+444444444444444040404040440444040484044404040404844444044408408484508004040404084440+

2858

& & & & & B
& & & & &
& & & U &

%
5% R 280 %

$

&

UsEx=uJu QUEUE=LPT LEVICE=ALPSI
SEQ=s5 QPRI=12/ LPP=6s CPL=8y CUuPLIE3=1 LiM;T=dy

CREATED: 20=0CT=/7 15:45:c4
ehglUeUeD: o=VFC=77 14:21:206
FRINIInG: o=VEL=/7 14:31:04

PAIH=:PDUsMEMOIMEMUS S12.LS

) P $H3HS 3 > 5% b LR R TR ® 835 % 58
9 $r S »% %o 3 % B8y 2 3y k3 s % > b
I 2% % » v F $ v oo ¥ NI) b3 ® >

P b 0 P95 b $ » ¢ < LI FRR $ T % s ®
b P 38 b P % % oo g b kY 5)
% R B » & £ $F03) $ d % % $ R h)
b 3 P59 b »8» P »E0 P%5%0 FoF>rF ¥ Fo350% $%

+44444444444444444444444444444440444044444444404040404040404844844404q040404844840+

A0S XLPT REV 01.00

To: Y AT
From: John Pilat, Michael Richmonu
Subyject: CuBUL S=Language, 1977

Date: 2u/vect/ /7 Mmemo No. 312

Apstract:

This memo describes the CUBUL S-Languace. 1t supports (B¢ >7u and
Eclipse CUBUL dats types, as well as the ANSI CuBuUL standara.

1 Data Types

lhe data types supported oy this (C030iL s=languade incjude
those mandatea by the ANSI (1974) standard, as well as those
extensions offered vy IpM 370 and the EtCLIFSCc. Except for some
minor storage allocation differences, tne extensions oftered by
both of these potential "market targets" are identical. ohould it
become desirable (or necessary pecause of time constraints) thas
s=languaae can e strippea of support for these extensions, witnout
effect on the AnSL core, by deleting most instructions <c¢ontainina
the word "BINARY" and all instructions containina the word
"FLUATING",

1.1 Data Tvpe Consigerations masked by the Lompiler

Some aspects of LOgOL "typeness" wilil pe removed by the CuRul
compijer, and will bpe realized with explicit instructions or
through storage allocation policy. These include:

al Source operations reauiring scaling or decimal point
alignment., The compiler will generate explicit i1nstructions
to alian or scale aperands,

b) The determination ot radix ana the concommitant neeu for
conversion(s) in operations. while tnis does have the
effect of proliterating the number of 1instructions, it
allows the [BM/ECLIPSE extensions to be separated easily
from the remaining 1nstructions and does not require a slow
seconagary decode for programs which use only aNbI stanuard
types.

c) The need for editing, it any. The compiler will generate
explicit edit instructions.

Memo no. 3i°
c0/0ct /77
page 2

d) Synchronization and alignment. ihese are matters of
storage allocation policy.

1.2 Non=numeric Data

1.2.1 ASC1I as the NATIVE Character Set

This CuUuBUL s=lanyuage supports ASCII as the NATiIVE <character
set. Character translation instructions are included to deal with
the alternate character set features of CuBul,

1.2.2 ESCDIC

Support of EbCull may pe reauiredg at all levels of commercial
software. The level cf support reauired 1s sometpina tnat must bve
decided at the product planning level before EBCDRIC support (peyond
the normal translation 1nstructions) can be Jefined for a CuBUL
s=language. ‘

1.3 Numeric Datea

COB0L defines a data item to be numeric if 1its picture con=
si1sts only of the cnaracters Y, S, Vv, and P, numeric data items
may be combined freely in arithmetic statements. A distinction s
made between data representations which must be in stangard format
(USAGE IS DISFLAY) ana those which may be in imolementor=-defined
formats (USAGL 1S CUMPUTATIUNAL).

