
CP/M-86'"
,

OPERATING SYSTEM
SYSTEM GUIDE

CPIM-86™
System Guide

Copyr ight © 1981

Digital Research
P.O. Box 579

801 Lighthouse Avenue
Pacific Grove, CA ·93950

(408) 649-3896
TfRX 910 360 50 0 1

All Rights Reserved

COPYRIGHT

Copyright © 1981 by Digital Research. All riqhts
reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any lanquage or
computer 1anguaqe, i.n any form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written
permission of Digital ~esearch, Post Office Box 57Q,
Pacific Grove, California, 93950.

This manual is, however, tutorial in nature. ~hus,

t he reader is granted permiss ion to include the
example programs, ei_ther in whole or in part, in his
own programs.

DISCLAIMER

Dig ita 1 Re sea r c h m a k e s nor e pre sen tat i () n s 0 r
warranties with respect to the contents hereof and
specifically disclai.ms any implied warranties of
merchan tabi 1 i ty or f i tnes s for any part icular
purpose. Fur ther, Dig i tal Research reserves the
right to revise this publication and to make changes
f rom time to time in the content hereof wi thout
obligation of Digital Research to notify any person
of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.
ASM-86, CP/M-86, CP/M-80, CP/NET, DDT-86, LINK-80,
MP/M, and TEX-80 are trademarks of Digital Research.

The "CP/M-86 System Guide" was prepared usinq the
Digi tal Research TEX-80™ Text Formatter and pr inted
in the United States of America by Commercial Press/
Monterey.

* . Second Printing: June 1981 *

Foreword

The CP/M-86 System Guide presents the system programming
aspects of CP/~-86TM, a single-user o~eratinq system for the Intel
8086 and 8088 l6-bit microprocessors. The discussion assumes the
reader is familiar with CP/M the Digital Research 8-bit operatinq
system. To clarify specific differences with CP/M-86, this document
refers to the 8-bft version of CP/M as CP/M-80™. Elements common
to both systems are simply called CP/M features.

CP/M-80 and CP/M-86 are equivalent at the user interface level
and thus the Digital Research documents:

• An Introduction to CP/M Features and Facilities
• ED: A Context Bditor for the CP/M Disk System
• CP/M 2 User~s Guide

are shipped with the CP/M-86 package. Also included is the CP/M-86
Programmer~s Guide, which describes ASM-86'rM and DDT-86T]\~, Diqital
Research~s 8086 assembler and interactive debugger.

Thi s System Gu ide presen ts an overv i e,~ of the CP /M-86
progr amming inter f ace conventions. It also descr ibes procedures for
adapting CP/M-86 to a custom hardt.vare enviornment. This information
parallels that presented in the CP/M 2 Interface G~ide and the CP/M
2 Alteration G~ide.

Section 1 gives an overview of CP/M-86 and summarizes its
differences with CP/M-80. Section 2 describes the qeneral execution
environment while Section 3 tells how to generate command files.
Sections 4 and 5 respectively define the programming interfaces to
the Basic Disk Operating Svstem and the Basic Input/Output System.
Section 6 discusses alteration of the BIOS to support custom disk
configurations, and Section 7 describes the loading operation and
the organization of the CP/M-86 system file.

iii

Table of Contents

1 CP!M-86 System Overview

1.1
1.2

CP/M-86 ~eneral Charact~ristics .
CP/M-SO an-i r.P/M-R6 Differences ••.

2 Command Setup and Execution Under CP/M-86

2.1
2.2
2.3
2.4
2.5
2.6
2.7

CCP Built-in and ~ransient Comman~s •
~ransient Proqra~ Execution Models •.•••
The R080 ~emory Mo~el • • • • •. ••••
The Small Memory Model • . • • • . . • •
The Compact Memory Model • . • . • • • •
Base Page Initialization ••• • • •
~ransient Program Load and Exit .

3 Command (CMD) File Generation

1
3

7
8
9

10
11
13
14

3.1 Intel Hex Fi1.e Format. • • . . •• ..•..• 15
3.2 Operation of GENCMD • . • • . . • . • • 16
3.3 Operation of LMCMD • • • . • • • • • • . . • • •• 19
3.4 Command u~~n) File Format. . • • • • . • . • • •• 20

4 Basic Disk Operating System (BDOS) Functions

4.1 BOOS Parameters and Function Codes •••••• 23
4.2 Simple BOOS Calls ..•..••••. •••. 25
4.3 Bnos File Operations • . . . • . • • • • . • • •• 30
4.4 BDOS Memory Manaqement and Load •..•...•• 48

5 Basic I/O System (BIOS) Organization

Organiz~tion of the BIOS • • •
The BIOS Jump Vector
Simple Peripheral Devices

5.1
5.2
5.3
5.4 BIOS Subroutine Entry Points • • • • •

6 BIOS Disk Definition Tables

6.1
6.2
6.3

Disk Parameter Table Format •
Table Generation Using GENDEF
G~NDEF Output • • • • • • •

7 CP/M-86 Bootstrap and Adaptation Procedures

7.1
7.2

The Cold Start Load Ooeration
Organization of CPM.SYS

v

55
56
57
60

67
72
77

81
84

Appendixes

A Blocking and Deblockinq Algorithms

B

C

D

Random Acc~ss Sample Program

Listing of the Boot Rom

LDBIOS Listing

E BIOS Listing

F CSIOS Listing .

vi

.

87

95

103

113

121

137

Section 1
CP/M-86 System Overview

1.1 CP/M-86 General Characteristics

CP/M-86 contains all facilities of CP/M-80 with additional
features to account for increased processor address space of up to a
megabyte (1,048,576) of main memory. Further, CP/M-86 maintains
file compatibility with all previous versions of CP/M. The file
structure of version 2 of CP/M is used, allowing as many as sixteen
drives with up to eight megabytes on each drive. Thus, CP/M-SO and
CP/M-86 systems may exchange files without modifying the file
format.

CP/M-86 resides in the file CPM.SYS, which is loaded into
memory by a cold start loader during system initialization. The
cold start loader resides on the first two tracks of the system
disk. CPM.SYS contains three program modules: the Console Command
Processor (CCP), the Basic Disk Operating System (BOOS), and the
user-conf igurable Basic I/O System (BIOS). The CCP and BDOS
portions occupy approximately 10K bytes, while the size of the BIOS
varies with the implementation. The operating system executes in
any portion of memory above the reserved interrupt locations, while
the remainder of the address space is partitioned into as many as
eight non-contiguous regions, as defined in a BIOS table. Unlike
CP/M-80, the CCP area cannot be used as a data area subsequent to
transient program load: all CP!M-86 modules remain in memory at all
times, and are not reloaded at a warm start.

Similar to CP/M-80, CP/M-86 loads and executes memory image
files from disk. Memory image files are preceded by a "header
record," defined in this document, which provides information
required for proper program loading and execution~ Memory image
files under CP/M-86 are identified by a "CMD" file type.

Unlike CP/M-80, CP/M-86 does not use absolute locations for
system entry or default variables. The BDOS entry takes place
through a reserved software interrupt, while entry to the BIOS is
provided by a new BOOS call. Two var iables maintained in low memory
under CP/M-80, the default disk number and I/O Byte, are placed in
the CCP and BIOS, respectively. Dependence upon absolute addresses
is minimized in CP/M-86 by maintaining initial "base page" values,
such as the default FeB and default command buffer, in the transient
program data area.

utility programs such as ED, PIP, STAT and SUBMIT operate in
the same manner under CP/M-86 and CP/M-80. In its operation, DDT-86
resembles DDT supplied with CP/M-80. It allows interactive
debugging of 8086 and 8088 machine code. Similarly, ASM-86 allows
assembly language programming and development for the 8086 and 8088
using Intel-like mnemonics.

All Information Presented Here is Proprietary to Digital Research

CP/M-86 System Guide 1.1 CP/M-86 General Characteristics

The GENCMD (Generate CMD) utility replaces the LOAD program of
CP/M-80, and converts the hex files produced by ASM-86 or Intel
utilities into memory image format suitable for execution under
CP/M-86. Further, the LDCOPY (Loader Copy) program replaces SYSGEN,
and is used to copy the cold start loader from a system disk for
replication. In addition, a variation of GENCMD, called LMCMD,
converts output from the Intel LOC86 utili ty into CMD format.
Finally, GENDEF (Generate DISKDEF) is J>rovided as an aid in
producing custom disk parameter tables. ASM-86, GENCMD, LMCMD, and
GENDEF are also supplied in "COM" file format for cross-development
under CP/M-80.

Several terms used throughout this manual are defined in Table
1-1 below:

Table 1-1. CP/M-86 Terms

Term I Meaning

~ibble 4-bit half-byte

Byte 8-bit value

Word l6-bit value

Double Word 32-bit value

Paragraph 16 contiguous bytes

Paragraph Boundary An address divisible evenly
by 16 (low order nibble 0)

Segment t~ to 64K contiguous bytes

Segment Register One of CS, DS, ES, or SS

Offset 16-bit displacement from a
segment register

Group A segment-register-relative
relocatable program unit

Address The effective memory address
derived from the composition
of a segment register value
with an offset value

A group consists of segments that are loaded into memory as a single
unit. Since a group may consist of more than 64K bytes, it is the
responsibility of the application program to manage segment
registers when code or data beyond the first 64K segment is
accessed.

All Information Presented Here is Proprietary to Digital Research

2

CP/M-86 System Guide 1.1 CP/M-86 General Characteristics

CP/M-86 supports eight program groups: the code, data, stack
and extra groups as well as four auxiliary groups. When a code,
data, stack or extra group is loaded, CP/M-86 sets the respective
segment register (CS, OS, SS or ES) to the base of the group. CP/M-
86 can also load four auxiliary groups. A transient program manages
the location of the auxiliary groups using values stored by CP/M-86
in the user~s base page.

1.2 CP/M-80 and CP/M-86 Differences

The structure of CP/M-86 is as close to CP/M-80 as possible in
order to provide a familiar programming environment which allows
application programs to be transported to the 8086 and 8088
processors with minimum effort. This section points out the
specific differences between CP/M-80 and CP/M-86 in order to reduce
your time in scanning this manual if you are already familiar with
CP /M-80. The terms and concepts presented in this section are
explained in detail throughout this manual, so you will need to
refer to the Table of Contents to find relevant sections which
provide specific definitions and information.

Due to the nature of the 8086 processor, the fundamental
difference between CP/M-30 and CP/M-86 is found in the management of
the various relocatable groups. Although CP/M-80 references
absolute memory locations by necessity, CP/M-86 takes advantage of
the static relocation inherent in the 8086 processor. The operating
system itself is usually loaded directly above the interrupt
locations, at location 0400H, and relocatable transient programs
load in the best fit memory region. However, you can load CP/M-86
into any portion of memory without changing the operating system
(thus, there is no MOVCPM utility with CP/M-86), and transient
programs will load and run in any non-reserved region.

Three general memory models are presented below, but if you are
converting 8080 programs to CP/M-86, you can use either the 8080
Model or Small Model and leave the Compact Model for later when your
addressing needs increase. You~ll use GENCMD, described in Section
3.2, to produce an executable program file from a hex file. GENCMD
parameters allow you to specify which memory model your program
requires.

CP/M-86 itself is constructed as an 8080 Model. This means
that all the segment registers are placed at the base of CP/M-86,
and your customized BIOS is identical, in most respects, to that of
CP/M-80 (with changes in instruction mnemonics, of course). In
fact, the only additions are found in the SETDMAB, GETSEGB, SETIOB,
and GETIOB entry points in the BIOS. Your warm start subroutine is
simpler since you are not required to reload the CCP and BOOS under
CP/M-86. One other point: if you implement the IOBYTE facility,
you ~ll have to define the var iable in your BIOS. Taking these
changes into accou'nt, you need only perform a simple translation of
your CP/M-80 BIOS into 8086 code in order to implement your 8086
BIOS.

All Information Presented Here is Proprietary to Digital Research

3

CP/M-86 System Guide 1.2 CP/M-SO and CP/M-S6 Differences

If you~ve implementedCP/M-80 Version 2, -you already have disk
definition tables which will operate prope,rly with CP/M-86. You may
wish to attach different disk drives, or experime.nt with sector ske*
factors to increase performance. If so, you can use the new GENDEF
utility which performs the same function as the DISKDEF macro used

·by MAC under CP/M-SO. You~ll find, however, that GENDEF provides
you with more information and checks error conditions better than
the DISKDEF macro.

Although generating a CP/M-86 system is generally easier than
generating a CP/M-80 system, complications arise if you are using
single-density floppy disks. CP/M-86 is too large to fit in the
two-track system area of a single-density disk, so the bootstrap
operation must perform two steps to load CP/M-86: first the
bootstrap must load the cold start loader, then the cold start
loader loads CP/M-86 from a system file. The cold start loader
includes a LDBIOS which is identical to your CP/M-86 BIOS with the
exception of the INIT entry point. You can simplify the LDBIOS if
you wish because the loader need not write to the disk. If you have
a double-density disk or reserve enough tracks on a single-density
disk, you can load CP/M-86 without a two-step boot.

To make a BOOS system call, use the reserved software interrupt
#244. The jump to the BOOS at location 0005 found in CP/M-80 is not
present in CP/M-86. However, the address field at offset 0006 is
present so that programs which "size" available memory using this
word value will operate without change. CP/M-80 BDOS functions use
certain 8080 registers for entry parameters and returned values.
CP/M-86 BDOS functions use a table of corresponding 8086 registers.
For example, the 8086 registers CH and CL correspond to the 8080
registers Band C. Look through the list of Bnos function numbers
in Table 4-2. and you~ll find that functions 0, 27, and 31 have
changed slightly. Several new functions have been added, but they
do not affect existing programs.

One major philosophical difference is that in CP/M-80, all
addresses sent to the BDOS are simply l6-bit values in the range
OOOOH to OFFFFH. In CP/M-86, however, the addresses are really just
l6-bit offsets from the OS (Data Segment) register which is set to
the base of your data area. If you translate an existing CP/M-SO
program to the CP/M-S6 environment, your data segment will be less
than 64K bytes. In this case, the DS register need not be changed
following ini tial load, and thus all CP/M-SO addresses become simple
DS-relative offsets in CP/M-86.

Under CP/M-SO, programs terminate in one oe three ways: by
returning directly to the CCP, by calling BOOS function 0, or by
transferring control to absolute location OOOOH. CP/M-86, however,
supports only the first two methods of program termination. This
has the side effect of not providing the automatic disk system reset
following the jump to OOOOH which, instead, is accomplished by
entering a CONTROL-C at the CCP level.

All Information Presented Here is Proprietary to Digital Research

4

CP/M-86 System Guide 1.2 CP/M-80 and CP/M-86 Differences

You~ll find many new facilities in CP/M-86 that will simplify
your programming and expand your application programming capabili ty.
But, we~ve designed CP /M-86 to make it easy to get started: in
short, if you are converting from CP/M-80 to CP/M-86, there will be
no major changes beyond the translation to 8086 machine code.
Further, programs you design for CP/M-86 are upward compatible with
MP/M-86, our multitasking operating system, as well as CP/NET-86
which provides a distributed operating system in a network
environment.

All Information Presented Here is Proprietary to Digital Research

5

Section 2
Command Setup and Execution Under CP/M-86

This section discusses the operation of the Console Command
Processor (CCP) , the format of transient programs, CP/M-86 memory
models, and memory image formats.

2.1 CCP Built-in and Transient Commands

The operation of the CP/M-86 CCP is similar to that of CP/M-80.
Upon initial cold start, the CP/M sign-on message is printed, drive
A is automatically logged in, and the standard prompt is issued at
the console. CP/M-86 then waits for input command lines from the
console, which may include one of the built-in commands

DIR ERA REN TYPE USER

(note that SAVE is not supported under CP/M-86 since the equivalent
function is performed by DDT-86) •

Alternatively, the command line may begin with the name of a
transient program wi th the assumed file type "CMD" denoting a
"conunand file." The CMD file type differentiates transient command
files used under CP/M-86 from COM files which operate under CP/M-80.

The CCP allows mul tiple programs to reside in memory, providing
facilities for background tasks. A transient program such as a
debugger may load additional programs for execution under its own
control. Thus, for example, a background printer spooler could
first be loaded, followed by an execution of DDT-86. DDT-86 may, in
turn, load a test program for a debugging session and transfer
control to the test program between breakpoints. CP/M-86 keeps
account of the order in which programs are loaded and, upon
encountering a CONTROL-C, discontinues execution of the most recent
program activated at the CCP level. A CONTROL-C at the DDT-86
conunand level aborts DDT-86 and its test program. A second CONTROL
C at the CCP level aborts the background printer spooler. A third
CONTROL-C resets the disk system. Note that program abort due to
CONTROL-C does not reset the disk system, as is the case in CP/M-SO.
A disk reset does not occur unless the CO~TROL-C occurs at the CCP
command input level with no programs residing in memory.

When CP/M-86 receives a request to load a transient program
from the CCP or another transient program, it checks the program~s
memory requirements.· If sufficient memory is available, CP/M-86
assigns the required amount of memory to the program and loads the
program. Once loaded, the program can request additional memory
from the BOOS for buffer space. When the program is terminated,
CP/M-86 frees both the program memory area and any additional buffer
space.

All Information Presented Here is Proprietary to Digital Research

7

CP/M-86 System Guide 2.2 Transient Program Execution Models

2.2 Transient Program Execution Models

The initial values of the segment registers are determined by
one of three "memory models" used by the transient program, and
descr ibed in the CMD file header. The three memory models are
summarized in Table 2-1 below.

Table 2-1. CP/M-86 Memory Models

Model I Group Relationships

8080 Model Code and Data GrouT;>s Overlap

Small Model Independent Code and Data Groups

Compact Model Three or More Independent Groups

The 8080 Model supports programs which are directly translated
from CP/M-80 when code and data areas are intermixed. ~he 8080
model consists of one group which contains all the code, data, and
stack areas. Segment registers are initialized to the starting
address of the region containing this group. The segment registers
can, however, be managed by the application program during execution
so that multiple segments within the code group can be addressed.

The Small Model is similar to that defined by Intel, where the
program consists of an independent code group and a data group. The
Small Model is suitable for use by programs taken from CP/M-80 where
code and data is easily separated. Note again that the code and
data groups often consist of, but are not restricted to, single 64K
byte segments.

The Compact Model occurs when any of the extra, stack, or
auxiliary groups are present in program. Each group may consist of
one or more segments, but if any group exceeds one segment in size,
or if auxiliary groups are present, then the application program
must manage its own segment reqisters during execution in order to
address all code and data areas.

The three models differ primarily in the manner in which
segment registers are initialized upon transient program loading~
The operating system program load function determines the memory
model used by a transient program by examining the program group
usage, as described in the following sections.

All Information Presented Here is Proprietary to Digital Research

8

CP/M-86 System Guide 2.3 The 8080 Memory Model

2.3 The 8080 Memory Model

The 8080 Model is assumed when the transient program contains
only a code group. In this case, the CS, DS, and ES registers are
initialized to the beginning of the code group, while the SS and SP
registers remain set to a 96-byte stack area in the CCP. The
Instruction Pointer Register (IP) is set to 100R, similar to cp/M-
80, thus allowing base page values at the beginning of the code
group. Following program load, the 8080 Model appears as shown in
Figure 2-1, where low addresses are shown at the top of the diagram:

ss:
CCP

.sS + SP: CCP Stack

CS OS ES:
OS+OOOOH: base

page

CS+OlOOH: IP = OlOOH
code

data

. . . .
code

data

Figure 2-1. CP/M-86 8080 Memory Model

The intermixed code and data regions are indistinguishable. The
"base page" values, descr ibed below, are identical to CP IM-80,
allowing simple translation from 8080, 8085, or Z80 code into the
8086 and 8088 environment. The following ASM-86 example shows how
to code an 8080 model transient program.

eseg
org 100h

(code)
endcs equ $

dseg
org offset endcs

(data)
end

All Information Presented Here is Proprietary to Digital Research

9

CP/M-86 System Guide 2.4 The Small Memory Model

2.4 The Small Memory Model

The Small Model is assumed when the transient program contains
both a code and data group. (In ASM-86, all code is generated
following a CSEG directive, while data is defined following a DSEG
directive with the origin of the data segment independent of the
code segment.) In this model, CS is set to the beginning of the
code group, the DS and ES are set to the start of the data group,
and the SS and SP registers remain in the CCp's stack ~rea as shown
in Figure 2-2.

ss:

SS + SP:

cs:

OS ES:

DS+OIOOH:

CCP

CCP Stack

IP = OOOOH
code

base
page

data

Figure 2-2. CP/M-86 Small Memory Model

The machine code begins at CS+OOOOH, the "base page" values begin at
DS+OOOOH, and the data area starts at DS+OIOOH. The following ASM-
86 example shows how to code a small model transient program.

cseg

(code)
dseg
org 100h

(tiata)
end

All Information Presented Here is Proprietary to Digital Research

10

CP/M-86 System Guide 2.5 The Com~act Memory Model

2.5 The, Compact Memory Model

The Compact Model is assumed when code and data groups are
present, a~ong with one or more of the remaining stack, extra, or
auxiliary groups. In this case, the CS, DS, and ES registers are
set to the base addresses of their respective areas. Figure 2-3
shows the initial configuration of segment registers in the Compact
Model. The values of the various segment registers can be
programmatically changed during execution by loading from the
initial values placed in base page by the CCP, thus allowing access
to the entire memory space.

If the transient program intends to use the stack group as a
stack area, the SS and SP registers must be set upon entry. The SS
and SP registers remain in the CCP area, even if a stack group is
defined. A1 though it may appear that the SS and SP reg ister s should
be set to address the stack group, there are two contradictions.
First, the transient program may be using the stack group as a data
area. In that case, the Far Call instruction used by the CCP to
transfer control to the transient program could overwrite data in
the stack area. Second, the SS register would logically be set to
the base of the group, while the SP would be set to the offset of
the end of the group. However, if the stack group exceeds 64K the
address range from the base to the end of the group exceeds a l6-bit
offset value.

The following ASM-86 example shows how to code a compact model
transient program.

cseg

(code)
dseg
org 100h

(data)
eseg

(more data)
sseg

(stack area)
end

All Information Presented Here is Proprietary to Digital Research

11

CP/M-86 System Guide 2.5 The Compact Memory Model

SS:
CCP

SS + SP: CCP Stack

CS: IP = OOOOH

code

DS: base
page

OS+OIOOH:
data

ES: I data

...... ----_ ...
Figure 2-3. CP/M-86 Co.pact Me.ory Model

All ,Information Presented Here is Proprietary to Digital Research

12

CP/M-S6 System Guide 2.6 Base Page Initialization

2.6 Base Page Initialization

Similar to CP/M-SO, the CP/M-S6 base page contains default
values and locations initialized by the CCP and used by the
transient program. The base paqe occupies the regions from offset
OOOOH through OOFFH relative to the DS reqister. The values in the
base page for CP/M-S6 include those of CP/M-SO, and appear in the
same relative positions, as shown i"n Figure 2-4.

OS + 0000:

DS + 0003:

DS + 0006:

OS + 0009:

OS + OOOC:

DS + OOOF:

OS + 0012:

DS + 0015:

DS + OOlS:

DS + 0018:

OS + OOlE:

OS + 0021:

OS + 0024:

OS + 0027:

DS + 002A:

DS + 0020:

os + 0030: . . .
os + 005B:

DS + 005C:

OS + OOS"O:

OS + 0100:

LCO LCI

BCO BCl

LDO LOl

BOO BOI

LEO LEI

BEO BEl

LSO LSI

aso BSI

LXO LXI

BXO BXI

LXO LXI

BXO BXl

LXO LXI

BXO BXl

LXO LXl

-BXO BXl

Not
Currently

Used

LC2

MBO

L02

xxx

LE2

xxx

LS2

xxx

LX2

xxx

LX2

xxx

LX2

xxx

LX2

xxx

Default FCB

Default Buffer

Begin User Data

Figure 2-4. CP/M-86 Base Page Values

All Information Presented Here is Proprietary to Digital Research

13

CP/M-86 System Guide 2.6 Base Page Initialization

Each byte is indexed by 0, 1, and 2, corresponding to the standard
Intel storage convention of low, middle, and high-order (most
significant) byte. "xxx" in Figure 2-4 marks unused bytes. LC is
the last code group location (24-bits, where the 4 high-order bits
equal zero).

In the 8080 Model, the low order bytes of LC (LCD and LCI)
never exceed OFFFFH and the high order byte (LC2) is always zero.
BC is base paragraph address of the code group (16-bits). LO and BD
provide the last posi tion and paragraph base of the data group. The
last position is one byte less than the group length: It should be
noted that bytes LOO and LOI appear in the same relative positions
of the base page in both CP/M-80 and CP!M-86, thus easing the
program translation task. The M80 byte is equal to 1 when the 8080
Memory Model is in use. LE and BE provide the length and paragraph
base of the optional extra group, while LS and BS give the optional
stack group length and base. The bytes marked LX and BX correspond
to a set of four optional independent groups which may be required
for programs which execute using the Compact Memory Model. The
initial values for these descriptors are derived from the header
record in the memory image file, described in the following section.

2.7 Transient Program Load and Exit

Similar to CP /M-8 0, the CCP parses up to two filenames
following the command and places the properly formatted FCB's at
locations DOSCH and 006CH in the base page relative to the DS
register. Under CP/M-80, the default DMA address is initialized to
0080H in the base page. Due to the segmented memory of the 8086 and
8088 processors, the OMA address is divided into two parts: the OMA
segment address and the DMA offset. Therefore, under CP!M-86, the
default DMA base is initialized to the value of OS, and the default
DMA offset is initialized to 0080H. Thus, CP/M-80 and CP/M-86
operate in the same way: both assume the default DMA buffer
occupies the second half of the base page.

The CCP transfers control to the transient program through an
8086 "Far Call." The transient program may choose to use the 96-byte
CCP stack and optionally return directly to the CCP upon program
termination by executing a "Far Return." Program termination also
occurs when BOOS function zero is executed. Note that function zero
can terminate a program without removing the program from memory or
chang ing the memory allocation state (see Section 4.2). The
operator may terminate program execution by typing a single CONTROL
C during line edited input which has the same effect as the program
executing BDOS function zero. Unlike the operation of CP/M-80, no
disk reset occurs and the CCP and BDOS modules are not reloaded from
disk upon program termination.

All Information Presented Here is Proprietary to Digital Research

14

Section 3
Command (CMD) File Generation

As mentioned previously, two utili ty programs are provided wi th
CP/M-86, called GENCMD and LMCMD, which are used to produce CMD
memory image files suitable for execution under CP/M-86. GENCMD
accepts Intel 8086 "hex" format files as input, while LMCMD reads
Intel L-module files output from the standard Intel LOC86 Object
Code Locator utility. GENCMD is used to process output from-'the
Digital Research ASM-86 assembler and Intel~s OH86 utility, while
LMCMD is used when Intel compatible developmental software is
available for generation of programs targeted for CP/M-86 operation.

3.1 Intel 8086 Hex File Format

GENCMD input is in Intel "hex" format produced by both the
Dig i tal Research ASM-86 assembler and the standard Intel OH86
utility program (see Intel document #9800639-03 entitled "MCS-86
Software Development utitities Operating Instructions for ISIS-II
Users"). The CMD file produced by GENCMD contains a header record
which defines the memory model and memory size requirements for
loading and executing the CMD file.

An Intel "hex" file consists of the traditional sequence of
ASCII records in the following format:

where the beginning of the record is marked by an ASCII colon, and
each subsequent digit position contains an ASCII hexadecimal digit
in the range 0-9 or A-F. The fields are defined in Table 3-1.

All Information Presented Here is Proprietary to Digital Research

15

CP/M-86 System Guide 3.1 Intel Hex File Format

Field I
11

aaaa

tt

d

cc

Table 3-1. Intel Hex Field Definitions

Contents

Record Length OO-FF (0-255 in decimal)

Load Address

Record Type:
00 data record, loaded starting at offset

aaaa from current base paragraph
01 end of file, cc = FF
02 extended address, aaaa is paragraph

base for subsequent data records
03 start address is aaaa (ignored, IP set

according to memory model in use)

The following are output from ASM-86 only:
81 same as 00, data belongs to code segment
82 same as 00, data belongs to data segment
83 same as 00, data belongs to stack segment
84 same as 00, data belongs to extra segment
85 paragraph address for absolute code segment
86 paragraph address for absolute data segment
87 paragraph address for absolute stack segment
88 paragraph address for absolute extra segment

Data Byte

Check Sum (00 - Sum of Previous Digits)

All characters preceding the colon for each record are ignored.
(Additional hex file format information is included in the ASM-86
User~s Guide, and in Intel~s document #980082lA entitled "MCS-86
Absolute Object File Formats.")

3.2 Operation of GENCMD

The GENCMD utility is invoked at the CCP level by typing

GENCMD filename parameter-list

where the filename corresponds to the hex input file with an assumed
(and unspecified) file type of H86. GENCMDaccepts optional
parameters to specifically identify the 8080 Memory Model and to
describe memory requirements of each segment group. The GENCMD
parameters are listed following the filename ,as shown in the
command line above where the parameter-list consists of a sequence
of keywords and values separated by commas or blanks. The keywords
are:

8080 CODE DATA EXTRA STACK Xl X2 X3 X4

All Information Presented Here is Proprietary to Digital Research

16

CP/M-86 System Guide 3.2 Operation of GENCMD

The 8080 keyword forces a single code group so that the Bnos load
function sets up the 8080 Memory Model for execution, thus allowing
intermixed code and data within a single segment. The form of this
command is

GENCMD filename 8080

The remaining keywords follow the filename or the 8080 option and
define specific memory requirements for each segment group,
corresponding one-to-one with the segment groups defined in the
previous section. In each case, the values corresponding to each
group are enclosed in square brackets and separated by commas. Each
value is a hexadecimal number representing a paragraph address or
segment length in paragraph units denoted by hhhh, prefixed by a
single letter which defines the meaning of each value:

Ahhhh
Bhhhh
Mhhhh
Xhhhh

Load the group at absolute location hhhh
The group starts at hhhh in the hex file
The group requires a minimum of hhhh * 16 bytes
The group can address a maximum of hhhh * 16 bytes

Generally, the CMD file header values are derived directly from the
hex file and the parameters shown above need not be included. The
following si tuations, however, require the use of G'ENCMD parameters.

• The 8080 keyword is included whenever ASM-86 is used in
the conversion of 8080 programs to the 8086/8088
environment when code and data are intermixed within a
single 64K segment, regardless of the use of CSEG and
DSEG directives in the source program.

• An absolute address (A value) must be given for any group
which must be located at an absolute location. Normally,
this value is not specified since CP/M-86 cannot
generally ensure that the required memory region is
available, in which case the CMD file cannot be loaded.

• The B value is used when GENCMD processes a hex file
produced by Intel~s OH86, or similar' utility program that
contains more than one group. The output from OH86
consists of a sequence of data records with no
information to identify code, data, extra, stack, or
auxiliary groups. In this case, the B value marks the
beg inning address of the group named by the keyword,
causing GENCMD to load data following this address to the
named group (see the examples below). Thus, the B value
is normally used to mark the boundary between code and
data segments when no segment information is included in
the hex file. Files produced by ASM-86 do not require
the use of the B value since segment information is
included in the hex file.

All Information Presented Here is Proprietary to Digital Research

17

CP/M-86 System Guide 3.2 Operation of GENCMD

• The minimum memory value (M value) is included only when
the hex records do not define the minimum memory
requirements for the named group. Generally, the code
group size is determined precisely by the data records
loaded into the area. That is, the total space required
for the group is defined by the range between the lowest
and highest da ta byte addresses. The data group,
however, may contain uninitialized storage at the end of
the group and thus no data records are present in the hex
file which define the highest referenced data item. The
highest address in the data group can be defined within
the source program by including a "DB 0" as the last data
item. Alternatively, the M value can be included to
allocate the additional space at the end of the group.
Similarly, the stack, extra, and auxiliary group sizes
must be defined using the M value unless the highest
addresses within the groups are implicitly defined by
data records in the hex file •

• The maximum memory size, given by the X value, is
generally used when additional free memory may be needed
for such purposes as I/O buffers or symbol tables. If
the data area size is fixed, then the X parameter need
not be included. In this case, the X value is assumed to
be the same as the M value. The value XFFFF allocates
the largest memory region available but, if used, the
transient program must be aware that a three-byte length
field is produced in the base page for this group where
the high order byte may be non-zero. Programs converted
directly from CP/M-80 or programs that use a 2-byte
pointer to address buffers should restrict this value to
XFFF or less, producing a maximum allocation length of
OFFFOH bytes.

The following GENCMD command line transforms the file X.H86
into the file X.CMD with the proper header record:

gencmd x code[a40] data[m30,xfff]

In this case, the code group is forced to paragraph address 40H, or
equivalently, byte address 400H. The data group requires a mlnlmum
of 300~ bytes, but can use up to OFFFOH bytes, if available.

