
Data General

NOTICE

Data General Corporation (DGC) has prepared this
manual for use by DGC personnel, Licensee's, and
customers. The information contained herein is the
property of DGC and shall not be reproduced in whole
or in part without DGC's prior written approval.

Users are cautioned that DGC reserves the right to
make changes without notice in the specifications and
materials contained herein and shall not be
responsible for any damages (including
consequential) caused by reliance on the materials
presented, including, but not limited to typographical,
arithmetic, or_ listing errors.

NOV A, SUPERNOVA, ECLIPSE and NOV ADISC
are registered trademarks of Data General
Corporation, Southboro, Mass.

Ordering No. 015-000050
© Data General Corporation, 1976

All Rights Reserved
Printed in the United States of America

Revision 00, February 1976

INTRODUCTION

TABLE OF CONTENTS

SECTION I
microNOV A COMPUTERS

Efficient Instruction Set

Multiply/Divide

Stack .. .

Memory

Power Fail/ Auto-restart

Input/Output Bus .. .

Device Addressability .. .

Interrupt Capability .. .

Data Channel .. .

Ease of Interfacing

Input/Output Devices .. .

Real-time Clock

Software

Languages .. .

Operating Systems

SECTION II
INTERNAL STRUCTURE

1-1

1-1

1-1

1-1

1-1

1-2

1-2

1-2

1-2

1-2

1-2

1-3

1-3

1-3

1-3

1-3

INTRODUCTION . 11-1

INFORMATION FORMATS .. 11-1

Bit Numbering . 11-1

Octal Representation. 11-2

Character Codes . 11-2

TABLE OF CONTENTS (CONTINUED)

Information Representation ... 11-2

Integers ... 11-2

Floating Point Numbers ... 11-3

Logical Quantities " 11-4

Decimal Numbers . 11-4

INFORMATION ADDRESSING ... 11-5

Word Addressing ... 11-5

Effective Address Calculation .. 11-5

Byte Addressing .. 11-6

Addressing Nonexistent Memory ... 11-6

PROGRAM EXECUTION .. 11-8

Program Flow Alteration .. 11-8

Program Flow Interruption .. 11-8

SECTION Ill
INSTRUCTION SETS

INTRODUCTION ... 111-1

INSTRUCTION FORMATS .. 111-1

No Accumulator-Effective Address. 111-1

One Accumulator-Effective Address .. 111-1

Two Accumulator-Multiple Operation .. 111-1

Input/Output. ,. .. 111-2

CODING AIDS ... 111-2

FIXED POINT ARITHMETIC. .. 111-5

Load Accumulator .. 111-5

Store Accumulator ... 111-5

Add ... -........ 111-5

Subtract ... 111-5

Negate · ... 111-5

Add Complement .. 111-5

Move ... 111-6

Increment .. 111-6

Multiply . 111-6

Divide ... 111-6

ii

TABLE OF CONTENTS (CONTINUED)

LOGICAL OPERATIONS ... 111-7

Complement. 111-7

And ... 111-7

STACK MANIPULATION ... 111-7

Stack Pointer. 111-7

Frame Pointer ... 111-7

Return Block ... 111-8

Stack Frames .. 111".'8

Stack Protection .. 111-8

Initialization of the Stack Control Registers 111-8

Stack Pointer ... 111-8

Frame Pointer ... 111-8

Push Accumulator ... 111-9

Pop Accumulator ... 111-9

Save ... 111-9

Move To Stack Pointer .. , 111-9

Move To Frame Pointer ... 111-9

Move From Stack Pointer ... 111-9

Move From Frame Pointer .. 111-9

PROGRAM FLOW ALTERATION ... 111-10

· Jump .. , ... 111-10

Jump To Subroutine .. 111-10

Increment And Skip If Zero .. 111-10

Decrement And Skip If Zero .. 111-10

Return .. 111-10

Trap ... 111-10

SECTION IV
INPUT /OUTPUT

INTRODUCTION . IV-1

OPERATION OF 1/0 DEVICES ... IV-1

PRIORITY INTERRUPTS . IV-2

DATA CHANNEL ... IV-3

CODING AIDS . IV-3

iii

TABLE OF CONTENTS (CONTINUED)

1/0 INSTRUCTIONSS .. IV-4

No 1/0 Transfer .. IV-4

Data In A .. IV-4

Data In B .. IV-4

Data In C .. IV-4

Data Out A ... IV-4

Data Out B ... IV-4

Data Out C ... IV-4

1/0 Skip ... IV-4

CENTRAL PROCESSOR FUNCTIONS .. IV-5

Interrupt Enable ... IV-5

Interrupt Disable ... IV-5

Interrupt Acknowledge .. IV-5

Mask Out .. IV-5

Reset .. IV-6

Halt ... IV-6

CPU Skip .. IV-6

REAL-TIME CLOCK ... IV-6

Real-time Clock Enable .. IV-6

Real-time Clock Disable ... IV-6

POWER FAIL/AUTO-RESTART ... IV-7

HAND-HELD CONSOLE .. IV-8

Instructions ... IV-8

Read Switches ... IV-8

Read Function ... IV-9

Light Decimal Point .. IV-9

Programming ... IV-9

Considerations .. IV-9

FRONT PANEL

SECTION V
OPERATION

V-1

Power Switch ... ; . V-1

Rocker Switch ·. V-1

iv

TABLE OF CONTENTS (CONTINUED)

Indicator Lights. V-1

CPU Board Controls V-1

HAND-HELD CONSOLE .. V-2

Display ... V-2

Key Pad ... V-2

Function Keys ... , ... V-2

RESET .. V-2

PR LOAD .. V-2

START .. V-2

STOP .. V-2

CONT .. V-2

DEP ... V-2

CLRD .. V-2

Location Keys. V-3

ADDR .. V-3

SWITCHES . V-3

SP .. V-3

FP ... V-3

AC3 ... V-3

AC2

AC1

V-3

V-3

ACO ... V-3

MEM ... V-3

NEXT ... V-3

LAST ... V-3

CONSOLE DEBUG OPERATION .. V-3

Opening Internal Cells ... V-4

Opening Memory Cells .. V-4

Modifying a Cell. ... V-4

Other Commands ... V-4

Set Breakpoint ... V-4

Start Execution ... V-5

Continue Execution ... V-5

Program Load . V-5

Rubout ... V-5

K ... V-5

v

TABLE OF CONTENTS (CONTINUED)

PROGRAM LOADING .. V-5

APPENDICES

APPENDIX A

1/0 DEVICE CODES ... A-1

APPENDIX B

OCTAL AND HEXADECIMAL CONVERSION 8-1

APPENDIX C

ASCII CHARACTER CODES .. C-1

APPENDIX D

DOUBLE PRECISION ARITHMETIC .. .D-1

APPENDIX E

INSTRUCTION USE EXAMPLES .. E-1

APPENDIX F

INSTRUCTION EXECUTION TIMES .. F-1

Vl

This page intentionally left blank.

vii

SECTION I
microNOVA

COMPUTERS

INTRODUCTION
The Data General Corporation microNOV A com­
puters are general purpose, four accumulator,
stored-program computers with a word length of 16
bits. They have the capability to address up to 32,768
16-bit words. The accumulators are 16 bits in length
and are used for arithmetic and logical operations.
Two of these accumulators can also be used as index
registers. Memory can be addressed either directly or
by using indirect addresses. Chains of indirect
addresses can be up to eight levels deep. A direct
memory access (DMA) data channel is provided to
enable rapid data transfer between main memory and
peripheral devices. The features of the microNOV A
computers are summarized below.

Instruction Set

The basic instruction set for the microNOV A
computers contains instructions that perform fixed
point arithmetic between accumulators, including
multiply and divide; transfer of operands between
accumulators and main memory; logical operations
between accumulators; transfer of program control;
and I/O operations. All instructions are one 16-bit
word in length. The arithmetic and logical
instructions have the capability to perform, in one
instruction, the following sequence: perform an
operation, shift the result one bit left or right, test the
result of the shift, and then conditionally skip the
next instruction depending upon the outcome of the
test. In addition, it is possible to perform this entire
sequence without affecting either of the operands.
This means that complicated numerical manipulation
and testing can be performed using a small number of
instructions.

The instruction set for the microNOVA computers
contains the instruction set for the NOVA line of
computers. The multiply and divide instructions
which are optional with the NOV A line of computers
are standard with the microNOV A computers. In
addition, the stack facility which is standard with the
NOV A 3 computers is also standard with the
microNOVA computers.

Even though the mnemonics and functions performed
are the same for all instructions in both instruction
sets, the instruction operation codes are different for
two of the instructions (l/0 RESET and READ
SWITCHES). Programs written for NOVA line
computers need only be reassembled before they can
be run on microNOV A computers.

Multiply /Divide
The multiply and divide instructions allow the
multiplication and division of operands to be
performed quickly, without resorting to time­
consuming software routines. Two 16-bit operands
can be multiplied together to yield a 32-bit result. A
16-bit operand can be divided into a 32-bit operand to
yield a 16-bit quotient and a 16-bit remainder.

Stack

A last-in/first-out (LIFO) or push-down stack is
maintained by the processor. This feature provides a
convenient method for the saving of return
information and passing arguments between
subroutines. The stack also provides an expandable
area for the tern porary storage of variables and
intermediate results.

I-1of4

Memory

Memory is available for microNOVA computers in
several different forms and amounts. Semiconductor
random-access memory <RAM) is available in
modules of either 4 or 8K 16-bit words. Semiconductor
programmable read-only memory (PROM) is
available in modules of 512, 1K, 2K and 4K 16-bit
words.

One of the available I/O devices for the microNOV A is
a PROM programmer. This PROM programmer
allows programming of PROM's to be an online
process one memory module at a time instead of on a
chip-by-chip basis.

Power Fail/ Auto-restart
The power fail/auto-restart feature of the micro­
NOV A computers provides a "fail-soft" capability in
the event of unexpected power loss. In the event of
power failure, there is a delay of one to two
milliseconds before the processor shuts down. The
power fail portion of the feature senses the imminent
loss of power and interrupts the processor. The
interrupt service routine can then use this delay to
store the contents of the accumulators, the program
restart address, and other information that will be
needed to restart the system. One to two milliseconds
is enough time to execute 1,000 to 1,500 instructions
on microNOV A computers so there is more than
enough time to perform the power fail routine.

When power is restored, the action taken by the
auto-restart portion of the feature depends upon the
position of the power switch on the front panel. If the
switch is in the "run" position, the processor remains
stopped after power is restored.

If the switch is in the "lock" position, 50 milliseconds
after power is restored, the processor executes the
instruction contained in a pre-defined location of
main memory, restarting the interrupted system.

The battery backup option available with the
· microNOVA computers operates in conjunction with
the power fail/auto-restart feature to preserve the
contents of semiconductor RAM in the event of a
power failure. If power fails, the battery backup
option will supply power to the memories for a period
of up to 45 minutes so that they will not lose their
data. An external battery backup option is available
which enables the customer to connect larger
batteries and thus extend the period of time during
which the integrity of the memories can be
maintained

I-2

Input/Output Bus

The input/output <I/0) bus is that portion of the
computer system that carries commands and data
bet ween the processor and the various peripheral
devices in the system. The I/O bus of the micro­
NOV A computers is a 2-bit parallel, bidirectional,
differential data bus. The bus consists of 1 differential
I/O clock, 1 differential master clock, 2 differential
data paths, a clear line, an interrupt request line, and
a data channel request line. To the programmer, the
bus appears to be made up of a device selection
network, interrupt circuitry, command circuitry, and
a 16-bit wide data path.

Device Addressability

Each I/O device in the system has a unique 6-bit
device code. Each device is connected to the device
selection network in such a way that it will only
respond to commands that contain its own device
code. The fact that the selection network uses 6-bit
device codes gives 26 = 64 unique device codes. Three
of these codes are reserved for specific features and
functions, but there are still 61 device codes available
for use with I/O devices.

Interrupt Capability

The interrupt circuitry contained in the I/O bus
provides the capability for any I/O device to interrupt
the system when that device requires service. When a
device requests an interrupt, the processor
automatically transfers program control to the main
interrupt service routine. This routine can either poll
all the I/O devices in the system to find out which one
initiated the interrupt or use a special instruction to
identify the source of the interrupt.

The interrupt circuitry of microNOVA computers
also contains the capability to implement up to
sixteen levels of priority interrupts. This is done with
a 16-bit priority mask. Each level of device priority is
associated with a bit in this mask. In order to suppress
interrupts from any priority level, the corresponding
bit in the mask is set to 1.

Data Channel

Handling data transfers between external devices and
memory under program control requires an interrupt
plus the execution of several instructions for each
word transferred. To allow the block transfer of data,
the I/O bus contains circuitry for a direct memory
access <DMA) data channel though which a device, at
its own request, can gain direct access to memory
using a minimum of processor time. At the maximum
input rate of approximately 150,000 words per second
and at the maximum output rate of approximately
172,000 words per second, the data channel effectively
stops the processor, but at lower rates processing
continues while data is being transferred.

Ease of Interfacing

Due to the straightfoward logic and general design of
the I/O bus on the microNOV A computers, and the
extensive interface aids offered by Data General,
customer provided or customer designed I/O devices
may be interfaced easily to a microNOV A computer
system.

Input/Output Devices

Data General offers several standard I/O devices for
the microNOV A computers. A dual diskette sub­
system gives the capability for online random-access
data storage. A hand-held console gives the capability
for examining and modifying the accumulators and
main memory and for controlling the actions of the
computer. An asynchronous interface allows either a
teletypewriter or video display terminal to be used as
a system console device. An option available with the
asynchronous interface is an interactive debugger
implemented in 256 16-bit words of ROM/RAM on the
interface board. This option allows troubleshooting of
applications programs directly from the system
console without giving up memory space to a software
debugger. A PROM programmer allows the customer
to program his PROM's as an online process.

Real-time Clock

The real-time clock feature of the microNOV A
computers provides a facility for periodic interrupts.
When enabled, the clock will interrupt the processor
every 2.4 milliseconds. Real-time clock interrupts
cause the processor to transfer control to a location
different from the location used for other I/O
interrupts.

I-3

Software
MicroNOV A computers are fully supported by proven
Data General software. Because microNOV A
computers are compatible with the NOV A line of
computers, many of the programming systems
available with the NOV A line of computers are also
available with microNOV A computers.

Languages

In addition to an editor, macro assembler, relocatable
loader, and symbolic debugger, a FORTRAN IV
compiler with real-time extensions is available with
microNOV A computers. All the standard library
routines for arithmetic operations, string man­
ipulation, and input/output operations are included to
ease the job of implementing applications systems.

Operating Systems

Two operating systems are available for systems using
microNOV A computers. The diskette based Disc
Operating System <DOS) is a subset of Data General's
Real-time Disc Operating System <RDOS). For those
applications requiring a small, memory based system,
Data General's Real-time Operating System (RTOS)
will efficiently manage system resources in a
real-time environment.

This page intentionally left blank.

I-4

SECTION II

INTERNAL STRUCTURE

INTRODUCTION
The basic structure of a microNOV A data processing
system consists of a central processing unit (CPU),
some amount of main memory, the I/O bus, the I/O
devices connected to the I/O bus, and a console.

CONSOLE

1/0 BUS

~ ---..
TELETYPEWRITER

PiY
DISKETTE

DISPLAY

DG-02101

• • •

The type, size, and number of memory modules and
I/O devices have no effect upon the internal logical
structure of the CPU. This chapter deals with the
addressing of information and the logical
representation of information within the CPU, and is
unaffected by those portions of the system outside the
CPU.

INFORMATION FORMATS
The basic piece of information within the processor is
the binary digit, or "bit". A bit is capable of
representing only two quantities 0 and 1. However, a
bit cannot represent both these values at the same
time. At any one point in time, a bit can either
represent a 0 or a 1, never both.

The normal unit of information within the CPU is the
"word". A word is made up of sixteen bits. Because
each bit is capable of representing two quantities, a
word is capable of representing 216 = 65,536 different
quantities. A word may be divided into two "bytes" of
8-bits each. A byte is capable of representing 28 = 256
different quantities. I/O devices transfer information
in units of bits, bytes, words, or groups of words called
"records", depending upon the device.

Bit Numbering

In order to avoid confusion when talking about the
information contained in bytes and words, the bits
that make up these units of information are numbered
from left to right, with the leftmost (high-order) bit
always numbered bit 0. The numbering extends to the
right and is always carried out in the decimal number
system. The rightmost <low-order) bit in a byte is bit
7. The rightmost bit in a word is bit 15 .

WORD WORD

II-1of8

Octal Representation

Because talking about the binary data contained in
bytes and words would quickly become awkward and
confusing if each bit were described, the octal
representation of binary information will be used in
this manual. To convert a piece of binary information
to its octal representation, the bits in the quantity are
separated into groups of three bits each, starting from
the right and proceeding to the left. If the number of
bits to be represented is not evenly divisible into
groups of three, the leftmost group will contain one or
two bits. Each group of bits can now be represented by
one of eight different symbols. The digits 0-7 are used
to represent the quantities 0-7. Each encoded digit is
called an octal digit. Because each group of bits can
contain any one of 8 values, this representation is
somtimes called "base 8" representation.

