
$$$$
:b :II $
$ $ $
$ $ 3>
$ ~ .$

$ $ $
$$$.$

31$$!b$

!ll
$
$$~$

$
$
$$lb$$

:ll$$$

:b
:J,

$

$ ~:ti
!h $

$:1;.$$

$$$
~ ;b

$ 1>
$!b
&. $
S $

!fl,£' $

USER=EGU GU~UE=LPT UEVICE=@LPA
BEw=151 QPRI=127 LPP=63 CPL=80 COPIES=l Ll~IT=153

$$~ $~$:s
;b $ $ $
ill $ ~
111 ~ ;j)

$;iI 1£
;£ $;j;, s,

;y,~;), :i!$$

CREATED:
ENI;.LJE.UE.O:
PRIf~TIN(;:

31-AUG-77
21-DEC-77
21-DEC-77

11:16:£12
13:3,,:30
13:38:31.l

PATH=:UDU:EGO:DUCUMENT.LS

$ $ $ $;£,$$$ $ $ ~$$$$

$ $$ $$ $ $$ $ $
$ ~ ~, $ ~ :t. $ $;1)

$ ~ :£. $ $$$$ $;t.$;I)

$;ji :2, $ $ ~ ~
$ ~ $ $ $:£. ~

$$$.$ 3! $$;1.$$!b J., :fi

AOS XLPT REV 01.00

$
:!>
$
~
$

$f, :£
:bSl $$$$~

$$$ -
$ $
$

$$$
$

$ $
$$:11

CHAPTER 1 - Introduction • • • ..

1.1 Address Structure. • • • •
1.2 Available Req;st~rs ••••
1.3 Data Aodress Formation • • •

1.3.1 General Adoress;n~ • • •
1.3.2 Register Aodress;ng • •
1.3.~ Local Variable AddresSing.
1.3.~ Argument AOdressing. • •
1.3.S Data Indirection ••••
1.3.6 Character String Addressing
1.3.7 bit Adoressing • • • •

1.4 Procedure Adaress;ng. • • •
1.~.1 Procedure Indirection ••
1.4.2 Gate Array. • • • • •

1.~ Stack Structure • • • • •
l.b Opcode Format • • • • • •

CHAPTER 2 - Data Types and Formats

2.1 I:.iasic Allowable lypes
2.1.1 Floatinp Point
2.1.2 Fixed • •
2.1.3 Logical. •
2.1.4 unsiqnen •
2.1.5 Character •
2.1.6 Commercial.

2.2 Rounoing • • •

•
•
•
•
•
•

CHAPTER 3 - lnstruction Set

•
•
•
•
•
•
•

3.1 Introduction • • •
3.2 Signed Fixpd ~o;nt •

3.2.1 16 dit Fixed Point
3.2.1.1 <REr>I<REf> •
3.2.1.2 <REF>I<r~~ED>

3.2.2 32 oit rixed Point
3.2.2.1 <REF>I<kEF> •
3.2.2.2 <REF>I<lMME0>

3.3 Unsigned. • • •
3.3.1 Uns;~ned 8 bits

3.3.1.1 <~EF>I<RtF>
3.3.1.2 <REF>I<I~MED>

3.3.2 Unsigned 32 Bits.

•
..
•

•

..

• •
• •
• •
• •
•
• •
• •
• •

• •

.. •

.. •

.. ..

.. •

.. •

.. • .. •

.. ..
• ..
• •
.. ..
• •
.. ..
.. ..
• •

..

..

..
•
•
•
•
•
..

•

..

..
•
..
..
• ..
..
..
..
..
•
..
..
•
..

..

•
•
• ..
•
..
..
..
..
•
•
•
•
•
•

•

•
..
..
..
..
..
..
..

•

•
..
..
..
..
..
..
..
• ..
..
..
..
•
..
•

3.3.2.1 <REF>I<REF>
3.1.2.2 <REF>/<lMMED>

3.4 Floating Point. •
3.4.1 8inqle Precision
3.4.2 Double Precision

3.5 Character .. • ..

Floating Point
Float;n~ Point

3.6 Sit • • •
3.b.1 Single dits
3.0.2 Multi-bit
3.6.3 Bit Numeric

..

3.7 Commercial
3.8 titack Manipulat,on
3.9 Jumps.. • • ..

3.9.1 Entry and Exit
3.9.2 vanilla Jumps

..

..

..
•

..

•

..
• ..
•
•
..
•
• ..
•

II
.. • .. •
.. • • ..
.. •
..
.. • .. • .. • .. •
• •
• .. • ..

• • .. •

..

.. •

.. • •
• •
.. •
.. •
..
•
•
.. •
.. •
..
.. .. • ..
.. •

.. •

..

.. •

.. •

.. .. • • .. • • •

.. •

.. •
• .. • ..

• .. • ..

• • • ..
.. .. • ..
..
.. .. • ..
• • .. •
.. •
.. •
•
.. • .. •

.. • ..
..
.. .. • ..
• to
• .. • •
•
• .. • ..
• • • •
.. •
• .. • ..
• •
• • .. •
• •
•
.. .. • ..
..
.. •
.. •
.. •

..

•
•
• ..
•
..
• ..
..
•
•
..
..
..
•

•

•
• ..
..
..
•
..
..

..

..
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• ..
•
•
•
•
•
•
•

•

..
•
•
•
•
..
• ..
..
..
..
..
..
..
..

1-1

1-1
1-1
1-3
1-3
1-4
1-4
1-5
1-5
1-5
1-6
1-7
1-7
1-8
1-9
1-11

• <:-1

.. 2-1
• 2-1
• 2-1
.. 2-1
• 2-1
.. 2-2
• 2-2
.. 2-2

..

.. 3-1
• 3-1
.. 3-1
• 3-2
.. 3"'3
• 3-4
.. 3-4
• 3-5
• 3-6
• 3-6
.. 3-b
.. 3-7
• 3-9
• 3-9
• 3-10
• 3-11
• 3-12
• 3-14
• 3-15
• 3-18
• 3"18
• 3-19
.. 3-19
• 3-20
• 3-22
.. 3-23
• 3-23
• 3-25

3.9.3 Dispatcnes • • • • 3-25
_~ • 10 Conversion • 3-27
3.11 f.ieserved Instructions 3-28
3.1d tiystem control .. • • • 3-28
.) .. 13 lliPut Il)utput • 3-28
:3. 14 M; sce 11 8I"leO'JS • 3-28

CHAPTi:.i< 4 - Interrupts and Traps • • • .. • 4-1

4.1 Gelieral • .. • .. • • • 4-1
4.2 Procedure Traps 4-2
4.3 ,",rocess Traps .. • • • .. • • 4-2
i.I.4 SYstem Traps 4-2

CHAPTtK '5 - Protection • · 5-1

S .. 1 General • 5-1
5.2 Ring Maximization • • 5-1
5.3 Determination of the Current Ring of Execution 5-2
5.4 Stacks • • • • .. • .. • • 5-2

Ch.4PTER b - "';emory f-! a 1"\ ape men t • • b-1

CH.AP1E:.R '7 .. I/O System 7-1

7 • 1 Organization • • 7-1
7.2 ubjectives for the EGO-1 I/O system .. • .. • .. • 7-3

CHAPTER 8 - A v eo ; I a b i 1 i t Y IRe 1 ; ab i 1 ; t y I '''1 a; n t a ; nab i 1 ; t y • " 8-1

8" 1 Uverview .. • .. • • • • 8-1
8.2 EGO D;agnostic Control Processor Objectives • .. " 8-1

CHAPTER 9 - Measurement and Debug Aids" " " .. • " 9-1

This ;s not the eno.
It ;s not even the beginning of the end.
aut it is the eno of the beginning.

winston Church; 11

Data General Corporation
Company Confidential

-1

11:3:37
31/Augl17
Rev. 1

Data General Corporation
Company Confiaential

-2

11:3:37
31/Aug/77
Rev. 1

-3

Data ~eneral, to eccomodate ,ts present customer's growth
requirements and expand its sales base, must develop a medium scale
architecture for near ter~ use. This arc~itecture w,ll alleviate
the logical adaress space limitation evidenceo ;n the Eclipse line,
and will provide a contemporary arChitectural foundation for a ne~
line of small and ~edium scale systems.

1. fhis medium range arc~itecture will allow for implementations
from low cost silicon to hi9~ performance multi·unit
processors.

2. It will have a large logical address space· somewhere in the
range from B megabytes (2**23) to U billion bytes (2**32).

3. The desiqn will be extensicle for future enhancement both in the
instruction set and the architectural organization.

4. There will be upwara and downward compatibility at the object
code level. This will enable us to provide a sinple code
generator and run time library for each lan9UaQe, and to
proviae program transportaoility in a network environment.

5. The basic orientation of the machine is for user programming in
high level languages (COBOL, FORTRAN, RPG, etc.)

6. SPL will be an inteqral part of the machine environment. All
software should be ;mplementaole in SPL.

7. There will be no architectural limit on file stora8e capacities.

1. The machine will be released to manufacturing e~gineer;ng in 14
months ana be aeliverahle within 20 months of project
startup. This implies a straightforward implementation.

2. Tnrough use of ~ood e~g;neer;n9
w;ll strive for intrinsic

practice, the
reliability to

Data General Corporation
Company Confidential

implementation
provide good

11:3:37
31/Aug/77
Rev. 1

-4

availibilityand low MTTR. Self diaqnostic capabilities
wi1 I be provided.

3. hisk will be minimized by utilization of existing circuit design
(E/SOU FPU), packaging schemes (E/250), and mature technol­
ogies (TTL) wnere possinle.

~. ~ew circuit aesigns
Max Boards Max Cost

CPU (including cache)
Aadress Translation Unit
Console Controller (w/Micro-Nova)
SC ~pmory Controller (1 per 2 Mb)
250K Hyte SC Memory w/E~CC

4
1
1
1
1

$

Existing circuit designs requiring modification:

Migh Speea C~annel
E/500 FPG

5. Eclipse compatibility will be provided at the user level by a
processor mode, thus enabling per process selection of
Eclipse e~ulat;on. Performance in this mode will be max;m­
ized subject to the overall time constraints on the
project. (Target improvement is 25% faster than the E/SOO).
Emulation of the ~/SOO map is under investigation. This
capability, which would proviae operating system transpor­
tability from the Eclipse, will be included if possible. It
is anticipated trat the tclipse compatibility will not be
included in later implementations.

b. The 1/0 DUS will be compatible with the Nova and Eclipse 110
cus, data channel bus, and high spee~ channels.

7. The 110 bandwiath will have the same ma9nitude as the memory
bandwidth.

8. The data pathS for fixed point arithmetic will be 32 bits wiee.

9. Hardware features (especially accelerators) that are
to each market seqment will be modularized so
machine can be economically configured for
functions.

Oata General Corporation
Company Confidential

applicable
that the

various

11:3:37
31/Aug/77
kev. 1

10. As muCh software as possible will be written in SPL. The only
constraint on this objective will be the availibitiy of the
SPL compiler and debugger.

1. The prOduct will provide a ~raceful up~ard growth path from tne
Eclipse c/500 series in terms of immediate performance
improvements and long term conversion to the faster, higher
capaoility native mode.

2. Although the initial implementation will provide a high end for
Data General's product line, it is anticipated that future
implementations wi 11 be less expensive, ano thus, when the
FhP arrives, this architecture ~ill provide a high level
langua8e compatiole lower end for the product 1 ina.

Uata General Corporation
Company Confidential

11:3:37
31/Aug/77
Rev. 1

CHAPT~R 1 - Introouction

1.1 Address Structure

The EGO architecture supports a
aodress space of 51? million bytes.
into 128 segments, each containing
segment can contain either proceoure

process wide, two
This total space
up to 4 million
or data.

oimer"ls;onal
;s divided
bytes. A

The basic addressinQ granularity ;s to the byte. The address
mechanism of the memory system is always preser"lteo with e "virtual
address comprised of segment and oyte offset within the segmer"lt.
This logical address is 29 bits in length. (See Memory Management
ChaPter for a detailed description of me~ory management and the
translation of the logical address to a Physical address).

1.2 Available Registers

The processor contains the followinA
available to the programmer for use ~ith the
set:

classes of registers
standard instruction

* Sase hegisters (~R) • The 8 base repisters are 32 bits wide
and contain a byte pointer. bits 0-2 of this pointer
represent a ring number, bits 3-9 a seQment number, and
bits 10-31 a byte offset. base register O;s the Program
Counter (PC), SRi the Frame Pointer (FP) , and ~R2 the
argument LinkaQe Pointer (LP). base register 0, the PC,
can only oe mocified as a result of a branch type
instruction. In all other cases, an attempted mooificat;on
of BRO ;s inhibited and signalled as an error conaition.

* Inde~ ~eg;sters (XR) - Eight 32-bit ;noex registers are
provided.

* Accumulators (Ae) - There are eiqht 32-b;t accumulators for
use in f;xad or floating point operations. 32-b;t signed
or unsigned tixeo point numbers or single precision float­
inq point numbers can be movpd to the AC's directly.
1e-bit signed fixed point values are sign extended to
32-bits on a move to an AC. a-bit unsigned values are zero

Data General Corporation
Co~pany Confidential

11:3:37
31/Aug/77
Rev. 1

1.2 Available Registers 1-2

extenaed to 32-bits on a move to an AC. Double precision
floating point values may only be movea to an even-odd pair
of AC's providin9 four dOUble precision floating point
accumulators numbered zero two, four and six. Character
data types and commercial data types may not be moved to an
AC. Bit data types may only be moved to an AC us;np the
bit numeric type moves on a bit field of no more than 32
bits.