1.3.1 USAGE IS5 DISPLAY

All non=numeric data is USAGE 1S DISPLAY, numeric data can
also be of this form, which reauires that the internal representa-
tion be character-orientead decimal «qgigits. The programmer can
control the existence and location of an operational sign within a
numeric DiSPLAY item. In all cases, the space character 1s a valid
substitute for the character zero,

Memo nNo. 3i°7
20/0ct /714
page 3

1.3.1.1 linsianeu

This representation 1s aenerated wnen a data item 18 described
by a picture which does not contain the operational sign uesignator
S. The numeric value is representea as a string of tne characters

'U'.-’g'.

1.3.1.2 Separate oign LeadinasTrailing

Ihis is the standard interchange representation for sigyned
data. 1lhe sign is either “+° or =’ and is tne first/last charac-
ter position of the data fielu. 1he gigit values are as above,

'U".’Q’O

1.3.1.,3 Overpunched Si1an Leading/Trailina

In this representation, the first/last character position of
the data fiela implies both a digit and an operational sign. ihis
encoding 1s a de facto standard. It is presented herewith ajona
with the ERCDIC encoding tor comparison. Note that an ASCIL/cBLDiC
character translation on a character decimal field pertorms the
correct mappina.

vecimal ASCiI ASCII ASCIL EpCulC EpCOIC EcCuIL
Digit + - unsianed + - unsigned
i 0 7R | v i 50 1 Cv | po | Fu i
P i 41 | 51 1 51 | Ci i vl | F1 i
I 2 | 4p | 5¢ i 52 | ce | ve ! Fe |
I3 | 43 i 55% i 33 | Cs i V3 | Fs |
4 44 | 54 | s4 | C4 | vd | Fug |
IS5 | 45 ! 59 | 55 | Co | V5 | Fy
I e 46 l So i 56 | () i veé | Fo i
7 i 47 | 57 i 37 | c/ i v7 | Fi {
I - B 48 | 58 i 58 | Co | U8] Fo
I 9 | 49 | 59 | 59 | Cy i po | F9 j

W S G W D U R R A AR G W SR G SWR G TR R SR GID TOR VR TR Gy RGN T G T G S N U R OT M IR TR W AR T UM W e GRD R S ans GV BN GWR AEY W OW R e W e

(all table entries in hexadecimal)

1.3.2 USAGE Is COMPUTATIONAL Date

The COBOL standard requires no particular representation for
COMPUTATIUNAL data. 1n the interest of ECLIPSE/IPM compatioiiity

Memo no. 312
c0/0ct/7¢
page 4

we have made the bindings presented below.

1.3.2.1 CUMPUTATIUNAL

lhese data items will be represented as signed, two’s comple-
ment binary integers, si1zed 8, 16, 24, 32, 40, 48, 56, anu o4 bits.
The compiler will aenerate MAGNI|JUVUE instructions as needed to
hanale unsigned binary gata (i.e., the interpreter need not worry
about it).

1.3.2.2 COMPUTATIUNAL=1 and CuMPUTATIUNAL=?

COMPUTATIONAL=1 data items will be 3¢ bit system floating
point. CUMPUTA|IIUNAlL =2 data items will be o8 bit system tloating
point. Note that the interpreter must pe prepared to nandle
operations on mixes of the two precisions,

1.3.2.3 CUMPUTATIUNAL=3

COMPUTATIONAL=3 cata 1tems wil] be reoresented as packed
decimal.

1.4 Name Table tntries

The COB0L s=lanquage makes extensive use of namespace addres-
s1ng features. All CuUBUL subscripting ana inagexina can be realized
directly in the name taole. IoM’s extension which ailows more than
one dimension of an array to vary in size based on a run time value
(which makes conversion of some IuM (Ou0L programs difficult on
many systems) may also be realizea directly.

1.4.1 Starting Address and Fetch virection

All COBOL data will be addressed from the Jeftmost (i.e., Jlow
address) bit and be fetched to the right. while it miant appear
that numeric operands snould be audressed from the riaghtmost ity
this i1s not the case. first, the rightmost bit does not correspond
to the low oraer digit (the address of start of the riant most
digit is seven less than the adaress of the rightmost bpit). More
importantly, an item addressed from the right would reauire another
name table entry in order to be moved without reaard to its type.