Another way to represent binary information is the
hexadecimal or "hex" representation. In hexadecimal,
the bits in the quantity are separated into groups of
four bits each and each group can be represented by
one of 16 different symbols. The digits 0-9 are used to
represent the quantities 0-9. The letters A-F are used
to represent the quantities 10-15. Because each group
of bits can contain any one of 16 values, this
representation is sometimes called "base 16" rep­
resentation.

The following table gives the correspondence between
the various representations.

DECIMAL BINARY HEX BINARY OCTAL

0 0000 0 000 0
1 0001 1 001 1
2 0010 2 010 2
3 0011 3 011 3
4 0100 4 100 4
5 0101 5 101 5
6 0110 6 110 6
7 0111 7 111 7
8 1000 8 1 000 10
9 1001 9 1 001 11

10 1010 A 1 010 12
11 1011 B 1 011 13
12 1100 c 1 100 14
13 1101 D 1 101 15
14 1110 E 1 110 16
15 1111 F 1 111 17

Our normal decimal numbering system is sometimes
called "base 10" representation. Because it is
sometimes possible to confuse numbers written in hex
or octal with those written in decimal, a subscript
denoting the base will be used in cases where
confusion might occur. The following examples
illustrate this convention.

6410 = 4016 = 100a
8710 =5716 =127a
6310 = 3F16 = 77a

II-2

In the last example, it is obvious that 3F is a number
written in hex, but the subscript is included to erase
any possible doubts.

Con version tables for hex to decimal and octal to
decimal are contained in Appendix B of this manual.

Character Codes
Within the processor, all information is represented
by binary quantities. The CPU does not recognize
certain bit combinations as characters and certain
other bit combinations as numbers. Sooner or later,
however, this information must be transferred outside
the computer in some form easily understood by
humans. For this reason, some standard corres­
pondence must be made between certain bit
combinations and printable symbols. The code used to
implement this correspondence in I/O devices
available with microNOV A computers is called the
American Standard Code for Information
Interchange (ASCII). This code can represent 95
printable symbols plus 33 control functions. A
complete table of. codes and their corresponding
characters can be found in Appendix C of this manual.

Information Representation

Even though the CPU does not intrinsically recognize
one information type from another, the different
instructions in the instruction set expect that the
information to be operated on will be in a specific
format. In general, there are four different, basic
information formats. They are integers, floating point
numbers, logical quantities, and decimal numbers.

Integers

Integers can be represented as either signed or
unsigned numbers and can be carried in either single
or multiple precision. Single precision integers are
two bytes long, while multiple precision integers are
four or more bytes long. Unsigned integers use all the
available bits to represent the magnitude of the
number. A single two-byte word can represent any
unsigned number in the inclusive range 0 to 65,535.
Two words taken together as an unsigned, double
precision integer can represent any number in the
inclusive range 0 to 4,294,967,295.

For signed operations, the two's complement
numbering system is used. In this system, the leftmost
or high-order bit is used as a sign bit. If the sign bit is
0, the number is positive and the remainder of the bits
in the number represent the magnitude of the number
as described above. If the sign bit is 1, the number is
negative and the remainder of the bits represent the
two's complement of the magnitude of the number.

To create the negative of a number in the two's
complement scheme, complement all the bits of the
number including the sign bit. After the
complementing process is finished, add 1 to the
rightmost or low-order bit. If the two's complement of
a negative number is formed, the result will be the
corresponding positive number. There is only one
representation for zero in two's complement
arithmetic: it is the number with all bits zero.
Forming the two's complement of zero will produce a
carry out of the high-order bit and leave the number
with all bits zero.

Examples:

To form the negative of 4:
4 0 000 000 000 000 100

complement 1 111 111 111 111 011
add 1 + 1

4 1 111 111 111 111 100

To form the negative of 17158

- 0 000 001 111 001 101
complement - 1 111 110 000 110 010
add 1 + 1

111 110 000 110 011

To form the negative of -17158

111 110 000 110 011
complement 1 000 001 111 001 100
add 1 +

0 000 001 111 001 101

To form the negative of 08

0 0 000 000 000 000 000
complement 1 111 111 111 111 111
add 1 + 1

0 0 000 000 000 000 000

Note that 0 is a positive number, i.e., its sign bit is 0.

Because the two's complement scheme has only one
representation for 0, there is always one more
negative number than there are non-negative
numbers. The most negative number is a number with
a 1 in the sign bit and all other bits 0. The positive·
value of this number can not be represented in the
same number of bits as used to represent the negative
number.

A single two-byte word can represent any signed
number in the inclusive range -32,768 to +32,767. Two
words taken together as a signed, double precision
integer can represent any number in the inclusive
range -2,147,483,648 to +2,147,483,647.

It is one property of numbers using the two's
complement scheme that addition and subtraction of
signed numbers are identical to addition and
subtraction of unsigned numbers. The CPU just treats
the sign bit as the most significant magnitude bit.

II-3

Floating Point Numbers

Floating point numbers allow operations to be
performed on signed numbers having a much larger
range than those normally represented as integers. It
would take a 16-word multiple precision integer to
represent the range of a floating point number in the
microNOVA format. Since floating point numbers
occupy either two words for single precision or four
words for double precjsion, floating point arithmetic
is used when numbers having a large range must be
manipulated.

A floating point number is made up of three parts: the
sign, the exponent, and the mantissa. The value of a
floating point number is defined to be:

(MANTISSA) X (16 -RAISED TO THE TRUE VALUE OF THE
EXPONENT FIELD)

The number is signed according to the value of the
sign bit. If the sign bit is 0, the number is positive; if
the sign bit is 1, the number is negative.

Floating point numbers are represented internally by
either 32 bits (single precision) or 64 bits (double
precision).

The formats are shown below:

Single Precision

Is I I
EXPONENT 1,l .i'i~1 MANTISSA I I I I I I I I I 31 0 1

Double Precision

Is I I
EXPONENT ~~I MANTISSA I I I I I I 1 a I I I I I 63 0 1

Bit zero is the sign bit: 0 for positive, 1 for negative.

Bits 1-7 contain the exponent. This is the power to
which 16 must be raised in order to give the correct
value to the number. So that the exponent field may
accommodate a large range, "Excess 64" repre­
sentation is used. This means that the value in the
exponent field is 64 greater than the true value of the
exponent. If the exponent field is zero, the true value
of the exponent is -64. If the exponent field is 64, the
true value of the exponent is 0. If the exponent field is
127, the true value of the exponent is 63.

Bits 8-31 for single precision and bits 8-63 for double
precision contain the mantissa. This means that bit 8
of the floating point number is bit 0 of the mantissa.
The mantissa is always a positive fraction greater
than or equal to 1/16 and less than 1. The "binary
point" can be thought of as being just to the left of bit
8. Continuing this concept then, bit 8 represents the
value 1/2, bit 9 represents the value 1/4, bit 10
represents the value 1/8, and so on.

In order to keep the mantissa in the range of 1/16 to 1,
the results of floating point arithmetic are
"normalized". Normalization is the process whereby
the mantissa is shifted left one hex digit at a time
until the high-order four bits represent a nonzero
quantity. For every hex digit shifted, the exponent is
decreased by one. Since the mantissa is shifted four
bits at a time, it is possible for the high-order three
bits of a normalized mantissa to be zero.

Zero is represented by a floating point number with
all bits zero. This is true for both single and double
precision. This is known as "true zero".

Floating point operands in memory are represented
by two words for single precision and by four words
for double precision. The formats are shown below:

Word 1 I S 1· EXPONENT l ~ANTl~SA 1 BITS
1

0
1
-7 j

~0;-~-2~'-3~1~4~'-5-'~G+l-7~-8~9-+-I -IO~.-l-l~l-2~l-13_._1_4~15~

Word 2 L...I ~1 --L_,..__M+-1 _A....1..~_T 1~_s ~1---·B,_, 1_T....1..~---l~--2_3..._, ---L..' -+l--''-'-1 _,

0 2 3 4 5 6 7 8 9 I 0 11 12 13 14 15

Double Precision

Word 1 Is I
0

EXPONENT I M:"NTIS~A I BITS I 0~7 I
2 I 3 I 4 I 5 i 6 I 7 8 9 110 11 12 I 13 14 15

Word 2 I
0

MANTISSA BITS 8-23
I I I I I I I I I I I I

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Word 3 MANTISSA BITS 24-39
01 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 I 13

1
14 I 15

Word4 MANTISSA BITS 40-55
01 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10

1

11 I 12 I 13 I 14
1

15

Logical Quantities

Logical operations in the microNOVA computers can
be performed upon individual words. When using the
logical operations, the words operated on are treated
as unstructured binary quantities.

Decimal Numbers

Decimal numbers may be represented internally in
two ways, unpacked decimal and packed decimal. In
unpacked decimal, the number is made up of a string
of ASCII characters and the sign, if present, may
appear in one of four places. The sign of the number
may be indicated by a leading or trailing byte which
contains the ASCII code for plus (2B 16) or minus
(2D16). Alternatively, either the high-order digit or
the low-order digit of the number may indicate the
sign in addition to carrying a digit of the number. The
table below gives the correspondence between certain
ASCII characters and the sign and digit values that
they carry.

II-4

SIGN DIGIT ASCII HEX
VALUE VALUE CHARACTER CODE

+ 0 . ~ + o{ 20, 28, 30, 78
+ 1 1 A 31, 41

+ 2 2 B 32, 42
+ 3 3 c 33, 43
+ 4 4 D 34, 44
+ 5 5 E 35, 45
+ 6 6 F 36, 46

+ 7 7 G 37, 47

+ 8 8 H 38, 48

+ 9 9 I 39, 49

- 0 - } 2D, 7D

- 1 J 4A

- 2 K 48

- 3 L 4C

- 4 M 4D

- 5 N 4E
- 6 0 4F

- 7 p 50
- 8 Q 51

- 9 R 52

The digits that are not carrying the sign must be valid
ASCII characters for the digits 0-9 (3016 - 3916) or
spaces (2016). A space has the same value as a zero.

Examples:

In the following examples, the hex value of a byte is
shown inside the box; the corresponding ASCII
character is shown beneath the box.

Byte Byte Byte Byte Byte

+2,048 (leading sign) 2B 32 30 34 38

+ 2 0 4 8

-1,756 (trailing sign) 31 37 35 36 2D

1 7 5 6 -
+1,850 (high-order sign) 41 38 35 60

A 8 5 0

-3,970 <low-order sign) 33 39 37 7D

3 9 7 l

For packed decimal, each digit of the decimal number
occupies one hex digit. The sign is specified by a
trailing hex digit. The number must start and· end on
a byte boundary. In other words, the number cannot
start or end halfway through a byte. This means that
a packed decimal number will always consist of an
odd number of digits followed by the sign. The sign
must be either C16 for plus or D16 for minus. The only
valid codes for digits are 0-910•

Examples:

In the following examples, the hex value of a digit is
shown within the box; the corresponding decimal
digit is shown beneath the box.

Byte Byte Byte

+2,048 0 l 2 0 4 8 c
0 2 0 4 8 +

+32,456 3 1 2 4 5 6 c
3 2 4 5 6 +

-1,756 0 I 1 7 5 6 D

0 1 7 6 6 -
-25,989 2 I 5 9 8 9 D

2 5 9 8 9 -

INFORMATION ADDRESSING
The information formats described in the preceding
section give a way of representing different types of
data within the CPU. Operations cannot be performed
upon these data types, however, unless they can be
addressed by the CPU. The address of a piece of
information is its location in main memory. Once the
CPU knows the address of a piece of information, the
desired operation can be performed.

Word Addressing

Main memory is partitioned into 2-byte words, and
each word has an address. The first word in memory
has the address 0. The next word has the address 1,
the next word has the address 2, and so on. Word
addressing is used to address integers, floating point
numbers, and logical quantities that are formatted in
units of words.

ADDRESS WORD

. --------------------------------,
I I
I I

~--------------------------------~

•
t- -i
' '
L------------~---------------------_J

r--------------------------------i

• I '
I '
L----------------------------....J

4008 I i , ,BY1T~ , ' I , i ,B~TE1 , , I
0 I 2 3 4 5 6 . 7 8 9 10 11 12 13 14 15

4018 I ,· ,BYTE, I I I ,B~TE I I I
011 2 3l4 5 6l7 8 9 1 10 II 12 1 13 14 15

I I . I ,BYIT~ I I I I I ,B~T~ I I I
0 I 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4028

OG-00538

II-5

Effective Address Calculation

There are six instructions in the microNOV A
instruction set that directly reference memory using
word addressing. These instructions use 11 bits in the
instruction word to define the address. These bits do
not directly specify the address, but are used in a
calculation which results in the address of the desired
word. The resultant address is called the "effective
address" or "E", and the calculation is called the
"effective address calculation".

The 11 bits in the instruction that are used to define
the effective address are bits 5-15. Bit 5 is called the
"indirect bit", bits 6 and 7 are called the "index bits"
and bits 8-15 are called the "displacement bits"

I I @ I INDEX I DISPLACEMENT I
o I 1

1
2

1
3 I 4 s & I 7 s 1

9 I 10
1

11
1

12 1 n 1
14

1
15

If the index bits are 00, the displacement bits are
treated as an unsigned number which is the address of
a word in memory. This is called "absolute
addressing". Absolute addressing can be used to
directly address any of the first 256 words in main
memory.

If the index bits are 01, the displacement bits are
treated as a signed, two's complement number which
is added to the address of the instruction. This is
called "relative addressing". Relative addressing can
be used to directly address any word in main memory
whose address is in the range -128 to +127 from the
instruction.

If the index bits are 10, accumulator 2 is used as an
index register. if the index bits are 11, accumulator 3
is used as an index register. In this form of word
addressing, known as "index register addressing" the
displacement is treated as a signed, two's complement
number which is added to the contents of the selected
index register to produce a memory address. In index
register addressing, the addition of the displacement
to the contents of the index register does not change
the value contained in the index register. Index
register addressing can be used to directly reference
any word in main memory .

The result of the addition performed in relative
addressing and index register addressing is "clipped"
to 15 bits. In other words, the high-order bit of the
result is set to 0. For example, if accumulator 2 is to be
used as an index register and contains the number
0777748 , and the displacement bits contain the num­
ber 0128 , then the result of the addition would be
0000068 , not 1000006s.

After one of the three types of addresses has been
computed from the index and displacement bits, the
indirect bit is tested. If this bit is 0, the address
already computed is taken as the effective address. If
the indirect bit is 1, the word addressed by the result
of the index and displacement bits is assumed to

contain an address. The word at this intermediate
address is retrieved. In this word, bit 0 is the indirect
bit and bits 1-15 contain an address. If bit 0 of the
referenced word is 1, another level of indirection is
indicated, and bits 1-15 contain the address of the
next word in the indirection chain. The processor will
continue to follow this chain of indirect addresses by
retrieving words until a word is retrieved with bit 0
set to 0. When a word is retrieved with bit 0 set to 0,
bits 1-15 of this word are taken to be the effective
address.

In order to protect against indirection chains that
never end, the processor uses an internal counter to
count the number of levels of indirection it has
followed. This counter is set _to 0 if the indirect bit in
the instruction is 1. Each time a word in the chain is
retrieved, 2 is added to the counter. If the counter
becomes greater than 15 before a word is retrieved
with bit 0 set to 0, the processor executes a HALT
instruction. In this case, the instruction is not
completed. The contents of all accumulators and the
carry bit remain unchanged. The program counter
addresses the word following the uncompleted
instruction unless that instruction was a JUMP or
JUMP TO SUBROUTINE instruction, in which case
the contents of the program counter are
unpredictable.

If an indirect address points to a location in the range
20-278 (auto-increment locations), that word is
fetched, the contents of the word are incremented by
one and written back into the location. This updated
value is then used to continue the addressing chain. If
an indirect address points to a location in the range
30-378 (auto-decrement locations), that word is
fetched, the contents of the word are decremented by
one and written back into the location. The updated
value is then used to coptinue the addressing chain.
Each indirect reference of an auto-increment or
auto-decrement location increments the internal
counter an extra time.

NOTE When referencing auto-increment and
auto-decrement locations, the state of . bit 0
before the increment · or decrement is the
condition upon which the continuation of the
indirection chain is based. For example: If an
auto-increment location contains 177777s, and
the location is referenced as part of an
indirection chain, location 0 will be the next
address in the chain. That is, the effective
address will not be 0.

An effective address is always 15 bits in length. This
means that an instruction which uses the effective
address calculation can address any of 32, 76810 words.
This gives rise to the concept of an "address space'',
which, in the microNOVA computer, contains 64K
bytes or 32, 768 2-byte words.

11-6

Byte Addressing.

While bytes in main memory cannot be directly
addressed by the CPU, there is a convenient
programming method for manipulating individual
bytes of information. This technique involves the use
of a "byte pointer". A byte pointer is a word in which
bits 0-14 are the address in memory of a 2-byte word.
Bit 15 of the byte pointer is the "byte indicator". If the
byte indicator is 0, the referenced byte is the
high-order (bits 0-7) byte of the word addressed by
byte pointer bits 0-14. If the byte indicator is 1, the
referenced byte is the low-order (bits 8-15) byte of the
word addressed l?Y byte pointer bits 0-14.

100 101 102 103 104 105 106 107 110 111

WORD WORD WORD WORD WORD WORD WORD WORD WOR WORD

BITS 0-14
ADDRESS WORD ---

/)(; OO!J.'UJ

Programming routines to load and store individual
bytes using byte pointers are given in Appendix E of
this manual.

