
CBASIC Compiler™
Language

Graphics Guide

CBASIC® Compiler
Language

Graphics Guide

Copyr ight © 1983

Digital Research
P.O. Box 579

801 Lighthouse Avenue
Pacific Grove, CA 93950

TWX 910 360 5001

All Rights Reserved

COPYRIGHT

Copyright ~ 1983 by Digital Research. All rights
reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or
computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written
permission of Digital Research, Post Office Box 579,
Pacific Grove, California, 93950.

DISCLAIMER

Dig i tal Research makes no represen ta tions or
warranties with respect to the contents hereof and
specifically disclaims any implied warranties of
merchantabil i ty or fitness for any particular
purpose. Further, Dig i tal Research reserves the
right to revise this publication and to make changes
from time to time in the content hereof without
obligation of Digital Research to notify any person
of such revision or changes.

TRADEMARKS

CP/M and CBASIC are registered trademarks of Digital
Research. CBASIC Compiler, CB80, GSX, GSX-86, and
LK80 are trademarks of Digital Research.

The CBASIC Compiler Language Graphics Guide was
prepared using the Digital Research TEX Text
Formatter and pr inted in the United States of
America.

* First Edition: May 1983 *

Foreword

CBASIC® Compiler is' Digital Research's powerful compiler
version of CBASIC, the commercial BASIC dialect recognized as the
industry standard. With CBASIC Compiler's comprehensive, graphics
extensions, you can now write versatile graphics programs for a
multitude of applications.

Both the 8-bit and l6-bit versions of CBASIC Compiler support
graphics extensions. To write graphics programs, you need CBASIC
Compiler and the GSX™ Graphics System Extension that fits your
CP/M® operating system and hardware.

CBASIC Compiler's graphics extensions are device-independent;
you can direct output to any graphics per ipheral wi thout recompiling
your programs. Your GSX software issues all the necessary commands
to control the peripherals you select.

For example, if you do not have a plotter, you needn't worry
about converting your programs for a plotter when one becomes
available. You simply change the GSX ASSIGN.SYS file so that it
assigns your output to the plotter instead of to the screen. Your
GSX Graphics Extensions Programmer's Guide shows you how to modify
ASSIGN.SYS.

The GSX software contains routines that control the peripheral
devices. These routines, known as device drivers, provide physical
control of the devices. Your GSX guide includes specifications for
all the device drivers you can use with your software.

Get familiar with your software and hardware before you attempt
extensive application programming. You can determine most of your
system's features by watching DEMOGRAF, the CBASIC Compiler graphics
tutorial.

This CBASIC Compiler Language Graphics Guide describes CBASIC
Compiler's graphics statements and functions with the assumption
that you are acquainted with CBASIC Compiler and GSX graphics.

• Section 1 defines the concepts underlying CBASIC Compiler
graphics.

• Section 2 explains how to compile and link CBASIC graphics
programs and discusses DEMOGRAF, a demonstration of CBASIC
Compiler's graphics statements and functions. DEMOGRAF is
included on your demonstration disk.

• Section 3 catalogs all the graphics statements and functions.

• Section 4 presents sample graphics programs.

• Appendix A is a listing of DEMOGRAF.

iii

Table of Contents

1 Introduction to CBASIC Compiler Graphics

1.1 Graphics Statements

1.2 Definitions

1. 2.1
1. 2.2
1. 2. 3
1. 2.4
1. 2.5
1. 2.6
1. 2. 7
1.2.8

Coordinates
Bounds
Viewport
Window • • • •
Cursor
Beam
Marker
Clipping

2 Compiling and Linking

2.1 Compilation

2.2 Linking

2.3 GENGRAF

2.4 Run-time •

2 • 5 DEMOG RAF

3 Graphics Statements and Functions

BEAM Statement

BOUNDS Statement

CHARACTER HEIGHT Statement

CLEAR Statement •

CLIP Statement

COLOR Statement •

COLOR COUNT Statement .

DEVICE Statement

GRAPHIC CLOSE Statement

GRAPHIC INPUT Statement

v

1-1

1-2

1-2
1-3
1-4
1-5
1-7
1-7
1-7
1-7

2-1

2-1

2-1

2-2

2-2

3-2

3-4

3-7

• • • 3-10

• • 3-11

• • 3-13

.0 .. 3-14

3-15

• • 3-16

• • 3-17

. Table of Contents
(continued)

GRAPHIC OPEN Statement

GRAPHIC PRINT Statement •

JUSTIFY Statement • •

LINE STYLE Statement

MARKER HEIGHT Statement •

MARKER TYPE Statement • •

MAT FILL Statement

MAT MARKER Statement

MAT PLOT Statement

PLOT Statement

POSITION Statement

STYLE COUNT Statement • •

TEXT ANGLE Statement

VIEWPORT Statement

WINDOW Statement

4 Sample Functions and Programs

4.1 CIRCOM.BAS •

4.2 TSTCIR.BAS.

4.3 GRAPHR.BAS ••

Appendixes

A DEMOGRAF Program Listing

vi

• 3-19

• • 3-20

• • • • 3-22

• • 3-25

• • 3-27

• • 3-30

• • • • 3-32

• • • 3-34

• • 3-36

• • 3-38

• • 3-40

• • 3-42

• • • 3-44

• 3-47

• • • 3-50

4-1

4-3

4-4

A-I

Tables, Figures, and Listings

Tables

1-1. Graphic Extensions by Functional Group

3-1.
3-2
3-3.

Figures

I-I.
1-2.
1-3.

3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.
3-8.
3-9.
3-10.
3-11.
3-12.
3-13.
3-14.
3-15.
3-16.
3-17.
3-18.
3-19.
3-20.

Listings

4-1.
4-2.
4-3.

A-I.

Syntax Definitions •••••
Marker Types • • • • •
Degrees-to-Radians Conversion Chart

Device Coordinates
Viewport • • • • •
Window • • • • • •

The BEAM Statement • • •
The BOUNDS Statement--Rectangle
The BOUNDS Statement--Square
The CHARACTER HEIGHT Statement • • • •
Unclipped Image • • • • • • •
Clipped Image • • • • • • • •
The GRAPHIC INPUT Statement •
The JUSTIFY Statement • • • •
The LINE STYLE Statement • • • • •
The MARKER HEIGHT Statement •
The MARKER TYPE Statement •
The MAT FILL Statement • • • • • •
The MAT MARKER Statement
The MAT PLOT Statement •••••
The PLOT Statement • • • • • • • •
The POSITION Statement • • • • •
The STYLE COUNT Statement
The TEXT ANGLE Statement •••••
The VIEWPORT Statement • • • • • •
The WINDOW Statement

CIRCOM.BAS Program
TSTCIR.BAS Program
GRAPHR.BAS Program

DEMOGRAF Program •

vii

1-1

3-1
• 3-30

• • • 3-44

1-3
1-4
1-6

3-3
3-6
3-6
3-9

3-12
• • • 3-12

3-18
• 3-24

• • 3-26
3-29
3-31

• • 3-33
• • 3-35

• 3-37
• 3-39
• 3-41
• 3-43

• • 3-46
• 3-49

• • • 3-51

4-1
4-3
4-4

A-I

Section 1
Introduction to CBASIC Compiler Graphics

This section introduces the CBASIC Compiler graphics statements
and functions and defines some elementary graphics concepts.

1.1 Graphics Statements

The graphics statements and functions fall into five groups,
according to function. Each statement or function is described
individually in Section 3. The names of CBASIC Compiler graphics
statements and functions are reserved words.

Table 1-1. Graphics Extensions

Group

OUTPUT

FORMAT

VIEWING AREA

Statement or Function

GRAPHIC PRINT
MAT FILL
MAT MARKER
MAT PLOT
PLOT

CHARACTER HEIGHT (SET/ASK)
COLOR (SET/ASI<)
COLOR COUNT (ASK)
JUSTIFY (SET/ASK)
LINE STYLE (SET/ASK)
MARKER HEIGHT (SET/ASK)
MARKER TYPE (SET)
STYLE COUNT (ASK)
TEXT ANGLE (SET/ASK)

BOUNDS (SET/ASK)
DEVICE (ASK)
VIEWPORT (SET/ASK)
WINDOW (SET/ASK)

1-1

CBASIC Compiler Graphics Guide 1.1 Graphics Statements

Table 1-1. (continued)

Group

INPUT

CONTROL

1.2 Definitions

I Statement or Function

GRAPHIC INPUT

BEAM (SET/ASK)
CLEAR
CLIP (SET/ASK)
GRAPHIC CLOSE
GRAPHIC OPEN
POSITION (SET/ASK)

You should understand the following concepts before you turn
to the statement and function definitions.

1.2.1 Coordinates

Positions within the display area of the graphics device are
defined by X and Y coordinates. The X axis is the horizontal axis.
The Y axis is the vertical axis. Both coordinate axes begin at the
lower left corner of the device.

When you initialize the graphics system with the GRAPHIC OPEN
statement, the coordinates initially range from 0.0 to 1.0 for both
axes, regardless of the physical dimensions of the device.

After you initialize a device with the GRAPHIC OPEN
statement, your program can address the lower left corner of the
display device with X and Y coordinates 0,0. The upper right corner
of the device is address 1,1. You define a box around the border of
your graphics output device by connecting the coordinate pairs
(0,0), (0,1), (1,1), (1,0), (0,0).

1-2

CBASIC Compiler Graphics Guide 1.2 Definitions

0,1 1,1

y

0,0 x 1,0

Figure 1-1. Device Coordinates

1.2.2 Bounds

The bounds of a device are its physical dimensions in pixels,
inches, or whatever measure a particular device uses. Frequently,
these dimensions are not the same for the X and Y axes. The height
of the drawing area might not be equal to the width. with the
BOUNDS statement, you can control the the length of the axes, thus
keeping your images proportioned, regardless of the device you are
using.

After a GRAPHIC OPEN statement, the bounds of the device are
set to 100% of the physical extent of the X and Y axes. If there is
a difference in the extents of the two axes, a line along the X axis
is not the same length as a line along the Y axis. For example, the
Y axis might be shorter relative to the X axis. The ratio of the Y
axis to the X axis is called the aspect ratio.

You can use the DEVICE statement to determine the aspect ratio
of a device. For example, if the Y axis is 80% as long as the X
axis, the ASK DEVICE statement returns 1.0 and .8 as the relative
values of the X and Y axes.

The BOUNDS statement is the first basic dimensioning statement.
The second and third are the VIEWPORT and WINDOW statements.

1-3

CBASIC Compiler Graphics Guide 1.2 Definitions

1.2.3 Viewport

within the bounds of a device, the area in which graphics data
prints is called the viewport. You define the viewport by X and Y
coordinates ranging from 0.0 to 1.0.

Use the VIEWPORT statement to define the literal viewing area
within the physical bounds of the device. VIEWPORT lets you specify
beginning and end points for the X and Y axes within the device's
current bounds. Subsequent graphics statements operate inside the
area you specify in the VIEWPORT statement.

Figure 1-2 illustrates a viewport. You establish this viewport
with the following statement:

SET VIEWPORT .2,.5,.2,.6

0,1 1,1

.2,.6 .5,.6

y I VIEWPORT I
.2,.2 .5,.2

0,0 x 0,1

Figure 1-2. Viewport

All graphics statements after the VIEWPORT statement refer to
the area within this viewport.

In this case the bounds of the device are 100% of the available
capacity. If you use a SET BOUNDS statement to alter the extents of
thedev ice, the viewport automatically adjusts within the new
bounds. .

1-4

CBASIC Compiler Graphics Guide 1. 2 Definitions

1.2.4 Window

You can think of a window as a frame with tick marks around
the vi ewpor t • The window de fines the scale of the X and Y
coordinates of a viewport. With the WINDOW statement, you can
restate the scale of the viewport coordinate system to whatever
values your application requires.

The WINDOW statement lets you automatically map real-world
values onto the coordinate system of your device. The X and Y
coordinates of a viewport initially range from 0.0 to 1.0. You can
change the initial viewport ranges with the WINDOW statement.
WINDOW can adjust these ranges to the scale required by your
application. For example,

SET WINDOW 0,100,0,100

scales all coordinate references in subsequent CBASIC graphics
statements to a range of 0 to 100 for both axes.

In summary, the window scales the viewport; the viewport
resides within the bounds; the bounds reside within the physical
extents of the device. For further information, see the
explanations of the BOUNDS, VIEWPORT, and WINDOW statements in
Section 3.

1-5

CBASIC Compiler Graphics Guide 1.2 Definitions

y

o

\
\

\

DEVICE

\

\

\
\

\

THE BOUNDS ARE MAPPED WITHIN THE DEVICE

" "
THE VIEWPORT IS MAPPED WITHIN

THE BOUNDS

" "

" " " "
" 'VIEWPORT"

ox" 1 " , THE VIEWPORT

"" ' [ii]" THE WINDOW SCALES

" " "" " " , " '

smINDDW 0,100,0 .too ' ,,<:°1 'D'1
PLOT (45,0) '(55,0) '(55,80) '(80,80) "
PLOT (50,70) '(40,80) 1145,80) 1145,0) 0

o X 100

Figure 1-3. WINDOW

1-6

CBASIC Compiler Graphics Guide 1. 2 Definitions

1.2.5 Graphics Cursor

The cursor indicates the current location of the drawing
device. The GRAPHIC INPUT statement has a special graphics cursor
tha t you can maneuver around the screen. How you control the
movement of the graphics cursor (arrow keys, control keys, or a
mouse), depends on your hardware. See your GSX Graphics Extension
Programmer's Guide.