Memo no. 312
e0/0ct/7/
paye S

1.4.2 Length

The lenath field in the name table contains an entity’s bit
length., The LOBOL s=language uses entity length to distinguish
between some source languaqe data types. Single and double precir=
sion floating point (CUMPUIATIUNAL=1 and CUMPUTATIUNAL=2) are
distinguished between each other by 32 or 64 in the Jenath tield.
S1ze agistinctions specified 1in a picture are also (obviously)
reflected in the jenath field.

1.4.3 Type
The COBOL s=lanauage uses the name table type fielu to distin=-

auish amonc CURUL’s cornucopia of decimal data types. Note that of
these seven types, only packed auecimal is non=standaru! The
interpreter need oniy examine tne type field when an operande 1S
numeric decimal (something is numeric decimal if the cpcoce says 1t
is). The encoding of the four bit type field is as folliows:

000u: Packed decimal, unsignea.

0001t Packeo aecimal, sicaned.

0vlu: Character decimal, unsigned.

0011: Character decimal, sign is separate and leauing.

01002 Character decimal, sign is separate and trailing.

01012 Character decimal, sign is overpunchea ang leadinyg.

011u: Character decimal, sign is overpunched and trailing.
The decimal operations are defined to accept any of these decimal
formats. Note that when the interpreter stores a sianea vajue (be
it decimai, floating or binary) into a decimal gatum wnose type
field indicates "unsigned", only the macnituge of the value is
stored.
1.5 Instructions (100)

ihe notation used to describe instructions is as follows:

Angle brackets < > enclose obPerands which are names. For
example, <source> is the name (inuex 1nto the name table)

Memo no. 312

¢0/0ct/s 77/
page b
of the socurce operand.
Equal si1ans = = enciose oPbPerands which are Jjiterais or

offsets. For example, =pc= desianates an otfset from the
program counter.

1.5.1

Memo No. 312
cO/0ct/7/
paye 7

Moves (4)

MUVE_CHARACTEKRS <source>,<destination>

The lenygths ot the operanas as specified 1n the name table
need not be equal. Tt the length of the source Jlenath
exceeas the length of the destination, oniy ‘"destination
length" bits are moved. 1f the lengtnh of the destination
is greater than the length of tne source, tne excess
destination bits are filled with ASLILI blank. note that
the lengtns of the operanas will always be some multiple of
eight.

MUVE_CHARACTEKRS_EWUAL <source>,<destination>

Exactiy "source_length" bits are moved to the destination
from the source.

MOVE_CHARACTERS_EDI(Ev <source>,<destination>,<picture>

This 1nstruction is descrikted in terms of pointers to the
source, destination and picture. These pointers are not
part of the macro state. One picture element exists for
each eight pit character in the destination. ihe picture
is processea (and its pointer bumpea) in syncnrony with the
destination, tach pixel is eight bits. Its interpretation
is as follows:

0001nnnn: Ilransfer "nnnn" characters from the
source to the destination. Botn source and destin-
ation pointers are bumped by "nnnn". If the source
is exhausted, the source pointer is not bumpeu, and
an ASCI]1 blank is transferred,

All others: The pixel character is transferred to
the destination anu the dJdestination pointer s
humped oy oOne.

Memo No. 312
20/0ct/s71
page 8

MUVE_CHARAC IFRS_TKRANSLATED
<source>,<destination>,<transjiate table>

The transiate table is a string of eight=pit elements.
This move behaves exactly like MOVE_CHARACTERS except that
as each character is fetchea from the source strina, it is
used as an index into the translate table. The contents of
the translate table at the indexea location are transferred
to the destination. Note tnat 1if blank padding is
required, the blank pad must be translated as well.

