
Concurrent CPI M™
Operating System

System Guide

[!g]
DIGITAL

RESEARCH®

Concurrent CP/M™
Operating System

System Guide

COPYRIGHT

Copyright© 1984 by Digital Research Inc. All
rights reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or
computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written
permission of Digital Research Inc., Post Office Box
579, Pacific Grove, California, 93950.

DISCLAIMER

Digital Research Inc. makes no representations or
warranties with respect to the contents hereof and
specific3.lly disclaims any implied warranties of
merchantability or fitness for any particular
purpose. Further, Digital Research Inc. reserves
t-h.o. rirfh·I- f-rt l"'CHrico. f-.J....ic:- l"\1ihlirt~+-.;,....,., ~?"'1"~ +-r"'\ .,..,.."'.'.It,......,. -*•- '"""-:>•"'• _...., ,_-.,.y_._....,.._ ._~.,_. t"'._..._......._..._.._.._.._.._.,.,., ~_.. .._.._. Hl~l'\.'-

c!Janges from time to time in the content hereof
without obligation of Digital Research Inc. to
notify any person of such revision or changes.

TRADEMARKS

CP/M, CP/M-86, and Digital Research and its logo are
registered trademarks of Digital Research Inc. ASM-
86, Concurrent CP/M, DDT-86, MP/M-86, SID-86, and
GSX are trademarks of Digital Research Inc. Intel
is a registered trademark of Intel Corporation. IBM
is a registered trademark of International Business
Machines. CompuPro is a registered trademark of
CompuPro, a Godbout Company. MS-DOS is a trademark
of Microsoft Corporation.

The Concurrent CP/M'" __ Operating System System
l'.i_uide was prepared using the Digital Research
TEX'" Text Formatter and printed in the United States
of America.

* First Edition: January 1984 *

Foreword

Concurrent CP/M™ can be configured as a single or multiple user,
multitasking, real-time operating system. It is designed for use
with any disk-based microcomputer using an Intel® 8086, 8088, or
compatible microprocessor with a real-time clock. Concurrent CP/M
is modular in design, and can be modified to suit the needs of a
particular installation.

Concurrent CP/M also can support many IBM® Personal Computer Disk
Operating System (PC DOS) and MS™ -DOS programs. In addition, you
can read and write to PC DOS and MS-DOS disks. In this manual, the
term DOS refers to both PC DOS and MS-DOS.

The information in this manual is arranged in the order needed for
use by the system designer. Section 1 provides an overview of the
Concurrent CP/M system. Section 2 describes how to build a
Concurrent CP/M system using the GENCCPM utility. Section 3
contains an overview of the Concurrent CP/M Extended Input/Output
System (XIOS). XIOS Character Devices are covered in Section 4, and
Disk Devices in Section 5. Section 6 describes special character
I/O functions needed to support DOS programs. -

A detailed description of the XIOS Timer Interrupt routine is found
in Section 7. Section 8 deals with debugging the XIOS. Section 9
discusses the bootstrap loader program necessary for loading the
operating system from disk. Section 10 treats the utilities that
the OEM must write in order to have a commercially distributable
system. Section 11 covers changes to end-user documentation which
the OEM must make if certain modifications to Concurrent CP/M are
performed. Appendix A discusses removable media considerations, and
Appendix B covers graphics implementation.

Many sections of this manual refer to the example XIOS. There are
two examples provided. One is a single user system to run on the
IBM Personal Computer. The other is a multi-user system running on
a CompuPro® 86/87 with serial terminals. The single user example
includes source code for windowing support for a video mapped
display. However windowing is not required for the system. The
source code for both examples appears on the Concurrent CP/M
distribution disk; we strongly suggest assembling the source files
following the instructions in Section 2, and referring often to the
assembly listing while reading this manual. Example listings of the
Concurrent CP/M Loader BIOS and Boot Sector can also be found on the
release disk.

iii

Digital Research® supports the user interface and software interface
to Concurrent CP/M, as described in the Concurrent CP/M Operating
System User's Guide and the Concurrent CP/M Operating System
Programmer's Reference Guide, respectively. Digital Research does
not support any additions or modifications made to Concurrent CP/M
by the OEM or distributor. The OEM or Concurrent CP/M distributor
must also support the hardware interface (XIOS) for a particular
hardware environment.

The Concurrent CP/M System Guide is intended for use by system
designers who want to modify either the user or hardware interface
to Concurrent CP/M. It assumes you have already implemented a CP/M-
86® 1.0 Basic Input/Output System (BIOS), preferably on the target
Conc.urrent CP/M machine. It also assumes you are familiar wit'<
these four manuals, which document and support Concurrent CP/M:

• The Concurrent CP/M Operating System User's Guide documents the
user's interface to Concurrent CP/M, explaining the various
features used to execute applications programs and Digital
Research utility programs.

•The Concurrent CP/M Operating System Programmer's Reference
Guide--docume-nEs the applications progr arnmer' s interface to
Concurrent CP/M, explaining the internal file structure and
system entry points--information essential to create
applications programs that run in the Concurrent CP/M
environment.

• The Concurrent CP/M Operating System Pro~_mmer' s Utilities
Guide documents the Digital Research utility programs
programmers use to write, debug, and verify applications
programs written for the Concurrent CP/M environment.

• The Concurrent CP/M Ooerating System System _s;uide documents the
internal, hardware-dependent structures of Concurrent CP/M.

Standard terminology is used throughout these manuals to refer to
Concurrent CP/M features. For example, the names of all XIOS
function calls and their associated code routines begin with IO .
Concurrent CP/M system functions available through the logically
invariant software interface are called system calls. The names of
all data structures internal to the operating system or XIOS are
capitalized: for example, XIOS Header and Disk Parameter Block.
The Concurrent CP/M system data segment is referred to as the SYSDAT
area or simply SYSDAT. The fixed structure at the beginning of the
SYSDAT area, documented in Section 1.10 of this manual, is called
the SYSDAT DATA.

iv

Table of Contents

1 System Overview

1.1 Concurrent CP/M Organization

1.2 Memory Layout

1. 3 Supervisor

1.4 Real-time Monitor

1.5 Memory Management Module

1.6 Character I/O Manager ..

1.7 Basic Disk Operating System

1.8 Extended I/O System .•

1.9 Reentrancy in the XIOS

1.10 SYSDAT Segment

1.11 Resident System Processes

2 Building the XIOS

2.1 GENCCPM Operation

2.2 GENCCPM Main Menu

2.3 System Parameters Menu

2.4 Memory Allocation Menu

2.5 GENCCPM RSP List Menu

2.6 GENCCPM OSLABEL Menu

2.7 GENCCPM Disk Buffering Menu

2.8 GENCCPM GENSYS Option

2.9 GENCCPM Input Files .

3 XIOS Overview

3.1 XIOS Header and Parameter Table

3.2 !NIT Entry Point

v

1-3

1-4

1-4

1-6

1-8

1-11

1-11

1-13

1-13

1-14

1-20

2-1

2-2

2-5

2-10

2-12

2.-13

2-13

2-15

2-16

3-1

3-8

4

5

3.3

3.4

3.5

3.6

3.7

3.8

Table of Contents
(continued)

XIOS ENTRY
Converting the CP/M-86 BIOS

Polled Devices

Interrupt Devices

8087 Exception Handler

XIOS System Calls . .

Character Devices

4.1 Console Control Block

A ~ Com;ole I/O Functions ... "'

4.3 List Device Functions

4.4 Auxiliary Device Functions

4.5 IO POLL Function . .

Disk Devices

5.1 Disk I/O Functions

5.2 IOPB Data Structure

5.3 Multisector Operations on Skewed Disks

5.4 Disk Parameter Header

5.5 Disk Parameter Block

5.5.1 Disk Parameter Block Worksheet
5.5.2 Disk Parameter List Worksheet

5.6 Buffer Control Block Data Area

5.7 Memory Disk Application

5.8 Multiple Media Support

vi

3-9

3-13

3-15

3-15

3-17

3-20

4-2

4-7

4-13

4-15

4-17

5-1

5-9

5-16

5-21

5-27

5-35
5-40

5-41

5-47

5-50

Table of Contents
(continued)

6 PC-MODE Character I/O

6.1 Screen I/O Functions

6.2 Keyboard Functions

6.3 Equipment Check •

6.4 PC-MODE IO CONIN

7 XIOS TICK Interrupt Routine

8 Debugging the XIOS

6-1

6-9

6-11

6-11

7-1

8.1 Running Under CP/M-86 • • • • • • • . • . • • . • . 8-1

9 Bootstrap

9.1 Components of Track 0 on the IBM PC 9-1

9.2 The Bootstrap Process 9-2

9.3 The Loader BOOS and Loader BIOS Function Sets 9-4

9.4 Track 0 Construction 9-5

9.5 Other Bootstrap Methods • 9-7

9.6 Organization of CCPM.SYS 9-8

10 OEM Utilities

10.1 Bypassing the BDOS • • • 10-1

10.2 Directory Initialization in the FORMAT Utility 10-11

11 End-user Documentation 11-1

vii

Appendixes

A Removable Media

B Graphics Implementation

Tables

1-1.
1-2.
1-3.
1-4.
1-5.
1-6.
1-7.

2-1.
2-2.

3-1.
3-2.
3-3.

4-1.
4-2.

5-1.
5-2.
5-3.
5-4.
5-5.
5-6.
5-7.
5-8.
5-9.
5-10.
5-11.
5-12.
5-13.
5-14.

Tables, Figures, and Listings

Supervisor System Calls
Real-time Monitor System Calls
Definitions for Figure 1-3.
Memory Management System Calls
Character I/O System Calls
BDOS System Calls
SYSDAT DATA Data Fields

GENCCPM Main Menu Options
System Parameters Menu Options

XIOS Header Data Fields
XIOS Register Usage
XIOS Functions . . . • •

Console Control Block Data Fields
List Control Block Data Fields

Extended Error Codes
IOPB Data Fields ••
DOS IOPB Data Fields
Disk Parameter Header Data Fields
Disk Parameter Block Data Fields .
Extended Disk Parameter Block Data Fields
BSH and BLM Values • • • • • • •
EXM Values • • . • • . . . • • •
Directory Entries per Block Size
ALO, ALI Values • • . • • •
PSH and PRM Values • • • • • • •
Buffer Control Block Header Data Fields
DIRBCB Data Fields
DATBCB Data Fields

viii

A-1

B-1

1-4
1-7

1-10
1-10
1-11
1-12
1-16

2-4
2-6

3-2
3-10
3-11

4-4
4-14

5-4
5-11
5-15
5-21
5-28
5-32
5-35
5-36
5-37
5-38
5-39
5-42
5-43
5-45

6-1.
6-2.
6-3.
6-4.
6-5.
6-6.

Tables, Figures, and Listings
(continued)

Alphanumeric Modes ...
Graphics Modes
Keyboard Shift Status
DOS Equipment Status Bit Map
Keyboard Scan Codes
Extended Keyboard Codes

10-1. Directory Label Data Fields

Figures

1-1.
1-2.
1-3.
1-4.
1-5.

2-1.
2-2.
2-3.
2-4.
2-5.
2-6.
2-7.
2-8.
2-9.
2-10.

3-1.

4-1.
4-2.
4-3.
4-4.
4-5.

5-1.
5-2.
5-3.
5-4.
5-5.
5-6.
5-7.
5-8.
5-9.
5-10.

Concurrent CP/M Interfacing
Memory Layout and File Structure
Finding a Process's Memory
SYS DAT
SYSDAT DATA

GENCCPM Main Menu
GENCCPM Help Function Screen 1
GENCCPM Help Function Screen 2
GENCCPM System Parameters Menu
GENCCPM Memory Allocation Sample Session
GENCCPM RSP List Menu Sample Session .
GENCCPM Operating System Label Menu
GENCCPM Disk Buffering Sample Session
GENCCPM System Generation Messages
Typical GENCCPM Command File

XIOS Header

The CCB Table
CCB's For Two Physical Consoles
Console Control Block Format
The LCB Table
List Control Block (LCB) .•

Input/Output Parameter Block (IOPB)
DOS Input/Output Parameter Block (IOPB)
DMA Address Table for Multisector Operations
Disk Parameter Header (DPH)
DPH Table . . . • • . . •
Disk Parameter Block Format
Extended Disk Parameter Block Format
Buffer Control Block Header • . . .
Directory Buffer Control Block (DIRBCB)
Data Buffer Control Block (DATBCB) . . .

ix

6-3
6-3

6-10
6-11
6-12
6-13

10-14

1-2
1-5
1-9

1-14
1-15

2-?
2-3
2-4
2-6

2-10
2-12
2-13
2-14
2-16
2-17

3-2

4-2
4-3
4-4

4-13
4-14

5-10
5-15
5-16
5-21
5-26
5-28
5-31
5-41
5-42
5-45

8-1.
8-2.
8-3.

9-1.
9-2.
9-3.
9-4.
9-5.

10-1.
10-2.
10-3.
10-4.

Listings

3-1.
3-2.
3-3.

5-1.
5-2.
5-3.
5-4.
5-5.
5-6.
5-7.
5-8.
5-9.
5-10.
5-11.

Tables, Figures and Listings
(continued)

Debugging Memory Layout • • • • • • • • ••
Debugging CCP/M Under DDT-86 and CP/M-86 ••
Debugging the XIOS Under SID-86 and CP/M-86

Track 0 on the IBM PC • • • • • • • • •
Loader Organization . . • • • • • . •
Disk Parameter Field Initialization ••••
Group Descriptors - CCPM.SYS Header Record
CCPM System Image and the CCPM.SYS File

Concurrent CP/M Disk Layout ••••••
Directory Initialization Without Time Stamps
Directory Label Initialization ••••••
Directory Initialization With Time Stamps

XIOS Header Definition
XIOS Function Table
8087 Exception Handler •

Multisector Operations
IOPB Definition
Multisector Unskewing
DPH Definition
SELDSK XIOS Function
DPB Definition • • . •
Extended DPB Definition
BCB Header Definition
DIRBCB Definition
DATBCB Definition ••
Example M DISK Implementation

10-1. Disk Utility Programming Example

x

8-2
8-3
8-4

9-1
9-2
9-5
9-8
9-9

10-12
10-13
10-13
10-15

3-7
3-12
3-19

5-5
5-13
5-18
5-25
5-26
5-30
5-34
5-42
5-44
5-46
5-48

10-3

Section 1
System Overview

Concurrent CP/M is a multitasking, real-time operating system. It
can be configured for one or more user terminals. Each user
terminal can run multiple tasks simultaneously on one or more
virtual consoles. Concurrent CP/M supports extended features, such
as intercommunication and synchronization of independently running
processes. It is designed for implementation in a large variety of
hardware environments and as such, you can easily customize it to
fit a particular hardware environment and/or user's needs.

Concurrent CP/M also supports DOS (PC DOS and MS-DOS) programs and
media. The XIOS support for DOS media is described in Section 5 of
this manual. DOS character I/O is described in Section 6.

Concurrent CP/M consists of three levels of interface: the user
interface, the logically invariant software interface, and the
hardware interface. The user interface, which Digital Research
distributes, is the Resident System Process (RSP) called the
Terminal Message Process (TMP). It accepts commands from the user
and either performs those commands that are built into the TMP, or
passes the command to the operating system via the Command Line
Interpreter (P_CLI). The Command Line Interpreter in the operating
system kernel either invokes an RSP or loads a disk file in order to
perform the command.

The logically invariant interface to the operating system consists
of the system calls as described in the Concurrent CP/M Operating
System Programmer's Reference Guide. The logically invariant
interface also connects transient and resident processes with the
hardware interface.

The physical interface, or XIOS (extended I/O system), communicates
directly with the particular hardware environment. It is composed
of a set of functions that are called by processes needing physical
I/O. Sections 3 through 6 describe these functions. Figure 1-1
shows the relationships among the three interfaces.

Digital Research distributes Concurrent CP/M with machine-readable
source code for both the user and example hardware interfaces. You
can write a custom user and/or hardware interface, and incorporate
them by using the system generation utility, GENCCPM. There are two
example XIOSs supplied with the system. One is written for the IBM
Personal Computer, as a single user system with multiple virtual
consoles. The other XIOS is written for the CompuPro 86/87 with
multiple serial terminals. The example XIOSs are designed to be
examples and not commercially distributable systems. Wherever a
choice between clarity and efficiency is necessary, the examples are
written for clarity.

1-1

Concurrent CP/M System Guide 1 System Overview

This section describes the modules comprising a typical Concurrent
CP/M operating system. It is important that you understand this
material before you try to customize the operating system for a
particular application.

(SUP

User

j
User Interface

(TMP)

Invariant
Interface

RTM MEM CIO

l
Hardware
Interface

(XIOS)

BOOS)

Hardware Environment

Figure 1-1. Concurrent CP/M Interfacing

1-2

Concurrent CP/M System Guide 1.1 Organization

1.1 Concurrent CP/M Organization

Concurrent CP/M is composed of six basic code modules. The Real­
time Monitor (RTM) handles process-related functions, including
dispatching, creation, and termination, as well as the Input/Output
system state logic. The Memory module (MEM) manages memory and
handles the Memory Allocate (M ALLOC) and Memory Free (M FREE)
system calls. The Character I/0-module (CIO) handles all console
and list device functions, and the Basic Disk Operating System
(BOOS) manages the file system. These four modules communicate with
the Supervisor (SUP) and the Extended Input/Output System (XIOS).

The SUP module manages the interaction between transient processes,
such as user programs, and the system modules. All function calls
go through a common table-driven interface in SUP. The SUP module
also contains the Program Load (P LOAD) and Command Line Interpreter
(P_CLI) system calls. -

The XIOS module handles the physical interface to a particular
hardware environment. Any of the Concurrent CP/M logical code
modules can call the XIOS to perform specific hardware-dependent
functions. The names used in this manual for the XIOS functions
always begin with IO in order to easily distinguish them from
Concurrent CP/M operating system calls.

All operating system code modules, including the SUP and XIOS, share
a data segment called the System Data Area (SYSDAT) • The beginning
of SYSDAT is the SYSDAT DATA, a well-defined structure containing
public data used by all system code modules. Following this fixed
portion are local data areas belonging to specific code modules.
The XIOS area is the last of these code module areas. Following the
XIOS Area are Table Areas, used for the Process Descriptors, Queue
Descriptors, System Flag Tables, and other operating system tables.
These tables vary in size depending on options chosen during system
generation. See Section 2, "System Generation."

The Resident System Processes (RSPs) occupy the area in memory
immediately following the SYSDAT module. The RSPs you select at
system generation time become an integral part of the Concurrent
CP/M operating system. For more information on RSPs, see Section
1.11 of this manual, and the Concurrent CP/M Operating System
Programmer's Reference Guide.

Concurrent CP/M loads all transient programs into the Transient
Program Area (TPA). The TPA for a given implementation of
Concurrent CP/M is determined at system generation time.

1-3

Concurrent CP/M System Guide 1.2 Memory Layout

1.2 Memory Layout

The Concurrent CP/M operating system area can exist anywhere in
memory except over the interrupt vector area. You define the exact
location of Concurrent CP/M during system generation. The GENCCPM
program determines the memory locations of the system modules that
make up Concurrent CP/M based upon system generation parameters and
the size of the modules.

The XIOS must reside within SYSDAT. You must write the XIOS as an
8080 model program, with both the code and data segment registers
set to the beginning of SYSDAT.

Figure 1-2 shows the relationship of the Concurrent CP/M system
image to the CCPM.SYS disk file structure.

1. 3 Supervisor

The Concurrent CP/M Supervisor (SUP) manages the interface between
system and transient processes and the invariant operating system.
All system calls go through a common table-driven interface in SUP.

The SUP module also contains system calls that invoke other system
ca.L.Ls, like P LOAD (Program Loadj and P CLI (Command Line
Interpreter).

Table 1-1. Supervisor System Calls

System Call l Number l Hex

F PARSE 152 98
P CHAIN 47 2F
P CLI 150 96
P LOAD 59 3B
P-RPL 151 97
S-BDOSVER 12 oc
S-BIOS 50 32
S-OSVER 163 OA3
S-SYSDAT 154 9A
S-SERIAL 107 6B
T-SECONDS 155 9B

1-4

Concurrent CP/M System Guide 1.3 Supervisor

(top of memory)

End of file- r-----------..

TPA

1------------1-End of
O.S. Area

Disk Buffers

1---------......,~End of o.s...--..

RSPs

Table Area l
XIOS

within
64k

BDOS Code
Segment

CIO Code

MEM Code

RTM Code

SUP Code
1------------1 -beg inning­

of o.s. area
TPA

0:0400H
Interrupt Vectors

O:OOOOH

CCPM.SYS
Extra Group

(Used to hold
GENCCPM options)

CCPM.SYS
Data Group

CCPM.SYS
Code Group

CCPM.SYS
CMD Format
File Header

(Start of File)

Figure 1-2. Memory Layout and File Structure

1-5

Concurrent CP/M System Guide 1.4 Real-time Monitor

1.4 Real-time Monitor

The Real-time Monitor (RTM) is the multitasking kernel of Concurrent
CP/M. It handles process dispatching, queue and flag management,
device polling, and system timing tasks. It also manages the
logical interrupt system of Concurrent CP/M. The primary function
of the RTM is transferring the CPU resource from one process to
another, a task accomplished by the RTM dispatcher. At every
dispatch operation, the dispatcher stops the currently running
process from execution and stores its state in the Process
Descriptor (PD) and User Data Area (UDA) associated with that
process. The dispatcher then selects the highest-priority process
in the ready state and restores it to execution, using the data in
its PD and UDA. A process is in the ready state if it is waiting
for the CPU resource only. The new process continues to execute
until it needs an unavailable resource, a resource needed by another
process becomes available, or an external event, such as an
interrupt, occurs. At this time the RTM performs another dispatch
operation, allowing another process to run.

The Concurrent CP/M RTM dispatcher also performs device polling. A
process waits for a polled device through the RTM DEV POLL system
call.

lA7hen a process needs to wait for an interrupt, it issues a
DEV WAITFLAG system call on a logical interrupt device. When the
appropriate interrupt actually occurs, the XIOS calls the
DEV SETFLAG system call, which wakes up the waiting process. The
interrupt routine then performs a Far Jump to the RTM dispatcher,
which reschedules the interrupted process, as well as all other
ready processes that are not yet on the Ready List. At this point,
the dispatcher places the process with the highest priority into
execution. Processes that are handling interrupts should run at a
better priority than noninterrupt-dependent processes (the lower the
priority number, the better the priority) in order to respond
quickly to incoming interrupts.

The system clock generates interrupts, clock ticks, typically 60
times per second. This allows Concurrent CP/M to effect process
time slicing. Since the ope~ating system waits for the tick flag,
the XIOS TICK Interrupt routine must execute a Concurrent CP/M
DEV SETFLAG system call at each tick (see Section 7' "XIOS TICK
Interrupt Routine"), then perform a Far Jump to the SUP entry point.
At this point, processes with equal priority are scheduled for the
CPU resource in round-robin fashion unless a better-priority process
is on the Ready List. If no process is ready to use the CPU,
Concurrent CP/M remai_ns in the dispatcher until an interrupt occurs,
or a polling process is ready to run.

1-6

Concurrent CP/M System Guide 1.4 Real-time Monitor

The RTM also handles queue management. System queues are composed
of two parts: the Queue Descriptor, which contains the queue name
and other parameters, and the Queue Buffer, which can contain a
specified number of fixed-length messages. Processes read these
messages from the queue on a first-in, first-out basis. A process
can write to or read from a queue either conditionally or
unconditionally. If a process attempts a conditional read from an
empty queue, or a conditional write to a full one, the RTM returns
an error code to the calling process. However, an unconditional
read or write att~mpt in these situations causes the suspension of
the process until the ooeration can be accomplished. The kernel
uses this feature to implement mutual exclusion of processes from
serially reusable system resources, such as the disk hardware.

Other functions of the Real-time Mani tor are covered in the
Concurrent CP/M Operating System Programmer's Reference Guide under
their individual descriptions.

Table 1-2. Real-time Monitor System Calls

System Call l Number l Hex

DEV SETFLAG 133 85
DEV WAITFLAG 132 84
DEV POLL 131 81
p ABORT 157 9D
P-CREATE 144 90
P DELAY 141 8D
P-DISPATCH 142 8E
P-PDADR 156 9C
P-PRIORITY 145 91
P-TERM 143 8F
P-TERMCPM 0 00
Q CREAT 138 8A
Q-CWRITE 140 8c
Q-DELETE 136 88
Q-MAKE 134 86
Q-OPEN 135 87
Q=READ 137 89
Q_WRITE 139 8B

1-7

Concurrent CP/M System Guide 1.5 Memory Management Module

1.5 Memory Management Module

The Memory Management module (MEM) handles all memory functions.
Concurrent CP/M supports an extended model of memory management.
Future releases of Concurrent CP/M might support different versions
of the Memory module depending on classes of memory management
hardware that become available.

The MEM module describes memory partitions internally by Memory
Descriptors (MDs). Concurrent CP/M initially places all available
partitions on the Memory Free List (MFL). Once MEM allocates a
partition (or set of contiguous partitions), it takes that partition
off the MFL and places it on the Memory Allocation List (MAL). The
Memory Allocation List contains descriptions of contiguous areas of
memory known as Memory Allocation Uni ts (MAUs). MAUs always contain
one or more partitions. The MEM module manages the space within an
MAU in the following way: when a process requests extra memory, MEM
first determines if the MAU has enough unused space. If it does,
the extra memory requested comes from the process's own partition
first.

A process can only allocate memory from a MAU in which it already
owns memory, or from a new MAU created from the MFL. If one process
shares memory with another, either can allocate memory from the MAU
that contains the shared memory segment. The MEM module keeps a
count of how many processes "own" a particular memory segment to
ensure that it becomes available within the MAU only when no
processes own it. When all of the memory within an MAU is free, the
MEM module frees the MAU and returns its memory partitions to the
MFL.

If the system for which Concurrent CP/M is being implemented
contains memory management hardware, the XIOS can protect a
process's memory when it is not in context. When the process is
entering the operating system, all memory in the system should be
made Read-Write. When a process is exiting the operating system,
the process's memory should be made Read-Write, the operating system
memory (from CCPMSEG to ENDSEG) made Read-Only, and all other memory
made nonexistent. Memory protection can be implemented within the
XIOS by a routine that intercepts the INT 224 entry point for
Concurrent CP/M system calls, and interrupt routines that handle
attempted memory protection violations.

Figure 1-3 shows how to find a process's memory.

1-8

Concurrent CP/M System Guide 1.5 Memory Management Module

SYSD~~68H~

PD I :
02H 16H 18!:! 30!:!

I ~--r--(ME-M) ---t-0 ----r--.D

MSD

MAU

02H ObH 08H OAH OOH

'----+--Lif K~' ~..---.-(-MAU)~o ~----+------.

Next MSD
(0 if none)

(All MSD's pointing to a common MAU are grouped together)

OOH 06!:! OAH

~-+-_.__sTA->T___.~LEN~·~n_1~'~~D
02H 04H

Figure 1-3. Finding a Process's Memory

1-9

Concurrent CP/M System Guide 1.5 Memory Management Module

Table 1-3. Definitions for Figure 1-3.

Data Field J Explanation

RLR Ready List Root; points to currently
running process.

PD Process Descriptor; describes a process.

MEM MEM field of Process Descriptor.

MSD Memory Segment Descriptor; describes a
single memory allocation. A process may
have many of these in a linked list. The
MSD list pointed to by the MEM field
describes all the successful memory
allocations made by the process. Also,
many MSDs may point to the same MAU. All
MSDs pointing to the same MAU are grouped
together.

MAU Memory Allocation Unit; describes a
contiguous area of allocated memory. A
MAU is built from one or more contiguous
memory partitions. The START and LENGTH
fields are the starting paragraph and
number of paragraphs, respectively.

Table 1-4. Memory Management System Calls

System Call J Number J Hex

M ALLOC 128, 129 80, 81
M-FREE 130 82
MC ABS 54 36
MC ALLFREE 58 3A
MC-ALLOC 55 37
MC-ALLOCABS 56 38
MC-FREE 57 39
MC-MAX 53 35

Note: The MC ABS, MC ALLOC, MC ALLOCABS, MC FREE, MC ALLFREE, and
MC MAX system-calls internally execute the M ALLOC and M FREE system
calls. They are supported for compatibility with the-CP/M-86 and
MP/M-86™ operating systems.

1-10

Concurrent CP/M System Guide 1.6 Character I/O Manager

1.6 Character I/O Manager

The Character Input/Output (CIO) module of Concurrent CP/M handles
all console and list device I/O, and interfaces to the XIOS, the PIN
(Physical Input Process) and the VOUT (Virtual OUTput process).
There is one PIN for each user terminal, and one VOUT for each
virtual console in the system. An overview of the CIO is presented
in the Concurrent CP/M Operating System Programmer's Reference
Guide, and XIOS Character DevicPs are described in Section 4 of this
manual. For details of the Console Control Block (CCB) and List
Control Block (LCB) data structures, see Sections 4.1 and 4.3
respectively.

Table 1-5. Character I/O System Calls

System Call 1 Number l Hex

C ASSIGN 149 95
C ATTACH 146 92
C-CAT'l'ACH 162 0A2
C-DELIMIT llO 6E
C DETACH 147 93
C GET 153 99
C-MODE 109 6D
C RAWIO 6 06
C READ l 01
C-READSTR 10 OA
C-SET 148 94
C-STAT ll OB
C-WRITE 2 02
C WRITEBLK lll 6F
C-WRITESTR 9 09
L ATTACH 158 9E
L CATTACH 161 0Al
L-DETACH 159 9F
L-GET 164 0A4
L-SET 160 OAO
L-WRITE 5 05
L WRITEBLK ll2 70

1. 7 Basic Disk Operating System

The Basic Disk Operating System (BDOS) handles all file system
functions. It is described in detail in the Concurrent CP/M
Operating System Programmer's Reference Guide. Table 1-6 lists the
Concurrent CP/M BOOS system calls.

1-11

Concurrent CP/M System Guide 1.7 Basic Disk Operating System

Table 1-6. BOOS System Calls

System Call I Number l Hex

ORV ACCESS 38 26
DRV-ALLOCVEC 27 lB
DRV-DPB 31 lF
ORV-FLUSH 48 30
ORV-GET 25 19
DRV-GETLABEL 101 65
DRV-LOGINVEC 24 18
ORV-RESET 37 25
DRV-ROVEC 29 10
ORV-SET 14 OE
DRV-SETLABEL 100 64
DRV-SETRO 28 lE
ORV SPACE 46 2E
F ATTRIB 30 lE
F-CLOSE 16 10
F DELETE 19 13
F-DMASEG 51 33
F-DMAGET 52 34
F-DMAOFF 26 lA
F-ERRMODE 45 20
F-LOCK 42 2A
F-MAKE 22 16
F-MULTISEC 44 2C
F-OPEN 15 OF
F PASSWD 106 6A
F-READ 20 14
F-READRAND 33 21
F-RANDREC 36 24
F-RENAME 23 17
F-SFIRST 17 11
F-SIZE 35 23
F-SNElCT 18 12
F-TIMEDATE 102 66
F-TRUNCATE 99 63
F-UNLOCK 43 2B
F-USERNUM 32 20
F-WRITE 21 15
F-WRITERAND 34 22
F-WRITEXFCB 103 67
F-WRITEZF 40 28
T-GET 105 69
T-SET 104 68 -

1-12

Concurrent CP/M System Guide 1.8 Extended I/O System

1.8 Extended I/O System

The Extended Input/Output System (XIOS) handles the physical
interface to Concurrent CP/M. It is similar to the CP/M-86 BIOS
module, but it is extended in several ways. By modifying the XIOS,
you can run Concurrent CP/M in a large variety of different hardware
environments. The XIOS recognizes two basic types of I/O devices:
character devices and disk drives. Character devices are devices
that handle one character at a time, while disk devices handle
random blocked I/O using data blocks sized from one physical disk
sector to the number of physical sectors in 16K bytes. Use of
devices that vary from these two models must be implemented within
the XIOS. In this way, they appear to be standard Concurrent CP/M
I/O devices to other operating system modules through the XIOS
interface. Sections 4 through 6 contain detailed descriptions of
the XIOS functions, and the source code for two sample
implementations can b'" found in machine-readable format on the
Concurrent CP/M OEM release disk.

1.9 Reentrancy in the XIOS

Concur rent CP/M allows multiple processes to use certain XIOS
functions simultaneously. The system guarantees that only one
process uses a particular physical device at any given time.
However, some XIOS functions handle more than one physical device,
and thus their interfaces must be reentrant. An example of this is
the IO_CONOUT Function. The calling process passes the virtual
console number to this function. There can be several processes
using the function, each writing a character to a different virtual
console or character device. However, only one process is actually
outputting a character to a given device at any time.

IO STATLINE can be called more than once. The CLOCK process calls
the IO STATLINE function once per second, and the PIN process will
also call it on screen switches, CTRL-S, CTRL-P, and CTRL-0.

Since the XIOS file functions, IO SELDSK, IO READ, IO WRITE, and
IO FLUSH are protected by the ~Xd1sk mutual exclusion queue, only
one process may access them at a time. None of these XIOS
functions, therefore, need to be reentrant.

1-13

Concurrent CP/M System Guide 1.10 SYSDAT Segment

1.10 SYSDAT Segment

The System Data Area (SYSDAT) is the data segment for all modules of
Concurrent CP/M. The SYSDAT segment is composed of three main
areas, as shown in Figure 1-4. The first part is the fixed-format
portion, containing global data used by all modules. This is the
SYSDAT DATA. It contains system variables, including values set by
GENCCPM and pointers to the various system tables. The Internal
Data portion contains fields of data belonging to individual
operating system modules. The XIOS begins at the end of this second
area of SYSDAT. The third portion of SYSDAT is the System Table
Area, which is generated and initialized by the GENCCPM system
generation utility.

Figure 1-4 shows the relationships among the various parts of
SYSDAT.

Table Area

XIOS

COOH:

Internal Data

OBOH:

(SYSDA'r DATA)

OOOH:

Figure 1-4. SYSDAT

Figure 1-5 gives the format of the SYSDAT DATA and describes its
data fields.

