
DECLIT 
I~A 

CF:OSS 
HD~5~~ 

AA-H D95A-TK 

Technical 
Reference Manual 
Volume 2 

~D~DD~D 

wore 



TM 

nzate 
Technical 
Reference Manual 
Volume 2 



First Printing, February 1987 

© Digital Equipment Corporation 1987. All Rights Reserved. 

The material in this document is for informational purposes and is subject to change 
without notice; it should not be construed as a commitment by Digital Equipment 
Corporation. Digital Equipment Corporation assumes no responsibility for any errors 
that may appear in this document. 

Digital Equipment Corporation assumes no responsibility for the use or reliability of its 
software on equipment that is not supplied by Digital. 

MS-DOS, MS-WINDOWS, and MS-NET are trademarks of Microsoft Corporation. 
Topview is a trademark of International Business Corporation. 
Motorola is a registered trademark of Motorola, Inc. 
IBM PC AT is a trademark of International Business Machines Corporation. 

The following are trademarks of Digital Equipment Corporation. 

mamalla lAS Professional 
DEC MASSBUS Rainbow 
DECmate MicroPDP RSTS 
DECnet MicroVAX RSX 
DECsystem-10 MINC-ll ThinWire 
DECSYSTEM-20 OMNIBUS VAX 
DECUS OS/8 VAXmate 
DECwriter PDP VMS 
DIBOL PDT VT 
EduSystem P/OS Work Processor 

Printed in U.S.A. 



Preface .... 

VOLUME 1 

Chapter 1 V AXmate Workstation Overview. 
Base System . . . . . 
Optional Components . . . . . . . . . . . 

Chapter 2 V AXmate Microprocessor. 
Overview .................. . 

Real Address Mode . . . . . . . . . . 
Protected Virtual Address Mode. . . 
Coprocessor. . . . . . . . . . . . . 

Additional Sources of Information . . . 

Memory Map ........ . 
Input/Output Address Map . 
Interrupt Vector Map .... 
Bus Timing and Structure .. 

Expansion Box Technical Specifications 
Expansion Box Operating Ranges . . . 

Chapter 3 Interrupt Controllers 
Overview .............. . 
Additional Source of Information. 

Read/Write Control .. . . . . . . 

Contents 

xxxiii 

1-1 
1-1 
1-3 

2-1 
2-1 
2-1 
2-1 
2-2 
2-2 
2-3 

2-4 

2-6 

2-9 

2-10 
2-10 

3-1 
3-1 
3-3 

3-3 

Contents iii 



Initialization Command Words ... 
Initialization Command Word 1 
Initialization Command Word 2 
Initialization Command Word 3 

ICW3 (Master) ...... . 
ICW3 (Slave) ....... . 

Initialization Command Word 4 
Operation Command Words .... 

Operation Command Word 1 . 
Operation Command Word 2. 
Priority Rotation. . . . . . . . 
Operation Command Word 3 . 
Interrupt Request and In-Service Registers 

Interrupt Request Register 
In-Service Register 

Poll Command . . . . . 
Poll Data Register 

Interrupt Sequence. . . . . 
Programming Example . . 

Constant Values and Data Structures. 
Initialization Data . . . . . . . . . . . . 
Initializing the Peripheral Interrupt Controller 
Issuing an End-of-Interrupt Command. 
Masking Interrupts . . . . . . . . . . . . 

Chapter 4 DMA Controller. 
Overview ........... . 
Additional Source of Information. 
Operation ... . 

Idle Cycle ......... . 
Active Cycle . . . . . . . . 

Single Transfer Mode. 
Block Transfer Mode . 
Demand Transfer Mode 
Cascade Mode . 

Data Transfers . . 
Auto-Initialize . 
Priority ..... 
Address Generation. 

iv Contents 

3-f 
3 r -, 

3-~ 

3-! 
3-! 
3-! 

3-I( 

3-1: 
3-1: 
3-1! 
3-1: 
3-1~ 

3-1j 

3-1j 

3-1j 

3-1' 
3-1' 

3-1: 

3-2 
3-2. 
3-2 
3-2 
3-2 
3-2 

4-

4-

4-

4-
4-
4-
4-

4· 
4· 
4· 
4· 
4· 

4· 

4· 



Registers .................. . 
Base and Current Address Register. 
Base and Current Word Register .. 
Command Register .. ... . . 
Write Single Mask Bit. 
Write All Mask Bits. 
Mode Register .. 
Request Register. . . 
Status Register. . . . 
Temporary Register. 

Programming Example 
Constant Values . . . 
Data Structures ... 
Initializing the DMA Controller. 
Opening a DMA Channel ..... 
Preparing a Channel for Data Transfer . 
Disabling a DMA Channel ....... . 

Chapter 5 Real-Time Clock and CMOS RAM. 
Overview .............. . 
Additional Source of Information. 
Battery-Backup Considerations .. 
Addressing the Real-Time Clock. 
Real-Time Clock Registers 

Register A. 
Register B. 
Register C. 
Register D 
Real-Time Clock Data Registers. 

Alarms .... 
Update Cycle ........ . 
Interrupts . . . . . . . . . . . 

Urdate-Ended Interrupt 
Alarm Interrupt . . 

Programming Example 
Constant Values . . 
Data Structures . . 
Reading the Registers and RAM. 
Writing the Registers and RAM. 
Calculating the Checksum . . . 
Converting Binary-Coded Data. 
Reading the Date. . . . . . . . . 

4-7 
4-7 
4-8 
4-9 

4-11 
4-11 
4-12 
4-13 
4-14 
4-14 
4-16 
4-16 
4-17 
4-18 
4-19 
4-20 
4-22 

6-1 
6-1 
6-2 
6-2 
6-2 

6-3 
5-4 
5-6 
6-8 
5-9 

5-10 
5-12 
5-13 
5-14 
5-14 
5-14 
5-15 
5-16 
5-18 
5-20 
5-21 
5-22 
5-23 
5-24 

Contents v 



Reading the Time . .. . . . . . . . . . . 
Displaying the Date .. ... . . . . . . . 
Displaying the Time. . .. . . . . . . 
Displaying the Diskette Drive Type. . . . . 
Displaying the Hard Disk Type . . . . . . . . 
Handling the Clock Interrupts . . ... . . . . . . . . . 
Interpreting the RAM Contents . . . . . . . . . . . . . 
Initializing the Real-Time Clock . ... . . . . . . . . . 
Restoring the Interrupt Vectors. 
Real-Time Clock Example ............... . 

Chapter 6 Three-Channel Counter and Speaker . . . 
Overview ............................ . 
Additional Source ofInformation. . . . . . . . . . . . . . . 
Block Diagram . . . . . . . . . . . . . . . . . . . . . 
Counter Description . . . . . . . . . . . . . . . . . . . . . . . . 
Mode Definitions . . . . . . . . . . . . . . . . 

Mode 0 (Interrupt on Terminal Count) . . . . . . . . . 
Initializing Mode 0 . . . . . . . . . . . . . . . . . . 
Mode 0 Cycle. . . . . . . . . . . . . . . . . . . . . . 

Mode 1 {Hardware Retriggerable One-Shot) . . . . . . 
Initializing Mode 1 . . . . . . . . . . . . . . . . . . 
Mode 1 Cycle. . . . . . . . . . . . . . . . . . . . . . 

Mode 2 {Rate Generator) . . . . . . . . . . .. ..... 
Initializing Mode 2 . . . 
Mode 2 Cycle ...... . 

Mode 3 {Square Wave Mode) ... 
Initializing Mode 3 . . . . . . 
Mode 3 Cycle ......... . 

Mode 4 {Software Triggered Strobe) ..... . 
Initializing Mode 4 . . . . . . . . . . . . . 
Mode 4 Cycle. . . . . . . . . . . . . . . . . . . . . . . . 

Mode 5 (Hardware Triggered Strobe) . . . . . . . . . . . . 
Initializing Mode 5 . . . . . 
Mode 5 Cycle. 

Registers. . . . . . . . . . . . .... 
System Register . . . . . . . . . 
Control Word Register ...... . 

Counter-Latch Command (Control Word Register) .. 
Read-Back Command (Control Word Register) .. 
Status Response (Read-back Command) . . . . . . . . 

vi Contents 

5-2f 
5-2( 
5-2~ 

5-2f 
5-2~ 

5-3( 
5-3: 
5-3-
5-31 
5-3f 

6-: 
6-: 
6-: 
6 ' -, 

6-: 
6-: 
6-, 

6-· 
6-, 
6-· 

6-· 
6-· 
6-: 
6-
6-
6-
6-
6-
6-
6-
6-
6-
6-
6-
6· 
6-

6-1 
6-1 
6-1 
6-1 



Programming Example 
Constant Values . . 
Writing a Counter. 
Making a Bell Sound . 
Counter and Speaker Example. 

Chapter 7 Video Controller. . . . . 
Introduction. . . . . . . . . . . . . . 

Industry-Standard Text and Graphics Features. 
Enhancements to Industry-Standard Features 
Industry-Standard Features Not Available 
Extra Features ........ . 

Block Diagram . . . . . . . . . . . . 
Additional Sources of Information . 
Video Modes ......... . 
Text Modes ............. . 

Character Buffer Format . . . . 
Character Position to Memory Location Mapping 
Programmable Cursor ............... . 
Programmable Character Generator (Font RAM) . 

Graphics Mode . . . . . . . . . . . . . 
Mapping the Display to Address 

Video Look-Up Table ..... 
Video System Registers . . . . 

Special Purpose Register. 
CRTC Registers .. 

Index Register. 
Data Register 
Register RO 
Register Rl 
Register R2 
Register R3 
Register R4 
Register R5 
Register R6 
Register R7 
Register R8 
Register R9 
Register RIO 
Register Rll 
Register R12 
Register R13 

6-16 
6-16 
6-18 
6-18 
6-20 

7-1 
7-1 
7-1 
7-2 
7-2 
7-2 
7-3 
7-4 
7-5 
7-6 
7-6 
7-7 
7-8 
7-9 

7-10 
7-10 
7-18 
7-22 
7-23 
7-25 
7-25 
7-25 
7-28 
7-28 
7-29 
7-29 
7-30 
7-30 
7-31 
7-31 
7-32 
7-33 
7-33 
7-34 
7-34 
7-34 

Contents vii 



Register R14 
Register R15 
Register R16 
Register R17 
Status Register A . 

Status Register B . . . 
Write Data Register .. 
Color Select Register . 
Control Register A. 
Control Register B. . . 

Monitor Interface ..... 
Monitor Specification Summary. 

Programming Example . . . . . . . . 

Chapter 8 Keyboard-Interface Controller and Keyboard. 
Introduction. . . . . . . . . . . . . . . 
Keyboard-Interface Controller ..... 

Physical Interface to the CPU . . . 
Physical Interface to the Keyboard 
Logical Interface. . . . . . . . . . . . 
Control Functions . . . . . . . . . . . 

Keyboard-Interface Controller Diagnostics. 
Keyboard-Interface Controller Registers 

Data Register. . . . 
Command Register 
Status Register. . . 
Command Register 

Read Command Byte . 
Write Command Byte. 
Self-Test ..... 
Interface Test . . 
Disable Keyboard 
Enable Keyboard 
Read Port 1. 
Read Port 1. 
Read Port 2. 
Write Port 2 
Read Test Inputs . 
Write Status Register. 
Pulse Output Port. . . 

Keyboard-Interface Controller Error Handling. 

viii Contents 

7-35 
7-35 
7-36 
7-36 
7-37 
7-38 
7-39 
7-39 
7-41 
7-43 
7-44 
7-44 
7-45 

8-1 
8-1 
8-1 
8-1 
8-2 
8-2 
8-3 
8-4 
8-5 
8-5 
8-5 
8-6 
8-9 

8-10 
8-10 
8-12 
8-12 
8-12 
8-12 
8-12 
8-12 
8-13 
8-13 
8-13 
8-13 
8-13 
8-14 



LK250 Keyboard . . . . . . . . . . . . . 
Scan Codes ............. . 
LK250 Keyboard Command Codes 

Invalid Commands . . . . . . " . . . . . . . . 
Request Keyboard 10. . . . . .. . . . . . . . . 
Enter DIGITAL Extended Scan Code Mode ... . 
Exit DIGITAL Extended Scan Code Mode ... . 
Set Keyboard LED. . . .... . 
Reset Keyboard LED. . . . . .... . 
Set Keyclick Volume . . . . . . . . . . . . . . . . 
Enable Autorepeat. . . . . . . . . . . . . . . . . . . . 
Disable Autorepeat . . . 
Keyboard Mode Lock . . 
Keyboard Mode Unlock. 
Reserved ... 
LEOs On/Off . 
Echo ..... . 
Reserved .. . 
Set Autorepeat Delay and Rate . 
Enable Key Scanning ...... . 
Disable Key Scanning and Restore to Defaults . . 
Restore To Defaults. 
Reserved. 
Resend ....... . 
Reset ........ . 

LK250 Keyboard Responses 
Buffer overrun. . . 
Self-test success. . 
ECHO ....... . 
Release Prefix . . . . 
Acknowledge (ACK} . 
Self-Test Failure. . . 
Resend ....... . 

LK250 Keyboard Error Handling . 
U.S. and Foreign Keyboards. 

Programming Example . . . . . . . . . 

Chapter 9 Serial Communications. . 
Overview ................. . 

8-15 
8-15 
8-22 
8-23 
8-23 
8-23 
8-23 
8-23 
8-24 
8-24 
8-24 
8-24 
8-25 
8-25 
8-25 
8-26 
8-26 
8-26 
8-27 
8-28 
8-28 
8-28 
8-29 
8-29 
8-29 
8-30 
8-30 
8-30 
8-30 
8-31 
8-31 
8-31 
8-31 
8-31 
8-31 
8-46 

9-1 
9-1 

Contents ix 



Additional Sources of Information . . . . . . . . . . . . . . . 
Receive Buffer Register/Transmitter Holding Register. 
Interrupt Enable Register. . . . . 
Interrupt Identification Register. 
Line Control Register . . 
Modem Control Register 

Diagnostic Loopback 
Line Status Register. . . 
Modem Status Register. 
Divisor Latches. . . . . . 

Modem Control Programming Exceptions 
Special Purpose Register ..... 

Communications Connector Signals . 
Printer Connector Signals. 
Modem Connector Signals. 
Programming Example. 

Program Description . 

Chapter 10 Mouse Information. 
Introduction. . . . . . . . . . . . . 
Communication Requirements . . 
Additional Source of Information. 
Mouse Commands . . . . . . . . . 

Prompt Mode Incremental Stream Mode. 
Request Mouse Position. . . 
Invoke Self-Test ...... . 
Vendor Reserved Function . 

Mouse Reports . . . . . . . . 
Position Report - Byte 1. 
Position Report - Byte 2. 
Position Report - Byte 3. 
Self-Test Report - Byte 1 . 
Self-Test Report - Byte 2 . 
Self-Test Report - Byte 3 . 
Self-Test Report - Byte 4 . 

Serial Interface ........ . 
Transmit Holding Register and Receive Buffer 
Status Register. 
Mode Register 1 . . 
Mode Register 2 . . 
Command Register 

Programming Example 

x Contents 

9-1 
9-3 
9-4 
9-6 
9-7 
9-9 

9-10 
9-11 
9-13 
9-15 
9-17 
9-18 
9-19 
9-20 
9-21 
9-22 
9-23 

10-1 
10-1 
10-2 
10-2 
10-2 
10-3 
10-3 
10-3 
10-3 
10-4 
10-4 
10-5 
10-5 
10-6 
10-€ 
10-'; 
10-'; 
10-t 
10-t 
10-~ 

10-l( 
10-11 
1O-1! 

10-1· 



Chapter 11 Diskette Drive Controller 
Introduction. . . . . . . . . . . . . . . 
Diskette Drive Controller Registers . 

Control Register . . . . 
Main Status Register ..... 
Data Register. . . . . . . . . . 
Data Transfer Rate Register . 
Change Register . . . . . . . . 

Diskette Drive Controller Internal Registers . 
Internal Register - Command. . . . . . 
Internal Register - Head/Unit Select . 
Internal Register - Status Register 0 . 
Internal Register - Status Register 1 
Internal Register - Status Register 2 
Internal Register - Status Register 3 
Internal Register - SRT/HUT 
Internal Register - HLT/ND 
Internal Register - C. 
Internal Register - H. 
Internal Register - R. 
Internal Register - N 
Internal Register - EOT . 
Internal Register - GPL. 
Internal Register - DTL 
Internal Register - SC .. 
Internal Register - D. . . 
Internal Register - STP . 
Internal Register - PCN. 
Internal Registers - NCN . 

Diskette Drive Controller Programming 
Command State 
Execution State . . . . . . . . . . . . 
Result State ............. . 
Command and Result Register Sets. 

Programming Example . . . . . . . . . . 

Chapter 12 Hard Disk Drive Controller. 
Introduction. . . . . . . . . . . . . . . . . . . 

11-1 

11-1 

11-2 
11-3 
11-4 
11-5 
11-6 
11-6 

11-7 
11-7 
11-8 
11-9 

11-10 
11-12 
11-13 
11-14 
11-15 
11-15 
11-15 
11-15 
11-16 
11-16 
11-16 
11-16 
11-16 
11-17 
11-17 
11-17 
11-17 

11-18 
11-18 
11-20 
11-20 
11-20 

11-27 

12-1 

12-1 

Contents xi 



Hard Disk Controller Registers. . . . 
Data Register. . . . . . . . . . . . 
Write Precompensation Register. 
Error Register . . . . . . 
Sector Count Register. . . . . . 
Sector Number Register . . . . 
Cylinder Number Low Register 
Cylinder Number High Register. 
SDH Register ..... . 
Command Register . . 

Restore Command 
Seek Command . . 
Read Sector Command. 
Write Sector Command. 
Format Track Command. 
Read Verify Command . . 
Diagnose Command. . . . 
Set Parameters Command. 

Status Register. . . . . . . 
Alternate Status Register. 
Hard Disk Register . . 
Digital Input Register. 

Programming Example . . 

Chapter 13 Network Hardware Interface. 
Introduction to the LANCE ......... . 
Additional Source of Information. . . . . . . . 
Functional Description of the Network Hardware Interface 

The Coax Transceiver Interface . . . 
The Serial Interface Adapter. . . . . 
The Local Area Network Controller. 

Programming the LANCE ....... . 
Initialization Block ......... . 
Receive and Transmit Descriptor Rings 
Data Buffers . . . . . . . 
Programming Sequence . 
Register Description. . . . 
Register Data Port (RDP) 
Register Address Port (RAP) 
Control And Status Register 0 . 
Control And Status Register 1 . 
Control And Status Register 2 . 

xii Contents 

12-1 
12-3 
12-4 
12-5 
12-7 
12-7 
12-8 
12-8 
12-9 

12-10 
12-11 
12-12 
12-13 
12-15 
12-17 
12-19 
12-21 
12-22 
12-23 
12-25 
12-25 
12-26 
12-27 

13-1 
13-1 
13-2 
13-2 
13-2 
13-2 
13-2 
13-3 
13-4 
13-4 
13-4 
13-4 
13-5 
13-6 
13-7 
13-8 

13-13 
13-14 



Index 

Control And Status Register 3. . 
NI CSR ...... . 
Initialization Block. . . 
Mode Field ...... . 
Physical Address Field 
Logical Address Filter Field 
Receive Descriptor Ring Pointer Field 
Transmit Descriptor Ring Pointer Field 
Buffer Management. . . . . . 
Descriptor Rings in Memory. . . . . . . 
Receive Descriptor Rings ........ . 
Receive Message Descriptor 0 (RMDO) . 
Receive Message Descriptor 1 (RMD1) . 
Receive Message Descriptor 2 (RMD2) . 
Receive Message Descriptor 3 (RMD3) . 
Transmit Descriptor Ring ........ . 
Transmit Message Descriptor 0 (TMDO) . 
Transmit Message Descriptor 1 (TMD1) . 
Transmit Message Descriptor 2 (TMD2) . 
Transmit Message Descriptor 3 (TMD3) . 
Network Interface External Interconnect 
Network Interface System Bus Interconnect. 

VOLUME 2 

Chapter 14 System Startup. 
Overview .... . 
Powerup Test ......... . 

Initialization . . . . . . . . 
Real Mode Versus Virtual Protected Mode . 

Extended Self-Test ... 
Configuration List . 

Soft Reset ....... . 
Hard Reset ...... . 
Hardware Jumper Configuration. 

Chapter 15 ROM BIOS ..... . 
Interrupt 02H: Nonmaskable Interrupt. 
Interrupt 05H: Print Screen 
Interrupt 08H: Clock Tick. 
Interrupt 09H: Keyboard .. 

Contents 

13-15 
13-17 
13-18 
13-19 
13-22 
13-22 
13-23 
13-25 
13-27 
13-28 
13-29 
13-29 
13-30 
13-32 
13-33 
13-34 
13-34 
13-35 
13-37 
13-38 
13-40 
13-40 

14-1 
14-1 
14-1 
14-9 
14-9 

14-10 
14-11 
14-12 
14-13 
14-14 

15-1 
15-3 
15-4 
15-5 
15-5 

xiii 



Interrupt OBH: COM2/ Modem. . . . . . . . . . . . . . . . 15-6 
Interrupt OCH: COM1/ Serial . . . . . . . . . . . . . . 15-6 
Interrupt OEH: Floppy Disk. . . . . . . . . . . . . . . . . . . 15-7 
Interrupt 10H: Video Input/Output . . . . . . . . . . . . . . . . . 15-8 

Function OOH: Set Video Mode. . . . . . . . . . . . . . . . . . 15-10 
Function 01H: Set Cursor Type ....... . 
Function 02H: Set Cursor Position . . . 
Function 03H: Read Cursor Position .. 
Function 04H: Read Light-Pen Position ........ . 
Function 05H: Set Page Function. . . . . .... . 
Function 06H: Scroll Active Page Up ........... . 
Function 07H: Scroll Active Page Down . . . . . . . . . . . . 
Function 08H: Read Character and Attribute at Cursor 
Position ............................. . 
Function 09H: Write Character and Attribute at Cursor 
Position .......................... . 
Function OAH: Write Character at Cursor Position. . . 
Function OBH: Set Color Palette ........ . 
Function OCH: Write Pixel ................ . 
Function ODH: Read Pixel . . . . . . . . . . . . . . . . . 
Function OEH: Write Character Using Terminal Emulation. 
Function OFH: Read Current Video State . . . . . . . . . . . 
Function 13H: TTY Write String ............... . 
Function DOH: Enable/Disable 256 Character Graphic Font. 
Function D1H: Font RAM and Color Map Support .. 

Font RAM Functions . . . . . . . . . . . . 
Color Map Functions . . . . . . 

Interrupt llH: Read Configuration .. 
Interrupt 12H: Return Memory Size .. 
Interrupt 13H: Disk Input/Output (I/O) . 

Hard Disk Functions . . . . . . . . 
Hard Disk Errors . . . . . . . . . 
Hard Disk Parameter Tables ... 

Function OOH: Initialize Entire Disk Subsystem. . . . . . . . 
Function 01H: Return Status Code of Last I/O Request ... 
Function 02H: Read One or More Disk Sectors . . . . . . 
Function 03H: Write One Or More Disk Sectors . . . . 
Function 04H: Verify One or More Disk Sectors ..... 
Function 05H: Format a Track. . . . . . . . . . . . . . . . 
Function 08H: Return Current Drive Parameters ...... . 
Function 09H: Initialize Drive Characteristics. . . . . 
Function OAH: Read Long . . . . . . . . . . . . . . . . . . . . 

xiv Contents 

15-12 
15-13 
15-14 
15-15 
15-16 
15-17 
15-17 

15-19 

15-20 
15-21 
15-22 
15-23 
15-24 
15-25 
15-27 
15-28 
15-30 
15-31 
15-31 
15-32 
15-35 
15-37 
15-38 
15-40 
15-40 
15-41 
15-42 
15-43 
15-44 
15-45 
15-46 
15-47 
15-48 
15-49 
15-50 



Function OBH: Write Long. . . . . . . . . . 
Function OCH: Seek to Specific Cylinder .. 
Function ODH: Hard Disk Reset. 
Function 10H: Test Drive Ready ...... . 
Function llH: Recalibrate Drive ...... . 
Function 14H: Execute Controller Internal Diagnostics 
Function 15H: Return Drive Type ...... . 
Function DOH: Read Long 256 Byte Sector. 
Diskette Functions. . . . . . . . 

Diskette Errors . . . . . . . . . . . . . . . 
Diskette Parameter Tables. . . . . . . . . 

Function OOH: Initialize Diskette Subsystem 
Function 01H: Return Status Code of Last I/O Request. 
Function 02H: Read One or More Track Sectors . 
Function 03H: Write One or More Track Sectors. 
Function 04H: Verify One or More Track Sectors. 
Function 05H: Format a Track ....... . 
Function 15H: Return Drive Type ......... . 
Function 16H: Return Change Line Status .... . 
Function 17H: Set Drive and Media Type for Format 

Interrupt 14H: Asynchronous Communications. 
Function OOH: Initialize Asynchronous Port . 
Function 01H: Transmit Character. 

Buffer Mode Enabled . . . . . . 
Function 02H: Receive Character .. 

Buffer Mode Enabled . . . . . . . 
Function 03H: Return Asynchronous Port Status. 

Buffer Mode Enabled . . . . . 
Function DOH: Extended Mode . 

Buffering Enabled. . . 
Notification Enabled .. 
Error Codes Returned . 

Function DIH: Send Break. 
Function D2H: Set Modem Control. 
Function D3H: Retry on Timeout Error 
Function D4H: Set Baud Rate ... 

Interrupt 15H: Cassette Input/Output. 
Function 80H: Open Device 
Function 81H: Close Device ... . 
Function 82H: Termination .... . 
Function 83H: Set a Wait Interval. 
Function 84H: Joystick Support .. 

15-51 
15-52 
15-53 
15-54 
15-55 
15-56 
15-57 
15-58 
15-59 
15-59 
15-59 
15-61 
15-62 
15-63 
15-64 
15-65 
15-66 
15-67 
15-68 
15-69 
15-70 
15-72 
15-73 
15-73 
15-74 
15-74 
15-75 
15-76 
15-77 
15-80 
15-81 
15-83 
15-84 
15-85 
15-86 
15-87 
15-88 
15-89 
15-89 
15-90 
15-90 
15-91 

Contents xv 



Function 85H: Service System Request Key ..... . 
Function 86H: Wait (No Return to Usert ....... . 
Function 87H: Move a Block of Memory ....... . 
Function 88H: Return Memory Size Above One Megabyte 
Function 89H: Begin Virtual Mode ............. . 
Function 90H: Device Is Busy . . . . . . . . . . . . . . . 
Function 91H: Interrupt Completion Handler ..... . 
Function DOH: Return DIGITAL Configuration Word. 

Interrupt 16H: Keyboard Input. . . . . . . ..... 
Table of Returned Scan Codes . . . . . . . 
Combination Keys . . . . . . . . . . . 

System Reset . . . . . . . . . . . 
System Request Key (Sys Reqt . 
Extended Self·test. . . . . . . . . 
Break ............... . 
Pause ........ . 
Print Screen ......... . 

Automatic LED Control. . . . . . 
Function OOH: Keyboard Input. . 
Function 01H: Keyboard Status. 
Function 02H: Keyboard State. . . . . . . . . . 
Function DOH: Key Notification. . . . . . . 

Key Stroke Notification Enabled ....... . 
Key Buffering Notification Enabled ........ . 

Function DIH: Character Count ............ . 
Function D2H: Keyboard Buffer. . . . . . . . . . . . . 
Function D3H: Extended Codes And Functions ... . 
Function D4H: Request Keyboard 10 ......... . 
Function D5H: Send to Keyboard . . . . . . . . . . . . 
Function D6H: Keyboard Table Pointers . . . . . . . . 

Keyboard Translation Table Formats And Usage. 
Interrupt 17H: Printer Output . . . . . . . . . . . . . . . . . 

Function OOH: Transmit Character . . . . . . . . . . . . 
Function 01H: Initialize Printer ............ . 
Function 02H: Return Printer Status ........ . 
Function DOH: Redirect Parallel Printer .. . 
Function D1H: Printer Type .............. . 
Function D2H: Parallel Port Retry . . . . . . . . . . . 

Interrupt 18H: Basic. . . . . . . . . . . . . . . . . . . . . . . 
Interrupt 19H: Bootstrap ........ . 

DIGITAL Hard Disk Boot Block ............ . 

xvi Contents 

15-91 
15-92 
15-93 
15-95 
15-96 
15-98 
15-98 
15-99 

15-101 
15-102 
15-107 
15-107 
15-107 
15-108 
15-108 
15-108 
15-108 
15-108 
15-109 
15-109 
15-110 
15-111 
15-112 
15-113 
15-114 
15-115 
15-116 
15-118 
15-119 
15-120 
15-121 
15-123 
15-124 
15-125 
15-126 
15-127 
15-129 
15-131 
15-132 
15-133 
15-134 



Interrupt lAH: Time-of-day ....... . 
Function OOH: Read System Clock . 
Function 01H: Set System Clock .. 
Function 02H: Read Real-Time Clock. 
Function 03H: Set Real-Time Clock. 
Function 04H: Return RTC Date 
Function 05H: Set RTC Date 
Function 06H: Set Alarm .... . 
Function 07H: Cancel Alarm .. . 
Function DOH: Return Days-Since-Read Counter. 

Interrupt IBH: Keyboard Break . 
Interrupt lCH: Timer Tick ......... . 
Interrupt IDH: Video Parameters ..... . 
Interrupt lEH: Diskette Parameter Tables. 
Interrupt IFH: Graphics Character Table Pointer. 
Interrupt 40H: Revector of Interrupt 13H ..... 
Interrupt 41H and 46H: Hard Disk Parameter Tables 
Interrupt 4AH: RTC Alarm. . . . . . . . . 
Interrupt 70H: Real-Time Clock ............ . 
Interrupt 71H: Redirect to Interrupt OAH ...... . 
Interrupt 72H: Local Area Network Controller (LANCE) . 
Interrupt 73H: Serial Printer Port. 
Interrupt 74H: Mouse Port. 
Interrupt 75H: 80287 Error ... . 
Interrupt 76H: Hard Disk .... . 
Interrupt 77H: Available (lRQI5) 

15-135 
15-136 
15-136 
15-137 
15-138 
15-138 
15-139 
15-139 
15-140 
15-140 
15-141 
15-141 
15-142 
15-143 
15-145 
15-145 
15-146 
15-148 
15-148 
15-148 
15-149 
15-150 
15-150 
15-151 
15-151 
15-151 

Chapter 16 Programming the VAXmate Under MS-DOS 

Overview ................... . 
MS-DOS Operating System Versions. 

Loading MS-DOS Operating System .. . 
MS-DOS Memory Map ........ . 

MS-DOS Interrupt 21H Digital Specific Functions 
Function 30H Get MS-DOS OEM Number 
Function 38H Get/Set Country Code. 

Loadable MS-DOS Device Drivers. 
ANSI.SYS ........ . 
Installing ANSI.SYS . . . 
Cursor Control Functions. 
Erase Functions . . . . . 
Set Graphics Rendition . . 

Contents 

16-1 
16-1 
16-2 
16-2 
16-2 
16-3 
16-3 
16-3 
16-5 
16.5 
16-5 
16-5 
16-7 
16-8 

xvii 



Set Mode Function. . . . . . . . . . . . . 
Reset Mode Function . . . . . . . . . . . 
Keyboard Key Reassignment Function . 

Mouse Driver . . . . . . . . . . . 
Detecting the Mouse Driver . . . . . . 
Video Support . . . . . . . . . . . . . . 
Function OOOOH: Mouse Initialization 
Function 0001H: Show Cursor .... 
Function 0002H: Hide Cursor . . . . . 
Function 0003H: Get Mouse Position and Button Status 
Function 0004H: Set Mouse Cursor Position ... 
Function 0005H: Get Button Press Information . . . . . 
Function 0006H: Get Button Release Information . . . . 
Function 0007H: Set Minimum and Maximum X-Axis 
Position ............................ . 
Function 0008H: Set Minimum and Maximum Y-Axis 
Position ................... . 
Function 0009H: Define Graphics Cursor .... 
Function OOOAH: Define Text Cusor . . . . . . . 
Function OOOBH: Read Mouse Motion Counters 
Function OOOCH: Define Event Handler . . . . . 
Function OOODH: Enable Light-Pen Emulation. 
Function OOOEH: Disable Light-Pen Emulation. 
Function OOOFH: Set Mouse Motion/Pixel Ratio 
Function 0010H: Conditional Hide Cursor. 
Function 0013H: Set Speed Threshold ... 
Function 001CH: Get Driver Version. 
Function 0024H: Get Configuration ... . 
Function 0025H: Set Configuration .... . 
Enhanced Graphics Adapter (EGA) Functions 

Function FOH: Read EGA Register ... . 
Function F1H: Write EGA Register ... . 
Function F2H: Read EGA Register Group 
Function F3H: Write EGA Register Group 
Function F4H: Read EGA Register List. 
Function F5H: Write EGA Register List 
Function F AH: EGA Functions Installed 

MS-DOS Media ID Tables 
Disk Parameters . 

xviii Contents 

16-10 
16-11 
16-12 
16-13 
16-14 
16-14 
16-16 
16-17 
16-17 
16-18 
16-19 
16-20 
16-21 

16-22 

16-23 
16-24 
16-26 
16-27 
16-28 
16-30 
16-30 
16-31 
16-31 
16-32 
16-32 
16-33 
16-33 
16-34 
16-35 
16-35 
16-36 
16-36 
16-37 
16-38 
16-38 
16-39 
16-40 



MS-DOS International Support 16-41 
FONT and GRAFTABL. 16-41 
FONT.COM. . . . . . . . 16-41 
GRAFTABL.COM. . . . 16-42 
Description of Fonts. . . . . . . . . 16-42 
How FONT. COM Affects KEYB.COM and SORT.EXE . 16-42 
Font File Structures. . 16-42 
Loading Font Files. . . 16-45 

KEYB . . . . . . . . . . . . 16-45 
Keyboard Remapping. 16-45 
Creating Keyboard Map Tables for International Countries. 16-47 
How Compose Sequences Are Recognized. . . . . . . . . 16-49 
How Dead Diacritical Keys Are Recognized. . . . . . . . 16-49 
Format and Use of the Compose Sequence Pointer Table 16-49 
Format and Use of the Compose Sequence Translation 
Table. . . . . . . . . . . . . . . . . . . . . . . 16-50 
Changing to STDUS.KEY and Back Again 16-50 
Keyboard Map File Structure 16-50 

LCOUNTRY . . . . . . . . . 16-52 
Country File Structure . 16-52 
Case Conversion Tables. 16-54 

SORT. . . . . . . . . . . . . 16-55 
Format for Sorting Order. 16-55 
Creating Sort Tables for Character Sets. . 16-55 

Chapter 17 MS-Windows on the VAXmate 17-1 
Introduction. . . . . . . . . . . . . . . . . . 17-1 

Overview . . . . . . . . . . . . . . . . . 17-1 
Keyboard Driver for the LK250 Keyboard 17-2 

Numeric and Edit Keypads. . . . . . . 17-3 
Keyboard LEOs for the VAXmate LK250 . 17-4 
VAXmate Compose Handling . . . . . . . . 17-4 
Reserved Keys Under MS-Windows. . . . . 17-5 
DIGITAL MS-Windows Keyboard Extensions. 17-5 
DecSetLockState (lock I . 17-6 
DecSetKClickVol (voU. . . . . . . 17-7 
DecSetAutorep (repeatl. . . . . . 17-7 
DecGetKbdCountry ( I : Result. . 17-8 
DecSetComposeState (compose_model. 17-9 
DecSetNumlockMode (numlock_model. 17-10 

Contents xix 



Windows Keyboard Processing Anomalies . . . . 17-11 
Repeating Key Allowed to Change Focus. . . 17-11 
Illogical Set of Keyboard Messages. . . . . . 17-12 

Key Mappings for VAXmate's LK250. . . . . . . 17-13 
AnsiToOem,OemToAnsi . 17-55 

ANSI to OEM Table 17-55 
OEM to ANSI Table 17-58 

Mouse . . . . . . . . . . . . . 17-61 
Communications . . . . . . . 17-61 

LAT Support Through the Windows Asynchronous Serial 
Communications Interface. 17-62 

OpenComm . . . . . 17-63 
WriteComm . . . . . 17-63 
TransmitCommChar 17-64 
ReadComm. . . 17-64 
CloseComm . . 17-64 
SetCommState 17-65 
GetCommState 17-65 
EscapeCommFunction . 17-65 
SetCommBreak . . . . 17-65 
ClearCommBreak. . . 17-65 
SetCommEventMask 17-65 
GetCommEventMask 17-65 
FlushComm . . . . . . 17-65 
GetCommError . . . . 17-66 

Custom LA T Application Interface Under Windows . 17-66 
OpenLat (lpServiceName, IpNodeName, IpPortName) : 
Latid. . . . . . . . . . . . 17-67 
CloseLat (Latid) : Result . . . 17-68 
ReadLat (Latid) : Result. . . . 17-68 
WriteLat (Latid, chI : Result. 17-69 
GetLatStatus (Latid) : Result 17-69 
SendLatBreak (Latid) : Result. 17-70 
InquireLatServices ( ) : LResult 17-70 
GetLatService (lpServiceName) : Result. . 17-71 

Display on the VAXmate . . . . . 17-73 
Standard Applications Support ......... 17-74 

Keyboard Handling . . . . . . . . . . . . . . 17 -75 
Keyboard Handling Inside an MS-Windows Window. 17-75 
Keyboard Handling Outside an MS-Windows Window. 17-78 

ANSI Support Inside an MS-Windows Window . . . . . . . 17-79 

xx Contents 



Video Modes Handled Inside an MS-Windows Window. 
Interrupt lIh Support 
Interrupt 12h Support 
Interrupt 15h Support 
Unique Icons .. 

Printers ......... . 
DECWIN.H File Listing. 

Chapter 18 VAXmate Network Software. 
Introduction. . . . . . . . 

Documentation List . . . . . . 
Datalink .............. . 

Common Definition Formats . 
Multicast Address Format 
Software Capabilities . 
Datalink Functions . . . . 
Datalink Return Codes . . 

Function OOH: Initialization (dll_init) . 
Function 01H: Open a Datalink Portal (dll_ open) . 
Function 02H: Close a Datalink Portal (dll_close). 
Function 03H: Enable Multicast Addresses 
(dll_ enable _ mul) . . . . . . .......... . 
Function 04H: Disable Multicast Addresses 
(dll_ disable _ mul). . . . . . . . . . . . . . . . . 
Function 05H: Transmit (dll_ transmit) .... 
Function 06H: Request Transmit Buffer Function 
(dllJequest _ xmit) ................... . 
Function 07H: Deallocate Buffer (dll_deallocate) .. 
Function 08H: Read Channel Status (dllJead_chan). 
Function 09H: Read the Portal List (dllJead _plist) 
Functions OAH: Read the Portal Status 
(dllJead _portal) ................ . 
Function OBH: Read the Datalink Counters 
(dllJead _count) . . . . . . . . . . .... 
Function OCH: Network Boot Request 
(dll_ network_boot) ............ . 
Function ODH: Enabling a Channel Function 
(ddl_ enable_chan) ................ . 
Function OEH: Disabling a Channel (dll_disable_chan) .. 
Function 11 H: Read Decparm String Address 
(dllJeadecparm) ..................... . 

17-79 
17-82 
17-82 
17-83 
17-83 
17-83 
17-85 

18-1 
18-1 
18-4 
18-5 
18-6 
18-7 
18-8 

18-11 
18-13 
18-16 
18-18 
18-21 

18-22 

18-24 
18-25 

18-27 
18-28 
18-29 
18-31 

18-32 

18-34 

18-38 

18-39 
18-40 

18-41 

Contents xxi 



Function 12H: Set Decparm String Address 
(dll_ setdecparm). . . . . . . . . . . . . . . . . . 
Function 13H: External Loopback (dll_ext_loopback) 

Maintenance Operation Functions. . . . . . . . . . . . 
Data Link Interface to the MOP Process. . . . . . . . 

Function OFH: Mop Start and Send System ID 
(dll_ start_mop) ............... . 
Function 10 H: Mop Stop (dll_ mop_stop) . 

Sample Datalink Session . 
Local Area Transport . . 

LAT Services. . . . . 
LAT Command Line 
Data Structures . . . 
LAT Functions. . . . 

Function 03H: LAT Get Status. 
Function DOH: Open Session . . 
Function DOH: Close LAT Session. 
Function 02H Read Data. . . . . . . 
Function 01H: Send Data ..... . 
Function D5H: Get Next LAT Service Name. 
Function D6H: LAT Service Table Reset 
Function D1H: Send Break Signal 

Sample Terminal Program 
Session ................... . 

Software Capabilities . . . . . . . . . 
MS-Network Session Control Block. 
DIGITAL-Specific Session Control Block. 
Synchronous Requests . . . . . . . . 
Asynchronous Requests. . . . . . . . 
Asynchronous Notification Routine. 
Network Addressing ......... . 
Session Level Services . . . . . . . . 
MS-Network Compatible Session Level Services 
MS-Network Session Level Return Codes .... 

Function OOH and Function B800H: Check for Presence 
of MS-Network Session ....... . 
Function 35H: Cancel (synchronous) . 
Function 32H: Reset (synchronous) .. 
Function 33H: Status (synchronous) . 
Function B3H: Status (asynchronous) 
Function 30H: Add Name (synchronous). 
Function BOH: Add Name (asynchronous) . 

xxii Contents 

18-42 
18-43 
18-44 
18-47 

18-47 
18-47 
18-48 
18-56 
18-57 
18-57 
18-60 
18-66 
18-67 
18-68 
18-69 
18-70 
18-71 
18-72 
18-73 
18-74 
18-75 
18-84 
18-86 
18-86 
18-89 
18-90 
18-90 
18-91 
18-91 
18-92 
18-93 
18-94 

18-97 
18-98 
18-99 

18-100 
18-100 
18-103 
18-103 



Function 31H: Delete Name (synchronous) . 
Function B1H: Delete Name (asynchronous) 
Function 34H: Name Status (synchronous) . 
Function B4H: Name Status (asynchronous) 
Function 1OH: Call (synchronous) .. 
Function 90H: Call (asynchronous) . . 
Function 11H: Listen (synchronous) . 
Function 91H: Listen (asynchronous). 
Function 12H: Hangup (synchronous) 
Function 92H: Hangup (asynchronous) . 
Function 14H: Send (synchronous) ... 
Function 94H: Send (asynchronous) .. 
Function 17H: Send Double (synchronous). 
Function 97H: Send Double (asynchronous) . 
Function 15H: Receive (synchronous) ... . 
Function 95H: Receive (asynchronous) ... . 
Function 16H: Receive Any (synchronous) .. 
Function 96H: Receive Any (asynchronous) . 

Datagram Commands .............. . 
Function 20H: Send Datagram (synchronous). 
Function AOH: Send Datagram (asynchronous) . 
Function 21H: Receive Datagram (synchronous) 
Function A1H: Receive Datagram (asynchronous) 
Function 22H: Send Broadcast (synchronous) .. 
Function A2H: Send Broadcast (asynchronous) .. 
Function 23H: Receive Broadcast (synchronous) . 
Function A3H: Receive Broadcast (asynchronous) 

DIGITAL-Specific Session Level Services ... 
Function OOH: DIGITAL Function Check 
(decfunccheck) . . . . . . . . . . . . . . . . . 
Function 01H: Add a Node (decfuncadd) .. 
Function 02H: Delete Entry Given the Node Number 
(decfuncdelnum) . . . . . . . . . . . . . . . . . . . . 
Function 03H: Delete Entry Given Node Name 
(decfuncdelname) .................. . 
Function 04H: Read Node Entry Given Node Number 
(decfuncreadnum) ..................... . 
Function 05H: Read Node Entry Given Node Name 
(decfuncreadnamel. . . . . . . . . . . . . . . . . . 
Function 06H: Read Node Entry Given Index 
(decfuncreadindex) ................. . 
Function 07H: Delete All Node Entries (decfuncdelall) .. 

18-104 
18-104 
18-105 
18-105 
18-107 
18-107 
18-109 
18-109 
18-110 
18-110 
18-111 
18-111 
18-112 
18-112 
18-113 
18-113 
18-114 
18-114 
18-115 
18-116 
18-116 
18-117 
18-117 
18-118 
18-118 
18-119 
18-119 
18-120 

18-121 
18-122 

18-123 

18-124 

18-125 

18-126 

18-127 
18-128 

Contents xxiii 



Server Message Block ISMBI Protocol ........... . 
Extended Function DOH: Get Current Date and Time. 

Appendix A Support Code for Examples . . 
File: SUPPORT.ASM 
File: EXAMPLE.H . 
File: KYB.H ... . 
File: RB.H ..... . 
File: VECTORS.C 
File: RB.C ... . 
File: DEMO.C .. . 

Appendix B 80286 Instruction Set 

Appendix C VT220 and VT240 Terminal Emulators. 
VT220 Emulator and VT220 Terminal Differences 

Saving and Restoring Set-Up Selections .. 
Video Differences . . . . . . . . . . . 

Scrolling .............. . 
Blinking Characters Remapped . . 
No Control Representation Mode. 
Font Selection . . . . . . . . . . . . 

Communications Differences. . . . . . 
LAT Protocol Support INetwork Terminal Services) . 
No Split Baud Rate ... 
Session Logging. . . . . 
Autotyping Characters . 

Keyboard Differences . . . 
Keyboard LEDs . . . . 
Alternate Characters . 
Keyclick ........ . 
Autorepeat Selection . 

Character Sets . . . . . . . 
DEC MCS to ISO Latin-1 8-bit Transition 
Language Selection . . . . . . . . . . . . . . 
Compose Sequences. . . . . . . . . . . . . . 

Additional VT220 Emulator Escape Sequences 
Assign User-Preference Supplemental Character Set 
IDECAUPSS) ....................... . 
Request User-Preference Supplemental Character Set 
IDECRQUPSS) ....................... . 
Select User-Preference Supplemental Coded Character 
Set ISCS) ........................... . 

xxiv Contents 

18-129 
18-130 

A-I 
A-I 
A-9 

A-10 
A-ll 
A-12 
A-16 
A-18 

B-1 

C-1 
C-2 
C-2 
C-2 
C-2 
C-2 
C-2 
C-2 
C-3 
C-3 
C-3 
C-3 
C-3 
C-4 
C-4 
C-4 
C-4 
C-4 
C-5 
C-5 
C-5 
C-5 
C-6 

C-6 

C-6 

C-6 



Select DEC Supplemental Coded Character Set (SCS) . C-7 
Select ISO Latin-l Supplemental Coded Character Set 
(SCS) . . . . . . . . . . . . . . . . . C-7 
Primary Device Attribute (DA) . . . . . C-8 
Secondary Device Attribute (DA) . . . . C-8 
Announcing ANSI Conformance Levels C-8 

Printing . . . . . . . . C-9 
Printer Options . C-9 
Print Terminator C-9 
Print Size. . . . . C-9 

VT240 Emulator and VT240 Terminal Differences C-IO 
Saving and Restoring Set-Up Selections. . C-IO 
Video Differences . . . . . . . . . . . . C-IO 

Video Modes . . . . . . . . . . . . . C-IO 
Automatic Video Mode Switching. C-IO 
Scrolling . . . . . . . . . . . . . . . C-IO 
No Control Representation Mode. C-IO 
Underlined Characters. . . . . . . C-ll 
Line Attributes . . . . . . . . . . . C-ll 
Double Width Lines for Fast Text Only C-ll 
Double Height/Double Width Lines for Fast Text Only C-ll 

Communications Differences. . . . . . . . . . . . . . . . . C-12 
LAT Protocol Support (Network Terminal Services) . C-12 
Session Logging. . . . . C-12 
Autotyping Characters. C-12 

Keyboard Differences . . . C-12 
Keyboard LEDs . . . . . C-12 
Alternate Characters . . C-12 

No "Printer to Host" Mode. C-12 
Character Sets. . . . . . . . C-13 

DEC MCS to ISO Latin-l 8-bit Transition C-13 
Compose Sequences. . . . . . . . . . . . . . C-13 

Additional VT240 Emulator Escape Sequences C-13 
User-Preference Supplemental Character Set 
(DECAUPSS) . . . . . . . . . . . . . . . . . . . C-13 
Request User-Preference Supplemental Character Set 
(DECRQUPSS) . . . . . . . . . . . . . . . . . . . . . . . . C-14 
Select User-Preference Supplemental Coded Character 
Set (SCS). . . . . . . . . . . . . . . . . . . . . . . . . . . . C-14 
Select DEC Supplemental Coded Character Set (SCS) . C-15 
Select ISO Latin-l Supplemental Coded Character Set 
(SCS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-15 

Contents xxv 



Primary Device Attribute (DA) .... . 
Secondary Device Attribute (DA) ... . 
Announcing ANSI Conformance Levels 

Bibliography 

Index 

Physical Memory Map . . . . . . . . . 
Input/Output Address Map . . . . . . 
Interrupt Vector Map ........ . 
8-Bit Expansion Bus Transfer Times 
Expansion Slot Power Ratings . . . . 
Interrupt Request Lines. . . . . . . . 
Master and Slave I/O Addresses . . . 
Accessing the Interrupt Controller Registers. 
DMA Request Line Assignments ....... . 
DMA Controller States . . . . . . . . . . . . . 
DMA Controller and Page Register Address Map . . 
Real-Time Clock Address Map. 
Rate Selection Bits. . . . . . . . 
RTC Data Register Ranges . . . 
RTC Automatic Alarm Cycles .. 
Counter Signals. . . . . . . . . . 
Modes Used by the Three Counters. 
8254 and System Register Addresses. 

Tables 
Table 2-1 
Table 2-2 
Table 2-3 
Table 2-4 
Table 2-5 
Table 3-1 
Table 3-2 
Table 3-3 
Table 4-1 
Table 4-2 
Table 4-3 
Table 5-1 
Table 5-2 
Table 5-3 
Table 5-4 
Table 6-1 
Table 6-2 
Table 6-3 
Table 7-1 Available Video Modes ......... . 
Table 7-2 Attribute Byte Bit Definitions ..... 
Table 7-3 Text Mode Display Pages (ROM BIOS) . 
Table 7-4 Default VLT Contents . . . . . . . . . . . 
Table 7-5 VLT Contents for Video Modes D1H and D2H. 
Table 7-6 Video Processor I/O Registers. 
Table 7-7 CRTC Internal Registers ....... . 
Table 7-8 CRTC Register Values ......... . 
Table 7-9 Color Select Register Bit Assignments 
Table 7-10 Color Palettes Selected by CPS and SIC. 
Table 7-11 Selecting Video Modes . . 
Table 7-12 Monitor Interface Signals 
Table 8-1 Port 1 Bit Definitions ... 
Table 8-2 Port 2 Bit Definitions . . . 
Table 8-3 Keyboard-Interface Controller Commands 
Table 8-4 Command Byte Bit Definitions. . . . . . . 

xxvi Contents 

C-15 
C-16 
C-16 

2-3 
2-4 
2-7 

2-10 
2-10 

3-2 
3-3 
3-4 
4-2 
4-2 
4-6 
5-3 
5-5 

5-11 
5-12 
6-3 
6-3 
6-8 
7-5 
7-6 
7-8 

7-20 
7-21 
7-22 
7-26 
7-27 
7-40 
7-40 
7-42 
7-44 

8-3 
8-4 
8-~ 

8-H 



Table 8-5 LK250 Scan Codes and Industry-standard 
Equivalent Values . . . . . . . . . . . . . . . . . . . 
Table 8-6 Scan Codes Translated But Not Used. 

LK250 Keyboard Command Codes. 
LK250 Keyboard Responses ... 
8250 UART Register Addresses 
Interrupt Identification . . . . . 
Baud Rate Table . . . . . . . . . 
Communications Connector Signals . 
Printer Connector Signals. . . . . . . 
Modem Telephone Line Connector Signals . 
Handset Connector Signals . . 

Mouse Command Summary. 
Serial Interface Registers . . 
Baud Rate Table. . . . . . . . 
Diskette Drive Controller Registers 
Diskette Drive Controller Commands 
Register Sets for Read Data Command 

Table 8-7 
Table 8-8 
Table 9-1 
Table 9-2 
Table 9-3 
Table 9-4 
Table 9-5 
Table 9-6 
Table 9-7 
Table 10-1 
Table 10-2 
Table 10-3 
Table 11-1 
Table 11-2 
Table 11-3 
Table 11-4 
Table 11-5 
Table 11-6 
Table 11-7 
Table 11-8 
Table 11-9 
Table 11-10 
Table 11-11 
Table 11-12 
Table 11-13 
Table 11-14 

Register Sets for Write Data Command . 
Register Sets for Read Deleted Data Command 
Register Sets for Write Deleted Data Command. 
Register Sets for Read Track Command. . 
Register Sets for Read ID Command. . . . 
Register Sets for Format Track Command 

Register Sets for Scan Equal Command . 
Register Sets for Scan Low or Equal Command. 
Register Sets for Scan High or Equal Command 
Register Sets for Recalibrate Command . . 
Register Sets for Sense Interrupt Status 

Command ........................... . 
Table 11-15 Register Sets for Specify Command ... . 
Table 11-16 Register Sets for Sense Drive Status Command 
Table 11-17 Register Sets for Seek Command. . . . . . . . 
Table 12-1 Hard Disk Controller Registers ......... . 
Table 12-2 Hard Disk Controller Diagnostic Result Codes. 
Table 12-3 Memory Image of a Sector Interleave Table ... 
Table 12-4 Hard Disk Controller Diagnostic Result Codes. 
Table 13-1 Network Interface Registers ........... . 
Table 13-2 LANCE CSR3 Required Values for the VAXmate 
Workstation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 14-1 VAXmate Powerup and Self-Test Error Codes 
Table 14-2 VAXmate Processor Board Jumpers ..... . 

Contents 

8-17 
8-21 
8-22 
8-30 

9-2 
9-6 

9-16 
9-19 
9-20 
9-21 
9-21 
10-2 
10-8 

10-11 
11-2 

11-19 
11-21 
11-21 
11-22 
11-22 
11-23 
11-23 
11-24 
11-24 
11-25 
11-25 
11-26 

11-26 
11-26 
11-27 
11-27 
12-2 
12-6 

12-18 
12-21 

13-5 

13-16 
14-8 

14-14 

xxvii 



Table 15-1 ROM BIOS Interrupt Vectors .... 
Table 15-2 Interrupt 10H: Video 110 Functions 
Table 15-3 Video Modes ............. . 
Table 15-4 
Table 15-5 
Table 15-6 
Table 15-7 
Table 15-8 
Table 15-9 
Table 15-10 
Table 15-11 
Description 
Table 15-12 
Table 15-13 
BIOS .... 
Table 15-14 
Table 15-15 
Table 16-1 
Table 16-2 
Table 16-3 
Table 16-4 
Table 16-5 
Table 16-6 
Table 16-7 

Mode Dependent Values for Set Cursor Type . 
Default Color Map. . . . . . . . . . . . . . . . 
Color Map for Video Modes DIH and D2H . 
Hard Disk Error Codes. . . . . . . . . . . 
Hard Disk Parameter Table Description. 
Diskette Error Codes. . . . . . . . . . . . 

Diskette Parameter Table Description . 
Communications Control Block (CCB) 

CCB Buffer Structure Description . . . . . . . 
Keyboard Scan Codes Returned by The ROM 

Diskette Parameter Table Description . . . 
Hard Disk Parameter Table Description . . 

Cursor Control Functions . . . . . 
Erase Function .......... . 
Set Graphics Rendition Function . 
Set Mode Function . . . . . . . . . 
Reset Mode Function. . . . . . . . 
Keyboard Key Reassignment Function. 
Standard Mouse Drive Functions. . . . 

Table 16-8 Extended Mouse Driver Functions ... 
Table 16-9 Video Sytems and Modes Supported by 
MOUSE.SYS ....................... . 
Table 16-10 Extensions to Interrupt 10H EGA Functions. 
Table 16-11 EGA Register Groups and Associated Registers 
Table 16-12 Hard Disk Types ....... . 
Table 16-13 BIOS Parameter Block Data. 

15-1 
15-9 

15-10 
15-12 
15-33 
15-34 
15-40 
15-41 
15-59 
15-60 

15-78 
15-80 

15-104 
15-143 
15-147 

16-6 
16-7 
16-8 

16-10 
16-11 
16-12 
16-13 
16-14 

16-15 
16-34 
16-34 
16-39 
16-40 

Table 16-14 .FNT File Structure. . 16-43 
Table 16-15 .GRF File Structure. . . . . . 16-15 
Table 16-16 Keyboard Tables. . . . . . . . 16-1€ 
Table 16-17 Keyboard Map File Structure 16-5C 
Table 16-18 Characters Causing Problems for 
COMMAND. COM . . . . . . . . . . . . . . . . . . 16-54 
Table 16-19 Sort Order for Industry-Standard Character Set 
(STD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-5( 
Table 16-20 Sort Order for DIGITAL Multinational Character 
Set (MCS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-5~ 

xxviii Contents 



Table 16-21 Sort Order for International Standards 
Organization Character Set (ISO) . . . . . . . . . . . 16-58 
Table 16-22 Sort Order for French 7-Bit National 
Replacement Character Set (FR7) . . . . . . . . . . . 16-59 
Table 16-23 Sort Order for German 7-Bit National 
Replacement Character Set (GR71 . . . . . . . . . . . . 16-60 
Table 17-1 Keyboard Messages Transmitted by MS-Windows . 17-12 
Table 17-2 US to ASCII Translation Table. . . 17-15 
Table 17-3 Danish to ASCII Translation Table. 17-21 
Table 17-4 Finnish to ASCII Translation Table 17-23 
Table 17-5 French to ASCII Translation Table. 17-27 
Table 17-6 French Canadian and Bilingual Canadian to ASCII 
Translation Table. . . . . . . . . . . . . . . . . . . . 17-30 
Table 17-7 German to ASCII Translation Table. . 17-33 
Table 17-8 
Table 17-9 
Table 17-10 
Table 17-11 
Table 17-12 
Table 17-13 

Italian to ASCII Translation Table ... 
Norwegian to ASCII Translation Table. 

Spanish to ASCII Translation Table . 
Swedish to ASCII Translation Table . 
Swiss French to ASCII Translation Table . 
Swiss German to ASCII Translation Table. 

Table 17-14 Translation of ANSI Set to OEM Set. 
Table 17-15 Translation of OEM Set to ANSI Set. 
Table 17-16 INT 10H Functions .......... . 
Table 17-17 Supported Video Modes. . . . . . . . . 
Table 17-17 Character Sets Supported by Each Printer. 
Table 18-1 Interrupt 6D: Datalink Functions ....... . 
Table 18-2 Datalink Return Codes. . . . . . . . . .... . 
Table 18-3 Recommended Values for Datalink Parameters. 
Table 18-4 LAT Call Back Routine ..... 
Table 18-5 Interrupt 6A: LAT Functions . . . . . . 
Table 18-6 Session Control Block Fields. . . . . . . 
Table 18-7 DIGITAL Session Control Block Fields 
Table 18-8 Interrupt 2A: MS-Network Compatible Services ... 
Table 18-9 Interrupt 2A: DIGITAL Specific Session Extensions 
Table 18-10 Error Codes Returned by Session .. . 
Table 18-11 Session Status Buffer .......... . 
Table C-1 DEC MCS - ASCII Graphics Set (0-71 .. 
Table C-2 DEC MCS - Supplemental Graphics Set 
Table C-3 ISO Latin-l Character Set (0-7) ... . 
Table C-4 ISO Latin-1 Character Set (8-151 ... . 
Table C-5 DEC Special Graphics Character Set. 

17-36 
17-39 
17-42 
17-45 
17-48 
17-51 
17-55 
17-58 
17-80 
17-82 
17-84 
18-12 
18-13 
18-17 
18-62 
18-66 
18-87 
18-89 
18-92 
18-92 
18-94 

18-100 
C-18 
C-19 
C-20 
C-21 
C-22 

Contents xxix 



Figures 
Figure 1-1 
Figure 1-2 
Figure 1-3 
Figure 1-4 
Figure 1-5 
Figure 1-6 
Figure 2-1 
Figure 3-1 
Figure 3-2 
Figure 3-3 
Figure 6-1 
Figure 7-1 
Figure 7-2 
Figure 7-3 
Figure 7-4 
Figure 7-5 
Mode ... 

Base Configuration Workstation . . . . . . . 
Workstation With Installed Expansion Box. 
Optional 80287 Coprocessor ....... . 
Optional Two Megabyte DRAM Module . . . 
Optional Modem Module . . . . . . . . . . . . 
Block Diagram of Workstation Components. 
8-Bit And 16-Bit Bus Connectors. 
Priority Before Rotation 
Priority After Rotation . . . . . . . 
Interrupt Sequence . . . . . . . . . 
Three Channel Counter/Timer Block Diagram 
Block Diagram of the V AXmate Video Controller. 
Character Buffer Format. . . . . . . . . . . . . . . 
Memory Organization for 320 x 200 4-Color Mode. 
Pixel to Bit-Field Map for 4-Color Mode ..... 
Memory Organization for 320 x 200 16-Color 

1-2 
1-3 
1-4 
1-4 
1-4 
1-5 

2-11 
3-14 
3-14 
3-2~ 

6-2 
7-~ 

7-6 
7-11 
7-11 

7-U 
Figure 7-6 Pixel to Bit-Field Map for 16-Color Mode . . . . 7-U 
Figure 7-7 Memory Organization for 640 x 200 2-Color Mode . 7-1~ 

Figure 7-8 Pixel to Bit-Field Map for 2-Color (Monochrome) 
Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1~ 

Figure 7-9 
Figure 7-10 
Figure 7-11 
Mode .... 
Figure 7-12 
Figure 7-13 
Mode .... 
Figure 7-14 
Figure 7-15 
Mode .... 
Figure 7-16 
Figure 8-1 
Figure 8-2 
Figure 8-3 
Figure 8-4 
Figure 8-5 
Figure 8-6 
Figure 8-7 
Figure 8-8 
Figure 8-9 

xxx Contents 

Memory Organization for 640 x 200 4-Color Mode . 
Pixel to Bit-Field Map for 4-Color Mode .... 
Memory Organization for 640 x 400 2-Color 

Pixel to Bit-Field Map for 2-Color Mode .... 
Memory Organization for 640 x 400 4-Color 

Pixel to Bit-Field Map for 4-Color Mode .... 
Memory Organization for 800 x 252 4-Color 

Pixel to Bit-Field Map for 4-Color Mode 
Keyboard Position Labels. . . 
U.S.lU.K. Keyboard ..... 
Canadian/English Keyboard . 
Danish Keyboard . . . . . . 
Finnish Keyboard . . . . . . 
French/Canadian Keyboard 
French Keyboard . . . . . . 
German/Austrian Keyboard 
Hebrew Keyboard . . . . . . 

7-1~ 

7-V 

7-11 
7-11 

7-H 
7-11 

7-1' 
7-1' 
8-11 
8-3: 
8-3: 
8-3-
8-3 
8-3 1 

8-3 
8-3 
8-3 



Figure 8-10 I talian Keyboard . . . 
Figure 8-11 Norwegian Keyboard 
Figure 8-12 Spanish Keyboard .. 
Figure 8-13 Swedish Keyboard . . 
Figure 8-14 Swiss/French Keyboard. 
Figure 8-15 Swiss/German Keyboard 
Figure 10-1 VAXmate Mouse (Part Number VSXXXI 
Figure 13-1 Descriptor Rings ......... . 
Figure 14-1 Test Sequence - Processor Board 
Figure 14-2 Test Sequence - 110 Board .... 
Figure 14-3 Test Sequence - Options . . . . . 
Figure 14-4 Test Sequence - Initialization and Bootstrap. 
Figure 14-5 V AXmate Configuration Screen. . . . . . . . 
Figure 14-6 VAXmate Processor Board Jumper Configuration 
Figure 15-1 LK250 Keyboard Layout ...... . 
Figure 16-1 MS-DOS Date and Time Structure. 
Figure 17-1 Keyboard Position Labels. . . . 
Figure 18-1 VAXmate Network Components .. 
Figure 18-2 Multicast Address Format ..... 
Figure 18-3 Session Interface Implementation. 

Contents 

8-40 
8-41 
8-42 
8-43 
8-44 
8-45 
10-1 

13-28 
14-2 
14-4 
14-5 
14-6 

14-12 
14-14 

15-103 
16-4 

17-14 
18-2 
18-7 

18-85 

xxxi 





Preface 

Audience 
This manual provides reference material about the VAXmate workstation. It 
covers all programmable components, the firmware, and several MS-DOS re
lated environments. The material and its presentation are directed to expe
rienced programmers or software designers. 

Manual Organization 
This manual is divided into four parts and appendixes: 

• Chapter 1 provides an overview of the V AXmate workstation and optional 
equipment. 

• Chapters 2 through 13 introduce the V AXmate workstation 
programmable hardware devices. Each chapter discusses a single hard
ware programming task, such as video input/output (110). external inter
rupt processing, or serial communications and includes the following 
information: 

A brief device description 
A list of additional references 
A description of the programmable hardware registers 
A programming example 
A discussion of the example 

The examples are written in the C programming language to reduce the 
size of the examples and focus on the task rather than the detail required 
by the language. 

• Chapter 14 describes the power-up diagnostics and system startup. 

• Chapter 15 describes the read-only memory basic input/output system 
(ROM BIOS). 

• The appendixes contain additional information, including a bibliography of 
other useful publications. 

Preface xxxiii 



Terminology 
The following terms are used throughout this manual and are defined as 
follows: 

Term 

Industry-standard 

Reserved 
Available 
Unassigned 

xxxiv Preface 

Definition 

The computer industry recognizes two open architectures 
as industry standards, the IBM PC AT bus structure and 
the Microsoft disk operating system IMS-DOS). Moreover, 
supporting MS-DOS requires a defined set of ROM BIOS 
services. The term industry-standard refers to compatibil
ity with these architectures. 

To avoid confusion and incompatibility, the use of certain 
items such as memory space, 110 space, interrupt vectors, 
and ROM BIOS parameters or return values must be 
clearly defined. These three categories define those items 
that do not have a specific use. 

Reserved In future hardware or software releases, 
DIGITAL may define a specific use for thi~ 
item. Hardware or software applications 
that use this item may not work with 
future releases. 

Available 

Unassigned 

Hardware or software applications can use 
this item. DIGITAL has defined the spe
cific use of this item as available for 
applications. 

Hardware or software applications can use 
this item. However, there remains some 
risk that DIGITAL may define a specific 
use for this item. 



Federal Communications Commission 
Radio Frequency Interference 

Class A Computing Devices 
This equipment generates, uses, and may emit radio frequency energy. The 
equipment has been tested and found to comply with the limits for a Class A 
computing device pursuant to Sub-part J of Part 15 of FCC Rules, which are 
designed to provide reasonable protection against such radio frequency interfer
ence when operated in a commercial environment. Operation of this equipment 
in a residential area may cause interference in which case the user at his own 
expense may be required to take measures to correct the interference. 

If this equipment does cause interference to radio or television reception, which 
can be determined by turning the equipment off and on, the user is encouraged 
to try to correct the interference by one or more of the following methods: 

• re-orient the receiving antenna 

• relocate the computer with respect to the receiver 

• move the computer away from the receiver 

• plug the computer into a different outlet so that computer and receiver 
are on different branch circuits. 

If necessary, the user should consult the dealer or an experienced radio 
and television technician for additional suggestions. The user may find the 
booklet, How to Identify and Resolve RadiolI'V Interference Problems, 
prepared by the Federal Communications Commission helpful. This booklet is 
available from the U.S. Government Printing Office, Washington, DC 20402, 
Stock No. 004-000-00398-5. 

NOTE 
Shielded cables are provided for use with this device. Should any 
cables be replaced or added for any reason, these cables should 
be the same as, or with higher shielding capabilities, than those 
provided by Digital Equipment Corporation. 

Preface xxxv 





Overview 

Chapter 14 
System Startup 

During system startup, the ROM firmware on the processor board runs diag
nostic tests, initializes the video, memory, disk controller, and firmware data, 
Following diagnostic tests and initialization, the firmware tries to load the oper
ating system from the diskette, hard disk, or network. 

The ROM diagnostic tests isolate errors to a field-replaceable unit (processor 
board, I/O board, keyboard, drives, or DIGITAL options). The diagnostic tests 
have two modes, a 30-second powerup test and a 3-minute extended self-test. 

Powerup Test 
The powerup test automatically performs a brief check of the system hardware. 
It performs a processor board test, a keyboard test, an input/output (110) board 
test. a brief video check, and an internal I/O interface test. During the video 
test, a solid line flashes at the top of the screen. The firmware checks the 
presence of a diskette controller, a diskette drive, a hard disk controller, and a 
hard disk drive. If found, they are also tested. The last tests performed are 
on-board diagnostics for DIGITAL options, such as the modem board. Finally, 
the firmware initializes the hardware and firmware data. Figures 14-1 through 
14-4 show the powerup test sequence. 

System Startup 14 - 1 



14- 2 

EXTENDED 
SELF-TEST 

TRL/AL; T lHONE 

SOFT 
RESET 

CTRL/AL T IDEL 

POWER ON 

TURN 
CPU BOARD 

LED ON 

INITIALIZE 
VIDEO SYSTEM 

DISPLAY 
HORIZONTAL 

BAR 

HALT 
CPU 

LJ 1312 

Figure 14-1 Test Sequence· Processor Board 

System Startup 



NO 

NO NO 

TURN 
CPU BOARD 

LED Off 

TURN 
CPU BOARD 

LED ON 

TURN 
CPU BOARD 

LED OfF 

LJ-1313 

Figure 14-1 Test Sequence· Processor Board ~cont.' 

System Startup 14- 3 



14- 4 

TURN 
lID BOARD 

LED ON 

NO 

TEST 
DIGiTAL 
VIDEO 

DISPLAY 
IDEO PATTERN 

NO 

TURN 
lID BOARD 
LED OFF 

LJ 1314 

Figure 14-2 Test Sequence - 1/0 Board 

System Startup 



~N~O ____________ ~ NO 

NO 

TURN 
MODEM 
SOARD 

LED ON 

TURN 
MODEM 
SOARD 

LED OFF 

Figure 14-3 Test Sequence - Options 

System Startup 14- 5 



14- 6 

ERROR 
DETECTED 

BRIGHTEN ICON 

DISPLAY 
ERROR NUMBER 

INITIALIZE 
ALL 

HARDIIARE 

NOTE' MEMORY IS INITIALIZED 
ONLY IN POIIER-UP TEST, 
NOT IN EXTENDED 
SELF-TEST 

DISPLAY 
CONFIGURATION 

SCREEN 

ENABLE 
NETIIORK 

DATA LINK 

Figure 14·4 Test Sequence· Initialization and Bootstrap 

System Startup 



DISABLE 
NETIo'ORK 

DATA LINK 

INITIALIZE 
ROM BIOS 

AND 
DIGITAL 
OPTIONS 

YES 

DISPLAY 
DIAGNOSTIC 

ERROR 
CODE 

ENABLE 
NETIo'ORK 

DATA LINK 

READ 
BOOT BLOCK 

TO START 
OPERATING 

SYSTEM 

LJ-1317 

Figure 14-4 Test Sequence - Initialization and Bootstrap (cont.) 

System Startup 14- 7 



During the powerup test, the firmware diagnostic draws a horizontal bar on the 
screen. As tests complete, the firmware gradually shades in this bar. When the 
diagnostic detects an error, the filled-in area of the bar changes shade and two 
beeps sound. A failure value displays below the middle of the bar and remains 
for 5 seconds. When the bar disappears, the error value moves to the middle of 
the first line, where it remains until scrolled off the screen. Table 14-1 lists the 
error codes. 

Table 14-1 VAXmate Powerup and Self-Test Error Codes 

Code FRU 

OOH-1FH CPU Board 

20H-3FH 110 Board 

40H-4FH Diskette Drive A 

50H-5FH Option Memory 

60H-6FH Keyboard 

70H-7FH Hard Disk Controller 

80H-SFH Hard Disk 
90H-9FH Integral Modem 

AOH-FFH Reserved 

Only a few test failures are severe enough to halt the system. These are in the 
basic tests. If a severe failure occurs, the processor board LED stays on, and 
two beeps sound. 

The tests include: 

• Memory access 
• Data path validity 
• Addressing 
• ROM checksum 
• Stack and vector area 
• Refresh request 
• CMOS shutdown byte 

When testing of a field-replaceable unit WRU) completes, the firmware turns 
off the LED on the FRU. The FRUs with LEDs include the processor board, 
the 110 board, the memory option board (parity errors only), and the modem 
option board. 

NOTE 
Depending on the type of failure, if the video initialization se
quence fails, it is possible that the 110 board LED may remain 
on. 

14- 8 System Startup 



The processor board LED and the 110 board LED are visible through the top of 
the VAXmate cover. The processor board LED is red color. The 1/0 board LED 
is an amber color. The memory board option LED lights up only if the test 
detects a parity error. 

The powerup test checks only DIGITAL supported hardware. For example, the 
test checks the DIGITAL modem option but does not check other vendor 
modem boards, unless the vendor adds option ROMs with a powerup test that 
conforms to a DIGITAL standard. 

Initialization 
After the powerup test completes, the firmware diagnostic performs an initiali
zation sequence that consists of sizing the memory, initializing up to 15 Mbytes 
of memory, and initializing the hardware. Then, the firmware diagnostic passes 
control to the ROM BIOS, which initializes the firmware data, sets up all inter
rupt vectors, and attempts to load the operating system from the diskette, the 
hard disk (if installed), or the network. 

Real Mode Versus Virtual Protected Mode 
The processor can operate in two modes, real mode and virtual protected mode. 
The coding of programs is distinctly different for these two modes. When oper
ating in real mode (the powerup mode), the processor can access only the first 
megabyte of physical memory. When operating in virtual protected mode, the 
processor can access all 16 Mbytes of the physical address space. The powerup 
test checks only the 640K system RAM and the DEC private RAM that reside 
in the first megabyte of physical address space. 

To prevent parity errors, the memory above the first megabyte, including the 
2 Mbytes memory option board. is initialized during power up. The memory 
above the first megabyte is tested in the extended self-test mode. 

System Startup 14- 9 



Extended Self-Test 
Holding down the Ctrl and Alt keys, then pressing the Home key on the nu
meric keypad invokes the extended self-test. A bar goes across the screen and 
fills in as each subtest completes. After about 3 minutes (or more, depending 
on the options installed), a system configuration list displays on the screen. 

In addition to more extensive tests, the extended self-test diagnostic performs 
the same series of tests as the powerup test. The extended self-test diagnostic 
handles errors in the same manner as the powerup diagnostics. Included in the 
extended self-test are tests for protected memory and the 80287 math copro
cessor option (if present). 

Some video failures do not allow the failure value to be written to the screen. If 
the monitor board fails, error reports are not displayed. When the tests com
plete, the video display may be absent or distorted. If the system has a third
party video card installed, the diagnostic bypasses all video tests. 

After the video test, the self-test performs extensive internal loopback tests on 
the printer, communications, and mouse serial ports. Loopback connectors are 
not required. Following the serial port test, the firmware tests the real time 
clock. 

Then, the firmware tests the diskette controller and drive. A double-sided. high
density formatted diskette is required for this test. (The test does not write on 
the diskette.) The self-test also reads the hard disk (if present) and checks any 
other DIGITAL options in the system. 

To allow the system to recognize a newly installed option, execute the extended 
self-test. When the extended self-test completes, the firmware diplays the 
configuration list. If the newly installed option is one of those shown in Figure 
14-5, the newly installed option should be displayed in the system configuration 
list. 

After the self-test completes its subtests, memory is sized and the hardware is 
initialized. The firmware updates the CMOS configuration to the new system 
configuration and displays the system configuration list on the screen. 

14- 10 System Startup 



Configuration List 
On completion of the self-test, the firmware diagnostic displays the system 
configuration list on the screen. The user can check the amount of memory 
available, the options installed, the keyboard version, battery backup (if avail
able), the ROM date, and the Ethernet address. See Figure 14-5 for an exam
ple of a typical configuration. Because the ROM diagnostics do not include 
multinational translation tables, the configuration screen uses numeric values 
and option codes. If an option is not present, the position for that option shows 
a dashed line. 

After checking the configuration list, the user presses any key to continue. 
Then the firmware passes control to the ROM BIOS, which initializes the firm
ware data and tries to load an operating system. 

NOTE 
If a third-party video board is installed, the configuration list 
may not be displayed. Thus, there may be no indication that the 
user must press a key to continue. 

Configuration list 

1024 Kb 
2048 Kb 
1 RX 
1 RD 
Li 
BA500 
80287 
PC50X-MA 
VSXXX-AA 
LK25001 
27256 MOIDA/YR 
08-00-2B-02-78-78 

Explanation (does not appear on screen) 

Standard memory 
Optional memory 
Diskette drive 
Hard-disk drive option 
Lithium battery 
Expansion box 
Math coprocessor option 
Modem option 
Mouse 
Keyboard version number 
ROM and revision date 
Ethernet address 

System Startup 14- 11 



10204 Kb 

1 OX 

1 R. 
LI 

BASOO 
90287 
PCSOX-J'I1A 
VSUX-AA 
LK2S0 01 

272S6 J'I1Q/DA/YR 
08-00-28- 02-78-78 

STANDARD MEMORY 
OPTIONAL MEMORY 
DISKETTE DRIVE 
HARD DISK DRIVE OPTION 
LITHIUM BATTERY 
EXPANSION BOX 
MATH COPROCESSOR OPTION 
MODEM OPTION 
MOUSE 
KEYBOARD VERSION NUMBER 
ROM AND REVISION DATE 
ETHERNET ADDRESS 

LJ-103t 

Figure 14-5 V AXmate Configuration Screen 

Soft Reset 
A soft reset, performed by pressing the Ctrl/AltlDel key sequence, goes directly 
to the diagnostic initialization procedure. This initializes the hardware, sizes 
memory without initializing it, gets the status words, and sets up the CMOS 
RAM. Uf the checksum is valid, the CMOS is not changed.) Then, the diag
nostic passes control to the ROM BIOS initialization procedure. A soft reset 
does not display the configuration screen. The ROM BIOS tries to load the 
operating system from a diskette, from the hard disk (if presentt, or from the 
network. 

14- 12 System Startup 



Hard Reset 
A hard reset, such as returning from virtual protected mode to real mode, 
resets only the processor. The firmware determines the reason for the reset by 
reading the shutdown byte, location OFH, in the CMOS RAM. For example: 

Shutdown Byte 

00H-03H 

04H 

05H 

09H 

OAH 

OBH-FFH 

Meaning 

Execute diagnostic tests. 

CPU is retuning from CPU with operating system load 
request (lNT 19H). 

Initialize the interrupt controller and begin execution at 
the specified address. 
The specified address is contained in two words, 
0040:0067H for the instruction pointer and 0040:0069H 
for the code segment. These are industry-standard reserved 
locations. 

CPU is returning from· a block move shutdown (used only 
by ROM BIOS INT 15H). 

Begin execution at the specified address. The specified ad
dress is contained in two words, 0040:0067H for the 
instruction pointer and 0040:0069H for the code segment. 
These are industry-standard reserved locations. 

The interrupt controller is not initialized. 

Execute diagnostic tests. 

Examples of subprograms that can cause a hard reset are: 

• Memory sizing routine 
• Memory initialization routine 
• Reset processor test 
• Testing memory with physical addresses above 1 Mbyte 
• MDrive' utility 
• Move block ROM BIOS call 
• Third-party software 

System Startup 14 - 13 



Hardware Jumper Configuration 
The processor board has three jumpers to enable testing in one of three modes: 

• Test hardware including diskette drive (factory configuration) 
• Test hardware with no diskette drive 
• Manufacturing mode (no diskette drive or keyboard) 

Table 14-2 shows the jumper usage. Figure 14-6 shows the factory 
configuration of the jumpers on the processor board. This configuration tests 
the system with a diskette drive, a video monitor, and a keyboard. 

Table 14-2 VAXmate Processor Board Jumpers 

SystemlMode W1 W2 W3 

Factory configuration IN OUT IN 

System without diskette drive IN OUT OUT 

Manufacturing mode IN IN IN 

I 
DO DO DO 
c=Jo 

LJ·1319 

Figure 14-6 V AXmate Processor Board Jumper Configuration 

14- 14 System Startup 



Chapter 15 
ROM BIOS 

This chapter describes the interrupt services provided by the ROM BIOS. 
Table 15-1 lists. by hexadecimal value, all ROM BIOS interrupts. Function ar
guments, register use, and return values are described for each interrupt. Some 
functions use the CPU CARRY flag or the CPU ZERO flag as return values. 
Throughout this chapter, CF indicates the carry flag, and ZF indicates the zero 
flag. 

Table 15-1 ROM BIOS Interrupt Vectors 

INT Usage Description Industry-
Standard 

02H Hardware Nonmaskable interrupt Yes 

05H Software Print screen function Yes 

08H Hardware Timer interrupt service Yes 

09H Hardware Keyboard interrupt service Yes 

OBH Hardware Serial port #2 interrupt service (modem option) Yes 

OCH Hardware Serial port #1 interrupt service (asynchronous) Yes 

OEH Hardware Diskette interrupt service Yes 

10H Software Video 1/0 Yes 

llH Software Return configuration Yes 

12H Software Return memory size Yes 

13H Software Diskette and Hard Disk 110 Yes 

Chapter 15 - ROM BIOS 15 - 1 



Table 15-1 ROM BIOS Interrupt Vectors kont.) 

INT Usage Description Industry-
Standard 

I4H Software Asynchronous Communications 110 Yes 

I5H Software Cassette 110 (Multitasking hooks) Yes 

I6H Software Keyboard I/O Yes 

I7H Software Printer output Yes 

I8H Software Invoke network boot/Maintenance Operations No 
Protocol (MOP) 

I9H Software Bootstrap Yes 

IAH Software Time of day Yes 

IBH Software Keyboard BREAK Yes 

ICH Software Timer tick vector Yes 

IDH Pointer Video parameter table Yes 

IEH Pointer Diskette parameter table Yes 

IFH Pointer Graphic mode character table (character codes Yes 
8OH-FFH) 

40H Software Interrupt I3H redirect when hard disk in use Yes 

4IH Pointer Parameter table for hard disk 0 Yes 

46H Pointer Parameter table for hard disk 1 Yes 

4AH Software Real-time clock alarm Yes 

70H Hardware Real-time clock interrupt (IRQ8) Yes 

71H Hardware Redirect to interrupt OAH - Old IRQ2 (IRQ9) Yes 

72H Hardware Ethernet controller (lRQI0) No 

73H Hardware Serial printer port (IRQll) No 

74H Hardware Mouse port (IRQI2) No 

75H Hardware 80287 error (lRQI3) Yes 

76H Hardware Hard disk controller (lRQI4) Yes 

77H Hardware Available (lRQI5) Yes 

15 - 2 Chapter 15 - ROM BIOS 



Interrupt 02H: Nonmaskable Interrupt 
Hardware Interrupt - Industry-Standard 

Interrupt 02H handles the nonmaskable interrupt (NMI). An NMI is generated 
for either of two catastrophic events: 

• Memory parity errors 
• Input/output UfO) bus parity errors 

Interrupt 02H has no arguments, preserves all registers, and returns no values. 

