
Digital Microsystems (fJJ ~
HIDOS PROGRAMMER'S MANUAL

Version 1.0

Copyright © 1984, Digital Microsystems

COPYRIGHT

All rights reserved. No part of this manual may be reproduced
without the prior written permission of Digital Microsystems, Inc.

Digital Microsystems
1755 Embarcadero, Oakland, CA 94606
(415) 532-3686 TWX 910-366-7310

NOTICE

Digital Microsystems, Inc. reserves the right to make improvements
to the products described in this manual at any time, without notice.

TRADEMARKS

HiNet, HIDOS, DMS-5000, DMS-5080, DMS-5086, DMS-3F, and
DMS-15, are trademarks of Digital Microsystems, Inc. CP/M, and
CP/M86, are trademarks of Digital Research, Inc. MX-100 is a
trademark of Epson, Inc. Microline-83A is a trademark of Okidata,
Inc.

© Copyright 1984, Digital Microsystems, Inc.

OMS-HIooS PROGRAMMERS MANUAL

TABLE OF CONTENTS

1.0 INTRODUCTION. • • • • • • • • • • • 1
1 • 1 CP/M OVERVIEW. • • • • • • • • • • 1
1.2 DIRECTORIES AND FILE ALLOCATION. • • 2
1.3 SHARING PARTITIONS. • • • • • • 3

WHY THE OS CAN'T LOCK RECORDS. • • 5
1 .5 APPLICATION PROGRAMS & RECORD LOCKING.. 7

2.0 USING HIooS--LIMITS AND RESTRICTIONS. 8

3.0 HINET LOCKSTRINGS AND NETLOCK • • • • 10

4.0 PROGlWt1ING TECHNIQUES UNDER HIooS. • 11

5.0 SHARED PARTITION MAINTENANCE. 14

6.0 FILE AND RECORD LOCKING. • • 15
6. 1 ROCORD LOCKING PROCEDURES. • 16
6.2 DATA RECORD SIZE VS. CP/M RECORD SIZE.. 17
6.3 CA[cULATION OF CP/M RECORDS. • • • • •• 21
6.4 HINET BIOS LOCK AND UNLOCK • • • • • •• 24

Z80 LISTING OF BIOS NETLOCK AND NETUNLOK 29
6.5 NE'lWORK BUFFER USAGE • • • • • • • • •• 33

INDEX • I-1

Release: 1/1/84 T-1

OMS HlDOS PROGRAMMERS GUIDE 1 .0 INTRODUCTION

1.0 INTRODUCTION.

1.1 CP/M OVERVIEW.

computers generally run a resident program
called the Operating System (OS) that interprets
the user's commands so that application programs
can be run, files manipulated (with ERA, REN,
PIP, for example) or disk information obtained
(e.g., using DIR, STAT). In microcomputers, one
standard operating system is called CP/M
(Control Program/Moni tor) • CP/M and every other
operating system use some method of determining
which disk drive they are talking to, and which
drives they can talk to.

For HiNet, which supports CP/M and several
other operating systems, the drive can be
assigned to a local floppy disk or a partition
on a HiNet Network Master or local Hard Disk.
Generally, the OS keeps track with a mapping
between LOGICAL and PHYSICAL devices. In CP/M
the logical devices are the familiar 'drives A,
B, C, 0' as well as printer, paper reader/punch,
and console device, depending upon the specific
hardware in the computer system.

CP/M keeps track of data on a disk in
FILES. To the user, a file is just a program or
a collection of data with a name. CP/M keeps
track of files on a disk in a reserved space
called the DIRECTORY. The directory contains all
the information CP/M needs to be able to read
from and write to each file. This information

Release: 1/1/84

DMS BIOOS PROGRAMMERS mIDE 1.0 INTRODUCTION

includes pointers to the space on the disk that
the fi Ie occupies.

Space on a disk in CP/M is measured in
logical blocks. The sizes of these blocks, which
can be ei ther 1 k, 2k, 4k, 8k or 16k, are
determined by the "Disk Parameter Block" (DPB).
The DPB values are generally not under the
application program's or programmer's control.
The BIOS programmer makes a DPB for each kind of
disk and disk drive available as directed in
Digital Research's CP/M documentation.

1.2 DIRECTORIES AND FILE ALLOCATION

When a logical drive is accessed for the
first time (after warm or cold booting) CP/M
scans the directory and makes a map of the
blocks currently used by the files on the disk.
This is called the ALLOCATION VEC'l'OR (AV). The
OS uses this vector to allocate new blocks to
files· when writing, and to de-allocate blocks
when files are deleted. In CP/M it is kept in
the BIOS, i.e., in high memory above the TPA
(user program space).

CP/M's security for a drive is maintained by
a method called checksums. A CHECKSUM VJOC:TOR
(CV) is computed when the Allocation Vector is
computed. This vector consists of one byte for
every 128-byte CP/M record of the directory. The
byte contains the sum of all the bytes in the
record. Whenever the directory is changed (e.g.,
when a file is erased, closed, or when a new
file or extent is opened) the checksum byte is
updated.

Release: 1/1/84 2

DMS HIOOS PROGRAMMERS GJIDE 1 • 0 INTRODUCTION

Whenever a record of the directory is
accessed, the corresponding checksum byte is
recalculated. If the newly calculated value
doesn't match the old value in the vector, the
drive is set to R/O. CP/M thinks that the disk
has been changed wi thout it being notified, and
tries to keep the user from destroying data by
not allowing any writes until the checksums
agree again.

As an example, consider two people using
the same partition on the same hard disk at the
same time. If user A changes information in the
directory (say by ERA or PIP) the user's
checksum vector will be updated properly. But
the checksum vector in user B's memory will not
be updated. The next time user B reads that part
of the directory, the checksum byte for that
record wi 11 not agree and he wi 11 get a ''BOOS
R/O ERROR". This is one problem with sharing.

