5

PROGRAM

Selfloading Bootstrap and Binary Loader

TAPES

Special Format: 081-000001

$$
\%
$$

ABSTRACT

The selfload tape is used in conjunction with the program load feature of the Supernova to place an absolute binary loader in the highest locations of alterable storage.

1. REQUJREMENTS
1.1 Memory

Supernova with 2 K or larger alterable memory.
1.2 Equipment

ASR Teletype or papertape reader.
1.3 External Subroutines

None.
1.4 Other

None.
2. OPERATING PROCEDURE

2.1 Calling Sequence

The Selfloading Bootstrap and Binary Loader is used in conjunction with the PROGRAM LOAD feature of the Supernova to place an image of the Binary Loader in the highest locations of alterable memory.

The Selfloading tape is placed in the chosen input device and the device code for that device is entered in the xightmost six console switches (bits 10-1.5). 12 for When PROGRAM LOAD is pressed the tape will be read in and the Supernova will halt at location 00120 in alterable storage. The Binary Loader is now in memory. Execution of the Binary Loader may now be initiated by press ing CONTINUE, or putting XX777 in the switches and pressing START.

2. 2 Input Format

The Bootstrap portion of the tape is formatted to meet the requirements of the PROGRAM LOAD hardware. While the hardware imputs only 41_{8} wonls, the attached Binary Loader which is subsequently input by the ${ }^{8}$ Bootstrap is formatted in the same manner as the Bootstrap itself.

Blank frames are ignored until the first nonblank frame is reached. That and subsequent frames are accepted and placed in consecutive locations of storage, beginning with location 0. The first full frame of each pair is stored in the left half of a word, the second in the right, until location 408 is loaded. The last instruction loaded is executed. The hardware PROGRAM is now complete.

The Bootstrap then sizes memory, interprets the device code, and reads in the Binary Loader which follows the Bootstrap on the tape and is formatted in the same manner.

2.3 Output Format

The Selfloading Bootstrap and Binary Loader produce no output.

2.4 Error Returns

There are no indications of error other then disfunction: the loaded tape should halt after the last punched frame has been read with the address lights containing 00121.

Errors occurring during the use of the Binary Loader segment of the tape are covered by document number 093-000003.

2.5 State of Active Registers upon Exit

PC: last location in read/wxite memory (XX777).

2.6 Cautions to User

None.

3. DISCUSSION

3.1 Algorithms

The device code is appended to the input instructions by reading the console switches, masking all but the rightmost six bits, and using the result as a count in a loop which increments the input instructions which are loaded with a device code of zero.

Determination of the highest location in core is accomplished by writing and reading locations at 1 K increments untl the information read back is the same as that written. Loading is begrin at the highest location minus the length of the loader. Load completion is detected by exhaus tion of a count, which leads to a halt at 00120.

3.2 Limitations and Accuracy

None.

3.3 Size and Timing

The Selfoading portion of the loader is 41_{8} locations long. Execution is faster than the input rate of all tape readers. If any delay is perceived, the loader is not being properly executed.
3.4 References

See 093-000003 for a discussion of the Binary Loader.
3.5 Flow Diagrams

None.
4. EXAMPLES AND APPLICATIONS

Not pertinent.
5. PROGRAM LISTING

Program listing follows. For a listing of the Binary Loader see the appropriate document.

3 BOOTSTRAP PROGRAM				
)		- Loa	Into locations	6-37
But Note				
$\phi-37$	2663020		SPCl = NDS	
	0636046		BPCE = SKPUN	
	060500		OPC3 $=$ DIAS	
80100	662677	BEG:	10RST	BRESET ALL 110
00101	060477		READS A	- KEAD Shltches hato aco
80102	024026		LDA 1.c77	3 DEVICE MASX
00103	107406		AND B, 1	PDEVICE cone
40104	124000		com is:	- -DEvice Choe-1
	000005	LOOP=	BEG	
00105	010314		1s7 0pl	; AdJust all
08106	010030		ISE UPE	$31 / 0$ lastruetruns
90107	810032		ISE OP3	tfor Proper GODE
00110	125448		LNC 1. 1.3 SK	SOME ?
02111	000005		NMP LOOP	\% GO BACK
$00: 12$	039016		LDA 2.C377	$3 \mathrm{MM}, 377$ INTO LOCN. 377
08113	050377		STA 2.37?	
	000014	OP1*		
00114	060077	\$6¢110	OPCl-:	INIUS DEVICE
00115	101102		MOM 0.6.SEC	y TES BIT be Clear carky
	080016	6377 $=$	BES	
00116	0000377		JMP 377	: Chfindel vevice- 60 wait for
	000017	Loope	-8Eg	
00117	004030		JSR EET+1	3 get a Frame
08120	101065		MOVC B.b. SVK	3 3GVORE EEROS
00121	000017		IMP LOOP2	- Gu Hack
	000022	LOOPA	- EEG	
00122	094027		JSR GET	GGE A FUL WORD
06123	646026		STA 1:C77	STORE TMRU AJTO INC.
00124	010100		ISE 100	yolmp count
d012s	couder		Smp Loopa	- KCAO ANOTHEF
	00002\%	077*.		
00126	189047	0 od 12	IMP 77	3 Jop io batt locatidi lsaded
	000027	SeT:.		
90127	126420		SUBE 121	SCLEAR AC. SET CARRY
	6008303	1P2\%	c 6	
	000039	Lu0P3	- BEG	
00138	063577	66361	opce- 1	-sxpon oevice
00131	000030		SMP LWOP3	- Walt for Ludone
	000932	OP3=.		
80.32	966477	\%6\% ${ }^{\prime \prime}$	OpC3-3	fugas gadevice
70133	107363		ADDCS $0.1 . \operatorname{SNC}$	\% ACCUMULATE TWO FRAGES
00134	800030		JMP LOOP3	3) EACK for second
00135	125300		Move lol	3 SWAP
20136	001400		JMP ge3	
02137	802000		θ	-PAO TO LOC 37
02143	000000		Simp 0	- Supernova startup