The precedin9 registers are maintained on a per procedure
oasis. ~hen a new procedure is called, the registers are saved,
ano their initial values in the new procedure are indeterminate. On
a return, the old values of tne registers are restored.

In addition to the rep;sters, there is a process wioe control
register calleo the Procedure Status Register (PSR), which can only
be mooified using privileged instructions. This register contains:

A cond,tion register (CR) whicn oeserioes the condition of
the results of all operations performea within the ALU.

Rounding mod~ bits to define the type of rounding to be
performeo at the end of floating point arithmetic
operations.

Trace bits to oefine procedure tracing to oe performed.

Emulator mode bits defining the instruction set currently
being executed.

Procedure trap inhibit bit.

System trap inhibit bit.

Privileged instruction enable bit.

The PSR is saved through traps, but is not saved
cedure call. ~hen a new procedure segment is invoked,
these bits are automatically set from values in
descriptor.

Data General Corporation
Company Confidential

on a pro­
certain of

the segment

11:3:37
31/Aug/77
Rev. 1

Data Address Formation

1.3 Data Address Fcrmation

An EGU operand reference ;$ self describing and falls into one
of tour categories: general, register, local variable, and
arqument. Each of these cate~ories permits indirect addressing,
spec,fied when the "5" bit is set. (except index and accumulator
register specification in the register adoress cate~ory)

1.~.1 General Addressing

The following formats are used for general address generation:

8R byte I-Ielative
(signed disp)

t3R !}yte Relative
(signed cisp)

oR tSyte ~elat;ve
(posit;ve disp)

--~-~-~--~-~--~~~--~-~~-~~ 1110lti1l BR I XR lDISP (7) I

-----------------------------o 1 2 3 4 5 b 7 8 9 15

1111101 BR I xR InljDISP (lc.i)

-.. _------------------------------o 1 2 3 4 ~ b 7 8 9 10 23

1111111 oR I xR I@IDISP (22)

---------------_.------------------------o 1 2 3 4 5 6 7 8 9 IV 31

Each of these formats contains a case register field caR), an
index register field (XR), and a displacement field. An effective
address ;s constructed hy first summing the offset from the speci­
fied SR, the low order 23 bits of the Xk and the displacement field
sign extended to 23 bits (in the 32 oit for~, the displacement
fiela is zero extend~c to 23 bits). If the XR field is zero, no
index register is used in the computation. If the result ;s greater
than 2**22, a segment overflow trap is qenerated. Otherwise, the
result ;s concatenated with the segment number from the bR to form
the effective aOdress. In all cases of cyte addressing, bits 0-8 of
the specified XR are ignored during the aadress generation cycle.
~hen PC relative aodressing is specified CBRO), the value of the PC
used is the address of the first opcode oyte.

Data General Corporation
Company Conf;aent;al

11:3:37
31/Aug/77
Rev. 1

1 .. 3,,2 Register Addressing

1.3.2 Register Addressing

The BRs, XRs, and accu~ulators (ACs) are addressed using the
followinq formats:

8ase r<eqister 10101(1110)1 Sf.<,

----~------------o 123 4 5 b 7

Index Rep;ster 10101010101 XR I

~~---~-~---------o 1 2 3 1.1 ':> b 7

Accumulator 10101010111 AL I

-----------~-----o 1 i 3 4 S b 7

1.3.3 Local Variable Adoressinq

Local variables in the stack frame can be addressed using the
following abbreviated format:

10' 1 I OJ I FP+

The FP+ field is interpreted as a word offset relative to BR1,
the frame pointer. Thus, the effective address is formed by shif­
t,ng the FP+ field left two bits (forming a oyte displacement) and
adding it to the frame pointer offset.

Data General Corporat1on
Company Confidential

11:3:37
31/Aug/77
Rev. 1

1.3.4 Argument Address;ng 1-5

1.3.4 Ar9ument Addressinq

Arguments passed to a subroutine can be addressed using the
following abbreviated for~at:

Linkage Pointer
V,or'; Positive

IOIOlll.:iJ1 ARG
.. ---------------o 1 234 7

The ARG fielo is interpreted as a word offset relative to BR2,
the linkage pointer. Thus, the effective address is formeo by
shift,n~ the AK~ field left two b1ts (forming a oyte displacement)
and adding it to the linkage pointer offset.

1.3.~ uata Indirection

~hen ;nd;rection is specified, the eff~ctive address points to
a byte data pointer in memory, used to address the desired operand.
The format of that pointer is:

I<Ring>1 <Seg #> I<Se~. Offset> Byte Data
Pointer ---------------~-------------------~~~--o 2 3 9 10

1.3.~ Character String Ao~ress;ng

To facilitate 8eneral purpose string ooerat;ons, a string
addressing oescriptor has been defined which contains all necessary
information~about a character string. The descriptor has the
fol1o~;ng format:

Data General Corporation
Company Confidential

11:3:37
31/Aug/77
Rev. 1

1.3.b Character Strin~ Addressing

8yte String ~yte Data Pointer
I __ """""' ________ .. _ _~-...... --..,.,,-.... --... --.... ------...... __ .. --_I

Descriptor 16-bit max length I 16-bit current lengthl
,~~~------~~-~-___ ~ __ I ______ --~-----~_~_~I

IJ • 1:> 10 31

1.3.7 Bit Addressing

It is necessary to builo some form of bit aooressability upon
a native byte addressable structure. The form this support takes
is invisiole to the aderess portion of the memory system. The
underlying addressing mechanism within the orocessing unit performs
the necessarY transformati~n between bit and byte and the necessary
extraction of a cit alipned field from the byte aliqned operand.

A bit aderess is proauceo in one of two manners: with or
without inoirection. ~hen indirection is not specified, the
contents of the displacement field and index re9ister (if indexing
is specified) are acaeo together to form a bit offset relative to
the byte pointer contained in the soecified base register.

If indirection is specified, the oisplacement and
register are interpreted as byte offsets as in a regular
address. The byte address generatea points to a descriPtor
the follow;n~ format:

Byte Uata Pointer
!:}it Pointer

oit offset

index
data
with

The first wora is a byte oata oointer. The second word is a
bit offset relative to the byte specified in the paired pointer.
the bit offset relative to the byte pointed to by this pointer.

Data General Corporation
Company Confidential

11:3:37
31/Aug/77
Rev. 1

1.4 Procedure Addressing 1-7

1.4 Procedure Addressing

The fol10w;np formats are used to generate a procedure
adoress:

PC byte Relative

~R Syte Relative
(signed disp)

~R Byte Relative
(s;qned disp)

BR byte Relative
(positive disp)

101 uF-f::>E1
-----------------o 1 2 3 4 5 b 7

_ _-.ro _ ... ____ __ __ _ ____ _

IliOliiil Bf< I xH IDI5P (7) I

-~--~-------------~-~--------o 1 2 345 6 7 a 9 15

I 1 I 1 I 0 I b R I X f(i ,il I f) I S P (14)

--.---.--------.-----~------------o 1 2 3 a 5 b 7 8 q 10

1111111 aR I XR 1,IIDISP (22)

--~--------------------.-------------------o 1 2 3 4 5 b 7 8 q 10 31

All forms except the 8 bit form are equivalent to a data
selaress formation. The evaluation of aisplacement fields, base
register, and indexing are the same. The 8 bit form has an implieo
case of BRO, tne PC, ana has a signed byte offset relative to that
base. The value of the PC usee is the address of the first opcode
byte.

1.4.1 Procedure Indirection

~hen indirection ;s specified, a procedure pointer is fetched
from memory_ This pointer is used to aoaress the target of the
instruction. The for~at of a procedure pointer reached by indirec­
tion is;

Data General Corooration
Company Confidential

11:3:37
31/Aug/77
Rev. 1

Procedure Indirection 1-8

---...... -.......... ----... ...,.-...,..,. --....... -.---... -~..-.-.--
I ''''ODE I <SEl:i#> I FII:LU

---------------~------------------------023 '-I 1U .H

Mode bits (0-2) define the format of the pointer. The follow­
ing encodings have been defineo:

000 - Present Segment, Absolute Offset
001 - Present Segment, PC Relative Uffset
010 - <SEGMENT I>, Absolute Offset
011 - <SEGMENT #>, Gate #
100

• - ResE"rved
•

1 1 1

Procedure pointers allow for inter
transfers.

and intra

1.4.2 Gate Array

segment

It ;s necessary to restrict access to procedure seqments that
are more privi leged then a calling procedure. This is done by
allowing control to enter these segments only at specific routine
entry points called gat~s. In this case, the caller, insteao of
specifying a byte soeress, spec,fies a gate numoer (procedure
pointer moce Oil). This number ;s used as an index into a gate
array which contains the oyte address of the routine to be
executea. Gates are numberea starting with O. The Rate array is
located starting at word 8 of the target procedure segment, and has
the following format:

Data General Corporation
Company Confidential

11:3:37
31/Aug/77
Rev. 1

1.4.c Gate Array

I Absolute Offset Gate 1:1 N

---.~--------.-----------------~--o 9 10 31
•
•
•

....... -.........--..... -....--... --......... ---................ -~,.-
I Absolute Offset GAlE # 0 _______________ ~ ____ M ____________ _

o 9 10 31

I ~ax bate Number
._---------------------------.----o 9 10 31

Before the gate entry is fetcneol the gate number is compared
to the max gate number conta;neo in word d of the segment. If
within this bound, the referenceo offset ;s used as the tar~et of
the instruction. If it is not with,n oound, an error conoition is
signalled. The first 8 words of eaCh procedure segment are reser­
veo for interrupt and trap vectors.

1.S Stac~ Structure

Efficient nanaling of subroutine call and return, trap proces­
sing ana space for temporary variables ;s achieved by support of a
stack mechanism. The staCk is divideo into units called frames.
~hen a subroutine is called or a trap processed, a new frame ;s
created. The structure at the stack at a typical point in time is:

Data General Cor~oration
Company Confidential

11:3:37
31/Aug/77
Rev. 1

1 • i;> Stack Structure 1-10

LCIC AL VAl"< I A8LEti
~2

STACi< POINTE.R ~2

1---------------------------------1 FRAM~ POINTEk 12

I~PLEMEN1ATro~ DEFIN~D SAvE
AkEA

•
•
•

i---·-·--~~-~-----------~-------·-I PkOCEDURE DIFFERENCE.
,--------~-~--~~--~---~----~------I

<P RGlfi\l>

•
•
•

I-----------------~---------------I LINKAGE POINTER #2
I-------------------------·~------i ~TAC~ PUINTEk #1

LOCAL VARIAHLES
#1

11\ 1---------------------------------1 FRAME. POINTER #1
I
I
I

IN(;R!:ASING
ADOk£SSF.:S

I~PL~M£NTATIUN DEFINED
SAVE AkEA

PRUCEDURE. DIFFERENCE
i---·-----------·------------~-~~-I

•
•
•

<,ARG#l>
I - - _ ... - - I L r !'~ K A (. E P 0 J i~ T E. R ~ 1

The functioning of the stack is as follows: ~hen a call
instruct10n is issued, an argument pec~et can be built on tne
stack. (Alternatively, the argument list can be ouilt in a segment

0ata General Corporation
Company Confidential

11:3:37
31/Aug/77
Rev. 1

1.~ Stacl(Structure 1-11

other than the stack seqment). The present values of the stack
pointer, the proqram counter (~~O), the frame rointer (~k1), and
the linkage pointer (bR2), are saved on the stack. FP ana SP are
upoated to the next available (empty) stack location, and the PC is
updated with the startinq aadress of the first instruction to be
executed in the called subroutine. Typically, a called Subroutine
then allocates stack area for local variables witt'! the save
instruction.

A return restores the stack to its previous state.
values of PC, FP, LP, SP and all reg1sters are restored
value prior to the call.

rne old
to their

~nen a subroutine is called, the values of all registers are
not propagatea across the call.

~ach staCK occupies a segment by itself. ThuS overflow and
unoerflow are detected by segment boundary faults whiCh (in the
case of overflow) can be resolved by the operatinq system invisibly
to the executin~ procedure.

1.0 Opcode Format

are:
There are two opcode formats of 8 and lb bits. The encoaings

I f1elo1 Code
----------------o 1 2 oS 1.1 ~ b 7

~here "field" is 0 through 14, defining 2ao instructions.

ill 1 1 I Cooe

---~----------.-.-----------.----.-15

Defin;n9 409b instructions for this format,
or a total of 4336 instructions.

Data General Corooration
Company Confioential

11:3:37
31/Aug/77
Rev. 1

1.6 (Jpcode Format

--Ena of Cha~ter--

Data General Corooration
Lomcany Confidential

11:3:37
31/Augll7
Rev. 1

CHAPTEk 2 - Data Types and Formats

2.1 dasic Allowable Types

lhroughout this discussion, a single orecision word will be
considered to have 32 bits. A sixteen-bit entity will be termed a
"half word". Eight-bits constitute a hyte or character. [his
section reviews the types supported by the architecture.

2.1.1 Floating Point

Real numbers will be represented in standard Data General (and
IBM) format. Both sinole precision and double precision will be
suported.

Variable length formats such as tnase used in PL/I will not be
precluded, but direct support will not be available.

~.1.2 Fixed

Fixea point numbers are supporteo in 2's complement integer
representation. Direct support for half word and single precision
is providea.

2.1.3 Logical

Logical values occupy a one blt container and have the value
zero or one. ~it testing is specified within the architecture. 8
or 52 bit unsigned values treated as logical are considered a
string of one bit logicals.

2.1.4 UnSigned

As of this writing, Rick Miller is still intent on playing out
his option.

