
Technical. Training

STUDENT TEXT

E'3ABR30534E 000'
KDA3032

ELECTRONIC COMPUTER AND SWITCHING SYSTEMS SPECIALIST

Cql1PUTER UNITS AND COM-TRAN1.0.

JUNE 1981

USAF TECIINICA~ TRAINING ·SCHOOL
3,390th Technical Training, Group

. Keesler AirF orce Base,Missis~ippi

-------........ --~ .. '" Designed Fo~ATC CO:l1rse Use --~~I~ .. ~--------
Kl~cnl.cr 1-335t.

DO NOT USE ON THE J08

CON TEN T S

TITLE

Ghapter I - Computer Units and Programming ••••••••••••••••••••••••••••••.•.•.••••••
Computer Units and Data Flow ••••••••••.•••••••.••••.••••••••..••••••••••••••••

Data Flow ••.•••.••••••••••••.••••••••••...••••••••.•••••••••••••••••••••..
Data Flow Summary

Review Questions 1-1 ••.••••••••••••••••••••••••••••••••.•••.•••••••••••••••.••
Memory Units •..••••••.•••••••.••••••••••••.••••••••••••••••.•••••.•••..... , ..••

Mode of Access ••••••••..•••••••.••••••••• ; •••••••.••••••••...••.••••...•• -t"
Access Time ••••••••.••••••••••••••.••.••••.•••..••••••• ' •••••••••••••••••••
Capacity •••••..•••••••••••••••..••.•••••••.•••.••.•••••••••••••••••••• ' •..•
Permanence ••.•••..•••••••••.••••••••••.••.•••••••••••••••••.•••••.•...•••.
Volatility ••••.••••••••••••••..••••••••....••.•••...••••.•••.••••••••••••.

Storage Devices •••••••••••••••••••.•••.•••••••••••••.••.•.••••••••.•••••••••••
Magnetic Storage Sys terns •••••.••••••••••.•••••••••.•••..••••••••.•••••.•••••••

Hysteresis Loop ••..•••..••••.•••••.•••••••••..•••.••••.•....•..••.•••••.•.
F err i te Core Memory ••••••...•••••..•••••••••••••.••••..••.•..••.••••••••••
Magnetic Drum Memory •••.••••••••••••.••••••••••••...•.•.••••••..••.•.•.•.•
Magnetic Tape Memory •.•••.•••••••••••••.•••.••••.•••..•.•...•........•..•.

Review Questions 1-2 •••••••••.•.•••.•••••.••.••••••..••••..... ~ ••...••••••••.•
Terminal ,Equipment ••.•••.••••..•.•.•••.• ' .••••.•••••.•••••.•....••....•••.•••••

Card Reader ..•.•••.••••.•••••.••.• ~ •.•.•••.••••.....•••.•.•••..•••••••••.•
Card Punch ••••••••.••.••.•••..••.•••.••••.•••.••••••••••....•••..•••.••••.
Line Printer •.•.•.•••••••...•••..••••.••••.••••••.•••.••••.•••.••••.•••.••
Tape Drive Unit ••••..•.••.•...•..•..••.•.••••••••..•••••.••••.••••••.•••.•
F1exowriter .. ; •.•••••
Display Equipment ••.•••••••.•••.••.•••••••••••••••••••.••••••••••••••••..•

Review Questions 1-3 •••••••••••••.•••••••••.•..••••..•.••.•••..••••••..••...••
Computer Operation and Familiarization ••••••.•.••••..•••••••••..•••..•••.•.•••
Individualism of the COM-TRAN TEN Computer System •.•••... ' .•......••.•......••.
Operating the Computer •••••••••••••••• : ..•.••.•.••...••• , ••.•..••••••.••..•....

Controls and Switches ••..•••....•..•••••••••.•••••••••.••••••••••••••••• ' ••
Computer Registers and Display Panel •.•••••••••••••••..•.•••.•••.•••••. ' •••
Hexadecimal Review ••.••.•....••.•...•••.•••....••..••••..••••..••••.•.•••.
Manual Input' Procedure ...••..•••....•••.••••.•...••.•••..•.••••••••.•.•• ,"
Manual Output Procedure •.••••..••••..••....••••..••....•••••••••••••••••••

Review Ques tions 1-4 .•.•••••••••••.•••••••••••.••••••••••••••••••..•.•••••••••
Progrannning ••••..••••••• ' •••.•••••..•••••••••••.••••.••.•••••.••••....•.••••••.

Type of Instruction •••••••••.••...•••••.••••...•••.••..•••••.••••••.••••••
Ins truc tion Repertoire •.••••••••••••••.••••...•••.•.•..••.•••••••.•••.••••
Instruction Format •••••.•••.••••••••••••.•.••••••.•••••....•.....•.•••... ,
Addressing Upper Memory .••••.•.•••..•••...•••••. , •••••..•••••.•••••..•.••.
Indexing .•.••..•••••••••••.••••••••••...•••..••. ; •...••.••••.•••..••••••••
Number Representation ••••••••.•••.•••••.•••••••••.•••••••••••..•••••...••.
Instructions •.....•••...•••••.•.•..••••..••••.•.•...•.••.••••.••.•.•••••••

Review Questions 1-5 •..••..•..•.•••••••••••••••.•••••••••••.••••.•••.••.•.•••.
Review Questions 1-6 •••.....••.....••••••..•••••.••••.•••••.•••••.•.•••••...••
Review Questions 1-7 •••.•.•••..•••.•••••..•.•••••••••.•.•••••.••••....•....••.
Review Questions 1-8 •••••••••...•••...•.•••••••.•••••••••••••••.••..•••••.•••.
Review Ques tions 1-9 ..•••••••••.••.••.••••••••..•••..•••••••••.•.•••••••.••••.
Procedures for Writing Programs ••••.••..•••••••.•.•••.••••••.••••...•••.•..••.
Programming Problem ••••••••••..••.•••••••••••.•.••.•.•••••••••••••••••••••••••
Alphabetical Sunnnary of Instructions ••••••..•••.•.••••.•..••••.•.•..•••...•.••
Numerical Sunnnary of Instructions ••••••.••••••.••••.••••••••••••••••••..••••••
Computer Terms Glossary •.•.•••••..••••.••.••.••.•••••.••.•••.•.••••.•.•..•.•••

Supersedes KDA-3032, June 1977

i

PAGE

1
1
2
3
3
4
5
5
6
6
6
7
7
7
9

22
25
28
28,
29
30
30
32
34
34
40
41
43
45
45
49
52
58
60
62
64
65
65
72
72
72
73
73
80
85
89
94

101
104
107
109
110
112:

Chapter II - Computer Units Logic Analysis •.•••.••••••••••••••••••••••••••••••••••
Special Components ••

Phantom OR-Gate •••.•••
NOR-Gate Latch ••••••••••••••••••••••. ·0 ••••••••••••••••••••••••••••••••••••

D-Type Flip-Flop; •••••••••••••••••••••••••• " ••.•••••••••••••••••••••••••••
Single Shot (SN74l2l) ••••••••••••••••••••••••.•••••••••••••••••••••.••••••
Positive AND-Driver· •••••••••••••••••••••••••••••.•••••••••••••••••••••••••

Special Component Sutmnary •••••••••••••••••••••••••••••.••••••••••••.••••..••••
Review Ques tions 2-1 ..••••.•• , •.•••••••.•••••••••••.•.•••••••..•••••••••••••••
Compu ter Uni ts ••••••••••••••••••••••••••• ' •••••• '.' ••••••••••••••••••••••.••••••

Key to Logic Diagrams •••..••••••.••••••••••••••.•..•••••••.••••••••• ; •••••
Review Ques tions 2- 2 .•.••.•.••••••••.•••••••••••••••.••••••••••••••••••.••.•••

Clock .••••••••••••••.••..••.••••..••.•••••••••.•.••••••••••••.••••••••.•.•••
Review Questions 2-3 ••••••.•••••••••••••••••••••••• " .••••••••••.•••••••••••.•••

D-Register ••.••••••••••• , •••• , •••••••••••• " ., .• , ••••• , ••.•• " •••••• , , •• , •
Review Questions 2-4 ••••••• ,., ••••••• , •••••• ,., ••• , •• "." •.• ,., ••••• , •. , •••.•

Input Register ••••••••••••••••••..••••••••••••••••••..•••••..•••..•••••.••
Review Questions 2-5 ••••••••••••••.••••.••••••••••• ; •••••••••••••••••••• A •••• .­

B-Regis ter ••.•••..••• ' .•••.••.•.•.•••
Review Questions 2-6 •••.•••.••.•••••••••••••••••••. ' ••••.••.•• ' ••.••••..••••••••

Memory Module. ~' ••• '.' .••.•.••••••••••••••••••••••• ': •.••••••••••••••••••••..
Review Ques tions 2~ 7 •••.••..••••••.••••.••••.•••••••••••••••••••••••••••.....•

M-Regis ter •••••.•••••••••••••••.•. " ••.••••.•••••••••••••••••..•••..•••••.
Review Questions 2-8 •••••••••••.••••••••••••••••••••••••••••••••••.•.•••••••••

X-Register ••••••••••••••••••••.••••••••••••••••••.•••••••••.••••••••••..••
Review Questions 2-9 .••••••••••••••••••••••••••• ; ••••••••••••••••••••••••••• ,.

P-Register •••••••••••••••••••••••••••••••••••.•.••• , .••.•••.•••••.••••. 0 •••••

Review Ques tions2-l0 •••••••••••••••••••••••••••••• 0 ••••••• 0 •••••••• 0 •••••••••

A-Register (Accumulator) , ••••••••• 0 •••••••••••••••••••••••••

Review Ques tions 2-11 •••••••••••••••••••••••••••.•••••••••••••••••.•••••••••.•
ALU Module •••••••••.•••• 0 • ~ ••••••• 0· ••• ; •••••••••••••••••••••••••••••••••••

Review Ques tions 2-12 •••• 0 ••••••••••••••••••••••••• " ••••••••••••••••••••••••••

Q-Register •••••••••••••••••••• , •••••••••.••.•.•.••••••••••.•••••.•••••...•••
Review Ques tions 2-13 •••••••••••••••••.•••••••••••••••••••..••••••.•. ' .•••••••••

C-Regis ter •. ' •••••••.•••.••.•••••••••••••••••••.••••••••••••••• ~ ••••••••••..
Review Questions 2-14 •..••••.••••••••• , ••••••••••••••••.••••.•••••••••••••••••

S-Register ••.•••••••••••••.••••••••••.•••••••••••••••• 0 •••••••••••••••••••

Review Ques tions 2-15., •••••••••• ~ .. .
Program Instruction Logic Analysis •••••••••.•••••••••••••••.•••••••..•..••••••

Logic Timing Supplement •.•.•••..•••..••.•••••••.•.•••.•••••.•••••••••••••..
Acquisition Phase and DPA Pulses ••••• ~ •••••••.• : •••.•..•••.•.•.•••..••..••••

Review Questions 2-16 •••••••••• , ••••••••••••••. ,: •••••••.• ; •• : ••••.•••••....•••••
Execution Phase ••.•••••••••.••••••••••••.•• ' ••••••••••••••••.•••••• ' •••••••••

Review Ques tions 2-17 ••••••••••••••••• · •••••••••••••••••••••• ; ••••.••••• ; ••••••

Chapter III -. Computer System Maintenance ... ' ••.••• ' •..••••••••••••• , .•.•••.••••••• '.'
Computer Diagnos tic Programs ••••••••••••••••••••.••••.•••••••.•••••••••••••..•

Purpose of Diagnostic Programs .. .
Basic Requirements ••••••••••••••••••••••••••.••••••••••.••...••••••••.••••

Review Ques tions 3-1 •••••••••.•••••••••••••.••••••••••••• · •••• , ••••.••••..••••••.
Computer System TroubleshQoting •••••••• ;

Troublesnooting Techniques ••••••••••••••••••.••••••••• , ' .• , ••.•••••••..•••.
Troubleshooting Example One ••••• · •••• , ••••••••••.•••••••••.••••••••••••••••

Review Questions 3~2 ••.• ' ••••••...•.•• , ••
Troubleshooting Example Two .•• o· ••••••••••• , •••• , , • , ••• , , , • , •.••• ,,' •••••• , ••

ii

PAGE

125
125
125
126
128
129
130
l32
134
137
137
138
138
144
144
148
148
150
150
152
153
154
155
158
158
160
160
162
162
164
164
166
166
167
168
170
170
172
172
173
173
176
178
226

230
230

230\ 232
233
235
235

237\ 249
252

PAGE

Review Questions 3-3.. 264
Chapter Review.. 266
Signal Name Glossary.. 269

iii

CHAPTER 1

COMPUTER UNITS AND PROGRAMMING

In past blocks you learned numbering systems and computer circuits. These are all
put together to look at the computer as a whole. You will not be separating the com­
puter into the circuits, but into functional parts. You will learn how to operate the
COM-TRAN TEN trainer and how to make the computer do what you want. You will learn to
program the COM-TRAN TEN. A computer can only do what it is told. Now start with the
basic computer block diagram.

COMPUTER UNITS AND DATA FLOW

Figure 1-1 is a block diagram of a basic computer. It is made up of 5 blocks. Each
block has a distinct function. All digital computers are made of these five basic
blocks. Different computers can use different combinations of computer circuits to do
each 'of. these five functions. Refer to figure 1-1.

• INPUT - The Input Unit of a computer accepts information in various forms and con­
verts it to a form which can be used by other units of the computer.

• OUTPUT - The Output Unit accepts information from the computer and sends it to' the
output devices. These outputs can be in a form readable by man or in a form for
the computer to use later.

• MEMORY - The Memory Unit stores information until it is needed by the computer.
Memory locations are addressed so the machine can find the right information when
it needs it, much like you would use a house address to find the right house. The
most commonly used memory is magnetic core. It is a fast memory and will retain­
any information that it has in case of a power failure.

INPUT DEVICES

--. INPUT

der
Reader

Card Reader
Teletypewriter
Paper Tape Rea
Magnetic Tape
Magnetic Drum
Display Input
Optical Reader

Keyboards

Disk

OUTPUT DEVICES

Card Punch
Line Printer
Teletypewri ter
Paper Punch
Magnetic Tape
Magnetic Drum
CRT Displays
Plotter
Disk

.-,... OUTPUT

Figure 1-1

1

MEMORY I--

CONTROL

..
ARITHMETIC

,RDA26':"418

• ARITHMETIC - Arithmetic Unit performs all arithmetic and logical operations.
Arithmetic units usually do nothing more than add and shift. To multiply, it does
a series of adds and shifts •

• CONTROL - The Control Unit generates all the signals at the proper time tO'do what
needs to be done. It controls all the other computer units.

Data Flow

Before tracing the flow of data among'the five units of a computer, it is necessary,
to understand the definition of the following terms:

1. Computer Word

2. Machine Cycle

3. Program Time

r(&S',
4. Operate Time

- A group of binary bits, handled by the computer as a single
unit. Commonly referred to as the content of a memory

.--±eea·t;i.-On-,

- The length of time which is required to acquire an instruc­
tion from memory, decode the instruction and execute it. '

- (Acquisition Time) The portion of a machine cycle when the
instruction is read from memory, de~oded, and prepared for
execution.

- (Execution Time) The portion of a machine cycle when the
instruction is actually performed.

5. Instruction Word - A computer word having two partw; instruction code (Op-Code)
and data address (Operand). The Op-Code tells the machine
what to do and the Operand tells, the machine where and with
what data to do i.t.

6. Data Word

7. Program

- A computer word containing information or arithmetic value to
be used in computations.

- A series of instruction words in logical order to solve a
given problem.

With an understanding of these terms we can now discuss computer operation and data
flow. Computer words, both instructiori words and data words, are entered into the com­
puter's Input unit by some external device. The Input unit puts these words into
binary or some other' numbering system format that is recognizable by the computer. The
Input unit then transfers these computer words to the Memory unit for storage. The
instruction words would be stored in logical order to form a program that would 'control
the operations to be performed.

The Memory unit, now containing all instructions and data, can be used to output
arithmetic and logical operations to the Arithmetic unit and receive the results of
those operations from the Arithmetic unit. Those results can then be sent to the Output
unit where they are put into a, format recognized by the external output device.

Of course, all operations of the machine and the sequence of all data transfers are
controlled by the Control unit. The instruction words are transferred to the Control
unit from the Memory. unit. The Control unit decodes these instructions into commands.
The Control unit, operating under a timed sequence, causes a series of events to execute
any command that it decodes.

2

Data Flow Summary

Information comes into the computer through the Input unit. This Input is controlled
by the Control unit. The information is put into Memory. The Control unit works with
the Memory unit and the Arithmetic unit to solve whatever problem you have told it to do.
When the computer gets the answer, it will put it in Memory. Then, the Control unit will
control the output of the answer through the Output unit. All of this is controlled by
you up to a point. You tell the computer where to get information and what to do with
it. You will learn how to do this later in the block.

REVIEW QUESTIONS 1-1

BASIC DIGITAL COMPUTER BLOCK DIAGRAM

Objective

Given a block diagram of a basic computer and a list of units and functions, label
the units, match the functions to the units and trace data flow between the units.

A

D

RDA26-419

Figure 1-2

1. Analyze the basic computer block diagram (figure 1-2) and- list the name of each
unit to correspond with the label in the appropriate block.

a. b.

c. d.

e.

2. Using the following list, match the basic computer unit with its applicable
functional descriptions.

a. Input b. Output c. Memory

d. Control e. Arithmetic

______ Stores information until it is needed.

______ Performs all arithmetic operations.

______ Accepts information in various forms and converts it to
a form used by the computer.

3

Generates signals needed to do the work.

_______ Performs logical operations.

_______ Accepts information from the computer and sends
it to an output device.

______ Works with all other parts of the computer.

3. Draw all the necessary lines to properly connect the units below.

Arithmetic

4. Give the function of each of the following:
RDA26-420

Input-

Output-

Control-

Arithmetic-

Memory-

MEMORY UNITS

The difference between a memory unit and a memory (or storage) device is an impor­
tant distinction. Any device which is capable of holding binary information for a period
of time may be correctly called a storage device. A memory unit, on the other hand, is
a complete unit composed of many storage devices and the associated circuitry which con­
trols and operates the unit. A memory unit may be used as the memory element (central
memory) of a computer system or as an auxiliary storage unit for either the input ele­
ment or output element (or both elements). The most common memory devices used are
magnetic cores, magnetic tapes, magnetic disk, magnetic drum, punched cards, and punched
tape.

Only the central memory is used for all operations going on inside the computer. If
additional data, or even a specialized program, is required, then access is made to large
blocks of data in an auxiliary memory are transferred to main memory in a single opera­
tion. If main memory fills up its available storage space with intermediate results or
output data, then a large block of data may be sent to auxiliary memory from the main
memory. Such transfers between the central memory and an auxiliary memory are called
I/O operations.

I/O operations are started by the computer through program contrul. After starting
the transfer operation, some computers continue with their original task while the I/O
operation continues. I/O transfers may be from the input element to the memory element,

4

from the memory element to the output element. or from the central memory to an auxiliary
memory which serves both the input and ootpot elements.

To understand the reasons why some storage units are used as central memory and other
storage units are used as auxiliary. you must be able to define and use the following
terms as they apply to memories: mode of access. access time. capacity. permanence.
volatility. and computer word.

Mode of Access

Any memory unit that stores more than one item of information must have some system
to identify and select a particular item for use by some other part of the computer.
Normally. each separate item of data is stored in a separate "location" in the memory
unit. and each location has a specific address. It is common prac.tice to number storage
locations serially in octal notation. The method used to gain access to a specific loca­
tion in a storage unit (central or auxiliary) is referred to as ';mode of access." There
are two major modes of access: random and sequential.

RANDOM ACCESS. A random access memory system is one in which any location in the
storage unit is equally easy to use; it takes the same amount of time to address any
specific location in memory and use the data stored there. Any addressing scheme which
is independent of previous addresses or that can address locations out of sequence is
usually a random access system. Random access memories provide fast access to any par­
ticular item of information stored in them. and they normally have a fixed access time.

SEQUENTIAL ACCESS. A sequential access memory system is one in which access to
memory locations occurs in series. The system must check all addresses between the
present memory location and the desired location before the desired location can be used.
In a sequential address system. the access time will vary depending on how many loca­
tions must be "passed through" before the needed location is found. Sequential access
memories are further broken down into two groups: cyclic and progressive.

Sequential Cyclic. The sequential cyclic mode is a mode of access in which each
lOCation occurs in series and is available at a given fixed interval. Sequential cyclic
memories normally have some rotating storage device so that the sequence of addresses
and time until the needed location reappears is permanent.

Sequential Progressive. The sequential progressive mode is a mode of access in which
each location occurs in series. but the system may move from location to location by the
shortest route. A sequential progressive system does not move constantly in one direc­
tion as does the sequential cyclic mode; rather. it may "search" in either direction to
locate the desired memory location. The time required to find a given address in a
sequential progressive system varies depending on the distance from the starting point
to .the needed address.

Access Time
'gCAt

Access time is measured from the time information is requested to the time that
information becomes available. It is the time which determines the speed of the memory
system. In most applicatio~s. it is desirable to have as short an access time as pos­
sible. The central memory of a computer will always have a short access time; however.
any auxiliary memories used in the system may have a relatively longer access time if
they provide some other desirable feature.

In random access memory systems. the access time will be the same no matter what
address (location) is-selected. Sequential access system. however. will have different
access times for each piece of information requested. 'In sequential access systems the

5

access time is given in maximum, minimum, and average times. For example, in a sequen­
tial cyclic mode, if the desired' location is close to the starting point, the access time
will be very short; if the desired location was passed just before the request was made,
then the system must wait almost a complete cycle before the information"is available.
The average access time for a sequential system is the mean time between the-minimum
and maximum access times.

Capacity

The capacity of storage may be given in terms of binary bits, characters, or com­
puter words that can be stored. Storage devices of small capacity, such as flip-flop
registers, are usually rated according to their bit capacity. When describing the
storage capacity of large devices, such as magnetic tapes or drums, the "word" capacity
rather than "bit" capacity is usually given. In such cases the number of bits in a word
must be stated if a useful comparison is to be made between different storage units.

Access time and capacity are the two most important characteristics of any memory
system. They are determined by the type of storage device used. No one memory unit, in
current production, combines the desired capability of large capacity and short access
time. In fact, it will be found that most large capacity storage units have a long access
time; most low capacity units have a fast access time. Therefore, a combination of stor­
age units is usually used in a computer system.

Permanence

Permanence is the characteristic which determines whether the data in a memory unit
may be erased. A magnetic memory is erasable since any selected "word" can be changed
or altered without physically changing the memory unit or any of its parts. Some
storage devices, however, are not erasable; that is, the stored data cannot be changed
without physically replacing the storage device. For example, to alter the information
stored in punched cards, new cards must be punched and used as replacements for the old
cards.

Volatility

If information is lost when power is removed from a storage unit, the memory system
is said to be volatile. A flip-flop register is volatile; a punch card "deck" is non­
volatile. If a computer system uses a volatile storage system, positive steps must be
taken to preserve the stored information if it is not available elsewhere in .the system.
Therefore, valuable information is normally stored in a non-volatile unit and put into
volatile storage only when it is to be operated on. In this way, critical data is pre­
served in the event there is .a power fault. Ferrite cores are non-volatile.

Since both data (information) words and instruction words are stored in memory and
are not distinguishable in form from one another, some means is needed to separate
instructions 'from data.'- This can be done by restricting instructions (the program) to
the area of memory or by allowing access to memory on 'a time-sharing basis. In a time­
sharing system, memory words accessed by specific timing pulses are automatically assumed
to be instructions. The time in which an instruction is transferred to the control
element from memory' is called the acquisition time. Acquisition time is then followed
immediately by execution time in which the instruction is obeyed. If a memory word is
accessed during execution time, it is automatically assumed to be data. A sequence of
acquisition-execution time is called a machine cycle.

6

COMPUTER STORAGE DEVICES

DEVICE ACCESS ACCESS
NAME CAPACITY MODE TIME PERMANENCE VOLATILE? FUNCTION

FERRITE 8 to lOOK RANDOM l; to 10 ERASABLI\ NO High Speed internal
CORES WORDS microseconds Central Memory

MAGNETIC 20 to 2,OOOK SEQUENTIAL 10 to 100 ERASABLE NO Medium Speed
ORUMS WORDS CYCLIC microseconds Buffer or Bulk Storage

MAGNETIC 20 to 20, OOOK SEQUENTIAL 10 to 1, 000 ERASABLE NO Medium Speed External
DISCS WORDS microseconds Input/Output Operations

MAGNETIC 20 to 20, aOOK SEQUENTIAL 1 to 100 ERASABLE NO S low Speed External
TAPES WORDS PROGRESSIVE Seconds Input/Output Operations

THIN 1 to 256 RANDOM .1 to .5 ERASABLE NO Very Higb Speed inte.rnal
FILM IIORDS microseconds Scratch-Pad Memory

DELAY 5 to 10K SEQUENTIAL 1 to 1,000 ERASABLE YES Medium Speed internal
LINES IIORDS CYCLIC microseconds Temporary Storage (Display)

ELEGTRO- 5 to SDK RANDOM 1 to 20 ERASABLE YES High Speed internal
STATIC WORDS microseconds Central Memory or Buffer

I---CRT
Slow Speed external PUNCHED 80 to 90 SEQUENTIAL 50 to 150 PERMANENT NO

CARDS \ WORDS/CARD PROGRESSIVE microseconds Bulk Storage or I/O

PUNCHED 1 to l,OOOK SEQUENTIAL 10 to 150 PERMANENT NO Slow Speed external
TAPE WORDS PROGRESS IVE milliseconds Bulk Storage or I/O

SEMI- 1 to 4,096 RANDOM .01 to .5 ERASABLE Some Very High Speed internal
CONDUCTOR WORDS microseconds Types Central Memory or Scratch

RDA26-421

Figure 1-3. Storage Device Characteristics

STORAGE DEVICES

There are many storage devices available for use in computer systems. Some hElVe
been popular in the past and are now almost forgotten; others have been--and will con­
tinue to be--used in almost every computer system made. Some new storage devices have
been invented but have not yet found theic way into operational computer systems.
Figure 1-3 provides information on the characteristics of many of the storage devices
used in USAF computer systems.

MAGNETIC STORAGE SYSTEHS

Ferromagnetic materials make many excellent binary storage devices for use in com­
puters. The "polarity" (N-S direction) of a magnetic field can represent a one or zero.
This fact, coupled with the close relationship between electric current and magnetism,
is the reason ferromagnetic materials are used so often as compute~storage devices. In
fact, magnetic storage systems are the most common way of storing large amounts of com­
puter data.

Magnetic storage systems may use tiny cores (doughnuts) of magnetic material, long
strips (tapes) of magnetic material, rotating drums coated with magnetic materials, or
rotating discs coated with magnetic materials. In many cases, the actual area needed
to store one binary bit is as small as the head of a pin. This means that quite a lot of
information can be stored in a small area. For example: a 5-i~ch cube of magnetic cores
can store 150,000 bits of computer data; a standard 2,400-foot reel of 1/2 inch wide
computer tape can hold over 2 million bits of computer data.

Hysteresis Loop

All magnetic storage systems utilize a physical phenomenon known as residual mag­
netism. Resi~ual magnetism means that a piece of ferromagnetic material will keep a giver
"polarity" after the magnetizing force is removed; ferromagnetic materials will store a

7

bit of binary data as a magnetic field. This phenomenon can be shown on a graph of
magnetic flux density (B) versus magnetizing force (H). This graph is called a B-H
curve and, for ferromagnetic materials, becomes a hysteresis loop. A thorough and com­
plete understanding of the hysteresis loop, or curve, will help you to maintain ferrite
core memories, tape storage units, magnetic drums, and magnetic discs. In addition,
knowledge of the hysteresis loop will assist your career progression when you are faced
with SKTs. (Skill Knowledge Tests).

Figure 1-4 plots the values of flux density (strength and direction of magnetiza­
tion) "B" versus magnetizing force "H" applied to a magnetic material. We can start our
examination of the curve by locating point "X" in the center of the loop. This point
represents the material in a neutral or unmagnetized condition. If a magnetizing force
with a value of +Hm is then applied to the material, its flux density and direction will
be forced to point +Bm. Fortunately, with most magnetic materials, any increase in the
magnetizing force above +Hm will not increase the flux density above +Bm. When the
material is at point +Bm, it is said to be saturated; its flux density in one direction
is maximum and cannot increase. This fact will cause the hysteresis curve to become a
loop. If the magnetizing force (+Hm) is now removed, the flux density of the material
will drop only slightly to point +Br (residual magnetism). This slight drop, instead of
the large drop common to most metals, is due to the high retentivity of ferromagnetic
materials. Point +Br now represents a stable flux density and direction that can be
called a binary one or zero, according to its application.

/

J'
I ,,-

MAGNETIZING , (u.,-("./: tjT
W(ITe..

FORCE .ef.- 0 xiJWt'I1l.. /-;.
-Hm'---+-----~----+_--~Hm •. I"__: -J::-OI(CC'

nj1V{! .' <r--

RDA26-416

Figure 1-4. Hysteresis Loop

If we now desire to store the opposite binary number in the magnetic material, it is
necessary to apply a magnetizing force of -Hm (equal in magnitude to +Hm but opposite in
direction). The application of force -Hm will cause the flux density to swiftly de9Tease
to zero and then move on to a maximum negative value, point -Bm. Again, if a force
greater than -Hm is applied, the flux density cannot become greater than -Bm. The
material has now become saturated with a magnetic flux density equal to +Bm but in the
opposite direction. Once the force has been removed, the material will stabilize with

8

its residual magnetism at point -Br. If point +Br was assigned to a value of binary one,
then point -Br would be a binary zero.

The application of a force of +Hm to the magnetic material at the -Br point will
cause it to switch to the +Bm point. Notice that this completes the hysteresis loop and
completely bypasses point x. The only way to return the magnetic material to its unmag­
neti.zed condition is to apply an AC sine wave decreasing to 0 volts. An examination of
the hysteresis loop will reveal that, in normal operation, ferromagnetic material will
remain at either point +Br (one state) or -Br (zero state). The application of magne­
tizing force is required to make magnetic material change states (switch from one state
to another).

In some applications of magnetic storage materials, the material will be moved
rapidly under a small coil; this movement of magnetic ,fields past a coil will induce a
current flow in the coil. The direction of current flow will indicate the direction of
magnetization of the material, and the magnetic field will not be changed in any way.
The data stored as two different directions of magnetic fields may be "read" over and
over again. This type of nondestructive readout is often used for magnetic drums, mag­
netic tapes, and magnetic discs. Of course, if it is desired to change the stored infor­
mation, the use of the coil must be changed. To write on drums, tapes, or discs, the coil
is connected to a current source; current flow through the coil produces a magnetizing
force that can be used to store data in magnetic material.

One other form of magnetic storage device is a small core of ferromagnetic material
that has several small wires passing through it. A single bit of information may be
stored in or read from a single core. These cores are quite small, perhaps 15 to 50
thousandths of an inch in outer diameter. To produce a useful computer memory device,
several thousand cores and their wires are placed in a frame (plane) about 6 inches
square by 1/2 inch thick. These planes can be stacked together to make a memory array
that will hold anywhere from 150,000 to 2 million bits of,computer data.

Ferrite Core Memory

A ferrite core memory ca~not be move~ past a coil to sense the state of the cores;
therefore, other electronic systems must be used to read out data from ferrite core
arrays. Unfortunately, most of these systems involve destructive readout of the data
stored in the cores. Destructive readout of ferrite cores takes advantage of the fact
that the collapse of a magnetic field that surrounds a wire will induce current flow
into the wire. Core memories are physically small and simp1e--compared to the motors and
other mechanical parts needed with drums, tapes, and discs--but they have complicated
electronic circuits needed to control the writing into, reading from, and restoring of
data into the cores. Not all "core" memories consist of individual cores·that are .
threaded by wires and assembled into planes. Some memory systems use ferrite plates with
a series of holes through which the wires needed to read and write data pass. The plate
is so constructed that each of the areas around the holes acts as a single core. The
ferrite plate has characteristics similar to a plane of ferrite cores.

COINCIDENT CURRENT ADDRESSING. In order to use a ferrite core, the computer must be
able to write information into any given core and also to read information from any given
core. The techniques used for writing into or reading from a selected core or group of
cores (a computer word) are called address selection techniques. The address selection
technique that this SG explains is one of a number of techniques that are available to
manufacturers of ferrite core memories. The technique explained is the "coincident
current technique" and is the most cOlllIllon1y used system of getting data into or from a
magrietic core.

The basic concept of the coincident current selection technique is that two wires
are used to supply the magnetizing force (-Hm) required to make a ferrite core change

9

states. This magnetizing force is in the form of current passing through a pair of wires.
(Current flow through a wire sets up a magnetic field around the wire, which is directly
proportional in strength to the current flow through the wire.) A combined current which
produces a magnetizing force of ±Hm on the hysteresis curve is called a full-select cur­
rent. Each wire carries a "half-select" current; that is, a current with a magnitude of
H/2. If, and only if, a core receives the effect of a "full-select" current will it com­
pletely change states. This means that a wire carrying a half-select current can be
threaded through many cores, but the only core affected by this half-select current will
be the one core that is receiving an additional half-select current from another .wire
that is also threaded through many unaffected cores.

After the ferrite core is completely saturated in one direction and the magnetizing
currents removed, the retained flux will be almost that of saturation, and the direction
of magnetization can be considered the one state. If and when the half-select currents
are reversed to magnetize the core in the opposite direction, then the core will be con­
sidered to be in the zero state. In the coincident current addressing technique, each
half-select drive current applied to the wires is of such a value that each current alone
does not provide enough magnetizing force to "switch" the core or cause it to reverse
flux direction. However, with both half-select drive currents applied, there is suffi­
cient magnetizing force to cause t~e core to switch and retain, through its residual
magnetism, the new condition after the drive currents are removed.

Assume that the cores are designed to switch when approximately 0.350 ampere drive­
current (±Hm) is felt by the core. Each drive line carries approximately 0.250 ampere.
Either of the drive lines alone does not carry a sufficient current (magnetizing forcer­
to switch the core. However, a combination of the two drive currents (0.25 ampere
+ 0.25 ampere) will exceed the required switching value and cause the core to switch,
providing that it is not already in the desired state.

+B
+Bm -

I ,,/"7
}/

/
/

MAGNETIZING /
FORCE X /
-Hm------+---~~~--~~~~--~t_-----+Hm

-H!2 -H!2 +H!2! +H!2

-/ -Br'·O

-Bm FLUX
DENSITY -B

RDA26-417

Figure 1-5. Detailed Hysteresis Loop

10,

The operation of the coincident current addressing technique can best be explained by
a more detailed study of the hysteresis loop of a ferrite core. (Refer to figure l-5.)
In the initial application of selection drive currents to the core, consider the core to
be demagnetized (point "x"). As positive half-select drive currents are applied, mag­
netization will take place. One half-select current will not be enough to saturate the
core and place it at point +Bm; however, an additional half-select current will saturate
the core and place it at point +Bm. As the drive currents fall from maximum positive to
zero, the core's retentivity will allow only a slight drop in its flux density. When the
drive currents fall to zero, the flux will remain stable at point +Br. At this time the
core is in the one state.

If the core is stable at point +Br and a negative pulse of current is then applied
to both half-select drive lines simultaneously, the core will switch to point -Bm. As
the drive currents decay, the core flux density will come to rest at point -Br, and the
core will remain in the zero state. The important thing to notice is that if the core
is in a residual state (fEr) and only a single half-select drive current (H/2}.is applied
and removed, the state of the core will not be changed. The square shape of the hysteresis
loop shows that a certain current or magnetizing force must be applied to a ferrite core
to cause it to change states. If less than a minimum force is felt by the ferrite core,
it will remain in its pfeviously established stable state.

FLUX
DI RECTION

Figure 1-6. Magnetic Fields in Core

X AND Y SELECTION LINES. To understand how drive current flowing in wires threaded
through a ferrite core can produce one and zero states in the core, refer to figure 1-6.
This illustration shows that current flow into the page would produce cores with a
counterclockwise magnetic field. Current flow out of the page (toward you) would pro­
duce cores with a clockwise magnetic field. These fields are in agreement with the
','left hand rule" which was mentioned briefly when you studied the basics of magnetism in
the electronic principles course. One direction of the core's magnetic field is assigned
~he value of binary one and the opposite direction of magnetic field is assigned the value
of binary zero. Notice that the core's magnetic field completely surrounds the wire
passing through it; a collapse of the magnetic fie1d--or the switch from one direction to
another--wi1l cause current to flow in a wire passing through the ferrite core.

11

RDA26-415

Figure 1-7. Core Address Lines

Most of the ferrite cores used to store computer data do not have a single wire
applying magnetizing force to the cores. Instead they use two wires, each carrying a
half-select drive current. For convenience, these address selection lines are usually
called the X (horizontal) and Y (vertical) address lines. Figure 1-7 shows a single core
threaded by X and Y address selection lines. Of course, each X line and each Y line
passes through several other cores. Figure 1-8 shows a typical ferrite core plane with
its X and Y selection lines.

The ferrite core plane in figure 1-8 contains 16 cores number 0 through 17 (octal).
Each core is threaded by two address selection drive lines; each wire will carry a half­
select current. Only the core that receives a magnetizing force from two wires (coinci­
dent X and Y currents) will be selected. Each core has its own unique pair of X and Y
lines that will make it become a selected core. It is standard practice to label cores
by ,their X-Y address. For example, core 11(8) would be identified as address X2Yl;
core 11(8) has a location of X2Yl.

yg Y1 Y2 Y3

X 1 >----H~ TA--H&i VJ-+il.H YJ--Hd-J V}--"

X2 >--+-I'lM-l In--HIi<+-I Vj~-tH-I V,HHI<-H

X 3 >--t-fjrl-i VJ--H~ YJ-+fIrH Y}--HlH-!

RDA26-412

Figure 1-8. Ferrite Core Plane

12

Figure 1-9 shows four cores arranged in a very simple plane. Each core is threaded
with two lines, X and Y. Assume that all cores are in the zero state and we want to
write a one into core X0Yl. If a full select current with a value of +Hm is applied to
the x0 line, then both cores X0Y0 and X0Yl will be switched to the one state. If a full­
select current of value +Hm is applied to the Yl line, then both cores X0Yl and XlYl
will be affected. This is not quite what we want to do.

yff Yl

RDA26-422

Figure 1-9. Address Selection

I

Y-SELECT-;;\l
(READ & WRITE).

X-SELECT
(READ & WRITE)

INHIBIT-1
(WRITE ONL Y)

SENSE
AMPL

(READ ONLY)

RDA26-413

Figure 1-10. Ferrite Core

If, however, half-select currents of +H/2 are applied to the x0 and Yl lines at the
same time, then only core X0Yl will receive the effect of a full-select current (+Hm).
Each of the other cores along the x0 and Yl lines will receive only a half-select cur­
rent. Therefore, only core X0Yl will be switched to the one state, and the other three
cores in the plane will remain in the zero state. Two cores (X0Y0 and XlYl) receive half­
select current, which is not enough to cause them to switch, and one core (XlY0) receives
no current at all. Anyone of the four cores in this sample plane may be selected by
pulsing the correct combination of X and Y lines with simultaneous half-select currents.

INHIBIT WINDING. Notice that the selection of a Gore that was in the zero state by
positive half-select currents caused it to switch to the one state. The application of
negative half-select currents to a core can be used to switch it from the one to the zero
state. However, sometimes we need to select a core but leave the state of that core un­
changed. This need to select, but not change, usually is the result of wanting to
"write a zero." "Writing a zero" requires that we add another wire to the simple core
plane, an inhibit winding. The inhibit winding will carry currenc that opposes one of
the positive half-select currents and prevents the address selec.ted core from switching
to the one state. Since only one core from a plane can be selected at anyone time, a
Single inhibit winding can be threaded through all the cores on a plane and· energized
only when it is necessary to"write a zero" into the selected core. In figure 1-10
the inhibit winding is parallelto·the Y select wire.

13

SENSE WINDING. If information is stored in a ferrite core, we need some way of
sensing or removing that information. This is usually done by adding yet another wire to
the simple core plane, a sense winding (see figure 1-10). The sense winding is used to
observe the current produced when a magnetic core is changed from the one to the zero
state. The use of a sense winding requires that we apply negative half-select currents
to the core in an attempt to put it in the zero state. If the core was in the one state
and it is switched to the zero state, then the sense winding will receive the current
produced by the collapse of the core's magnetic field. If the core was already in the
zero state when the negative half-select currents were applied, there will be no change
in the core's magnetic field and no current flow in the sense winding. Unfortunately,
this sensing technique removes the stored "one" from the ferrite core; we are using what
is called destructive readout. Again, since only one core on the plane can be selected
at one time, only one sense windiug per plane is required. This single sense winding
can be looped through all the cores in a plane in such a way that the "noise" produced by
the half-select current present in the plane will not affect the sense winding output.

Ferrite cores are very sensitive to temperature changes, operating ideally at room
temperature (700 to 800). The hysteresis loop changes shape as a function of tempera­
ture. The "B" dimension of the loop decreases as temperature decreases. Because of the
curtailed dimension of the loop along the "B" axis, the voltage generated on the sense
line would not be sufficient to represent a one. Decrease in temperature also widens
the dimension of the loop along the "H" or horizontal axis. This increased loop dimen­
sion reduces the possibility of core switching by the full select current, since the
large magnetizing force would be required. Eventually, the width of the "H" dimension
may be large enough to make it impossible to drive the core to its new state. Tempera­
ture increases cause the "H" dimension at the loop to become narrow, and flux density
along axis "B" increases. As the "H" dimension becomes shorter the core is switched by'
smaller currents. The core no longer discriminates, and it switches at signals below
the full select current. In short, at low temperatures, the core switches less readily,
and at high temperatures it is inclined to switch on any pulse.-

CORE MEMORY PLANE. Figure 1-11 illustrates a complete coincident current core memory
plane with all its address selection wires and windings. Any core in this plane may be
selected and a one or zero written into the core. Or, the state of any core may be
sensed by applying the correct half-select currents to one of the X address selection
lines and one of the Y address selection lines simultaneously. It may be seen that half­
select write pulses (+H/2) on both a selected X line and Y line will write a one in a
single selected core. For instance, if the x0 and Y3 address lines are pulsed with a
positive half-select current, only the core at X0Y3 will receive the effect of a full
write current. When a negative half-select read current is applied to a pair of X and
Y selection lines, an output may be sensed by the sense windings when the selected core
switches from the one to the zero state.

Read Operation. Because core memory systems use a destructive readout, it should be
clear that in the operation of a coincident current core memory the read operation will
occur first. The read operation makes use of the sense line threaded through all the
cores of a plane to determine if the selected core was in the one state. If a negative
half-select read pulse (-H/2) is applied to an X address line and a negative half-select
current read pulse (-H/2) is applied to a Y address line simultaneously, the core that
receives the effect of a full-select read current will be put to the zero state. If
this core was in the one state, it will reverse its direction of magnetization and create
a large change in flux density. This change in flux density surrounding a sense wire
will cause current to flow in the sense line, resulting in a detected output by the
sense amplifier. Therefore, it is only the selected core which is capable of producing
a binary output. When a certain core is selected, the output of the sense amplifier will
represent the state of only the selected core. If at the time of application of the
half-select read current there is no output from the sense amplifier, this indicates
that the core was, and still is, in the zero state; if an output is sensed, then the core
was in the one state, now the core is in the zero state.

14

Write Operation. After the selected core has been put to the zero state by the read
operation, the write operation can then either put a one into the core or leave it in the
zero state. A separate inhibit line is threaded through all the cores on the plane so
that a current pulse in the line will oppose one of the address lines. There is also a
driver for the inhibit winding which can be gated on or off, depending on whether a zero
or one is to be written into the selected core of the plane. The value of the current" ,
through the inhibit winding is the same as a half-select current used in the X and Y
address lines.

YO Y1 Y2 Y3

RDA26-410

Figure 1-11. Core Memory Plane

Since the total write currents applied to the selected core by the X and Y address
selection lines and the pulse from the inhibit driver oppose each other, ,if all these
currents are applied at the same time, the total current through the selected core will
only be equal to a half-select current, which is not enough to switch a core to the one
state. A one or zero may therefore be written into the selected core by first clearing
the core during the read operation and then turning the inhibit driver on when a zero
is needed and turning it off when a one is needed, while applying half-select pulses
to the X and Y address lines. Notice that this inhibit technique for writing ones and
zeros into a core requires that the core be cleared to zeros before the write opera­
tion begins.

CORE MEMORY ARRAY. A complete coincident current, ferrite core memory consists of a
number of planes stacked together in a rectangular array. (See figure 1-12.) The X
address selection lines and the Y selection lines of each plane are connected in series.
This means that a pulse fed to the x0 winding of the first plane must travel through the
X0 winding of the second plane, and so on, until it passes through the x0 winding of the
last plane in the array. Figure 1-12 illustrates an array with four core planes in
which each plane contains 16 cores. In this array a half-select pulse (read or write)
would have to travel through 16 cores, four cores on each plane.

15

Y3

f.LANE 1
xg~--~~~~~~

PLAN E 4 ~-........ -=-t-=-,

RDA26-411

Figure 12. Core Memory Array

Each plane has its own sense winding (not shown in figure 1-12); however, the sense
windings are not connected together in any way. Instead, a sense amplifier is connected
to the sense winding from each plane to indicate if a one or zero was stored in the
selected core of that plane. Each plane also has an inhibit winding that is not shown in
figure 1-12. The inhibit winding is used during a write operation when it is necessary
to "write a zero" into the selected cor-e of that plane.

When using this type of array, there will be as many core planes in the array as
there are bits in the computer word. Each plane will have its own sense line for read­
ing the bits of the word and its own inhibit line to control the writing of ones and
zeros into the bits of the word. The number of cores in anyone plane will determine the
numberof'computer words that the array can store. The array' shown.in figure 1-12 can
hold 16 four-bit computer words.

CORE MEMORY TIMING. The same timing sequence is used whether the computer is to
read information from the core memory or write information into the core memory. The
total time taken by the complete timing sequence is called the "memory cycle," and it is
one of the principal speed determining factors for a ferrite core memory. Each memory
cycle consists of two portions, the first of which is called the read portion and the
second of which is called the write portion. Figure 1-13 shows the sequence for all the
pulses that could occur during a memory cycle. Whether we want to read from or write
into memory will control which pulses are generated and used. It. should be noted that
the 8 microsecond memory cycle time is only an example and will vary from system to
system.

The ·READ PULSE will be used to control the timing of the negative half-select pulses
applied to the X and Y address selection lines. The READ SAMPLE PULSE will be used to
turn on the sense amplifiers of each plane at the time when the flux change in the selec­
ted core of the plane will be at its greatest (if the core was in the one state). The
INHIBIT PULSE is fed to the inhibit drivers for eachplane-; i.t will control the timing
of 1:he inhibit drivers if. we _intend to "write a zerott into the selected core on that
plane. The WRITE PULSE will be used to control the timing of the positive half-select
pulses applied to the X and Y address selection lines.

16

"'I~""'---MEMORY CYCLE 8 MICROSECONDS---".~I

I+- 4 USEC I 4 USEC ----J I READ PORTION •• WRITE PORTION _. I

----I r.--1 MICROSECOND

I
READPUL~~ ____ ~

READ SAMPLE
PULSE

INHIBIT PULSE

WRITE PULSE

u
L..--~I

I '----R--D--I1I~26 -40 3

Figure 1-13. Memory Cycle Timing

Read Memory Cycle. Assume that at the beginning of the read memory cycle, core loca­
tion X0Y3 has been selected by external circuits to be read from. The read portion of
the memory cycle in figure 1-13 will generate both the read pulse and the read sample
pulse. The read pulse will cause the x0 and Y3 address selection lines to be pulsed
with negative half-select read currents. This will cause the selected core in all four
planes to be set to the zero state. If a large signal is received by the sense ampli­
fier connected to a given plane at this time, the selected core in that plane contained
a one; if a small signal is received, the selected core in that plane contained a zero.
(A small current flow in the sense winding would be caused by noise or circuit unbalance
and can be disregarded.) The read sample pulse "strobes" the sense amplifiers at the
time when current flow in the sense windings should be at a maximum. If planes 1 and 3
produce ones and planes 2 and 4 do not, the computer word that was previously stored was
(MSD) 0101 (LSD). This word will be fed out to external circuits and also be written
back into the memory array. The output of each sense amplifier is used to set a stor­
age device to the one state during the read portion of a memory cycle (providing a sense
amplifier output is present), and the contents of these storage devices is then used to
control the inhibit drivers during the write portion of a read memory cycle. In our
example, only the inhibit drivers connected to planes 2 and 4 will be enabled by signals
from their respective storage devices and conduct during the write portion. The selec­
ted cores in these planes will remain in the zero state while the selected cores in
planes 1 and 3 will be set to the one state by positive half-select address selection
pulses applied to all four planes as a result of the write pulse. Thus, after the write
portion of the read memory cycle, the selected cores will again contain 0101, just as
they did before the memory cycle began. In addition, the computer word 0101 will still
be in the external storage devices and available for use by the computer.

Write Memory Cycle. Let us now change the data that is stored in location X0Y3 to
(MSD) 1101 (LSD). Again external circuits are used to select address lines x0 and Y3,
and they are then forced to generate the negative half-select read currents by the read

17

pulse. However, during the read portion of a write memory cycle, the read sample pulse
is not generated and, as the selected core in the planes go to zero state, the sense
amplifiers will not reflect the ones and zeros stored in memory. Therefore, the storage
devices connected to the sense amplifiers will not be changed; the storage devices will
keep the 1101 that we want to write into memory. As the write portion of the memory
cycle begins the storage devices will allow the inhibit pulse to turn on the inhibit
drivers. The inhibit driver for plane 2 will be turned ON and the inhibit drivers for
planes 1, 3, and 4 will remain OFF. When the write pulse is generated, the positive
half-select write currents applied to planes 1, 3, and 4 will cause th~ir selected cores
to go to the one state. However, in plane 2, the combination of positive half-select
write currents and a negative inhibit current will leave the selected core still in the
zero state. At the end of the write mem~ry cycle, the computer word 1101 has been writ­
ten into location X0Y3.

Figure 1~14,shows the current flows required for the storage of information into a
ferrite core during the write portion of any memory cycle (read or write). During the
read portion of any memory cycle, we read all cores at the selected location by apply­
ing two negative half-select current whose timing is controlled by the read pulse.
During the write portion of any memory cycle, we attempt to store ones in the selected
cores by applying two positive half-select currents whose timing is controlled by the
write pulse. However, the inhibit pulse is available as an opposing current flow to
prevent the writing of a binary one if that is what we want. The primary difference
between a read memory cycle and a write memory cycle is the generation or absence of the
read sample pulse.

j-IIIt-READ PORTION WRITE PORTION~

X LINE

Y LINE

INHI BIT ----------t~

(A) STORE ZERO

~READ PORTION WRITE PORTION..J

X LINE

Y LINE

INHIBIT----------tr;~---_t---

(B) STORE ONE
" RDA26-405

Figure ,1-14. Memory Current Flows

18

MEMORY ADDRESS REGISTER (MAR). The computer controls the selection of specific X and
Y drive lines in the ferrite core memory by use of a storage register called the memory
address register (MAR). The configuration in the MAR is fed to decoders which select
1 X and 1 Y drive line in the array. The X and Y signals are combined with either the
read or write pulse to produce half-select currents needed to read or write into the
ferrite core memory. Intersection of these signals will pick out ·specific cores on a
plane. The selected co.res on all planes make up the computer word. Figure 1-15 illus­
trates, in block diagram form, the operation of an address selection system for a ferrite
core memory with a sixteen word capacity.

C FF-1 o

MEMORY ADDRESS REGISTER (MAR)

il C FF-2 S
o 1

t t
X COUNT

DETECTOR

C FF-3 S
o 1

t t
C FF-4 ~ o 1

Y COUNT
DETECTOR

FERRITE
CORE

MEMORY
ARRAY

(16 WORDS)

RDA26-407

Figure 1-15. Core Memory Addressing

Flip-flops are generally used as the storage devices in the memory address register
(MAR). For a memory with 16 locations (addresses), four flip-flops would be needed to
give 16 different binary combinatiQns. The input to the MAR may come from several dif­
ferent parts of the computer: a sequence counter (program counter) used to step through
a series of memory locations from part of a previously read computer word, or from
special registers. The memory address register may be divided into two parts - the least
significant half to feed the X count decoders and the most significant half to feed the
Y decoders.

Detector Matrices. The outputs_of _the ~ are_connected to count.detectors which.
produce independent signals for each separate count in the memory address register.

19

Decoder matrices may be constructed of AND gates, transistors, diodes, or special purpose
magnetic cores. Whatever device is used, the function of the detector matrices is the
same; one output line is selected for each different combination of inputs from the MAR
flip-flops. The X count detector decodes the two least significant bits of the MAR, and
the Y count detector decodes the two most significant bits of the MAR.

The Read-'Write Drivers. The Read-Write Drivers (RWD) feed a particular X and Y
address selection line with both negative (read) and positive (write) half-select cur­
rents. Each RWD has three inputs: a unique X or Y count decode, a read pulse, and a
write pulse. The X or Y count decode enables the read-write driver and permits it to
generate current, with direction and timing determined by whether a read or write pulse
is strobing the RWD. During any memory cycle, the read pulse will occur first and cause
the enabled RWDs (one X and one Y) to produce negative half-select pulses of current
which will put all the cores at the MAR address to the zero state. When the write pulse
occurs in the second portion of the memory cycle, the enabled RWDs will produce positive
half-select pulses of current that could put all the. cores at the MAR address to the one
state. The current supplied by a typical read-write driver is on the order of 1/4
ampere •

. The operation of the memory address register and its associated circuitry causes a
single core in each plane of a memory array to receive the effect of a full read current
and then a full write current. The address stored in the MAR is decoded, and this
decoded output is used to turn on selected read-write drivers. The timing and direc­
tion of current flow from the RWDs is controlled by read and write pulses generated in
memory timing circuits.

MEMORY INFORMATION REGISTER (MIR). The memory information register (MIR) is a flip­
flop register that is used to store the binary read from or to be written into a ferrite
core memory. The MIR has one flip-flop for each plane in the core array; therefore,
the size of the memory information register is equal to the number of bits in the core
memory word. Binary data stored in the MIR as a result of a read memory cycle 'can be
used by many different circuits in the computer; many different parts of the computer
may provide the new data to be written into core memory. The MIR in the COM-TRAN TEN
computer is called the Buffer or B register.

READ
SAMP L Et>----.

PULSE

SENSE
WINDING E-----L.,..-

NEW
DATAP-------------~

CLEAR~ ___________ ~
PULSE

MIR (n)

EXTERNAL
..-________ ~~ CIRCUITS

INHIBIT _--'
PULSE ..

INHIBIT
GATE

INHIBIT
DRIVER

INHIBIT
I~~_<WINDING

RDA26-404

Figure 1-16. MIR Flip-Flop Circuit

20

Figure 1-16 shows one flip-flop of a memory information register and its associated
circuitry. Each flip-flop in an MIR has identical circuitry.

The individual flip-flops in a memory information register receive a clear pulse (and
sometimes new information) before the actual memory cycle begins. As the read portion
of the memory cycle occurs, the read sample pulse is used to "strobe" the sense ampli­
fier and allow the sense amplifier to enter the core data into the MIR flip-flop. During
the write portion of a memory cycle, the zero side output of the MIR flip-flop is used
to turn the inhibit driver ON or OFF.

Read Memory Cycle. Before a read memory cycle begins, the location (address) of the
word to be read from memory is loaded into the memory address register (MAR), and the
memory information register (MIR) is cleared. During the read portion of the read memory
cycle, the selected core in each plane receives two half-select read current pulses and
is set to the zero state. The read sample pulse allows the transfer of the ones stored
in core memory through the sense amplifiers to the MIR. If the selected core in the
plane contains a one, current flows in the sense winding; 'this current flow is detected
by the sense amplifier, and is then used to set a one in the memory information regis­
ter flip-flop. If the selected core in the plane contained a zero, the current received
by the sense amplifier is small and no pulse appears at the output of the sense ampli­
fier; therefore, the MIR flip-flop remains in the zero state. The selected core in the
plane is still in the zero state.

During the write portion of the read memory cycle, the selected core in the plane
will receive two half-select write currents that attempt to switch the core to the one
state. However, the data bit now stored in the memory information register flip-flop
will control the final state of- the selected core. If the MIR flip-flop contains a zero,
its zero side output will turn ON the inhibit driver feeding the plane. The current from
the inhibit driver will oppose the current flow through one of the address selection
lines and prevent the core from switching to the one state. If the MIR flip-flop con~
tains a one, the lack of a zero side outpu-t will prevent the inhibit driver from opposing
the current flow in the address selection line, and the two half-select write currents
will switch the selected core to the one state. As a result of the data placed in the
MIR during the read portion of a read memory cycle, a complete read memory cycle will
return the original core information back into the cores. The original core data will
also remain in the memory information register for use by the external circuits of the
computer.

Write Memory Cycle. Before a write memory cycle begins, the location of the word to
be written into is loaded into the memory address register (MAR). The memory informa­
tion register (MIR) is cleared and then loaded with the new data. During the read por­
tion of the write memory cycle, the selected core in each plane receives two half-select
current read pulses and is set to the zero state. However, no read sample pulse is
present during the read portion of a write memory cycle. The sense current will not get
past the sense amplifier, and the new data entered into the MIR before the write memory
cycle began is not changed.

Durin~e write portion of the write memory cycle, the selected core in the plane
will receive two half-select write currents that attempt to switch the core to the one
state. At this time, the new data loaded into the MIR before the write cycle began will
control the final state of the selected cores. If the MIR flip-flop contains a one, the
binary zero from the zero side output of the flip-flop will prevent the inhibit driver
from producing current to oppose one of the half-select currents, and the core will switch
to the one state. If the MIR flip-flop contains a zero, its zero side output will turn
the inhibit driver ON, and this current flow will oppose one of the half-select write
currents, preventing the core from switching. The new data placed into the memory in­
formation register before the write memory cycle began destroys __ the .old core information,
and the new data will be stored in the selected address. This new data will remain in
the MIR for further use by the external circuits of the computer.

21

CORE MEMORY SUMMARY. The small memory unit described here is typical of random
access, ferrite core, coincident current memories now in use by the USAF except for its
size. Most memories now in use contain several thousand cores as a ~n1mum. While the
fundamentals of such memories are the same, the circuitry used to control and address
them will, of necessity, differ in details.

The memory cycle times vary with different machines, but most machines have memory
cycles in the 1- to a-microsecond region. Some faster memories have access times of less
than 1 microsecond and it is possible to build ferrite core memories that operate in the
0.1- to 0.3-microsecond region.

A memory cycle is divided into two portions: a read portion and a write portion.
The read portion obtains data from the cores by setting them to the zero state. This is
called destructive readout. Those cores that switched from the one to the zero state
will produce current flow in a sense winding that can be detected and the data trans­
ferred to storage flip-flops in the MIR. The write portion of a memory cycle attempts to
set all addressed cores to the one state; the data stored in the MIR will control whether
ones or zeros are written into the selected cores by controlling inhibit drivers.

The selection of which cores are to be read from and written into is done by a
memory address register and its associated decoders and read-write drivers. They supply
half-select currents whose coincidence at particular cores decides which cores will be
affected. The read-write drivers can supply both positive and negative half-select
currents.

The method of reading and writing discussed here is but one of several possible ways
to use a ferrite core memory. It has been described in general terms so that the prin­
ciples can be applied later to a specific equipment. The terminology used in this book
may be slightly different from that which ~i11 be used on actual equipment. However, if
you understand the basic principles of addressing, reading, writing, and inhibiting as
used in this basic ferrite core memory unit, you should have no trouble transferring this
knowledge to the "real world."

Magnetic Drum Memory

The ferrite core memory unit uses the principle of setting an essentially bistable
device to one of its two states. It provides very fast access time ang .sufficient capa­
city for use as the central memory element of a computer. UnfortunatelY, the ferrite
core memory unit has complete electronic circuits used to read from or write into core
storage. These circui.ts increase the cost and reduce the reliability of storing a large
number of bits in a core memory unit. While large core memories which can store a
million bits have been constructed, some large machines require the storage of 1012 bits.
This would require the use of 10,000 core memories. Fortunately, there are several
units which can store large amounts.of data and still provide reasonable access time and
low cost per bit. The magnetic drum storage unit is one of these devices.

The magnetic drum storage system is presently the most common type of endless track
memory. Its most important components are a rotating drum and a set of stationary heads.
In general, the capacity of a drum is proportional to its surface area, but an important
factor which must be taken into consideration is the head separation. Direct contact of
the read-write heads and the drum surface will produce the largest output and, hence the
least chance for error. However, this situation would cause great friction and the drum
would have only a short life span. In moving the head slightly (.001 to .002 inch) awa~·
from the drum surface, life of the unit is increased but capacity is decreased, and the
possibility of cross-talk is introduced.

MAGNETIC DRUM CONSTRUCTION. A magnetic drum consists basically of a rotating cylinder
coated with a thin layer of magnetic material which has a hysteresis loop similar to that

22

of the material used in magnetic cores. A number of read-write heads are mounted along
the surface of the drum. These heads are used to store information by magnetizing very
sma11 areas on the drum surface or to read information by sensing the passage of the mag­
netic field from previously recorded information. Figure 1-17 shows a drum with only a
few read-write heads for the purposes of clarity. Standard magnetic drums used in com­
puter systems have up to several hundred read-write heads scattered about their surface.

~~!::====::::::~~TRACKS
RDA26-423

Figure 1-17. Magnetic Drum Storage

As the drum rotates, a small area continually passes under the heads. The area under
a ~.ingle head is known as a track or channel. One track extends completely around the
circumference of the drum and can hold many bits of data. The space in a track required
to store one binary bit is known as a cell. The size of a cell depends on the design of
the read-write head, its spacing from the drum surface, and the speed of rotation of the
drum. A group of tracks is called a field. All the cells which are under a set of
read-write heads at the same time are called a register. In some drum memory units, a
track is subdivided into sectors. (A sector is an angular subdivision of the circum­
ference of the drum.) Figure 1-18 is a graphical representation of a cell, track, field,
register, and sector.

SECTOR RDA26-409

Figure 1-18. Drum Organization

23

Generally, one or more of the tracks is used to provide timing signals for the drum's
control circuits. A series of timing signals is permanently recorded around the timing
track, and each signal defines a time unit for the system. The timing track is then used
to determine the location of each set of storage cells around the tracks. For instance,
if the timing track is 60 inches in length and timing pulses are recorded at a 'density of
100 per inch, there will be 6,000 locations for bits (cells) around each of the tracks.
If the drum has 30 tracks plus the timing 'track, the drum will have the capacity to store
a total of 180,000 bits.

Information is written onto the drum by passing current through a winding on the
write heads. This current causes flux to be created through the core material of the
head. Some drum systems use separate heads for reading and writing, and others use com­
bined read-write heads. The head consists of material of high permeability around which
a coil is wound. When information is to be written on the surface of the dr~, pulses
of current are driven through the winding. The direction of flux through the head, and
in turn the polarization of the magnetic field recorded on the surface of the drum,
depends upon the direction of current through the coil.

The gap in the core presents a relatively high reluctance path to the flux generated
by the current through the coil. Since the magnetic material on the surface of the drum
is passing near the gap, some of the flux passes through this material. This causes a
small area of the drum surface to be magnetized and, since the material ,used to coat the
surface of the drum has a relatively,high retentivity, the magnetic field remains after
the area has passed from under the head, or the current through the coil is discon­
tinued. It should be noted that the head does not actually touch the surface of the
drum. Instead, to prevent wear, the heads are located very close to the drum surface
but not touching it. The drum must, therefore, be of a very constant diameter or the'
distance between the heads and the drum will vary. If the head moves farther from the
surface of the drum, the signal recorded will become weaker.

The signals recorded on the surface of. the drum are read in a ,similar manner. When
the areas which have been magnetized pass under the head, some of the magnetic flux is
coupled into the head and changes the current flow in the head. This flux induction is
changed to signals in the windings. These signals are then amplified and interpreted.

The size and storage capacities of magnetic drums vary greatly. Some drums with
capacities of less than 25,000 bits have been constructed. Drums of this size generally
have from 15 to 25 tracks and from 15 to 50 heads. In order to decrease access time,
heads are sometimes located in sets around the periphery of the drum; a drum with 15
tracks may have 30 heads divided into two sets of 15 heads, each at a specific angular
distance from the other. For very, fast access time, there may be even more than two
sets of heads.

Much larger drums can store up to 15 million bits and may have from 300 to 400 tracks.
The larger drums are generally rotated much more slowly than small drums, and speeds vary
from 120 RPM to 75,000 RPM. The access times obviously decrease as the drum speeds
increase; however, there is another important factor--the packing density~long the
track. Most present-day drums have a packing density of 'from 100 to 300 bits per inch
although,. by maintaining the heads very close to the drum surface and ro.tating the drum
slowly, packing densities in excess of 1000 bits per inch may be achieved.

PARALLEL OPERATION. It is possible to operate a drum in either a serial df parallel
mode. For parallel operation, all the bits of a word may be written simultaneously and
read in the same manner. If the basic computer word contains 40 bits, the drum might
read from 41 tracks (one for timing) simultaneously, thus reading an entire computer
word in l-bit time. When the drum is "read from" and "written into" in paralle:).., a
separate read and write amplifier is required for each track used.

24

Notice that the words in a parallel system may be located by means of a timing track.
If each track contains 8192 bits, a l3-bit counter may be set to zero at the same posi­
tion each time the drum revolves, and stepped by one each time a timing pulse appears.
In this way, location 1096 will be the 1096th cell around the track from the zero loca­
tion. If the address of the word to be read is located on a register, signals from the
drum can be gated into the computer when the counter agrees with the register's content.
In this way words may be located on the drum.

SERIAL OPERATION. A magnetic drum may also be operated in a serial mode. In this
case only one track will be read from or written into at a given time. Since there are
a number of tracks on each drum, the correct read-write head, as well as the location of
the desired bits around the track, must be selected.

Each track is assigned a number; in addition, each track is divided into sectors,
each sector containing one full computer word. For instance, if the basic computer word
is 20 bits in length and 640 bits can be recorded around each track of the drum, each
track would be divided into 32 sectors. Each sector would then contain one 20-bit com­
puter word.

In order to specify the address of a word on a magnetic drum operated serially, both
the track number and sector number must be given. Consider a drum with 32 tracks plus
a timing track and 32 words (sectors) around each track. The address of a word on the
drum in a binary machine will consist of 10 bits, 5 bits to specify the track and 5 bits
the sector. When written as the address section of a computer instruction word, the
address will contain 10 bits.

The five flip-flops containing the track number may be connected to a decoder matrix
similar to the one used in the magnetic core memory, which will then select the correct
read-write head.

Several techniques involving the timing tracks may be used to locate the selected
sector. One technique involves the use of several timing tracks instead of one. One of
the tracks contains a set of signals indicating the location of each bit around the
tracks. The second track contains a set of pulses with a pulse at the beginning of each
word time. The word time signals illustrated are 20 bits apart so the basic word would
be 20 bits in length. In addition, the sector number of the next word around the drum
is recorded around a third timing track. The computer reads sector numbers from this
track, and when the number read agrees with the sector number in the address, the com­
puter can then read the selected word from the next sector beginning with the next word
time pulse.

ADDRESSING. Addressing the drum means nothing more than selecting the proper memory
cell or cells at the correct time for reading or writing. Many different methods are
used for addressing the drum.

Magnetic Tape Memory

When we speak of tapes, we generally mean "magnetic tapes." Perforated tapes are
used but they are less common. Another item that is brought to mind when tapes are
discussed is the tape drive unit. Of course, the tapes are useless without the drive
unit and vice versa. Actually, the magnetic tape is the medium where information is
stored. The tape drive is the mechanism which writes information on a tape and reads
it off. The process of storing information on a tape is called writing and the process
of detecting stored information is called reading.

TAPE CONSTRUCTION. Magnetic tape is a thin flexible plastic strip with a uniform
coating of ferrous oxide on one side. A typical tape is about 2,000 feet in length,

25

~ to 2 inches wide, and has a word density of 40 or more computer words per inch. Infor­
mation is stored on the tape in the form of a pattern of magnetic bits. In one form of
tape recording, a magnetized spot or bit may represent a binary 1; a nonmagnetized spot
may represent a binary O. Another system may require that both l's and O's be expressed
as magnetic bits. This is done by recording l's with a north-south magnetic alignment
and O's with a south-north alignment. The number of magnetized areas across the width of
the tape are called tracks. The number of recording tracks used is determined by the
code that is used to represent numeric and alphabetic characters. Figure 1-19 illus­
trates a tape system using a six-bit character code. There are seven tracks across the
tape. The seventh track is fo·r maintaining synchronous operation between the tape drive
and the computer.

A B C D E F G H I J K L M N 0 P g R S T Track
X X X X X X X X X X (11
X· X X X X X X X X X (12

X X X X X X X X X (13

X (/4 (sync)
X X X X X X X X (15

X X X X X X (16

X X X X X (17

1 2 3 4 5 6 7 8 9 10 11 12 ·13 14 15 16 17 18 19 20 Characters
RDA26-424

Figure 1-19. Magnetic Tape Six-Bit Alpha Code

TAPE FORMAT. Tape format may vary from system to system. For this reason we will
discuss a typical tape format using a six-bit character code. If the computer's word
length is 30.bits long, then a word would contain five characters (30/6 = 5). Words are
written on the tape with no space between them. One or more words written together is a
record and there is a recording gap between records (see figure 1-20). A group of
records is called a file. Now let's apply this to what we have learned previously. A
group of binary bits handled by the computer as a single unit is a computer word. In
this case five characters on tape. A computer word can be either a data word or an
instruction word. If instruction wqrds were written together on tape, they would be
considered a record. A series of instruction words written in logical order to solve a
given problem is a program. Therefore, a record on tape could represent a Rrogram while
a file could represent a group of programs.

WRITING AND READING MAGNETIC TAPE. Writing on magnetic tape occurs as the tape is
moved across the magnetic gap of a recording or write head •. The number of recording
tracks in a write head is determined by the alphanumeric code used by the tape. Elec­
trical pulses are sent through recording head coils at desired intervals. The oxide
coating is magnetized by these pulses. These magnetized areas may be sensed as a 0 or a
1. To establish a given code, current will not flow through all the coils at the same
time. These patterns represent the data sent from the computer.

The tape moves at high speeds across the write head. Typical speeds are 75 inches
per second and 112.5 inches per second. The write pulses to the write heads are fast
enough that the magnetized spots are almost the same as if the tape were still, for the
period that the pulse is present.

26

1111111111111111 DIllJ
n
:c
>
;0

RECORD >
ONE OR MORE n

WORDS -i
m
;0

WORD,OR

I ONE WORD
RECORD

FILE
----------ONE OR MORE-------­

RECORDS RDA26-40B

Figure 1-20. Tape Format

There are two types of read-write heads used in magnetic tape units. One type has a
single gap for each channel. Both reading and writing occur at the same gap. The other
newer types use two magnetic gaps for each channel. One gap is used for writing and the
other is used for reading. Figure 1-21 shows both types of read-write heads.

