
Denelcor

D
Denelcor, Inc. (303) 340-3444
Clock Tower Square
14221 East Fourth Avenue
Aurora, Colorado 80011

HETEROGENEOUS ELEMENT PROCESSOR SOFTWARE OVERVIEW

Table of Contents

1. HEP Assembler User's Manual

2. HEP Link Editor User's Manual

3. HEP Operating System Overview

4. HEP File System Functional Specification

NOTE: ALL INFORMATION CONTAINED HEREIN IS PRELIMINARY
IN NATURE AND SUBJECT TO CHANGE WITHOUT PRIOR NOTICE.

Tomorrow's Computers ... Today

Denelcor

D
Denelcor, Inc (303) 340-3444 .
Clock Tower Square
14221 East Fourth Avenue
Aurora, Colorado 80011

HEP ASSEf\"BLER

USER'S ~NUAL

DENELCOR PUBLICATION 10003-00

DENELCOR) INC
3115 EAST llOTH AVENUE

DENVER) COLORADO 80205

Tomorrow's Computers ... Today

y
I

NOT ICE

This manual describes the facilities provided by the REP Assembler. It

reflects, with reasonable accuracy, specifications in effect at the time

the manual was written. Users are cautioned that Denelcor reserves the

right to make changes to these specifications without notice. Denelcor

assumes no liability for any damage resulting from or caused by reli­

ance on the information presented. This includes, but is not limited

to, typographical errors and the omission of any information.

Comments regarding this manual or its content should be directed to:

Corporate Communication Department, Denelcor, Inc., 3115 East 40th

Avenue, Denver, CO 80205.

CONTENTS

Page
SECTION I INTRODUCTION 1

SECTION II GENERAL INFORMATION

2.1 Introduction 2

2.2 Source Statement Format 2

2.2.1 Character Set 3

2.2.2 Label Field 4

2.2.3 Operation Field 4

2.2.4 Operand Field 4

2.2.5 Comment Field 5

2.3 Constants 5

2.3.1 Decimal Integer Constants 5

2.3.2 Hexadecimal Integer Constants 6

2.3.3 Floating-Foint Constants 6

2.3.4 Character Constants 7

2.3.5 Assembly-Time Constants 7

2.4 Symbols 7

2.4.1 Location Counter Reference 8

2.5 Literals 8

2.5.1 Restrictions on Literals 9

2.6 Character Strings 9

2.7 Attributes 10

2.7 Location Attributes 10

2.7.2 Accessing Attributes 10

2.8 Expressions 13

2.8.1 Terms in Parentheses 14

2.8.2 Arithmetic Operations 15

SECTION III MACHINE INSTRUCTIONS

3.1 Introduction 16

3.2 Addressing 16

3,2,1 Addressing Modes 17

i

3.2.2

3.3

3.3.1

3.3.1.1

3.3.1.2

3.3.1.3

3.3.2

3.3.2.1

3.3.2.2

3.3.2.3

3.3.2.4

3.3.2.5

3.3.2.6

3.3.2.7

3.3.2.8

3.3.2.9

3.3.3

3.3.3.1

3.3.3.2

3.3.3.3

3.3.3.4

3.3.3.5

3.3.3.6

3.3.3.7

3.3.4

3.3.4.1

3.3.4.2

3.3.4.3

3.3.4.4

3.3.4.5

3.3.4.6

3.3.4.7

3.3.4.8

CONTENTS CONTINUED
Page

Attribute Specifications 19

Instruction Formats 20

General Purpose Instructions 20

Three Address Instructions 21

Two Address Instructions 22

Shift Instructions 23

PSW Instructions 24

Branch Instruction 25

Modify PSW Instruction 26

Create Instruction 27

Quit Instruction 27

Store PSW Instruction 28

Load PSW Instruction 28

Exchange PSW Instruction 29

Supervisor Call Instruction 29

No Operation Instruction 30

Data Memory Instructions 30

Read Data Memory 30

Write Data Memory 31

Read Data Memory Indirect 31

Write Data Memory Indirect 32

Read Data Memory Indexed Indirect 32

Write Data Memory Indexed Indirect 33

Load Address Instruction 34

Supervisory Instructions 34

Read CFU Control 35

Write CFU Control 35

Read Process Status Word 36

Read Task Status Word 36

Write Process Status Word 37

Write Process Status Word 37

Read Program Memory 38

Write Program Memory 38

ii

SECTION IV

4.1

4.2

4.2.1

4.2.2

4.2.3

4.2.4

4.2.5

4.2.6

4.2.7

4.2.8

4.3

4.3.1

4.3.2

4.3.3

4.3.4

4.3.5

4.3.6

4.3.7

4.4

4.4.1

4.4.2

4.4.3

4.4.4

4.5

4.5.1

4.5.2

SECTION V

5.1

5.2

CONTENTS CONTINUED

ASSEMBLER DIRECTIVES

Introduction 39

Directives which Define Symbols
and Data 39

DC - Declare Constant 40

DS - Declare Storage 41

EQU - Equate Symbol 42

SET - Set Symbol 43

LPOOL - Declare Literal P~ol 44

TEXT - Initialize Text String 44

VFD - Variable Field Definition 45

GEN - Generate Variable Field 46

Directives Which Section and Link Programs 47

RLOC - Identify Relocatable Location
Counter 47

DLOC - Identify Dummy Location
Counter 48

ORG - Reset Location Counter 49

COMMON - Identify Common Section 50

ENTRY - Identify Entry-Point Symbol 51

EXTRN - Identify External Symbol 51

PROG - Identify Program 51

Directives Which Control
the Assembly Listing 52

PAGE - Start New Page 52

PRINT - Set Print Options 53

SPACE - Space Listing 53

TITLE - Set Page Title 54

Directives Which Control
the Assembly Program 54

COpy - Copy Source File 55

END - End Assembly 55

ASSEMBLER OUTPUT

Introduction

Source Listing

iii

56

56

CONTENTS CONTINUED
Page

5.3 Error Messages 57

5.4 Cross-Reference Listing 57

5.5 Object Code 57

APPENDIX A CHARACTER SET 58

APPENDIX B ERROR MESSAGE DESCRIPTIONS 62

APPENDIX C EXAMPLES OF MEMORY ADDRESSING 67

iv

SECTION I - INTRODUCTION

This manual describes the Heterogeneous Element Processor (REP) Cross

Assembler.

It describes both the assembly language and the assembler output in detail.

The manual includes a description of:

- Source statement format and elements

- Addressing modes

- Assembler directives

- Machine instructions

- Assembler output

This manual assumes the reader is familiar with the computer architecture

of HEP as described in the REP Principles of Operation., Denelcor Publication

10 001-01.

-1-

SECTION II - GENERAL INFORMATION

2.1 Introduction

This section describes the HEP Assembly Language coding conventions, assem­

by language source statement structure, and general assembly language con­

structs.

2.2 Source Statement Format

The assembly language source program consists of source statements which

may contain assembler directives, machine instructions, pseudo-instructions,

or comments. Each source statement is a source record as defined for the

source medium. However, the maximum length of source records is 80 charac­

ters. The syntax for source statements other than comment statements is

as follows:

FORM:

[<label>]~ ... opcode~ ... [<operands>] .•• ~ ••. [<comments>]

This definition implies that a source statement may have a label, which is

defined by the user. One or more blanks separate the label from the opcode.

Mnemonic operation codes and assembler directive codes are all included in

the generic term opcode, and any of these may be entered. One or more

blanks separate the opcode from the operand, when it is required. Additional

operands, when required, are separated by a single comma. One or more blanks

separate the operand or operands from the comment field. Also, a semicolon

(;) may be used to indicate the start of the comment field. Instructions

with an optional operand field require the semicolon.

-2-

The following conventions are used to illustrate machine instructions and

assembler directives in this manual:

Items $hown in CAPITAL LETTERS, and special characters, must be entered

as shown.

Items within angle brackets «» are defined by the user.

Items in lowercase letters are classes (generic names) of items.

Items within brackets ([]) are optional.

Items within braces ({}) are alternative items; one must be entered.

All ellipsis (.•.) indicates that the preceding item may be repeated.

The symbol ~ represents a blank or space.

Comment statements consists of a single field starting with an asterisk (*)

in the first character position followed by any ASCII character, including

,blank, in each succeeding character position. Comment statements are listed

in the source portion of the assembly listing and have no other effect on

the assembly.

2.2.1 Character Set

The assembler for the Heterogeneous Element Processor recognizes ASCII

characters as follows:

The alphabet (uppercase letters only).

The space character

The numerals

Twenty-seven special characters

Appendix A contains tables that list all 64 characters and show the ASCII

and Hollerith codes for each.

-3-

2.2.2 Label Field

The label field begins in the first character position of the source record

and extends to the first blank. Depending on the machine instruction or

assembly directive, the label field mayor may not be required to contain

a symbol (see section 2.4). When the symbol is.omitted, the first charac­

ter position must contain a blank.

Usually, the value of a label is fixed for the entire assembly. The assem­

bler also supports transient labels of the form %<single digit>, where the

percent sign must be in column one. The value of a transient label be­

comes undefined at the next occurrence of a non-transient label making it

available for reuse in a different portion of the same source file. These

labels are typically used to implement small loops and short conditional

branches.

2.2.3 Operation Field

The operation (opcode) field begins with the first non-blank following the

first blank of the source record. The operation field is terminated by one

or more blanks, and may not extend past character position 80 of the source

record. The operation field contains an opcode, which is one of the fol­

lowing:

Mnemonic operation code of a machine instruction

Assembler directive operation

2.2.4 Operand Field

_ The operand field begins following the last blank that terminates the opera­

tion field, and may not extend past character position 80 of the source

record. The operand field may contain one or more expressions, according

to the requirements of the opcode. The operand field is terminated by

end--of--line, semicolon or a blank.

-4-

2.2.5 Comment Field

The comment field begins following the blank or semicolon that terminates

the operand field, and may extend to the end of the source record if re­

quired. The comment field may contain any ASCII Character, including

blank. The contents of the comment field are listed in the source portion

of the assembly listing and have no other effect on the assembly.

2.3 Constants

Constants are used in expressions. The assembler recognizes five types of

constants:

- Decimal integer constants

- Hexadecimal integer constants

- Floating-point constants

- Character constants

- Assembly-time constants

2.3.1 Decimal Integer Constants

A decimal integer constant is written as a string of up to 19 numerals. The

range of values of decimal integers is _263(~-9.2xl018) to +263_l(~9.2xl018).

Operands of arithmetic instructions, other than multiply and divide, are

interpreted as signed numbers.

The following are examples of valid decimal constants:

EXAMPLES:

1000

-32768

16777215

Constant, equal to 1000 or 0000 0000 0000 03E816.

Constant, equal to -32768 or FFFF FFFF FFFF 800016.

Constant, equal to 16777215 or 0000 0000 OOFF FFFF16.

-5-

2.3.2 Hexadecimal Integer Constants

A hexadecimal integer constant is written as a string of up to 16 hexadecimal

numerals enclosed in quotes and preceded by the letter X. Hexadecimal nu­

merals include the decimal digits 0 through 9 and the letters A through F.

The following are examples of valid hexadecimal constants:

EXAMPLES:

X'123456789ABCDEF' Constant, equal to 81985529212254319, or

0123456789ABCDEF16·

X'F'

X'37AC'

Constant, equal to 15, or OOOOOOOOOOOOOOOF1 6 .

Constant, equal to 14252, or

00000000000037AC16.

2.3.3 Floating-Point Constants

A basic floating-point constant is written as a signed decimal integer

constant, a decimal point, and an unsigned decimal integer constant, in

that order. Either of the integer constants may be omitted, but not both.

The decimal point must be present. A floating-point constant is a basic

floating-point constant or a basic floating-point constant followed by an

exponent part or a decimal integer constant followed by an exponent part.

The exponent part is written as the letter E followed by an optionally

signed decimal integer constant. The range of a floating-point constant

is from ~5.4xlO-79 to ~7.2xl075.

The following are examples of valid floating-point constants:

EXAMPLES:

6.

-6.1

+ .1

7.E-l

.3l4El

67.79E+27

8El

-6-

2.3.4 Character Constants

A character constant is written as a string of up to eight characters en­

closed in single quotes. For each single quote required within a character

constant, two consecutive single quotes are required. The chara~ters are

represented internally as eight-bit ASCII characters (with the leading bit

set to zero) which are right-justified with leading zeros. A character

constant consisting only of two single quotes (no character) is valid,

and is assigned the value 000000000000000016'

The following are examples of valid character constants:

EXAMPLES:

'AB' Represented internally as 0000000000004142 16.

'c' Represented internally as 000000000000004316.

'ABCDEF' Represented internally as 0000414243444546 16 .

" 'D' Represented internally as 000000000000274416.

2.3.5 Assembly-Time Constants

An assembly-time constant is written as an expression in the operand field

of an EQU or SET directive, described in Sections 4.2.3 and 4.2.4. Any

symbol in the expression must have been previously defined. The value of

the label is determined at assembly time, and is considered to be absolute

or relocatable according to the relocatability of the expression, irrespec­

tive of the value of the current location counter.

2.4 Symbols

Symbols are used in the label field, the operation field, and the operand

field. A symbol is a string of alphanumeric characters, the first of which

must be an alphabetic character, and none of which may be a blank. When

more than eight characters are used in a symbol, the assembler prints all

the characters, but accepts only the first eight characters for processing.

A percent sign is considered an alphabetic character.

-7-

Symbols used in the label field become symbolic addresses. They are

associated with locations in the program and must not be used in the

label field of other statements. Mnemonic operation codes and assembler

directive names are valid user-defined symbols when placed in the label

field.

2.4.1 Location Counter Reference

The asterisk (*) is used to represent the current location within the

program •

. The following are examples of valid symbols:

EXAMPLES:

START

Al

OPERATION

*

2.5 Literals

Assigned the value of the location at which it appears

in the label field.

Assigned the value of the location at which it appears

in the label field.

OPERATIO is assigned the value of the location at

which it appears in the label field.

Represents the current location.

A literal term is one of the basic ways to introduce data into a program.

It is simply an expression preceded by an equal sign (=).

A literal represents data rather than a reference to data. The appearance

of a literal in a statement directs the assembler program to assemble the

data specified by the literal, store this data in constant memory, and

place the address of the storage field containing the data in the operand

field of the assembled statement.

-8-

Literals provide a means of entering constants (such as numbers for cal­

cua1ation, addresses, indexing factors, or words or phrases for printing

a message) directly into a program by specifying the constant in the

operand of the instruction in which it is used. This is in contrast to

using the DC assembler instruction to enter the data into the program

and then using the name of the DC instruction in the operand.

2.5.1 Restrictions on Literals

A literal term cannot be combined with any other terms.

A literal cannot be used as the receiving field of an instruction that

modifies storage.

A literal which refers to a data·memory location will be assembled in Data

memory address format (see Section 3.2).

2.6 Character Strings

Several assembler directives require character strings in the operand field.

A character string is written as a string of characters enclosed in single

quotes. Two consecutive single quotes are required to represent a single

quote in a character string. The maximum length of the string is defined

for each directive that required a character string. The characters are

represented internally as eight-bit ASCII characters, with the leading bit

set to zero.

The following are examples of valid character strings:

EXAMPLES:

'SAMPLE PROGRAM' Defines a 14-character string consisting of:

SAMPLE~PROGRAM

, PLAN "C'" Defines an 8-character string consisting of:

PLAN~'C'

-9-

2.7 Attributes

All symbols and expressions have implied and/or explicit addressing and

accessing characteristics. These are referred to as the attributes of

the symbols or expressions.

Attributes fall into two general classes: those associated with the loca­

tion of a quantity and those associated with the accessing of that quantity.

The location attributes are fixed at declaration time. Default values for

the access attributes may be established at declaration time. However,

they also may be specified or overridden at each use or reference.

2.7.1 Location Attributes

The location attributes are memory type and relocatability. The memory

type and relocatability. The memory type is either data, program, con­

stant or register. The relocatability is either absolute or relocatable.

These attributes are explained in greater detail in section 4.3.1 covering

the RLOC directive.

2.7.2 Accessing Attributes

The accessing attributes are indexing, access control and data memory

control. The indexing attribute is used for constant memory and Register

memory only -- Data memory uses unique instructions to specify indexed

addressing. The access control attributes are used for Register memory

and Data memory only. The Data memory control attributes are used for

Data memory only.

As stated above, either default values or declared initial values for any

accessing attribute can be overridden each time a symbol is used, if appro­

priate. This is done by including an explicit value for the attribute in

the instruction with the symbol. The value for an attribute is represented

by a colon (:) followed by an optional minus sign (-) and an alphabetic

-10-

character which identifies the attribute and its value. One or more attri­

butes are entered immediately following the symbol they are related to, with

no space or other separator character. Data memory control attributes are

entered with the opcode, not with the Data memory operand.

The defined attributes and their symbolic representation are listed below.

In this list, the default values are indicated by underscoring the symbol

for the attribute. See Paragraph 3.2 for a discussion of the use of attri­

butes in instructions.