In addition, 32-bit and a-bit unsigned
supportec.

Data General Corporation
Company Confidential

Quantities are

11:3:37
31/Aug/77
Rev. 1

2.1.5 Character 2-2

2.1.5 Character

Provision ;s maae for character (e·bit) and character string
manipulation. This is distinct from commercial string types. ~hen
reference is made to character operations and data, the ASCII
repr~sentation ;s used except as soecifically noted.

2.1.1" Commercial

The architecture proviaes direct suppo~t for the CUBOl data
types. In support of ANSI '74 CU~U~ stanaard X3.23, we will
proviae 18 digits of precision. Numeric display types that are
supported ore unsigned, trailing si8n, leaoing sign, trailing
overounch, and leaaing overpunch. Support is also provided for
packed aecimal, s;pneo and unsigned c;ne~y byte strings.

2.2 Rounding

Two quard diqits are provideO for floating point operations,
with the fo1 lowing rounaing modes provided:

*' T I" un cat ion \ ,# <;~, o.lQ. 'r ~ ,G
Round toward zero.. >'l~ *

* ~ound away from zero.

* ~ound toward plus infinity.

* Round towaro minus infinity.

T~uncation ;s the only legal form of rounding in impl;menta­
tions with only a single guard digit. A trap "ill occur if another
form of rounding is specified.

··End of Chapter--

Oata General Corporation
Company Confidential

11:3:37
$1/Aug/77
Rev. 1

CHAPTEk 3 - Instruction Set

3.1 Introduction

lhis chapter presents the oetails of the instruction set
the EGO processor architecture. ~o op·code assignments have
made as of this writinq, out they will aopear in subsequent
sions of this document. lhe general for~ of an instruction is:

<op code> {<operand> ••• <operano>}

for
been
ver-

where operand is a data or procedure reference as oescribed
previously, or an i~meo;ate value.

3.2 Signed Fixed Point

There is a complete instruction set to directly manipulate 2's
complement fixed point integer operands with 16 and 32 bits of
precision.

rhe Possible exception conditions during fixed point
mettc are: overflow ana divide by zero. Potentially every
point operation alters t~e condition register.

3.2.1 lb Bit Fixed Point

Data GeMeral Corporation
Company Confidential

11:3:37
31/Augl17
Rev. 1

<Rt.F>I<REF> 3-2

3.2.1.1 <REF>I<REF>

* <ADD-16> <R~F1> <REF~>
Add the contents of <k~Fl> to the contents of <REF2> and
move the results to <KEF2>.

CONUITIO~ CODE: The N ana Z bits are upoated to reflect the
results.

* <SUeTRACT-16> <kEF1> <REf2>
Subtract the contents of <REF1> from the contents of <REF2>
and move the results to <k~F2>.

CO~DITION CUDE: 1he Nand Z bits are updated to reflect the
reslJlts.

* <RSU8-16> <HEF1> <kcF2>

*

Subtract the contents of <R~F2> from the contents of <REF1>
ana move the results to cREF2>.

COI\IOITlil'J Ci.lDt: The r.J and l bits are upoated to reflect the
results.

<MULTIPLY-16> <kEF1> <REF2>
Multiply the contents of <REF1> oy the contents of
and move the least significant 16N and Z o~ts are
to reflect the results.
t: The

<REF2>
updated

<DIvIDE 16> <RtF1> <REF2>
<REF2>.lh-l"e

and the
remainaer

16 bits
not quotient moved to ; s

maintainea.2

CONDITION CODE: The N ana l bits ere upoated to reflect the
results.
bits betore the divide is initiated.

* <REMAIN-16> <REF1> <REF2>
The contents of <REF2> are diviaed by the contents <REF1> •
The 16 bit remainoer ,s movea to <REF2>. The S;9n of the
remainder ;s the sien of the divioend.
CUNOITION CaUE: The ~ and Z bits are updated to reflect the
results.

i)ata Genera" Corporation
Company Confioential

11:3::>7
31/Aug/77
Rev. 1

3.2.1.1 <REr:>/<Rf:.F>

<MLlVE-t€» <KEFI> <KEF2>

<COMPARE-lb> <REF1> <f~EF.2>

Only sets condition register.

* <C0MPARE-~ITHIN-LIMITS-lb> <KEFt> <KEF2>

*

<~EF2> is a reference to a 3i-cit entity. The first 16 bits
represent a si~ned lower limit; the n~xt 16 b,ts represent
a signed upper limit.

< S H 1 F T ... A R I T H r}' E TIC .. 1 b> < REF 1 > < REF 2 > < kEF 1 > i s bot h
source and destination for a 1o-bit shift. <kEF2> is a
pointer to an ~-o;t sionee shift counter; t = left, =
right.

<AR,50LiJTE-VALUE"1t» <REF1> <REF2>

<NEGATE-16> <REF1> <kEF2>

3.2.1.2 <REF>/<I~MED>

The following instructions specify a 8 oit
reference #1. This immediate is siQn extendeo to 16
the operation proceeds.

*
*
*
*

*
*

*

<ADD"I-i6> < p..; flti ELl>

<SUBTRACT-I-1e> <IMMED>

<!-'iULTIPLY-I-16> <IN1!vIED>

<DIVIDE-I-16> < H~f¥tE. L> >

<Rtl¥;A I ;\)"'1-16> < H:1v'ED > <REF2>

<MOVE·I ... U,> < I MNlt.(»

<C!)MPARE-I"lb> < rr·ifvl ED>

Date General Coroorat~on
Company Confidential

<RE~2>

<REF2>

<REF2>

<REF2>

immediate as
bits oefore

<kEF2>

<REf-2>

11 :3:37
311 Augl77
Rev. 1

* < C D tvl PAR E:: .. \I'd T H 1 N ... L H'iI T S ... I .. 1 6> < REF> < I H [vi ED> < I !'Ii I'll ED>
The first lb-bit immediate represents a signed lower limit;
the next lb-bit immediate represents a signed upper limit.

* <SHIFT-ARITHMETIC-l-lb> <REF> <IMME0> <REF> is
both source ana destination for e 16-cit shift. <I~MED> is
an b-cit signed shift counter; t = left, ... = ripht.

As an optimization, the following instructions have an
implied constant of 0 or 1:

* <COMPARE.-16-0> <RtF> An implied constant of v.

* <INCREJI<lt:.!H-16> <Rc.F> An i i'TiP 1 ; ed constant of 1 •

* <DECHEMEf-n -1 b> <REF> An ;moiied constant of 1 •

* <CLE.AR-lo> cHEF>
Iliove zero"s.

3.2.2 32 o;t Fixed Point

3.2.2.1 <REF>/<REF>

For every fixed point operation ~ith 16 bits of precision,
there exists an equivalent operation for 32 bits.

*
*
*

*

*

<ADD-32> <Rf:.F1> cKt:.F2>

<SUbTRACT-32> <REF1> <REF2>

<IViULT1PLY-32> <REF1> cREFi?>
Produces a ~2-b;t result.

<DIVluE-32>
The div;rlend

<MU\I£-32>

<HEf-I> <r<EF2>
1 S 32 bits.

<RE.Fl> <r<EF2>

Data General Corporation
Company Confidential

11:3:37
31/Aug/77
Rev. 1

<RE.F>/<RE.F>

<COMPARE-j2> <RE.fl> <Rt::.F2>

* <REMAIN-32> <RE.Fi> <REF2>

*
*

lhe div;de~d is 64 bits. If the div;de~d is an AC, it must
oe a double precision even/oda AC pair.

<ABSOLUTE-VALUE-3?> <RE.F1> <Rt.F-2>

<Nt:.GATE.-32> <ReF-1> <REF2>

* <C(JMPAHE-~ITHh,j-LltvIITS-32> <REF1> <REF2>

*

<REF2> ;s a reference to a 64-bit entity. The first 32 bits
represent 8 signeo lower limit; the next 32 bits represent
a sig~ed upper limit.

<SHIFT-ARIT~~ETIt-l2> <REF1> <REF2>

<REF1> is both source and destination
shift. <REf2> ;s a pointer to an 8-bit
counter; + = left, .. = right.

for a 32-bit
signee srdft

3.2.2.2 <~EF>I<IMMEU>

The following i~structions specify a~ 8 bit cc~stant as
reference #1. This constant ;s sign extended to 3~ bits before the
operation proceeds.

*
*
*

*

*

*

<AfJD"I-32> <li·1MEO> <REF2>

<SlIBTRAtT-I-32> < Il\'iI4ED>

<MULTIPLY-I-32> <IMMEl»
PrOduces a 32

<iJIVIOf;.-r-32>
The div;deno

<REMAIN-I-32>

<~iOVE-I-32>

bit result.

<H-\f;lEO> <KEF2>
; s 32 bits.

<ljltlME.D> <REF2>

<lMtvIEO> <Rt::F2>

Data beneral Corporation
Lompany Confidential

<t<E.F2>

<REF2>

11:3:37
31/Aug/77
Rev. 1

3.2.2.~ <REF>/<I~~fD>

<CU~PARE-I-32> <I~MEO> <REF2>

* <CUMPARE-~lTHIN-LIMITS-1-32> <REF> <IMMED> <lMMED>
The first 32-bit constant represents a siqned lower limit;
the next 32-oit constant represents a signed upper limit.

<ShIFT-AHITHMETIC-I-32> <REF> <IMMt~>

<REF> is both source and destination for
shift. <IMMED> is an ~-bit Signed shift counter;
- = right.

a 32-bit
+ = left,

As an optimization, tne fol lowing instructions have an
im~lied constant of 0 or 1:

* <COMPARE-32-0> <HEF>

* <INCREMENT-32> <REF>

* <0fCHE~~Nr-32> <PEF>

* <CLEAR-32> <kE~>

3.3 Unsigned

Unsigned operanos contain values that are al~ays positive or
zero. EGO supports two unsigned precision, a and 32 bits.

3.3.1 Unsigned 8 bits

The Possible exce~tion conditions are: overflow and divide by
zero. Alterations, if any, to the condition are specifiea for each
instruction.

3.3.1.1 <REF>/<kEF>

vata General Corooration
Company Confiaential

11:3:37
31/Aug/77
Rev. 1

3.3.1.1 <REF>I<HEF> 3-7

'Ie <AL>D-B> <~Er1> <Rt:F2>

'Ie <SutHRACT ... 8> <REFl> <REF2>

'Ie <r-1ULllPLY-b> <RtF1> <REF2>

Produces a result \Nith e oits of precision.

* <Dlv'II)E-8> <REF1> <kEF2>

'Ie <REIIIlA I N-8> <PEF1> <REF2>

<kEF1> <REf2>

* <CO~lPARE-8> <REFI> <HEF2>

'Ie <CUMPA~t-~lTHI~-LI~I1S-B> <~EF1> <REF2>

..
*

*

*

<REF2> is a reference to a 16-o;t ~ntity. The first 8 bits
represent a lowp.r 1 imit; the next 8 oits represent an upper
limit.

<SHIFT-LOGICAL-8> <REF1> <REF2> <REFI> ;s
both source and destination for an 8-bit shift. <REF2> is
an 8-bit signed shift counter~ + = left, • = right.

<AND-B> <REFI> <REF2>

<lUR-B> <kEF1> <REF2>

<XOR-8> <REF1> <REF2>

<SET-DIFF-8> <REF1> <REF2>

<REF2> becomes <REF1> AND ~OT <HtF2>.

<COMPLEMENT-~> <REF1> <REF2>

* <MASK-MERGE-b> <REF1> <REF2> <REF3>
<~tF2> = «REF1> AND <kEF3» 0~ «REF2> AND NUT <REFl».

3.3.1.2 <REF>/<I~MED>

The following instructions specify an e oit constant as

uata General Corporation
Company Confidential

11:3:37
31/Aug/77
Rev. 1

3.3.1.2 <RE F > I < r IVliVlE.{» 3-8

reference #1. This constant is an unsigned 8 bit operana:

* <AD!)-I-€» < 1 ""1~'IED> <REF2>

<SutslRACf-1-8> < I f'IME.D> <REF2>

* < tv; U L TIP L Y" I ~ B > <IfY1I'I,EO> <REF2>

* <DIvIDE-I-8> <! iVl~,t::U > <REF':>

* < I\jQ \i E -I "!::S > <!jIIlMEO> <RE.F2>

* <REfIilA 1 "',I-l-tl> <IwIMED> <REF2>

<COlol\PARE- I -8> < IMME.l,) > <RE:.F2>

* <SHIFT-LOGICAL-I-8> <IMMED> <R~F2>
<R£F2> is both source and destination for an a-Oit
shift. <IMMED> is an 8-bit signed sh;ft counter; + = left,
- = right.

* <CUM~AR~-~IT~IN-Ll~lT~-1-8> <REF> <lMMED> <lMMED>

*
*

*

[he first B-bit constant repres~nts an unsigned lower
limit, the next b-p;t constant represents an unsigned upper
limH.

<AND-I-!::S> <REF2>

<10R"'I-8> <RE-F2>

<XOR-1-8> <~EF2>

* <SET-OIFF-!-@> <IM~ED-8> <REF2>
<REF2> becomes <I~M~D-8> AN0 NOT <~EF2>.

* <MASK-~EHGE-I-8> <ke:.Fl> <REF2> <IMMEO>
<HE-F2> = «REF1> AND <IM~ED» OR «RE.F2> AND ~OT <IMMEO».

As an optimization, the following instructions have an implied
constant of 0 or 1:

<CurJlPARE"'S-O>
Compare to O.