All Information Presented Here is Proprietary to Digital Research

18

CP/M-86 System Guide 3.2 Operation of GENCMD

Assuming a file Y.H86 exists on drive B containing Intel hex
records with no interspersed segment information, the command

gencmd b:y data[b30,m20] extra[b50] stack [m40] xl[m40]

produces the file Y.CMD on drive B,by selecting records beginning
at address OOOOH for the code segment, with records starting at
300H allocated to the data segment. The extra segment is filled
from records beginning at SOOH, while the stack and auxiliary
segment *1 are uninitialized areas requiring a minimum of 400H
bytes each. In this example, the data area requires a minimum of
200H bytes. Note again, that the B value need not be included if
the Digital Research ASM-86 assembler is used.

3.3 Operation of LMCMD

The LMCMD utility operates in exactly the same manner as
GENCMD, with the exception that LMCMD accepts an Intel L-module
file as input. The primary advantage of the L-module format is
that the file contains internally coded information which defines
values which would otherwise be required as parameters to GENCMD,
such the beginning address of the group s data segment. Currently,
however, the only language processors which use this format are the
standard Intel development packages, although various independent
vendors will, most likely, take advantage of this format in the
future.

All Information Presented Here is Proprietary to Digital Research

19

CP/M-86 System Guide 3.4 Command (CMD) File Format

3.4 Command (CND) File Format

The CMD file produced by GENCMD and LMCMD consists of the
l28-byte header record followed immediately by the memory image.
Under normal circumstances, the format of the header record is of
no consequence to a programmer. For completeness, however, the
various fields of this record are shown in Figure 3-1.

• 128 Bytes ~

GD#1IGDi2IGD#3IGD#4IGD#S-GD#8. . .
Code,

Data,
Extra,

Stack,
Auxiliary

Figure 3-1. CMD File Header Format

In Figure 3-1, GD#2 through GD#8 represent "Group Descriptors."
Each Group Descriptor corresponds to an independently loaded
program unit and has the following fields:

a-bit l6-bit 16-bit l6-bit l6-bit

I G-Form I G-Length A-Base G-Min G-Max

where G-Form describes the group format, or has the value zero if
no more descriptors follow. If G-Form is non-zero, then the 8-bit
value is parsed as two fields:

G-Form:
4-bit 4-bit

I x x x x I G-Type I
The G-Type field determines the Group Descriptor type. The valid
Group Descriptors have a G-Type in the range 1 through 9, as shown
in Table 3-2 below.

All Information Presented Here is Proprietary to Digital Research

20

CP/M-86 System Guide 3.4 Command (CMD) File Format

Table 3-2. Group Descriptors

G-Type

1
2
3
4
5
6
7
8
9

10 - 14
15

I Group Type

Code Group
Data Group
Extra Group
Stack Group
Auxiliary Group #1
Auxiliary Group #2
Auxiliary Group #3
Auxiliary Group #4
Shared Code Group
Unused, but Reserved
Escape Code for Additional Types

All remaining values in the group descriptor are given in
increments of 16-byte paragraph units with an assumed low-order 0
nibble to complete the 20-bit address. G-Length gives the number
of paragraphs in the group. Given a G-length of 0080H, for
example, the size of the group is 00800H = 2048D bytes. A-Base
defines the base paragraph address for a non-relocatable qroup
while G-Min and G-Max define the minimum and maximum size of the
memory area to allocate to the qroup. G-Type 9 marks a "l?ure" cod.e
group for use under MP/M-86 and future versions of CP/M-86.
Presently a Shared Code Group is treated as a non-shared Program
Code Group under CP/M-86.

The memory model described by a header record is implicitly
determined by the Group Descriptors. The 8080 Memory Model is
assumed when only a code group is present, since no independent
data group is named. The Small Model is implied when both a code
and data group are present, but no additional group descriptors
occur. Otherwise, the Compact Model is assumed when the CMD file
is loaded.

All Information Presented Here is Proprietary to Digital Research

21

Section 4
Basic Disk Operating System Functions

This section presents the interface conventions which allow
transient program access to CP/M-86 BDOS and BIOS functions. The
BOOS calls correspond closely to CP/M-80 Version 2 in order to
simplify translation of existing CP/M-80 programs for operation
under CP/M-86. BDOS entry and exit conditions are described first,
followed by a presentation of the individual BDOS function calls.

4.1 Bnos Parameters and Function Codes

Entry to the BOOS is accomplished through the 8086 software
interrupt #224, which is reserved by Intel Corporation for use by
CP/M-86 and MP/M-86. The function code is passed in register CL
with byte parameters in DL and word parameters in DX. Single byte
values are returned in AL, word values in both AX and BX, and double
word values in ES and BX. All segment registers, except ES, are
saved upon entry and restored upon exit from the BDOS (corresponding
to PL/M-86 conventions). Table 4-1 summarizes input and output
parameter passing:

Table 4-1. BDOS Parameter Summary

BDOS Entry Registers I BDOS Return Registers

CL Function Code Byte value returned in AL
DL Byte Parameter Word value returned in both AX and BX
DX Word Parameter Double-word value returned with
DS Data Segment offset in BX and

segment in 'ES

Note that the CP/M-80 BDOS requires an "information address" as
input to various functions. This address usually provides buffer or
File Control Block information used in the system call. In CP/M-86,
however, the information address is derived from the current OS
register combined with the offset given in the DX register. That
is, the DX register in CP/M-86 performs the same function as the DE
pair in CP/M-80, with the assumption that DS is properly set. This
poses no particular problem for programs which use only a single
data segment (as is the case for programs converted from CP/M-80) ,
but when the data'group exceeds a single segment, you must ensure
that the DS register is set to the segment containing the data area
related to the call. It should also be noted that zero values are
ret~rned for function calls which are out-of-range.

All Information Presented Here is Proprietary to Digital Research

23

CP!M-86 System Guide 4.1 BDOS Parameters and Function Codes

A list of CP/M-86 calls is given in Table 4-2 with an asterisK
following functions which differ from or are added to the set of
CP/M-80 Version 2 functions.

Table 4-2. CP/M-86 BnOS Functions

Fi I Result F# 1 Result

0* System Reset 24 Return Login Vector
1 Console Input 25 Return Current Disk
2 Console Out1?ut 26 Set DMA Address
3 Reader Input 27* Get Addr(Alloc)
4 Punch Output 28 write Protect Disk
5 List Output 29 Get Addr (R/O Vector)
6* Direct Console 110 30 Set File Attributes
7 Get I/O Byte 31* Get Addr(Disk parms)
8 Set I/O Byte 32 Set/Get User Code
9 Print String 33 Read Random

10 Read Console Buffer 34 Write Random
11 Get Console Status 35 Compute File Size
12 Return Version Number 36 Set Random Record
13 Reset Disk System 37* Reset drive
14 Select Disk 40 Nri.te Random with Zero Fill
15 Open File 50* Direct BIOS Call
16 Close File 51* Set DMA Segment Base
17 Search for First 52* Get nM.A Segment Base
18 Search for Next 53* Get Max Memory Available
19 Delete File 54* Get Max M.em at Abs Location
20 Read Sequential 55* Get Memory Region
21 Write Sequential 56* Get Absolute Memory Region
22 Make File 57* Free memory region
23 Rename File 58* Free all memory

59* Program load

The individual BDOS functions are described below in three
sections which cover the siml;>le functions, fi le operations, and
extended operations for memory management" and program loading.

All Information Presented Here is Proprietary to Digital Research

24

CP/M-86 System Guide 4.2 Simple BOOS Calls

4.2 Simple Bnos Calls

The first set of BOOS functions cover the range 0 through 12,
and perform simple functions such as system reset and single
character I/O.

Entry
"- , Return

• •
CL: OOH FUNCTION 0

DL: Abort

"
SYSTEM RESET

Code

The system reset function returns control to the CP/M operating
system at the CCP command level. The abort code in OL has two
possible values: if DL = OOH then the currently active program is
terminated and control is returned to the CCP. If OL is a OIH, the
program remains in memory and the memory allocation state remains
unchanged.

Entry Return

CL: 01H FUNCTION 1 AL: ASCII Character

CONSOLE INPUT ,

The console input function re·ads the next character from the
logical console device (CONSOLE) to register AL. Graphic
characters, along with carriage return, line feed, and backspace
(CONTROL-H) are echoed to the console. rt'ab characters (CONTROL-I)
are expanded in columns of eight characters. The BOOS does not
return to the calling program until a character has been typed, thus
suspending execution if a character is not ready.

Entry Return

"'
CL: 02H FUNCTION 2

DL: ASCII '" CONSOLE OUTPUT
Character

The ASCII character from DL is sent to the logical console.
Tab characters expand in columns of eight characters. In addition,
a check is made for start/stop scroll (CONTROL-S).

All Information Presented Here is Proprietary to Digital Research

25

CP/M-86 System Guide 4.2 Simple BDOS Calls

Entry
,~--------------~~

Return
•

CL: 03H FUNCTION 3 AL: ASCII Character

READER INPUT
,'---------------~

The Reader Input function reads the next character from the
logical reader (READER) into register ~L. Control does not return
until the character has been read.

Entry Return

• "
,

~

CT.J: 04H FUNCTION 4

DL: ASCII , PUNCH OUTPUT
Character

The Punch Output function sends the character from register DL
to the logical punch device (PUNCH).

Entry

CL: OSH

DL: ASCII
Character "

Return

FUNCTION S

LIST OUTPUT

The List Output function sends the ASCII character in register
DL to the logical list device (LIST).

All Information Presented Here is Proprietary to Digital Research

26

CP/M-86 System Guide 4.2 Simple BDOS Calls

Entry Return

CL: 06H FUNCTION 6 AL: char or status

DL: OFFH (input), DIRECT CONSOLE I/O (no value)
or

OFEH (status)
or

char (outl;>ut)

Direct console I/O is supported under CP/M-86 for those
specialized applications where unadorned console input and output is
required. Use of this function should, in general, be avoided since
it bypasses all of CP/M-86~s normal control character functions
(e.g., CONTROL-S and CONTROL-P). Programs which perform direct I/O
through the BIOS under previous releases of CP/M-80, however, should
be changed to use direct I/O under the BOOS so that they can be
fully supported under future releases of MP/M and CP/M.

Upon entry to function 6, register DL either contains (1) a
hexadecimal FF, denoting a CONSOLE input request, or (2) a
hexadecimal FE, denoting a CONSOLE status request, or (3) an ASCII
character to be output to CONSOLE where CONSOLE is the logical
console device. If the input value is FF, then function 6 directly
calls the BIOS console input primitive. The next console input
character is returned in .AL. If the input value is FE, then function
6 returns AL = 00 if no character is "ready and AL = FF otherwise.
If the input value in DL is not FE or FF, then function 6 assumes
that DL contains a valid ASCII character which is sent to the
console.

Entry Return
!\ "

CL: 07H FUNCTION 7 AL: I/O Byte Value

GET I/O BYTE

The Get I/O Byte function returns the current value of IOBYTE
in register AL. The IOBYTE contains the current assignments for the
logical devices CONSOLE, READER, PUNCH, and LIST provided the IOBYTE
facility is implemented in the BIOS.

All Information Presented Here is Proprietary to Digital Research

27

CP/M-Bb System Guide

Entry

CL: OSH

DL: I/O Byte
Value

,

4.2 Simple BOOS Calls

Return

FUNCTION 8

SET I/O BYTE

The Set I/O Byte function changes the system IOBYTB value to
that given in register DL. This function allows transient program
access to the IOBYTE in order to modify the current assignments for
the logical devices CONSOLE, READER, PUNCH, and LIST.

Entry Return
• " '\ •

CL: 09H FUNCTION 9

DX: String
"- PRINT STRING

Offset

The Print String function sends the character string stored in
memory at the location given by DX to the logical console device
(CONSOLE), until a "$" is encountered in the string. Tabs are
expanded as in function 2, and checks are made for start/stop scroll
and printer echo.

Entry

CL: O.1\H

DX: Buffer
Offset

~~-------------------'~
FUNCTION 10

~ READ CONSOLE BUFFER

Return

Console Characters

in Buffer

All Information Presented Here is Proprietary to Digital Research

28

CP/M-86 System Guide 4.2 Simple 8DOS Calls

The Read Buffer function reads a line of edited console input into a
buffer addressed by reqister ox from the logical console device
(CONSOLE). Console input is terminated when either the input buffer
is filled or when a return (CONTROL-M) or a line feed (CONTROL-J)
character is entered. The input buffer addressed by ox takes the
form:

DX: +0 +1 +2 +3 +4 +5 +6 +7 +8 +n

where "mx" is the maximum number of characters which the buffer will
hold, and "nc" is the number of characters placed in the buffer.
The characters entered by the operator follow the "nc" value. ~he
value "mx" must be set prior to making a function 10 call and mav
range in value from 1 to 255. Settinq rnx to zero is equivalent to
setting fiX to one. The value "nc" is returned to the user and may
range from 0 to mx. If nc < mx, then uninitialized positions follow
the last character, denoted by"??" in the above figure. Note that
a terminating return or line feed character is not placed in the
buffer and not included in the count "nc".

A number of edi ting control funct lons are supported dur inq
console input under function 10. These are summarized in Table 4-3.

Table 4-3. Line Editing Controls

Keystroke I Resul t

rub/del
CONTROL-C
CONTROL-E
CONTROL-H
CONTROL-J
CONTROL-M
CONTROI.-R
CONTROL-U
CONTROL-X

removes and echoes the last character
reboots when at the beginning of line
causes physical end of line
backspaces one character position
(line feed) terminates input line
(return) terminates i.nput line
retypes the current line after new line
removes current line after new line
backspaces to beginning of current line

Certain functions which return the carriage to the leftmost position
(e.g., CONTROL-X) do so only to the column position where the prompt
ended. This convention makes operator data input and line
correction more legible.

All Information Presented Here is Proprietary to Digital Research

29

CP/M-86 System Guide

'Entry

CL: 013H FUNCTION 11

GBT CONSOLE STA~U8
\.

4.2 Simple Bnos Calls

Return

AL: Console Status

The Console Status function checks to see if a character has
been typed at the loqical console device (CONSOLE). If a character
is ready, the value OlH is returned in register AL. Otherwise a DOH
value is returned.

Entry Return

" CL: OCR FUNCTION 12 BX: Version Number

RETURN VERSION NUMBER ,

Function 12 provides information which allows version
independent programming. A two-byte value is returned, wi th BH = 00
designating the ~P/M release (BB = 01 for MP/M) , and BL = 00 for all
releases previous to 2.0. CP/M 2.0 returns a hexadecimal 20 in
register BL, with subsequent version 2 releases in the hexadecimal
range 21, 22, through 2F. To provide version number compatibility,
the initial release of CP/M-86 returns a 2.2.

4.3 Bnos File Operations

Functions 12 through 52 are related to disk file operations
under CP/M-86. In many of these operations, nx ~rovides the DS
relative offset to a file control block (FCB). The File Control
Block (FCB) data area consists of a sequence of 33 bytes, for
sequential access, or a sequence of 36 bytes in the case that the
file is accessed randomly. The default file control block normally
located at offset DOSCH from the DS register can be used for random
access files, since bytes 0070H, 007EH, and 007FH are available for
this purpose. Here is the FeB format, followed by definitions of
each of its fields:

All Information Presented Here is Proprietary to Digital Research

30

CP/M-86 System Guide 4.3 BOOS File Operations

00 01 02

where

dr

08 09 10 11 12 13 14 15 16

drive code (0 - 16)
o => use default drive for file
1 => auto disk select drive A,
2 => auto disk select drive B,

16=> auto disk select drive P.

fl ••• f8 contain the file name in ASCII
upper case, with high bit = 0

t1,t2,t3 contain the file type in ASCII
upper case, with high bit = 0
tl~, t2~, and t3~ denote the high
bit of these positions,
tl~ = 1 => Read/Only file,
t2~ = 1 => SYS file, no OIR list

31 32 33 34 35

ex contains the current extent number,
normally set to 00 by the user, but
in range 0 - 31 during file I/O

sl reserved for internal system use

s2 reserved for internal system use, set.
to zero on call to OPEN, MAKE, SEARCH

rc record count for extent "ex,"
takes on values from 0 - 128

dO •.• dn filled-in by CP/M, reserved for
system use

cr current record to read or write in
a sequential file operation, normally
set to zero by user

rO,r1,r2 optional random record number in the
range 0-65535, with overflow to r2,
rO,rl constitute a l6-bit value with
low byte rO, and high byte rl

For users of earlier versions of CP/M, it should be noted in
passing that both CP/M Version 2 and CP/M-86 perform directory
operations in a reserved area of memory that does not affect write
buffer content, except in the case of Search and Search Next where
the directory record is copied to the current OMA address.

All Information Presented Here is Proprietary to Digital Research

31

CP/M-86 System Guide 4.3 SDOS File Operations

There are three error situations that the aDOS may encounter during
file processing, initiated as a result of a BOOS File I/O function
call. When one of these conditions is detected, the BOOS issues the
following message to the console:

BOOS ERR ON x: error

where x is the dr i ve name of the dr i ve selected when the error
condition is detected, and "error" is one of the three messages:

BAD SECTOR SELECT R/O

These er ror si tuatlons are trapped by the BOOS, and thus the
executing transient program is temporarily halted when the error is
detected. No indication of the error situation is returned to the
transient program.

The "BAD SECTOR" error is issued as the result of an error
condi tion returned to the BOOS from the BIOS module. The BOOS makes
BIOS sector read and write commands as part of the execution of BOOS
file related system calls. If the BIOS read or wri te routine
detects a hardware error, it returns an error code to the BDOS
resulting in this error message. The operator may respond to this
error in two ways: a CONTROL-C terminates the executing program,
while a RETURN instructs CP/M-86 to ignore the error and allow the
program to continue execution.

The "SELECT" error is also issued as the result of an error
condi tion returned to the BOOS from the BIOS module. The BDOS makes
a BIOS disk select call prior to issuing any BIOS read or write to a
particular drive. If the selected drive is not supported in the
BIOS module, it returns an error code to the BOOS resulting in this
error message. CP/M-86 terminates the currently running program and
returns to the command level of the CCP following any input from the
console.

The "R/O" message occurs when the BOOS receives a command to
write to a drive that is in read-only status. Drives may be placed
in read-only status explicitly as the result of a STAT command or
BOOS function call, or implicitly if the BOOS detects that disk
med ia has been changed wi thout per forming a "warm star t." "['he
ability to detect changed media is optionally included in the BIOS,
and exists only if a checksum vector is included for the selected
drive. Upon entry of any character at the keyboard, the transient
program is aborted, and control returns to the CCP.

All Information Presented Here is Proprietary to Oigital Research

32

CP/M-86 System Guide 4.3 BDOS File Operations

Entry Return

CL: OOH FUNCTION 13

RESET DISK SYSTEM

,'------------------
The Reset Disk Function is used to programmatically restore the

file system to a reset state where all disks are set to read/write
(see functions 28 and 29), only disk drive A is selected. ~his
function can be used, for example, by an application program which
requires disk changes during operation. Function 37 (Reset Drive)
can also be used for this purpose.

Entry Return

CL: OEH FUNCTION 14

DL: Selected,
Disk '-----------------~

SELECT DISK

The Select Disk function designates the disk drive named in
register DL as the default disk for subsequent file operations, with
DL = 0 for drive A, 1 for drive B, and so-forth through 15
corresponding to drive P in a full sixteen drive system. In
addition, the designated drive is logged-in if it is currently in
the reset state. Logging-in a drive places it in "on-line" status
which activates the drive~s directory until the next cold start,
warm start, disk system reset, or drive reset operation. FCB~s
which specify drive code zero (dr = OOH) automatically reference the
currently selected default drive. Drive code values between 1 and
16, .however, ignore the selected default drive and directly
reference drives A through P.

Entry

CL: OFH

DX: FCB
Offset

Return

FUNCTION 15 AL: F.eturn Code

OPEN FILE
,'------------------

The Open File operation is used to activate a FCB specifying a
file which currently exists in the disk directory for the currently
active user number. The BDOS scans the disk directory of the drive
specified by byte 0 of the FCB referenced by DX for a match in
positions 1 through 12 of the referenced FCB, where an ASCII
question mark (3FH) matches any directory character in any of these
positions. Normally, no question marks are included and, further,
byte "ex" of the FCB is set to zero before making the open call.

All Information Presented Here is Proprietary to Digital Research

33

CP/M-86 System Guide 4.3 BDOS File Operations

If a directory element is matched, the relevant directory
information is copied into bytes dO through dn of the FCB, thus
allowing access to the files through subsequent read and wr i te
operations. Note that an existing file must not be accessed until a
.successful open operation is completed. Further, an FCB not
activated by either an open or make function must not be used in
BOOS read or wr i te commands. Upon return, the open funct ion returns
a "directory code" with the value 0 through 3 if the open was
successful, or OFFH (255 decimal) if the file cannot be found. If
question marks occur in the FCB then the first match ing FCB is
activated. Note that the current record ("cr") must be zeroed by
the program if the file is to be accessed sequentially from the
first record.

Entry Return

• 1\ " •
CL: 10H FUNCTION 16 AL: Return Code

DX: FCB
\

CLOSE FILE
Offset

The Close File function performs the inverse of the open file
function. Given that the FCB addressed by DX has been previously
activated through an open or make function (see functions 15 and
22), the close function permanently records the new FCB in the
referenced disk directory. The FCB matching process for the close
is identical to the open function. The directory code returned for
a successful close operation is 0, 1, 2, or 3, while a OFFH (255
decimal) is returned if the fi Ie name cannot be found in the
directory. A file need not be closed if only read operations have
taken place. If write operations have occurred, however, the close
operation is necessary to permanently record the new directory
information.

All Information Presented Here is Proprietary to Digital Research

34

CP/M-86 System Guide 4.3 aDOS File Operations

Entry Return
~

, ~ ~

CL: llH FUNCTION 17 AL: Directory
Code

DX: FCB SEARCH FOR FIRST
Offset "

Search First scans the directory for a match with the file
given by the FCB addressed by DX. The value 255 (hexadecimal FF) is
returned if the file is not found, otherwise 0, 1, 2, or 3 is
returned indicating the file is present. In the case that the file
is found, the buffer at the current DMA address is filled with the
record containing the directory entry, and its relative starting
position is AL * 32 (i .e., rotate the AL register left 5 bits).
Although not normally required for application programs, the
directory information can be extracted from the buffer at this
posi tion":

An ASCII question mark (63 decimal, 3F hexadecimal) in any
position from "fl" through "ex" matches the corresponding field of
any directory entry on the default or auto-selected disk drive. If
the "dr" field contains an ASCII question mark, then the auto disk
select function is disabled, the default disk is searched, with the
search function retu.t'ning any matched entry, allocated or free,
belonging to any user number. This latter function is not normally
used by application programs, but does allow complete flexibili ty to
scan all current directory values. If the "dr" field is not a
question mark, the "s2" byte is automatically zeroed.

Entry Return
~ I\. "' •

CL: l2H FUNCTION 18 AL: Directory
Code

'-
SEARCH FOR NEXT

The Search Next function is similar to the Search First
function, except that the directory scan continues from the last
matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match. In terms
of execution sequence, a function 18 call must follow either a
function 17 or function 18 call with no other intervening BOOS disk
related function calls.

All Information Presented Here is Proprietary to Digital Research

CP/M-86 System Guide

Entry Return .. I'. " ..
CL: 13H FUNCTION 19 AL: Return Code

DX: FeB , DELETE FILE
Offset

The Delete File function removes files which match the FCB
addressed by ox. The filename and type may contain ambiguous
references (i.e., question marks in various positions), but the
drive select code cannot be ambiguous, as in the Search and Search
Next functions. Function 19 returns a OFFH (decimal 255) if the
referenced file or files cannot be found, otherwise a value of zero
is returned.

Entry Return
• ,

"' ..
CL: l4H FUNCTION 20 AL: Return Code

DX: FCB , READ SEQUENTIAL
Offset

Given that the FCB addressed by ox has been activated through
an open or make function (numbers 15 and 22), the Read Sequential
function reads the next 128 byte record from the file into memory at
the current DMA address. The record is read from position "cr" of
the extent, and the "cr" field is automatically incremented to the
next record position. If the "cr" field overflows then the next
logical extent is automatically opened and the "cr" field is reset
to zero in preparation for the next read operation. The "cr" fiel~
must be set to zero following the open call by the user if the
intent is to read sequentially from the beginning of the file. The
value OOH is returned in the AL register if the read operation was
successful, while a value of OIH is returned if no data exists at
the next record position of the file. Normally, the no data
situation is encountered at the end of a file. However, it can also
occur if an attempt is made to read a data block which has not been
previously written, or an extent which has not been created. These
situations are usually restricted to files created or appended by
use of the BOOS Write Random commmand (function 34).

All Information .Presented Here is Proprietary to Digital Research

36

CP/M-86 System Guide 4.3 BOOS File Operations

Entry
~~----------------~~

Return

CL: ISH FUNCTION 21 AL: Return Code

OX: FCB , WRITE SEQUENTIAL
Offset

Given that the FeB addressed by OX has been activated through
an open or make function (numbers 15 and 22), the Write Sequential
function writes the 128 byte data record at the current OMA address
to the file named by the FeB. The record is placed at position "cr"
of the file, and the "cr" field is automatically incremented to the
next record position. If the "cr" field overflows then the next
logical extent is automatically opened and the "cr" field is reset
to zero in preparation for the next write operation. Write
operations can take place into an existing file, in which case newly
written records overlay those which already exist in the file. The
"cr" field must be set to zero following an open or make call by the
user if the intent is to write seque~:ially from the beginning of
the file. Register AL = OOH upon return from a successful write
operation, while a non-zero value indicates an unsuccessful write
due to one of the following conditions:

01 No available directory space - This condition occurs when
the write command attempts to create a new extent that
requires a new directory entry and no available directory
entries exist on the selected disk drive.

02 No available data block - This condition is encountered
when the write command attempts to allocate a new data
block to the file and no unallocated data blocks exist on
the selected disk drive.

Entry Return
• ~ "' ~

CL: l6H FUNCTION 22 AL: Return Code

OX: FeB , MAKE FII,E
Offset

The Make File operation is similar to the open file operation
except that the FCB must name a file which does not exist in the
currently referenced disk directory (i.e., the one named explicitly
by a non-zero "dr" code, or the default disk if "dr" is zero). The
BOOS creates the file and initializes both the directory and main
memory value to an empty file. The programmer must ensure that no
duplicate file names occur, and a preceding delete operation is
sufficient if there is any possibility of duplication. Upon return,
register A = 0, 1, 2, or 3 if the operation was successful and OFFH
(255 decimal) if no more directory space is available. The make
function has the side-effect of activating the FCB and thus a
subsequent open is not necessary.

All Information Presented Here is Proprietary to Digital Research

37

CP/M-86 System Guide 4.3 BDOS File Operations

Entry Return
• 1'1

CL: l7H FUNCTION 23 .AL: Return Code

DX: FCB ,
Offset

RENAME FILE

The Rename function uses the FCB addressed by OX to change all
directory entries of the file specified by the file name in the
first 16 bytes of the FeB to the file name in the second 16 bytes.
It is the user's responsibility to insure that the file names
specified are valid CP/M unambiguous file names. The drive code
"dr" at position 0 is used to select the drive, while the drive code
for the new file name ·at posi tion 16 of the FeB is ignored. Upon
return, register AL is set to a value of zero if the rename was
successful, and OFFH (255 decimal) if the first file name could not
be found in the directory scan.

Entry Return

" " • •
CL: 18H FUNCTION 24 BX: Login Vector

BX: Login RETURN LOGIN
Vector , VECTOR

The login vector value returned by CP/~-86 is a l6-bit value in
BX, where the least significant bit corresponds to the first drive
A, and the high order bi t cor responds to the sixteenth dr i ve,
labelled P. A "0" bit indicates that the drive is not on-line,
while a "1" bit marks an drive that is actively on-line due to an
explicit disk drive selection, or an implicit drive select caused by
a file operation which specified a non-zero "dr" field.

Entry Return
------------~.~ ~~----------------,~

CL: 19H FUNCTION 25 AL: Current Disk

RETURN CURRENT
, DISK

Function 25 returns the currently selected default disk number
in register AL. The disk numbers range from 0 through 15
corresponding to drives A through P.

All Information Presented Here is Proprietary to Digital Research

38

CP/M-86 System Guide

Entry
•

CL: lAH

DX: DMA
Offset

"

"

FUNCTION 26

SET DMA
ADDRESS

4.3 BOOS File Operations

Return

"OMA" is an acronym for Direct Memory Address, which is often
used in connection with disk controllers which directly access the
memory of the mainframe computer to transfer data to and from the
disk subsystem. Although many computer systems use non-DMA access
(i.e., the data is transfered through programmed I/O operations),
the OMA address has, in CP/M, come to mean the address at which the
128 byte data record resides before a disk write and after a disk
read. In the CP/M-86 environment, the Set OMA function is used to
specify the offset of the read or write buffer from the current DMA
base. Therefore, to s~ecify the DMA address, both a function 26
call and a function 51 call are required. Thus, the DMA address
becomes the value specified by OX plus the DMA base value until it
is changed by a subsequent Set DMA or set DMA base function.

Entry 'Return

CT.J: IBH FUNCTION 27 BX: ALLOC Offset

, GET ADDR(ALLOC) ES: Segment base

An "allocation vector" is maintained in main memory for each
on-line disk drive. Various system proqrams use the information
provided by the allocation vector to determine the amount of
remaining storage (see the STAT program). Function 27 returns the
segment base and the offset address of the allocation vector for the
currently selected disk dr ive. The allocation information may,
however, be invalid if the selected disk has been marked read/only.

Entry Return

,~------------------~ CL: lCH FUNCTION 28

WRITE PROTECT DISK
,'-------------------~

The disk write protect function provides temporary write
protection for the currently selected disk. Any attempt to write to
the disk, before the next cold start, warm start, disk system reset,
or drive reset operation produces the message:

Bdos Err on d: R/O

All Information Presented Here is Proprietary to Digital Research

39

CP/M-86 System Guide 4.3 BDOS File Operations

Entry Return

~~----------------~~ CL: lDH FUNCTION 29 BX: R/O Vector Value

GET READ/ONLY

\ VECTOR
~----------------~

Function 29 returns a bit vector in register ax which indicates
d rives which have the temporary read/only bi t set. Similar to
function 24, the least significant bit corresponds to drive A, while
the most significant bit corresponds to drive P. The R/O bit is set
either by an explicit call to function 28, or by the automatic
software mechanisms within CP/M-86 which detect changed disks.

Entry Return

• ,
" •

CL: lEH FUNCTION 30 AL: Return Code

DX: FCB SET FILE
Offset , ATTRIBUTES

The Set File Attributes function allows programmatic
manipulation of permanent indicators attached to files. 1n
particular, the RIO, System and Archive attributes (tl', t2', and
t3') can be set or reset. The DX pair addresses a FeB containing a
file name with the appropriate attributes set or reset. It is the
user's responsibility to insure that an ambiguous file name is not
specified. Function 30 searches the default disk drive directory
area for directory entries that belong to the, current user number
and that match the FCB specified name and type fields. ,1-\11 matching
directory entries are updated to contain the selected indicators.
Indicators fl' through f4' are not presently used, but may be useful
for applications programs, since they are not involved in the
matching process during file open and close operations. Indicators
f5' through f8' are reserved for future system expansion. The
currently assigned attributes are defined as follows:

tl~: The R/O attribute indicates if set that the file
is in read/only status. aDOS will not allow write
commands to be,issued to files in RIO status.

t2~: The System attribute is referenced by the CP/M DIR
utility. If set: DIR will not display the file in
a directory display.

All Information Presented Here is Proprietary to Digital Research

40

CP/M-86 System Guide 4.3 BDOS File Operations

t3': The Archive attribute is reserved but not actually
used by CP/M-86 If set it indicates that the fi'_e
has been wri tten to back UP storaqe bv a user
written archive program. 'I'o implement this
facility, the archive ~rogram sets this attrihute
when it copies a file to back up storaqe; any
programs updating or creat ing files reset th i.s
attribute. Further, the archive program backs up
only those files that have the Archi.ve attribute
reset. Thus, an automati.c back ul? facili.tv
restricted to TTlonifi.ed files can be easily
implemented.

'Function 30 returns with register. AL set to Oli'~H (255 necilllal)
if the referenced file cannot be found, otherwise a value of zero is
returned.

Entry

" CL: lFf:l FUNCTION 31

GE'r' Af'tDR
(DISK PARMS)

Return

RX: DPB Offset

F.S: Seqment Base

rrhe offset and the segment base of the BTO~ resident n.isk
parameter block of the currently selected drive are returneo in BX
and ES as a result of this function call. 'T'his control block can be
used for either of two ourooses. First, the di.sk parameter values
can be extracted for disl?lay and space computation purposes, or
transient programs can dynamically change the values of current di.sk
~arameters when the di.sk environment changes, if required.
Normally, application programs will not require this f.ac'i'lty.
Section 6.3 defines the BIOS disk parameter block.

Entry
•

CL: 20H

DL: OFFH (get)
or.

User r.ode
(set)

I\,

"-

FUNCTION 32

SET/GBT
USER ~ODE

~eturn

AT,.,: Current Code
or no value

An application program can change or inter~ogate the currently
active user number by calling function 32. If. register DL = OFFH,
then the value of the current u~er number is returned in register
AL, where the value is in the range 0 to 11). If register DL is not
OFFH,. then the current user number is changed to the value of DIJ
(modulo 16).