INDEXING ATTRIBUTES:

:1 Indexed--use RI or CI from the PSW, depending on the

type of memory addressed.

:-1 Not Indexed--do not use RI or C1.

ACCESS CONTROL ATTRIBUTES:

For Source Operands:

:W Wait--Wait until the access state is FULL, then read.

:-W No Wait--Read without testing the access state.

:U Use--Read, then set access state to EMPTY.

:-U Not Use--Read and do not change the access state.

:T Test--A psuedo-attribute equivalent to the combined

attributes :W:U for sources. This one attribute

specification defines the "normal" access control

for both source and destination operands. No

default value.

For Destination Operands:

:F Full--Wait until the access state is FULL, then write.

:-F Not Full--Write without testing the access state.

:E Empty--Wait until the access state is EMPTY, then write.

:-E Not Empty--Write without testing the access state.

:T Test--A psuedo-attribute equivalent to the attribute

for destinations. This one attribute specification

defines the "normal" access control operation for both

source and destination operands. No default value.

-11-

NOTE: The access state is always set to FULL when

a write operation is completed.

CAUTION

A Register memory or Data memory location with

access control attributes :F:E or :F:T will

cause a deadlock or "hang" when it is referenced

as a destination.

DATA MEMORY CONTROL ATTRIBUTES:

:C Copy -- Set the destination access state to aggree with

the Data memory access state.

:-C Not Copy -- Set the destination access state to FULL.

NOTE: This attribute is effective only for LaD, LODI

LODX.

:N Sign Extend -- Sign extend the value placed in the

:-N No Sign Extend

destination.

Zero fill the value placed in the

destination.

NOTE: This attribute is effective only the load instruc­

tions.

:B Byte Addressing -- The three least significant bits of

the Data memory address specify the

location of an 8-bit byte to be used

000 2 specifies bits 0-7 •.. 1112 specifies

bits 56-63.

-12-

:-B Not Byte Addressing -- The three least significant bits

of the data memory address specify

the portion of a word to be used.

000 bits 0-63 (Full Hord)

001 bits 0-15 (First Quarter Word)

010 bits 0-31 (First Half Word)

011 bits 16-31 (Second Quarter Word)

100 bits 0-63 (Full Word, no ECC)

101 bits 32-47 (Third Quarter Word)

110 bits 32-63 (Second Half Word)

111 bits 48-63 (Fourth Quarter Word)

:R RegiS:ter -- Information on partial word addressing and

acces:s control is in register 61.

:-R Not Register -- Information on partial word addressing

2.8 Expressions

and access control is in the instruction.

NOTE: This attribute is effective only for LODI, LODX,

STOI, STOX.

Expressions are used in the operand field of assembler directives and machine

instructions. An expression is a constant or symbol, or a series of con­

stants and symbols separated by arithmetic operators or grouped by paren­

theses. Each constant or symbol may be preceded by a minus sign (unary

minus). There must be no spaces or other separators within an expression.

There are special rules governing the use of some classes of terms within

an expression:

1) Neither real constants, nor literals may be combined with

other terms

-13-

2) Externals may not be combined with other externals.

Terms without location attributes may be added to or subtracted from other

terms without restrictions. Also, a term without location attributes may

be multiplied or divided by another term with no location attributes.

However, the combining of two terms which both have location attributes is

severely restricted in the following way:

1) the terms must reside in the same memory section.

2) only their difference may be computed, yielding a term that

has a value equal to the distance (in number of words) between

the two terms. This resultant term has no location and there­

fore, no accessing attributes.

2.8.1 Terms in Parentheses

Terms in parentheses are reduced to a single value; in effect, the terms in

parentheses become a single term.

Arithmetically combined terms, enclosed in parentheses, may be used in com­

bination with terms outside the parentheses, for example:

l4+BETA-(GAMMA-L~~DA)

When the assembler encounters terms in parentheses in combination with other

terms, it first reduces the combination of terms inside the parentheses t9

a single value which may be absolute or relocatable, depending on the com­

bination of terms. This value then is used in reducing the rest of the

expression to a single value.

Terms in parentheses may be included within a set of terms in parentheses:

A+B-(C+D-(E+F)+lO)

-14-

The innermost set of terms in parentheses is evaluated first. Five levels

of parentheses are allowed; a level of parentheses is a left parenthesis

and its corresponding right parenthesis. Parentheses which occur as part

of an operand format do not count in this limit. An arithmetic combination

of terms is evaluated as described in the next section, titled Arithmetic

Operators.

2.8.2 Arithmetic Operators

The arithmetic operators in expressions are as follows:

+ for addition

for subtraction

* for multiplication

/ for division

In evaluating an expression the precedence rules used in FORTRAN are not

applicable. The assembler first negates any constant or symbol preceded

by a unary minus, then performs the arithmetic operations from left to

right. The assembler does not assign precedence to any operation other

than unary minus.

EXAMPLES:

4+5*2 equals 18 NOT 14

18+4/2 equals 11 NOT 20

-15-

SECTION III - }~CHINE INSTRUCTIONS

3.1 Introduction

This section describes the machine instructions of the Heterogeneous Element

Processor. Detailed descriptions of the machine instructions follow a

discussion of addressing and explicit attribute specification.

3.2 Addressing

HEP utilizes a number of memory units which can be considered in two major

categories.

1. Units which are primarily accessed by the hardware as part of

the logical control of the system. This category includes:

Program Memory

PSW Queue

TSW Queue

Specialized Control Registers

These units can also be accessed by instructions. They are always

addressed either indirectly through an address stored in a register

or implicitly as part of the definition of a specialized instruc­

tion specifically for accessing the unit.

2. Units which are primarily used to store data for use as operands

used by an instruction stream during processing. This category

includes:

Constant Memory

Register Memory

Data Memory

-16-

3.2.1 Addressing Modes

These memories may be addressed either directly (by an address in one of the

operands of an instruction), or indirectly (by an address stored in Constant

memory or Register memory, with the address of the storage location in one

of the operands of an instruction).

The address may be indexed by adding an additional displacement value from

a specified location to the displacement obtained via the operand.

For Constant memory and Register memory direct or indirect addressing for

each operand is part of the definition of the instruction, and indexing is

specified by the indexing location attribute (section 2.7). The indexing

value is stored in the PSW for the process which is executing the instruc­

tion.

For Data memory, separate ins~ructions are defined for all allowable com­

binations of direct or indirect addressing and indexing. If indexing is

specified, the indexing value is indicated by one of the operands of the

instruction.

The address of stored data, whether in the instruction (direct) or in a

memory location (indirect) includes both the displacement (physical

positioning) of the data, and the relevant attributes associated with

access to it. The format of the address depends on the type of memory

involved. See section 2.7 for a definition of the attributes.

Constant Memory Address

III 13 Size

DISPLACEMENT

o 15 Position

I Indexing Attribute (:1)

-17-

Register Memory Address

11111 11 Size

o

DISPLACEMENT

15

I Indexing Attribute (:1)

A Access Attributes

Position

Destination Source

F

E

W

Data Memory Address (in memory)

o

1 1 1 1 1 29 3 Size

27

B,W,U,F,E

32 60 63 Bit

The attributes with the same letter names. These

locations are used when the address is in Register

or Constant memory, and the Register attribute

(:R)=l.

P Partial word indicators for the :B attribute.

Data Memory Address (in Instruction)

o 8

C,N,R,B,W,U,F,E

Size

15 32 60 63 Bit

The attributes with the same letter names.

B,W,U,F,E appear in this location if :R=O.

C,N,R always occupy this location in a data

memory instruction.

P Partial word indicators for the :B attribute.

-18-

3.2.2 Attribute Specifications

As stated in section 2.7, both location and accessing attributes for data

in memory are specified either explicitly or by default at the time a

symbolic name for the data is defined. These initial attributes can be

superseded at the time the data is used, as described in the paragraphs

which follow.

The general form for a REP assembler instruction operand using Constant

memory or Register memory is:

FORM:

<expression>[<attribute list>]

where the attribute list contains any of the applicable attribute values

defined in section 2.7 which need to be changed from the initial specifi­

cation for the current data usage.

Within the attribute list, attributes are entered in any sequence, without

separators. The colon (:) is part of the attribute value definition and

must be included for each attribute being specified.

EXAMPLE:

(ALPHA + BETA):W:E

Attributes for Data memory accesses are specified on the opcode. The

general form for a Data memory opcod~ is:

FORM:

<opcode>[attribute list]

where the attribute list may include any of the Data memory control

attributes or access control attributes.

-19-

NOTES

1. The content of the Data memory opcode attribute list may be

limited by the :R attribute.

2. Literals and constants referencing Data memory are auto­

matically generated in Data memory form by the compiler.

3.3 Instruction Formats

The addressing modes previously described relate to the machine instruction

descriptions which follow. These fall into four broad categories:

General Purpose Instructions

PSW Instructions

Data Memory Instructions

Supervisory Instructions

These categories are each described in paragraphs which follow.

3.3.1 General Purpose Instructions

The general purpose instructions are defined in the following paragraphs.

There are three-address and two-address instructions with the following

forms:

FORMS:

[<label>]~ ... <opcode>~ ..• <destination>[<att>],<sourcel>[<att>],<source2>[<att>]

(or)

[<label>]~ ... <opcode>~ ... <destination>[<att>],<sourcel>[<att>]

where <destination>,<sourcel>, and <source2> are either Register or Constant

memory addresses, and <att> is the attribute specifications for the operands.

-20-

NOTE: A Constant memory address may be the destination only if

the program is executing in the supervisor state.

3.3.1.1 Three Address Instructions

The following instructions perform some operation on the <sourcel> and

<source2> operands and return the result in the <destination> operand:

ADD - 64-bit two's complement add

AND - Bit-for-bit logical AND

EOR - Bit-for-bit logical exclusive OR

FADD - Floating-point add

FSUB - Floating-point subtract (sourcel-source2)

FMUL - Floating-point multiply

FDIV - Floating-point divide (sourcel/source2)

FMAX Floating-point maximum of sourcel and source2

FMIN - Floating-point minimum of sourcel and source2

MAX 64-bit two's complement maximum of sourcel and source2

MIN 64-bit two's complement minimum of sourcel and source2

MRG - The contents of sourcel replace the contents of destination.

The register descriptor of sourcel replaces the register

descriptor of destination.

MRD The register descriptor of source2 is ANDed with a mask in

sourcel and stored in destination.

MOL - 64-bit two's complement multiply (64 LS bits of result)

UMUL - 64-bit two's complement multiply (64 MS bits of result)

OR - Bit-wise logical OR

SRD - The contents of sourcel replace the contents of destination.

The contents of source2 replace the register descriptor of

destination.

SUB - 64-bit two's complement subtract (sourcel-source2)

NAND - Bit-for-bit logical NAND

NOR - Bit-for-bit logical NOR

-21-

Ttm - Compare 64-bit two's complement integer <sourcel> to <source2>.

If comparison satisfies the test mask (tm) place an integer 1

in destination, otherwise set destination to O. The test mask

may be one of the following:

EQ NE

GT LE

LT GE

FTtm - Compare floating-point number <sourcel> to <source2>, then

proceed as above.

TLtm - Same as Ttm, except a true result is indicated by a -1 (all

bits on).

FTLtm - Same as TLtm, except compare floating-point numbers.

TFtm - Same as Ttm, except a true result is indicated by a real 1.0

and false by a real 0.0 (=0).

FTFtm - Same as TFtm, except compare floating-point numbers.

3.3.1.2 Two Address Instructions

The following instructions perform some operation on the <sourcel> operand

and return the result in the <destination> operand:

FIP - Convert floating-point to floating-point integer

FIX - Convert floating-point to 64-bit two's complement integer

FLT - Convert 64-bit two's complement integer to floating-point

MOV - Copy source into destination

ABS - Absolute value of 64-bit two's complement integer

FABS - Absolute value of floating-point number

DEC - Subtract one from integer

INC - Add one to integer

NOT - Perform one's complement

-22-

3.3.1.3 Shift Instructions

There are two classes of shift instructions: Bi-directional and uni­

directional. Both classes have the following ge~eral form;

FORM:

[<label>]~ •.. <opcode>~ .•• <destination>,<source1>,<sourCe2>

In both cases the <destination> and <source> operands are Register memory

or Constant memory address expressions. In general, the <source1> field is

shifted <source2> bits and stored into the <destination> field. For the

bi-directional shift opcodes, <source2> is also a general address expression.

For the uni-directional opcodes, <source2> must be a positive valued ab­

solute integer expression. The assembler places this constant in Constant

memory and generates the appropriate pointer to it. The bi-directional

shift opcodes are:

SL Shift logical, positive shift count is left, negative shift

count is right

SA - Shift arithmetic, shift count as for SL

SC - Shift circular, shift counts as for SL

The uni-directional shift opcodes are:

SLL - Shift left logical

SRL - Shift right logical

SLA - Shift left arithmetic

SRA - Shift right arithmetic

SLC - Shift left circular

SRC - Shift right circular

-23-

3.3.2 PSW Instructions

The Process Status Word (PSW) is a 64-bit 'word which describes the environ­

ment for a process within a REP Process Execution Module. Active PSW's

are stored in the Process Queue. The form of a PSW is:

FORM:

12 11 20 Bits

CI RI PC

o 63 Location

where: PS is a privileged field which identifies the task to which the

PSW is assigned, enables supervisor state and hardware main­

tenance state, and indicates whether the PSW location in the

PSW Queue is available.

CI is the Constant Memory Index value, sign extended to 13 bits.

RI is the Register Memory Index value.

UTII is a User Trap Mask to specify which arithmetic exceptions

will cause traps.

PC is the Program Counter (address of the next instruction to

be accessed for this process).

There are nine PSW (Process Status WordP instructions. These instructions

perform conditional and unconditional branches, modify PSW's, create and

delete tasks and perform similar task related functions. Most have a

unique format, so they are described individually. Moreover, five of the

nine may be executed conditionally. This is done by appending a conditional

predicate to the opcode and including an additional register or constant

memory operand. This operand specifies the test location and is usually

-24-

placed at the end of the instruction. The conditional predicates are as

follows:

GE - Greater than or equal (~O)

LT - Less than «0)

EQ - Equal (=0)

LE - Less than or equal (~O)

GT - Greater than (>0)

NE - Not equal (10)

F - Full

E - Empty

3.3.2.1 Branch Instruction

The Branch instruction has two general forms:

FORMS:

[<label>]~ ..• B~ ... <branch location>[<psw>]

(or)

[<label>]~ ... B<cp>~ ... <branch location>,<test location>, [<psw>]

where:

<cp> is a conditional predicate (see Section 3.3.2).

<branch location> is a Program memory address expression.

<test location> specifies the Register or Constant memory location

to be tested.

<psw> is a Register or Constant memory address expression of a

word with the same format as a PSW.

The <psw>, if present, is used to update the current PSW. The fields cor­

responding to CI, RI, UTM and PID are added to their matching fields in

the current PSW. If not present, the assembler generates a pointer to a

word of zeros in Constant memory.

-25-

3.3.2.2 Modify PSW Instruction

The Modify PSW instruction has two general forms:

FORHS:

[<label>]~ ..• MOD~ .•• <psw>«action code list»

(or)

[<label>] ~ ... MOD<cp>~ ..• <psw> «action code list», <test location>

where:

<cp> is a conditional predicate (see Section 3.3.2).

<psw> is a Register or Constant memory address expression of

a word with same form as a PSW.

<test location> specifies the Register or Constant memory

location to be tested.

<action code list> is a list of one to five items of the form:

FORM:

aff

where: a represents the action to be taken by the following

codes:

A - Add

R - Replace

E - Exclusive OR

ff represents a field of the PSW (eI, RI, DTM, PID,

PC)

The codes are listed in any order and separated by commas. A given PSW

field may be referenced only once in any given action code list. When

the instruction is executed, the specified fields are modified as indicated,

PSW fields not referenced are unchanged.

-26-

3.3.2.3 Create Instruction

The Create instruction creates a new process within the current task. It

has two forms:

FORMS:

[<label>]~ ... CR~ ••. <psw location>

(or)

[<label>]~ ... CR<cp>~ •.• <psw location>,<test location>

where:

<cp> is a conditional predicate (see Section 3.3.2).

<psw location> is a Register or Constant memory address

expression of a PSW that describes the process

to be created.

<test location> specifies the Register or Constant memory

location to be tested.

The PS field of the new process is inherited from the creating process

regardless of the value in <psw location>.

3.3.2.4 Quit Instruction

The Quit instruction is used to terminate the current process. It has two

forms:

FORMS:

[<label>]~ ... QT~ ...

(or)

[<label>]~ ... QT<cp>~ ... <test location>

-27-

where:

<cp> is a conditional predicate (see Section 3.3.2).

<test location> specifies the Register or Constant memory

location to be tested.

3.3.2.5 Store PSW Instruction

The Store PSW instruction stores the current PSW into the indicated location.

It has the following form:

FORM:

[<label>]~ .•• SPSW~ ... <psw location>

where:

<psw location> is a Register or Constant memory address expression

indicating where the current PSW should be stored.

The PS field of the PSW is stored as zero.

