

At this point you're just getting started. with a little more
work, you can allow a fixed grouping size which differs from the 128
byte record shown above. This is accomplished by keeping track of the
record number as well as the byte offset within the record. Knowing
the group size, you randomly access the record containing the proper
group, offset to the beginning of the group within the record read
sequentially until the group size has been exhausted.

Finally, you can improve QUERY considerably by allowing boolean
expressions which compute the set of records which satisfy several
relationships, such as a LASTNAME between HARDY and LAUREL, and an AGE
less than 45. Display all the records which fit this description.
Finally, if your lists are getting too big to fit into memory,
randomly access your key files from the disk as well. One note of
consolation after all this work: if you make it through the project,
you'll have no more need for this manual!

(All Information Contained Herein is Proprietary to Digital Research.)

45

6. SYSTEM FUNCTION SUMMARY.

FUNC FUNCTION NAME INPUT PARAMETERS OUTPUT RESULTS

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

System Reset
Console Input
Console Output
Reader Input
punch Output
List Output
Direct Console I/O
Get I/O Byte
Set I/O Byte
Pr int Str ing
Read Console Buffer
Get Console Status
Return Version Number
Reset Disk System
Select Disk
Open File
Close File
Search for First
Search for Next
Delete File
Read Sequential
write Sequential
Make File
Rename File
Return Login Vector
Return Current Disk
Set DMA Address
Get Addr (Alloc)
Write Protect Disk
Get R/O Vector
Set File Attributes
Get Addr(disk parms)
Set/Get User Code
Read Random
Wr i te Random
Compute File Size
Set Random Record

none
none
E = char
none
E = char
E = char
see def
none
E = IOBYTE
DE = .Buffer
DE = • Buffer
none
none
none
E = Disk Number
DE = .FCB
DE = .FCB
DE = .FCB
none
DE = .FCB
DE = .FCB
DE = .FCB
DE = .FCB
DE = .FCB
none
none
DE = .DMA
none
none
none
DE = .FCB
none
see def
DE = .FCB
DE = .FCB
DE = .FCB
DE = .FCB

* Note that A = L, and B = H upon return

none
A = char
none
A = char
none
none
see def
A = IOBYTE
none
none
see def
A = 00/FF
HL= Version*
see def
see def
A = Dir Code
A = Dir Code
A = Dir Code
A = Dir Code
A = Dir Code
A = Err Code
A = Err Code
A = Dir Code
A = Dir Code
HL= Login Vect*
A = Cur Disk#
none
HL= .Alloc
see def
HL= R/O Vect*
see def
HL= .DPB
see def
A = Err Code
A = Err Code
r0, rl, r2
r0, rl, r2

(All Information Contained Herein is Proprietary to Digital Research.)

46

,.

7. ADDENDUM

NEW CP/M 2.2

BOOS FUNCTIONS

-k FUNCTION 37: RESET DRIVE
~l(

*********************************** .. }~ Entry Parameters: 'i"

-k Register C: 25H "k
'i'e Register DE: Drive Vector i',

-l\ "k

,', Returned Value ~',

,': Register A: 00H ~'\

The RESET DRIVE function allows resetting of specified
drive(s). The passed parameter is a 16 bit vector of drives
to be reset, the least significant bit is drive A:.

In order to maintain compatibility with MP/M, CP/M
returns a zero value.

·k FUNCTION 40: WRITE RANDOH WITH,':
* ZERO FILL *

i'e

,',
-k

-k

Entry Parameters: -k

Register C: 28H -k

Register DE: FCB Address ;'(

Returned Value: .'.
"

The lVRITE RANDOM WITH ZERO FILL operation is similar
to FUNCTION 34: with the exception that a previously
unallocated block is filled with zeros before the data
is written.

47

/