Addressing Nonexistent Memory

The address space of a microNOVA computer
contains 32K 16-bit words. This means that the CPU
can address 32, 768 separate memory locations. It is
possible, however, that some of these addresses will
not have physical memory locations associated with
them. If an attempt is made to retrieve a word from a
memory location that does not exist, the CPU
functions as if the location exists and has all its bits
set to 1. If an attempt is made to write a word into a
memory location that does not exist, the CPU
functions as if the location does exist and no
indication is given that it does not exist.

START

DISPLACEMENT BITS
AS SIGNED NUMBER
ARE ADDED TO
INSTRUCTION ADDRESS

DISPLACEMENT BITS
AS SIGNED NUMBER
ARE ADDED TO
CONTENTS OF
ACCUMULATOR 2

DISPLACEMENT BITS
AS SIGNED NUMBER
ARE ADDED TO
CONTENTS OF
ACCUMULATOR 3

EFFECTIVE ADDRESS CALCULATION

DISPLACEMENT BITS
GO TO INTER MEDIA TE
ADDRESS AS
UNSIGNED NUMBER

LOW ORDER 15
BITS GO TO
INTERMEDIATE
ADDRESS

II-7

YES

COUNTER

0

RETRIEVE WORD
AT INTERMEDIATE
ADDRESS

COUNTER

COUNTER+ 2

BITS 1 -1 5 GO TO
INTERMEDIATE
ADDRESS

INTERMEDIATE
ADDRESS IS
EFFECTIVE
ADDRESS

END

HALT

ADD 1 TO RETRIEVED
WORD AND REPLACE.
USE NEW VALUE
TO CONTINUE

SUBTRACT 1 FROM
RETRIEVED WORD AND

"-----...i REPLACE. USE NEW
VALUE TO CONTINUE

COUNTER

COUNTER+ 1

HALT

DG-02403

PROGRAM EXECUTION
Programs for microNOVA computers consist of
sequences of instructions that reside in main memory.
The order in which these instructions are executed
depends on a 15-bit counter called the "program
counter". The program counter always contains the
address of the instruction currently being executed.
After the completion of each instruction the program
counter is incremented by one and the next
instruction is fetched from that address. This method
of operation is called "sequential operation" and the
instruction fetched from the location addressed by the
incremented program counter is called the "next
sequential instruction".

Program Flow Alteration

Sequential operation can be explicitly altered by the
programmer in two ways. Jump instructions alter
program flow by inserting a new value into the
program counter. Conditional skip instructions can
alter program flow by incrementing the program
counter an extra time if a specified test condition is
true. In the case of a conditional skip instruction when
the test condition is true, the next sequential
instruction is not executed because it is not addressed.
After either a jump instruction or a successful
conditional skip instruction, sequential operation
continues with the instruction addressed by the
updated value of the program counter.

Because the program counter is 15 bits in length, it
can address 32, 768 separate memory locations. The
next memory location after 77777 8 is location 0, and
the location before 0 is location 777778 • If the program
counter rolls from 777778 to 0 in the course of
sequential operation, no indication is given and
processing continues with the location addressed by
the updated value of the program counter.

!
INCREASING
ADDRESSES

I
l

I
N
s
T
R
u
c
T
I
0

~
DG-lll)M-1

JUMP

SKIP

}

SEQUENTIAL
PROGRAM
FLOW

JUMP
PROGRAM
FLOW

SKIP
PROGRAM
FLOW

II-8

Program Flow Interruption

The normal flow of a program may be interrupted by
external or exceptional conditions such as I/O
interrupts or various kinds of faults. In these cases,
the address of the next sequential instruction in the
interrupted program is saved by the CPU so that the
I/O handler or the various fault handlers can return
control to the program at the correct point. Once the
address of the next sequential instruction in the
program has been placed in the program counter by
the I/O handler or the fault handler, sequential
operation of the program resumes.

INCREASING
ADDRESSES

i

I

j
j

I
N
s
T
R
u
c
T
I
0
N
s

J_
DG.OOfd·I

SECTION Ill

INSTRUCTION SETS

INTRODUCTION
The instruction set implemented on the microNOVA
computers is divided into 5 instruction sets. There are
instruction sets available for fixed point arithmetic,
logical operations, stack manipulation, program flow
alteration, and I/O operations. In addition, instruc­
tion sets are available for programming the hand-held
console and certain CPU functions.

INSTRUCTION FORMATS
There are four different formats for instructions on
the microNOV A computers. These formats allow an
extensive instruction set wbile still keeping the
instruction length to one word. The four formats and
their general layouts are described below.

No Accumulator-Effective Address

I 0 - 0 0 IOP CODEI ~ I INDEX I DISPLACEMENT I
I 1

1

2 3 I 4 5 6 I 7 a 1

9 I 10
1

11
1

12 I n 1

14
1

15

In the No Accumulator-Effective Address format
instructions, bits 0-2 are 000, and bits 3-4 contain the
operation code. The effective address is computed
from bits 5-15 as described under "Effective Address
Calculation".

One Acumulator-Effective Address

I 0 IOP ~ODEI AC I @ I INDEX I I DIS~LA~EMENT I I I
o 1 2 3 I 4 5 6 I 7 a 9 I 10 11 12 I n 14 15

In the One Accumulator-Effective Address format
instructions, bit 0 is 0 and bits 1-2 contain the
operation code. Bits 3-4 specify the accumulator for
the opearation. The effective address is computed
from bits 5-15 as described under "Effective Address
Calculation".

Two Accumulator-Multiple Operation

11 I A~S I ACD I o~ CODE I sr I c I # I SKIP
0 1 2 3 I 4 5 6 I 7 8 9 10 I 11 12 13 I 14 I 15

In the Two Accumulator-Multiple Operation format
instructions, bit 0 is 1, bits 1 and 2 specify the source
accumulator, bits 3 and 4 specify the destination
accumulator, bits 5-7 contain the operation code, bits
8 and 9 specify the action of the shifter, bits 10 and 11
specify the value to which the carry bit will be
initialized, bit 12 specifies whether or not the result
will be loaded into the destination accumulator, and
bits 13-15 specify the skip test. All instructions in this
format utilize an arithmetic unit whose logical organi­
zation is illustrated as follows.

III-1of10

.------'------17 BITS.-----..__ ___ _

DG-00.927

FUNCTION
GENERATOR

ACS
16 BITS

ACD
16BITS

SHIFTER

17 BITS

SKIP SENSOR

17 BITS

LOAD/NO LOAD

Each instruction specifies two accumulators to supply
operands to the function generator, which performs
the function specified by bits 5-7 of the instruction.
The function generator also produces a carry bit
whose value depends upon three quantities: an initial
value specified by the instruction, the inputs, and the
function performed. The initial value may be derived
from the previous value of the carry bit or the
instruction may specify an independent value.

The 17-bit output of the function generator, made up
of the carry bit and the 16-bit function result, then
goes to the shifter. In the shifter, the 17-bit result can
be rotated one place right or left, or the two 8-bit
halves of the function result can be swapped without
affecting the carry bit. The 17-bit output of the shifter
can then be tested for a skip. The skip sensor can test
whether the carry bit or the rest of the 17-bit result is
or is not equal to zero. After the skip sensor has tested
the shifter output, it can be loaded into the carry bit
and the destination accumulator. Note, however, that
loading is not necessary. An instruction in this format
can perform a complicated arithmetic and shifting
operation and test the result for a skip without
affecting the carry bit or either of the operands.

Input/Output

I o 1
1

1 I AC I o~ com icoNIRml
1

DEjlCE cooE I
o I 1 2 3 I 4 s 6 I 7 8 9 10 11 12 I n I 14 I 1s

In the Input/Output format instructions, bits 0-2 are
011, bits 3-4 specify the accumulator for the operation,
bits 5-7 contain the operation code, bits 8-9 specify the
control signal to be used, and bits 10-15 contain the
device code of the referenced device.

III-2

CODING AIDS
In the descriptions of the separate instructions, the
general form of how the instruction is coded in
assembly language is given along with the instruction
format and the description of the instruction. The
general form of how an instruction may be coded has
the following format:

MNEMONIC loptional mnemonics] OPERAND STRING

The mnemonic must be coded exactly as shown in the
instruction description. Some instructions have
optional mnemonics that may be appended to the
main mnemonic if the option is desired. The operand
~tring i~ made up of the operands for the given
instruct10n.

Square brackets"[]"or "{ J" along with boldface- and
italic-printed symbols are used in this manual to aid
in defining the instructions. These conventions are
used to help describe how an instruction should be
written so that it can be recognized by the assembler
and translated into the correct binary, or machine
language, representation. Their general definition is
given below.

[l, f l Square brackets indicate that the enclosed
symbol is an optional operand or mnemonic.
The operand enclosed in the brackets (e.g.,
f,skipl) may be coded or not, depending on
whether or not the associated option is
desired.

BOLD Operands or mnemonics printed in boldface
must be coded exactly as shown. For example,
the mnemonic for the MOVE instruction is
coded MOV.

italic Operands or mnemonics printed in italics
require a specific substitution. Replace the
symbol with the number of a desired
accumulator, or address, or with a
user-defined symbol that the assembler
recognizes as a specific name, address,
number, or mnemonic.

The following abbreviations are used throughout this
manual:

AC = Accumulator

ACS = Source Accumulator

ACD = Destination Accumulator

In the instructions that utilize an effective address,
the following coding conventions are used:

The indirect bit is set to 1 by coding the
symbol @ anywhere in the effective ad­
dress operand string.

The "no load" option, available with
certain fixed point arithmetic instruc­
tions, can be specified by coding the
symbol # at the end of the instruction
mnemonic, or anywhere in its operand
string.

The index bits are set by coding a
comma followed by one of the digits 0-3
as the last operand of the operand
string. The character ''period" (.) can
be used to set the index bits to 01.
"Period" can be read to mean "address
of the instruction". When the period is
used, it is followed by either a plus or
minus sign followed by the displace­
ment e.g., ". + 7", or ".-2".

The displacement is coded as a signed number in the
current assembler radix. This radix is the numbering
system in which the program supplies numbers to the
assembler. The default radix is base 8 or octal. The
assembler radix can be changed by using the .RDX
statement.

The assembler available with the microNOV A
computers allows the programmer to place labels on
instructions or locations in memory. When the
assembler comes upon a label in the operand string of
an effective address instruction, it automatically sets
the index and displacement bits to the correct values.
For a detailed discussion of the features and operation
of the microNOV A assembler, see the assembler
manual <DGC no. 093-000081>.

The fixed point and logical instructions which use the
two accumulator-multiple operation format have
several. options that can be obtained by appending
suffixes to the instruction mnemonic and by coding
optional operands in the operand string. The
characters to be coded are given below with their
results.

The characters in the column titled "class abbrev­
iation" refer to specific fields in the two
accumulator-multiple operation format. The char­
acters in the column titled "coded character" show
the various characters which may be coded for this
option. The numbers in the column titled "result bits"
show the bit settings in these fields resulting from
each coded character. The comments in the column
titled "operation" describe the effect of these bit
settings.

III-3

CLASS CODED RESULT
ABBREV. CHARACTER BITS OPERATION

c (option omitted) 00 Do not initialize the carry bit

z 01 Initialize the carry bit to 0

0 10 Initialize the carry bit to 1

c 11 Initialize the carry bit to the
complement of its present
value

SH (option omitted) 00 Leave the result of the
arithmetic or logical operation
unaffected

L 01 Combine the carry and the
16-bit result into a
17-bit number and rotate
it one bit left

R 10 Combine the carry and the
16-bit result into a
17-bit number and rotate
it one bit right

s 11 Exchange the two 8 - bit
halves of the 16 - bit result
without affecting the carry.

(option omitted) 0 Load the result of the shift
operation into ACD

1 Do not load the result of the
shift operation into ACD.

The following diagrams illustrate the operation of the
shifter.

Coded
Character

L

R

s

Shifter Operation

Left rotate one place. Bit 0 is rotated into the

carry position, the carry bit into bit 15.

Right rotate one place. Bit 15 is rotated into

the carry position, the carry bit into bit 0.

L[tH._____o-1_s _ ____.~
Swap the halves of the 16 - bit result. The

carry bit is not affected.

The following operands initiate operations that test
the result of the shift operation. If the tested condition
is true, the next sequential instruction is skipped.

CLASS CODED RESULT
ABBREV. CHARACTER BITS OPERATION

SKIP (option omitted) 000 Never skip

SKP 001 Always skip

szc 010 Skip if carry - 0

SNC 011 Skip if carry ..;. 0

SZR 100 Skip if result - 0

SNR 101 Skip if result f 0

SEZ 110 Skip if either carry
or result - 0

SBN 111 Skip if both carry
and result f 0

NOTE Instructions in the Two Accumulator­
Multiple Operation format must not have b~th
the "No Load" and the "Never Skip" options
specified at the same time. These bit
combinations are used by other instructions in
the instruction set.

III-4

As an example of how to use these tables, assume that
accumulator 3 contains a signed, two's complement
number. Now consider the problem of determining
whether this number is positive or negative. One way
to determine this would be to place the number zero
in another accumulator and use the SUBTRACT
instruction, but this requires an extra instruction and
also destroys the previous contents of the other
accumulator. Another way to determine the sign of
the number in accumulator 3 is to use the MOVE
instruction and the power of the two
accumulator-multiple operation format. With the
MOVE instruction, the contents of AC3 can be placed
in the shifter and shifted one bit to the left. This
places the sign bit in the carry bit. The carry bit can
then be tested for zero. In order to. preserve the
number in AC3, the instruction can prevent the
output of the shifter from being loaded ba_ck into AC3.

The general form of the MOVE instruction is:
MOV le][sh][# J acs,acdf,skipl

The general bit pattern of the MOVE instruction is:

I 1 I Acs I ACD I o 1 o I s~ I ~ I # I ~Kl~
I 3 I 5 I I 9 10 11 12 13 14 15

To shift the number in AC3 one bit left without
destroying the number, and skip the next sequential
instruction if the bit shifted into the carry bit is zero,
the following instruction could be coded:

MOVL# 3,3,SZC

This instruction would assemble into the following bit
pattern:

1111 111 1jo 1 ojo 110 01110 1 oj
0 1 I 2 3 I 4 5 I 6 I 7 8 I 9 10 I 11 12 13 I 14 I 15

FIXED POINT ARITHMETIC
The fixed point instruction set performs binary
arithmetic on operands in accumulators. The
instruction set provides for loading, storing, adding,
subtracting, multiplying, dividing, and comparing of
fixed point operands.

Load Accumulator

LOA ac,[@ ldisplacementf,indexl

0 0 AC @ INDEX DISPLACEMENT

9 10 11 12 13 14 15

The word addressed by the effective address, "E", is
placed in the specified accumulator. The previous
contents of the location addressed by "E" remain
unchanged.

Store Accumulator

STA ac,[@ ldisplacementf,indexl

0 I AC I @I INDEX I DISPLACEMENT I
2 3 I 4 . 5 6 I 7 s 1

9 I 10
1

11
1

12 1 n 1

14
1

15

The contents of the specified accumulator are placed
in the word addressed by the effective address, "E".
The previous contents of the location addressed by
"E" are lost. The contents of the specified accumulator
remain unchanged.

Add

ADD fclfshU#J acs, acdf, skipl

I 1 I AT5 I ACD j 1 I 1 0 I sr I c I # I SKIP
0 1 2 3 I 4 5 6 I 7 8 9 10 I 11 12 13 I 14 I 15

The carry bit is initialized to the specified value. The
unsigned, 16-bit number in ACS is added to the
unsigned, 16-bit number in ACD and the result is
placed in the shifter. If the addition produces a carry
of 1 out of the high-order bit, the carry bit is
complemented. The specified shift operation is
performed and the result of the shift is placed in ACD
if the no-load bit is 0. If the skip condition is true, the
next sequential word is skipped.

NOTE If the sum of the two numbers being
added is greater than 65,53510, the carry bit is
complemented.

III-5

Subtract

SUB fcUshU # 1 acs,acdf,skipl

I 1 l ACI s I ACD I ~ I 0 1 I SHI I c I # I SKIP
. 10 I 11 12 13 I 14 I 15 0 1 2 314 5 617 8 9

The carry bit is initialized to its specified value. The
unsigned, 16-bit number in ACS is subtracted from
the unsigned, 16-bit number in ACD by taking the
two's complement of the number in ACS and adding it
to the number in ACD. The result of the addition is
placed in the shifter. If the operation produces a carry
of 1 · out of the high-order bit, the carry bit is
complemented. The specified shift operation is
performed and the result of the shift is placed in ACD
if the no-load bit is 0. If the skip condition is true, the
next sequential word is skipped.

NOTE If the number in ACS is less than or
equal to the number in A CD, the carry bit is
complemented.

Negate

NEG fc}[shlf # 1 acs,acdf,skipl

ACS ACD 0 0 SH c # SKIP

• 0 6 9 10 11 12 13 14 15

The carry bit is initialized to the specified value. The
two's complement of the unsigned, 16-bit number in
ACS is placed in the shifter. If the negate operation
produces a carry of 1 out of the high-order bit, the
carry bit is complemented. The specified shift
operation is performed and the result is placed in
ACD if the no-load bit is 0. If the skip condition is true,
the next sequential word is skipped.

