of what
ASM did with his source program. This listing should then be
printed, so it carries a file type .PRN. When we get into Chap. 12
and start debugging programs, you will understand how valuable
this listing will be.

In addition to the .PRN file, ASM will also produce another
file with "object" code in it. Aha! This must be the machine lan
guage code that we can run in the computer, right? Wrong! This
second file consists of a hexadecimal representation of the machine
language program, along with other information. We won't go into
details as to the exact format of this intermediate code at this time,
but if you look carefully at it you can see the hex machine language
code embedded within it:

LISTING 7-3. The assembler
output hexadecimal (.HEX) file.

:OA0100000E021E24CDOSOOC300000E
:0000000000

Since the basis of the coding within this file is hexadecimal,
this file has a file type of .HEX. We give ASM our source code in a
flIe of type .ASM, and it produces two output flIes with the same
flIe name but types .PRN and .HEX. ASM then returns to CCP.

You are probably wondering by now how you are going to get
your program into the TPA and run it. Using DDT in our first
exercise, it took only moments to accomplish this. Now, even with
the help of ASM, we still don't have a program we can run.

The intermediate. HEX file is coded in such a way that it
consists of only printable ASCII characters. This means that the
program in this format can be examined on the CRT (enter TYPE
NAME. HEX) and can be transferred to another computer over a
modem. Since a flIe containing the binary machine language will

Assembly Language Programming 77

contain ASCII nonprintable characters and control codes, it could
not be so easily handled.

Before we can run our program we have to convert it from
a .HEX file into a .COM file. Another CP/M transient utility,
LOAD, is used for this. LOAD will read the. HEX file and pro
duce a .COM file, and return to CCP. We can then run this pro
gram by calling the. COM file by name. Simply enter the program
name and CP/M will load it and run it.

This entire process is required to assemble, load, and run a
program. It may seem like a lot of bother for such a short program,
and it is. But it is indispensable for long programs, as we will be
seeing in Part V.

In this chapter we have been looking at machine language,
assembly language, and the assembly process. Now it is time to
look at the 8080 and the facilities it provides that can be made use
of through assembly language programming. But before we can do
that, we will have to take another short digression and look at
hexadecimal numbers in more detail. If these discussions on the
dull subject of number systems had been segregated into a sepa
rate chapter at the beginning of the book, you probably would have
skipped it. Shame on you!

Hexadecimal numbers

When the ancients first began counting, they should have started
counting on their fingers. Unfortunately, they counted on their
fingers and thumbs. As a result, we are raised on the base ten
(decimal) number system, and seem to feel that it is "natural."

This is not true. Decimal numbers feel natural to us only
because we grew up with them. Things in nature occur naturally in
powers of two. Amoebas multiply by splitting in half, so successive
generations include 1, 2, 4, 8, 16, ... members. We have re
cently been looking at binary, octal, and hex numbers. These are
based, obviously, on members of the series above: 2, 8, and 16. If
early humankind had counted on fingers only, and used thumbs as
pointers, we might have started out with hexadecimal numbers.

Hold your hands up in front of your face, with the thumbs
tucked out of sight away from you, and there you have our eight-bit
byte (Fig. 7-1) expressed as two four-finger hexadecimal digits!

78 Assembly Language Programming

What could be more natural than that? By curling up fingers to
represent zero, and leaving them extended to represent one, we
can easily duplicate the binary pattern of any eight-bit byte. This
naturally separates into two four-bit groups, our two hex digits. Be
careful when you express 24H this way.

Since hex numbers are so natural, you'd think you would have
been using them all your life. Surprise! You have been. All we are
doing here is introducing new symbols to express each increment
in a base 16 number system. You have been using a base 16 device
for a large part of your life.

While decimal numbers seem natural to us, the fractions we
used in grammar school actually are natural. The familiar inexpen
sive ruler has each major division (one inch) divided into 16 small
est divisions, and these are multiplied by 2, 4, and 8 for intermedi
ate divisions. Naturally.

FIGURE 7-3. This fictitious "hexadecimal ruler" helps the
newcomer to the base-sixteen number system visualize
relationships within hex numbers. In hex, eight is half of ten,
and four plus C is ten. Similarly, it can be easily seen that A
plus 3 is D, etc.

1/8 1/4 1/2 3/4

Assembly Language Programming 79

While it is stretching the truth just a bit to claim that hex
numbers are the same as fractions, you can see from the illustration
of the "hex ruler" that it is easy to learn the basic relationships in
hexadecimal. Eight in hex is half of 10 (SH + SH = 10H). Similar
ly, 4H is a quarter, and OCH is three-quarters of 10H. Looking
now at Table 7-1, we see the reason for this discussion. We use hex
numbers as memory addresses, and speak of blocks of memory in
terms of K bytes. Earlier we defined 1K as 1024 bytes, and men
tioned that 1024 is two raised to the tenth power. Two raised to the
eighth power is 256, and is the largest number that can be ex
pressed with eight bits.

You should be able to see, now, how natural all these relation
ships are using hex numbers. Looking at Table 7-1, the relations
between memory size in K bytes and the equivalent hex addresses
form simple sequences. The only complicated numbers in the table
are those silly decimals. Because they are not natural numbers.

Just as on the hexadecimal ruler where eight was half of 10,
we can see from Table 7-1 that SOOOH is half of our total memory
address space. Since we begin mapping our memory address space

TABLE 7-1. Some common memory segment addresses
expressed in different number systems: the xx K byte shorthand;
decimal equivalents; and hexadecimal notation.

K Bytes Decimal Hexadecimal

64K 65536 10000H
48K 49152 COOOH
32K 32768 8000H
16K 16384 4000H
8K 8192 2000H
4K 4096 1000H
3K 3072 COOH
2K 2048 800H
lK 1024 400H

Y2K 512 200H
Y4K 256 100H
YaK 128 80H

80 Assembly Language Programming

at location OOOOH, our top address is FFFFH. If we counted from
one up, our top address would have been 10000H, similarly to how
we count from one to 10. In decimal, five is half of 10, and 50,000 is
half of 100,000. In hex, 8H is half of 10H, and 8000H is half of
10000H. The other fractions work out just as nicely.

Referring back to Fig. 7-2 and Table 7-1 as we discuss memo
ry addresses in future chapters will help you establish a feeling for
hexadecimal, without the need for the usual rigorous discussions of
number theory. That you probably wouldn't read anyway.

The 8080
Microprocessor
And Its Relatives

Version 2 (of anything) is the first version that works.

Anonymous

The CP/M operating system executes on any of a number of differ
ent computers. These computers do not all have the same CPU
chip inside. There are a number of microprocessors that will ex
ecute the same instruction set as the original Intel 8080, but also
add new opcodes of their own. Any of these ICs can be used as the
CPU in a computer running CP/M, since the operating system was
itself written using only the standard 8080 instructions.

Anyone writing programs to execute within the CP/M en
vironment should restrict his selection of instructions to those com
patible with the 8080. In this chapter we will be looking at the
features of the 8080 and its descendants, and will see what we must
do to maintain program portability.

81

Characteristics of the 8080

82

The 8080 is an eight-bit microprocessor because that is the length
of its data storage word in memory and also the size of its accumula
tor register. Since this CPU uses 16 bit addresses, as we have seen,
it also includes some 16 bit registers and can perform some rudi
mentary 16 bit arithmetic operations.

We have seen that the largest number that can be expressed
with only eight bits is 255, and even 16 bits will only get us up to
65,535 in decimal. Obviously there must be some way to handle
numbers greater than these for any microcomputer to be a practi
cal tool. Software is the answer, in particular the technique known
as multiple precision arithmetic. Even the most expensive 32-bit
minicomputers have to resort to multiple precision for some of
their operations. The selection of eight bits as the basic size for this
micro was made not on the basis of any required arithmetic preci
sion, but as a compromise between IC chip complexity and the size
of the instruction set.

In any computer there are only three operations you can
perform. You can move data from place to place. You can operate
on it mathematically. After an operation on the data you can make a
decision based on the results and change the sequence of opera
tions based on that decision. That's all you can do. Move, Add, sub
tract, ... etc. Jump conditionally. Only three basic operations.

It is variations on these basic operations that requires a practi
cal microprocessor to have more than a three-instruction set.
There are a number of places you can move data to or from. There
are lots of things you can do to it in addition to basic arithmetic
operations. Things like logical operations, and shifts and rotates.
And there are many possible tests to be performed on the results.
Depending on the results of the tests, there are several variations
on the basic conditional jump instruction. In the 8080 we have
available 244 executable opcodes out of the 256 possible.

You may have heard that the 8080 can perform 72 basic opera
tions, and that Brand X is better because it has 137 opcodes. The
differences in evaluating how many instructions a particular com
puter can perform are the result of differing definitions of basic
operations, and not anyone trying to mislead the purchaser. When
we say that the 8080 can execute 244 different opcodes, we are
counting all possible variations of each basic operation.

The 8080 Microprocessor And Its Relatives 83

If you look at the numerical list of 8080 opcodes in Appendix
B you will see that, of the 256 possible combinations of eight binary
bits, the 8080 has implemented all but 12 of the bit patterns. This
means that the designers of the chip have proVided you with about
all the computing power possible with an eight-bit wide opcode.

The next step up from eight bits in a binary sequence would
be a 16-bit computer, which could offer 65,536 different opera
tions. That would be overkill, and no 16-bit computer makes use of
anywhere near that number of operations. So the eight-bit ma
chines were a practical compromise, and the 8080 from Intel was
the first microprocessor to offer real computing power in a single,
affordable package.

Within that package exists a CPU consisting of an eight-bit
wide accumulator register, some flag bits to record the results of
operations on data, an arithmetic/logic unit (AL U) that performs
operations on the contents of the accumulator and one other source
of data, and a group of assorted registers. These other registers
include six eight-bit registers that can be paired to form three 16-
bit register pairs, and two dedicated 16 bit registers that are always
used to point to locations in memory.

We will be examining in tedious detail in the next chapter
how to use all these registers. The accumulator is obviously spe
cial. It contains one of the data bytes that will be operated on in the
AL U, and generally receives the results of that operation. The two
dedicated 16-bit registers are the stack pointer (SP) and the pro
gram counter (PC). The stack is a special area in memory used to
store certain items, and the SP permits simplified store and re
trieval operations. The program counter always points to the mem
ory location containing the next opcode to be fetched. In our sam
ple exercise (List 7-2), the PC would contain 100H, 102H, 104H,
107H, ... successively.

The remaining six registers are for general purpose use. They
can be used to store data, hold a count for repetitive operations, or
can be linked together to form 16-bit index registers. Since our
memory has a 16-bit wide address bus, we need 16 bits of address
information to point to a memory location for storing data when we
run out of space in our six registers. The PC points to the next
opcode in our program storage area. The three index registers can
point to other locations in memory for data storage. This is known
as direct addressing, or absolute addressing, since the contents of

84 The 8080 Microprocessor And Its Relatives

the index point directly to an absolute location in memory. By
incrementing the contents of an index, we can point to successive
locations in memory, as for instance locations within a lookup
table.

We have already seen that following power up or RESET, the
8080 looks for its first opcode from memory location zero. We
temporarily moved our bootstrap PROM to location zero to get
things started at power up. The 8080 can also be forced to go to this
location upon receipt of a hardware interrupt. This hardware inter
rupt is a signal from some device external to the CPU that says
"Hey! Stop what you are doing and take care of my needs." The
CPU will respond by stopping the currently executing program,
saving the contents of the PC on the stack, and jumping to location
zero, where it had better find an interrupt vector pointing to the
routine that will service the interrupting device. You, the pro
grammer, will have to provide that vector (a jump instruction) and
that service routine, if you want this feature to operate properly.

The 8080 can recognize eight of these external interrupts.
Since there are not that many unused pins available on the CPU
package, some external hardware is required between the inter
rupting devices and the 8080. This hardware will put the correct
bit patterns on the data bus to allow the CPU to know which vector
to jump to when it recognizes that an interrupt has occurred.
These eight vectors reside at the bottom of memory, spaced every
eight locations, at locations 0, 8, lOH, I8H, ... up through 38H.

That's the 8080. Eight bit wide accumulator and ALU. Six
general purpose registers that can be linked to form three index
registers. Eight interrupts available if some external hardware is
provided. Absolute memory addressing. Two hundred forty-four
executable opcodes. The original. The target of competition from
some newer microprocessors that include the same features, ex
ecute the same instructions, but add hardware and software fea
tures not found in the good old 8080.

The Intel 8085

The major differences between the 8080 and 8085 microprocessors
are in the methods used to fabricate the IC chip and the hardware
improvements provided by the 8085. The 8085 is much simpler to
use when designing hardware, as it uses fewer power supplies and

The 8080 Microprocessor And Its Relatives 85

requires less external support. From the programmer's point of
view, the 8085 has two new opcodes not found in the 8080, has a
one-bit input and one-bit output port built in that can be used for
serial communications, and has four hardware interrupt inputs that
require interrupt vectors to be added to low memory if they are
used.

All of these new hardware features are controlled by the two
new instructions, which have opcodes of20R and 30R. Since these
were unused in the 8080, they are not provided for in the CP/M
assembler, and we will not be discussing them in this book.

Another feature of the 8085 and the other newcomers to the
8080 family is that they will all execute instructions faster than the
8080 does. To avoid getting into hardware discussions in a book on
programming, we have ignored speed of execution up to this time.
The original 8080 was slow. Improved versions that could run
faster were labeled 8080A, 8080A-l, etc. The same kind of speed
designation is used by the manufacturers of other microprocessors
in this family. To Simplify things we will not refer to the various
speed-selected versions of all these chips. When writing time
critical programs, you will have to know how fast your CPU can
execute instructions, and that information will have to come from
the computer system manuals and/or the microprocessor manufac
turer's data sheets. Other than this mention of speed, we won't be
getting into racing topics here.

The 8085, then, adds new hardware features and two instruc
tions to control them. Otherwise, to the programmer, the 8085 is
identical to the 8080.

The Zilog Z80

The designers of the 8080 left 12 unimplemented opcodes (the
holes in the numerical listing in Appendix B) and when the 8085
was designed it made use of only two of these. The designers of the
Z80 weren't so reticent; they used all of the 12 opcodes left over
from the 8080. Since the Z80 uses the two new opcodes that the
8085 added, but uses them for different functions, we now have
two new CPU family members that don't execute the same new
instructions the same way.

Don't panic. The simplest solution to this problem will be to
ignore the conflicts, and not use any instructions other than the

86 The 8080 Microprocessor And Its Relatives

original 8080 set. This is recommended no matter what CPU your
computer uses. So long as you stick to the 8080 instruction set your
programs will run on any computer based on a standard version of
CP/M. Provided you avoid the one incompatibility between the
Z80 and the 8080.

One of the flag bits that records the results of AL U operations
does so differently in the Z80. This very minor change resulted in a
major disaster when one early version of an extremely popular
program, Microsoft BASIC, blew up when loaded into a Z80 based
computer. The detailed discussion later in this chapter on "estab
lishing a common ground" will show you how to avoid any conflict
with this incompatibility.

Avoiding conflicts is easier than having to accept the fact that
all of the other nice features of the Z80 are not available to us when
working with the CP/M assembler. Zilog made use of the 12 open
opcodes to implement many times 12 new instructions. They did
this by using a one-byte opcode to tell the CPU that it should fetch
the next byte in memory and decode that as an entirely new in
struction. In this way, a number of the previously unused opcodes
are used as "windows" into a whole new instruction set.

This technique has its cost, however, because these new Z80
opcodes are effectively 16-bit instructions. Now two bytes have to
be fetched from memory and decoded before the instruction can
be executed. This uses more memory space and takes more time.
But it does provide access to some powerful instructions that per
mit simple setting and testing of a single bit within a byte, or the
movement of whole blocks of data with a single instruction. Again,
remember that we can't make use of these goodies within the
constraints of CP/M compatibility.

The Z80 improved on the hardware of the 8080 as well. It has
its own new interrupt line, with yet another vector, this one at
66H. The original eight interrupt vectors can also be relocated in
memory in a Z80 system. They don't have to sit at the bottom as in
the 8080 and 8085. And there is a new addressing mode.

The 8080 provides absolute addressing. Jump instructions are
to a definite location in memory. The Z80 adds PC relative ad
dressing, where ajump can be specified to a position x bytes before
or after the current program location. This allows programs to be
written that can be relocated. Relocation means that once as
sembled, they can be loaded anywhere in memory regardless of
the original ORC assignment, and still execute properly.

The 8080 Microprocessor And Its Relatives 87

But for program portability, we have to code so that our pro
grams can run on any CP/M computer, so all these great Z80
features will have to be ignored for now. Even though the Z80
provides more flexible interrupt vectoring, many new instructions,
and relative addressing.

The National Semiconductor NSC800

Monday morning quarterbacks have it easy. They can sit back and
benefit from the experiences of others. Designers of newer prod
ucts can do the same, and provide a better product. The National
NSC800 is obviously the result of examining the products of others
and benefiting from their experience. The NSC800 borrowed its
IC pinouts from the 8085, permitting those nice new built-in hard
ware interrupts, and then borrowed the super instruction set from
the Z80. The best of both worlds, and with the added advantage
that the NSC 800 is a CMOS integrated circuit. This means that it
will run using a fraction of the power that any of its predecessors
consumed. At a higher price, of course.

So if you are contemplating writing programs on your CP/M
system that will then be executed in a battery powered portable
device, you now have a 8080 compatible, CP/M compatible CMOS
chip to design your programs for.

Establishing a common ground

After you have gained a little experience as an assembly language
programmer, you will begin to appreciate -some of the benefits to
be gained by working with microprocessors other than the 8080.
When designing a controller to operate at high speed in real time,
the 8085 with its built-in hardware interrupts is desirable. For
program-intensive applications, like writing a high level language
compiler, the instruction set of the Z80 can reduce programmer
effort significantly. But if you want to write a program that will run
on any CP/M based computer, and will sell a million copies and
make you and the IRS rich, you will have to stick with the instruc
tion set of the good old 8080.

For your super program to be truly portable, it will have to be
written so that it can be assembled with the CP/M assembler as

88 The 8080 Microprocessor And Its Relatives

well. This will allow you to sell the source code at $50,000 a crack
to people crazy enough to want to modifY your perfect program.
While assemblers for the 8085, Z80, and other micros are available
that will run on a CP/M computer, their use reduces portability,
and we will ignore their existence for the rest of this book.

We will restrict the instructions we use to those listed in
Appendix B: the original 8080 set. Our programs will be written so
that they can be assembled by CP/M's ASM, and execute in the
TPA. And we will be careful about how we test for byte parity.

The 8080 includes two conditional jumps that test the parity
of the contents of the accumulator that resulted from the last arith
metic or logical operation. Jump on parity even (JPE) will cause a
transfer of program execution to the address specified if the con
tents of the accumulator ended up with an even number (0, 2, 4, 6,
or 8) of one bits following an operation involving the ALU (data
moves, such as MOV and MVI, don't go through the ALU in the
8080). JPO will jump if the number of one bits was odd.

In the Z80, JPE and JPO will work properly only if the pre
ceding ALU operation was a logical operation: AND, OR, or
XOR. The flag bit that only records parity in the 8080 is used also
to indicate overflow following an arithmetic operation in the Z80.
While this makes sense, and can be very useful, it is also in conflict
with our standard, and can cause a program to execute properly on
a 8080 but bomb on a Z80. It is easy to avoid any bombs when
writing new programs.

All you have to do to avoid the conflict is execute a dummy
logical instruction before testing byte parity. If a byte in the ac
cumulator is logically ANDed with itself, nothing changes, but the
flag bits will be set in accordance with 8080 practice, even if the
CPU in use is a Z80. So if you have to test parity, execute AND A
(AND accumulator with accumulator) immediately before the JPE
or JPO.

If you got a little lost in that discussion, and don't even know
why anyone wants to test parity, don't worry. After we discuss
serial communications in later chapters, you will understand more
about parity. The differences between arithmetic and logical oper
ations will be covered later also. This discussion was included here
because this is the place for discussing compatibility, before you
get started writing programs that won't run on everyone's comput
er. Do that and just see if you ever get rich!

Register Usage
In the 8080

If our microprocessor can point to anyone of 64K bytes of data in
memory, why do we also want hardware registers for data storage?
There are a number of reasons:

1. Speed of execution. Since the registers are part of the CPU
chip, operations on their contents can be performed much fast
er than on the contents of memory.

2. Program portability. We know that no matter what CP/M based
computer our program is executing on, we will have available
the standard 8080 registers as a minimum.

3. Multiple indexes. Since some data will have to be stored in
memory in most programs, having more than one memory
pointer register simplifies programming tasks.

Somo micro- and mini-computers have been built with as few
as two programmer accessible hardware registers, and have be
come both successful and even popular. But virtually all program
mers prefer to work with machines providing as many hardware

89

90 Register Usage in the 8080

registers as possible. While most of the newer 16-bit and 32-bit
micros have at least 16 registers, the 8080 provides a reasonable
number of registers for most tasks. No matter what computer you
are working with, you will always want more registers than it
provides!

Register organization and data paths

In addition to knowing what registers are available, the assembly
language programmer must know the paths that data follows be
tween the registers, the ALU, and the outside world.

The "outside world" here refers to everything external to the
CPU chip. This includes memory, and within memory in Fig. 9-1
we have shown the much ignored M register, which we will be
looking at in detail below. First let's look at the internal registers.

The accumulator (A register) provides one of the two eight-bit
inputs to the arithmetic/logic unit (ALU). The other input comes
off the CPU's data bus. The results of the operation performed by
the AL U are returned to the destination register over the same
data bus. Condition codes are set depending on the action of the
ALU, and these are stored in the flag register (F).

The F register includes condition bits that are tested indi
vidually by the conditional jump instructions. They tell us if two
quantities are equal in size, or which one is larger, or if we have
reduced a count to zero, or if the result of the last operation was a
positive or negative number, or if it overflowed the accumulator. If
we have performed an operation that resulted in a number too big
to fit into the A register, the overflow will be recorded in the carry
bit. We will be examining the actions of the bits within the flag
register in detail later on, as we write programs that effect them, in
keeping with our learning-by-doing philosophy.

Fig. 9-1 shows the A and F registers stuck together in one
box, separated by a dashed line. The same is true of the Band C, D
and E, and HL register pairs. This shows that these pairs of regis
ters can be linked together to form 16-bit registers. The AF pair is
unique in that the only paired operations possible are the stack
operations PUSH and POP. Since these two registers are very
special purpose, they do not participate in the 16 bit operations we
will be discussing later. They are linked together only for stack

U)

FIGURE 9-1. Register organization and data paths within the 8080 microprocessor. and as they extend to the
outside world. The "M register" is actually a location in external memory. It i~ accessed by supplying a I6-bit
memory address and then reading or writing eight bits of data.

8-BIT DATA BUS

A F II 13 C
I I 7'

D E

H I L
..L
SP

I \
MEMORY INPUT-

OUTPUT
PC DEVICES

INTERNAL -I" EXTERNAL

92

FIGURE 9-2. The flag register (F) records the results of
arithmetic or logical operations performed by the ALU.
Only five flag bits are implemented in the 8080 CPU.
They can be tested by conditional jump, call, and
return instructions.

Bits: 7 6 5 4 3 2 1 0

I s I Z : I A I I p: : C I

L Carry

Pari. ty

Auxili.ary Carry

Zero

Si n g

operations, and the pair is then known as the program status word
(PSW).

The B, e, D, E, Hand L registers are general purpose. Their
contents can be the other input to the ALU, opposite the contents
of A. Each of these six registers can be individually addressed for
eight bit operations, and the paired registers Be, DE, and HL can
be selected for 16 bit and stack operations. Data can be moved
between registers and to and from memory, as well as processed
through the AL U.

In operations involving paired registers, the registers shown
on the left in the figure contain the most significant eight bits, and
the righthand register the least significant half of the 16 bit value.
These 16 bit values can then be used as pointers to memory loca
tions, in which case the register pair is said to be an index register.
When paired, the Be pair is referred to simply as the B register,
DE is referred to as D, and HL as H, as in the instruction: LXI
H,32767 that loads the HL pair with the value 32767. "LXI" stands
for Load indeX with Immediate data. Immediate data follows the
opcode immediately in the program. Index always implies a 16 bit
register pair.

TABLE 9-1. Within all 8080 instructions that reference registers
there are one or two three-bit register address fields. The
register selections are specified by the three bits in
conformance with this table.

Binary Decimal Register

000 0 B

001 C

010 2 D
011 3 E

100 4 H

101 5 L

110 6 M

III 7 A

Fig. 9-1 shows that the stack pointer SP and program counter
PC can also form 16 bit addresses to select one memory location.
This is all these registers can do. We know already that the PC
points to the next instruction to be fetched from memory, so it
must be dedicated to this purpose whenever any program is run
ning. Which is the same as saying all the time. Stack operations
will be discussed in detail a little later.

Embedded within opcodes that affect the contents of registers
is a three-bit register address field. Since three bits can form eight
combinations, this field can address up to eight registers for the
ope ode to work with. These register addresses are shown in Table
9-1.

The M register

This table shows that the binary bit patterns 000 through 101 (0
through 5) in the register address portion of an ope ode select regis
ters B, C, D, E, H, and L. The pattern 111, or seven, selects the
accumulator. This leaves one pattern remaining, 110 (6), and this
selects the M register.

93

94 Register Usage in the 8080

This "register" is actually the contents of the memory location
addressed by the HL index. The HL pair is sometimes referred to
as the index register, because it is always the index for operations
involving the memory register M. The other index registers BC
and DE can only be used to move data between the A register and
the memory location they point to.

The functional listing of opcodes in Appendix B shows that the
contents of the M register can be operated on by all of the move,
arithmetic, and logical operations that work on the contents of
hardware registers. Since the M register can be any memory loca
tion, so long as the HL pair contains the correct address, it is easy
to see that this is one of the most powerful of the 8080 general
purpose registers. In spite of this it is usually the least used
register.

This is caused by a human failing, one that computers are
immune to, the mind set. It is too easy to think in terms of hard
ware registers, and ignore the M register because it is not part of
the CPU chip. But a little thought will show how powerful a facility
it is.

Suppose you are writing a program to fulfill the function of a
calendar clock inside your computer. To simplify programming,
you dedicate one eight-bit value as the count of seconds from zero
through nine. Another eight bits will be used to count the tens of
seconds, from ten to sixty. When the seconds reaches sixty, sec
onds counters are zeroed and the minutes units is incremented by
one. And so on up through the years' thousands counter.

By wastefully using one eight bit value for each count you can
simplify the programming effort. Simply count each time digit up,
and if it reaches its limit value, zero it and increment the next
higher digit. The M register is the logical choice for use in such a
task, since there aren't enough hardware registers for all those
digits.

When it is time to increment seconds (usually signaled by a
hardware interrupt) start by loading the HL pair with the memory
address of the seconds units counter, the first M register. Incre
ment this count. Test for count = 10. If it is, zero the count, and
increment the contents of HL. This makes the index point to the
next M register, which contains the counts of seconds tens. Incre
ment this M register. Test for count = 6 (6 tens = 60). If so, zero it
and go on to minutes units, the next M register, and so forth.

FIGURE 9-3. A calendar clock program could be written using
successive memory locations to store the time. date. and year
digits. Each of these could then be accessed in sequence by
incrementing the HL index register. pointing in turn to each
digit within this stack of "M registers."

Clock Digit Limit Count

YEAR T 10

YEAR U 10

DAY H 3.66*

DAY T 10

Index DAY U 10

HOUR T 2.4**

HOUR U 10

MIN T 5

I ,1IN U 10

Inde.x increments SI:C T 6

SEC U 10

* Limit test mURt include HOUR U.

** Limit test must include DAY T and DAY TJ.

You can see from this that the M register is not one register. It
is as many as we have room for in memory. Just point at the one
you want by properly setting the contents of the index. Increment
ing the index points to successive M registers in turn. This sim
plifies operations like the calendar clock program that operates on
lists of values stored in the proper order in successive M registers,
or memory locations. The power of the M register is that you don't
have to load its contents into the accumulator before performing
arithmetic or logical operations on it, as is true for some other
CPUs. Just look at the functional list of operations in the Appendix,

95

96 Register Usage in the 8080

and you can see that memory locations can be treated as registers
in the 8080 family of microprocessors.