3.3.2.6 Load PSW Instruction

The Load PSW instruction is the equivalent of a modify PSW with every field

replaced. It has two forms:

FORMS:

[<label>]~ ... LPSW~ •.. <psw location>

(or)

[<label>]~ •.. LPSW<cp>~ ... <psw location>,<test location>

where:

<cp> is a conditional predicate (see Section 3.3.2).

<psw location> is a Register or Constant memory address expres­

sion of the PSW to be loaded.

-28-

<test location> specifies the Register or Constant memory

location to be tested.

3.3.2.7 Exchange PSW Instruction

The Exchange PSW instruction unconditionally saves the current PSW and

loads a new PSW for the process. It has the following format:

FORMAT:

[<label>]~ ... XPSW~ .•. <old psw location>,<new psw location>

where:

<old psw location> is the address where the current PSW is to be

stored.

<new psw location> is the address of the PSW to be loaded.

The PS field of the new PSW is inherited from the old PSW.

3.3.2.8 Supervisor Call Instruction

The Supervisor call, or SVC instruction, is used to request the operating

system to perform some function for the user task. Typically, this includes

inputting and outputting data records, opening and closing files, and other

supervisory related function.

The form of the SVC instruction is as follows:

FORM:

[<label>]~ •.. SVC~ ... <svc request code>

where:

<svc request code> is an absolute expression indicating the function

to be performed.

-29-

3.3.2.9 No-Operation Instruction

This instruction causes the process to do nothing except increment the PC.

It has the following form:

FORM:

[<label>]~ ... NOP~ ••.

3.3.3 Data Memory Instructions

There are seven Data memory instructions for use in transferring information

to and from Data memory. Indexing and access control attributes may be

specified with operands using Constant memory or Register memory as in the

general purpose instructions. Attributes applicable to the Data memory

location referenced by the instruction may be specified with the opcode,

as shown in the form for each instruction. See section 2.7 for a definition

of the applicable attributes. The Data memory instructions are described

in the paragraphs which follow.

3.3.3.1 Read Data Memory

The Read Data Memory instruction loads a value directly from Data memory

into Register memory.

FORM:

[<label>]~ ... LOD[<attl>]~ ... <destination>[<att2>]'<source>,[<pwc>]

where:

<attl> is the attribute specification for the source.

<destination> is a Register memory address.

<att2> is the attribute specification for the destination.

<source> is a Data memory address.

<pwc> is the partial word control code.

-30-

3.3.3.2 Hrite Data Memory

The Write Data Memory instruction stores a value from Register memory or

Constant memory directly into Data memory.

FORM:

[<label>]~ ..• STO[<attl>]~ •.• <source>[<att2>],<destination>, [<pwc>]

where:

<attl> is the attribute specification for the destination.

<source> is a Register memory or Constant memory address.

<att2> is the attribute specification for the source.

<destination> is a Data memory address.

<pwc> is the partial word control code.

3.3.3.3 Read Data Memory Indirect

The Read Data Memory Indirect instruction loads a value indirectly from

Data memory into Register memory.

FORM:

[<label>]~ ... LODI[<attl>]~<destination>[<att2>],<source>[<att3>]

where:

<attl> is the attribute specification for the Data memory address

indicated by the source.

<destination> is a Register memory address.

<source> is a Register memory or Constant memory address. Bits

32-60 of the contents of the source is the address of

the Data memory location to be read.

-31-

<att 2 > is the attribute specification for the source.

<att 3> is the attribute specification for the destination.

3.3.3.4 Write Data Memory Indirect

The Write Data Memory Indirect instruction stores a value from Register

memory or Constant memory indirectly into Data memory.

FORM:

Where:

is the attribute specification for the Data memory address

indicated by source

<sourcel> is a Register memory or Constant memory address. The

contents of source is the data to be stored.

<source2> is a Register memory or Constant memory address. Bits

32-60 of the contents of source is the address of the

Data memory location where the data is to be stored.

is the attribute specification for the source

is the attribute specification for source

3.3.3.5 Read Data Memory Indexed Indirect

The Read Data Memory Indexed Indirect instruction loads a value indirectly·

from Data memory into Register memory; the Data memory address is indexed.

FORM:

[<label>]~ ... LODX[<attl>]~ ... <destination>[<att2>] ,<source2>[<att3>] ,

<source2>[<att4>]

-32-

where:

<attl> is the attribute specification for the Data memory address.

<destination> is a Register memory address to receive data.

<sourcel> are a Register memory or Constant memory address.

and Bits 32-60 of the contents of each location are

<source2> added together to calculate the address of the

Data memory location which is to be read.

<att2> is the attribute specification for the destination.

<att3> is the attribute specification for sourcel.

<att4> is the attribute specification for source2.

3.3.3.6 Write Data Memory Indexed Indirect

The Write Data Memory Indexed Indirect instruction stores a value from

Register memory or Constant memory indirectly into Data memory. The Data

memory address is indexed.

FORM:

[<label>]~ ... STOX[<attl>]~ ... <sourceo>[<att2>],<source1>[<att3>],

<source2>[<att4>]

where:

<attl> is the attribute specification for the Data memory address.

<sourceo> is a Register memory or Constant memory address con­

taining the data to be written.

<sourcel> is a Register memory or Constant memory address.

and Bits 32-60 of the contents of each location are

<source2> added together to calculate the address of the Data

memory location which is to be read.

-33-

<att2> is the attribute specification for sourceo.

<att3> is the attribute specification for sourcel.

<att4> is the attribute specification for source2.

3.3.3.7 Load Address Instruction

The Load Address instruction loads the attributes and Data memory address

of the LOADA instruction into Register memory.

FORM:

[<label>]~ ••. LODA[<attl>]~ .•• <destination>[<att2>]'<source>

where:

<attl> is the attribute specification for the Data memory address

in this LODA instruction.

<destination> is a Register memory address where the instruction

address is to be stored.

<att2> is the attribute specification for the destination.

<source> is the Data memory address.

3.3.4 Supervisory Instructions

The following eight instructions may be executed only in the privileged

or supervisor mode. They are used to manipulate Program memory, PSW's,

TSW's and signal interrupts.

-34-

3.3.4.1 Read CFU Control

The Read and Write CFU control instructions are used to set a queue loca­

tion empty, put a task in the dormant state, reactivate a task and other

such supervisor to processor type communications. The Read CFU Control

instruction has the following form:

FO~~:

[<label>]~ .•• RCTL~ ••. <destination>,<source>

where:

<destination> is a Register or Constant memory address.

<source> is a Register or Constant memory address which

points to CFU Control information.

3.3.4.2 Write CFU Control

The Write CFU Control instruction is used in conjunction with the Read CFU

instruction. It has the following form:

FORM:

[<label>]~ ... WCTL~ ... <destination>,<source>

where:

<destination> is a Register or Constant memory address which

points to the location where CFU Control infor­

mation will be stored.

<source> is a Register or Constant memory address.

-35-

3.3.4.3 Read Process Status Word

The Read PSW instruction copies a PSW from the PSW Queue into ~egister

Dr constant memory. It has the following form:

FORM:

[<label>]~ ..• RPSW~ ..• <destination>,<source>

where:

<destination> is a Register or Constant memory address that

specifies where the PSW will be stored.

<source> is a Register or Constant memory address that specifies

which PSW will be read.

3.3.4.4 Read Task Status Word

The Read TSW instruction copies a TSW from the TSW Queue into Register

or constant memory. It has the following form:

FORM:

[<label>]~ ..• RTSW~ ... <destination>,<source>

where:

<destination> is a Register or Constant memory address that

specifies where the TSW will be stored.

<source> is a Register or Constant memory address that specifies

which TSW will be read.

-36-

3.3.4.5 Write Process Status Word

The Write PSW instruction copies a PSW from Register or Constant memory

into the PSW queue. It has the following form:

FORM:

[<label>]~ ••. WPSW~ .•. <source>,<destination>

where:

<source> is a Register or Constant memory address that

specifies where the PSW will be read from.

<destination> is a Register or Constant memory address that

specifies where the PSW will be stored.

3.3.4.6 Write Task Status Word

The Write TSW instruction copies a TS\.] from Register or Constant memory

into the TSW queue. It has the following form:

FORM:

[<label>]~ .•. WTSW~ .•• <source>,<destination>

where:

<source> is a Register or Constant memory address that

specifies where the TSW will be read from.

<destination> is a Register or Constant memory address that

specifies where the TSW will be stored.

-37-

3.3.4.7 Read Program Memory

The Read Program memory instruction is similar to the Read PSW and Read

TSW instructions except it references Program memory instead of the PSW or

TSW Queue. It has the following form:

FORM:

[<label>]~ .•• RPM~ ... <destination>,<source>

where:

<destination> is a Register or Constant memory address that

specifies where the Program memory word will be

stored.

<source> is a Register or Constant memory address that specifies

the Program memory location to be read.

3.3.4.8 Write Program Memory

The Write Program memory instruction is similar to the Write PSW and Write

TSW instructions except it references Program memory instead of the PSW

or TSW Queue. It has the following form:

FORM:

[<label>]~ ... WP~ .•. <source>,<destination>

where:

<source> is a Register or Constant memory address that specifies

where the Program memory word will be read from.

<destination> is a Register or Constant memory address that

specifies the Program location where data will

be stored.

-38-

SECTION IV - ASSEMBLER DIRECTIVES

4.1 Introduction

Assembler directives are used with machine instructions in source pro­

grams to supply data to be included in the program and to control the

assembly process. The REP Assembler supports 16 directives, in the

following categories:

Directives which define symbols and data.

Directives which section and link programs.

Directives which control the assembly listing.

Directives which control the assembly program.

4.2 Directives Which Define Symbols and Data

There are eight symbol and data definition directives:

Directive

Declare Constant

Declare Storage

Equate Symbol

Set Symbol

Declare Literal Pool

Initialize Text String

Variable Field Definition

Generate Variable Field

Mnemonic

DC

DS

EQU

SET

LPOOL

TEXT

VFD

GEN

These statements are used to enter constants into storage, to define

and reserve areas of storage, and to define assembly-time constants.

These directives can be labeled so that other program statements may

reference them.

_ 39 _

In addition, if a DS, DC, or GEN directive or VFD reference appears

within a Register memory or Data memory section, the label field may

define default access control attributes in the form:

FORM:

[<label>] <att>

where:

<att> is a list of one or more attributes as explained in

detail in section 2.7.

4.2.1 DC - Declare Constant

The DC directive is used to provide constant data in storage. It can

specify one or a series of constants.

FORM:

[<label>]<att>]]~ ..• DC[E]~ ..• <exp>[,<exp>] ••.

where:

<label> is the name of the constant (or the first constant if

more than one is specified). Relative addressing (e.g.,

label+l) can be used to address the individual con­

stants if more than one is specified.

<att> is a list of one or more attribute specifications which

changes the default setting of the attributes(s) as

described in section 2.7.

E causes the access state of the memory location(s) used

for the constant(s) to be set to EMPTY at execution

time.

- 40 -

<exp> is an expression which defines the value of the dec;i,flJ;-e.d

constant. At execution time, the expression is eval­

uated and the value is stored in the <label> memory

location. If the storage location is in Register

memory or Data memory, the access state is set to

FULL (see the option E above).

The storage location(s) for the constant(s) is in the memory referenced

by the current location counter.

If an expression defining a constant contains a reference to the current

location counter (*), the location counter value used is the storage

location of the word which that constant will occupy. Thus, if more

than one constant in the same DC statement is defined by an expression

which contains a reference to the current location counter, the value

of the location counter used in evaluating the expression will be dif­

ferent for each constant.

If the expression refers to a Data memory location, the constant data

will be generated in Data memory address format (see section 3.2).

4.2.2 DS - Declare Storage

The DS directive is used to reserve an area of storage and to assign a

name to the area.

FORM:

[<label>]<att>]]~ •.• DS~ .•. <absolute expression>

where:

<label> is the name of the reserved area of storage. It

identifies the address of the first word of the area.

Relative addressing (e.g., lable+l) may be used to

address any word within the area.

- 41 -

<att> is a list of one or more attribute specifications

which changes the default setting of the attributes

as described in section 2.7.

<absolute expression> is the number of words of storage to be reserved.

This value is limited only by the storage type

of the current location counter and the domain

designated in the TSW.

The reserved storage area is in the memory referenced by the current loca­

tion counter.

Any symbols used in the expression must be previously defined.

4.2.3 EQU - Equate Symbol

The EQU directive is used to define a symbol by assigning to it the

value and current default accessing attributes of an expression in the

operand field.

FORM:

<symbol>[<att>]~ ..• EQU~ •.. <exp>

where:

<symbol> is the symbol to be defined.

<att> is a list of one or more attribute specifications.

Attributes on this list redefine the default setting

for the corresponding attribute associated with the

expression in the operand.

<exp> is an absolute or relocatable expression.

Any symbols used in the expression must be previously defined.

An EXTRN symbol must not appear in the expression.

- 42 -

4.2.4 SET - Set Symbol

The SET symbol is similar to the EQU directive.

FORM:

<symbol>[<att>]~ ... SET~ •.. <exp>

where:

<symbol> is the symbol to be defined.

<att> is a list of one or more attribute

specifications. Attributes on this

list re-define the default settings

for the corresponding attributes as­

sociated with the expression {n the

operand.

<exp> is an absolute or relocatable expression.

Any symbols used in the expression must be previously defined.

The interpretation of the SET directive is the same as the EQU directive.

The unique feature of the SET directive is that the same symbol may

appear in more than one SET directive within an assembly. Therefore

the SET directive may be used to give the same symbol different values

at different points in the assembly.

NOTE

A symbol defined by a SET directive must not also

be defined in some other manner (e.g., as a label).

- 43 -

4.2.5 LPOOL - Declare Literal Pool

The LPOOL directive causes all literals since the previous LPOOL (or

start of the program) to be assembled at the current location. This

directive may only appear 'within a memory section of type CaNST. The

form of the LPOOL directive statement is:

FORM:

[<label>]~~ .. LPOOL~ •••

The label represents the address of the first 'word of the literal pool.

Any literals used after the last LPOOL statement in a program are placed

at the end of the first CaNST memory section that is not a DLOC or COMMON

section. If there are no LPOOL statements in a program all literals

used in the program are placed at the end of the first CaNST memory

section.

If duplicate literals occur within the range controlled by one LPOOL

statement, only one literal is stored. Literals are considered dupli­

cates only if their specifications are identical. A literal will be

stored, even if it appears to duplicate another literal, if it is an

address constant containing any reference to the location counter.

4.2.6 TEXT - Initialize Text String

The TEXT directive places one or more characters in succe~sive words

of memory. The form of the TEXT directive is as follows:

FORM:

[<label>]~ ... TEXT~ ..• <a character string>

- 44 -

,~

The string is stored with eight characters per word, left justified and

blank filled. Note that the <character string> must appear on a single'

input record.

4.2.7 VFD - Variable Field Definition

The VFD directive is used to define two or more sub-fields within a 64-

bit word.

FORM:

<label>~ .•• VFD~ .•. <int>,<int>[,<int>] . ••

where:

<label> is a 'VFD Symbol' which may be used to initialize

a subdivided data word as shown below.

<int> is an integer constant ~O which represents the number

of bits in a field. The sum of all of the integers

used as VFD operands must equal 64.

FORM:

[<label>[<att>]]~ ..• <vfd symbol>~ ..• <exp>,<exp>[,<exp>]

where:

<label> is the name of the word being defined.

<att> is a list of one or more attribute specifications

which change the default setting of the attributes

as described in section 2.7.

<vfd symbol> is the label of a VFD statement which defined the

size of sub-fields within a word.

- 45 -

<exp> is an expression which defines the value to be stored

in a field within a word. The number of expressions

must equal the number of integers in the VFD statement

referenced by <VFD Symbol>.

The expressions are evaluated in two's - complement 64-bit arithmetic,

then truncated on the left to the appropriate field width. The sequence

of expressions must be the same as the sequence of integers in the VFD

statement in order to initialize the values into the correct fields.

When data is loaded for execution, the access state of the word is

set to FULL if the word is located in Register memory or Data memory.

EXAMPLE:

4.2.8

DFIELDS

WORDA

VFD

DFIELDS

16,16,32

2,4,6

This sequence of instructions declares a memory location

named WORDA to have two fields of 16 bits each and one

field of 32 bits. At execution time, a value of 2 is load­

ed into bits 0-15, a value of 4 is loaded into bits 16-31

and a value of 6 is loaded into bits 32-63. The access

state of WORDA is set to FULL.

GEN - Generate Variable Field

The GEN directive combines the VFD statement and the VFD Symbol declara­

tion statement into a single statement (see section 4.2.7).

FORM:

[<label>[<att>]]~ .•• GEN,<int>,<int>[,<int>] .•• ~ •.• <exp>,<exp>[,<exp>] ..•

- 46 -

where:

The definition of,operands and the method of evaluating

the expressions is the same as in the VFD statement and

VFD Symbol reference described in section 4.2.7.

EXAMPLE:

WORDA GEN,16,16,32 2,4,6

This statement declares a memory location WORDA with

identical characteristics to the WORDA produced in the

example in section 4.2.7.