<REF>

Data General Corporation
Company Conf;oential

11:3:37
31/Aug117
Rev. 1

3.3.1.2

*

*

*

<; I t\jCRt.~'H:>1j T-e>
Add 1.

<Df..CRE:v1E:.NT .. r-,>
Suotract 1.

<CLf:.AR-o>
'V:ove zero's.

<kE F >/ < H'IiV,EO>

<REf-:>

<REF>

<REF>

3.3.2 0"signed 32 Hits

3.3.2.1 <RtF>/<REF>

* <ADU-U-S2> <REf1> <REF2>

* <5UBTRACT",u"'32> <RE.F-i> <Rt:.f2>

* < "1 U L TIP L Y - U ... 3 2 > <REFi> <REF2>

Produces a result with 32 bits of precision.

* <DIVIDE-U-32> HEF1> <KEF2>

* <R I:."'i~,\ I !\l-U- 32> <REF1> <REF2>

* <MOVf;, ... U-32> <REF1> <REF2>

<CQIV,PARE"U-32> <REF1> <REF2>

* <COMPARE-wITHIN-LIMITS-G-32> <kEF1> <REF2>

*

<REF2> is a reference to a 64-bit entity. The first 32 bits
represent ~ lower limit; the next 32 bits represent an
upper limit.

<SHIFT-LOGICAL-3?> <REF1> c REF2>

<REF1> is both source and destination for
shift. <REF2> is an 8-bit signeo shift counter; +
= right.

Data General Corporation
Co~pany Confidential

a 32-bit
= left, -

11:3:37
31/Aug/77
Rev. 1

3 .. 3.2.1 <REF>I<REF> 3-10

* <AND-32> <REF!> <REF2>

* <REF1> <REF2>

* <XOR-32> <REFl> <REF2>

* <SET-DIFF-32> <RE.~l> <REF2>

<H~F2> becomes <kEFl> AN~ NJT <REF2> ..

* <C uMPLEIV1E r-. T -32> <REF1> <REF2>

* <MASK-MERGE-32> <REF1> <REF2> <R£F3>
<REF2> = «REF1> AND <REF3» Ok «REF2> AND NOT <REF3».

3.3.2.2 <R~F>/<IM~EU>

The followinq instructions specify an 8-bH constant as
reference #1. This constant is zero extended to a 32 bit operand:

*'
*'
*

*
*
*

*

*
*

<ADD-U-I-32> < I jIl\MED> <REF2>

<S~bTRACT-U-I-32> <IMMED>

<MULTIPLY-U-I-3~> <lMrv,El1>

<I)IVIDE-U-I-32> < I ~IME.D>

<MOVE-U-I-32> <I~tvIED> <REF2>

<Rt:jIIIA II\j-U-I-32> <IMMEfJ>

<CO~PARE-U-1-32> <I/viME.D>

As an optimization, the following
implied constant of 0 or 1:

<COMPARE-32-U-0> <RtF>

< INC k E jl/1 E i~ T - 32 .. U > <REF>

Data General Corporation
Company Confidential

<REF2>

<REF2>

<REF2>

<~EF2>

<RE~2>

instructions have an

Compare to 0

Aad 1

11:3:37
31/Aug/77
Rev. 1

3.3.2.2 <REF>I<H1ME.D> 3-11

* <UECRE~E~T-32-U> <RE.F> Subtract 1

* <Rt::F> Store zero

* <COMPARE-WITHl~-LI~ITS-32·U> <REF> <IMMED> <IM~ED>

*

*
*

The first 52-bit constant reoresents an unsigned lower
limit; the next 32-oit constant represents an unsigned
upper limit.

<SHIFT-LOGICAL-1-32> <RtF> <lM/ViED>

<REF> is both source and destination for a
shift. <IMMEO> is an d-~it signed shift cownter1 + =
- = ";ght.

32-bit
left,

The following instructions specify a 32 bit constant
as reference one. this constant is an unsignea ~2 bit
operand.

< A I~ D - I .. 3 d > <REF2>

<11'1M£D> <REF2>

<XOR-I-32> <REF2>

* <SE"r-DIFF-I-32> <lMMED> <HEF2>
<REF2> Decomes <IMMED> ANQ NOT <kEF2>.

* <MASK-MERGE-I-32> <REF1> <REF2> <I~~ED>
<REF2> = «REF1> ANU <IMMtD» OR «HEF2> AND NOT <IMMEO».

3.4 Floating Point

All operations on single precision (32 bit) operands are
performed totally in single precision, and all double precision (04
bit) operations are performed totally in double precision. Each
operation on s;nql~ or oouDle precision will potentially set bits
in the condition re9ister (CR). Ultimately each operation will
respond to ove"flow/u~derflow of ~xponent and there will be a test
foro divide by zero. See the Data Types and Formats Chapter for
rounding information. There is an i~plicit truncation from double
to s;~91e when a move of a oouble preC,S1on number is done in
single precision mode. Floating point operations assume normalized
values.

Data General Corporation
Company Confidential

11:3:37
31/Aug/77
Rev. 1

Floating Point 3-12

The fol1owinq instructions refer to floatinq point numbers and
do not distinguish between sinple ana cauble precision.

*

*

*

<ABSOL0TE-VALUE-FP> <REF>

Set the sign of tMe value specified by <REF> to
pos1tive and leave the result in <REF>

<NEGATE-FP> <kEF>

Change the Sign of tMe value specifieo by <REF>
leaving the value in <R~F>.

<EXTRAcr-~XPONENT> <Ri::.f1> <REF2>

Extract the exponent from the value specified by
<REF1> ana move it as an unSigned B-oit quantity referenced
by <Rt::F2>.

3.4.1 Single Precision Floating Point

The follow;nq are the single preciSion floating
tions:

point opera-

*

<ADD-SP> <kEF1> <t<EF2>

Ada the s;n91e precision value specifiea by <KEF1> to
the single precision value specified by <REF2> anD move the
results to <REf2>.

<SUiHRACT-SP> <PEF1> <REF2>

Subtract the single precision value specified by
<REF1> from the single precision value specified by <REF2>
and move the results to <REF?>.

<IYlULTIPLY-SP> <REF1> <REF2>

Multiply the single precision value specified by
<KEF1> by the single precision value specified by <REF2>
and move the Single precision rp,sults to <REF2>.

Data General Corporation
~ompany Confidential

11:3:37
31/Aug/77
Rev. 1

3 • I~ • 1

*

*

Singlp. Prec,sion Floating Point 3-13

<DIVIDE-S?> <REF1> <REF2>

Divide the s;n8le orecision value specified by <REF2>
oy the single crevision value specified bY <REFl> and move
the single precision results to <REF2>

< 1'1 (J V E - S P > <kf:.Fl> <REF2>

Move the single precision value specified by <REFl> to
<REF2>.

<CUMPARE-t>P> <KI:.Fl> <REF2>

Compare the single precision value specified by <REF1>
with the Single precision value specified by <REf2> and set
the condition bits in the con~;tion register (CR). The
contents of <kEFt> and <R~f2> are unaltered.

* <t~ORiVJAL I lE-SP> <REF>

*

*

'*

1he single precision value specified by <REF> is
normalized ana returned to <R~F>.

< H~ TEGERI lE-SP> <REF>

Integerize the single precision value specified by
<REF> and move as a single orecision value to <REF>.

<C(JMPARE-lERU-SP> <REF>

Compare the single orecision value soecified by <REF>
to true zero and set the cond~tion bits in the condition
register eCR).

<SCALE-SP> <REF1> <REF2>

Scale the single precision value specified by <REF1>
by a factor inaicated in the signed a-bit quanitity speci­
fied by <REF2> ana place tne result in <REF1>.

<HALVI:-$P> <REF>

The single orecision value specifiea by <REF> is
divided by 2.0 and returned to <REF>.

Data General Corporation
Company Confidential

11:3:37
31/Aug/77
Rev. 1

Double Precision Floating Point

3.4.2 Uouble Precision Float;ng Point

rne following are the double precision
operations:

floating point

*

*

*

*

*

<ADO-D,",> <REF1> <f<EF2>

Add the double precision value specified by <REFl> to
the double prec,s,on value specified by <REP2> and move the
results to <REF2>.

<SUtHRACT-DP> <RtF1> <I'<EF2>

Subtract the doubl~ prec,s,on value specified by
<REF1> from the oouble precision value specified by <REF2>
and move the results to <REF2>.

CI'IIULTIPLY-!)P> <HEF1> <REF2>

Multiply the oouble precision value specified by
<REF1> ~y the douDle precision value specified by <REF2>
and ~ove tne double prec,s;on results to <REF2>.

<REF1> cREFe?>

Divide the double precision value specified by <REF2>
by the oouble precision value specified by <R~F1> ana move
the rlouole precision results to <REF2>

<RErl> <REF2>

~ove the double precision value specified by <REF1> to
<REF2>.

<COiVlPAI'<t:-DP> <Rt:Fl> <HEF2>

Compare the double precision value specified by <HEF1>
with tne dQuble precision value soecified by <REF2> and set
the condition bits in the condition reqister (CR).The
contents of <REF1> and <ktF2> are unaltered.

* <~uRMALIZE-OP> ~R€F>

The double precision value specified by <REF> is
normalized and returned to <RtF>.

Data General Corporation
Company Confident;al

11:3:37
31/Aug/77
Rev. i

3.4.2 uouble Precision Floating Point 3-15

* <INfEGERIZE-DP> <RE.F>

lie

*

*

Integerize the double precision value specified by
<REF> and move as a double precision value to <REF>.

<COMPARE-ZERU-UP> <RtF>

Compare the oouble precision value specified by <REF>
to true lero and set the condition bits in the condition
reflister (Ci'().

<SCJ.;.LE-()~> <REF1> <REF2>

Scale tne double precis10n value specified by <REF1>
by a factor indicated in the signea d-bit quanitity speci­
fied by <~tF2> ana place the result in <REF1>.

<HALVE-I)P> <kEF>

The double precision valu~ specified by <REF> is
div;aed by ~.O anrl returned to <REF>.

3.5 Cnaracter

The character instructions providea are generally orientea to
multi-byte character strings. The compare instructions wi 11 set
conditions bits in the condit,on register (CR). Up;s aefined as
an increasing byte address and down as a decreaSing byte address. A
string length of zero will cause no operations to occur.

~ithin this section a <STR-REF> will be an address of a string
adaress descriptor which ;s described in the introduction chapter.
<STR-REF>.PTR will correspond to the strings byte pointer.
<ST~-~EF>.MAX will correspona to the string maximum length.
<STR-REF>.CUR will corresPond to the string-current-length. In
scans and translates, Single byte reference and table references
are data byte pointers. The string aescriPtor always points to the
beginning (left-most) byte of the string. Scans or moves down will
have to add the current length to the byte data pointer to get the
starting oyte data pointer. In scans there are condition codes for
failure due to current len~th being zero and character not found
ana for a successful scan. If character;s not found then scans
will set the index to be the current length olus 1.

Data General Corporation
Company Confidential

11:3:37
31/Aug/77
Rev. 1

*
*

*

*

*

*

*

*

Character

The fol1owinc ;nstruct;ons have oeen defined:

<I\IlO VE -tn n:s-up> <ST"-Rf:.F"> <STR"REF2>

<STk-REF1> <STR-REF2>

Move oytes up cr oown fro~ the reference in
<STR-REF1>to the reference in <ST~-REF2> for a count equal
to MIN «tiTR-RtFl>.CUR,<S'fi;-Rl:.F2>.MAX).TI1;s instruction
also updates the value of <STR-REF2>.CUR to the number of
bytes moveo. <STk"Rf:.F2>.MAX 1S unCh~n9~d.

<MOVE-BYTES-FILL-RIGHT-DO~N>
<SlR-REF2>

<MUVE-SVTES-FILL-LEFT-0P>
<STR-REF2>

<F1LLER-8YTt::>

<FILLER'"'BVTE>

<STR-REF1>

<STR-REF1>

Move bytes from <STR-REF1> to <STR-~EF2> with left or
right justification with UP or down ~ove~ent using the
filler byte to fill t.he remainder of the desireo string.

<SCAN-BytE-UP> <kEFt> <STR-REF2> <REF3>

<SCAN-I:HTE-DOvW> <REF1> <STR-REF2> <t<EF3>

Scan a string referencea in <STR-REF2> UP or down for
the byte referenced by <REF1>. Set <REF3> be the index to
the next byt~ position within the str1ng. <REF3> ;s a
signed lo-bit integer.

<REF1> <STR-KEF2> <REF3>

<SCAN-NOT-HYTf-DO~N> <REF1> <~TR-kEF2> <RE~3>

Scan a strinp referenced in <srR-REF2> up or down for
the first character not equal to the byte referenced by
<REF1>. Set <RE~3>.PTR to be the signed 16-bit index to
the next byte position within the string.

<CO~PARE-STRINGS> <STR-REF1> <STR-REF2>

Compa~e strings referencea by <STk-REF1> 8"d
<STR-REF2> setting the condition register (CR).

<SUBS1RI''4G>
<REF4>

<STR-RE.Fl> <~TR-REF2>

Oata General Corporation
Company Confidential

<REF3>

11:3:37
31/Aug/77
Rev. 1

3.5 Character 3-17

Set <SIR-REF1> to be ~ new string descriPtor to a
suostring of the st~'ng specifie~ by <STR-HE~2> ~ith <REF3>
being a 16-bit offset into the string for the start of the
sUDstring and <REF4> a lb-bit offset into the string for
the end of the substring.