Memo no. 312

20/0ct /77

page 9

1.5.2 Conversions (15)

ASSIGN_VECIMAL_I10_BINARY <source>,<destination>

ASSIGN_UVELIMAL_iO_FLOATING <source>,<destination>

ASSIGN_UVFCIMAL_10_DeCIMAL <source>,<destination>

ASSIGN_BINARY_TU_DECIMAL <source>,<destination>

ASSIGN_STNARY_TU_FLOATING <source>,<destination>

ASSIGH_BINARY_TU_bInNARY <source>,<destination>

ASSIGN_FLUATING_TU_BbINAKY <source>,<destination>

ASSIGN_FLUATING_TU_DECIMAL <source>,<destination>

ASSIGN_FLUATING_TU_FrLUAjJING <source>,<destination>

ASSIGN_MAGNLITUDE_BINARY <source>,<destination>

DECIMAL_SCALE_LEFT =scale diff=,<source>,<destination>

Memo no. 312

cQ0/0ct/7/

page 19
DECIMAL _SULALE_RIGHT =scale aiffz=,<source>,<destination>

BINARY_SCALE_UP_BY_10 =scale giff=,<source>,<uestination>

BINARY_OCALE_DOwN_BY_10 =scale aiff=,<source>,<gestinatijon>

DECIMAL_PuUnD =roungino position=,<source>,<destination>

Memo nu. 312
20/0ct /71
page 11

1.5.3 Mumeric Eogitina (1)

EuIT_NUMERIL <source>,<target>,<picture>

The source is a decimal number which 1is editea into the
target according to the picture. The precise interpreta-
tion of the picture is definea oy an oPL procedure in tne
appenuix.

Memo no. 312
20/0cts71
page 12

1.5.4 Numeric Comparison tranches (350)

The numeric comparison branches compare two named
values, or a sinale named value and zero, and brancnh to the
indicated pc offset if the indicated comparison 1is true.
The type of the source(s) and the comparison to pe per=
formed is specitied by each instruction’s name.

DECIMaL _CUuMPAKE_EuwUAL <sourcel>,<sourcec>,=pc=

PECIMaL _CUMPARE_NUT_FuUUAL <sourcel>,<sourcec¢>,=pc=

DECIMAL _CuMFAKE_GREATER <sourcel>,<sourcecl>,=pc=

DeECIMalL _CUMPAKE _GREATER_OK_EQUAL <sourcel>,<sgurce2>,=pc=

HiINARY_COMPARE_EQUAL <sourcel>,<sourcel>,=pc=

BINARY_LOMPARE_NUV_ERUAL <sgourcel>,<source’>,=pc=

BINARY_LOMPARE_GREAITEK <sourcel>,<sourcel>,=p¢=

BINARY_COMPARE_GREATER_UR_EWUAL <sourcel>,<sourcec>,=pcs

FLOATING_COMPARE _ERUAL <sourcel>,<source’?2>»,=nc=

FLOATIMG_LOMPARE_NOT_EQUAL <sourcel>,<sourcel2>,=pc=

Memo no. 3ic

20/0ct/s71

page 15

FLOATINGL_LOMPARL _GLREATER <sourcel>,<source?>,=pc=

FLOATING_.COMPARE _GREATER_UR_EGWUAL <sourcel>,<sourcecd>,=pc=

DECIMAL_ZceRU_TEST_EwWUAL <source>,=pc=

DECIMAL _ZERU_TEST_NUT_EWUAL <source>,=pc=

DECIMAL _ZERU_TEST_GREATER <source>,=pc=

DECIMAL 7ERU_TELT _GRFATER_Or_EQUAL <source>,=pc=

DECIMAL ZEFU_TEST_LESS <source>,=pc=

DECIMAL _ZeRU_TFST_LESS_UR_EWUAL <source>,=zpc=

BINARY_LERO_TESI|_ELQUAL <source>,=pc=

BINARY_ _LERO_TESI _NOT_LRUAL <source>,=pc=

BINARY_ _ZERD_TESILREAIER <source>,=pc=

BINARY_LERO_TEST_GREATER_UR_EWUAL <source>,=pc=

Memo no. 3172

20/0ct/71¢

page 14

BINARY_(ERO_TESI_LESS <source>,=pc=

BIMARY _LERO_TESI _LESS_OR_EQUAL <source>,=pc=

FLOATING_ZEKN_TeSI_tQUAL <source>,=pc=

FLOATING_ZERO_TeST_nNOT_tQUAL <source>,=pc=

FLOATING_LERO_TeST_GREATER <source>»,=pc=

FLOATING_ZERO_TeST_GREAIER_UR_EWUAL <source>,=oc=

FLOATLING_ZEKO_TESI_LESS <source>,=pc=

FLOATING_ZERO_TEST_LESS_OR_EQUAL <source>,=pc=

Memo no. 312
¢0/0ct/77
page 1o

1.5.5 Non=numeric Comparison oranches (12)

Each non=numeric comparison executes a hpranch to the
pc offset if 1ts specified condition is true. |be compari-
sons operate on eight bit characters in seauence from low
to high aadress ("left=to=-right). The C(HAP_CLASS_NuMpRIC
and CHAR_CLASS_NOT_NUMERIL instructions also operate on
packed 4=bit diygits (if indicated by the name tabie type
field).