1-14

Concurrent CP/M System Guide 1.10 SYSDAT Segment

OOH

OSH

lOH

lSH

20H

2SH

30H

3SH

40H

4SH

SOH

SSH

60H

6SH

70H

7SH

SOH

SSH

90H

9SH

AOH

SUP ENTRY RESERVED
I

I

RESERVED
T

j
T T T

RESERVED
I

j
T

RESERVED

RES~RVED
I

XIOS ENTRY XIOS !NIT
T

RESERVED

DISPATCHER PD ISP
...L

CCPMSEG RSPSEG ENDSEG RESER NVCNS
-VED

l

NLCB NCCB N SYS MMP RESER DAY - -
FLAGS DISK -VED FILE

I

TEMP TICKS LUL CCB FLAGS
DISK /SEC

i

MOUL MFL PUL QUL
T

QMAU

RLR DLR DRL PLR

RES~RVED THRDRT QLR MAL

VERSION VERNUM CCPMVERNUM TOD DAY

TOD TOD TOD NCON NLST NCIO LCB
HR MIN SEC DEV DEV DEV - -

OPEN FILE LOCK OPEN OWNER SOS7 RESERVED - - -
MAX MAX

T T
RESERVED

T T T
i_

RESERVED XPCNS
T

i_
T

OFF SOS7 SEG SOS7 SYS S7 OF SYS S7 SG -

Figure 1-5. SYSDAT DATA

1-15

Concurrent CP/M System Guide 1.10 SYSDAT Segment

Table 1-7. SYSDAT DATA Data Fields

Data Field I Explanation

SUP ENTRY

XIOS ENTRY

XIOS !NIT

DISPATCHER

PD ISP

Double-word address of the Supervisor
entry point for intermodule communication.
All internal system calls go through this
entry point.

Double-word address of the Extended I/O
System entry point for intermodule
communication. All XIOS function calls go
through this entry point.

Double-word address of the Extended I/O
System Initialization entry point. System
hardware initialization takes place by a
call through this entry point.

Double-word address of the Dispatcher
entry point that handles interrupt
returns. Executing a JMPF instruction to
this address is equivalent to executing an
IRET (Interrupt Return) instruction. The
Dispatcher routine causes a dispatch to
occur and then executes an Interrupt
Return. All registers are preserved and
one level of stack is used. The address
in this location can be used by XIOS
interrupt handlers for termination instead
of executing an IRET instruction. The
TICK interrupt handler (I TICK in the
example XIOS' s) ends with a Jump Far
(JMPF) to the address in this location.
usually, interrupt handlers that make
DEV SETFLAG calls end with a jump far to
the- address stored in the DISPATCHER
field. Refer to the example XIOS
interrupt routines and Sections 3.5 and
3.6 for more detailed information.

Double-word address of the Dispatcher
entry point that causes a dispatch to
occur with all registers preserved. Once
the dispatch is done, a RETF instruction
is executed. Executing a JMPF PDISP is
equivalent to executing a RETF
instruction. This location should be used
as an exit point whenever the XIOS
releases a resource that might be wanted
by a waiting process.

1-16

Concurrent CP/M System Guide 1.10 SYSDAT Segment

Data Field I
CCPMSEG

RSPSEG

ENDSEG

NV CNS

NLCB

NCCB

NF LAGS

SYSDISI<

MMP

DAY FILE

Table 1-7. (continued)

Explanation

Starting paragraph of the operating system
area. This is also the Code Segment of
the Supervisor Module.

Paragraph Address of the first RSP in a
linked list of RSP Data Segments. The
first word of the data segment points to
the next RSP in the list. Once the system
has been initialized, this field is zero.
See the Concurrent CP/M Operating System
Programmer's Reference Guide section on
debugging RSPs for more information.

First paragraph beyond the end of the
operating system area, including any
buffers consisting of uninitialized RAM
allocated to the operating system by
GENCCPM. These include the Directory
Hashing, Disk Data, and XIOS ALLOC
buffers. These buffer areas, however, are
not part of the CCPM.SYS file.

Number of virtual consoles, copied from
the XIOS Heaaer by GENCCPM.

Number of List Control Blocks, copied from
the XIOS Header by GENCCPM.

Number of Character Control Blocks, copied
from the XIOS Header by GENCCPM.

Number of system flags as specified by
GENCCPM.

Default system disk. The CLI (Command
Line Interpreter) looks on this disk if it
cannot open the command file on the user's
current default disk. Set by GENCCPM.

Maximum memory allowed per process. Set
during GENCCPM.

Day File option. If this field is OFFH,
the operating system displays date and
time information when an RSP or CMD file
is invoked. Set by GENCCPM.

1-17

Concurrent CP/M System Guide 1.10 SYSDAT Segment

Data Field

TEMP DISK

TICKS/SEC

LUL

CCB

FLAGS

MDUL

MFL

PUL

QUL

QMAU

RLR

DLR

DRL

PLR

THRDRT

I
Table 1-7. (continued)

Explanation

Default temporary disk. Programs that
create temporary files should use this
disk. Set by GENCCPM.

The number of system ticks per second.

Locked Unused List. Link list root of
unused Lock list items.

Address of the Character Control Block
Table, copied from the XIOS Header by
GENCCPM.

Address of the Flag Table.

Memory Descriptor Unused List. Link list
root of unused Memory Descriptors.

Memory Free List. Link list root of free
memory partitions.

Process Unused List. Link list root of
unused Process Descriptors.

Queue Unused List. Link list root of
unused Queue Descriptors.

Queue buffer Memory Allocation Unit.

Ready List Root. Linked list of PDs that
are ready to run.

Delay List Root. Linked list of PDs that
are delaying for a specified number of
system ticks.

Dispatcher Ready List. Temporary holding
place for PDs that have just been made
ready to run.

Poll List Root. Linked list of PDs that
are polling on devices.

Thread List Root. Linked list of all
current PDs on the system. The list is
threaded though the THREAD field of the PD
instead of the LINK field.

1-18

Concurrent CP/M System Guide 1.10 SYSDAT Segment

Table 1-7. (continued)

Data Field l Explanation

QLR

MAL

VERSION

VERNUM

CCPMVERNUM

TOD DAY

TOD HR

TOD MIN

TOD SEC

NCONDEV

NLSTDEV

NCIODEV

LCB

OPEN FILE

Queue List Root.
System QDs.

Linked list of all

'Memory Allocation List; link list of
active memory allocation units. A MAU is
created from one or more memory
partitions.

Address, relative to CCPMSEG, of ASCII
version string.

Concurrent CP/M version number (returned
by the S_BDOSVER system call).

Concurrent CP/M version number (system
call 163, S_OSVER).

Time of Day. Number of days since 1 Jan,
1978.

Time of Day. Hour of the day.

Time of Day. Minute of the hour.

Time of Day. Second of the minute.

Number of XIOS consoles, copied from the
XIOS Header by GENCCPM.

Number of XIOS list devices, copied from
the XIOS Header by GENCCPM.

Total number of character devices (NCONDEV
+ NLSTDEV).

Offset of the List Control Block Table,
copied from the XIOS Header by GENCCPM.

Open File Drive Vector. Designates drives
that have open files on them. Each bit of
the word value represents a disk drive;
the least significant bit represents Drive
A, and so on through the most significant
bit, Drive P. Bits which are set indicate
drives containing open files.

1-19

Concurrent CP/M System Guide 1.10 SYSDAT Segment

Table 1-7. (continued)

Data Field J Explanation

LOCK MAX

OPEN MAX

OWNER 8087

XPCNS

OFF 8087

SEG 8087

SYS 87 OF

SYS 87 SG

Maximum
process.

number of locked records per
Set during GENCCPM.

Maximum number of open disk files per
process. Set during GENCCPM.

Process currently owning the 8087. Set to
0 if 8087 is not owned. Set to OFFFFH if
no 8087 present.

Number of physical consoles.

Offset of the 8087 interrupt vector in low
memory.

Segment of the 8087 interrupt vector in
low memory.

Offset of the default 8087 exception
handler.

Segment of the default 8087 exception
handler.

1.11 Resident System Processes

Resident System Processes (RSPs) are an integral part of the
Concurrent CP/M operating system. At system generation, the GENCCPM
RSP List menu lets you select which RSPs to include in the operating
system. GENCCPM then places all selected RSPs in a contiguous area
of RAM starting at the end of SYSDAT. The main advantage of an RSP
is that it is permanently resident within the Operating System Area,
and does not have to be loaded from disk whenever it is needed.

Concurrent CP/M automatically allocates a Process Descriptor (PD)
and User Data Area (UDA) for a transient program, but each RSP is
responsible for the allocation and initialization of its own PD and
UDA. Concurrent CP/M uses the PD and QD structures declared within
an RSP directly if they fall within 64K of the SYSDAT segment
address. If outside 64K, the RSP's PD and QD are copied to a PD or
QD allocated from the Process Unused List or the Queue Unused List.
In either case the PD and QD of the RSP 1 ie within 64K of the
beginning of the SYSDAT Segment. This allows RSPs to occupy more
area than remains in the 64K SYSDAT segment.

1-20

Concurrent CP/M System Guide 1.11 Resident System Processes

Further details on the creation and use of RSPs can be found in the
Concurrent CP/M Operating System Programmer's Reference Guide.

End of Section 1

1-21

Section 2
System Generation

The Concurrent CP/M XIOS should be written as an 8080 model (mixed
code and data) program and origined at location OCOOH using the
ASM86 ORG assembler directive. Once you have written or modified
the XIOS source for a particular hardware configuration, use the
Digital Research assembler ASM-86'" or RASM-86'" to generate an
XIOS.CON file for use with GENCCPM:

A>ASM86 XIOS Assemble the XIOS

A>GENCMD XIOS 8080 Create XIOS.CMD from XIOS.H86

A>REN XIOS.CON=XIOS.CMD Rename XIOS.CMD to XIOS.CON

Then invoke the GENCCPM program to produce a system image in the
CCPM.SYS file by typing the command:

l'.:-CENCCPM generate system imaqe

2.1 GENCCPM Operation

You can generate a Concurrent CP/M system by running the GENCCPM
program under an existing CP/M or Concurrent CP/M system. GENCCPM
builds the CCPM.SYS file, which is an image of the Concurrent CP/M
operating system. Then you can use DDT-86'" or SID-86'" to place the
CCPM.SYS file in memory for debugging under CP/M-86.

GENCCPM allows the user to define certain hardware-dependent
variables, the amount of memory to reserve for system data
structures, the selection and inclusion of Resident System Processes
in the CCPM.SYS file, and other system parameters. The first action
GENCCPM performs is to check the current default drive for the files
necessary to construct the operating system image:

e SUP.CON
• RTM.CON
e MEM.CON
• CIO.CON
e BOOS.CON
e XIOS.CON
e SYSDAT.CON

Supervisor Code Module
Real Time Monitor Code Module
Memory Manager Code Module
Character Input/Output Code Module
Basic Disk Operating System Code Module
Extended Input/Output System Module
SYSDAT DATA and Internal Data modules of
SYSDAT segment

2-1

Concurrent CP/M System Guide 2.1 GENCCPM Operation

e VOUT.RSP
• PIN.RSP
e TMP.RSP
e CLOCK.RSP
• DIR.RSP
9 ABORT.RSP

Virtual console OUTput process
Physical keyboard INput process
Terminal Message Process
CLOCK process
DIRectory process
ABORT process

Note: *.RSP =Resident System Process file. The VOUT, PIN, TMP,
and CLOCK RSPs are required for Concurrent CP/M to run. The RSPs
listed are all distributed with Concurrent CP/M.

If GENCCPM does not find the preceding .CON files on the default
drive, it prints an error message on the console:

Can't find these modules: <FILESPEC> .•. {<FILESPEC>}

where FILESPEC is the name of the missing file.

2.2 GENCCPM Main Menu

All of the GENCCPM Main Menu options have default values. When
generating a system, GENCCPM assumes the value shown in square
brackets, unless you specify another value. Any menu item that
requires a yes or no response represents a Boolean value, and can be
toggled simply by entering the variable. For example, entering
VERBOSE in response to the GENCCPM prompt will change the state of
the VERBOSE variable from the default state, [Y], to the opposite
state.

In the GENCCPM Main Menu illustrated in Figure 2-1, all numeric
values are in hexadecimal notation.

*** Concurrent CP/M 3.1 GENCCPM Main Menu ***

help
verbose [Y]

destdrive [A:]
deletesys [N]

sysparams
memory

diskbuffers
oslabel

rsps

gensys

Changes?

GENCCPM Help
More Verbose GENCCPM Messages
CCPM.SYS Output To (Destination) Drive
Delete (instead of rename) old CCPM.SYS file

Display/Change System Parameters
Display/Change Memory Allocation Partitions
Display/Change Disk Buffer Allocation
Display/Change Operating System Label
Display/Change RSP List

I'm finished changing things, go GEN a SYStem

Figure 2-1. GENCCPM Main Menu

2-2

Concurrent CP/M System Guide 2.2 GENCCPM Main Menu

If you type HELP in response to the GENCCPM Main Menu prompt
Changes?, as shown in this example:

Changes? HELP <er>

the program pr in ts the following message on the Help Function
Screen:

*** GENCCPM Help Function ***

GENCCPM lets you edit and generate a system image from
operating system modules on the default disk drive. A
detailed explanation of each GENCCPM parameter may be
found in the Concurrent CP/M System Guide, Section 2.

GENCCPM assumes the default values shown within square
brackets. All numbers are in Hexadecimal. To change a
parameter, enter the parameter name followed by "=" and
the new value. Type <er> (carriage return) to enter the
assignment. You can make multiple? assignments if you
separate them by a space. No spaces are allowed within
an assignment. Example:

Changes? verbose=N sysdrive=A: openmax=lA <er>

Parameter names may be shortened to the minimum
combination of letters unique to the currently displayed
menu. Example:

Changes? v=N des=A: del=Y <er>

Press RETURN to continue ...

Figure 2-2. GENCCPM Help Function Screen 1

2-3

Concurrent CP/M System Guide 2.2 GENCCPM Main Menu

Sub-menus (the last few options) are accessed by typing
the sub-menu name followed by <er>. You may enter
multiple sub- menus, in which case each sub-menu will be
displayed in order. Example:

Changes? help sysparams rsps <er>

Enter <er> alone to exit a menu, or a parameter name, "="
and the new value to assign a parameter. Multiple
assignments may be entered, as in response to the Main
Menu prompt.

Press RETURN to continue.

Figure 2-3. GENCCPM Help Function Screen 2

Table 2-1 describes the remaining GENCCPM Main Menu options.

Option

VERBOSE

DESTDRIVE

DELETESYS

SYSPARAMS

Table 2-1. GENCCPM Main Menu Options

I Explanation

The GENCCPM program messages are normally
verbose. However, experienced operators
might want to limit them in the interest
of efficiency. Setting VERBOSE to N
(no) limits the length of GENCCPM
messages to the absolute minimum.

The drive upon which the generated
CCPM.SYS file is to reside. If no
destination drive is specified, GENCCPM
assumes the currently logged drive as
the default.

Delete, instead of rename, old CCPM.SYS
file. Normally, GENCCPM renames the
previous system file to CCPM.OLD before
building the new system image. By
specifying DELETESYS=Y, you cause
GENCCPM to delete the old file instead.
This is useful when disk space is
limited.

Typing SYSPARAMS <er> displays the
GENCCPM System Parameter Menu. See
Figure 2-4 and accompanying text.

2-4

Concurrent CP/M System Guide 2.2 GENCCPM Main Menu

Option 1
MEMORY

DISKBUFFERS

OS LABEL

RSPS

GEN SYS

Table 2-1. (continued)

Explanation

Typing MEMORY <er> displays the GENCCPM
Memory Partition Menu. See Figure 2-5
and accompanying text.

Typing DISKBUFFERS <er> displays the
GENCCPM Disk Buffer Allocation Menu.
See Figure 2-7 and accompanying text.

Typing OSLABEL <er> displays the GENCCPM
Operating System Label Menu. See Figure
2-8 and accompanying text.

Typing RSPS <er> displays the GENCCPM RSP
List Menu. See Figure 2-6 and
accompanying text.

Typing GENSYS <er> initiates the
GENeration of the SYStem file. When
using an input file to specify system
parameters, and the GENSYS command is
not the last line in the input file,
GENCCPM goes into interactive mode and
prompts you for any additional changes.
See Section 2.9, "GENCCPM Input Files,"
for more information.

Note: To create the CCPM.SYS file you must type in the GENSYS
command, or include it in the GENCCPM input file.

2.3 System Parameters Menu

The GENCMD System Parameters Menu is shown in Figure 2-3. You
access this menu by typing SYSPARAMS in response to the Main Menu.

Note: All GENCCPM parameter values are in hexadecimal.

2-5

Concurrent CP/M System Guide 2.3 System Parameters Menu

Display/Change System Parameters Menu

sysdrive
tmpdrive

cmdlogging
compatmode

memmax
openmax
lockmax

osstart
nopenfiles

npdescs
nqcbs

qbufsize
nf lags

Changes?

[B:]
[B:]
[N]
[Y]
[4000]
[20]
[20]

[1008]
[40]
[14]
[20]
[400]
[20]

System Drive
Temporary File Drive
Command Day/File Logging at Console
CP/M FCB Compatibility Mode
Maximum Memory per Process (paragraphs)
Open Files per Process Maximum
Locked Records per Process Maximum

Starting Paragraph of Operating System
Number of Open File and Locked Record Entries
Number of Process Descriptors
Number of Queue Control Blocks
Queue Buffer Total Size in bytes
Number of System Flags

Figure 2-4. GENCCPM System Parameters Menu.

Table 2-2. System Parameters Menu Options

Option l
SYS DRIVE

TMPDRIVE

Explanation

The system drive where Concurrent CP/M
looks for a transient program when it is
not found on the current default drive.
All the commonly used transient
processes can thus be placed on one disk
under user Number O and are not needed
on every drive and user number. See the
Concurrent CP/M Operating System User's
Guide for information on how the
operating system performs file searches.

The drive entered here is used as the
drive for temporary disk files. This
entry can be accessed in the System Data
Segment by application programs as the
drive on which to create temporary
files. The temporary drive should be
the fastest drive in the system, for
example, the Memory Disk, if
implemented.

2-6

Concurrent CP/M System Guide 2.3 System Parameters Menu

Option l
CMDLOGGING

COMPATMODE

MEMMAX

OPENMAX

LOCKMAX

Table 2-2. {continued)

Explanation

Entering the response [Y] causes the
generated Concurrent CP/M Command Line
Interpreter (CLI) to display the current
time and how the command will be
executed.

CP/M® FCB Compatibility Mode [Y]. When
the default value [Y] is set, the
operating system recognizes the
compatibility attributes. Setting this
parameter to [NJ makes the generated
system ignore the compatibility
attributes. See the Concurrent CP/M
Operating System Programmer's Reference
Guide, Section 2.12, "Compatibility
Attributes," for more information on
this feature.

Maximum Paragraphs Per Process [4000]. A
process may make Concurrent CP/M memory
allocations. This parameter puts an
upper limit on how much memory any one
process can obtain. The default shown
here is 256K (40000H) bytes.

Maximum Open Files per Process [20].
This parameter specifies the maximum
number of files that a single process,
usually one program, can open at any
given time. This number can range from
0 to 255 (OFFH) and must be less than or
equal to the total open files and locked
records for the system. See the
explanation of the NOPENFILES parameter
below.

Maximum Locked Records per Process [20].
This parameter specifies the maximum
number of records that a single process,
usually one program, can lock at any
given time. This number can range from
0 to 255 (OFFH) and must be less than or
equal to the total open files and locked
records for the system. See the
explanation of the NOPENFILES parameter
in the SYSPARAMS Menu.

2-7

Concurrent CP/M System Guide 2.3 System Parameters Menu

Option I
OS START

NOPENFILES

Table 2-2. (continued)

Explanation

Starting Paragraph of the operating
system [1008]. The starting paragraph
is where the CCPMLDR is to put the
operating system. Code execution starts
here, with the CS register set to this
value and the IP register set to O. The
Data Segment Register is set to the
SYSDAT segment address. When first
bringing up and 'debugging Concurrent
CP/M under CP/M-86, the answer to this
question should be 8 plus where DDT-86
running under CP/M-86 reads in the file
using the R command. The DOTS 6 R
command also can be used to read the
CCPM.SYS file to a specific memory
location. After debugging the system,
you might want to relocate it to an
address more appropriate to your
hardware configuration. This location
naturally depends on where the Boot
Sector and Loader are placed, anil how

much RAM is used by ROM monitor or
memory-mapped I/O devices.

Total Open Files in System [40]. This
parameter specifies the total size of
the System Lock List, which includes the
total number of open disk files plus the
total number of locked records for all
the processes executing under Concurrent
CP/M at any given time. This number
must be greater than or equal to the
maximum open files per process (the
OPENMAX parameter above) and the maximum
locked records per process (the LOCKMAX
parameter above). It is possible either
to allow each process to use up the
total System Lock List space, or to
allow each process to only open a
fraction of the system total. The first
technique implies a situation where one
process can forcibly block others
because it has consumed all the
available Lock list items.

2-8

Concurrent CP/M System Guide 2.3 System Parameters Menu

Option l
NPDESCS

NQCBS

QBUFSIZE

NF LAGS

Table 2-2. (continued)

Explanation

Number Of Process Descriptors [14]. For
each memory par ti ti on, at least one
transient program can be loaded and run.
If transient programs create child
processes, or if RSPs extend past 64K
from the beginning of SYSDAT, extra
Process Descriptors are needed. When
first bringing up and debugging
Concurrent CP/M, the default for this
parameter suffices. After the debug
phase, during system tuning, you can use
the Concurrent CP/M SYSTAT Utility to
monitor the number of processes and
queues in use by the system at any time.

Number Of Queue Control Blocks [20] • The
number of Queue Control Blocks should be
the maximum number of queues that may be
created by transient programs or RSPs
outside of 64k from SYSDAT. The default
value suffices during initial system
debugging.

Size Of Queue Buffer Area in Bytes [4001.
The Queue Buffer Area is space reserved
for Queue Buffers. The size of the
buffer area required for a particular
queue is the message length times the
number of messages. The Queue Buffer
Area should be the anticipated maximum
that transient programs will need.
Again, the default value will be
adequate for initial system debugging.
Note that the Queue Buffer Area can be
large enough (up to OFFFFH) to extend
past the SYSDAT 64K boundary.

Size of the flag table [20]. Flags are
three-byte semaphores used by interrupt
routines. The number of flags needed
depends on the design of the XIOS. More
information on using flags for interrupt
devices can be found in Section 3 under
"Interrupt Devices". See also the
Concurrent CP/M Operating System
Programmer's Guide on Dev_flagset,
Dev_flagwt.

2-9

Concurrent CP/M System Guide 2.4 Memory Allocation Menu

2.4 Memory Allocation Menu

The Memory Allocation Partitions Menu, shown in Figure 2-5, is an
interactive menu. When the menu is first displayed, it lists the
current memory partitions. If none have been specified, the list
field is blank. Following the list is the menu of options
available. You may choose either to ADD to the list of partitions,
or to DELETE one or more partitions. Partition assignments must be
made by specifying either ADD or DELETE, followed by an equal sign,
the starting address and last address of the memory region to be
partitioned, and the size, in paragraphs, of each partition. All
values must be in hexadecimal notation and separated by commas. An
asterisk can be used to delete all memory partitions. The Start and
Last values are paragraph addresses; multiply them by 16 (lOH) to
obtain absolute addresses. Similarly, partition sizes are in
paragraphs; multiply by 16 (lOH) to obtain size in bytes.

In the example below, all default memory partitions are first
deleted (DELETE=*). Then two kinds of memory partitions are added
to the list: 16K (4000h) partitions from address 2400:0 to 4000:0,
and 32K (8000h) partitions from 4000:0 to 6000:0.

1.

!1 .. ddresses
Start
400h

Last
6000h

Partitions (in paragraphs)
Size
400h

Qty
17h

Display/Change Memory Allocation Partitions
add ADD memory partition(s)

delete DELETE memory partition(s)

Changes? delete=* add=2400,4000,400 add=4000,6000,800

1.
2.

Addressel:l
Start Last
2400h 4000h
4000h 6000h

Partitions
Size Qty
400h 7h
800h 4h

Display/Change Memory Allocation Partitions
add ADD memory partition(s)

delete DELETE memory partition(s)

Changes? <er>

Figure 2-5. GENCCPM Memory Allocation Sample Session

2-10

Concurrent CP/M System Guide 2.4 Memory Allocation Menu

Memory partitions are highly dependent on the particular hardware
environment. Therefore, you should carefully examine the defaults
that are given, and change them if they are inappropriate. The
memory partitions cannot overlap, nor can they overlap the operating
system area. GENCCPM checks and trims memory partitions that
overlap the operating system but does not check for partitions that
refer to nonexistent system memory. GENCCPM does not size existing
memory because the hardware on which it is running might be
different from the target Concurrent CP/M machine {this might be
done by the XIOS at initialization time). Error messages are
displayed in case of overlapping or incorrectly sized partitions,
but GENCCPM does not automatically trim overlapping memory
partitions. GENCCPM does not allow you to exit the Main Menu or the
Memory Allocation Menu if the memory partition list is not valid.

The nature of your application dictates how you should specify the
partition boundaries in your system. The system never divides a
single partition among unrelated programs. If any given memory
request requires a memory segment that is larger than the available
partitions, the system concatenates adjoining partitions to form a
single contiguous area of memory. The MEM module algorithm that
determines the best fit for a given memory allocation request takes
into account the number of partitions that will be used and the
amount of unused space that will be left in the memory region. This
allows you to evaluate the tradeoffs between memory allocation
boundary conditions causing internal versus external memory
fragmentation, as described below.

External memory fragmentation occurs when memory is allocated in
small amounts. This can lead to a situation where there is plenty
of memory but no contiguous area large enough to load a large
program. Internal fragmentation occurs when memory is divided into
large partitions, and loading a small program leaves large amounts
of unused memory in the partition. In this case, a large program
can always load if a partition is available, but the unused areas
within the large partitions cannot be used to load small programs if
all partitions are allocated.

When running GENCCPM you can specify a few large partitions, many
small partitions, or any combination of the two. If a particular
environment requires running many small programs frequently and
large programs only occasionally, memory should be divided into
small partitions. This simulates dynamic memory management as the
partitions become smaller. Large programs are able to load as long
as memory has not become too fragmented. If the environment
consists of running mostly large programs or if the programs are run
serially, the large-partition model should be used. The choice is
not trivial and might require some experimentation before a
satisfactory compromise is attained. Typical solutions divide
memory into 4K to 16K partitions.

2-11

Concurrent CP/M System Guide 2.5 GENCCPM RSP List Menu

2.5 GENCCPM RSP List Menu

The GENCCPM RSP (Resident System Process) List Menu is shown in
Figure 2-6. The example session illustrates excluding ABORT.RSP and
MY.RSP from the list of RSPs to be included in the system.

RSPs to be included are:

PIN.RSP
VOUT.RSP

Display/Change RSP List

DIR.RSP
CLOCK.RSP

include
exclude

Include RSPs
Exclude RSPs

Changes?~exclude=abort.rsp,my.rsp

RSPs to be included are:

PIN .RSP
TMP.RSP

Changes? <er>

DIR.RSP

ABORT.RSP
MY.RSP

VOUT.RSP

TMP.RSP

CLOCK.RSP

Figure 2-6. GENCCPM RSP List Menu Sample Session

The GENCCPM RSP List Menu first reads the directory of the current
default disk and lists all .RSP files present. Responding to the
GENCCPM prompt Changes? with either an include or exclude command
edits the list of RSPs to be made part of the operating system at
system generation time. The wildcard (*:) file specification can be
used with the include command to automatically include all .RSP
files on the disk.

Note: The PIN, VOUT, and CLOCK RSPs must be included for Concurrent
CP/M to run.

2-12

Concurrent CP/M System Guide 2.6 GENCCPM OSLABEL Menu

2.6 GENCCPM OSLABEL Menu

If you type OSLABEL in response to the main menu prompt, as shown in
this example:

Changes? OSLABEL

the following screen menu appears on your screen:

Display/Change Operating System Label
Current message is:
<null>

Add lines to message. Terminate by entering only RETURN:

Figure 2-7. GENCCPM Operating System Label Menu

You can type any message at this point. This message is printed on
each virtual console when the system boots up. Note that if the
message contains a $, GENCCPM accepts it, but it causes the
operating system to terminate the message when it is being printed.
This is because the operating system uses the C WRITESTR function to
print the message, and $ is the default message terminator.

The XIOS might also print its own sign-on message during the INIT
routine. In this case, the XIOS message appears before the message
specified in the GENCCPM OSLABEL Menu.

2.7 GENCCPM Disk Buffering Menu

Typing DISKBUFFERS in response to the main menu prompt displays the
GENCCPM Disk Buffering Menu. Figure 2-8 shows a sample session:

2-13

Concurrent CP/M System Guide 2.7 GENCCPM Buffering Menu

Drv

A:
B:
C:
D:
E:

*** Disk Buffering Information ***
Dir Max/Proc Data Max/Proc Hash
Bufs Dir Bufs Bufs Dat Bufs -ing

?? 0 ??
?? 0 ??
?? 0 ??
?? 0 ??
?? 0 ??

0
0
0
0
0

yes
yes
yes
yes
yes

Specified
Buf Pgphs

??
??
??
??
??

M: ?? 0 fixed
Total paragraphs allocated to

Drive (<er> to exit) ? a:

?? fixed
buffers: 0

Number of directory buffers, or drive to share with? 8
Maximum directory buffers per process [8] ? 4
Number of data buffers, or drive to share with? 4
Maximum data buffers per process [4]? 2
Hashing [yes] ? <er>

Orv

*** Disk Buffering Information ***
Dir Max/Proc Data Max/Proc Hash
Bufs Dir Bufs Bufs Oat Bufs -ing

A: 8 4 4
B: ?? 0 ??
c: ?? 0 ??
D: ?? 0 ??
E: ?? 0 ??
M: ?? 0 fixed

2
0
0
0
0

Total paragraphs allocated to buffers:
Drive (<er> to exit) ? *:

yes
yes
yes
yes
yes

fixed
200

Specified
Buf Pgphs

200
??
??
??
??
??

Number of directory buffers, or drive to share with? a:
Number of data buffers, or drive to share with? a:
Hashing [yes] ? <er>

*** Disk Buffering Information ***
Dir Max/Proc Data Max/Proc Hash Specified

Orv Buf s Dir Buf s Bufs Dat Buf s -ing Buf Pgphs
======== ======== =========

A: 8 4 4 2 yes 200
B: shares A: shares A: yes 80
C: shares A: shares A: yes 20
D: shares A: shares A: yes 18
E: shares A: shares A: yes 10
M: shares A: fixed fixed 0

Total paragraphs allocated to buffers: 2C8

Drive (<er> to exit) ? <er>

Figure 2-8. GENCCPM Disk Buffering Sample Session

2-14

Concurrent CP/M System Guide 2.7 GENCCPM Buffering Menu

In the sample session shown in Figure 2-8, GENCCPM is reading the
DPH addresses from the XIOS Header, and calculating the buffer
parameters based upon the data in the DPHs and the answers to its
questions. GENCCPM only asks questions for the relevant fields in
the DPH that you have marked with OFFFFh values. See Section 5.4,
"Disk Parameter Header," for a detailed explanation of DPH fields
and GENCCPM table generation. An asterisk can be used to specify
all drives, in which case GENCCPM applies your answers to the
following questions to all unconfigured drives.

Note that GENCCPM prints out how many bytes of memory must be
allocated to implement your disk buffering requests. You should be
aware that disk buffering decisions can significantly impact the
performance and efficiency of the system being generated. If
minimizing the amount of memory occupied by the system is an
important consideration, you can use the Disk Buffering Menu to
specify a minimal disk buffer space. We have found, however, that
the amount of Directory Hashing space allocated has the most impact
on system performance, followed by the amount of Directory Buffer
space allocated. As with the trade-offs in memory partition
allocation discussed above, deciding on the proper ratio of
operating system space to performance requires some experimentation.

Note also that if DOS media is supported, directory hashing space
must be allocated for the DOS file allocation table (FAT). See
Section 5.5.l for information on allocating enough space for the FAT
and the hash table.

GENCCPM checks to see that the relevant fields in the DPHs are no
longer set to OFFFFH. GENCCPM does not allow you to exit from the
Main Menu until these fields have been set using the Disk Buffering
Menu.

2.8 GENCCPM GENSYS Option

Finally, specifying the GENSYS option in answer to the main menu
prompt causes GENCCPM to generate the system image on the specified
destination disk drive. During the actual system generation, the
following messages print out on the screen:

2-15

Concurrent CP/M System Guide 2.8 GENCCPM GENSYS Option

Generating new SYS file
Generating tables
Appending RSPs to system file
Doing Fixups
SYS image load map:

Code starts at GGGGh
Data starts at HHHHh

Tables start at IIIIh
RSPs start at JJJJh

XIOS Buffers start at KKKKh
End of OS at LLLLh

Trimming memory partitions. New List:

* 1.
2.

Addresses
(in Paragraphs)
Start Last
AAAAh BBBBh
MMMMh NNNNh

Wrappinq up

A>

Partitions
Size How

(Paras.) Many
XXXXh Yh
QQQQh Vh

(only if
necessary)

I
v

Figure 2-9. GENCCPM System Generation Messages

2.9 GENCCPM Input Files

GENCCPM allows you to input all system generation commands from an
input file. You can also redirect the console output to a disk
file. You use these GENCCPM features by invoking it with command of
the form:

GENCCPM <filein >fileout

where filein is the name of the GENCCPM input file. Note that no
spaces can intervene between the greater-than or less-than sign and
the file specification. If this condition is not met, GENCCPM
responds with the message:

REDIRECTION ERROR

The format of the input file is similar to a SUBMIT file; each
command is entered on a separate 1 ine, followed by a carriage
return, exactly in the order required during a manually operated
GENCCPM session. The last command can be followed by a carriage
return and the command:

A>GENSYS

2-16

Concurrent CP/M System Guide 2.9 GENCCPM Input Files

to end the command sequence and generate the system. If the GENSYS
command is not present, GENCCPM queries the console for changes.