1.2.6 Beam

The beam is the drawing device within a particular output
device. For a plotter, the beam is a pen. For a CRT, the beam is a
stream of electrons. You turn the beam on or off with the BEAM
statement.

1.2.7 Marker

Markers are predefined symbols you use to identify points or
intersections on a graph or drawing. You can use the MAT MARKER
statement to plot a scatter graph of points with markers. The
available markers are descr ibed in the documentation for your device
driver. See the MARKER TYPE statement in Section 3.

1.2.8 Clipping

Sometimes the coordinate references you give are out-of
bounds, extending beyond the bit-map memory area that some devices
use to generate displays. Clipping refers to the chopping off of
parts of drawings that would otherwise trespass beyond this area.
Without clipping, memory outside the bit-map area might be altered.

Use the CLIP statement to turn clipping on or off. Clipping
is on by default at the beginning of a program. Turning clipping
off increases operating speed slightly, but is risky. Turn clipping
off only if you are sure that your application program will not try
to reference coordinates outside the current window. See the CLIP
statement in Section 3.

End of Section 1

1-7

Section 2
Compiling and Linking

To create object programs from CBASIC Compiler graphics
programs, you need special files and procedures. This section
explains these requirements and tells you how to compile, link, and
run DEMOGRAF, the graphics demonstration program.

2.1 Compilation

Your source program must include the following statement:

%INCLUDE GRAPHCOM.BAS

The statement above assumes the file GRAPHCOM.BAS is on the
same disk drive as the source program. If it is on a different
drive, precede the filename in the %INCLUDE statement with a drive
specification. For example,

%INCLUDE B:GRAPHCOM.BAS

The GRAPHCOM.BAS file contains var iable names to include in the
common program area. The variable names in this file are reserved
words in CBASIC Compiler programs that use graphics statements.

2.2 Linking

You need no special procedures to link CBASIC Compiler graphics
programs. Follow the instructions in your CBASIC Compiler
documentation.

2.3 GENGRAF

Use the GENGRAF program to incorporate run-time loaders into
programs generated by the 8-bit CBASIC Compiler, CB80™. If you are
a l6-bi t CBASIC Compiler (CB86 TM) user, you do not need GENGRAF, nor
do you need to follow this procedure. The form of the GENGRAF
command is

GENGRAF <filespec>

GENGRAF expects to find a .COM file that was output from the 8-
bit linker, LK80™. GENGRAF modifies the .COM file by including a
run-time loader for GSX. When GENGRAF finishes, your program is
ready to run.

2-1

CBASIC Compiler Graphics Guide 2.4 Run-time

2.4 Run-time

At run-time, the following files must be on the current default
drive:

CBASIC Compiler (CB80) Users

• GSX.SYS
• ASSIGN.SYS
• Device drivers as required by ASSIGN.SYS

CBASIC Compiler (CB86) Users

• GRAPHICS.CMD
• ASSIGN.SYS
• Device drivers as required by ASSIGN.SYS

See your GSX Graphics Extension Programmer's Guide for details
regarding these files.

2.5 DEMOGRAF

A graphics tutorial, DEMOGRAF.BAS, is included on your CBASIC
software disk. It contains examples of all the graphics statements.
The examples are the same as those shown in the definitions of the
graphics statements and functions in Section 3. The tutorial is in
al phabe tical order like Sect ion 3. A program list ing of
DEMOGRAF.BAS is included in Appendix A.

To use the demonstration program, you must first compile and
link the source program DEMOGRAF.BAS, using one of the following
procedures:

o CBASIC Compiler (CB80) Users

A>CB80 DEMOGRAF

A>LK80 DEMOGRAF

A>GENGRAF DEMOGRAF

2-2

CBASIC Compiler Graphics Guide 2.5 DEMOGRAF

o CBASIC Compiler (CB86) Users

A>CB86 DEMOGRAF

A>LINK86 DEMOGRAF

A> GRAPHICS (load GSX-86™)

To run the DEMOGRAF program, enter the following command:

A>DEMOGRAF

DEMOGRAF contains statement demonstrations that display the
name of the statement and show how it works. Read the explanations
of the graphics statements in Section 3 as you watch DEMOGRAF.

DEMOGRAF pauses at the end of each example. Press any key to
continue. Enter CTRL-C to interrupt and return to the operating
system.

End of Section 2

2-3

Section 3
Graphics Statements and Functions

This section presents the CBASIC Compiler graphics statements
and functions in alphabetical order. Statement keywords preceded by
SET and ASK are alphabetized by the keyword. For example, the SET
WINDOW statement is found under WINDOW.

The syntax notation in this guide employs the following
conventions.

• Upper-case letters designate CBASIC Compiler keywords.

• Lower-case letters indicate variables.

• Angle brackets < > enclose syntactic items.

• Square brackets [] enclose optional items.

• Braces { } enclose optional items that can be repeated.

• The OR bar, I, indicates a choice between two or more syntactic
items.

You must include all other punctuation in the syntax line, such as
delimi ters and parentheses. Table 3-1 defines some syntactic items:

Table 3-1. Syntax Definitions

Syntactic Item

numeric expression

real variable

integer variable

string variable

X coordinate

Y coordinate

I Definition

numeric constants (integer or real),
numer ic var iables, or combination
of constants, variables, and
numeric operators

floating point variable

integer (-32768 to 32767) variable

character string ($ type) variable

hor i zon tal position in coordinate
system

vertical position in coordinate
system

3-1

CBASIC Compiler Graphics Guide BEAM Statement

BEAM Statement

The BEAM statement turns the pen or drawing beam on or off.

Syntax:

SET BEAM "ON" I "OFF"
ASK BEAM <string variable>

Explanation:

Switch the beam on or off by writing a SET BEAM statement with
"ON" or "OFF", upper-case and in quotation marks, as the argument.
This statement is like a PEN UP/PEN DOWN statement for a plotter.

The ASK BEAM statement tells you whether the beam is currently
on or off, returning the value of the beam state in <string
variable>.

Example:

GRAPHIC PRINT AT (0,.9): "BEAM STATEMENT"
SET BEAM "OFF"
PLOT (0, 1) , (1, 1) , (1, 0) , (0 , 0)
KEY%=PAUSE
REM PAUSE IS A LOCALLY DEFINED FUNCTION
REM THAT WAITS FOR CONSOLE INPUT.
CLEAR
SET BEAM "ON"
PLOT (0,1), (1,1) , (1,0) , (0,0)
KEY%=PAUSE

In this example, the SET BEAM "OFF" statement turns off the
beam before the PLOT statement runs. Only three sides of a screen
border are drawn, because the beam is OFF before the first pair of
coordinates is plotted (see Figure 3-1).

PAUSE is locally defined at the beginning of DEMOGRAF. The
pause halts the program so you can see the display. Press any key
to continue. To interrupt the program, enter CTRL-C.

The CLEAR statement turns the beam off and leaves it at 0,0.
The SET BEAM "ON" statement draws a line from (0,0) to (0,1), and
draws the full screen border.

3-2

CBASIC Compiler Graphics Guide BEAM Statement

BEAM STATEMENT

Figure 3-1. The BEAM Statement

3-3

CBASIC Compiler Graphics Guide BOUNDS Statement

BOUNDS Statement

The BOUNDS statement sets the aspect ratio of the X and Y axes
of the output device.

Syntax:

SET BOUNDS <height>,<width>
ASK BOUNDS <height>,<width>

Explanation:

Graphics devices often have different horizontal and vertical
dimensions. The ratio of the length of the axes is called the
aspect ratio.

The BOUNDS statement changes the aspect ratio. (To find the
aspect ratio of the device, use the ASK DEVICE statement.) The
values you give for the new height and width of the device must be
greater than 0.0 and less than or equal to.l.O. At least one of the
values must be equal to 1.0.

The new boundar ies of the device are always anchored at
coordinates 0,0, as shown in Figures 3-2 and 3-3. All subsequent
graphics operations are bounded by the new height and width of the
SET BOUNDS statement.

ASK BOUNDS ass igns the cur rent ver tical and hor izontal
dimensions of the screen to the real variables <height> and <width>.

With the BOUNDS statement, you can make different display
devices proportional. Proportional devices retain the shapes of
figures so that, for example, your circles are circles from device
to device. Your application program can adjust the aspect ratio of
any device to fit a planned ratio. The BOUNDS statement is only one
way to change the aspect ratio; you can also change it with the
WINDOW statement.

3-4

CBASIC Compiler Graphics Guide BOUNDS Statement

Example:

You can use the BOUNDS statement with the ASK DEVICE statement
to alter the aspect ratio of a device.

CLEAR
GRAPHIC PRINT AT (O,.9): "BOUNDS STATEMENT"
ASK DEVICE X.AXIS,Y.AXIS
PRINT "THE ASPECT RATIO IS= "; Y.AXIS; "/"; X.AXIS
KEY% = PAUSE
REM PAUSE IS A LOCALLY DEFINED FUNCTION
PLOT (O, 0) , (O ,1) , (I, 1) , (I, 0) , (O, 0)
KEY% = PAUSE
CLEAR
SET BOUNDS Y.AXIS,X.AXIS
PLOT (O, 0) , (O , 1) , (I, 1) , (I, 0) , (O , 0)
SET BOUNDS 1,1

The second PLOT statement draws a perfect square because reversing
the physical dimensions in the SET BOUNDS statement squares the
aspect ratio of the screen.

The SET BOUNDS 1,1 statement returns the screen to its full X
and Y capacities.

3-5

CBASIC Compiler Graphics Guide BOUNDS Statement

BOUNDS STATEMENT

Figure 3-2. The BOUNDS Statement--Rectangle

Figure 3-3. BOUNDS Statement--Square

3-6

CBASIC Compiler Graphics Guide CHARACTER HEIGHT Statement

CHARACTER HEIGHT Statement

The CHARACTER HEIGHT statement defines the height of characters
or assigns the height to a variable.

Syntax:

SET CHARACTER HEIGHT <numeric expression>
ASK CHARACTER HEIGHT <real variable>

Explanation:

SET CHARACTER HEIGHT defines the height of characters relative
to the length of the Y coordinate. Initially, Y extends from 0.0 to
1.0. A character height of .2 results in characters that are 20% of
the length of the Y coordinate.

The argument you give for <numeric expression> is the desired
height of the character. The resulting character height is the
largest hardware character size that does not exceed the size you
requested. Every output device has a number of character sizes.
You can find the character sets of the output devices available to
your system in your GSX reference manual.

SET CHARACTER HEIGHT 0 sets the character height to the minimum
size possible within the current window.

ASK CHARACTER HEIGHT assigns the current character height value
to the <real variable>. You can use ASK CHARACTER HEIGHT to find
the height assigned by a previous SET CHARACTER HEIGHT statement.
The actual value of a character height can differ from what you
specify in a SET CHARACTER HEIGHT statement, because the choice of
character heights is determined by the available character set.

You can change the extent of the X and. Y coordinates with the
WINDOW statement. After such a change, any CHARACTER HEIGHT
statements use the new X and Y coordinate extents as a base. If you
use WINDOW to change the Y coordinate to 0.0 to 100.0, the correct
value for a 20% character height is 20.0.

If characters to be displayed by the GRAPHIC PRINT statement
exceed the limits of the current window, they are not displayed at
all. It is good practice to reestablish the character height after
a SET WINDOW statement to ensure that the character set fits the new
window dimensions.

3-7

CBASIC Compiler Graphics Guide CHARACTER HEIGHT Statement

For example, the minimum character height in a large window is
greater than the minimum character height in a small window. If you
start with a large window and shrink the window without changing the
size of the characters, the characters might not fit in a smaller
window. If not, they do not print.

~xamples:

The following statement sets the character height to 10% of the
screen if the extent of the Y coordinate is 0.0 to 1.0.

SET CHARACTER HEIGHT .1

The following statement sets the character height to 15%
(15/100) of the screen. The window statement has set the Y axis to
a value ranging from ° to 100.