NOTE If ACS contains 0, the carry bit is
complemented.

Add Complement

ADC fclfshU # 1 acs,acdf,skipl

ACS ACD 0 SH c # SKIP

9 10 11 12 13 14 15

The carry bit is initialized to the specified value. The
logical complement of the unsigned, 16-bit number in
ACS is added to the unsigned, 16-bit number in ACD
and the result is placed in the shifter. If the addition
produces a carry of 1 out of the high-order bit, the
carry bit is complemented. The specified shift
operation is performed and the result of the shift is
loaded into ACD if the no-load bit is 0. If the skip
condition is true, the next sequential word is skipped.

NOTE If the number in ACS is less than the
number in A CD, the carry bit is complemented.

Move

MOV fc][sh][# 1 acs, acdf, skip]

11 I ATS I ACD I 0 1 0 I SH I c I # I SKIP I
0 1 2 3 I 4 5 I 6 I 7 8 I 9 10 I 11 12 13 I 14 I 15

The carry bit is initialized to the specified value. The
contents of ACS are placed in the shifter. The
specified shift operation is performed and the result of
the shift is loaded into ACD if the no-load bit is 0. If
the skip condition is true, the next sequential word is
skipped.

Increment

INC fc}[sh][# 1 acs,acdf,skipl

11 I ACS I ACD I 0 1 1 I SH I c I # 1 · ~Kl~
0 1 I 2 3 I 4 5 I 6 I 7 8 I 9 10 I 11 12. 13 14 15

The carry bit is initialized to the specified value. The
unsigned, 16-bit number in ACS is incremented by
one and the result is placed in the shifter. If the
incrementation produces a carry of 1 out of the high
order bit, the carry bit is complemented. The specified
shift operation is performed and the result of the shift
is loaded into ACD if the no-load bit is 0. If the skip
condition is true, the next sequential word is skipped.

NOTE If the number in ACS is 1777778 , the
carry bit is complemented.

III-6

Multiply

MUL

101111 0111011110000011
o I 1

1
2 1 I 4 5

1
6 I 7 a 1

9 10
1

11
1

12 1 n 1
14

1
15

The unsigned, _16-bit number in AC1 is multiplied by
the unsigned, 16-bit number in AC2 to yield an
unsigned, 32-bit intermediate result. The unsigned,
16-bit number in ACO is added to the intermediate
result to produce the final result. The final result is an
unsigned, 32-bit number and occupies ACO and AC1.
Bit 0 of ACO is the high-order bit of the result and bit
15 of AC1 is the low-order bit. The contents of AC2
remain unchanged. Because the result is a double­
length number, overflow cannot occur.

Divide

DIV

1011110111010110000011
0 I 1 I 2 3 I ·4 5 I 6 I 7 8 I 9 10 I 11 I 12 I 13 I 14 I 15

The unsigned, 32-bit number contained in ACO and
AC1 is divided by the unsigned, 16-bit number in AC2.
Bit 0 of ACO is the high-:order bit of the dividend and
bit 15 of AC1 is the low-order bit. The quotient and
remainder are unsigned, 16-bit numbers and are
placed in AC1 and ACO, respectively. The carry bit is
set to 0. The contents of AC2 remain unchanged.

NOTE Before the divide operation takes place,
the number in A CO is compared to the number
in AC2. If the contents of AGO are greater than
or equal to the contents of A C2, an overfiow
condition is indicated. The carry bit is set to 1.
and the operation is terminated. All operands
remain unchanged.

LOGICAL OPERATIONS
The logical instruction set performs logical operations
on operands in accumulators. The operands are 16 bits
long and are treated as unstructured binary
quantities. The logical operations included in this set
are COMPLEMENT and AND.

Complement

COM lclfshU # 1 acs,acdf,skipl

11 I ATS I ACD I 0 I 0 0 I SH I c I # I SKIP
0 1 2 3 I 4 5 6 I 7 8 I 9 10 I 11 12 13 I 14 I 15

The carry bit is initialized to the specified value. The
logical complement of the number in ACS is placed in
the shifter. The specified shift operation is performed
and the result is placed in ACD if the no-load bit is 0.
If the skip condition is true, the next sequential word
is skipped.

And

AND lcUshU # 1 acs,acdf,skipl

11 I ACS I ACD I 1 1 1 I SH I c I # I SKI~
0 1 I 2 3 I 4 5 I 6 I 7 8 I 9 10 I 11 . 12 13 I 14 . 15

The carry bit is initialized to the specified value. The
logical AND of ACS and ACD is placed in the shifter.
Each bit placed in the shifter is 1 only if the
corresponding bit in both ACS and ACD is one;
otherwise the result bit is 0. The specified shift
operation is performed and the result is placed in
ACD if the no-load bit is 0. If the skip condition is true,
the next sequential word is skipped.

III-7

ST ACK MANIPULATION
An important feature of the microNOVA computers is
the stack manipulation facility. A last-in/first-out
(LIFO) or "Push-Down" stack is maintained by the
processor. The stack facility provides an expandable
area of temporary storage for variables, data, return
addresses, subroutine arguments, etc. An important
byproduct of the stack facility is that storage locations
are reserved only when needed. When a procedure is
finished with its portion of the stack, those memory
locations are reclaimed and are available for use by
some other procedure.

The operation of the stack depends upon the contents
of two hardware registers. The registers and their
contents are described below.

Stack Pointer
The stack pointer is the address of the "top" of the
stack and is affected by operations that either "push"
objects onto or "pop" objects off of the stack. A push
operation increments the stack pointer by 1 and then
places the "pushed" object in the word addressed by
the new value of the stack pointer. A pop operation
takes the word addressed by the current value of the
stack pointer and places it in some new location and
then decrements the stack pointer by 1.

ST ACK POINTER
BEFORE PUSH

ST ACK POINTER
AFTER PUSH

DG-00561

Frame Pointer

INCREASING
ADDRESSES

+

ST ACK POINTER
~AFTERPOP

The frame pointer is used to reference an area in the
user stack called a "frame". A frame is that portion of
the stack which is reserved for use by a certain
procedure. The frame pointer usually points to the
first available word minus 1 in the current frame. The
frame pointer is also used by the RETURN
instruction to reset the user stack pointer.

Return Block

A return block is defined as a block of five words that
is pushed onto the stack in order to allow a convenient
return to the calling program. The format of the
return block, therefore, is determined by how it is
used in the return sequence. The forma:t of a typical
return block is as follows:

WORD No. DESTINATION POPPED

1 Bit 0 placed in the
carry bit.
Bits 1 - 15 placed in
the program counter

2 AC3

3 AC2

4 AC1

5 ACO

In the stack, the retu:m block looks like this:

ST ACK POINTER
AFTER RETURN

ST ACK POINTER
BEFORE RETURN

Stack Frames

DG-00566

5th WORO
POPPED

1st WORD
POPPED

In order to implement re-entrant subroutines, a new
area of temporary storage must be available for each
execution of a called subroutine. The easiest way to
accomplish this is for the subroutine to use the stack
for temporary storage. A "stack frame" is defined as

III-8

that portion of the stack which is available to .the
called routine. In generaL the stack frame beionging
to a subroutine begins with the first word in the stack
after the return block pushed by the called routine
and contains all words in the stack up to,. and
including, the return block pushed by any routine
which the called routine calls. Variables and
arguments· can be transmitted from . the calling
routine to the called routine by placing them iI1
prearranged positions in the calling routine's stack
frame. Because the SA VE instruction sets the frame
pointer to the last word in the return block, these
variables and arguments can be referenced by the
called program as a negative displacement from the
frame pointer. The called routine should ensure that
reference to the calling routine's stack frame is mac.le
only with the permission of the calling routine ..

Stack Protection
During every instruction that pushes data· onto the
stack, a check is made for stack overflow. If the
instruction places data in a word whose address is· an
integral multiple of 25610. a stack overflow is
indicated. If a· stack overflow is indicated, the
instruction is completed, an internal stack overflow
flag is set to 1, and, if the Interrupt On flag is 1, a stack
fault is performed. If the Interrupt On flag is 0, the
stack overflow flag remains set to 1, and as soon asthe
interrupt system is enablel, the stack fault is
performed.

When a stack fault is performed, the Interrupt On flag
is set to O; the stack overflow flag is set to O; the
updated program counter is stored in memory
location O; and the processor executes a "jump
indirect" to memory location 3.

Initialization of the Stack Control Registers

Before the first operation on the stack can be
performed, the stack control words must be
initialized. The rules for initialization are as follows:

Stack Pointer

The stack pointer must be initialized tothe beginning
address of the stack area minus one.

Frame Pointer

If the main user program is going to use the frame
pointer, it should be initialized to the same value as
the stack pointer. Otherwise, the frame pointer can be
initialized in a subroutine by the SA VE instruction.

The stack feature of the microNOVA computers is
programmed with eight I/O instructions which use
the device code 01. Although the instructions are in
the standard I/O format, the operation of these
instructions is in no way similar to I/O instructions.

Push Accumulator

PSHA ac

0 1 I 0 1 1 I AC
0 I 1 I 2 3 I 4 I 6 I 7

o o o o o o .o 1 I
a 1

9 I 10
1

11
1

12 I n 1
14

1
15

The contents of the specified accumulator are pushed
on to the top of the stack. The con ten ts of the specified
accumulator remain unchanged.

Pop Accumulator

POPA ac

I 0 ' 1 1 I AC I 0 1 1 1 0 0 0 0 0 0 1 I
o I 1

1
2 . 3 I 4 5

1
6 I 7

1 a 1
9 I 10

1
11

1
12 I n 1

14
1

15

The specified accumulator is filled with the word
popped off the top of the stack.

Save

SAV

10 1 0 0 1 0 1 0 0 0 0 0 0 0 11

o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I a I 9 I 10 I 11 I 12 I n 1 14 I 15

A return block is pushed onto the stack. After the fifth
word of the return block is pushed, the value of the
stack pointer is placed in thEl frame pointer and in
AC3. The contents of accumulators 0, 1, and 2 remain
unchanged. The format of the five words pushed is as
follows:

WORD No.
CONTENTS PUSHED

1 ACO

2 AC1

3 AC2

4 Frame pointer before
the SAVE.

5 Bit 0 =carry bit
Bits 1 - 15 =
bits 1 - 15 of AC3

III-9

Move To Stack Pointer

MTSP ac

I 0 1 1 I AC
0 I 1 I 2 3 I 4

0100000 00011

5
1

6 I 7
1 a 1

9 I 10
1

11
1

12 1 n 1
14

1
15

Bits 1-15 of the specified accumulator are placed in the
stack pointer. The contents of the specified accum­
ulator remain unchanged.

Move To Frame Pointer

MTFP ac

I 0 1 1 I AC
0 I 1 I 2 3 I 4

000 0000 00011

s I 6 I 7 I a I 9 I 10 I 11 I 12 I n I 14 I 15

Bits 1-15 of the specified accumulator are placed in the
frame pointer. The contents of the specified accum­
ulator remain unchanged.

Move From Stack Pointer

MFSP ac

I 0 1 1 I AC
0 I 1 I 2 3 I 4

0 0 1 0 0 0 0 0 0 11

I 6 I 7 I 8 I 9 I 10 I 11 I 12 I n I 14 I 15

The contents of the stack pointer are placed in bits
1-15 of the specified accumulator. Bit 0 of the specified
accumulator is set to 0. The contents of the stack
pointer remain unchanged.

Move From Frame Pointer

MFFP ac

I o 1
1

1 I ~c I o o o 1 o o o o o o 1 I
o I 1 2 3 I 4

1
6 I 7

1 a 1
9 I 10

1
11

1
12 I n 1

14
1

15

The contents of the frame pointer are placed in bits
1-15 of the specified accumulator. Bit 0 of the specified
accumulator is set to 0. The contents of the frame
pointer remain unchanged.

PROGRAM FLOW ALTERATION
As stated previously, the normal method of program
execution is sequential. That is, the processor will
continue to retrieve instructions from sequentially
addressed locations in memory until directed to do
otherwise. Instructions are provided in the
instruction set that alter this sequential flow.
Program flow alteration is accomplished by placing a
new value in the program counter. Sequential
operation will then continue with the instruction
addressed by this new value. Instructions are
provided that change the value of the program
counter, change the value of the program counter and
save a return address, or modify a memory location by
incrementing or decrementing and skip the next
sequential word if the result is zero.

Jump

JMP [@ Jdisplacementl,indexl

I 0 0 0 I 0 0 I @ I INDEX I DISPLACEMENT 1.

o I 1 I 2 J I 4 5 6 I 7 o I 9 I 10 I 11 I 12 I n I 14 I 15

The effective address, "E" is computed and placed in
the program counter. Sequential operation continues
with the word addressed by the updated value of the
program counter.

Jump To Subroutine

JSR l@ ldisplacementl,indexl

I 0 0 0 I 0 1 I @ I INDEX I DISPLACEMENT =i
o I 1 I 2 3 I 4 s 6 I 7 o I 9 I 10

1
11

1
12 I n I 14 I 15

The effective address, "E" is computed. Then the
present value of the program counter is incremented
by one and the result is placed in AC3. "E" is then
placed in the program counter and sequential
operation continues with the word addressed by the
updated value of the program counter.

NOTE The computation of "E" is completed
before the incremented program counter is
placed in AC3.

Increment And Skip If Zero

ISZ [@ ldisplacementl,indexl

I 0 0 0 I ~ 0 I @ I INDEX I DISPLACEMEMT I
o I 1 I 2 J I 4 5 6 I 7 o I 9 I 10 I 11 I 12 I n 1

14 I 15

The word addressed by "E" is incremented by one and
the result is written back into that location. If the
updated value of the location is zero, the next
sequential word is skipped.

Decrement And Skip If Zero

DSZ l@ ldisplacementl,indexl

I 0 0 0 11 1 I @ I INDEX I DISPLACEMENT I
o I 1

1
2 J I 4 s 6 I 7 o 1

9 I 10
1

11
1

12 1 n 1
14

1
15

The word addressed by "E" is decremented by one and
the result is written back into that location. If the
updated value of the location is zero, the next
sequential word is skipped.

Return

RET

10 1 o o 1 o 1 1 o o o o o o 1 I
o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I o I 9 I 10 I 11 I 12 I n I 14 I 15

The contents of the frame pointer are placed in the
stack pointer and then five words are popped off of the
stack and placed in predetermined locations. The
words popped and their destinations are as follows:

ST ACK Pv;~~TER
AFTER RETURN

ST ACK POINTER
BEFORE RETURN

DG-00.5fili

5th WORD
POPPED

1st WORD
POPPED

Sequential operation continues with the word
addressed by the updated value of the program
counter.

Trap

TRAP acs,acd,trap number

j 1 I ACS II ACD I TRAP NUMBER 11 0 0 0 I
o 1

1

2 J I 4 5
1

6 I 7
1 o 1

9 I 10
1

11 12 1 n
1

14
1

15

The address of this instruction is placed in memory
location 468 and bit 0 of that location is set to 0. Then
the processor executes a "jump indir8ct" to memory
location 478 . The state of the Interri-1pt On flag is
unaltered.

III-10

SECTION IV

INPUT /OUTPUT

INTRODUCTION
In order for the processor to perform useful work for
the user, there must be some method for the program
to transfer information outside the machine. The
Input/Output (I/0), instruction set provides this fa­
cility. There are eight I/O instructions which allow
the program to communicate with I/O devices, control
the I/O interrupt system, control certain processor

·options, and to perform certain processor functions.

The microNOVA computers have a 6-bit device
selection network, corresponding to bits 10-15 in the
lid instruction format. Each device is connected to
thi~ network in such a way that the device will only
re~pond to commands with its own device code. Each
device also has two flags, Busy and Done, which
control its operation. When the Busy and Done flags
are both zero, the device is idle and cannot perform
any operations. To start a device, the program must
set the Busy flag to 1 and.the Done flag to 0. When a
device has finished its operation, it sets its Busy flag to
0 and its Done flag to 1. The format for the I/O
instructions is illustrated below.

0 AC OP CODE CONTROL DEVICE CODE

10 1l 12 13 14 15

Bits 0-2 are 011, bits 3-4 specify the AC, bits 5-7
contain the operation code, bits 8-9 control the Busy
and Done flags in the device, and bits 10-15 specify the
code of the device. The six bits provided for the device
code in the I/0 format mean that 64 unique device
codes are available for use. Some of these device codes,
however, are reserved for the CPU and certain
processor options. The remaining device codes are
available for referencing I/O units. Some of the codes
have been assigned to specific devices by Data General
and the assembler recognizes mnemonics for these
devices. A complete listing of device codes, the devices
assigned to these codes, and the mnemonics assigned
to the devices is contained in Appendix A.

OPERATION OF 1/0 DEVICES
In general, the operation of all I/O devices is done by
manipulating the Busy and Done flags. In order to
operate a device, the program must first ensure that
the device is not currently performing some operation.
After the program has determined that the device is
available, it can start an operation on the device by
setting the Busy flag to 1 and the Done flag to 0. Once
a device has completed its operation, and set its Busy
flag to 0 and its Done flag to 1, it is available for
another operation. The program can determine this
condition in one of two ways. By using the I/O SKIP
instruction, the program can t~st the status of the
Busy and Do~e flags. Another way is to utilize the
interrupt system that is standard on the microNOV A
computers. The interrupt system is made up of an
interrupt request line to which each I/O device is
connected, an Interrupt On flag in the CPU, and a
16-bit interrupt priority mask.