The following example illustrates the use of the GENCCPM input file.
Assuming that the input file file specification is GENCCPM.IN, use
the following command to invoke GENCCPM:

A>GENCCPM <GENCCPM.IN

Figure 2-10 shows a typical GENCCPM command file:

VERBOSE=N DESTDRIVE=D:
SYSPARAMS
OSSTART=4000 NPDESCS=20 QBUFSIZE=4FF TMPDRIVE=A: CMDLOGGING=Y
<er>
MEMORY
DELETE=* ADD=2400,4000,400 ADD=4000,6000,800
<er>
DISKBUFFERS
A:
8
4
4

hashing
*:
A:
A:
hashing
<er>
OS LABEL

for all remaining drive questions
share directory buffers with A:
share data buffers with A:
hashing on all drives

Concurrent CP/M Version 1.21 04/15/83
Hardware Configuration:

<er>

A: 10 MB Hard Disk
B: 5 MB Hard Disk
C: Single-density Floppy
D: Double-density Floppy
M: Memory Disk

GENSYS <er> <------- Only if you do not want to be able
to specify additional changes

Figure 2-10. Typical GENCCPM Command File

After reading in the command file and optionally accepting any
additional changes you want to make, GENCCPM builds a system image
in the CCPM.SYS file in the manner described in Section 2.1.

End of Section 2

2-17

Section 3
XIOS Overview

Concurrent CP/M Version 3.1, as implemented with one of the example
XlOS's discussed in Section 3.1, is configured for operation with
the Compu-Pro with at least two 8-inch floppy disk drives and at
least 128K of RAM. All hardware dependencies are concentrated in
subroutines collectively referred to as the Extended Input/Output
System, or XIOS. You can modify these subroutines to tailor the
system to almost any 8086 or 8088 disk-based operating environment.
This section provides an overview of the XIOS, and variables and
tables referenced within the XIOS.

The following material assumes that you are familiar with the CP/M-
86 BIOS. To use this material fully, refer frequently to the
example XlOS's found in source code form on the Concurrent CP/M
distribution disk.

Note: Programs that depend upon the interface to the XIOS must
check the version number of the operating system before trying
direct access to the XIOS. Future versions of Concurrent CP/M can
have different XIOS interfaces, includinq chanqes to XIOS function
numbers and/or parameters passed to XIOS routines.

The XIOS must fit within the 64K System Data Segment along with
the SYSDAT and Table Area. Concurrent CP /M accesses the XIOS
through the two entry points INIT and ENTRY at offset OCOOH and
OC03H, respectively, in the System Data Segment. The INIT entry
point is for system hardware initialization only. The ENTRY entry
point is for all other XIOS functions. Because all operating system
routines use a Call Far instruction to access the XIOS through these
two entry points, the XIOS function routines must end with a Return
Far instruction. Subsequent sections describe the XIOS entry points
and other fixed data fields.

3.1 XIOS Header

The XIOS Header contains variables that GENCCPM uses when
constructing the CCPM.SYS file and that the operating system uses
when executing. Figure 3-1 illustrates the XIOS header.

3-1

Concurrent CP/M System Guide 3.1 XIOS Header

COOH JMP INIT I JMP ENTRY SYS DAT
..1. ..L

C08H SUPERVISOR TICK TICKS DOOR RESER-
SEC VED

i _j_ -
Cl OH NPCNS l NVCNS NCCB l NLCB CCB LCB

i ..L

Cl8H DPH(A) DPH(B) DPH(C) DPH(D)

C20H DPH(E) DPH(F) DPH(G) DPH(H)
.J.

C28H DPH(I) DPH(J) DPH{K) DPH(L)
..L

C30H DPH(M) DPH(N) DPH(O) DPH(P)

C38H ALLOC

Figure 3-1. XIOS Header

Table 3-1. XIOS Header Data Fields

Data Field I
JMP INIT

JMP ENTRY

Explanation

XIOS Initialization Point. At system boot, the
Supervisor module executes a CALL FAR
instruction to this location in the XIOS (XIOS
Code Segment: OCOOH). This call transfers
control to the XIOS INIT routine, which
initializes the XIOS and hardware, then
executes a RETURN FAR instruction. The JMP
INIT instruction must be present in the
XIOS.A86 file. For details of the INIT routine
see Section 3.2, "INIT Entry Point."

XIOS En try Point. All access to the XIOS
functions goes through the XIOS Entry Point.
The operating system executes a far call
(CALLF) to this location in the XIOS (XIOS Code
Segment: OC03H) whenever I/O is needed. This
instruction transfers control to the XIOS ENTRY
routine which calls the appropriate function
within the XIOS. Once the function is
complete, the ENTRY routine executes a return
far (RETF) to the operating system. The RETF
instruction must be present in the XIOS.A86
file. For details of the ENTRY routine, see
Section 3. 3, "XIOS ENTRY."

3-2

Concurrent CP/M System Guide 3.1 XIOS Header

Data Field I
SYSDAT

SUPERVISOR

Table 3-1. (continued)

Explanation

The segment address of SYSDAT. It is in the
Code Segment of the XIOS to allow access to
data in SYSDAT while in interrupt routines and
other areas of code where the Data Segment is
unknown. For example, the following routine
accesses the current process's Process
Descriptor:

DSEG
ORG 68H

RLR RW 1

CSEG

PUSH DS

MOV DS,CS:SYSDAT

MOV BX,RLR

POP DS

point to RLR field
of SYSDAT
does not generate
a hex value
of XIOS

Save XIOS Data
Segment
Move the SYSDAT
segment address
into DS
Move the current
process's PD
Address into BX
and perform
operation. (See
Fig 1-5 for expla­
nation of RLR)
Restore the XIOS
Data Segment

This variable is initialized by GENCCPM.

FAR Address (double-word pointer) of the
Supervisor Module entry point. Whenever the
XIOS makes a system call, it must access the
operating system through this entry point.
GENCCPM initializes this field. Section 3.8,
"XIOS System Calls", describes XIOS register
usage and restrictions.

3-3

Concurrent CP/M System Guide 3.1 XIOS Header

Data Field J
TICK

TICKS SEC

DOOR

NP CNS

NVCNS

Table 3-1. (continued)

Explanation

Set Tick Flag Boolean. The Timer Interrupt
routine uses this variable to determine whether
the DEV SETFLAG system call should be called to
set the-TICK FLAG. Initialize this variable to
zero (OOH) in the XIOS.CON file. Concurrent
CP/M sets this field to OFFH whenever a
process is delaying. The field is reset to
zero (OOH) when all processes finish delaying.
See the Concurrent CP/M Operating System
Programmer's Reference Guide for details on the
DEV SET FLAG and P DELAY system calls. See
Section 7 of this manual, "XIOS TICK Interrupt
Routine," for more information on the XIOS
usage of TICK.

Number of Ticks per Second. This field must be
initialized in the XIOS .CON file to be the
number of ticks that make up one second as
implemented by this XIOS. GENCCPM copies this
field into the SYSDAT DATA. Application
programmers can use TICKS_SEC to determine how
many ticks to delay in order to delay one
second. See Section 7, "XIOS TICK Interrupt
Routine," for more information.

Global Door Open Interrupt Flag. This field
must be set to OFFH by the drive door open
interrupt handler routine if the XIOS detects
that any drive door has been opened. The BDOS
checks this field before every disk operation
to verify that the media is unchanged. If a
door has been opened, the XIOS must also set
the Media Flag in the DPH associated with the
drive.

Number of Physical Consoles. Initialize this
field to the number of physical consoles, or
user terminals connected to the system. This
number does not include extra I/O devices.
GENCCPM uses this value, and creates a PIN
process for each physical console. It also
copies NPCNS into the XPCNS field of the SYSDAT
DATA.

Number of Virtual Consoles. Initialize this
field to the number of virtual consoles
supported by the XIOS in the XIOS.CON file.
GENCCPM creates a TMP and a VOUT process for
each virtual console. GENCCPM copies NVCNS
into the NVCNS field of the SYSDAT DATA.

3-4

Concurrent CP/M System Guide 3.1 XIOS Header

Data Field l
NCCB

NLCB

CCB

LCB

Table 3-1. (continued)

Explanation

Number of Logical Consoles. Initialize this
field to the number of virtual consoles plus
the number of character I/O devices supported
by the XIOS. Character I/O devices are devices
accessed through the console system calls of
Concurrent CP/M (functions whose mnemonic
begins with C) but whose console numbers are
beyond the range of the virtual consoles.
Application programs access the character I/O
devices by setting their default console number
to the character I/O device's console number
and using the regular console system calls of
Concurrent CP/M. See the C SET system call as
described in the Concurrent CP/M Operat~
System Programmer's Reference Guide. GENCCPM
copies this field into the NCCB field of the
SYSDAT DATA.

Number of List Control Blocks. Initialize this
field in the XIOS.CON file to equal the number
of list devices supported by the XIOS. A list
device is an output-only device, typically a
printer. GENCCPM copies this field into Lhe
NLCB field of the SYSDAT DA'rA.

Offset of the Console Control Block Table.
Initialize this field in the XIOS.CON file to
be the address of the CCB 'rable in the XIOS. A
CCB Entry in the Table must exist for each of
the consoles indicated in NCCB. Each entry in
the CCB Table must be initialized as described
in Section 4.1, "Console Control Block".
GENCCPM copies this field into the CCB field of
the SYSDAT DATA.

Offset of the List Control Block. This field is
initialized in the XIOS .CON file to be the
address of the LCB Table in the XIOS. There
must be an LCB Entry for each of the list
devices indicated in NLST. Each entry must be
initialized as described in Section 4.3, "List
Device Functions." GENCCPM copies this field
into the LCB field of the SYSDAT DATA.

3-5

Concurrent CP/M System Guide 3.1 XIOS Header

Data Field l
DPH(A)-DPH(P)

ALLOC

Table 3-1. (continued)

Explanation

Offset of initial Disk Parameter Header (DPH)
for drives A through P, respectively. If the
value of this field is OOOOH, the drive is not
supported by the XIOS. GENCCPM uses the DPH
Table to initialize specific fields in the DPHs
when it automatically creates BCBs and buffers.
If the relevant DPH fields are not initialized
to OFFFFH, GENCCPM assumes. the BCBs and buffers
are defined by data already initialized in the
XIOS.

This value is initialized in the XIOS to the
size, in paragraphs, of an uninitialized RAM
buffer area to be reserved for the XIOS by
GENCCPM. When GENCCPM creates the CCPM. SYS
image, it sets this field in the CCPM.SYS file
to the starting paragraph (segment value) of
the XIOS uninitialized buffer area. This value
may then be used by the XIOS for based or
indexed addressing into the buffer area.
Typically; the XIOS uses this buffer area for
the virtual console screen maps, programmable
function key buffers, and nondisk-related I/O
buffering. GENCCPM allocates this
uninitialized RAM immediately following the
system image and any system disk data or
directory hashing buffers. Because the XIOS
buffer area is not included in the CCPM.SYS
file, it can be of any desired size without
affecting system load time performance. If the
ALLOC field is initialized to zero in the
XIOS.CON file, GENCCPM allocates no buffer RAM
and leaves ALLOC set to zero in the system
image.

3-6

Concurrent CP/M System Guide 3.1 XIOS Header

Listing 3-1 illustrates the XIOS Header definition:

;**
; *
;* XIOS Header Definition
; *
;**

CSEG
org OCOOh

jmp init
jmp entry

sysdat
supervisor

DSEG
org

tick
ticks sec
door

rsvd

npcns
nvcns
nccb
nlst

ccb
lcb

dph_tbl

alloc

dw
rw

OCOCh

db
db
db

db

db
db
db
db

dw
dw

dw
dw
dw
dw
dw
dw
dw
dw
dw

;system initialization
;xios entry point

0 ;Sysdat Segment
2

false
60
0

0

4
8
8
1

offset ccbO
offset lcbO

;disk parameter

offset dphO
offset dphl
0,0,0
0,0,0
0,0,0
0
offset dph2
0,0,0
0

;tick enable flag
;# of ticks per second
;global drive door open

interrupt flag
;reserved for operating
;system use

;number of physical consoles
;number of virtual consoles
;total number of ccbs
;number of list devices

;offset of the first ccb
;offset of first lcb

header offset table

;drive A:
; B:
;C:,D:,E:
;F:,G:,H:
; I: ,J: ,K:
;L:
; M:
;N:,O:,P:

;---

Listing 3-1. XIOS Header Definition

3-7

Concurrent CP/M System Guide 3.2 !NIT Entry Point

3.2 INIT Entry Point

The XIOS initialization routine entry point, !NIT, is at offset
OCOOH from the beginning of the XIOS code module. The !NIT process
calls the XIOS Initialization routine during system initialization.
The sequence of events from the time CCPM.SYS is loaded into memory
until the RSPs are created is important for understanding and
debugging the XIOS.

The loader loads CCPM.SYS into memory at the absolute Code Segment
location contained in the CCPM.SYS file Header, and initializes the
CS and DS registers to the Supervisor code segment and the SYSDAT,
respectively. At this point, the loader executes a JMPF to offset O
of the CCPM.SYS code and begins the initialization code of the
Concurrent CP/M SUP module as described below. When loading
CCPM.SYS under DDT-86 or SID-86, use the R command and set the code
and data segments manually before beginning execution. You cannot
use the E command because it initializes the data segment base page
to incorrect values. See Section 8, "Debugging the XIOS."

1. The first step of initialization in the SUP is to set up the
!NIT process. The !NIT process performs the rest of system
initialization at a priority equal to 1.

2. 'I'he !NIT process calls the initialization routines of each of
the other modules with a Far Call instruction. The first
instruction of each code module is assumed to be a JMP
instruction to its initialization routine. The XIOS
initialization routine is the last of these modules called.
Once this call is made, the XIOS initialization code is never
used again. Thus, it can be located in a directory buffer or
other uninitialized data area.

3. As shown in the example XIOS listing, the initialization
routine must initialize all hardware and interrupt vectors.
Interrupt 224 is saved by the SUP module and restored upon
return from the XIOS. Because DDT-86 uses interrupts 1, 3, and
225, do not initialize them when debugging the XIOS with DDT-86
running under CP/M-86. On each context switch, interrupt
vectors 0, 1, 3, 4, 224, and 225 are saved and restored as part
of a process's environment.

4. The XIOS initialization routine can optionally print a message
to the console before it executes a Far Return (RETF)
instruction upon completion. Note that each TMP prints out the
string addressed by the VERSION variable in the SYSDAT DATA.
This string can be changed using the OSLABEL Menu in GENCCPM.

5. Upon return from the XIOS, the SUP Initialization routine,
running under the !NIT process, creates some queues and starts
up the RSPs. Once this is done, the !NIT process terminates.

3-8

Concurrent CP/M System Guide 3.2 !NIT Entry Point

The XIOS !NIT routine should initialize all unused interrupts to
vector to an interrupt trap routine that prevents spurious
interrupts from vectoring to an unknown location. The example XIOS
handles uninitialized interrupts by printing the name of the process
that caused the interrupt followed by an uninitialized interrupt
error message. Then the interrupting process is unconditionally
terminated.

Concurrent CP/M saves Interrupt Vector 224 prior to system
initialization and restores it following execution of the XIOS !NIT
routine. However, it does not store or alter the Non-Maskable
Interrupt (NMI) vector, INT 2. Setting NMI is also the
responsibility of the XIOS. The example XIOS first initializes all
the Interrupt Vectors to the uninitialized interrupt trap, then
initializes specifically used interrupts.

Note: When debugging the XIOS with DDT-86 running under CP/M-86,
do not initialize Interrupt Vectors 1, 3, and 225. The example
XIOS's have a debug flag that is tested by the !NIT routine for this
purpose.

3.3 XIOS ENTRY

All accesses to the XIOS after initialization go through the ENTRY
routine. The entry point for this routine is at offset OC03H from
the beginning of the XIOS code module. The operating system
accesses the ENTRY routine with a Far Call to the location offset
OC03H bytes from the beginning of the SYSDAT Segment. When the XIOS
function is complete, the ENTRY routine returns by executing a Far
Return instruction, as in the example XIOS's. On entry, the AL
register contains the function number of the routine being accessed,
and registers CX and DX contain arguments passed to that routine.
The XIOS must maintain all segment registers through the call. This
means that the CS, DS, ES, SS, and SP registers are maintained by
the functions being called.

3-9

Concurrent CP/M System Guide

Table 3-2. XIOS Register Usage

Registers on Entry

AL function number
BX PC-MODE parameter
ex tirst parameter
DX second parameter
DS SYSDAT segment
ES User Data Area

3.3 XIOS ENTRY

AH, SI, DI, BP, DX, ex are undefined

Registers on Return

AX return or XIOS error code
BX AX
DS SYSDAT segment
ES User Data Area
SI, DI, BP, DX, ex are undefined

All XIOS functions, with the exception of disk functions, use the
register conventions shown above.

The segment registers (DS and ES) must be preserved through the
ENTRY routine. However, when calling the SUP from within the XIOS,
the ES Register must equal the UDA of the running process and DS
must equal the System Data Segment. Thus, if the XIOS is going to
perform a string move or other code using the ES Register, it must
preserve ES using the stack as in the following example:

push es
mov es,segment address

rep movsw

pop es

In the example XIOS's, the XIOS function routines are accessed
through a function table with the function number being the actual
table entry. Table 3-3 lists the XIOS function numbers and the
corresponding XIOS routines; detailed explanations of the functions
appear in the referenced sections of this document. Listing 3-2 is
an example XIOS ENTRY Jump Table.

3-10

Concurrent CP/M System Guide 3.3 XIOS ENTRY

Table 3-3. XIOS Functions

Function Number I XIOS Routine

Console Functions -- Section 4.2

Function 0 IO CONST CONSOLE STATUS
Function 1 IO CONIN CONSOLE INPUT
Function 2 IO-CONOUT CONSOLE OUTPUT
Function 7 IO-SWITCH SWITCH SCREEN
Function 8 IO STATLINE DISPLAY STATUS LINE -

List Device Functions -- Section 4.3

Function 3 IO LSTST LIST STATUS
Function 4 IO-LSTOUT LIST OUTPUT -

Other Character Devices -- Section 4.4

Function 5 IO AUXIN AUXILIARY INPUT
Function 6 IO-AUXOUT AUXILIARY OUTPUT

Poll Device Function -- Section 4.5

Function 13 IO POLL POLL DEVICE -
--

____ _____,
Disk Functions -- Section 5.1

Function 9 IO SELDSK SELECT DISK
Function 10 IO-READ READ DISK
Function 11 IO-WRITE WRITE DISK
Function 12 IO-FLUSH FLUSH BUFFERS
Function 35 IO INT13 READ READ DOS DISK
Function 36 IO-INT13-WRITE WRITE DOS DISK - -

PC Mode Character Functions -- Section 6

Function 30 IO SCREEN GET/SET SCREEN
Function 31 IO-VIDEO VIDEO IO
Function 32 IO-KEYBD KEYBOARD MODE
Function 33 IO-SHPT SHIFT STATUS
Function 34 IO=EQCK EQUIPMENT CHECK

3-11

Concurrent CP/M System Guide 3. 3 XIOS ENTRY

;---
XIOS FUNCTION TABLE

·---'
functab dw io con st 0 - console status

dw io conin 1 - console input
dw io conout 2 - console output
dw io listst 3 - list status -dw io list 4 - list output
dw io auxin 5 - aux in
dw io auxout 6 - aux out
dw io switch 7 - switch screen -dw io statline 8 - display status line
dw io seldsk 9 - select disk -dw io read ;10 - read sector
dw io write ; 11 - write sector
dw io f lushbuf ;12 - flush buffer
dw ioyoll ;13 - poll device
dw io ret ;14 - dummy return
dw io ret ;15 - dummy return
dw io ret ;16 - dummy return
dw io ret ;17 - dummy return
dw io -ret ;18 - dummy return
dw io ret ;19 - dummy return
dw io ret ;20 - dummy return
dw io ret ;21 - dummy return -dw io ret - ;22 - dummy return
dw io ret ;23 - dummy return
dw io ret ;24 - dummy return
dw io ret ;25 - dummy return -dw io ret ;26 - dummy return
dw io ret ;27 - dummy return -
dw io ret ;28 - dummy return
dw io-ret ;29 - dummy return
dw io screen ;30 - get/set screen mode
dw io video ;31 - video i/o
dw io-keybd ;32 - keyboard info
dw io-shf t ;33 - shift status
dw io-eqck ;34 - equipment check
dw io-intl3 read ;35 - read DOS disk
dw io intl3 write ;36 - write DOS disk

;---

Listing 3-2. XIOS Function Table

3-12

Concurrent CP/M System Guide 3.4 Converting CP/M-86 BIOS

3.4 Converting the CP/M-86 BIOS

The implementation of Concurrent CP/M described below assumes that
you have written and fully debugged a CP/M-86 BIOS on the target
Concurrent CP/M machine. This is desirable for the following
reasons:

• The implementation of CP/M-86 on the target Concurrent CP/M
machine greatly simplifies debugging the XIOS using DDT-86 or
SID-86.

• A CP/M-86 or a running Concurrent CP/M system is required for
the initial generation of the Concurrent CP/M system when using
GENCCPM.

• You can use the CP/M-86 BIOS as a basis for construction of the
target Concurrent CP/M XIOS.

To transform the CP/M-86 BIOS to the Concurrent CP/M XIOS, you must
make the following principal changes. Details of the changes given
in the following list can be found in the referenced sections of
this manual, and in the example XIOS's found on the Concurrent CP/M
distribution disk. Often it is easier to start with the example
Concurrent CP/M XIOS and replace lhe hardware-dependent code with
the corresponding drivers from the existing CP/M-86 BIOS. However,
there are several important changes, also outlined below, that you
must make to the CP/M-86 drivers before they work in the Concurrent
CP/M XIOS.

1. Change the BIOS Jump Table to use only the two XIOS entry
points, !NIT and ENTRY. Concurrent CP/M assumes these entry
points to be unconditional jump instructions to the
corresponding routines. The !NIT routine takes the place of
the CP/M-86 cold start entry point and is only invoked once, at
system initialization time. The ENTRY routine is the single
entry point indexing into all XIOS functions and replaces the
BIOS Jump Table. Concurrent CP/M accesses the ENTRY routine
with the XIOS function number in the AL register. The example
XIOS then uses the value in the AL register as an index into a
function table to obtain the address of the corresponding
function routine.

2. Add a SUP module interface routine to enable the XIOS to
execute Concurrent CP/M system calls. The XIOS is within the
operating system area and already uses the User Data Area
stack; therefore, the XIOS cannot make system calls in the
conventional manner. See Section 3.8, "XIOS System Calls."

3. Modify the console routines to reflect the IO CONST, IO CONIN,
IO CONOUT, IO LSTST, and IO LISTOUT specifications. Note that
the register c-onventions for Concurrent CP/M are different from
CP/M-86 and MP/M-86.

3-13

Concurrent CP/M System Guide 3.4 Converting CP/M-86 BIOS

4. Rewrite the CP/M-86 disk routines to conform to the IO SELDSK,
IO_READ, IO_WRITE, and IO_FLUSH specifications.

5. Change all polled devices to use the Concurrent CP/M DEV POLL
system call. See Sections 4.5, "IO POLL Function";-3.5,
"Polled Devices"; and Section 6 of the Concurrent CP/M
Operating System Programmer's Reference Guide.

6. Change all interrupt-driven device drivers to use the
Concurrent CP/M DEV WAITFLAG and DEV SETFLAG system calls. See
Sections 3.6, "Interrupt Devices": 7, "XIOS Tick Interrupt
Routine"; and Section 6 of the Concurrent CP/M Operating System
Programmer's Reference Guide.

7. Change the structure of the Disk Parameter Header (DPH) and
Disk Parameter Block (DPB) data structures referenced by the
XIOS disk driver routines. See Sections 5.4, "Disk Parameter
Header" and 5.5, "Disk Parameter Block."

8. Remove the Blocking/Deblocking
drivers. The Concurrent
blocking/deblocking function.
translation.

algorithms from the XIOS disk
CP /M BOOS now handles the
The XIOS still handles sector

9. Change the disk routines to reference the Input/Output
Parameter Block (IOPB) on the stack. See Section 5.2, "IOPB
Data Structure." Modify the disk driver routine to handle
multisector reads and writes.

10. Rewrite the console and list driver code to handle virtual
consoles and, possibly, multiple physical consoles. Details of
the virtual console system are given in Section 4, "Character
Devices."

11. Implement the TICK interrupt routine (see I TICK in the example
XIOS's). This routine is used for process dispatching,
maintaining the P DELAY system call, and waking up the CLOCK
process RSP. See-Section 7, "XIOS Tick Interrupt Routine."

3-14

Concurrent CP/M System Guide 3.5 Polled Devices

3.5 Polled Devices

Polled 1/0 device drivers in the CP/M-86 BIOS typically execute a
small compute-bound instruction loop waiting for a ready status from
the I/O device. This causes the driver routine to spend a
significant portion of CPU execution time looping. To allow other
processes use of the CPU resource during hardware wait periods, the
Concurrent CP/M XIOS must use a system call, DEV POLL, to place the
polling process on the Poll List. After the DEV POLL call, the
dispatcher stops the process and calls the XIOS IO POLL function
every dispatch until IO POLL indicates the hardware 1s ready. The
dispatcher then restores the polling process to execution and the
process returns from the DEV POLL call. Since the process calling
the DEV POLL function does- not remain in ready state, the CPU
resource-becomes available to other processes until the I/O hardware
is ready.

To do polling, a process executing an XIOS function calls the
Concurrent CP/M DEV POLL system call with a poll device number. The
dispatcher then calls the XIOS IO POLL function with the same poll
device number. The example XIOS uses the poll device number to
index into a table of poll routine entry points, calls the
appropriate poll function and returns the I/O device status to the
dispatcher.

3.b interrupt Oevices

As in the case of polled I/O devices, an XIOS driver handling an
interrupt-driven I/O device should not execute a wait loop or halt
instruction while waiting for an interrupt to occur.

The Concurrent CP/M XIOS handles interrupt-driven devices by using
DEV WAITFLAG and DEV SETFLAG system calls. A process that needs to
wait for an interrupt to occur makes a DEV WAITFLAG system call with
a flag number. The system stops this process until the desired XIOS
interrupt handler routine makes a DEV SETFLAG system call with the
same flag number. The waiting process then continues execution.
The interrupt handler follows the steps outlined below, executing a
far jump (JMPF) to the Dispatcher entry point. The interrupt
handler can also perform an IRET instruction when it is done.
However, jumping directly to the Dispatcher gives a little faster
response to the process waiting on the flag, and is logically
equivalent to the IRET instruction.

If interrupts are enabled within an interrupt routine, a TICK
interrupt can cause the interrupt handler to be dispatched. This
dispatch could make interrupt response time unacceptable. 'l'o avoid
this situation, do not re-enable interrupts within the interrupt
handlers or only jump to the dispatcher when not in another
interrupt handler routine.

3-15

Concurrent CP/M System's Guide 3.6 Interrupt Devices

Interrupt handlers under Concurrent CP/M differ from those in an
8080 environment due to machine architecture differences. Study the
TICK interrupt handler in the example XIOS's carefully. During
initial debugging, it is not recommended that interrupts be
implemented until after the system works in a polled environment.
An XIOS interrupt handler routine must perform the following basic
steps:

1. Do a stack switch to a local stack. The interrupted process
might not have enough stack space for a context save.

2. Save the register environment of the interrupted process, or at
least the registers that will be used by the interrupt routine.
Usually the registers are saved on the local stack established
in step (1) above.

3. Satisfy the interrupting condition. This can include resetting
the hardware and performing a DEV SETFLAG system call to notify
a process that the interrupt for which it was waiting has
occurred.

4. Restore the register environment of the interrupted process.

5. Switch back to the original stack.

6. Either a Jump Far (JMPF) to the dispatcher or an Interrupt
Return (IRET) instruction must be executed to return from the
interrupt routine. Note the above discussion on which return
method to use for different situations. Usually, when
interrupts are not re-enabled within the interrupt handler, a
Jump Far (JMPF) to the dispatcher is executed on each system
tick and after a DEV SETFLAG call is made. Otherwise, if
interrupts are re-enabled an IRET instruction is executed.

Note: DEV SETFLAG is the only Concurrent CP/M system call an
interrupt routine may call. This is because the DEV SETFLAG call is
the only system call the operating system assumes-has no process
context associated with it. DEV SETFLAG must enter the operating
system through the SUP entry point at SYSDAT:OOOOH and cannot use
INT 224.

3-16

Concurrent CP/M System Guide 3.7 8087 Exception Handler

3.7 8087 Exception Handler

The default for the Concurrent CP/M system is to provide no support
for the 8087 co processor. This section explains what must be done
to provide support for the 8087 chip. To support the 8087 the XIOS
initialization code must initialize some fields in the SYSDAT area.
The XIOS must also contain a default exception handler to handle any
interrupts fro.m the 8087. The system is structured so that a
programmer can write an individual exception handler for the 8087.

The XIOS initialization code must first check for the presence of
the 8087 chip by using the FNINIT instruction. If it is present,
the following fields in SYSDAT must be set up:

SEG_8087,0FF_8087

SYS 87 S6,
SYS-87-0F

OWNER 8087

Must be set to the segment and off set of
the 8087 interrupt vector.

Must be set to the segment and off set of
the XIOS default exception handler.

Must be set to 0 to indicate that there
is an 8087 present in the system. The
Default value is FFFFH which indicates
no 8087. FFFFH is put in this field by
the SUP initialization code.

The 8087 interrupt vector must also be set to the segment and offset
of the XIOS default exception handler.

Any exception handler for the 8087 must perform its functions in a
certain order to guarantee program integrity in a multitasking
environment. The following is an outline of the example default
8087 exception handler. See Listing 3-3 for the code of the
example.

3-17

Concurrent CP/M System Guide 3.7 8087 Exception Handler

l. Save the 8086 environment.

2. Save the 8087 environment.

3. Clear the 8087 IR (status word).

4. Disable 8087 interrupts.

5. Acknowledge the interrupt (hardware dependent).

6 Look at the owner 8087 field, and perform the desired action.
Note that 8086 interrupts are currently off. Do not perform
any action that would turn them back on yet. The default
exception handler uses the OWNER 8087 field to terminate the
process on a severe error.

7. Restore the 8086 environment.

8. Restore the 8087 environment with clear status.
enables the 8087 interrupts.

This re-

9. Execute an IRET instruction to return and re-enable the 8086
interrupts.

Lt the 8087 environment is not restored before 8086 interrupts are
enabled and an interrupt occurs (for example, TICK), a different
8087 process can gain control of the 8087 and swap in its 8087
context. On a second interrupt, or on an IRET instruction, the
8086-running process that happened to be executing the exception
handler code will be brought back into 8086 context and will write
over the new 8087 context.

All 8087 processes are initialized by the system with the address of
the default exception handler. If a process wants to use its own
exception handler, it must initially overwrite the 8087 interrupt
vector with the address of its own exception handler. On each
context switch, the 8087 interrupt vector is saved and restored as
part of the 8087 process's environment.

The hardware-dependent address of the 8087 interrupt vector is
provided in the SEG 8087 and OFF 8087 fields of the system data
area.

An individual exception handler must follow the same sequence of
events described for the default handler. Failure to do so will
have unpredictable results on the system. If possible, make this
default interrupt handler re-entrant.

3-18

Concurrent CP/M System Guide 3.7 8087 Exception Handler

ndpint:

;==================================
8087 Default Exception Handler

;==================================
This is the example default exception handler.
It is assumed that if the 8087 programmer has enabled
8087 interrupts and has specified exception flags in
the control word, then the programmer has also included
an exception handler to take specific actions in
response to these conditions.
This handler ignores non-severe errors (overflow, etc.)
and terminates processes with severe errors (divide by
zero, stack violation).

push
mov
mov
mov
mov
mov
push
push
push
push
push
push
push
push
mov
FNSTENV
FWAIT
FNCLEX
xor
FNDISI

mov
out
mov
out

call

mov
mov

ds
ds,sysdat
ndp_ssreg,ss
ndp_spreg,sp
ss,sysdat
sp,offset ndp_ tos
ax
bx
ex
dx
di
si
bp
es
es,sysdat

env 8087

ax,ax

al,020h
060h,al
al,020h
058h,al

in 8087

bx,offset env 8087
byte ptr 2[bx],o

Save current data segment
Get XIOS data segment
Stack switch for 8086 env

Save 8086 registers

Now save 8087 env
Save 8087 Process Info

Clear 8087 interrupt request

Disable 8087 interrupts

Send int ack's - 1 for slave

- 1 for master PIC

Check 8087 error condition
if error is severe,
process will abort

clear 8087 status word
for env restore

Listing 3-3. 8087 Exception Handler

3-19

Concurrent CP/M System Guide

in 8087:

end 87:

pop
pop
pop
pop
pop
pop
pop
pop
mov
mov
FLDENV
FWAIT
pop
iret

mov
test
jz
mov
mov
test
jnz
or

ret

es
bp
si
di
dx
ex
bx
ax

ss,ndp ssreg
sp,ndp-spreg
env 8087

ds

bx,owner 8087
bx,bx
end 87
si,offset env 8087
ax,statusw[si]
ax,03ah
end 87
p_flag[bx] ,080h

;================================

Listing 3-3.

3.8 XIOS System Calls

3.7 8087 Exception Handler

Restore 8086 env.

Switch to previous stack

Restore 8087 environment
with good status
Restore previous data segment

Get the Process Descriptor
Check if owner has
already terminated
If severe error, terminate
If not, return and continue
3A under/overflow, precision,

and denormalized operand
Must be zero divide er invalid
operation (stack error)
Turn on terminate flag

(continued)

Routines in the XIOS cannot make system calls in the conventional
manner of executing an INT 224 instruction. The conventional entry
point to the SUP does a stack switch to the User Data Area (UDA) of
the current process. The XIOS is considered within the operating
system, and a process entering the XIOS is already using the UDA
stack. Therefore, a separate entry point is used for internal
system calls.

3-20

Concurrent CP/M System Guide 3.8 XIOS System Calls

Location 0003H of the SUP code segment is the entry point for
internal system calls. Register usage for system calls through this
entry point is similar to the conventional entry point. They are as
follows:

Entry:

Return:

ex System call number
DX Parameter
DS Segment address if DX is an offset to a

structure
ES User Data Area
AX BX = Return
CX Error Code
ES Segment value if system call returns

an offset and segment. Otherwise
ES is unaltered and equals the UDA
upon return.

DX, SI, DI, BP are not preserved.