SET WINDOW 0,100,0,100
SET CHARACTER HEIGHT 15

The next routine returns the minimum character height in the
numeric variable CH:

SET CHARACTER HEIGHT °
ASK CHARACTER HEIGHT CH
PRINT "MINIMUM DEVICE CHARACTER HEIGHT IS = ": CH

The CHARACTER HEIGHT demonstration in the DEMOGRAF program is
performed by the following commands:

CLEAR
SET CHARACTER HEIGHT °
GRAPHIC PRINT AT (0,.9): "CHARACTER HEIGHT STATEMENT"
SET CHARACTER HEIGHT .1
GRAPHIC PRINT AT (0,.7): "10 PERCENT"
KEY% = PAUSE
REM PAUSE IS A LOCALLY DEFINED FUNCTION
SET WINDOW 0,100,0,100
SET CHARACTER HEIGHT 15
GRAPHIC PRINT AT (0,40): "15 PERCENT"
KEY% = PAUSE
SET CHARACTER HEIGHT °
ASK CHARACTER HEIGHT CH
PRINT "MINIMUM CHARACTER HEIGHT IS = ": CH
GRAPHIC PRINT AT (0,20): "MINIMUM HEIGHT"

3-8

CBASIC Compiler Graphics Guide CHARACTER HEIGHT Statement

CHARACTER HE I GHT STATEMENT

1 (:) PEJ;'CEt\JT

15 PERCEt~T
MINIMUM HEIGHT

Figure 3-4. The CHARACTER HEIGHT Statement

3-9

CBASIC Compiler Graphics Guide CLEAR Statement

CLEAR Statement

Syntax:

CLEAR

Explanation:

The CLEAR statement clears the screen, returns the cursor to
(0,0), and turns the beam off.

Example:

INPUT un: LINE SEED$
RANDOMIZE
CLEAR
GRAPHIC PRINT AT (0,90): "CLEAR STATEMENT"
SET WINDOW 0,1,0,1
FOR I.INT% = 1 TO 10

PLOT (RND,RND), (RND,RND)
NEXT I.INT%
KEY% = PAUSE
REM PAUSE IS A LOCALLY DEFINED FUNCTION
CLEAR

This routine draws ten random line segments, pauses for you to
press a key on the console, and clears the screen with CLEAR.

3-10

CBASIC Compiler Graphics Guide CLIP Statement

'CLIP Statement

The CLIP statement turns clipping on or off.

Syntax:

SET CLIP "ON" I "OFF"
ASK CLIP <string variable>

Explanation:

SET CLIP requires a str ing expression "ON" or "OFF", upper-case
and in quotation marks, as the argument. ASK CLIP returns the
current value of the clip state in <string variable>.

Clipping edits portions of line segments or figures that extend
outside the limits of the current window. With clipping on, memory
areas in a bit-mapped display device are protected from possible
overlay by out-of-range coordinate references.

It is advisable to keep clipping on. Otherwise, you might
overlay data that the software or hardware needs to operate.

Example:

This program illustrates the effect of automatic clipping when
a figure exceeds allowable boundar ies. Figure 3-5 shows the
unclipped image. With clipping OFF, the computer attempts to draw
the area outside the window. Note that this can be undesirable.
Figure 3-6 shows the same figure, clipped.

SET WINDOW 0,100,0,100
PLOT (25,10), (50,150), (75,10), (25,10)
END

3-11

CBASIC Compiler Graphics Guide CLIP Statement

Clip Statefrlent

150

1 00f------/-----.;Io--------.

10

50 75

Figure 3-5. Unclipped Image

Figure 3-6. Clipped Image

3-12

CBASIC Compiler Graphics Guide COLOR Statement

COLOR Statement

The COLOR statement establishes the foreground color or assigns
the value of the foreground color to a variable.

Syntax:

SET COLOR <color number>
ASK COLOR <integer variable>

Explanation:

The SET COLOR statement establishes the color of subsequent
lines and filled polygons as one of n colors available on your
dev ice. The var iable <color number> is an integer expression
representing the desired color number.

You can find the number of colors available on your device with
an ASK COLOR COUNT statement. The number and meaning of color
numbers varies according to your implementation.

The ASK COLOR statement assigns the value of the current
foreground color to <integer variable>.

Example:

CLEAR
GRAPHIC PRINT AT (0,90): \

"COLOR AND COLOR COUNT STATEMENTS"
SET WINDOW 0,1,0,1
ASK COLOR COUNT CT%
FOR I.INT% = 1 TO CT%

SET COLOR I.INT%
PLOT (0, 0) , (0 ,1) , (1,1) , (1, 0) , (0, 0)
KEY% = PAUSE

REM PAUSE IS A LOCALLY DEFINED FUNCTION
NEXT I.INT%
END

This routine draws a border around the screen in each of the
device colors.

3-13

CBASIC Compiler Graphics Guide COLOR COUNT Statement

COLOR COUNT Statement

The COLOR COUNT statement assigns the number of available
colors to a variable.

Syntax:

ASK COLOR COUNT <integer variable>

Explanation:

ASK COLOR COUNT assigns the number of available colors in
<integer variable>.

Example:

See the COLOR Statement.

3-14

CBASIC Compiler Graphics Guide DEVICE Statement

DEVICE Statement

The DEVICE stat~ment assigns the physical limits of a device to
variables.

Syntax:

ASK DEVICE <height variable>,<width variable>

Explanation:

The ASK DEVICE statement assigns the physical limits of the
currently open graphics device to the real variables for height and
width.

The physical limits of a graphics device are often not the same
for the X and Y axes. A screen might have 60% as much viewing space
vertically as horizontally. The ASK DEVICE statement returns the
dimensions of the physical device.

Example:

CLEAR
SET CHARACTER HEIGHT a
SET COLOR 1
GRAPHIC PRINT AT (0,.8): "DEVICE STATEMENT II
ASK DEVICE X.AXIS,Y.AXIS
PRINT "THE VERTICAL AXIS IS "i\

Y.AXIS*lOO/X.AXISi"PERCENT OF THEII\
PRINT " HORIZONTAL AXIS"
PRINT "X= "iX.AXIS," Y= "iY.AXIS
END

This program prints the values for the vertical and horizontal
axes of the device. You can square a device for output by reversing
the X and Y limits in a SET BOUNDS statement. See the BOUNDS
statement for an example.

3-15

CBASIC Compiler Graphics Guide GRAPHIC CLOSE Statement

GRAPHIC CLOSE Statement

The GRAPHIC CLOSE statement closes the current graphics display
device.

Syntax:

GRAPHIC CLOSE

Explanation:

The GRAPHIC CLOSE statement closes the graphics output device
that you opened with a GRAPHIC OPEN statement.

After you GRAPHIC CLOSE a device, you can open a new device
with GRAPHIC OPEN.

3-16

CBASIC Compiler Graphics Guide GRAPHIC INPUT Statement

GRAPHIC INPUT Statement

The GRAPHIC INPUT statement accepts X and Y coordinates from
the cursor position.

Syntax:

GRAPHIC INPUT <X coordinate>, <Y coordinate>, <string variable>

Explanation:

AGRAPHIC INPUT statement lets you position the cursor on your
terminal using cursor control keys. When you press any key other
than a cursor control key, the statement stores the X and Y
coordinates of the cursor in <X coordinate> and <Y coordinate>. The
character code for the key you press to complete the command is
stored in the third operand, <string variable.>

The GRAPHIC INPUT statement lets you communicate with the
program by indicating areas on the screen. Moving the cursor to an
option on a menu is one use of this command. GRAPHIC INPUT also can
store the coordinates of figures that you enter. Use the MAT PLOT
and MAT FILL statements to manipulate these figures.

For information on how your device treats the graphics cursor,
see your GSX Graphics Extensions manual.

Example:

SET WINDOW 0,100,0,100
SET CHARACTER HEIGHT °
GRAPHIC PRINT AT (0,80): "GRAPHIC INPUT STATEMENT II
GRAPHIC PRINT AT (0,25): "OPTION 1 II

SET COLOR 2
GRAPHIC PRINT AT (0,50): "OPTION 2
SET COLOR 3
GRAPHIC PRINT AT (0,75): "OPTION 3
GRAPHIC INPUT X.AXIS,Y.AXIS,A$
N = INT((Y.AXIS+5)/25)

II

IF N = ° THEN N = 1 REM NO OPTION ZERO
IF N > 3 THEN N = 3 REM ONLY THREE OPTIONS
PRINT liTHE CURSOR WAS POSITIONED AT: II X.AXIS,Y.AXIS
PRINT "YOU SELECTED OPTION: II N
PRINT liTHE TERMINATING KEY WAS: II A$
END

3-17

CBASIC Compiler Graphics Guide GRAPHIC INPUT Statement

GRAPHIC INPUT STATEMENT

OPTION 3. +

OPTION 2.

OPTION 1.

Figure 3-7. The GRAPHIC INPUT Statement

·3-18

CBASIC Compiler Graphics Guide GRAPHIC .OPEN Statement

GRAPHIC OPEN Statement

The GRAPHIC OPEN statement initializes the graphics system and
selects the output device.

Syntax:

GRAPHIC OPEN <integer expression>

Explanation:

The GRAPHIC OPEN statement initializes the graphics system and
selects an output device such as a graphics terminal, plotter, or
pr inter. The dev ices available to you depend upon your
implementation.

The integer expression corresponds to an output device driver
1 isted in the ASSIGN. SYS file by that number. Usually, device
number 1 is the graphics terminal.

Example:

GRAPHIC OPEH 1

This example opens the terminal as the output device if the
terminal has been defined as device driver 1 in the ASSIGN.SYS file.
Your GSX documentation discusses the ASSIGN.SYS file and graphics
devices.

3-19

CBASIC Compiler Graphics Guide GRAPHIC PRINT Statement

GRAPHIC PRINT Statement

The GRAPHIC PRINT statement prints an alphanumeric string at a
given point.

Syntax:

GRAPHIC PRINT AT (X,Y): <string constant or variable>

Explanation:

The GRAPHIC PRINT statement displays an alphanumeric string at
(X,Y), the coordinates where printing is to begin. The (X,Y)
variables are numeric expressions, scaled by the current window
ranges. The string constant or variable contains the items to
print.

You can use alphanumeric strings to label parts of a drawing.
When you label, you frequently need to center your text. The
GRAPHIC PRINT statement works with the JUSTIFY statement to center
and justify alphanumeric output horizontally and vertically.

The output string from the GRAPHICS PRINT statement is
considered a block of occupied screen area. The JUSTIFY statement
sets justification parameters for the X and Y axis of subsequent
GRAPHIC PRINT statements. The block of screen area is realigned
before display according to the current justification values.

Examples:

The following fragments are annotated extracts from DEMOGRAF's
GRAPHIC PRINT Statement section. The first example prints with the
lower left corner of the B of "BEGINS" at coordinates .5,.5, the
exact center of the screen.

SET JUSTIFY 0,0
GRAPHIC PRINT AT (.5,.5): "BEGINS AT CENTER"

The next example prints horizontally centered text at
coordinates .5,.3. The C of the word CENTERED is at .5,.3.

SET JUSTIFY .5,0
GRAPHIC PRINT AT (.5,.3): "THIS IS CENTERED"

3-20

CBASIC Compiler Graphics Guide GRAPHIC PRINT Statement

The following example is vertically and horizontally centered.
Notice that the lettering is shifted half a character down the Y
axis.

SET JUSTIFY .5,.5
GRAPHIC PRINT AT (.5,.3): "THIS IS CENTERED"

In the following example, with X set to 1.0 by the JUSTIFY
statement, the right side of the text is placed on the given
coordinates, in this case at the center of the screen. This
ar r angement is useful for drawing graphs. You do not need to
calculate string size to determine the beginning point of a label.
For an example of graph-coordinate labels, see the JUSTIFY
statement.

SET JUSTIFY 1.0,1.0
GRAPHIC PRINT AT (.5,.5): "ENDS AT CENTER"

The example for the GRAPHIC PRINT statement in DEMOGRAF reads
as follows:

CLEAR
SET WINDOW 0,1,0,1
SET CHARACTER HEIGHT °
GRAPHIC PRINT AT (0,9): "GRAPHIC PRINT STATEMENT"
SET JUSTIFY 0,0
GRAPHIC PRINT AT (.5,.5): IIBEGINS AT CENTER"
KEY% = PAUSE
REM PAUSE IS A LOCALLY DEFINED FUNCTION
SET JUSTIFY .5,0
GRAPHIC PRINT AT (.5,.3): "THIS IS CENTERED"
KEY% = PAUSE
SET JUSTIFY .5,.5
GRAPHIC PRINT AT (.5,.3): "THIS IS CENTERED
SET JUSTIFY 1.0, 1.0
GRAPHIC PRINT AT (.5,.5): "ENDS AT CENTER"
KEY% = PAUSE

3-21

CHASIC Compiler Graphics Guide JUSTIFY Statement

JUSTIFY Statement

The JUSTIFY statement positions alphanumeric strings for the
GRAPHIC PRINT statement or returns the current justification
settings.

Syntax:

SET JUSTIFY <horizontal numeric expression>,
<vertical numeric expression>

ASK JUSTIFY <horizontal real variable>, <vertical real variable>

Explanation:

The SET JUSTIFY statement defines the justified position of
alphanumeric strings relative to their stated X, Y locations. The
default justification of a string is (0,0), which puts the first
character's lower left corner at the X, Y values of the GRAPHIC
PRINT statement.

The <horizontal numeric expression> is a numeric expression
representing the horizontal justification. The <vertical numeric
express ion> is a numer ic expression representing the vertical
justification.

The graphics system treats an alphanumeric string as if it
occupies the smallest rectangle that can contain it. It gives this
rectangle a coordinate system with (0,0) in the lower left corner
and (1,1) in the top right corner. The graphics system displays the
rectangle relative to the x, Y values of the GRAPHIC PRINT statement
and the horizontal and vertical variables of the JUSTIFY statement.
The horizontal and vertical expressions give the relative
horizontal and vertical justification values for the rectangle of
text.