* <SCAN-SUB51RI~G-0P>

*

*

*

*

<3TR-REF1> <STk-REF2> <RF..F3>

<SCAN-SUBSTkING-GO~N> <STk-KEF1> <STR-REF2> <REF3>

Scan a string referenced in <STR-REF2> UP or down for
the substring referenceo in <STK-R£Fl>.Set <REF3> to be the
index to tr,e leftmost character of the found substring.
<REF3> ;s a siRnea lb-bit integer.

<MOVE-TRA~SLATEP-STRING-UP>
<STR-REF3>

<~JjO VE" T H A I\)SLA TE O-S Tk I fllG"'DU 'I. N>
<STR-REF:»

<REF1> <STR-REF2>

<REF1> <STR-REF2>

Move translated bytes using a 256-byte translation
table referenced Dy <REF1> UP or oown from the string
referenced by <STR-REFi> to the string referenced by
<STH-REF3> for a count equal to
MIN«STR-~EF2>.CUR,<STR-~EF3>.MAX). Set <STR-REF3>.CUR
accordingly.

<CHARACTER-SCAN-UNTIL-TkUE> <RtF1> <STR-REf2> <REF3>

Scan a strinq referencea in <ST~-REF2> using each byte
as an index into a 256-bit table referenced by <REF1> until
the indexed bit is on. Set <H£F3> to be the 16-bit index
to the found byte.

<CHARACTER-MOV~-UNTIL-TRUE>
<SlR-REF3>

<REFI> <STR-REF2>

Move a string referencea in <STR-REF2> to cSTR-REF3>
usinq each byte as an inoex into a 256-oit table referenced
by <~EF1> until the inaexea bit ;s on. The move count ;s
limitec oy MIN«STR-REF2>.CUR, <STR-REF3>.MAX). Set
<STR-REF3>.CUR to the number of Characters movea.

Data General Corporation
Company Confidential

11:3:37
31/Aug/77
Rev. 1

B; t

3.0 !::Sit

The oit instructions fall into three classes of operationsJ
single bit instruct10ns , multi-oit string instructions and bit
numerics.

3.6.1 Single Bits

The followinq instructions are indivisible, ~hich means the
read/modify/write occurs as one completely contained operation
10ck;n~ out any other asynchronous request until the mooification
is complete.:

*

*

'*

'*

<bIT-ReF>

Test the bit referenced by
appropriate bit in the conoition
referenced bit.

<UIT-REF> and set
register (CR). Set

the
the

<TEST-ANO-CLEAH-bIT> <eIT-Rtf>

Test th~ bit referenced ov <dIT-REF> and set the
appropriate bit in the condition register (CR). Clear the
referenced bit.

The fol1owinQ instructions are not inoivisible.

<TEST-BIT> <bIT-RE.F>

Test the bit
appropriate bit in

referenced by <rtIT-REF> and
the condition re9ist~r (CR).

<SET-BIT> <BIT-REF>

Set the bit referenced by <8IT-~EF>.

<CLE:.A~-BIT> <BIT-REF>

Data General ~orporat;on
Compani Confidential

set the

11:3:37
31/Aug/77
Rev. 1

3.b.l

'*

'*

Single uits

Clear the bit referenced by <BIT-REF>.

<FIND-LfAOING-BIT> <bIT-RE.F> <REF2> <RE.F3>

&can for first 1 in a bit string specified by
<BIT-REF> with a length in <REF2>. Set <REF5> to be the bit
offset to this bit.

<COUNT .. jj'rTS> <BIT-REF>

Count the bits set in a
<BIT-REF> with a bit length in
w1th the resulting count.

<REF2> <REF3>

bit string referenced bY
<~EF2>. <REF3> is updated

3.6.J Bit Numeric

For the bit numeric move operations, a count ;s always speci­
fied in the instruction format as:

100 I S I LENGTH

---I~----------·---------o 112 3 7
, ________ SIGNED/UNSIGNED

~ovement is always to a 32-bit destination. If the S bit ;s set,
the sign bit ;s replicateo to fill a 32-bit destination. Otherwise,
the remaining bits are cleared to zero.

Data General Corporation
Company Confidential

11:3:37
31/Aug/77
Rev. 1

3.6.3

11:

11:

I::H t Nume r; c

<&rr-REF> <REF2> <REF3>

Move a bit numeric specified ~y <81T-R~F> with count
descriptor in <REF2> to a 32-bit destination referenced in
<REF3>.

<MOVE-fo-aIT> <bIT-REF> <f<EF2> <REF3>

Move a 32-bit source specified
numeric specified by <8IT·REF> with
<REF3>.

cy <REF1> to a bit
count descriptor in

3.7 Commercial

The following instructions support commercial arithmetics and
editing. Floating point manipulations are ~Q1d;rectly supported by
the set. Explicit conversions must be used in tnese cases. It
should be noteo that packed decimal is in I~M format and is byte
aligneo. Thus, in some cases, the niole string must be zero
extended for proper alignment.

For each referenced argument, there;s an in-line attribute
byte. This byte has the format

---------.... -----..... ---.~ ... -I OATA I LE~GTH
ITYPEI
, _ 1_ _ _ .. _______ --.. t
10 213 ."

where length ;s the length of the referenced numeric string in
bytes, and data type denotes one of the following B types:

000 .. unpacked Decimal .. Low Order Sign/Overpuncn

Data General Corporation
Company Confidential

11:3:37
31/Augl77
Rev. 1

3.7 Comrrtercial

001 - Unpacked Decimal - H;ph Order Sipn/Overpunch
010 - Unpacked Decimal - Trailing Sign
011 - Unpacked Decimal - Leading Sign
100 - UnpacKed Decimal - Unsigned
101 - Packea Decimal - (I~M Format)
110 - dinary Inteqer - Signea
111 - Binary Integer - Unsigneo

3-21

All digits referenceo are checked tor validity. If an inval~d
digit is referenced, the operation is terminated and error is
signaled.

For data type 5, packed decimal, tnere must
number of bytes including sion. Thus, in some
oroer zero digit must be suppl ted.

be an integral
cases, a higher

There is one set of numerics, with two for~s: A OP b --> 8 and
A OP H --> C. These instructions directly implement CO~UL referen­
ces tor the cases in ~hich ON SIZE is not specified. These in­
structions perform the specified operation ana store the results in
the destination right Justified zero fi1led. If significance
remains after the storage in the intermeoiate results, an overflow
condition occurs.

In the following instructions, the orecision of the result is
explicitly designated. The byte pointed to by the address is the
most significant (left-Most) byte of the numeric string.

<ADD-OECIMAL> <CHEF1>
<ADD-DECIMAL-GIVING> <CHEF1>
<SUBTRACT-OECI~AL> <CREF1>
<SUBTRACT-DECIMAL-GIVING>
<MULTIPLY-DECIMAL> <CREF1>
<MULTIPLY-DECIMAL-GIVING>
<DIVIDE-DECIMAL> <CREF1>
<DIVIDE-DECIMAL-GIVING>
<REMAIN-DECIMAL-GIVI~G>
The sign of the remainer ;s the

<CRE.F2>

<CREF1>
<CREF2>
<CKEF1>

<CREF1>
<CREF1>
sign of

<CREF1> <CREF2>

<CREF2>
<CREF2>
<CREF2> <CREF3>

<CREF2> <CREF3>
<CREf2>

<C~EF2>
<CREF2>
the dividend.

<COMPARE-DECIMAL>
<COMPARE-ZERO-DECIMAL>

<MOVE-DEC INiAL>
<SCALE-LEFT>

<CREF1>
<CREF1>

<CkEF1> An impli~a comparand of
length to reference 1.
<CREF2>
<IMME(»<REF2>

<CREF3>

<CREF3>
<CR!:.F3>

o equal in

Scale (shift) left <REF1> the number of pOSitions specified by
the <lMMED> and store the results in <R£F2>. Vacated positions are
zero.

Data General Corcoration
Comp~ny ConfidentiAl

11 :3:37
31/Aug/77
Rev. 1

3.1 Commel"cial

<SCALE-RIGHT> <CREF1> <IM~ED><REF2>

Scale (shift) right <kEFl> the numbel" of positions
by the <IMMED> and store the results in <~EF2> Vacate~
are zero filled.

<CREF1> <CREF2>

3-22

specified
positions

The least si9nifica n t dipit posit,on of <REF1> is examined.
If 5 01" greater, ten is added to <REF1> beginnin~ at this position
and the sum ;s moved to <RtF2>. If the digit is less than 5,
<REF1> is moved to <REF2>. Notp: ~eference 1 may have more preci­
sion then indicated by Attrioute 1. OnlY one aigit, ho~ever, is
considerea When ROUNDing is performed.

<EDIT> <CREF1><~EF2> <IMi\'IED><REF3>

3.~ Stack Manipulation

The fol1owinq instructions modify the stack:

* <MODIFY-STACK-POINTER> <~EF>

*
*
*'
"*

*

Set tM8 value of the staCK pointer (SP) to be the
current value of SP plus the 32-bit unsigned integer
referenced by <REF>.

<PUSH ... a>

<PUSH-le> <REF>

<PUSH"32> <REF>

<PUSH-b4> <REF>

Move one, t~o, four o~ eight bytes of data
by <REF> To the end of the stack starting at SP.
to point to the new end of the stack oy adding a
four or e;8ht to its current value.

<POP-8> <REF>

Data General Corpo~ation
Company Confidential

referenced
Adjust SP

one, two,

11:3:37
31/Augl'77
Rev. 1

3.u

*

*
*

*

Stack ~anipulation 3-23

<POP-16> <REF>

<POP-32> <REF>

<POP-64> <KEF>

R~move the last on~, two, four or eight
end of the stack startinq at SP-l an~ place
refe~ence <REF>. Reaajust SP to the new end
suotracting a one, two, four or e;qht from
value ..

<M(J vE -SP> <REf»

bytes from the
them at the
of stacl< by
its current

Move the current value of the stack pointer CSP) to
the specified destination.

3.9 .JU'l1PS

3.9.1 Entry and Exit

In the follow;nq instructions, <PREF> refers to a procedure
reference as define in the introduction chapter.

* <PUSH"PC> <PREF>

Place the PC for the next instruction at the end of
the stack starting at SP and branch to <PREF>. This
facilitates a quick call to a subroutine which will use the
current stack ~nvironment as its own. SP becomes SPt4.

* <POP"'PC>

Remove the last four bytes from the end of the stack
and set the PC to be their value. SP becomes SP-4. This
facilitates a quick return from a <PUSH-PC> type call. The
next instruction executed (~hose address was at the end of
stack) Should be that following the corresponding <PUSH-PC>
instruction.

Date General Corporation
Comoany Conf;~ential

11 :3:37
31/Aug/77
Rev. 1

*
*
*

Entry and Exit

<CALL-PDIFF>
<Rt.Fl> ••• <HEFI\i>

<~REF> <H/II.'IE,O>

<CALL-POIFF-PACKET> < P R t: F > < PI!;'" E I) >

<CALL> <PREF> <#~RGCUNST>

<CALL-PACI'\ET> <PRE,F> <kEF>

<~A""GCOhjST>

<REF>

<REf-l> ••• <HE.FN>

fhese call operators are us~a to install a new stack
environment then branch to a subr~utine. The first two
tyees of calls allow the setting of a procedure level
difference on the stack wnile building the new frame. This
difference ;s defined by th~ inline B-b;t unsigned integer
referred to as <IMMEU>. <PKEf-> is the specifier of the
subroutine. <#APGCON51> is an a-bit unsigneo inteqer
representing the number of argument references which are to
follow. <REF> and <REF1> ••• <HEF~> are the references to a
single argument or a list of n ar9uments. (n being the
value of <~.I\RGCOI'}ST>. Tne call· will bl.J;ld a packet of
arguments which can te referenced by 8R2. This packet has
the following format:

<REFI\!>

•
•
•

BR2------> <REF1>
<#AkGClH'IST>

Callers wishing to buila their own parameter packets
may use the paCket type call opcodes 'nstead~ In this
case, <REF> is the address of the packet which is identical
to that described above. This call places <REF> in BR2.

~ote: <.AHGCU~ST> is placed one byte before the
base re~ister address.

* <RETURN>

Return from procedure or trap handle~ thru the PC
contained within the current frame.

Data General Corporation
Company Confidp.ntial

11:3:37
31/Aug/7'7
Rev. 1

*

Entry ana Exit 3-25

<RETURI\!-A~G>

Functions like <METUk~> exceat the PC value is the
value of th~ argu~ent specified by the im~ediate.

3. Q .2 Van; 11 a Jumps

The fol1owinq instructions are specified:

* <JUMP-O~-C0~UITI0N>

Jumo to <PREF> if the bits condition register (CR)
matches the <CUND> f;elo.

* <JU:'v,p ... G T> <PREF>

<,JU!Vi~"'L T> <PREF>

* < J U ;·1 P -I'J E > <PREF>

* <JUMP-El~> cPkEF>

* <JUMP-Gt:> <PREF>

* <JU!IIiP-LE> <PRb_F>

* <JUMP> <~PEF>

A jumo to <PREF> is unconoitional
the state of the N ana Z bits of the
(CR).

3.9.3 Dispatches

or occurs based on
condition register

All dispatch ;nstrucrtions use a table of the following
format:

Data General Corporation
Company Confidential

11:3:37
31/Aug/7'7
Rev. 1

Dispatches

<Proceoure Pointer>
•
•
•

<URtF>------> <Proceoure Pointer>
<Uprer Hound><Lower bound>

~here the lower bound and upper bound are both signed lb-bit
inteoers. All rlispat,hes through a taole validate the index as
lower pound <=index <=uoper bound, select the indexed <Procedure
Pointer>. If the index is not within the bouno range, the PC will
be set to the next instruction following the discatch ana no branch
will occur.~ithin the discussion of DISPATCH all references labeled
<DREF> will be pointers to dispatch tables described above. All
dispatch operators will set the condition register to inoicate one
of three condit;ons~ dispatch index out of range, dispatch index in
range but there wes no label, or successful dispatch. The dispatch
table can have "holes" by setting the value of that position in the
table as a 32-bit zero (illegal label within table).