When more than one source is specifieg, they need not e
tne same lenath., When the sources are not the same length,
the snorter source should be treated as if it were extended
on the right by the ASCLlI bilank cnaracter. The two=source
comparisons etfectively proceed by comparing characters 1in
corresponding character positions until eitner a pair of
unequal characters 1s encountered, or until the end s

reached, whichever comes first. fhe first pair of unegual
characters encountered is used to determine if tne condi-
tion specified by each i1nstruction’s name 1is true. The

sources are consigered eoual 1f al] pairs of <characters
compare equally through the last pair.

CHAR_COMPARE_ERUAL <sourcel>,<sourcel>,=pc=

CHAR_LOMPARE_N0J _EQUAL <sourcel>,<sourcezl>,=pc=

CHAR_COMPARE_GREATER <sourcel>,<sourcel2>,=pc=

CHAR_COMPARE _GREAITEK_TRANSLATED
<sourcel>,<sourcecl>,<taple>,=pc=

This 1nstruction penhaves like CHAR_CUMPARE_GKEATELR except
that the sources are translated through "table" as they are
compared.

CHAR_COMPARE _LREAITER_UR_EWUAL <sourcel>,<sourcec>,=pc=

CHAR_COMPARE _GREATER_UR_EWUAL_TRANSLATEL
<sourcei>,;<sourcecd>,<table>,=pc=

Memo no. 312
20/0ct /7
page lo

This instruction behaves |ike CHAR_LOMPARE_GREATER_UR_EWUAL
except that the sources are transliated throuah "tavle" as
they are compared.

CHAR_LLASS_ALPHABETIC <source>,=pc=

The condition is true if all the characters in tnhe source
are in the set of ASCII characters "A" thru "/" @&ana the
blank. MNote that lower case letters are not in tne set:
CRAR_LCLASS_NOT_ALPHABETIC <source>,=pc=

This instruction is the inverse of CHAR_CLASS_ALPHABEIIL.
CHAR_CLASS_ANUMERILC <source>,=pcs

The conaition is true if all the <characters 1n <source>
contain the digits U throuah ¥ and if tne sign 1s valid.
The sian is considerea valiag 1f its existence and position
are as described by the name table type field, note that
the source must be checkea 4 pbits at a time it thne name
table type fielu for <source> indicates "packed".
CHAR_CLASS_NOI_NUMERTC <source>,=pc=

Tnis 1instruction is tne inverse of (HAR_CLASS_NuMcRyiC.,

CHAR_SPACES <source>,=pc=

The conaition is true it all the characters in the source
are equal to ASLILI blank.

CAAR_NOT_oPACES <source>,=pc=

This instruction 1s the inverse of CHaAR_SPALES.

Memo No. 342
20/0ct/ 74
paye 1/

1.5.6 Arithmetics (¢4)

lhe type of the source(s) and destination(s) for an
arithmetic instruction 1s specified by the first part of
the instruction’s name. The operation to be pertormed s
specified by the second part of the instruction’s name.
If no preposition foilows the first two parts ot the
instruction’s name, then the operation uses two sources
distinct from the destination(s). 1f a preposition goes
follow the i1nstruction’s name, then tne secona operand s
specified by <destination> or <guotient>,
For SURIRACI instpructions, the first source is the subtra=-
hend and the second source (wnich might also be tne
destination) is the minuend,
For DIVIDE instpructions the first source is the divisor and
the second source (which might also be the guotient) is the
dividend. Note that DIVIDt instructions produce two
results, a quotient and a remainder.