Stack operations

It takes one of us old timers to appreciate the 8080' s stack. It is a
recent invention, and worth its weight in gold. The stack is a
memory area pointed to by the stack pointer (SP) and accessed by
the stack operations. These include the register save operations
PUSH and POP, the subroutine calls and returns, and the hard
ware and software (RST x) interrupts. There are other stack opera
tions that are too incredibly complicated to explain here. You'll just
have to wait a few chapters for XTHL and PCHL.

Suppose you are programming along and suddenly run out of
registers. HL is tied up pointing to a particular place in a look up
table, so you can't suddenly create another M register. All the
other registers contain data you will need later, but just now you
need a counter to keep track of an iterative operation. What to do?

PUSH B SAVE B,C
MVI C,COUNT LOAD COUNTER

LOOP: DCR C COUNT ONE
JZ END TIL DONE

JMP LOOP
END: POP B RESTORE B,C

The dots here represent program statements within the body
of the loop that required the use of a counter. We temporl;lrily
freed up the C register and used it for a counter by PUSHing the
contents of the BC pair onto the stack, thus saving the values
stored in them. We then loaded our count value into C (B re
mained unused) and entered the loop. We immediately decre
mented the count Qust like subtracting one) and tested to see if it
was reduced to zero. If C was zero, we jumped to END:, finishing
the iteration. If C was not reduced to zero, we did whatever it was
we wanted (the statements represented by dots) until we got to the
statement JMP LOOP. This is an unconditional jump back to loca-

Register Usage in the 8080 97

tion LOOP:. JZ was conditional: Jump if the result of the last
operation was Zero.

At END: we restored the original contents of BC by POPing
B off the stack, which also restores the contents of SP to its original
value. This is of immense importance. The stack is a handy place to
stuff register data temporarily, but you must have an equal number
of PUSHes and POPs.

This is important because the stack is also used to save the
return address when a subroutine is called. In our exercise in the
Introduction, which we also discussed in Chap. 7, we used a CP/M
supplied subroutine to output a character to the console device. In
List. 7-2, the CALL BDOS instruction at location O104H automati
cally pushed the contents of PC onto the stack, and then jumped to
location BDOS. Since the PC points to the next instruction to be
executed, it contained the value Ol07H. This was pushed onto the
stack and the PC was then loaded with the address of the BDOS
vector, in this case 0005H. The next instruction was fetched from
location 5, and it was ajump to the actual location ofBDOS high in
RAM. All this time O107H is sitting on top of the stack. BDOS does
its thing, decoding the desired operation (WCONF) and sending
the data (E) to the console. When BDOS is done, it executes a
return instruction (RET). This instruction pops the contents off the
top of the stack and places it into PC, so the next instruction is
fetched from Ol07H, and we are back in the user program.

Suppose that somewhere within BDOS the system needed to
save some register contents, just as we did, or call another sub
routine. Subsequent PUSHes or CALLs would operate normally,
saving the required data on the stack. Each time a value is pushed
onto the stack, the first thing that happens is that the SP is decre
mented, pointing to a lower location in memory. Then the high
order byte of the register to be saved is moved into memory at the
location pointed to by SP. SP is once again decremented, and now
the low order byte of the register is written to memory at this
address. No matter how many pushes are executed, none of the
data previously written is destroyed.

Since pushes first decrement SP, then store a byte, then
decrement SP, then store a byte, the stack fills up from the top
down as far as absolute memory addresses are concerned. Perhaps
an earlier stack oriented computer reversed the procedure. That

98 Register Usage in the 8080

would account for the fact that illogical humans insist on referring
to these actions as pushing data onto the top of the stack, and
popping data off from the top of the stack.

It matters not that these descriptions are not technically accu
rate, and that the stack actually grows downward in memory, since
the effect is the same in any case. The stack is a handy place to save
data, the last register pair pushed on will be the first data popped
off. Hence the common term for the stack, LIFO, for Last In, First
Out. What is important is that we keep accurate track of stack
operations, since some pops (returns) result in a transfer of data
from the stack to the program counter. If the data on the top of the
stack is register contents instead of a return address, because push
es and pops were not matched within the subroutine, your pro
gram will get lost!

In every programming book ever written, the action of the
stack is likened to that of the spring loaded push down tray and
dish dispensers in a cafeteria, where the last clean (sometimes)
plate pushed on is the first grabbed off. Since this analogy has
already been worked to death we won't even mention it here.

Register use by the user

By now you should have no questions about the use of the stack
pointer and program counter. If you do, write each question on the
border of a $20 bill (one question per bill) and mail them to the
author (NOT the publisher!) of this book. You may get an answer
someday, if you are lucky. Or you might just wait until Part 4,
where things will become clearer as you actually execute programs
and subroutines.

You should also by now realize that the A register is the most
used register, since it is always one of the inputs to the AL U. The F
register is not a programmer accessible register, in the sense that
it can be addressed and have data moved into and out of it. Al
though the Hand L registers can be used individually as eight-bit
registers, it is more desirable to dedicate their use to that of the
number one index register, which provides access to the M
register(s).

That leaves us with four 8-bit registers, that can be linked to
form two 16-bit indexes. If you try to always use the same registers

Register Usage in the 8080 99

for the same purposes in all of your programs, you will find it much
easier to keep track of their use throughout a long program. This
can prove valuable when modifying an existing program or adding
functions to it. You will have less trouble remembering what regis
ters are in use and which ones have to be saved before being used
within a subroutine.

For instance, if a second index register is required within a
program, always use DE first. If you randomly use BC in some
program segments, and DE in others, you will find it hard to
remember which have contents that need to be saved temporarily
within a subroutine. The worst case could be encountered when
you are writing a subroutine that will be called from a great num
ber of places within the main program. If you have always used DE
before BC throughout the main program, it will be easy to remem
ber if BC is in use at all. This could save you the time spent in
pushing and popping BC when all you need is a temporary
counter.

Since "counter" starts with C, why not always use the C
register as your standard eight bit counter, and the BC pair when
you need to count larger numbers? This seems obvious and hardly
worthy of discussion now, but if you have ever had to modify an
existing program, where the programmer used registers selected at
random, you would understand why it is important to set down
some basic guidelines for register use, and to stick with them.

The easiest guideline to remember is that the A register is the
obvious candidate for passing an eight-bit value (like an ASCII
character) to and from subroutines. Since A can't be paired to form
a 16-bit value, and since it will have to be used for something in
every subroutine we ever call, we can always assume that the first
eight-bit value sent or received will be in A, and that the contents
of A will always be destroyed in every subroutine we ever call. If
we remember that rule, we won't be surprised by a subroutine that
changes the contents of A. If we must save it, push it on the stack
before calling the subroutine, and pop it off afterward.

Within your own programs, it is easiest to establish the rule
that subroutines which are going to use registers other than A
should save and restore their contents. You could save register
contents in the main program, then call a subroutine, then restore
the registers, if you knew that the subroutine is going to need to
use the registers. But this places an unreasonable burden on falli-

100 Register Usage in the 8080

ble human memory. It is better to write all subroutines in such a
manner that, upon return to the calling program, all registers ex
cept the accumulator will be restored to their original state. Insure
that you always code subroutines this way, and you won't tax your
memory, or lose your data.

These are not hard and fast rules accepted by all program
mers. They are guidelines that you should use as you start to
design your own programs. If you just accept them blindly, for
now, you will find that you are benefiting from the painful experi
ences of your predecessors. Why reinvent the wheel, or trip over
it, just because everyone else does?

In summary, pass eight-bit values in the accumulator, and
expect subroutines to destroy its contents in the process of doing
their thing. Dedicate HL as your number one memory pointer.
Use DE next, if you need it. Save C for an eight bit counter, and
BC for bigger counting jobs. Write subroutines that will return the
contents ofB, C, D, E, H, and L unchanged, but can wipe out A if
need be.

Follow these rules from the beginning and you will save your
self a lot of grief. Save the grief. You will need it in dealing with
operating systems (yes, even CP/M!) that don't follow the same
rules, and don't even establish equally logical ones for themselves.
We will see how to deal with that situation in the chapter on
preserving the user's environment. Meantime, we will look at how
CP/M uses (and misuses) registers.

Register use by the system

We have repeatedly differentiated between the "user" and the
"system." Just what is the system? It is the software environment
you have to work within: th~ CP/M operating system and whatever
firmware comes with your computer hardware.

The CP/M operating system itself was developed on an Intel
Microcomputer Development System (MDS). The MDS included
an extensive monitor in PROM that provided driver subroutines
for a number of 110 devices, as well as extensive debugging facili
ties. Since this firmware was part of the computer, the writers of
CP/M made their software system compatible with the tools avail
able to them.

The most obvious tool was the MDS Monitor in PROM.

Register Usage in the 8080 101

Many of its features have been adopted by CP/M, including the
use of the IOBYT and those funny device designations. While all of
this firmware is available on an MDS, your own computer may
have had to duplicate a lot of the facilities of the MDS PROM
within the space provided in the CP/M CBIOS. Obviously CP/M is
a very adaptable software product. It was written so that it could be
easily installed in any 8080 family microcomputer. Some of the
characteristics of the MDS got integrated into CP/M in the pro
cess, so now all CP/M based computers look a little like the original
MDS. We call this the MDS syndrome.

Along with the good MDS features inherited by CP/M are
some not so good characteristics, like those terrible device designa
tions and the way registers are used in the system calling conven
tions. We have previously defined how 8080 registers should be
used. Now we have to look at how they must be used in interfacing
with CP/M. Later we will see how to provide a single interface
between the two worlds; a window between the logical world of
our usages on one side and the MDS syndrome on the other side.

When we call BDOS to input an ASCII character from the
CON: or RDR:, the character is returned to us in the A register.
This is logical, as we have defined it. But when we send an ASCII
character to CON:, we are forced to put the data byte in the E
register, with the C register containing the byte that defines the
output-to-console function. What happens to the A register?

The accumulator is the destination for all operations that in
put data from I/O devices connected to the CPU. Before the CON:
can be read, it must have a character ready. The computer is much
faster than the operator, so will spend most of its time waiting for
you to press a key on the CON: keyboard. Way down there in the
MDS PROM (originally) was a keyboard read routine that inputs a
status byte into A, and tests it for the character ready bit. This read
routine sits in a tight little loop, inputting status and testing for
ready, until we finally hit a key. Then it reads the keyboard charac
ter into the A register, masks off the topmost bit, and returns to the
calling program.

This is why we receive an input character in A. The IN in
struction puts it there. When we send an output character, we do
not put it in A because, way down there at that lowest software
level, the driver first has to read a status byte into A to see if CON:
is ready to accept our data byte. So if we put the byte in A, it would

102 Register Usage in the 8080

have to be saved before the status could be read. To save program
ming effort in the driver, we are forced to use more of our registers
in the calling program.

This aspect of the MDS syndrome distributes a burden
throughout all high level user programs to save one register for the
convenience of the driver program. Not very logical, but some
thing we have to live with. In the next chapter we will see how to
minimize this burden.

Other funnies were inherited from the MDS. When we out
put a byte sized value, we place the function code in C and the data
in E. Ifwe have to output a 16 bit value, we place it in the DE pair.
That makes sense. Eight bits into E; 16 bits into DE.

If we input an eight bit value, it is returned in A. When we
input a 16 bit value, Well let's see. It can't go into the AF
pair, since the flag register is not general purpose. We just used
the DE pair, that might be a logical place for it. Or, since we had to
use the C register for our function code, so it has already been
changed, it might be logical to use it for the other half of the
returned value. No such luck. The MDS syndrome dictates that 16
bit values are returned with the low order byte in A and the high
order byte in the B register.

OK! No more editorial comment about the logic of the MDS
syndrome. We are stuck with it, and can learn to live with it, but
we should know that the blame rests on other shoulders, not on
those of the authors of CP/M.

Preserving the
User's Environment

Chapter 9 pointed out the desirability of creating a user environ
ment separate from that of the operating system. Within this user
environment we will use the 8080 registers as we have decided
they should be used. The operating system had to use them the
way its original environment dictated. We could go along with
that, but experience has shown that there is a better way.

That way is to provide separation of the two environments,
and establish an interface between the two worlds. An interface
through which data will be passed, using subroutines that can be
called from any place in any user's programs. These interface sub
routines will bear the burden of maintaining the user's registers
intact, so he will never have to worry about what the system has
done with them.

A little extra effort in creating this interface, the window
through which data will pass, will be well rewarded when you get
around to writing large and complicated programs. You will always
be assured that your environment is preserved intact, and this will
increase the reliability and portability of your programs.

103

Establishing the user's stack

104

In the last chapter we saw that the stack is a memory area set aside
as a handy place to stuff data, and a necessary mechanism for
calling and returning from subroutines. Since the data we push
into the stack grows downward in memory from the initial address
contained in the stack pointer (SP), we must set aside a block of
memory for the exclusive use of the stack, and set SP to point to
the top of it.

The first thing we need to know is where some read-write
(RAM) memory space is available. In a CP/M system, user (tran
sient) programs execute within the TPA, and the TPA is in RAM.
Later you will probably want to write programs that will be burned
into PROM. You will have to remember to set up the initial ad
dress in the SP to point to the top of some unused RAM . Working
within the TPA, all the space available to us will be in RAM, and all
we will have to do is save a block for the use of the stack, and set
the stack pointer initially to point to the top of that area.

How big should the stack area be? A safe size to start with is
64 bytes. You could execute 32 successive PUSHes of register
contents, or nest 32 levels of subroutine CALLs, in that much
space. Obviously, your actual use of the stack will be for some
combination of PUSHes and CALLs. It would take a very compli
cated program to need all that space. We will start with this 40H
stack area because it is more than enough, and we want to be sure
that the space is never overrun.

To set up a stack area, way down at the end of each of our
programs we will include these two lines of code:

DS
STAK: DB

64
a

; STACK AREA
; TOP OF STACK

"DS" is a mnemonic for Define Storage, and sets aside a block of
memory equal in size to the specified operand. "DB" stands for
Define Byte, and will set up a single-byte memory location with
initial contents as specified by the operand. Note that one operand
specifies the size of a block of memory, the other specifies the
initial contents of a single location. DB and DS are pseudo-ops in
that they tell the assembler how to set up memory areas, but do
not produce any object code that can be executed.

Preserving the User's Environment 105

We don't really care what the initial contents of the stack are,
since we will have to push something in before we can pop any
thing meaningful out. We only included the second pseudo-opera
tion so that we could label the address at the very top of the stack
with the label STAK:. The address assigned to STAK: at assembly
time will be loaded into SP at the very beginning of our program:

START: LXI SP,STAK ; SET UP STACK POINTER

if we remember to include this line. You will only forget it once!
Very strange things happen to programs when no stack space has
been allocated, and pushes wipe out part of the program, or return
addresses are "stored" in PROM or nonexistent memory. You
don't have to trip over the wheel if you don't want to. Just remem
ber to LXI the SP at the start of all your programs, and to set aside
stack space large enough for all the pushing and calling you will be
doing.

If you are a sharp-eyed reader, you should be wondering by
now why the dictatorial author didn't follow his own advice, and set
up stack space and pointer in the example program in the Introduc
tion (see List. I-I). How did the CALL BDOS work, if no stack
space was allocated for the return address?

When the command "TEST" (for example) is given to the
Console Command Processor (CCP) from the CON:, CCP will load
the contents of a .COM file named TEST into the TPA. At this
time the system is running using a stack space and pointer that
have been initialized by CP/M. When the .COM file has been
loaded into the TPA, CCP will begin its execution by a subroutine
CALL (not a jump) to location lOOH, the start of the TPA.

When your transient program has thus been activated, SP is
still pointing into usable stack space within CCP. You can use this
SP setting and stack space for very short programs, if you are
brave. Since your program has been called by CCP, you can return
to CCP without rebooting CP/M, if you are very brave.

In our example exercise, if the JMP instruction at location
O107H is replaced by a RET opcode (OC9H), the program would
execute normally, but the system would not be rebooted, and the
CCP prompt would reappear instantly. This technique can be
used, with caution, by very short programs when you are confident
you won't overrun the CCP stack space available.

106 Preserving the User's Environment

How big is the available CCP stack space? The CP/M manuals
are silent on the subject. Since we want our programs to be inde
pendent and transportable, don't start off on the wrong foot by
relying on the CCP stack. Use it only to simplify example programs
in your next book.

Saving the user's register contents

In keeping with the policy of separation of user and system, we will
want to preserve the contents of all the hardware registers (except
SP and A) every time CP/M is called upon for I/O services. Since
we have set aside more than enough stack space, we can let BDOS
use some of it whenever we call location 5. And, as we decided in
Chap. 9, we will be passing data in the accumulator, so can expect
that register to get wiped out in the process.

All of the other registers will be saved and restored each time
we pass data through the user/system window. To accomplish this,
we will write a series of I/O subroutines that start offby saving the
contents of B, C, D, E, H, and L on the stack:

co: PUSH
PUSH
PUSH

B
D
H

SAVE REGISTERS

which requires only three bytes of program space and six bytes of
stack space. Now we could care less whether or not the system
disturbs the contents of these registers, because upon return from
BDOS we will restore the registers:

pop
POP
POP
RET

.
H
D
B

RESTORE REGISTERS

before returning the our user's calling program. This example is
part of a subroutine to pass one ASCII character to the Console
,Output function in BDOS.

Note that the POPs are a mirror image of the PUSHes. The

Preserving the User's Environment 107

stack is a LIFO mechanism, so the last in (H) must be the first out.
We could have also saved the contents of A, but this will seldom be
necessary. We loaded A with the data to be passed to the system,
so our program must know what that data was. Often, we will be
done with it at this point anyway. And we can expect the operating
system to return an error code in A indicating whether or not the
output operation was a success. We will leave it up to the calling
program to decide what to do about any errors reported.

Other subroutines with similar saves and restores will handle
other device 110, so our programs can expect to always have full
access to all the working registers at all times.

Calling BDOS

Assume that some user program loaded an ASCII character into A,
and called CO: expecting that character to output to the console.
We know, from having accomplished exactly that function in our
example program, that BDOS wants the character to be in E, and a
function code (WCONF) to be in C, when BDOS is called. So after
pushing all the registers onto the stack, all we need to complete
subroutine CO: is:

MV I
NOV
CALL

C,WCONF
E,A
BDOS

SELECT FUNCTION
CHAR TO E

inserted between the pushes and pops above. That three lines of
assembly language programming should be pretty familiar to you
by now.

Returning to CP/M

The console output subroutine just developed will be one of the
library of subroutines we will be assembling in the next section.
We have seen it grow out of the simple program example first
presented in the Introduction. That example has now become a

loa Preserving the User's Environment

usable subroutine that provides the desired interfacing between
the user's register requirements and the operating system. By
making use of similar subroutines for all system interfacing, we not
only preserve the user's registers, but also provide a mechanism
for easily adapting our programs to any other operating system, in
the unlikely event that ever becomes necessary.

At the conclusion of every program, we will want to return to
the operating system in an orderly manner, not by pressing the
RESET switch. In the preceding chapter we saw how that could be
accomplished with a RET instruction if the CCP stack pointer was
maintained intact. This is never necessary, since CP/M has pro
vided a reboot vector at location zero, and our programs can always
terminate with a simple IMP 0 instruction. This is always the safe
way, since then the operating system will be reloaded before it is
reentered.

If there are any questions in your mind about the meaning of
any of the instruction mnemonics and pseudo-ops used so far in
these simple examples, you should refer to the 8080/8085 program
ming manual and/or Appendix B for an explanation before proceed
ing to the next section. You are now well on your way to becoming
an assembly language programmer, and we will be moving along
rapidly from now on. And about time!

A LIBRARY OF
USER SUBROUTINES

Learning by Doing

All things are full of labor.

Ecclesiastes

With all that background behind us, it is about time that we got
started doing some serious assembly language programming. In
this section we will be creating and assembling a series of I/O
subroutines, and some test programs to exercise them.

To make this learning process as painless as possible, the
actions of the 8080 instructions will be explained as the instructions
are used, just as in previous chapters, where you have already
been exposed to a number of instructions. Since we will be learn
ing by doing, let's start doing.

Getting to know ED

The CP/M manuals for ED, ASM, and DDT are complete and
detailed, but you will not have to memorize all of their contents in
order to get started writing, assembling, and debugging programs.

111

112 Learning by Doing

We will start this section with a short tutorial on these operations.
This will not be a replacement for the CP/M manuals, but an
introduction to them. You will have to learn most of their contents
eventually, but you can get started with the simplified subset of
commands that we will be presenting in this chapter.

Since we have become familiar with the little test program
first presented in the Introduction, it is the obvious choice for your
first exercise in learning ED and ASM. It constitutes a stand-alone
program, that can be edited, assembled, and then executed in the
TP A all by itself. As soon as we have done that we will finally
abandon that program, and begin compiling the library of sub
routines that you will use in all future programs as a means of
separating the user from the system, as was discussed in the pre
ceding section.

There are only two control keys you will have to learn to enter
the text of the exercise using ED. These are CTRL Z and CTRL 1.
"CTRL" implies that the computer operator holds down the con
trol key while typing the designated letter. In other words, press
and hold the key marked CTRL or CONTROL, then press and
release the designated letter key, and then release the control key.
The designated letters were here shown in capitals, but the control
code delivered by the keyboard will be the same even if the key
board is not in the all caps mode.

Assembly language programs should all be typed in upper
case only, if for no other reason than to make the resulting source
programs more portable. All computer systems will recognize the
caps only mode, since only a few years ago lower case was a rarity
on inexpensive terminals like our old friend the TTY. So start by
setting your keyboard to the ALL CAPS or ALPHA LOCK mode
or its equivalent.

Let's get started. Fire up your CP/M based computer and
insert a diskette into drive A: that includes ED. COM, ASM.COM,
LOAD.COM and DDT.COM, along with lots of workspace. When
CP/M prompts for a command input, enter:

ED TEST.ASMcr

where "cr" indicates your pressing the carriage return key. The
editor will be loaded and will inform you that this is a new file, and
then will sign on with the prompt"*" showing that it is in the
command mode.

Learning by Doing 113

The first command you may have to enter is "-Y" to turn off
ED's automatic line numbering. If the "*" prompt appears in
dented 8 spaces from the left edge of your terminal display, your
version of ED comes up with line numbering enabled. For con
sistency with the examples in this book, turn it off with the "minus

. Y" command.
Now, since you want to be in the input mode, enter the

command ''I'' and a carriage return (CR). The cursor will return to
the left column of the next line on the screen. This is the only
notice you will have that you are in the input mode. You can now
start typing in the text of the program:

LISTING 11-1. The assembly
language source code for the
demonstration program in the
Introduction.

BDOS
WCONF

EQU
EQU
ORG
MVI
MVI
CALL
JMP
END

5
2
100H
C,WCONF
E,' $'
BDOS
o

Type the four characters BDOS followed by CTRL 1. If your
keyboard has a TAB key, you can use it instead of CTRL I, since
the action will be the same. The tab character CTRL I will cause
the cursor to space over to the eighth column on the screen. Here
enter EQU and another tab (since CTRL I = TAB we will refer to
it simply as "tab" from now on). ED moves the cursor to column 16
following the second tab, and here you enter 5 and terminate the
line with a carriage return. Now you are off and running as an
assembly language programmer.

Enter the second line the same way:

WCONFtabEQUtab2er

and to keep things lined up the way they are in Listing 11-1, enter
the third line starting with the tab:

tabORGtab 1 DDHer

114 Learning by Doing

since it doesn't start with a label. And so on through the prograJTl.
When all of the lines are entered, the cursor should be at the left
column of the line following END. Now enter CTRL Z to exit the
input mode and return to the editor command mode. Enter the
command sequence:

B8Ter

and ED will return his text pointer to the Beginning of the text
buffer, and Type eight lines: your program.

If you make a mistake while typing, and catch it as soon as you
make it, you can use the DEL, RUB, or RUBOUT key on your
terminal to erase the last character entered. On most terminals you
will not see the cursor back up over the deleted character, but
instead will see the character duplicated, indicating that ED has
erased it internally.

If you don't catch the mistake until you list the whole program
(B8Tcr), then you will have to skip down in the text to where the
mistake is and correct it by substituting the correct word or replac
ing the entire line. Suppose your line 4 got entered as:

MIV C,WCONF

You can skip down from the beginning of the text buffer where the
pointer is now sitting (following your command of B) and type the
bad line by entering the command sequence:

3LT

which tells ED to move down 3 Lines and Type one line. It is
always a good idea to Type the line before you try to change it, as
then you will know you are starting with the text buffer pointer
pointing at the beginning of the correct line. No, the incorrect line.

Now use the Substitute command to fix the error:

SMIV etr lzMVIctr lzOL Ter

by entering "s" for the Substitute command, a copy of the bad text
(MIV), a terminator (CTRL Z), the desired text (MVI) and another
terminator. Since ED allows you to string command sequences

Learning by Doing 115

together, we have added "0" (zero, not Oh) and LT before the
carriage return. This says to ED that after substituting MVI for
MIV we want him to point back at the beginning of the Line and
Type it. Always include the OLT to make sure you changed what
you wanted to change.

In these examples we have been using lower case letters to
indicate control key keystrokes, like ctrlz and cr. The usual control
keys CR and LF and RUBOUT or DELETE will produce actions,
while the two-keystroke CTRL keys will be shown on your termi
nal as an up arrow followed by the designated letter. To make the
lines more readable in this text, we have spelled out these controls.
What you see on your CON: screen will differ slightly.

When the text of our example program is all correct, rewind
the buffer pointer to the Beginning (Bcr) and exit ED by typing the
single command E and a carriage return. The text will be written to
the disk as file TEST.ASM, and CP/M will be reloaded. Enter the
CCP command DIRcr and you should see two new directory
entries:

TEST BAK
TEST ASM

created by ED. The .ASM file will contain your program, and
the . BAK file will be empty, since this was a new file creation and
not an update. You can use the CCP command TYPE to verify this
(see Chap. 5).

You have now entered, and maybe corrected, an assembler
source program. This has been done with an absolute minimum of
ED commands and controls. In most of your work you will not be
using very many more of the facilities offered by ED. All the
complicated goodies that come with ED, like multiple find and
replace command sequences, are nice to have when you need
them, but there is no need to spend the effort to learn them for
awhile yet. So let's get on to the assembler.

Assembling the TEST program

Using CP/M's assembler is your easiest task. Just enter:

ASM TESTer

116 Learning by Doing

and let the assembler do the rest. If you have keyed in the source
program correctly, you should get the following display as ASM
does its thing:

LISTING 11-2. The console
display resulting from
assembling TEST.ASM.

CP/M ASSEMBLER - VER 1.4
010A
OOOH USE FACTOR
END OF ASSEMBLY

The assembly process requires two passes through the source
program. Since TEST was such a tiny program, the process takes
only seconds. Larger programs take much longer, as ASM has a lot
to do.

The assembler reads the source code from file TEST.ASM
during pass one, and builds up a symbol table. This table contains
all the symbolic references and their associated byte or address
values. For instance, pass one through TEST would have produced
a symbol table containing entries for BDOS and WCONF. When
these symbols are encountered during pass two, the assigned val
ues (5 and 2) are fetched out of the symbol table and placed in their
proper places in the object code buffer.

LISTING 11-3. TEST.PRN produced by
assembling TEST.ASM.

0005 BDOS EQU 5
0002 WCONF EQU 2
0100 ORG 100H
0100 OE02 MVI C,WCONF
0102 1E24 MVI E, '$'
0104 CD0500 CALL BDOS
0107 C30000 JMP 0
010A END

The object code buffer produced by ASM is for its own inter
nal use (we never see it directly), and would contain the program in
its assembled form as shown in the second column of the. PRN file:
OE021E24 The reason two passes through the source pro
gram are necessary is not obvious from this assembly run because
there are no forward references for the assembler to resolve.

Learning by DOing 117

If you had put the equate (EQU) lines at the bottom of your
program instead of at the beginning, ASM would not have known
what values to assign to WCONF and BDOS the first time it
encountered them. So it would have created entries in the symbol
table with the proper symbol names, but would have left the corre
sponding values zero. When it encountered the equates at the end
of pass one, it could have resolved the references and put the
numbers in the symbol table next to their names, but would not be
able to plug the correct values into the object buffer until it made
another pass through the source code.

While ASM is smart enough to keep track of symbols and
resolve forward references, it makes the program easier for hu
mans to understand, update, or modify if you group your defini
tions of symbols at the beginning of your source programs. There
are a number of other "do's" and "don't's" for you to learn. We will
discuss them as the time arises dming the next few chapters.