4.3 Directives Which Section and Link Programs

There are seven sectioning and linking assembler directives:

Directive

Establish Relocatable Location Counter

Establish Dummy Location Counter

Identify Common Section

Modify Location Count

Identify Entry-Point Symbol

Identify External Symbol

Identify Program

Mnemonic

RLOC

DLOC

COMMON

ORG

ENTRY

EXTRN

PROG

4.3.1 RLOC - Identify Re1ocatab1e Location Counter

The RLOC directive identifies a new relocatable location counter and

attaches to it a name, a memory type and, possibly, some default

accessing attributes. It has the following form:

- 47 -

FORM:

[<label>]~ .•. RLOC~ ... <memory type>[<att>]

If a label is present, it is established as the name of the location

counter. Otherwise, the location counter is considered to be unnamed.

All statements following the RLOC directive are assembled using the

new location counter until a directive identifying a different location

counter until a directive 'identifying a different location counter is

encountered (i.e., another RLOC, DLOC or ORG directive).

The memory types are:

REG (or R)) Register memory

DATA (or D) Data memory

PROG (or P)) Program memory

CONST (or C)) Constant memory

Note that there may be as many as 127 labeled RLOC and DLOC statements

as long as each of the labels are unique. There must be at least one

RLOC of memory type CONST declared.

The default accessing attributes [<att>] may be specified after the

memory type and may be different for each location counter. These

attributes are explained in detail in section 2.7.

4.3.2 DLOC - Identify Dummy Location Counter

This directive has the same form and meaning as the RLOC directive ex­

cept that the location counter represents dummy addresses; that is, no

text is produced.

- 48 -

4.3.3 ORG - Reset Location Counter

The ORG directive is used to alter the value of the current location

counter, or to select a different location counter. It has the follow­

ing forms:

FORMS:

[<label>]~ ••• ORG~ •.• [<expression>]

(or)

[<label>]~ ••. ORG~ ••• <location counter name>[,<expression>]

The first form alters the value of the current location counter while

the second form selects a different location counter and then, option­

ally, alters its value. If the expression is 'simply a number sign (#),

the value of the location counter is set to its highest previous value.

The number sign may not be combined with any other terms in an expres­

sion. In either form, if the expression is not presen,t, the location

counter is restored to its most recent value.

EXAMPLE:

A RLOC REG

DS 5

B EQU *
DS 5

C EQU *
ORG B

D RLOC REG

If the next statement is:

ORG A

location counter A is set to the value of B.

- 49 -

If the next statement after D.is:

ORG A,1f

location counter A is set to the value of C.

If the expression is present, any symbols used must have been previously

defined. If the expression is relocatable, the unpaired relocatable

symbol must be defined relative to the referenced location counter.

If the ORG directive references an RLOC or DLDC, the expression may be

absolute, in which case the referenced location counter is set to the

value of the expression.

If the statement label is present, it is assigned the value of the location

counter after processing the ORG directive.

4.3.4 COMMON - Identify Common Section

The COMMON directive identifies the declaration of a block of common

storage. This has the same interpretation as in FORTRAN. The form of

the COMMON directive is:

FORM:

<label>~ ... COMMON~ ••• [<memory type>] [<att>]

where the attribute list [<att>] and memory type have the same form and

meaning as in the RLOC directive, see section 4.3.1. Memory type P

(Program) must not be specified in a COMMON directive.

The label must be present.

To establish a correspondence with FORTRAN blank COMMON, the label '%BLANK'

should be used.

- 50 -

4.3.5 ENTRY - Identify Entry-Point Symbol

The ENTRY directive identifies linkage symbols that are defined in the

current program but may be used by some other program. The form of

the ENTRY directive is as follows:

FORM:

[<label>]~ .•. ENTRY~ ..• <symbol>[,<symbol> •.•]

The symbol or symbols in the ENTRY operand field may be used as operands

by other programs. An ENTRY statement operand may not contain a symbol

defined in a Dummy control section or COMMON section.

When a label is used, the current value of the location counter is assigned

to the label.

4.3.6 EXTRN - Identify External Symbol

The EXTRN directive identifies linkage symbols that are used by this pro­

gram but defined in some other program. Each external symbol must be

identified. The form of the EXTRN directive is as follows:

FORM:

<symbol>[<att>]~ ••. EXTRN~ .•• [<memory type>] [<att>]

The symbol in the label field may not appear as a label in the current

program. The meaning of the attribute list [<att>] and memory type is

the same as explained in the RLOC directive, see sectio.n 4.3.1.

4.3.7 PROG - Identify Program

The PROG directive is used to assign a name to the object module output

by the assembler. It has the following form:

- 51 -

FORM:

~ ••• PROG~ ••• <character string>

The PROG directive must precede any machine instruction or assembler

directive that results in object code. The operand field contains the

program name, a character string of up to eight characters. When a

character string of more than eight characters is entered, the assembler

prints a truncation error .message, and retains the first eight characters

as the program name.

4.4 Directives Which Control the Assembly Listing

There are four listing control directives:

Directive

Start New Page

Set Print Options

Space Listing

Set Page Title

Mnemonic

PAGE

PRINT

SPACE

TITLE

These statements are used to identify the assembly listing, to provide

blank lines in the assembly listing, and to designate how much detail

is to be included in the assembly listing.

4.4.1 PAGE - Start New Page

The PAGE directive causes the next line of the listing to appear at the

top of a new page. The form of the PAGE directive is as follows:

FORM:

[<label>]~ •.. PAGE~ ••.

- 52 -

Two PAGE statements in succession cause a blank page in the listing

output. Use of the PAGE directive is recommended to begin new pages

of the source listing at the logical divisions of a program.

4.4.2 PRINT - Set Print Options

The PRINT directive is used to control the printing of the assembly

listing. The form of the PRINT directive is as follows:

FORM:

[<label>]~ ••• PRINT~ ••• <print option list>

The option list may include an operand from each of the following groups,

separated by commas, in any order:

1. ON A listing is printed.

OFF No listing is printed.

2. DATA Constants are printed in full.

NODATA Only the left-most word is printed.

3. XREF A cross-reference is printed.

NOXREF No cross-reference is printed.

A program may contain any number of PRINT statements. Each option re­

mains in effect until the corresponding opposite option is specified.

The defaults are ON, DATA, and NOXREF.

4.4.3. SPACE - Space Listing

The SPACE directive is used to insert one or more blank lines in the

listing. The form of the SPACE directive is as follows:

FORM:

[<label>]~ ... SPACE~ .•. [<decimal value>]

-- 53 -

The decimal value specifies the number of blank lines to be inserted

into the assembly listing. A blank operand causes a single blank line

in the Output. IJ this value exceeds the number of lines remaining on

the listing page, the statement has the same effect as a PAGE directive.

4.4.4 TITLE - Set Page Title

The TITLE directive enables the programmer to place page headers in the

assembly listing output. The form of the TITLE directive is as follows:

FORM:

[<label>]~ ••• TITLE~ ••• <character string>

The operand field may contain any printable- characters, however, each

single quote embedded within the title must be represented by a pair

of single quotes.

A program may contain more than one TITLE directive. Each TITLE directive

provides the heading for pages in the assembly listing that follow it,

until another TITLE directive is encountered. Each TITLE directive

causes the listing to be advanced to a new page before the heading is

printed.

4.5 Directives Which Control the Assembly Program

There are two Program Control directives:

Directive

Copy Source File

End Assembly

Mnemonic

COpy

END

These directives are used to insert previously wirtten code into a pro­

gram and to specify the end of an assembly, respectively.

- 54 -

4.5.1 COpy - Copy Source File

The COPY directive causes the assembler to take its source statements

from a different file. At the end-of-file, the assembler resumes read­

ing the file from which it was taking source statements when the COpy

command was encountered. The form of the COpy directive is as follows:

FORM:

[<label>]~ •.• COPY~ ... <file pathname>

A COpy directive may be placed in a file being copied, which results

in nested copying of files. The maximum depth of nesting is three.

4.5.2 END - End Assembly

The END directive terminates the assembly of a program. It may also

designate a point in the program to which control is to be transferred

after the program is loaded. The END directive must be the last state­

ment in the source program. The form of the END directive is as follows:

FORM:

[<label>]~ .•• END~ •.• [<expression>]

The value of the expression, if present, must fall within the bounds

of a non-dummy control section of type PROG. If absent, no entry-point

is associated with the program.

- 55 -

SECTION V ASSEMBLER OUTPUT

5.1 Introduction

The REP assembler produces a source listing and an object file as output.

It may optionally produce a cross-reference listing. These listings and

the object code format are described in this section.

5.2 Source Listing

The source listing shows the source statements and the resulting object

code. Each page of the source listing has a title line at the top of the

page. Any title supplied by the TITLE directive is printed on this line,

as well as the data, time and page number. The assembler then prints a

line for each source statement listed. This line contains a source state­

ment number, a location counter value, the assemlbed object code, and the

source statement entered.

When a source statement results in more than one word of object code,

the assembler prints the location counter value and object code on a

separate line following the source statement for each additional word

of object code. If the PRINT NODATA option is in effect the separate

line following the source statement is not printed.

Source records are numbered in the order in which they are entered,

whether listed or not. The TITLE, PRINT, SPACE, and PAGE directives

are not listed, and source records between a PRINT OFF directive and

a PRINT ON directive are not listed. The difference between the source

record numbers printed indicates how many source records were not

listed.

- 56 -

5.3 Error Messages

The REP assembler undermarks each error detected with a dollar sign ($),

or a series of dollar signs if it detects more than one error within a

single source record. This line is followed by a single line of descrip­

tive text for each error encountered. Finally, a message is printed

identifying the source line number on which the previous error, if any?

occurred. At the end of the assembly, the total number of error and

warning messages is printed with a message indicating the location of

the last error detected. This enables the user to begin at the error

summary message and readily locate all errors in the assembly. Appendix

B is a complete listing of the error messages and their meanings.

5.4 Cross-Reference Listing

The assembler can be directed to print an optional cross-reference listing

following the source listing. This listing includes the name of each

symbol defined or referenced in the assembly, its attributes, its value,

its definition line number, and the line number of each reference to it.

The attributes include such information as whether the symbol is an ENTRY

or an EXTRN and the type of memory in which it is located.

5.5 Object Code

The assembler produces an object code module that may be linked to other

object modules and executed by the REP.

- 57 -

APPENDIX A

CHARACTER SET

The HEP Assembly Language uses the ASCII characters listed in Table A-l.

The table includes the ASCII code for each character, represented as a

hexadecimal value and as a decimal value. The table also shows the

corresponding Hollerith code and, if different from the character, the

corresponding key on the IBM Model 29 keypunch.

- 58 -

Table A-I. Character Set

Hexadecimal Decimal Hollerith IBM Model 29
Value Value Character Code Keypunch

20 32 Space Blank

21 33 11-8-2

22 34 " 8-7

23 35 If 8-3

24 36 $ 11-8-3

25 37 % 0-8-4

26 38 & 12

27 39 8-5

28 40 (12-8-5

29 41) 11-8-5

2A 42 * 11-8-4

2B 43 + 12-8-6

2C 44 0-8-3

2D 45 11

2E 46 12-8-3

2F 47 / 0-1

30 48 0 0

31 49 1 1

32 50 2 2

33 51 3 3

34 52 4 4

35 53 5 5

36 54 6 6

37 55 7 7

38 56 8 8

39 57 9 9

3A 58 8-2

3B 59 11-8-6

3C 60 < 12-8-4

3D 61 8-6

- 59 -

Table A-I. Character Set (Continued)

Hexadecimal Decimal Hollerith IBM Model 29
Value Value Character Code Keypunch

3E 62 > 0-8-6

3F 63 ? 0-8-7

40 64 @ 8-4

41 65 A 12-1

42 66 B 12-2

43 67 C 12-3

44 68 D 12-4

45 69 E 12-5

46 70 F 12-6

47 71 G 12-7

48 72 H 12-8

49 73 I 12-.9

4A 74 J 11 1

4B 75 K 11-2

4C 76 L 11-3

4D 77 M 11-4

4E 78 N 11-5

4F 79 0 11-6

50 80 P 11-7

51 81 Q 11-8

52 82 R 11-9

53 83 S 0-2

54 84 T 0-3

55 85 U 0-4

56 86 V 0-5

57 87 W 0-6

58 88 X 0-7

59 89 y 0-8

5A 90 Z 0-9

- 60 -

Table A-l. Character Set (Continued)

Hexadecimal Decimal Hollerith IBM Model 29
Value Value Character Code Keypunch

5B 91 [12-2-8 ¢

5C 92 " 0-8-2 0-8-2

5D 93] 12-7-8 I (vertical bar)

5E 94 A 11-7-8 l (logical NOT)

5F 95 0-5-8 - (underscore)

- 61 -

APPENDIX B

ERROR MESSAGE DESCRIPTIONS

ABSOLUTE EXPRESSION REQUIRED

A relocatable expression is used when one is not allowed.

ADDRESS OUT OF RANGE

Value is too large for given memory type.

DUPLICATE LABEL ERROR

Symbol in label field is previously defined.

INVALID EXTERNAL REFERENCE

Reference to External is not allowed in context of statement.

INVALID SYHBOL

Symbol begins with illegal character.

REAL EXPRESSION ERROR

Real number appears in an expression which is not allowed.

ENTRY DEFINITION ERROR

Entry symbol is not a program memory value.

- 62 -

FORHARD REFERENCE ERROR

Expression contains a symbol which is not yet defined and the syntax

of the statement requires that all symbols in the expression be

defined.

ILLEGAL LOCAL LABEL

Transient symbol is not of the form %<digit>.

ILLEGAL LABEL

Flagged statement must appear after a section definition statement

(e.g., RLOC) if it is to have a label.

STATEMENT SEQUENCING

Flagged statement may appear only if certain statements have pre­

ceded it. Example: an instruction must be preceded by a section

definition statement.

ILLEGAL TEXT STRING

First non-blank character after the TEXT psuedo-op must be a quote.

LITERAL USE ERROR

Occurs if a literal referenced in statement (either explicitly or

implicitly) could not be resolved.

- 63 -

UNDEFINED LITERAL ERROR

Occurs during an LPOOL statement of LPOOL is not in a constant

memory section or during an END statement if there is not at

least one constant memory section in the module.

UNDEFINED OPCODE

Flagged opcode is not a legal opcode.

VFD DEFINITION ERROR

Sequence of constants in VFD definition do not sum to 64.

OVERFLOW

SVC code is larger than 256.

REQUIRED OPERAND

Instruction r~quires more operands than user specified.

LABEL REQUIRED

Opcode (e.g., EQU) requires label.

ILLEGAL EXPRESSION

Expression is unacceptable.

ILLEGAL USE OF EXTERNAL

External symbol is not allowed in context of statement.

- 64 -

ILLEGAL HEX STRING

Hex string contains non hex-digit.

ILLEGAL MEMORY TYPE

Memory specification did not start with C, R, P, or D.

ILLEGAL OVERRIDE

Flagged access control specification is not allowed.

RELOCATION ERROR

During an ORG statement, the operand was a relocatable symbol defined

in a section other than the current section. User must specifically

ORG to new section.

UNDEFINED SYMBOL

Operand was never defined.

SYMBOL LENGTH WARNING

Symbol longer than eight characters.

CONSTANT SIZE ERROR

Decimal or real value too large.

HEX STRING SIZE

Hex string larger than 16 digits.

- 65 -

STRING SIZE

Character string larger than eight characters.

UNBALANCED PARENS

Expression contains left parenthesis but no corresponding right

parenthesis.

PHASE ERROR

Literals generated during PASS 2 (code generator) are different

than the literals generated during PASS 1 (symbol definition).

MEMORY TYPE ERROR

Memory type of operand is illegal (e.g., constant memory used as

destination operand).

- 66 -

APPENDIX C

EXAHPLES OF MEMORY ADDRESSING

The examples which follow demonstrate the use of explicit memory attribute

specifications, and how REP memories, particularly Data memory, are

addressed in instructions. These examples are designed to illustrate

the use of attribute specifications; the reader should not infer that

attributes are normally specified with operands in instructions, as

that is not the case.

EXAMPLE 1:

STEP2 ADD OMEGA: E ,ALPHA: I : 'v , BETA

Assume that standard attribute defaults are in effect at the time

STEP2 is executed (see section 2.7), and that all operands are in

Register memory.

Hhen the operation is complete, the Register memory location

identified by the symbol OMEGA contains the sum of the value

stored in the Register memory location identified by the symbol

BETA and the value stored in the Register memory location addressed

by the sum of the value identified by the symbol ALPHA and the

value stored in the RI field of the current PSW.

During the execution of STEP2:

The Register memory location (ALPHA+RI) cannot be read unless

its access state is FULL because of the :W specification. The

access state is not changed.

The Register memory location BETA can be read without restric­

tion. The access state is not changed.

- 67 -

EXAMPLE 2:

The result cannot be stored in Register memory location OMEGA

unless the access state of OMEGA is EMPTY because of the :E

specification. The access state is set to FULL when the

operation is complete, bacause any time data is stored in

a Register memory location, the access state is set FULL.