There is also a variation on the previous
problem. If user A allocates a block to a file,
user B's OS does not know about it because only
user A's Allocation Vector is updated. User B's
OS could allocate the same block and overwrite
user A's data. In this case, data is lost with
no warning to the users, since the Operating
Systems do not detect any error.

1.3 SHARIRG PARTITIORS

To enable more than one person to use a
CP/M disk at the same time, a method must be
devised so that when one person makes a change
to the directory or the Allocation Vector (AV),

Release: 1/1/84 3

OMS HlDOS PROGRAMMERS GUIDE 1.0 INTRODUCTION

everyone will know. The method OMS chose puts
the AVon the disk instead of in the BIOS for
sharEd partitions. Each user's OS knows (by
virtue of a flag in the ALLOC table) that the
drive is sharEd. Whenever the directory or the
AV is to be updated, the user's OS locks the
partition (via a HiNet BIOS lock command) so
that it has sole access to the drive. Then it
does its updating and when finishEd unlocks the
partition so that another user can make changes
if he or she wants to. In this way blocks are
not allocated to more than one. file and the
directory is always kept up to date. Any user
can read when the drive is locked, but only the
person who has lockEd the drive can write to it.

HlDOS allows more than one person to work in
the same partition at the same time but NOT on
the same file. When working on a file, CP/M -­
keeps in local memory a copy of the directory
entry (in the form of a File Control Block), and
modifies this copy as changes are made to the
file (changes meaning adding or erasing blocks).
The changes are not reflectEd in the directory
until the file is closed, or a new extent is
needEd.

Since a local copy is kept by CP/M, the
locking mechanism usEd above will not work. In
fact, it is extremely impractical for any
distributed-processor CP/M network to take care
of this situation on the OS level. It would, of
course, be desirable for the OS to take care of
everything so that existing software could run
with no modifications.

Release: 1/1/84 4

DMS HIooS PROGRAMMERS GlIDE 1 .0 INTRODUC'rrON

WHY THE OPERATING SYSTEM CAN'T LOCK RECORDS.

To show that it is impractical for the as
to provide for record locking, we will give some
examples to illustrate the problem. If we assume
the as is totally responsible for locking and
unlocking records, then the as needs some rule to
follow.

The as does not know if a record needs to
be locked when it is read. Thus every record
read must be locked. This is not efficient,
since many times a read will be to examine a
record only. If no updating is involved there is
no need to lock the record.

Assuming every read requires a lock, let
User A and User B work on the same file in the
same partition. User A reads and then locks a
record X. When User B wants to read record X his
as would realize that the record was locked and
could:

• ignore it and read it anyway,
• return without reading,
• return telling program record is locked,
• wait until read is granted.

The first two choices are obviously
unacceptable. The third choice brings out a CP/M
problem. The only values CP/M returns after a
read are 0 and 1, representing either success or
a failure (error). Therefore, in this case all
the as could do is report a failure to the User.
If the program checks for this kind of error it
will probably abort the program--an unacceptable
result.

Release: 1/l /84 . 5

DMS HIooS PROGRAMMERS QJIDE 1.0 INTRODUCTION

The fourth case leaves User B hanging while
waiting for the record to be unlocked. How long
will User B have to wait? The problem becomes-­
when does the OS unlock the record? Several
options are available:

• wait until another record is read by the same
user,

• wait until that record is written back by the
same user,

• wait for the file containing the record to be
closed,

• wai t until the user logs out.

We cannot expect that the user's program
can tell the OS anything about the status of the
record since we are assuming in these cases that
the OS is totally responsible.

The last three options can be dismissed as
impractical since:

• User A may never log out.

• He may never close the file since he may have
only read from it.

• He may also never write that record back for
the same reason.

The first option is also not acceptable but
for a different reason. User programs can have
logical records of almost any size. The OS,
however, deals with a set record size. The OS

Release: 1/1/84 6

DMS HlOOS PROGRAMMERS CDr DE 1.0 INTRODUCTION

only knows of that record size and can thus only
lock records of the length it knows about.

This leads to a real problem. If the user's
logical record size is bigger than the OS's
record size, all of the user-requested record
may not be locked. For example, let the user's
record size be a 2-Kbyte chunk in some database,
and the OS's record size be 128 bytes. When the
user's program requests to read a 2K record, the
as will lock each 128-byte record as it is read,
UNLOCKING the last 1 28-byte record it locked.
Thus only the last 128 bytes of the 2K chunk
remains locked.

A similar problem occurs when the user's
record size is not an even divisor of the OS's
record size. The user's records will generally
go across the as record boundaries. Therefore
the as will lock only one of the as records
needed to lock all of the user's record.

1.5 APPLICATION PROGRAMS & RECORD LOCKING

The solution to these problems is for the
application program to do record locking and
unlocking. The HiNet BIOS provides a locking
/unlocking mechanism for this purpose.

The application program is designed to
determine when a record needs to be locked, and
when it can be unlocked. The program must avoid
typical locking problems (like mutual lockout-­
when two programs have each locked records the
other needs). The user program MUST do its own
locking/unlocking to share a file or records.

Release: 1/1/84 7

OMS HlooS PROGRAMMERS MANUAL 2.0 USING HlOOS

2.0 USING HIDOS--LIMITS AND RESTRICTIONS.

Important! Do not use these BIOS calls on a
shared partition:

Home
SelOisk
SetTrk
Set Sec

Setrma
Read
Write
SecTran

Only use BOOS calls for Reads and Writes!

It is permissible to use OMS extended BIOS
calls with the exception of SendNet and RecNet.
If you are using HiNet commands with SendNet or
RecNet, be sure you understand how HIooS and
HiNet work.

Do NOT change DPB's since HlooS has special
entries in the OPB that are non-standard.

Do NOT allow more than one person to use or
modify a file at the same time. The application
program that manipulates a file can allow this
if it does some kind of locking on the records
or file during read/modify/write routines. If
the application program does not explicitly do
locking then do not share files. Also, take care
that no one is using a file in a shared partition
when that file is erased by another user.