The command line we entered, ASM TEST, is the simplest
way to assemble a program. ASM also provides option codes that
can be appended to the command line. The format of these options
is a little confusing, as options are entered following the source file
name and a period:

ASM TEST. AZZer

This looks like a FILENAME.TYP entry, but it isn't. It tells ASM
to read the source file from drive A: (first option), and omit the
creation of the. HEX file (second option) and. PRN file (third op
tion). The first option can be any valid disk drive designation,
where ASM will try to find the somce file. The second can be a
drive designation for the destination of the. HEX file, or Z to
indicate that no output is desired. The third option can be a drive
to receive the . PRN file, or Z for no output, or X to indicate that
you want to see the. PRN listing displayed on the console, but you
do not want it written to disk.

The options .AZZ come in handy when you are assembling a
large new program that may have mistakes in it. Since no output is
produced the assembly process is speeded up, and you can see
assembler error messages which are always displayed on the
CON:. There is no need to list these error messages here, as they
are all in the CP/M ASM manual. You will get to know them soon
enough.

118 Learning by Doing

In these exercises we are assuming that all input and output
files will be on drive A:, so you will not need to be entering options
during normal operations. Why complicate things when you don't
have to?

Loading and running TEST

ASM produced two output files: TEST. HEX and TEST.PRN. The
format of TEST. HEX is explained fully in Fig. 11-1. This format
was inherited from the MDS system, so is universally known as the
Intel HEX format. Since all of the characters in the file are ASCII,
and since the file contains checksum error detection in each line,
the file can be transmitted over any inter-computer medium.

In order to be loaded into the TPA and executed, the. HEX
file has to be converted into the binary image of the program as it

FIGURE 11-1. The format of a .HEX file. This file is used to
record the assembler output in a format that can be readily
stored on disk and transmitted between computers. The file
consists of printable ASCII characters. and a running checksum
can be tested to verify error-free transmission.

:OAOIOOOOOE02IE24CD0500C300000E

Start character _I Y .
Number of data bytes~
Start address -------'

Record type ---------'

Byte U ------------'
Byte 1 --------------'
Byte 2 ____________ ---l

Byte 3 _____________ ...1

Byte 4 -----------------' Byte 5 ______________ ---l
Byte b _______________ --l
llyte 7 ________________ ---l

Byte 8-------------------'
Byte 9-----------------~

Checksum--------------------'

End of file record --- : 0000000000

Exercises

Learning by Doing 119

will appear in RAM. The binary image can't be transmitted from
computer to computer because it consists of eight-bit bytes, and
some modem interfaces want to see seven bits and a parity bit. In
addition, since every possible combination of eight bits can be part
of a binary file, there would be no way to signal End of Transmis
sion (EOT).

The Intel . HEX format is ideal for data transmission, since it
can be transmitted in either seven or eight bits per byte format,
and is readable by both machines and humans (with proper pro
gramming incorporated in both) .. HEX files can be downloaded
into PROM programmers that include an ASCII interface, and are
recognized by other operating systems as well as by CP/M.

It is the function of LOAD.COM to convert .HEX files into
the binary memory image that can be loaded into the TPA and
executed. Since it is quite possible to ORC a program at any ad
dress, LOAD. COM includes a test and will only accept. HEX files
that begin at location lOOH. To create a binary image of programs
that begin at other addresses, you will have to use DDT. For all of
the exercises in this book, you will only be loading programs into
the TP A, so the simple command:

LOAD FILENAMEer

will work nicely. Note that the file type . HEX need not be ap
pended to the file name when LOAD is invoked, since that is the
only file type meaningful to LOAD.COM.

Now you are ready to execute the TEST program. Enter:

LOAD TESTer

and in seconds you will have a TEST.COM file on your disk. To
execute the program, simply enter the CCP command TESTer and
you will see the "$" appear on your screen, followed by a return to
CCP. Just like in the exercise in the Introduction. Only 11 chap
ters later!

It is strongly recommended that you spend a couple of hours ex
perimenting with the files you have now created on your disk,

120

More on ED

Learning by Doing

before going on to the next chapter. There are a number of things
you can try.

Assuming that you have keyed in TEST.ASM correctly, and
that it produced. PRN and. HEX files identical to those shown in
this chapter, and that it executes properly, you can now try insert
ing mistakes into the .ASM file. For instance, change the names of
the symbols in the equate statements so that they no longer match
those in the program itself. See what comes out of ASM, both the
error messages and the results of having unresolved symbolic
references.

You might also try to ORC the program at location 100 instead
of lOOH. You might as well see what this produces by way of
errors, because it is a mistake you are sure to make sooner or later
in your own programs.

After you have inserted some mistakes and have seen the
errors and error messages they produce, restore the program to its
workable configuration. Now try replacing the "JMP 0" with
"RET." This will show you that CCP did CALL location 100H after
it loaded the test program, and that it can be RETurned to.

Next you might want to demonstrate to yourself another in
teresting characteristic of stack operations. Replace "CALL
BDOS" with "JMP BDOS" and run TEST. Try to figure out what
happened, and how the stack contents produced the results you
saw on your CON: screen.

Before you can perform these exercises, you have to learn another
ED command. When you first keyed in TEST.ASM, it was a new
file. You entered it into the text buffer, reviewed it, and then wrote
it out to file TEST.ASM with the command E. Before you can
update the file, you have to re-enter ED with the CCP command
ED TEST.ASM. Since TEST.ASM already exists on the disk, a
new file will not be created. When ED first prompts with the "*"
you will have to tell him to read in the existing copy ofTEST.ASM.
Enter the command #Acr and ED will Append all of the existing
file TEST.ASM. This is the trivial case of the command Append.
As long as your program file is smaller than the editor buffer you
can read it all in at once, and the "#" symbol indicates that you

Learning by Doing 121

want the entire file appended to what is in the editor buffer. Since
there is nothing in the buffer to start with, TEST.ASM will be read
in and will be the only contents of the buffer.

Now ED will change the name of the original source file to
TEST.BAK (for backup), and when you exit ED, the updated
source program will be TEST.ASM.

After you have edited TEST.ASM and run the experiments
listed above, you can experiment with the "#A" command by
repeating it a couple of times. ED will append the file a couple of
times, and you will have more in the editor buffer than you want.
To keep from garbaging your file on disk, enter the ED command
Qcr for Quit, and ED will terminate without writing anything to
the disk.

When you are comfortable with using ED, ASM, and LOAD,
it will be time to start generating your own copies of the CP/M 110
subroutines in the following chapters. They will make your assem
bly language programming under CP/M much easier and more
error free than if you started by just sitting down at your CRT: to
bang out programs from scratch, like so many wheel designers did
in the past, who had to survive without all this good fatherly advice
from an old man.

Console Input/Output

If you have been writing any BASIC language programs, you prob
ably just started at line 10 and wrote your program line by line to
accomplish its desired mission. Higher level languages and assem
bly language programs should be structured a little differently,
with the overall task broken down into blocks.

Program building blocks

122

Each block should perform a single function. Some dictatorial au
thorities go so far as to say that each block can have only one entry
point and only one exit. That is a desirable goal, usually, but it is a
rule that can be violated without causing the whole program to
collapse. Error exits from subroutines, for example, violate the
rule and are not uncommon.

The reason programs should be broken down into blocks is
that it Simplifies the programming effort. Each function to be im
plemented is written and debugged separately. When all the

Console Input/Output 123

blocks have been checked out, they are tied together by the main
program.

In assembly language programming, each block should be a
subroutine, and the main program, ideally, will merely call each
subroutine in turn until the job is completed. The stack organiza
tion of the 8080 greatly simplifies this task. The lowest level blocks
can perform the simplest tasks, like, for instance, outputting one
ASCII character to the console. A higher level subroutine can
output an entire message to the console by fetching characters out
of a buffer and sending each one in turn to the lower level
subroutine.

The stack makes all this possible. Each successive CALL re
sults in another return address pushed onto the stack. The pro
grammer doesn't need to keep track of what subroutine level he is
working at. Nesting of subroutines is handled effortlessly by the
stack. The main program can call a subroutine which can in turn
call another subroutine at a lower level. With the stack doing the
hard work, the main program could also call the lower level sub
routine directly, if the task required it.

This flexibility is illustrated in Fig. 12-1. Here we see a great
ly simplified schematic diagram of a program structure. The main
program calls subroutines that in turn call other subroutines that
handle data transfers to and from I/O devices, by using the BDOS
call at location 5. These CPMIO subroutines can also be called
directly by the main program as well. The first example in this
figure shows CPMIO subroutine CO: being called by both the
main program and at another time by an intermediate level sub
routine, that had first been called by the main program. While only
one level of user subroutines is shown in this diagram, the only
limit to subroutine levels is the depth of the stack space created by
the user.

So long as each subroutine performs a single function and uses
the CPU registers in an orderly fashion, it is easy for the program
mer to organize them in any order he needs to perform the desired
task. These principles are illustrated by our CPMIO subroutines.

We have seen that it is desirable to separate the user's regis
ter utilization conventions from those of the CP/M operating sys
tem. It is also highly desirable for all communication with the
outside world to be handled by the CP/M BDOS call at location 5.
The CPMIO subroutines fulfill this dual function. Each provides

-~ FIGURE 12-1. The interface between the user and the system. User programs and subroutines can access
peripheral devices through the CPMIO subroutines which in turn call for system services using the location 5
vector. Register saving and restoring within the CPMIO subroutines preserves the user's program
environment.

TTSER'S STANDAR, D REGISTE:{ USEAGE ~ CP/M REGISTER USEAGE

CALT,- CALL- CALL-
-RET _ RET _RET

,----,

USER
HAIN

PROGRAH

USER
SUBROUTINES

CPMIO
SUBROUTINES

TRANSI'NT PROGRAM AREA (TPAl -----1

BDOS CALL
VECTOR

THE
"GIANT

HOOK"

CBIOS

BDOS

DEVICES

r--eP/M OPERATINe SYSTEM

Console Input/Output 125

access to one 110 device at a time. When only a single byte of data
is to be transferred, it is passed in the A register, and all the other
working registers are preserved intact. The programmer doesn't
have to remember what CP/M is doing to the register contents.

In this chapter we will be generating the code that will imple
ment the two simplest functions: writing the contents of the ac
cumulator to the console screen, and reading a character from the
console keyboard into the accumulator. In order to test these func
tions, we will include a test program that will exercise these basic
building block subroutines.

CI:, CO:, and a test program

List. 12-1 is the subject of discussion in this chapter. It includes the
console input and output subroutines that are the first part of
CPMIO, and a test program to exercise these routines. When you
have entered, assembled, and loaded this software, you will be
able to communicate with yourself on your CON: in a seemingly
useless manner.

As you will be seeing, the communication will be useless
except as a test of the subroutines. Generating the most simple
minded possible test program may produce silly results, but it does
provide a means for testing each building block separately. When
this has been accomplished, more blocks will be added to CPMIO,
and a new test program will replace that shown in this first listing.

LISTING 12-1. Assembly language source code file CPMIO.ASM.

; CP/M I/O SUBROUTINES 30 JULY 82

; ASCII
CR
LF
CTRLZ

CHARACTERS
EQU ODH
EQU OAH
EQU 1AH

; CP/M BDOS FUNCTIONS
RCONF EQU 1
WCONF EQU 2

; CP/M
RBOOT
BDOS
TPA

ADDRESSES
EQU 0
EQU 5
EQU 100H

CARRIAGE RETURN
LINE FEED
OPERATOR INTERRUPT

READ CON: INTO (A)
WRITE (A) TO CON:

RE-BOOT CP/M SYSTEM
SYSTEM CALL ENTRY
TRANSIENT PROGRAM AREA

126 Console Input/Output

LISTING 12-1. Continued

ORG TPA

START: LXI SP,STAK
START1: CALL CI

CPI CTRLZ
JZ RBOOT
CALL CO
JMP START1

ASSEMBLE PROGRAM FOR TPA

SET UP USER'S STACK
INPUT A CONSOLE CHARACTER
OPERATOR INTERRUPT?
YES, RETURN TO CP/M
NO, ECHO IT AND

LOOP

; CONSOLE CHARACTER INTO REGISTER A MASKED TO 7 BITS
CI: PUSH B SAVE REGISTERS

PUSH D
PUSH H
MVI C,RCONF READ FUNCTION
CALL BDOS
ANI 7FH MASK TO 7 BITS
POP H RESTORE REGISTERS
POP D
POP B
RET

, CHARACTER IN
CO: PUSH

PUSH
PUSH
MVI
MOV
CALL
POP
POP
POP
RET

REGISTER
B
D
H
C,WCONF
E,A
BDOS
H
D
B

; SET UP STACK SPACE
DS 64

STAK: DB 0

END

A OUTPUT TO CONSOLE
SAVE REGISTERS

SELECT FUNCTION
CHARACTER TO E
OUTPUT BY CP/M
RESTORE REGISTERS

40H LOCATIONS
TOP OF STACK

The ten lines of code beginning CO: have all been discussed
at length previously. It is the Console Output subroutine, that
sends the character in the accumulator to the CON: device,
through the CP/M system call, preserving all the other registers
intact.

Above CO: in the listing is subroutine CI:, which will receive
a single ASCII character from the console. The only differences
between this subroutine and CO: are the change in the BDOS
function code from WCONF to RCONF (Read CONsole Func
tion), and the line

Console Input/Output 127

ANI 7FH ; MASK TO 7 BITS

The "ANd Immediate value with accumulator" instruction is
one of the logical (as opposed to arithmetical) operations performed
in the 8080 AL U. It is used here to mask off the high order bit of
the byte received from the console device. This masking should
always be performed when receiving an ASCII character from any
input device.

If you look at the list of ASCII codes in Appendix A, you will
see that no more than 7 bits are ever used in a valid ASCII charac
ter. This permits the use of the eighth bit as a parity bit, to test for
errors in transmission of the character. Since different data com
munication paths will produce different contents for this bit, all
input routines should mask it off to prevent later confusion.

The masking is produced by ANDing the character with the
bit pattern 01111111, or 7F in hex. Following the Boolean rules for
AND:

Zero AND zero is zero
Zero AND one is zero
One AND zero is zero
One AND one is one

we can see what happens to the character "U" (55H) when it is
ANDed with the mask word 7FH.

In this example, the communications path delivered the char
acter with the parity bit (bit 7) set to one. This changed the charac
ter from 55H to OD5H. Since we are programmers and not hard
ware engineers, we don't know the characteristics of the

FIGURE 12-2. Masking off the optional eighth
parity bit from an ASCII character insures that
the remaining seven bits represent a valid
code. The parity bit mayor may not be set
during data transmissions. resulting in a
potentially undecipherable code.

Bit 7 6 S 4 3 2 1 0

o 1 0 1 0

01111 1

01010101

AND

ODSH

07FH

OS5H

128 Console Input/Output

communications path, and don't really care, since we will always
mask off the extra bit when receiving an ASCII character. It
doesn't matter whether this bit, as received, was a zero or a one.
We AND it with zero, and the result is always zero. The other bits
are all ANDed with ones, so remain unchanged. You can verify
this, bit by bit, using the Boolean rules above.

CI: will receive each character as it is typed on the console.
To test our two subroutines, we need someone to type on the
console, and a test program to do something meaningful with the
typing so we know that CI: and co: are working.

The test program begins at START:, and the first thing it does
is what every program should do: establish a user's stack (see Chap.
10). The next line has a new label, STARTl:. This line inputs a
character from the console, and the following line tests the charac
ter to see if it is the escape character CTRL Z (lAR). ComPare
Immediate compares the current contents of the accumulator (our
input character) with the contents of the memory location immedi
ately following the opcode, and if they are the same, the zero flag is
set. We test the zero flag with the next instruction, the conditional
jump JZ, for Jump on Zero flag set. If the character received was
CTRL Z, the program will jump to RBOOT, and reload the CP/M
system. If the zero flag was not set, execution continues with the
instruction that follows the conditional jump.

The next instruction is CALL CO, and the character we just
input will be sent right back to the console device. Following this
the unconditional jump will send us back to STARTl:, and we will
input another character.

In this simple program, we could have jumped back to
START: and reset the stack pointer. But that is unnecessary, and
the logical limits of our loop should be the CALL CI and the CALL
CO. Making all loops as short as possible may use more labels, but
it speeds up execution time and makes the logic of the program
easier to understand.

Notes on the listing

Comments are to be read by either humans or programmers. We
use the semicolon to tell the assembler to ignore them. Comments
can take the form of a whole line, with the semicolon in the first

Console Input/Output 129

character space, or can be appended to a program line by tabbing
over from the operand field and starting with a semicolon.

There are no hard and fast rules for commenting. The pro
gram examples in this book are heavily commented to help you
learn assembly language programming. In general, comments
should be included to indicate what the program module accom
plishes, who wrote it, when, and how it works. Any unusual or
tricky techniques should be explained.

The first line in every program module should tell what the
module is and should include a date. The programmer should
always keep the date current. Each time you update a source
program file, start by updating the date in the first line. There is
nothing more frustrating than to find four different versions of a
program and not know which is the latest. Dates are easy to keep
track of. Version numbers, like V2.3, are too easy to get confused.
They may be fine for tagging major revisions of giant operating
systems like CP/M, but you probably won't be ready to write
programs like that this month.

Numeric constants should be declared at the beginning of
every program. Never write a program that includes lines like

OUT 123

which would cause the contents of the accumulator to be output to
hardware port number 123. Sooner or later you will want to run
that program on another computer, or an upgrade of your own
computer, and the hardware port assignments will have changed.
Trying to find 89 occurrences of numeric constants buried within a
42 page program listing is slave labor and not a suitable job for
programmers, or humans either.

Of course we know better than to address hardware ports
anyway. All our I/O will be through the system call at location
0005. But since that location could conceivably change too, we will
define it symbolically as well.

In the beginning of our listing we establish symbols for every
numeric constant we will need. These include the non-printing
ASCII characters that we can't embed in the listing by surrounding
them with quotes. Absolute memory addresses are also defined as
needed. For this program we defined the reload CP/M vector at
location 0000, the BDOS call vector at location 0005, and the start

130 Console Input/Output

of the TPA at location 100H. The function codes are similarly
defined. While reading through a long program, it is easier to
remember what "WCONF" means than to figure out what "2"
means.

Imagine that sometime in the near future you have written a
super program that will balance your checkbook while at the same
time watering the grass and feeding the cat. You will want to share
that program with the world (at a price, of course), and some
members of the world population may have computers that run
some operating system other than CP/M . Well, some people are
like that. At any rate, the chances are that any acceptable operating
system that runs on the 8080 family of microprocessors will have
hooks to I/O devices similar to the BDOS call. But at a different
memory location, and with different function codes. If you follow
the examples for defining symbols in this book, you will be able to
reconfigure your programs for any operating system on any 8080
family computer. Just change the numeric quantities associated
with the functions and addresses and your program is adapted to a
new environment. We weren't typing in all those extra lines for
nothing!

When you do sell your super program to 18,942 users of 38
different computers running 12 different operating systems, just
remember who started you in the right direction. Ten percent
would be a nice remembrance.

Even more ED

In Chapter 11 we learned enough ED controls and commands to
enable us to key in a simple little test program. If you are an expert
touch typist you could do the same with CPMIO.ASM using only
those simple editor facilities. But sooner or later you will have to
learn some additional ED commands, as the demands made on you
by the exercises in this book become greater.

In that first ED session, we skipped ahead a bunch of lines
using the command 3L for skip forward 3 Lines. The number of
lines can be either positive, to skip ahead, or negative, to skip
backward, as in -3LT which would move us back three lines, and
type one line. It is always a good idea to add the T to make sure you
are on the line you think you are on.

Console Input/Output 131

We moved all the way back to the Beginning of the editor
buffer with the command B and, just as with the other commands,
we can reverse this and enter -B to move all the way in the op
posite direction. In this case the opposite of beginning is ending,
and -B will move us past the last line of text to the end of the
buffer, which is the logical place to start adding stufl'.

Since CPMIO has more lines than will fit on the screen of
your CON:, you will have to skip back and forth a lot to review the
program. When you think it is complete, you can view successive
screenfuls of text by going back to the beginning and "typing" 22
lines at a time: B22T. Then 22L22T will display the next screenful.
The 22 is easy to type, and works fine for a 24 line screen. Just
make sure you type 22L and not 22K each time.

A dangerous editor command is nK for Kill n lines. You will
have to use this command later when you start adding more sub
routines to CPMIO and will want to replace the first test program
with another. To do the replacement, you will move the buffer
pointer to the beginning of the line labeled ST ARTl: and enter 5K
to kill the five lines starting at the buffer pointer position. Then the
I command will put you in the insert mode so you can type in a new
test program.

When you are ready for that exercise, you will want to use the
F for Find command. After loading in CPMIO (#A) you could
enter FSTARTlcr and the editor would find the first occurrence of
the string STARTl and leave the pointer at the next character
following the string. That is not where you want to be! Try
FSTARTlctrlzOLT instead. Now ED will find the desired string
(terminated by CTRL Z), rewind the pointer to the beginning of
the line, and type the line so you can make sure it is the right one.
Remember, ED will do what you say, not always what you want.

For example, suppose you wanted to get from the beginning
of the text to the subroutine CO. If you had entered the command
FCOctrlzOLT you would see the line:

RCONF EQU 1 ; READ CON: INTO (A)

because the first occurrence of the string "CO" appears in that
line, as does the second. To keep from getting lost in words con
taining CO, you could have specified FCO:ctrlzOLT and you would
probably get to where you wanted to be. If you hadn't written any

132 Console Input/Output

labels like OUTCO: in the meantime. Now you should be able to
appreciate the desirability of always appending the ctrlzOLT to all
your Find commands.

Finding your way around large programs is made easier by
appending the colon to all program labels. Some assemblers re
quire the colon, so you should always use it to make your programs
portable. The CP/M assembler is happy with or without the colon.
Use it to make ED's Find command just as happy.

The combination oflabels with colons and the Find command
is a safer way to skip around in a program listing than the use of
numbered lines. This is why we disabled line numbering with the

TABLE 12-1. While the CP/M editor ED also provides a number
of more powerful text editing features. the subset of commands
and controls listed here will be enough to permit entering.
correcting. merging. and splitting up assembler source files.

Keystroke(s)

#A

I

CTRLZ

B
-B

V
-V

E

Q
±nL

nT

nK

Fstring

Sold i Znew i Z

CTRL I

RUB OUT

Resulting Action

Append complete file onto editor buffer

Enter insert mode

Exit insert mode

Point to beginning of editor buffer

Point to end of editor buffer

Turn on automatic line numbering

Turn off automatic line numbering

Write editor buffer to disk and exit

Exit ED without writing buffer to disk

Move back (-) or ahead (+) n lines

Type n lines on console

Kill n lines following current pointer

Find the first occurrence of "string" following
current pointer position

Substitute "new" string for "old"

Tab forward to next tab stop (each 8
characters)

Erase and echo last character

Console Input/Output 133

"-V" command in the last chapter. Line numbers are dangerous
they change with every insertion and deletion. Find your way
around by labels. They don't change on you.

When you find the text you want to modify, you can kill lines
and insert, or substitute one string for another. There are lots of
other ED commands, but those discussed in these two chapters
and listed in Table 12-1 are all you will need for most of your
assembly language work. These form a completely usable subset of
what is available, and a set of commands that can do everything you
will ever want an editor to do. So get busy and key in CPMIO, so
we can assemble and test it and get on to the more fun kind of
programs.

Testing CPMIO

When you have your CPMIO.ASM file edited so that it is identical
to List. 12-1, assemble it and load it and make sure that you get the
same addresses specified as in List. 12-2. If your program is the
same as the original, it should have start address, end address, and
size (0l6D) identical to the example in this book. If not, compare
your CPMIO.PRN file with List. 12-3. Here you can compare
memory addresses and the assembled code, and by spotting dif
ferences between what you got and what is in the book you should
be able to find your errors. Finally, your. HEX file should agree
with List. 12-4. If all agrees, run the test program.

LISTING 12-2. The console
display resulting from
assembling and loading
CPMIO.

ASM CPMIO
CP/M ASSEMBLER - VER 1.4
016D
OOOH USE FACTOR
END OF ASSEMBLY
LOAD CPMIO
FIRST ADDRESS 0100
LAST ADDRESS 016C
BYTES READ 002D
RECORDS WRITTEN 01

LISTING 12-3. CPMIO.PRN

OOOD
OOOA
001A

0001
0002

0000
0005
0100

0100

0100 316C01
0103 CD1101
0106 FE1A
0108 CAOOOO
010B CD1F01
010E C30301

0111 C5
0112 D5
0113 E5
0114 OE01
0116 CD0500
0119 E67F
011B E1
011C D1
011D C1
011E C9

011F C5
0120 D5
0121 E5
0122 OE02
0124 SF
0125 CD0500
0128 E1
0129 D1
012A C1
012B C9

012C
016C 00

016D

134

; CP/M I/O SUBROUTINES 30 JULY 82

; ASCII CHARACTERS
CR EQU ODH
LF EQU OAH
CTRLZ EQU 1AH

; CP/M BDOS FUNCTIONS
RCONF EQU 1
WCONF EQU 2

; CP/M ADDRESSES
RBOOT EQU 0
BDOS EQU 5
TPA EQU 100H

ORG TPA

START: LXI SP,STAK
START1 : CALL CI

CPI CTRLZ
JZ RBOOT
CALL CO
JMP START1

CARRIAGE RETURN
LINE FEED
OPERATOR INTERRUPT

READ CON: INTO (A)
WRITE (A) TO CON:

RE-BOOT CP/M SYSTEM
SYSTEM CALL ENTRY
TRANSIENT PROGRAM AREA

ASSEMBLE PROGRAM FOR TPA

SET UP USER'S STACK
INPUT A CONSOLE CHARACTER
OPERATOR INTERRUPT?
YES, RETURN TO CP/M
NO, ECHO IT AND

LOOP

; CONSOLE CHARACTER INTO REGISTER A MASKED TO 7 BITS
CI: PUSH B SAVE REGISTERS

PUSH D
PUSH H
MVI C,RCONF READ FUNCTION
CALL BDOS
ANI 7FH MASK TO 7 BITS
POP H RESTORE REGISTERS
POP D
POP B
RET

, CHARACTER IN
CO: PUSH

PUSH
PUSH
MVI
MOV
CALL
POP
POP
POP
RET

REGISTER A
B
D
H
C,WCONF
E,A
BDOS
H
D
B

; SET UP STACK SPACE
DS 64

STAK: DB 0

END

OUTPUT TO CONSOLE
SAVE REGISTERS

SELECT FUNCTION
CHARACTER TO E
OUTPUT BY CP/M
RESTORE REGISTERS

40H LOCATIONS
TOP OF STACK

LISTING 12-4. CPMIO.HEX

:10010000316C01CD1101FE1ACAOOOOCD1F01C303DD
:1001100001C5D5E50E01CD0500E67FE1D1C1C9C518
:OC012000D5E50E025FCD0500E1D1C1C99C
:01016C000092
:0000000000

Not much will happen after you enter CPMIOcr to load and
execute the test program. It is waiting for you to type something on
the CON:. Each character typed will be tested to see if it is CTRL
Z, and if not it will be echoed on the screen. While the results of
your typing are not very meaningful, at least you can be assured
that CI: and co: are working, and that is the purpose of the test.

When you get the test program running, you might try press
ing a few control keys on your keyboard to see what effect they
have. Try CTRL M, CTRL J, CTRL L, and CTRL K, for example.
CTRL Z will of course exit the test program and reboot CP/M. And
put an end to the stuttering.

CI: and co: input and output one character at a time. With
these two subroutines all checked out, we can move on to buffered
lIO, and input and output a whole line at a time. The character-at
a-time subroutines will be used by the line-at-a-time subroutines,
so make sure they are working before going on to the next chapter.

There you will be learning about debugging programs by set
ting traps, so that the computer can't get away from you in case you
make a tiny mistake in your program. Remember, a computer will
always do what you said, not what you meant.

135

Buffered Input/Output

The CPMIO.ASM file created in the last chapter includes only
single-character-at-a-time input/output subroutines. While these
subroutines could be called by a main program to get one character
from the console keyboard, or display one character on the screen,
there will be very few times in your programs where such limited
110 accesses will be practical. You will almost always want to dis
playa whole message, or input a complete line of text from the
console.

Your goal for this chapter is to enter, assemble, and test sub
routines that will transfer a line at a time between programs and
the computer operator. To provide separation of those lines on the
screen, we also throw in a subroutine to output a carriage return
and line feed to the console. These three new routines will be
added to the CPMIO.ASM file that you have already created.

