+444444444444444444404446444444444444444444d444444444044444444444444444044444444+

$PPaE PERG 380

b 3 b »
& $ &)
5% D b b b
1 P 0% $
% $ ¥ & b

£RHED PEEH 45

USER=EGU GQUEUE=LPT DEVICE=aLPA
SEW=151 UPRI=127 LPP=63 C(PL=80 COPIES=1 LIMIT=153

CREATED: 31=AUG=77 11316242
ENWUEUEDR: 21=DEC=77 13:38:30
PRINTINGES 21=DEC=77 13338334

PATH=:tUDLSEGO e DUCUMENT LL S

388 SRR 3%

B
¥

§ PE53% % B

¥ P b

b RN

PED S £ §%
¥ 3
$ b
b

8 BB

3
$
Ffatd

B & B R
&R B B
IR IR - S ¢

&%
»d

£2

v

$
b
$
b %%
5
b
PR RN LR 558 3

LR N A R S
e £e
Bt R B R O RA R

EC- o

b FEB Y %%

+UL4444444064444444444044444400444444444444444444444d44444444494d40d44444444444484444+

AGS XLPT REV (1,00

-t S owt (G TF U0 O OO N M VYN
—t et MM NN N O~ DO — vt et O - et et MY T TN LO O OO0 vt ot vt ovd ot vt et = OIS
] [T TN N SN B N DN B DN BN BN N A 5 P F R ERE RS [] E B PO R OF BB E AL OERE R OE OEOEEE LR
-t D A A B i i o I B I o o B B B N NN NN NG I MY VLY VY MY PO Y PN A Y N R Y Y Y Y VY Y Y Y P N Y N Y Y N
. e & & & & & ® & &8 & s & & 3 G] ® & & ¢ & & & @ . ® & & & & ® # & & & e & & & & & £ & £ = & & & & €& B °
. e & & & 6 ® & & & & & & & o . e & & & &« & & & . € & & ® 6 & & & ¥ & @& €& ® & & & & @& & & & & © 8 & & &
. e & & 5 e e & & & 8 & & & & & . . & ® & & @ & @ . e &8 & & & @ & & & ® & & & @ & € & ¢ ¢ " € 8 & & O & & ¥
3 & # ® @ & & &8 ® & ¢ @ & * O .« * & & ¢ & & 5 & . € & & & & & & & A& £ § & T & & & & & & & & &8 E € T & © &
. * € & & ® © & ® = ® e s ¢ © °® . « 5 & ® o ® ® @ . & ¥ & & 8 & & & & 5 & & & & F & & & € & 8 & &€ € @ & € ®
- e & & € & & 3 T & & & & ¢ & & . e« & 8 & & & 8 @ . ® & & ® & & B ® & & B & &€ ¥ € ¢ & & & & T B & & T & & €
Y]
. L . € L] . L] . . L] L 3 L] L] - L - - . L] . . L . - L] . L L] - [] - - € - . . » L] L] - . .nn & ® * L - L 2 L L] * L
- e
o
. « & ¢ & & e s 7N & e o o ® @ . ® & & & & & & & . e & &8 & ® @& & ® & & & @« & &« ® w033 € € € & B & & & &
C
o c— O G
. e o ¢ ¢ & (e @ 3 ¢ & o & s @ 3 € ¢ & o & 8 e & . e ¢ & & & & & & & & & & ® © & o ([e & & & & ® & ®© & ®
- 2] + -
o @ « PR
* [] . s & o (3 o s L. s & C e & = &= . . & & & ¢« e @ 1 s & & & & & & & e & « & & & & ¢ $ O & ¢ & & & & & & o @
@ o (o] « C O
e O T - [} ——
. ¢« ¢ L T C T C o< & & 32 o s @ . e & & & & € @ e B> e F . ¢« e e . e eifl L. ¢ e ¢ & &« & ® s +» @
O C-~ T (9 [} + [A C A A A
- < B W oG @ T @ @ e £3 e 3 En)] i C C
LI I S /] 0w O C C L ¢ ¢ & C o8 e ¢ ¢ & & o 0 . C AUl OAUul ¢« Al Al ¢« OO0 ¢ ¢ 2 & & o . .
C C OO U -~ v~ T~ @ > 00 E oo U FE e Ul - e C 2
[e] ¢ L E OQL—~CCCuwD - C C [T3 = wd & ol F oGl E w ¢ [s] -
e LW L C T OV O~ C s . oy e~ & ® & € & e [} ¢ T X =~ T X ~~+ & 3307 »d O Y R . €« - & X
S Jw OO0 U0 aT ¢ v G @ @ @ O e Q¢ VV avy VvV ¥ IV VvV [BN S] u < + i E
(9} FEIRC o ¥ S o - QT i G A N C > o G — — + A OX NN XN\ LW NN = @ = - © 3
=2 o U < [- L T & O O« > el LA L © e O - A AN - AN ¢ A A AANCCLELC ¢ ¢ 30 £ s~ ¢ TF)
T e w C @ 0 CLT L L a | ot o G T @© -] [ol & 0 § SRS S VW S ¥ H Y T b T 0O 0o G 2 [
G LY We— > C+«+ 0= 3L O0OE ¥ C — & & U LS O @ TR TS (TR Q@ fgpoad @ Lt i O {2 & a « T
[e @ © & Cr— OT T< 23 ¢)] C [0wl & % SUE S - - X X X s CY X CIED 6@ « QG §F T~ e e —
- [F o TN S I U SR/ BEC 22 [I S « O + — D o aC ¢ [e e WV e Y TOvv O:v Vv — e —— 7 G C > —
C —_ T Q- O 3O L L U@L @ —_— 0 Q- L £ O C (S Y T ¢ n T e c— oo e O 4 - [
—t N o TCDDOT:E @ 30D x << O x T 0 EC — 2 T n L] CC T34 ¢ c— 3 OF o C
B O @ & CC O C— T LD @ — o O C £ O — T T L= U= Lt Ot OGO e e L O ©
[} ¢ — G IO e T [} ik DU W o # O Ut ¢ e} & eI o e ¢ e N @ O E D O X O >
- @ (8 QO - [e C -t IATRAT g -t s NN @ [S E O 4
—t T @ & C T O Ay w ho J M = O . e « & 0 . e « ¢« O @ ¥ E © E
T > 0= N T N O =0 T~ NMT N0 C Crom =N NNMNEN Cort MM v et] D e = O NY O i D v
<G <Ly 8 & e ¢ ¢ 8 83 ¢ eND T & & e o & e} 4 i} e & 8 e * €3 & e o« e & i} & {3} & & S(IULFTI w &
X N} MY M MY Y Y N = g~ ' ot ot et et et X NG N N} Y VY Y AT N R i B] B g RoJs Js] [o e o
ied e s & e = & @ ¢« @ i) s = & ¢ o @ iaf [. ¢ & ® [3
- N MY e vt vt et et et T e N O - L dEAURAY A URAVIEA VIR U A Y] [d — 0NN MY My MY ™ TN LN MDD N
(A s & » 3 . . [+ 8 . . fa €« ® . . ¢ @ e & &
4 -t et v — o <L N o <L Ny MY Y Y MY rY MY Y Y
xr x I
. J (& i J

3.9,3 Dispatches o« 2 o & o
3,10 Conversion « « o « o &
3,11 Keserved Instructions . .
.12 System control e s e«
3.1% Input/dutput « & o .
3.14 Miscellaneous « o« o &

CHAPTER 4 = [nterrupts and lTraps .

.1 General c e« e
.2 Procedure Traps
«5 PFrocess Traps .,
.4 System Traps .

CHAPTER 5 = Protection .+ « & &
General . . o . o . .
Ring Maximization . . .« .

el
'a
«3 Determination of the Current
.4 Stacks « o e o e = o«

CHAPTER & = Memory Management , .

CHARTER 7 = I/0 System .+ + o o

7.1 CQOrganjzation . . « .
7.2 Ubjectives for the EGU=1 I/¢

L] - .
L] . .
L - -
L] L] -
L] - L
L] L] L]
. - L]
* L] .
- L] L]
L] L] .
L] - -
L] L] -
- . L]
. L] .
Fing of Ex
L] - -
L] » L]
L] - -
L] L .
system .,

ecut

CHAPTER 8 = Availability/Reliability/Maintainability

Uverview . . - - - . .

Bal
8,2 EGOU Diagnostic Control Frocessor Ubjectives

- - .

CHAFTER 9 = Measurement and Debug Aids . .

-

L] L . *

3=25
3=27
3=-28
3=28
3=28
3=28

This is not the end,
It is not even the beginning of the end.
But it is the enc of the teginning.

winsten Churchill

11:3:37
31/Aug/77
Rev., 1
Date General Corporation
Company Cenficdential

1123237
31/7Aug/77
Rev, 1
Data General Corporation
Company Conficdential

EREEALE

Rata General, to accomodate 1ts present customer’s growth
requirements and expand its sales base, must develop a medium scale
architecture for near term use, This architecture wi1ll alleviate
the loaical adaress space limitation evidencea in the Eclipse line,
and will provide a contemporary architectural foundation for a new
line of small and medium scale systems,

Apchitectural.lbilectives.

1. This medium range architecture will allow for implementations
from low cost silicon to higp performance multi=unit
DPOCEeSSOrS.

2. It will have 2 larce logical adadress space = somewhere in the
range from B megabytes (2**23) to 4 billion bytes (2%x%x32).

3, The desian will be extensitle for future enhancement both in the
instruction set and the architectural organization,

4o There will be uvowara ano downward compatipility at the object
cede level, This will enable us to provide a sinale code
generator and run time library for each languaye, and to
provide program transportacility in a network environment.

5. The basic orientation of the machine is for user programming 1in
high level languages (CUBUL, FURTRAN, RFG, etc.)

6. SPL will be an integral part of the machine envircnment, AT
software should pe implementaplie in 3rl.

7. There will be no architectural limit on file storage capacities,

loirial. loplenentation Lbiectivess

1. The machine will be released to manufacturing engineering in 14
months ang te gqgeliverable within 20 months of project
startup., This implies a straightforward implementation.

2. Through use of cood engineering practicer, the implementation
will strive for intrinsic reljability to provide good

11:3:37
31/Aug/77
HRev. 1
Data General Corporation
Company Confidential

3.

oo

5.

-y

availibility and low MTTR, Self diaanostic capabilities
will be provided.

kisk will pe minimized by utilization of existing circuit design
(E/500 FPU), packaging schemes (£/250), and meture technol=
ogies (TTL) where possible.

Mew CciPrcuit designs
Max Boards Max Cost

CPU (including cache)

Aagdress Translation Unit

Console Controller (w/Migro=hova)
SC Memory Controiler (1 per 2 Mo)
256K Byte SC Memory w/EnCC

b P g ped [

Existing circuit designs reqguiring modification:

High Speea Channel
E/300 FPUL

Eclipse compatibility will be provided at the user Jlevel by &
processor mode, thus enabling per process selection of
Eclipse emulation., Ferformance in this mode will be maxim=
ized subject to the overall time constraints on the
project., (Target improvement is 25% faster than the E£E/500),
Emulation of tne E/500 map 1is under investigation, This
capability, which would provice operating system transpor=
tability from the Eclipse, will be included if possible, It
is anticipated that the Eclipse compatibility will not be
included in later implementations,

The 1/0 pus will be compatible with the fhNova and ¢Eclipse 1/0
pus, data channel bus, and high speed channels.

The I/0 bandwiaoth will have the same maanitude as the memory
pancdwidth,

The data paths for tixed point arithmetic will be 32 bits wige,

Hardware features (especially accelerators) that are applicable
to each market secament will be modularized so that the
machine c¢an bke economically configured for various
functions.,

1133237
31/Aug/T77
rev, 1
tata General Corporation
Company Confidential

-5

10. As much software as possible will be written in SPL. The only
constraint on this objective will be the availibitiy of the
3PL compiler ano debugger,

Belatignship.lo PBresent Activitiesa

l. The product will provide a oraceful upward growth path from the
Eclipse E/500 series 1in terms of 1immediate performance
improvements and long term conversion to the faster, higher
capability native mode.

2. Although the initial implementation will provide a2 high end for
Date General”’s product lime, it is anticipated that future
implementations will be less expensive, anda thus, when the
FrHf arrives, this architecture will provide a high level
language compatiole lower end for the product line,

11383237
31/hug/77
Fev. 1
Vata General Corporation
Company Confidential

CHAPTER 1 =~ Introguction

1.1 Adaress Structure

The EGO architecture supports a process wider, two dimensional
agdress space of 512 million bytes. This total space 1is divided
into 128 segments, each containing up to 4 millicn bytes. A
segment can contain either procecdure or data.

The basic addressinag granularity is to the pyte., The address
mechanism of the memory system is always presentegc with a “virtual
address comprised of segment and oyte offset within the segment,
This logical address is 29 bits in length. (See Memory Management
Chapter for o detailed description of memory management and the
translation of the logical address to a physical adadress).