To process these inputs to the NMI, the following conditions must exist: 

• The nonmaskable interrupt is so named because the 80286 CPU has no 
provisions for disabling the NMI. The VAXmate workstation provides for 
disconnecting the inputs to the NMI input line using the NMI mask reg
ister. The NMI mask register, a write only register, is accessed by writing 
bit 7 at 110 address 0070H. When bit 7 is 0, NMI inputs are enabled. 
This is the default condition after system startup. The I/O address 0070H 
is also used to access the real-time clock. For information about the 
real-time clock, see Chapter 5. 

• Memory parity checking must be enabled. It is controlled by bit 2 at 110 
address 006IH. When bit 2 is 0, memory parity checking is enabled. This 
is the default condition after system startup. 

Memory errors are confirmed by reading bit 7 of 110 address 0062H. 
When bit 7 is set (1), a memory error has occurred. To clear the error 
indication (bit 7), disable and reenable memory parity checking. 

• I/O bus checking must be enabled. It is controlled by bit 3 at 110 address 
006IH. When bit 3 is 0, 110 bus checking is enabled. This is the default 
condition after system startup. 

110 bus errors are confirmed by reading bit 6 of I/O address 0062H. 
When bit 6 is set (1), an 110 bus error has occurred. To clear the error 
indication (bit 6), disable and reenable 110 bus checking. 

Chapter 15 . ROM BIOS Interrupt 02H 15 - 3 



Interrupt 05H: Print Screen 
Software Interrupt· Industry·Standard 

Interrupt 05H reproduces the ASCII characters, displayed on a video monitor, 
by printing them on the LPTl printer. Either program execution (lNT 05H) or 
keyboard interaction (pressing the Shift and Prt Sc keys) activates the printer. 

Interrupt 05H has no arguments, preserves all registers, and returns no values. 

In text mode jsee Interrupt lOH), the character codes are sent to the printer. 
In graphic mode (see Interrupt lOH), interrupt 05H interprets the pixel pattern 
at each character location in the video display memory. If the interpretation 
produces a valid character code, it is sent to the printer. 

The ROM BIOS does not support interpretation of the pixel pattern in graphic 
mode D2H (see Interrupt lOH). 

NOTE 
The user can execute the MS·DOS external command 
GRAPHICS. This terminate-and-stay-resident program takes 
over interrupt 05H. In graphic mode (including mode D2H), it 
reproduces pixel graphics at the printer. In text mode, it calls 
the ROM BIOS. 

If the printer is not using the same character set as the display, 
the printer incorrectly reproduces the screen. 

The output to LPTl can be redirected to other printers, includ
ing a network printer. 

15 - 4 Chapter 15 . ROM BIOS Interrupt 05H 



Interrupt 08H: Clock Tick 
Hardware Interrupt - Industry-Standard with DIGITAL Extensions 

Interrupt 08H provides the ROM BIOS with hardware-interrupt services for 
the 8254-2 CLOCKI output. CLOCKI interrupts 18.206482 times per second, 
which is 1573040 times in a 24 hour period. At each CLOCKI output, inter
rupt 08H maintains several internal counters. and then provides an application 
timing service by executing an INT lCH instruction. Interrupt 08H has no ar
guments, preserves all registers, and returns no values. 

Do not take over interrupt 08H to acquire clock services. Using this interrupt 
requires knowledge of the V AXmate workstation hardware, the ROM BIOS, 
and the operating system. If an application requires clock services, use the in
terrupt vector at lCH (see Interrupt lCH). Review functions 35H and 25H of 
MS-DOS interrupt 21H for the proper method to get and set interrupt vectors. 

Interrupt 09H: Keyboard 
Hardware Interrupt - Industry-Standard with DIGITAL Extensions 

Interrupt 09H provides the ROM BIOS with hardware-interrupt services for 
the keyboard-interface controller. This interrupt service monitors the state of 
the keyboard-interface controller, reads scan codes from the keyboard-interface 
controller, and maintains the state of the keyboard LEOs. After reading a scan 
code, the interrupt service may translate a scan code or a combination of scan 
codes. Also. the interrupt service reacts to certain scan code combinations· such 
as Ctrl/AltIDel. 

Interrupt 09H has no arguments, preserves all registers, and returns no values. 

Using this interrupt requires knowledge of the VAXmate hardware. the ROM 
BIOS, and the operating system. The keyboard-interface controller is described 
in Chapter 8. For information about the ROM BIOS keyboard input service, 
see Interrupt 16H. 

Chapter 15 - ROM BIOS Interrupts 08H and 09H 15 - 5 



Interrupt OBH: COM2 / Modem 
Hardware Interrupt - Industry-Standard with DIGITAL Extensions 

Interrupt OBH provides the ROM BIOS with hardware-interrupt services for 
the optional integral modem or any asynchronous serial communications option 
that is configured as COM2. This interrupt service monitors the state of the 
serial communications protocol and line status. It also transmits and receives 
characters as required. 

Interrupt OBH has no arguments, preserves all registers, and returns no 
values. 

Using this interrupt requires knowledge of the VAXmate hardware, the ROM 
BIOS, and the operating system. For information about the 8250A serial com
munications device, see Chapter 9. For more information about the ROM BIOS 
asynchronous communications service, see Interrupt 14H. 

The integral modem is an optional device for the V AXmate workstation. For 
information about the integral modem, see the Modem User's Guide. 

Interrupt OCH: COM! / Serial 
Hardware Interrupt - Industry-Standard with DIGITAL Extensions 

Interrupt OCH provides the ROM BIOS with hardware-interrupt services for 
COM1 asynchronous serial communications port. This interrupt service moni
tors the state of the serial communications protocol and the line status. It also 
transmits and receives characters as required. 

Interrupt OCH has no arguments, preserves all registers, and returns no 
values. 

Using this interrupt requires knowledge of the VAXmate hardware, the ROM 
BIOS, and the operating system. For information about the 8250A serial com
munications device, see Chapter 9. For information about the ROM BIOS 
asynchronous communications service, see Interrupt 14H. 

15 - 6 Chapter 15 - ROM BIOS Interrupt OBH and OCH 



Interrupt OEH: Floppy Disk 
Hardware Interrupt - Industry-Standard 

Interrupt OEH provides the ROM BIOS with hardware-interrupt services for 
the diskette drive controller. This interrupt service provides a operation com
plete indication from the diskette drive controller. 

Interrupt OEH has no arguments, preserves all registers, and returns no 
values. 

Using this interrupt requires knowledge of the VAXmate hardware, the ROM 
BIOS, and the operating system. For information about the diskette drive con
troller, see Chapter 11. For more information about the ROM BIOS diskette 
110 service, see Interrupts 13H, 40H, and lEH. 

Chapter 15 - ROM BIOS Interrupt OEH 15 - 7 



Interrupt lOH: Video Input/Output 
Software Interrupt - Industry-Standard with DIGITAL Extensions 

Interrupt 10H provides access to several video management and display func
tions. These functions support the V AXmate graphic video system, industry
standard color graphic, and monochrome adapters. 

NOTE 
Although the VAXmate workstation supports color graphics, it 
comes with a monochrome graphics monitor. Colors are 
displayed as shades of gray or intensity levels. 

Use of an industry-standard color graphic adapter or a mono
chrome adapter requires an external monitor. 

When using interrupt 10H functions, the following rules apply: 

• In general, there are no validity tests performed on interrupt 10H argu
ments. Invalid functions or function arguments can destroy data or cause 
unpredictable results. The validity of arguments depends on the video 
mode in effect at the time. 

• The V AXmate graphic video system has a feature that reduces image 
burning on the video monitor. When there has been no keyboard input 
and no video output for 30 minutes, the video output is disabled. 
Execution of any interrupt 10H function or pressing any key on the key
board enables video output and initializes the screen-blanking counter to 
30 minutes. Also, reading or writing the video RAM enables the video 
output Ibut not the screen-blanking counter). 

• All graphic text operations are based on an 8 x 8 character cell size. 

• The video hardware can operate in a graphic mode of 800 x 252 x 4 
colors, which emulates DIGITAL terminals. This video mode ID2H), has 
the following limited ROM BIOS support: 

Function OOH: Set the video mode 
Function OFH: Return the video state 
Function D1H: Font RAM and color mapping support IColor mapping 
only) 

These are the only functions supported for video mode D2H. The display 
of graphics or graphic text must be accomplished directly by the applica
tion. For detailed information on direct programming of the V AXmate 
graphic video system, see Chapter 7. 

The value in the AH register specifies the desired function. Most functions re
quire additional information in other registers. The function-specific register 
usage is defined within the description of each function. Table 15-2 lists the 
available functions. 

15 - 8 Chapter 15 - ROM BIOS Interrupt 10H 



Table 15-2 Interrupt 10H: Video 1/0 Functions 

Function Description DIGITAL 
Extended 

AH = OOH Set video mode Yes 

AH = OlH Set cursor type No 

AH = 02H Set cursor position No 

AH = 03H Read cursor position No 

AH = 04H Read light-pen position No 

AH = 05H Select display page No 

AH = 06H Scroll active page up No 

AH = 07H Scroll active page down No 

AH = 08H Read character and attribute at current cursor No 
position 

AH = 09H Write character and attribute at current cursor No 
position 

AH = OAH Write character at current cursor position No 

AH = OBH Set color palette No 

AH = OCH Write pixel No 

AH = ODH Read pixel No 

AH = OEH TTY write character No 

AH = OFH Read current video state Yes 

AB = lOB Reserved No 

AH = llH Reserved No 

AH = l2H Reserved No 

AH = l3H TTY write string No 

AH = DOH Enable/disable 256 character graphic fonts Yes 

AH = DlH Font RAM and color map support Yes 

Chapter 15 - ROM BIOS Interrupt 10H 15 - 9 



Function OOH: Set Video Mode 
Industry-Standard with DIGITAL Extensions 

Parameters 

AH = OOH 
AL = One of the AL values listed in Table 15-3 

Returns 

Nothing 

Table 15-3 list the video modes supported by the ROM BIOS. 

Table 15-3 Video Modes 

AL Description 

OOH 40 X 25 monochrome text * 
OlH 40 X 25 color text * 
02H 80 X 25 monochrome text * 
03H 80 X 25 color text * 
04H 320 X 200 X 4 color graphic 
05H 320 X 200 monochrome graphic 
06H 640 X 200 monochrome graphic 
07H 80 X 25 monochrome (requires monochrome adapter) 
DOH 640 X 400 X 2 color DIGITAL extended graphics 
DIH 640 X 400 X 4 color DIGITAL extended graphics 
D2H 800 X 252 X 4 color DIGITAL extended graphics 

* In modes 0 and 2, monochrome means lack of a color burst signal at the 
composite video connector of an industry-standard color graphics adapter. 
This is the opposite of modes 1 and 3, which do produce a color burst 
signal at the composite video connector of an industry-standard color 
graphics adapter. 

For the V AXmate workstation, there is no difference between modes 0 
and 1 or between modes 2 and 3. 

15 - 10 Chapter 15 - ROM BIOS Interrupt 10H 



This function selects the video mode. Selecting a video mode configures the 
video controller and clears the display. 

Video mode 07H is only valid when an industry-standard monochrome adapter 
is installed in an expansion slot. An industry-standard monochrome or color 
graphics adapter installed in an expansion slot is recognized by the ROM BIOS 
during the power-up sequence. On finding an industry-standard monochrome or 
color graphic adapter, the ROM BIOS disables the V AXmate graphic video 
system with the following consequences: 

• If an industry-standard monochrome adapter is installed, video mode 07H 
becomes the only valid video mode. Attempts to use any other mode are 
forced to video mode 07H. 

• If an industry-standard color graphic adapter is installed, video modes 
07H, DOH, DIH, and D2H are not valid modes. 

Changing between an industry-standard mode and a DIGITAL extended mode 
resets the color map to values appropriate for the mode. See function DIH. 
Changing from one industry-standard mode to another industry-standard mode 
does not affect the color map. Also, changing from one DIGITAL extended 
mode to another DIGITAL extended mode does not affect the color map. 

For detailed information on direct programming of the V AXmate graphic video 
system, see Chapter 7. 

Chapter 15 - ROM BIOS Interrupt 10H 15 - 11 



Function OlH: Set Cursor Type 
Industry-Standard 

Parameters 

AH = 01H 
CH = The cursor start scan line 
CL = The cursor end scan line 

Returns 

Nothing 

Table 15-4 lists the allowed values for each of the ROM BIOS supported video 
modes. 

Table 15-4 Mode-Dependent Values for Set Cursor Type 

Modes Reg Range Comments 

OOH, 01H, 02H. 03H Text mode 
CH 00H-07H Cursor start scan line 
CL OOH-07H Cursor end scan line 

07H Monochrome text 
CH OOH-ODH Cursor start scan line 
CL OOH-ODH Cursor end scan line 

05H, 06H, DOH, DIH, No cursor in graphic modes 
D2H 

CH Ignored 
CL Ignored 

This function selects, within the character cell, the size and placement of the 
cursor. When this function executes, it checks the current video mode. If the 
current video mode is one of the graphic modes, the initialization sequence is 
ignored. 

The V AXmate graphic video system character cell height is 16 scan lines, but 
the allowable arguments are limited to the range 0-7. To maintain compatibil
ity. the start value is multiplied by two, and the end value is multiplied by two 
and incremented. 

A start or end value greater than 7 (13 for the monochrome adapter) disables 
the cursor. Also, an end value that is less than the start value disables the 
cursor. That is, the cursor becomes invisible. Although the cursor is invisible. 
subsequent commands that change the cursor position continue to be effective. 

15 - 12 Chapter 15 - ROM BIOS Interrupt 10H 



Function 02H: Set Cursor Position 
Industry-Standard 

Parameters 

AH = 02H 
o H = The row position 
DL = The column position 
BH = The page number 

Returns 

Nothing 

This function sets the logical cursor position for any display page. Because the 
ROM BIOS maintains a logical cursor position for each display page. it is 
possible to change the cursor position for a display page that is not active. 
When the display page becomes active. the cursor is moved to the new posi
tion. If the indicated display page is the active page. the cursor is moved to the 
new position. 

The unit of measurement is one character cell. 

Graphic modes have the following limitations: 

• The display page must be page zero. 
• No cursor is displayed, but the cursor position is maintained. 
• This function is not supported for graphic mode D2H. 

Chapter 15 - ROM BIOS Interrupt 10H 15 - 13 



Function 03H: Read Cursor Position 
Industry-Standard 

Parameters 

AH = 03H 
BH = The page number 

Returns 

CH = The cursor start scan line 
CL = The cursor end scan line 
DH = The row position 
DL = The column position 

This function returns the cursor position of the indicated display page and the 
current cursor type. It does not support video mode D2H. 

15 - 14 Chapter 15 - ROM BIOS Interrupt 10H 



Function 04H: Read Light-Pen Position 
Industry-Standard 

Parameters 

AH = 04H 

Returns 

AH = OOH 

AH = 01H 

No input or the switch is not closed 

The light pen read 

BX = The pixel column 10-319 or 0-6391 
CH = The pixel scan line (0-1991 
DH = The row character position 
DL = The column character position 

This function returns the position of the light pen. 

To read a light-pen position successfully, the following conditions must exist: 

• A video adapter that supports light pens must be installed. 
• The read switch on the light pen must be closed. 
• The light pen must have detected an input signal. 

NOTE 
The V AXmate graphic video system does not support light pens. 
When the VAXmate graphic video system is in use, the re
turned AH register contains zero. 

Chapter 15 - ROM BIOS Interrupt 10H 15 - 15 



Function 05H: Set Page Function 
Industry-Standard 

Parameters 

AH = 05H 
AL = The page number 

Returns 

Nothing 

This function selects the active display page. The page is displayed and the 
cursor is positioned according to the cursor position for that page. 

Valid page numbers depend on the video mode in effect. 

Mode 

OOH 
01H 
02H 
03H 
04H 
05H 
06H 
07H 
DOH 
D1H 
D2H 

15- 16 

Range 

OOH through 07H 
OOH through 07H 
OOH through 03H 
OOH through 03H 
Function call ignored 
Function call ignored 
Function call ignored 
Function call ignored 
Function call ignored 
Function call ignored 
Function call ignored 

Chapter 15 - ROM BIOS Interrupt 10H 



Function 06H: Scroll Active Page Up 
Function 07H: Scroll Active Page Down 

Parameters 

AH = 06H 

AH = 07H 

Returns 

Nothing 

Scroll Up 

AL = The number of rows (0 means blank the window I 
BH = The attribute byte 
CH = The row of upper-left corner of scroll window 
CL = The column of upper-left corner of scroll window 
D H = The row of lower-right corner of scroll window 
DL = The column of lower-right corner of scroll window 
Scroll Down 

AL = The number of rows (0 means blank the windowl 
BH = The attribute byte 
CH = The row of upper-left corner of scroll window 
CL = The column of upper-left corner of scroll window 
DH = The row of lower-right corner of scroll window 
DL = The column of lower-right corner of scroll window 

These functions scroll data within a window on the screen. They work in text 
and graphic modes, but do not support video mode D2H. 

For these functions, the AL, CH, CL, DH, and DL register values always refer 
to character positions. In graphic modes, the graphic data within a character 
cell area is treated as a single unit. The AL, CH, and DH registers contain 
character row values in the range 0 through 24. The CL and DL registers con
tain character column values in the range 0 through 39 or 0 through 79. 

The scroll area is a window or rectangular area defined by two diagonal points. 
The two points are defined by the contents of the CX and DX registers. The 
CX register (CH and CL) defines the upper-left corner of the window. The DX 
register (DH and DL) defines the lower-right corner of the window. 

The scroll up operation moves the rows one at a time so that row CH + 1 
moves to row CH, row CH + 2 moves to row CH + 1, and so on. The scroll 
down operation moves the rows one at a time so that row DH - 1 moves to row 
DH, row DH - 2 moves to row DH - 1, and so on. When the last row is va
cated, it is blanked. This process repeats until the specified number of rows are 
scrolled. If the specified number of rows is greater than or equal to the vertical 
size of the window, the entire window is cleared. Also, if the AL register equals 
0, the entire window is cleared. 

Chapter 15 - ROM BIOS Interrupt 10H 15 - 17 



The contents of the CL and DL registers determine the horizontal position and 
width of the scrolled area. For example, if the CL register contains 20 and the 
DL register contains 40, only those columns and the data between them is 
scrolled. 

When using this function, the key difference between text and graphic modes 
is the way the attribute byte is applied. In text modes, a space character is 
written to the data byte and the contents of the BH register are written to the 
attribute byte. In graphic modes, the contents of the BH register are written 
as graphic data one byte at a time. Thus, if the current graphic mode requires 
two bits of information for each pixel, the BH register must contain data for 
four pixels. 

Only the active display page can be scrolled. Data scrolled out of the window is 
lost. It does not go into the adjacent page. 

The cursor position remains the same after scrolling as it was before scrolling. 

This function is not supported for video mode D2H. 

15 - 18 Chapter 15 - ROM BIOS Interrupt 10H 



Function 08H: Read Character and Attribute at Cursor 
Position 
Industry-Standard 

Parameters 

AH = 08H 
BH = The page number (text modes onlyl 

Returns 

AL = The character 
AH = The attribute (text modes onlyl 

In text modes, this function returns the character and attribute at the cursor 
location of the specified display page. A page other than the active display page 
can be specified. The cursor location, character, and attribute are extracted 
from the indicated display page data. 

In graphic modes, there is only one page, so the page selection is ignored. 
Because there is no attribute byte, only the character value is returned. This is 
accomplished similarly to the interrupt 05H interpretation of graphic text. The 
ROM BIOS attempts to interpret the pixel pattern in the character cell at the 
current cursor location. The pixel pattern is matched with the bit patterns of 
the characters used for graphic text. Interrupt 1FH (OOOO:007CHl contains a 
pointer to the graphic text character set used in the comparison. If no match is 
found, the function returns a character value of O. 

Normally. interrupt IFH points to a table containing 128 entries in the range 
80H-FFH. However, interrupt lOH function DOH provides an extended mode 
where interrupt 1FH points to a table containing 256 entries in the range OOH
FFH. 

This function is not supported for video mode D2H. 

Chapter 15 - ROM BIOS Interrupt 10H 15 - 19 



Function 09H: Write Character and Attribute at Cursor 
Position 
Industry-Standard 

Parameters 

AH = 09H 
AL = The character 
BH = The page number (text modes only) 
BL = The attribute byte (text modes) or color (graphic modes) 

If bit 7 is set (1), exclusive OR the current contents with the contents 
of BL and store the result. Normally, the contents of BL are stored. 

CX = Number of times to write character and attribute 

Returns 

Nothing 

This function writes a character and attribute at the current cursor position. 
The current cursor position is extracted from the page data of the page speci
fied in register BH. The position of the cursor is not updated. That is, the 
cursor remains as it was when the function was called. Register CX specifies 
the number of times to repeat the operation. Each repetition advances the posi· 
tion one character location. A line wrap occurs at the end of a line. Counts thai 
exceed the page size continue into the adjacent display page (if one exists). 

In graphic modes, the character code in AL is an index into a table of graphic 
characters. If 256 character mode is not enabled, and the character code is less 
than 80H, the information is retrieved from the ROM. If 256 character mode i: 
not enabled, and the character code is 80H or greater, the information is 
retrieved from the table pointed to by interrupt vector 1FH. If 256 character 
mode is enabled, interrupt vector 1FH points to the beginning of the entire 25j 
character table. For each pixel that is on in the pattern, the color selection in 
register BL is shifted into position and written to display memory. The numbel 
of bits used from register BL is mode dependent. For example, a 4-color mode 
uses the two least significant bits, and a 2-color mode uses the least significanl 
bit. If bit 7 of the BL register is set to 1, each display memory field is exclu
sive aRed with the color field in register BL, and the result is written to 
display memory. 

This function is not supported for video mode D2H. 

15 - 20 Chapter 15 - ROM BIOS Interrupt lOU 



Function OAR: Write Character at Cursor Position 
Industry-Standard 

Parameters 

AH 
AL 
BH 
BL 

= 
= 
= 
= 

OAH 
The character 
The page number (text modes only) 
The color (graphic modes only) 

If bit 7 is set (1), exclusive OR the current contents with the contents 
of BL and store the result. Normally the contents of BL are stored. 

CX = Number of times to write character 

Returns 

Nothing 

This function writes a character at the current cursor position. It is similar to 
function 09H except that in text modes, a new attribute is not written. The 
current cursor position is extracted from the page data of the page as specified 
in register BH. The position of the cursor is not updated. That is, the cursor 
remains as it was when the function was called. Register CX specifies the 
number of times to repeat the operation. Each repetition advances the position 
one character location. A line wrap occurs at the end of a line. Counts that 
exceed the page size continue into the adjacent display page (if one exists). 

In graphic modes, the character code in AL is an index into a table of graphic 
characters. If 256 character mode is not enabled, and the character code is less 
than SOH, the information is retrieved from the ROM. If 256 character mode is 
not enabled, and the character code is SOH or greater, the information is 
retrieved from the table pointed to by interrupt vector 1FH. If 256 character 
mode is enabled. interrupt vector 1FH points to the beginning of the entire 256 
character table. For each pixel that is on in the pattern, the color selection in 
register BL is shifted into position and written to display memory. The number 
of bits used from register BL is mode dependent. For example, a 4-color mode 
uses the two least significant bits. If bit 7 of the BL register is set to 1, the 
current bits of the specified pixel field are exclusive ORed with the appropriate 
BL bits, and the results are written to the specified pixel field. Otherwise, the 
appropriate BL bits replace the current bits of the specified pixel field. 

This function is not supported for video mode D2H. 

Chapter 15 - ROM BIOS Interrupt 10H 15 - 21 



Function OBH: Set Color Palette 
Industry-Standard 

Parameters 

AH = OBH 
BH = OOH BL bits 4-0 control the background color and the palette in

tensity bit 
BH = OlH BL bit 0 selects the color palette 
BL = The background color or palette, depending on contents of BH 

Returns 

Nothing 

This function is not supported for video mode D2H. 

If register BH equals 0, this function controls the palette intensity bit and, 
depending· on the current video mode, sets the background or border color. If 
current video mode is OlH or 03H, it sets the border color Ithe VAXmate 
border color is always black.) Otherwise, it sets the background color. 
In either case, bits 4-0 of the BL register are interpreted as follows: 

BL Bit 

4 
3 
2 
1 
o 

NOTE 

Description 

Intensity control of the palette colors 
m Intensity control of the color 
IR) Red contribution to the color 
(G) Green contribution to the color 
(B) Blue contribution to the color 

The V AXmate graphic video system does not control the border 
color. The border color is always black. 

If register BH equals one, this function selects the color palette for graphic 
video mode 04 H. 

Pixel Field Value 

OlH 
02H 
03H 

Palette 0 Selected 

Green 
Red 
Yellow 

15 - 22 Chapter 15 - ROM BIOS Interrupt 10H 

Palette 1 Selected 

Cyan 
Magenta 
White 



Function OCH: Write Pixel 
Industry-Standard 

Parameters 

AH = oeH 
AL = The color value 

If bit 7 is set (11. exclusive OR the current contents with the contents 
of AL and store the result_ Normally the contents of AL are stored. 

ex = The pixel column number 
ox = The pixel row number 

Returns 

Nothing 

This function sets a pixel field, specified by registers ex and OX, to the color 
specified in register AL. This function is ignored in text modes. 

The bits used from register AL depend on the current graphic mode: 

Graphic mode Bits used Number of colors 

04H 7 and 1-0 4 
05H 7 and 0 Monochrome 
06H 7 and 0 Monochrome 
DOH 7 and 0 Monochrome 
01H 7 and 1-0 4 

If bit 7 of the AL register is set to 1. the current bits of the specified pixel 
field are exclusive ORed with the appropriate AL bits, and the results are writ
ten to the specified pixel field. Otherwise, the appropriate AL bits replace the 
current bits of the specified pixel field. 

This function is not supported for video mode 02H. 

Chapter 15 - ROM BIOS Interrupt 10H 15 - 23 



Function ODH: Read Pixel 
Industry-Standard 

Parameters 

AH = OOH 
ex = The pixel column number 
DX = The pixel row number 

Returns 

AL = The color value of the pixel 

This function returns the color of the pixel field specified by registers ex and 
ox. 
The valid bits returned in the AL register depend on the current graphic mode. 

Graphic mode Bits used Number of colors 

04H 1-0 4 
05H 0 Monochrome 
06H 0 Monochrome 
DOH 0 Monochrome 
01H 1-0 4 

This function is not supported for video mode 02H. 

15 - 24 Chapter 15 - ROM BIOS Interrupt 10H 



Function OEH: Write Character Using Terminal 
Emulation 
Industry-Standard 

Parameters 

AH = OEH 
AL = The character 
BL = The foreground color (graphic mode onlyl 

Returns 

Nothing 

This function is sometimes known as Write TTY. It operates in text and 
graphics modes and accesses only the active display page. 

Prior to any other operations, the character in AL is tested for one of four 
values: 

• If the character is a carriage return (ODHI, the cursor is moved to the 
start of the current line. 

• If the character is backspace (OS HI, the cursor is moved backward one 
character position. If the cursor is at the beginning of the line, the char
acter is ignored. 

• If the character is a line feed (OAHI, the cursor is moved to the same 
column position on the next line. If the cursor is on the last line, the 
screen is scrolled up one line. In this case, the cursor remains in the same 
location. 

• If the character is a bell character (07HI, a bell sound (beep I is issued 
from the speaker. 

For all other values, the character is written to the current cursor position and 
the cursor is advanced to the next position in the line. If the cursor was at the 
last position on the line, it is positioned at the first location on the next line. If 
the cursor was at the last position on the last line, the screen is scrolled up one 
line, and the cursor is positioned at the start of an empty line. 

In graphic modes, the character code in AL is an index into a table of graphic 
characters. If 256 character mode is not enabled, and the character code is less 
than SOH, the information is retrieved from the ROM. If 256 character mode is 
not enabled, and the character code is SOH or greater, the information is 
retrieved from the table pointed to by interrupt vector IFH. If 256 character 
mode is enabled, interrupt vector IFH points to the beginning of the entire 256 

Chapter 15 - ROM BIOS Interrupt 10H 15 - 25 



character table. For each pixel that is on in the pattern, the color selection in 
register BL is shifted into position and written to display memory. The number 
of bits used from register BL is mode dependent. For example, a 4-color mode 
uses the two least significant bits. If bit 7 of the BL register is set to 1, the 
current bits of the specified pixel field are exclusive ORed with the appropriate 
BL bits, and the results are written to the specified pixel field. Otherwise, the 
appropriate BL bits replace the current bits of the specified pixel field. 

This function is not supported for video mode D2H. 

15 - 26 Chapter 15 - ROM BIOS Interrupt 10H 



Function OFH: Read Current Video State 
Industry-Standard 

Parameters 

AH = OFH 

Returns 

AL = The current video mode 
AH = The number of columns 
BH = The current page 

This function returns the current state of the video system. In text and graphic 
modes, the value in the AH register is the width of the screen in character 
cells. The mode value returned in the AL register is defined as follows: 

AL Description 

OOH 40 x 25 monochrome text 
OIH 40 x 25 color text 
02H 80 x 25 monochrome text 
03H 80 x 25 color text 
04H 320 x 200 x 4 color graphic 
05H 320 x 200 monochrome graphic 
06H 640 x 200 monochrome graphic 
07H 80 x 25 monochrome (requires monochrome adapter) 
DOH 640 x 400 x 2 color DIGITAL extended graphics 
DJ H 640 x 400 x 4 color DIGITAL extended graphics 
D2H 800 x 252 x 4 color DIGITAL extended graphics 

Chapter 15 - ROM BIOS Interrupt 10H 15 - 27 



Function 13H: TTY Write String 
Industry-Standard 

Parameters 

AH = 13H 

AL = OOH 

AL = 01H 

AL = 02H 

AL = 03H 

The string pointed to by ES:BP is a set of contiguous character 
codes. The register BL contains the attribute that is applied as 
each character is written to the display page. The CX register 
specifies the number of characters to write. After the last char
acter is written, the cursor is restored to the position it had 
before this function was executed. 

This subfunction is similar to AL = 0 except that the cursor is 
positioned after the last character in the string. 

The string pointed to by ES:BP is a set of contiguous byte 
pairs. Each byte pair contains a character code and an attribute. 
The first byte of the string is the character; the second is the 
attribute. The BL register is ignored. The CX register specifies 
the number of characters to write, not the length of the string. 
After the last character is written, the cursor is restored to the 
position it had before this function was executed. 

This subfunction is similar to AL = 2 except that the cursor is 
positioned after the last character in the string. 

BH = Display the page to write 

BL = The attribute (AL = 0 or AL = 1) 

CX = The number of characters to write 

DH = The row position of the first character 

DL = The column position of the first character 

ES:BP = The pointer to the start of the string to write 

Returns 

Nothing 

This function writes a string of characters to the specified display page. It op
erates in text and graphics modes. 

15 - 28 Chapter 15 - ROM BIOS Interrupt 10H 



Prior to writing each character, it is tested for one of four values: 

NOTE 
Even though another page is designated in register BH, the fol
lowing operations occur on the current display page. 

• If the character is a carriage return (OOHl, the cursor is moved to the 
start of the current line. 

• If the character is backspace (08HI, the cursor is moved backward one 
character position. If the cursor is at the beginning of the line, the char
acter is ignored. 

• If the character is a line feed (OAHI, the cursor is moved to the same 
column position on the next line. If the cursor is on the last line, the 
screen is scrolled up one line. In this case, the cursor remains in the same 
location. 

• If the character is a bell character (07H), a bell sound (beep) is issued 
from the speaker. 

For all other values, the character is written to the current cursor position. and 
the cursor is advanced to the next position in the line. If the cursor was at the 
last position on the line. it is positioned at the first location on the next line. If 
the cursor was at the last position on the last line. the screen is scrolled up one 
line, and the cursor is positioned at the start of an empty line. 

In graphic modes. the character code in AL is an index into a table of graphic 
characters. If 256 character mode is not enabled. and the character code is less 
than 80H. the information is retrieved from the ROM. If 256 character mode is 
not enabled. and the character code is 80H or greater, the information is 
retrieved from the table pointed to by interrupt vector IFH. If 256 character 
mode is enabled. interrupt vector IFH points to the beginning of the entire 256 
character table. For each pixel that is on in the pattern, the color selection is 
shifted into position and written to display memory. The number of bits used is 
mode dependent. For example. a 4-color mode uses the two least significant 
bits. If bit 7 of the color selection is set to 1, the current bits of the specified 
pixel field are exclusive ORed with the color selection bits, and the results are 
written to the specified pixel field. Otherwise, the appropriate BL bits replace 
the current bits of the specified pixel field. 

This function is not supported for video mode 02H. 

Chapter 15 - ROM BIOS Interrupt 10H 15 - 29 



Function DOH: Enable/Disable 256 Character Graphic 
Font 
DIGITAL Extension 

Parameters 

AH = DOH 

AL = OOH 

AL = 0IH-FFH 

Returns 

Nothing 

Interrupt IFH IOOOO:007CH) points to 128 graphic mode 
characters in the range 80H through FFH. 

Interrupt IFH (0000:007CH) points to 256 graphic mode 
characters in the range OOH through FFH. 

Function DOH extends user-defined font tables. On power-up, the ROM BIOS 
accesses the ROM for character codes OOH through 7FH. The character codes 
80H through FFH are accessed through interrupt IFH (0000:007CH). 

This function is not supported for video mode 02H. 

15 - 30 Chapter 15 - ROM BIOS Interrupt 10H 



Function DIH: Font RAM and Color Map Support 
DIGITAL Extension 

This function provides access to the extended hardware capabilities of the 
VAXmate graphic video system. Using this function, the font RAM or the color 
map can be read, written, or restored to the default condition. 

Font RAM Functions 

Parameters 

AH 

AL 

ex 
DL 
ES:BX 

DH 
DH 
DH 

Returns 

Nothing 

= 
= 
= 

= 
= 
= 
= 
= 

DIH 
OOH The font RAM functions 

The number of character descriptions to transfer jOOOlH to 
0100H) 
The first character to transfer (OOH to FFH) 
The pointer to the data buffer (at least CX * 16 bytes in size) 

OOH 
01H 
02H 

Restore the defaults mS:BX is ignored) 
Copy the data at ES:BX to the font RAM 
Copy the font RAM to the buffer at ES:BX 

In text modes only, the font RAM acts as a character generator ROM. This 
subfunction can restore the font RAM to default conditions. It can also read or 
write one or more sequential character descriptions in the font RAM. 

This function is not available in graphic modes. 

Each character description contains 16 bytes of data. Each byte of data repre
sents a scan line in the character cell. The first byte of the character descrip
tion is the top scan line (scan line 0) in the character cell. Within each byte, 
the most significant bit is the leftmost pixel. The character descriptions are 
arranged in order of increasing character code value. Reading 256 character 
descriptions from the font RAM requires a 4096 byte buffer. 

Chapter 15 - ROM BIOS Interrupt 10H 15 - 31 



Color Map Functions 

Parameters 

AH = DIH 

AL = 01H The color map functions 

CX = The number of entries to transfer (OIH to 10H) 
DL = The map address of the entry to transfer (OOH to OFH) 
ES:BX = The pointer to the data buffer (at least CX words in size) 

DH = OOH Restore the defaults (ES:BX is ignored) 
DH = 01H Copy the data at ES:BX to the color map 
DH = 02H Copy the color map to the buffer at ES:BX 

Returns 

Nothing 

This subfunction can read or write one or more sequential values in the color 
map. Any of the 16 IROB inputs can be mapped to any of the 16 outputs. The 
default condition is gray-scale outputs at power-up. The color map is a synonym 
for the video look-up table (VLT). For more information on the VLT, see 
Chapter 7. 

The color map is arranged as 16 words of IROB output data. Only the least 
significant 4 bits of data are output. When the video controller accesses video 
memory, the attributes or graphic data are used as an offset into the color 
map. The contents of that location in the color map are sent to the video 
output circuit. To calculate the offset accessed by any IROB value, use the fol
lowing bit values: 

Bit value 

o 
1 
2 
3 

Attribute 

I (Intensity) 
B (Blue) 
o (Oreen) 
R IRed) 

Thus, an attribute of intensified red (lROB = COH) accesses location 09H of 
the 16 locations in the color map. 

15 - 32 Chapter 15 - ROM BIOS Interrupt 10H 



On power-up or system reset and when changing from a DIGITAL extended 
4-color video mode 101H or D2HI to an industry-standard video mode, the color 
map is initialized to the values in Table 15-5. The color map defined in Table 
15-5 supports video modes OOH, 01H, 02H, 03H, 04H, 05H, 06H and DOH. 
When changing from any of these modes to video mode DIH or D2H, the color 
map is initialized to the values defined in Table 15-6. 

Table 15-5 Default Color Map 

Offset Contents Color Intensity 
RGB I R G B I 

0 0 0 0 0 o 0 0 Black 0 
0 0 0 1 0 o 0 1 Gray 1 
0 0 1 0 0 0 1 0 Blue 2 
0 0 1 1 0 0 1 1 Light blue 3 
0 1 0 0 0 1 0 0 Green 4 
0 1 0 1 0 1 0 1 Light green 5 
0 1 1 0 0 1 1 0 Cyan 6 
0 1 1 1 1 1 1 0 White 14 
1 0 0 0 1 o 0 0 Red 8 
1 0 0 1 1 o 0 1 Light red 9 
1 0 1 0 1 0 1 0 Magenta 10 
1 0 1 1 1 0 1 1 Light magenta 11 
1 1 0 0 1 1 0 0 Brown 12 
1 1 0 1 1 1 0 1 Yellow 13 
1 1 1 0 0 1 1 1 Light cyan 7 
1 1 1 1 1 1 1 1 Intense white 15 

Chapter 15 - ROM BIOS Interrupt 10H 15 - 33 



Table 15-6 Color Map for Video Modes DIH and D2H 

Offset Contents Color Intensity 
R G B I R G B I 

0 0 0 0 o 0 0 0 Black 0 
0 0 0 1 1 000 Red 4 
0 0 1 0 o 1 o 0 Green 8 
0 0 1 1 o 1 1 1 Light cyan 7 
0 1 0 0 Not Used 
0 1 0 1 Not Used 
0 1 1 0 Not Used 
0 1 1 1 Not Used 
1 0 0 0 Not Used 
1 0 0 1 Not Used 
1 0 1 0 Not Used 
1 0 1 1 Not Used 
1 1 0 0 Not Used 
1 1 0 1 Not Used 
1 1 1 0 Not Used 
1 1 1 1 Not Used 

15 - 34 Chapter 15 - ROM BIOS Interrupt 10H 



Interrupt IlH: Read Configuration 
Software Interrupt - Industry-Standard 

Parameters 

None 

Returns 

AX = Configuration data 

15-14 This two bit field equals the number of parallel printer ports in 
the system. 

00 = Zero parallel printer ports 
01 = One parallel printer port 
10 = Two parallel printer ports 
11 = Three parallel printer ports 

13 Unused 

12 Game adapter 

o = Game adapter not installed 
1 = Game adapter installed 

11-9 This three-bit field equals the number of asynchronous serial 
ports in the system. The V AXmate workstation has an integral 
serial port (COMl) and reserves COM2 for the optional inte
gral modem. The serial printer port is not included in this 
count. The maximum number supported is four. 

000 = There are zero serial ports 
001 = There is one serial port 
010 = There are two serial ports 
011 = There are three serial ports 
100 = There are four serial ports 

8 Unused 

7 -6 This two-bit field equals the number of diskette drives in the 
system minus one. This field is only valid when bit 0 equals 1. 

00 = 1 diskette drive 
01 = 2 diskette drives 
10 = 3 diskette drives 
11 = 4 diskette drives 

Chapter 15 - ROM BIOS Interrupt llH 15 - 35 



Returns Unterrupt llH: Read Configuration - cont.t 

5-4 Initial video mode (see Interrupt 10H) 

00 = Unused 
01 = 40 X 25 {Color Graphics Adaptert 
10 = 80 X 25 {Color Graphics Adapted 
11 = 80 X 25 {Monochrome Adaptert 

3-2 Unused 

1 80287 

o = 80287 not installed 
1 = 80287 installed 

o Diskette drive 

o = No diskette drives installed {bits 7-6 are invalidt 
1 = At least 1 diskette drive installed (bits 7-6 are valid) 

This function returns the system configuration information. If the expansion 
box and battery are present and the CMOS RAM has not lost power, the 
configuration data is extracted from the CMOS RAM. Otherwise, the 
configuration data is extracted from the power-up initialization data. 

Additional configuration data is available through function DOH of interrupt 
15H. This configuration data is specific to the V AXmate workstation. 

15 - 36 Chapter 15 - ROM BIOS Interrupt llH 



Interrupt 12H: Return Memory Size 
Software Interrupt - Industry-Standard 

Parameters 

None 

Returns 

AX = Memory size measured in 1 K blocks 

This interrupt returns the memory size as the number of contiguous lK 00241 
memory blocks. Only the low address memory (OOOO:OOOOH to OOOB:FFFFHl is 
measured by this function. The VAXmate workstation always returns 640. 

Chapter 15 - ROM BIOS Interrupt 12H 15 - 37 



Interrupt 13H: Disk Input/Output (I/O) 
Software Interrupt - Industry-Standard with DIGITAL Extensions 

This interrupt provides a generalized disk I/O service for diskettes and hard 
disks. If a hard disk is not installed, interrupt 13H points to the diskette func
tions. If a hard disk is installed, interrupt 13H points to the hard disk func
tions, and interrupt 40H points to the diskette functions. 

Bit 7 of the drive number distinguishes diskette and hard disk function 
requests. If bit 7 is set (1), the request is for a hard disk function. Thus, hard 
disks are assigned drive numbers equal to or greater than SOH. When a hard 
disk is installed, interrupt 13H compares the drive number to SOH. Requests 
with drive numbers less than 80H are revectored to interrupt 40H. 

This revectoring information is provided only for clarity. Always use interrupt 
13H for both diskette and hard disk functions. 

NOTE 
Most operating systems intercept and sometimes modify inter
rupt 13H requests. When developing or testing software, this 
fact is important. For example, several interrupt 13H functions 
warn against exceeding a physical page boundary during disk 
I/O. By translating a single I/O request into many small sized 
110 requests, some operating systems eliminate page boundary 
problems. 

15 - 38 Chapter 15 - ROM BIOS Interrupt 138 



The following is a list of the interrupt 13H hard disk functions: 

Function 
Number 

OOH 
01H 
02H 
03H 
04H 
05H 
08H 
09H 
OAH 
OBH 
OCH 
ODH 
10H 
llH 
14H 
15H 
DOH 

Description 

Initialize Entire Disk Subsystem 
Return Status Code Of Last 1/0 Request 
Read One Or More Disk Sectors 
Write One Or More Disk Sectors 
Verify One Or More Disk Sectors 
Format A Track 
Return Current Drive Parameters 
Initialize Drive Characteristics 
Read Long 
Write Long 
Seek To Specific Cylinder 
Hard Disk Reset 
Test Drive Ready 
Recalibrate Drive 
Execute Controller Internal Diagnostics 
Return Drive Type 
Read Long 256 Byte Sector 

DIGITAL 
Extended 

No 
No 
No 
No 
No 
No 
No 
No 
No 
No 
No 
No 
No 
No 
No 
No 
Yes 

The following is a list of the interrupt 13H diskette functions: 

Function 
Number 

OOH 
01H 
02H 
03H 
04H 
05H 
15H 
16H 
17H 

Description 

Initialize Diskette Subsystem 
Return Status Code Of Last 110 Request 
Read One Or More Track Sectors 
Write One Or More Track Sectors 
Verify One Or More Track Sectors 
Format Track 
Return Drive Type 
Return Change Line Status 
Set Drive And Media Type For Format 

DIGITAL 
Extended 

No 
No 
No 
No 
No 
No 
No 
No 
No 

Chapter 15 - ROM BIOS Interrupt 13U 15 - 39 



Hard Disk Functions 
The value in the AH register indicates the desired hard disk function. All hard 
disk functions require a drive number in the DL register. Because hard disk 
drive numbers start at 80H, hard disk 0 is 80H, and hard disk 1 is 81H. 

Functions requiring a cylinder number expect a 10-bit value in the range of 
o to 1023. The low-order eight bits of the cylinder number are passed in the 
CH register. The two high-order bits of the cylinder number are passed in the 
two high-order bits of the CL register. At times, bits 4-0 of the the CL register 
contain a sector number. Some functions require a cylinder and sector number. 

Except for the flags register, all registers not mentioned in the function 
description are preserved. 

Hard Disk Errors 
If CF is set (1), an error occurred, and the AH register contains the error code. 
Table 15-7 lists the hard disk error codes. 

Table 15-7 Hard Disk Error Codes 

Error 
Code 

FFH 
EOH 
CCH 
BBH 
AAH 
80H 
40H 
20H 
llH 

lOH 
OBH 
OAH 
09H 
07H 
05H 
04H 
02H 
01H 

15- 40 

Description 

Sense operation failed (not implemented) 
Status error (error register = 0) 
Write fault on selected drive 
Undefined error occurred 
Drive not ready 
Hardware failed to respond 
Seek operation failed 
Disk controller failed 
ECC corrected data error 

The ECC algorithm corrected a recoverable error. The data is prob
ably valid, however the calling program must make that decision. 

ECC for data incorrect 
Bad track flag detected (not implemented) 
Bad sector flag detected 
Data extends too far (past 64K page boundary) 
Drive parameter activity failed 
Reset failed 
Sector not found 
Address mark not found 
Illegal I/O request (bad command) 

Chapter 15 - ROM BIOS Interrupt 13H 



Hard Disk Parameter Tables 
A hard disk parameter table defines the physical characteristics of a hard disk. 
The values in the table are used by the hard disk driver to initialize the hard 
disk controller. Table 15-8 describes the contents of a hard disk parameter 
table. 

Table 15-8 Hard Disk Parameter Table Description 

Offset 

OOH 
02H 
03H 
05H 
07H 
08H 

09H 
OCH 
OEH 
OFH 

Size 

1 Word 
1 Byte 
1 Word 
1 Word 
1 Byte 
1 Byte 

3 Bytes 
1 Word 
1 Byte 
1 Byte 

Description 

Maximum number of cylinders on hard disk drive 
Maximum number of heads on hard disk drive 
Not used 
Cylinder number to start using write precompensation 
Not used 
Control byte sent to controller 

If bit 7 or bit 6 is set (1), disable retries 
If bit 3 is set (11, the hard disk has more than eight heads 

Not used 
Landing zone 
Number of sectors per track 
Reserved for future use 

The hard disk parameter tables are located in DIGITAL private RAM. During 
the power-up sequence. the disk type is extracted from CMOS RAM. If the 
disk type is unknown. the table contains all zeros. If the disk type is one of the 
14 industry-standard types. the table is initialized from the hard disk data in 
the ROM BIOS. If the disk type is the DIGITAL extended type OFH, the 
ROM BIOS expects the boot block to contain the parameters. The ROM BIOS 
initializes the table with data extracted from the boot block. (As part of its 
initialization process, the FDISK utility writes the parameters in the boot 
block.) 

The interrupt vectors for interrupt 41H and 46H point to the hard disk para
meter tables for hard disk 0 and hard disk 1. respectively. If hard disk 1 does 
not exist, the interrupt vector for interrupt 46H is reserved and undefined. 

Chapter 15 - ROM BIOS Interrupt 13H 15 - 41 



Function OOH: Initialize Entire Disk Subsystem 
Industry-Standard 

Parameters 

AH = OOH 
DL = The drive number (80H or 81Hl 

Returns 

CF = 0 
CF = 1 

Indicates a successful operation 
Indicates an error condition 
AH = The error code 

This function resets the diskette and hard disk controllers to their initial 
power-up state. The hard disk controller is initialized to the values in the hard 
disk parameter tables. Because all drives are marked as reset, the next drive 
specific I/O request recalibrates that drive. 

To initialize only the hard disk controller, use hard disk function ODH. To in
itialize only the diskette controller, use diskette function OOH. 

15 - 42 Chapter 15 - ROM BIOS Interrupt 13H 



Function OlH: Return Status Code of Last 1/0 Request 
Industry-Standard 

Parameters 

AH = 01H 
DL = The drive number (80H or 81H) 

Returns 

AH = 0 
AL = The error code of the previous operation 

This function returns, in the AL register, the error code of the last function 
call. If AL returns a 0, no previous error condition existed. Because calls to 
this function do not generate error conditions, successive calls return O. 

The AH register always returns O. 

For the hard disk error codes, see Table 15-7. 

Chapter 15 - ROM BIOS Interrupt 13H 15 - 43 



Function 02H: Read One or More Disk Sectors 
Industry-Standard 

Parameters 

AH = 02H 
AL = The number of sectors to read 
CH = The cylinder number (lower 8 bits) 
CL = The starting sector number (and bits 9-8 of cylinder) 
DH = The head number 
DL = The drive number (80H or 81H) 
ES:BX = The buffer address 

Returns 

CF = 0 Indicates a successful operation 
CF = 1 Indicates an error condition 

AH = The error code 

This function reads the indicated number of sectors and stores the data start
ing at the buffer address in ES:BX. Attempts to store data past a physical 
page boundary return an error. This can occur when the data size exceeds 
10000H or when the BX offset plus the data size exceed 10000H. 

To calculate the required buffer size, multiply the contents of the AL register 
by 512. 

15 - 44 Chapter 15 - ROM BIOS Interrupt 13H 



Function 03H: Write One Or More Disk Sectors 
Industry-Standard 

Parameters 

AH = 03H 
AL = The number of sectors to write 
CH = The cylinder number (lower 8 bits) 
CL = The starting sector number (and bits 9-8 of cylinder) 
DH = The head number 
DL = The drive number (80H or 8IH) 
ES:BX = The buffer address 

Returns 

CF = 0 Indicates a successful operation 
CF = 1 Indicates an error condition 

AH = The error code 

This function writes the indicated number of sectors of data starting at the 
buffer address in ES:BX. Attempts to read data past a physical page boundary 
return an error. This can occur when the data size exceeds IOOOOH or when 
the BX offset plus the data size exceed 10000H. 

To calculate the number of sectors in a buffer. divide the buffer size by 512. If 
the division produces a remainder, increment the sector count. 

Chapter 15 - ROM BIOS Interrupt 13H 15 - 45 



Function 04H: Verify One or More Disk Sectors 
Industry-Standard 

Parameters 

AH = 04H 
AL = The number of sectors to verify 
CH = The cylinder number (lower 8 bits) 
CL = The starting sector number (and bits 9-8 of cylinder) 
DH = The head number 
DL = The drive number (80H or 81H) 

Returns 

CF = 0 
CF = 1 

Indicates a successful operation 
Indicates an error condition 
AH = The error code 

This function verifies the indicated number of sectors. The data is not com
pared against data in memory. It is only verified for internal consistency. Thus, 
the verify command only checks for Error Correction Code (ECC) errors. 

15 - 46 Chapter 15 - ROM BIOS Interrupt 13H 



Function 05H: Format a Track 
Industry-Standard 

Parameters 

AH = 05H 
AL = The number of sectors per track 
CH = The cylinder number Hower 8 bits) 
CL = Bits 9-8 of cylinder number 
DH = The head number 
DL = The drive number (80H or 81H) 
ES:BX = The sector interleave table address 

Returns 

CF = 0 
CF = 1 

Indicates a successful operation 
Indicates an error condition 
AH = The error code 

This function formats the indicated track. It formats only the sectors described 
in the sector interleave table. The data field of the formatted sectors is in
itialized to zeros. Before formatting the track, the ROM BIOS initializes the 
controller to the values found in the hard disk parameter table. 

ES: BX points to the sector interleave table, which contains an entry for each 
sector on the track. A table entry requires two bytes of data. Therefore, the 
expected buffer size is two times the number of sectors per track. The follow
ing list describes a single table entry: 

Offset Name 

OOH The sector status 

Description 

00 H = good sector 
80H = bad sector 

01H The sector number A sector number in the range of 1 to 17 

Chapter 15 - ROM BIOS Interrupt 13R 15 - 47 



Function 08H: Return Current Drive Parameters 
Industry-Standard 

Parameters 

AH = 08H 
DL = The drive number (80H or 81Hl 

Returns 

CF = 0 Indicates a successful operation 
DL = The number of consecutive acknowledging drives 

DH = The maximum usable head number for the requested drive 

CH = Lower 8 bits of the maximum usable cylinder number for 
the requested drive 

CL = The maximum usable sector number for the requested drive 
and two high bits of the cylinder number 

CF = 1 Indicates an error condition 
AH = The error code 

This function returns the number of consecutive, acknowledging, hard disk 
drives. For example, if the DL register contains 02H, hard disks 0 (80HI and 1 
(81HI are present and respond to the controller. 

If the function returns with CF set (11, only the AH register is valid and con
tains the error code. 

The data returned in the DH, CH, and CL registers is only meaningful for the 
drive specified by the calling parameter in the DL register. 

NOTE 
If an invalid drive type has been specified for the selected drive 
or the selected drive is unformatted, this function can return in
valid data. For the selected drive, check the parameter table. If 
the parameter table contains all zeros, the returned data is inva
lid. The interrupt vector at interrupt 4lH points to the drive 0 
parameter table. The interrupt vector at 46H points to the drive 
1 parameter table. 

15 - 48 Chapter 15 - ROM BIOS Interrupt 13H 



Function 09H: Initialize Drive Characteristics 
I ndltstry-Standard 

Parameters 

AH = 09H 
DL = The drive number (80H or 81H) 

Returns 

CF = 0 Indicates a successful operation 
CF = 1 Indicates an error condition 

AH = The error code 

This function initializes the hard disk controller to the values in the appropriate 
hard disk parameter table. For drive 80H, the parameter table pointed to by 
interrupt 41H is used. For drive 81H, the parameter table pointed to by inter
rupt 46H is used. 

Chapter 15 - ROM BIOS Interrupt 13H 15 - 49 



Function OAH: Read Long 
Industry-Standard 

Parameters 

AH = OAH 
AL = The number of sectors to read 
CH = The cylinder number (lower 8 bits) 
CL = The starting sector number (and bits 9-8 of cylinder) 
DH = The head number 
DL = The drive number (80H or 8lH) 
ES:BX = The buffer address 

Returns 

CF = 0 
CF = 1 

Indicates a successful operation 
Indicates an error condition 
AH = The error code 

This function is similar to function 02H, except that each sector of data is 
terminated by a 4-byte ECC field. This function reads the indicated number of 
sectors and stores the data starting at the buffer address in ES:BX. Attempts 
to store data past a physical page boundary return an error. This can occur 
when the data size exceeds lOOOOH or when the BX offset plus the data size 
exceed lOOOOH. 

To calculate the required buffer size, multiply the contents of the AL register 
by 516. If the division produces a remainder, increment the sector count. 

15 - 50 Chapter 15 - ROM BIOS Interrupt 13H 



Function OBH: Write Long 
Industry-Standard 

Parameters 

AH = OBH 
AL = The number of sectors to write 
CH = The cylinder number (lower 8 bitsl 
CL = The starting sector number (and bits 9-8 of cylinderl 
DH = The head number 
DL = The drive number (80H or 81HI 
ES:BX = The buffer address 

Returns 

CF = 0 Indicates a successful operation 
CF = 1 Indicates an error condition 

AH = The error code 

This function is similar to function 03H, except that each sector of data is 
terminated by a 4-byte ECC field. This function writes the indicated number of 
sectors of data starting at the buffer address in ES:BX. Attempts to read data 
past a physical page boundary return an error. This can occur when the data 
size exceeds lOOOOH or when the BX offset plus the data size exceed lOOOOH. 

To calculate the number of sectors in a buffer, divide the buffer size by 516. 

Chapter 15 - ROM BIOS Interrupt 13H 15 - 51 



Function OCH: Seek to Specific Cylinder 
Industry-Standard 

Parameters 

AH = OCH 
CH = The cylinder number (lower 8 bits) 
CL = Bits 9-8 of cylinder number 
DH = The head number 
DL = The drive number {80H or 81H} 

Returns 

CF = 0 Indicates a successful operation 
CF = 1 Indicates an error condition 

AH = The error code 

This function positions the head of the selected drive. Illegal cylinder numbers 
produce an error, but no head movement occurs. 

Before each invocation of this function, the target drive must be tested to de
termine if the drive is ready to accept another 1/0 command {see Interrupt 
13U, Function 10H). 

15 - 52 Chapter 15 - ROM BIOS Interrupt l3B 



Function ODH: Hard Disk Reset 
Industry-Standard 

Parameters 

AH = ODH 
DL = The drive number 180H or 81H) 

Returns 

CF = 0 Indicates a successful operation 
CF = 1 Indicates an error condition 

AH = The error code 

This function resets the hard disk controller to its initial power-up state. The 
hard disk controller is initialized to the values in the hard disk parameter 
tables. The diskette controller is not affected. Only the hard disk controller is 
reset. 

Chapter 15 - ROM BIOS Interrupt 13H 15 - 53 



Function lOH: Test Drive Ready 
Industry-Standard 

Parameters 

AH = 10H 
DL = The drive number (80H or 81H) 

Returns 

CF = 0 Indicates a successful operation 
CF = 1 Indicates an error condition 

AH = The error code 

If this function does not return an error code, the hard disk is ready to accept 
110 requests. For the hard disk error codes, see Table 15-7. 

15 - 54 Chapter 15 - ROM BIOS Interrupt 13H 



Function IlH: Recalibrate Drive 
Industry-Standard 

Parameters 

AH = llH 
DL = The drive number (80H or 8lH) 

Returns 

CF = 0 Indicates a successful operation 
CF = 1 Indicates an error condition 

AH = The error code 

This function moves the head of the selected hard disk to the home position 
(cylinder zero). 

Chapter 15 - ROM BIOS Interrupt 13H 15 - 55 



Function 14H: Execute Controller Internal Diagnostics 
Indu.stry-Standard 

Parameters 

AH = 14H 
DL = The drive number (80H or 81H) 

Returns 

CF = 0 Indicates a successful operation 
CF = 1 Indicates an error condition 

AH = The error code 

This function performs a diagnostic test of the hard disk controller card cir
cuitry. Any errors are reflected in the returned error code. 

During testing, this function destroys the initialization state of the controller. 
On completion, the controller state is undefined. Use one of the hard disk func
tions (OOH, 09H, or ODH) to initialize the controller to a normal mode 
of operation. 

15 - 56 Chapter 15 - ROM BIOS Interrupt 13H 



Function 15H: Return Drive Type 
Industry-Standard 

Parameters 

AH = 15H 
OL = The drive number (80H or 81H) 

Returns 

CF = 0 Indicates a successful operation 
AH = OOH The drive is not present 
AH = 03 H The hard disk is present 

CX = The number of 512 byte sectors (high-order 
16-bits) 

ox = The number of 512 byte sectors (low-order 
16-bits 

CF = 1 Indicates an error condition 
AH = The error code 

This function returns the drive type of the indicated hard disk. If the returned 
AH register contains 03H, the CX and OX register pair contains the number 
of 512 byte sectors on the disk. The CX register is the high word of the pair. 

Chapter 15 - ROM BIOS Interrupt 138 15 - 57 



Function DOH: Read Long 256 Byte Sector 
DIGITAL Extension 

Parameters 

AH = DOH 
AL = The number of sectors to read 
CH = The cylinder number (lower 8 bitsl 
CL = The starting sector number (and bits 9-8 of cylinder) 
DH = The head number 
DL = The drive number (80H or 81H) 
ES:BX = The buffer address 

Returns 

CF = 0 Indicates a successful operation 
CF = 1 Indicates an error condition 

AH = The error code 

This function is similar to function OAH, except that the sector size is 256 
bytes instead of 512. Each sector of data is terminated by a 4-byte ECC field. 
This function reads the indicated number of sectors and stores the data start
ing at the buffer address in ES:BX. Attempts to store data past a physical 
page boundary return an error. This can occur when the data size exceeds 
10000H or when the BX offset plus the data size exceed 10000H. 

To calculate the required buffer size, multiply 260 by the contents of the AL 
register. 

15 - 58 Chapter 15 - ROM BIOS Interrupt 13H 



Diskette Functions 
The value in the AH register indicates the desired diskette function. All 
diskette functions require a drive number in the DL register. The diskette drive 
numbers are OOH and 01H. 

With the exception of the flags register, all registers not mentioned in the 
function description are preserved. 

Diskette Errors 
If CF is set (1), an error occurred, and the AH register contains the error code. 
Table 15-9 lists the diskette error codes. 

Table 15-9 Diskette Error Codes 

Error 
Code 

AOH 
80H 
40H 
20H 
10H 
09H 
08H 
06H 
04H 
03H 
02H 
01H 

Description 

Combination of 80H and 20H error codes 
Hardware failed to respond 
Seek operation failed 
Disk controller failed 
eRe incorrect for data 
Direct Memory Access (DMA) overflowed 64K page boundary 
DMA controller failed to respond 
Disk change line true 
Sector not found 
Diskette write protected 
Sector address mark not found 
Illegal 110 request (bad command) 

Diskette Parameter Tables 
A diskette parameter table defines the physical characteristics of a diskette. 
The values in the table are used by the diskette driver to initialize the diskette 
controller. Table 15-10 describes the contents of a diskette parameter table. 
Each parameter in Table 15-10 is one byte long. 

Chapter 15 - ROM BIOS Interrupt 13H 15 - 59 



Table 11)-10 Diskette Parameter Table Description 

Offset 

OOH 

01H 

02H 

03H 

04H 

05H 

06H 

07H 

08H 

09H 

OAH 

Bits 

7-4 

Description 

Step rate 

Each increase in the value of bits 7-4 decreases the step 
rate by 1 ms, so that zero equals 16 ms, one equals 15 
ms, two equals 14 ms, and so on. 

3-0 Head unload time 

Each increase in the value of bits 3-0 increases the head 
unload time by 16 ms, so that zero equals 16 ms, one 
equals 32 ms, two equals 48 ms, and so on. 

7-1 Head load time 

Each increase in the value of bits 7-1 increases the head 
load time by 2 ms. so that zero equals 2 ms, one equals 4 
ms, two equals 6 ms, and so on. 

0 Direct Memory Access (DMA) selection 
o = Do not use DMA mode 
1 = Use DMA mode 

7-0 Clock ticks until the motor is turned off 

7-0 Sector size 

Each increase in value doubles the sector size, so that 
zero equals 128 bytes, one equals 256 bytes, two equals 
512 bytes and so on. The default value is two (512 bytes). 

7-0 Sectors per track (8, 9, 10, or 15) 

7-0 Sector gap length (IBH) 

7-0 Data length (FFH) 

7-0 Format gap length (54H) 

7-0 Format fill byte (F6H) 

7-0 Head settle time in milliseconds 

If this value is less than 17 ms, the ROM BIOS uses 17 
ms. 

7-0 Motor start-up time in .125 second increments 

The interrupt vector for interrupt lEH points to the diskette parameter table. 
If a diskette drive does not exist, the interrupt vector for interrupt 1EH is 
reserved and undefined. 

15 - 60 Chapter 15 - ROM BIOS Interrupt 13H 



Function OOH: Initialize Diskette Subsystem 
Industry-Standard 

Parameters 

AH = OOH 
DL = The drive number (OOH or OlH) 

Returns 

CF = 0 Indicates a successful operation 
CF = 1 Indicates an error condition 

AH = The error code 

This function resets the diskette controller to its initial power-up state. the 
diskette controller is initialized to the values in the diskette parameter table. 
Because the diskette drive is marked as reset, the next diskette 1/0 request 
recalibrates that drive. 

After hard disk function OOH resets the hard disk controller, it calls this func
tion to reset the diskette controller. 

Chapter 15 - ROM BIOS Interrupt 13H 15 - 61 



Function OIH: Return Status Code of Last 1/0 Request 
Industry-Standard 

Parameters 

AH = 01H 
DL = The drive number (OOH or 01H) 

Returns 

AH = 0 
AL = The error code of the previous operation 

This function returns, in the AL register, the error code of the last function 
call. If AL returns a 0, no previous error condition existed. Because calls to 
this function do not generate error conditions, successive calls return O. 

The AH register always returns O. 

For the diskette error codes, see Table 15-9. 

15 - 62 Chapter 15 - ROM BIOS Interrupt 13H 



Function 02H: Read One or More Track Sectors 
I ndu.stry-Standard 

Parameters 

AH = 02H 
AL = The number of sectors to read 
CH = The track number 
CL = The starting sector number 
DH = The head number 
DL = The drive number (OOH or 01H) 
ES:BX = The buffer address 

Returns 

AL = OOH 
CF = 0 Indicates a successful operation 
CF = 1 Indicates an error condition 

AH = The error code 

This function reads the indicated number of sectors and stores the data start
ing at the buffer address in ES:BX. Requests to read more sectors than remain 
on the track return an error. Attempts to store data past a physical page 
boundary return an error. This can occur when the BX offset plus the data size 
exceed 10000H. 

To calculate the required buffer size, multiply the contents of the AL register 
by 512. 

The AL register always returns OOH. 

Chapter 15 - ROM BIOS Interrupt 13H 15 - 63 



Function 03H: Write One or More Track Sectors 
I ndllstry-Standard 

Parameters 

AH = 03H 
AL = The number of sectors to write 
CH = The track number 
CL = The starting sector number 
DH = The head number 
DL = The drive number (OOH or 01H) 
ES:BX = The buffer address 

Returns 

AL = OOH 
CF = 0 Indicates a successful operation 
CF = 1 Indicates an error condition 

AH = The error code 

This function writes the indicated number of sectors starting at the buffer ad
dress in ES:BX. Requests to write more sectors than remain on the track 
return an error. Attempts to read data past a physical page boundary return an 
error. This can occur when the data size exceeds 10000H or when the BX 
offset plus the data size exceed 10000H. 

To calculate the number of sectors in a buffer, divide the buffer size by 512. If 
the division produces a remainder, increment the sector count. 

15 - 64 Chapter 15 - ROM BIOS Interrupt 13H 



Function 04H: Verify One or More Track Sectors 
Industry-Standard 

Parameters 

AH = 04H 
AL = The number of sectors to verify 
CH = The track number 
CL = The starting sector number 
DH = The head number 
DL = The drive number (OOH or OlH} 
ES:BX = The buffer address 

Returns 

AL = OOH 
CF = 0 Indicates a successful operation 
CF = 1 Indicates an error condition 

AH = The error code 

This function verifies the indicated number of sectors. The data is not com
pared against data in memory. It is only verified for internal consistency. Thus, 
the verify command only checks for Cyclical Redundancy Check (CRC) errors. 
Requests to verify more sectors than remain on the track return errors. 

Chapter 15 - ROM BIOS Interrupt 13H 15 - 65 



Function 05H: Format a Track 
Industry-Standard 

Parameters 

AH = 05H 
AL = The number of sectors to format 
CH = The track number 
DH = The head number 
DL = The drive number (OOH or 01Hl 
ES:BX = The track identification table address 

Returns 

CF = 0 Indicates a successful operation 
CF = 1 Indicates an error condition 

AH = The error code 

This function formats the indicated track. It formats only the sectors described 
in the track identification table. The data field of the formatted sectors is in
itialized to the diskette parameter table value, sector fill. Before formatting the 
track, the ROM BIOS initializes the diskette controller to the values found in 
the diskette parameter table. 

ES:BX points to the track identification table. which contains an entry for each 
sector on the track. A table entry requires four bytes of data. Therefore. the 
expected buffer size is four times the number of sectors per track. The follow
ing list describes a single table entry. 

Offset 

OOH 

01H 

02H 

03H 

Name Description 

Track 0 to 39 for 48 tracks per inch (TPI) 
o to 79 for 96 TPI 

Head 0 = the back side of diskette 
1 = the label side of diskette 

Sector number 1 to 8 for 48 TPI 
1 to 9 for 48 TPI 
1 to 15 for 96 TPI (high capacity) 

Sector size Each increase in value doubles the sector size. so 
that 0 equals 128 bytes. 1 equals 256 bytes, 2 
equals 512 bytes, and so on. The default value is 
two (512 bytes). 

15 - 66 Chapter 15 - ROM BIOS Interrupt 13H 



Function 15H: Return Drive Type 
Industry-Standard 

Parameters 

AH = 15H 
DL = The drive number fOOH or Oim 

Returns 

CF = 0 Indicates a successful operation 
AH = OOH The drive is not present 
AH = 02H An RX33 drive with status change line 

CF = I An error condition 
AH = The error code 

This function returns the drive type of the indicated diskette drive. 

Chapter 15 - ROM BIOS Interrupt 13H 15 - 67 



Function I6H: Return Change Line Status 
Industry-Standard 

Parameters 

AH = 16H 
DL = The drive number (OOH or 01H) 

Returns 

CF = 0 AH = OOH 
CF = 1 AH = 06H 

The media has not changed 
The media could have changed 

This function returns, for the indicated drive, the state of the diskette change 
line. A changed status indicates that the media may have been changed since 
the last 110 request to that drive. The change flag is set only after the media is 
changed and the drive door is closed. If the door is open or no media is 
present, a timeout error occurs. 

15 - 68 Chapter 15 - ROM BIOS Interrupt 13H 



Function 17H: Set Drive and Media Type for Format 
Industry-Standard with DIGITAL Extensions 

Parameters 

AH = 17H 

AL = 02H 

AL = 03H 

AL = 04H 

There is 48 tracks per inch (TPI, media in the RX33 drive 

There is 96 TPI high-capacity media in the RX33 drive 

There is 96 TPI low-capacity media in the RX33 drive (DIGI
TAL extension, 

DL = The drive number (OOH or 01H1 

Returns 

CF = 0 Indicates a successful operation 
CF = 1 Indicates an error condition 

AH = The error code 

This function sets the diskette media and the drive type. It is called before 
function 05H to override an existing diskette format or to define the format for 
a blank diskette. 

Chapter 15 - ROM BIOS Interrupt 13H 15 - 69 



Interrupt 14H: Asynchronous 
Communications 
Software Interrupt - Industry-Standard with DIGITAL Extensions 

This interrupt provides an industry-standard software interface to the 
asynchronous communications ports. It also supports extended functionality: 

• Buffered transmit 
• Buffered receive 
• Receive notification 
• Flow control 
• Line signal notification 
• Modem signal control 
• Modem change notification 
• Break conditions 
• Error handling (timeout or continuous loop) 
• Additional baud rates 

In accordance with industry-standard practice, the ROM BIOS code supports 
four serial ports, and the ROM BIOS data area maintains four base addresses. 
However, due to the limited number of interrupt controller inputs, some por
tions of extended function DOH are limited to ports OOH and 01H. 

During power-up, the ROM BIOS looks for serial ports at 110 addresses 03F8H 
and 02F8H. The serial port at 03F8H is the integral serial port and is assigned 
to port OOH. If a serial port is found at 110 address 02F8H, it is assigned to 
port 01H. Normally, this is the optional integral modem. 

The serial printer port is treated as a special case. It is assigned to serial port 
FFH and can be accessed like other serial ports. This information is provided 
for consistency only. Use interrupt 17H. the parallel printer output, for normal 
printer output. The ROM BIOS redirects parallel port OOH to serial port FFH. 

15 - 70 Chapter 15 - ROM BIOS Interrupt 14H 



The following is a list of the available functions: 

AH 

OOH 
OlH 
02H 
03H 
DOH 
DIH 
D2H 
D3H 
D4H 

Description 

Initialize the asynchronous port 
Send a character 
Receive a character 
Return asynchronous port status 
Extended mode 
Break control 
Modem control 
Retry On Timeout Error 
Baud rate select 

Digital Extended 

No 
No 
No 
No 
Yes 
Yes 
Yes 
Yes 
Yes 

All registers not specified in the function register usage are preserved. 

Chapter 15 - ROM BIOS Interrupt 14" 15 - 71 



Function OOH: Initialize Asynchronous Port 
Industry-Standard 

Parameters 

AH = OOH 
AL = Initialization byte 

Bits 7-5 Baud rate 
000 = 110 
001 = 150 
010 = 300 
011 = 600 
100 = 1200 
101 = 2400 
110 = 4800 
111 = 9600 

Bits 4-3 Parity 
00 = None 
01 = Odd 
10 = None 
11 = Even 

Bit 2 Stop bits 
0=1 
1 = 2 

Bits 1-0 Data bits 
00 = 5 
01 = 6 
10 = 7 
11 = 8 

OX = The port number (OOH to 03H and FFH) 

Returns 

AH = The data status as defined in function 03H 

This function initializes the specified port. The value returned in the AL regis
ter is interpreted the same as the value returned by function 03 H. 

15 - 72 Chapter 15 - ROM BIOS Interrupt 14H 



Function OlH: Transmit Character 
Indllstry-Stalldard 

Parameters 

AH = 01H 
AL = Character to transmit 
DX = The port number (OOH to 03H and FFH) 

Returns 

AH = Data status as defined in function 03H 

This function attempts to transmit a character to the specified port. 
Unless modem signal bypass is set (see Interrupt 14H, Function D2H), the fol
lowing modem signals are required to complete a transmission: 

V AXmate Workstation 
to External Device 

Data Terminal Ready (DTR) 
Request To Send (RTS) 

Buffer Mode Enabled 

External Device 
to VAX mate Workstation 

Data Set Ready (DSR) 
Clear To Send (CTS) 

If buffered mode is enabled. continuous retry is disabled, and bit 7 is set in the 
returned AH register, then the transmit buffer was full and the character was 
not placed in the buffer. 

The XON/XOFF characters defined in the communications control block (see 
Interrupt 14H, Function DOH) are transmitted independently and before all 
other characters in the buffer. 

For more information on buffered mode, see function DOH. 

Chapter 15 - ROM BIOS Interrupt 14H 15 - 73 



Function 02H: Receive Character 
Industry-Standard 

Parameters 

AH = 02H 
DX = The port number {OOH to 03H and FFHI 

Returns 

AL = Received character 
AH = Data status as defined in function 03H 

The function attempts to receive data from the specified port. Unless modem 
signal bypass is set {see Interrupt 14H, Function D2Hl, the following modem 
signals are required to complete a transmission. 

VAXmate Workstation External Device 

Data Terminal Ready (DTRI Data Set Ready (DSRI 

Buffer Mode Enabled 
If bit 7 is set in the returned AH register, the receive buffer is empty. 

If bit 1 is set in the returned AH register. the receive buffer overflowed. The 
character stored in the buffer is the overflow character, as specified in the com
munications control block (CCBI. 

For more information on buffered mode, see function DOH. 

15 - 74 Chapter 15 - ROM BIOS Interrupt 14H 



Function 03H: Return Asynchronous Port Status 
Industry-Standard 

Parameters 

AH = 03H 
DX = The port number (OOH to 03H and FFHI 

Returns 

AH = The data status (set bits indicate condition I 

Bit 7 -

Bit 6 -

Bit 5 -

Bit 4 -

Bit 3 -

Bit 2 -

Bit 1 -

Bit 0 -

Timeout error 

8250 transmit shift register empty (all data has been 
transmittedl 

8250 transmit holding register empty (ready to accept 
another character for transmission I 

Break detect 

Framing error 

Parity error 

Overrun error 

8250 receive buffer full (received character available I 

AL = The modem status (set bits indicate condition) 

* 

Bit 7 -
Bit 6 -
Bit 5 -
Bit 4 -
Bit 3 -
Bit 2 -
Bit 1 -
Bit 0 -

Carrier detect 
Ring indicate 
Data set ready 
Clear to send 
Delta carrier detect * 
Ring trailing edge 
Delta data set ready * 
Delta clear to send * 

If a delta bit is set. it indicates that between that last status request and 
this status request, the state of the indicated input has changed. 

This function retrieves the current data and modem status of the specified 
port. 

Chapter 15 - ROM BIOS Interrupt 14H 15 - 75 



Buffer Mode Enabled 
If the receive buffer is empty. the status returned is the current data and 
modem status. Otherwise, the data status reflects the status of the next char
acter to be extracted from the buffer, and the modem status is the current 
modem status. 

For more information on buffered mode, see function DOH. 

15 - 76 Chapter 15 - ROM BIOS Interrupt 14H 



Function DOH: Extended Mode 
DIGITAL Extension 

Parameters 

AH = DOH 

AL = FFH 
AL = OOH 

Enable function 
Disable function 

DX = The port number fOOH to 01H and FFH) 
ES:BX = The address of CCB (ignored when AL = OOH) 

Returns 

AL = OOH 
AL = OIH 
AL = 02H 
AL = 03H 

Indicates a successful operation 
Indicates a nonexistent device 
Indicates that the first four CCB entries are 0 (enable only) 
Indicates that the buffer size is less than 4 (enable only) 

This function is an extension to the industry-standard asynchronous communi
cations functions. The following features are available: 

• Notification on data status interrupt 
• Notification on modem status interrupt 
• Flow control 
• Buffered communications 

Notification on receive interrupt (requires receive buffering) 
Notification on transmit interrupt frequires transmit buffering) 

ES:BX points to the communication control block (CCB), which specifies the 
desired environment. Each port is allowed only one CCB. The CCB is assigned 
to the port indicated in the DX register. The communications control block is 
defined in Table 15-11. 

While a CCB is enabled. the first four entries cannot be modified. Within 
reason, the remaining entries in the CCB and buffer structures can be modified 
dynamically. 

The CCB and the CCB-buffer structure must reside in the same memory 
segment. 

Chapter 15 - ROM BIOS Interrupt 148 15 - 77 



Table 15-11 Communications Control Block ICCB) Description 

Offset Name Size Description 

OOH Line Vector Double This is the address Isegment:offset) of the 
word received-data status interrupt service rou-

tine. This interrupt occurs on an overrun, 
parity, framing, or break error condition. A 
value of OOOO:OOOOH disables this notifica-
tion. While the CCB is enabled, this value 
must not be changed. 

04H Modem Double This is the address (segment:offsetl of the 
Vector word modem status interrupt service routine. This 

interrupt occurs whenever clear-to-send, 
data-set-ready, ring-indicator, or received-
line-signal-detector changes state. A value of 
OOOO:OOOOH disables this notification. While 
the CCB is enabled, this value must not be 
changed. 

08H Rxbuff Word This is the offset of the receive-buffer struc-
ture. Table 15-12 describes the receive-buffer 
structures. A value of OOOOH disables re-
ceive buffering for the indicated port. While 
the CCB is enabled, this value must not be 
changed. 

OAH Txbuff Word This is the offset of the transmit-buffer 
structure. Table 15-12 describes the 
transmit-buffer structures. A value of OOOOH 
disables transmit buffering for the indicated 
port. While the CCB is enabled, this value 
must not be changed. 

OCH Xflag Byte This byte selects the XON/XOFF flow con-
trol option. It can be changed at any time 
without restriction. A value of FFH enables 
flow control. A value of OOH disables flow 
control. Flow control is only available when 
the buffered mode is active. Flow control 
should be disabled for 8-bit binary data 
transfers. 

ODH Status Byte This byte contains the current flow control 
state. If the high order nibble equals OOH, 
transmissions are disabled. If the high order 
nibble equals FOH, transmissions are 
enabled. The low-order nibble contains inter-
nal state information and must be 
preserved. 

15- 78 Chapter 15 - ROM BIOS Interrupt 14H 



Table 15-11 Communications Control Block (CCB) Description (cont.) 

Offset Name Size Description 

OEH Overflow Byte This byte contains the character code that 
represents an overflow condition. Under an 
overflow (buffer full) condition. this value is 
written over the last character in the buffer. 
Because a new overflow character can be 
written over an old overflow character, this 
value should not be changed while the CCB 
is enabled. 

OFH Xonchr Byte This byte contains the character code used 
for XON in the flow control operation. 
Because the external device must cooperate 
in the change, this value should not be 
changed while the CCB is enabled. 

10H Xoffchr Byte This byte contains the character code used 
for XOFF in the flow control operation. 
Because the external device must cooperate 
ion the change, this value should not be 
changed while the CCB is enabled. 

llH Xonpt Word This value defines the number of characters 
left in the receive buffer when XON is sent 
(low-water mark). This value should be 
changed only when the receive buffer is 
empty. However. it can be changed any time 
if synchronization of flow control is 
protected. 

13H Xoffpt Word This value defines the number of characters 
in the receive buffer when XOFF is sent 
(high water mark). This value should be 
changed only when the receive buffer is 
empty. However, it can be changed any time 
if synchronization of flow control is 
protected. 

15H CntlMask Byte If the value of this byte is nonzero, the re-
ceived characters are ANDed with it. The 
AND operation takes place before the char-
acter is tested as a flow control character. 
This value can be changed at any time. 

Chapter 15 - ROM BIOS Interrupt 14H 15 - 79 



Each CCB can have two buffer structures associated with it, one for receive 
and one for transmit. The buffer structures contain pointers, counters, and 
status information. The maximum size of any buffer is 64 Kbytes. Table 15-12 
describes the CCB buffer structure. 

Table 15-12 CCB Buffer Structure Description 

Offset Name Size Description 

OOH Vector Double This is the address I segment: offset) of the re-
word ceive or transmit interrupt service routine. A 

value of OOOO:OOOOH disables this option. It 
can be changed at any time. 

04H Head Double This is a pointer lsegment:offset) to the next 
word empty position in the buffer. The segment of 

the head pointer must be common to the tail, 
start, and end pointers. 

08H Tail Word This is a pointer (offset only) to the next 
available character in the buffer. It assumes 
the same segment as the head pointer. 

OAH Start Word This is a pointer (offset only) to the begin-
ning of the buffer. It assumes the same seg-
ment as the head pointer. 

OCH End Word This is a pointer (offset only) to the end of 
the buffer. It assumes the same segment as 
the head pointer. 

OEH Count Word This is the number of characters in the 
buffer. 

Buffering Enabled 
Receive and transmit buffering is enabled or disabled by the contents of the 
CCB receive-buffer/transmit-buffer structure pointers. A nonzero pointer indi
cates a valid pointer to a structure, and the desire for buffering. 

Function DOH does not initialize buffer pointers or counters. It only updates 
them. This allows a CCB to be enabled (AL = FFH) or disabled IAL = OOH) 
dynamically. Therefore, before a CCB is enabled for the first time, all buffer 
pointers must be initialized, and all counters must be zeroed. 

The ROM BIOS expects the receive buffer and the transmit buffer to occupy 
distinct and separate locations. 

When buffering is enabled, functions OOH, 01 H. 02lL and 03H continue to op
erate in the same manner. However, some operations have minor side-effects 
on buffered ports: 

15 - 80 Chapter 15 - ROM BIOS Interrupt 14H 



• Transmit Buffering Enabled 

Function 01H buffers characters until they are transmitted. If continuous 
retry is disabled, a timeout error indicates a full buffer instead of a 
timeout. 

The XON and XOFF characters are handled independently and before 
any buffered characters. 

• Receive Buffering Enabled 

Function 02H extracts characters from a buffer. If continuous retry is 
disabled, a timeout error indicates an empty buffer instead of a timeout. 

The data status returned by functions OOH, 01H. 02H, and 03H depends 
on the state of the receive buffer. If the receive buffer is empty, the re
turned data status is the current data status. Otherwise, the returned 
data status is associated with the next character to be extracted from the 
buffer and reflects the status when the character was placed in the buffer. 
The modem status is always the current modem status. 

Notification Enabled 
Due to the limited number of interrupt controller inputs, only ports OOH, 01H, 
and FFH can use notification. 