STEP3 SUB C,A:U,B:T

Assume that standard attribute defaults are in effect at the time

STEP3 is executed (see section 2.7), and that all operands are in

Register memory.

When the operation is complete, the Register memory location

identified by the symbol C contains the result of subtracting

the value in the Register memory location identified by the

symbol B from the value in the Register memory location iden­

tified by the symbol A.

During the execution of STEP3:

The Register memory location A can be read without restriction.

After reading, the access state is set to EMPTY because of the

:U specification.

The Register memory location B cannot be read unless the access

state if FULL. After reading, the access state is set to

EMPTY. The:T specification with B is equivalent to the

combined specification :E:W. (see section 2.7)

The result can be stored in Register memory location C without

restriction. The access state is set to FULL when the operation

is complete because any time a Register memory is written, the

access state is set FULL.

- 68 -

EXAMPLE 3:

The following program excerpt illustrates the use of accessing

attributes in Data memory instructions, and demonstrates valid

techniques for addressing Data memory.

Line

1. QQ RLOC D

2. QARRAY DS 10

3. RP RLOC R

4. RO DS 1

5. BASE DC QARRAY

6. CP RLOC C

7. POINTER VFD 61,3

8. QP POINTER 1,2

9. PP RLOC P

10. LODX:W RO:I,QP,BASE:W

11. LOD:W RO:E,QARRAY+l,2

DISCUSSION:

1. Line 1 identifies a relocatable location counter named QQ

using Data memory. (see section 4.3.1)

2. Line 2 declares a lO-word array named QARRAY in Data memory.

The standard default values for attributes are not changed.

(see section 4.2.2)

3. Line 3 identifies a relocatable location counter named RP

using Register memory. (see section 4.3.1)

- 69 -

4. Line ~ declares one word of Register memory and names the

location RO. The default values for attributes are not

changed. (see section 4.2.2)

5. Line~5 declares a constant named BASE in Register memory,

and loads it with a value equal to the address of the

first word of QARRAY. The address is stored in Data

memory format, with 000 in bits 61-63. The standard

default values for attributes are not changed. (see

section 4.2.1)

6. Line 6 identifies a relocatable location counter using

Constant memory. (see section 4.3.1)

7. Line 7 defines a symbol POINTER to be a declarative for

use in declaring a 64-bit word with two fields of 61

bits and 3 bits, respectively. (see section 4.2.7)

This is the field definition required for storing a

Data memory address with a partial word control specifi­

cation in the low-order 3 bits. (see section 2.7)

8. Line 8 declares (using POINTER as defined in Line 7) a

constant, in Constant memory, with a value 1 in the 61-

bit field and a value 2 in a low-order 3-bit field.

(see section 4.2.7)

9. Line 9 identifies a relocatable location counter named PP

using Program memory. (see section 4.3.1)

10. Line 10 reads the first half-word (bits 0-31) of the second

word in QARRAY and stor.es it in Register memory in a location

whose address is the sum of RO and the Register Index value

(RI) from the current PSW. When the operation is complete,

- 70 -

the access state of (RO+RI) is FULL, the access state of

BASE is FULL and the access state of the second word of

QARRAY is FULL. QP has no access state because it is in

Constant memory.

During the execution of Line 10:

The address of the Data memory word is determined by

adding together the contents of BASE and bits 32-60

of the contents of QP. (see section 3.3.3.5) This

is QARRAY+l; the second word of QARRAY.

The contents of BASE (a Register memory location)

cannot be read unless the access state of this

Register memory location is FULL, because of the

:W attribute specification with BASE. The access

state remains FULL because the default attribute

specification :-U is in effect. The access state

of BASE was set FULL by the DC directive.

The contents of QP can be read without restriction

because it is in Constant memory which has no access

states.

After the Data memory address is determined, it can

only be read if the access state of that Data memory

location is FULL because of the :W attribute specifi­

cation with the LODX opcode. It must be set FULL

by a store instruction not included in the example.

It remains FULL because the default attribute :-U

is in effect. (see sections 2.7 and 3.3.3.5)

- 71 -

The first half-word of the Data memory word addressed

is read because the default attribute :-B is in effect,

the low-order three bits of the sum of BASE and QP

contains the value 2. (see section 2.7)

The destination address is indexed because of the :1

attribute specification with RO. The access state

destination (RO+RI) is set to FULL because writing

in Register memory always causes the access state to

be set FULL.

11. Line 11 reads the first half-word (bits 0-31) of the second

word in QARRAY and stores it in Register memory location

RO. Note that the data moved is ,exactly the same as in

Line 10. After the operation is complete, the access state

of RO is FULL and the access state of the second word of

QARRAY is FULL.

During the execution of Line 11:

The address of the Data memory address is determined

by evaluating the expression (QARRAY+l) in the source

operand. (see section 2.8)

After the Data memory address is determined, it can

,only be read if the access state of that Data memory

location if FULL because of the :W attribute speci­

fication with the LOD opcode. It must be set FULL

by a store instruction not included in the example.

It remains FULL because the default attribute :-U

is in effect. (see sections 2.7 and 3.3.3.1)

- 72 -

EXAMPLE 4:

The first half-word of the Data memory word addressed

is read because the default :-B is in effect and the

partial word control operand in the instruction is 2.

(see sections 2.7 and 3.3.3.1)

The data read can only be stored if the Register

memory location RO access state is EMPTY because

of the access attribute specification :E with RO.

The access state of RO is set to FULL because

writing in Register memory always caused the access

state of the location written in to be set to FULL.

The following example shows four different way to generate identical

code.

•

RP RLOC R

Q3 DS 1

Q4 DS 1

QQ RLOC D

QARRAY DS 10

POINTER VFD 61,3

Ql DC QARRAY

Q2 POINTER QARRAY,O

MOV Q3,=QARRAY

LODA Q4,QARRAY

- 73 -

DISCUSSION:

EXAMPLE 5:

After compiling and execution are completed, Ql, Q2, Q3 and Q4

each identifies a word in memory with the address of the first

word of QARRAY in bits 32-60 and a partial word control code

of zero in bits 61-63. Ql and Q2 are in Data memory; Q3 and

Q4 are in Register memory.

The following program excerpt illustrates the use and effect of

Data memory control attributes in Data memory instructions.

Line

1 QQ RLOC D

2 QARRAY DS 10

3 RP RLOC R

4 RO DS 1

5 BASE DC QARRAY

6 CP RLOC C

7 INDX GEN,32,29,3 16,2,3

8 PP RLOC P

9 LODX RO, INDX, BASE

10 LODX:R RO,INDX,BASE

- 74-

DISCUSSION:

1. Lines 1-6 are the same as in Example 3 and line 8 is the

same as line 9 in Example 3.

2. Line 7 is similar to lines 7 and 8 in Example 3. Constant

memory location INDX is divided into three fields which

contain 32, 29, and 3 bits respectively, and the values

16, 2, and 3 are loaded into the three fields (see section

4.2.8).

3. Line 9 reads the data from bits 16-31 (second quarter word)

of the third word of QARRAY in Data memory, and stores it

in location RO in Register memory. No access states are

tested. When the operation is complete, the access state

of RO is FULL.

During the execution of Line 9:

The address of the Data memory word is determined by

adding together the contents of BASE and bits 32-60

of the contents of INDX (see section 3.3.3.5). This

is QARRAY+2, the third word of QARRAY.

The second quarter word is read because the default

attribute :-B is in effect, bits 61-63 of the sum of

INDX and BASE contain 3 (see section 2.7).

4. Line 10 reads the data from the fourth 8-bit byte (bits

24-31) of the third word of QARRAY in Data memory, and

stores it in location RO in Register memory. ~o access

states are tested. When the operation is complete, the

access state of RO is FULL.

- 75 -

During the execution of Line 10:

The Data memory address is determined the same as for

Line 9.

The :R attribute with the LODX opcode changes the

location of Data memory attributes from the instruc­

tion to·the contents of Source 1 (INDX). The first

field of INDX contains 16 (a one in bit 27) which

defines the Data memory control attribute :B, so

byte addressing is in effect. The 3 in bits 61-63

now specifies the fourth byte (rather than the second

quarter word, as in Line 9). (see section 2.7)

- 76 -

Denelcor

D
Denelcor, Inc (303) 340-3444
Clock Tower Square
14221 East Fourth Avenue
Aurora, Colorado 80011

HEP LINK EDITOR

USER'S MANUAL

DENELCOR PUBLICATION lOOOLt-OO

DE~lELCOR) I NC I

3115 EAST LOTH AVENUE

DENVER) COLORADO 80205

Tomorrow's Computers ... Today

HEP LINK EDITOR

USER'S MANUAL

DENELCOR PUBLICATION 10004-00

DENELCOR) INC.
3115 EAST 40th AVENUE

DENVER, COLORADO 80205

NOT ICE

This manual describes the facilities provided by the REP Cross Link Editor.

It reflects, with reasonable accuracy, specifications in effect at the time

the manual was written. Users are cautioned that Dene1cor reserves the

right to make changes ~o these specifications without not~ce. Dene1cor

assumes no liability for any damage resulting from or caused by reliance

on the information presented. This includes, but is not limited to,

typographical errors and the omission of any information.

Comments regarding this manual or its content should be directed to:

Corporate Communications Department, Dene1cor, Inc., 3115 East 40th

Avenue, Denver, Colorado 80205.

CONTENTS

Page

SECTION I GENERAL OVERVIEW

1. Introduction 1

1.1 Definition of Terms 1

SECTION II LINK EDITOR INPUT

2. Introduction 3

2.1 Command Input File 3

2.1.1 OPTIONS Command 3

2.1.2 LIBRARY Command 4

2.1.3 JOB Command 5

2.1.4 TASK Command 5

2.1.5 INCLUDE Command 6

2.1.6 SEARCH Command 6

2.1.7 START Command 6

2.1.8 SHARED Command 7

2.1.9 DEF Command 8

2.1.10 REF Command 8

2.1.11 END Command 8

2.2 Object Input Files 9

SECTION III LINK EDITOR OUTPUT

3. Introduction 10

3.1 List File 10

3.1.1 Copy Option 10

3.1.2 Load Map 10

3.1.3 Address Map 11

3.1.4 Alpha Map 11

3.2 Load Module Output File 11

i

PREFACE

This manual contains the user's instructions for the Heterogeneous Element

Processor (REP) Cross Link Editor. It is directed to the assembly language

and/or FORTRAN programmer. Its purpose is to give an overview of the

linking process in general and to define the various inputs and outputs

of the REP link editor.

ii

SECTION I - GENERAL OVERVIEW

1. Introduction

In general, the term linking or link editing is used to describe the process

of binding one or more separate object modules together to form a load

module. Object modules are produced by an assembler or language processor

such as FORTRAN, and represent an intermediate form of the translation of

a source module or program to executable code. A load module is a form

of a program that is in the final stage of processing before actually

being loaded into the memory of the machine and executed.

The machine on which the link editor resides is called the host machine,

while the machine on which the program being link-edited is to run is

called the target machine. Usually, the host machine is the same as

the target machine; when the host and target machine are different,

the link editor is often called a cross link editor.

This document describes a cross link editor whose host is the INTERDATA

8/32 and whose target machine is the Heterogeneous Element Processor (HEP).

1.1 Definition of Terms

The input to the assembler is a source file. A source file is a sequential

access file containing one or more source modules. A source module may

contain a PROG statement which must appear before any section declarations.

If no PROG statement is present, the default name given the module is

%MODULE. A source module is terminated with an END statement. A source

module is composed of a maximum of 127 of any variety of sections.

In the context of the link editor, a section is a contiguous block of

memory which is associated with a symbolic location counter that was

established by means of an RLOC assembler directive. The elements of

a section will have homogeneous attributes (e.g., have the same memory

type).

-1-

The output of the assembler is an object file. Similar to source files,

object files are composed of object modules. Indeed, there is a similarity

of structure between the source modules of a source file and the object

modules of its corresponding object file. To the link editor, the basic

unit is the object module, and like a source module, it contains module

definitions, external definitions and sections.

-2-

SECTION II - LINK EDITOR INPUT

2. Introduction

The link editor has two input streams. The first is composed of user

commands to the editor. The second input stream is the object modules

from which the link editor is to produce a load module. Selection of

object modules to make up the object module input stream is controlled

by the command input stream.

2.1 Command Input File

The command input file is a sequential access file with fixed length

records. Each record contains one user command that either directs or

controls the actions of the link editor. Some commands specify which

object modules are to be included in the linking process, others specify

which options are to be taken by the link editor. Still other commands

perform librarian functions, such as naming the load module.

2.1.1 OPTIONS Command

The user may specify several options to the link editor by means of the

OPTIONS command. When using the OPTIONS command, the user must specify

all desired options. That is, any options not specified are not used.

When no OPTIONS command is given, the default options C and L are used.

When used, the OPTIONS command must be the first command in the command

input file.

The form of the OPTIONS staement is:

FORM:

-3-

where:

<op.> is one of the letters selecting the options below.
1

There must be no separators between the op ..
1

Copy Option eC)

The copy option causes the link editor to copy the command

input file and control information to the print file.

Load Map Option (L)

The load map option causes the link editor to write the

module names and COMMON names and their associated values

on the print file.

Map Option (M)

The map option causes the link editor to write the external

symbols and their corresponding address values on the print

file in order by address value.

Alpha Map Option (A)

The alpha map option causes the link editor to write the

external symbols and their corresponding address values

on the print file in alphabetic order.

2.1.2 LIBRARY Command

The LIBRARY command defines the object library. A library (in the context

of the link editor) is an object file which the link editor searches in a

last attempt to resolve external symbols. There may be more than one

LIBRARY command in a job, and each library is searched, if necessary, at

the end of each TASK.

-4-

Usually, the library is an object file containing the run-time environ­

ment for a language processor such as FORTRAN.

FORM:

LIBRARY<file pathname>

2.1.3 JOB Command

The JOB command is used to name the load module, which may be distinct

from the name of the load module output file in which it resides.

There may be at most one JOB command in the command file, and it may be

preceded only by an OPTIONS or LIBRARY command.

If there is not a JOB command, the default name given to the job is J%OB.

FORM:

JOB<name>

2.1.4 TASK Command

The TASK command is used to name and delimit the tasks of a load module.

A task is a process or group of processes that are to be associated with

a hardware task. The object files to be included in a task are those

specified in the INCLUDE statements between a JOB or TASK command and

a subsequent TASK or END statement. If there are any INCLUDE commands

before the first TASK command, or if there are no TASK commands, there

is an implied TASK command preceding the first INCLUDE command and the

name of the TASK is the same as that for the JOB itself. Thus, there

is at least one task in any load module.

FORM:

TASK<name>

-5-

2.1.5 INCLUDE Command

The INCLUDE command causes the link editor to input the specified object

file and bind it with other files similarly INCLUDE'd in the same TASK.

Each object module in the object file becomes a part of the load module,

whether it is referenc·ed or not.

FORM:

INCLUDE<file pathname>

2.1.6 SEARCH Command

The SEARCH command causes the link editor to examine the given object

file in an attempt to resolve external references. If in doing so the

link editor finds a defining reference of an external, the link editor

extracts the containing object module and inserts that object module

in the object file input stream. The link editor attempts to resolve

any referenced externals in the extracted module, but does not examine

any object module in the ~EARCH file that has been previously SEARCH'd.

Note that a SEARCH command does not contribute to resolving external

references made in subsequent INCLUDE'd files or different TASKs.

FORM:

SEARCH<file pathname>

2.1.7 START Command

The START command is used to specify an external label that is to be

given control and initiated at run time. There may be more than one

START command.

An execution starting address may also be specified at assembly time by

placing a program label in the operand field of the END statement of a

source module. The FORTRAN compiler generates this type of starting

address specification for main programs.

-6-

If there are no START commands, there may be at most one assembly/compile

time specified starting address. If there are none, the first program

memory location of the first object module is used.

Conversly, if there is a START command, each assembly/compile time specified

starting address causes a warning to be issued and the specification is

ignored.

If a name appears more than once in a START command, or in more than one

command within the same task, a warning is issued and the subsequent

appearances are ignored.

Note that all FORTRAN main object modules are given the same external

name unless there exists a PROGRAM statement in the source module. Also,

if any FORTRAN external is specified in the START command and the external

is not the starting address of a main program, the results are unpredictable.

FORM:

START<name>[,<name> .••]

2.1.8 SHARED Command

The SHARED command is used to specify that a data memory COM}10N section is

to be made accessible to all tasks in the link that also have a SHARED

command with the same C0M}10N section as an argument.

Thus, it is possible to have a local COMMON area in one task and another

COMMON area with the same name that is shared between two other tasks.

FORM:

SHARED<C0M}10N name>[,<C0M}10N name> .•.]

-7-

2.1.9 DEF Command

The DEF command is used to make the specified subroutine names accessible

by routines in other tasks. If an external appears in a DEF command, it

must be defined in the containing task or an error condition is raised.

External names that reside in a given task but do not appear in a DEF

command are not accessible by routines in other tasks.