DECIMAL _AUD <sourcei>,<sourcecd>,<agestination>

DEC1IMaL_SURTPACT <sourcel>,<source?>,<destination>

DECIMAL _MULTIFLY <sourcel>,<source?2>,<destination>

DECIMAL_DIVIDE <sourcel>,<spourceZl>,<cuotient>,<remaingepr>

DECIMAL _ADD_TU <source>,<gestination>

DECIMAL_SURTRACT_FRUM <source>,<destination>

DeECIMAL_MULTIFLY_BY <source>,<destination>

Memo no. 312

e0/0ct /77

page 198

DECIMAL_DIVIDE_IMIO <source>,<auotient>,<remaijnder>

BINARY_ADU <sourcel>,<sourcel2>,<destination>

RINARY_SUBTKACT <sourcel>,<sourcecZ>,<destination>

BINARY_MULTIPLY <sourcel>,<sourcec>,<destination>

BINARY vwIVIUDE <sourcel>,<sourcecd>,<gquotient>,<remainder>

BIMNARY_ADU_i0 <source>,<destination>

RINARPY_SUsTrALT _FrO#M <source>,<destination>

BINARY_MULTLPLY_RY <source>,<destination>

BINARY_DIVIDE_INTU <source>,<quotient>,<remainder>

FLOATINu_AND <sourcel>,<spourcel>,<destination>

FLOATING_SUBTRACT <sourcel>,<sourcec>,<destination>

FLOATING_MULTLIPLY <sourcel>,<sourcecd>®,<destination>

Memo no. 3i2

20/0ct /77

page 1Y

FLOATINGL_DIVIDE <sourcel>,<sourcecd>,<guotient>,<remainder>

FLOATLINGL_ADD_T10 <source>,<destination>

FLOATING_SUBTKRALT_Fr0OM <source>,<destination>

FLOATING_MULTiIPLY_BY <source>,<gestination>

FLOATING_DIVIVE_TNTU <source>,<quotient>,<remainder>

*

Memo no. 312
20/0ct/s7¢
page 2V

1.5.7 S12ze trror nandiina (v)

Many arithmetic and conversion operations can pProdaduce
results which are too long to fit in the specified uesting-
tion (CUBUL lumps division by zero., overfiow and undertlow
into this catecgory). Explicit sice error hanuling, when
specified by the proarammer, mandates tnat the destination
field remain unchanged when a size error occurs.

The LOBOL s=lanauaye therefore has two 1-bit size
error flags which are part of ©process aata spacCe. The
first is called "UOP_BaD". (P_BAD is set to one by any
operation which causes a size error. A|l operations except
the conditional moves defined below are allowed to change
the destination, even when a size error occurs. ror tnose
instances where a size error 1is specified, the compiler
will allocate 3 temporary as the agestination, generating a

checked assignment after the operation. The second size
error flay 1s calleag "STMI_bau",., Tt is set to one 1if any
operation in a statement j1nhcurs a size error. JP_BaD is

aiways cesignated by name 0. SIMI_pAU is always uesigynated
by name 1.

BEGIN_CHECKeD _STATEMENT
This operation sets 0OP_BAU ang STMT_BAD to zero.
CHECKED _ASSIGN_UVECIMAL_IO_DECIMAL <source>,<destination>

The action of this opersation depenas on the settina of
Or_oAu:

OP_pAD = 1. STmT_BAD is set to 1., OP_pAU 1is set
to U.

OP_BAL = 0. If the source fits in the destination,
then the source is assigned to the destination, as
in the unchecked ASSIGN_DeCiMal _Tu_uvECIMAL., Lf the
source does not fit in the acestination, SIMI_vBAU is
set to 1. Note that the condition "f3ts in the
destination” may depend on the number of signifi=-
cant decimal digits in the source, and not just its
Tength!

CHECKED _ASSIGN_BINARY_TU_BINAKY
<source>,<limit>,<destination>

/

Memo no, 312
20/0ct /77
page 21

The action of this operation depernas on the settina of
OP_oAbD:

OP_oAbD = 1. STMT_BAD is set to 1. OP_bAL 1is set
to V.