When a CCB is enabled (AL = FFHI. the ROM BIOS examines the LineVector 
and ModemVector pointers. On finding a nonzero pointer, the ROM BIOS 
enables the associated interrupt for the indicated port. The ROM BIOS then 
examines the receive-buffer/transmit-buffer structure pointers. On finding a 
nonzero buffer structure pointer, it is used to examine the Vector pointer. If it 
is nonzero, the associated receive or transmit interrupt is enabled. The inter
rupts remain enabled until the CCB is disabled (AL = OOHl. The application 
must disable the CCB before exiting. Otherwise, the ROM BIOS assumes that 
it still owns the CCB and buffer locations. On the next interrupt, it uses them 
with undefined results. 

All service routines are accessed using far calls. They must return to the ROM 
BIOS by a far return. 

At the time of the call, CPU interrupts are disabled and the interrupt control
ler is waiting for an end-of-interrupt instruction. After the notified service rou
tine returns control to the ROM BIOS, the interrupt controller is restored, and . 
any additional asynchronous port interrupts are serviced. After all 
asynchronous interrupts are serviced, the CPU interrupt state is restored by an 
IRET instruction. To maintain a minimum system interrupt latency, keep the 
service routine as short as possible. Otherwise, handling high baud rates can 
create problems, such as missing a timer interrupt. 

Chapter 15 - ROM BIOS Interrupt 14H 15 - 81 



The service routines are called as follows: 

• Receive Notification Enabled 

When the service routine is called, ZF is clear, the current data and 
modem status are in the AX register lsee function 03HI, and interrupts 
are disabled. The service routine returns ZF to indicate the action the 
ROM BIOS should take. If ZF is set Ul, the ROM BIOS ignores the data 
and modem status in the AX register. If ZF is clear 10), the ROM BIOS 
stores the data and modem status in the AX register. 

• Transmit Notification Enabled 

When the service routine is called, the AL register contains the current 
data status lsame as AH in function 03H), and interrupts are disabled. 
This service routine is called when the transmit buffer is empty. 

• Received Data Status Notification Enabled 

When the service routine is called, the AL register contains the current 
data status lsame as AH in function 03R), and interrupts are disabled. 
This service routine is called when an overrun, parity, framing, or break 
interrupt error condition occurs. 

• Modem Status Notification Enabled 

When the service routine is called, the AL register contains the current 
modem status lsame as AL in function 03H). and interrupts are disabled. 
This service routine is called when a clear-to-send lCTS), data-set-ready 
(DSR), ring-indicator (RI), or received-line-signal-detector lRLSD) changes 
state. 

15 - 82 Chapter 15 - ROM BIOS Interrupt 14H 



Error Codes Returned 
When enabling a CCB IAL = FFH), function DOH can return one of the follow
ing status codes in the AL register: 

AL Meaning 

OOH A successful operation 

OlH A nonexistent port was specified in the DX register 

02H No operation was specified Ifirst 4 entries in CCB contain 0) 

03H There was an invalid buffer description. IThe end pointer must be at 
least four more than the start pointer.) 

When disabling a CCB (AL = OOAl. function DOH can return one of the follow
ing status codes in the AL register: 

AL Meaning 

OOH A successful operation 
OlH There was a nonexistent port specified in the DX register 

Chapter 15 - ROM BIOS Interrupt 14H 15 - 83 



Function D IH: Send Break 
DIGITAL Extension 

Parameters 

AH = DIH 
DX = The port number (OOH to 03H and FFH) 

AL = FFH Set the break condition 
AL = OOH Clear the break condition 

Returns 

AH = The data status as defined in function 03H 
AL = The modem status as defined in function 03H 

This function sets or clears the break condition. When AL equals FFH, the 
transmit data line is forced to the space state (break condition is set). When 
AL equals OOH, the transmit data line is returned to the mark state (break 
condition is cleared). 

15 - 84 Chapter 15 - ROM BIOS Interrupt 14H 



Function D2H: Set Modem Control 
DIGITAL Extension 

Parameters 

AH = D2H 
DX = The port number IOOH to 03H) 

AL = FFH 
AL = FOH 
AL = OFH 
AL = OOH to 07H 

Returns 

Set the modem signal bypass 
Clear the modem signal bypass 
Read the modem control register 
Write modem control register 

Bit 0 Data Terminal Ready IDTR) 
o = DTR is low at the external connector 
1 = DTR is high at the external connector 

Bit 1 Request to Send lRTS) 
o = RTS is low at the external connector 
1 = RTS is high at the external connector 

Bit 2 Speed Select ISS) 
o = SS is low at the external connector 
1 = SS is high at the external connector 

AL = The contents of the modem control register 

This function reads or writes the modem control register and sets or clears the 
modem signal bypass feature. 

The modem signal bypass feature disables or enables ROM BIOS servicing of 
modem line state changes. If the modem signal bypass is cleared IAL = FOH), 
the ROM BIOS services the modem signals. If the modem signal bypass is set 
IAL = FFH), the ROM BIOS does not service the modem signals. When 
modem signal bypass is enabled, the modem signals are ignored and the serial 
port operates in a data-leads-only mode. 

Because it provides a different means of handling modem line state changes, 
the modem signal bypass feature is not applicable when buffered communica
tion is enabled. For further information on buffered communication, see func
tion DOH. 

Chapter 15 - ROM BIOS Interrupt 14H 15 - 85 



Function D3H: Retry on Timeout Error 
DIGITAL Extension 

Parameters 

AH = D3H 

AL = 01H 

AL = OOH, 02H-FFH 

Returns 

Return the current retry map in AL and CL 

Write AL and CL (bits 1-01 to the retry map 
CL (bits 1-01 = Port FFH retry map 

AL = The current retry map (return map AL = 01HI 
CL = The current retry map for port FFH 

This function controls the ROM BIOS support of asynchronous port timeout 
errors. Each port is individually controlled by reading the current map and 
changing only the desired control bits. If the AL register equals 01H, the cur
rent retry map is returned in the AL register. Otherwise, the contents of the 
AL register are written to the retry map. Initially, all ports are set to return 
timeout errors. The retry map bit assignments are defined as follows. 

Reg Port Bits Usage 

AL 03H 7-6 00 = return the timeout errors 
11= loop on the timeout errors 

02H 5-4 00 = return the timeout errors 
11= loop on the timeout errors 

01H 3-2 00 = return the timeout errors 
11 = loop on the timeout errors 

OOH 1-0 00 = return the timeout errors 
11 = loop on the timeout errors 

CL FFH 7-2 Unused 

1-0 00 = return the timeout errors 
01 = loop on timeout errors 

15 - 86 Chapter 15 - ROM BIOS Interrupt 14H 



Function D4H: Set Baud Rate 
DIGITAL Extension 

Parameters 

AH = D4H 
DX = The port number (OOH to 03Il) 

AL = FFH Return the current baud rate in AL 
AL = OOH-FEH Any value other than FFH sets the baud rate 

Returns 

AL = The current baud rate selection 

Bits 7-5 

Bit 4 

Bit 3-1 

Bit 0 

000 = 
001 = 
010 = 
011 = 
100 = 
101 = 
110= 
111 = 

Standard group 

110 
150 
300 
600 
1200 
2400 
4800 
9600 

Baud rate group select 

Extended group 

50 
75 
134.5 
1800 
2000 
3600 
7200 
19200 

o = Select the baud rate from the standard group 
1 = Select the baud rate from the extended group 

Not Used 

Split baud rate 
o = The baud rate is not split (Port 0 only) 
1 = The baud rates are split (Port 0 only) 

This function sets or reads the baud rate and selects split baud rates. 
Compared to function OOH, it provides an expanded set of baud rates. 
Excluding the split baud rate selection, this function is compatible with 
industry-standard serial port adapters. 

Split baud rates are only supported on DIGITAL serial ports that have a split 
baud rate capability. When the baud rates are split, the receive baud rate is 
fixed at 1200 baud, and the transmit baud rate is set to the currently selected 
value. The VAXmate workstation integral COM! port supports split baud rates. 

Chapter 15 - ROM BIOS Interrupt 14H 15 - 87 



Interrupt 15H: Cassette Input/Output 
Software Interrupt - Industry-Standard with DIGITAL Extensions 

This function provides support for multitasking and other functions associated 
with the 80286 CPU in virtual memory mode. Because there is no cassette 
hardware, the original cassette I/O functions respond as errors. An extended 
function returns a DIGITAL-specific configuration word in the BX register. 

Any AH values not defined in the following list of Interrupt 15H functions 
return the error condition AH equals 86H and CF set (1). 

AH 

OOH-7FH 
80H 
81H 
82H 
83H 
84H 
85H 
86H 
87H 
88H 
89H 
90H 
91H 
DOH 

Function Name 

Returns error condition (AH = 86H, CF = 1) 
Open Device 
Close Device 
Termination 
Set Wait Interval 
Joystick Support (not supported) 
Service System Request Key 
Wait 
Move a Block of Memory 
Memory size above 1Mb 
Begin Virtual Mode 
Device is Busy 
Interrupt Completion Handler 
Return DIGITAL Configuration Word 

15 - 88 Chapter 15 - ROM BIOS Interrupt 15H 

DIGITAL 
Extended 

No 
No 
No 
No 
No 
No 
No 
No 
No 
No 
No 
No 
No 
Yes 



Function 80H: Open Device 
Industry-Standard 

Parameters 

AH = 80H 

Returns 

AH = Undefined 
CF = 0 

This function is just a hook_ It only returns the indicated values. 

Function 81H: Close Device 
Iltdltstry-Standard 

Parameters 

AH = 81H 

Returns 

AH = Undefined 
CF = 0 

This function is just a hook. It only returns the indicated values. 

Chapter 15 - ROM BIOS Interrupt 15H 15 - 89 



Function 82H: Termination 
Industry-Standard 

Parameters 

AH = 82H 

Returns 

AH = Undefined 
CF = 0 

This function is just a hook. It only returns the indicated values. 

Function BaH: Set aWait Interval 
Industry-Standard 

Parameters 

AH = 83H 
CX = High IS-bits (number of microseconds delay time) * 
OX = Low IS-bits (number of microseconds delay time) * 
ES:BX = The pointer to caller-supplied flag byte 

* Although this parameter is measured in microseconds. the minimum 
resolution is 976 ps. Requested values are rounded up to the next 97S-ps 
increment. 

Returns 

CF = 1 
CF = 0 

The error condition 
Interval timer started (application should monitor bit 7 of the caller
supplied flag byte) 

This function does not wait until the time interval has elapsed before returning. 
It returns to the caller immediately. After the specified time interval has 
elapsed, this function sets bit 7 of a caller-supplied flag byte. The time interval 
is a 32-bit value measured in microseconds. 

If an attempt is made to start a second interval before the first interval is 
completed. an error condition is returned (CF = 1). This function is mutually 
exclusive of function 8SH. 

1/S - 90 Chapter 15 - ROM BIOS Interrupt 15H 



Function 84H: Joystick Support 
Not Supported 

Parameters 

AH = 84H 

Returns 

CF = 1 Indicates an error (always returns CF = 1) 

NOTE 
This function always returns an error (CF = 1). The VAXmate 
workstation does not support joysticks. 

Function 85H: Service System Request Key 
Industry-Standard 

Parameters 

AH = 85H 

Returns 

AH = Undefined 
CF = 0 

This function is just a hook. It only returns the indicated values. 

Chapter 15 - ROM BIOS Interrupt 15H 15 - 91 



Function 86H: Wait (No Return to User) 
Industry-Standard 

Parameters 

AH = 86H 
CX = High 16-bits Inumber of microseconds delay time) * 
DX = Low 16-bits (number of microseconds delay time) * 

* Although this parameter is measured in microseconds, the minimum 
resolution is 976 fJS. Requested values are rounded up to the next 976-fJs 
increment. 

Returns 

CF = 0 Indicates a successful operation 
CF = 1 Indicates an error condition 

This function waits until the specified interval has elapsed before control is re
turned. The time interval is a 32-bit value measured in microseconds. 

This function is mutually exclusive of function 83H. If attempted while function 
83H is active, it returns an error ICF = 1l. 

15 - 92 Chapter 15 - ROM BIOS Interrupt 15H 



Function 87H: Move a Block of Memory 
I ndllstry-Standard 

Parameters 

AH = 87H 
CX = The number of I6-bit words to move l8000H maximum I 
ES:SI = The pointer to a table of caller-supplied GDT descriptors 

Returns 

AH = OOH 
AH = 01H 
AH = 02H 
AH = 03H 

Indicates a successful operation 
Indicates a RAM parity error lerror cleared I 
Indicates an exception interrupt error 
Indicates an address line 20 gating failure 

This function moves a block of memory to or from the address space above 
1 Mbyte. The completion status is returned in the AH register and is also 
stored in the real-time clock's CMOS RAM at offset 3CH. Table 15-13 
describes the caller-supplied table of descriptors. 

Chapter 15 - ROM BIOS Interrupt 15H 15 - 93 



Table 15-13 Function 87H Descriptor Table 

Offset 

OOH 

08H 

10H 

Size Contents 

8 bytes All 0 

8 bytes GDT Descriptor 

8 bytes 

These values are loaded into the GDTR with the LGDT 
instruction. The ROM BIOS supplies this descriptor. It is 
the 24-bit equivalent of the entry-time contents of ES:SI. 
Thus, this structure becomes the GDT. 

Data Segment Descriptor 

After entering virtual protected mode, these values are 
loaded into the DS register. The descriptor is supplied by 
the caller. This descriptor points to the source data block. 
The data block must begin at offset 0 in this segment. 

I8H 8 bytes Extra Segment Descriptor 

After entering virtual protected mode, these values are 
loaded into the ES register. The descriptor is supplied by 
the caner. This descriptor points to the destination of the 
data block. The destination must begin at offset 0 in this 
segment. 

20H 8 bytes Code Segment Descriptor 

28H 8 bytes 

This is the code segment descriptor for the ROM BIOS 
code. The ROM BIOS supplies this descriptor. 

Stack Segment Descriptor 

This is the stack segment descriptor for the ROM BIOS 
code. This descriptor is filled in by the ROM BIOS. The 
ROM BIOS uses the caller stack segment and stack 
pointer. The caller is responsible for providing a minimum 
of 256 bytes of stack space. 

15 - 94 Chapter 15 - ROM BIOS Interrupt 15H 



Function 88H: Return Memory Size Above One 
Megabyte 
Industry-Standard 

Parameters 

AH = 88H 

Returns 

AX = Starting from address 100000H, the number of contiguous 1 Kbyte 
blocks 

This function returns the amount of contiguous memory above 1 Mbyte as de
termined during powerup. 

Chapter 15 - ROM BIOS Interrupt 15H 15 - 95 



Function 89H: Begin Virtual Mode 
Industry-Standard 

Parameters 

AH = 89H 
BH = The offset of interrupt level 1 in interrupt descriptor table (lRQO-7) 
BL = The offset of interrupt level 2 in interrupt descriptor table (lRQ8-15) 
ES:SI = The pointer to a table of caller-supplied descriptors 

Returns 

AH = OOH 
AH =.- FFH 

Indicates a successful operation 
Indicates an address line 20 gating failure 

This function provides a method of entering the virtual protected mode of the 
80286 CPU. Table 15-14 describes the caller-supplied table of descriptors. The 
caller must initialize all required tables. Within those tables are new locations 
for all 16 hardware interrupt vectors (15 plus the unused IRQ2). Control is re
turned to the caller at the instruction following the Interrupt 15H instruction 
that invoked this function. At that time, one of two conditions exists as 
follows: 

• The CPU is in virtual protected mode, all interrupts are disabled. and 
the registers are initialized according to the descriptor tables. The AH 
register contains OOH. 

The master (Bm and slave (BI.) peripheral interrupt controllers are pro
grammed according to the descriptor tables pointed to by the BH and 
BL registers. Both peripheral-interrupt-controller mask registers contain 
FFH. That is, all interrupt inputs are disabled. The peripheral interrupt 
controllers are initialized to the following states: 

Cascade mode is enabled 

Slave identification equals 02H 

Slave interrupts on IRQ2 

Vector interval equals 8 

Edge-triggered mode is enabled 

8086 mode is enabled 

Normal EOI mode is enabled 

Nonbuffered and not special-fully-nested modes are established 

Interrupt descriptors pointed to by BH and BL are loaded into the 
respective ICW2 registers 

15 - 96 Chapter 15 - ROM BIOS Interrupt 15H 



• The CPU is in real mode and the registers are unchanged (except AH). 
The interrupt structure is the same as it was before the function was 
invoked. The AH register contains FFH, which indicates a failure in 
gating address line 20. The calling routine must be prepared to recover 
from this error condition. 

Table 15-14 Function 89H Descriptor Table 

Offset 

OOH 

08H 

10H 

18H 

20H 

28H 

30H 

38H 

Size 

8 bytes 

8 bytes 

8 bytes 

8 bytes 

8 bytes 

8 bytes 

8 bytes 

8 bytes 

Contents 

All 0 

GOT Descriptor 

This caller-supplied descriptor is loaded into the GDTR 
with a LGDT instruction. 

IDT Descriptor 

This caller-supplied descriptor is loaded into the IDTR 
with a LIDT instruction 

Data Segment Descriptor 

This caller-supplied descriptor is loaded into the DS 
register. 

Extra Segment Descriptor 

This caller-supplied descriptor is loaded into the ES 
register. 

Stack Segment Descriptor 

This caller-supplied descriptor is loaded into the SS 
register. 

Code Segment Descriptor 

This caller-supplied descriptor is for the code that receives 
control at the successful conclusion of this function. 

Code Segment Descriptor 

This descriptor is supplied by the ROM BIOS and is used 
by the ROM BIOS while it operates in virtual protected 
mode. 

Chapter 15 - ROM BIOS Interrupt 15H 15 - 97 



Function 90H: Device· Is Busy 
Industry-Standard 

Parameters 

AH = 90H 

Returns 

AH = Undefined 
CF = 0 

This function is just a hook. It only returns the indicated values. 

Function 91H: Interrupt Completion Handler 
Industry-Standard 

Parameters 

AH = 91H 

Returns 

AH = Undefined 
CF = 0 

This function is just a hook. It only returns the indicated values. 

15 - 98 Chapter 15 - ROM BIOS Interrupt 15H 



Function DOH: Return DIGITAL Configuration Word 
DIGITAL Extension 

Parameters 

AH = DOH 

Returns 

AH = 86H 
CF = 1 
BX = The DIGITAL configuration word 

This function returns the DIGITAL-unique hardware configuration information 
in the BX register. The BX register has the following bit definitions: 

Bit Description 

15 Unused 

14 Modem option or COM2 present 

13-10 Hard disk type 
0000 = There is no hard disk 
0001 = The hard disk is an RD xx type drive 
0010-1110 = Reserved 
1111 = Unknown 

9 Hard disk controller present 
o = No hard disk controller 
1 = Hard disk controller present 

8 Expansion box 
o = No expansion box (no battery) 
1 = Expansion box present (implies battery present) 

7 -5 Video type 
000 = An industry-standard monochrome adapter 
001 = An industry-standard color graphic adapter 
010 = The V AXmate graphic video system 
011-111 = Reserved 

Chapter 15 - ROM BIOS Interrupt 15H 15 - 99 



Bit Description (DIGITAL Configuration Word· cont.) 

4 LK250 keyboard 
o = LK250 keyboard not present 
1 = LK250 keyboard present 

3·2 Diskette drive type (drive 1) 
00 = Not present 
01 = RX31 (48-tpi drive) 
10 = RX33 (96-tpi high capacity drive) 
11 = Reserved 

1-0 Diskette drive type (drive 0) 
00 = Not present 
01 = RX31 (48-tpi drive) 
10 = RX33 (96-tpi high capacity drive) 
11 = Reserved 

15 - 100 Chapter 15 . ROM BIOS Interrupt 15H 



Interrupt I6H: Keyboard Input 
Software Interrupt - Industry-Standard with DIGITAL Extensions 

This interrupt provides an interface to the LK250 keyboard. In addition to the 
industry-standard functions, it provides the following enhanced capabilities: 

• Increase the size of the keyboard buffer 
• Determine the number of characters in the keyboard buffer 
• Real-time key notification 
• Custom key mapping 
• Selective disabling of various key conversion processes 

Interrupt I6H supports the following functions: 

Function 

OOH 
OIH 
02H 
DOH 
DIH 
D2H 
D3H 
D4H 
D5H 
D6H 

Description 

Keyboard Input 
Keyboard Status 
Keyboard State 
Key Notification 
Character Count 
Keyboard Buffer 
Extended Codes And Functions 
Request Keyboard ID 
Send To Keyboard 
Keyboard Table Pointers 

DIGITAL Extended 

No 
No 
No 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

Chapter 15 - ROM BIOS Interrupt 16H 15 - 101 



Table of Returned Scan Codes 
Table 15-15 lists the scan codes returned for various conditions. The columns 
are marked as follows: 

• The column marked "Key Pos" refers to the key positions shown in 
Figure 15-1. 

• The column marked "D" indicates the scan code when a key is 
pressed. 

• The column marked "R" indicates the scan code when a key is 
released. 

• The columns marked" A" indicate the ASCII key value. 

• The columns marked "S" indicate the scan code. 

The symbol - indicates an invalid code that is ignored in the conversion 
process. 

A *1 after an entry indicates that it is only available when DIGITAL extended 
codes are in effect and combination keys are disabled. 

A *2 after an entry indicates that it is only available when DIGITAL extended 
codes are in effect and NumLock, Insert, and Scrl Lock are disabled. 

A *3 after an entry indicates that it is only available when DIGITAL extended 
codes are in effect. 

A *4 after an entry indicates that it is only available when Compose key pass 
through is in effect. 

15 - 102 Chapter 15 - ROM BIOS Interrupt 16H 



LEO LEO LED LEO 

~ .... 
(JQ 
~ 

1 2 3 4 

0000 
"'t 
('I) -C":l 9'-=- -I» 

[Gll1G121G131G141 IG9-~GOO [G01[GO~G03] I G051 G06 1 G071 G08IGO~ [G151 -G;~ [G201 G2-11 G2~ G23] 

"Q 
t"" .... 

('I) 
~ "'t 
~ - 01 

01 Q 

E16 E17 E18 E20 E21 E22 E23 

~ 
~ 
~ 0 a-s: 0 
I» 

t7:I "'t 
0--0 t"" 

In I» 
'< - 0 ::: ~ .... .... 

('I) 

Cgg 

016 017 018J 

C17 

1816 817 818l 

020 021 022 023 

C20 C21 C22 C23 

820 821 822 
A23 

A20 A22 
L-_______ --- --

LJ-1310 

"'t 
"'t 
~ 

"Q .... 
.-. 
~ 

== 
.-. 
01 

.-. 
Q 
c..:l 



Table 15-15 Keyboard Scan Codes Returned by the ROM BIOS 

Key Scan Alt 
Pos Code 

DR AS 

E20 01 81 
EOl 02 82 00 78 
E02 03 83 00 79 
E03 04 84 00 7A 
E04 06 86 00 7B 

E06 06 86 00 7C 
E06 07 87 00 70 
E07 08 88 00 7E 
E08 09 89 00 7F 
E09 OA 8A 00 80 

El0 OB 8B 00 81 
Ell OC 8C 00 82 
E12 00 80 00 83 
E13 OE 8E 
000 OF 8F 

001 10 90 00 10 
002 11 91 00 11 
003 12 92 00 12 
004 13 93 00 13 
006 14 94 00 14 

006 16 96 00 16 
007 16 96 00 16 
008 17 97 00 17 
009 18 98 00 18 
010 19 99 00 19 

011 lA 9A 
012 lB 9B 
C13 lC 9C 
C99 10 90 
COllE 9E 00 lE 

Lock 

AS 

lB 01 
31 02 
32 03 
33 04 
34 06 

35 06 
36 07 
37 08 
38 09 
39 OA 

30 OB 
20 OC 
30 00 
08 OE 
09 OF 

61 10 
57 11 
46 12 
62 13 
54 14 

59 16 
55 16 
49 17 
4F 18 
50 19 

5B lA 
50 lB 
00 lC 

41 lE 

Ctrl 

AS 

lB 01 

00 03 

lE 07 

lF OC 

7F OE 

11 10 
17 11 
05 12 
12 13 
14 14 

19 15 
15 16 
09 17 
OF 18 
10 19 

lB lA 
10 lB 
OA lC 

01 lE 

Normal Num 
Lock 

AS AS 

lB 01 
31 02 
32 03 
33 04 
34 06 

35 06 
36 07 
37 08 
38 09 
39 OA 

30 OB 
20 OC 
30 00 
08 OE 
09 OF 

71 10 
7711 
65 12 
72 13 
74 14 

79 15 
75 16 
69 17 
6F 18 
70 19 

5B lA 
50 lB 
00 lC 

61 lE 

lB 01 
31 02 
32 03 
33 04 
34 05 

35 06 
36 07 
37 08 
38 09 
39 OA 

30 OB 
20 OC 
30 00 
08 OE 
09 OF 

71 10 
7711 
65 12 
72 13 
74 14 

79 15 
75 16 
69 17 
6F 18 
70 19 

6B lA 
50 lB 
00 lC 

61 lE 

15 - 104 Chapter 15 - ROM BIOS Interrupt 16H 

Shift 

AS 

lB 01 
21 02 
40 03 
23 04 
24 05 

26 06 
5E 07 
26 08 
2A 09 
28 OA 

29 OB 
5F OC 
2B 00 
08 OE 
00 OF 

51 10 
57 11 
45 12 
62 13 
54 14 

59 15 
55 16 
49 17 
4F 18 
50 19 

7B lA 
70 lB 
00 lC 

41 lE 



Table 15·15 Keyboard Scan Codes Returned by the ROM BIOS (cont.) 

Key Scan Alt Lock Ctrl Normal Num Shift 
Pos Code Lock 

DR AS AS AS AS AS AS 

CO2 IF 9F 00 IF 53 IF 13 IF 73 IF 73 IF 53 IF 
C03 20 AO 00 20 44 20 04 20 64 20 64 20 44 20 
C04 21 Al 00 21 46 21 06 21 66 21 66 21 46 21 
C05 22 A2 00 22 47 22 07 22 67 22 67 22 47 22 
C06 23 A3 00 23 48 23 08 23 68 23 68 23 48 23 

C07 24 A4 00 24 4A 24 OA 24 6A 24 6A 24 4A 24 
C08 25 A5 00 25 4B 25 OB 25 6B 25 6B 25 4B 25 
C09 26 A6 00 26 4C 26 OC 26 6C 26 6C 26 4C 26 
CI0 27 A7 3B 27 3B 27 3B 27 3A 27 
C11 28 A8 27 28 27 28 27 28 22 28 

BOO 29 A9 60 29 60 29 60 29 7E 29 
B99 2A AA 
C12 2B AB 5C 2B lC 2B SC 2B 5C 2B 7C 2B 
BOI 2C AC 00 2C 5A 2C lA 2C 7A 2C 7A 2C 5A 2C 
B02 20 AO 00 20 58 20 18 20 78 20 78 20 58 20 

B03 2E AE 00 2E 43 2E 03 2E 63 2E 63 2E 43 2E 
B04 2F AF 00 2F 56 2F 16 2F 76 2F 76 2F 56 2F 
B05 30 BO 00 30 42 30 02 30 62 30 62 30 42 30 
B06 31 Bl 00 31 4E 31 OE 31 6E 31 6E 31 4E 31 
B07 32 B2 00 32 40 32 00 32 60 32 60 32 40 32 

B08 33 B3 2C 33 2C 33 2C 33 3C 33 
B09 34 B4 2E 34 2E 34 2E 34 3E 34 
BI0 35 BS 2F 35 2F 35 2F 35 3F 35 
B11 36 B6 
E23 37 B7 2A 37 00 72 2A 37 2A 37 2A 37 *1 

A99 38 B8 
AOI 39 B9 20 39 20 39 20 39 20 39 20 39 20 39 
COO 3A BA 
G99 3B BB 00 68 00 3B 00 5E 00 3B 00 3B 00 54 
GOO 3C BC 00 69 00 3C 005F 00 3C 00 3C 00 55 

Chapter 15 . ROM BIOS Interrupt 16H 15 - 105 



Table 15-15 Keyboard Scan Codes Returned by the ROM BIOS (cont.~ 

Key Scan Alt Lock Ctrl Normal Num Shift 
Pos Code Lock 

DR AS AS AS AS AS AS 

GOl 30 BO 00 6A 00 30 00 60 00 30 00 30 00 56 
G02 3E BE 00 6B 00 3E 00 61 00 3E 00 3E 00 57 
G03 3F BF 00 6C 00 3F 00 62 00 3F 00 3F 00 58 
G05 40 CO 00 60 00 40 00 63 00 40 00 40 00 59 
G06 41 Cl 00 6E 00 41 00 64 00 41 00 41 00 5A 

G07 42 C2 00 6F 00 42 00 65 00 42 00 42 00 5B 
G08 43 C3 00 70 00 43 00 66 00 43 00 43 00 5C 
G09 44 C4 00 71 00 44 00 67 00 44 00 44 00 5D 
E21 45 C5 00 45 *2 00 45 *2 00 45 *2 
E22 46 C6 00 46 *2 00 46 *2 00 46 *2 

020 47 C7 00 47 00 77 00 47 37 47 37 47 
021 48 C8 00 48 00 48 38 48 38 48 
D22 49 C9 00 49 00 84 00 49 39 49 39 49 
D23 4A CA 2D 4A 2D 4A 2D 4A 20 4A 
C20 4B CB 00 4B 00 73 00 4B 34 4B 34 4B 

C21 4C CC 00 4C *3 00 4C *3 35 4C 35 4C 
C22 4D CO 00 40 00 74 00 40 36 40 36 40 
C23 4E CE 2B 4E 2B 4E 2B 4E 2B 4E 
B20 4F CF 00 4F 00 75 00 4F 31 4F 31 4F 
B21 50 DO 00 50 00 50 32 50 32 50 

B22 51 Dl 00 51 00 76 00 51 33 51 33 51 
A20 52 02 00 52 00 52 30 52 30 52 
A22 53 03 00 53 00 53 2E 53 2E 53 
G23 54 04 00 98 00 BO 00 98 00 98 00 A4 
E16 55 05 00 85 00 85 00 85 00 85 

E17 56 D6 00 86 00 C3 00 86 00 86 00 86 
E18 57 07 00 87 00 Cl 00 87 00 87 00 87 
016 58 D8 00 88 00 88 00 88 00 88 
D17 59 D9 00 89 00 C4 00 89 00 89 00 89 
D18 5A DA 00 8A 00 C2 00 8A 00 8A 00 8A 

15 - 106 Chapter 15 - ROM BIOS Interrupt 16H 



Table 15-15 Keyboard Scan Codes Returned by the ROM BIOS (cont.l 

Key Scan Alt Lock Ctrl Normal Num Shift 
Pos Code Lock 

DR AS AS AS A S AS AS 

C17 5B OB 00 BB 00 BB 00 BB 00 BB 
B16 5C OC 00 BC 00 BF 00 BC 00 BC 00 BC 
B1B 50 00 00 BO 00 CO 00 BO 00 BO 00 BO 
B17 5E OE 00 BE 00 BE 00 BE 00 BE 
Gll 5F OF 00 B3 00 BF 00 A7 00 BF 00 BF 00 9B 

G12 60 EO 00 B4 00 90 00 AB 00 90 00 90 00 9C 
G13 61 El 00 B5 00 91 00 A9 00 91 00 91 00 90 
G14 62 E2 00 B6 00 92 00 AA 00 92 00 92 00 9E 
G15 63 E3 00 B7 00 93 00 AB 00 93 00 93 00 9F 
G16 64 E4 00 BB 00 94 00 AC 00 94 00 94 00 AO 

G20 65 E5 00 B9 00 95 00 AO 00 95 00 95 00 Al 
G21 66 E6 00 BA 00 96 00 AE 00 96 00 96 00 A2 
G22 67 E7 00 BB 00 97 00 AF 00 97 00 97 00 A3 
EOO 6B EB 00 BO *4 00 BO *4 00 BO *4 00 BO *4 00 BO *4 00 BO *4 
A23 69 E9 00 BE 00 9A OA B2 00 9A 00 9A 00 A6 

Combination Keys 
When detected by the ROM BIOS, certain key combinations invoke special 
functions. Detection of these key combinations occurs after key stroke notifica
tion (see function DOH) and before key buffering notification (see function 
DOH). If detected and acted upon (see function D3Hl, these key combinations 
are not stored in the keyboard buffer. 

System Reset 
The ROM BIOS recognizes the key combination CtrlfAltfDel as a system reset. 
When detected, interrupt 19H (Bootstrap) is executed. 

System Request Key (Sys Req) 
The ROM BIOS recognizes the key combination AltfF20 as the system request 
key. When detected, interrupt 15H function 85H is executed. 

The F20 key is also the Sys Req key, and sends the Sys Req key scan code. 
However, the system request function is executed only for the AltfF20 key 
combination. 

Chapter 15 - ROM BIOS Interrupt 16H 15 - 107 



Extended Self-test 
The ROM BIOS recognizes the key combination 
CtrllAlt/Home as the extended self-test key. When detected, the ROM BIOS 
invokes the extended self-test diagnostics. 

Break 
The ROM BIOS recognizes the key combination CtrllBreak as break. When 
detected. the ROM BIOS stores OOH in the keyboard buffer and executes inter
rupt 1BH. 

Pause 
The ROM BIOS recognizes the key combination CtrllNumLock as a system 
pause. When detected, all non interrupt driven tasks are suspended. The tasks 
are resumed by pressing any key except the following: 

• NumLock 
• Left-Shift 
• Right-Shift 
• Ctrl 
• Alt 
• Lock 
• System Request IAlt/F20) 
• Insert 

Print Screen 
The ROM BIOS recognizes the key combination Shift/Prt Sc as print screen. 
When detected, interrupt 05H is executed. 

Automatic LED Control 
The keyboard state can be changed by some functions and by user interaction. 
Therefore, during each keyboard function call, the ROM BIOS checks the key
board state and updates the state of the LK250 LED indicators. Applications 
do not have to maintain the LK250 LED indicators. 

15 - 108 Chapter 15 - ROM BIOS Interrupt 16H 



Function OOH: Keyboard Input 
Industry-Standard 

Parameters 

AH = OOH 

Returns 

AH = The scan code 
AL = The ASCII key value 

This function returns the next available character from the keyboard buffer. 
This function does not return until it has a character. 

Function OlH: Keyboard Status 
Industry-Standard 

Parameters 

AH = OIH 

Returns 

ZF = 1 The keyboard buffer is empty 
ZF = 0 One or more characters in the keyboard buffer 

AH = The scan code (remains in buffer) 
AL = The ASCII key value (remains in buffer} 

This function returns the status of the keyboard buffer. On return, ZF indicates 
the state of the buffer. If ZF is 1, the buffer is empty. If ZF is 0, the buffer 
contains one or more characters, and the next available character is returned 
(AH = scan code, AL = ASCII key value). The character remains in the key
board buffer. That is, a subsequent function OOH call extracts the same scan 
code and ASCII key value. 

Chapter 15 - ROM BIOS Interrupt 16H 15 - 109 



Function 02H: Keyboard State 
1 ndllstry-Standard 

Parameters 

AH = 02H 

Returns 

AL = The state of the modifier keys (set bit indicates the state is true) 

Bit 7 - Insert 
Bit 6 - Lock 
Bit 5 - NumLock 
Bit 4 - Scrol Lock 
Bit 3 - Alternate 
Bit 2 - Control 
Bit 1 - Left Shift 
Bit 0 - Right Shift 

The function returns, in the AL register. the current state of the keyboard. A 
set (1) bit indicates that the corresponding state is true. 

15 - 110 Chapter 15 . ROM BIOS Interrupt I6H 



Function DOH: Key Notification 
DIGITAL Extension 

Parameters 

AH = DOH 

AL = OOH 

AL = 01H 

AL = 02H 

AL = 81H 

AL = 82H 

AL = FEH 

AL = FFH 

Returns 

Disable key stroke and keyboard buffer notification 

Disable key stroke notification 

Disable keyboard buffer notification 

Return the pointer to the key stroke service routine in ES:BX 

Return the pointer to the keyboard buffer service routine in 
ES:BX 

Enable keyboard buffer notification 

ES:BX = The address of the keyboard buffer service routine 

Enable key stroke notification 

ES:BX = The address of the key stroke service routine 

ES:BX = OOOO:OOOOH There is no active service routine {AL = 81H or 
AL = 82HI 

ES:BX = The pointer to the active service routine {AL = 81H or 
AL = 82HI 

This function enables or disables key stroke or key buffering notification. 

The service routines must preserve all registers except the AX and must use a 
far return to exit. 

To determine if key stroke or keyboard buffer notification is in use, execute 
function DOH with AL = 81H or AL = 82H respectively. If the service routine 
is active, the returned ES:BX pair contains a pointer to the service routine. 
Otherwise, the returned ES:BX pair contains OOOO:OOOOH. 

Chapter 15 - ROM BIOS Interrupt 16H 15 - 111 



Key Stroke Notification Enabled 
Key Stroke Service Routine Parameters 

AH = The keyboard state as defined in function 02H 
AL = The scan code 

Keystroke Service Routine Returns 

AH = F AH Keystroke should be ignored 

AL = The scan code (original or revised) 
AH = The keyboard state (original or revised) 

The key stroke service routine is called each time a key is depressed or 
released. 

On return from the service routine, the ROM BIOS examines the contents of 
the AL register. If the AL register contains FAH, the keystroke is ignored. 
Otherwise, the scan code in AL and the keyboard state in AH are treated as 
though the ROM BIOS had just established their values. Thus, an application 
can trap keys or map their values. 

15 - 112 Chapter 15 . ROM BIOS Interrupt 16H 



Key Buffering Notification Enabled 

Key Stroke Service Routine Parameters 

AH = The scan code 
AL = The ASCII key value 
BL = The keyboard state as defined in function 02H 
ZF = 0 

Keystroke Service Routine Returns 

ZF = 1 Keystroke ignored Inothing stored in keyboard buffer) 
BL = The keyboard state (original or revised) 

ZF = 0 The scan code in AH stored in keyboard buffer 
BL = The keyboard state loriginal or revised) 
AH = The scan code (original or revised) 
AL = The ASCII code (original or revised) 

The key buffering service routine is called immediately before the character is 
placed in the keyboard buffer. 

On return from the service routine. the ROM BIOS internal keyboard state is 
updated with the the contents of BL. The ROM BIOS then examines ZF. If ZF 
is set (1), the code returned in AX is ignored and is not stored in the keyboard 
buffer. If ZF is set (0), the code returned in AX is stored in the keyboard 
buffer. 

Chapter 15 - ROM BIOS Interrupt 16H 15 - 113 



Function DiH: Character Count 
DIGITAL Extension 

Parameters 

AH = DIH 

Returns 

AX = The number of characters in the keyboard buffer 

This function returns the number of characters remaining in the keyboard 
buffer. The maximum value that can be returned is the keyboard buffer size 
minus one. The default keyboard buffer is 16 characters long. However, the 
size of the buffer is not fixed. Function D2H increases or resets the size of the 
buffer. 

15 - 114 Chapter 15 - ROM BIOS Interrupt 16H 



Function D2H: Keyboard Buffer 
DIGITAL Extension 

Parameters 

AH = D2H 

AL = OOH 
AL = FFH 

Restore the keyboard buffer to the default location and size 
Establish a new keyboard buffer as defined by ES:BX and CX 

CX = The new buffer size 
ES:BX = The pointer to start of new buffer 

Returns 

Nothing 

This function installs a new keyboard buffer or restores the default 
I6-character keyboard buffer. 

When a keyboard buffer contains one entry less than its size, the keyboard 
buffer is full. To calculate the CX register value, add one to the desired capac
ity. For example, when the default I6-character keyboard buffer contains 15 
characters, it is full. Each entry in the keyboard buffer requires 2 bytes, 1 for 
the scan code and 1 for the ASCII key value. To calculate the physical size of 
the buffer, double the value in the CX register. 

Parameter values are not checked. Invalid or illogical buffer assignments cause 
unpredictable results. For example, do not use a buffer size of zero or a buffer 
that wraps around the end of a segment. 

Chapter 15 - ROM BIOS Interrupt 16H 15 - 115 



Function D3H: Extended Codes And Functions 
DIGITAL Extension 

Parameters 

AH = D3H 

AL = OOH Clear all bits Idefault state) 

AL = Nonzero value IOlH-FFH) is inclusive ORed 

Bit 7 Return the current bit usage in AL register 

This bit does not remain set. To return the current bit usage on 
successive calls, bit 7 must be set for each call. 

Bit 6 Not Used 

Bit 5 Enable Compose key pass through 

Although DIGITAL extended codes are disabled, the Compose 
key is placed in the keyboard buffer. 

Bit 4 LK250 in DIGITAL extended mode 

This sends the DIGITAL extended mode command to the 
LK250, and ROM BIOS use of extended scan codes is enabled. 
Normally, the ten cursor edit pad keys return the scan codes of 
their equivalent numeric keypad keys. 

Bit 3 Disable Shift/Lock override 

When the Lock key is in effect, the Shift key does not unshift 
alphabetic keys. 

Bit 2 Disable combination keys 

This disables detection of the key combinations Shift/Prt Sc, 
Ctrl-Break, and Ctrl-NumLock. These key combinations no 
longer invoke special functions. They are treated as normal key 
sequences. The key combinations Ctrl/AitiDel and Ctrl/Alt/Home 
are not affected by this command. 

15 - 116 Chapter 15 - ROM BIOS Interrupt 168 



Parameters (Function D3H: Extended Codes and Functions· cont.) 

Bit 1 Disable Alt compose 

This disables the ability to generate any character (0 to 255) by 
holding down the Alt key and typing the decimal value on the 
numeric keypad with the keypad number keys. The keypad 
number keys are treated as normal keys. 

Bit 0 Disable keypad state keys 

Returns 

AL = OOH 
AL = 01H 
AL = 02H 

NumLock, Insert, and Scrl Lock no longer set states. Instead, 
they are treated as normal characters. That is, they are 
translated according to the translation tables and then stored in 
the keyboard buffer. 

Indicates a successful operation 
The keyboard is busy (operation failed) 
There was no keyboard acknowledge (operation failed) 

AL = The current bit usage (AL bit 7 = 1) 

This function enables or disables various scan code conversion functions. It can 
also return the current bit usage. 

Bit flags in the AL register select various options. Successive selections are 
ORed together. To clear an individual bit, clear all bits (AL = OOH) and then 
select the desired bits. 

Chapter 15 . ROM BIOS Interrupt 16H 15 - 117 



Function D4H: Request Keyboard ID 
DIGITAL Extension 

Parameters 

AH = D4H 

Returns 

AL = OOH Indicates a successful operation 

BL = The LK250 keyboard's firmware version number 

BH = OlH Industry-standard mode 
BH = 02H DIGITAL extended mode 

AL = OlH The keyboard is busy joperation failed) 

AL = 02H There was no response (operation failed) 

This function returns the LK250 keyboard identification. 

15 - 118 Chapter 15 - ROM BIOS Interrupt 16H 



Function D5H: Send to Keyboard 
DIGITAL Extension 

Parameters 

AH = D5H 
AL = The value to send 

Returns 

AL = OOH 
AL = 01H 
AL = 02H 

Indicates a successful operation 
The keyboard is busy loperation failed I 
There was no keyboard acknowledge loperation failed I 

This function sends commands or data to the LK250 keyboard. It provides only 
the means for sending. It does not regulate what is sent. For details on the 
commands or data, see Chapter 8. 

This function sends a single byte at a time. Use successive calls for multibyte 
commands or data. 

Chapter 15 . ROM BIOS Interrupt 16H 15 - 119 



Function D6H: Keyboard Table Pointers 
DIGITAL Extension 

Parameters 

AH = D6H 

AL = OOH Return the table pointer CL in ES:BX 

AL = Non-zero (set table pointer CL to ES:BX) 

CL = The table pointer to define or return 

OOH = 
01H = 
02H = 
03H = 
04H = 
05H = 
06H = 
07H = 
08H = 
09H = 
FFH = 

Normal table 
Ctrl table 
Alt table 
Shift table 
NumLock table 
Lock table 
Alt/Ctrl table 
Alt/Shift table 
Ctrllshift table 
Alphabetic table 
Set all table pointers to default value (AL = non-zero, ES:BX 
is ignored) 

ES:BX = The pointer to table 

Returns 

ES:BX = The pointer to table CL tAL = OOH) 

This function provides' control of the pointers to the tables used in the scan 
code translation process. The value of any table pointer can be set or returned. 
Because the table pointer is a double-word pointer, each table can have a differ
ent segment address. 

Under default conditions, the Alt/Ctrl and Alt/Shift table pointers point to the 
Alt table, and the Ctrl/Shift table pointer points to the Ctrl table. 

The translation tables convert a scan code into a pair of codes, a scan code and 
an ASCII key value. The table used for any given translation depends on the 
keyboard state at the time. 

15 - 120 Chapter 15 - ROM BIOS Interrupt 16H 



Keyboard Translation Table Formats And Usage 
In the following description, the term "keypad keys" refers to the keys 0 
through 9, the plus key, the minus key, and the period key located on the 
keypad. The alphabetic table determines if a key is an alphabetic character. 
Only alphabetic characters are shifted by the Lock key or unshifted by the 
combination of Lock and Shift. The rules for table usage and precedence are: 

Keys in Effect Tables Used for Tables Used for Tables Used for 
Keypad Keys Alphabetic Keys All Other Keys 

Alt Alt Alt Alt 

Alt and Ctrl Alt/Ctrl Alt/Ctrl Alt/Ctrl 

Alt and Shift Alt/Shift Alt/Shift Alt/Shift 

Ctrl Ctrl Ctrl Ctrl 

Ctrl and Shift Ctrl/Shift Ctrl/Shift Ctrl/Shift 

Shift Shift Shift Shift 

Shift and Lock NumLock Normal Shift 

Shift and Normal Shift Shift 
NumLock 

NumLock NumLock Normal Normal 

Lock Lock Lock Lock 

None Normal Normal Normal 

Except for the alphabetic and NumLock tables, the format of the table con
tents are the same. Each table has 105 entries with an entry being a 2-byte 
pair. The first byte (low byte) is the ASCII key value (function OOH returns it 
in ALI. The second byte (high byte I is the scan code (function OOH returns it in 
AHI. To find the correct entry in a table, subtract one from the scan code, 
double the result, and add that to the table pointer. 

A table entry FFFFH is interpreted as an invalid key and is ignored. In Table 
15-15, invalid keys are shown as - -. 

The NumLock table has 13 2-byte keypad entries. They are the keys 0 through 
9, the plus key, the minus key, and the period key. To find the correct entry in 
a NumLock table, subtract 47H from the scan code, double the result, and add 
that to the table pointer. 

The alphabetic table is 53 bytes in size. Each byte corresponds to one of the 
scan codes 01H (Escl through 35H (forward slash). If an entry has a value of 0, 
that key is treated as a nonalphabetic key. The Shift key and the combination 
Shift/Lock shifts nonalphabetic keys, but Lock key does not. If an entry has a 
value of FFH, that key is treated as an alphabetic key. The Shift or Lock key 

Chapter 15 - ROM BIOS Interrupt 16H 15 - 121 



shifts alphabetic keys, but the combination Shift/Lock does not. To find the 
correct entry in an alphabetic table, subtract one from the scan code and add 
the result to the table pointer. 

15 - 122 Chapter 15 - ROM BIOS Interrupt 16H 



Interrupt 17H: Printer Output 
Software Interrupt - Industry-Standard with DIGITAL Extensions 

This interrupt provides an industry-standard software interface to the parallel 
printer ports. It also supports extended functionality, such as: 

• Redirecting any parallel port output to any serial port 
• Setting or returning the printer type associated with any port 
• Setting or returning the current retry map 

In accordance with industry-standard practice, the ROM BIOS code supports 
four parallel ports, and the ROM BIOS data area maintains four base ad
dresses. However. due to the limited number of interrupt controller inputs. only 
parallel port OOH can be interrupt driven. 

Initially, parallel port OOH is redirected to serial port FFH, the integral serial 
printer port at 110 address OCAOH. Serial port FFH is interrupt driven through 
hardware interrupt vector 73H. The default conditions for the serial printer 
port are 4800 baud, 8 data bits, no parity, and I stop bit. It is also set to use 
XON/XOFF protocol and receive buffering. For additional information on the 
serial printer port, see Interrupt I4H. 

Parallel port OOH can be redirected to a physical parallel port. 

After redirecting parallel port OOH. the ROM BIOS looks for three physical 
parallel ports at 110 addresses 0378H, 03BCH, and 0278H. The first port 
found is assigned to logical parallel port OIH. The second port found is 
assigned to logical parallel port 02H. The third port found is assigned to logical 
parallel port 03H. 

The following is a list of the available functions: 

AH 

OOH 
OIH 
02H 
DOH 
DIH 
D2H 

Description 

Transmit character 
Initialize printer port 
Return port status 
Redirect parallel output 
Printer type 
Parallel Retry On Timeout 

Digital Extended 

No 
No 
No 
Yes 
Yes 
Yes 

Chapter 15 - ROM BIOS Interrupt 17H 15 - 123 



Function OOH: Transmit Character 
Industry-Standard 

Parameters 

AH = OOH 
AL = The character to transmit 
OX = The port number (OOH to 03H) 

Returns 

AH = The port status (as specified in function 02H) 

This function transmits a character to the specified printer port. It returns cur
rent port status in AH. Refer to function 02H for the bit definitions. 

If a timeout error is returned, the character was not transmitted. 

15 - 124 Chapter 15 - ROM BIOS Interrupt 17H 



Function OlH: Initialize Printer 
Industry-Standard 

Parameters 

AH = 01H 
OX = The port number (OOH to 03H) 

Returns 

AH = The port status (as specified in function 02H) 

This function initializes the specified port and associated printer. It returns cur
rent port status in AH. Refer to function 02H for the bit definitions. 

If specified port is a serial device, it is initialized to 4800 baud. 8 data bits, no 
parity. and 1 stop bit. 

Chapter 15 - ROM BIOS Interrupt 17H 15 - 125 



Function 02H: Return Printer Status 
Industry-Standard 

Parameters 

AH = 02H 
DX = The port number {OOH to 03H) 

Returns 

AH = The port status {set bits indicate condition) 

For parallel ports: 

Bit 7 . Not busy 
Bit 6 . Acknowledge 
Bit 5 . Out of paper 
Bit 4 . Selected 
Bit 3 . 110 Error 
Bit 2 . Not Used 
Bit 1 . Not Used 
Bit 0 . Time Out 

For serial ports: 

Bit 7 . Not busy, serial transmitter empty or done (or serial timeout) 
Bit 6 . Not Used 
Bit 5 . Not Used 
Bit 4 . Modem signals DSR or CTS 
Bit 3 . DSR, CTS, break, framing, parity or overrun error 
Bit 2 . Not Used 
Bit 1 . Not Used 
Bit 0 . Serial timeout 

This function returns, in the AH register, the current port and printer status. 

15 - 126 Chapter 15 . ROM BIOS Interrupt 17H 



Function DOH: Redirect Parallel Printer 
DIGITAL Extension 

Parameters 

AH = DOH 

AL = OOH 
AL = FFH 

Return the redirection map in DH and DL 
Set the redirection map according to DH and DL 

DH = Parallel device selection mask 
DL = Parallel to serial mapping assignment 

Returns 

DX = Parallel device selection mask (AL = OOH) 
DL = Parallel to serial mapping assignment (AL = OOH) 

This function redirects any of the four parallel ports to any of the four serial 
ports or the integral serial printer port FFH. 

When output is redirected to a serial port, the current operational conditions 
associated with that serial port remain in effect. For information regarding 
serial port communications protocol and signal requirements, see Interrupt 
14H. 

The DH and DL registers each have four 2-bit fields. If a 2-bit field in DB is 
set to 11 (binary). the corresponding 2-bit field in DL defines the target serial 
port. If the 2-bit field in DH is set to 00, the corresponding 2-bit field in DL 
has no meaning, and that port is set to its original parallel assignment. To 
redirect a port, read the current map, set the desired redirection bits, and set 
the new map. 

The four 2-bit fields in DH and DL are aligned as follows: 

Port Bits 

03H 7-6 
02H 5-4 
01H 3-2 
OOH 1-0 

Chapter 15 - ROM BIOS Interrupt 17H 15 - 127 



The 2-bit fields in DH are the parallel device selection masks and are defined 
as follows: 

Value 

00 
01 
10 
11 

Description 

The parallel port was not redirected 
The parallel port was redirected to the integral serial printer port 
Reserved 
The parallel port was redirected as defined in DL 

The 2-bit fields in DL are the parallel to serial mapping assignments and are 
defined as follows: 

Value Description 

00 Assigned to logical serial port 00 H 
01 Assigned to logical serial port 01H 
10 Assigned to logical serial port 02H 
11 Assigned to logical serial port 031-1 

15 - 128 Chapter 15 - ROM BIOS Interrupt 17H 



Function DIH: Printer Type 
DIGITAL Extension 

Parameters 

AH = D1H 

AL = OOH 
AL = FFH 

Returns 

Return the printer types in BX, ex, and DL 
Set the printer types according to BX, ex, and DL 

BX = Parallel printer types 
ex = Serial printer types 
DL = Printer type at serial printer port (bits 3-0) 

This function sets or returns a code that defines the type of printer attached to 
any port. This allows applications to tailor the output according to the defined 
printer type. 

This function has no effect on how the ROM BIOS handles printers. This func
tion provides a method for applications to maintain and share printer-type 
information. 

The printer types returned in the BX, ex, and DL registers are in 4-bit fields 
and aligned as follows: 

Port Bits 

03H 15-12 
02H 11-8 
01H 7-4 
OOH 3-0 

Chapter 15 - ROM BIOS Interrupt 17H 15 - 129 



The following list defines the printer type assigned to each of the possible 
values: 

Binary Value 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 

Parallel Type 

Unknown 
Industry-standard graphic 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Not used 
Not used 

Serial Type 

Unknown 
Industry-standard graphic 
LA50 
LA75 IDIGITAL model 
LA75 (Industry-standard mode) 
LN03 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Not used 
Not used 

15 - 130 Chapter 15 - ROM BIOS Interrupt 17H 



Function D2H: Parallel Port Retry 
DIGITAL Extension 

Parameters 

AH = D2H 

AL = 01H Return the current retry map in AL 

AL = Any value other than 01H is written to the retry map 

Returns 

AL = The current retry map treturn map AL = 0111) 

This function controls the ROM BIOS support of parallel port timeout errors. 
Each port is individually controlled by reading the current map and changing 
only the desired control bits. If the AL register equals 01H, the current retry 
map is returned in the AL register. Otherwise, the contents of the AL register 
are written to the retry map. Initially, all ports are set to return timeout 
errors. The retry map bit assignments are defined as follows. 

Port Bits Usage 

03H 7-6 00 = Return the timeout errors 
11 = Loop on the timeout errors 

02H 5-4 00 = Return the timeout errors 
11 = Loop on the timeout errors 

01H 3-2 00 = Return the timeout errors 
11 = Loop on the timeout errors 

OOH 1-0 00 = Return the timeout errors 
11 = Loop on the timeout errors 

Chapter 15 - ROM BIOS Interrupt 17H 15 - 131 



Interrupt ISH: Basic 
Software Interrupt - DIGITAL Extension 

Parameters 

None 

Returns 

Nothing 

The interrupt attempts to boot from the network. If that fails, interrupt 19H is 
invoked. 

NOTE 
The V AXmate workstation does not have BASIC in ROM. 

15 - 132 Chapter 15 - ROM BIOS Interrupt ISH 



Interrupt 19H: Bootstrap 
Software Interrupt - DIGITAL Extension 

Parameters 

None 

Returns 

Nothing 

NOTE 
Because this interrupt invokes other interrupts to accomplish 
the bootstrap, intercepted interrupts must be restored to their 
original values. To know when the intercepted interrupts must 
be restored, intercept Interrupt 19H. On intercepting 
Interrupt 19H, restore any intercepted interrupts {including 
Interrupt 19H) and invoke Interrupt 19H. 

Interrupt 19H has the following boot logic: 

1. Reset interrupt lEH to the default diskette table. Set the boot device to 
diskette O. Read the first sector from diskette 0 into 0000:7COOH. 

2. The contents of the boot block are examined. If the first word is OOOOH 
or the first ten words are all equal, the diskette is not considered boot
able. The boot block is not tested for AA55H in the last word. 

3. If the read is successful and the contents are correct, execute a far call to 
0000:7COOH. 

4. If the diskette is not present or the diskette is not bootable: 

a. The CMOS RAM at offset OEH is read. If bit 3 is 0, boot the hard 
disk. 

b. If there is a hard disk present, read the boot block. If the boot block 
is a valid DIGITAL boot block, read the boot flag. Otherwise, if the 
boot block is a valid industry-standard boot block, try to boot it. 

c. If the boot flag indicates boot network first or the hard disk is not 
present: 

(1) Attempt to boot from network. 

(2) If that fails and hard disk is present, attempt to boot hard disk. 

(3) If that fails, go to the start of the process and try again. 

d. If the flag indicates boot hard disk first or boot block is not a 
DIGITAL boot block: 

Chapter 15 - ROM BIOS Interrupt 19H 15 - 133 



(1) Attempt to boot from the hard disk. 

12) If that fails, attempt to boot from network. 

13) If that fails, go to the start of the process and try again. 

This process loops 22 times. If the system has not booted, it drops into a key
board loop and waits for the key combination Ctrl/Alt/Del. On receiving that 
key combination, the ROM BIOS executes Interrupt 19H and restarts the boot 
process. 

DIGITAL Hard Disk Boot Block 
The hard disk boot sector is located at cylinder 0, head 0, sector 1. It consists 
of the following: 

Offset 

0000H-019FH 

01AOH 

Description 

The boot code 

The 16-byte disk parameter table 

This table is valid only if the DIGITAL signature contains 
ODECH and bit 1 of BOOT FLAGS is set. 

0IBOH-OIB9H Reserved 

01BAH 16 flag bits lunused bits are set to 0) 
Bit 1 - If set, parameter block is valid. 
Bit 0 - If set, attempt boot from network first. 

01BCH The DIGITAL signature 

01BEH 

01FEH 

A value of ODECH indicates that the boot block contains 
valid DIGITAL data. 

The 32-word industry-standard partition table 

The industry-standard boot signature 

A value of AA55H indicates a valid boot block. 

15 - 134 Chapter 15 - ROM BIOS Interrupt 19H 



Interrupt lAH: Time-of-day 
Software Interrupt - Industry-Standard with DIGITAL Extensions 

The functions in this interrupt read and set the system clock and read or set 
the real-time clock. 

The system clock frequency is 18.20648 Hz or 1573040 ticks per day. 

The industry-standard 24-hour overflow flag is invalid if more than 48 hours 
elapse between reads. The ROM BIOS provides a days-since-read counter that 
can count up to 255 days between reads. 

NOTE 
The system clock is read or written in timer ticks (1573040 
ticks per day) and is a binary value. The real-time clock is read 
or written using time measures like month, hours, minutes, and 
seconds. However, the value is in binary coded decimal. 

NOTE 
Execution of interrupt lAH. functions OOH, OIH or DOH, clears 
the 24-hour overflow flag and the days-since-read counter. 

The following is a list of the available functions: 

AU 

OOH 
01H 
02H 
03H 
04H 
05H 
06H 
07H 
DOH 

Description 

Read the system clock 
Set the system clock 
Read the real-time clock 
Set the real-time clock 
Return the RTC date 
Set the RTC date 
Set the alarm 
Cancel the alarm 
Return the days-since-read counter 

Digital Extended 

No 
No 
No 
No 
No 
No 
No 
No 
Yes 

Chapter 15 - ROM BIOS Interrupt 1AU 15 - 135 



Function OOH: Read System Clock 
I ndllstry-Standard 

Parameters 

AH = OOH 

Returns 

AL = OOH 24-hour overflow has not occurred 
AL = 01H 24-hour overflow occurred 

CX = High-order 16 bits of elapsed-time 
OX = Low-order 16 bits of elapsed-time 

This function returns the system elapsed-time. The elapsed-time is a 32-bit 
value measured in timer ticks from the last time written. At power-up, the 
elapsed-time is set to O. 

Function OlH: Set System Clock 
Industry-Standard 

Parameters 

AH = 01H 
CX = High-order 16 bits of elapsed-time 
OX = Low-order 16 bits of elapsed-time 

Returns 

Nothing 

This function sets the system elapsed-time clock. The elapsed-time is a 32-bit 
value measured in timer ticks from the last time written. At power-up, the 
elapsed-time is set to O. 

15 - 136 Chapter 15 - ROM BIOS Interrupt lAH 



Function 02H: Read Real-Time Clock 
Industry-Standard 

Parameters 

AH = 02H 

Returns 

CH = Hours (BCD) 
CL = Minutes (BCD) 
DH = Seconds (BCD) 

This function returns the time from the real-time clock. The returned values 
are in binary coded decimal. 

NOTE 
If an expansion box is installed, the battery-backed clock main
tains the current date and time. Otherwise, the time is relative 
to the last time it was written since power-up (at power-up, the 
time is set to 0). 

Chapter 15 - ROM BIOS Interrupt 1AH 15 - 137 



Function 03H: Set Real-Time Clock 
Industry-Standard 

Parameters 

AH = 03H 
CH = Hours (BCD) 
CL = Minutes (BCD) 
DH = Seconds (BCD) 
DL = The daylight savings flag 

o = Do not use daylight savings 
1 = Use daylight savings 

Returns 

Nothing 

This function sets the real-time clock. The parameters are in binary coded 
decimal. 

Function 04H: Return RTC Date 
Industry-Standard 

Parameters 

AH = 04H 

Returns 

CH = Century (19 or 20 in BCD) 
CL = Year (00 to 99 in BCD) 
DH = Month (BCD) 
DL = Day (BCD) 

This function returns the real-time clock date. The parameters are in binary 
coded decimal. 

15 - 138 Chapter 15 - ROM BIOS Interrupt 1AH 



Function 05H: Set RTC Date 
Industry·Standard 

Parameters 

AH = 05H 
CH = Century (19 or 20 in BCD) 
CL = Year (00 to 99 in BCD) 
DH = Month (BCD) 
DL = Day (BCD) 

Returns 

Nothing 

This function sets the real·time clock date. The parameters are in binary coded 
decimal. 

Function 06H: Set Alarm 
I ndustry·Standard 

Parameters 

AH = 06H 
CH = Hours (BCD) 
CL = Minutes (BCD) 
DH = Seconds (BCD) 

Returns 

CF = 0 No previous alarm 
CF = 1 The previous alarm was not canceled, this alarm not set 

This function sets the real-time clock alarm. At the specified time of the day, 
an alarm interrupt is issued by the real-time clock. The ROM BIOS handles 
the alarm interrupt and executes interrupt 4AH. The application should set in
terrupt vector 4AH to point to the alarm service. The parameters are in binary 
coded decimal. 

Chapter 15 - ROM BIOS Interrupt 1AH 15 - 139 



Function 07H: Cancel Alarm 
Industry-Standard 

Parameters 

AH = 07H 

Returns 

Nothing 

This function cancels the real-time clock alarm. 

Function DOH: Return Days-Since-Read Counter 
DIGITAL Extension 

Parameters 

AH = DOH 

Returns 

AL = The contents of days-since-read counter 
ex = High-order 16 bits of elapsed-time 
DX = Low-order 16 bits of elapsed-time 

This function returns the contents of the days-since-read counter and the 
elapsed-time. The days-since-read counter indicates the number of 24-hour pe
riods that have passed since any of Interrupt 1AH functions OOH. 01H, or DOH 
was executed. The elapsed-time is a 32-bit value measured in timer ticks. 

This function is similar to function OOH, except that AL returns days-since-read 
instead of the 24-hour overflow flag. The 24-hour overflow flag indicates only 
that 24 hours or more have elapsed. 

Executing this function clears the 24-hour overflow flag and the days-since-read 
counter. 

15 - 140 Chapter 15 - ROM BIOS Interrupt lAH 



Interrupt IBH: Keyboard Break 
Software Interrupt - Industry-Standard 

Parameters 

None 

Returns 

Nothing 

Whenever the key combination CtrllBreak is typed. at the keyboard, the routine 
pointed to by this vector is executed by interrupt 09H. Use an IRET instruc
tion to return control to interrupt 09H. The ROM BIOS initializes this vector 
to point to a ROM BIOS IRET. 

Interrupt lCH: Timer Tick 
Software Interrupt - Industry-Standard 

Parameters 

None 

Returns 

Nothing 

When a system clock interrupt occurs, the ROM BIOS executes Interrupt 
lCH. Thus, the routine pointed to by this vector is executed. Use an IRET 
instruction to return control to the ROM BIOS. The ROM BIOS initializes this 
vector to point to a ROM BIOS IRET. For additional information, see 
Interrupt OSH. 

Chapter 15 - ROM BIOS Interrupt IBH and lCH 15 - 141 



Interrupt IDH: Video Parameters 
Pointer - Industry-Standard 

This vector points to a table, not executable code. 

This vector is not a true interrupt. This table is 16 bytes long and corresponds 
directly with the registers RO through R15 of the 6845 video controller. For 
additional information on the video controller, see Chapter 7. 

15 - 142 Chapter 15 - ROM BIOS Interrupt IBH and lCH 



Interrupt lEH: Diskette Parameter Tables 
Pointer - Industry-Standard 

This vector points to a table, not executable code. 

A diskette parameter table defines the physical characteristics of a diskette. 
The values in the table are used by the diskette driver to initialize the diskette 
controller. Table 15-16 describes the contents of a diskette parameter table. 
Each parameter in Table 15-16 is one byte long. 

The interrupt vector for interrupt 1EH points to the diskette parameter table. 
If a diskette drive does not exist, the interrupt vector for interrupt 1EH is 
reserved and undefined. 

Table 15-16 Diskette Parameter Table Description 

Offset 

OOH 

01H 

02H 

Bits 

7-4 

Description 

Step rate 

Each increase in the value of bits 7-4 decreases the step 
rate by 1 ms, so that zero equals 16 ms, one equals 15 
ms, two equals 14 ms, and so on. 

3-0 Head unload time 

7-1 

Each increase in the value of bits 3-0 increases the head 
unload time by 16 ms, so that zero equals 16 ms, one 
equals 32 ms, two equals 48 ms, and so on. 

Head load time 

Each increase in the value of bits 7-1 increases the head 
load time by 2 ms, so that zero equals 2 ms, one equals 4 
ms, two equals 6 ms, and so on. 

o Direct Memory Access {DMAI selection 

7-0 

o = Do not use DMA 
1 = Use DMA mode 

Clock ticks until motor is turned off 

Chapter 15 - ROM BIOS Interrupt 1EH 15 - 143 



Table 15-16 Diskette Parameter Table Description ~cont.} 

Offset Bits Description 

03H 7-0 Sector size 

Each increase in value doubles the sector size, so that 
zero equals 128 bytes, one equals 256 bytes, two equals 
512 bytes, and so on. The default is value is two (512 
bytes}. 

04H 7-0 Sectors per track ~8, 9. 10, or 15) 

05H 7-0 Sector gap length (1BH} 

06H 7-0 Data length (FFH) 

07H 7-0 Format gap length (54H) 

08H 7-0 Format fill byte (F6H) 

09H 7-0 Head settle time in milliseconds 

OAH 7-0 Motor start-up time in .125 second increments 

15 - 144 Chapter 15 - ROM BIOS Interrupt lEH 



Interrupt IFH: Graphics Character Table 
Pointer 
Pointer - Industry-Standard with DIGITAL Extension 

This vector points to a table, not executable code. It points to a character table 
for generation of character codes BOH through FFH. Interrupt 10H, function 
DOH extends the functionality of this pointer. If enabled, this vector points 
character table for generation of character codes OOH through FFH. 

Interrupt 40H: Revector of Interrupt 13H 
Software Interrupt - Industry-Standard 

Normally, the diskette 110 is serviced through interrupt 13H. When a hard disk 
is installed, the hard disk 110 is serviced through interrupt 13H, and the 
diskette I/O service is revectored to Interrupt 40H. This revectoring informa
tion is provided only for clarity. Always use Interrupt 13H for both diskette 
and hard disk functions. 

Chapter 15 - ROM BIOS Interrupt IFH and 40H 15 - 145 



Interrupt 4tH and 46H: Hard Disk 
Parameter Tables 
Pointer - Industry-Standard 

This vector points to a table, not executable code. 

A hard disk parameter table defines the physical characteristics of a hard disk. 
The values in the table are used by the hard disk driver to initialize the hard 
disk controller. Table 15-17 describes the contents of a hard disk parameter 
table. 

The hard disk parameter tables are located in DIGITAL private RAM. During 
the power-up sequence, the disk type is extracted from CMOS RAM. If the 
disk type is unknown, the table contains all zeros. If the disk type is one of the 
14 industry-standard types, the table is initialized from the hard disk data in 
the ROM BIOS. If the disk type is the DIGITAL extended type OFH, the 
ROM BIOS expects the boot block to contain the parameters. The ROM BIOS 
initializes the table with data extracted from the boot block. (As part of its 
initialization process, the FDISK utility writes the parameters in the boot 
block. I 

The interrupt vectors for Interrupt 41H and 46H point to the hard disk para
meter tables for hard disk 0 and hard disk 1, respectively. If hard disk 1 does 
not exist, the interrupt vector for Interrupt 46H is reserved and undefined. 

15 - 146 Chapter 15 . ROM BIOS Interrupt 41H and 46H 



Table 15-17 Hard Disk Parameter Table Description 

Offset 

OOH 

02H 

03H 

05H 

07H 

OBH 

09H 

OCH 

OEH 

OFH 

Size 

1 Word 

1 Byte 

1 Word 

1 Word 

1 Byte 

1 Byte 

3 Bytes 

1 Word 

1 Byte 

1 Byte 

Description 

Maximum number of cylinders on hard disk drive 

Maximum number of heads on hard disk drive 

Not used 

Cylinder number to start using write 
precompensation 

Not used 

Control byte sent to controller 

If bit 7 or bit 6 is set (1 I, disable retries 

If bit 3 is set (11, hard disk has more than eight 
heads 

Not used 

Landing zone 

Number of sectors per track 

Reserved for future use 

Chapter 15 - ROM BIOS Interrupt 41H and 46H 15 - 147 



Interrupt 4AH: RTC Alarm 
Software - Industry-Standard 

When a real-time clock alarm occurs. the ROM BIOS executes Interrupt 4AH. 
Thus, the routine pointed to by this vector is executed. Use an IRET instruc
tion to return control to the ROM BIOS. For additional information, see 
Interrupt 1AH (functions 06H and 07HI. 

Interrupt 70H: Real-Time Clock 
Hardware Interrupt - Industry-Standard 

Interrupt 70H provides the ROM BIOS with hardware-interrupt services for 
the real-time clock. This interrupt monitors the periodic interrupt and the 
alarm interrupt. 

Using this interrupt requires knowledge of the VAXmate hardware, the ROM 
BIOS, and the operating system. For informtion about the real-time clock, see 
Chapter 5. For information about the ROM BIOS clock services, see Interrupt 
1AH. 

Interrupt 71H: Redirect to Interrupt OAH 
Hardware Interrupt - Industry-Standard 

This interrupt redirects the IRQ9 hardware interrupt to Interrupt OAH, which 
is the old IRQ2 hardware interrupt. IRQ9 is an available interrupt input and 
Interrupt OAH is an available interrupt vector. 

15 - 148 Chapter 15 - ROM BIOS Interrupt 4AH, 70H, and 71H 



Interrupt 72H: Local Area Network 
Controller (LANCE) 
Hardware Interrupt - DIGITAL Extension 

Interrupt 72H provides the network software with hardware-interrupt services 
for the LANCE. This interrupt service provides an operation complete indica
tion from the LANCE. 

Interrupt 72H has no arguments. preserves all registers, and returns no values. 

Using this interrupt requires knowledge of the VAXmate hardware, the ROM 
BIOS, and the operating system. For more information on the LANCE, see 
Chapter 13. For more information about network I/O services, see the 
VAXmate Network Technical Reference Manual. 

Chapter 15 - ROM BIOS Interrupt 728 and 738 15 - 149 



Interrupt 73H: Serial Printer Port 
Hardware Interrupt - Industry-Standard 

Interrupt 73H provides the ROM BIOS with hardware-interrupt services for 
the asynchronous serial printer port. This interrupt service monitors the state 
of the serial communications protocol. It also transmits and receives characters 
as required. 

Interrupt 73H has no arguments, preserves all registers, and returns no values. 

Using this interrupt requires knowledge of the VAXmate hardware, the ROM 
BIOS, and the operating system. For information on the 8250A serial commu
nications device, see Chapter 9. For information about the ROM BIOS 
asynchronous communications service, see Interrupt 14H. 

Interrupt 74H: Mouse Port 
Hardware Interrupt - DIGITAL Extension 

Interrupt 74H provides the mouse driver with hardware interrupt services. 
The mouse driver interrupt handler is present only when the mouse driver has 
been loaded under MS-DOS. 

Using this interrupt requires knowledge of the VAXmate hardware. For infor
mation on the mouse, see Chapter 10. 

15 - 150 Chapter 15 - ROM BIOS Interrupt 73H and 74H 



Interrupt 75H: 80287 Error 
Hardware Interrupt - Industry-Standard 

Interrupt 75H provides MS-DOS with hardware interrupt services for 80287 
math coprocessor errors. 

Interrupt 76H: Hard Disk 
Hardware Interrupt - Industry-Standard 

Interrupt 76H provides the ROM BIOS with hardware-interrupt services for 
the hard disk controller. This interrupt service provides a operation complete 
indication from the hard disk controller. 

Interrupt 76H has no arguments, preserves all registers, and returns no values. 

Using this interrupt requires knowledge of the VAXmate hardware, the ROM 
BIOS, and the operating system. For information on the hard disk controller 
see Chapter 12. For more information about the ROM BIOS hard disk 110 
service, see Interrupts 13H, 14H, and 46H. 

Interrupt 77H: Available (IRQ15) 
Hardware Interrupt - Industry-Standard 

Interrupt 77H is available for undefined uses related to IRQ15. 

Chapter 15 - ROM BIOS Interrupt 75H, 76H and 77H 15 - 151 





Chapter 16 
Programming the V AXmate 

Under MS-DOS 

Overview 
Microsoft Disk Operating System (MS-DOS) is the operating system for micro
computers using Intel 8086 and 8088 microprocessors. An operating system, a 
program that controls the overall operation of a computer, provides an environ
ment within the computer that enables the user to easily perform operations 
such as: 

• Program execution 

• File management 

• Resource management 

• Programming 

• Device handling 

The MS-DOS operating system provides functions for commonly-used opera
tions and 110 operations that are hardware independent. Therefore, a user can 
write an application program to run under the MS-DOS operating system with
out a detailed knowledge of the computer hardware. Such a program runs on 
any computer that can run the MS-DOS operating system, as long as the com
puter has the appropriate peripherals. MS-DOS provides all the logical opera
tions necessary for writing to and reading from disk storage devices. 

Programming the V AXmate Under MS-DOS 16 - 1 



MS· DOS Operating System Versions 
The MS-DOS operating system has evolved through a number of versions. 
Microsoft's Version 3.10 is the base for DIGITAL's VAXmate Version 3.10. 
DIGITAL added many new features, modifications, and utilities to Microsoft's 
base version. Some new features are: 

• ANSI, which replaces the normal console device with an ANSI 
escape sequence parser. 

• MDRIVE, which enables a user to use RAM as a fast logical disk 
drive. 

• FDISK, which manages hard disks. 

• International support in MS·DOS Interrupt 21H Function 38H 

• FONT, which enables a user to load file-based text font sets. 

• GRAFTABL, which enables a user to load file-based graphics font 
sets. 

• GRAPHICS, which enables a user to print screen images on 
DIGITAL and industry standard printers. 

• KEYB, which enables a user to load file-based keyboard maps. 

• LCOUNTRY, which enables a user to load file-based country data 
sets. 

• SORT, which coordinates the sort set with the current font set. 

Programs written to run under IBM's DOS Version 3.10 and later will run 
under DIGITAL's version of MS-DOS. 

Programs written for the Rainbow that use only generic MS-DOS Interrupt 
21H calls and do not make ROM calls directly can be run under MS-DOS 
Version 3.10 for the VAXmate. An example is the Microsoft C Compiler and 
Linker. 

MS-DOS Version 3.10 runs only in the real mode of the 80286 processor. 

Loading MS·DOS Operating System 

MS·DOS Memory Map 
Chapter 2 contains an MS-DOS memory map. 

16- 2 Programming the VAXmate Under MS-DOS 



MS-DOS Interrupt 21H Digital Specific 
Functions 

Function 30H Get MS·DOS OEM Number 
Function 30H returns the OEM serial number in register BH. This number is 
I6H for DIGITAL's version of MS-DOS, and OOH for IBM's DOS. 

Function 38H Get/Set Country Code 
To accommodate the VAXmate's ability to load file-based character fonts and 
keyboard maps, MS-DOS saves the current font set and keyboard map in a 
text string. 

To retrieve the pointer to the data area containing the file name of the current 
font file and keyboard map, do an INT 2IH with the following values in the 
specified registers: 

Parameters 

AH = 

Returns 

DS:DX = 

3SH 
AL = 
BX = 
DS:DX = 

OFFH 
8000H 
points to a double word address that is loaded 
with the address of the beginning of the current 
country-specific table 

32-bit pointer to the MS-DOS date and time structure contain
ing the current font file and keyboard map 

After retrieving the double word pointer to the date and time structure, infor
mation about the current font file and keyboard map can be retrieved, changed 
or set. 

At offset -IAH of the date and time structure, a I4-byte buffer contains the 
name of the current keyboard file. When a new keyboard file is loaded, this 
string must be replaced with the complete file name of the newly-loaded key
board file, padded with zeros. 

Programming the VAXmate Under MS-DOS 16 - 3 



At offset -34H of the date and time structure, a 14-byte buffer contains the 
name of the current text font file. When a new font file is loaded, this string 
must be replaced with the complete file name of the newly-loaded font file, 
padded with zeros. 

Figure 16-1 shows the MS-DOS date and time structure. 

Offset Relative to Base 

-4EH 1000000000000001 Reserved for future use 

-34H ISTDoFNTOOOOOOOI Current font file 

-lAB I STDUS 0 KEYOOOOO I Current keyboard file 

DVORD Pointer 
MS-DOS Date & 
Time Structure 

OFFHI 

Figure 16-1 MS-DOS Date and Time Structure 

16 - 4 Programming the V AXmate Under MS-DOS 



Loadable MS-DOS Device Drivers 

ANSI.SYS 
ANSI.SYS is an MS-DOS loadable device driver that replaces the standard 
console device driver. An ANSI escape sequence is a series of characters (begin
ning with an escape character or keystroke) that defines the following functions 
to the MS-DOS operating system: 

• Cursor control functions 

• Erase functions 

• Set graphics rendition function 

• Set mode function 

• Reset mode function 

• Keyboard key reassignment function 

ESC is the one byte ASCII code lBH. 

The size of the MS-DOS operating system increases by the size of ANSI.SYS. 

For more information about the ANSI X3.64-l979 standard, see Information 
Systems-Codes, which is available through the Order Department of the 
American National Standards Institute, 1430 Broadway, New York, NY, 10018. 

Installing ANSI.SYS 
To install the ANSI.SYS device driver, insert the following line in a 
CONFIG.SYS file: 

DEVICE=ANSI.SYS 

Cursor Control Functions 
Cursor control functions affect the position of the cursor on the screen. Table 
16-1 contains the escape sequences to position the cursor on the screen. The # 
indicates a string of decimal digits. For example, ESC [lOA moves the cursor 
up 10 rows. Row 1 refers to the first line of the screen; row 2 refers to the 
second line of the screen, etc. 

Programming the VAXmate Under MS-DOS 16- 5 



Table 16-1 Cursor Control Functions 

Sequence Function 

ESC [#;#H This sequence moves the cursor to the specified position. The 
first # specifies the row. The second # specifies the column. The 
default value is 1. If no parameters are specified, the cursor 
moves to the upper left hand corner of the screen. Some error 
checking is done. If illegal values are specified, garbage is 
displayed on the screen. 

ESC [#A This sequence moves the cursor up one or more rows without 
changing the column position. The value of # determines the 
number of rows moved. The default value is 1. If the cursor is 
already on the top row or reaches the top row during this opera
tion, this sequence is ignored. 

ESC [#B This sequence moves the cursor down one or more rows without 
changing the column position. The value of # determines the 
number of rows moved. The default value is 1. If the cursor is 
already on the bottom row or reaches the bottom row during 
this operation, this sequence is ignored. 

ESC [#e This sequence moves the cursor forward one or more columns 
without changing the row position. The value of # determines 
the number of columns moved. The default value is 1. If the 
cursor is already in the right-most column or reaches it during 
this operation, this sequence is ignored. 

ESC [#0 This sequence moves the cursor back one or more columns with
out changing the row position. The value of # determines the 
number of columns moved. The default value is 1. If the cursor 
is already in the left-most column or reaches it during this op
eration, this sequence is ignored. 

ESC [#;#f This sequence moves the cursor to the position specified by #;#. 
The first # specifies the row number. The second # specifies the 
column. The default value for both is L If no parameters are 
specified, the cursor moves to the upper left hand corner of the 
screen. 

16 - 6 Programming the V AXmate Under MS-DOS 



Table 16-1 Cursor Control Functions (cont.~ 

Sequence Function 

ESC [#;#R This sequence reports the current cursor position through the 
standard input device. The first # specifies ~he current row. The 
second # specifies the current column. This is not a command, 
but a "Cursor Position Report." This sequence is received after 
issuing the "Device Status Report" command. 

ESC [6n This sequence is the Device Status Report. ANSI.SYS outputs 
a "Cursor Position Report" when it receives this escape 
sequence. 

ESC [s This sequence saves the current cursor position. 

ESC [u This sequence restores the cursor to the value it had when 
ANSI.SYS received the last "Save Cursor Position" escape se
quence. ESC [s is the "Save Cursor Position." 

Erase Functions 
Erase functions erase characters from part or all of the screen. Table 16-2 
contains the escape sequences to erase text from the screen. 

Table 16-2 Erase Functions 

Sequence Function 

ESC [2J This sequence erases the entire screen. The cursor moves to the 
upper left hand corner of the screen. 

ESC [K This sequence erases from the cursor to the end of the line, in
cluding the cursor position. 

Programming the V AXmate Under MS-DOS 16 - 7 



Set Graphics Rendition 
The set graphics rendition function invokes the graphics rendition specified by 
the parameters. All of the following characters are rendered according to the 
parameters until the next set graphics rendition. Table 16-3 contains the 
escape sequence and parameters to set graphics rendition. 

Table 16-3 Set Graphics Rendition Function 

Sequence Function 

ESC [#; ... ;#m Invokes the graphics rendition specified by the parameters. 

Parameter Meaning Notes 

0 All attributes off Normal white on black 

1 Bold on High intensity 

4 Underscore on Monochrome adapter only 

5 Blink on 

7 Reverse video on 

8 Canceled on 

30 Black foreground 

31 Red foreground 

32 Green foreground 

33 Yellow foreground 

34 Blue foreground 

35 Magenta foreground 

16 - 8 Programming the V AXmate Under MS-DOS 



Table 16-3 Set Graphics Rendition Function (cont.) 

Sequence Function 

Parameter Meaning Notes 

36 Cyan foreground 

37 White foreground 

40 Black background 

41 Red background 

42 Green background 

43 Yellow background 

44 Blue background 

45 Magenta background 

46 Cyan background 

47 White background 

Programming the V AXmate Under MS·DOS 16 - 9 



Set Mode Function 
The set mode function sets screen width and screen display. Table 16-4 con
tains the escape sequence and parameters to set the mode. 