PLASTIC BASE

+

·READ-WRITE COILS

f
MAGNETIC

OXIDE

WRITE GAP TAPE MOTION READ GAP
•

RDA26-385

Figure 1-21. Read-Write Heads

27

The principles of reading and writing are the same for both type heads. However, the
two-gap head has the advantage of being able to read the data shortly after it is written.
This allows the .data to be checked for errors. To read from the magnetic tape, the tape
is passed over the read head. As the magnetized spot passes the gap, small electrical
currents are generated in the coil of the read head. The pulses represent the data that
is sent into the computer. Writing on the magnetic tape erases old information from the
tape.· Reading does not do this, so the tape can be read over and over.

Tapes are generally used as large-capacity, slow access memory storage. They may be
considered input-output devices since they are used to initially load information into
the computer and receive information from the computer.

REVIEW QUESTIONS 1-2

1. What is the difference between a storage device and a memory unit?

2. How many portions make upa memory cycle?

3. Which memory cycle is used as an input for new information?

4. What is the difference between a read and a write memory cycle?

5. Where will programs and data be stored?

6. Define volatility.

7. Why is the sense line used in a ferrite core memory?

8. What is the purpose of the inhibit line?

9. How may the number planes of a ferrite core memory be determined?

10. Which two registers are used when the computer communicates with memory?

11. Why are most core memory units called coincident current memories?

12. What is the purpose of the inhibit pulse?

13. How maya zero be written into a selected core?

14 .• Why are X and Y decoders used?

15. Why are line drivers used?

16. What is meant by permanence?

17. What is meant by the term "full select current"?

TERMINAL EQUIPMENT

Terminal equipment may be broadly defined as "all input and/or output devices."
This broad definition is broken down into two categories: simple and complex. Equip­
ment in the complex category is capable of both input and output; that is, it can send
information into the memory element of a computer and receive information from the mem­
ory element. Equipment in the simple category may handle input or output but not both.
This calls for another breakdown: simple input devices and simple output devices.

28

Simple input devices can put data into memory; simple output devices can receive data
from memory. Terminal equipment may also be referred to as Peripheral equipment, or
I/O equipment.

There are many types of terminal equipment. Let's list a few: card punch, card
reader, line printer, magnetic tape units, magnetic drum units, various electric type­
writers (Flexowriters), and communications buffers that connect to telephone lines.
These are called data link buffers, and are complex pieces of terminal equipment. Any
other devices waich manufacturers produce that are capable of transferring digital
information can become terminal equipment. Many units of terminal equipment have a com­
patibility package or control unit that arranges the data in proper word format or
converts logic levels to insure correct data transfer between units made by different
manufacturers.

Figure 1-22 lists some terminal devices and shows the classification of each. In
many systems most of these devices can be controlled manually by the operator or auto­
matically under program control by the computer. All of the equipment in figure 1-22
has dual capability except tapes and drums; these are generally controlled only by the
computer.

NANE
CARD READER
CARD PUNCH
LINE PRINTER
PAPER TAPE READER
PAPER TAPE PUNCH
FLEXOWRITER
TELETYPEWRITER
MAG TAPE UNIT
MAG DRUM
DATA LINK BUFFER
CRT

Figure 1-22.

SIMPLE INPUT SIMPLE OUTPUT COMPLEX
X

X
X

X
X

X
X
X
X
X

X
t--"

RDA26-425
Terminal Devices Classification

Time and space do not permit a detailed coverage of all terminal equipment. This
discussion will acquaint you with a representative cross-section of terminal devices.
The card reader, line printer, magnetic tape unit, and Flexowriter have been chosen for
this purpose. We will take these in the order listed and discuss some of the leading
particulars of each unit. We will also discuss a special input-output device used in
air defense computers.

Card Reader

The purpose of the punch card reader is to provide a means of transferring data from
punch cards to the computer system. The card reader has an input hopper for holding the
cards to be read, a feed mechanism which sends the cards through the read station where
the data bits are detected, and a stacker for holding the cards that have been read.
The input hopper is located on the right side of figure 1-23. The cards are placed in
the hopper face down, with column 1 toward the read station. The input hopper holds
approximately 500 cards. The feed knife sends one card at a time into the read station.
In the read station, there are 12 solar cells (each with an exciter lamp) which read the
holes in the punch cards. In addition, there are two solar cells (with exciter lamps)
for sensing the position of the card as it moves through the read station. After the

29

card is read, it drops into the stacker on the left side of the card reader. The stacker
can hold approximately 500 cards. The card reader can read approximately 200 cards per
minute. The lower part of the card reader cabinet has 21 storage bins for various punch
card decks that are used frequently by programmers or maintenance personnel.

STACKER
SWITCH

Card Punch

•

DIRECTION OF CARD TRAVEL

Figure 1-23. Card Reader

Card punches may be operated directly by the computer to produce decks of punched
cards under computer control, or they may be used by different personnel to produce
punched cards that will be used to enter data into the computer.

Figure 1-24 is a photograph of an IBM computer-controlled card punch used as an out­
put device. A machine similar to this one makes the cards for your paychecks~ medical
appointments, and WAPS testing. It is approximately 36 inches high and 24 inches deep.
The magazine is at the upper left and the stacker is the dark opening in. the front
center. Blank cards are placed in the m~gazine (hopper) and the machine is made ready
by the operator.

The card punch, acting on programmed instructions from the computer, moves the cards
from the hopper to the stacker. Between these two points there is a punch station with
90 punches. The card comes to rest 12 different times under the punch station." At each
stop a row of the card is under the punches. The computer controls the punching action.

Line Printer

A line printer is a "simplex" piece of terminal equipment that performs an output
function only. The line printer records output information, usually in alphanumeric
form. The term "line" indicates that the printer is capable of printing one entire line
of characters simultaneously. The line printer does not print the line simultaneously;
it ripples. Due to the printing mechanism being slightly slanted, it appears to be

30

simultaneous and the printing is done in a straight line across the paper. The speed of
line printers varies from 100 lines per minute to 1,000 lines per minute. The number of
characters (alpha or numeric) per line also varies, depending on the manufacturer. The
line printer in figure 1-25 operates at approximately 600 lines per minute, printing 120
characters per line.

Main Line
Switch

Reading
Station

Reading
Board

Program
Control

Colwnn

Figure 1-24. Card Punch

PreDa ure Roll

RDA26-427

This line printer has a print roll with fonts of characters (a font for each column
of printout, 120, engraved in relief on its curved surface), and a row of solenoid
actuated print hammers (a hammer for each column of printout, 120). In operation, the
print roll turns continuously above the print hammers. When a required character turns
into printing position, the corresponding hammer is actuated. The memory in the lower
right corner of the line printer stores the data for a line of printout. One complete
rotation of the print roll is required to print one line of characters. Each of the 120
hammers will be actuated only once per revolution of the print ro11--when its desired
character is in printing position. When the printing of one line is completed, then the

31

equipment's internal memory will request another line of output data from the memory ele­
ment of the computer. The printer we have been discussing is the impact type printer.
The,non-impact printer is an electrochemical printer which uses a burn process to print.
As the paper, which is a specially made paper with--magnetic crystals embedded into it,
passes over a stylus, electrical energy burns the outline of the characters into the
paper. Printers of this type" have obtained speeds of 36,000 lines per minute. While
having the advantage of speed, they are very costly. The paper is expensive and they
cannot make carbons.

TRANSPARENT COVER

PRINTER ASSEMBLY

FRONT VIEW

INTERFACE POWER
SUPPLIES AND
RELAY PANEL

RELAY KeOI

REMOVABLE I ENCLOSURE PANEL
" WITH RFI SHIELDING

:' MEMORY

INTERFACE ASSEMBLY

RDA26-428

Figure 1-25. BUle Line Printer

Tape Drive Unit

Figure 1-26 is a typical magnetic tape drive unit. This unit is similar to a home
tape recorder, but it records 7 to 9 channels instead of the 2-4 tracks used in home
recorders. The tape drive unit controls the tape movement and provides the read and
write operations. Since a magnetic tape may either receive or send information, it
is a complex input-output terminal device. In many cases, a compatibility package
or control unit (controller) is needed to synchronize timing and arrange information
into the proper word formats. .

32

FILE
REEL

REEL
REL.EASE
SWITCH

LOWER
MAIN
PLATE

Figure 1-26.

MACHIPIIE
REEL

UPPER
NAINPLATE

,--.:'--.::::::""-1-_ TAPE

L~-H--f+--+- HEAD ASSEMBLY

'VACUUM
SWITCHES ,0'

RDA26-430

Figure 1-27. Vital Parts
of the Tape Drive Unit

Tape Drive Unit

33

REWIND
IQLER

DRivE
CAPSTAN

TAPE

FILE MACHINE
REEL REE.L

Figure 1-28.

REWIND
IDLER

DRIVE
CAPSU.fi

RDA26-431

Tape Path

MECHANICAL OPERATION. Figure 1-27 gives some additional details on the mechanical
functions of the tape drive. The "file reel" is one of the many reels of computer data
stored in the computer room. The operator selects the desired reel from its storage
file, places it in the tape drive unit, threads it through the vacuum columns and .head
assembly, and connects it to the machine reel. The "machine reel" is the take-up reel.
The vacuum columns provide the proper slack in the tape to prevent damage during high­
speed movement of the tape from reel to reel. The head assembly contains one read­
write head for each of the channels on the tape. Figure 1-28 gives a detailed view of
the tape path and the mechanical parts needed to move the tape through the read-write
assembly.

Flexowriter

The Flexowriter (a trademark of the Frieden Corporation) is a two-way (both input
and output) complex terminal device which provides a means of communication between
the operator and the computer system. The Flexowriter requires a control unit to pro­
vide a compatible interface between it and the computer input-output elements. The
Flexowriter is an electro-mechanical typewriting device which provides an electrical
means of communication with the computer, plus a hard copy on paper of all data
exchanged.

The Flexowriter has internal circuits which convert the mechanical motion of keys
into electrical signals for entry into the computer or convert electrical signals from
the computer into the mechanical motion of keys to produce printed copy. In addition,
it has a paper tape punch and paper tape reader on the left side to produce or read
storage media. It is normally used by maintenance personnel to run maintenance pro­
grams and receive status reports from the computer. Figure 1-29 is a photograph of the
Flexowriter modified for use in the BUIC System. The Teletypewriter is baSically the
same, it was simply made by a different manufacturer. You will become quite familiar
with it through your future lab projects.

Display Equipment

The display equipment of a computer system is part of both the input and output
elements. Information may be transmitted from a digital computer and displayed visually
in a direct readable form. For example, a computer used in air defense accepts air
defense intelligence and evaluates or summarizes this intelligence for presentation by
a display system. In addition, the display equipment provides a means for the opera­
tor to enter data into the computer.

The prime purpose of air defense is to provide flight path instructions for inter­
ceptor air weapons. To accomplish this mission effectively, a clear picture of the air
situation must be available to personnel who are to direct retaliatory air defense.

A display system provides this picture. It presents relevent air surveillance
intelligence on specially constructed cathode-ray tubes. Since the information from
the central computer system is in a binary form, one important function of the display
system is to convert such information into a form that can be easily interpreted by
operating personnel. It does this by changing the binary information to visual intelli­
gence that consists of letters, numerals, vectors, and special symbols in a prearranged
format. These a.re visually displayed on a cathode-ray tube.

The operator of the display equipment can then use his equipment to accept, modify,
or reject the information displayed. He may also enter new data into the system. Any
action taken by the operator must be converted from switch actions, light pen responses,
etc., back to binary form for entry into the computer. In this way, display equipment

34

II

24743/1

12

2 3 4

14

1. START READ switch
2 . STOP READ switch
3, ENTER REQ switch
4, ENTER indicator
5. PUNCH ON switch
6. TAPE FEED switch
7. OFF LINE switch

5 6 7 8

8. DELETE CODE switch
9, DELETE key lever

10 . CAR RET key lever
11 . NORM key levers
12. SHIFT key levers
13. POWER switch
14 . BLANK key lever

RDA 26 - 4 3 2

Figure 1-29. Cont rol Panel and Keyboard Layou t of "Flexowriter" Unit

35

used in USAF Command and Control Systems becomes a two-way, man-machine interface allow­
ing the computer to talk to the operator and the operator to talk back to the computer.

Some displays show the conditions of operation within the computer rather than infor­
mation in the final output. These use neon and filament-type lamp indicators and special
tubes to visually repr~sent data or some particular condition.

-DATA DISPLAY CONSOLE. The data display console (DDC) (refer to figure 1-30) is used
to provide a visual presentation to an operator so that he may monitor and evaluate an
air defense situation within a given geographical area. More than one console is required
to monitor the air defense for a given location. For example, suppose that an installa­
tion is in the area of Cape Kennedy, Florida. One console may be assigned to the southern
portion of Florida and others will be assigned to other geographical areas in and around
Florida. The functions performed by the consoles may vary, and there are functions that
need to b~ duplicated due to the limited amount of information that can be presented on
one CRT.

RDA26-384

Figure 1-30. Data Display Console

A data display console can be divided into three basic sections. There are the
situation display section, which consists of a large CRT (left side of figure 1-30); a
tabular display section, which consists of a small CRT (center of the figure); and the
manual intervention section, which is used to communicate with the computer system
(lower right of figure). The situation display section is used to process and display
such information as aircraft movement, boundaries, radar data, and air base locations.
The tabular display section is used to process and provide the operator with the infor­
mation he has requested, or provide tabulation of information that pertains to the
function the operator is performing. The manual intervention section is used to inter­
rupt the computer system when the operator requests more information or desires to
insert information into the system.

All functions performed by the computer system are to process data so that it can be
displayed a,t _the data display consoles. The DDC can display two basic types of infor­
mation--symbols and vectors. Symbols are numbers, letters, and special characters used
to denote specific functions. Vectors are used to draw geographic boundaries and indi­
cate the relative speed and direction of an aircraft track. Vectors will only be

36

displayed by the situation display CRT. All data displayed on the tabular (Tab) CRT
will be symbols;

The information received at the console is either forced or selected. Forced data
is received at a console and cannot be rejected by the operator. Forced data is received
and displayed when new data is received at the computer and this data is needed to update
the information being displayed at a console. The operator may request additional infor­
mation from the computer when it is needed to interpret track messages or make a decision
involving defensive action. •.

All data received at the data display console must first be processed by the com­
puter system before it can be used by the console. Data received into the computer sys­
tem is in the form of radar signals and the data console cannot process raw radar data
as it is received from the radar site.

After proper processing, the received data is displayed in usable form on CRTs such
as the typotron and charactron.

DISPLAY TUBES. The main component in most visual display equipment is the cathode­
ray tube. The cathode-ray tube (CRT) operates on the same basic principles as the tubes
commonly used for oscilloscopes or picture displays. Additional elements have been
added to these CRTs to further control and direct the electron stream for character dis­
play. These are the charactron and the typotron tube.

CHARACTRON. Since the charactron tube presents the plan position maps of the air
situation or portions of it, the display is referred to as a situation display.

Information pertaining to radar tracks, flight plans, geographical boundaries and
locations, and weapons sites as presented on this tube is shown in figure 1-31 in the
form of letters, numbers, special symbols, and vectors. The letters and numbers are
assembled in short encoded messages that are displayed adjacent to certain points and
targets to give identification and other descriptive data.

GFICHIDS
YIELDING DATA

" ,,0

XTL CH IDS
VIElDINGDATA

00

01

LRtCHIDS
YIELDING 04U.

TALLA_
• HASSEE 0

CEPICS
YIELDING DATA

01

'" START ."'
we>

$ TART
W8$_

RDA26-433

Figure 1-31. Typical Charactron Display

37

TYPOTRON. The typotron cathode-ray tube is similar in operation to the charactron
tube. The typotron displays information, as shown in figure 1-32, that is too detailed
for situation display. This type of display presents digital information in the form of
charts and therefore is referred to as a digital display.

·1 ABCD • THIS
2EFGH ST
3 1 J K L
• MN 0 P
S Q R S T
6 U V W X

7 Y Z"'''
8 X X X X
9 •••• oA".
1 ••••
2 - - --
3 ••••

• -1'<1''''
s ,..,..
6 - - --

RDA26-434

Figure 1-32. Typical Typotron Characters

5

C 01----

RDA26-388

Figure 1-33. Neon Indicator

OUTPUT INDICATORS. In addition to displays intended for use by operators, most
computer systems have smaller display areas intended for use by maintenance men. These
displays may be gathered together in one central panel, or they may be scattered around
the machine in strategic locations. Normally, these maintenance displays show the state
of important flip-flops or registers in the machine. Occasionally, these displays will
decode the count in significant counters or registers.

NEON INDICATORS. Neon indicators are used in computers to display directly the
information contained in various registers and counters. As shown in figure 1-33, an
amplifier is usually needed to increase the small voltage output of a flip-flop to a
value sufficient to fire the neon lamp. The input to the neon amplifier is from the
one side of the flip-flop. The amplifier will cause the neon indicator to light when
the flip-flop is in the one state and to extinguish when the flip-flop is in the zero
state.

INCANDESCENT INDICATORS. Many of the newer computer systems using integrated cir­
cuits have incandescent indicators rather than neon indicators. In most cases, the
incandescent lamps are special~purpose bulbs that draw very little current and, there­
fore, do not require the use of an amplifier between the flip-flop and the indicator.

38

Figure 1-34. Nixie Tubes

NIXIE TUBES. The Nixie tube, a registered trademark of. the Burroughs Corporation, is
designed to display anyone of several characters rather than simply indicate the state
of a flip-flop.

The tube is gas filled and contains 10 cold cathodes and one common anode. Each of
the cathodes is shaped to form a character, either alpha or numeric. When the correct
voltage is applied between the anode and one of the cathodes, ionization of the gas
occurs and causes a glow to surround the selected cathode. Because the cathode is
shaped like a letter or number, we see a 6, a 2, an A, etc.

The use of Nixie tubes with cathodes in the form of letters or symbols is a design
consideration and only for special purposes. For our purposes, we will consider that the
cathodes are in the form of numbers only. The tubes are available in a variety of sizes
ranging from ~ inch in diameter to several inches in diameter. Figure 1-34 shows 2
sizes of Nixie tubes.

Unlike the neon indicator which takes an output directly from a flip-flop, the Nixie
tube requires a decoding system to select the desired cathode. Figure 1-35 shows the
decode network for a count of five from a three stage up counter. The counter is made
up of flip-flops A"B, and C. Gate 1 detects a count of five in the counter. The
inverter amplifier provides a voltage of proper 'polarity to drive the cathode of the
Nixie tube. Each cathode, except 8 and 9, would need a count detecting gate and driver
like the one shown for cathode 5 to display all possible counts in the counter.

C

INPUT T

11-----,

o
NE

RDA26-390

Figure 1-35. Nixie Tube Decoder Network

39

+

REVIEW QUESTIONS 1-3

1. What is the f~nction of the input unit?

2. What is the function of the output unit?'

3.. What is meant by the term "ComputerWord"?

4~ How does a computer distinguish an instruction word from a data word?

5. Why is a machine cycle broken down into acquisition time and execution time?,

6. How many bits are used in the COM-TRAN TEN computer word?

a. Binary bits

b. Hexadecimal bits

7. What are the three positions on the main POWER switch for the teletypewriter?

a.

b.

c.

8. What position should the POWER switch be in to allow the use of the teletypewriter
without accessing the COM-TRAN TEN?

9. What are the three positions of the tape reader switch?

a.

b.

c.

10. What position should the t~pe reader switch be in to allow reading of the tape?

11. List the four switches on the tape punch unit.

a.

b.

c.

d.

12. State the purpose of the "BACKSPACE" switch on the tape punch unit.

13. What type of code is used by the teletypewriter?

14. What is the purpose of the following keys on the keyboard of the teletypewriter?

a. CTRL (Control)

b. LINE FEED

c. RETURN

40

COMPUTER OPERATION AND FAMILIARIZATION

In the first part of this chapter you learned the five basic blocks of all digital
~omputers. Now, you are going to learn the block diagram of the COM-TRAN TEN. As you go
through this material relate the COM-TRAN TEN block diagram to the basic block diagram.
Look for the elements of the COM-TRAN TEN block diagram that make up the units of the
basic block diagram. This will help you understand the flow of information through the
COM-TRAN TEN block diagram.

The block diagram of the COM-TRAN TEN is foldout 1-1. First, look at the block
diagram and note that there are Bus Lines. These are nothing more than conductors. They
are called Bus Lines because information can be put on or taken off in many different
places. There are four Buses in the COM-TRAN TEN; F-Bus, G-Bus, Y-Bus and Z-Bus. The
data on the F, G, and Y Buses are in true form (High = 1 and Low = 0), while the data on
the Z-Busis in the one's complement form (DATA). Notice that the F and G Buses have
only one route; F-Bus between the ALU and the A-Register, G-Bus between the Index Adder
and the M-Register. The Y-Bus receives its data from the selector and transfers this data
to many different registers. Only one register will receive this data during any of the
transfers. Informati.on can be transferred to the Z-Bus from six different registers
(I-Reg, P-Reg, Memory, X-Reg, A-Reg, and Q-Reg); however, only one of these registers can
transfer data to the Z-Bus at a time. This information can go to the Buffer Register,
to the Two's Complementer, or the Memory Address Register. Buses are nothing more than
conductors (such as wire) that carry information around inside the machine.

Look at the left-hand side of the block diagram. There you will see a block labeled
Input Switch. These are sixteen switches that are used to manually input information
into the computer. Figure 1-37 shows the control panel of the COM-TRAN TEN. The Input
Switches are the ten switches labeled Input and sixteen Hexadecimal switches in a four
by four configuration just below the Input Switch. The outputs of these switches go to
the Input Register in binary form. This means your Hex inputs are changed to Binary as
you input them.

The Input Register is a 10-bit storage register. It is used to hold the values
which you input from the Input Switch. It can also be used to hold information that is
being manually output from the computer. The Input Register can put information on the
Z bus, or take it from the Y bus (Manual Output), or take it from the Input Switch. The
Input Register can also transfer information through the Selector to the Y bus for
manually loading the registers. Refer to figure 1-37; the switches labeled A, B, C, D,
S, M, P, Q, and X are used to manually transfer the data in the Input Register to the
other registers in the COM-TRAN TEN.

The Buffer Register is an 8-bit storage register, and is loaded from the Z bus. All
information going to Memory or coming from Memory must go through the Buffer Register.
Many of the data transfers through the computer go through the Buffer Register. Its
output goes to the Selector, which decides which of three inputs will be placed on the
Y bus. The three inputs are from the Buffer, the Two's Complementer, or the Input Regis­
ter. The Selector output goes to the Y bus. The normal output of the Selector is the
Buffer; however, the Input Register or the Two's Complementer will be selected when
necessary.

The Two's Complementer is a circuit that does just what its name implies.· It per­
forms the two's complement on positive or negative numbers. It can also do a one's com­
plement. The circuit used in the Two's Complementer is an adder. It receives· data from
the Z bus, and since the Z bus is in the one's complement form, a two's complement can be
performed by adding a 1 and one's complement by adding a o.

The next element of the block diagram is the Program Address Register. This is a
lO-bit storage register used to hold the address of the next instruction to be done by

41

the computer. It can be loaded from the Input Register or the Memory Address Register.
The output of the Program Address Register goes on the Z bus to the Memory Address
Register.

The Op Code (S) Register is an 8-bit storage register. It holds the code for the
. instruction that is being performed. In other words, if you are doing an add, the code
for an add will be in the Op Code Register. This will cause the computer to add two
numbers together. The input to the Op Code Register comes from the Buffer or Input Reg­
ister by way of the Y bus. The output goes to an Instruction Decoding Network.

The Decoder decides what instruction is to be performed, and it will generate the
signals necessary to perform that instruction. If the ADD code is in the Op Code
Register, the Decoder will decode this count that tells the computer to add. The output
of the Decoder is sent to the proper places to make the computer add two registers to­
gether. There are many instructions: such as one to tell the computer to get a number
out of Memory and put it into a register. Instructions are put together by a program­
mer in a logical, sequential way called a program. The program will do the job the pro­
grammer wanted done. A program is put into the computer's Memory. From Memory. the
computer takes out instructions and decodes them. It then performs each instruction.
The computer does this until it decodes an instruction that tells it to stop. The Pro­
gram Address Register holds the Memory Address of the nex't instruction to be performed.

The Memory is used to store numbers. which can be decoded as instructions or data.
but they must be in Hex form. If you want to add values of 26 and 73. the numbers and
the add instruction must be in Memory. You also need a way to get the number when you
want it. To do this. each Memory location has an address. If you were told to go get
Joe Smith. but you didn't know where he was, you would have some difficulty finding him.
If you were told he was in room 327 you could get him. Room 327 is like the Memory
address. It tells the computer where to go to find the number you want. Note that the
address and the number in that address are not necessarily the same. just as 327 is not
the same thing as Joe Smith. The COM-TRAN TEN uses a random access IC chip memory made
up of 1024(10) or 400(16) 8-bit-words. Data input is from the Y bus. Data is output in
complemented form to the Z bus. >rhe IC chip is a volatile storage device. If power is
removed from the chip, then the data in memory is no longer accurate. The COM-TRAN TEN
is designed to maintain power to the IC chip memory after the power has been turned off
by the power switch. However. if the machine is unplugged then the data in memory is no
long~r accurate.

The Memory Address "M" Register is a lO-bit register used to tell the computer what
Memory location you are using. It can hold the address of instructions or data. Remem­
ber. instructions or data codes are just numbers.

The Index "X" Register is an 8-bit storage register. It is used to modify Memory
addresses. A Memory address and the contents of the Index Register can be added together
to give a new memory address. You will see how this is used when you get into
Programming.

To add the Index to the Memory address there is an Index Adder. It takes the out­
puts of the Memory Address Register and the Index Register and adds the two together.
The sum is placed in the Memory Address Register.

The Accumulator "A" Register is an 8-bit register. It can be shifted left or right
and can transfer data in and out in parallel. The Accumulator and Buffer hold the num­
~ers used for most arithmetic and logical operations. The results of most of these op­
erations are then put back into the Accumulator. For example. during an add operation.
the Buffer holds the addend and the Accumulator holds the augend. then the sum.

The Quotient "Q" Register is ail 8-bit register used in some arithmetic operations.
It holds the LSD of the product after a mUltiply operation, and the LSD of the dividend

42

and then the quotient of a divide operation. It also can be shifted left or right, and
transfer data in or out in parallel.

The Arithmetic Logic Unit "ALU" takes its inputs from the Accumulator and the Y Bus.
It performs all the arithmetic and some logical operations. This is where the additions
and sub.tractions take place. The outputs of the ALU (Arithmetic Logic Unit) go to the
F Bus which inputs into the Accumulator.

The Count Down Register is an 8-bit register that is used to help control the com­
puter. It is used to help control teletype input and output to the computer, to count
the number of shifts for shifting operations, and to control the number of instructions
jumped in skip instructions.

The clock is basically a free-running multivibrator that produces I-microsecond
pulses every 2 microseconds.

PRT = 2 llsec PW = 1 llse.c· PRF = 500 KHz

The pulses are used to t·oggle two D-Type flip-flops which are interconnected to form
a grey-code counter. The outputs of this counter are decoded as clock pulses - CPl, CP2,
CP3, and ENABLE. The clock pulses control minor timing of the COM-TRAN TEN.

The D-Reg is a 4-bit up-counter, incremented by CP3, which can count in binary from
o through 15(10). The output of the D-Reg is decoded in conjunction with the E FF to pro­
duce distributor pulses DPO - DP15 and DPAO - DPAl5. These distributor pulses control
the major timing of the COM-TRAN TEN. The E FF determines the phase (acquisition or
execution) in which the COM-TRAN TEN is operating. If a word is read from memory during
the acquisition time it is part of an instruction word. If it is read during execution
time it is data.

You have read what each element of the block diagram does. Now we will try to put
them all together into a working machine.

To write instructions and data into the computer the information goes to the Buffer
Register. It can come from the Input Register or the Teletypewriter. From the Buffer it
goes into the Memory.

Once the instructions and data are in Memory, the computer can start working on the
problem. To do this, the address of the first instruction to be performed is transferred
from the Program Address Register to the Memory Address Register. Remember the Program
Address Register tells where the next instruction word is locat.ed and the Memory Address
Register is used to tell the Memory location. The instruction is then brought out of

'Memory through the Buffer Register and transferred to the Op Code Register on the Y bus.
Once the Op Code Register receives the instruction, it is decoded by the Control Section.
If the instruction requires data from Memory, then the data is brought out of the Memory
into the Buffer Register. From there the instruction does whatever it is supposed to do.
As you go through the instructions later in this book, you will need to refer to the
block diagram to follow each instructi'on and see what it does.

INDIVIDUALISM,OF THE COM-TRAN TEN COMPUTER SYSTEM

In figure 1-36 is pictured the COM-TRAN TEN computer system. This is the digital
computer that is used in this manual as a vehicle of learning. Do not be misled-by its
size. It can do all the things a large scale computer can do. (It is a small computer
because its word length is short and its memory size small.)

All computers have to be programmed ••• taught what to do and where to ~ocate informa­
tion (called data). As soon as the programming is done, high-speed computing gets

43

underway. The COM-TRAN TEN computer, though, does more than compute. You start out
teaching the machine, as always. When computing starts, the CT-TEN education system
takes on a new persona1ity ••• it becomes the teacher. It reveals the exciting world of
numeration, number manipulation, computer design, and logic. The activity it offers best
is logic ••• how do we think when we solve a problem.

The INPUT section of the CT-TEN system is labelled INPUT on the CONTROL PANEL. We
will also make use of a teletypewriter on which we can type into the computer's memory
or we can prepare tapes and read information in this way.

The OUTPUT section of the CT-TEN computer is the display primarily. We can also
direct the computer to type (or print) out answers on the teletype.

The MEMORY section of the CT-TEN computer consists of 1024 individual storage cells,
each of which is addressable. Each cell is eight bits in length. This means that in any
given cell we may store a number up to +127 and lower to and including -128. Instruction
words are two cells in size. We refer to the size of a memory cell as a ~.

The ARITHMETIC section of the CT-TEN computer can also be called accurately the
LOGIC unit. There are several parts of the display that are used in the arithmetic or
logic of the computer. Take note of the ACCUMULATOR, QUOTIENT, BUFFER, and INDEX.
Besides the four operations of ARITHMETIC, LOGIC operations can be performed. The CT-TEN
computer also records the nature of certain registers as greater than, equal to, or less
than zero. Comparing numbers and acting on the results is an integral part of the nature
of computers.

The 'CONTROL section of the CT-TEN computer can be studied in much detail through the
DISTRIBUTOR MODE (see CONTROL PANEL). It takes an interaction· of all the registers you
see on the display for CONTROL to do its job. At present we will appreciate the work of
the CONTROL portion of the computer, rather than study and understand it in detail.

OPERATING THE COMPUTER

The COM-TRAN TEN computer can be operated from any standard 115-vo1t 48-62 (220
VAC optional) Hertz AC power source. The power plug is designed for a three-prong
receptacle. Check that the power plug is secure in the outlet.

The POWER switch on the CT-TEN computer is located on the left of the control panel.
Press it. When lit, power is ON. Figure 1-37.

Controls and.Switches

POWER

LAMP TEST

MODE: DIST

Press this switch to turn computer ON, if off. Press this
same switch to turn computer OFF, if on. When switch is
lit, power to the computer and its memory is on.

Turning ON the LAMP TEST results in all the light indica­
tors on the display and the ten INPUT bit indicators to be
illuminated.

DISTRIBUTOR MODE permits the operator to step through an
instruction by stopping after each clock pulse. When the
computer is in this mode, one clock pulse is generated
each time the START switch is pressed.

45

A/E

INST

S, tv Glf- ~ ([73

PROG

RPT

SENSE

ERROR BYPASS:

INST

ADD OVFL

DIV OVFL

ACQUISITION/EXECUTION MODE permits the operator to step
through a program by stopping twice for each instruction.
First the computer acquires an instruction stored in mem­
ory and stops while the contents are displayed in the OP
CODE and MEMORY ADDRESS registers. Then the computer
carries out the instruction and stops to display the
results in the registers. The START switch must be pressed
to go on to the next phase.

INSTRUCTION MODE allows the operator to step through a pro­
gram by stopping after each instruction is carried out.
The START must be pressed each time to go on to the next
instr.lction.

PROGRAM MODE is the mode of execution for the computer to
carry out instructions at its own fast speed of operation.
In this mode the computer stops only if an instruction
commands it.

REPEAT MODE permits the operator to have a certain phase
of executing or acquiring an instruction to be repeated
over again, in order that voltage levels may be constant
and the registers may display the action repeatedly as a
constant situation.

SENSE MODE can be pressed at any time. If a program con­
tains an instruction to test the SENSE switch, then one
of two alternate set of instructions will be carried out.

IF A MODE SWITCH LIGHT IS ON, THAT MODE SWITCH HAS BEEN
SELECTED. Press again to turn OFF.

The computer will stop when it encounters certain opera­
tional errors. By pressing the INSTRUCTION ERROR BYPASS
the computer will NOT stop when it encounters a code that
is not an instructional code.

By pressing this ADD OVERFLOW ERROR BYPASS the computer
will NOT stop when the result of computation in the ACCUM­
ULATOR register exceeds +127 or is less than -128. If this
indicator is not lit, the computer does STOP when the
result of addition or subtraction exceeds +127 or is less
than -128.

By pressing this DIVIDE OVERFLOW ERROR BYPASS, the com­
puter is instructed NOT to stop when the result of divi­
sion is greater than the QUOTIENT register can hold. If
this indicator is not lit, the computer does STOP when the
QUOTIENT register does not hold the answer in division.

Pressing one of these two switches sets up the computer to
execute the I/O instruction selected. The countdown regis­
ter is set to a count of FF16 and the distributor register
to a Hex 10 code. The operation (OP) code is set up for
the proper I/O instruction.

46

READ INTRPT

WRITE BLOCK

I/O MODE:

REXMT OFF

HEX

ALPHA

CONTROL:
>~

CLEAR

STOP

START

INPUT

Switches
A
B
C
D
S
M

P
Q
X

If pressed, sets the OP code for read until interrupt
operation.

When pressed,. sets up the OP code for write data block
operation.

Pressing this switch turns the teletype printer off. It
will not print data from the paper tape reader or keyboard.

Pressing this switch causes information read into or out of
memory to be considered in hexadecimal form. When read
into memory a colon (:) separates data words. When read
out of memory, a colon (:) is supplied by the system to
separate data words. The teletype remains in the I/O mode
selected until a change is made on tape, on the teletype
control, or on the control panel.

Pressing this switch causes data to be read into or out of
memory as alphabetical letters, characters, or decimal
digits.

By pressing this switch all the register lights are. cleared
and become zero.

By pressing this switch the computer will stop operating
after the manual stop signal is synchronized by the com­
puter's clock. This is the correct method of manually
stopping the computer while it is operating.

When pressed, the manual start signal starts the computer
clock and computer operations. The computer will operate
as directed by the MODE and MODE REPEAT switches until a
stop is executed.

The INPUT register consists of ten switches that can be set
(lit) by pushing each individually or by using the keys
numbered from 0 through F. By pressing one of the keys
arranged in four rows of four keys each (hexadecimal num­
bers), the binary form of that hexadecimal digi t wil.l be
entered on the right set of four INPUT switches; when the
next hexadecimal key is pressed, the first four lights are
transferred to the left before the new digit is entered in
the least significant set of four lights.
The RESET switch clears the ten INPUT switches. Pressing
one of the following switches will transfer the contents of
the INPUT REGISTER to the selected register.
ACCUMULATOR register
BUFFER register
COUNTDOWN register
DISTRIBUTOR register
OP CODE register
MEMORY ADDRESS register (8 least significant bits are also

called OPERAND)
PROGRAM ADDRESS register
QUOTIENT register
INDEX register

47

POWER

I
I COM -TRAN Ten I

LAMP

UC\D\E\F\

ija\9\A\S\
"4\5\6\7\
\10\1\2\3\

AD WT
TEST A seD S M P Q X MEMORY

[] II\\IIII\IWMJ

~I/OMODE~ REXMT

MOD
[i CONTROL~·

CLEAR s~_~~ STAAT

~\liWJ
.....------ MODE

ritil
I/O~

DIST AlE INST PAOG

~
[

ERROR BYPASSJ
ADD DIV

I~!T O~~L OVFL

{iI.1II
REAO WRITE

INTRPT im

RDA26-435

Figure 1-37. Control Panel for COM-TRAN TEN Computer

RD MEMORY

WT MEMORY

READ MEMORY switch sets up the computer to output data from
memory cells indicated in the memory address register.

WRITE MEMORY switch sets up the computer to accept data
through the BUFFER register and store it into memory cells
beginning with the one addressed in· the memory address.

Computer Registers and Display Panel

The reg~sters of a computer are temporary storage devices. Each is made up of a
series of bistable circuits or flip-flops. Each such circuit has the' ability to repre­
sent either the ZERO or the ONE state, and when connected in series they act upon one
another to interpret data. Certain registers hold results before and after computation,
others are a clearinghouse for the computer, still others act as the control within the
computer.

The more familiar a programmer becomes with the operational characteristics of the
various registers, the greater will be his ability to utilize them to best advantage when
writing and running programs.

A listing of the various registers of'the COM-TRAN TEN computer follows, accompanied
by a description of the functional aspects of each. Figure 1-38.

Register and Abbreviation

ACCUMULATOR
A

BUFFER
B

Description and Function

An 8-bit register; seven bits represent magnitude in most
arithmetic operations and the leftmost bit represents a
sign (0 is positive and 1 is negative). The register bits
are numbered according to their binary integer value, i.e.,
A5 is the 25 (32) position in the A register. A7 is the
sign position. The A register is used to hold:

(1) the augend and then the ~ in arithmetic addition.
(2) the minuend and then the difference in subtraction.
(3) the most significant bits of a product. in multiplica-

tion (see AQ register).
(4) the most significant bits of a dividend prior to a

division (see AQ register).
(5) the remainder in division.
(6) the augend and then the LOGICAL sum in addition.
(7) the first word of data and the LOGICAL result in

EXCLUSIVE OR or in INCLUSIVE OR operations.
(8) the 8-bit status word as a result of the SENSE STATUS

instruction.

An 8-bit register used to communicate with every section
of the computer. It performs the following functio.ns:

(1) holds the addend in arithmetic addition, if this num­
ber has the same sign as the augend in the
ACCUMULATOR.

(2) holds the two's complement of the addend in arithmetic
addition, if this is opposite in sign from the augend
which is in the ACCUMULATOR.

(3) holds the subtrahend in subtraction, if this number
is opposite in sign from the minuend in the
ACCUMULATOR.

49

V1
o

,D>o
CO NO D =0

CODE D< 0

.L D CARRY

r-D INTER

I D SENSE
STATUS

L D FLAG

o WAIT

,0INST

ERROR DADO

L..--O DIVIDE

ITJ [I] lIJ ill [I] II] IT] []J

L COUNTDOWN ~

IACCUMULATOR~ I QUOTIENT ' I

, []J m [I] [I] [!l[]J OJ []] W W [I] [I] rn [I] OJ rn

I BUFFER I I INDEX I
[JJ [I] w [I] [I] [I] [JJ []J [lJ m UJ [I] [!] m IT] II]

I OP CODE -----.1 r--I --OPERAND-------,

ODD D D 0 [!J[I] IT] [!] W [!J [!] [] IT] W

L OP CODE J ~ L MEMORY ADDRESS ~

[!] [I] lIJ ITJ []] [I] [!] [I] [I] IT} ITJ rn [1] OJ IT]

[DISTRIBUTORJ L PROGRAM ADDRESS ~
RDA26-436

Figure 1-38. Display of CT-TEN COMPUTER

COUNTDOWN
G

DISTRIBUTOR
D

OP CODE
S

MEMORY
ADDRESS

M

PROGRAM
ADDRESS

P

QUOTIENT
Q

AQ

(4) holds the two's complement of the subtrahend, if this
number has the same sign as the minuend in the
ACCUMULATOR.

(5) holds the multiplicand in multiplication and the divi­
sor in division.

(6) holds the constant in LOGICAL operations.
(7) acts as a data register for transferring in and out of

memory.

An 8-bit decreasing counter. It holds a count of the num­
ber of process steps in multiplication and division, the
number of shifts in shift instructions, the number of in­
structions to be skipped in skip instructions, and the num­
ber of words to be handled in Input/Output instructions.
The C register flip-flops ar.e designated according to their
binary integer value, i.e., C6 is the 26 position.

A 5-bit increasing counter that establishes the sequence of
clock pulses. Depending on the state of the E flip-flop
and the decoded contents of the OP CODE register, this
register controls the logic functions to be performed on
initiation of each timing pulse.

A 5- to 8-bit register that holds the operation code of the
instruction being performed. In practice the most signifi­
cant five bits are the instruction code. The lower three
bits are added to the instruction code to allow for address­
ing beyond cell 'FF.' Thus three more levels of memory
cells can be used. Bit 82 is used as an index.

A 10-bit register used to locate anyone of the 1024 words
in the memory. The flip-flops are numbered according to
their binary integer value.

A 10-bit register that determines the location of the
instruction to be executed.· It is increased during the
ACQUISITION phase unless the MODE REPEAT switch is on. An
instruction consists of two consecutive words: one is the
OPERATION CODE and the other is the accompanying MEMORY
ADDRESS (for memory referenced instructions) or OPERAND
(for immediate instructions). The first instruction of any
program is usually stored at an even address.

An 8-bit register; seven bits represent magnitude and the
most significant bit represents the sign of the number.
The bits are numbered and handled like the bits in the
ACCUMULATOR. The Q register is used to hold:

(1) the least significant bits of a product in mUltiplica­
tion (see AQ register).

(2) the least significant bits of a dividend and then the
quotient in division. Q7 is the sign bit.

A l6-bit register consisting of the ACCUMULATOR-QUOTIENT
registers. Fifteen bits hold the product after mUltipli­
cation with A7 being the sign of the product. The fifteen
bits hold the dividend before division with A7 being the
sign of the dividend. This l6-bit register is affected by
the ARITHMETIC shift instructions.

51

INDEX
X

·COND CODE

STATUS

ERROR

Hexadecimal Revie~

The X register is an 8-bit register which is used for
indexing the operand address. If S2, the index bit of an
instruction OP code is set, the contents of the INDEX regis­
ter will be added to the contents of the Memory Address
Register during the Acquisition phase of the instruction.

A 4-bit register arranged in vertical position. Following
each instruction this register records the nature of the
register affected. After an instruction involving the
ACCUMULATOR, the COND CODE records the nature of the
ACCUMULATOR. After division the COND CODE records the
nature of the QUOTIENT. In subtraction the two numbers are
regarded as 8-bit numbers; if the subtrahend (in the
BUFFER) is greater than ~he minuend (in the ACCUMULATOR)
the CARRY bit is set.

A 4-bit register arranged in vertical position. The bits
can be set by means of an instruction. The SENSE STATUS bit
can also be set from the control panel.

A 3-bit register that is arranged in vertical position.
These individual bits are set whenever the error occurs in
the course of running a program. Operation will not stop,
if the appropriate switch has been set to bypass the error
(switch is located on control panel).

Turn ON the power switch of the computer.
Press the CLEAR switch.
AlE mode.
Press RD MEMORY.
Press the START.

At this point watch the MEMORY ADDRESS register. Press the START agairr~ Notice
that the Mo light went ON. Press the START again. Record your results. (To shorten
the recording process, just put down the results in the four least significant lights.)

OFF OFF OFF OFF
OFF OFF OFF ON
OFF OFF ON OFF
OFF OFF ON ON
OFF ON OFF OFF
OFF ON OFF ON
OFF ON ON OFF
OFF ON ON ON
ON OFF OFF OFF
ON OFF OFF ON
ON OFF ON OFF
ON OFF ON ON
ON ON OFF OFF
ON ON OFF ON
ON ON ON OFF
ON ON ON ON

52

By pressing the START, the computer increased what was in the MEMORY ADDRESS by one.
The computer was counting by one's in the M register. Since the computer has only two
w~ys of showing information in anyone place (not ten different ways), the computer uses
a different number system. We call this system the binary numeration system. (Binary
means two symbols.)

Each light is EITHER ON or OFF. When we translate these states into number symbols,
we choose to let OFF be represented by "0" and ON to be represented by "1." Now the
states above are represented as:

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

You have just counted in binary from zero through fifteen. Look-oack over the
results. We have a number system with only two symbols. The place value of each "0" or
"1" becomes more significant than one may have realized. Notice that two is represented
as: 0 0 1 O. Four was in this form: 0 1 0 O. Eight had this form: 1 0 0 O. A "1"
in each of these special positions gives a value of 2, 4, or 8 to be added into the.
value of the number under consideration.

one's place

two's place

four', place~

eight's P1ace----.

0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 0 8
1 0 0 1 9
1 0 1 0 10
1 0 1 1 11
1 1 0 0 12
1 1 0 1 13
1 1 1 0 14
1 ·1 1 1 15

53

We stopped at fifteen, since we had considered only four places. Fifteen is the
largest number we can represent with four places, since fifteen equals eight plus four
plus two plus one. We call these places BInary digiTs or BITS, for short.

Notice that each number from zero through fifteen had a special or unique way of
representing that number. NO OTHER NUMBER could be represented in binary form as 12 is,
for example. Only 12 equals 8 plus 4 and so is: 1 1 0 O. If we work with numbers
greater than fifteen, we will need more places. Each place will be two times greater
than the one to its right. If we consider two more places, we then have the sixteen's
place and the thirty-two's place.

To emphasize and appreciate this idea that every number has a unique representation,
use the BINARY SELECTION set of six charts (figure 1-39). These are labelled A, B, C,
D, E, and F. Study them a few moments before turning to the following page.

Ask someone to think of a number from 0 through 63. Without telling you the number
he will identify it with six YES-NO responses. He will look at each chart in turn from
A through F. He will say YES, if the number is on the chart; NO if the number is not on
the chart.

Suppose his responses are:

A
YES

B
YES

That could only be the number 54.

C
NO

D
YES

E
YES

F
NO

Notice the number that appears first on each chart: A has 32, B has 16, C has 8,
D has 4, E has 2, and F has 1. Notice that these numbers are all a power of two (two
multiplied by itself a different number of times). Converting the YES responses to l's
and the NOs to O's, the binary form of 54 is 1 1 0 1 1 O. This means that 54 is 32
+ 16 + 4 + 2.

One more sample: I am thinking of a number •.• my responses are:

A
YES

B
NO

C
YES

So that must be 32 + 8 + 2 + 1 which is 43.

D
NO

E
YES

F
YES

As you work with the computer you will develop more familiarity with this system
and a closely related one: hexadecimal. The conversion table on a following page will
help you, so you need not master this material now.

However, if you wish to convert a number in decimal form to its equivalent binary
form you would divide by two successively. Assume, for instance, that we wish to find
the binary number for 53. The process is:

53/2 26, with a remainder of: 1
26/2 13, with a remainder of: 0
13/2 6, with a remainder of: 1

6/2 3, with a remainder of: 0
3/2 1, with a remainder of: 1
1/2 0, with a remainder of: 1

The column of remainders, when set down with the top digit at the right yields
110101 which is the binary equivalent of 53 (32 + 16 + 4 + 1).

54

TABLE 1-1

DECIMAL-BINARY-HEXADECIMAL
CONVERSION TABLE

HEXADEClMALl HEXADECIMALl
BINARY~ BINARYl
.ECIMAL DECIMAL

+ 0 00000000 00 45 00101101 2D
1 00000001 01 46 00101110 2E
2 00000010 02 47 00101111 2F
3 00000011 03 48 00110000 30
4 00000100 04 49 00110001 31
5 00000101 05 50 00110010 32
6 00000110 06 51 00110011 33
7 00000111 07 52 00110100 34
8 00001000 08 53 00110101 35
9 00001001 09 54 00110110 36

10 00001010 OA 55 00110111 37
11 00001011 OB 56 00111000 38
12 00001100 OC 57 00111001 39
13 00001101 OD 58 00111010 3A
14 00001110 OE 59 00111011 3B
15 00001111 OF 60 00111100 3C

61 00111101 3D
16 00010000 10 62 00111110 3E
17 00010001 11 63 00111111 3F
18 00010010 12
19 00010011 13 64 01000000 40
20 00010100 14 65 01000001 41
21 00010101 15 66 01000010 42
22 00010110· 16 67 01000011 43
23 00010111 17 68 01000100 44
24 00011000 18 69 01000101 45
25 00011001 19 70 01000110 46
26 00011010 1A 71 01000111 47
27 00011011 1B 72 01001000 48
28 00011100 1C 73 01001001 49
29 00011101 lD 74 01001010 4A
30 00011110 IE 75 01001011 4B
31 00011111 IF 76 01001100 4C
32 00100000 20 77 01001101 4D
33 00100001 21 78 01001110 4E
34 00100010 22 79 01001111 4F
35 00100011 23 80 01010000 50
36 00100100 24 81 01010001 51
37 00100101 25 82 01010010 52
38 00100110 26 83 01010011 53
39 00100111 27 84 01010100 54
40 00101000 28 85 01010101 55
41 00101001 29 86 01010110 56
42 00101010 2A 87 01010111 57
43 00101011 2B 88 01011000 58
44 00101100 2C 89 01011001 59

90 01011010 5A
etc.

56

On the COM-TRAN TEN we may get involved in a few problems with binary forms we will
wish to convert to their decimal forms. The registers show the numbers that are the
powers of two. Their equivalent values are:

20 1 25 32 210 1024

21 2 26 64 211 2048

22 4 27 128 212 4096

23 8 28 256 213 8192

24 16 29 512

It will not be necessary to convert every number we use to binary in this way of
division. Most of the numbers we will work with are codes, numbers that command the
computer to do a certain task. To make things easier to express and convert them into
computer language we will use a special coding form called hexadecimal.

In hexadecimal form the binary numbers are arranged into groups of four bits each.
Thus the binary form of the decimal number 53 would be shown as:

0011 0101

Each place still has the same value. Therefore, we still have 32 + 16 + 4 + 1. We have
a total of eight places each of which has a value of (from left to right):

128 64 32 16 8 4 2 1

8+4+2+1 15, the largest number we can represent with four bits. Notice that:

128 8 x 16
64 4 x 16
32 2 x 16
16 1 x 16.

So we can group the binary bits above and represent the decimal number 53 as '35' in
hexadecimal form. This means it has a value of (see table 1-1):

(3 x 16) + (5 xl).

Using this system we are able to represent numbers when we code a program with a
few symbols and still be able to express quickly a number in binary form. If we wish to
convert '60' (the single quote(') symbols mean the number is in hexadecimal form) to
binary form, we change each digit to four binary digits:

0110 0000.

'98' would be 1001 1000
'20' would be 0010 0000
'11' would be 0001 0001
'48' would be 0100 1000
'68' would be 0110 1000

In using hexadecimal numbers, we need six more digit symbols to represent the
numbers from ten through fifteen. We wish to use one symbol for each hexadecimal digit.
So we invent some symbols and to make it easy to remember them we will use the first
letters of the alphabet. Therefore, ten will be represented by A, eleven by B, twelve
by C, thirteen by D, fourteen by E, and fifteen by F. In keeping with this:

57

"FO' would be 1111 0000
'A8' would be 1010 1000
'BO' would be 1011 0000

-'D9' would be 1101 1001
'54' would be 0101 0100

Manual Input Procedure

One of the most important things about a computer is its ability to store informa­
tion. Here we will learn how to store information in memory, where the information is
stored so we can keep track of it, and what information we store.

To open the input gates to memory follow this procedure: (see figure 1-40).

1. Power ON
2. CLEAR (Press CLEAR switch)
3. Select WT MEMORY
4. START (press START switch)
5. INPUT starting address on INPUT keys
6. Select M register (Press M register switch)
7. INPUT "word" on INPUT keys ("word" is two hexadecimal digits)
8. START

••• repeat steps 7 and 8, until all information is in.

Decide where you wish to store information. The MEMORY ADDRESS register holds the
location or cell at which you will store information. In step 5 above we select the
first of several cells in which we will store information. In step 6 we select the M
register; this opens that particular memory cell to accept information. From then on
whatever we enter on the INPUT keys will be entered by pressing the START switch into
each memory cell.

We refer to two hexadecima1'digits or eight bits as a word. Computers differ in
"word" size. The COM-TRAN TEN computer has eight bits in its ACCUMULATOR, BUFFER,
QUOTIENT, INDEX, and COUNTDOWN registers.. This is the maximum anyone memory cell can
hold also. This term "word" may represent an instruction code, an address, an operand,
a constant, or a piece of data between +127 and -128.

Following the procedure outlined above:

starting at MEMORY ADDRESS '10' (step 5)
input the following: (steps 7., 8.)

hexadecimal keys or INPUT binary keys

02 0000 0010
30 0011 0000
D8 1101 1000
57 0101 0111
16 0001 0110
F,O 1111 0000
98 1001 1000
B8 1011 1000
04 0000 0100
A1 1010 0001

Press the RESET switch whenever you wish to erase what is on the INPUT keys. Only when,
you press the START is something entered into the computer.

58

Power ON

~

CLEAR
\'

l-)

;C"()

fe~ ~~, .. ;.' ~;::~ T 0

I
I
I

r::
I

~r«::!f~--

Select Input "word"

WT MEMORY

"
START START

Ir

INPUT

Starting

Address

r

CLEAR

Select M

REGISTER

6
Figure 1-40. Manual Input Procedure

59

NO

RDA26-438

Manual Output Procedure

You have just entered ten pieces of information or "words" into the computer's
memory starting at cell '10'. Now let us retrieve that information. We will look at
the contents of memory cells '10' through '19' and examine what is stored there.

To open the output gates of memory follow this procedure (see figure 1-41):

1. Power ON
2. CLEAR
3. Se1ec t RD MEMORY
4. INPUT starting address on INPUT keys (that is '10')
5. Select M register
6. START

In the BUFFER register will be the contents of memory cell '10'.
Is it: 0000 0010 or '02'?
In the MEMORY ADDRESS register will be '11' and in the BUFFER will be '30'.
How does it look?
Continue to check out the MEMORY ADDRESS and the BUFFER.

MEMORY ADDRESS BUFFER

12
13
14
15
16
17
18
19

D8
57
16
FO
98
B8
04
Al

We have outlines the procedure for manually inputting data into memory and manually
recalling it. In summary:

MANUAL **INPUT MANUAL ** OUTPUT

1. Power ON 1. Power ON
2. CLEAR 2. CLEAR
3. SELECT WT 3. Select RD

MEMORY MEMORY
4. START 4. INPUT starting address
5. INPUT starting 5. Select M register

address
6. Select M register 6. START
7. INPUT "word" .•• (repeat step 6)
8. START

... (repeat steps 7,8)

60

(Power ON

1~

CLEAR

-75 £L'
1 c

'r~-~J

Select

RD MEMORY

,
INPUT

Starting

Address

1

Select M

REGISTER

~

A

YES

NO

START

Look at
Contents

of BUFFER

Make a "note" of

Error to correct

Figure 1-41. Manual Output Procedure

61

CLEAR

RDA26-439

1.

REVIEW QUESTIONS 1-4

______ Holds the code for the instructions being performed.

______ All data going into or coming from memory goes here.

____ -- Performs all arithmetic operations.

--'-- Used to modify a memory address.

______ Used to manually input hex numbers.

----- ·It holds the quotient after a divide.

_____ Used to control the timing.

__ --- Conductors used· to, carry information many different places.

_____ 'Used to store numbers.

Used to help control input and output.

, Used to take the two's complement of a number.

Used to hold the results of most arithmetic and logical operations.

Used to hold va'lues that are manually input.

Used to hold the address of the next instruction to be performed.

____ Used to add the Memory Address Register and the Index Register.

____ --Used to t~l~~the computer what memory location you are using.

____ Many of the data transfers through the computer go through the register.

___ ~ Performs some logical operations.

Used to hold the results of most logical operations.

a. Bus Lines

b. Input Switches

c. Input Register

d,. Buffer Register

e. ' Two's Comp1ementer

f. Program Address Register

g. OP Code Register

h. Memory

i. Memory Address Register

j. Index Register

62

k. Index Adder

1. Accumulator

m. Quotient Register

n. Arithmetic Logic Unit

o. Countdown Register

J? Distributor

Answer the following questions in your own words.

'2. Inf.ormation to be written into the computer mem0:t:y ~an come fro~ ~hich two places?

3'. The information goes ,into what register before it goes into the Memory?

4 •. To execute a program, the address of the first instruction must be put in which
register?

5. Where is an instruction transferred after it is brought from Memory to the Buffer?

6. if an instruction requires data, where does the data come from?

7. What is the f~stest way to enter data into the Input Register?

8. To enter. data into the "OP CODE" register from the Input Register which switch
is pushed?

9. The "RD" switch next to the Register Selection Switch is used to do what?

10. What does the acquisition phase of an instructio~ cycle do?

11. What does the execution phase of an instruction cycle do?

12. What is the purpose of the display panel?

13. After a divide, where does the remainder appear?

63

14. Which element (unit) of the COM-TRAN TEN performs all arithmetic and most logical
operations?

15. Which CT-TEN register keeps a running total of the result of arithmetic operations?

16. Can the ALU handle both positive and negative numbers during a subtraction
operation?

17. What three CT-TEN registers are used to hold the operands of mUltiply operation?

18. Why does the COM-TRAN TEN use the two's complement to express a negative difference
to a subtrac,tion problem?

19. What is the two's complement of the binary number 0101 1010?

20. During what operations would the C Register of the CT-TEN be used?

21. Which occurs first during a machine cycle, acquisition time.or execution time?

22. Which bits of an instruction code determine high order memory locations?

23. Which bit(s) of an instruction code determine indexing?

24. In the CT-TEN, which register must the operand pass through to reach the M
register?

PROGRAMMING

The attributes which have contributed to the growth and importance of modern digital
computers include the following:

1. Ability to operate at high speeds.

2. Capability of storing data permanently.

3. Operation in the stored-program mode.

4. Ability to handle "decision"-type operations.

64

5. Accuracy in repeated performances.

6. Capability of changing data and instructions as programmed.

7. Repetitive operations as instructed.

8. Indication of errors in number magnitude and in programming instructions.

9. ~lphanumeric operations whereby messages can be stored and printed out.

Despite all these qualifications, however, the digital computer must still be told
what to do, how to do it, and what must be done with the end results. Trained personnel
who know how to communicate with computers and get them to process data are known as
Computer Programmers. Computer programmers communicate with the computer through a
medium called program language (Fortran, Cobol, RPG, etc.). This program language has
to be changed to machine language (coded commands which tell the computer what to do) by
a compiler, before it can be used by the computer. Computer technicians do not need to
know a program language; however, they must fully understand the machine language.

Machine language which is made up of coded commands or instructions tells the com­
puter what to do, how to do it, and where to store the results. When these instructions
are sequenced to perform a specific job to reach a desired end, they become a program.
In order for a computer technician to detect and locate any existing malfunctions, it is
necessary for him to know the content of any register anytime during a program run.

In this section you will learn the type of instruction, instruction repertoire,
instruction word format, data word format and the use of each instruction in the COM­
TRAN TEN. You should relate the flow of each instruction and/or data to the basic block
diagram and the block diagram of th~ COM-TRAN TEN.

Type of Instruction

The 44 discrete instructions used by the COM-TRAN TEN can be broken into various
categories as follows:

1. Load - 7 instructions

2. Store - 3 instructions

3. Arithmetic - 9 instructions

4. Logical - 5 instructions

5. Branch - 11 instructions

6. Input/Output - 9 instructions

Instruction Repertoire

Following is a list of the COM-TRAN TEN instructions with descriptions. The lower
case letters following the symbolic code of each instruction have the following
meaning:

1. m - Memory instruction

2. k - Immediate instruction

3. x -. Indexed instruction

65

HEX CODE SYMBOLIC

12 LX1,k

01 LC1,k

02 LA1,k

20 LDA,m,x

30 LCC,m,x

38 LAN,m,x

40 LDQ,m,x

48 STA,m,x

50 STX,m,x

58 STQ,m,x

INSTRUCTION REPERTOIRE

DESCRIPTION

LOAD

LOAD INDEX IMMEDIATE

Load INDEX Register with a count of k.

LOAD COUNTDOWN IMMEDIA~E

Load COUNTDOWN Register with a count
of k.

LOAD ACCUMULATOR IMMEDIATE

Load ACCUMULATOR with the value k.

LOAD ACCUMULATOR

Load ACCUMULATOR with contents of
memory address m.

LOAD CONSECUTIVE

Transfer the contents of memory address m
to memory address m + 1

LOAD ACCUMULATOR NEGATIVE

Load ACCUMULATOR with the two's com­
plement of the contents of m.

LOAD QUOTIENT REGISTER

Load QUOTIENT Register with the contents
of memory address m.

STORE

STORE ACCUMULATOR

Store contents of the ACCUMULATOR at
memory address m.

STORE INDEX

Store contents of the INDEX Register at
memory address m.

STORE QUOTIENT REGISTER

Store the contents of the QUOTIENT Register
at memory address m.

66

NOTES

3

3

3,14

1,2,14

1,2

1,2,14

1,2

1,2

1,2

1,2

HEX CODE SYMBOLIC

60 ADD,m,x

68 SUB,m,x

70 MPY,m,x

78 DIV,m,x

80 RAO,m,x

88 RSO,m,x

03 INX,k

DESCRIPTION NOTES

ARITHMETIC

ADD

Add the contents of memory address m to
the contents of the ACCUMULATOR leaving
the result in the ACCUMULATOR. Condi­
tionally set carry and add overflow.

SUBTRACT

Subtract the contents of memory address m
from the contents of the ACCUMULATOR
leaving the result in the ACCUMULATOR.
Conditionally set carry and add overflow.

MULTIPLY

Multiply the contents of the ACCUMULA­
TOR by the contents of memory address m,
leaving a double length product in the AQ
Register.

DIVIDE

Divide the double length number in the AQ
Register by the' contents of memory address
m, leaving the quotient in the Q Register and
the remainder will be in the ACCUMULATOR.
Set Condition code according to the sign of
the quotient. The sign of the remainder will
be the same as the sign of the dividend. Con­
ditionally set divide overflow.

REPLACE ADD ONE

Add 1 to the contents of memory address m.
If the contents of memory address m is FF,
this instruction will cause the contents of
m to be set to zero and thp. carry bit will
be set. The ACCUMULATOR contains the result
of the addition.

REPLACE SUBTRACT ONE

Subtract 1 from the contents of memory
address m. If the contents of memory
address m is zero, this instruction will
cause the contents of m to be set to FF
and the carry bit will be set. The
ACCUMULATOR contains the result of the
subtraction.

INCREASE INDEX

Increase the contents of the INDEX Register
by k.

67

1,2,11
12,14

1,2,11
12,14

1,2,
13,14

1,2,4
11,14

1,2,4
11,14

3

... HEX CODE.·· SYMBOLIC

SLA,k

10

13 SLL,k

18 SRL,k

19 AND,k

1A IOR,k

1B XOR,k

90 BUN,m,x

98 BST,m,x

AO

DESCRIPTION

LOGICAL

SHIFT LEFT ARITHMETIC

Shift the AQ Register left k places,
filling in zeros on the right.

SllIFTRIGHT ARITHMETIC

Shift the AQ Register right k places,
propagating sign bits on the left.

SHIFT LEFT LOGICAL

Shift the ACCUMULATOR left k places,
filling in zeros on the right.

SHIFT RIGHT LOGICAL

Shift the ACCUMULATOR right k places,
f~lling in zeros on the left.

AND

Form the bit-by-bit logical product of
k and the contents of the ACCUMULATOR,
leaving the result in the ACCUMULATOR.

INCLUSIVE OR

·Form the bit-by-bit Inclusive OR of k
and the contents of the ACCUMULATOR,
leaving the result in the ACCUMULATOR.

EXCLUSIVE OR

Form the bit-by-bit Exclusive OR of
k and the contents of the ACCUMULA­
TOR, leaving the result in the
AccuMuLATOR.

BRANCH

BRANCH UNCONDITIONAL

Branch to memory address m.

BRANCH AND STOP

Branch to memory address m and stop.

BRANCH TO SUBROUTINE

Store BUN op code in location m. Store
the contents of the PRegister (next
instruction address) in location m + 1.
Branch to location m + 2.

68

NOTES

3

3

3

3

3

3

3

1,2

1,2

1,2

HEX CODE SYMBOLIC

A8 BPS,m,x

BO BZE,m,x

B8 BNG,m,x

co BNC,m,x

C8 BXZ,m,x

08 SKI,k

09 SKS,k

OA SKF,k

DO WDB,m,x

DESCRIPTION

BRANCH ON POSITIVE

Branch to memory address m if the
condition code is greater than zero.

BRANCH ON ZERO

Branch to memory address m if the
condition code is equal to zero.

BRANCH ON NEGATIVE

Branch to memory address m if the condi­
tion code is less than zero.

BRANCH ON NO CARRY

Branch to memory address m if the
condition code is not carry.

BRANCH ON INDEX ZERO

Branch to memory address m if the
INDEX Register is zero.

SKIP ON INTERRUPT

Skip k instructions or 2k words if
interrupt is set.

SKIP ON SENSE SWITCH

Skip k instructions or 2k words if
the sense switch is on.

SKIP ON FLAG

Skip k instructions or 2k words if
flag is set.

INPUT/OUTPUT

WRITE DATA BLOCK

Transfer the contents of consecutive
memory locations, starting with
address m to the selected external
device. Continue until the C Register
is zero. The number of words trans­
ferred from memory will be one more
than the initial count in the C Register.

69

NOTES

1,2

1,2

1,2

1,2

1,2

3

3

3

1,2,
10

HEX CODE SYMBOLIC

D8 MNO,m,x

EO RDB,m,x

E8 RDI,m,x

FO MNI,m,x

11 OCD,k

00 SST,k

28 FLC,k

F8 FLS,k

DESCRIPTION

MANUAL OUTPUT

Transfer the contents of consecutive
memory locations to the Input Register.
Continue until the C Register is zero.
The number of words transferred from
memory will be one more than the
initial count in the C Register.

READ DATA BLOCK

Store data from the selected external
device in consecutive memory locations
starting with address m. Continue until
C Register is zero. The number of words
stored in memory will be one more than
the initial count in the C Register.

READ UNTIL INTERRUPT

Store data from the selected external
device in consecutive memory locations
starting with address m. Continue
until interrupt is set.

MANUAL INPUT

Transfer the contents of the Input Regis­
ter to consecutive memory locations start­
ing with address m. Continue until the C
Register is zero. ·The number of words
stored in memory will be one more than the
initial count in the C Register.

OUTPUT COMMAND

Transmit the operand k to the external
device addressed by the three low order
bits in k.

SENSE STATUS

The previously addressed device sends an
8-bit status word which is transferred to
the ACCUMULATOR.

FLAG CLEAR

Clear/flag to zero

FLAG SET

Set flag to one.

70

NOTES

1,2,15

1,2,7,
9

1,2,7,
8,9

1,2

3,6,9

5

5

NOTES for Instruction Repertoire

.1. To address memory locations above (FF16); 1, 2, or 3 is added to the instruction code.

2. Setting the index bit in on instruction OP CODE will cause the X Register to be
added to the memory address.

3. Value k is limited to (FF16).

4. Arithmetic in RAO and RSO instruction handles an 8-bit unsigned number.

5. Operand is not used in FLAG CLEAR or FLAG SET instructions.

6. OCD instruction operand bits have the following significance:

Bits 2, 1, 0 select one of eight peripheral units

Bit 3 selects HEX mode

Bit 4 selects APH mode

7. RDB and RDI instructions automatically generate and transmit the XON character to
the teletype. (XON turns on the tape reader.)

8. When using the teletype tape reader, the tape must end with XOFF followed by CONTROL
1. (XOFF turns the reader off after reading one more character; Control 1 sets the
Interrupt Bit.)

9. When using the teletype keyboard CONTROL H sets HEX mode; CONTROL A sets ALPHA mode.
In HEX mode a colon (:) loads the preceding two HEXadecimal characters into memory.

10. When using the teletype peripheral in HEXadecimal mode, output colons (:) are auto­
matically inserted, and line feeds and carriage returns are automatically generated.

11. CARRY Condition Code may be set by ADD, SUB, RAO, or RSO instructions. The CARRY
bit indicates that a carry or borrow took place from the 8-bit arithmetic result.
The 8-bit numbers are handled as unsigned binary numbers.

12. ADD overflow is an error condition. This bit is set whenever the magnitude of the
result exceeds the largest signed number that can be represented by 8-bits. The
8-bit. numbers are handled as signed two's complement numbers.

13. DIVIDE overflow is an error condition.
the result exceeds the largest signed
8-bit number in the Quotient register
remainder in the Accumulator.