Saving old files

136

Since the first installment of CPMIO.ASM has been completely
debugged already, a copy of it should be saved before you proceed

Library files

Buffered Input/Output 137

to update it. It is always possible for a power line glitch or dust on a
disk to cause a total disaster to befall the version you are working
on, so a backup copy should be saved of each program upgrade, as
soon as it has been fully debugged.

The .BAK files created by ED are good only as temporary
backup during editing sessions. You will periodically erase all of
them (ERA *. BAK) to save disk space. A completely separate back
up file should be created, preferably on another disk altogether,
with a FILENAME.TYP that can't be confused with ED's .BAK
files.

Assuming you are working on drive A: and have a mostly
empty disk in drive B: for saving backup files, enter:

PIP B:CPMIO.C12=CPMIO.ASM

and a copy of CPMIO will be created on the disk in drive B that is
instantly identifiable as the version that resulted from the exercises
in Chap. 12. We have used the file type field to create a distinctive
tag for this backup file. If you have to use it as an assembler source
file, it will have to be RENamed as a .ASM file first. Or better yet,
copied back to a working disk in drive A as a .ASM file, preserving
the .C12 file as permanent backup:

PIP A:CPMIO.ASM=B:CPMIO.C12

You should periodically use this technique to make copies of
all your work files on a disk dedicated to this purpose. Store it away
from your working disks, and you will never be caught without a
means to recover last week's valuable output.

With your backup file stored away, you are ready to upgrade
CPMIO to include the new line-oriented subroutines. This will
entail adding text to the existing source file, and updating the test
program to exercise the new routines. Since most of this effort
consists of adding to the original file, it will speed things up if you
enter the new text into library (. LIB) files rather than directly into
the original source file. This permits you to work with smaller files
while keying in and proofreading the new text. When they have

138 Buffered Input/Output

been entered and proofread, the new files can be merged into the
original file, and the whole thing assembled in one piece.

ED facilitates this procedure by recognizing . LIB files as text
to be inserted into the editor buffer at the current buffer pointer
position in response to the "R" for Read command. The format of
this command is RFILENAME and a carriage return. ED will
search the disk directory for FILENAME. LIB, and iffound the file
will be inserted into the editor buffer in RAM. The original .ASM
file on the disk will not be changed at this time, and the . LIB file
will still remain on the disk. The next "E" command will cause the
merged files to be saved on the disk.

So, now it is time to exercise this technique. Use ED to create
and edit a file with the new subroutines shown in List. 13-1. Name
this file CH13. LIB.

When you have entered the text of these three subroutines,
edit another. LIB file containing the test program (List. 13-2) to
exercise them. Since the test program will be inserted into
CPMIO.ASM at a different location than the new subroutines, it
should be in its own library file.

Also, you might want to retain a library of . LIB files so that
only the routines required for a particular program need be
merged into the program source file. None of the test programs
will be used after the subroutines are debugged, so their files can
be ERAsed when your debugging is done. The subroutines devel
oped in this book are nicely grouped into related sets, so their files
are a logical set to retain as a library.

The test program will exercise all of the routines developed in
this chapter, so name it TESTC13.LIB. When you have keyed it in
also, we will discuss the merging process, and explain how the
subroutines and the test program work.

When you have CPMIO.ASM, CH13. LIB, and
TESTC13.LIB all ready to go on the disk in drive A, enter:

ED CPMIO.ASM

and respond to the ED prompt with #A to read in the "mam
program. Start off right by updating the date, so that a glance at the
top line will let anyone know that this is the latest version of
CPMIO.

Next you want to delete the old test program. The first line of

LISTING 13-1. Library file CHl3.LIB.

; CARRIAGE RETURN, LINE FEED TO CONSOLE
CCRLF: MVI A,CR

CALL CO
MVI A,LF
JMP CO

; MESSAGE POINTED TO BY HL OUT TO
COMSG: MOV A,M

ORA A
RZ
CALL CO
INX H
JMP COMSG

CONSOLE
GET A CHARACTER
ZERO IS THE TERMINATOR
RETURN ON ZERO
ELSE OUTPUT THE CHARACTER
POINT TO THE NEXT ONE
AND CONTINUE

; INPUT CONSOLE MESSAGE INTO BUFFER
CIMSG: PUSH B SAVE REGISTERS

PUSH D
PUSH H
LXI H,INBUF+1 ZERO CHARACTER COUNTER
MVI M,O
DCX H SET MAXIMUM LINE LENGTH
MVI M,80
XCHG INBUF POINTER TO DE REGISTERS
MVI C,RBUFF SET UP PEAD BUFFER FUNCTION
CALL BDOS INPUT A LINE
LXI H,INBUF+1 GET CHARACTER COUNTER
MOV E,M INTO LSB OF DE REGISTER PAIR
MVI D,O ZERO MSB
DAD D ADD LENGTH TO START
INX H PLUS ONE POINTS TO END
MVI M,O INSERT TERMINATOR AT END
POP H RESTORE ALL REGISTERS
POP D
POP B
RET

INBUF: DS 83 LINE INPUT BUFFER

LISTING 13-2. Library file TESTC13.LIB.

START1 : CALL CCRLF START A NEW LINE
LXI H,SINON WITH SIGN-ON MESSAGE
CALL COMSG

START2: CALL CIMSG GET A LINE OF INPUT
CALL CCRLF
LXI H,INBUF+2 POINT TO ITS TEXT
CALL COMSG ECHO THE WHOLE LINE
CALL CCRLF AND CR, LF
JMP START2 THEN DO ANOTHER

SINON: DB 'SIGN-ON MESSAGE' ,CR,LF,O

139

140 Buffered Input/Output

each of the test programs you will be using sets up the stack point
er, and will not change from one program to another. To get rid of
the rest of the test program, find it with a command of:

FSTARTl:ctrlzOLT

and verify that you are on the right line. Follow this with a com
mand of 5Kcr to kill the old five line program. This leaves the
editor buffer pointer at the beginning of the line just below
START: and this is where you want to insert TESTC13.LIB.

Simply enter RTESTC13 and a carriage return and you should
hear your disk drive begin the search for the library file. ED will
not let you know if the search was successful, only if the file was not
found or was not read properly. When the merge is complete you
will just get another "*" prompt on the screen.

Skip down in the text to the line below the RET at the end of
the old subroutine CO:. A OLT at this point should show you that
the buffer pointer is at the beginning of the comment line"; SET
UP STACK SPACE." This is where you want to enter the com
mand RCH13 to merge in the new subroutines.

This text could have been merged in anywhere following the
test program, but you should put it exactly where shown in the
overall listing of the merged file (as assembled), at the end of this
chapter (List. 13-4). That way your object code will be identical to
that in this listing, and any errors in your program can be easily
found.

N ow rewind the text buffer pointer to the beginning and
examine the entire file, comparing it with List. 13-4, which of
course includes the assembler output in the left hand columns that
won't appear in your source listing. The first discrepancy you will
notice is the absence (in your version) of the definition of a value for
RBUFF. This is a one line insertion you should now make, defin
ing the code for another BDOS function.

If you have faithfully copied the programs as listed in this
book, your files will have strategically placed blank lines between
blocks of related code. Studies on programmer productivity in
debugging unfamiliar programs show that blank lines in logical
locations greatly speeds up the debugging process by breaking up
listings into logical blocks. You should adapt this practice from the
start. You might find, however, that the file merging process has

Buffered Input/Output 141

resulted in missing or misplaced blank lines. Now is the time to
correct this.

With your source program all correct, you should be able to
assemble it error free, producing the same CPMIO. PRN file as in
List. 13-4. Before you try running this update, you should know
something about how the subroutines work, and what the test
program is doing.

CCRLF: starts a new line

By now you should have no trouble figuring out what this one does.
It simply uses subroutine CO: to start a new line on the console by
outputting the code for carriage return followed by the code for line
feed to the CON: device. There is one byte-saving technique in
cluded in this subroutine that you haven't seen before, though.

A subroutine usually ends with a RETurn instruction. This
opcode takes the calling program reentry address off the top of the
stack and puts it into the program counter, effecting a return to the
calling program. CCRLF: could have ended with CALL CO fol
lowed by RET, but the JMP CO accomplishes the same thing,
executes faster, and saves one byte of object code.

The program that CALLed CCRLF: left its return address on
the stack. The first CALL CO in CCRLF: pushed the address of
the next instruction onto the stack, and CO: returns to CCRLF: at
MVI A, LF by popping that address off the stack. The original
calling program return address is now back on the top of the stack.
If CCRLF: ends with a jump to CO:, the main program calling
address will still be on the top of the stack and will be the one
popped off by the RET at the end of CO:. The main program will
then be reentered after CO: outputs the line feed. And this is
exactly what we want.

Even more program space and execution time could be saved
by locating the code for CCRLF: immediately above that of CO: in
the source program, and leaving off the JMP CO altogether. Then
CCRLF: would call CO: to output the CR, and then load the
accumulator with the LF and just "fall through" into CO:, which
would finally return to the original calling program.

We have not used this trick here, however, because we will
be doing a lot of editing and merging in the future, and if any other

142 Buffered Input/Output

routine got inserted between the end of CCRLF: and the start of
co: in the process, the fall-through would be to the wrong place!
Since we have lots of memory in our CP/M computer anyway, we
won't take advantage of this technique here, but you should know
about it as you will run across it in other programs that you might
be studying for inspiration and ideas in the future. Studying other
programmers' codes is, by the way, another good way for the be
ginner to learn. Finish this book first, though.

COMSG: displays a line of text

Up to now, all of our programs have relied on co: to save and
restore the user's registers while writing to the console. Up to now,
only the A register has been used by the calling programs, so all
that saving didn't accomplish much. To implement the display of a
line of text, however, we will now need to use an index register to
point into successive locations in the text buffer in memory, and it
will have to be saved during the execution of CO: and all the action
that takes place within CP/M as a result of the BDOS call. In this
subroutine, we use "the" index register, the Hand L pair.

In the test program file (List. 13-2) we created a text buffer
containing a sign-on message. All of your programs should start
with a sign-on, so the user knows that the right program got loaded
into the TPA. The example message doesn't convey much informa
tion. It is assumed that all of yours will. To output this message to
the console, we point to the first character with the index register.
In the test program, this is accomplished by the LXI H, SINON
instruction. With the index initialized, a CALL to COMSG: will
cause the text to be displayed on the CON:.

We know that the HL register pair points to the "M register"
in memory. In this case, no arithmetical or logical operations are to
be performed; the M register is merely the source of one ASCII
character. MOV A,M moves that character from the buffer into the
accumulator, where it is tested to see if it is the buffer terminator
character. Any character that you know in advance would never be
used as a character in a text line can serve as the terminator, but
our choice is a zero byte. Since OOH is not a printable ASCII
character, it will never exist in any text. Also, all zeros in a byte is

Buffered Input/Output 143

easy to test for, with one of the flag register bits set aside to store
the test result.

When we MOVed the byte from the buffer to the A register,
the MOV instruction had no effect on the flag register (see Appen
dix B). To test for zero, we execute a dummy instruction. This time
we use the logical OR instruction, and OR the contents of the A
register with itself.

The Boolean rules for OR are:

1. Zero 0 R zero is zero

2. Zero OR one is one

3. One OR zero is one

4. One OR one is one

In other words, for any bit position in the byte, if either
operand contains a one bit, the result contains a one bit. Only zero,
zero results in a zero. When the accumulator contents is ORed with
itself, nothing changes, but the flag register records the result of
the logical operation.

If the fetched character was the zero terminator, the condi
tional return instruction, Return on Zero, ends COMSG: and reen
ters the calling program. Otherwise, the character is output to the
console by the call to CO:. The following instruction increments
the index to point to the next message buffer character, and the
jump back to COMSG: restarts the process.

Here we have a subroutine that ends its operation with a
conditional return instruction, and the return is embedded within
the code so is not as obvious as the RETurns at the end of CO: and
CI:. This is another reason for the insertion of a blank line following
each logical block of code in a source program. The blank lines
before and after this subroutine define it as an entity, which would
not otherwise be so obvious with the embedded return instruction.

The message text that is operated on by COMSG: was stored
in a buffer with a start address labeled SINON:. The text itself, in
the form of ASCII characters stored in memory, was formed by the
assembler in response to the pseudo operation DB, for "Define
Byte(s)." An operand consisting of text surrounded by single
quotes tells the assembler that we want the ASCII code equiv-

144 Buffered Input/Output

alents for the characters to be stored at the current program coun
ter location. Other byte values have been added onto this text list,
separated by commas. CR and LF are symbols whose values were
defined by the EQUate instructions at the beginning of the pro
gram. The assembler will insert the defined values into the buffer.
The zero is an absolute value, but could have been symbolically
defined as were CR and LF.

Including CR and LF within the text buffer is the equivalent
offollowing CALL COMSG in the test program with another state
ment, CALL CCRLF, but saves one byte over the CALL, as well
as one line in the source program. As is typical in computer pro
gramming, there is often more than one way to accomplish a de
sired action.

Note that the assembled .PRN listing shows only the first few
bytes of the message text in the object code column. You can see
that all of the text is actually in the object code buffer, however, by
looking at the next address in the listing. It is more than a few bytes
greater than the start address of the text. ASM simplifies the. PRN
listing.

CIMSG: gets a line from the operator

The console message output subroutine transferred a text line un
changed from buffer to console display. Since human computer
operators are more prone to error than are computers, transferring
a line in the other direction should include provisions for letting
the operator change his mind in the middle of a line. CP/M pro
vides a ready made line-input-with-editing facility that saves the
user the trouble of writing the equivalent function into each user
program.

In Chap. 4 we discussed these line editing features, as they
appear to the computer operator typing command lines into CCP.
Characters struck in error can be deleted with the DEL or
RUBOUT key. CTRL U or CTRL X aborts a whole line and lets
you start over. CTRL C aborts the currently running program and
reboots CP/M. CTRL R redisplays the line with rubouts cleaned
up. It would take a lot of code in users' programs to provide the
same features. CP/M provides them automatically through
RBUFF, the Read BUFfered input Function call to BDOS.

Buffered Input/Output 145

There is some user program overhead required before this
function can be taken advantage of. An input buffer must be prop
erly formatted in advance, and pointed to by the wrong index,
before calling BDOS with the function code in the C register (the
"right" index would be HL, not DE). The maximum number of
input characters permitted must be specified by a value that is
prestored in the bulier. The line as input after editing will not have
our handy zero byte terminator at the end, but instead a count of
the net characters input will be stored in the buffer along with the
text.

The advantages of using this function far outweigh the cost of
the few lines of code required to implement the function call. And,
in keeping with our philosophy of preserving a friendly user en
vironment, all of these overhead requirements are provided within
subroutine CIMSG:. The user program simply calls CIMSG:, and
upon return finds a one-line message from the operator stored in
INBUF:, terminated by a zero byte.

Like CI: and CO:, CIMSG: is a lowest-level user subroutine
because it includes a BDOS call. It therefore includes the register
save and restore instructions required for preserving the user's
environment. After saving registers, the subroutine sets up the
first two locations in the input buffer with a maximum character
count (80 is standard on CRT terminals) and an initial character
count of zero. Note that we store the second value first, at IN
BUF+ 1, then decrement the index and store the first value. This
saves a few bytes of code, since we have to pass the start address of
INBUF to BDOS, and after initializing the first two locations in
reverse order, the HL pair points to that start address.

Since BDOS wants address values passed in the DE pair, but
our MVI M, instructions used the HL pair, the single-byte register
exchange instruction (XCHG) is used to swap the address value
from HL to DE. This opcode also puts the old values originally in
DE into HL. The function code is then placed in C, and BDOS is
called.

If the computer operator enters CTRL C as the first character
typed following the BDOS call, the calling program will be aborted
and CP/M rebooted. Otherwise characters typed are stored in IN
BUF, beginning at the third byte, up to the maximum count or an
operator typed carriage return. The line editing features are in
operation as the operator types, and only the line as edited will

146 Buffered Input/Output

remain in INBUF. This is the input line as it would be displayed by
an operator entry of CTRL R immediately preceding the CR.

When BDOS returns to CIMSG: with the edited line in IN
BUF, the second INBUF location (INBUF+ 1) contains the count
of the characters to be found in the buffer. The first location still
contains the unchanged maximum character count. The text actu
ally starts at INBUF+2, then.

To make this buffer compatible with our text-terminated-by
zero convention, CIMSG: takes the count value from where BDOS
left it in INBUF+ 1, and places it into the E register. Zeroing the
D register produces a 16-bit value that, when added to the address
ofINB UF + 2, produces an index pointing to the end of the text in
the buffer (start + length = end). Here we store a zero byte
terminator. Once again saving a couple of instructions, the pro
gram does this by adding the count to INBUF+ 1, since this ad
dress is already in HL, and then incrementing the index to point to
the next location. DAD D is a Double byte (16 bit) ADd DE
register to HL.

Note that once we have terminated the text in the buffer with
a zero byte, there is no more need for a character counter. The
same is true for an output message buffer. This zero terminator
convention is easier to work with than techniques requiring charac
ter counters.

Testing the subroutines

Our new test program starts out by displaying the sign-on message.
The index is initialized to point to the start of the message buffer,
COMSG: is called, and the message is displayed followed by the
CR and LF that were included in its buffer.

At START2: we enter an endless loop. CIMSG: is called to
input an operator message. Type in any text you want, terminated
by a carriage return. This will cause a return to the CALL CCRLF
instruction following START2:, which will begin a new line on the
screen.

The test program then initializes the index to point to the
beginning character of the input text; the third location in the input
buffer. COMSG: is then called, and the line typed in is displayed a
second time on the console. Another new line is started, and the
operator can type some more.

Debugging with DDT

Since the object code that was generated by the CPIM assembler
for CPMIO while this book was being prepared is shown in List.
13-4, and you can compare your own assembler output against it,
there is little chance that any errors in your programs can't be
found by comparison. This will not always be the case, obviously,
and it is time to get familiar with the most commonly used features
of DDT, the CPIM Dynamic Debugging Tool.

The first step in debugging any new software is to get DDT
and the new program loaded into the computer memory, and then
remove all the disks from the drives. Since a new assembly lan
guage program can have errors in it that could cause the program
counter to get totally lost, it is always possible for such an error to
cause a jump into disk write routines in CPIM or in your monitor
PROM. So, to begin debugging, enter:

DDT CPMIO.COM

and you will see:

DDT VERS x.x
NEXT PC
0280 0100

indicating that DDT has been read into memory, and has loaded a
program that starts at lOOH and extends up to 27FH. Now, remove
"all the disks from the drives before proceeding!

You might have noticed that the highest address in CPMIO is
the location of the STAK: at 211H, but DDT thinks the program
ends just below 280H. This is because each disk record is 128
bytes, or 80 bytes in hexadecimal, and CPMIO extends into the
third record on the disk. DDT can't know that the program ends at
213H, even though ASM and LOAD knew it, and so assumes the
top of the program is the end of the last record allocated to it, at
27FH.

Since DDT is a .COM file on your disk, as is your test pro
gram CPMIO. COM, it is obvious that both can't occupy the tran
sient program area at the same time. DDT is loaded into the TPA
from the disk, but then relocates itself up in memory, overlaying

141

148 Buffered Input/Output

CCP, and freeing the TPA workspace. When relocated, DDT
changes the address in the BDOS call vector at location 5, and
establishes its own breakpoint vector at location 38H. DDT then
loads your program into the TPA, and signs on with the "-"
prompt.

DDT changes the BDOS call vector to trap any calls for I/O
access that your program might make, in case you have requested
DDT to trace each step in execution. As you will see shortly,
tracing takes up a lot of CPU execution time, so DDT turns tracing
off during the times your program uses CP/M facilities, which are
already debugged.

DDT also establishes a vector to itself at location 38H, which
is one of the 8080 family interrupt vectors. DDT uses the software
interrupt, RST 7 (opcode = OFFH) for breakpointing your pro
gram during test. When you set breakpoints by specifYing an ad
dress at which you want program execution to stop, DDT plugs
OFFH into your program at that address. When encountered, this
opcode forces a software interrupt, jumping to DDT through the
RST 7 vector. DDT can then save and display the contents of the
CPU registers, so that you can see what went wrong in your
program.

Since DDT uses one of the interrupt vectors, it is obvious that
your hardware and your programs cannot use the same vector. If
DDT is executing properly on your system, you can assume that
other programs in your system don't use this vector.

Breakpointing and tracing are the most powerful and easiest
to use capabilities of DDT, and along with memory dump and
register examination are the only DDT commands you will be
needing at your current level of expertise. Later you will want to
study the DDT manual to get familiar with all of the other things
this program can do for you.

Refer to the test program in List. 13-4. To use DDT to test
execution of this program in a step-by-step fashion, you would first
enter the command:

GlOO,103

followed by a carriage return. This tells DDT that you want to Go
to location lOOH, and execute your program up to (but not includ
ing) the instruction at location 103H. DDT will plug that RST 7

Buffered Input/Output 149

opcode into 103H, and jump to lOOH. Your program will load the
immediate value 0211H into the stack pointer, and then fetch the
opcode from location lO3H. Instead of what you originally wrote,
this opcode will be the restart opcode that DDT inserted into your
program. DDT will be entered through its breakpoint vector, and
will inform you that it has done so by displaying:

*103

and prompting for another command. Here enter:

X8cr

and DDT will respond to your request to eXamine register S (the
stack pointer) with:

8=0211

confirming that you did indeed load the stack pointer with the
desired top-of-stack address. You can then test the execution of the
next step also by entering a command of:

GlOO,106cr

and you should see the CR and LF action on your console before
the breakpoint returns you to DDT. Note that in debugging a main
program in this manner, all previously tested parts should be reex
ecuted at each breakpointed step. Don't test the next step with a
G103,106 because then your stack pointer may not be properly
initialized.

At each breakpoint step you can call for the display of any or
all register contents, as well as the contents of memory. A faster
way to test a program is by using the trace command. During
traced execution, each instruction executed will be displayed along
with all of the register contents in hexadecimal.

Refer to List. 13-3 and 13-4 to follow the steps involved in
using DDT's trace function to check out subroutine CIMSG:. The
first listing shows the console display during the session. The oper
ator inputs are underlined.

150

LISTING 13-3. Console displays during the debugging of subroutine
CIMSG: using DDT.

DDT CPMIO.COM

DDT VERS 1.4
NEXT PC
0280 0100
-XP

P=0100 15F

-T1A

COZOMOEOIO A=OO B=OOOO D=OOOO H=OOOO S=0100 P=015F PUSH B
COZOMOEOIO A=OO B=OOOO D=OOOO H=OOOO S=OOFE P=0160 PUSH D
COZOMOEOIO A=OO B=OOOO 0=0000 H=OOOO S=OOFC P=0161 PUSH H
COZOMOEOIO A=OO B=OOOO D=OOOO H=OOOO S=OOFA P=0162 LXI H,017F
COZOMOEOIO A=OO B=OOOO 0=0000 H=017F S=OOFA P=0165 MVI M,OO
COZOMOEOIO A=OO B=OOOO D=OOOO H=017F S=OOFA P=0167 DCX H
COZOMOEOIO A=OO B=OOOO D=OOOO H=017E S=OOFA P=0168 MVI M,50
COZOMOEOIO A=OO B=OOOO D=OOOO H=017E S=OOFA P=016A XCHG
COZOMOEOIO A=OO B=OOOO 0=017E H=OOOO S=OOFA P=016B MVI C,OA
COZOMOEOIO A=OO B=OOOA D=017E H=OOOO S=OOFA P=016D CALL 0005
COZOMOEOIO A=OO B=OOOA D=017E H=OOOO S=00F8 P=0005 JMP 9100
COZOMOEOIO A=OO B=OOOA 0=017E H=OOOO S=00F8 P=9100 JMP 97A2
COZOMOEOIO A=OO B=OOOA D=017E H=OOOO S=00F8 P=97A2 XTHL
COZOMOEOIO A=OO B=OOOA 0=017E H=0170 S=00F8 P=97A3 SHLD A044
COZOMOEOIO A=OO B=OOOA D=017E H=0170 S=00F8 P=97A6 XTHL
COZOMOEOIO A=OO B=OOOA D=017E H=OOOO S=00F8 P=97A7 JMP A106

COZ1MOE1IO A=OO B=OOOD D=OOOO H=OOOO S=OOFA P=0170 LXI H,017F
COZ1MOE1IO A=OO B=OOOD D=OOOO H=017F S=OOFA P=0173 MOV E,M
COZ1MOE1IO A=OO B=OOOD D=0008 H=017F S=OOFA P=0174 MVI D,OO
COZ1MOE1IO A=OO B=OOOD D=0008 H=017F S=OOFA P=0176 DAD D
COZ1MOE1IO A=OO B=OOOD D=0008 H=0187 S=OOFA P=0177 INX H
COZ1MOE1IO A=OO B=OOOD D=0008 H=0188 S=OOFA P=0178 MVI M,OO
COZ1MOE1IO A=OO B=OOOD D=0008 H=0188 S=OOFA P=017A POP H
COZ1MOE1IO A=OO B=OOOD D=0008 H=OOOO S=OOFC P=017B POP D
COZ1MOE1IO A=OO B=OOOD D=OOOO H=OOOO S=OOFE P=017C POP B
COZ1MOE1IO A=OO B=OOOO D=OOOO H=OOOO S=0100 P=017D RET *1331
-D17E,188

017E 50 08 P.
0180 48 4F 57 20 4E 4F 57 3F 00 HOW NOW?

When DDT is asked to load in CPMIO.COM, the program
assumes that debugging will begin at location lOOH, which is usu
ally the case. DDT therefore initially establishes a program coun
ter (PC) content of lOOH. To guard against any programmer over
sights, DDT also establishes a default stack pointer setting of
lOOH.

Buffered Input/Output 151

In this example we want to check out only CIMSG:, so the
first operator action is to request the examination of the program
counter, abbreviated "P." The "X" calls up the register eXamine
routine, and DDT shows the current content is 100H. The opera
tor overrides this by entering the start address of the subroutine,
15FH. All addresses and data values are in hexadecimal.

When DDT accepts this change and reprompts, the operator
keys in a command to Trace lA program steps. HexadecimallA is
26 in decimal, and this number of steps gets us through the sub
routine and stops at the return. Note that in tracing subroutines,
disaster might result if you were to trace past the return, since
DDT did not execute any part of a calling program. Find the exact
number of trace steps you want to display by sneaking up on the
return a few steps at a time.

The display that results from the trace command shows you
each program step as executed, and displays all the register con
tents that result from the execution. This display includes the flag
register, and we start off with the Carry flag, Zero flag, Minus
flag, ... etc. all initialized to zero. Note that DDT does not use
the Intel standard flag bit designations (Fig. 9-2), so Table 13-1 lists
both sets of abbreviations and the meanings of the flag bits.

The first subroutine step pushes the contents of the Band C
registers onto the stack, decrementing the stack pointer two times
in the process. Since the execution of PUSH starts by decrement
ing SP before the contents of C is moved to memory at the location
pointed to by SP, the first location written to will be OFFH, and
not lOOH. Otherwise the first opcode in our program would be
overwritten.

Notice that each of the first three PUSHes decrements the SP
by two, and it ends up at OF AH after the register saves. The
contents of the registers themselves do not change until the first
load index instruction (LXI) places an address into the HL pair.
You can easily follow the action of each step in the subroutine as
registers are initialized prior to the BDOS call, "CALL 0005" as
traced.

The Digital Research DDT manual states that tracing is
turned off during BDOS execution steps, but you can see from this
example that the turn-off didn't happen until after six instructions
were executed. Ignore these steps, they are obviously not part of
our program.

Tracing halts where the blank line shows in the listing. This is

152

TABLE 13-1. The flag (F) register functions within
microprocessors do not change, but the terms used to refer to
them are not always the same. Here the differences between
Intel conventions and those followed by CP/M's Dynamic
Debugging Tool are shown, along with the function of each F
register bit.

Flag Intel CP/M DDT
Bit Name Name Function

7 S (Sign) M (Minus) Duplicates accumulator bit
7 after ALU operations.

6 Z (Zero) Z (Zero) Set = I if accumulator
results in all bits zero.

5 Unused in 8080

4 A (Auxiliary I (Interdigit Carry out of bit 3 for
carry) carry) packed decimal

arithmetic.

3 Unused in 8080

2 P (Parity) E(Even Set = I if accumulator
parity) results in even number of

one bits.