Within a task, the DEF command must precede any INCLUDE commands.

FORM:

DEF<name>[,<name> .••]

2.1.10 REF Command

The REF command is used to allow the containing task to access subroutines

that have been specified in a DEF command in other tasks. If a subroutine

name appears in a REF statement, but cannot be resolved by the link editor,

or if the REF'd subroutine is defined in the current task, an error is

issued.

FORM:

REF<name>[,<name> ..•]

Within a task, the REF command must precede any INCLUDE commands.

2.1.11 END Command

The END command terminates the command input file. The END command must

be present.

FORM:

END

-8-

2.2 Object Input Files

Object input files are sequential access files of fixed-length physical

records or blocks. These blocks contain a variable number of link editor

text records which are created by the Assembler or FORTRAN compiler as a

result of various types of statements within the user source program.

Each link editor text record contains a one-byte description field for

identification, and one or more additional fields as required to meet

the unique requirements of various kinds of records. Individual object

input files are logically concatenated by the link editor to form the

object file input stream.

The distribution of link editor text records within an object module

follows a definite pattern. First, the link editor text for a given

object module begins on a block boundary. Additionally, information

about the module, such as size requirements for the various memory types,

external references and definitions, and section names and definitions,

reside in the initial blocks of an object module. These blocks do not

contain object text records and conversely, any block containing an

object text record does not contain module definition information.

Thus, the structure of object files allows one to easily extract infor­

mation from the file. In particular, it is not necessary to examine

each physical block of a module in its entirety in order to define its

external symbols.

-9-

SECTION III - LINK EDITOR OUTPUT

3. Introduction

Two files are produced by the link editor. The first is a print file that

optionally provides information to the user such as which object files

were bound by the link and the results of the link, (e.g., the values of

externals). The other file produced is the load module file. The load

module file is subsequently used as input to the loader when the program

is to be executed.

3.1 List File

The list file informs the user about the result of the link edit. The

information to be given is decided by the OPTIONS link editor command.

If no OPTIONS command is given, the copy and load map options are assumed.

If any list file is produced, the time and date are included in the page

headers.

3.1.1 Copy Option

The copy (C) option causes the link editor to copy the entire command

input file to the list file in addition to the file pathnames for the

command input file, list file and load module output file.

3.1.2 Load Map

The load map (L) option determines the listing of a load map. The name

of the load module is printed along with the length of each memory type

of each TASK in addition to a list of the section and local COMMON areas

in each TASK and their associated origins, lengths, and creation dates

and times.

-10-

\

3.1.3 Address Hap

An address map is produced when the HAP (H) option is specified in the

OPTIONS command. An address map is a list of the external symbols and

their associated values. Also, the containing section for each external

is noted. Unreferenced externals are flagged. The externals are listed

in order of ascending values. An address map of 1~ca1 externals is

produced to each TASK in addition to an address map for global or tran­

stask externals.

3.1.4 Alpha Hap

An alpha map is produced when the ALPHA (A) option is specified in the

OPTIONS command. An alpha map is similar to an address map except that

the externals are listed in alphabetical order.

3.2 Load Hodule Output File

The load module output file is the final product of the translation of a

program that was begun by the assembler or language processor. The load

module output file is in a format that allows it to be used as input

to the loader which transfers the translated program to computer memory

and initiates its execution.

-11-

Denelcor

D
Oenelcor, Inc (303) 340-3444
Clock Tower Square
14221 East Fourth Avenue
Aurora, Colorado 80011

HEP OPERATING SYSTEM OVERVIEW

DENELCOR PUBLICATION 10017-01

Tomorrow's Computers ... Today

HEP OPERATING SYSTEM OVERVIEW

NOTICE

This publication is an overview of the charac­
teristics and facilities of the Denelcor HEP Op­
erating System. It reflects, with reasonable
accuracy, the specifications in effect at the
time it was written. Readers are cautioned that
Denelcor reserves the right to make changes to
these specifications without notice. Denelcor
assumes no liability for any damage resulting
from or caused by reliance on the information
presented. This includes, but is not limited to
typographical errors, and the inadvertent or ed­
itorial omission of any information.

Comments regarding this publication should be
directed to:

Corporate Communications Department
Denelcor, Inc.

3115 East 40th Avenue
Denver, Colorado 80205

Telephone: (303) 399-5700

TWX: 910-931-2201

INTENTIONAL BLANK PAGE.

HEP OPERATING SYSTEM

CONTENTS

SECTION TITLE PAGE

CHAPTER 1 - OVERVIEW

2.1
1.1.1
1.1.2
1.1.2.1
1.1.2.2
1.1.2.3
1.1.3
1.1.3.1
1.1.3.2
1.1.3.3
1.1.4
1.1.4.1
1.1.4.2
1.1.4.3
1.1.4.4
1.1.4.5
1.1.4.6
1.1.5
1.1.5.1
1.1.5.2
1.1.5.3
1.1.5.4
1.1.6
1.1.7

HEP OPERATING SySTEM ••••••••••••••••••••••••••••••••••••••• 1-1
PEM RESIDENT MODULES ••••••••••••••••••••••••••••••••••••• 1-1
SUPERVISOR ORGANIZATION .••••••••••••••••••••••••••••••••• 1-3

Supervisor Functions - Program Loading - •••••••••••••• 1-3
Supervisor Functions - Error Handling - ••••••••.•••••• 1-4
Supervisor Functions - SVC Handling - ••••••••••••.•••• 1-4

KERNEL ORGANIZATION .••••••••••••••.•••••••••••••••••••••• 1-5
Inbound Kernel - ~ ••••••••••••••••••••••••••••••••••••• 1-5
Outbound Kernel - ••••••••••••••••• ~ ••••••••••••••••••• 1-5
Create Fault Handler - •••••••••.•••••••••••••••••••••• 1-5

BASIC FILE SYSTEM PROCESSOR •••••••.•••••••••••••••••••••• 1-6
BFSP Resident Functions -
BFSP Resident Functions -
BFSP Resident Functions -
BFSP Resident Functions -
BFSP Resident Functions -

Command Interpreter -
I/O Service -
Reader -
Writer -
Batch Monitor -

1-6
1-6
1-6
1-6
1-7

BFSP Resident Functions - Remote Job Entry Process - •• 1-7
UTILITY PROCESSESS ••••••••••••••••••••••••••••••••••••••• 1-7

Utility Functions - IML Process - ••••••••••••••••••••• 1-7
Utility Functions - Language Processors - ••••••••••••• 1-7
Utility Functions - Dump Format Process - ••••••••••••• 1-8
Utility Functions - Control Card Process - •••••••••••• 1-8

JOB FLOW THROUGH THE HEP OPERATING SySTEM •••••••••.•••••• 1-8
SPECIAL PURPOSE PROCESSORS ••.•••••.•.•••••••••••••••••••• 1-9

i

INTENTIONAL BLANK PAGE.

HEP OPERATING SYSTEM

CHAPTER 1 - OVERVIEW

CHAPTER 1

OVERVIEW

1.1 HEP OPERATING SYSTEM

Concepts and Organization

In order to conserve valuable PEM computing resources, only essential
Operating System functions are resident in PEMs. These functions are
limited to I/O at the logical record level, program loading, and control
of PEM resources and state. These functions are allocated to
PEM-resident modules which are described in the next section. All other
functions are allocated to logical processes residing in the Basic File
System Processor (BFSP). BFSP functions typically involve interaction
with slow speed I/O devices for which the lower speed of the BFSP is ir­
relevant. BFSP processes also perform overall system management requir­
ing data not known to any individual PEM.

1.1.1 PEM RESIDENT MODULES

Architectural Overview

The REP System contains four different types of memory: Program, Regis­
ter, Constant, and Data. Programs executing on the machine are allocat­
ed a "Task" in which to run. Each Task defines a contiguous region of
each type of memory. The hardware restricts each user to his own region
of memory, and restricts the type of access he may make to each memory
type. Program memory is execute only; Constant memory is read only;
and Register memory and Data memory are read/write.

A Task may contain one or several Processes, which are executable code

1-1

HEP OPERATING SYSTEM

CHAPTER 1 - OVERVIEW

sequences. Several Processes may be simultaneously executing in HEP,
unlike conventional computers. Processes are implemented by a set of
hardware locations, of which there are a fixed number; thus an error
condition (Create Fault) exists when too many Processes corne into exis­
tence in the PEM. Since existing Processes can create new Processes at
will, Processes must be allocated to Tasks and managed just as memory
must be allocated and managed.

The sixteen hardware implemented Tasks in the PEM are not equivalent.
Tasks 0-7 ar~ User Tasks. In these Tasks, privileged instructions are
forbidden. In Tasks 8-15, privileged instructions are allowed. These
Tasks, called Supervisor Tasks~ perform system services for the User
Tasks. User Tasks request these services with Supervisor Call (SVC) in~

structions. These instructions generate a "Trap", creating a Process in
a Supervisor Task. e.g., Task 2 to Task 10. In general, Task k (k<8)
traps to Task k+8.

Supervisor Processes may also generate traps. All traps from a Supervi­
sor create a Process in Task 8. A Supervisor Trap suspends the Supervi­
sor in the same way a User Trap suspends the user. Note that a trap
suspends all Processes in a Task, not just the Process causing the trap.

The PEM Operating System is organized into two main components: the
Kernel and the Supervisors. The users (in Tasks 1-7) make service re­
quests (via SVC instructions) to their corresponding Supervisors. In
the event of user errors, the Supervisors contain error handling rou­
tines. The Supervisors run in Tasks 9-15, and execute privileged in­
structions to carry out user requests. When a user request requires
physical record I/O, the Supervisor Module writes the necessary informa­
tion to a pseudo Data Memory location associated with the BFSP, and
waits for the I/O. The Kernel, running in Task 8, handles error condi­
tions arising-in the Supervisor code, and implements the majority of op­
erator interface functions. In addition, since the hardware traps all
Create Fault conditions to Task 8, the Kernel handles these also.

NOTE

Since the Task using the last Process and
getting the Create Fault may not be the
one using too many Processes, the Kernel
must find the offender with software and
take appropriate action. This is the rea­
son that Create Faults corne to the Kernel
rather than the normal Supervisors.

1-2

HEP OPERATING SYSTEM

CHAPTER 1 - OVERVIEW

sequences. Several Processes may be simultaneously executing in HEP,
unlike conventional computers. Processes are implemented by a set of
hardware locations, of which there are a fixed number; thus an error
condition (Create Fault) eXists when too many Processes come into exis­
tence in the PEM. Since existing Processes can create new Processes at
will, Processes must be allocated to Tasks and managed just as memory
must be allocated and managed.

The sixteen hardware implemented Tasks in the PEM are not equivalent.
Tasks 0-7 are User Tasks. In these Tasks, privileged instructions are
forbidden. In Tasks 8-15, privileged instructions are allowed. These
Tasks, called Supervisor Tasks, perform system services for the User
Tasks. User Tasks request these services with Supervisor Call (SVC) in­
structions. These instructions generate a "Trap", creating a Process in
a Supervisor Task. e.g., Task 2 to Task 10. In general, Task k (k 8)
traps to Task k+8.

Supervisor Processes may also generate traps. All traps from a Supervi­
sor create a Process in Task 8. A Supervisor Trap suspends the Supervi­
sor in the same way a User Trap suspends the user. Note that a trap
suspends all Processes in a Task, not just the Process causing the trap.

The PEM Operating System is organized into two main components: the
Kernel and the Supervisors. The users (in Tasks 1-7) make service re­
quests (via SVC instructions) to their corresponding Supervisors. In
the event of user errors, the Supervisors contain error handling rou­
tines. The Supervisors run in Tasks 9-15, and execute privileged in­
structions to carry out user requests. When a user request requires
physical record I/O, the Supervisor Module writes the necessary informa­
tion to a pseudo Data Memory location associated with the BFSP, and
waits for the I/O. The Kernel, running in Task 8, handles error condi­
tions arising in the Supervisor code, and implements the majority of op­
erator interface functions. In addition, since the hardware traps all
Create Fault conditions to Task 8, the Kernel handles these also.

NOTE

Since the Task using the last Process and
getting the Create Fault may not be the
one using too many Processes, the Kernel
must find the offender with software and
take appropriate action. This is the rea­
son that Create Faults come to the Kernel
rather than the normal Supervisors.

1-2

HEP OPERATING SYSTEM

CHAPTER 1 - OVERVIEW

l.1.2 SUPERVISOR ORGANIZATION

The Supervisor performs three major functions: program loading, user
error handling, and I/O control. In order to perform these functions,
the Supervisor memory allocation is a superset of the allocation of the
corresponding user. The extra memory is used as Supervisor work regis­
ters, I/O buffers, etc. The Program Memory allocation of the Supervisor
extends down to real program location 0, so that all Supervisor Tasks
can share the same program code. The Register, Constant, and Data Memo­
ry allocations are distinct for each Supervisor Task. Except, for the
initial creation of the Loader by the Kernel, Supervisor Processes are
created by User Traps, either SVC or error.

When a Supervisor Process is created by a trap, the corresponding User
Task is suspended (made "dormant"). Thus, no further traps can occur in
that User Task because the other Processes in that Task can make no com­
puting progress. Thus, the first act of the Supervisor is to obtain
sufficient information to handle the Trap, terminate the trapping pro­
cess, and reactivate the User Task. Once the User Task is reactivated,
additional traps may be generated by other Processes. This will result
in several copies of the Supervisor (several Supervisor Processes) run­
ning simultaneously on behalf of the User Task. In order that these
Processes not interfere with each other, each Process is responsible for
obtaining a unique work area to use for modifiable storage. A Supervi­
sor Task contains information controlling these work areas. In order to
control access to this area, and to shared work areas used for initial
Trap processing, all Supervisor Processes within a Task interlock using
a single register to prevent mutual interference. Once parameters are
obtained and private work areas are located, Supervisor Processes re­
lease the lock in order to allow other Supervisor Processes to run.

Once Supervisor processing of a request is complete, the Supervisor
re-creates the requesting User Process using the saved Process Status
Word (PSW) and then terminates itself.

l.l.2.1 Supervisor Functions - Program Loading -

The first Process which executes in a Supervisor is the Resident Loader.
This Process is initiated by the Kernel after Kernel Initialization
(described later) of the Supervisor work area.

The Loader reads through the file using standard I/O requests until the
Task Header for the desired Task is reached. The Loader deactivates the
User Task. For each start record encountered, a User Process is created
in the dormant Task.

1-3

•

HEP OPERATING SYSTEM

CHAPTER 1 - OVERVIEW

The Loader then reads Linker Text Records and builds the User Program in
Program Memory. If the User Task memory allocation is too small to hold
the program, the Loader will terminate with a hardware or software de­
tected error. At the conclusion of loading the User Program, the Loader
sends a message to the Kernel indicating completion of the load.

1.1.2.2 Supervisor Functions - Error Handling -

Hardware detected error conditions result in traps to a set of low Pro­
gram Memory addresses. All such errors in a User Task are processed by
the Supervisor Error Handler. The Supervisor builds a standard abnormal
End of Task (EOT) message, leaves the User Task dormant, and sends the
message to the Kernel.

A trap generated from User Program Memory Location 0 is handled as a
"Task Suspended" message instead of an "Abnormal EOT" message. The nor­
mal use of this exception is to allow the Kernel to suspend a User Task
on request from the BFSP. The Kernel accomplishes this by creating a
User Process which will trap at User Program Memory Location o.

Software detected errors may occur in the Supervisor. Infrequent errors
are handled by the Supervisor's issuing an illegal SVC to the Kernel.
In the resulting Kernel message, the SVC Number is printed as an error
code. For more common I/O related errors, a diagnostic message is sent
as text in a normal termination message.

1.1.2.3 Supervisor Functions - SVC Handling -

The Supervisor Call (SVC) instruction generates a trap similar to an
error, except that the Supervisor Process is created at a unique loca­
tion with the SVC Number as part of the trap information. SVC calls are
used to pass logical records from the user program to and from the Su­
pervisor. The Supervisor forms the logical records into physical re­
cords and initiates I/O requests to the BFSP.

All SVCs pass through a common Levell Handler. This handler obtains
the SVC Number and the User's PSW, terminates the trapping process, and
reactivates the trapping Task. It then branches to the appropriate SVC
Handler.

1-4

HEP OPERATING SYSTEM

CHAPTER 1 - OVERVIEW

1.1.3 KERNEL ORGANIZATION

The Kernel is logically divided into three sections. These sections,
referred to as the Inbound Kernel, the Outbound Kernel, and the Create
Fault Handler, operate independently and asynchronously with respect to
each other. No resource is shared between them. The sections are not
reentrant, and only one copy of each section may be in execution at any
given moment.

1.1.3.1 Inbound Kernel -

The Inbound Kernel is activated by an Initial Program Load (IPL) Trap
from the BFSP. Upon activation, the function of the Inbound Kernel is
to act upon a message received from the BFSP.

Messages processed by the Inbound Kernel examine and modify memory and
system tables, invoke the Loader, and suspend, resume and cancel Tasks.