All Information 'Presented Here is Proprietary to Digital Research

41

CP/M-86 System Guide 4.3 BDOS File Operations

Entry 'Return
• 1"\ '" •

CL: 21H FUNCTION 33 AL: Return Code

DX: FCB READ RANDOM
Offset

,

The Read Random function is similar to the sequential file read
operation of previous releases, except that the read operation takes
place at a particular record number, selected by the 24-bit value
constructed from the three byte field following the FCB (byte
positions rO at 33, rl at 34, and r2 at 35). Note that the sequence
of 24 bits is stored with least significant byte first (rO), middle
byte next (rl), and high byte last (r2). CP/M does not reference
byte r2, except in computing the size of a file (function 35). Byte
r2 must be zero, however, since a non-zero value indicates overflow
past the end of file.

Thus, the rO,rl byte pair is treated as a double-byte, or
"word" value, which contains the record to read. This value ranges
from 0 to 65535, providing access to any particular record of any
size file. In order to access a file using the Read Random
function, the base extent (extent 0) must first be opened. Although
the base extent mayor may not contain any allocated data, this
ensures that the FCB is properly initializ~d for subsequent random
access operations. The selected record number is then stored into
the random record field (rO,rl), and the BOOS is called to read the
record. Upon return from the call, register AL either contains an
error code, as listed below, or the value 00 indicating the
operation was successful. In the latter case, the buffer at the
current DMA address contains the randomly accessed record~ Note
that contrary to the sequential read opera~~on, the record number is
not advanced. Thus, subsequent random read operations continue to
read the same record.

Upon each random read operation, the logical extent and current
record values are automatically set. Thus, the file can be
sequentially read or written, starting from the current randomly
accessed position. Note, however, that in this case, the last
randomly read record will be re-read as you switch from random mode
to sequential read, and the last record will be re-written as you
switch to a sequential write operation. You can, of course, simply
advance the random record position following each random read or
write to obtain the effect of a sequential I/O o~eration.

All Information Presented Here is Proprietary to Digital Research

42

CP/M-86 System Guide 4.3 BOOS File Operations

Error codes returned in register AL following a random read are
listed in Table 4-4, below.

Table 4-4. Function 33 (Read Random) Error Codes

Code I Meaning

01 Reading unwr i tten data - This error code is returned
when a random read operation accesses a data block which
has not been previously written.

02 (not returned by the Random Read command)

03 Cannot close current extent - This error code is
returned when BDOS cannot close the cur rent extent pr ior
to moving to the new extent containing the record
specified by bytes rO,rl of the FCB. This error can be
caused by an overwritten FCB or a read random operation
on an FCB that has not been opened.

04 Seek to unwritten extent - This error code is returned
when a random read operation accesses an extent that has
not been created. This error situation is equivalent to
error 01.

05 (not returned by the Random Read command)

06 Random record number out of range - This error code is
returned whenever byte r2 of the FCB is non-zero.

Normally, non-zero return codes can be treated as missing data, with
zero return codes indicating operation complete.

All Infgr~fttion Presented Here is Proprietary to Digital Research

43

CP/M-86 System Guide

Entry

CL: 22H

DX: FCB
Offset

4.3 BDOS File Operations

Return
~~----------------'~

FUNCTION 34 AL: Return Code

WRITE RANDOM
,'-----------------~

The Write Random operation is initiated similar to the Read
Random call, except that data is wr i tten to the disk from the
current DMA address. Further, if the disk extent or data block
which is the target of the write has not yet been allocated, the
allocation is performed before the write operation continues. As in
the Read Random operation, the random record numbe~ is not changed
as a result of the write. The logical extent number and current
record positions of the file control block are set to corre~pond to
the random record which is being written. Sequential read or write
operations can commence following a random write, with the note that
the currently addressed record is either read or rewritten again as
the sequential operation begins. You can also simply advance the
random record position following each write to get the effect of a
sequential write operation. In particular, reading or writing the
last record of an extent in random mode does not cause an automatic
extent switch as it does in sequential mode.

In order to access a file using the Write Random function, the
base extent (extent 0) must first be opened. As in the Read Random
function, this ensures that the FeB is properly initialized for
subsequent random access operations. If the file is empty, a ~ake
File function must be issued for the base extent. Although the base
extent mayor may not contain any allocated data, this ensures that
the file is properly recorded in the directory, and is visible in
DIR requests.

Upon return from a Write Random call, register AL either
contains an error code, as listed in Table 4-5 below, or the value
00 indicating the operation was successful.

Table 4-5. Function 34 (WRITE RANDOM) Error Codes

codel Meaning

01 (not returned by the Random Write command)

02 No available data block - This conditi0n is encountered
when the Wri te Rando1n command attempts to allocate a new
data block to the file and no unallocated data blocks
exist on the selected disk drive.

A1l Information Presented Here is Proprietary to Digital Research

44

CP/M-86 System Guide 4.3 BOOS File Operations

Table 4-5. (continued)

Code I Meaning

03 Cannot close current extent - This error code is
returned when BOOS cannot close the current extent prior
to moving to the new extent containing the record
specified by bytes rO,r1 of the FeB. This error can be
caused by an overwritten FCB or a write random operation
on an FCB that has not been opened.

04 (not returned by the Random Write command)

05 No available directory space - This condi tion occurs
when the write command attempts to create a new extent
that requires a new directory entry and no available
directory entries exist on the selected disk drive.

06 Random record number out of range - This error code is
returned whenever byte r2 of the FeB is non-zero.

'Entry
j

Return
~ 1\) ~ ~

CL: 23H FUNCTION 35 Random Record
Field Set

DX: FeB COMPUTE FILE
Offset

"
SIZE

When computing the size of a file, the DX register addresses an
FCB in random mode format (bytes rO, rl, and r2 are pr·esent). The
FCB contains an unambiguous file name which is used in the directory
scan. Upon return, the random record bytes contain the "virtual"
file size which is, in effect, the record address of the record
following the end of the file. If, following a call to function 35,
the high record byte r2 is 01, then the file contains the maximum
record count 65536. Otherwise, bytes rO and r1 constitute a l6-bit
value (rO is the least significant byte, as before) which is the
file size.

Data can be appended to the end of an existing file by simply
calling function 35 to set the random record position to the end of
file, then performing a sequence of random writes starting at the
preset record address.

The virtual size of a file corresponds to the physical size
when the file is written sequentially. If, instead, the file was
created in random mode and "holes" exist in the allocatio~, then the
file may in fact contain fewer records than the size indicates. If,
f or example, a single record wi th record number 65535 (CP /M~ s
maximum record number) is written to a file using the Write Random
function, then the virtual size of the file is 65536 records,
although only one block of data is actually allocated.

All Information Presented Here is Proprietary to Digital Research

45

CP/M-86 System Guide

Entry

CL: 24H FUNCTION 36

SET RANDOM
RECORD

DX: FCB
Offset ,

'-----------------~

4.3 BDOS File Operations

Return

Random Record
Field Ret

The Set Random Record function causes the BOOS to automatically
produce the random record position of the next record to be accessed
f rom a file which has been read or wr i tten sequentially to a
particular point. The function can be useful in two ways.

First, it is often necessary to ,initially read and. scan a
sequential file to extract the positions of various "key" fields.
As each key is encountered, function 36 is called to compute the
random record position for the data corresponding to this key. If
the data unit size is 128 bytes, the resulting record position minus
one is placed into a table with the key for later retrieval. After
scanning the entire file and tabularizing the keys and their record
numbers, you can move instantly to a particular keyed record by
performing a random read using the corresponding random record
number which was saved earlier. The scheme is easily generalized
when variable record lengths are involved since the program need
only store the buffer-relative byte position along with the key and
record number in order to find the exact starting position of the
keyed data at a later time.

A second use of function 36 occurs when switching from a
sequential read or write over to random read orO write. A file is
sequentially accessed to a particular point in the file, function 36
is called which sets the record number, and subsequent random read
and write operations continue from the next record in the file.

Entry Return
~ 1\ " ~

CL: 25H FUNCTION 37 AL: DOH

OX: Drive RESET DRIVE
Vector \,

The Reset Drive function is used to programmatically restore
specified drives to the reset state (a reset drive is not logged-in
and is in read/write status). The passed parameter in register DX
is a 16 bit vector of drives to be reset, where the least
significant bit corresponds to the first drive, A, and the high
order bit corresponds to the sixteenth drive, labelled P. Bit
values of "1" indicate that the specified drive is to be reset.

In order to maintain compatibility with MP/M, CP/M returns a
zero value for this function.

All Information Presented Here is Proprietary to Digital Research

46

CP!M-86 System Guide

Entrv Return
• " " •

CL: 28H FUNCTION 40 .AL: Return Code

DX: FCB WRITE RANDOM
Offset \ WITH ZERO FILL

The Write Random With Zero Fill function is similar to the
Write Random function (function 34) with the exception that a
previously unallocated data block is initialized to records filled
with zeros before the record is written. If this function has been
used to create a file, records accessed by a read random operation
that contain all zeros identify unwritten random record numbers.
Unwritten random records in allocated data blocks of files created
using the Write Random function contain uninitialized data.

Entry 'Return

CL: 32H FUNCTION 50

DX: BIOS . '- DI RECT B lOS CALL
Descriptor

Function 50 provides a direct BIOS call and transfers control
through the BOOS to the BIOS. The nx register addresses a five-byte
memory area containing the BIOS call parameters:

a-bit 16-bit 16-bit

IFunc value (CX) value (Dx)1

where Func is a BIOS function number, (see Table 5-1), and value (CX)
and value(DX) are the l6-bit values which would normally be passed
directly in the ex and DX registers with the BIOS call. The CX and
ox values are loaded into the 8086 registers before the BIOS call is
initi.ated.

All Information Presented Here is Proprietary to Digital Research

47

CP/M-86 System Guide

Entry

CL: 33H

DX: Base
Address

4.3 BOOS File, Operations

Return

FUNCTION 51

SET DMA BASE
,'-----------------~

Fun c t ion 51 set s th e ba s ere g is t e r for sub s e qu e n t DMA
transfers. The word parameter in 'DX is a ~aragra~h address and is
used with the DMA offset to specify the address of a 128 byte buffer
area to be used in the disk read and write functions. Note that
upon initial program loading, the default DMA base is set to the
address of the user~s data segment (the initial value of DS) and the
DMA offset is set to 0080H, which provides access to the default
buffer in the base page. -

Entry Return

CL: 34B FUNCTION 52 BX: DMA Offset

GET DMA BASE
,'------------------

ES: DMA Segment

Function 52 returns the current DMA Base Segment address in ES,
with the current DMA Offset in ox.

4.4 BDOS Memory Management and Load

Memory is allocated in two distinct ways under CP/M-86. The
first is through a static allocation map, located within the BIOS,
that defines the physical memory which is available on the host
system. In this way, it is possible to operate CP/~-86 in a memory
configuration which is a mixture of up to eight non-contiguous areas
of RAM or ROM, along with reserved, missing, or faulty -memory
regions. In a simple RAM-based system with contiguous memory, the
static map defines a single region, usually starting at the end of
the BIOS and extending up to the end of available memory.

Once memory is physically map'ped in this manner, CP/1\1-86
performs the second level of dynamic allocation to support transient
program loading and execution. CP/M-86 allows dynamic allocation of
memory into, again, eight regions. A request for allocation takes
place ei ther implici tly, tRrough a program load operation, or
explicitly through the BDOS calls given in this section. Programs
themselves are loaded in two ways: through a command entered at the
CCP level, or through the BOOS Program Load operation (function 59) •
Multiple programs can be loaded at the CCP level, as long as each
program executes a System Reset (function 0) and remains in memory
(DL = OIH). Multiple programs of this type only receive control by
intercepting interrupts, and thus under normal circumstances there

All Information Presented Here is Proprietary to Digital Research

48

CP/M-86 System Guide 4.4 BOOS Memory Management and Load

is only one transient program in memory at any given time. If,
however, multiple programs are present in memory, then CONTROL-C
characters entered by the operator delete these programs in the
opposite order in which they were loaded no matter which program is
actively reading the console.

Any given program loaded through a CCP command can, itself,
load additional programs and allocate data areas. Suppose four
regions of memory are allocated in the following order: a program
is loaded at the CCP level through an operator command. The CMO
file header is read, and the entire memory image consisting of the
program and its data is loaded into region A, and execution begins.
~his program, in turn, calls the BnOS Program Load function (59) to
load another program into region B, and transfers control to the
loaded program. The region B program then allocates an additional
region C, followed by a region D. The order of allocation is shown
in Figure 4-1 below:

Region A

Region B

Region C

Region 0

Figure 4-1. Example Memory Allocation

There is a hierarchical ownership of these regions: the program in
A controls all memory from A through D. The program in B also
controls regions B through o. The program in A can release regions
B through D, if desired, and reload yet another program. DDT-86,
for example, operates in this manner by executing the Free Memory
call (function 57) to release the memory used by the current program
before loading another test program. Further, the program in B can
release regions C and 0 if required by the application. It must be
noted, however, that if either A or B terminates by a System Reset
(BOOS function 0 with DL = OOH) then all four regions A through D
are released.

All Information Presented Here is Proprietary to pigital Research

49

CP/M-86 System Guide 4.4 BOOS Memory Management and Load

A transient program may release a portion of a region, allowing
the released portion to be assigned on the next allocation request.
The released ?ortion must, however, be at the beginning or end of
the region. Suppose, for example, the program in region S above
receives 800H paragraphs at paragraph location 100H following its
first allocation request as shown in Figure 4-2 below.

Length =
8000H

1000H:

Region C

Figur.e 4-2. Example Memory Region

Suppose further that region D is then allocated. The last 200H
paragraphs in region C can be returned without affecting region 0 by
releasing the 200H paragraphs beginning at paragra~h base 700H,
resulting in the memory arrangement shown in Figure 4-3.

Region C
Length = { 6000H

1000H:

7000H: 111111/1111
IIIIIIIIIII

Length = { 2000H

Figure 4-3. Example Memory Regions

The region beginning at paragraph address 700H is now available for
allocation in the next request. Note that a memory request will
fail if eight memory reg ions have already been allocated. Normally,
if all program units can reside in a contiguous region, the system
allocates only one region.

All Information Presented Here is Proprietary to Digital Research

50

CP/M-86 System Guide 4.4 aDos Memory Management and Load

Memory management functions beginning at 53 reference a Memory
Control Block (MCB) , defined in the calling program, which takes the
form:

l6-bit 16-bit 8-bit

MCB: M-Base M-Length M-Ext

where M-Base and M-Length are ei ther input or output values
expressed in l6-byte paragraph units, and M-Ext is a returned hyte
value, as defined specifically with each function code. An error
condi tion is normally flagged wi th a OF'FH returned value in order to
match the file error conventions of CP/M.

Entry

Cf.l: 35H

DX: Offset
of MCB "

Return

FUNCTION 53 AL: Return Code

GET MAX MEM

Function 53 finds the largest available memory region which is
less than or equal to M-Length paragraphs. If successful, M-Base is
set to the base paragraph address of the available area, and M
Length to the paragraph length. AL has the value OFFH upon return
if no memory is available, and OOH if the request was successful.
M-Ext -is set to 1 if there is additional memory for allocation, and
o if no additional memory is available.

Entry Return

CL: 36H FUNCTION 54 AL: Return Code

DX: Offset "
of MCB '-----------------

GET ABS MAX

Function 54 is used to find the largest possible region at the
absolute paragraph boundary given by M-Base, for a maximum of M
Length paragraphs. M-Length is set to the actual length if
successful. AL has the value OFFH upon return if no memory is
available at the absolute address, and OOH if the request was
successful.

All Information Presented Here is Proprietary to Digital Research

51

CP/M-86 System Guide 4.4 BDOS Memory Management and Load

Entry Return

CL: 37H FUNCTION 55 AL: Return Code

DX: Offset ALLoe MEM
of MCB ,'-----------------~

The allocate memory function allocates a memory area according
to the MCB addressed by DX. The allocation request size is obtained
from M-Length. Funct ion 55 returns in the user'" s MCB the base
paragraph address of the allocated region. Register ~L contains a
DOH if the request was successful and a OFFH if the memorv could not
be allocated.

Entry
"-

Return
CL: 38H FUNCTIOf\J 56 AL: Return Code

DX: Offset \ ALLoe .ABS MEM
of MCB

~he allocate absolute memory function allocates a memory area
according to the MCB addressed by ox. The allocation request size
is obtained from M-Length and the absolute base address from M-Base.

, Register AL contains a OOH if the request was successful and a DFFH
if the memory could not be allocated.

Entry Return
"

CL: 39H FUNCTION 57

DX: Offset ,
of MeB '-----------------~

FREE MEM

Function 57 is used to release memory areas allocated to the
program. The value of the M-Ext field controls the operation of
this function: if M-Ext = OFFH then all memory areas allocated by
the calling program are released. Otherwise, the memory area of
length M-Length at location M-Base given in the MCB addressed by ox
is released (the M-Ext field·should be set to OOH in this case). As
described above, either an entire allocated region must be released,
or the end of a region must be released: the middle section cannot
be returned under CP/M-86.

All Information Presented Here is Proprietary to Digital Research

52

CP/M-86 System Guide 4.4 BOOS Memory Management and Load

Entry Return
~ "

CL: 3AH FUNCTION 58

, FREE ALL MEM

Funct ion 58 is used to release all memory in the CP /M-86
environment (normally used only by the CCP upon initialization).

Entry Return .. " " ..
CL: 3BH FUNCTION 59 AX: Return Code/

Base Page Addr
OX: Offset , PROGRAM LOAD BX: Base Page Addr

of FCB

Function 59 loads a CMD file. TJpon entry, register ox contains
the OS relative offset of a successfully opened FCB which names the
input CMD file. AX has the value OFFFFH if the program load was
unsuccessful. Otherwise, AX and BX both contain the paragraph
address of the base page belonging to the loaded program. The base
address and segment length of each segment is stored in the base
page. Note that upon program load at the CCP level, the DMA base
address is initialized to the base page of the loaded program, and
the DMA offset address is initialized to 0080H. However, this is a
function of the CCP, and a function 59 does not establish a default
DMA address. It is the responsibility of the program which executes
f.unction 59 to execute function 51 to set the DMA base and function
26 to set the DMA offset before passing control to the loaded
program.

All Information Presented Here is Proprietary to Digital Research

53

Section 5
Basic I/O System (BIOS) Organization

The distribution version of CP/M-86 is setup for operation with
the Intel SBe 86/12 microcomputer and an Intel 204 diskette
controller. All har'dware dependencies are, however, concentrated in
subroutines which are coliectively referred to as the Basic I/O
System, or BIOS. A CP/M-86 system implementor can modify these
subroutines, as described below, to tailor CP!M-86 to fit nearly any
8086 or 8088 operatinq environment. This section describes the
actions of each ""BIOS en"try point, and defines variables and tables
referenced within the BIOS. The discussion of Disk Defi.nition
Tables is, however, treated separately in the next section of this
manual.

5.1 Organization of the BIOS

The BIOS portion of CP/M-86 resides in the topmost portion of
the operating system (highest addresses) , and takes the qeneral form
shown in Figure 5-1, below:

CS, DS, ES, SS:

Console
Command
Processor

and
Basic
Disk
Operatinq
System

~S + 2500H: BIOS Jum? Vector

CS + 253FH:
BIOS Entry Points

BIOS:
Disk

Parameter
F1:'ables

Uninitialized
Scratch RAM

Figure 5-1. General CP/M-86 Organization

All Information Presented Here is Proprietary to Digital Research

55

CP/M-86 System Guide 5.1 Organization of the BIOS

As descr ibed in the following sections, the CCP and BDOS are
supplied with CP/M-86 in hex file form as CPM.H86. In order to
implement CP/M-86 on non-standard hardware, you must create a BIOS
which performs the functions listed below and concatenate the
resulting hex file to the end of the CPM.H86 file. The GENCMD
utility is then used to produce the CPM.SYS file for subsequent load
by the cold start loader. The cold start loader that loads the
CPM.SYS file into memory contains a simplified form of the BIOS,
called the LDBIOS (Loader BIOS). It loads CPM.SYS into memory at
the location defined in the CPM.SYS header (usually 0400H). The
procedure to follow in construction and execution of the cold start
loader and the CP!M-86 Loader is given in a later section.

Appendix D contains a listinq of the standard CP/M-86 BIOS for
the Intel SBC 86/12 system using the Intel 204 Controller Board.
Appendix E shows a sample "skeletal" BIOS called CBIOS that contains
the essential elements with the device drivers removed. You may
wish to review these listings in order to determine the overall
structure of the BIOS.

5.2 The BIOS Jump Vector

Entry to the BIOS is through a "jump vector" located at offset
2500H from the base of the operating system. The jump vector is a
sequence of 21 three-byte jump instructions which transfer program
control to the individual BIOS entry points. Although some non
essential BIOS subroutines may contain a single .return (RET)
instruction, the corresponding jump vector element must be present
in the order shown below in Table 5-1. An example of a BIOS iump
vector may be found in Appendix D, in the standard CP/M-86 BIOS
listing.

Par ameters for the ind i vidual subroutines in the BIOS are
passed in the ex and DX registers, when required. ex receives the
first parameter; DX is used for a second argument. Return values
are passed in the registers acco dinq to type: Byte values are
returned in AL. Word values (16 bits) are returned in BX. Specific
parameters and returned values are described with each subroutine.

All Information Presented Here is Proprietary to Digital Research

56

CP/M-86 System Guide 5.2 The. BIOS Jump Vector

Table 5-1. BIOS Jump Vector

Offset from
Beginninq
of BIOS

2500H
2503H
2506H
2509H
250CH
250FH
2512H
2515H
2518H
251BH
251EH
2521H
2524H
2527H
252AH
252DH
2530H
2533H
2536H
2539H
253CH

Suggested. BIOS
Instruction F*

,-TMP INI'I' 0
JMP WBOOrr:' 1
JMP CONST 2
JMP CONIN 3
JMP CONOUT 4
JMP LIST 5
,TMP PUt\fCH 6
JMP READER 7
,JMP HOME 8
JMP SELDSK 9
,JMP SET'I'RK 10
JMP SETSEC 11
,JMP SETDMA 12
JMP READ 13
,-TMP WRITE 14
JMP LISTST 15
,JMP SECTRAN 16
,JMP SETDMAB 1 7
,TMP GETSEGB 18
JMP GETIOB 19
JMP 8ETIOB 20

Description

Arrive Here from Cold Boot
Arrive Here for Warm Start
Check for Console Char Ready
Read Console Character In
Write Console Character Out
Write Listing Character Out
Write Char to Punch Device
Read Reader Device
Move to Track 00
Select Disk Drive
Set Track Number
Set Sector Number
Set DMA Offset Address
Read Selected Sector
Write Selected Sector
Return List Status
Sector Translate
Set DMA Segment Address
Get MEM DESC Table Offset
Get I/O Mapping Byte
Set I/O Mappinq Byte

~here are three major divisions in the BIOS iump table: system
(re) initialization subroutines, simple character I/O.subroutines,
and disk I/O subroutines.

5.3 Simple Peripheral Devices

All simple character I/O operations are assumed to be performed
in ASCII, upper and lower case, with hiqh order (parity bit) set to
zero. An end-of-file condition for an input device is qiven by an
ASCII control-z (lAH). Peripheral devices are seen by CP/M-86 as
"logical" devices, and are assigned to physical devices within the
BIOS. Device characteristics are defined in Table 5-2.

All Information Presented Here is Proprietary to Digital Research

57

CP/M-86 System Guide 5.3 Simple Peripheral nevices

Table 5-2. CP/M-86 Logical Device Characteristics

Device Name I Characteristics

CONSOLE The p r inc i pal i n t era c t i v e con sol e w h i c h
communicates with the operator, accessed through
CaNST, CONIN, and CONourr. Typically, the CO~SOLE
is a device such as a CRT or Teletype.

LIST

PUNCH

READER

The principal listing device, if it exists on your
system, which is usually a hard-copy device, such
as a printer or Teletvpe.

The principal tape punching device, if it exists,
which is normally a high-speed paper tape punch or
Teletype.

The pr inc ina 1 tape read ing device, such as a
simpl~ opti~al reader or teletype.

Note that a single peripheral can be assigned as the LIST,
Pl1NCH, and READER device simultaneously. If no peripheral device is
assigned as the LISrr, PUNCH, or READER device, your CBIOS should
give an appropriate error messaqe so that the svstem does not "hanq"
~f the de~ic~ is accessed by pip or some other transfent proqra~.
Alternately, the PUNCH and LIST subroutines can iust simply return,
and the READER subroutine can return with a lAH (ctl-Z) in req A to
indicate immediate end-or-file.

For added flexib i 1 i ty, you can optionally implement the
"IOBYTE" function which allows reassignment of physical and logical
devices. The IOBYTE function creates a mappinq of logical to
physical devices which can be altered rluring CP/Tvl-86 processing (see
the STAT command). rrhe definition of the IOBYTE function
corresponds to the Intel standard as follows: a single location in
the BIOS is maintained, called IOBYTE, which defines the logical to
physical device mapping which is in effect at a particular time.
rrhe mapping is performed by splitting the IOBYTE into four distinct
fields of two bits each, called the CONSOLE, READER, PUNCH, and IJIST
fields, as shown below:

most significant least significant

IOBYTE I LISrr PUNCH READER I CONSOLE

bits 6,7 bits 4,5 bits 2,3 bits 0,1

All Information Presenterl Here is Proprietary to Digital Research

58

CP/M-86 System Guide 5.3 Simple Peripheral Devices

The value in each field can be in the range 0-3, defining the
assigned source or destination of each logical aevice. The values
which can be assigned to each field are given in ~able 5-3, below.

CONSOLE
o
1
2

3

READER
o
1
2
3

Table 5-3. IOBYTE Field Definitions

field (bits 0,1)
- console is assigned to the console printer (TTY:)
- console is assigned to the CRT device (CRT:)
- batch mode: use the READER as the CONSOLE input,

and the LIST device as the CONSOLE output (BAT:)
- user defined console device (Uel:)

field (bits 2,3)
- READER is the Teletype device (TTY:)

HEADER is' the high-speed reader device (RDR:)
user defined reader # 1 (URI:)
user defined reader # 2 (UR2:)

PUNCH
o
1
2
3

field (bits 4,5)
- PUNCH is the Teletype device (TTY:)

PUNCH is the high speed punch device (PUN:)
- user defined punch # I (UPI:)
- user defined punch # 2 (UP2:)

LIST field (bits 6,7)
o - LIS~ is the Teletype device (TTY:)
1 - LIST is the CRT device (CR~:)
2 - LIST is the line printer device (LPT:)
3 - user defined list device (ULI:)

~ote again that the implementation of the IOBYTE is optional,
and affects only the organization of your r.BIOS. No CP/M-86
utilities use the IOBYTE except for PIP which allows access to the
physical devices, and STA~ which allows logical-physical assignments
to be made and displayed. In any case, you should omi t the IOBYTE
implementat ion until your basic CBIOS is fully implemented and
tested, then add the IOBYTE to increase your facilities.

All Information Presented Here is Proprietary to Digital Research

59

CP/M-86 System Guide 5.4 BIOS Subroutine Entry Points

5.4 BIOS Subroutine Entry Points

The actions which must take place upon entry to each BIOS
subroutine are given below. It should be noted that disk IIO is
always performed through a sequence of calls on the various disk
access subroutines. These setup the disk number to access, the
track and sector on a particular disk, and the direct memory access
(DMA) offset and segment addresses involved in the I/O operation.
After all thes-e parameters have been setup, a call is made to the
READ or WRITE function to perform the actual I/O operation. ~ote
that there is often a single call to SELDSK to select a disk drive,
followed by a number of read or wri.te operations to the selected
disk before selecti ng another dr i ve for subsequent operat ions.
Similarly, there may be a call to set the DMA segment base and a
call to set the DMA offset followed by several calls which read or
wr i te from the selected DMA address before the Dl\1A address is
changed. The track and sector subroutines are always called before
the READ or WRI~E operations are performed.

The READ and WRITE subroutines shouln perform several retries
(10 is standard) before reportinq the error condition to the BDOS.
The HOME subroutine mayor may not actually perform the track 00
seek, depending upon your controller characteristics~ the important
point is that track 00 has been selected for the next operation, and
is often treated in exactly the same manner as SE'I"T.'RK wi th a
parameter of 00.

Table 5-4. BIOS Subroutine Summary

Subroutine I Description

IN IT

WBOOT

CONST

This subroutine is called directly by the CP/M.-86
loader after the CPM.SYS file has been read into
memory. The T?rocedure is responsible for any
hardwar e in i tial ization not performed by the
bootstrap loader, setting ini tial values for BIOS
variables (including IOBYTE) , printing a sign-on
message, and initializing the interrupt vector to
point to the BDOS offset (OBllH) and base. When
this routine completes, it jumps to the CCP.
offset (OH). All segment registers should be
initialized at this time to contain the base of
the ope~ating system.

This sUb~ne is called whenever a program
terminates by performing a BDOS function #0 call.
Some re-initialization of the hardware or
software may occur here. When this routine
completes, it jumps directly to the warm start
entry point of the CCP (06H).

Sample the status of the currently assigned
console device and return OFFH in register ~L if
a character is ready to read, and DOH in register
AL if no console characters are ready.

All Information Presented Here is Proprietary to Digital Research

60

CP!M-86 System Guide 5.4 BIOS /Subrout ine Entry Points

Subroutine 1
CONIN

CONOUT

LIST

PUNCH

READER

HOME

rrable 5-4. (continued)

Description

Read the next console character into reqister AL,
and set the parity bit (high order bit) to zero.
If no console character is ready, wait until a
character is typed before returning.

Send the character from register CL to the
console out-put device. The character is in
~SCII, with high order parity bit set to zero.
You may want to include a time-out on a line feed
or carriage return, if your console device
requir.es some time interval at the end of the
line (such as a rr..'I Silent 700 terminal). You
can, if you wish, filter out control characters
which have undesirable effects on the console
device.

Send the character from register CL to the
currently assigned listing device. The character
is in ASCII with zero parity.

Send the character from register CL to the
currently assigned punch device. The character
is in ~SCII with zero parity.

Read the next character from the currently
assigned reader device into register AL with zero
parity (high order bit must be zero). An end of
file condition is reported by returning an ASCII
CONTROL-Z (IAH).

Return the disk head of the currently selected
disk to the track 00 position. If yo~r
controller does not have a special feature for
finding track 00, you can translate the call into
a call to SETTR~ with a parameter of O.

All Information Presented Here; is Proprietary to Digital Research

61

CP/M-86 System Guide 5.4 BIO~ Subroutine Entry Points

Table 5-4. (continued)

SUbroutinel Description

SELDSK

SETTRK

SET~EC

Select the disk drive given by reqister CL for
further operations, where register CL contains 0
for drive A, 1 for drive B, and so on up to 15
for drive p (the standard CP/M-86 distribution
version supports two drives). On each disk
select, SELDSK must return in BX the base address
of the selected drive~s Disk Parameter qeader.
For standard floppy disk drives, the content of
the header and associated tables does not change.
The sample BIOS included wi th CP /M-86 callen
CBIOS contains an example program seqment that
performs the SELDSK function. If there is an
attempt to select a non-existent drive, SELDSK
returns BX=OOOOH as an error indicator. Although
SELDSK must return the header address on each
call, it is advisable to postpone the actual
phys ica 1 di sk select o?eration unti 1 an I/O
function (seek, read or write) is per.formed.
This is due to the fact that disk select
operations may take place without a subsequent
disk operation and thus disk access may be
substantially slower using some disk controllers.
On entry to SELDSK it is possible to determine
whether it is the first time the specified disk
has been selected. 'Register DL, bit 0 (least
significant bit) is a zero if the drive has not
been previously selected. Thi.s information is of
interest in systems which read confiquration
information from the disk in order to set UP a
dynamic disk definition table.

Register ex contains the track number for
subsequent disk accesses on the currently
selected drive. You can choose to seek the
selected track at this time, or delay the seek
until the next read or write actually occurs.
Register CX can take on values in the range 0-76
corresponding to valid track numbers for standard
floppy di.sk drives, and 0-65535 for non-standard
disk subsystems.

Register ex contains the translated sector number
for subsequent disk accesses on the currently
selected drive (see SECTRAN, below). You can
choose to send this information to the controller
at this point, or instead delay sector selection
until a read or write operation occurs.

All Information Presented Here is Proprietary to Digital Research

62

CP/M-86 System Guide 5.4 BIOS Subroutine Entry Points

Subroutine I
SETDMA

READ

WRITE

LISTST

Table 5-4. (continued)

Descrit;>tion

Register CX contains the DMA (disk memory access)
offset for subsequent read or write operations.
For example, if ex = 80H when SETDMA is called,
then all subsequent read operations read their
data into 80H through OFFH offset from the
current DMA segment base, and all subsequent
wr ite operations get their data from that
address, until the next calls to SETDMA and
SETDMAB occur. Note that the controller need not
actually support direct memory access. If, for
example, all data is received and sent through
I/O ports, the CBIOS which you construct will use
the 128 byte area starting at the selected DMA
offset and base for the memory buffer during the
following read or write operations.