I Unused in 8080

0 C (Carry) C (Carry) Set = I if accumulator
result is greater than 255
(OFF in hexadecimal)

because we have called BDOS for the input of an operator mes
sage, and you, the operator, now have to type a line terminated by
a carriage return. In this example, the operator typed "HOW
NOW?" and CR.

The CR signals the end of input. The CIMSG: subroutine is
returned to and the index is set to point to 0l7FH, wherein lies the
count of characters in the input buffer. This count is moved into
the E register, D is zeroed, and DE is added to HL. One incre
ment points HL past the text in the buffer, a zero is written to
memory to terminate the text, and the registers are restored to
their initial contents. The RET restores the stack pointer to its
original value, an action that all subroutines must accomplish.

Exercises

Buffered Input/Output 153

Don't forget that PUSHes and POPs must be balanced within a
subroutine.

Finally, the Display memory command is used to dump the
contents ofINBUF, and both the hexadecimal codes for the ASCII
characters and the characters themselves are displayed.

This example should show you the power of debugging by
tracing, but before you start thinking that it is the only way to fly,
remember that this subroutine did not include any long loops.
Sometimes it is easier to trap a program at the end of a loop, and
save tracing for more straightforward execution.

This combination of DDT's debugging tools is another exam
ple of the power, flexibility, and friendly environment provided by
the CP/M operating system and its utility programs. Well, DDT is
supposed to kill bugs, isn't it?

The Chap. 13 test program is a little more meaningful than the one
in Chap. 12, and produces a nicer display, at least. In addition to
exercising the new subroutines to demonstrate proper operation, it
gives the operator a chance to experiment with the line editing
features provided by CP/M. This line editing should be included in
all user programs that prompt for operator input, to allow the
operator the chance to correct errors or abort the program and
return to CP/M without having to resort to the RESET switch.

You can also experiment with control characters embedded
within a text line. On most terminals CTRL L or CTRL Z will
produce a cleared screen. This action is filtered out during input of
a text line and the control character is displayed by the up-arrow
plus-letter convention. But when the control character is echoed
by COMSG: the screen should go blank. Type in:

HI ctrlz THERE cr

and see what happens. If nothing happens, try CTRL L in place of
CTRL Z.

If you are getting bored by all of this, and are starting to fall
asleep, type in a message to yourself containing a bunch of CTRL
Gs.

LISTING 13-4. CPMIO.PRN for Chap. 13.

; CP/M I/O SUBROUTINES 16 AUG 82

; ASCII CHARACTERS
OOOD = CR EQU ODH CARRIAGE RETURN
OOOA = LF EQU OAH LINE FEED
001A = CTRLZ EQU 1AH OPERATOR INTERRUPT

; CP/M BDOS FUNCTIONS
0001 = RCONF EQU 1 READ CON: INTO (A)
0002 = WCONF EQU 2 WRITE (A) TO CON:
OOOA = RBUFF EQU 10 READ A CONSOLE LINE

; CP/M ADDRESSES
0000 RBOOT EQU 0 RE-800T CP/M SYSTEM
0005 BDOS EQU 5 SYSTEM CALL ENTRY
0100 TPA EQU 100H TRANSIENT PROGRAM AREA

0100 ORG TPA ASSEMBLE PROGRAM FOR

0100 311102 START: LXI SP,STAK SET UP USER'S STACK
0103 CD4B01 START1: CALL CCRLF START A NEW LINE
0106 211 EO 1 LXI H,SINON WITH SIGN-ON MESSAGE
0109 CD5501 CALL COMSG
010C CD5F01 START2: CALL CIMSG GET A LINE OF INPUT
O'IOF CD4B01 CALL CCRLF
0112 218001 LXI H,INBUF+2 POINT TO ITS TEXT
0115 CD5501 CALL COMSG ECHO THE WHOLE LINE
0118 CD4B01 CALL CCRLF AND CR, LF
011BC30C01 JMP START2 THEN DO ANOTHER

011E 5349474E2DSINON: DB 'SIGN-ON MESSAGE' ,CR,LF,O

0130 C5
0131 D5
0132 E5
0133 OE01
0135 CD0500
0138 E67F
013A E1
013B D1
o BC C 1
013D C9

013E C5
013F D5
0140 E5
0141 OE02
0143 5F
0144 CD0500
0147 E1
0148 D1
0149 C1
014A C9

; CONSOLE CHARACTER INTO REGISTER A MASKED TO 7 BITS
CI: PUSH B SAVE REGISTERS

PUSH D
PUSH H
MVI C,RCONF READ FUNCTION
CALL BDOS
ANI 7FH MASK TO 7 BITS
POP H RESTORE REGISTERS
POP D
POP B
RET

; CHARACTER IN
CO: PUSH

PUSH
PUSH
MVI
MOV
CALL
POP
POP
POP
RET

REGISTER
B
D
H
C,WCONF
E,A
BDOS
H
D
B

A OUTPUT TO CONSOLE
SAVE REGISTERS

SELECT FUNCTION
CHARACTER TO E
OUTPUT BY CP/M
RESTORE REGISTERS

TPA

LISTING 13-4. Continued

014B 3EOD
014D CD3E01
0150 3EOA
0152 C33E01

0155 7E
0156 B7
0157 c8
0158 CD3E01
015B 23
015C C35S01

015F CS
0160 DS
0161 ES
0162 217F01
0165 3600
0167 2B
0168 3650
016A EB
016B OEOA
016D CDOSOO
0170 217F01
0173 5E
0174 1600
0176 19
0177 23
0178 3600
017A E1
017B D1
017C C1
017D C9

017E

01 D1
0211 00

0212

; CARRIAGE RETURN, LINE FEED TO CONSOLE
CCRLF: MVI A,CR

CALL CO
MVI A,LF
JMP CO

; MESSAGE POINTED TO BY HL OUT TO CONSOLE
COMSG: MOV A,M

ORA A
RZ
CALL CO
INX H
JMP COMSG

; INPUT CONSOLE MESSAGE INTO
CIMSG: PUSH B

PUSH D
PUSH H
LXI H,INBUF+1
MVI M,O
DCX H
MVI M,80
XCHG
MVI C,RBUFF
CALL BDOS
LXI H,INBUF+1
MOV E,M
MVI D,O
DAD D
INX H
MVI M,O
POP H
POP D
POP B
RET

INBUF: DS 83

; SET UP STACK SPACE
DS 64

STAK: DB 0

END

GET A CHARACTER
ZERO IS THE TERMINATOR
RETURN ON ZERO
ELSE OUTPUT THE CHARACTER
POINT TO THE NEXT ONE
AND CONTINUE

BUFFER
SAVE REGISTERS

ZERO CHARACTER COUNTER

SET MAXIMUM LINE LENGTH

INBUF POINTER TO DE REGISTER
SET UP READ BUFFER FUNCTION
INPUT A LINE
GET CHARACTER COUNTER
INTO LSB OF DE REGISTER PAIR
ZERO MSB
ADD LENGTH TO START
PLUS ONE POINTS TO END
INSERT TERMINATOR AT END
RESTORE ALL REGISTERS

LINE INPUT BUFFER

40H LOCATIONS
TOP OF STACK

155

156

Tricky Techniques

Some early very small minicomputers had such a restricted in
struction set that it was difficult to find one way to accomplish some
operations. The Intel 8080 microprocessor has such a relatively
rich instruction set that there are, as we have seen, often many
ways to accomplish a desired result.

A programmer, under pressure to produce, will usually select
the most straightforward coding, even if it is not the solution that is
most compact or executes fastest. But when speed or program size
are important, it is necessary for you to know how to get things
done using a minimum of bytes of code and cycles of CPU execu
tion time.

Since the 8080 is stack-oriented, and most earlier machines
were not, older programmers often do not know some of the tricks
that are available thanks to the stack. One was mentioned in Chap.
13: letting one subroutine fall through into another. There are lots
more, and we will be using some of them to implement three new
subroutines. You will find these additions to CPMIO to be great
labor saving devices. They should be. They are emulating state-

Tricky Techniques 157

ments found in higher level languages. That had better make your
programming easier!

TWOCR:, a one-line subroutine

Some console messages, especially error messages and warnings,
should be displayed with blank lines above and below to set them
off from surrounding text. Obviously, you could call CCRLF: twice
in a row before and after displaying such messages. But it is easier
to add one line of code to CPMIO to implement a double line feed.

Immediately above CCRLF: in your CPMIO.ASM file, add
the line:

TWOCR: CALL CCRLF

and then your programs can call TWOCR: instead of CCRLF:
when you want to double space text on the console. Since this
addition is called as a subroutine but has no return of its own, it will
execute a call to CCRLF:, producing a carriage return and line
feed. Then the return from CCRLF: will be back to the instruction
following the call. That instruction is the entry point to CCRLF: so
you will get another CR and LF before the original calling program
is returned to.

SPMSG: displays in-line messages

In order to display our sign-on message (Chap. 13) we set aside a
message text buffer, SINON:, and had to load an index register
with its start address before calling our console output message
subroutine, COMSG:. There is a better way to display messages,
allowing the programmer to include message texts within the flow
of programs, instead of setting up separate text buffers.

In the middle of a BASIC language program, you can say:

PRINT 'Message text for the console'

and the text within the quotes will be displayed for the operator.
The text thus follows the instruction PRINT and precedes the next

158 Tricky Techniques

instruction (or program statement, as it is known in BASIC). The
text appears at the point in the program where it will be displayed,
rather than in a remote buffer area.

Using SPMSG: you can include a similar function in assembly
language programs, without having to set up message text buffers,
and without using even one index register! Simply write:

CALL SPMSG
DB 'Message text for the console', 0

and SPMSG: will output your text and return to the instruction
following the zero byte terminator. This allows you to place console
messages within the mainstream of your program, improving pro
gram readability and reducing program size and register usage.

Later, we will be looking in detail at how the stack operations
make this possible. First let's look at the test program for this
chapter and see how our new subroutines are used.

LISTING 14-1. TESTC14.LIB

START2: CALL TWOCR ; DOUBLE SPACE LINES
CALL SPMSG ; PROMPT FOR TEST
DB 'TESTING FOR YES OR NO FROM CONSOLE' ,CR,LF,O
CALL GETYN
JNZ START3 ; GOT A "NO"
CALL SPMSG ; GOT A "YES"
DB LF,' YOUR ANSWER WAS "YES!'" ,0
JMP START2

START3: CALL SPMSG
DB LF,'YOU SAID "NOI'" ,0
JMP START2

This time you will not replace all of the old test program
within CPMIO.ASM. Leave the first four lines to retain the sign
on message display. Delete the next six lines, START2: through
the IMP START2, and then merge in TESTC14.LIB, which you
will create from the program lines in List. 14-l.

This new test program first checks out TWOCR:. It then calls
our stack-oriented message routine to display the text in the line
immediately following. Once again, this text must be terminated
by a zero, so that SPMSG: knows when to quit and return to the
next opcode.

That opcode calls our final console I/O subroutine, GETYN:.

Tricky Techniques 159

This routine will prompt the console operator for a yes or no deci
sion, and will return to the calling program with that decision
recorded in the zero flag.

GETYN: interrogates the operator

When called, this subroutine will display the short prompt:

(YIN)?:

and wait for the operator's response. Line editing is in effect for the
operator, and so an immediate CTRL C will cause a program abort
and a return to CP/M. The only other valid responses are either
upper- or lower-case "y" or "N" as the first character in the line.
GETYN: uses the buffered console input subroutine for operator
responses, but only examines the first character on the line
returned.

A valid response therefore could be "yep" or "YEAH!" or just
"y" by itself, with a CR signaling that the operator is ready to have
the response accepted. If the console operator answers incorrectly,
with neither "y" nor "n" nor CTRL C as the first character on the
line, he will be reprompted. GETYN: will return to the calling
program with the zero flag set if the answer is yes, or the zero flag
not set if the answer is no.

Reading through the test program in List. 14-1 will show you
how all of these subroutines are used. GETYN: is called, the re
sponse tested by the conditional Jump on Not Zero, and one of two
messages is displayed showing what the program thinks the opera
tor meant.

In real programs, the single line CALL GETYN followed by
a conditional jump on zero or not zero will effect a program re
sponse to the operator's wishes. Every time a yes or no answer is
needed, the programmer calls SPMSG: to ask the question, and
GETYN: to receive the answer.

Now it is time for you to key in the two .LIB files in List.
14-1 and 14-2, and merge them into CPMIO.ASM. To be con
sistent with the listings in this book, you should merge the sub
routines in right before INBUF: in your existing program. Be care
ful with those nested quotes in the test program!

LISTING 14-2. CH14.LIB

; MESSAGE POINTED TO BY STACK OUT
SPMSG: XTHL

XRA A
ADD M
INA H
XTHL
RZ
CALL CO
JMP SPMS(;

; GET YES OR
GETYN: CALL

DB
CALL
CALL
LDA
ANI
CPI
RZ
CPI
JNZ
CPI
RET

NO FROM CONSOLE
SPMSG
'(YIN)'!: ',0
CIMSG
CCRLF
INBUF+2
01011111B
, y'

'N'
GETYN
o

'I'll CONSOLE
GET "RETURN AJJj)k'ESS" TO HL
CLEAR FLAGS AN)) ACCUMULATOR
GET ONE MESSAGE CHARACTER
POINT TO NEXT
RESTORE STACK FOR
RETURN IF DONE
ELSE DISPLAY CHARACTER
AND DO ANOTHER

PROMPT FOR INPUT

GET INPUT LINE
ECHO CARRIAGE RETURN
FIRST CHARACTER ONLY
CONVERT LOWER CASE TO UPPER
RETURN WITH ZERO = YES

NON-ZERO = NO
ELSE TRY AGAIN
RESET ZERO FLAG
AND ALL DONE

With the new test program lines and the new subroutines
merged into CPMIO.ASM, you should be able to assemble, load
and run the test. Your CPMIO.PRN file should match Listings
14-3 and 14-4. Only the portions of CPMIO that have been
changed are included in these listings. Did you remember to patch
in the one-line TWOCR: subroutine?

LISTING 14-3. A partial listing of CPMIO. showing the new code resulting from
including TESTC14.LIB

0100 319602 START: LXI SP,STAK SET UP USER'S STACK
0103 CDA101 START1: CALL CCRLF START A NEW LINE
0106 217101 LXI H,SINON WITH SIGN-ON MESSAGE
0109 CDAB01 CALL COMSG
010C CD9E01 START2 : CALL TWOCR DOUBLE SPACE LINES
010F CDD401 CALL SPMSG ; PROMPT FOR TEST
0112 5445535449 DB 'TESTING FOR YES OR NO FROM CONSOLE' ,CR,LF,O
0137 CDE001 CALL GETYN
013A C25B01 JNZ START3 j GOT A "NO"
013D CDD401 CALL SPMSG ; GOT A "YES"
0140 OA594F5552 DB LF, 'YOUR ANSWER WAC: "YESl"',O
0158 C30C01 JMP START2
015B CDD401 START3: CALL SPMSG
015E OA594F5520 DB LF, 'YOU SAID "NOI'" ,0
016E C30C01 JMP START2

0171 5349474E2DSINON: DB 'SIGN-ON MESSAGE' ,CR,LF,O

160

LISTINGI4-4. A partial listing of CPMIO. showing the new code resulting from
including CH14.LIB.

j MESSAGE POINTED TO BY STACK
01D4 E3 SPMSG: XTHL
01D5 AF XRA
01D6 86 ADD
01D7 23 INX
01D8 E3 XTHL
0'ID9 C8 RZ
01DA CD9101 CALL
01DD C3D401 JMP

j GET YES OR
01EO CDD401 GETYN: CALL
01E3 2028592F4E DB
01ED CDB501 CALL
01FO CDA101 CALL
01F3 3A0502 LDA
01F6 E65F ANI
01F8 FE59 CPI
OHA C8 RZ
01FB FE4E CPI
01FD C2E001 JNZ
0200 FEOO CPI
0202 C9 RET

0203 INBUF: DS

A
M
H

CO
SPMSG

NO FROM CONSOLE
SPMSG
, (YIN)?: ',0
CIMSG
CCRLF
INBUF+2
01011111B
, y'

'N'
GETYN
o

83

; SET UP STACK SPACE
0256
0296 00

DS 64
STAK: DB 0

How SPMSG: works

OUT TO CONSOLE
GET "RETURN ADDRESS" TO hL
CLEAR FLAGS AND ACCUMULATOR
GET ONE MESSAGE CHARACTER
POINT TO NEXT
RESTORE STACK FOR
RETURN IF DONE
ELSE DISPLAY CHARACTER
AND DO ANOTHER

PROMPT FOR INPUT

GET INPUT LINE
ECHO CARRIAGE RETURN
FIRST CHARACTER ONLY
CONVERT LOWER CASE TO UPPER
RETURN WITH ZERO = YES

NONfZERO = NO
ELSE TRY AGAIN
RESET ZERO FLAG
AND ALL DONE

LINE INPUT BUFFER

40H LOCATIONS
TOP OF STACK

The text to be displayed by this subroutine is in a buffer, just like
that for COMSG: in the previous chapter. The only difference is
that this buffer is embedded within the program, immediately
following the CALL SPMSG:. After the subroutine is called, we
still have to fetch one character at a time, test for zero, and output
the character through co: if it is nonzero.

In using COMSG: we pointed to the text by loading the HL
index with the start address of the text. Now, the start address of
the text is the "opcode" of the "instruction" immediately following
the CALL SPMSG:. In other words, it is the return address, or
would be for a usual subroutine call.

Since return addresses are pushed onto the stack by CALL
opcodes, a pointer to the beginning of the message text is sitting on

161

162 Tricky Techniques

top of the stack, waiting for us to load it into an index register. POP
H would do this, but would of course destroy the previous contents
of the HL register pair. We said we were not going to "use" any
indexes. That is not literally true. The subroutine will not change
any index register contents. Effectively the same thing, as far as
the programmer is concerned.

This is accomplished by the use of the super powerful 8080
instruction XTHL. This mnemonic stands for eXchange Top of
stack with HL register. The "return address" from the stack is
moved into the HL pair, at the same time that the contents of the
HL pair is moved. to the top of the stack. Obviously the 8080
microprocessor contains some temporary holding registers that are
invisible to the programmer but that permit this bidirectional si
multaneous swap.

So with one instruction that is only one byte long we have
both loaded the index with the start address of the message and at
the same time saved the previous contents of the index. Now we
have to fetch the first character from memory. Just to teach you a
new instruction or two, we do this differently this time.

The logical "exclusive or" operation can be abbreviated XOR,
and it executes by comparing each bit of the contents of the ac
cumulator with each bit of a second operand. The exclusive part of
this OR implies that the resultant bit should be a one if either
operand bit is a one (the same as OR) but not if both bits are one
(the exclusive part).

1. Zero XOR zero is zero.

2. Zero XOR one is one.

3. One XOR zero is one.

4. One XOR one is zero.

You can compare this "truth table" with those for AND and OR
given in previous chapters.

The 8080 mnemonic for this operation is XRA, since the A
register is always one of the operands. XRA A says take the exclu
sive or of A with A. For any bit pair, since both bits are the same,
the truth table above says the result will always be zero. XRA A
zeros the accumulator. Well, that didn't accomplish much since we
want the character that is to be displayed in the A register. If we

Tricky Techniques 163

now MOV A,M to get it there, we will still have to execute some
operation through the AL U to set the zero flag so we can detect the
end of message terminator. Since we have zeroed A, we can add
the contents of the M register to it. Zero plus any number equals
the number, which doesn't accomplish anything either. Except in a
computer, where the operands are added in the ALU, and the
results stored in the flag register. ADD M in this case sets the zero
flag if our fetched character was the terminator.

But it wasn't. We are still pointing to the first character. We
add M to A, zero is not set, and now we can output the character. We
can, but if we do that right away, we will lose the zero flag bit setting
because of all the stuff that would be going on downstream, and we
haven't tested it yet. So instead we do things in an orderly manner.
First we incremen t the index to point to the next character. Then we
reswap HL and the top of stack. Neither of these double-precision
operations affect the flag bits. Now we test zero with the conditional
Return on Zero. If we didn't INX the index and put it back on the
stack, the RZ wouldn't have the correct return address to work on.
Bomb!

From this you can follow the logic of this subroutine. It
fetches and displays each text character in turn, always keeping a
pointer to the next character on the top of the stack. When the
fetched character is the terminator, the top of the stack contains
the real return address, and a return gets us back to the calling
program at the instruction follOWing the message text. Well, we
wanted to do just that. How about that?

With a dozen carefully chosen bytes of code, carefully ar
ranged in a logical sequence, we have performed a function that
relieves the programmer of the tedious and error prone operations
of setting up text buffers, counting their characters, and keeping
track of their addresses in memory. That was the way it used to be
done. And to think that some stuffy old purists consider the 8080 to
be a toy. The heck with them. We won't tell them that it is not a
toy, but a powerful computing machine.

How GETYN: works
Nothing much new here for you to learn. Everything has pre
viously been covered up to the LDA opcode. LoaD A register
fetches the contents of the memory location pointed to by the

164 Tricky Techniques

address portion of this three-byte instruction. That address is, in
this case, the first console input character in the input buffer. Note
that w~ have used ASM.COM's arithmetic ability to point to IN
BUF: plus two, since the first two locations contain the maximum
length and character count values that CP/M insists on. We skip
over them by letting ASM compute the address INBUF+2.

When we have fetched that first character, we mask off both
the eighth bit (ASCII uses only seven, remember) and also the bit
that flags the difference between ASCII upper and lower case
letters. Two birds killed with one stone. And a new representation
learned. The mask byte is specified here in binary, so you can see
the bit pattern more easily. This makes the operation more obvious
than the hex equivalent mask of 5FH.

Once lower case letters have all been converted to upper case
by that operation, we only have to test the upper case possibilities
by comparing with the immediate ASCII values for "y" or "N." If
the "Y" compare was true, ComPare Immediate sets the zero flag.
So, if the answer was yes, we return to the calling program with zero
set.

If no yes, we test again for "N." If no yes and no no, we jump
back to the beginning and ask the operator to try again. Wouldn't it
be nice if we could reach out of our program and slap the operator's
wrist? If the operator input "N," our compare sets the zero flag.
We can't return with it set, because that is the signal for a yes
answer. So we execute an instruction that we know will clear the
zero flag. Compare with zero does just that. Now we return to the
calling program.

Assuming your programs include a lot of operator prompting
that can be answered yes or no, this subroutine makes the main
programs a lot shorter. A simple CALL GETYN followed by the
conditional jump are all the instructions the main program has to
execute. We have loaded up the subroutine with as much of the
burden as possible, even returning with the decision information
carried in a simple-to-test flag register bit.

This sort of thing is the "why" of subroutines. It is also the
mark of a well designed program. If the main program consists of a
string of subroutine calls with little intervening activity, it shows
that the programmer did plan ahead, and that a library of sub
routines was created to perform each of the necessary tasks. Sound
familiar?

The end of I/O subroutines

With our CPMIO library all completed and checked out, we are
ready to put together some subroutines that will get files from the
disks and write files back to disks. Then you will be ready to do
some real system programming. If you can't think of any more
programs that need to be written, don't worry. There will be lots of
ideas for you to work on in the final chapter. Your labors are only
beginning.

165

DISK FILE ACCESS

The File
Control Block

CP/M provides the basic I/O capabilities and we have expanded on
them in the preceding sections to produce some handy subroutines
for handling input and output using logical I/O devices. Logical
devices are a mechanism for accessing the physical devices con
nected to our computer without having to know their hardware
specific characteristics. For program portability, we never directly
address the physical I/O devices.

The same is true for disk access. While CP/M provides some
handy routines for accessing I/O devices, it is, after all, a disk
operating system. So we can expect CP/M to provide equally
powerful disk access capabilities. And it does, by taking upon itself
the drudgery of keeping track of physical disk addresses (track x
sector y), and letting us "talk" to the disk through named files.

We have previously discussed the concept of named files. In
this section we will be assembling and testing subroutines that
access files as named by the computer operator. And, finally, we
will be combining our I/O subroutines and our disk access sub
routines in a complete utility program. After completing your copy

169

170 The File Control Block

of this program, you will know what CP/M does, how it does it, and
how to make use of its capabilities. You will be ready to start
writing your own programs.

Getting to know the FeB

All of our I/O accesses were made through the giant hook at location
5, and our disk accesses will also use this CP/M entry point. But for
access to named files, we will have to pass more information to
CP/M than can be stored in all the available registers in our 8080
family CPU. Instead of passing all the required information in
registers, we will use a block of RAM memory known as a File
Control Block (FCB).

A FCB provides the operating system with the information it
has to have to find a desired file on the disk for read operations, and
the FCB also contains workspace that the system needs to perform
disk write operations. For this reason, the FCB must be in RAM,
even if our program always uses the same file name, which could
be stored in ROM. Although a file control block can reside any
where in RAM, and indeed several can be in use at the same time,
we will start by using the default transient file control block
(TFCB) that CP/M establishes for us at memory locations 005CH
through 007CH.

The format of the TFCB is shown in Fig. 15-1. It consists of
33 bytes of memory: the little squares in the figure. An additional
three bytes is required for certain optional operations in CP/M
versions 2 and above, but we won't have to be concerned with
them at this time, since we won't be using those options. Some
specific locations within the TFCB that our programs will be work
ing with are labeled in the figure.

The first memory location contains the disk drive selection
byte (dr). If this byte is zero, the currently selected drive is as
sumed for the disk access that uses this FCB. A code byte defining
the physical drive that is the currently selected drive is stored in
memory location 4, so that our FCB can address a file on another
disk without disturbing the current selection. A different drive can
be specified in a FCB, and will be selected only temporarily for
those disk operations that use that particular FCB.

Next in the block of memory comes the file name and type.
The file name field is always eight bytes. Short names are padded

FIGURE 15-1. The format of the File Control Block (FCB) set up automatically by
CP/M in response to a command line typed by the operator. The functions of each
of the 33 eight-bit bytes within the FCB are discussed in the text.

fTFCS FCSTY1 FCSEXl ,FCBS2
I r FCBRC

FCB+ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I dr : f1 : f2 : f3 : f4 : f5 : f6 : f7 : f8 : t1 : t2 : t3 : ex : s 1 : s2 : rc

FCB+ 16

dO

dr

f1 to f8

t1 to t3

ex

s1

s2

rc

dO to dF

cr

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

d1 d2 d3 d4 d5 d6 d7 d8 d9 dA dB dC dD dE dF cr

FCBCRJ
= drive select: o = current drive

=
=

=

=

1 = drive A:
2 = drive B:
etc.

file name characters

file type characters

file extension

system use byte

system use byte

record count

disk allocation groups

current record

out with the ASCII code for space (20H). The three-byte file type
field is also padded with spaces, if necessary. For wildcard file
accesses, any of these 11 file name/file type bytes can contain the
ASCII code for "?" (3FH). Wildcards can be used to find files on
disks, but read or write operations should use FCBs that contain an
unambiguous file name. Note that the period we use as a name/
type separator is not included in the FCB.

The rest of the FCB consists of bytes of binary data. At
FCB+ 12 is an extent byte (ex), used if the file is larger than 16K
bytes. As we will be seeing, each FCB can only address 16K bytes
of disk space.

After ex are two bytes reserved for internal use by CP/M,

171

172 The File Control Block

followed by the record count byte (rc) at FCB+ 15. The next 16
bytes (labeled dO through dF in the figure) will contain the ad
dresses of lK byte groups of records on the disk. These addresses
are not in a nice "track x sector y" format, but are simply binary
numbers from zero up to the highest lK byte block used on the
disk. The lowest numbered blocks are reserved by CP/M for the
disk directory entries. User blocks typically start at block two.

The extent, record count, group addresses, and the final byte
containing a current record counter are all set up and maintained
by CP/M. All these FCB locations other than the drive select byte
and file name/file type are operating system workspace, and we
don't have to concern ourselves with them, or write into them,
unless we want to confuse the system.

The operating system will even fill in the drive select byte and
file name/file type portion of the TFCB for us, if we enter a com
mand line like:

B:COPY C:FILENAME. TYP

when prompted by CCP. In response to this command line, CCP
will load the program named COPY. COM from drive B: into the
TPA, and set up the FCB drive select byte for C:, file name bytes
to FILENAME, and file type bytes to TYP. The rest of the TFCB
will be zeroed out, in anticipation of our use of the TFCB to
perform disk reads or writes, or other file referencing operations.
The TFCB is then ready for COPY. COM to use to access FILE
NAME.TYP on drive C:. Drive A: will still be maintained as the
current drive, and will be returned to for the next CCP prompt
(A».