It is a good idea to establish a method for
identifying files so that those people working
on the same shared partition will not confuse
their files with someone else's. If it is
desired that more than one person have access to
the same files, use the NetLock/NetUnLock

Release: 1/1 /84 8

DMS HIOOS PROGRAMMERS MANUAL 2.0 USING HIDOS

utilities or some other method to avoid more
than one person working on the same file at the
same time. Always use the filename for the
lockstring, rather than a shared partition name.

WARNI~In a shared partition, do oot use
any program that creates a temporary file of a
fixed name. If two people are using such a
program, the temporary files will get confused
with disastrous results. For example, many
compilers and word processors create temporary
files of a fixed name. (WORDS TAR creates a
temporary file called EDBACKUP.$$$ for every
large file that is opened for editing or
reading.) You will probably need to experiment
or talk to the program manufacturer to be sure
of this.

Directory information is volatile for
shared disks. When a 'DIR' is done, remember
that the information is instantly 'old'
and may be incorrect. Someone else may have
modified the directory information immediately
after you asked to get it. Thus, files may
disappear even though they were there for a
'DIR'. Therefore, you must make sure that your
files are only used by you (you could use the
NetLock/NetUnlock utilities).

Disk space usage information may not be
correct. To get the most uIrto-the-minute
information on how much space is left on the
disk, do a warm boot first. Remember, between
the time you warm boot and a program such as
STAT checks the disk space usage, someone else
working in that partition could have changed the
value without your local computer knowing about it.

Release: 1/1 /84 9

DMS HIDOS PROGRAMMERS MANUAL 3.0 NETLOCK

Another point to watch: if a file is
written to but is never closed, the directory
will not show that the blocks allocated for the
writes are used. They will, however, be
allocated in the shared Allocation Vector on the
disk since every block allocation is 'instantly'
reflected in the shared Allocation Vector on the
disk. Therefore there is unusable space on the
disk. This leads to erroneous disk space
information from programs such as STAT. You can
run SHRALLOC to clean this up (see section 5.0).

3.0 HINET LOCKSTRINGS AND NETLOCK

HiNet NETLOCK is a warning device that
tells the User if the partition or file in
question is already being updated. This is a
User-dependent system for file security.

Each User, before updating files in a
shared partition, enters the lockstring
sequence--NETUOCK filename--to secure a file.
The Master checks to see if the lockstring is
already in the NETLOCK Table. If it isn't then
the lock is granted.

If the filename lockstring is already in
the NETLOCK Table then the message **This fi le
or parti tion is locked is displayed. The User
must then wait until the lockstring is accepted
when he or she resubmits it.

NETLOCK will not prevent ~ User from
wri ting to ~ file that is locked • .!! is ~
warning only.

Release: 1/1/84 10

DMS HIDOS PROGRAMMERS MANUAL 4.0 PROGRAMMING

To unlock a file after updating it, the
User enters the command NETUNLOK filename. The
lockstring for the filename is removed from the
Network's NETLOCK Table.

NOTE---NETLOCK lockstrings must be the name
of the specific file being upjated. Do not use
HIDOS shared parti tion names for locksfrlngs.-

HIDOS uses a similar method of lockstrings
when it updates the Allocation Vector and the
Directory; see the following section.

4.0 PROGRAKKING TECHNIQUES UNDER HIDOS

HIDOS is a modified version of the CP/M 2.2
BOOS and it essentially works in the same way.
These modifications allow shared access to hard
disk partitions. It is up to the transient
program to do file and/or record locking as is
necessary for the application.

When sharing a disk, the directory and the
Allocation Vector must be kept accurate and up
to date for all users. Whenever a BDOS function
that modifies either of these is called, the
local HIOOS does a HiNet lock over the network
to the master. The HIOOS IOCkstring is the ~
of the partition. The OS will wait for access if
the partition is locked. It should not have to
wait for long since no HIDOS lock can last for
longer than a BOOS function call. When the BOOS
function is finished the partition is unlocked.

The directory and the Allocation Vector are
both on the disk. Whenever either of these needs

Release: 1/1 /84 11

OMS HlooS PROGRAMMERS MANUAL 4.0 PROGRAMl'1ING

to be changed, it is read in from the disk,
modified, and written back. This is all done
under the protection of the HlooS lock. In this
way the data on the disk is always up, to date.

In shared partitions, the Allocation Vector
is stored in the first block after the
directory. A file with the name of the parti tion
followed by an exclamation point (!) is created
with the blbck containing the Allocation Vector
allocated to it. The file is stored under CP/M
User 15. The file serves only as protection for
the Allocation Vector and as a flag that the
Allocation Vector was set up on the disk.

The local OS can tell that a partition is
shared by checking a bit in the control byte of
the hard disk's allocation table maintained by
the system utility ALLOC. The byte is stored as
part of the OPB in the BIOS. Whenever a disk is
logged in, the local HlooS checks to see if the
disk is shared.

The BOOS functions that modify the
directory are: Open, Close, Delete, Make,
Rename, Set File Attributes,Read/Write
Sequential/Random (when closing an extent and/or
opening a new extent). The BOOS functions that
modify the Allocation Vector are Delete and
Write Sequential/Random.

When the Allocation Vector is needed for
allocation or deallocation it is read in from
the disk using parameters from the 'OMS OPB'
into the Allocation Vector space in the BIOS.
When the BOOS is done with the modification the
Allocation Vector is written back to the disk

Release: 1/1 /84 12

OMS HIOOS PROGRAMMERS MANUAL 4.0 PROGRAMMING

before unlocking and returning from the BOOS
call. '!he DMS DPB is an extended CP/M DPB.

HIOOS uses a directory high water mark
different from the CP/M high water mark. In
CP/M, when a disk is logged in (i.e., first
accessed after a warm or cold boot) the entire
directory is scanned. During this time the
Allocation Vector and Checksum Vector are
computed am initialized. At the same time, an
internal variable is set to the last used entry
in the directory, am this entry is the CP/M
high water mark. If a file by the name of
$$$.SUB is foum, the appropriate flag is
returned to the OCP to indicate there is a
submit file to be run. Various internal
variables are set up as well.