The Interrupt On flag controls the status of the
interrupt system. If the flag is set to 1, the CPU will
respond to and process interrupts. If the flag is set to
0, the CPU will not respond to any interrupts.

Interrupt requests can be initiated in three ways. A
stack interrupt request is initiated if a push operation
places data into a word whose address is an integer
multiple of 256. A real-time clock interrupt request is
initiated every 2.4 milliseconds if the real-time clock is
enabled. An I/O interrupt request is initiated by an
I/O device when it completes its operation. Upon
completing the operation, the device sets its Busy flag
to 0 and its Done flag to 1. At this time, the device also
places an interrupt request on the interrupt request
line, provided that the bit in the interrupt priority
mask which corresponds to the priority level of the
device is 0. If the mask bit is 1, the device sets its Busy
flag to 0 and its Done flag to 1, but does not place an
interrupt request on the interrupt request line.

IV-1 of 9

If the Interrupt On flag is 1 at the time the processor
completes execution of any instruction, the processor
honors any requests on the interrupt request line. If
the Interrupt On flag is 0, the CPU does not look at
the interrUipt request line; it just goes on to the next
sequential instruction. The CPU honors an interrupt
request by setting the Interrupt On flag to 0 so that no
interrupts can interrupt the first part of the interrupt
service routine. The CPU then places the updated
program counter in memory location 0 and executes a
"jump indirect" to memory location 3, 2, or 1,
depending upon the type of interrupt request. Stack
interrupt requests cause a "jump indirect" to memory
location 3. Real-time clock interrupt requests cause a
"jump indirect" to memory location 2. I/O interrupt
requests cause a "jump indirect" to memory location 1.
It is assumed that these memory locations contain the
address, either direct or indirect, of the correct
interrupt service routine.

If mbre than one type of interrupt request occurs at
the .same time, the priority is: stack interrupt first,
real~time clock interrupt second, and I/O interrupt
third.

Once the CPU has transferred control to the interrupt
service routine, it is up to that routine to save any
accumulators that will be used, save the carry bit if it
will be. used, determine which device requested the
interrupt (if it was an I/O interrupt request), and
then service the interrupt. The determination of
which device needs service can be done by I/O SKIP
instructions or the routine can use the INTERRUPT
ACKNOWLEDGE instruction.

If more than one device is requesting service, the code
returned by an INTERRUPT ACKNOWLEDGE in­
struction is the code of that device requesting an
in-0errupt which is physically closest to the CPU on
the I/O bus.

After servicing the device, the interrupt routine
should restore all saved values, set the Interrupt On
flag to 1, and return to the interrupted program. The
instruction that sets the Interrupt On flag to 1
<INTERRUPT ENABLE) allows the processor to
execute one more instruction (if the INTERRUPT
EN ABLE instruction changed the condition of the
Interrupt On flag) before the next interrupt can take
place. In order to prevent the interrupt service
routine from going into a loop, this next instruction
should be the instruction that returns control to the
interrupted program.

Since the updated value of the program counter was
placed in location 0 by the CPU upon honoring the
interrupt, all the interrupt routine has to do, after
restoring the AC's and the carry bit, is execute an
INTERRUPT ENABLE instruction and a "jump
indirect" to location 0 and control will be returned to
the interrupted program.

IV-2

PRIORITY INTERRUPTS
If the Interrupt On flag remains 0 throughout the
interrupt service routine, the interrupt routine
cannot be interrupted and there is only one level of
device priority. This level is determined by either the
order in which the I/0 SKIP instructions are issued or
(if the INTERRUPT ACKNOWLEDGE instruction is
used) by the physical location of the devices on the
bus. In a system with devices of widely differing speed,
such as a teletypewriter versus a diskette, the
programmer may wish to set up a multiple level
interrupt scheme. Hardware and instructions are
available on the microNOVA computers to allow the
implementation of up to sixteen levels of priority
interrupts.

Each of the I/O devices is connected to a bit in the
16-bit priority mask. Devices which operate at
roughly the same speed are connected to the same bit
in the mask. Even though the standard mask bit
assignments have the higher numbered bits assigned
to lower speed devices, no implicit priority ordering is
intended. The manner in which these priority levels
are ordered is completely up to the programmer. The
listing of device codes in Appendix A also contains the
standard Data General mask bit assignments.

The condition of the priority mask is altered by the
MASK OUT instruction. If a bit in the priority mask
is set to 1, then all devices in the priority level
corresponding to that bit will be prevented from
requesting an interrupt when they complete an
operation. In addition, all pending interrupt requests
from devices in that priority level are disabled.

To implement a multiple priority level interrupt
handler, the interrupt handler must be. written in
such a way that it may be interrupted without
damage. For this to be possible, the main interrupt
routine must save return information upon receiving
control. The return information consists of the four
accumulators, the carry bit, and the return address.
This information should be stored in a unique place
each time the interrupt handler is entered so that one
level of interrupt does not overlay the return
information that belongs to a lower priority level. The
stack facility of. the microNOV A computers enables
this return information to be convienently stored in a
standard form. After saving the return information,
the interrupt routine must determine which device
requires service and transfer control to the correct
service routine. This can be done in the same manner
as for a single level interrupt handler.

After the correct service routine has received C'Ontrol,
that routine should save the current priority mask,
establish the new priority mask, and enable the
interrupt system with the INTERRUPT ENABLE
instruction. After servicing the interrupt, the routine
should disable the interrupt system with the
INTERRUPT DISABLE instruction, reset the
priority mask, restore the accumulators and the carry
bit, enable the interrupt system, and return control to
the interrupted program.

DAT A CHANNEL
Handling data transfers between external devices and
memory under program control requires the
execution of several instructions for each word
transferred. To allow greater data transfer rates, the
microNOV A computers contain a data channel
through which a device, at its own request, can gain
direct access to memory using a minim um of processor
time. At the maximum input rate of one word every
6.7 microseconds or 149,254 words per second, and at
the maximum output rate of one word every 5.8
microseconds or approximately 172,414 words per
second, the data channel effectively stops the
processor, but at lower rates, processing continues
while data is being transferred.

When a device is ready to send or receive data, it
requests access time via the channel. At the beginning
of every memory cycle, the processor synchronizes
any requests that are then being made. At certain
specified points during the execution of an
instruction, the CPU pauses to honor all previously
synchronized requests. When a request is honored, a
word is transferred directly via the channel from the
device to memory or from memory to the device
without specific action by the program. All requests
are honored according to the relative position of the
requesting devices on the I/O bus. That device
requesting data channel service which is physically
closest on the bus is serviced first, then the next
closest device, and so on, until all requests have been
honored. The synchronization of new requests occurs
concurrently with the honoring of other requests. If a
device continually requests the data channel, that
device can prevent all devices further out on the bus
from gaining access to the channel.

Following completion of an instruction, the processor
handles all data channe.l requests, and then honors all
outstanding I/O interrupt requests. After all data
channel and I/O interrupt requests have been
serviced, the processor continues with the next
sequential instruction.

ADDRESSING
NONEXISTENT DEVICES

The six-line device selection network of the
microNOVA computers can address 64 separate
device codes. It is possible, however, that some of these
device codes will not have devices associated with
them. If an attempt is made to issue an input l/O
instruction to a nonexistent device, the CPU functions
as if the device exists and has all the bits of its A, B,
and C input buffers set to 1. If an attempt is made to
issue an output I/O instruction to a nonexistent
device, the CPU functions as if the device exists and no
indication is given that it does not exist. If an attempt
is made to test the status of the Busy flag or the Done
flag of a nonexistent device, the CPU functions as if
the device exists and has both its Busy flag and its .
Done flag set to 1.

IV-3

CODING AIDS
The set of I/O instructions has options that can be
obtained by appending mnemonics to the standard
mnemonics. These optional mnemonics and their
result are given below.

CLASS CODED RESULT
ABBREV. CHARACTER BITS OPERATION

f (option omitted) 00 Does not affect the Busy and
Done flags

s 01 Start the device by setting
Busy to 1 and Done to 0

c 10 Idle the device by setting
both Busy and Done to 0

p 11 Pulse the special in-out bus
control line - The effect, if
any depends on the device

The I/O SKIP instruction enables the programmer to
make decisions based upon the values of the Busy and
Done flags. Which test is performed is based upon the
value of bits 8-9 in the instruction. Bits 8-9 can be set
by appending an optional mnemonic to the l/O SKIP
mnemonic. The optional mnemonics and their results
are given below.

CLASS CODED RESULT
ABBREV. CHARACTER BITS OPERATION

t BN 00 Tes ts for Busy = 1

BZ 01 !Tests for Busy= 0

ON 10 Tes ts for Done = 1

DZ 11 Tes ts for Done = 0

1/0 INSTRUCTIONS

No 110 Transfer

NIO [f] device

101110010001
011

1
2 314 5

1
617

F I DEVICE CODE I
1

9 10
1

11
1

12 I n 1
14

1
15

The Busy and Done flags in the specified device are set
according to the function specified by F.

Data In A

DIA [f] ac,device

I 0 i 1 I AC I 0 0 1 I
011

1
2 314 5

1
617

F I DEVICE CODE I
1

9 10
1

11
1

12 I n 1
14

1
15

The contents of the A input buffer in the specified
device are placed in tlie ~pecified AC.· After the data
transfer, the Busy and Defoe flags are set according to
the function specified by F.

The number of data bits rp.oved depends upon the size
of. the buffer and the mode of operation of the device.
Bits in the AC that do not receive data are set to 1.

Data In B

DIB [fl ac,device

I 0 1 1 · 1 AC I 0 1 1 I

011
1
23145

1
617

I DEVICE CODE I
9 10

1
11

1
12 I n 1

14
1

15

The contents of the B input buffer in the specified
device are placed in the specified AC. After the data
transfer, the Busy and Done flags are set according to
the function specified by F.

The number of data bits moved depends upon the size
of the buffer and the mode of operation of the device.
Bits in the AC that do not receive data are set to 1.

Data In C

DIC [f] ac, device

I 0 1 1 I AC 11 0 1 I
011

1
2 314 s 1

617

I DEVICE CODE I
9 10

1
11

1
12 I n 1

14
1

15

The contents of the C input buffer in the specified
device are placed in the specified AC. After the data
transfer, the Busy and Done flags are set according to
the function specifiAr1 hy F_

The number of data bits moved depends upon the size
of the buffer and the mode of operation of the device.
Bits in the AC that do not receive data are set to 1.

Data Out A

DOA [f] ac,device

I 0 ! 1 1 I AC I 0 1 0 I F I DEVICE CODE I
o .(1 I. 2 3 I 4 5 I 6 I 7 e I 9 10 I 11 I 12 I n I 14 1 15

The contents of the specified AC are placed in the A
output buffer of the specified device. After the data

. transfer, the Busy and Done flags are set according to
the function specified by F. The contents of the
specified AC remain unchanged.

IV-4

The number of data bits moved depends upon the size
of the buffer and the mode of operation of the device.

Data Out B

DOB [f] ac,device

I O· .. 1 .I :1 I AC 11 1 0 I F I DEVICE CODE I
0 I. 1 2 3 I 4 5 I 6 I 7 8 I 9 10 I 11 I 12 I n I 14 I 15

The contents of the specified AC are placed in the B
output buffer of the specified device. After the data
transfer, the Busy and Done flags are set according to
the function specified by F. The contents of the
specified .AC remain unchanged.

The number of data bits moved depends upon the size
of the buffer and the mode of operation of the device.

Data Out C

DOC [f] ac,device

I 0 1 1 I AC 11 1 0 I F I DEVICE CODE I
0 I 1 I 2 3 I 4 5 I 6 r 7 8 I 9 10 I 11 I 12 1 n I 14 I 15

The contents of the specified AC are placed in the C
output buffer of the specified device. After the data
transfer, the Busy and Done flags are set according to
the function specified by F. The contents of the
specified AC remain unchanged.

The number of data bits moved depends upon the size
of the buffer and the mode of operation of the device.

1/0 Skip

SKP ltl device

I 0 1 1 I 0 0 11 I 1 1 I T I DEVICE CODE I
o I 1

1
2 3 I 4 5 6 I 7 e 1

9 10
1

11
1

12 1 n 1
14 I 15

If the test condition specified by T is true, the next
sequential word is skipped.

CENTRAL PROCESSOR FUNCTIONS
I/O instructions with a device code of 778 perform a
number of special functions rather than controlling a
specific device. In all but the I/O SKIP instruction, I/O
instructions with a device code of 778 use bits 8-9 to
control the condition of the Interrupt On flag. An I/O
SKIP instruction with a device code of 778 uses bits
8-9 to test the state of the Interrupt On flag. The
mnemonics are the same as for normal I/O
instructions. The table below gives the result of these
bits for instructions with a device code of 778 •

CLASS CODED RESULT
ABBREV. CHARACTER BITS OPERATION

f (option omitted) 00 Does not affect the state of
the Interrupt On flag

s 01 Set the Interrupt On flag to 1

c 10 Set the Interrupt On flag to 0

p 11 Does not affect the state of
the Interrupt On flag

t BN 00 Tests for Interrupt On = 1

BZ 01 Tests for Interrupt On = 0

DN 10 Never skip

DZ 11 Always skip,

The device code of 778 deals mainly with processor
functions and has, therefore, been given the
mnemonic CPU. In addition, many of the I/O
instructions that reference this device code have been
given special mnemonics. While these special
mnemonics are functionally equivalent to the
corresponding I/O instructions with a device code of
778 , there is the following limitation; the mnemonics
for controlling the state of the Interrupt On flag
cannot be appended to them.

If the programmer wishes to alter the state of the
Interrupt On flag while performing a MASK OUT
instruction, for example, he must issue the
appropriate I/O instruction - DOB [f] ac, CPU - instead
of the corresponding special mnemonic MSKO ac. If
the special mnemonic is used, bits 8-9 are set to 00. In
describing the instructions, the special mnemonic for
the corre~ponding I/O instruction will be given first,
followed by the I/O instruction.

1IV-5

Interrupt Enable

INTEN

NIOS CPU

1011\00100010111111111
o I 1

1
2 J I 4 5 I 6 I 7 e I 9 10

1
11

1
12 I n 1

14
1

15

The Interrupt On flag is set to 1.

If the state of the Interrupt On flag is changed by this
instruction, the CPU allows one more instruction to
execute before the first I/O interrupt can occur.

Interrupt Disable

INTDS

NIOC CPU

10 1 110 010 0 011 011 1 1 1 1 11
o I 1

1
2 J I 4 5

1
6 I 7 e 1

9 10
1

11
1

12 1 n 1
14

1
15

The Interrupt On flag is set to 0.

Interrupt Acknowledge

INTA ac

DIB [f] ac, CPU

I 0 1 . 1 I AC I 0 1 1 I F 11 1 1 1 1 1 I
o I 1 I 2 J I 4 5 I 6 I 7 e I 9 10 I 11 I 12 I n 1

14 1 15

The six-bit device code of that device requesting an
interupt which is physically closest to the CPU on the
I/0 bus is placed in bits 10-15 of the specified AC. Bits
0-9 of the specified AC are set to 1. If no device is
requesting an interrupt, bits 0-15 of the specified AC
are set to 1. After the transfer, the Interrupt On flag is
set according to the function specified by F.

Mask Out

MSKO ac

DOB [f] ac, CPU

I 0 1 1 I AC I 1 0 0 I F 11 1 1 1 1 1 I
o I 1 I 2 J I 4 5 I 6 I 7 e I 9 10

1
11 I 12 I n 1

14 I 15

The contents of the specified ·Ac are placed in the
priority mask. After the transfer, the Interrupt On
flag is set according to the function specified by F. The
contents of the specified AC remain unchanged.

N 0 TE A 1 in any bit disables interrupt
requests from devices in the corresponding
priority level.

Changes in the priority mask do not take effect ·
until after the instruction following the MASK
OUT.

Reset

IORST

DOA [fJ O,CPU

lo 1 1 o 010 1 ol
0 I 1 I 2 I 3 I 4 5 I 6 I ,7

F 11 1 1 1 1 1
1

9 10 I 11
1

12 1 n I 14 1 15

The Busy and Done flags in all I/O devices are set to 0.
The 16-bit priority mask is set to 0. The real-time
ciock is disabled. All interfaces based on the mN603
roe circuit have their device codes and priority mask
bits initialized. The Interrupt On flag is set according
to the function specified by F.

NOTES The assembler recognizes the
mnemonic IORST as equivalent to the in­
Bttruction DOAC O,CPU.

Lf the mnemonic DOA is used to perform this
function, A CO must be specified as the
accumulator. Regardless of how it is coded,

·during execution of the instruction, the contents
of A CO remain unchanged.

Halt

HALT

DOC O,CPU

I ~ I ~ I : I 3AIC 4 I : I : I ~ I 8 ~ 911: I 1~ I :2 I :3 I :4 I :5 I
The Interrupt On flag is set to 1 and the processor is
stopped. While in the stopped state, the CPU will
honor data channel requests. In addition, because this
instruction sets the interrupt on flag to 1, the CPU
will honor program interrupt requests while in the
stopped state.