Table 16·4 Set Mode Function 

Sequence Function 

ESC [= #h This sequence invokes the screen width or type specified by the 
parameter. 

ESC [?#h 

The ? and = are interchangeable in this command. 

ESC [=h assumes a parameter value of zero. 

Parameter Meaning 

o 40x25 black and white 

1 40x25 color 

2 80x25 black and white 

3 80x25 color 

4 320x200 color 

5 320x200 black and white 

6 640x200 black and white 

7 Wrap at end of line 

16 - 10 Programming the V AXmate Under MS· DOS 



Reset Mode Function 
The reset mode function resets the screen width and screen display. Table 16-5 
contains the escape sequence and parameters to reset the mode. 

Table 16-5 Reset Mode Function 

Sequence Function 

ESC [= #1 This sequence resets the screen width or type specified by the 
parameter. 

ESC [7#1 

The 7 and = are interchangeable in this command. 

ESC [= 1 assumes a parameter value of zero. 

Parameter Meaning 

o 40x25 black and white 

1 40x25 color 

2 80x25 black and white 

3 80x25 color 

4 320x200 color 

5 320x200 black and white 

6 640x200 black and white 

7 No wrap at end of line. Type past end of line is 
lost. 

Programming the V AXmate Under MS-DOS 16 - 11 



Keyboard Key Reassignment Function 
The keyboard key reassignment function intercepts a key and redefines it. 
Table 16-6 contains the escape sequence to redefine the meaning of the inter
cepted keyboard key. 

Table 16-6 Keyboard Key Reassignment Function 

Sequence 

ESC [#;#; ... #p 

ESC ["string"p 

ESC [#;"string";#;#;"string"; ... p 

Function 

The first ASCII code in the sequence 
defines which code is being mapped. 
The remaining numbers define the se
quence of ASCII codes generated when 
this key is intercepted. If the first 
code in this sequence is 0, the first 
and second codes make up an ex
tended ASCII redefinition. 

16 - 12 Programming the V AXmate Under MS-DOS 



Mouse Driver 
With the MS-DOS operating system, DIGITAL provides a mouse driver, 
MOUSE.SYS or MOUSE.COM. The mouse driver provides the following 
features: 

• Automatic tracking of motion and button events 
• Optional, automatic cursor management for text and graphic video 

modes 
• Synchronous and asynchronous handling of mouse related events 

The mouse driver provides the standard functions listed in Table 16-7 and the 
extended functions listed in Table 16-S. Assuming that the mouse driver is pre
sent in memory, executing software interrupt 33H invokes the mouse driver. 
The contents of register AX specify the desired function. The mouse functions 
are defined later in the chapter. 

Table 16-7 Standard Mouse Driver Functions 

Function 

OOOOH 
OOOlH 
0002H 
0003H 
0004H 
0005H 
0006H 
0007H 
OOOSH 
0009H 
OOOAH 
OOOBH 
OOOCH 
OOODH 
OOOEH 
OOOFH 
0010H 
0013H 

Description 

Mouse initialization 
Show cursor 
Hide cursor 
Get mouse position and button status 
Set mouse cursor position 
Get button press information 
Get button release information 
Set minimum and maximum X-axis position 
Set minimum and maximum Y-axis position 
Define graphics cursor 
Define text cursor 
Read mouse motion counters 
Define event handler 
Light pen emulation mode on 
Light pen emulation mode off 
Set mouse motion/pixel ratio 
Conditional hide cursor 
Set speed threshold 

Programming the VAXmate Under MS-DOS 16 - 13 



Table 16-8 Extended Mouse Driver Functions 

Function 

001CH 
0024H 
0025H 
0026H-002BH 
004DH 
006DH 

Description 

Get driver version 
Get configuration 
Set configuration 
Reserved 
Reserved 
Reserved 

Detecting the Mouse Driver 
To determine if the mouse driver is present in memory, load the interrupt 
vector at interrupt 51H, add OOOO:OOI0H to that memory address, and exam
ine the resulting address. If the mouse driver is present, that address and the 
following locations should contain the following text string: 

DIGITAL/LOGITECH MOUSE DRIVER V Xxx<LF> <CR> 

Where X represents the release number and xx represents the sub-release 
number. The string is terminated by a linefeed and carriage return. 

Video Support 
To display a cursor, the mouse driver logic must contain information regarding 
the video system and the available modes. Table 16-9 defines the supported 
video systems and modes. 

To provide the correct cursor at all times, the mouse driver monitors calls to 
interrupt 10H (video 110). To monitor interrupt 10H, the mouse driver inter
cepts interrupt 10H function calls. Therefore, applications that intercept inter
rupt 10H function calls must invoke the mouse driver through the previous 
interrupt vector. 

Additionally, the mouse driver guarantees consistency of the screen contents 
only if the screen is updated through interrupt 10H. Programs that write 
directly to video memory should invoke the mouse driver as follows: 

1. Before writing directly to video memory, invoke function 0002H (hide 
cursor) or function OOlOH (conditional hide cursor). 

2. After writing directly to video memory, invoke function OOOlH (show 
cursor). 

16 - 14 Programming the VAXmate Under MS-DOS 



Table 16-9 Video Systems and Modes Supported by MOUSE.SYS 

Video Mode Size DIGITAL Color Enhanced 
Video Graphics Graphics 
System Adapter Adapter 

Text Imonochrome) 40 X 25 Yes Yes Yes 
80 X 25 Yes Yes Yes 

Text Icolor) 40 X 25 Yes Yes Yes 
80 X 25 Yes Yes Yes 

Graphics 320 X 200 Yes Yes Yes 
Imonochrome) 

640 X 200 Yes Yes Yes 
640 X 350 No No Yes 
640 X 400 Yes No No 

Graphics 14-color) 320 X 200 Yes Yes Yes 
640 X 400 Yes No No 
800 X 252 Yes No No 

Graphics U6-color) 640 X 350 No No Yes 

Programming the V AXmate Under MS-DOS 16 - 15 



Function OOOOH: Mouse Initialization 
Industry-Standard 

Parameters 

AX = OOOOH 

Returns 

AX = OOOOH Mouse hardware or driver not installed 
AX = FFFFH Mouse hardware and driver installed 

BX = The number of logical buttons Isee function 25HI 

This function resets the driver and hides the mouse cursor. The hide-cursor 
count is set to -1. To display the mouse cursor, execute a show-cursor com
mand lfunction 0001Hl. 

This function also restores the following parameters to the default value: 

Parameter 

Cursor position 
Hide-cursor counter 
Graphics cursor 
Text cursor 
Interrupt call mask 
Light pen emulation 
Horizontal mouse encode count to 
pixel ratio 
Vertical mouse encode count to pixel 
ratio 
Horizontal minimum and maximum 
cursor position 
Vertical minimum and maximum 
cursor position 

Default Value 

Center of screen 
-1 Imouse cursor hidden 1 
Arrow 
Inverted box 
Disabled lequals 01 
Enabled 
8 to 8 

16 to 8 

o to 639 

o to 199 

16 - 16 Programming the VAXmate Under MS-DOS 



Function OOOlH: Show Cursor 
Industry-Standard 

Parameters 

AX = OOOlH 

Returns 

Nothing 

The show-cursor function increments a software counter. After incrementing 
the counter, the show-cursor function tests the software counter contents. If 
the software counter equals 0, the show-cursor function displays the mouse 
cursor. 

Function 0002H: Hide Cursor 
Industry-Standard 

Parameters 

AX = 0002H 

Returns 

Nothing 

The hide-cursor function disables Ihides) the mouse cursor and decrements a 
software counter. For the show-cursor command, the mouse driver displays the 
mouse cursor only if the software counter equals O. To redisplay the mouse 
cursor, execute a show-cursor command for each hide-cursor command executed 
since the mouse cursor was last visible. 

Programming the V AXmate Under MS-DOS 16 - 17 



Function 0003H: Get Mouse Position and Button Status 
Industry-Standard 

Parameters 

AX = 0003H 

Returns 

BX = Button status 

Bits 15-3 

Bit 2 

Bit 1 

Bit 0 

Always 0 

Middle button 
o = Button released 
1 = Button pressed 

Right button 
o = Button released 
1 = Button pressed 

Left button 
o = Button released 
1 = Button pressed 

ex = The horizontal cursor position 
DX = . The vertical cursor position 

The cursor position is a signed 16-bit positive value. When the cursor position 
is outside of the pixel range permitted by the current video mode or at the 
limits specified by functions 0007H and 0008H, the mouse cursor is not 
displayed. The returned cursor position is always within the pixel range per
mitted by the current video mode or the limits specified by functions 0007H 
and 0008H. 

16 - 18 Programming the V AXmate Under MS·DOS 



Function 0004H: Set Mouse Cursor Position 
I ndu,stry-Standard 

Parameters 

AX = 0004H 
ex = Desired horizontal cursor position 
OX = Desired vertical cursor position 

Returns 

Nothing 

The cursor position is a signed I6-bit positive value. Negative cursor position 
values can cause unpredictable mouse-cursor behavior. When the cursor position 
is outside of the pixel range permitted by the current video mode or at the 
limits specified by functions 0007H and OOOBH, the mouse cursor is not 
displayed. The values specified in registers ex and OX must be within the 
limits specified by functions 0007H and OOOBH. 

Programming the VAXmate Under MS-DOS 16 - 19 



Function 0005H: Get Button Press Information 
Industry-Standard 

Parameters 

AX = 0005H 
BX = Button 

o = Return status of left button 
1 = Return status of right button 
2 = Return status of middle button 

Returns 

AX = Button status 

Bits 15-3 

Bit 2 

Bit 1 

Bit 0 

Always 0 

Middle button 
o = Button released 
1 = Button pressed 

Right button 
o = Button released 
1 = Button pressed 

Left button 
o = Button released 
1 = Button pressed 

BX = The number of times the button has been pressed since its status was 
checked (in the range 0 - 32767} 

ex = The horizontal cursor position the last time the button was pressed 
OX = The vertical cursor position the last time the button was pressed 

The cursor position is a signed 16-bit positive value. When the cursor position 
is outside of the pixel range permitted by the current video mode or at the 
limits specified by functions 0007H and OOOSH, the mouse cursor is not 
displayed. The returned cursor position is always within the pixel range per
mitted by the current video mode or the limits specified by functions 0007H 
and OOOSH. 

16 - 20 Programming the VAXmate Under MS-DOS 



Function 0006H: Get Button Release Information 
Industry-Standard 

Parameters 

AX = 0006H 
BX = Button 

o = Return status of left button 
1 = Return status of right button 
2 = Return status of middle button 

Returns 

AX = Button status 

Bits 15-3 

Bit 2 

Bit 1 

Bit 0 

Always 0 

Middle button 
o = Button released 
1 = Button pressed 

Right button 
o = Button released 
1 = Button pressed 

Left button 
o = Button released 
1 = Button pressed 

BX = The number of times the button has been released since its status was 
checked (in the range 0 - 32767) 

ex = The horizontal cursor position the last time the button was released 
DX = The vertical cursor position the last time the button was released 

The cursor position is a signed 16-bit positive value. When the cursor position 
is outside of the pixel range permitted by the current video mode or at the 
limits specified by functions 0007H and 0008H, the mouse cursor is not 
displayed. The returned cursor position is always within the pixel range per
mitted by the current video mode or the limits specified by functions 0007H 
and 0008H. 

Programming the V AXmate Under MS-DOS 16 - 21 



Function 0007H: Set Minimum and Maximum X-Axis 
Position 
Industry-Standard 

Parameters 

AX = 0007H 
ex = Minimum horizontal cursor position 
OX = Maximum horizontal cursor position 

Returns 

Nothing 

The cursor position is a signed I6-bit positive value. Negative cursor position 
values can cause unpredictable mouse-cursor behavior. When the cursor position 
is outside of the pixel range permitted by the current video mode or at the 
limits specified by functions 0007H and 0008H, the mouse cursor is not 
displayed. For functions that return cursor position information, the returned 
cursor position is always within the pixel range permitted by the current video 
mode or the limits specified by functions 0007H and 0008H. 

NOTE 
When an application starts running. it is the responsibility of 
the application to set the desired horizontal and vertical limits. 
If an application changes video modes, it is the responsibility of 
the application to set the desired horizontal and vertical limits. 

If the cursor is outside the limits defined by registers ex and OX, the cursor 
is moved to a position that is at the new limit. 

16 - 22 Programming the VAXmate Under MS-DOS 



Function OOOBH: Set Minimum and Maximum Y-Axis 
Position 
Industry-Standard 

Parameters 

AX = OOOSH 
ex = Minimum vertical cursor position 
DX = Maximum vertical cursor position 

Returns 

Nothing 

The cursor position is a signed I6-bit positive value_ Negative cursor position 
values can cause unpredictable mouse-cursor behavior. When the cursor position 
is outside of the pixel range permitted by the current video mode or at the 
limits specified by functions 0007H and OOOSH, the mouse cursor is not 
displayed. For functions that return cursor position information, the returned 
cursor position is always within the pixel range permitted by the current video 
mode or the limits specified by functions 0007H and OOOSH. 

NOTE 
When an application starts running, it is the responsibility of 
the application to set the desired horizontal and vertical limits. 
If an application changes video modes, it is the responsibility of 
the application to set the desired horizontal and vertical limits. 

If the cursor is outside the limits defined by registers ex and DX, the cursor 
is moved to a position that is at the new limit. 

Programming the V AXmate Under MS-DOS 16 - 23 



Function 0009H: Define Graphics Cursor 
Industry-Standard 

Parameters 

AX = 0009H 
BX = Horizontal focal point of cursor (hot spot) 
ex = Vertical focal point of cursor (hot spot) 
DX = Pointer to the screen and cursor masks (assumes DS:DX) 

Returns 

Nothing 

The graphics cursor is defined by two arrays of bit masks called the screen 
mask and the cursor mask Each array has a fixed size of 16 words. The two 
arrays are contigous, with the cursor mask following the screen mask. The fol
lowing e structure declares storage for a graphics cursor: 

typedef struct 
{ 

unsigned int screen_mask[16]; 
unsigned int cursor_mask[16]; 

} GRAPHICS_CURSOR; 

GRAPHICS_CURSOR gc; /* ds:dx = &gc */ 

The screen mask determines which cursor mask bits are background (0 value 
screen mask bits) or foreground (1 value screen mask bits). The screen mask is 
ANDed with the screen contents. 

The cursor mask determines shape/color of the cursor. After the screen mask is 
AN.Ded with the screen contents, the cursor mask is XORed with the the 
results. 

The horizontal and vertical focal points of the cursor are signed 16-bit values in 
the range, -16 to 16. The focal point of the default cursor is the upper left 
corner of the cursor (the hot spot). 

16 - 24 Programming the VAXmate Under MS-DOS 



The following list of screen mask and cursor mask bit values define the result
ing value of the screen pixel: 

Screen Mask Bit Cursor Mask Bit Resulting Screen Pixel 

o 0 
o 1 
1 0 
1 1 

o 
1 
Unchanged 
Inverted 

Programming the VAXmate Under MS-DOS 16 - 26 



Function OOOAH: Define Text Cusor 
Industry-Standard 

Parameters 

AX = OOOAH 
BX = Select hardware or software text cursor 

o = Software text cursor selected 

Returns 

Nothing 

CX = Screen mask 
OX = Cursor mask 

1 = Hardware text cursor selected 
CX = Start scan line 
OX = End scan line 

The mouse driver supports two kinds of text cursor, a hardware cursor and a 
software cursor. The hardware cursor is the same as the cursor defined in in
terrupt 10H (video 1101. The software cursor is a character or character attrib
ute that modifies the character cell at the cursor location. The software cursor 
is defined by the screen mask and cursor mask in the CX and OX registers 
respectively. The format of the two masks is as follows: 

Bit 

15 

14-12 

11 

10-8 

7-0 

Description 

Blink 
o = Nonblinking character 
1 = Blinking character 

Background color 

Intensity 
o = Medium intensity 
1 = High intensity 

Foreground color 

Character code 

After the screen mask is ANDed with the screen contents, the cursor mask is 
XORed with the results. 

16 - 26 Programming the VAXmate Under MS-DOS 



Function OOOBH: Read Mouse Motion Counters 
Industry-Standard 

Parameters 

AX = OOOBH 

Returns 

CX = Horizontal count 
DX = Vertical count 

This function returns the incremental distance traveled by the mouse since the 
last time this function was called. After this function loads the software 
counters into registers CX and DX, it clears the software counters. 

The unit of measurement for the values in registers ex and DX are mouse 
encoder counts and are in the range -32768 to 32767 (overflow is ignored). A 
positive horizontal count indicates motion to the right. A positive vertical count 
indicates motion towards the bottom of the screen. 

The mouse encoder resolution is 200 counts per inch of travel. For additional 
information about the mouse, see Chapter 10. 

Programming the VAXmate Under MS-DOS 16 - 27 



Function OOOCH: Define Event Handler 
Industry-Standard 

Parameters 

AX = OOOCH 
CX = OOOOH Disables mouse event handling 
CX = Event mask Specifies which events invoke the event handler 
ES:DX = Address of the event handler 

Returns 

Nothing 

This function enables or disables application handling of specific events. If one 
or more bits are set in CX, event handling is enabled. The set bits in CX (call 
mask) specify which events invoke the event handler. The CX bits have the 
following meaning: 

Bit Event that Invokes the Event Handler 

15-7 Not used 

6 Releasing the middle button 

5 Pressing the middle button 

4 Releasing the right button 

3 Pressing the right button 

2 Releasing the left button 

1 Pressing the left button 

o Change in cursor position 

16 - 28 Programming the V AXmate Under MS-DOS 



When an enabled event occurs, the mouse driver calls the event handler with 
the following parameters: 

Register 

AX 

BX 

CX 

DX 

Contents 

Event mask 

The event mask has the same bit assignments as the event 
mask in CX. However, A set bit in AX indicates that the event 
occurred. 

Button status tsame as defined in function 0003H) 

Horizontal cursor position tsame as defined in function 0003H) 

Vertical cursor position tsame as defined in function 0003H) 

The returned cursor position is always within the pixel range permitted by the 
current video mode or the limits specified by functions 0007H and OOOBH. 

To return control to the mouse driver, the event handler must use a far return. 

Programming the V AXmate Under MS·DOS 16 - 29 



Function OOODH: Enable Light-Pen Emulation 
Industry-Standard 

Parameters 

AX = OOODH 

Returns 

Nothing 

This function enables light-pen emulation. When light-pen emulation is enabled, 
calls to the interrupt 10H ~video 110) light-pen functions return the position of 
the mouse cursor at the last pen down. Pressing both the left and right mouse 
buttons simulates pressing the light pen button. When the left and right mouse 
buttons are released, the light pen is off the screen. 

Function OOOEH: Disable Light-Pen Emulation 
Industry-Standard 

Parameters 

AX = OOOEH 

Returns 

Nothing 

This function disables light-pen emulation. When light-pen emulation is 
disabled, calls to interrupt 10H ~video 1/0) light-pen functions return only infor
mation about the light pen. 

NOTE 
The DIGITAL video system does not support the use of light 
pens. To use a light pen, an industry-standard video adapter 
that supports light pens must be installed. For additional infor
mation about the ROM BIOS light-pen functions, see the 
description of interrupt 10H ~video 110) in Chapter 15. 

16 - 30 Programming the V AXmate Under MS-DOS 



Function OOOFH: Set Mouse Motion/Pixel Ratio 
I ndllstry-Standard 

Parameters 

AX = OOOFH 
ex = The number of encoder counts of horizontal mouse motion to 8 pixels 

of horizontal cursor motion (range equals 1 - 32767). 
DX = The number of encoder counts of vertical mouse motion to 8 pixels of 

vertical cursor motion (range equals 1 - 32767). 

Returns 

Nothing 

This function defines the ratio of mouse motion to cursor motion. The default 
ratio (see function OOOOH) is 8 encoder counts for 8 pixels of horizontal motion 
and 16 encoder counts for 8 pixels of vertical motion. The default ratio requires 
approximately 3.2 inches of mouse motion to move the cursor from border to 
border (horizontally or vertically). 

Function OOlOH: Conditional Hide Cursor 
Industry-Standard 

Parameters 

AX = 0010H 
ex = Left margin (smallest x-axis screen coordinate) 
DX = Top margin (smallest y-axis screen coordinate) 
SI = Right margin (largest x-axis screen coordinate) 
DI = Bottom margin (largest y-axis screen coordinate) 

Returns 

Nothing 

This function defines a rectangular protected region on the screen. If the 
mouse cursor enters this region, the mouse cursor is disabled automatically. 
Executing function 0001H (show cursor) releases the protected region and 
displays the cursor. Before screen updates are performed, call this function or 
function 0002H (hide cursor). 

Programming the VAXmate Under MS-DOS 16 - 31 



Function 0013H: Set Speed Threshold 
Industry-Standard 

Parameters 

AX = 0013H 
DX = Speed threshold 

Returns 

Nothing 

This function sets a mouse speed threshold. When the speed of the mouse 
motion exceeds the specified threshold, the ratio of cursor motion to mouse 
motion is doubled. The speed threshold is measured in encoder counts per 
second. Function OOOOH initializes the speed threshold to 64 encoder counts 
per second. 

For additional information about the mouse, see Chapter 10 Mouse 
Information. 

Function 001 CH: Get Driver Version 
DIGITAL Extension 

Parameters 

AX = 001CH 

Returns 

BX = Version code 
CX = Release number 

This function returns the version code and release number of the mouse driver. 
Each register returns two ASCII codes. The BX register returns 'SS' (serial 
standard) or 'DE' (DIGITAL). The CX register returns two ASCII digits that 
represent the release number. For example, '21' equals release number 2.10. 

16 - 32 Programming the V AXmate Under MS-DOS 



Function 0024H: Get Configuration 
DIGITAL Extension 

Parameters 

AX = 0024H 
ES:DX = Address of the configuration table 

Returns 

AX = FFFFH Successful operation (any other value indicates failure) 
Number of physical buttons updated 
Number of logical buttons updated 

If the logical number of buttons equals 2, the mouse driver translates the 
middle button as a combination of the left and right buttons. The table pointed 
to by ES:DX is 32 bytes long and has the following organization: 

Offset Size Description 

OOOOH 12 bytes Reserved 
OOOCH 2 bytes Number of physical buttons 
OOOEH 2 bytes Number of logical buttons 
0010H 16 bytes Reserved 

Function 0025H: Set Configuration 
DIGITAL Extension 

Parameters 

AX = 0025H 
BX = 0004H 
CX = The number of logical buttons (2 or 3) 

Returns 

AX = FFFFH Successful operation (any other value indicates failure) 

If the logical number of buttons equals 2, the mouse driver translates the 
middle button as a combination of the left and right buttons. 

Programming the VAXmate Under MS-DOS 16 - 33 



Enhanced Graphics Adapter (EGA) Functions 
When the mouse driver detects an enhanced graphics adapter (EGA), the 
mouse driver installs extensions to interrupt 10H (video 110). These extensions 
provide the mouse driver and the application with a means of communicating 
the current state of the EGA write-only registers. Table 16-10 lists the exten
sions to the interrupt 10H functions. 

Table 16-10 Extensions to Interrupt 10H EGA Functions 

Function 

FOH 
F1H 
F2H 
F3H 
F4H 
F5H 
FAH 

Description 

Read EGA Register 
Write EGA Register 
Read EGA Register Group 
Write EGA Register Group 
Read EGA Register List 
Write EGA Register List 
EGA Functions Installed 

EGA registers are referred to by a group number and a register number. Table 
16-11 lists the group numbers and the registers associated with each group. 

Table 16-11 EGA Register Groups and Associated Registers 

Group 

OOH 
08H 
10H 
18H 
20H 
28H 
30H 
38H 

Register 

00H-18H 
00H-04H 
OOH-OSH 
00H-13H 
OOH 
OOH 
OOH 
OOH 

Port 

03D4H 
03C4H 
03CEH 
03COH 
03C2H 
03DAH 
03CCH 
03CAH 

Description 

CRT controller 
Sequencer 
Graphics controller 
Attribute controller 
Output register 
Feature control register 
Graphics 1 position 
Graphics 2 position 

16 - 34 Programming the VAXmate Under MS-DOS 



Function FOH: Read EGA Register 
DIGITAL Extension 

Parameters 

AH = FOH 
BX = Register number 
OX = The group number 

Returns 

BL = The contents of the indicated register 

Function FIH: Write EGA Register 
DIGITAL Extension 

Parameters 

AH = FIH 
BL = Register number 
BH = The value to write 
OX = The group number 

Returns 

Nothing 

Programming the V AXmate Under MS-DOS 16 - 35 



Function F2H: Read EGA Register Group 
DIGITAL Extension 

Parameters 

AH = F2H 
ES:BX = Buffer address 
CH = Starting register number 
CL = Number of registers 
OX = Group number 

Returns 

Nothing 

This function reads the contents of the specified EGA registers. The EGA reg
isters are from the group indicated by register OX. The contents of the EGA 
registers are stored in the buffer pointed to by ES:BX. Register CH, an index 
into the group, specifies the first register contents read. Register CL specifies 
the number of registers to write. 

The buffer pointed to by ES:BX is an array of 8-bit values. Register CL speci
fies the number of entries in the buffer. Each entry in the buffer is the value 
to write to the corresponding register. 

Function F3H: Write EGA Register Group 
DIGITAL Extension 

Parameters 

AH = F3H 
ES:BX = Buffer address 
CH = Starting register number 
CL = Number of registers 
OX = Group number 

Returns 

Nothing 

This function writes the specified EGA registers. The EGA registers are from 
the group indicated by register OX. Registers ES:BX point to a buffer that 
contains the corresponding values. Register CH, an index into the register 
group, specifies the first register written. Register CL specifies the number of 
registers to write. 

16 - 36 Programming the VAXmate Under MS-DOS 



Function F4H: Read EGA Register List 
DIGITAL Extension 

Parameters 

AH = F4H 
ES:BX = Address of the register list 
ex = Number of entries in the list 

Returns 

Nothing 

This function transfers the contents of the indicated EGA register to the cor
responding value byte in the list. The caller must supply the group and register 
numbers. Each entry is 4 bytes long and contains the following: 

Offset 

OOH 
02H 
03H 

Size 

Word 
Byte 
Byte 

Description 

Group number 
Register number 
Value 

Programming the V AXmate Under MS-DOS 16 - 37 



Function F5H: Write EGA Register List 
DIGITAL Extension 

Parameters 

AH = F5H 
ES:BX = Address of the register list 
ex = Number of entries in the list 

Returns 

Nothing 

This function transfers the value byte of each entry to the indicated EGA reg
ister. Each entry is 4 bytes long and contains the following: 

Offset 

OOH 
02H 
03H 

Size 

Word 
Byte 
Byte 

Description 

Group number 
Register number 
Value 

Function F AH: EGA Functions Installed. 
DIGITAL Extension 

Parameters 

AH = FAH 
BX = OOOOH 

Returns 

BX = OOOOH 
BX = 000IH-FFFFH 

EGA functions not installed 
EGA functions installed 

16 - 38 Programming the VAXmate Under MS-DOS 



MS-DOS Media ID Tables 
Hard Disk Support Through FDISK 

FDISK is the MS-DOS fixed disk management utility. It is responsible for in-
itializing the disk, setting up the partition information, and setting up the boot 
information. FDISK loads the tables pointed to by the ROM BIOS Interrupt 
41H and Interrupt 46H. FDISK was designed so that any hard disk type can 
be loaded at these vector pointers. Table 16-12 contains the hard disk types 
predefined within the FDISK program. 

Table 16-12 Hard Disk Types 

Type Cylinders Heads Precomp Control Landing Sectors 

RD32 820 6 None· 0 910 17 
RD31 615 4 256 0 669 17 
1 306 4 128 0 305 17 
2 615 4 300 0 615 17 
3 615 6 300 0 615 17 
4 940 8 512 0 940 17 
5 940 6 512 0 940 17 
6 615 4 None· 0 615 17 
7 462 8 256 0 511 17 
8 733 5 None· 0 733 17 
9 900 15 None· 0 901 17 
10 820 3 None· 0 820 17 
11 855 5 None· 0 855 17 
12 855 7 None* 0 855 17 
13 306 8 128 0 319 17 
14 733 7 None· 0 733 17 
16 612 4 0 0 663 17 
17 977 5 300 0 977 17 
18 977 7 None· 0 977 17 
19 1024 7 512 0 1023 17 
20 733 5 300 0 732 17 
21 733 7 300 0 732 17 
22 733 5 300 0 733 17 
23 306 4 0 0 336 17 

• To specify no precompensation, the register contents should be FFFFH. 

Programming the VAXmate Under MS-DOS 16 - 39 



Disk Parameters 
MS-DOS for the VAXmate supports many types of disks. Table 16-13 contains 
the BIOS parameter block data for the most frequently used and supported 
disk types: 

Table 16-13 BIOS Parameter Block Data 

A B C D E F G 

Bytes/Sector 512 512 512 512 512 512 512 
Sector/Cluster 1 1 2 1 2 1 4 
Reserved Sector 1 1 1 1 1 20 1 
Number of FATs 2 2 2 2 2 2 2 
Dir Entries 224 64 112 64 112 96 512 
Sectors/disk 2400 360 720 320 640 800 41667 
Media byte F9H FCH FDH FEH FFH FAH F8H 
Sectors/FAT 7 2 2 1 1 3 41 
Sectors/Track 15 9 9 8 8 10 17 
Heads/drive 2 1 2 1 2 1 4 
Hidden Sectors 0 0 0 0 0 0 17 
Tracks/disk 80 40 40 40 40 80 614 

Disk A is a 96-TPI high capacity VAXmate workstation diskette. This disk 
type is supported by FORMAT, MS-DOS read and write operations, and 
DISKCOPY. 

H 

512 
1 
1 
1 
48 
128 
FEH 
1 

0 

Disk B is a 48-TPI, single-sided, 9-sector-per-track diskette. This disk type is 
supported by FORMAT, MS-DOS read and write operations, and DISKCOPY. 

DISK C is a 48-TPI, double-sided, 9-sector-per-track diskette. This disk type is 
supported by FORMAT, MS-DOS read and write operations, and DISKCOPY. 

DISK D is a 48-TPI, single-sided, 8-sector-per-track diskette This disk type is 
supported by FORMAT, MS-DOS read and write operations, and DISKCOPY. 

DISK E is. a 48-TPI, double-sided, 8-sector-per-track diskette. This disk type is 
supported by FORMAT, MS-DOS read and write operations, and DISKCOPY. 

DISK F is a Rainbow RX50 diskette. This disk type is supported by MS-DOS 
read and write operations and DISKCOPY. 

16 - 40 Programming the VAXmate Under MS-DOS 



DISK G is an RD31 fixed disk that has one 20-Mbyte partition. The sector-to
cluster ratio becomes eight sectors to one cluster for any fixed disk type F8H 
that has less than 32,681 sectors per image. If disk type F8H has 32,680 or 
less sectors per image, it uses a 12-bit FAT. If disk type F8H has 32,681 or 
more sectors per image, it uses a 16-bit FAT. This disk type is supported by 
FDISK. FORMAT, and MS-DOS read and write operations. 

DISK H is a Mdrive disk that is a minimum of 64 Kbytes. Each increment of 
64 Kbytes of Mdrive increases the allowable root directory entries by the incre
ment size. For example, a 256 Kbyte Mdrive will have 48 (number of directory 
entries for one Mdrive) * 4 (4 * 64 Kbytes = 256 Kbytes) = 192 directory 
entries. This disk is supported by MS-DOS read and write operations. 

MS-DOS International Support 

FONT and GRAFTABL 
A font file contains the size and shape description of the characters in a char
acter set. The ability to load new fonts from disk allows the V AXmate worksta
tion to display characters from a character set that is appropriate for the 
environment. Because of the VAXmate workstation's advanced video features, 
fonts are stored in two types of files, depending on the video mode. Font files 
with a .FNT file extension support the text video modes. Font files with a 
.GRF file extension support the graphics video modes. 

The differences between the two types of font files are the character cell size, 
the file size, where they are stored in memory, and the utilities used to load 
them. 

FONT.COM 
FONT. COM is an MS-DOS utility that loads disk-based font files. At boot 
time, MS-DOS loads the default font file STD.FNT (stored in the ROM BIOS). 
STD.FNT can be replaced at any time with another disk-based font file in the 
proper format. FONT.COM searches the current directory, the root directory, 
the path, and any appended directories for the file. It is not necessary to reboot 
the system after FONT. COM loads a new font file. In text mode, a newly
loaded font file affects data already displayed on the screen. 

Programming the V AXmate Under MS-DOS 16 - 41 



GRAFTABL.COM 
GRAFTABL.COM is a terminate and stay resident program that loads disk
based font files. These fonts can be displayed only when the V AXmate worksta
tion is in a graphics mode. A newly-loaded graphics font file affects data al
ready displayed on the screen. If no font file is specified on the command line, 
GRAFTABL.COM attempts to load the font file that corresponds to the cur
rent font file for text mode. If the current font file for text mode is a font file 
other than STD.FNT, GRAFTABL.COM searches the current directory, the 
root directory, the path, and any appended directories for the file. If 
GRAFTABL.COM cannot find the corresponding font file for graphics mode, or 
the file is not a valid font file, an error message is displayed, and no font file 
for graphics mode is loaded. 

The ROM BIOS uses the information pointed to by the vector at Interrupt 
IFH (7CH). This vector can point to either characters O-FF or 80-FF. 

GRAFTABL.COM uses Interrupt 10H, Function DOH to tell the ROM BIOS 
how many characters the pointer at Interrupt IFH vector points to. To load 
STD.GRF, Interrupt IFH vector points to characters 80 - FF. Otherwise, 
Interrupt IFH vector points to characters 0 - FF. 

Description of Fonts 
Each .FNT character cell is 8x16 and is represented by 16 bytes of data. The 
total data representing 256 characters is 4096 (4 KI bytes. 

Each .GRF character cell is 8x8 and is represented by 8 bytes of data. The 
total data representing 256 characters is 2048 (2 KI bytes. 

How FONT. COM Affects KEYB.COM and SORT.EXE 
FONT. COM affects how KEYB.COM is used. For example, if KEYB.COM 
loads a keyboard map that does not correspond to the current text font, the 
keyboard is incorrectly mapped. When a key is pressed, an unexpected charac
ter is displayed. This also affects the operation of SORT.EXE, because it sorts 
according to the current text font file. 

Font File Structures 
For proper loading. FONT. COM requires font files to be in the format specified 
in Table 16-14. There are no other restrictions for the user when creating a 
.FNT file. 

16- 42 Programming the VAXmate Under MS-DOS 



Table 16-14 .FNT File Structure 

Bytes Contents Description 

0-3 FO$N File identification label. The first four 
bytes must contain the ASCII charac-
ters "FO$N". 

4 Total bytes Total bytes per character. Must be 16. 

5 Column Number of columns per character. 
Must be 8. 

6 Row Number of rows per one font. Must be 
16. 

7-8 Total Characters Total number of characters in a file. 
Must be 256. 

9-10 Start Character Starting character location to load 
first character description. Must be O. 

11-12 End Character Ending character location to load last 
character description. Must be 255. 

13-131 Reserved 

132-4228 Character description 16 bytes per character * 256 charac-
ters = 4096 bytes. 

4229-4232 FO$N File identification label. 

Programming the VAXmate Under MS-DOS 16- 43 



For proper loading, GRAFTABL.COM requires font files to be in the format 
specified in Table 16-15. There are no other restrictions for the user when 
creating a .GRF file. 

Table 16-16 .GRF File Structure 

Bytes Contents Description 

0-3 FO$N File identification label. The first four 
bytes must contain the ASCII charac-
ters "FO$N". 

4 Total bytes Total bytes per character. Must be 8. 

5 Column Number of columns per character. 
Must be 8. 

6 Row Number of rows per character. Must 
be 8. 

7-8 Total Characters Total number of characters in a file. 
Must be 256. 

9-10 Start Character Starting character location to load 
first character description. Must be O. 

11-12 End Character Ending character location to load last 
character description. Must be 255. 

13-131 Reserved 

132-2180 Character description 8 bytes per character * 256 characters 
= 2048 bytes. 

2181-2184 FO$N File identification label. 

16 - 44 Programming the V AXmate Under MS-DOS 



Loading Font Files 
To load a font file in the same way FONT.COM loads one, do an INT lOH 
with the following values in the specified registers: 

Parameters 

AH = 

Returns 

Nothing 

ODlH 
AL = 
CX = 
DH = 
DL = 
ES:BX = 

KEYB 

o 
Number of characters to be loaded (256) 
OlH 
First character to be loaded (0) 
Address of the character description buffer 

KEYB.COM is a terminate and stay resident program that loads disk-based 
keyboard map files. KEYB.COM can load a keyboard map file any time during 
an MS-DOS session, and the system does not have to be rebooted. 
KEYB.COM searches the current directory, the root directory, the path, and 
any appended directories for the file. 

Keyboard Remapping 
A keyboard map file contains an ASCII code and a scan code for every key
board key. When a key is pressed, a scan code is generated. The firmware 
checks the current keyboard state, and indexes the correct table. Table 16-16 
lists the keyboard tables. 

Programming the VAXmate Under MS-DOS 16 - 45 



Table 16-16 Keyboard Table 

Table Description 

Base Table Used when a key is pressed and no other key is down 
leaps lock is offl. 

Ctrl Table Used when the Ctrl key is held down and another key is 
pressed. 

Alt Table Used when the Alt key is held down and another key is 
pressed. 

Shift Table Used when the Shift key is held down and another key is 
pressed. 

NumLock Table 

Caps Table 

Alt/Ctrl Table 

Alt/Shift Table 

CtrllShift Table 

Alpha ID Table 

NOTE 

Used when the NumLock key has been activated and an
other key is pressed. The NumLock table only contains en
tries for scan codes 71 through 83. 

Used when the Caps key has been activated and another 
key is pressed. 

Used when the Alt and Ctrl keys are held down and an
other key is pressed. 

Used when the Alt and Shift keys are held down and an
other key is pressed. 

U sed when the Ctrl and Shift keys are held down and an
other key is pressed. 

Indicates whether the scan code U-35H) is an alpha key or 
a non alpha key. This is used when the Caps and Shift 
keys are held down and another key is pressed. 

When starting the V AXmate workstation, the Alt/Ctrl and the 
Alt/Shift pointers point to the Alt table. The CtrllShift pointer 
points to the Ctrl table. 

Each entry in the table is a word. The high byte contains a scan code, and the 
low byte contains an ASCII value. The ROM BIOS calculates the offset to the 
appropriate word in the table. It then sends the ASCII value in the low byte to 
the MS-DOS operating system. To make a key send out another value, change 
the value in the low byte of the word. The high byte can also be changed. 

The table entries are arranged in order of the dependent scan code U through 
105) for the keys. For more information on keyboards and keyboard mapping, 
see Chapter 8. 

16 - 46 Programming the VAXmate Under MS-DOS 



The Alpha-ID table is 53 bytes in size. Each byte is associated with the keys 1 
through 35H, respectively. If an entry is set to zero, that key is treated as a 
non alpha key (Shift does not reverse Lock). If an entry is set to OFFH, that 
key is treated as an alpha key (Shift reverses Lock). The table is indexed by 
the received scan code. KEYB issues the following interrupt to set the key
board map file: 

Interrupt 16H 

Parameters 

AH = D6H 
AL = 
CL = 

1 ; has to be a non-zero number 
table to be set 
o = Base (normal) table 
1 = Ctrl table 
2 = Alt table 
3 = Shift table 
4 = NumLock table 
5 = Lock table 
6 = Alt/Ctrl table 
7 = Alt/Shift table 
8 = CtrllShift table 
9 = Alpha-ID table 

ES:BX must point to the caller-defined/supplied table. 

Creating Keyboard Map Tables for International 
Countries 
To support a new country, a keyboard map file must be created for: 

• Industry standard character set (STD) 

• DIGITAL Multinational character set (MCS) 

• International Standards Organization character set (ISO, 

• New country's 7-bit National Replacement character set (NRC) 

These tables differ in that not all characters in the four character sets are lo
cated in the same position. For example, "a" grave is located at position 85H 
in STD, and at location OEOH in MCS and ISO. When creating new tables, 
start with the default character set in the ROM BIOS (see Chapter 9) and 
make the necessary changes for the country. 

Programming the VAXmate Under MS-DOS 16- 47 



When creating the Base table, Shift table, and Caps table, the scan codes 
should remain the same for all the keys. The character code should change for 
those characters located in a new position on the keyboard. For example, on 
the French LK250 keyboard, the "M" character is located where the ";" char
acter is on the US keyboard. Therefore, the table entry for ";" in the US table 
contains the character code for "M" in the French table. 

The NumLock table should remain unchanged. 

The Alt table should resemble the default table in the ROM BIOS. The values 
returned for a character should be the same regardless of where the character 
is located on the keyboard. For example, the "a" on the French keyboard is 
located where the "q" is on the US keyboard, but an Alt/a on the French key
board still produces the same value as an Alt/a on the US keyboard. Therefore, 
the table entry has to change to return the value returned on the US keyboard. 
For characters that are not on the US keyboard, the entry in the table should 
be set to undefined (OFFFFH) in the table. 

The Alt/Shift and Alt/Ctrl tables should be identical to the Alt table. If a key
board contains characters that are accessed by pressing Alt/Ctrl/key, the value 
in the table should be identical to the value that would be placed in the base 
table if the character was on the keyboard. For example, on the French key
board, pressing Alt/Ctrl/$ generates the ")" character, so the entry for "$" in 
the Alt/Ctrl table should be IB5Dh, which is the same value in the default set, 
base table for the "]" character. 

The Ctrl table and the Ctrl/Shift table should be identical. The entries for de
pendent scan codes above 35H should be identical to the default entries in the 
ROM BIOS. The entries for dependent scan codes 1 through 35H should be 
the same as in the default table in the ROM BIOS. The entries for Ctrl/2 
through Ctrl/8, Ctrl/Backspace, and Ctrl/Return should be: 

Ctrl/2 entry: 0300H 

Ctrl/3 entry: 041BH 

Ctrl/4 entry: 051CH 

Ctrll5 entry: 061DH 

Ctrl/6 entry: 071EH 

Ctrll7 entry: 081FH 

Ctrl/8 entry: 097FH 

CtrllBackspace entry: OE7FH 

Ctrl/Return entry: lCOAH 

The other table entries for 1 through 35H not specified should be undefined 
(value OFFFFH). 

16 - 48 Programming the VAXmate Under MS-DOS 



How Compose Sequences Are Recognized 
For compose sequences to work, every key that is pressed must be captured 
before it is sent to the user. Firmware interrupt I6H, Function ODOH, 
Subfunction OFEH "Enable Notify Before Buffering" notifies a routine before 
the key stroke is placed in the keyboard buffer. 

When KEYB.COM runs with a valid keyboard map file, the compose routine is 
installed in memory as the notify routine. Whenever a key is pressed, the com
pose routine checks to determine whether it is part of a compose sequence 
~which includes dead diacritical keys). 

Before the compose routine is installed, firmware interrupt I6H, Function 
ODOH, Subfunction 82H "Return Segment:Offset of any Current Buffer Notify 
Routine" is called to get the address of the buffer routine that currently exists 
~if any). 

If a buffer routine exists, the address of that routine is saved, and the buffer
notify routine is replaced with the compose routine. After the compose routine 
is done and before it does a far return, the compose routine checks the address 
it saved. If the Segment:Offset is zero, no routine existed, and the compose 
routine does a far return. Otherwise, the compose routine does a far jump to 
the buffer-notify routine that existed before the compose routine replaced it. 
When that routine does a far exit, it returns to whatever called the compose 
routine. 

How Dead Diacritical Keys Are Recognized 
A scan code of OEFH indicates that a key is a dead diacritical key. When the 
scan code is received, the compose routine treats the ASCII code (low byte) as 
the first key in the compose sequence. The next key pressed is used as the 
second key in the compose sequence. 

Format and Use of the Compose Sequence Pointer Table 
The compose sequence pointer table contains 96 words. Each word contains a 
pointer ~byte offset from the beginning of the file) to its corresponding compose 
sequence translation table. The 60H entries refer to ASCII values ~character 
codes) 20H through 7FH. For example, the first word contains the pointer to 
the translation table for the space character ~ASCII value 20H). If the pointer 
is zero, no translation table exists for that ASCII value. A compose sequence is 
made up of three keys: the compose key followed by two other keys in the 
range 20H through 7FH. The second key in the sequence indexes this table 
and obtains the pointer to the translation table. The third key in the sequence 
is then checked to determine if it exists in the translation table. 

Programming the VAXmate Under MS-DOS 16 - 49 



Format and Use of the Compose Sequence Translation 
Table 
The compose sequence translation table can be a maximum of 1024 words. This 
area contains the translation tables for the legal compose sequences. It is 
possible to have as many as 96 translation tables (one each for ASCII values 
20H through 7FH). The first byte in a translation table contains the number of 
entries in the table. The size of the table is 2 * number of entries + 1. The 
entries consist of 2 bytes: 

• The first byte is the third character (ASCII value) of the compose 
sequence. 

• The second byte is the compose character (ASCII value) to be re
turned as a result of the compose sequence. 

Changing to STDUS.KEY and Back Again 
Pressing Ctrl/Alt/F2 replaces the current keyboard map file with the default 
keyboard map file STDUS.KEY. Pressing Ctrl/Alt/F3 replaces the current key
board map file with the last map file loaded into memory. This feature is acti
vated when KEYB.COM is run with an external map file (in other words, 
MCSUS.KEY). 

Keyboard Map File Structure 
KEYB.COM requires keyboard map files to be in a specific format for proper 
loading. Table 16-17 shows the keyboard map file structure. 

Table 16-17 Keyboard Map File Structure 

Bytes 

0-7 

8 

Contents 

File identification string. The first four bytes must contain 
"KE$Y" for KEYB.COM to load the file. The next 124 bytes of 
the header record are reserved. 

This byte is used to enable/disable the additional key codes 
associated with the LK250 keyboard. This byte is passed in the 
AL register to Interrupt 16H Function D3H. 

Bit 0 - Disable keypad state keys. The keypad keys NumLock 
and INSERT no longer set the keystate flags in the ROM 
BIOS area. They are stored in the keypad buffer as normal 
keys according to the table translation process. 

Bit 1 - Disable" Alt compose". This disables the generating of 
key scan codes using the Alt key and the keypad number keys. 
The keypad number keys are treated as normal keys. 

16 - 50 Programming the VAXmate Under MS-DOS 



Table 16-17 Keyboard Map File Structure ~cont.) 

Bytes 

9 

10-127 

128-337 

338-547 

548-757 

758-783 

784-993 

994-1203 

1204-1413 

1414-1623 

1624-1833 

1834-1886 

1887 

1888-2079 

2080-4147 

Contents 

Bit 2 - Disable all combination keys except for Ctrl/Alt/Del and 
Ctrl/Alt/Home. This disables all special detection of the key 
combinations that invoke special functions and treats them as 
normal key sequences. The disabled combinations are Shift/Prt 
Sc, CtrllBreak, and Ctrl/NumLock. 

Bit 3 - Disables the ability to temporarily override the Lock key 
with a Shift key to unshift a key. 

Bit 4 - Guarantees that the LK250 keyboard is in DIGITAL 
mode. It sends a command to the LK250 keyboard to ensure it 
is in DIGITAL mode as well. It enables the use of DIGITAL 
extended scan codes sent by the LK250 keyboard. If it is not 
enabled, the 10-key keypad keys return scan codes of their 
equivalent numeric keypad keys as obtained from the current 
"normal" table through the table pointer. 

Bit 5 - Enable Compose key pass through. This means that 
even though the DIGITAL-extended codes are disabled, the 
Compose key is placed in the keyboard buffer. 

Reserved; must always equal zero. 

Other header information (not currently used). 

Alt Table (105 keys x 2 bytes/entry = 210 bytes) 

Ctrl Table (105 keys x 2 bytes/entry = 210 bytes) 

Base Table (105 keys x 2 bytes/entry = 210 bytes) 

NumLock Table (13 keys x 2 bytes/entry = 26 bytes) 

Shift Table (105 keys x 2 bytes/entry = 210 bytes) 

Caps Table (105 keys x 2 bytes/entry = 210 bytes) 

Alt/Ctrl Table (105 keys x 2 bytes/entry = 210 bytes) 

Alt/Shift Table (105 keys x 2 bytes/entry = 210 bytes) 

Ctrl/Shift Table (105 keys x 2 bytes/entry = 210 bytes) 

Alpha-ID Table (53 Keys x 1 byte/entry = 53 bytes) 

Not used 

Compose Sequence Pointer Table (96 words = 192 bytes) 

Compose Sequence Translation Table ~maximum of 2048 bytes) 

Programming the VAXmate Under MS·DOS 16- 51 



LCOUNTRY 
LCOUNTRY.EXE is an MS-DOS utility that installs and overlays country
specific information into the MS-DOS operating system. MS-DOS uses the in
formation when it displays the date, the time, currency symbols, decimal sepa
rators, and performs case conversions on file names. The exact usage is 
country- and character-set dependent. LCOUNTRY.EXE can be executed 
manually by the user, or automatically, if the command is contained in the 
AUTOEXEC.BAT file. 
When seaching for a file, LCOUNTRY.EXE searches the current directory, the 
root directory, the path, and any appended directories. 

LCOUNTRY.EXE does not check to ensure that the font, keyboard, and 
country-specific data match. 

Each LCOUNTRY file must have the .COU file extension. 

Each .COU file represents a character set and can contain a multiple number 
of countries. 

Country File Structure 
The .COU file is a module that contains data that must be ORGed at OOH. 
There is no executable code in the module. The data overlays the previous data 
resident in the MS-DOS operating system. 

The module size Inumber of bytes that overlay the resident table I cannot 
exceed 700 bytes. This is a combination of both the country-specific data struc
tures and the case conversion tables. 

The MS-DOS operating system organizes the data into structures that corre
late to the country codes leach ISH bytes longl. The block size is the first byte 
of the structure. This byte is always ISH or OFFH, which indicates there are 
no more structures. Any other values are considered errors. 

The second byte is the country code, which is the same as the international 
telephone number prefix for the country. 

In the .COU file, the offset value is relative to the beginning of the module, 
which is ORGed at OOH. LCOUNTRY.EXE takes these offsets and adjusts 
them according to where they are loaded in the MS-DOS operating system. 
The next assembly language program section describes the file format. 

16- 52 Programming the VAXmate Under MS-DOS 



DB 18H ;This is 18H for each data structure except 
;for the last, which will contain a OFFH to 
;indicate the structures have ended. 

COUNTRY_CODE DW 1 ;This is the value scanned to see if a hit 
;has occurred. This is an industry standard 
;US sample. 

Currency_sym DB '$' 
DB 0 
DB 0 
DB 0 
DB 0 
DB 
DB 0 
DB 
DB 0 
DB '-' 
DB 0 
DB '.' 
DB 0 

;O-USA, 1-EUR, 2-JAP 
;Currency Symbol 

;Thousands separator 

;Decimal separator 

;Date separator 

;Time separator 

Bit_field DB o ;Bit values 

Currency_cents DB 
Time_24 DB 
Case_Convert_Tab DW 

;Bit 0 0 if currency symbol first 
1 if currency symbol last 

;Bit 1 0 if No space after currency symbol 
1 if space after currency symbol 

2 ;Number of places after currency decimal point 
o ;0 if 12-hour time; 1 if 24-hour time 
offset ;Address/Offset of case mapping tables for a 

;particular country. If tables of several 
;countries are the same, the offset may be the 
;same. Every structure, however, must have a 

DW 0 
DB 

;pointer to the case conversion table. 
;Offset to case mapping routine 
;Data list separator character 

DB 0 

Programming the VAXmate Under MS-DOS 16- 53 



Case Conversion Tables 
The case conversion tables contain the lowercase character and its associated 
uppercase character. This table is scanned by the MS-DOS operating system; if 
a hit occurs, the uppercase character is substituted. 

Characters are arranged as pairs in the table, and the number of pairs varies. 
The first word of the table is neither a lowercase nor an uppercase pair, but the 
length of the table. Do not include this word in the table length calculation. 

Table -------r----r--.r----- Offset in country table I :2 I ~I Order as seen in memory 

NOTE 
All references to hexadecimal digits in Table 16-18 and the 
SORT tables are taken from the DIGITAL Multinational 
Character set. The case conversion table cannot contain an entry 
for a lowercase character that replaces the backs lash character 
(ASCII 5CH). If this is allowed, COMMAND. COM cannot find 
any external commands to execute. If the backslash character is 
replaced by an uppercase character, there is no effect on the op
eration of COMMAND. COM. 

Table 16-18 lists the characters that can cause problems for COMMAND.COM 
if they are replaced by a lowercase character. 

Table 16-18 Characters Causing Problems for COMMAND.COM 

Name 

Asterisk 
Slash 
Colon 
Semicolon 
Equal 
Question mark 
Backslash 
Vertical bar 

ASCII 

2AH 
2FH 
3AH 
3BH 
3DH 
3FH 
5CH 
7CH 

Character 

* 

= 
? 
\ 
I 

16 - 54 Programming the VAXmate Under MS-DOS 



SORT 
SORT.EXE is an MS-DOS utility that sorts character sets according to a 
predefined sorting order. When executed, SORT.EXE checks for the name of 
the current text font file. Then, it searches for a file with the same name, but 
with the file extension .SRT. If this file is found in the current directory, the 
root directory, the path, or any appended directories, SORT.EXE reads it into 
memory and uses those values for sorting. 

Format for Sorting Order 
A sort file is 256 bytes long, one byte for each character in the character set. 
The first byte in the sort table is the sort order for ASCII 0, the next byte is 
the sort order for ASCII 1, and so on. When sorting, all letters are collated 
with ASCII characters A-Z (code 41H through 5AH). Lowercase is translated to 
uppercase, and international characters are translated to their English 
equivalents. 

Creating Sort Tables for Character Sets 
When creating a sort table for a character set, try to keep the same order as 
the ASCII character set. In other words, the control characters (ASCII 0 
through 31) should be first. The control characters should be followed by the 
symbols and numbers. The letters should come next. with each letter followed 
by its corresponding accented characters Hf any). When more than one accented 
character exists for a letter, the order of the accented characters should be the 
same as the order in the character set. For example, in DIGITAL MCS "A" 
grave precedes "A" acute, and "A" acute precedes "A" circumflex. All three of 
these characters follow "A" and precede "B". 

All upper and lowercase characters should have equivalent sort orders, if the 
sort is to be case insensitive. Otherwise, the lowercase characters should sort 
after the uppercase characters. 

After all the letters and their accented characters, any leftover characters 
should follow in the order they appear in the character set. 

The sort orders for Tables 16-19 through 16-23 are read from left to right and 
from top to bottom. All values in these tables are hexadecimal values. 

Programming the VAXmate Under MS-DOS 16 - 55 



Table 16-19 Sort Order for Industry Standard Character Set (STD) 

00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF 

00 
10 
20 
30 

40 
50 
60 
70 

80 
90 
AO 
BO 

CO 
DO 
EO 
FO 

00 
10 
20 
30 

40 
50 
60 
50 

43 
45 
41 
BO 

CO 
DO 
EO 
FO 

01 
11 
21 
31 

41 
51 
41 
51 

55 
41 
49 
B1 

C1 
D1 
53 
F1 

02 03 04 
12 13 14 
22 23 24 
32 33 34 

42 43 44 
52 53 54 
42 43 44 
52 53 54 

45 41 41 
41 4F 4F 
4F 55 4E 
B2 B3 B4 

C2 C3 C4 
D2 D3 D4 
E2 E3 E4 
F2 F3 F4 

05 06 07 08 09 OA 
15 16 17 18 19 1A 
25 26 27 28 29 2A 
35 36 37 38 39 3A 

45 46 47 48 49 4A 
55 56 57 58 59 SA 
45 46 47 48 49 4A 
55 56 57 58 59 SA 

41 41 43 45 45 45 
4F 55 55 59 4F 55 
4E A6 A7 3F A9 AA 
B5 B6 B7 B8 B9 BA 

C5 C6 C7 C8 C9 CA 
D5 D6 D7 D8 D9 DA 
E5 E6 E7 E8 E9 EA 
F5 F6 F7 F8 F9 FA 

16 - 56 Programming the VAXmate Under MS-DOS 

OB OC OD OE OF 
1B 1C 1D lE 1F 
2B 2C 2D 2E 2F 
3B 3C 3D 3E 3F 

4B 4C 4D 4E 4F 
5B 5C 5D 5E SF 
4B 4C 4D 4E 4F 
7B 7C 7D 7E 7F 

49 49 49 41 41 
24 24 24 24 24 
AB AC 21 22 22 
BB BC BD BE BF 

CB CC CD CE CF 
DB DC DD DE DF 
EB EC ED EE EF 
FB FC FD FE FF 



Table 16-20 Sort Order for Digital Multinational Character Set (MCS) 

00 
10 
20 
30 

40 
50 
60 
70 

80 
90 
AO 
BO 

CO 
00 
EO 
FO 

00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF 

00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF 
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 
20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 
30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 

40 41 47 48 4A 4B 50 51 52 53 58 59 5A 5B 5C 5F 
65 66 67 68 6A 6B 70 71 72 73 75 79 7A 7B 7C 7D 
7E 41 47 48 4A 4B 50 51 52 53 58 59 5A 5B 5C 5F 
65 66 67 68 6A 6B 70 71 72 73 75 B6 87 88 89 BA 

BB BC BD BE BF CO C1 C2 C3 C4 C5 C6 C7 C8 C9 CA 
CD CC CD CE CF 00 D1 D2 D3 D4 D5 D6 D7 DB D9 DA 
DB DC DD DE DF EO E1 E2 E3 E4 E5 E6 E7 E8 E9 EA 
ED EC ED BE EF FO F1 F2 F3 F4 F5 F6 F7 F8 F9 FA 

42 43 44 45 46 78 76 49 4C 4D 4E 4F 54 55 56 57 
FB 5D 60 61 62 63 64 5E 77 6C 6D 6E 6F 74 FC 69 
42 43 44 45 46 78 76 49 4C 4D 4E 4F 54 55 56 57 
FD 5D 60 61 62 63 64 5E 77 6C 6D 6E 6F 74 FE FF 

Programming the VAXmate Under MS·DOS 16- 57 



Table 16-21 Sort Order for International Standards Organization Character 
Set (ISO) 

00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF 

00 
10 
20 
30 

40 
50 
60 
70 

80 
90 
AO 
BO 

CO 
00 
EO 
FO 

00 
10 
20 
30 

40 
64 
80 
64 

CO 
00 
EO 
FO 

42 
79 
42 
79 

01 
11 
21 
31 

41 
65 
41 
65 

C1 
D1 
E1 
F1 

43 
5D 
43 
5D 

02 03 04 
12 13 14 
22 23 24 
32 33 34 

47 48 4A 
66 67 69 
47 48 4A 
66 67 69 

C2 C3 C4 
D2 D3 D4 
E2 E3 E4 
F2 F3 F4 

44 45 46 
SF 60 61 
44 45 46 
SF 60 61 

05 06 07 08 09 OA 
15 16 17 18 19 1A 
25 26 27 28 29 2A 
35 36 37 38 39 3A 

4B 50 51 52 53 58 
6A 6F 70 71 72 75 
4B 50 51 52 53 58 
6A 6F 70 71 72 75 

C5 C6 C7 C8 C9 CA 
D5 D6 D7 DB D9 DA 
E5 E6 E7 EO E9 EA 
F5 F6 F7 F8 F9 FA 

78 76 49 4C 4D 4E 
62 63 2A 77 6B 6C 
78 76 49 4C 4D 4E 
62 63 2F 77 6B 6C 

16 - 58 Programming the VAXmate Under MS-DOS 

OB OC OD OE OF 
1B 1C 1D 1E 1F 
2B 2C 2D 2E 2F 
3B 3C 3D 3E 3F 

59 SA 5B 5C 5E 
7B 7C 7D 7E 7F 
59 SA 5B 5C 5E 
BB BC BD BE BF 

CB CC CD CE CF 
DB DC DD DE DF 
EB EC ED EE EF 
FB FC FD FE FF 

4F 54 55 56 57 
6D 6E 73 7A 68 
4F 54 55 56 57 
6D 6E 73 7A 74 



Table 16-22 Sort Order for French 7-Bit National Replacement Character Set 
(FR7) 

00 01 02 03 04 05 06 07 08 09 OA OB OC 00 OE OF 

00 
10 
20 
30 

40 
50 
60 
70 

80 
90 
AO 
BO 

CO 
DO 
EO 
FO 

00 
10 
20 
30 

41 
53 
63 
53 

80 
90 
AO 
BO 

CO 
DO 
EO 
FO 

01 
11 
21 
31 

40 
54 
40 
54 

81 
91 
A1 
B1 

C1 
01 
53 
F1 

02 03 
12 13 
22 23 
32 33 

42 43 
55 56 
42 43 
55 56 

82 83 
92 93 
A2 A3 
B2 B3 

C2 C3 
02 03 
E2 E3 
F2 F3 

04 05 06 07 08 09 OA OB OC 00 OE OF 
14 15 16 17 18 19 1A 1B 1C 10 1E IF 
24 25 26 27 28 29 2A 2B 2C 20 2E 2F 
34 35 36 37 38 39 3A 3B 3C 30 3E 3F 

45 46 49 4A 4B 4C 40 4E 4F 50 51 52 
57 58 5A 5B 5C 50 5E 5F 44 60 61 62 
45 46 49 4A 4B 4C 40 4E 4F 50 51 52 
57 58 5A 5B 5C 50 5E 48 59 47 7E 7F 

84 85 86 87 88 89 8A 8B 8C 80 8E 8F 
94 95 96 97 98 99 9A 9B 9C 90 9E 9F 
A4 AS A6 A7 A8 A9 AA AD AC AD AE AF 
B4 B5 B6 B7 B8 B9 BA BB BC BO BE BF 

C4 C5 C6 C7 C8 C9 CA CB CC CO CE CF 
04 05 06 07 DB 09 OA OB DC 00 OE OF 
E4 E5 E6 E7 E8 E9 EA EB EC EO EE EF 
F4 F5 F6 F7 F8 F9 FA FB FC FO FE FF 

Programming the VAXmate Under MS-DOS 16 - 59 



Table 16-23 Sort Order for German 7-Bit National Replacement Character Set 
(DE7) 

00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF 

00 
10 
20 
30 

40 
50 
60 
70 

80 
90 
AO 
BO 

CO 
00 
EO 
FO 

00 
10 
20 
30 

40 
52 
61 
52 

80 
90 
AO 
BO 

CO 
00 
EO 
FO 

01 
11 
21 
31 

41 
53 
41 
53 

81 
91 
A1 
B1 

C1 
D1 
53 
F1 

02 03 04 
12 13 14 
22 23 24 
32 33 34 

43 44 45 
54 55 57 
43 44 45 
54 55 57 

82 83 84 
92 93 94 
A2 A3 A4 
B2 B3 B4 

C2 C3 C4 
02 D3 D4 
E2 E3 E4 
F2 F3 F4 

05 06 07 08 09 OA 
15 16 17 18 19 1A 
25 26 27 28 29 2A 
35 36 37 38 39 3A 

46 47 48 49 4A 4B 
58 5A 5B 5C 5D 5E 
46 47 48 49 4A 4B 
58 5A 5B 5C 5D 5E 

85 86 87 88 89 8A 
95 96 97 98 99 9A 
AS A6 A7 A8 A9 AA 
B5 B6 B7 B8 B9 BA 

C5 C6 C7 C8 C9 CA 
05 D6 D7 DB D9 DA 
E5 E6 E7 E8 E9 EA 
F5 F6 F7 F8 F9 FA 

16 - 60 Programming the VAXmate Under MS-DOS 

OB OC OD OE OF 
1B 1C 1D 1E 1F 
2B 2C 2D 2E 2F 
3B 3C 3D 3E 3F 

4C 40 4E 4F 50 
42 51 59 5F 60 
4C 40 4E 4F 50 
42 51 59 56 7F 

8B 8C 8D 8E 8F 
9B 9C 9D 9E 9F 
AB AC AD AE AF 
BB BC BD BE BF 

CB CC CD CE CF 
DB DC DD DE DF 
EB EC ED EE EF 
FB FC FD FE FF 



Chapter 17 
MS-Windows on the V AXmate 

Introduction 
This chapter defines unique features of the DIGITAL adaptation of MS
Windows for execution on the V AXmate. The intended audience is the pro
grammer who writes applications for MS-Windows and wants to use extensions 
to the Application Programming Interface which DIGITAL provides. This chap
ter assumes the reader is familiar with the MS-Windows environment and has 
the MS-Windows Software Development Kit. This chapter is an addendum to 
the manuals provided with the MS-Windows Software Development Kit. The 
following documents are part of that kit: 

• MS-Windows Software Development Kit Programmer's Reference 
• MS-Windows Software Development Kit Programmer's Utility Guide 
• MS-Windows Software Development Kit Programming Guide 

Overview 
The adaptation, sometimes referred to as the OEM layer of MS-Windows, 
consists of the machine-dependent support modules and special device drivers 
required to communicate with the machine's particular hardware. 

The machine-dependent support modules allow MS-Windows to control the 
VAXmate hardware, such as the system's display screen, keyboard, mouse, and 
communications resources. 

MS-Windows on the VAXmate 17 - 1 



The adaptation, or OEM layer, is just one of three components or layers of the 
MS-Windows environment. It is the lowest level component, dealing only with 
the hardware. Above this layer is the Windows layer which consists of: 

• Kernel - The Kernel provides for tasking, memory management, and 
the loading of modules and resources. Tasking is non preemptive 
with a prioritized round-robin scheduler. 

• User - User is the windowing manager. It manages windows, pro
vides for orderly painting, and provides the user interface ltiled win
dows, pop-up windows, dialog boxes, menus, icons, cursors and scroll 
bars). It also manages events from the mouse, keyboard and timer. 
It is responsible for sending messages to applications. 

• GDI - GDI is the Graphics Device Interface for MS-Windows. It 
maintains the graphics device state. It provides regions and clip
ping, display attributes, display objects and display primitives. 

Above the Windows layer is the application layer. Applications must use the 
MS-Windows Applications Programming Interface to run in the MS-Windows 
environment. 

DIGITAL's extensions to the OEM layer include routines that are callable from 
MS-Windows applications. These extensions allow applications to use some of 
the advanced features of the V AXmate's LK250 keyboard and ethernet 
communications. 

NOTE 
Symbolic constants used in this section of the reference manual 
are documented in either the WINDOWS.H include file or the 
DECWIN.H file listing included at the end of this chapter. 

Keyboard Driver for the LK250 Keyboard 
The MS-Windows keyboard driver for the VAXmate's LK250 configures the 
keyboard in DIGITAL Extended Scan Code mode. In this mode the keyboard 
generates unique scan codes for each key. In general, applications running in 
the DIGITAL windows environment behave, in regard to the keyboard, basi
cally the same as they would on an industry-standard machine running MS
Windows. This mode also allows for extensions in the keyboard architecture 
under MS-Windows so applications can uniquely identify each key on the 
keyboard. 

17 - 2 MS-Windows on the V AXmate 



This section describes the following: 

• The behavior of the Numeric and Edit keypads on the LK250. 

• The behavior of the LEDs on the LK250. 

• Compose handling. 

• Extension to the keyboard device driver for MS-Windows. 

• Key mappings for each LK250 country keyboard. 

• Character mappings between the MS-Windows ANSI and OEM 
character sets. 

Numeric and Edit Keypads 
The normal or default action of the numeric keypad is to execute cursor or 
editing functions. The Numlock key toggles the state of the numeric keypad 
(and associated LED) between two states which generate two separate sets of 
output. For example, if the Numlock key is toggled 'off' (LED oW, striking the 
key with the '4' legend on top (left arrow in blue on front) generates a 
VK LEFT virtual key message. If the Numlock key is toggled 'on' (LED on) 
striking the key generates a VK _ NUMPAD4 virtual key message. 

Some VK messages generated by the numeric keypad with Numlock off can be 
generated on the edit keypad. For example, the edit/cursor keypad left arrow 
key generates a VK LEFT, too. One that cannot be generated is the numeric 
keypad's 5 key when Numlock is off. See the TOASCII tables below for further 
details. 

In addition, if Numlock processing is enabled (see following section on the 
DecSetNumlockMode routine), Shift may be used to modify the action of the 
numeric keypad. Holding a shift key down while using the numeric keypad tem
porarily causes the keypad to return the messages associated with the other 
state of the Numlock key. For example, if Numlock processing is enabled and 
Numlock is on and the '4' key on the keypad is pressed, a VK NUMPAD4 
message is returned. If Shift is held down and the '4' is pressed again, a 
VK LEFT message is returned. The keys affected by this temporary state 
switch. are the 10-digit keys, and the Del key. 

NOTE 
Holding down Shift and pressing the PF4/*/Prt Sc key produces 
a print screen function regardless of whether or not Numlock is 
enabled and regardless of the Numlock state. 

An application that requires the use of the Numlock key for some purpose of 
it's own, (Le., PF2 key for the VT220 emulator) and does not want Numlock 
toggling can call the keyboard driver to disable Numlock processing. The 
Numlock key will generate a VK OEM PF2 message and NOT a 
VK _ OEM_NUMBER message. The numeric keypad's state and LED will be 

MS-Windows on the VAXmate 17- 3 



unaffected by hitting the Numlock/PF2 key or using a shift key. Using this 
extension allows the application to receive unique virtual key codes for the 
entire keyboard. This is not the default mode for keyboard processing. Also, 
there are certain restrictions when using this mode. See the section on MS
Windows Keyboard Extensions for details. 

Keyboard LEDs for the V AXmate LK250 
Although there are four LEDs on the LK250, only the Caps Lock LED and the 
Numlock LED are supported in DIGITAL's MS-Windows adaptation for the 
V AXmate. The Scroll Lock has no meaning and is always OFF. The SPECIAL 
Undustry-Standard/DIGITAL) LED is always OFF while running applications 
designed explicitly for MS-Windows. The LED will be ON when a standard ap
plication has the keyboard input focus. While in MS-Windows, the user is pre
vented from toggling the keyboard in and out of Industry-Standard/DIGITAL 
keyboard mode (the Alt/F17 key sequence). 

V AXmate Compose Handling 
Compose sequences may be handled by the MS-Windows keyboard driver or by 
the application. The default is for the MS-Windows keyboard driver to handle 
compose. An application using the basic MS-Windows message routines (Get
Message, TranslateMessage and DispatchMessage) will receive "composed" 
output as described below. 

Pressing either the Compose (compose character) key (EOO) or a dead diacritical 
key initiates a compose sequence. If the compose sequence is started with the 
Compose key then the next two keys define the character to be composed. 
When the application sends the virtual Compose key back to the keyboard 
driver for translation (TranslateMessage), the compose sequence is initiated and 
the key is returned as a WM KEYDOWN and WM KEYUP message with the 
virtual key value of VK OEM COMPOSE. The second key in the sequence 
must be translated in order to-continue the compose sequence. It generates a 
WM DEADCHAR message with the character value of the dead key. The third 
key in the sequence must be translated in order to complete the compose se
quence. If the key completes a valid compose sequence, it is translated to the 
appropriate ASCII value and passed to the application as a WM CHAR 
message. If invalid, it is passed to the application as a WM DEADCHAR with 
the character value of the last key pressed. Also, the keyboard bell sounds indi
cating an invalid compose sequence. 

Two-key compose sequences are initiated with a dead diacritical key. When the 
application sends it back to the keyboard driver for translation (Translate
Message), the compose sequence is initiated and the key is returned as a 
WM DEADCHAR message with the character value of the dead key. The 
second key must be translated in order to complete the compose sequence. If 

17 - 4 MS-Windows on the VAXmate 



the key completes a valid compose sequence it is translated to the appropriate 
ASCII value and passed to the application as a WM CHAR message. If invalid, 
it is passed to the application as a WM DEADCHAR with the character value 
of the last key pressed. Also, the keyboard bell sounds indicating an invalid 
compose sequence. 

Compose sequences may be aborted by hitting the BACKSPACE key as long 
as the application passes it to the Windows TranslateMessage routine, which 
generates a WM DEADCHAR message rather than a WM CHAR message for 
the BACKSPACE key when it is used to abort a compose sequence. 

The default set of compose sequences supported are those that produce output 
in the ISO Latin-l Character Set. 

An application wishing to receive output in the DIGITAL Multinational 
Character Set instead of ISO Character Set may do so by calling the 
DecSetComposeState routine as described in the DIGITAL Windows Keyboard 
Extensions section below. This set provides the OE ligature, both upper and 
lower case, and the uppercase Y with umlaut, which the ISO Latin-l set does 
not. In addition, two compose sequence results are remapped. The lowercase y 
with umlaut is remapped from FDh to FFh. The international currency symbol 
is remapped from A8h to A4h. Characters in the ISO Latin-l set, which are 
not in the DIGITAL Multinational Character Set, are considered invalid in this 
mode. 

There are certain restrictions when changing the compose mode. See the sec
tion on MS-Windows Keyboard Extensions for details. 

Reserved Keys Under MS-Windows 
Use of F17, F18, F19, and F20 with the Alt key are reserved by DIGITAL. 
Application programs under MS-Windows must not employ these four key se
quences. When not running MS-Windows, Alt/F17 switches the keyboard be
tween DIGITAL-extended mode and compatible mode. Alt/F20 produces the 
SYSREQ function. Alt/F18 and Alt/F19 are undefined but reserved for future 
use. 

DIGITAL MS-Windows Keyboard Extensions 
The DIGITAL adaptation of the keyboard driver provides three routines to 
handle keyboard user preference features. The first sets the state of the Shift 
key into Caps Lock mode or Shift Lock modes. The second sets the keyclick 
volume. The third enables or disables autorepeat. These routines are called by 
the Control Panel application to allow user selection of these features. The 
user's selections are saved in the WIN.INI file by the control panel. The 
MS-Windows keyboard driver reads the WIN.INI file during its keyboard 
enable routine and sets the keyboard preference features. 

MS-Windows on the V AXmate 17 - 5 



These routines may also be called by any other MS-Windows application. If 
called, the WIN.INI file should be updated to reflect the current user 
preference state. For more information about the WIN .INI file, see the 
VAXmate User's Guide. 

In addition, the keyboard driver provides three application-callable routines. The 
first returns the current nationality of the keyboard. The second selects 
DIGITAL Multinational Character Set compose processing or ISO Latin-l 
Character Set compose processing. The third selects compatible or extended 
Numlock key processing. 

The six routines are documented in the following sections. 

DecSetLockState (lock) 
This routine sets the sense in which the Lock key is interpreted. 

Parameters 

lock 

Returns 

Nothing 

is an integer value specifying the action where: 

o = DEC CAPS LOCK (default) 
1 = DEC-SHIFTLOCK 

When you type a key with DEC CAPSLOCK selected, the uppercase letter is 
used for the alphabetic keys, but the lower character on the numeric/symbolic 
keys is used. To clear the lock function momentarily, press the Shift key. 

When you type a key with DEC SHIFTLOCK selected, the uppercase letter is 
used for the alphabetic keys, and the top character on the numeric/symbol keys 
is used. 

17 - 6 MS-Windows on the V AXmate 



DecSetKClickVol (vol) 
This routine sets the volume associated with keyclick. 

Parameters 

vol 

Returns 

Nothing 

is an integer value specifying the action where: 

o = DEC NOSOUND 
1 = DEC-SOFT 
2 = DEC-INTERMED (default) 
3 = DEC-LOUD 

DecSetAutorep (repeat) 
This routine sets autorepeat on or off. 

Parameters 

repeat 

Returns 

Nothing 

is an integer value specifying the action where: 

o = DEC AUTOREPOFF 
1 = DEC= AUTOREPON(default) 

MS-Windows 011 the V AXmate 17 - 7 



DecGetKbdCountry ( ) : Result 
This routine returns the keyboard's nationality. 

Parameters 

none 

Returns 

Result is an integer value identifying the country keyboard. These 
values are defined in DECWIN.H. 

DEC USA is the U.S. keyboard. 
DEC-BRITAIN is the British keyboard. 
DEC-FRANCE is the French keyboard. 
DEC-WEST GERMAN is the German keyboard. 
DEC-IT AL Yis the Italian keyboard. 
DEC-SPAIN is the Spanish keyboard. 
DEC-SWEDEN is the Swedish keyboard. 
DEC-FINLAND is the Finish keyboard. 
DEC-NORWAY is the Norwegian keyboard. 
DEC-DENMARK is the Danish keyboard. 
DEC-CANADA is the Canadian keyboard. 
DEC-SWISS GERMAN is the Swiss German keyboard. 
DEC=SWISS=FRENCH is the Swiss French keyboard. 

17 - 8 MS-Windows on the VAXmate 



DecSetComposeState (compose_mode) 

Parameters 

compose_mode 

Returns 

Nothing 

IMPORTANT 

is an integer value specifying the action where: 

o = DEC ISO COMP (default) 
1 = DEC-MULTINAT COMP - -

An application using DecSetComposeState to change from 
default handling must call the routine to set the non-default 
state whenever it receives the keyboard input focus, and must 
reset it to the default when it loses the keyboard input focus. If 
it does not, other applications (all of which share the keyboard) 
that do not understand the non-default modes will not function 
properly. 

This routine sets the sense in which the compose sequences are processed and 
the mapping of returned values. 

By default, the legal set of compose characters are those characters in the ISO 
Latin-l Character Set. The character translation is the byte value of the char
acter's position in the ISO Latin-l set. 

Optionally, the legal set of compose characters can be set to the DIGITAL 
Multinational Character Set. The character translation is the byte value of the 
character's position in the DIGITAL Multinational Character Set. 

MS-Windows on the V AXmate 17 - 9 



DecSetN umlockMode (numlock mode) 

Parameters 

numlock mode is an integer value specifying the action where: 

o = DEC Numlock (default) 
1 = DEC-NONumlock 

Returns 

Nothing 

IMPORTANT 
An application using DecSetNumlockMode to change from 
default handling must call the routine to set the non-default 
state whenever it receives the keyboard input focus, and must 
reset it to the default when it loses the keyboard input focus. If 
it does not. other applications (all of which share the keyboard) 
which do not understand the non-default modes will not function 
properly. 

This routine sets the sense in which the Numlock key is processed. 

If numlock mode is 0 (that is. industry-standard-compatible), the Numlock key 
toggles the-state of the numeric keypad and subsequent output. The Numlock 
key generates a VK _OEM _NUMBER virtual key code. 

The application's .DEF file must contain an import statement for each of the 
routines it uses as follows: 

IMPORTS 
Keyboard. DecSetLockState 
Keyboard. DecSetKClick Vol 
Keyboard. DecSetAutorep 
Keyboard. DecGetKbdCountry 
Keyboard. DecSetComposeState 
Keyboard. DecSetNumlockMode 

The application must declare the following for each routine it uses: 

extern int FAR PASCAL DecSetLockState (int); 
extern int FAR PASCAL DecSetKClickVol (int); 
extern int FAR PASCAL DecSetAutorep (int); 
extern int FAR PASCAL DecGetKbdCountry 0; 
extern int FAR PASCAL DecSetComposeState (int); 
extern int FAR PASCAL DecSetNumlockMode (int); 

17 - 10 MS-Windows on the VAXmate 



When Numlock mode is set to no-Numlock, the current state of Numlock and 
Numlock LED are saved and the LED is turned OFF. Toggling the Numlock 
key always generates a VK OEM PF2 virtual key code. The state of the nu
meric keypad is equivalent to Numlock being ON. This mode allows for unique 
key identificatiqn between all keys on the numeric and edit keypads of the 
LK250 keyboard. When Numlock mode is reset to industry-standard 
compatible, the previous state is restored. 

Windows Keyboard Processing Anomalies 
Applications programmers should be aware of the WINDOWS software anoma
lies described in the following sections. 

Repeating Key Allowed to Change Focus 
When two or more copies of the same Windows applications program are 
loaded, it is possible to change the input focus of a repeating key. To create 
the condition, two or more copies of the applications program must have auto
repeat enabled. 

Select the first copy by moving the cursor to its window and pressing the left 
mouse button, which gives the first copy the input focus. Press and hold down 
a key (for example, the 'A'). After the required delay, the window displays mul
tiple instances of the 'A' key. While the key is automatically repeating, move 
the mouse cursor to another copy of the application and press the left mouse 
button. This gives the second copy the input focus. When the focus shifts to 
the second copy, the repeating key follows the input focus, and the second copy 
displays the repeating key. 

If the program monitors only the translated (WM CHAR or WM SYSCHAR) 
messages, the problem is not apparent. However, if the program monitors the 
KEYDOWN and KEYUP messages, there are at least two problems as follows: 

1. The first copy of the program does not receive a KEYUP message. 

2. The second copy of the program receives a KEYDOWN message with a 
previous state of keydown. The second copy should have received a 
KEYDOWN message with a previous state of keyup. 

MS-Windows on the V AXmate 17 - 11 



Illogical Set of Keyboard Messages 
The following keyboard operations produce an illogical set of messages: 

• Ensure that the NumLock LED is on. 

• Press and hold down the left shift key. 

• Press and release the '1' key on the numeric pad. 

• Release the left shift key. 

Table 17-1 contains the keyboard messages transmitted by MS-Windows. 

Table 17-1 Keyboard Messages Transmitted by MS-Windows 

MS-Windows Scan Prey Virtual Comments 
Message Code Key Key 
Type State Name 

WM KEYDOWN 2AH Up VK SHIFT Left shift 
WM-KEYUP 36H Down VK-SHIFT Illogical message (right shift) 
WM-KEYDOWN 4FH Up VK-END Keypad '1' 
WM-KEYDOWN 36H Up VK-SHIFT Illogical message (right shift) 
WM-KEYUP 36H Down VK-SHIFT Illogical message (right shfit) 
WM-KEYUP 4FH Down VK-END Keypad '1' 
WM-KEYDOWN 36H Up VK-SHIFT Illogical message (right shift) 
WM-KEYUP 2AH Down VK-SHIFT Left shift 

If the right shift key is used instead of the left shift key, the number of 
messages are the same. However, the two messages with a scan code of 2AH 
are changed to 36H. 

The keys on the numeric keypad which exhibit this behavior are zero (0) 
through nine (9), minus sign (VK SUBTRACT), plus sign (VK ADD) and 
period (.), which can be either VK_PECIMAL or VK_DELETE. 

17 - 12 MS-Windows on the VAXmate 



Key Mappings for V AXmate's LK250 
In Tables 17-2 through 17-13: 

Keypos Refers to the keyboard layout numbering scheme 
used in Figure 17-1. 

Keycap Refers to the legend in black landfor blue) on the 
LK250 key. 

Virtkey Refers to the keyname associated with that key; 
these virtkeys may be in any of the three cate
gories: standard, extended Ipreceded by an aster
isk), or OEM specific lusing the convention of 
VK _OEM _ KEYNAME). 

TOASCII Translation Table Refers to the possible virtual key translations 
based on the state of the Shift, Ctrl and Alt 
keys. The keyboard driver's TOASCII entry 
point is ultimately called when an application 
makes the TranslateMessage function call. 

Unshift Refers to the default translated output for the 
unshifted keystroke (TOASCII translation tablel. 

Shift Refers to the default translated output for the 
shifted keystroke ITOASCII translation table). 

Ctrl Refers to the default translated output for the 
keystroke when pressed with control key held 
down ITOASCII translation table). 

CtrlfAlt Refers to the default translated output for the 
keystroke when pressed with the Ctrl and Alt 
keys held down ITOASCII translation table); this 
value is the 'extra' output for this key. 