This bit is set whenever the magnitude of
number that can be represented by 8-bits. The
is a signed two's complement number as is, the

14. CONDITION CODE reflects. the status of the Accumulator at the end of each instruction.
~~~-e-the following: °Xccrr . 

15. 

~ Ind1cates status of the Quotient Register upon completion of a Divide instruction. 

b. Indicates status of the double length AQ Register after Multiply and Arithmetic 
Shift instructions. (!1 vtC-7- S {/f!/J 5 ill . 

On the MANUAL OUTPUT instruction,~he conte~ of the indicated memory location will 
also be displayed on the Buffer Register. The computer will stop with the WAIT light 
on, after each word is displayed. To continue, press the START switch. 

71 



Instruction Format 

An instruction consists of two consecutive 8-bit words. The first word located at a 
program address is displayed in the S Register. The second word is located at the next 
consecutive address and is displayed in the M Register. 

For immediate instructions not requiring memory access for addition data, the first 
word is the op code and the 

r - - OP CODE - - -, r --OPERAND - --, 

xxxxxxxx x x x x x x x'x 

second word is the operand of the instructions. 

For instructions requiring memory access, the second word and the two lower bits of 
the 

xx xxxxxxxx 

L __ Memory Address ___ .J 

Index 

first word contain the 10-bit operand address word. The operand address is displayed 
in the Memory Address Register. The five upper bits of the first word represent the op 
code and the sixth bit of the first word indicates Indexing. 

Addressing Upper Memory 

The COM-TRAN TEN has 400 hex memory locations, numbered 0 - 3FF. These 400 loca­
tions may be broken into "pages" of memory as follows: 

o - FF 
100 - IFF) 
200 - 2FF upper memory 
300 - 3FF 

In order to get into upper memory, the "page" number must be added to the op code. 
For example: LDA 15 = 20 15. To get to upper memory, we must modify the op code. 

21 l5.would load A into location 115 

22 15 would load A into location 215 

23 15 would load A into location 315 

Indexing 

There are times when it is desirable to modify the operand address of a given instruc­
tion without actually changing the data stored in memory. Indexing is an easy way to 
accomplish this. 

Setting S2, the index bit, to a 1 will cause the contents of the Index Reg to be 
added to the contents of the M Reg during Acquisition time. 

72 



For example: 

Hex 
Binary 

Op Code M Reg 
24 013 

0010 O~ 0001 0011 

Index Reg 
16 
0001 0110 

After indexing, the contents of the M Reg will be: 

029 
00 0010 1001 

*Remember that bits SO-51 and bits M8-M9 are the same two bits used for high order 
addressing. 

Number Representation 

The COM-TRAN TEN uses a two's complement number, system. Positive numbers are 
treated in their normal binary representation. Thus, decimal 10 would have the binary 
equivalent of 0000 1010. 

The negative representation for this number is the two's complement of it. The two's 
complement of any number is derived by complementing the number and adding one to it. 

BINARY NUMBER 0000 1010 

'COMPLEMENT 1111 0101 

+1 0000 0001 

TWO' 5 COMPLEMENT 1111 0110 

This number is the negative representative for decimal 10. A simple rule for two's 
complementation: 

START WITH THE LSB POSITION 

COPY THE BITS UP TO AND INCLUDING THE FIRST ONE 

THEN COMPLEMENT ALL REMAINING BIT POSITIONS 

'MSB of any number is the sign bit and is a "1" for negative numbers. The largest nega­
tive number in two's complement is one larger in magnitude than the largest positive 
number. 

1 0 0 a 000 0 

011 1 1 1 1 1 

+. b' s~gn ~t 

Ins true t'ions 

Now you are ready to get into the instruction set of the COM-TRAN TEN. Keep in mind 
that these instructions are for this computer only. Other computers will have similar 
instructions and codes-but not necessarily the same ones. 

73 



There are six different categories of instructions in the COM-TRAN TEN. You will not 
learn all of the instructions in one category and then go to the next. We will be taking 
instructions from different categories so that we can start writing small programs. 

The load group is used to put data into the registers. The store group is used to 
take data from the computer registers and put the data in memory. The arithmetic in­
structions are used to do the arithmetic operations such as add and subtract. The logi­
cal group performs such things as shifting, OR, exclusive OR, and AND functions. The 
branching group allows control of the program. It allows a change in the sequence of 
the program. The Input/Output (I/O) group allows data in from the teletype or out to the 
teletype. As you go through the instructions in each group you will get a better idea of 
what each instruction does. 

Each instruction has a symbolic name which generally is an abbreviation of what it 
does. It also has a Hexadecimal number code. This code is what will be put into the 
computer memory in binary. The code is called machine language. You will need to know 
some terms to understand the explanation of the instructions. Instructions will be laid 
out in one of 2 formats for explanation. 

The First Format is as follows: 

HEX SYMBOLIC MEMORY 
CODE C~DE ADDRESS INDEXABLE , 

JI 
I 

1 20 LDA,m,x'4 

The 20 is the Hexadecimal code for the Load the Accumulator instruction. The m tells 
you that the instruction must go to a memory location (m) to get the number it is going to 
put into the accumulator. The X indicates that the memory addre~s (m) can be indexed. 
Indexing will be explained later. For now, note that it can be indexed. 

The-Second Format is as follows: 

02 (Hex Code) LAI (Symbolic Name) K (Constant) 

The 02 is the Hex code for the Load Accumulator immediately instruction. The K 
represents the number that will be put into the Accumulator. Note, the difference in 
the two instructions. ~he LDA instruction must have a memory address to tell where the 
number is coming from. The LAI uses no address. Instead, the number to be loaded is 
a part of the Instruction. 

Example: LDA 25; LAI 25 

The LDA 25 means that the contents of memory location 25 will be put into the Accumula­
tor. This memory location may contain any 8-bit number. The LAI 25 means that the 
number 25(l6)will be put into the Accumulator. 

Note, the difference between immediate instructions and memory instructions. 

Instruction Word Format 

All instructions in the COM-TRAN TEN take 2 memory (8 bits each) locations. The 
first location will hold the hexadecimal code for the instruction to be used. The 
second location will hold either the constant K or the memory location m's address. 
(Both K and m must be in hexadecimal.) 

74 



Those instructions that use memory addresses may sometimes need modification. Using 
8 bits, the highest number we can get is a FF. This is 127 in decimal. Our computer 
has 400 (16) memory locations. We have to add numbers to our Hexadecimal instruction 
code if we want an address larger than FF. To address memory location 14B, we must add 
the 1 to the Hex instruction code and put the 4B in the second memory location. 

Examples: 

SYMBOLIC CODE 

LDA. 35 
LDA 135 
LDA 235 
LDA 335 

HEX CODE 
First memory location 

20 
21 
22 
23 

Second memory location 

35 
35 
35 
35 

Each of these instructions loads the accumulator with the contents of different memory 
locations. 

Micro Steps: 

When you look at the programmers reference card, KDA-3020 you will find a column by 
the instructions labeled "Micro Steps." These steps are there as a reminder of what 
each instruction does. They do not tell you everything that happens dur~ng that instruc­
tion. They will serve as a quick reference so you will not have to search through the 
book. An explanation follows: 

REGISTERS 

A - Accumulator 
C - Countdown 
M - Memory Address 
P - Program Address 
Q - Quotient 
AQ - Combined accumulator and quotient 
I - Input 
X - Index 
K - Constant 

SPECIAL SYMBOLS 

~ Goes to 
c () the contents of 

-tI-+ (k) shift right K places 
4 (I() shift left K places 

+ add 
- subtract 
X multiply 
-:- divide 
+ or 
• and 
e exclusive or 

-NOT or compliment of 

75 

CONDITION CODES 

CARRY-Carry or borrow 
(>0) greater than zero 
(=0) equal to zero 
«0) less than zero 



Examples: 

ADD,m 

A register added to the contents of memory location m goes to the A. 

SUB,m 

A register minus the contents of memory location m goes to the A register. 

The following seven instructions are the first basic group you will learn. There is 
a detailed explanation of each instruction with it. 

Hex Code 
20 

Symbolic Name 
LDA,m,x 

Load Accumulator 

LDA is a load accumulator instruction. The contents of memory location m will be put 
into the accumulator. This instruction can be indexed which will be explained later in 
the book. Memory location (m) is unchanged. 

Example: 

Before: LDA 3E Accumulator F3 Memory Location 3E 27 

After: LDA 3E Accumulator 27 Memory Location 3E 27 

Note, that what was in the accumulator (F3 in this case) was destroyed and the contents 
of location 3E (27 in this case) was put into the accumulator. 

48 STA,m,x Store Accumulator 

This instruction is used to put the contents of the accumulator into a memory loca­
tion (m). The contents of the memory location before the instruction is executed will 
be destroyed. The accumulator contents will be unchanged. 

Example: 

Before: STA 43 Accumulator 7B Memory Location 43 DI 

After: STA 43 Accumulator 7B Memory Location 43 7B 

The DI that was in memory location 43 is destroyed by the STA 43 instruction. 

60 ADD,m,x ADD 

This instruction is used to ADD the contents of Memory location m to the contents 
of the accumulator. The contents of Memory location will be unchanged, but the accumu­
lator will contain the sum of the two numbers. 

Example: 

Before: ADD IF Accumulator 08 Memory Location IF 05 

After: ADD IF Accumulator OD Memory Location IF 05 

Note, that the 08 that was in the accumulator was destroyed by the ADD. 

76 



68 SUB,m,x SUBTRACT 

This instruction is used to subtract the contents of memory location m from the 
accumulator leaving the difference in the accumulator. All negative numbers are in 
two's complement form. If the computer comes up with a negative answer (such as sub~ 
tracting a larger number from a smaller number), then it will be in two's complement 
form. If you enter a negative number it must be in two's complement. 

Example: 

Before: SUB 71 Accumulator 43 Memory Location 71 21 

After: SUB 71 Accumulator 22 Memory Location 71 21 

13 SLL,k Shift Left Logical 

This instruction is used to shift the accumulator to the left. It will be shifted 
the number of times specified by the constant k. Remember, k will be specified in 
Hexadecimal. The constant k can be any number from a to FF. It would not be practical 
to shift it more than 8 times because after 8 shifts the accumulator will be zero. 

Example: 

Before: SLL 03 Accumulator 

After: SLL 03 Accumulator 

0101 1100 (2) 

1110 0000 (2) 

5c 

EO 

Note, zeros shift in on the right as the number moves left. 

18 SRL,k Shift Right Logical 

This instruction is used to shift the contents of the accumulator to the right. 
The number of places the accumulator will be shifted is specified by the constant k. 
Again, k can be any number between a and FF, but after 8 shifts the accumulator will be 
zero. Sign bit is shifted along with the number. 

Example: 

Before: SRL 01 Accumulator 

After: SRL 01 Accumulator 

1011 0100 (2) 

0101 1010 (2) 

B4 

5A 

Note, zeros are shifted in on the left as the number is shifted right. Both the SRL 
and the SLL used a constant k. Logical shifts only affect the accumulator. Remember, 
that this is. not an address of memory. 

98 BST,m,x Branch and Stop 

This instruction is used to stop the computer. You will put this instruction at the 
end of most of your programs. The BST instruction will load the Program Counter (the 
register that stores the next instruction address) with the address of memory location 
m. When the computer will halt, the Program Counter is the only register that changed. 

Example: 

Before: BST 36 Program Counter 74 

After: BST 36 Program Counter 36 and the computer has halted 

77 



Npw we will put these seven instructions to work. Suppose we wanted to figure out 
this formula: y = 2x + 5 - z. 

Out first step in writing the program would be to analyze the problem. We know, for 
instance, that we want. the answer y. Therefore, y is an unknown. To find y we must 
know x and z. We can assume that those two will be given to us. We can also see that 
we are going to have to add, subtract, and multiply to get the answer. At least now we 
knciw what we must do to find the answer. 

The second step in writing a program is to devise a method to solve the problem. 
This has been done for us since we are given the formula. All we have to do is tell the 
computer how to work the formula. If, however, we had been given a problem to determine 
some mathematical process, then we would have to find or derive a formula. 

Our third step is to develop a flow chart. Each step is explained in the follOwing 
example. 

First draw the flow chart symbol to show where to start •••••••••••••• 

Next shOw the operation to get x from memory ••••••••••••••••••••••••• """"::r--:;;;'" 

Add x to x to obtain the value of 2x ••••••••••••••••••••••••••••••••• ~~-=~ 

Add 5 to 2x •.•••••••••.•••••••••••••••••••••••.•••••••••••••••••••••• -,.-_ .. 

Subtract z .......................................................... 'I-=r-..::...J 

Put the '~esults into location y ......... ~ .••......................... L......;r-.:......a 
. .. 

Then stop .... ' ........................................................ . 

Now that we have a flow chart that will work we need to write-the program. To do 
this all we need to do is find an instruction or a group of instructions that will do 
each thing in the flow chart. The first thing we need to do is to assign x, y, z and 5 
memory locations where they can sit until we are ready for them. These locations can 
be anywhere in memory that we are not using for something else, like our program. So 
let's put x in location 20, y in location 21,z in location 22, and 5 in location 23. 
We could have put them anywhere, but once we have assigned these memory locations, we 
must use them. 

Find an instruction that will get x out of memory and put it in the accumulator. It 
just so happens that the LDA instruction does just that. So our first instruction is 
LDA 20. To make x become 2x, we must add another x. The instruction used for this is 
ADD 20. To add 5 we must do ADD 23. We now need a way to subtract z. We can use the 
SUB instruction. So to subtract z we do a SUB 22. Now, we have our final result. We 
want to put ~hisin y so we must do a STA 21. The last thing we must do is stop the 
computer. We. can do this with a BST 00. The address portion of this instruction 
usually causes a branch back to the beginning of the program or to an area in the mem­
ory where data is stored so you can look at the results. 

78 



Now we have our program. 

LDA 20 Load x 
ADD 20 Add x 
ADD 23 Add 5 
SUB 22 Subtract z 
STA 21 Store y 
BST 00 STOP 

Our program must also 
starting at location 00. 
as data can be located in 
all instructions take two 
while the next successive 
(constant). 

go into memory. Usually you will put the program into memory 
Programs can, of course, start at any location in memory just 
any available memory address. It was mentioned earlier that 
memory locations. One location holds the instruction code 
location holds either the address location or operand 

If we put the LDA 20 into memory locations 00 and 01 then the ADD 20 instruction 
must go into memory locations 02 and 03. The hex code for LDA (20) goes into memory 
location 00. The memory address 20 which is the location for x, goes into memory loca­
tion 01. Each instruction needs two memory locations. The program must follow in 
sequential memory locations. This is known as a straight line program. 

The fifth step in writing a program is to code it into machine language. In memory 
locations 00 and 01 we will put the LDA 20 instruction. In locations 02 and 03 we will 
put the ADD 20 instructions and so on. Our format will be as follows: 

Memory locations Symbolic code Hex Code Remarks 

00, 01 LDA 20 20 20 Load Accumulator with x 
02, 03 ADD 20 60 20 Add x to accumulator 
04, 05 ADD 23 60 23 Add 5 to accumulator 
06, 07 SUB 22 68 22 Subtract z from accumulator 
08. 09 STA 21 48 21 Store accumulator in y 
OAt OB BST 00 98 00 Stop with 00 in program count 

Notice first that all memory locations are in hex. If the first instruction starts in 
an even memory location, so do the remaining instructions. 

The first number in the hex column is the hexadecimal code for each instruction. 
The second number is either the memory address or a constant (operand) depending on the 
type of instruction. 

The sixth and seventh steps would be performed by inserting the instructions into 
the computer and executing the program. You do not need to do these steps for this pro­
gram. You will be doing them on the programs you write. 

In the program above x and z can be any numbers capable of fitting into one mem­
ory location. That means that we can find y for any number of different XIS and z's. 
All we would have to do is to put a new x and a new z in and run the program again. 

If we let x = 4 and z = lour program would perform as follows: 

PROGRAM ACCUMULATOR REMARKS 

LDA 20 04 Load the 4 
ADD 20 08 . Add 4 to it 
ADD 23 OD Add 5 to it 
SUB 22 OC Subtract 1 
STA 21 OC Store answer in y 
BST 00 OC STOP 

79 



If we looked in memory location 21 we would find that it contains a ~C. If you have 
any questions about the 7 instructions on this program, see your instructor. 

REVIEW QUESTIONS 1-5 

1. Match the following statements with the step in which it would be performed. 

This step is sometimes performed by the computer. 

_. ___ Figure how to take this given material and come up with the answer. 

If the program does not run correctly this step must be done. 

Make a pictorial representation of how to solve the problem. 

1. Analyze the problem. 

2. Devise a general method to solve the problem. 

3. Develop a flow chart. 

4. Write the program. 

5. Put symbolic coding into machine language. 

6. Test the program. 

7. Revise the program. 

Match the following instructions with their functions: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

Subtracts the contents of the memory location specified from the Accumulator. 

Shifts the Accumulator right the number of places specified. 

Puts the contents of the Accumulator into memory. 

Adds the contents of the memory location specified to the Accumulator. 

Puts the contents of the memory location specified into the Accumulator. 

Puts the address portion into the Program Address Register and halts the com­
puter. 

Shifts the Accumulator left the number of places specified. 

LDA 

STA 

~D 

SUB 

SLL 

S~ 

BST 
80 



3. Analyze the following programs. Give the contents of the Accumulator after each 
instruction. If you have trouble, go to the computer, load the program and run it one 
instruction at a time. 

Memory Symbolic Accumulator 
Location Code 

00,01 LDA 08 

02,03 SRL 03 

04,05 ADD 09 

06,07 BST 00 

08 1A 

09 05 

Memory Symbolic Accumulator 
Location Code 

40,41 LDA 4E 

42,43 ADD 4F 

44,45 STA 4E 

46,47 SLL 01 

48,49 SUB 4F 

4A,4B STA 4F 

4C,4D BST 4E 

4E 07 

4F 02 

Now we can go into seven more of the instructions. The same format will be used to 
discuss these as was used with the first seven. 

40 kDQ,m,x Load Q 

This instruction is used to load the contents of the memory location m into the Q 
(quotient) register. The contents of memory location m are not changed. 

Before: LDQ 07 Q Register 21 Memory Location 07 12 

After: LDQ 07 Q Register 12 Memory Location 07 12 

No other register is affected. In other words, the. accumulator was not changed, just 
the Q register. 

81 



58 STQ,m,x Stere Q 

This instructien is used to. put the centents ef the Q register in memery lecatien m. 
The centents ef the Q are not affected. Upen cempletien ef the STQ instructien, memery 
lecatien m will centain the same infermatien as the Q register. 

Example: 

Befere: STQ CO Q Register 3C Memery Lecation CO FF 

After: STQ CO Q Register 3C Memery Lecatien CO 3C 

Nete, that the enly thing affected is the centents ef memery lecatien m. 

38 LAN,m,x Lead Accumulater Negative 

This instructien is used to. put the twe's cemplement ef the centents ef memery leca­
tien m into. the accumulater. The accumulater will held the twe's cemplement ef what was 
in memery lecatien m. 

Example: 

Befere: LAN 4F Accumulater 36 Memery Lecatien 4F 05 

After: LAN 4F Accumulater FB Memery Lecatien 4F 05 

FB is the twe's cemplement ef 05. Actually FB is the l6's cemplement ef 05 but hexa­
decimal is enly a binary sherthand. 

70 MPY,m,x Multiply 

This instructien is used to. multiply the centents ef the accumulater by the centents 
ef memery lecatien m. The preduct ef this multiply is placed back into. the cembined AQ 
register. The A register will held the 8 mest significant bits, while the Q will held 
the 8 least significant bits. If yeu multiply two. numbers whese preduct is greater than 
7F, yeu weuld get an everflew. This weuld severely limit the numbers yeu can mUltiply. 
To. aveid this preblem, the answer is put into. two. registers. In that way yeu can never 
exceed the medulus (get an everflew) when yeu de a multiply. 

Example 1: 

Befere: MPY 27 Accumulater 05 Q Register 34 Memery Lecatien 27 07 

After: MPY 27 Accumulater 00 Q Register 23 Memery Lecatien 27 07 

5 x 7 = 0023 er in decimal 5 x 7 = 35 23(16) = 35 (10) 

Example 2: 

Befere: MPY 62 A Register 43 Q Register 00 Memery Lecatien 62 7C 

After: MPY 62 A Register 20 Q Register 74 Memery Lecatien 62 7C 

43 x 7C 2074 er in decimal 67 x 124 = 8308 2074(16) = 8308(10) 

Even theugh in Example 1 the answer enly needed 8 bits, the accumulater is still part 
ef the answer. 

82 



78 DIV,m,x Divide 

.This instruction is used to divide the contents of the. combined AQ registers by the 
contents of memory location m. The answer is put into the Q register and the remainder 
is put into the A register. Notice that it has a remainder not a fraction. In other 
words if you divide 5 by 2, the answer will be 2 in the Q reg and 1 in the A reg. You 
will not get a 2.5 answer. Note also that the answer must be contained in 8 bits. That 
is if you divide one number by another and the answer is greater than 7F you will get an 
error. 

The accumulator and the Q register are considered as one l6-bit register when doing 
a divide. The accumulator will hold the sign of the number. If the number to be 
divided by is FB (-5), then the accumulator will have to be FF and the Q register will 
be FB. That is, the combined AQ register must have the two's complement of the number, 
not just the Q register. Also, the remainder (A register) will have the sign of the 
number you are dividing into unless there is no remainder. Therefore,.if you are divid­
ing into a negative number the remainder, if there is one, will be in two's complement 
form. 

In the following examples, we will use the same values with different signs .to help 
point out the fac,t that the remainder has the sign of the number you ,are dividing into. 

Example 1: Dividing 5 by 2 

Before: DIV 57 A Register 00 Q Register 05 Memory Location 57 02 

After: DIV 57 A Register 01 Q Register 02 Memory Location 57 02 

5 - 2 = 2 remainder 1 

Example 2: Dividing 5 by -2 

Before: DIV 57 A Register 00 Q Register 05 Memory Location 57 FE 

After: DIV 57 A Register 01 Q Register FE Memory Location 57 FE 

5 - FE(-2) = FE(-2) remainder 1 

Example 3: Dividing -5 by 2 

Before: DIV 57 A Register FF Q Register FB Memory Location 57 02 

After: DIV 57 A Register FF Q Register FE Memory Location 57 02 

FF FB (-5) - 2 = FE (-2) remainder FF (-1) 

Example 4: Dividing -5 by -2 

Before: DIV 57 A Register FF Q Register FB Memory Location 57 FE 

After: DIV 57 A Register FF Q Register 02 Memory Location 57 FE 

FFFB (-5) - FE (-2) = 2 remainder FF (-1) 

OB SLA,k Shift Left Arithmetic 

This instruction shifts the combined AQ register left the number of places specified 
by the constant k. The constant k (operand) can be any value from 0 to FF but after 10 
hex shifts the AQ register contains all zeros. 

83 



Zeros are used to fill in the Q LSB. The Q MSB is shifted into the A LSB. A pic­
toral diagram is below. 

·~~~I __ A __ ~I~~--~ ___ Q __ ~~~---O 

Example: 

Before: SLA 09 A Register = OB Q Register 42 

After: SLA 09 A Register 84 Q Register 00 

10 SRA,k Shift Right Arithmetic 

RDA26-440 

This is used to shift the combined AQ register right the number of places specified 
by the constant k. The sign bit of the accumulator' is shifted in from the left. In 
other words, if bit 7 (sign bit) of the A register is 0 then zeros will be shifted in. 
If bit 7 of the A register is 1 then ones will be shifted in. 

Example 1: 

Before; SRA 08 Accumulator = 05 Q Register = F3 

After: SRA 08 Accumulator 00 Q Register = 05 

Example 2: 

Before: SRA 08 Accumulator: FB Q Register = F3 

After: SRA 08 Accumulator = FF Q Register = FB 

The following is a short program that used some of the instructions you have learned. 
Read it carefully and keep track of the A Register and the Q Register after each instruc­
tion. In other words, write down what would be in the A and Q registers after the com­
puter runs each step. 

MEMORY LOCATIONS 

00.01 
02.03' 
04.05 
06.07 
08.09 
OA.OB 
OC.OD 
OE.OF 
10.11 
12.13 
14.15 
16.17 
18.19 
lA.lB 
lC.1D 
IE. IF 

SYMBOLIC CODE 

LDA 50 
LDQ 51 
DIV 52 
STA 60 
STQ 61 
LAN 53 
LDQ 51 
DIV 52 
STA 62 
ST.Q 63 
LDA 51 
SRA 08 
DIV 52 
STA 64 
STQ 65 
BST 00 

84 

c(50) 
c(5l) 
c(52) 
c(53) 

FF 
F5 
03 
01 



Here is the program again with the contents of the A and Q shown after each step. 
See if your's compares to this: 

MEMORY LOCATIONS SYMBOLIC CODE A REGISTER Q REGISTER 

00.01 LDA 50 FF 00 
02.03 LDQ 51 FF F5 
04.05 DIV 52 FE FD 
06.07 STA 60 FE FD 
08.09 STQ 61 FE FD 
OA.OB LAN 53 FF FD 
OC.OD LDQ 51 FF F5 
OE.OF DIV 52 FE FD 
10.11 STA 62 FE FD 
12.13 STQ 63 FE FD 
14.15 LDA 51 F5 Fd 
16.17 SRA 08 FF F5 
18.19 DIV 52 FE FD 
lA.lB STA 64 FE FD 
lC.lD STQ 65 FE FD 
lE.1F BS.T 00 FE FD 

c(50) FF 
c(5l) F5 
c(52) 03 
c(53) 01 

There are a few things that need to be said about the program. First, there are three 
routines that all do the same thing. This program divides -11 by 3. It does it three 
times, each in a different way. Steps 00-08 do it by first loading the A directly with 
FF, loading the Q with F5, and then dividing by 3. The second group, steps OA-12, does 
it by loading A negative with 1 which puts FF into the A register. Steps l4-lc does it 
by loading the A with F5 (-11) and shifting it right. That shifts ones into the A 
because the sign bit was set. Therefore, it leaves FFs in the A register after the 
shift. 

There are many ways to approach the same problem, as was just shown. No one way is 
better than another. A programmer should try to make his program as short as possible 
and still satisfy the requirements. The reason is that memory space in a computer is 
usually very precious. You need to take up as little space as possible with your pro­
gram. This leaves room for data and other programs. 

REVIEW QUESTIONS 1-6 

1. Analyze the following programs and give the contents of the Accumulator and the 
Quotient after each step. If you have trouble, go to the computer, load the program 
and run it one instruction at a time. 

Memory Symbolic' Accumulator Quotient 
Location Code 

00,01 LDA OA 

02,03 SRA 08 

04,05 DIV OB 

85 



Memory Symbolic Accumulator Quotient 
Location Code 

06.07 BST 00 

OA 57 

OB 03 

Memory Symbolic Accumulator Quotient 
Location Code 

00.01 LDA OC 

02.03 MPY OD 

04.05 DIV OE 

06.07 SLA 08 

08.09 MPY OD 

OA.OB BST 00 

OC 6 

OD 3 

OE 2 

Memory Symbolic Accumulator Quotient 
Location Code 

00.01 LDA ~4 

02.03 MPY 14 

04.05 SLA 08 

06.07 MPY 15 

08.09 SLA 08 

OA.OB SUB 16 

OC.OD SUB 16 

OE.OF ADD 17 

10.11 STA 18 

12.13 BST 00 

14 05 

15 02 

16 06 

17 03 

18 00 

86 



2. What are the contents of memory location 18 when this program stops? 

Branching and Indexing 

02 LAI,k Load Accumulator Immediate 

This instruction will load the accumulator with the constant k. K can be any value 
between 0 and FF. Notice that no memory location is used for the data. K is the data, 
not the address of the data. 

Example: 

Before: LAI 4B Accumulator 

After: LAI 4B Accumulator 

37 Memory Location 4B 

4B Memory Location 4B 

00 

00 

Notice that LIB was put into the accumulator, not the contents of memory location 4B. 

80 RAO,m,x Replace and Add One 

This instruction will load the accumulator with the contents of memory location m, 
add 1 to it, and store it back into memory location m. Notice here that the contents 
of the A register will be destroyed. 

Example: 

Before: RAO 21 Accumulator 

After: RAO 21 Accumulator 

32 Memory Location 21 

43 Memory Location 21 

88 RSO,m,x Replace and Subtract One 

42 

43 

This instruction loads the accumulator with the contents of memory location m, 
subtracts one from it, and stores the results back into memory location m. This 
instruction will destroy the contents of the accumulator. 

Example: 

Before: RSO 3E Accumulator 

After: RSO 3E Accumulator 

90 BUN,m,x Branch Unconditionally 

10 Memory Location 3E 

4F Memory Location 3E 

50 

4F 

This instruction will cause the sequence of the program to jump to the instruction 
at memory location m. In other words, the next instruction to be performed will be 
the instruction in memory location m. Below is a diagram of what this instruction will 
do. 

PROGRAM 

00 First Instruction 

08 Instruction 
OA BUN 10 

10 The inst. after BUN 

87 

PROGRAM FLOW 

1 
}NOT EXECUTED 

T 



Steps 00 through 08 will be performed sequentially, that is one right after the 
other. Then the BUN 10 will be performed at step OA. This will cause control of the 
computer to transfer to the instruction at step 10. The steps between steps OA and 10 
are jumped over and they are not performed. Before we can talk about some other branch­
ing instructions, we need to know about condition codes. 

There are four flip-flops that the computer uses as condition codes. These usually 
give the status of the accumulator except after a divide, in which case the status of 
the Quotient will be given. The condition code set after a multiply instruction indi­
cates the status of the combined AQ register. 

If the accumulator (or quotient in the case of a divide) is zero, the =0 flip-flop 
will be set. If the result is negative, the (less than zero) flip-flop will be set. 
After an add or subtract, if the instruction caused an overflow or borrow because. of 
the limited size of the accumulator, the carry flip-flop will be set. During a divide, 
the condition codes will be set by checking the Q register. In other words, if Q = 0, 
the = 0 flip-flop will be set, if Q<O then < 0 will be set, and if Q>O (greater than 
zero) then>O will be set. The computer can check these condition codes and make deci­
sions depending upon their state. All decisions made by the computer, are made by 
checking either these conditions or others that will be discussed later. 

A8 BPS,m,x Branch on Positive 

This instruction will cause the sequence of the program to change to the instruction 
at memory location m if the~O condition code is set. In other words, if the condition 
code>O ff is set, the normal step-by-step process will be altered and the process will 
start back up at memory location m. 

Example: 

MEMORY LOCATION 

34 

46 
48 

54 

PROGRAM PROGRAM FLOW 

Instruction 

. 
BPS 54 

I=t~Ct10n} 

Next instruction 

(not executed if >Off is set) 

T 
In this example, the program will step sequentially up to step 46. It is at this if 

the condition code>O is set then the next instruction will be at step 54. If >0 is not 
set, the next instruction will be step 48. The computer can decide, by checking the 
>0 condition code, whether to do step 54 next or to do step 48. 

BO BZE,m,x Branch on Zero 

This instruction will cause the sequence of the program to change to the instruction 
at memory location m if the condition code =0 is set. If the condition code =0 is set, 
this instruction is performed. The normal step-by-step process will be changed and the' 
process will be started again at memory location m. This instruction allows the com­
puter to make decisions on what to do by checking for an answer being zero. Remember, 
the condition codes are not set by the condition of the accumulator only. 

B8 BNG,m,x Branch on Negative 

This instruction is used to change the sequence of the program to memory location m 
if the condition code<O is set. If the <0 condition code is set, then the normal flow 

88 



of the program will be changed. The flow will pick up again at memory location m. This 
allows the computer to make decisions based on the<O condition code. 

Now that you have learned seven more instructions, 
instructions are what gives the computer its "brain". 
be made which is essential to figuring most problems. 
difference between a computer and a calculator. 

you can see that the branching 
They allow logical decisions to 
These instructions are the major 

The following is a program for finding the larger of two numbers. There are many 
ways to work this problem. This is just one of the ways. 

00 LDA 20 
02 SUB 21 
04 BNG OA 
06 LDA 20 
08 BST 00 
OA LDA 21 
OC BST 00 

20 first number 
21 second number """"--yes 

DISPLAY FIR.ST 
NUMBER 

RDA26-441 

Notice that subtracting and using a branch on negative could tell us which number 
was largest. If the answer is negative, then the second number must have been larger 
than the first. 

REVIEW QUESTIONS 1-7 

1. Match the following instructions with their functions. 

___ Unconditionally causes a change in the sequence of a program. 

___ Adds one to the memory location specified. 

__ Cause a change in the sequence of a program if the "greater than zero" condi­
tion code is true. 

Subtracts one from the memory location specified. 

1. LAI 

2. RAO 



3.. RSO 

4. BUN 

5. BPS 

6. BZE 

7. BNG 

Answer the following questions in your own words. 

2. What is meant by the term "unconditional" branch? 

3. What is meant by the term I1conditional" branch? 

4. What happens if the condition being checked by a conditional branch instruction is 
a one (true)? 

5. What happens if the condition being checked by a conditional branch instruction is 
a zero (false)? 

6. Analyze the following program. Give the contents of the Accumulator. Be sure and 
leave the registers blank beside any instructions not performed. If you have trouble. 
go to the computer. load the program and run it one instruction at a time. 

Memory Symbolic Accumulator 
Location Code 

00.01 LDA OC 

02.03 ADD OD 

04.05 SLL 04 

06.07 BNG OA 

08.09 BST 00 

OA.OB BST 01 

OC 05 

OD 06 

7. Which program step did not get executed? 

8. If the BNG OA at step 06 was changed to BPS OA which step would not get executed? 

9. Analyze the following program and give the contents of tht Accumulator and Quotient 
registers after each step. If you have trouble. go to the computer. load the program 

. and run it one instruction at a time. 

90 



Memory Symbolic Accumulator Quotient 
Location Code 

00,01 LDA 20 

02,03 SRA 08 

04,05 DIV 21 

06,07 BNG OC 

08,09 STQ 22 

OA,OB BST 00 

OC,OD LDA 20 

OE,OF STA 22 

10~11 BST 01 

20 OA 

21 02 

22 00 

10. If location 06 was changed to a BZE t where would this program stop? 

11. If memory location 20 had FC in it when this program was run, where would the 
program stop? 

12. If memory location 20 had FC in it when this program was 'run, what would be in 
memory location 22 when the program stopped? 

19 AND,k AND 

This instruction will AND the contents of the accumulator-with the constant k. The 
results will be put into the accumulator. A logical AND of two numbers works just like 
an AND gate. In other words, both inputs must be one to get one output. 

Example: 

Before: AND 35 Accumulator 

After: AND 35 Accumulator 

61(16) 

21(16) 

0110 0001 

0010 0001 

If we match the two numbers in binary maybe you can see what happens. 

Accumulator = 
We ANDED wi th 

Result 

0110 COOl 
0011 0101 

0010 0001 

Both bit O's are ones. AND says both A and the number must be ones to get a one. 
So if both A and the number has a one in the same position then a one will be put back 
into the Accumulator in that position. 

91 



lA IOR.k Inclusive OR 

This instruction will do a bit by bit inclusive OR of the Accumulator and the con­
stant k putting the results back into the accumulator. In other words. it works like an 
OR gate. If either the A or the constant has a one in that bit position the result will 
have a one there. 

lB XOR.k Exclusive OR 

Acc 1001 0101 
k 0101 0011 
Res 1101 0111 

This instruction does a bit by bit exclusive OR of .the accumulator and the constant 
k and puts the results back into the accumulator. An exclusive OR means if one or the 
other (but not both) has a one in that bit position then the result will have a one in 
that bit position. 

Acc 0101 1100 
k 0100 1011 
Res 0001 0111 

Earlier you were told not to worry about the instructions that had "x" placed after 
them. You were told that it meant the instruction could be indexed and indexing would 
be explained later. Now you will learn indexing. 

Indexing is nothing more than a convenient way to modify or change a memory address. 
An instruction that has been indexed will use the memory location m as a starting point. 
Then it will add to this address the contents of the index reg;ster. This will give a 
result which will be the new memory location. Let's go through an example to help ex­
pJ,.ain it. 

LDA.x 30 

This says to load the accumulator with the contents of some memory location. Because 
of the x. we can not be sure of what location we will be loading until we know what is 
in the index register. If the index register has 00 in it then we will load the accu­
mulator with the contents of location 30. How did I get that? 30 (the memory location) 
+ (00 the contents of the index register) = 30 (the address we will load). 

If the index register has 05 in it then we will load the accumulator with the con­
tents of memory location 35. 30 + 5 = 35. The index register can hold any value 00 
through FF. 

In order for the computer to know you want to index. you will have to modify the 
hexadecimal code for the instruction. If you remember how to modify codes to get into 
"high memory." this process is the same. Instead of adding 1. 2. or 3 as we did to get 
into high memory this time we will add a 4 to get indexing. 

SYMBOLIC HEX CODE 

LDA.x 23 24 23 

You can index high memory by adding the 1. 2, or 3 and adding the 4. 

SYMBOLIC HEX CODE 

LDA,x 23B 26 3B 

Refer to the Instruction Repertoire on page ~~1. 

92 



Naturally if we want to be able to use this in any programs we must be able to work 
with the index register. That is, we must be able to load the index with a known value. 
The following instructions work with the index register. 

12 LXI,k Load Index Immediate 

This instruction will load the index register with the constant k. No other regis­
ters will be affected. 

Example: 

Before: LXI 07 index register = 00 

After: LXI 07 index register = 07 

50 STX,m,x Store Index 

This instruction is used to put the contents of the index register into memory loca­
tion m. Whatever was in memory location m will be destroyed and replaced by the con­
tents of the index register. The index register will not be affected. 

Example: 

Before: STX 42 Index register 16 Memory location 42 66 

After: STX 42 Index register 16 Memory location 42 16 

03 INX,k Increase Index 

This instruction is used to change the index register by adding a value to it. If 
the constant k is positive the contents of the index register will be increased. If 
k is negative the contents of the index register will be decreased. 

Example: 

Before: INX 03 Index Register 05 

After: INX 03 Index Register 08 

The positive 3 was added to the 5 given for a total of 8. 

Example: 

Before: INX FE Index register 05 

After: INX FE Index register 03 

The FE, which is negative 2, is added to the 05. When a negative is added, it is the 
same thing as subtracting. Therefore, -2 + 5 = 3. 

While using the INX instruction we can increment or decrement the index register. 

C8 BXZ,m,x Branch on Index Equal to Zero 

Branch on Index Equal to Zero. This instruction will cause a change in sequence of 
the program if the index register is equal to zero. This instruction does not check the 
condition codes, it checks the index register. If the index register is zero, then the 
next instruction to be performed will come from memory location m instead of the loca­
tion following the BXZ instruction. 

93 



Below is a short program that uses indexing. No explanation of why you would want 
indexing has been offered. Remember, how these instructions are used is up to the pro­
grammer. The following program uses these instructions to hunt through memory and count 
the words that have bit 4 set. 

00 LXI 04 
02 LDA,X 30 
04 AND 10 LOAD INDEX WITH NO. OF WORDS 
06 BZE OA TO BE CHECKED MINUS 1 
08 RAO 35 
OA BXZ 10 
OC INX FF LOAD ACCUMULATOR WITH A WORD 
OE BUN 02 
10 LDA 35 
12 BST 00 AND IT WITH CONSTANT THAT HAS 

BIT 4 SET 
c(30) 27 
c(3l) 3A 
c(32) 75 yes 
c(33) FE 
c(34) 61 
c(35) 00 

RDA26-442 

This program will check locations 30-34 and see how many of them have bit 4 set. 
The answer will be in location 35. Notice that you must execute steps 02-0E five times 
before the program is finished. 

The program starts by loading the index register with one less than the number of 
locations to be checked. Then it loads the accumulator with 30 indexed. The first 
time this will actually load location 34. ANDing the accumulator with 10 will either 
leave a 10 or a 0 in the accumulator. If a zero is left then bit 4 of the word in 
memory is clear. If 10 is in the accumulator then bit 4 set so we count that word. 
Then we check to see if we are finished by checking the index register for zero. If it 
is not zero, we subtract 1 from it and go through the loop again. If it was zero then 
we display the count and halt. 

REVIEW QUESTIONS 1-8 

1. ~atch the following instructions with their functions. 

Used to store the contents of the Index Register into the memory location 
specified. 

Used to change the sequence of the program if the Index Register contains zero. 

,Used to Inclusive OR the contents of the' Accumulator with a constant. 

94 



Used to increase the Index Register by the number specified. 

Used to load the Index Register with the constant specified. 

Used to AND the contents of the Accumulator with a constant. 

Used to Exclusive OR the Accumulator with a constant. 

1. AND 

2. IOR 

3. XOR 

4. LXI 

5. STX 

6. INX 

7. BXZ 

2. Analyze the following program. Give the contents of the Accumulator, Quotient 
Register, and Index Register after each step. If you have trouble, go to the computer, 
load the program and run it one instruction at a time. 

ACCUMULATOR QUOTIENT INDEX 

00,01 LAI 00 

02,03 STA 1C 

04,05 LXI 04 

06,07 LDA,X 1F 

08,09 ADD 1C 

OA,OB STA 1C 

OC,OD BXZ 12 

OE,OF INX FF 

10,11 BUN 06 

12,13 LDA 1e 

14,15 SRA 08 

16,17 DIV 1D 

18,19 STQ 1E 

lA,lB BST 00 

1C 00 

1D 05 

95 



ACCUMULATOR QUOTIENT INDEX 

IE 00 

IF 05 

20 07 

21 06 

22 02 

23 OA 

3. Which steps in this program make up the loop? 

NOTE: It might be helpful to draw a flow chart of the program. 

4. How many times will the loop be performed before the program will get out of the 
loop? 

5. Analyze the following program. Give the contents of the Accumulator and Index Regis­
ter after each step. If you have trouble, go to the coinputer, load the program and run it 
one instruction at a time. 

Memory Symbolic Accumulator Index 
Location Code 

00,01 LAI 00 

02,03 STA 18 

04,05 LXI 08 

06,07 LDA,X 19 

08,09 XOR 36 

OA,OB BZE 12 

OC,OD BXZ 16 

OE,OF INX FF 

10,11 BUN 06 

12,13 STX 18 

14,15 BST 00 

16,17 BST FF , 

18 00 

19 30 

1A Bl 

96 



Memory Symbolic Accumulator Index 
Location Code 

lli B2 

lC 33· 

ID B4 

lE 3S 

IF 36 

20 B7 

21 B8· 

22 39 

6. How many times does this program go through the loop? 

7. If the constant in the XOR at step 08 was changed from a 36 to, a B8, what would be 
stored in memory location 18 after the program runs? 

Input/Output Programming 

F8 FLS,k Flag Set 

This instruction is used to set a flip-flop called the flag. This can be used to 
remind us of a condition that existed earlier in our program. In other words, you 
could check a condition and if that condition was true, set the flag. Then later in 
the program you can check the flag to determine prior conditions. 

28 FLC,k Flag Clear 

This instruction is used to clear the flag. It is used like the FLS. Both the FLS 
and FLC have a constant k. This constant has no meaning for these instructions. 

OA SKF,k Skip on Flag 

This instruction is used to check the condition of the flag. If the flag is set, 
this instruction will cause the computer to skip (jump over) the next k sequential 
instructions. Remember, each instruction takes 2 memory locations. The skip instruc­
tion causes the computer to skip k instructions. If k is 1 then the computer will 
skip 1 instruction or 2 memory locations. 

Example: 00 FLS 00 
02 SKF 01 
04 BST 00 
06 FLC 00 
08 BST 00 

In this program the SKF 01 will cause the computer to skip over the BST 00 at loca­
tion 4. The next instruction to be performed would be the FLC at location 06. All the 
skip instructions work this way. Their only difference is what they check. 

97 



09 SKS,k Skip on Sense 

This instruction causes the computer to skip k instructions if the sense switch is 
set (pushed). This allows the operator to make some decisions for the computer. 

08 SKI,k Skip on Interrupt 

This ~nstruction causes the computer to skip k instructions or 2k memory locations 
if the interrupt bit is set. This bit can be set from the teletype by pressing the con­
trol button and the letter I. You will learn more about that in the next series of 
ins tru,c tions • 

A subroutine is any group of instructions that performs a specific task. Programs 
are usually made up of different subroutines. If a subroutine is only needed once in a 
program it would be just as easy to put the instructions in the place where they are 
needed. If a subroutine is needed many times within a program it might be easier to put 
the subroutine down once and branch to it each time it is needed in order to save memory. 
The problem with this approach is that the subroutine must branch back to where it was 
"called" from. 

Example: 

INSTRUCTION 

. 
CALL FOR SUBROUTINE 

NEXT INSTRUCTION 

CALL FOR SUBROUTIN 
NEXT INSTRUCTION 

STOP 

SUBROUTINE 

RDA26-443 

Notice that the subroutine must jump back to 2 different places. That makes it 
difficult to program because the subroutine doesn't know where it was called from. 

AD BSB,m,x Branch to Subroutine 

This instruction causes a branch unconditionally (90) to be put in memory location 
m. Then it puts the contents of the program address register (the address of the next 
instruction) into memory location m + 1. Then it unconditionally branches to the 
instruction at m + 2. 

By storing the BUN to the program address in memory locations m and m + 1, the 
subroutine has a method of finding its way back to where it was called from. 

Example: 

00 BSB 10 
02 BST 00 

98 



10 
12 
14 
16 
18 

Nothing 
I II I 

I I I I 

"t, 
BUN 10 

is put here 

} INSTRUCTIONS 

When step 00 is performed, the BSB will store a BUN 02 in memory location 10. That 
is why location 10 has nothing put there. Then the program will branch to 12 to start 
the subroutine. The subroutine can be as long or short as needed. Then at the end of 
the subroutine (step 18 in this case) there is a branch back to the beginning of the 
subroutine (10) which will branch the program back to location 02. Working this way the 
subroutine can be called from anywhere in memory and when it is finished it will take 
the program back to where it was called from. 

No computer can really be useful without some way of communicating with other 
devices. It must be able to communicate with humans. So far, you have done this by way 
of the switches on the front control panel. The group of instructions that allow the'. 
computer to communicate with the teletypewriter are referred to as I/O instructions. 

11 OCD,k Output Command 

This instruction is used to set up the interface between the peripheral equipment 
(teletypewriter in our case) and the computer. This does not start any data transfers, 
but must be executed before any I/O can be performed. The constant in this case has two 
functions. First it selects whether the data transfers will be in Hex or Alpha mode. 
Hex mode means that each transfer will be considered a number. In alpha mode each trans­
fer will be considered an ASCII character. The mode depends on the oen constant. Bit 3 
of the constant specifies Hex mode. Bit 4 of the constant specifies Alpha mode. 

If neither are set, you cannot determine what the mode will be and you might get 
something you did not want. 

The second function of the constant to determine which I/O device is used. In our 
system we only have one I/O device and it is not wired to detect any specific count •. 
Bits 0-2 are used to determine which device will be used. Since our teletype is not 
wired to decode it, any number (0-7) can be put in these 3 bits. If our computer had 
more than one I/O device, each would have a designated number. The constant k for the 
OCD is set up like this: 

7 -6 5 ----
not used 

4 3 

~ ~ 
A H 
L E 
p X 

·H 
A 

210 
~ 

device. 
code 

Remember, all I/O operation must be preceded by the OeD instruction. If you do not 
change modes or devices within your program then one OCD will be enough for the program. 
Each time you want to change, you must use another OCD. 

01 LCI,k Load Countdown Immediate 

This instruction is used to put the constant k into the countdown register. The 
countdown register is used to control I/O transfers. The countdown always has a count 
of one less than the number of words to be transferred. If you load the countdown with 
a 4 before an I/O operation, then 5 words will be transferred. If you forget to load the 
countdown and it has 00 in it then 1 word will be transferred. 

99 



EO RDB,m,x Read Data Block 

This instruction will cause data to be stored into memory location m. The I/O 
device and the mode (alpha or hex) are determined by the OCD. The first word read into 
the computer will be stored in memory location m. The second word will go into memory 
location m + 1 and so on. This continues until the countdown register is equal to zero. 
If the countdown starts with a 10(16) in it, then the computer will read in 11(16) words 
storing them in memory location m through m + 10(16). The tape reader will supply the 
data to be read when a tape is loaded. If there is no paper tape loaded, the input will 
be from the keyboard. Notice that there is no way of designating whether you want the 
input from the paper tape reader or the keyboard. You will have to tell the person using 
your program what is expected from him. 

Often times the programmer may not know how much data is to be read. If people are 
to enter their names, you do not know if the name will be Bob or Robert. You don't know 
how many words you want so you cannot load the countdown. The RDB will wait until the 
countdown is zero. If you put 05 in the countdown and do a RDB then the computer will 
just sit there until it has 6 inputs. That is.all right as long as data is going to be 
a certain length each time such as social security numbers. This creates a problem in 
the case of a name. To get around this problem we have another read instruction. 

E8 RDI,mx Read until Interrupt 

This instruction will cause the computer to read from the device selected by the OCD. 
The computer will read until the interrupt bit is set. Data will be stored in memory 
location m,m+l, m + 2, and so on until the interrupt bit is set. The countdown has no 
effect on this read. The interrupt can be set by typing a Control I on the teletype. 
Now the machine can read a human input but it must also be able to write. 

DO WDB,mx Write Data Block 

This instruction will cause the computer to write the data starting in location m to 
the selected device. The device and mode are selected by an OCD. The number of words 
written will be determined by the count in the countdown just as it is for the TDB. For­
matting your data to be written out will probably be the hardest part of writing pro­
grams that use I/O. You must put every letter, space, carriage return, and line feed 
into memory. In other words, the format by which data is printed is totally dependent 
on the programmer when in Alpha mode. In Hex mode, the computer converts each memory 
location to Hex and writes it out. It puts colons after each number and puts 16 num­
bers across on a line. There is no programmer formatting in Hex mode. 

30 LCC,m,x Load Consecutive 

This instruction takes the data in memory location m and stores it in memory loca­
tion m + 1. No registers are affected and memory location m is not affected. 

Example: 

Before: LCC 30 Memory Location 30 A6 Memory Location 31 2C 

After: LCC 30 Memory Location 30 A6 Memory Location 31 A6 

In a small loop this instruction could be used to initialize a block of memory to a 
certain value. 

00 SST, Sense Status 

This instruction causes a status word sent by the selected I/O device to be put into 
the accumulator. The teletype does not have a status word so this instruction cannot be 

100 



used with it. A status word tells the computer things like parity error, out of paper, 
end of tape and so on. Again, this is of no use to us since the teletype has no status 
word. 

CO BNC,m,x Branch on no Carry 

This instruction will cause a change in the program sequence if the carry flip-flop 
is clear. The carry is set by an overflow in addition or an underflow in subtraction 
(borrow from a nonexisting bit position). This is what sets the carry. The BNC checks 
for no carry or the carry clear. 

FO MNI,m,x Manual Input 

This instruction halts the computer to allow the operator to put a value into the I 
register (input). The word in the input register will be stored in memory location m 
when the operator pushes the start pushbutton. This will continue until the countdown 
register is zero. Each time the start is pushed, the word in the input register will be 
stored in memory location m, m + 1, m + 2, and so on until the countdown is equal to zero. 

DB MNO,m,x Manual Output 

This instruction will cause the contents of memory location m to be displayed in the 
I register. Each time the start is pushed the next memory location will be displayed. 
This will continue until the countdown is equal to zero. Remember, as in the RDB and 
WDB, the number of words transferred with the MNI and MNO is always one more than the 
count in the countdown. 

You have covered the block diagram of a computer. This 5 block diagram will per­
tain to any computer that you may come across. If, while you are studying other 
machines you will try to break them down into their five basic blocks, you will find that 
learning the other machines will be easier. 

You also studied the block diagram of the COM-TRAN TEN. This will be a big help in 
the blocks to come. 

Last you studied programming and the instructions of the COM-TRAN TEN. The purpose 
of this course is to make you a maintenance person, not a programmer. It is very neces­
sary that you know the instructions of any computer on which you work. If you do not 
know what the computer is supposed to do when it decodes an instruction, you cannot tell 
if the computer did it right or wrong. That is an essential part of maintenance. 

REVIEW QUESTIONS 1-9 

1. Match the instructions to their functions • 

. Causes the computer to skip the number of instructions specified if the Sense 
Switch is set. 

Causes the computer to store a branch unconditional at the address specified and 
then branches to the instruction after the address is specified. 

Used to clear the Flag flip-flop. 

Causes the computer to skip the number of instructions specified if the Flag is 
set. 

Used to set the Flag flip-flop. 

101 



___ Causes the computer to skip the number of ,instructions specified in the Interrupt 
flip-flop is set. 

1. FLS 

2. FLC 

3. SKF 

4. SKS 

5. SKI 

6. BSB 

2. Analyze the following program. Give the contents of the Accumulator after each step. 
Any steps not performed leave blank. If you have trouble, go to the computer, load the 
program and run it o~e instruction at a time. 

Memory 
Location 

00,01 

02,03 

04,05 

06,07 

08,09 

OA,OB 

OC,OD 

OE,OF 

10,11 

12,13 

14,15 

16,17 

18,19 

lA,lB 

lC 

lD 

IE 

Symbolic 
Code 

FLS 00 

LDA lC 

BNG 10 

ADD 1D 

STA IE 

SKF 01 

BSB 14 

BST 00 

FLC 00 

BUN 06 

00 00 

LAN lE 

STA IE 

BUN 14 

10 

2E 

00 

Accumulator 

3. If the contents of memory location lC was changed to FS and the program was run, 
what would be stored in memory location IE after the program was finished? 

102 



4. Match the following instructions with their functions. 

Used to read the amount of data specified by the Countdown Register from the 
selected device (teletypewriter) into memory starting at the address specifieci. 

Used to select a device and tell it what mode (Hex or Alpha) to work in. 

Used to write the amount of data specified by the Countdown Register from memory 
to the specified device (teletypewriter). 

Used to read data from the specified device (teletypewriter) into memory until an 
interrupt is detected. 

Used to load the Countdown Register with the number specified. 

1. OCD 

2. LCI 

3. RDB 

4. RDI 

5. WDB 

5. Analyze the following program. Give the written output that would be printed after 
the program has run. If you have trouble, go to the computer, load the program and run 
it. Be sure and turn the teletype to "line" when running the program. 

Memory Symbolic Remarks 
Location 

00,01 OCD 10 Sets Alpha Mode 
02,03 LCI 09 One less than what is to be printed 
04,05 WDB 10 Write Data 
06,07 LCI OD One less than what is to be printed 
08,09 WDB 1F Write Data 
OA,OB BST 00 

ASCII CHARACTER HEX 
CODE 

10 CARRIAGE RETURN 8D 
11 LINE FEED OA 
12 T D4 
13 H 48 
14 1 C9 
15 S 53 What will this 
16 Space AO program print 
17 I C9 out? 
18 S 53 
19 Space AO 
1A F C6 
1B U 55 
1C N 4E 
1F A 41 
20 Space AO 
2i T D4 
22 E C5 
23 S 53 

103 



ASCII CHARACTER HEX 
CODE 

24 T D4 
25 Space AO 
26 P 50 
27 R D2 
28 0 CF 
29 G 47 
2A R D2 
2B A 41 
2C M 4D 

6. Match the following instructions with their functions. 

__ ~_lUsed to manually input information through the Input Register. 

l. 

2. 

3. 

4. 

5. 

Used to check the status of the selected I/O device. 

Used to move data from the specified memory location into the next memory 
location. 

Will cause a change in the sequence of the program if the Carry flip-flop is 
clear. 

LCC 

SST 

BNC 

MNI 

MNO, 

PROCEDURES FOR WRITING PROGRAMS 

In this section you will learn basic techniques used in developing a program for the 
machine to use. There are distinct steps which you must go through to write a program. 
You will learn these steps and use them. 

Before you get started there are some terms you need to know. These will be used 
throughout the remainder of the block. As they are used they will be explained, but 
here is a quick definition of some of the terms. 

Instruction A code that the computer can decode, and because of it, can perform a 
preset sequence of events. 

Program A .·sequence of instructions that perform a specific job to reach the 
desired end. 

Subroutine 

Flow-Chart 

A sequence of instructions that performs a specific task of a job. Sub­
routines are used within programs. 

A diagram that visually shows what needs to be done within the program 
to get a job done. 

There are seven distinct steps involved in writing a program. You will not always 
do all seven steps on paper. Some of these steps will be done mentally. In fact, 

104 



sometimes you may not even realize that you did the step. Each step is performed 
whether you realize it or not. The first step is to analyze the problem. 

Analyzing the problem is usually the most difficult part of writing a program. If it 
is done properly the other six steps will be easy. 

This step involves finding out exactly what the desired results of the program are 
to be. We all know that we want our answer, but do we want it printed out, and, if so, 
in what format? Is our answer going to be used by other programs? If so, where are we 
to put our answer so the other programs can find it? Questions like these must be 
answered. Also in this step, we must determine what we have to work with. If we are to 
design a building, we must be told the number of rooms, the length of each wall, and the 
height of the building. We've got to find out what is known in our problem. We must also 
determine where these knowns are stated, or if they are going to come from I/O device, 
such as the Teletypewriter. 

A good understanding of the problem is a must in determining how to solve it. 

Let it be noted now that a program is never written for just one situation. You 
never write a program that is to be used only once. It would be ridiculous to write a 
program that will take the square root of 37. It would not be so ridiculous to write a 
program that will take the square root of any number. After a programmer has taken all 
the time to figure out how to solve the problem, he will have the answer for any value 
to the one time program. By the time the program is ,written he will know the square root 
of 37. If the program, however, will find the square root of any number, and you do not 
know the square root of all numbers, then the program has value. 

The programs and programming problems that you will have in this course are to help 
teach you what the machine is doing and how it does it. 

The second step in writing a program is to select a method to solve the problem. 
This means that the programmer must figure out how he can take the knowns or the given 
information,' and come up with the desired answer. He must be able to work the problem 
himself. That does not mean he must be a mathmatician or an engineer, but simply means 
he must be able to look at the formula and determine what it takes to do that formula. 
There is normally a number of different ways to solve a given problem. The programmer 
must be able to look at the problem and determine which way is the best way. 

After this has been 'determined, the programmer will go on to the third step. This 
step is t? develop a flow chart. A flow chart is a pictoral representation of how you 
are going to solve the problem. In flow charting there are a few basic symbols you will 
need to know. These are not all of the symbols, but these are the major ones. 

A rectangle is used to show an action that is to take place. This action ~ight be 
adding two numbers, or reading something from the teletypewriter, or taking something out 
of memory. 

The symbol looks like this. ~ 

Another symbol we will use is a diamond~ 

This will be used to show when a question is to be asked and the different paths 
that can be followed depending on the answer to the question. It is called a decision 
block. 

105 



The next symbol is an oval. It is called a terminal symbol and it is used to show 
starting and stopping points of the program. 

( ) 

Last is the connector symbol. c=) 

This symbol is used when it would be confusing to draw a line or when you go from one 
page to the next. Label the connector out and the connector in the same way to show that 
these points are the same. An example of a flow chart using these symbols is shown below. 

ADD 1 TO 
COUNTER ON 

BOYS 

A 

ADD 1 to 
COUNTER ON 

GIRLS 

RDA26-444 

Remember, a flow chart is a programmer's tool. How detailed the flow chart is 
depends on the programmer, but the more detailed it is the easier it will be to write 
the program. 

The fourth step in writing a program is to write the program. Using the flow chart, 
the programmer must write the instructions that will cause the action the flow chart 
describes. For us this means write the program using the symbolic name for the instruc­
tions that the COM-TRAN TEN uses. You can see that the more detailed the flow chart 
the easier this s,tep will be. 

The fifth step is to put the symbolic coding into machine language. This is usually, 
done by the programmer putting his symbolic program on punched cards and letting the 
computer code it into machine langugage for him, but, in our case, we will do this by 
looking up the hexadecimal code for each instruction. 

The sixth step is to test the program. Here you will load the program into memory 
and run it to see if it gives the correct answer. This means that you will have to use' 
known values so you will know what the answer is supposed to be. 

106 



In the event that the program does not run correctly ,the first time, you will have to 
. perform the seventh step in writing a program; revise if necessary. Look at the results 

your program gave you and find out why they are wrong. Change the program to make the 
results correct. In complicated programs, this step may be done several times before a 
good working program is finished. 

You have just gone through the seven basic steps in writing a program. After learning 
, some instructions, we will go through these steps again. 

These seven steps are used regardless of the computer programming language used. 
Steps 4 and 5, writing the program and coding it, will differ from one machine to the 
next and from one language to the next. 

PROGRAMMING PROBLEM 

Using a branching program, generate a total sum for the contents of memory location 
100 through 108. Check the sum to see if even or odd. If odd, store in memory location 
350 and if the sum is even, store it in location 351. 

a. What are the knowns and unknowns? 

b. What general method are you going to use--to solve the problem? 

c. Construct a flow chart. 

d. Call the instructor to check your work. 

107 



e. Write the program; then code the program for loading in the COM-TRAN TEN 
Computer. 

f. Call the instructor to check your work. , __________ __ 

108 



60 ADD,m,x 

19 AND,k 

co BNC,m,x 

B8 BNG,m,x 

A8 BPS,m,x 

AO BSB,m,x 

98 BST,m,x 

90 BUN,m,x 

C8 BXZ,m,x 

BO BZE,m,x 

78 DIV,m,x 

28 FLC,k 

F8 FLS,k 

03 INX,k 

lA IOR,k 

02 LAI,k 

38LAN,m,x 

30 LCC,m,x 

01 LCI,k 

20 LDA,m,x 

40 LDQ,m,x 

ALPHABETICAL 
SUMMARY OF INSTRUCTIONS 

ADD 
(ACC) + (m) + (ACC) 
AND 
k AND (ACC) + (ACC) 
Branch on No Carry 
CARRY = 0 + m + (P A) 
Branch on Negative 
<0 + m + (PA) 
Branch on Positive 
>0 + m + (PA) 
Branch to Subroutine 
90 (BUN) + (m) 
(PA) + (m + 1) 
m + 2 + (PA) 
Branch & Stop 
m + (PA) & STOP 
Branch Unconditional 
m + (PA) 
Branch on INDEX Zero 
(X) = 0 + m + (PA) 
Branch on Zero 
= 0 + m + (PA) 
Divide 
(AQ) .;. (m) + (Q) 
remainder + (ACC) 
FLAG clear 
o + FLAG bit 
FLAG set 
1 + FLAG bit 
Increase INDEX 
(X) + k + (X) 
Inclusive OR 
k OR (ACC) + (ACC) 
Load ACCUMULATOR immediate 
k + (ACC) 
Load ACCUMULATOR Negative 
- (m) + (ACC) 
Load Consecutive 
(m) + (m + 1) 
Load COUNTDOWN immediate 
k + (C) 
Load ACCUMULATOR 
(m) + (ACC) 
Load QUOTIENT register 
(m) + (Q) 

12 LXI,k 

FO MNI,m,x 

D8 MNO,m,x 

70 MPY,m,x 

11 OCD,k 

80 RAO,m,x 

EO RDB,m,x 

E8 RDI,m,x 

88 RSO,m,x 

OA SKF,k 

08 SKI,k 

09 SKS,k 

OB SLA,k 

13 SLL,k 

10 SRA,k 

18 SRL,k 

00 SST,k 

48 STA,m,x 

58 STQ,m,x 

50 STX,m,x 

68 SUB,m,x 

1B XOR,k 

DO WDB,m,x 

109 

Load INDEX immediate 
k + (X) 
Manual input 
(INPUT) + (B) + (m) 
Manual Output 
(m) + (B) + (INPUT) 
Multiply 
(ACC) * (m) + (AQ) 
Output Command 
k + external device 
Replace Add One 
(m) + 1 + (m) 
Read Data Block 
Data + (m) 
Read until Interrupt 
Data + (m) 
Replace Subtract One 
(m) - 1 + (m) 
Skip on FLAG 
k instructions 
Skip on Interrupt 
k instructions 
Skip on Sense 
k instructions 
Shif t LEFT Arithmetic 
(AQ) to Left k places 
Shift LEFT Logical 
(ACC) to left k places 
Shift RIGHT Arithmetic 
(AQ) to right k places 
Shift RIGHT Logical 
(ACC) to right k places 
Sense Status 
8-bit status word + (ACC) 
Store ACCUMULATOR 
(ACC) + (m) 
Store QUOTIENT 
(Q) + (m) 
Store INDEX 
(X) + (m) 
Subtract 
(ACC) - (m) + (ACC) 
Exclusive OR 
k EOR (ACC) + (ACC) 
Write Data Block 
(m) + external device 



NUMERICAL 
SUMMARY OF INSTRUCTIONS 

00 SST,k Sense status 60 ADD,m,x ADD 
8-bit status word + ACC (ACC) + (m) + (ACC) 

01 LCI,k Load COUNTDOWN immediate 68 SUB,m,x SUBtract 
k + (C) (ACC) - (m) + (ACC) 

02 LAI,.k Load ACCUMULATOR immediate 70 MPY,m,x Multiply 
k + (ACC) (ACC) * (m) + (AQ) 

03 INX,k Increase INDEX 78 DIV,m,x DIVide 
(INDEX) + k + (INDEX) (AQ) f (m) + (Q) 

08 SKI,k Skip on INTERrupt remainder + (ACC) 
k instructions 80 RAO,m,x Replace ADD One 

09 SKS,k Skip on SENSE (m) + 1 + (m) 
k instructions 88 RSO,m,x Replace Subtract One 

OA SKF,k Skip on FLAG (m) - 1 + (m) 
k instructions 90 BUN,m,x Branch UNconditional 

OB SLA,k Shift LEFT Arithmetic m + (PA) 
(AQ) to left k places 98 BST,m,x Branch & Stop 

10 SRA,k Shift RIGHT Arithmetic m + PA & STOP 
(AQ) to right k places AO BSB,m,x Branch to Subroutine 

11 OCD,k Output Command 90 (BUN) + (m) 
k + external device (PA) + (m + 1) 

12 LXI,k Load INDEX immediate (m + 2) + (PA) 
k + (INDEX) A8 BPS,m,x Branch on Positive 

13 SLL,k Shift LEFT Logical >0 + m + (PA) 
(ACC) to left k places BO BZE,m,x Branch on Zero 

18 SRL,k Shift RIGHT Logical = 0 + m + (PA) 
(ACC) to right k places B8 BNG,m,x Branch on Negative 

1A IOR,k Inclusive OR <0 + m + (PA) 
k OR (ACC) + (ACC) CO BNC,m,x Branch on No Carry 

19 AND,k AND CARRY = 0 + m + (PA) 
k AND (ACC) + (ACC) C8 BXZ,m,x Branch on INDEX Zero 

1B XOR,k Exclusive OR (INDEX) = 0 + m + (PA) 
k EOR (ACC) + (ACC) DO WDB,m,x Write Data Block 

20 LDA,m,x Load ACCUMULATOR (m) + external device 
(m) + (ACC) D8 MNO,m,x Manual Output 

28 FLC,k FLAG clear (m) + (INPUT) & (BUFFER) 
o + FLAG bit EO RDB,m,x Read Data Block 

30 LCC,m,x Load Consecutive Data + (m) 
(m) + (m + 1) E8 RDI,m,x Read until Interrupt 

38 LAN,m,X Load ACCUMULATOR Negative Data + (m) 
- (m) + (ACC) FO MNI,m,x Manual Input 

40 . LDQ,m,x Load QUOTIENT register (INDEX) & (BUFFER) + (m) 