In HIOOS shared partitions, the high water
mark is kept in the directory. It is set up by
the system utility COMPRESS. An E8 hex is put in
the entry following the last used entry, and is
always kept up to date. The CP/M high water mark
can only go up. However, the HIOOS high water
mark goes up am down as necessary.

When a shared disk is logged in under HIOOS
(first accessed after a warm or cold boot) the
directory does not need to be scanned since the
Allocation Vector is already set up am stored
on the disk. The checksum vector securi ty is not
used ~ shared partitions since changes are -
expected to occur. The high water mark is
already set up. The result of these changes is
that shared HI DOS partitions boot very quickly.
COMPRESS also compresses the directory so that

Release: 1/1 /84 13

DMS HIooS PROGRAMMERS MANUAL 5.0 MAINTENANCE

directory searches execute much quicker than
on normal CP/M partitions.

NOTE---Since the directory is not scanned
at every warm or cold boot, SUBMIT files cannot
be run on shared partitions.

5.0 SHARED PARTITION MAINTENANCE

Periodically COMPRESS and SHRALLOC should be
run in a shared partition.

COMPRESS will compress the directory which,
through normal use, aquires many gaps in it.

SHRALLOC will recompute the Allocation
Vector and get rid of any discrepancies between
the directory and the allocation vector.

Discrepancies can occur if a program writes
to the disk but does not close the file. The
blocks allocated to the file by the writes are
reflected in the Allocation Vector but not in
the directory. Thus, even though the blocks are
not used, they cannot be re-allocated.

NOTE---The file PARTITION-NAKE.! stores
the allocation vector on the disk for each
partition. If this file is missing when SHRALLOC
is run, a warning message is displayed. The
partition must then be changed from shared to
non-shared in the ALLOC Table. SHRALLOC can then
be run to restore the Allocation Vector; the
partition can then be marked as shared again in
the ALLOC Table.

Release: 1/1/84 14

DMS HIooS PROGRAMMERS MANUAL 6.0 RECORD LOCKING

When SHRALLOC is run it creates am then
deletes a temporary file called TEMPFILE. If
something goes wrong during the program's
execution this file will be visible in the
directory.

WARNING--When running CDMPRESS and SHRAILOC
you must make sur:e that no one else is usiO] the
partition.

NOTE---The next release of HINET/HIooS will
replace SHRALLOC with an automatic function in
the ALLOC Table program. When a parti tion is
marked as shared in the ALLOC Table, the
Allocation Vector will be created at that time
by A~ COMPRESS will still be available to
periodically clean up the directory.

6.0 FILE AND RECORD LOCKING

The idea behind file and record locking is
to allow more than one person the ability to
access and modify the same data at the same
time, wi th each person getting the most recent
data. In order to assure that you always have
the most recent data, you need to do a "read"
knowing that no one else has accessed the data
file or record with the intention of modifying
it. '!be procedure is to get ownership of the
right to update the data (LOCK the data in
question), read it, modify it, write it back,
am then release ownership so another person can
gain ownership. Read access wi thout locking
could always be granted with the understanding
that someone else may be currently modifying
what you have read.

Release: 1/1 /84 15

DMS HIDOS PROGRAMMERS MANUAL 6.0 RECORD LOCKING

As an example, consider an airline
reservation system. The operator does unlocked
reads to check seating availability. When the
customer agrees to an available seat, the
operator does a lock, then a read and checks to
make sure the seat is still available--since
someone else may have taken it between the time
he or she did the unlocked read and the locked
read. If still available, the operator reserves
the seat by updating the record with that data,
writing it back and unlocking the record.

If everyone only did locked reads, system
performance would greatly suffer with people
waiting for access to be granted for their locks
before they could read or examine data. Such
waiting is not necessary since most reads don't
need to be locked.

6.1 RECORD LOCKING PROCEDURES

It is important to realize that you must
reread any data that is to be modified before
locking/modification/writing since what you have
read without locking may not be current. Someone
else may be changing the data while you are
examining it.

You should develop a method for naming what
needs to be locked. The file name is fine for
file locking; for records the filename and
record number combined could be a good name.

The HiNet locking mechanism locks a string
of, at most, 13 bytes. See section 6.4 for
examples of its use in CBASIC and Z80 Assembler.

Release: 1/1/84 16

DMS BIOOS PROGRAMMERS MANUAL 6.0 ROCORD LOCKING

To update a record, follow these
procedures: lock, or wai t for the lock to be
granted, read the record, update it, write it
back, and unlock it. If the record does not
exist (i.e., it is not yet there to read) skip
the read step. Probably some initialization
should be done to the record. The method of
determining if the record is there or not is
application-dependent. For some applications
all records can be allocated initially. For
others, only extension may be allowed so that
all allocated records are contiguous.

To extend a file you need to know which
record is the current end. A specific record
(say the first) can hold a pointer to the end.
In this case, lock the record with the pointer.
Using a random write (or sequential, if
appropriate) write the record after the last
record. This becomes the new last record, so
update the pointer. Write the pointer record
back to the disk. Unlock the record with the
pointer.

6.2 DATA RECORD SIZE VS. CP/M RECORD SIZE

The logical record size equals the data
record size and the application program record
size. Complications can arise if the logical
record size to be locked is not the same size
as, or is not a multiple of, the CP/M record
size (128 decimal, 80 hex bytes). It is highly
recommended that the data record si ze be 1 28
bytes or an integer multiple of 128. The problem
is that a CP/M record can contain parts of more
than one logical record. Thus the logical record

Release: 1/1 /84 17

OMS HIDOS PROGRAMMERS MANUAL 6.0 RECORD LOCKING

can be lockErl, but not the CP/M record.
Therefore, more than one person can have the
CP/l'1 record in CP/M memory, each thinking he or
she has sole ownership to modify that record.
When they write back the logical record, that
part of the CP/M record corresponding to some
other logical record will be set to what it was
when the read was done, overwriting any changes
someone else may have made.