1.2 Availanle Registers

The processor contains the focllowing classes of vregisters
available to the programmer for use with the standard instruction
set:

* Base hegisters (#K) = The B base reagisters are 32 bits wide
and contain a byte pointer, Bits O=2 of this pointer
represent a ring number, bits 3%=9 a segment numrber, and
bits 10=3]1 a byte offset., UUase register 0 is the Program
Counter (PC), BR1 the Frame Pointer (FF) , and tRZ the
argument Linkade Pointer (LP) . base register 0, the PC,
can only bpe mocified a8s & result of a branch type
instruction. In 211 other cases, an attempted mocification
of BRO is inhibited and signalled as an error concition,

* Index Registers (XR) = Eight 3Z=bit index registers are
provided,

* Accumulators (AC) = There are eignt 32-bit accumulators for
use in fixed or floating point operations. ig=pit signed
or unsigned fixed point numbers or single precision float=~
ing point numters c¢an be moved to the AC’s directivy.
lé=bit signed fixed point values are sign extended to
i2=pits on a move to an AC. &=~bit unsigned values are zero

1123237
31/Aug/7
kKev, 1
late General Corporation
Company Confidential

1.2 Avajlable Registers 1=2

extenoed to 32=hits on a move to an AC. Double precision
floating point values may only be movea to an even=odd pair
of AC’s providinag four double precision floating point
accumulators numbered zero two, four and six. Character
data types and commercial data types may not be moved to an
AC. Bit data types may only be moved to an AC using the
it numeric type moves on a kit field of no more than 32
bits., :

The precedina reqisters are maintained on a per procedure
pasis. When a new procecdure is called, the registers are saved,
and their initial values in the new procedure are indeterminate. Jn
a return, the olog values of the registers are restored.

In addition to the registers, there is a process wide control
reaister called the Procedure Status Kecister (PSR), which can only
be moaified using privileged instructions. This register contains:

A condition register (CF) which gescrives the condition of
the results of all operations performeac within the ALl

Kounding mode bits to define the type o¢f rounding to be
performed at the end of floating point arithmetic
operations,

Trace bits tc gefine procedure tracing to be performed.,

Emulator mode bits defining the instruction set currently
peing executed,

Procedure trap irnhibkit bit.
System trap inhibit bit,

Privileged instruction enable bit.

The PS8R is saved through traps, but 18 not saved on a pro-
cedure call. when a new procedure segment is jnvoked, certain of
these bits are automatically set from values 1{in the segment
descriptor,

1123247
31 /hug/T7
Rev, 1
Lata General Corporation
Company Confidential

I
|
I

1.3 Data Address Formation 1=3

1.3 ata Aocress Formation

An EGU operand reference is self describing and falls into one
of four categories: general, register, local variacle, and
arqgument., Each of these categories permits indirect addressing,
speci1fied when the "a" pit is set. (except 1index and accumulator

- register specification in the register adoress category)

1.%.1 General Addressing

The following formats are used tor general address generationt

BR byte Kelative (1101al BR | XR IDISP (7) |
01234567889 15
Br Byte Relative P10t BR 1 xR 1aiDISP (14) T
01 23456784910 23
ER Byte Helative 1111111 8R | xF 1a@IDISP (22) o
(posi t1 ve di sp) Oy T TR T ey Y
01 2345617849 10 31

Fach of these formats contains a pase register fiela (&R), an
index register field (XR), and a displacement field. An effective
addaress is constructed by first summing the offset from the speci=
fied BR, the low order 23 bits of the Xk and the displacement field
sign extended to 23 bits (in the 32 oit form, the displacement
fielg is zero extendeo to 232 bits). If the XK field 1is zeros, no
index register is used in the computation. If the result is greater
than 2x*x22, & segment overflow trap 1is generated. Otherwise, the
result is concatenated with the segment number from the bK to form
the effective address. In all cases of cyte addressing, bits 0=8& of
the specified XR are ignored during the acdress generation cycle.
when FC relative aodressing is specified (BRO), the value of the PC
used 18 the address of the first opcode byte,

1123337
31 /78ug/T7
Kevae 1
Data General Corporation
Company Conficential

1.3.2 Register Addressing 1=d

1.3.2 Register Addressing

The BRs, XHs, and accumulators (ACs) are addressed using the
following formats:

Hase register Q1o Inrlral Bkr |

LA A B T X N R L X A K B X X N

01234567

Index Reaister 10101010101 XR |

LT X R L R N L XX 1

01 2 34567

Accumulator Fotoreroritlr AC |

01234567

1.3.5 Local variable Acaressing

Local variables in the stack frame can be addressed using the
following abbreviated format:

FP vord Fositive 0l ital FP+ }

L R X X B X R X N L. E_ B X 2 N 3 J

C 12 %5 45617

The FP+ fieid is interpreted as a word offset relative to BR1,
the frame pointer. Thus, the efftective address is formed by shif=~
ting the FP+ field left two bits (forming a oyte displacement) and
adding it to the frame pointer offset.

1133237
31/Aug/77
Keva. 1
lata General Corporation
Company Lonfidential

1.3.4 Argument Addressing 1=-5

1.3.4 Araument Addressing

Arguments passed to 2 subroutine can be addressed using the
following abbreviated format:

Linkage Fointer 1GI01L1ai ARG |
‘y“ord posit\‘ve . . .
G 1 2 3 4 7

The ARG fielo is interpreted as a word offset relative to BRZ2,
the linkage pointer, Thus, the effective address 1is formea Dby
shifting the ARG field left two bits (forming a pyte displacement)
and adding it to the linkage pointer offset.

1.3.5 Uata Incirection
when indirection is specified, the effective address points to

8 byte data pointer in memory, used to address the desired operand.
The format of that pointer is:

Byte Data |<Ring>1 <Sec #> | <8eu, Offset> |

Pgi nter\ L E L R B N A B K L& A K X A E B X B L X X L KR KRB XL X EEELAEE S E.X.J

0 g 3 9 10 51

1.3.6 Character 3tring Agdressing

To facilitate general purpose string operations, a string
addressing descriptor has been defined which contains all necessary
information avout a character string, The descriptor has the
following format?

1123257
31/7Aug/77
Reve. 1
Pata General Corporation
Company Conficdential

1.3.6 - Character String Addressing 1=6

byte String Byte Date Fointer

|

— |
16=pit max length | le~bit current lengthl
| |

v *i5 e 31

Descriptor

l1.3.7 Bit Addressing

It is necessary to builc some form of bit addressability upon
a native byte addressable structure. The form this supbport takes
is invisible to the address portion of the memory system. The
underlying addressing mechanism within the processing unit performs
the necessary transformation petween it and byte and the necessary
extraction of a pit alicned fielc from the byte aligned operand.

A b1t adcress is producea in one of two manners: with or
without 1inoirection. a#hen indirection 1is not specified, the
contents of the displacement field and index register (if Jndexing
is specified) are adcea together to foerm 3 bit oftset relative to
the byte pointer contained in the scecified base register,

If indirection 1is specified, the displacement and index
register are interpreted as byte offsets as 1in a8 regular data
address, The byte address generatec points to a descriptor with
the following format:

Eyte LData Fointer |

Bit Pointer |

pit offset {

|
|
i
0

51

The first wora is a byte aata pointer. The second word s a
bit offset relative to the byte specified in the paired pointer.
the pit offset relative to the byte pointed to by this pointer,

11:3:37
31/Aug/77
Rev. 1
Data General Corpcretion
Company Confidential

1.4 Procedure Addressing 1=7

1.4 Frocedure Addressing

The followina formats are used to generate a8 procedure
adoress:

FC byte Relative 101 UFFSET |

G 1 234567

BR Byte Felative 11iolal BRI XR IDISP (7) |
(s]\qnec d"Sp) LA K N X X KL & A B X LA K E B B R X E K 2 5§ X K X K L. 2 J
G123 4567349 1%
BR Byte Relative 111101 BR | Xk ia1DISP (141 1
(signed disp) - - 2 o
01 2345678910)
BR HByte Kelative P1tirir 8 1 ¥R 1x1IDISP (22) !
(pesit‘ve Qisp) LA R R K K B X R 2 & KK E B R N E K X X R R K & L L A A A K & X X 2 X 2 K X & 2 X J
01 e 34561782910 31

All forms excert the & bit form are equivalent to a data
address formation. The evaluation of oisplacement fields, base
register, and indexing are the same. The B bit form nas an implieg
pase ¢f BERO, tne PC, ang has a signed byte offset relative to that
vase. The value of the FL used is the address of the first opcode
byte,

l1.4.1 Procedure Indirection

when indirection is specifieds, a procedure pointer is fetched
from memory. This pointer is used to acuress the target o¢f the
instruction., The format of a procedure rointer reached by indirec=
tion 1s:

1133:37
31/Aua/77
Rev, 1
Lata General Corceoration
Company Confidential

1el,1 Frocedure Inairection 1-8

|MODE | <SEL&E> | FIELWY J

LEX EE L R Y EX XYL LY ELEEELELEL LYY LY XX X 81

0 23 4 10 51

siode bits (0=2) definme the format of the pointer. The follow=
ing encodings have been defineo:

0006 = Present Segment, Absolute Offset
001 = Present Seagment, PL Relative Uffset
Q10 = <BEGMENT #>, Absolute (Offset

J1l = <SEGMENT #>, Gate #

. =™ Reserved

Procedure pninters allow for inter ang intra segment
transfers,

l.4.2 vate Array

It is necessary to restrict access to procedure seaments that
are more privileged than a calling procedure. This {8 done by
allowing control to enter these segments only at specific routine
entry points called gates, In this case, the caller, 1insteac of
specifying a byte adoress, specifies a gate number (procedure
pointer mode (11). This number is used as an 1index 1inte a gate
array which contains the byte address of the routine to be
executed. Gates are numpereg starting with 0, The gate array 1is
located starting at word & of the target procedure segment, and has
the following format:

11323237
31/hug/77
Rev, 1
lata Genmeral Corcoration
Company Confidential

1.4.2 Gate Array 1=9

o | Absolute Offset | Gate # N
0 $ 10 31
i | Absolute {ffset | GATE # 0
0 g 10 31

i I Max Gate Number i

LA L L B EER LA EE LR EXE N E XX N N A X & A X L N 3 X.J

0 G 10 31

Before the gate entry is fetched, the gate numbher 18 compared
to the max gate numher contained in worgd &8 of the segment, If
within this bounds the referencea offset is used as the taraet of
the instruction. If it is not within vound, an error conoition 1is
signalled, The first & words of each brocedure segment are reser=
ved for interrupt anc trap vectors,

1.9 Stack Structure

Efficient nandling of subroutine call and return, trap proces=
sing ana space for temporary variavles 1s achieved by support of a
stack mechanism, The stack is dividea into units called frames,
nhen 2 suybroutine is called or a trap processed, a new frame 1is
created., The structure of the stack at a typical point in time ist

1133237
31 /hug/T7
Reva 1
LUata General Corroration
Company Confidential

1.5 Stack Structure 1=10

STACK POINTERK #2

LOUCAL VARIABLEDS
Be

FRAME POINTEK #¢2

AREA

|
{
|
i
! IMPLEMENTAT [UN DEFINED SAVE
|
i
|
!
|

i”--------'--’-—-------——----“----
| PrROUCEDURE DIFFERENCE
‘-----W---—”~--w---‘---'-n-'--_---
| <ERGEN>

|
|
|
|
|
i
|
|
i
i
|
|
|
|
|
i
- '
<ARGEL> 1
e m e et e e e eemememwwmme | | [NKAGE PUOINTER 82
ARGUMENT COUNT i
e s S e meemmnmnemmmm= | STACK PUINTEK #1
LOCAL VARIABLES !
#y l

|

i

i

{

|

{

|

|

{

1

i

J

|

i

|

i

| IvPLEMENTATION DEFINED

i SAVE ArREA
INCREASING

PROCEDURE DIFFERENCE
CARGHRN>

<ARGRI1>
-u--w-nn--n-v--—-nn—-u-w-’-mw-nn-wi LII‘VKA{?E- F[)]NTEF #1
ARGUMENT COUNT |

|
]
i
!
!
|
i
|
l
I
i
|
|
I
ADUKESSES |
!
|
|
i
I
|
|
i
i
|
|
|

The functioninag of the stack s as follows?: when a call
instruction is issued, an argument packet can be built on the
stack, (Altermatively, the argument 1ist can te oujlt in a segment

11:3:347
S1/7Aug/77
Rev., 1
Lata General Corporation
Cempany Confidential

1.5 Stack Structure 1=11

other than the stack segment). The present values of the stack
poirter, the program counter (BR0O), the frame pointer (8Bkl), and
the linkage pointer (BKe), are saved on the stack., FP anaga 8P are
upcated to the next available (empty) stack location, and the FC is
updated with the starting acgdress of tne first instruction to ©be
executed in the called subroutine. Typically, 2 called subroutine
then 2aliocates stack area for 1local varieples with the save
instruction.