The ASK JUSTIFY statement assigns the current values of
horizontal and vertical justification parameters to their respective
variables.

3-22

CBASIC Compiler Graphics Guide

Example:

CLEAR
SET JUSTIFY (O,O)
SET WINDOW 0,100,0,100
SET CHARACTER HEIGHT 0

JUSTIFY Statement

GRAPHIC PRINT AT (0,90): "JUSTIFY STATEMENT"
PLOT (20, SO) , (20, 20) , (SO, 20)
PLOT (l5,40), (20,40)
PLOT (IS, 60) , (20 ,60)
PLOT (l5,SO), (20,SO)
PLOT (40,15), (40,20)
PLOT (60 , 15) , (6 0 , 20)
PLOT (SO,15), (SO,20)
SET JUSTIFY 1,.5
GRAPHIC PRINT AT (14,20): "20"
GRAPHIC PRINT AT (l4,40): "40"
GRAPHIC PRINT AT (l4,60): "60"
GRAPHIC PRINT AT (14,SO): "SO"
SET JUSTIFY .5,1
GRAPHIC PRINT AT (20,14): "20"
GRAPHIC PRINT AT (40,14): "40"
GRAPHIC PRINT AT (60,14): "60"
GRAPHIC PRINT AT (SO,14): "SO"

This routine prepares a graph window with tick marks, as
illustrated in Figure 3-S.

3-23

CBASIC Compiler Graphics Guide JUSTIFY Statement

JUSTIFY STATEMENT

80

GO

40

20
20 40 GO 80

Figure 3-8. The JUSTIFY Statement

3-24

CBASIC Compiler Graphics Guide LINE STYLE Statement

LINE STYLE Statement

The LINE STYLE statement specifies a line style for drawing or
assigns the current line style value to a variable.

Syntax:

SET LINE STYLE <line style number>
ASK LINE STYLE <line style variable>

Explanation:

The SET LINE STYLE statement establishes the line style for
subsequent PLOT or MAT PLOT statements as one of the n styles
available on your device. The <line style number> is a numeric
expression. You can find the the line styles available on your
device with an ASK STYLE COUNT statement.

The following line styles are standard:

o 1 solid
• 2 dashed
o 3 dotted
o 4 dashed-dotted

The ASK LINE STYLE assigns the number of the current line style
to the integer variable <line style variable>.

Example:

CLEAR
SET JUSTIFY 0,0
SET WINDOW 0,1,0,1
GRAPHIC PRINT AT (0,.9): "LINE STYLE STATEMENT"
SET LINE STYLE 3
SET JUSTIFY 1,0
GRAPHIC PRINT AT (0.5,0.5) "Sign here"
PLOT (a . 5 , a • 5) , (0. 8 , a . 5)

This example directs you to sign on a dotted line.

3-25

CBASIC Compiler Graphics Guide LINE STYLE Statement

LINE STYLE STATEMENT

S i sn her e +

Figure 3-9. The LIRE STYLE Statement

3-26

CBASIC Compiler Graphics Guide MARKER HEIGHT Statement

MARKER HEIGHT Statement

The MARKER HEIGHT statement sets the marker height or assigns
the current value of the marker height to a variable.

Syntax:

SET MARKER HEIGHT <marker height>
ASK MARKER HEIGHT <marker variable>

Explanation:

Mar kers are special symbols you can use to highlight the
demarkation points of lines and graphs. Markers are defined in the
MARKER TYPE explanation, which describes the types of markers. The
SET MARKER HEIGHT statement defines the height of markers relative
to the present extent of the Y coordinate. The <marker height> is
the height of the marker relative to the present extent of the Y
coordinate. The initial extent of the Y coordinate is 0.0 to 1.0.
A marker height of .1 results in markers that are 10% of the height
of the display device.

You can change the range of the Y coordinate with the WINDOW
statement. If you do change it, you might need to enter a new SET
MARKER HEIGHT statement to remap the marker height to the new Y
coordinate range.

To set the minimum possible marker height value wi thin the
window, use the statement,

SET MARKER HEIGHT 0

ASK MARKER HEIGHT assigns the current marker height value to
the real variable <marker variable>. You can use the ASK MARKER
HEIGHT statement after a SET MARKER HEIGHT to find the marker height
assigned for the current character set.

Examples:

The following statement sets the marker height to 10% of the
screen when the extent of the Y coordinate is 0 to 1.

SET MARKER HEIGHT .1

3-27

CBASIC Compiler Graphics Guide MARKER HEIGHT Statement

The following statements set the marker height to 15% (15/100)
of the screen. The window statement sets the extent of Y axis to 0
to 100.

SET WINDOW 0,100,0,100
SET MARKER HEIGHT 15

The next statements return the minimum marker height in the
variable MK.

SET MARKER HEIGHT 0
ASK MARKER HEIGHT MK
PRINT "MINIMUM MARKER HEIGHT IS = "; MK

The MARKER HEIGHT demonstration in DEMOGRAF is programmed as
follows:

CLEAR
SET WINDOW 0,1,0,1
SET CHARACTER HEIGHT 0
SET LINE STYLE 1
SET JUSTIFY 0,0
GRAPHIC PRINT AT (0,.9): "MARKER HEIGHT STATEMENT"
DIM MX(5)
DIM MY(5)
MX (0) = • 3 : MY (0) = • 7
MX(l) = .7 : MY(l) = .7
SET MARKER HEIGHT .1
MAT MARKER 1: MX,MY
SET WINDOW 0,100,0,100
MX(O) = 30 : MY(O) = 50
MX(l) = 70 : MY(l) = 50
SET MARKER HEIGHT 15
MAT MARKER 1: MX,MY
SET MARKER HEIGHT 0
ASK MARKER HEIGHT MK
PRINT "MINIMUM MARKER HEIGHT IS "; MK

3-28

CBASIC Compiler Graphics Guide MARKER HEIGHT Statement

MARKER HEIGHT STATEMENT

+

+ +

Figure 3-10. The MARKER HEIGHT Statement

3-29

CBASIC Compiler Graphics Guide MARKER TYPE Statement

MARKER TYPE Statement

The MARKER TYPE statement sets the marker type.

Syntax:

SET MARKER TYPE <integer expression>

Explanation:

The SET MARKER TYPE statement sets the marker type for
subsequent MAT MARKER statements. There are at least five types of
markers. The number of markers available to you depends on your
implementation.

Table 3-2.

Example:

CLEAR
SET WINDOW 0,1,0,1
SET MARKER HEIGHT 0

TYPE

1

2

3

4

5

Marker Types

I MARKER

+

*
0

X

GRAPHIC PRINT AT (0,.9): "MARKER TYPE STATEMENT"
MX(O) = .5 : MY(O) = .7
FOR I.INT% = 1 TO 5

SET MARKER TYPE I.INT%
MAT MARKER 0: MX,MY
MY(O) = MY(O) - .1

NEXT I.INT%

This routine displays the five standard marker types, from the
top of the screen down. The SET MARKER HEIGHT 0 statement sets the
marker height to the minimum available size.

3-30

CBASIC Compiler Graphics Guide

MARKER TYPE STATEMENT

a

+

*
a
\1
1\

MARKER TYPE Statement

Figure 3-11. The MARKER TYPE Statement

3-31

CBASIC Compiler Graphics Guide MAT FILL Statement

MAT FILL Statement

The MAT FILL statement draws a filled polygon from arrays of X
and Y coordinates.

Syntax:

MAT FILL <maximum array subscript>: <X array,Y array>

Explanation:

A MAT FILL statement draws a filled polygon that you define by
the coordinate pairs in <X array, Y array>. The edges of the polygon
are the line segments defined by the sequential points in <X array,Y
array>. A closing line segment is assumed from the last point to
the first. If the graphics device supports fill, the interior and
edges are filled with the current color or pattern.

The <maximum array subscript> is a numeric expression defining
the maximum array subscript. The MAT FILL statement begins taking
coordinate pairs from element zero (0) of the X and Y arrays. The
statement terminates after the coordinate pairs at <maximum array
subscript>.

Note that the maximum array size is 72 elements. The maximum
value for <maximum array subscript> is 71. You can draw figures
requiring more points by using additional arrays.

Example:

CLEAR
SET LINE STYLE 1
SET JUSTIFY 0,0
GRAPHIC PRINT AT (0,90): "MAT FILL STATEMENT"
SET WINDOW 0,100,0,100
SET CHARACTER HEIGHT °
SET COLOR 1
DIM X.ARRAY(lO)
DIM Y.ARRAY(lO)
X.ARRAY(O) 40 Y.ARRAY(O) 10
X.ARRAY(l) 35 Y.ARRAY(l) 25
X.ARRAY(2) = 50 Y.ARRAY(2} 40
X.ARRAY(3) = 65 Y.ARRAY(3) 25
X.ARRAY(4) = 60 Y.ARRAY(4) 10
MAT FILL 4: X.ARRAy,Y.ARRAY

3-32

CBASIC Compiler Graphics Guide MAT FILL Statement

This routine draws a pentagon filled with color 1. Note that
the MAT FILL statement automatically fills the line segment from
60,10 to 40,10.

MAT FILL STATEMENT

Pigure 3-12. The MAT PILL Statement

3-33

CBASIC Compiler Graphics Guide MAT MARKER Statement

MAT MARKER Statement

The MAT MARKER statement plots markers at an array of X and Y
coordinates.

Syntax:

MAT MARKER <maximum array subscript>:<X array,y array>

Explanation:

The MAT MARKER statement places markers at successive
coordinate pairs as defined in <X array,y array>. Use the MARKER
HEIGHT and MARKER TYPE statements to define the size and type of the
markers.

The <maximum array subscript> is a numeric expression defining
the maximum array subscript. The MAT MARKER statement begins taking
coordinate pairs from element zero (0) of the X and Y arrays. The
statement ends after displaying a marker at the <maximum array
subscript> element of the X and Y arrays.

The maximum array size is 72 elements. The maximum value for
<maximum array subscript> is 71. You can draw figures requiring
more points by using additional arrays.

Example:

CLEAR
SET WINDOW 0,100,0,100
GRAPHIC PRINT AT (0,90): "MAT MARKER STATEMENT"
SET MARKER TYPE 1
SET MARKER HEIGHT 0
SET COLOR 1
'MAT MARKER 4: X.ARRAY, Y • ARRAY

X.ARRAY and Y.ARRAY are defined in the MAT FILL statement.
This routine places mar kers at coordinates (40,10), (35,25),
(50,40), (65,25), and (60,10), the axes of a pentagon.

3-34

CBASIC Compiler Graphics Guide MAT MARKER Statement

MAT MARKER STATEMENT

+

+

Figure 3-13. Tbe MAT MARKER Statement

3-35

CBASIC Compiler Graphics Guide MAT PLOT Statement

MAT PLOT Statement

The MAT PLOT statement connects points defined by arrays of X
and Y coordinate pairs with lines.

Syntax:

MAT PLOT <maximum array subscript>: <X array,Y array>

Explanation:

The MAT PLOT statement plots a series of line segments from the
<X array,y array> list of coordinates. This statement is like the
MAT FILL statement except the figure is not filled with color and
the end ing coordinates are not automatically connected to the
beginning coordinates. The last element plotted is array«maximum
array subscript».

Note that the maximum array size is 72 elements. The maximum
value for <maximum -array subscript> is 71. You can draw figures
requiring more points by using additional arrays.

Example:

CLEAR
GRAPHIC PRINT AT (0,90): "MAT PLOT STATEMENT"
SET COLOR 1
SET WINDOW 0,1,0,1
SET CHARACTER HEIGHT 0
FOR I.INT% = 0 TO 4

X.ARRAY(I.INT%) = .01 * X.ARRAY(I.INT%)
Y.ARRAY(I.INT%) = .01 * Y.ARRAY(I.INT%)

NEXT I.INT%
X.ARRAY(S) = .40 : Y.ARRAY(R) = .10
SET BEAM "OFF"
MAT PLOT 4: X.ARRAY, Y.ARRAY
KEY% = PAUSE
REM PAUSE IS A LOCALLY DEFINED FUNCTION
CLEAR
MAT PLOT 5: X.ARRAY,Y.ARRAY

The first MAT PLOT statement draws a pentagon without a bottom.
The second MAT PLOT draws the bottom because it uses the fifth
element of both the X and Y arrays.

3-36

CBASIC Compiler Graphics Guide MAT PLOT Statement

MAT PLOT STATEMENT

Figure 3-14. The MAT PLOT Statement

3-37

CBASIC Compiler Graphics Guide PLOT. Statement

PLOT Statement

The PLOT statement connects a series of coordinate pairs with
lines.

Syntax:

PLOT (xl,yl), (x2,y2), (x3,y3) ••• [:]

Explanation:

The PLOT statement plots a series of line segments from the
first coordinate pair through succeeding pairs. If the list ends
with a semicolon, the beam stays on after the last point. without
the semicolon, the beam turns off.

If the beam is on before execution, the graphics system draws a
line to the first point. If the beam is off when execution begins,
drawing begins at the first point.

xl represents an x coordinate as a numeric expression. yl
represents a y coordinate as a numeric expression.