Assuming the drive has been selected, the track
has been set, the sector has been set, and the
DMA offset and segment base have been specified,
the READ subroutine attempts to read one sector
based upon these parameters, and returns the
following error codes in register AL:

o no errors occurred
1 non-recoverable error condition occurred

Currently, CP/M-86 responds only to a zero or
non-zero value as the return code. That is, if
the value in register AL is 0 then CP/M-86
assumes that the disk operation completed
properly. If an error occurs, however, the CBIOS
should attempt at least 10 retries to see if the
error is recoverable. When an error is reported
the BOOS will print the message "BDOS ERR ON x:
BAD SECTOR". The operator then has the option of
typing RETURN to ignore the error, or CONTROL-C
to abort.

Write the data from the currently selected DMA
buffer to the currently selected drive, track,
and sector. The data should be marked as "non
deleted data" to maintain compatibility with
other CP/M systems. The error codes given in the
READ command are returned in register AL, with
error recovery attempts as described above.

Return the ready status of the list device. The
value 00 is returned in AL if the list device is
not ready to accel?t a character, and OFFH if a
character can be sent to the printer.

All Information Presented Here is Proprietary to Digital Research

63

CP/M-86 System Guide 5.4 BIOS Subroutine Entry Points

Table 5.;...4. (continued)

SUbroutinel Description

SECTRAN

SETDMAB

GETSEGB

Performs logical to physical sector translation
to improve the overall response of CP/M-86.
Standard CP/M-86 systems are shipped with a "skew
factor" of 6, where five physical sectors are
skipped between sequential read or write
operations. This skew factor allows enough time
between sectors for most programs to load their
buffers wi thout missing the next sector. In
computer systems that use fast processors, memory
and disk subsystems, the skew factor may be
changed to improve overall response. Note,
however, that you should maintain a single
density IBM compatible version of CP!M-86 for
information transfer into and out of your
computer system, using a skew factor of 6. In
general, SECTRAN receives a logical sector number
in ex. This logical sector number may range from
a to· the number of sectors -1. Sectran also
receives a translate table offset in DX. The
sector number is used as an index into the
translate table, with the resulting physical
sector number in BX. For standard systems, the
tables and indexing code is provided in the eBIOS
and need not be changed. If DX = OOOOH no
translation takes place, and ex is simply copied.
to BX before returning. Otherwise, SECTRAN
computes and returns the translated sector number
in BX. Note that SECTRAN is called when no
translation is specified in the Disk Parameter
Header.

Register ex contains the seqment base for
subsequent DMA read or write operations. rrhe
BIOS will use the 128 byte buffer at the memory
address determined by the DMA base and the DMA
offset during read and write operations.

Returns the address of the Memory Region Table
(MRT) in BX. The returned value is the offset of
the table relative to the start of the operating
system. The table defines the location and
extent of physical memory which is available for
transient programs.

All Information Presented Here is Proprietary to Digital Research

64

CP/M-86 System Guide 5.4 BIOS Subroutine Entry Points

Table 5-4. (continued)

SUbroutinel Description

GETIOB

SETIOB

Memory areas reserved for interrupt vectors and
the CP/M-86 operating system are not included in
the MRT. The Memory Reg ion Table takes the form:

8-bit

?l.fRT : R-Cn t I
0: R-Base

1: 'R-Base

n: R-Base

l6-bit

R-Length

R-Length

R-Length

16-bit

where R-Cnt is the number of Memory 'Region
Oescri~tors (equal to n+1 in the diagram above) ,
while R-Base and R-Lenqth give the paragraph base
and length of each physically contiguous area of
memory •. ~gain, the reserved interrupt locations,
normally 0-3FFH, and the CP/M-86 operating system
are not included in this mat:>, because the map
contains regions available to transient programs.
If all memory is contiguous, the R-Cnt field is 1
and n = 0, wi th only a single Memory Region
Descriptor which defines the region.

Returns the current value of the logical to
physical input/output device byte (IOBYTE) in AL.
This eight-bit value is used to associate
ph Y sic aId e vice s with CP 1M - 8 6 ~ s f ou r log i cal
devices.

Use the value in CL to set the value of the
IOBYTE stored in the BIOS.

The followi ng sect ion descr ibes the exact layout and
construction of the disk parameter tables referenced by various
subroutines in the BIOS.

All Information Presented Here is Proprietary to Digital Research

65

Section 6
BIOS Disk Definition Tables

Similar to CP/M-BO, CP/~-86 is a table-driven operating system
with a separate field-confiqurab1e Basic I/O System (BIOS). By
altering specific subroutines in the BIOS presented in the previous
section, CP/M-86 can be customized for operation on any RAM-based
8086 or 8088 microprocessor system.

The purpose of this section is to present the organization and
construction of tables within the BIOS that define the
char acter ist ics of a part icular disk system used wi th CP /M-86. . -
~hese tables can be either hano-coded or automatically generaten
usinq the GE~DEF utility provided with CP/M-86. The elements of
these tables are presenteo below.

6.1 Disk Parameter Table Format

In general, each disk drive has an associated (16-byte) disk
parameter header which both contains information about the disk
drive and provides a scratchpad area for certain BDOS operations.
The format of the disk parameter header for each drive is shown
below.

Disk Parameter Header

XLT 0000 0000 0000 DIRBUF DPB CSV ALV

16b l6b 16b 16b l6b l6b l6b l6b

where each element is a word (16-bit) value. The meaning of each
Disk Parameter Header (OPH) element is qiven in Table 6-1.

Table 6-1. Disk Parameter Header Elements

Element I Description

XLT Offset of the logical to physical translation vector,
if used for this particular drive, or the value OOOOH
if no sector translation takes place (i.e, the
physical and logical sector numbers are the same).
Disk drives with identical sector skew factors share
the same translate tables.

0000 Scr atchpad values for use wi thin the BOOS (ini tiaJ
value is unimportant).

All Information Presented Here is Proprietary to Digital Research

67

CP/M-86 System Guide 6.1 Disk Parameter ~able Format

Element J
DIRBUF

DPB

CSV

Table 6-1. (continued)

Description

Offset of a 128 byte scratchpad area for directory
operations within BOOS. All DPH~s address the same
scratchpad area.

Offset of a disk parameter block for th is dr iv(~.
Drives with identical disk characteristics address the
same disk parameter block.

Offset of a scratchl;>ad area used for software check for
changed disks. ~his offset is different for each DPH.

Offset of a scratchoad area used by the BOOS to keep
disk storage allocation information. ~his offset is
oifferent for each DPH.

Given n disk drives, the DPH~s are arranqed in a table whose first
row of 16 bytes corresponds to drive 0, with the last row
corresponding to drive n-l. The table thus appears as

DPBASE

00

01

XLT

XLT

00 0000

01 0000

0000 0000 DIRBUF nBP 00 CSV 00 ALV 00

0000 0000 OIRBUF DBP 01 CSV 01 ALV 01

(and so-forth throuqh)

where the label DPBASE defines the offset of the DPH table relative
to the beginninq of the operating system.

A responsibility of the 8ELDSK subroutine, defined in the
previous section, is to return the offset of the DPH from the
beginning of the operatinq system for the selected drive. rt:'he
followinq sequence of operations returns the table offset, with a
OOOOH returned if the selected drive does not exist.

All Information Presented Here is Proprietary to Digital Research

68

CP/M-86 System Guide 6.1 Disk Parameter Table Format

NDISKS EQU 4 :NUMBER OF DISK DRIVES
SELDSK:

:SELEC~ DISK N GIVEN BY CL
MOV BX,OOOOH :READY FOR ERR
CPM CL,NDI8KS:N BEYOND MAX DISKS?
JNB RETURN ;RETURN IF SO

;0 <= N < NDISKS
MOV CH,O :DOUBLE (N)
MOV BX,CX :BX = N
MOV CL,4 ;READY FOR * 16
SHL BX,CL ;N = N * 16
MOV CX,OFFSET DPBASE
ADD BX,CX ;DPBASE + N * 16

RETURN: RET ;BX - .DPH (N)

The translation vectors (XLT 00 through XL'l'n-1) are located
elsewhere in the BIOS, and simply correspond one-for-one with the
logical sector numbers zero through the sector count-I. The Disk
Parameter Block (DPB) for each drive is more complex. A particular
DPB, which is addressed by one or more OPH~sj takes the general
form:

SPT BSHIBLMIEXM DSM DRM 1 ALO IAL1 1 CKS .1 OFF

16b 8b 8b 8b 16b 16b 8b 8b 16b 16b

where each is a byte or word value, as shown by the "8b" or "16b"
indicator below the'field. The fields are defined in Table 6-2.

Field I
8PT

BSH

BLM

EXM

DSM

DRM

Table 6-2. Disk Parameter Block Fields

Definition

is the total number of sectors per track

is the data allocation block shift factor, determined
by the data block allocation size.

is the b'_ock mask which is also determined by the data
block allocation size.

is the extent mask, determined by the data block
allocation size and the number of disk blocks.

determines the total storage capaci ty of the disk drive

determines the total number of directory entries which
can be stored on this drive

All Information Presented Here is Proprietary to Digital Research

69

CP/M-86 System Guide 6.1 Disk Parameter Table Format

Table 6-2. (continued)

Field I Definition

ALO,ALl determine reserved directorv blocks.

CKS is the size of the directory check vector

OFF is the number of reserved tracks at the beginning of
the (logical) disk.

Al though these table values are produced automa tically by GENDEF, it
is worthwhile reviewing the derivation of each field so that the
values may be cross-checked when necessary. The values of BSH and
BLM determine (implicitly) the data allocation size BLS, which is
not an entry in the disk parameter block. Given that you have
selected a value for BLS, the values of BSH and BLM are shown in
Table 6-3 below, where all values are in decimal.

Table 6-3. BSH and BLM Values for Selected BLS

BLS I BSH I BLM

1,024 3 7
2,048 4 15
4,096 5 31
8,192 6 63

16,384 7 127

The value of EXM depends upon both the BLS and whether the DSM value
is less than 256 or greater than 255, as shown in the following
table.

Table 6-4. ~aximum EXM Values

BLS J DSM < 256 I DSM > 255

1,024 0 N/A
2,048 1 0
4,096 3 1
8,192 7 3

16,384 15 7

The value of DSM is the maximum data block number supported by
this particular dr i ve, measured in BLS uni ts. The product BLS times
(DSM+l) is the total number of bytes held by the drive and, of
course, must be wi thin the capaci ty of the physical disk, not
counting the reserved operating system tracks.

All Information Presented Here is Proprietary to Digital Research

70

CP/M-86 System Guide 6.1 Disk Parameter ~able Format

The DRM entry is one less than the total number of directory
entries, which can take on a l6-bit value. The values of ~LO and
ALl, however, are determined by DR-M. The two values ALO and AJ..Jl can
together be considered a string of 16-bits, as shown below.

ALO ALI

I I I I I I I I I I I I I I
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

where position 00 corresponds to the high order bit of the byte
labeled ALO, and 15 corresponds to the low order bit of the byte
labeled ALI. Each bit position reserves a data block for a number
6f directory entries, thus al10winq a total of 16 data blocks to be
assigned for directory entries (bits are assigned starting at 00 and
filled to the right until position 15). Each directory entry
occupies 32 bytes, as shown in Table 6-5.

Table 6-5. BLS and Number of Directory Entries

BLS I Directory Entries

1,024 32 times # bits
2,048 64 times * bits
4,096 128 times # bits
8,192 256 times # bits

16,384 512 times '# bits

Thus, if DRM = 127 (128 directory entries), and BLS = 1024, then
there are 32 directory entri.es per block, requiri.ng 4 reserved
blocks. In this case, the 4 high order bits of ALO are set,
resulting in the values ALO = OFOH and ALI = OOH.

The eKS value is determined as follows: if the disk dr ive
media is removable, then eKS = (DRM+l) /4, where DRM is the last
directory entry number. If the media is fixed, then set CKS = 0 (no
directory records are checked in this case).

Finally, the OFF field determines the number of tracks which
are skipped at the beginning of the physical disk. This value is
automatically added whenever SETTRK is called, and can be used as a
mechanism for skipping reserved operating system tracks, or for
partitioning a large disk into smaller segmented sections.

To complete the discussion of the DPB, recall that several
DPH's can address the same DPB if their drive characteristics are
identical. Further, the DPB can be dynamically changed when a new
drive is addressed by simply changing" the poin~er in"the DPH since
the Bnos copies the DPB values to a local area whenever the SELDSK
function is invoked.

All Information Presented Here is Proprietary to Digital Research

71

CP/M-86 System Guide 6.1 Disk Parameter Table Format

Returning back to the DPH for a particular drive, note that the
two address values CSV and ALV remain. Both addresses reference an
area of uninitialized memory following the BIOS. The areas must be
unique for each drive, and the size of each area is determined by
the values in the DPB.

The size of the
sufficient to hold
particular drive.
(DRM+I) /4 bytes for
storage is reserved.

area addressed by CSV is CKS bytes, which is
the directory check information for this

If CKS = (ORM.+I) /4, then you must reserve
directory check use. If CKS = 0, then no

The size of the area addressed by ALV is determined by the
maximum number of data blocks allowed for this particular disk, and
is computed as (DSM/8)+I.

The BIOS shown in Appendix 0 demonstrates an instance of these
tables for standard 8M single density drives. It may be useful to
examine this program, and compare the tabular values wi th the
definitions given above.

6.2 Table Generation Using GENDEF

The GENDEF utility supplied with CP/M-86 greatly simplifies the
table construction process. GENDEF reads a file

x.DEF

containing the disk definition statements, and produces an output
file

x.LIB

containing assembly language statements which define the tables
necessary to support a particular drive configuration. The form of
the GENDEF command is:

GENDEF x parameter list

where x has an assumed (and unspecified) filetype of D~F. The
parameter list may contain zero or more of the symbols defined in
Table 6-6.

Table 6-6. GENDEF Optional Parameters

Parameter I Effect

$C
$0
$Z
$COZ

Generate Disk Parameter Comments
Generate DPBASE OFFSET $
Z80, 8080, 8085 Override
(Any of the Above)

All Information Presented Here is Proprietary to Digital Research

72

CP/M-86 System Guide 6.2 Table Generation Using GENDEF

The C parameter causes GENDEF to produce an accompanying
comment line, similar to the output from the "STAT DSK:" utility
which describes the characteristics of each defined disk. Normally,
the DPBASE is defined as

DPBASE EQU $

which requires a MOV CX,OFFSET DPBASE in the SELDSK subroutine shown
above. For convenience, the $0 parameter produces the definition

DPBASE EQU OFFSET $

allowing a MOV CX,DPBASE in SELDSK, in order to match your
particular programming practices. The $Z parameter is included to
override the standard 8086/8088 mode in order to generate tables
acceptable for operation with Z80, 8080, and 8085 assemblers.

The disk definition contained within x.DEF is composed with the
CP/M text editor, and consists of disk definition statements
identical to those accepted by the DISKDEF macro supplied with CP/M-
80 Version 2. A BIOS disk definition consists of the following
sequence of statements:

DISKS n
DISKDEF o , • • •
DISKDEF 1, •••
DISKDEF n-l
ENDEF

Each statement is placed on a single line, with optional embedded
comments between the keywords, numbers, and delimiters.

The DISKS statement defines the number of drives to be
configured with your system, where n is an integer in the range 1
through 16. A ser ies of DISKDEF statements then follow which def ine
the characteristics of each logical disk, 0 through n-l,
corresponding to logical drives A through P. Note that the DISKS
and DISKDEF statements generate the in-line fixed data tables
described in the previous section, and thus must be placed in a non
executable portion of your BIOS, typically at the end of your BIOS,
before the start of uninitialized RAM.

The ENDEF (End of Diskdef) statement generates the necessary
uninitialized RAM areas which are located beyond initialized RAM in
your BIOS.

All Information Presented Here is Proprietary to Digital Research

73

CP/M-86 System Guide 6.2 Table Generation Using GENDEF

The form of the DISKDEF statement is

DISKDEF dn,fsc,lsc,[skf] ,bls,dks,dir,cks,ofs,[O]

where

dn is the logical disk number, 0 to n-l
fsc is the first physical sector number (0 or 1)
Isc is the last sector number
skf is the optional sector skew factor
bls is the data allocation block size
dks is the disk size in bis units
dir is the number of directory entries
cks is the number of "checked" directory entries
ofs is the track offset to logical track 00
[0] is an optional 1.4 compatibility flag

The value "dn" is the drive number being defined with this DISKDEF
s ta tement. The" fsc" parameter accounts for differ ing sector
numbering systems, and is usually 0 or 1. The "lsc" is the last
numbered sector on a track. When present, the "skf" parameter
defines the sector skew factor which is used to create a sector
translation table according to the skew. If the number of sectors
is less than 256, a single-byte table is created, otherwise each
translation table element occupies two bytes. No translation table
is created if the skf parameter is omitted or equal to O.

The "bls" parameter specifies the number of bytes allocated to
each data block, and takes on the values 1024, 2048, 4096, 8192, or
16384. Generally, performance increases wi th larger data block
sizes because there are fewer directory references. Also, logically
connected data records are physically close on the disk. Further,
each directory entry addresses more data and the amount of BIOS work
space is reduced. The "dks" specifies the total disk size in "bIs"
units. That is, if the bis = 2048 and dks = 1000, then the total
disk capacity is 2,048,000 bytes. If dks is greater than 255, then
the block size parameter bls must be greater than 1024. The value
of "dir" is the total number of directory entries which may exceed
255, if desired.

The "cks" parameter determines the number of directory i terns to
check on each directory scan, and is used internally to detect
changed disks during syst'em operation, where an intervening cold
start or system reset has not occurred (when this situation is
detected, CP/M-86 automatically marks the disk read/only so that
data is not subsequently destroyed). As stated in the previous
section, the value of cks = dir when the media is easily changed, as
is the case with a floppy disk subsystem. If the disk is
permanently mounted, then the value of cks is typically 0, since the
probability of changing disks without a restart is quite low.

All Information Presented Here is Proprietary to Digital Research

74

CP/M-S6 System Guide 6.2 Table Generation Using GRNDEF

The "ofs" value determines the number of tracks to skip when
this particular drive is addressed, which can be used to reserve
additional operating system space or to simulate several logical
drives on a single large capacity physical drive. Finally, the [0]
parameter is included when file compatibility is required with
versions of CP/M-SO, version 1.4 which have been modified for higher
density disks (typically double density). This parameter ensures
that no directory compression takes place, which would cause
incompatibilities with these non-standard CP/M 1.4 versions.
Normally, this parameter is not included.

For convenience and economy of table space, the special form

DISKDEF i,j

gives disk i the same characteristics as a previously defined drive
j. A standard four-drive single density system, which is compatible
with CP/M-SO Version 1.4, and upwardly compatible with CP/M-SO
Version 2 implementations, is defined using the following
statements:

DISKS
DISKDEF
DISKDEF
DISKDEF
DISKDEF
ENDEF

4
0,1,26,6,1024,243,64,64,2
1,0
2,0
3,0

with all disks having the same parameter values of 26 sectors per
track (numbered 1 through 26), with a skew of 6 between sequential
accesses, 1024 bytes per data block, 243 data blocks for a total of
243K byte disk capacity, 64 checked directory entries, and two
operating system tracks.

The DISKS statement generates n Disk Parameter Headers (DPH""s),
starting at the DPH table address OPBASE generated by the statement.
Each disk header block contains sixteen bytes, as described above,
and corresponds one-for-one to each of the defined drives. In the
four drive standard system, for example, the DISKS statement
generates a table of the form:

DPBASE
DPEO
DPEI
DPE2
DPE3

EQU
DW
DW
DW
DW

$
XLTO,OOOOH,OOOOH,OOOOH,DIRBUF,DPBO,CSVO,ALVO
XLTO,OOOOH,OOOOH,OOOOH,DIRBUF,DPBO,CSVl,ALVl
XLTO,0000H,0000H,0000H,DIRBUF,DPBO,CSV2,ALV2
XLTO,0000H,0000H,OOOOH,DIRBUF,DPBO,CSV3,ALV3

where the DPH labels are included for reference purposes to show the
beginning table addresses for each drive 0 through 3. The values
contained within the disk parameter header are des.cribed in detail
earlier in this section. The check and allocation vector addresses
are generated by "the ENDEF statement for inclusion in the RAM area
following the BIOS code and tables.

All Information Presented Here is Proprietary to Digital Research

75

CP/M-86 System Guide 6.2 Table Generation Using GENOEF

Note that if the "skf" (skew factor) parameter is omitted (or
equal to 0), the translation table is omitted, and a OOOOH value is
inserted in the XLT position of the disk parameter header for the
dis k • In a subsequ-ent ca 11 to pe r form the log ical to phys ical
translation, SECTRAN receives a translation table address of DX =
OOOOH, and simply returns the original logical sector from ex in the
BX reg ister. A translate table is constructed when the skf
parameter is present, and the (non-zero) table address is placed
into the corresponding DPH"'s. The table shown below, for example,
is constructed when the standard skew factor skf = 6 is specified in
the DISKOEF statement call:

XLTO EQU
DB
DB

OFFSET $
1,7,13,19,25,5,11,17,23,3,9,15,21
2,8,14,20,26,6,12,18,24,4,10,16,22

Following the ENDEF statement, a number of uninitialized data
areas ar.e defined. These data areas need not be a part of the BIOS
which is loaded upon 'cold start, but must be available between the
BIOS and the end of operating system memory. The size of the
uninitialized RAM area is determined by EQU statements generated by
the ENDEF statement. For a standard four-drive system, the ENOEF
statement might produce

1C72 =

lOBO =
013C =

BEGDAT EQU OFFSET $
(data areas)
ENDDAT EQU OFFSET $
DATSIZ Eon OFFSET $-REGDAT

which indicates that uninitialized RAM begins at offset lC72H, ends
at 10BOH-1, and occupies 013CH bytes. You must ensure that these
addresses are free for use after the system is loaded.

After modification, you can use the STAT program to check your
drive characteristics, since STAT uses the disk parameter block to
decode the drive information. The comment included in the LIB file
by the $C parameter to GENCMD will match the output from STAT. The
STAT command form

STAT d:DSK:

decodes the disk parameter block for drive d (d=A, ••• ,P) and
displays the values shown below:

r: 128 Byte Record Capacity
k: Kilobyte Drive Capacity
d: 32 Byte Directory Entries
c: Checked Directory Entries
e: Records/ Extent
b: Records/ Block
s: Sectorsl Track
t: Reserved Tracks

All Information Presented Here is Proprietary to Digital Research

76

CP/M-86 System Guide 6.3 GENDEF Output

6.3 GENDEF Output

GENDEF produces a listing of the statements included in the DEF
file at the user console (CONTROL-P can be used to obtain a printed
listing, if desired). Each source line is numbered, and any errors
are shown below the line in error, with a "?" beneath the item which
caused the condition. The source errors produced by GENCMD are
listed in Table 6-7, followed by errors that can occur when
producing input and output files in Table 6-8.

Table 6-7. GENDEF Source Error Messages

Message I Meaning

Bad Val

Convert

Delimit

Ouplic

Extra

Length

Missing

No Disk

No Stmt

Numeric

Range

Too Few

Quote

More than 16 disks defined in DISKS statement.

Number cannot be converted, must be constant
in binary, octal, decimal, or hexadecimal as
in ASM-B6.

Missing delimiter between parameters.

Duplicate definition for a disk drive.

Extra parameters occur at the end of line.

Keyword or data item is too long.

Parameter required in this position.

Referenced disk not previously defined.

Statement keyword not 'recognized.

Number required in this position

Number in this position is out of range.

Not enough parameters provided.

Missing end quote on current line.

All Information Presented Here is Proprietary to Digital Research

77

CP/M-86 System Guide 6.3 GENDEF Output

Table 6-8. GENDEF Input and Output Error Messages

Message I Meaning

Cannot Close ".LIB" File LIB file close operation
unsuccessful, usually due
to hardware write protect.

"LIB" Disk Full No space for LIB file.

No Input File Present Specified DEF file not
found.

No ".LIB" Directory Space Cannot create LIB file due
to too manv files on LIB
disk.

Premature End-of-File End of DEF file encountered
unexpectedly.

Given the file TWO.OEF containing the following statements

the command

disks 2
diskdef 0,1,26,6,2048,256,128,128,2
diskdef 1,1,58,,2048,1024,300,0,2
endef

gencmd two $c

produces the console output

DISKDEF
1
2
3
4

Tabie Generator, Vers 1.0
DISKS 2
DISKDEF 0,1,58,,2048,256,128,128,2
DISKDEF 1,1,58,,2048,1024,30·0,0,2
ENDEF

No Error(s)

The resulting TWO.LIB file is brought into the following skeletal
assembly language program, using the AS~-86 INCLUDE directive. The
ASM-86 output listing is truncated on the right, but can be easily
reproduced using GENDEF and ASM-86.

All Information Presented Here is Proprietary to· Digital Rese~rch

78

CP/M-86 System Guide

0000 B9 03 00

=
=
= 0003
= 0003 32 00 00 00
= 0007 00 00 00 00
= OOOB 5B 00 23 00
= OOOF FB 00 DB 00
= 0013 00 00 00 00
= 0017 00 00 00 00
= 001B 5B 00 4C 00
= OOIF 9B 01 lB 01
=
=
=
=
=
=
=
=
=
=
=
=
=
= 0023
= 0023 1A 00
= 0025 04
= 0026 OF
= 0027 01
= 0028 FF 00
= 002A 7F 00
= 002C CO
= 0020 00
= 002E 20 00
= 0030 02 00
= 0032
= 0032 01 07 OD 13
= 0036 19 05 OB 11
= 003A 17 03 09 OF
= 003E 15 02 08 OE
= 0042 14 lA 06 oc
= 0046 12 18 04 OA
= 004A 10 16
= 0020
= 0020
=
=
=
=

· ,
· ,
SELDSK:

· ,
· ,
dpbase
dpeO

dl?e1

;
dobO

xltO

alsO
cssO

· ,

6.3 GENDEF Output

Sample Program Including TWO.LI

MOV CX,OFFSE'T.' DPBASE

INCLUDE TWO.LIB
DISKS 2

equ $;Base 0

dw x1tO,OOOOh ;Transl
dw OOOOh,OOOOh ;Scratc
dw dirbuf,dpbO ;Dir Bu
dw csvO,alvO ;Check,
dw xltl,OOOOh ;Transl
dw OOOOh,OOOOh ;Scratc
dw dirbuf,dpb1 ;nir Bu
dw csv1,alvi ;Check,

DISKDEF 0,1,26,6,2048,2

Disk 0
4096:

512:
128:
128:
256:

equ
dw
db
db
db
dw
dw
db
db
dw
dw
equ
db
db
db
db
db
db
db
equ
equ

16:
26:

2 :
6:

is CP/M 1.4 Single Oensi
128 Byte Record Capacit
Kilobyte Drive Capacit
32 Byte nirectory Entri
Checked Directory Entri
Records / Extent
Records / Block
Sectors / 'T.'rack
Reserved Tracks
Sector Skew Factor

offset $
26
4
15
1
255
127
192
o
32
2
offset $
1,7,13,19
25,5,11,17
23,3,9,15
21,2,8,14
20,26,6,12
18,24,4,10
16,22

;Disk P
, ;Sector
iBlock
iBlock
;Extnt
iDisk S
iDirect
iA11ocO
;,~11ocl

;Check
iOffset
;Transl

32 iAlloca
32 ;Check
DISKDEF 1,1,58,,2048,10

Disk 1 is CP/M 1.4 Single Densi
16384: 128 Byte Record Capacit

All Information Presented Here is Proprietary to Digital Research

79

CP/M-86 System Guide 6.3 GENDEF Outout

= 2048: Kilobyte Drive Capacit
= 300: 32 Byte Directory 'Entri
= 0: Checked Directory Entri
= 128: Records I Extent
= 16: Records I Block
= 58: Sectors I Track
= 2 : Reserved Tracks
= . ,
= 004C dpbl equ offset $;Disk p

= 004C 3A 00 dw 58 ;Sector
= 004E 04 db 4 :Block
= 004F OF db 15 ;Block
= 0050 00 db a ;Extnt
= 0051 FF 03 dw 1023 ;Oisk S
= 0053 2B 01 dw 299 ;Direct
= 0055 F8 db 248 ;AllocO
= 0056 00 db 0 ;.A llocl
= 0057 00 00 dw a ;Check
= 0059 02 00 dw 2 jOffset
= 0000 xltl equ a ;1\10 Tra
= 0080 alsi equ 128 ;Alloca
= 0000 essl equ a ;Check
= ENDEF
=
= Uninitialized Scratch Memory Fo
= . ,
= 005B begdat equ offset $;8tart
= 005B dirbuf rs 128 jDirect
= OODB alva rs alsO iAlloc
= OOFB csvO rs csso iCheck
= OllB alvl rs aisl iAlloc
= 019B csvl rs cssl iCheck
= 019B enddat equ offset $ j'End of
= 0140 datsiz equ offset $-begdat i8ize 0

= 019B 00 db a jMarks
END

All Information Presented Here is Proprietary to Digital Research

80

Section 7
CP/M-S6 Bootstrap and Adaptation Procedures

This section describes the components of the standard CP/M-86
distr ibution disk, the operation of each component, and the
procedures to follow in adapting CP/M-86 to non-standard hardware.

CP/M-86 is distributed on a si.nqle-nensity IBM compatible 8"
diskette using a file format which is compatible with all previous
CP/M-80 operating systems. In particular, the first two tracks are
reserved for operating system and bootstrap programs, while the
remainder of the diskette conta ins directory information which leads
to program and data files. CP/M-86 is distributed for operation
with the Intel SBC 86/12 single-board computer connected to floppy
disks through an Intel 204 Controller. The operation of CP/M-86 on
this configuration serves as a model for other 8086 and 8088
environments, and is presented below.

The principal components of the distribution system are listen
below:

• The 86/12 Bootstrap ROM (BOOT ROM)
• The Cold Start Loader (LOADER)
• The CP/M-86 System (CPM.SYS)

When installed in the SBC 86/12, the BOOT ROM becomes a part of
the memory address space, beginning at byte location OFFOOOH, and
receives control when the system reset button is depressed. In a
non-standard environment, the BOOT ROM is replaced by an equivalent
initial loader and, therefore, the ROM itself is not included with
CP/M-86. The BOOT ROM can be obtained from Digital Research or,
alternatively, it can be programmed from the listing given in
Appendix C or directly from the source file which is included on the
distribution disk as BOOT.A86. The responsibility of the BOOT ROM
is to read the LOADER from the first two system tracks into memory
and pass program control to the LOADER for execution.

7.1 The Cold Start Load Operation

The LOADER program is a simple version of CP/M-86 that contains
sufficient file processing capability to read CPM.SYS from the
system disk to memory. When LOADER completes its operation, the
CPM.SYS program receives control and proceeds to process operator
input commands.

Both the LOADER and CPM.SYS programs are preceded by the
standard CMD header record. The 128-byte T.JOADER header record
contains the following single group descriptor.

All Information Presented Here is Proprietary to Digital Research

81

CP/M-86 System Guige 7.1 The Cold Start Load Operation

G-Form G-Length A-Base G-Min G-Max

1 xxxxxxxxx 0400 xxxxxxx xxxxxxx

8b 16b 16b 16b 16b

where G-Forrn = 1 denotes a code group, "x" fields are ignored, and
A-Base defines the paragraph address where the BOOT ROM begins
filling memory (A-Base is the word value which is offset three bytes
from the beginning of the header). Note that since only a code
group is present, an 8080 memory model is assumed. Further,
although the A-Base defines the base paragraph address for LOADER
(byte address 04000H), the LOADER can, in fact be loaded and
executed at any paragraph boundary that does not overlap CP/M-86.or
the BOOT ROM. -

The LOADER itself consists of three parts: the Load CPM
program (LDCPM), the Loader Basic Disk System (LOBDOS), and the
Loader Basic I/O System (LDBIOS). Although the LOADER is setup to
initialize C'P/M-86 using the Intel 86/12 configuration, the LDBIOS
can be field-altered to account for non-standard hardware using the
same entry points' described in a previous section for BIOS
modification. The organization of LOADER is shown in Figure 7-1
below:

GDt1 o 11//////1////

CS DS ES S8 OOOOH: \JMP 1200H I
(LDCPM)

I JMPF CPM

0400H:
(LDBDOS)

1200H: JMP INIT
JMP SETIOB

INIT: •• JMP 0003H

(LDBIOS)

1700H:

Figure 7-1. LOADER Organization

All Information Presented Here is Proprietary to Digital Research

82

CP/M-86 System Guide 7.1 The Cold Start Load Operation

Byte offsets from the base registers are shown at the left of the
diagram. GD#l is the Group Descriptor for the LOADER cone group
described above, followed immediately by a "0" group terminator.
The entire LOADER program is read by the BOOT ROM, excluding the
header record, starting at byte location 04000H as given by the A
Field. Upon completion of the read, the BOOT ROM passes control to
location 04000H where the LOADER program commences execution. The
JMP 1200H instruction at the base 'of "LDCPM transfers control to the
beginning of the LDBIOS where control then transfers to the INIT
subroutine. The subroutine starting at INIT performs device
initialization, prints a sign-on message, and transfers back to the
LDCPM program at byte offset 0003H. The LDCPM module opens the
CPM.SYS file, loads the CP/M-86 system into memory and transfers
control to CP/M-86 through the JMPF CPM instruction at the end of
LDCPM execution, thus completing the cold start sequence.