A return restores the stack to 1ts previous state. The old
values of PC, FP, LFP, SF and all registers are restored to their
value prior to the call,

wnen a subroutine is called, the values of al] registers are
not propagatea across the call.,

tach stack occupies a segment by itself, Thus overflow and
unoerflow are cetected oy segment boundary faults which (in the
case ot overflow) can be resolved by the operatina system invisibly
to the executing pProcedure,

1.6 Upcode Format

There are two opcode formats of & and 16 bits. The encooings
are?

| tielagi Code |

LR R K E R R R B R 2. X B X X 2 J

012 54567

hhere "field" is 0 through 14, cefining 240 instructions.

oo

i1 11 it Coce |

LA R X L E XL ELY L LELES R XL EXE X ELEREEN R X

01 2 5 4 15

Defining 40Y6 instructions for this format,
or a total of 4336 instructions.

1135237
31/hug/77
Rev., 1
tata General Corporation
Company Configential

{locode Format

~=ftnd of Chapter==

ate General Corocration
Lomeany Confidential

1-12

11:3¢37
31/Aug/77
Rev. 1

CHAPTER 2 = Data Types and Formats

2.1 Zasic Allowable Types

Throughout this discussion, a single precision word will be
consicered to have 32 bits. A sixteen~bit entity will be termed a
"half word". Eight=bits constitute & byte or character. This
section reviews the types supported bty the architecture.

2.1l Floating Point

Heal numbers will pe represented irn standard Data Genersl (and
IBM) format. doth sinale precision and double precision will ke
supcrted,

Variable length formats such as those used in PL/1 will not be
precluded, but direct support will not te available.

Celed Fixed

Fixed point numbers are supportea in ¢2%s complement integer
representation, Jirect support for nalf word and single precision
is provided,.

deled Logical

Logical values occuty a one b1t container and have the value
zero or one. Bit testing is specified within the architecture, 8
or %2 bit unsigned values treated as Jlogical are considered a
string of one bit logicals,

2.1.4 Unsigned

As of this writing, Kick Miller is still intent on playing out
his option.

In addition, 3¢=bit and 8=bit unsigned quantities are
supportec,

11353337
31/aug/77
Rev, 1
Lata General Corporation
Company Confidential

2alab Character e=2

cele® Character

Frovision is maoe for character (¥=pit) and character string
manipulation, This is distinct from commercial string types. When
reference is made to character operatjons and datas, the ASCII
representation 1s used except as soecifically noted.

2aleb Lommercial

The architecture provides direct support for the CUBOL data
types. In support of ANSI ‘74 COUBOL standard X3.23%, we will
provicge 18 digits of precision. {umeric display types that are
supported are unsigned, trailing sign, Jleaging signs trailing
overounch, and leadaing overpunch. Support 1is also provided for
packed decimal, signec and unsigned binary byte strings.,

2.2 Rounding

Two guard digits are provided for floating point operationse
with the following rounding modes provided:

.)
* Truncation 60”" Zﬁ
o e
Qa PP 4ﬁ¢
* Round toward zero. o\ -~
* Kound away from zero.
* Round towardc plus infinity.
* Kound towarc minus infinity.

Truncation is the only legal form of rounding 1in implimenta=
tions with only a single guarg digit. A trap will occur if anotner
form of rounding is specified.

e=tnd of Chaprer==

11235237

S1/hua/77
reve. 1}

Data General Corporation
Company Confidential

CHARTER 3 = Instruction Set

3.1 Introcuction

This chapter presents the details of the instruction set for
the EGU processor architecture. NO Op=ccore assignments have been
made as of this writirg, put they will appear 1in subsequent ver=
sions of this document. The general form of an instruction iss

<op code> {<operand> ... <operang>»}

where operand 18 & data or procecure reference as oescribed
previously, or an immecdiate value.

3.2 Signed Fixed Point

There is a complete instruction set to directly manipulate 2°s
complement fixed point integer operands with 1& and 32 bits of
precision,

The possible exception conditions curing fixed point arjth=
metic are: overflow ana divide by zero. Potentially every fixed
point operation alters the condition register.

3.2.1 16 Bit Fixed Point

11533237
31/bug/T7
Keva. 1
Data General Corporation
Company Confidential

Secelal

<RcF>/<kEF> 3=-c

5.c2elal <REF>/<REF>

<ADLD=16> <HEF1> <kKEFe>
Add the contents of <KEF1> to the contents of <REFeg> and
move the results to <KEF¢Z>,

CONDITIUN CUDE: The N ana Z pits are upcated to reflect the
results.

<SUBTRACT=16> <KEF1> <REFZ2>
Subtract the contents of <REF1> from the contents of <REFZ>
anag move the results to <REFZ>,

CONDITION CURE: The N and £ bits are urdated to reflect the
resuits,

<RSUB=16> <REF1> <kEFZ>
Subtract the contents of <KcFeZ> from the contents of <REFi>
ang move the results to <KtFe>,

CONMDITuUn CODE: The W and £ bits are upcated to reflect the
results.

<MULTIPLY=16> <kEF1> <REFg>

Multiply the contents of <REF1> oy the contents of <REF2>
and move the least significant 1ol and Z pits are updated
to refiect the results.

£E: The
<DIVILE 16> <KEF1> <kEFZ2> and the 16 bits
quotient moved to <HEFZ>, Thine remainder is not

maintained.z2

CONDITION CUDE: The N ana 4 bits are updated to reflect the
results,
bits betore the divide is initiated.

<REMAIN=16> <REF1> <KEFZ2>

The contents of <REFZ> are civiced by the contents <REFL1> ,
The 16 bit remaincer is moveda to <REFZ> . The sign of the
remainger is the sign of the dividend.

CUNDITION CUUVUE: The N and Z bits are updated to reflect the
results,

11:3:47
31/Aug/77
Rev, |
VDeta General Corporation
Company Confidential

— v — — -

3.,2.1.1 <REF>/<REF> 3=3

* <MOVE=16> <REF1> <KEFZ>

* <COMPARE=16> <<EF1> <REF2>
Unly sets condition register.,

* KCOMPARC=AITHIM=LIMITS=16> <REF1> <REFZ>
<KEFZ> is a reference to a 3c-oit entity. The first 16 bits
represent a signed lower limit? the next 16 bits represent
a signed upper limit,

* <SHIFT=ARITHMETIC=106> <REF1> <REFg> <KEF1> is both
source and destinaticon feor a2 lb=bit shift., <kEFZ> 1is a
pointer to an f=pit sianecd shift counter; + = left, = =

r'lght.
* <ARSULUTE=VALUE=16> <REF1> <REFZ>
* <NEGATE=]10> <REF1> <KEFZ2>

3edaled <KEF>/<IMHED>

The followinga instructions specify a 8 oit immecdiate as
reference #1. This immegiate is sicn extendeo to 16 bits pefore
the operation proceegse.

* <ADD=1=-16> <ImMED> <REFZ>

* <SUBTRACT=I=16> <IMMED> <kEF2>
* <MULTIPLY=I=16> <IMMED> <REFZ>
* <DIVIDE=1~16> <IHMMED> <REFe>

* <SKREMAIN=]=16> <IMMED> <REFZ>

* <MOVE=I=1&> <IMMED> <REF2>

* <CUMPARE=I=16> <[MMED> <REFZ>

11:23:3%7
31 /pug/i7
Kev, 1
Date General Corworation
Company Contfidential

:5.2.1.2

<REF>/<IMMED> 3=y

SCOMPARE=WITHIN=LIMITS=I=16> <REF> <IMMED> <IMMED>
The first jée=bit immediate represents a signea lower limit}
the next lé=bit immediate represents a signed upper limit.

KSHIFT=ARITHMETIC=]1=16> <REF> <IMMED> <REF>» 18
both source anc destination for & 1lé=pit shift, <IMMED> 1is
an HB=pit signed shift counter; + = lefty = = right.

As an optimization, the following instructions have an
implied constant of ¢ or 1:

<SCUMPARE=16=0> <KEF> An implied constant of (.

<INCREMENT=16> <RcF> An implied constant of 1.
<DECREMENT=16> <REF> An imeiijed constant of 1.
<CLEAR=16> <REF>

Move zero’s,

3,2.2 32 it Fixed Point

3.2.2.1

<REF>/<REF>

For every fixed point operation with 16 bits of precisjion,
there exists an eauivalent operation for 32 bits,

*

<ADD=3¢2> <REF1> <RcFe2>
<SUBTRACT=3c> <REF1> <REFe>
<MULTIPLY=32> <REF1> <REFZ>

Produces a 42=bit result,

<DIVIVDE=32> <HEF1> <HEF2>
The odividenc is 372 bits.

<MUvE=3e2> <REF1> <REFZ>

1123237
31/Aug/77
Revae 1
Data Generael Corpocration
Company Confidential

5020241 <REF>/<REF> 3m5

* <COMPARE=32> <REF1> <rREFeg>

* <SREMAIN=32> <FEF1> <REFEZ>

Ihe dividend is €4 bits., If the dividend is an AC, it must

npe a doubie precision even/odg AL pair

* <ABSOLUTE=VALUE=3Z> <HEF1>
* <NEGATE=32> <KEF1>
* KCUMPARE=AITHIn=L IMITS=32> <REF1>

<REFZ> is a reference to a bd=~pit enti

<REFEZ>
<KEFZ>

<REFZ>
ty. The first 32 bits

represent a signea lower limit; the next 32 bits represent

a signed upper limit,

* <GHIFT=ARITRMETIC=32> <REF1>» <REFZ>

<REF1> is both source and destin
shift. <REFZ> 1is a pointer to an
counter; + = left, = = pright.

3.2elaf <KEF>/<IMMEO>

The following 1inrstructions specify an
reference #1, This constant is sign extended
oceration proceeds.,

* CADDmI=32> <IMMED> <KEFZ>

* <SUBTRALT=I=32> <IMME[>

* <SMULTIPLY=I=3%2> < T MME U»
Produces a 3¢ bit result.

* <pIvIiDE=I=32> <IMMED> <HEFZ>»
The dividena is 3¢ bits.

* <SHEMAIN=I=32> <IMMED> <KEFe>

* <MOVE=I=32> <1MMED> <kEFe>

Date GLeneral Corporation
Lompany Confidential

ation for a 3AZ2=bit
8=hbit signea shift

& bit constant as
to 32 bits before the

<xbFe>»

<REF2>

11:3:37
31/b6ug/77
Kev. 1

3e2s2et <REF>/<IMMED> 3=6

* <CUMPARE=I=32> <IMMED> <REFZ>

* SCUMPARE=wITHIMN=LIMITSE=1I=32> <REF> <TMMED> <IMMED>
The first 32=bit constant represents a signed lower limit;
the next 3Z=pit constant represents a signed upper limit.

* KShIFT=aARITHMETIC=1=32> <REF> <TMME[:>
<KEF> is both source and destipation for a 32-bit
shifte. <IMMED> is an H=0Dit signed shift counter; + = left,
- Z pighte.

As an optimization, tne following instructions have an
implied constant of 0 op 11t

* <COMPARE=32=-(> <KEF>
* <INCREMENT=32> <FEF>
* <UECREMENT=32> <FEF>
* <CLEAR=32> <kEF>

3,3 Unsigned

Unsigned operanas contain values that are always positive or
zero, E£GOD supports two unsigred precision, & and 32 bits.

3.,3.1 lnsigned B ©Bits

The possible exception conditions are: overflow and ¢givide by
zero, Alterations, if any, to the condition are specifiec for each
instruction.

3.3.1.1 <REF>/<KEF>

11:3:37
S1/Aug/71
Rev. 1
Vata General Corzoration
Company Confidential

- - — —

3.3.1.1

<KEF>/<REF> i=7
CAPD=E> <kEF1> <REFZ>
<SUBTRACT=&> <REF1> <HEF2>
<SMULTIPLY=8> <REF1> <HEFZ>

Produces a result with & pits of precision.

<DIVIDE=8> <REF1> <REFZ>
<REMAIN=B> <REF1> <kEF2>
<MOVE=H> <KtF1> <REFZ>
<COMPARE=B> <KEF1> <KEFZ>
<SCUMPARE=t]I THI =L IMITS=8> <REF1> <REFZ>

<REFZ> is 8 reference to & léb=nit entity. The first & bits
represent a lower limit; the next & ©its represent an upper
limit,

<SHIFT=LOGICAL=8> <KEF1> <REFe>» <REFi> is
voth source and destination for an 3=bit shift. <REFZ> s
an H=bit sigred shift counter: + = left, =~ = pright,

<AND=B> <KEF1> <REFZ2>
<lUR=&> <KEF1> <REFe>
<XUR=&> <REF1> <REFZ>
<SET=DIFF=8> <FEF1> <REFZ>

<REFZ> pecomes <REF1>» AND hOT <KEFZ>,
<COMPLEMEANT=8> <rREF1> <REFZ>

<MASK=MERGE=b> <REF1> <REF2> <REF3>
<HEFEZ> = (<REF1> AND <kEF3>) Lr (<REFZ2> AND NuT <REF3>).