*

*

<DISPATC~-IMMEDIATE>
<INLINE-DISPATCH-1ABLE>

<DISPA'C~-IMMEDIATE-PUSHPC>
<INLINE-DlSPATCh-TAdLE>

<DISPATCH> <KE~>

<RtF>

<kEF>

<DREF>

* <DISPATCH-PUSHPC> <REF> <DREF> parC) Dispatch
through an ;n11ne dispatch tacle, or a dispatch table
referenced by <DRtF> in the last two cases, cased on a
signed 16-bit ;nd~x pointeo to by <REF>. The PC which ;s
pushea in the <PUSH-PC> type is the PC at the next
instruction.

* <DISPATCrl-CALL> <XREF> <DREF> <#ARGCONST>
<REF1 ••• REF~>

* <DISPATCH-CALL-PACKET> <XR~F> <DriEF> <REF>

The dispatch with call operations are identical to the
call operations defined in the jumps section of the ;n­
struction chapter except that the <PREF> ;s selected from a
dispatch table specified by <UREF>. Th~ index is a signed

Data General Corporation
Company Confidential

11:3:37
31/Aug/77
Rev. 1

Dispatches 3-27

io-bit value specified by <XREF>. A dispatch failure will
cause this instruction to ~OP and the next instruction to
be executed.

3.10 Conversion

*

*

*
*

*

*

<CONVERT-INTE~ER-TO-SP> <REF1> <REF2>

<CONVERT-I~TEGE~-TO·DP> <REF1> <REF2>

Convert the integer specified by <REF1> to floating
point referenced ~y <REF2>. Conversion of lo-bit integers
is to s;n91e preC'S10n, of J2-bit integers to double
precision floatino point.

<CONVERT-SP-TO-INTEGEH> <REF1> <PEF2>

<CONVEkT-0P-TO-1~TEGER> <REF-l> <kEF2>

Convert the floating point nu~ber specified by <REF1>
to an integer. Conversion is from single precision to
io-bit inteqer, double precision to 32-bit integer.

<CO~VERT-SP-TO-DP> <REF-l> <REF2>

Convert thp. Single precision number specified by
<~EF1> to a oouble precision number specified by <REF2>.

<CONVERT-CHARACTEk-Tu-DP> <STR-REF> <RI:..F>

Convert the character string to a double precis;on
floating point number.

<CONVERT-DP-TO-CHARACTER> <REF> <STR-REF>

Convert a doubl~ precision floeting point number to a
character string.

Data General Corporation
Company Confidential

11:3:37
31/Aug/77
Rev. 1

3 • 1 1 Reserved Instructions

3.11 Reserved Instructions

There is a set of 256 op codes reserved for definition on a
per syste~ baSis. Execution of any of these instructions causes n
process trap (see Interrupts ana Traps Chapter) to a software or
microcode routine ~hich then executes the instruction.

The format of the specific instructions ;s deter~inea by the
programmer or microcoder who ~rites the emulator routine. These
instructions will typically be used oy system programmers for
operatinq system or compil~r specific accelerators, and for entry
to user written microcode routines.

3.12 System control

* <~URGE-ATU>

* <LOAD-PHYSICAL>

* <STCRE-PHYSICAL>

* <LOAD-PSR>

* <STORE-PSR>

3.13 Input/Uutput

* <IO-IN>

* <IC-OUT>

Refer to 1/0 System chapter~

3.14 Miscellaneous

Data General Corporation
Company Confidential

11:3:37
31/Aug/77
Rev. 1

3.14

*

rl1i seell aneous

The following instructions have been specifiea:

<LOAD-EFFfCTI\E-ADORESS> <REF1> <REf2>

Move the effective address of ckEF1> to the location
spscif,ed by cREF2>.

* <COpy> <REF1> <kEF2> <R~F3>

*

*

*

~ove cRE~j> hytes for <R~Fl> to <REF2>.

CCOP Y -.I. i'ilMt;.D> C!iViMEO> <~EF2> <REF3>

~ove <REF2> eopys of the byte <lMMED> to the area
~eferenced by <RE~3>.

<LOAO-CGNUITION-kEG> <REF>

Load the condition register with the value specified
Oy <RE.F>.

<STORE-CONDITION-REG> <RE.F>

Store the condition reaister at <REF>.

--tnd of Chapter--

Data General Co~porat;on

Co~pany Confidential

11:3:37
31/Aug/77
Rev. 1

C~APTER 4 - Interrupts Rna Traps

4.1 General

Al I events in an EGO machine ~hich require a change in the
normal flow of control are handleo using a trap mechanism. Traps
are div;oeo into three categories procedure, process, and
system. Proceaure treps are events which can be hanoled by a user
procedure. These include all instruction exceotional conditions
such as fixeo and floating point overflow, etc. Process traps are
procedure caused events whiCh neea system intervention in order to
be resolved. These incluae page faults, paqe table faults, protec·
tion faults, etc. System traps are asynchronous events which must
be resolved by the operating system, ,ncluding 1/0 interrupts,
power failure, etc.

All traps appear to the trap handlers like procedure calls.
This is done by generating a parameter D~cket containinq a single
aroument and then pUShing a state block on a stack. Each trap
within a group is assigneo a uni~ue value which is passed as the
argument to the trap hanoler. Thus the trap handler can detect the
type of trap by access;nq the argument and, optionally, dispatch to
a unique type handler based On the argument. In addition, all traps
are dismissed merelY by executin~ a return instruction, whicn will
continue execution at the point where the trap was taken. This
value passin? forces only one trap to be generatea on each machine
cycle, even in a p;pelined implementation.

$ince traps can be taken at different points in the execution
of an instruction, cifferinq amounts of information must be saved
in order to continue execution after dismissing the trap. Thus,
the state block must be self describing to the extent that the
return instruction can determine how to restore from it.

The number of different types of state blocks and their exact
formats are implementation aependent. Note that certain types of
returns have the potential for protection violations and thus must
be protected against execution by non-secure procedure segments.

Oats General Corporat,on
Company Confidential

11:3:37
31/Aug/77
Rev. 1

Procedure Trars

4.2 Procedure Traps

~hen a procedure trao ;s taken, the state is pushea on the
current stack and the pointer to the handler is found in word zero
of the current procedure segment. Unly the low order 22 bits of the
wora are significant, and these are thp. adoress ~ith;n the current
segment of the trap henoler. If these bits are zero, there is no
trap handler, ana a process trap is gener~teo.

Procedure trapping can be disableo by setting the
bit in the PSR. When this bit is set, all procedure
ignored.

4.3 Process Traps

appropriate
traps are

There are three types of process traps reserved
instructions, non-pri~itive 1/0, and faults. All of these are
handleo in the rinp 0 procedure segment (seqment 2) and the state
is pushed on the rinp 0 stack of the curr~nt process (segment
1). For faults, the pointer to the handler is found in word one of
the procedure segment, ana has the same format as th~ procedure
trap hanoler pointer. (Note that this segment can also generate
prOCp.dure traps and thus must have a procedure trap hanQler adaress
in word zero.) Dispatchin~ for reserved instructions is aescribed
in the instruction set chapter, and for non-pr;m;tve 110 traps in
the 1/0 syste~ chapter.

u.4 System Traps

System traps are also handled in the r;n~ 0 procedure segment
(segment 2). In this case, however, the pointer ;s not to a trap
handler, but rather to a table containing one entry for for each
possible system trap. Each entry ;s one word lonq and has the same
format as the procedure trap handler pointer. lhis pointer is kept
in a register loaded in an implementation defined faShion. when a
system trap occurs, the value of the trap ;s used ~s an index into
the table to find the address of the corr~ct handler.

Stack handling for system traps is also slightly different
than for other traps. There is a system stack segment (segment 0)

Data General Corporation
Company Confidential

11:3:37
31/Aug/77
Rev. 1

System Traps

usee for handl~ng system traps. ~hen a system trap occurs, the
state ;s pushed on the current stack. If the current stack is
segment 0 (indicating nested system traps), the trap handler is
then invoked. Otherwise, the current stack pointer is written back
into the current Tee and also placed in word zero of the system
stack segment. An indicator of this special type of state block ;s
pushed on the system stack segment, and the stack and frame po;n­
ters are set to point to segment 0 just beyond this block.

Ouring the resolution of any system trap, if tne trap handler
encounters a situation which makes it oesire to change the current
process after dismissinp the trap (e.g. a time slice has expired,
or an 1/0 event has completed on a high priority process), it
zeroes the stack pointer in word 0 of the system stack segment.
~hen the return instruction encounters this special state block, it
cheCkS if the stack pointer in word O;s still there. If so, ;t
restores the current state from the stack pointed to ~y that stack
pointer. If not, it branches to the system reSCheduling routine
pointed to by word three of the ring 0 procedure segment.

System traps can be disabled by setting the appropriate bit in
the P~R. ~hen this bit is set, system traps ~il1 be queued, and
will be generated when the b,t;s cleared. This ;s analogous to
interrUPt enable/disable on th~ tcl;pse.

vue to the nature of system traps and tne fault
process traps, oage faults can not be taken while
them. Thus, all of the handler pointers and the trap
themselves must be resident in system memory.

DAta General Corporation
Co~pany Confidential

type of
resolving
handlers

11:3:37
31/Aug/77
Rev. 1

CHAPltR 5 - Protection

5.1 ~eneral

Segments are the basic unit of protection. Segments are
always r~ferenced within a hierarchical domain structure orqanized
into units called rings. There are 8 rin?s of protection. Ring 0
contains the sYstem security kernel ana is the least
restricted. Ring 7 is a user domain and ;s the most restricted. At
all times, there;s a current r;n~ of execution (CR~), whiCh
deter~ines the access allowed to the current procedure.

There are four types of access whiCh can be allowed to a
segment. Two are related to data access. Read access allows data
within the segment to be fetched. ~rite access allows modification
of data within the segment. The other two aoply to proceaure
transfer. Direct access allows control to be passed to any loca­
tion within the segment. Gate access allows transfer to the
segment only throu~h use of a gate (describeo in the Introduction).

~henever access is attempted to a segment, the processor
generates an effective ring number (see Rinp Maxt~ization), and
uses that and the target segment number as indices into a two
dimensional access array. lhis array is ~ssociated with the current
translation tAble (see Memory Management) an~ each entry in it
contains a bit for each of the four types of access. If the bit is
set, that type of access is allowed from the effective ring to the
target segment.

5.2 Rina ~aximizat;on

In any hierarChical system, there exists a problem of a higher
ring passing as a parameter to a lower ring a pOinter to a segment
that the higher ring has no access to. To avoid this problem, the
architecture provides a techni~ue calleo ring maximization, which
;s applied to all data accesses. Every hase register and byte data
pointer involved in an effective adaress calculation has a ring

Oata General Corporation
Company Confidential

11:3:37
31/Aug/77
Rev. 1

5.2 ~inq Maximization 5-2

number contained in it. The effective ring used for access checkinq
is the maxi~um of all these rings and the current ring of
execution. In this way, a more privileged ring can make data
accesses with the same access limitations as the higher ring on
whose behalf it ;s executing, but a high~r rinq can not masauerade
as a lower (more privileged) ring.

5.~ Determination of the Current Rinq of Execution

Every procedure segment has associatea with it the mimimum
(MINRE) and the maximum (~AXRE) ring in which the proceaure is
allowed to execute. These are kept in tne segment descriptor.
Whenever the proceoure segment is changed as a result of a call,
Jump, or return instruction, a new current ring of execution is
determined according to the following formula:

S.LI StacKS

Every ring has its own stack segment with a format as nescri­
bed in the I"troduction. When a rinp crossing is detected Qurinq
execution of a call instruction, the stack seR~ent number for the
new ring is fetched from the Task Control dlcck. Arguments and the
procedure state block are pushed onto the ne~ staCk segment.

--End of Chapter--

Oate General Corporation
COMPany Confidential

11 :3:37
31/Aug/77
Rev. 1

CHAPTER b - Memory Management

5ince the state of the art in memory manaqement policies for
virtual systems continues to advance, it woula seem reasonable to
encapsulate EGO's mp.mory management algorithms in a module whose
internals are not architecturally specified. Thus, the follo~ing
description of memory management for EGO implementation 1 does not
in principal belong in this document; it is provided solely for
completeness.