You can use the PLOT statement to draw lines and figures when
you want greater control of the drawing than MAT PLOT provides, or
if using arrays for coordinate points is inconvenient.

Example:

CLEAR
SET WINDOW 0,100,0,100
SET CHARACTER HEIGHT 0
SET COLOR 1
GRAPHIC PRINT AT (0,90): "PLOT STATEMENT"
PLOT (40,10),(35,25)~
SET COLOR 2
PLOT (35,25), (50,40) ~
SET LINE STYLE 2
PLOT (50,40),(65,25)~
SET LINE STYLE 1
SET COLOR 3
PLOT (65,25),(60,10),(40,10)

This routine draws a pentagon with different colors and line
styles.

3-38

CBASIC Compiler Graphics Guide PLOT Statement

PLOT STATEMENT

Figure 3-15. The PLOT Statement

3-39

CBASIC Compiler Graphics Guide POSITION Statement

POSITION Statement

The POSITION statement sets the beam position or assigns the
value of the beam position to a variable.

Syntax:

SET POSITION <X coordinate>, <Y coordinate>
ASK POSITION <X coordinate variable>, <Y coordinate variable>

Explanation:

The SET POSITION statement posi tions the beam at the hor izontal
and vertical coordinates specified by <X coordinate> and <Y
coordinate>.

The ASK POSITION statement assigns the current coordinates of
the beam position to the <X coordinate variable> and <Y coordinate
variable>.

If the beam is on when a SET POSITION statement executes, a
line segment is drawn from the current position of the beam to the
new beam location.

Example:

CLEAR
SET WINDOW 0,100,0,100
GRAPHIC PRINT AT (0,90): "POSITION STATEMENT"
SET BEAM "OFF"
SET POSITION 50,50
SET POSITION 50,100
SET BEAM "ON"
SET POSITION 0,0
SET POSITION 50,50

This routine draws two line segments. The two SET POSITION
statements with the beam off do not draw a line.

3-40

CBASIC Compiler Graphics Guide POSITION Statement

Figure 3-16. The POSITION Statement

3-41

CBASIC Compiler Graphics Guide STYLE COUNT Statement

STYLE COUNT Statement

The STYLE COUNT statement assigns the number of available line
styles to a variable.

Syntax:

ASK STYLE COUNT <integer variable>

Explanation:

ASK STYLE COUNT assigns the number of line styles available on
your device to an integer variable.

Example:

CLEAR
GRAPHIC PRINT AT (0,90): "STYLE COUNT STATEMENT"
SET WINDOW 0,100,0,100
SET CHARACTER HEIGHT °
ASK STYLE COUNT ST%
PRINT "THE NUMBER OF LINE STYLES IS: ",ST%
FOR I.INT% = 1 TO ST%

SET LINE STYLE I.INT%
SET BEAM "OFF"
PLOT (lO*I.INT%,lO) , (10*I.INT%,90)

NEXT I.INT%
KEY% = PAUSE
REM PAUSE IS A LOCALLY DEFINED FUNCTION
SET LINE STYLE 1

This routine draws lines in each of the available line styles.

3-42

CBASIC Compiler Graphics Guide STYLE COUNT Statement

STYLE COUNT STATEMENT

Figure 3-17. The STYLE COUNT Statement

3-43

CBASIC Compiler Graphics Guide TEXT ANGLE Statement

TEXT ANGLE Statement

The TEXT ANGLE statement sets the number of degrees off
horizontal at which text prints.

Syntax:

SET TEXT ANGLE <angle in radians>
ASK TEXT ANGLE <angle variable>

Explanation:

The SET TEXT ANGLE statement defines the approximate angle at
which character strings print in GRAPHIC PRINT statements. The
numeric expression <angle in radians> gives the angle in radians.
The radians are measured counterclockwise, starting at a horizontal
line across the screen and a vertical line through the center of the
string. The intersection of these lines is the hub from which the
text angle radiates.

The ASK TEXT ANGLE statement assigns the current text angle to
the real variable <angle variable>.

To convert degrees to radians, you can use one of the following
formulas:

• degrees * 2pi/360 radians

• degrees / (360/2pi) = radians

The approximate value of pi is 3.1415926.

The approximate values in radians for some often-needed angles
are shown in Table 3-3:

Table 3-3. Degrees-to-Radians Conversion Chart

Degrees

30
45
60
90
135
180

I Approximate Radians

3-44

.52

.78
1.04
1. 57
2.35
3.14

CBASIC Compiler Graphics Guide TEXT ANGLE Statement

Example:

CLEAR
GRAPHIC PRINT AT (0,90): "TEXT ANGLE STATEMENT"
SET WINDOW 0,1,0,1
SET CHARACTER HEIGHT 0
PI = 3.1415926
RAD PI*2
DEG = RAD/360

FOR I.INT% = 90 TO 360 STEP 90
SET TEXT ANGLE I.INT%*DEG
GRAPHIC PRINT AT (.5,.5): "ROTATE ME"

NEXT 1. INT%
KEY% = PAUSE
REM PAUSE IS A LOCALLY DEFINED FUNCTION
SEE TEXT ANGLE 0

This routine prints ROTATE ME at 90-degree intervals around the
center of the screen.

3-45

CBASIC Compiler Graphics Guide

TE}'{T ANGLE STATEMENT

lLJ
E

TEXT ANGLE Statement

lLJ
I
<C
I
o
a::ROTATE ME

3W 31tJIOtl:::o
o
-I
D
-I
IT!

3:
IT!

Figure 3-18. The TEXT ANGLE Statement

3-46

CBASIC Compiler Graphics Guide VIEWPORT Statement

VIEWPORT Statement

The VIEWPORT statement establishes viewport boundar ies or
assigns the values of the current boundaries to variables.

Syntax:

SET VIEWPORT <X left bounds>,<X right bounds>,
<Y lower bounds>,<Y upper bounds>

ASK VIEWPORT <X left bounds variable>,
<X right bounds variable>,
<Y lower bounds variable>,
<Y upper bounds variable>

Explanation:

The SET VIEWPORT statement sets the boundar ies of the viewport.
Specify the boundaries as coordinates from 0.0 to 1.0, giving the
right, left, upper, and lower boundaries as shown in the syntax.

The SET VIEWPORT statement establishes the area of the display
device that can be used within the device boundaries set by the SET
BOUNDS statement.

There is a hierarchy for the display area. First, the SET
BOUNDS statement defines the available physical area of the display
device. Second, the SET VIEWPORT statement defines the area that is
used within those bounds. Third, the SET WINDOW statement defines
the scale of the X and Y axes of the viewport.

The SET VIEWPORT and SET BOUNDS statements always use
coordinate values from 0.0 to 1.0. The SET WINDOW statement defines
the scale for subsequent statements that use X and Y coordinate
values to define position or size. PLOT, MAT PLOT, GRAPHIC PRINT,
POSITION, CHARACTER HEIGHT, and other input/output statements use
the window's scale to translate the X and Y coordinate values into
the viewport coordinate system.

Changing the viewport does not affect data currently displayed
on the screen. You can use this command to switch from section to
section on the screen. This lets you display multiple functions
without worrying about overlap.

3-47

CBASIC Compiler Graphics Guide VIEWPORT Statement

The ASK VIEWPORT statement assigns the current viewport
boundaries, specified in coordinates ranging from 0.0 to 1.0 to real
variables representing the left, right, lower, and upper bounds of
the viewport.

Example:

CLEAR
GRAPHIC PRINT AT (0,.9): "VIEWPORT STATEMENT"
X.ARRAY(O) 0 Y.ARRAY(O) 0
X.ARRAY(l) 0 Y.ARRAY(1) 100
X.ARRAY(2) 100 Y.ARRAY(2) 100
X.ARRAY(3) 100 Y.ARRAY(3) 0
X.ARRAY(4) 0 Y.ARRAY(4) 0
SET VIEWPORT 0,1,0,1
SET WINDOW 0,100,0,100
MAT PLOT 4: X.ARRAY,Y.ARRAY
SET VIEWPORT .1,.9,.1,.9
MAT PLOT 4: X.ARRAY,Y.ARRAY
SET VIEWPORT .2,.8,.2,.8
MAT PLOT 4: X.ARRAY,Y.ARRAY
SET VIEWPORT .3,.5,.3,.5
MAT PLOT 4: X.ARRAY,Y.ARRAY
SET VIEWPORT .5,.7,.5,.7
MAT PLOT 4: X.ARRAY,Y.ARRAY

This routine draws five different boxes from the same
coordinate arrays. The SET VIEWPORT statements change the
dimensions and locations of the boxes.

3-48

CBASIC Compiler Graphics Guide VIEWPORT Statement

t.) I EWPORT STATEMENT

Figure 3-19. The VIEWPORT Statement

3-49

CBASIC Compiler Graphics Guide WINDOW Statement

WINDOW Statement

The WINDOW statement establishes the scale of the X and Y axes
within the viewport and bounds.

Syntax:

SET WINDOW <X left bounds>,<X right bounds>.,
<Y lower bounds>,<Y upper bounds>

ASK WINDOW <X left bounds variable>,<X right bounds variable>,
<Y lower bounds variable>,<Y upper bounds variable>

Explanation:

A SET WINDOW statement establishes the range of the coordinate
system. The statements PLOT, MAT PLOT, MAT FILL, GRAPHIC PRINT,
CHARACTER HEIGHT, GRAPHIC INPUT, and POSITION operate within the X
and Y coordinates established by SET WINDOW. Clipping also uses the
scale set by the SET WINDOW statement to determine the usable area
of the output device.

The window is set to 0,1,0,1 at initial program load. An ASK
WINDOW statement assigns the current window extents to the real
variables for the left, right, lower, and upper dimensions.

You can use the WINDOW statement to change the aspect ratio of
a device. For example,

ASK DEVICE Y,X
SET WINDOW O,Y,O,X

is one way to square a device.

Example:

CLEAR
SET VIEWPORT 0,1,0,1
SET WINDOW 0,100,0,100
SET CHARACTER HEIGHT 0
GRAPHIC PRINT AT (0,90): "WINDOW STATEMENT"
PLOT (0,0), (60,60) , (60,0) , (0,0)
SET WINDOW 0,200,0,200
SET CHARACTER HEIGHT 0
PLOT (0,0), (60,60) , (60,0) , (0,0)
SET VIEWPORT .0,.5,.5,1.0
PLOT (0,0), (60 , 60) , (60,0) , (0,0)

3-50

CBASIC Compiler Graphics Guide WINDOW Statement

This routine draws two triangles with the same coordinates and
different window-scaling factors. The second figure nests within
the first. A third triangle is plotted in a different viewport,
again using the same coordinates.

WINDOW STATEMENT

Figure 3-20. The ~RDON Statement

End of Section 3

3-51

Section 4
Sample Functions and Programs

The following listings contain samples of programming
techniques for drawing circles, pie charts, and bar graphs.

The file CIRCOM.BAS includes circle drawing functions that you
can include in your programs. TSTCIR.BAS is a test program for the
circle drawing functions. GRAPHR.BAS is a demonstration program for
pie charts and bar graphs.

4.1 CIRCOM.BAS

The following listing of CIRCOM.BAS includes remarks that
describe the operation of the circle-drawing functions. Read the
program listing to determine how to use the functions.

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

Listing 4-1. CIRCOM.BAS Program

These are the circle drawing functions.

Use %INCLUDE CIRCOM.BAS to include the functions
in your program.

CALL BEG.CIR to initialize the circle arrays
CALL PLOT.CIR to draw a circle without fill
CALL FILL.CIR to draw a circle with fill

The circle is centered at .5,.5 with a radius
of .5 in a coordinate system ranging from a to 1
on the X and Y axes.

Initialize the circle drawing arrays X.ARRAY and
Y.ARRAY by using CALL BEG.CIR in the beginning
of your program. You only need to execute this
statement once. There is a long delay while
this CALL is completed; you might want to put
a message in your program to assure the user
that the machine is computing.

Use the SET VIEWPORT and SET WINDOW statements
to position the circle before calling the
drawing functions.