The only differences between the internal and user entry points are
the CX and ES registers on entry. For the internal call, CH must
always be 0. ES must always point to the User Data Area of the
current process. The UDA segment address can be obtained through
the following code:

org 68H

rlr rw 1 ready list root
in SYSDAT

org (XIOS code segment)

mov si,rlr
mov es,lOh[si]

Note: On entry to the XIOS, ES is equal to the UDA segment
address. The ES Register must equal the UDA on return from any XIOS
function called by the XIOS ENTRY routine. Interrupt routines must
restore ES and any other altered registers to their value upon entry
to the routine, before performing an IRET instruction or a JMPF to
the dispatcher.

End of Section 3

3-21

Section 4
Character Devices

This section describes the XIOS functions necessary for Character
I/O. Some additional functions, described in Section 6, are needed
tc run DOS programs.

Concurrent CP/M treats all serial I/O devices as consoles. Serial
I/O devices are divided into two categories: virtual consoles and
extra I/O devices. Each virtual console is assigned to a specific
physical conso'le or user terminal. Associated with each serial I/O
device (virtual console or extra I/O device) is a Console Control
Block (CCB). The serial I/O devices and CCBs are numbered relative
to zero. Each process contains, in its Process Descriptor, the
number of its default console. 'l'he default console can be either a
virtual console or an extra serial I/O device.

Concurrent CP/M can be configured in a number of different ways by
changing the CCB table in the XIOS. It can be configured for one or
more user terminals (physical consoles), and extra I/O devices. The
number of virtual consoles assigned to each user terminal is set in
the CCB table. Up to 256 serial I/O devices can be implemented,
depending on the specific application.

The XIOS header defines the size and location of the CCB table. In
the header, the CCB field points to the beginning of the CCB table.
The NCCB field contains the number of entries in the CCB table. The
NVCNS field tells how many of the CCBs are virtual consoles. See
"XIOS Header" in Section 3 for more information.

The XIOS might or might not maintain a buffer containing the screen
contents and cursor position for each virtual console, depending on
how the system is to appear to the user. Keep in mind that this
buffer can be over 4K bytes per virtual console. Practical
considerations of memory space might require keeping the number of
virtual consoles reasonably small if buffers are maintained. Also
note that if the user terminals are connected to serial ports, the
time to update the screen for a screen switch can be up to 2
seconds. One example XIOS has eight virtual consoles, divided among
multiple serial terminals.

4-1

Concurrent CP/M System Guide 4.1 Console Control Block

By convention, the first NVCNS serial I/O devices are the virtual
consoles. The NVCNS parameter is located in the XIOS Header. The
XPCNS field tells how many user terminals there are. XPCNS must be
less than or equal to NVCNS. XPCNS does not include extra I/O
Devices. Consoles beyond the last virtual console represent other
serial I/O devices. When a process makes a console I/O call with a
console number higher than the last virtual console, it references
the Console Control Block for the called device number. Therefore a
CCB for each serial I/O device is absolutely necessary.

List Devices under Concurrent CP/M are output-only. The XIOS must
reserve and initialize a List Control Block for each list output
device. When a process makes a list device XIOS call, it references
the appropriate LCB.

4.1 Console Control Block

A Console Control Block Table must be defined in the XIOS. There
must be one CCB for each virtual console and Character I/O device
supported by the XIOS, as indicated by the NCCB variable in the XIOS
Header. The table must begin at the address indicated by the CCB
variable in the XIOS Header.

CCB
(XIOS
Header)

CCB 0

CCB NVCNS-1

CCB NVCNS

CCB NCCB-1

(virtual console 0)

(last virtual console)

(first extra char­
acter I/O device)

(last extra char­
acter I/O device)

Figure 4-1. The CCB Table

The number of CCBs used for virtual consoles equals the NVCNS field
in the XIOS Header. Any additional CCB entries are used for other
character devices to be supported by the XIOS. The CCB entries are
numbered starting with zero to match their logical console device
numbers. Therefore, the last CCB in the CCB Table is the (NCCB-l)th
CCB.

4-2

Concurrent CP/M System Guide 4.1 Console Control Block

Each CCB corresponding to a virtual console has several fields which
must be initialized, either when the XIOS is assembled or by the
XIOS INIT routine. These fields allow you to choose the
configuration of the virtual consoles. The PC field indicates the
physical console this virtual console is assigned to. The VC field
is the virtual console number. This number must be unique within
the system. The LINK field points to the CCB of the next virtual
console assigned to this physical console. The last virtual console
assigned to each physical console should have the LINK field set to
zero (OOOOH). Figure 4-2 shows a diagram of the CCBs for a system
with two physical consoles, with three and two virtual consoles
assigned respectivly. For CCBs outside the virtual console range
corresponding to extra I/O devices, these fields must all be
initialized to zero (OOH), except for the PC field. Also,
initialize to zero (OOH) all fields marked RESERVED in Figure 4-3.

CCB 0 PC 0 vc 0

LINK

CCB 1 PC 0 vc 1

LINK

CCB 2 PC 0 vc 2

LINK
0

CCB 3 PC 1 vc 3

LINK

CCB 4 PC 1 vc 4

LINK
0

Figure 4-2. CCBs for Two Physical Consoles

4-3

Concurrent CP/M System Guide 4.1 Console Control Block

00 OWNER RESERVED
..!.

1 1 1
...L

MIMIC I PC vc RESERVED STATE

MAX;;FSIZE
T

RESERVED

08h

lOh

18h RESERVED

20h RESERVED
..!.

28h LINK RESERVED J
Figure 4-3. Console Control Block Format

Table 4-1. Console Control Block Data Fields

Data Field J Explanation

OWNER

MIMIC

Address of the Process Descriptor of the
process that currently owns the virtual console
or character I/O device. This field is used by
the XIOS Status Line Function (IO STATLINE) to
find the name of the current owner~ Initialize
this field display to zero (OOOOH). If the
value in this field is zero when Concurrent
CP/M is running, no process owns the device.

This field indicates which list device receives
the characters typed on the virtual console
when the CTRL-P command is in effect. MIMIC
must be initialized to OFFH. Note that this
list device is not necessarily the same as the
default list device indicated in the Process
Descriptor whose address is in the OWNER field
of the CCB. Consider the following interaction
at the console:

4-4

/
I,

Concurrent CP/M System Guide 4.1 Console Control Block

Table 4-1. (continued)

Data Field J Explanation

PC

vc

A>printer The TMP's PD has a O in
its LIST field.

Printer Number
A>AP

A>printer 2

0

Printer Number = 2
A>pip lst:=letter.prn

Printer echo to list
device 0.
The TMP's PD has a 2 in
its LIST field.

LETTER.PRN is sent to
list device 2 Printer
echo is still going to
list device 0, echoing
the last two commands.

The example status line
routine distinguishes
between the default
list device and the
CTRL-P list device by
displaying

Printer=2

for the default list
device, and

AP=O

after the last command
in the illustration
above.

Physical console number.

Virtual console number. Virtual console
numbers must be unique within the system.

4-5

Concurrent CP/M System Guide 4.1 Console Control Block

Table 4-1. (continued)

Data Field I Explanation

STATE

MAXBUFSIZE

LINK

The least significant bit of this field
indicates the background mode of the virtual
console. The XIOS Status Line Function routine
uses this information to display the background
mode for the current foreground console. This
bit has the following values:

0 background is dynamic
1 background is buffered

The STATE field can be initialized to 0 or 1 on
each virtual console to specify the background
mode at system startup. The Concurrent CP/M
VCMODE utility allows the user to change the
background mode.

The MAXBUFSIZE field indicates the maximum size
of the buffer file used to store characters
when a background virtual console is in
buffered mode. When a virtual console is
placed in backqround mode bv the user. a
temporary file -is created on - the tempor.ary
drive, containing console output sent to the
virtual console. These files are named
VOUTx.$$$, where x equals the number of the
associated virtual console. The MAXBUFSIZE
field is the maximum size to which this file
can grow. If this maximum is reached, the
drive is Read-Only, or there is no more free
space on the drive, subsequent console output
causes the background process attached to the
virtual console to be stopped. The MAXBUFSIZE
parameter is in Kilobytes and must be
initialized in the XIOS CCB entries. The
Concurrent CP/M VCMODE utility allows the user
to change this value. The legal range for
MAXBUFSIZE is 1 to 8191 decimal (lFFFH).

Address of the next CCB assigned to the same
physical console. Zero (OOOOH) if this is the
last or only virtual console for this physical
console.

4-6

Concurrent CP/M System Guide 4.2 Console I/O Functions

4.2 Console I/O Functions

A major difference between the Concurrent CP/M XIOS and the CP/M-86
BIOS drivers is how they wait for an event to occur. In CP/M-86, a
routine typically goes into a hard loop to wait for a change in
status of a device, or executes a Halt (HLT) instruction to wait for
an interrupt. In Concurrent CP/M, this does not work. It can be of
some use, however, during the very early stages of debugging the
XIOS.

Basically, two ways to wait for a hardware event are used in the
XIOS. For noninterrupt-driven devices, use the DEV POLL method.
For interrupt-driven devices, use the DEV SETFLAG/DEV FLAGWAIT
method. These are both ways in which a process waiting for an
external event can give up the CPU resource, allowing other
processes to run concurrently. For detailed explanations of the
DEV POLL, DEV FLAGWAIT and DEV SETFLAG system calls, see Section 6
of -the Concurrent CP/M Operating System Programmer's Reference
Guide.

IO CONST CONSOLE INPUT STATUS

~

Return the Input Status of the specified
Serial I/O Device.

Entry Parameters:
Register AL: OOH (0)

DL: Serial I/O Device Number

Returned Value:
Register AL: OFFH if character ready

O if no character ready
BL: Same as AL
ES, DS, SS, SP preserved

The IO CONST routine returns the input status of the specified
character I/O device. This function is only called by the operating
system for console numbers greater than NVCNS-1, in other words,
only for devices which are not virtual consoles. If the status
returned is OFFH, then one or more characters are available for
input from the specified device.

4-7

Concurrent CP/M System Guide 4.2 Console I/O Functions

IO CONIN CONSOLE INPUT

Return a character from the console
keyboard or a serial I/O device.

Entry Parameters:
Register AL:

DL:

Returned Value:
Register AH:

AL:

AH:

AL:

OlH (1)
Serial I/O Device Number

OOH if returning
character data

character

OFFH if returning a
switch screen request

virtual console requested

BX: same as AX in all cases
ES, DS, SS, SP preserved

Because Concurrent CP/M supports the full 8-bit ASCII character set,
the parity bit must be masked off from input devices which use it.
However, it should not be masked off if valid 8-bit characters are
being input.

You choose the key or combination of keys that represent the virtual
consoles by the implementation of IO CONIN. One of the example
XIOS's uses the function keys fl through f3 to represent the virtual
consoles assigned to each user terminal.

IO CONIN must check for PC-MODE. PC-MODE is enabled whenever DOS
programs are running. It is enabled or disabled by the IO KEYBD
(Function 32) call. If PC-MODE is enabled, all function keys are
passed through to the calling process. If it is disabled, function
keys that do not have an associated XIOS function are usually
ignored on input. See Section 6.2 "Keyboard Functions" for
information on the IO KEYBD call.

4-8

Concurrent CP/M System Guide 4.2 Console I/0 Functions

IO CONOUT CONSOLE OUTPUT -

Display and/or output a character to the
specified device.

Entry Parameters:
Register AL: 02H (2)

CL: Character to send
DL: Virtual console to send to

Returned Value: NONE

ES, DS, SS, SP preserved

The XIOS might or might not buffer background virtual consoles,
depending on the user interface desired, memory constraints, and
methods of updating the terminals. This section describes how the
example XIOS~s ha11dle virtual consoles.

The example XIOS's buffer all virtual consoles. All virtual
consoles have a screen image area in RAM. This image reflects the
current contents of the screen, both characters and attributes.
Each screen image is contained in a separate segment.

Each virtual console also has a Screen Structure associated with it.
This structure contains the segment address of the screen image, the
cursor location (offset in the segment), and any other information
needed for the screen. This structure can be expanded to support
additional hardware requirements, such as color CRTs.

For a screen-buf.fered implementation, when a character is given to
IO_CONOUT, it performs the following operations:

1. Look up the screen structure for this virtual console and get
the segment address of the screen image.

2. Update the image, including all changes caused by escape
sequences. This could involve changes to the characters on the
screen (clear screen), the cursor location (home), or the
attributes of the individual characters (inverse video).

3. If this console is in the foreground and on a serial terminal,
put the character out to the physical terminal. This requires
looking up the true physical console number.

4-9

Concurrent CP/M System Guide 4.2 Console I/O Functions

When a process calls this function with a device number higher than
the last virtual console number, the character should be sent
directly to the serial device that the CCB represents.

Note that for screen buffering it is necessary to buffer 25 lines
when in PC-MODE, but only 24 lines otherwise. The PC-MODE flag is
set by Function 32, which is described in Section 6.2.

IO SWITCH SWITCH SCREEN

Place the current virtual console into the
background and the specified virtual

console into the foreground.

Entry Parameters:
Register AL: 07H (7)

DL: Virtual Console * to
switch to

Return Values: NONE

ES, DS, SS, SP preserved

When IO SWITCH is called, the XIOS copies the screen image in memory
to the physical screen. It must move the cursor on the physical
screen to the proper position for _the new foreground console.

IO SWITCH is responsible for doing a flagset to restart a background
process that is waiting to go into graphics mode. If the process's
screen is to be switched into the foreground, do a flagset on the
flag that was used by IO SCREEN to flagwai t the process. See
Section 6.1 for more information on IO SCREEN.

IO SWITCH will be implemented diff~rently for machines with video
RAM (such as the IBM Personal Computer) and serial terminals. For
IBM Personal Computers, the screen switch can be done by doing a
block move from the screen image to the video RAM, and a physical
cursor positioning. A serial terminal must be updated by sending a
character at a time, with insertion of escape sequences for the
attribute changes.

4-10

Concurrent CP/M System Guide 4.2 Console I/O Functions

Concurrent CP/M calls IO SWITCH only when there is no process
currently in the XIOS performing console output to either the
foreground virtual console being switched out, or the background
virtual console being switched into the foreground. Therefore, the
XIOS never has to update a screen while simultaneously switching it
from foreground to background, or vice versa.

One of the example IO SWITCH routines performs the following
operations:

1. Get the screen structure and image segment for the new virtual
console.

2. Find the physical console number for this virtual console.

3. If this is a video-mapped console, save the current display by
doing a block move. If it is a serial terminal, clear the
physical screen and home the cursor.

4. If this is a video-mapped display, do a block move of the new
screen image to the video RAM, and re-position the cursor. If
it is a serial terminal, send each character to the physical
screen. Check each character's attribute byte, and send any
escape sequences necessary to display the characters with the
correct attributes.

IO STATLINE DISPLAY STATUS LINE -

Display specified text on the status line

Entry Parameters:
Register AL: 08H (8)

CX: if OOOOH, continue to
update the normal
status line
if ex = offset, print
string at DX:CX
if OFFFFH, resume normal
status line display

Register DL: physical console to display
status line on (if ex = 0)

Register DX: segment address of
optional string (if ex <> O)

Return Values: NONE
ES, DS, SS, SP preserved

4-11

Concurrent CP/M System Guide 4.2 Console I/O Functions

When IO STATLINE is called with ex = O, the normal status
informatl.on is displayed by IO STATLINE on the physical console
specified in DL. The normal status line typically consists of the
foreground virtual console number, the state of the foreground
virtual console, the process that owns the foreground virtual
console, the removable-media drives with open files, whether control
P, S, or O are active, and the default printer number. The
IO STATLINE function in the example XIOS's display some of the above
information. Usually when IO STATLINE is called, DL is set to the
physical console to display tlle status line on. You must translate
this to the current (foreground) virtual console before getting the
information for the status line (such as the process owning the
console). The status line can be modified, expanded to any size, or
displayed in a different area than the status line implemented in
the example XIOS's. A common addition to the status line is a time­
of-day clock.

A status line is strongly recommended. However, if there are only
24 lines on the display device, you might choose not to implement a
status line. In this case IO STATLINE can just return when called.

The normal status line is updated once per second by the CLOCK RSP.
If there is more than one user terminal connected to the system,
this update occurs once per second on a round-robin basis among the
physical terminals. Thus; if four terminals are connected each one
is updated every four seconds by the CLOCK.

The operating system also requests normal status line updates when
screen switches are made and when control P, S or O change state.
The XIOS might call IO STATLINE from other routines when some value
displayed by the status line changes.

Note: IO STATLINE's re-entrancy depends in part on having separate
buffers for each physical console.

The IO STATLINE routine should not display the status line on a user
terminal that is in graphics mode. It should check the same
variable as IO SCREEN (Function 30). IO SCREEN is described in
Section 6.1 "Screen I/O Functions".

IO STATLINE also should not display on a console that is in PC-MODE.
Check the variable set by Function 32 to see if a console is in PC­
MODE. See Section 6.2 for information on Function 32.

Most calls to IO STATLINE to update the status line have DL set to
the physical terminal that is to be updated. When IO STATLINE is
called with ex not equal to OOOOH or OFFFFH, then ex is assumed to
be the byte offset and DX the paragraph address of an ASCII string
to print on the status line. This special status line remains on
the screen until another special status line is requested, or
IO STATLINE is called with CX=OFFFFH. While a special status line
is-being displayed, calls to IO STATLINE with CX=OOOOH are ignored.
When IO STATLINE function is -called with CX=OFFFFH, the normal
status fine is displayed and subsequent calls with CX=OOOOH cause
the status line to be updated with current information.

4-12

Concurrent CP/M System Guide 4.2 Console I/O Functions

When IO STATLINE is called to display a special status line, DL does
not contain the physical console number. The physical console
number can be obtained by the following method:

1. Get the address of SYSDAT

2. Look at the RLR (Ready List Root). The first process on the
list is the current process.

3. Look at the Process Descriptor (pointed to by RLR). The pens
field contains the virtual console number of the current
process. See the Concurrent CP/M Operating System Programmer's
Reference Guide for a description of the Process Descriptor.

4. Look up the CCB for this virtual console and find the physical
console number in it.

A process calling IO STATLINE with a special status line (DX:CX =
address of the string T must call IO STATLINE before termination with
CX=OFFFFH. Otherwise the normal status line is never shown again.
There is no provision for a process to find out which status line is
being displayed.

4.3 List Device Functions

A List Control Block (LCB), similar to the CCB, must be defined in
the XIOS for each list output device supported. The number of LCBs
must equal the NLCB variable in the XIOS Header. The LCB Table
begins with LCB zero, and ends with LCB NLCB-1, according to their
logical list device names.

LCB
(XIOS
HEADER)

LCB 0 (LIST DEVICE O)

LCB NLCB-1 (LAST LIST DEVICE)

Figure 4-4. The LCB Table

4-13

Concurrent CP/M System Guide 4.3 List Device Functions

OOH

08H

R E S E R V E D
OWNER I

RESER-I M~
VED I SOURCE I

Figure 4-5. List Control Block (LCB)

Table 4-2. List Control Block Data Fields

Field I Explanation

OWNER Address of the PD of the process that currently
owns the List Device. If no process currently
owns the list device, then OWNER=O. If
OWNER=OFFFFH, this list device is mimicking a
console device that is in CTRL-P mode.

MSOURCE If OWNER=OFFFFH, MSOURCE contains the number of
the console device this list device is
mimicking; otherwise MSOURCE = OFFH.

Note: MSOURCE must be initialized to OFFH. All
other LCB fields must be initialized to O.

IO LSTST LIST STATUS -

Return List Output Status

Entry Parameters:
Register AL: 03H (3)

DL: List Device number

Returned Value:
Register AL: OFFH if Device Ready

0 if Device Not Ready
BL: Same as AL

ES, DS, SS, SP preserved

4-14

Concurrent CP/M System Guide 4.3 List Device Functions

The IO LSTST function returns the output status of the specified
list device.

IO LSTOUT LIST OUTPUT -

Output Character to Specified List Device

Entry Parameters:
Register AL: 04H (4)

CL: Character
DL: List Device number

Returned Value: None

ES, OS, SS, SP preserved

The IO LSTOUT function sends a character to the specified List
Device:- List device numbers start at 0. It is the responsibility
of the XIOS device driver to zero the parity bit tor list devices
that require it.

4.4 Auxiliary Device Functions

These XIOS functions are accessible only through the Concurrent CP/M
S BIOS system call. Software that uses this call can access the AUX:
device by placing the appropriate parameters in the Bios Descriptor.
For further information, see the Concurrent CP/M Operating System
Programmer's Reference Guide under the S_BIOS system call.

If you choose not to implement the AUX: device then the IO AUXOUT
function can simply return, while IO AUXIN should return a character
26 (lAH), CTRL-Z, indicating end of file.

4-15

Concurrent CP/M System Guide 4.4 Auxiliary Device Functions

IO AUXIN AUXILIARY INPUT -

Input a character from the Auxiliary Device

Entry Parameters:
Register AL: OSH (5)

Returned Value:
Register AL: Character

ES, OS, SS, SP preserved

IO AUXOUT AUXILIARY OUTPUT

Output a character to the Auxiliary Device

Entry Parameters:
Register AL:

CL:
06H (6)
Character

Returned Value: None

ES, OS, SS, SP preserved

4-16

Concurrent CP/M System Guide 4.5 IO POLL Function

4.5 IO POLL Function

IO POLL POLL DEVICE

Poll Specified Device and Return Status

Entry Parameters:
Register AL: ODH (13)

DL: Poll Device Number

Returned Value:
Register AL: OFFH if ready

0 if not ready
BL: Same as AL
ES, DS, SS, SP preserved

The IO POLL function interrogates the status of the device indicated
by the-poll device number and returns its current status. It is
called by the dispatcher.

A process polls a device only if the Concurrent CP/M DEV POLL system
call has been made. The poll device number used as an argument for
the DEV POLL system call is the same number that the IO POLL
function-receives as a parameter. Typically only the XIOS-uses
DEV POLL. The mapping of poll device numbers to actual physical
devices is maintained by the XIOS. Each polling routine must have a
unique poll device number. For instance, if the console is polled,
it must have different poll device numbers for console input and
console output.

The sample XIOS's show the IO POLL function taking the poll device
number as an index to a table-of poll functions. Once the address
of the poll routine is determined, it is called and the return
values are used directly for the return of the IO POLL function.

End of Section 4

4-17

Section 5
Disk Devices

In Concurrent CP/M, a disk drive is any I/O device that has a
directory and is capable of reading and writing data in 128-byte
logical sectors. The XIOS can therefore treat a wide variety of
peripherals as disk drives if desired. The logical structure of a
Concurrent CP/M disk drive is presented in detail in Section 10,
"OEM Utilities." CP/M can also support PC-DOS and MS-DOS disks. The
term DOS refers to both PC-DOS and MS-DOS.

This section discusses the Concurrent CP/M XIOS disk functions,
their input and output parameters, associated data structures, and
calculation of values for the XIOS disk tables.

5.1 Disk 1/0 Functions

Concurrent CP/M performs Disk I/O with a single XIOS call to the
IO READ or IO WRITE functions. These functions reference disk
parameters contained in an Input/Output Parameter Block (IOPB),
which is located on the stack, to determine which disk drive to
access, the number of physical sectors to transfer, the track and
sector to read or write, and the OMA offset and segment address
involved in the I/O operation. See Section 5.2, "IOPB Data
Structure." Prior to each IO READ or IO WRITE call, the BOOS
initializes the IOPB. - -

If a physical error occurs during an IO READ or IO WRITE operation,
the function routine should perform several retries (10 is
recommended) to attempt to recover from the error before returning
an error condition to the BOOS.

The Disk I/O routine interfaces in the Concurrent CP/M XIOS are
quite different from those in the CP/M-86 BIOS. The SETTRK, SETSEC,
SETDMA, and SETDMAB XIOS functions no longer exist because IO READ
or IO WRITE have absorbed their functions. WBOOT, HOME, SECTRAN,
GETSEGB, GETIOB, and SETIOB are not used by any routines outside the
I/O system, and so have been dropped. Also, hard loops within the
disk routines must be changed to make either DEV POLL or
DEV WAITFLAG system calls. See Sections 3. 5, "Polled Devices" 1 4. 5,
"IO-POLL Function"1 and 3.6, "Interrupt Devices." For initial
debugging, Concurrent CP/M runs with the CP/M-86 BIOS physical
sector read and write routines, with the addition of an IOPB­
referencing routine, multisector read/write capability, and
modification to handle the new DPH and DPB structures. Once the
system runs well, all hard loops should be changed to either
DEV POLL or DEV WAITFLAG system calls. See also the discussion in
Sections 3.5 and 3.6 of this manual.

5-1

Concurrent CP/M System Guide 5.1 Disk I/O Functions

IO SELDSK SELECT DISK

Select the specified Disk Drive

Entry Parameters: AL: 09H (9)
CL: Disk Drive Number
DL: (bit 0): O if first select

Return Values: AX: offset of DPH if no error
AX: OOH if invalid drive
BX: Same as AX
ES, DS, SS, SP preserved

The IO SELDSK function checks if the specified disk drive is valid
and returns the address of the corresponding Disk Parameter Header
if the drive is valid. The specified disk drive number is O for
drive A, 1 for drive B, up to 15 for drive P. On each disk select,
IO SELDSK must return the offset of the selected drive' s Disk
Parameter Header relative to the SYSDAT segment address.

If there is an attempt to select a nonexistent drive, IO SELDSK
returns OOH in AL as an error indicator. Although IO SELDSK must
return the Disk Parameter Header (DPH) address for the specified
drive on each call, postpone the actual physical disk select
operation until an I/O function, IO READ or IO WRITE, is performed.
This is due to the fact that disk select operations can take place
without a subsequent disk operation and thus disk access might be
substantially slower using some disk controllers.

IO SELDISK must return a DPH containing the address of the Disk
Parameter Block (DPB). The DPB must be properly formatted to
reflect the type of media supported by the selected drive. On a
first time select, this function must determine if this disk is a
CP/M disk, or a DOS disk. For CP/M media, return a regular DPB.
For a DOS disk return an extended DPB. See Section 5.5 "Disk
Parameter Block" for more information on the two DPB formats. See
Section 5. 8 "Multiple Media Support" for more information on
generating a system that supports both types of disks.

5-2

Concurrent CP/M System Guide 5.1 Disk I/O Functions

On entry to IO SELDSK, you can determine whether it is the first
time the specified disk has been selected. Register DL, bit 0
(least significant bit), is a zero if the drive has not been
previously selected. This information is of interest in systems
that read configuration information from the disk to dynamically set
up the associated DPH and DPB. See Section 5.8 "Multiple Media
Support". If Register DL, bit O, is a one, IO_SELDSK must return a
pointer to the same DPH as it returned on the initial select.

IO READ READ SECTOR -

Read sector(s) defined by the IOPB

Entry Parameters: IOPB filled in (on stack)
Register AL: OAH (10)

Return Values: AL: 0 if no error
1 if physical error

OFFH if media density
has changed

AH: Extended error code
(Table 5-1)

BL: Same as AL
BH: Same as AH
ES, OS, SS, SP preserved

The IO READ Function transfers data from disk to memory according to
the parameters specified in the IOPB. The disk. Input/Output
Parameter Block (IOPB), located on the stack, contains all required
parameters, including drive, multisector count, track, sector, OMA
offset, and OMA segment, for disk I/O operations. See Section 5.2,
"IOPB Data Structure." If the multisector count is equal to 1, the
XIOS should attempt a single physical sector read based upon the
parameters in the IOPB. If a physical error occurs, the read
function should return a 1 in AL and BL, and the appropriate
extended error code in AH and BH. The XIOS should attempt several
retries (10 recommended) before giving up and returning an error
condition.

For disk drivers with auto density select, IO READ should
immediately return OFFH if the hardware detects a change in media
density. The BOOS then performs an IO SELDSK system call for that
drive, reinitializing the drive's parameter tables in order to avoid
writing erroneous data to disk.

5-3

Concurrent CP/M System Guide 5.1 Disk I/O Functions

If the multisector count is greater than 1, the IO READ routine is
required to read the specified number of physical sectors before
returning to the BDOS. The IO READ routine should attempt to read
as many physical sectors as the specified drive's disk controller
can handle in one operation. Additional calls to the disk
controller are required when the disk controller cannot transfer the
requested number of sectors in a single operation. If a physical
error occurs during a multisector read, the read function should
return a 1 in AL and BL and the appropriate extended error code in
AH and BH.

If the disk controller hardware can only read one physical sector at
a time, the XIOS disk driver must make the number of single
physical-sector reads defined by the multisector count. In any
case, when more than one call to the controller is made, the XIOS
must increment the sector number and add the number of bytes in each
physical sector to the DMA address for each successive read. If,
during a multisector read, the sector number exceeds the number of
the last physical sector of the current track, the XIOS has to
increment the track number and reset the sector number to O. This
concept is illustrated in Listing 5-1, part of a hard disk driver
routine.

In this example, if the multisector count is zero, the routine
returns with an error. Otherwise, it immediately calls the
read/write routine for the present sector and puts the return code
passed from it in AL. If there is no error, the multisector count
is decremented. If the multisector count now equals zero, the read
or write is finished and the routine returns. If not, the sector to
read or write is incremented. If, however, the sector number now
exceeds the number of sectors on a track (MAXSEC), the track number
is incremented and the sector number set to zero. The routine then
performs the number of reads or writes remaining to equal the
multisector count, each time adding the size of a physical sector to
the DMA offset passed to the disk controller hardware.

Code

80H
40H
20H
!OH

SH
4H
3H
2H
lH

Table 5-1. Extended Error Codes

I Meaning

Attachment failed to respond
Seek operation failed
Controller has failed
Bad CRC
DMA overrun
Sector not found
Write protect disk error
Address mark not found
Bad command

5-4

Concurrent CP/M System Guide 5.1 Disk I/O Functions

Listing 5-1 illustrates multisector operations:

;***
;*
;* common code for hard disk read and write
;*
;***

hd io:

hdiol:

push es
cmp mcnt,O
je hd_err

;save UDA
;if multisector count
;return error

0

call iohost
mov al,retcode
or al,al

;read/write physical sector
;get return code

same trak:

jnz hd err
dee mcnt
jz return rw

mov ax,sector
inc ax
cmp ax,maxsec!

inc track
xor ax,ax

mov sector,ax

;if not 0
;return error
;decrement multisector count
;if mcnt = 0 return

;next sector
jb same trak ;is sector < max sector

no - next track
; initialize sector to 0

;save sector #
add dmaoff,secsiz
jmps hdiol

;increment dma offset by sector size
;read/write next sector

hd err:
mov al,l

return rw:
pop es
ret

;return with error indicator

;restore UDA
;return with error code in AL

;***
;* IOHOST performs the physical reads and writes to *
;* the physical disk. *
;***

iohost:

ret

;---

Listing 5-1. Multisector Operations

5-5

Concurrent CP/M System Guide 5.1 Disk I/O Functions

IO INT13 READ READ DOS SECTOR - -

Read DOS sector(s) defined by the IOPB

Entry Parameters: DOS IOPB filled in (on stack)
Register AL: 23H (35)

Return Values: AL: 0 if no error
1 if physical error

OFFH if media density
has changed

AH: Extended error code
(Table 5-1)

BL: Same as AL
BH: Same as AH
ES, DS, SS, SP preserved

IO INT13 READ emulates DOS's interrupt 13 read disk operation. It
reads a DOS disk as specified by the DOS format IOPB. It is used on
DOS media only. It operates like IO READ except for the different
IOPB. The DOS IOPB is defined in Section 5.2

5-6

(

Concurrent CP/M System Guide 5.1 Disk I/O Functions

IO WRITE WRITE SECTOR

Write sector(s) defined by the IOPB

Entry Parameters: IOPB filled in (on stack)
Register AL: OBH (11)

Return Values: AL: 0 if no error
1 if physical error
2 if Read/Only Disk

OFFH if media density
has changed

AH: Extended error code
(Table 5-1)

BL: Same as AL
BH: Same as AH
ES, DS, SS, SP preserved

The IO WRITE function transfers data from memory to disk according
to the-parameters specified in the IOPB. This function works in
much the same way as the read function, with the addition of a
Read/Only Disk return code. IO WRITE should return this code
when the specified disk controller detects a write-protected
disk.

5-7

Concurrent CP/M System Guide 5.1 Disk I/O Functions

IO INT13 WRITE WRITE DOS SECTOR - -

Write DOS sector (s) defined by the IOPB

Entry Parameters: DOS IOPB filled in (on stack)
Register AL: 24H (36)

Return Values: AL: 0 if no error
1 if physical error
2 if Read/Only Disk

OFFH if media density
has changed

AH: Extended error code
(Table 5-1)

BL: Same as AL
BH: Same as AH
ES, DS, SS, SP preserved

IO INT13 WRITE is similar to IO WRITE. It uses a DOS IOPB, and
writes to a DOS disk. It emulates DOS's interrupt 13 write
function. The DOS IOPB is defined in Section 5.2.

5-8

Concurrent CP/M System Guide 5.1 Disk I/O Functions

IO FLUSH FLUSH BUFFERS -

Write pending I/O system buffers to disk

Entry Parameters: Register AL: OCH (12)

Returned Value:
Register AL: 0 if No Error

1 if Physical Error
2 if Read-Only Disk

AH: Extended error code
(Table 5-1)

BL: Same as AL
BH: Same as AH
ES, DS, SS, SP preserved

The IO FLUSH function indicates that all blocking/deblocking buffers
or disk-caching buffers used by the I/O system should be flushed,
written to the disk. This does not include the LRU buffers that are
managed by the BDOS. This function is called whenever a process
terminates, a file is closed or a disk drive is reset. The XIOS
must return the error codes for the IO FLUSH function in register
AX, after 10 recovery attempts as described in the IO READ function.

5.2 IOPB Data Structure

The purpose of this and the following sections is to present the
organization and construction of tables and data structures within
the XIOS that define the characteristics of the Concurrent CP/M disk
system. Since there is no Concurrent CP/M GENDEF utility, you must
code the XIOS DPHs and DPBs by hand, using values calculated from
the information presented below.