CtrlfAltfShift Refers to the default translated output for the 
keystroke when pressed with the Ctrl and Alt 
and left Shift keys held down ITOASCII transla
tion table); this value is the shifted 'extra' output 
for this key. 

MS-Windows on the V AXmate 17 - 13 



I-' 
""I 
I 

I-' 
~ 

~ 
00 

~ .... 
::I 
Q. 
0 LED LED LED LED 
~ ~ III .... 

IJQ 0 = ::I '"I 

1 2 3 4 

0000 
... ID 
t:I" I-' 
ID ~ 

~ 
I-' 

IG991GOO I GO-¥9Gro] (G~lIG~;IC;3R 1 (3051 G061 G071 G08IGOg] 1<31- G16 IG20IG21JG221G231 

~ ~ 
!3 ~ III ... 

0 ID 
III 
'"I 
Q. 

E16 E17 E18 

016 017 018 

E20 E21 E22 E23 

020 021 022 023 

"" 0 C99 C17 C20 C21 C22 C23 
III .... ... .... 
0 
::I 

820 821 822 
A23 

t:"'" A20 A22 
III a-
ID -III Lj·1310 



Table 17-2 US to ASCII Translation Table - Main Key Array 

Keypos Keycap Virtkey Unshift Shift Ctrl Ctrl/Alt Ctrl/Alt/Shift 

EOO Compose VK_OEM_COMPOSE 
EOl 1 ! '1' 1 
E02 2 CI '2' 2 CI NUL 
E03 3 # UKpound '3' 3 # ESC UK pound 
E04 4 $ '4' 4 $ FS 
EOS 5 % '5' 5 % GS 
E06 6 ~ '6' 6 RS 
E07 7 &: ' 7' 7 &: US 
E08 8 * '8 ' 8 * DEL 
E09 9 ( '9' 9 ( 
El0 o ) '0' 0 ) 

Ell VK_OEM_MINUS 
E12 = + VK_OEM_PLUS + 
E13 <X VK_BACK BS BS DEL 

DOO TAB VK_TAB HT HT HT 
DOl Q 'Q' q Q DCl 
D02 W 'W' w W ETB 
D03 E 'E' e E ENQ 
D04 R 'R' r R DC2 
DOS T 'T' t T DC4 
D06 Y 'y' Y y EM 

17-15 



Table 17-2 US to ASCII Translation Table - Main Key Array (cont.) 

Keypos Keycap Virtkey Unshift Shift Ctrl Ctrl/Alt Ctrl/Alt/Shift 

D07 U 'U' u U NAK 
D08 I 'I' i I HT 
D09 ° '0' 0 ° SI 
Dl0 P 'P' P P DLE 
Dll [ { VK_OEM_4 [ { ESC 
D12 ] } VICOEM_6 ] } GS 

C99 CTRL VK_CONTROlL 
COO LOCK VK_CAPITAlL 
C01 A 'A' a A SOH 
CO2 S 'S' s S DC3 
C03 D 'D' d D EDT 
C04 F 'F' f F ACK 
COS G 'G' g G BEL 
C06 H 'H' h H BS 
C07 J 'J' j J LF 
C08 K 'K' k K VT 

C09 L 'L' 1 L FF 
Cl0 VK_OEM_l 
Cll ' " VK_OEM_7 " 
C12 \ I VK_OEM_S \ FS 
C13 RETURN VK_RETURN CR CR LF 

17-16 



Table 17-2 US to ASCII Translation Table - Main Key Array (cont.) 

Keypos Keycap Virtkey Unshift Shift Ctrl Ctrl/Alt Ctrl/Alt/Shift 

B99 SHIFT VK_SHIFT 
BOO VK_OEM_3 RS 
B01 Z 'Z' z Z SUB 
B02 X 'X' x X CAN 
B03 C 'c' c C ETX 
B04 V 'V' v V SYN 
B05 B 'B' b B STX 
B06 N 'N' n N SO 
B07 M 'M' m M CR 
BOS , < VK_OEM_COMMA < 
B09 . > VK_OEM_PERIOD > 

BI0 / ? VK_OEM_2 / ? US 
Bll Shift VK_SHIFT 

A99 Alt VK_MENU 
A01-09 Space bar VK_SPACE blank blank NUL 

17-17 



Table 17-2 US to ASCII Translation Table - Edit Key Array 

Keypos Keycap Virtkey 

E16 FIND VK_HOME 
E17 INSERT VK_INSERT 
E18 REMOVE VK_DELETE 
016 SELECT *VK_END 
017 PREY VK_PRIOR 
018 NEXT VK_NEXT 

C17 up arrow VK_UP 
816 left arrow VK_LEFT 
B17 down arrow VK_DOWN 
818 right arrow VK_RIGHT 

Table 17-2 US to ASCII Translation Table - Keypad Array 

Keypos Keycap 

E20 PFI 
E21 PF2 
E22 PF3 
E23 PF4 

NOTES 

Virtkey 

VK_ESCAPE = VK_OEM_PFl 
VK_OEM_NUMBER or in no-Numlock mode VK_OEM_PF2 
VK_OEM_SCROLL = VK_OEM_PF3, with CTRL produces VK_CANCEL** 

*VK_MULTIPLY = VK_OEM_PF4 

The VK_OEM_PFI (VK_ESCAPE) key, produces a 27 (ESC) for unshifted 
and shifted key presses if translated; VK_MULTIPLY generates a 
'*' for translation of the unshifted keypress (shifted VK_MULTIPLY 
produces a print screen function). 

17-18 



** VK_CANCEL, when translated by means of a call to 
TranslateMessage, produces output of 03h, 

Virtkey w/Numlock on 
Keypos Keycap or Numlock disabled Virtkey w/Numlock off 

D20 
D21 
D22 
D23 
C20 
C21 
C22 
C23 
B20 
B21 
B22 
A20 
A22 
A23 

7 *VK_NUMPAD7 VK_HOME 
8 *VK_NUMPAD8 VK_UP 
9 *VK_NUMPAD9 VK_PRIOR 

*VK_SUBTRACT *VK_SUBTRACT 
4 *VK_NUMPAD4 VK_LEFT 
5 *VK_NUMPAD5 *VK_CLEAR 
6 *VK_NUMPAD6 VK_RIGHT 

*VK_ADD *VK_ADD 
1 *VK_NUMPAD1 *VK_END 
2 *VK_NUMPAD2 VK_DOWN 
3 *VK_NUMPAD3 VK_NEXT 
0 *VK_NUMP ADO VK_INSERT 

*VK_DEClMAL VK_DELETE 
ENTER *VK_EXECUTE *VK_EXECUTE 

NOTE 
Translation of VK_NUMPADO-9 produces '0' through '9', Similarly, 
translation of VK_SUBTRACT produces '-', VK_ADD produces '+', 

VK_DEClMAL produces ',', and VK_EXECUTE produces a carriage return 
(13 decimal), 

17-19 



TOP ROV FUNCTION KEYS 

Keypos Keycap Virtkey 

G99 F1 VK_F1 
GOO F2 VK_F2 
G01 F3 VK_F3 
G02 F4 VK_F4 
G03 F5 VK_F5 
G05 F6 VK_F6 
G06 F7 VK_F7 
G07 F8 VK_F8 
G08 F9 VK_F9 
G09 F1 VK_F10 

Gll Fll *VK_Fll 
G12 F12 *VK_F12 
G13 F13 *VK_F13 
G14 F14 *VK_F14 
G15 HELP *VK_F15 
G16 DO *VK_F16 

G20 F17 VK_OEM_F17 
G21 F18 VK_OEM_F18 
G22 F19 VK_OEM_F19 
G23 F20 VK_OEM_F20 with Alt, produces SYSREQ output 

17-20 



Table 17-3 Danish to ASCII Translation Table 

Keypos Keycap Virtkey Unshift Shift Ctrl Ctrl/Alt Ctrl/Alt/Shift 

EOO Compose VK_OEM_COMPOSE 
EOl 1 '1' 1 
E02 2 " a '2' 2 " NUL 0 
E03 3 # section '3' 3 # ESC section 
E04 4 $ currency '4' 4 $ FS currency 
E05 5 % '5' 5 % GS 
EOS S t A 'S' S t as 
E07 7 / t '7' 7 / US t 
EOS S ( * 'S' S ( DEL * 
E09 9 ) ( 'g' 9 ) ( 

EI0 o = ) '0' 0 ) 

Ell + ? - VK_OEM_PLUS + ? 
E12 = + VK_OEM_3 dead ' dead • + 
E13 <X VK_BACK BS BS DEL 

000 TAB VK_TAB HT HT HT 
001 Q 'Q' q Q DCl 
002 W 'W' w W ETB 
003 E 'E' e E ENQ 
004 a 'a' r a DC2 
005 T 'T' t T DC4 
DOS Y 'Y' Y Y EM 
007 U 'U' u U NAK 
DOS r 'r' i r HT 

17-21 



Table 17-3 Danish to ASCII Translation Table (cont.) 

Keypos Keycap Virtkey Unshift Shift Ctrl Ctrl/Alt Ctrl/Alt/Shift 

D09 ° '0' 0 ° SI 
DI0 P 'P' P P DLE 
D11 A ring [ { VK_OEM_6 a ring A ring [ { 

D12 " - ] } VK_OEM_7 dead " dead - ] } 

C99 CTRL VLCONTROL 
COO LOCK VK_CAPITAL, 
COl A 'A' a A SOH 
CO2 S 'S' s S OC3 
C03 D '0' d 0 EOT 
C04 F 'F' f F ACK 
C05 G 'G' g G BEL 
C06 H 'H' h H BS 
C07 J 'J' j J LF 
COB K 'K' k K VT 
C09 L 'L' 1 L FF 
CI0 AE VK_OEM_4 ae AE 
Cll ° slash ' " VK_OEM_5 o slash ° slash " 
C12 . * ' - VK_OEM_2 * dead 
C13 RETURN VK_RETURN CR CR LF 

B99 SHIFT VK_SHIFT 
BOO < > \ VK_OEM_l < > \ 
BOl Z 'Z' z Z SUB 
B02 X 'X' x X CAN 

17-22 



Table 17-3 Danish to ASCII Translation Table (cont.) 

Keypos Keycap Virtkey Unshift Shift Ctrl Ctrl/Alt Ctrl/Alt/Shift 

B03 C 'C' c C ETX 
B04 V 'V' v V SYN 
B05 B 'B' b B STX 
B06 N 'N' n N SO 
B07 M 'M' m M CR 
BOS , ; < VICOEM_COMMA < 
B09 : > VIC OEM_PERIOD > 
Bl0 / ? VIC OEM_MINUS / ? 
Bll Shift VK_SHIFT 

A99 Alt VK_MENU 
A01-09 Space bar VK_SPACE blank blank NUL 

The remainder of the keyboard layout is the same as the u.S. version. 

17-23 



Table 17-4 Finnish to ASCII Translation Table 

Keypos Keycap Virtkey Unshift Shift Ctrl Ctrl!Alt Ctrl!Alt!Shift 

EOO Compose VK_OEM_COMPOSE 
EOl 1 ! U umlaut '1 ' 1 u umlaut U umlaut 
E02 2 " @ '2' 2 " NUL @ 

E03 3 UKpound # '3' 3 UKpound ESC # 
E04 4 $ section '4' 4 $ FS section 
E05 5 % degree '5' 5 % GS degree 
E06 6 &: ~ '6' 6 i RS 
E07 7 ! i '7' 7 ! US &: 

E08 8 ( * '8' 8 ( DEL * 
E09 9 ) ( '9' 9 ) ( 

EI0 o '" ) '0' 0 ) 

E11 + ? - VK_OEM_PLUS + l' 

E12 '" + VK_OEM_3 dead ' dead • + 

E13 <X VK_BACK BS BS DEL 

000 TAB VK_TAB HT HT HT 
001 Q 'Q' q Q OCl 
002 W 'W' w W ETB 
003 E 'E' e E ENQ 
004 R 'R' r R OC2 
005 T 'T' t T OC4 
006 Y 'Y' Y Y EM 
007 U 'U' u U NAK 
008 I 'I' i I HT 

17-24 



Table 17-4 Finnish to ASCII Translation Table (cont.) 

Keypos Keycap Virtkey Unshift Shift Ctrl Ctrl/Alt Ctrl/Alt/Shift 

009 ° '0' 0 ° SI 
010 P 'P' P P OLE 
011 A ring [ { VK_OEM_6 a ring A ring [ { 

012 " ~ ] } VK_OEM_7 dead " dead ~ ] } 

C99 CTRL VK_CONTROL 
COO LOCK VK_CAP I TAL 
COl A 'A' a A SOH 
CO2 S 'S' s S OC3 
C03 0 '0' d 0 EOT 
C04 F 'F' f F ACK 
C05 G 'G' g G BEL 
C06 H 'H' h H BS 
C07 J 'J' j J LF 
COS K 'K' k K VT 
C09 L 'L' 1 L FF 
CI0 ° umlaut VK_OEM_4 o umlaut ° umlaut 
Cll A umlaut ' n VK_OEM_5 a umlaut A umlaut " 
C12 t * . - VK_OEM_2 * dead -
C13 RETURN VK_RETURN CR CR LF 

B99 SHIFT VK_SHIFT 
BOO < > \ VK_OEM_l < > \ 
BOl Z 'Z' z Z SUB 
B02 X 'X' x X CAN 

17-25 



Table 17-4 Finnish to ASCII Translation Table (cont.) 

Keypos Keycap Virtkey Unshift Shift Ctrl Ctrl/Alt Ctrl/Alt/Shift 

B03 C 'C' c C ETX 
B04 V 'V' v V SYN 
B05 B 'B' b B STX 
B06 N 'N' n N SO 
B07 M 'M' m M CR 
B08 . ; < VILOEM_COMMA < 
B09 : > VK_OEM_PERIOD > 
B10 / ? VK_OEM_MINUS / ? 

Bll Shift VK_SHIFT 

A99 Alt VK_MENU 
A01-09 Space bar VK_SPACE blank blank NUL 

The remainder of the keyboard layout is the same as the U.S. version. 

17-26 



Tab~e 17-5 French to ASCII Translation Table 

Keypos Keycap Virtkey Unshift Shift Ctrl Ctrl/Alt Ctrl/Alt/Shift 

EOO Compose VK_OEM_COMPOSE 
EOl et: 1 - '1' et: 1 dead 
E02 e acute 2 C '2' e acute 2 NUL Q 

E03 " 3 # '3' " 3 ESC # 
E04 ' 4 • '4' 4 FS dead • 
E05 ( 5 '5' ( 5 GS 
E06 section 6 ~ '6' section 6 RS 
E07 e grave 7 '7' e grave 7 US 
E08 ! 8 { '8' I 8 DEL { 

E09 c cedil 9 } '9' c cedil 9 } 

El0 a grave 0 '0' a grave 0 
E11 ) degree VK_OEM_4 ) degree 
E12 VK_OEM_MINUS 
E13 <X VK_BACK BS BS DEL 

DOO TAB VK_TAB HT HT HT 
DOl A 'A' a A SOH 
D02 Z 'Z' z Z SUB 
D03 E 'E' e E ENQ 
D04 R 'R' r R DC2 
D05 T 'T' t T DC4 
D06 Y 'Y' Y Y EM 
D07 U 'U' u U NAK 
DOS I 'I' i I HT 

17-27 



Table 17-5 French to ASCII Translation Table (cont.) 

Keypos Keycap Virtkey Unshift Shift Ctrl Ctrl/Alt Ctrl/Alt/Shift 

009 ° '0' 0 ° SI 
010 P 'p' P P OLE 
011 A " [ VK_OEM_1 dead A dead " [ 

012 $ * ] VK_OEM_l $ * ] 

C99 CTRL VK_CONTROL 
COO LOCK VK_CAPITAL 
COl Q 'Q' q Q OCl 
CO2 S 'S' s S OC3 
C03 0 '0' d 0 EOT 
C04 F 'F' f F ACK 
COS G 'G' g G BEL 
C06 H 'H' h H BS 
C01 J 'J' j J LF 
C08 K 'K' k K VT 
009 L 'L' 1 L FF 
C10 M 'M' m M CR 
Cll u grave ~ VK_OEM_S u grave ~ 
C12 mu UK pound VK_OEM_6 mu UK pound 
C13 RETURN VK_RETURN CR CR LF 

B99 SHIFT VICSHIFT 
BOO < > \ VK_OEM_3 < > \ 
BOl W 'W' w W ETB 
B02 X 'X' x X CAN 

17-28 



Table 17-5 French to ASCII Translation Table (cont.) 

Keypos Keycap Virtkey Unshift Shift Ctrl Ctrl/Alt Ctrl/Alt/Shift 

B03 C 'c' c C ETX 
B04 V 'V' v V SYN 
B05 B 'B' b B STX 
B06 N 'N' n N SOH 
B07 ? VK_OEM_COMMA ? 
B08 VK_OEM_PERIOD 
B09 / VK_OEM_2 / 
B10 = + VK_OEM_PLUS + 
B11 Shift VICSHIFT 

A99 Alt VK_MENU 
A01-09 Space bar VK_SPACE blank blank NUL 

The remainder of the keyboard layout is the same as the U.S. version. 

17-29 



Table 17-6 French Canadian and Bilingual Canadian to ASCII Translation Table 

Keypos Keycap Virtkey Unshift Shift Ctrl Ctrl/Alt Ctrl/Alt/Shift 

EOO Compose VK_OEM_COMPOSE 
EOl 1 ! '1' 1 
E02 2 " C '2 ' 2 " NUL (il 

E03 3/# '3' 3 / ESC # 
E04 4 $ '4' 4 $ FS 
E05 5 % '5' 5 % GS 
E06 6 ? ~ '6' 6 ? RS 
E07 7 " 

'7' 7 " US 
EOS S * 'S' S * DEL 
E09 9 ( 'g' 9 ( 

EIO o ) '0' 0 ) 

Ell VK_OEM_MINUS 
E12 = + VK_OEM_PLUS + 
E13 <x VK_BACK BS BS DEL 

000 TAB VK_TAB HT HT HT 
001 Q 'Q' q Q DCl 
002 W 'w' w W ETB 
003 E 'E' e E ENQ 
004 R 'R' r R DC2 
005 T 'T' t T DC4 
006 Y 'y' Y Y EM 
007 U 'u' u U NAK 
008 I 'I' i I HT 

17-30 



Table 17-6 French Canadian and Bilingual Canadian to ASCII Translation Table (cont.) 

Keypos Keycap Virtkey Unshift Shift Ctrl Ctrl/Alt Ctrl/Alt/Shift 

009 ° '0' 0 ° SI 
010 P 'p' P P OLE 
011 c Cedi! [ { VK_OEM_4 c cedilla C cedilla [ { 

012 # CI ] } VK_OEM_6 # CI ] } 

C99 CTRL VK_CONTRO 
COO LOCK VK_CAPITAL 
COl A 'A' a A SOH 
CO2 S 's' s S OC3 
C03 0 'D' d 0 EOT 
C04 F 'F' f F ACK 
COS G 'G' g G BEL 
C06 H 'H' h H BS 
C07 J ' J' j J LF 
COB K 'K' k K VT 
C09 L 'L' 1 L FF 
Cl0 VK_OEM_l 
Cll VK_OEM_7 dead • dead - " 
C12 \ I VK_OEM_S \ I 
C13 RETURN VK_RETURN CR CR LF 

B99 SHIFT VK_SHIFT 
BOO < > • - VK_OEM_3 < > 
BOl Z ·Z' z Z SUB 
B02 X 'X' x X CAN 

17-31 



Table 17-6 French Canadian and Bilingual Canadian to ASCII Translation Table (cont.) 

Keypos Keycap Virtkey Unshift Shift Ctrl Ctrl/Alt Ctrl/Alt/Shift 

B03 C 'C' c C ETX 
B04 V 'V' v V SYN 
B05 B 'B' b B STX 
B06 N 'N' n N SO 
B01 M 'M' m M CR 
BOS ' < VK_OEM_COMMA < 

B09 > VK_OEM_PERIOD dead > 
Bl0 E acute / ? VK_OEM_2 e acute E acute / ? 

BU Shift VK_SHIFT 

A99 Alt VK_MENU 
A01-09 Space bar VK_SPACE blank blank NUL 

The remainder of the keyboard layout is the same as the U.S. version. 

17-32 



Table 17-7 German to ASCII Translation Table 

Keypos Keycap Virtkey Unshift Shift Ctrl Ctrl/Alt Ctrl/Alt/Shift 

EOO Compose VK_OEM_COMPOSE 
EOl 1 ! - '1' 1 dead -
E02 2 " CI '2' 2 " NUL a 
E03 3 section '3' 3 section ESC 
E04 4 $ '4' 4 $ FS 
E06 6 % '6' 6 % as 
E06 6 t '6' 6 t as 
E07 7 / '7' 7 / US 
E08 8 ( { '8' 8 ( DEL { 

E09 9 ) } '9' 9 ) } 

El0 o = '0' 0 
E11 sharp or VK_OEM_2 sharp or 
E12 VK_OEM_3 dead ' dead • 
E13 <X VK_BACK BS BS DEL 

000 TAB VK_TAB 8T 8T 8T 
001 Q 'Q' q Q DCl 
D02 W 'W' w W ETB 
D03 E 'E' e E ENQ 
D04 a 'a' r a DC2 
006 T 'T' t T DC4 
D06 Z 'Z' z Z SUB 
007 U 'U' u U NAK 
008 I 'I' i I 8T 

17-33 



Table 17-7 German to ASCII Translation Table (cant.) 

Keypo8 Keycap Virtkey Un8hift Shift Ctrl Ctrl/Alt Ctrl/Alt/Shift 

D09 ° '0' 0 0 SI 
Dl0 P 'P' P P DLE 
Dll U umlaut [ V1COEM_6 u umlaut U umlaut [ 
D12 + * ] VK_OEM_PLUS + * ] 

C99 CTRL VK_CONTROL 
COO LOCK VK_CAPITAL 
COl A 'A' a A SOH 
CO2 S 's' 8 S DC3 
C03 D 'D' d D EOT 
C04 F 'F' f F ACK 
COS G 'G' g G BEL 
C06 H 'H' h H BS 
C07 J 'J' j J LF 
coa K 'K' k K VT 
C09 L 'L' 1 L FF 
Cl0 ° umlaut VK_OEM_S o umlaut ° umlaut 
Cll A umlaut VK_OEM_4 a umlaut A umlaut 
C12 # a VK_OEM_7 # dead a 

C13 RETURN VK_RETURN CR CR LF 

B99 SHIFT VK_SHIFT 
BOO < > \ VK_OEM_l < > \ 
BOl Y 'y' Y y EM 
B02 X 'X' X X CAN 

17-34 



Table 17-7 German to ASCII Translation Table (cont.) 

Keypos Keycap Virtkey Unshift Shift Ctrl Ctrl/Alt Ctrl/ Alt/Shift 

B03 C 'c' c C ETX 
B04 V 'V' v V SYN 
BOS B 'B' b B STX 
B06 N 'N' n N SO 
B07 M 'M' m M CR 
B08 , ; VK_OEM_COMMA 
B09 VLOEM_PERIOD 
Bl0 VK_OEM_MINUS 
Bll Shift VK_SHIFT 

A99 Alt VK_MENU 
A01-09 Space bar VK_SPACE blank blank NUL 

The remainder of the keyboard layout is the same as the U.S. version. 

17-35 



Table 17-8 Italian to ASCII Translation Table 

Keypos Keycap Virtkey Unshift Shift Ctrl Ctrl/Alt Ctrl/Alt/Shift 

EOO Compose VK_OEM_COMPOSE 
EOl 1 ! '1' 1 dead 
E02 2 " , '2' 2 " NUL dead • 
E03 3 UKpound cCedil '3' 3 UKpound ESC c cedilla 
E04 4 $ '4' 4 $ FS degree 
E05 5 't. '5' 5 't. GS 
E06 6 Ie '6' 6 Ie RS 
E07 7 / '7' 7 / US 
E08 8 ( { '8' 8 ( DEL { 

E09 9 ) } '9' 9 ) } 

El0 o = '0' 0 
Ell ' ? VK_OEM_2 ? 

E12 i grave VK_OEM_7 i grave dead • 
E13 <X VK_BACK BS BS DEL 

000 TAB VK_TAB HT HT HT 
001 Q 'Q' q Q DCl 
002 W 'W' w W ETB 
003 E 'E' e E ENQ 
004 R 'R' r R DC2 
005 T 'T' t T DC4 
006 Y 'Y' Y Y EM 
007 U 'U' u U NAK 
008 I 'I' i I HT 

17-36 



Table 17-8 Italian to ASCII Translation Table (cont.) 

Keypos Keycap Virtkey Unshift Shift Ctrl Ctrl/Alt Ctrl/Alt/Shift 

D09 ° '0' 0 ° SI 
D10 P 'P' P P DLE 
Dll eGrav eAcu [ VK_OEM_6 e grave e acute [ 
D12 + * ] VK_OEM_PLUS + * ] 

C99 CTRL VK_CONTROL 
COO LOCK VK_CAPITAL 
COl A 'A' a A SOH 
CO2 S 'S' s S DC3 
C03 D 'D' d D EOT 
C04 F 'F' f F ACK 
C05 G 'G' g G BEL 
C06 H 'H' h H BS 
C07 J ' J' j J LF 
coa K 'K' k K VT 
C09 L 'L' 1 L FF 
C10 o grave CI VK_OEM_5 o grave CI 
Cll a grave # VK_OEM_4 a grave # 
C12 u grave section VK_OEM_l u grave section 
C13 RETURN VK_RETURN CR CR LF 

B99 SHIFT VK_SHIFT 
BOO < > \ VK_OEM_3 < > \ 
BOl Z 'Z' z Z SUB 
B02 X 'X' x X CAN 

17-37 



Table 17-8 Italian to ASCII Translation Table (cont.) 

Keypos Keycap Virtkey Unshift Shift Ctrl Ctrl/Alt Ctrl/Alt/Shift 

B03 C 'C' c C ETX 
B04 V 'V' v V SYN 
B05 B 'B' b B STX 
B06 N 'N' n N SO 
B07 M 'M' m M CR 
Boa , ; VK_OEM_COMMA 
B09 VK_OEM_PERIOD 
Bl0 VK_OEM_MINUS 
B11 Shift VK_SHIFT 

A99 Alt VK_MENU 
A01-09 Space bar VK_SPACE blank blank NUL 

The remainder of the keyboard layout is the same as the U.S. version. 

17-38 



Table 17-9 Norwegian to ASCII Translation Table 

Keypos Keycap Virtkey Unshift Shift Ctrl Ctrl/Alt Ctrl/Alt/Shift 

EOO Compose VK_OEM_COMPOSE 
EOl 1 ! '1' 1 
E02 2 II G '2' 2 II NUL CI 
E03 3 UKpound # '3-' 3 UK pound ESC # 
E04 4 $ '4' 4 $ FS 
E05 5 % '5' 5 % GS 
E06 6 &: - '6' 6 &: RS 
E07 7 / &: '7' 7 / US &: 
EOS S ( * 's' S ( DEL * 
E09 9 ) ( '9' 9 ) ( 

EI0 o = ) '0' 0 ) 

Ell + ? - VK_OEM_PLUS + ? 
E12 = + VK_OEM_3 dead ' dead ' + 

E13 <X VK_BACK BS BS DEL 

DOO TAB VK_TAB HT HT HT 
DOl Q 'Q' q Q DCl 
D02 W 'W' w W ETB 
D03 E 'E' e E ENQ 

D04 R 'R' r R DC2 
D05 T ' T' t T DC4 
D06 Y 'Y' Y Y EM 
D07 U 'U' u U NAK 
DOS I 'I' i I HT 

17-39 



Table 17-9 Norwegian to ASCII Translation Table (cont.) 

Keypos Keycap Virtkey Unshift Shift Ctrl Ctrl/Alt Ctrl/Alt/Shift 

009 ° '0' 0 0 S1 
010 P 'P' P P DLE 
011 A ring [ { VK_OEM_6 a ring A ring [ { 

012 " . ] } VK_OEM_1 dead " dead • ] } 

C99 CTRL VK_CONTROL 
COO LOCK VK_CAPITAL 
COl A 'A' a A SOH 
CO2 S 's' s S OC3 
C03 0 '0' d D EOT 
C04 F 'F' f F ACK 
C05 G 'G' g G BEL 
C06 H 'H' h H BS 
C01 J ' J' j J LF 
COS K 'K' k K VT 
C09 L 'L' 1 L FF 
CI0 ° slash VK_OEM_5 o slash o slash 
C11 AE ' " VK_OEM_4 ae AE " 
C12 . * ' - VK_OEM_2 * dead -
C13 RETURN VK_RETURN CR CR LF 

B99 SHIFT VK_SH1FT 
BOO < > \ I VK_OEM_l < > \ 
BOl Z 'Z' z Z SUB 
B02 X 'X' x X CAN 

17-40 



Table 17-9 Norwegian to ASCII Translation Table (cont.) 

Keypos Keycap Virtkey Unshift Shift Ctrl Ctrl/Alt Ctrl/Alt/Shift 

B03 C 'c' c C ETX 
B04 V 'V' v V SYN 
B05 B 'B' b B STX 
B06 N 'N' n N SO 
B07 M 'M' m M CR 
BOB , ; < VK_OEM_COMMA < 
B09 : > VK_OEM_PERIOD > 
Bl0 / ? VK_OEM_MINUS / ? 
B11 Shift VK_SHIFT 

A99 Alt VK_MENU 
A01-09 Space bar VK_SPACE blank blank NUL 

The remainder of the keyboard layout is the same as the U.S. version. 

17-41 



Table 17-10 Spanish to ASCII Translation Table 

Keypos Keycap Virtkey Unshift Shift Ctrl Ctrl/Alt Ctrl/Alt/Shift 

EOO Compose VK_OEM_COMPOSE 
EOl 1 inverted '1 ' 1 inverted ! dead 
E02 2 inverted ? (g '2' 2 inverted ? NUL (g 

E03 3 # UKpound '3' 3 # ESC UKpound 
E04 4 $ aUndersc '4' 4 $ FS a underscore 
E05 5 % oUndersc '5' 5 % GS o underscore 
E06 6 / '6' 6 / RS 
E07 7 .t '7' 7 .t US 
E08 8 * '8' 8 * DEL 
E09 9 ( { '9' 9 ( { 

EI0 o ) } '0' 0 ) } 

Ell VK_OEM_MINUS 
E12 = + VK_OEM_PLUS + 
E13 <X VK_BACK BS BS DEL 

DOO TAB VK_TAB HT HT HT 
DOl Q 'Q' q Q DCl 
D02 W 'W' w W ETB 
D03 E 'E' e E ENQ 
D04 R 'R' r R DC2 
D05 T 'T' t T DC4 
D06 Y 'Y' Y Y EM 
D07 U 'U' u U NAK 
D08 I 'I' i I HT 

17-42 



Table 17-10 Spanish to ASCII Translation Table (cont.) 

Keypos Keycap Virtkey Unshift Shift Ctrl Ctrl/Alt Ctrl/Alt/Shift 

009 ° '0' 0 ° SI 
DI0 P 'P' P P DLE 
011 ' " [ VK_OEM_4 dead ' dead " [ 
D12 ] VK_OEM_3 dead • dead A ] 

C99 CTRL VK_CONTROL 
COO LOCK VK_CAPITAL 
COl A 'A' a A SOH 
CO2 S 's' s S DC3 
C03 D 'D' d D EOT 
C04 F 'F' f F ACK 
COS G 'G' g G BEL 
C06 H 'H' h H BS 
C01 J 'J' j J LF 
COS K 'K' k K VT 
C09 L 'L' 1 L FF 
CI0 N tilde VK_OEM_S n tilde N tilde 
Cll VK_OEM_l 
C12 c cedilla VK_OEM_2 c cedilla 
C13 RETURN VK_RETURN CR CR LF 

B99 SHIFT VK_SHIFT 
BOO < > \ VK_OEM_6 < > \ 
BOI Z 'Z' z Z SUB 
B02 X 'X' x X CAN 

17-43 



Table 11-10 Spanish to ASCII Translation Table (cont.) 

Keypos Keycap Virtkey Unshift Shift Ctrl Ctrl/Alt Ctrl/Alt/Shift 

B03 C 'C' c C ETX 
B04 V 'V' v V SYN 
B05 B 'B' b B STX 
B06 N 'N' n N SO 
B07 M 'M' m M CR 
B08 ? VK_OEM_COMMA ? , . 
B09 . ! VK_OEM_PERIOD 
B10 ' " VK_OEM_7 " 
B11 Shift VK_SHIFT 

A99 Alt VK_MENU 
A01-09 Space bar VK_SPACE blank blank NUL 

The remainder of the keyboard layout is the same as the U.S. version. 

11-44 



Table 17-11 Swedish to ASCII Translation Table 

Keypos Keycap Virtkey Unshift Shift Ctrl Ctrl/Alt Ctrl/Alt/Shift 

EOO Compose VK_OEM_COMPOSE 
EOl 1 ! U umlaut '1 ' 1 u umlaut U umlaut 
E02 2 " 0 '2' 2 " NUL CI 

E03 3 UKpound # '3' 3 UKpound ESC # 
E04 4 $ E acute '4' 4 $ FS e acute E acute 
E05 5 1. degree '5' 5 1. GS degree 
E06 6 l - '6' 6 Ie RS 
E07 7 / Ie '7' 7 / US l 
E08 8 ( * '8' 8 ( DEL * 
E09 9 ) ( '9' 9 ) ( 

El0 0=) '0' 0 ) 

Ell + ? - VK_OEM_PLUS + ? 

E12 = + VK_OEM_3 dead ' dead ' + 

E13 <X VK_BACK BS BS DEL 

DOO TAB VK_TAB HT HT HT 
DOl Q 'Q' q Q DCl 
D02 W 'W' w W ETB 
D03 E 'E' e E ENQ 
D04 R 'R' r R DC2 
005 T 'T' t T DC4 
006 Y 'Y' Y Y EM 
D07 U 'U' u U NAK 
D08 I 'I' i I HT 

17-45 



Table 17-11 Swedish to ASCII Translation Table (cont.) 

Keypos Keycap Virtkey Unshift Shift Ctrl Ctrl/Alt Ctrl/Alt/Shift 

009 ° '0' 0 ° S1 
010 P 'p' P P OLE 
011 A ring [ { VK_OEM_6 a ring A ring [ { 

012 " A ] } VK_OEM_7 dead " dead A ] } 

C99 CTRL VK_CONTROL 
COO LOCK VK_CAP1TAL 
COl A 'A' a A SOH 
CO2 S 's' s S OC3 
C03 0 '0' d 0 EOT 
C04 F 'F' f F ACK 
C05 G 'G' g G BEL 
C06 H 'H' h H BS 
C07 J ' J' j J LF 
COS K 'K' k K VT 
C09 L 'L' 1 L FF 
Cl0 ° umlaut VK_OEM_4 o umlaut ° umlaut 
Cll A umlaut ' " VK_OEM_5 a umlaut A umlaut " 
C12 • * ' VK_OEM_2 * dead 
C13 RETURN VK_RETURN CR CR LF 

B99 SHIFT VK_SH1FT 
BOO < > \ VK_OEM_l < > \ 
BOl Z 'Z' z Z SUB 
B02 X 'X' x X CAN 

17-46 



Table 17-11 Swedish to ASCII Translation Table (cont.) 

Keypos Keycap Virtkey Unshift Shift Ctrl Ctrl/Alt Ctrl/ Alt/Shift 

B03 C 'c' c C ETX 
B04 V 'V' v 11 SYN 
BOS B 'B' b B STX 
B06 N 'N' n N SO 
BOr M 'M' m M CR 
B08 , ; < VK_OEM_COMMA < 
B09 : > VK_OEM_PERIOD > 
BIO / ? VK_OEM_MINUS / ? 
Bll Shift VK_SHIFT 

A99 Alt VK_MENU 
AOI-09 Space bar VLSPACE blank blank NUL 

The remainder of the keyboard layout is the same as the U.S. version. 

17-47 



Table 17-12 Swiss French to ASCII Translation Table 

Keypos Keycap Virtkey Unshift Shift Ctrl Ctrl/Alt Ctrl/Alt/Shift 

EOO Compose VK_OEM_COMPOSE 
EOl 1 + '1' 1 + 

E02 2 " @ '2' 2 " NUL @ 

E03 3 * # '3' 3 * ESC # 
E04 4 cCedil degree '4' 4 c cedilla FS degree 
E05 5 % section '5' 5 % GS section 
E06 6 &: '6 ' 6 &: RS 
E07 7/1 '7 ' 7 / US 
E08 8 ( '8' 8 ( DEL 
E09 9 ) '9' 9 ) 

El0 o = '0' 0 + 

El1 ' ? • VK_OEM_7 dead ' ? 
E12 VK_OEM_PLUS dead ~ dead ' dead -
E13 <X VK_BACK BS BS DEL 

000 TAB VK_TAB HT HT HT 
001 Q 'Q' q Q DCl 
002 W 'W' w W ETB 
003 E 'E' e E ENQ 
004 R 'R' r R DC2 
005 T 'T' t T DC4 
006 Z 'Z' z Z SUB 
007 U 'U' u U NAK 
008 I 'I' i I H1 

17-48 



Table 17-12 Swiss French to ASCII Translation Table (cont.) 

Keypos Keycap Virtkey Unshift Shift Ctrl Ctrl/Alt Ctrl/Alt/Shift 

009 ° '0' 0 0 SI 
010 P 'P' P P OLE 
011 eGrav uUmlaut VK_OEM_5 e grave u umlaut [ 
012 " ! ] VK_OEM_6 dead " ] 

C99 CTRL VK_CONTROL 
COO LOCK VK_CAPITAL 
COl A 'A' a A SOH 
CO2 S 's' s S OC3 
C03 0 '0' d 0 EDT 
C04 F 'F' f F ACK 
C05 G 'G' g G BEL 
C06 H 'H' h H BS 
C07 J 'J' j J LF 
COB K 'K' k K VT 
C09 L 'L' 1 L FF 
CI0 eAcu oUmlaut { VK_OEM_l e acute o umlaut { 

Cll aGra aUmlaut } VK_OEM_2 a grave a umlaut } 

C12 $ UKpound VK_OEM_4 $ UKpound 
C13 RETURN VK_RETURN CR CR LF 

B99 SHIFT VK_SHIFT 
BOO < > \ VK_OEM_3 < > \ 
BOl Y 'Y' Y Y EM 
B02 X 'X' x X CAN 

17-49 



Table 17-12 Swiss French to ASC][I Translation Table (cont.) 

Keypos Keycap Virtkey Unshift Shift Ctrl Ctrl/Alt Ctrl/Alt/Shift 

B03 C 'c' c C ETX 
B04 V 'V' v V SYN 
B05 B 'B' b B STX 
B06 N 'N' n N SO 
B01 M 'M' m M CR 
B08 . ; VK_OEM_COMMA 
B09 VLOEM_PERIOD 
Bl0 VK_OEM_MINUS 
B11 Shift VK_SHIFT 

A99 Alt VK_MENU 
A01-09 Space bar VK_SPACE blank blank NUL 

The remainder of the keyboard layout is the same as the U.S. version. 



Table 17-13 Swiss German to ASCII Translation Table 

Keypos Keycap Virtkey Unshift Shift Ctrl Ctrl/Alt Ctrl/ Alt/Shift 

EOO Compose VK_OEM_COMPOSE 
EOl 1 + '1 ' 1 + 

E02 2 " l!I '2' 2 " NUL Q 

E03 3 * # '3' 3 * ESC # 
E04 4 cCedil degree '4' 4 c cedilla FS degree 
E05 5 % section '5' 5 % GS section 
E06 6 It '6' 6 It RS 
E07 7/1 '7' 7 / US 
E08 8 ( '8' 8 ( DEL 
E09 9 ) '9' 9 ) 

EI0 o = '0' 0 + 

Ell ' ? « VK_OEM_7 dead ' ? 
E12 VK_OEM_PLUS dead A dead • dead -
E13 <X VK_BACK BS BS DEL 

DOO TAB VK_TAB HT HT HT 
DOl Q 'Q' q Q DCl 
D02 W 'W' w W ETB 
D03 E 'E' e E ENQ 
D04 R 'R' r R DC2 
D05 T 'T' t T DC4 
D06 Z 'Z' z Z SUB 
007 U 'U' u U NAK 
D08 I 'I' i I HT 

17-51 



Table 17-13 Swiss German to ASCII Translation Table (cont.) 

Keypos Keycap Virtkey Unshift Shift Ctrl Ctrl/Alt Ctrl/Alt/Shift 

D09 ° '0' 0 ° SI 
Dl0 P 'P' p P DLE 
Dll uUmlaut eGrav [ VK_OEM_5 u umlaut e grave [ 
D12 " ! ] VK_OEM_S dead " ! ] 

C99 CTRL VK_CONTROL 
COO LOCK VK_CAPITAl. 
COl A 'A' a A SOH 
CO2 S 's' s S DC3 
C03 D 'D' d D EOT 
C04 F 'F' f F ACK 
C05 G 'G' g G BEL 
COS H 'H' h H BS 
C01 J ' J' j J LF 
C08 K 'K' k K VT 
C09 L 'L' 1 L FF 
Cl0 oUmlaut eAcu { VK_OEM_l o umlaut e acute { 

Cll aUmlaut aGra } VK_OEM_2 a umlaut a grave } 

C12 $ UKpound VK_OEMA $ UKpound 
C13 RETURN VK_RETURN CR CR LF 

B99 SHIFT VK_SHIFT 
BOO < > \ VK_OEM_3 < > \ 
BOl Y 'Y' Y Y EM 
B02 X 'X' x X CAN 

17-52 



Table 17-13 Swiss German to ASCII Translation Table (cont.) 

Keypos Keycap Virtkey Unshift Shift Ctrl Ctrl/Alt Ctrl/ Al t/Shift 

B03 C 'c' c C ETX 
B04 V 'V' v V SYN 
B05 B 'B' b B STX 
B06 N 'N' n N SO 
B07 M 'M' m M CR 
B08 , ; VK_OEM_COMMA 
B09 VK_OEM_PERIOD 
BI0 VK_OEM_MINUS 
Bll Shift VK_SHIFT 

A99 Alt VK_MENU 
AOI-09 Space bar VK_SPACE blank blank NUL 

The remainder of the keyboard layout is the same as the U.S. version. 

17-53 



U.K. to ASCII Translation 

U.K. keyboard mappings are identical to U.S., except that the VK_3 shifted 
output is the U.K. pound sign instead of the hash mark, and the 'extra' value 
(Ctrl/Alt/3) is the hash mark instead of the U.K. pound sign. 

17-54 



AnsiToOem, OemToAnsi 
The keyboard driver supports two MS-Windows entry points AnsiToOem and 
OemToAnsi. These entry points translate character byte values between the 
OEM character set. which on the V AXmate is equivalent to the IBM PC char
acter set, and the ANSI character set, also known as the ISO Latin-I. 

ANSI to OEM Table 
ANSI characters in the range 20h to 7Eh are the same as those in the OEM 
character set. ANSI characters from OOh to 1Fh and from 7Fh to AOh are 
non-printable control codes. Therefore, there is no translation from the ANSI 
character set to the OEM character set for these characters. 

Table 17-14 documents the translation from characters AOh through FFh in the 
ANSI set to the OEM set. 

Table 17-14 Translation of ANSI Set to OEM Set 

ANSI Description OEM Description (if different 
Char Char from ANSI) 

AOH no-break space (NBSP) 20H space 
A1H inverted exclamation point ADH 
A2H cent sign 9BH 
A3H Pound Sterling sign 9CH 
A4H currency sign OFH 
A5H yen sign 9DH 
A6H broken bar 7CH 
A7H section sign 15H 
A8H diaeresis 22H quotation mark 
A9H copyright sign 63H lowercase c 
AAH feminine ordinal indicator A6H 
ABH left angle quotation mark AEH 
ACH logical NOT AAH 
ADH hyphen 2DH minus sign 
AEH registered trade mark 72H lowercase r 
AFH macron 5FH low line 

BOH ring above, degree sign F8H 
B1H plus-minus sign F1H 
B2H 2 (superscript) FDH 
B3H 3 (superscript) 33H digit 3 
B4H acute accent 27H apostrophe 
B5H Greek small mu, micro sign E6H 

MS-Windows on the VAXmate 17 - 55 



Table 17-14 Translation of ANSI Set to OEM Set ~cont.) 

ANSI Description OEM Description (if different 
Char Char from ANSI) 

B6H pilcrow sign, paragraph sign 14H 
B7H middle dot FAH 
B8H cedilla 2CH comma 
B9H 1 (superscript) 3lH digit 1 
BAH masculine ordinal indicator A7H 
BBH right angle quotation mark AFH 
BCH 1/4 ACH 
BDH 1/2 ABH 
BEH 3/4 5FH low line 
BFH inverted question mark A8H 

COH A grave uppercase 4lH uppercase A 
ClI-I A acute uppercase 4lH uppercase A 
C2H A circumflex uppercase 41H uppercase A 
C3H A tilde uppercase 4lH uppercase A 
C4H A diaeresis uppercase 8EH 
C5H A ring uppercase 8FH 
C6H AE diphthong uppercase 92H 
C7H C cedilla uppercase 80H 
C8H E grave uppercase 45H uppercase E 
C9H E acute uppercase 90H 
CAH E circumflex uppercase 45H uppercase E 
CBH E diaeresis uppercase 45H uppercase E 
CCH I grave uppercase 49H uppercase I 
CDH I acute uppercase 49H uppercase I 
CEH I circumflex uppercase 49H uppercase I 
CFH I diaeresis uppercase 49H uppercase I 

DOH Icelandic Eth uppercase 44H uppercase D 
DlH N tilde uppercase A5H 
D2H o grave uppercase 4FH uppercase 0 
D3H o acute uppercase 4FH uppercase 0 
D4H o circumflex uppercase 4FH uppercase 0 
D5H o tilde uppercase 4FH uppercase 0 
D6H o diaeresis uppercase 99H 
D7H multiplication sign 78H lowercase x 
D8H o with oblique stroke uppercase 4FH uppercase 0 
D9H U grave uppercase 55H uppercase U 

17 - 56 MS-Windows on the VAXmate 



Table 17-14 Translation of ANSI Set to OEM Set (cont.) 

ANSI Description OEM Description (if different 
Char Char from ANSI) 

DAH U acute uppercase 55H uppercase U 
DBH U circumflex uppercase 55H uppercase U 
DCH U diaeresis uppercase 9AH 
DOH Y acute uppercase 59H uppercase Y 
OEH Icelandic Thorn uppercase 5FH low line 
OFH German sharp S lowercase E1H 

EOH a grave lowercase 85H 
ElH a acute lowercase AOH 
E2H a circumflex lowercase 83H 
E3H a tilde lowercase 6lH lowercase a 
E4H a diaeresis lowercase 84H 
E5H a ring lowercase 86H 
E6H ae diphthong lowercase 9lH 
E7H c cedilla lowercase 87H 
E8H e grave lowercase 8AH 
E9H e acute lowercase 82H 
EAH e circumflex lowercase 88H 
EBH e diaeresis lowercase 89H 
ECH i grave lowercase 8DH 
EOH i acute lowercase AlH 
EEH i circumflex lowercase 8CH 
EFH i diaeresis lowercase 8BH 

FOH Icelandic Eth lowercase 64H lowercase d 
FlH n tilde lowercase A4H 
F2H o grave lowercase 95H 
F3H o acute lowercase A2H 
F4H o circumflex lowercase 93H 
F5H o tilde lowercase 6FH lowercase 0 

F6H o diaeresis lowercase 94H 
F7H division sign F6H 
F8H o with oblique stroke lowercase 6FH lowercase 0 

F9H u grave lowercase 97H 
FAH u acute lowercase A3H 
FBH u circumflex lowercase 96H 
FCH u diaeresis lowercase 8lH 
FDH yacute lowercase 79H lowercase y 
FEH Icelandic Thorn lowercase 5FH low line 
FFH y diaeresis lowercase 98H 

MS-Windows on the VAX mate 17 - 57 



OEM to ANSI Table 
OEM characters in the range 20h to 7Eh are the same as those in the ANSI 
character set. Therefore, there is no translation. OEM characters from OOh to 
1 Fh are also not translated. Therefore, they are equivalent to the corresponding 
control code in the ANSI set. 

Table 17-15 documents the translation from characters 80h through FFh in the 
OEM set to the ANSI set. 

Table 17-15 Translation of OEM Set to ANSI Set 

OEM Description ANSI Description (if different 
Char Char from OEM) 

80H C cedilla uppercase C7H 
81H u diaeresis lowercase FCH 
82H e acute lowercase E9H 
83H a circumflex lowercase E2H 
84H a diaeresis lowercase E4H 
85H a grave lowercase EOH 
86H a ring lowercase E5H 
87H c cedilla lowercase E7H 
88H e circumflex lowercase EAH 
89H e diaeresis lowercase EBH 
8AH e grave lowercase E8H 
8BH i diaeresis lowercase EFH 
8CH i circumflex lowercase EEH 
8DH i grave lowercase ECH 
8EH A diaeresis uppercase C4H 
8FH A ring uppercase C5H 

90H E acute uppercase C9H 
91H ae diphthong lowercase E6H 
92H AE diphthong uppercase C6H 
93H o circumflex lowercase F4H 
94H o diaeresis lowercase F6H 
95H o grave lowercase F2H 
96H u circumflex lowercase FBH 
97H u grave lowercase F9H 
98H y diaeresis lowercase FFH 
99H o diaeresis uppercase D6H 
9AH U diaeresis uppercase DCH 
9BH cent A2H 
9CH Pound Sterling sign A3H 
9DH yen A5H 
9EH Peseta sign or point sign Wt) 70H lowercase p 
9FH Function sign (curved f) 66H lowercase f 

17 - 58 MS-Windows on the VAXmate 



Table 17-15 Translation of OEM Set to ANSI Set (cont.~ 

OEM Description ANSI Description (if different 
Char Char from OEM~ 

AOH a acute lowercase EIH 
AIH i acute lowercase EDH 
A2H o acute lowercase F3H 
A3H u acute lowercase FAH 
A4H n tilde lowercase FIH 
A5H N tilde uppercase DIH 
A6H feminine ordinal indicator AAH 
A7H masculine ordinal indicator BAH 
ASH inverted question mark BFH 
A9H Reverse logical NOT sign 5FH low line 
AAH logical NOT sign ACH logical NOT 
ABH 1/2 BDH 
ACH 1/4 BCH 
ADH inverted exclamation point AIH 
AEH left angle quotation mark ABH 
AFH right angle quotation mark BBH 

BOH graphic character 20H space 
BIH graphic character 20H space 
B2H graphic character 20H space 
B3H graphic character 7CH vertical line 
B4H graphic character 2BH plus sign 
B5H graphic character 2BH plus sign 
B6H graphic character 2BH plus sign 
B7H graphic character 2BH plus sign 
B8H graphic character 2BH plus sign 
B9H graphic character 2BH plus sign 
BAH graphic character 7CH vertical line 
BBH graphic character 2BH plus sign 
BCH graphic character 2BH plus sign 
BDH graphic character 2BH plus sign 
BEH graphic character 2BH plus sign 
BFH graphic character 2BH plus sign 

COH graphic character 2BH plus sign 
CIH graphic character 2BH plus sign 
C2H graphic character 2BH plus sign 
C3H graphic character 2BH plus sign 
C4H graphic character 2DH minus sign 

MS-Windows on the VAXmate 17 - 59 



Table 17-15 Translation of OEM Set to ANSI Set (cont.~ 

OEM Description ANSI Description (if different 
Char Char from OEM~ 

C5H graphic character 2BH plus sign 
C6H graphic character 2BH plus sign 
C7H graphic character 2BH plus sign 
C8H graphic character 2BH plus sign 
C9H graphic character 2BH plus sign 
CAH graphic character 2BH plus sign 
CBH graphic character 2BH plus sign 
CCH graphic character 2BH plus sign 
CDH graphic character 3DH equal sign 
CEH graphic character 2BH plus sign 
CFH graphic character 2BH plus sign 

DOH graphic character 2BH plus sign 
DIH graphic character 2BH plus sign 
D2H graphic character 2BH plus sign 
D3H graphic character 2BH plus sign 
D4H graphic character 2BH plus sign 
D5H graphic character 2BH plus sign 
D6H graphic character 2BH plus sign 
D7H graphic character 2BH plus sign 
D8H graphic character 2BH plus sign 
D9H graphic character 2BH plus sign 
DAH graphic character 2BH plus sign 
DBH graphic character 20H space 
DCH graphic character 20H space 
DDH graphic character 20H space 
DEH graphic character 20H space 
DFH graphic character 20H space 

EOH Alpha 5FH low line 
EIH Beta DFH 
E2H Gamma 5FH low line 
E3H Pi B6H pilcrow sign, paragraph sign 
E4H sigma uppercase 5FH low line 
E5H sigma lowercase 5FH low line 
E6H mu lowercase B5H 
E7H tau lowercase 5FH low line 
E8H phi uppercase 5FH low line 
E9H theta uppercase 5FH low line 
EAH omega uppercase 5FH low line 

17 - 60 MS-Windows on the VAXmate 



Table 17-15 Translation of OEM Set to ANSI Set (cont.) 

OEM Description ANSI Description (if different 
Char Char from OEM) 

EBH delta lowercase 5FH low line 
ECH infinity sign 5FH low line 
EDH math empty set or phi lowercase 5FH low line 
EEH math own sign 5FH low line 
EFH math intersection sign 5FH low line 

FOH math equivalence sign 5FH low line 
FIH plus-minus sign BIH 
F2H greater than or equal sign 5FH low line 
F3H less than or equal sign 5FH low line 
F4H math integral upper part 5FH low line 
F5H math integral lower part 5FH low line 
F6H divide sign F7H 
F7H math roughly equals sign 5FH low line 
F8H degree sign BOH 
F9H bold dot B7H middle dot 
FAH middle dot B7H 
FBH square root 5FH low line 
FCH n superscript 6EH lowercase n 
FDH 2 superscript B2H 
FEH black box (or diaeresis) A8H diaresis 
FFH space 20H 

Mouse 
The VAXmate uses the DIGITAL 3-button mouse. Movement of the mouse 
and/or button transitions on the mouse results in standard MS-Windows 
messages. 

Communications 
Communications on the VAXmate under MS-Windows may take place via an 
asynchronous serial communications device, parallel device or over ethernet 
with the support of the DIGITAL LAT driver. 

Full asynchronous serial and parallel communications device support is provided 
as defined in the MS-Windows Software Development Kit Programmer's 
Reference Manu.al. In addition, DIGITAL adaptation allows for the LPTx ports 
which are redirected to the DIGITAL Serial Printer Port (SPP) to be accessed. 
Redirection of an LPTx port to a network device is also allowed. Redirection of 
an LPTx port to a COMx port is not allowed. 

MS-Windows on the VAXmate 17 - 61 



LAT support is an enhancement to DIGITAL's MS-Windows product. Support 
is in two forms. First, there is a custom application interface to the DIGITAL 
LAT driver. Second, there is a mapping of the MS-Windows RS232 
asynchronous serial communications interface to LAT functions. 

The Windows LAT support driver supports up to four sessions or circuits. This 
is due to the fact that only four LAT Control Blocks ILCBs) are available for 
use in the MS-Windows communications driver. Any attempt to open a fifth 
session or circuit results in an out-of-memory initialization error return code. 

LAT Support Through the Windows Asynchronous 
Serial Communications Interface 
The RS232 communications functions in the standard Windows adaptation can 
optionally be mapped to LAT functions. It has certain restrictions and is under 
the user's control. The LAT support driver is transparent to applications which 
are aware of the Windows asynchronous communications interface. 

In order to provide LAT via the asynchronous serial communications interface, 
the asynchronous serial communication devices must be logically mapped to 
LAT services. The user of Windows is required to associate the desired LAT 
service name with one of the asynchronous serial communication devices, 
namely COM1 or COM2. If the communications device is'mapped to a LAT 
service, then applications which use the standard asynchronous serial communi
cations routines supplied under Windows will have the calls automatically redi
rected to the LAT support driver. The user's mapping of asynchronous devices 
to LAT services is supported in the Control Panel. The user's selection is saved 
in the WIN.INI file. See the section on the Control Panel application in the 
VAXmate User's Guide. 

Each MS-Windows supplied and defined serial communication routine is 
mapped to an appropriate LAT function. 

Not all error return codes are 100% meaningful when mapping asynchronous 
communications functions to LAT functions. The most meaningful error defined 
by Windows was chosen to indicate errors in the LAT support driver. 

In the following section, each Windows communications function is followed by 
a one sentence description of its purpose. IMore detail may be obtained from 
the MS-Windows Programmer's Reference ManuaL) Each description is fol
lowed by the routine's functionality when redirected to LAT. 

17 - 62 MS-Windows on the V AXmate 



OpenComm 
This routine handles the opening of a communications device. A LAT session is 
opened if: 

1. The LAT driver has been loaded. If not, the OPEN request is handled 
by the asynchronous communications driver. 

2. The device ID is 0 or 1. If not, the OPEN request is handled by the 
asynchronous communications driver. 

3. The mode of transmission is computer to computer. Therefore, the 
FDTRFLOW, FRTSFLOW, FOUTXCTSFLOW, and 
FOUTXDSRFLOW flags in the serial communications DCB must be O. 
If not, the open call is handled by the serial communications open 
routine. 

4. The transmit/receive byte size is valid. If less than 4 or greater than 8, 
an illegal byte size (IE _ BYTESIZE) error is returned. 

5. There is an available LCB. If not, the open call is handed off to the 
serial communications driver. 

6. A service name is present in the WIN.INI file for the serial communi
cations device being opened. If not, the open call is handed off to the 
serial communications open routine. 

7. The LAT service is available. If the LAT service is unavailable, an in
valid or unsupported 10 error is returned (IE _ BADID). 

8. The serial communications DCB is copied into the LCB in case the 
application performs a GetCommState call. 

All subsequent Windows communications functions are handled by the LAT 
support routine if a successful open-under-LAT was previously performed. 
Otherwise, the call is handled by the asynchronous communications driver. 

WriteComm 
This Windows routine handles write operations to the communications device. 
The following actions are performed: 

1. Check for a LAT session fail or stop. If so, the break-event bit, 
EV BREAK, is set in the communications event word. The communi
cations event word can be read by the GetCommEventMask or 
SetCommEventMask functions. The communications error code 
CE BREAK is also returned indicating the LAT session failure or 
stop. 

2. The transmit/receive byte size passed in the serial communications 
Device Control Block (DCB) during the OpenComm call is used to 
mask unwanted data bits. 

3. The character passed is transmitted. If unable to transmit, a transmit 
queue full error ICE TXFULL) is logged and can be retrieved by doing 
a GetCommError call. 

MS-Windows on the VAXmate 17 - 63 



TransmitCommChar 
This LAT support routine transmits a character immediately, just as any other 
character. Therefore, its functionality is identical to the WriteComm routine. 

ReadComm 
This routine reads the communications device. The following actions are 
performed: 

1. Check for a LAT session fail or stop. If so, no characters are returned 
for the read. Rather. the break-event bit, EV BREAK, is set in the 
communications event word. Also, the communications error code 
CE _BREAK is returned indicating the LAT session failure or stop. 

2. The end of file flag is checked. If set, the EOF character is returned. 

3. A character is read. If a character is available, steps 4-7 are performed, 

4. The transmit/receive byte size passed in the serial communications 
Device Control Block (DCB) during the OpenComm call is used to 
mask unwanted data bits. 

5. If the strip receive null flag (FNULL) passed in the DCB is set and 
the character received is a null, no character is returned to the caller. 

6. If the binary flag (FBI NARY) in the DCB is not set, check for the 
EOF character as passed in the DCB (EOFCHAR). If character read is 
the EOF, it is returned to the caller and the EOF status flag (FEOF) 
is set. The FEOF status flag may be retrieved by doing a 
GetCommError call. 

7. The event character (EVTCHAR) passed in the DCB is checked 
against the read character. If equal, the event is logged and can be 
retrieved by calling SetCommEventMask or GetCommEventMask. 

CloseComm 
This routine closes the communication device. The following actions are 
performed: 

1. The LAT session is unconditionally closed. 

2. Data structures allocated to the session are freed. 

17 - 64 MS-Windows on the VAXmate 



SetCommState 
This routine sets parameters in the serial communications DCB. The following 
actions are performed: 

1. The FDTRFLOW, FRTSFLOW, FOUTXCTSFLOW, and 
FOUTXDSRFLOW flags in the serial communications DCB must all 
be reset to indicate computer-to-computer transmission. If not, the 
LA T session is closed and a call is made to the asynchronous commu
nications driver's OPEN routine. Otherwise, steps 2-3 are performed. 

2. The transmit/receive byte size is checked. If less than 4 or greater 
than 8, an illegal byte size liE _ BYTESIZE) error is returned. 

3. The serial communications DCB is copied into the LCB. 

GetCommState 
This routine fills a buffer with the serial communications DCB. 

EscapeCommFunction 
This LAT support routine performs extended communication functions. It does 
nothing except exit with the current device error word. 

SetCommBreak 
This LAT support routine puts the communications device in a break state. It 
performs the following function: 

1. SendCommBreak sends a break to the host and exits with the current 
device error word. If the break cannot be sent, the CE TXFULL bit is 
set in the communications error word. -

ClearCommBreak 
This LAT support routine clears the communication device's break state. It 
does nothing except exit with the current device error word. 

SetCommEventMask 
This LAT support routine enables and retrieves the event mask. Its 
functionality is identical to the asynchronous communications driver. 

GetCommEventMask 
This LAT support routine returns and clears the event mask. Its functionality 
is identical to the asynchronous communications driver. 

FlushComm 
This LAT support routine flushes characters from the transmit or receive 
queue. Its functionality is identical to the asynchronous communications driver. 

MS-Windows on the VAXmate 17- 65 



GetCommError 
This LAT support routine fills a communications status buffer and returns the 
communications error word if an error occurred since the last GetCommError. 
Its functionality is identical to the asynchronous communications driver. The 
only flag which may ever be set in STFLAGS in the status buffer is the EOF 
character flag IFEOF). The only communications device error bit which may 
ever be set in the communications error word are CETXFULL and 
CE BREAK. -

The Windows LAT interface ignores RS232 specific parameters which are part 
of the LAT Device Control Block data structure (e.g., baud rate, parity, stop 
bits, etc.). 

Custom LA T Application Interface Under Windows 
Applications that are aware of LAT may use custom functions provided under 
DIGITAL's adaptation of MS-Windows. These functions are a direct interface 
to LAT from the application. Parameters passed and returned are specific to 
LAT. The interface does not attempt to emulate the asynchronous communica
tions interface provided under MS-Windows. 

There are eight custom application interface functions provided to support the 
interface to LAT. They are described in detail below. 

17 - 66 MS-Windows on the VAXmate 



OpenLat (lpServiceN arne, IpN odeN arne, IpPortN arne) : 
Latid 
This routine opens a session to a LAT-supported service and assigns a LATID 
handle to it. The routine allocates the data structures for the LA T session in
cluding space for the receive and transmit queues. 

Parameters 

IpServiceN arne 

IpNodeName 

IpPortName 

Returns 

Is a long pointer to a null-terminated string that contains 
the requested service name. It may be 1-18 characters in 
length. 

Is a long pointer to a null-terminated string that contains 
the requested node name. This parameter may be NULL 
or up to 18 characters in length. 

Is a long pointer to a null-terminated string that contains 
the requested port name. This parameter may be NULL or 
up to 18 characters in length. 

Latid Is an integer value identifying the opened communication 
device. If Latid is negative an initialization error oc
curred. 

IE LATINSTALL Is returned if the LAT driver was not installed. 

IE LATSERVICE Is returned if the requested service is unavailable. 

IE LATMEMORY Is returned if unable to allocate memory for the LAT 
data structures. 

IE LATSESSIONS Is returned if no sessions are available. 

IE LATCIRCSESS Is returned if no sessions are available on the circuit. 

IE LA TVIRTCIRC If no more virtual circuit blocks are available. 

IE LATBUFFER Is returned if there is a data buffer specification error 
(internal LAT driver error). 

MS-Windows on the VAXmate 17 - 67 



CloseLat (La tid) : Result 
The routine closes the LAT session specified by the Latid and frees all the data 
structures associated with the session. 

Parameters 

Latid is an integer value identifying the LAT session to be closed. 

Returns 

Result is an integer value specifying the result of the routine. 

= 0 (CE_LATOKI if the session was closed. 

= a negative number if there was an error. 

= CE LATID if there is no session associated with Latid. 

= CE _ LATSTOP if the LAT circuit failed or was stopped. 

ReadLat (Latid) : Result 
This routine attempts to read a character from the receive queue for a session 
as specified by Latid. 

Parameters 

Latid is an integer value identifying the LAT session to be read from. 

Returns 

The low order 8 bits of Result contain the read character. 

= a negative value if no character was read or there was an error. 

= CE LATID if there is no session associated with Latid. 

= CE_LATSTOP if the LAT circuit failed or was stopped. 

= CE LATNOCHAR if no character was available. 

17 - 68 MS-Windows on the VAXmate 



WriteLat (Latid, ch) : Result 
This routine writes a character to the transmit queue for the session specified 
by Latid. 

Parameters 

Latid 

ch 

Returns 

Result 

is an integer value identifying the LAT session to which the 
character is queued. 

is the 8-bit value of the character to write to the transmit 
queue. 

= 0 (CE_LATOK) if the write was successful. 

= a negative value if the write was unsuccessful. 

= CE LA TID if there is no session associated with Latid. 

= CE _ LATTXQUE if unable to queue the character. 

= CE _ LATSTOP if the LAT circuit failed or was stopped. 

GetLatStatus (Latid) : Result 
This routine is used to get the status of the LAT session specified by Latid. 

Parameters 

Latid 

Returns 

Result 

Result 

is an integer value identifying the LAT session to get status 
from. 

is an unsigned integer value whose bits, when set, indicate LAT 
status. The bits set can be any combination of the following: 

ST LATREC Receive data is available. 

ST_LATTXQUE Unable to queue transmit data. 

ST LATSESINACT Lat session is not active. 

ST TXEMPTY Transmit buffer is empty. 

= a negative value if the status call was in error. 

= CE LATID if there is no session associated with Latid. 

CE _ LATSTOP if the LAT circuit failed or was stopped. 

MS-Windows on the V AXmate 17 - 69 



SendLatBreak (La tid) : Result 
This routine causes the LA T driver to send a break to the host. 

Parameters 

Latid 

Returns 

Result 

is an integer value identifying the LAT session over which the 
break is sent. 

= 0 ICE_LATOK) if the break was sent. 

= a negative value if the break was not sent. 

= CE LATID if there is no session associated with Latid. 

= CE_LATSTOP if the LAT circuit failed or was stopped. 

= CE LATBRK if unable to transmit the break because a 
buffer or transmit credit is not available. 

InquireLatServices ( ) : LResult 
This routine asks the LAT driver to return the maximum number of service 
name entries in its service table. The number of actual service names available 
may be less. It also resets the service name counter so that the first 
GetLatService call returns the first name in the service table. If the LA T serv
ice table has overflowed the caller is informed. 

Parameters 

None 

Returns 

LResult 

High word 

is a long 132) bit integer. The high word of LResult indicates 
error return codes. The low word of LResult is the maximum 
number of services in the LAT driver's table. 

= IE LATINST ALL if the LAT driver is not installed. 

= IE LATOVERFLOW if the LAT driver's service table 
overflowed. 

= zero if no errors are returned. 

= IE LATOVERFLOWor O. the low word of LResult is the 
maximum number of services in the LAT driver's table. 
Otherwise, the low word is undefined. 

17 - 70 MS-Windows on the V AXmate 



GetLatService (lpServiceN arne) : Result 
This routine asks the LA T driver for the next service name in its table. It fills 
the buffer passed with the service name. An InquireLatServices call must be 
made before the first call to GetLatService. 

Parameters 

IpServiceN arne 

Returns 

Result 

IMPORTANT 

is a long pointer to a character string buffer containing a 
null terminated string. This string is the LAT service 
name. The actual service name may be up to 16 characters 
in length. Therefore, allocate a buffer of at least 17 bytes. 

is the number of service names remaining in the LAT 
driver's table. 

= 0 indicates the last name in the list is being returned. 

= a negative number if there was an error. 

= IE LATINST ALL if the LAT driver was not installed. 

= IE LATNOSERVNAME if no service name is being re
turneCf because 11 the InquireLatServices function was not 
called, or 21 the end of the service name table was reached 
on a previous GetLatService call. 

Result may be decremented by more than one from a previous 
call. This is due to the LAT driver's filtering out of duplicate 
service names. Note too that because of this feature zero may 
never be returned. Therefore, programs must loop while Result 
not equal IE _ LATNOSERVNAME. 

If the Windows LAT interface detects a circuit failure or stop ~CE LATSTOPI, 
the application's virtual connection to the communication device is-closed. The 
Windows LAT interface driver invalidates the applications LAT session ID. It 
also automatically deallocates any data structures associated with the LAT 
session. The application may make a CloseLat function call, but is not required. 

MS-Windows on the V AXmate 17 - 71 



The application's .DEF file must contain an import statement for each of the 
custom LAT routines it uses as follows (these statements are in DECWIN.H): 

IMPORTS 
comm.OpenLat 
comm.CloseLat 
comm.ReadLat 
comm.WriteLat 
comm.GetLatStatus 
comm.SendLatBreak 
comm.lnquireLatServices 
comm.GetLatService 

The application must declare the following for each routine it uses: 

extern int FAR PASCAL OpenLat (LPSTR, LPSTR, LPSTR) ; 
extern int FAR PASCAL WriteLat (int, char); 
extern int FAR PASCAL GetLatStatus (int); 
extern int FAR PASCAL ReadLat (int) ; 
extern int FAR PASCAL CloseLat (int); 
extern int FAR PASCAL SendLatBreak (int); 
extern long FAR PASCAL InquireLatServices (); 
extern int FAR PASCAL GetLatService (LPSTR); 

17 - 72 MS-Windows on the V AXmate 



Display on the V AXmate 
The V AXmate video controller when running under MS-Windows is configured 
to operate in the 640x400 2-color graphics mode. This mode has twice the ver
tical resolution as the industry-standard color graphics adapter. This mode 
allows for smoother looking graphics and the use of a higher quality font. 

A custom font is supplied for the display resolution in order to support 
DIGITAL's VT220 Terminal Emulator, which runs under MS-Windows. Other 
applications may also use this font. 

The DIGITAL Terminal Emulation font has an 8x14 and a 6x9 lwidth x 
height) character cell for single-high/single-wide characters and a 16x14 and 
12x9 character cell for double-wide characters. Fonts are provided for double
wide/double-high top and double-wide/double-high bottom. When combined, char
acter cell sizes of 16x28 and 12x18 are realized. The character cell size selec
tion allows for 24 text lines of display in a full screen window which contains a 
caption area and a horizontal scroll bar. 

Each font has a unique face name so that they can be enumerated and 
distinguished in size. The face names are listed below along with the character 
cell description and cell size. 

OECTerm 

OECTerm Small 

OECTerm Obi-Wide 

OECTerm Small Obi-Wide 

OECTerm Obi-Size Upper 

OECTerm Obi-Size Lower 

OECTerm Small Obi-Size Upper 

OECTerm Small Obi-Size Lower 

Single-high/single-wide character, cell 
size 8x14 

Single-high/single-wide character, cell 
size 6x9 

Single-high/double-wide character, cell 
size 16x14 

Single-high/double-wide character, cell 
size 12x9 

Top half of double-high/double-wide 
character, cell size 16x14 

Bottom half of double-high/double-wide 
character, cell size 16x14 

Top half of double-high/double-wide 
character, cell size 12x9 

Bottom half of double-high/double-wide 
character, cell size 12x9 

See the OECWIN.H listing for the symbolic constants that should be used by 
applications when accessing the character set. 

MS-Windows on the V AXmate 17 - 73 



There is one character set provided in the font. The character set in the font is 
a superset of the ANSI Character Set. It is designated by the character set ID 
DECTERM CHARSET in the DECWIN.H file. The ANSI Character Set has 
characters in positions 21h-7Eh and Alh-FFh. The DIGITAL Terminal 
Emulation fonts character set provides all those characters in the same posi
tions. Included are the newly ISO approved times and divide signs in positions 
D7h and F7h, respectively. 

Three characters, which are in the DIGITAL Multinational character set but 
which are not represented in the ANSI Character Set for Windows, occupy p0-

sitions 9Dh-9Fh in the DIGITAL Terminal Emulation Font. The three charac
ters are the upper and lower case oe ligature and the lower case y-umlaut. 

The reverSe question mark, used to represent communications errors, occupies 
position 9Ch. 

Characters in positions 60h-7Eh in the DIGITAL Special Graphics Character 
Set ~also known as the VT100 line drawing set) occupy positions OOh-IEh in 
the DIGITAL Terminal Emulation Font. 

NOTE 
The ANSI Character Set for Windows is equivalent to the ISO 
Latin-l character set. 

Standard Applications Support 
MS-Windows provides support for standard MS-DOS applications. These appli
cations are not designed to run in the MS-Windows environment. The old appli
cations driver is responsible for managing the invocation and operation of the 
standard applications on a per task basis. All system resources are managed so 
that the standard application may co-exist within the MS-Windows environ
ment and with other MS-Windows applications. 

The old application support module is essentially the same as the support pro· 
vided in the standard version with a few exceptions. 

• Keyboard handling 

• ANSI Support 

• Video modes handled 

• Interrupt 11 Support 

• Interrupt 12 Support 

• Interrupt 15 Support 

• Memory requirements 

• Unique Icons 

17- 74 MS-Windows on the VAXmate 



Keyboard Handling 

Keyboard Handling Inside an MS-Windows Window 
If the standard application is running within an MS-Windows window, the ap
plication has access to Interrupt 16h functions. While the old applications 
driver is being enabled, the old interrupt vector is read and saved. A new 
vector is set for interrupt 16h which points to a routine within the old applica
tions driver. In this manner, Interrupt 16h functions are intercepted by the old 
applications driver and filtered appropriately. The following functions are 
supported. 

Normal Functions 

Fetch Next Character Illput From Keyboard 

Parameters 

AH = 0 

Returns 

AH = Scan Code 
AL = ASCII Character 

Test For Character Available 

Parameters 

AH = 1 

Returns 

AH = Scan Code 
AL = ASCII Character 
ZF = 0 Character is available 
ZF = 1 No Character is available 

MS-Windows on the VAXmate 17 - 75 



Return Current Shift Status Flags 

Parameters 

AH = 2 

Returns 

Current shift status flags 
AL = Contents of Keyboard Status Flag 

Extended Functions: 

Enter DEC mode 

Parameters 

AH = D5 
AL = AC 

Returns 

Nothing 

Exit DEC Mode 

Parameters 

AH = D5 
AL = AD 

Returns 

Nothing 

17 - 76 MS" Windows on the VAXmate 



Enable/Disable Additional Key Codes 

Parameters 

AH = 03 Enable/disable additional key codes associated with LK250 
keyboard. 

AL = N Each bit with enable/disable special functions, all are processed. 

Extended functions not supported: 

Key Notification 

Parameters 

AH = 00 

Returns 

Nothing 

Character Count 

Parameters 

AH = 01 

Returns 

Nothing 

Keyboard Buffer 

Parameters 

AH = 02 

Returns 

Nothing 

MS-Windows on the V AXmate 17 - 77 



Request Keyboard ID 

Parameters 

AH = .D4 

Returns 

Nothing 

Get/Set Table Pointer 

Parameters 

AH = D6 

Returns 

Nothing 

If the keyboard is in DIGITAL-extended mode, the numeric keypad returns nu
meric values at all times. The scan codes returned are compatible with those 
returned while outside of MS-Windows when the keyboard is in DIGITAL
extended mode. 

Function D5h. which sends a command byte to the keyboard, is allowed if the 
command is to enter or exit DIGITAL-extended mode (ie, ACh or ADh). All 
other commands via D5 return to the caller. Function D3h, which sets ROM 
BIOS keyboard states, is allowed only for bit 0 (ie, set/reset numpad states). 

Functions such as Ctrl/C and CtrllS are supported as they normally are in an 
intrinsic MS-DOS environment. Ctrl/P is not supported by the MS-Windows old 
applications driver. 

Keyboard Handling Outside an MS-Windows Window 
While managing a standard application that runs outside of an MS-Windows 
window, the old applications driver takes over interrupt vector 9, the keyboard 
interrupt. This vector is taken over so key strokes may be monitored for pro
gram switch and screen exchange. The key strokes are Alt/Tab or Alt/Enter for 
program switch. Alt/Prt Sc is monitored for screen exchange. If these keys are 
not pressed, a call is made to the previous interrupt 9 handler. 

When a standard application is run, the keyboard is set to industry-standard 
mode. When the application is exited, the keyboard is put back into DIGITAL
unique mode. This is accomplished from routines within the old applications 
driver, which are called when there is a change in the keyboard input focus. 

17 - 78 MS-Windows on the V AXmate 



While the application is running, the user may wish to temporarily suspend the 
standard application and return to MS-Windows without terminating the stan
dard application. If the PIF file associated with the standard application allows 
for program switching, then the keyboard state is remembered along with the 
video state and video memory. Both are restored when the standard application 
is reactivated. 

ANSI Support Inside an MS-Windows Window 
The MS- Windows old applications driver supports most ANSI escape se
quences that are supported by ANSLSYS for standard applications that run in 
an MS-Windows window. The following is a list of functions which are not 
supported: 

Cursor Position Report 
Set Mode 
Keyboard Reassignment 
Set Graphics Rendition 

Faint on 
Italic on 
Rapid blink on 
Subscript 
Superscript 

Video Modes Handled Inside an MS-Windows Window 
Standard applications running in an MS-Windows window may access certain 
ROM BIOS video functions provided by the old applications driver (WINOL
DAPI. Table 17-16 contains the Interrupt 10h functions available and indicates 
how they can be used. 

MS-Windows on the V AXmate 17 - 79 



Table 17-16 Interrupt 10H Functions 

Function Name Function N Windows Response 

Set mode 0 Ignored 

Set cursor type 1 Emulated by WINOLDAP 

Set cursor position 2 Emulated by WINOLDAP 

Get cursor position 3 BH= Active page (ignore this) 
DH,DL = Row,col 
CH,CL = Cursor mode 

Get light pen position 4 AX = 0 (no light pen) 

Set active page 5 Ignored 

Scroll active page up 6 Emulated by WINOLDAP 

Scroll active page down 7 Emulated by WINOLDAP 

Get character and at- 8 BH is ignored 
tribute at cursor 

AH,AL = attribute,character 

Write character and 9 Emulated by WINOLDAP 
attribute at cursor 

Write character string 10 Emulated by WINOLDAP 
at cursor 

Set color palette 11 Ignored 

Write dot 12 Ignored 

Read dot 13 Ignored 

Write TTY 14 Emulated by WINOLDAP 

Get video state 15 AL = mode (always 7, monochrome) 
AH = MaxCol (80 columns) 
BH = Current active display page 
(always 0) 

Set palette reg EGA 16 Ignored 

Char gen EGA 17 Ignored 

17- 80 MS-Windows on the VAXmate 



Table 17-16 Interrupt 10H Functions (cont.) 

Function Name Function /I 

Alternate select EGA 18 

Write string EGA 19 

TopView get video FE 
buffer address 

TopView update video FF 
buffer 

Windows Response 

Ignored 

All ignored 

AL = 0 BL attribute for all charac
ters, string is ex characters and the 
cursor is not moved 

AL = 1 BL attribute for all charac
ters, string is ex characters and the 
cursor is moved 

AL = 2 String is ex characters, 
attrib pairs and the cursor is not 
moved 

AL = 3 String is ex characters. 
attrib pairs and the cursor is moved 

Returns a pointer to the buffer 
address 

The display is updated 

MS-Windows on the VAXmate 17 - 81 



Associated with the old applications driver is a screen grabber that captures 
text and graphics video. It supports both industry-standard video modes and 
DIGITAL-unique video modes. Table 17-17 contains the supported video modes. 

Table 17-17 Supported Video Modes 

Mode Description 

Mode 0 40x25 Black/White 

Mode 1 40x25 Color 

Mode 2 80x25 Black/White 

Mode 3 80x25 Color 

Mode 4 320x200 Color 

Mode 5 320x200 Black/White 

Mode 6 640x200 Black/White 

Mode 7 80x25 IBM monochrome 

Mode DOh 640x400 Black/White (DIGITAL-unique) 

Mode Dlh 640x400 Color (DIGITAL-unique) 

Mode D2h 800x250 Color (DIGITAL-unique) 

Interrupt llh Support 
This interrupt returns the equipment available on the system to the caller. This 
interrupt is managed for applications running in an MS-Windows window. 
While the interrupt is not intercepted, the location, 40:10h is read and then 
ORed with bits that always indicate the system is running with a 80x25 BW 
card. The ORing in effect takes over the interrupt because the Interrupt llh 
call reads the location. When the standard application exits, the original state 
of 40:10h is restored. 

Interrupt 12h Support 
Interrupt 12h calls are filtered for standard applications running in an MS
Windows window by the old applications driver. This function returns the 
memory size to the application. This is performed on a task basis and really 
does not indicate total memory, but the .amount of memory available to the 
task, that is, the size of applications partition. 

17- 82 MS-Windows on the VAXmate 



Interrupt 15h Support 
Interrupt 15h is revectored to a handler within the old applications driver for 
standard applications running in MS-Windows. All functions normally sup
ported by interrupt 15h are passed on to the firmware. Two Topview calls are 
emulated in the handler; one tells the caller that Topview is present while the 
other indicates it is Topview Version 1. The DIGITAL-extended DOh function 
ANDs the value passed back from the real Interrupt 15h call to simulate a 
IBM monochrome adapter is present. This maintains consistency with the Get 
Mode Interrupt 10h call and the Interrupt lIh equipment check. 

Unique Icons 
When a standard application is run, the user may want a more visually appeal
ing and descriptive icon associated with the application. For most standard ap
plications, the first three letters of the application name appear in a white box 
as the icon. This is a generic icon. However, the user can create an icon (using 
ICONEDIT.EXE) and save the icon (of the form AppName.ICO) somewhere on 
the path. This icon is associated with the application of the same name. The 
icon is seen if the application can switch to/from MS-Windows by pressing the 
Alt/Tab keys or if the application is loaded (runs as an icon). If the icon (.ICO 
file) is not found on the path, the three letter functionality is used as before. 

For the generic icon, small dots appear near the bottom of the box to denote 
multiple instances. For unique icons, dots do not appear for multiple instances. 

Printers 
Full GDI support for the LN03PLUS (with cartridge) and the LA 75 Companion 
printers is supplied. The LA75 is supported in both the DIGITAL mode and 
STD (industry-standard) mode. Printing from MS-Windows may either be local 
or remote over the ethernet. 

All the printer drivers support the ISO Latin-1 character set. The LA50. LN03, 
LN03PLUS, and LA75DEC use the fallback representations for characters not 
in its ROM font. 

MS-Windows on the V AXmate 17 - 83 



The printer drivers also support all of the character sets native to the printer. 
These include various National Replacement Character (NRC) sets and 
DIGITAL-unique character sets. Applications may select these character sets 
using standard MS-Windows functions passing the constants listed in the 
DECWIN.H file listing. Table 17-18 indicates the character sets supported by 
each printer. 