The files LDCPM.H86 and LDBDOS.H86 are included with CP/M-86 so
that you can append your own modified LDBIOS in the construction of
a customized loader. In fact, BIOS. A86 conta ins a condi tional
assembly swi tch, called" loader bios," which, when enabled, produces
the distributed LDBIOS. The INIT subroutine portion of LOBIOS is
listed in Appendix C for reference purposes. To construct a custom
LDBIOS, modify your standard BIOS to start the code at offset 1200H,
and change your initializati.on subroutine beginning at IN IT to
perform disk and device initialization. Include a JMP to offset
0003H at the end of your INIT subroutine. Use ASM-86 to assemble
your LDBIOS.A86 program:

ASM86 LDBIOS

to produce the LDBIOS.H86 machine code file. concatenate the three
LOADER modules using PIP:

PIP LOADER.H86=LDCPM.H86,LDBDOS.H86,LDBIOS.H86

to produce the machine code file for the LOADER program. Although
the standard LOADER program ends at offset l700H, your modified
LDBIOS may differ from this last address with the restriction that
the LOADER must fit within the first two tracks and not overlap
CP/M-86 areas. Generate the command (CMD) file for LOADER using the
GENCMD utility:

GENCMD LOADER 8080 CODE[A400]

resulting in the file LOADER.CMD with a header record defining the
8080 Memory Model with an absolute ~aragraph address of 400H, or
byte address 4000H. Use DDT to read LOADER.eMD to location 900H in
your 8080 system. Then use the 8080 utility SYSGEN to copy the
loader to the first two tracks of a disk.

All Information Presented Here is Proprietary to Digital Research

83

CP/M-86 System Gui.de

A > DDT
-ILOADER.CMD
-R800
_AC

A> SYSGEN

7.1 The Cold Start Load Operation

SOURCE DRIVE NAME (or return to skip) <cr>
DESTINATION DRIVE NAME (or return to skip) B

Alternatively, if you have access to an operational CP/M-86 system,
the command

LDCOPY LOADER

copies LOADER to the system tracks. You now have a diskette with a
LOADER program which incorporates your custom LDBIOS capable of
reading the CPM.SYS file into memory. For standardization, we
assume LOADER executes at location 4000H. LOADER is statically
re1ocatab1e, however, and its operating address is determined only
by the value of A-Base in the header record.

You must, of course, perform the same function as the BOOT ROM
to get LOADER into memory. The boot operation is usually
accomplished in one of two ways. First, you can program your own
ROM (or PROM) to perform a function similar to the BOOT ~OM when
your ~omputer~s reset button is pushed. As an alternative, most
controllers provide a power-on "boot" operation that reads the first
disk sector into memory. This one-sector program, in turn, reads
the LOADER from the remaining sectors and transfers to LOADER upon
completion, thereby performing the same acti.ons as the BOOT ROM.
Either of these alternatives is hardware-specific, so you~ll need to
be familiar with the operating environment.

7.2 Organization of CPM.SYS

The CPM.SYS file, read by the LOADER program, consists of the
CCP, BDOS, and BIOS in CMD file format, with a 128-byte header
record similar to the LOADER program:

G-Form G-Length A-Base G-M.in G-Max

1 ,xxxxxxxxx 040 xxxxxxx xxxxxxx

8b 16b 16b 16b 16b
.

where, instead, the A-Base load address is paragraph 040H, or byte
address 0400H, immediately following the 8086 interrupt locations.
The entire CPM.SYS :file appears on disk as shown in Figure 7-2.

All Information Presented Here is Proprietary to Digital Research

84

CP/M-86 System Guide 7.2 Organization of CPM.SYS

GD#lIOI/////////////

(0040:0) CS DS ES SS OOOOH:

(CCP and BDOS)

(0040:) 2500H: JMP INIT

JMP SET lOB

(BIOS)

INIT: •• JMP OOOOH

(0040:) 2AOOH:

Figure 7-2. CPM.SYS File Organization

where GD#l is the Group Oescr iptor containing the A-Base value
followed by a "0" terminator. The distributed 86/12 BIOS is listed
in Appendix D, with an "include" statement that reads the
SINGLES.LIB file containing the disk definition tables. The
SINGLES.LIB file is created by GENDEF using the SINGLES.DEF
statements shown below:

disks 2
diskdef 0,1,26,6,1024,243,64,64,2
diskdef 1,0
endef

The CPM.SYS file is read by the LOADER program beginning at the
address given by A-Base (byte address 0400H), and control is passed
to the INIT entry point at offset address 2500H. Any additional
initialization, not performed by LOADER, takes place in the INIT
subroutine and, upon completion, INIT executes a JMP OOOOH to begin
execution of the CCP. The actual loaod address of CPM.SYS is
determined entirely by the address given in the A-Base field which
can be changed if you wish to execute CP/M-86 in another region of
memory. Note that the region occupied by the operating system must
be excluded from the BIOS memory region table.

Similar to the LOADER program, you can modify the BIOS by
alter ing ei ther the BIOS. A86 or skeletal CBIOS. A86 assembly language
files which are included on your source disk. In ei ther case,
create a customized BIOS which includes your specialized I/O
drivers, and assemble using ASM-86:

ASM86 BIOS

to produce the file BIOS.H86 containing your BIOS machine code.

All Information Presented Here is Proprietary to Digital Research

85

CP/M-86 System Guide 7.2 Organization of CPM.SYS

Concatenate this new BIOS to the CPM.H86 file on your distribution
disk:

PIP CPMX.H86 = CPM.H86,BIOS.H86

The resulting CPMX hex file is then converted to CMD file format by
executing

GENCMD CPMX 8080 CODE[A40]

in order to produce the CMD memory image with A-Base = 40B.
Finally, rename the CPMX file using the command

REN CPM.SYS = CPMX.CMD

and place this file on your 8086 system disk. Now the tailoring
process is complete: you have replaced the BOOT ROM by either your
own customized BOOT ROM, or a one-sector cold start loader which
brings the LOADER program, with your custom LDBIOS, into memory at
byte location 04000H. The LOADER program, in turn, reads the
CPM.SYS file, with your custom BIOS, into memory at byte location
0400H. Control transfers to CP/M-86, and you are up and operating.
CP/M-86 remains in memory until the next cold start operation takes
place.

You can avoid the two-step boot operation if you construct a
non-standard disk with sufficient space to hold the entire CPM.SYS
file on the system tracks. In this case, the cold start brings the
CP/M-86 memory image into memory at the location given by A-Base,
and control transfers to the INIT entry point at offset 2500H.
Thus, the intermediate LOADER program is eliminated entirely,
although the initialization found in the LDBIOS must, of course,
take place instead within the BIOS.

Since ASM-86, GENCMD and GENDEF are provided in both COM and
CMD formats, either CP/M-aO or CP/M-86 can be used to aid the
customizing process. If CP/M-80 or CP/M-86 is not available, but
you have minimal editing and debugging tools, you can write
specialized disk I/O routines to read and write the system tracks,
as well as the CPM.SYS file.

The two system tracks are simple to access, but the CPM.SYS
file is somewhat more difficult to read. CPM.SYS is the first file
on the disk and thus it appears immediately following the directory
on the diskette. The directory begins on the third track, and
occupies the first sixteen logical sectors of the diskette, while
the CPM.SYS is found starting at the seventeenth sector. Sectors
are "skewed" by a factor of six beginning with the directory track
(the system tracks are sequential), so that you must load every
sixth sector in reading the CPM.SYS file. Clearly, it is worth the
time and effort to use an existing CP/M system to aid the conversion
process.

All Information Presented Here is Propri~tary to Digital Research

86

Appendix A
Sector Blocking and Deblocking

Upon each call to the BIOS WRI~E entry point, the CP/M-B6 BDOS
includes informati.on that allows effective sector blocking and
deb10cking where the host disk subsystem has a sector size which is
a multiple of the basic 128-byte unit. This appendix presents a
general-purpose algorithm that can be included within your BIOS and
that uses the BOOS information to perform the operations
automatically.

Upon each call to WRITE, the Bnos prov i.iles the followi ng
information in register CL:

o
1
2

=
=
=

normal sector write
write to nirectory sector
write to the first sector
of a new data block

Conditi.on 0 occurs whenever the next write operation is into a
previously written area, such as a random mode record update, when
the write is to other than the first sector of an unallocated block,
or when the wr i te is not into the d i rectorv area. Cond i tion 1
occurs when a write into the directory area is performed. Condition
2 occurs when the first record (only) of a newly allocated data
block is written. In most cases, application programs read or write
multiple 128-byte sectors in sequence, and thus there is little
overhead involven in either operation when blocking and deblocking
records since l?re-read operations can be avoided when writing
records.

This appendix lists the blocking and deblocking algorithm in
s k e let a 1 for m (the f i lei sin c 1 u d e don yo u r CP 1M - 8 6 dis k) •
Generally, the algorithms map all CP/M sector read operations onto
the host disk through an intermediate buffer which is the size of
the host disk sector. Throughout the program, values and variables
which relate to the CP/M sector involved in a seek operation are
prefixed by "sek," while those related to the host disk system are
prefixed by "hst." The equate statements begi.nning on line 24 of
Appendix F define the mapping between CP/M and the host system, and
must be changed if other than the sample host system is involved.

The SELDSK entry point clears the host buffer flag whenever a
new disk is logged-in. Note that although the SELDSK entry point
computes and returns the Disk Parameter Header address, it does not
physically select the host disk at thi.s point (it is selected later
at READHST or WRITEHS't'). Further, SE't'TRK, SETSEC, and SETDMA simply
store the values, but do not take any other action at this point.
SECTRAN performs a trivial function of returning the physical sector
number.

All Information Presented Here is Proprietary to Digital Research

87

CP/M-86 System Guide AT?pendix A Blockinq and Deblockinq

The pr inc i pa 1 entry poi nts
subroutines take the place of
operations.

are
your

READ and WRlrrE. These
1;'r ev i.ous READ and tt\ffi:lrr'E

The actual phys ical read or wr i te takes place at ei the.r
WRITEHST or READHST, where all values have been prepared: hstdsk is
the host disk number, hsttrk is the host track number, and hstsec is
the host sector number (which may require translation to a l?hysical
sector number). You must insert code at this point which performs
the full host sector read or write into, or out of, the buffer at
hstbuf of length hstsiz. All other mapping functions are performed
by the algorithms.

1: :***
2: : * *
3: :* Sector Blocking / Deblocking *

* 4: : *
5: : *
6: : *
7: : *
8: ; *
9: : *

This algorithm is a direct translation of the *
CP/M-80 Version, and is i.ncluded here for refer- *
ence purposes only. The file DEBLOCK. LIB is in- *
cluded on your CP/M-86 disk, and should be used *
for actual applications. You may wish to contact *
Digital Research for notices of updates. * 1(0 :

11:
12:
13:
14:
15:
16:
J. 7:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:

.* ,

.* , *

.*** ,
;
.*** ,
.* * ,
.* ,
.* ,
.* ,
.* ,
.* ,

CP/M to host disk constants *
*

(This example is setup for CP/M block size of 16K *
with a host sector size of 512 bytes, and 12 sec- *
tors per track. Blksiz, hstsiz, hstspt, hstblk *

:* and secshf may change for different hardware.) *
.*** ,
una equ byte ptr [BX] :name for byt.e at BX

:
blksiz equ 16384 : CP /1\1 allocation size
hstsiz equ 512 :host disk sector size
hstspt equ 12 :host disk sectors/trk
hstblk equ hstsiz/128 :CP/M sects/host buff . ,
.*** ,
.* * ,
:* secshf is loq2(hstblk), and is listed below for
:* values of hstsiz up to 2048.
.* ,
.* ,
.* ,
.* ,
.* ,

hstblk
2
4
8

*
*
*
*
*
*
*

39: : *
40: : *

hstsiz
256
512

1024
2048 16

secshf
1
2
3
4 *

*

All Information Presented' Here is Proprietary to Digital Research

88

CP/M-86 System Guide APpendix A Blocking and Deblocking

41: 7***************************~*************************
42: secshf equ 2 7log 2 (hstblk)
43: cpmspt equ hstblk * hsts~t 7CP/M sectors/track
44: secmsk equ hstblk-l 7sector mask
45: 7
46: i***
47: 7* *
48: i * BDOS constants on entry to write *
49: i* *
50: i***
51: wrall equ 0 iwrite to allocated
52:wrdir equ 1 iwrite to directory
53: wrual equ 2 iwrite to unallocated
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:

i
.*** I

.* I

.* I

.* ,

.* ,

The BIOS entry points given below show the
code which is relevant to deblocking only.

*
*
*
*

.*** ,
seldsk:

selset:

i
home:

homed:

. ,
settrk:

. ,
setsec:

iselect disk
i is this the
test DL,l
jnz selset
ithis is the
mov hstact,O
mov unacnt,O

first activation of the drive?
i1sb = O?

first activation, clear host buff

mov al,cl ! cbw
mov sekdsk,al
mov c1,4 ! shl al,cl
add ax,offset dpbase
mov bx,ax
ret

ihome the selected disk

iPut in A.X
iseek disk number
itimes 16

mov al,hstwrt icheck for pending write
test a1,al
jnz homed
mov hstact,O iclear host active flag

mov cx,O inow, set track zero
(continue HOME routine)
ret

iset track given by registers CX
mov sektrk,CX ;track to seek
ret

;set sector given by register cl
mov seksec,cl isector to seek

All Information Presented Here is Proprietary to Digital Research

89

CP/M-86 System Guide Appendix A Blocking and Deblocking

96:
97:
98:
99:

100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
Ill:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:

setdma:

;
setdmab:

sectran:

no tran:

;
read:

. ,
write:

;
chkuna:

ret

iset dma address given by ex
mov dma_off,CX
ret

iset segment address given by ex
mov dma_seg,CX
ret

itranslate
test DX,DX
jz notran
mov BX,CX
add BX,nX
mov BL, [BX]
ret

sector number ex with table at [DX]
itest for hard skewed
; (blocked must be hard skewed)

:hard skewed disk, physical = logical sector
mov BX,CX
ret

;read the selected
mov unacnt,O
mov readop,l
mov rsflag,l
mov wrtype,wrua1
jmp rwoper

;write the selected
mov readop,O
mov wrtype,cl
crop cl,wrual
jnz chkuna

CP/M sector
;clear unallocated counter
:read oT;>eration
;must read data
;treat as unalloc
ito perform the read

r,P/M sector
;write op,eration

;write unallocated?
;check for unalloc

write to unallocated, set parameters

mov unacnt, (blksiz/128)
mov al,sekdsk
mov unadsk,al
mov ax,sektrk
mov unatrk,ax
mov al,seksec
mov unasec,al

;next unalloc recs
;disk to seek
;unadsk = sekdsk

;unatrk = sektrk

;unasec = seksec

;check for write to unal1oc~ted sector

mov bx,offset unacnt ;point "UNA" at UNACNT
mov al,una ! test al,al ;any unalloc remain?

All Information Presented Here is Proprietary to Digital Research

90

CP/M-86 System Guide Appendix A Blocking and Deblocking

;
noovf:

alloc:

jz alloc ;skip if not

more unallocated records remain
dec al
mov una,al
mov al,sekdsk
mov BX,offset unadsk
cmp al,una
jnz ailoc

disks are the same
mov AX, unatrk
cmp AX, sektrk
;nz alloc

tracks are the same
mov al,seksec

mov BX,offset unasec

cmp al,urya
jnz alloe

;unacnt = unacnt-l

;same disk?

;sekdsk = unadsk?
;skip if not

;skip i.f not

;same sector?

;point una at unasec

;seksec = unasec?
;skip if not

match, move to next sector for future ref
inc una
mov al,una
cmp al,cpmspt
jb noovf

overflow to next track
mov una,O
inc unatrk

:unasec = unasec+l
;end of track?
;count CP/H sectors
;skip if below

;unasec = 0
;unatrk=unatrk+l

;rnatch found, mark as unnecessary read
mov rsflag,O ;rsflag = 0
jmps rwoper ; to perform the wr 1. te

;not an unallocated record, requires pre-read
mov unacnt,O ;unacnt = 0
mov rsflag,l ;rsflag = 1

;drop throuqh to rwoper

151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165: ;
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189 :
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:

;
.*** ,
.* * ,
.* ,
.* ,

Common code for ~EAD and WRITE follows *
*

.*** ,
rwoper:

;enter here to
mov erfIag,O
mov aI, seksec
mov cl, secshf
shr aI,cl

perform the read/write
;no errors (yet)
;compute host sector

All Information Presented Here is Proprietary to Digital Research

91

CP/M-86 System Guide Appendix A Blocking and Deblocking

206:
207:
208 :
209:
210:
211:
212:
213:
214: i
215:
216:
217:
218:
219:
220:
221:
222:
223:
224:
225:
226:
227:
228:
229:
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
240:
241:
242:
243:
244:
245:
246: i
247:
248:
249:
250:
251:
252:
253:
254:
255:
256: i
257:
258:
259:
260:

nornatch:

i
filhst:

. ,
filhstl:

i
match:

rnov sekhst,al

active host sector?
mov al,1
xchg al,hstact
test al,al
;z filhst

ihost sector to seek

ialways becomes I
iwas it already?
ifil1 host if not

host buffer active, same as seek buffer?
mov al,sekdsk
crnp a1,hstdsk
jnz nornatch

same disk, same track?
mov ax,hsttrk
cmp ax,sektrk
jnz nomatch

isekdsk = hstdsk?

ihost track same as seek track

same disk, same track, same buffer?
mov al,sekhst
cmp al,hstsec
jz match

isekhst = hstsec?
iskip if match

iproper disk, but not correct sector
mov aI, hstwrt
test al,al
jz filhst
call writehst
(check errors here)

i"dirty" buffer?
ino, don~t need to write
iyes, clear host buff

imay have to fill the host buffer
mov al,sekdsk mov hstnsk,al
mov ax,sektrk mov hsttrk,ax
mov al,sekhst mov hstsec,al
mov al,rsflag
test a1,al
jz filhstl

call readhst
(check errors here)

mov hstwrt,O

ineed to read?

iyes, if 1

ino pending write

iCOPY data to or from buffer depending on "readop"
mov al,seksec imask buffer number
and ax,secmsk ileast signif bits are masked
mov cl, 7 ! shl ax,cl ishift left 7 (* 128 = 2**7)

ax has relative host buffer offset

add ax,offset hstbuf
mov si,ax

iax has buffer address
iPut in source index register

All Information Presented Here is Proprietary to Digital Researc6

92

CP/M-86 System Guide Appendix.~ Blocking and Deblocking

rwmove:

mov di,dma_off

push DS ! push ES

mov ES,dma_seg

mov cx,128/2
mov al,readop
test al,al
jnz rwmove

iuser buffer is dest if readop

isave segment registers

;set destseg to the users seg
:9I/DI and DS/E~ is swapped
:if write op
:length of move in words

:which way?
:skip if read

write operation,
mov hstwrt,l
xchg si,di

mark and switch direction

mov ax,DS
mov ES,ax
mov DS,dma_seg

cld ! rep movs AX,AX
pop ES ! pop DS

:hstwrt = 1 (dirty buffer now)
isource/dest index swa?

;setup OS,ES for write

imove as 16 bit words
:restore segment registers

data has been moved to/from host buffer
cmp wrtype,wrdir :write type to directory?
mov al,erflag :in case of errors
jnz return_rw :no further processing

buffer for directory write clear host
test al,al
jnz return rw
mov hstwrt-;O
call writehst
mov al,erflag

:errors?
:skip if so
i buffer \-lr i tten

261:
262:
263:
264:
265:
266:
267:
268:
269:
270:
271:
272: i
273:
274:
275:
276:
277:
278:
279: i
280:
281:
282:
283:
284:
285:
286:
287:
288:
289:
290:
291:
292:
293:
294:
295:
296:
297:
298:
299:
300:
301:
302:
303:
304:
305:
306:
307:
308:
309:
310:
311:
312:
313:
314 :
315:

return rw:
ret . ,

.*** ,

.* , *
:* WRITEHST performs the physical write to the host *
:* disk, while READHST reads the physical disk.
.* , *

*
.*** ,
writehst:

ret
:
readhst:

ret
i
.*** ,
.* * ,
i* Use the GENDEF utility to create disk def tables *
.* * ,
.*** ,
dpbase equ offset $

All Information Presented Here is Proprietary to Digital Research

93

CP/M-86 System Guide Appendix A Blocking and Deblocking

316:
317:
318:
319:
320:
321:
322:
323:
324:
325:
326:
327:
328:
329:
330:
331:
332:
333:
334:
335:
336:
337:
338:
339:
340:
341:
342:
343:
344:
345:
346:
347:
348:

disk parameter tables go here
:
.*** ,
.* * ,
:* Uninitialized RAM areas follow, including the *
:* areas created by the GENDEF utility listed above. *
.* * ,
.*** ,
sek dsk rb
sek trk rw
sek-sec rb
· , hst dsk rb
hst trk rw
hst-sec rb
· ,
sek hst rb
hst act rb
hst-wrt rb

una cnt rb
una-dsk rb
una trk rw
una sec rb
· , erflag
rsflag
readop
wrtype

rb
rb
rb
rb

dma seg rw
dma-off
hs'tbuf

rw
rb
end

1
1
1

1
1
1

1
1
1

1
1
1
1

1
1
1
1
1
1
hstsiz

:seek disk number
:seek track number
:seek sector number

:host disk number
:host track number
:host sector number

:seek shr secshf
:host active flag
:host written f.lag

:unalloc rec cnt
:last unalloc disk
:last unalloc track
:last unalloc sector

:error reporting
:read sector flag
:1 if read operation
:write operation type
:last dma seqrnent
:last drna offset
:host buffer

All Information Presented Here is Proprietary to Digital Research

94

Appendix B
Sample Random Access Program

This appendix contains a rather extensive and com~lete example
of. random access operation. The program listed here performs the
simple function of reading or writing random records upon command
f rom the terminal. Gi.ven that the program has been created,
assembled, and placed into a file labelled RANDOM .• CMD, the CCP level
command:

RANDOM X.DAT

starts the test program. The program looks for a file by the name
X.DAT (in this particular case) and, if found, proceeds to prompt
the console for in~ut. If not found, the file is created before the
prompt is given. Each prompt takes the form

next command?

and is followed by operator input, terminated by a carriage return.
The input commands take the form

nW nR Q

where n is an integer value in the range 0 to 65535, and W, R, and Q
are simple command characters corresponding to random write, random
read, and qui t processing, respectively. If the W command is
issued, the RANDOM program issues the prompt

type data:

The operator then responds by typinq up to 127 characters, followed
by a carriage return. RANDO~ then wri.tes the character strinq into
the X. DAT file at record n. If ,the R command is issued, RANDO~1

reads record number n and displays the string value at the console.
If the Q command is issued, the X. DAT file is closed, and the
program returns to the console command processor. The only error
message is

error, try again

The program begins with an initialization section where the
input file is opened or created, followed by a continuous loop at
the label "ready" where the individual commands are interpreted.
The default file control block at offset DOSCH and the default
buffer at offset 0080H are used in all disk operations. The utility
subroutines then follow, which contain the principal input line
processor, called "readc." This particular proqram shows the
elements of random access processing, and can be used as the basis
for further program development. In fact, with some work, this
program could evolve into a simple data base management svstem.

All Information Presented Here is Proprietary to Digital Research

95

CP/M-86 System Guide Appendix B Sample Random Access Program

One could, for example, assume a standard record size of 128
bytes, consisting of arbitrary fields within the record. A orogram,
called GETKEY, could be developed which first reads a sequential
file and extracts a specific field defined by the operator. For
example, the command

GETKEY NAMES.OAT LASTNAME 10 20

would cause GETKEY to read the data base file NAMES.OAT and extract
the "LASTNAME" field from each record, starting at position 10 and
ending at character 20. GETKEY builds a table in memory consi.stinq
of each particular-LASTNAME field, along with its 16-bit record
number locat ion wi thin the file. The GETKEY program then sorts this
list, and writes a new file, called I.JASTNAME.KEY, which is an
alphabetical list of LASTNAME fields wi th their corresponding record
numbers. (This list is called an "inverted index" in information
retrieval parlance.)

Rename the program shown above as QUERY, and enhance it a bit
so that it reads a sorted key file into memory~ The command line
might appear as:

QUERY NAMES.DAT LASTNAME.~EY

Instead of reading a number, the QUERY proqram reads an alphanumeric
string which is a particular key to find in the NAMES. OAT data base.
Since the LASTNAME. T<EY list is sorted, you can find a particular
entry quite rapidly by performing a "binary search," similar to
looking up a name in the telephone book. That is, starting at both
ends of the list, you examine the entry halfway in between and, if
not matched, split either the upper half or the lower half for the
next search. YOU'll quickly reach the item you're looking for (in
10g2(n) steps) where you'll find the corresponding record number.
Fetch and display this record at the console, just as we have done
in the program shown above.

At this point you're just getting started. tiith a little more
work, you can allow a fixed grouping size which differs from the 128
byte record shown above. This is accomplished by keeping track of
the record number as well as the byte offset within the record.
Knowing the group size, you randomly access the record containing
the proper group, offset to the beginning of the group within the
record read sequentially until the group size has been exhausted.

Finally, you can improve QUERY consider<;lb1y by allowing boolean
expressions which compute the set of records which satisfy several
relationships, such as a LASTNAME between HAR.DY and LAUREL, and an
AGE less than 45. Display all the records which fit this
description. Finally, if your lists are getting too big to fit into
memory, randomly access your key files from the disk as well.

All Information Presented Here is Proprietary to Digital Research

96

CP/M-86 System Guide Appendix B Random Access Sample Program

1: :
2: ~**
3: ~ * *
4: ~* Sample Random Access Program for CP/M-86 *
5: ~ * *
6: ~**
7:
8: BOOS Functions
9:

coninp
conout
pstring
rstring
version
openf
closef
makef
readr
writer

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

1
2
9
10
12
15
16
22
33
34

:console input function
:console output function
:print string until ~$~
:read console buffer
;return version number
;file open function
;close function
;make file function
;read random
;write random

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20: ~
21:
22: cr
23: If

Equates for non graphic characters
equ Odh ;carriage retur.n
equ Oah ; 1 i ne feed

24: :
25:
26: load SP, ready file for random access
27: ;
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40: ;
41:
42:
43:
44:
45:
46:
47:
48:
49:
50: :
51: versok:
52: :
53:
54:
55:

cseg
pushf
pop
c1i
mov
mov
mov
push
popf

ax

bx,ds
ss,bx
sp,offset stack
ax

:push flags in CCP stack
~save flags in AX
~disable interrupts
~set SS register to base
:set SS, SP with interru
~ for 80888
~restore the flags

CP/M-86 initial release returns the file
system version number of 2.2: check is
shown below for illustration purposes.

cl,version mov
call
cmp
jnb

bdos
al,20h
versok

~version 2.0 or later?

mov
call
jmp

bad version, message
dx,offset badver
print
abort

and go back

correct version for random access
mov c1,openf ~open default fct
mov dx,offset fcb
call bdos

All Information Presented Here is Proprietary to Digital Research

97

CP/M-86 System Guide Appendix B Random Access Sample Program

:

inc
jnz

cannot
rnov
rnov
call
inc
4nz

" cannot
mov
call
jmp

al
ready

open file,
cl,makef
dx,offset
bdas
al
ready

ierr 255 becomes zero

so create it

fcb

ierr 255 becomes zero

create file, directory full
dx,offset nospace
print
abort iback to ccp

56:
57:
58: :
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:

loop back to "ready" after each command

85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:

100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:

ready:
file is ready for processing

call
mov
mov
cmp
inz

quit
rnov
mov
call
inc
jz
jmps

readcom
ranrec,dx
ranovf,Oh
al,~O~

notq

processing, close
cl,closef
dx,offset fcb

iread next command
istore input record#
iclear. high byte if set
iquit?

file

bdos
al
error
abort

:err 255 becomes 0
;error message, retry
;back to ccp

end of quit command, process write

notq:

rloop:

not the quit command, random write?
cmp aI, ~W~
jnz notw

this is a random write, fill buffer until cr
mov
call
rnov
rnov
:read
push
push
call
pop
pop
cmp

dx,offset datmsq
print ;data prompt
cx,127 iUP to 127 characters
bx,offset buf.f idestination

next character to buff
cx
bx
getchr
bx
cx
al,cr

isave loop conntrol
inext destination
icharacter to AL
irestore destination
irestore counter
iend of line?

All Information Presented Here is Proprietary to Digital Research

98

CP/M-86 System Guide Appendix 13 Random Access Sample Program

jz er100p
not end, store charact~r
mov byte ptr [bx],al
inc bx :next to fill

Ill:
112: ;
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:

loop rloop ;decrement cx •• loop if
erloop:

end of read loop, store 00
mov byte Pt~ [bx] ,Oh

write
mov
mov
call
or
jz
jmps

the record to selected
cl,writer

record number

dx,offset fcb
bdos
a1,al
ready
error

:error code zero?
;for another record

:message if not

end of write command, process read

notw:
not a write command, read record?
cmp al,~R~

jz ranread
jmps error :skip if not

; read random record
ranread:

:
readok:

wloop:

wloopl:

skipw:

mov
mov
call
or
jz
jmps

cl,readr
dx,offset
bdos
al,al
readok
error

fcb

:return code OO?

read was successful, write to console

call crlf :new line
mov cx,128 :max 128 characters
mov si,offset buff ;next to get

10ds al :next character
and al,07fh :mask parity
jnz w100pl
jmp ready :for another command

push cx :save counter
push si :save next to get
cmp aI, ~ ~ ;graphic?
"b 1 skipw :skip output if not
call putchr :output character

pop si

if

grap

All Information Presented Here is Proprietary to Digital Research

99

CP/M-86'System Guide Appendix B Random Access Sample Program

pop
loop
imp

cx
wloop
ready

idecrement ex and check
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187: i
188:
189:
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:
206:
207:
208:
209:
210:
211:
212:
213:
214:
215:
216:
217:
218:
219:
220:

end of read command, all errors end-up here

error:
mov
call
jrnp

dx,offset errmsg
print
ready

i Bnos entry subroutine
bdos:

· , abort:

int
ret

mov
call

224

cl,O
bdos

ientry to Bnos if by INT

ireturn to CCP

iuse function 0 to end e

utility subroutines f.or console i/o
· ,
getchr:

· ,
putchr:

i
crlf:

· ,
print:

· ,
readcom:

iread
mov
call
ret

iwrite
mov
mov
call
ret

isend
mov
call
mov
call
ret

iprint
push
call
pop
mov
call
ret

next console character to a
cl,conino.
bdos

character from a to console
cl,conout
dl,al
bdos

icharacter to send
isend character

carriage
al,cr
putchr
al,lf
putchr

return line feed
icarriage return

the buffer
dx
crlf
dx
cl,pstring
bdos

;line feed

addressed by dx until $

inew line

iprint the string

All Information Presented Here is Proprietary to Digital Research

100

CP/M-86 System Guide Appendix B Random Access Sample Program

readc:

qetnum:

endrd:

transl:

;read the next command line to the conbuf
mov dx,offset promot
call print icommand?
mov
mov
call

c1,rstring
dx,offset conbuf
bdos ; read command 1. i ne

command Jine is present, scan it
mov
mov
mov
inc
mov
or
jnz
ret

ax,O istart with 0000
bx,offset conlin
dl,(bx] ;next command character
bx i to next command pos it io
dh,O izero high byte for add
dl,dl icheck for end of cornman
getnum

not zero, numeric?

sub
cmp
inb
mov
mul
add
jmps

end of
mov
mov
cmp
jnb
ret
and
ret

d1,"0"
d1,10
endrd
cl,10
cl
ax,dx

readc

read, restore
dx,ax
al,-l(bx]
aI, "a"
transl

;carry if numeric

imu1tipy accumulator by
i+digit
;for another char

value in a and return value
ireturn value in nx

;check for lower case

al,5fH itranslate to upper case

221:
222:
223:
224:
225:
226:
227:
228:
229:
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
240:
241:
242:
243:
244:
245:
246:
247:
248:
249:
250:
251:
252:
253:
254:
255:
256:
257:
258: ;
259:
260:
261:
262:
263:
264:
265:
266:
267:
268:
269:
270:
271:
272:
273: ;
274:
275:

Template for Page 0 of Oata Group
Contains default FeB and DMA buffer

fcb
ranrec
ranovf
buff

dseg
org
rb
rw
rb
rb

05ch
33
1
1
128

string
badver

data area
db

nospace
datmsg
errmsg
prompt

db
db
db
db

idefault file control hi
;random record position
ihigh order (overflow) b
;default DMA buffer

for console messages
"sorry, you need cp/m
"no directory space$"
"type data: $"
"error, try again.$"
"next command? $"

version 2$"

fixed and variable data area

All Information Presented Here is Proprietary to Digital Research

101

CP!M-86 System Guide Appendix B Random Access Sample Program

276: conbuf db conlen ;length of console buffer
277: consiz rs 1 ;resulting size after read
278: conlin rs 32 ;length 32 buffer
279: conlen equ offset $ - offset consiz
280:
281: rs 31 ;16 level stack
282: stack rb 1
283: db 0 ;end byte for GENCMD
284: end

All Information Presented Here is Proprietary to Digital Research

102

Appendix C
Listing of the Boot ROM

r***
*

~his is the original BOOT ROM distributed with CP/f\~ *
:or the SBC 86/12 and 204 Controller. The listing *
Ls truncated on the right, but can be reproduced by *
issemb1ing ROM.A86 from the distribution disk. ~ote *
:hat the distributed source file should always be *
::-eferenced for the" latest version " *

*
~****************~************************************

ROM bootstrap for CP/M-86 on an iSBC86/12
with the

Intel SSC 204 Floppy Disk Controller

Copyright (C) 1980,1981
Digital Research, Inc.
Box 579, Pacific Grove
California, 93950

;
;**
;* This is the BOOT ROM which is initiated *
;* by a system reset. First, the ROM moves *
;* a copy of its data area to RAM at loca- *
;* tion OOOOOH, then initializes the segment*
;* registers and the stack pointer. The *
;* various peripheral interface chips on the*
;* SBC 86/12 are initialized. The 8251 *
;* serial interface is configured for a 9600*
;* baud asynchronous terminal, and the in- *
;* terrupt"controller is setup for inter- *
;* rupts 10H-17H (vectors at 00040H-0005FH) *
;* and edge-triggered auto-EO! (end of in- *
;* terrupt) mode with all interrupt levels *
;* masked-off. Next, the sse 204 Diskette *
;* controller is initialized, and track 1 *
;* sector 1 is read to determine the target *
;* paragraph address for LOADER. Finally, *
;* the LOADER on track 0 sectors 2-26 and *
;* track 1 sectors 1-26 is read into the *
;* target address. Control then transfers *
;* to LOADER. This program resides in two *
;* 2716 EPROM's (2K each) at location *
;* OFFOOOH on the SBC 86/12 CPU board. ROM *
;* 0 contains the even memory locations, and*
;* ROM 1 contains the odd addresses. BOOT *
;* ROM uses RAM between OOOOOH and OOOFFH *
;* (absolute) for a scratch area, along with*
;* the sector 1 buffer. *
.** ,

All Information Presented Here l.s Propr ietary to Dig i tal Research

103

CP/~J1-86 System Guide Appendix C Listing of the BOOT ROM

OOFF
FFOO

OOFF

OOOn
DOOA

OOAO
OOAO
OOAO
OOAl
OOAl
00A2
DOA4
OOA5
00A6
00A7
00A8
OOA8
OOA9
OOAA
OOAF

2580

0008

OOnA
00n8

OODO
00D2
00D4
0006

OOcO
00C2

FEOO

true
false

equ
equ

Offh ~

not true

debug equ true
~debug = true indicates bootstrao is in same roms
~with ssc 957 "Execution Vehicle" monitor
~at FEOO:O instead of FFOO:O

cr
If

equ
equ

13
10

disk ports and commands . ,
base204
fdccom
fdcstat
fdcparm
fdcrslt
fdcrst
dmacadr
dmaccont
dmacscan
dmacsadr
dmacmode
dmacstat
fdcsel
fdcsegment
reset204
~

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

OaOh
base204+0
base204+0
base204+l
base204+1
base204+2
base204+4
base204+5
base204+6
base204+7
base204+8
base204+8
base204+9
base204+l0
base204+15

~actual console baud rate
baud rate equ 9600
~value for 8253 baud counter
baud equ 768/(baud_rate/100)

· ,
csts
cdata
~

tchO
tch1
tch2
tcmd

· ,
icpl
icp2

equ
equ

equ
equ
equ
equ

equ
equ

IF NOT DEBUG
ROMSEG EQU

· ,
ENDIF

IF DEBUG
ROMSEG EOU

· ,
ENDIF

ODAh
Oo8h

OOOh
tchO+2
tchO+4
tchO+6

OCOh
OC2h

~i825l status port
~" data port

~8253 PIC channel 0
;ch 1 port
~ch 2 port
~8253 command port

~8259a port 0
~8259a port 1

OFFOO'H ~norma1.