If you decide that you want a logical
record size which is not equal to an integral
number of CP/M records, you must lock the CP/M
records, i.e., use the CP/M record name(s) that
are being used by more than one logical record.
There will be one or two records to lock.

Let us consider these four aspects of the
problem:

1. The data record is much smaller than the CP/M
record.

2. The data record is slightly smaller than the
CP/M record.

3. The data record is much larger than the CP/M
record.

4. The data record is slightly larger than the
CP/M record.

Example 1. The data record is much smaller than
the CP/M record.

Release: 1/l /84 18

OMS BIOOS PROGRAMHERS HANUAL 6.0 REX:ORO LOCKING

CP/M records ••• 'r', 's', It' , •••

1 r S

1)(5)(6)(J7)(8)(9)(1 10)(11)(12)(1

log ical records ••• 5, 6, 7, 8, 9, 1 0, 11, 1 2, •••

If logical record 6 is locked, read,
changed, written back, and unlocked by user A,
and at the same time User B locks, reads,
changes and writes back logical record 5, the
last one to write will overwrite the previous
user's change. This occurs because the same CP/M
record "rl! is read and wr i tten each time.

Example 2. The data record is slightly smaller
than the CP/M record.

CP 1M records 'c', 'd', Ie', If', 'g', •••

1 c 1 die 1 fig 1
--+---------+---------+---------+---------+---------+---
I) (3 I) (4 If 5) (1 6) (17) (

logical records ••• 3, 4, 5, 6, 7, •••

The same problem ex ists as in # 1. Notice
this time that the logical record generally
crosses a physical record boundary.

Release: 1/1 /84 19

OMS HIOOS PROGRAMMERS MANUAL 6.0 RE>:ORD LOCKING

Example 3. The data record is much larger than
the CP/M record.

CP/M records

j k

)(

, .,
••• J ,

1

'k', '1',

m

logical records ••• 17 ,18, •••

'm' , In' , '0' , ...

n o

In this case if user A works on logical
record 1 7 am user B on log ical record 1 8 the
conflict arises in CP/M record 'mi.

Example 4. The data record is slightly larger
than the CP/M record.

CP/M records
, .,

••• J , 'k' , '1', 'm', 'n' , '0' , ...

I j I kIm n 0

1)(7 1)()(11

logical records ••• 7, 8, 9, 10, 11, •••

The same situation as #3 occurs here, only
now almost all the CP/M records are shared by
two logical records (except CP/M record '0'
which is totally contained in logical record 11,
so no problem there).

Release: 1/1 /84 20

OMS HIDOS PROGRAMMERS MANUAL 6.0 RECORD LOCKING

6.3 CALCULATION OF CP/M RECORDS USED BY
LOGICAL RECORDS

Given a logical record we need to find the
CP/M records that must be locked to avoid
logical record conflict. There are one or two
CP/M records in each of the four cases. The
procedure is to find the CP/M records used by
the first and last bytes of the logical record.
We assume that the logical records are logically
continuous and linearly numbered (i.e., records
are numbered 2,3,4,5 •••).

To find the CP/M record used by the last
byte of the logical record, first get the
logical record number. If the first logical
record is record "0" then add one to the logical
record number. Now multiply this number by the
logical record size and then divide by the CP/M
record size (128 decimal). If there is a
remainder, round up. The result is the CP/r1
record the END of the logical record uses.

Now, to find the CP/M record used by the
beginning of the logical record, repeat the
above procedure for the logical record just
before the CP/M record. In this case, before
dividing by the CP/M record length, add one so
that the first byte of toe logical record in
question will be included.

These two records are the ones to lock. If
they are the same record then only one record
needs to be locked. If locking two CP/M records,
watch out for lock-out. If you lock one record
and the other is locked, unlock the first, wait
a random &~ount of time and retry, since you may

Release: 1/1/84 21

DMS HIooS PROGRAMMERS MANUAL 6.0 RECORD LOCKING

be competing wi th someone else for the same
records.

It is assumed that all CP/M records between
the first and last CP/M records of the logical
record do not need to be locked since anyone
wanting to read them must also lock the ends.
This assumes no overlap of logical records.

If the logical data file has something other
than logical records (such as a file header or
record headers) then the size of this must be
taken into account.

EXAMPLES

1: Logical file name = DBASE1
logical record size = 136 bytes
logical records = 1,2,3,4,5, •••••

(Note: first record=1)

no headers or inter record info.

Want to lock logical record 23.

(23 * 136) / 128 = 24.44 ---) 25
((22 * 136) +1) / 128 = 23.38 ---) 24

So lock 24 and 25. Lockstrings could be DBASE24
and DBASE25.

2: Logical file name = DBASE1
logical record size = 136 bytes
logical records = 0,1,2,3,4,5, •••••

(Note: first record=O)
no headers or inter record info.

Release: 1/1/84 22

DMS HIDOS PROGRAMMERS MANUAL 6.0 RECORD LOCKING

Want to lock logical record 23.

((23+1) * 136) / 128 = 25.5 ---> 26
[(22+1) * 136] + 1) / 128 = 24.44 ---> 25

So lock 25 and 26. Lockstrings could be DBASE25
and DBASE26.

3: Logical file name = DBASE1
logical record size = 136 bytes
logical records = 1,2,3,4,5, ••••

(Note: first record=1)
Assume there is a 32-byte file header before
logical record 1.

Want to lock logical record 75.

[(75 * 136) + 32] / 128 = 79.9 --> 80
{[(74 * 136) + 32] + 1} /128 = 78.88 --> 79

So lock 80 and 79. Lockstrings could be DBASE79
and DBASE 80.

4: Logical file name = SMALLDATA
logical record size = 18 bytes
logical records = 1,2,3,4 •••

(Note: first record=l)

Assume no headers or inter-record data.