For purposes of memory management, the 10~;cal address descr;­
oed in 1.2.2 ;s further SUbdivioed such that each segment consists
of 2K oages, each page containing 2K oytes:

o 9 10 20 21 31

------------~------------------~-------I<Ring>I<$eq #>I<Pa8e #>I<Page offset>1

--------~------------------------------

Conversion from logical address to physical address;s implemented
by constructing a page table for each seqment. fh;s table contains
one entry far every page in the segment (entries exist for pages
beyond the current length of the segment, but are marked invalid).

entry in this taele (PTE - for Page Table Entry) has one of the
~ ~fOll0Wing two for •• ts. depending on the associated page'. st.tus:

~~~ ~~~::::~:~:~~~::::::::::::::::~:: v~~~ \~ 
~) 

~ Invalid (unallocated) oa~e ~. ~ 

~/J 
~r ~ ~~.-
~ \ ~t 

o 123 31 
--------._-----.. ------------._--
IOIRI~1 soare /<physical page #>1 
--------------------_._.-.-------

\~ 

Data General Coroorat;on 
Company Confidential 

11:3:37 
31/Aug/77 
Rev. 1 



Resident page 

In the PTE for a resident page, the R-oit indicates whether the 
page has been referenced by a process since the last time the R-bit 
was reset, a~o the M-bit indicates wh~ther the page has been 
modified bY a process since the last time the M-bit was reset. 
These two bits are required by most useful memory management 
algorithms. The 16 spare bits in the resident pa~e PT~ are availa­
ble to the memory manager - a typical use might be the ~-bit 
reQuired by the pape fAult frequency algorithm to mark pages 
belonging to the active process' working set. 

The page table associated with each segment ;s itself 4 pages 
in length: 

2K pages/segment * 1 PTE/page * ~ oytes/PTE * 1 oage/~K bytes = ~ 

Since ~e anticipate that most segments will oe less than one fourth 
their maximum length, it is desirable to reauire only those page 
table pages containing PTe's for allocated pages of an active 
segment to be res;nent ;n primary memory. lh;s is aChieved by 
associatinp 4 page t3ble pointers (PTPs) with eaCh of the 128 
segments of a process' logical address space. A PTP has one of the 
following two for~ats, depend;nQ on the status of the associated 
page table paqe: 

o 1 7 8 31 

-------~------~.--.--.-----------101 I<physical page table ptr>1 ________________ • ___ ~ ___ M _______ _ 

PTP for a resident page table paRe 

o 1 31 

--------.-~----------------.-----111 reserved 

---.-----.--------.--.--------.-~ 
PTP for a non-resident page taole page 

Data General Corporation 
Company Confidential 

11:3:37 
31/Aug/,17 
Rev_ 1 



The physical adoress contained in a PTP 
a oyte rointer to the page table page itself 
of this pointer arp always 0, since paqe 
al;~nea on phYsical p~ge coundaries). 

for a resident page is 
(the low order 11 bits 
taole pages must be 

The 512 PTPs associated with a process' 128 segments are 
grouped in sequence to form thp. process' translation table - this 
table ~efines its process' loq;cal address space. The translation 
table for the currently active process is pointed at by the current 
translation table pointer (CTTP), itself a physical address. 
Naturally, the translation table for the currently active process 
is resident in primary memory. 

Eac~ loqical address emitted by tne processor is translated to 
a physical address by Boning bits j t~rouq~ 11 of the logical 
aodress to CTTP to select a PTP from the current translation table. 
If bit 0 of this PTP is reset, a oounaary fault is init;ated~ 
otherwise, bits 12 throuPh 20 of the logical address are added to 
the pointer in the PTP to select a PTE from the page table. If 
this PTE ;s invalid, a boundary fault ;s initiated. If it ;s 
resident, the PTE is upoated as reouired bY the memory management 
algorithm (for example, the ~-o;t may be set), and the desired 
physical address ;s constructed by concatenating bits 19 through 31 
of the PTE with bits 21 through 31 of the loq i cal address. 

Although this mechanism provides the desired funetionality, it 
is painfully slow, since two memory references are required (one to 
get tne PTP, one to get the PTE). Therefore, EGO implementation 1 
will be provided with an associative aadress translation unit (ATU) 
which, when proviaeo with bits 3 through 20 of a logical address, 
either produces the associated PTE CR, M, and physical page 
number), or initiates an ATU fault. This fault ;s serviced (in 
microcode) by obtaininR the PTE as described above, loading its 
contents into the ATU (perhaps overwriting some other PTE in the 
ATU), and retrying the translation. The ATU also faults if a page 
whose M-bit is reset is mooified. This fault is handled by sett~ng 
the M-bit of the page's PTE ana ATU entry. 

~ecause logical adoresses are process specific, the ATU must 
be purged before a new process is activated. Thus each page a 
process references in its time slice ;s guaranteed to generate at 
least one ATU fault. 

Data General Corporation 
Company Confidential 

11:3:37 
31/Aug/77 
Rev. 1 



In oraer to supoort memory manaqement as defined above, the 
memory manaaement module ~ust be provided with the fol10w,ng: 

1. The ability to move operands in primary memory using 
physical addresses. 
2. The ability to load a PTE into the ATU. 
3. The aoility to purge the ATU. 

--End of Chapter--

Data General Corporation 
Company Confiaential 

11:3:37 
31/Aug/77 
Rev. 1 



CHAPTER 7 - 1/0 System 

7.1 Urganization 

Information is transferred bet~een an EGO processor anc its 
I/U system by means of directives - packets of self-describing data 
and control. The medium for t~is transfer is physical memory; 
therefore directives are referred to by physical address. There 
exist two directive types; primitive, and non-orimitive. Primitive 
directives either represent ~ ~ova/~clipse programmed 1/0 
instruction, or specify the location in physical memory of a 
non-primitive directive whose execution is desired. Non-primitive 
directives represent high-order 1/0 functions, for example, read 
next sequential record from file "FOG". 

~very EGO implementation will possess hardware capable of 
executing all primitive 1/0 instructions. A specific non~primitive 
directive mayor may not be executable by a particular 110 system 
implementation. If it is not, the 1/0 system initiates a process 
trap in some CPU in order that the directive be emulated; the 
choice of CPw dependS on the ;mpleme~tat;on's resource sharing 
algorithm. Thus each non-primitive directive requires either a~ 
1/0 processor caoable of executing it or appropriate code in an 
emulator. 

Primitive IIO directives are two 32-bit ~ords in length, and 
have the fol10~ing format: 

012 7 8 15 16 31 

-.-~--.--------~-.---.-.----------.~---~----IL1IL21functionidevice cocel data 
--------------------------------------------

extended oata 

---------.---------.-------.-~.---------.---

Each CPU has a unique pair of wordS in Physical memory called the 
primitive 1/0 words (PICw) into which it places primitive 
directives. This location is specified by the contents of the 

Data General Corporation 
Company Confidential 

11:3:37 
31/Aug/77 
Rev. 1 



7.1 Oraanization 7-2 

primitive 1/0 pointer (PlOP), which is provided to each CPU and 1/0 
converterlprocessor at syste~ initialization. The location of the 
PIUW can ne changed if necessitated by failure in primary memory. 

rwo 1/0 instructions are provided in the EGO kernel 
tion set: 

<1/0 IN><function><device code><destination 
reference> 

instruc-

operand 

<1/0 OUT><function><aevice code><source operand reference> 

Execution of one of these instructions requires an E~O CPU to first 
ensure that the previous directive placea in the PIO~ has been 
accepted by the IIG system. Bit Ll of the PlOw is the semaphore 
which controls this process. The function and device code fields 
in the instruction are then stored into the appropriate fielo of 
the PIO~. If the instruction is 1/0 OUT, the source operand is 
fetcheo ana elaced in thp pru~ data field, ann a "ne~ directive" 
command is sent to the I/U system. The CPU is then free to con­
tinue execution. If the instruction is 110 IN, the "new directive" 
command is immediately sent to the 1/0 system, which obtains the 
required datum, stores it in the oata fiel0 of the PIO~, and sets 
the L2 bit, which functions as a data-in semaphore. The CPU 
meanwhile loops on L? until it is set by the I/u system, indicating 
the presence of the required datum in the PIO~ data field. L2 is 
then reset, and the datum ;s stored into the destination operand 
specified in the instruction. 

The first 16 primitive 1/0 functions are mapped airectly from 
the Nova/Eclipse proprammed I/O instruction set. For reference, 
the format of a NovB/Eclipse programmed 1/0 instruction is s~own 
below: 

o 2 34 ? q 10 15 _________ . _____ M~_. _____ ~ __ _ 
I011IAClfunt;onldev;ce codel 

Bit 7 of this instruction implies the direction of the transfer 
this is subsumed Dy the EGO 1/0 instruction opcode. The remaining 
four bits of the function define the first 16 primitive 1/0 
functions. The skip instructions translate into input 
instructions; the 1/0 system simply stores SEL~ or BELD into the 
low order bit of the PIO~ data fiela, which tne CPU then tests. 

Data General Corporation 
Company Confidential 

11:3:37 
31/Aug/77 
Rev. 1 



7.1 Organization 

Special Nova/Eclipsp I/u instructions, i.e. those with device code 
0, 1, 2, 3, or 77(octal), are emulated directly without the use of 
the PIO~. 

The seventeenth EGU primitive I/O function specifies the 
physical address of a packet aescribing a non-primitive I/O 
airective. This address ;s placed in the extended data field of 
the PIO~; an 1/0 OUT instruction transfers the information to the 
I/O system. lhe remaining 47 functions are free for later 
definition. An obvious use will be t~e transfer of 32-bit data to 
ana from a new family of device controllers through the extended 
data field of the PlOw. Microcode implement1ng these new I/O 
functions can be distriouted (via floppy disk) if and when the new 
controllers become availaole. 

The def,nition of non-primitive 1/0 directives can be made 
non-architectural, if we are wil1inq to p~y the penalty of carrying 
arouno an emulator or I/O processor driver for each set of 
non-primitive directives defined. Alternatively, we can architec­
turally define hierarchical layers of non-crimitive directives. ~e 
defer this decision until an operating system is defined, at which 
point suostantially more information will be available on which the 
decision can be based. 

7.2 Ubjectives for the EGO-1 I/O system 

The following ooJect1ves have been established for first 
implementation. These are not architectural in nature, but 
listed in this aocument for completeness. 

EGO 
are 

The EGO~l standaro I/O bus will be identical to the 
Nova/Eclipse standard T/U bus as specified in ~The Inter­
face Uesigner's Guioe for the ~ova and Eclipse" chapter 4 
and appendix D. Thus any existinq controllers conforming 
to this specification will be directly compatible with 
EGO-1. 

* The EGU-l high-speed channel will be identical to the 