(m) + (QUO) F8 FLS,k FLAG Set 

48 STA,m,x Store ACCUMULATOR 1+ FLAG bit 
"(ACC) + (m) 

50 STX,m,x Store INDEX 
(INDEX) + (m) 

58 STQ,m,x Store QUOTIENT 
(QUO) + (m) 

110 



MEM(IIRY 

PAGE = 1 2 3 o 1 2 

INDEXED = x x x 

LSD+O 1 2 3 4 5 6 

MSD 

t 

o SST LCI LAI INX INVALID INST 

1 SRA (IICD LXI SLL INVALID INST 

C(IIM-TRAN TEN 
INSTRUCTI(1IN 
REPERT(IIIRE 

3 o 1 

x 

7 8 9 

2 

A 

3 o 1 2 

x x x 

B C D E 

SKI SKS SKF SLA INVALID INST 

SRL AND I(1IR X(IIR INVALID INST 

3 

x 

F 

2 LDA LDA LDA LDA LDA LDA LDA LDA FLC FLC FLC FLC FLC FLC FLC FLC 

3 LCC LCC LCC LCC LCC LCC LCC LCC LAN LAN LAN LAN LAN LAN LAN LAN 

4 LDQ LDQ LDQ LDQ LDQ LDQ LDQ LDQ STA STA STA STA STA STA STA STA 

5 STX STX STX STX STX STX STX STX STQ STQ STQ STQ STQ STQ STQ STQ 

6 ADD ADD ADD ADD ADD ADD ADD ADD SUB SUB SUB SUB SUB SUB SUB SUB 

7 MPY MPY MPY MPY MPY MPY MPY MPY DIV DIV DIV DIV DIV DIV DIV DIV. 

8 RA'/J RA'/J RAf/J RAf/J RA'/J RAf/J RA(II RAf/J RSf/J RSf/J RS(1I RS(II RS'/J RSf/J RSf/J RS(1I 

9 BUN BUN BUN BUN BUN BUN BUN BUN BST BST BST BST BST BST BST BST 

A BSB BSB BSB BSB BSB BSB BSB BSB BPS BPS BPS BPS BPS BPS BPS BPS 

B BZE BZE BZE BZE BZE BZE BZE BZE BNG BNG BNG BNG BNG BNG BNG BNG 

C BNC BNC BNC BNC BNC BNC BNC BNC BXZ BXZ BXZ BXZ BXZ BXZ BXZ BXZ 

E RDB RDB RDB RDB RDB RDB RDB RDB RDI RDI RDI RDI RDI RDI RDI RDI 

F MNI MNI MNI MNI MNI MNI MNI MNI FLS FLS FLS FLS FLS FLS FLS FLS 

LS])+-O 1 2 3 4 5 6 7 8 9 A B C D E F 

111 



COMPUTER TERMS GLOSSARY 

These terms are defined only as they relate to computer programming. Specifically, 
where technicalities arise, the reference is to the COM':'TRAN TEN compu.ter system. Not 
all these terms are issues in this manual, but they are included here as a more overall 
source. 

abacus 

absolute coding 

access time 

accumulator 

address 

ALGOL 

algorithm 

alphameric characters 

analog computer 

applications 

argument 

arithmetic operation 

arithmetic section 

arithmetic statement 

array 

device for calculating by sliding beads or counters 
along strings 

instruction written in machine language; language 
that the computer understands and so no translating 
process is· needed 

length of time required to move a word from a 
specified memory location or to put a word into a 
specified memory location. 

special part of the arithmetic-logic unit of the 
computer where temporary storage is handled and 
algebraic sums are formed 

identification of any location in computer where 
information is stored 

.. ALGOri thmic Language; an algebraic language 

step-by-step procedure to accomplish a given result, 
method of solving a problem in a given system 

generic ~erm for alphabetic, numeric, and special 
symbols 

computer which outputs as a result of measured 
input; both input and output are of a continuous 
nature 

problems in any discipline to which the computer 
is directed 

variable upon whose value the value of a function 
depends; the function is a subprogram in the com­
puter and the argument is listed in parentheses 
after the function name 

one of the four basic operations of arithmetic; 
addition, subtraction, multiplication or division 

function part of a digital computer that performs 
the arithmetic operations required to solve a 
problem 

type of statement which specifies numerical com­
putation and assigns the value to some variable 

series of items arranged in rows and columns 

112 



assembler 

automation 

base (radix) 

BCD 
(Binary Coded Decimal) 

batch processing 

binary number 

binary digit 

binary point 

bit 

blank 

Boolean algebra 

bootstrap 

branch 

buffer 

byte 

call 

computer program that operates on symbolic-coded 
instructions to produce a machine-coded program 
that the computer can execute 

predetermined process for self-movement and self­
control 

number of different digit-symbols used to form 
numbers in a number system that uses positional 
notation; the decimal number system is written to 
the base ten and has ten digits: 0,1,2,3,4,5,6,7, 
8,9; the octal number system is written to the 
base eight and has eight digits: 0,1,2,3,4,5,6,7; 
the binary number system is written to the base 
two and uses two digits: 0 and 1; the hexadecimal 
number system is written to the base sixteen and 
uses sixteen digits: 0,1,2,3,4,5,6,7,8,9,A,B,C, 
D,E,F 

system of writing decimal numbers in binary coded 
form in which each decimal digit is represented by 
a binary number: 256 is 0010-0101-0110 and 718 is 
0111-0001-1000 

technique by whic.h information is coded and col­
lected into groups before processing 

number written in the binary number system, that is 
using only O's and lIs 

either 0 or 1 which represents one of two condi­
tions: on or o~f 

character to separate units from fractional rep­
resentation in binary notation 

binary digit; either a 0 or 1 

absence of any information; character which speci­
fically represents no information 

mathematical system with two elements and unary 
and binary operators 

technique by which a device brings itself into a 
desired state by acting on itself 

depart from the normal execution of instructions 
in sequence 

extremely temporary storage device of relatively 
small capacity that can receive and transmit data 
at different speeds 

sequence of adjacent binary digits that are acted 
upon as a unit; usually eight bits 

branching to a specified subroutine 

113 



card punch 

card reader 

cell 

central processor 

character 

clear 

closed-subroutine 

COBOL 

code 

coding 

coding sheet 

command 

compiler 

complement 

computer 

piece of peripheral equipment for punching holes in 
cards 

mechanical or photoelectric device used to read the 
pattern of holes on a punched card 

one location in the memory section; each cell has 
its own location and can store one "word" 

computer proper that contains the circuits that 
control and perform the execution of instructions 

symbol used to represent one digit of a number or 
one letter of the alphabet 

instruction that erases the contents of storage by 
storing zeros 

subprogram which is not stored with sequence of 
main program but is entered by a branch instruc­
tion and after execution, control returns to'main 
program 

COmmon Business Oriented Language; specific language 
for expressing business data and procedures in 
everyday language 

binary number that represents a computer operation 

act of preparing the code a list of specific 
instructions directing the computer to solve a cer­
tain problem 

form on which instructions are prepared in a cer­
tain language 

an instruction or control signal in machine 
language 

program-making routine which translates an instruc­
tion into a subroutine in machine-language, assigns 
addresses to data and instructions, executes the 
program, and retranslates into pseudo-instructions 
and data 

in the binary system, the number formed by 
replacing l's with O's and by replacing O's with 
l's and then adding one to the result: 0001 1011 
and the complement of 0101 0011 is 1010 1101 in 
the decimal system the complement of 526 is 474 
and the complement of 169 is 831 

device capable of accepting information, proces­
sing the information according to prescribed laws 
and controls, and supplying the results of the 
processing 

114 



console 

constant 

control statements 

core 

core memory 

counter 

cybernetics 

data 

data processing 

debug 

decimal 

decision 

decrement 

delete 

delimiter 

device 

digital computer 

dimension 

direct addressing 

direct mode 

disk-storage 

unit of peripheral equipment where the control 
keys and special devices are located 

quantity of message that is not subject to change 
in a given program 

command in a program that directs the next instruc­
tion to be executed 

a very small toroid shaped object made of ferrous 
(iron) material capable of permanently maintaining 
either one of two definite states of magnetism 

storage device made of ferrite cores 

binary counter displays the count in binary nota­
tion and a decimal counter displays the count in 
decimal form 

field of technology involved in the comparative 
study of man and machines in their control and 
intracommunication of information 

any information fed into the computer that is used 
by the computer in performing some operation 

any procedure for accepting information and pro­
ducing a specified result 

locate and correct errors in a computer program 

numeration system in base ten 

process of determining one or more choices; usually 
by comparison to determine if a certain condition 
is met 

quantity by which a variable decreases 

leave out 

character that limits a string of characters 

anything formed by design 

computer that processes information that is 
expressed in discrete quantities 

statement that sets the maximum number of memory 
cells to be reserved for variables with a subscript 

.;. naming the location of information by its machine­
coded address 

on-line working with a special language system 

device that stores information on the surface of 
flat magnetic disks 

115 



divide fault 

DO loop 

documentation 

double precision 

drum 

dummy variable 

E-format 

electronics 

= equal symbol 

error message 

execution 

explicit parentheses 

exponentiation 

expression 

fetch 

fixed point 

flag 

flip-flop 

error that occurs when a large number is divided by 
a small number and the quotient cannot contain all 
the digits of the result 

a sequence of instructions that are repeated for 
variables that increase until a specified limit is 
reached 

information that presents, organizes and communi­
cates all necessary facts to understand behavior of 
a problem in a given situation 

increased word size in a computer that allows for 
results to be twice as large as input data 

storage device with a magnetic surface on a circu­
lator cylinder 

character introduced within a program to store data 
within the processing of the program 

exponential representation of a number; significant 
digits are expressed as a number between 1 and 0 
multiplied by a power of ten . 

branch of science that deals with behavior of 
electrons 

is replaced by 

symbol or information that communicates that the 
language in the program cannot be understood and 
executed 

carrying through a prescribed instruction or group 
of instructions 

parentheses around an expression in a statement 

expression that involves powers of a given or 
understood base 

valid series of functions, variables, and constants 
that may be connected by operations 

part of a computer cycle that determines what the 
next instruction is to be executed 

arithmetic notation for a number that has predet­
ermined the position of the decimal point 

character that indicates some condition 

an electronic device capable of maintaining either 
one of two states, usually designated as a '1' or 
a ·'0' 

116 



floating point 

flow chart 

format 

FORTRAN 

function 

hard copy 

hardware 

heuristics 

hexadecimal 

hierarchy of operations 

hybrid computer 

IBM card 

illegal characters 

implicit parentheses 

increment 

index 

indirect addressing 

arithmetic notation for a number that requires 
expressing each time the position of the decimal 
point; notation that involves digits and a power of 
ten 

pictorial representation of the solution of a prob­
lem by showing the steps in a sequential order 

predetermined arrangement of words, characters, 
numbers, symbols, lines, etc. 

FORmula TRANslation; specific language that uses 
algebraic and English notation to s'olve scientific 
and mathematical problems 

special purpose or characteristic action; relation 
of one item from a set 'with items from another set 

printed-out pages from output device 

mechanical, magnetic, electrical, and electronic 
devices or components of a computer 

intuitive trial and error method of approaching a 
problem; exploratory method of problem solving 
that arrives at solutions by examining progress 
toward the final answer 

numeration system based on sixteen digits 

order in which mathematical operations are carried 
out 

combination of an analog computer with a digital 
computer; analog computer offers speed, flexibil­
ity, and direct communication while the digital 
computer ~ontributes the memory, logic, and 
accuracy 

paper card that may have information on it in the 
form of holes that can be read by a computer 

symbol or combination of bits that the computer 
does not accept 

parentheses that are not printed in the statement 
but result in certain operations as if they were 
present 

quantity added to a variable 

number operated upon in a special register or cell 
to count or modify a procedure 

method of assigning memory cells in machine language 
to instructions or data in another language 

117 



information retrieval 

initialize 

input/output 

instruction 

iteration 

jump 

keyboard 

language 

library 

limit 

linear programming 

list 

load 

location 

branch of computer science relating to the tech­
niques of storing large amounts of information and 
searching for appropriate sections as needed 

set a counter, switch, or address to zero or some 
other beginning number 

equipment that communicates with the computer 

numerically coded command (in machine language) 
that commands the computer to perform some opera­
tion; an instruction has two parts: the operation 
code number (code) and an operation data address 
(operand) 

technique of repeating a group of instructions 

instruction or signal which conditionally or uncon­
ditionally tells the computer the location of the 
next instruction and directs the computer to that 
instruction, for example an unconditional jump 
instruction causes the computer to go to a speci­
fied place for its next command and to do this as 
soon as it is decoded; a conditional jump instruc­
tion causes the computer togo to a specified place 
for its next command ONLY if a certain condition 
exits 

device to input data; device encodes data into a 
binary form which is changed to signals to the 
computer 

defined set of symbols, characters, words, and 
rules that combine to a meaningful communication 

organized collection of standard routines 

capacity of a system; specified number that stops 
a loop; number to which a series converges 

technique used in mathematics and operations re­
search to find the BEST solution to a problem 
(there is no RIGHT answer) 

items written in a meaningful format that are trans­
mitted to input/output print every relevant item 
of input data 

to put instructions or data into the computer's 
memory or into a register 

unit of storage in the internal memory of the com­
puter; place in main memory or an auxiliary stor­
age where data or information is kept until called 
for 

118 



logic 

logical design 

logic diagrams 

logical decision 

loop 

machine cycle 

machine language 

magnetic tape 

magnitude 

matrix 

mechanical 

memory 

microsecond 

mnemonic operation 
codes 

mode 

model 

multiprocessor 

nanosecond 

nesting 

network 

branch or part of philosophy that studies human 
thinking and the processes of reasoning; it inves~ 
tigates the validity of conclusions reached 

overall plan of a digital computer expressed in 
terms of the five basic logic units: AND, OR NOT, 
flip-flop, delay 

representation of the working relation between the 
parts of a system in terms of symbolic logic 

choice between alternatives; usually the response 
is either yes or no 

repeated execution of a series of instructions 

length of time required to fetch and execute a 
single instruction; time required to get an in­
struction from memory, interpret it, and carry it 
out 

set of symbols and characters with certain rules 
for combining them that convey instructions or 
information that the computer can understand and 
execute 

external storage device that retains information 
in the form of magnetically polarized spots 

size of a number without regard to direction or 
ri~ 

rectangular array of numbers or variables 

physical quantities that operate with masses, gears, 
rods, etc 

a storage device used to hold. instructions or data 
until the computer calls for it 

one-millionth of a second 

technique to assist one to remember; computer 
instructions written in an abbreviation that is 
meaningful 

method of operation 

mathematical representation of a concept, device, 
process, or technique 

computer with multiple logic and arithmetic units 
for simultaenous use 

one-billionth of a second 

including a routine within a larger routine 

series of interconnected points 

119 



nonexecutable 

object program 

octal 

off-line unit 

on-line unit 

open subroutine 

operand 

operation code 

operators 

overflow 

parameter 

parentheses 

peripheral equipment 

.. positional notation 

power 

printer 

processor 

program 

program counter 

programmer 

state in which the computer cannot operate 

machine language program which is the final output 
of a coding system 

numeration system with eight digits 

peripheral equipment not under the direct control 
of the central processor of the computer 

peripheral equipment under direct control of the 
central processor of the computer 

separately coded sequence of instructions that is 
inserted into the main program directly where it 
would be executed 

any quantity entering into or arising from an 
operation 

symbols which direct the computer to perform a 
defined action 

characters that designate mathematical operations 

result of an arithmetic operation that exceeds the 
capacity of the register to receive it 

constant or independent variable which is not an 
argument and upon which an operation depends 

special character: () 

units or machines used in connection or conjunc­
tion with a computer but are not part of it 

procedure in some numeration systems whereby the 
value of a digit is determined by its symbol and 
its position relative to the radix point 

expression involving some base used as a factor a 
specified number of times 

device that outputs data 

device capable of receiving data, manipulating it, 
and supplying results usually of an internally­
stored program 

plan for the solution of a problem which includes a 
step-by-step set of instructions that the computer 
can understand with all necessary data 

binary counter located in the control section of the 
computer that keeps track of the location of the 
next instruction to be executed 

person who prepares the set of instructions for the 
computer to solve the required problem 

120 



programming system 

pseudo instruction 

punched tape 

quantity 

radian 

radix 

random access 

range of a DO loop 

read 

real-time 

register 

A REGISTER 
(ACCUMULATOR) 

AQ REGISTER 

B REGISTER 
(BUFFER) 

C REGISTER 
(COUNTDOWN) 

D REGISTER 
(DISTRIBUTOR) 

method of programming problems consisting of a 
language- and its processor, other than machine 
language 

group of characters having the same general form as 
a computer instruction, but never executed by the 
computer as an actual instruction 

tape on which information is recorded by punched 
holes 

constant, variable, expression, or function name 

unit of measure for angles; pi radians = 180 
degrees 

base of a number system 

ability of a memory device to obtain the contents 
of any memory location immediately 

value~ that the variable in a DO loop has to 
execute the loop 

transmit information from an input device to a 
computer 

method of processing data so quickly that there is 
no time between inquiry and result; pertains to 
performance of a computation during a related 
physical event to obtain results that guide the 
event 

a temporary storage device which is capable of 
holding binary coded data until the data is called 
for; the register is made up of several flip-flops, 
each of which can hold one binary digit (bit) 

in the CT-TEN computer, an 8-bit register in which 
the results of the arithmetic operation of add 
and subtract are formed 

in the CT-TEN computer a combined register formed 
from the 8-bits of the Q Register and the sign and 
magnitude bits of the Accumulator; the AQ Register 
is used during multiplication or division 

in the CT-TEN computer, an 8-bit register which 
holds all data to be loaded into, or which has 
been unloaded from, the memory 

in the CT-TEN computer, an 8-bit decreasing count­
er; the C Register is used as a decision counter 
in arithmetic operations, and as a down counter 
during the input or output of data 

in the CT-TEN computer, a 5-bit increasing counter 
which controls the computer timing 

121 



M REGISTER 
(MEMORY)· 

P REGISTER 
(PROGRAM) 

Q REGISTER 
(QUOTIENT) 

S REGISTER 
(STORAGE) 

X REGISTER 
(INDEX) 

repertoire 

right-justify 

root 

routine 

rub out 

run 

scale 

scientific notation 

sense switch 

shift 

sign 

simulator 

in the CT-TEN COMPUTER, a ten-bit register used to 
determine from which memory address the next 
instruction or datum is to be taken ~ 

in the CT-TEN computer, a ten-bit register which 
holds the address location of the instructions as 
the instruction is performed; this allows the com­
puter to follow a program in sequence 

in the CT-TEN computer, an 8-bit register which 
stores the quotient upon completion of a divide 
operation; this register also holds the least sig­
nificant digits in the product of a multiplication 

·in the CT-TEN computer, an 8-bit register which 
holds the OP CODE of an instruction, the index bit 
and the two high order bits of the memory address 
register 

in the CT-TEN computer an 8~bit register in which 
a count can be loaded, changed by addition, and 
compared to zero 

a complete list of instructions which the com­
puter is able to perform 

position the right-hand digit or character so that 
it occupies the allotted right-most space 

result of a power expression with the power greater 
than zero and less than one 

set of step-by-step instructions fed to a computer 
to solve a particular problem or do a certain job 

erase from memory 

execute 

range of values dictated by computer word-length 
or routine being executed 

expression in which a quantity is a fractional 
number and a power of ten 

switch on the console of some computers which may 
be set UP or DOWN; by setting this switch a pro­
gram may be tested for certain conditions 

movement of bits, digits, or characters to the right 
or left 

binary indicator that distinguishes negative 
quantities from positive quantities 

device that uses an experimental technique with a 
physical or mathematical model to behavior of a 
real-world problem 

122 



slide rule 

software 

soroban 

sort 

source program 

statement 

statement number 

step 

storage 

store 

stored program 
computer 

subprogram 

subroutine 

subscript 

subscripted variable 

symbolic coding 

tape unit 

TEACHWARETM 

teletype 

~ • ! 

device based on logarithms that multiplies numbers 
by adding distances; an example of a hand analog 
computer 

internal programs and routines prepared to simplify 
programming and computer operations which also 
extend the capabilities and functions of the 
hardware 

biquinary abacus used by Japanese merchants 

distribute into groups according to a set of rules 

program coded in some language other than machine 
language that must be translated into machine 
language before use 

instruction directing the computer to perform some 
sequence of operations 

number ident1~Ying a single statement so that the 
statement canlbe referenced within the program 

one of the simple operations required' to solve a 
complex problem 

device in which data and instructions can be 
stored 

place information in a location in storage so 
that it can be recovered later 

computer in which instructions to be executed are 
stored in memory 

program which defines desired operations and which 
may be included in another program 

subprogram 

notation used to specify a particular member of an 
array where each member is referenced only in terms 
of the array 

variable followed by one or more subscripts en­
closed in parentheses 

writing programs in any language other than ab­
solute machine language 

device upon which a magnetic tape is mounted for 
reading or writing 

materials that implement the hardware and soft­
ware in a classroom situation 

teletypewriter; device that communicates with com­
puter for input or output from a paper tape or a 
keyboard 

123 



time-shadng 

transfer 

transfer instruction 

truncate 

unary 

unload 

variable 

word 

word size 

write 

letting a device for two or more purposes 

terminate one sequence of instructions and begin 
another sequence or move information from one loca­
tion to another; move a "word" from one register to 
another 

instruction which causes a transfer for any or no 
condition 

cut off the number of digits in an answer by drop­
ping them 

operation that acts on a single number of expression 

to remove instructions or data from memory 

symbol whose numeric value changes from one itera­
tion of the program to the next; any expression 
whose value changes within a program 

group of digits handled by the computer as a 
single unit 

set number of digits that a storage cell may hold; 
largest number the computer can handle 

transfer information to an output device 

124 



CHAP'.rER 2 

COMPUTER UNl'.rS LOGIC ANALYSIS 

A heart specialist knows "what" .the lleart d,oes, it pumps bl.ood througll the body." . How- • 
ever, in order for ,him to properly diagnose heart; problems and repair ehjam, thel'wllat" 
alone is not enough. He must, also, know "how" thehea,rt works. The saD\e btrue tor a 
computer maintenance specialist •. ' As ,a computerrepairmall knowing "what i ' thecQinputer ... 
does is necessary, but "what" by itself 1snot enough •. ' You must, also, know "how" it" 
does its job. When a computer system fails for some reason, knowing the "hoW" Wi;Ll·let 
you go through the circuits, step by step, in the same order the90mpute~ dOlils. This. 
is the best way for you to find the problem ancl thell repair tlw system. . 

You will start learning the "how" of the COM-'.rW 10 •. There are some speeialco~­
ponents used in the COM-TRAN 10 which will be explained £1rst •. Then youWillliaarn,the 
"how" of each UNIT of this system, by tracing input s:l.gnlils·todetl'!l'II!ine theire:t:tectl'l 
.and the output signals generated. . ." . 

SPECIAL. COMPONENTS 

Phantom OR-Gate 

This gate is called "phantom" because it, is not a real, physicai OR';gate~hich you 
could find and look at or remove. However, due to the way thec:(rcu;ltiswh-ed .theOR,.,< 
function does exist at these points. Actually ,a phantom OR-gate is j1,lli>t . a'· c_on1>01nt,. 
,that is, a point with several parallel inputs, alld one output. Thisl,$ I;IhoWllin 
figure 2-1. "... . . 

t r r t yf 
• OUTPUT 

RDA26-386 

Figure 2-1 

Since these are nothing but conductors, all points a~e electricdlyt:he same and if any 
one of the inputs were to be connected to g1:'ound,al1 the otherinp~tsandthe 01,ltput . 
would feel that ground. This, thet;l, is acting like, an OR-gate, if any input goes low, 
"all inputs and the output go low.' There£o;oe, the logic symbol for. thb type of wiring 
arrangement shows an OR-gate made with dotted lines. (See figure 2-2.) Each PllantolD,.· 
OR-gate symbol shows the inputs to the'gate fot the part:l,c\1;!.ar pageoflog:i,c it appears 
on ONLY, and it must be 1:'emembered that there may be several, other inputs affecting that 
output elsewhere in the c:l.rcuit diagrams." . ". . 

The COM-TRAN 10 uses phantom OR-glltes for two purposes. One, 1t;:1,s used. toshc)W tl).e. 
generation of a signal called SPD15 (see sheet 21, ofKDA·,.J034) • Not;icetl).at. this symbol 
shows 7 inputs (these are all the"'1nputs affecting this'gate) and if anyoneo£ them goe", 

125 



" \I " " 

,\ , 
\ I , " 

RDA26-391 

Figure 2-:2. 

I 0 o I I I 

+5v 

Phantom -OR-Gate 

low, all the other inputs and the output, SPD15 will go low. For example, you can see on 
the logic sheet that there are 6 AND-gates and, 1 inverter feeding the inputs to the phan­
tom OR-gate. If anyone of these were to become satisfied by its input signals, its out­
put would go low. This LOW would then be felt on the phantom OR-gate input and it would 
cause the output and all the othe-r inputs of the phantom OR-gate to go LOW. If you were 
to then,m~~sure the output of any of the 6 AND-gates or the inverter, you would measure 
a LOW'.' "You1"o~ianot'be able to tell which gate had produced the LOW input which satis­
fied thepharit6mOR':"gate.' This phenomena, must be kept in mind when you try to'trouble-' 
shoot a computer which'contains phantom OR-circuits. The second use for this circuit in 
the COM-TRAN10'is to indicate the inputs to the Z-bus,. A bus is a common conductor among 
a number of locations, which is used to transmit data between different parts ,of the 
computer.' There are several buses in the COM-TRAN 10 and "z" is the name used for this 
particular one. The Z-bus is made up of 8 bits or 8 separate common conducto,rs,_ and 
therefore it takes 8 phantom OR-:gates to represent it. Several of the COM-TRAN 10 regis­
ters have outputs to the Z-bus; th,ese are indicated by the 8 phantom OR-gates whose 
Outpu.ts"are called ZO, ZI, ." ..•.. Z7. (See sheets 1,6,8,10,12 and 14 of KDA-3034.) 
Notice that each symbol shows only the inpUtS on that sheet of logic, but a LOW input to 
anyone of the gates would cause the inputs and ,output to go LOW on all of the gates 
representing that bit. 

In summary, a phantom OR-gate is justa common conductor with many parallel inputs 
which functions like an OR-gate. If anyone of its inputs go LOW all of its inputs and 
its outputs go LOW. This type of circuit is symbolized by a dotted line OR-gate logic 
symbol. 

NOR-Gate Latch 

A>latch'circuit is, the rilo~t .basic·-type of flip-'flop.' They can be ~onstrl.1ctedusing 
AND, OR~ ~NAND, 9r NOR, gates;' or some combination of' these gates. The COM-TRAN 10 uses 
one type' of NOR':"gatelatch in: :i.ts circuits. ' Before going into the actual operation of that 
circuit, ' review' 'the three 'basiccharac tel:!stics shared by all f lip-f iops : 

. "" .< , . \ ~ '. . . ~. • . .' 

,L, Til~ fli,p":fi~p i!3'~ bistable,device, that is, a circuit with only two stable 
states; 'these s'tates 'are 'called the"O or clear state and the 1 or set state. 

2. .The (J.ip-flop circuit can store a binary bit 'of information because of its bi­
stable. pr6perty~ ," the flip-'flop responds to inputs, and if an input causes it to go to 
its 1. st~te .. :it'wJllstay· there and store' that 1 until ariother input causes it to go to 
it's '0' state.-' 'The s~e would be true for the' 0 state. 

126 



3. The flip-flop has· two output signals, with one of them normally the complement of 
the other. 

The NOR-gate latch is made from two NOR-gates with the output of each gate tied to 
the input of the other. (See figure 2-3.) Notice that the diagram shows only one exter­
nal input to each gate, however, there can be any number of inputs. With no signals 
applied to the external inputs they will be in the normal condition, which is HIGH. As 
with all flip-flops when power is first applied to a circuit containing a latch circuit 
it will randoml:? go to one state or the other, and stay in that state until a specific 
input is applied. 

A D 

E F 
RDA26-393 

Figure 2-3. NOR-Gate Latch 

Look at figure 2-3 and assume that a LOW is applied to A. This will satisfy gate 1 and 
will give a HIGH out at E, which is tied back to C. There is a HIGH at D since there is 
no input signal applied at that point. With only HIGH inputs, gate 2 is not satisfied 
and a LOW output is felt at F. This LOW at F is coupled back to input B, and serves to 
keep gate 1 satisfied even though the LOW input to A may no longer be present. Now the 
latch will remain in this state, E = 1 and F = 0, until a· LOW is applied to input D to 
cause the circuit to switch states. The following chart shows what effect different 
input combinations would have on the NOR-gate latch shown in Figure 2-3. 

CHART 2-1 

TRUTH TABLE FOR NOR-GATE LATCH 

A D OUTPUT 

1 1 No effect. The latch stays in the state it was in since neither input is 
satisfied. 

0 1 Gate 1 satisfies. Latch outputs go to E = 1, F = o. 

1 0 Gate 2 satisfies. Latch outputs go to E = 0, F = l. 

0 0 Both gates satisfy producing an unstable condition. Latch outputs go to 
E = 1, F = 1. Not a normal input or condition. 

RDA26-445 

127 



The main use of a latch circuit is to store a bit of binary data. It cannot be used 
in a counter or shift register since it has no provision for clocking inputs. This is the 
main disadvantage of latch circuits. 

In summary, a NOR-gate latch is a basic flip-flop. Its external inputs determine 
which state it will be in at any given time. The logic symbol shows two NOR gates with 
the output of each gate coupled to the input of the other. NAND gates may be used 
instead cf NOR gates to obtain the same latch flip-flop. 

D-Type Flip-F~up 

It was pointed out in the last section that a latch-type flip-flop cannot be used for 
counters or shift registers. Therefore, another type of flip-flop which can perform 
these functions must be used. Of the many types available, the designers of the COM­
TRAN 10 decided on the D-type flip-flop for use in places where the latch would not be 
satisfactory. The D-type flip-flop is probably the simplest of the group of cloc~ed 
flip-flops. It has two direct inputs and one data input with trigger. The first direct 
input, called SET, forces the flip-flop to the s __ et 1 state. The second input, called 
CLEAR, forces it to the clear 0 state. These two inputs are called direct because they 
function independently frQIll the clock. The fact that it needs only one data input line 
makes it unique from most clocked flip-flops. The data input is dependent on the clock 
input to pulse it into the flip-flop. The logic symbol (see figure 2-4) shows these four 
inputs with labels as follows: set - S, clear - C, data input - D and clock - T. The 
outputs are labeled Q which is the one side and Q which is the zero side. Q and Q are 
standard symbols used to represent the outputs on most types of flip-flops. 

Q Q 

RDA26-389 

Figure 2-4. D-Type Flip-Flop 

The state indicators on the Sand C input lines mean that it takes a LOW signal-to 
satisfy the input and thus set or clear the flip-flop. The trigger or clock input is 
satisfied by an up-clock. This up",:,clock will cause the data input to be transferred to 
the Q side output. If the data line (D) has a _I input when the clock input up-clocks, 
the 1 will be transferred to the Q sid-e output (1 state). If the D line has a 0 input 
when the clock input up",;clocks, the 0 will be transferred to the Q side outpUt--(O--state). 

128 



The Q side is always the complement of the Q side. When an input is on the D line, 
whether HIGH or LOW, the output will not change until an up-clock occurs on the trigger 
input. 

In summary, the D-type flip-flop is a clocked flip-flop with 2 direct inputs and one 
data input with trigger. The direct inputs are forced inputs which are used to set or 
clear the flip-flop independent of the clock. The data line contents will transfer to 
the Q side output on the up-clock of the clock input. 

Single Shot (SN74l2l) 

The COM-TRAN 10 uses this particular single shot (monostable multivibrator) to pro­
duce pulses used to control the generation of clock pulses. Before covering the opera­
tion of the.circuit; review these basic single-shot principles. 

The Single shot is a circuit which has one stable state and one unstable state. The 
unstable state is sometimes called the semi-stable state. The single shot can be trig­
gered into its unstable- state but will not stay there. The RC time constant built into 
the circuit determines how long it will stay in its unstable state. After that period of 
time, the single shot will go back to its stable state and stay there until it is trig­
gered again. 

The operation of single-shot circuits was covered in previous blocks. The one used 
in the COM-TRAN 10 has a few differences. Its triggering circuit is made up of three 
inputs. The logic symbols for this single shot are shown in figure 2-5. A(l), A(2) and 
B are the three inputs which are used to trigger a single shot. Each single shot- has 
two possible outputs, Q and Q, but only one will be wired into the rest of the circuit. 
The logic symbol will only show the one being used. 

1 USEC Q~::~ 1 USEC +-
RDA26-398 

Figure 2-5. SN74l2l, Single Shot 

The trigger inputs work together to fire the circuit outputs. The .output pulse will 
be produced when the A(l) , A(2) and B inputs meet the required conditions. Look at 
figure 2-6, the triggering sequences for this circuit, and refer to it while going through 
the triggering sequence required to produce an output pulse. A(l) and A(2) inputs are 
always tied together in the COM-TRAN 10. Look on sheet 7 of the C & D1 s to see how this 
~is accomplished. 

No other conditions will fire the single shot. Note that the output is the same 
regardless of which triggering sequence is used. If either or both of the A(l) or A(2) 
inputs are already in the logical 0 state and the B input changes from a Oto a 1 state, 

129 



there will be a I-microsecond pulse produced at the output. If the B input is already 
in a logical 1 state and either or both of the A(l) or A(2) inputs change from a 1 to 
a 0 state, a I-microsecond output pulse will be produced. The output signal pulse will 
be a I-microsecond positive pulse if the circuit is using the Q output. If the circuit 
is using the ~ output, a I-microsecond negative pulse will be produced. This is true 
regardless of which triggering sequence is used to produce the output pulse. 

INPUTS OUTPUTS 

A(l) or A(2) B Q Q 

0 upclock (j) n 1] 

downclock (1) 1 Jl 1J 
RDA26-446 

Figure 2-6. Triggering Sequences for the SN74l2l Single Shot 

The SN74l2l does the same thing any other single shot does - produces a single out­
put pulse each time, it is triggered. Its three input triggering circuit is the only 
"different" feature it has. 

Positive AND-Driver 

The positive AND-driver is a very simple circuit, and is used basically as an elec­
tronic switch. In the COM-TRAN 10, it is used to turn the indicator lights off and on. 

At first glance, the logic symbol (see figure 2-7 for a positive AND-driver) tends 
to be misleading because it is very similar to the logic symbol for an amplifier. A 
closer look, however, points out that it has two inputs, A and B, which distinguishes 
it from an amplifier symbol. The positive AND-driver operates just like an AND-gate; 
that is two HIGHS in give a HIGH out, while any LOW in gives a LOW out. The thing that 
makes the circuit different is the fact that due to its application in the COM-TRAN 10, 
the LOW output generates an ON condition. Its normal condition inputs are A and B both 
HIGH, giving a HIGH out which keeps the light turned off. Look at figure 2-8 to see why 
this is true. Notice that one side of the light is tied to the positive AND-driver, and 
the other side is tied to a positive voltage. 

A >--1 
B>--I 

>---I"C 

RDA26-395 

Figure 2-7. Positive AND-Driver 
130 



A B 

A B C LIGHT 

H H H OFF 

H L L ON 

L H L ON 

L L L ON 

~-""63V 
RDA26-396 

Figure 2-8. Lamp Connection ,and Truth Table. 

This means that a HIGH output from the positive AND-driver would NOT produce a cur­
rent large enough to turn on the light. However, a LOW output from the positive AND­
driver would allow a large enough current flow to turn the light ON. 

The internal logic circuitry is very easy to understand, It consists of one,AND­
gate whose output biases a transistor (see figure 2-9). 

A 

B 

c 

RDA26-394 

Figure 2-9. Internal Logic for Positive AND-Driver 

With two HIGH inputs the AND-gate would be satisfied giving a LOW output. This LOW 
is fed to the base of the transistor, and since it is an NPN the LOW will reverse bias 
the transistor and cut it off. A transistor in cutoff acts like an open, so the output 
at C is +Vcc. If either input or both inputs go LOW the AND-gate is inhibited, putting 
a HIGH output on the base of the transistor. This HIGH will forward bias the transis­
tor into saturation, causing it to act like a short. The output at C will be av. This 
produces a large enough current flow to turn the light on. 

In summary, the positive AND-driver, functions just like an AND-gate - two HIGHS in 
produce a HIGH out, and any LOW in produces a LOW out. The normal condition is two 
HIGHS in, giving a light OFF condition. Any LOW in gives a light ON condition. The 
logic symbol looks like an amplifier with two inputs. One of the inputs is from lamp 
test and the other is from a flip-flop. 

131 



. SPECIAL COMPONENT SUMMARY 

S~ECIAi SYMBOLlrRtJTI:! TABUS 

... PHANTOM OR"-CATE 
. . ... ," .. ; 

Ato~,~rbv,applied to ahY Pain:t of Ii phantom OR~gate,produ(:es a LOW at the Ollt­
Pllta:ndeveil'y iriput.~ .The staties.tate· of a pharitomOR:"gate is all high inputs and a high 

.. oiiepjit.~ 

... . tnpltts . Outputs 
Cate i . Gate 2· Gate 1 . Gate 2 

1 1 No change 
··1 0 0 1 

() 1 1 b 
0 0 1 1 - Unstable state I 

RDA26-447 

b"'T¥PEFLIP:,FtoP 

..A LOW6rith~·C input to. lit D~·type flip-flop clear$ the flip-flop. A LOW on the S 
.. input to .a D::':typefl:Lp~flop sets the flip-flop. For clocking. inputs. the following 
applies: . 

RDA26-448 .. 

'ALOW.turnstheIatllpON. The statiCstateisQ high, with the lamp OFF. 

I nputs .. Out;put· L amp. 
J, 1 ·1 OFF 
I o. 0 ON 
0 I 0 ON 
0 0 0 ON 

RDA26-449 

••. TRIGGERING SEQtJll:NCli:SFOlt THE SN74I2l SINGLE· SHOT .. 

Al or A2 B Q Q 

I § Ii liiliil 
RDA26-4S0 

132 



SELECTOR TRUTH TABLES 

B REGISTER SELECTOR 

Pin 2 Pin 14 Selects 
L L B Reg Static state 
H L I Inputs 
L H Two's Comp 

RDA26-451 

M REGISTER SELECTOR 

Pin 2 Pin 14 Selects 
L L SO & Sl Static state 
H L P8 & P9 
H H I8 & I9 

RDA26-452 

ALU CONTROL INPUTS 

INPUT SIGNAL CONDITION CODES RESULTING ACTION 
S3 S2 Sl SO M 

DECA H H H H. L Decrease A input bv 1 
INA H L L H L Add A input to B input 
INS L H H L L Subtract B in_ltut from A inout 
INCA L L L L L Increase A inJ)ut bv 1 

. IAND H L H H H Logical AND of A with B 
IORI H H H L H Logical OR of A with B 
IEX L H H L H Logical Exclusive OR of A with B 
No inputs H L H L H Parallel transfer of B to F bus 
lstatic state) 

RDA26-453 

133 



REVIEW QUESTIONS 2-1 

1. Identify each symbol by placing its number in the blank. 

a. D-type flip-flop 
---~. NOR-Gate latch 

c. Positive AND-Driver 
---·d. Exclusive OR-Gate 

e. Phantom OR-Gate 
---f. Monostable Multivibrator 

L 

I' "'1 
I 1 
\ I 
\ I , / 

4. 

134 

RDA26-402 



2. Match the logic symbol names with the correct logic function by placing the letter 
of the function in the blank provided. 

3. 

1. D-Type Flip-Flop 

2. NOR-Gate Latch 

3. Positive AND-Driver' 

4. Phantom OR-Gate 

5. Monostable Multivibrator 

a. A common point having several inputs but only one output; where a function exists 
but a physical component does not. 

b. This device can store a binary one or zero; when,~n up-clock is, applied to the T 
input, the 'data level on the D input is transferred to the Q output. 

c. This circuit is also called a single shot. When the B input up-clocks and the 
A inputs are low, the circuit will produce one pulse. \' 

d. When the B inputs down clock and the A inputs are high, this circuit produces one 
pulse. 

e. This device selects one of three inputs for its output depending on two select 
levels. 

f. Any low into this circuit gives a low out that is usually used to turn on a 
lamp (provide a ground for current flow). 

g. This simple flip-flop has no trigger input; a low input to one side produces a 
high output on that side. 

+sv ov 

+6.3V 

RDA26-399 

135 

With the applied voltages to positive 
AND-driver, is the lamp on or off? 



4. 

5 •. 

6. 

7. 

Al 
A2 

B 

A 

RDA26-392 

(4 USEC) Q 

.r 
RDA26-397 

D 

E F 
RDA26-400 

C S 

RDA26-401 

With nothing applied to the inputs of the 
phantom OR-gate, what is the output 
voltage? 

What is the output if input A is zero 
volts? 

If all the inputs are +5 volts, what is 
the output? 

With the B input high and an input pulse 
applied to Al every 3 seconds, what is the 
output at Q? 

If a I-microsecond negative pulse is 
applied to the A input and the D input is 
high, what is felt at output F? 

What is felt at input C? 

What is felt at input B? 

136 

If a high is felt at Q, what single in­
put would cause the flip-flop to change 
states? 

If a low is felt at Q, what input would 
be needed along with the trigger to 
change the state of the flip-flop? 



COMPUTER UNITS 

Key to Logic Diagrams 

In order to trace signals through the various computer units and determine their 
effects, it will be necessary to use the COM-TRAN 10 Circuits and Diagrams (KDA-3034). 
So that you can use them effectively, the "Key to Logic Diagrams" will be covered first. 
The information contained in the logic ~heets will be explained. Now turn to sheet ~, 
KDA-3034. ~ 

The signals shown across the top of the sheet are the signal inputs to that sheet. 
The little numbers in parentheses after each input signal show which sheet of logic that 
signal came from. All output signals are shown across the bottom of the page, with the 
number in parentheses indicating to which sheets that signal goes. For example, turn to 
sheet 7, look in the lower right-hand corner, and locate the signal MLD. The number it 
shows is (17), which means that this signal goes to sheet 17. Turn to sheet 17 and you 
will find MLD somewhere across the top, as an input with an indication that it came from 
sheet 7. 

Each component and each register has three alphanumeric codes indicated in its lpgic 
symbol. The first code is always a "U" followed by a number. It is used to identify the 
type of integrated circuit. The second code is a number followed by a letter. It iden­
tifies the IC chip's physical location on the printed circuit board in the computer. For 
example, if the code was 3C you would find the IC chip in column 3, row C in the computer. 
This information will be important to you during the lab projects in this block. Look 
at sheet 3 at four AND-gates on the lower right-hand side. Notice that they are all 
labeled U3 and 2C. This tells you that the IC chip containing these gates is an SN7403 
and that it is located in column 2, row C. In this case, all four AND-gates are in the 
same chip (2C). Thus, a problem would occur if we tried to refer to only one of these 
gates during our discussions. This is where the third code (a single letter) comes into 
use. When used with the second code, it identifies a particular component on the logic 
diagram. So if you were talking about the AND-gate at the far right you would say, 
"AND"'-gate 2CD'.', and the "D" would identify exactly which one of the AND-gates on IC chip 
2C'you were indicating. Normally the third code is found on the third line; however, 
-some components ,combine codes two and three onto one line. You can always recognize 
"this condition as being used, anytime you see two le'tters on code 2. For example, see 
sheet 11, the D-type flip-flops use this method; llJA means column 11, row J, flip-flop 
A. If only one component exists on a chip, the third code is not used, but rather is 
identified by code 2 only. 

Every input and output to all components has a small number indicated beside it. 
These tell you the pin number of that input or output line. The pin numbers are also 
indicated on the IC chip in the computer. Therefore, suppose you wanted to check the 
input to inverter 2DB (sheet 3) with the oscilloscope. First, you would locate 2DB on 
the logic sheet, and check the input to find out what the pin number for its input is 
(Pin 3). Then, you would go to the computer, locate the IC chip (column t, row D), and 
connect the oscilloscope input to pin 3 of that chip. The signal observed on the oscillo­
scope would be the input waveshape to inverter 2DB. 

Although it is not shown on the "Key to Logic Diagrams" there is a coordinate sys­
tem used th~oughout the logic diagrams to help you find the general location of any par­
ticular item. Refer to sheet 3 in KDA-3034. The top of the sheet is divided into ten 
sections numbered right to left from 1 to 10; and the left side is divided into six sec­
tions, labeled bottom to top A to F. When you are trying to locate a specific item such 
as, AND-gate 6DA, it is much easier if you know that its sheet coordinates are 4D. This 
means that you should find 4 across the top and D down the side; then look at the area 
where these two intersect and you will find AND-gate 6DA. During the discussions, you 

137 



will be given the sheet coordinates in parentheses following the component identification 
code. For example, the AND-gate just located would be identified as 6DA (4D). 

As you use the logic diagrams you will become familiar with the information and codes 
they contain and using them will become second nature to you. 

REVIEW QUESTIONS 2-2 

Circle-the letter of the correct answer to the following questions. 

1. What type of IC chip is a U4 _ (sheet III, KDA-3034)? 

a. AND-OR INVERT Gate 

b. Hex Buffer/Driver 

c. Inverter 

d. Quadruple 2 - Input Positive NOR-Gate 

2. 

3. 

Clock 

U3 
3jC\ 
A:' 

! 

In the figure at the left, what does 3C 
indicate? 

a. pin number of component signal 

b. IC type identity (Positive NAND­
Gate) 

c. Page cross reference 

d. component location on cartesian grid 

What does the signal at the left mean 
when it appears at the bottom of a logic 
page? 

a. Q4 comes from sheet 9. and is static­
ally high 

b. Q4 goes to nine different logic 
sheets 

c. Q4 goes to sheet 9 and is staticaily 
high 

d. Q4 comes from nine different logic 
sheets 

Every computer has a c~ock circuit to control its timing. This unit is very impor­
tant because it makes sure that every single step, major or minor, occurs exactly in the 
right order and at exactly the right time within the computer. 

138 



The logic diagram for the COM-TRAN 10 clock circuit is on sheet 7 (KDA-3034), refer 
to this diagram during the following discussion. The clock can actually be separated into 
four major parts: (1) the switching network, (2) the pulse generator, (3) the grey-code 
counter, and (4) the decoding network. (See figure 2-10.) The switching network is made 
up of 2 NOR-gate latches, 3 AND-gates, 2 OR-gates, and 2 inverters. Its purpose is to 
turn the clock on or turn it off. The ~ signal or the START signal will start the 
clock, while the SPSW, SPCK, or CL signals will stop the clock. The two single shots 
make up the pulse generator, which produces the timing pulses necessary to trigger the 
counter. The grey-code counter is composed of two D-type flip-flops. The counter 
counts from 0(10) to 3(10); however, it counts in grey-code, that is, 00 (gc), 01 (gc), 
11 (gc), 10 (gc). The reason for using a grey-code count is that only one flip-flop at 
a time changes state. If both flip-flops had to change states, as in binary from 01 (2), 
to 10 (2), and if the transition times were not exactly the same then the counter might, 
for an instant, produce a 00 (2) or a 11 (2) instead of 10 (2). With only one flip-flop 
changing at a til,lle this problem is eliminated. The decoder determines what count is in 
the counter and produces the appropriate clock pulse, ENABLE, CP1, CP2, or CP3. The 
decoder is made up of 5 AND-gates, and 5 inverters. When the clock operates,a11 four, 
major parts work together to produce the clock pulses necessary for timing and control. 

While going through the clock operation be sure to refer to the logic diagram (sheet 
7) and the waveshapes (figure 2-11) and relate the explanations to them. 

This explanation assumes that the clock is in an off condition and will trace the 
signals through the clock circuit to determine what happens when it is started. Any­
time the clock is stopped, the grey-code counter will contain a count of 00 (gc), 
therefore, the clock will a1ways start from 00 (gc). The clock can be started by either 
one of two signals, ~ or RESM (8F). The START signal is generated by pressing the 
START switch on the COM-TRAN 10 front panel, and the RESM is generated by the teletype 
interface under certain conditions. 

Assume that the start switch is pressed. This makes the signal START (8F) go low. 
This low is felt at NOR-gate latch 9HA, pin 1, and NOR-gate latch output (pin 3) goes 
high. This high is felt at one input to NAND-gate 9HD, pin 13 (8D) satisfying that 
input. The START signal also produces a low at one input to NOR-gate 9HC, pin 9 (8E) r . -
satisfying that gate and causing its output (pin 8) to high. This high is felt at the 
other input to NAND-gate, 9HD, pin 12 (8D), satisfying that input. Therefore, both 
inputs to NAND-gate 9HD are satisfied and its output goes low. The law is felt at one 
of NOR-gate latch inputs, 9GA pin 1 (7D) which causes pin 3 to go high and NOR-gate latch 
output 7JA pin 12 (7D) to go low. This low is felt at the input to AND-gate 8JA pin 1 
inhibiting that input and giving us a low output at pin 3. The low output is felt at 
the input to NOR-gate 9JB pin 5 (7C) inhibiting that input. The other input to that 
NOR-gate is kept inhibited by inverter 6JB pin 4 (7D). Therefore, when pin 5 of NOR­
gate 9JB (7C) goes from high to low, its output (pin 4) goes from low to high providing 
an upc10ck to the single-shot B input, 6H pin 5 (7C). 

In order to see how the RESR signal would produce the same effect, you must first 
understand that the ~ signal can only be produced when the computer is running, and 
therefore the START signal has already been produced and set the NOR-gate latch (BE) to 
a high or a one output at pin 3. The RESM then satisfies NOR-gate 9HC (8E) and produces 
a high output at pin 8. From this point on the sequence is the same as it was when using 
the START signal. Thus, in order to start the clock, the switching circuit has provided 
an up-clock to the pulse generator. 

The two single-shots 6H and 7H (6B and 7B) which make up the pulse generator are the 
SN74121 types discussed earlier in this chapter. Pin 5 is the B input and pins 3 and 4 
are the A1 and A2 inputs. Notice that single-shot 6H (7B) has a Q output, which means 
that the output stays high until the circuit is triggered and then it goes low for 1 
micrgsecond. However, the other half of the pulse generator, single-shot 7H (6B) has a 
Q ou.tput which means that its output stays low until it is triggered and then it goes 

139 



r 

+5 

-, 
I 
I 
I 
I 

R5 
2K 

~----------- ------1 

I 
I 
I 

SWITCHING 
NETWORK 

+5 

PULSE GENERATOR 

L ______ ~ _____ ~ ___ ~------~ 

I 
I 
I 
I 
I 
1----
I 
I 

--l 
I 
I 

I 
I 
I 
I 
I 
I 
I --I 
I It ~ L __ ~ 

Figure 2-10. Clock Circuit Breakdown 

909 

GREY CODE COUNTER 

I 
I 
I 
I 
I 
I 
I 

---...:-.------- --l 

N .. 
U 

10 10 

5 Ii .---
RDA26-382 



) 

. (6H) Al &A2 

(6H) B 

(6H)Q 

I. I I I I I I 

(7H) Al &A2 --t-r--j--r--r-L......4-+~--L--i-HHI--+1 -t-----

(1H) Q 

(6GA ISGB) T 

(SGA)D~ : 
I 

I I 11- ! 
(SGA) Q I I I . 

I I I I I 
(SGB) 0 I:: : r-. -i-+-I--I 

I I 
(SGB)Q I ,....--+-t--t--:'4--1f----:---!1 I 
~ I I 

ENABLE --ri 1 I I I r--r--l I : I I 
I I I I I I I: I I 1 I I I 
; t-+-/ r.-; I II 

CPI ~ ~ I I I· I- \ \ .1 I I 

- II I ~ I r+4 
CP2 I: : \ : 1 I I: I. : Il--il---ll-----

Illll!H· :lllhlll 
CPl I 1 I I I _ I I I I I 

II II11 1IIIjr------
I I I I I I I, I I I I I 

RDA26-379 

Figure 2-11. Clock Circuit Waveshapes 

141 



high for 1 microsecond. Since the clock is in the off condition, there are no timing 
pulses being generated by the pulse generator, and therefore the Q output from 7R is at 
a constant low. This output is fed back to the Al and A2 inputs of single-shot 6R, hold­
ing them at a steady low while the clock is not running. Then when the switching circuit 
causes the B input (pin 5) to 6R to go from low to high, the single-shot is triggered 
and a 1-microsecond low output is produced at Q of 6R. This output is directly connected 
to the B (pin 5) input of single-shot 7R. Before determining the B input's effect, 
notice that the A1 and A2 (pins 3 and 4) inputs to single-shot 7R are shorted to ground 
and are therefore always at a low. Now, when the 1-microsecond low output of Q goes back 
high, the conditions are met to trigger single-shot 7R, that is Al and A2 (pins 3 and 4) 
already low and B going from low to high. This produces a 1-microsecond positive output 
pulse at Q ot fR. This pulse is the first timing pulse to the grey-code counter. 

The problem now is how to keep the pulse generator going, so that a steady series of 
pulses is generated. To understand how this is accomplished, go back and take a look at 
the B input (pin 5) to single-shot 6R. The switching circuit caused this input to go 
from a low to a high. The input will stay high once this transition occurs. The START 
pulse caused the NOR-gate latch output 7JA pin 12 (7D) to go to a low, inhibiting AND­
gate 8JA (7C), etc., giving us the high at NOR-gate 9JB, pin 4 (7C). Due to the opera­
tion of a latch circuit, that low output will remain low at 7JA pin 12 (7D) until another 
type of input causes it to change states. Therefore, the B input to single-shot 6R will 
remain high once it goes high, until eaus€d to go low (this is done to stop the clock and 
is not important at this time). The Q output of single~shot 7R (6C) is fed back to the 
Al and A2 (pins 3 and 4) inputs of single-shot 6R (7C). Therefore whe~ the first timing 
pulse is produced it is felt at these Al and A2 inputs, causing them to go high for 
1 microsecond and then back low. The J3 input is already high, this is one of the two 
triggering sequences for an SN74l2l single-shot and causes a second I-microsecond low 
pulse to be generated at the Qoutput of 6R. That pulse again triggers single-shot 7R 
and it produces another l~microsecond positive output at Q. This cycle will continue and 
the pulse generator will produce I-microsecond positive output pulses every 2 microseconds 
until stopped. So far, a START signal has caused the switching circuit to trigger the 
pulse generator, and the pulse generator then continues to trigger itself through a feed­
back line and produce a steady output of 1-microsecond positive pulses, spaced 2 micro­
seconds apart. 

The output pulses from the pulse generator are fed to the trigger inputs of the two 
D-type flip-flops 8GA and 8GB (3E, 4E) which make up the grey-code counter. Remember 
that the counter always starts with 00 (gc) in the counter. Flip-flop 8GB is the LSD bit 
and 8GA is the MSD bit. Notice the wiring arrangement of the counter, the data input to 
flip-flop 8GB (pin 12) comes from the Q output of flip-flop 8GA (pin 6), and the data 
input to 8GA (pin 2) comes from the Q output of '8GB (pin 9). 

Each time the trigger inputs upclock (every 2 microseconds from the pulse generator 
output), the data inputs will be transferred to the Q side outputs. Remember, both 
flip-flops start in the zero state, so the data input to 8GB will be a high and the data 
input to 8GA will be a low. When the first trigger pulse upclocks, the high (1) will 
transfer to the Q side of 8GB putting it in the one state, and the low (0) will transfer 
to the Q side of 8GA leaving it in the zero state. Thus, the counter has clocked from 
00 (gc) to 01 (gc). This means that the data input levels to both 8GA and 8GB are now 
highs or ones. So when the next trigger input upclocks, it will transfer ones to the Q 
side of both flip-flops causing the counter to clock from 01 (gc) to 11 (gc) , The 
counter will continue to count from 11 (gc) to 10 (gc) and from 10 (gc) to 00 (gc) at 
which point the counting begins again. Each count remains in the counter for 2 micro­
seconds since the input PRT is 2 microseconds between upclocks. The counter will con­
tinue to count, cycling through 00 (gc) to 10 (gc) until the clock is stopped. These 
counts provide the 2-microsecond clock pulses used throughout the COM-TRAN 10. 

142 



Now all the clock has left to do is decode the counts. The decoder is made up of 4 
AND-gates 8JB, 9GB, 9GC, 8JC (.4D, 5D). By checking the input lines to AND-gate 8JC you 
can see that it will be, satisfied when the counter contains a count of 00 (gc) and will 
produce a high (1) output at 8JC pin 8 (4D). This high is fed to the input of AND-gate 
9JC pin 9 (4C) inhibiting that input leg and producing a low at its output (pin 10). 
The low output then goes through inverter 10JD (4C) giving a high output, called ~EbN~AB~L~E~", 
for 2 microseconds. If you follow this same process for the other three AND-gates 9GC, 
9GB, and 8JB (4D, 5D) you will see that 9GC decodes 01 (gc) and produces a high output 
called CPl; 9GB decodes 11 (gc) and produces a high output called CP2 and a low called 
"CPT; while 8JB decodes 10 (gc) producing outputs called CP3 and CP3. Each of these out­
put pulses have a pulse width of 2 microseconds. However, in the case of ENABLE the 6-
microsecond negative portion of the signal is the part used. Therefore, its pulse width 
is usually thought of as being 6 microseconds. The clock pulses are sent to all parts of 
the computer and are used to control the timing and sequencing of various operations. 

To start the clock the START or RESM signals must be present. This causes the switch­
ing circuit to generate an upclock which starts the pulse generator. This in turn gen­
erate~ I-microsecond pulses every 2 microseconds to trigger the grey-code counter, caus­
ing it to count from 00 (gc) to 10 (gc). The decoder detects these counts, producing 
2-microsecond clock pulses. Once the clock is started, it will continue with this 
cycling process until another signal is generated to cause it to stop. 

The clock can be stopped by anyone of three' signals, SPSW, which is generated by 
pressing ,the stop switch on the control panel; CL which is generated by pressing the 
clear switch on the control panel; or SPCK which is generated internally by some of the 
COM-TRAN 10 instructions, and also by the stop switch. Assume you want to manually stop, 
you press the stop switch, gener~ting a low at SPSW (8F). This low will satisfy the in~ 
put (pin 5) of NOR-gate latch 9HB (8E). The function of the NOR-gate latch will produce 
a low at its output, 9HA pin 3 (8E) in response to the SPSW low input. The NOR-gate 
latch output is fed to the input of NAND-gate 9HD pin 13 (8D) and since it is a low it 
will inhibit the NAND-gate so that a lmSM signal' cannot restart the c.lock. Anytime the 
SPSW signal is low i'C produces the low signal SPCKwhich actually stops the clock. SPCK 
is input to NAND-gate 9JA pin 2 (7E) satisfying that leg. The other leg of that gate 
(pin 3) is connected to the decoder output of CP2 (9GB pin 6, 4D). It will be low when 
the counter contains a count of 11 (gc) or CP2. Therefore, NAND-gate 9JA will be satis­
fied during clock pulse 2 and will generate a high output (pin 1), which is then 
inverted to a low through inverter 6JA (70) and fed to one of the NOR-gate latch inputs, 
7JA pin 1 (7D). The NOR-gate latch output 7JA pin 12 will go high and satisfy one 
input to AND-gate 8JA pin 1 (7C). The other input to this AND-gate comes directly from 
the decoder gate 8JC pin 8 (4D) which produces a high at a count of 00 (gc). The AND­
gate 8JA (7C) will be satisfied when the counter, reaches, 00" and will produce a high 
output 8JA pin 3. This output in turn will satisfy NOR-gate 9JB pin 5 and produce a low 
output (pin 4). Since this output is the B input (pin 5) to single-shot 6H (7C), the 
single-shot will no longer be satisfied and will stop producing its 1-microsecond output 
pulses. With no pulses from the pulse generator the counter stops counting and remains 
at 00 until started again with the start awi.tch. If the SPCK only had been used to 
stop the clock (as in the I/O instructions), the clock could be re-started by the start 
switch or by the RESM since the SPCK only would not change the state of NOR-gate latch 
9HA (8E). If CL is used to stop the clock, it will stop immediately because the ~ sig­
nal goes to the clear input of the flip-flops in the grey-code counter 8GA pin 1, and 
8GB pin 13 (4D, 3D) setting it to count of 00 (gc). The CL also goes through the switch­
ing circuit to produce the low input required to shut down the pulse generator. As we 
stated, the clock always stops with 00 (gc) in the counter. 

You should 'now understand how the clock works, what its function is, and be able to 
relate the input signals to the output signals. Remember, the clock is the heart of the 
computer. Without it, nothing else would function. 

143 



REVIEW QUESTIONS 2-3 

Refer to logic sheet 7 to answer the following questions. 

1. What is the count in the two D-type flip-flops (8GA and 8GB) when CP2 is low? 
, .' 

· .. ·.a. 00 (gc) 

b. 01 (gc) 

c. 10 (gc) 

" 
, , ,--, .... .1..1. \~"'I 

2. To stop the clock. a low must be felt on pin 5 of U12l-6H (coordinate 7C). When can 
this low occur? 

a. ENABLE is low 

b. The two D-type flip-flops are in the 1 state 

c. The two D-type flip-flops are in the 0 state 

d. SPCK is high 

3. What allows the two single-shots to output continually to trigger the CP counter? 

a. A low on pin' 5 and an upclock on pins 3 and 4 

b. A low on pin 5 and a downclock on pins 3 and 4 

c. A high on pin 5 and an upclock on pins 3 and 4 

d. A high on pin 5 and a downclock on pins 3 and 4 

D-Register 

The D-Register (Distributor) is a 4-bit upcounter which is p~rt of the timing and 
control circuits in the COM-TRAN 10. Its function is similar to that of the clock in 
that it provides timing pulses needed to synchronize and control the machine operation. 
When the COM-TRAN 10 is carrying out an instruction. the operation is divided into major 
steps. For example. when executing an LDA instruction. first data is transferred from 
memory to the buffer. then from the buffer to the A-register. and finally one of the 
various condition codes is set before starting the next instruction. Within each of 
these major steps. there are various minor steps. For example. during the memory to 
buffer transfer. the computer first reads a word from memory. then it transfers that 
word to the Z bus. and finally transfers it from the Z bus to the buffer. Thus. there 
are two timing requirements, one to tell the machine which major step it should do, and 
another to tell it which minor step within that major step to perform. The D-register 
produces counts from 00 (10) to 15 (10) called distribution pulses which time.and control 
the major steps, while the clock produces clock pulses used to time and contro1- the 
minor steps. Each distribution puls.e. lasts 6 micro..seconds. and three clock pulses, CPl, 
CP2, and CP3 occur during each distribution pulse. The clock and the distributor have 
basically the same function to control, time, and properly sequence the steps required 
during machine operations. 

144 



Refer to the logic diagram of the D-register (sheet 5 KDA-3034) during this discus­
sion. There are two peculiar things about this circuit that you must understand before 
going through the actual operation. First, if you look across the bottom of sheet 5 you 
will see five D-type flip-flops which make up the counter. This is a 4-bit upcounter; 
the fifth (E) flip-flop, lGA (7B) is not part of the counter but is used to tell the com­
puter whether it is in Acquisition or Execution phase. If the true output of the E flip­
flop is low (0) the computer knows it is in Acquisition phase and the distribution pulses 
are called DPAO, DPAl, etc. However, if it is high (1) the machine knows that it is in 
Execution phase and the distribution pulses are called DPO, DPl, etc. 

The second peculiarity of the distributor has to do with the counter. It functions 
as an upcounter, however, the flip-flops are actually counting down from 15 (10) to 00 
(10). Look at the outputs from this counter, and you will discover that they are 
reversed. The true condition, DO, Dl, D2, D3, is taken from the Q sides, while the false 
condition is taken from the Q sides. Since the outputs determine the type of counter, 
and since the true outputs are counting up, it is called an upcounter. Keep this in 
mind as you study the distributor, so that you do not become confused - the counter out­
put is always the complement of the actual flip-flop state. This is also true for flip­
flop E. 

You should now be ready to learn the operation of the D-register by tracing the logic 
signals through it. If you were getting ready to operate the computer, you would first 
push the stop switch, then the clear switch, and finally the start switch. Assuming the 
stop switch has been pressed, when the clear switch is pressed the signal CL (9F) goes 
low. This signal enables OR-gates lJB and lJC (9D) , producing a low output from lJB 
pin 6 and IJC pin S. The low output from lJB goes directly to the S input of the E 
flip-flop, lGA (7B), causing the flip-flop to set producing a low (0) output at E. 
Remember, this tells the computer that it is in Acquisition phase. At the same time, 
the low output from OR-gate lJC (9D) is fed to the S input of each of the counter flip­
flops 1GB, lFA, lFB, lEA (6B, 5B, 2B) causing them all to go to the set state. This 
gives all lows (Os) out of the counter for a count of 00 (10). Thus, the CL signal has 
prepared the computer to start in the Acquisition phase at DPAO. Pressing the start 
switch will start the clock, producing CPl, CP2, and CP3. 

Clock pulse one is used by the distributor only if the computer is being manually 
loaded; a read or a write being executed by a panel switch. Its purpose is to set the 
distributor to a count of zero. Clock pulse two is used to set the E flip-flop to the 
Execution phase and also used during a transfer from the input register to the distrib­
utor. Its purpose is to transfer data on the Y bus into the counter and the E flip-flop. 
Thus, you can see that CPl and CP2 are not used by the distributor except in special 
cases. Therefore, this discussion will mainly be concerned with CP3 and its purpose in 
the D-register. CP3 (FS) satisfies one input to AND-gate 2HA (8D). Pin 2 of that gate 
is always satisfied, that is, high, unless you are doing a manual load or using the 
REPEAT function in the Distributor Mode. Under any other conditions OR-gate lJD (8D) is 
inhibited, producing a high at the input p.in 2 of AND-gate 2HA. Assuming normal opera­
tion in program Mode, both inputs are satisfied on AND-gate 2HA anycime the computer 
clock produces clock pulse three. Therefore, AND-gate 2RA is inverted to a low through 
the inverter 2KA (8C). The low output of the inverter is then fed to the trigger (T) 