Want to lock logical record 345.

(345 * 18) / 128 = 48.5 --> 49
{(344 * 18) + 1 } / 128 = 48.3 --> 49

So lock 49. Lockstring could be SMALLDATA49.

Release: 1/1/84 23

OMS HIooS PROGRAMMERS MANUAL 6.0 RECORD LOCKING

6.4 HINET BIOS LOCK AND UNLOCK

Record locking and unlocking are invoked by
first constructing a "lockstringll am then
calling a BIOS lock or unlock entry point. The
lockstring should indicate the file and record
to be locked. Note that the lockstring can, in
fact, contain any sequence of bytes. However, to
allow different applications to utilize record
locking on the same HiNet system requires that a
convention be established. The recommended
convention is to use the file name as the first
8 characters and the record number as the last 5
characters of the lock string.

The addresses of the BIOS lock and unlock
entry points need to be calculated at program
run time. The entry points are addresses in the
Digital Microsystem extended BIOS jump table.The
addresses are calculated as follows:

BIOS Lock

1. Get the address of the standard BIOS warm
boot jump. This is kept at locations 1 and 2.

2. Add 93 (5d hex) to the warm boot address.
This is the offset to the lock function.

3. The result is the address of the BIOS lock
entry point.

BIOS Unlock

1. Get the address of the standard BIOS warm
boot jump. This is kept at locations 1 and 2.

Release: 1/1/84 24

OMS HlOOS PROGRAMMERS MANUAL 6.0 REr:ORD LOCKING

2. Add 99 (63 hex) to the warm boot address.
This is the offset to the unlock function.

3. The result is the address of the BIOS unlock
entry point.

Before calling the BIOS lock or unlock
entry points, locations 74 (4A hex) and 75 (4B
hex) should point to the loc)istring, i.e.,
contain the address of the string to be locked.
The first byte of the string is an integer from
1 to 13, irrlicating the length of the string.

The BIOS routines return immediately and
put the outcome of the request in location 73
(49 hex). This is the status of the request.

Lock Request

Returned Status Meaning

o Lock accepted. The lockstring
was entered into the master
lockstring table.

2

Release: 1/1 /84

Lock denied. '!be lockstring
is already in the table,
i.e. the string is
already locked.

Lock table full, or string
length byte is bad
(= 0 or > 13).

25

DMS HIOOS PROGRAMMERS MANUAL 6.0 RECORD LOCKING

Unlock Request

Returned Status Meaning

o Unlock accepted. String
was found in master
lockstring table and removed.

2 Unlock failed. String was
not found in master
lockstring table, or
string length byte is bad
(= 0 or > 13).

The CBASIC functions "fn.lock" and
"fn.unlock" can be used to interface wi th the
lock and unlock routines in the BIOS. Similar
interface functions can easily be written for
other compilers.

DEF FN.LOCKWORK% (STRING$,FUNC%)
ADDR% = SADD(STRING$)
HIGH% = (ADDR%/l OOh) AND OFFh
IF ADDR% < 0 THEN HIGH% = HIGH% - 1
POKE 4AH,ADDR% AND OFFH
POKE 4BH,HIGI%

CALL «PEEK(2)*lOOh) OR PEEK(l» + FUNC%
FN.LOCKWORK% = PEEK(49H)
RETURN

FEND

DEF FN.LOCK% (STRING$)
FN.LOCK% = FN.LOCKWORK%(STRING$,5DH)
RETURN

FEND
DEF FN. UNLOCK% (STRING$)

Release: l/l /84 26

OMS HlDOS PROGRAMMERS MANUAL 6.0 RECORD LOCKING

FN.UNLOCK% : FN.LOCKWORK%(STRING$,63H)
RETURN

FEND

The following program demonstrates how to
use the record locking functions. First, a file
containing 128 records is created. Several users
can then simultaneously run this program, and
update different records in the file at will.
The program will allow only one user at a time
to update any particular record; however,
several users are allowed to update DIFFERENT
records in the file simultaneously. The lock
functions are on the "LOCKFNS.BAS" file.

The statement "READ #1,R;" is needed after
a write to force CBASIC to flush its I/O buffer
for file number 1. Without this statement, the
record will not be updated on the disk until the
next random read or write to that file. This is
due to a peculiarity in the I/O algorithms used
by CBASIC. Similar problems may be encountered
with other compilers.

%INCLUDE LOCKFNS
FILENAME$: "DEMO.DAT"
INPUT "ENTER 0 TO CREATE, TO

UPDATE DEMO FILE";I
IF I : 0 THEN \

CREATE FILENAME$ RECL 128 AS 1 :\
FOR I : 1 TO 128 :\
PRINT #1;1 :\
NEXT I :\
CLOSE 1

OPEN FILENAME$ RECL 128 AS 1

Release: 1/1/84 27

DMS HIDOS PROGRAMMERS MANUAL 6.0 RECORD LOCKING

1 00 INPUT "RECORD NUMBER"; R
LOCKSTRING$ = "DEMO "+STR$ (R)
WHILE FN.LOCK%(LOCKSTRING$) <> 0

WEND
READ #l,R;I
PRINT "OLD VALUE";I
INPUT "NEW VALUE"; I
PRINT #l,R;I
READ #l,R; REM flush the record
I% = FN.UNLOCK%(LOCKSTRING$)
en TO 100
END

Release: 1/l /84 28

DMS HIDOS PROGRAMMERS MANUAL 6.0 RECORD LOCKING

TDL Z80 CP/M DISK ASSEMBLER VERSION 2.21 PAGE 1

01 00

0000
0005
0009
0000
OOOA

004A

0049

0000

0001

0002

0050

0063

0100
0100
0101
0104
0107
010A

FB
31 0186
CD 0110
CD 013B
C3 0000

Release: 1/1/84

; The following is a z80 assembly program in TDL
;mnanonics. It shows how to canpute the address of and
;use the BIOS netlock/netunlock functions •

• pabs
.phex
.loc 100h

wboot 0
bdos 5
print 9
cr OOh
If OAh

locllddr == 4Ah

loc5tat == 49h

locAccept == 0

locOeny ==

locReject == 2

locOffset = 5rh

unlocOffset == 63h

;address of lock string

;BIOS lock status returned
;as set below

; lock or unlock is accepted

;lock request, string exists

; if lock, then table full or
;lockstring length = 0 or > 13
; if unlock, then string not in
;table or lockstring length = 0
;or > 13.