NOTES The optional mnemonics S, C, and P
have no effect when appended to a DOC O,CPU
instruction.

If the mnemonic DOC is used to perform this
function, A CO must be specified as the
accumulator. Regardless of how it is coded,
during execution of the instruction, the contents
of A CO remain unchanged.

The actions of a microNOVA computer system
after execution of a HALT instruction depend
upon whether or not either the hand-held
console or the console debug option are
installed in the system. If either of these devices
are present, then immediately after the HALT
instruction is executed, control will be
transferred to the appropriate console
software. Otherwise, the CPU will remain in the
stopped state, waiting for an interrupt.

IV-6

CPU Skip

SKP ftl CPU
\

I 0 1 1 I 0 0 11 1 1 I T 11 1 1 1 1 1 I\
0 I 1 I 2 3 I 4 5 I 6 I 7 8 I 9 10 I 11 I 12 I n I 14 I 15

If the test condition specified by T is true, the next
sequential word is skipped.

REAL-TIME CLOCK
The real-time clock CRTC) feature of the microNOVA
computers generates periodic interrupts when
enabled.

When enabled, a real-time clock interrupt request is
initiated every 2.4 milliseconds. Upon receiving a
real-time clock interrupt request, the CPU sets the
Interrupt On flag to 0, places the updated program
counter in memory location 0, and executes a "jump
indirect" to memory location 2.

The real-t.ime clock is enabled and disabled with two
instructions to device code 77 8 • When the clock is first
enabled, the first interrupt request can occur at any
time within the first 2.4 milliseconds after the
enabling instruction. After that, the clock will
generate an interrupt request every 2.4 milliseconds
until it is disabled.

Real-time Clock Enable

RCTEN

DOA [fJ 2,CPU

jo 1 1 1 0 0 1 01F111 1 1 1 11
o I 1

1
2

1
3 I 4 I 5

1
6 I 7 s I 9 10

1
11 I 12 I n 1 14 I 15

The real-time clock is enabled.

After the clock is enabled, the Interrupt On flag is set
according to the function specified by F.

Real-time Clock Disable

RT CDS

DOA [fJ 1,CPU

lo 1 1 0 1 0 1 01F111 1 1 1 11
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 8 I 9 ' 10 I 11 I 12 I 13 I 14 I 15

The real-time clock is disabled.

After the clock is disabled, the Interrupt On flag is set
according to the function specified by F.

POWER FAIL/ AUTO-REST ART
In the microNOVA computers, when power fails and
is later restored, the state of the memory, the
accumulators, the program counter, and the various
flags in the CPU is preserved if the battery backup
option is present. The power fail/auto-restart
circuitry provides a "fail-soft" capability in the event
of unexpected power loss.

In the event of power failure, there is a delay of one to
two milliseconds before the processor shuts down. The
power fail circuitry senses the imminent loss of power
and requests an I/O interrupt. The power fail
circuitry has no device code, so when the I/O
interrupt handler issues an INTERRUPT ACK­
NOWLEDGE instruction, the specified accumulator
will have all its bits set to 1. The I/0 interrupt handler
should then transfer control to the power fail routine.

The power fail routine can then use the delay to set up
the return linkages needed to restart the interrupted
program. The power fail routine should then execute a
HALT instruction. This HALT instruction will clear
the power fail interrupt and leave the system in the
stopped state until power is restored. One to two
milliseconds is enough time to execute 500 to 1000
instructions on the microNOV A computers, so there
is more than enough time to perform the power fail
routine.

When power is restored, the action taken by the
automatic restart circuitry depends primarily upon
the position of the power switch on the front panel. If
the switch ,is in the "run" position when power is
restored, the CPU acts as if it had just executed a
HALT instruction.

IV-7

If the switch is in the "lock" position when power is
restored, the action taken depends primarily upon the
state of the battery backup option.

If the batteries have run down during the power
failure, or if the battery backup option is not present,
then, when power is restored, the CPU acts as ifit had
just executed a HALT instruction.

If the batteries have not run down during the power
failure, the action depends upon the state of jumpers
on the CPU board. These jumpers offer several
alternatives for the automatic restart procedure.

The CPU can be directed to retrieve the contents of
memory location 077777 8 , set bit 15 of the retrieved
contents to 0, and then use the result as an
intermediate address in the effective address
calculation. After determining the effective address,
the CPU performs a "jump" to that location. The
memory locations 0777768 and 077777s, can be
contained in random-access memory (RAM),
read-only memory (ROM), or set with jumpers on the
CPU board.

Alternatively, the CPU can be directed to perform a
program load sequence. The address of the device to be
used and the type of program load to be performed
can be contained in ROM or set with jumpers on the
CPU board.

For a further description of the auto-restart
alternatives and the jumper settings which enable
them, consult the Technical Reference for
microNOV A Computer Systems <DGC no.
014-000073).

HAND-HELD CONSOLE
The hand-held console available with the micro­
NOV A computers is an I/O device that, when used in
conjunction with the standard software, allows the
user to control and monitor the actions of the
computer system. However, because the hand-held
console is an I/O device, and not a direct extension of
the CPU, it may be programmed by the user to
augment the standard software or to totally redefine
its actions.

The,, hand-held console is a device that looks like a
small calculator. It has 20 keys and a 6-digit,
7-segment LED display. The controller for the
hand-held console occupies one slot in the computer
chassis. This controller will initiate an I/O interrupt
request each time a key on the hand-held console is
struck. The console is connected to the controller by a
16-coriductor ribbon cable.

The hand-held console is driven by a controller that
contains 256 locations of read-only memory (ROM)
that respond to addresses 077400-0777778 . If the
microNOVA computer system contains read-write
memory (also called random-access memory or RAM)
at those locations, the console controller ROM takes
precedence and the RAM is disabled. Within the 256
locations of ROM are 16 locations of RAM. This array
of ROM/RAM is used by the standard console
software to implement the console actions described
in section V.

The standard console software has two entry points.
Memory location 0777778 contains the address of the
location that will receive control upon system
initialization or after an automatic restart. If the user
wishes to pass interrupts from the hand-held console
on to the standard console software, then he should
transfer control to the location whose address is in
memory location 0777768 whenever a hand-held
console interrupt is received.

One of the 16 locations of RAM is at memory address
0775768 . The contents of this location are divided into
octal digits and continuously displayed in the 6 digits
on the console. The left-hand digit corresponds to bit
0, and the right-hand digit corresponds to the octal
digit made from bits 13-15. This memory location can
be retrieved by a LOAD instruction that references
memory location 0775768 . The display can be altered
at any time by placing a new value in location 0775768 .

Another one of the RAM locations is at memory
address 0775778 • This location is used to hold the
console switches register. This location can be
retrieved by an I/O instruction or by a LOAD
instruction that references location 0775778 .

The controller also contains a 5-bit function register
that contains the function code of the most recently
struck console key.

IV-8

Instructions

Three I/O instructions are used to program the
hand-held console. One instruction is used to retrieve
the current contents of the console switches register.
One instruction is used to retrieve the function code of
the most recently struck console key. The remaining
instruction is used to light the decimal point to the
right of the left-hand digit on the console.

The device code for the hand-held console is 4 and it
has the mnemonic HHC. Its priority mask bit is bit 5.

The device flag commands control the hand-held
console's Busy and Done flags in the following
manner:

f = S Set the Busy flag to 1 and the Done flag to 0.

f = C Set both the Busy and Done flags to 0.

f=P No effect.

Read Switches

READS ac

DIA [f] ac, HHC

The current value of the console switches register is
retrieved from memory location 0775778 and placed in
the specified AC. After the transfer, the function
specified by F is performed.

Read Function

DIC [f] ac, HHC

I 0 1 1 I AC 11 0 1 I 0 0 I 0 0 0 1 0 0 I
0 I 1 I 2 3 I 4 5 I 6 I 7 8 I 9 10 I 11 I 12 I 13 I 14 I 15

The function code of the most recently struck console
key is placed in bits 3-7 of the specified AC. Bits 0-2
are set to 0. Bits 8-15 are unpredictable. After the
transfer, the function specified by Fis performed. The
format of the specified AC is as follows:

FUNCTION

6

Bits Name Contents

0-2 ---- Reserved for future use.
3-7 Function Function code of the most recently struck

console key.
00000 O/ACO
00001 1/AC1
00010 2/AC2
00 011 3/AC3
00100 · 4/FP
00 101 5/SP
00 110 6/SWITCHES
00 111 7/ADDR
01 000 LAST
01 001 NEXT
01 010 MEM
01 011 CLAD
01 100 START
01 101 STOP
01 110 CONT
01 111 DEP
10000 RESET
10 001 .
10 010 I
10 011 PR LOAD

8-15 ---- Reserved for future use.

Light Decimal Point

DOC [f] ac, HHC

I 0 1 1 I AC 11 1 0 I 0 0 I 0 0 0 1 0 0 I
o I 1 I 2 1 I 4 5 I 6 I 7 e I 9 10 I 11 I 12 I u I 14 1 15

The decimal point to the right of the right-hand digit
on the console is lit. The contents of the specified AC
are ignored and remain unchanged. After the light is
lit, the function specified by Fis performed.

NOTE In order to keep the decimal point
visible, this instruction must be issued at least
once every 16 milliseconds.

Programming

IV-9

Each time a key is struck on the hand-held console,
the function code for that key is placed in the function
code regist~r. the controller's Done flag is set to 1, and
an I/O interrupt request is initiated.

The function code can then be read by issuing a READ
FUNCTION instruction <DIC). The Done flag should
be set to 0 with either a Start or Clear command. This
allows the next key strike to initiate another I/O
interrupt request.

Considerations
The RESET key on the hand-held console is the only
key that performs its action without software
intervention. If the front panel power switch is in the
RUN position when this key is struck, program
execution is stopped at the end of the current
instruction and the system is initialized as if the front
panel power switch were turned to the RESET
position. An I/O RESET instruction is executed. The
CPU is stopped. Control is then transferred to the
standard hand-held console software.

If the front panel power switch is in the LOCK
position when the RESET key is struck, the function
code for the RESET key is placed in the function
register and an I/O interrupt request is initiated.

(~ llQ7t GENERAL ff~)}~~;~)
,....----...

ACPWR BATT PWR RUN Pl.START

0 0 0

~
RESET ·RUN CONTINUE

OFF.LOCK

~ .J

~- ' r . 'I
1EW..B"~JI

. 1
l!ESET * I ~LO]il

9 ~ ;;:; c;;;i I
~ 000

1

g
11 LAST NEXT MEM CLR 0

· DDDc:::::J
j 1 0 ACO 1 AC1 2 AC2 3 AC3

1DDDD,i
4 FP 5 SP 6 SW cs1J D D D

~-
~

OG-02492

SECTION V

OPERATION

A microNOVA computer system can be controlled at
three levels: front panel or CPU board controls,
hand-held console, and system console. The front
panel and the CPU board controls allow the system to
be operated at the basic level of controlling the power
and initiating a program load sequence. The
hand-held console allows memory locations and the
internal registers of the CPU to be examined and
modified. It also allows the system to be started and
stopped. The system console, whether it be a
teletypewriter or a CRT terminal, can, if the
controller is equipped with the console debug option,
do all that the hand-held console can do plus allow the
setting of breakpoints in the user's program so that he
can follow the process of the program step-by-step.

FRONT PANEL
The front panel of the microNOV A computer chassis
contains a 4-position, locking, power switch; a
2-position rocker switch; and 3 indicator lights.

Power Switch

The power switch has 4 postions: OFF, RESET, RUN,
and LOCK. With the switch in the OFF position, all
power to the CPU is off and the system will not run.
Turning the switch to the RESET position initializes
the CPU. As long as the switch is in the RESET
position, power is being supplied to the system, but
the CPU is held in the HALT state. Turning the
switch to the RUN postion allows the CPU to leave
the HALT state and begin operating. Turning the
switch to the LOCK position allows the key to be
removed. The system will automatically restart after
a power failure only if the switch is in the LOCK
position.

Rocker Switch

The rocker switch has 2 positions: PL/START, and
CONTINUE. The switch is spring loaded and will

return to the center, neutral position after it is
released. Pressing the switch to the PL/ST ART
position either initiates a program load sequence or
.causes the system to start at a predetermined memory
location. The action taken depends upon the state of
jumpers on the CPU board. For a description of the
jumper settings, consult the Technical Reference for
microNOV A Computer Systems <DGC no.
014-000073). Pressing the switch to the CONTINUE
position causes the system to continue program
execution at the location addressed by the curren1
contents of the program counter.

Indicator Lights
The 3 indicator lights are labelled AC POWER, BATT
POWER, and RUN. When lit, the AC POWER light
means that ac power is being supplied to the system.
When lit, the BATT POWER light means that the ac
power has failed and that power from the battery
backup option is being used to refresh the memories.
When lit, the RUN light means that the CPU is
executing either instructions or data channel cycles.

CPU BOARD CONTROLS
If a microNOV A CPU board has been purchased for
operation in an environment that does not include the
standard front panel, it is supplied with on-board
controls that are analogous to those found on the
front panel.

These controls consist of a slide switch, 3 push-button
switches, and 3 LED indicators. The slide switch
simulates the LOCK position of the power switch. The
3 push-buttons implement the RESET, PL/START,
and CONTINUE functions. The 3 LED indicators are
the same as the 3 lights on the.-front panel.

V-1of6

HAND-HELD CONSOLE
The hand-held console is a device that looks like a
small calculator. It has 20 keys and a 6-digit,
7-segment LED display. It is connected to the
computer chassis by a 16-conductor ribbon cable. It
can be used when attached to the front panel of the
chassis or when held in the user's hand. When used
with the standard· software, the hand-held console
allows the user to reset, start, and stop the system,
and to examine and modify memory locations or the
internal registers of the CPU. The actions of the
hand-held console when used with the standard
software are described below.

Display

The 6-digit display displays a 16-bit number as 6 octal
digits. The left-hand digit corresponds to bit 0, the
next digit corresponds to bits 1-3, the next digit
corresponds to bits 4-6, and so on. The decimal point
to the right of the right-hand digit will light if the
console software received control either as result of
the CPU executing a HALT instruction or the console
STOP key being struck.

Key Pad

The 20-key key pad of the hand-held console is divided
into 9 function keys and 11 location keys. The function
keys control such functions as RESET, START,
STOP, and CONTINUE. The location keys can either
define the location of an EXAMINE or DEPOSIT
function, or. can be used to enter a number into the
display.

Function Keys

When the CPU is running, all the keys except PR
LOAD and START are enabled. When the CPU is
stopped (indicated by a lighted decimal point to the
right of the right-hand digit), all the keys are enabled.

RESET

If the front panel power switch is in the RUN position
when this key is struck, program execution is stopped
at the end of the current instruction and the system is
initialized as if the front panel switch were turned to
the RESET position. An I/0 RESET instruction is
executed and the CPU is stopped. Control is then
transferred to the hand-held console software.

If the front panel power switch is in the LOCK
position when this key is struck, program execution is
stopped at the end of the current instruction and the
CPU is placed in the stopped state.

*
This key is reserved for future use.

I
- -

Th.is key is reserved for future use.

PR LOAD

When this key is struck, the bootstrap loader is placed
in memory locations 2-378 • After an I/O RESET
instruction is executed, execution of the bootstrap
loader is started at location 2. The device code of the
program load device is taken from the 2 right-hand
digits of the display. The mode of the program load is
taken from the left-hand digit of the display. If this
digit is 0, the load is performed via programmed I/0. If
this digit is 1, the load is performed via the data
channel.

START

When this key is struck, the current contents of the
display are placed in the program counter, an I/0
RESET instruction is executed and program
execution is started with the instruction addressed by
the updated value of the program counter.

STOP

When this key is struck, program execution is stopped
at the end of the current instruction and the
Interrupt On flag is set to 0. The display shows the
value of the carry bit in the left-hand digit and the
address of the last instruction executed in the
right-hand 5 digits.

CONT

When this key is struck, program execution is
continued by executing a JMP @ 0 instruction. An
IN-TERR UPT EN ABLE instruction is executed before
the JUMP.

NOTE The hand-held console is an I/O device
and the only way that the console software can
receive control is via an interrupt. Since
interrupts always place the updated program
counter in location 0, a JMP @ 0 instruction is
all that is needed to continue program
execution.

DEP

After this key is struck, if the next key struck is a
location key, the current contents of the display will
be placed in that location. If the next key struck is a
function key, that function will be performed and this
strike of the DEP key will have no effect.

'V-2i

CLR D

The display is set to 0 and the numeric entry mode is
entered. The bottom two rows of keys will function as
an 8-key, octal key-pad. For each key struck, the
display is shifted left one digit and the struck digit is
placed in the right-hand digit. After 6 digits have been
entered, the software will refuse further digits unless
the CLR D key is struck again.

Location Keys

For all location keys, if the DEP key was struck
immediately previous, the location key defines the
destination of a deposit and the contents of the
display will be placed in that location. Otherwise, the
contents of the location will be retrieved and placed in
the display.

ADDR

The location defined is the console memory address
register. This register contains the address that will
be used with the MEM, NEXT, and LAST keys.

SWITCHES

The location defined is the console switches register.
This register is accessible to the user program via the
READ SWITCHES instruction.

SP

The location defined is the stack pointer.