3.30 1 u2 <REF>/<IMMED>

The following instructions specify an & bDit constant as

11:3:37
31/Aug/77
Reve 1
lVata Germeral Corporation
Company Confidential

— o — — — —

3.3.1.2 <SREF>/<imMED> 3-8

reference #1, This constant is an unsigned & bit operana:

* <ADL=I=8> <lmMMED> <REFZ>
* <SUBTRACT=I~8> <IMMED> <REFe>
* SMULTIPLY=I=8> <IMMED> <REFE>
* <DIVIDE=I=8&> < mbgL> <REFe>
* <SHUVE=I=8> <IMMED> <REF2>
* <SREMAIN=] =8> <ImMED> <REFg>
* <COMPARE=I=8> <IMMEL> <REFZ>
* <SHIFT=LUGICAL=I=8> <IMMED> <KEFZ>

<kEFZ> 1s both source and destination for a&n &=bit
shift. <IMMED> is an B=pit signed shift counteri + = left,
- = right.

* SCUMPARE=AITHIN=LIMLTO=]1=8> <REF> <IMMEL> <IMMED>
The first ¢&=bit constant represents an unsigned lower
limits the next bepit constant represents an unsigned upper

limit.
* <AND=I=8> <JmMED=8> <REFZ>
* <]0k=]=8> <IMMED =8> <REFZ>
* CXUR=]=8> <] MMED =8> <KEFeZ>
* <SET=D1IFF=]1=8&> <IMMEL=E> <HEF2>

<REFZ2> becomes <IMMED=8> AP NOT <rREFZ>,.

* <MASA=MERGE=T=8> <REF1> <KkEFZ> <IMMED>
<REFZ> = (<REF1> AND <IMMED>) OKR (<REFZ> AND NOT <IMMED>).

As an optimization, the following instructions have an implied
constant of U or 1:

* SCUMPARE=B=(0> <REF>
Compare to 0.

1123137
31/8uQ/77
Keva. 1
Data General Corporation
Company Confidential

3.3.1.¢ <REF>/<IMMED> 3=G
* <SIWNCREMENT=E> <REF>
Add 1.
* <PDECREMENT =8> <REF>
Subtract 1.
* <CLEAR=3> <REF>
Yove zero’s,
3.%.,2 Unsigned 32 Rits
2e3,2.1 <REF>/<REF>
* ADD=U=32> <REF1> <REFe>
* <SUBTRACT=U=32> <REF1> <REFZ2>
* <MULTIPLY=Li=32> <KEF1> <REF2>
Froduces a result with 32 bits of precision.
* <DIVIDE=U=32> FEF1> <HEFZ>
* <SREMAIN=U=32> <KEF1> <REFZ2>
* <MGVE = jm32> <REF1> <REFEZ>
* <COMPARE=U=32> <KEF1> <REFg>
* KCOMPARE=WITHIN=LIMITS=U=32> <KEF1> <REF2>
<REFZ> is a reference to a 64=bit entity, The first 32 pbits
represent a lower limit; the next 32 bits represent an
upper limit.
* <SHIFT~LOGICAL=32> <KEF1> <FEFeZ>
<KEF1> is pboth source and destination for a 232=Dit
shift. <REFZ> is an &=bit signeu shift counter; + = left, =
= right.
1123:37
31/Aug/77
Reve. 1

llata General

Corporation
Company Confidential

3.3.2.1 <REF>/<REF> 3=10

* <AND=32> <REF1> <REFZ>
* <Iuk=32> <REF1> <REF2>
* <XUR=32> <REF1> <REF2>
* <SET=DIFF=32> <REF1> <REFZ>

<REFZ> pecomes <kEF1> AnD NJIT <REFZ>.
* <CUMPLEMENT=22> <KEF1> <REFe>

* <MASK=MERGE=32> <REF1> <REFZ2> <KEF3>
<REFZ2> = (<REF1> AND <REF3>) Ok (<REFZ2> AND NOT <REF3>).

3430262 <REF>/<L[MMEUL>

| The tollowing instructions specify an 8=bit constant as
| reference #1, This constant is zero extended to a 32 it operand:

* <ARR=U=I=32> <ImMED> <KEFZ2>

* <SULTRACT=U=1=32> <IMMED> <REFZ>
x SMULTIPLY=U=]I=32> <IMMED> <REFZ2>
* <DIVICGE=U=I=32> <IMMED> <REF2>
* SMUVEwljmw]=32> <IMMED> <REFZ>

* <REMAIN=U=]=32> <IMMED> <REFZ>
* <COMFARE=U=I=3¢> <IMMED> <REFE>

As an optimization, the following instructions have an
impiied constant of (G or 13

* <COMPARE=32=U=0> <HEF> Compare to 0

* CINCREMENT=32=1i> <REF> Aaa 1
1123:37
31/aug/77
Reve 1}

vats General Corporation
Company Confidential

|
i

3.3.2.2 <REF>/<IMMED> 3=-11

* COECREMAENT=32=L> <REF> Subtract 1
* SCLEAR=3ZmU> <REF> Store zero
* SCOMPARE=WITHIN=[IMITS=32=U> <KEF>» <IMMED> <IMMED>

The first 3¢2=bit constant recresents an unsiagned lower
limit; the mext 3¢2~pit constant represents an unsigned
upper limit,

* <SSHIFT=LOGICAL=1=32> <HEF> <IMMED>
<REF> is voth source and destination for a8 32=bit
shift. <IMMED> is an t=bit signed shift counter; + = left,

- = right.

The following instructions specity a 3¢ bit constant
as reference one. this constant 1S5 an unsigneo 342 bit

operand,
X <SAND=I=32> <IMM@EL> <REF2>
* <I0k=I=52> <ImMED> <REFZ>
* <AUR=I=32> <IMAED> <REFZ>
* <SET=DIFF=I=32> <]MMED> <REF¢>

<RKEFZ> pecomes <IMMED> ANPD NUT <kEFZ2>,

* SMASK=MERGE=]=32> <kEF1> <REFZ2> <[MMED>
<REF2> = (<REF1> ANU <IMMED>) OR (<REF2> AND NOT <IMMED>),

3.4 Floating Point

411 operations on single precision (32 bit) operands are
performed totally in single precisiony and all double precision (64
bit) operations are performed totally in double precision. Each
operation on single or double precision will potentialiy set bits
in the condition register (CR), Ultimately each operation will
respond to overflow/underflow of exponent and there will be a test
for divide by zero., See the Data Types and Formats Chapter for
rounding information. There is an implicit truncation from double
to single when a move of @ aqouble precision number 1s done 1In
single precision mode. Floating point cperations assume normalized
values,

1123237
31/Aua/77
Rev. 1
ate General Corporation
Company Lonfidential

3,4 Floating Point 312

The following instructions refer to floating point numbers and
do not distinguish between single and aouhle precision.

* <SABSUOLUTE=VALUE=FP> <KEF>

Set the sian of the value specified by <REF> to
positive ano leave the result 1in <REF>

* <NEGATE=FF> <SHEF>

Change the sign of the value specifieo by <KEF>»
leaving the value in <REF>,

* <EXTRACT=cXPUNENT> <ktri> <REF2>

Extract the exponent from the value specified by
<REF1> anc move it as an unsigned B8=pit auyantity referenced
by <REFZ>.

3.,4.1 Single Precision Floating Point

The following are the single precision floating point opera=
tions: ‘

* <ADL=SE> <HEF1> <HEFZ>

Ada the sinale precision value specifiea by <rREFI> to
the single precision value specified by <REFZ> anmc move the
results to <kKEFZ>.

* SSUBTHRACT=SP> <REF 1> <REFZ>

Subtract the single precision value specified by
<REF1> from the single mrecision value specified by <REFZ>
and move the results to <RKEF2>,

* <MULTIPLY~SP> <REF1> <HEFZ>

Multiply the single precision value specified by
<REF1> by the single precision value specified by <REFZ>
and move the single precision results to <REFZ>.

1133337
31/hug/77
RKev. 1
Date General Corporation
Lompany Conficential

3.4.1

Single Precision Floating Point 3=13

<DIVIDE=3P> <REF1> <REFZ2>

Divide the single precision value specified by <REF2>
py the single prevision value specified py <REF1> and move
the single precision results to <REFZ>

<MUVE=SP> <KEF1> <REFZ>

Move the single precision value specified by <REF1> to
<RgFeg>,
<CUMPARE=SP> <REBEF1> <REFZ>

Compare the sinale precision value specified by <REF1>
wWwith the single precision value specified by <kEFZ> and set

the condition bits in the conaition register (CR). The
contents of <REF1> and <KtFZ> are unaltered.

KNORMALIZE=SP> <KEF>

The single precision value specified by <REF> 1is
normalized and returned to <kKEF>,

SINTEGERIZE=SP> <REF>

Integerize the single precision value specified by
<REF> and move as a sinale precision value to <REF>,

<COMPARE=ZERU=SP> <REF>

Compare the single precision value svecified by <REF>»
to true zero and set the condition bits 1in the condition
register (CR).

<SCALE=SP> <REF1> <REFe>

Scale the single precision value specified by <REF1>
by a factor inagicated in the sianed B=bit qQuanitity speci=
fied by <REFZ2>» ana place tne result in <REF1>,

<HALVE=3P> <REF>

The single precision value specifiea by <KREF> s
divided by 2.0 and returnedg to <REF>,

11:3:37
31/kug/77
, Rev. 1
Data General Corporation
Company Confidential

3.4.¢ Uouble Precision Floating Point 3-14

3.4,.2 Uouble Precision Floating Point

The following are the double oprecision tfloating point
operations:

* <ADD=DF> <REF1> <KpFe>

Add the double precision value specified by <REF1> to
the double precision value specified by <REFZ> and move the
results to <REFZ2>.

* <SUBTRACT=DP>» <REF1> <HEFZ>
Subtract the double precision value specified by
<REF1> from the couble precision value specified by <REFZ>
and move the results to <REFe>,
x <SMULTIPLY=DP> <HKEF1> <rREFZ>
Multiply the gcouble precision value specified by
<REF1> py the double precision value specified by <KREFZ>
and move tnhe double precision results to <REFZ>,
* <PIVIDE=DF> <KEF1> <HEFZ>
Divide the double precision value specified by <REFR2>

by the oouble precision value specified by <REF1> ana move
the douvie precision results to <REFZ>

* <MUVE=DP> <kEF1> <REFZ2>
Move the double precision value specified by <EEF1> to
<REF2>.
* <COMPARE=DP> <HEF1> <REFZ>

Compare the double precision value specitied by <KEF1>»
with the double precision value specified by <REFEZ> and set
the condition bits 1in the condition register (CK).The
contents of <REF1> and <kEFeg> are unaltered.

* SNURMALIZE=DP> <KEF>

The double precision value specified by <KEF> 1is
normalized and returned to <KREF>,

1185537
31/7Aug/77
Rev, 1
Data General Corporaticn
Company Confidential

— — v ————— - — — ———— — oo

3.4.2 bouble Precision Floating Foint =15

* <INVTEGERIZE=DP> <REF>

Intederize the double precision value specified by
<KEF> and move as a double precision value to <REF>,

* <CONMPARE=ZERU=DP> <KEF>

Compare the vouble precisionr value specified by <KEF>
to true zero and set the condition bits in the condition
register (Cr).,

* <SCRLE=UP> <KEF1> <REF2>

Scaele the double precision value specified by <REF1>
by a factor indicategd in the signeo d=bit quanitity speci=
fied by <<bF&> ano place the result in <REFL>,

o <HALVE=DP> <KEF>

The deouble precision value specified by <KEF> s
cgiviged by 2.0 and returned to <REF»>»,

3.5 Cnaracter

The character instructions provided are generally orientec to
multi=byte character strings, The compare instructions will set
conditions bits in the condition register (CR). Up 18 odgefined as
an increasing byte address and down as a decreasing byte address. A
string length of zero will cause NO operations to OCCUP.

within this section a <38TR=-REF> will be an address of @ string
adaress descriptor which is described in the introduction <chapter,
<STR=REF>.,FTR will correspond to the strings byte pointer.
<STHR=REF>.MAX will correspona to the string maximum length,
<OTh=REF>,CUR will correspond to the string=current=length. In
scans and translates, single byte reference and table references
are data byte pointers. The string cescriptor always points to the
pbeginning (left=most) byte of the string. 3cans or moves down will
have to add the current length to the byte data pointer to get the
starting byte data pointer, In scans there are condition codes for
failure due to current length peing zero and character not found
and for a successful scan., If character is not found then scans
will set the index to be the current length nius 1.

11313237
31/Aug/T7
Reve. 1
lata General Corporation
Company Confidential

G came e Gwa e A = e e w— — — —

Character 3=16

The followina instructions have been defined:?