We will be using this technique a little later on in this chap
ter. But first we have to see how CP/M uses the rest of the file
control block, and how disk directory entries are made.

How CP/M uses the FCB

In Chap. 5 we saw that the basic unit of data storage on standard
floppy disks is the 128 byte record. Even if the physical sector
length on your disks is not 128 bytes, CP/M will still make it appear
that you are working with 128 bytes of data for each read or write
operation.

The File Control Block 173

When we use the FCB to access named files, we let CP/M
keep track of all those little 128 byte records for us, and part of the
overhead involved is the fact that the operating system will allocate
disk space in groups consisting of eight records each. Each group
therefore contains 1024 bytes, the minimum size (other than zero
bytes) of any file on a CP/M disk.

Working with groups simplifies keeping track of where all the
files are on a disk. Since the first floppy disks contained 76 tracks of
26 sectors, one disk could hold about 240 groups, after subtracting
space for the operating system and disk directory. Using this lK
byte granularity, a unique address for each group on a disk can fit
into a single 8-bit byte. This was the deciding factor in setting up
the granularity of the disk space allocation.

The operating system handles all of the computations in
volved in translating a group number to the group's starting ad
dress at track x sector y. It must also keep track of the count of
records within each group.

Creating a disk file

When we want to write a file onto a disk, we provide CP/M with a
FCB containing the drive selection and the file name and type. As
we write the first record, CP/M will find the lowest numbered disk
group not already allocated to another file, and will place its 8-bit
address into byte dO in the file control block in memory. We can
then write up to eight records into that group. As each record is
written, CP/M updates the record counts in rc and cr in the FCB.

Each group of eight records written causes another unused
lK bytes of disk space to be allocated to the file, until we close the
file, or until all 16 of the disk allocation bytes (dO through dF) in the
FCB are full. If our file is larger than 16K bytes, CP/M will auto
matically open an extension of the file, incrementing the contents
of ex in the FCB for each 16K bytes of disk space used.

Whenever we are done writing into a file, we tell CP/M to
"close" the file. At that time the first 32 bytes of the FCB are
written onto the disk as a directory entry. Since the directory entry
has to be on the same disk as the data, and that disk can then be put
into any drive, the drive select byte (dr) in the FCB image in the
disk directory is zeroed. If we later erase the file, that first byte is
rewritten as OE5H in the directory, and CP/M knows it can reuse

174 The File Control Block

all of the groups allocated to this file, as well as the FCB image
space in the directory.

If our writes to the file overrun that first 16K byte boundary,
CP/M will write the filled FCB image into the directory, thus
keeping track of the first 16 groups allocated, and then start all over
with the disk allocation map in the FCB zeroed, but with the
extension byte incremented. This will be repeated for each 16K
byte extension for large files. When an extended file is closed, the
last FCB image will be written into the disk directory. With 64
directory entries available on the standard floppy disk, there is
more than enough directory space to store the multiple FCB im
ages necessary for extended files.

We can see what all this looks like by referring to Fig. 15-2.
In 15-2a, DDT has been used to dump the TFCB (memory loca
tions 005CH through 007CH) after file COPY.PRN has been writ
ten to the disk. When' DDT dumps up to 16 bytes of memory on
each line, it follows this display with a display of the ASCII equiv
alents of all printing characters (non-printing characters are shown
by periods). This makes it easier to spot our file name.

Since the TFCB doesn't start on a nice even memory address,
the DDT dump isn't as nicely formatted as Fig. 15-1. We can still
make out the different elements within the TFCB, however. We
can see that groups 21, 22, 25, 26 3A have been allocated to this
file. The group numbers are not contiguous, giving evidence that
this disk has had some files erased in the past.

When COPY.PRN was closed after the write, the directory
entry shown in Fig. 15-2b was created. Here one 128 byte sector
from the directory track is displayed. That sector contains four
directory entries. We can see that COPY.PRN consists of72H (114
decimal) records (14,592 bytes) written into 15 groups, which could
have held a total of 15360 bytes. Some disk space (six 128 byte
records) is therefore wasted, as a result of our lK byte granularity.

The other directory entries shown in Fig. 15-2b illustrate
how CP/M extends files (WORD. COM) and how erased files are
flagged (GET. COM). The directory entry for an erased file is a
temporary thing. The entire directory entry will be overwritten by
a new entry the next time CP/M is called upon to open a new file
on the disk. Thus both unused disk space and erased file directory
entries are reused by CP/M. This is what is meant by dynamic disk
space allocation.

FIGURE 15-2. Typical file control block contents. The contents
of the default TFCB have been dumped by DDT in Fig. 15-2a. A
more readable dump is in Fig. l5-2b. where the contents of four
FCBs within one disk directory sector are shown.
(a)

-D5C,7C

005C 00 43 4F 50 .COP
0060592020 20 20 50 52 4E 00 00 00 72 2122 25 26 Y PRN ... rl"%&
0070 27 28 2A 2B 2C 2E 36 37 38 39 3A 00 72 '(*+,.6789:.r

(b)

*A: T 2 S 13

0000
0010
0020
0030
0040
0050
0060
0070

DRIVE A - TRACK 2 SECTOR 13
00 57 4F 52 44 20 20 20 20 43 4F 4D 00 00 00 80
19 1A 1B 1C 1D 1E 1F 20 29 2D 3B 3F 40 41 42 43
00 57 4F 52 44 20 20 20 20 43 4F 4D 01 00 00 32
44 45 46 47 48 49 4A 00 00 00 00 00 00 00 00 00
00 43 4F 50 59 20 20 20 20 50 52 4E 00 00 00 72
21 22 25 26 27 28 2A 2B 2C 2E 36 37 38 39 3A 00
E5 47 45 54 20 20 20 20 20 43 4F 4D 00 00 00 as
24 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

. WORD

• WORD
DEFGHIJ.
.COPY
1"%&' (*+
eGET
$ ••••.••

COM ••••
)-j?@ABC

COM .•. 2

PRN ... r
,.6789:.

COM ••••

SHOFN: displays the TFeB file name

Before moving on to the disk access subroutines in the rest of this
section, you are going to have to add a few more I/O subroutines to
your ever-growing library. But since these are "disk-oriented" I/O
subroutines, their source code should be kept in its own. LIB file.
This is a good time to break up CPMIO.ASM into smaller library
files, anyway, to make future additions easier. The first addition is
SHOFN:, a subroutine to display the drive, file name, and file type
fields from the TFCB.

Before proceeding with editing the new additions and merg
ing them with your existing library, let's take a look at SHOFN:
and see how it works. You will want to refer to the TFCB format
(Fig. 15-1) as well as the source listing for SHOFN: (List. 15-1).

SHOFN: begins by saving the contents of the BC and HL

175

176

LISTING 15-1. SHOFN.LIB

; DISPLAY FILENAME.TYP
SHOFN: PUSH B

PUSH H
LDA FCBTY
MOV C,A
XRA A
STA FCBTY
STA FCBEX
LXI H,TFCB
MOV A,M
ANI OFH
ORI 40H
CALL CO
MVI A, t : I

CALL CO
INX H
CALL COMSG
MOV A,C
LXI H,FCBTY
MOV M, A
MVI A, I. I
CALL CO
CALL COMSG
POP H
POP B
RET

FROM TRANSIENT FCB
SAVE TEMP STORE
AND INDEX
SAVE FIRST CHAR OF TYPE
IN TEMPORARY STORE
FORCE TWO TERMINATORS
FOR FILE NAME
AND FILE TYPE
SHOW DISK DRIVE

LIMIT TO 4 BITS
CONVERT TO ASCII

SHOW THE COLON

AND SHOW THE FILE NAME

RESTORE TYPE

SHOW SEPARATOR

SHOW TYPE

RESTORE AND
RETURN

register pairs, the only registers other than the accumulator that it
will be disturbing. The subroutine will be using the message out
put subroutine (COMSG:) to display the file name and type, and
COMSG: wants a zero terminator at the end of the string to be
written to the console. So the next step is to save the contents of
FCBTY and stuff a zero there to terminate the file name string.
The save is done by loading the memory contents into the A regis
ter, then moving it into the C register. A is then zeroed, and that
zero stored in the same memory location. Another zero is then
stuffed into FCBEX to terminate the file type string. Now we are
ready to display.

The disk drive designator is fetched from TFCB, limited to
the lowest four bits, and ORed with 40H to convert it to ASCII.
Since this byte can take on the values 0, 1, 2, ... up to 15, ~Ring it
with 40H converts it to @, A, B, ... O. If the current drive has been
specified, the "at sign" is shown, and can be interpreted as "at the
current drive." Otherwise the drive designator letter is displayed,

The File Control Block 177

followed by a colon, both by using the single character console
output subroutine CO:.

The index is then incremented to point to the first file name
character, and the file name is displayed by the call to COMSG.
The index is reinitialized to point to FCBTY, the original contents
of this location restored, and then a period and the type field are
output to the console. The registers we used are then restored, and
the calling program is returned to.

Note that within this subroutine, absolute memory addresses
are referenced in two ways: by the load and store instructions LDA
and STA, or by setting up an index pointing to the desired memory
location. In general, it is faster and uses fewer registers to use the
"direct addressing" instructions LDA and STA, but these instruc
tions are only efficient for accessing a single memory location, and
can only transfer data between that location and the accumulator.

U sing the index register is much more efficient when refer
encing a string of memory addresses. Then "indexed addressing"
instructions like MOV A,M can be used. The selection of one
technique or the other is up to the programmer. That is you, now
that you know when to use one method and when to use the other.

Breaking up with ED

Since you have spent so much time in creating the CPMIO sub
routines and the test program completed in Chap. 14, you may be
a little reluctant at this point to start breaking all that up into little
pieces. But there is a very good reason for doing so, and the
process can be accomplished without much pain using ED.

In this section we will be writing disk access subroutines, and
combining them with the previously written subroutines into a
complete program. When this program is completed, you will
probably be ready to start working on program ideas of your own.
The subroutines developed and tested as you work your way
through this book provide the base for your future efforts.

But each of your future programs will not need to include all
of the subroutines. For this reason you should create a library of
groups of subroutines that will be used together in most programs.
The CPMIO subroutines fit together in one group, and will be
used in programs that need computer operator interaction. The

178 The File Control Block

disk subroutines from this chapter fit together into another group.
Programs that include both disk and operator accesses would in
clude both groups.

Similarly, other parts of complete programs are best main
tained in separate. LIB files and combined with the main program
after it is written. Table 15-1 lists the . LIB files that will be gener
ated in this section. CPMIO. LIB is only one of them. It is a part of
the program you put together in the last chapter.

That program will contribute the text for two . LIB files, 10E
QU.LIB and CPMIO.LIB. The first will contain all of the EQUates
found at the beginning of the program. These specify the ASCII
characters, CP/M functions, and CP/M addresses used by CPMIO.
The second file will contain the I/O subroutines alone, without the
test program or the references to RAM locations found in the
complete program.

TABLE 15-1. The library of user subroutines constructed by
completing all of the exercises in this book.

Source File
Listing Name Contents

(Part of IOEQU.LIB Data and address value
CPMIO.ASM) assignments for nondisk

programs.

15-2 DISKEQU.LIB Data and address value
assignments for disk
programs.

18-1 COpy. LIB COPY main program.
16-1 GET. LIB GET: a file from disk

subroutine.

17-1 PUT.LIB PUT: a file onto disk
subroutine.

15-1 SHOFN.LIB Show file name subroutine.

16-2 DISKSU.LIB Disk subroutines.
miscellaneous.

(Part of CPMIO.LIB Input/output subroutines.
CPMIO.ASM)

16-3 RAM. LIB Memory area assignments.

The File Control Block 179

To create these two . LIB files, start by making two copies of
CPMIO.ASM:

PIP IOEQU.LIB=CPMIO.ASM
PIP CPMIO.LIB-CPMIO.ASM

and then edit them in turn, killing all of the lines you do not want
to retain in the . LIB files. You may want to include title lines at the
start of each file, giving their creation date.

Adding more . LIB files

IOEQU.LIB should include all of the text from "; ASCII CHAR
ACTERS" up to, but not including "aRC TPA." When you have
this one complete, use PIP to make a copy of it named DISKE
QU.LIB. Now edit this file to bring it up to its final configuration,
shown in List. 15-2.

LISTING 15-2. DISKEQU.LIB

; ASCII CHARACTERS
CR EQU ODH
LF EQU OAH
CTRLZ EQU 1AH

; CP/M BDOS FUNCTIONS
RCONF EQU 1
WCONF EQU 2
RBUFF EQU 10

; CP/M
INITF
OPENF
CLOSF
FINDF
DELEF
READF
WRITF
MAKEF
SDMAF

DISK ACCESS
EQU 13
EQU 15
EQU 16
EQU 17
EQU 19
EQU 20
EQU 21
EQU 22
EQU 26

; CP/M ADDRESSES
RBOOT EQU 0
DRIVE EQU 4
BDOS EQU 5
MEMAX EQU 7

FUNCTIONS

CARRIAGE RETURN
LINE FEED
OPERATOR INTERRUPT

READ CON: INTO (A)
WRITE (A) TO CON:
READ A CONSOLE LINE

INITIALIZE BDOS FUNCTION
OPEN FILE FUNCTION
CLOSE FILE FUNCTION
FIND FILE FUNCTION
DELETE A FILE FUNCTION
READ ONE RECORD FUNCTION
WRITE ONE RECORD FUNCTION
CREATE FILE FUNCTION
SET DMA FUNCTION

RE-BOOT CP/M SYSTEM
CURRENT DRIVE SELECTION
SYSTEM CALL ENTRY
MSB OF TOP OF MEMORY

LISTING 15-2. Continued

TFCB EQU 5CH TRANSIENT FILE CONTROL BLOCK
FCBTY EQU TFCB+9 FILE l"YPE IN FCB
FCBEX EQU TFCB+12 FILE ~XTENT IN FCB
FCBS2 EQU TFCB+14 SYSTEM USE IN FCB
FCBRC EQU TFCB+15 RECORD COUNT IN FCB
FCBCR EQU TFCB+32 CURRENT RECORD IN FCB
TBUFF EQU 80H TRANSIENT BUFFER
TPA EQU 100H TRANSIENT PROGRAM AREA

; CP/M FLAGS
BDAOK
BDER1
BDER2
BDERR

EQU 0 BDOS RETURN FOR ALL OK
EQU 1 BDOS RETURN ONE
EQU 2 BDOS RETURN TWO
EQU 255 BDOS RETURN ERROR FLAG

This file now contains all of the addresses we will be using for
disk accesses, as well as those required by the I/O subroutines. For
programs with only I/O usage, the shorter EQUates file can be
used.

Merging files with PIP

180

Now, almost, we are ready to test our latest subroutine. All we
have to do is put together a simple test program (List. 15-3) and
merge it with DISKEQU.LIB, SHOFN.LIB, and CPMIO.LIB.
Call this file TESTC15.LIB.

LISTING 15-3. TESTClS.LIB

ORG TPA

JMP
HSAVE: DS

DS
START: LXI

DAD
SHLD
LXI
CALL
CALL
CALL
LHLD
SPHL
RET

START
2
32
H,O
SP
HSAVE
SP,START
TWOCR
SHOFN
TWOCR
HSAVE

SKIP OVER RAM SPACE
TWO BYTES OF STORAGE
SOME STACK SPACE
GET AND SAVE THE
BOOS STACK POINTER
IN TEMPORARY STORAGE
SET LOCAL STACK POINTER
SPACE TWO LINES
DISPLAY THE TFCB
SPACE MORE
RESTORE THE BOOS STACK

AND RETURN TO BOOS

The File Control Block 181

Merge the .LIB files required for testing SHOFN: by
entering:

PIP TESTC15.ASM=DISKEQU.LIB,TESTC15.LIB,SHOFN.LIB,CPMIO.LIB

This demonstrates another way to merge files, other than using the
ED command "R." It comes in handy when the total size of
the .ASM file ends up being larger than the editor buffer space
available. That limit is easily reached in a 16K CP/M system.

When merging files, make sure that the main program pre
cedes the files containing subroutines. The first executable state
ment that ASM sees must be the entry to the main program, and
must be assembled at the TPA start address.

Testing SHOFN:

With all the pieces put together and assembled you should be
ready to test SHOFN:. Since this program simply displays the
TFCB set up for us by CCP, it never uses INBUF, and our editing
has eliminated INBUF:. So you see some ASM error messages.
This time they can be ignored. To test SHOFN: enter:

TESTC15 B:FILENAME.TYP

or some similar line, using whatever drive selection and me name
you want. These will be displayed, and then a return to CP/M is
made.

There are a couple of new techniques embodied in TESTC15.
To be compatible with the final versions of our . LIB files, the stack
space has been included in this part of the program. The TPA entry
contains a jump to START: and the space between the jump and
START: is used for storage and stack space.

To implement the quick return to CCP that was discussed in
Chap. 9, we have to either use CCP's stack, which might be too
small, or save the CCP stack pointer value that exists when our
program in the TPA is called by CCP. We do the latter in this
example. There is no 8080 instruction that permits storing the
contents of SP directly, but we can add it to HL in one of the few
16-bit arithmetic operations included in the 8080 instruction set.

182 The File Control Block

To save and restore CCP's stack pointer, we first zero HL and
then add SP to HL. This puts the contents of SP into HL in a
roundabout way. We then stuff this into HSAVE, and set our own
stack pointer value. When our program execution is completed we
restore the CCP SP by loading HL with the value saved in
HSA VE, and then we can transfer it to SP with the 16-bit register
to register move instruction SPHL.

This technique was thrown in here because you might find it
useful in your programs in the future. Just remember that it will
only work if your program never disturbs CP/M as loaded into your
computer's memory. This method is the fast return to CP/M. A
jump to RBOOT is the safe, but slower, return.

GET: Reads a File
From the Disk

In the next three chapters we will be looking at subroutines that
will read a file from disk into memory, and then write a file from
memory to the disk. Finally, all the pieces we have so far as
sembled will be put together into a complete utility program.

When the first demonstration programs and subroutines were
discussed in this book, virtually every instruction used was ex
plained in depth. In more recent chapters the explanations have
become less detailed. As you have been learning the language, you
have developed a feel for what is going on, and by now you should
be reaching that state of enlightenment where the program listings
alone should be self-explanatory. Ultimately, you will be able to
read a memory dump.

If the operation of any instruction in any of these program
examples is not obvious from its context, or the comments in the
listing, or the discussion in the book, there is still the "dictionary"
to turn to for help. All of the information in the Intel programming
manual has not been duplicated in this book. You will still be
referring to that manual years after this book has been closed for
the last time.

183

Find it fast in the directory

184

Let's write a program that will read a named file into memory, and
then write that file out to another disk in any disk drive. To enable
making lots of copies, our COpy program will let you swap the disk
written to, and replace it with a new one and write another copy.
Any number of times you want.

This COPY program will be handier to use than PIP if you
want multiple copies, and in addition can be used on computers
with only a single disk drive. And any computer can become a
single-drive system, if one disk drive is temporarily sick. So COpy
will be a useful utility, in addition to being a means for demonstrat
ing all our subroutines.

COpy will assume that the computer operator has entered a
command line in the format:

B:COPY C:FILENAME. TYP

so that CCP will set up the TFCB before executing COPY, as was
discussed in Chap. 15. COpy can be on any disk, the target pro
gram can be on any disk, and the disk to be written on can be
placed in any drive.

The first task the program must accomplish is to verify that
the target file is on the disk that the operator specified. CP/M
provides a BDOS function for finding a file, and the list of functions
(Table 6-1) calls it FINDF, and shows that it has a function code of
17. We could write a BDOS call using this function to see if the file
is on the disk. But it turns out that we can instead kill two birds
with one BDOS call.

The CP/M Interface Manual lists all available functions, and
discusses their operation in more depth than is shown in Table
6-1. If you refer to that manual, you will see that if a program just
assumes that the file is on the disk specified, and goes ahead and
tries to open the file (function 15), BDOS will return an error code
showing that the file cannot be found. If the file is on the disk, it
will be opened, and we can proceed to read it. Two functions in
one BDOS call.

Since finding a file and then opening it for read must precede
any attempt to read the first record, these functions are part of
subroutine GET:, in keeping with our policy of making the main

GET: Reads a File From the Disk 185

program as simple as possible by loading up the subroutines with
work. GET: starts by setting up a pointer into the buffer space in
RAM that is to receive the contents of the file. It then tries to open
the file, calling BDOS with DE pointing to the TFCB and C con
taining the OPENF code.

If BDOS returns an error code of OFFH (BDERR in List.
15-2), we know the file is not on the disk specified, so we tell the
operator that the program "CAN NOT FIND C:FILE
NAME.TYP" and we return to CP/M through ERREX: and
DONE: (List. 16-1).

LISTING 16-1. GET.LIB

; READ A FILE FROM DISK INTO "BUFFR"

GET: LXI H,BUFFR GET BUFFER START
SHLD NEXT ADDRESS FOR DMA
LXI D,TFCB SEE IF FILE IS ON DISK
MVI C,OPENF AND OPEN FOR READ
CALL BDOS
CPI BDERR IS IT THERE?
JNZ GET1 YES, READ IT IN
CALL TWOCR NO, SHOW ERROR
CALL SPMSG
DB 'CAN NOT FIND ' ,0
CALL SHOFN SHOW FILE NAME

ERREX: CALL TWOCR ERROR EXIT TO CP/M
JMP DONE

GET1 : XRA A ZERO RECORD COUNTER
STA RECCT AND READ A FILE INTO BUFFR

GET2: LHLD NEXT SET BUFFER ADDRESS
XCHG
MVI C,SDMAF
CALL BDOS
LXI D,TFCB READ ONE RECORD INTO
MVI C,READF BUFFER
CALL BDOS
CPI BDAOK READ OK?
JZ GET3 YES, DO MORE
CPI BDER1 MAYBE, END OF FILE?
JZ GETEX YES, NO PROBLEM
CALL REMSG NO, SHOW ERROR
JMP ERREX AND ALL DONE

GET3: LDA RECCT COUNT THE RECORD
INR A
STA RECCT
LHLD NEXT INCREMENT BUFFER ADDRESS
LXI D,128 BY RECORD SIZE

LISTING 16-1. Continued

DAD
SHLD
LDA
DCR
CMP
JNZ
CALL
CALL
DB
JMP

GETEX: CALL
CALL
RET

D
NEXT
MEMAX
A
H
GET2
TWOCR
SPMSG
'OUT OF
ERREX

CCRLF
CPDMA

MEMORY' ,0

ROOM LEFT IN RAM?
STOP BELOW CCP
COMPARE MSB
CONTINUE IF NOT EQUAL
ELSE SHOW OUT OF MEMORY

AND GIVE UP

NORMAL EXIT
RESTORE CP/M DMA

Read the file into BUFFR

186

A successful open results in a jump to GET1: and we zero a record
counter in RAM before entering a loop that will fetch successive
records from disk and store them in RAM until the complete file is
read, or we run out of memory. The flowchart of GET: in Fig. 16-1
will help you follow the logic of this loop as we examine it in the
program listing.

We initialized the contents of NEXT with the starting address
of BUFFR when we first entered GET:. NEXT will always contain
the memory address of the next block of RAM to be loaded with
data from the disk. The contents of NEXT are passed to BDOS
with the Set Direct Memory Address Function (SDMAF) so that
CP/M will read the records into our buffer instead of the default
transient buffer (TBUFF) at location 80H.

With our memory address passed on to CP/M, we next call
BDOS with the read record function, READF. One record, 128
bytes, will be transferred "from disk into memory, and one of three
possible error messages will be returned to us by BDOS. The
nicest BDOS message is "All is OK," so we test for it first. If
BDAOK, we continue the program at GET3:.

If all was not OK, we test for an error return of one, which
means that the end of the file has been reached. If so, we are all
done, and exit through GETEX:, restoring the default buffer DMA
address (CALL CPDMA) as we go. This is important, as BDOS

FIGURE 16-1. The flowchart of subroutine GET:. Flowchart
symbols include ovals for entry points and labels; action blocks;
decision diamonds; and circles showing continuations to and
from programs not part of the flowchart. Flowcharts make it
easy to follow the logic of a complicated program.

no

maybe
Read OK r----------,

Memory
full?

187

188 GET: Reads a File From the Disk

needs a buffer to write into every time it reads a disk directory, and
we don't want it writing into BUFFR!

If all was not OK, and the reason was not that we were done
reading, then a real error has occurred, and we have to give up
trying to COpy this file. We so inform the operator by calling an
error message routine (REMSG) and then exit to CP/M through
ERREX:.

Back at "All OK" we jumped to GET3:, and here we count
the record and increment the buffer address by 128 bytes. We then
compare this new address with the highest address we dare write
to, the bottom of BDOS in the CP/M system. If our file is big
enough, it will overwrite CCP in memory, but we will stop short of
overwriting BDOS, since we need BDOS to handle the disk
accesses.

The giant hook into CP/M at memory location 5 contains a
jump to the BDOS entry point. The third byte of the jump instruc
tion, at location 7, is the most significant byte of the 16-bit memory
address of the BDOS entry. If we compare this byte (MEMAX,
List. 15-2) against the most significant byte of our current DMA
address, we could detect that we have just overwritten the BDOS
entry.

Since that is what we have to avoid, we instead compare
MEMAX with the most significant byte of the DMA address after it
has been decremented by one. This insures that we will always
stop before we overwrite BDOS. If the compare is alright, we
continue the read loop (JNZ GET2), otherwise we give up, inform
ing the operator that we have run out of memory. That, like the
read error, is an unrecoverable error. We can't use GET: to read
this file, so we can't use COpy to copy this file.

Back to you, ED

The listing of GET: is the source listing for GET. LIB. It includes
references to subroutines that are part ofDISKSU.LIB, and mem
ory addresses that are defined in RAM. LIB. So, while you have
your computer all fired up entering GET. LIB, go ahead and type
in the disk subroutines in List. 16-2 and the RAM definitions in
List. 16-3. As you are entering these files you can be teaching

LISTING 16-2. DISKSU.LIB

; DISPLAY READ
REMSG: CALL

CALL
DB
RET

; DISPLAY WRITE
WEMSG: CALL

CALL
DB
RET

; DISPLAY WRITE
WROPN: CALL

CALL
DB
RET

; RESTORE CP/M
CPDMA: LXI

MVI
CALL
RET

; GET A
DRSEL:

ERROR MESSAGE
TWOCR
SPMSG
'PERMANENT READ ERROR' ,CR,LF,O

ERROR MESSAGE
TWOCR
SPMSG
'PERMANENT WRITE ERROR' ,CR,LF,O

OPEN ERROR MESSAGE
TWOCR
SPMSG
'CAN NOT OPEN FOR WRITE' ,CR,LF,O

DMA ADDRESS TO THE TRANSIENT BUFFER
D,TBUFF
C,SDMAF
BDOS

DESIGNATOR
INPUT THE SELECTION

VALID
CALL
LDA
ANI
SUI
JM
SUI
JP
ADI
RET
XRA
RET

DRIVE SELECT
CIMSG
INBUF+2
01011111B
'@'

USE FIRST CHARACTER ONLY
CONVERT TO UPPER CASE
SET A=1, B=2, ETC.

DRERR
17
DRERR
17

DRERR: A

LISTING 16-3. RAM.LIB

; RAM VARIABLES
INBUF: DS
DRSAV: DS
RECCT: DS
CTSAV: DS
NEXT: DS

AND BUFFERS
83
1
1
1
2

; SET UP STACK SPACE
DS 64

STAK: DB 0

CAN'T BE LESS THAN ZERO
OR G~EATER THAN 16

RESTORE LEGAL NUMBER
AND RETURN WITH IT
ELSE SET ZERO FLAG
AND RETURN

LINE INPUT BUFFER
CURRENT DRIVE AT ENTRY
TOTAL RECORDS READ/TO WRITE
SAVE LOCATION FOR COUNT
NEXT DMA ADDRESS

40H LOCATIONS
TOP OF STACK

SINON: DB 'MULTI-WRITE FILE COPY 12 SEPT 82' ,0

; FROM HERE THROUGH CCP IS BUFFER SPACE
BUFFR:

END

189

190 GET: Reads a File From the Disk

yourself how the subroutines work, and what the RAM areas are
used for.