You must adjust the aspect ratio of the device
to proportion the circle. The following statements
round the circle:

4-1

CBASIC Compiler Graphics Guide 4.1 CIRCOM.BAS

Listing 4-1. (continued)

REM ASK DEVICE X.AXIS,Y.AXIS
REM SET WINDOW O,X.AXIS/Y.AXIS,O,l
REM
REM These statements scale the window so that the X
REM and Y axes use the same unit scaling regardless
REM of the aspect ratio of the device. The circle
REM is drawn with a shift to the left of the viewport
REM because of the decreased scaling of the X axis.
REM You can also use the BOUNDS statement to square
REM the device or the VIEWPORT statement to rescale
REM the viewport.
REM
REM The functions use the variables L.CIR,
REM X.ARRAY, Y.ARRAY, and I.ANGLE. Variable X.ARRAY
REM is an array of the X coordinates of the points
REM around the circle. Y.ARRAY contains the corresponding Y
REM coordinates. L.CIR contains a count of the
REM number of coordinate pairs. I.ANGLE is only
REM used by the FOR loop in BEG.CIR.
REM

DEF BEG.CIR
DIM X.ARRAY(64)
DIM Y • ARRAY (64)
L.CIR=O

REM THIS FOR LOOP STEPS THROUGH 0 TO 360 DEGREES
REM USING RADIANS. THERE ARE 2PI RADIANS IN 360 DEGREES.
REM THE FORMULA FOR CALCULATING THE POINTS AROUND
REM A CIRCLE IS:
REM X.COORDINATE = CENTER.POINT + RADIUS * COS(I.ANGLE)
REM Y.COORDINATE = CENTER. POINT + RADIUS * SIN(I.ANGLE)

FOR I.ANGLE = 0 TO 6.28 STEP .1
X.ARRAY(L.CIR) = .5 + (.5 * COS(I.ANGLE»
Y.ARRAY(L.CIR) = .5 + (.5 * SIN(I.ANGLE»
L.CIR = L.CIR+ 1
NEXT I.ANGLE

REM THE CIRCLE MUST BE CLOSED FOR MAT PLOT

X.ARRAY(L.CIR) X.ARRAY(O)
Y.ARRAY(L.CIR) = Y.ARRAY(O)
RETURN

4-2

CBASIC Compiler Graphics Guide

Listing 4-1. (continued)

FEND

DEF PLOT.CIR

FEND

MAT PLOT L.CIR: X.ARRAY,Y.ARRAY
RETURN

DEF FILL.CIR

FEND

MAT FILL L.CIR-1: X.ARRAY,Y.ARRAY
RETURN

4.2 TSTCIR.BAS

4.1 CIRCOM.BAS

The listing of TSTCIR.BAS includes remarks descr ibing the
program operation. After drawing each circle, the program waits for
you to hit a key before it continues.

Listing 4-2. TSTCIR.BAS Program

REM DEMONSTRATION PROGRAM FOR CIRCLE DRAWING FUNCTIONS
REM
REM PROGRAM NAME: CIRTST.BAS
REM

%INCLUDE GRAPHCOM.BAS
%INCLUDE CIRCOM.BAS
GRAPHIC OPEN 1
CLEAR
PRINT "COMPUTING"
CALL BEG.CIR
PRINT "ENDED"
CALL PLOT.CIR
KEY% = PAUSE REM WAIT FOR KEYBOARD

REM SCALE THE WINDOW TO DRAW A PROPERLY PROPORTIONED CIRCLE

ASK DEVICE X.AXIS,Y.AXIS
PRINT X.AXIS,Y.AXIS
SET WINDOW O,X.AXIS/Y.AXIS,O,l
CALL PLOT.CIR
KEY%=PAUSE
CALL FILL.CIR
KEY%=PAUSE

4-3

CBASIC Compiler Graphics Guide 4.2 TSTCIR.BAS

Listing 4-2. (continued)

REM CHANGE THE VIEWPORT TO REPOSITION THE CIRCLE

SET VIEWPORT 0,.5,0,.5 REM LOWER LEFT QUARTER
CLEAR

CALL PLOT.CIR
KEY%=PAUSE

SET VIEWPORT .5,1,0,.5 REM LOWER RIGHT QUARTER
CALL PLOT.CIR
KEY%=PAUSE

SET VIEWPORT 0,.5,.5,1 REM UPPER LEFT QUARTER
CALL PLOT.CIR
KEY%=PAUSE

SET VIEWPORT .5,1,.5,1 REM UPPER RIGHT QUARTER
CALL PLOT.CIR
KEY%=PAUSE

STOP
END

4. 3 GRAPHR. BAS

GRAPHR.BAS draws a pie chart and a bar graph for up to nine
items. The program includes remarks that guide you through the
operation. You can use the DRAW. SLICE function to draw pie slices
in your programs.

Listing 4-3. GRAPHR.BAS Program

REM THIS IS A DEMONSTRATION PROGRAM FOR DRAWING
REM PIE AND BAR CHARTS.
REM
REM PROGRAM NAME: GRAPHR.BAS
REM

%INCLUDE GRAPHCOM.BAS
GRAPHIC OPEN 1
CLEAR

REM If the device supports color fill, use MAT
REM FILL statements. Otherwise, use MAT PLOT
REM to draw figures.

4-4

CBASIC Compiler Graphics Guide 4.3 GRAPHR.BAS

Listing 4-3. (continued)

IN.FL: INPUT "DOES THIS DEVICE SUPPORT COLOR FILL? Y!N: ";FILL.FLG$
IF FILL.FLG$ = "Y" OR FILL.FLG$ = "N" THEN GOTO OK.FL
PRINT "ENTER Y OR N, PLEASE"
GOTO IN.FL

OK.FL: PRINT "THANK YOU"

REM Initialize the arrays used for drawing the
REM slices in the pie chart. Two lOO-element arrays
REM are constructed for drawing a full circle. Each
REM point in the arrays then represents one percent.

PRINT "CALCULATING OCCURRING --- PLEASE WAIT"
DIM X.ARRAY(lOO)
DIM Y.ARRAY(lOO)
DIM A.ARRAY(72)
DIM B.ARRAY(72)
A.ARRAY(O) = .5
B.ARRAY(O) = .5
L.CIR = 0
FOR I.ANGLE = 0 TO 6.28-.0628 STEP .0628

X.ARRAY(L.CIR) = .5 + (.5 * COS(I.ANGLE»)
Y.ARRAY(L.CIR) = .5 + (.5 * SIN(I.ANGLE»)
L.CIR = L.CIR + 1
NEXT I.ANGLE

REM Close the circle

X.ARRAY(L.CIR) X.ARRAY(O)
Y.ARRAY(L.CIR) = Y.ARRAY(O)
GOTO START.IT

REM This function draws a slice beginning at the
REM point represented by BEG.PER and e~tending
REM through PER.CENT points. The color is set to
REM COL.OR and the ASCII.ID prints as an identifier
REM for the slice.

REM The function extracts the points from X.ARRAY
REM and Y.ARRAY and places them in A.ARRAY and
REM B.ARRAY. MAT FILL and MAT PLOT always begin
REM drawing at the first elements of the arrays, so
REM the slice must be extracted from the arrays.

REM The function makes provision for slices that
REM exceed 71 points. MAT FILL and MAT PLOT allow
REM a maximum element number of 72.

4-5

CBASIC Compiler Graphics Guide

Listing 4-3. (continued)

DEF DRAW. SLICE (BEG.PER,PER.CENT,COL.OR,ASCII.ID)
REAL BEG.PER,PER.CENT,COL.OR
STRING ASCII.ID
L.CIR = 1
SET COLOR COL.OR
OVR.FLOW = 0

4.3 GRAPHR.BAS

REM Setup for slices greater than 71 percent.

IF PER.CENT > 71 THEN SAVE.PER = 7l:0VR.FLOW = 1\
ELSE SAVE.PER = PER.CENT

REM Extract points from circle array.

BAK.UP: FOR CNT.ER = BEG. PER TO BEG.PER + SAVE.PER
IN.DEX = CNT.ER
IF CNT.ER > 100 THEN IN.DEX = CNT.ER - 100
A.ARRAY(L.CIR) = X.ARRAY(IN.DEX)
B.ARRAY(L.CIR) = Y.ARRAY(IN.DEX)
L.CIR = L.CIR + 1
NEXT CNT.ER

REM OVER.FLOW is 1 for slices over 71 percent.

IF OVR.FLOW <> 1 THEN GOTO OVER.A

REM FILL.FLG$ is "N" for non-color-fill devices.

IF FILL.FLG$ = "N" THEN MAT PLOT L.CIR-l: A.ARRAY,B.ARRAY\
ELSE MAT FILL L.CIR-l: A.ARRAY,B.ARRAY

OVR.FLOW = 0
BEG. PER = BEG. PER + 71
SAVE.PER = PER. CENT - 71
IF FILL.FLG$ = "N" THEN L.CIR 0 ELSE L.CIR 1
GOTO BAK.UP

OVER.A: A.ARRAY(O) = .5
B.ARRAY(O) = .5

REM The slice must be closed for MAT PLOT. MAT FILL
REM closes automatically.

IF FILL.FLG$ = "N" THEN\
A.ARRAY(L.CIR) = .5:\
B.ARRAY(L.CIR) = .5:\
MAT PLOT L.CIR: A.ARRAY,B.ARRAY\
ELSE\
MAT FILL L.CIR-l: A.ARRAY,B.ARRAY

4-6

CBASIC Compiler Graphics Guide 4.3 GRAPHR.BAS

FEND

Listing 4-3. (continued)

REM Expand the viewport for printing the slice ID.
REM The minimum character height is used to adjust
REM the window so the slice ID will appear outside
REM the slice perimeter.

SET VIEWPORT 1.0-Y.AXIS,1,0,1
ADJ.IT = MIN.HGT/l.45 .
SET WINDOW -ADJ.IT,l+ADJ~IT,-ADJ.IT,l+ADJ.IT

REM MID.PT is the center elements in the slice. This
REM is the position where the ID is printed.

MID.PT = INT(BEG.PER+(PER.CENT/2))
X.AXIS = X.ARRAY(MID.PT)
Y.AXIS = Y.ARRAY(MID.PT)
GRAPHIC PRINT AT (X.AXIS,Y.AXIS): ASCII.ID
SET WINDOW 0,1,0,1
RETURN

REM The first portion of the program lets you
REM enter up to 9 slices. Enter the item number (1-9)
REM and press the return key. Then type the slice
REM description (up to 6 characters), the dollar
REM value of the slice, and the color code for
REM the slice.

REM The following entries illustrate:

REM 1 <return>
REM RENT,550,1 <return>
REM 2 <return>
REM FOOD,450,2 <return>
REM 3 <return>
REM CAR,225,3 <return>
REM 4 <return>
REM OTHER,750,4 <return>

REM This sets up a graph of four items--rent of
REM $550 in color 1, food for $450 in color 2,
REM car for $225 in color 3, other for $750 in
REM color 4.

REM Terminate the input by typing ° in response
REM to the prompt.

4-7

CBASIC Compiler Graphics Guide 4.3 GRAPHR. BAS

Listing 4-3. (continued)

REM After the 0 entry, the program calculates the
REM percentages and prints a listing of the entries.

REM You can change your entries by entering the
REM item number to change and typing in
REM the correct data.

START. IT: PRINT

GO.A:

DIM ITM.DESC$(9)
DIM ITM.VALUE(9)
DIM ITM.COLOR(9)
DIM ITM.PERC (9)
PRINT "ENTER AN ITEM NUMBER FROM 1 TO 9 TO ADD OR CHANGE"
PRINT
PRINT "THEN ENTER--DESCRIPTION,AMOUNT,COLOR,RETURN"
PRINT
PRINT "
PRINT "
PRINT "
PRINT "
PRINT

DESCRIPTION IS THE SLICE DESCRIPTION"
AMOUNT IS THE QUANTITY/AMOUNT OF THE SLICE"
COLOR IS THE COLOR NUMBER TO USE FOR THE SLICE"
RETURN MEANS TO PRESS THE RETURN KEY"

PRINT "THE FIELDS ARE SEPARATED BY COMMAS"
PRINT

IN. IT: INPUT "ITEM NUMBER(O TO FINISH): "; ITM.NUMBER%
IF ITM.NUMBER% = 0 THEN GOTO PRT.EM
IF ITM.NUMBER% > 0 AND ITM.NUMBER% < 10 THEN GOTO OKAY.IN

PRINT "THE ITEM NUMBER MUST BE FROM 1 TO 9"
GOTO IN. IT

OKAY. IN: IF ITM.VALUE(ITM.NUMBER%) = 0 THEN GOTO NEW.IN
PRINT ITM.DESC$(ITM.NUMBER%) ,ITM.VALUE(ITM.NUMBER%),
PRINT ITM.COLOR(ITM.NUMBER%)

NEW.IN: INPUT "DESC,AMOUNT,COLOR: ";DESC.IN$,VAL.IN,CLR.IN%
ITM.DESC$(ITM.NUMBER%) DESC.IN$
ITM.VALUE(ITM.NUMBER%) VAL. IN
ITM.COLOR(ITM.NUMBER%) = CLR.IN%
PRINT
GOTO IN. IT

PRT.EM: TOT. VAL = 0

REM Calculate the total for percentages.

FOR CNT.R = 1 TO 9

PRINT

TOT. VAL = TOT. VAL + ITM.VALUE(CNT.R)
NEXT CNT.R

REM Print the item list with percentages.

4-8

CBASIC Compiler Graphics Guide 4.3 GRAPHR.BAS

NXT.CNT:

Listing 4-3. (continued)

FOR CNT.R = 1 TO 9
IF ITM.VALUE(CNT.R) <> ° THEN\

ITM.PERC(CNT.R) = ITM.VALUE(CNT.R)/TOT.VAL:\
ITM.PERC(CNT.R) = INT«100*ITM.PERC(CNT.R»+.5):\
PRINT CNT.Ri.,-" i ITM.DESC$(CNT.R) ,ITM.VALUE(CNT.R),:\
PRINT ITM.COLOR(CNT.R)i" "iITM.PERC(CNT.R)i"%"

NEXT CNT.R
PRINT:PRINT "TOTAL VALUE: ";TOT.VAL
PRINT:INPUT "DRAW THE GRAPH? ";Y.N$
IF Y.N$ <> "Y" THEN GOTO IN.IT
CLEAR
BEG.PER = 0

REM THE MINIMUM CHARACTER HEIGHT FOR THE DEVICE
REM IS USED TO ESTABLISH A BORDER AROUND THE CIRCLE
REM WHERE THE SLICE ID (THE ITEM NUMBER) CAN BE
REM PRINTED.