;Offset fran standard BIOS jllnP
; table (warm boot jllnp) into
;Digital Microsystan's extended
;BIOS jllnP table to the net lock
;call.

;Offset fran standard BIOS jtmp
;table (warm boot jllnp) into
;Digital Microsystem's extended
;BI05 jllnP table to the netunlock
;call.

;==

start:
ei for zdt
lxi sp,stack set up stack
call Lock try to lock
call UnLock try to unlock
jrnp wboot exit via warm boot.

29

DMS HIDOS PROGRAMMERS MANUAL 6.0 RECORD LOCKING

TDL Z80 CP/M DISK ASSEMBLER VERSION 2.21 PAGE 2

010D
010D 2A 0001

0110 11 005D

0113 19

0114 E9

0115
0115 2A 0001

0118 11 0063

0116 19

011C E9

011D
011D 21 0278
0120 22 004A

0123 CD 010D

0126 3A 0049
0129 FEOO
0126 CA 0154

0l2E FEOl
0130 CA 0159

0133 FE02
0135 CA 015E

0138 C3 016D

;---------------------------------------
NetLock:

lhld

lxi

dad

pchl

wboot + 1

D,locOffset

D

; Address of standard
;6100 jWlP table

; Offset into OMS
;extended BIOS j1.ll1p
; table
; HL = address of OMS
; net lock call.

;--------------------------------------
,
NetUnLock:

lhld

lxi

dad

pchl

wboot + 1 ; Address of standard
;BIOS jWlP table

D,unlocOffset ; Offset into OMS
;extended BIOS j1.ll1p
; table

D ; HL = address of OMS
; netunlock call.

;--
,
; Try to lock string 'locString'.

Lock:
lxi H,locString ; Set up address of
shld locAddr ;string to lock.

call NetLock ;Ask master lock str ing

Ida locStat Get returned status
cpi locl\ccept Was lock granted?
jz IkGranted

cpi locDeny , Is lockstring already
jz locked ; in master's table?

cpi locReject ; Was lock rejected?
jz tableFull ; String length bad

lor lock table is full.

jmp lockError , If none of above,
;HiNet error.

Release: 111/84 30

OMS HIOOS PROGRAMMERS MANUAL 6.0 RECORD LOCKING

TDL Z80 CP/M DISK ASSEMBLER VERSION 2.21 PAGE 3

0138
0138
Ol3E

0141

0144
0147
0149

014C
014E

0151

0154
0154
0157

0159
0159
015C

015E
015E
0161

0163
0163
0166

0168
0168
0168

016D
0160

0170
0170

21 0278
22 004A

CD 0115

]A 0049
FEOO
CA 0163

FE02
CA 0168

C3 016D

11 0186
1817

11 0196
1812

11 018F
180D

11 0205
1808

11 0217
1803

11 0269

OE09

; ------------------------------------~,----
,
; Try to unlock string 'locString'.

UnLock:
lxi
shld

call

Ida
cpi
jz

cpi
jz

jmp

H,locString
locAddr

NetUnLock

locStat
locAccept
unLkGranted

lOCReject
notLocked

lockError

; Set up address of
; str ing to lock.

; Ask master to unlock
; locString

, Get returne:l status
; Was unlock granted?

; Was unlock rejected?
; String length bad
; or ~ocStr ing not in
; table, i.e. loc:String
; is not locked.

, If none of above,
;HiNet error.

;--

IkGranted:
lxi
jmpr

locked:
lxi
jmpr

tableFull:
lxi
jmpr

unLkGranted:
lxi
jmpr

notLocked:
lxi
jmpr

lockError:
lxi

PrintMsg:
mvi

D,locOkMsg
PrintMsg

O,lockdMsg
PrintMsg

0, full TableMsg
PrintMsg

O,unLkOkMsg
PrintMsg

D,notInTable
PrintMsg

D,netErrMsg

C,print

Release: 1/1/84 31

OMS HIOOS PROGRAMMERS MANUAL 6.0 ROCORD LOCKING

TOC Z80 CP/M DISK ASSEMILER VERSION 2.21

0172
0175

0176
017E
0186

0186

0196

01 AD

01BF
0103
01B::
0202

0205

0217
0234
0250
0266

0269

0278
0279

CD 0005
C9

767676767676
767676767676

stack:

eall
ret

.byte

.byte

4C6F636B2067 locOkMsg:

4C6F636B2064 lockdMsg:

616C72656164

4C6F636B2064 fullTableMsg:
6C6F636B7374
206F72206261
000A24

556E6C6F636B unlkOkMsg:

556E6C6F636B notInTable:
20696E206061
206F72206261
ODOA24

48694E657420 netErrMsg:

00 locString:
4F7572444261

.end

+++++ SYltlOL TABLE +++++

BOOS 0005
LKGRAN 0154
LOCK 0110
LOCOFF 0050
LOCSTR 0278
NOTINT 0217
STACK 0186
UNLI«lK 0205

CR 0000
LClCAO: 0000
LOCI<I»1 0196
LOCOI<H 01 86
NETERR 0269
NOTLOC 0168
START 0100
UNLOCK 0138

PAGE 4

bdos

76h, 76h, 16h, 76h, 76h, 76h, 76h, 76h
76h,76h,76h,76h,76h,76h,76h,76h

.ascii 'Lock granted.' [er] [If]'$'

.ascii 'Lock denied, locString ,

.ascii 'already locked.' [er] [If]'$'

• ascii 'Lock denied, master '
.ascii 'lockstring table is full,'
• ascii ' or bad string length.'
• ascii [er] [1£]'$'

.ascii 'Unlock granted.'[er][lf]'$'

.ascii 'Unlock failure, locString not'

.ascii ' in master lockstring table,'

.ascii • or bad string length.'