We will not generate any test programs in this or the next
chapter. The final testing will be done when all of the . LIB files are
complete, and are merged into COPY.ASM. Then the big debug
ging job will start. Something for you to look forward to.

pur: Writes a File
Onto the Disk

One of the first things an operator learns when using the CP/M
operating system is that you can't change a disk in a drive if you
want to write on it. Change a disk, and you have to reboot the
system before that disk will be accepted by the system for both
read and write (RlW) operations.

Our COpy program would not be very useful if it did not
include a method for overcoming this characteristic of CP/M. By
using the BDOS function INITF (function code 13), the program
overcomes the read only (RIO) tag placed on a changed disk by the
operating system. By overcoming the RIO status, we are able to
read a file into memory one time, and then write it out many times
on many disks. This is handled within subroutine PUT:.

How PUT: works

The experts all agree that assembly language code is so difficult to
follow that no program or subroutine source listing should be long-

191

192 PUT: Writes a File onto the Disk

er than one page. PUT: won't quite make it on a single 8Y2 x 11
inch page, but it will fit on a legal size sheet. So that makes it legal,
and no experts should be offended by this subroutine.

Refer to the PUT: source listing (List. 17-1) and flowchart
(Fig. 17-1) for the following discussion. PUT: opens by "rewind
ing" the buffer pointer address in NEXT that GET: (or a previous
PUT: pass) left pointing to the wrong end of the buffer. It then
saves the record count (RECCT) left by GET: so that multiple
writes can be made of the file. PUT: then looks at the drive select
byte in the transient file control block to see that it is greater than
zero.

Between the time that GET: read the file into memory and
PUT: was called upon to write it, the operator was asked by the
main program (Chap. 18) for a drive selection, and that selection
must be A, or B, or C, etc. The current drive is assumed to be
selected anytime no drive is specified in the command line. That
was a valid selection for read, but this write routine insists on a real
drive designator input by the operator. Otherwise it aborts the
write attempt, and exits through PUTEX:.

With a valid drive number in TFCB, PUTl: enables the disk
for writing by calling the initialize disk function ofBDOS. This acts
the same as a reboot without the return to CCP. You may notice
that this action causes the current disk to be accessed momentarily,
even if the write operation is going to be to another drive. What
ever CP/M is doing in response to INITF, it enables all the disks

LISTING 17-1. PUT.LIB

; WRITE A FILE FROM "BUFFR" TO DISK

PUT: LXI H,BUFFR SET UP BUFFER START
SHLD NEXT
LDA RECCT SAVE RECORD COUNT
STA CTSAV
LDA TFCB LOG-IN SELECTED DISK
ORA A IS IT LEGAL?
JNZ PUT1
CALL WROPN NO, SHOW UNABLE TO OPEN
JMP PUTEX AND TRY AGAIN

PUT1: MVI C,INITF ENABLE WRITE ON ANY DISK
CALL BDOS
XRA A INITIALIZE FCB
STA FCBCR CURRENT RECORD

LISTING 17-1. Continued

PUT2:

LXI
SHLD
SHLD
LXI
MVI
CALL
CPI
JZ
CALL
CALL
DB
CALL
CALL
JNZ
LXI
MVI
CALL
LXI
MVI
CALL
CPI
JNZ
CALL
JMP

PUT3: LHLD
XCHG
MVI
CALL
LHLD
LXI
DAD
SHLD
LXI
MVI
CALL
CPI
JZ
CALL
JMP

PUT4: LDA
DCR
STA
JNZ
CALL
LXI
MVI
CALL
LDA
STA

PUTEX: CALL
CALL
RET

H,O
FCBEX
FCBS2
D,TFCB
C, FINDF
BDOS
BDERR
PUT2
CCRLF
SPMSG
'OK TO ERASE' ,0
SHOFN
GETYN
PUTEX
D,TFCB
C,DELEF
BDOS
D,TFCB
C,MAKEF
BDOS
BDERR
PUT3
WROPN
PUTEX

NEXT

C,SDMAF
BDOS
NEXT
D,128
D
NEXT
D,TFCB
C,WRITF
BDOS
BDAOK
PUT4
WEMSG
PUTEX

RECCT
A
RECCT
PUT3
CPDMA
D,TFCB
C,CLOSF
BDOS
CTSAV
RECCT
CCRLF
CPDMA

EXTENT AND S1
S2 AND RECORD COUNT
SEE IF FILE EXISTS
FIND FUNCTION

IS IT ALREADY?

YES, OK TO ERASE?

IF NO, TRY AGAIN
IF YES, ERASE IT
DELETE FUNCTION

OPEN FILE FOR WRITE
MAKE A FILE FUNCTION

GOT IT MADE?

NO, SHOW UNABLE
AND TRY AGAIN

WRITE BUFFER TO DISK
(FINALLY)
SET ADDRESS TO WRITE FROM

THEN INCREMENT BY 128

WRITE A RECORD FUNCTION

WRITE OK?

NO, WRITE ERROR MESSAGE
AND TRY AGAIN

COUNT THE RECORD

IF NOT END OF RECORDS
THEN DO ANOTHER
ELSE RESTORE CP/M DMA

THEN CLOSE THE FILE

RESTORE RECORD COUNT
FOR NEXT WRITE

RESTORE CP/M DMA
AND ALL DONE

193

194

no Disk-select>---__________________________________ ~

OK?

no

Show 'Unable
to open'

no OK to erase?~-----.T---------~

FIGURE 17-1. The flowchart of subroutine PUT:. This routine is
complex enough to require the use of a flowchart to insure
understanding of all of the optional paths within the routine.
Simpler and more straightforward programs can be followed
through their listings without the need for a flowchart.

Show 'Write

195

196 PUT: Writes a File onto the Disk

for read or write. With the selected disk now guaranteed to be
RlW, the routine next zeros out the record counters and extension
bytes in TFCB. Next it looks for a file of the same name on the disk
to be written.

CP/M's own PIP program will copy a file from one disk to
another, and automatically overwrite a file of the same name on the
output disk. Our program wants the operator to reassure it that it is
OK to wipe out any pre-existing files of the same name. If one is
encountered, the operator is asked to OK its erasure. Note that in
implementing this single display line:

OK TO ERASE C:FILENAME.TYP (YIN)?:

we make use of subroutines SPMSG:, SHOFN:, and GETYN: to
display a message, the file name, and a prompt; and to receive the
operator's response to the prompt. All accomplished with only four
lines of assembly language code. Using subroutines saves a lot of
programming effort, once they are debugged.

If an existing file is to be erased, another BDOS function is
called upon to plug that OE5H into the first byte of that file's
directory entry, thus "erasing" the file. In this case, as opposed to
the operator's use of the CCP command ERA, that directory entry
will probably be immediately overwritten anyway, by the next
BDOS call to make a new file.

The MAKEF function immediately creates a directory entry
on the disk, but since no records have been written, the TFCB disk
allocation map (dO through dF in Fig. 15-1) is empty, and such a
file would be displayed by STAT as being of zero length, with a
zero record count. A "file" can be less than lK bytes long under
CPIM, but only an empty one.

Since creating a file entry in the directory involves a write
operation, it is possible for the MAKEF call to produce an error
return from BDOS. One reason could be that the disk is write
protected physically, by the notch in the cover provided for this
purpose. This would cause a failure-to-write error message, as
would an actual write error. In either case we can't write the file,
so an appropriate message is displayed by the call to subroutine
WROPN (List. 16-2). Then we give up on this disk and return to
the main program.

But if all is well at this point, the actual writing of the file now

PUT: Writes a File onto the Disk 197

takes place in the loop starting at PUT3:. This is similar to the read
loop in GET:, except that the record count is decremented instead
of incremented, and the loop terminates when the count gets to
zero. Or when there is a write error, or we run out of disk space. In
any case, successful write or error, the DMA address must be
restored to TBUFF, just as was discussed in the last chapter.

If the write was successful, the file is closed (CLOSF) and the
original record count restored, in case another copy is required.
Closing the file, of course, writes the TFCB image to disk as a
directory entry for the file, overwriting the empty entry created by
MAKEF.

Subroutines do it all

With all the action taking place within GET:, PUT:, and all those
little subroutines, there isn't much left for a main program to do, as
we will be seeing in the next chapter. When you have keyed in the
text of PUT. LIB exactly as shown in List. 17-1, you will be ready
to add the main program, and see how she runs. I won't stand in
your way much longer. Get with it.

198

COPY1

The Main Program

Now at last it is time to put all the pieces together and create a
complete program. COPY.ASM will be a merger of all the .LIB
files (except IOEQU.LIB) shown in Table 15-1. They will be
merged in the order shown in that table, and the complete pro
gram will then be assembled and tested.

The resulting program will be a useful utility, providing a
more operator-oriented interface than does the much more power
ful (and larger) PIP utility provided with your CP/M system. PIP is
not being replaced. It provides greater flexibility than COPY, and
also includes useful data conversion options. In the examples in
this book, we have been using PIP for very simple file copying and
merging operations. You can learn about the other features that
PIP provides by studying the Digital Research manuals.

Operating COPY will be easier than using PIP, since all the
computer user needs to enter is:

COpy FILENAME. TYP

COPY, The Main Program 199

in the simplest case, and the program will read in the named file
and then prompt the operator for the output disk drive selection.
Prompting and error messages have been used unsparingly in
COPY, since there was no need to try to keep the program small.

The smallest block of disk space that can be allocated is lK
bytes, and since COPY. COM is much smaller than that, there was
no effort made to Simplify or shorten operator messages. The result
is a program that can be operated by anyone, even a programmer.

COPY. LIB is the main program

If you haven't worn ED. COM completely off your disk by now,
you can enter the text of the main program shown in List. 18-1. As
you have already heard, the "main" program is short, because the
subroutines do all the work. Since you already know what all the
subroutines do, the logic of COPY. LIB should be obvious from the
listing.

LISTING 18-1. COPY.LIB

ORG TPA ASSEMBLE PROGRAM FOR TPA

START: LXI SP,STAK SET UP USER'S STACK
LDA DRIVE SAVE INITIAL DRIVE SELECTED
STA DRSAV

START1 : CALL CCRLF START A NEW LINE
LXI H,SINON WITH SIGN-ON MESSAGE
CALL COMSG
CALL GET GET THE NAMED FILE

START2 : CALL CCRLF BEGIN WRITE PORTION
START3 : CALL SPMSG ; GET DRIVE FOR WRITE

DB 'SELECT DRIVE FOR OUTPUT: ' ,0
CALL DRSEL GET A VALID DRIVE SELECT
JZ START3 IF NO GOOD, TRY AGAIN
STA TFCB SET DESIGNATOR INTO FCB
CALL CCRLF AND ECHO ACCEPTANCE
CALL PUT WRITE THE FILE TO DISK
CALL SPMSG ; PERMIT MORE WRITES
DB 'WANT ANOTHER COPY' ,0
CALL GETYN
JZ START2 ; LOOP FOR MORE WRITES

DONE: LDA DRSAV ; RESTORE INITIAL DRIVE
STA DRIVE
JMP RBOOT

200 COPY, The Main Program

The program is straightforward. First the stack pointer is ini
tialized, and the current drive selection is saved, so that when all
the copying is done the current disk drive will be returned to for
the next CCP prompt.

These "housekeeping" chores completed, COpy then signs
on with the message text that is part of RAM. LIB, and then looks
for the file to be copied. When the file has been read into the
buffer space, the program prompts the operator for the write disk
drive selection. The drive selection input subroutine DRSEL:,
part ofDISKSU.LIB, uses the buffered line input provided by CP/
M, so the operator can abort the whole operation at this point with
a CTRL C, if need be. Another friendly feature.

If an illegal drive was specified, the program loops back to
START3: and repeats the prompt. And it will make you do it over
and over until you get it right. Or give up with CTRL C. When you
do get it right, the program calls PUT: and writes the file to disk.
Whether or not any write errors occur, the operator is next asked if
another copy is desired. If so, back to START2: we go, and a new
drive can be specified.

When the copying is over, the program exits through
DONE:, restoring the original current drive selection and reboot
ing CP/M. DONE: is also used by the error'exit from GET:, since
if the file to be copied cannot be read, there is no need to continue
the program. During writing, a bad disk will cause a write error
message, but the program will continue, giving the operator the
chance to replace the disk and try again.

Computers can be friends

"Ergonomics" is the current buzzword refering to making your
computer a friendly place to work. This used to be called human
engineering, but that sounds too Frankensteinish. Buzzwords pro
liferate in the computer world; "buzzword" is one of them. No
matter what you call it, you should always try to write programs
that interact with the operator in such a way that the fallible human
knows what is going on, and is told what to do next.

COpy includes features that let the operator know what is
going on within the program. Aside from prompts and error mes
sages, strategically placed carriage returns and line feeds are in
cluded to show the progress of the program. You may have noticed

COPY, The Main Program 201

lots of CALL CCRLFs in the listings. They provide responses to
operator inputs, and mark progress through the program, as well as
providing places for you to set traps during the debugging process.

Pu tit all together and go

You are about to solo as an assembly language programmer, and so,
like the little bird being kicked out of the nest or the new pilot
being sent off into the sky all alone, you shouldn't expect much
more hand-holding from this point on. You are probably ready for
that freedom, anyway.

Key in the text of List. 18-1 as COPY. LIB, and then use PIP
to merge all the . LIB files into the assembly source program:

PIP COPY.ASM=DISKEQU.LIB,COPY.LIB,GET.LIB, RAM.LIB

which, when assembled, should produce a COPY.PRN file identi
cal to that shown in List. 18-2. The complete print file has been
included here to help you in getting your version running.

No new debugging techniques are needed. If ASM didn't find
any errors to report, you may have gotten it all right the first try.
Don't take any chances, though. COPY. COM is an assembly lan
guage program that includes disk accesses. The combination can be
fatal to your valuable programs. Start your debugging with a couple
of disks that .you can afford to have wiped out. Just in case.

The best way to test COpy is to use it to make a copy of one of
your . LIB files. Since they are ASCII files, you can TYPE the file
and see if it got copied correctly. With COPY. COM and some
ASCII file on a "scratch" disk, you might start your debugging
session by simply making a copy from the scratch disk back to
itself. This will exercise most of the features of the program.

If your first try fails, it is time to start setting traps and seeing
at what point the first error occurs. Use DDT to trap each step in
the main program. If a program error results in a complete
"bomb," you will have discovered the offending subroutine, since
they are all called in sequence. Setting traps, examining registers,
and dumping memory contents are all the tools you need. Just
check out each part of the program, one step at a time.

A more complete test will involve copying longer files from
one disk drive to another. When you get COpy running to the

202 COPY, The Main Program

point that it appears to be working completely, use it to copy
COPY.ASM, ASM.COM, and LOAD.COM onto a blank disk. If
you can then successfully assemble, load, and run the program
from that disk, you can feel confident that COpy is up and
running.

Exercises, experiments, and future projects

COpy has its limits. The record count maintained in RAM is only a
single eight-bit value, limiting the size of file that can be copied.
On your own, now, you might fix that by making it a 16 bit counter.
Simpler changes to the program might be made to help you exer
cise your new powers of programming prowess. Add progress mes
sages to the program, like "READING FILENAME. TYP" and
"WRITING ON DRIVE x:," for example.

When you have done all the damage to COpy that you can
think of, use the library subroutines to write a file COMPARE
program. Read in one file, just as in copy. Then read the second
file one record at a time, using TB UFF to store the records from
the second file. Then compare the record in TBUFF against the
appropriate portion of the file in BUFFR, and display any dif
ferences. If you confine this program to comparing ASCII files, the
comparisons are easy to make and display.

With your knowledge of the internal structure of CP/M, you
are well equipped to try modifying CBIOS. Adding drivers for new
peripherals is usually the first task for a modified CBIOS. This will
require further studying of the Digital Research manuals and the
sample programs they contain. Those sample programs are a good
place to start examining and analyzing other programmer's work,
to enhance your understanding of assembly language program
ming, and to provide a source of usable techniques. The
DUMP.ASM program supplied with CP/M is another excellent
source of usable techniques.

On your own, now

It would not have been possible to include every aspect of 8080
assembly language programming in this book, so no effort was
made to do so. Some topics, like decimal arithmetic, have been

COPY, The Main Program 203

ignored because of space limitations. What has been included,
instead, is a picture of how computer hardware, operating systems,
and user assembly language programs interact. This provides you
with the background that, combined with your CP/M based com
puter, will allow you to continue the learning process on your own.

CP/M provides a friendly environment and the powerful tools
necessary to permit that learning to continue.

LISTING 18-2. The complete result of all the programming effort: COPY.PRN lists
the entire program after assembly.

OOOD =
OOOA =
001A =

0001 =
0002 =
OOOA =

OOOD =
OOOF
0010
0011
0013
0014
0015
0016 =
001A =

0000
0004
0005
0007
005C
0065
0068
006A =
006B =
007C =
0080
0100

0000 =
0001
0002 =
OOFF =

; MULTI-WRITE FILE COPY PROGRAM 12 SEPT 82

; ASCII CHARACTERS
CR EQU ODH
LF EQU OAH
CTRLZ EQU 1AH

; CP/M BDOS FUNCTIONS
RCONF EQU 1
WCONF EQU 2
RBUFF EQU 10

; CP/M
INITF
OPENF
CLOSF
FINDF
DELEF
READF
WRITF
MAKEF
SDMAF

; CP/M
RBOOT
DRIVE
BDOS
MEMAX
TFCB
FCBTY
FCBEX
FCBS2
FCBRC
FCBCR
TBUFF
TPA

; CP/M
BDAOK
BDER1
BDER2
BDERR

DISK
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

ACCESS
13
15
16
17
19
20
21
22
26

ADDRESSES
EQU 0
EQU 4
EQU 5
EQU 7
EQU 5CH

FUNCTIONS

EQU TFCB+9
EQU TFCB+12
EQU TFCB+14
EQU TFCB+15
EQU TFCB+32
EQU 80H
EQU 100H

FLAGS
EQU
EQU
EQU
EQU

o
1
2
255

CARRIAGE RETURN
LINE FEED
OPERATOR INTERRUPT

READ CON: INTO (A)
WRITE (A) TO CON:
READ A CONSOLE LINE

INITIALIZE BDOS FUNCTION
OPEN FILE FUNCTION
CLOSE FILE FUNCTION
FIND FILE FUNCTION
DELETE A FILE FUNCTION
READ ONE RECORD FUNCTION
WRITE ONE RECORD FUNCTION
CREATE FILE FUNCTION
SET DMA FUNCTION

RE-BOOT CP/M SYSTEM
CURRENT DRIVE SELECTION
SYSTEM CALL ENTRY
MSB OF TOP OF MEMORY
TRANSIENT FILE CONTROL BLOCK
FILE TYPE IN FCB
FILE EXTENT IN FCB
SYSTEM USE IN FCB
RECORD COUNT IN FCB
CURRENT RECORD IN FCB
TRANSIENT BUFFER
TRANSIENT PROGRAM AREA

BDOS RETURN FOR ALL OK
BDOS RETURN ONE
aDOS RETURN TWO
aDOS RETURN ERROR FLAG

LISTING 18-2. Continued

0100 ORG TPA ASSEMBLE PROGRAM FOR TPA

0100 317104 START: LXI SP,STAK SET UP USER'S STACK
0103 3A0400 LDA DRIVE SAVE INITIAL DRIVE SELECTED
0106 322C04 STA DRSAV
0109 CD7703 START1: CALL CCRLF START A NEW LINE
010C 217204 LXI H,SINON WITH SIGN-ON MESSAGE
010F CD8103 CALL COMSG
0112 CD6801 CALL GET GET THE NAMED FILE
0115 CD7703 START2: CALL CCRLF BEGIN WRITE PORTION
0118 CDAA03 START3: CALL SPMSG j GET DRIVE FOR WRITE
011B 53454C4543 DB 'SELECT D1UH FOR OUTPUT: ',0
0135 CD4203 CALL DRSEL GET A VALID DRIVE SELECT
0138 CA1801 JZ START3 IF NO GOOD, TRY AGAIN
013B 325COO STA TFCB SET DESIGNATOR INTO FCB
013E CD7703 CALL CCRLF AND ECHO ACCEPTANCE
0141 CDF401 CALL PUT WRITE THE FILE TO DISK
0144 CDAA03 CALL SPMSG j PERMIT MORE WRITES
0147 57414E5420 DB 'WANT ANOTHER COPY',O
0159 CDB603 CALL GETYN
015C CA1501 JZ START2 j LOOP FOR MORE WRITES
015F 3A2C04 DONE: LDA DRSAV j RESTORE INITIAL DRIVE
0162 320400 STA DRIVE
0165 C30000 JMP RBOOT

j READ A FILE FROM DISK INTO "BUFFR"

0168 219404 GET: LXI H,BUFFR GET BUFFER START
016B 222F04 SHLD NEXT ADDRESS FOR DMA
016E 115COO LXI D,TFCB SEE IF FILE IS ON DISK
0171 OEOF MVI C,OPENF AND OPEN FOR READ
0173 CD0500 CALL BDOS
0176 FEFF CPI BDERR IS IT THERE?
0178 C29801 JNZ GET1 YES, READ IT IN
01'7B CD7403 CALL TWOCR NO, SHOW ERROR
017E CDAA03 CALL SPMSG
0181 43414E204E DB 'CAN NOT FIND ' ,0
018F CDAB02 CALL SHOFN SHOW FILE NAME
0192 CD7403 ERREX: CALL TWOCR ERROR EXIT TO CP/M
0195 C35F01 JMP DONE
0198 AF GET1: XRA A ZERO RECORD COUNTER
0199 322D04 STA RECCT AND READ A FILE INTO BUFFR
019C 2A2F04 GET2: LHLD NEXT SET BUFFER ADDRESS
019F EB XCHG
01A0 OE1A MVI C,SDMAF
01A2 CD0500 CALL BDOS
01A5 115COO LXI D,TFCB READ ONE RECORD INTO
01A8 OE14 MVI C,READF BUFFER
01AA CD0500 CALL BDOS
01AD FEOO CPI BDAOK READ OK?
01AF CABD01 JZ GET3 YES, DO MORE
01B2 FE01 CPI BDER1 MAYBE, END OF FILE?
01B4 CAED01 JZ GETEX YES, NO PROBLEM

204

LISTING 18-2. Continued

01B7 CDDC02
01BA C39201

01BD 3A2D04 GET3:
01CO 3C
01C1 322D04
01C4 2A2F04
01C7 118000
01CA 19
01CB 222F04
01CE 3A0700
01D1 3D
01D2 BC
01D3 C29C01
01D6 CD7403
01D9 CDAA03
01DC 4F5554204F
01EA C39201

CALL
JMP

LDA
INR
STA
LHLD
LXI
DAD
SHLD
LDA
DCR
CMP
JNZ
CALL
CALL
DB
JMP

01ED CDn03
01FO CD3903
01 F3 C9

GETEX: CALL
CALL
RET

REMSG
ERREX

RECCT
A
RECCT
NEXT
D,128
D
NEXT
MEMAX
A
H
GET2
TWOCR
SPMSG
'OUT OF
ERREX

CCRLF
CPDMA

MEMORY' ,0

NO, SHOW ERROR
AND ALL DONE

COUNT THE RECORD

INCREMENT BUFFER ADDRESS
BY RECORD SIZE

ROOM LEFT IN RAM?
STOP BELOW CCP
COMPARE MSB
CONTINUE IF NOT EQUAL
ELSE SHOW OUT OF MEMORY

AND GIVE UP

NORMAL EXIT
RESTORE CP/M DMA

; WRITE A FILE FROM "BUFFR" TO DISK

01F4 219404 PUT:
01F7 222F04
01FA 3A2D04
01FD 322E04
0200 3A5COO
0203 B7
0204 C20D02
0207 CD1903
020A C3A402
020D OEOD PUT1:
020F CD0500
0212 AF
0213 327COO
0216 210000
0219 226800
021C 226AOO
021F 115COO
0222 OE11
0224 CD0500
0227 FEFF
0229 CA5002
022C CDn03
022F CDAA03
0232 4F4B20544F
023F CDAB02
0242 CDB603
0245 C2A402
0248 115COO

LXI
SHLD
LDA
STA
LDA
ORA
JNZ
CALL
JMP
MVI
CALL
XRA
STA
LXI
SHLD
SHLD
LXI
MVI
CALL
CPI
JZ
CALL
CALL
DB
CALL
CALL
JNZ
LXI

H,BUFFR
NEXT
RECCT
CTSAV
TFCB
A
PUT1
WROPN
PUTEX
C,INITF
BDOS
A
FCBCR
H,O
FCBEX
FCBS2
D,TFCB
C,FINDF
BDOS
BDERR
PUT2
CCRLF
SPMSG
'OK TO ERASE' ,0
SHOFN
GETYN
PUTEX
D,TFCB

SET UP BUFFER START

SAVE RECORD COUNT

LOG-IN SELECTED DISK
IS IT LEGAL?

NO, SHOW UNABLE TO OPEN
AND TRY AGAIN
ENABLE WRITE ON ANY DISK

INITIALIZE FCB
CURRENT RECORD

EXTENT AND S1
S2 AND RECORD COUNT
SEE IF FILE EXISTS
FIND FUNCTION

IS IT ALREADY?

YES, OK TO ERASE?

IF NO, TRY AGAIN
IF YES, ERASE IT

205

LISTING 18-2. Continued

024B OE13
024D CD0500
0250 115COO
0253 OE16
0255 CD0500
0258 FEFF
025A C26302
025D CD1903
0260 C3A402

0263 2A2F04
0266 EB
0267 OE1A
0269 CD0500
026C 2A2F04
026F 118000
0272 19
0273 222F04
0276 115COO
0279 OE15
027B CD0500
027E FEOO
0280 CA8902
0283 CDFA02
0286 C3A402
0289 3A2D04
028C 3D
028D 322D04
0290 C26302
0293 CD3903
0296 115COO
0299 OE10
029B CD0500
029E 3A2E04
02A1 322D04
02A4 CD7703
02A7 CD3903
02AA C9

02AB C5
02AC E5
02AD 3A6500
02BO 4F
02B1 AF
02B2 326500
02B5 326800
02B8 215COO
02BB 7E
02BC E60F
02BE F640
02CO CD6703
02C3 3E3A

206

MVI
CALL

PUT2: LXI
MVI
CALL
CPI
JNZ
CALL
JMP

PUT3: LHLD
XCHG
MVI
CALL
LHLD
LXI
DAD
SHLD
LXI
MVI
CALL
CPI
JZ
CALL
JMP

PUT4: LDA
DCR
STA
JNZ
CALL
LXI
MVI
CALL
LDA
STA

PUTEX: CALL
CALL
RET

C,DELEF
BDOS
D,TFCB
C,MAKEF
BDOS
BDERR
PUT3
WROPN
PUTEX

NEXT

C,SDMAF
BDOS
NEXT
D,128
D
NEXT
D,TFCB
C,WRITF
BDOS
BDAOK
PUT4
WEMSG
PUTEX
RECCT
A
RECCT
PUT3
CPDMA
D.TFCB
C,CLOSF
BDOS
CTSAV
RECCT
CCRLF
CPDMA

; DISPLAY FILENAME.TYP
SHOFN: PUSH B

PUSH H
LDA FCBTY
MOV C.A
XRA A
STA FCBTY
STA FCBEX
LXI H. TFCB,
MOV A.M
ANI OFH
ORI 40H
CALL CO
MVI A.':'

DELETE FUNCTION

OPEN FILE FOR WRITE
MAKE A FILE FUNCTION

(jOT IT MADE?

NO, SHOW UNABLE
AND TRY AGAIN

WRITE BUFFER TO DISK
(FINALLY)
SET ADDRESS TO WRITE FROM

THEN INCREMENT BY 128

WRITE A RECORD FUNCTION

WRITE OK?