OP_BAL = 0. If tne source fits in the destination,
then the source is assigned to the dJdestinatjon, as
in the uncheckea ASSIGN_BINARY_TN_BIMNARY. If tne
source aoes not fit in the destination, SIMi_oAu 1s
set to 1. Ihe condition "fits in tne destinatjon"
is true if the magnitude of "“source" does not
exceea "limit",

CHECKED_ASSIGN_FLUATING_TU_FLOATING <source>,<destination>
The action of this operation depends on the setting of
OP_bAD:
OP_bAD = 1. STMT_BAD is set to 1, OP_tAvu 1is set
to Ve
OP_bAu = 0. An ASSIGN_FLUATING_TU_FLUAITNG s
executed.
IF_NO_SIiZe_ERKOKR =pc=

If STMT_BAD is (G, a branch to the pc offset is taken.

Memo Nno. 312
20/0ct/71
page 2¢

1.5.8 String lnstructions (3)

ihe following instructions support tne LC0e0. SiRiNG,
UNSTRING and INSPECT statements, In all these
instructions, <source> and <destination> name cnaracter
(i.e. length is a multiple of eiaht) data. The data named
by <start>,<end> and <index> are binary inteaers which
"i1ndex" either the source or the destination, fhe value
one designates the first character position, two the
seconds, etc. (i.e, the strinas are entity indexed).

MUVE_STRING <source>,<start>,<end>,<destination>,=pc=

The characters in "source" from "start" through "end" are
moved to "destination". [f the numoer of characters to pe
moved exceeds the space availlable in "destination", trunca-
tion takes place, and a branch to the pc offset s
executed.

MUVe _TO_STRINGL <source>,<aestination>,<start>,<eng>,=pc=

A1l the characters in "source" are moveu to that portion of
"destination" bounded by "start"” through "end". It the
numper of characters to be moved exceeds the space in the
delimited destination, truncation takes piace and a oraench
to the pc offset 1s executed.

SUAN_STRING <source>,<start>,<end>,<index>,<delimiter>,=pc=

The characters in "source" from "start" throuygh "end" are
scanned for character(s) in "gelimiter"., JTf the delimiter
is not tounag, "i1ndex" is set to the "ena", plus 1, and a
branch to the pc offset is executed. if a delimiter 1is
found, "index" 1is set to the character position preceecing
the start of the uelimiter. Note if the delimiter contains
more than one character, alil the characters must occur 1in
seauence in "source".

Memo No. 312
20/0ct/7¢
paye 25

1.5.9 Myscellaneous (o)

GU_10 <po offset>

This instruction causes replacement of the offset portion
of the proaram counter oy "po offset",

LGU_TO_OFFSET =pc=

This 1nstruction causes a branch to be taken to the pc
offset.,

The folliowing two instructions are yenerated as a compli-
mentary pair. ihe "ending adaress variable" is the same 1in
both instructions.

PcRFORM_THRU <ending address variabie>,=pc*=

The address of the instruction following the FrErRFURNM_IHRU
is assigned to the enuina address variable, then a oranch
is executed to the pc otftfset.

END_PCLRFOKM <enaing address variable>

The current value of the ending address variabie s
fetched, The address of the instruction ftollowing the

END_PERFORM is stored in the endina aduress variavle. A
branch to the fetched ending address completes the execu=-
tion of this instruction. 1ibe compiler must ensure that

the initial value of the ending address variable 1is the
address of the instruction following the tNV_PErFURM.

CALL <procedure>

This instruction 1i1nvokes the common external call
mechanism, with no parameters.

CALL_USLING =n=,<procedure>,<parameter=1> ,,.., <parameter=-n>

This instruction invokes the common external call
mechanism, with "n" parameters.

Memo no. 3ic
e0/0cts71
page 24

Appendix= SPL vescription of EDIT_iwUsERIL

procedure edit_numeric (read oniy s?! numeric,
write only t: aipnanumericy
reag only p: picture);?

type picture 1s array I[picture_counter] of byte;
picture_counter 1s 0..35;

alphanumeric is array ltarget_counter] of byte;
target_counter is l..307

numeric 1s any of the seven decimal awarves;
source_counter is l..1lb7

byte is bit 8 as 0.,.255¢

varjavle finished: pocolean:
negative: poolean;
triaggerea: poolean’

digit_supstitute: byte;
negative_insert: byte;
positive_insert:? byte;

source_counter;
taracet_counter;
picture_counter;

si
ti
pi

e 0% o»