1.1.3.2 Outbound Kernel -

The Outbound Kernel is activated by SVC Traps from Supervisors. It up­
dates system tables and forwards User Error Messages, normal or abnormal
termination messages, and PAUSE messages to the BFSP. Message transmis­
sion is handled through a reserved pair of Data Memory locations in a
manner similar to that used by the Inbound KernelJ

1.1.3.3 Create Fault Handler -

When too many Processes exist in the PEM, the hardware generates a Cre­
ate Fault. The Create Fault Handler scans system tables to determine
which Task has exceeded its allocation, removes the Processes of the of­
fending Task from the PSW Queue, and creates an abnormally terminating
Process in the offending User or Supervisor. It then resets the Create
Fault and terminates. When the system resumes normal operation, the of­
fending Task immediately abnormally terminates with a distinctive error
condition.

1-5

HEP OPERATING SYSTEM

CHAPTER 1 - OVERVIEW

1.1.4 BASIC FILE SYSTEM PROCESSOR

The Basic File System Processor (BFSP) performs a number of functions
related primarily to input-output and job control. These functions are
implemented as logical processes in the BFSP.

1.1.4.1 BFSP Resident Functions - Command Interpreter -

The Command Interpreter accepts operator commands to configure the sys­
tem, display system status and activity, and control jobs in the system.

1.1.4.2 BFSP Resident Functions - I/O Service -

The I/O Service Processor accepts Supervisor I/O requests and performs
the necessary file I/O. Data is transmitted to or from Data Memory as
required.

1.1.4.3 BFSP Resident Functions - Reader -

The Reader has physical control of the system card reader. This process
separates the input card images into Control Cards and Data. Data is
sent to temporary files and the Control Cards are collected into a Job
File. The Job Number is passed to the Batch Monitor for further action.
Operator commands enable and disable the card reader and abort the input
of jobs.

1.1.4.4 BFSP Resident Functions - Writer -

The Writer has physical control of the system line printer. This pro­
cess scans a Job File and prints all System Output Files created by the
job. All temporary files are then deleted. A queue of unprinted jobs
is maintained. Operator commands enable and disable the printer, and
abort the printout of files.

1-6

HEP OPERATING SYSTEM

CHAPTER 1 - OVERVIEW

1.1.4.5 BFSP Resident Functions - Batch Monitor -

The Batch Monitor receives Job File Numbers from all input sources and
scans the Job Card resource requirements. The process claims the neces­
sary resources across the PEMs in the system and activates the Control
Card Process on behalf of the user. If resources are not available,
jobs are maintained in a queue. Operator commands are available to dis­
play, reorder and modify the job queue.

1.1.4.6 BFSP Resident Functions - Remote Job Entry Process -

The Remote Job Entry Process is an optional process which has control of
an incoming synchronous communications line. It accepts job streams
logically identical to those processed by the Reader and performs S1m1-
lar functions. On job termination, system output files are transmitted
to the remote location. Operator commands allow the suspension and re­
sumption of Remote Job Entry processing and the purging or re-routing of
output files to alternate processes (e.g., Th~ Writer).

1.1.5 UTILITY PROCESSESS

Utility Processors execute in the BFSP and PEMs. They include the In­
teractive Maintenance Language (IML) Process, the Control Card Process
and the Dump Format Process.

1.1.5.1 Utility Functions - IML Process -

The IML Process contains a version of the maintenance language (IML).
This process allows examination of PEM control registers and other
hardware functions. Operator commands are drawn from the standard IML
command and macro repertoire. IML is permanently resident in the BFSP.

1.1.5.2 Utility Functions - Language Processors -

Language processors run in the user's partition in the REP. Language
processors run as User Programs using standard BFSP facilities.

1-7

HEP OPERATING SYSTEM

CHAPTER 1 - OVERVIEW

1.1.5.3 Utility Functions - Dump Format Process -

The Dump Format Process is invoked at job termination if any dumps were
taken during job execution. The Dump Format Process reads the file con­
taining the raw dump and produces a text format dump with appropriate
annotations and analysis. The Dump Process is loaded into the user's
partition in a PEM at job termination, if required.

1.1.5.4 Utility Functions - Control Card Process -

The Control Card Process is loaded into the user's partition in the REP
before every job step. Its function is to analyze job control cards and
open the necessary files for the User's Task. While this function can
also be performed directly by the user from within his program, it is
often more convenient to use the Control Card Process than to change the
source code to reflect the use of different files.

1.1.6 JOB FLOW THROUGH THE HEP OPERATING SYSTEM

This section provides an outline of the flow of a job through the Oper­
ating System. Figure 1.1 graphically depicts this process.

A job may enter the system via the card reader or the Remote Job Entry
Process. In any case, the responsible process builds a set of temporary
data files containing the user's input data and a Job File containing
Control Cards. Each Job File is assigned a unique number.

The Job Number is passed to the Batch Monitor. The Batch Monitor reads
the Job Card and extracts the number of PEMs required, the memory sizes
in each memory type, and the number ,of Processes required in each. The
job is held in a queue until these resources become available. When all
resources are available, the resources are reserved for the job and the
Control Card Process is loaded in the user's partition and started.

The Control Card Process reads the control cards and allocates and as­
signs files as required. When a RUN Card is encountered, control is
passed to the Resident Loader to load the user's program.

The user's program begins execution, and may access files or direct I/O
devices (see the section on Special Purpose Processors). When the
user's program terminates, the Control Card Process is reinvoked to con­
tinue scanning of the control deck. Additional User Programs may be run
as indicated. When the control deck is exhausted or the job is can-

1-8

HEP OPERATING SYSTEM

CHAPTER 1 - OVERVIEW

celled, the Control Card Process initiates end-of-job processing.

If a dump was taken at any point in job execution, the Dump Format Pro­
cess is loaded in the user's partition. This process produces a format­
ted, printable dump of the user's memory at the time the dump was taken.

After optional dump format processing, the appropriate output process is
invoked. For jobs entering via the Reader, the Writer is ~nvoked. For
Remote Job Entry jobs, the Job File is passed back to the Remote Job
Entry Process.

1.1.7 SPECIAL PURPOSE PROCESSORS

Certain devices must be accessed by User Programs in real time, or are
sufficiently unusual that no standard support for them is provided.
These devices are interfaced to the REP System via Special Purpose Pro­
cessors (SPPs). The special nature of these interfaces require user de­
finition in each case.

1-9

Denelcor

D
Denelcor, Inc (303) 340-3444
Clock Tower Square
14221 East Fourth Avenue
Aurora, Colorado 80011

HEP FILE SYSTEM FUNCTIONAL SPECIFICATION

Tomorrow's Computers ... Today

HEP File System Functional Specification

1. Introduction

Th~ HEP file system is intended to complement the
Dcnelcor Heterogeneous Element Processor (HEP), which
provides parallel execution of programs at 10**7
instructions per second per processor. The HEP file system
will provide high-volume, high data rate, I/O capability to
a multiprocessor HEP system via the HEP switch. Sequential
access to files is provided at bandwidths from 80 M
bytes/second (the switch bandwidth) to approximately 1 M
bytes/second (rotating storage bandwidth). Random access to
files will be provided with comparable bandwidth, depending
on file size and access patterns.

2. File System Architecture

The basic file system architecture is as shown in
Figure 1. Data transfer to the switch takes place from a
very large (1 M 64 bit words or more) I/O cache. These
transfers alwDYs occur at the 80M byte/second switch
bandwidth. Data is read to/from the cache onto moving-head
cisks in very larg~ blocks, sf-veral tracks at 8 time. This
process is performed by dedic~ted minicomputtrs controlling
the disk IIC channels. I/C requests arc queued and processed
by another minicomputer, the file system processor (FSP),
which receives requests via the switch from attached HEP
processors. A portion of the I/O cache is used by the FSP to
110ld directories, file he~ders, and buffer management queues
~nd information.

In this systEm, d2ta flows on and off disks in large
blocks, 2 physical record at 8 time, with minimu~ l8tency
and overhead. Using the I/O cache 8S a buffer, data flows
through the switch to the. user in logicaJ records,
unDffect0d by the rotational and head positioning delays of
the physical storage devices.

N

TO HEP SYSTEM

CONTROL
IINFORt'1ATION

r------'------=;,

St~I TCH
INTERFACE

FILE SYSTEM
PROCESSOR

TRANSFER
CONTROLLER

I/O CACHE

~--------~--- -----

CHANNEL
CONTROL CPU

Figure 1 - File System Architecture

. CHANNEL
. - -- - - 'CONTROL CPU

HEP File 2,ystf.'m

3. File System Facilities

File system calls will be provided to 1) open and/or
allocate 8 file by name, 2) close and/or delete 8 file, 3)
re2d ~nd write a file sequentially in the forward or reverse
direction, U) read and write a file randomly, 5) read and
write 2 file with semaphores, and 6) read and write a file
either in records or by words.

The file system maintains certain p8rameters of a file
2S permzncnt attributes of the file. Other attributes
pertain to particular uses of the file. The permanent
attributes are as follows:

1. Name (including owner's ID)

2. Volume

3. Public access privileges

4. Owner's access privileges

5. Record size

6. File size.

Other attributes of files pertain to a particu12r OPEN of
the file and cre not retained. File attributes are described
belo\.J .

3.1 OPEN F~cilities

OPEN facilities are
block shown in Figure 2.
is described below.

provided by the OPEN parameter
The meaning of the various fields

Word a - pointer to file name. The data memory address of
the file name. A file name consists of a sequence
of <:11phanumeric identifiers, each 8 characters or
less, separated by periods and terminated by a
c2rriagc return. The name must st8rt on 2 word
boundary. The first identifier is the user ID, and
if omitted, becomes the user ID of the opener. In
t his c c.: s e, t. 11 e f i 1 c n 2 m e be i n g s wit 1'1 ape rio d. I f 2

user opens his own file with his user 1D explicitly
provided, putlic 2CCCSS privileges will be applied
to th0 OPEN (see word 1, fields A and B).

3

HEP File System

Word 0 - pointer to volume ID. If non-zero, if a file is
created by OPEN, it will be p12ced on the volume
specified by an 8 charact~r name pointed to by this
field. If the field is non-zero and the file
previously existed, the volume ID will be pl~ced in
the word pointed to by this field.

Word 1, Field A - requested access privileges. Each bit in
this 8 bit field requests a different
8ccess privilege. These limit the use of
certain read/write calls. If the opener of
a file is not the owner, the public access
privileges (field B) determine whether or
not the requested privileges will be
granted.

l'lord

o

1

2

3

POINTER TO FILE NAHE POINTER TO VOLUME ID

H I G I F I E D I C I B I A

RECORD SIZE

OPE~~
STATU' FILE KEY

A - requested access privileges

B - public access privileges

C owners access privileges

D - history

E - disposition

F - direction

G - buffers

H - unused

Figure 2 - OPEN Parameter Block

5

HEr FilE' System

Bit Definitions:

• • • • • • • 1 read access

• ••••• 1 • write access - update records

• •••• 1 •• extend access - add records

.... 1... exclusive access - no other
opt·ns aJlowcd

... 1.... semaphored 2ccess may
consume and fill records

• • 1 ••••• rename access m2y rename
the file

If a file is opened for semaphored access,
all users must open it with semaphored
access, and must request record 110.

HEP File ~;yst€m

Word 1, Fiel~ E - public 2ccess privileges. Each bit mDtches
a bit in field A. This field is only used
if the opener of t.hE' file is the owner. In
this case, if t.he high bit. of the field is
set, the rem2ining bits become the public
access privileges. Default public access
is private, i.e. no access of any kind.

NOTE: If
current
rE:turned.

bit 0 of the field is zero, the
public access privileges are

Word 1, Field C - owner's access privileges, same 2S public
access privileges, except applied only to
the owner of file. NOTE: If bit. 0 of the
field is zero, the current access
privileges are returned.

Word 1, Field D - file history - determines whether to use
old file, create new file, etc.

Values:

o use old file if present, else create
new file

create new file, delete old file if
present

2 - use old file, fail if not present

3 creat.e new file, fail if old file is
present

Word 1, Field E - fil~ disposition. Specifics the
disposition after close. Overridable at
close.

V2lues:

o - keep old file, delete new file

- delete on close

2 - retain on c].ose

3 - retain on system close (i.e. abnorrrol
end), dE'lete on user close.

~.,

I

HEP File SystCfTl

4 - retain on user close, delete on systpm
close.

In the case of a file opened several
times, the last disposition specified,
either at OPEN or CLOSE, in chronological
order, determines the actual file
disposition.

Word 1, Field F - 110 direction. This field controls the
initial positioning for §equential access.

Values:

o - forward - start 2t beginning of file,
do 110 forHard

- backward - start at end of file, read
data in reverse order. Within each 1/0
record, data is in forward order, but
records are in reversed order.

2 - append - st8rt at end, do 1/0 forw8rd
(requires extend access privileges).

vIo r d 1, Fie 1 d G - b u f fer co u n t .' The n u m be r 0 f ph y sic a 1
records to be held in 110 cache at anyone
time. If zero, defaults to 2.

Word 2 - record size. The logical record size, in words, of
the file.

Hord ')

Values:

)0 record size to be used during this OPEN. If
the file is created by OPEN, this value is stored
as the permanent record size of the file.

=0 use default record size. Valid only for old
filES. Word 2 is replaced by the permanent record
size of the file by OPEN.

(0 word access. File is treated as 2 string of
words, and ?rbitrary sets of consecutive words may
be accessed independent of the record structure. If
the file is created by OPEN, no def~ult record sizp
will be 2sso~i2tcd with the file.

st2tuS
stotus

2nd
is

f' . 1 ... l~, e
zero,

key. Rcturnerl by 0PEN. If 8 bit
thp file was successfully opened.

p

HEP File System

In this event, the 56 bit file key is an index to
the file which must he placed in 211 subsequent
file system calls referring to this file. If status
is non zero, the OPEN fDiled for the following
rCCJson.

V81ue:

- access failure - requested access could not be
granted

3 history failure file did not exist, or
already existed, or invalid code

4 disposition failure - cannot delete another
user's file or invalid code

5 - direction failure - inv21id direction code

6 - buffer failure - too many buffers requested

7 - volume failure - no such volume.

3.2 CLOSE Facilities

CLOSE facilities are provided by the CLOSE parameter
block shown in Figure 3. The Meaning of the various fields
is described below.

~crd 0 - pointer to file name. Used in conjunction with file
disposition for file rename.

Worrl 1, Field B - public 2ccess privileges. If thp closer is
the f i 1 e 0 v1t1 e r, and the fie 1 dis non - z e r 0 ,

the public access privileges are changed
to the specified set.

Word 1, Field C - owners access privileges. S2mc as Field B,
but applies only to OHner.

Word 1, Field E - fiJc disposition. This field ov~rrides the
OPEN disposition if specified.

Vc:J1u(:s:

o - use OPEN disposition

- df'lctc

(~
.)

HEP File System

2 - retain

5 retain and rename using the name
pointed to by word O.

Word 3 - CLOSE status and file key. File key must be
supplipd by the caller. If CLOSE St2tus is zero,
tIle CLOSE was successful. Non-zero values indic2te
the following CLOSE errors.

Value:

- access failure - invalid file key,

~ disposition failure. Cannot delete or rename
file.

Word

o FILE NAME UNUSED

1 H
!

G
!

F I E D I C I B I A

2 UNUSED

3 CLOSE;!
STATUS FILE KEY

A - unused

B - public access privileges

C - owner's access privileges

D unused

E - disposition

F - unused

G - unused

H - unused

Figure 3 - CLOSE Parameter Block

11

HEP Filf' System

3.3 1/0 F2cilitics

R e 2. d I \rJ r i t E" f () C i 1. i t i € S are pro v ide d b Y the Rea d I vI r i t e
parnm€tf'r block, shown in Figure 4. The meaning of the
v2rious fields is described below.

~ord a - request type. Each liD call must specify the type
of request. The following types are supported.

o re2d sequential. If the file direction is
forw8rd, datn is transfered beginning at the
current position. If the filc direction is reverse,
the pointer is assumed to be at the end of the data
to be transferred. The pointer is backed up; the
data is transferred in forward order and the
pointer is backed up again to the beginning of the
transferred data.

write sequential. Except for the direction of
liD, this is identical to read sequentiDl.

2 rcad random. Data is transferred from the word
or record address specified by word 2. The pointer
is left positioned 2t the start or end of the
requested data depending on the file direction.
Random liD is equivalent to a position followed by
sequential liD in all cases.

~ write random. Data is transferred and the
pointer moved as in read random. The block of
written data must either be within the file, or
abut the present end of t~e file, in which case the
file is extended.

4 road 2nd empty record. This operation requires
sem2phored 2CCCSS to thp filc, and record 1/0. File
positioning is as for Read Sequential, but the
record is marked empty and cannot be read and
e~pticd ~gDin until it is filled.

5 write ~nd fill record. Requires sern2phored
~ccess and record liD. File positioning is as for
Vrite Sequenti21. The record is not fi1J('0 until it
is empty, and is set fuJl 2fter writing. The
initi~] statp of records before EOF is full, and
2ftcr EOF is empty.