.ascii [er] [1£]'$'

.ascii 'HiNet error.' [er] [If] '$'

.byte 13

.ascii 'OurOOase12345'

FULLTA 01BF
LOCAlD 004A
LOCKED 0159
LOCREJ 0002
NETLOC 0100
PRINT 0009
TABLEF 01 5E
UNLOCXl 0063

LF ooOA
LOCDEN 0001
LOCKER 0160
LOCS'l'A 0049
NETUNL 0115
PRIN'lM 01 70
UNLKGR 0163
N!OOI' 0000

.BLNK. 0000:03 X .!li'.'l'A. 0000* X .PROG. 0000' x

Release: 1/1 /84 32

DMS HlDOS PROGRAMMERS MANUAL 6.0 RECORD LOCKING

6.5 NETWORK BUFFER USAGE

The HiNet BIOS normally provides a lk
network buffer to enhance system performance.
However, for some programs such as multi-user
data bases, data must not be buffera:l or
obsolete data may mistakenly be taken as
current.

In the past, programs that had to ensure
that all data was current would first read
(unwanted) data into the lk buffer so that the
read of desira:l data would come across the
network and not from the lk buffer. This is
neither elegant or efficient. Starting with the
HiNet BIOS version 247 there is a DMS-specific
BIOS jump vector (SetNetMode) that allows a
transient (i.e., user) program to select the
network buffer usage mode. The three buffer
modes are:

0) Always use the lk network buffer. This
is the default mode; it is automati­
cally selected after a cold or warm
boot.

1) Do not use the buffer contents on the
next NetRead request - force a network
transmission to ensure current data.
This will replace the 1k network buffer
contents; all subsequent NetReads will
use the buffer contents.

2) Do not use the buffer contents until a
cold or warm boot or until the program
changes the network buffer usage mode.

Release: 1/1 /84 33

OMS HIooS PROGRAMMERS MANUAL 6.0 REl:ORD IDCKING

The SetNetMode jump vector is available in
both the network Master and the network Stations
but will result in a Call Error on a stand-alone
system. Since the network Master never has the
1k network buffer, the SetNetMode jump vector
will do nothing - it is there simply so that
networking programs do not have to check to see
if they are running on a Master or Station.

To call the SetNetMode vector perform the
following steps:

1) Load locations 0001 and 0002. This is
the address of the warm boot vector.

2) Add the offset of the OMS-specific jump
table to the offset of the network
function that is to be accessed and
move the value into register DE.

3) Add the value of register DE to the
contents of register HL.

4) Load register C with the desired mode:

o =) always use the network buffer

1 =) don't use the network buffer the
next time only

2 =) never use the network buffer

5) Execute the code at the address
obtained in step 2.

Release: , /1 /84 34

DMS HIDOS PROGRAMMERS MANUAL 6.0 RECORD LOCKING

. ,

The previous NetMode value is returned in
register A in case you wish to restore the
NetMode to its previous state.

Reproduced below is a tested assembly
program fragment that sets the NetBufMode to
Buffer Mode 1, "Do not use the 1 k buffer for the
next Net Read only" •

• ident netjmp
.pabs
.phex
.loc 100h

This prograII\ tests code which is to be included
in the HiDos programmer's guide •

BiosVector -­
Il'1Soffset -­
Netmodedisp ==
NotNextTime ==

Olh
(5Dh-3)
(15*3)
01

;CP/M W B jump address
;First jump in OMS table
; # of jumps to SetNetMode
;Direct read next time

. ,

lhld
lxi

dad
mvi
p:::hl

• END

BiosVector ;CPM warm boot
D,OMSoffset+Netmodedisp

;# of bytes to SetNetMode
D ;HL = addr of code in bios
C,NotNextTime ;direct read next time

;execute it, return to
;calling routine

At system assembly time, the choice may be
made to not include the lk network buffer in the
system at all; this will automatically ensure
that all Net Read requests get current data from

Release: 1/1 /84 35

OMS HlDOS PROGRAMMERS MANUAL 6.0 RECORD LOCKING

the network. This generally provides poorer
performance than when using the network buffer
in conjunction with the SetNetMode vector. The
distribution versions of the HiNet bios all use
the network buffer for the stations. If the
HiNet BIOS is assembled without the network
buffer then the SetNetMode vector is still
present but does nothing.

Release: 1/1/84 36

DMS-HlOOS PROGRAMMERS MANUAL

INDEX

Alloc Flag, 1 2
Allocation Vector, 2

Chang ing, 12
location, 12
Shared Partitions, 3

BOOS Functions
Modify Directory, 12

BDOS Lockstrings, 12
BIOS Calls

Shared Partitions, 8
Warnings, 8

BIOS Jump Vector
SetNetMode, 33

Checksum
HI DOS , 13

Checksum Vector, 2
COMPRESS, 1 3
COMPRESS utility, 14
Directory High Water Mark, 13
Disk Parameter Block, 2
DPB Sizes, 2
Drives

Write Security, 2
Extending Files, 17
File COntrol Block, 4
HlOOS

Checksum, 13
HlOOS High Wate£ Mark, 13
HlDOS Mechanics, 11
High Water Mark

Updating, 13
Lockstrings

BDOS, 11

Release: 1/1/84 1-1

DMS-H1OOS PROGRAMMERS MANUAL

Modifications to CP/M 2.2, 11
Network Buffer, 33

Modes, 33
Record Locking

procedure, 1 7
Record Sizes

Calculating, 18
CP,/l1, 18
Logical, 18
Physical, 18

Record/File Locking, 12
Shared Partition Flag, 12
SHRALLOC, 13, 1 4
Warm Boot

H1OOS, 13

Release: 1/l /84 1-2