input of each. of the four D-type flip-flops which make up the counter. You know from 
previous discussions that CP3 will be high for 2 microseconds and then it goes back low. 
When this transition back to its low condition occurs, AND-gate 2HA (SD) will be inhib­
ited at pin 1, causing its output to go back to a low condition. The low will then be 
inverted to a high through the inverter 2KA, and then fed to all the trigger inputs. 
Thus, on the upclock of CP3 the trigger inputs go low, then 2 microseconds later on the 
downclock of CP3 the trigger inputs go high. (See figure 2-12.) This produces the up­
clock at the trigger which is required for the data transfer which you learned about in 
the previous discussion of the D-type flip-flops. Therefore, you can see that every CP3 
will clock the counter. 

145 



CP3 

T 

2us, 
~ 

........ 
~UPCLOCK TRANSFERS DATA INTO 

D-TYPE FLIP-FLOPS 

RDA26-381 

Figure 2-12. Waveshape Comparison of CP3 to T-Inputs 

Take a look at what data is being clocked into the counter at these times. Remember, 
at the beginning the machine was cleared, setting all the Distributor counter flip-flops, 
producing all lows out at the Q sides. Start tracing the signals with LSD output, DO, 
which is the Q output of flip-flop lEA (2B). The low output, DO, is fed around to 
inverter 2JA (2D), inverted to a high which satisfies one input to lIND-:gate 2GE (2D). 
The other one input to lIND-gate comes from inverter 2KB (7D) and is always high unless 
one of the special count signals (SPDT, SDl'Zi, S'IWO, etc.) (7F) is present. Assuming nor­
mal counting for now, none of these are present. Therefore, both inputs to AND-gate 
2GE are satisfied and it produces a high output which in turn satisfies OR-gate 2GD (2C). 
The OR-gate then gives a low output which is felt at the D input,to flip-flop lEA (2B). 
The LSD output, DO, also goes to the Excl~sive OR-gate 3FA (3D) making that input a low. 
The other input to the Exclusive OR-gate comes from the Q output, Dl, of flip-flop <lFB 
(3B). This signal is also low because there is a count of 0000(2) in the counter., Two 
low inputs to the Exclusive OR-gate inhibit the gate producing a low output, which 'is an 
input to AND-gate 2GB (3D). A low input at that gate will inhibit it, generating a low 
output, which is an input to lIND-gate 2GB (3D). ' A low input at that gate will inhibit 
it, generating a low output which is input to OR-gate 2GC. With the OR-gate also being 
inhibited, there is a high output at pin 6. Thus, a high is felt at the D input of 
flip-flop lFB (3C). By similarly tracing the D inputs to flip-flops lFA and 1GB (6C,5C), 
you will find that with a count of 0000 (2) they would both be high. Therefore, with a 
count of 0000 (2), the D inputs are 1GB = 1, lFA = 1, lFB = 1, and lEA = O. When CP3 
occurs these inputs will be transferred to the Q side outputs, thus producing a Q side 
count of 0001 (2). In other words, the counter was clocked from an output of 0000(2) to 
0001(2) or from DPAO to DPAI. Refer to figure 2-13, the waveshapes for the distributor 
counter, and trace the signals to observe how the counter clocks from 0000(2) to 0100(2). 

The counter will count this way whether it is 'in the' Acquisition or the Execution 
phase. The only difference is whether the E flip-flop output is high or low. At the 
end of each of these phases the signal CKE (8F) is generated. CKE is the input to pin 4 
of AND-gate 2HB (8D) satisfying that input. The other input to that gate is always high, 
unless you are operating in the AE Mode with the Repeat switch set. Therefore, AND-gate 
2HB is satisfied, producing a high at pin 2 of AND-gate lLA (7C). The other input to 
AND- gate lLA is satisfied when CP3 occurs, and a low output is felt at pin 3 of lLA for 
2 microseconds. This output is fed to the trigger input of the E flip-flop lGA (7B). 
When CP3 is over,the T input will go back to high, thus producing the upclock required 
to transfer data to the Q side output. Notice that the Q side output is retur~ed to the 
D input of the E flip-flop. Therefore, when it is t~iggered .the condition of Q, high or 
low, will be transferred to the Q side, causing the Q side to reverse. Remember, this 

146 



occurs at the end of the Acquisition and the Execution phases so that the computer will 
know that it is time to change phases. 

Sometimes, an instruction does not need all the distributor counts, and it will 
skip to the next count it needs rather than count sequentially. The required special 
count signal will be generated, and the counter will be set to that count. As an 
example, ~ (7F) will produce a count of 0110(2) rather than the next count in order. 
SDP6 satisfies OR-gate 3RA (7E) producing a high output. This high goes to one leg of 
AND-gates lRA, lRF, 2GA, and 2GF (6D, SD, 3D, 2D) enabling each of those inputs. The 
high output of OR-gate 3RA is also inverted through 2KB (7D) toa low and fed to one 
input of AND-gates 2RB, lRE, 2GB, and 2GE (6D, SD, 3D, 2D) inhibiting each of these 
gates. You should recall that these gates are the ones used to sequentially upcount the 
counter, and they are now inhibited so that a special coun~ of 6 can be entered. ~ 
also goes to the inputs of OR-gates 3GA and 3GC (6E, 3E) satisfying these gates and pro­
ducing highs out. The high output of 3GA is inverted to a low through 2JC (6D) and 
then used to inhibit AND-gate lRA (6D). This produces a low output used to inhibit 
OR-gate lRC producing a high at the D input to flip-flop 1GB (6B). Tracing from OR­
gates 3GB, 3GC, and 3KA (SE, 3E, 2E) to their respective D inputs, you see that the D 
inputs are lFA = 0, lFB = 0 and lEA = 1. Thus on CP3 1001(2) is transferred from the 
D inputs to the Q side of the flip-flops, producing a·count of 6 (10). The other 
special count signals work the same way to produce their respective counts. 

You should now understand the basic operation of the D register. It counts sequen­
tially from 0000(2) to 1111(2), unless a special count signal is generated. The output 
condition of the E flip-flop determines whether these counts are interpreted as DPA 

147 



pulses or DP pulses. These pulses are all used in timing and control, so that the com­
puterknows what major step it should be executing. 

REVIEW QUESTIONS 2-4 

1. What is the PW of a distribution pulse? 

2. .The true conditions, DO, Dl,D2, and D3 are taken from which flip-flop output? 

., 

..I. ~'hat clocks the D.-l:'e~sj:er thrQugh its ~equellt:lal cuuntS? 

4. Which flip-flop in the n"register will have a high (1) on the D input when "S1WI'.5" 
goes low? 

Input Register 

The Input Register (I-register) is a 10-bit register that has three main functions. 
First, it can be used to manually input data into the A, B, C, D, S, M, P, Q, and X 
Registers by loading the data into the Input Register and pressing one of the respective 
switches below the HEX switches. Next, it is used to manually load memory by using the 
Manual Input (MNI) instruction. The third function is to display data from memory by 
using the Manual Output (MNO) . instruction. 

The logic diagram for the COM-TRAN 10 Input Register is on sheet 10 (KDA-3034). 
Refer to that diagram for the following discussion. In row C you will see the ten D-type 
flip-flops that make up the I-register. The clear switch on the front of the COM-TRAN 
10 clears all register indicators except the Input Register. To clear the Input Regis­
ter you must press the RESET switch 'located to the right of the input indicators. When 
this switch is pressed, you generate ~ (lOF) which is then low and clears the Input 
Register. 1rnT" goes to OR-gate llMA(10C) pin 1 and produces a low on pin 3. This output 
goes to the clear input of all the flip-flops in the Input Register and puts them in the 
clear condition. 

There are three ways to load the Input Register. One is by the individual Input 
switches labeled 0 through 9. Another is by the HE-X switches (j through F.. The third 
way is by transferxing 1nputs .from the "y'" bus. The first method to follow in logic is 
the use of the individual data input switches, 0 thr,ough9. When you press one of these 
SWitches, you generate a low signal which is fed to the SET input of the respective flip­
flop. To follow this in logic, assume that the Input Register is cleared and you pushed 
input switches 0, 2, 5, 7, and 9. T.his would generate the signals ISO (2F) , "IS'2" (3F) , 
''is'5 (6F, IS7 (8F), andm (9F). When these signals come in as lows, they set the 
respective flip-flops. With these flip-flops in the set condition and the others clear, 
the Input Register would now be loaded with 10 1010 0101. 

The second way to load the Input Register is by means of the sixteen HEX switches 
located on the front panel below the Input Register indicators. By pressing one of 
these HEX switches you will generate one of the signals H~ through EF (2-6F) and another 
signal called ICLK (9F). ICLK is a delayed one (1) microsecond positive pulse that will 
occur when anyone of the HEX switches are pressed. If you follow this signal in logic, 
you will notice it goes to the TRIGGER input of every flip-flop in the Input Register. 
This wi1x then be used to gate in whatever is on the Data input. 

To follOW this operation in logic, assume that the Input Register is still loaded 
with 2A5 of the previous operation. Now, pressing HEX switch "A" you will generate HA 
(4F) and the signal ICLK (9F). When HA (4F) goes low, this low will be felt on pin 4 of 
OR-gate 16KA ~SD), and pin 2 of OR-gate l4KA (3D). The outputs of these OR-gates then 
go high. These highs are 'felt at the DATA inputs of both flip-flops l3MA (4C) and 

148 



l2MA (3C). Since OR-gate l5KA (4D) and l3KA (2D) have no input going low, their inputs 
are at the static condition of a high. This will cause their outputs to be low and these 
lows will be felt at the DATA inputs of flip-flops 13MB (3C) and 12MB (2C). Before 
bringing in the ICLK (9F) and clocking in this data to the four LSB flip-flops notice 
that the Q outputs of these flip-flops are feeding back to the DATA inputs of the next 
group of four flip-flops. The Q output of Flip-Flop 12MB (2C) feeds back to the DATA 
input of 14MB (5C), the Q output of l2MA (3C) feeds back to the DATA input of l4MA (6C), 
the Q output of 13MB (3C) feeds back to the DATA input of 15MB (7C), and the Q output of 
13MA (4C) feeds back to DATA input of l5MA (8C). Notice that the Q outputs of l4MA (6C) 
and 14MB (5C) also provide feedback to the DATA inputs of l6MA (9C) and 16MB (8C). 
Remember, whatever is felt at the DATA input of these flip-flops when the TRIGGER comes 
in will be felt on the Q output. Before HEX switch A was pressed the Input Register con­
tained 2A5. Now, with the present conditions of 2A5 in the Input register and DATA in­
puts of 10 0101 1010, bring in ICLK (9F). This was generated by pressing the HEX A 
switch and is a delayed one (1) microsecond positive pulse. With the flip-flops trig­
gered' the Input Register now contains whatever was on the DATA inputs or 10 0101 1010. 
No.tice what ~ in the six least significant bits is now transferred to the six high 
order bits, and A was placed in the four least significant bits. Each time one of the 
HEX switches is pressed the action just described will take place. 

It was stat~d that there are sixteen HEX switches on the front panel. Only fifteen 
of these generate a signai to the decoder network at 2 through 5EF on the logic. HEX 
switch 0 is different in that it does not come to this decoder network, therefore, the 
output will be at a low static condition and place low's, on the DATA inputs of the 4 
least significant flip-flops. However, HEX switch 0 will generate ICLK (9F) to trigger 
the flip-flops and place zeros in the four LSB flip-flops. The same transfer for the 
other bits will take place as previously described. 

The third way to load the Input Register is from the "y" bus. This loading will 
occur when using the Manual Output (MNO) instruction. When reading from memory data 
transfers to the "z" bus and into the Buffer. The static condition of the Selector al­
lows this true data to be felt on the "y" bus. This "y" bus data comes into one input of 
the eight AND-gates .located at 2C through 7C on the logic. Notice, that if the input is 
a high coming in, this input on the AND-gate, will satisfy that leg. The other input 
to the eight AND-gates comes from TYI (lOF) which is gated on another logic sheet by 
MNO and DP2. TYI will be present for six ~i.croseconds, so at CPl (lOF) AND-gate lILA 
(lOC) will be satisfied and produce a low output. This low goes to the input of OR-
gate lIMA (lOC) and its output goes low to clear all the flip-flops in the Input Regis­
ter. Data is clocked into the B Register at CP2 time so at that time its true output 
will be on the "y" bus (2F through 10F). With TYI (9F) still present and data on the 
"y" bus, this information will now be gated to the SET input of the 8 LSB flip-flops. 
For example, if the "y" bus is high this will satisfy one leg of the respective AND­
gate, and TYI will satisfy the other. The AND-gate would then produce a low output 
to the SET input of the flip-flop. If data on the "y" bus was low, the AND-gate would 
not be satisfied and the flip-flop would remain in its clear condition. 

Now that you know the three ways to load data into the Input Register, you need to 
look at how it transfers this data to other registers. The Q side of all ten flip-flops 
transfers out as 10 through 19 to the "p" Register (sheet 12). Thus, all bit;s in the 
Input Register can transfer to the "p" Register. The eight LSB bits 10 through I7 are 
felt at the Selector input (sheet 3) and, if the Input Register is selected, these bits 
will transfer to the "y" bus. Bits IS and I9 transfer to the Memory Register Selector 
(sheet 11, 8E), and if the transfer of Input Register to Memory Register occurs, these 
bits will be loaded in the "M" Register along with the "y" bus data. Data in the Input 
Register can also go to the Buffer Register but this will transfer by way of the "z" bus. 
The Q output of the eight low order bits is felt at one input of eight AND-gates (sheet 
10, IB through 7B). The other input to each of these gates is TIB (sheet 10, 7F) which 
will place DATA or the complement data on the Z bus. 

149 



You should now know the purpose of the Input Register and the three ways it can be 
loaded. Also, you should be able to explain the operation of the Input Register and 
develop the output required. 

REVIEW QUESTIONS 2-5 

Refer to logic sheet 10 to answer the following questions. 

1. List the ways to load the Input Register with information. 

2. What produces the D input to flip-flop 161 

3. What clock pulse clears the I-Register when it is being loaded from the Y-bus? 

4. Which hex input switch is not shown on sheet 10 but generates ICLK when pressed? 

B-Register 

The B-register, more commonly known as the Buffer, is the register which is used as 
the link between memory and the rest of the computer. Anything that goes into memory or 
comes out of memory must go through the Buffer. This register is made up of two 4-bit 
parallel load storage registers. The logic diagram (sheet 3) actually shows three sep­
arate circuits; the B-register, the Two's Complementer, and the Selector. The heavy 
dash lines divide the iogic into these three circuits, identifying each on the left side 
of the logic diagram. This discussion will cover the B-register and the Selector cir­
cuits completely, and the Two's Complementer briefly. 

The B-register logic is found in the upper section of sheet 3, KDA-3034. Be sure 
that you uSe this logic diag~am to trace the signals as you read the operational ex­
planation. Notice that each of the 4-bit storage registers 7E (7E, 8E) and 7D (3E, 4E) 
are identical, with four data inputs across the top of each register, two control in­
puts at the left of each register, and eight outputs across the bottom of each register. 
The data inputs to the Buffer always come from the Z-bus, with ZIT through ZJ feeding 
register 7D (3E, 4E) and bits Z4 through Z7 feeding the other register 7E (7E, 8E). 
Since the Z-bus data is all NOT signals, the B-register inputs are actually the one's 
complement of the data you are trying to store. However, the B-register inverts the 
inputs internally and therefore has the true data at its outputs. The control inputs, 
pin 4 and 13, to the B-register are used to tell it when to load the input data. EVen 
though there are two control inputs, they actually function as one, because they are 
shorted together. CP2 and TZB (Transfer the Z-bus to the Buffer) are the two inputs to 
AND-gate 8F (9F). If both of these signals are present, the AND-gate would be satisfied, 
producing a low output at pin 3. This low is felt at one input to OR-gate 8FB (9E) 
causing it to satisfy and produce a high output. The output or the OR-gate is felt at 
the control inputs of both registers 7E (8E, 7E) and 7D (3E, 4E). Whenever these con­
trol inputs upclock, the B-register will load the data on the Z-bus into the B-register. 

Take another look at OR-gate 8FB (9E) and notice that its output is always low 
until one of its inputs is satisfied, and then the output goes high. This change from 
low to high is an upclock condition. (It was previously mentioned that the OR-gate 8FB 
can be satisfied by the CP2 and TZB signals being present.) It can also be satisfied 
by the CL signal (9F). The CL signal is generated when you press the clear switch on 
the COM-TRAN 10 control panel, and will satisfy the pin 5 input to the DR-gate causing it 
to produce the required upclock to load the Buffer. Pressing the Clear switch causes 
the Z-bus to clear (this is"done elsewhere in the logic circuitry) so that when the ~ 
signal produces the upclock, the B-register loads all zeros from the Z-bus. Therefore, 
any data entering the B-register will be clocked in from the Z-bus. 

150 



The Output-Transfer circuitry is made up of the B-register output lines, and the 
Selector circuit. Across the bottom of each of the B-register chips, 7E (7E, 8E) and 
7D (3E, 4E) you will see eight output pins. There are two outputs for each input, one 
with a State indicator and one without, f'or example, on chip 7D, pins 1 and 16 are both 
outputs for the data entering on pin 2 ZOo The output lines without state indicators. 
pins 9, 10, 15 and 16, produce the complemented output signals called Err, BT, B2, etc. 
As in other registers these complemented signals are used to control the lights on the 
COM-TRAN 10 display board. The output lines with the state indicators, pin 1, 14. ll, 
and 8, feed the true data from the B-register to the Selector circuit. 

The Selector circuit is made of four IC chips, 9F, 8E, 8D, and 8C (row C), called 
Dual 4 to 1 Data Selectors. This means that for every 4 input lines there is one output 
line; however, in the COM-TRAN 10 only three input lines are used for each output line. 
Each Selector chip has two output lines, pins 7 and 9, and, therefore, two sets of three 
input lines. These inputs come from the B-register, the I-register, and the Two's 
Complementero Look at chip 8C (2C); pins 10, 11, ,and 12 are the three inputs for output 
pin 9. Pin 10 comes from the B-register true value output for BO, pin 11 comes from the 
Two's Complementer, and pin 12 comes from signal 10, which is bit zero of the I-register. 
Notice that each of the Selector circuits outputs go through an amplifier and produce 
output signals called YO through Y7, this is the Y-bus. 

Now consider how the Selector knows which input signal to place at the output. Each 
Selector chip has two control signal inputs at the left end, pins 2 and 14. The signal 
which feeds the pin 2 control input is TIY (9F), Transfer Input Register to the Y-bus. 
If TIY is present, it will place a high on pin 2 and leave pin 14 low, which tells the 
Selector chip to transfer the I inputs (pins 4 and 12) to the output. The COMP signal 
(10F), Complement, feeds the pin 14 control input of each Selector chip. If this signal 
is present, it will place a high on pin 14 leaving pin 2 low, and the selector will 
transfer the Two's Complementer inputs (pins 5 and 11) to the output pins. If neither 
of these two control signals is present, then both pins 2 and 14 would be low and the 
Selector would transfer the B-register inputs (pins 6 and 10) to the output pins. This 
means that with no inputs applied to the selector (static state), the B-register contents 
are felt on the Y-bus. To summarize, if pin 2 is high and pin 14 is low, the I-register 
inputs will be selected; if pin 2 is low and pin 14 is high the Two's Complementer 
inputs will be selected; and if both pins 2 and 14 are low the B-register inputs will be 
selected (see figure 2-14). Regardless of which inputs are selected the outputs will be 
to the Y-bus. 

Pin 2 Pin 14 Selects 

L L B Register 

H L I inputs 

L H Two's Comp 
RDA26-455 

Figure 2-14. Selector Truth Table 

So far you have traced two types of outputs from this sheet of logic, the Y-bus 
outputs from the Selector, and the Complemented B outputs BO, Bl, ••. B7, directly from the 
B-register outputs. There is one more output signal called Er (4B) which is used to 
indicate that the B-register contains all zeros. The BZ signal is produced by AND-gate 

151 



lOCA (4B). There are eight inputs to this gate, one from each of the Complemented B­
register outputs. If all of the inputs are high, which would mean that the B-register 
contains all zeros, then AND-gate lOCA would be satisfied producing a low on output BZ. 

In the center of this sheet of logic, Row D, you will see a series of AND-gates and 
Exclusive OR-gates. This is the Two's Complementer. Notice that its inputs come from ' 
the Z-bus, not the B-register. Remember in order to two's complement a number you first 
take the one's complement and add a one to it, and since the Z-bus is already in the 
one's comp,lement form (DATA), it is only necessary to add this one. The Two's Complemen­
ter circuit is nothing more than an· adder, which will add a'one to the Z-bus if the sig­
nal TWO's (2F) is high (Two's complement) or a zero if the signal TWO's is low (one's 
complement). The output from this circuit feeds one of the Selector inputs, and would 
be transferred to the Y-bus only when signal COMP goes high (lOF). 

This section has covered three circuits: The B-register, the Two's Complementer, 
and the Selector. The B-register and the Selector are the most significant at this 
time. The B-register inputs come from the Z-bus, while its outputs produce the com­
plement signals to control the panel lights, and the true signals which are fed through 
the Selector to the Y-bus. The Selector circuit takes three inputs, and by interpreting 
its control signals' determines which one should go to the Y-bus at any specified time. 

REVIEW QUESTIONS 2-6 

To answer the following questions refer to KDA-3034, sheet 3. 

1. Where would the scope lead be placed to observe 17 going into the selector? 

a. 9F pin 4 

b. 9F pin 12 

c. BE pin 12 

d. BE pin 4 

2. If the A and B inputs are low to the selector U153-9F (sheet 3, BC), what is felt 
at pin 7? 

a. pin 4 input 

b. pin 5 input 

c. pin 6 input 

d. one's complement input 

3. If the A and B inputs to the selector are low (normal condition), what is on the 
Y-bus? 

a. The I-register 

b. The B-register 

c. The B-register complement 

d. The I-register complement 

152 



Memory Module 

The memory module is where the COM-TRAN 10 stores all the information you have given 
it. Computers cannot think, they can only follow the instructions which they are given. 
Therefore, when you want the machine to perform some function, you must write a program 
and store it in memory. The computer will then go to its memory and get one instruction 
at a time and execute it. There are many different types of memories used in computers, 
some use magnetic core memory, some use electrostatic memory, and some use IC memory. 
The COM-TRAN 10 uses an IC memory, which is similar to using flip-flops to hold the infor­
mation. The only problem with this is that should the machine lose power the memory 
information will be lost. This does not mean turning the power switch off, for that has 
no effect, but should the computer become unplugged, or should a loss of power to the 
building occur, the memory information would be lost and your program would have to be 
reloaded. As you follow the logic operation of the memory module, you should refer to 
sheet B in KDA-3034, and relate the material to the logic diagrams. 

The large block in the center of the logic diagram labeled MODEL 104, IC Memory, 
contains the actual timing and control circuitry of the memory. However, as a'Maint­
enance specialist you have no control over that circuitry and 'no access to the circuitry, 
since it is contained in an IC chip. Therefore, you will not be concerned with the 
internal workings, but only with those external signals and their effects which can be 
observed, measured, and controlled. The memory module is used anytime the machine is 
required to read or write information. In the upper left~hand corner of the memory 
chip, you will see an input called Read/Write (7E). In order to write information into 
memory this input must be low, and to read information from memory it must be high. 
Across the top of the chip, you will see a series of ten input lines labeled MO through 
M9 (4F, SF). These ten signals are used to identify which memory location, 000(16) 
through 3FF (16), from which you are reading or to which you are writing. The address 
input lines and the READ/WRITE input line are the only ones used during both a read and 
write operation. All other circuitry is used for one or the other. Each operation will 
be discussed separately. 

First, assume that during the machine operation, it is required to write a word 
into memory. Prior to initiating the write, certain conditions must have already been 
accomplished. The address of the memory location into which you are writing, is already 
present in complemented form on the address input lines, and that information will be 
decoded internally by the IC chip. The data to be written into memory is already present 
on the data input lines YO through Y7 (3F). Therefo~e, the memory knows what to write 
and where to write it before you actually start the write process., When the computer gets 
ready to actually begin writing, it will generate the IBS signal, I.nitiate Buffer to 
Storage. This signal is felt at input pin 4 of AND-gat~ 9LB (7E) as a .10w. The low will 
inhibit the AND-gate, and produce a low output, pin 6. The output of the AND-gate is fed' 
to the READ/WRITE input, and since it is a low, the memory chip executes a write. It 
takes the data from the Y input lines and stores it in the location identified by the M 
address lines. After six microseconds, one distribution pulse, the ~ goes'back to its 
normal high condition, and the write sequence is ended. 

The read operation is a little more complex. First, take a look at AND-gate 9LB 
(7E) again. Since a write sequence is not being executed, the IBS has not been gen­
erated. Therefore, p.in 4 of the AND-gate feels a high input which satisfies that leg. 
The input to inverter 7 MB (BE) is tied to a +5V, which is a high, and which is inverted 
to a low through the inverter.. .The low output of the inverter is felt at the input of 
OR-gate 8MB (BE) satisfying the gate and producing a high o.utput, which in turn is felt 
at the input of AND-gate 9LB (7E). This means that both inputs to the gate are high at 
all times except when a write signal is generated. The AND-gate produces a high output 
since it is in a satisfied condition, which is felt at the READ/WRITE input telling the 
chip to perform a read sequence. Thus the memory is continually reading the locations 
identified by the R address lines. However, this does not mean that the computer is con­
tinually reading. It only means that the memory chip is continually providing data at 
the data output lines (along the bottom of the chip). 

153 



In order for the computer to accomplish a read sequence, the data must be trans­
ferred from the data output lines to a computer register. This is accomplished by a 
transfer circuit, which you will find below the memory module. It is made up of 8 NOR­
gate latches and 8 AND-gates. When the computer is ready, it generates the ISB signal, 
Initiate Storage to Buffer. The ISB signal comes through inverter 7MA (9D) , where it'is 
inverted from a low to a high. The high is then felt on one input to AND-gate 8MC (9(;) 
satisfying that leg, and also on one input to each of the transfer AND-gates (Row B), 
satisfying each of those legs. CPl feeds the other input of AND-gate 8MC (10C). Thus 
when CPl occurs the AND-gate is satisfied producing a 2-microsecond negative pulse at', 
its output, pin 8. The low output is fed to one input of each of the NOR-gate latch ' 
circuits (Row C), causing the outputs of each latch to go to a high. The purpose of 
this is to temporarily set all the latch circuits, so that at the end of CPl when the ' 
input to the latches goes back high the data output lines from memory can load the 
proper value into the transfer circuits. The data output lines which have a 0, low, 
on them will reset the latches, while the lines carrying a 1, high, will have no effect, 
leaving the latches set as they were by CPl, thus coding the transfer circuit with the 
proper information from memory. 

As the data is loaded into the NOR-gate latches their outputs are felt on the trans­
fer AND-gates. Those latches with 1 outputs will satisfy their respective AND-gates pro­
ducing low outputs to the Z-bus, and those latches with ° outputs will inhibit their 
respective AND-gates producing high outputs to the Z-bus. Thus as CPl ends, that is 
downclocks, the Z-bus is loaded with the complement of the data read from memory. This 
is necessary because the Z-bus lines are "NOT" signals, ZO, Zl, ••• which means they must 
be opposite the true condition. At this time the read sequence is completed as far as 
the memory module's part is concerned. ISB enables the transfer AND-gates, and combines 
with CPl to set the latch circuits. Then as CPl downclocks, the data lines reset those 
latches necessary to give the proper binary code, and then the AND-gates transfer the 
data to the Z-bus, and the read sequence is ended. 

In su~ary, the memory is used for all read or write sequences.' 
input and the memory address lines are common to both processes.' The 
are used to input data during a write. The data output lines and the 
are used during a read to transfer data from the memory to the Z-bus. 
receives the complement of the actual data. 

REVIEW QUESTIONS 2-7 

Refer to sheet 8 to answer the following questions. 

The read/write 
Y-bus data lines 
transfer circuits 
The Z-bus always 

1. Which of the following signals would not be used to write information in memory? 

a. IBS 

b. Y BUS input 

c. MO through M9 

d. ISB 

2. If the data word being read from memory was FF(16), what voltage level would be 
felt at gate 7K-A pin 3 (B7)? 

a. ° volts 

b. +5 volts 

154 



3. How long is the ISB signal low? 

a. 2 microseconds 

b. 6 microseconds 

c. 8 microseconds 

d. as long as the LDA instruction is in the S-register 

M-Register 

The Memory Address Register, M-register, is a 10-bit register used to locate anyone 
of the 400(16) words in memory. This address selection is necessary anytime you want 
to read or write. The M-register has 10 flip-flops which can be loaded in several dif­
ferent ways. You will find the M-register logic diagram on sheet 11 of the KDA-3034. 
Notice that this register has a fairly complex Input-Control circuit, but an extremely 
basic Output circuit. 

There are four sources for loading the M-register: the B-register, P-register, 
I-register, and the Index Adder. These inputs actually enter the M-register through 
either the Y-bus, Z-bus or G-bus. Addresses for instructions are transferred to the 
M-register from the l'-register through the Z-bus. When addresses for operands are 
loaded into the M-register, the lower 8 bits are transferred from the B-register through 
the Y-bus, while the two most significant bits are determined by SO and Sl of the OP 
Code register. To manually load an address into the M-register, the contents of the 
I-register are transferred through the Y-bus for the 8 least significant bits, while M9 
and M8 are loaded from I9 and I8 through the selector. Whenever the computer is exe­
cuting an indexed instruction, the indexed address (M + X) is .loaded into the M-register 
from the Index Adder through the G-bus. 

Before actually tracing the signals for these vai{Clus loading methods, you must take. 
a look at chip l3J (8E) which is a Dual 4 to 1 data selector. This chip is identical to 
the ones you studied in the selector portion of the B-register. You will recall from 
that discussion that the COM-TRAN 10 uses these chips as Dual 3 to 1 data selectors. 
There are three inputs for each output, and the control inputs to the chip are used to 
determine which input is transferred to the output. This chip is required by the M­
register because it is a 10-bit register. As noted above, the inputs to this register 
sometimes come through the Y-bus and Z-bus. These two busses are only 8-bit bus lines, 
and therefore cannot carry the two most significant bits on an M-register ~nput. To 
solve this problem the data selector has six inputs, .t~ree for each output, which are 
I9, P~, and Sl for one output (pin 9), and I8, P8, and' S~ for the other (pin 7). If the 
computer is transferring from the I-register to the M-register, the control signals tell 
the data, selector l3J (8E) to transfer I9 and I8 to its output. If the transfer is a P 
to M, inputs P8 and P9 will be selected; and for a B to M, inputs SO and Sl are selec­
ted. The only other transfer possible is the X-register to M-register through the G­
bus, and since the G-bus is a 10-bit bus, the data selector is not required. 

Since the G-bus input is the least complex it will be traced first. Across the 
bottom of sheet 11 you will see 10 D-type flip-flops (Row B), which make up the storage 
circuit for the M-register. The D input to each of these flip-flops is fed directly 
from one of the bits of the G-bus GO through G9. In order to transfer this data into the 
flip-flops, the signal TGM (9F) must be present. TGM is one of the inputs to AND-gate 
l5HB (9C), and when it is present it will satisfy that input leg. The other input to 
this gate is CP3. When CP3 is generated, CP3 goes low satisfying that leg of the AND­
gate. When the AND-gate inputs are both satisfied, its output goes from a static condi­
tion of low to its satisfied condition of high. This causes an upclock to be fed to the 

155 



T input of each of the flip-flops. When the T input upclocks, the data on line D is 
transferred into the flip-flop. If TGM is present, on the downclock of CP3, an upclock 
occurs at the T input to each flip-flop, loading the flip-flops with data from the G-bus. 
This is the only type of input to the M-register which uses the D input to load. 

When the computer executes an operation which requires the M-register to be loaded 
from the P, I, or B-registers, the first thing it must do is clear the M-register. The 
TBM (Transfer B to M), the TIM (Transfer I to M), and the DPAB (Transfer B te M) signals 
are the three inputs te OR-gate l5JB (9F). If anyone 'Of these signals are present the 
OR-gate will be satisfied, and produce a high 'Output. This high 'Output is fed te 'One 
input of OR-gate l5HA (BE) satisfying that gate and preducing a lew 'Output. The TPM 
(Transfer P to M) signal is the only input te inverter l3GA (lOF). When this signal is 
present, the inverter inverts it frem a low te a high and feeds it te the other input leg 
'Of OR-gate l5HA (BE), satisfying that gate se that it preduces a low 'Output. Thus, if 
any 'Of the signals TBM, DPA8, or TPM are present OR-gate l5HA (BE) will satisfy and pre­
duce a low output. Then this output is fed to one input of OR-gate l4JA (9D) satisfying 
that gate to produce a high 'Output, which is fed in turn te AND-gate l4JB (lOD) pin 5 
satisfying that leg. The other leg (pin 4) is fed by CPl and will satisfy when the 
cleck produces CPl. With beth inputs satisfied, the gate is satisfied and preduces a 
lew output, which is fed te input pin 9 'Of OR-gate l4HC (lOC). This will satisfy the 
OR-gate and it will preduce a lew 'Output which is fed te the C inputs 'Of flip-flops llJA 
(9B) and llJJ3 (BB). When these C inputs ge low, the flip-fleps are cleared to the zero 
state. Now, if you go back to the 'Output 'Of OR-gate l5HA (BE), yeu will see that its 
lew 'Output is also fed te inverter l4FA (9D). The inverter will invert the signal from 
a lew te a high and feed it to AND-gate l4JC (9D) , where it is ANDed with CPl. When the 
AND-gate satisfies, it will preduce a lew 'Output which in turn satisfies one input te 
OR-gate l4HD (9C). Netice that the 'Output of this OR-gate is tied t.e the C inputs of all 
the other D-type flip-fleps, s.e when it is satisfied and its 'Output gees low, the B least 
significant flip-flops will be cleared. Fer any 'Of the transfers, P to M, I to M, 'Or 
B te M, the first step (that is CPl) will clear all ten of the M-register flip-fleps. 

All 'Of these transfers will alse strebe the data selecter l3J (BE) during CP2. In 
'Order for the data selecter to interpret the control signals and make the right data 
'Output selectien, the strebe input (pins 1 and 15) must ge lew. When you traced the legic 
to clear the flip-flops, yeu feund that if any 'Of the signals TPM, TIM, DPAB, and TBM are 
present, OR-gate l4JA (9D) will be satisfied and preduce a high 'Output. This high is 
fed te AND-gate l4JD (9C) where it is ANDed with CP2. Therefore, when CP2 is present 
during 'One of these transfers, the AND-gate will be satisfied, preducing a lew 'Output. 
This 'Output is tied directly te the strebe inputs 'Of the data selecter l3J (BE). Thus, 
during CP2 the data selecter strebe inputs will be conditioned se that it can interpret 
the centrel signals and 'Output the proper data. 

The centrol signal inputs are pins 2 and 14 'Of the data selector. The input to pin 2 
cernes frem the 'Output of OR-gate l4GA (lOF) and the input to pin 14 cernes frem the 'Out­
put of inverter 13GB (9F). If TBM 'Or DPAB are present, pins 2 and 14 will beth be lew 
and the selecter will transfer 80 and 81 te the output pins. If TIM is present, the twe 
centrel inputs will both be high causing IB and 19 te be transferred te the 'Output. If 
TPM is present, pin 2 will be high and pin 14 will be low, causing the selecter to trans­
fer PB and P9 to the output (see figure 2-15). These 'Outputs are then inverted threugh 
inverters l3GE and l3GF (BC) and fed te the 8 input of the mest significant bit flip­
fleps, llJA (9C) and llJB (BC). If either selecter output is high then the inverters 
will invert it te a low, satisfying the low, satisfying the flip-flep se that it will ge 
to the set 'Or 1 state. If there is a low (0) out 'Of the selecter, it will invert te a 
high and have ne effect on the flip-flep. This weuld leave it in the clear 'Or 0 state 
in which it was put during CPl. 

8'0 far, it has been shown that the B, I, 'Or P te M transfers all cause the 10 flip­
fleps of the M-register te be cleared during CPl. They alse cause the proper centrol 
signals and the strebe signal te be fed to the data selecter during CP2, causing the MB 

156 



Pin 2 Pin14 Selects 

L L SO & Sl 

H L P8 & P9 

H H :Is &.l9 

Figure 2-15. S,e1ector Truth Table 

and M9 f1ipf1ops to be loaded. Now all that remains is to see how the other 8 flip-flops 
(MO-M7) are loaded during these transfers. The TPM signal causes these flip-flops to 
load data from the Z-bus. TPM is inverted to a high through inverter 13GA (10F). This 
high is fed to AND-gate 14HB (7D) , where it is ANDed with CP2. When TPM and CP2 are 
both present, the AND-gate will be satisfied, producing a high output. This output is 
one of the inputs to each of the AND-GATES 12JA, 12JF, 12HA, 12HF, 12GA, 12GF, 13FA, ' 
and 13FF (all located in Row D). The other input to each of these AND-gates;s coming 
from the Z-bus through an inverter. These data bits are inverted because the Z-bus is a 
complemented bus and therefore must be inverted before it is loaded. In order to see 
how this data is loaded, assume that the Z-bus data is 1110 1011(2). Each bit is first 
inverted by the inverters in Row E, so that the data is now fed to the AND-gates as 
0001 0100(2). This means that AND-gates 12GF and 12HF feel a high from the Z-bus inputs 
and from TPM input and will be satisfied, producing a high output. The high outputs are 
fed to the OR-gates 12GD (3C) and 12HD (4C), respectively. These OR-gates will be sat­
isfied and will produce a low output which is fed to the S inputs of flip-flops 11FB (3C) 
and 11GB (5C). When the S inputs feel the low, the flip-flops will be set to the 1 state. 
The rest of the flip-flops will remain in the 0 state, thus loading the 8 least sig-
nificant flip-flops with 0001 0100(2). ' 

If any of the signals TBM, TIM, or DPA8 are present the transfer will occur approxi­
mately the same way as the TPM transfer except that the 8 flip-"f1ops are loaded from the 
Y-busrather than from the Z-bus. Notice across the top of sheet 11, that the Y inputs 
are all true inputs (YO, Y1, Y2 ••• ) not complemented inputs like the Z inputs (ZO, Zl, 
Z2, ••• ). This means that the data coming from the Y-bus does not require a set of 
inverters like the Z-bus data. The Y-bus data (YO - Y7) feed directly to AND-gates 12JB, 
12JE, 12HB, 12HE, 12GB, 12GE, 13FB, and 13FE. If TIM, DPA8, or TBM are present OR-gate 
15JB (9F) will be satisfied, producing a high output. The output is tied to one input of 
AND-gate 14HA (7E). The other input to this AND-gate comes from CP2 (9F) , and when both 
inputs are present the AND-gate will satisfy, producing a high output. This high output 
will be fed to one input of each of the Y-businput AND-gates listed above. Thus, if 
anyone of the Y-bus bits is a one, its AND-gate will satisfy, and will set its respec­
tive flip-flop to the one state through the proper OR-gate. This procedure is identical 
to the Z-bus transfer during TPM. 

In summary, there are 4 input possibilities for the M-register. One is to transfer 
the G-bus data into the M-register. The G-bus is a 10-bit bus and is transferred dir­
ect1y'into the M-register uSing. the D and the T inputs of the M-register flip-flops. 
The other three possibilities are P to M (TPM) , I to M (TIM), or B to M (DPA8 or TBM). 
Any of these signal inputs will clear a11'10 flip-flops of the M-register during CPl. 
They will then produce the proper control and strobe signals for the data selector during 
CP2, and thus load the two MSB flip-flops. Also during CP2, TPM will load the S LSB 
flip-flops from the Z-bus; TIM, DAPS, or TBM will load from the Y-bus. You should now 
be able to trace any of the four possible M-register inputs. 

157 



The M-register outputs are very simple. Notice that each of the 10 flip-flops has 
two outputs, one from the Q side and one from the Q side. The Q side outputs are called 
MO, Ml, ••• M9, and are true value outputs. The Q side outputs are called MIT, MI, ••• M9, 
and are the complemented outputs. These complemented outputs are used to address the 
memory module and control the front panel lights. You should be able to determine the 
effect on the M-register and the outputs generated, when given specific input conditions. 

REVIEW QUESTIONS 2-8 

Refer to logic sheet 11 to answer the following questions. 

1. What signal is necessary to step the Memory Address Register by one? 

a. TGM 

b. TPM 

c. TIM 

d. TBM 

2. What select levels are needed on pins 2 and 14 of data selector l3J, to transfer 
SO and Sl to M8 and M9? 

a. pin 2 high and pin 14 high 

b. pin 2 high and pin 14 low 

c. pin 2 low and pin 14 high 

d. pin 2 low and pin 14 low 

3. From what register does the M-register receive information at DPA8? I 

a. S-register only 

b. I-register via the Y-bus 

c. B-register and S-register 

d. P-register via the Z-bus 

4. What signal will load the M-register from the Z-bus? 

a. 'DP7i1r 

b. TBM 

c. TIM 

d. TPM 

X-Register 

The Index Register is an 8-bit storage register used for indexing the operand 
address. This means that any time an instruction is used as an index instruction 

158 



the X-register contents will be added to the M-register contents. The logic diagram for 
the X-register and the X Adder' are located on sheet 14 of KDA-3034. 

The X-register is made up of two 4-bit Selector/Storage chips, l4E (SF) and l5D (4F). 
These are the same type of chips that are used in the P-register. There are two inputs 
for each output on these chips. Across the top of the chips you will see that the two 
input choices to the X-register are the M-register (MO through M7) and the Y-bus (YO 
through Y7). Each chip has a clock input (pin 10) which must downclock in order to 
transfer the selected input to the output pins. Each chip also has a MODE input (pin 9). 
If this input is high the Y-bus data will be loaded, but if it is low the M-register will 
be loaded. Anytime.the computer must load the X-register, the signal LX is generated. 
LX is ANDed with CP2 at AND-gate l5CA (9F). If both of the signals are present the 
AND-gate satisfies and produces a low output. This low will satisfy the OR-gate l5CB 
(9F) causing its output to go high. The output of this OR-gate is tied to the clock 
input of each 4-bit Selector/Storage chip. So when the OR-gate satisfies, the clock 
input goes high. At the end of CP2, pin 1 of AND-gate l5CA (9F) will be inhibited and 
the output will go back to high. This, in turn, inhibits OR-gate l5CB (9F) causing its 
output to go from high to low. This downclock causes the chips to load the selected 
data. With only the LX signal generated the Y-bus will be the selected input, since 
the static condition of the MODE input is high. In order to load the M inputs, the 
signal TMX (SF) must also be present. This input is tied directly to the MODE input of 
both chips, and when TMX is generated the MODE input goes low. Then when LX and CP2 
combine to generate the downclock for the clock input, the chips will load the M-register 
inputs. These are the only two ways X-register can be loaded. 

Once the chips have clocked the selected input data to the output pins, there are 
three possible output signals for each bit of the X-register. Only one bit will be 
traced, as all work the same way. Let's take pin 13 of chip l5D (4F), for example. 
This pin is tied to inverter l4DA (4E), which will invert the signal and produce the 
complemented output Xl. Pin 13 is also tied to one input leg of AND-gate l4CC (4E). 
The other leg is fed by the signal TXB, Transfer X to B, which causes the X-register to 
'be loaded on to the Z-bus. If TXB is present one legrof each Z-bus transfer gate will 
be enabled, including AND-gate l4CC. Now if X~ is high (1) the gate will be satisfied 
and will output a low (0) as Zl, but if Xl is low (0) the AND-gate will be inhibited and 
will produce a high (1) as Zl. Therefore, a complemented signal is transferred to the 
Z-bus. The other possible output is generated in this case by AND-gate l2CD (4D). Pin 
12 of this gate is enabled by the signal AXM (9F) , Add X to M. Then if Xl, the other 
input to the AND-gate, is high (1) the gate will produce ~ high output; if not, it pro­
duces a low output. This output is tied to pin S of chip lID (3B), which is part of the 
X adder and receives the X input when it needs to add X to M. 

1 

In summary, the three possible outputs from each bit' of the X-register are the com-· 
plemented output (XO, Xl, ••• X7), the Z-bus output (ZO, Zl, ••• Z7), and the X Adder signals 
required for the Add X to M operation. There is also a possible XZ signal generated 
when the X-register contains zeros. It is generated by AND-gate llCA (4B). It functions 
just like zero contents signal i~the other registers, previously covered. 

Now look at the X Adder circuit and notice that it is made up of two 4-bit Adder 
chips, lIE (7B) and llD (3B). These chips are very simple in operation. They do not 
require any control signals or any transfer output signals. Each chip has eight inputs, 
4 from the M-register inputs and 4 from the X-register outputs. These 4-bit Adder chips 
continually add these two data inputs together and place the results out on the G-bus. 
Unless the AXM signal is present, the X inputs to the Adder chips are always 0000 0001(2). 
Thus you can see the X Adder is a very simple circuit in operation. 

You should now be familiar with both the X-register and the X Adder operations. 
Given specific input conditions you should be able to determine the resulting effects 
and the resulting output signals. 

159 



REVIEW QUESTIONS 2-9 

Refer to logic sheet 14 to answer the following questions. 

1. What signals are necessary to add the Index Register to the M-register and transfer 
the results to the M-register? 

a. TXB 

b. TMX and CP2 

c. LX and CP2 

d. AXM, TGM, and CP3 

2. What happens if the sum of the Index Register and the M-register exceeds lO-bit 
places? 

a. The Index Register end carries 

b. The overflow bits are lost 

c. The carry light comes on 

d. The ADD overflow light comes on 

3. What logic levels are felt on pins 1, 3, 8,and 10 of IC's 11E and 11D when the 
AXM signal is low? 

a. Contents of the X-register 

b. 11111110(2) 

c. 00000001 (2) 

d. 00000000(2) 

P-Register 

The Program Address Register (P-register) is a 10-bit storage register. It is used 
by the computer to determine the next instruction to be executed. It is made up of 
three 4-bit Selector/Storage chips plus the required Input/Control and Transfer/Output 
circuitry. See sheet 12 of the KDA-3034,Circuits and Diagrams, ,for the logic diagram 
of the P-register. 

In Row E of sheet 12, you will see three chips, l6J, l6H, and l6G. These are the 
4-bit Selector/Storage chips. Notice the inputs to these chips' (across the top of each 
chip) are MO through M9 and 10 through 19. This tells you that the data inputs 'to the 
P-register come from either the M-register or the I-register. Look at chip l6G (3E), 
and you will see that it has 8 input lines (across the top) but only 4 output lines 
(across the bottom). There are two inputs for each output. That is why the chip is 
called a 4-bit Selector; it must select which of the two inputs it is to transfer to 
the output. As you go from right to left across the top of the chip you will see that 
there is one I-register input, then one M-register input, then one I-register input, 
etc. These are grouped 10, MO, etc., and when the chip is loaded it will either load 
all the I inputs or all the M inputs, never M and I inputs mixed.' The Selector knows 
which input to load by the condition of its Mode input, pin 9. If the Mode input is 

160 



high-it will load the I-register inputs, but if the Mode input is low it will load the 
M-register inputs. Notice chip 16J (8E) has only 4 inputs and 2 outputs, but it works 
just like the other two chips, two inputs per output. There are two input transfer sig­
nals, l}w, Transfer M to P, and TIP, Transfer I to P. Both of these signals are inputs 
to OR--gace 16FA (9F). If either signal is present, the OR-gate will be satisfied and 
produce a high output. The high output is ANDed with CP2 at AND-gate 16FB (9E). There­
fore, if the computer is transferring data into the P-register, CP2 will cause the AND­
gate to satisfy, producing a low output which is fed to the input of OR-gate 16FC (9E). 
This will satisfy the OR-gate, generating a high output which is tied to the clock input 
(pin'lO) of each of the three4-bit Selector/Storage chips. Notice that this clock input 
pin indicates that it is activated by a downclock. This means that the selected data 
will be transferred to the outputs when the clock input gets a downclock. We have just 
seen that during any TMP or TIP, when CP2 occurs the clock input to the chips goes high. 
Then when CP2 downclocks 2 microseconds later, AND-gate 16FB (9E) will be inhibited 
causing its output to go high. This inhibits OR-gate 16FC (9E) and its output will go 
back low. Since the OR-gate output is tied to the three chip clock inputs, when it goes 
from a high output back to low these inputs are satisfied by a downclock. Thus at the 
end of CP2, the selectors will be clocked and will transfer the selected data to the 
outputs of the 4-bit Selector/Storage chips. If the transfer signal present is TMP (9F) 
it will have no effect on the MODE input to the chips. Therefore, it will remain in its 
static condition of low, and when the chips are clocked the M inputs will transfer to the 
output pins. However, if TIP (9F) is the transfer signal used, it will be inverted to a 
high through inverter 16EA (9E) and fed to the MODE input pins of all three chips. The 
MODE input being high will cause the I inputs to be transferred to the output pins when 
the chips are clocked. So there are two possible'ways to load data into the P-register. 

Once the input data has been transferred to the output pins of the 4-bit Selector/ 
Storage chips, there are two possible outputs from-the P-register. One of these out­
puts is always present, it is the complemented output:signal called PO, Pl, ••• P9. For 
example, look at the output pins of chip 16H (6E). Each of these outputs is fed through 
an inverter. The output at pin 11, is inverted through inverter lSGF and becomes the 
P-register output, P4. By tracing each output pin, you will find that each is inverted 
to become a P-register complemented output. These outputs are used to control the front 
panel lights. 

The other P-register output is the Z~bus outputs ZO through Z7. There is no Z8 and 
Z9 output because the Z-bus is only an 8-bit bus line. In addition to being tied to an 
inverter each output is also tied to the input of an AND-gate. For example, pin 14 of 
16G (3E) is tied to pin 5 of AND~gate 16DB (3C). If you check the other output pins, 
you will find that each one is tied to an AND-gate input pin. The other input to the 
8 LSB AND-gates comes from the signal TPLB, Transfer the P-register Lower Order Bits, 
(10). Anytime this signal is present it will enable one leg of each of these AND-gates, 
l5EA, lSEB, l5EC, l5ED, .16DA, l6DB, l6DC, l6DD. Then if the output pin is a high (1) 
its AND-gate will be satisfied, producing a low at its Z-bus position; if the output pin 
is low (0), its AND-gate will be inhibited, putting a high (1) of its Z-bus position. 
Therefore, if TPLB occurs, whatever is in the 8 LSB bits of the P-register will be placed 
on the Z-ous in complemented form. 

There is one other output to be considered, and that is the true signal output for 
the two MSB bits P8-and P9. The two output pins of chip l6J (8E) have a direct line out­
put called P8 and P9. Remember these signals are required by the-M-register during the 
P to M transfer. So the complemented output signals for all 10 bits, the Z-bus outputs 
~or the 8LSB bits,_ and the true output for the 2 MSB bits, are all available from the 
P-register. 

You should now be able to take any given input conditions and determine the P­
register output signals, as well as the general resulting effect on the circuit. 

161, 



REVIEW QUESTIONS 2-10 

Refer to logic sheet 12 to answer the following questions. 

1. What signals are needed to load the P-register from the M-register? 

a. TMP low, TIP high, and CP2 

b. TMP high, TIP high, and CP2 

c. TIP low, TPLB, and CP2 

d. TMP low, TIP low, and CP2 

2. Which bits of the P-register can be transferred to the M-register without. the use of 
the Z-bus? 

a. PO, P1, P2, P3, P4, P5, P6, and P7 

b. PO and Pl only 

c. PB and P9 only 

d. All bits 

3. If we are transferring the contents 3FF from the P-register to the M-register, what 
inputs are felt by the selector and AND-gates of the M-register? 

a. PB and P9 high, ZO through Z7 low 

b. All inputs high 

c. All inputs low 

d. PB and P9 low, ZO through Z7 high 

A-Register (Accumulator) 

The A-register or Accumulator is the register used in arithmetic operations to hold 
the augend, minuend, multiplicand, and two high order bytes of the dividend before the 
divide operation; and the sum, difference, two high order bytes of the product, and the 
remainder after such operations. This register is an 8-bit, left shift, right shift, 
parallel load register. The logic diagram for the A-register can be found on sheet 1 of 
the Circuits and Diagrams book, KDA-3034. Refer to this diagram during the following 
discussion. On sheet 1, in coordinate sections BF, BE, 7F, and 7E, you will see 4 AND­
gates, 4KA, 4KB, 4JA, 4JB; and one OR-gate 4HA; and ·in coordinate section BC one AND­
gate, 4HB. These gates are not part of the A-register, but rather are part of the con­
trol circuitry used during an ADD or SUB instruction. Therefore, these gates will be 
ignored during this discussion. The explanation of the A-register operation will be 
divided into two major parts, the Input-Control circuitry and operation and the Output­
Transfer circuitry and operation. 

All of the data input signals and all of the control signals are fed directly to IC 
chip 5G (4E, 5E). This chip is the actual register, with the various storage d·evices 
contained in it. However, as in the memory module, the internal workings of the chip 
are NOT relevant to you as a maintenance technician and, therefore, this discussion will 
be limited to the signals feeding the chip and their effects on the chip. There are 
three sources of data inputs to the A-register, th~ left shift input, the right shift 

162 



input, and the parallel input. The left and right shift inputs are serial, that is, 
loaded one bit at a time. The signal DSLA, which feeds pin 22 of 5G (4E, 5E), is the 
left shift data input; and the signal DSRA, which feeds pin 2 of 5G, is the right shift 
data input. If the data input line is high, then a one will be shifted in, and if it is 
low, then a zero will be shifted into the accumulator. Across the top of IC chip 5G 
(4E, 5E) you will see 8 input lines labeled FO through F7, which are also called the F­
bus. These lines are the parallel data inputs; that is, all eight bits of data are loaded 
into the A-register at one time. 

Now that you know where the data comes in, the next step is to continue with an 
explanation of how you control the A-register so that it knows which type of loading it 
should do, and when it should do it. On the lower left side of chip 5G (4E, 5E) there 
are four control line inputs. These are pin 13, clear; pin 23, shift left; pin 1, shift 
right; and pin 11, clock. The clear signal is generated when you press the clear switch 
on the COM-TRAN 10 control panel. CLA (6F) goes low satisfying the clear input which 
clears the A-register to all zeros. If the shift left control input goes high, the 
register knows to shift the data in left; if the shift right control input goes high, the 
register knows to shift data in right. When both of these inputs go high at the same 
time, then the register knows to execute a parallel load. These two input controls tell 
the register how to load the data. The purpose of the-clock input (Fin 11) is to tell 
the register when to load the data. When the clock input upclocks the data loads, 
either serially shifting or straight parallel as indicated. Notice the clock input sig­
nal comes from CP2, (6F) , therefore when CP2 i~ generated by the clock circuit, CP2 will 
downclock, then at the end of CP2, 2 microseconds later, CP2 will upclock back to its 
static condition, and the register will execute what it has been told to do. The clear 
signal is not dependent on the clock, but rather clears as soon as the CLA is generated. 
Thus there are three data inputs,which make.up tpe Input-Control circuitry. 

Now that you know how to load data in, consider how you get data out. The 8 pins 
across the bottom of IC chip are the output pins, and whatever data is in the A-register 
will be present at these output pins. Each of the outputs produce three possible output 
signals. This is accomplished by the transfer circuit. All the inverters, AND-gates, 
and phantom OR-gates in Rows B, C, and D make up the transfer circuitry (except AND-gate 
4HB, sheet 1, 8D which was previously excluded). Notice that each output pin is con­
nected to an inverter, an AND-gate, and has one direct line output. For example, pin 20 
has a direct line output labeled AO, which is bit ° of the A-register; an output through 
inverter 6GF (2D) labeled AO, which is the complement of bit ° of A-register and is used 
to control the indicator lights of the computer's front panel; and is fed to AND-gate 
7GD (2C) as an input. The other,input to the AND-gate comes from signal TAZ (9F), 
Transfer the A-register to the Z~bus. When this signal is present the gate would be 
satisfied if the A-register bit was a one, producing a low output on the Z-bus called ZOo 
It would be inhibited if the A-register bit was a zero and a high output would appear on 
the Z-bus as ZOo This circuitry works the same way for each output bit. Each A-register 
bit produces a true condition as AO, AI; a compl~mented output through inverters as AO, 
AI, etc.; and a complemented output through the AND-gates, as ZO, Zl, etc., if TAZ has 
been generated by the computer. 

There is one other output signal generated by AND-gate 5KA (5B). There are eight 
inputs to this gate, one from the complement of each A-register bit. If the A-register 
contained all zeros then the complements would all be ones or highs and the AND-gate 
would be satisfied, thus producing a low output. The low output would then be inverted 
through inverter 5He (5B) to a high output called AZ. This signal is used elsewhere in 
the computer to indicate that the A-register contains all zeros. 

You should now be able to determine what the A-register will do, and what the out­
puts will be if you know what inputs and what control signals are present. 

163 



REVIEW QUESTIONS 2-11 

Refer to sheet 1 to answer the following questions. 

1. What signals are needed to parallel load from the F-bus to the A-Register? 

a. SAR, SAL and CP2 

b. CLAand CP2 

c. SAL and CP2 

d. SAR, SAL, and DSLA 

2. The F-bus inputs are 01010101(2) TAZan~ pins 23 and 1 are high. When CP2 upclocks, 
what is felt on the Z-bus? 

a. 01010101 (2) 

b. 10101010 (2) 

c. 00101010(2) 

d. 01010100 (2) 

3. The A-register 
on pin 11, what is 

a. 10000111(2) 

b. 1-1111110 (2) 

c. 01111000 (2) 

d. 11110000 (2) 

ALU Module 

contains 11110000(2) and pins 22 and 23 are high. After 3 upclocks 
felt on the complemented lines, AO through A7? 

The Arithmetic Logic Unit,ALU, is the module which performs all the arithmetic 
operations. The logic diagrams for the ALU is on sheet 2, KDA-3034. The ALU is made up 
of. two ·4-bit arithmetic and logic unit chips, 5F and 5E. These two chips are tied 
together so that they operate as one unit using B-bit values. The COM-TRAN 10.uses the 
ALU for seven different arithmetic and logic functions. This unit is actually· capable of 
doing 48 separate functions, but in the COM-TRAN 10 it is only wired for· seven of these. 
Therefore, this discussion is concerned with these seven functions only and will cover 
these· seven only. 

The ALU has two sets of inputs, the A inputs, which come from the A-register, and 
the B inputs, which come from the Y-bus. Look at sheet 2, and across the top of the 
4-bit ALU chips, you will see these two sets of inputs. What the ALU module does with 
these inputs is determined by the control signal inputs, pins 3, 4, 5, 6, and 8 of the 
chips. These pins are fed by the outputs of OR-gates 5DA (9E), and 4CB (BE) and the 
inverted outputs of OR-gates 4CA (9E), 5CA (BE), and 5DB (7E). These OR-:-gates ac·t like 
a decoder circuit and setup the proper control signals for th~ input signal present. 
With the proper code at the five control input lines, the ALU will perform the following 
arithmetic or logic operations: 

164 



Ari thmetic: 

1. Add A input to B input. 
2. Subtract B input from A input. 
3. Increase A input by one. 
4. Decrease A input by one. 

Logic: 

1. The logical AND of A input with B input. 
2. The logical OR of A input with B input. 
3. The logical Exclusive OR of A input with B input. 

The relationship between the input signal, the control code, and the resulting action is 
shown in the ALU truth table (see figure 2-16). You should be able to trace each signal 
through the OR-gate decoder to see how each code is set. If none of the seven input 
signals are present, the ALU is in its static condition and will automatically do a 
parallel transfer of the B input (Y-bus) to the ALU's output pins. These are the eight 
possible actions of the ALU as it operates. Seven of them are arithmetic or logic func­
tion, and the other is a straight transfer. 

Input Condition Code Resulting Action 

Signal S3 S2 Sl SO M 

DECA H H H H L Decrease A input 
by one 

--
INA H L L H L Add A input to 

B input 

INS L H H L L Subtract B input 
from A input 

INCA L L L L L Increase A input 
by one 

lAND H L H H H Logical AND of A 
with B 

--IORI H H H L H Logical OR of A 
with B 

--lEX L H H L H Logical Exclusive 
OR of A with B , 

No Inputs H L H L H Parallel Transfer 
Static state of B to F-bus 

RDA26-456 

Figure 2-16. ALU Control Inputs 

165 



The output pins of the ALU produce direct output signals called FO, Fl, ••• F7. This 
is the F-bus and it goes directly to the A-register inputs. Notice that the F7 output 
signal is also fed through inverter 4DD (sheet.2, 6B) to produce Fr. 

You should now be able to determine what the ALU will do and what its outputs will be 
when you are given the input signals present. 

REVIEW QUESTIONS 2-12 

1. What are the selection inputs to the ALU for an ADD instruction? 

a. SO and S3 high, Sl and S2 low, mode low 

b. SO and S3 low, Sl and S2 high, mode low 

c. SO, Sl, and S3 high, S2 low, mode high 

d. SO, Sl, S2, and S3 low, mode low 

2. With the following selection, S3, Sl, and M high, SO and S2 low, what is felt on the 
F'-bus? 

a. Y-bus 

b. Accumulator 

c. Accumulator added to the Buffer 

d. Accumulator ANDed with the Buffer 

3. What register is both an ALU input and an ALU output? 

a. Buffer 

b.· Accumulator 

c. Quotient 

d. None of the above 

Q-Register 

Like the A-register, the Q-register, or Quotient register, is an eight-bit, left 
shift, right shift, parallel load register. In fact, if you take a look at the logic 
diagram for the Q-register (sheet 6, KDA-3034) you will see that it is identical to the 
A-register, except for some of the signal names. The Q-register is used in arithmetic 
operations to hold the two lower bytes of the dividend during a divide, the quotient 
after a divide, and the two lower bytes of the product after a mUltiply. Since the 
operation of this register is just like the A-register, the explanation will be brief. 

The Input-Control circuitry for the Q-register functions, as in the A-register, with 
three data input lines and four control lines. The left shift data comes into pin 22 
of 3E (4E) , from a signal called DSLQ. The right shift data comes into pin 2 of the 
same chip from a signal called AO. This is bit zero of the A-register. Whenever the 
Q-register is shifting to the right, it is actually loading data from bit AO of the A­
register. Across the top of chip 3E (6E, 5E) you find the parallel input lines. Notice 

166 



that the Q-register parallel inputs come from the Y-bus, YO through Y7, while the A­
'register's parallel inputs came from the F-bus. The four control signals are identical 
xo those on the A-register, and work the same way. Pin 13 is the clear input and when 
CL is present, the Q-registet will be cleared to all zeros. SQR (7F, 8F) are signals 
which tell the register how to load. If SQR goes high, the register shifts right, if 
SQL goes high, the register shifts left, and if both signals go high together, the regis­
ter loads in parallel. The clocking input tells the register when to execute the iden­
tified loading procedure. It is controlled by CP2, and when CP2 upclocks (at the end of 
CP2) the register loads the data. The Q-register operates just like the A-register for 
input data and control, with the only exception being where some of the signals come 
from. 

Across the bottom of chip 3E you will see the output pins and output lines. Each bit 
has only two possible outputs, while the A-register has three. The Q-register does not 
produce direct output signals, but rather produces one complemented output per bit (QO, 
Ql, etc.) through inverters, and if the signal TQZ (Transfer Q to the Z-bus) is present, 
produces a transfer to the Z-bus (ZO, Zl, etc.) through the transfer AND-gates. The one 
exception to this is bit 7 of the Q-register, which does produce one direct output called 
Q7 (8B), which is the true condition for bit 7 of the Q-register. The Q-register also 
produces one signal, Q6QO, which the A-register does not produce. The complemented sig­
nals from each bit QO through Q6 are fed as inputs to AND-gate lCA (5B), and if they are 
all high, (the Q-register contains zeros in all those bits) then the gate is satisfied 
and produces a low output called QOQO. This signal is used during the DIV instruction. 
The output of that gate is also fed to the input of AND-gate lDA (6B) where it is ANDed 
with Q7. If Q7 is low, that is, a zero, and Q6QO is low meaning all the other bits are 
zero, then the gate is satisfied and produces signal QZ, which indicates that the Q­
register contains all zeros. 

You should now be able to determine what effect the input-control signals will have 
on the Q-register and what its outputs will be for any given input conditions. 

1. 
are 

REVIEW QUESTIONS 2-13 

The Q-register contains FF (16) and pins 1 and 
supplied, what is felt at pin 1 of AND-gate lDA 

2 are both high. After 8 CP2 pulses 
and pin 8 of AND-gate lCA? 

a. QZ is high Q6QO is low 

b. QZ is low Q6QO is low 

c. QZ is low Q6QO is high 

d. QZ is high Q6QO is high 

2. If the accumulator contains OA (16) and The Q-register contains 55 (16), what will 
the Q-register contain after executing an SRA 04 instruction? 

a. 00000101(2) 

b. 11110101(2) 

c. 01000101(2) 

d. 10100101(2) 

167 



3. What single instruction allows the programmer to load the Q-register with the con-
tents of the A-register? 

a. LDQ 

b. STQ 

c. SRA 

d. SRL 

C-Register 

The C-register, or Countdown Register, is·an 8-bit down-counter used in certain 
sequenced instructions (multiply, divide, shift, and skip) and during Input/Output 