5-9

Concurrent CP/M System Guide 5.2 IOPB Data Structure

The disk Input/Output Parameter Block (IOPB) contains the necessary
data required for the IO READ and IO WRITE functions. IO INT13 READ
and IO INT13 WRITE use a variation of the IOPB called the DOS IOPB.
It is described at the end of this section. These parameters are
located on the stack, and appear at the example XIOS IO READ and
IO WRITE function entry points as described below. The IOPB example
in-this section assumes that the ENTRY routine calls the read or
write routines through only one level of indirection; therefore, the
XIOS has placed only only one word on the stack. RETADR is reserved
for this local return address to the ENTRY routine. The XIOS disk
drivers may index or modify IOPB parameters directly on the stack,
since they are removed by the BDOS when the function call returns.
Typically, the IOPB fields are defined relative to the BP and SS
registers. The first instruction of the IO READ and IO WRITE
routines sets the BP register equal to the SP register for indexing
into the IOPB. Listing 5-2 illustrates this.

+14 DRV 1 MCNT

+12 TRACK

+10 SECTOR

+8 DMASEG

+6 DMAOFF

+4 RETSEG

+2 RETOFF <== SP value at XIOS ENTRY

SP+O <== SP value at disk routines RETADR

Figure 5-1. Input/Output Parameter Block (IOPB)

5-10

Concurrent CP/M System Guide 5.2 IOPB Data Structure

Table 5-2. IOPB Data Fields

Data Field I Explanation

DRV

MCNT

TRACK

Logical Drive Number. The Logical Drive
Number specifies the logical disk drive
on which to perform the IO READ or
IO WRITE function. The drive niimber may
range from 0 to 15, corresponding to
drives A through P respectively.

Multisector Count. To transfer logically
consecutive disk sectors to or from
contiguous memory locations, the BDOS
issues an IO READ or IO WRITE function
call with the mul tisector count greater
than 1. This allows the XIOS to
transfer multiple sectors in a single
disk operation. The maximum value of
the multisector count depends on the
physical sector size, ranging from 128
with 128-byte sectors to 4 with 4096-
byte sectors. Thus, the XIOS can
transfer up to 16K directly to or from
the DMA address in a single operation.
For a more complete explanation of
multisector operations, along with
example code and suggestions for
implementation within the XIOS, see
Section 5.3, "Multisector Operations on
Skewed Disks."

Logical Track Number. The Track Number
defines the logical track for the
specified drive to seek. The BOOS
defines the Track Number relative to 0,
so for disk hardware which defines track
numbers beginning with a physical track
of 1, the XIOS needs to increment the
track number before passing it to the
disk controller.

5-11

Concurrent CP/M System Guide 5.2 IOPB Data Structure

Table 5-2. (continued)

Data Field J Explanation

SECTOR Sector Number. The Sector Number defines
the logical sector for a read or write
operation on the specified drive. The
sector size is determined by the
parameters PSH and PHM defined in the
Disk Parameter Block. See Section 5.5.
The BDOS defines the Sector Number
relative to O. For disk hardware that
defines sector numbers beginning with a
physical sector of 1, the XIOS will need
to increment the sector number before
passing it to the disk controller. If
the specified drive uses a skewed-sector
format, the XIOS must translate the
sector number according to the
translation table specified in the Disk
Parameter Header.

DMASEG, DMAOFF DMA Segment and Offset. The DMA offset
and segment define the address of the
data to transfer for the read or write
operation. This DMA address may reside
anywhere in the 1-megabyte address space
of the 8086-8088 microprocessor. If the
disk controller for the specified drive
can only transfer data to and from a
restricted address area, the IO READ and
IO WRITE functions must block -move the
data between the DMA address and this
restricted area before a write or
following a read operation.

RETSEG,RETOFF BOOS Return Segment and Offset. The BDOS
return segment and offset are the Far
Return address from the XIOS to the
BDOS.

RETADR Local Return Address. The local return
address returns to the ENTRY routine in
the example XIOS.

5-12

Concurrent CP/M System Guide 5.2 IOPB Data Structure

Listing 5-2 illustrates the IOPB definition, and how the IOPB is
used in the IO READ and IO WRITE routines:

;*******************************
; *
;* IOPB Definition
. *
' ;*******************************

Read and Write disk parameter equates

At the disk read and write function entries,
all disk I/O parameters are on the stack
and the stack at these entries appears as
follows:

+14 ORV MCNT

+12 TRACK

+10 SECTOR

+8 DMA SEG

+6 OMA OFF

+4 RET SEG

+2 RET OFF

SP+O RET ADR

Drive and Multisector count

Track number

Physical sector number

OMA segment

OMA offset

BDOS return segment

BOOS return offset

Local ENTRY return address
(assumes one level of call
from ENTRY routine)

These parameters can be indexed and modified
directly on the stack and will be removed
by the BOOS after the function is complete

drive equ byte ptr 14[bp]
mcnt equ byte ptr 15lbp]
track equ word ptr 12[bp]
sector equ word ptr lO[bp]
dmaseg equ word ptr 8[bp]
dmaoff equ word ptr 6[bp]

;**

Listing 5-2. IOPB Definition

5-13

Concurrent CP/M System Guide 5.2 IOPB Data Structure

;=======
IO READ: ; Function 11: Read sector
;=======

Reads the sector on the current disk, track and
sector into the current DMA buffer.

entry: parameters on stack
exit: AL 00 if no error occurred

AL = 01 if an error occurred

mov bp,sp ;set BP for indexing into IOPB

ret

;=========
IO WRITE: ; Function 12: Write disk
;=========

Write the sector in the current DMA buffer
to the current disk on the current
track in the current sector.

entry: CL = 0 - Deferred Writes
1 - non-deferred writes
2 - def-wrt 1st sect unalloc blk

exit: AL OOH if no error occurred
OlH if error occurred
02H if read only disk

mov bp,sp ;set BP for indexing into IOPB

ret

·---,

Listing 5-2. (continued)

5-14

Concurrent CP/M System Guide 5.2 IOPB Data Structure

Figure 5-2 shows the DOS IOPB used by IO INT13 READ and
IO INT13 WRITE. It is similar to the regular IOPB. The DOS IOPB
fields are defined in Table 5-3.

+14 DRV MCNT

+12 TRACK HEAD

+10 SECTOR 00

+8 DMASEG

+6 DM~OFF
+4 RE~SEG
+2 RE~OFF <== SP value at XIOS ENTRY

RElADR SP+O <== SP value at disk routines

Figure 5-2. DOS Input/Output Parameter Block (IOPB)

Table 5-3. DOS IOPB Data Fields

Data Field J
TRACK

HEAD

SECTOR

Explanation

Track or cylinder number. This number
must be in the range 0 - 39.

Head number. This number must be 0 or 1.

Sector number. This number must be in
the range 1 - 8.

All other DOS IOPB data fields are the
same as the regular IOPB defined in
Table 5-2.

5-15

Concurrent CP/M System Guide 5.3 Multisector Operations

5.3 Multisector Operations on Skewed Disks

On many implementations of older Digital Research operating systems,
disk performance is improved through sector skewing. This technique
logically numbers the sectors on a track such that they are not
sequential. An example of this is the standard Digital Research 8-
inch disk format, where the sectors are skewed by a factor of 6.
The following discussion illustrates how to optimize disk
performance on skewed disks with multisector I/O requests.

Concurrent CP/M-86 supports multiple-sector read and write
operations at the XIOS level to minimize rotational latency on block
disk transfers. You must implement the multiple-sector I/O facility
in the XIOS by using the multisector count passed in the IOPB.

When the disk format uses a skew table to minimize rotational
latency for single-record transfers, it is more difficult to
optimize transfer time for multisector operations. One method of
doing this is to have the XIOS read/write function routine translate
each logical sector number into a physical sector number. Then it
creates a table of DMA addresses with each sector's DMA address
indexed into the table by the physical sector number.

As a result, the requested sectors are sorted into the order in
which they physically appear on the track. This allows all of the
required sectors on the track to be transferred in as few disk
rotations as possible. The data from each sector must be separately
transferred to or from its proper DMA address. If during a
multisector data transfer the sector number exceeds the number of
the last physical sector of the current track, the XIOS will have to
increment the track number and reset the sector number to 0. It can
then complete the operation for the balance of sectors specified in
the IO READ or IO WRITE function call. See the example accompanying
the IO READ function.

SECTOR
INDEXES

00

01

N

PHYSICAL ASSOCIATED
DMA ADDRESS

DMA ADDR 0

DMA ADDR l

DMA ADDR N

Figure 5-3. DMA Address Table for Multisector Operations

5-16

(
I

\

Concurrent CP/M System Guide 5.3 Multisector Operations

If an error occurs during a multisector transfer, the XIOS should
return the error immediately to terminate the read or write BDOS
function call.

In Listing 5-3, common read/write code for an XIOS disk driver, the
routine gets the DPH address by calling the IO SELDSK function. It
checks to verify a nonzero DPH address, and returns if the address
is invalid (zero). Then the disk parameters are taken from the DPH
and DPB and stored in local variables. Once the physical record
size is computed from DPB values, the DMA address table can be
initialized. The INITDMATBL routine fills the DMA address table
with OFFFFH word values. The size of the DMA table equals one word
greater than the number of sectors per track, in case the sectors
index relative to 1 for that particular drive. If the multisector
count is zero, the routine returns an error. Otherwise, the sector
number is compared to the number of sectors per track to determine
if the track number should be incremented and the sector number set
to zero. If this is the case, the sectors for the current track are
transferred, and the DMA address table is reinitialized before the
next tracks are read or written.

The current sector number is moved into AX and a check is made on
the translation table offset address. If this value is zero, no
translation table exists and translation is not performed; The
sector number is translated and used to index into the DMA address
table. The current DMA address, incremented by the physical sector
size if a multisector operation, is stored in the table (or use by
the RW SECTS routine. Local values, beginning with i, are
initialiZed for the various parameters needed by the disk hardware,
and the disk driver routine is called.

Listing 5-3 illustrates multisector unskewing:

5-17

Concurrent CP/M System Guide 5.3 Multisector Operations

~***

; *
;* DISK I/O EQUATES
; *
i***

xlt
dpb
spt
psh

equ
equ
equ
equ

0
8
0
15

;translation table offset in DPH
;disk parameter block offset in DPH
;sectors per track offset in DPB
;physical shift factor offset in DPB

;***
; *
;* DISK I/O CODE AREA
; *
:***

read write: ;unskews and reads or writes multisectors
·----------' input: SI

output: AX
read or write routine address
return code

mov cl,drive
mov dl,l
call seldsk
or bx,bx! jnz dsk ok

ret error:

dsk ok:

mov al,l
ret

rnov ax,xlt[bx]
mov xltbl,ax
mov bx,dpb[bx]
mov ax,spt[bx]
mov maxsec,ax
mov cl,psh[bx]
mov ax,128
shl ax, cl
mov secsiz,ax
call initdmatbl
cmp mcnt,0
je ret error

;get DPH address
;check if valid

; return error if not

;save translation table address

;save maximum sector per track

;compute physical record size
; and save it
;initialize dma offset table

Listing 5-3. Mu1tisector Unskewing

5-18

Concurrent CP/M System Guide 5.3 Multisector Operations

rw 1:
mov ax,sector
cmp ax,maxsec! jb

call rw sects
call inTtdmatbl
inc track
xor ax,ax
mov sector,ax

;is sector < max sector/track
same trk

no - read/write sectors on track
reinitialize dma offset table
next track

initialize sector to 0
same trk:

mov bx,xltbl ;get translation table address
or bx,bx! jz no trans ;if xlt <> 0

xlat al ; translate sector number
no trans:

xor
mov
shl
mov
mov
add
mov
inc
dee
jnz

bh,bh
bl,al
bx,l
ax,dmaoff
dmatbl[bx],ax
ax,secsiz
dmaoff,ax
sector
mcnt
rw 1

;sector # is used as the index
; into the dma off set table

;save dma offset in table
;increment dma offset by the
; physical sector size
;next sector
;decrement multisector count
;if mcnt <> 0 store next sector dma

rw sects: ;read/write sectors in dma table

rw sl:

mov al,l
xor bx,bx

mov di,bx
shl di,l

;preset error code
;initialize sector index

;compute index into DMA table
cmp word ptr
je no rw

dmatbl[di],Offffh

push bx! push si
mov ax,track
mov itrack,ax
mov isector,bl
mov ax,dmatbl[di]
mov idmaoff,ax
mov ax, d·maseg
mov idmaseg,ax

;nap if invalid entry
;save index and routine
;get track # from IOPB

address

;sector # is index value
;get dma offset from table

;get dma segment from IOPB

call si ;call read/write routine
pop sil pop bx ;restore routine address and index
or al,all jnz err ret ;if error occurred return

Listing 5-3. (continued)

5-19

Concurrent CP/M System Guide

no rw:

err ret:

inc bx
cmp bx,maxsec
jbe rw sl

5.3 Multisector Operations

;next sector index
;if not end of table
; go read/write next sector

ret
initdmatbl:

;return with error code in AL
;initialize DMA offset table

;----------
mov di,offset dmatbl
mov cx,maxsec
inc ex
mov ax,Offffh
push es
push dsl pop es
rep stosw
pop es
ret

;length = maxsec + 1 sectors may
; index relative to 0 or 1

;save UDA

;initialize table to Offffh
;,restore UDA

;***
;*
;* DISK I/O DATA AREA
;*
;***

xltbl dw 0 ;translation table address
maxsec dw 0 ;max sectors per track
secsiz dw 0 ;sector size
dmatbl rw 50 ;dma address table

;---

Listing 5-3. (continued)

5-20

Concurrent CP/M System Guide 5.4 Disk Parameter Header

5.4 Disk Parameter Header

Each disk drive has an associated Disk Parameter Header (DPH)
that contains information about the drive and provides a scratchpad
area for certain Basic Disk Operating System (BDOS) operations .

OOH
..----

00 I MF XLT 0000 0000

08H DPB csv ALV DI RB CB

lOH DATBCB TBLSEG

Figure 5-4. Disk Parameter Header (DPH)

Table 5-4. Disk Parameter Header Data Fields

F_F_i_e_1_d __ l~---·--------E_x_p_1_a_n_a_t_1_· o_n ____________ -t

XLT Translation Table Address. The Translation
Table Address defines a vector for logical-to­
physical sector translation. If there is no

0000

sector translation (the physical and logical
sector numbers are the same), set XL'r to
OOOOh. Disk drives with identical sector skew
factors can share the same translation tables.
This address is not referenced by the BDOS and
is only intended for use by the disk driver
routines. Usually the translation table
contains one byte per physical sector. If the
disk has more than 256 sectors per track, the
sector translation must consist of two bytes
per physical sector. It is advisable,
therefore, to keep the number of physical
sectors per logical track to a reasonably
small value to keep the translation table from
becoming too large. In the case of disks with
multiple heads, compute the head number from
the track address rather than the sector
address.

Sera tch Area. The 5 bytes of zeros are a
scratch area which the BDOS uses to maintain
various parameters associated with the drive.
They must be initialized to zero by the !NIT
routine or the load image.

5-21

Concurrent CP/M System Guide 5.4 Disk Parameter Header

Table 5-4. (continued)

Field } Explanation

MF Media Flag. The BDOS resets MF to zero when
the drive is logged in. The XIOS must set
this flag to OFFH if it detects that the
operator has opened the drive door. It must
also set the global door open flag in the XIOS
Header at the same time. If the flag is set
to OFFH, the BDOS checks for a media change
before performing the next BDOS file operation
on that drive. Note that the BDOS only checks
this flag when first making a system call and
not during an operation. Normally, this flag
is only useful in systems that support door
open interrupts. If the BDOS determines that
the drive contains a new disk, the BDOS logs
out this drive and resets the MF field to OOH.

Note: If this flag is used, removable disk
performance can be optimized as if it were a
permanent drive. See the description of the
CKS field in the Section 5.5, "Disk Parameter
Block."

DPB Disk Parameter Block Address. The DPB field
contains the address of a Disk Parameter Block
that describes the characteristics of the disk
drive. The Disk Parameter Block itself is
described in Section 5.5. The DPB must
describe the type of disk (CP/M or DOS). See
IO SELDSK in Section 5.1, and Section 5.8 for
more information.

CSV Checksum Vector Address. The Checksum Vector
Address defines a scratchpad area the system
uses for checksumming the directory to detect
a media change. This address must be
different for each Disk Parameter Header.
There must be one byte for every 4 directory
entries (or 128 bytes of directory). In other
words, Length(CSV) (DRM/4)+1. (DRM is a
field in the Disk Parameter Block defined in
Section 5.5.) If CKS in the DPB is OOOOH or
8000H, no storage is reserved, and CSV may be
zero. Values for DRM and CKS are calculated
as part of the DPB Worksheet. If this field
is initialized to OFFFFH, GENCCPM will
automatically create the checksum vector and
initialize the CSV field in the DPH.

5-22

Concurrent CP/M System Guide 5.4 Disk Parameter Header

Table 5-4. (continued)

Field J Explanation

ALV

DIRBCB

DATBCB

Allocation Vector Address. The Allocation
Vector address defines a scratchpad area which
the BDOS uses to keep disk storage allocation
information. This address must be different
for each DPH. The Allocation Vector must
contain two bits for every allocation block
(one byte per 4 allocation blocks) on the
disk. Or, Length(ALV) = ((DSM/8)+1)*2. The
value of DSM is calculated as part of the DPB
Worksheet. If the CSV field is initialized to
OFFFFH, GENCCPM automatically creates the
Allocation Vector in the SYSDAT Table Area,
and sets the ALV field in the DPH.

Directory Buffer Control Block Header Address.
This field contains the offset address of the
DIRBCB Header. The Directory Buffer Control
Block Header contains the directory buffer
link list root for this drive. See Section
5.6, "Buffer Control Block Data Area." The
BDOS uses directory buffers for all accesses
of the disk directorv. Several DPHs can refer
to the same DIRBCB, or each DPH can reference
an independent DIRBCB. If this field is
OFFFFH, GENCCPM automatically creates the
DIRBCB Header, DIRBCBs, and the Directory
Buffer for the drive, in the SYSDAT Table
Area. GENCCPM then sets the DIRBCB field to
point to the DIRBCB Header.

Data Buffer Control Block Header Address.
This field contains the offset address of the
DATBCB Header. The Data Buffer Control Block
Header contains the data buffer link list root
for this drive (see Section 5.6, "Buffer
Control Block Data Area"). The BDOS uses data
buffers to hold physical sectors so that it
can block and deblock logical 128-byte
records. If the physical record size of the
media associated with a DPH is 128 bytes, the
DATBCB field of the DPH can be set to OOOOH
and no data buffers are allocated. If this
field is OFFFFH, GENCCPM automatically creates
the DATBCB Header and DATBCBs and allocates
space for the Data Buffers in the area
following the RSPs.

5-23

Concurrent CP/M System Guide 5.4 Disk Parameter Header

Field J
TBLSEG

Table 5-4. (continued)

Explanation

Table Segment. The Table Segment contains the
segment address of a table used for directory
hashing with CP/M disks, and as a File
Allocation Table (FAT) for DOS disks. For
drives that support both media, it must be
large enough to hold either one. If this
field is set to OFFFFH, GENCCPM will
automatically create the appropriate data
structures following the RSP area. The size
of the table is based on the DRM (Directory
Maximum) field in the DPB. For support of
both media the DRM field must be set to a
dummy value when GENCCPM is run to create the
correct size table. See Section 5.5.1 for
information on setting the DRM value. The
BDOS assumes the table offset to be zero.

Hashing is optional for CP/M disks, but the
table segment must be allocated for DOS media.
Thus for any drive that supports DOS disks,
hashing must be specified in GENCCPM. If
directory hashing is not used (CP/M media only
used in this drivel), set HSTBL to zero.
Including a hash table dramatically improves
disk performance. Each DPH using hashing must
reference a unique hash table. If a hash
table is desired, Length(hash table) =
4*(DRM+l) bytes. DRM is computed as part of
the DPB Worksheet. In other words, each entry
in the hash table must hold four bytes for
each directory entry of the disk. If this
field is OFFFFH, GENCCPM will automatically
create the appropriate data structures
following the RSP area.

Note: The data areas for the Data Buffers and
Hash Tables are not made part of the CCPM.SYS
file by GENCCPM.

5-24

(

Concurrent CP/M System Guide 5.4 Disk Parameter Header

Listing 5-4 illustrates the DPH definition:

;*********************************
;*
;* DPH Definition
;*
;*********************************

xlt equ word ptr 0
mf equ byte ptr 5
dpb equ word ptr 8
csv equ word ptr 10
alv equ word ptr 12
dirbdb equ word ptr 14
datbcb equ word ptr 16
tblseg equ word ptr 18

dpbase equ offset $;Base of Disk Parameter

dpeO dw xltO ;Translate Table
db 0,0,0 ;Scratch Area
db 0 ;Media Flag
db 0,0 ;Scratch Area
dw dpbO ;Dsk Parm Block
dw OFFFFH,OFFFFH ;Check, Alloc Vectors
dw OFFFFH ;Dir Buff Cntrl Blk
dw OFFFFH ;Data Buff Cntrl Blk
dw OFFFFH ;Table Segment

Headers

;--

Listing 5-4. DPH Definition

5-25

Concurrent CP/M System Guide 5.4 Disk Parameter Header

Given n disk drives, the DPHs can be arranged in a table whose first
row of 20 bytes corresponds to drive 0, with the last row
corresponding to drive n-1. The DPH Table has the following format:

DPH TBL:

00 XLTOO OOOOH

01 XLTOl OOOOH

(and so forth)

For
set

automatic table
these fields to

I

' OOOOH OOOOH DP BOO csvoo
OOOOH OOOOH DPBOl CSVOl

generation
OFFFFH:

I I

' ' ALVOO DIROO

ALVOl DIROO

Figure 5-5. DPH Table

by GENCCPM,

I I

' ' DATOO HSTOO

DATOO HSTOl

where the label DPH TBL defines the offset of the DPH Table in the
XIOS.

The IO SELDSK Function, defined in Section 5.1, returns the offset
of the-DPH from the beginning of the SYSDAT segment for the selected
drive. The sequence of operations in Listing 5-5 returns the table
offset, with a OOOOH returned if the selected drive does not exist.

·*** I

;* *
: * DISK IO CODE AREA *
·* * ,
·*** I

;=========
IO SELDSK: : Function 7: Select Disk
;=========

entry: CL
DL

exit: AX

disk to be selected
OOh if disk has not been previously selected
Olh if disk has been previously selected
O if illegal disk
offset of DPH relative from

XIOS Data Segment

Listing 5-5. SELDSK XIOS Function

5-26

Concurrent CP/M System Guide

xor bx,bx
cmp cl,15
ja sel ret

mov bl,cl
shl bx,l
mov bx,dph_tbl[bx]

or dl,dl
jnz sel ret

mov ch,O
mov si,cx
shl si,l

5.4 Disk Parameter Header

Get ready for error
Is it a valid drive
If not just exit

Index into the Dph's
get DPH address from table
in XIOS Header
First time select?
No, exit
Yes, set up DPH

call wordptr sel tbl[si]
sel ret:

mov ax,bx
ret

·---'

Listing 5-5. (continued)

The Translation Vectors, XLTOO through XLTn-1, whose offsets are
contained in the DPH Table as shown in Figure 5-5, are located
elsewhere in the XIOS, and correspond one-for-one with the logical
sector numbers zero through the sector count-1.

5.5 Disk Parameter Block

The Disk Parameter Block (DPB) contains parameters that define the
characteristics of each disk drive. The Disk Parameter Header (DPH)
points to a DPB thereby giving the BOOS necessary information on how
to access a disk. Several DPHs can address the same DPB if their
drive characteristics are identical.

When a drive supports both CP/M and DOS media, the IO SELDSK routine
must determine the type of media currently in the drive and return a
DPH with a pointer to a DPB with the correct values. The standard
CP/M DPB is shown in Figure 5-6. For DOS media, the standard DPB is
extended as shown in Figure 5-7. Each field of the standard DPB is
described in Table 5-5. The extended DPB is described in Table 5-6.
A worksheet is included to help you calculate the value for each
field.

5-27

Concurrent CP/M System Guide 5.5 Disk Parameter Block

OOH l SPT BSH BLM 1 EXM DSM DRM

.DRM ALO ALl c;s O;.F PSH J 08H

lOH [PRM

Figure 5-6. Disk ParaJDeter Block For:aat

Table 5-5. Disk Parameter Block Data Fields

Field 1 Explanation

SPT Sectors Per Track. The number of Sectors Per
Track equals the total number of physical
sectors per track. Physical sector size is
defined by PSH and PHM.

BSH Allocation Block Shift Factor. This value is
used by the BDOS to easily calculate a block
number, given a logical record number, by
shifting the record number BSH bits to the
right. BSH is determined by the allocation
block size chosen for the disk drive.

BLM Allocation Block Mask. This value is used by
the BDOS to easily calculate a logical record
offset within a given block though masking a
logical record number with BLM. The BLM is
determined by the allocation block size.

EXM Extent Mask. The Extent Mask determines the
maximum number of 16K logical extents contained
in a single directory entry. It is determined
by the allocation block size and the number of
blocks.

DSM Disk Storage Maximum. The Disk Storage Maximum
defines the total storage capacity of the disk
drive. This equals the total number of
allocation blocks for the drive, minus 1. DSM
must be less than or equal to 7FFFH. If the
disk uses 1024-byte blocks (BSH=3, BLM=7) DSM
must be less than or equal to 255.

5-28

Concurrent CP/M System Guide 5.5 Disk Parameter Block

Table 5-5. (continued)

Field I Explanation

DRM Directory Maximum. The Directory Maximum
defines the total number of directory entries
on this disk drive. This equals the total
number of directory entries that can be kept in
the allocation blocks reserved for the
directory, minus 1. Each directory entry is 32
bytes long. The maximum number of blocks that
can be allocated to the directory is 16, which
determines the maximum number of directory
entries allowed on the disk drive. At system
generation time DRM must be set to allow enough
space in TBLSEG for both the hash table and the
FAT if both CP/M and DOS media can be used in
the drive. See Section 5.5.1 "Disk Parameter
Block Worksheet" for information on how to
calculate the value for system generation.

ALO, ALl Directory Allocation Vector. The Directory
Allocation Vector is a bit map that is used to
quickly initialize the first 16 bits of the
Allocation Vector that is built when a disk
drive is logged in. Each bit, starting with
the high-order bit of ALO, represents an
allocation block being used for the directory.
ALO and ALl determine the amount of disk space
allocated for the directory.

CKS Checksum Vector Size. The Checksum Vector Size
determines the required length, in bytes, of
the directory checksum vector addressed in the
Disk Parameter Header. Each byte of the
checksum vector is the checksum of 4 directory
entries or 128 bytes. A checksum vector is
required for removable media in order to insure
the integrity of the drive. The high-order bit
in the CKS field indicates a permanent drive
and allows far better performance by delaying
writes. Typically, hard disk systems have the
value 80008, indicating no checksumming and
permanent media. On machines that can detect
the door open for removable media, a special
case occurs where checksumming is only done
when the Media Flag (MF) byte in the DPH is set
to OFFH. Normally, the disk is treated like a
permanent drive, allowing more optimal use. In
this case, adding 80008 to the CKS value
indicated a permanent drive with checksumming.

5-29

Concurrent CP/M System Guide 5.5 Disk Parameter Block

Table 5-5. {continued)

Field 1 Explanation

OFF Track Offset. The Track Offset is the number
of reserved tracks at the beginning of the
disk. OFF is equal to the zero-relative track
number on which the directory starts. It is
through this field that more than one logical
disk drive can be mapped onto a single physical
drive. Each logical drive has a different
Track Offset and all drives can use the same
physical disk drivers.

PSH Physical Record Shift Factor. The Physical
Record Shift Factor is used by the BDOS to
quickly calculate the physical record number
from the logical record number. The logical
record number is shifted PSH bits to the right
to calculate the physical record.

Note: In this context, physical record and
physical sector are equivalent terms.

PRM Physical Record Mask. The Physical Record Mask
is used by the BDOS to quickly calculate the
logical record offset within a physical record
by masking the logical record number with the
PRM value.

;******************************
;*
;* DPB Definition
;*
;******************************

spt equ word ptr 0
bsh equ byte ptr 2
blm equ byte ptr 3
exm equ byte ptr 4
dsm equ word ptr 5
drm equ word ptr 7
alO equ byte ptr 9
all equ byte ptr 10
cks equ word ptr 11
off equ word ptr 13
psh equ byte ptr 15
prm equ byte ptr 16

Listing 5-6. DPB Definition

5-30

Concurrent CP/M System Guide 5.5 Disk Parameter Block

dpbO equ offset $;Disk Parameter Block
dw 26 ;Sectors Per Track
db 3 ;Block Shift
db 7 ;Block Mask
db 0 ;Extnt Mask
dw 242 ;Disk Size - 1
dw 63 ;Directory Max
db 192 ;AllocO
db 0 ;Allocl
dw 16 ;Check Size
dw 2 ;Offset
db 0 ;Phys Sec Shift
db 0 ;Phys Rec Mask

·---'

Listing 5-6. (continued)

Figure 5-7 shows the extended DPB; Table 5-6 describes its fields.

OOH fExT-~LAG I NFATS NFATRECS NCLSTRS

08H I CLSIZE FAT ADD SPT BSH BLM

lOH EXM DSM DRM ALO ALl CKS ..•

18H .. CKS OFF PSH PHM

Figure 5-7. Extended Disk Parameter Block Format

5-31

Concurrent CP/M System Guide 5.5 Disk Parameter Block

Table 5-6. Extended Disk Parameter Block Data Fields

Field l
EXTFLAG

NF ATS

Explanation

Extended DPB Flag. The extended DPB flag is
used to determine the media format currently in
the drive. If EXTFLAG is set to OFFFFH the
drive contains DOS media. For CP/M media, the
first field in the DPB is SPT (Sectors Per
Track) and the DPB is not extended.

Number of File Allocation Tables. This is the
number of file allocation tables contained on
the DOS disk. Multiple copies of the FAT can
be kept on the disk as a backup if a read or
write error occurs.

NFATRECS Number of File Allocation Table Records. The
number of physical sectors in the file
allocation table.

NCLSTRS

CLSIZE

FA TADD

Number of Clusters. The number of clusters on
the DOS disk. Cluster 2 is the first data
cluster to be allocated following the
directory, and cluster NCLSTRS - 1 is the last
available cluster on the disk.

Cluster Size. The number of bytes per data
cluster. This must be a multiple of the
physical sector size.

File Allocation Table Address. The physical
record number of the first file allocation
table on the DOS disk.

SPT Sectors Per Track. Same as CP/M (Table 5-5).

BSH Allocation Block Shift Factor. Same as CP/M.
Used with BLM and DSM to define media capacity
to CP/M. See Table 5-5.

BLM Allocation Block Mask. See BSH.

EXM Extent Mask. Must be zero (OOH) for DOS media.

DSM Disk Storage Maximum. See BSH.

5-32

Concurrent CP/M System Guide 5.5 Disk Parameter Block

Table 5-6. (continued)

Field l Explanation

ORM Directory Maximum. The number of entries - 1
in the root directory. At system generation
time ORM must be set to allow enough spa·ce in
TBLSEG for both the hash table and the FAT if
both CP/M and DOS media can be used in the
drive. See Section 5.5.1 "Disk Parameter Block
Worksheet" for information on how to calculate
the value for system generation.

ALO, ALl Not used for DOS media.

CKS Checksum Vector Size. Same as CP/M (Table 5-5).

OFF Track Offset. Same as CP/M (Table 5-5).

PSH Physical Record Shift Factor.
(Table 5-5).

Same as CP/M

PRM Physical Record Mask. Same as CP/M (Table 5-
5).

5-33

Concurrent CP/M System Guide 5.5 Disk Parameter Block

Listing 5-7 illustrates the extended DPB definition:

~******************************
; *
;* Extended DPB Definition
; *
;******************************

ext flag equ word ptr 0
nfats equ word ptr 2
nfatrecs equ word ptr 4
nclstrs equ word ptr 6
clsize equ word ptr 8
fatadd equ word ptr 10
spt equ word ptr 12
bsh equ byte ptr 14
blm equ byte ptr 15
exm equ byte ptr 16
dsm equ word ptr 17
drm equ word ptr 19
alO equ byte ptr 21
all equ byte ptr 22
cks equ word ~-1-~ 23 .t-~~

off equ word ptr 25
psh equ byte ptr 27
prm equ byte ptr 28

dpbO equ offset $
dw OFFFFh
dw 2
dw 6
dw 500
dw 1024
dw 1
dw 26
db 3
db 7
db 0
dw 499
dw 67
db 0
db 0
dw 17
dw 0
db 0
db 0

;Disk Parameter Block
;Dos media - extended DPB
;Number of FATS
;Number FAT sectors
;Number of clusters
;Cluster Size
;Sector address of FAT
;Sectors Per Track
;Block Shift
;Block Mask
;Extnt Mask
;Disk Size - 1
;Directory Max
;AllocO
;Allocl
;Check Size
;Offset
;Phys Sec Shift
;Phys Rec Mask

;---

Listing 5-7. Extended DPB Definition

5-34

Concurrent CP/M System Guide 5.5 Disk Parameter Block

5.5.1 Disk Parameter Block Worksheet

This worksheet is intended to help you create a Disk Parameter Block
containing the specifications for the particular disk hardware you
are implementing. After calculating the disk parameters according
to the directions given below, enter the value into the disk
parameter list following the Worksheet. That way, all the values
you have calculated will be in one place for a convenient reference.
The following steps, which result in values to be placed in the DPB,
are labeled "field in Disk Parameter Block".

In this worksheet, the fields common to both DPBs are calculated
first, then the fields for the extended (DOS) DPB.

<A> Allocation Block Size

Concurrent CP/M allocates disk space in a unit known as an
allocation block. This is the minimum allocation of disk space
given to a file. This value may be 1024, 2048, 4096, 8192, or
16384 decimal bytes, or 400H, 800H, lOOOH, 2000H, or 4000H
bytes, respectively. Values for DOS disks might differ from
this range. Choosing a large allocation block size allows more
efficient usage of directory space for large files and allows a
greater number of directory entries. On the other hand, a
large allocation block size increase.s the average wasted space
per disk file. This is the allocated disk space beyond the
logical end of a disk file. Also, choosing a smaller block
size increases the size of the allocation vectors because there
is a greater number of smaller blocks on the same size disk.
Several restrictions on the block size exist. If the block
size is 1024 bytes, there cannot be more than 255 blocks
present on a logical drive. In other words, if the disk is
larger than 256K bytes, it is necessary to use at least 2048-
byte blocks.

 BSH
<C> BLM

Block Shift field in Disk Parameter Block
Block Mask field in Disk Parameter Block

Determine the values of BSH and BLM from the following table
given the value <A>.