<MUOVE=B#YTES=UPR> <STherEF 1> <STR=REFZ>
<HMOVE=R3YTES=DOdN> <STK=REF1> <STR=REFZ2>
Move oytes up cr dgown from the reference in

<STr=REF1>to the reference in <3TR=REFZ> for a count egual
to MIN (KSTR=REF1>.CUN,<STrR=RKEF2> ,MAX),Tnis instruction
also updates the value of <3TH=REFZ2>.CUR to the number of
bytes moved, <STR=REFZ>,MAX is unchanged.,

<MUOVE=BYTES=FILL=RIGHT=DOwN> <FILLER=BYTE> <STR=REF1>
<STk=REFZ>

<MOVE=BYTES=FILL=LEFT=UP> <FILLER=BYTE> <STK=REF1>
<$TR=REF2>

Move bytes from <STR=xEF1> to <3TR=REFZ> with left or
right justification with up or down movement wusing the
filler tbyte to fill the remainder of the desirec string.
<SCAN=BYTE=UP> <hEFL> <STH=KEFZ>» <REF 3>
<SCAN=BYTE=DOWN> <KEF1> <STR=REF2> <KEF3>»

Scan a string referenced in <8TR=REFZ> up or down for
the byte referenced by <REFI>, Set <REF3> be the index to
the next byte pesition within the string. <REF3> 1is a
signed le=bit integer.

KSCAN=NUOT=RYTE=LF> <REF1> <STR=REFZ2> <KEF3>
CSSCAN=N{T=RYTE=DGWN> <REF1>» <JTR=REFZ2> <REF3>

Scan a string referenced in <STE=REFZ2> up or down for
the first cheractepr not equal to the byte referenced by
<REFiI>», Set <REF3>,PTR to be the signed 1lbo=~bit index to
the next pbyte position within the string.

<KCOMPARE=STRINGS> <3TR=KEF1> <STR=REFZ>

Compare strings referenceo by <STR=REFi> and
<STR=REFZ> setting the condition register (CR).

<SUBSTRING> <STR=REF1> <S5TR=REFZ> <REF3>
<REF4>
11:3:37
31/8ug/77
kev, 1

Data General Corporation
Company Confidential

3.5

Character 3=17

Set <3S ({R=-KEF1> to be a new string descrirptor to a
substring of the string specified by <STR=REFZ> with <KEF3>
being a lé=-pit offset into the string for the start of the
supstrina and <KEFd4> a lé6=pit coffset into the string for
the end of the substring,

<SCAN=SUBSTRING=UF>
<3TR=REF1> <STk=RKEFZ> <REF3>
<SCAN=SUHSTRING=LUWN> <S5Th=REF1> <STR=REFZ> <REF3>

Scan a strirng referenced in <3TK=REFE> up or gown for
the substring referencea in <STR=REF1>,Set <RBEF3> to be the
index to the leftmost character of the found substring,
<REF3> is a signed l6=bit inteqer.

<MOVE=TRANSLATED=STRING=UP> <REF1> <3Tr=REFec>
<STR=REF3>

<SMOVE=THAMNSLATED=STRING=DURNA> <REF1> <STR=REF2>
<STR=REF3>

Mmove translateo bytes usina a 256=hyte translation
table referenced oy <KEFI> up or acown from the string’
referenced bty <SIF=-REFZ> to the string referenced by
<STR=REF 3> for a count equal to
MIN(<KSTR=KEF2> ., CUR,<STR=REF3>,MAX), Set <STR=RKEF3>,CUR
accordingly.

<CHARACTER=SCAN=UNTIL=TRUE> <FEF1> <STR=REFZ> <REF3>

Scan a string referenced in <STk=REFZ> using each byte
as an index into a 256=bit teble referenced by <KEF1> until
the indexed bit is on. BSet <KEF3> to be the 1é6=bit index
to the found byte.

<CHARACTER=MOVE=UNTIL=TRUE> <KEF1> <STR=REFZ>
<STR=REF 3>

Move a strina referencea in <STR=REFZ2> to <STR=REF3>
using each byte as an ingex into a 256=bit table referenced
by <rREF1> until the indexea bit is on. The move count 1is
limitea oy MIN(<STR=REF2>.CUR, <S3TR=REF3>,MAX) . Set
<STR=REF3>»,CUR to the numper of characters moved,

1133:37
31/7Aug/77
Kev, 1
Date General Corporation
Company Confidential

—— — — ——— o o o——— —— o — — o— — — o———_ ———— — — — — — — co— 27—

3.6 Bit 3=18

3.0 it

The pbit instructions fall into three classes o¢f operations?
single bit instructions , multi=pit string instructions and bit
nUMerics.

3.6.1 Single Bits

The following instructions are indivisible, which means the
read/modify/write occurs as one completely contained operation
locking out any other asynchronous request until the mecaification
is complete.?

* <TEST=AND=SET=171> <BE]TmkEF>
Test the bit referenced by <BIT=RgF> and set the
appropriate bit in the conaiticn register (LK), Set the
referenced bit,
* <TEST=AnND-CLEAR=B1T> <EIT=REF»
Test the bit referenceg oy <HIT=REF> ang set the

appropriate bit in the condition register (CK). Clear the
referenced bit,

The following instructions are not 1ingivisible,.

* <TEST=BIT> <t [T=KEF>

Test the bhit referenced by <HIT~REF> and set the
appropriate bit in the condition register (CR),

* <SET=BIT> <BIT=-KEF>
Set the hit referenceqg by <BIT=-xREF>,

* <CLEAK=BIT> <glT=REF>

11:3:37
31/2ug/77
Rev. 1
Lata General Lorporation
Company Confidential

Z.t.1 Single uits i=19

Clear the bit referenced by <BIT=REF>,

3.b0,2 Multi=pit

* SFIND=LEADING=BIT> <pIT=REF> <REFe> <KEF3>
Scan for first | in a3 ©pit string specified by
<BIT=REF> with a length in <REFZ2>. Set <REF3> to be the bit
offset to this bit.
* <COUNT=BITS> <R]T=KEF> <REFz> <REF3>
Count the bits set 1in a bit string referenced by

<BIT=REF> with a bit lenath in <nREF2>, <REF3> 1is updated
with the resulting count.

2,6,.5%5 it Numeric

For the bit numeric move operations, a count is always speci=~
fied in the instruction foprmat as:?

10018 LENGTH i
- am - . LB N B B N K N R N N N B X S B A 2 2 & XK J
0 1i2g 3 7
| e 9 LGNED/UNSTGNED

Movement is alwavys to a 3Z=pit destination. If the 8§ bit 1is set,
the sign bit 1s replicatec to fill a 3Z=bit destination. Utherwise,
the remaining bits are cleared to zero.

1133537
31/8ug/77
Rev. 1
bate General Corporation
Company Confidgential

2.6.5 2it Numeric 3

2o

* <MOVE=FROM=8IT> <gIT=REF> <REF2> <REF3>

Move a bit numeric specified by <s8IT=KEF> with count
descriptor in <REFZ2> to a 3%2=bit destination referenced in
<REF3>,

* <MOVE=TO=31T7> <BIT=REF> <REFZ> <REF3>

Move a 32=bit source specified bty <KEFI> to a bit
numeric specified by <BIT=REF> with counrt descriptor in
<REF3>,

3,7 Commercial

The following instructions support commercial arithmetics and
editing. Floating point manipulations are pQtdirectly supported by
the set. Explicit conversions must be used 1in these cases. It
should be notea that packed decimal is in I#M format and s byte
aligneg. Thus, in some cases, the niple string must be zero
extended for prooer alignment.

For each referenced argument, there is an iJin~line attribute
byte. This byte has the format

IDATAI LENGTH
ITYPEI

0 213 7

—— a— —— ——

where length is the length of the referenced numeric string 1in
bytes, and data type denotes cne of the following & types:

000 = Unpacked Decimal = Low (rder Sign/Overpunch

1133337
31/8ug/77
Rev, 1
Date General Corporation
Company Confidential

5.7 Commercial 3=21

001 = Unpacked Decimal = High OUrder Sion/0Overpunch

UiG = Unpacked Decimal = Trailing Sign
011 = Unpacked Decimal = Leading Sian
100 = Unpacked Decimal = Unsigned

101 = Fackea Decimal = (IB™M Format)
110 = Bdinary Integer = Signed

111 = 8B8inary Inteaer = linsignea

A1l digits referencec are checked tor validity. If an invalid
digit is referenced, the operation is terminated and error 1is
signaled,

For data tvype 5, packea decimal, tnere must be an integral
number of bytes including sian. Thus, in some <casesy, a higher
order zero digit must be supplied.

There is one set of numerics, Wwith two forms: 4 ¢cp B ==> B and
A op B ==> (C, These instructions directly implement COBUL referen=
ces for the cases in which 0N SIZE is not specified, These in=
structions perform the specitied operation ang store the results in
the destination right justitied zero filled. If significance
remains after the storaage in the intermeciate results, an overflow
condition occuUrs.

In the following instructionss the orecision of the result 1is
explicitly designated. The byte pointed to by the address 1is the
most significant (Left=Meost) byte of the numeric string.

<APDD=DECIMAL> <CREF1> <CREFEZ>

<ADD=DECIMAL=GIVING> <CREF1> <CREFZ2> <CREF3>
<SUBTRACT=DECIMAL> <CREF1> <CREF2>
<SUBTRACT=DECIMAL=GIVING> <CREF1> <CREFZ2> <CREF3>
<MUL.TIPLY=DECI1MAL> <CREF1> <CREFZ>
<MULTIPLY=DECIMAL=-GIVING> <CREF1> <CREFZ2> <CREF3>
<DIVIDE=DECIMAL> <CREF1> <CREFZ>
<DIVIDE=DECIMAL=GIVING> <CREF1> <CREF2> <CREF3>
<REMAIN=DECIMAL=GIVING> <CREFL1> <CREFe> <CREF3> .

The sian of the remainmer is the sign of the dividend.

<COMPARE=DECIMAL> <CKEF1> <CREF2>

<COMPARE=ZERO=DECIMAL> <CKEF1> An implieg comparand of 0 equal in
lenath to reference 1.

<MOVE=DECIMAL> <CREF1> <CREFZ>

<SCALE=LEFT> <CKEF1> <IMMEL><REF2>

Scale (shift) left <HEF1> the number of positions specified by
the <IMMED> and store the results in <REFZ». Vacated positions are
2erQ.,.

11333237
31/Aug/77
Rev, 1
Date General Corporation
Company Confidential

3.7 Commercial 3mp?2

<SCALE=RIGHT> <CREF1> <IMMED><REFZ2>

Scale (shift) right <kEF1> the numher of positions specified
by the <IMMED> and store the results in <REFZ2> Vacated positions
are zero filled.

<HOUND> <CKEF1i> <CREFZ>

The least sianificant digit position of <REF1> 1is examined,
If 5 or greater, ten is added to <REF1> pewinnina at this position
and the sum is moved to <RtF2>». If the digit is 1less than 5,
<REF1> is moved to <REFZ>. MNote: Reference 1 may have more preci=-

sion then indicated by Attrioute 1. Unly one <digit, however, 1is
considered when ROUNDINg is performed.

KEDIT> <CREFI><REFZ2> <IMMED®<HEF3>

3.8 Stack HManipulation

The following instructions modify the stack:

* SMODIFY=STACK=PQINTER> <KEF>

Set the value of the stack pointer (SP) to be the
current value o¢f SF plus the 32=bit wunsigned integer
referenced by <KEF>,

* <PUBH=E> <HEF>
* <PUSH=16> <KEF>
* <PUSH=32> <REF>
* <PUSH=b4> <REF>

Move one, two, four or eight bvytes of data referenced
by <REF> To the end of the stack starting at SP. Adjust SP
to point to the nmew end of the stack by adding a one, two,
four or eight to its current value.

* <POF=8> <REF>

1183337
31/Aug/77
Kev. |
Data (General Corporation
Company Confidential

S.8 Stack ™Mmanipulation 3=23

* <POP=16> <REF>
* <POP=32> <REF>
* <FOP=64> <RAEF>

Remove the last one, two, four or eight bytes from the
end of the stack starting at 8FP=1 and place them at the
reference <KEF>, FReagjust SP to the new end of stack by
suotracting & one, two, four or eight from iJts current
value.