instructions. It is called a decision counter because it is used to determine when the 
computer has repeated a certain series of steps within an instruction the right number 
of times. For example, if the computer was executing a SRA instruction and you had 
specified that it was to shift 3 places, then the computer would load the C-register with 
a count of 3. It would then start shifting and after each shift it would check to see 
if the C-register contained all zeros. If the C-register did not contain all zeros, 
the computer would decrease the C-register by one and jtnnp back to the DP pulse which 
caused the shift. It will repeat this process until the C-register contains all zeros. 
The register is made up of 8 D-type flip-flops, which make up the down-counter circuit, 
and the necessary Input-Control circuitry and Output circuitry. Use sheet 4 of KDA-
3034, Circuits and Diagrams, so that you can relate the following explanations to the 
logic diagram. 

In the center of sheet 4, you will see the 8 D-type flip-flops (Row D) that make up 
the down-counter circuit, with the LSB on the right, MSB on the left. Its maximum count 
is FF (16); however, it can be loaded with any number less than FF (16). Regardless of 
the count it is loaded with, it will always countdown to zero. In order to explain how 
the down-counter works, assume the counter is loaded with FF (16). Notice the wiring 
arrangement between the flip-flops, the Q side output of each flip-flop is fed back to 
its D (data line) input, and with the exception of the MSB flip-flop SMA (9D) theQ side 
output of each flip-flop is tied to the T (trigger line) input of the next higher bit 
flip-flop. Remember that D-type flip-flop operates so that an upclock at the T input 
causes the data on the D input to be transferred to the Q side output. Assuming a count 
of FF (16), all flip-flops are in the one state; i.e., a high (1) at the Q side output 
and low (0) at the Q side output. This means that there is a low being fed back to the 
D input of each flip-flop. Since the LSB flip-flop 3MB (2D) obviously cannot be trig­
gered by the next lower bit flip-flop, it must be triggered by other means. The two 
inputs to AND-gate 4LA (2D) are the signals DEC (Decrease) and CP3. If DEC is present 
when CP3 is produced, the AND-gate 4LA will be satisfied and will produce a high output, 
which is tied to the T input of flip-flop 3MB (2D). Prior 'to generation of CP3, AND­
gate 4LA was inhibited and its output was low. As CP3 upclocks to a high, the AND-gate 
output will go from a low to a high (assuming that DEC is already present). That high 
is felt at the T input of flip-flop 3MB as an upclock. This will trigger the flip-flop 
and the low at the D input will be transferred to the Q side output. Thus the Q side 
goes from a high (1) to a low (0) and the Q side goes from a low (0) to a high (1). It 
was already pointed out that theQ side output is tied to the T input of the next higher 
bit position flip-flop, in this case 3MA (3D). Remember the LSB flip-flop Q side output 
went from a high to a low, thus feeding a down-clock to the T input of flip-flop 3MA. 
Since the D-type flip-flop requires an upclock to activate, the down-clock has no effect, 
and flip-flop 3MA remains in the state it was in, Q side = high (1) and Q side = low (0). 
Therefore, all other flip-flops in the counter will remain the same 'and the new count 
will be 1111 1110(2) or FE (16), counting down by one. By tracing logic in this manner, 
you will see that every time DEC is present, the counter will decrease its value by one 
on every CP3. 

168 



Now that you understand how the counter counts, you need to take a look at how the 
original count, or starting place, gets loaded into the counter in the first place. 
Actually there are three methods of loading the C-register with its original count, by 
generating the signal SE, or the signal SC8, or by loading from the Y-bus. Generating 
the signal SE always loads the counter with FF (16). This signal 'is generated during 
all manually controlled input/output operations; that is, anytime you push one of the 
four switches labeled RD MEMORY, WT MEMORY, READ INTRPT, or WRITE BLOCK on the COM-TRAN 
10 control panel. The SE signal is an input to OR-gate 6MA pin 1 (IDE). When SE is 

. generated, it will satisfy the OR-gate which will in turn produce a high output at pin 6. 
The high output is felt at one of the inputs to AND-gate 5LA satisfying that leg. Then 
when CPl (which is the qther input to the AND-gate) is produced, the AND-gate will be 
satisfied, producing a low output. This low output is fed to the S (set) input of each 
D-type flip-flop in the counter, which sets them all to the 1 state, for a count of 1111 
1111(2) or FF (16). If the C-reg.ister counter is loaded using signal SC8 (9F) , then the 
count loaded will be 08 (16). This signal is used/during multiply and divide operations. 
Notice that SC8 does exactly the same thing as SEe It comes into OR-gate 6MA (IDE) pro­
ducing a high output which is ANDed with CPl through AND-gate 5LA, and placing a low at 
the S input to all flip-flops of the counter. These S input signals are present for 2 
microseconds since CPl is a 2-microsecond pulse. At the same time SC8 is also an input 
to OR-gate 5LB (9E). This will satisfy the gate and produce a high output, which in 
turn is tied to one input leg of each of the 8 OR-gates found in Row D, except OR-gate 
lNB (5D). When the high is felt on these OR-gates, they will all be satisfied and will 
produce low outputs which are fed to the C (clear) input of each of the corresponding 
flip-flops. This will cause the flip-flops to clear, or go to the zero state. Since 
OR-gate lNB does not have SC8 as an input, flip-flop 2MA (4D) does not clear. In brief 
then, ~ and CPl set all the flip-flops to the one state, and then SC8 clears all the 
flip-flops except 2MA. If you check the count, you will find 0000 1000(2), which is 08 
(16) • 

The final way in which you could load a count is to load from the Y-bus. To do this 
the signal TYC, Transfer Y to c, (lOF) is used. You should notice that TYC, just like 
SE and 'SC8, comes into OR-gate 6MA (lOE) producing a high"output ·whichHr--AfIDed·--W'fthCPl" 
through AND-gate 5LA (lOD). This places a low at the S input of each flip-flop, causing 
them all to go to the one state. TYC is also ANDed with CP2 through AND-gate 3LA (9F). 
When TYC and CP2 are both present the gate will satisfy, producing a high output which 
is inverted to a low through inverter 2LA (9E). The low output is then fed to one input 
of each of the 8 AND-gates found in Row E, satisfying those inputs. The other input to 
each of these AND-gates is one of the Y-bus bits, YO through Y7. If any of the Y bits 
are low (0), then the AND-gate which it feeds will be satisfied and will produce a high 
output. For example, if Y3 = 0 AND-gate lNA (5E) will be satisfied producing a high out­
put. This output is, in turn, felt on input pin 6 or OR-gate lNB (5D) satisfying that 
gate. It will then produce a low output which will be felt at the C input to flip-flop 
2MA (5D) causing the flip-flop to clear. The same sequence ,.ill occur for all Y-bus bits 
which equal 0, through their own respective AND- and OR-gates. For ,example, if 1011 
0110(2) was on the Y-bus, the TYC signal would set all the flip-flops on CP1, and then 
at CP2 it would clock through the O~ on Y6, Y3, and YO to clear their three flip-flops, 
leaving all the others set. This would load the counter with 1011 0110(2). Regardless 
of which one of the three ways is used to load the counter, once it is loaded with a 
value, it will count down each time DEC and CP3 are present. 

The C-register has only two types of output signals. As in all the other registers 
it has a complemented output for each bit which is used to control the COM-TRAN 10 front 
panel lights. These outputs, CO, Cl, etc., come from the Q side of each of the C-register 
flip-flops. The other output signal from the C-register is called CZ (6B). This signal 
is used to determine whether or not the register contains all zeros. Remember at the 
beginning of this section, it was mentioned that the C-register is used to determine when 
the computer has repeated some particular sequence of steps the right number of times. 
Therefore, whenever the COM-TRAN 10 uses the C-register, it is only concerned with 
whether or not it equals zero; the actual remaining count is not important. Looking at 

169 



the logic diagram you will see the Q side of each flip-flop, in addition to producing the 
complemented bits, is also connected to an input leg of AND-gate IMA (6B). If all the Q 
outputs were equal to a one (high), the AND-gate would be satisfied and would produce a 
low output. This output is inverted to a high through inverter 2LB (6B) and called CZ 
(C-register equal zero). 

In summary, the C-register is an 8-bit down-counter used when instructions or opera­
tions call for a repeating sequence. It can be loaded three ways - with FF (16) using 
SE, with 08 (16) using SC8, and with any count, 00 (16) to FF (16), from the Y-bus using 
signal TYC. Once it is loaded the register will begin to count down once each time the 
signals CP3 and DEC are both present. It produces two types of output signals, the com­
plemented bits CO, Cl, etc., for light control, and CZ to determine when the register has 
reach~d zero. 

REVIEW QUESTIONS 2-14 

Refer to logic sheet 4 to answer the following questions. 

1. What clock pulse triggers the C-register to its next count? 

a. CPl 

b. CP2 

c. CP3 

d. "SC8 

2. What is the content of the C-register after the SC8 has been applied? 

a. 11111111(2) 

b. 00000000(2) 

c. 000010,00(2) 

d. 11110111(2) 

3. What register supplies the count that is loaded into the C-register during an LCI 
instruction? 

a. M-regis ter 

b. B-register 

c. B-register Complement 

d. Accumula tor 

S-Register 

The Operation Code Register, S-register, is an 8-bit storage register. The S­
register is used to hold the operation code of the instruction to be executed. If the 
instruction is one which requires memory access, then the two lower order bits of the 
S-register (SO, Sl) are used as the high order bits of the M-register (M8, M9). This 
allows a lO-bit memory address capability. Use sheet 13 of KDA-3034 for reference to 
follow the explanation. The S-register is made up of 8 NOR-gate latches, which act 

170 



together as a storage register, and the required Input/Control circuitry. The S-register 
outputs are all direct outputs and, therefore, no Output/Transfer circuitry is required. 

The most common method of loading data into the S-register is to load from the Y-bus. 
This is either during nPAZ, or during a manual load from the Input (I) register to the 
S-register. There are also four special signals, which are generated during any manual 
read or write, that will load a code directly without using the Y-bus. The S-register 
will be loaded with the data on the Y-bus if either the TIS signal, Transfer I to S, or 
the DPAr signal is present. Both of these signals are inputs to OR-gate 20GA (9E) , and 
if either one is present the OR-gate will be satisfied. When it satisfies, it will pro­
duce a low output which is fed to OR-gate 20FA (9E). Notice that the other input to OR­
gate 20FA comes from signal SE (9F). This signal is generated by, the special read or 
write signals mentioned above. Thus, anytime the S-register is being loaded, this OR­
gate will be satisfied. It will then produce a high output which is ANDed with CP1 at 
AND-gate 20FB (9D). The AND-gate will be satisfied at CPI, during any S-register input 
sequence, and will produce a low output. This low output is fed to one input of OR-gate 
20GB (9D) satisfying that gate and pro,ducing a low output from 'it. The output of OR-gate 
20GB is tied to one input leg of the NOT side of each NOR-gate latch (Row C). Therefore, 
when the OR-gate's output goes low, it conditions every latch to the clear state; that 
is, a high (1) output from the NOT side (87, 86, ... 80) and a low (0) output from the 
TRUE side (S7, S6, ••• SO). So during any input to the S-register, CPI will cause all the 
latches to clear. Now, go back to OR-gate 20GA (9E), this gate is s13-tisfied by either 
TIS or DPA2. Notice that this gate's output is also tied to AND-gate 19GA pin 3 (8E). 
Therefore, when OR-gate 20GA is satisfied, it will produce, a low output, which will in 
turn satisfy pin 3 input to AND-gate 19GA. The other input to this AND-gate comes from 
CP2 (8F). Thus when ~ is generated the AND-gate will be satisfied causing it to pro­
duce a high output. The output of AND-gate 19GA is tied to one input leg of AND-gates 
20FC, 20FD, 20E8, 20EC, 20ED, 19EA, and 19EB (all in Row E) • 

When the output of AND-gate 19GA (8E) goes to its satisfied condition of high, it will 
enable one input leg to each of these Y-bus input transfer gates. If any of Y-bus data 
inputs is high (1), then its transfer AND-gate will be satisfied, producing a low output. 
This output is fed to the TRUE side of the NOR-gate latch, and would cause it to switch 
to the set state, that is a high (1) output from the TRUE side and a low (0) output from 
the NOT side. However, if the Y-bus data bit is a low (0), then its input transfer AND­
gate will be inhibited and the latch it feeds would remain in its cleared condition. In 
summary, to load the S-register from the Y-bus data lines, either TIS or DPA2 must be 
present. These signals will clear all the NOR-gate latches at CPL. Then during CP2 the 
Y-bus data will be transferred into the latches. ' 

The four special input Signals mentioned at the beginning of the section are called 
IRB (6F), IRD, IWT, and IWB (SF). The special signals are generated for any manual read 
or write. They are set up to automatically load the proper operation code. For example, -
if you are going to manually load the computer from the teletype, you would press the­
READ INTRPT switch. Pressing the switch will generate the IRB and the SE signals. You 
have already seen that during CPl the SE signal will clear the latch circuits. Then the 
SE signal is present as an input to latch 18DA (8C) and 18DB (7C). These inputs will. 
cause the two latches to go to the one state. Signal IRB (6F) is fed to the inputs of 
latches 19DA -(6C) and 19DB (4C). Thus, when IRB is present it will cause these two 
latches to go to the one state. Therefore, the S-register is loaded with 1110 1000(2), 
which is E8 (16). This is the Hex Code for the instruction Read Until Interrupt. If 
you trace the other three special inputs you will find that they are also directly wired 
to load the proper code for their function. The S-register, therefore, can be loaded by 
the Y-bus or by the direct inputs of the special signals. 

The output signals from the S-register are very simple. Each ,latch has an output 
from the TRUE side called SO, Sl, ••• S7. These are the true sigtlal outputs. All except 
SO and Sl also have an output from the NOT side called S2, n, .. ,.S7. These are the com­
plemented outputs used to control the front panel lights. The signals from SO and Sl 

171 



are not needed because those two lights are controlled by ~ and~. Thus, the S­
register has only direct outputs, and does not require any output transfer circuits. 

You should now understand the S-register operation, and be able to trace through 
logic, any given inputs, to determine their effects on the register and their generated 
outputs. 

REVIEW QUESTIONS 2-15 

To answer the following questions, refer to logic (sheet 13). 

1. When using the pushbuttons for the RD, WT, ROI, or WDB instructions, what NOR-gate 
latches are always set? 

a. S5 and S3 

b~ S5 and S4 

c. S7, S6, and S4 

d. S7 and S6 

2. Which NOR-gate latches of the S-register do not condition lamp drivers? 

a. S7 and S6 do not condition lamp drivers 

b. SO and Sldo not condition lamp drivers 

c. None of the latches condition lamp drivers 

d. All of the latches condition lamp drivers 

3. Where are the output voltages of the S-register felt? 

a. M-register high order bits and Y~bus 

b. Buffer and M-register high order bits 

c. Instruction decoder (Control Logic) and high order bits of M-register 

d. Z-bus and Instruction Decoder Circui~s 

PROGRAM INSTRUCTION LOGIC ANALYSIS 

You are now familiar with the "how" of each unit of the COM-TRAN 10. This is simi­
lar to having all the pieces to a puzzle. You have analyzed each piece, and you know 
what it contains. However, uriti1 you put all the pieces together, you cannot see the 
overall picture. This section will take all the units and put them together to see how 
the whole machine operates as a functioning computer. This will be .done by tracing the 
logic signals for selected instruction. 

On sheet I of KDA-3034, you will find a chart called the Logic Timing Chart. This 
chart will be very important to you as you trace the instructions through the computer 
logic. The first column lists the instructions by their mnemonic codes, the second by 
their hex code, and the third by their binary code. The fourth column gives a brief 
description of what the instruction does. The next 16 columns represent the sixteen 
distribution pulses. The mnemonic indicated in each of these .co1umns tells you what 

172 



takes place during that distribution pulse (DP) for 'that instruction. For example, locate 
the i~struction STX in column one. The hex code is 50 (16), the binary code is 0101 
0000(2), and it means Store the Index. By looking at the DP columns, yuu will see that 
at DPO the action will be TXB, Transfer the X-register to the B-register. Then at DP1, 
it will perform an IBS, Store the B-register in Memory. As you trace logic using this 
chart you find that the meanings of the DP mnemonics will become very familiar to you. 
The top line, Acquisition, has no Hex code. Acquisition precedes' the Executi'on Phase of 
every instruction, and its DP pulses are decoded as DPA pulses. 

Logic Timing 

Using the same instruction, STX, look in the timing section of this chapter for the 
instruction STX. (The STX mnemonic symbol is located at the top of the page.) The 
first thing you will see is the name of the instruction does, and its mnemonic symbol. 
This is followed by a brief explanation of what the instruction does, and what its hex 
OP code is. Next, you will see a copy of the instruction's Timing Chart line exactly as 
it appears in the Logic Timing Chart. Now, you come to the breakdown of each DP in 
detail. Look at this breakdown for DPO of the instruction STX. It tells you that during 
DPO the signal TXB is generated and that it means Transfer Index to Buffer. This signal 
is then broken down into all of its subparts. First STX and DPO are ANDed to generate 
TXB, and if you want to see the logic, it tells you to look at sheet 23 of KDA-3034. All 
page references in this book ~orrespond to the sheet numbers in KDA-3034. The only thing 
you need to be aware of particularly is that all signals are referred to as true signals. 
When you look up the logic for these, however, you may find that the circuit is actually 
using the complemented form of the signal. 

After a little practice, you will find this supplement extremely valuable. It'wi11 
lead you page by page, signal by signal, through the logic for any instruction; 

Acquisition Phase and DPA Pulses 

The COM-TRAN 10 carries out each of its instructions in two phases: Acquisition and 
Execution. In the Acquisition Phase the instruction is brought from memory to the com­
puter processor. Acquisition Phase is the same for all instructions. It was already 
stated, during discussion of the D-register, that the E flip-flop is used to tell the 
computer which Phase it is in. During Acquisition the E flip-flop has a low output at 
E, and the panel light will be off. At this time all distribution pulses are decoded 
as DPA pulses, DPAO, DPA1, ••• DPA15. 

On the following pages you will find the complete breakdown of the Acquisition 
Phase Logic Signals. This is laid out by DPA pulse, and a total breakdown of each sig­
nal generated. Following this chart, trace the logic through the Circuits and Diagrams, 
while relating it to the Logic Timing. You should become thoroughly familiar with 
what happens in the computer during the Acquisition Phase, so that, given any paz:ticu-
1ar DPA pulse, you could determine its effects and the signals it generates. 

The logic timing that permits the COM-TRAN 10 to carry out instructions is controlled 
by the D-register, E flip-flop, S-register, and control logic. It consists of two dis­
tinct phases: (1) Acquisition, and (2) Execution. Each phase in turn consists of 16 
Distributor phases'(numbered decimally, 0 through 15) issued as Distributor pulses. 
During Acquisition, various subcommands (listed in Section VII) are issued to acquire an 
instruction; during Execution, various subcommands are issued to execute, or carry out, 
the instruction. Subcommands are not issued during all Acquisition and Execution dis­
tributor phases for any given instruction. 

173 



COMMAND GENERATION. In the COM-TRAN 10, commands are the decoded outputs of the 
S-register. A command usually represents one instruction, and will be labeled as such. 
These are indicated in Logic Diagrams. Thus, the command MPY is present (+5 volts) only 
when the OP code for mUltiply is in the S-register. 

SUBCOMMAND GENERATION. Subcommands are the control section output pulses that cause 
the computer to acquire and execute instructions. All operations in the computer are 
initiated by subcommands. Sub commands are generated two different ways: during the 
Acquisition phase when the E flip-flop is in a reset state, subcommands are produced by 
the DPA Distributor pulses. During the Execution phase, subcommands are produced by 
ANDing Distributor pulses with command levels and, in some cases, with levels from other 
registers. Any given subcommand can usually be generated by several instructions. Sub­
commands are labeled according to the action they cause to occur. Thus, subcommand TQB 
causes data to be transferred from Q to B. 

The Logic Timing Chart (KDA-3034 , Sheet I) illustrates the sequence of subcommands 
for each instruction. 

The Acquisition phase precedes the Execution phase of each instruction in normal 
operation. This operation allows us to retrieve the instruction code from its storage 
location in memory and transfer it to the Operation Code (S) Register. It then re­
trieves the Address from memory and transfers it to the Memory Address Register. 

Once this has occurred, the computer will initiate the Execution phase and execute 
the instruction present in the Operation Code (S) Register. 

Indexing also takes place in this phase if the instruction to be executed requires 
that information be transferred to or from memory. If the Index bit is a one, the con­
tents of the Index Register will be added to the contents of the Memory Address Regis­
ters. The results will appear in the Memory Address Register. 

DPAO 

TPM 
TPB 
CLERR 

DPA9 

IF S2 
= 1 
AXM 

ALL PAGE NUMBER REFERENCES CORRESPOND TO SHEET NUMBERS IN THE 
COM-TRAN 10 CIRCUITS AND DIAGRAMS, KDA-3034 

DPAl DPA2 DPA3 DPA4 DPA5 DPA6 DPA7 

SERI IF NOT 
ISB TBS STOP INCM ISB INCM RPT(AE 

IF NOT + INST) 
INEB TMP 

DPAlO ~I mAl2 I ~I DPA14 DPA15 

SDP15 CLERR 
CKE 

DPA8 

TBM 

RDA26-457 

DPAO . (TPM) Transfer Program to Memory Register 

Transfer the contents of the Program Address Register to the Memory 
Address Register. See page 24. Transfer the contents of the Program 
Address Register to the Buffer Register. See pages 20, 19, and 3. 
(CLERR) Clear the Instruction Error flip-flop (ERI) unconditionally. 
See page 19. 

174 



DPAl 

DPA2 

DPA3 

DPA4 

DPA5 

DPA6 

(ISB) Initiate Storage to Buffer 

The contents of the memory location addressed in DPAO are transferred to 
the Buffer Register. See pages 3 and 24. 

(TBS) Transfer Buffer to S-Register 

Transfer the contents of the Buffer Register to the Operation Code (S) 
Register. The S-Register now contains the code of the i~struction to be 
executed during the Execution phase. See page 13. 

(SERI) Set Instruction Error 
(INEB) Instruction Error Bypass 

Verify that the HEX code present in the S-Register is a valid instruction 
code. See page 17. If it is not a valid code, set the Instruction 
Error flip-flop (ERI) with SERI. See page 19. 

If the Instruction Error Bypass switch, (INEB), is not pressed, a Stop 
signal will be generated by ERI. See page 20. The stop signal enables 
the Stop Clock (SPCK) signal. See page 18. This signal stops the com­
puter clock. See page 7. 

(INCM) , Increment the Memory Address Register 

Add one to the contents of the Memory Address Register. INCM, see page 
24, is used to enabl~ a transfer of the G~bus to the Memory Address 
Register (TGM). See page 20. The G-bus data is gene~ated by the Index 
Adder. During INCM time the Index Register outputs are inhibited to the 
Index Adder. Thus, the Index Register inputs to the adder are all zeros 
except in the case of bit 0 which is inverted. This enables the adder 
to add 1 to the contents of the Memory Address Register. See page 11. 

(ISB) Initiate Storage to Buffer 

The contents of the memory location addressed in DPA4 are transfer~ed 
to the Buffer Register. See page 24. 

(INCM) 

See description of DPA4. 

DPA7 If 'not RPT (AE + INST) , TMP 

Transfer the contents of the Memory Address Register to the Program_ 
Address Register. If the computer is in Repeat, and in the Acquisition/' 
Execution or Instruction mode, the transfer (TMP) will not take place. 
See page 21. TMP clocks the contents of the Memory Address Register 
into the Program Address Register. See page 12. The Program Address 
Register now contains the address of the next instruction to be 
executed. 

DPA8 (TBM) Transfer Buffer to Memory Register 

Transfer the contents of the Buffer Register, which was retrieved from 
memory during DPA5, to the Memory Address Register. The data present in 
the Buffer Register is also available on the Y-bus. The signal DPA8 
strobes this data into the Memory Address Register. See page 11. 

175 



DPA9 

DPA10 

DPAll 
through 
DPA14 

DPAlS 

(AXM) Add the X-Register contents to the M-Register contents 
~ 

The third least significant bit of the S-Register (S2) is designated as 
the Index bit. If this bit position is a one, indicating Index, we add 
the contents of the Index Register to the content of the Memory Address 
Register and leave the results in the Memory Address Register. 

A logical AND of DPA9 and S2 generate the Add index to Memory (AXM) sig­
nal. See page 23. This signal strobes the Index Register contents into 
the Index adder where it is added to the Memory Address Register con­
tents. The adder outputs to the G-bus. See page 14. 

AXM also generates a transfer G to M (TGM) signal. See page 20. This 
signal strobes the contents of the G-bus into the Memory Address Regis­
ter. See page 11. 

(SDP1S) Set Distributor Pulse lS 

DPA10 enables the. SDP1S signal. 
utor Register to a count of lS. 

No Operations 

(CKE) Clock theE flip-flop 
(CLERR) Clear Errors 

See page 21. 
See page S. 

SDP1S sets .the Distrib-

Two operations take place during this Distributor pulse. First, the Add, 
Divide, and Sign flip-flops are reset. See pages 19 and 23. This is 
done since these three flip-flops are used for detecting certain condi"­
tions during the Execution phase of an instruction, and therefore, must 
be reset prior to starting execution. 

Secondly, the Execution flip-flop is clocked. This sets the computer in 
the Execution phase of the instruction. The signal Clock E flip-flop 
(CKE) is generated by either DP1S or DPAlS. See page 18. This signal 
toggles the E flip-flop to the Execution phase. See page S. 

The Distributor also resets to zero at this time. At Clock Pulse 3 
(CP3) of DPA1S the Distributor flip-flops are toggled. Since the data 
inputs (D) of the flip-flops are HIGH at this time they will reset to 
zero. See page S. 

The Execution phase is now enabled and the Distributor is set to zero. 
Thus, the computer is ready to begin executing the instruction it has 
just acquired. 

REVIEW QUESTIONS 2-16 

Match the operation with its associated timing pulse by placing the letter of the 
pulse in the blank preceding the operation. 

1. __ Reads the OP CODE from memory. 

2. Clears the ADD error and DIV error latches. 

3. Causes indexing if S2 is set. 

176 



4. ___ Loads address of instruction to be acquired into the M-register. 

5. __ Up counts M-register by one, to read Operand or memory address. 

6. Transfers OP CODE from B-register to S-register. 

7. Stores address of next instruction to be acquired into the P-register. 

8 ___ Reads Operand or memory address into the B-register. 

9. Checks for invalid instruction. 

10. Clears instruction error latch. 

a. DPAO e. DPA4 
b. DPAI f. DPA5 
c. DPA2 g. DPA6 
d. DPA3 h. DPA7 

i. DPA8 
j. DPA9' 
k. DPAlO 
1. DPA15 

Circle the letter of the correct answer. 

1. What is a function of the DPA 4 pulse (sheet l8)? 

a. Produces the TGM signal 

b. Produces the AXM signal 

c. Given the address for the next OP CODE 

d. Allow the distributor to be set to a count of 15 

2. Which of the following is not a function of DPA15 (sheet l8)? 

a. Clear divide error 

b. Clear add error 

c. Clear instruction error 

d. Clear sign flip-flop 

3. What conditions must be met at DPA3 to produce an instruction error ~? 
Reference sheet 17, 3E. 

a. S2 set and OP CODE is between 20 (16) and FF (16) 

b. S2 set and OP CODE is between 0 (16) and IF (16) 

c. S2 clear and OP CODE is between 20 (16) and IF (16) 

d. S2 clear and OP CODE is between 20 (16) and FF (16) 

4. Which of the following would prevent DPA15 from clocking the E flip-flop to execu­
tion phase (sheet 5, B7)? 

a. Distributor mode only 

b. Instruction mode and RPT being used 

177 



c. Program mode and RPT being used 

d. AlE mode and RPT being used 

Execution Phase 

The execution phase of an instruction is the phase during which the actual instruc­
tion steps or subcommands are executed. The Execution phase of all instructions begins 
at Distributor pulse zero (DPO) and ends at Distributor pulse 15 (DP15). 

During DP15 certain operations take place regardless of the instruction being exe­
cuted. These operations will be explained now and the individual instruction explana­
tions will be referenced to this paragraph in regards to DP15. 

Two operations occur during DP15~ First, the appropriate Condition Code is set 
(STCC). In all instructions, other than multiply, arithmetic shifts, and Divide, the 
Condition Code will reflect the status of the Accumulator. In the Divide instruction 
the Condition Code reflects the Quotient Register status. In multiply, Shift Right 
Arithmetic and Shift Left Arithmetic, the Condition Code reflects the status of the AQ 
Register. 

Condition Code Less Than Zero (CCLT) is set if the Accumulator MSB (A7) is a one or 
in the case of Divide, if the Quotient Register MSB (Q7) is a one. Since the MSB is the 
sign bit, having a one in the MSB indicates that the data in the register represents a 
negative value and is therefore less than zero. See page 19. 

Condition Code Greater than Zero (CCGT) is set if A7 or Q7, in the case of Divide, 
is zero and AZ or QZ, is not set. AZ and QZ are signals which are enabled if the 
Accumulator or Quotient Registers, respectively, contain zeros in all bit positions. 
Thus, CCGT is sensing that the data in the Accumulator or Quotient Registers is not nega­
tive or zero. See page 19. 

Condition Code Equal to Zero (CCEQ) is set if AZ or QZ in the case-of Divide is a 
one. See page 19. 

The second operation that takes pla~e during DP15 is the clocking of the Execution 
flip-flop (CKE). When the Distributor reaches a count of 15 in either Acquisition or 
Execution phase, it is necessary to clock to the other phase; i.e., Acquisition to 
Execution or Execution to Acquisition. The CKE signal is generated by either DP15 or 
DPA15. See page 18. CKE is ANDed with Clock Pulse 3 (CP3) which is the last clock 
pulse of a Distributor pulse. This AND generates the signal which toggles the E flip­
flop. See page 5. 

LOAD C IMMEDIATE - LC1 

This instruction loads the contents of the Buffer Register into the Countdown Regis­
ter. It must be understood that the Buffer contents were retrieved from memory during 
the previous Acquisition phase at DPA5. 

OP CODE - 0116 

DPO DP1 DP2 DP3 - DP14 DP15 

TBC SDP15 C~ 

STCC 

RDA26-458 

178 



DPO 

DPl 

DP2 

DP3 
through 
DP14 

DP1S 

(TBC) Transfer Buffer to Countdown 

During this Distributor pulse the contents of the Buffer Register are 
transferred to the Countdown Register. Since the data contained in the 
Buffer Register is also present on the Y-bus, a transfer Y-bus to the 
Countdown Register (TYC) signal is generated. See page 22. This signal 
acts as the strobe which transfers the data from the Y-bus into the 
Countdown Register during Clock Pulse 2 time (CP2). See page 4. 

No operation 

(SDP1S) Set Distributor Pulse lS 

The LCl signal is ANDed with DP2 to generate a SDP1S pulse. See page 21. 
This signal sets the Distributor to a count of lS. See page S. 

No operation 

(CKE) Clock Execution flip-flop 
(STCC) Set Condition Code 

LOAD A - LDA 

This instruction loads the Accumulator with data which is stored in memory at the 
location addressed by the Memory Address Register. 

OP CODE - 2016 

DPO DP1 

ISB TBA 

DPO 

DPl 

DP2 DP3 DP4 - DP14 DPl5 

SDP1S STeC 

CKE 

(ISB) Initiate Storage to Buffer 

The data stored at the memory location addressed by the Memory Address 
Register is transferred to the Buffer Register. ISB is generated by a 
Load Group (LDG) signal. which defines LDA and LAN instructions. and DPO. 
See pages 18 and 24. ISB initiates a memory cycle in which the data is 
taken from memory and placed on the Z-bus during CPl. See page 8. ISB 
also generates a transfer of the Z-bus to the Buffer Register (TZB). 
See page 19. TZB is ANDed with CP2 and this signal strobes the data 
into the Buffer Register. See page 3. 

(TBA) Transfer Buffer to Accumulator 

The data present in the Buffer Register is transferred to the Accumula­
tor. The data present in the Buffer Register is available on the Y-bus. 
Since the computer is not doing an ,arithmetic operation. data on the Y­
bus is transferred through the Arithmetic Logic Unit (ALU). without the 
use of a strobe pulse. Thus. the data in the Buffer is also available 
at the output of the ALU or the F-bus. See page 2. 

179 



DP2 

DP3 

DP4 
through 
DP14 

DP15 

The AND of LDG and DPI generates two signals: Shift the Accumulator 
Right (SAR), and Shift the Accumulator Left (SAL). See page 23. Both 
these signals are enabled for the complete Distributor pulse. 

When CP2 occurs during DPl, a parallel load of the F-bus into the Accumu­
. lator takes place if SAR and SAL are enabled. Thus, a transfer of data 

from the Buffer Register to the Accumulator has occurred. See page 1. 

No operation 

(SDP15) Set Distributor Pulse 15 

LDG and Distributor pulse 3 (DP3) are ANDed to generate a SDP15 pulse. 
See page 21. This signal sets the Distributor to. a count of 15. See 
page 5. 

No operation 

CKE 
STCC 

LOAD A IMMEDIATE - LAI 

This instruction loads the contents of the Buffer Register into the Accumulator. It 
must be understood that the Buffer contents were retrieved from memory during the pre­
vious Acquisition phase at DPA5. 

OP CODE - 0216 

DPO DPI 

TBA 

DPO 

DPI 

DP2 DP3 DP4 - DP14 DP15 

SDP15 STCC 

CKE 

.No operation 

(TBA) Transfer Buffer to Accumulator 

The data present in the Buffer Register is transferred to the Accumula­
tor. The data present in the Buffer Register is available on the Y-bus. 
Since the computer is not doing an arithmetic operation data on the 
Y-bus is transferred through the Arithmetic Logic Unit (ALU) , without the 
use of a strobe pulse. Thus, the data in the Buffer is also available 
at the output of the ALU or the F-bus. See page 2. 

The AND ,of LAI and DPI generates two signals: Shift the Accumulator 
Right (SAR) and Shift the Accumulator Left (SAL). See page 23. Both 
these signals are enabled for the complete Distributor pulse. 

When CP2 occurs during DPI a parallel load of the F-bus into the Accumu­
lator takes place if SAR and SAL are enabled. Thus, a transfer of data 
from the Buffer Register to the Accumulator has occurred. See page 1. 

180 



DP2 

DP3 

DP4 
through 
DP14 

DP15 

No operation 

(SDP15) Set Distributor Pulse 15 

LDG and Distributor pulse 3 (DP3) are ANDed to generate a SDP15 pulse. 
See page 21. This signal sets the Distributor to a count of 15. See 
page 5. 

No operation 

CKE, STCC 

LOAD X IMMEDIATE - LXI 

This instruction loads the contents of the Buffer Register into the Index Register. 
It must be understood that the Buffer contents were retrieved from memory during the 
previous Acquisition phase at DPA5. 

OP CODE - 1216 

DPO 

TBX 

DPO 

DP1 

DP2 

DP3 
through 
DP14 

DP15 

DP1 DP2 DP3 - DP14 DP15 

SDP15 STCC 

CKE 

(TXB) Transfer Buffer to Index 

The data in the Buffer Register is also available on the Y-bus. The 
logical AND of DPO and LXI generate the signal Load Index (LX). See 
page 22. This signal strobes· the data on the Y-bus into the Index 
Register at CP2. See page 14. Thus, the data present in the Buffer 
Register has been transferred to the Index Register. 

No operation 

(SDP15) Set Distributor Pulse 15 

LXI and DP2 are ANDed to generate SDP15. See page 21. 
sets the Distributor to a count of 15. See page 5. 

No operation 

STCC 
CKE 

181 

This signal 



LOAD CONSECUTIVE - LCC 

This instruction acquires data from a given memory location and loads it into the 
folowing memory location. 

OP CODE - 3016 

DPO 

ISB 

DPO 

DPl 

DP2 

DP3 

DP4 
through 
DP14 

DP15 

DPl 

INCM 

DP2 DP3 DP4 - DP14 DP15 

IBS SDP15 STCC 

CKE 

(ISB) Initiate Storage to Buffer 

The data stored at the memory location addressed by the Memory Address 
Register is transferred to the Buffer Register. LCC and DPO are ANDed 
to generate an ISB signal. See page 24. ISB initiates a memory cycle 
in which the data is taken from memory and transferred to the Z-bus 
during CP2. See page 8. ISB also generates a signal to transfer the 
Z-bus data to the Buffer Register (TZB). See page 19. TZB along with 
CP2 strobes the data into the Buffer Register. See page 3. 

(INCM) Increment Memory 

During INCM, the Index Register contents are inhioited from the Index 
adder. Thus, the Index Register inputs to the. Adder are zeros, except 
in the case of bit ,0, which is inverted. Thus, the Adder will add one 
to the contents of the Memory Address Register and the results of the 
add will be on the G-bus. See page 14. 

INCM is also used to enable a 
Register (TGM). See page 20. 
tain a count one greater than 
page 11. 

transfer of the G-bus to the Memory Address 
The Memory Address Register will now con­

at the beginning of the instruction. See 

(IBS) Initiate Buffer to Storage 

Store the data present in the Buffer at the Memory location addressed by 
the Memory Address Register. This signal is generated by LCC and DP2. 
See page 24. IBS generates a memory cycle in which the data present in 
the Buffer Register is stored in memory via the Y-bus. See page 8. 

(SDP15) Set the Distributor to a count of 15 

LCC and DP3 combine to generate SDP15. See page 21. This signal sets 
the Distributor to a count of 15. see page 5. 

No operation 

STCC 
CKE 

182 



LOAD A NEGATIVE - LAN 

This instruction loads the Accumulator with the two's complement of the data acquired 
from memory. 

OP CODE -.3816 

DPO DPI 

ISB TBA 

DPO 

DPI 

DP2 

DP2 DP3 DP4 - DP14 DP15 

2's SDP15 STCC 
COMP A 

CKE 

(ISB) Initiate Storage to Buffer 

The data stored at the memory location addressed by the Memory Address 
Register is transferred to the Buffer Register. ISB is generated by a 
Load Group (LDG) signal, which defines LDA and LAN instructions, and 
DPO. See pages 18 and 24. ISB initiates a memory cycle in which the 
data is taken from memory and placed on the Z-bus during CP2. See page 
8. ISB also generates a transfer of the Z-bus to the Buffer Register 
(TZB). See page 19. TZB'is ANDed with CP2 and this signal strobes the 
data into the Buffer Register. See page 3. 

(TBA) Transfer Buffer to Accumulator 

The data present in the Buffer Register is available on the Y-bus. Since 
the computer is not doing an arithmetic operation, data on the Y-bus is 
transferred through the Arithmetic Logic Unit (ALU), without the use of 
a strobe pulse. Thus, the data in the Buffer is also available at the 
output of the ALU or the F-bus. See page 2. 

The AND ~f LDG and DPI generates two signals: Shift the Accumulator 
Right (SAR) and Shift the Accumulator Left (SAL). See page 23. Both 
these signals are enabled for the complete Distributor pulse. 

When CP2 occurs during DPI a parallel load of the F-bus into the Accumu­
lator takes place if SAR and SAL are enabled. Thus, a transfer of data 
from the Buffer Register to the Accumulator has occurred. See page 1. 

(COMP A) Complement the Accumulator 

During this Distributor pulse a two's complement is executed on the 
Accumulator contents. LAN is ANDed with DP2 to generate COMP A. See 
page 20. COMP A generates TAZ. See page 23. TAZ is the strobe which 
gates the Accumulator contents to the Z-bus. See page 1. COMP A also 
generates COMPo See page 20. A TWO's signal is normally HIGH due to the 
use of mismitch logic. See page 22. 

Z-bus data is available at the Two Complementer. Since the TWO's signal 
is HIGH, the output of the Two's Complementer contains the two's com­
plement of the Z-bus data. The COMP signal steers the Selector so that 
the output of the Complementer is strobed onto the Y-bus. See page 3. 

183 



DP3 

DP4 
through 
DP14 

DP15 

COMP A also enables SAL and SAR. See page 23. Since no arithmetic oper­
ations are taking place in the Arithmetic Logic Unit (ALU), the Y-bus 
data is transferred to the F-bus without the need of a strobe. see page 
2. At CP2 the F-bus is transferred in parallel form into the Accumulator 
since SAL and SAR are both HIGH. See page 1. 

During the Distributor pp1se data has been taken from the Accumulator, a 
Two's complement has been executed, and the re.su1t has been replaced in 
the Accumulator. 

(SDP15) Set Distributor Pulse 15 

LDG and Distributor pulse 3 (DP3) are ANDed to generate a SDP15 pu1se.­
See page 21. This signal sets the Distributor to a count of 15. See 
page 5. 

No operation 

STCC 
CKE 

LOAD Q - LDQ 

This instruction acquires data from the memory location addressed by the Memory 
Address Register and transfers it to the Quotient Register. 

OP CODE - 4016 

DPO 

ISB 

DPO 

DP1 

DP2 

DP1 DP2 DP3 DP4 - DP14 DP15 

TBQ SDP15 STCC 

CKE 

(ISB) Initiate Storage to Buffer 

Data is retrieved from memory and placed on the Y bus. LDQ and DPO 
generate the ISB signal. See page 24. ISB initiates a memory cycle 
in which the data in the location addressed by the Memory Address Regis­
ter is transferred to the Z-bus during DP2. See page 8. 

ISB also generates a signal which allows the Z-bus data to be trans­
ferred to the Buffer Register (TZB). See page 19. 

The Z-bus is available at the input to the Buffer Register. TZB and 
CP2 strobe the Z-bus data into the Buffer Register and to the Y-bus. 
See page 3. 

No operation 

(TBQ) Transfer Buffer to Quotient 

The data on the Y-bus is transferred to the Quotient Register. LDQ and 
DP2 are ANDed to generate SQR and SQL. See page 22. At CP2 of DP2, the 

184 



DP3 

DP4 
through 
DP14 

DP15 

Y-bus data is strobed into the Quotient Register in parallel since SQL 
and SQR are both HIGH. See page 6. 

(SDP15) Set the Distributor to count of 15 

LDQ and DP3 generate a SDP15 pulse. See page 21. This signal sets the 
Distributor to a count of 15. See page 5. 

No opera.tion 

STCC 
CKE 

STORE A - STA 

This instruction stores the Accumulator contents in the memory location addr.essed 
by the Memory Address Register. 

OP CODE - 4816 

DPO 

TAB 

DPO 

DP1 

DP2 

DP3 
through 
DP14 

DP15 

DP1 

IBS 

DP2 DP3 - DP14 DP15 

SDP15 STCC 

CKE 

(TAB) Transfer Accumulator to Buffer 

STA and DPO combine to generate a transfer Accumulator to Buffer signal 
(TAB). A signal which transfers the Accumulator contents to the Z-bus 
(TAZ) is also generated at this time. See page 23. TAZ gates the 
Accumulator contents to the Z-bus. See page 1. TAB enables a signal 
which transfers to Z-bus to the Buffer Register (TZB). See page 19. At 
CP2, TZB strobes the Z-bus data into the Buffer Register and on to the 
Y-bus. See page 3. 

(IBS) Initiate Buffer to Storage 

The data in the Buffer Register will now be stored in memory. Store 
Group (STG) is generated by a logical OR of STA, STX, or STQinstruc­
tions. See page 18. STG is ANDed with DPl to generate a signal which 
allows the data to be stored in memory (IBS). See page 24. IBS ini­
tiates a memory cycle in which the data on the Y-bus is stored in memory 
at the location addressed by the Memory Address Register. See page 8. 

(SDP15) Set Distributor Pulse 15 

STG is ANDed with DP2 to generate SDP15. See page 21. This signal sets 
the Distributor to a count of 15. See page 5. 

No operation 

STCC, CKE 

185 



STORE X - STX 

This instruction stores the Index Register data in the addressed memory location 

OP CODE - 5016 

DPO 

TXB 

DPO 

DPl 

DP2 

DP3 
through 
DP14 

DP15 

DPl 

IBS 

DP2 DP3 - DP14 DP15 

SDP15 STCC 

CKE 

(TXB) Transfer Index to Buffer 

STX and DPO are ANDed to generate TXB. See page 23. TXB gates the 
Index Register contents to the Z-bus. See page 14. TXB also generates 
TZB which gates the Z-bus contents to the Buffer Register and Y-bus. 
See pages 3 and 19. 

(IBS) Initiate Buffer to Storage 

The data in the Buffer Register will now be stored in memory. Store 
Group (STG) is generated by a logical OR of STA, STX, or STQ instruc­
tions. See page lB. STG is ANDed with DPl to generate a signal which 
allows the data to be stored in memory (IBS). IBS initiates a memory 
cycle in which the data on the Y-bus is stored in memory at the location 
addressed by the Memory Address Register. See page B. 

(SDP15) Set Distributor Pulse 15 

STG is ANDed with DP2 to generate SDP15. See page 21. This signal sets 
the Distributor to a count of 15. See page 5. 

No operation 

STCC, CKE 

STORE Q - STQ 

This instruction stores the contents of the Quotient Register at the memory location 
addressed by the Memory Address Register. 

OP CODE - 5B16 

DPO DPl DP2 DP3 - DP14 DP15 

TQB IBS SDP15 STCC 

CKE 

lB6 



DPO 

DPI 

DP2 

DP3 
through 
DP14 

DP15 

(TQB) Transfer Quotient to Buffer 

STQ and DPO are ANDed to generate TQB and TQZ. See page 22. TQZ trans­
fers the Quotient Register contents to the Z-bus. See page 6. TQB 
generates TZB which transfers the Z-bus to the Buffer Register and Y-bus. 
See pages 3 and 19. 

(IBS) Initiate Buffer to Storage 

The data in the Buffer Register will now be stored in memory. Store 
Group (STG) is generated by a logical OR of STA, STX, or STQ instruc­
tions. See page 18. STG is ANDed with DPI to generate a signal which 
allows the data to be stored in memory (IBS). IBS initiates a memory 
cycle in which the data on the Y-bus is stored in memory at the location 
addressed by the Memory Address Register. See page 8. 

(SDP15) Set Distributor Pulse 15 

STG is ANDed with DP2 to generate SDP15. See page 21. This signal sets 
the Distributor to a count of 15. See page 5. 

No operation 

STCC, CKE 

ADD - ADD 

This instruction adds the contents of the Accumulator to the contents of the 
addressed memory location and places the sum in the Accumulator. 

OP CODE - 6016 

DPO 

ISB 

CLCR 

DPO 

DPI DP2 DP3 DP4 - DP14 

INA IF ADD SDP15 
OVFL 

IF OVFL AND NOT 
SAOV BYPASS 

STOP 
IF EC 
SCARY 

(CLCR) Clear Carry flip-flop 
(ISB) Initiate Storage to Buffer 

DP15 

STCC 

CKE 

The ADD or SUB instructions enable the Arithmetic group signal (ARG). 
See page 18. ARG and DPO clear the CARY flip-flop. See page 19. 

ARG and DPO also generate an initiate storage to buffer (ISB). See page 
24. ISB initiates a memory cycle in which the data in the location 
addressed by the Memory Address Register is transferred to the Z-bus 
during CP2. See page 8. 

187 



DPl 

DP2 

DP3 

DP4 
through 
DP14 

DP1S 

ISB also generates a signal which allows the Z-bus data to be transferred 
to the Buffer Register (TZB). See page 19. 

The Z-bus is available at the input to the Buffer Register. TZB and CP2 
strobe the Z-bus data into the Buffer Register and to the Y-bus. 

(INA) Initiate Add 

If there is overflow, set the Add Overflow flip-flop (SAOV). If a carry 
exists (EC), set the Carry flip-flop (SCARY). 

An initiate add signal (INA) is generated by ADD and DP1. See page 22. 
INA is applied to the steering gates of the Arithmetic Logic Units (ALU). 
This initiates an add of the Y-bus and the Accumulator contents. The 
result is available on the F-bus. See page 2. INA also generates SAR 
and SAL. See page 23. These signals are both HIGH at this time. Thus, 
CP2 of DPl clocks the F-bus data into the Accumulator. Overflow is also 
sensed at this time. If overflow exists, SAOV will be enabled. See 
page 1. SAOV will set the Add Error flip-flop (ERA). See page 19. 

If the ALU generates an End Carry, the CARY flip-flop will be set. See 
page 19. 

The computer clock will be halted by a STOP pulse if ERA, ARG, and ADEB 
are ANDed together. Mismatch logic is used in this caSe generating 
STOP. See page 20. 

(SDP1S) Set Distributor Pulse lS 

ARG and DP3 generate a SDP1S pulse. See page 21. This pulse sets the 
Distributor to a count of lS. See page S. 

No operation 

STCC, CKE 

SUBTRACT - SUB 

This instruction subtracts the contents of the addressed memory location from the 
contents of the Accumulator and places the remainder in the Accumulator. 

OP CODE - 6816 

DPO DPl DP2 DP3 DP4 - DP14 DP1S 

CLCR INS IF ADD SDP1S STCC 
·OVFL 

ISB IF OVFL AND NOT CKE 
SAOV BYPASS 

IF EC STOP 
SCARY 

188 



DPO 

DPl 

M2 

DP3 

DP4 
through 
MU 

DPls 

(CLCR) Clear the Carry flip-flop 
(ISB) Initiate Storage to Buffer 

The ADD or SUB instructions enable the Arithmetic group signal (ARG). See 
page 18. ARG and DPO clear the CARY flip-flop. See page 19. 

ARG and DPO also generates an initiate storage to buffer (ISB). See 
page 24. ISB initiates a memory cycle in which the data in the locatio~ 
ad~ressed by the Memory Address Register is transferred to the Z-bus 
during CP2. See page 8. 

ISB also generates a signal which allows the Z-bus data to be transferred 
to the Buffer Register (TZB). See page 19. 

The Z-bus is available at the input to the Buffer Register. TZB and CP2 
strobe the Z-bus data into the Buffer Register and to the Y-bus. 

(INS) Initiate Subtract 

If overflow exists, set Add Overflow (SAOV). If a carry (borrow) exists, 
(EC) , set the Carry flip-flop (SCARY). 

An initiate subtract signal, (INS) is generated by SUB and DP1. See 
page 22. INS is applied to the steering gates of the Arithmetic Logic 
Units (ALU). This initiates a subtraction of the Y-bus from the Accu­
mulator contents. The result is available on the F-bus. See page 2. 
INS also generates SAR and SAL. See page 23. These signals are both 
HIGH at this time. Thus, CP2 of DPl clocks the F-bus data into the 
Accumulator. 

Overflow is also sensed at this time. If overflow exists, SAOV will be 
enabled. See page 1. SAOV will set the Add Error flip-flop (ERA). 
See page 19. 

If the ALU generates an End Carry, the CARY flip-flop will be set. See 
page 19. 

The computer clock will be halted by a STOP pulse if ERA, ARG, and ADEB 
are ANDed together. Mismatch logic is used in this case to generate 
STOP. See page 20. 

(SDP(ls) Set Distributor Pulse 15 

ARG and DP3 generate a SDPls pulse. See page 21. This pulse sets the 
Distributor to a count of 15. See page 5. 

No operation 

STCC 

CKE 

189 



MULTIPLY - MPY 

This instruction multiplies the contents of the Accumulator by the contents of the 
addressed memory location. The product appears as a double length number in the Accumu­
lator and Quotient Register. 

OP CODE - 7016 

DPO 

ISB 

SCB 

DP7 

INA 

DPO 

DPI 

DPI DP2 DP3 DP4 DP5 DP6 

TBQ 

IF B7=0 2's COMP A 2's COMP Q T~ CLA If QO=O 
SDP4 SDP9 

DPB DP9 DPIO DPll DP12 - DP14 DP15 

SAQR STCC 
SNF + A7 

SSNF=B7 DEC IF C#O C~ 

AO + Q7 SDP6 

(ISB) Initiate Storage to Buffer 
(SCB) Set the C-Register to a count of B 

MPY and DPO generate the ISB signal. See page 24. ISB initiates a 
memory cycle 'in which the data in the location addressed by the Memory 
Address Register is transferred to the Z-bus during CP2. See page B. 

ISB also generates a signal which allows the Z-bus data to be trans­
ferred to the Buffer Register (TZB). See page 19. 

The Z-bus is available at the input to the Buffer Register. TZB and CP2 
strobe the Z-bus data into the Buffer Register and to the Y-bus. 

MPY and DPO also generate a signal which sets the Countdown Register to 
a count of B (SCB). See page 22. SCB causes the Countdown Register to 
be set to all ones during CPl. At the end of C~l, SCB clears all the 
flip-flops except C3. Thus, the Countdown Register contains a HEX count 
of B. See page 4. 

(TBQ) Transfer the Buffer Contents to the Q-Register 
(SDP4) Set Distributor Pulse 4 (If B7 0) 

The data on the Y-bus is transferred to 
DPI are ANDed to generate SQR and SQL. 
Y-bus data is strobed into the Quotient 
and SQR are both HIGH. See page 6. 

the Quotient Register. MPY and 
See page 22. At CP2 of DPI the 
Register in parallel since SQL 

If B7 = 0, denoting a positive value in the Buffer Register, the Distrib­
utor is set to a count of 4, skipping DP2 and DP3. SDP4 is generated by 
the AND of MPY, B7, and DPI. See page 21. SDP4 sets the Distributor to 
a count of 4. See page 5. 

190 



DP2 

DP3 

DP4 

DPS 

DP6 

(COMP A) Complement the Accumulator 

During this Distributor pulse a two's complement is executed on the 
Accumulator contents. MPY is ANDed withDP2 to generate COMP A. See 
page 20. COMP A generates TAZ. See page 23. TAZ is the strobe which 
gates the Accumulator contents to the Z-bus. See page 1. COMP A also 
generates COMPo See page 20. A TWO's signa1'is normally HIGH due to the 
mismatch logic. See page 22. 

/ 

Z-bus data is available at the Two Comp1ementor. Since the TWO's signal 
is HIGH, the output of the Two's Comp1ementor contains the two's comple­
ment of the Z-bus data. The COMP signal steers the Selector so that the 
output of the Comp1ementor is strobed onto the Y-bus. See page 3. 

COMP A also enables SAL and SAR. See page 23. Therefore, since no 
arithmetic operations are taking place on the Arithmetic Logic Unit (ALU) , 
the Y-bus data is transferred to the F-bus without the need of a strobe. 
See page 2. At CP2 the F-bus is transferred in parallel fovm into the 
Aecumu1ator since SAL and SAR are both HIGH. 

During this Distributor pulse data has been taken from the Accumulator, a 
two's complement has been executed, and the result has been replaced in 
the Accumulator. 

(COMP Q) Complement the Quotient 

During this Distributor pulse a two's complement will be executed on the 
contents of the Quotient Register. 

MPY and DP3 generate COMP Q. See page 20. COMP Q enables TQZ which 
transfers the Quotient Register contents to the Z-bus. See pages 6 and 
22. 

COMP Q also generates COMPo See page 20. This signal selects the output 
of the two's comp1ementor and clocks it onto the Y-bus. See page 3. 

COMP Q also forces SQL and SQR HIGH. See page 22. At CP2 of the Dis­
tributor pulse, with the above signals HIGH, the Y-bus data will be 
loaded in parallel fashion into the Quotient Register. 

(TAB) Transfer Accumulator to Buffer 

MPY and DP4 combine to generate a transfer Accumulator to Buffer signal 
(TAB). A signal which transfers the Accumulator contents to the Z-bus 
(TAZ) is also generated at this time. See page 23. TAZ gates the 
Accumulator contents to the Z-bus. See page 1. TAB enables a signal 
which transfers the Z-bus to the Buffer Register (TZB). See page 19. 
At CP2, TZB strobes the Z-bus data into the Buffer Register and onto 
the'Y-bus. See page 3. 

(CLA) Clear the Accumulator 

DPS and MPY combine to generate CLA. See page 23. This pulse clears 
the Accumulator. See page 1. 

(SDP9) Set Distributor Pulse 9 (If QO = 0) 

If the LSB of the Quotient Register is zero, the Distributor will be set 
to a count of 9. QQ, DP6 and MPY are gated together to enable an SDP9. 
See page 21. This pulse sets the Distributor to, a count of 9. See page S. 

191 



DP7 

DP8 

DP9 

DP10 

(INA) Initiate Add 

INA is generated by MPY and DP7. See page 22. INA is ,applied to the 
steering gates of the Arithmetic Logid Units (ALU). This initiates an 
add of the Y-bus and~the Accumulator contents. The result is available 
on the F-bus. See page 2. INA also generates SAR and SAL. See page 23. 
These signals are both HIGH at this time. CP2 of DP1 clocks the F-bus 
data into the Accumulator. 

(SSNF = B7) Set the Sign flip-flop equal to B7 

MPY, DP8 and B7 set the Sign f1ip-f1~p (SNF). See page 23. 

(SAQR) Shift the Accumulator and Quotient Right 

The contents of the Accumulator and the Quotient Register will be shifted 
to the right one place. The contents of AO will be shifted into Q7. 

MPY and DP9 generate shift AQ right (SAQR). See page 22. SAQR enables 
SAR and SQR. See pages 22 and 23. 

SAR shifts the Accumulator right one bit at CP2. The sign flip-flop (SNF) 
contains the sign of the result of the addition which took place in DP7. 
See page 23. SNF and MPY generate DSRA. See page 23. If this signal is 
HIGH, indicating that the addition resulted, in a negative sum, a one will 
be shifted into A7. See page 1. 

SQR shifts the Quotient Register right one bit at CP2. This is an open­
ended shift. The contents of AO will be shifted into Q7 at this time. 
See page 6. 

(DEC) Decrement the C-Register 

The Countdown Reg~ster will be decreased by one count during this Distrib­
utor pulse. MPY and DP10 generate a decrement Countdown (DEC) signal. 
See page 24. At CP3, DEC decreases the Countdown Register by one. See 
page 4. 

DP11 (If C , 0 SDP6) If the C-Register does not contain zero, set the Distrib­
utor to a count of 6 

DP12 
through 
DP14 

DP15 

If the Countdown Register is completely reset, a CZ signal is generated. 
, See page 4. CZ, MPY, and DP11 are gated together to enable an SDP6 sig­
nal. See page 19. This signal will set the Distributor to a count of 6. 
See page 5. 

No operation 

STCC, CKE 

DIVIDE -DIV 

This instruction divides the double length number in the Accumulator and Quotient 
Register by the contents of the addressed memory location. 

The quotient will be contained in the Quotient Register and the remainder will be 
contained in the Accumulator. 

192, 



OP CODE - 7B16 

DPO DPI DP2 DP3 DP4 DP5 DP6 

ISB IF B=O IF A7=O IF Q=O IF A7=1 IF C=O 
SERD & SDP6 2's COMP A SERD SDPll 
STOP 2's COMP Q STOP 

SCB IF A7ofB7 IF Q:/-O 
SSNF l's COMP A 

DP7 DPB DP9 DPIO DPll DP12 DP13 DP14 DP15 

IF B7 =1 INA IF B7 = 0 INS 

SAL 
DEC 

DPO 

DPI 

SQL IF F7=O IF Q7 IF B7 IF SNF=l STCC 
TFA (SNF + "SNF=1, 2's COMP Q 

F7-+Q0 SDP6 Q6-QO), 2s COMP CKE 
SET A 
ERD 
STOP 

(ISB) Initiate Storage to Buffer 
(SCB) Set the C-Register to a count of B 

DIV and DPO generate the ISB signal. See page 24. ISB initiates a mem­
ory cycle in which the data in the location addressed by the Memory 
Address Register is transferred to the Z-bus during CP2. See page B. 

ISB also generates a signal which allows the Z-bus data to be trans­
ferred to the Buffer Register (TZB). See page 19. 

The Z-bus is available at the input to the Buffer Register. TZB and CP2 
strobe the Z-bus data into the Buffer Register and to the Y-bus. See 
page 3. 

DIV and DPO also generate a signal which sets the Countdown Register to 
a count of B (SCB). See page 22. SCB causes the Countdown Register to 
be set to all ones during CPl. At the e'nd of CP1, SCB clears all the 
flip-flops except C3. Thus, the Countdown Register contains a HEX count 
of B. See page 4. 

A check of the Buffer Register contents is made. If it is zero, a Divide 
'error is present and the computer stops. If not, a check of the signs of 
the divisor and dividend is made. If they differ, the sign flip-flop 
(SNF) is set. 

If the Buffer Register contains zero, BZ is generated. See page 3. BZ, 
DPl, and DIV are ANDed to enable SERD. See page 24. SERD sets the 
Divide Error (ERD). See page 19. ERD will generate a STOP pulse which 
will stop the computer clock. (If not DVEB.) See pages 7 and 20. 

The sign flip-flop (SNF) is set if A7 does not equal B7. See page 23. 

193 



DP2 

DP3 

DP4 

DP5 

DP.6 

(If A7 = 0 SDP6) If the Dividend is positive, set Distributor Pulse 6 

A7, DIV, and DP2 generate a SDP6 pulse. See page 19. This sets the 
Distributor to a count of 6. See page 5. 

If the Quotient Register contains zero a two's complement will be exe­
cuted on the Accumulator contents. If the Quotient Register does not 
contain zero a one's complement will be executed on the Accumulator 
contents. 

DP3 and DIV generate COMP A. See page 20. COMP ,A generates TAZ. See 
page 23. TAZ is the strobe which gates the Accumulator contents to the 
Z-bus. See page 1. COMP A also generates COMPo See page 20. TWO's 
signal is HIGH if the Q-Register equals O. See page 22. 

Z-bus data is available at the Two Complementor. Since the TWO's signal 
is HIGH, the output of the Two's Complementer contains the two's com­
plement of the Z-bus data. The COMP signal steers the Selector so that 
the output of the Complementor is strobed onto the Y-bus. See page 3. 

COMP A also enables SAL and SAR. See page 23. Therefore, since no 
arithmetic operations are taking place in the Arithmetic Logic Unit (ALU), 
the Y-bus data is transferred to the F-bus without the need of a strobe. 
See page 2. At CP2 the F-bus is transferred in parallel form into the 
Accumulator since SAL and SAR are both HIGH. 

If the Quotient Register does not contain zero, TWO's is not generated. 
See page 22. This signal forces the complementor to execute a one's 
complement rather than a two's complement. See page 3. 

During the Distributor pulse a two's complement will be executed on the 
contents of the Quotient Register. 

DIV and DP4 generate COMP Q. See page 20. COMP Q enables TQZ which 
transfers the Quotient Register contents to the Z-bus. See pages 6 and 
22. 

COMP Q also generates COMPo See page 20. This signal selects the output 
of the two's complementor and clocks it onto the Y-bus. See page 3. 

COMP Q also forces SQL and SQR HIGH. See page 22. At CP2 of the Distrib­
utor pulse, with the above signals HIGH, the Y-bus data will be loaded 
in parallel fashion into the Quotient Register. 

If the Dividend is negative, set Divide error and Stop. (If not DVEB.) 

A7, DIV, and DP5 will generate a Divide Error signal (SERD). See page 
24. This pulse will set the Divide Error (ERD). See page 19. ERD will 
generate a STOP pulse which will stop the computer clock. See pages 7 
and 20. 

If the C-Register is zero, set the Distributor to a count of 11. 

If the Countdown Register contains zero, a CZ pulse is enabled. See 
page 4. CZ, DIV, and DP6 enable SDPll. See page 21. This signal sets 
the Distributor to a count of 11. See page 5. 

194 



~7 

DP8 
through 
DPll 

DP8 

DP9 

DPIO 

(DEC) Decrease the count contained in the C-Register 

DIV and DP7 generate a decrement Countdown signal (DEC). See page 24. 
At CP3, DEC counts the Countdown Register down by one. See page 4. 

Are decoded as Divide Group, (DVG). See page 18. During this time 
either an addition or subtraction of the accumulator and buffer takes 
place depending on the state of the Buffer MSB. 

tSAL) Shift Accumulator Left 

Shift Accumulator Left is generated by DP8 and DIV. See page 23. This 
causes the contents of the Accumulator to be shifted left one bit posi­
tion. See page 1. The contents of Q7 will be shifted into AO due to 
the mismatch logic used in generating DSLA. See page 24. 

(SQL) Shift Quotient Left 

Shift the Quotient Register left (SQL) is generated by DIV and DP9. See 
page 22. This causes the contents of the Quotient Register to be shifted 
one bit position to the left. If the addition or subtraction results 
caused the MSB of the ALU output bus (F7) to be a one, a zero will be 
shifted into QO. See pages 6 and 20. 

(TFA) Transfer F-bus to Accumulator 
(SDP6) Set Distributor pulse 6 

If the results of the addition or subtraction result in F7 being zero, 
the output (F-bus) of the ALU will be transferred to the Accumulator. 
Otherwise it will be ignored. 

F7, DIV, and DPIO generate SAR and SAL. See page 23. At CP2 of DPIO 
the F-bus will be transferred to the Accumulator. See page 1. 

DPIO and DIV enable SDP6. See page 19. This signal forces the Distrib­
utor to a count of 6. 

DPll If the Q-Register contains a negative value (Q7) and if either the Sign 
flip-flop (SNF) is not set or the Q-Register contains a positive value 
(Q6 through QO~O), a division error is detected. 

Q7, Q6QO, DPll, SNF, and DIV are ANDed to enable SERD. See page 24. 
This signal generates Divide Error (ERD). See page 19. ERD generates a 
STOP signal which stops the computer clock. See pages 7 and 20. 

DP12 If the divisor is negative (B7), the remainder is two's complemented 
(COMP A). 

The Buffer Register MSB (B7), DP12, SNF and DIV are gated together to 
generate COMP A. See page 20. 

COMP A generates TAZ. See page 23. TAZ is the strobe which gates the 
Accumulator contents to the Z-bus. See page 1. COMP A also generates 
COMPo See page 20. TWO's signal is normally HIGH due to the use of 
mismatch logic. See page 22. 

195 



DP13 

DP14 

DP15 

Z-bus data is available at the Two Complementor. Since the TWO's signal 
is HIGH. the output of the Two's Complementor contains the two's comple­
ment of the Z-bus data. The COMP signal steers the Selector so that the 
output of the Complementor is strobed onto the Y bus. See page 3. 

COMP A also enables SAL and SAR. See page 23. Therefore. since no 
arithmetic operations are taking place on the Arithmetic Logic Unit 
(ALU). the Y-bus data is transferred to the F-bus without the need of a 
strobe. See page 2. At CP2 the F-bus is transferred in parallel form 
into the Accumulator since SAL and SAR are both HIGH. 

During the Distributor pulse data has been taken from the Accumulator. a 
Two's Complement has been executed. and the result has been replaced in 
the Accumulator. 

If the Sign flip-flop (SNF) is set. the Quotient is Two's Complemented 
(COMP Q). 

The Sign flip-flop output (SNF) together with DP13. and DIV generate 
COMP Q. See page 20. COMP Q enables TQZ which transfers the Quotient 
Register contents to the Z-bus. See pages 6 and 22. 

COMP Q also generates COMPo See page 20. This signal selects the out­
put of the two's complementor and clocks it onto the Y-bus. See page 3. 

COMP Q also forces SQL and SQR HIGH. See page 22. At CP2 of the 
Distributor pulse. with the above signals HIGH. the Y-bus data will be 
loaded in parallel fashion into the Quotient Register. See page 6. 

No operation 

STCC. CKE 

REPLACE ADD ONE - RAO 

This instruction retrieves data from the addressed memory location. adds one to the 
data. and replaces it into the same memory location. 

OP CODE - 8016 

DPO DPl DP2 DP3 DP4 DP5 DP6 

CLCR INCA 
TBA TAB IBS 

ISB IF EC 
SCARY 

DP7 DP8-DP14 DP15 

STCC 
SDP15 

CKE 

196 



DPO 

DPI 

DP2 

DP3 

DP4 

DP5 

(CLCR) Clear the Carry flip-flop 
(ISB) Initiate Storage to Buffer 

RAO or RSO enable the replace group signal (RPG). See page 18. RPG and 
DPO clear the carry flip-flop. See page 19. RPG and DPO also generate 
an initiate storage to Buffer signal (ISB). See page 24. ISB initiates 
a memory cycle in which the data is taken from memory and transferred to 
the Z-bus during CP2. See page 8. ISB also generates a signal to trans­
fer the Z-busdata to the Buffer Register (TZB). See page 19. TZB along 
with CP2 strobes the data into the Buffer Register. See page 3. 

(TBA) Transfer Buffer to Accumulator 

The data present in the Buffer is available on the Y-bus. Since the 
computer is not doing an arithmetic operation, data on the Y-bus is 
transferred through the Arithmetic Logic Unit (ALU) without the use of a 
strobe pulse. Thus, the data in the Buffer is also available at the out­
put of the ALU or the F-bus. See page 2. 

The AND of RPG and DPI generates two signals: Shift the Accumulator 
Right (SAR) and Shift the Accumulator Left (SAL). See page 23. Both 
these signals are enabled for the complete Distributor pulse. 

When'CP2 occurs during DPI a parallel load of the F-bus into the Accumu­
lator takes place if SAR and SAL are enabled. Thus, a transfer of data 
from the Buffer Register to the Accumulator has occurred. See page 1. 

(INCA) Increment Accumulator 
(EC) End Carry 
(SCARY) Set Carry (If EC = 1) 

During this Distributor pulse, the contents of the Accumulator will be 
increased by one, and a carry condition will be detected if it exists. 

RAO and DP2 are ANDed to enable INCA. See page 22. INCA is applied to 
the steering logic of the Arithmetic Logic Unit (ALU) and causes it to 
add one to the Accumulator output. The result is available on the F-bus. 
See page 2. INCA also causes SAL and SAR to be in HIGH state. At CP2 
the F-bus contents will be transferred into the Accumulator. See pages 
1 and 23. 

If an End Carry (EC) was generated by the ALU, the Carry flip-flop will 
be set. See page 19. 

No operation 

(TAB) Transfer Accumulator to Buffer 

RPG and DP4 combine to generate a transfer Accumulator to Buffer signal 
(TAB). A signal which transfers the Accumulator contents to the Z-bus 
(TAZ) is also generated at this time. See page 23. TAZ gates the 
Accumulator contents to the Z-bus. See page 1. TAB enables a signal 
which transfers the Z-bus to the Buffer Register (TZB). See page 19. 
At CP2, TZB strobes the Z-bus data into the Buffer Register and onto the 
Y-bus. See page 3. 

(IBS) Initiate Buffer to Storage 

The data in the Buffer Register will now be stored in memory. Replace 
Group (RPG) and DP5 generate IBS, which initiates a memory cycle which 

197 



DP6 

DP7 

DP8 
through 
DP14 

DP1S 

stores the information on the Y~bus at the addressed memory location. 
See pages 8 and 24. 

No operati~n 

(SDP1S) Set Distributor Pulse lS 

RPG and DP7 enable SDP1S. See page 21. This signal sets the Distribu­
tor to a count of lS. See page S. 

No operation 

STCC, CKE 

REPLACE SUBTRACT ONE - RSO 

This instruction retrieves data from the addressed memory location, subtracts one 
from it and replaces it into the same memory location. 

OP CODE - 8816 

DPO 

CLCR 

ISB 

DP7 

SDP1S 

DPO 

DPl 

DPl DP2 DP3 DP4 DPS DP6 