Table 5-7. BSH and BLM Values

<A> l BSH l BLM

1,024 3 7
2,048 4 15
4,096 5 31
8,192 6 63

16,384 7 127

5-35

Concurrent CP/M System Guide 5.5 Disk Parameter Block

Note: Values for DOS disks might extend beyond this range.

<D> Total Allocation Blocks

Determine the total number of allocation blocks on the disk
drive. The total available space on the drive, in bytes, is
calculated by multiplying the total number of tracks on the
disk, minus reserved operating system tracks, by the number of
sectors per track and the physical sector size. This figure is
then divided by the allocation block size determined in <A>
above. This latter value, rounded down to the next lowest
integer value, is the Total Allocation Blocks for the drive.

<E> DSM Disk Size Max field in Disk Parameter Block

The value of DSM equals the maximum number of allocation blocks
that this particular drive supports, minus 1.

Note: The product (Allocation Block Size)* (DSM+l) is the
total number of bytes the drive holds and must be within the
capacity of the physical disk, not counting the reserved
operating system tracks.

<F> EXM Extent Mask field in Disk Parameter Block

For CP/M, obtain the value of EXM from the following table,
using the values of <A> and <E>. (N/A = not available). For
DOS, EXM must be zero.

Table 5-8. EXM Values

<A> I If <E> is I If <E> is greater than or
less than 256 equal to 256

1,024 0 N/A
2,048 1 0
4,096 3 1
8,192 7 3

16,384 15 7

<G> Directory Blocks

Determine the number of Allocation Blocks reserved for the
directory. This value must be between 1 and 16.

5-36

Concurrent CP/M System Guide 5.5 Disk Parameter Block

<H> Directory Entries per Block

From the following table, determine the number of directory
entries per Directory Block, given the Allocation Block size,
<A>.

Table 5-9. Directory Entries per Block Size

<A> I # entries

1,024 32
2,048 64
4,096 128
8,192 256

16,384 512

<I> Total directory entries

Determine the total number of Directory Entries by multiplying
<G> by <H>.

<J> ORM Directory Max field in Disk Parameter Block

Determine DRM by subtracting 1 from <I>. This is the value
that must be in the DRM field at run time.

The DRM field is also used by GENCCPM to allocate the hash
table for CP/M or the FAT for DOS. If both types of media are
allowed in the drive, DRM must be set to allocate the space
needed for the largest of the hash table or the FAT. The value
(I-1) calculated above will allocate the correct amount of
space for the CP/M hash table. The value to allocate space for
the FAT is calculated by:

DRM := (NFATRECS * 2 A PSH * 128) I 4

The values for this equation can be found in <T>, and <P>
calculated below. Set DRM to the largest of the two values for
system generation. Set it to I - 1 at run time.

<K> ALO, ALl Directory Allocation vector O, 1
field in Disk Parameter Block

For CP/M disks determine ALO and ALl from the following table,
given the number of Directory Blocks, <G>. DOS disks do not
use these fields.

5-37

Concurrent CP/M System Guide 5.5 Disk Parameter Block

Table 5-10. ALO, ALl Values

<G> 1 ALO I ALl I <G> l ALO I ALl

, BOH OOH 9 OFFH 80H .1.

2 OCOH OOH 10 OFFH OCOH
3 OEOH OOH 11 OFFH OEOH
4 OFOH OOH 12 OFFH OFOH
5 OF8H OOH 13 OFFH 0F8H
6 OFCH OOH 14 OFFH OFCH
7 OFEH OOH 15 OFFH OFEH
8 OFFH OOH 16 OFFH OFFH

<L> CKS Checksum field in Disk Parameter Block

Determine the Size of the Checksum Vector. If the disk drive
media is permanent, then the value should be 8000H. If the
disk drive media is removable, the value should be ((<I>-
1)/4)+1. If the disk drive media is removable and the Media
Flag is implemented (door open can be detected through
interrupt), CKS should equal (((<I>-1)/4)+1)+ 8000H. The
Checksum Vector should be CKS bytes long and addressed in the
DPH.

<M> OFF Offset field in Disk Parameter Block

The OFF field determines the number of tracks that are skipped
at the beginning of the physical disk. The BDOS automatically
adds this to the value of TRACK in the IOPB and can be used as
a mechanism for skipping reserved operating system tracks, or
for partitioning a large disk into smaller logical drives.

<N> Size of Allocation Vector

In the DPH, the Allocation Vector is addressed by the ALV
field. The size of this vector is determined by the number of
Allocation Blocks. Each byte in the vector represents four
blocks, or Size of Allocation Vector= ((<E>/8)+1)*2.

<O> Physical Sector Size

Specify the Physical Sector Size of the Disk Drive. Note that
the Physical Sector Size must be greater than or equal to 128
and less than 4096 or the Allocation Block Size, whichever is
smaller. This value is typically the smallest unit that can be
read or written to the disk. This field must be filled in for
PC-MODE.

5-38

Concurrent CP/M System Guide 5.5 Disk Parameter Block

<P> PSH
<Q> PRM

Physical record SHift field in Disk Parameter Block
Physical Record Mask in Disk Parameter Block

<R>

Determine the values of PSH and PRM from the following table
given the Physical Sector Size. These fields must be filled in
for PC-MODE.

Table 5-11. PSH and PRM Values

<O> l PSH l PRM

128 0 0
256 1 1
512 2 3

1024 3 7
2048 4 15
4096 5 31

EXTFLAG DPB Extended Flag

If this is the DPB for a DOS disk, the DPB is an extended DPB
and this field must be OFFFFH.

<S> NFATS Number of File Allocation Tables

This field must be set to the number of file allocation tables
on the disk currently in the drive.

<T> NFATRECS Number of FAT Records

This field is the number of physical sectors in the file
allocation table. This value can be calculated from the number
of clusters <U> and the physical sector size <O> using the
following formula:

<T> := (<U>* 1.5 + <O> - 1) I <O>

<U> NCLSTRS Number of Clusters

This field is the number of clusters on the DOS disk.

<V> CLSIZE Cluster Size

This field is the number of bytes per cluster. Clusters are
similar to CP/M allocation blocks. See <A> above.

5-39

Concurrent CP/M System Guide 5.5 Disk Parameter Block

<W> FATADD File Allocation Table Address

This field is the physical sector number of the first file
allocation table on the DOS disk.

5.5.2 Disk Parameter List Worksheet

<A> Allocation Block Size

 BSH field in Disk Parameter Block

<C> BLM field in Disk Parameter Block

<D> Total Allocation Blocks

<E> DSM field in Disk Parameter Block

<F> EXM field in Disk Parameter Block

<G> Directory Blocks

<H> Directory Entries per Block

<I> Total directory entries

<J> DRM field in Disk Parameter Block

<K> ALO,ALl fields in Disk Parameter Block

<L> CKS field in Disk Parameter Block

<M> OFF field in Disk Parameter Block

<N> Size of Allocation Vector

<O> Physical Sector Size

<P> PSH field in Disk Parameter Block

5-40

Concurrent CP/M System Guide 5.5 Disk Parameter Block

<Q> PRM field in Disk Parameter Block ----------

<R> EXT FLAG field in Extended Disk Parameter Block -----··----

<S> NF ATS field in Extended Disk Parameter Block --·-------

<T> NFATRECS field in Extended Disk Parameter Block ·- ------------

<U> NCLSTRS field in Extended Disk Parameter Block -----------

<V> CLSIZE field in Extended Disk Parameter Block - - ----·--- --

<W> FAT ADD field in Extended Disk Parameter Block ----------- -

5.6 Buffer Control Block Data Area

The Buffer Control Blocks (BCBs) locate physical record buffers for
the BDOS. BCBs are usually generated automatically by GENCCPM. The
BOOS uses the BCB to manage the physical record buffers during
processing. More than one Disk Parameter Header (DPH) can specify
the same list of BCBs. The BDOS distinguishes between two kinds of
BCBs, directory buffers, referenced by the DIRBCB field of the DPH,
and data buffers, referenced by DATBCB field of the DPH.

The DIRBCB and DATBCB fields each contain the offset address of a
Buffer Control Block Header. The BCE Header contains the offset of
the first BCE in a linked list of BCBs. Each BCE has a LINK field
containing the address of the next BCE in the list, or OOOOH if it
is the last BCB. All BCE Headers and BCBs must reside within the
SYSDAT segment.

BCBLR MBCBP

Figure 5-8. Buffer Control Block Header

5-41

Concurrent CP/M System Guide 5.6 Buffer Control Block

Table 5-12. Buffer Control Block Header Data Fields

Field l
BCBLR

MBCBP

Explanation

Buffer Control Block List Root. The Buffer
Control Block List Root points to the first
BCB in a linked list of BCB's.

Maximum BCB's per Process. The MBCBP is the
maximum number of BCB's that the BOOS can
allocate to any single process at one time.
If the number of BCB's required by a process
is greater than MBCBP, the BOOS reuses BCB's
previously allocated to this process on a
least-recently-used (LRU) basis.

Listing 5-8 illustrates the BCB Header definition:

;****************************
; *
;* BCB Header Definition
; *
;****************************

bcbl.i:
mbcbp

equ
equ

dirbcb dw
db

word ptr 0
byte ptr 2

dirbcbO
4

;BCB List Head
;Max# BCB's/Process

;---

Listing 5-8. DCB Header Definition

Figure 5-9 shows the format of the Directory Buffer Control Block:

OOH: ORV l RECORD WFLG l SEQ TRACK

08H: SECTOR l BUFOFF LINK PDADR

Figure 5-9. Directory Buffer Control Block (DIRBCB)

5-42

Concurrent CP/M System Guide 5.6 Buffer Control Block

Table 5-13. DIRBCB Data Fields

Field] Explanation

DRV Logical Drive Number. The Logical Drive Number
identifies the disk drive associated with the
physical sector contained in the buffer. The
initial value of the DRV field must be OFFH. If
ORV = OFFh then the BOOS considers that the
buffer contains no data and is available for
use.

RECORD

WFLG

SEQ

TRACK

SECTOR

BUFOFF

LINK

PDADR

Record Number. The Record Number identifies the
logical record position of the current buffer
for the specified drive. The record number is
relative to the beginning of the logical disk,
where the first record of the directory is
logical record number zero.

Write Pending Flag. The BDOS sets the Write
Pending Flag to OFFH to indicate that the buffer
contains unwritten data. When the data are
written to the disk, the BDOS sets the WFLG to
zero to indicate that the buffer is no longer
dirty.

Sequential Access Counter. The BDOS uses the
Sequential Access Counter during blocking and
deblocking to detect whether the buffer is being
accessed sequentially or randomly. If
sequential access is used, the BOOS allows reuse
of the buffer to avoid consumption of all
buffers during sequential I/O.

Logical Track Number. The 'I'RACK is the logical
track number for the current buffer.

Physical Sector Number. SECTOR is the logical
sector number for the current buffer.

Buffer Offset. For DIRBCBs, this field equals
the offset address of the buffer within SYSDAT.

Link to next DIRBCB. The Link field contains
the offset address of the next BCB in the linked
list, or OOOOH, if this is the last BCB in the
linked list.

Process Descriptor Address. The BDOS uses the
Process Descriptor Address to identify the
process which owns the current buffer.

5-43

Concurrent CP/M System Guide 5.6 Buffer Control Block

The buffer a·ssociated with the BCB must be large enough to
accommodate the largest physical record (equivalent to physical
sector) associated with any DPH referencing the BCBs. The initial
value of the DRV field must be OFFH. When the DRV field contains
OFFH, the BDOS considers that the buffer contains no data and is
available for use. When WFLG equals OFFH, the buffer contains data
that the BDOS has to write to the disk before the buffer is
available for other data.

Directory BCBs never have the BCB WFLG parameter set to OFFH because
directory buffers are always written immediately. The BDOS
postpones only data buffer write operations. Thus, only data BCBs
can have dirty buffers.

The data and directory BCBs must be separate. This is to ensure
that a buffer with a clear WFLG is available when the BDOS verifies
the directory. If all the buffers contain new data (WFLG set to
OFFH), the BDOS has to perform a write before it can verify that the
disk media has changed. This could result in data being written on
the wrong disk inadvertently. The following listing illustrates the
DIRBCB definition:

;*******************************
;*
;* DIRBCB Definition
;*
;*******************************

drv equ
record equ
wflg equ
seq equ
track equ
sector equ
bufoff equ
link equ
pdadr equ

dirbcbO db
rb
rb
rw
dw
dw
rw

byte ptr
byte ptr
byte ptr
byte ptr
word ptr
word ptr
word ptr
word ptr
word ptr

Offh
3
2
2
dirbufO
dirbcbl
1

0
1
4
5
6
8
10
12
14

;Drive
;Record
;Pending, Sequence
;Track, Sector
;Buffer Offset
;Link
;PD Address

·---'

Listing 5-9. DIRBCB Definition

5-44

Concurrent CP/M System Guide 5.6 Buffer Control Block

Figure 5-10 shows the format of the Data Buffer Control Block
(DATBCB):

OOH: ORV l RECORD WFLG l SEQ TRACK

I
I

SECTOR BUFSEG LINK PDADR 08H:

Figure 5-10. Data Buffer Control Block (DATBCB)

The DATBCB is identical to the DIRBCB, except for the BUFSEG Field
described in Table 5-14.

Field 1
BUFSEG

Table 5-14. DATBCB Data Fields

Explanation

Buffer Segment. For BCBs describing data
buffers, this field equals the segment address
of the Data Buffer. The offset address of the
buffer is assumed to be zero. The actual
buffer can be anywhere in memory on a paragraph
boundary that is not in the system TPA.

5-45

Concurrent CP/M System Guide 5.6 Buffer Control Block

Listing 5-10 illustrates the DATBCB definition:

~*******************************
;*
;* DATBCB Definition
;*
;*******************************

drv equ byte ptr 0
record equ byte ptr 1
wflg equ byte ptr 4
seq equ byte ptr 5
track equ word ptr 6
sector equ word ptr 8
buf seg equ word ptr 10
link equ word ptr 12
pdadr equ word ptr 14

datbcbO db Of fh
rb 3
rb 2
rw 2
dw dirbufO
dw dirbcbl
rw 1

;Drive
;Record
;Pending, Sequence
;Track, Sector
;Buffer Segment
;Link
;PD Address

·---,

Listing 5-10. DATBCB Definition

5-46

Concurrent CP/M System Guide 5.7 Memory Disk Application

5.7 Memory Disk App1ication

A memory disk or M disk is a prime example of the ability of the
Basic Disk Operating System to interface to a wide variety of disk
drives. A memory disk uses an area of RAM to simulate a small
capacity disk drive, making a very fast temporary disk. The M disk
can be specified by GENCCPM as the temporary drive. The example
XIOS implements an M disk for the IBM PC. This section discusses a
similar M disk implementation as shown in Listing 5-11.

In Listing 5-11, the M disk memory space begins at the OCOOOH
paragraph boundary and extends for 128 Kbytes, through the ODFFFH
paragraph. It is assumed the XIOS INIT routine calls the
INIT M DSK: code, which initializes the directory area of the M
disk;- the first 16 Kbytes, to OE5H.

Both the M disk READ and WRITE routines first call the MDISK CALC:
routine. This code calculates the paragraph address of the current
sector in memory, and the number of words of data to read or write.
The number of sectors per track for the M disk is set to 8,
simplifying the calculation of the sector address to a simple shift­
and-add operation. The multisector count is multiplied by the
length of a sector to give the number of words to transfer.

The READ M DISK: routine gets the current DMA address from the IOPB
on the stack, and using the parameters returned by the MDISK CALC!
routine, block-moves the requested data to the DMA buffer~ The
WRITE M DISK: routine is similar except for the direction of data
transfer.

A Disk Parameter Block for the M disk, illustrated at the end of the
example, is provided for reference. A hash table is provided in
order to increase performance to the maximum. However, this field
can be set to zero if directory hashing is not desirable due to
space limitations.

5-47

Concurrent CP/M System Guide 5.7 Memory Disk Application

Listing 5-11 illustrates an M disk implementation:

;***
M DISK EQUATES

i***

mdiskbase equ OCOOOh ;base paragraph
;address of rndisk

;***
M DISK INITIALIZATION

;***
init m dsk:

mov cx,rndiskbase
push es ! mov es,cx
xor di,di
mov ax,Oe5e5h
cmp es:[di],ax

;check if already initialized
je mdisk end

mov cx,2000h
rep stos ax

;Tnitialize 16K bytes
;of M disk directory to OE5h's

mdisk end:
pop es
ret

;***
M DISK CODE I

;***

;========
IO READ: ; Function 11: Read sector
;========

Reads the sector on the current disk, track and
sector into the current DMA buffer.

entry: parameters on stack
exit: AL 00 if no error occurred

AL = 01 if an error occurred

read rn dsk:
·----------' call mdisk calc

push es
les di,dword ptr dmaoff
xor si,si
push ds
mov ds,bx
rep movsw
pop ds
pop es
xor ax,ax
ret

;calculate byte address
;save UDA
;load destination DMA address
;setup source DMA address
;save current DS
;load pointer to sector in memory
;execute move of 128 bytes
;then restore user DS register
;restore UDA
;return with good return code

Listing 5-11. Example M disk implementation

5-48

Concurrent CP/M System Guide 5.7 Memory Disk Application

; -==;:-======
IO WRITE: ; Function 12: Write disk
;========

Write the sector in the current Dma buffer
to the current disk on the current
track in the current sector.

entry: CL = 0 - Deferred Writes
l - nondeferred writes
2 - def-wrt 1st sect unalloc blk

exit: AL OOH if no error occurred
OlH if error occurred
02H if read only disk

write m dsk:
;-----------

call mdisk calc
push es

;calculate byte address
;save UDA

mov es,bx
xor oi,di
push ds
lds si,dword
rep movsw
pop ds
pop EoS

xor ax,ax
ret

mdisk calc:
;----------

;setup destination OMA address

;save user segment register
ptr dmaoff ;load source DMA address

;move from user to disk in memory
;restore user segment pointer
;restore UDA
;return no error

entry:
exit:

IOPB variables on the stack
BX sector paragraph address

mov
mov

shl
mov
add
mov

shl
add

mov

mov
xor
mul
mov
cld
ret

ex = length in words to transfer

bx, track
cl,3

bx, cl
ex, sector
bx, ex
cl,3

bx,cl
bx,mdiskbase

cx,64

al,mcnt
ah, ah
ex
cx,ax

;pickup track number
;times eight for relative

sector number

;plus sector
;gives relative sector number
;times eight for paragraph

of sector start

;plus base address of disk
in memory

;length in words for move
of 1 sector

;length * multisector count

Listing 5-11. (continued)

5-49

Concurrent CP/M System Guide 5.7 Memory Disk Application

;***
M DISK - DISK PARAMETER BLOCK ,

;***

dpbO

xltS
alsS
cssS
hss5

equ
dw
db
db
db
dw
dw
db
db
dw
dw
db
db

equ
equ
equ
equ

-~.C.--.L <"
VL.L>:>t;:I... 'i'

8
3
7
0
126
31
128
0
0
0
0
0

0
16*2
0
{32 * 4)

- f"'\..:,,_ n-----.L-- Block i LJ ..L i:>.l\. rCLJ.a.Ult::l...t:J.

;Sectors Per Track
;Block Shift
;Block Mask
;Extnt Mask
;Disk Size - 1
;Directory Max
;Al loco
;Allocl
;Check Size
;Offset
;Phys Sec Shift
;Phys Sec Mask

;No Translate Table
;Allocation Vector Size
;Check Vector Size
;Hash Table Size

·---'

Listing 5-11. (continued)

5.8 Multiple Media Support

Disk access is controled by a number of data structures, that
describe various parameters of the disk. Some of these parameters
are set in the code of the XIOS, others are filled in by GENCCPM.
When a particular disk drive can have more than one type of disk in
it (for example different densities or CP/M and PC-DOS disks) some
of these parameters must be set at run time. This section explains
how these parameters are set up, and which ones must be changed at
run time.

Each disk drive is described by a disk parameter header (DPH) that
gives addresses for several data structures needed in using the
disk, including the Disk Parameter Block (DPB). The DPB describes
the disk in more detail, such as the size of the directory and the
total storage capacity of the drive. The information in the DPB
will be different if a different density or format disk is used.

5-50

Concurrent CP/M System Guide 5.8 Multiple Media Support

The DPH is located by the DPH(A) through DPH(P) pointers in the XIOS
header. See Section 3 .1 "XIOS Header" for more information on these
pointers. The fields in the DPH can be filled in by hard coding the
values in the XIOS or if they are set to OFFFFH, GENCCPM will
calculate and fill in the values. GENCCPM also allocates space for
the needed buffers and vectors.

If a drive supports more than one type of media, the buffers
allocated must be large enough to hold the information needed for
any of the possible media. This may require creating a dummy DPH
and DPB for GENCCPM to use while allocating the buffers. For DOS
and CP/M disks, the same table area (pointed to by TBLSEG in the
DPH) is used for the hash table (CP/M) and the FAT (DOS). The space
GENCCPM allocates for this is based on the DRM value in the DPB.
See Section 5.5.l for information on setting DRM.

Auto Density Support is the ability to support different types of
media on the same drive. Some floppy disk drives can read many
different disk formats. Auto Density Support enables the XIOS to
determine the density of the diskette when the IO SELDSK function is
called, and to detect a change in density when the IO READ or
IO WRITE functions are called. -

To implement Auto Density Support or support for both CP/M and DOS
media, the XIOS disk driver must include a DPB for each disk format
expected, or routines to generate proper DPI3 values automatically in
real time. It must also be able to determine the type and format of
the disk when the IO SELDSK function is called for the first time,
set the DPH to address the DPB that describes the media, and return
the address of the DPH to the BDOS. If unable to determine the
format, the IO SELDSK function can return a zero, indicating that
the select opera ti on was not successful. On all subsequent
IO SELDSK calls, the XIOS must continue to return the address of the
same DPH; a return value of zero is only allowed on the initial
IO SELDSK call.

Once the IO SELDSK routine has determined the format of the disk,
the IO READ and IO WRITE routines assume this format is correct
until an error is detected. If an XIOS function encounters an error
and determines that the media has been changed to another format, it
must abandon the operation and return OFFH to the BOOS. This
prompts the BDOS to make another initial IO SELDSK call to
reestablish the media type. XIOS routines must-not modify the
drive' s DPH or DPB until the IO SELDSK call is made. This is
because the BDOS can also determine that the media has changed, and
can make an initial IO SELDSK call even though the XIOS routines
have not detected any Change.

End of Section 5

5-51

(

Section 6
PC-MODE Character 1/0

This section describes functions that must be implemented in the
XIOS to support PC-MODE. ·rhese functions emulate some of the PC
interrupts, allowing DOS programs to run.

There are seven functions that must be added to the XIOS to support
PC-MODE. These are functions 30 through 36. This chapter describes
functions 30 through 34, that are used for character I/O. Functions
35 and 36 are for disk I/O, and are described in Section 5. Note
that the XIOS function table must be extended for these functions.
See Section 3.3 "XIOS ENTRY" for more information on the function
table.

Implementing these functions requires data structures similar to
those used in screen buffering. See Section 4.2 "Console I/O
Functions" for more information on screen buffering. Screen
buffering is assumed in the descriptions of all the routines in this
chapter.

6.1 Screen I/O Functions

Function 30, IO SCREEN either returns the current screen mode, or
sets the screen to a certain mode. The mode tells whether the
screen is displaying text or graphics, and the screen size.
Function 31, IO VIDEO, provides functions for getting and setting
the cursor positl.on and attributes, as well as scrolling the screen
and writing characters. This function emulates 8 of the 16
subfunctions of DOS's interrupt 10.

6-1

Concurrent CP/M System Guide 6.1 Screen I/O Functions

IO SCREEN GET/SET SCREEN

Get or Set the Current Screen

Entry Parameters:
Register AL:

CH:
CL:
DL:

Returned Value:
Register AX:

AX:

!EH (30)
O = Set, 1 = Get
Mode if CH = 0 (Set)
Virtual console number

Mode if CH = 1 (Get)
FFFFH if mode not supported
(Set)
FFFEH if bad parameters
(Set)
OOOOH if successful (Set)

ES, DS, SS, SP preserved

IO SCREEN can be called to either return the current screen mode
(Get) or to set the screen to a certain mode (Set). Set is
indicated by a zero in CH, Get is indicated by a 1 in CH. IO SCREEN
is called to operate on a virtual console, indicated by DL. The
sample XIOS's keep a record of the mode of each virtual console in
the screen structure. The screen mode must be initialized to a
nonzero value when the system is initialized. This function is also
used for GSX support. See Appendix B.

When IO SCREEN is called to set the screen mode (CH
contains the mode in the following format:

CH CL

OOH x y

0), CL

where y indicates the alphanumeric modes and x indicates graphics
modes. Either x or y will have a value, the other will be zero.
The alphanumeric modes (values for y) are shown in Table 6-1. The
graphics modes (values for x) are shown in Table 6-2. The value 1
(general alphanumeric or general graphic mode) comes from the GSX
graphics system's GIOS to indicate a mode switch. The GIOS does its
own hardware initialization.

6-2

Concurrent CP/M System Guide 6.1 Screen I/O Functions

If the calling process is in the background and wants to set its
mode to graphics, IO SCREEN must flagwait the process. The
corresponding flagset takes place in the IO SWITCH routine, when the
process's virtual console is switched to the foreground. For
further information on the IO SWITCH routine, see Section 4.2
"Console I/O Functions".

Set should initialize the hardware if necessary.

When IO SCREEN is called with CH = 1 (get) it returns the screen
mode (from the screen structure) in the following format:

CH CL

Cols x y

where # Cols is the number of columns on the screen, x is the
graphics mode (Table 6-2), and y is the alphanumeric mode (Table 6-
1).

Table 6-1. Alphanuaeric Modes

y Value l Meaning

1 General alphanumeric mode
2 40 x 25 monochrome
3 40 x 25 color
4 80 x 25 monochrome
5 80 x 25 color

6 - 8 Reserved
9 80 x 25 monochrome card

10 - 15 Reserved

Table 6-2. Graphics Modes

x Value I Meaning

1 General graphics mode
2 320 x 200 color
3 320 x 200 monochrome
4 640 x 200 monochrome

5 - 15 Reserved

6-3

Concurrent CP/M System Guide 6.1 Screen I/O Functions

IO VIDEO (Function 31) emulates 8 of the 16 subfunctions of DOS's
interrupt 10. It will set and read the cursor position, scroll the
screen, set and read attributes, and write characters to the screen.

IO VIDEO VIDEO INPUT/OUTPUT

Manipulate the Video Screen

Entry Parameters:
Register AL: lFH (31)

BL: Sub Function
CX: Input parameter

(see below)
DX: Input parameter

(see below)

Returned Value:
Depends on subfunction. See below.

ES, DS, SS, SP preserved

The IO VIDEO function must implement at least 8 of the 16
subfunctions of DOS's interrupt 10. All 16 can be implemented if
desired, and if the hardware supports them. The 8 required
subfunctions are described below.

SET CURSOR POSITION (BL 2)

entry: CH
CL
DL

exit: none

row
column
virtual console number

This function sets the cursor position to the specified row and
column. It updates the cursor position in the screen structure for
the specified virtual console. It also updates the physical screen
if this virtual console is in the foreground.

6-4

I

\

Concurrent CP/M System Guide 6.1 Screen I/O Functions

READ CURSOR POSITION (BL 3)

entry: DL
exit: AH

AL

virtual console number
row
column

This function returns the current cursor position for the virtual
console from the screen structure.

SCROLL UP (BL 6)

entry: CX = segment of Parameter structure
DX = off set of parameter structure

exit: none

This function accesses the parameter structure and scrolls up the
specified window on the virtual console. The window is specified by
giving the row and column of the upper left and lower right corners
of the rectangle. If the number of lines to scroll is O, the window
should be cleared. The parameter structure is as follows:

0:

2:

4:

6:

8:

A

B l
(row) c

(row) D

vc J
where: A

B
c
D
vc

RSVD

(col)

(col)

number of lines
attribute of blank lines
row, column of upper left
row, column of lower right
virtual console number

If screen buffering is implemented, scrolling must take place in the
screen buffer. If the virtual console is in the foreground, and the
physical console is a serial terminal, the display must also be
updated. Parameter B contains the attributes desired for the new
blank lines to be added in the window. The method of displaying the
scrolled window on the physical console depends on the hardware.

6-5

Concurrent CP/M System Guide 6.1 Screen I/O Functions

SCROLL DOWN (BL = 7)

entry: CX = segment of parameter structure
DX = offset of parameter structure

exit: none

This function accesses the parameter structure and scrolls down the
specified window on the virtual console, similar to the previous
subfunction. The parameter structure is as follows:

0:

2:

4:

6:

8:

A

B l
(row) C

(row) D

vc J
where: A

B
c
D
vc

RSVD

(col)

(col)

number of lines
attribute of blank lines
row, column of upper left
row, column of lower right
virtual console number

Refer to scroll up above for more information.

READ ATTRIBUTE/CHARACTER (BL = 8)

entry: DL
exit: AH

AL

virtual console number
attribute
character

This function accesses the screen structure for the virtual console
and returns the character and the attribute byte for the current
cursor position.

In the example XIOS's, this subfunction involves: 1) Using the
virtual console number to look up the screen structure. 2) Get the
screen buffer address and cursor position from the screen structure.
3) Look up the screen buffer, and use the cursor position as an
offset to get the current character and attribute byte.

6-6

Concurrent CP/M System Guide 6.1 Screen I/O Functions

WRITE ATTRIBUTE/CHARACTER (BL 9)

entry: ex = segment of parameter structure
DX = offset of parameter structure

exit: none

This function writes a character and an attribute byte to a screen
image. The new character and attribute are written at the current
cursor position, and the cursor position moved to the new character.
This may involve handling an end of line or end of screen condition.
Any number of the same character and attributes can be written by
specifying the count in ex. If this virtual console is in the
foreground, and the physical console is a serial terminal, it must
be updated with the new characters and attributes. The parameter
structure is as follows:

0:

2:

4:

6:

8:

RSVD A

RSVD B

c

RESERVED

vc J
where: A character

B attributes
C number of characters to repeat
VC = virtual console number

WRITE CHARACTER (BL 10)

entry: CX = segment of parameter structure
DX = Off set of parameter structure

exit: none

'This function writes a character to the screen buffer at the current
cursor position, with the same attribute(s) as the previous
character. The character can be repeated by specifying a count in
C. If the virtual console is in the foreground, and the physical
console is a serial terminal, it must also be updated. The
parameter structure is as follows:

6-7

Concurrent CP/M System Guide 6.1 Screen I/O Functions

0:

2:

4:

6:

8:

RSVD I A

RESERVED

c

RESERVED

VC J

where: A = character
C = number of characters to repeat
VC = virtual console number

WRITE SERIAL CHARACTER (BL 14)

entry: CL = character
DL = virtual console number

exit: none

This function writes a character to the screen image at the current
cursor position, and to the physical screen if the virtual console
is in the foreground. It functions similarly to write character
(above) but does not allow repeated characters. This is a teletype
write, and does not allow escape sequences.

6-8

Concurrent CP/M System Guide 6.2 Keyboard Functions

6.2 Keyboard Functions

These two functions are used for handling function keys and the
shift status of the keyboard when running in PC-MODE.

IO KEYBD KEYBOARD MODE -

Enable/Disable PC-MODE

Entry Parameters:
Register AL: 20H (32)

CL: 1 = Enable
2 = Disable

DL: Virtual Console Number

Returned Value:
Register AX: 0 if OK

FFFFH if error
ES, DS, SS, SP preserved

IO KEYBD is a signal to tell whether PC-MODE is active or not. When
it-is enabled, the console is running a PC program, and several
functions must behave differently. These differences have to do
with the function keys on the keyboard, and the 25th line on the
screen.

Enabling or disabling IO KEYBD tells IO CONIN (See Section 4.2)
whether to pass function keys to the caller or not. Normally
(disabled) all function keys not used by the XIOS (those that do not
have an associated function, such as screen switch) are ignored on
input. If IO KEYBD is enabled, IO CONIN must pass all 16 bit
function key codes to the caller. See Section 6.4.

Many PC applications use the 25th line of the display. Thus when
you are in PC-MODE, IO STATLINE must not display. See section 4.2
for more information on IO STATLINE.

This variable can also be used in the XIOS for any other functions
that need to know if a console is in PC-MODE. For example, it could
be used to indicate if 24 or 25 lines need to be buffered.

6-9

Concurrent CP/M System Guide 6.2 Keyboard Functions

IO SHFT SHIFT STATUS

Return Shift Status

Entry Parameters:
Register AL: 21H (33)

DL: Virtual Console Number

Returned Value:
Register AL: Shift Status

ES, DS, SS, SP preserved

IO SHFT emulates PC interrupt 16 subfunction 2. It returns a bit
map showing the status of certain keys on the keyboard. The bit map
is shown in Table 6-3.

Bit

7
6
5
4
3
2
1
0

Table 6-3. Keyboard Shift Status

l Meaning

Insert state is active
Caps lock state has been toggled
Num lock state has been toggled
Scroll lock state has been toggled
Alternate shift key depressed
Control shift key depresed
Left shift key depressed
Right shift key depressed

6-10

Concurrent CP/M System Guide 6.3 Equipment Check

6.3 Equipment Check

IO_EQCK EQUIPMENT CHECK

Return Equipment Status

Entry Parameters:
Register AL: 22H (34)

Returned Value:
Register AX: DOS bit map (Table 6-3)

ES, DS, SS, SP preserved

IO EQCK emulates DOS's interrupt 11. It returns a subset of DOS's
standard bit map that describes the state of the equipment. This
bit map is shown in Table 6-3.

Table 6-4. DOS Equipment Status Bit Map

Bit

14' 15
13
12
11 - 9
8
7' 6
5' 4
3' 2
1
0

I

6.4 PC-MODE IO CONIN

Meaning

Number of printers attached
Not used
Game I/O attached
Number of RS232 cards attached
Not used
Number of floppy disk drives
Initial video mode
Planar RAM size
Not used
IPL from floppy

When a virtual console is in PC-MODE (See IO KEYBD in Section 6.2)
IO CONIN must return extended codes for certain function keys. Most
characters are returned as their ASCII code in AL, and their scan
code in AH. The scan codes for all keys are shown in Table 6-5.
Extended keys are returned as a nul (OOH) in AL and an extended code
in AH. The extended keys and the value to be returned in AH are
shown in Table 6-6.