* <MUVE=SP> <REF>

Move the current value of the stack rcointer (SP) to
the specified destination,

3.9 Jumps

3.9.1 Entry and Exit

In the following instructions, <PKEF>» refers to @a procedure
reference as define in the introduction chavter,

X <PUSH=PC> <PREF>

Place the PU for the next instruction at the end of
the stack starting at SF and bobranch to <PREF>. This
facilitates a quick call to a subroutine which will use the
current stack environment as its own, SP becomes SF+4,

* <PLP=PC>

Remove the last four bvytes from the end of the stack
and set the PC to be their value. 3P becomes 8Sk=4, This
facilitates a quick return from a <PUSH=PL> type call. The
next instruction executed (whose address was at the end of
stack) should be that fellowing the corresponding <PUSH=PC>
instruction,

11:3:37
31 /Aua/T
Rev. 1
Date General Corporation
Cormpany Confidential

— — — —o— — — —

5.9.1

Entry and Exit 3~24
<CALL=POIFF> <FREF> <IVWMEDS> KBARGCONST>
<SREF1>,..e<REFN>
<CALL=PODIFF=PACKET> <PREF> <IMHMED> <REF>
<CalLlL> <FREF> <#ARGCUNST> KREF1>eee<KEFAN>

Ihese call cperators are used to install a new stack
environment then branch to a subroutine, The first two
types of calls allow the settina of a procedure level
difference on the stack wnile building the new frame. This
dgifference is defined by the inline A=bit unsiagned integer
referred to as <IMMED>, <PxREF> is the specifier of the
subroutine, <HAPGCONST> 1s an &=bit unsignea integer
representing the number of argument references which are to
follows <KREF> and <kKEF1>,..<REFN> are the references to a
single argument or a list of n arguments. (n being the
value of <%ARGCOMNST>, The call will build a packet of
arguments which can te referenced by BHZ2, This pracket has
the following format:

<KEFN>

BR2m=mmm=> <REF1>
<HAKGCONST>

Callers wishing to buila their own parameter packets
may use the packet type <call opcodes instead, In this
case, <REF> is the address of the packet which is identical
to that described asbove. Tnis call places <REF> in BRZ2.

Note: <#AFPGCUNST> is placed one byte before the
base register address,

<RETURN>

Return from procedure or trap handler thru the PC
contained within the current frame,

11:3:37
31/7Aug/17
Fev. 1
Data Gemneral Corporation
Company Confidential

*

Entry ang Exit 3=25

<SRETURN=ARG> <IMMED>

Functions like <KETUKN> exceot the PL value 1is the
value of the argument specified by the immediate,

3,9,2 vVvanilla Jumps

The following instructions are specified:?

*

3.9.3 Di

Al
format:

SJUMP=Ot=CONDTTIUN> <CUtpD> <PREF>

Jump to <PREF> if the bits condition register (CR)
matches the <CUnD> field,

<JUMP=GT> <FREF>
<JUMP= T> <PREF>
< JUMP=NE> <PREF>
<JUMP=EU> <PREF>
<JUMP=(GE> <FREF>
<JUVP=LE> <PFREF>

< JUMP> <PFREF>»

A jump to <FREF> is unconditional or occurs based on
the state of the N anc Z bits of the condition register
(CR).

spatches

dgispatch instrucrtions use a8 table of the following

11:3:37
31/7Aug/71
Rev. 1
Uata General Corporation
Company Confidential

—— — ———— —— ——

— v — — a— u— e ——— —. m— " —— ———— — — w— o ome —— — — o— —" ——p— ——— — i —— —

3,9.3 Dispatches I=gb

<Frocegure Pointer>
L]

-
CPUREF D mmummm =) <Procecure Pointer>
<lUpper Bounag><lLower tound>

rhere the lower bound and upper bound are both signed 16=bit
intecers, All dispat®hes through a tacle valigdate the index as
lower ovound <=index <=ucoper bound, select the indexed <Procedure
Pointer>, If the index is not within the bouna ranae, the PFC will
be set to the next instruction following the dispatch anc no branch
will occur.irithin the discussion cf DISPATCH all references labeled
<DREF> will be pointers to dispatch tables described above. All
dispatch operators will set the condition register to inoicate one
of three conditions: dispatch index out of rarace, dispatch index in
range but there was no label, or successtul dispatch. The dispatch
table can have "holes" by setting the value of that position in the
table as a 32=bit zero (illegal label within table).

* SDISPATCH=IMMEDRIATE> <KEF>
SINLINE=DISPATCH=TABLE>

* KOISPATCH=IMMELTIATE=PUSHPC> <KEF>
<SINMLINE=DISPATCH=TABLE>

* <DISPATCH>» <HEF> <DREF>

* <DISPATCH=PUSHPC>» <KEF> <DKREF> par() Cispatch

through an inline dispatch tawle, or a dispatch table
referenced by <DREF> in the Tast two <cases, bDased on a
signed 1é=pit index pointeda to hy <REF>, The PC which 1is
pushea in the <PUSH-PL> type 1is the PL at the next
instruction,

* <DISPATCH=CALL> <XREF> <DREF> <#ARGCONST>
CREF1a...REFiN>

* <SDISPATCH=CALL=FACKET> <xXREF> <UREF> <REF>

The aispatch with call operations are identical to the
call operations defined in the jumps section of the in=
struction chapter except that the <PREF> is selected from a
dispatch table specified by <UKEF>, The index is a signed

1123:37
31/6ug/77
Rev. 1
Data General Corporation
Company Confidential

— o — —

— v — — — —

Dispatches =27

16=bit value specified by <XkKEF>. A dispatch failure wil]
cause this instruction to NOP and the nmext instruction to
be executed,

3,10 Conversion

SCONVERT=INTEGER=T(U=SP> <REF1> <REFZ>

<CONVERT=INTEGER=TO=0F> <REF1> <kEFe>

Lonvert the integer specified by <REFI1> to fleating
point referenced py <KEFZ>. Conversion of lé=bit integers
ie te sinaole precision, of 32=bit integers to double
precision floatina point.

<SCONMVERT=SP=TU=INTEGEK> <REF1> <PEFZ>
SCOMNVEKT=DP=TO=INTEGER> <REF1> <kEFZ2>

Convert the floating point number specified by <REF1>
to an integer. Conversion 18 from sinale gprecision to
i6=pit intecer, double precision to %2~bit integer.

<CORVERT=SP=TO=DP> <REF1> <KEFZ>

Convert the single precision number specified by
<REF1> to a cgouble precision numper specified by <REFZ>,

Convert the character string to a double precision
floating roint number,

<CONVERT=UFP=TO=CHARACTER> <KREF> <STR=REF>

Convert a double precision floating point number to a
character string.

1133:37
31/Aug/77
Rev,., 1|
Data General Corporation
Company Confidential

3.11 Reserved Inmstructions 3=-28

3.11 Feserved [nstructions

There is a set of 256 op codes reserved for definition on a
per system basis. Execution of any of these inmstructions causes a
process trap (see Interrupts ana Traps Chapter) to a software or
microcode routine which then executes the instruction.

Tne format of the specific instructions is determined by the
programmer or microcoder who writes the emulator rcutine. These
instructions will tyeically be wused by system programmers for
operating system or compiler specific accelerators, and for entry
to user written microcode routines.

2.17 System control

X <PURGE=ATU>

* <L JAD=PHYSICAL>
* <STCRE-PHYSICAL>
* <LUAD=pPSk>

* <3TURE=PSR>

3,13 imput/Uutput

* <I0~IKk>

>*

<I0=0UT>

Kefer to I/U System chapter,

3,14 Miscellaneous

1123237
31/Aug/77
Rev. 1
Data General Corporation
Company Confidential

—— o w— s —a— — —d—— — —— — w— —— o— — -

Miscellaneous 4=29

The following instructions have been specified:

<LUAD=EFFECTIVE=ADDKESS> <REF1> <kEFe>

Move the effective address of <KEF1> to the location
specified by <REFZ>,

<COPY> <KEF1> <kEFZ2> <KEF3>
Move <REF3> bytes for <KEF1> to <REFZ>,.
<COPY=ldMeD> <IMMED> <REF2> <REF3>

Move <REFZ2> copys of the byte <IMMED> to the area
referenced by <FKEF3>,

<LOAD=CONLITION=REG> <HEF>

lLoad the condition register with the value specified
oy <REF>,

<ETCRE=CUNDITICN=REG> <REF>

Store the condition recister at <REF>,

==tnd of Chapter==-

11323237
31/Aug/77
RKev, 1
NDate General CLorporation
Company Confidential

CHAPTER 4 = Interruprts and Traps

4,1 General

All events in an EGU machine which reguire a change 1in the
normal flow of control are handleg using a trap mechanism. Traps
are divioced into three categories = procedure, process, and
system, Proceocure traps are events which can be hanaled by a wuser
procedure, These include all instruction exceptional conditions
such as fixed and flosting point overflow, etc. Process traps are
procedure caused events which neeu system jntervention in order to
be resolved, These irclude page faults, page tanle faults, protec=
tion faults, etc. System traps are asynchronous events which must
be resolved by the cperating system, including I/0 1interrupts,
power failure, etc.

All traps appear to the trar handlers Jike procedure calls,
This is rdone bty generating a varameter packet containing a single
araument and tnen pushing a state Dblock on & stack. Each trap
Wwithin a group is assignea a unicue value which is passed as the
argument to the trap hanaler. Thus the trap handler can cdetect the
type of trap by accessing the argument and, optionally, dispatch to
a uniaue type handler based on the argument. In addition, all traps
are dismissed merely by executing a return instruction, whicn Wwill
continue execution at the point where the trap was takern, This
value passing forces only one trap to bhe generated on each machine
cycle, even in a pipelined implementation,

Since traps canr be taken at different points in the execution
of an instruction, ciffering amounts of information must be saved
in order to continue execution after dismissing the trap, Thus.
the state plock must be self describing to the extent that the
return instruction can determine how to restore from it,

The number of different types of state blocks and their exact
formats are impilementation cependent., Note that <certain types of
returns have the potential for protection violations and thus must
be protected against execution by non=secure procedure segments,

1123337
31/hug/77
_ Rev. 1
tate Gemeral Corporation
Company Confidential

4,¢2 Procedure Traps mp

4,2 Frocedure Traps

when a procedure treb is taken:, the state 1s pushea on the
current stack and the pointer to the handler 18 found in word zero
of the current procedure segment, Unly the low order 22 bits of the
word are significant, and these are the adaress within the current
segment of the trap hancler, [f these pits are zero, there 1is no
trap handler, ano a2 process trap 15 generated.

Procedure trapbing can be disabled by setting the sappropriate
it in the PSk, when this bit 1is set, 3all procedure traps are
ignored.

4,3 Process Traps

There are three types of process traps - reserved
instructions, non=~primitive 1/0, and faults. All of these are
handleg in the ring 0 procedure segment (seament 2) and the state
is pushed on the ring 0 stack of the current process (segment
1J. For faults, the pointer to the hancdler is found in word cone of
the procedure se@gment, anc has the same format as the procedure
trap hanaler pointer. (Note that this segment can also generate
procedure traps and thus must have a procedure trap handler agoress
in word zero,.,) Dispatching for reserved instructions 1is oescribed
in the instruction set chapter, and for none=primitve I/0 traps in
the I/U system chapter,

d.,4 System Traps

System traps are als¢o handled in the rina 0 procedure segment
(segment 2)., In this case, however, the pointer is not te a trap
handler, but rather to a table containing ore entry for for each
possible system trap. Each entry is onre word long and has the same
format as the procedure trap handler pointer. This pointer is kept
in a2 register lcadeg in an implementation definmed fashion., when a
system trap ocCccurs, the value of the trap is used as an index 1into
the teble to find the address of the correct handlerp.

Stack handling for system traps 158 also slightly different
than for other traps. There {8 3 system stack segment (segment 0)

11:3:37
31/8ug/77
‘ Rev, 1
Data General Corporation
Company Confidential

4.4 System Traps 4=3

usea for handling system traps. #hen a system trap occurs, the
state is pushed on the current stack. If the current stack s
segment 0 (indicating nested system traps), the trap handler 1is
then invoked. Utherwise, the current stack pointer is written back
into the current TCEZ and also placed in word zero of the system
stack segment., An indicator of this special type of state block 1is
pushed on the system stack segment, and the stack and frame poin=
ters are set to point to segment O just beyond this block.

buring the resclution of any system trap, if tne trap handler
encounters a sjtuation which makes it cesire to change the current
process after dismissing the trap (e.g., 2 time slice has expired,
or an I/0 event has completed on & high pricority orocessl), it
zeroes the stack pointer in worc (0 of the system stack segment,
#hen the return imstruction encounters this special state block, it
checks if the stack pointer in word 0 is still there. If so0, it
restores the current state from the stack pointed to py that stack
pointer. 1f not, it branches to the system rescheduling routine
pointed to by word three of the ring (procecdure segment.

System traps can be disabled by setting the apeorcepriate bit in
the FHH, when this bhit is set, system traps will be queued, and
will e generated when the b1t is cleared. This 1is analogous to
interrupt enable/cdisatle on the tclipse,

Jdue to the nature of system traps and tne fault type of
process traps, oace faults can not be taken while resolving
them., Thus, all of the handler pointers and the trap handlers
themselves must be resigent in system memory.