Table 17-18 Character Set Supported by Each Printer 

Character Set LA50 LN03 LN03PLUSLA75DEC LA75STD 

ISO Latin-1 X X X X X 
Industry Standard STD X 
United Kingdom NRC X X X X 
French NRC X X X X 
German NRC X X X X 
Italian NRC X X X X 
Danish NRC X X X X 
Norwegian NRC X X X X 
Spanish NRC X X X X 
Swedish NRC X X X X 
Japanese (JIS Roman) NRC X X X X 
Japanese Katakana Graphic X X 
Finnish NRC X X X X 
French Canadian NRC X X X X 
Dutch NRC X X 
Swiss NRC X X 
Portuguese NRC 
DIGITAL Multinational X X X X 
DIGITAL Special (VT100) X X X X 
DIGITAL Technical X X 
DIGITAL Publishing 

Refer to the DECWIN.H file for constants that define these character sets. 

17 - 84 MS-Windows on the V AXmate 



DECWIN.H File Listing 
A C programming language include file that documents constants and routine 
declarations follows. Values of symbolic constants used in earlier sections are 
documented in this include file. 

/* DECWIN.H 

This collection of constants and routine declarations details 
information specific to DIGITAL's Adaptation of MS-Windows for 
the VAXmate. 

Copyright (c) 1986 by 
Digital Equipment Corporation, Maynard, Mass. 

This software is furnished under a license and may be used and copied 
only in accordance with the terms of such license and with the 
inclusion of the above copyright notice. This software or any other 
copies thereof may not be provided or otherwise made available to any 
other person. No title to and ownership of the software is hereby 
transferred. 

The information in this software is subject to change without notice 
and should not be construed as a commitment by Digital Equipment 
Corporation. 

DIGITAL assumes no responsibility for the use or reliability of its 
software on equipment which is not supplied by DIGITAL. 

/************************************************************************** 
* * 
* 
* 
* 
* 

Version 1.01.11 07/21/86 * 
DECWIN.H Application layer include file for DIGITAL extensions * 
for MS-Windows version 1.01 * 

* 
**************************************************************************/ 

These three routines and the following constants are used to switch 
keyboard states according to user preference. They handle the state 

MS-Windows on the VAXmate 17- 85 



of the LOCK key (caps/shift), keyclick volume, and the autorepeat 
on/off state. 

*/ 
extern int FAR PASCAL DecSetLockState(); 
extern int FAR PASCAL DecSetKClickVol(); 
extern int FAR PASCAL DecSetAutorep(); 

#define DEC_CAPSLOCK 
#define DEC_SHIFTLOCK 

#define DEC_NOSOUND 
#define DEC_SOFT 
#define DEC_INTERMED 
#define DEC_LOUD 

#define DEC_AUTOREPOFF 
#define DEC_AUTOREPON 

0 
1 

0 
1 
2 
3 

0 
1 

/* lock sense - capslock */ 
/* lock sense - shift */ 

/* values for keyclick volume */ 

/* state of autorepeat */ 

/* DecSetComposeState routine allows an application to switch between 
ISO mode compose sequences (the default) and DIGITAL Multinational 
Compose sequences. An application using this routine to receive 
DIGITAL Multinational sequences should call it with the 

DEC_MULTINAT_COMP value upon getting the keyboard input focus, and 
MUST CALL IT AGAIN with the DEC_ISO_COMP value upon losing keyboard 
input focus. If the second call is not made, other applications will 
be receiving DIGITAL Multinational sequences when they are expecting 
ISO. 

extern int FAR PASCAL DecSetComposeState(); 

#define DEC_ISO_COMP 0 
#define DEC_MULTINAT_COMP 1 

/* select ISO compose sequences ~ 

/* select DEC Multinational seqs 

/* DecSetNumlockMode routine allows an application to switch between 
Numlock interpretation VK_OEM_NUMBER of the PF2 key on the numeric 
keypad and a unique interpretation VK_OEM_PF2 of the key. The default 
is Numlock enabled. An application desiring this functionality should 
call this routine with the DEC_NONumlock value upon getting the 
keyboard input focus. The application MUST RE-ENABLE Numlock PROCESS II 
upon losing the keyboard input focus. If the second call is not made, 
other applications will get unexpected keyboard output. 

*/ 
extern int FAR PASCAL DecSetNumlockMode(); 

#define DEC_Numlock o /* enable Numlock interpretation 

17 - 86 MS-Windows on the VAXmate 



#define DEC_NONumlock 1 /* disable Numlock interpretation 

/* Decfonts used for terminal emulation. 
The following constants are used to sel~ct a specific font. 

The following character set constant is used in selecting any 
DECTERM.FON specific font. Each font variation in the set has a unique 
face name. 

#define DECTERM_CHARSET 1 

/* DIGITAL Standard Terminal Character Set */ 

#define DECTERM_NORMAL 
#define DECTERM_SMALL 

"DECTerm" 
"DECTerm Small" 

/* DIGITAL Double Wide Terminal Character Set */ 

#define DECTERM_WIDE 
#define DECTERM_SMALL_WIDE 

"DECTerm Dbl-Wide" 
"DECTerm Small Dbl-Wide" 

/* DIGITAL Double High Terminal Character Set (Top and Bottom halves) */ 

#define DECTERM_DBL_TOP 
#define DECTERM_DBL_BOTTOM 
#define DECTERM_SMALL_DBL_TOP 
#define DECTERM_SMALL_DBL_BOTTOM 

"DECTerm Dbl-Size Upper" 
"DECTerm Dbl-Size Lower" 
"DECTerm Small Dbl-Size Upper" 
"DECTerm Small Dbl-Size Lower" 

/* DecGetKbdCountry returns the nationality of the current keyboard 
specified in the list below. */ 

extern int FAR PASCAL DecGetKbdCountry(); 

/* Return codes from DecGetKbdCountry */ 

#define DEC_USA 1 /* U.S. keyboard */ 
#define DEC_BRITAIN 2 /* British keyboard */ 
#define DEC]RANCE 3 /* French keyboard */ 
#define DEC_WEST_GERMANY 4 /* German keyboard */ 
#define DEC_ITALY 5 /* Italian keyboard */ 
#define DEC_SPAIN 6 /* Spanish keyboard */ 
#define DEC_SWEDEN 7 /* Swedish keyboard */ 
#define DEC]INLAND 8 /* Finish keyboard */ 

MS-Windows on the V AXmote 17- 87 



#define DEC_NORWAY 9 /* Norwegian keyboard */ 
#define DEC_DENMARK 10 /* Danish keyboard */ 
#define DEC_CANADA 11 /* Canadian keyboard */ 
#define DEC_SWISS_GERMAN 12 /* Swiss German keyboard */ 
#define DEC_SWISS_FRENCH 13 /* Swiss French keyboard */ 

/* Non-standard virtual keys defined in MS-Windows version 1.01 */ 

#define VK_OEM_NUMBER Ox90 /* Numlock */ 
#define VK_OEM_SCROLL Ox91 /* ScrollLock */ 
#define VK_OEM_1 OxBA /* '. , for US */ , 
#define VK_OEM_PLUS OxBB /* '+' any country */ 
#define VK_OEM_COMMA OxBC /* 

, , any country */ , 
#define VK_OEM_MINUS OxBD /* 

, - , any country */ 
#define VK_OEM_PERIOD OxBE /* , , any country */ 
#define VK_OEM_2 OxBF /* '/1' for US */ 
#define VK_OEM_3 OxCO /* . ,-, for US */ 
#define VK_OEM_4 Ox DB /* ' [{, for US */ 
#define VK_OEM_5 OxDC /* '\1 ' for US */ 
#define VK_OEM_6 OxDD /* 'D' for US */ 
#define VK_OEM_7 OxDE /* ' .". for US */ 
#define VK_OEM_8 OxDF /* Not assigned */ 

/* DIGITAL defined virtual keys */ 
#define VK_OEM_PF1 VK_ESCAPE 
#define VK_OEM_PF2 OxE2 
#define VK_OEM_PF3 VK_OEM_SCROLL 
#define VK_OEM_PF4 VK_MULTIPLY 

#define VLOEM]17 OxE3 
#define VK_OEM_F18 OxE4 
#define VLOEM_F19 OxES 
#define VK_OEM_F20 OxE6 

#define VK_OEM_COMPOSE Ox92 

/* The following definitions are for the Windows LAT interface. */ 

/* Windows LAT interface functions */ 

extern int FAR PASCAL OpenLat (LPSTR, LPSTR, LPSTR) ; 
extern int FAR PASCAL WriteLat (int, char); 
extern int FAR PASCAL GetLatStatus (int) ; 
extern int FAR PASCAL ReadLat (int); 
extern int FAR PASCAL CloseLat (int); 

17 - 88 MS-Windows on the VAXmate 



extern int FAR PASCAL SendLatBreak (int); 
extern long FAR PASCAL InquireLatServices (); 
extern int FAR PASCAL GetLatService (LPSTR); 

/* LAT initialization error and service table error return codes */ 

#define IE_LATINSTALL -1 /* Lat driver not installed */ 
#define IE_LATSERVICE 
#define IE_LATVIRTCIRC 

-2 
-3 

/* Service not in table or name error */ 
/* No more virtual circuit blocks 

#define IE_LATSESSIONS -4 
#define IE_LATMEMORY -5 

#define IE_LATBUFFER -6 
#define IE_LATCIRCSESS -7 

#define IE_LATNOSERVNAME -8 

available */ 
/* No more sessions available */ 
/* All SCBs allocated, no memory 

available */ 
/* Data buffer specification error */ 
/* No more sessions available on this 

circuit */ 
/* No service name returned, have not 

called the LAT service table reset 
function or have reached the end of the 
table */ 

#define IE LATOVERFLOW -9 /* LAT service table overflow */ 

/* LAT function return codes 
All error codes are negative 16 bit integers */ 

#define CE_LATOK 0 /* General function success return value */ 
#define CE_LATID -1 /* Invalid LAT session ID */ 
#define CE_LATTXQUE -2 /* Unable to queue character for 

transmission */ 
#define CE_LATNOCHAR -3 /* No character available on a read 

request */ 
#define CE_LATSTOP -4 /* LAT circuit failed or stopped */ 

#define CE_LATBRK -5 /* Unable to send break to host */ 

/* LAT status word bit definitions */ 

#define ST_LATREC OxOOO1 /* Receive data is available. */ 
#define ST_LATTXQUE OxOOO2 /* Unable to queue transmit data. */ 
#define ST_LATSESINACT OxOOO4 /* Lat session is not active. */ 
#define ST_TXEMPTY OxOO20 /* Transmit buffer is empty. */ 

/* The following constants define new character set definitions for 
DIGITAL's MS-Windows printer drivers. 

The terms GL and GR are used below. Character sets in GL fall in the 

MS-Windows on the VAXmate 17- 89 



range of 20h to 7Fh. Character sets in GR fall in the range of AOh 
FFh. 

*/ 

#define UK_NRC 224 /* United Kingdom NRC in GL */ 
#define FRENCH_NRC 226 /* French NRC in GL */ 
#define GERMAN_NRC 226 /* German NRC in GL */ 
#define ITALiAN_NRC 227 /* Italian NRC in GL */ 
#define DANISH_NRC 228 /* Danish NRC in GL */ 
#define NORWEGIAN_NRC 229 /* Norwegian NRC in GL */ 
#define SPANISH_NRC 230 /* Spanish NRC in GL */ 
#define SWEDISH_NRC 231 /* Swedish NRC in GL */ 
#define JIS_ROMAN_NRC 232 /* Japanese (JIS Roman) NRC in GL */ 
#define KATAKANA_NRC 233 /* Japanese Katakana Graphic Char Set 

*/ 
#define FINNISH_NRC 234 /* Finnish NRC in GL */ 
#define FR_CANADIAN_NRC 236 /* French Canadian NRC in GL */ 
#define DUTCH_NRC 236 /* Dutch NRC in GL */ 
#define SWISS_NRC 237 /* Swiss NRC in GL */ 
#define PORTUGUESE_NRC 238 /* Portuguese NRC in GL */ 
#define DEC_MCS 240 /* ASCII in GL. DIGITAL Multinational 

*/ 
#define DEC_SPC_GRAPHICS 241 /* DIGITAL Special (VT100) Graphics in 

*/ 
#define DEC_TECHNICAL 242 /* DIGITAL Technical Character Set */ 
#define DEC_PUBLISHING 243 /* DIGITAL Publishing Character Set */ 

17 - 90 MS-Windows on the VAXmate 



Chapter 18 
V AXmate Network Software 

Introduction 
The V AXmate network software allows V AXmate workstations to be nodes in a 
DIGITAL local area network. The software provides users and applications with 
a Microsoft MS-Network compatible environment and a DIGITAL DECnet 
compatible environment. 

This chapter describes the V AXmate-specific programmer interfaces into the 
network environment. It also discusses the relationship among the various com
ponents that implement the network interfaces. Some of the described inter
faces are not recommended for use by application software. Their description is 
provided only for completeness. 

The discussion of the network software is restricted to the V AXmate client 
node. V AXmate client nodes are those V AXmate workstations that sit on a 
user's desk and utilize the services of V AXNMS servers and V AXmate servers. 

This chapter assumes the reader is familiar with the Microsoft MS-Network 
Vl.O implementation and has documentation on that implementation. To learn 
more about Ethernet and the DIGITAL Network Architecture, refer to the 
documentation list at the end of this introduction. 

18- 1 



Figure 18-1 shows the basic components that comprise the VAXmate client 
network system. 

Application Programs I 
I 

MS-Network 
Session level 

I 
DECnet-DOS Local Area 
Session level Transport 

I 
Data Link 

I 
Hardware 

Figure 18-1 VAXmate Network Components 

Each item in Figure 18-1 is discussed in the following section. 

Hardware 

The center of the V AXmate Thin Wire Ethernet network hardware is the 
DIGITAL Local Area Network Controller integrated circuit; referred to as the 
LANCE chip. This chip and its support circuits connect the V AXmate worksta
tion to the ThinWire Ethernet local area network. The LANCE chip internal 
registers are described in this manual. 

V AXmate workstations contain different versions of network hardware, which 
behave differently on large networks that have high levels of traffic. The net
work hardware that is different requires special treatment by software. Digital 
Equipment Corporation recommends that you not attempt to directly program 
the hardware interface. It is recommended that applications use the MS
Network session level interface, DECnet-DOS session level interface, and the 
Data Link interface to access the network. 

For more information about the VAXmate network hardware, see chapter 13. 

18 - 2 Introduction 



Datalink 

The Datalink is implemented in VAXmate ROM code. The datalink interface, 
which is used by all upper levels of the V AXmate network, provides a hardware 
independent interface for accessing the network. The Datalink is the lowest 
supported interface through which applications access the Thin Wire network 
and it is capable of managing multiple network streams. Applications can 
access the datalink concurrently with the DECnet-DOS and MS-Network 
sessions. 

The V AXmate ROM code also contains a subset of the DECnet Maintenance 
Operation Protocol IMOPI. This protocol allows the booting of a V AXmate 
workstation from a host machine located on the network and provides loopback 
functions to support network trouble shooting. 

Local Area Transport 

The Local Area Transport (LATllets the VT220 and VT240 terminal emulators 
and MS-Windows serial communication applications to access VAXNMS 
systems using the ThinWire Ethernet network. The LAT module implements 
the DIGITAL proprietary LAT protocol for Ethernet networks. With this proto
col, applications that normally used serial communication lines into V AXNMS 
hosts can be written to use the Thin Wire Ethernet. 

For many VAXNMS communications applications the LAT interface eliminates 
the need for a serial line or a modem between the V AXmate workstation and 
its host. 

DECnet-DOS Session Level 

DECnet-DOS is the center of the RAM resident network software. Application 
programs can directly access all DECnet-DOS services. In particular, 
transparent task-to-task communications can be implemented between applica
tions running on different network nodes. 

For a full description of DECnet-DOS, its application visible interfaces, and its 
supporting utilities, refer to DECnet-DOS Programmer Reference Manual and 
DECnet-DOS User Guide. 

MS-Network Session 

The MS-Network Session is a DIGITAL-developed emulation of the Microsoft 
MS-Network session level interface. The MS-Network session level interface is 
lets application programs created to run with Microsoft MS-Network execute. 

The emulation uses the DECnet.-DOS programming interface to access the net
work. The MS-Network protocol is treated as an application level protocol in 
the DECnet environment. 

The MS-DOS REDIRECTOR interfaces to the MS-Network Session Level 
emulator for network file access and network printing. 

Introduction 18 - 3 



Documentation List 
For further reading on DECnet-DOS refer to: 

• DECnet·DOS Programmers Reference Manual 

• DECnet·DOS Users Guide 

For further information on Microsoft MS-Network software or the Session 
Level interface refer to: 

• ServerlRedirector File Sharing Protocol (Microsoft Corporation), which 
describes in detail the Server Message Block protocol that is used by 
the Redirector for accessing remote file and print services. 

• Microsoft Network Session Layer Interface (Microsoft Corporation), 
which describes the interface between the session and higher layers of 
the Microsoft Network. 

• MS-Network Version 1.0 documentation 

For Further information on the DIGITAL Network Architecture refer to the 
following Digital DECnet publications: 

• DNA General Description 

• DNA Session Control Functional Specification 

• DNA Routing Functional Specification 

• DNA Maintenance Operations Functional Specification 

• DNA Network Management Functional Specification 

• DNA Data Access Protocol WAP) Functional Specification 

• The Ethernet, A Local Area Network, Datalink Layer and Physical 
Layer Specification 

18 - 4 Introduction 



Datalink 
The datalink layer is that portion of the DNA architecture that lies between 
the routing layer and the physical network hardware. The purpose of the 
datalink is to provide a hardware independent set of services for use by higher 
levels of network software and special application programs. Software that 
directly accesses the datalink interface is called a client of the datalink. In the 
V AXmate DECnet implementation, the routing layer is a client of the datalink. 
The Local Area Transport software also is a client of the datalink. Multiple 
clients can access the data link services simultaneously. 

The V AXmate workstation implementation of the datalink has two modules: 

• The datal ink module, which provides the client interfaces described in 
this chapter. This datalink layer is independent of the underlying 
Ethernet hardware used to implement the actual physical network. 

• The port driver module, which provides an unsupported interface to the 
underlying hardware. The port driver is specific to the Ethernet hard
ware implementation. 

The VAXmate datalink, in combination with the port driver. provides a com
plete program interface for accessing the Thin Wire Ethernet. 

The datalink is independant of the operating system service. No operating 
system services are accessed from within the datalink. Most of the V AXmate 
data link code is resident in the same system ROM as the ROM BIOS and the 
self-test diagnostic code. A small portion of the V AXmate datalink is imple
mented by the DLL.EXE program. which is a terminate and stay resident 
module that runs as part of the V AXmate workstation network startup proce
dure. It initializes the data link and allocates RAM resident variable and buffer 
storage. 

An application interacts with the datalink through a portal. A portal is com
prised of the state variables and data structures shared by a specific application 
and the datalink for the reception or transmission of information over the net
work. Applications open and close portals as a part of their interaction with the 
datalink. 

Datalink 18- 5 



The data link layer is responsible for multiplexing messages received from the 
ThinWire Ethernet to the correct program client of the datalink. The multiplex
ing is done first by address and then by protocol type. The protocol type field 
is the last 2 bytes of the Ethernet datalink header in non-802.3 compatible 
mode. IEEE 802.3 compatible mode is treated as a protocol type. 

The type of multiplexing is determined on a per portal basis and is specified 
when the portal is opened. 

If a portal is opened in IEEE 802.3 compatible mode. the multiplexing is done 
based on the address. Only one 802.3 compatible portal can be enabled at a 
time. The length field must be less than or equal to the maximum Ethernet 
length of 1518(decimal). 

Future versions of the V AXmate datalink may implement extensions to the 
802.3 mode described in this chapter. Applications that use the 802.3 mode 
described here may not work in future network environments. 

All non-802.3 protocols are identified by protocol type values that are larger 
than the maximum Ethernet packet length of 1518(decimal). 

For the VAXmate workstation in the DIGITAL Ethernet environment, the mul
tiplexing is done on both address and protocol type. The protocol type value 
must be larger than the maximum Ethernet packet length of 1518(decimal). 

In either case. the address is the station ID for the V AXmate workstation, or 
the multicast address of one of the portals enabled for reception of multicast 
messages. 

Common Definition Formats 
Throughout this chapter, C language constructs are used to describe the data 
structures associated with accessing the services of the datalink. 

The following terminology applies to the structures: 

• int is an unsigned 16 bit integer value. 

• uchar is an unsigned 8 bit value. 

• farptr is a double word pointer. 

18 - 6 Datalink 



Datalink Communication Block 

Client software must define a Datalink Communication Block IDCBI as part of 
the datalink interface definition. 

The following C programming language structure describes the DCB. For many 
datalink accesses, actual use of fields described here may not conform with ex
pected meaning of the field names. 

struct dcb 
{ 

int portal_id; /* The portal 1D for this request */ 
uchar source_address[6]; /* The source address */ 
uchar destination_address[6]; /* The destination address */ 
farptr *bh; /* double word pointer to the buffer header */ 
int bl; /* Buffer length */ 
int operation; /* Used by each function differently */ 
uchar pad; /* Pad flag used on open */ 
uchar mode; /* Mode flag used on open */ 
farptr *line_state(); /* pointer to line state change routine */ 
farptr *rcv_callback(); /* pointer to received data routine */ 
farptr *xmit_callback(); /* pointer to transmitted data routine */ 
char max_outstanding; /* Number of outstanding transmits/receives */ 
uchar ptype[2]; /* Protocol type */ 
int buffers_lost; /* Number of buffers lost */ 

}; 

Multicast Address Format 
Figure 18-2 describes the format of an Ethernet multicast address. A multicast 
address is six bytes long. The Xs in the diagram represent address-specific bits. 

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 

17161514131211101765432101765432101765432101765432101765432101 
1---------------1--------1--------1--------1--------1--------1 
Ixlxlxlxlxlxlxl 1 1 xxxxxxxx 1 xxxxxxxx Ixxxxxxxx 1 xxxxxxxx Ix xxxxxxxi 
1 ______ ---______ 1 ________ 1 ________ 1 ________ 1 ________ 1-_______ 1 

Figure 18-2 Multicast Address Format 

The special case Broadcast Address is specified by a multicast address, where 
all address bits equal 1. 

Datalink 18 - 7 



Byte 0, Bit 0 distinguishes a multicast address from a physical address. 

Byte 0 <0> = 1 
= 0 

This is a multicast address. 
This is a physical address. 

For example, 08 is a physical address, and 09 is a multicast address. 

Software Capabilities 
The datalink layer is that portion of the ISO/DNA architecture that is respon
sible for the multiplexing of messages from the Ethernet port driver to clients 
of the datalink. This multiplexing is done on the destination address and proto
col type fields of the Ethernet message. 

User Call-Back Routines 

The datalink invokes call-back routines that are specified in the DCB. 

Call-back routines are required application-specific subroutines that are 
dispatched to by the datalink. The routine is invoked by a FAR CALL. Within 
the call-back routine, the client should not attempt to use any MS-DOS facili
ties and the client should not enable or disable interrupts. The call-back routine 
must end with a FAR RETURN. The data link ensures that a call-back routine 
is not called again until the previous call is complete with aFAR RETURN. 

The routines are called by the datalink when an event occurs that indicates a 
change in the Ethernet hardware. The event can be either an error, a receive 
buffer filled, a transmit buffer sent, or a line state change. The datalink call
back routines are described in the next sections. 

Each call-back routine involves a data structure called the the User Call Back 
block {UCB). The address of the UCB is passed to the client in the ES:BX 
register. 

The following C structure describes the UCB. 

structure ucb 
{ 

int portal_id; /* Portal 10 from the request */ 
uchar destination[6]; /* Destination address from the buffer header */ 
uchar source[6]; /* Source address from the buffer header */ 
farptr *buffer; /* Pointer to the client buffer being returned */ 
int bl; /* NULL or byte length of received message */ 
uchar buffer_status; /* COMPLETE or ERROR */ 
uchar buffer_reason; /* Completion error reason or LINE_STATE_CHANGE */ 

}; 

18 - 8 Datalink 



The UCB fields are further described below: 

• ucb.portaI _id is the portal ID of the request that led to this call-back. 

• ucb.destination corresponds to the first 6 bytes of the Ethernet frame 
and to the destination field of the Ethernet packet. 

• ucb.source is the second 6 bytes of the Ethernet frame and corresponds 
to the Ethernet address of the originating node. 

• ucb.bI is the count of client data bytes actually in the buffer on a re
ceive request completion. Field ucb.bI has no meaning on a transmitted 
message completion. 

• ucb.buffer is the address of the data portion of the transmit or receive 
buffer that is being returned to the client. 

• ucb.buffer status indicates the status of the buffer and can be one of 
the followmg values: 

COMPLETE - Value = 1 - The request was completed. 

ERROR - Value = 3 - The request encountered an error and could 
not be completed. 

• ucb.buffer reason is a further explanation of the buffer status field and 
attempts fo tell the upper layers why the operation was aborted. 

For a transmit complete call-back routine with an ERROR status, 
ucb.buffer reason is a byte of bit flags with the following meaning. Bit 
set means-true. 

765 4 3 2 1 o 

1 Reserved ILCAR 1 LCOL 1 EXC 1 BUF 1 UNDER 1 

1 ___ 1 ___ 1 ___ 1 _____ 1 ______ 1 _____ 1 _____ 1 _______ 1 

Bit 7-5: 
Bit 4: 

Bit 3: 

Bit 2: 

Bit 1: 

Bit 0: 

Reserved for future use. 
The LCAR flag means the hardware lost the carrier signal 
during the transmission. 
The LCOL flag means the hardware detected a collision 
which was after the slot time during the transmission. 
The EXC flag means that too many collisions occurred 
during the transmission. The hardware could not transmit 
the packet and aborted the transmission. 
The BUF flag means the hardware could not access the 
bus during the transmission. 
The UNDER flag means the hardware experienced an un
derflow error during the transmission of the packet. 

For a line state change call-back, field ucb.buffer Jeason means: 

LINE STATE CHANGED - Value = 3 - The line state is changed 
from ON to some other state and therefore all connections are 
aborted. 

Datalink 18 - 9 



The receive call-back routine UeB does not return ERROR status. All receive 
errors are handled within the Ethernet hardware and data link layer. 

18 - 10 Datalink 



Line State Change Call-Back Routine 

The line-state-change call back routine specified in the DCB is used to notify 
the client of a state change on the Ethernet channel. Notification consists of 
executing the call-back routine pointed at by the line state field of the DCB 
structure. If this field contains a zero value, the dataTInk does not notify the 
client application of a line state change. 

When the datalink calls the line-state-change call-back routine, the ES:BX reg
ister pair points at the UCB. See the section "User Call Back Routines" for 
more information on line-state-change call-backs. 

Within the line-state-change call back routine, the client should not use any 
MS-DOS facilities or enable or disable interrupts. The call-back routine must 
end with a FAR RETURN. The datalink ensures that a call-back routine is not 
called again until the previous call is completed with a FAR RETURN. 

Receive 

There is not an explicit receive function. Opening a datalink portal automati
cally sets the interface up for receiving information. The receive call-back rou
tine is the mechanism by which the client is notified of a message received on 
its behalf. Notification consists of executing the call-back routine pointed at by 
the rcv callback field of the DCB structure. 

When the receive call-back routine is called by the datalink, the ES:BX register 
pair points at the UCB. See the section "User call-back Routines" for more 
information on receive call-backs. 

Within the receive call-back routine, the client should not attempt to use any 
MS-DOS facilities or enable or disable interrupts. The receive call-back routine 
must end with a FAR RETURN. The datalink ensures that a call-back routine 
is not called again until the previous call is completed with a FAR RETURN. 

The client should deallocate its receive buffers before exiting. 

NOTE 
If datalink clients do not return (dll deallocate) all 
datalink transmit and receive buffers before exiting, the 
datalink runs out of buffers and does not function 
properly. This leads to serious network problems. 

Transmit 

The transmit function DLL TRANSMIT is discussed in the section "Datalink 
Functions" in this chapter. 

Datalink Functions 
Client programs request services from the datalink through Interrupt 6DH. 
After initialization, each time the datalink is accessed, the client program must 

Datalink 18- 11 



pass the address of the DCB in the form of a far pointer in registers ES:BX. 
The client program must specify the function code in the AH register. Upon 
return from a datalink request, the AX register contains the status of the 
request. 

Table 18-1 describes the function codes passed in register AH to call the datal
ink routines. 

Table 18-1 Interrupt 60: Datalink Functions 

Function Value in Description 
Register AH 

DLL INIT OOH Initialize datalink and port driver 
DLL-OPEN 01H Open a data link portal 
DLL-CLOSE 02H Close a datalink portal 
DLL -ENABLE MUL 03H Enable a multicast address 
DLL -DISABLE- MUL 04H Disable a multicast address 
DLL -TRANSMIT 05H Transmit an Ethernet message 
DLL =REQUEST _ XMIT 06H Request a transmit buffer for an 

Ethernet message 
DLL DEALLOCATE 07H Deallocate buffer 
DLL -READ CHAN 08H Read the channel status 
DLL -READ-PLIST 09H Read the datalink portal list 
DLL -READ-PORTAL OAH Read information about a datalink - - portal 
DLL READ COUNT OBH Read and/or clear counters 
DLL -NETWORK BOOT OCH Request to boot from a network - - server 
DLL ENABLE CHAN OOH Enable the Ethernet channel 
DLL -DISABLE CHAN OEH Disable the Ethernet channel 
DLL -START MOP OFH Start MOP/Send a System ID - - message 
DLL STOP MOP 10H Stop MOP (documented in MOP - - section) 
DLL READECPARM llH Read the address of the 

DECPARM string 
DLL SETDECPARM 12H Set the address of the DECPARM 

string 
DLL EXT LOOPBACK 13H Loopback a message through the - - Ethernet hardware 

18 - 12 Datalink 



Datalink Return Codes 
The datalink always returns with status from a client request for a service. The 
status is returned in the AX register. The return value overwrites the function 
code that was in AH. Table 18-2 describes the return code values returned to 
the client software. 

Table 18-2 Datalink Return Codes 

Symbol Name 

SUCCESS 

INITIALIZATION FAILURE 

CHANNEL NOT OFF 

STATE OFF 

ADDRESS NOT SET 

NO HARDWARE 

BUFFER TOO SMALL - -

NONE AVAILABLE 

NO RESOURCES 

PROMISCUOUS 
RECEIVER ACTIVE 

Value in 
Register 
AX 

OOH 

01H 

02H 

03H 

04H 

05H 

06H 

07H 

08H 

09H 

Description 

Successful completion. 

The hardware failed to 
initialize. 

The channel state was not off. 
Set it off to execute this 
function. 

The channel state is off. Set it 
on to execute this function. 

The address of the Ethernet 
hardware is not set. Set it 
before starting the port. 

Reading from the Ethernet 
hardware meaning that there is 
none available, indicating a 
hardware malfunction if there 
is hardware. 

On read counters, the buffer 
that holds the counters is too 
small to fit all the counter 
values. 

There are no more buffers 
available. 

There are no more resources 
available for this request. 

A promiscuous receiver is cur
rently active, therefore the re
quested function is illegal. 

Datalink 18 - 13 



Table 18-2 Datalink Return Codes (cont.) 

Symbol Name Va]ue in Description 
Register 
AX 

NON EXCLUSIVE OAH Client attempted to enable pro-
miscuous mode, but a pro-
miscuous mode receiver is 
already active, or another 
portal has enabled a protocol or 
multicast. Client attempted to 
enable 802.3 compatible mode, 
but another portal is currently 
in 802.3 compatible mode. 

UNRECOGNIZED PORTAL OBH The portal ID returned was not 
recognized. 

PROTOCQL _TYPE_IN_USE OCH The protocol type the client at-
tempted to enable is in use for 
another datalink portal. 

NOT MULTICAST ODH The multicast address supplied 
to enable multicast is not a 
valid multicast address. 

OUTSTANDING CALLS OEH Outstanding transmit or re~ 
ceive calls are pending, there-
fore the client may not close 
the datalink portal. 

NO RECEIVE BAD OFH The client specified reception of - - bad frames to the datalink 
layer and the hardware does 
not support the function. 

NONE OUTSTANDING 10H There are no receive buffers to 
be aborted. 

NO EVENTS llH There are no events in the 
event queue to be read. 

STATE BROKEN 12H The port driver could not in-
itialize the port hardware. 

18 - 14 Datalink 



Table 18-2 Datalink Return Codes lcont.~ 

Symbol Name 

QUOTA_EXCEEDED 

ALREADY INITED 

LB FAILURE 

Value in 
Register 
AX 

13H 

14H 

15H 

Description 

The user buffer quota is ex
ceeded. No more buffers can be 
allocated to this portal. 

The datalink layer is already 
initialized. This is an INIT fail
ure error, but the datalink is 
still usable if the state is ON. 

The hardware failed to loop
back data, indicating an 
Ethernet hardware failure. 

Datalink 18 - 15 



Function OOH: Initialization (dll init) 
Datalink intialization is automatically done when the DLL.EXE module is 
loaded as a part of the network start up procedure. Under most circumstances, 
an application should not attempt to initialize the datalink. This service is docu
mented here for completeness. You should excercise caution if you decide to 
replace DLL.EXE and initialize the datalink yourself. DIGITAL does not sup
port the datalink interface if it is initialized by the application. Future versions 
of the V AXmate workstation and the network software may require different 
initialization parameters than those described here. 

The datalink initialization function is invoked once at startup time to initialize 
the datalink and port driver modules. Parameters to the initialization call are 
the port driver and datalink buffer pool blocks. the maximum number of por
tals allowed, the maximum number of multicasts allowed, and the maximum 
number of receive buffers allowed to be queued for a single portal. 

Parameters 

AH = 
ES:BX = 
CH = 
CL = 
DI = 
DH = 

Returns 

AX = 

OOH 
Port driver buffer pool 
Number of Port driver buffers 
Number of transmit and receive rings as power of 2 
Maximum number of open portals 
Maximum number of multicasts allowed per portal 

OOOOH 
OOOlH 
0014H 

SUCCESS 
INITIALIZATION FAILURE 
ALREADY INITE-D 

Use the following formulas to calculate the amount of buffer space required for 
the port driver and datalink. 

Where: 

dlLsize (MAX_OLL_PORTALS*(SIZE PLIST» + 

(MAX_OLL_PORTALS*(SIZE OLL_POB» + 

(MAX_OLL_PORTALS*MAX_MULTICAST*SIZE OF MULTICAST) 

MAX_OLL_PORTALS 
SIZE PLIST 
SIZE OLL_POB 
MAX_MULTICAST 

= 01 Recommended value is 8 
= 5 Size of internal data structure 
= 24 Size of internal data structure 
= OH Recommended value is 8 

SIZE OF MULTICAST = 6 Ethernet constant 

18 - 16 Datalink 



«MAX_ETHER_PACK + (SIZE BHEAD»*TOTAL_BUFFERS)+ 
(2~NUM_BUFFER_RINGS/2 * SIZE RECEIVE) + 
(2~NUM_BUFFER_RINGS/2 * SIZE TRANSMIT) + JUSTIFY 

MAX_ETHER_PACK 
SIZE BHEAD 

SIZE RECEIVE 
SIZE TRANSMIT 
JUSTIFY 

= 1518 1514 byte of data + 4 bytes CRC 
= 9 Size of internal data structure 

= 8 
= 8 
= 8 

Recommended value is 5 
Size of hardware receive buffer ring 
Size of hardware transmit buffer ring 
Number of bytes for LANCE buffer alignment 

Table 18-3 describes the recommended values for the datalink parameters. 

Table 18-3 Recommended Values for Datalink Parameters 

Symbol Name Value 

MAX PROTOCOLS 8 

MAX MULTICAST 8 

MIN Ethernet PACKET 64 

MAX Ethernet PACKET 1518 

MAX PORTALS 8 

Meaning 

The maximum number of proto
col types that may be enabled at 
one time 

The maximum number of multi
cast addresses that may be 
enabled at one time 

The minimum Ethernet packet 
size including the datalink header 
and checksum (60 data+4 CRC 
bytes) 

The maximum Ethernet packet 
size including datalink header 
and checksum (1514 data+4 
bytes CRC) 

The maximum number of 
datalink portals allowed to be 
opened at any time 

Datalink 18 - 17 



Function OlH: Open a Datalink Portal (dll open) 
The open function opens a portal so the client can transmit and receive frames 
from the Ethernet port driver. This routine, which is called with a DCB, ex
pects the 'pad' flag to be set to PAD if padding is to be used and NO PAD if 
it is not. -

If the mode flag is PROMISCUOUS _MODE, no other portals are allowed to 
open. 

Parameters 

AH = OlH 
ES:BX = far pointer to DCB 

Returns 

AX = 

dcb.pad = 
dcb.mode = 

dcb.ptype = 

dcb.line state = 

deb. rev callback = 

dcb.xmit callback = 
deb. max _outstanding = 

PAD or NO PAD. 

802 COMPATABLE or Ethernet or 
PROMISCUOUS MODE. 

Protocol type to enable if not 
promiscuous. 

Address of line state change routine 
or O. 
Address of receive call-back routine . 

Address of transmit call-back routine. 

Maximum number of outstanding 
buffers. 

OOOOH - SUCCESS with deb. portal id as the portal ID 
0003H - STATE OFF -
0008H - NO RESOURCES 
0009H - PROMISCUOUS RECEIVER ACTIVE 
OOOCH - PROTOCOL TYPE IN USE-
OOOAH - NON EXCLUSIVE- -

18 - 18 Datalink 



The DCB fields and return values are described in the following section: 

• deb.pad indicates whether frames are to be padded out to minimum 
Ethernet frame size or not. 

NOPAD value = 0 

PAD value = 1 

Do not pad messages out to mini
mum Ethernet length. 

Pad the Ethernet messages on 
this portal out to minimum length 
if they are less then the Ethernet 
minimum size. Padding must be 
agreed upon by both sides or else 
the remote side does not know to 
de-pad the packet. 

• deb.mode indicates the mode in which the portal is to be opened. 
Certain events and routines act differently in IEEE 802.3 compatible 
mode than they do in Ethernet compatible mode. The major difference 
is that in IEEE 802.3 compatible mode. the protocol-type field is set to 
the actual amount of user data in the frame. The header and CRC bytes 
are not included in this byte count. Protocol-type multiplexing cannot 
occur because there is no protocol-type field. 

802 COMPATABLE - value = 0 - Open a datalink portal in 802.3 
compatible mode. 

Ethernet - value = 1 - Open a datalink portal in Ethernet 
compatible mode. 

PROMISCUOUS MODE - value 2 - Open a datalink portal in pro
miscuous mode. -

• deb.ptype indicates the protocol type to enable on this portal. 

• deb.linestate indicates the address of the line-state-change routine. If 
the client does not want to be notified of line-state changes, the client 
should specify a 0 for this double word routine pointer. 

• deb.rcv callback indicates the address of the routine the datalink calls 
when a-buffer comes in for the client. A valid address must be specified. 

• deb.xmit callback indicates the address of the routine the datalink calls 
when a Duffer that this portal has queued for transmission either aborts 
due to an error, or is successfully transmitted. 

• dcb.max outstanding indicates the portals quota for the number of buff
ers, including transmit and receive buffers, that can be outstanding at 
anyone time. If the client specifies a quota of zero, a default quota of 
one receive and one transmit buffer is given. If the client specifies a 
quota larger than the number of buffers allocated on the dll init call 
and no other datalink clients exist, the number of buffers used in 
dll init are allocated to the caller. This means the client can effectively 
use all of the datalink buffer space. If other data link clients already 
exist and the caller asks for more buffers than are available. the caller 
is given the buffers that remain. 

Datalink 18- 19 



• SUCCESS indicates that a portal is open and therefore dcb.portal id is 
set to a valid portal ID. -

• NO RESOURCES indicates that there were not enough resources to 
open another portal. 

• STATE OFF indicates that the channel is currently off or broken, and 
therefore no opens are . allowed. 

• PROMISCUOUS RECEIVER ACTIVE indicates that there is a pro
miscuous receiver-active and tnerefore no other portals may be opened 
at this time. 

• PROTOCOL TYPE IN USE indicates that the protocol type you tried 
to enable was already in-use by another portal. 

• NON_EXCLUSIVE indicates on of the following: 

You tried to enable promiscuous mode with a promiscuous receiver 
active. 

You tried to enable another 802.3 compatible portal when there was 
already an 802.3 mode compatible portal enabled. 

18 - 20 Datalink 



Function 02H: Close a Datalink Portal (dll close) 
The close function closes an open Ethernet portal and releases all of its re
sources. A portal cannot be closed unless all outstanding transmit and receive 
requests are completed. 

Parameters 

AH = 
ES:BX = 

Returns 

AX = 

02H 
far pointer to DCB 

dcb.portal_id = Portal ID from open 

OOOOH - SUCCESS 
OOOBH - UNRECOGNIZED PORTAL 
OOOEH - OUTSTANDING CALLS 

The DCB field and return values are described below: 

• dcb.portal_id is the portal ID from the open call that you want to close. 

• SUCCESS indicates that the portal is successfully closed. Any refer
ences to this portal return the UNRECOGNIZED _PORTAL error. 

• UNRECOGNIZED PORTAL indicates that the portal ID is not a valid 
open datalink portalID. 

• OUTSTANDING CALLS indicates that the portal could not be closed 
because there are-incomplete transmit or receive requests on this portal. 

Datalink 18 - 21 



Function 03H: Enable Multicast Addresses (dll enable mul) 
The enable multicast request is made to enable reception of frames addressed 
to a specific group address (a multicast address) for this portal. 

Parameters 

AH = 
ES:BX = 

Returns 

AX = 

03H 
far pointer to DCB 

dcb.portal_id = 

dcb.source address = 

OOOOH - SUCCESS 
OOODH - NOT MULTICAST 
0008H - NO RESOURCES 

The portal ID from the open 
call 
multicast address to be enabled 

OOOBH - UN-RECOGNIZED PORTAL 
0009H PROMISCUOUS RECEIVER ACTIVE 
0003H - STATE OFF 

The DCB fields and the return values are described below: 

• deb. portal id is a valid datalink portal ID on which this multicast ad
dress is to be multiplexed. 

• deb.souree address is the multicast address to start receiving messages 
for. -

NOTE 
If you specify the broadcast address, FF-FF-FF-FF-FF-FFH, no 
error is returned. This address is not displayed as part of the 
Read Portal Status function. However, the Broadcast Address is 
always enabled for this portal. 

• SUCCESS indicates that the multicast address is enabled for this 
portal. 

• NOT MULTICAST indicates that the address specified in the source 
address was not a valid multicast address. 

• NO RESOURCES indicates that there are currently not enough re
sources to filter another multicast address for this portal. 

• UNRECOGNIZED PORTAL indicates that the portal ID specified in 
the DCB was not a-valid open datalink portal. 

18 - 22 Datalink 



• PROMISCUOUS RECEIVER ACTIVE indicates that there is currently 
a promiscuous receiver, and, therefore, no protocol types or multicast 
addresses are enabled. 

• STATE OFF indicates that the channel state was set to BROKEN or 
OFF. Tne channel state must be ON to filter multicast addresses. 

Datalink 18 - 23 



Function 04H: Disable Multicast Addresses (dll disable mul) 
The disable multicast function request indicates that a client no longer wants 
to receive frames for the specified multicast address through this portal. 

Parameters 

AH = 
ES:BX = 

Returns 

AX = 

04H 
far pointer to DCB 

deb. portal id = 
deb. source address = 

OOOOH - SUCCESS 

Portal ID from open call 
Multicast address to be disabled 

OOOBH - UNRECOGNIZED PORTAL 

The DCB fiel~s and the return values are described below: 

• deb.portal_id is a valid portalID returned by the open function on 
which the multicast address is to be disabled. 

• deb.souree address is the multicast address to be disabled. 

• SUCCESS indicates that the multicast address is no longer multiplexed 
for this portal. 

• UNRECOGNIZED PORTAL indicates that the portal id did not cor
respond to a valid open datalink portal. 

18 - 24 Datalink 



Function 05H: Transmit (dll transmit) 
The transmit function queues a frame for transmission. The client is notified at 
the call back address when the transmission is completed. Notification consists 
of executing the call-back routine pointed at by the xmit callback field of the 
DCB structure. When the transmit call-back routine is cailed by the datalink, 
the ES:BX register pair points at the UCB block. See the section "User call
back Routines" for more information on transmit call-back routines. 

Within the transmit call-back routine, the client should not attempt to use any 
MS-DOS facilities or enable or disable interrupts. The transmit call-back rou
tine must end with a FAR RETURN. The datalink ensures that a call-back 
routine is not called again until the previous call has completed with a FAR 
RETURN. 

No abort transmit function is provided because transmission always succeeds or 
fails within a short period of time. 

NOTE 
If datalink clients do not return (dll deallocate I all datalink 
transmit and receive buffers before exiting, the datalink runs 
out of buffers and does not function properly. This leads to 
serious network problems. 

A client application can supply its own buffer for transmission or request a 
buffer from the datalink using the Request Transmit Buffer function. Client 
supplied buffers do not have to be deallocated to the data link before exiting. 

Parameters 

AH = 
ES:BX = 

05H 
far pointer to DCB 

dcb.portal_id = 

deb. destination address = 

dcb.ptype = 

dcb.bh = 

dcb.bI = 

The portal ID from the open call 

Address of remote node 

Protocol type or NULL 

Pointer to the buffer to be sent 

The buffer length excluding the 
datalink header 

Datalink 18 - 25 



Returns 

AX= 

ES:BX = 

OOOOH - SUCCESS 
0008H - NO RESOURCES 
OOOBH - UNltECOGNIZED PORTAL 
0003H - STATE OFF -

Far pointer to User call-back Block. 
See the section "User call-back Routines" for further 
information. 

The DCB fields and the return values are described below: 

• deb.portal_id is the portal ID returned by the open call. 

• deb.destination address is the 6 byte address to which this transmission 
is to be sent. This address can be a physical address, a multicast ad
dress, or the broadcast address. 

• deb.ptype is the protocol type field in Ethernet compatible mode. It is 
ignored in the IEEE 802.3 compatible mode. In IEEE 802.3 mode the 
type field is used for the frame length. 

• deb.bh is the pointer to a buffer to be transmitted. 

• deb.bl is the length of the client data in the buffer. The length does not 
include the datalink header length. 

• SUCCESS indicates that the buffer is successfully queued for 
transmission. The client is notified at the transmit complete call back 
routine supplied as part of the calling sequence. 

• NO RESOURCES indicates that there are currently not enough re
sources to queue the buffer for transmission. 

• UNRECOGNIZED PORTAL indicates that the portal id supplied is not 
a valid open dataliri'k portal. 

• STATE OFF indicates that the Ethernet channel on which this portal 
has been opened is currently not turned on. 

18 - 26 Datalink 



Function 06H: Request Transmit Buffer Function 
(dll request xmit) 
The request transmit buffer function allocates a data link transmit buffer. Once 
a buffer is allocated, the client owns the buffer until it returns the buffer via 
the deallocate buffer function. The client should return all allocated buffers to 
the datalink before exiting. 

NOTE 
If datalink clients do not return (dll deallocate) all datalink 
transmit and receive buffers before exiting, the datalink runs 
out of buffers and does not function properly. This leads to 
serious network problems. 

A client application can supply its own buffer for transmission. The client does 
not need to request a transmit buffer from the datalink layer. Client supplied 
buffers do not have to be deallocated to the datalink before exiting. 

Parameters 

AH = 
ES:BX = 

Returns 

AX = 

dcb.bh = 

06H 
far pointer to DCB 

dcb.portal_id = The portal 10 from the open call 

OOOOH - SUCCESS 
0008H - NO RESOURCES 
OOOBH - UN-RECOGNIZED PORTAL 
0003H - STATE OFF -

The address of the buffer into which a client can place a 
message 

The DCB fields and the return values are described below: 

• dcb.portal_id is the portal 10 to which the buffer is to be allocated. 

• dcb.bh is the address of the buffer in which the data is to be placed 
when transmitting a frame. 

• SUCCESS indicates that a buffer address is returned to the user. 

• NO RESOURCES indicates that there are currently not enough re
sources to process this request. 

• UNRECOGNIZED PORTAL indicates that the portal 10 provided is 
not a valid datalink-portal 10. 

• STATE_OFF indicates that the channel is currently not turned on. 

Datalink 18 - 27 



Function 07H: Deallocate Buffer (dll deallocate) 
The deallocate buffer request is made to return a data buffer to the datalink 
layer. The buffers returned are transmit buffers and receive buffers. 

NOTE 
If data link clients do not return (dll deallocate) all buffers before 
exiting, the datalink runs out of buffers and does not function 
properly. This leads to serious network problems. 

Parameters 

AH = 
ES:BX = 

Returns 

AX= 

07H 
far pointer to DCB 

deb. portal id = 
dcb.bh =-

OOOOH - SUCCESS 

Portal ID returned by open 
Address of buffer to free up 

OOOBH - UNRECOGNIZED PORTAL 

The DCB fields and the return values are described below: 

• deb. portal id is the portal ID on which receive and transmit buffers are 
to be returned. 

• dcb.bh is the address of the data buffer the client wants to return to 
the datalink buffer pool. The buffer should be one that was previously 
given to the client as part of a receive call-back sequence or the request
transmit buffer (dllJequest _ xmit) call. 

• SUCCESS indicates that the function completed successfully and all 
buffers are returned. 

• UNRECOGNIZED PORTAL indicates that the portal ID supplied was 
not a valid open datalink portal. 

18 - 28 Datalink 



Function 08H: Read Channel Status (dII read chan) 
The read channel function is the network managementinterface to read infor
mation about a specified channel from the port driver. A channel corresponds 
to a physical Ethernet port. This is equivalent to a hardware controller. The 
V AXmate workstation has only one hardware Ethernet port. 

Parameters 

AH = 
ES:BX = 

Returns 

AX = 

08H 
far pointer to DCB 

OOOOH - SUCCESS with: 

dcb.source address = 

dcb.destination address = 
dcb.operation = 

dcb.mode = 

dcb.pad = 

dcb.max_outstanding = 

Physical address 

Hardware address 

STATE(ON ,OFF,INIT,BROKEN) 

Reserved 

Hardware interrupt vector 
number 

MOP Status 

The DCB fields and the return values are described below: 

• SUCCESS indicates that the function completed successfully, and the 
following locations in the DCB have been set. 

deb.souree address is set to the current physical channel address 
which is tile address the channel is currently using. 

deb.destination address is set to the hardware address associated 
with the channel. This mayor may not be the same as the physical 
address. 

deb.operation is set to the current state of the datalink and can be 
one of the following: 

State Value 

OFF 0 
ON 1 
INIT 2 
BROKEN 3 

Meaning 

The datalink state is now off. 
The datalink state is now on. 
The port hardware is initializing. 
The datalink failed to initialize. 

Datalink 18 - 29 



deb. mode is reserved. 

deb. pad is the interrupt vector which the Ethernet hardware is 
using to get its interrupts. 

deb.max outstanding is a mask which indicates the current status 
of the Maintenance Operations Protocol module, MOP. It has the 
following form: 

MOP STATUS MASK 

7 6 543 2 1 o 

1 Reserved 1 CONSOLE 1 LOOPBACK 1 

1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 _________ 1 __________ 1 

LOOPBACK indicates that the LOOPBACK server is enabled when 
a ONE is in this field. 

CONSOLE indicates that the remote console is enabled when a one 
in this bit. 

18- 30 Datalink 



Function 09H: Read the Portal List (dll read plist) 
This is the network management function usedto obtain a list of open portal 
IDs. It returns them in the buffer specified as its argument. If there is not 
enough space in the buffer, a partial list is returned, along with an error. 

Parameters 

AH = 
ES:BX = 

Returns 

AX = 

deb.bl = 

09H 
far pointer to DCB 

dcb.bh = 

dcb.bl = 

OOOOH - SUCCESS 

Buffer to receive portal ID list 

Buffer length in 16 bit words 

deb. operation = 

0006H - BUFFER TOO SMALL 
Number of portals returned on SUCCESS 
Current datalink state 

The DCB fields and the return values are described below: 

• deb.bh is the address of the buffer to receive portal IDs. Each portal ID 
occupies one word in the buffer. 

• deb.bI is the number of words held by the buffer. Note that this is not 
the number of bytes. It is actually the number of portal IDs that can be 
placed into the buffer. 

• deb.operation is set to the current state of the datalink and can be one 
of the following: 

State 

OFF 
ON 
INIT 
BROKEN 

Value 

o 
1 
2 
3 

Meaning 

The data link state is now off. 
The datalink state is now on. 
The port hardware is initializing. 
The datalink failed to initialize. 

• deb.operation is the current datalink state. 

• SUCCESS indicates that the function was successfully completed and 
the buffer now has the list of portal IDs. 

• BUFFER TOO SMALL indicates that there were more portal IDs than 
the buffer-Iengtli argument allowed for. An incomplete list is returned. 

Datalink 18 - 31 



Functions OAH: Read the Portal Status (dll read portal) 
The read portal function reads portal data base information for a given portal. 

Parameters 

AH = 
ES:BX = 

Returns 

AX = 

dcb.bl = 

OAH 
far pointer to DCB 

dcb.portal_id = 
dcb.bh = 
dcb.bl = 

OOOOH - SUCCESS 

Portal ID from open call 

Address of portal status buffer 

Size of portal status buffer 

OOOBH - UNRECOGNIZED PORTAL 
0006H - BUFFER TOO SMALL 
number of multicast addresses 

The DCB fields and the retllrn values are described below: 

• deb.portal_id is th~ portal id whose data base you want to read from. 

• dcb.bh is a pointer to the portal status buffer. When the function call 
returns, this bqff"r has all the information about the portal. The format 
of the read portal information buffer is outlined below. 

• deb.bl is the length of the buffer in which the portal status is to be 
returned. If there is not enough space in the buffer, a partial list is 
returned along with the BUFFER_TOO _SMALL error. 

• SUCCESS indicates that the routine has read the data base successfully 
and the information is returned. 

• UNRECOGNIZED PORTAL indicates that the portal ID was not 
recognized by the clatalink layer as being that of a valid portal. 

• BUFFER TOO SMALL indicates that the buffer was too small so only 
a partial lIst was returned. 

18 - 32 Datalink 



The format of the buffer that the dllJead _portal function returns to the caller 
is: 

struct portal_status 
{ 

int lost_buffers; 
uchar enabled_protocol_type[2] ; 
uchar enabled_multicasts[MAXMULTICAST] [6] ; 

}; 

Where: 

lost buffers 

enabled _protocol_type 

enabled multicasts 

Is a two-byte count of the client buffers that are lost. 

Is a two-byte description of enabled protocol type for 
this portal. 

Is a return list of enabled multicast addresses. The 
size of the list is always MAXMULTICAST multiplied 
by 6 bytes per multicast address. The enabled multi
cast addresses appear first in the list. The rest of the 
entries are all zero. 

Datalink 18 - 33 



Function OBH: Read the Datalink Counters (dll read count) 
The read counters function reads the system counters and optionally clears 
them all. 

Parameters 

AH = 
ES:BX = 

OBH 
far pointer to DCB 

deb. operation = 

dcb.bh = 

[CLEAR! NULL] 

Address of the buffer to hold the 
datalink counters 

Returns 

AX = OOOOH - SUCCESS { never returns error I 

The DCB fields and the return values are described below: 

• deb.operation tells the datalink layer that after the counters are read, 
all the counters should either be cleared {CLEAR=11 or not cleared 
{NULL=OI. 

• deb.bh points to a buffer which is to hold the datalink counters. 

• SUCCESS indicates that the specified counters were read and placed 
into the client supplied buffer. 

The data link layer maintains several counters for diagnosing network related 
problems. The datalink counters structure is listed below: 

struct datalink_counters 
{ 

int 
long 
long 
long 
long 
long 
long 
long 
long 
long 
uint 
uint 
uint 
u:int 

18- 34 

seconds_since_zeroed; 
bytes_received; 
bytes_transmitted; 
frames_received; 
frames_sent; 
multicast_bytes_received; 
multicast_frames_received; 
blocks_sent_initially_deffered; 
blocks_sent_single_collision; 
blocks_sent_multiple_collisions; 
send_failures; 
send_failure_mask; 
receive_failures; 
receive_failure_mask; 

Datalink 



}; 

uint unrecognized_frame_destination; 
uint data_overrun; 
uint system_buffer_unavailable; 
uint user_buffer_unavailable; 
uint collision_detect_check_failed; 

The datalink counters fields are described below: 

• seconds_since _zeroed (16 bitsl counter is reserved for future use. 

• bytes received (32 bitsl counter indicates the total number of bytes re
ceivea by the port hardware successfully. 

• bytes transmitted (32 bitsl counter indicates the total number of bytes 
transmitted by the port hardware excluding the data link header bytes. 
It does not include bytes caused by datalink layer retransmission of 
messages. 

• frames received (32 bitsl counter indicates the number of frames re
ceived oy the datalink. 

• frames sent (32 bitsl counter indicates the number of frames 
transmitted by the datalink. 

• multicast bytes received (32 bitsl counter counts the number of frames 
received that were addressed to multicast addresses. 

• multicast frames received (32 bits) counter counts the number of 
frames received from multicast addresses. 

• blocks sent initially deferred (32 bitsl counter is the total number of 
times that a frame was deferred on its first attempt. This counter is 
maintained by the port driver. This counter is not available for all 
hardware. 

• blocks sent single collision (32 bitsl counter is the total number of 
times that a frame-was successfully sent on the second attempt after 
its first collision. this counter is maintained by the port driver. 

• blocks sent multiple collisions (32 bitsl counter is the total number of 
times a frame was transmitted successfully after experiencing multiple 
collisions on the Ethernet. This counter is maintained by the port 
driver. This counter is not available for all hardware. 

• send failures (16 bits) counter is the total number of times a transmit 
failed to occur. The reason for the failure is specified by the 
send failure mask field. 

• send failure mask (16 bits) is a bit mask that determines what types of 
errors occurred that causes the transmit failure counter to increment. 

Datalink 18 - 35 



Bit 

15-6 
5 

Reason 

Reserved for furture use 
Remote failure to defer 

Description 

A collision was detected after 
the slot time for the Ethernet 
wire. 

4 Frame too long The frame to be transmitted 
was to long to fit into the maxi
mum length Ethernet message. 

3 Open Circuit There is a short or open circuit 
on the Ethernet wire. 

2 Short Circuit There is a short or open circuit 
on the Ethernet wire. 

1 Carrier check failed The hardware could not detect 
the Carrier on the line, so no 
transmission was made. 

o Excessive collisions A node experienced more than 
the allowed number of collisions 
and aborted the transmission. 

• receive failures U 6 bits) counter indicates the total number of frames 
receivea with some form of data error. The reason for the failure is 
specified in the Receive Failure Mask field. 

• receive failure mask (16 bits) is a bit mask which contains the reason(s) 
that the receive failure counter has been incremented. 

Bit Reason Description 

15-3 Reserved for 
future use 

2 Frame too long The length of the receive data was 
greater than the maximum 
Ethernet message size. 

1 Framing error Both an odd number of bits was 
received and a eRC error occured. 

o Block Check (CRC) A CRC error was detected in the 
Error receive data. 

• unrecognized frame destination (16 bits) counter indicates the total 
number of times a frame was discarded because there was no portal 
with the protocol type (non-802 compatible mode) or multicast address 
enabled. This includes frames received for the physical address, broad
cast address, or a multicast address. 

• data overrun (16 bits) counter is the total number of times the hard
ware-lost a frame because it could not keep up with the data rate. This 
counter is maintained by the port driver. This counter is not available 
for all hardware. 

• system buffer unavailable {I6 bits) counter is the total number of times 
a frame was ruscarded because the datalink had insufficient internal 
buffers to receive a message from the hardware. This counter is main
tained by the port driver. 

18 - 36 Datalink 



• user buffer unavailable (16 bitsl counter is the total number of times a 
frame was aiscarded because a client application buffer was not avail
able to store the message. 

• collision detect check failed (16 bits I indicates the approximate number 
of times-that cOllision -detect was not sensed after a transmission. This 
counter is maintained by the port driver. 

Datalink 18- 37 



Function OCH: Network Boot Request (dll network boot) 
This function is called to request a remote boot of this node from another node 
on the network. It does not return unless the boot request fails to find a suit
able boot server to boot the node. If the boot request succeeds, the datalink 
state is left ON and the Maintenance Operation Protocol, MOP, portal ID is 
opened and enabled. If the boot request fails, the datalink and port driver are 
left in the OFF state and need to be initialized. 

Further information on network booting is presented in the MOP section of 
this chapter. 

Parameters 

AH = 
ES:BX = 

Returns 

OCH 
Far pointer to DCB 

AX = OOOOH - SUCCESS ( never returns error I 

18 - 38 Datalink 



Function ODH: Enabling a Channel Function (ddl enable chan) 
The enable channel function is called by the network management software to 
turn on an Ethernet channel, as well as set the station ID used by the 
Ethernet hardware. 

Parameters 

AH = 
ES:BX = 

Returns 

AX = 

ODH 
far pointer to DCB 

dcb.source address = address to set 

OOOOH - SUCCESS 
0004H - ADDRESS NOT SET 
OOODH - NOT MULTICAST 

The return fields are described below: 

• SUCCESS indicates that the channel is now enabled. A channel that 
has been enabled is not necessarily usable. The caller can determine the 
actual state of the channel by issuing the read_channel function. 

• ADDRESS NOT SET indicates that the physical address for the chan
nel is not set yet;-and therefore the channel cannot be enabled. 

• NOT MULTICAST indicates that the address that you attempted to 
enable as your station ID was a multicast address, and it should be a 
physical address. If this error occurs, and an address was previously set, 
the previous address is still recognized as the station ID. 

Datalink 18 - 39 



Function OEH: Disabling a Channel (dll disable chan) 
The disable channel function is invoked to put the channel into the OFF state. 

Parameters 

AH = 
ES:BX = 

Returns 

AX= 

OEH 
Far pointer to DCB 

OOOOH - SUCCESS tnever returns error) 

The return field is SUCCESS, which indicates that the channel is disabled. 

18 - 40 Datalink 



Function IlH: Read Decparm String Address (dll readecparm) 
This function is invoked to read the current DECPARM string address for the 
datalink. The address is a pointer to the null terminated ASCII string that 
describes the MS-DOS path to the DECnet data files. This path is where 
DECnet-DOS looks for its data files. 

Parameters 

AH = 
ES:BX = 

Returns 

AX = 

llH 
Far pointer to DCB 

OOOOH - SUCCESS I never returns error) 

dcb.bh = Address of DECPARM string 

Datalink 18 - 41 



Function 12H: Set Decparm String Address (dll setdecparm) 
This function is invoked to set the DECPARM string address for the datalink. 
This address points at null terminated ASCII string that describes the MS
DOS path to the DECnet-DOS data files. This. path is where the DECnet 
driver looks for its data files. 

NOTE 
If a client application modifies the DECPARM string address 
while DECnet-DOS is loaded in the V AXmate workstation, the 
network may fail. 

Parameters 

AH = 
ES:BX = 

Returns 

12H 
Far pointer to DCB 

DCB.BH = Address of DECPARM string 

AX = OOOOH - SUCCESS ( never returns error ) 

18 - 42 Datalink 



Function 13H: External Loopback (dll ext loopback) 
This function invokes an external loopback test for diagnostic purposes. The. 
function requires no arguments. If the hardware successfully loops the message, 
the SUCCESS return is given. If the message is not looped or the function is 
not supported, the LB FAILURE return is given. Loopback testing can be ac
complished using a Loopback Terminator. 

Parameters 

AH = 
ES:BX = 

Returns 

AX = 

13H 
far pointer to DCB 

OOOOH 
0002H 
0015H 

SUCCESS 
CHANNEL NOT OFF 
LB FAILURE 

Datalillk 18 - 43 



Maintenance Operation Functions 
The VAXmate workstation implements a subset of the DIGITAL Network 
Architecture Maintenance Operations capability, which is referred to as the 
Maintenance Operations Protocol (MOP). 

MOP services are used by network management software to assist in network 
configuration determination and network problem diagnosis. The V AXmate 
MOP implementation also provides for loading a system image from another 
node on the Ethernet. This is provided to facilitate loading operating systems 
or standalone applications from a host node. 

The MOP functions implemented in the V AXmate workstation are: 

• Loop Services 
• Console Server Identify Self 
• Remote Read Counters 
• Network Boot Request 

These functions are described in the following sections: 

Loop Services 

Loop services allow a remote node to loop a message through the client node. 
The Loop Server functions are provided to allow the V AXmate workstation to 
respond to MOP Loop Test requests from another system on the Ethernet. 
These requests can be serviced at any time. The only requirement is that the 
MOP process not be stopped. Servicing a MOP Loop Test request will not 
affect the operation of other network software on the V AXmate workstation. 

For further information on loop services refer to Digital Network Architecture 
Maintenance Operations Functional Specification. 

Console Server Identify Self 

The Console Server Identify Self periodically sends the system identification 
Il1essage and sends the system identification message to a requesting system. 
This function is not visible to application software and is provided to allow this 
V AXmate workstation to respond to MOP Request ID messages from another 
system on the Ethernet. This request can be serviced at any time. The only 
requirement is that the MOP process not be stopped. Servicing a MOP 
Request ID message will not affect the operation of other network software on 
the V AXmate workstation. 

The V AXmate system periodically transmits an unsolicited system ID message 
to the MOP multicast address. The message is transmitted at approximately 9 
minute intervals. The messages are not transmitted if a portal is active in pro
miscuous mode. 

18 - 44 Datalink 



The V AXmate system ID message conforms to the Digital Network 
Architecture MOP system ID message. The V AXmate workstation specific 
fields are the Comm field with a value of 25(decimal), and the System 
Processor Type field with a value of 7. 

For further information on System ID message refer to Digital Network 
Architecture Maintenance Operations Functional Specification. 

Remote Read Counters 

Remote Read Counters send Ethernet Data Link counters to the requesting 
system. This function is provided to allow this V AXmate workstation to 
respond to the MOP Request Counters message from another system on the 
Ethernet. This request can be serviced at any time. The only requirement is 
that the MOP process not be stopped. Servicing a MOP Request Counters 
message will not affect the operation of other network software executing in 
the V AXmate workstation. 

The Counters are counts of events maintained by the Data Link. For further 
information on Data Link counters refer to Digital Network Architecture 
Maintenance Operations Functional Specification. 

Network Boot Request 

Network Boot Request requests a remote boot of this node. as part of the 
V AXmate boot procedure. The default V AXmate boot sequence is the following: 

1. Attempt to boot from the floppy drive. 

2. Attempt to boot from the optional Hard Disk. 

3. Attempt to boot from the network. 

4. Repeat the sequence. 

A V AXmate network boot can only be initiated by powering on the system or 
by a system reset (such as pressing Ctrl/Alt/Del). Another system on the 
Ethernet cannot force a remote boot or a system reset of a V AXmate 
workstation. 

A successful network boot procedure is as follows. 

1. Send a MOP Request Program Load multicast message. Multicast ad
dress AB-OO-OO-O 1-00-00. 

2. Nodes on the Ethernet that can perform program loads check their net
work databases against the Ethernet address of the requesting node. If 
the address and an associated Load File specifier is found in the data 
base, the load request can be serviced. 

Datalink 18 - 45 



The nodes that can service the request then volunteer to load the 
V AXmate workstation. They volunteer by sending a MOP Assistance 
Volunteer message to the Ethernet address of the VAXmate system. 

3. The V AXmate workstation sends a directed MOP Request Program 
Load message to the physical Ethernet address of the first system it 
receives an Assistance Volunteer message from. 

4. The V AXmate system image is now transferred into the workstation. 

For VAXNMS systems, target node Ethernet addresses and associated load 
files are specified using the Network Control Program, NCP. 

For further information on Remote Boot procedures refer to Digital Network 
Architecture Maintenance Operations Functional Specification and V AXNMS 
DECnet manuals covering network management topics. 

NOTE 
Currently V AXNMS systems require that the system image to 
be loaded into a remote node be in a file format compatible with 
RSX/ll-S down line load able images. 

18 - 46 Datalink 



Data Link Interface to the MOP Process 
The Data Link interface supports two MOP functions. 

Function OFH: Mop Start and Send System ID (dll start mop) 
This function is called to send a MOP system 10 message. The first-time the 
routine is called, it will also start the MOP Loopback server if it is not already 
running. This function returns no errors. 

Parameters 

AH = 
ES:BX = 

Returns 

AX = 

OFH 
far pointer to DCB 

OOOOH - SUCCESS I never returns error} 

Function 10H: Mop Stop (dll mop stop) 
This function is called to halt the operation of MOP and disable all protocol 
and multicast message processing associated with the MOP process. 

MOP STOP must be performed to enable promiscuous mode or take over any 
of the MOP functions. 

The MOP software continues to transmit periodic system 10 messages if the 
MOP Remote Console Protocol Type is not being used by a client application 
portal. The Digital Network Architecture requires a system 10 message 
transmission every 10 minutes or less. If the client application uses the MOP 
Remote Console Protocol Type and MOP is stopped, the application must im
plement periodic system 10 message function. 

Parameters 

AH = 
ES:BX = 

Returns 

AX = 

10H 
far pointer to DCB 

OOOOH - SUCCESS f never returns error} 

Datalink 18 - 47 



Sample Datalink Session 
This is an example of a code fragment that performs the following functions: 

1. Calls the enable channel function to turn the channel on and enable an 
address. 

2. Calls the data link open routine to open a datalink portal, enable a proto-
col type and specify a line state change call-back for the portal. 

3. Enables multicast addresses. 

4. Requests transmit buffers. 

5. Transmits frames to the port driver. 

6. Closes the portal. 

This example assumes Microsoft C making use of the nontransportable 
construct of far pointers. 

mop_mon_sysid () 
{ 

/* Working DCB */ 

unsigned char hardware_address[6]; /* Hardware address */ 
unsigned open_mode ,pad_mode ,ptypev[2] ; 
unsigned char multicast_address [6] ; /* Multicast to enable */ 
extern int line_state_change_far{); 
extern int receive_complete_far{); 
extern int transmit_complete_far{); 
unsigned char cchar; 
struct BUFFERS 
{ 

unsigned char used; 
unsigned char far *buffer; 
unsigned char dest[6],src[6] ; 

} buffers; 

/* First thing to do is read the channel state to get our current hardware ~ 
/* address. 

read_channel_state{&dcb_blk_l); 
for (j=O;j<6;j++) hardware_address[j]=dcb_blk_l.dest_address[j]; 

printf (II\nThe current hardware address is: II); 
print_address{hardware_address); 

buffer_state=dcb_blk_l.operation; 
printf (II\nThe port state is now: II); 

18 - 48 Datalink 



/* Now enable the channel using the hardware address from the port driver */ 

if (give_error (enable_channel (&dcb_blk_1 ,hardware_address » != 
SUCCESS) 

{ 

return -1; 
} 

/* Stop MOP from running */ 

/* Now that we have enabled the channel successfully, open a portal in */ 
/* PADDED Ethernet MODE. */ 

pad_mode=PAD; 
open_mode=Ethernet; 
ptypev[0]=Ox60; 
ptypev[1]=Ox02; 

multicast_address [0] =Oxab; 
multicast_address[1]=OxOO; 
multicast_address [2] =OxOO; 
multicast_address[3]=Ox02; 
multicast_address [4]=OxOO; 
multicast_address [5]=OxOO; 

/* Start of MOP Ptype */ 
/* End of MOP Ptype */ 

if «give_error(dll_open(&dcb_blk_1, 
pad_mode ,open_mode ,ptypev, 
line_state_change_far, 
transmit_complete_far, 
receive_complete_far, 
segrg.cs,-1») != SUCCESS) return -1; 

/* We now have an open portal, so lets enable a multicast address */ 

/* We will now send a system ID message (NOT USING THE DATALINK FUNCTION) */ 
/* By building the message and transmitting it. */ 

give_error(dll_enable_multicast(&dcb_blk_1,&multicast_address[O]»; 
send_system_id(&multicast_address[O]); 

while (1) 
{ 

if (buffers.used == 1) dump_system_id(); 
/* Free up buffer for datalink layer use. 

deallocate_buffer (&dcb_blk_1 ,buffers. buffer) ; 

Datalink 18- 49 



/* This will break out of the loop when the first character is typed */ 

} 

if (kbd16(&cchar) == 0) break; 
} 

dll_close(&dcb_blk_l); 
dll_enable_mop(&dcb_blk_l); 

/* Close the portal */ 
/* And start MOP */ 

send_system_id(destination.dcb) 
uchar destination[] ; 

{ 

int i; 
unsigned char far *buffer; 
if (allocate_transmit_buffer(&dcb_blk_l) == SUCCESS) 
{ 

for (i=0;i<6;i++) dcb_blk_l.dest_address[il=destination[il 

} 

else 
{ 

buffer=dcb_blk_l.bh_address; 
pokeb(buffer_off.buffer_seg.SYSTEM_ID); 
pokew(buffer_off+l.buffer_seg.l) ; 
pokew(buffer_off+3.buffer_seg.l); 
pokeb(buffer_off+5.buffer_seg.3); 
pokeb(buffer_off+6.buffer_seg.3); 
pokeb(buffer_off+7.buffer_seg.l); 
pokeb(buffer_off+8.buffer_seg.0); 
pokew(buffer_off+9.buffer_seg.2); 

pokeb(buffer_off+ll.buffer_seg.2); 
pokew(buffer_off+12.buffer_seg.Ox41) ; 

xmit_callback=-l; 
transmit_frame(&dcb_blk_l.buffer.15) ; 
while (xmit_callback != 0) {} 
deallocate_buffer(&dcb_blk_l.buffer); 

/* Save opcode */ 
/* Receipt number 
/* Maint version *. 
/* length */ 
/* version */ 
/* 1. */ 
/* o */ 
/* Funcions availal 

/* length */ 
/* ... */ 

printf (II\nBuffer allocation error in send_systemid"); 
} 

} 

dump_system_id() 
{ 

18 - 50 Datalink 



II) ; 

II) ; 

II) ; 

II); 

II) ; 

II) ; 

("DLC"); 

II) ; 

ptr_mop_msg=(struct mop_header far *)buffers.bh_buffer; 
if (ptr_mop_msg->msg_type == SYSTEM_ID) 
{ 

ptr_mop_data=(unsigned char far *)ptr_mop_msg; 
printf ("\n------ System ID Message -----"); 
display_nodes(buffer_number); 
info_type=-1; 
i=sizeof(struct mop_header); 
while (info_type != 0) 
{ 

info_type=ptr_mop_data[i]+(ptr_mop_data[i+1]«S); 
i=i+2; 
if (info_type == 0) break; 
switch (info_type) 
{ 

case 1: 

case 2: 

i++; 
printf ("\nMaintenance Ver: %d.%d.%d", 

ptr_mop_data[i++] , 
ptr_mop_data[i++] , 
ptr_mop_data[i++]) ; 

break; 

i++; 
printf ("\nFunctions: II); 
i2=ptr_mop_data[i]+ 

(ptr_mop_data[i+1]«S); 
printf ("%x ",i2); 
i=i+2; 
if «i2 "Oxi) Ox1) printf 

if «i2 "Ox2) Ox2) printf 

if «i2 " Ox4) Ox4) printf 

if «i2 " OxS) OxS) printf 

("LOOP 

("DUMP 

("PRIM 

("MBL 

if «i2"Ox10) == Oxl0) printf ("BOOT 

if «i2 " Ox20) Ox20) printf ("CC 

if «i2 " Ox40) Ox40) printf 

if «i2" OxSO) == OxSO) printf ("CCR 

Datalillk 18- 51 



} 
} 

} 

} 

#define TRANSMIT Ox0500 

case 7: 

break; 

printf (II\nHardware address: II); 
i2=ptr_mop_data[i++]; 
for (il=O;il<i2;il++) 
{ 

} 

i=i+i2; 
break; 

default: 

i2=ptr_mop_data[i++] ; 
i=i+i2; 
break; 

transmit_frame (dcb_blk,buffer_addr , length) 
unsigned int far *buffer_addr; 

{ 

} 

int length; 
struct dcb *dcb_blk; 

dcb_blk->bl=length; 
dcb_blk->bh_address=buffer_addr; 
return do_dll_call (TRANSMIT ,dcb_blk) ; 

#define READ_CHANNEL Ox0800 

read_channel_state(dcb_blk) 
struct dcb *dcb_blk; 

{ 

} 

#define ENABLE_CHANNEL OxOdOO 

enable_channel (dcb_blk, address) 
uchar address [] ; 

18 - 52 Datalink 



struct dcb *dcb_blk; 
{ 

int i; 
for (i=O;i<6;i++) dcb_blk->source_address [i]=address [i] ; 
return do_dll_call(ENABLE_CHANNEL,dcb_blk); 

} 

#define ENABLE_MOP OxOfOO 
#define DISABLE_MOP Ox1000 

dll_enable_mop(dcb_blk) 
struct dcb *dcb_blk; 

{ 

} 

dll_disable_mop(dcb_blk) 
struct dcb *dcb_blk; 

{ 

} 

#define OPEN Ox0100 
#define CLOSE Ox0200 

dll_open (dcb_blk,pad,mode,ptypev, 
line_state , transmit_complete , receive_complete , 
cS,max_out) 

uchar pad,mode,ptypev[] ,max_out; 
uint line_state ,transmit_complete ,receive_complete ,cs; 
struct dcb *dcb_blk; 

{ 

int i; 
dcb_blk->pad=pad; 
dcb_blk->mode=mode; 
for (i=O;i<2;i++) dcb_blk->ptype[i]=ptypev[i]; 
dcb_blk->line_state_off=line_state; 
dcb_blk->rcv_callback_off=receive_complete; 
dcb_blk->xmit_callback_off=transmit_complete; 
dcb_blk->line_state_seg=cs; 
dcb_blk->rcv_callback_seg=cs; 
dcb_blk->xmit_callback_seg=cs; 
return do_dll_call(OPEN,dcb_blk); 

} 

dll_close(dcb_blk) 
struct dcb *dcb_blk; 

Datalink 18- 53 



{ 

} 

#define ENABLE_MULTICAST Ox0300 
#define DISABLE_MULTICAST Ox0400 

dll_enable_multieast(deb_blk,multi_address) 
uehar multi_address[]; 

{ 

} 

struet deb *deb_blk; 

int i; 
for (i=O;i<6;i++) deb_blk->souree_address[i]=multi_address[i]; 
return do_dll_eall(ENABLE_MULTICAST,deb_blk); 

dll_disable_multieast (deb_blk ,multi_address) 
uehar multi_address[]; 

{ 

} 

struet deb *deb_blk; 

int i; 
for (i=O;i<6;i++) deb_blk->souree_address [i]=multi_address [i] ; 
return do_dll_eall(DISABLE_MULTICAST,deb_blk); 

#define TRANSMIT Ox0500 

transmit_frame (deb_blk,buffer_addr , length) 
unsigned int far *buffer_addr; 

{ 

} 

int length; 
struet deb *deb_blk; 

deb_blk->bl=length; 
deb_blk->bh_address=buffer_addr; 
return do_dll_eall(TRANSMIT,deb_blk); 

#define ALLOCATE_TRANSMIT_BUFFER Ox0600 
#define DEALLOCATE_BUFFER Ox0700 

alloeate_transmit_buffer(deb_blk) 
struet deb *deb_blk; 

{ 

18 - 54 Datalink 



} 

~eallocate_bufferCdcb_blk,buffer_addr) 

unsigned int far *buffer_addr; 
struct dcb *dcb_blk; 

{ 

dcb_blk->bh_address=buffer_addr; 
return do_dll_callCDEALLOCATE_BUFFER,dcb_blk); 

} 

Datalink 18 - 55 



Local Area Transport 
The LAT Ethernet protocol is a DIGITAL proprietary protocol. This section 
only describes the functional interfaces for use by V AXmate applications. It 
does not describe the LAT protocol. 

The Local Area Transport, LAT, module provides a means for terminal emula
tors and other programs to communicate with a VAX/VMS host system. This 
communication is done over the Thin Wire Ethernet. The LAT subsystem is de
signed to eliminate the need for serial communications cabling between a 
V AXmate workstation and a V AXIVMS host system. 

The LAT software is an MS-DOS terminate and stay resident module, 
LAT.EXE. An application accesses the LAT functions by issuing software inter
rupts through INT 6AH. The LAT software uses the Data Link interfaces to 
access the network. 

The LAT software does not interfere with other network uses of the worksta
tion. In particular, applications can simultaneously use the LAT services and 
the MS-Network and DECnet-DOS interfaces. The VAXmate LAT interface 
supports multiple virtual terminals and other related services, such as simple 
data transfers with appropriate software. When coupled to a terminal emulator, 
the LAT software can support VAX/VMS interactive terminal sessions in a 
fashion similar to a LA T terminal server. 

The LAT subsystem provides a service directory facility that supports VAX 
cluster services. In a VAX cluster, the user logs onto a service offered by one 
or more cooperating DECnet nodes as opposed to logging onto a specific node. 
This allows logging on to occur independent of whether a particular node is 
functioning or overloaded. In addition, in most VAX clusters the individual 
nodes are themselves a service. This facilitates logging on to a particular node 
in the cluster. VAXIVMS LAT software running on the VAXmate workstation 
automatically selects the cluster node with the lightest load. This provides a 
form of load balancing for interactive jobs. 

The following sections describe: 

• LAT services 

• LAT data structures 

• LA T functions 

• Sample terminal program 

18 - 56 Local Area Transport 



LA T Services 
This section describes various LA T services including: 

• LAT command line 
• Service directory 
• Sessions and slots 
• Session start 
• Data exchange 
• Flow control 
• call-back routines 
• Closing a session 

LA T Command Line 
Assuming a path is defined to LAT.EXE or lies within the current default sub
directory, the LAT software is invoked either from a batch file or by the user 
typing LAT at the MS-DOS prompt. A second invocation has no affect and 
does not install a second copy of the software. If there is insufficient memory 
present, LAT exits with an error code of 8 returned to MS-DOS. No error 
message is issued to the user. 

Three command line switches are provided. If you leave out a switch or specify 
a -1 switch value. the default is used. There is no provision for command lines 
that exceed one line in length. 

The command line switches are: 

• /D:nn 

This switch is used to increase the default size of the LA T service di
rectory. The value nn is an unsigned integer representing the number of 
entries in addition to the default of 10 entries. Each additional entry 
causes an extra 47 bytes of memory to be allocated rounded to the 
nearest 16-byte paragraph. An entry is assumed to be one service of
fered by one node. 

The maximum number of entries is 1054 (1044 + default). This re
serves a total of approximately 49,072 bytes for the service table. If the 
overflow call-back is not enabled, the only effect of a service table over
flow is that new services are not added to the table. 

The default size of the directory is 10 entries = 470 bytes. 

Local Area Transport 18 - 57 



• IG: 1, 2, 3, 32 ... 

This switch is used to reduce the overhead of servicing multicast service 
announcement messages, or to prevent the service table from filling 
with unwanted service names. This control uses LAT group codes to 
disable selectively the processing of multicast messages. Group code 
control is only advised when the number of services at a site routinely 
exceeds available memory on the workstation. 

Each number represents a LAT address group code. Groups are num
bered from 0 to 255. If the IG: switch is used, only the specified codes 
are enabled. 

The default is all group codes enabled. 

For example, to enable group codes 0,2,3 and 54, invoke the LAT soft
ware by typing: 

LAT /G:O,2,3,54 

• IR:n 
This switch is used to set the number of retransmits permitted for a 
circuit. The default is eight retransmits allowed before the circuit is 
stopped. The minimum is four and maximum is 255. 