F. reed
t r r~ nsf e r' red

and empty random record. D2tC is
2S in rCC1d random, wi th senlc:phoring C'1S

in rC2d ~nd empty.

12

HEP File System

7 write and fill random record. DatD is
transferred ~s in write random, with semaphoring as
in write and fill.

8 - position. The file pointer is
or record indicated by word 2. If
the pointer is placed at EOF
returned. No lID takes place.
words or records is returned
occurs.

moved to the word
this is past EOF,
and EOF status is
Pointer value in

in Word 2 if EOF

Word 1 - word count. The number of words to transfer. In
record mode, if word count is not equaJ, to record
length, the record is truncated or partially
writt0n, depending on relative size. In word mode,
this is the number of words actually moved.

Word 1 - st2rting D.M. address. The st2.rting address of the
transfer in the callers data memory.

~ord 2 - word or record address. In random record 110, the
record number (starting at 0) to be transferred. In
random word 110, the first (or last plus one,

,depending on direction) word to be transferred. On
all liD, set to the current pointer position after
the 1/0 is complete.

Word 3 - status and file key. File key must be supplied for
211 read/write calls. Zero status after the c211
denotes a normal transfer. Non-zero status codes
have the folIoing meanings:

- access violation - bad file key

2 access violation bad request code or
unrcqucsted privilege

3 - end of file

4 bad word count/starting address (memory
violation)

5 - I/O error.

13

Word

o

1

2

3

REQUEST TYPE

WORD COUNT I STARTING
DATA MEMORY ADDRESS

WORD OR RECORD ADDRESS

STATUSI FILE KEY

Request Type

0 Read Sequential

1 Write Sequential

2 Read Random

3 V/ri te Random

4 Read and Empty Record

5 Write and Fill Record

6 Read and Empty Random Record

7 Write and Fill Random Record

8 Position

Figure 4 - Read/Write Parameter Block

14

HEP Flle System

~. Interf2ce with FORTRAN 1/0

The n12pping between file keys and FCRTRAN logical units
will be ~ade normally by control cards processed before the
FORTRAN job begins. A FORTRAN libr8ry routine will rnable
users to OPEN and CLOSE files dynamically from FORTRAN code.
FCRTRAN READ and WRITE statements will operate per the
FORTRAN standErd for sequential I/O. A SEEK library routine
Hill en2blf' pseudo-random I/O by positioning the file for
the following READ/WRITE call.

5. Assembly L2nguage Interface

Users will perform I/O with SVC instructions whose
address field is interpreted as a register r01ative to the
c2ll€r's RI. The contents of the register must be the data
memory address of the I/O parameter block. The user's
supervisor will store the register in a data memory I/O
add res s , yJ h i c h "J i 11 i nit i ate the I /0 0 per CJ t ion . The
supervisor instruction m~y be semaphored, in which case the
supervisor will wait for the operation to complete before
restarting the user. If the supervisor instruction is
unsemaphored, thp supervisor and hence the user will
continue 2S soon as the request is accepted by the file
system. The I/C porameter block ·Hill be set empty VJhilc the
request is being serviced, 2nd will be filled when complete.

15

Denelcor

D
Denelcor, Inc (303) 340-3444
Clock Tower Square
14221 East Fourth Avenue
Aurora, Colorado 80011

HEP FILE SYSTEM FUNCTIONAL SPECIFICATION

Tomorrow's Computers ... Today

HEP File Systew Functional Specification

1. Introduction

The HEP file system is intended to complement the
Dcnelcor Heterogeneous Element Processor (HEP), which
provides parallel execution of programs at 10**7
instructions per second per processor. The HEP file system
will provide high-volume, high data rate, I/O capability to
2 multiprocessor HEP system via the HEP switch. Sequential
access to files is provided at bandwidths from 80 M
bytps/second (the switch bandwidth) to approximately 1 M
bytes/second (rotating storage bandwidth). Random access to
files will be provided with comparable bandwidth, depending
on file size and 2ccess patterns.

2. File System Architecture

The basic file system architecture is as shown in
Figure 1. Data transfer to the switch takes place from a
very large (1 M 64 bit words or more) I/O cache. These
transfers always occur at th~ 80M byte/second switch
bandwidth. rata is read to/from the cache onto moving-head
disks in very large blocks, s9veral tracks at a time. This
process is performed by dedicated minicomputtrs controlling
the disk 1/0 channels. I/O requests arc queued and processed
by another minicomputer, the file system processor (FSP),
which receives requests via the switch from attached HEP
prOCEssors. A portion of the I/O cache is used by the FSP to
hold directories, file headers, and buffer management queues
~nd infor~~tion.

In this systEm, d2ta flows on and off disks in large
blocks, 2 physical record at a time, with minimum 18tency
and overhead. Using the I/O cache 8S a buffer, data flows
through the switch to the user in logical records,
unDffected by the rotational and head positioning delays of
the physical storage devices.

N

TO HEP SYSTEM

CONTROL
IINFORt'1ATION

,...-------.0."

S\~I TCH
INTERFACE

FILE SYSTEN
PROCESSOR

TRANSFER
CONTROLLER

I/O CACHE

~--------~--- -----

CHANNEL
CONTROL CPU

Figure 1 - File System Architecture

CHANNEL
-- -- - - 'CONTROL CPU

H E P F i 1 e S y s t E- m

3. File System Facilities

File system calls will be provided to 1) open and/or
2110cate a file by name, 2) close and/or delcte 8 file, 3)
rp2d 2nd write a fil~ sequentially in the forward or reverse
direction, U) re2d and write a file randomly, 5) read and
write 2 file with semaphores, and 6) read and write a file
either in records or by words.

The file system maintains certain p8rameters of a file
2S perm~nent attributes of the file. Other attributes
pert2in to particular uses of the file. The permanent
attributes ar~ as follows:

1. Name (including owner's ID)

2. Volume

3. Public access privileges

4. Owner's access privileges

5. Record size

6. File size.

Other ~ttributes of files pertain to a particu12r OPEN of
the file and 2re not ret2incd. File attributes are described
below.

3.1 OPEN F~ciliti€s

OPEN f~cilities arc
block shown in Figure 2.
is described below.

pr ov id cd by the 0 PE ~J p ~r ameter
The meaning of the various fields

Word a - pointer to file name. The data memory address of
tho file name. A file name consists of a sequence
of olphanumeric identifiers, each 8 characters or
less, separated by periods and terminated by a
cErriage r0turn. The name must start on 2 word
bouncary~ The first identifier is the user ID, and
if omitted, becomes the user ID of the opener. In
this cc;,se, t.ile file n2me beings wi th a period. If 2
user opens his own fi10 with his user IO explicitly
provided, putlic 2CCESS privilE'gE:s will be 8pp1ied
to thp OPEN (see word 1, fields A and B).

HEP File System

Word 0 - pointer to volume 10. If non-zero, if a file is
created by OPEN, it will be p]2ced on the volume
specified by an 8 ch8rocter name pointed to by this
fi0ld. If the field is non-zero and the file
pr~viously existed, the volume 10 will be pIEced in
the word pointed to by this field.

Word 1, Field A - requested 8ccess privileges. Each bit in
this 8 bit field requests a different
8ccess privilege. These limit the use of
certain read/write calls. If the opener of
a file is not the owner, the public access
privileges (field B) determine whether or
not the requested privileges will be
granted.

I' 1

1'/ord

o

1

2

3

POINTER TO FILE NA!·/lE POINTER TO VOLUME ID

H I G I F I E D I C I B I A

RECORD SIZE

OPEN~
!STATU FILE KEY

A - requested access privileges

B - public access privileges

C owners access privileges

D - history

E - disposition

F - direction

G - buffers

H - unused

Figure 2 - OPEN Parameter Block

5

HEP File Syst~:m

Bit Definitions:

• • • • • •• 1

• ••••• 1 • write access - update records

• •••• 1 •• extend access - add records

.... 1... 0xclusive access - no other
opens allowed

· .. 1. . . . semaphored 2ccess may
consume and fill records

• • 1 ••••• renamE: access m2y rename
the file

If a file is opened for semaphored access,
211 users rr.ust open it with semaphored
access, and must request record I/O.

HEP File ~,yst€m

\~ 0 r d 1, Fie 1 C 13 - pub I i c 8 C C e ssp r i v i I e p: e s. E a c h bit m () t c h e s
a bit in field A. This field is only used
if the opEner of the file is the owner. In
this case, if the high bit of the field is
set, the rem2ining bits become the public
access privileges. Default public access
is private, i.e. no access of any kind.

NOTE: If
current
returned.

bit 0 of the field is zero, the
public access privileges are

Word 1, Field C - owner's access privileges, same 2S public
access privileges, except applied only to
the owner of file. NOTE: If bit 0 of the
field is zero, the current access
privileges arc returned.

Word 1, Field D - file history - determines whether to use
old file, create new file, etc.

Values:

o use old file if present, else create
new file

create new file, delete old file if
present

2 - use old file, fail if not present

3 create new file, fail if old file is
present

Word 1, Field E - file disposition. Specifics the
disposition after close. Overridable at
close.

V81ues:

o - keep old file, delete new file

- delete on close

2 - rete in on close

3 - retain on system close (i.e. 2bnorrrDl
end), d~lete on user close.

'7
j

HEP File System

4 - retain on user close, delete on system
closp.

In the case of a file opened several
times, the last disposition specified,
either at OPEN or CLOSE, in chronological
order, determines the actual file
disposition.

Word 1, Field F - I/O direction. This field controls the
initial positioning for sequential access.

Values:

o - forward - start at beginning of file,
do liD forHard

- backward - start at end of file, read
d2ta in reverse order. Within each liD
record, data is in forward order, but
records are in reversed order.

2 - append - start 2t end, do liD forward
(requires extend access privileges).

~;ord 1, Field G - buffer count., The number of physical
records to be held in I/O cache at anyone
time. If zero, defaults to 2.

Word 2 - record size. The logical record size, in words, of
the file.

)0 record size to be used during this OPEN. If
the file is created by OPEN, this value is stored
as the permanent record size of the file.

=0 use def8ult record size. Valid only for old
files. Word 2 is replaced by the permanent record
size of the file by OPEN.

<0 word ~ccess. File is treated as 2 string of
words, and 2rbitrary sets of consecutive words may
bp 8ccessed independent of the record structure. If
the file is created by OPEN, no default record 5iz0
will be 2ssoci2ted with the file.

Hore! ? - st2.tus c:::nd file key. Rct.urneci by OPEN. If P. bit
st;]tus is zero, the file \rJ(~S succcssfu] ly opened.

HEP File System

In this event, the 56 bit file key is an index to
the fiJe which must hE' placed in 211 subsequent
file system calls re·ferring to this file. If stC1tus
is non zero, the OPEN f8iled for the following
rCDson.

VCllue:

- access failure - requested access could not be
grClntec

~ history failure file did not exist, or
already existed, or invalid code

4 disposition failure - cannot delete another
user's file or invalid code

5 - direction failure - invalid direction code

6 - buffer failure - too many buffers requested

7 - volume failure - no such volume.

3.2 CLOSE Facilities

CLOSE facilities are provided by the CLOSE parameter
block shown in Figure 3. The meaning of the various fields
is described below.

Word 0 - pointer to file name. Used in conjunction with file
disposition for file ren8me.

Word 1, Field B - public 2ccess privileg~s. If th0 closer is
the file owner, and the field is non-zero,
the public access privileges are changed
to the specified set.

Word 1, Field C - owners aCCESS privileges. S2rne as Field E,
but applies only to OHner.

~ord 1, Field E - file disposition. This fieJd overrides the
OPEN disposition if specified.

V21ucs:

o - use OPEN disposition

- delete

9

HEP File System

2 - retain

5 retain and renam0 using the name
pointed to by word O.

Word 3 - CLOSE status and file key. File key must be
supplied by the caller. If CLOSE St2tuS is zero,
tlle CLOSE was successful. Non-zero values indicate
the following CLOSE errors.

Value:

- access failure - invalid file key,

4 disposition failure. Cannot delete or rename
file.

10

Word

o

1

2

3

FILE NAME UNUSED

H
1

G
1

F I E D I C I B I A

UNUSED

CLOSE ;1
STATUS FILE KEY

A - unused

B - public access prfvileges

C - owner's access privileges

D unused

E - disposition

F - unused

G - unused

H - unused

Figure 3 - CLOSE Parameter Block

11

HEP File System

3.3 1/0 Facilities

R e 2, d I VI' r i t E' f () C i 1. i tie s a r f: pro v ide d by the Rea d I v! r i t e
p2r~m€ter block, shown in Figure 4. The meaning of the
v2rious fields is described below.

~ord 0 - request type. Eech 1/0 call must specify the type
of request. The following types are supported.

o re8d sequential. If the file direction is
forward, datD is transfered beginning at the
current position. If the file direction is reverse,
the pointer is assumed to be at the end of thE' data
to be transferred. The pointer is backed up; the
data is transferred in forward order and the
pointer is backed up again to the beginning of the
transferred dat2.

write sequential. Except for the direction of
1/0, this is identical to read sequential.

2 - read random. Data is tr2nsferred from the v.lord
or record address specified by word 2. The pointer
is left positioned at the start or end of the
requested data depending on the file direction.
Random 1/0 is equivalent to a position followed by
sequential 1/0 in all cases.

~ write random. Data is transferred and the
pointer moved as in re2d random. The block of
written data must either be within the file, or
abut the present end of the file, in which case the
file is extended.

4 - rCc:d 2nd empty record,. This operC1tion requires
semaphorc·d access to the file, and record IIO. File
positioning is as for Read Sequenti21, but the
record is marked rmpty and cannot be read and
emptied again until it is filled.

5 write and fill record. Requires se~2phored
access and record I/O. File positioning is as for
~.! r i t ESe que n t i c:.l. T h (? r € cor' dis not f i 11 r dun t i 1. i t
is empty, and is set full ~fter writing. The
initi~] statp of records before ECF is full, 2nd
2fter EOF is empty.

f: rc~d and empty random record. D2t2 j.s
tr8nsferrcd 2S jn r·cc1d random, with seHlc'phoring ?s
in rc<:;d end 0mpty.

12

c

HEP File System

7 write and fill random record. DDtD is
tr2nsferred 2S in writp random, with semaphoring as
in write and fill.

8 - position. The file pointer is
or record indicated by word 2. If
the pointer is placed at EOF
returned. No liD takes pl~ce.
words or records is returned
occurs.

moved to the Hord
this is past EOF,
and EOF status is
Pointer value in

in Word 2 if EOF

Word 1 - word count. The number of words to transfer. In
record mode, if word count is not equal to record
length, the record is truncated or pDrtially
writt0n, depending on relative size. In word mode,
this is the number of words actually moved.

Word 1 - starting D.M. address. The st2rting address of the
transfer in the callers data memory.

~ord 2 - word or record address. In random record 110, the
record number (starting at 0) to be transferred. In
random word 1/0, the first (or last plus one,
depending on direction) word to be transferred. On
c:ll I/O, set to the cur·rent pointer position after
the I/O is complete.

Word 3 - status and file key. File key must be supplied for
211 read/write calls. Zero status after the cal]
denotes 2 normol transfer'. Non-zero status codes
have the folloing meanings:

Vc:due -

- access violation - bad file key

2 access violation bad request code or
unrcquested privilege

3 - End of filE

11 bad Hord cOllnt/stCJrting c1ddrC'ss (memory
violation)

5 - I/O error.

13

Word

o

1

2

3

REQUEST TYPE

WORD COUNT J STARTING
DATA MEMORY ADDRESS

WORD OR RECORD ADDRESS

STATUSI FILE KEY

Request Type

0 Read Sequential

1 Write Sequential

2 Read Random

3 Viri te Random

4 Read and Empty Record

5 Write and Fill Record

6 Read and Empty Random Record

7 Write and Fill Random Record

8 Position

Figure 4 - Read/Write Parameter Block

14

~ .

HEP File System

~. Intcrf2cc with FORTRAN 1/0

The D12pping between file keys and FCRTRAN logical units
will be ~ade normally by control cards processed before the
FCRTRA~! job begins. f\. FORTRAN libr8ry routine will en8ble
users to OPEN and CLOSE files dynamically from FORTRAN code.
FCRTRA~ READ and WRITE statements will operate per the
FORTRAN stand~rd for sequential I/O. A SEEK library routine
\,;i11 e:n2ble pseudo-rcndom I/O by positioning the file for
the following READ/WRITE call.

5. Ass~mbly L~nguage Interface

Users will perform I/O with SVC instructions whose
address field is interpreted 2S a register relative to the
c21ler's RI. The contents of the register must be the data
memory address of the I/O parameter block. The user's
supervisor will store the register in a data w.emory I/O
address, which will initiate the I/O operation. The
supervisor instruction m~y be semaphored, in which case the
supervisor ~ill wait for the operation to complete before

'restarting the user. If the supervisor instruction is
unsemaphored, th~ supervisor and hence the user will
continue as soon as the request is accepted by the file
system. The I/C p(Jrc.~meter block -Hill be set empty while the
request is being serviced, end will be filled when complete.

15