FP

The location defined is the frame pointer.

AC3

The location defined is accumulator 3.

AC2

The location defined is accumulator 2.

AC1

The location defined is accumulator 1.

ACO

The location defined is accumulator 0.

MEM

If the DEP key was struck immediately previous, the
location defined is the memory location addressed by
the console memory address register. Otherwise, the
contents of the display are placed in the console
memory address register and the location defined is
the memory location addressed by the updated value
of the console memory address register.

NEXT
The contents of the console memory address register
are increased by 1 and the location defined is the
memory location addressed by the updated value of
the console memory address register.

LAST

The contents of the console memory address register
are decreased by 1 and the location defined i& the
memory location addressed by the updated value of
the console memory address register.

'V-3

CONSOLE DEBUG OPTION
I

The console debug option is an option available with
the asynchronous interface board that allows the use
of the system console to monitor program execution
and to examine and modify memory locations and
CPU internal registers.

The console debug option consists of a program
contained in 256 locations of read-only memory
<ROM) that respond to addresses 077400-0777778 • If
the microNOVA computer system contains
read-write memory (also called random-access
memory or RAM) at those locations, the console
debug option ROM takes precedence and the RAM is
disabled. The console debug option ROM has the same
addresses as the ROM for the hand-held console. For
this reason both consoles may not be present in a
system at the same time.

The console debug option receives control when any of
the following events occur: the front panel power
switch is turned to the RESET position and then to
either the RUN position or the LOCK position; the
CPU executes a HALT instruction; or a breakpoint is
encountered. Additionally, if the front panel power
switch is in the LOCK position and power fails, the
automatic restart feature may be directed to transfer
control to the console debug option when power is
restored.

The console debug option indicates to the user that it
has control of the system by typing the program
counter of the interrupted program in octal, followed
by a carriage return, a line feed, and a ! character. At
this point the user may examine and modify any
memory location, any of the four accumulators, the
stack pointer, the frame pointer, and certain status
indicators.

In addition, the user may define a point in his
program called a breakpoint. After the user directs
the console debug option to start or restart his
program, the program will be executed until it is
stopped or the breakpoint is reached. If the
breakpoint is reached, control is transferred to the
console debug option and the breakpoint is cleared.
The user's instruction at the breakpoint location is
not executed.

The locations that can be examined and modified by
the user are called cells. These cells are of two types:
internal CPU registers, and memory locations. The
action of examining a cell is referred to as "opening"
the cell. The action of releasing a cell is referred to as
"closing" the cell. After a cell has been opened, it may
be modified and then closed, or closed without
modification. Only one cell may be open at any time.,
After the command has been given to open a cell, its
contents are typed out in octal.

Opening Internal Cells
The command to open an internal CPU cell is of the
form n A, where n is an octal integer in the range
0-178 . The different values of n, together with which
internal cell they open, are tabulated below.

Octal
Integer Internal Cell

0 Accumulator 0
1 Accumulator 1
2 Accumulator 2
3 Accumulator 3
4 The program counter of the interrupted program.
5 Stack Pointer
6 Frame Pointer
7 CPU and console controller (TTO) status where:

Bits 0-12 are reserved for future use.
Bit 13 is status of the carry bit when the console debug
option received control.
Bit 14 is status of Interrupt On flag when the console debug
option received control
Bit 15 is status of TTO Done flag when the console debug
option received control

10 Address of a location in the first 256 words of main memory
that can be used by the console debug option for
breakpoint transfers.

11 Address of the most recent breakpoint
12 User instruction at the address of the most recent

breakpoint
17 Contents of memory location 0775778 •

Opening Memory Cells
The command to' open a memory cell is of the form
addr I, where addr is an octal number which is the
address of the desired memory location or an
arithmetic expression made up of octal numbers
separated by plus and minus signs. Leading zeros need
not be typed. The expression is evaluated and the
low-order 15 bits of the result are used as the address
of the desired memory location. The period character
(.) can be used to signify the address of the most
recently opened memory location.

Once a cell has been opened, the contents of that cell
may be used to specify the location of the next
memory location to be opened. If a plus or minus sign
is typed followed by an octal number or an arithmetic
expression, followed by a slash (I) , the octal number
or the result of the arithmetic expression is added to
or subtracted from the contents of the open cell and
this result is used to address the new cell. The current
open cell is closed without modification. The new cell
is opened and its contents are typed out in octal. If
only a slash is typed, the current cell is closed without
modification and the contents of that cell are used to
address a new cell. The new cell is opened and its
contents are typed out in octal.

Modifying a Cell
Once a cell has been opened, the user may modify the
cell by typing the new value the cell .is to contain,
followed by a carriage return or a line feed. If a
carriage return is typed, the cell will be closed and the
console debug option will a wait the next command. If
a line feed is typed, the cell will be closed and, if the
cell was a memory location, the next higher memory
location will be opened. If the cell was an internal
register, it will be closed and the next higher
numbered internal cell will be opened. If no new value
is typed preceding the carriage return or line feed, the
cell is closed without modification.

The new value may be specified by typing an octal
number or an arithmetic expression made up of octal
numbers separated by plus and minus signs. Leading

. zeros need not be typed. The expression will be
evaluated and the low-order 16 bits of the result
become the new value. The period character can be
used to signify the address of the most recently
opened memory location.

V-4

If a plus or minus sign is typed as the first character of
the new value, then the value of the typed expression
is added to or subtracted from the contents of the cell
and the low-order 16 bits of this result become the
new value.

Other Commands
There are five other commands to the console debug
option that allow the user to set a breakpoint, clear a
breakpoint, start the execution of a program, continue
the execution of a program, and perform a program
load.

Set Breakpoint

The command to set a program breakpoint is of the
form addr 8, where addr can be specified ln the same
manner as the address used to open a memory
location.

NOTES The console debug option will place a
JUMP instruction, with the indirect bit set, in
the memory location specified by addr. The
location referenced by the indirect reference
will be the location whose address is contained
in CPU internal cell 108 • If the user wishes to
utilize the breakpoint capability, he must
initialize CPU internal cell 108 to be the
address of some unused word in the first 256
locations of main memory. Locations 0-3 should
not be used for this purpose since they are used
by the CPU's interrupt mechanism.

Once a breakpoint has been set, it must be
cleared before another breakpoint can be set. A
breakpoint can be cleared either by encoun­
tering it during program execution or by using
the D command.

Clear Breakpoint

The command to clear a breakpoint is of the form D.
The contents of CPU internal cell 12s are placed in
main memory at the address contained in CPU
internal cell 11s.

Start Execution

The command to start execution of a program is of the
form addr R, where addr can be specified in the same
manner as the address used to open a memory
location. An I/O RESET instruction is executed and
then control is transferred to the address specified by
addr.

Continue Execution

The command to continue execution of the
interrupted program is P. Control is transferred to the
address contained in CPU internal cell 4.

Program Load

The command to perform a program load sequence is
of the form dev L, where dev is the octal device code of
the program load device.

Rubout

The RUBOUT or DEL key on the console keyboard
may be used to correct commands as they are being
typed. Typing this character effectively erases the
right-most character in the command. Typing this
character twice in succession effectively erases the
two right-most characters in the command, and so on.
Typing this character immediately after opening a
cell has the same editing effect on the contents of the
cell.

K

Typing the character K deletes the entire command. If
a cell is open, it is closed without modification. The
console debug option responds by typing a question
mark (?).

V-5

PROGRAM LOADING
Before a program can be executed it must be brought
into memory. This requires that a loading program
already reside in memory. If the memory does not
already contain a loading program, the operator can
use the program load facility to bring in a "bootstrap
loader" which can, in turn, read in a loading program.

There are two ways in which an operator can initiate
a program load sequence. If the microNOV A
computer system contains either the console debug
option or a hand-held console, they can be used to
initiate a program load sequence. If the system does
not contain either of these devices, but the CPU board
is equipped with the program load option, a program
load sequence can be initiated with the PL/START
switch.

Initiating a program load sequence in either of these
ways deposits a 3010 word bootstrap loader into
memory locations 2-37 8 , places the device code of the
program load device in accumulator 0, executes an I/O
RESET instruction, and then begins sequential
operation at memory location 2. This bootstrap loader
will then read in data from the device whose device
code is in ACO. The bootstrap loader can use either
programmed I/Oto read from a low-speed device or
data channel transfers to read from a high-speed
device.

To enter a loader program, the operator must first set
up the device that is to be used and make its octal
device code available to the program load facility
being used. For the console debug option, this is done
with the dev L command. For the hand-held console,
this is done by entering the device code into the
display. For the CPU board program load option, this
is done by inserting jumpers on the CPU board.

The octal device code of the program load device
should be placed in bits 10-15. The state of bit 0
indicates whether the device is a data channel device
or a programmed I/O device. If the device is a data
channel device, set bit 0 to 1. If the device is not a data
channel device, set bit 0 to 0. After this is done,
initiate the program load sequence. The bootstrap
loader will be deposited into memory locations 2-378
and started at location 2 .

. If bit 0 is 1, the bootstrap loader starts the device for a
data channel transfer by issuing an NIOS instruction

. and then loops at location 3778 until a data channel
transfer places a word into that location.

After a word has been placed in location 3778 , it is
executed as an instruction. Typically, this word is
either a HALT or a JUMP into the data that the data
channel has placed in the first 3778 memory locations.

N 0 TE For proper program loading via the
data channel, the device used must be initiated
for reading into memory beginning at location 0
by an I/0 RESET followed by an NIOS
instruction. In addition, it is up to the device to
stop reading after 256 words have been read.

If bit 0 is a 0, the bootstrap loader reads the loader
program via programmed I/0. The device must supply
8-bit data bytes, and each pair of bytes is stored as a
single word in memory, wherein the first and second
bytes read become the left and right halves of the
word. To simplify the procedure, the bootstrap loader
ignores leading null characters. It does not begin
storing any words until it reads a non-zero
synchronization byte. The first word following this
synchronization byte must be the negative of the total
number of words to be read, including the first word.
The number of words to be read, including the first
word may not be greater than 19210• The bootstrap
loader stores these words beginning at memory
location 1008 • After storing the last word read, it
transfers control to that location.

Listed below is the standard 30 word bootstrap loader
for the microNOVA computers. This program is
capable of loading in either of the manners described
above.

The usual procedure is to use the bootstrap loader to
bring in a larger program that sizes memory and then
reads in the binary loader, storing it at the top of
memory.

V-6

LOA
AND
COM

LOOP: ISZ
ISZ
ISZ
INC
JMP
LDA

STA
OP1: 060077

MOVL

C377: JMP

LOOP2: JSR
MOVC
JMP

LOOP4: JSR
STA

ISZ
JMP

C77: JMP

GET: SUBZ
OP2:
LOOP3: 063577

1,C77
0,1
1,1
OP1
OP2
OP3
1,1,SZR
LOOP
2,C377

2,377

;GET DEVICE MASK (000077)
;ISOLATE DEVICE CODE
;-DEVICE CODE - 1
;COUNT DEVICE CODE INTO ALL
;1/0 INSTRUCTIONS

;DONE?
;NO, INCREMENT AGAIN
; YES, PUT JMP 377
;INTO LOCATION 377

;START DEVICE: (NIOS 0) - 1
0,0,SZC ;LOW SPEED DEVICE?

; (TEST SWITCH 0)
377 ;NO, GO TO 377

;AND WAIT FOR CHANNEL
GET +1 ;GET A FRAME
0,0,SNR ;IS IT NON-ZERO?
LOOP2 ;NO, IGNORE AND GET ANOTHER
GET ;YES, GET FULL WORD
1, C377@;STORE STARTING AT 100 2'S

;COMPLEMENT OF WORD
;COUNT (AUTO-INCREMENT)

100 ;COUNT WORD - DONE?
LOOP4 ;NO, GET ANOTHER
77 ;YES, - LOCATION COUNTER

;AND JUMP
;TO LAST WORD

1,1 ;CLEAR AC1, SET CARRY

JMP LOOP3
;DONE?: (SKPDN 0) -1
;NO, WAIT

OP3: 060477
ADDCS 0,1,SNC

JMP LOOP3
MOVS 1,1
JMP 0,3
0

;YES, READ IN ACO: (DIAS 0,0) -1
;ADD 2 FRAMES SWAPPED -
;GOT SECOND?
;NO, GO BACK AFTER IT
;YES, SWAP THEM
;RETURN WITH FULL WORD
;PADDING

APPENDIX A

STANDARD 1/0 DEVICE CODES

OCTAL OCTAL

DEVICE PRIORITY DEVICE PRIORITY

CODES MNEMONIC MASK BIT DEVICE NAME CODES MNEMONIC MASK BIT DEVICE NAME

00 40

01 ---- ---- Multiply/divide and stack 41

02 42

03 43

04 HHC 5 Hand-held console 44

05 PROG 9 PROM programmer 45

06 46

07 47

10 TTI 14 TTY input 50 TTl1 14 Second TTY input

11 TTO 15 TTY output 51 TT01 15 Second TTY output

12 52

13 53

14 54

15 55

16 56

17 57

20 60

21 61

22 62

23 63

24 64

25 65

26 66

27 67

30 DKT2 10 Third diskette 70 DKT3 10 Fourth diskette

31 71

32 72

33 DKT 10 Diskette 73 DKT1 10 Second diskette

34 74

35 75

36 76

37 77 CPU -- CPU and real-time clock

A-1 of2

This page intentionally left blank.

A-2

APPENDIX B

OCT AL AND HEXADECIMAL CONVERSION

To convert a number from octal or hexadecimal to decimal,
locate in each column of the appropriate table the decimal
equivalent for the octal or hex digit in that position. Add the
decimal equivalents to obtain the decimal number.

To convert a decimal number to octal or hexadecimal:

1. Locate the largest decimal value in the appropriate
table that will fit into the decimal number to be
converted;

2. Note its octal or hex equivalent and column position;

3. Find the decimal remainder.

Repeat the process on each remainder. When the remainder
is 0, all digits will have been generated.

OCT AL CONVERSION TABLE

as 84 83 82 81 ao

0 0 0 0 0 0 0
1 32,768 4,096 512 64 8 1
2 65,536 8,192 1,024 128 16 2
3 98,304 12,228 1,536 192 24 3
4 131,072 16,384 2,048 256 32 4
5 1_63,840 20,480 2,560 320 40 5
6 196,608 24,576 3,072 384 48 6
7 229,376 28,672 3,584 448 56 7

B-1of2

HEXADECIMAL CONVERSION TABLE

16 5
16 4

16
3 16

2

0 0 0 0 0
1 1,048,576 65,536 4,096 256

2 2,097,152 131,072 8,192 512

3 3,145,728 196,608 12,288 768

4 4,194,304 262,144 16,384 1,024

5 5,242,880 327,680 20,480 1,280

6 6,291,456 393,216 24,576 1,536

7 7,340,032 458,752 28,672 1,792

8 8,388,608 524,288 32,768 2,048

9 9,437,184 589,824 36,864 2,304

A 10,485,760 655,360 40,960 2,560

B 11,534,336 720,896 45,056 2,816

c 12,582,912 786,432 49,152 3,072

D 13,631,488 851,968 53,248 3,328

E 14,680,064 917,504 57,344 3,584

F 15,728,640 983,040 61,440 3,840

16
1

16
6

0 0
16 1

32 2

48 3

64 4

80 5

96 6

112 7

128 8
144 9

160 10

176 11

192 12
208 13

224 14

240 15

This page intentionally left blank.