Memo NOa
20/0ct/7/

page

function derive_opcode (read only pixel: byte)

type edit_cpcode

begin

returns

edit_opcode;

is (move_numeric,

move_numeric_suppresseur
move_numeric_*floating,
insert_character,
insert_character_suppressed,

in

end_floating,

sert_sian,

plank_when_zeroy

en

a_edit,

set_suppression,
set_floatina_inserts);

select pixel<u:4> of

case
case
case
case
cAase

case

end select’

1

2..]:

8:
9:

10..15:2

0

.
L]

return
return
return
return
return

select

case
case
case
case
case
case

othe

end sel

move_numeric;
insert_character;
move_numeri1c_suppressegrs
move_numeric_Tfioatings
insert_cnaracter_suppresseur

pixel<4:4>

return
return
return
return
retuprn
return

#% 83 Sc ey S8 e

T E N - O

of

set_suppression;
set_floating_inserts;
end_fiocating;
insert_sign;
blank_when_zero;
end_edit?

rwise: notning;

ect’

end function derive_opcode;

25

32

Memo Nno. 3i°2

20/0ct/77/
page ‘o
proceaure exec_pixei (reag only pixel: oyte)
inherits (read write triggerea: poolean,
reag oniy negative: boolean,
write only finished: noolean,

reaa write digit_supstitutes; byte,
read write negative_insert: opvte,
reaa write positive_insert: ovtej;

varjaple cc: bvte; % working character

sC: Dyte; % scratch character

z: boolean; %4 18 source gigit zeroy
begin

select derive_opcode(pixel) of

case move_numeric:?
times pixel<d;4> repeat
get_aigit_from_source (cc, z)7
triggereg := triggered Oor not z:

put_charascter_into_target (ccl;

end times;

case move_numeric_suppressed:
times pixel<4:4> repeat

get_uigit_from_source (cc, 2);
if z and not trigaered

then cc = digit_supstitute;
ena 1°f;
triagered := triggered or not z?
put_character_into_target (cc);

end times;

Memo Nua. 312
¢0/0ct/ 74
page 2/

case move_numeric_floatina:
times pixel<ld:ld> repeat

get_digit_from_source (cc, 2)7
if not trigaered
then 1 f z then cc = digit_supstitute;
else 1f negative

then sc := negative_inserts’
else sc 1= positive_insert:’
end 1f;

put_character_into_target (sc);
ena 1f;
end 1f;
triagered := triggered or not z;
put_character_into_target (cc);

end times;

case insert_char:

cc 1= pixel<1:7>;
put _character_into_target (cc)i

case insert_char_suppressed:

1xel<1:7>;

then cc P
diaoit_substitute?

else cc
end if;?
put _cnaracter_into_target (ccJl;

if triagerea

case insert_sign:

aet_next_pixel (sc);

aget _next_pixel (cc)i;

if negative then cc = sc; end i1¥f;
put_character_into_taraet (cc);

Memo No. 312
¢0/0ct /77
page 20

case end_drifting:

if triagered
then nothing;
else if negative

then ¢cc := negative_insert;
else cc = positive_insert;
end 1f:?

put_character_into_taraet (cc):
end 1t7

case blank_when_zero:

if not triggerea then blank_target; end if:
finisheu := true;

case end_edit:

finished := truej

case set_suppression:

aget_next_pixel (diart_substitute),

case set_floating_insertions:
aget_next_pixel (negative_insertion);
get_next_pixel (positive_insertion);
end select;

return;

end procedure exec_pixel?

bedgin

Memo No.
c0/0ct /7y
page 29

% o v om0 o o o e

% %
% MAIN LINE eDIT Cube %
% %

Yy S 7

finisheu := false;
negative := is_negative(s)’
trigaered := false;

diait_subhstitute

negative_insertion 3
n s

= ASClI _space;
= ASCLI_minus;
= A

positive_insertio SCII_space;
s1 = 1;
ti = 1;
pi = 0y

get_next_pixel (target_acigits);
repeat
get_next_pixel (cc)?
exec_pixel (cc);

if finished then returns end if;

end repeat?

end procedure edit_numerics

3.2