==tng of Chaptepr=~-

1133837
31/Aug/77
Hev, 1
Data General Corporation
Company Confidential

CHAPTER & = Protection

5.1 beneral

Segments are the bhasic unit of protection. Seaments are
always referenced within a hierarchical Jdomain structure orcanjized
into units called rings. There are & pring¢s of protection. Ring 0
contains the system security kernel ang 18 the least
restricted, Ring 7 is a user domain and is the most restricted. At
all times, there i85 & current rina of execution (CKE), which
determines the access allowed to the current procedure,

There are four tvypes of access which can be allowed to a
segment. Two are related to datas access. Read access allows data
within the segment to pe fetched., #write access allows modification

of data withir the segment, The other two apply to procedure
transfer. Direct access 2llows control to be passed to any Jloca=
tien within the segment. Gate access allcws transfer to the

seagment only throuah use of a gate (describedc in the Intreduction).

whenever access is attempted to a segment, the processor
generates an effective ring numher (see Hing Maximization), and
uses that and the target segment numker as Jndices 1nto a two
dimensional access array. This arpray is associated with the current
translation table (see Memory Management) and each entry in it
contains a bit for each of the four types of access. If the bit is
set, that type of access is allowed from the effective ring to the
target segment.

5.2 Rina Maximization

In any bhierarchical system, there exists a problem of a higher
ring passing as a parameter to a lower ring a pointer to a segment
that the higher ring has no access to. To avoid this problem, the
architecture provides a technicue called ring maximization, which
is applied to all date accesses. Every hase register and byte data
pointer involved in an effective addaress calculation has a ring

1125337
31/8ug/77
kev. 1
bate General Corporation
Company Conficential

5.2 ®ing Maximjzation B=2

number contained in it. The effective ring used for access checking
is the maximum of all these rings and the current ring of
execution, In tnis way, a2 more privileged ring can make data
accesses with the same access limitations as the higher ring on
whose behalf it is executing, but a higher ring can not masauerade
as a lower (more privileged) ring.

5.5 Determination of the Current Rinag of Execution

Every procedure segment has associatea with it the mimimum
(MINRE) and the maximum (MAXRE) ring in which the procequre s
allowed to execute, These are kept in tne segment descriptor,
Whenever the proceaure sa2ament is changed as a result of a <c¢all,
Jump, or return instruction, a Pew current ring of execution s
getermined according to the follecwing formulas

CRE <= mMAx { MIN(MAXRE,CKRE) , MIMRE }

5.4 Stacks

Every ring nas its own stack seagrent with a format as descri=
bed in the Introduction. When a ring crossing is detected aquring
execution of a call instruction, the stack segment number for the
rew ring is fetched from the Task Contreol Blcck. Arguments and the
procedure state plock are pushed onto the new stack seament.

==tnd of Chapter==-

11:3237
31/7Aug/77
Rev. 1
LData General Corporation
Company Confidential

CHAPTER 6 = Memory ®anagement

Since the state of the art in memory manacement policies for
virtual systems continues to advance, it woula seem reasonable to
encacsulate EGO’s memory management algorithms in a module whose
internals are not architecturally specified., Thus, the following
descrintion of memory management for EGU implementation 1 does not
in princical pelong in this document; it 1is provided solely for
completeness,

For purroses of memory management, the logical address descri=-
ved in 1.2.2 1s further subcdiviced such that each segment consists
cf X payes, each prage containing 2K pytes:

0 ¢ 3 9 10 20 21 31

I<Ring>1<Seqg #>1<Page #>|<Page offset>|

Conversion from logical address to physical address is 1implemented
by constructing a page table for each seament. This table contains
one entry for every page in the segment (entries exist for pages
peyond the current length of the segment, but are marked 1invalid).
entry in this table (PTE = for Page Table Entry) has cne of the
following two formats, depending on the associated page’s status?

0 1 31 \r/

¢
RN e] o

Q Invalid (unallocated) page i\ . 4

W (v
012 % 18 19 31 N r,a“ﬂ f‘\
10IRIMI smare I<physical page #>| Y
R Yy o
. ¢
N 11383137
31/hug/77
Fev. 1

iata General Corporation
Company Confidential

- - — —— — ——— —— o—— —w—— —— o— 7o

b=2

Resident page

In the FTE for a resident paqge, the F=pit indicates whether the
page has pbeen referenced by a process since the last time the K-bijt
was reset, ang the M=bit ingdicates whether the page has been
modified by a process since the last time the M=bit was reset,
These two bits are required by most useful memory management
algorithms., The 1& spare bits in the resident page PTEL are availa=-
ble tc the memory manager = a typicel use might be the #=bit
reauired by the pacme fault frequency algorithm to mark pages
belonging te the active process’ working set,

The page table associated with each segment is itself 4 pages
in lenaths

2K pages/segment * 1 PTE/page * 4 pbytes/PTE * | page/2Kk bytes = 4

Since we anticipate that most segments will pe less than one fourth
their maximum length, it is desirable to reauire only those rage
table pages containing PTE’s for alloccated pages of an active
seqament to be resident in primary memory. This 1is achieved Dy
associating 4 page table pointers (FTPs) with each of the 128
segments of a process’ logical address space. & PTP has one of the
following two formats, dependinag on the status of the associated
page teble page:?

0178 31

LEE X E X B F EE R E 2 X X R LR X F X X X KN LN K X XX N

101 I<physical page table ptr>|

PTP for 2 resident page table page

01 31

11 reserved |

LE L XL EX T LEX R X S N KX J K N E R R K K3 R X N X X X3

PTF for a2 nen=resident page tacle page

11:3:37
31/Aug/17
Rev, 1
lata Germeral Corporation
Company Confidential

6=3

ihe physical address contained in a FTP for a resident page is
a byte pointer to the page table page itself (the low order 11 bits
of this pointer are always (G, since pacve taple pages must be
alianea on physical page toundaries).

The 512 PTPs associated with a process’ 128 segments are
grouped in sequence to form the process’ translation tabkle = this
table nefines its process’ logical address space, The translation
table for the currently active process is pointed at by the current
translation table pointer (CTTP), itself a ophysica)l address,
Naturally, the translation table for the currently active process

is resident in primary memory.

Eacn logical adoress emitted by the processor is translated to
a physical adcdress by acading bits % through 11 of the loaical
acdress to CTTP to select a PTF from the current translation table,
If bit 0 of this PTF is reset, a ©bouncary fault 118 initiated:
otherwise, bits 12 through 20 of the lovical address are aodded to
the pointer in the PTP to select a PTE from the page table, If
this PTE 18 invelid, a btoundary fault 1is initiated, If it is
resident, the PTE is upcated as recuired by the memory management
algorithm (for example, the fM=pit may be set), and the desired
physical address is constructed by concatemating bits 19 through 31
of the PTE with bits 21 through 31 of the logical acdress,

Although this mechanism provides the desired functionality, it
is mainfully slow, since two memory references are reguired (cne to
get the PTF, one to get the PTE)., Therefore, EGO implementation 1
will be provided with an associative acdress translation unit (ATU)
which, when providgedg with bits 3 through 20 of a Jlogical address,
either produces the associated PTE (K, M, and physical page
number), or initiates an ATU fault. This fault 1is servicea (in
microcode) by obtaining the PTE as described above, loading 1its
contents into the ATU (perhaps overwriting some other PTE in the
ATU), and retrying the translation. The ATU also faults if a page
whose Mwbit is reset is moaified. This fault is handled by setting
the M=hit of the page’s PTE ang ATU entry.

Fecause logical adoresses are process specific, the ATU must
ne purced before a2 new process is activated. Thus each page a
process references in its time slice is guaranteed to generate at
least one ATU fault,

11:3:37
31/Aug/77
Rev, 1
Date General Corporation
Company Confidertial

6=4

In order to supoort memory manacgement as cdefined above, the
memory manaaement module must be provided with the following:
1. The ability to move operands 1in primary memory uUsing
physical addresses,
2. The ability to lecad a PTE into the ATU,
3, The apility to purge the ATU.

~=fnd cf Chapter==

1123237
31/Aug/77
Rev. 1
Data General Corporation
Lompany Confidential

CHAPTER 7 = I/0 Systenm

7.1 Urganization

Information is transferred tetween an EGC processor ang its
I/0 system by means of directives = packets of self=-describing data
and control. The medium for this transfer s physical memory;
therefore directives are referred to by physical address. There
exist two cirective types: primitive, and non=-oprimitive. Frimitive
directives either represent E hNova/Eclipse programmed I/0
instruction, or specify the leocation 1in physical memory of a
nron=primitive directive whose execution is desired, Non=primitive
directives represent high~order 1/0 functions, for example, read
next sequential record from file "FOG".

tvery EGO implementation will possess hapdware capable of
executing all primitive 1/0 instructions. A specific non=primitive
girective may or may not be executable by a particular I/0 system
implementation, If it is rnot, the I/U system initiates a process
trap in some CPU in order that the <directive be emulated; the
choice of CPJ depencs on the 1implementation’s resource sharing
algorithm. Thus each non=primitive directive requires either an
I1/0 processor capable of executing it or appropriate code 1in an
emulator,

Frimitive T1/0 directives are two 32=bit words in length, and
have the following format:

0 1 2 78 15 16 31

LA E K E R X ¥ N E L R A K K. R L EN ENXEREEEEEREEEEREELERLEEFELEXXX.J

iLilLgl functionlidevice coocel data |

L X E X2 F X LR LEEXE X LYY ES XL LY RELERLEYERXEESEXEJ

| extended ocata |

LA R B B B X E BN 2 R X F XN E XN XX RN AL ELE LELLELELEEES X]

Each CPU has a unigque pair of words in physical memory called the
primitive 1/0 words (FICW) into which it places primitive
directives, This lacation is specified by the contents of the

1133237
31/Aug/77
Rev. 1
lata General Corpecration
Company Confidential

7.1 lraanization 7=2

primitive I/0 pointer (PI0OR), which is provided to each CFU and I/0
converter/processor at system initiaelization. The location of the
PIluw can ne changed if necessitated ty failure in orimary memory.

Two [/0 instructions are provided in the EGO kernel instruc-
tion set?

<I/4 In><function><device code><gestination operand
reference>

<I/0 OUT><function><gevice code><source operand reference>

txecution of one of these instructions requires an EGO CPU to first
ensure that the previous directive placea in the Pl0A has been
accepted py the I/0 system, Bit L1 of the PIO%® 1is the semaphore
which controls this process, The function and device code fields
in the instruction are then stored into the appropriate fielad of
the PI0wW., If the instruction is I1/0 CUT, the source operand 1is
fetchea ana placed in the PIUW data field, ana a "new directive"
command 1s sent to the /U system, The CPU 1s then free to con=
tinue execution. If the instruction is I/0U IN, the "new directive”
command is immediately sent to the I/0 system, which obtains the
required datum, sStores it in the aata fielg of the PICW, angd sets
the L2 bit, which functions as a data=in semaphore. The CPU
meanwhile loops on Le¢ until it s set by the I/U system, indicating
the presence of the regquired datum in the PIJW data field. L2 1is
then reset, and the datum is stored into the destination operand
specified in the instruction,

The first 16 primitive I/0 functions are mapped oirectly from
the Nova/tclipse proarammed I/0 instruction set, For reference,
the format cof a Nova/bEclimse programmed I/ instruction is shown
below?

0 2 34 5 9 10 15

I0111ACIfuntionlidevice codel

Bit 7 of this instruction imglies the direction of the transfer =
this is subsumed by the EGO I/0 imstruction opcode. The remaining
four bits of the function gefine the first 16 primitive 1/0
functions, The skip instructions translate into input
instructions; the I/0 system simply stores SELR or SELD into the
low order bit of the PIUk data fielq, which tne CPU then tests,

11:3:37
31/Aug/77
Kev, 1
Pate Genersl Corporation
Company Confidential

7.1 Urganization 7=3

Special Nova/Eclipse I/U instructions, i.e. those with device code
0, 1, 2y 3, or 77(octal), are emulated directly without the use of
the PIDN.

The seventeenth EGU primitive I1I/0 function specifies the
physical address of a packet aqescribing a non=primitive I/0
ogirective., This address is placed in the extended data ¢tield of
the PIOw; an 1/0 QUT imstructior transfers the information to the
I/0 system. The remaining 47 ftunctions are free for Jater
definition. An obvious use will be thne transfer of 32=bit data to
ana from a new family of device controllers through the extended
data field of the PICw, Microcode Jimplementing these new I/0
functions can be distrivuted (via floppy disk) if and when the new
controllers hecome availaple,

The definition of non~-primitive 1/0 directives can be made
non=architectural, 1if we are willing to ray the penalty of carryinag
arounag an emylater or I/0 processor driver for each set of
non=primitive directives defined., Alternatively, we can architec=
turally define hierarchical layers of non=primitive directives, Wwe
defer this decision until ar operating system is defined, at which
point substantially more information will be avajlable or which the
decision can be based.