Eclipse high-speed channel as defineo in its specification. 
Thus hiqM-speed channel controllers will be directly 
compatible ~~th EGO-I. 

* Standard data channel and nigh-speed channel transfers 
between controllers and EGO-l's system cache will not 
degrade CPU cerformance except when simultaneous cache 
faults occur. EGO-l will he capable of sustain;n9 1/0 

Data General Corporation 
Company Confidential 

11:3:37 
31/Aug/77 
Rev. 1 



7.2 Objectives for the EGO-t 1/0 system 

rates ot 1~ million bytes per secona with peaks approaching 
20 million bytes per second. 

* EGO-l's 1/0 converter will perform al I primitive 1/0 
directives and initiate a process trap in the CPU on 
receiving any non-primitive I/U oirective; in response to 
this trap, the CPU will emulate the non-primitive directive 
on behalf of the 1/0 converter. 1/0 system intelligence 
may be increased by replacing the 1/0 converter with an 1/0 
processor capable of executing some or ~11 non-primitive 
1/0 directives. 

·-tnd of Chapter--

Uata General Corporation 
Company Confidential 

11:3:37 
31/Aug/77 
Rey. 1 



CHAPTER d - Availan;lity/Reliability/~a;ntainability 

8.1 Overview 

This chapter at present contains theoretical directions which 
we expect Data General and EGO to be taking. This material is 
indicative of the techniques we will employ, out is preliminary as 
an arcnitectural definition. 

8.2 EGa Diagnostic Control Processor Oojectives 

Data General Corporation, and its customers, are beco~ing 
increasingly aware that the characteristics ~f maintainability and 
availaoility are vital to future systems sales. To meet the 
availability and maintainability goals, a soft console will provide 
all recuired EGO consol~ functions executed thrOugh a teletype 
interface. 1n addition, it will improve system maintainability by 
proviidinq a software diagnostic capa~i lity external to the EGO 
processor system and inoependent of its correct operation. Availa­
bility can be enhanced by providing downline system control and the 
capacity to monitor tim;n~ on critical system d~ta paths. Otner 
capabilities that can enhance marKetability can be provide~ nearly 
free given the above. 

The first two objectives effectively define the baSic form 
that the console will take. To interrupt console commands received 
through the teletype, interface intelligence is requ;reo. A 
software d,agnostic capability independent of a working processor 
system also requires intelligence, plus memory capacity • both RAM 
and bulk storage. To provide the intelligence needed, a m;croNOVA 
will be present on the console board, with a teletype interface and 
an interface to the EGO System. Basic control software for tne 
console is present in ROM storage, and RAM ~s present for data end 
additional console program storage. Bul< diagnostic software ;s 
provioeo by e diskette unit connected to the microNUVA 1/0 bus via 
an external cable. Tne interface to the EGO System allows the 
microNUVA to force the processor to any microstate, as well as 
forcing data onto buses, and exa~;n;ng the data on those buses. No 
part of the actual processor need be workinp, except the power 
supplies for the console microNOvA, to perform complete 

Data General Corporation 
Company Confioential 

11:3:37 
31/Aug/77 
Rev. 1 



8.2 EGO Dia~nost;c Control Processor Objectives 8-2 

diagnostics. The microNQVA wil I also be provided with its own set 
of self-diagnostic programs, further improving maintainability. 

enhancements to availability are accomplished by: 

Providing a capability for oownline control. Tn;s;s done 
merely by connectinp the teletype interface mentioned to a 
mooem ,nstead of a terminal. Console com~ends normally 
received directly from a terminal are then received via a 
phone line. This allows remote diagncsis of the system 
before a field engineer arrives at the site. 

* Provioing the capability to monitor timing on critical 
system data paths. This does not reduce failure probabil­
ity but allows imminent fa; lures to be located before they 
occur oy spott;n~ symptoms indicating failure, such as late 
bits. 

* Providing the ability to continuously monitor the power 
supply. This feature will enable early warning of power 
supply irregularities, and avoid catastrophic failures or 
critical data loss. 

* Providinq the ability 
console at specified 
software debuggin~ and 
hardware reqisters or 
routines. 

to run diagnostic proprams from the 
hardware breakpoints. This eases 
allows the cnecking of specified 
paths in the midole of certain 

The diapnosis of intermittent hardware fa; lures is generally 
difficult. Classically, the simplest way to locate such an inter­
mittent failure ;s to vary tne system characteristics until the 
failure becomes hard. The oiagnostic control processor can facili­
tate this debugging of intermittent failures by permitting us to 
vary three key parameters: 

* voltage 

* temperature 

* clock frequency 

Data General Corporation 
Company Confidential 

11:3:37 
31/Aug/77 
Rev. 1 



8.2 EGO Uiagnost;c Control Processor Objectives 

within certain ripid limits, these parameters may be 
under the control of the microNOVA, as an aid to off-line 
analysis. 

--End of Chapter--

Data General Corporation 
Company Confidential 

8-3 

varied, 
failure 

11 :3:37 
31/Aug/77 
Rev. 1 



o 3-2 ADD-it1 

CHAPTER 9 • Measurement and DebuR ~ids 

--End of ChaPter--

Data General Corporation 
Company Confidential 

11:3:37 
31/Aug/77 
Rev. 0 



o 3 ... 2 
o 3-2 
o 3-2 
o 3 .. 2 
o 3-2 
o 3-3 
o 3-3 
o 3"3 
o 3-3 
o 3-3 
o 3-3 
o 3-3 
o 3-3 
o 3-3 
o 3-3 
o 3 .. 3 
o 3-3 
o '3-3 
o 3-4 
o 3-4 
o 3-4 
o 3-4 
o 3-4 
o 3-4 
o 3-4 
o 3-4 
o 3-4 
o 3-4 
o 3-4 
o 3 ... 5 
o 3 .. 5 
o 3-5 
o 3-:' 
o 3-5 
o 3-5 
o 3-5 
o 3-5 
o 3-5 
o 3 ... 5 
o 3-5 
o 3"5 
o 3-6 
o 3-6 
o 3-6 
o 3-b 
o 3-6 
o 3-6 
o 3-6 
o 3-1 
o 3-7 
o 3-7 
o 3 .. 7 
o 3-7 
o 3-7 
o 3-7 

- 0 3-7 
o 3-7 
o 3-7 
o 3-7 
o 3-7 
o 3"'7 
o 3-7 
o 3-7 

SUBTRACT-lb 
RSUB-16 
MULTIPLY-lb 
REFIOE-lb 
R E IV! A I f'J" 1 6 
j,,1UVE:.-16 
COMPARf:."lb 
COMPAHE-wITHIN-LIMITS-16 
SHIFT-ARITHMETIC-t6> 
ABSULuTE-VALUE-16 
NEGATE-lb 
AOD-I-16 
SUtHRACT-!-16 
!"lULTIPLY-I-16 
DIVII)F:-I-16 
REiViAli\J-I-16 
MUVt.-I-16 
COfvIPARE-I-lb 
COMPARt-~ITHI~-LIMITS-I-lb 
SHIFT-ARITHMETIC-I-16 
COMPARE-lb-!') 
Ij\jCRtMEI~T-16 

DECREI'~ENT-16 
CLE.At<-16 
ADD"32 
SUtflRACT-32 
i\llIJLTIPLY-32 
DIVIUE.-32 
iV10VE .. :,;2 
C {J1''iPA rd::'''' 32 
REMAIN-32 
ABSOLUTE-vALUE-32 
NEGATE-32 
COMPA~E-wITHIN-LIMITS-32 
SHIFT-ARITHMETIC-32 
.1.\00-1-32 
SU8TRACT-I"'32 
f'.1ULTIPLY-r-32 
DIVIDE-!-32 
REIY1AIN-I-32 
i'>1LlVE-!"32 
C 01.f:P MH:.- I -32 
CO~PARE-wllHIN-LIMITS-I-32 
SHIFT-AHITHMETIC-I-32 
COMPARE.-32-u 
INCREfvlENT-32 
Df:.CRE:,MENT-32 
CLEAR-32 
ADD-e 
SUtHRACT-8 
MULTIPLY-8 
DIVIDE-8 
REr,.IAII\: .. S 
MUVE-h 
COMPARE-e 
COM~ARE-wITHIN-LIMITS-8 
SHIFT-LOGICAL-8 
A}\lI)-/:S 

lOR-8 
XOR-B 
SET"OIFF .. S 
COMPLEMENT-e 
1'-'1 A SK -fillER GE -t5 



o 3-8 
o 3-8 
o 3-8 
o 3-8 
o 3-8 
o 3-8 
o 3-8 
o 3 .. 8 
o 3-H 
o 3-8 
o 3-8 
o 3-8 
o 3 ... 8 
o 3-8 
o 3-8 
o 3-9 
o 3-9 
o 3-9 
o 3-9 
o 3-9 
o 3-9 
o 3-9 
o 3-9 
o 3-9 
o 3-9 
o 3-9 
o 3-9 
o 3-10 
o 3-10 
o 3-10 
o 3-10 
o 3-10 
o 3"10 
o 3-10 
o 3-10 
o 3-10 
o 3-10 
o 3-10 
o 3 ... 10 
o 3-10 
o 3-10 
o 3-10 
o 3-11 
o 3-11 
o 3-11 
o 3-11 
o 3-11 
o 3-11 
o 3-11 
o 3-11 
o 3-11 
o 3-12 
o 3-12 
o 3-12 
o 3-12 
o 3-12 
o 3 .. 12 
o 3-13 
o 3-13 
o 3-13 
o 3 ... 13 
o 3"'13 
o 3-13 

ADD-I-8 
SUlHRACT .. !-8 
f't'IUL T r PL Y .. I-B 
DivIDE-I-e, 
MOVE-I-e 
REJViAIN-I-8 
CD!VIPAH£-I-i,-I. 
SHIFf-LOGICAl-I-8 
CUMPARE-~ITHIN-LIMITS-I-H 
Ai\lU'" 1-8 
IOR-I-b 
xUR-r-/3 
SE.T-()IFF-I-e 
jV\A SK -jV'£kGE -1-e 
COf'!'PARE-8-0 
11\C~Er'/IEN T-8 
OE.CREMENT-8 
CLEAR-a 
ADD-U-32 
SUBTRACT-U":S2 
f4UL T IPLY-U-32 
DIVIDE"'U-32 
REf ViA I N-U-32 
,'YIOVE-U-32 
COi,l.pARt.-U-32 
CO~PARE-WITHl~-lIMITS-U-32 
6t1IFT-LOGICAL-~2 
M~D- 32 
IOR-32 
XOR-3t!. 
SET-IHFF""32 
C Of<l'P LEtJIEf\I T .. 32 
i'.lASK "'/.",i;.f.(GE-32 
AI)O"'U-I-32 
SUBTRACT-U-I-32 
MULTIPLY ... U-!-32 
DI"IOE-U-I-32 
1V1OVE .. U ... r -32 
REMA!fv"'U-1-32 
C(iMPARE-U-I-32 
COMPARE"':S2-{) 
INC R !:. i"i E NT ... 3 2 -ll 
DECREIvlENT"'32-U 
CLEAR-32-U 
CO~PARE-~ITHIN-LIMITS-32-U 
SHIFT-LOGICAL-I-32 
AND-I-32 
IOR-I"'32 
XOR-I .. 32 
SET-DlfF-I .. 32 
MA St( -!V!ER GE - I ... 32 
ABSULUTE-VALUE-FP 
NEGA H.-FP 
tXT RAe T ... E X P 0 f~ E N T 
ADD-SP 
SUSTRACT-SP 
MULTIPLY-SP 
DIVIDE-SP 
MOVE-SP 
COiVIPARE .. SP 
NORr>l'lAL lIE -SP 
INTtGERIlE"'SP 
COMPARt:-ZtRU"'SP 



o 3-13 
o 3-13 
o 3-14 
03-14 
o 3-14 
o 3-14 
o 3-14 
o 3-14 
o 3-14 
o 3-15 
o 3-15 
o 3-15 
o 3"'15 
o 3 .. 16 
o 3-16 
o 3-16 
o 3-16 
o 3-16 
o 3-16 
o 3-16 
o 3"lb 
o 3-16 
o 3-1b 
o 3-17 
o 3-17 
o 3-17 
o 3"'17 
o 3-17 
o 3-17 
o 3-18 
o 3-18 
o 3-11:) 
o 3"'1/j 
o 3-18 
o 3-19 
o 3-19 
o 3-20 
o 3-20 
o 3-21 
o 3-21 
o 3-21 
o 3-21 
o 3 .. 21 
o 3-21 
o 3"'21 
o 3-21 
o 3 .. 21 
o 3"21 
o 3-21 
o 3-21 
o 3-21 
o 3-22 
o 3-22 
o 3-22 
o 3-22 
o 3 ... 22 
o 3-22 
o 3-22 
o 3-22 
o 3-22 
o 3-23 
o 3-23 
o ~-23 

SCALE-SP 
HALVE-SP 
ADD-OP 
SUbTRACT-SP 
r"UL T I PL Y -DP 
OlVIOE"0P 
~10 V E -uP 
COMPM~E"l.lP 
h)(JRMALIZE-DP 
IIHEGt::HI ZE-DP 
COIVIPARE .. ZERO .. DP 
SCALE-DP 
HALVE-DP 
1''lO VE -tl Y T t S-UP 
j\!iO V E -1:3 YTE S-DO ~'liI'J 
MOVt::-~~TES-FILL-RIIGHT-DO~N 
MOVE-uVTES-FILL-LEFT-UP 
;:; C A I'~ .. t3 Y T E - U p 
SC AN .. /3 YTt:: -uG !!'; ,'I 
seA h ... !,~ u r ... B Y T t ... u P 
SCA~-N01-RYTE-D0n~ 
CO!VIPAKE-STRINGS 
SUbSTi-<ING 
SCA~-SUdSTRING-0P 
SCAN-SU~STRING-DO~N 
~OVE"'THA~SLA1·ED-STRING-UP 
MOvt-rRANSLATED-STRI~G-OU~N 
C~ARACTER-SCAN-UNTIL-T~UE 
CHARACTER-MOVE-UNTIL-TRUf 
TEST"Ai~n-SF.:T-81 T 
TES1-AND-CLEAR-8Il 
TEST-bIT 
SET-SIT 
t..:LEAR-tH T 
FIND-LEADING-SIT 
COUNT-BITS 
MOVE .. FROM-BIT 
I"' 0 V E .. TO .. i'3 I T 
ADD-DECIMAL 
A0D-DECIMAL-GIVING 
SLJi3T RAC T -DEC I !IIlAL 
SUBTRACT-D~CIMAL-GIVI~G 
MULTIPLY-JECIMAL 
MULTIPLY-DECIMAL-GIVING 
DIVIDE-DEClfu)AL 
DIVI0E-DECIMAL-Glvr~G 
REMAIN-DECIMAL-GIVI~G 
COfvlPA.RE -DEC 1 MAL 
COj\llPARE -ZERO-DEC I,4AL 
!V'OVE. .. DEC lr.1AL 
SCtlLE"'LEFT 
SCALt:-RIGHT 
f~OUN{) 

EDIT 
MODIFY-ST~CK-POINTER 
PUSri-S 
PUSI-1-16 
PUSH-32 
PUSH-bl4 
Pt)p-ti 
POP"16 
POP-32 
POP-b/~ 



o 3-23 
o 3-23 
o 3-23 
o 3-2l4 
o 3-2l4 
o 3-2l4 
o 3 ... 24 
o 3-2l4 
o 3-25 
o 3-25 
o 3-25 
o 3-25 
o 3-25 
o 3-25 
o 3-25 
o 3-25 
o 3-25 
o 3-20 
o 3-26 
o 3-20 
o 3-20 
o 3-26 
o 3 ... 26 
o 3-27 
o 3-27 
o 3-27 
o 3-27 
o 3-27 
o 3 ... 27 
o 3-27 
o 3-28 
o 3-28 
o 3-28 
o 3-28 
o 3-28 
o 3-28 
o 3-28 
o 3-29 
o 3-29 
o 3-29 
o 3-29 
o 3-29 

ttlOVE-SP 
PUSH-PC 
POP-PC 
CALL-PDIFF 
CALL-POIFF-PACKtT 
CALL 
CALL-PACKf.'l 
RETURN 
RETURN-ARG 
JUMP-O~-CONDJTION 
JUMP-GT 
JUfViP-LT 
JW1P-I'JE 
J LJ(>IP -E Q 

JUr"!P-bt. 
JUt-1P-LE 
JUMP 
DISPATCH-IMMEDIATE 
DISPATCH-IM~~DIAT~-PUSHPC 
DISPATCH 
DISPATCH-PUSHPC 
DISPATCH-CALL 
OISPATC~-CALL-PACKET 
CONVERT-INTEGER-TO-SP 
CONVERT-INTEGER-TO-OP 
CuNVERT-SP-l0-INTEGE~ 
CUNVERT-OP-TO-INTEGER 
CONVERT-SP-TO-OP 
CONVERT-CHARACTER-TO-DP 
CONVE~T-DP-TO-CHARAC1E~ 
PURGE-,A 1 U 
LOAU-PHYSICAL 
STORE-PHYSICAL 
LOAD-PSR 
STOkE-PSR 
la-IN 
IO-OUT 
LOAD-EFFECTIVE-ADDRESS 
COpy 
COPY-IMMEl) 
LUAD-CONDITION-REG 
STOkE -COND I T I OrJ-KEG 