SET CHARACTER HEIGHT °
ASK CHARACTER HEIGHT MIN.HGT
MIN.HGT = 2 * MIN.HGT
FOR CNT.R = 1 TO 9

REM
REM
REM
REM

REM
REM

IF ITM.VALUE(CNT.R) = ° THEN GOTO NXT.CNT

Determine the aspect ratio and square the dev~ce.
A border is left around the viewport for the
slice ID. The viewport is set to the right
of the device.

ASK DEVICE X.AXIS,Y.AXIS
SET VIEWPORT l-Y.AXIS+MIN.HGT,l-MIN.HGT,MIN.HGT,l-MIN.HGT
DESC.IN$ = ITM.DESC$(CNT.R)
VAL.IN = ITM.VALUE(CNT.R)
CLR.IN% = ITM.COLOR(CNT.R)
PER.CENT = ITM.PERC(CNT.R)
CALL DRAW.SLICE (BEG.PER,PER.CENT,CLR.IN%,STR$(CNT.R»
BEG.PER = BEG.PER + PER.CENT
SET VIEWPORT 0,1,0,1
S.l$ = DESC.IN$+~ "+STR$(PER.CENT)+"%"
GRAPHIC PRINT AT (O,l-(CNT.R/lO»:S.l$
NEXT CNT.R

Is the graph filled? The percentage calculation
can be less than 100 percent due to roundoff.

IF BEG.PER >= 100 THEN GOTO BAR.A
PER.CENT = 100 - BEG.PER
DESC.IN$ = ., ..
ASK DEVICE X.AXIS,Y.AXIS
SET VIEWPORT l-Y.AXIS+MIN.HGT,l-MIN.HGT,MIN.HGT,l-MIN.HGT
CALL DRAW.SLICE (BEG.PER,PER.CENT,CLR.IN%,DESC.IN$)

4-9

CBASIC Compiler Graphics Guide 4.3 GRAPHR.BAS

Listing 4-3. (continued)

REM This routine draws a simple bar chart of the
REM data. The window range is set to 1/3 greater
REM than the largest item in the array. This
REM makes the longest bar extend to
REM 75% of the viewport.

BAR.A: KEY%=PAUSE
DIM BAR.X(4)
DIM BAR.Y(4)
SET VIEWPORT 0,1,0,1
SET WINDOW 0,1,0,1
SET CHARACTER HEIGHT a
ASK CHARACTER HEIGHT MIN.HGT
CLEAR
SET JUSTIFY .5,0
SET COLOR 1
GRAPHIC PRINT AT (.5,.99-MIN.HGT):"BAR CHART"
SET JUSTIFY 0,0
MAX. VAL = 0

REM Determine the maximum percentage.

FOR CNT.R = 1 TO 9
IF MAX.VAL < ITM.PERC(CNT.R) THEN\

MAX.VAL = ITM.PERC(CNT.R)
NEXT CNT.R

MAX.VAL = 1.33 * MAX.VAL

REM Scale the window. The X axis is 1/3 larger
REM than the largest item to be graphed.
REM The Y axis is scaled to 10 lines.

SET WINDOW O,MAX.VAL,O,lO
SET CHARACTER HEIGHT 0
ASK CHARACTER HEIGHT MIN.HGT

REM Draw the items.

FOR CNT.R = 1 TO 9
IF ITM.VALUE(CNT.R) = 0 THEN GOTO NXT.A
SET COLOR ITM.COLOR(CNT.R)
P.LINE = 10 - CNT.R
S.l$ = ITM.DESC$ (CNT.R)+"-"+STR$ (ITM.PERC(CNT.R»+"%"
IF ITM.VALUE(CNT.R) <> ITM.PERC(CNT.R) THEN\

S .1$ = S .1$+" $ "+STR$ (ITM. VALUE (CNT. R»
GRAPHIC PRINT AT (O,P.LINE): S.l$

4-10

CBASIC Compiler Graphics Guide 4.3 GRAPHR.BAS

NXT.A:

REM
REM
REM
REM

END

Listing 4-3. (continued)

Set up the BAR.X and BAR.Y arrays to draw the
bar. MAX.VAL is the percentage for the item.
The window scaling automatically scales the
bar. No special calculations are required.

MAX.VAL = ITM.PERC(CNT.R)
TOP = P.LINE - .1
BOT = TOP - .4
BAR.Y(O) BOT
BAR.Y(l) TOP
BAR.X(2) MAX.VAL
BAR.Y(2) TOP
BAR.X(3) MAX.VAL
BAR.Y(3) BOT
BAR. Y (4) BOT
IF FILL.FLG$ "N" THEN MAT PLOT 4: BAR.X,BAR.Y\

ELSE MAT FILL 3: BAR.X,BAR.Y
NEXT CNT.R
KEY% = PAUSE
STOP

End of Section 4

4-11

Appendix A
DEMOGRAF Program Listing

Listing A-l. DEMOGRAF Program

REM THIS IS A DEMONSTRATION PROGRAM FOR
REM CBASIC GRAPHICS EXTENSIONS
REM
REM PROGRAM NAME: DEMOGRAF
REM

%INCLUDE GRAPHCOM.BAS

DEF PAUSE
REM UTILITY TO SUSPEND PROGRAM EXECUTION UNTIL CHARACTER IS
REM ENTERED AT CONSOLE, STOPPING PROGRAM IF CTRL-C IS ENTERED,
REM OTHERWISE RETURNING INTEGER VALUE OF CHARACTER ENTERED.
REM CHARACTER IS NOT DISPLAYED.

INTEGER PAUSE,CHOICE

FEND

BEEM:

CHOICE = INKEY
IF CHOICE = 3 THEN STOP
PAUSE = CHOICE

GRAPHIC OPEN 1
CLEAR

GRAPHIC PRINT AT (0,.9): "BEAM STATEMENT II
SET BEAM "OFF"
PLOT (0 , 1) , (1, 1) , (1, 0) , (0 , 0)
KEY% = PAUSE REM WAIT FOR CONSOLE INPUT
CLEAR
SET BEAM "ON"
PLOT (0,1), (1,1) , (1,0) , (0,0)
KEY% = PAUSE

REM ILLUSTRATE TECHNIQUE OF SQUARING A DISPLAY

BOWNDS: CLEAR
GRAPHIC PRINT AT (0,.9): "BOUNDS STATEMENT II
ASK DEVICE X.AXIS,Y.AXIS
PRINT liTHE ASPECT RATIO IS = liY.AXISil/"iX.AXIS
KEY% = PAUSE

A-l

CBASIC Compiler Graphics Guide A DEMOGRAF

Listing A-I. (continued)

PLOT (0,0), (0,1) , (1,1) , (1,0) , (0,0)
KEY% = PAUSE
CLEAR
SET BOUNDS Y.AXIS,X.AXIS
PLOT (0 ,0) , (0 , 1) , (1, 1) , (1, 0) , (0 ,0)
SET BOUNDS 1,1
KEY% = PAUSE

REM DEMONSTRATE CONTROL OF GRAPHIC CHARACTER HEIGHT
REM AND MINIMUM HEIGHT FOR GRAPHIC CHARACTERS

HIGH: CLEAR
SET CHARACTER HEIGHT 0
GRAPHIC PRINT AT (0,.9): "CHARACTER HEIGHT STATEMENT"
SET CHARACTER HEIGHT .1
GRAPHIC PRINT AT (0,.7): "10 PERCENT"
KEY% = PAUSE
SET WINDOW 0,100,0,100
SET CHARACTER HEIGHT 15
GRAPHIC PRINT AT (0,40): "15 PERCENT"
KEY% = PAUSE
SET CHARACTER HEIGHT 0
ASK CHARACTER HEIGHT CH
PRINT "MINIMUM CHARACTER HEIGHT IS = "; CH
GRAPHIC PRINT AT (0,20): "MINIMUM HEIGHT"

REM DISPLAY SEVERAL RANDOM LINES ON SCREEN, THEN MAKE
REM THEM DISAPPEAR VIA "CLEAR" STATEMENT

INPUT ""; LINE SEED$
RANDOMIZE

CLR: CLEAR
GRAPHIC PRINT AT (0,90): "CLEAR STATEMENT"
SET WINDOW 0,1,0,1
FOR I.INT% = 1 TO 10

PLOT (RND,RND) , (RND,RND)
NEXT I.INT%
KEY% = PAUSE
CLEAR

REM ILLUSTRATE EFFECT OF AUTOMATIC CLIPPING WHEN FIGURE
REM EXCEEDS ALLOWABLE BOUNDARIES

eLP: SET WINDOW 0,100,0,100
GRAPHIC PRINT AT (0,90): "CLIP STATEMENT"
PLOT (25,10), (50,150), (75,10), (25,10)
KEY% = PAUSE

REM DRAW BORDER IN EACH AVAILABLE COLOR (NUMBER OF
REM COLORS VARIES WITH RESOLUTION)

A-2

CBASIC Compiler Graphics Guide A DEMOGRAF

COLR:

Listing A-I. (continued)

CLEAR
GRAPHIC PRINT AT (0,90): \

"COLOR AND COLOR COUNT STATEMENTS"
SET WINDOW 0,1,0,1
ASK COLOR COUNT CT%
FOR I.INT% = 1 TO CT%

SET COLOR I.INT%
PLOT (0 , 0) , (0 , 1) , (1, 1) , (1, 0) , (0 , 0)
KEY% = PAUSE

NEXT I.INT%

REM RETRIEVE AND DISPLAY SPECIFICATIONS FOR CURRENT DEVICE

DEVC: CLEAR
SET CHARACTER HEIGHT 0
SET COLOR 1
GRAPHIC PRINT AT (0,.8): "DEVICE STATEMENT II
ASK DEVICE X.AXIS,Y.AXIS
PRINT liTHE VERTICAL AXIS IS "; \

Y.AXIS*100/X.AXIS;"PERCENT OF THEil;
PRINT II HORIZONTAL AXIS"
PRINT "X= ":X.AXIS:" Y= ";Y.AXIS
KEY% = PAUSE

REM MENTION "GRAPHIC CLOSE II STATEMENT

GCLOSE: CLEAR
GRAPHIC PRINT AT (0,.9): "GRAPHIC CLOSE STATEMENT II
GRAPHIC PRINT AT (0,.5): "GRAPHIC CLOSE HAS NO DEMO"
KEY% = PAUSE

REM ILLUSTRATE GRAPHIC INPUT VIA CURSOR POSITIONING

GIN: CLEAR
SET WINDOW 0,100,0,100
SET CHARACTER HEIGHT 0
GRAPHIC PRINT AT (0,80): "GRAPHIC INPUT STATEMENT II
GRAPHIC PRINT AT (0,25): "0PTION 1 ."
SET COLOR 2
GRAPHIC PRINT AT (0,50): "0PTION 2 ."
SET COLOR 3
GRAPHIC PRINT AT (0,75): "0PTION 3 ."
GRAPHIC INPUT X.AXIS,Y.AXIS,A$
N = INT«Y.AXIS+5)/25)

A-3

CBASIC Compiler Graphics Guide A DEMOGRAF

Listing A-I. (continued)

IF N = ° THEN N = 1 REM NO OPTION ZERO
IF N > 3 THEN N = 3 REM ONLY THREE OPTIONS
PRINT "THE CURSOR WAS POSITIONED AT: "; X.AXIS,Y.AXIS
PRINT "YOU SELECTED OPTION: "; N
PRINT "THE TERMINATING KEY WAS: "; A$
KEY% = PAUSE

REM MENTION "GRAPHIC OPEN" STATEMENT

GOPEN: CLEAR
SET COLOR 1
SET CHARACTER HEIGHT °
GRAPHIC PRINT AT (0,90): "GRAPHIC OPEN STATEMENT"
GRAPHIC PRINT AT (0,50): \

"THE GRAPHIC OPEN HAS NO DEMONSTRATION"
KEY% = PAUSE

REM DEMONSTRATE CENTERING AND JUSTIFICATION

GPRT:

JUST:

CLEAR
SET WINDOW 0,1,0,1
SET CHARACTER HEIGHT °
GRAPHIC PRINT AT (0,.9): "GRAPHIC PRINT STATEMENT"
SET JUSTIFY 0,0
GRAPHIC PRINT AT (.5,.5): "BEGINS AT CENTER"
KEY% = PAUSE
SET JUSTIFY .5,0
GRAPHIC PRINT AT (.5,.3): "THIS IS CENTERED"
KEY% = PAUSE
SET JUSTIFY .5,.5
GRAPHIC PRINT AT (.5,.3): "THIS IS CENTERED"
KEY% = PAUSE
SET JUSTIFY 1.0,1.0
GRAPHIC PRINT AT (.5,.5): "ENDS AT CENTER"
KEY% = PAUSE
CLEAR
SET JUSTIFY 0,0
SET WINDOW 0,100,0,100
SET CHARACTER HEIGHT °
GRAPHIC PRINT AT (0,90): "JUSTIFY STATEMENT"
PLOT (2 ° , 8 0) , (2 ° , 2 0) , (8 ° , 2 °)
PLOT (15,40),(20,40)
PLOT (15,60), (20,60)
PLOT (15,80),(20,80)
PLOT (40,15), (40,20)
PLOT (60,15),(60,20)
PLOT (80,15),(80,20)
SET JUSTIFY 1,.5
GRAPHIC PRINT AT (14,20): "20"
GRAPHIC PRINT AT (14,40): "40"
GRAPHIC PRINT AT (14,60): "60"
GRAPHIC PRINT AT (14,80): "80"

A-4

CBASIC Compiler Graphics Guide A DEMOGRAF

Listing A-I. (continued)

SET JUSTIFY .5,1
GRAPHIC PRINT AT (20,14): "20"
GRAPHIC PRINT AT (40,14): "40"
GRAPHIC PRINT AT (60,14): "60"
GRAPHIC PRINT AT (80,14): "80"
KEY% = PAUSE

REM EXHIBIT VARIATION OF LINE STYLE

STYL: CLEAR
SET JUSTIFY 0,0
SET WINDOW 0,1,0,1
GRAPHIC PRINT AT (0,.9): "LINE STYLE STATEMENT"
SET LINE STYLE 3
SET JUSTIFY 1,0
GRAPHIC PRINT AT (.5,.5): "Sign here"
PLOT (° . 5 , ° . 5) , (0. 8 , ° . 5)
KEY% = PAUSE

REM ILLUSTRATE VARIATION IN SIZE OF MARKERS

MHIGH: CLEAR
SET WINDOW 0,1,0,1
SET CHARACTER HEIGHT °
SET LINE STYLE 1
SET JUSTIFY 0,0
GRAPHIC PRINT AT (0,.9): "MARKER HEIGHT STATEMENT"
DIM MX(5)
DIM MY(5)
MX (°) = • 3 : MY (°) = • 7
MX (1) = • 7 : MY (1) = • 7
SET MARKER HEIGHT .1
MAT MARKER 1: MX, MY
SET WINDOW 0,100,0,100
MX (0) = 3 ° : MY (°) = 5 °
MX(l) = 70 : MY(l) = 50
SET MARKER HEIGHT 15
MAT MARKER 1: MX, MY
SET MARKER HEIGHT °
ASK MARKER HEIGHT MK
PRINT "MINIMUM MARKER HEIGHT IS "; MK
KEY% = PAUSE

REM DEMONSTRATE ALL MARKER SHAPES

MTYPE: CLEAR
SET WINDOW 0,1,0,1
SET MARKER HEIGHT °
GRAPHIC PRINT AT (0,.9): "MARKER TYPE STATEMENT"
MX(O) = .5 : MY(O) = .7

A-5

CBASIC Compiler Graphics Guide

Listing A-I. (continued)

FOR I.INT% = 1 TO 5
SET MARKER TYPE I.INT%
MAT MARKER 0: MX ,MY
MY(O) = MY(O) - .1

NEXT I.INT%
KEY% = PAUSE

REM DEMONSTRATE FILLED POLYGON

MFILL: CLEAR
SET LINE STYLE 1
SET JUSTIFY 0,0
GRAPHIC PRINT AT (0,.9): "MAT FILL STATEMENT"
SET WINDOW 0,100,0,100
SET CHARACTER HEIGHT °
SET COLOR 1
DIM X.ARRAY(10)
DIM Y.ARRAY(10)
X.ARRAY(O) 40 Y.ARRAY(O) 10
X.ARRAY(l) 35 Y.ARRAY(l) 25
X.ARRAY(2) = 50 Y.ARRAY(2) 40
X.ARRAY (3) = 65 Y • ARRAY (3) 25
X.ARRAY(4) = 60 Y.ARRAY(4) 10
MAT FILL 4: X.ARRAY,Y.ARRAY
KEY% = PAUSE

REM ILLUSTRATE POSITIONING OF MARKERS VIA AN ARRAY

MMARK: CLEAR
SET WINDOW 0,100,0,100

A DEMOGRAF

GRAPHIC PRINT AT (0,90): "MAT MARKER STATEMENT"
SET MARKER HEIGHT °
SET MARKER TYPE 1
SET COLOR 1
MAT MARKER 4: X. ARRAY, Y • ARRAY
KEY% = PAUSE

REM DEMONSTRATE DRAWING POLYGON OUTLINE VIA AN ARRAY

MPLOT: CLEAR
GRAPHIC PRINT AT (0,90): "MAT PLOT STATEMENT"
SET COLOR 1
SET WINDOW 0,1,0,1
SET CHARACTER HEIGHT °
FOR I.INT% = ° TO 4

X.ARRAY(I.INT%) = .01 * X.ARRAY(I.INT%)
Y.ARRAY(I.INT%) = .01 * Y.ARRAY(I.INT%)

NEXT I.INT%
X.ARRAY(5) = .40 : Y.ARRAY(5) .10
SET BEAM "OFF"
MAT PLOT 4: X.ARRAY,Y.ARRAY
KEY% = PAUSE

A-6

CBASIC Compiler Graphics Guide

Listing A-I. (continued)

CLEAR
MAT PLOT 5: X.ARRAY,Y.ARRAY
KEY% = PAUSE

REM DO POLYGON VIA "PLOT" STATEMENTS

PLT: CLEAR
SET WINDOW 0,100,0,100
SET CHARACTER HEIGHT °
SET COLOR 1
GRAPHIC PRINT AT (0,90): "PLOT STATEMENT"
PLOT (40,10), (35,25) ~
SET COLOR 2
PLOT (35,25), (50,40) ~
SET LINE STYLE 2
PLOT (50,40), (65,25) ~
SET LINE STYLE 1
SET COLOR 3
PLOT (6 5 , 25) , (6 ° , 10) , (4 ° , 10)
KEY% = PAUSE

REM EXERCISE ARBITRARY POSITIONING OF GRAPHIC BEAM

POSIT: CLEAR
GRAPHIC PRINT AT (0,90): "POSITION STATEMENT"
SET BEAM nOFF"
SET POSITION 50,50
SET POSITION 50,100
SET BEAM "ON"
SET POSITION 0,0
SET POSITION 50,50
KEY% = PAUSE

REM SHOW ALL LINE STYLES

STCNT: CLEAR

A DEMOGRAF

GRAPHIC PRINT AT (0,90): "STYLE COUNT STATEMENT"
SET WINDOW 0,100,0,100
SET CHARACTER HEIGHT °
ASK STYLE COUNT ST%
PRINT "THE NUMBER OF LINE STYLES IS: "~ ST%
FOR I.INT% = 1 TO ST%

SET LINE STYLE I.INT%
SET BEAM "OFF"
PLOT (10*I.INT%,10) , (10*I.INT%,90)

NEXT I.INT%
KEY% = PAUSE
SET LINE STYLE 1

A-7

CBASIC Compiler Graphics Guide A DEMOGRAF

Listing A-I. (continued)

REM DEMONSTRATE ROTATION OF TEXT

ANGEL: CLEAR
GRAPHIC PRINT AT (0,90): "TEXT ANGLE STATEMENT"
SET WINDOW 0,1,0,1
SET CHARACTER HEIGHT °
PI = 3.1415926
RAD PI*2
DEG = RAD/360

FOR I.INT% = 90 TO 360 STEP 90
SET TEXT ANGLE I.INT%*DEG
GRAPHIC PRINT AT (.5,.5): "ROTATE ME"

NEXT I. INT%
KEY% = PAUSE
SET TEXT ANGLE °

REM ILLUSTRATE EFFECT OF VARYING VIEWPORT

VYOU: CLEAR
GRAPHIC PRINT AT (0,.9): "VIEWPORT STATEMENT"
X.ARRAY(O) ° Y.ARRAY(O) °
X.ARRAY(l) ° Y.ARRAY(l) 100
X.ARRAY(2) = 100 : Y.ARRAY(2) 100
X.ARRAY(3) = 100 : Y.ARRAY(3) °
X.ARRAY(4) = 0 : Y.ARRAY(4) °
SET VIEWPORT 0,1,0,1
SET WINDOW 0,100,0,100
SET CHARACTER HEIGHT °
MAT PLOT 4: X.ARRAY,Y.ARRAY
SET VIEWPORT .1,.9,.1,.9
MAT PLOT 4: X.ARRAY,Y.ARRAY
SET VIEWPORT .2,.8,.2,.8
MAT PLOT 4: X.ARRAY,Y.ARRAY
SET VIEWPORT .3,.5,.3,.5
MAT PLOT 4: X.ARRAY,Y.ARRAY
SET VIEWPORT .5,.7,.5,.7
MAT PLOT 4: X.ARRAY,Y.ARRAY
KEY% = PAUSE

REM ILLUSTRATE EFFECT OF VARYING WINDOW

WINDW: CLEAR
SET VIEWPORT 0,1,0,1
SET WINDOW 0,100,0,100
SET CHARACTER HEIGHT °
GRAPHIC PRINT AT (0,90): "WINDOW STATEMENT"
PLOT (0,0), (60,60), (60,0), (0,0)
SET WINDOW 0,200,0,200
SET CHARACTER HEIGHT °
PLOT (0, 0) , (60,60) , (60, 0) , (0, 0)

A-8

CBASIC Compiler Graphics Guide

Listing A-1. (continued)

SET VIEWPORT 0,.5,.5,1.0
PLOT (0 , 0) , (6 0 , 6 0) , (6 0 , 0) , (0 , 0)
KEY% = PAUSE

REM FINISH DEMONSTRATION AND END PROGRAM

FIN: CLEAR
SET WINDOW 0,100,0,100
SET CHARACTER HEIGHT 0
SET VIEWPORT 0,1,0,1
SET COLOR 1
FOR I.INT% = 1 TO CT%

SET COLOR I.INT%
MAT PLOT 5: X.ARRAY,Y.ARRAY

A DEMOGRAF

SET VIEWPORT .01*I.INT%,1-(I.INT%*.01), \
.01*I.INT%,1-(I.INT%*.01)

NEXT I. INT%
SET JUSTIFY .5,.5
SET COLOR 1
SET VIEWPORT 0,1,0,1
GRAPHIC PRINT AT (50,50): "THANKS FOR THE VIEWING"
KEY% = PAUSE
STOP
END

End of Appendix A

A-9

A

aspect ratio, 1-3

B

beam, 1-7
BEAM statement, 3-2
bounds, 1-3
BOUNDS statement, 3-4

c

CBASIC programs,

Index

compilation of, 2-1
CHARACTER HEIGHT statement, 3-7
CLEAR statement, 3-10
CLIP statement, 3-11
clipping, 1-7
close, 3-15
COLOR statement, 3-13
COLOR COUNT statement, 3-14
coordinates,

definition, 1-2
figure, 1-2

count
color, 3-14
style, 3-42

cursor, 1-7

D

DEMOGRAF
compiling, 2-2
listing, A-I

DEVICE statement, 3-15

G

GENGRAF, 2-1
GRAPHCOM.BAS, 2-1
GRAPHIC CLOSE statement, 3-16
GRAPHIC INPUT statement, 3-17
GRAPHIC OPEN statement, 3-19
GRAPHIC PRINT statement, 3-20
GSX, 2-2

Index-l

H

height
character, 3-7
marker, 3-28

I

input, 3-17

J

JUSTIFY statement, 3-22

L

LINE STYLE statement, 3-25
linking, 2-1

M

marker, 1-7
MARKER HEIGHT statement, 3-27
MARKER TYPE statement, 3-30
marker types, 3-30
MAT FILL statement, 3-32
MAT MARKER statement, 3-34
MAT PLOT statement, 3-36

o

open, 3-19

p

PLOT statement, 3-38
POSITION statement, 3-40
print, 3-20

R

radians, 3-44
run-time environment, 2-2

S

STYLE COUNT statement, 3-42
syntax notation, 3-1

T

TEXT ANGLE statement, 3-44

u

unc1ipped figure, 3-11

v

viewport, 1-4
VIEWPORT statement, 3-47

w

window, 1-7
WINDOW statement, 3-50

Index-2

Reader Comment Card
We welcome your comments and suggestions. They help us provide you with better
product documentation.

Date _____ First Edition: May 1983

1. What sections of this manl1al are especially helpful?

2. What suggestions do you have for improving this manual? What information
is missing or incomplete? Where are examples needed?

3. Did you find errors in this manual? (Specify section and page number.)

CBASIC CompilerTM Language Graphics Guide

COMMENTS AND SUGGESTIONS BECOME THE PROPERTY OF DIGITAL RESE!\RCH.

From: ____________________ ___

Attn: Publications Production

BUSINESS REPLY MAIL
FIRST CLASS / PERMIT NO. 182 / PACIFIC GROVE, CA

POSTAGE WILL BE PAID BY ADDRESSEE

[Q] DIGITAL RESEARCHTW
P.o. Box 579
Pacific Grove, California
93950

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