6-11

Concurrent CP/M System Guide 6.4 PC Mode IO CONIN

Table 6-5. Keyboard Scan Codes

Key Scan Code Key Scan Code

A 30 Esc 1
B 48 Ctrl 29
c 46 Shift (left) 42
D 32 Shift (right) 54
E 18 Alt 56
F 33 Caps Lock 58
G 34 Num Lock 69
H 35 Scroll Lock 70
I 23 Return 28
J 36 Tab 15
K 37 backspace 14
L 38
M 39 Numeric Keypad:
N 49
0 24 Home (7) 71
p 25 cursor up (8) 72
Q 16 Pg Up (9) 73
R 19 cursor left (4) 75
s 31 (5) 76
T 20 cursor right (6) 77
u 22 End (1) 79
v 47 cursor down (2) 80
w 17 PgDn (3) 81
x 45 Ins (0) 82
y 21 Del (.) 83
z 44 * (PrtSc) 55
1 (I) 2 74
2 (@) 3 + 78
3 (#) 4
4 ($) 5 Function Keys:
5 (%) 6
6 (A) 7 Fl 59
7 (&) 8 F2 60
8 (*) 9 F3 61
9 (() 10 F4 62
0 ()) 11 F5 63
- () 12 F6 64

(+) 13 F7 65
[({) 26 F8 66
] (}) 27 F9 67

(:) 39 FlO 68
(") 40

' (N) 41
I (<) 51 . (>) 52
I (?) 53
\ < I) 54

6-12

Concurrent CP/M System Guide 6.4 PC Mode IO CONIN

Table 6-6. Extended Keyboard Codes

Character l AH l Function

ctrl 3 3 Nul character
I<- 15 Reverse tab
Ins 82 Insert
Del 83 Delete
I 72 Cursor up
<-- 75 Cursor left
--> 77 Cursor right
I 80 Cursor down
home 71 Cursor home
ctrl home 119 Control home
ctrl <-- 115 Reverse word
ctrl --> 116 Advance word
Pg Dn 81 Page down
ctrl Pg Dn 118 Contrl page down
Pg Up 73 Page up
ctrl Pg Up 132 Control page up
End 79 End
ctrl End 117 Control end
ctrl PrtSc 114 Print screen
Fl 59 Function key Fl
F2 60 Function key F2
F3 61 Function key F3
F4 62 Function key F4
F5 63 Function key F5
F6 64 Function key F6
F7 65 Function key F7
F8 66 Function key F8
F9 67 Function key F9
FlO 68 Function key FlO
shift Fl 84 Function key Fll
shift F2 85 Function key Fl2
shift F3 86 Function key Fl3
shift F4 87 Function key Fl4
shift F5 88 Function key Fl5
shift F6 89 Function key Fl6
shift F7 90 Function key Fl7
shift F8 91 Function key Fl8
shift F9 92 Function key Fl9
shift FlO 93 Function key F20

6-13

Concurrent CP/M System Guide 6.4 PC Mode IO CONIN

Table 6-6. (continued)

Character I AH I Function

ctrl Fl 94 Function key F21
ctrl F2 95 Function key F22
ctrl F3 96 Function key F23
ctrl F4 97 Function key F24
ctrl F5 98 Function key F25
ctrl F6 99 Function key F26
ctrl F7 100 Function key F27
ctrl F8 101 Function key F28
ctrl F9 102 Function key F29
ctrl FlO 103 Function key F30
alt Fl 104 Function key F31
alt F2 105 Function key F32
alt F3 106 Function key F33
alt F4 107 Function key F34
alt F5 108 Function key F35
alt F6 109 Function key F36
alt F7 llO Function key F37
alt F8 lll Function key F38
alt F9 ll2 Function key F39
alt FlO ll3 Function key F40
alt A 30 Alt A
alt B 48 Alt B
alt c 46 Alt C
alt D 32 Alt D
alt E 18 Alt E
alt F 33 Alt F
alt G 34 Alt G
alt H 35 Alt H
alt I 23 Alt I
alt J 36 Alt J
alt K 37 Alt K
alt L 38 Alt L
alt M 50 Alt M
alt N 49 Alt N
alt 0 24 Alt 0
alt p 25 Alt p

alt Q 16 Alt Q
alt R 19 Alt R
alt s 31 Alt s
alt T 20 Alt T
alt u 22 Alt u
alt v 47 Alt v
alt w 17 Alt w
alt x 45 Alt x
alt y 21 Alt y
alt z 44 Alt z

\

6-14

Concurrent CP/M System Guide 6.4 PC Mode IO CONIN

Table 6-6. (continued)

Character l AH l Function

alt 1 120 Alt 1
alt 2 121 Alt 2
alt 3 122 Alt 3
alt 4 123 Alt 4
alt 5 124 Alt 5
alt 6 125 Alt 6
alt 7 126 Alt 7
alt 8 127 Alt 8
alt 9 128 Alt 9
alt 0 129 Alt 0
alt - 130 Alt -
alt = 131 Alt =

End of Section 6

6-15

(

Section 7
XIOS Tick Interrupt Routine

The XIOS must continually perform two DEV SETFLAG system calls.
Once every system tick the system tick flag iust be set if the TICK
Boolean in the XIOS Header is OFFH. Once every second, the second
flag must be set. This requires the XIOS to contain an interrupt­
driven tick routine that uses a hardware timer to count the time
intervals between successive system ticks and seconds.

The recommended tick unit is a period of 16.67 milliseconds,
corresponding to a frequency of 60 Hz. When operating on 50 Hz
power, use a 20-mill isecond period. The system tick frequency
determines the dispatch rate for compute-bound processes. If the
frequency is too high, an excessive number of dispatches occurs,
creating a significant amount of additional system overhead. If the
frequency is too low, compute-bound processes monopolize the CPU
resource for longer periods.

Concurrent CP/M uses Flag #2 to maintain the system time and day in
the TOD structure in SYSDAT. The CLOCK process performs a
DEV WAITFLAG system call on Flag #2, and thus wakes up once per
second tu update the TOD structure •. The CLOCK process also calls
the IO STATLINE XIOS function to update the status line once per
second-:- If the system has more than one physical console, one
physical console is updated each second. Thus if four physical
consoles are connected, each one will be updated once every four
seconds.

The CLOCK process is an RSP and the source code is distributed in
the OEM kit. Any functions needing to be performed on a per-second
basis can simply be added to the CLOCK.RSP.

After performing the DEV SETFLAG calls described above, the XIOS
TICK Interrupt routine must perform a Jump Far to the dispatcher
entry point. This forces a dispatch to occur and is the mechanism
by which Concurrent CP/M effects process dispatching. The double­
word pointer to the dispatcher entry used by the TICK interrupt is
located at 0038H in the SYSDAT DATA. Please see Section 3.6,
"Interrupt Devices," for more information on writing XIOS interrupt
routines.

End of Section 7

7-1

Section 8
Debugging the XIOS

This section suggests a method of debugging Concurrent CP/M,
requiring CP/M-86 running on the target machine, and a remote
console. Hardware-dependent debugging techniques (ROM monitor, in­
circuit emulator) available to the XIOS implementor can certainly be
used but are not described in this manual.

Implement the first cut of the XIOS using all polled I/O devices,
all interrupts disabled including the system TICK, and Interrupt
Vectors 1, 3, and 225, which are used by DDT-86 and SID-86,
uninitialized. Once the XIOS functions are implemented as polling
devices, change them to interrupt-driven I/O devices and test them
one at a time. The TICK interrupt routine is usually the last XIOS
routine to be implemented.

The initial system can run without a TICK interrupt, but has no way
of forcing CPU-bound tasks to dispatch. However, without the TICK
interrupt, console and disk I/O routines are much easier to debug.
In fact, if other problems are encountered after the TICK interrupt
is implemented, it is often helpful to disable the effects of the
TICK lnterrupl tu simplify the environment. This is accomplished by
changing the TICK routine to execute an IRET instead of jumping to
the dispatcher and not allowing the TICK routine to perform flag set
system calls.

When a routine must delay for a specific amount of time, the XIOS
usually makes a P DELAY system call. An example is the delay
required after the -disk motor is turned on unti 1 the disk reaches
operational speed. Until the TICK interrupt is implemented, P DELAY
cannot be called and an assembly language time-out loop is needed.
To improve performance, replace these time-outs with P DELAY system
calls after the tick routine is implemented and debug~ed. See the
MOTOR_ON: routine in the example XIOS for more details.

8.1 Running Under CP/M-86

To debug Concurrent CP/M under CP/M-86, CP/M-86 must use a console
separate from the console used by Concurrent CP/M. Usually a
terminal is connected to a serial port and the console input,
console output and console status routines in the CP/M-86 BIOS are
modified to use the serial port. The serial port thus becomes the
CP/M-86 console. Load DDT-86 under CP/M-86 using the remote console
and read the CCPM.SYS image into memory using DDT-86. The
Concurrent CP/M XIOS must not reinitialize or use the serial port
hardware that CP/M-86 is using.

It is somewhat difficult to use DDT-86 to debug an interrupt-driven
virtual console handler. Because the DDT-86 debugger operates with
interrupts left enabled, unpredictable results can occur.

8-1

Concurrent CP/M System Guide 8.1 Running Under CP/M-86

Values in the CP/M-86 BIOS memory segment table must not overlap
memory represented by the Concurrent CP/M memory partitions
allocated by GENCCPM. CP/M-86, in order to read the Concurrent CP/M
system image under DDT-86, must have in its segment tables the area
of RAM that the Concurrent CP/M system is configured to occupy. See
Figure 8-1. --

CCP/M transient<
program area
defined by
GEN CC PM

i---~-~--~----t

CP/M transient < CCPM.SYS >CCP/M O.S. image
area described 1--------------1
in BIOS DDT86

CPM.SYS >CP/M o.s. image

memory address 0: Interrupt Vectors

Figure 8-1. Debugging Memory Layout

Any hardware that is shared by both systems is usually not
accessible to CP/M-86 after the Concurrent CP/M initialization code
has executed. Typically, this prevents you from getting out of DDT-
86 and back to CP/M-86, or executing any disk I/O under DDT-86.

The technique for debugging an XIOS with DDT-86 running under CP/M-
86 is outlined in the following steps:

1. Run DDT-86 on the CP/M-86 system.

2. Load the CCPM.SYS file under DDT-86 using the R command and the
segment address of the Concurrent CP/M system minus 8 (the
length in paragraphs of the CMD file header). The segment
address is specified to GENCCPM with the OSSTART option. Set
up the CS and DS registers with the A-BASE values found in the
CMD file Header Record. See the Concurrent CP/M Operating
System Programmer's Reference Guide description of the CMD file
header.

3. The addresses for the XIOS ENTRY and INIT routines can be found
in the SYSDAT DATA at offsets 28H for ENTRY and 2CH for INIT.
These routines will be at offset 0C03H and OCOOH relative to
the data segment in DS.

4. Begin execution of the CCPM.SYS file at offset OOOOH in the
code segment. Breakpoints can then be set within the XIOS for
debugging.

8-2

Concurrent CP/M System Guide 8.1 Running Under CP/M-86

In the following figure, DDT-86 is invoked under CP/M-86 and the
file CCPM.SYS is read into memory starting at paragraph lOOOH. The
OSSTART command in GENCCPM was specified with a paragraph address of
1008H when the CCPM.SYS file was generated. Using the DDT-86 D(ump)
command the CMD header of the CCPM.SYS file is displayed. As shown,
the A-BASE fields are used for the initial CS and OS segment
register values. The following lines printed by GENCCPM also show
the initial CS and OS values:

Code starts at 1008
Data starts at 161A

Two G(o) commands with breakpoints are shown, one at the beginninq
of the XIOS INIT routine and the other at the beginning of the ENTRY
routine. These routines can now be stepped through using the the
DDT-86 T(race) command. See the Programmer's Utilities Guide for
more information on DDT-86.

A>ddt86
DOT86
-rccpm.sys,1000:0

START END
1000:0000 1000:ED7F
-dO
1000:0000 01 12 06 08 10 12 06 00 00 02 B9 08 lA 16 B9 08 .•.••..

I I I I
-xcs
cs 0000 1008 1------'
OS 0000 16la ~•1-------------------'
SS 0051
-lds:cOO
161A:OC00 JMP
161A:OC03 JMP

-g,ds:OCOO
*161A: OCOO

-g,ds:OC03
*161A:OC03

1E2E
0C3B

;set a break point at XIOS INIT
;the INIT routine may now be degugged

;set a break point at XIOS ENTRY
;the XIOS function being called is
;AL

Figure 8-2. Debugging CCP/M under DDT-86 and CP/M-86

8-3

Concurrent CP/M System Guide 8.1 Running Under CP/M-86

When using SID-86 and symbols to debug the XIOS, extend the CCPM.SYS
file to include unitialized data area not in the file. This ensures
the symbols are not written over while in the debugging session.
Assuming the same CCPM.SYS file as the preceding, use the following
commands to extend the file.

SID86
#rccpm.sys,1000:0

s·rAR'r END
1000:0000 1000:ED7F
#xcs
cs 0000 1008
DS 0000 16lc
SS 0051
#sw44
161C:0044 XXXX .

#wccpm.sys,1000:0,XXXX:O
#e
#rccpm.sys,1000:0

START END
1000:0000 YYYY:ZZZZ
#e*xios
SYMBOLS

;ENDSEG value from SYSDAT DATA

;release memory
;read in larger file

;get XIOS.SYM file

Figure 8-3. Debugging the XIOS Under SID-86 and CP/M-86

The preceding procedure to extend the file only needs to be
performed once after the CCPM.SYS file is generated by GENCCPM.

End of Section 8

8-4

Section 9
Bootstrap Adaptation

This section discusses the example bootstrap procedure for
Concurrent CP/M on the IBM Personal Computer. This example is
intended to serve as a basis for customization to different hardware
environments.

9.1 Components of Track 0 on the IBM PC

Both Concurrent CP/M and CP/M-86 for the IBM Personal Computer
reserve track 0 of the 5-1/4 inch floppy disk for the bootstrap
routines. The rest of the tracks are reserved for directory and
file data. Track 0 is divided into two areas, sector 1 which
contains the Boot Sector and sectors 2-8 which contain the Loader.
Figure 9-1 shows the layout of track 0 of a Concurrent CP/M boot
disk for the IBM Personal Computer.

Sector 1 Boot Sector

Sector 2 Loader

Sector 8

Figure 9-1. Track 0 on the IBM PC

The Boot Sector is brought into memory on reset or power-on by the
IBM PC's ROM monitor. The Boot Sector then reads in all of track 0
and transfers control to the Loader.

The Loader is a simple version of Concurrent CP/M that contains
sufficient file processing capability to read the CCPM.SYS file,
which contains the operating system image, from the boot disk to
memory. When the Loader completes its operation, the operating
system image receives control and Concurrent CP/M begins execution.

9-1

Concurrent CP/M System Guide 9.1 Track 0 on the IBM PC

The Loader consists of three modules: the Loader BOOS, the Loader
Program, and the Loader BIOS. The Loader BOOS is an invariant
module used by the Loader Program to open and read the system image
file from the boot disk. The Loader Program is a variant module
that opens and reads the CCPM.SYS file, prints the Loader sign-on
message and transfers control to the system image. The Loader BIOS
handles the variant disk I/O functions for the Loader BOOS. The
term variant indicates that the module is implementation-specific.
The layout of the Loader BOOS, the Loader Program, and the Loader
BIOS is shown in Figure 9-2. The three-entry jump table at 0900H is
used by the Loader BOOS to pass control to the Loader Program and
the Loader BIOS.

Note: The Loader for the IBM PC example begins in sector 2 of
track 0, and continues up to sector 8 along with the rest of the
Loader BOOS, the Loader Program and the Loader BIOS.

off sets from
Loader BOOS

0909H:
0906H:
0903H:
0900H:

OOOOH:

JMP
JMP
JMP

Loader BIOS

Loader Program

LOAOP
ENTRY
!NIT

Loader BOOS

Figure 9-2. Loader Organization
{Sectors 2 through 8, Track 0 on IBM PC)

9.2 The Bootstrap Process

The sequence of events in the IBM PC after power-on is discussed in
this section. Except for the functions that are performed by the
IBM ROM monitor, the following process can be generalized to other
8086/8088 machines.

9-2

(

Concurrent CP/M System Guide 9.2 The Bootstrap Process

First the ROM monitor reads sector 1, track 0 on drive A: to memory
location 0000:7COOH on power-on or reset. The ROM then transfers
control to location 0000:7COOH by a JMPF (jump far) instruction.
The Boot Sector program uses the ROM monitor to check for at least
160K of memory contiguous from O. The ROM monitor is then used to
read in the remainder of track 0 to memory location 2600:0000H
(152K). Control is transferred to location 2620:0000H, which is the
beginning of the second sector of track 0 and the beginning of the
Loader. (Each sector is 512 bytes, or 20H paragraphs long.) The
source code for the Boot Sector program can be found in the file
BOOT.A86 on the Concurrent CP/M distribution disk.

The exact location in memory of the Boot Sector and the Loader
depend on the hardware environment and the system implementor.
However, the Boot Sector must transfer control to the Loader BOOS
with a JMPF (jump far) instruction, with the cs register set to
paragraph address of the Loader BOOS and the IP register set to 0.
Thus the Loader BOOS must be placed on a paragraph boundary. In the
example Loader, the Loader BOOS begins execution with a CS register
set to 2620H and the IP register set to OOOOH.

The Loader BOOS sets the OS, SS, and ES registers equal to the CS
register and sets up 64-level stack (128 bytes). The three Loader
modules, the Loader BOOS, Program and BIOS, execute using an 8080
model (mixed code and data). It is assumed that the Loader BOOS,
the Loader Program and the Loader BIOS will not require more than 64
levels of si:ack. If i:his is noi: i:rue then i:he Loader Program and/ or
the Loader BIOS must perform a stack switch when necessary. The
jump table at 0900H is an invariant part of the Loader, though ~he
destination offsets of the jump instructions may vary.

After setting up the segment registers and the stack, the Loader
BOOS performs a CALLF (call far) to the JMP !NIT instruction at
CS:900H. The !NIT entry is for the Loader BIOS to perform any
hardware initialization needed to read the CCPM.SYS file. Note that
the Loader BOOS does not turn interrupts on or off, so if they are
needed by the Loader, they must be turned on by the Boot Sector or
the Loader BIOS. The example Loader BIOS executes an ST! (Set
Interrupt Enable Flag) instruction in the Loader BIOS !NIT routine.

The Loader BIOS returns to the Loader BOOS by executing a RETF
(Return Far) instruction. The Loader BOOS next initializes
interrupt vector 224 (OEOH) and transfers control to the JMP LOAOP
instruction at 0906H, to start execution of the Loader Program.

The Loader Program opens and reads the CCPM.SYS file using the
Concurrent CP/M system calls supported by the Loader BOOS. The
Loader Program transfers control to Concurrent CP/M through the
"JMPF CCPM" (Jump Far) instruction at the end the Loader Program,
thus completing the loader sequence. The following sections discuss
the organization of the CCPM. SYS file and the memory image of
Concurrent CP/M.

9-3

Concurrent CP/M System Guide 9.3 Loader Function Sets

9.3 The Loader BDOS and Loader BIOS Function Sets

The Loader BDOS has a minimum set of functions required to open the
system image file and transfer it to memory. These functions are
invoked as under Concurrent CP/M by executing a INT 224 (OOEOH) and
are documented in the Concurrent CP/M Programmer's Reference Guide.
The functions implemented by the Loader BDOS are in the following
list. Any other function, if called, will return a OFFFFh error
code in registers AX and BX.

Fune# CL

14
15
20
26
32
44
51

OEh
OFh
14h
lAh
20h
2Ch
33h

Function Name

Select Disk
Open File
Read Sequential
Set DMA Offset
Set/Get User Number
Set Multisector Count
Set DMA Segment

Blocking/Deblocking has been implemented in the Loader BDOS, as well
as multisector disk I/O. This simplifies writing and debugging the
loader BIOS and improves the system load time. File LBDOS.H86
includes the Loader BDOS.

The Loader BIOS must implement the minimum set of functions required
by the Loader BDOS to read a file.

Funcft AL

9
10

09H
OAH

Function Name

IO SELDSK (select disk)
IO=READ (read physical sectors)

To invoke IO SELDSK or IO READ in the Loader BIOS, the Loader BDOS
performs a CALLF (Call Far) instruction to the jump instruction at
ENTRY (0903H).

The Loader BIOS functions are implemented in the same way as the
corresponding XIOS functions. Therefore the code used for the
Loader BIOS may, with a few exceptions, be a subset of the system
XIOS code. For example, the Loader BIOS does not use the
DEV WAITFLAG or DEV POLL Concurrent CP/M system functions. Certain
fields in the Disk Parameter Headers and Disk Parameter Blocks can
be initialized to O, as in Figure 9-3:

9-4

Concurrent CP/M System Guide 9.3 Loader Function Sets

Disk Parameter Header

OOH XLT 0000 oo I oo I 0000

OBH DPB 0000 0000 DIRBCB

lOH DATBCB 0000

Disk Parameter Block

OOH l SPT BSH BLM I EXM DSM D
_J

.. DRM 00 00 0000 OFF PSH J
RM •••

OBH

lOH l PHM

Figure 9-3. Disk Parameter Field Initialization

The Loader Program and Loader BIOS may be written as separate
modules, or combined in a single module as in the example Loader.
~he sizP of these two modules can vary as dictated by the hardware
environment and the preference of t-he system implementor. The
LOAD .A86 file contains the Loader Program and the Loader BIOS.
LOAD.A86 appears on the Concurrent CP/M release disk, and may be
assembled and listed for reference purposes.

The Loader Program and the Loader BIOS are in a contiguous section
of the Loader to reduce the size of the Loader image. Grouping the
variant code portions of the Loader into a single module, allows the
implementation of nonfile-related functions in the most size­
efficient manner. The example Loader BIOS implements the IO CONOUT
function in addition to IO SELDSK and IO READ. This Loader BIOS can
be expanded to support keyboard input to-allow the Loader Program to
prompt for user options at boot time. However, the only Loader BIOS
functions invoked by the Loader BDOS are IO SELDSK and IO READ, any
other Loader BIOS functions must be invoked directly by the Loader
Program.

9.4 Track 0 Construction

Track 0 for the example IBM PC bootstrap is constructed using the
following procedure: The Boot Sector is 0200H (512) bytes long and
is assembled with the command:

A>ASM86 BOOT

This results in the file BOOT.H86, which becomes a binary CMD file
with the command:

9-5

Concurrent CP/M System Guide 9.4 Track 0 Construction

A>GENCMD BOOT 8080

The LOAD.A86 file, containing the the Loader Program and the Loader
BIOS, is assembled using the command:

A>ASM86 LOAD

The Loader BOOS starts a OOOOH and ends at 0900H. The LOAD module
starts at 0900H and ends at OEOOH. This equals the size of the 7
sectors remaining after the Boot Sector. The IBM PC disk format has
eight 0200H-byte (512-byte) sectors, or lOOOH (4K) bytes per track.
Subtracting 0200H, the length of the Boot Sector, we get OEOOH. The
LOADER.H86 file, containing the Loader BIOS, Loader Program and
Loader BIOS, is constructed using the command:

A>PIP LOADER.H86=LBDOS.H86,LOAD.H86

Next a binary CMD file is created from LOADER.H86 with GENCMD:

A>GENCMD LOADER 8080

This results in the file LOADER.CMD with a header record defining
the 8080 Model. Note this CMD file is not directly executable under
any CP/M operating system, but can be debugged as outlined below.
Next the BOOT.CMD and LOADER.CMD files are combinen into a track
image. Use DDT-86 or SID-86 to do this:

A>DDT86
-rboot.cmd

START END
aaaa:OOOO aaaa:027F
-wtrack0,80,107f

-rtrackO
START END

-bbbb:OOOO bbbb:OFFF
-rloader.cmd

START END
-zzzz:OOOO zzzz:OE7F
-mzzzz:80,0E7F,bbbb:0200

-wtrackO,bbbb:O,OFFF

or SID86

aaaa is paragraph where DDT86
places BOOT.CMD
create the 4K file, TRACKO, without
a CMD header
read the 4K TRACKO file into memory

TRACKO starts at paragraph bbbb
read LOADER.CMD to another area of
memory
LOADER.CMD starts at paragraph zzzz
move the Loader to where sector 2
starts in the track image
write the track image to the file
TRAC KO

The final step is to place the contents of TRACKO onto track O. The
TCOPY example program accomplishes this with the following command:

A>TCOPY TRACKO

9-6

Concurrent CP/M System Guide 9.4 Track 0 Construction

Scratch diskettes
Loader. TCOPY is
to be modified to
PC. TCOPY only
Concurrent CP/M.

should be used for testing the Boot Sector and
included as the source file TCOPY.A86, and needs
run in hardware environments other than the IBM

runs under CP/M-86 and cannot be used under

The Loader can be debugged separately from the Boot Sector under
DDT-86 or SID-86, using the following commanis:

A>DDT86
-rloader.cmd

START END
aaaa:OOOO aaaa:OE7F
-haaaa,B
yyyy,zzzz
-xcs
cs 0000 yyyy
-1900

or SID86

aaaa is paragraph where DDT86
places the Loader
Add 8 paragraphs to skip over CMD
header, aaaa + 8 = yyyy

set CS for debugging
IP is set to 0 by DDT86 or SID86

The 1900 command lists the jumps to INIT, ENTRY and LOADP to verify
the r.oridPr Proarcim cind the Loader BIOS are at the correct offsets.
Breakpoints ca~ now be set in the Loader Program and Loader BIOS.
The Boot Sector can be debugged in a similar manner, but sectors 2
through 8 need to contain the Loader image if the JMPF LOADER
instruction in the Boot Sector is to be executed.

9.5 Other Bootstrap Methods

The preceding three sections outline the operation and steps for
constructing a bootstrap loader for Concurrent CP/M on the IBM PC.
Many departures from this scheme are possible and they depend on the
hardware environment and the goals of the implementor. The Boot
Sector can be eliminated if the system ROM (or PROM) can read in the
entire Loader at reset. 'l'he Loader can be eliminated if the
CCPM.SYS file is placed on system tracks and the ROM can read in
these system tracks at reset. However, this scheme usually requires
too many system tracks to be practical. Alternatively, the Loader
can be placed into a PROM and copied to RAM at reset, eliminating
the need for any system tracks. If the Boot Sector and the Loader
are eliminated, any initialization normally performed by the two
modules must be performed in the XIOS initialization routine.

9-7

Concurrent CP/M System Guide 9.6 Organization of CCPM.SYS

9.6 Organization of CCPM.SYS

The CCPM.SYS file, generated by GENCCPM and read by the Loader,
consists of the seven *.CON files and any included *.RSP files. The
CCPM.SYS file is prefixed by a 128-byte CMD Header Record, which
contains the following two Group Descriptors:

G-Form G-Length A-Base G-Min G-Max

Olh xx xx 1008h xx xx xx xx

02h xx xx (varies) xxxx xx xx

Figure 9-4. Group Descriptors - CCPM.SYS Header Record

The first Group Descriptor represents the O.S. Code Group of the
CCPM.SYS file and the second represents the Data. The preceding
Code Group Descriptor has an A-Base load address at paragraph 1008H,
or "paragraph:byte" address of 01008:0000H. The A-Base value in the
Data Group Descriptor varies according to the modules included in
this group by GENCCPM. The load address value shown above is only
an example. The CCPM.SYS file can be loaded and executed at any
address where there is sufficient memory space. The entire CCPM.SYS
file appears on disk as shown in Figure 9-5.

9-8

Concurrent CP/M System Guide 9.6 Organization of CCPM.SYS

ENDSEG ------1 ..

RSPSEG ------1~

1
System

Data
Area

j
OSSEG-----

Image in Memory

(High Memory)

Disk Buffers

RSPs
(including TMP, CLOCK)

o.s. Table Space

XIOS Code and Data

o.s. Data

o.s. Code

Low Memory

Image in CCPM.SYS

(End of File)

-ocooH­
cxros)

-xios­
ccs: ,DS:)

CCPM.SYS
DATA
GROUP

CCPM.SYS
CODE
GROUP

CCPM.SYS
HEADER

(Start of File)

Figure 9-5. CCPM System Image and the CCPM.SYS File

The CCPM.SYS file is read into memory by the Loader beginning at the
address given by Code Group A-Base (in the example shown above,
paragraph address 1008H), and control is passed to the Supervisor
INIT function when the Loader Program executes a JMPF instruction
(Jump Far) to 1008:0000H. The Supervisor INIT must be entered with
CS set to the value found in the A-BASE field of the code Group
Descriptor, the IP register equal to 0 and the DS register equal to
A-BASE value found in the data Group Descriptor.

End of Section 9

9-9

Section 10
OEM Utilities

A commercially viable Concurrent CP/M system requires OEM-supported
capabilities. These capabilities include methods for formatting
disk and image backups of disks. Typically, an OEM supplies the
following utilities:

• Disk Formatting Utility (FORMAT.CMD)
• Disk Copy Utility (DCOPY.CMD)

These utilities are usually hardware-specific and either make direct
XIOS calls or go directly to the hardware.

10.1 Bypassing the BDOS

When special OEM utilities bypass the BOOS by making direct XIOS
calls or going directly to the hardware, several programming
precautions are necessary to prevent conflicts due to the Concurrent
CP/M multitasking environment. The following steps must be taken to
prevent other processes from accessing the disk system:

1. Warn the user. This program bypasses the operating system. No
other programs should be running while this program is being
used.

2. Check for Version 2 or 3.1 of Concurrent CP/M through the
S OSVER function. The following steps are specific to these
versions of Concurrent CP/M. They do not work in previous
Digital Research operating systems, nor are they guaranteed to
work in future Digital Research operating systems.

3. Set the process priority to 150 or better through the
P PRIORITY function. If another program is running on a
background console, it cannot obtain the CPU resource while
this program needs it.

4. Set the P KEEP flag in the Process Descriptor to prevent
termination of the operation without proper cleanup.

5. Make sure the program is running in the foreground and that the
console is in DYNAMIC mode. Then lock the console into the
foreground by setting the NOSWITCH flag in the CCB. This
prevents the user from initiating a program on another virtual
console while this program is running in the backg.:ound.
Because the file system is locked, a program cannot load from
disk.

6. Make sure there are no open files in the system. This also
detects background virtual consoles in BUFFERED mode.

10-1

Concurrent CP/M System Guide 10.1 Bypassing the BDOS

7. Lock the BDOS by reading the MXdisk queue message.

8. You can now safely perform the FORMAT and DCOPY operations on
the disk system, independent of the BOOS.

9. Once the operations are complete, allow the disk system to be
reset by setting the login sequence number in each affected DPH
to O. When the disk system is reset, these drives are reset
even if they are permanent. The login sequence field is 06h
bytes from the beginning of the DPH.

10. Release the BDOS by writing the MXdisk queue message.

11. Reset the Disk System with the ORV ALLRESET function.

12. Unlock the console system allowing console switching by
unsetting the NOSWITCH bit of the CCB FLAG field in the CCB.

13. Reset the P KEEP flag in the Process Descriptor.

14. Terminate.

Listing 10-1 illustrates these steps and shows how to make direct
XIOS calls to access the disk system. The routines corresponding to
the steps are labeled for cross-reference purposes.

10-2

Concurrent CP/M System Guide 10.1 Bypassing the BOOS

PAGEWIDTH 80
;
;***
. * ' . * ' ·* ' . * ' ·* ' ;*
·* ' ·* ' . * ' ·*

PHYSICAL.A86

Sample Program Illustrating Direct Calls to
the Disk Routines in the XIOS.

This program will lock the console and disk
systems, read a physical sector into memory
and gracefully terminate .

' ;***

true equ Offffh
false equ 0

er equ Odh
lf equ Oah

ccpmiiit equ 224
ccpmver2 equ 01420H

XIOS functions

io seldsk equ 09h
io-read equ Oah
io write equ Obh

SYSDAT Off sets

sy_xentry equ 028h
sy_nvcns equ 047h
sy_ccb .equ 054h
sy_openfile equ 088h

Process Descriptor
p_flag equ word ptr 06h
p_uda equ word ptr OlOh
pf_keep equ 00002h

Console Control Block
ccb size equ 02ch
ccb-state equ word ptr Oeh
cf buffered equ OOOOlh
cf-background equ 00002h
cf-noswitch equ OOOOBh

Listing 10-1. Disk Utility Programming Example

10-3

Concurrent CP/M System Guide 10.l Bypassing the BOOS

dph_lseq

drivea
driveb
drivec

Disk Parameter Header

equ

drvvec bits

equ
equ
equ

byte ptr 06h

OOOOlh
00002h
00004h

;***
;*
;* CODE SEGMENT
;*
;***

CSEG
ORG 0

Switch Stacks to make sure we have enough.
This is done with interrupts off.
Old 8086's and 8088's will allow an
interrupt between SS and SP setting.

pushf ! pop bx
cli
mov ax,ds ! mov ss,ax
mov sp,offset tos
push bx I popf

; Step 1. - Warn the user.

mov dx,warning I call c writebuf

; Step 2. - Check for Concurrent CP/M V3.l

call s osver
and ax-;OfffOh
cmp ax,ccpmver2 ! je good_version

jmp bad version
good_version: -

; Step 3 - Set priority to 150

mov dl,150
call p_priority ;priority = 150

call get_osvalues ;get OS values

Listing 10-1. (continued)

10-4

(
\

Concurrent CP/M System Guide 10.1 Bypassing the BDOS

; Step 4 - Set the P_KEEP flag in PD

call no terminate ;set p_keep flag

i Step 5 - Lock the console

call lock con ;lock consoles

Step 6 and 7 - Lock the BDOS,
make sure there are no open files

call lock disk ;lock bdos

i Step 8 - Perform the Operation

call operation ;do operation

jmp terminate ;terminate

operation:
;---------

Do our disk operations. If we make changes to a
disk, make sure to set the appropriate bit in the
drvvec variable to force the BDOS to reinitialize
the drive. In this example are only going to
read a physical sector from disk.