Service Directory 

The V AXmate LAT software listens to the Ethernet for messages from host 
systems offering LAT services. These are multicast Ethernet messages that 
identify a LAT server. The frequency at which a server identification message 
is transmitted is a function of the V AXNMS configuration. 

When the V AXmate LAT software receives a LAT multicast message, the 
sending service is added to the service table maintained by the software. If the 
service table is full, the service name is not kept. and an appropriate error 
message is returned by a LAT status call. An application can also enable a 
call-back notification when this error occurs. 

Under certain conditions, a LAT server can become unreachable. The VAXmate 
LAT software detects this condition when the number of retansmits to the 
server reaches the maximum specified by the IR switch. If this occurs, the 
service table entry for the server is marked as unreachable. Subsequent 
requests to read the table do not return this server name. The server name 
again becomes readable when the server receives a multicast LAT service 
message. 

A LAT application program can read the service table through the 6AH soft
ware interrupt. 

You can specify that a preferred LAT server be entered into the service table 
at LAT.EXE startup time. This forces a preferred LAT server into the tables 
and eliminates waiting for the multicast message to arrive. 

18 - 58 Local Area Transport 



At startup time. the LAT software attempts to read the DECNODE.DAT file. 
Within DECNODE.DAT, you can specify preferred LAT service names, which 
are entered into the service table. If the number of preferred service names 
exceed the size of the startup service table size, the LAT software automati
cally increases the size of the table to accommodate the number of entries. 

You can specify or delete preferred nodes using the DECnet-DOS NCP utility. 

LA T Sessions and Slots 

A LAT session is conducted between an application and a LAT server. The 
VAXmate LAT software creates one virtual circuit between itself and a particu
lar LAT server. A VAXmate application or multiple VAXmate applications that 
want to communicate with that server, do so over the single virtual circuit. 

The actual LAT data structure definitions use the term SLOT as an alternative 
for the term SESSION. A LAT slot is a unit of data being transmitted or 
received as a part of the session. Slots are data or buffers of data that are 
being exchanged between an application and the LAT server. 

The V AXmate LAT software supports up to 4 virtual circuits and a maximum 
of 10 slots. 

Session Start 

To start or open a session, the application passes a pointer to a data structure, 
LAT's Session Control Block. (SCB}. The LAT SCB contains the name of the 
desired host service. The first open call to a particular service name creates a 
virtual circuit. All subsequent opens to the same service name use the same 
virtual circuit. The open call returns a handle (S-bit integer} to refer to the 
session in subsequent functions. 

The LAT Session Control Block, provided by the application, is used by the 
LAT software to store data and control its flow between the V AXmate worksta
tion and the host node. 

NOTE 
It is the responsibility of the application to pass valid SCBs and 
handles across the LAT interface. Failure to pass valid SCBs 
and handles can produce unpredictable results. 

Local Area Transport 18 - 59 



Data Exchange 

After the session is established, data received for the application program is 
made available one character at a time. Characters are obtained using the Read 
Data function. . 

The LAT software can transmit multiple characters in a packet to the host. 
However. application programs can only transmit one character at a time to 
the LAT interface. 

Flow Control 

Flow control is handled automatically by the protocol. 

LAT Call-Back Routines 

Application programs can specify an address to be called when certain condi
tions occur. This is termed a call-back routine. These routines are specified in 
the SCB. 

The following considerations apply to all LAT call-back routines. 

• call-back routines are accessed by means of a 'far call' and must end 
with a 'far return'. 

• At the time of the call, interrupts are enabled. 

• MS-DOS may be interrupted at Call Back time. Do not execute MS
DOS functions from within a call-back routine. 

• A call-back on receive is done once for each receiyed data buffer. It is 
not done for each character received. 

• A call-back on transmit is executed when the transmit buffer is com
pletely emptied by the circuit logic. 

Closing the LA T Session 

When a session is terminated and no other sessions remain on the virtual cir
cuit, the LAT driver shuts down the virtual circuit. 

NOTE 
Failure to explicitly close the LAT session can produce unpre
dictable results. The LAT software needs to know when the ap
plication has finished a session. 

Data Structures 
The following data structures are used to communicate information between an 
application and the LAT software. 

18 - 60 Local Area Transport 



The LAT Session Control Block 

The LAT SeB structure is set up by the application. It is used to control data 
exchange across the LAT interface. The seB is pointed at by the ES:BX regis
ter pair when a Open Session request is issued. After the Open Session, 
ES:BX should not point at the SeB; the session handle is sufficient to access 
the LAT services. After a session is opened, the SeB cannot be moved. 

The LAT SeB is described below: 

SCB 

dervice 
node 
port 
session_stopped 
table_overflow 
transmit_notify 
receive_notify 
session_status 
slot_state 
local_credit s 
vcb_pntr 

STRUC 

DB 18 DUP 
DB 18 DUP 
DB 18 DUP 
DO 0 
DO 0 
DO 0 
DO 0 
OW 0 
OW 0 
DB 0 
DO 0 

OW 0 
OW 0 
DB 0 
DB 0 
DB 0 
DB 0 

(0) 
(0) 
(0) 

Address of a call-back routine 
Address of a call-back routine 
Address of a call-back routine 
Address of a call-back routine 

Pointer to Virtual Circuit Block 
vcb_offset, vcb_segment. 

back_slot 
forward_slot 
rem_slot_id 
loc_slot_id 
slot_byte_count 
remote_credits 
tx_slot_data DB 255 Dup(O); Transmit buffer -

num_occupied 
next_rx_slot 
cur_buf_slot 
Rx_Slot_Pntr 

Slot_ptr_table 

DB 

DB 
DB 
DB 
OW 

OW 
OW 
OW 
OW 

OW 

4 

0 
0 
0 
0 

OFFSET 
OFFSET 
OFFSET 
OFFSET 

OFFSET 

Contains the actual transmit data. 
Number of entries on Slot_ptr_table. 
Four is the recommended number. 

slot_1 Start of table of 5 session 
slot_2 buffer offsets. 
slot_3 
slot3 

slot_n Four entries is the recommended 
table size. 

Local Area Transport 18- 61 



slot_l DB 259 DUP(O) Session buffer 1 
slot_2 DB 259 DUP(O) Session buffer 2 
slot_3 DB 259 DUP(O) Session buffer 3 
slot_4 DB 259 DUP(O) Session buffer 4 

slot_n DB 259 DUP(O) Four buffers are recommended. 

SCB ENDS 

The SCB structure is further described in the following section: 

• Service, which is initialized by the application, is the name of the serv
ice requested. This is in ASCII format terminated by a null byte 10). 
The LAT software converts lower case to upper case. 

• Node is RESERVED for future use. 

• Port is RESERVED for future use. 

• Session Stopped, which is initialized by the application, is the address 
of a routine to call when the session has been stopped. 

If the field contains 0, no call-back notification is given. 

The LAT call-back routine is entered with the data in Table 18-4. 

Table 18-4 LAT Call-Back Routine 

Register 

AH = 1 

AH = 2 

AH = 3 

AH = 4 

Description 

Stop session received. 

Stop message received. 
AL = Host reason code. 

Circuit has failed due to excess retransmits. 

Illegal buffer (slot) has been received. Type as follows: 

AL = 1 An unknown SLOT TYPE value is received. 

AL = 2 A non-zero SRC_SLOT_ID in a received Stop slot. 

AL = 3 A zero SRC SLOT ID in a Start slot. - -
AL = 4 A Start slot received in the Run state without an in

tervening Stop slot. 

AL = 5 A Reject slot received in the Run state. 

AL = 6 A Data a or Data b slot arrives which contains datE 
(consumed a remote credit), but no user buffer is 
available (no credit was extended). 

18 - 62 Local Area Transport 



Table 18-4 LAT Call-Back Routine (cont.) 

Register Description 

AH = 5 

AH = 6 

AL = 7 A Run slot with a zero SRC SLOT ID. 

AL = 8 A start slot with an invalid service class is received. 

AL = 9 The Attention slot must-be-zero field is not zero 
while the LA'!' software is in the run state. 

Illegal message has been received. Type as follows: 

AL = 1 RESERVED 

AL = 2 An unknown MSG _ TYPE in a received message. 

AL = 3 A non-zero SRC _ CIR_ ID in a received Stop 
message. 

AL = 4 A zero SRC _ CIR_ ID in a Start or Run message. 

All other AL values are reserved for future use. 

User requested disconnect. 

All other AH values are reserved for future use. 

• Table overflow, which is initialized by the application, is the address of 
a routine to call when the LAT service table overflows. 

If the field contains 0, no call-back notification is given. 

This call-back routine has no data. 

• Transmit notify, which is initialized by the application, is the address of 
the Call Back routine to call to signal a transmit completion. This call
back is invoked when the transmit buffer is completely emptied. A 
value of zero disables this option. It can be changed at any time, provid
ing the specified routine is already in place and ready for use. 

If the field contains 0, no call-back notification is given. 

• Receive notify, which is initialized by the application, is the address of 
the CallBack routine to call to signal a receive has occured. This call
back is invoked when the receive buffer is completely full. A value of 
zero disables this option. It may be changed at any time, providing the 
specified routine is already in place and ready for use. 

lf the field contains 0, no call-back notification is given. 

• Session status is the current status of the session. See the section 
"Session Status Word Definition" for a complete description. 

• Slot state is the protocol engine state of this session and is used by the 
LA'!' software ( ° = halted I. 

• Local credits, which you should initialize to zero, is used by the lat 
software. 

Local Area Transport 18 - 63 



• VCB pntr is a Long Pointer to Virtual Circuit Block used for this 
session and is used by the LAT software. The actual format of the 
pointer is: 

VCB_offset OW 0 
VCB_segment OW 0 

• Back Slot is an index to the back SCB on this circuit and is used by 
the LAT software. 

• Forward Slot is an index to the forward SCB on this circuit and is used 
by the LAT software. 

• Rem_Slot_Id is used by the LAT software. 

• Loc_Slot_Id is used by the LAT software. 

• Slot Byte Count is the number of Tx slot data bytes to be transmitted 
and used by the LA T software. --

• Remote_Credits is used by the LAT software. 

• Tx Slot Data is the transmit buffer that contains actual data to be 
transmitted to the host. 

• Num Slots, which is initialized by the application, is the number of re-
ceive -data slot buffers. 

• Num _Occupied MUST BE ZERO and is used by the LAT software. 

• Next_ Rx _Slot MUST BE ZERO and is used by the LAT software. 

• Cur_Buf_Slot MUST BE ZERO and is used by the LAT software. 

• Rx Slot Pntr, which is initialized by the application, equals (Offset of 
Slot _1 entry I + 4 and is used by the LAT software. 

• Slot Ptr Table is initialized by the application. Each entry points to a 
slot -x field in the following data area. Slot Ptr Table is used by the 
LA'f software. - -

• Slot 1 through Slot n are the receive data buffer areas and are used by 
the LAT software. These data buffers must completely reside in the 
same data segment as the SCB. 

The application programmer specifies the number of receive data buff
ers. Each receive data buffer consumes 259 bytes for the actual buffer 
and 2 bytes for Slot Ptr Table entry. The minimum recommended 
number of receive data buffers is two. For most configurations, specif
ing four is adequate. 

NOTE 
The programmer should refer to the Call Back section for fur
ther information on call-back routines. All pointers are in the 
form of offset - segment. 

18 - 64 Local Area Transport 



Session Status Word Definition 

This is the field labeled session status in the SCB. 

Status is reported in the form of one byte of bit flags followed by one byte of 
explanation. Bit set (= 1) means the condition is true. 

Status Word - Check for circuit and session state PRIOR to status call. 

Status Word - First Byte - Contains bit flags as described below: 

Bit 7-5 
Bit 4 
Bit 3 
Bit 2-1 
Bit 0 

Reserved 
Host sent a stop slot (stop session command) 
Circuit Failure, reason in second byte 
Reserved 
Transmit buffer busy 

Status Word - Second Byte - Contains reason number code on circuit or session 
failure as described below: 

Value OlH = Stop slot received. 
02H = Stop message received. 
03H = Circuit has failed due to excess retransmits. 
04H = Illegal slot has been received. 
05H = Illegal message has been received. 
06H = User has requested disconnect. 

Local Area Transport 18 - 65 



LAT Functions 
The LAT services are accessed through INT 6AH. The AH register contains 
the function code for the requested service. Each access requires that FFH is 
in the DH register. 

NOTE 
Application software must save and use the session handle re
turned from the open session service. Failure to use the correct 
handle can cause the V AXmate software environment to hang. 

Table 18-5 lists the available LAT functions, which are described in the 
sections following the table. 

Table 18-5 Interrupt 6AH: LAT Functions 

Function Description 

AH = 03H Get status 

AH = DOH Open session 

AH = DOH Close LAT session 

AH = 02H Read data 

AH = 01H Send data 

AH = D5H Get next service name 

AH = D6H LAT service table reset 

AH = ODIH Send break signal 

18 - 66 Local Area Transport 



Function 03H: LA T Get Status 

Parameters 

AH = 
DH = 
DL = 

Returns 

AH = 

ES:BX = 
ES:DX = 

03H 
FFH 
xxx Where xxx is the session handle returned from the 

open session call 

Status byte (Set bits indicate condition) 

Bit 7-6 Reserved 
Bit 5 Transmit buffer empty 
Bit 4 Reserved 
Bit 3 Session in start state 
Bit 2 Session not active 
Bit 1 Unable to queue transmit data 
Bit 0 Receive data available 

Reserved 

Reserved 

Local Area Transport 18 - 67 



Function DOH: Open Session 
This service creates buffers and starts the LAT session. 

Parameters 

AH = 
AL = 
ES:BX = 
DH = 

Returns 

AH = 

DL = 

DOH 
FFH 
Long pointer to LAT Session Control Block, SCB. 
FFH 

OOH Success, or 

7 -5 Reserved 
4 No more sessions available. A maximum of 5 sessions 

per Virtual Circuit. 
3 Data buffer specification error. 
2 No more sessions available. 
1 No more virtual circuit blocks. 
o Service not in table or name error. 

Session handle for subsequent service requests over this session 
connection. 

If a virtual circuit to the selected service is not active, a virtual circuit to the 
node offering the service is created in addition to the requested session. 

Application software must save and use the session handle returned from the 
OPEN SESSION service. Failure to use the correct handle can cause unpre
dictable results in the V AXmate software environment. 

18 - 68 Local Area Transport 



Function DOH: Close LA T Session 

Parameters 

AH = 
AL = 
DH = 
DL = 

Returns 

AX = 
AX = 
AX = 

DOH 
OOH 
FFH 
xxx Where xxx is the session handle returned from open session 

call. 

OOOOH no error 
OOOlH No such active session 
0002H Session not in running state. Retry again after a short delay. 

Before closing the session, the application should confirm that all data has been 
transmitted. Any receive buffers not empty from this session are freed. 

Local Area Transport 18 - 69 



Function 02H Read Data 

Parameters 

AH = 
DH = 
DL = 

Returns 

02H 
FFH 
xxx Where xxx is the session handle returned from open session 

call. 

AH = Bit pattern as below. ISet bits indicate condition) 
7 No character read 
6-0 Reserved 

AL = Received Character 

18 - 70 Local Area Transport 



Function OlH: Send Data 

Parameters 

AL = 
AH = 
DH = 
DL = 

Returns 

AH = 

Character to be sent 
OlH 
FFH 
xxx Where xxx is the session handle returned from the open 

session call. 

OOH success, or 

Bit 7 Unable to queue character 
6-0 Reserved 

Local Area Transport 18 - 71 



Function D5H: Get Next LAT Service Name 
This service is used by the application to read the entries in the service table. 
To read the entire table, the application issues successive requests. The LAT 
software does not report duplicate services or services that are unavailable be
cause the network node is not currently reachable. 

Parameters 

AH = 
ES:BX = 

DH = 

Returns 

D5H 
Long pointer to buffer for the returned service name. The buffer 
must be at least 17 bytes long. 
FFH 

AH = OOH Success, or 
FFFFH end of table - no service name available. 

ES:BX = Long pointer to service name terminated by a zero byte. 

18 - 72 Local Area Transport 



Function D6H: LA T Service Table Reset 
In addition to clearing the LAT service table. this function forces the Get Next 
LAT Service request to return the first entry in the service table. 

Parameters 

AH = D6H 
DH = FFH 

Returns 

AX Number of services entered into the service table. This number 
varies with time as the service table fills. 

BX FFFFH Service table has overflowed. 

Local Area Transport 18 - 73 



Function D IH: Send Break Signal 
This service is analagous to sending a break signal through a modem. 

Parameters 

DIH 
FFH 

AH = 
DH = 
DL = xxx Where xxx is the session handle 

Returns 

AX = OOOOH 
8000H 

Success, or 
Unable to send break signal 

18 - 74 Local Area Transport 



Sample Terminal Program 
The following is an example of a simple terminal program that can operate on 
a VAXmate workstation or compatible computer. 

TITLE 
PAGE 
NAME 

A simple terminal to test the LAT driver. 
60,132 
term 

;***************************************************************************** 
;* * 
;* Copyright (c) 1985, 1986 
;* by DIGITAL Equipment Corporation, Maynard, Mass. 

* 
* 
* 

;* This software is furnished under a license and may be used and copied * 
;* only in accordance with the terms of such license and with the * 
;* inclusion of the above copyright notice. This software or any other * 
;* copies thereof may not be provided or otherwi~e made available to any * 
;* other person. No title to and ownership of the software is hereby * 
:* transferred. * 

* 
;* The information in this software is subject to change without notice * 
;* and should not be construed as a commitment by DIGITAL Equipment * 
;* Corporation. * 

* 
;* DIGITAL assumes no responsibility for the use or reliability of its * 
;* software on equipment which is not supplied by DIGITAL. * 

* 
;***************************************************************************** 

cr EQU 
tab EQU 
If EQU 
lat_int EQU 

13 
9 

10 
6AH 

Carriage return 
Tab 
Line Feed 
LAT INTerrupt 

;************************************************************************ 
;* * 

A simple terminal program using the PC LAT Driver 

To build: 
MASM TERM; 
LINK TERM; 
EXE2BIN TERM TERM.COM 

To invoke, after LAT is loaded: 
TERM service_name 

Local Area Transport 

* 
* 
* 
* 
* 
* 
* 
* 
* 

18- 75 



: * * 
:************************************************************************ 

: Dummy segment used to determine if LAT Driver has been installed. 

pageO SEGMENT AT o 

ORG Location of LAT INT in page zero. 

DO ° 
pageO ENDS 

cseg SEGMENTPUBLIC 'codeseg' 

ASSUME CS:cseg,DS:cseg,ES:cseg,SS:NOTHING 

ORG 100h : Origin for .COM file 

main 

start: 

MOV 
MOV 
INT 

CLD 

PROC NEAR 

DX,OFFSET hello_message 
AH,9 
21h 

MOV SI,80H 
LODSB 

CMP AL,16 
JBE st_03 
JMP 

CMP 
JA 

service_error 

JMP service_error 

MOV 
XOR 
MOV 

18- 76 

CL,AL 
CH,CH 
DI,OFFSET Service 

Local Area Transport 

Issue greeting message to user. 
Function = write string. 
From MS-DOS 

Set to auto-increment. 
Location of command line. 
First byte = count in AL 

Greater then 167 

Yes, this is an error. 

Less than 17 
No, we are fine. 

Count in CX 

Destination in ES:DI 



XOR 

LODSB 
CMP 
JE 

STOSB 

CH,CH 

LOOP copy_loop 
MOV AL,CH 
STOSB 

CALL check_installation 
JZ st_Oi 

Zero out CH 

Load first characters. 
Space? 

Spaces shall be evaporated! 

No, save the character. 

Copy the service name into the scb. 
Terminate the string with a zero byte. 

Check to see if LAT is installed. 
Yes, proceed. 

MOV DX,OFFSET no_lat_message 
MOV AH,9 

Load pointer to no lat message. 
Function = write string. 
Call MS-DOS INT 2ih 

JMP error_exit 

CALL lat_initialization 

XOR AX,AX 
MOV AH,Olh 
INT i6h 

Execute the LAT init call. 

;Zero AX and reset flags 
;Keyboard poll 
;From the BIOS 

JZ rxd ;No character at Kbd, check serial port 

;Retrieve character from keyboard buffer 

MOV AH,OOh ; Function , read character 
INT i6h ;From the BIOS 

; Check it for an Fi Exit from terminal program 

CMP AX,3BOOh ;Fi Key? 
JNE yx_Oi ; No, continue. 

Explicit stop now implemented! 

Local Area Transport 18- 77 



MOV AX,ODOOOh 
MOV DX,WORD PTR handle 
INT lat_int 

JMP exit 

yx_01 : 
CMP AX,3COOh 
JNE yx_02 

Send a break signal 
MOV AH,OD1H 
MOV DX,WORD PTR handle 
INT lat_int 

yx_02: 
CMP AL,OSh 
JNE ml_01 
MOV AL,07Fh 

mL01: 

; Send out the character 

MOV CX,100 
MOV AH,01h 

txd: 

MOV DX,WORD PTR handle 
PUSH AX 
INT lat_int 
TEST AH,BOh 

POP AX 
JZ rxd 
LOOP txd 

; Function, close session. 
; Session handle in DX. 

;F2 key ? 
; No, continue 

Send break signal 

; Backspace? 
No, continue. 

; Yes, map to delete. 

; We will try and xmit 100 times. 
;Function, port_write 

; Use handle given by LAT 
;Preserve Ax destroyed by LAT INT 

;Send the character via the BIOS 
;Test for character sent 

;Restore Ax 
;Check for another character 
;Try again if character not sent 

;See if there is a character received 

rxd: 

TEST session_status,1000b 
JNZ circuit_dead 

MOV AH,03h 

18 - 78 Local Area Transport 

Circuit stopped? 

Status 



MOV DX,WORD PTR handle 
PUSH ES 
INT lat_int 
POP ES 

TEST AH,Olh 
JZ main_loop 

; Port 

; Get status 

; Character available? 
; No character, poll keyboard again 

Read the character from the LAT buffer. 

MOV DX,WORD PTR 
MOV AH,02h 
INT lat_int 
TEST AH,BOh 
JNZ main_loop 

OR AL,AL 
JZ main_loop 

CMP AL,09h 

AND AL,07Fh 
MOV AH,OEh 
XOR BX,BX 
INT lOh 
JMP main_loop 

exit: 

MOV AX,4COOh 
INT 2lh 

service_error: 

handle ;Use handle to LAT session 
; Function , port_read 

;From the BIOS 
;Test for character received 

; If so, try keyboard! 

; Null? 
; If so, don't display 

; Tab? 

;Mask out bit B 
;function, write TTY 
;Display page = 0 
;BIOS write_teletype call 

;AII done, poll keyboard again 

Normal MS-DOS exit 

MOV DX,OFFSET bad_service_mess ; Bad service message. 
MOV AH,9 Function = write string. 
INT 2lh Call MS-DOS. 

MOV AX,4COlh 
INT 2lh 

main ENDP 

lat_initialization PROC NEAR 

Error level = 1 
Call MS-DOS. 

Local Area Transport 18- 79 



MOV DX,OFFOOh This INT is for LAT 
MOV .BX, OFFSET scb ES:BX points to lccb 
MOV AX,ODOFFh Extended function 
INT lat_int Invoke LAT 
OR AH,AH Any errors? 
JZ lLgo AH = zero, no errors. 

TEST AH,1 Service not in directory? 
JZ lL01 No. 

MOV DX,OFFSET no_service_message 
MOV AH,9 

: Issue not in directory message. 
Function = write string. 

INT 21h Call MS-DOS 

li_01: : Use this general message for all other failures for now. 

MOV DX,OFFSET init_failure : Send failure message to user. 
MOV AH,9 Function = write string. 
INT 21h Call MS-DOS 
JMP SHORT error_exit Exit with error. 

lLgo: 

MOV WORD PTR handle,DX Save handle to session 

lLexit: 

RET 

lat_initialization ENDP 

circuit_dead PROC NEAR 

MOV DX,OFFSET dead_message : Load offset to circuit dead message. 
MOV AH,9 Function = write string. 
INT 21H Call MS-DOS 
JMP SHORT exit Exit. 

circuit_dead ENDP 

PAGE 

:************************************************************************ 
:* * 
:* PRO C E E D U R E c h e c k _ ins tal 1 a t ion * 

18 - 80 Local Area Transport 



;'" 
;'" 

;'" 

Entry: Nothing 
Exit: Z flag set = LAT installed. 

'" 
'" 
'" 

; "'''''''''''''''''''********'''****''''''***''''''**********'''**'''***'''************"'''''''*''''''**'''*''''''''''''''' 

check_installation 

PUSH AX 
PUSH CX 
PUSH SI 
PUSH DI 
PUSH ES 

CLD 
XOR AX,AX 
MOV ES,AX 

ASSUME ES:pageO 

PROC NEAR 

Preserve registers. 

Set the direction flag to forward. 
Set ES to page zero. 

LES DI,DWORD PTR lat_entry ES:DI => lat_int entry 

ASSUME ES:NOTHING 

MOV CX,3 ; Compare 3 bytes 
SUB DI,3 Starting at entry -3 
MOV SI,OFFSET lat_string ; Local string for compare. 

REPZ CMPSB Compare it! 

POP ES Restore registers. 
POP DI 
POP SI 
POP CX 
POP AX 

RET 

lat_string DB 'LAT' 

check_installation ENDP 

PAGE 

dead_message 
hello_message 
init_failure 
no_lat_message 

DB cr,lf, 'Circuit disconnected! ',cr,lf,'$' 
DB cr,lf,'LAT test terminal now connecting. ',cr,lf,lf,'$' 
DB cr,lf, 'Initialization call failed!' ,cr,lf,lf, '$' 
DB cr,lf, 'LAT Driver not installed!',cr,lf,lf,'$' 

Local Area Transport 18- 81 



no_service_message DB cr,lf,'Requested service not in directory! ',cr,lf,lf,' 
bad_service_mess DB cr,lf,'Bad Service Name!',cr,lf,lf,'$' 

handle DW o ; Handle for LAT session 

SCB Session Control Block. Structure used by client application 
to arrange for data exchange. 

scb 

Service 
Node 
Port 

LABEL WORD 

DB 18 DUP (0) 
DB 18 DUP (0) 
DB 18 DUP (0) 

Requested service. 
Reserved for future use. 
Reserved for future use. 

*************************************************************** 
The following four call-back addresses must be initialized to 0 
if call-backs are not desired for each condition. 

Session_Stopped DD 
Table_overflow DD 
Transmit_notify DD 
Receive_notify DD 

session_status 
slot_state 
locaLcredits 

vcb_offset 
vcb_segment 

back_slot 
forward_slot 

DW 
DW 
DB 

DW 
DW 

DW 
DW 

o 
o 
o 
o 

o 
o 
o 

o 
o 

o 
o 

Session stopped notification routine. 
Service table overflow notification routiI 
Routine to call when slot is transmitted. 
Routine to call when a slot is received. 

Status word 
Used by LAT Driver - initialize to 0 
Used by LAT Driver - initialize to 0 

Used by LAT Driver. Pointer to LAT 
Driver's internal circuit block. 

Used by LAT Driver - initialize to 0 
Used by LAT Driver - initialize to 0 

; Transmit slot buffer - Contains actual transmit slot. 

rem_slot_id DB 
loc_slot_id DB 
slot_byte_count DB 
remote_credits DB 

o 
o 
o 
o 

Db 255 Dup(O) 

; Transmit data area 

18- 82 Local Area Transport 

Used by LAT Driver - initialize to 0 
Used by LAT Driver - initialize to 0 
Used by LAT Driver - initialize to 0 
Used by LAT Driver - initialize to 0 

Transmit slot data buffer. 



»»»»> The following variable is initialized by the client application! ! 

Num_slots DB 4 Number of receive data slot buffers 
in this structure. Value of 4 is suggested. 

Num_occupied DB 0 Number of occupied slots. 
Next_rx_slot DB 0 Index Next slot to be used for receive slot. 
Cur_buf_slot DB 0 Index - Current slot sending characters to client. 

;»> The following variable must be initialized by the client application! 

DW OFFSET Slot_l+4 Offset of the first character 
to be taken by client. 

;»> The following table of pointers must be initialized by the client 
application! 

LABEL WORD 

DW OFFSET slot_l 
DW OFFSET slot_2 
DW OFFSET slot_3 
DW OFFSET slot_4 

;»»» The following data definitions are the actual receive data buffers. 

slot_l 
slot_2 
slot_3 
slot_4 

CSEG ENDS 

DB 
DB 
DB 
DB 

END start 

259 DUP(O) 
259 DUP(O) 
259 DUP(O) 
259 DUP(O) 

Local Area Transport 18- 83 



Session 
This section describes the VAXmate MS-Network Session Level interface. This 
is the recommended interface for applications that want to use network serv
ices provided by the Microsoft MS-Network environment. DIGITAL has added 
a number of extensions to the standard MS-Network interface to support node 
name and node address manipulation. 

Application programs access the services of the MS-Network Session Level 
through INT 2AH. The Session Level interface is implemented by a terminate 
and stay resident emulation module named SESSION.EXE. This emulation 
software uses DECnet-DOS as the network transport layer of the Microsoft 
network architecture. Most session services are mapped into DECnet-DOS 
services for subsequent processing by the network. 

The standard unit of communication between applications using the session 
level interface is the message. A program on one computer sends messages to 
a program on another computer. The sender is notified if the message is not 
received by the target application. The communication channel over which the 
messages are sent is called a virtual circuit. Each program refers to the other 
by a name. A virtual circuit is a communication channel between two named 
programs. The session layer software translates program names into network 
addresses and creates and maintains the virtual circuits between communicat
ing applications. 

In addition to name and message services, the session level provides a data
gram service. Datagrams are small packets of data that are sent to other pro
grams. Unlike messages, delivery of datagrams is not guaranteed. The sender 
is not notified of delivery or non-delivery of the datagram. The session module 
implements the datagram service by directly accessing the datalink. 

18 - 84 Session 



Figure 18-3 shows the general flow and interfaces between each of the layers 
that are involved in implementing the session interface. 

INT 6D 

Application software, 
MS-DOS/Redirector, 
MS-DOS/Server, 

I MS-Network Session 

1lL--' ---.---------' 
I datagram 
I service 
I 

DECnet-DOS 

INT 6D 

Data Link 

Figure 18-3 Session Interface Implementation 

The VAXmate MS-DOS operating system redirects file and print 110 over the 
network using the INT 2A interface provided by the MS-Network Session soft
ware. The operating system module responsible for distinguishing between local 
and network file access is called the Redirector. The Redirector manages the 
entire remote file access transaction. The Redirector communicates over the 
network with file and print server software located on another V AXmate 
workstation or on a V AXIVMS system. The Actual file access protocol used by 
the Redirector is called the Server Message Block Protocol. 5MB protocol. The 
5MB is just one of many protocols that can be used for network transactions 
through the session level interface. 

Session 18 - 85 



Software Capabilities 
An application accesses the MS-Network Session Level services through the 
INT 2A interface. The INT 2A is issued with register AH = 1. This identifies 
the access as an MS-Network Session Level request. As part of the access, the 
application must define a Session Control Block, SCB for each request. The 
fields in this data structure direct the session level and return status to the 
application. The application points at the SCB using the ES:BX register pair. 

The VAXmate workstation software provides a set of DIGITAL-specific exten
sions to the session level interface for manipulating node names and node ad
dresses. The DIGITAL-specific services are accessed through the INT 2A 
interface. The INT 2A is issued with register AH = OCR. This identifies the 
access as a DIGITAL extension. As part of the access, the application must 
define a DIGITAL Session Control Block, DSCB, for each request. 

All INT 2A invocations that do not have AH set to 0, 1 or DCH are passed on 
to the INT 2A service routine that was present before the Session Level soft
ware was loaded. 

All MS-network functions can be performed synchronously. Certain functions 
can be performed both synchronously or asynchronously. When an application 
issues the synchronous form of a command, execution of the application stops 
until the session level interface completes the request. When the asynchronous 
form of a command is used, the application can test, or poll, for completion or 
request that a routine be called upon completion. Completion routines are called 
Asynchronous Notification Routines (ANR). 

In addition to the INT 2A interface the session software supports an installa
tion check function through the INT 2F interface. This request is supported for 
compatibilty with industry standard versions of the MS-Network session 
interface. 

MS·Network Session Control Block 
An application accesses the MS-Network Session Level services through the 
INT 2A interface. The INT 2A is issued with register AH = 1 identifying this 
request as an MS-Network Session Level request. As part of the access, the 
application points at the Session Control Block, SCB, using the ES:BX register 
pair. 

An SCB is defined for each INT 2A invocation. This allows the application pro
gram to post multiple simultaneous session level requests. 

The following is a C language structure description of the Session Control 
Block. seB. This data structure is used for all MS-Network compatible session 
accesses. Session Control Block data structure is described as follows: 

18 - 86 Session 



struct scb 
{ 

byte scb_command; /* function code */ 
byte scb_error; /* error code */ 
byte scb_vcid; /* virtual circuit identifier */ 
byte scb_num; /* name number (for datagram) */ 
long scb_baddr; /* buffer address */ 
int scb_Iength; /* data buffer length in byte */ 
byte scb_rname[16] ; /* remote name */ 
byte scb_Iname[16] ; /* local name */ 
byte scb_rto; /* receive timeout */ 
byte scb_sto; /* send timeout */ 
long scb_async; /* address of ANR */ 
byte scb_resl; /* reserved */ 
byte scb_done; /* function pending flag */ 
byte scb_res2[14] ; /* reserved */ 

}; 

Table 18-6 describes the Session Control Block fields. 

Table 18-6 Session Control Block Fields 

Field Name Size 

scb command 1 byte 

scb error 1 byte 

scb vcid 1 byte 

scb num 1 byte 

Description 

Contains the function request code. For functions 
that support the asynchronous mode, the high order 
bit of the byte is set to indicate asynchronous opera
tion of the request. 

Contains either an error or a 'command pending' flag 
if the request is not completed. Do not poll this field 
for request completion (see scb _ donel. 

scb error = FFH Reserved. Currently command 
pending for asynchronous notification. 
o = Success 
non-zero = Error 

Contains the virtual circuit identifier. The Call and 
Listen functions return this value, which must be 
filled in prior to issuing Send or Receive requests. 
The virtual circuit identifier, which is in the range I 
to 31, is used by Send and Receive to identify the 
virtual circuit to use for sending or receiving. 

Used as a part of datagram support. The Add Name 
function returns the value, which is used by Send 
Datagram. Receive Datagram, and Send Broadcast. 
The V AXmate workstation implementation of the 
session level always sets scb num to one. All other 
values are reserved for future use. It has a potential 
range of 1 to 254. 

Session 18 - 87 



Table 18-6 Session Control Block Fields (cont.) 

Field Name 

scb baddr 

scbJength 

scb rname 

scb lname 

scb rto 

scb sto 

scb_async 

scb res 

scb done 

scb res2 

Size Description 

4 bytes Contains the address of the data to be transferred. 
This field is in double-word format (DO 
segment:offset). 

2 bytes Contains the length, in bytes. of the data to be 
transferred. 

16 bytes Contains the remote network name, which must be 
upper case. All 16 bytes must be used. Session sup
ports a maximum of 72 simultaneous network 
names, including the name of this workstation. 

16 bytes Contains the local network name, which must be 
upper case. All 16 bytes must be used. The session 
level supports a maximum of 72 simultaneous net
work names. 

1 byte Contains the receive timeout for a virtual circuit. The 
value represents the number of 500 ms. ticks, and is 
set by a Call or Listen function and holds for the life 
of the circuit. A zero results in the use of the 
transport level default. In this implementation, the 
default is zero ticks. 

1 byte Contains the send timeout for a virtual circuit. The 
value represents the number of 500 ms. ticks, and is 
set by a Call or Listen function and holds for the life 
of the circuit. A zero results in the use of the 
transport level default. In this implementation, the 
default is zero ticks. 

4 bytes Contains the address of the Asynchronous 
Notification Routine, ANR. This field is in double-
word format (DD segment:offset). If this field is zero 
and the asynchronous form of the function is used, 
then scb done must be polled to determine comple-
tion. The ANR routine is called at interrupt time 
with interrupts masked off. Upon completion of the 
ANR, the application must issue an IRET 
instruction. 

1 byte Is a reserved field. which must be initialized to O. 

1 byte Is a status field filled in by session. The value OFFH 
means the function is not yet complete. Another 
value indicates completion. 

14 bytes Is a reserved field, which must be initialized to O. 

18- 88 Session 



DIGITAL-Specific Session Control Block 
The VAXmate workstation software provides a set of DIGITAL-specific exten
sions to the session level interface for manipulating node names and addresses. 
The INT 2A is issued with the register AH = DCH. Each request includes a 
DIGITAL Session Control Block, DSCB, pointed at by the ES:BX register 
pair. 

The DIGITAL session level functions are synchronous. There is no 
asynchronous support. The DIGITAL Session Control Block, DSCB, structure 
is described below: 

struct dscb 
{ 

unsigned 
unsigned 
unsigned 
unsigned 
unsigned 

}; 

char 
char 
char 
char 
int 

dscb_cmd; /* function number */ 
dscb_err; /* return code */ 
dscb_index; /* index number of node entry */ 
dscb_name[16];/* node name padded with spaces */ 
dscb_num; /* node number */ 

Table 18-7 describes the DIGITAL session control block fields. 

Table 18-7 DIGTIAL Session Control Block Fields 

Field Name 

dscb cmd 

dscb err 

dscb index 

dscb name 

dscb num 

Size Description 

1 byte Holds the function code for the requested DIGITAL
specific service. 

1 byte Contains the status of the completed request. 

1 byte Is the index of the node name into the internal name 
table maintained by session. This index is used in 
certain services to allow the application to cycle 
through all the known node names. Index values are 
in the range zero to (number of names)-( 1). The table 
can contain a maximum of 72 names. The first name 
in the table is the name of this workstation. 

16 bytes Is a 16-byte node name. All 16 bytes are used for the 
name. For names shorter than 16 bytes, the name is 
padded with space characters in the high order bytes. 

2 bytes Is the DECnet area number and node number asso
ciated with the name found in dscb name. The 
format of this field is: 

area number = bit 15 through bit 10. 

node number = bit 9 through O. 

Session 18 - 89 



Synchronous Requests 
For synchronous requests, application execution is suspended until all network 
Activity associated with the request is completed. 

The flow of control for a typical synchronous request is: 

1. The application makes an INT 2A synchronous request. 

2. Control passes to the session-level software. 

3. If appropriate for this request, a series of calls are made to the 
DECnet-DOS transport layer. 

When appropriate, session makes both synchronous and asynchronous 
calls to the transport software. Depending on the request made by the 
application to session, any mix of synchronous and asynchronous 
requests can be made to the transport software. 

4. Upon completion of all transport functions, the SCB is updated and 
scb done is set. 

5. Control is returned to the application. 

Asynchronous Requests 
The asynchronous form of a command is specified by setting the high-order bit 
of the command function code. Software issuing an asynchronous request re
gains control immediately after the request is issued. In most cases the request 
will be satisfied at a later time. To determine completion of the request, the 
application must specify an Asynchronous Notification Routine as a part of the 
request or poll the scb _done field. 

The session level software only invokes an ANR for requests involving a non
zero scb async field. A value of zero in the scb async field means the applica-
tion must poll the the scb _ done field, -

While an asynchronous request is outstanding, the SCB for that request must 
remain unchanged. The session level software uses the SCB for control and 
status reporting. 

The flow of control for a typical asynchronous request is: 

1. The application makes an INT 2A asynchronous request. 

2. Control passes to the session level software. 

3. If appropriate for this request, a series of calls are made to the 
DECnet-DOS transport layer. 

When appropriate, session makes both synchronous and asynchronous 
calls to the transport software. Depending on the request made by the 

18 - 90 Session 



application to session, any mix of synchronous and asynchronous 
requests can be made to the transport software. 

4. Control is returned to the application. 

5. Upon completion of all asynchronous transport functions, the SCB is 
updated, scb done is set, and if specified, the applications ANR is 
invoked. -

Asynchronous Notification Routine 
The Asynchronous Notification Routine, ANR, is specified as a part of the 
Session Control Block for each request. The SCB field scb async contains a 
zero value or a valid pointer to the ANR. An ANR is invoked only upon com
pletion of asynchronous session requests. 

When an asynchronous request completes. the session software starts execution 
of the ANR, which is entered with interrupts off. Because the asynchronous 
notification may have interrupted processing by MS-DOS, the ANR cannot 
issue any MS-DOS cal1s. It is recommended the ANR not enable interrupts. 
and complete its processing quickly. The ANR is exited by executing an IRET 
instruction. 

Network Addressing 
The standard MS-Network supports a 20-byte network address. The session 
software provides the transport level with the network address of the messages 
destination. The transport level uses this address to route the message to its 
destination. 

The VAXmate workstation implementation of the MS-Network session level 
uses DECnet addresses in place of the standard 20-byte addresses. The session 
software maps a network name into a DECnet node address, which consists of 
an area number and node number. 

For more information on DECnet node numbers, addressing in a DECnet net
work, and user control over node names and numbers, refer to: 

• The V AXmate system administration documentation 

• DECnet·DOS Programmers Reference Manual 

• DECnet·DOS User's Guide 

• DNA General Description and other manuals in the DIGITAL Network 
Architecture series. For the titles of this series, see the "Introduction" 
in this chapter. 

Session 18 - 91 



Session Level Services 
The V AXmate session level interface accessed through INT 2A provides two 
distinct sets of services. The first is the MS-Network compatible functions 
specified with AH = 01H. The second is a set of DIGITAL-specific functions 
specified with AH = DCH. 

Table 18-8 lists the services offered by the session level interface. Table 18-9 
lists the DIGITAL-specific session level extensions. 

Table 18-8 Interrupt 2A: MS-Network Compatible Services 

Synchronous Asynchronous Service 

10H 90H CALL 
llH 91H LISTEN 
12H 92H HANG UP 
14H 94H SEND 
15H 95H RECEIVE 
16H 96H RECEIVE ANY 
17H 97H SEND DOUBLE 
20H AOH SEND DATAGRAM 
21H A1H RECEIVE DATAGRAM 
22H A2H SEND BROADCAST 
23H A3H RECEIVE BROADCAST 
30H BOH ADD NAME 
31H B1H DELETE NAME 
32H RESET 
33H B3H STATUS 
34H B4H NAME STATUS 
35H CANCEL 

All other function codes are reserved for future use. 

Table 18-9 Interrupt 2A: DIGITAL-Specific Session Extensions 

Function Code 

OOH 
01H 
02H 
03H 
04H 
05H 
06H 
07H 

Service 

decfunccheck 
decfuncadd 
decfuncdelnum 
decfuncdelname 
decfuncreadnum 
decfuncreadname 
decfuncreadindex 
decfuncdelall 

Description 

extension check 
add node entry 
delete node by number 
delete node by name 
read node by number 
read node by name 
read node by index 
delete all nodes 

All other function codes are reserved for future use. 

18 - 92 Session 



MS-Network Compatible Session Level Services 
An MS-Network session level access is performed by setting register AH = 1, 
pointing ES:BX at a session control block (SCBI and doing an INT 2AH. 

When control is returned to the application from the session level. the AH and 
AL registers contain the return status. Status is also returned in the appro
priate field of the SCB. 

For a synchronous request: 

Upon Return AX = non-zero 

AX = OOH 

For an asynchronous request: 

Upon Return AX = non-zero 

AX = OOH 

Error has occurred. 
AH = 01H 
AL = error code 
scb error = error code 

Success 
scb error = 0 

Error has occurred. 
AH = 01H 
AL = error code 
scb error = error code 

Function successfully started. 

SCB fields pending completion of 
request. 

Upon completion of request, SCB fields 
updated, and error code, if any, in 
scb error. 

Session 18 - 93 



MS-Network Session Level Return Codes 
Table IS-10 lists the possible MS-Network session level interface error codes 
returned in scb _error, and the service requests that can generate these errors. 

Table IS-10 Error Codes Returned by Session 

Error Code 

OOH 

01H 

03H 

05H 

06H 

OSH 

09H 

OAH 

OBH 

Description 

Success 

Illegal buffer length 

Illegal command 

Command timed out 

Message incomplete, 
issue another command 

Session number 
out of range 

No resource available 

Session closed 

Command canceled 

18 - 94 Session 

Service Request 

All services 

SEND 
RECEIVE 
STATUS 
NAME STATUS 
SEND DATAGRAM 
RECEIVE DATAGRAM 
RECEIVE ANY 
SEND BROADCAST 
RECEIVE BROADCAST 

All services 

Any asynchronous command 

RECEIVE ANY 
RECEIVE 
STATUS 

SEND 
RECEIVE 
HANGUP 

All services 

RECEIVE 
SEND 
RECEIVE ANY 
HANGUP 

STATUS 
ADD NAME 
DELETE NAME 
CALL 
LISTEN 
SEND 
SEND DOUBLE 
RECEIVE 
RECEIVE ANY 
SEND DATAGRAM 
RECEIVE DATAGRAM 
SEND BROADCAST 
RECEIVE BROADCAST 



Table 18-10 Error Codes Returned by Session (cont.} 

Error Code Description Service Request 

ODH Duplicate name ADD NAME 

OEH Name table full ADD NAME 

llH Local session table full CALL 
LISTEN 

I2H Session Open rejected CALL 

I3H Illegal name number NAME STATUS 
RECEIVE DATAGRAM 
SEND DATAGRAM 
SEN D BROADCAST 
RECEIVE BROADCAST 

I4H No call name CALL 

I5H Name not found or DELETE NAME 
no valid name 

I6H Name in use ADD NAME 

I8H Session ended abnormally SEND 
RECEIVE 
HANGUP 

I9H Name conflict detected ADD NAME 

2IH Interface busy All services 

22H Too many commands 
outstanding, retry later All services 

23H Reserved All services 

24H Command completed 
while cancel occurring CANCEL 

26H Command not valid 
to cancel CANCEL 

3IH Internal error. can CALL 
result from an invalid LISTEN 
address file SEND DATAGRAM 

RECEIVE DATAGRAM 

Session 18 - 95 



Table 18-10 Error Codes Returned by Session (cont.) 

Error Code Description Service Request 

32H Transport not installed STATUS 
CANCEL 
LISTEN 
CALL 
SEND 
SEND DOUBLE 
RECEIVE 
RECEIVE ANY 
HANGUP 
SEND DATAGRAM 
RECEIVE DATAGRAM 
SEND BROADCAST 
RECEIVE BROADCAST 

4XH Network Error 
X may have any value All services 

FFH Asynchronous command 
is not yet finished All services 

The DECnet·DOS transport can generate error codes that do not correspond to 
the session level errors described in this list. These errors and their codes are 
described in the DECnet·DOS Programmer's Reference M anu.al. 

Transport error codes that cannot be directly mapped to a session level error 
code, are passed directly through the interface to the application. Such 
transport error codes are mapped into the following format. 

DECnet·DOS error code + the number SOH 

To determine the error represented by the error code being returned from the 
DECnet·DOS transport. subtract SOH from the number returned in scb error. 
The error description can then be found in the DECnet·DOS Programmer's 
Reference M anu.al. 

18 - 96 Session 



Function OOH and Function B800H: Check for Presence of MS
Network Session 
Two functions are provided to support this request. The first is the recom
mended function accessed through the INT 2A interface. The second function 
is accessed through the INT 2F interface and is present only for compatibility 
with industry-standard versions of the MS-Network session interface. 

The INT 2A function allows an application to determine the presence of the 
Session software. 

The check is performed by setting register AH = 0 and doing an INT 2A. If 
the network software is installed, upon return AH will have a non-zero value. 

Parameters 

AlI = 
ES:BX = 

Returns 

AH = 

OOH 
not applicable 

non-zero 
OOH 

Session is present 
Session not present 

The INT 2F function is provided for compatibility with other vendor's versions 
of the MS-Network session level interface. 

The check is performed by setting register AX = B800H and doing an INT 
2F. If the network software is installed, upon return AL will have a value of 1. 

Parameters 

AX = 
ES:BX = 

Returns 

AL = 

BX = 

B800H 
not applicable 

OlH 
OOH 

08H 

Session is present 
Session not present 

Always 

Session 18 - 97 



Function 358: Cancel (synchronous) 
This service allows an application to cancel a pending request. The request to 
cancel is identified by pointing at its SCB. 

Data may be lost when a command is canceled. If the canceled command is a 
receive, then data is lost only for that command, and the virtual circuit re
mains active and usable. 

Canceling a request 'is a form of completing the request. The canceled SCB will 
be updated. A request that normally invoked an Asynchronous Notification 
Routine will cause that routine to be invoked. 

The following commands can be canceled. 

• Listen 
• Receive 
• Receive Any 
• Receive Datagram 
• Receive Broadcast 

Parameters 

AH = 
ES:BX = 

Returns 

01H 
Far pointer to SCB 

scb command = 
8cb-error = 
scboaddr = 

scb error = OOH 
21H 
22H 

24H 

26H 
32H 
4xH 

18 - 98 Session 

35H 
OOH 
far pointer to SCB to cancel 

Success 
Interface busy 
Too many outstanding commands, retry 
later 
Command completed during cancel 
operation 
Command not valid to cancel 
Transport not installed 
Network error, x may be any value 



Function 32H: Reset (synchronous) 
Reset the session software. All data, virtual circuits, and status are lost. This 
resets the entire session level, not just one virtual circuit. The session software 
is not completely reset to its initial state on startup. 

The parameters scb vcid and scb num are reserved for future use. They should 
be set to zero by the application. If they are zero, then default values will be 
used in future session implementations. 

Parameters 

AH = 
ES:BX = 

Returns 

OlH 
Far pointer to SCB 

scb command = 
scb -error = 
scb-vcid = 
scb-num = 

Success 

32H 
OOH 
RESERVED, Must Be zero 
RESERVED, Must Be Zero 

scb error = OOH 
4xH Network error, x may be any value 

Session 18 - 99 



Function 33H: Status (synchronous~ 
Function B3H: Status (asynchronous) 
Returns overall transport status information for this V AXmate workstation. 
Information is loaded into the buffer supplied by the application and pointed to 
by scb _ baddr. 

Parameters 

AH = 
ES:BX = 

Returns 

01H 
Far pointer to SCB 

scb command = 
scb error = 
scb)ength = 

scb rname = 
scboaddr = 
scb=async = 

33H Synchronous 
B3H Asynchronous 
OOH 
Length. in bytes, of the data to be 
transferred 
RESERVED 
Far pointer to status buffer 
Address of ANR or zero for 
asynchronous form of request. Not re
quired for synchronous request 

scb error == OOH Success 
01H 
05H 
06H 
19H 
21H 
22H 
32H 
4xH 

Illegal buffer length 
Command timed out 
Message incomplete 
N arne conflict detected 
Interface busy 
Too many outstanding requests, retry later 
Transport not installed 
Network error, x may be any value 

The data area pointed to by the scb baddr contains the status buffer as 
described in table 18-11. -

Table 18-11 Session Status Buffer 

Field Name 

SSB HIDI 

SSB JMPRI 
SSa-HRD 
SSB-SVER 
SSB-DUR 
SSB-CRC 

18 - 100 Session 

Size 
(bytes) 

6 

1 
1 
2 
2 
2 

Description 

Ethernet address of this workstation, low 
order byte first 
Jumper status: reserved, returns zero 
Hardware status: reserved. returns 128 
Session software version. in BCD format 
Duration of reporting period 
Number of CRC errors 



SSB ALIGN 2 N umber of alignment errors 

Session 18 - 101 



Table 18-11 Session Status Buffer (cont.) 

Field Name 

SSB COL 
SSB-ABORT 
SSB-NSENT 
SSB-NRECD 
SSB-RETRAN 
SSB-NRSRC 

SSB RES4 
SSB-RES5 
SSB-RES6 
SSB-RES7 
SSB-RES8 
SSB-RES9 
SSB-RESI0 
SSB-RESll 
SSB-MAXMSG 

SSB NNAMES 

SSB NAMO 
SSB-NUMO 
SSB-NAMSTATO 

SSB NAMn 
SSB-NUMn 
SSB-NAMSTATn 

Size 
(bytes) 

2 
2 
4 
4 
2 
2 

8 
2 
2 
2 
4 
2 
2 
2 
2 

2 

16 
1 
1 

16 
1 
1 

Description 

Number of collisions detected 
Number of aborted transmissions 
Number of successfully transmitted packets 
Number of successfully received packets 
Number of retransmissions 
Number of times the receiver exhausted its 
resources 
Reserved 
Reserved 
Reserved 
Maximum number of free command blocks 
Reserved 
Reserved 
Reserved 
Reserved 
Maximum message data size, which is 4096 
for this implementation of session 
Number of names in the immediately follow
ing list, (value is is always 1 for this 
implementation) 
Name of this workstation 
RESERVED for future use 
Status of this V AXmate workstation, 4 = 
active, 5 = inactive 

Name n, not present in this implemenation 
RESERVED for future use 
Status of name n, 4 = active, 5 = inactive, 
not present in this implemenation 

SSB MAXMSG, maximum message data size is the recommended maximum 
message size for applications that are communicating with V AXmate and 
V AXNMS file and print servers. For this implementation, maximum message 
size is 4096 bytes. However, the session interface can send and receive 
messages as large as 65536 bytes. 

This implementation of the session level only returns SSB NAM, 
SSB NUM and SSB NAMSTAT status for this workstation. Consequently, 
the value of SSB_NNAMES always equals 1. 

18- 102 Session 



Function 30H: Add Name (synchronous) 
Function BOH: Add Name (asynchronous) 
This function is provided for compatibility with industry-standard implementa
tions of the MS-Network session level interface, and to facilitate the execution 
of MS-Network compatible application software. This function does not actually 
add a name to the name and node tables. To add a name or node number, use 
the DIGITAL-specific function Add A Node, decfuncadd, described later in this 
manual. 

The name cannot start with the character '*' or OOH or FFH and should not 
start with the strings "MSNET" or "IBM". For non-VAXmate workstation im
plementation of the session level, this call makes a name known to the network 
software. 

It is recommended, but not required, that names be unique across a network. 
The node numbers must be unique across the network for the network is to 
function properly. 

Parameters 

AH = 
ES:BX = 

Returns 

scb error = 

scb num = 

OIH 
Far pointer to SCB 

scb command = 30H synchronous 
BOH Asynchronous 
OOH 
N arne to be added 

scb error == 
scb-Iname = 
scb:=async = Address of ANR or zero for 

asynchronous form of request. Not re
quired for synchronous request. 

OOH Success 
ODH Duplicate name in this workstation 
OEH Name table full 
I5H Name not found or Not a valid name 
I6H Name in use 
I9H Name conflict detected 
2IH Interface busy 
22H Too many outstanding requests, retry later 
4xH Network error, x may be any value 
reserved for future use 

Session 18 - 103 



Function 31H: Delete Name (synchronous) 
Function BIH: Delete Name (asynchronous) 
This function is provided for compatibility with industry standard implementa
tions of the MS-Network session level interface. It is provided to facilitate the 
execution of MS-Network compatible application software. This function does 
not actually delete a name from the name and node tables. To actually delete a 
name or node number from the network tables use the DIGITAL-specific func
tions Delete Entry Given Node Number, Delete Entry Given Node Name, or 
Delete All Node Entries. 

For non-VAXmate workstation session level interfaces, this function removes a 
name from the network. A name may not be deleted if a virtual circuit is in 
use that has the name as an endpoint. 

Parameters 

AH = 
ES:BX = 

Returns 

OIH 
Far pointer to SCB 

scb command = 

scb error = 
scb-Iname = 
scb=async = 

Success 

31 H synchronous 
B I H asynchronous 
OOH 
name to be deleted 
address of ANR or zero for 
asynchronous form of request. Not re
quired for synchronous request 

scb error = OOH 
I5H 
I6H 
2IH 
22H 
4xH 

Name not found or Not a valid name 
Name in use 

18- 104 Session 

Interface busy 
Too many outstanding requests, retry later 
Network error, x may be any value 



Function 34H: Name Status (synchronous) 
Function B4H: Name Status (asynchronous) 
This command returns information about a specific name and its associated 
Virtual Circuit. 

Parameters 

AH = 
ES:BX = 

OlH 
Far pointer to SCB 

Returns 

scb command = 

scb error = 
scb =length = 

scb baddr = 
scb-Iname = 
scb=async = 

34H synchronous 
B4H asynchronous 
OOH 
Length of buffer pointed at by 
scb baddr 
Far-pointer to status buffer 
Name to return status on 
Address of anr or zero for 
asynchronous form of request. Not 
required for synchronous request. 

scb error = OOH 
OlH 
19H 
21H 
22H 
4xH 

Success 
Illegal buffer length 
N arne conflict detected 
Interface busy 
Too many outstanding requests, retry later 
Network error, x may be any value 

The scb baddr field points to a area of length scb length which contains the 
following: -

SB NUM Name number of name being reported on 
SB-NRA Number of virtual circuits associated with this name 
SB-VCN Number of receive datagram and receive broadcast 

commands outstanding 
SB NVC Number of receive any commands outstanding 

Session 18 - 105 



The remaining information is returned about each virtual circuit (36 
bytes eachl 

SB I VCID 
SB-CSTATE 
SB-CLNAME 
SB-CRNAME 
SB-CNRC 

SB I NSC 

SB I STATE 

18 - 106 Session 

1 byte 
1 byte 
16 byte 
16 byte 
1 byte 

1 byte 

Values: 

Virtual circuit id# 
State of the virtual circuit 
Local name 
Remote name 
Number of outstanding receive 
commands 
Number of outstanding send 
commands 

3 = Normal 
4 = Hang-up pending 



Function lOH: Call (synchronous) 
Function 90H: Call (asynchronous) 
Call creates a virtual circuit between this node and another node that issued a 
listen. This node must identify the node it is calling in the scb marne field. 
The listening node, which does not identify the calling node, posts a listen and 
waits to be called. The scb marne must correspond to a scb lname in an 
outstanding listen command on some machine on the MS-Network network. 

The node named in the scb marne field must be in the V AXmate workstation 
list of known nodes. The node list is updated with entries when the network is 
started by the user using one of the network management utilities or by the 
application invoking the DIGITAL-specific add node functions described in this 
section. If the user uses the DECnet-DOS NCP utility to add a node to the 
network tables, the user must remember to specify the MS-NET switch as a 
part of the name and number definition. Otherwise, the node name is not 
added to the list maintained by the session software. 

The fields scb rto and scb sto do not take affect until the virtual circuit is 
established by-the DECnet-DOS transport software. If a virtual circuit is not 
established within approximately one minute, a timeout error occurs. 

Parameters 

AH = 
ES:BX = 

OlH 
Far pointer to SCB 

scb command = 

scb error = 
scb -rto = 

scb sto = 

scb lname = 
scb-rname = 
scb=:async = 

10H synchronous 
90H Asynchronous 
OOH 
Number of 500 ms time ticks for re
ceive timeout 
Number of 500 ms time ticks for 
transmit timeout 
Name of this node 
Name of target node 
Address of ANR or zero for 
asynchronous form of request. Not re
quired for synchronous request 

Session 18 - 107 



Returns 

scb error = OOH Success 
05H request timed out 
06H Message incomplete, issue another request 
OBH Command canceled 
I4H No call name 
I5H Name not found or Not a valid name 
I6H Name in use 
I9H Name conflict detected 
2IH Interface busy 
22H Too many outstanding requests, retry later 
32H Transport not installed 
4xH Network error, x may be any value 

scb vcid = Virtual Circuit ID 

lS- lOS Session 



Function IIH: Listen (synchronous) 
Function 91H: Listen (asynchronous) 
Listen waits for a call from any node that specifically wants to communicate 
with this node. The listen request completes normally when a call with 
scb rname that matches the listen scb lname, is made somewhere on the net
work. Upon completion, this node is informed of the name of the caller and the 
Virtual Circuit ID of the circuit communication can now proceed 

The fields scb rto and scb sto do not take affect until the virtual circuit is 
established by-the DECnet-DOS transport software. 

Parameters 

01H AH = 
ES:BX = Far pointer to SCB 

scb command = 11 H synchronous 
91 H asynchronous 
OOH scb error = 

scb-rto = Number of 500 ms time ticks for receive 
timeout 

scb sto = Number of 500 ms time ticks for transmit 
timeout 

scb lname = 
scb=async = 

Name of this node 
Address of ANR or zero for asynchronous 
form of request. Not required for 
synchronous request. 

Returns 

scb error = OOH 
09H 
OBH 
llH 
15H 
21H 
22H 
32H 
4xH 

scb vcid = 

scb rname = 

Success 
No resources available 
Command canceled 
Local session table full 
Name not found or Not a valid name 
Interface busy 
Too many outstanding requests, retry later 
Transport not installed 
Network error, x may be any value 

Virtual Circuit ID of the Virtual Circuit the nodes can 
now communicate over 

Name of node that issued CALL to this node 

Session 18 - 109 



Function 12H: Hangup (synchronous) 
Function 92H: Hangup (asynchronous) 
Hangup ends a virtual circuit. Any pending receive commands are terminated. 
Any pending send commands will complete before the hangup completes. 

Parameters 

01H AH = 
ES:BX = Far pointer to SCB 

scb command = 12H synchronous 
92H asynchronous 
OOH scb error = 

scb-vcid = Virtual Circuit ID of the Virtual Circuit 
to hang-up 

Returns 

scb error = OOH 
08H 
OAH 
18H 
21H 
22H 
32H 
4xH 

18 - 110 Session 

Success 

Address of ANR or zero for 
asynchronous form of request. Not re
quired for synchronous request 

Invalid Virtual Circuit ID 
Session closed 
Session ended abnormally 
Interface busy 
Too many outstanding requests, retry later 
Not installed 
Network error, x may be any value 



Function 14H: Send (synchronous) 
Function 94H: Send (asynchronous) 
Send data on a virtual circuit. More than one send command can be outstand
ing. The commands are processed in FIFO order. Each send may specify a 
message length of 0 to 65536 bytes. The recommended maximum message 
length is the value of the field SSB MAXMSG that is returned by the Status 
function. The length specified by SSB MAXMSSG is guaranteed to be ac
cepted by DIGITAL-developed file and-print servers. 

Parameters 

0IH AH = 
ES:BX = Far pointer to SCB 

scb command = I4H synchronous 
94 H asynchronous 
OOH scb error = 

scb-vcid = Virtual Circuit ID of the Virtual Circuit to 
send the data over 

scb _length = 

scb baddr = 
scb:=async = 

Length of buffer pointed at by scb baddr. 
o to 65535 bytes -
Address of buffer to send 
Address of ANR or zero for asynchronous 
form of request. Not required for 
synchronous request 

Returns 

scb error = OOH 
OlH 
05H 
08H 
OAH 
OBH 
I8H 
2IH 
22H 
32H 
4xH 

Success 
Illegal buffer length 
Command timed out 
Session number out of range 
Session closed 
Command canceled 
Session ended abnormally 
Interface busy 
Too many outstanding requests, retry later 
Transport not installed 
Network error, x may be any value 

Session 18 - 111 



Function 17H: Send Double (synchronous) 
Function 97H: Send Double (asynchronous) 
Send two buffers of data on a virtual circuit. This has the effect of concatenat
ing successive buffers into a single message on the virtual circuit. 

Parameters 

AH = 
ES:BX = 

Returns 

01H 
Far pointer to SCB 

scb command = 

scb error = 
scb-vcid = 

scb_length = 
scb baddr = 
scb-rname = 

17H synchronous 
97H asynchronous 
OOH 
Virtual Circuit 10 of the Virtual 
Circuit to send the data over 
Length of first buffer pointed at by 
scb baddr. 0 to 65535 bytes 
Adaress of first buffer to send. 
The length and address of the second 
buffer to send 
Length = first 2 bytes, low order byte 
first 
Address = next four bytes 
Offset = first two bytes 
Segment= next two bytes 

Address of ANR or zero for 
asynchronous form of request Not re
quired for synchronous request 

scb error = OOH Success 
01H 
05H 
08H 
OAH 
OBH 
18H 
21H 
22H 
32H 
4xH 

18 - 112 Session 

Illegal buffer length 
Command timed out 
Session number out of range 
Session closed 
Command canceled 
Session ended abnormally 
Interface busy 
Too many outstanding requests, retry later 
Transport not installed 
Network error, x may be any value 



Function I5H: Receive (synchronous) 
Function 95H: Receive (asynchronous) 
This service allows you to receive data on a virtual circuit. If an application has 
receive and receive any requests outstanding at the same time, the received 
messages are posted in the order of receive followed by Receive Any. This 
allows a specific receive to take precedence over a general receive. 

If multiple Receive commands are outstanding. they are processed in FIFO 
order. When the Receive completes, scb length is updated to the actual 
message length. If the message transmitted is larger than the available buffer 
space in scb baddr, then the message-incomplete error is returned in scb error. 
The application can retrieve the next portion of the message by issuing another 
Receive request. 

Parameters 

0IH AH = 
ES:BX = Far pointer to SCB 

scb command = I5h synchronous 
95h asynchronous 
OOh scb error = 

scb-vcid = Virtual Circuit ID of the Virtual 
Circuit to receive the data over 
Length of the buffer pointed at by 
scb baddr 

scbJength = 

scb baddr = 
scb=async = 

Adaress of buffer to receive into. 
Address of ANR or zero for -
asynchronous form of request. Not re
quired for synchronous request. 

Returns 

scb error = OOH 
0IH 
05H 
06H 
08H 
OAH 
OBH 
I8H 
2IH 
22H 
32H 
4xH 

Success 
Illegal buffer length 
Command timed out 
Message incomplete, issue another receive request 
Incorrect Virtual Circuit ID 
Session closed 
Command canceled 
Session ended abnormally 
Interface busy 
Too many outstanding requests, retry later 
Transport not installed 
Network error, x may be any value 

The actual length of the message received 

Session 18 - 113 



Function I6H: Receive Any (synchronous) 
Function 96H: Receive Any (asynchronous) 
Receive Any receives the next message on any virtual circuit associated with 
this VAXmate node. If an application has Receive and Receive Any requests 
outstanding at the same time, the received messages are posted in the order of 
Receive followed by Receive Any. This allows a specific receive to take prece
dence over a general receive. 

If multiple Receive Any commands are outstanding, they are processed in 
FIFO order. 

When the Receive Any completes, scb length is updated to the actual message 
length. If the message transmitted is larger than the available buffer space in 
scb baddr, then the message-incomplete error is returned in scb error. The ap
plication can retrieve the next portion of the message by issuing-another 
Receive or Receive Any request. 

Parameters 

AH = 
ES:BX = 

OlH 
Far pointer to SCB 

scb command = 

scb error = 
scb-num = 

scb}ength = 

scb baddr = 
scb=async = 

18- 114 Session 

I6H synchronous 
96H asynchronous 
OOH 
RESERVED: must be one for future 
compatibility 
Length of the buffer pointed at by 
scb baddr 
Adc:Tress of buffer to receive into. 
Address of ANR or zero for 
asynchronous form of request. Not re
quired for synchronous request. 



Returns 

scb error = OOH 
01H 
05H 
06H 
OAH 
OBH 
13H 
18H 
19H 
21H 
22H 
32H 
4xH 

scb vcid = 

scb length = 
scb-rname = 

Success 
Illegal buffer length 
Command timed out 
Message incomplete, issue another receive request. 
Session closed 
Command canceled 
Illegal scb num, RESERVED for future use. 
Session ended abnormally 
Name conflict detected 
Interface busy 
Too many outstanding requests, retry later 
Transport not installed 
Network error, x may be any value 

Virtual Circuit ID of the Virtual Circuit data was re
ceived over. 
The actual length of the message received. 
Name of remote node that sent the message. 

Datagram Commands 
Datagrams are short packets of data sent to one or more nodes. The network 
does not guarantee the delivery of a datagram. Datagram lengths must range 
from 46 to 512 bytes. Because the session software does not pad a datagram 
message to the minimum Ethernet packet length, the minimum length packet 
you can transmit is 46 bytes. 

For a node to receive a datagram, a datagram receive must be outstanding at 
the time a datagram is sent. 

The actual order in which datagrams are received is not guaranteed to be the 
same order in which they were transmitted. 

Session 18 - 115 



Function 20H: Send Datagram (synchronous) 
Function AOH: Send Datagram (asynchronous) 
Send a datagram to a specific node. The network does not verify that everyone 
(or anyone) actually received the datagram. The ordering of datagrams is not 
guaranteed. 

Parameters 

01H AH = 
ES:BX = Far pointer to SCB 

scb command = 20H synchronous 
AOH asynchronous 
OOH scb error = 

scb-num = RESERVED: must be one for future 
compatibility 
Length in bytes of the buffer pointed 
at by scb _ baddr in the range 46 to 
512 

scb baddr = 
scb-rname = 

Address of buffer to transmit from 
Name of remote node to send data
gram to 

Returns 

scb error = OOH 
01H 
OBH 
14H 
15H 
19H 
21H 
22H 
328 
4xH 

18 - 116 Session 

Success 

Address of ANR or zero for 
asynchronous form of request. Not re
quired for synchronous request. 

Illegal buffer length 
Command canceled 
No Call name 
Name not found or not a valid name. 
Name conflict detected 
Interface busy 
Too many outstanding requests, retry later 
Transport not installed 
Network error, x may be any value 



Function 21H: Receive Datagram (synchronous) 
Function AIH: Receive Datagram (asynchronous) 
When the Receive Datagram completes, scb length is updated to the actual 
datagram length. If the datagram transmitted is larger than the available 
buffer space in scb baddr, then the message-incomplete error is returned in 
scb error. The application can retrieve the next portion of the datagram by 
issUing another Receive Datagram request. 

Parameters 

01H AH = 
ES:BX = Far pointer to SCB 

scb command = 21 H synchronous 
AIH asynchronous 
OOH scb error = 

scb-num = RESERVED: must be one for future 
compatibility. 

scb_length = 

scb baddr = 
scb=async = 

Length in bytes of the buffer pointed 
at by scb baddr 
Address of buffer to receive into 
Address of ANR or zero for 
asynchronous form of request. Not re
quired for synchronous request. 

Returns 

scb error = OOH 
01H 
06H 
OBH 
13H 
19H 
21H 
22H 
32H 
4xH 

scb length = 
scb-rname = 

Success 
Illegal buffer length 
Message incomplete. issue another receive request 
Command canceled 
RESERVED Illegal name number 
N arne conflict detected 
Interface busy 
Too many outstanding requests, retry later 
Transport not installed 
Network error, x may be any value 

Actual length of datagram received. 
Name of remote node datagram was received from. 

Session 18 - 117 



Function 22H: Send Broadcast (synchronous) 
Function A2H: Send Broadcast (asynchronous) 
Send Broadcast sends a broadcast datagram. A datagram is sent to all ma
chines on the local network that have an outstanding Receive Broadcast com
mand. If the machine performing the send also has an outstanding Receive 
Broadcast command, it will receive its own datagram. 

As with the Send Datagram request. the network does not verify that everyone 
(or anyone) actually received the broadcast datagram. The ordering of broadcast 
datagrams is not guaranteed. 

Parameters 

01H AH = 
ES:BX = Far pointer to SCB 

scb command = 22H synchronous 

scb error = 
scb-num = 

A2H Asynchronous form = A2H 
OOH 
RESERVED: must be one for future 
compatibility 
Length in bytes of the buffer pointed 
at by scb baddr in the range 46 to 
512 -

scb baddr = 
scb:=async = 

Address of buffer to transmit from 
Address of ANR or zero for 
asynchronous form of request. Not re
quired for synchronous request. 

Returns 

scb error = OOH 
01H 
OBH 
19H 
21H 
22H 
32H 
4xH 

18 - 118 Session 

Success 
Illegal buffer length 
Command canceled 
Name conflict detected 
Interface busy 
Too many outstanding requests, retry later 
Transport not installed 
Network error, x may be any value 



Function 23H: Receive Broadcast fsynchronous) 
Function A3H: Receive Broadcast (asynchronous) 
Receive Broadcast requests the receive of a datagram sent using the send 
broadcast command. If a receive broadcast command is not outstanding at the 
time a broadcast datagram is sent, then it will not be received. 

Parameters 

01H AH = 
ES:BX = Far pointer to SCB 

scb command = 23H synchronous 
A3H asynchronous 
OOH scb error = 

scb)ength = Length in bytes of the buffer pointed 
at by scb baddr 

scb baddr = 
scb:=async = 

Address of buffer to receive into 
Address of ANR or zero for 
asynchronous form of request. Not re
quired for synchronous request. 

Returns 

scb error = OOH 
01H 
06H 
OBH 
13H 
19H 
21H 
22H 
32H 
4xH 

scb length = 
scb-rname = 

Success 
Illegal buffer length 
Message incomplete, issue another receive request 
Command canceled 
RESERVED Illegal name number 
N arne conflict detected 
Interface busy 
Too many outstanding requests, retry later 
Transport not installed 
Network error, x may be any value 

Actual length of datagram received. 
Name of remote node datagram was received from. 

Session 18 - 119 



DIGITAL-Specific Session Level Services 
The DIGITAL-specific functions support the manipulation of network name and 
node number entries that are found in the memory resident tables. 

The memory resident tables are called the volatile database. The permanent 
database consists of the disk resident node tables. The permanent database is 
loaded into memory at network startup time. To update the permanent data
base, the V AXmate workstation user should use one of the network manage
ment utilities described in the V AXmate system administration documentation. 

The DIGITAL-specific session level functions are: 

• Digital Function Check 

• Add an entry into node table 

• Delete entry by node number 

• Delete entry by node name 

• Read entry by node number 

• Read entry by node name 

• Read entry by index into the table (0-71) 

• Delete all entries 

A DIGITAL-specific session request is performed by setting register AH = 
DCH. resetting dscb err to zero, pointing ES:BX to the address of DIGITAL 
Session Control Block, and doing an INT 2AH function call. 

The values returned in dscb err are: 

00 Function completed successfully 
01 Table full, cannot add another entry 
02 Duplicate name, node name is currently used by another entry 
03 Duplicate number, node number is currently used by another entry 
04 No entry with given node name 
05 No entry with given node number 
06 No entry with given index 
07 Index given is out of range 
08 Illegal function number 
09 Out of resource, currently there is no stack space available to perform 

the function, try again later 
OA Cannot delete own node entry 

18 - 120 Session 



Function 008: DIGITAL Function Check (decfunccheck) 
Function check is used to confirm the presence of the DIGITAL-developed 
session level module. In addition, this function returns status on the availability 
of internal resources for supporting further network services. The far pointer in 
the field dscb name points to a string containing path and file name of the 
DECNODE.DAT permanent database file. 

Parameters 

AH = 
ES:BX = 

Returns 

dscb err = 

DCH 
Far pointer to DSCB 

dscb cmd = 
dscb-err = 
dscb-name = 

Success 

OOH 
OOH 
first double word contains far pointer to 
DECNODE.DAT path string. 

OOH 
09H Out of resource 

Session 18 - 121 



Function OlH: Add a Node (decfuncadd) 
This function adds a node name and its node number to the memory resident 
list of nodes known to the session software. A node must appear in this list 
before any communication with that node is possible. The node names and node 
numbers must be unique within this V AXmate workstation. 

Parameters 

DCH AH = 
ES:BX = Far pointer to DSCB 

Returns 

dscb err = 

dscb cmd = 
dscb-err = 
dscb-name = 
dscb-num = 

OOH 
01H 
02H 
03H 
09H 

18 - 122 Session 

01H 
OOH 
16 byte node name padded with spaces 
node number 

Success 
Table full 
Duplicate node name 
Duplicate node number 
Out of resource 



Function 02H: Delete Entry Given the Node Number 
(decfuncdelnum) 
This service removes a node name and number from the memory resident list 
of known nodes. The node name and node number of this workstation cannot 
be deleted with this function. To remove the node name and node number of 
this workstation, the Delete All Node Entries function must be used. 

Parameters 

AH = 
ES:BX = 

Returns 

dscb err = 

DCH 
Far pointer to DSCB 

dscb cmd = 
dscb-err = 
dscb-num = 

OOH 
05H 

09H 

Success 
Node number 
not found 
Out of 
resource 

OAH Cannot delete 
own node 
entry 

02H 
OOH 
node number 

Session 18 - 123 



Function 03H: Delete Entry Given Node Name (decfuncdelname) 
This service removes a node name and number from the memory resident list 
of known nodes. The node name and node number of this workstation cannot 
be deleted with this function. To remove the node name and node number of 
this workstation, the Delete All Node Entries function must be used. 

Parameters 

AH = 
ES:BX = 

Returns 

dscb err = 

DCH 
Far pointer to DSCB 

dscb cmd = 
dscb-err = 
dscb-name = 

Success 

03H 
OOH 
16 byte node name padded in high
order bytes with spaces 

OOH 
04H 
09H 
OAH 

Node name not found 
Out of resource 
Cannot delete own node entry 

18 - 124 Session 



Function 04H: Read Node Entry Given Node Number 
~decfuncreadnum) 
This service allows an application to use the node number to determine the 
node name and its position in the memory resident list of known nodes. 

Parameters 

AH = 
ES:BX = 

Returns 

dscb err = 

dscb index 
dscb-name 

DCH 
Far pointer to DSCB 

dscb cmd = 
dscb-err = 
dscb-num = 

Success 

04H 
OOH 
node number 

OOH 
05H 
09H 

No entry with given node number 
Out of resource 

Position in internal node table 
I6-byte node name padded in the high-order bytes with spaces 

Session 18 - 125 



Function 05H: Read Node Entry Given Node Name 
(decfuncreadname) 
This service allows an application to use the node name to determine the node 
number and its position in the memory resident list of known nodes. 

Parameters 

AH = 
ES:BX = 

Returns 

dscb err = 

dscb index = 
dscb-num = 

DCH 
Far pointer to DSCB 

dscb cmd = 
dscb-err = 
dscb-name = 

Success 

05H 
OOH 
I6-byte node name padded in the high 
order bytes with spaces 

OOH 
04H 
09H 

No entry with given node name 
Out of resource 

Position in internal node table 
Node number 

18- 126 Session 



Function 06H: Read Node Entry Given Index (decfuncreadindex) 
This services returns the node name and node number for a given index posi
tion in the memory resident list of nodes. 

The value dscb index ranges from 0 to 71. Seventy-two is the maximum 
number of node name and number pairs contained in the session internal 
database. 

Parameters 

AH = 
ES:BX = 

Returns 

dscb err 

dscb name = 

dscb num = 

DCH 
Far pointer to 
DSCB 

06H 
OOH 

dscb cmd = 
dscb -err = 
dscb -index = Position in internal node table 

OOH 
06H 
07H 
09H 

Success 
No entry at the given index 
Index out of range 
Out of resource 

16 byte node name padded in the high order bytes 
with spaces 
Node number 

Session 18 - 127 



Function 07H: Delete All Node Entries (decfuncdelall) 
This service deletes all entries in the memory resident node list of the session 
level. Note that the node name and node number of this workstation will also 
be deleted. 

Parameters 

AH = 
ES:BX = 

Returns 

dscb err = 

DCH 
Far pointer to DSCB 

dscb cmd = 
dscb-err = 

Success 

07H 
OOH 

OOH 
09H Out of resource 

18 - 128 Session 



Server Message Block (SMB) Protocol 
The Server Message Block (SMB) protocol allows the VAXmate workstations 
running the MS-DOS operating system and the VAXmate network software to 
access and share files stored on a server. 

Functions and data are passed between a server and a workstation with a 
Server Message Block (SMB). The 5MB data structure and functions are 
described in: 

• ServerlRedirector File Sharing Protocol 
Microsoft Corporation and Intel Corporation 
Intel Part Number 136329-001 

• IBM Personal Computer Seminar Proceedings, 
Volume 2, Number 8, October 1984 
IBM Corportation 

IMPORTANT 
DIGITAL's implementation of the 5MB protocol is based on the 
guidelines in the above documents and other applicable industry 
standards. DIGITAL is not responsible for inaccuracies or errors 
in those documents. DIGITAL's implementation of the 5MB 
protocol is subject to change according to changes in industry 
standards. 

The 5MB protocol allows for extended functions, which are identified by the 
function code FFH. The actual function code is stored in the reserved field 
5MB REH. 

DIGITAL's implementation of the 5MB protocol includes one extended 5MB 
function, the Get Current Date and Time function, which is described in the 
next section. 

Server Message Block Protocol 18 - 129 



Extended Function DOH: Get Current Date and Time 
Parameters 

None 

Returns 

10 signed 16-bit word parameters. The return parameters are: 

• Year 
• Month (for example, January = 1) 
• Day of month 
• Day of week (for example, Sunday = 0) 
• Hour (0 -24) 
• Minutes (0-59) 
• Seconds (0-59) 
• Milliseconds (0-999) 
• Timezone in minutes west (or east) of Greenwich (for example, Eastern 

= 300, Switzerland = -60) 
• Current local daylight savings correction, in minutes (usually + 60 or -

601 

This function returns the local date and time. The workstation must adjust the 
time by the returned time zone offset to produce coordintated universal time, 
UTe. or Greenwich mean time, (GMT). If the server and the workstation are in 
different time zones, note that the returned time zone is that of the server. 

The following C language definitions describe the date and time information 
returned by the server: 

#define date_year smb_vwv[O] 
#define date_month smb_vwv[l] 
#define date_day smb_vwv[2] 
#define date_week smb_vwv[3] 
#define date_hour smb_vwv[4] 
#define date_minute smb_vwv[5] 
#define date_second smb_vwv[6] 
#define date_mills smb_vwv[7] 
#define date_zone smb_vwv[8] 
#define date_savings smb3wv[9] 

18 - 130 Server Message Block Protocol 



Appendix A 
Support Code for Examples 

This appendix describes several subroutines and include files that support the 
program examples, but are not specific to a particular hardware example. 

File: SUPPORT.ASM 
This file contains assembly language subroutines that could not be written in 
the C programming language . 