NO, WRITE ERROR MESSAGE
AND TRY AGAIN
COUNT THE RECORD

IF NOT END OF RECORDS
THEN DO ANOTHER
ELSE RESTORE CP/M DMA

THEN CLOSE THE FILE

RESTORE RECORD COUNT
FOR NEXT WRITE

RESTORE CP/M DMA
AND ALL DONE

FROM TRANSIENT FCB
SAVE TEMP STORE
AND INDEX
SAVE FIRST CHAR OF TYPE
IN TEMPORARY STORE
FORCE TWO TERMINATORS
FOR FILE NAME
AND FILE TYPE
SHOW DISK DRIVE

LIMIT TO 4 BITS
CONVERT TO ASCII

SHOW THE COLON

LISTING 18-2. Continued

02C5 CD6703
02C8 23
02C9 CD8103
02CC 79
02CD 216500
02DO 77
02D1 3E2E
02D3 CD6703
02D6 CD8103
02D9 E1
02DA C1
02DB C9

02DC CD7403
02DF CDAA03
02E2 5045524D41
02F9 C9

02FA CD7403
02FD CDAA03
0300 5045524D41
0318 C9

0319 CD7403
031C CDAA03
031F 43414E204E
0338 C9

0339 118000
033C OE1A
033E CD0500
0341 C9

0342 CD8B03
0345 3ADB03
0348 E65F
034A D640
034C FA5703
034F D611
0351 F25703
0354 C611
0356 C9
0357 AF
0358 C9

0359 C5
035A D5

CALL
INX
CALL
MOV
LXI
MOV
MVI
CALL
CALL
POP
POP
RET

; DISPLAY READ
REMSG: CALL

CALL
DB
RET

; DISPLAY WRITE
WEMSG: CALL

CALL
DB
RET

; DISPLAY WRITE
WROPN: CALL

CALL
DB
RET

; RESTORE CP/M
CPDMA: LXI

MVI
CALL
RET

CO
H
COMSG
A,C
H,FCBTY
M,A
A ' , , .
CO
COMSG
H
B

ERROR MESSAGE
TWOCR
SPMSG

AND SHOW THE FILE NAME

RESTORE TYPE

SHOW SEPARATOR

SHOW TYPE

RESTORE AND
RETURN

'PERMANENT READ ERROR' ,CR,LF,O

ERROR MESSAGE
TWOCR
SPMSG
'PERMANENT WRITE ERROR' ,CR,LF,O

OPEN ERROR MESSAGE
TWOCR
SPMSG
'CAN NOT OPEN FOR WRITE' ,CR,LF,O

DMA ADDRESS TO THE TRANSIENT BUFFER
D,TBUFF
C,SDMAF
BDOS

; GET A VALID DRIVE SELECT DESIGNATOR
DRSEL: CALL CIMSG INPUT THE SELECTION

LDA INBUF+2 USE FIRST CHARACTER ONLY
ANI 01011111B CONVERT TO UPPER CASE
SUI '@' SET A=1, B=2, ETC.
JM DRERR CAN'T BE LESS THAN ZERO
SUI 17 OR GREATER THAN 16
JP DRERR
ADI 17 RESTORE LEGAL NUMBER
RET AND RETURN WITH IT

DRERR: XRA A ELSE SET ZERO FLAG
RET AND RETURN

; CONSOLE CHARACTER INTO REGISTER A MASKED TO 7 BITS
CI: PUSH B SAVE REGISTERS

PUSH D

207

LISTING 18-2. Continued

03SB ES
03SC OE01
03SE COOSOO
0361 E67F
0363 E1
0364 D1
0365 C1
0366 C9

0367 CS
0368 D5
0369 £5
036A OE02
036C 5r'
036D COOSOO
0370 E 1
0371 01
0372 C1
0373 C9

0374 C07703
0377 3EOO
0379 C06703
OJ7C 3EOA
037E C36703

0381 7E
0382 B7
0383 C8
0384 C06703
0387 23
0388 C38103

038B CS
038C 05
0380 E5
038E 210A03
0391 3600
0393 2B
0394 3650
0396 EB
0397 OEOA
0399 COOSOO
039C 210A03
039F SE
03AO 1600
03A2 19
03A3 23
03A4 3600

208

PUSH
MVI
CALL
ANI
POP
POP
POP
RET

j CHARACTER IN
CO: PUSH

PUSH
PUSH
MVI
MOV
CALL
POP
POP
POP
RET

H
C,RCONF
BOOS
7FH
H
o
B

REGISTER
B
D
H
C,WCONF
E,A
BOOS
H
o
B

READ FUNCTION

MASK TO 7 BITS
RESTORE REGISTERS

A OUTPUT TO CONSOLE
SAVE REGISTERS

SELECT FUNCTION
CHARACTER TO E
OUTPUT BY CP/M
RESTORE REGISTERS

j CARRIAGE RETURN, LINE FEED TO CONSOLE
TWOCR: CALL CCRLF
CCRLF: MVI A,CR

CALL CO
MVI A,LF
JMP CO

j MESSAGE POINTED TO BY HL OUT TO CONSOLE
COMSG: MOV A,M

j INPUT
CIMSG:

ORA A
RZ
CALL
INX
JMP

CONSOLE
PUSH
PUSH
PUSH
LXI
MVI
OCX
MVI
XCHG
MVI
CALL
LXI
MOV
MVI
DAD
INX
MVI

CO
H
COMSG

MESSAGE
B
0
H

INTO

H,INBUF+1
M,O
H
M, 80

C,RBUFF
BOOS
H,INBUF+1
E,M
0,0
0
H
M,O

GET A CHARACTER
ZERO IS THE TERMINATOR
RETURN ON ZERO
ELSE OUTPUT THE CHARACTER
POINT TO THE NEXT ONE
AND CONTINUE

BUFFER
SWE REGISTERS

ZERO CHARACTER COUNTER

SET MAXIMUM LINE LENGTH

INBUF POINTER TO DE PAIR
SET UP READ BUFFER FUNCTION
INPUT A LINE
GET CHARACTER COUNTER
INTO LSB OF DE REGISTER PAIR
ZERO MSB
ADD LENGTH TO START
PLUS ONE POINTS TO END
INSERT TERMINATOR AT END

LISTING 18-2. Continued

03A6 E1
03A7 D1
03A8 C1
03A9 C9

POP
POP
POP
RET

H
D
B

; MESSAGE POINTED TO BY STACK
03AA E3 SPMSG: XTHL
03AB AF XRA
03AC 86 ADD
03AD 23 INX
03AE E3 XTHL
03AF C8 RZ
03BO CD6703 CALL
03B3 C3AA03 JMP

; GET YES OR
03B6 CDAA03 GETYN: CALL
03B9 2028592F4E DB
03C3 CDBB03 CALL
03C6 CD7703 CALL
03C9 3AC~03 LDA
03CC E6SF ANI
03CE FESY CPI
03DO C8 RZ
03D1 FE4E CPI
0303 C2B603 JNZ
0306 FEOO CPI
0308 C9 RET

A
M
H

CO
SPMSG

NO FROM CONSOLE
SPMSG
, (Y/N)?: ',0
CIMSG
CCRLF
INBUF+2
01011111B
, Y'

, N'
GETYN
o

; RAM VARIABLES AND BUFFERS
03D9 INBUF: DS 83
042C DRSAV: DS 1
042D RECCT: DS 1
042E CTSAV: DS 1
042F NEXT: DS 2

; SET UP STACK SPACE
0431 DS 64
0471 00 STAK: DB 0

RESTORE ALL REGISTERS

OUT TO CONSOLE
GET "RETURN ADDRESS" TO HL
CLEAR FLAGS AND ACCUMULATOR
GET ONE MESSAGE CHARACTER
POINT TO NEXT
RESTORE STACK FOR
RETURN IF DONE
ELSE DISPLAY CHARACTER
AND DO ANOTHER

PROMPT FOR INPUT

GET INPUT LINE
ECHO CARRIAGE RETURN
FIRST CHARACTER ONLY
CONVERT LOWER CASE TO UPPER
RETURN WITH ZERO = YES

NON-ZERO = NO
ELSE TRY AGAIN
RESET ZERO FLAG
AND ALL DONE

LINE INPUT BUFFER
CURRENT DRIVE AT ENTRY
TOTAL RECORDS READ/TO WRITE
SAVE LOCATION FOR COUNT
NEXT DMA ADDRESS

40H LOCATIONS
TOP OF STACK

0472 4D554C5449SINON: DB 'MULTI-WRITE FILE COpy 12 SEPT 82' ,0

0494

; FROM HERE THROUGH CCP IS BUFFER SPACE
BUFFR:

END

209

APPENDIXES

AlDerican Standard
Code for InforlDation
Interchange (ASCII)

214 Appendix A

Nonprinting (control) codes

Key
Control stroke(s}

Hex Function-Standard Usage

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI
DLE
DCI
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
US
DEL

code (CP/M, BASIC, etc. usage may differ)

CTRL @ 00
CTRL A 01
CTRL B 02
CTRL C 03
CTRL D 04
CTRL E 05
CTRL F 06
CTRL G 07
CTRL H/BS 08
CTRL I/TAB 09
CTRL J/LF OA
CTRL K OB
CTRL L OC
CTRL M/CROD
CTRL N OE
CTRL 0 OF
CTRL P 10
CTRL Q II
CTRL R 12
CTRL S 13
CTRL T 14
CTRL U 15
CTRL V 16
CTRL W 17
CTRL X 18
CTRL Y 19
CTRL Z lA
CTRL [IB
CTRL" lC
CTRL] 10
CTRL t IE
CTRL IF
DEL 7F

Null (Blank)
Start of header message
Start of message text
End of message text
End of transmission
Enquiry, i.e., "Did you get that?"
Acknowledge, i.e., "Yes I did."
Bell, operator alert
Backspace one character
Horizontal tab
Line feed
Vertical tab
Form feed
Carriage return
Shift Out to alternate character set
Shift In, back to standard characters
Data Link Escape to alternate functions
Device Control 1, user optional meaning
Device Control 2, as above
Device Control 3, as above
Device Control 4, as above
No Acknowledge, i.e., "I didn't get that."
Synchronization character
End of transmitted block
Cancel previous message
End of message
Substitute incorrect character
Escape to alternate functions
File separator
Group separator
Record separator
Unit separator
Delete, or rubout

Appendix A 215

Printing (character) codes

Hex Hex Hex
Key code Key code Key code

SPACE 20 @ 40 60
21 A 41 a 61
22 B 42 b 62

23 C 43 c 63
$ 24 D 44 d 64
% 25 E 45 e 65
& 26 F 46 f 66

27 G 47 g 67
28 H 48 h 68
29 I 49 69
2A J 4A j 6A

+ 2B K 4B k 6B
2C L 4C 1 6C
2D M 4D m 6D
2E N 4E n 6E

/ 2F 0 4F 0 6F
0 30 P 50 p 70
1 31 Q 51 q 71
2 32 R 52 r 72
3 33 S 53 s 73
4 34 T 54 t 74
5 35 U 55 u 75
6 36 V 56 v 76
7 37 W 57 w 77
8 38 X 58 x 78
9 39 Y 59 y 79

3A Z SA z 7A
3B [5B { 7B

< 3C '" 5C 7C
3D] 5D } 7D

> 3E i 5E 7E
? 3F SF

8080 Instruction Set

Functional listing

Single byte instructions-No flags affected-

Opcode Hex Opcode Hex Opcode Hex

MOV B.B 40 MOV E.B 58 MOV M.B 70
MOV B.C 41 MOV E.C 59 MOV M.C 71
MOV B.D 42 MOVE.D SA MOVM.D 72
MOV B.E 43 MOV E.E 5B MOV M.E 73
MOVB.H 44 MOVE.H SC MOVM.H 74
MOV B.L 45 MOV E.L 5D MOV M.L 75
MOV B.M 46 MOV E.M 5E
MOVB.A 47 MOVE.A SF MOVM.A 77

MOV C.B 48 MOVH.B 60 MOV A.B 78
MOVe.C 49 MOV H.C 61 MOV A.C 79
MOV C.D 4A MOV H.D 62 MOV A.D 7A
MOV C.E 4B MOVH.E 63 MOV A.E 7B
MOV C.H 4C MOV H.H 64 MOV A.H 7C
MOV C.L 4D MOV H.L 65 MOV A.L 7D
MOVC.M 4E MOVH.M 66 MOVA.M 7E

216

Appendix B 217

Opcode Hex Opcode Hex Opcode Hex

MOV C,A 4F MOV H,A 67 MOV A,A 7F

MOVD,B 50 MOV L,B 68 POP B Cl
MOV D,C 51 MOVL,C 69 POPD Dl
MOVD,D 52 MOV L,D 6A POP H El
MOVD,E 53 MOV L,E 6B POP PSW Fl
MOVD,H 54 MOV L,H 6C PUSH B C5
MOV D,L 55 MOV L,L 6D PUSHD D5
MOVD,M 56 MOV L,M 6E PUSHH E5
MOVD,A 57 MOV L,A 6F PUSH PSW F5

RST 0 C7 RET C9 XTHL E3
RST 1 CF RNZ CO PCHL E9
RST 2 D7 RZ C8 SPHL F9
RST 3 DF RNC DO XCHG EB
RST 4 E7 RC D8 CMA 2F
RST 5 EF RPO EO NOP 00
RST 6 F7 RPE E8 HLT 76
RST 7 FF RP FO DI F3

RM F8 EI FB

INX B 03 DCXB OB LDAX B OA
INXD 13 DCXD lB LDAXD lA
INXH 23 DCXH 2B STAXB 02
INX SP 33 DCX SP 3B STAXD 12

Single byte instructions-Only Carry is affected-
RLC 07 DAD B 09 STC 37
RRC OF DADD 19 CMC 3F
RAL 17 DADH 29
RAR IF DAD SP 39

Single byte instructions-All flags (not Carry) affected
INR B 04 DCR B 05
INR C OC DCRC OD
INRD 14 DCRD 15
INR E lC DCR E 10
INR H 24 DCRH 25
INR L 2C DCR L 2D
INR M 34 DCRM 35
INR A 3C DCRA 3D

218 Appendix B

Opcode Hex Opcode Hex Opcode Hex

Single byte instructions-All flags affected
ADD B 80 SBB B 98 ORAB BO
ADDC 81 SBB C 99 ORAC Bl
ADDD 82 SBB D 9A ORAD B2
ADD E 83 SBB E 9B ORAE B3
ADDH 84 SBBH 9C ORAH B4
ADDL 85 SBB L 9D ORAL B5
ADDM 86 SBB M 9E ORAM B6
ADD A 87 SBBA 9F ORA A B7

ADCB 88 ANAB AO CMPB B8
ADC C 89 ANAC Al CMPC B9
ADCD 8A ANAD A2 CMPD BA
ADCE 8B ANA E A3 CMPE BB
ADCH 8C ANA H A4 CMPH BC
ADC L 8D ANAL AS CMPL BD
ADCM 8E ANAM A6 CMPM BE
ADCA 8F ANA A A7 CMPA BF

SUBB 90 XRA B A8 DAA 27
SUB C 91 XRAC A9
SUBD 92 XRA D AA
SUBE 93 XRA E AB
SUBH 94 XRA H AC
SUB L 95 XRA L AD
SUBM 96 XRAM AE
SUB A 97 XRA A AF

Double byte instructions-No flags affected
MVI B,dd 06 MVI H.dd 26 OUTdd D3
MVI C,dd OE MVI L,dd 2E IN dd DB
MVI D,dd 16 MVI M,dd 36
MVI E,dd IE MVI A,dd 3E

Double byte instructions-All flags affected
ADI dd C6 ANI dd E6
ACldd CE XRldd EE
SUI dd D6 ORldd F6
SBI dd DE CPI dd FE

Appendix B

Opcode Hex Opcode Hex

Triple byte instructions-No flags affected
IMP aaaa C3 CALL aaaa CD
INZ aaaa C2 CNZ aaaa C4
IZ aaaa CA CZ aaaa CC
INC aaaa D2 CNC aaaa D4
IC aaaa DA CC aaaa DC
IPO aaaa E2 CPO aaaa E4
IPE aaaa EA CPE aaaa EC
IP aaaa F2 CP aaaa F4
IM aaaa FA CM aaaa FC
where dd = 8 bits of data

aaaa = 16 bits of (address) data

Numerical listing

Hex Opcode Hex Opcode

00 NOP 56 MOVD.M
01 LXI B.aaaa 57 MOV D.A
02 STAX B 58 MOV E.B
03 INX B 59 MOV E.C
04 INR B SA MOVE.D
05 DCRB 5B MOV E.E
06 MVI B.dd 5C MOVE.H
07 RLC 5D MOV E.L
08 5E MOV E.M
09 DADB SF MOVE.A
OA LDAXB 60 MOVH.B
OB DCXB 61 MOV H.C
OC INR C 62 MOV H.D
OD DCR C 63 MOVH.E
OE MVI C.dd 64 MOV H.H
OF RRC 65 MOV H.L
10 66 MOVH.M
11 LXI D.aaaa 67 MOV H.A

Opcode

LXI B.aaaa
LXI D.aaaa
LXI H.aaaa
LXI SP.aaaa
LHLD aaaa
SHLD aaaa
LDA aaaa
STA aaaa

219

Hex

01
11
21
31
2A
22
3A
32

Hex Opcode

AC XRAH
AD XRA L
AE XRAM
AF XRAA
BO ORAB
BI ORAC
B2 ORAD
B3 ORAE
B4 ORAH
B5 ORA L
B6 ORAM
B7 ORA A
B8 CMPB
B9 CMPC
BA CMPD
BB CMPE
BC CMPH
BD CMPL

220 Appendix B

Hex Opcode Hex Opcode Hex Opcode

12 STAX D 68 MOV L.B BE CMPM
13 INX D 69 MOVL.C BF CMPA
14 INR D 6A MOV L.D CO RNZ
15 DCR D 6B MOV L.E Cl POP B
16 MVI D.dd 6C MOV L.H C2 JNZ aaaa
17 RAL 6D MOV L.L C3 IMP aaaa
18 6E MOV L.M C4 CNZ aaaa
19 DAD D 6F MOV L.A C5 PUSH B
lA LDAX D 70 MOV M.B C6 AD! dd
1B DCX D 71 MOVM.C C7 RST 0
IC INR E 72 MOVM.D C8 RZ
10 DCRE 73 MOV M.E C9 RET
IE MVI E.dd 74 MOVM.H CA IZ aaaa
IF RAR 75 MOV M.L CB
20 76 HLT CC CZ aaaa
21 LXI H.aaaa 77 MOVM.A CD CALL aaaa
22 SHLD aaaa 78 MOV A.B CE ACI dd
23 INX H 79 MOV A.C CF RST 1
24 INR H 7A MOV A.D DO RNC
25 DCR H 7B MOV A.E Dl POP D
26 MVI H.dd 7C MOV A.H D2 INC aaaa
27 DAA 7D MOV A.L D3 OUT dd
28 7E MOV A.M D4 CNC aaaa
29 DAD H 7F MOV A.A D5 PUSH D
2A LHLD aaaa 80 ADD B D6 SUI dd
2B DCXH 81 ADDC D7 RST 2
2C INR L 82 ADD D D8 RC
2D DCR L 83 ADD E D9
2E MVI L.dd 84 ADD H DA IC aaaa
2F CMA 85 ADD L DB IN dd
30 86 ADDM DC CC aaaa
31 LXI SP.aaaa 87 ADD A DD
32 STA aaaa 88 ADCB DE SBI dd
33 INX SP 89 ADC C DF RST 3
34 INR M 8A ADeD EO RPO
35 DCRM 8B ADC E El POP H
36 MVI M.dd 8C ADCH E2 IPO aaaa
37 STC 8D ADC L E3 XTHL
38 8E ADCM E4 CPO aaaa
39 DAD SP 8F ADCA E5 PUSH H

Appendix B 221

Hex Opcode Hex Opcode Hex Opcode

3A LDA aaaa 90 SUB B E6 ANI dd
3B DCX SP 91 SUB C E7 RST 4
3C INR A 92 SUB D E8 RPE
3D DCR A 93 SUB E E9 PCHL
3E MVI A.dd 94 SUB H EA JPE aaaa
3F CMC 95 SUB L EB XCHG
40 MOV B.B 96 SUB M EC CPE aaaa
41 MOV B.C 97 SUB A ED
42 MOV B.D 98 SBB B EE XRI dd
43 MOV B.E 99 SBB C EF RST 5
44 MOV B.H 9A SBB D FO RP
45 MOV B.L 9B SBB E Fl POP PSW
46 MOV B.M 9C SBB H F2 JP aaaa
47 MOV B.A 9D SBB L F3 DI
48 MOV C.B 9E SBB M F4 CP aaaa
49 MOV C.C 9F SBB A F5 PUSH PSW
4A MOV C.D AO ANA B F6 ORI dd
4B MOV C.E Al ANAC F7 RST 6
4C MOV C.H A2 ANA D F8 RM
4D MOV C.L A3 ANA E F9 SPHL
4E MOV C.M A4 ANAH FA JM aaaa
4F MOV C.A A5 ANA L FB EI
50 MOV D.B A6 ANAM FC CM aaaa
51 MOV D.C A7 ANA A FD
52 MOV D.D AS XRA B FE CPI dd
53 MOV D.E A9 XRAC FF RST 7
54 MOV D.H AA XRA D
55 MOV D.L AB XRA E

222

Index

Note: 8080 instruction mnemonics are shown in BOLDFACE.

A: disk, logical, 32
Accumulator, 83
ADD,163
Address:

absolute, 83
direct, 83, 177
disk, 16
memory, 79
register, 92
indexed, 93, 177
relative, 86

AD!,189
Allocation, disk space, 50, 173
ALU, 90
ANA,127
AND, Boolean, 127
ANI,127
ASCII, 20, 164
ASM, 28, 74, 115

calculations, 164

forward reference, 117
options, 117

Assembly language, 73
Assignment, physical to logical, 31, 41

B: disk, logical, 32
Basic Disk Operating System (see BDOS)
BAT: mode, 56
BDOS,50
BIAS, 53
Binary, 70
Bit, 14, 69
Block:

on disk, 50, 173
program building, 122

BOOT,49
Bootstrap loader, 23
Bootup sequence, 24

Index

Breakpoint, DDT, 148
Byte, 15

CALL, 74, 97
Carry flag, 90
CBIOS, 48, 52
CCP, 49, 56
CMP,188
Code:

condition, 90
function, 27, 64
source, 75, 115

Comments, program, 128
Compatibility, program, 130
CON: device, logical, 32
Console, 10
Console Command Processor (see CCP)
Control key (see CTRL)
Core memory, 22
CPI, 128, 164
CPU, 12
CRT: device, physical, 31
CTRL key, 43, 112
Customized BIOS (see CBIOS)

DAD,146
DB, 104,143
DCR,96
DCX, 145
DDT, 26, 147

commands:
G,148
T, 151
X, 149

Device, physical, 31, 42
Device, logical, 31, 42
DIR,40
Directory, disk, 50, 174
Disassembler, 74
Disk:

floppy, 16
granularity, 173

DRIVE select byte, 49
Drive select, disk, 170
Driver:

logical device, 55
peripheral, 26

DS,l04
Dynamic Debugging Tool (see DDT)

ED, 111, 120, 130, 138

commands, 132
Editing, console input, 42, 144
END,75
Entry, BDOS, 64, 107
EOT, 119
EPROM, 15
EQU,74
ERA, 59
Ergonomics, 200
Error message, BDOS, 51
Extension, disk file, 174
Exclusive OR (see XOR)

FCB,50, 170
Fetch, opcode, 70
File, disk:

ambiguous name, 41
.ASM, 116
backup, 137
. BAK, 115, 121
.COM, 77, 119
control block (see FCB)
creation, 173
empty, 196
extension, 174
. HEX, 76, 118
library, 137, 178
named, 38
.PRN, 76, 116
renaming, 59

FILENAME.TYP, 38
Firmware, 23
Forward reference, ASM, 117
Function code, 27, 64

Giant Hook, 63, 188
Group, on disk, 50, 173

Hard copy, 18
Hardware, computer, 22
Hexadecimal, 71, 77

223

224 Index

IN, 101
Input/Output (see VOl
INR,188
Instruction set, size, 82
Interrupt:

external, 28, 84
hardware, 28, 84
software, 96, 148

INX,I63
110, 14
10BYT, 32, 54
IOCS,26

JM,189
JMP, 49,75
JNZ,159
JP,189
JPE,88
JPO,88
JZ,97, 128

K (Kilo), 16

Language:
assembly, 73
machine, 69

LDA,I63
LHLD,182
LIFO, 98
Line editing, console input, 42, 144
LOAD, 77, 119
Loop, program, 128
LPT: device, physical, 32
LST: device, logical, 32
LXI, 92

M (Mega), 16
M register (see Register, M)
Machine language, 69
Mass storage, 15
MDS syndrome, 55, 101

Memory:
computer, 14
page, 50
reserved, 28

Microprocessor:
8080, 8, 13, 82
8085, 14,84
NSCBOO,87
Z80, 85

incompatible opcode, 88
Modem, 20
Monitor:

display, 8
program, 24

MOV,142
MVI,74

Name, logical, 31
Number:

binary, 70
hexademical, 71, 77
oxtal, 70

Object code buffer, ASM, 116
Octal, 70
Opcode, 14, 70
Operating system, 26
Operator, computer, 9
Options, ASM, 117
ORA, 143
OR, Boolean, 143
ORG,74
OUT, 129

Parity, byte, 88
PC, 83
Peripheral Interchange Program (see PIP)
PIP, 41, 137
Pointer, stack, 96
POP, 90,98
Port, 1/0, 26
Portability, program, 88
Primitives, disk and 1/0, 45
Printer:

line, 18
screen, 19

Index

Program:
application, 28
loader, 14
relocation, 86
resident, 57
source, 75
test, 135
transient, 60
user, 62

Programmer, computer, 9
PROM,15

shadow, 24
Pseudo-operation, 75
PTP: device, phYfical, 32
PTR: device, ph)/sical, 32
PUN: device, logical, 32
Punch, paper tape, 11, 19
PUSH, 90, 96

RAM,15
ROR: device, logical, 32
Reader, paper tape, 11, 19
Read only, disk, 191
Read only memory (see ROM)
Read-write memory (see RAM)
Record, disk, 50
Register:

accumulator, 90
flag, 90, 151, 164
hardware, 89
index, 92, 142
instruction, 70
M,92
use by system, 100
use by user, 98

Relocation, program, 86
REN,59
Reset sequence, 23
Reset switch, 24
RET, 97,105
ROM,14
RST, 96, 148
RZ,163

SAVE, 39, 59
Sector, disk, 16, 50

Shadow PROM, 24
SHLD,182
Software, computer, 22
SP, 92, 97
SPHL,182
STA,177
Stack:

CCP, 105, 181
initialization, 104
operations, 96, 123
pointer, 92
user, 104

STAT, 60
Status port, 27
SUBMIT,56
SUI, 189
Symbol table, ASM, 117
Symbols, numeric, 130

TAB key, 113
TBUFF,57
Terminal:

CRT, 8,11
console, 10
printing, 18

Test program, 135
TFCB, 57, 170
Toggle, control, 60
TPA,28
Tracing, 149
Track, disk, 16
Transient Program Area (see TPA)
Transient utility, 60
TIT,lO
TYPE,60

Unit, logical, 41
User, computer, 9

Vector:
BOOS call, 64
interrupt, 28

225

226 Index

Warm start, 49, 108
WBOOT,49
Wildcards, 40
Write protect, disk, 51

XCHG,145
XOR, Boolean, 162
XRA,162
XTHL,162

I PERSONAL COMPUTERS I

CP/M ASSEMBLY
LANGUAGE PROGRAMMING

This valuable guide provides the beginning computer user
with a hands-on method of learning assembly language
programming and the CP/M operating system . .

From the first simple exercise in the Introduction, you'll be
learning the details of computer hardware-how to edit.
assemble, and debug programs- and how to interface
programs to the operating system. Once you've mastered
techniques for interfacing, you'll be writing programs that
read and write disk files.

No matter what make or model computer is used, you will
be working in a familiar environment. Using facilities provided
by the operating system, you will be able to write routines
that communicate with input/output devices and mass
storage units on any computer system running CP/M.

Written in an informal style-and requiring no previous
CP/M or assembly language experience-CP/M ASSEMBLY
LANGUAGE PROGRAMMING explains everything you need to
know to construct readable, flexible, and portable programs
using a CP/M operating system, including useful information
on:
• hardware and software components of the computer

system
• how to select I/O devices
• CP/M's built-in line editing feature
• characteristics of the 8080 microprocessor family
• register organization and data paths
• disk file access
• and much more.

Ken Barbier has more than thirty years of experience in
electronics and computers and is self-employed as a writer
and consultant. In addition to writing numerous articles on
computer hardware, software, and applications, he has
been involved in designing, constructing, and programming
data acquisition systems for radio astronomy since 1969.

PRENTICE-HALL, Inc., Englewood Cliffs, Ne~ Jersey 07632
Cover design by Jeannette Jacobs

ISBN 0-13-188250-3