~share prom with SB
OFEOOH

All Information Presented Here is Proprietary to Digital Research

104

CP/M-86 System Guide Appendix C Listing of the BOOT ROM

FEOO

)00 8CCS
)02 8ED8
)04 BE3FOl
)07 BFOO02
lOA B80000
000 8ECO
OOF B9E600
012 F3A4

014 B80000
017 8ED8
019 8EOO
OlB BC2A03
OlE FC

001F B013
P02l E6CO
0023 BOlO

· , · ,

· ,

;

This long jump prom'd in by hand
cseg Offffh
JMPF BOTTOM
EA 00 00 00 FF

EVEN PROM
7~8 - EA
7F9 - 00
7FA - FF

cseg romseg

000 PROM
7FB - 00
7F9 - 00

~reset goes to here
~boot is at bottom
~cs = bottom of pro

ip = 0

~this is not done i

~First, move our data area into RAM at 0000:0200

· ,

· ,
· ,

mov
mov
mov
mov
mov
mov
mov
rep

mov
mov
mov
mov
cld

ax,es
ds,ax ~point DS to CS for source
SI,drombegin ~start of data
DI,offset ram start ;offset of destinat
ax,O -
es,ax ~destination segment is 000
CX,data length ;how much to move i
movs al~al ~move out of eprom

ax,O
ds,ax ~data segment now in RAM
ss,ax
sp,stack_offset ~Initialize stack s

iclear the directio

IF NOT DEBUG

iNow, initialize the console USART and baud rate

· ,

mov al,O'Eh
out csts,al
mov a1,40h
out csts,al
mov al,4Eh
out csts,al
mov a1,37h
out csts,al
mov al,OB6h
out tcmd,a1
mov ax,baud
out tch2,al
mov al,ah
out tch2,al

'ENOIF

~give 8251 dummy mode

~reset 8251 to accept mode

; normal 8 bit asynch mode,

~enable Tx & Rx

;8253 ch.2 square wave mode

~low of the baud rate

~high of the baud rate

;Setup the 8259 Programmable Interrupt Controller
· ,

mov al,13h
out icpl,al
mov al,lOh

;8259a leW 1 8086 mode

All Information Presented Here is Proprietary to Digital Research

105

CP/M-86

0025 E6C2
0027 BOIF
0029 E6C2
002B BOFF
002D E6C2

002F E6AF
0031 BOOI
0033 E6A2
0035 BOOO
0037 E6A2
0039 BBl502
003e E8ElOO
003F BBlB02
0042 E8DBOO
0045 BB2l02
0048 E8D500
004B BBl002
004E E85800

0051 BB2A03
0054 B80000
0057 8ECO
0059 E8A700

005e BB0202
005F E84700

System

0062 8E062003
0066 BBOOOO
0069 E89700

006C BB0602
006F E83700
0072 BBOB02
0075 E83100

0078 8C06E802

007C C706E6020000

0082 FF2EE602

0086 8AOF
0088 84C9
008A 7476
008e E80400
008F 43
0090 E9F3FF

Guide

;Reset . ,

out
mov
out
mov
out

and

Appendix C Listing

icp2,al :8259a lew
al,lFh
icp2,al :8259a lew
al,OFFh
icp2,al :8259a oew

initialize the iSBC 204

of the BOOT ROJ

2 vector @ 40·

4 auto EOr ma~

1 mask all le~

Diskette Interi

restart: :also corne back here on fatal errc
out reset204,AL :reset iSBC 204 logic and
mov AL,l
out fdcrst,AL :give 8271 FDC
mov al,O
out fdcrst,AL ; a reset command
mov BX,offset specsl
CALL sendcom :program
mov BX,offset specs2
CALL sendcom ; Shugart SA-800 drive
mov BX,offset specs3
call sendcom :- characteristics

horner: mov BX,offset home

. ,

pmsg:

CALL execute ;home drive 0

mov bx,sectorl
mov ax,O

;offset for first sector n

mov es,ax ;segment " " "
call setup_dma

mov bx,offset readO
call execute ;get TO Sl

mov es,ABS
mov bx,O
call setup_dma

;get loader load address
:setup DMA to read loader

mov bx,offset readl
call execute :read track 0
mov bx,offset read2
call execute :read track 1

mov leap_segment,ES
setup far jump vector
mov leap_off.set,O

enter LOADER
jmpf dword ptr leap_offset

rnov cl, [BX]
test cl,cl
jz return
call conout
inc BX
jmp pmsg

All Information Presented Here is Proprietary to Digital Research

106

CP/M-86 System Guide

)93 E4DA
)95 A80l
)97 74FA
)99 8ACl
)9B E6D8
)9D C3

D9E E40A
OAO A802
OA2 74FA
OA4 E4D8
OA6 247F
OA8 C3

OA9 891"80002

lOAD E87000

lOBO 8BlE0002
IOB4 8A470l
IOB7 243F
)OB9 B90008
)OBC 3C2C
)OBE 720B
lOCO B98080
)OC3 240F
)OC5 3COC
)OC7 BOOO
)OC9 7737

conout:

conin:

. ,
execute:

retry:

. ,

Appendix C Listing of the BOO~ ROM

in al,csts
test al,l
jz conout
mov al,cl
out cdata,al
ret

in al,csts
test al,2
;z conin
in al,cdata
and al,7Fh
ret

;execute command string @ [BX]
;<BX> points to lenqth,
;followed by Command byte
;followed by length-I parameter byt

mov lastcom,BX

call sendcom

mov BX,lastcom
mov AL, I [BX]
and AL,3fh
roov Cx,0800h
cmp AL,2ch
jb execpol1
mov CX,8080h
and AL,Ofh
cmp AL,Och
mov AL,O
ja return

;remember what it w
;retrv if not ready
;execute the cornman
inow, let~s see wha
iof status poll was
ifor that command t
;point to command s
;get command op cod
idrop drive code bi
imask if it will be
;see if interrupt t

;else we use "not c
;unless • • •
;there isn~t

;any result at all

execpoll: ;poll for bit in b, toggled with c
[lOCB E4AO
DOCO 22C5
DOCF 32C174F8

0003 E4Al
0005 24lE
00n7 7429

0009 3ClO
OOOB 7513

eODO BB1302
OOEO E83000

i

in AL,FDCSTAT
and AL,CH
xor AL,CL ! JZ execpoll

in
and
jz

AL,fdcrslt
AL,leh
return

cmp al,IOh
jne fatal

mov bx,offset rdstat
call sendcom

iget result registe
ilook only at resul
;zero means it was

;if other than "Not

;perform read statu

All Information Presented Here is Proprietary to Digital Research

107

CP,/~1-86 System Guide Appendix C Listing of the BOOT ROl\1

OOE3 E4AO
OOES A880
00E7 7SFA
00E9 8BIE0002
OOED E9BDFF

OOFO B400
00F2 8B08
00F4 8B9F2702

00F8 E88BFF
OOFB E8AOFF
OOFE 58
OOFF E92DFF

0102 C3

0103 B004
0105 E6A8
0107 BOOO
0109 E6A5
010B B040
0100 E6AS
010F 8CCO
0111 E6AA
0113 8AC4
0115 E6AA
0117 8BC3
0119 E6A4
01lB 8AC4
0110 E6A4
01lF C3

0120 E4AO
0122 2480
0124 7SFA
0126 8AOF
0128 43
0129 8A07
012B E6AO

0120 FEC9
012F 74D1
0131 43

0132 E4AO
0134 2420
0136 75FA

· , fatal:

in al, ,fdc stat.
test al,80h
jnz rd_poll
mov bx,last com
imp retry -

mov ah,O
mov bx,ax

~wait for command n

~recover last attem
~and trv it over ag

~ fatal error

~make 16 bits
mov bx,errtbl[BX]
print appropriate error message
call pmsg
call conin
pop ax
jmp restart

· ,
return:

RET

· , setul;>dma:
mov AL,04h
out dmacmode,AL
mov al,O
out dmaccont,AL
mov AL,40h
out dmaccont,AL
mov AX,ES

~wait for key strik
:discard unused ite
~then start all ove

~return from EXECUT

~enable dmac

~set first (dummy)

~force read data mo

out fdcseg~ent,AL
mov .AL,AH
out fdcsegment,AL

. ,

. ,

mov
out
mov
.out
RET

AX,BX
dmacadr,AL
AL,AH
dmacadr,AL

sendcom: ~routine

in AL,fdcstat
and AI.,60h
;nz sendcom
mov eL, [BX]
inc BX
mov al, [BX]
out fdccom,AL

parmloop:
dec CL
;z return
inc BX

parmpol1:
in AL,fdcstat
and AL,20h

:\ jnz parmpoll

to send a command string t

~insure command not busy
:get coun·t

~point to and fetch command
;send command

;see if any (more) paramete
~point to next parameter

~loop until parm not full

All ,In.form~t.ion ·Presented Here is Proprietary to Digital Research

108

CP/M-86 System Guide Appendix C Listing of the BOOT ROM

138 8A07
'13A E6Al
113C E9EEFF

013F

113F 0000

)141 03
)142 52
)143 00
)144 01

)145 04
)146 53
)147 00
)148 02
)149 19

)14A 04
)14B 53
J14C 01
)140 01
J14E 1A

J14F 026900
0152 016C
0154 05350D
0157 0808E9
015A 053510
0150 FFFFFF
0160 053518
0163 FFFFFF

0166 4702
0168 4702
016A 4702
016C 4702
016E 5702
0170 6502
0172 7002
0174 7F02
0176 9002
0178 A202
017A B202
017C C502
017E D302
0180 4702
0182 4702
0184 4702

mov .~L, [BX]
out fdcparm,AL
imp parmloop

;output next parameter
;go see about another

Image of data to be moved to RAM
;
drombegin equ offset $
· ,
clastcom
i
creadstring

· ,
creadtrkO

· ,
creadtrkl

;
chomeO
crdstatO
cspecs1

cspecs2

cspecs3

;
cerrtbl dw

dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw

dw

db
db
db
db

db
db
db
db
db

db
db
db
db
db

OOOOh

3
52h
o
1

4
53h
o
2
25

4
53h
1
1
26

;last command

;length
;read function code
itrack #
isector #

iread multiple
;tr~ck 0
isectors 2
ithrough 26

itrack 1
isectors 1
ithrough 26

db
db
db
db
db
db
db
db

2,69h,0
1,6ch
5,35h,Odh
08h,08h,Oe9h
5,35h,lOh
255,255,255
5,35h,18h
255,255,255

offset erO
offset erl
offset er2
offset er3
offset er4
offset er5
offset er6
offset er7
offset er8
offset er9
offset erA
offset erB
of.fset erC
offset erD
offset erE
offset erF

I ;
0186 000A4E756C6C CerO db cr,lf,'Null Error ??',O

All Information Presented Here is Proprietary to Digital Research

109

CP/M-86 System Guide Appendix C Listing of the BOOT ROM

204572726F72
203F3FOO

0186
0186
0186

0196 ODOA436C6F63
6B204572726F
7200

01A4 ODOA4C617465
2044404100

OlAF OnOA49442043
524320457272
6F7200

OlBE 000A44617461
204352432045
72726F7200

01CF ODOA44726976
65204E6F7420
526561647900

OlEl 000A57726974
652050726F74
65637400

01F1 ODOA54726B20
3030204E6F74
20466F756E64
00

0204 ODOA57726974
65204661756C
7400

0212 000A53656374
6F72204E6F74
20466F756E64
00

0186
0186
0186

0225

00E6

0000

0200
0200
0202
0206
020B
0210
0213
0215

Cer1
Cer2
Cer3
Cer4

Cer5

Cer6

Cer7

Cer8

Cer9

CerA

CerB

CerC

Cern
CerE
CerF

· ,

equ
equ
equ
db

db

db

db

db

db

db

db

db

equ
equ
equ

cerO
cerO
cerO
cr,lf, Clock Error ,O

cr,lf, Late DMA ,O

cr,lf, ID CRe Error ,O

cr,lf, Data CRe Error ,O

cr,lf, nrive Not Ready ,O

cr,lf, Write Protect ,O

cr,lf, Trk 00 Not Found ,O

cr,lf, Write Fault ,O

cr,lf, Sector Not Found ,O

cerO
cerO
cerO

dromend equ offset $

· ,
data_length equ dromend-drombegin

reserve space in RAM for data area
(no hex records generated here)

o. ..

· ,
dseg 0
org 0200h

ram start equ $
lastcom rw 1 ;last command
readO rb 4 ;read track o sectc
readl rb 5 ;read TO S2-26
read2 rb 5 ;read Tl 81-26
home rb 3 ; home drive 0
rdstat rb 2 ;read status
specsl rb 6

All Information Presented Here is Proprietary to Digital Research

110

CP!M-86 System Guid.e Appendix C Listing of the BOOT ROM

)21B specs2 rb 6
)221 sT;>ecs3 rb 6
)227 errtbl rw 16
)247 erO rb length cerO :16

0247 erl equ erO
0247 er2 equ erO
0247 er3 equ erO

)257 er4 rb length cer4 :14
)265 er5 rb length cer5 :11
)270 er6 rb length cer6 :15
)27F er7 rb length cer7 :17
)290 er8 rb length cer8 :18
D2A2 er9 rb length cer9 :16
02B2 erA rb length cerA :19
02C5 erB rb length cerB :14
0203 ere rb length cerC :19

0247 erD equ erO
0247 erE equ erO
0247 erF equ erO . ,

02E6 leap_offset rw 1
02E8 leap_segment rw 1

:

02EA rw 32 ;local stack
032A stack offset equ offset $:stack from here do

. TO Sl read in here ,
032A sectorl equ offset $

032A Ty rb 1
032B Len rw I
032n Abs rw 1 :ABS is all we care
032F Min rw 1
0331 Max rw 1

end

All Information Presented Here is Proprietary to Digital Research

III

Appendix D
LDBIOS Listing

**
*

This the the LOADER BIOS, derived from the BIOS *
program by enabling the "loader bios" condi- *
tional assembly switch. The liitinq has been *
edited to remove portions which are duplicated *
in the BIOS listing which appears in APpendix n *
where elipses " ••• " denote the deleted portions *
(the listing is truncated on the right, but can *
be reproduced by assembling the BIOS.A86 file *
provided with CP/M-86) *

*
**

FFFF
0000

;***
.* * ,
;* Basic Input/Output System (BIOS) for *
;* CP/M-R6 Configured for iSBC 86/12 with *
;* the is'BC 204 Floppy Disk Controller *
.* * ,
:* (Note: this file contai.ns both embedded *
;* tabs and blanks to minimize the list file *
:* width for printing purposes. You may wish*
:* to expand the blanks before performing *
:* major editing.) *
.*** I

true
false

Copyright (C) 1980,1981
Digital Research, Inc.
Box 579, Pacific Grove
California, 93950

(Permission is hereby granted to use
or abstract the following program in
the implementation of CP/M, MP/M or
CP/NET for the 8086 or 8088 Micro
processor)

equ -1
equ not true

All Information Presented Here is Proprietary to Digital Research

113

CP/M-86 System Guide Appendix D LDSIOS Listing

FFFF
FFFF
OOEO

1200
0003
0406

1200 E93COO
1203 E96100

1239 E96400
123C E96400

.*** ,

.* ,

.* ,

.* ,

.* ,

. * ,

.* ,

. * ,

Loader bios is true if assembling the
LOADER-BIOS, otherwise BIOS is for the
CPM.SYS file. Blc list is true if we

*
*
*
*

have a serial printer attached to BLC8538 *
Bdos_int is interrupt used for earlier *
versions • * .* * ,

.*** ,

loader bios
blc list
bdos int

equ true
equ true
equ 224 ireserved BnOS Interrupt

IF not loader bios
i---
i I

i I
i---

ENDIF inot loader_bios

IF loader bios

~I--

bios code
ccp offset
bdos ofst
i I

equ l200h istart of LDBIOS
equ 0003h ibase of CPMLOADER
equ 0406h istripped BDOS entry .. I

;---~-----------------------~-----------------

ccp:

ENDIF . . .
cseg
org ccpoffset

org bios code

.*** ,

.* * ,
i* BIOS Jump Vector for Individual Routines *
.* * ,
.************************~******************** ,

jmp INIT iEnter from BOOT ROM or LOADER
jrnp T.vBOOT iArrive here from Bnos call 0 . . .
jmp GETIOBF :return I/O rna? byte (IOBYTE)
jmp SETIOBF iset I/O maT? byte (IOBYTE)

All Information Presented Here is Proprietary to Digital Research

114

CP/M-86 System Guide Appendix D LDRIOS Listing

L23F 8CC8
_241 8EDO
L243 8ED8
L245 8ECO

L247 BCA916
L24A FC

124B IE
124C B80000
124F 8ED8

1251 C70680030604
1257 8COE8203
125B IF

125C BB1514
125F E85AOO
1262 BIOO
1264 E99CED

1267 E99FED

.*** ,

.* * ,
;* INIT Entry Point, Differs for LDBIOS and *
;* BIOS, acc~rding to "Loader Bios" value * . * ' - * ,
.*** ,

I~IT: ;print signon
mov aX,es
mov sS,ax
mov ds,ax
mov eS,ax

message and initialize hardwa
;we entered with a JMPF so
i CS: as the initial value

DS: ,
and ES:

;use local stack during
mov sp,offset stkbase

initialization

cld ;set forward direction

IF not loader bios
i---
i I I

; This is a BIOS for the CPM.SYS file.
; I I
i---

ENDIF ;not loader_bios

IF loader bios
e __ _ ,
; I

; I

;This is a BIOS for the LOADER
push ds ;save data segment
mov ax,O
mov ds,ax ipoint to seqment zero
iBDOS interrupt offset
mov bdos offset,bdos ofst
mov bdos-segment,CS :bdos interrupt segment
pop ds - 1restore data segment I

e __ _ ,
ENDIF

mov bx,offset signon
call pmsg ;print signon message
mov cl,O ;default to dr A: on coldst
jmp ecp i;ump to cold start entry 0

WBOOT: jmp ccp+6 ;direct entry to cCP at com

IF not loader bios

~I---I

; I
;---

ENDIF ;not loader bios

All Information Presented Here is Proprietary to Digital Research

115

CP/M-86 System Guide Appendlx D LDBIOS Listing

126A E40A

1272 C3

.*** , .

. * * ,

.* ,

.* ,

.* ,

. * ,

CP/M Character I/O Interface Routines *
Console is Usart {i8251a) on iRBe 86/12 *
at ports D8/DA *

*
.*** ,

CONST: ;console status
in al,csts

const ret:
ret ;Receiver Data Available

CONIN: ;console input
1273 E8F4FF call const

CONOUT: ;console output
127D E40A in al,csts

LISTOUT: ;list device output

IF blc list
i---
; I

1288 E80700 call J .. IS'rST

;---
E~DIF

1291 C3 ret

LISTST: ;pol1 list status

IF bic list
i---
; I

1292 E441 in al,lsts

:---
ENDIF

129C C3 ret

1290 BOlA
129F C3

PUNCH: ;not implemented in this configuration
READER:

mov al,lah
ret ;return EOF for now

All Information Presented Here is Proprietary to Digital Research

116

CP/M-86 System Guide Appendi.x D I.D13IOS Listing

12AO BOOO
12A2 C3

12A3 C3

12A4 2400
12A6 C3

12A7 E8C9FF

l2eA BBOOOO

12EB e606311500

1300 880E3115
1304 C3

1305 880E3215
1309 C3

130A 8BD9

1311 890E2A15
1315 C3

1316 890E2e15
131A C3

131B BB3815
131E C3

GETIOBF:
mov
ret

al,O ;~TY: for consistency
;IOBYTE not im?lemented

SETIOBF:
ret ;iobyte not implemented

zero ret:
and al,O

ret ;return zero in AL and flag

Routine to get and echo a console character
and shift it to upper case

uconecho:
call eONIN ;get a console character

.*** , .

.* ,

.* , Disk Input/Output Routines
*
*

.* * ,

.*** ,

SELDSK: ;select disk given by reqister CL
mov bx,OOOOh

HOME: ;move selected disk to home position (~rack

mov trk,O ;set disk i/o to track zero

SETTRK: ;set track address given by ex
mov trk,cl ;we on1.y use 8 bits of trac
ret

SETSEC: ;set sector number given by cx
mov sect,cl ;we only use 8 bits of sect
ret

SECTRAN: ;translate sector ex using table at [DXl
mov bx,cx

SETDMA: ;set DMA offset given by ex
mov dma_adr,ex
ret

SETDMAB: ;set DMA segment given by ex
mov dma seq,CX

. , ret -

GETSEGT: ;return address of physical memory table
mov bx,offset seg_table
ret

All Information Presented Here is proprietary to Digital Research

117

CP/M-86 System Guide AP?endix D I.JDBIOS Listing

131F B012
1321 EB02

1323 BOOA

1325 BB2F15

1415

1415
1419

ODOAODOA
43502F4D2D38
362056657273
696F6E20322E
320DOAOO

All disk I/O parameters are setu~: the *
Read and write entry points transfer one *
sector of 128 bytes to/from the current *
OMA address using the current disk drive *

READ:
mov al,l2h :basic read sector command
jmps r_w_common

WRITE:
mov a1,Oah :basic write sector command

r w common:
mov bx,offset io_com :point to command stri

.*** ,

.* * ,
:* Data Areas *
.* * ,
.*** ,
data offset equ offset $

dseg
org data offset

IF loader bios

:contiguous with co

~---: I
signon db cr,lf,cr,lf

db .#CP/M-86 Version 2.2.#,cr,lf,O

: I
:---

ENDIF

IF not loader bios
;---
: I I
: I
e __ _ ,

ENDIF :not loader_bios

142F ODOA486F6D65 bad hom db cr,lf,.#Home Error.#,cr,lf,O

=
=

include singles.lib :read in disk definitio
DISKS 2

All Information Presented Here is Proprietary to Digital Research

118

CP/M-86 System Guide Appendix n LDBIOS Listinq

1541

)68 00

>69
16A9

5~9 00

0000

dpbase equ $;Base of Disk Param

db o ;Marks End of Modul

10e stk rw 32 ;local stack for initialization
stkbase equ offset $

. . .
db 0 ;fill last address for GENCMO

.*** ,

.* * ,
;* Dummy Data Section *
. * * ,
.*** ,

dseg 0 ;absolute low memory
org 0 ; (interrupt vectors)

END

All Information Presented Here is Proprietary to Digital Research

119

Appendix E
BIOS Listing

**
*

This is the CP/M-86 BIOS, derived from the BIOS *
program by disabling the "loader bios" condi- *
tional assembly switch. The lis~ing has been *
truncated on the right, but can be reproduced *
by assembling the BIOS.A86 file provided with *
CP/M-86. This BIOS allows CP/M-86 operation *
with the Intel SBe 86/12 with the SSC 204 con- *
troller. Use this BIOS, or the skeletal CBIOS *
listed in Appendix E, as the basis for a cus- *
tomized implementation of CP/M-86. *
provided with CP/M-86) *

*
**

.*** ,

FFFF
0000

.* * ,
~* Basic Input/Output System (BIOS) for
~* CP/M-86 Configured for iSBC 86/12 with
~* the iSBC 204 Floppy Disk Controller
.* ,

*
*
*
*

~* (Note: this file contains both embedded *
~* tabs and blanks to minimize the list file *
~* width for printing purposes. You may wish*
~* to expand the blanks before performing *
~* major editing.) *
~***

true
false

Copyright (C) 1980,1981
Digital Research, Inc.
Box 579, Pacific Grove
California, 93950

(Permission is hereby granted to use
or abstract the following program in
the implementation of CP/M, MP/M or
CP/NET for the 8086 or 8088 Micro
processor)

equ -1
equ not true

All Information Presented Here is Proprietary to Digital Research

121

CP/M-86 System Guide Appendix E BIOS Listing

0000
FFFF
OOEO

2500
0000
OB06

OODA
00n8

0041
0040
0060

. ;***
.* * ,
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,

Loader bios is true if assemblinq the *
LOADER-BIOS, otherwise BIOS is for the *
CPM.SYS file. SIc list is true if we *
have a serial printer attached to BLC8538 *
Bdos_int is interrupt used for earlier *
versions. *

.* * ,
;***

loader bios equ false
blc list equ true.
bdos int equ 224 ;reserved BDOS Interrupt

IF not loader bios

~I--

bios code
ccp offset
bdos ofst
; I

equ 2500h
equ OOOOh
equ OB06h ;BDOS entry point

;---
ENDIF :not loader_bios

IF loader bios
:---
: I
bios code
ccp offset
bdos ofst
: I

equ 1200h ;start of LDRIOS
equ 0003h :base of CPMLOADER
equ 0406h ·,stripped BDOS entry - 1

~---
ENDIF ; loader bios -

csts equ ODAh ;i8251 status port
cdata equ OoSh " data port

IF bic list
._--,
; I I
lsts equ 41h ;2651 No. 0 on BLC8538
Idata equ 40h ; " II II II "
blc reset equ 60h ;reset selected USARrrs
; I - I
~---

ENDIF

.*** ,

.* * ,
;* Intel iSBC 204 Disk Controller Ports *
.* * ,
.*** ,

stat
data
on B

All Information Presented Here is Proprietary to Digital Research

122

CP/M-86

OOAO

OOAO
OOAO
OOAl
OOAl
OOA2
OOA4
00A5
00A6
00A7
OOA8
00A8
OOA9
OOAA
OOAF

OOOA

OOOD
OOO.A

~500 E93COO
~503 E98400
~506 E99000
~509 E99600
~50C E99DOO
~50F E9A500
~512 E9B700
~515 E9B400
~518 E9FFOO
~51B E9DBOO
251'8 E90EOl
2521 E91001
2524 E9190l
2527 E92401
252A E9250l
252D E99100
2530 E9060l
2533 E90FOl
2536 E9l10l
2539 E99300
253C E99300

System Guide Appendix E BIOS Listing

base204 equ OaOh 1SBC204 assigned ad

fdc com - equ base204+0 18271 FDC out comma
fdc stat equ base204+0 18271 in status -fdc _parm equ base204+1 18271 out parameter
fdc rslt equ base204+1 ;8271 in result -fdc rst equ base204+2 18271 out reset
dmac adr equ base204+4 18257 DMA base addr -dmac cont equ base204+5 ;8257 out control
dmac scan equ base204+6 18257 out scan cant -dmac sadr base204+7 18257 out addr equ scan
dmac -mode equ base204+8 i8257 out mode
dmac stat equ base204+8 18257 in status
fdc sel equ base204+9 1FDC select port (n
fdc _segment equ base204+l0 1 segment address re
reset 204 equ base204+15 1reset entire inter

max retries equ 10 1max retries on dis - ;before perm error
cr equ Odh ;carriage return
If equ Oah 11ine feed

cseg
org ccpoffset

ccp:
org bios code

.*** ,

.* , *
i* BIOS Jump Vector for Individual Routines * .* * ,
.*** ,

jmp IN IT
jmp WBOOT
jmp CONST
jmp CONIN
jmp CON OUT
jmp LISTOUT
imp PUNCH
jmp READER
jmp Hor1E
imp SELDSK
jmp SET"rRK
imp SET SEC
jmp SETDMA
jmp READ
jmp WRITE
imp LISTST
jmp SECTRAN
jmp SETDMAB
imp GETSEGT
jmp GETIOBF
jmp SETIOBF

iEnter from BOOT ROM. or LOADBR
iArrive here from BDOS call 0
ireturn console keyboard status
ireturn console keyboard char
iwrite char to console device
iwrite character to list device
iwrite character to punch device
ireturn char from reader device
imove to trk 00 on cur sel drive
1select disk for next rd/write
1set track for next rd/write
;set sector for next rd/write
1set offset for user buff (OMA)
1read a 128 byte sector
1write a 128 byte sector
1return list status
;xlate logical->physical sector
;set seg base for buff (DMA)
ireturn offset of Mem Desc Table
;return I/O map byte (IOBYTE)
;set I/O map byte (IOBYTE)

All Information Presented Here is Proprietary to Digital Research

123

CP/M-86 System Guide .Appendix E, BIOS Listing

253F 8CC8
2541 8EDO
2543 8ED8
2545 8ECO

2547 BCE429
254A Fe

254B IE
254C B80000
254F 8EDS
2551 8ECO

2553 C70600008n25
2559 8COE0200
2550 BF0400
2560 BEOOOO
2563 B9FEOI
2566 F3A5

2568 C7068003060B
256E IF

256F BOFF
2571 E660
2573 B04E
2575 E642
2577 B03E
2579 E642
257B B037
257D E643

.*** ,

.* , *
;*INIT Entry Point, Differs for LOBIOS and *
;* BIOS, according to "Loader Bios" value
.* - *

* ,
.*** ,

INIT: ;print signon message and initialize hardw
mov ax,cs :we entered with a JMPF so
mov ss, ax ; CS: as the 'ini tial value
mov ds,ax DS:,
mov es,ax and ES:
;~se'local stack during initialization
mov sp,offset stkbase
cld :set forward direction

IF not loader bios
;---
: I I

This is a BIOS for the CPM..SYS file.
: Setup all interrupt vectors in low

memory to address trap

push ds
mov ax,O
mov ds,ax

;save the DS register

mov es,ax ;set ES and DS to zero
·:setup interrupt 0 to address tra~ routine
mov intO offset,offset int trap
mov intO-segment,CS -
mov di ,4- .
mov si,O ;then propagate
mov cx,5l0 ;trap vector to
rep movs ax,ax ;al1 256 interrupts
;BOOS offset to proper interrupt
mov bdos offset,bdos ofst
pop ds - ;restore the ns register

.*** , .