Lets read Track 2 Sector 2 of drive B
with DMA set to sectorbuf
Setup for Direct IO READ call with
IOPB on Stack.

mov ax,ds ;save for DMA seg
push es ! push ds
mov es,udaseg
mov ds,sysdat
mov ch,l
mov cl,l
mov cx,2
mov cx,2
push ax

push ex
push ex
push ex

mov cx,offset sectorbuf
push ex
mov ax.io read

· ; -do the read

;mscnt 1
;drive B
;track 2
;sector = 2
;DMA Seg = Our

;DMA Ofst

callf dword ptr .sy xentry
add sp,10 -
pop ds ! pop es
cmp al,O ! je success

mov dx,offset physerr
call c writebuf

Listing 10-l.

10-5

(continued)

DS

Concurrent CP/M System Guide 10.1 Bypassing the BDOS

success:
; force a keystroke to allow testing
; of locking mechanisms

jmp c read

get_osvalues:
;------------
; get system addresses for later use

; Get System Data Area Segment
push es
call s sysdat
mov sysdat,es

; Get Process Descriptor Address
call p pdadr
mov pdaddr,bx

; Get User Data Area Segment for
; XIOS calls

mov ax,es:p uda[bx]
mov udaseg,ax
pop es
ret

no terminate:
;------------
; Set the pf_keep flag. We cannot be terminated.

mov bx,pdaddr
push ds ! mov ds,sysdat
or p flag[bx] ,pf keep
pop ds -
ret

lock disk:
;---------
; Lock the BOOS. No BOOS calls will be allowed in
; the system until we unlock it.

;get currently logged in drives
;for later reset

call drv loginvec
mov drvvec,ax

;read mxdisk queue message
mov dx,offset mxdiskqpb ! call q_open
mov dx,offset mxdiskqpb ! call q read

;turn on bdoslock flag for
;terminate

mov bdoslock,true

Listing 10-1. (continued)

10-6

(

Concurrent CP/M System Guide 10.1 Bypassing the BDOS

;verify no open files. This will
;also check background consoles in
;buffered mode since they have open
;files when active.

push ds ! mov ds,sysdat
cmp word ptr .sy openfile,O
pop ds -
je lckb

;Error, open files
jmp openf

lckb: ret

bdos unlock:
·-----------' ; unlock the BDOS. Reset all logged in drives to
; make sure BDOS reinitializes them internally.

;reset all loggedin drives as well
;as drives we have played with.

xor cx,cx
mov ax,drvvec

resetd: cmp cx,16 ! je rdone
test ax,l ! jz nextdrv

we have a logged in drive,
get DPH address from XIOS

push ex push ax
push es ! push ds
mov es,udaseg
mov ds,sysdat
mov ax,io seldsk
mov dx,O -
callf dword ptr .sy xentry

; if legal drive, set
; login sequence # to 0.

xret: cmp bx,O ! je nodisk
mov dph lseq[bx] ,0

nodisk: pop ds ! pop es
pop ax ! pop ex

;try another drive
nextdrv: inc ex

shr ax,l
jmps resetd

; all drives can be reset,
; write mxdisk queue message
; reset all drives

rdone: mov dx,offset mxdiskqpb
call q write
jmp drv resetall

Listing 10-1.

10-7

(continued)

Concurrent CP/M System Guide

lock con:
;--------
: Lock the console system

call getccbadr
mov bx,ccbadr
push ds ! mov ds,sysdat
pushf ! cli

10.1 Bypassing the BDOS

; make sure our console is
: foreground, dynamic

foreg:

cmp ccb state [bx] ,0 ! je foreg
popf ! pop ds
jmp in back

: set console to NOSWITCH
or ccb state[bx] ,cf noswitch
popf !-pop ds -

: turn on conlock flag for
: terminate

mov conlock,true
ret

con unlock:
;----------
: Set console to switchable.

mov bx,ccbadr
push ds ! mov ds,sysdat
and ccb state[bx] ,not cf noswitch
pop ds -
ret

getccbadr:
;---------

Calculate the CCB address for this console.

call c getnum
xor ah-;ah
mov cx,ccb size ! mul ex
push ds ! mov ds,sysdat
add ax, . sy ccb
pop ds -
mov ccbadr,ax
ret

bad_ version:
;-----------

mov dx,offset wrong version
jmps errout

Listing 10-1.

10-8

(continued)

I

\

Concurrent CP/M System Guide

in back:
. -------,

openf:

er rout:

mov dx,offset in_background
jmps errout

mov dx,offset openfiles

call c writebuf
terminate:
·---------'

10.1 Bypassing the BOOS

; Step 9,10,11 Clean up the file system

cmp bdoslock,false ! je tOl
call bdos unlock

; Step 12 - Unlock the console system

tOl: cmp conlock,false ! je t02
call con unlock

Step 13 - Dnset the P KEEP flag in PD

t02: mov bx,pdaddr
push ds ! mov ds,sysdat
and p flag[bxJ ,not pt Keep
pop as
; Step 14 - Terminate

jmp p_termcpm

·-------------,
; OS functions
;-------------
c_getnum: mov cl,153 jmps cc pm
c read: mov cl,l ! jmps cc pm
c-writebuf: mov cl,9 ! Jmps cc pm
drv_loginvec: mov cl, 24 ! jmps cc pm
drv resetall: mov cl,13 ! jmps cc pm
p_pdadr: mov cl,156 ! jmps cc pm
p_priority: mov cl,145 ! jmps cc pm
p_termcpm: mov cl,O ! jmps ccpm
q_open: mov cl,135 jmps cc pm
q_ read: mov cl,137 jmps cc pm
q_ write: mov cl, 139 jmps cc pm
s osver: mov cl,163 jmps ccpm
s=:sysdat: mov cl,154 ! jmps cc pm
ccpm: int ccpmint

ret

Listing 10-1. (continued)

10-9

Concurrent CP/M System Guide 10.1 Bypassing the BDOS

·*** ,
. * ,
;* DATA SEGMENT
. * ,
·*** ,

DSEG
ORG OlOOH

sysdat dw 0
pdaddr dw 0
udaseg dw 0
ccbadr dw 0
drvvec dw 0
bdoslock db false
con lock db false

mxdiskqpb dw 0,0,0,0
db 'MXdisk

ERROR MESSAGES

warning

in_background

wrong_ version

open_files

physerr

sectorbuf

db
db
db
db
db
db

db
db
db

db
db
db

db
db
db
db
db
db
db
db

db
db

rb

'PHYSICAL: This program '
'bypasses the operating '
'system.' ,cr,lf
'Make sure no other '
'programs are running.'
cr,lf,'$'

'PHYSICAL: must be run '
'in the foreground, in'
' DYNAMIC mode. 1 ,cr,lf, 1 $ 1

'PHYSICAL: runs only on '
'Concurrent CP/M Version 2'
er, lf, '$'

'PHYSICAL: cannot run'
'while there are open files.'
cr,lf
'If any virtual consoles are'
' in BUFFERED mode,' ,cr,lf
'Use the VCMODE D command to'
' set a virtual console to '
'DYNAMIC mode.' ,cr,lf,'$'

'Physical Error on Read.'
cr,lf,'$'

1024

Listing 10-1. (continued)

10-10

Concurrent CP/M System Guide 10.1 Bypassing the BOOS

tos

ow
ow
ow
ow
DW
ow
ow
ow

RW
ow

Lots of Stack. Bottom prefilled with Occh
(INT 3 instruction) to see if we are
overrunning the stack. Also if we
accidently execute it under DDT86,
a breakpoint occurs.

OCCCCH,OCCCCH,OCCCCH
OCCCCH,OCCCCH,OCCCCH
OCCCCH,OCCCCH,OCCCCH
OCCCCH,OCCCCH,OCCCCH
OCCCCH,OCCCCH,OCCCCH
OCCCCH,OCCCCH,OCCCCH
OCCCCH,OCCCCH,OCCCCH
OCCCCH,OCCCCH,OCCCCH

OlOOH
OCCCCH DW at end of DATA SEG

to make sure HEX is
gene.:ated.

END ; End of PHYSICAL.A86

Listing 10-1. (continued)

10.2 Directory Initialization in the FORMAT Utility

The FORMAT utility initializes fr,~sh disk media for use with
Concurrent CP/M. It is written by the OEM and packaged with
Concurrent CP/M as a system utility. The physical formatting of a
disk is hardware-dependent and therefore is not discussed here.
This section discusses initialization of the directory area of a new
disk.

The FORMAT program can initialize the directory with or without time
and date stamping enabled. This can be a user option in the FORMAT
program. If time and date stamps are not initialized, the user can
independently enable this feature through the INI'rDIR and SET
utilities.

It is highly recommended that the OEM supports the advanced features
of Concurrent CP/M including time and date stamping in the FORMAT
program. This allows the user to use these features in their
default disk format. Otherwise, the user must first learn that date
stamps are possible and then must use the INITDIR and SET utilities
to allow the use of this feature. If the disk directory is too
close to being full, the INITDIR program will not allow the
restructuring of the directory that is necessary to include SFCB's.

10-11

Concurrent CP/M System Guide 10.2 Directory Initialization

The cost of enabling the time and date stamp feature on a given disk
is 25% of its total directory space. This space is used to store
the time and date information in special directory entries called
SFCBs. For time and date stamping, every fourth directory entry
must be an SFCB. Each SFCB is logically an extension of the
previous three directory entries. This method of storing date-stamp
information allows efficient update of date stamps since all of the
directory information for a given file resides within a single 128-
byte logical disk record.

A disk under Concurrent CP/M is divided into three areas, the
reserved tracks, the directory area and the data area. The size of
the directory and reserved areas is determined by the Disk Parameter
Block, described in Section 5.5. The data area starts on the first
disk allocation block boundary following the directory area.

Reserved Tracks

Directory Area

Data Area

Figure 10-1. Concurrent CP/M Disk Layout

The reserved area and the data area do not need to be initialized to
any particular value before use as a Concurrent CP/M disk. The
directory area, on the other hand, must be initialized to indicate
that no files are on the disk. Also, as discussed below, the FORMAT
program can reserve space for time and date information and
initialize the disk to enable this feature.

The directory area is divided into 32-byte structures called
Directory Entries. The first byte of a Directory Entry determines
the type and usage of that entry. For the purposes of directory
initialization, there are three types of Directory Entries that are
of concern: the unused Directory Entry, the SFCB Directory Entry
and the Directory Label.

A disk directory initialized without time and date stamps has only
the unused type of Directory Entry. An unused Directory Entry is
indicated by a OE5H in its first byte. The remaining 31 bytes in a
Directory Entry are undefined and can be any value.

10-12

Concurrent CP/M System Guide 10.2 Directory Initialization

entry 0
1
2

n

OH lH 20H

~ OESH •
OESH •

Figure 10-2. Directory Initialization Without Time Stamps

A disk directory initialized to enable time and date stamps must
have SFCB's as every fourth Directory Entry. An SFCB has a 021H in
the first byte and all other bytes must be OH. Also a directory
label must be included in the directory. This is usually the first
Directory Entry on the disk. The directory label must be
initialized as shown in Figure 10-3.

OH lH OCH ODH OEH OFH lOH

~' _2o_H_.l_N_AM_E __ ~~ < I DATA I OOH j OOH I OOH I
lOH llH 12H 13H 14H 15H 16H 17H 18H

I 20H I 20H I 20H I 20H I 20H I 20H I 20H I 20H~
18H 19H lAH lBH lCH lDH lEH lFH 20H

OOH I OOH I OOH I OOH I OOH I OOH I OOH I OOH I
Figure 10-3. Directory Label Initialization

10-13

Concurrent CP/M System Guide 10.2 Directory Initialization

Table 10-1. Directory Label Data Fields

Field I Explanation

NAME

DATA

An 11 byte field containing an ASCII name for the
drive. Unused bytes should be initialized to
blanks (20H).

A bit field that tells the BDOS general
characteristics of files on the disk. The DATA
field can assume the following values:

• 060H enables date of last modification and date
of last access to be updated when appropriate.

• 030H enables date of last modification and date
of creation to be updated when appropriate.

The FORMAT program should ask the user for the name of the disk and
whether to use the date of last access or the date of creation for
files on this disk. The date of last modification should always be
used. If the DATA field is OH or if the Directory Label does not
exist, the time and date feature is not enabled. The DATA Field
must be OH if SFCB's are not initialized in the directory.

10-14

Concurrent CP/M System Guide 10.2 Directory Initialization

entry 0
1
2
3
4
5
6
7

n

OH

020H
OESH
OESH
021H
OESH
OESH
OESH
021H

OESH
OESH
OESH
021H

lH

NAME,DATA
undefined
undefined
NULLS
undefined
undefined
undefined
NULLS

undefined
undefined
undefined
NULLS

(Directory
(Unused)
(Unused)
(SFCB)
(Unused)
(Unused)
(Unused)
(SFCB)

(Unused)
(Unused)
(Unused)
(SFCB)

20H

Label)

Figure 10-4. Directory Initialization With Time Stamps

End of Section 10

10-15

Section 11
End-user Documentation

OEMs must be aware that the documentation supplied by Digital
Research for the generic release of Concurrent CP/M describes only
the example XIOS implementation. If the OEM decides to change,
enhance, or eliminate a function which impacts the Concurrent CP/M
operator interface, he must also issue documentation describing the
new implementation. This is best done by purchasing reorint rights
to the Concurrent CP/M system publications, rewriting them to
reflect the changes, and distributing them along with the OEM­
modified system.

One area that is highly susceptible to modification by the OEM is
the Status Line XIOS function. Depending upon the implementation,
it might be desirable to display different, more, or even no status
parameters. The documentation supplied with Concurrent CP/M,
however, assumes that the Status Line function is implemented
exactly like the example XIOS presented herein.

Another area which the OEM might want to change is the default login
disk. At system boot time, the default system disk as specified in
the system GENCCPM session is automatically logged-in and displayed
in the first system prompt. However, a startup command file,
STARTUP .N, where N is the Virtual Console number, can be implemented
for each Virtual Console. This file can switch the default logged­
in disk drive to any drive desired. However, the Concurrent CP/M
0perating System User's Guide assumes that the prompt will show the
system disk. For more information on startup files, see the
Concurrent CP M 0 eratin S stem user's Guide and the Concurrent
CP M Operating System Programmer's Reference Guide.

The Concurrent CP/M system prompt is similar to the CP/M 3 prompt in
that the User Number is not displayed for User O. If the user
changes to a higher User Number, then the User Number is displayed
as the first character of the prompt, for example SA>. If the OEM
wants to change this, or any other function of the user interface,
such as implementing Programmable Function Keys, he can rewrite the
TMP module source code included with the system. However,
documenting these changes is entirely the OEM's responsibility.

End of Section 11

11-1

Appendix A
Removable Media

All disk drives are classified under Concurrent CP/M as having
either permanent or removable media. Removable-media drives support
media changes; permanent drives do not. Setting the high-order bit
of the CKS field of the drive's DPB marks the drive as a permanent­
media drive. See Section 5.5, "Disk Parameter Block."

The BOOS file system makes two important distinctions between
permanent and removable-media drives. If a drive is permanent, the
BOOS always accepts the contents of physical record buffers as
valid. It also accepts the results of hash table searches on the
drive.

BOOS handling of removable-media drives is more compl0x. Because
the disk media can be changed at any time, the BOOS discards
directory buffers before performing most system calls involving
directory searches. By rereading the disk directory, the BDOS can
detect media changes. When the BDOS reads a directory record, it
computes a checksum for the record and compares it to the current
value in the drive's checksum vector. If the values do not match,
the BOOS assumes the media has been changed, aborts the system call
routine, and returns an error code to the calling process.
Similarly, the BOOS must verify an unsuccessful hash table search
for a removable-media drive by accessing the directory. The point
to note is that the BOOS can only detect a media ch3nge by reading
the directory.

Because of the frequent necessity of directory ~ccess on removable­
media drives, there is a considerable performance overhead on these
drives compared to permanent drives. Another disadvantage is that,
since the BOOS can detect media removal only by a directory access,
inadvertantly changing media during a disk write operation results
in writing erroneous data onto the disk.

If, however, the disk drive and controller hardware can generate an
interrupt when the drive door is opened, another option for
preventing media change errors becomes available. By using the
following procedure, the performance penalty for removable-media
drives is practically eliminated.

1. Mark the drive as permanent by setting the value of the CKS
field in the drive's DPB to 8000H plus the total number of
directory entries divided by 4. For example, you would set the
CKS for a disk with 96 directory entries to 8018H.

2. Write a Door Open Interrupt routine that sets the DOOR field in
the XIOS Header and the DPH Media Flag for any drive signalling
an open door condition.

A-1

Concurrent CP/M System Guide A Removable Media

The BDOS checks the XIOS Header DOOR flag on entry to all disk­
related XIOS function calls. If the DOOR flag is not set, the BDOS
assumes that the removable media has not been changed. If the DOOR
flag is set (OFFH), the BDOS checks the Media Flag in the DPH of
each currently logged-in drive. It then reads the entire directory
of the drive to determine whether the media has been changed before
performing any operations on the drive. The BDOS also temporarily
reclassifies the drive as a removable-media drive, and discards all
directory buffers to force all subsequent directory-related
operations to access the drive.

In summary, using the DOOR and Media Flag facilities with removable­
media drives offers two important benefits. First, performance of
removable-media drives is enhanced. Second, the integrity of the
disk system is greatly improved because changing media can at no
time result in a write error.

End of Appendix A

A-2

Appendix B
Graphics Implementation

Concurrent CP/M can support graphics on any virtual console assigned
to a physical console that has graphics capabilities. Support is
provided in the operating system for GSX, that has its own separate
I/O system, GIOS. The GIOS does its own hardware initialization to
put a physical console in graphics mode. A graphics process that is
in graphics mode can not run on a background console, because this
would cause the foreground console to change to graphics mode.
Also, whenever the foreground console is initialized for graphics,
you cannot switch the screen to another virtual console. The
following points need to be kept in mind when writing an XIOS for a
system that will support graphics.

• IO SCREEN (Function 30) will be called by the GIOS when it
wants to change a virtual console to graphics or alphanumeric
mode. If the virtual console is in the background and graphics
is requested, IO SCREEN must flagwait the process. If the
virtual console is in the foreground, change the screen mode
and allow the process to continue. You must reserve at least
one flag for each virtual console for this purpose. See
Section 6.1 "Screen I/O Functions" for more information on
IO SCREEN.

• IO SWITCH (Function 7) must flagset any process that was
flagwaited by IO SCREEN when its virtual console is switched to
the foreground. When a foreground console is in graphics mode,
IO SWITCH will not be called, because PIN calls Function 30
(get), ignoring the switch key if the screen is in graphics
mode. Thus while a graphics process is running in graphics
mode in the foreground, it is not possible to switch screens.
For more information on IO SWITCH see Section 4. 2 "Console I/O
Functions".

• IO STATLINE (Function 8) must not display the status line on a
console that is in graphics mode. This can be done by checking
the same variable in the screen structure that Function 30
returns as the screen mode. For more information on
IO STATLINE see Section 4.2 "Console I/O Functions".

End of Appendix B

B-1

(

Index

A

ABORT.RSP, 2-2
Allocation Vector Address, 5-23
ALV, 5-23
Auto density support, 5-50
Auxiliary input, 4-15
Auxiliary output, 4-16

B

Background mode, 4-6
Basic Disk Operating System,

1-3, 1-11
BDOS, 1-3, 1-11
BDOS system calls, 1-11
BOOS.CON, 2-2
BIOS Conversion to XIOS, 3-14
BIOS Jump Table, 3-13
Blocking/Deblocking Buffers,

5-9
Blockinq/Deblockinq

Changes from CP/M-86, 3-14
breakpoints, 8-2
Bypassing the BDOS, 10-1

c

CCB, 1-18, 4-1, 4-2
CCB initialization, 4-3
CCB table, 4-1
CCPM.SYS, 2-1, 3-8, 8-2
CCPM.SYS Header Record, 9-8
CCPMLDR, 3-8
CCPMSEG, 1-17
CCPMVERNUM, 1-19
Character Control Block,

1-11
Character I/O, 4-1, 6-1
Character I/O Manager, 1-11
Character I/O Module, 1-3
Checksum Vector Address, 5-22
CIO, 1-3
CIO module, 1-11
CIO system calls, 1-11
CIO.CON, 2-2
Clock, 3-14
CLOCK.RSP, 2-2
CLSIZE, 5-32
CMD file Header, 8-2
CMDLOGGING, 2-7

COMPATMODE, 2-7
CON files, 2-2
Concurrent CP/M Organization,

1-3
Concurrent CP/M

features, 1-1
levels of interfacing, 1-1
System Overview, 1-1
XIOS, 1-1

Console Control Block, 4-1, 4-2
Console input, 4-8
Console input status, 4-7
Console output, 4-9
Console switching keys, 4-8
consoles, 4-1
CSV, 5-22
CTRL-0, 1-13
CTRL-P, 1-13, 4-4
CTRL-S, 1-13

D

Data Buffer Control Block
Header Address, 5-23

DATBCB, 5-23
DAY FILE, 1-17
Device Polling, 1-6
Device polling, 4-16
Dev flagset, 2-9
DEV-FLAGWAIT, 4-7
Dev-flagwt, 2-9
DEV-POLL, 4-7, 4-16
DEV-POLL system call, 1-6
DEV-SETFLAG, 4-7
DEV-SETFLAG system call, 1-6
DEV-WAITFLAG system call, 1-6
DIR-;-RSP, 2-2
DIRCB, 5-23
Directory Buff er Control Block

Address, 5-23
Directory buffer space, 2-15
Directory hashing, 2-15
Directory hashing space, 2-15
Disk buffering, 2-15
Disk definition tables, 5-9
Disk Errors, 5-17
Disk I/O Functions, 5-1
Disk I/O

Multisector, 5-11
Disk Parameter Block Address,

5-22

Index-1

Disk Parameter Block Worksheet,
5-35

Disk Parameter Header,
5-2, 5-21

disk performance tradeoffs,
2-15

Dispatcher, 1-6
DISPATCHER, 1-16
Display status line, 4-11
DLR, 1-18
DMAOFF, 5-12
DMASEG, 5-12
DOS disk errors, 5-4
DOS disks, 5-1
DOS DPB, 5-31
DOS IOPB, 5-15
DOS sector read, 5-6
DOS sector write, 5-8
DPB, 5-22
DPB Worksheet, 5-35
DPB

Changes from CP/M-86, 3-14
DPBASE, 5-26
DPH, 5-21
DPH and GENCCPM, 2-15
DPH Table, 5-26
DPH

Changes from CP/M-86, 3-14
DRL, 1-18
DRV, 5-11

E

ENDSEG, 1-17
ENTRY, 3-9, 8-2
Equipment check, 6-11
Error Handling

Disk I/O, 5-17
Extended disk errors, 5-4
Extended DPB, 5-31
Extended I/O System, 1-13
Extended Input/Output System,

1-3
external memory fragmentation,

2-11
EXTFLAG, 5-32

F

Far Call, 3-8
Far Return, 3-8
FAT, 5-24
FATADD, 5-32
File Allocation Table, 5-24
fixed-partition memory, 1-8

FLAGS, 1-18, 2-6, 2-9
Flagset, 2-9
Flagwait, 2-9
FLUSH BUFFERS, 5-9
Fragmentation memory, 2-11

G

GENCCPM, 1-1, 1-14, 1-21, 2-1
GENCCPM Boolean values, 2-2
GENCCPM command file

example, 2-17
GENCCPM defaults, 2-2
GENCCPM DELETESYS command, 2-4
GENCCPM DESTDRIVE command, 2-4
GENCCPM Disk Buffering Menu,

2-13
GENCCPM Disk Buffering Sample

Session, 2-14
GENCCPM DISKBUFFERS Menu

command, 2-5
GENCCPM error messages,

2-2, 2-11
GENCCPM GENSYS command, 2-15
GENCCPM GENSYS Option, 2-15
GENCCPM HELP, 2-2
GENCCPM Help Function Screens,

2-4
GENCCPM Input Files, 2-16
GENCCPM Main Menu, 2-2
GENCCPM Main Menu options, 2-4
GENCCPM Memory Allocation Menu,

2-10
GENCCPM Memory Allocation

Sample Session, 2-10
GENCCPM MEMORY Menu command, 2-5
GENCCPM memory partitions, 2-11
GENCCPM Operation, 2-1
GENCCPM OSLABEL Menu, 2-13
GENCCPM OSLABEL Menu command,

2-5
GENCCPM output redirection,

2-16
GENCCPM prompt, 2-2
GENCCPM RSP List Menu, 2-12
GENCCPM RSP List Menu Sample

Session, 2-12
GENCCPM RSP Menu, 1-20
GENCCPM RSPs Menu command, 2-5
GENCCPM SYSPARAMS Menu command,

2-4
GENCCPM System Generation

Messages, 2-16
GENCCPM System Parameters Menu,

2-5

Index-2

GENCCPM VERBOSE command,
GENDEF, 5-9
Get/set screen, 6-2
Get/Set Screen Mode, 6-1
Graphics implementation,

H

Hardware interface, 1-1
Hash Table Segment, 5-24

I

INIT, 3-8, 8-2

2-4

B-1

Internal memory fragmentation,
2-11

Internal system calls, 3-21
Interrupt 10, 6-1, 6-4
Interrupt 11, 6-11
Interrupt 13, 5-6
Interrupt 16, 6-10
Interrupt 2-24, 3-9
Interrupt Handler, 3-16
Interrupt-driven devices, 3-15
Interrupt-driven Devices

Changes from CP/M-86, 3-14
Interrupt-driven I/O, 8-1
Interrupts

spurious, 3-9
IOPB, 5-4, 5-10

Changes from CP/M-86, 3-14
DOS, 5-15

IO I 1-3
IO-AUXIN, 4-15
IO-AUXOUT, 4-16
IO-CONIN, 4-8, 6-9
IO-CONOUT, 4-9
IO-CONST, 4-7
IO-EQCK, 6-11
IO-FLUSH, 1-13, 5-7
IO-INT13 READ, 5-6
IO-INT13-WRITE, 5-8
IO-KEYBD~ 4-8, 6-9
IO-LSTOUT, 4-15
IO-LSTST, 4-14, 4-15
IO-POLL, 4-16
IO-READ, 1-13, 5-4
IO-SCREEN, 4-10, 6-2, B-1
IO-SELDSK, 1-13, 5-2
IO-SHFT, 6-10
IO-STATLINE, 1-13, 4-4, 4-6,

- 4-11, 4-13, 6-9, B-1
IO SWITCH, 4-10, 13-1
IO-VIDEO, 6-4
IO=WRITE, 1-13, 5-7

K

Keyboard mode, 6-9

L

LCB, 1-19, 4-2, 4-13
LINK, 4-6
List Control Block, 4-2, 4-13
List devices, 4-2
List output, 4-15
LIST OUTPUT, 4-15
List status, 4-14
LIST STATUS, 4-15
Locked records, 2-7
LOCKMAX, 2-7
LOCKSEG, 1-18
LOCK MAX, 1-20
Logically invariant interface,

1-1

M

M disk, 5-47
M drive, 5-47
MAL, 1-19
MAXBUFSIZE, 4-6
MDUL, 1-18
Media Flag, 5-22
Media type selection, 5-3
MEM, 1-3, 1-8
MEM module, 1-8, 2-11
MEM.CON, 2-2
MEMMAX, 2-7
Memory allocation, 2-11
Memory allocation defaults,

2-11
Memory Allocation List (MAL),

1-8
Memory Allocation Unit (MAU),

1-8
Memory Descriptor (MD), 1-8
Memory disk, 5-47
Memory fragmentation tradeoffs,

2-11
Memory Free List (MFL), 1-8
Memory Layout, 1-4
Memory management, 1-8
Memory mapped I/O, 4-10
Memory Module, 1-3
Memory partitions, 2-10, 2-11
MF, 5-22
MFL, 1-18
MIMIC, 4-4
MMP, 1-17

Index-3

MSCNT, 5-11
MSOURCE, 4-14
Multiple media support, 5-50
Multiple-sector disk I/O, 5-4
Multisector Count, 5-11
Multisector disk I/O

Changes from CP/M-86, 3-14
MXdisk queue, 1-13

N

NCCB, 1-17
NCCB field, 4-1
NCIODEV, 1-19
NCLSTRS, 5-32
NCONDEV, 1-19
NFATRECS, 5-32
NFATS, 5-32
NFLAGS, 1-17, 2-9
NLCB, 1-17
NLSTDEV, 1-19
NOPENFILES, 2-8
NPDESCS, 2-9
NQCBS, 2-9
NVCNS, 1-17
NVCNS field, 4-1

0

OFF 8087, 1-20
Open files, 2-7
OPENMAX, 2-7
OPEN FILE, 1-19
OPEN-MAX, 1-20
Operating System Area, 1-4
OSSTART, 2-8
OWNER, 4-4, 4-14
OWNER_8087, 1-20

p

Partitions
memory, 2-11

PC, 4-5
PC-MODE, 4-8, 6-1, 6-9
PDISP, 1-16
Physical console number, 4-5
Physical consoles, 4-1
PIN.RSP, 2-2
PLR, 1-18
POLL DEVICE, 4-16
Poll Device Number, 4-16
Polled Device Changes from

CP/M-86, 3-14
Polled devices, 3-15

Polled I/O, 8-1
Process Descriptor, 1-6, 1-21,

4-1
PUL, 1-18

Q

QBUFSIZE, 2-9
QLR, 1-19
QMAU, 1-18
Queue Control Block, 2-9
Queue

Mutual exclusion, 1-13
MXdisk, 1-13

Queues, 1-7
Conditional read/write, 1-7
Unconditional read/write, 1-7

QUL, 1-18

R

Read attribute/character, 6-6
Read cursor position, 6-5
Read DOS sector, 5-6
READ SECTOR, 5-4
Real-time Monitor, 1-3, 1-6
Real-Time Monitor, 4-16
Reentrant XIOS code, 1-13
Register usage, 3-10
Resident System Process,

1-21, 2-1
Resident System Processes,

1-3 I 1-20
RLR, 1-18
RSP I 1-3 I 1-20
RSP Data Structures, 1-20
RSP files, 2-2
RSP

PD and UDA, 1-20
relative to SYSDAT, 1-20

RSPSEG, 1-17
RTM, 1-3, 1-6
RTM process scheduling, 1-6
RTM Queue management, 1-7
RTM system calls, 1-7
RTM.CON, 2-2

s

Screen buffering, 4-1, 4-9
screen buffering, 4-10
Screen Mode, 6-1
Screen mode, 6-2
Screen structure, 4-9
Scroll down, 6-6

Index-4

(

Scroll up, 6-5
SECTOR, 5-12
Sector Translation

Changes from CP/M-86, 3-14
SEG 8087, 1-20
SELDSK DPBASE Address Return

Function, 5-27
SELECT DISK, 5-2
Semaphores, 2-9
Serial I/O, 4-10
Serial I/O devices, 4-1
Set cursor position, 6-4
Shared code, 1-8
Shift status, 6-10
Skew Table, 5-16
Spurious interrupts, 3-9
STATE, 4-6
Status line, 4-4, 4-6, 4-11

updating, 4-12
SUP, 1-4
SUP ENTRY, 1-16
SUP Module, 1-3
SUP system calls, 1-4
SUP.CON, 2-2
Supervisor Module, 1-4
Switch screen, 4-10
SYSDAT, 1-3, 1-21, 5-2
SYSDAT DATA, 1-3
SYSDAT segment, 1-14
SYSDAT Table Area, 1-3
SYSDAT.CON, 2-2
SYSDISK, 1-17
SYSDRIVE, 2-6
System calls

P CLI, 1-3
P-LOAD, 1-3

System Clock, 3-14
System configuration, 4-1
System Data Area, 1-3, 1-14
System Table Area, 1-14
SYS 87_0F, 1-20

T

TEMP DISK, 1-18
Terminal Message Process, 1-1
THRDRT, 1-18
TICKS/SEC, 1-18
TMP, 1-1
TMP.RSP, 2-2
TMPDRIVE, 2-6
TOD DAY, 1-19
TOD-HR, 1-19
TOD=MIN, 1-19

TOD SEC, 1-19
TPA-;- 1-3
TRACK, 5-11
Transient Program Area, 1-3
Translation Table, 5-21

u

UDA, 1-21
Unintialized interrupts, 3-9
Unused interrupts, 3-9
User Data Area, 1-21
User interface, 1-1

v

VC, 4-5
VERBOSE, 2-2
VERNUM, 1-19
VERSION, 1-19
Video input/output, 6-4
Video IO, 6-1
Virtual console number, 4-5
Virtual consoles, 4-1
VOUT.RSP, 2-2

Worksheet
DPB, 5-35

Write attribute/character, 6-7
Write character, 6-7
WRI.TE DISK, 5-7
Write DOS sector, 5-8
Write serial character, 6-8

x

XIOS, 1-3, 1-13
XIOS Build System Requirements,

3-13
XIOS Building from CP/M-86 BIOS,

3-13
XIOS Clock, 3-14
XIOS Data Area, 1-4, 1-14
XIOS ENTRY, 1-16, 3-9
XIOS Entry Points, 3-13
XIOS Function names, 1-3
XIOS !NIT, 1-16
XIOS Interrupt-driven Devices,

3-15
XIOS List Device Functions,

4-13
XIOS Segment Address, 1-4

Index-5

XIOS
8080 Model, 1-4
debugging, 8-1
reentrant code, 1-13
relationship to CCPM.SYS

file, 1-4
spurious interrupt handling,

3-9
XIOS.CON, 2-2
XLT, 5-21
XPCNS, 1-20, 4-2

Index-6

NOTES

(

Reader Comment Card
We welcome your comments and suggestions. They help us provide you with better

) product documentation.

1
)

\
)

Date

1. What sections of this manual are especially helpful?

2. What suggestions do you have for improving this manual? What information
is missing or incomplete? Where are examples needed?

3. Did you find errors in this manual? (Specify section and page number.)

Concurrent CP / M™ Operating System System Guide
First Edition: January 1984

/ 1034-2013

COMMENTS AND SUGGESTIONS BECOME TftE PROPERTY OF DIGITAL RESEARCH.

From:

Attn: Publications Production

BUSINESS REPLY MAIL
FIRST CLASS I PERMIT NO. 182 I PACIFIC GROVE, CA

POSTAGE WILL BE PAID BY ADDRESSEE

OCQJ DIGITAL RESEARCH™
P.O. Box 579
Pacific Grove, California
93950

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

.0
_,-.;;.,-= 0-

=
-=

1034-2013