B-2

APPENDIX C

ASCII CHARACTER CODES

TO PRODUCE ON OCTAL

OCTAL ASCII TTY Models 33 and 35 8-bit Codl'

DECIMAL (7-Bit) HEX SYMBOL CONTROL FUNCTION CNTRL SHIFT Ch.tr.tclN EVEN Parity

0 000 00 NUL Null 0 0 p 000

1 001 01 SOH Start of Heading 0 A 201

2 002 02 STX Start of Text 0 B 202

3 003 03 ETX End of Text 0 c 003

4 004 04 EOT End of Transmission 0 D 204

5 005 05 ENQ Enquiry 0 E 005

6 006 06 ACK Acknowledge 0 F 006

7 007 07 BEL Bell 0 G 207

8 010 08 BS Backspace 0 H 210

9 011 09 HT Horizontal Tab 0 I 011

10 012 OA NL New Line line feed 012
0 J 012
0 line feed 212 1

11 013 OB VT Vertical Tab 0 K 213

12 014 oc FF Form Feed 0 L 014

13 015 OD RT Return return 215
0 M 215
0 return 015 1

14 016 OE so Shift Out 0 N 216

15 017 OF SI Shift In 0 0 017

16 020 10 DLE Data Link Escape 0 p 220

17 021 11 DC1 Device Control 1 0 Q 021

18 022 12 DC2 Device Control 2 0 R 022

19 023 13 DC3 Device Control 3 0 s 223

20 024 14 DC4 Device Control 4 0 T 024

21 025 15 NAK Negative Acknowledge 0 u 225

22 026 16 SYN Synchronous Idle 0 v 226

23 027 17 ETB End Transmission Block 0 w 027

24 030 18 CAN Cancel 0 x 030

25 031 19 EM End of Medium 0 y 231

26 032 lA SUB Substitute 0 z 232

27 033 1B ESC Escape esc 033
0 0 K 033

28 034 lC FS File Separator 0 0 L 234

29 035 1D GS Group Separator 0 0 M 035

30 036 1E RS Record Separator 0 0 N 036

31 037 1F us Unit Separator 0 0 0 237

32 040 20 SP Space space 240

1. On even parity TT Y's, these codes are odd parity.

C-1of2

APPENDIX C (Continued)

TO PRODUCE OCTAL TO PROPUCE OCTAL
OCTAL HEX ASCII on TTY Mod 33,3S 8-Bit Code OCTAL ASCII on TTY Mod 33,3S 8-Bit Code

DECIMAL 17-Bit) SYMBOL SHIFT Character EVEN Parity DECIMAL 17-Bit) HEX SYMBOL SHIFT Character EVEN Parity

33 041 21 ! 0 1 041 83 123 S3 s s 123
34 042 22 II 0 2 042 84 124 S4 T T 324
3S 043 23 # 0 3 243 8S 12S SS u u 12S
36 044 24 $ 0 4 044 86 126 S6 v v 126
37 04S 2S " 0 0 s 24S 87 127 S7 w w 327
38 046 26 & 0 6 246 88 130 S8 x x 330
39 047 27 I 0 7 047 89 131 S9 y y 131

40 oso 28 (
0 8 oso 90 132 SA z z 132

41 OSl 29) 0 9 2S1 91 133 SB [0 K 333
42 OS2 2A .

0 : 2S2 92 134 SC \ 0 L 134
43 OS3 2B + 0 ; OS3 93 13S SD I 0 M 33S
44 OS4 2C 94 136 SE /\ 0 N 336

4S oss 20 - - oss 9S 137 SF - 0 0 137
46 OS6 2E OS6 96 140 60 ' 140
47 OS7' 2F I I 2S7 97 141 61 a 341
48 060 30 0 0 060 98 142 62 b 342
49 061 31 1 1 261 99 143 63 c 143

so 062 32 2 2 262 100 144 64 d 344
Sl 063 33 3 3 063 101 14S 6S e 14S
S2 064 34 4 4 264 102 146 66 f 146
S3 06S 3S s s 06S 103 147 67 g 347
S4 066 36 6 6 066 104 lSO 68 h 3SO

SS 067 3i 7 7 267 lOS 1 Sl 69 i 1S1
S6 070 38 8 8 270 106 1S2 6A i 1S2
S7 071 39 9 9 071 107 1S3 6B k 3S3
S8 072 3A : : 072 108 1S4 6C I 1S4
S9 073 3B ; ; 273 109 lSS 60 m 3SS

60 074 3C < 0 074 110 1S6 6E n 3S6
61 07S 30 = 0 - 27S 111 1S7 6F 0 1S7
62 076 3E > 0 276 112 160 70 p 360
63 077 3F ? 0 I 077 113 161 71 q 161
64 100 40 @ 0 p 300 114 162 72 r 162

6S 101 41 A A 101 11 S 163 73 s 363
66 102 42 8 8 102 116 164 74 t 164
67 103 43 c c 303 117 16S 7S u 36S
68 104 44 D D 104 118 166 76 v 366
69 lOS 4S E E 30S 119 167 77 w 167

70 106 46 F
I

F 306 120 170 78 " 170
71 107 47 G G 107 121 171 79 y 371
72 110 48 H

I
H 110 122 172 7A z 372

73 111 49 I
I

I 311 123 173 78 { 173
74 112 4A I I 312 124 174 7C I 374

75 113 48 K K 113 12S 17S 70 ~ 17S
76 114 4C L L 314 126 176 7E - 176
77 11 S 40 M M 11 S 127 177 7F DEL rubout 377
78 116 4E N N 116
79 117 4F 0 0 317
80 120 so p p 120
81 121 Sl Q Q 321
82 122 S2 R R 322

C-2

APPENDIX D

DOUBLE PRECISION ARITHMETIC

A double length number consists of two words
concatenated into a 32-bit string wherein bit 0 is the
sign and bits 1-31 are the magnitude in two's
complement notation. The high-order part of a
negative number is therefore in one's complement
form unless the low order part is null (at the right,
only O's are null regardless of sign). Hence, in
processing double length numbers, two's complement
operations are usually confined to the low order parts,
whereas one's complement operations are generally
required for the high-order parts.

Suppose we wish to negate the double length number
whose high and low order words respectively are in
ACO and ACL We negate the low order part, but we
simply complement the high-order part unless the
low order part is zero.

NEG
NEG
COM

1,1,SNR
0,0,SKP
0,0

; Low order zero
;Low order non-zero

Note that the magnitude parts of the sequence of
negative numbers from the most negative toward zero
are the positive numbers from zero upward. Hence, in

multiple precision arithmetic, low-order words can be
treated simply as positive numbers. In unsigned
addition a carry indicates that the low-order result' is
just too large and the high-order part must be
increased. We add the number in AC2 and AC3 to the
number in ACO and ACL

ADDZ 3,1,SZC
INC 0,0
ADD 2,0

In two's complement subtraction a carry should occur
unless the subtrahend is too large. We could
increment as in addition, but since incrementing in
the high-order part is precisely the difference
between a one's complement and a two's complement,
we can always manage with only two instructions. We
subtract the number in AC2 and AC3 from that in
ACOandACL

SUBZ 3,1,SZC
SUB 2,0,SKP
ADC 2,0

D-1of2

This page intentionally left blank

D-2

APPENDIX E

INSTRUCTION USE EXAMPLES

On the following pages are examples of how the
instruction set of the microNOVA computers may be
used to perform some common functions.

• Clear an AC and the carry bit.

SURO AC,AC

• Clear and AC an preserve the carry bit.

SUBC AC,AC

• Generate the indicated constants.

SUBZL
ADC
ADCZL

AC,AC
AC,AC
AC,AC

; Generate + 1
; Generat~ -1
; Generate -12

• Let ACN be any accumulator whose contents are
zero; generate the indicated constants in ACN.

INCZL
INCOL
INCS

ACN,ACN
ACN,ACN
ACN,ACN

; Generate + 2
; Generate + 3
;Generate +400 a

• Check if both bytes in an accumulator are equal.

MOVS
SUB
JMP

ACS,ACD
ACS,ACD,SZR

;Not equal
;Equal

• Check if two accumulators are both zero.

MOVS
SUB
JMP

ACS,ACS,SNR
ACS,ACD,SZR

;Not equal
;Equal

• Check an ASCII character to make sure it is a
decimal digit. The character is in ACS and is not
destroyed by the test. Accumulators· ACx and ACy
are destroyed.

LOA ACx,C60
LOA ACy,C71
ADCZ# ACy,ACS,SNC
ADCZ# ACS,ACx,SZC

JMP

C60: 60
C71: 71

• Test an accumulator for zero~

MOV
JMP

AC,AC,SZR

• Test an accumulator for -1.

COM#
JMP

AC,AC,SNR

;ASCII zero
;ASCII nine
;Skips if (ACS>9)
;Skips if (ACS~O)
;Not digit
;Digit
;ASCII 0
;ASCH 9.

;Not zero
;Zero

;Not -1
;-1

E-iof 4

APPENDIX E (Continued) ,

• Test an accumulator for 2 or greater .

MOVZR #
JMP

AC,AC,SNR
;Less than 2
; 2 or greater

• Assume that it is known that AC contains 0, 1, 2,
or 3; find out which value.

MOVZR# AC,AC,SEZ
JMP THREE ;Wasl
MOV AC,AC,SNR
JMP ZERO ;WasO
MOVZR# AC,AC,SZR
JMP TWO ;Was2

;Was1

• Perform the following unsigned integer comparisons.

SUB#
SUB#
ADCZ#
SUBZ#
SUBZ#
ADCZ#

ACS,ACD,SZR
ACS,ACD,SNR
ACS,ACD,SNC
ACS,ACD,SNC
ACS,ACD,SZC
ACS,ACD,SZC

;Skip if (ACS)= (ACD)
;Skip if (ACS):;t:(ACD)
;Skip if (ACS)< (ACD)
;Skip if (ACS) ~(ACD)
;Skip if (ACS) >(ACD)
;Skip if (ACS) 2:<ACD)

• Subtract 1 from an accumulator without using
a constant from memory.

NEG
COM

AC,AC
AC,AC

• Multiply an AC by the indicated value.

MOV

MOVZL

MOVZL
ADD

ADDZL

MOV
ADDZL
ADD

MOVZL
ADDZL

ACx,ACx

ACx,ACx

ACx,ACy
ACy,ACx

ACx,ACx

ACx,ACy
ACx,ACx
ACy,ACx

ACx,ACy
ACy,ACx

;Multiply by 1

; Multiply by 2

;Multiply by 3

; Multiply by 4

;Multiply by 5

;Multiply by 6

E-2

MOVZL
ADDZL
SUB

ADDZL
MOVZL

MOVZL
ADDZL
ADD

MOV
ADDZL
ADDZL

MOVZL
ADDZL
MOVZL

MOVZL
ADDZL
ADDZL

ACx,ACy
ACy,ACy
ACx,ACy

ACx,ACx
ACx,ACx

ACx,ACy
ACy,ACy
ACy,ACx

ACx,ACy
ACx,ACx
ACy,ACx

ACx,ACy
ACy,ACx
ACx,ACx

ACx,ACy
ACy,ACy
ACy,ACx

;Multiply by 7

;in ACy

;Multiply by 8

;Multiply by 9

; Multiply by 10

; Multiply by 12

;Multiply by 18

• Peform the inclusive OR of the operands in ACO
and AC1. The result is placed in AC1. The carry bit
is unchanged.

COM
AND
ADC

0,0
0,1
0,1

• Perform the exclusive OR of the operands in ACO
and AC1. The result is placd in AC1. The contents
of AC2 and the carry bit are destroyed.

MOV
ANDZL
ADD
SUB

1,2
0,2
0,1
2,1

• Assume that ACO contains a signed, 16-bit, two's
complement integer. The following three
instructions will place an indicator of the .sigh of
the number in ACO. If the number is greater than 0,
ACO is set to +1. If the number is less than 0 ACO is
set to -1. If the number is equal to 0, ACO remains 0.
The previous contents of the carry bit are lost.

ADDO
ADCC
SUBCL

ACO,ACO,SBN
ACO,ACO,SNC
ACO,ACO

;Skip if GT 0
;ACO gets -1
;Copy carry into bit 15

APPENDIX E. (Continued)

• Move 30 words from locations 2000 - 2035s to
locations 3000 - 30358 . Two auto-increment
locations are used to hold the source and
destination addresses.

LOA O,ADDRS ;Set up source address
STA 0,20
LDA O,ADDRD ;Set up destination address
STA 0,21

LOOP: LOA 0,@20 ; Increment source address and get word
STA o,@ 21 ; Increment destination address and store word
DSZ ; Decrement count
JMP CNT ; Go back for next word

LOOP ;Skip here.when count is zero

ADDRS: 1777 ;Source address minus one
ADDRD: 2777 ;Destination address minus one
CNT: 36 Word count -- 368 equals 3010

• Compare the signed two's complement integer
contained in ACS to 0.

MOV#
MOV'#
ADDO#
MOVL#
MOVL#
ADDO#

ACS,ACS,SZR
ACS,ACS,SNR
ACS,ACS,SBN
ACS,ACS,SZC
ACS,ACS,SNC
ACS,ACS,SEZ

;Skip if contents of ACS EQ 0
;Skip if contents of ACS NE 0
;Skip if contents of ACS GT 0
;Skip if contents of ACS GE 0
;Skip if contents of ACS LT 0
;Skip if contents of ACS LE 0

• Load a byte from memory. The routine is called
via a JSR. The byte pointer for the requested byte
is in AC2. The requested byte is returned in the
right half of ACO. The left half of ACO is set to 0.
AC1, AC2, and the carry..bit are unchanged. AC3 is
destroyed.

LBYT: STA 3,LRET ;Save return address
LDA 3,MASK
MOVR 2,2,SNC ;Turn byte pointer into word address and skip if

; requested byte is right byte
MOVS 3,3 ;Swap mask if requested byte is left byte
LDA 0,0,2 ;Place word in ACO
AND 1,0,SNC ;Mask off unwanted byte and skip if swap is not

; needed
MOVS 0,0 ;Swap requested bte into right half of ACO
MOVL 2,2 ; Restore byte pointer and carry
JMP @LRET ; Return location

LRET: 0
MASK: 377

E-3

APPENDIX E (Continued)

• Store a byte in memory. The routine is called via a
JSR. The byte to be stored is in the right half of
ACO with the left half of ACO set to 0. The byte
pointer is in AC2. The word written is returned in
ACO. AC1, AC2, and the carry bit are unchanged.
AC3 is destroyed.

SBYT: STA 3,SRET ;Save return
STA 1,SACl ;Save ACl
LDA 3,MASK
MOVR 2,2,SNC ;Convert byte pointer to word address

; and skip if Byte is to be right half
MOVS 0,0,SKP ;Swap byte and leave mask alone
MOVS 3,3 ;Swap mask
LOA 1,0,2 ;Load word that is to receive byte
AND 3,1 ;Mask off byte that is to receive new byte
ADD 1,0 ; Add memory word on top of new byte
STA 0,0,2 ;Store word with new byte
MOVL 2,2 ;Restore byte pointer and carry
LDA 1,SACl ;Restore ACl
JMP @SRET ;Return

SRET: 0 ; Return location
SACl: 0
MASK: 377

• The transfer of control between routines is made
easier and more orderly by using the stack facility
of the microNOVA computers.

The basic method of transferring control to a
subroutine is via a JUMP TO SUBROUTINE
instruction. The subroutine executes a SA VE
instruction at the subroutine entry point and
returns control via the RETURN instruction.

CALL:
; Calling program
JSR

SUBR: SAV

RETRN: RET

SUBR

E-4

This method has the following characteristics:

1. AC3 of the calling program is destroyed by the
JSR.

2. The call is only one word.

3. Upon return to the calling program, AC3
contains the calling program's frame pointer.

4. A SAVE instruction is required at each entry
point.

5. Arguments are easily passed on the stack
because SA VE sets up the frame pointer for the
called routine and RETURN places the frame
pointer of the calling routine in AC3.

APPENDIX F

INSTRUCTION EXECUTION TIMES

All times are in microseconds.

LOA, STA 2.9
ISZ, DSZ 3.8
JMP 2.9
JSR 3.4
ADD, SUB, NEG, INC 2.4
MOV, AND, COM, ADC 2.4

Each level of@, add: 1.0
Each autoindex, add: 2.4
Index register addr, add: 0.0
If skip occurs, add: 1.0

PSHA, POPA 3.4
SAV 7.7
RET 7.2
MUL 41.3
DIV 59.0

1/0 input 7.2
1/0 output 4.8

P.1. CYCLE 3.8
INTERRUPT LATENCY NIA

DAT A CHANNEL
Input 6.7
Output 5.8
Latency 19.7

F-1of2

This page intentionally left blank.

F-2

w
z
_J

0
w
f-
f-
0
0
<..'.)
z
0
_J

<(

f-
::J
u

I
I
I
I
I ,,
I'
I
I
I

I'

Ir
I,

READERS COMMENT FORM

DOCUMENT TITLE:

Your comments, accompanied by answers to the

following questions, help us improve the quality

and usefulness of our publications. If your answer

to a question is "no" or requires qualification,

please explain.

How did you use this publication?

() As an introduction to the subject.

() As an aid for advanced knowledge.

() For information about operating procedures.

() To instruct in a class.

() As a student in a class.

() As a reference manual.

() Other .. .

Did you find the material:

• Useful. YES () NO ()

• Complete YES () NO ()

• Accurate YES () NO ()

• We II organized.. YES () N 0 (·)

• Well written YES () NO ()

• Well illustrated YES () NO ()

• Well indexed YES () NO ()

• Easy to read YES () NO ()

• Easy to understand YES () NO ()

We would appreciate any other comments; please

label each comment as an addition, deletion, change,

or error and reference page numbers where applicable.

COMMENTS

PAGE COL PARA1 LINE FROM

From:

NAME .. TITLE

FIRM ... DIV

ADDRESS

CITY ... ST A TE ZIP

TELEPHONE'.............................. DATE

TO

Data General Corporation

ENGINEERING PUBLICATIONS

COMMENT FORM

DG-00935

FOLD DOWN FIRST FOLD DOWN

I

I
I

I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I

·---J

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

BUSINESS REPLY MAIL
Postage will be paid by:

Data General
Southboro, Massachusetts 01772

ATTENTION: Engineering Publications

FIRST CLASS
PERMIT NO. 26
SOUTHBORO
MASS. 01772

I
I
j,

I
I
I

I

I

I

---~

FOLD UP SECOND FOLD UP

STAPLE

	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	01_01
	01_02
	01_03
	01_04
	02_01
	02_02
	02_03
	02_04
	02_05
	02_06
	02_07
	02_08
	03_01
	03_02
	03_03
	03_04
	03_05
	03_06
	03_07
	03_08
	03_09
	03_10
	04_01
	04_02
	04_03
	04_04
	04_05
	04_06
	04_07
	04_08
	04_09
	04_10
	05_01
	05_02
	05_03
	05_04
	05_05
	05_06
	A-01
	A-02
	B-01
	B-02
	C-01
	C-02
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	F-01
	F-02
	replyA
	replyB