. * * ,
;* National "BLC 8538" Channel 0 for a serial*
;* 9600 baud printer - this board uses 8 Sig-*
;* netics 2651 Usarts which have on-chip baud*
;* rate generators.
.* , *

*
.*** ,

mov al,OFFh
out bIc reset,al ;reset all usarts on
mov al,4Eh
out Idata+2,al ;set usart 0 in async
mov al,3Eh

853~

8 b:

out Idata+2,al ;set usart 0 to 9600 baud
mov al,37h
out Idata+3,al ;enable TX/Rx, and set up

All Information Presented Here is Proprietary to pigital Researc]

124

CP/M-S6 System Guide AppendixE BIOS Listing

57F BB4427
5S2 ES6600
iSS BIOO
iS7 E976nA

,SA E979DA

5SD FA
5SE BCCS
590 SEDS
592 BB7927
595 ES5300
59S F4

599 E4DA
59B 2402
590 7402
59F OCFF

15A1 C3

e __ _ ,
ENDIF

IF

:not loader_bios

loader bios
i---
: I

:This is a BIOS for the LOADER
push ds ;save data segment
mov ax,O
mov ds,ax :point to segment zero
:BDOS interrupt offset
mov bdos offset,bdos ofst

: I

mov bdos-segment,CS :bdos interrupt seqment
pop ds - :restore data segment . I

;---
ENDIF

mov bx,offset signon
call pmsg :print signon message
mov cl,O ;default to dr A: on coldst
imp ccp ;jump to cold start entry 0

WBOOT: jmp ccp+6 :direct entry to CCP at com

IF not loader bios
;---
; ,
int trap:

cli :block interrupts
mov ax,cs
mov ds,ax
mov bx,offset
call pmsg
hIt

;get our data segment
i.nt_trp

;hardstop

~---
ENDIF :not loader_hios

.*** ,

.* ,

.* ,

.* ,

.* ,

.* ,

*
CP/M. Character I/O Interface Routines *
Console is Usart (i825la) on iSBC 86/12 *
at ports D8/DA *

*
.*** ,

CONST: :console status
in al,csts
and al,2
jz const ret
or al,255 ;return non-zero if RDA

const ret:
ret ;Receiver Data Available

All Information Presented Here is Proprietary to Digital Research

125

CP!M-86 System Guide Appendix E BIOS Listin4

25A2 E8F4FF
25A5 74FB
25A7 E4n8
25A9 247F
25AB C3

25AC E4DA
25AE 2401
25BO 74FA
25B2 8ACl
25B4 E6D8
25B6 C3

25B7 E80700
25BA 74FB
25BC 8ACl
25BE E640

CONIN: 1console lnput
call const
;z CONIN 1wait for RDA
in al,cdata
and al,7fh 1read data and remove par
ret

CONOU"r: 1console output
in aT,csts
and al,1 ~get console status
jz CONOUT ~wait for rt''BE
mov al,cl
out cdata,al ~'r'ransmitter Buffer Empty
ret ~then return data

LISTOUT: ~list device output

IF bic list
~---
~ I

~ I

call LISTST
iz LISTOUT
mov al,cl
out l.data,al

~wai t for printer not bus'

~send char to TI 810

~---
ENDIF

25CO C3 ret

25Cl E441
25C3 2481
25C5 3C81
25C7 750A
25C9 OCFF

LISTST: ~poll list status

IF bic list
i---
~ ,

~ I

in al,lsts
and al,81h
cmp al,8lh
jnz zero ret
or al,255

~look at both TxRDY and D

~either false, printer is
~both true, LPT is ready I .

:-----------------------------~---------------
ENDIF

25CB C3 ret

25CC BOlA
25CE C3

25CF BOOO
25D1 C3

PUNCH: ~not im?lemented in this configuration
READER:

GETIOBF:

mov al,lah
ret

mov al,O
ret

~return EOF for now

~TTY: for consistency
~IOBYTE not implemented

All Information Presented Here is Proprietary to Digital Researc

126

CP/M-86 System Guide .Appendix E BIOS T.Jisting

5D2 C3

503 2400
5D5 C3

506 E8C9FF
5D9 50
5DA 8ACS
SOC E8COFF
50F 58
5EO 3C6l
5E2 7206
5E4 3C7A
5E6 7702
5E8 2C20

SEA C3

SEB 8A07
5EO 84CO
5EF 7428
:5F1 8AC8
:SF3 E8B6FF
:SF6 43
:5F7 EBF2

~SF9 BBOOOO
~SFC 80F902
~5FF 7318
~601 B080
~603 80F900
~606 7502
~608 B040
~60A A26928

~60D BSOO
~60F 8BD9
~611 B104

SETIOBF:
ret ;iobyte not implemented

zero ret:
and al,O

ret ;return zero in AL and flag

Routine to get and echo a console character
; and shift it to upper case

uconecho:

uret:

call CONIN
push ax
mov cl,al
call CONOUT
pop ax
cmp al,~a~
ib uret
emp al,~z'
ja uret
sub al,~a'-'A'

ret

;get a console character

;save and

;echo to console

;less than 'a~ is ok

;greater than 'z' is ok
;else shift to caps

utility subroutine to print messages

pmsg:
mov aI, [EX]
test al,al
jz return
rnov CL,AL
call CONOUT
inc BX

;get next char from message

;if zero return

;print it

jmps pmsg inext character and loop

.*** ,

. * * ,

.* ,

.* ,
Disk Input/Output Routines *

*
.*** ,

SELDSK: iselect disk given by register
mov bx,OOOOh

CL

cmp c1,2 ithis BIOS only supports
jnb return ireturn w/ 0000 in BX if
mov aI, 80h
cmp cl,O
jne sell idrive 1 if not zero
mov aI, 40h ;else drive is 0

sell: mov sel_mask,a1 isave drive select mask

2
ba

inow, we need disk paramete
mov ch,O
mov bx,cx ;BX = word (CL)
mov cl,4

All Information Presented Here is Proprietary to Digital Research

127

CP/M~86 System Guide Appendix E BIOS Listin<

2613 D3E3

2615 81C37C28

2619 C3

261A C6066C2800
261F BB6E28
2622 E83500
2625 74F2
2627 BB6A27
262A E8BEFF
262D EBEB

262F 880E6C28
2633 C3

2634 880E6D28
2638 C3

2639 8Bn9
263B 03DA
263D 8AIF
263F C3

2640 890E6528
2644 C3

2645 890E6728
2649 C3

264A BB7328
2640 C3

264E B012
2650 EB02

shl bx,cl ~multiply drive code * 16

return:

~create offset from Disk Parameter Base
add bx,offset dp base

ret

HOME: ~move selected disk to home position (Trac
mov trk,O ;set disk i/o to track zel
mov bx,offset hom com
call execute
jz return
mov bx,offset
call pmsg
jmps home

~home drive and return if
bad hom ielse print

i"Home Error"
iand retry

SETTRK: ;set track address given by CX
mov trk,c1 iwe only use 8 bits of trc
ret

SETSEC: iset sector number given by cx
mov sect,cl iwe only use 8 bits of sec
ret

SECTRAN: ;translate sector ex using table at [DX]
mov bx,cx
add bx,dx
mov bl,[bx]
ret

;add sector to tran table
iget logical sector

SETDMA: iset DMA offset given by ex
mov dma_adr,CX
ret

SETDMAB: ;set DMA segment given by ex
mov dma seg,CX
ret -

i
GETSEGT: ;return ~ddress of physical memory tabl~

mov bx,offset seg table
ret --

.*** I

.* * I

.* I

.* I

.*
I.

.* I

All disk I/O parameters are setup: the *
Read and Write entry points transfer one *
sector of 128 bytes to/from the current *
DMA address using the current disk drive *

.* * I

.*** I

READ:
mov al,12h ibasic read sector comman~
jmps r w common

WRITE:

All Information Presented Here is Proprietary to Digital Researc

128

CP/M-86 System Guide Appendix E BIOS Listing

;52 BOOA

;54 BB6A28
;57 884701

55A 891E6328

55E C60662280A

563 8BIE6328
567 E88900

56A 8BIE6328
56E 8A4701
571 B90008
574 3C2C
576 720B
578 B98080
57B 240F
57D 3COC
67F BOOO
681 7736

683 E4AO
685 22C5
687 32Cl
689 74F8

68B E4Al
68D 241E
68F 7428

691 3CIO
693 7425

695 FEOE6228
699 75C8

~9B B400

mov al,Oah 1basic write sector command

r w common:
mov bx,offset io com 1Point to command stri
mov byte ptr 1 [BX] ,al :put command into str
fall into execute and return

execute: :execute command stri.ng.
1 (BX] points to length,

followed ~y Command byte,
followed by length-I parameter byte

mov last com,BX 1save command address for r
outer retry: -

- 1ailow some retrying

retry:
mov rtry_cnt,max_retries

mov BX,last com
call send com :transmit command to i8271
check staEus poll

mov BX,last com
mov al,l[bxT
mov cx,0800h
cmp aI, 2ch
ib exec poll
mov cx,8080h
and al,Ofh
cmp al,Och
mov al,O
ja exec exit

iget command op code
imask if it will be Hint re

:ok if it is an interrupt t
:else we use "not command b

iunless there isn~t

any result

exec_poll:
:poll for bits in CH,

toggled with bits in CL

dr

. , . ,

_rdy:

in al,fdc stat -and al,ch
xor al,cl
jz exec_poll

in al,fdc rslt
and al,leh
jz exec exit -
cmp al,10h
je dr _nrdy

. then we iust ,
dec rtry_cnt
jnz retry

:read status

: isolate what we want to
:and loop until it is done

iOperation complete,
i see if result code indica

:no error, then exit
:some type of error occurre

iwas it a not ready drive ?
:no,

retry read or write

up to 10 times

retries do not recover from the
hard error

mov ah,O

All Information Presented Here is Proprietary to Digital Research

129

CP/M-86 System Guide Appendix E BIOR Listin'

269D 8BD8
269F 8B9F9127
26A3 E845FF
26A6 E4D8
26A8 E82BFF
26AB 3C43
26AD 7425
26AF 3C52
26Bl 74AB
26B3 3C49
26B5 741A
26B7 OCFF

26B9 C3

26BA E81AOO
26BD 75A4
26BF E81500
26C2 759F
26C4 BB0228
26C7 E821FF

26CA E80AOO
26CD 74FB
26CF EB92

2601 2400
26D3 C3

26D4 E9B3FE

26D7 B640
26D9 F606692880
26DE 7502
26EO B604

26E2 BB7128
26E5 E80BOO

26E8 E4AO
26EA A880
26EC 75FA
26EE E4Al
26FO 84C6

mov bx,ax :make error code 16 bits
mov bx,errtbl[BX]
call pmsg
in al,cdata
call uconecho
cmp aI, ~C~
ie whoot I
. ~-~ cmp aI, R
ie outer retry
cmp al, ~I~ .
ie z ret
or aI,255

:print appropriate messag l

:flush usart receiver buf
:read upper case console I

:cancel

:retry 10 more times

:ignore error
:set code for permanent e

exec exit:
ret

dr_nrdy: ;here to wait for drive ready

nrdyOl:

zret:

wboot 1:

call test ready
jnz retry- .. :if it~s ready now we are
call test ready
inz retry- ;if not ready twice in r01

mov bx,offset nrdymsg
call pmsg :"Drive Not Ready"

call test ready
iz nrdyOI-
jrnps retry

and al,O
ret

imp Tt\TBOOT

:now loop until drive rea
:then go retry without de-

; return \'1i th no er ror codl

:can~t make it wi a short

.*** ,

.* * ,
;* The i8271 requires a read status command *
;* to reset a drive-not-ready after the *
:* drive becomes ready *
.* * ,
.*** ,

test_ready:

nrdy2:

dr __ poll:

mov dh, 40h :proper mask if dr 1
test sel mask,80h
jnz nrdy2
mov dh, 04h :mask for dr 0 status bit

mov bx,offset rds com
call send com

in al,fdc stat
test al,80h
jnz or poll
in al,fdc rslt
test al,dh

;qet status word

;wait for not command bus
;get "special result"
:look at bit for this dri

All Information Presented Here is Proprietary to Digital Researc

130

CP/M-86 System Guide Appendix E BIOS Listing

5F2 C3

6F3 E4AO
6F5 A880
6F7 75FA

6F9 8A4701
6FC 3C12
6FE 7504
700 B140
702 EB06

704 3COA
,706 7520
:708 B180

~70A B004
~70C E6A8
~70E BOOO
!710 E6A5
!712 8ACI
~714 E6A5
~716 A16528
~719 E6A4
~71B 8AC4
~71D E6A4
~71F A16728
~722 E6AA
~724 8AC4
~726 E6AA

2728 8AOF
272A 43
272B 8A07
272D OA066928
2731 E6AO

2733 FEC9
2735 7482
~737 43

ret ireturn status of ready

.*** ,

.* ,

.* ,

. * ,

. * ,

.* ,

.* ,

Send com sends a command and parameters
to the i8271: BX addresses parameters •
The DMA controller is also initialized
if this is a read or write

*
*
*
*
*
*

.*** ,

send com:
in al,fdc stat
test al,80h
jnz send_com

iinsure command not busy
i100P until ready

jsee if we have to initialize for a DMA ope
"

mov al,l[bx] jget command byte
cmp al,12h
ine write maybe iif not a read it cou1,d be
mov cl,40'h
jmps init dma

write maybe: -
- cmp al,Oah

jne dma exit
mov cl,80h

init dma:

iis a read command, go set

ileave DMA alone if not rea
iwe have write, not rean

iwe have a read or write operation, setup DMA contr
(eL contains proper direction bit)

mov al,04h
out dmac mode,al
mov al,OD
out dmac cont,al
mov al,cr
out dmac cont,al
mov ax,dma adr
out dmac adr,al
mov al,ah
out dmac adr,al
mov ax,dma seq

ienable dmac

isend first byte to con

iload direction register

jsend low byte of DMA

isend high byte

out fdc segment,al isend low byte of segmen
mov al,ah
out fdc_segment,al ithen high segment addre

dma exit:
mov cl, [EX]
inc BX
mov aI, [BXl
or al,sel mask
out fdc com,al

parm loop: -
- dec cl

;z exec_exit
inc BX

parm_poll:

iget count

iget command
imerqe command and drive co
isend command byte

ino (more) parameters, retu
ipoint to (next) parameter

All Information Presented Here is Proprietary to Digital Research

131

CP/M-86 System Guide Appendix E BIOS Listin~

2738 E4AO
273A A820
273C 75FA
273E 8A07
2740 E6A1
2742 EBEF

2744

2744
2748

ODOAODOA
202053797374
656D2047656E
657261746564
20202D203131
204A616E2038
31000AOO

in al,fdc stat
test al,20h
jnz parm poll
mov aI, [BX]
out fdc parm,al
jmps parm loop

1test "parameter register
1idle until parm reg not i

1send next parameter
190 see if there are more

.*** ,

.* * ,
1* Data Areas *
.* * ,
.*** ,
data offset

dseg
org

equ offset $

data offset 1contiguous with c

IF loader bios
e __ _

; I
signon db

db
1 I

cr,lf,cr,lf
~CP/M-86 Version 2.2~,cr,lf,0

I
;---

ENDIF

IF not loader bios
i---
1 I
signon db cr,lf,cr,lf

db ~ System Generated - 11 Jan 81~,

1 I
i---

ENDIF 1not loader_bios

276A ODOA486F6065 bad hom db
204572726F72

cr,lf,~Home Error~,cr,lf,O

ODOAJ)O
2779 OOOA496E7465 int_trp db

727275707420
547261702048
616C74000AOO

2791 B127B127B127 errtbl dw
B127

2799 C1270127DE27 dw
EF27

27A1 022816282828 dw
3D28

27A9 4D28B127B127 dw

cr,lf,~Interrupt Trap Halt~,cr,lf,

erO,erl,er2,er3

er4,er5,er6,er7

er8,er9,erA,erB

erC,erD,erE,erF

All Information Presented Here is Proprietary to Digital Research

132

CP/M-86 System Guide Appendix E BIOS Listing

B127

~7B1 ODOA4E756C6C
204572726F72
203F3FOO

27B1
27B1
27B1

27C1 ODOA436C6F63
6B204572726F
72203AOO

27D1 ODOA4C617465
20444n41203A
00

27DE ODOA49442043
524320457272
6F72203AOO

27EF 000A44617461
204352432045
72726F72203A
00

2802 ODOA44726976
65204E6F7420
526561647920
3AOO

2816 ODOA57726974
652050726F74
656374203AOO

2828 ODOA54726B20
3030204E6F74
20466F756E64
203AOO

283n OnOA57726974
65204661756C
74203AOO

2840 ODOA53656374
6F72204E6F74
20466F756E64
203A.00

27B1
27B1
27B1
2802

2862 00
2863 0000
2865 0000
2867 0000
2869 40

286A 03
I 286B 00

286C 00

erO db cr,lf,~Null Error ??~,O

er1 equ erO
er2 equ erO
er3 equ erO
er4 db cr,Jf,~Clock Error :~,O

er5 db cr,lf,~Late DMA :~,O

er6 db cr,lf,~ID eRe Error :~,O

er7 db cr,lf,~nata rRC Error :~,O

er8 db cr,1f,~n.rive ~ot Ready :~,O

er9 db cr,1f,~Write Protect :~,O

erA db cr,lf,~Trk 00 Not Found :~,O

erB db cr,lf,~Write ~ault :~,O

ere db cr,lf,~Sector Not Found :~,O

erD eqli erO
erE equ erO
erF equ erO
nrdymsg equ er8

rtry cnt db 0
last-com dw 0
dma adr dw 0
dma-seg dw 0
sel-mask db 40h

:disk error retry counter
:address of last command string
:dma offset stored here
:dma segment stored here
:se1ect mask, 40h or SOh

Various command stri.ngs for i8271

i.o com
rd-wr
trk

db 3
db 0
db 0

:length
:read/write function code
:track 41=

All Information Presented Here is Proprietary to Digital Research

133

CP/M-86 System Guide Appendix E BIOS Listil

=
=

2860 00

286E 022900
2871 012C

2873 02
2874 DF02
2876 2105
2878 0020
287A 0020

= 287C
=287C AB280000
=2880 00000000
=2884 C5289C28
=2888 64294529
=288C AB280000
=2890 00000000
=2894 C5289C28
=2898 93297429
=
= 289C
=289C lAOO
=289E 03
=289F 07
=28AO 00
=28Al F200
=28A3 3FOO
=28A5 CO \
=28A6 00
=28A7 1000
=28A9 0200
= 28AB
=28AB 01070D13
=28AF 19050Bll
=28B3 1703090F
=28B7 1502080E
=28BB 141A060C
=28BF 1218040A
=28C3 1016
= 001F
= 0010
=
= 289C
= 001F
= 0010
= 28AB
=
=
=
= 28C5

sect db 0 ;seetor #

hom corn db 2,29h,0
rds-com db 1,2eh

;home drive command
:read status command

; System Memory Segment Table

segtab1e db 2 :2
dw tpa seg
dw tpa-len
dw 2000h
dw 2000h

segments
i1st seg starts after RIC
:and extends to 08000
;second is 20000 -
i3FFFF (128k)

;
dpbase
dpeO

dpel

. ,
dpbO

xltO

alsO
essO . ,
dpbl
a1s1
cssl
x1t1 . ,

include singles. lib ;read in disk definit
DISKS 2

equ $ iBase of Disk Pal
dw x1tO,OOOOh iTranslate ~able
dw OOOOh,OOOOh iSeratch Area
dw dirbuf,dpbO iDir Buff, Parm E
dw csvO,alvO iCheck, Alloe Vee
dw xltl,OOOOh iTranslate ~able
dw OOOOh,OOOOh iScratch Area
dw dirbuf,dpb1 iDir Buff, Parm E
dw csvl,alv1 iCheck, Alloc Vee

DIS~DEF 0,1,26,6,1024,243,64,64,2
equ offset $ iDisk Parameter E
dw 26 :Sectors Per Trac
db 3 iBlock Shift
db 7 :Block Mask
db 0 iBxtnt Mask
dw 242 iDisk Size - 1
dw 63 iDireetory ~ax
db 192 iA11ocO
db 0 iAlloe1
dw 16 iCheck Size
dw 2 iOffset
equ offset $ i~ranslate Table
db 1,7,13,19
db 25,5,11,17
db 23,3,9,15
db 21,2,8,14
db 20,26,6,12
db 18,24,4,10
db 16,22
equ 31 iAllocation Vecto
equ 16 iCheck Vector Siz

equ
equ
equ
equ

DIRKDEF 1,0
dpbO
alsO
cssO
xltO
ENDEF

iEquivalent Param
iSame .A1location
i8ame ChecKsum Ve
iSame Translate ~

; Uninitialized Scratch Memory Follows:
begdat equ offset $ iStart of Scratch

All Information Presented Here is'Proprietary to Digital Researc

134

CP/M-86 System Guide Appendix E BIOS Listing

C5
45
,64
174
193
29A3
OODE

IA3 00

~A4
29E4

29E4
02DF
0521
~E4 00

0000

000
002

004

380
382

dirbuf rs
alvO rs
csvO rs
a1v1 rs
csv1 rs
enddat equ
datsiz equ

db

128
alsO
cssO
a1s1
css1
offset S
offset $-begdat
o

;Directory Buffer
;Alloc Vector
;Check Vector
;Alloc Vector
;Check Vector
;End of Scratch Are
;Size of. Scratch Ar
;Marks End of Modul

loc stk rw 32 ;local stack for initialization
stkbase equ offset $

lastoff equ offset $
tpa seg equ (lastoff+0400h+15) / 16
tpa=len equ 0800h - tpa seg

db 0 ; fill" last address for GENCMD

;***
. * * ,
;* Dummy Data Section *
. * * ,
.*** ,

dseg 0 ;absolute low memory
org 0 ; (interrupt vectors)

intO offset rw 1
intO-segment rw 1

- pad to system call vector
rw 2* (bdos_int-1)

bdos offset
bdos-segment

- 'END

rw
rw

1
1

All Information Presented Here is Proprietary to Oigital Research

135

Appendix F
CBIDS Listing

~***

*
This is the listing of the skeletal CBIOS which *
you can use as the basis for a customized BIOS *
for non-standard hardware. The essential por- *
tions of the BIOS remain, with "rs" statements *
marking the routines to be inserted. *

* **

FFFF
0000
DODD
OOOA

0000
ODED

2500
0000
OB06

.*** ,

. * * ,

.* ,

.* ,

.* ,

.* ,

.* ,

.* ,

.* ,

.* ,

.* ,

This Customized BIOS adapts CP/M-86 to
the following hardware configuration

Processor:
Brand:
Controller:

Programmer:
Revisions :

*
*
*
*
*
*
*
*
* .* * ,

.*** ,

true
false
cr
If

equ -1
equ not true
equ Odh ~carriage return
equ Oah ~line feed

~***
.* * ,
~* Loader bios is true if assembling the *
~* LOADER-BIOS, otherwise BIOS is for the *
~* CPM.SYS file. *
. * * ,
.*** ,

loader bios
bdos i'nt

equ false
equ 224 :reserved BOOS interrupt

IF not loader bios
:---
~ I
bios code
ccp offset
bdas ofst
: I

equ 2500h
equ OOOOh
equ OB06h ~BDOS entry point

;---

All Information Presented Here is Proprietary to Diqital Research

137

CP/M-86 System Guide ~ppendix F CSlas Listinq

2500 E93COO
2503 E97900
2506 E98500
2509 E98nOO
250C E99AOO
250F E9A200
2512 E9B500
2515 E9BDOO
2518 E9F600
251B E9D900
251E E90101
2521 E90301
2524 E90COl
2527 E91701
252A E94701
2521) E98FOO
2530 E9F900
2533 E90201
2536 E9040l
2539 E9A400
253C E9A500

253F 8ee8

ENDIF jnot loader_bios

IF loader bios
e __ _

; I
bios code
ccp offset
bdos ofst
• I , .

equ 1200h istart of LUBIOS
equ 0003h ibase of CPMLOADER
equ 0406h istripped BOOS entr1

i---
ENDIF

cseg
org ccpoffset

ccp:
org bios code

.*** ,

.* * ,
i* BIOS Jump Vector for Individual Routines *
. * * ,
.*** ,

jmp INIT
jmp WBOOT
jmp CONST
imp CONIN
jmp CONOUT
jmp LISTOUT
jmp PUNCH
jmp READER
imp HOME
jmp SELDSK
jmp SETTRK
jmp SETSEC
jmp SETDMA
jmp READ
jmp WRITE
imp LIST8T
imp SECTRAN
jmp SETDMAB
jmp GETSEGT
imp GETIOBF
jmp SETIOBF

iEnter from BOO~ RO~ or LOADER
iArrive here from BOOS call 0
ireturn console keyboard status
jreturn console keyboard char
jwrite char to console device
iwrite character to list device
jwrite character to punch device
;return char from reader device
;move to trk 00 on cur sel drive
;select disk for next rd/write
iset track for next rd/write
;set sector for next [d/write
iset offset for user buff (D~A)
jread a 128 byte sector
jwrite a 128 byte sector
jretu~n list status
ixlate loqical->physical sector
iset seq base for buff (DMA)
ireturn offset of Mem Desc Table
ireturn I/O map byte (IOBYTE)
iset I/O map byte (IOBYTE)

.*** ,

.* , *
i* INIT Entry Point, Differs for LDBIOS and *
i* BIOS, according to "Loader_Bios" value * .* , *
.*** ,

INIT: iprint signon message and initialize hardwc
mov ax,cs iwe entered with a JMPF so

All Information Presented Here is Proprietary to Digital Research

138

CP/M-86 System Guide Appendix F CBIOq Listing

41 8EnO
43 8ED8
45 8EeO

,47 BC5928
14A FC

>4B IE
i4C C606A72600
>51 B80000
554 8ED8
,56 8ECO

558 C70600008225
55E 8COE0200
562 BF0400
565 BEOOOO
568 B9FEOI
56B F3A5

560 C7068003060B
573 IF

~574 BBB126
~577 E86FOO
~57A BIOO
~57C E98l0A

mov sS,ax ;CS: as the initial value 0

mov ds,ax ;DS:,
mov eS,ax ;and ES:
;use local stack during initialization
mov sp,offset stkbase
cld ~set forward direction

IF not loader bios
--
; I I

. ,
; I

This is a BIOS for the CPM.SYS file.
Setup all interrupt vectors in low
memory to address trap

push ds
mov IOBYTE,O
mov ax,O
mov ds,ax

~save the DS register
;clear IOBYTE

mov eS,ax ~set ES and os to zero
~setup interrupt 0 to address trap routine
mov intO offset,offset int trap
mov intO-segment,CS -
mov di, 4-
mov si,O ~then propagate
mov cx,5l0 :trap vector to
rep movs aX,ax ;all 256 interrupts
~BOOS offset to proper interrupt
mov bdos offset,bdos ofst
pop ds - ~restore the os register

(additional CP/M-86 initialization)

e __ _ ,
ENOIF ~not loader_bios

IF loader bios
;---
~ I

~This is a BIOS for the LOADER
push ds ~save data segment
mov ax,O
mov ds,ax ~point to segment zero
~BDOS interrupt offset
mov bdos offset,bdos of st.
mov bd.os-segment,CS ;bdos interrupt segment
(add i tional LOADER ini tialization)
pop ds ~restore data segment

~ I' . I
;---

ENDIF

mov bx,offset signon
call pmsg ~print signon message
mov cl,O ~default to dr A: on coldst
jmp ccp ~iump to cold start entry 0

All Information Presented Here is Proprietary to Digital Research

139

CP/M-86 System Guid'e Appendix F· CBIOS Listinc

257F E984DA

2582 FA
2583 8CC8
2585 8E08
2587 BBD126
258A E85COO
2580 F4

258E
2598 C3

2599 E8F2FF
259C 74FB
259E
25A8 C3

25A9
25B3 C3

25B4
25BE C3

25BF
25C9 C3

25CA
2504 C3

2505
250F C3

25EO AOA726

WBOOT: jrnp ccp+6 ;direct entry to CCP at cc

IF not loader bios
;---
; I
int trap:

- 'cli ;block interrupts
mov ax,Cs,
mov ds,ax ;get our data segment
mov bx,offset int_trl?
call pmsg

; I
hIt ;hardstop

;---
ENDIF ;not loader_bios

.*** ,

.* * ,
;* CP/M Character I/O Interface Routines *
.* * ,
.*** ,

CONST:

CONIN:

CONOUT:

LISTOUT:

LISTST:

PUNCH:

READER:

GETIOBF:

rs
ret

;console status
10 ;(fill-in)

;console input
call CONST
jz CONIN ;wait for ROA

;(fill-in) rs 10
ret

;console output
rs 10 ;(fil1-in)
ret ;then return data

;list device output
rs 10 ;(fil1-in)
ret

;poll list status
rs 10 ;(fill-in)
ret

;write punch device
rs 10 ; (fill-in)
ret

,rs 10 , ; (fill-in)
ret

mov ,al,IOBYTE

All Information Presented Here is Proprietary to Digital Research

140

CP!M-86 System Guide Appendix F CBIOS Li.sting

SE3 C3

SE4 880EA726
SE8 C3

5E9 8A07
SEB 84CO
SED 7421
SEF 8AC8
SF1 E8BSFF
SF4 43
,SFS EBF2

0002
!SF7 880EA826
~SFB BBOOOO
~SFE 80F902
~601 7300
~603 BSOO
~60S 8B09
~607 B104
~609 03E3
~60B B9F126
~60E 0309
~610 C3

~611 C706A9260000
~617
2621 C3

2622 890EA926
2626 C3

2627 890EAB26
262B C3

262C 8B09
262E 03DA
2630 8A1F
2632 C3

ret

SETIOBF:
Jset iobyte mov IOBYTE,cl

ret JiobVte not im~lemented

pmsg:
mov al, [BX]
test al,al
jz return
mov CL,AL
call CONOUT
inc BX
jmps pmsg

Jget next char from message

Jif zero return

;print it

;next character and loop

.*** ,

.* * ,

.* ,

.* ,
Disk Input/Output Routines *

*
.*** ,

SELDSK:
ndisks equ

mov
mov
cmp
jnb
mov
mov
mov
sh1
mov
add

return: ret

Jselect disk given by register CL
2 ;number of disks (up to 16)

disk,cl ~save disk number
bx,OOOOh ;ready for error return
cl,ndisks In beyond max disks?
return Jreturn if so
ch,O ;doub1e(n)
bx,cx Jbx = n
c1,4 ;ready for *16
bx,cl in = n * 16
cx,offset dpbase
bx,cx ;dpbase + n * 16

Jbx = .dph

HOME: Jmove selected disk to home position (Track
mov trk,O ;set disk i/o to track zero
rs 10 J(fill-in)
ret

SETTRK: ;set track address given by ex
mov trk,CX
ret

SETSEC: ;set sector number given by cx
mov sect,CX
ret

SECTRAN: Jtranslate sector ex using table at [DX]
mov bx,cx
add bx,dx
mov bl, [bx]
ret

;add sector to tran table a
;get logical sector

SETDMA: ;set DMA off.set given by r.x

All Information Presented Here is Proprietary to Digital Research

141

CP/M-86 System Guide Appendix F CBIOS Listing

2633 890EA026
2637 C3

2638 890EAF26
263C C3

2630 BBE826
2640 C3

2641
2673 C3

2674
26A6 C3

26A7

26A7 00
26A8 00
26A9 0000
26AB 0000
26AO 0000
26AF 0000

mov dma_adr,~x
ret

SETOMAB: ;set DMA segment given by ex
mov drna seg,CX
ret -. ,

GETSEGT: ;return address of physical memory table
mov bx,offset seg_table
ret

.*** ,

.* ,

.* ,

.* ,

.* ,

.* ,

.* ,

.* ,

.* ,

.* ,

.* ,

.* ,

.* ,

*
All disk I/O parameters are setup: *

DISK is disk number (SELDSK) *
TRK is track number (SETTRK) *
SECT is sector number (SETSEC) *
DMA AnR is the DMA offset (SETDMA) *
nMA-SEG is the DMA segment (SETnMAB)*

READ reads the selected sector to the DMA*
address, and WRITE writes the data from *
the DMA address to the selected sector *
(return 00 if successful, 01 if perm err)*

*
.*** ,

READ:
rs 50 ifill-in
ret

WRITE:
rs 50 ;(fill-in)
ret

.*** ,

. * * ,
;* Data Areas *
.* * ,
.*** ,
data offset equ offset $

dseg
org data offset ;contiguous with c

IOBYTE db a
disk db a ;disk number
trk dw a ;track number
sect dw a ;sector number
dma adr dw a ;OMA offset from ns
dma=seg dw a ;DMA Base Segment