DECA 
TBA TAB IBS 

IF EC 
SCARY 

DP8 - DP14 DP1S 

STCC 

CKE 

(CLCR) Clear the Carry flip-flop 
(ISB) Initiate Storage to Buffer 

RAO or RSO enable the replace group signal (RPG). See page 18. RPG and 
DPO clear the carry flip-flop. See page 19. RPG and DPO also generate 
an initiate storage to Buffer signal (ISB). See page 24. ISB initiates 
a memory cycle in which the data is taken from memory and transferred to 
the Z-bus during CP2. See page 8. ISB also generates a signal to trans­
fer the Z bus data to the Buffer Register (TZB). See page 19. TZB along 
with CP2 strobes the data into the Buffer Register. See page 3. 

(TBA) Transfer Buffer to Accumulator 

The data present in the Buffer Register is transferred to the Accumula­
tor. The data present in the Buffer Register is available on the Y-bus. 
Since the computer is not doing an arithmetic operation, data on the Y­
bus is transferred through the Arithmetic Logic Unit (ALU) without the 

198 



DP2 

DP3 

DP4 

DP5 

DP6 

DP7 

DP8 
through 
DP14 

DP15 

use of a strobe pulse. Thus, the data in the Buffer is ~lso available 
at the output of the ALU or the F-bus. See page 2. 

The AND of RPG and DPI generates two signals: Shift the Accumulator 
Right (SAR) and Shift the Accumulator Left (SAL). See page 23. Both 
these signals are enabled for the complete Distributor pulse. 

When CP2 occurs during DPI a parallel load of the F-bus into the Accumu­
lator takes place if SAR and SAL are enabled. Thus, a transfer of data 
from the Buffer Register to the Accumulator has occurred. See page 1. 

(DECA) Decrement the Accumulator 
(EC) End Carry 
(SCARY) Set Carry (If EC = 1) 

During this Distributor pulse, the contents of the Accumulator will be: 
decreased by one, and a carry condition will he detected if it exists. 

RSO and DP2 are ANDed to enable DECA. See page 22. DECA is applied to 
the steering logic of the Arithmetic Logic Unit (ALU) and causes it to 
subtract one from the Accumulator output. The result is available on 
the F-bus. See· page 2: DECA also causes SAL and SAR to be HIGH. At 
CP2 the F-bus contents will be transferred into the Accumulator. See 
pages 1 and 23. 

If an End Carry (EC) was generated by the ALU, the Carry flip-flop will 
be set. See page 19. . 

No operation 

(TAB) Transfer Accumulator to Buffer 

RPG and DP4 combine to generate a transfer Accumulator to Buffer signal 
(TAB). A signal which transfers the Accumulator contents to the Z-bus 
(TAZ) is also generated at this time. See page 23. TAZ gates the Ac­
cumulator contents to the Z-bus. See page 1. TAB enables a signal 
which transfers the Z-bus to the Buffer Register (TZB). See page 19. 
At CP2, TZB strobes the Z-bus data into the Buffer Register and onto 
the Y-bus. See page 3. 

(IBS) Initiate Buffer to Storage 

The data in the Buffer Register will now be stored in memory. Replace 
Group (RPG) and DP5 generate IBS, which initiates a memory cycle which 
stores the information on the Y-bus at the addressed memory location. 
See pages 8 and 24. 

No operation 

(SDP15) Set the Distributor to a count of 15 

RPG and DP7 enable SDP15. See page 21. This signal sets the Distributor 
to a count of 15. See page 5. 

No operation 

STCC, CKE 

199 



INCREASE INDEX - INX 

This instruction increases the count of the Index Register by the value present in 
the Buffer Register, Instruction Operand. 

OP CODE - 0316 

DPO DPI 

'IBM 

DP8 - DP14 

DPO 

DPI 

DP2 

DP3 

DP4 
through 
DP6 

DP7 

DP8 
through 
DP14 

DP2 DP3 DP4 - DP6 DP7 

AXM TMX SDP15 

DP15 

STCC 

CKE 

No operation 

(TBM) Transfer the Buffer contents to the M-Register 

INX and DPI enable a transfer of the Buffer Register to the Memory 
Address Register (TBM). See page 20. TBM strQbes the Y-bus data into 
the Memory Address Register. See page 11. 

(AXM) Add the Index Register contents to the M-Register contents 

INX and DP2 generate an add Index to Memory Address signal (AXM). See 
page 23. AXM strobes the Memory Address Register contents to the Index 
Adder where they are summed. The result is present on the G-bus. See 
page 14. 

AXM also enables TGM. See page 20. 
Memory Address Register during CP3. 

TGM strobes the G-bus data into the 
See page 11. 

(TMX) Transfer the Memory Address Register contents to the X-Register 

INX and DP3 generate a Transfer M to X (TMX) and Load X (LX). See page 
22. TMX selects the Memory Address Register inputs at the Index Regis­
ter, and LX at CP2 strobes the M data into the Index Register. See 
page 14. 

No operation 

(SDP15) Set the Distributor to a count of 15 

INX and DP7 enable an SDP15 pulse. See page 21. This signal sets the 
Distributor to a count of 15. See page 5. 

No operation 

200 



DP15 STCC, CKE 

SHIFT LEFT ARITHMETIC - SLA 

This instruction shifts the double length number in the Accumulator and Quotient 
Register to the Left one bit position for each count of the Countdown Register. 

OP CODE - OB16 

DPO DPI DP2 DP3 DP4 - DP14 DP15 

IF C=O DEC STCC 
TBC 

DPO 

DPI 

DP2 

DP3 

DP4 
through 
DP14 

DP15 

SAQL 
SDP15 SDPI CKE 

(TBC) Transfer the contents of the Buffer to the C-Register 

SLA, SRA, SLL, or SRL enable the Shift Group (SFG) signal. See page 18. 
SFG and DPO generate TYC which transfers the Buffer Register contents 
via the Y-bus to the Countdown Register. TYC sets the Countdown Regis­
ter during CPl and then loads it with the Buffer Register contents during 
CP2. See pages 4 and 22. 

If the C-Register contains zero set Distributor pulse 15 

If the Countdown Register contains zero, CZ will be enabled. See page 4. 
CZ, SFG, and DPI generate SDP15 which sets the Distributor to a count 
of 15. See pages 5 and 21. 

(SAQL) Shift the AQ Register to the Left 

SLA and DP2 enable SAQL and SQL. See page 22. SAQL also enables SAL. 
See page 23. SQL causes the contents of the Quotient Register to shift 
one bit position to the left at CP2. See page 6. SAL will cause the 
Accumulator contents to shift one bit position to the left at CP2. See 
page 1. The Quotient Register MSB (Q7) will be shifted into the Ac­
cumulator LSB (AO). Q7 enables DSLA. See page 24. DSLA causes a logic 
one to be shifted into AO at CP2. See page 1. 

(DEC) Decrement the C-Register 
(SDPl) Set the Distributor to a count of 1 

SFG and DP3 generate a DEC pulse which decreases the value of the 
Countdown Register by one. See pages 4 and 24. SFG and DP3 generate 
an SDPI pulse which sets the Distributor to a count of 1. See pages 5 
and 24. 

No operation 

STCC, CKE 

201 



SHIFT RIGHT ARITHMETIC - SRA 

This instruction shifts the double length number in the Accumulator and Quotient 
Register to the right one bit position for each count of a Countdown Register. 

OP CODE - 1016 

DPO 

TBC 

DPO 

DP1 

DP2 

DP3 

DP4 
through 
DP14 

DP15 

DP1 DP2 DP3 DP4 - DP14 DP15 

IF C=O DEC STCC 

SDP15 
SAQR 

SDP1 CKE 

(TBC) Transfer the Buffer contents to the C-Register 

SLA, SRA, SLL, or SRL enable the Shift Group (SFG) signal. See page 18. 
SFG and DPO generate TYC which transfers the Buffer Register contents 
via the Y-bus to the Countdown Register. TYC sets the Countdown Regis­
ter during CP1 and then loads it with the Buffer Register contents during 
CP2. See pages 4 and 22. 

If the C-Register contains zero set the Distributor to a count of 15 

If the Countdown Register contains zero, CZ will be enabled. See page 4. 
CZ, SFG, and DP1 generate SDP15 which sets the Distributor to a count of 
15. See pages 5 and 21. 

(SAQR) Shift the AQ Register to the Right 

SRA and DP2 generate SAQR and SQR. See page 22. SAQR also enables SAR. 
See page 23. SQR causes the contents of the Quotient Register to be 
shifted one bit position to the right at CP2. The Accumulator LSB (AO) 
will be shifted into the Quotient Register MSB (Q7).' See page 6. SAR 
causes the Accumulator contents to be shifted one bit position to the 
right at CP2. See page 1. A7 enables DSRA. See page 23. DSRA causes 
A7 to remain unchanged during SRA. 

(DEC). Decrease the C-Register count by one 
(SDP1) Set the Distributor to a count of 1 

SFG and DP3 generate a DEC pulse which decreases the value of the Count­
down Register by one. See page 4 and 24. SFG and DP3 also generate an 
SDP1 pulse which sets the Distributor to a count of 1. See pages 5 and 
24. 

No operation 

STCC, CKE 

SHIFT LEFT LOGICAL - SLL 

The Accumulator contents will be shifted one bit position to the left for each count 
of the Countdown Register. 

202 



OP CODE - 1316 

DPO 

TBC 

DPO 

DPI 

DP2 

DP3 

DP4 
through 
DP14 

DP15 

DPI DP2 DP3 DP4 - DP14 DP15 

DEC STCC 
IF C=O SAL SDPI CKE 
SDP15 

(TBC) Transfer the contents of the Buffer to the C-Register 

SLA, SRA, SLL, or SRL enable the Shift Group (SFG) signal. See page 18. 
SFG and DPO generate TYC which transfers the Buffer Register contents 
via the Y-bus to the Countdown Register. TYC sets the Countdown Regis­
ter during CPl and then loads it with the Buffer Register contents during 
DP2. See pages 4 and 22. 

If the C-Register is zero, set Distributor pulse 15 

If the Countdown Register contains zero, CZ will be enabled. See page 4. 
CZ, SF~, and DPI generate SDP15 which sets the Distributor to a count of 
15. See pages 5 and 21. 

(SAL) Shift the Accumulator contents Left 

SLL and DP2 generate SAL. See page 23. SAL causes the Accumulator con­
tents to be shifted"to the left one bit position at CP2. See page 1. 
DSLA is disabled by SLL, causing a zero to be shifted into AO. See page 
24. 

(DEC) Decrease the count of the C-register by one 
(SDPl) Set Distributor pulse 1 

SFG and DP3 generate a DEC pulse which decreases the value of the Count­
down Register by one. See pages 4 and 24. SFG and DP3 also generate an 
SDPI pulse which sets the Distributor to a count of 1. See pages 5 and 
24. 

No operation 

STCC, CKE 

SHIFT RIGHT LOGICAL - SRL 

The Accumulator contents will be shifted one bit position to the right for each count 
of the Countdown Register. 

OP CODE - 1816 

DPO DPl DP2 DP3 DP4 - DP14 DP15 

DEC STCC 
TBC IF C=O SAR 

SDP15 SDPI CKE 

203 



DPO 

DPI 

DP2 

DP3 

DP4 
through 
DP14 

DP15 

AND - AND 

(TBC) Transfer the B-Register contents to the C-Register 

SLA, SRA, SLL, or SRL enable the Shift Group (SFG) signal. See page 18. 
SFG and DPO generate TYC which transfers the Buffer Register contents 
via the Y-bus to the Countdown Register. TYC sets the Countdown Regis­
ter during CPl'and then loads it with the Buffer Register contents during 
CP2. See pages 4 and 22. 

Set Distributor Pulse 15 if the C-Register contains zero 

If the Countdown Register contains zero, CZ will be enabled. See page 4. 
CZ, SFG, and DPI generate SDP15 which sets the Distributor to a count of 
15. See pages 5 and 21. 

(SAR) Shift the A-Register contents Right 

SRL and DP2 generate SAR. See page 23. SAR causes the Accumulator con­
tents to be shifted one bit position to the right at CP2. See page 1. 
DSRA is not enabled, therefore, a zero is shifted into A7. See page 23. 

(DEC) Decrease the Count of, the C-Register 
(SDPl) Set the Distributor to a Count of 1 

SFG and DP3 generate a DEC pulse which decreases the value of the 
Countdown Register by one. See pages 4 and 24. SFG and DP3 also gen­
erate an SDPI pulse which sets the Distributor to a count of 1. See 
pages 5 and 24. 

No operation' 

STCC, CKE 

This instruction performs a bit by bit logical AND of the contents of the Buffer 
Register and the Accumulator, leaving the result in the Accumulator. 

OP CODE - 1916 

DPO DPI 

lAND 

DPO 

DP2 DP3 - DP14 DP15 

STCC 
SDP15 

CKE 

(lAND) Initiate AND 

AND and DPO enable lAND. See page 22. This signal is applied to the 
steering gates of the Arithmetic Logic Units (ALU). The ALU performs a 
bit by bit logical AND of the Buffer Register and Accumulator contents. 
The result is available on the F-bus. See page 2. 

lOR, AND, or XOR instructions enable the Logic Group signal (LCG). See 
page 18. LCG and DPO cause SAR and SAL to be enabled for the complete 

204 



DPI 

DP2 

DP3 
through 
DP14 

DP15 

Distributor pulse. See page 23. At CP2, with SAL and SAR enabled, the 
F-bus is loaded into the Accumulator. See page 1. 

No operation 

(SDP15) Set Distributor pulse 15 

LCG and DP2 generate an SDP15 pulse. See page 21. This signal sets the 
Distributor to a count of 15. See page 5. 

No operation 

STCC, CKE 

INCLUSIVE OR - lOR 

This instruction performs a bit by bit Inclusive OR of the contents of the Buffer 
Register and the Accumulator, leaving the result in the Accumulator. 

OP CODE - lA16 

DPO 

lORl 

DPO 

DPI 

DP2 

DP3 
through 
DP14 

DP15 

DPI DP2 DP3 - DP14 DP15 

STCC 
SDP15 

CKE 

(IORI) Initiate Inclusive OR 

lOR and DPO enable IORI. See page 22. This signal is applied to the 
steering gates of the Arithmetic Logic Units (ALU). The ALU performs a 
bit by bit Inclusive OR of the Buffer Register and Accumulator contents. 
The result is available on the F-bus. See page 2. 

lOR, AND, or XOR instructions enable the Logic Group signal (LCG). See 
page 18. LCG and DPO cause SAR and SAL to be enabled for the complete 
Distributor pulse. See page 23. At CP2 with SAL and SAR enabled, the 
F-bus is loaded into the Accumulator. See page 1. 

No operation 

(SDP15) Set the Distributor to a count of 15 

LCG and DP2 generate an SDP15 pulse. See page 21. This signal sets the 
Distributor to a count of 15. See page 5. 

No operation 

STCC, CKE 

205 



EXCLUSIVE OR - XOR 

This instruction performs a bit by bit Exclusive OR of the contents of the Buffer 
Register and the Accumulator, leaving the result in the Accumulator. 

OP CODE - 1B16 

DPO 

lEX 

DPO 

DPl 

DP2 

DP3 
through 
DP14 

DP15 

DPl DP2 DP3 - DP14 DP15 

STCC 
SDP15 

CKE 

(lEX) Initiate Exclusive OR 

XOR and DPO enable- lEX. See page 22. This signal is applied to the 
steering gates of the Arithmetic Logic Units (ALU). The ALU performs 
a bit by bit Exclusive OR of the Buffer Register and Accumulator con­
tents. The result is available on the F-bus. See page 2. 

lOR, AND, or XOR instructions enable the Logic Group signal (LCG). See 
page 18. LCG and DPO cause SAR and SAL to be enabled for the complete 
Distributor pulse. See page 23. At CP2 with SAL and SAR enabled, the 
F-bus is loaded into the Accumulator. See page 1. 

No operation 

(SDP15) Set Distributor pulse 15 

LCG and DP2 generate an SDP15 pulse. See page 21. This signal sets the 
Distributor to a count of 15. See page 5. 

No operation. 

STCC, CKE 

BRANCH UNCONDITIONAL - BUN 

This instruction causes the program to branch to the location designated by the 
operand which is contained in the Memory Address Register. 

OP CODE - 9016 

DPO DPl DP2 - DP14 DP15 

; STCC 
TMP SDP15 

CKE 

206 



DPO 

DPI 

DP2 
through 
DP14 

DP15 

(TMP) Transfer the contents of the M-Register to the P-Register 

BUN and DPO generate TMP. See page 21. TMP strobes the Memory Address 
Register contents into the Program Register at CP2. See page 12. 

(SDP15) Set the Distributor to a count of 15 

BUN and DPI ~nable SDP15. See page 21. This pulse sets the Distributor 
to a count of 15. See page 5. 

No operation 

STCC, "C~ 

BRANCH AND STOP - BST 

This instruction causes the program to branch to the location designated by the 
operand, which is contained in the Memory Address Register, and stop. 

OP CODE - 9816 

DPO 

TMP 
. 

STOP 

DPO 

DPI 

DP2 
through 
DP14 

DP15 

DPI DP2 - DP14 DP15 

STCC 
SDP15 

CKE 

(TMP) Transfer the contents of the M-Register to the P-Register 

BST and DPO generate TMP. See page 21. TMP strobes the Memory Address 
Register contents into the Program Register at CP2. See page 12. 

BST and DPO also generate STOP. See page 20. 
signal (SPCK) which stops the computer clock. 

(SDP15) Set Distributor pulse 15 

STOP enables a stop clock 
See pages 7 and 18. 

BST and DPI generate SDP15. See page 21. This signal sets the Distrib­
utor to a count of 15. See page 5. 

No operation 

CKE, STCC 

BRANCH TO SUB-ROUTINE - BSB 

This instruction stores an Unconditional Branch operation code in "the addressed 
memory location. It then stores the next instruction address at the next consecutive 
memory address. It then causes the program to branch to the next consecutive memory 
location. 

207 



OP CODE - A016 

DPO 

TPHB 

DP7 

SDP15 

DPO 

DPI 

DP2 

DP3 

DP4 

DP5 

DP6 

DPI DP2 DP3 DP4 DP5 DP6 

IBS INCM TPLB IBS INCM TMP 

DPB - DP14 DP15 

STCC 

CKE 

(TPHB) Transfer the Two High-Order Bits of P (P9 and PB) to the B­
Register (Bl and BO) Set B4 and B7 

BSB and DPO generate TPHB. See page 20. TPHB enables Z7 and Z4. It 
also transfers the data present in PB and P9 to ZO and Zl, respectively. 
See page 12. TPHB also generates TZB. See page 19. This signal trans­
fers the Z-bus data into the Buffer Register at CP2. See page 3. 

The Buffer Register now contains 1001 0000. This is the Operation code 
for Branch Unconditional. The two low order bit positions contain page 
bits if they were present in the Program Register. 

(IBS) Initiate Buffer to Storage 

BSB and DPI or DP4 generate IBS. See page 24. IBS initiates a ~emory 
cycle which stores the contents of the Buffer Register via the Y-bus at 
the addressed memory location. See page B. 

(INCM) Increment the M-Register 

BSB and DP2 or DP5 generate INCM (page 24) which enables a transfer of 
the G-bus by Memory Address Register (TGM). See page 20. The G-bus ' 
data is generated by the Index Adder. During INCM time the Index Reg~s­
ter contents are inhibited from the Index Adder. Thus, the Index Regis­
ter inputs to the adder are all zeros except in the case of bit 0 which 
is inverted. This enables the adder to add 1 to the contents of the 
Memory Address Register. See page 11. 

(TPLB) Transfer the B low order bits of the P-Register to the Buffer 

TPLB is enabled by BSB and DP3.- See page 20. This signal strobes PO -
P7 to the Z-bus. See page 12. TPLB also generates TZB. See page 19. 
TZB strobes the Z-bus data into the Buffer Register at CP2. See page 3.' 

See DPI description. 

See DP2 description. 

(TMP) Transfer the contents of the M-Register to the P-Register 

BSB and DP6 enable TMP. See page 21. This signal strobes the Memory 
Address Register contents into the Program Register at CP2. See page 12. 

20B 



DP7 

DP8 
through 
DP14 

DP15 

(SDP15) Set Distributor pulse 15 

BSB and DP7 enable SDP15. See page 21. SDP15 sets the Distributor to a 
count of 15. See page 5. 

No operation 

STCC, CKE 

BRANCH ON POSITIVE - BPS 

If the Condition Code is greater than zero, the program will branch to the location 
designated by the operand, which is contained in the Memory Address Register. 

OP CODE - A8l6 

DPO 

IF CC>O 
TMP 

DPO 

DPI 

DP2 
through 
DP14 

DP15 

DPI DP2 - DP14 DP15 

STCC 
SDP15 

CKE 

If the Condition Code is greater than zero (CC>O) transfer the contents 
of the M-Register to the P-Register (TMP) 

CCGT, BPS, and DPO enable TMP. See page 21. TMP strobes the Memory 
Address Register contents into the Program Register at CP2. See page 12. 

(SDP15) Set Distributor pulse 15 

BPS and DPI generate SDP 15. See page 21. This signal sets the Distrib­
utor to a count of 15. See page 5. 

No operation 

STCC, CKE 

BRANCH ON ZERO - BZE 

If the Condition Code is equal to zero, the program will branch to the location 
designated by the operand, which is contained in the Memory Address Register. 

OP CODE - B016 

DPO DPI DP2 - DP14 DP15 

S'IC 
IF CC=O SDP15 

TMP CKE 

209 



DP2 
through 
DP14 

~P15 

If the Condition Code is equal to zero (CC=O) transfer the contents of 
the M-Register to the P-Register 

CCEQ, BZE, and DPO enable TMP. See page 21. TMP strobes the Memory 
Address Register contents into the Program Register at CP2. See page 12. 

(SDP15) Set Distributor pulse 15 

BZE and DPI generate SDP15. See page 21. This signal sets the Distrib­
utor to a count of 15. See page 5. 

No operation 

STCC, CKE 

~RANCH ON NEGATIVE - BNG 

If the Condition Code is less than zero, the program will branch to the location 
iesignated by the operand, which is contained in the Memory Address Register. 

)P CODE - B8l6 

DPO 

IF CC<O 
TMP 

DPO 

DPI 

DP2 
through 
DP14 

DP15 

DPI DP2 - DP14 DP15 

STCC 
SDP15 

CKE 

If the Condition Code is less than Zero (CC<O) transfer the contents of 
the M-Register to the P-Register (TMP) 

CCLT, BNG, and DPO enable TMP. See page 21. TMP strobes the Memory 
Address Register contents into the Program Register at CP2. See page 12. 

(SDP15) Set Distributor pulse 15 

BNG and DPI generates SDP15. See page 21. This signal sets the Distrib­
utor to a count of 15. See page 5. 

No operation 

STCC, CKE 

BRANCH ON NO CARRY - BNC 

If the Condition Code is carry, the program will branch to the location designated 
by the operand, which is contained in the Memory Address Register. 

210 



OP CODE - C016 

DPO DP1 DP2 - DP14 D~15 

IF STCC 
CARRY SDP15 
= 0 
TMP 

DPO 

DP1 

DP2 
through 
DP14 

DP15 

CKE 

If the Condition Code is not Carry, transfer the contents of the M­
Register to the P-Register (TMP) 

CARY, BNC, and DPO enab1eTMP. See page 21. TMP strobes the Memory 
Address Register contents into the Program Register at CP2. See page 12. 

(SDP15) Set Distributor pulse 15 

BNC and DP1 generate SDP15. See page 21. This signal sets the Distrib­
utor to a count of 15. Se"e page 5. 

No operation 

STCC, CKE 

BRANCH ON INDEX ZERO - BXZ 

If the Index Register contains zero, the program will branch to the location desig­
nated by the operand which is contained in the Memory Address Register. 

OP CODE - C816 

DPO 

IF X=O 
TMP 

DPO 

DP1 

DP1 DP2 - DP14 DP15 

STCC 
SDP15 

CKE 

If the X-Register is zero (X = 0) transferM to P (TMP) 

If the Index Register contains zeros in all bit locations, Index Zero 
(XZ) will be enabled. See page 14. 

BXZ, XZ, and DPO en~b1e TMP. See page 21. TMP strobes the Memory 
Address Register contents into the Program Register at CP2. See page 12. 

(SDP15) Set Distributor pulse 15 

BXZ and DP1 generate SDP15. See page 21. This signal sets the Distrib­
utor to a count of 15. See page 5. 

211 



DP2 
through 
DP14 

DP15 

No operation 

STCC, CKE 

SKIP ON INTERRUPT - SKI 

This instruction causes the program to skip k number of instructions (2k words) if 
the interrupt bit is set. The interrupt bit is cleared. 

op CODE - 0816 

DPO DPI DP2 DP3 DP4 DP5 DP6 

IF INCM 
INT=O CLINT TBC TPM IF C=O INCM 
SDP15 

DP7 

TMP 

SDP4 

DPO 

DPI 

DP2 

DP3 

DP4 

SDP15 DEC 

DP8 - DP14 DP15 

STCC 

CKE 

If INT=O, SDP15 

If the Interrupt bit is not set, the instruction will be disregarded. 
SKI, DPO, and INT are gated to enable SDP15. See page 21. SDP15 sets 
the Distributor to a count of 15. See page 5. 

(CLINT) Clear the Interrupt bit 

SKI and DPI are gated to reset the Interrupt flip-flop. See page 19. 

(TBC) Transfer the Buffer contents to the C-Register 

SKI, SKS, or SKFenable the 
the Buffer Register data is 
a Tye signal. See page 22. 
Countdown Register at CP2. 

Skip Group signal, (SKG). See page 18. Since 
also present on the Y-bus SKG and DP2 generate 
This signal strobes the Y-bus data into the 

See page 4. 

(TPM) Transfer the P-Register contents to the M-Register 

SKGand DP3 generate TPM. See page 24. TPM enables TPLB. See page 20. 
TPM strobes the two high orde~ bits of the Program Register into the high 
order bit positions of the Memory Address Register. TPLB strobes the 
remaining 8 bits of the Program Register into the Memory Address Register 
at CP2. See pages 11 and 12. 

If the C-Register equals zero (C=O) set Distributor pulse 15 (SDP15) 

If the Countdown Register contains zero, CZ will be enabled. See page 4. 
SKG, DP4 and CZ enable SDP15. See page 21. This signal sets the Dis­
tributor to a count of 15 •. See page 5. 

212 



DP5 

DP6 

DP7 

DP8 
through 
DP14 

DP15 

(INCM) Increment the M-Register 
(DEC) Decrement the C-Register 

SKG and DP5 generate INCM. See page 24. INCM is used to enable a trans­
fer of the G-bus to the Memory Address Register (TGM). See page 20. The 
G-bus data is generated by the Index Adder. During INCM time the Index 
Register contents are inhibited from the Index Adder. Thus, the Index 
Register inputs to the Adder are all zeros except in the case of bit 0 
which is inverted. This enables the Adder to add 1 to the contents of 
the Memory Address Register. See pages 11 and 14. 

SKG and DP5 also generate a DEC pulse which decreases ·the value of the 
Countdown Register by one. See pages 4 and 24. 

(INCM) Increment the M-Register 

SKG and DP6 generate INCM. See page 24. INCM is used to enable a trans­
fer of the G-bus to the Memory Address Regist.er (TGM). See page 20. 
The G-bus data is generated by the Index Adder. During INCM time the 
Index Register contents are inhibited from the Index Adder. Thus, the 
Index Register input to the Adder are all zeros exdept in the case of 
bit 0 which is inverted. This enables the Adder to add 1 to the.con­
tents of the Memory Address Register. See pages 11 and 14. 

(TMP) Transfer the contents of the M-Register to the P-Register 
(SDP4) Set the distributor to a count of 4 

DP7 and SKG generate TMP. See page 21. TMP strobes the Memory Address 
Register contents into the Program Register at CP2. See page 12. SKG 
and DP7 also enable SDP4. See page 21. SDP4 sets the Distributor to a 
count of 4. See page 5. 

No operation 

STCC, CKE 

SKIP ON SENSE SWITCH - SKS 

This instruction causes the program to skip k number of instructions (2k words) if 
the Sense Switch is set. 

OP CODE - 0916 

DPO DP1 DP2 DP3 DP4 DP5 DP6 

INCM 
IF TBC TPM IF C=O INCM 
SENSE=O SDP15 DEC 
SDP15 

DP7 DP8 - DP14 DP15 

TMP STCC 
SDP4 DKE 

213 



DPO 

DPl 

DP2 

DP3 

DP4 

DPS 

DP6 

DP7 

If Sense = 0 SDP1S 

If the Sense Switch is not set, the instruction will be disregarded. 
SKS, DPO, and SEN are gated to enable SDP1S. See page 21. SDP1S sets 
the Distributor to a count of lS. See page S. 

No operation 

(TBC) Transfer the Buffer contents to the C-Register 

SKI, SKS, or SKF enable the Skip Group signal (SKG). See page 18. Since 
the Buffer Register data is also present on the Y-bus SKG and DP2 gen­
erate a TYC signal. See page 22. This signal strobes the Y-bus data 
into the Countdown Register at CP2. See page 4. 

(TPM) Transfer the P-Register contents to the M-Register 

SKG and DP3 generate TPM. See page 24. TPM enables TPLB. See page 20. 
TPM strobes the two high order bits of the Program Register into the high 
order bit positions of the Memory Address Register. TPLB strobes the 
remaining eight bits of the Program Register into the Memory Address 
Register at CP2. See pages 11 and 12. 

If the C-Register contains zero (C=O) set Distributor pulse lS (SDP1S) 

If the Countdown Register contains zero, CZ will be enabled. See page 4. 
SKG,. DP4, and CZ enable SDP1S. See page 21. This signal sets the Dis­
tributor to a count of lS. See page S. 

(INCM) Increment the M-Register 
(DEC) Decrement the C-Register 

SKG and DPS generate INCM. See page 24. INCM is used to enable a trans­
fer of the G-bus to the Memory Address Register (TGM). See page 20. The 
G-bus data is generated by the Index Adder. During INCM time the Index 
Register contents are inhibited from the Index Adder. Thus, the Index 
Register inputs to the Adder are all zeros except in the case of bit 0 . 
which is inverted. This enables the Adder to add 1 to the contents of 
the Memory Address Register. See pages 11 and 14. 

SKG and DPS also generate a DEC pulse which decreases the value of the 
Countdown Register by one. See pages 4 and 24. 

(INCM) Increment the M-Register 

SKG and DP6 generate INCM. See page 24. INCM is used to enable a trans­
fer of the G-bus to the Memory Address Register (TGM). See page 20. The 
G-bus data is generated by the Index Adder. During INCM time the Index 
Register contents are inhibited from the Index Adder. Thus, the Index 
Regist~r inputs to the Adder are all zeros except in the case of bit 0 . 
which is inverted. This enables the Adder to add 1 to the contents of 
the Memory Address Register. See pages 11 and 14. 

(TMP) Transfer the Memory Address Register contents to the P-Register 
(SDP4) Set Distr~butor pulse 4 

DP7 and SKG generate IMP. See page 21. TMP strobes the Memory Address 
Register contents into the Program Register at CP2. See page 12. 

214 



DP8 
through 
DP14 

DP15 

SKG and DP7 also enable SDP4. See page 21. SDP4 sets the Distributor 
to a count of 4. See page 5. 

No operation 

STCC, CKE 

SKIP ON FLAG - SKF 

This instruction causes the program to skip k number of instructions (2k words) if 
the Flag is set. 

OP CODE - OA 16 

DPO 

IF 
FLAG=O 
SDPl5 

DP7 

TMP 

SDP4 

DPO 

DPI 

DP2 

DP3 

DP4 

DPI DP2 DP3 DP4 DP5 DP6 

IF C=O INCM 
TBC TPM SDP15 INCM 

DEC 

DP8 - DPl4 DP15 

STCC 

CKE 

If FLAG = 0 SDP15 

If the Flag is not set, the instruction will be disregarded. SKF, DPO 
and FLG are gated to enable SDP15. See page 21. SDP15 sets the Dis­
tributor to a count of 15. See page 5. 

No operation 

(TBC) Transfer the B-Register contents to the Countdown Register 

SKI, SKS, or SKF enable the Skip Group Signal (SKG). See page 18. Since 
the Buffer Register data is also present on the Y-bus, SKG and DP2 gen­
erate a TYC signal. See page 22. This signal strobes the Y-bus data 
into the Countdown Register at CP2. See page 4. 

(TPM) Transfer the contents of the P-Register to the M-Register 

SKG and DP3 generate TPM. See page 24. TPM enables TPLB. See page 20. 
TPM strobes the two high order bits of the Program Register into the 
high order bit positions of the Memory Address Register. TPLB strobes 
the remaining eight bits of the Program Register into the Memory Address 
Register at CP2. See pages 11 and 12. 

IfC is zero (C=O) set Distributor pulse 15 (SDP15) 

215 



DP5 

DP6 

DP7 

DP8 
through 
DP14 

If the Countdown Register contains zero, CZ will be enabled. See page 4. 
SKG, DP4, and CZ enableSDP15. See page 21. This signal sets the Dis­
tributor to a count of 15. See page 5. 

(INCM) Increment the M-Register 
(DEC) Decrement the Countdown Register 

SKG and DP5 generate INCM. See page 24. INCM is used to enable a trans­
fer of the G-bus to the Memory Address Register (TGM). See page 20. The 
G-bus data is generated by the Index Adder. During INCM time the Index 
Register contents are inhibited from the Index Adder. Thus, the Index 
Register inputs to the Adder are all zeros except in the case of bit 0 
which is inverted. This enables the Adder to add 1 to the contents of 
the Memory Address Register. See pages 11 and 14. 

SKG and DPS also generate a DEC Pulse which decreases the value of the 
Countdown Register by one. See page 4 and 24. 

(INCM) Increment the M-Register contents 

SKG and DP6 generate INCM. See page 24. INCM is used to enable a trans­
fer of the G-bus to the Memory Address Register (TGM). See page 20. 
The G-bus data is generated by the Index Adder. During INCM time the 
Index Register contents are inhibited from the Index Adder. Thus, the 
Index Register inputs to the Adder are all zeros except in the case of 
bit 0 which is inverted. This enables the Adder to add 1 to the con­
tents of the Memory Address Register. See pages 11 and 14. 

(TMP) Transfer M to P 
(SDP4) Set Distributor pulse 4 

DP7 and SKG generate TMP. See page 21. TMP strobes the Memory Address 
Register contents into the Program Register at CP2. See page 12. 

SKG and DP7 also enable SDP4. See page 21. SDP4 sets the Distributor 
to a count of 4. See page S. 

No operation 

DP1S STCC, CKE 

WRITE DATA BLOCK - WDB 

This instruction allows the computer to output data to an external device. Data will 
be taken from memory starting from the memory location addressed by the Memory Address 
Register. 

OP CODE - D016 
r 

DPO DPl DP2 DP3 DP4 DPS DP6 

INWD IF C=O INCM 
INW ISB WAIT SDP1S DEC 

SDPl 

DP7 - DP14 DP1S 

STCC 

CKE 

216 



DPO 

DPI 

DP2 

DP3 

DP4 

DP5 

DP6 

DP7 
through 
~~ 

DP15 

(INW) Initiate Write 

INW is generated by WDB and DPO. See page 20. This signal sets up the 
Interface to receive data from the computer. 

(ISB) Initiate Storage to Buffer 

WDB generates Write Group (WG). See page 18. WG and DPI enable an 
initiate storage to Buffer signal (ISB). See page 24. ISB initiates a 
memory cycle in which the data is taken from memory and placed on the Z­
bus during CP2. See page 8. ISB also generates a transfer of the Z-bus 
to the Buffer Register (TZB). See page 19. TZB is ANDed with CP2 and 
this signal strobes the data into the Buffer Register. See page 3. 

No operation 

(INWD) Initiate Write Data 
(WAIT) 

INWD is generated by DP3 and WDB. See page 20. This signal triggers the 
Interface clock, allowing the Interface to accept the data present on the 
Y-bus. INWD also enables the WAIT signal. See page 23. WAIT generates 
a stop clock (SPCK) signal. See page 18. This signal hal~s the com­
puter clock. The clock restarts upon receiving a resume (RESM) pulse 
from the Interface, signaling that it has processed the received data 
and is ready to accept another data word. See page 7. 

(SDP15) If the C-Register equals zero (C=O) set Distributor pulse 15 

If the Countdown Register contains zero, CZ will be enabled. See page 4. 
WG, DP4, and CZ enable SDP15. See page 21. This signal sets the Dis­
tributor to a count of 15. See page 5. 

No operation 

(INCM) Increment the M-Register 
(DEC) Decrement the C-Register 
(SDPl) Set Distributor pulse 1 

WG and DP6 generateINCM. See page 24. INCM is used to enable a trans­
fer of the G-bus to the Memory Address Register (TGM). See page 20. The 
G-bus data is generated by the Index Adder. During INCM time the Index 
Register contents are inhibited from the Index Adder. Thus, the Index 
Register inputs to the Adder are all zeros except in the case of bit 0 
which is inverted. This enables the Adder to add 1 to the contents of 
the Memory Address Register. See pages 11 and 14. 

WG and DP6 also generate a DEC pulse which decreases the value of the 
Countdown Register by one. See pages 4 and 24. WG and DP6 generate an 
SDPI pulse which· sets the Distributor to a count of 1. See pages 5 and 
24. 

No operation 

STCC 

C~ 

217 



MANUAL OUTPUT - MNO 

This instruction transfers the data at the addressed memory location to the Buffer 
and Input Register. One memory location ~s read for each manual START the computer 
receives. 

OP CODE - D816 

DPO DPl 

ISB 

DP7 - DP14 

DPO 

DPl 

DP2 

DP3 

DP4 

DP5 

DP2 DP3 DP4 DP5 DP6 

TBI IF C=O INCM 

WAIT SDP15 DEC 

SDPl 

DP15 

STCC 

CKE 

No operation 

(ISB) Initiate Storage to Buffer 

MNO generates Write Group (WG). See page 18. WG and DPl generate an 
initiate s·torage to Buffer signal (ISB). See page 24. ISB initiates a 
memory cycle in which the data is taken from memory and placed on the 
Z-bus during CP2. See page 8. ISB also generates a transfer of the Z­
bus to the Buffer Register (TZB). See page 19. TZB is ANDed with CP2 
and this signal strobes the data into the Buffer Register. See page 3. 

(TBI) Transfer the contents of the Buffer to the Input Register 
(WAIT) 

MNO and DP2 generate TYI. See page 23. This signal. gated.with the Y­
bus sets the proper flip-flops in the Input Register. The output of 
these flip-flops enable the Input Register indicators on the front panel. 
See page 10. MNO and DP2 also enables the WAIT signal. See page 23. 
WAIT generates a stop clock (SPCK) signal. See page 18. This signal 
halts the computer clock. The clock restarts upon receiving a manual 
START pulse from the control panel. See page 7. 

No operation 

(SDP15) If the C-Register contents are zero (C=O) set Distributor 
pulse 15 

If the Countdown Register contains zero. CZ will be enabled. See page 4. 
WG. DP4. and CZ enable SDP15. See page 21. This signal sets the Dis­
tributor to a count of 15. See page 5. 

No operation 

218 



DP6 

DP7 
through 
DP14 

DP15 

(INCM) Increment the M-Register 
(DEC) Decrement the C-Register 
(SDPl) Set Distributor pulse 1 

WG and DP6 generate INCM. See page 24. INCM is used to enable a trans­
fer of the G-bus to the Memory Address Register (TGM). See page 20. The 
G-bus data is generated by the Index Adder. During INCM time the Index' 
Register contents are inhibited from the Index Adder. Thus, the Index 
Register inputs to the Adder are all zeros except in the case of bit 0 
which is inver.ted. This enables the Adder to add 1 to the contents of 
the Memory.Address Register. See pages 11 and 14. 

WG and DP6 also generate a DEC pulse which decreases the value of the 
Countdown Register by one. See pages 4 and 24. WG and DP6 generates an 
SDPI pulse which sets the Distributor to a count of 1. See page 5 and 
24. 

No operation 

STCC, CKE 

READ DATA BLOCK - RDB 

. This instruction allows the computer to read data furnished from an e~ternal device. 
The number of data words that will be read is dependent upon the yalue contained in the 
Countdown Register. 

OP CODE - E016 

DPO DPI 

INR INRD 

WAIT WAIT 

DP7 DP14 

DPO 

DP2 DP3 

TEB IBS 

DP15 

STCC 

CKE. 

(INR) Initiate Read 
(WAIT) 

DP4 DP5 DP6 

IF C=O INCM 
SDP15 

DEC 

SDPI 

RDB or RDI and DPO enable INR. This signal sets up the selected Inter­
face to input data to the computer. See pages 20 and 28. INR also 
enables the WAIT signal. See page 23. WAIT generates a stop clock 
(SPCK) signal. See page 18. This signal halts the computer until it 
receives a resume (RESM) pulse from the Interface, signaling that it is 
ready to process data. 

219 



DPI 

DP2 

DP3 

DP4 

DP5 

DP6 

DP7 
through 
DP14 

DP15 

(INRD) Initiate Read Data 

INRD is generated by RDB or RDI and DPI. See page 20. This signal 
triggers the Interface clock, allowing the Interface to accept data from 
the external device. INWD also enables the WAIT signal. See page 23. 
WAIT,generates a stop clock (SPCK) signal. See page 18. This signal 
halts the computer clock. The clock restarts upon receiving a resume 
(RESM) pulse from the Interface, signaling that it has processed the 
received data and is ready to accept another data word. See page 7. 

(TEB) Transfer External Data to the Buffer 

RDB or RDI and DP2 generate TEB which transfers the data from the Inter­
face, via the Z-bus, to the Buffer Register.. See page 20. TEB also 
enables TZB which str9bes the data into the Buffer Register. See pages 
3 and 19. 

(IBS) Initiate Buffer to Storage 

TDB, TDI,' or MNI enable Read Group RDG. See page 20. 
an initiate Buffer to storage signal (IBS). See page 
a memory cycle which stores the contents of the Buffer 
Y-bus, at the addressed memory location. See page 8. 

Buffer Register. See page 3. 

RDG and DP3 'enable 
24. IBS initiates 
Register, via the 

(SDP15) If the C-Register equals zero (C=O) set Distributor pulse 15 

If the Countdown Register contains zero, CZ will be enabled. See page 4. 
DP4, RDB, and CZ enable SDP15. See page 21. This signal sets the Dis­
tributor to a count of 15. See page 5. 

No operation 

(INCM) Increment the M-Register 
(DEC) Decrement the Value in the C-Register 
(SDPl) Set Distributor Pulse 1 

RDG and DP6 generate INCM. See page 24. INCM is used to enable a trans­
fer of the G-bus to the Memory Address Register (TGM). See page 20. The 
G-bus data is generated by the Index Adder. During INCM time the Index 
Register contents are inhibited from the Index Adder. Thus, the Index 
Register inputs to the Adder are all zeros except in the case of bit 0, 
which is inverted. This enables the Adder to add 1 to the contents of 
the Memory Address Register. See pages 11 and 14. 

ROB and DP6, generate a DEC Pulse which decreases the value of the 
Countdown Register by one. See pages 4 and 24. RDG and DP6 generate 
an SDPI pulse which sets the Distributor to a count of 1. See pages 5 
and 24. 

No operation 

STCC 

CKE 

220 



READ UNTIL INTERRUPT - RDI 

This instruction allows the computer to read data furnished by an external device 
until it receives an interrupt pulse which acts as an end-of-data signal. 

OP CODE - E8l 6 

DPO DPI 

INR INRD 

WAIT WAIT 

DP7 - DP14 

DPO 

DPI 

DP2 

DP2 DP3 

TEB 
IBS 

IF INT=l 
SDP15 

DP15 

STCC 

CKE 

(INR) Initiate Read 
(WAIT) 

DP4 - DP5 DP6 

INCM 

SDPI 

RDB or RDI and DPO enable INR. This signal sets up the selected Inter­
face to input data to the computer. See pages 20 and 28. INR also 
enables the WAIT signal. See page 23. WAIT generates a stop clock 
(SPCK) signal. See page 18. This signal halts the computer clock. The 
clock restarts upon receiving a resume (RESM) pulse from the Interface, 
signaling that it has processed the received data and is ready to accept 
another data word. See page 7. 

(INRD) Initiate Read Data 
(WAIT) 

INRD is generated by RDB or RDI and DPI. See page 20. This signal trig­
gers the Interface to accept the data present on the Y-bus. INWD also 
enables the WAIT signal. See page 23. WAIT generates a stop. clock 
(SPCK) signal. See page 18. This signal halts the com~uter clock. The 
clock restarts upon receiving a resume (RESM) pulse from the Interface, • 
signaling that it has processed the received data and is ready to accept 
another data word. See page 7. 

(TEB) Transfer external data to Buffer 
(SDP15) If the Interrupt bit is set (INT=l) set Distributor pulse 15 

RDB or RDI and DP2 generate TEB which transfers the data from the Inter­
face, via the i-bus, to the Buffer Register. See page 20. TEB also 
enables TZB which strobes the data into the Buffer Register. See pages 
3 and 19. 

INT, DP2, and RDI enable SDP15. See page 21. This signal sets the 
Distributor to a count of 15. See page 5. 

221 



DP3 

DP4 
through 
DP5 

DP6 

DP7 
through 
DP14 

DP15 

(IBS) Initiate Buffer to Storage 

RDB, RDI, or MNI enable Read Group (RDG). See page 20. RDG and DP3 
enable an initiate Buffer to storage signal (IBS). See page 24. IBS 
initiates a memory cycle which stores the contents of the Buffer Regis­
ter, via the Y-bus, at the addressed memory location. See page 8. 

No operation 

(INCM) Increment the M-Register 
(SDP1) Set Distributor pulse 1 

RDG and DP6 generate INCM. See page 24. INCM is used to enable a trans­
fer of the G-bus to the Memory Address Register (TGM). See page 20. The 
G-bus data is generated by the Index Adder. During INCM time the Index 
Register contents are inhibited from the Index Adder. Thus, the Index· 
Register input to the Adder are all zeros except in the case of bit 0 
which is inverted. This enables the Adder to add 1 to the contents of 
the Memory Address Register. See pages 11 and 14. RDG and DP6 generate 
an SDPl pulse which sets the Distributor to a count of 1. See pages 5 
and 24. 

No operation 

STCC, CKE 

MANUAL INPUT - MNI 

This instruction allows the entering of data directly into Memory from the Input 
Register on the control panel. The number of data words which are entered is one more 
than the initial count in the Countdown Register. 

OP CODE - F016 

DPO 

DP7 

DPO 

DPl 

DPl 

WAIT 

- DP14 

DP2 DP3 DP4 DP5 DP6 

INCM 
TIB IBS IF C=Q DEC 

SDP15 SDPl 

DP15 

STCC 

CKE 

No Operation 

(WAIT) 

MNI and DPl enable the WAIT signal. See page 23. 
stop (SPCK) signal which ha;Lts the computer clock. 

222 

WAIT generates a clock 
See pages 7 and 18. 



DP2 

DP3 

DP4 

DP5 

DP6 

DP7 
through 
DP14 

DP15 

The clock will restart when it receives a manual START pulse from the 
Control Panel. See page 15. 

(TIB) Transfer the Input Register contents to the Buffer 

The data present in the Input Register is transferred to the Buffer 
Register. MNI and DP2 enable TIB. See page 24. TIB enables TZB which 
strobes the data into the Buffer Register. See page 3. 

(IBS) Initiate Buffer to Storage 

RDB, RDI, or MNI enable Read Group (RDG). See page 20. RDG and DP3 
enable an initiate Buffer to storage signal (IBS). See page 24. IBS 
initiates a memory cycle which stores the contents of the Buffer Register 
via the Y-bus at 'the addressed memory location. See page 8. 

(SDP15) If the C-Register contains zero (C=O) '. set Distributor pulse 15 

If the Countdown Register contains zero, CZ will be enabled. See page 
,4. DP4, MNI, and CZ enable SDP15. See page 21. The signal sets the 
Distributor to a count of 15. See page 5. 

No operation 

(INCM) Increment the M-Register 
(DEC) Decrement the C-Register 
(SDP1) Set Distributor pulse 1 

RDG and DP6 generate INCM. See page 24. INCM is used to enable a trans­
fer of the G-bus to the Memory Address Register (TGM). See page 20. The 
G-bus data is' generated by the Index Adder. During INCM time the Index 
Register contents are inhibited from the Index Adder. Thus, the Index 
Register input to the Adder are all zeros except in the case of bit 0 
which is inverted. This enables the Adder to add 1 to the contents of 
the Memory Address Register. See pages 11 and 14. 

MNI and DP6 generate a DEC pulse which decreases the value of the 
Countdown Register by one. See pages 4 and 24. RDG and DP6 generate 
an SDPl pulse which sets the Distributor to a count of 1. See pages 5 
and 24. 

No operation 

STCC, CKE 

OUTPUT COMMAND - OCD 

This instruction selects the external device which will Interface with the computer. 

OP CODE - 1116 

DPO DPl DP2 DP3 - DP14 DP15 

STCC 
INOC SDP15 

CKE 

223 



DPO 

DPI 

DP2 

DP3 
through 
DP14 

DPIS 

(INOC) Initiate Output Command 

OCD and DPO enable initiate output command (INOC). See page 20. This 
signal selects and enables the Interface addressed by the instruction 
operand. 

No operation 

(SDPlS) Set Distributor pulse IS 

OCD and DP2 enable SDPIS. See page 21. This signal sets the Distributor 
to a count of IS. See page S. 

No operation 

STCC,CKE 

SENSE STATUS - SST 

This instruction allows the previously selected external device to send an 8-bit 
status word to the Accumulator. 

OP CODE - 0016 

DPO DPI 

INSS TEB 

DPO 

DPI 

DP2 

DP2 DP3 DP4 - DP14 DPIS 

STCC 
TBA SDPIS 

CKE 

(INSS) Initiate Sense Status 

SST and DPO enable Initiate Sense Status (INSS). See page 20. This 
signal enables the Interface to generate a Status word. 

(TEB) Transfer external data to the Buffer 

DPI and SST generate TEB. See page 20. TEB transfers the data word, 
which is stored in the output registers of the Interface to the Buffer 
Register via the Z-bus TEB also enables TZB which strobes the data into 
the Buffer Register. See pages 3 and 19. 

(TBA) Transfer the Buffer contents to the Accumulator 

The data present in the Buffer Register is transferred to the Accumulator. 
The data present in the Buffer Register is available on the Y-bus. Since 
the computer is not doing an arithmetic operation, data in the Y bus is 
transferred through the Arithmetic Logic Units (ALU) without the use of 
a strobe pulse. Thus, the data in the Buffer is also available at the 
output of the ALU or the F-bus. See page 2. 

SST and DP2 enable two signals: Shift the Accumulator Right (SAR) and 
Shift the Accumulator Left (SAL). See page 23. Both these signals are 
enabled for the complete Distributor pulse. 

224 



DP3 

DP4 
through 
DPllf 

DPIS 

When CP2 occurs during DP2, a parallel load of the F-bus into the Accumu­
lator takes place if SAR and SAL are enabled. Thus, a transfer of data 
from the Buffer to the Accumulator has occurred. See page 1. 

(SDPlS) Set Distributor pulse IS 

SST and DP3 enable SDPIS. See page 21. This signal sets the Distributor 
to a count of 2S. See page S. 

No operation 

STCC, CKE 

CLEAR FLAG - FLC 

This instruction clears the Flag flip-flop under program control. 

OP CODE -2816 

DPO DPI 

CLF 

DPO 

DPI 

DP2 

DP3 
through 
DP14 

DP2 DP3 - DP14 DPIS 

STCC 
SDPIS 

CKE 

(CLF) Clear the Flag flip-flop 

FLC and DPO are ANDed to clear the Flag flip-flop. See page 19. 

No operation 

(SDPlS) Set Distributor pulse IS 

FLC and DP2 enable SDPIS. See page 21. This signal sets the Distrib­
utor to a count of IS. See page S. 

No operation 

DP15 STCC, CKE 

SET FLAG - FLS 

This instruction sets the Flag bit under program control. 

OP CODE - F8l6 

DPO DPI DP2 DP3 - DP14 DP15 

STCC 
STF SDP15 

CKE 

225 



1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

1. 

DPO 

DPI 

DP2 

(STF) Set Flag flip-flop 

FLS and DPO are ANDed to set the Flag flip-flop. See page 19. 

No operation 

(SDP15) Set Distributor pulse 15 

FLS and DP2 generate SDP15. See page 21. This signal sets the Distrib­
utor to a count of 15. See page 5. 

DP3 
through 
DP14 No operation 

DP15 STCC, CKE 

REVIEW QUESTIONS 2-17 

Match the operation with its associated timing pulses. 

Reads the OP CODE from memory 

___ During execution time causes the index register to be added to the operand 

Sets the condition codes >0, = 0, <0 

Transfer the P-register high order bits to the Buffer and sets B7 and B4 

Sets the distributor (D-register) to a count of 11 

___ Changes the distributor pulses from acquisition to execution phase 

Causes indexing if bit 2 of the OP CODE register (S-register) is set 

Checks the countdown register during a multiply 

Transfers the Buffer to the Q-register 

Transfer the P-register to the M-register during execution of a skip 
instruction \ 

a. DPO d. DPll g. DPA15 

b. DP2 e. DPAI h. DP15 

c DP6 f. DPA9 i. DP3 

Circle the letter of the correct answer. 

What is a function of the DPA4 pulse (sheet l8)? 

a. Produces the TGM signal 

b. Produces the AXM signal 

c. Given the address for the next OP CODE 

d. Allow the distributor to be set to a count of 15 

226 



2. Which of the following is not a function of DPA15 (sheet 18)? 

a. Clear divide error 

b. Clear add error 

c. Clear instruction error 

d. Clear sign flip-flop 

3. When will DP15 set the condition code less than zero CCLT (sheet 19)? 

a. Q7 is 0 and doing a divide 

b. Q7 is 1 and doing a divide 

c. A7 is 1 and doing a divide 

d. A7 is 0 and not doing a divide 

4. When does the TWOs signal (sheet 3. 2F) go-low? 

a. DP2 of a multiply 1nstruction if A doesn't equal 0 

b. DP3 of a multiply instruction if Q doesn't equal 0 

c. DP4 of a divide instruction if Q doesn't equal 0 

d. DP3 of a divide instruction when Q doesn't equal 0 

5. Which signal is not produced by DPO of an STA instruction (sheet 23. D5)? 

a. TAZ 

b. TXB 

c. TZB 

d. TAB 

6. Which of the following signals is produced by the STX instruction at DPO (sheet 23. 
1D)? 

a. TMX 

b. IBS 

c. TZB 

d. SDP15 

7. During DP1 of an LDA instruction. which of the following signals are produced 
(sheet 18. D8 and C6)? 

a. SAR and SAL 

b. TAB and TAZ 

c. ISB and TZB 

d. CLA 

227 



8. What conditions must be met at DPA3 to produce an instruction error (SERI)? Ref­
erence sheet 17, 3E. 

a. S2 set and OP CODE is between 20(16) and FF(16) 

b. S2 set and OP CODE is between 0(16) and 1F(16) 

c. S2 clear and OP CODE is between 20(16) and IF(16) 

d. S2 clear and OP CODE is between 20(16) and FF(16) 

9. If 78(16) is in the S-register, which decoder on sheet 17 is conditioned, and what 
output pin is low? 

a. 21G pin 1 

b. 2lC pin 1 

c. 2lG pin 17 

d. 211 pin 17 

10. Which of the following signals will not produce (SPCK) a stop clock (sheet 18, 7A)? 

a. DP15 in AlE mode 

b. DPA15 in instruction mode 

c. Every pulse in distributor mode 

d. DP15 in instruction mode 

11. Which of the following would prevent DPA15 from clocking the E flip-flop to execu­
tion phase (sheet 5, B7)? 

a. Distributor mode only 

b. Instruction mode and RPT being used 

c. Program mode and RPT being used 

d. AlE mode and RPT being used 

12. Which instruction uses the signal Q6QO (sheet 6 coordinate AS)? 

a. Multiply 

b. Divide 

c. Add, SLA, and SRA 

d. Subtract, SLA, and SRA 

13. Which of the following instructions will produce the TPLB signal during execution 
phase (sheet 12, 10F)? 

a. BST if B-register is clear c. SKF if flag is clear 

b. SKI if interrupt is set d. SKS if sense is clear 

228 



14. There are 35 lamps on sheet 16; 8 for the index register, 10 for the program 
address, 10 for the memory address, 6 for the OP CODE register, and one additj.onal 
lamp. What causes the extra lamp? 

a. Index bit 

b. Sense switch 

c. Sign bit for condition codes 

d. Lamp test light 

15. Which of the following conditions will not produce the SAOV signal (sheet 1, A8)? 

a. Subtract a positive from a negative and get a positive difference 

b. Subtract a negative from a positive and get a positive difference 

c. Add a negative to a negative and get a positive sum 

d. Add a positive to a positive and get a negative sum 

16. What instruction will cause pin 8 of the ALU chip 5E (sheet 2, 3E) to be low? 

a. AND 

b. lOR 

c. SUB 

d. XOR 

17. The COMP signal on sheet 3, 10F, can be produced by all the following except: 

a. DIV 

b. MPY 

c. LAN 

d. SLA 

18. Which instruction cannot produce an SDP15 signal during execution phase? 

a. SKI 

b. MNO 

c. DIV 

d. BST 

19. What will be in the accumulator after DP2 of LAN instruction if the accumulator con­
tains 55 and the Buffer contains FO after DPO? 

a. AA 

b. AB 

c. OF 

d. 10 

229 



CHAPTER 3 

COMPUTER SYSTEM MAINTENANCE 

COMPUTER DIAGNOSTIC PROGRAMS 

To better guard our country in today's electronic world, the Air Force must be in 
constant readiness and be able to act with speed to any change in the world situation. 
The need for speed and reliability has placed strict requirements on both equipment and 
manpower to maintain and repair this equipment. The mission of the Air Force requires 
its electronic equipment to be reliable 100 percent of the time. As with all.electronic 
equipment, computers are subject to malfunctions that must be repaired. 

Purpose of Diagnostic Programs 

When considering the·enormous number of circuits and the numerous functions per­
formed by some of the large general-purpose digital computers, one realizes that pre­
viously used methods of trouble isolation and detection are impractical and inadequate. 
Circuits designed to provide reliable data processing and computation, with speed and 
accuracy, require a more scientific method of preventive maintenance, as well as correc­
tive maintenance. 

The magnitude of the number of circuits and the many functions which they perform is 
an indication of the number and types of failures that can occur in equipment as complex 
as modern weapons systems. The basic circuits and combinations of these circuits are 
designed to perform specific operations rapidly, accurately, and reliably. If one of 
these circuits should fail to produce its specified output, the entire mission could be 
lost. Therefore, special preventive maintenance is necessary. 

The maintenance program is one of the major tools used to maintain some of the com­
plex systems. A maintenance program is any program designed to indicate whether the com­
puter is able to correctly perform its intended design function. If improper operation 
occurs, the maintenance program should be able to specify the equipment which is respon­
sible for the error(s). The primary function of any maintenance program is to maintain 
computer reliability--that is, to locate any existing or impending failure during 
scheduled maintenance periods so that no machine failures occur during operating time. 
Therefore, the maintenance program must attempt to test computer circuits as\thoroughly 
as possible. 

FAILURE ISOLATION. Maintenance programs used for trouble isolation and detection 
must check for many types of troubles. However, one can see that it would be impracti­
cal, if not impossible, to check every trouble possibility. In order to check the maxi­
mum number of conditions, the programs are written to detect classes of troubles so that 
further isolation of trouble within a class can be accomplished. 

System failures have been classified into three states as follows: 

• Catastrophic failures 

• Intermittent failures 

• Machine state failures 

The catastrophic failure is one that is continuously prese~t until it is repaired. 
It is the ea~iest to detect and locate. Programs designed to locate catastrophic fail­
ures usually exercise each unit of .the equipment by using several different approaches 
to its operation. These approaches or techniques will be discussed later. 

230 



The intermittent failure is one that is not continuously present but that can pro­
duce inconsistent symptoms. An intermittent failure can both appear and disappear at 
random. Due to the inconsistent and erroneous symptoms that may occur during the pro­
gram run, this type of failure is extremely difficult to isolate. 

Machine state failures are similar to the intermittent failures in the inconsistency 
of indications that they may present. Machine failures, however, occur only under certain 
specific conditions. These failures may occur as the result of a unique sequence of 
instructions or as the result of a particular instruction being followed by a specific 
delay in time. Machine failures may occur only at a particular machine duty cycle, or at 
a particular pulse repetition rate. 

PROGRAMMING TECHNIQUES. The function of a maintenance program is to help the com­
puter repairman find and fix failures quickly. In order to do this, a programmer may 
use several techniques or a combination of techniques when writing a program. Five of 
the major techniques are listed below. 

Start small, as the name implies, starts its operation by checking a small number of 
key circuits. These circuits are then used to check another small group of circuits. 
This process uses a continually expanding group of proven circuits to check out other 
groups of circuits until the total area within the scope of the program is checked. The 
start small is thorough and well suited to diagnosing catastrophic failures and some 
types of intermittent and machine state failures. 

Start big is the technique used to test the computer while operating in a manner 
similar to its operational mission. Since the entire computer is under test, the start 
big would detect certain catastrophic, intermittent; and machine state failures (which 
would normally escape the attention of a start small program). 

Marginal checking is a must in many of our older computer systems. Basically, it is 
a method of preventive maintenance that simulates component aging by using voltage varia­
tions to aggravate current operation. Since component values normally change with age, 
the marginal check is a valid indication of how soon a component will need replacing. 
The most widely used method of marginal checking are the variation of AC vacuum-tube 
filament voltage and the variation of DC supply voltage. 

Multiple clue approach may be used to isolate a malfunction. Once an error is 
detected, a program using multiple clue approach attempts to obtain the same error using 
varying sequences of instructions. If the error can be detected in a variety of ways, 
it is only necessary to locate the common conditions in isolating the error. 

You will find that certain errors in the computer system are very difficult to analyze. 
However, it is possible for a maintenance program using the process of elimination to aid 
you in locating e~rors. Some circuits cannot be directly checked by the maintenance 
program, but if we validate each circuit in an area, then we could infer the trouble to 
the area not checked. 

CAUSES OF SYSTEM FAILURE. There are many causes of system failures that could be 
listed; however, we will only list a few. These failures are listed to enable you to 
recognize the need for maintenance program versatility to the extent that they can 
detect and isolate a variety of failures. 

• Failing circuit cards (opens, shorts, etc.) 

• Loss of voltage 

• Timing 

• Interface problems 

231 



@ Spurious or continuous outputs 

® Operator error 

El Program 

Basic Requtrements 

There are three requirements of a maintenance program to make it valid. First, it 
must accurately check the equipment, locate all the errors, and give this information to 
the repairman. Second, it must consistently find any and all errors. Third, it must be 
comprehensive. It must find errors without regard to type, nature, frequency or loca­
tion. Maintenance programs must completely test the equipment. Programs must detect 
any abnormal circuit or system consistently and completely. (The above approach is, 
of course, idealistic. These three requirements are goals we strive to reach in all 
maintenance programs. Because programs cannot always be written to find every con­
ceivable problem, maintenance personnel are needed to insure continuous, reliable 
operation. ) 

To insure a computer meets the demands of actual operation, the program must exer­
cise the computer at least as much as actual operation. These maintenance programs are 
known as Reliability Programs because they determine hOv1 reliable the computer is in 
actual operation. 

One other type of checking program was developed to find known machine failures. 
This was done to confine the error to the smallest possible area. These programs are 
called Operational Diagnostic Programs. Diagnostics are designed for checking th8 com­
puter and all of its terminal equipment. A diagnostic program can be split into two 
parts. The first part checks for an error. The second part gives the results of these 
checks to the maintenance man. Usually these results are in a printed form. This flow 
chart represents the basic setup for a diagnostic program, 

[

CHECK FOR ONE 

TYPE OF MACHINE 

FAILURE 

CONTINUE NO ~ YES 4--._< TH~EE:R:E 'AN 

""'ERROR? 
'--___ .-l 

PRINT 

ERROR 

MESSAGE 

RDA26-459 

These two separate maintenance programs had certain disadvantages. The reliability 
programs could determine an error occurred, but a diagnostic program was needed to deter­
mine ~"here it occurred. Too many programs were needed to isolate an .error. The relia­
bility programs '"Jere not comprehensive and missed many errors. The two types of pro­
grams have been combined into a single program th8.t overcomes these problems. This 

232 



program is designed to not only locate every possible. error, but also to trace any error 
detected to its location. These programs are what we refer to today by the title 
"Diagnostic" programs. The word diagnostic is like the word diagnose used in medicine. 
Diagnose is the step a doctor goes through to determine a patient's ailment or disease. 
In the computer field, it means to check for errors in either the computer or in its 
terminal equipment. It also means to isolate a machine failure to a small area of logic. 
Some of the newest computer system diagnostics can tell you which circuit card has failed. 
The key idea here is that it checks the computer equipment for errors, and tells you 
where the errOr occurred. -----

SUMMARY. Because of the speed of computers, new methods were developed to help find 
and fix machine failures. Because these programs helped to maintain the computer they 
were called maintenance programs. They .~"ere separated into t'VTO types. The first, a 
reliability program, checked for errors. The second, a diagnostic, narrowed an error 
down to a small area. These two types had disadvantages which caused them to be com­
bined into a single program usually called a "diagnostic." To be good, a diagnostic 
program must accurately check the equipment and consistently and comprehensively locate 
errors. 

Exercise 3-1 

Purpose of Diagnostics 

INSTRUCTIONS 

There are four types of questions i.n the exercise. Essay, multiple choice, fill in 
the blank, and true-false. Answer the essay questions with a short paragraph. For the 
multiple choice question, circle the letter which corresponds to the correct answ·er. 
The "fill in the blanks" need one or more words to make a complete sentence. In the 
true-false questions, circle whether the question is true or false. 

1. ~.Jhat major requirement does the Air Force make of its electronic equipment? 

2. Why didn't the old repair techniques ~"ork in computer repair? 

3. The main things we check in determining correct computer operation are: 

a. Speed of computer operation. 

b. Accuracy and reliability of computer operation. 

c. Speed of printer operation. 

d. Temperature of computer cabinet. 

4. The two types of maintenance programs are: 

a. 

b. 

5. Why were computer programs developed to check thl? accuracy of the computer 
operation? 

233 



6. What were these older checking programs called? 

7. How is locating a computer error similar to what a doctor does in determining what 
is making you ill? 

8. What does a reliability diagnostic program determine about the operational status of 
a computer? 

9. What shortcomings of earlier maintenance programs brought about present-day 
diagnostics? 

10. The computer operational diagnostic program has the purpose of: 

a. Managing computer input/output transfers. 

b. Verifying the computer would function under operational loads. 

c. Determining the operational status of the computer. 

d. Test the teletype for on line operation. 

11. Which operational diagnostic program would be best? One that prints. 

ii. X instruction failed. 

b. Replace circuit cards 1. 2. 4. 5. 

c. IC 36 circuit card 4 failed. 

d. X instruction failed. check logic pages 6. 8. 10. Check signals A3. B6. A2. 

12. Why is it better to have a diagnostic which prints as much information as Dossible? 

13. Which of the older maintenance programs was used to isolate an error to a small 
area? 

a. Reliability programs 

b. Consistent programs 

c. Main frame programs 

d. Diagnostic programs 

14. The older diagnostic programs were designed to exercise the computer to the expec­
ted operational levels and detect all errors. (True) (False) 

234 



15. The two types of diagnostic programs which were previously used in computer mainte­
nance to detect and isolate computer malfunctions are: 

a. 

b. 

16. Select all of the following which are requirements of a valid maintenance program. 

a. It must be consistent 

b. It must test only the I/O portions of the computer 

£. It must require the use of the standby equipment 

d. It must measure the power fluctuations of the main power unit 

e. It must locate all errors regardless of location or type 

f. It must be comprehensive 

COMPUTER SYSTEM TROUBLESHOOTING 

The general maintenance function performed by most 305XXs fall in the category of 
preventive maintenance routines and the repairing or replacing of electronic components. 
Preventive maintenance is the maintenance of a computer system which attempts to keep 
equipment in top operating condition and to preclude failures during production runs. 
Preventive maintenance inspections (PMls) are scheduled maintenance actions which are 
utilized to insure that the end item is operating within specified tolerances. Some of 
the tasks performed are service, inspections, operational/performance checks, etc. 

Even though preventive maintenance is an important task, we will devote the rest of 
this chapter to the repair or isolation of faulty computer circuits. 

Troubleshooting Techniques 

As a computer repair technician, you will use diagnostic programs to quickly locate 
failures, and restore correct machine operation. You will learn the different ways a 
computer can fail, and recognize each type of error. 

Before tracing a logic error, we need to be aware that some apparent machine failures 
can be caused by improper computer operation. A computer operator can cause apparent 
errors by setting wrong switches. A computer is extremely fast, but it cannot reason. 
A computer does what it is told. Apparent errors also result if a programmer makes mis­
takes, in writing or coding the program. When the program and the operation of the pro­
gram are both correct, the problem is a machine failure. 

Locating the exact circuit failure requires a knowledge of troubleshooting tech­
niques. These techniques will give the basis to theoretically locate and trace errors 
to the failing circuit. The job of finding where a machine failure exists is made up 
of three main parts. 

1. Running the program to observe the error indications. 

2. Asking questions about the error indications and program operation that limit 
the problem to a small area of logic. 

235 



3. Checking for the correct signal in the suspected circuit until the failure is 
found. 

l~e will examine each of these parts, one at a time, to see what each involves. 

Part One: Running the Program. ~en you troubleshoot, you should always compare 
what the broken machine does with what a working machine does. The actions of a cor­
rectly operating computer are given for each instruction in the logic and timing charts. 
You will start troubleshooting the COM-TRAN 10 by loading a program into the computer. 
You will then need to check for correct operation. After you have observed correct 
machine operation, the instructor will insert an error. Run the program in program 
mode to see what goes wrong. Check all used registers and memory locations for their 
correct values after the program stops. Run the program in instruction mode checking 
again for error indications. Keep track of each error indication. Now run the program 
in acquisition/execution mode to see what error indications occur. Finally, run the 
program in distribution mode and check the operation of each DPA and DP pulse for error 
indications. 

Part Two: Questioning. The questions you ask will be different for each program 
and error. Your ability to ask questions will develop as your troubleshooting experience 
grows. The questions you ask will be about the error indications you saw from part one. 
~at is the program doing that it should not do? Which instruction is failing? Where 
is the instruction failing? In acquisition or execution? In which pulse do you see the 
error indication? In what instruction do you see the first error indication? The loss 
of what signals could cause this error indication? What do the failing instructions 
have in common? The answers to these questions should give us a good idea of where to 
start tracing logic. 

Part Three: Error Tracing. The tracing of errors or breakdowns in any system can 
be approached from three directions. You can start at the input and work to the output 
or you can start at the output and work back to the input. The final approach is to 
start in the center. When you start in the center and all signals are good, you know 
that the error is between you and the output. You continue to divide the remaining dis­
tance the signal travels until you find the error. This is the fastest method. Here 
are a few examples of its use. We use a straight line to represent the signal flow. 

0 

'" ~ z '" 0 0 U I- U 
~ U w Vl w 

~ 
~ w :r: :r: 
w Vl U LL U 

"- ", 

INPUT ~ DA TA FLOW OUTPUT 

,/ 

+ 
:r: 
I- '" ~ U ~ U _ w 
:::> w 

:r: :r: 0 :r: 
I-U LL U 

Example 111 RDA26-460 

Our first check shows an error in the signals. This means the error is upstream. 
The second check also finds errors, so we again divide the distance in half and do a 
third check. Finding the correct signals, we know the problem is toward the point 