7.2 Ubjectives for the EGO~1 I/0 system

The following cpjectives have been established for first EGO
implementation, These are not architectural in nature, but are
listed in this cocument for completeness,

* The EGO=1 standarg I/0 bus will be identical to the
Nova/Eclipse standard T/0 bus as specified in "The Inter-
face Lesigner’s Guice for the Nova and Eclipse" chapter 4
and appendix D. Thus any existing controllers conforming
to this specification will ©be directly <compatible with
EGU~1.,

* The EGU=1 high=speed channel wWill be identical to the
Eclipse high=speed channel as definecg in its specification,.
Thus high=speed channel controllers will be directly
compatible with EGU=1,

* Standard data channel ana nigh=speed channel transfers
petween controllers and EGC=1°s system cache will not
degrade CPU performance except when simultaneous cache
faults occur., EGUO~1 will bhe capable of sustaining I1/0

11:3:37
31 /Aua/77
RKev. 1
Data Gemeral Corporation
Company Confidential

Dbjectives for the EGO=1 I/0 system T=4

rates of 15 million bytes per secona with peaks approaching
20 million bytes per seconda

EGO=1"s I/0 converter will perform all primitive 1/0
directives anc initiate a process trap in the CPU on
receiving any non=primitive I/U0 airective? in response to
this trap, the CFPU will emulate the non=ppimitive directive
on benalf of tne I/0 converter, I70 system 1intelligence
may be increased by replacing the I1/0 converter with an I1/0
processor capable of executing some cor all non=primitive
I/0 directives.

=wtnad of Chapter==

11:3:37
31/Aug/T77
Kevs, 1
lata General Corporation
Company Confidential

CHAPTER & = BAyailability/kKeliability/Maintainability

6,1 Overview

This chapter at present contains theoretical directions which
we expect Data General ancd EGO teo be taking, This material is
indicative of the techniques we will employ, but is preliminary as
an arcnitectural gefinition,

2.2 EGU Diagnostic Control Processor Uojectives

Cata General Corporation, and 1its customers, are becoming
increasingly aware that the characteristics of maintainability and
availapility are vital to future systems sales. To meet the
availability and maintainability goals, a soft console will provide
all reauired LGU console functions executed through a teletype
interface., 1In adoiticon, it will improve system majintainability by
proviiding & software diasaagncostic capability external tc the EGO
processor system and independent of its correct operation. Availa=
bility can be enhanced by providing downline system control and the
capacity to monitor timing on critical system data paths, dthep
capabilities that can enharce marketability can be provided nearly
free given the above,

The first two objectives effectively define the basic form
that the console will take, To interrupt console commands received
through the teletyre, 1interface intelligence 1is requireg. A
software diagnostic capability independent of a working processor
system also requires intelligence, plus memory capacity = both RAM
and bulk storage. To provide the intelligence needed, a microNOVA
will be present on the conscle boards, with a teletype interface and
an interface to the EGO System. Basic contrel software for the
console is present in ROM storage, and KAM is present for data and
additional console program storage. Bulk diagnostic software 1is
proviced py a diskette unit connected to the microiUvA 1/0 bus via
an external cable. The interface to the EGD System allows the
microlUVA to force the processor to any microstate, as well eas
forcing data onto buses, and examining the data on those btuses. No
part of the actual processor need be working, except the power
supplies for the console microNUva, te perform complete

1133337
31/Aug/77
Rev, 1
liata General Corporation
Company Confidential

8.2 EGO Diagnostic Control Processor Objectives Ew2

diagnostics. lhe microiNUVA will also be provided with its own set
of self=diagnostic programs, further improving maintainability.

Enhancements to availakility are accomplished oy?

* Froviding a capability for cownline control. This is done
merely by connecting the teletypre interface mentionec to a
modem 1instead of a terminal, Lonsoie commands normally
received directly from a terminal! are then received via a
phore line., This allows remote diagnosis of the system
before a field engineer arrives at the site.

* Proviaing the capability te monitor timing on critical
system ndata paths. This does not reduce failure probabil=
ity but aliows imminent failures to be located before they
occcur py spotting symptoms indicating failure, such as late
bits.

* Providing the ability to continuously moritor the power
supply. This feature will enable early warning of power
supply irregularities, and avoid catastrophic failures or
critical data loss,

* Providing the apility to run diagnostic programs from the
console at sprecified hardware breakroints. This eases
software debuaging and allows the checking of specified
hardware reaisters or paths in the midale of certain
routines.,

The diagnosis of intermittent hardware failures is generally
difficult. C(lassically, the simplest way to locate such an inter=
mittent failure is to vary the system characteristics until the
failure becomes hard. The diagnostic control processor can facili=
tate this debugging of intermittent failures by permitting us to
vary three key parameters:

* voltage
* temperature
* clock fredquency

1183337
31/7h0ug/77
Rev, 1
Lata General Corporation
Company Configential

Ea.2 EGU Diagnostic Control Processor UObjectives B=3

within certain rigid limits, these parameters may be varied,
under the control of the microNOYA, as an aid to off=line failure
analysis,

~=tnd of Chaptepr==

11:3:37
31/Aua/77
Rev, 1
vata General Corporation
Company Confidential

CHAPTER 9 = Measurement and Debug Aids

mefnd of Chapter=-

11:3:37
31/Aua/77
» Heva. 0
Data General Ccrporation
Company Confidential
0 3=2 ADD=10

LJNNN IO D D DR BN T D NN BT DA B NS DN IR D DT D N D DR D D D RN DN N DNNE RN BN DENE B DN NN DO D D DN B R |
NNSNNSNNSANSNNSNSNSNANNSNCOCCOCO T oVVWVIVMIUVNIVUIVNNIVIVVIVNNE DS PR EEDERENWWWIWNWMWWWRWWIWLWNNIVNN NN

COOCTOOOD OO LOOCOODOCOCIOTOODOO Lo OOUOODOOOO OO OO OO0 DO OO SO C D OO OO OO OO ODODDOODCOO

SUBTRACT=16

RSUB=16

MULTIPLY=16
REFIDE=~16

REMAIN=16

MOVE=16

COMPARE=~16
COMPARE=WITHIN=LIMITS=16
SHIFT=ARITHMETIC=16>
ABSULUTE=VALUE=16
NEGATE=16

ALD=I=16
SUBTRACT=I=16
MULTIPLY=I=16
DIVIDE=I=16
REMAIN=I~16
MUVE=I=16
COMPARE=I=16

COMPARE=WITHIN=LIMITS=I=16

SHIFT=ARITHMETIC=I=16
CUMPARE=16=(
INCREMENT=16
DECREMENT=16
CLEAR=16

ADD=3¢2

SUBTRACT=32
MULTIPLY=32
DIVIUE=3Z

MOVE=32

CUMPARE=S32
REMAIN=3¢
ABSULUTE=VALUE=32
NEGATE=32
COMPARE=WITHIN=LIMITa=3?2
SHIFT=ARITHMETIC=32
AQD=I=32
SUBTRACT=Im32
MULTIPLY=I=32
DIVIDE=I=~32
REMAIN=]=32
MUVE=T=32
COMPARE=I=32

COMPARE=WITHIN=LIMITS=1=32

SHIFT=ARITHMETIC=]=32
COMPARE=32=0
INCREMENT=32
DECREMENT=32

CLEAR=Z3?

ADD=§

SUBTRACT=8

MULTIPLY=8

DIVILE=S8

REMAIN=B

MUVE=n

COMPARE=8
COMPARE=WITHRIN=LIMITS~8
SHIFT=LUGICAL=~8

AnD=8

10Rk=3

XOR~8

SET=DIFF=8
COMPLEMENT=8
MASK=MERGE =¥

OO T OOOCODOLODOUOOOODODOOOODDOUDDOOODCOCODOOOODOODODORDOUODTOO0OODOCODODOOO

ADD=I=8
SUBTRACT=]=8
MULTIPLY=I=8
DIVIDE=I=-8
MOVE=T=8
REMAIN=]=8
COMPARE=]=8
SHIFT=LUGICAL-I=8
COMPARE=ANITHIN=LIMITS=1=5
ANp=]=3

IOR=I =8

XKUR=I=8
SET=UIFF=]=8
MASKmMERGE~] =8
COMPARE=8=0
INCREMENT =8
DECREMENT =3
CLEAR=8

ADD=U=32
SUBTRACT=U=32
MULTIPLY=Ui=32
DIVIUE=U=32
REMAIN==32
MOVE=U=32
COMPARE=U=32
COMPARE=NITHIN=LIMITS=li=32
SHIFT=LOGICAL=3%2

{ I IS D N N R N R |]
S OOV OO OC O L OO L OO XTI DO D

N NN NN NN W N NN RN W W N NN W W W W N N W W N N W W W
1

-10 AND=32

=10 TJOR=32

=10 XOR=32

=10 SET=LIFF=32
=10 COMPLEMENT=32

3=10 MASK=MERGE=32
3«10 ADDR=U=I=32

3«10 SUBTRACT=U=I=32
3=10 MULTIPLY=U=I=32
3=10 DIVIDE=U=I=3¢
3=10 MOVE=U=I=32
3=10 REMAIN=Um=]=32
3=10 COMPARE=U=I=32
3-10 COMPARE=32=0
3=10 INCREMENT=32=U
3=11 DECREMENT=32=l

3=11 CLEAR=32=U

3=11 COMPARE=WITHIN=LIMITS=32=U
3=11 SHIFT=-LOGICAL=I=32
3=11 AND=]I=32

3=11 IO0R=I=32

3=11 X(OR=I=32

3=11 SET=DIFF=I=32

3=11 MASK=MERGE=I=32
3m12 ABSULUTE=~VALUE=FP
3=12 NEGATE=FP

3=12 EXTRACT=EXPUNENT
3=12 ADD-SP :
3=12 SUBTRALT=SP

3=12 MULTIPLY=SP
3~13 ODIVIDE=SP

3=13 MOVE=SP

3=13 CUMPARE=SF

3=13 NOKMALIZE=SP
=13 INTEGERIZE=SP
3=13 CUMPARE=ZERU~SP

OO0 O COOOVLOUODUOOULULCOCODOCOOODTTIOTODU OO ODDDOCODODOOOODODTTODOTOTT OO C OO0 OO OO OO0 O0O

3=18
3=-18
3=18
5=18
i=18
3=19
=19
3I=20
3=20

SCALE=3P

HALVE=3P

ADL=DP

SUBTRACT=S8P

MULTIPLY=CP

DIVIGE=DP

MOVE=DP

COMPARE=DP

NURMALIZE=DP
INTEGERIZE=DP
COMPARE=ZERU=DP
SCALE=DP

HALVE=DP

MOVE=BYTES=UP

MOVE=2 YTES=DOnN
MOVE=BYTES=FILL=RI]GHT=DUORN
MOVE=BYTES=FILL=LEFT=UP
SCAN=BYTE=UP
SCAN=BYTE=DUwM
SCAN=NUT=BYTE=UP
SCAN=NUOT=BYTE=DUwN
COMPARKE=STRINGS
SUBSTRING
SCAN=SUBSTRING=UP
SCAN=SUBSTRING=DU®N
MOVE=TKANSLATED=STRING=UF
MOVE=TRANSLATED=STRING=DUWN
CHARACTER=SCAN=UNTIL=TRUE
CHARACTER=MOVE=UNTIL=TRUF
TEST=AND=SET=821T
TEST=AND=CLEAR=BIT
TEST=pIT

SET=ZIT

CLEAR=BI1T
FIND=LEADING=BIT
COUNT=3ITS
MOVE=FROM=BIT
MOVE=TQO=3IT

ADL=DECIMAL
APDD=DECIMAL=GIVING
SUBTRACT=DECIMAL
SLBTRACT=DECIMAL=-GIVING
MULTIPLY=OECTIMAL
MULTIPLY=DECIMAL=GIVING
DIVIDE=DECIMAL
DIVIDE=DECIMAL=GIVING
REMAIN=DECIMAL=-GIVING
COMPARE=-DECIMAL
COMPARE=2ERO=DECTMAL
MOVE=-DECIMAL

SCALE=-LEFT

SCALE=RIGHT

ROUND

ECIT
MODIFY=STACK=PUOINTER
PUSH=8

PUSH=16

FUSH=32

PUSH=&Y

PUP=B

POP=16

POP=32

POP=64

COODOOTOODOOOO OO ODOLDODODODOODOOTOO OO DO OOOO0

3=23

MOVE=~SP

PUSH=PC

POP=PC

CALL=PDIFF
CALL=PDIFF=PACKET
CaLL

CALL=PACKET

RETURN

RETURN=ARG

JUMP Q= CONDTTION
JUMP=GT

JUMP =T

JUMP =NE

JUMP=E G

JUMP=st

JUMP=LE

JUME
DISPATCH=IMMEDTATE
DISPATCH=IMMEDIATE=PUSKHRFC
DISPATCH
DISPATCH=PUSHPC
DISPATCH=CALL
DISPATCH=CALL=-PACKET
CUNVERT=INTEGER=TNO=8P
CONVERT=INTEGER=TQO=0DP
CUNVERT=SP=TO=INTEGER
CUNVERT=DP=TO=INTEGER
CONVERT=SP=TO=0DR
CONVERT=CHARACTER=TU=0P
CONVERT=OP=TO=CHARACTER
PURKGE=&TU
LOAD=PHYSICAL
STORE=PHYSICAL
LUAD=PSR

STOKE=PSR

IG=Iw

10=-0UT
LOAD=EFFECTIVE=ADDRESS
CoPY

COPY=TMMED
LOUAD=CONDITION=REG
STORE=~COMNDITION=REG