IF loader bios
e __ _ ,
; I
signon db cr,lf,cr,lf

All Information Presented Here is Proprietary to Digital Research

142

CP/M-86 System Guide ~ppendix F CBlas Listing

db ~CP/M-86 Version 1.0~,cr,lf,0
I ._--,

ENDIF

IF not loader bios
e __ _

; I
~6Bl OnOAODOA signon db
~6B5 53797374656D db

2047656E6572
617465642030
302F30302F30

er,lf,er,lf
~System Generated 00/00/00~

30
26CE OOOAOO db er,lf,O

: I
e __ _ ,

ENDIF :not loader_bios

2601 OOOA int_trp db er,lf
2603 496E74657272 db ~Interrupt Trap Halt~

757074205472
61702048616C
74

26E6 OnOA db er,lf

26E8 02
26E9 C602
26EB 3A05
26EO 0020
26EF 0020

26F1
:26F1 20270000
:26F5 00000000
:26F9 3A271127
:26FD D927BA27
:2701 20270000
:2705 00000000
:2709 3A271127
:2700 0828E927

2711
=2711 lAOO
=2713 03
=2714 07
=2715 00
=2716 F200
=2718 3FOO
F271A CO
=271B 00

System Memory Segment Table

segtable db? :2
dw tpa seg
dw tpa-Ien
dw 2000h
dw 2000h

segments
:lst seg starts after BIOS
:and extends to 08000
:second is 20000 -
:3FFFF (128k)

. ,
dpbase
dpeO

dpel

. ,
dpbO

include singles.lib ;read in disk definitio
DISKS 2

equ S ;Base of Disk Param
dw xltO,OOOOh :Translate Table
dw OOOOh,OOOOh :Serateh Area
dw dirbuf,dpbO :Dir Buff, Parm Slo
dw esvO,alvO :Cheek, Alloe Vecto
dw xl t1, OOOOh :TransJ.ate Table
dw OOOOh,OOOOh :Scrateh Area
dw dirbuf,d?b1 :Dir Buff, Parm Bl0
dw csvl,alvl :Cheek, Alloc Veeto

DISKDEF 0,1,26,6,1024,243,64,64,2
equ offset $:Disk Parameter Blo
dw 26 :Sectors ?er ~rack
db 3 :Block Shift
db 7 :Block Mask
db 0 :Extnt Mask
dw 242 :Disk Size - 1
dw 63 :Directory Max
db 192 :AlloeO
db 0 :Allocl

All Information Presented Here is Proprietary to Digital Research

143

CP/M-86 System Guide Appendix F CEIOS Listin<

=271C 1000
=271E 0200
= 2720
=2720 01070013
=2724 19050B11
=2728 1703090F
=272C 1502080E
=2730 141A060C
=2734 1218040A
=2738 1016
= 001F
= 0010
=
= 2711
= 001F
= 0010
= 2720
=
=
=
=
= 273A
=273A
=27BA
=27D9
=27E9
=2808
= 2818
= OODE
=2818 00

2819
2859

2859
02C6
053A

2859 00

0000

0000
0002

0004

0380
0382

x1tO

alsO
cssO . ,
dpb1
'als1
css1
x1t1

dw
dw
equ
db
db
db
db
db
db
db
equ
equ

equ
equ
equ
equ

16
2
offset $
1,7,13,19
25,5,11,17
23,3,9,15
21,2,8,14
20,26,6,12
18,24,4,10
16,22
31
16
OISKDEF 1,0
dl;>bO
alsO
cssO
xltO
ENDEF

;Check Size
;Offset
;Translate Table

;Allocation Vectol
;Check Vector SiZE

;Equivalent ParamE
iSame Allocation'
iSame Checksum Vee
iSame ~ranslate T~

Uninitialized Scratch Memory Follows:
i
begdat equ
dirbuf rs
alvO rs
csvO rs
a1v1 rs
csv1 rs
enddat equ
natsiz equ

db

offset
128
alsO
cssO
alsl
css1
offset
offset
0

$

$
$-begdat

iStart of Scratch
iDirectory Buffer
;Alloc Vector
;Check Vector
;Alloc Vector
;Check Vector
;End of Scratch AI
;Size of Scratch 1
;Marks End of Modl

loc stk rw 32 ;loca1 stack for initialization
stkbase equ offset $

1astoff equ offset $
tpa_seg equ (lastoff+0400h+15) / 16
tpa_Ien equ 0800h - tpa_seg

db 0 ifil1 last address for GENCMD

.*** ,

.* ,

.* , Dummy Data Section
*
* .* * ,

.*** ,
dseg 0 ;absolute low memory
org 0 ; (interrupt vectors)

intO offset rw I
intO _segment rw 1

pad to system call vector
rw 2* (bdos int-1) -

bdos offset rw 1
bdos _segment rw I

END

All Information Presented Here is Proprietary to Digital Researct

144

A

allocate absolute memory, 52
allocate memory, 52

B

base page, 1
BIOS, 121
bootstrap, 4
bootstrap ROM, 81

c

CBIOS, 56, 137
close file, 34
CMD, 1, 15
cold start loader, 1, 56, 81
compact memory model, 11, 21
compute file size, 45
CONIN, 61
CONOUT, 61
console input, 25
console output, 25
console status, 30
CONST, 60
converting 8080 programs

to CP/M-86, 3, 17, 23
cross development tools, 2

D

data block, 72, 74
delete file, 36
direct BIOS call, 47
direct console I/O, 27
directory entries, 71
disk definition tables, 4, 67
disk parameter block, 69
disk parameter header, 62,

67, 75
DMA buffer, 14, 39, 60, 63

F

far call, 11, 14
file control block, 30
file structure, 1
free all memory, 53

Index

145

G

GENCMD, 2, 3, 15, 17
GENDEF, 2
get address of disk parameter

block, 41
get allocation vector

address, 39
get DMA base, 48
get I/O byte, 27
get maximum memory, 51
get or set user code, 41
get read/only vector, 40
GETIOB, 65
GETSEGB, 65
group, 2

H

header record, 20
HOME, 61

I

INIT , 4, 60
Intel utilities, 17
IOBYTE, 58

L

L-module format, 19
LDCOPY, 2
LIST, 61
list output, 26
T..JISTST, 63
LMCMD, 19
logical to physical sector

translation, 64

M

make file, 37
memory, 14
memory region table, 65
memory regions, 1

o

offset, 2
open file, 33

p

print string, 28
program load, 53
PUNCH, 61
punch output, 26

R

random access, 95
READ, 63
read buffer, 29
read random, 42
read sequential, 36
READER, 61
reader input, 26
release all memory, 53
release memory, 52
rename, 38
reserved software interrupt,

1, 23
reset disk, 33
reset drive, 46
return current disk, 38
return login vector, 38
return version number, 30

s

search for first, 35
search for next, 35
sector blocking and

oeblockinq, 87
S EC'l:' RAN , 64
segment, 2
segment group memory

requirements, 17
segment register change, 11
segment register

initialization, 8
SELDSK, 62
select disk, 33
set DMA address, 39
set DMA base, 48
set file attributes, 41
set I/O byte, 28
set random record, 46
SETDMA, 63
SETDMAB, 64
SETIOB, 65
SETSEC, 62
SETTRK, 62
small memory model, 10, 21
system reset, 4, 7, 14, 25

49, 60, 74

Index

146

T

translation vectors, 69

u

utility program operation,

w

WBOO'I' , 60
WRI'1'F., 63
write protect disk, 39
write random, 44
write random with zero

f:i.l1, 47

8080 memory model, 3, 10,
14, 21

CP IM-86 T.M.

Operating System

Release 1.1

System Guide Release Notes

Copyright © 1982

Digital Research
P.O. Box 579

160 Central Avenue
Pacific Grove, CA 93950

(408) 649-3896
TWX 910 360 5001

All Rights Reserved

CP /M-86T.M·Oper ating System

Release 1.1

Copyright © 1982 by Digital Research
CP/M is a registered trademark of Digital Research.

ASM-86, CP/M-80 and CP/M-86 are trademarks of Digital Research.
ISBC is a trademark of Intel Corporation.

Intel is a registered trademark of Intel Corporation.
Compiled February 1982

Thank you for purchasing the CP/M-86 T.M. operating system
package. Software included in this package is proprietary to
Dig i tal Research and contains internal ser ialization to allow
unau thor ized copies to be traced to their source. The Digi tal
Research Software License Agreement defines the terms and condi tions
covering the use of CP/M-86. Please take time to carefully read
this agreement. The enclosed Software Registration Card must be
filled out and mailed to Digital Research before use of this
software is authorized. Upon receipt of the Registration Card, your
name will be placed on our CP/M-86 mailing list, so you will receive
newsletters and update notices. Under the terms of the agreement,
you are allowed to make back-up copies for your own use, but you are
not allowed to make copies of software provided in this package for
any third parties, including friends, relatives, or business
associates.

The documentation for CP/M-86 consists of the following
manuals:

CP/M-86 Operating System User's Guide

CP/M-86 Operating System Programmer's Guide

CP/M-86 Operating System System Guide

CP/M-86 Operating System Command Summary

Two diskettes are also included. The first disk contains the
CP/M-86 operating system and the utility programs. The second disk
contains the source files for programs and data files used in system
regeneration. The following programs are on the first disk.

ASM86.CMD
ASM86.COM
COPYDISK.CMD
CPM.H86
CPM.SYS
DDT86.CMD
ED.CMD
GENCMD.CMD

8086 assembler
8080 version of ASM-86 T.M. assembler
Utility to copy entire diskette
Hex file for CP/M-86 CCP and BDOS
CP/M ® system file, loaded at cold start
CP/M-86 debugger
CP/M-86 program and text editor
CMD file generation utility

All Information Presented Here is Proprietary to Digital Research

1

CP/M-86

GENCMD.COM
GENDEF.CMD
GENDEF.COM
HELP.CMD
HELP.HLP
LDBDOS .H86
LDBIOS.H86
LDCOPY.CMD
LDCPM.H86
LMCMD.CMD
LMCMD.COM
LOADER.CMD

PIP.CMD
STAT.CMD
SUBMIT.CMD
TOD.CMD

8080 version of GENCMD
Diskdef file generator
8080 version of GENDEF
Help utility
Data file for help utility
Loader BDOS hex file
Loader BIOS hex file
Loader copy utility
Loader main program hex file
CMD file generation utility
8080 version of LMCMD

V 1.1

ISBCT,M, 86/12 intermediate loader (used
only with the standard Intel® system)
Peripheral Interchange Program
File and disk status utility
Batch processing utility
Display and set time of day utility

The files with a filetype of CMD operate under CP/M-86. The
files with a filetype of COM are included for cross development
under CP /M-80 T,M,.

The second disk contains the following files.

BIOS.A86
CBIOS.A86
COPYDISK.A86
DEBLOCK.LIB
LDBIOS .A86
LDCOPY.A86
LDCPM.A86
RANDOM.A86
ROM.A86
SINGLES.DEF
SINGLES.LIB
TBIOS.A86
TRACK.A86
8087.LIB

Source file for the standard BIOS
Source for the skeletal BIOS
Source for COPYDISK.CMD
Blocking/deblocking algorithms
Source for LDBIOS.CMD
Source for LDCOPY.CMD
Source for LDCPM.CMD
Sample A86 program using BDOS calls
Source file for the ISBC 86/12 boot ROM
Diskdef input to the GENDEF utility
Output from the GENDEF utility
Source for track buffered BIOS
Skeletal source for track buffering
Code macro library for 8087

Note: The DEBLOCK. LIB file is included for your reference. Any
specific application might require modifications.

All Information Presented Here is Proprietary to Digital Research

2

PAGE 27

ADD:--->

CP/M-86 T.M• Operating System

SYSTEM GUIDE

Correction to the First Printing - 1981
Copyright~ 1981 by Digital Research, Inc.

CP/M-86 is a trademark of Digital Research.
Compiled February 1, 1982

To the FUNCTION 6 DIRECT CONSOLE I/O BLOCK,

Entry

" "\
Return

~

CL: 06H FUNCTION 6 AL: char or

..
status

DL: OFFH (input/ DIRECT CONSOLE (no value)
status) I/O

or

" OFEH (status)
or

char (output)

The second paragraph following FUNCTION 6 should read:

Upon entry to Function 6, register DL contains either (1) a
hexadecimal FF denoting a CONSOLE input/status request, or (2) a
hexadecimal FE denoting a console status request, or (3) an ASCII
character to be output to CONSOLE where CONSOLE is the logical
console device. If the input value is FF, then Function 6 checks to
see if.a character is ready. If a character is ready, Function 6
returns the character in AL; otherwise Function 6 returns a zero in
AL. If the input value is FE and no character is ready, then
Function 6 returns AL = 00; otherwise, AL = FF. If the input value
in DL is not FE or FF, then Function 6 assumes that DL contains a
valid ASCII character which is sent to the console.

You cannot use Function 6 with FF or FE in combination with
either Function 1 or Function 11. Function 1 is used in conj unction
with Function 11. Function 6 must be used independently.

All Information Presented Here is Proprietary to Digital Research

1

PAGE 41

CP/M-86T.M. Operating System

SYSTEM GUIDE

Enhancements to the First Printing - 1981
Copyright~ 1981 by Digital Research, Inc.

CP/M-86 is a trademark of Digital Research.
Compiled February 1, 1982

In Section 4.3, BOOS File Operations,
Add two new BDOS Functions:

Entry ..
CL: 2FH FUNCTION 41

DMA buffer: CHAIN TO PROGRAM
Command Line "-

----------------------~

Return

Load, Initialize, and Jump to specified Program

The CHAIN TO PROGRAM function provides a means of chaining from
one program to the next without operator intervention. Although
there is no passed parameter for this call, the calling process must
place a command line terminated by a null byte in the default DMA
buffer.

Under CP/M-86 T.M., the CHAIN TO PROGRAM function releases the
memory of the calling function before executing the command. The
command line is parsed and placed in the Base Page of the new
program. The Console Command Processor (CCP) then executes the
command line.

All Information Presented Here is Proprietary to Digital Research

I

CP/M-86 System Guide

PAGE 47 (continued)

Then, add:

Entry

CL: 031H FUNCTION 49

GET SYSDAT
ADDRESS

Enhancements

Return

BX: SYSDAT Address
Offset

ES: SYSDAT Address
Segment

Return the address of the System Data Area

The GET SYSDAT function returns the address of the System Data
Area. The system data area includes the following information:

dmaad equ word ptr a iuser DMA address
dmabase equ word ptr 2 iuser DMA base
curdsk equ byte ptr 4 icurrent user disk
usrcode equ byte ptr 5 icurrent user number
control_p_flag equ byte ptr 22 ilisting toggle •••

iset by ctrl-p
console width equ byte ptr 64
printer width equ byte ptr 65
console column equ' byte ptr 66
printer=column equ byte ptr 67

The following list provides an explanation of system data area
parameters.

• dmaad means current user DMA address.
• dmabase means current user DMA base. (See page 48 under

Function 51 in the £fLM-86 Op'eratin~y'stem System Guide).
• curdsk means current user disk, 0-15 (A-P).
• usrcode means current user area, 0-15.
• control p flag, a means do not echo console output to the

printer~ -FF means echo to the printer.

All Information Presented Here is Proprietary to Digital Research

2

CP/M-86 System Guide Enhancements

PAGE 60

In Table 5-4. BIOS Subroutine Summary, in the description
of subroutine INIT,
change:

BOOS offset (OBIIH)

to:

BOOS offset (OB06H)

All Information Presented Here is Proprietary to Digital Research

3

CP/M-86 T .M. Operating System

SYSTEM GUIDE

-Diskette Track Buffering Greatly Increases Performance
of the CP/M-86 Operating System-

by John R. Pierce
December 12, 1981

Addendum to the First Printing - 1981
CP/M is a registered trademark of Digital Research.

CP/M-86 is a trademark of Digital Research.
Copyright © 1981 by Digital Research

Compiled February 1, 1982

Rotational latency is the major performance bottleneck in
diskette systems. The standard eight-inch diskette rotates at only
360 RPM or 6 turns/second, and a read coming at a random time might
take up to ~ full turn of the diskette or 167 milliseconds.
Diskette-based operating systems often compensate for this by
stagger ing track sectors, so several can be read in one turn.
However, systems still require several turns to read all of the
sectors of a particular track.

There are several techniques for reducing rotational latency.
One of the simplest and most effective of these methods is track
buffering; a track buffered system never needs more than two turns
to read an entire track. Two turns require only a third of a second
(worst case) instead of the full second or more required by the
standard technique of reading the sectors out of order, according to
a skew table traditionally used by CP/M® systems. In fact, 50% of
the time, only 1.5 turns are necessary. This translates to an
average of .167*1.5 seconds, or about a quarter second to read the
track (which contains up to 8192 bytes in a double-density 8-inch
floppy diskette).

However, nothing is free. Track buffering requires that the
CBIOS contain a buffer large enough to hold the complete track,
often 8192 bytes. Because most 8086 systems have plenty of memory,
this should not cause a problem. Also, diskettes formatted with
physically staggered sectors require multiple turns to read all
sectors, resulting in significant performance degradation. This can
only be remedied by copying these diskettes onto consecutively
skewed diskettes.

The following algorithm implements this track buffering scheme,
in a fashion compatible with any existing CP/M diskette format. You
must insert this module into your CBIOS, using the existing disk
drivers to perform the TRACK READ and SECTOR WRITE functions. The
EQUates for HOST SECTSIZ, HOST SPT, and HOST FSN should be set to
the appropriate values outlinea in the comments.

All Information Presented'Here is Proprietary to Digital Research

1

CP/M-86 System Guide "Diskette Track Buffering"

A potential problem with any deblocking scheme is knowing when
to "flush" the buffer following writes. The crudest scheme is to
allow each write to cause an immediate disk write. This, however,
takes a turn of the disk for each 128 byte record. Under CP/M,
because all output files must be closed, and all closes cause a
directory write, you can assume that you can save the records in
memory, as long as you flush the buffer after each directory write.
Conveniently, CP/M-86's BDOS sets a flag in CL when calling WRITE,
indicating whether this is a write to the directory or not. This is
the same scheme used by the standard sector blocking and deblocking
algorithm distr ibuted wi th CP/M-86 T ,M .. The track buffer ing algor i thm
also notes which disk sectors have been updated in the buffer. When
the algorithm writes from the buffer, it need only write to the
updated physical disk sectors.

The TRACK READ routine may consist of a loop that invokes your
sector read for each sector. However, many disk controllers can
read a whole track with a single command. Indeed, with some
controllers, this is the only way to read a track in one turn.
Optimization is also achieved by reading the track starting with the
next sector passing under the heads. This method cuts the
rotational latency to a fixed single turn rather than the one to two
turns required if you must wait for sector one to start reading.
Note that this possibili ty is highly controller-dependent, and
generally requires a "read identification" capability to identify
the next sector number. However, it should increase performance by
about another 30%.

When using track buffering, the performance of a read-back
check after each wr i te causes much less degradation than when
reading and writing individual sectors. This is because the check
takes only one additional turn per track, rather than 26 or more.
Furthermore, on a read-back check error, it would even be possible
to ore-write the bad sector in an attempt to correct it. This
reduces the error rate for eight-inch diskettes from its present
very low value to virtually none, while slowing writes down by only
30% or less.

Note that NO provision is made in this algorithm for handling
diskette errors. It is assumed that the TRACK READ and SECTOR WRITE
subroutines print appropriate error messages and perhaps even obtain
oper ator responses. This is because an er ror may occur when wr i ting
a buffer, while CP/M thinks you are reading from the other drive!
The only module that can handle disk errors properly is the BIOS
itself.

If interrupts occur when the diskette door is opened, you can
check the write flag to see if the buffer is dirty, and either clear
the write flag and SEC FLAGS array, or indicate that a write has
occurred with a beep, or in some other fashion. If the system has
programmable status lights, it is a good idea to set a light when
WRITE FLAG is set, and clear the light when the flag is cleared. If
the system supports a programmable door lock mechanism, it can be
set while the buffer is dirty, making the system failsafe.

All Information Presented Here is Proprietary to Digital Research

2

CP/M-86 System Guide "Diskette Track Buffering"

These track buffering algorithms work with any sector size that
is an integral multiple of 128, and not necessarily a power of two.
This allows implementation of more dense diskette formats.
Naturally, any system that implements nonstandard diskette formats
should still have some way to read standard CP/M 3740 format
diskettes for interchange.

The following is a Source Listing of the CP/M-86 Accelerator
Track Buffering Routine for CP/M-86.

.
I

;

.
I

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

CP/M-86 Accelerator -- Track Buffering Routines

This module, when installed in a CBIOS, causes
CP/M-86 to perform disk input output on a
track by track basis, rather than sector by
sector.

This speeds diskette access, often by a
factor of four or more times.

The actual disk sectors must be an integral
multiple of 128 bytes, but do not need to be
a power of two multiple, unlike the deblocking
algorithms supplied with CP/M-86.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

* *
*

The following three equates must be set to correspond to the
; actual disk utilized.

host sectsiz equ

host spt
host-fsn

init:

seldsk:

call

equ
equ

equ

mov cpm disk,cl
test dl~l
jnz old_disk

1024

8
1

o

; bytes per actual (physical)
; disk sector
; actual sectors per track

starting sector number
; (only 0 or 1 allowed)
; first sector from CP/M

; Initialize track buffering

save the selected drive
check logged-in bit
not first time

All Information Presented Here is Proprietary to Digital Research

3

CP/M-86 System Guide Addendum Track Buffering Routine

; selected if nz

here if CP/M is about to login to the drive being
selected.

old disk:
mov bl,cpm_disk ! mov bh,O
mov cl,4 ! shl bx,cl
add bx,offset dpbase
ret

setdma:
mov
ret

setdma_seg:
mov
ret

home:

dma_offset,cx

dma_segment,cx

times 16
; gives offset from DPBASE
; back to BDOS

save DMA offset address

; save DMA segment address

test wr flag,l ! jnz homel ; if the buffer is clean,
mov -cur_disk,-l ; insure we read the directory

homel:

settrk:

setsec:

sectran:

mov

mov
ret

mov

ret

mov
test
jz
add
mov
mov

sectran exit:
-ret

read:
call
push

mov

add

les

cx,O

cpm_sec,cx

bx,cx
dx,dx
sectran exit
bx,dx
bl, [BX]
bh,O

setup
es

by invalidating
; the track buffer

home is a settrk zero

; save track number for next operati

; save sector number
; for next operation

; Put logical sector into dest. reg.
; see if table address is zero
; yeah, logical = physical
; else, we need to fetch the
; actual sector number from the tabll
; zero high byte for good luck

; save the extra

si,offset track buffer
segment register

; source segment

si,ax

di,dma_longword

; is systems DS:
; gives the offset
; into the buffer
; point ES:DI at

rep movsw
the users sector

; doit

All Information Presented Here is Proprietary to Digital Research

4

CP/M-86 System Guide Addendum

write:

return:

pop
sub
ret

push

es
ax,ax

cx

call setup
push ax
push ds
push es
mov bx,ds ! mov es,bx

mov

add
Ids
rep
pop
pop

pop
mov

sub
div

mov
mov

mov

pop
cmp
jne

call

mov
ret

di,offset track_buffer

di,ax
si,dma_Iongword

movsw
es
ds

ax
cx,host_sectsiz

dx,dx
cx

bx,ax
sec_flags [BX],I

wr_flag,l

cx
cl,l
return

flush buffer

ax,O

Track Buffering Routine

restore the extra segment
; make a zero return code

; save the write mode
; from the BOOS

save buffer offset
; save the data segment
; save the extra segment

destination is our
; data segment
; destination is in
; track buffer
; plus appropriate offset

source is users OMA address
; move that sector
; restore the extra segment
; and the data

segment registers
; recover buffer offset
; setup to divide by

host sector size
; extend ax to 32 bits
; find out which host
; sector we changed

put into index [BX]
; set the update flag
; for that sector
; also set the dirty
; buffer flag

recover BOOS write code
; is this a directory update ?

no, we may leave
dirty records in the buffer

; we have a directory
write, need to

; flush the buffer
: to insure the

disks integrity

never return BAO SECTOR code

setup: ; common code for setting up reads and writes

mov
cmp
jne

mov

cmp

al,cpm disk
al,cur-disk
wrong_track

ax,cpm_track

; see if selected disk is
; the same as last time
; no, we have wrong track

; see if desired track is
; same as
; the track in the buffer

All Information Presented Here is Proprietary to Digital Research

5

CP/M-86 System Guide Addendum

je correct track

Track Buffering Routine

; same drive and track,
; we don't need to read

; Desired operation is on a different track than is in our
; buffer, so it will be necessary to read in the desired tracl

First, we must check to see if any sectors of the current
; buffer are dirty.

wrong track:
- call

mov
mov
mov
mov
mov

flush buffer

aX,cpm track
cur track,ax
al,cpm disk
cur disk,al
cur-dma,offset

write any old records,
if necessary

get desired track number
; make in new track

get desired disk number
i make it current drive

track buffer ; point dma offset
- i at track buffer

mov
call

cur sec,host fsn
track read -

starting from first sectoI
load the track

correct track:
mov aX,cpm sec

if (cpm fsn ne 0) -
sub ax,cpm_fsn

endif
mov cl,7
shl ax,cl

mov cx,64 ! cld
ret

flush buffer:
test

jz

mov
mov

next sect:
test

jz
mov
push
push
mov
mul
add
mov

if (host fsn
add

endif

wr_flag,l

no flush

bx,O
cx,host_spt

sec_flags [BX] ,1

not updated
sec-flags [BX] ,0
bx -
cx
ax,host_sectsiz
bx
ax,oftset track_buffer
cur dma,ax

ne 0)
bx,host_fsn

; get the cp/m sector number

correct if we start
with sector one

10g2(128)
; sector times 128
; gives offset
i move 64 words forward

; see if we have anything
; to write
; no, skip scanning
; for dirty sectors
; start at host sector 0
; for host_spt sectors •••

; see if this sector
; has been changed

no, leave it alone
; zero the flag for next tim
; save the registers

; make track buffer offset
make direct pointer

; save for write routine

All Information Presented Here is Proprietary to Digital Research

6

CP/M-86 System Guide Addendum Track Buffering Routine

mov
call
pop
pop

not_updated:
inc
loop

no flush:
mov
ret

cur sec,bx
sector write
cx
bx

bx
next sect

save host sector number

; clear the dirty buffer flag

; Clear all variables associated with the track
; buffer, so next operation will have to read a track.
; This is involves clearing all write flags and
; setting the old drive code to the invalid -1.

mov cur_disk,-l
sub ax,ax

; insure initial pre-read
; make a zero

mov wr flag,al
mov di~offset sec_flags

; clear the dirty buffer fl~g
; point to the update
; flag list

mov bx,ds ! mov es,bx
mov cx,host spt ! cld
rep stosb -

; ES <- DS
; set length and direction
; zero the sector update flags

ret

track read:

ret

sector write:

ret

dseg

cpm_disk
cpm_track
cpm_sec

dma offset
dma segment
dma_longword

cur disk
cur sec -cur track
cur-dma

· ,
;

· ,
· , · ,

rb
rw
rw

rw
rw

read

write

an entire track from the drive "cur disk",
the track "cur track" into "track buffer".

a physical sector to disk "cur disk",
track "cur track", sector "cur-sec" from
the buffer-at DS:"cur dma". -

1
1
1

1
1

equ dword ptr dma offset

rb 1
rw 1
rw 1
rw 1

All Information Presented Here is Proprietary to Digital Research

7

CP/M-86 System Guide Addendum Track Buffering Routine

bdos wr code
wr_flag-

track buffer

rb
rb

rb

rb

I
I

; I indicates a directory write
bit 0 on indicates we have a
dirty buffer

host_spt ; bit 0 of each byte on indicates
; corresponding host sector has
; been updated and needs writing

host sectsiz* host_spt

All Information Presented Here is Proprietary to Digital Research

8

CP/M-86 T.M. Operating System

Implementation Rote

Rotes for operation of CP/M-86 with the
ISBCT.M. 86/12 and ISBCT.M. 204 Controller Boards

Copyright © 1982 by Digital Research, Inc.
CP/M-80 and CP/M-86 are trademarks of Digital Research, Inc.

Intel is a registered trademark of Intel Corporation.
ISBC is a trademark of Intel Corporation.

SA-800 is a trademark of Shugart Associates.
Compiled February 1982

The standard CP/M-86 T.M. rel·ease is set up for operation wi th
the Intel@SBCr.M. 86/12a and SBCT.M. 204 diskette controller, wi th two
Shugart SA-800 r.M. single density drives. The SBC 86/12 board has
32K bytes on board that is set up starting at location zero.
Additional RAM is assumed to start at location 10000H (paragraph
1000H) • The initial values of the segment table define this
additional RAM area to be 64K bytes in length as provided in the
BASIC I/O System (BIOS). Refer to the GETSEGT BIOS entry point, as
well as the SEGTABLE data areas in the BIOS and CBIOS (listed in
Appendixes D and E of the CPLM-86 Operating-Eystem System Guide) for
the segment table definition.

Note that you can operate with less than 64K bytes of
additional RAM (a 32K RAM area at 800H suffices), but the segment
table must be changed before operating with programs which assume
the full 64K is available. You can, for example, immediately enter
DDT86 and manually alter the segment table in the BIOS to reflect
the reduced memory configuration. Upon returning from DDT86 to the
CCP level, any remaining transient programs,such as ED and ASM86,
operate properly until the next cold start. Permanent segment table
changes can be accomplished by editing the BIOS using this temporary
CP/M-86 system or a CP/M-80r.M. system.

To use the distribution system, the SA-800, SBC 86/12a, and the
SBC 204~ boards must be "jumpered" in the following manner. See the
Shuga~t and Intel hardware for the exact jumpering details.

The SA-800 Diskette Drive "A" is jumpered as follows:

Install Jumpers;
Tl, T2, T3, T4, TS, T6, DSl, DC, 800, Z, A, B, C, DS

Remove Jumpers:
HL, DDS

Cut Trace:
RR

All Information Presented Here is Proprietary to Digital Research

1

CP/M-86 Implementation Note

The SA-800 Diskette Drive "B" is jumpered as follows:

Install Jumpers:
T2, DS2, DC, 800, Z, A, B, C, DS

Remove Jumpers:
HL,DDS

Cut Traces:
R, RR

Wire a connection from wire wrap pin at edge connector pin 4 to
wire wrap pin at right side of pair at nRn as shown below (only for
drive "B"). This connection implements "Radial Ready."

----------. Pin 2
Pin 4 ----------.~

W
I
R
E

R •• ~

The SBC 204 Diskette Controller is jumpered by installing the
following connections:

Switches to Select Port AD through AF:
1, 2, 3, 4, 6 and 8 are OFF
5 and 7 are ON

Install Jumpers:
55-56 (Serial Priority), 1-8, 19-20, 23-24,
26-27, 77-78, 75-76

All Information Presented Here is Proprietary to Digital Research

2

CP/M-86 Implementation Note

The SBC 86/l2a (or 86/12) CPU card is jumpered as follows:

Notes:

Install Jumpers:
65 through 91: Interrupts as desired *
5-6 (Time-Out Acknowledge)
7 through 37: Parallel I/O as desired **
40-39, 43-42 (Baud Rate from PIC Channel 2)
54-55, 56-57, 59-60 (PIC Clocks)
92-93 (CPU Clock)
103-104, 105-106 (Bus Clocks from CPU)
151-152 (Serial Priority)
94-96, 97-98 (ROM's are 2716 Type)
127-128 (On-Board RAM is at OOOOOH)

Switches:
1, 2, and 8 are ON
3, 4, 5, 6, and 7 are OFF

Even ROM (0) in Socket A29
Odd ROM (1) in Socket A47

* CP/M-86 does not use interrupts. Normally 65 through 91 are
unchanged from the factory configuration.

** CP/M-86 does not use parallel I/O. Normally 7 through 37
remain unchanged.

All Information Presented Here is Proprietary to Digital Research

.3

CP/II-86T .M. Vl.l, Application Rote 01, 3/08/82

Copyright~1982 by Digital Research, Inc., Pacific Grove, CA 93950

BOOS DATA PAGE -roD/DATA- PIELDS

Applicable products and version numbers: CP/M-86 T •M. VI. I

Program: BDOS

The date field is located at the base of the data page + 32D
bytes. The date field format is:

MM/DD/YY,

MM is the month (ASCII)
DD is the day (ASCII)
YY is the year (ASCII)

The time field is located at the base of the data page + 4lD
bytes. The time field format is:

HH:MM:SS,

HH is the hour (ASCII)
MM is the minute (ASCII)
SS is the second (ASCII)

The slash, colon and comma are literal characters in both the
time and date representation.

These fields are initialized and displayed with the TOD command.
(See the CP/M-86 Operating System User's Guide, pages 72-73.)

Licensed users are granted the
modifications in CP/M-86 Vl.l software.
Digital Research.

right to include these
CP/M-86 is a trademark of

All Information Presented Here is Proprietary to Digital Research.