where we made our second check. This has narrowed the error location down to a small 
area in just three checks. After the fourth check we have narrowed the area of the 
error to between the points where we made the third and fourth check. If you find no 
error using this method, the problem is upstream in the data flow. 

236 



When you make your checks with the oscilloscope, there are a few things you need to 
keep in mind. Where should you trigger the scope to see the signals? How do you get 
the computer to loop on an instruction, so you can see the signals. It is best to have 
the scope trigger on the lowest frequency. When you are looking at an instruction, you 
trigger on the instruction signal. When you are ready to trace signals, you first decide 
which signal has the lowest frequency. Set your scope to trigger on this signal. Set 
the computer so it loops through the instruction. Do this with an unconditional branch 
instruction (BUN). The program below shows how to examine an instruction: 

Memory locations Mnemonic 

00,01 LDA 10 

.02,03 STA 10 Error found in this location 

04,05 BST 04 

To look at the signals generated during the STA 10 instruction, alter the program so it 
will loop on that instruction. Do this by placing a BUN instruction immediately follow­
ing the failing instruction. The program will continue to branch back to that instruc­
tion. Examine the following program. 

Memory locations Mnemonic 

00,01 LDA 10 

02,03 STA 10 

04,05 BUN 02 Branches back to the STA instruction. 

To examine the LDA 10 instruction, use the following program. 

Memory locations 

00,01 

02,03 

Mnemonic 

LDA 10 

BUN 00 Branches back to location 00 and the LDA 10 
instruction. 

Troubleshooting Example One 

Let's look at the first sample troubleshooting problem. Refer to KDA-3033. 
Exercise -'1;..6, page 18 and fill in appropriate blanks. 

Memory locations 

00,01 

02,03 

04,05 

06,07 

c(101)=5 

c(l02)=5 

c(103)=0 

Hex Code 

21 01 

61 02 

49 03 

98 06 

Mnemonic 

LDA 101 

ADD 102 

STA 103 

BST 06 

237 

Comments 

Brings first value to Accumulator 

Add second value to Accumulator 

Store sum in memory location 103 

Stop at locatipn 06 



This program should be carefully.loaded into the computer and checked to be sure it 
runs correctly. Memory location 103 will contain the sum of the two numbers after the 
progtam'stops. You will need to clear this location each time you run the program. You 
cannot be sure the correct sum was stored unless this step is completed. 

Before the instructor puts an error into the computer, be sure you know what the com­
puter does without an error. When sure of the correct operation, have the instructor 
put an error in the computer. You now begin part one of troubleshooting. The purpose 
of part one is to find the error indications. Run the program in program mode and check 
to see if the correct value has been stored in memory location 103 when the program 
stops. We find 00, which is an error. Go to instruction mode and step through the pro­
gram one instruction at a time. Remember that in instruction mode, the first time we 
press the start switch, the first instruction is executed and the second instruction is 
acquired. This book shows the display lights as we step through the program. The dis­
play at the top of each page will show the correct values of each register; the display 
at the bottom of each page shows the error indications. An example figure shown below 
will give you an idea how the display panel will be presented after each instruction has 
been executed. The darkened squares represent binary zeros (lights off). The binary 
counts on the displaypanel'for the following registers and indicators are: 

Accumulator 53 
Quotient FO 
Buffer A4 
Index 76 
Op Code 89 
Operand AB 

ID >0 

COND • =0 

CODE • <0 

L. CARRY 

I· INTER: 

STATUS ~ SENSE 

·FLAG L. WAIT 

r-. INST 
ERROR • ADD 

,Lo DIVIDE 

m.m. rnm •• 
L-COUNT DOWN---1 

Count Down AC 
Distributor OD 
Program Address EF 
Cond Code >0 
Status 
Error 

Sense 
Divide 

r QUOTIENT-__ 

CZJ lID [!J(lJ ••• ~ 

r OP CODE_· __ 

0 ••• O •• til r OPERAND __ _ 

COP CODE--.i I _l __ [i]. rn • rn. OJ m1 
MEMORY ADDRESS .J 

• rn CiJ.lID 
LDISTRIBUTORJ 

238 

RDA26-461 





,0 >0 

• =0 
COND • <0 
CODE 

L-. CARRY 

\M INTER 

• SENSE 
ST ATUS • FLAG 

L. WAIT 

r-. INST 
ERROR • ADD 

L-. DIVIDE 

•••••••• L-COUNT DOWN---1 

NO ERROR 

QUOTIENT I 
r-ACCUMULATOR--, I 

IIUIIUI Ell •• ••• 11 maUD. 

BUFFER 
I I INDEX 

I 
I •••• IIl11m[ID ••• m eJlII&llI 

OP CODE 1 OPERAND , I I. 0 II IiJ 0 lI.lID IIIUiDII IIflllD[Q) Lop CODE--1 k I MEMORY ADDRESS I 

lID 1111 ell 
LDISTRIBUTORJ 

II. IHIAI. lIJrnma 
LL...--PROGRAM ADDRESS---..II 

us hed for the fourth time and The START pushbutton has been p t d The fourth instruction 
the third instruction has been execu Ce d' . ster Note the 

. . th Op 0 e reg1 • 
has been acq~ired. and 1S 1n 0 e Code register, Operand, and error indicatlons m Buffer, p 
Pro ram Address r ,0 >0 

• =0 
COND • <0 
CODE 

L- .. CARRY 

\8 INTER 

• SENSE 
STATUS • FLAG 

L. WAIT 

r-. INST 
ERROR II ADD 

L-. DIVIDE 

•••• •••• 
L-COUNT DOWN---1 

ERROR 

QUOTIENT I 
r-ACCUMULATOR--, I 

IIUI •• •• IHI 1118.11 maw. 

BUFFER 
I I INDEX 

I 
I 
II ••• • mm • •••• •••• 

OP CODE 1 OPERAND 
I I 10 ... 0 0 ~ •• •••• IIllllDll Lop CODE--1 x l MEMORY ADDRESS I 

lID •••• 
LDISTRIBUTORJ 

•• •••• mam. 
lL...--PROGRAM ADDRESS----.l' 

240 
RDA26-463 







There are enough indications to narrow our search. We are not quite ready to leave 
part one, but we can start asking ourselves questions. Does the STA 103 instruction do 
what it should? By finding that location 103 still contains 00 we know that a STA did 
not work correctly. The answer to our first question is no. Do the LDA and ADD instruc­
tions do what they should? We look at the accumulator and see that the correct values 
were loaded, and the correct sum generated, so the answer to this question is yes. 
Notice that we are combining steps one and two of troubleshooting here. We continue to 
look for error indications and to ask questions that will narrow down our search. During 
what instruction is the first error indication found? We see that the Program Address 
Register has the wrong value after the Acquisition of the ADD instruction, so the answer 
is the ADD instruction. The Program Address Register contains 006 instead of 004. How 
will the incorrect value in the Program Address Register affect the operation of the~m­
puter? This will cause the program to go to memory location 006 for the (BST) instead of 
location 004 for the STA instruction. This is why the correct sum isn't stored into 
memory location 103. 

Since the first error indication occurs during the acquisition phase of the ADD 
instruction, go to the distribution mode and step through' the acquisition phase of the 
ADD instruction. 

Buffer 

Program Address 
DPA 0 

Memory Address 

Memory 

Buffer 
DPA 1 ADD 

ADD (61) 

Buffer Op Code 
DPA 2 

~_6_1 __ ~----~~~1 ___ 6_0 __ ~ 

• DPA 3 Check for invalid instructions 

243 



DPA4 

DPA 5 

DPA 6 

DPA 7 

DPA 8 

DPA 9 

DPA 10 

DPA 15 

Memory Address Index Adder 

02 +1 

Memory 

emory Address 
03 

M 

I 03 l 02 I 

Memory Address Index Adder 

~ ___ 0_3 __ ~~----~~~1 ____ +_1 __ ~ 

03 
+ 1 

Memory Address 

03 

Buffer 

02 I 

Memory Address 

06 

04 Does not equal 06. First error indication. 

Memory Address 

06 

Combined Buffer 
and Op Code 
Registers 

102 

Program Address 

06 

Memory Address 

102 

No action - not an indexed instruction. 

Set distributor to DPA 15. 

Set distributor to execution mode. 

244 

Error indication - should 
be 04 



Going back to DPA 6, the correct action would be 

Memory Address Index Adder Memory Address 

DPA 6 ~ ___ 0_3 __ ~~--~.~I ____ +_l __ ~~------~.~1 ____ o_4 __ ~ 

but the action we saw was: 

Memory Address Index Adder Memory Address 

L-___ 0_3 ____ Ji----~·~I ____ +_1 ____ ~--------··~I ____ 0_6 ____ ~ 

What is the difference between the error condition and the expected action? 

CORRECT VALUE 

N 

"­u 

Figure 3-1 

245 

IN >-

ERROR VALUE 

011 
+ 1 

110 

N 

"­u 

I~ I~ I~ 
RDA26-377 



Bit Ml is set when it shouldn't be. We now have the indications we need and continue 
with out questions that will limit the area of our search. To which area of logic should 
we turn? Since the problem occurs in the Memory Address Register, that would be a good 
place to start. Sheet 11 of KDA-3034 is the logic for the M-register. Turn to that page 
of logic before you continue reading. . 

With which part of the logic on sheet 11 should we concern ourselves? Bit Ml is 
incorrect. The D flip-flop which generates the Ml signals is a good place to start. This 
is flip-flop B2 - l2FA on sheet 11 or figure 3-1. 

Which of the three inputs to the D flip-flop (B2 - l2FA) will cause the error at 
DPA6? The input Gl to the flip-flop is from the index adder. The index adder is being 
used at DPA6, so this input is a possible source of our error. The fact that the LDA 
instruction worked correctly during DPA4 and DPA6 of the LDA acquisition makes a failure 
on the GL input very remote. The Z bus input is used whenever we transfer the Program 
Address Register into the Memory Address Register. We know that this transfer works 
because the acquisition phase for the LDA instruction worked correctly. 

This leaves the Y bus input. The Y bus Yl signal enters gate 2D13FB through pin 5. 
This Yl signal will be gated through AND-gate 2D13FB by the high enable signal to pin 4 
of that same gate. See figure 3-2. 

Yl 

Figure 3-2 

246 

.--..o.=;""'-DP AS 

TIM 

--;;"'JO'o';;""'-T BM 

C P 2' (i5PAii + 'i'iM + "fBM) 

RDA26-378 



This enable signal to pin 4 is generated by AND-gates E7 l4HA and F9 l5JB. It is 
generated by the logic equation CP2 (DPA8+TIM+TBM). 

By the questions we have asked, and the error indications from part one, we are 
reasonably sure the problem exists on the input of the Yl bus into the Memory Address 
Register bit position MI. The Buffer and Input Register are the only registers to feed 
the Y bus. During program execution only the Buffer register is used. The problem is 
first detectable at DPA6 of the ADD acquisition phase. Reviewing the acquisition phase 
of the LDA instruction, at DPA6 we have: 

Case 1 Memory Address Index Adder Memory Address 

~ ___ 0_1 ____ Ji-----.~~I ____ +_l ____ ~--------··~I ____ 0_2 ____ ~ 

••• but at DPA6 for the ADD acquisition: 

Case 2 Memory Address Index Adder Memory Address 

~ ___ 0_3 __ ~r-----~·~1 ____ +_1 ____ J---------··~1 ____ 0_6 ____ ~ 

Why isn't the computer doing the second case like it does the first? What is the 
difference between the two? 

Since the Y bus comes from the Buffer register, we need to see what the contents of 
the Buffer were at the time of each case. 

Case 1 Case 2 
LDA acquisition DPA6 ADD acquisition DPA6 

Buffer Buffer 

01 02 

Memory Address Memory Address 

01 03 

+1 +1 

Memory Address Memory Address 

02 06 Error 

247 



We are looking at the Y bus input to the Memory Address Register, which comes from 
the Buffer Register. In case 2 the Buffer bit Bl is set, and bit Ml of the Memory 
Address Register doesn't clear like it should. 

Going back to logic sheet 11, if the Yl line is true (bit Bl is set), and we get the 
enable signal to pin 40f AND-gate D2 l3FB, the value on the Yl line will be loaded into 
the Ml flip-flop. 

The logic equation for the enable signal to pin 4 is CP2 (DPA8 + TIM + TBM). At the 
ADD acquisition DPA6, we are not at DPA8, we are not doing a Buffer to Memory Address 
Register transfer (TBM) , and we are not doing a manual input to the Memory Address 
Register (TIM). There shouldn't be an enable signal present at pin 4 of D2 l3FB. 

Is there an incorrect enable pulse being generated and applied to pin 4 of AND-gate 
D2 l3FB on sheet II? 

We have confined the problem to a small area of logic. Now we can trace signals with 
the oscilloscope. Place the oscilloscope on internal trigger. Set the computer to do 
the acquisition phase of the ADD instruction. Set the distributor to a count of eight 
(8) hexidecimal and depress the REPEAT switch. Place a probe on pin 3 of AND-gate l4HA 
(coordinate E7). (See figure 3-3.) Watch the level as we step through the DPA pulses. 
At DPA8 the enable signal is generated correctly. Move down stream in the data flow and 
check the enable signal at pin 4 of AND-gate 13FB (coordinate D2) (see figure 3-3). Put 
the probe on pin 4 of the AND-gate and set the computer to do the ADD acquisition phase. 
Watch the CRT for the enable level as we step through the DPA pulses. Here ·the signal is 
not present. 

Yl 

2 

Figure 3-3 

What would cause pin 4 of D2 l3FB to not receive the signal? 

The input to any transistor transistor logic (TTL) integrated circuit will be the 
same as applying a positive five (+5) volts if input is open or is not connected. Some­
where between pin 3 of E7 l4HA and pin 4 of D2 l3FB there is an open on the line. 

We have located the cause of the machine failure. The enable is always high. When­
ever there is a one stored in the Buffer bit 1 position, it will be force fed into the 
Memory Address Register bit 1 position. 

We have traced our sample problem to an open at pin 4 of AND-gate D2 l3FB on sheet 
11. We have used the following steps: 

248 



1. Load the program correctly. 

2. Check it to learn what the program caused the machine to do. Use this knowledge 
to determine error conditions. 

3. Insert the error. 

4. Run the program in program mode, instruction mode, acquisition/execution mode, 
and distribution mode looking for error indications. 

5. Ask questions about the error indications that narrow the area of search. 

6. When the problem is isolated to a small area, use the oscilloscope to trace and 
find the error. 

REVIEW QUESTIONS 3-2 

Instructions 

There are 12 troubleshooting problems for you to solve. Each gives you the error 
indications, and four possible causes. Circle the one which will cause the given error 
indication. 

1. Upon execution of the following program, the Accumulator and Memory location 016 con­
tain IE, and the C-register contains the count 04. What could have caused this error to 
occur? 

Memory Locations Hex Code Mnemonics 

000, 001 02 7F LAI 7F 
002, 003 68 15 SUB 15 
004, 005 13 05 SLL 05 
006, 007 48 16 STA 16 
008, 009 98 00 BST 00 

C(OiS) = 70 

a. Pin 1 of AND-gate 4LA open (sheet 4-2D) . 

b. Pin 4 of flip-flop 4MA shorted to ground (sheet 4-6D). 

c. Pin 4 of flip-flop 4MA shorted to positive 5 volts (sheet 4-6D) . 

d. Pin 1 of AND-gate 1M open (sheet 4-6C). 

2. After completion of the following ~rogram, the "AQ" register and Memory Location 050 
contain 34. The malfunction which probably caused this is: 

Memory Locations Hex Code Mnemonics 

000, 001 20 4E LDA 4E 
002, 003 70 4F MPY 4F C(4E) 5 C(4F) 4 
004, 005 58 50 STQ 50 
006, 007 98 00 BST 00 

a. Pin 13 of Arithmetic Logic Unit 5E open (sheet 2). 

b. Pin 10 of Arithmetic Logic Unit SF shorted to ground (sheet 2). 

249 



c, Pin 1 or OR-gat~ 5D open (sheet 2-9E), 

d. Pin 4 of Inverter 4D open (sheet 2-8E). 

3. During execution of the following program, the computer halts at DPA4 with 002 in 
the "P"-register. What could have caused this? 

Memory Locations Hex Code Mnemonics 

000. 001 12 05 LXI 05 C(lO) 2 
002. 003 24 10 LDA.x 10 C(ll) 1 
004. 005 60 11 ADD 11 C(15) 10 
006. 007 4C 12 STA,x 12 C(16) 2 
008, 009 98 00 BST 00 

a. Pin 5 of OR-gate 24K open (sheet l7-6E). 

b. Pin 4 of Inverter 25F shorted to ground (sheet l8-2D). 

c. Pin 12 of NOR-gate latch 19F open (sheet l3-4C). 

d. Pin 2 of AND-gate 23H open (sheet 17-3E). 

4. If during DPA4 and DPA6 the Memory Address did not increment, a possible cause 
would be (assume the X-register contains all zeros). 

a. Pin 10 U83 lID (sheet 14 2-3B) open. 

b. Pin 1 UO l3CA (sh~et 14 3-4C) open. 

c. Pin 9 U74 l2FB (sheet 11 2B) open. 

d. Pin 11 U8 l4HD (sheet l19C) open. 

5. If the E flip-flop did not toggle at all. a likely point to check is (D-register 
is counting). 

a. Pin 17 U154 21E (sheet 18 4-5E). 

b. Pin 17 U154 211 (sheet 18 3E). 

c. Pin 11 UO 24LD (sheet 18 7E). 

d. Pin 3 U8 l8JA (sheet 15 3B). 

6. At DPA10 you find that the D-register is set to 14. ',:'A possible problem could be: 

a. Pin 4 U40 3KA (sheet 5 2D) open. 

b. Pin 3 U4 -2KB ,(sheet 5 7D) open. 

c. Pin 3 U3 23GA (sheet 2l-6C) open. 

d. Pin 4 U8 2HB (sheet 5 8C) open. 

7. You find that only Bits M8 and M9 never get cleared when transferring new data into 
the M-register, the fault could be: 

250 



a. Pin 1 U2 15HA (sheet 11 BD) open. 

b. Pin 1 U4 14FA (sheet" 11 9D) open. 

c. Pin 1 UO 14JA (sheet 11 9D) open. 

d. Pin B UB 14HC (sheet 11 9C) open. 

B. If the COM-TRAN 10 will acquire an instruction but will not execute that instruction, 
what is the most probable cause of the malfunction? 

a. Gate UO 24LD pin 11 is grounded (sheet 1B-7E). 

b. Integrated circuit U154 21J is inoperative (sheet 1B-3E). 

c. Gate U30 3HA pin B is grounded (sheet 5-7E). 

d. Pin 3 U451 3BA has a continuous high (sheet 9-6B). 

9. After execution of the following program, the Accumulator contains 17 and Memory 
location 012 contains 1F. What malfunction could have-caused the error? 

000 LDA 10 
002 ADD 11 
004 STA" 12 
006 BST 00 

C(010) = OA C(Oll) OD 

a. Pin 6 of inverter 6GC open (sheet 1-6D). 

b. Pin 13 of Arithmetic Logic Unit 5E shorted to ground (sheet 2). 

c. Pin 1 of AND-gate 7GA open (sheet 1-5C). 

d. Pin 12 of AND-gate 5JD shorted to positive 5 volts (sheet 1-6C). 

10. While attempting to run the following program, the computer halts at DPA4 with 001 
in the P-register. What malfunction could cause this? 

000 LDA 17 
002 XOR 1B C(017) = X C(OlB) = Y 
004 BZE OB 
006 BST 00 
OOB BST 01 

a. Pin B of AND-gate 27GC open (sheet 21-lD). 

b. Pin-.] of OR-gate 26CA open (sheet 24-4C). 

c. Pin 7 of Decoder 213 open (sheet 1B-3E). 

d. Pin 7 of OR-gate 26CA shorted to positive 5 volts (sheet 24-4c). 

11. After execution of the following program, Memory location 222 contains 70. Which 
malfunction caused this erroneous answer? 

251 



200 LXI 020 
202 LDA,x 201 
204 lOR 050 C(221),. = 25 
206 STA 222 
208 BST 000 

a. Pin 3 of AND-gate 29HA open (sheet 23-2D) • 

b. Pin 3 of AND-gate 29HA shorted to positive 5 volts (sheet 23-2D). 

c. Pin 1 of AND-gate 27JA open (sheet 22-2D). 

d. Pin 5 of OR-gate 30LB shorted to ground (sheet 20-5E). 

12. After completion of the following program, the Q-register and Memory location 012 con­
tain positive 6. Which malfunction listed below would cause this error? 

000 LAN 
002 MPY 
004 STQ 
006 BST 
C(lO) = 3 

010 
011 
012 
000 

C(l1) 

a. Pin 8 of Decoder 21L open (sheet 17-6E). 

b. Pin 10 of OR-gate 26HC open (sheet 18-8D). 

c. Pin 5 of OR-gate 31JB open (sheet 20-7E). 

d. Pin 16 of Decoder 21L open (sheet 17-7E). 

Troubleshooting Example Two 

2 

Let's locate a second machine failure. Refer to KDA-3033, Exercise 2-14, page 
21 and fill in appropriate blanks. 

Memory Hex 
Locations Code Mnemonics Comments 

00,01 21 00 LDA 100 Brings value in memory location 100 
to the Accumulator 

02,03 49 01 STA 101 Stores Accumulator into memory loca-
tion 101 

04,05 98 04 BST 04 Stops at location 04 in Program 
Register 

c(100) FF 

c(101) 00 

Load this program into the computer and be sure the machine performs it correctly. 
This program takes the value FF from memory location 100 and stores it into location 101. 
Memory location. 101 must be cleared before repeating the program. This is done to deter- • 
mine if the STA (store accumulator) instruction is being performed correctly. It is 
important that we know what the program does when working correctly, since we are using 
the correct operation of the program as our comparison. Call the instructor to place an 
error in the computer when you are sure of correct operation. . 

Begin the process of looking for error indications which is the first part of 
troubleshooting. Set the computer to program mode and run the program. Compare the 
values in the registers with the correct results previously obtained. The comparison 
should yield the following: 

252 



r-. >0 

l • =0 
COND 0 <0 
CODE 

L-. CARRY 

,. INTER 

, • SENSE 
STATUS • FLAG 

L. WAIT 

r--. INST 
ERROR • ADD 

L-. DIVIDE 

•••• •••• 
L-couNT DOWN---1 

NO ERROR 

r-ACCUMULATOR--, 

m rn ([J I!J rn rn m [QJ 

I BUFFER I 
•••• • rn •• 

I QUOTIENT , 

••••••••• 
I INDEX-----,I 

•••••••• 
'-r-- OP CODE 1 r-0PERAND I 
0 •• 0 0 ,.. •••• .[l] •• 
Lop CODE--' X l .... --MEMORY ADDRESS-_-..... I 

~ • •• lID 
LDISTRIBUTORJ 

••••••• rn •• 
L~_-PROGRAM ADDRESS---.l' 

. h h fl'nd BF in. the accumulator 'h am t roug we 
After runnmg t e progr '101 fl'nd that BF was also Ch k' g locahon we 
instead of FF. ec m , second error indication. Step , d f FF This IS our h . 
stored lnstea 0 ., / de to narrow the errol' furt er. through the program mAE mo. . 

,. >0 

• =0 
COND 0 <0 
CODE 

L-. CARRY 

,. INTER 

• SENSE 
STATUS • FLAG 

L. WAIT 

r--. INST 
ERROR • ADD 

L-. DIVIDE 

•••••••• ~COUNT DOWN---1 

ERROR 

QUOTIENT , r-ACCUMULATOR--, I •••• •••• m • ([J I!J rn rn m [QJ 

BUFFER 
I I INDEX 

I 
I •••• • rn •• •••• •••• 

OP CODE. 1 r-0PERAND I '0 •• 00, •• • ••• .[l] •• 
Lop CODE--' X I MEMORY ADDRESS I 

mJ ••• lID 
LOISTRIBUTORJ 

• •••••• rn •• 
... l_-PROGRAM ADDRESS---.l1 

253 

RPA26-466 



I~:~, 
COND •.. '<0' 
CODE 

L-. CARRY 

,. I.N TER' 

I., SENSE 
ST ATUS. 'FLAG 

L. WAIT 

r- • . INST 
ERROR,. ADD . 

L-. DIVIDE 

••••••••• 
L-COUNT DOWN--1 

WITHOUT ERROR 

r-ACCUMULATOR---, 

•••• •••• 
.... 1 --BUFFER , 

•••• •••• 

I QUOTIENT I 

•••••••• 
r-'---INDEX __ --.\ 

•••••••• 
..... --'--OP CODE 1 r OPERAND I 

' •• 0 •• ,.mJ •••• • ••• 
Lop CODE--.J X .... 1 --MEMORY ADDRESS,---..... l 

CfJ •••• 
LDISTRIBUTORJ 

.. ••.. ..ill. 
... l--PROGRAM ADDRESS--...Il 

'. 't' both displays are identica • ' , , f th LDA mstruc lOn 
After acqulsltlon 0 e h ro ram and look for errors. We will continue to step through t e p g 

I~:~ 
~g~~ /iio . 
L. CARRY 

r--. I.N. TER 
. 1 •. SENSE~.·. 

STATUS .. FLAG 

L. WAIT 

r-.·,I.~ST .... 
ERROR • 'ADD ' 

L-8DIVIDE 

ERROR 

r-ACCUMULATOR---, 

•••• •••• 
1 BUFFER. , 

•••• •••• 

I QUOTIENT I 

•••••••• 
r-r --.--. INDEX-_--.\ 

•••••••• 
..... --'--- OP CODE. 1 r OP ERAND I 

' •• 0 •• ,.mJ •••• • ••• 
. Lop CODE--.J X .... 1 --MEMORY ADDRESS.---..... ! 

••••..•••• ' CfJ •••• 
L-COU~TDOWN~ LDISTRIBUTORJ .• ••.. ..ill. 

l"'--PROGRAM ADDRESS-____ l 

254 RDA26-467 



r-. >0 

1 • =0 
COND 0.: 0 
CODE 

L-. CARRY 

,. INTER' 

, • SENSE 
STATUS • FLAG 

L. WAIT 

r-. INST 
ERROR • ADD 

L-. DIVIDE 

•••• •••• 
L-COUNT DOWN--1 

WITHOUT ERR OR 

r---ACCUMULATOR---, 

rn rn m I!I rn rn OJ [Q] 

, BUFFER I 
III ~ rn 0 rn 111 m rID 

-, ---QUOTIENT I n... • ••• 
.... , ---INDEX -_---" 

•••••••• 
-r---OP CODE , r-0PERAND I 
•• D. II .,. _lID ••• eI IU'I8 II 
Lop CODE-.J x ... 1 ---MEMORY ADDRESS,---...... I 

~IJII •• 
LDISTRI BUTORJ 

• III III1IUI • III rn .. 
~l--PROGRAM ADDRESS-----o' 

that the contents of both . , f th LDA we notice 
After executIOn 0 e . BF 'nstead of FF. It would 
the Buffer and Accumulator contam 1 tl Position 6 of 
appear that location 100 was not loaded corrLeOcOkY~losely at the 

1 t was dropped. the Buffer and Accumu a or 
display below that shows these two errors. 

r- •. >0 

1 • =0 
COND 0.: 0 
CODE 

L-. CARRY ,8 INTER 

, • SENSE 
STATUS • FLAG 

L. WAIT 

r-. INST 
ERROR • ADD 

L-. DIVIDE 

•••• •••• 
L-COUNT DOWN--1 

ERROR 

r---ACCUMULATOR---, 

rn.ml!l rnrnOJ[Q] 

,..., ---BUFFER I 

III • rn 0 rn 111 m rID 

, QUOTIENT I 
.11.8 ••• 8 

-, ---INDEX-_----., 

•••••••• 
r-OPERAND , : I 

•••••••• MEMORY ADDRESS I 

mJ •••• 
LDISTRIBUTORJ 

•• •••• ..rn. 
L"----PROGRAM ADDRESS-......... ! 

255 
RDA26-468 





r-. >0 

l • =0 
COND 0 < 0 
CODE 

L-. CARRY ,8 INTER' 

\ • SENSE 
STATUS • FLAG 

L. WAIT 

r-. INST 
ERROR • ADD 

L-. DIVIDE 

•••••••• 
L-COUNT DOWN--.J 

WITHOUT ERROR 

I BUFFER I 
II) rn m (!J r1HiHD [Q) 

: :: 

I QUOTIENT , 

•••••••• 
.... 1 ---INDEX __ ---,\ 

•••••••• 
OP CODE 1 r-0PERAND I 1. 0 •• 0 ,.IID •••• • •• ~ 

Lop CODE--1 X L..l---MEMORY ADDRESS---...... 

lID •••• 
LDISTRI BUTORJ 

• •••••• rn •• 
L ..... --PROGRAM ADDRESS----ol 

ted the accumulator was not Since the wrong Op Code was execuh " ith the error. Notice 
" 101 in the mac me w 

stored into locatlOn Address are both the 
that the Memory Addres s and ~r~;r;m and Op Code registers 

Only the accumulator, u e , 

r-.• >0 
l • =0 

COND 0 < 0 
CODE 

L-. CARRY 

,. INTER' 

\ • SENSE 
STATUS • FLAG 

L. WAIT 

r-. INST 
ERROR • ADD 

L-. DIVIDE 

•••••••• 
L-COUNT DOWN--.J 

I BUFFER I 
•••• ••• [Q) 

.... I---QUOTIENT , 

•••••••• 
'-1 ---INDEX -----.\ 

•••••••• 
r----OP CODE 1 r-0PERAND I 

' •••• D •• lID •••• • ••• 
Lop CODE--1 { L..I ---MEMORY ADDRESS----I 

lID •••• 
LDISTRI BUTORJ 

257 

• •••••• rn •• 
... L--PROGRAM ADDRESS----ol 

RDA26-470 



... r-. >0 

l • =cO 
COND 0 <0 

. CODE 

. L- 1& CARRY ,III INTER 

.\ • SENSE 
ST ATUS II FLAG 

. L. WAIT 

r-. INST. 
ERROR II ADD 

L-. DIVIDE 

. 1I111S.IiUJIHI 
. ' L-COUNT DOWN~ 

WITHOUT ERROR 

~ACCUMULATOR"-I 

Il.J ~ m I!J (]] rn lD lID 

r BUFFER I 
II 11111. II m 1111 

I QUOTIENT I 

•••• •••• 
.... 1 ---INDEX-__ ,-. •• 111. ..8. 

..... r --. OP CODE 1 ~ OPERAND . I 
o 1111 0 0 111.11 •• • • • (2) •• 
Lop CODE--1 x ,-I --MEMORY ADDRESS---....... I 

fEJIIII •• 
LDISTRIBUTORJ 

•• •••• .rnrn • 
,-l--PROGRAM ADDRESS---..I 

, , error after acquisition of the BST 
The only register that 1S In h' h still- contains BF. This is 

' , th accumulator W 1C " 6 
instruct10n 1S e ( BST does have a one in pos1tlon • robably because the code or 
p , 'th the execution phase. We cont1nue W1 

; r-_. >0 
l' =0 

,.COND 0 < 0 
CODE 

L-. CARRY 

,_ INTER 

\ • SENSE 
ST ATU S • FLAG 

.L. WAIT 

r-a INST. 
ERROR • AbD 

L-. DIVIDE 

•••••••• L-COUN T DOWN---.J 

:, ~. ,., . 

ERROR 

~ACCUMULATOR--, 

Il.J • m I!J (]] rn lD lID 

I . BUFFER I 
• ••• • mll. 

r----QUOTI ENT I I.... • ••• 
r"'1 ---INDEX-_---,I 

••••• •••• 
r ' OP CODE , ~ OPERAND I 

0 •• 00,;.. •••• .rn •• 
Lop CODE--1 X ,-I --MEMORY ADDRESS---....... I 

mJ •••• 
LDISTRIBUTORJ 

258 

•• •••• .rnrn. 
... l_-PROGRAM ADDRESS---....II 

RDA26-471 



r-. >0 

1 • =0 
COND 0 <0 
CODE 

L. CARRY 

,. INTER' 

I • SENSE 
STATUS • FLAG 

L. WAIT 

r-. INST 
ERROR • ADD 

L-. DIVIDE 

•••••••• 
L-COUNT DOWN---1 

WITHOUT ERROR 

r-ACCUMULATOR~ 

III ~ [[J m rn rn [j] [Q] 

I BUFFER. J 

•••• • rn •• 

I QUOTI ENT .... I 

•••••••• 
r INDEX--__ 1 

•••••••• 
OP CODE 1 ~ OPERAND '. 1 

10 •• 0 0 ••• •••• .1lI •• 
Lop CODE--.l I .... , --MEMORY ADDRESS I, 

~ ••• [Q) 
LDISTRIBUTORJ 

••••••• rn •• 
l""'----PROGRAM ADDRESS---..' 

the only error· indication that exists 
After execution .of the BST R mber that incorrect 
is still the accumulator contents. eml: tor (BF·instead of FF) 

1 ded into the accumu h h information was oa d' the machine wit t e 
ot performe In and that the store was n 

r-. >0 

1 • =0 
·COND 0 <0 
CODE 

L-. CARRY 

,. INTER' 

I • SENSE 
STATUS • FLAG 

L. WAIT 

r-. INST 
ERROR • ADD 

L-. DIVIDE 

•••••••• 
L-COUNT DOWN---1 

'-1 --BUFFER I 

•••• • rn •• 

,.....'0-.-.-~ C~E •• .I 
Lop CODE--.l X ' 

I QUOTIENT I 

•••••••• 
... , ---INDEX-_----.1 

•••••••• 
r---0PERAND I 

•••• .1lI •• 
MEMORY ADDRESS I 

mJ ••• [QJ 
LDISTRIBUTORJ 

••••••• rn •• 
... L--PROGRAM ADDRESS---.ol 

259 RDA26-472 



\_ >0 

COND • =0 
CODE 0 <: 0 

L. CARRy 

, •• INTER 

\ SENSE 
STATUS • F'LAG 

L. WAIT 

r-. INST 
ERROR • ADD 

L-. DIVIDE 

•••••••• 
L-COUNT DOWN---.J 

Aft 

WITH ERROR 

r-ACCUMULATOR--, 

rn _ m II] (1][1] W [Q) 

~I -----BUFFER----~I 

••••• 111 •• 

I QUOTIENT I 

•••••••• 
r-I -------INDEX ----., 

•••• •••• 
I OP CODE I I OPERAND I 

~ ·OP·CODDE-.:3 'X~ L-_._.... .111 • • 
- MEMORY ADDRESS I 

~ ••• IID 
lDISTRI BUTORJ 

.• •••• .[i] .. 
... l -----PROGRAM ADDRESS I 

Since this program does a store in memory address 
101, we need to see what value has been stored. We 
find 00 which indicates that nothing was stored. This 
is another error indication. Check memory location 
100. Here we find BF. Our program doesn't store any­
thing into memory location. We know there was a value 
FF in memory location 100 before the error was inserted. 
This indicates there may be a problem getting the cor­
rect value from memory. We find BF in both the Accu­
mulator and Buffer, after the execution of the LDA 
instruction. 

What does the fact that the value BF is in both 
the Buffer and the Accumulator mean? 

260 

RDA26-473 



The LDA instruction brings a value from memory into the Buffer, and then to the 
Accumulator. Since the Buffer and Accumulator are the same,. the Buffer to Accumulator 
transfer was correct. We know that BF is what entered the Buffer from memory. This 
tends to point to the problem as being unable to read correctly from memory. 

Do any other error indications point to a possible problem of getting the correct 
values from memory? 

After the acquisition of the STA instruction, which has an OP Code of 49, we find 09 
in the OP Code Register. The acquisition phase of any instruction brings that'instruc­
tion out from memory and places it into the OP Code (S-Register) Register. We know the 
correct program was in memory when we started, and we have done nothing to change it. 
It appears that instead of reading 49 from memory location 02, we instead bring out 09. 

What do ,the values 49 and FF have in common with 09 and BF, respectively? 

This might be better understood if we compare the binary values of these numbers. 

f49 
~ 
fFF 
~ 

Bit positions 
765 4 3 2 1 0 

010 0 1 0 0 1 

o 0 0 0 1 0 0 1 

1 1 1 1 111 1 

1 0 1 1 111 1 

Bit position 6 is changed 
Error indication 

The computer should bring out the value FF during the execution of the LDA instruc­
tion, but bit position 6 doesn't get set. This causes BF to be loaded instead of FF. 
During the acquisition of the STA instruction, 49 should be brought from memory to the 
OP Code Register. Bit position 6 does not set causing 09 to be loaded into the OP Code 
Register. 

Is this problem one of ,losing bit 6 as we transfer the data from the Memory Module 
to the Buffer? 

This is possibly the problem. Let us review our error indications. We know the 
program was stored correctly because we checked it after it was loaded and tested. 

We know that location 100 contains the value FF, and that the LDA instruction should 
load the Accumulator with FF. The value BF is being loaded which is incorrect. During 
acquisition phase of the STA instruction, 09 is loaded into the S-register instead of 
49. In both cases bit 6 is dropped. To determine if the error occurs when the data 
is transferred from memory, we set the computer to distribution mode and step through 
the execution phase of the LDA instruction. 

DPO 

Memory Address 
Register 

100 

Memory 

261 

Buffer 

BF ~-------lst error indication 

RDA26-474 



This is as far as we need to go. We can see that the error occurs somewhere between 
the Memory Module and the Buffer Register. 

What can cause this loss of data bit 6 as the data is transferred out from Memory to 
the Buffer Register? 

The ISB signal causes the data that has been addressed in the Memory Module to be 
placed on the Z bus. The data is then transferred into the Buffer Register. We could, 
therefore, lose data bit 6 in the following places: 

1. The correct data was not stored in Memory. 

2. Data bit 6 is not being correctly read from the Memory. 

3. Data bit 6 is not being placed correctly on the Z bus. 

4. The Z bus bit 6 is disconnected from the Buffer. 

5. Data bi.t 6 isn't being clocked or transferred into the Buffer. 

Another way to look at this list is that the data is gated out from the Memory when 
you address it. From the Z bus, the Buffer takes the data by parallel loading it into 
its internal flip-flops. This is our data flow pattern: 

Memory Gates Z Bus Buffer 

RDA26-475 

We can begin our actual signal tracing at anyone of these places. We can start at 
Memory and work our way to the Buffer, or we could start at the Buffer and work back to 
the Memory. Finally, we could start our signal tracing somewhere in the middle, and 
trace in the direction of the error. This approach is usually the quickest. 

In this example, we will use all three approaches. We will start at Memory for our 
first approach. Since we loaded the program correctly and checked it before the trouble 
was inserted, we will assume that the correct data is in the Memory. If we can find no 
error any place else along the data flow, then we will know that the Memory itself has 
problems. The fact that parts of the program work correctly also show that we can assume 
the Memory Module is working correctly insofar as it contains correct data. 

Is data read out from the Memory Module correctly? 

We will further check the Memory as we read data from the Memory. We read some 
location in MemorY'and check bit 6 to see if data is being read correctly. This can be 
measured on pin 86KC (sheet 8 coordinate 7C). Measuring the level at that pin after 
DPO of the LDA instruction (when FF is being read out) we find a high. Since we are 
checking a level, set the oscilloscope for internal sync, and adjust for a trace. 
Ground the probe, and move the trace to a crosshatch line. This is your zero voltage 
reference. Set the vo1ts/cm setting to 2. Measuring the level at pin 8 after DPO we 
find +5 volts (the trace jumps up 2 1/2 cm). This is our expected value and means that 
data is being read out from the memory correctly. 

I·s data being gated onto the Z bus correctly? 

262 



Since the transfer we are interested in occurs only during CPl of DPO of the LDA 
instruction, we need to place the computer in a loop on the LDA instruction. We do this 
by altering our program. We replace the STA instruction with a BUN back to the LDA 
instruction. We do this by storing 90 00 into memory locations 02 and 03. Our new pro­
gram is now: 

Memory Location Hex Code Mnemonics Coment 

00,01 21 00 LDA 100 

02,03 90 00 BUN 00 Branches back to 00 

We place the oscilloscope sync lead on pin 5 of 21L (sheet 17 coordinate 6E), the 
instruction decoder, LDA signal. Each time the LDA instruction is decoded, the sweep 
will be triggered. We place channel A probe on pin 12 25HF (sheet 18 coordinate 6C). 
During DPO of the LDA and during DPO of the BUN, the trace will go low to our zero-volt 
reference. We are interested in the first time it goes low, because this is the DPO of 
the LDA instruction. We place channel B probe on pin 6 7KB (sheet 8 B7). This is the 
Z6 signal, or the output from the gate onto the Z bus. We clear and start the computer 
in program mode and watch the scope. 

The sweep is triggered when ·the LDA instruction is decoded at DPA2. The channel A 
trace starts across the scope face at DPO of· the LDA instruction it goes low. While 
channel A is low we look to see if channel B goes low. This would mean that a true bit 
is being put on the Z bus Z6 line. (The Z6 line goes low or true .• ) We find that this 
does occur, so the answer to the last question is yes. Correct data is being gated onto 
the Z bus. 

Is correct data from the Z bus bit 6 reaching the Buffer? 

We leave the oscilloscope sync lead connected to pin 5 2lL (sheet 17 6E), the 
instruction decoder, LDA signal. We leave channel B probe where it is. This line goes 
low when data is put on line Z6. We place channel A probe on pin 6 7E (sheet 3 7E). 
We clear and start the program again. Channel B trace shows when the data is placed on 
the Z bus. Channel A should show when the data reaches the Buffer. Both channels 
should have identical traces, but they do not. The following shows the situation that 
exists. 

We measure a +5 volts at pin 6 7E (sheet 3 7E). We have found what is causing the 
machine to fail. The problem is an open on the Z bus, bit position 6. 

If we had started our search at the Buffer, we already know incorrect data is being 
shifted in. We would check the input line for bit 6 and we would still find incorrect 
data. We would then check the input to the Z bus and find correct data. Our error then 
is between the Z bus and the input to the Buffer. 

Using the start-in-the center or divide-by-two approach, we would check our signal 
at the input to the Z bus first. Finding the correct data there, we would next check 
the input to the Buffer. Here our data is incorrect; therefore, we know the error is 
between the input to the Z bus and the input to the Buffer. Since this is only a wire, 
we know that an open exists between these two points. 

This brings us to the close of our troubleshooting examples. In finding a computer 
error we must first determine the error indications. These indications help us deter­
mine the malfunction. By asking questions that analyze the error indications,-we can 
limit the area that we need to check. Finally, we trace signals using one of the three 
methods discussed. These methods will lead us to the failure. 

263 



REVIEW QUESTIONS 3-3 

000 LAN 002 
002 ADD 004 
004 STA 008 
006 BST 008 

1. With the above program, the computer stops with DP3 (1 0011) ih the D-Register, 
ADD ERROR flip-flop set, AS in the A-Register and 004 in both the P- and M-Registers. 
Memory location 008 has zero (00) stored into it. Which of the following may cause this 
error? 

a. 30GB Pin 5 open (sheet 23-D5) 

b. 28DB Pin 13 grounded (sheet 23-C5) 

c. 22ED Pin 9 open (sheet 22-9D) 

d. 22ED Pin 8 open (sheet 22-D9) 

2. With the above program, both memory location 008 and the A-Register have.E7 stored. 
Which of the following may cause this error? 

a. 30GB Pin 5 open (sheet 23-D5) 

b. 28DB Pin 13 grounded (sheet 23-C5) 

c. 22ED Pin 9 open (sheet 22-9D) 

d. 22ED Pin 8 open (sheet 22-9D) 

3. With the above program when we check memory location .008 it has 08 stored in to it. 
The A-Register has E8 which is correct. Which of the following may cause·this error?· 

a. 30GB Pin 5 open (sheet 23-D5) 

b. 28DB Pin 13 grounded (sheet 23-C5) 

c. 22ED Pin 9 open (sheet 22-D9) 

d. 22ED Pin 8 open (sheet 22-D9) 

000 
002 
004 
006 

C(lOl) 
C(102) 
C(103) 

LDA 101 
ADD 102 
STA 103 
BST 103 

05 
05 
00 

4. With the above program when we check memory location 103 it is found that it has 08 
stored into it instead of OA, although the accumulator has OA which is correct. Which 
of the following may cause this error? 

a. 5G Pin 15 open (sheet l-E4) 

b. 7GC Pin 9 open (sheet l-C3) 

264 



c. 7GC Pin 8 open (sheet 1-C3) 

d. 5G Pin 18 open (sheet 1-D4) 

5. With the above program both memory location 103 and the A-Register contain 1A instead 
of OA. Which of the following may cause this error? 

a. 5G Pin 15 open (sheet 1-E4) 

b. 7GC Pin 9 open (sheet 1-C3) 

c. 7GC Pin 8 open (sheet 1-C3) 

d. 5G Pin 18 open (sheet 1-D4) 

6. With the above program when we check memory location 103 it contains OE instead of 
OA. Which of the following may cause this error? 

a. 5G Pin 15 open (sheet 1-E4) 

b. 7GC Pin 9 open (sheet 1-C3) 

c. 7GC Pin 8 open (sheet 1-C3) 

d. 5G Pin 18 open (sheet I-D4) 

000 LDA 101 
002 SUB 102 
004 STA 103 
006 BST 103 

C(101) 1A 
C(102) 15 
C(103) 00 

7. With the above program the computer stops with condition code equal zero and memory 
location 103 equal zero. Which of the following may cause this error? 

a. 3lJA Pin 3 grounded (sheet 23-B8) 

b. 23DA Pin 8 grounded (sheet 23-C8) 

c. 30GC Pin 8 open (sheet 23-C4) 

d. 30GB Pin 5 open (sheet 23-D5) 

8. With the above program when memory location 103 is checked it is found to have 03 
stored into it, although the accumulator has 05 which is correct. Which of the follow­
ing may cause this error? 

a. 31JA Pin 3 grounded (sheet 23-B8) 

b. 23DA Pin 8 grounded (sheet 23-C8) 

c. 30GC Pin 8 open (sheet 23-C4) 

d. 30GB Pin 5 open (sheet 23-D5) 

265 



9. With the previously mentioned ,program when memory location 103 and the A-Register are 
checked, both contain 03. Which of the following may cause this error? 

a. 3lJA Pin 3 grounded (sheet 23-B8) 

b. 23DA Pin 8 grounded (sheet 23-C8) 

c. 30GC Pin 8 open (sheet 23-C4) 

d. 30GB Pin 5 open (sheet 23-D5) 

000 LAI 15 
002 SRL 03 
004 STA 08 
006 BST 07 

10. With the above program we find that 15 has been stored in both memory location 008 
and the accumulator. Which of the following may cause this error? 

a. 24KB Pin 8 grounded (sheet 18-D9) 

b. 30GD Pin 13 grounded (sheet 23-D4) 

c. 27CB Pin 4 open (sheet 24-D5) 

d. 30GB Pin 5 open (sheet 23-D5) 

11. With the above program we find that OA has been stored in both memory location 008 
and the accumulator. Which of the following may cause this error? 

a. 24KB Pin 8 grounded (sheet 18-D9) 
"-

b. 30GD Pin 13 grounded (sheet 23-D4) 

c. 27CB Pin 4 open (sheet 24-D5) 

d. 30GB Pin 5 open (sheet 23-D5) 

12. With the above program we find that 08 has'been stored in memory location 008 and the 
A-Register has 02 which is correct. Which of the following may cause this error? 

a. 24KB Pin 8 grounded (sheet 18-D9) 

b. 30GD Pin 13 grounded (sheet 23-D4) 

c. 27CB Pin 5 open (sheet 24-D5) 

d. 30GB Pin 5 open (sheet 23-D5) 
CHAPTER REVIEW 

1. WHAT IS THE PURPOSE OF A DIAGNOSTIC PROGRAM? 

2. WHAT IS AN OPERATOR ERROR? 

266 



3. WHAT IS THE DIFFERENCE BETWEEN AN OPERATOR ERROR AND A MACHINE ERROR? 

4. DRAW AND LABEL A FLOW CHART TO CHECK A SIMPLE INSTRUCTION IN A DIAGNOSTIC! 

5. WHAT IS THE DIFFERENCE BETWEEN THE OLD AND THE NEW DIAGNOSTIC PROGRAMS? 

6. WHAT ARE THE 3 MAIN REQUIREMENTS OF A VALID DIAGNOSTIC PROGRAM? 

7. SHEET 11 WHAT MALFUNCTION ON WILL PREVENT THE LOADING OF .... 

A) GO BIT 

B) YO AND ZO BITS 

C) YO BIT 

D) ZO BIT 

E) THE CLEARING OF FLIP-FLOP 12FB SO THAT THE LIGHT FOR MO BIT IS OFF. 

8. WHAT IS THE STATIC CONDITION OF NAND-GATE J3CA D3 (SHEET 14)? 

A) PIN 1 

B) PIN 3 

C) PIN 2 

D) WHAT AFFECT DOES THE STATIC CONDITION OF PIN 3 HAVE? 

9. TURN TO SHEET 6. 

A) LIST ALL INSTRUCTIONS THAT WOULD BE AFFECTED BY AN OPEN ON PIN 1 U198 
COORDINATES E6 

B) WHAT AFFECT WOULD THIS HAVE ON LOADING THE Q-REGISTER? COULD YOU STILL PARALLEL 
LOAD THE Q-REGISTER? LEFT SHIFT? RIGHT SHIFT? 

C) LIST ALL INSTRUCTIONS THAT WOULD BE AFFECTED BY A GROUND ON PIN 22 3E U198 Cord. 
E6 

D) HOW WOULD THIS AFFECT THE SHIFT INSTRUCTIONS? 

267 



10. TURN TO SHEET 4.' 

A) PIN 11 FLIP-FLOP 3MB C2 IS OPEN. WHEN WILL FLIP-FLOP LOAD IN DATA AT PIN 12? 

B) WHAT AFFECT WILL THIS HAVE ON THE OPERATION OF THE C-REGISTER? WHY? 

11. TURN TO SHEET 9. Pin 1 of the lamp driver'9AA is open. 

A) WHEN WILL THE LIGHT L48 BE ON? 

B) IF PIN 2 IS HIGH, WHAT LEVEL WILL BE FOUND AT PIN 3? 

C) WHAT LEVEL IS NEEDED TO TURN THE LIGHT ON? 

D) IF PIN 1 IS GROUNDED - WHAT WILL BE THE CONDITION OF THE LAMP L48? 

12. LIST THE 3 METHODS OF SIGNAL TRACING.. WHICH IS NORMALLY THE FASTEST METHOD? WHY? 

268 



SIGNAL NAME GLOSSARY 

The Glossary lists all mnemonics used by the COM-TRAN TEN. They arE:o listed in alpha­
betical order. The page numbers refer to the schematic sheets where the signal is gen­
erated. The signal name, page reference, and signal description are provided, reading 
from left to right. 

AO - A7 1 

ADD 17 

ADEB 15 

AEM 15 

AND 17 

APR 29 

APHM 29 

ARG 18 

AXM 23 

1 

BO - B7 3 

BNC 17 

BNG 17 

BPS 17 

. BSB 17 

BST 17 

BUN 17 

BXZ 17 

BZ 3 

BZE 17 

co - C7 4 

CARY 19 

A 

Accumulator register bit 0 (LSB) through bit 7 (MSB) 

Instruction; ADD 

Add Error Bypass; Enabled by a control panel switch. 

Acquisiton-Execution Mode. Enabled by a control panel switch. 

Instruction; AND 

Enables Alpha mode decoding in the Interface. 

Alpha Mode signal; Informs the control panel that the Interface 
is in Alpha Mode. 

Arithmetic Group; composed of ADD and SUB Instructions 

Add the contents of the Index register to the contents of the 
Memory register. The end carry is disregarded. 

The Accumulator register contains zeros in all bit positions. 

B 

Buffer register bit 0 (LSB) through bit 7 (MSB) 

Instruction; Branch on No Carry. 

Instruction; Branch on Negative. 

Instruction; Branch on Positive. 

Instruction; Branch to Subroutine. 

Instruction; Branch and Stop. 

Instruction; Branch Unconditional. 

Instruction; Branch on Index Zero. 

The Buffer register contains zeros in all bit positions. 

Instruction; Branch on Zero 

C 

Countdown register bit 0 (LSB) through bit 7 (MSB) 

Carry signal which is enabled if an arithmetic carry is detected 
from the Arithmetic Logic Unit. 

269 



CCEQ 19 

CCGT 19 

CCLT 19 

CKE 18 

CL 15 

CL 26 

CLA 23 

COL 29 

COMP 20 

COMP A 20 

COMP Q 20 

CPl 7 

CP2 7 

CP3 7 

CR 29 

CZ 4 

DO - D3 5 

DEC 24 

DECA 21 

DIV 17 

DPO - DP15 18 

DPAO - DPA15 18 

DSLA 24 

DSLQ 20 

Condition Code Equals Zero. Reflects the result of an Arithmetic 
Instruction. 

Condition Code Greater Than Zero. Reflects the result of an 
Arithmetic Instruction. 

Condition Code Less Than Zero. Reflects the result of an 
Arithmetic Instruction. 

Clock the Execution flip-flop. This determines whether the com­
puter is in Acquisition or Execution Mode. 

Clear all register contents<ind flip-flops. 

Clear all register contents and flip-flops. 

Reset all bits of the Accumulator to zeros. 

Colon decode signal used in the Interface. 

Selects the two's complement of either the Accumulator or Quotient 
register. 

Executes a two's complement on the contents of the Accumulator. 

Executes a two's complement on the contents of the Quotient 
register. 

Clock pulse one. 

Clock pulse two. 

Clock pulse three. 

Carriage return signal used in the Interface. 

The Countdown register contains zeros in all bit positions. 

D 

Distributor bit 0 (LSB) through bit 3 (MSB) 

Decrement the Countdown register conten~.'py:._one_. 

Decrement the Accumulator contents by one. 

Instruction; Divide. 

Distributor pulse 0 (Execution mode) through pulse 15 
(Execution mode). 

Distributor pulse 0 (Acquisition mode) through pulse 15 
(Acquisition Mode) 

Input serial data to the Accumulator. Data present in the 
register will be shifted to the left one place as each bit of 
serial data is inputed. 

(Same as above only substitute Quotient register for Accumulator.) 

270 



DSM 

DSru 

DVEB 

E 

EC 

ENABLE 

ERA 

ERn 

ERI 

FO - F7 

FLC 

FLG 

FLS 

GO - G9 

HI 
H2 
H3 
H4 
H5 
H6 
H7 
H8 
H9 
HA 
HB 
HC 
HD 
HE 
HF 

15 

15 

15 

·26 

18 

5 

2 

7 

19 

19 

19 

2 

17 

19 

17 

14 

25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 

Distributor Mode. Enabled by a control panel switch. 

Input serial data to the Accumulator. Data present in the regis­
ter will be shifted to the right one place as each bit of serial 
data is inputed. 

Division Error Bypass. Enabled by a switch on the control panel. 

Division Error Bypass. Enabled by a switch on the control panel. 

Divide Group signal which is enabled during DP8-ll of the Divide 
Instruction. 

E 

Execution Mode. 

End Carry generated by the Arithmetic Logic Unit. 

Clock signal which enables the Distributor. 

Arithmetic Error. 

Division Error. 

Instruction Error. 

F 

Arithmetic Logic Unit bit 0 (LSB) through bit 7 (MSB) 

Instruction; Clear Flag 

Flag flip-flop output enabled by FLS Instruction. 

Instruction; Set Flag. 

G 

Index adder bit 0 (LSB) through bit 9 (MSB) 

H 

Hex 1 Switch signal from the control panel matrix. 
II 2 II 

II 3 II 

4 II 

5 II 

6 II 

7 
8 
9 
A 

II B 
II C 
II D 
II E 
II F 

271 



HEX 29 

HEXM 29 

HX2 29 

HXS 25 

10 - 19 10 

lAND 22 

IBS 24 

ICLK 15 

lEX 22 

INA 22 

INCA 21 

INCM 24 

INEB 15 

INM 15 

INOC 20 

INR 20 

INR 29 

INRD 20 

INS 22 

INSS 20 

INT 19 

INW 20 

INWD 20 

Enables Hex decoding in the Interface. 

Hex Mode signal; informs the control panel that the Interface is 
in Hex mode. 

Low order hex word in the Interface. 

Signal from the control panel which indicates that a hex switch 
has been depressed. 

I 

Input register bit 0 (LSB) through bit 9 (MSB) 

Initiate AND signal to the Arithmetic Logic Unit. 

Initiate transfer of Buffer register contents to memory 
storage. 

Input register clock which enables transfer of data from Input 
switches to Input register. 

Initiate Exclusive-OR signal to the Arithmetic Logic Unit. 

Initiate Add signal to the Arithmetic Logic Unit. 

Increment the Accumulator contents by one. 

Increment the Memory register by one. 

Instruction Error Bypass generated by the control panel. 

Instruction Mode, enabled by control panel switch. 

Initiate Output Command. Computer is ready to output data to an 
external device. 

Initiate Read. Initiates Read circuitry in the computer and the 
Interface. 

Initiates Read. Initiates Read circuitry in the computer and 
the Interface. 

Initiate Read Data Block. Enables read circuitry in the com­
puter and the Interface. 

Initiate Subtract signal to the Arithmetic Logic Unit. 

Initiate Sense Status. Enables the previously addressed ex­
ternal device to send a status word to the computer. 

Interrupt signal which is generated from an external device. 
It halts computer operations. 

Initiates write circuitry within the computer and the external 
device. 

Enables write circuitry within the computer and the external 
device. 

272 



INWD 29 

INX 17 

lOR 17 

IORl 22 

IRB 15 

IRD 15 

ISO 25 
ISl 25 
IS2 25 
IS3 25 
IS4 25 
IS5 25 
IS6 25 
IS7 25 
IS8 25 
IS9 25 

ISB 24 

IWB 15 

IWT 15 

LAI 17 

LAMP TEST 26 

LAN 17 

LAPH 10 

LCC 17 

LCG 18 

LCI 18 

LDA 17 

LDQ 17 

LF 29 

LHEX 10 

LX 22 

Enables write circuitry within the computer and the external 
device. 

Instruction; Increase Index. 

Instruction; Inclusive-OR. 

Initiate Inclusive-OR signal at the Arithmetic Logic Unit. 

Initiates Read Until Interrupt instruction. 

Initiates Manual Output instructions. 

Input register switch 1 signal from the control panel. 
" 2 " 
" 3 " 
" 4 " 
" 5 " 
" 6 " 
" 7 " 
" 8 " 
" 9 " 
" 10 " 

Initiate the transfer of the contents of the addressed memory 
location to the Buffer register. 

Initiate Write Block instruction. 

Initiate Manual Input instruction. 

L 

Instruction; Load Accumulator Immediate. 

Illuminates all lights driven by logic signals. 

Instruction; Load Accumulator Negative. 

Interface signal which illuminates the Alpha indicator on the 
control panel. 

Instruction; Load Consecutive. 

Logic group signal enabled by AND, XOR, and lOR. 

Instruction; Load C Immediate. 

Instruction; Load A 

Instruction, Load Quotient Register. 

Line feed signal used in the Interface. 

Interface signal which illuminates the HEX indicator on the 
control .panel. 

Load the Index register with either the contents of the Memory 
register or the Y bus. 

273 



LXI 

MO - M9 

MNI 

MNO 

MPY 

MLD 

OCD 

PO - P9 

QO - Q7 

QOQ6 

QZ 

R 

RO - R7 

RAO 

RDB 

RDG 

RDI 

RES 

RESM 

REXMT 

RPG 

RPT 

RSO 

RST 

11 

17 

17 

17 

7 

17 

12 

6 

6 

6 

27 

27 

17 

17 

20 

17 

27 

28 

26 

18 

15 

17 

26 

Instruction; Load Index Register Immediate. 

M 

Memory register bit 0 (LSB) through bit 9 (MSB) 

Instruction; Manual Input 

Instruction; Manual Output 

Instruction; Multiply 

Manual load signal which is generated by the control panel 
switches. 

o 

Instruction; Output Command. 

P 

Program register bit 0 (LSB) through bit 9 (MSB) 

Q 

Quotient register bit 0 (LSB) through bit 7 (MSB) 

Quotient register bit positions 0-6 are reset to zero. 

All Quotient register bit positions are reset to zero. 

R 

Read mode signal used in the Interface. 

Interface read data bit 0 (LSB) through bit 7 (MSB) 

Instruction; Replace Add One. 

Instruction; Read Data Block. 

Read group signal composed of RDI, MNI, and RDB instructions. 

Instruction; Read Until Interrupt. 

Resume pulse used in the Interface. 

Resume pulse generated by the Interface and used by the computer. 

Retransmit signal generated by a control panel switch. 

Replace group signal composed of RAO and RSO instructions. 

Repeat mode which is set by a control panel switch. 

Instruction; Replace Subtract One. 

Reset signal generated by a control panel switch. This signal 
clears the Input regist~r to zeros. 

274 



so -

SA 

SAEM 

SAL 

SAM 

SAOV 

SAPH 

SA.'PH 

SAQL 

SAQR 

SAR 

SB 

SC 

SCS 

SD 

SDP1 
SDP4 
SDP6 
SDP9 . 
SDPll 
SDP15 

SDSM 

SE 

SEL 

S7 13 

26 

26 

23 

2S 

1 

15 

26 

22 

22 

23 

26 

26 

22 

26 

24 
21 
19 
21 
21 
21 

26 

5 

29 

S 

Operation Code register bit 0 (LSB) through bit 7 (MSB) 

Accumulator input switch signal. 

Enable Acquisition-Execution Mode. This signal is generated by 
a control panel switch. 

Shift the content of the Accumulator left. 

Set Alpha Mode. This signal is generated by the external device 
and used in the Interface. 

Set Add Overflow. Generation of this signal results in an Add 
Error. 

Set Alpha Mode signal generated by a control panel switch. This 
enables Interface Alpha Decoding. 

Set Alpha Mode signal generated by a control panel switch. This 
enables Interface Alpha Decoding. 

Shift the contents of the Accumulator and Quotient register left 
The contents of bit position of the Quotient register will be 
shifted into bit position 0 of the Accumulator 

Shift the contents of the Accumulator and Quotient register 
right. The contents of bit position 0 of the Accumulator will 
be shifted into bit position 7 of the Quotient register. 

Shift the contents of the Accumulator right. 

Buffer register input switch signal. 

Countdown register input switch signal. 

Set bit position 3 of the Countdown register to a logical 1. 
Thus the Countdown register will contain a hex count of OS. 

Distributor input switch signal. 

Set the Distributor to a hex count of 1. 
" 4. 
" 6. 
" 9. 
" B. 
" F. 

Enable Distributor Mode. This signal is generated by a control 
panel switch. 

Set Execution Mode. This is accomplished by clocking the E 
flip-flop. 

Select signal which selects the external device which the com­
puter will interface with. 

275 



SEN 

SERI 

SERD 

SFG 

SHEX 

SHM 

SINM 

SINT 

SKF 

. SKG. 

SKI 

SKS 

SLA 

~LL 

SP 

SPCK 

. SPSW 

SQ 

SQL 

SQR 

SRA 

SRD 

SRL 

15 

17 

24 

18 

15 
26 

28 

26 

28 

17 

18 

17 

17 

17 

17 

26 

23 

26 

18 

26 

26 

22 

22 

17 

26 

26 

17 

Output of the Sense flip-flop which is set by the Sense switch 
or the SST instruction. 

Set Instruction Error. Halts the computer when an invalid 
instruction is encountered. 

Set Divide Error. Enabled when an illegal division is 
attempted • 

. ,. 
Shift group composed of Shift instructions. 

Set Hex Mode. This signal is generated by a control panel 
switch and enables the interface to 4ecode in a hex format. 

Set Hex Mode in the Interface. This signal is generated by the 
external device. 

Set Instruction Mode. This signal is generated by a control 
panel switch. 

Set Interrupt signal which comes from the interface. 

Instruction; Skip on Flag. 

Skip Group made up of Skip Instructions • 

Instruction; Skip on Interrupt 

Instruction; Skip on Sense 

Instruction; Shift Left Arithmetic. 

Instruction; Shift Left Logical. 

Memory register input switch. 

Sign flip-flop. This detects the sign of the result of an 
Arithmetic operation. 

Program Register input switch. 

Stop Clock signal. This will halt the computer clock. 

Stop switch signal • 

Quotient register input switch. 

Shift the contents of the Quotient register left. 

Shift the contents of the Quotient register right. 

Instruction; Shift Right Arithmetic. 

Set Read Until Interrupt signal from the control panel. 

Set Manual Output signal from the control panel. 

Instruction; Shift Right Logical. 

276 



SRPT 26 

SS 26 

SSEN 62 

SST 17 

STA 17 

START 15 

STG 18 

STOP 20 

STQ 17 

STSW 26 

STX 17 

SUB 17 

SW 26 

SWB 26 

SWT 26 

SX 26 

T9 27 

TAB 23 

TAZ 23 

TBM 20 

-Tt3S ~O 
TEB 20 

TGM 20 

TIA 15 

TIB 24 

TIBI 15 

TIC 15 

TID 15 

Set Repeat Mode signal from the control panel. 

Operation Code register input switch. 

Set sense signal from control panel. 

Instruction; Sense Status. 

Instruction; Store Accumulator. 

Start Computer Clock signal. 

'Store group composed of Store instructions. 

Stop computer clock signal. 

Instruction; Store Quotient 

Start signal generated at control panel. 

Instruction; Store Index 

Instruction; Subtract 

Signal generated whenever a switch is pushed. 

Set Write Block signal from control panel. 

Set Write signal from control panel. 

Index register input switch. 

T 

Timing pulse 9 used in the Interface. 

Transfer the contents of the Accumulator to the Bufferregis'ter. 

Transfer the contents of the Accumulator to the Z bus. 

Transfer the contents of the Buffer register to the Memory _-_, 
register. TI~/t (J3c gLl F,F~!"l( TO S; J('-~:; /37," ( 

Transfer external data to the Buffer register. 

Transfer the contents of the Index adder to the Memory register. 

> Transfer the contents of the Input regi'ster to the Accumulator. 

Transfer the contents of the Input register to the Buffer 
register. 

Enable signal which accomplishes TIB subcommand. 

Transfer the contents of the Input register to the Countdown 
register. 

Transfer the contents of the Input register to the Distributor.-

'1(2 (J ?) 
__ J. \/7;' -

277 
I 

I : 



TIM 

TIP 

TIQ 

TIS 

TIX 

TIY 

TMP 

TMX 

TPHB 

TPLB 

TPM 

TQB 

TQZ 

TTY In 

. TTY Out 

TWOS 

TXB 

TYC 

TV! 

TZB 

W 

WO - W7 

WAIT 

WDB 

15 

15 

15 

15 

15 

22 

21 

22 

20 

20 

24 

22 

22 

27 

22 

23 

22 

23 

19 

27 

29 

23 

17 

Transfer the contents of the Input register to the Memory register. 

Transfer the contents of the Input register to the Program register. 

Transfer the contents of the Input register to the Quotient 
regi ster. 

Transfer the contents of the Input register to the Operation 
Code regi ster. 

Transfer the contents of the Input register to the Index register. 

Transfer the contents of the Input register to the Y bus. 

Transfer the contents of the Memory register to the Program 
register. 

Transfer the contents of the Memory register to the Index 
regi ster. 

Transfer the two high-order bits of the Program register to the 
Buffer register, and generate the BUN for the BSB. 

Transfer the ei ght low-order bi ts 'of the Program r.egi ster to the­
Buffer regi ster. 

Transfer the contents of the Program Register to the Memory 
regi ster. 

Transfer the contents of the Quotient Register to the Buffer 
regi ster. 

Transfer the contents of the Quotient register to the Z bus. 

Data from the external device. 

Data transferred to the external device • 

Signal which enables a two's complement of a given number. 

Transfer the contents of the Index register to the Buffer register. 

lransfer the contents of the Y bus to the Countdown register. 

Transfer the contents of the Y bus to the Input register. 

Transfer the contents of the Z bus to the Buffer register. 

W 

Write enable signal in the Interface. 

Interface write data bit 0 (LSB) through bit 7 (MSB) 

The computer is waiting for an input/output signal from an 
external device. 

Instruction; Write Data Block. 

278 



WG 

XO - X7 

XON 

XOR 

XZ 

YO - Y7 

ZO - Z7 

18 

14 

29 

17 

14 

3 

* 

Write group composed of MNO and WDB instructions. 

X 

Index register bit 0 (LSB) through bit 7 (MSB) 

Reader on signal generated by the interface. 

Instruction; Exclusive-OR 

Index register contains zeros in all bit positions. 

Y 

Y bus bit 0 (LSB) through bit 7 (MSB) 

Z 

Z bus bit 0 (LSB) through bit 7 (MSB) 

* Z bus generated on pages: 1, 6, 8, 10, 12, 14, & 28. 

279 



NOTES 



~q\ 

1 

PG CFF 
A 

T A 

0 

EJ "1" PG .CLK ----
B 

''L 0, 
..J 

\\ -:.;. '< 
\\ (1;1 ! 
.J ,-" • 

SHIFT 

1 

\ I 

FFA 
.c? 
J 

0 

f /J-
(~J 

1 

T 
CFF 

B 

0 

55 

1 

FFB 

0 

;- ,,~~ 

T 

1 

FFC 

0 

3-1 

1--_-13- 2 
3-3 

3-4 

1 

CFF 
C 

0 

'------<nI AND 
5 

1 

FFD 

0 

3-5 

1 

CFF 
T 

D 

0 

EJ---: 
I 

r­
I 
I 
I -

------] 

S5 
PG 

TP1 
-I 

1""'")1 
') , I 

,../ 

TP2 , TP3 

-

'-- 5L 1~ SL 1~ 

T FF FF .---- T 
A B 

.--- CL r- CL 
0 0 

1-"PAmY---- ----------
I BIT X REGISTER I 
I I 
I FFA FFB FFC FFD I 

I_~_I~O _J _____ -, 
I I 
I I 
: I 
I I 

PARITY I I ALARM 

SL 

,.---T 

r CL 

FLIP-FLOP I 
I ' PARITY ALARM 

I JL PARITY CHECK PULSE 

I L_ R 0 I _ -~- ___________ -.J 
J e/ '. 
,~ / 

MANUAL RESET 

TP4 

1~ 

FF 
C 

° 

ft __ _ 

" , 

SL 

.--T 

r- CL 

......... < 

~\j-I 

, 
'-

5 T(j 

11---

FF 
D 

0'1 eLK 

.. 

,-",-

1 1 

B 

o o c 
b 

TP-1 
""",'" 

C.:J\ ..j~}:: 
J 1.~ 

'I,",,,..:;J 

A 

1 1 

T 

B 

J1L 
, I 

of-

TP-2 TP-5~ 

-" 

1 

T 

C 

1 1 
.-----

E F 

o 



A'l'C Keesler 1-2462 

1 

T 

a 

t>-----'l ... AND OUTPUT 

11' 2' 

5T 

3 
S S 

OR OUTPUT 

PULSE GENERATOR MODULE 

\l~LOCK 
\\ULSE 

(r~\\ 
~\J 

CLOCK 
PULSE 

A. 

T 
. CFFA 

3 

T 
CFFA 

CLOCK 
PULSE 

T 

T 
CFFA 

o 

C FFB 

c,,~&{ 

T 
C FFB 

T 
CFFB 

o 

T 
C FFC 

FFD 

T 33 

CFF 
C a 

o "I } 
P /') (.-1./ Iv 
y/V . . --c 
('0 v{ IVl ( 

T 
CFFC 

o 

LOGIC 

CLOCK 
PULSE 

I 

T 
C F FA 

o 

CP T F FA 

R 

I~ , 

T 
CFFD 

r 
(3 

paWN 

3 5 

T 

T 
CFFD 

o 

C FFB 

FFA 

T 

l./J 

(00 

--== -[ 

... CP ... 

C FFC 
o 

roo--

~ 

r 

1 

2 

" J 
S 

/ 
FFA 

"-
C 

/ 

T 
C FFD 

o 

FFC 

l~ 3 

r-

~ 

°Lf-
4 

CP 

'\ ls-S 

J r-

FFB 

'\ 
""" 

JC 7 0 L-r-

CLOCK PULSES 

IS 

5 1 

FFA 

C a 

C 

3ABR30534E 000 

LOG1.C DIAGRAMS 

" lW--5 S 

./ r-

FFC 

'\ .-
6 JC ° --"L.. -

J 
! 

TP2 TP3 TP4 

TP6 TP7 

/v{oO , 

7 

8 

'\ 
~ 

" 

FFB 

T CFF 
D 

C 

10 

5 lJ 

FFD 

C °l / 
/ 

TPS 

TPS 



F 

-

E 

-

o 

c 

-

B 

-

A 

10 I I 7 1 .. 5 I 4 I I 2 I 

Y BUS (DATA) 
EXTERNAl'~ ____ '-____________________ -'~ ____________________________________ ~'-______ -1~ ________ --~'---------------~----------------------~------~-------1~----------------~t-------------------. 
OUTPUc 8 

INPUT 
SWITCHES 

SHUT 25 

16 10 

10 

8 

8 

INPUT 

OJSHU'I" 10 . 

8 

a;ELECTOR I 
SHUT 3 

8 

SH&K1' 3 

BUFFER 
(B) 

TWOS 
COMP. 
SHUT 3 

10 

PROGRAAU 
COUNT (Pl 

BHar 12 MH --

8 

O~ 

~I .1 r-------+----------r--~~-~~'SELECTOR 
-"-.,. It 

OPC:)~DE (S) 

.H.IET 13 ML 

r r 

INSTRUCTION 
DECODER 

SHItET 17 

MH -' OPERAND 

MEMORY 
ADORESS 

(M)5HKn I. 

10 

10 10 

Ja -'0 

DATA I ADDRESS 

MEMORY 

DATA REGISTER 

aHlUlT 8 

INDEX 

(X1 SHfET 14 

INDEX ADDER 

SHEET 14 

'--______ ------' 10 

GBUS 

sHUT 2 
ARITHMETIC 

LOGIC UNIT 
(ALUl 

F BUS 

8 

SHEET 

ACCUMUL ATOR 1-4-----t~ 
(Al 

8 

SHI:II1' 6 

QUOTIENT 
(Q) 

8 

EXTERNAl~8 __ -L ______________________________________ ~'--______________________________________ L-______ ~------------__ ------~--------~-------------------' 
INPUT 

Z BUS 

ATe KeeBler 1-4144 

SHEET 4 
COUNT DOWN 

(C) 

Ci! 

ITITLE BLOC K 

500KHz 
Clock 
SHa.,. 7 

....... 5 

DISTRIBUTOR 
_~D) 

TO ALL 
M[TS 

CONTROL ~ 
LOGIC ~ 

TO ALL 
mTS 

DIAGRAM 



, 

SYMBOL 

LG t;i 
C 

-{9= T 0 
"L.:.....I 

--w-L!J-

- DS' 1 to-
- S 
~SG 

- T 
.,....- R 
-RG 
_ ... D_R_-,Ot--

I ·1 I II 
1 OGATE' 0 

I 
- DR l DRI-

S'S 

I I 

nnnnn 
PC _ 

1111111 

NAME 
LOGIC 

EQUATION 

LINE RELAY A· B=C 
GATE 

DELAY OR 
MONOSTABLE 
MUL TIVIBRATOR 
OR ONE SHOT 

SCHMITT 
TRIGGER 

BISTABLE 
MUL TIVIBRATOR 

REGISTER 

PARITY 
CHECKER 

DESCRIPTION 

PROVIDES LOGIC' OUTPUT IF AND ONLY IF A 
INPUT IS LOGIC' AND BINPUT IS A LOGIC O. 

CHANGES STATE (LOGIC 0 TO LOGIC ') UPON 
ACTIVATION BY A TRANSISTION TO LOGIC I; 
MAINTAINS CHANGED STATE FOR A TIME T, 
THEN RETURNS TO ORIGINAL STATE. 

PROVIDES A SPECIFIC VOL TAGE OR LOGIC 
LEVEL OUTPUT FOR THE DURATION OF THE 
APPLIED INPUT WAVESHAPE. (USED 
PRIMARILY AS A WAVESHAPING CIRCUIT) 

SET STATE OF A FLIPFLOP EQUALS "1" OUTOF "'" SIDE 
THE POLLOWING INPUTS WILL SET A FLIP FLOP; 

A AU,,, OR._ APP!-IED TO DS 
__ B'. A "0" ORTAPPLIED TO S INPUT WITH A "0" 

APPLIED TO SG.-
RES ET STATE OF A FLIP FLOP EQUALS "'" OUT 
OF "0" SIDE 
THE FOLLOWING INPUTS WILL RHETA F'LlP FLOP; 

A. A "'''ORt-APPLIED TO DR 
B. A "0" OR fAPPLIED TO R INPUT WITH A "0" 

APPL lED TO RG. 

ANS APPLIED TO THE T INPUT WILL CAUSE THE 
FLIP FLOP TO CHANGE STATES. 

NOT E: A "1" ON RG OR SG WILL INHIBIT THE FLIP FLOP 
FROM CHANGE OF STATE EVEN I F A .tIS APPLIED TO 
THE R OR S INPUTS . .oS, DR, AND T ARE NOT EFFECTED 
BY THE GATE INPUTS AND WILL FUNCTION NORMALLY. 

SET STATE OFA REGISTER EQUALS "I" 
OUT OF "1" SIDE. A "1" OR~APPLIED 
TO S WITH A "1" APPLIED TO THE 
GATE WILL SET REGISTER. 
RESET STATE OF A REGISTER EQUALS 
"1" OUT OF "0" SIDE. A "1" OR""t.. 
APPLIED TO DR WILL RESET REGISTER. 

PROVIDES 110" OUT WITH EVEN # OF 
l'S .LN. PROVIDES "l" OUT WITH 

ODD # OF liS IN. 

SYMBOL 

r-- S 

B - r--c 

IT 

Ix 

- DT t-

JTL 

SC 

I 

NAME 

TIMING 
GENERATOR 

HALF 
ADDER 

ISOLATION 
TRANSFORMER 

DELAY 
TIMER 

SIGNAL 
CONVERTER 

LOGIC 
EQUATION 

S =:4'8 tA'S 
C =A'B 

X=A 

DESCRIPTION 

GENERATES CLOCK PULSES FOR' 
SYNCHRONIZATION AND/OR TIMING.: 

ACCEPTS TWO INPUTS, A AND B, 
AND PERFORMS BINARY ADDITION, 
PROVIDING TWO OUTPUTS: A SUM 
(s) AND A CARRY (C). 

ISOLATES INPUT LINE FROM 
INTERNAL CIRCUITS. OUTPUT 
LOGIC LEVEL EQUALS INPUT 
LOGIC LEVEL. 

ACTIVATED BY A Ii OUTPUT 
EQUALS LOGIC 0 FOR TIME 
T, THEN BECOMES LOGIC Ii 
RESET BY A"i... 

28V INTO SC EQUALS OV AT 
OUTPUTi OV INTO SC EQUALS 
-6V AT OUTPUT. 



.-"" ....... , 

• I /Y" ;-- j l ___ . 

'"" .. 

CODE 

SYM HEX BINARY 

AQ 

LeI 01 0000 0001 

LDA 20 0010 0000 

LAI 02 0000 0010 

LXI 12 0001 0010 

DESCRIPTJaN 

_ ACQUISITION 

LOAD C 
IHMEDIATE 

LOAD A 

LOAD A 
IMMEDIATE 

LOAD INDEX 
IMMEDIATE 

LCC 30 0011 0000 LOAD CONSECUTIVE e(M)->C(MH) 

~ ~ LAN 38 0011 1000 LOAD A NEGATIVE C(M)+l-+A 

LDQ 40 0100 0000 LOAD Q C(M)->Q 

TBe 

TBA 

TBX 

ISB INOM 

ISB TBA 

ISB 

soP 15 

SOP 15 

IBS 

2's 
caMPA 

TBQ 

SOP 15 

snp 15 

SOP 15 

SOP 15 

'., 
i' 

",'., , 

STCC 
eKE 

_____ ,r--r--r-----~----------+_--------1r----~----~----+_----+-----~--~~--~----~----~----_4----_+-----+-----+-----+----~--~~ 

j;~:-~ST-At_4-8_r0-1-00--10-0-0t_---S-TO-R-E-A----t_--A-->C--(M-)--__ ~-T-A-B--r_-'-BS--+_S-0-P-1-5_r----_1------t_----+_----_+------r_----+_----_+----_1~----+_----_+----~~----+__1--~ 
STX 50- 0191 0000 STORE INDEX X_>C(M) TXB IBS SOP 15 

STQ 58 0101 1000 STORE Q Q+C(M) TOB IBS snp 15 

.----r-i-_i~--~r_--------_r--------ir----+_~~rn~~----_r----+_----r_--_i----_t----_r----+_----~--_f-----+-----r----+_-r~ 
INA O~kADJD 

60 aha 0000 ADD A+C(M)-+A 

SUB 68 0110 1000 SUBTRACT A-C(H)-+A 

MPY 70 0111 0000 MULTIPLY AxC(H)-+AQ 

OIV 78 0111 1000 DIVIDE 

RAO 80 1000 0000 REPLACE ADD ONE 

RSO S8 1000 1000 REPLAC~~UBTRACT C(M)+A-1o+C(M) 

INX 03 0000 0011 INCREASE INDEX 

SLA DB 0000 1011 

SRA 10 0001 0000 

SHIFT LEFT 
ARITHMETIC 

SHIFT RIGHT 
ARITHMETIC 

X+K-+X 

CLCR 
ISB 

IF OVFL NOT SDP 15 
SAOV. IF BYPASS 

Ee SCARY STOP 

INS IF ADD 

CLCR IF OVFL OV~TAND SOP 15 
ISB SAOV,IF BYPASS 

ISB 
Se8 

ISB 
se8 

CLCR 
ISB 

CLCR 
ISB 

TBe 

TBe 

EC SCARY STOP 

TBQ 
IF B7-0 

SOP 4 

2's 2's 
COMPA COMP Q 

IF B-O IF q-o 
SERD STOP IF A7 .. 0 2's COMP 
IF A7~~7 soP 6 IF Q"O 

SSHF;'~ l'sCOHPA 

- .. INCA 
TBA IF EC 

SCARY 

TBA 

TBM 

IF C-O 
SDP 15 

IF e.0 
SDP 15 

OECA 
IF EC 
SCARY 

SAQL 

SAOR 

TMX 

DEC 
SDP 1 

DEC 
SOP 1 

TAB 

2'. 
COMPQ 

TAl> 

TAB 

eLA 

IF A7-1 
SERD 
STOP 

IBS 

IBS 

IF 
QO-O 

SDP 9 

IF c-o 
SDP 11 

rNA 

DEC 

SDP 15 

SOP 15 

SOP 15 

SAQR 
SSNP"B7 SNF-+A7 

SAL 

AO>Q7 

SQL n-qo 

AQ .... (K)·.AQ 

~0' 

DEC 

IF 87-0 INS -...:.I.' 
IF F7"0 F ~~~ IF B7"1 IF SNF~l 

TFA + Q6QO) !2' s caMP A 2' sCOMPQ 
SOP 6 SUD I STOP· 

I 

I 

--~~r-r-r----+----------r------~---_+----r---r--4-----+-----------------------------4----+---~~ 

SLL 13 0001 0011 

SRL 18 0001 1000 

SHIFT LEFT 
LOGICAL 

SHIFT RIGHT 
LOGICAL 

AND 

lOR 1A 0001 1010 INCLiJSIVE OR 

XOR lB 0001 1011 EXCLUSIVE OR 

TBe 

TBe 

A+K-+A IORI 

lEX 

iF e-o 
snp 15 

IF C-O 
snp 15 

SAL 

SAR 

SOP 15 

soP 15 

DEC 
SDP 1 

DEC 
SOP 1 

I I . I I : I I I 

... o;HH--+-----if----t/--t--+--+--t--t-----+--t---I----+-+--f-----+-+--l-----+-+-l 
BUN 90 10~000 

BRANCH 
UNCONDITIONAL 

M+P TMP SDP 15 

C' I / l) 

/ ( 

/' 

) (; 

! 
I 

/ 
I 

! 

-j' I . , 

, ~, 

9;;·'·-lr _ BST 98 1001 1000 BRANCH AND 
STOP 

H-+P • STOP IMP\" 
STOP 

snp 15 

/ 

BSB AO 1010 0000 BRANCH TO 
SUBROUTINE 

1 90+P8,P9_>C(M 
2 PO-P7":("H) 
3 M+2-+P 

(90+P8~ 
\P9-B) 

TPHB 
IBS INOM TPLB IBS INOM IMP snp 15 

-
BPS AS 1010 1000 BRANCH ON IF(>O)-l, M-+P IF CC>O sOP 15 

~-t--+_-----+---P-OS-'-TI-n----1---------~~TMP----~----~----+_----+_----+_----4_----~----_+-----4~--~----~~----~----+-----~----_+~~~I~··· 
BZE BO lOp 0000 

BRANCH ON 
ZERO 

IF CC"O 
IMP 

SOP 15 
/ 

~~----r_------+-------~--r_~--_+---+--.~--~--+---~--~~---+--_+--~~~--~~. 

BNG B8 1011 1000 

BNC co 1100 0000 

BXZ C8 1100 1000 

SKI 08 0000 1000 

SKS 09 0000 1001 

SKF OA 0000 10lD 

'ron DO 1101 0000 

BRANCP. ON 
NEGATIVE 

BRANCH ON 
NO CARRY 

BRJu'lCH ON 
INDEX-ZERO 

SKIP ON 
INTERRUPT 

SKIP ON 
SENSE SWITCH 

SKIP ON 
FLAG 

WRITE DATA 
BLOCK 

HNO 08 U01 1000 MANUAL OUTPUT 

RDB EU 1110 0000 

RDI E8 1110 1000 

READ DATA 
BLOCK 

READ UNTIL 
INTERRUPT 

MNI FO 1111 0000 MANUAL INPPT 

OCD 11 0001 0001 OUTPUT COMMAND 

SST 00 0000 0000 SENSE STATUS 

FLC 28 0010 1000 CLEAR FLAG 

FLS f8 1111 1000 SET FLAG 

CONDITION CODES 

CARRY - Carry or borrow 
(>0) - Greater than zero ... 
(-0)- - Equal to zero 
«0) --Less than Zero 

III OPI Signal Clears Condition Cod~s 

IF x-a, H-+P 

IF INT .. 1, 
P+2K"'P 

IF SENSE-I, 
P+2K+P 

C (M) "OUTPUT. 
UNTIL C"O 

C(M)-+I, 
UNTIL CaD 

INPUT_>C (~) , 
UNTIL c-O 

INPUT-+C(M) , 
UNTIL INT-l 

I_>C(M) , 
UNTIL C"'O 

SETS UP 
I/O INTERFACE 

IF CC<O 
TMP 

IF 

snp 15 

CARRY-o, SOP 15 
IMP 

ir X-O 
IMP 

IF INT-O 
snp 15 

IF 
SENSE-O 
SOP 15 

IF 
FLAG .. O 
SOP 15 

INR 
WAIT 

INR 
WAIT 

INoe 

snp 15 

CLINT 

ISB 

ISB 

INRD 
WAIT 

INRD 
WAIT 

WAIT 

TBe 

TBe 

TBC 

TBI 
WAIT 

TEB 

TEB 
IF INT-l 
snp 15 

TIB 

SOP 15 

TPM 

TPM 

TPM 

INWD 
WAIT 

IBS 

IBS 

IBS 

IF C"O 
snp 15 

IF C .. O 
SDP 15 

IF C .. O 
SDP 15 

IF CeO 
sor 15 

IF e-o 
SDP 15 

IF C-O 
SDP 15 

IF C .. O 
SDP 15 

STATUS WORD-oo-A INSS TEB TBA SDP 15 

FLAG-a - eLF 

STF 

A - Accumulator 
C - COllI1tdOW"n 
M - Memory Address 

SDP 15 

snp 15 

P - Program Address 
Q - Quotient 
AQ - Conil1ned acctn;lulator and quotient 
I - Input 
X - Index 
K - Constant 

INOt 
DEC 

INOM 
DEC 

INOM 
DEC 

INCH 

INOM 

INCH 

INOM 
DFC 

SDP 1 

INOM 
DEC 

SOP 1 

INOM 
D;C 

SOP 1 

INCM 
SOP 1 

INCM 
DEC 

snp 1 

TMF 
SOP I, 

TIIP 
SDP 4 

TMF 
SOP 4 

SPECIAL SYMBOLS 

-+ Goes to 
'c( } the contents of 

\ 

~ (K) shift righ t -K places 

~ (K) shift left K places 
t add 
- subtract 
X multiply 
.;. divide 

+{§'t!Z 
• and 
e excl. .... '\ive or 

- Nor ~'r complement of 

STCC 
eKE 

~-
!. 

') 

I 

tIl o 

• 

( , 


	0000
	0001
	0002
	0003
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	Fig-01
	Fig-02
	Fig-03
	Fig-04
	Fig-05