••••••••••••••••••••••• I ••••••••••••••••••••• I ••••••••••••••••••••••••••• 

• ,. t I. I I I '" I I I •• , '" I ••••• I J I. I I I •• ' •• ' ••••••••• ,. t. t t •••••••••••••••• " 

; declare some C compiler compatible segment types 
••••••••••••••••••••••••••••••••• I ••••••••••• t ••••••••••••••••••••••••••• 
I I t I '" I I ,., •••• J ••••• I t I I. " I I J I J, •••••• , •• , I ••••• I '" I •• ' •••••• , ••••••• 

_TEXT SEGMENT BYTE PUBLIC 'CODE' 
_TEXT ENDS 
CONST SEGMENT WORD PUBLIC 'CONST' 
CONST ENDS 
_BSS SEGMENT WORD PUBLIC 'BSS' 
_BSS ENDS 
_DATA SEGMENT WORD PUBLIC 'DATA' 
_DATA ENDS 
DGROUP GROUP CONST, _BSS, _DATA 

ASSUME CS: _TEXT, 

EXTRN _rtc_int_hand:NEAR 
EXTRN _kyb_int_hand:NEAR 
EXTRN _mouse_int:NEAR 
EXTRN _fdc_int_hand:NEAR 
EXTRN _hdc_int_hand:NEAR 
EXTRN _coml_int:NEAR 
EXTRN _modem_int:NEAR 
EXTRN _printer_int:NEAR 

DS: DGROUP, SS: DGROUP, ES: DGROUP 

Support Code for Examples A-I 



_TEXT SEGMENT 

••••••••••••••••••••••••••• I ••••••••••••••••••••••••••••••••••••••••••••• 

••••• ,.,., ••• " ••••••• , •• t •• , •••••••••• ",.,., t., ••••••• ,. t,., ••••• "., •• 
At interrupt time, the current data segment is unknown. The following 
statement provides storage for the interrupt time data segment. 
Later, this storage is initialized to the value of the interrupt time 
data segment . ........................................................................ . 

t" t I' t •• " ••• , •• I'.' ••••••• ,., •••••• ,., t"""""""" t, •• ". t •••• " •• 

o ; place to store data segment 

......................................................................... 
•• ,. It •••••• , t,.",.", t."."" •• I ••••••••• "., ••••• "., ••••• ,."., •• ", 

_ini_it_ds - C callable routine to store the interrupt time data 
segment so that the correct data segment can be used at 
interrupt time 

parameters: ds register 
uses: cs:it_ds (1 word of R!W storage in cs segment) 

returns: nothing 
.......................... , ................................ , ........ """ 
.". I •••••••• t. t ••• " •••••••• t"""" t., ••••••• t""'" t ••••• ,., t •• t •••• 

PUBLIC _ini_it_ds 
_ini_it_ds PRDC NEAR 

mov word ptr cs:it_ds, ds 
ret 

_inLit_ds ENDP 

A-2 Support Code for Examples 

save it for later 



............................................................................................................................. ... ,"""', .... , .... , ....... , .... " .......... , ........ , ............... . 
The following routines provide entry points for each of the hardware 
interrupt vectors. At the entry point, the ax register is saved and a 
pointer to the interrupt handler is loaded into ax. Then a jump is 
made to comhand. The comhand routine saves additional registers, 
calls the interrupt handler through ax, and on return from the 
handler, it restores the registers including ax. 

parameters: none 
uses: none (see comhand, it restores the ax register) 

returns: nothing 
................................................................................................................................................ 
•••••••••••••••••••••••••••••• , ••••••• I •• ' •••••••• " ••••• , ••••••••••••••• 

PUBLIC _hdw_int_08 
_hdw_int_08 PRDC NEAR 

iret 
_hdw_int_D8 ENDP 

PUBLIC _hdw_int_09 
_hdw_int_09 PRDC NEAR 

re-vector INT 08R 

j re-vector INT 09R 
push ax j save ax 
mov ax, offset _TEXT:_kyb_int_hand 
jmp short comhand 

_hdw_int_09 ENDP 

PUBLIC _hdw_int_Oa 
_hdw_int_Oa PRDC NEAR 

iret 
_hdw_int_Oa ENDP 

PUBLIC _hdw_int_Ob 
_hdw_int_Ob PRDC NEAR 

push ax 
mov ax, offset _TEXT:_modem_int 
jmp short comhand 

_hdw_int_Ob ENDP 

PUBLIC _hdw_int_Oc 
_hdw_int_Oc PRDC NEAR 

push 
mov 
jmp 

_hdw_int_Oc 

ax 
ax, offset _TEXT:_coml_int 
short comhand 
ENDP 

re-vector INT OAR 

re-vector INT OBR 
save ax 

re-vector INT OCR 
save ax 

Support Code for Examples A- 3 



PUBLIC _hdw_int_Od 
_hdw_int_Od PRDC NEAR 

iret 
_hdw_int_Od ENDP 

PUBLIC _hdw_int_Oe 

re-vector INT ODH 

_hdw_int_Oe PRDC NEAR ; re-vector INT OEH 
push ax ; save ax 
mov ax, offset _TEXT:_fdc_int_hand 
jmp short comhand 

_hdw_int_Oe ENDP 

PUBLIC _hdw_int_Of 
_hdw_int_Of PRDC NEAR 

iret 
_hdw_int_Of ENDP 

re-vector INT OFH 

PUBLIC _hdw_int_70 
_hdw_int_70 PRDC NEAR ; re-vector INT 70H 

push ax ; save ax 
mov ax, offset _TEXT:_rtc_int_hand 
jmp short comhand 

_hdw_int_70 ENDP 

PUBLIC _hdw_int_71 
_hdw_int_71 PRDC NEAR 

iret 
_hdw_int_71 ENDP 

PUBLIC _hdw_int_72 
_hdw_int_72 PRDC NEAR 

iret 
_hdw_int_72 ENDP 

PUBLIC _hdw_int_73 

re-vector INT 71H 

re-vector INT 72H 

_hdw_int_73 PRDC NEAR re-vector INT 73H 
push ax save ax 
mov ax, offset _TEXT:_printer_int 
jmp short comhand 

_hdw_int_73 ENDP 

A-4 Support Code for Examples 



PUBLIC _hdw_int_74 
_hdw_int_74 PROC NEAR re-vector INT 14K 

push ax save ax 
mov ax, offset _TEXT:_mouse_int 
jmp short comhand 

_hdw_int_74 ENDP 

PUBLIC _hdw_int_75 
_hdw_int_75 PROC NEAR re-vector INT 168 

iret 
_hdw_int_75 ENDP 

PUBLIC _hdw_int_76 
_hdw_int_76 PROC NEAR ; re-vector INT 768 

push ax ; save ax 
mov ax, offset _TEXT:_hdc_int_hand 
jmp short comhand 

_hdw_int_76 ENDP 

PUBLIC _hdw_int_77 
_hdw_int_77 PROC NEAR 

iret 
_hdw_int_77 ENDP 

re-vector INT 178 

Support Code for Examples A-fj 



...................................................................... ,' , 
••••••••••••••••• t ••• Itt""" I.""" t., I '" t'.", t" "' ••••• ,.,',., ••• ,' 

The following routine is a common intermediate interrupt handler. 
It saves and restores volatile registers and calls the handler. 

parameters: ax = pointer to interrupt handler 
uses: none (ax was previously saved and is restored here) 

returns: nothing ......................................................................... 
••• ,", •••••• , ••••••• , ••••••••••••• , •••••• t t •• t t., t t t t t ••••••••••••••• t •• 

PUBLIC comhand 
comhand PROC NEAR common handler 

push bx save bx 
push cx save cx 
push dx save dx 
push es save e8 
push ds save ds 
mov ds, word ptr cs:it_ds retrieve IT data segment 
call ax call the C function 
pop ds restore ds 
pop es restore es 
pop dx restore dx 
pop cx restore cx 
pop bx restore bx 
pop ax restore ax 
iret return from interrupt 

comhand ENDP 

A-6 Support Code for Examples 



......................................................................... 
••• , ••• "" I."'" " I •• , t ••••• t t t t •• t I I •• ' •••••••• t •• t ••••••••••••• I •••• ' 

The following routine is a C compatible function that does WORD I/O. 

parameters: stack contains the port and value 
uses: dx and ax (which are saved and restored) 

returns: nothing 
......................................................................... 
• • • • I It' • I , I I •••• I • I I I • , ••• J ••• , • , •••• J •••••••• I ••••••••••••• , ••••••••••• 

PUBLIC _outw 

_outw PROC NEAR 

push bp 
mov bp,sp 
push dx 
push ax 

mov dx, WORD PTR 
mov ax, WORD PTR 
out dx, ax 

pop ax 
pop dx 
pop bp 
ret 

_outw ENDP 

[bp+4] 
[bp+6] 

save bp 
set up frame pointer 
save dx 
save ax 

C port parameter 
C word value 
output word to port 

restore ax 
restore dx 
restore bp 

Support Code for Examples A-7 



......................................................................... ...................................... , ............. , ........ , .......... . 
_int_off - C callable routine to disable CPU interrupt 

parameters: none 
uses: ax 

returns: state of IF flag when this routine was called ......................................................................... 
• , ••• ""'" II" II. "" "'1'" '" '" "" •••••••• I.' ••••• "" """ I •••• " 

PUBLIC _int_off 
_int_off PRDC NEAR 

pushf 
pop 
and 
cli 
ret 

ax 
aX,0200H 

push flags 
pop flags to ax 
isolate IF bit 
interrupts off 
return IF state to caller 

............................................................... , ........ . 
••••••••••••••• "" I •••• t •••••••••••••••••••••••••••••••••• I ••••••• """ 

_int_on - C callable routine to enable CPU interrupt 

parameters: [sp + 2] a state of IF when _int_off was called 
uses: nothing 

returns: nothing .. , .... , ................................................................ . •.•••• , ••••.. " .......•..•..... I ...•. I.' •...•.••••......••.....•••••.• , •• 

PUBLIC _int_on 
_int_on PRDC NEAR 

push 
mov 
test 
pop 
jz 
sti 

_TEXT ENDS 
END 

bp 
bp,sp 
word ptr [bp + 4], OffffH 
bp 
int_on1 

A-8 Support Code for Examples 

save frame pointer 
setup new frame pointer 
test previous IF state 
restore frame pointer 
don't set interrupt if zero 
interrupts on 

return to caller 



File: EXAMPLE.H 
The include file, EXAMPLE.H, contains the structure declaration, MESSAGE. 
The MESSAGE structure is used in each of the hardware example's menus. 
Additionally, this file contains some common constant definitions and some 
function return types. 

/***********************************************************************/ 
/* define MESSAGE structure type */ 
/***********************************************************************/ 

typedef struct 
{ 

int row; 
int col; 
char *mess; 

} MESSAGE; 

/* row location of text */ 
/* col location of text */ 

/* the message to display */ 

/***********************************************************************/ 
/* define some widely used constants */ 
/***********************************************************************/ 
#define ON -1 
#define TRUE -1 
#define OFF 0 
#define FALSE 0 

/***********************************************************************/ 
/* declare some return types */ 
/***********************************************************************/ 

void int_onO; 
int int_off 0 ; 
int get_key 0 ; 
int rb_out 0 ; 
int rb_inO; 
void init_rbO; 
int cursor_off(); 
void shw_date 0 ; 
void shw_timeO; 

Support Code for Examples A-9 



File: KYB.H 
The include file, KYB.H, defines the names of the LK250 function keys as the 
value returned by the keyboard interrupt handler. These are the same values 
returned by the ROM BIOS. 

/ •••••••••• *************************************************************/ 
/* kyb.h - define function key names as value returned by ROM BIOS */ 
/* Note: keyboard demo return. same VALUES as the ROM BIOS */ 
/* All function keys return NULL byte, then this value */ 
/*.*******************.*************************************************/ 

#define Fl Ox3b /* Function key Fl */ 
#define F2 Ox3c /* Function key F2 */ 
#define F3 Ox3d /* Function key F3 */ 
#define F4 Ox3e /* Function key F4 */ 
#define F6 Ox3f /* Function key F6 */ 
#define F6 Ox40 /* Function key F6 */ 
#define F7 Ox4l /* Function key F7 */ 
#define F8 Ox42 /* Function key F8 */ 
#define F9 Ox43 /* Function key F9 */ 
#define FlO Ox44 /* Function key FlO */ 
#define Fll Ox8f /* Function key Fll */ 
#define F12 Ox9O /. Function key F12 ./ 
#define F13 Ox9l /* Function key F13 */ 
#define F14 Ox92 /* Function key F14 */ 
#define F16 Ox93 /* Function key F16 */ 
#define F16 Ox94 /* Function key F16 */ 
#define F17 Ox96 /* Function key F17 */ 
#define F18 Ox96 /* Function key F18 */ 
#define F19 Ox97 /* Function key F19 */ 
#define F20 Ox98 /* Function key F20 */ 

A-10 Support Code for Examples 



File: RB.H 
The include file, RB.H, declares the ring buffer control structure, RING BUFF. 
In the example programs, the ring buffer control structure is used for all serial 
communications devices. 

/***********************************************************************/ 
/* define a ring buffer control structure */ 
/***********************************************************************/ 

typedef struct 
{ 

char *pbs; /* pointer to buffer start */ 
char *pbe; /* pointer to buffer end + 1 */ 
char *pbh; /* pointer to buffer head */ 
char *pbt; /* pointer to buffer tail */ 
int size; /* buffer size */ 
int count; /* # of characters in buffer */ 
int high_lim; /* buffer near full limit */ 
int low_lim; /* buffer near empty limit */ 

} RING_BUFF; 

Support Code for Examples A-ll 



File: VECTORS.C 
The file VECTORS.C contains two C functions, iv init and iv rest. The func
tion. iv init. initializes the indicated interrupt vector with the address of an 
example interrupt handler. It does this by saving the current interrupt handler 
address and installing an interrupt handler address from one of those in the 
assembly language source file SUPPORT.ASM. The function, iv rest, restores 
the previously saved interrupt handler address. -

/***********************************************************************/ 
/* declare the external interrupt vector entry poiuts */ 
/***********************************************************************/ 

extern int hdw_int_700; /* real time clock */ 
extern int hdw_int_710 ; /* redirect to int OAH, old irq2 */ 
extern int hdw_int_720 ; /* Ethernet controller */ 
extern int hdw_int_730 ; /* serial printer port */ 
extern int hdw_int_740 ; /* mouse port */ 
extern int hdw_int_750 ; /* 80287 error */ 
extern int hdw_int_760 ; /* hard disk controller */ 
extern int hdw_int_770 ; /* unassigned */ 
extern int hdw_int_080; /* 8254 counter/timer */ 
extern int hdw_int_090; /* keyboard */ 
extern int hdw_int_OaO; /* reserved - slave controller */ 
extern int hdw_int_ObO; /* optional modem/COM2 serial port */ 
extern int hdw_int_Oc 0 ; /* COMl serial port */ 
extern int hdw_int_OdO; /* unassigned */ 
extern int hdw_int_Oe 0 ; /* diskette drive controller */ 
extern int hdw_int_Of 0 ; /* optional LPTl parallel printer port */ 

A- 12 Support Code for Examples 



/***********************************************************************/ 
/* declare storage for old vectors and define an array of new vectors */ 
/***********************************************************************/ 

int (far *old_iv[16]) 0; 
int (far *new_iv[16]) 0 
{ 

bdw_int_70, 
bdw_int_71, 
bdw_int_72, 
bdw_intJ3, 
bdw_int_74, 
bdw_int_75, 
bdw_int_76, 
bdw_int_77, 
bdw_int_08, 
bdw_int_09, 
bdw_int_Oa, 
bdw_int_Ob, 
bdw_int_Oc, 
bdw_int_Od, 
bdw_int_Oe, 
bdw_int_Of 

}; 

/* array of far pointers to functions */ 
/* array of far pointers to functi~ns */ 

Support Code for Examples A- 13 



/*****************************.*****************************************/ 
/* iv_init() - Based on the interrupt number, this routine saves the */ 
/* old vector and installs a new vector. It is assumed */ 
/* that the new vector does not link to the old vector. */ 
/***********************************************************************/ 

/* interrupt vector initialize */ 

/* interrupt number for vector */ 

{ 

/* This declaration declares a 32-bit pointer that points to */ 
/* another 32-bit pointer (the interrupt vector) that points */ 
/* to a function (the interrupt handler), which returns an */ 
/* integer value (because a pointer to void is illegal) */ 

int (far * far *piv)(); /* far pointer to a far pointer to a function */ 
int i_flag; /* CPU IF state */ 

} 

piv = (int (far * far *)(»«long)int_num 
if(int_num > OxOf) int_num -= Ox70; 
old_iv[int_num] = *piv; 
i_flag = int_off(); 
*piv = new_iv[int_num]; 
int_on(Lflag) ; 

A- 14 Support Code for Examples 

« 2);/* pointer to vector */ 
/* adust index into array */ 

/* save old vector */ 
/* no interrupts allowed */ 

/* install new vector */ 
/* allow interrupts */ 



/***********************************************************************/ 
/* iv_rest() - Based on the interrupt number, this routine restores */ 
/* the previously saved vector. */ 
/***********************************************************************/ 

/* interrupt vector restore */ 

/* interrupt number for vector */ 

{ 

/* This declaration declares a 32-bit pointer that points to */ 
/* another 32-bit pointer (the interrupt vector) that points */ 
/* to a function (the interrupt handler), which returns an */ 
/* integer value (because a pointer to void is illegal) */ 

int (far * far *piv)(); 
int i_flag; 

/* far pointer to a far pointer to a function */ 
/* CPU IF state */ 

} 

piv = (int (far * far *)(»«long)int_num 
if(int_num > OxOf) int_num -= Ox70; 
i_flag = int_off(); 
*piv = old_iv[int_numl; 
int_on(Lflag) ; 

« 2);/* pointer to vector */ 
/* adjust index into array */ 

/* no interrupts allowed */ 
/* restore old vector */ 

/* allow interrupts */ 

Support Code for Examples A-15 



File: RB.C 
The file, RB.C, contains two C functions, rb in and rb out. The function, rb in, 
stores characters in a ring buffer. the function, rb out;-retrieves characters -
from a ring buffer. In the example programs, ring-buffers are used for all serial 
communications devices. 

#include "rb.h" 

/***********************************************************************/ 
/* rb_out() - get character from ring buffer */ 
/***********************************************************************/ 

int rb_out(prb. pc) 

register RING_BUFF *prb; 
char *pc; 

{ 

} 

if (prb->count) 
{ 

} 

*pc = *prb->pbt++; 
if(prb->pbt == prb->pbe) 

prb->pbt = prb->pbs; 
intr_flg = int_off(); 
prb->count--; 
int_on(intr_flg); 
if(prb->count == prb->low_Iim) 

return(O); 
else return(l); 

else return(-l); 

A- 16 Support Code for Examples 

/* pointer to ring buff struct */ 
/* put retrieved char here */ 

/* any characters in buffer 1 */ 

/* get character from buffer */ 
/* time to wrap pointer 1 */ 

/* wrap to start of buffer */ 
/* no interrupts allowed */ 

/* decrement count */ 
/* allow interruppts */ 

/* buffer near empty 1 */ 
/* indicate restart flow */ 

/* normal process */ 

/* nothing available */ 



/***********************************************************************/ 
/* rb_in() - put charater in to ring buffer */ 
/***********************************************************************/ 

int rb_in(prb, c) 

register RING_BUFF *prb; 
char c; 

{ 

int intr_flg; 

} 

if (prb->count 
{ 

prb->size) 

return(-l); 
} 

else 
{ 

} 

*prb->pbh = c; 
if(++prb->pbh == prb->pbe) 

prb->pbh = prb->pbs; 
intr_flg = int_off(); 
prb->count++; 
int_on(intr_flg); 
if(prb->count >= prb->high_Iim) 

return(O); 
else return(1); 

/* pointer to ring buff struct */ 
/* character to put in buffer */ 

/* buffer absolutely full ? */ 

/* can't do anything */ 

/* put character in buffer */ 
/* advance ptr, wrap ptr ? */ 
/* wrap to start of buffer */ 

/* no interrupts allowed */ 
/* increment count */ 

/* allow interrupts */ 
/* buffer almost full ? */ 
/* indicate almost full */ 

/* allow more to come in */ 

Support Code for Examples A-17 



File: DEMO.C 
The file, DEMO.C, contains several functions that support the example pro
grams. The primary function, demo, displays the main menu and drives all of 
the example programs. 

#include "video.h" 
#include "kyb.h" 
#include "example.h" 

char glb_attr = Ox07; /* default attribute byte */ 

/***********************************************************************/ 
/* disp_str() - at specified location, display a string of text */ 
/***********************************************************************/ 

disp_str(row, col, pc) 

int row; 
int col; 
char *pc; 

{ 

/* row of start location */ 
/* column of start location */ 

/* pointer to beginning of null terminated string */ 

while(*pc) disp_t(row, col++, *pc++, glb_attr); /* display the line */ 
} 

/***********************************************************************/ 
/* disp_menu() - display a menu from an array of MESSAGE */ 
/***********************************************************************/ 

MESSAGE *pm; /* pointer to an array of MESSAGE structures */ 

{ 

clear_vid_mem(); 
cursor_off (0, 0); 
shw_dateO; 
shw_timeO; 

/* clear the screen */ 

} 

/* turn the cursor off 
/* display the date 
/* display the time 

for( ; pm->mess; pm++) /* do until null message detected 
disp_str(pm->row, pm->col, pm->mess, glb_attr); /* display string 

A- 18 Support Code for Examples 

*/ 
*/ 
*/ 
*/ 
*/ 



/***********************************************************************/ 
/* get_fkey() - get a function key and return it's value */ 
/***********************************************************************/ 

unsigned char get_fkey() 
{ 

unsigned char c; 

while (1) 
{ 

/* temporary storage for key value */ 

/* until break out */ 

if(get_key(&c) >= 0 && c == 0) break; /* function key 1 */ 
chk_dt(); /* update date and time while waiting 1 */ 

} 

while(l) 
{ 

/* until return */ 

if(get_key(kc) >= 0) return(c); /* return function key */ 
chk_dt(); /* update date and time while waiting 1 */ 

} 
} 

/***********************************************************************/ 
/* get_keys() - get string of characters from keyboard input buffer */ 
/***********************************************************************/ 

get_keys (row , col, pc) /* get string of char from input buf */ 

int row; 
int col; 
char *pc; 

{ 

char c; 
int tcol col; 

/* row location to start displaying keyboard input */ 
/* column location to start displaying keyboard input */ 

/* where to store keyboard input */ 

/* temporary storage */ 
/* remember the start column */ 

Support Code for Examples A-19 



} 

*pc = ' '; /* clear the first location */ 
/* do forever, actually until a return key */ while (1) 

{ 

} 

cursor_on(row, tcol); 
while (1) 

/* position cursor and turn it on */ 
/* do forever, actually until we have a key */ 

{ 

} 

if(get_key(&c) < 0) 
if(c == OxOO) beep(); 
else break; 

chk_dtO; 

while(get_key(&c) < 0) 
chk_dtO; 

if(c == OxOd) 
{ 

} 

*pc = OxOO; 
cursor_off (0, 0); 
return; 

else if(c == Ox08) 
{ 

if (tcol > col) 
{ 

/* get scan code from input buff */ 
/* no function keys please */ 

/* otherwise, break out */ 
/* update date and time while waiting ? */ 

/* get char from input buff */ 
/* update date and time while waiting ? */ 

/* return key ? */ 

/* terminate input string with a null */ 
/* turn cursor off */ 

/* return to caller */ 

/* back space ? */ 

/* room to back up ? */ 

*(--pc) = ' '; /* remove last character 
disp_t(row, --tcol, *pc, glb_attr); 

and decrement pointer */ 
/* redisplay line */ 

} 

else beepO; 
} 

else if(c == OxOO) 
{ 

while(get_key(&c) < 0) 
chk_dtO; 

beepO; 
} 

else 
{ 

*pc++ = c; 

/* if can't back up, then beep */ 

/* function or modified key ? */ 

/* dump key that follows */ 
/* update date and time while waiting ? */ 

/* let them know we dumped it */ 

disp_t(row, tcol++, c, glb_attr); 
/* concatenate to input string */ 

/* redisplay line */ 
} 

A- 20 Support Code for Examples 



/***********************************************************************/ 
/* chk_dt() - See if time to display date or time */ 
/***********************************************************************/ 

chk_dt() 
{ 

extern int time_flag; 
extern int date_flag; 
int intcflag; 

/* located in real time clock interrupt handler */ 
/* located in real time clock interrupt handler */ 

/* temporary storage for CPU IF state */ 

} 

if (time3Iag) 
{ 

} 

shw_timeO; 
intr_flag = int_off(); 
time_flag = 0; 
int_on(intr_flag); 

if (date_flag) 
{ 

} 

shw_dateO; 
intr_flag = int_off(); 
date_flag = 0; 
int_on(intr_flag); 

/* time flag set by RTC handler ? */ 

/* display the time */ 
/* no interrupts please */ 
/* clear the time flag */ 

/* allow interrupts */ 

/* date flag set by RTe handler ? */ 

/* show the date */ 
/* no interrupts please */ 
/* clear the date flag */ 

/* allow interrupts */ 

Support Code for Examples A- 21 



/***********************************************************************/ 
/* main() - execute all examples from main menu */ 
/***********************************************************************/ 

main 0 
{ 

static MESSAGE mmain[] = /* opening menu */ 
{ 

{ 3, 24, "VAXmate Hardware Programming Example" }, 
{ 6, 24, "Fl. CMOS / Real Time Clock" }, 
{ 6, 24, "F2. 8264 Timer .t Speaker" }, 
{ 7, 24, "F3. Video System" }, 
{ 8, 24, "F4. Keyboard" }, 
{ 9, 24, "F6. Serial Communications" }, 
{ 10, 24, "F6. Mouse" }, 
{ 11, 24, "F7. Diskette Drive" }, 
{ 12, 24, "F8. Hard Disk" }, 
{ 13, 24, "FlO. Exit From Demo" }, 
{ 14, 24, "Fll. Warm Boot" }, 
{ 0, 0, o }, 

}; 

static MESSAGE caution[] = /* caution menu */ 
{ 

{ 3, 30, "***** WARNING *****" }, 
{ 6, 31, "THIS DISK EXAMPLE" }, 
{ 6, 30, "CAN DESTROY THE DATA" }, 
{ 7, 33, "ON YOUR DISK" }, 
{ 10, 33, "Fl. Continue" }, 
{ 11, 33, "FlO. Main Menu" }, 
{ 0, 0, o }, 

}; 

int intr31ag; 
int key; 

/* temporary storage for CPU IF state */ 
/* temporary storage for input key */ 

A- 22 Support Code for Examples 



intr_flag = int_off(); 
set_mode(3); 
clear_vid_mem(); 

/* no interrupts while I take over hardware */ 
/* set the video mode to ROM BIOS default */ 

/* clear the screen 
initialize pointer to interrupt time data segment 

/* initialize peripheral interupt controllers 
/* initialize dma controller 
/* intialize real time clock 

/* initialize keyboard 
/* open dma channel 2 for diskette controller 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

ini_it_ds(); /* 
picinitO; 
dma_initO; 
rtc_initO; 
kyb_initO; 
dma_open(2); 
fdc_initO; 
hdc_initO; 
int_on(intr_flag); 
while (1) 
{ 

disp_menu(mmain) ; 
switch(get_fkey(» 
{ 

case Fl: 
rtcO; 
break; 

case F2: 
tim_spkO; 
break; 

case F3: 
videoO; 
break; 

case F4: 
kyb_exmO; 
break; 

case F5: 
soO; 
break; 

case F6: 
mouse 0 
break; 

/* initalize diskette controller 
/* initialize hard disk controller 

/* allow interrupts 

/* display the main menu */ 
/* get function key for menu selection */ 

/* run real time clock example ? */ 

/* run timer/speaker example ? */ 

/* run video example ? */ 

/* run keyboard example ? */ 

/* run serial example ? */ 

/* run mouse example ? */ 

Support Code for Examples A- 23 



} 

} 
} 

A- 24 

case F7: /* run diskette controller example 7 */ 
for(key = 0; (key != Fl) tt (key !- FlO); ) /* abort 7 */ 
{ 

} 

disp_menu(caution); 
key = get_fkey(); 

if(key == Fl) fdc(); 
break; 

/* display caution message */ 
/* get a function key */ 

/* proceed to example '? */ 

/* run hard disk controller example '? */ case F8: 
for (key 
{ 

0; (key != Fl) tt (key != FlO); ) /* abort 7 */ 

disp_menu(caution); 
key = get_fkey(); 

/* display caution message */ 
. /* get function key */ 

} 

if(key == Fl) hdc(); 
break; 

case FlO: 
intr_flag 
rtc_restO; 
kyb_restO; 
fdc_restO; 
hdcrestO; 
clear_vid_mem(); 
cursor_on(O, 0); 

/* proceed to example '? */ 

/* exit from demo '? */ 
/* no interrupts please */ 

/* restore old real time clock vector */ 
/* restore old keyboard vector */ 

/* restore diskette contoller vector */ 
/* restore hard disk controller vector 

/* clear the screen 
/* move cursor to top left and turn it on 

*/ 
*/ 
*/ 

reset */ 
/* restore normal MSDOS state of interrupts */ 
/* master's slave input (IRQ2) always on after 
imask(O, 0, 1); /* timer on */ 

/* keyboard on */ 
/* diskette controller on */ 
/* serial printer port on */ 

/* hard disk controller */ 
/* allow interrupts */ 

/* normal exit */ 

imask(O, 1, 1); 
imask(O, 6, 1); 
imask(l, 3, 1); 
imask(l, 6, 1); 
int_on(intr_flag); 
exit(O); 

case Fll: 
sys_reset 0 ; 
break; 

Support Code for Examples 

/* warm boot '? */ 



int far *warm_boot = (int far *)Ox00400072; 
int (far *p_reset)() (int (far *)(»OxffffOOOO; 

} 

*warm_boot = Ox1234; 
(*p_reset) 0 ; 

/* indicate warm boot */ 
/* call boot code */ 

/* and never return */ 

Support Code for Examples A- 25 





Instruction 

AAA 
AAD 
AAM 
AAS 
ADC 
ADD 
AND 
ARPL 
BOUND 
CALL 
CBW 
CLC 
CLD 
CLI 
CLTS 
CMC 
CMP 
CMPS 
CWD 
DAA 
DAS 
DEC 
DIV 
ENTER 
ESC 
HLT 
IDIV 
IMUL 
IN 
INC 

Appendix B 
80286 Instruction Set 

Operation 

ASCII adjust for addition 
ASCII adjust for division 
ASCII adjust for multiply 
ASCII adjust for subtraction 
Add byte or word with carry 
Add byte or word 
AND byte or word 
Adjust RPL field of selector 
Detect values outside prescribed range 
Call procedure 
Convert byte into word 
Clear carry flag 
Clear direction flag 
Clear interrupt enable flag 
Clear task switched flag 
Complement carry flag 
Compare byte or word 
Compare byte or word string 
Convert word to double word 
Decimal adjust for addition 
Decimal adjust for subtraction 
Decrement byte or word by 1 
Unsigned divide by byte or word 
Make stack frame for procedure parameters 
Escape to extension processor 
Halt until interrupt or reset 
Integer divide byte or word (signed) 
Integer multiply byte or word (signed) 
Input byte or word 
Increment byte or word by 1 

80286 Instruction Set B-1 



Instruction 

INS 
INT 
INTO 
IRET 
JA/JNBE 
JAE/JNB 
JB/JNAE 
JBE/JNA 
JC 
JCXZ 
JE/JZ 
JG/JNLE 
JGE/JNL 
JL/JNGE 
JLE/JNG 
JMP 
JNC 
JNE/JNZ 
JNO 
JNP/JPO 
JNS 
JO 
JP/JPE 
JS 
LAHF 
LAR 
LDS 
LEA 
LEAVE 
LES 
LGDT/LIDT 
LLDT 
LMSW 
LOCK 
LODS 
LOOP 
LOOPE/LOOPZ 
LOOPNE/LOOPNZ 
LSL 
LTR 
MOV 
MOVS 
MUL 

Operation (80286 Instruction Set - cont.) 

Input byte or word string 
Interrupt 
Interrupt if overflow 
Interrupt return 
Jump if above/not below or equal 
Jump if above or equal/not below 
Jump if below/not above or equal 
Jump if below or equal/not above 
Jump if carry 
Jump if register CX is 0 
Jump if equal/zero 
Jump if greater/not less or equal 
Jump if greater or equal/not less 
Jump if less/not greater or equal 
Jump if less or equal/not greater 
Jump 
Jump if not carry 
Jump if not equal/not zero 
Jump if not overflow 
Jump if not parity/parity odd 
Jump if not sign 
Jump if overflow 
Jump if parity/parity even 
Jump if sign 
Load AH register from flags 
Load access rights byte 
Load double-word pointer to DS and word register 
Load effective address 
Restore stack for procedure exit 
Load double-word pointer to ES and word register 
Load global/interrupt descriptor table 
Load local descriptor table register 
Load machine status word 
Lock bus during next instruction 
Load byte or word string 
Loop with CX as a counter 
Loop while equal/zero and CX not equal to 0 
Loop while not equal/not zero and CX not equal to 0 
Load segment limit 
Load task register 
Move byte or word 
Move byte or word string 
Multiply byte or word unsigned 

B-2 80286 Instruction Set 



Instruction 

NEO 
NOP 
NOT 
OR 
OUT 
OUTS 
POP 
POPA 
POPF 
PUSH 
PUSHA 
PUSHF 
RCL 
RCR 
REP 
REPE/REPZ 
REPNE/REPNZ 
RET 
ROL 
ROR 
SAHF 
SAR 
SBB 
SCAS 
SOOT/SlOT 
SHL/SAL 
SHR 
SLOT 
SMSW 
STC 
STO 
STI 
STOS 
STR 
SUB 
TEST 
VERRNERW 
WAIT 
XCHO 
XLAT 
XOR 

Operation (80286 Instruction Set - cont.) 

Negative byte or word 
No operation 
NOT byte or word 
Inclusive-OR byte or word 
Output byte or word 
Output bytes or word string 
Pop word off stack 
Pop all registers from stack 
Pop flags off stack 
Push word onto stack 
Push all registers onto stack 
Push flags onto stack 
Rotate left through carry byte or word 
Rotate right through carry byte or word 
Repeat 
Repeat while equal/zero 
Repeat while not equal/not zero 
Return from subroutine 
Rotate left byte or word 
Rotate right byte or word 
Store AH register in flags 
Shift arithmetic right byte or word 
Subtract byte or word with borrow 
Scan byte or word string 
Store global/interrupt descriptor table register 
Shift logical/arithmetic left byte or word 
Shift logical right byte or word 
Store local descriptor table register 
Store machine status word 
Set carry flag 
Set direction flag 
Set interrupt enable flag 
Store byte or word string 
Store task register 
Subtract byte or word 
Logical AND of operands (only sets flags) 
Verify a segment for read or write 
Wait for BUSY not active 
Exchange byte or word 
Translate byte (from look-up table) 
Exclusive-OR byte or word 

80286 Instruction Set B-3 





Appendix C 
VT220 and VT240 

Terminal Emulators 
This appendix is divided into three parts: 

VT220 Emulator 

VT240 Emulator 

Tables 

Discusses the differences in characteristics and 
functionality between the V AXmate workstation's 
VT220 emulator and DIGITAL's VT220 terminal. 

Discusses the differences in characteristics and 
functionality between the VAXmate workstation's 
VT240 emulator and DIGITAL's VT240 terminal. 

Contains the DEC multinational, ISO Latin-I, and 
special graphics character set tables. 

Wherever the words VT220 or VT240 emulator are used, it means the VT220 
or VT240 terminal emulator for the V AXmate workstation. 

For more information on the DIGITAL VT220 and VT240 terminals, see the: 

• VT220 Series Programmer's Reference Manual 

• VT240 Series Programmer's Reference Manual 

It is assumed that you have read the VAXmate User's Guide. 

VT220 and VT240 Terminal Emulators C - 1 



VT220 Emulator and VT220 Terminal 
Differences 
This part of the appendix describes the VT220 emulator and VT220 terminal 
differences. 

Saving and Restoring Set-Up Selections 
The VT220 emulator supports saving and recalling Set-Up selections from user
specified files. The VT220 terminal supports the saving and recalling of only 
one set of Set-Up selections. 

Video Differences 

Scrolling 
There is no smooth scroll/jump scroll option in the VT220 emulator. The 
VT220 emulator is always in jump scroll. 

Blinking Characters Remapped 
The VT220 emulator does not support blinking characters. Use the Display 
Set-Up screen to select how the blink attribute is displayed. The settings are: 

• Normal video ldefault) 
• Reverse video 
• Underscore 

No Control Representation Mode 
The VT220 emulator does not support either a Set-Up selection or the function 
of control representation mode. 

Font Selection 
The VT220 emulator supports a Display Set~Up selection of font sizes that the 
VT220 terminal does not. The settings are: 

• Normal ldefault) 
• Small 
• Automatic 

c - 2 VT220 Emulator and VT220 Terminal Differences 



Communications Differences 

LA T Protocol Support (Network Terminal Services) 
Normally a terminal can only connect to a host using a serial port. The VT220 
emulator supports a Communications Set-Up selection of Network Terminal 
Services, which provides for Thin Wire ethernet connection using a LAT 
protocol. 

No Split Baud Rate 
The VT220 emulator does not support split baud rate. It transmits and receives 
at the same baud rate, as specified in the Speed selection in Communications 
Set-Up. 

Session Logging 
The VT220 emulator supports an Action Set-Up selection of session logging, in 
which the characters received from the host are written to a file. The VT220 
terminal does not. 

Autotyping Characters 
The VT220 emulator supports an Action Set-Up selection of autotyping, in 
which characters read from a file are sent to the host. The VT220 terminal 
does not. 

VT220 Emulator and VT220 Terminal Differences C - 3 



Keyboard Differences 

Keyboard LEDs 
The LK250 keyboard has four LEDs,but the VT220 emulator supports only 
the Lock LED. The Lock light behaves in the same way for both a VT220 
terminal and "the VT220 emulator. The other LEDs (NumLock, Hold, and 
Speciall are always off for the VT220 emulator. 

In the VT220 emulator, when Lock is turned on in the Control Panel, pressing 
the Shift key while you press a letter key, produces a lowercase letter. 
Conversely, when Lock is off, pressing the Shift key while pressing a letter 
key, produces an uppercase letter. 

Alternate Characters 
Alternate character keys are only available through the MS-Windows Control 
Panel country settings. For more information, see the VAXmate User's Guide. 

Keyclick 
The user cannot change keyclick volume in the VT220 emulator Set-Up. 
Keyclick volume can be selected by using the MS-Windows Control Panel. For 
more information, see the VAXmate User's Guide. 

In addition, the VT220 emulator keys always click if the volume has not been 
set to off by the Control Panel. 

Autorepeat Selection 
Autorepeat settings (on or off) cannot be selected with Set-Up in the VT220 
emulator. Use the MS-Windows Control Panel to make this selection. For more 
information, see the VAXmate User's Guide. 

C - 4 VT220 Emulator and VT220 Terminal Differences 



Character Sets 

DEC MCS to ISO Latin-l 8-bit Transition 
The VT220 terminal does not support the ISO Latin-l 8-bit character set, but 
the VT220 emulator does. 

The user-preference supplemental character set is selected in General Set-Up to 
be either the DEC multinational character set or the ISO Latin-l character set. 

The user-preference character sets, DEC MCS and ISO Latin-l 8-bit, are found 
in the tables at the end of this appendix. 

The factory default user preference character set is the DEC multinational 
character set. 

Language Selection 
The VT220 terminal supports a Set-Up selection for the national language to 
be used with the National Replacement character set (NRC). The VT220 emula
tor does not. 

This selection depends upon the country keyboard selection reported in the 
Preferences menu in the MS-Windows Control Panel. The country keyboard is 
determined during MS-Windows configuration Setup. 

Compose Sequences 
The VT220 terminal supports only DEC MCS (multinational character sets) 
Compose sequences. The VT220 emulator supports both Compose sequences 
and ISO Latin-l Compose sequences. 

The set of Compose sequences in effect at any given time is determined by 
selecting of Multinational character set in General Set-Up. 

Enabling or disabling the warning bell from the Keyboard Set-Up screen does 
not effect the Compose sequence error bell, which is always enabled. 

VT220 Emulator and VT220 Terminal Differences C - 5 



Additional VT220 Emulator Escape Sequences 
This section lists the additional escape sequences accepted and returned by the 
VT220 emulator. For more information about escape sequences and character 
sets, see the tables at the end of this appendix. 

Assign User-Preference Supplemental Character Set (DECAUPSS) 
To assign a user-preference supplemental character set, use the following 
escape sequences: 

DEe Supplemental: Des 0 u % 5 
9/0 3/0 2/1 7/5 2/5 3/5 

ST 
9/12 

ISO Latin-1 Supplemental: DeS 1 u A ST 
9/0 3/1 2/1 7/5 4/1 9/12 

Request User-Preference Supplemental Character Set 
(DECRQUPSS) 
To request a user-preference supplemental character set, use the following 
escape sequence: 

eSI It u 
9/11 2/6 7/5 

When this sequence is received, the VT220 emulator returns the DECAUPSS 
sequence indicating the currently selected user-preference character set. 

Select User-Preference Supplemental Coded Character Set (SCS) 
To select the user-preference supplemental coded character set, use the follow
ing escape sequence: 

Ese Ig < 
1/11 2/1 3/12 

The escape sequence designates the currently selected user-preference character 
set into the G-set indicated by Ig. 

Ig I G-set 
--------+--------

( 2/8 GO 
) 2/9 G1 
* 2/10 G2 
+ 2/11 G3 

C - 6 VT220 Emulator and VT220 Terminal Differences 



Select DEC Supplemental Coded Character Set (SCS) 
To select the DEC supplemental coded character set, use the following escape 
sequence: 

ESC Ig Yo 5 
1/11 2/1 2/5 3/5 

The escape sequence designates the DEC supplemental character set into the 
G-set indicated by Ig. 

Ig I G-set 
--------+--------

( 2/8 GO 
) 2/9 Gl 
* 2/10 G2 
+ 2/11 G3 

Select ISO Latin-! Supplemental Coded Character Set (SCS) 
To select the ISO Latin-l supplemental coded character set, use the following 
escape sequence: 

ESC Ig A 
1/11 2/1 4/1 

The escape sequence designates the ISO Latin-l character set into the G-set 
indicated in Ig. 

Ig I G-set 
--------+--------

- 2/13 Gl 
2/14 G2 

/ 2/15 G3 

VT220 Emulator and VT220 Terminal Differences C - 7 



Primary Device Attribute (DA) 
The VT220 emulator responds to the primary Device Attributes (DAI request 
with the additional parameter: 

14 This parameter supports the 8-bit Interface Architecture. 

In a typical exchange between the host and the VT220 emulator, the VT220 
emulator responds to the service code and attribute inquiries with the following 
sequence: 

CSI ? 62; 1; 2; 3; 4; 6; 1; 8; 9; 14; c 

Secondary Device Attribute (DA) 
In a typical exchange between the host and the VT220 emulator, the VT220 
emulator responds to the terminal identification code, firmware version level, 
and hardware options inquiries with the following sequence: 

CSI > 20; Pv; Po c 

Announcing ANSI Conformance Levels 
To announce is to indicate which subset of code extension facilities are going to 
be employed by subsequent information interchange until the occurrence of an
other announcer function. 

The following escape sequence is taken from ANSI standard x3.134.1: 

ESC SP F* 
1/11 2/0 4/1 

F* Identifies 
------------+---------------

L 4/12 
M 4/13 
N 4/14 

Level 1 
Level 2 
Level 3 

Levels 1 and 2 assume that ASCII characters are designated into 00 and in
voked into OL, and that the ISO Latin-1 Supplemental Set is designated into 
01 and invoked into OR. 

Level 3 assumes that ASCII characters are designated into 00 and invoked 
into OL. 

C - 8 VT220 Emulator and VT220 Terminal Differences 



Printing 

Printer Options 
The VT220 terminal supports a Set-Up selection of printer settings, such as 
stop bits and speed, but the VT220 emulator does not. The printer speed and 
stop bits are adjusted by using the MS-Windows Control Panel. 

Print Terminator 
The VT220 terminal supports Set-Up selection of print terminator, but the 
VT220 emulator does not. Every VT220 emulator print job ends with a form 
feed, except for the output in printer controller mode. 

Print Size 
The VT220 emulator supports a Set-Up selection for print size, but the VT220 
terminal does not. The settings are: 

• Normal (default) 
• Compressed 

VT220 Emulator and VT220 Terminal Differences C - 9 



VT240 Emulator and VT240 Terminal 
Differences 
This part of the appendix describes the VT240 emulator and VT240 terminal 
differences. 

Saving and Restoring Set-Up Selections 
The VT240 emulator supports saving and recalling Set-Up selection from user
specified files. The VT240 terminal only supports the saving and recalling of 
one set of Set-Up selections. 

Video Differences 

Video Modes 
The VT240 terminal operates in only one video mode, an 800 x 240 Text & 
Graphics video mode. The VT240 emulator operates in either of two video 
modes: 

• Fast Text Only 
• Text & Graphics 

The Text & Graphics video mode is an 800 x 252 video bitmap. The 12 extra 
scan lines are used to display error messages and status information. 

Automatic Video Mode Switching 
The Fast Text Only video mode cannot display sixel graphics, ReGIS graphics, 
or Dynamic Redefinable character sets jDRCS). When either sixel graphics, 
ReGIS, or DRCS escape sequences are received, the VT240 emulator automati
cally switches to the Text & Graphics video mode. 

Scrolling 
There is no smooth/jump scroll option in the VT240 emulator. The VT240 
emulator is always in jump scroll. 

No Control Representation Mode 
The VT240 emulator does not support either a Set-Up selection or the function 
of control representation mode. 

132 Column Text 
The Fast Text Only video mode is an 80 x 25 character display mode. The 
25th line displays error messages and status information. When operating in 
132 column mode using the Fast Text Only video mode, only 80 of the 132 
columns can be seen at one time. 

C- 10 VT240 Emulator and VT240 Terminal Differences 



Pressing: 

Shift/right arrow 
Shift/left arrow 

Underlined Characters 

Displays columns 52-132 
Displays columns 1-80 

The VT240 emulator cannot display underlined characters in the Fast Text 
Only video mode. Characters intended to be underlined in this video mode are 
displayed with the bold attribute. 

If true underlined characters are desired, select Text & Graphics video mode 
from the Display Set-Up screen. 

Line Attributes 
When using the VT240 emulator in the Text & Graphics mode, all line attrib
utes display as they would on a VT240 Terminal. 

When using the VT240 emulator in Fast Text Only mode. some line attributes 
display differently for double width and double height/double width. 

Double Width Lines for Fast Text Only 
When using double width characters in the Fast Text Only mode, they are 
displayed as that character followed by a space. For example: 

t est 

Double Height/Double Width Lines for Fast Text Only 
When using double height/double width characters in the Fast Text Only mode, 
they are displayed as that character followed by a space with a blank line in
serted before the next line of characters. 

For example, entries of the word "test" on two separate lines would 
display as: 

t est 

t est 

Because double height takes up two lines, the text is on the first line followed 
by a blank line on the second line. 

VT240 Emulator and VT240 Terminal Differences C- 11 



Communications Differences 

LA T Protocol Support (Network Terminal Services) 
Normally a terminal can only connect to a host using a serial port. The VT240 
emulator supports a Communications Set-Up selection of Network Terminal 
Services that provides for LAT connection through a LAT protocol. 

Session Logging 
The VT240 emulator supports session logging, in which characters received 
from the host are written to a file. The VT240 terminal does not. 

Autotyping Characters 
The VT240 emulator supports autotyping, in which characters read from a file 
are sent to the host. The VT240 terminal does not. 

Keyboard Differences 

Keyboard LEDs 
The LK250 keyboard has four LEDs, but the VT240 emulator supports only 
the Hold Screen and Lock LEDs. The Hold and Lock LEDs behave in the 
same way for both a VT240 terminal and the VT240 emulator. The other LEDs 
'NumLock and Special) are always off for the VT240 emulator. 

Alternate Characters 
Alternate character keys are available on the VT240 emulator as they are on 
the VT240 terminal. 

To obtain alternate character key outputs, hold down the Ctrl key while 
pressing the Alt key, then press the alternate character key. 

No "Printer to Host" Mode 
The VT240 Terminal supports a feature called Printer to Host mode, this mode 
is not implemented in the VT240 emulator. 

C- 12 VT240 Emulator and VT240 Terminal Differences 



Character Sets 

DEC MCS to ISO Latin-l 8-bit Transition 
The VT240 terminal does not support the ISO Latin-l 8-bit character set, but 
the VT240 emulator does. 

The user-preference supplemental character set is selected in General Set-Up to 
be either the DEC multinational character set or the ISO Latin-l character set. 

The user-preference character sets, DEC MCS and ISO Latin-l 8-bit, are found 
in the tables at the end of this appendix. The factory default user preference 
character set is the DEC supplemental character set. 

Compose Sequences 
The Compose sequences are handled by the MS-DOS operating system using 
the KEYB program. If KEYB is loaded the user can use Compose or dead 
diacritical sequences to create characters that do not exist as standard keys on 
the keyboard. Compose mode is entered from the keyboard by pressing the 
Compose key or a dead diacritical key. For more information on KEYB, see 
Chapter 17 of this manual. 

Additional VT240 Emulator Escape Sequences 
This section lists the additional escape sequences accepted and received by the 
VT240 emulator. For more information about escape sequences and character 
sets, see the tables at the end of this appendix. 

User-Preference Supplemental Character Set (DECAUPSS) 
To assign user-preference supplemental character sets, use the following escape 
sequences: 

DEC Supplemental: DCS 0 u % 6 ST 
9/0 3/0 2/1 7/6 2/6 3/6 9/12 

ISO Latin-l Supplemental: DCS 1 u A ST 
9/0 3/1 2/1 7/6 4/1 9/12 

VT240 Emulator and VT240 Terminal Differences C-13 



Request User-Preference Supplemental Character Set 
(DECRQUPSS) 
To request a user-preference supplemental character set, use the following 
escape sequence: 

CSI It u 
9/11 2/6 7/5 

When this sequence is received, the VT240 emulator returns the DECAUPSS 
sequence indicating the currently selected user-preference character set. 

Select User-Preference Supplemental Coded Character Set (SCS) 
To select the user-preference supplemental coded character set, use the follow
ing escape sequence: 

ESC Ig < 
1/11 2/1 3/12 

The escape sequence designates the currently selected user-preference character 
set into the G-set indicated by Ig. 

Ig I G-set 
--------+--------

( 2/8 GO 
) 2/9 G1 
* 2/10 G2 
+ 2/11 G3 

C- 14 VT240 Emulator and VT240 Terminal Differences 



Select DEC Supplemental Coded Character Set (SCS) 
To select the DEC supplemental coded character set, use the following escape 
sequence: 

ESC Ig % 5 
1/11 2/1 2/5 3/5 

The escape sequence designates the DEC supplemental character set into the 
G-set indicated by Ig. 

Ig I G-set 
--------+--------

( 2/8 GO 
) 2/9 Gl 
* 2/10 G2 
+ 2/11 G3 

Select ISO Latin-l Supplemental Coded Character Set (SCS) 
To select the ISO Latin-1 supplemental character set, use the following escape 
sequence: 

ESC Ig A 
1/11 2/1 4/1 

The escape sequence designates the ISO Latin-1 character set into the G-set 
indicated in Ig. 

Ig I G-set 
--------+--------

- 2/13 I Gl 
. 2/14 I G2 
/ 2/15 I G3 

Primary Device Attribute (DA) 
The VT240 emulator responds to the primary Device Attributes (DA) request 
with the additional parameter: 

14 This parameter supports the 8-bit Interface Architecture. 

In a typical exchange between the host and the VT240 emulator. the VT240 
emulator responds to the service code and attribute inquiries with the following 
sequence: 

VT240 Emulator and VT240 Terminal Differences C- 15 



CSI ? 62; 1; 2; 3; 4; 6; 7; 8; 9; 14; c 

Secondary Device Attribute (DA) 
In a typical exchange between the host and the VT240 emulator, the VT240 
emulator responds to the terminal identification code, firmware version level, 
and hardware options inquiries with the following sequence: 

CSI > 21; Pv; Po c 

Announcing ANSI Conformance Levels 
To announce is to indicate which subset of code extension facilities are going to 
be employed by subsequent information interchange until the occurrence of an
other announcer function. 

The following escape sequence is taken from ANSI standard x3.134.1: 

ESC SP F* 
1/11 2/0 4/1 

F* Identifies 
------------+---------------

L 4/12 
M 4/13 
N 4/14 

Level 1 
Level 2 
Level 3 

Levels 1 and 2 assume that ASCII is designated into 00 and invoked into OL, 
and that the ISO Latin-l supplemental set is designated into Oland invoked 
into OR. 

Level 3 assumes that ASCII is designated into 00 and invoked into OL. 

c- 16 VT240 Emulator and VT240 Terminal Differences 



This page is intentionally blank. 

VT240 Emulator and VT240 Terminal Differences c- 17 



Table C-1 DEC MCS - ASCII Graphics Set (0-7) 

COLUMN 0 1 2 3 4 5 6 7 

b8 BITS 0 0 0 0 0 0 0 0 

r-
b7 

0 0 0 0 I I I I 
h6 0 0 I I 0 0 I I 

b5 0 I 0 I 0 I 0 I 
ROW b4 h3 b2 bl 

0 10 40 60 100 110 , 140 160 
0 0 0 0 0 NUL 0 OLE 16 SP J1 0 48 @ 64 P 80 96 P 111 

0 10 10 30 40 50 60 70 

I DCl 21 41 61 101 111 141 161 

1 0 0 0 1 SOH 1 17 ! 33 1 49 A 65 Q 81 a 97 q 113 
1 

(XON) 
II 21 31 41 51 61 71 

STX I 
1 n 

11 
41 61 101 In 141 161 

2 o 0 1 0 1 DC2 18 34 2 50 B 66 R 81 b 98 r 114 
1 11 n 31 41 51 61 n 
3 DC3 

13 43 63 103 113 143 163 

3 0 0 1 1 ETX 3 19 # 35 3 51 C 67 S 83 C 99 S 115 
3 

(XOFF) 
13 13 33 43 53 63 73 

4 14 44 64 104 114 144 164 

4 0 1 0 0 EOT 4 DC4 10 $ 36 4 51 0 68 T 84 d 100 t 116 
4 14 14 34 44 54 64 74 

5 15 45 65 105 115 145 165 

5 0 1 0 1 ENQ 5 NAK 11 % 37 5 53 E 69 U 85 e 101 u 117 
5 15 15 35 45 55 65 75 

6 16 46 66 106 116 146 166 

6 0 1 1 0 ACK 6 SYN 11 & 38 6 54 F 70 V 86 f 101 V 118 
6 16 16 36 46 56 66 76 

7 17 , 47 67 107 117 147 167 

7 0 1 1 1 BEL 7 ETB 13 39 7 55 G 71 W 87 9 103 W 119 
7 17 17 37 47 57 67 77 

10 30 50 70 110 130 150 170 

8 1 0 0 0 BS 8 CAN ,. ( 40 8 56 H 72 X 88 h 104 X 110 
8 18 18 38 48 58 68 78 

11 31 51 71 111 131 151 171 

9 1 0 0 1 HT 9 EM 15 ) 41 9 57 1 73 Y 89 i 105 Y 121 
9 19 19 39 49 59 69 79 

11 31 51 n 111 131 151 171 

10 1 0 1 0 LF 10 SUB 16 * 41 : 58 J 74 Z 90 j 106 I 111 
A lA 1A 3A 4A 5A 6A 7A 

13 33 53 73 113 133 153 

{ 
173 

11 1 0 1 1 VT 11 ESC 17 + 43 ; 59 K 75 [ 91 k 107 113 
8 18 18 38 48 58 68 78 

14 34 54 74 114 134 154 174 

12 1 1 0 0 FF 11 FS 18 44 < 60 L 76 , 
91 1 108 I 114 

C lC 
, 

1C 3C 4C 5C 6C 7C 

15 35 55 75 115 135 155 

} 
175 

13 1 1 0 1 CR 13 GS 19 - 45 = 61 M 77 ] 93 m 109 115 
0 10 10 30 40 50 60 70 

16 36 56 76 116 
A 

136 156 ... 176 

14 1 1 1 0 SO 14 RS 30 46 > 61 N 78 94 n 110 116 
E IE 1E 3E 4E 5E 6E 7E 

17 37 57 77 117 137 157 177 

15 1 I I 1 51 15 US 31 / 47 ? 63 0 79 95 0 111 DEL 121 
F IF 1F 3F 4F - 5F 6F 7F 

1_ ... . I GR CODES I r---C1 CODES-~-t-· ------(DEC SUPPLEMENTAL GRAPHICS)--------I· 

KEY 
ASCII CHARACTER ESC 1/11 COLUMN/ROW 

33 OCTAL 

27 DECIMAL 

1B HEX 
'--_---I.._...J 

LJ-0839 

C- 18 Character Set Tables 



Table C-2 DEC MCS - Supplemental Graphics Set (8-151 

8 9 10 11 12 13 14 15 COLUMN 

1 1 1 1 1 1 '1 1 b8 
b7 BITS 0 0 0 0 1 1 1 1 

0 0 1 1 0 0 , , b6 r-0 1 0 , 0 , 0 , b5 
b4 b3 b2 bl ROW 

200 220 

~ 
240 0 260 , 300 320 , 340 360 

128 DCS '44 160 176 A '92 208 a 224 240 0 0 0 0 0 
BO 90 AO BO CO DO EO FO 

20' 221 24' 26' , 30' 

N 
32' , 34' 36' 

129 PU1 '45 i '6' ± 177 A '93 209 a 225 ii 24' 0 0 0 1 1 
Bl 91 Al B' C, D' E1 F1 

202 222 242 2 262 A 302 , 322 
A 

342 , 362 
'30 PU2 '46 ¢ '62 178 A '94 0 210 a 226 0 242 0 0 1 0 2 
B2 92 A2 B2 C2 02 E2 F2 

203 223 243 3 263 - 303 , 323 a 343 , 363 

'3' STS '47 £ '63 179 A '95 0 211 227 0 243 0 0 1 , 3 
B3 93 A3 B3 C3 03 E3 F3 

204 224 244 264 

A 
304 8 

324 344 A 364 
IND '32 CCH ,4B '64 '80 '96 212 jj 228 0 244 0 , 0 0 4 

84 94 M 84 C4 D4 E4 F4 

205 225 245 265 305 - 325 345 365 
NEL '33 MW 149 :t '65 Jl '8' A '97 0 2'3 ill 229 0 245 0 , 0 , 5 

B5 95 AS B5 C5 D5 E5 F5 

206 226 246 

~ 
266 306 

00 326 346 366 

SSA '34 SPA '50 '66 lB2 IE '98 0 2'4 ee 230 0 246 0 , , 0 6 
86 96 A6 B6 C6 06 '6 F6 

207 227 247 267 

~ 
307 327 347 367 

ESA '35 EPA '5' § '67 '83 '99 CE 2'5 c; 23' (]It 247 0 , , , 7 
87 97 A7 87 C7 07 E7 F7 

2'0 230 250 270 , 310 330 , 350 370 

HTS '36 '52 :-a: '68 '84 E 200 f6 2'6 e 232 f1 248 , 0 0 0 8 
88 98 A8 88 C8 D8 E8 F8 

211 23' 
© 

25' 1 271 , 311 , 33' , 35' , 371 
HTJ '37 153 '69 '85 E 20' U 217 e 233 u 249 , 0 0 , 9 

89 99 A9 89 C9 09 E9 F9 

2'2 232 !! 252 Q 272 

" 3'2 , 332 • 352 , 372 

VTS '38 '54 170 '86 E 202 U 218 234 U 250 , 0 , 0 10 
8A 9A AA BA CA DA EA FA 

213 233 253 273 00 3'3 A 333 353 
A 

373 
PLD '39 CSI '55 « 171 » lB7 E 203 U 219 ir 235 U 25' , 0 , , 11 

BB 9B AB BB CB DB EB FB 

214 234 254 274 , 314 00 334 , 354 374 
PLU '40 ST '56 '72 V4 '88 I 204 U 220 I 236 ·u 252 , , 0 0 12 

BC 9C AC BC CC OC EC FC 

215 235 255 275 , 3'5 
00 335 , 355 oy 375 

RI ,4' OSC '57 173 '/2 'B9 I 205 Y 221 I 237 253 
, , 0 , 13 

BD 9D AD BD CD DD ED FO 

2'6 .!36 256 276 A 3'6 336 • 356 376 
SS2 '42 PM '58 174 '90 I 206 222 I 23B 254 , , , 0 14 

8E 9E AE BE CE DE EE FE 

217 237 257 277 
00 317 337 357 

~ 
377 

SS3 '43 APC 159 175 i- 19' I 207 ft 223 ... 239 255 , , , , 15 
8F 9F AF BF CF OF EF FF 

L I GLCODES r--CO CODES--~' I--·---------(ASCII GRAPHIC 

LJ-OB40 

Character Set Tables C-19 



Table C-3 ISO Latin-1 Character Set (0-7) 

BB 
B7 

B6B5r-____ O_O~------~r_----~+_----~~----~~------~------~r_----~ 

KEY 
r---,----, 

COLUMN ROW ASCII CMARACTE R ESC 
33 OCTAL 

27 DECIMAL 

L....._..J......:"...J HEX 

C- 20 Character Set Tables 



Table C-4 ISO Latin-l Character Set (8-15) 

BB 
87 0 0 

Character Set Tables C- 21 



Table C-5 DEC Special Graphics Character Set 

COLUMN 

0 2 3 4 5 6 7 

BITS B7 0 
B6 

B4 83 B2 81 B5 

o 000 
NUL 

o 0 0 1 

2 o 0 1 

3 o 0 1 1 

4 o 1 o 0 

5 o 1 0 1 

6 o 1 1 0 

7 0 1 1 1 

8 1 000 
BS 

1 o 0 1 
HT 

1 o 1 0 
LF 

1 o 1 1 
VT 

1 1 o 0 
FF 

1 1 o 1 
CR 

, , , 0 SO 

, , , , SI 

KEY ,...---,........., 
ASCII CHARACTER ESC 

!:.i::::::j:.:1 ~~~~L~~i,S DIFFERENCES 

, '11 COLUMN: ROW 

33 OCTAL 

27 DECIMAL 

18 HEX ...... _"'--..... 

C- 22 Character Set Tables 



Bibliography 

MOS Microprocessors and Peripherals 1985 Data Book (Order Number 
04426A) 
Advanced Micro Devices 
901 Thompson Place 
P.O. Box 3453 
Sunnyvale, CA 94088 

8/16-Bit Mu.lti-Chip Microcomputer Data Book 
Hitachi America, Ltd. 
Semiconductor and IC Division 
2210 O'Toole Avenue 
San Jose, CA 95131 
1-408-942-1500 

IBM Personal Computer Seminar Proceedings 
Volume 2, Number 8, October 8, 1984 
IBM Corporation 
Editor, IBM Personal Computer Seminar Proceedings 
4629 
Post Office Box 1328 
Boca Raton, FL 33432 

Microsystem Components Handbook (Publication Number 230843) 
Intel Literature Sales 
P.O. Box 58130 
Santa Clara, CA 95052-8130 
1-800-548-4725 

Bibliography 1 



ServerlRedirector File Sharing Protocol (Publication Number 136329-001) 
Microsoft Corporation and Intel Corporation 
Intel Literature Sales 
P.O. Box 58130 
Santa Clara, CA 95052-8130 
1-800-548-4725 

MS-Windows Software Development Kit Programmer's Reference 
MS-Windows Software Development Kit Programmer's Utility Guide 
MS-Windows Software Development Kit Programming Guide 
Microsoft Corporation 
16011 NE 36th Way 
Box 97017 
Redmond, W A 98073-9717 

8-Bit Microprocessor & Peripheral Data 
Motorola, Inc. 
MOS Integrated Circuits Group 
Microprocessor Division 
3501 Ed Bluestein Blvd. 
Austin, TX 78721 
1-512-928-6800 

Series 8000 Microprocessor Family Handbook 
National Semiconductor Corporation 
2900 Semiconductor Drive 
Santa Clara, CA 95051 
1-408-737-5000 

Microcomputer Products 
NEC Electronics 
401 Ellis Street 
Mountain View, CA 94043 
1-415-960-6000 

Microprocessor Data Manual 1986 
Signetics Corporation 
811 E. Arques Avenue 
P.O. Box 3409 
Sunnyvale, CA 94088-3409 
1-408-991-2000 

1984 Data Communications Products Handbook 
1986 Storage Management Products Handbook 
Western Digital Corporation 
Marketing Communications Manager 
2445 McCabe Way 
Irvine, CA 92714 
1-714-863-0102 

2 Bibliography 



DECnet-DOS Programmer's Reference Manual (AA-EB46B-TV) 

DECnet-DOS User's Guide (AA-EB45B-TV) 

DECnet-VAXmate Programmer's Reference Manual (AA-GV34A-TH) 

DECnet-VAXmate User's Guide (AA-GV36A-TH) 

DECnet Digital Network Architecture Phase IV General Description 
(AA-N149A-TC) 

DECnet Digital Network Architecture Phase IV Control Functional 
Specification (AA-K182A-TK) 

DECnet Digital Network Architecture Phase IV Routing Functional 
Specification (AA-X435A-TK) 

DECnet Digital Network Architecture Phase IV Maintenance Operations 
Functional Specification (AA-X437A-TK) 

DECnet Digital Network Architecture Phase IV Network Management 
Functional Specification (AA-X436A-TK) 

DECnet Digital Network Architecture Phase IV Data Access Protocol (flAP) 
Functional Specification (AA-Kl77A-TK) 

The Ethernet, A Local Area Network, Datalink Layer and Physical Layer 
Specification, Version 2.0 (AA-K759B-TK) 
Digital Equipment Corporation, Intel Corporation, Xerox Corporation 
November 1982 

VT220 Series Programmer's Reference Manual (EK-VT220-RM) 

VT240 Series Programmer's Reference Manual (EK-VT240-RM) 

VAXmate User's Guide (Q6A93-GZ) 

To order DIGITAL documentation: 
DIGITAL EQUIPMENT CORPORATION 
P.O. Box CS2008 
Nashua, New Hampshire 03061 

Bibliography 3 





802.3 Compatible mode 18-6 

80287 error interrupt 15-151 

8254 interval timer 6-1 
block diagram 6-1 
registers 6-8 

8259A interrupt controller 
initialization command words 3-5 
initialization sequence 3-5 
input/output ports 3-3 

A 

operation command words 3-11 
registers 3-3 

Acknowledge 
LK250 keyboard responses 8-31 

Active cycle 
DMA controller 4-3 

Add name for session 18-101 

Add node for session 18-120 

Address generation 
DMA controller 4-5 

Address map 
input/output 2-4 

Alarms 5-12 

Alias I/O port addresses 13-5 

Index 

Alternate status register 12-25 

Anomalies 
keyboard processing 17-11 

ANSI Character Set 17-74 

ANSI functions 
not supported 17-79 

ANSI support 
inside a window 17-79 

ANSLSYS 16-5 
Cursor control functions 16-5 
Erase functions 16-7 
installing 16-5 
Keyboard key reassignment func

tion 16-12 
Reset mode function 16-11 
Set graphics rendition function 

16-8 
Set mode function 16-10 

AnsiToOem 17-55 

Asynchronous 
communications 9-1 

interrupt 15-70 
memory cycles 13-40 
notification routine 18-90 
requests 18-89 
serial communications interface 

17-62 
serial mouse interface 10-2 

Index 1 



Attribute code 7-6 

Auto-initialize 
DMA controller 4-4 

Automatic LED control 15-108 

Available (IRQ15) interrupt 15-151 

B 

BACKSPACE 
to abort compose sequence 17-5 

Base and current 
address register 4-7 
vvord register 4-8 

Basic interrupt 15-132 

Baud rate 9-16 
mouse 10-2 

Beep function 6-18 

Begin virtual mode function 15-96 

Bell sound 6-18 

Bits 
DMA controller 

vvrite all 4-11 
vvrite single mask 4-11 

Block transfer mode 
DMA controller 4-3 

Boot block, DIGITAL hard disk 
15-134 

Bootstrap interrupt 15-133 

Buffer overrun 
LK250 keyboard responses 8-30 

Bus 13-3 
16-bit expansion 2-9 
16-bit local 2-9 
8-bit expansion 2-9 
arbitration 13-3 
master mode 13-40 
slave mode 13-40 
timing and structure 2-9 

2 Index 

Button position 10-3 

c 

C programming language 
subroutines A-I 

Call function for session 18-105 
Call-back 

for datalink 
line state change 18-9 
user 18-8 

for LAT 18-58 

Cancel 
alarm function 15-140 
function for session 18-97 

Cascade mode 
DMA controller 4-4 

Case conversion tables 16-29 

Cassette input/output interrupt 15-88 

Change register 11-6 

Character 
code 7-6 
count 17-77 
count function 15-114 
pattern 7-9 
position mapping 7-7 
set provided in the custom font 

17-74 

Check for presence of session 18-96 

ClearCommBreak 17-65 

Clock tick interrupt 15-5 

Close 
datalink portal 18-20 
device function 15-89 
LAT session 18-67 

CloseComm 17-64 

CloseLat 17-68 

CMOS configuration 
updated 14-10 



CMOS RAM 
shutdown byte read during hard 

reset 14-13 

Coax transceiver interface 13-2 

Color 
map functions 15-32 
select register 7-39 

COMlIserial interrupt 15-6 

COM2/modem interrupt 15-6 

Combination keys 15-107 
break 15-108 
extended self-test 15-108 
pause 15-108 
print screen 15-108 
system request key 15-107 
system reset 15-107 

Commands 
counter-latch, three-channel 

counter and speaker 6-12 
disable keyboard, keyboard

interface controller 8-12 
diskette drive controller 11-19 
enable keyboard, keyboard

interface controller 8-12 
incremental stream mode (mouse) 

10-3 
interface test, keyboard-interface 

controller 8-12 
invoke self-test (mouse) 10-3 
keyboard-interface controller 8-9 
mouse (table) 10-2 
prompt mode (mouse) 10-3 
pulse output port, keyboard-

interface controller 8-12 
read port 1, keyboard-interface 

controller 8-12 
read port 2, keyboard-interface 

controller 8-13 
read test inputs, keyboard

interface controller 8-13 
read-back, three-channel counter 

and speaker 6-13 

read, keyboard-interface controller 
8-10 

self-test 8-12 
vendor reserved function (mouse) 

10-3 
write port 2 8-13 
write status register 8-13 
write, keyboard-interface controller 

8-10 

Command and result register sets 
diskette drive controller 11-20 

Command codes 
disable autorepeat 8-24 
disable key scanning and restore 

to defaults 8-28 
echo 8-26 
enable autorepeat 8-24 
enable key scanning 8-28 
enter DIGITAL extended scan 

code mode 8-23 
exit DIGITAL extended scan code 

mode 8-23 
invalid commands 8-23 
keyboard mode lock 8-25 
keyboard mode unlock 8-25 
LEDs on/off 8-26 
LK250 keyboard 8-22 
request keyboard id 8-23 
resend 8-29 
reserved 8-25, 8-26, 8-29 
reset 8-29 
reset keyboard led 8-24 
restore to defaults 8-28 
set autorepeat delay and rate 8-27 
set keyboard led 8-23 
set keyclick volume 8-24 

Command register 4-9, 10-12, 12-10 
keyboard-interface controller 8-5, 

8-9 

Command state 
diskette drive controller 11-18 

Communications 17-61 

Index 3 



connector signals 9-19 
extended self-test loopback test 

14-10 
full asynchronous parallel 17-61 
full asynchronous serial 17-61 
LAT support 17-62 

Communications functions 
ClearCommBreak 17-65 
CloseComm 17-64 
EscapeCommFunction 17-65 
FlushComm 17-65 
GetCommError 17-66 
GetCommEventMask 17-65 
GetCommState 17-65 
OpenComm 17-63 
ReadComm 17-64 
SetCommBreak 17-65 
SetCommEventMask 17-65 
SetCommState 17-65 
TransmitCommChar 17-64 
WriteComm 17-63 

Compose sequences 16-23, 17-4 
aborting 17-5 
default set 17-5 
handling 17-4 
how recognized 16-23 
pointer table 

format 16-24 
use 16-24 

translation table 
format 16-24 
use 16-24 

two key 17-5 

Configuration list 14-11 
display 14-11 

Console server identify self 18-42 

Constant values 
DMA controller 
programming example 4-15 

Control Panel 17-6 

Control register 11-3 
register A 7 -41 

4 Index 

register B 7-43 
registers 7-3, 7-41, 7-43 

Control signals 
speed indicator 9-17 
speed select 9-17 

Control word register 6-11 

Controller 
functions 13-2 
keyboard-interface 8-1 

Counter and speaker example 6-20 

Counter signals 6-3 

Counter-latch command 
three-channel counter and speaker 

6-12 

CPU 13-3 

Creating keyboard map tables 16-22 

CRT Controller 7-3 

CRTC registers 
data 7-25 
index 7-25 
register RO 7-28 
register Rl 7-28 
register RIO 7-33 
register Rll 7-34 
register R12 7-34 
register R13 7-34 
register R14 7-35 
register R15 7-35 
register R16 7-36 
register R17 7-36 
register R2 7-29 
register R3 7-29 
register R4 7-30 
register R5 7-30 
register R6 7-31 
register R 7 7 -31 
register R8 7-3 
register R9 7-33 

Crystal oscillator 13-4 

CTI - see coax transceiver interface 



13-2 

Ctrl and Alt keys 
Del keys used for soft reset 14-12 
with Home key for diagnostics 

14-10 

Cursor control functions 16-5 

Custom LAT application interface 
17-66 

Cylinder number 
high register 12-8 
low register 12-8 

D 

.DEF files 17-10, 17-72 

ID for LAT 18-55 

Data 
controller 13-3 
link interface 13-1 
structures accessed by LANCE 

13-3 
transfer 13-40 

Data exchange for LAT 18-58 

Data registers 7-39, 11-5, 12-3 
accessing 7-26 
keyboard-interface controller 8-5 

Data structures 
DMA controller 
programming example 4-17 

Data transfers 
DMA controller 4-4 
rate register 11-6 

Datagrams 18-113 
defined 18-83 

Datalink communication block (DCB) 
18-7 

functions 18-11 
close a portal 18-20 
deallocate buffer 18-26 

disable a channel 18-38 
disable multicast address 18-22 
enable a channel 18-37 
enable multicast address 18-21 
external loopback 18-41 
initialization 18-15 
MOP start and send system ID 
18-45 
MOP stop 18-45 
network boot request 18-36 
open a portal 18-17 
read channel status 18-27 
read counters 18-32 
read DECparm address 18-39 
read portal list 18-29 
request transmit buffer 18-25 
set DECparm string address 
18-40 
transmit 18-23 

overview 18-5 
parameters 18-16 
port driver 18-5 
program example 18-46 
read portal status 18-30 
receive 18-10 
return codes 18-12 
transmit 18-10 
user call-back routines 18-8 

Date and time structure 16-3, 16-4 

Dead diacritical keys 16-24, 17-4 
how recognized 16-24 

Deallocate buffer for datlink 18-26 

DEC private RAM 
powerup test checks 14-8 

decfuncadd 18-120 

decfunccheck 18-119 

decfuncdelall 18-126 

decfuncdelname 18-122 

decfuncdelnum 18-121 

decfuncreadindex 18-125 

Index 5 



decfuncreadname 18-124 

decfuncreadnum 18-123 

DecGetKbdCountry 17-8 

DECnet DOS session level interface 
13-1 

DECparm address string 18-40 

DecSetAutorep 17-7 

DecSetComposeState 17-5, 17-9 

DecSetKClickVol 17-7 

DecSetLockState 17-6 

DecSetNumlockMode 17-10 

DECWIN.H 17-85 

Delete 
entry given node name for session 

18-122 
entry given node number for 

session 18-121 
name for session 18-102 
node entries for session 18-126 

Demand transfer mode 
DMA controller 4-3 

Device is busy function 15-98 

Diagnose command 12-21 

Diagnostic initialization procedure 
14-12 

hardware initialized 14-12 
memory sized 14-12 

Diagnostic loopback 9-10 

Diagnostics 
extended self-test 14-10 
hard reset 14-13 
keyboard-interface controller 8-4, 

8-12 
powerup test 14-1, 14-8 
processor board tests 14-14 
ROM 14-1, 14-8 
ROM extended self-test 14-10 
soft reset 14-12 

6 Index 

DIGITAL 
function check for session 18-119 
hard disk boot block 15-134 
input register 12-26 
session control block (DSCB) 

18-85, 18-88 
session functions 18-118 

DIGITAL extended functions 
extended codes and functions 

15-116 
set modem control 15-85 

DIGITAL extension functions 
character count 15-114 
extended mode 15-77 
key notification 15-111 
keyboard buffer 15-115 
keyboard table pointers 15-120 
parallel port retry 15-131 
printer type 15-129 
redirect parallel printer 15-127 
request keyboard id 15-118 
retry on timeout error 15-86 
return days-since-read counter 

15-140 
return DIGITAL configuration 

word 15-99 
send break 15-84 
send to keyboard 15-119 
set baud rate 15-87 

DIGITAL extension interrupts 
basic 15-132 
bootstrap 15-133 
local area network controller 

(LANCE) 15-149 
mouse port 15-150 

Direct memory access and LANCE 
13-3 

Disable 
autorepeat keyboard-interface con

troller command codes 8-24 
channel for datalink 18-38 
key scanning and restore to 



defaults 8-28 
keyboard command 8-12 
multicast address for datalink 

18-22 

Disk input/output UfO) interrupt 
15-38 

hard disk errors 15-40 
hard disk functions 15-40 
hard disk parameter tables 15-41 

Disk parameters 16-14 

Diskette 
errors 15-59 
functions 15-59 
parameter tables 15-59 

interrupt 15-143 

Diskette drive controller 
change register 11-6 
command and result register state 

11-20 
command register 11-7 
command state 11-18 

commands 11-19 
control register 11-3 
D 11-17 
data register 11-5 
data transfer rate registers 11-6 
DMA mode 11-1 
DTL 11-16 
EOT 11-16 
execution state 11-20 
extended self-test loopback test 

14-10 
GPL 11-16 
H 11-15 
head/unit select register 11-8 
hlt/nd 11-15 
internal registers 11-7 
main status register 11-4 
N 11-16 
NCN 11-17 
operational states 11-18 
PCN 11-17 
programming 11-18 

programming example 11-27 
R 11-15 
register sets for 

format track 11-24 
read data 11-21 
read deleted data 11-22 
read id 11-23 
read track 11-23 
recalibrate 11-26 
scan equal 11-24 
scan high or equal 11-25 
scan low or equal 11-25 
seek 11-27 
sense drive status 11-27 
sense interrupt status 11-26 
specify 11-26 
write data 11-21 
write deleted data 11-22 

registers 11-2 
result state 11-20 
result state 

invalid commands 11-20 
SC 11-16 
srt/hut 11-14 
status register 0 11-9 
status register 1 11-10 
status register 2 11-12 
status register 3 11-13 
STP 11-17 

Diskettes 
extended self-test use of 14-10 

DispatchMessage 17-4 

Display 
on VAXmate 17-73 
processor 7-3 

Divisor latches 9-15 

DLL.EXE 18-5 

dll close 18-20 

dll deallocate 18-26 

dll disable chan 18-38 - -
dll disable mul 18-22 - -

Index 7 



dll enable chan 18-37 - -
dll enable mul 18-21 - -
dll_ ext _loopback 18-41 

dll init 18-15 

dll network boot 18-36 - -
dll_ open 18-17 

dllJeadecparm 18-39 

dll read chan 18-27 - -
dll read counters 18-32 - -
dllJead _plist 18-29 

dllJead _portal 18-30 

dllJequest_xmit 18-25 

dll_ setdecparm 18-40 

dll transmit 18-23 

DMA channel programming exam
ples for 

disabling 4-22 

DMA controller 
active cycle 4-3 
address generation 4-5 
auto-initialize 4-4 
base and current address register 

4-7 
base and current word register 4-8 
block transfer mode 4-3 
cascade mode 4-4 
command register 4-9 
data transfer 4-4 
demand transfer mode 4-3 
idle cycle 4-3 
mode 4-12 
modes and restrictions 4-1 
operation 4-2 
priorities 4-5 
programming example 4-15 

data structures 4-17 
disabling DMA channel 4-22 
initializing 4-18 
opening DMA channel 4-19 

8 Index 

preparing DMA channel 4-20 
registers 4-7 
request register 4-13 
single transfer mode 4·3 
states 4-2 
status register 4-11 
temporary register 4-14 
write all mask bits 4-11 
write single mask bit 4-11 

DMA mode 11-1 

DRQ 13-40 

E 

Echo 
keyboard-interface controller com

mand codes 8-26 
LK250 keyboard responses 8-30 

Edit keypad 17-3 

Enable 
autorepeat 8-24 
channel for datalink 18-37 
key scanning 8·28 
keyboard command 8·12 
multicast address for datalink 

18-21 

Enable/disable 
256 character graphic font func

tion 15-30 
additional key codes 17-77 

End-of-interrupt command 
issuing 3-26 

Enter 
DEC Mode 17-76 
DIGITAL extended scan code 

mode 8·23 

Erase functions 16·7 

Error handling 
keyboard-interface controller 8-14 
LK250 keyboard 8-31 



Error register 12-5 

EscapeCommFunction 17-65 

Ethernet 
CRC bits 13-3 
preamble 13-3 
sync pattern 13-3 
transmission 13-8 

Execute controller internal diag
nostics function 15-56 

Execution state 
diskette drive controller 11-20 

Exit 
DEC Mode 17-76 
DIGITAL extended scan code 

mode 8-23 

Expansion box 
bus connectors 2-11 
operating ranges 2-10 
slot power ratings 2-10 
technical specifications 2-10 

Extended 
codes and functions 15-116 
mode function 15-77 
scan code mode 17-2 

Extended keyboard functions 
enable/disable additional key codes 

17-77 
enter DEC mode 17-76 
exit DEC mode 17-76 

Extended keyboard functions (not 
supported) 

character count 17-77 
get/set table pointer 17-78 
key notification 17-77 
keyboard buffer 17-77 
request keyboard id 17-78 

Extended self-test 
CMOS configuration update 14-10 
diskette drive controller 14-10 
double-sided, high-intensity disks 

used in 14-10 

firmware diagnostics 14-10 
hardware initialization 14-10 
horizontal bar 14-10 
loopback test 

on communications 14-10 
on mouse serial ports 14-10 
on printer 14-10 

memory sized 14-10 
real-time clock 14-10 
video failures 14-10 

Externalloopback 18-41 

F 

Fetch next character from keyboard 
17-75 

File structure 
LCOUNTRY 16-27 

Firmware diagnostics 
error codes 14-8 
error values 14-8 
extended self-tests 14-10 
horizontal bar 14-8, 14-10 
initialization procedure 14-8 
ROM BIOS and 14-8 
self-tests 14-8 

Fixed disk register 12-25 

Fixed priority 
DMA controller 4-5 

Floppy disk interrupt 15-7 

Flow control for LAT 18-58 

FlushComm 17-65 

Focus 
changing for repeating key 17-11 

FONT 16-15 

Font file structure 
FONT. COM 16-17 
GRAFTABL.COM 16-18 

Font files 

Index 9 



loading 16-19 

Font RAM 
accessing 7-9 
color map support function 15-31 
functions 15-31 
programming 7-9 

Font sizes 
terminal emulation 17-73 

FONT. COM 
affect on KEYB.COM 16-16 
affect on SORT.EXE 16-16 
font file structure 16-17 

Fonts 
description 16-16 

Format track 15-66 
command 12-17 
function 15-47 
diskette drive controller 

register sets 11-24 

Functional description of network 
hardware interface 13-2 

Functions 
datalink 18-11 
interrupt vector A-12 
LAT 18-64 
retrieving characters from a ring 

buffer A-16 
session 18-91 

DIGITAL-specific 18-118 
storing characters in a ring buffer 

A-16 
support for example programs 

A-18 

GDI 17-2 
printer support 17-83 

Get 
Country Code Function 16-3 
current date and time for 5MB 

18-128 
MS-DOS OEM Number Function 

16-3 

10 Index 

next LAT service name 18-70 
status for LAT lS-65 

Get/SetTable Pointer 17-78 

GetCommError 17-66 

GetCommEventMask 17-65 

GetCommState 17-65 

GetLatService 17-71 

GetLatStatus 17-69 

GetMessage 17-4 

GRAFTABL 16-16 

GRAFTABL.COM 
font file structure 16-1S 

Graphics 

H 

character table pointer interrupt 
15-145 

device interface 17-2 
format memory maps 7-10 
mode 7-10 

Hangup for session 18-10S 

Hard disk 
boot block, DIGITAL 15-134 
interrupt 15-151 
parameter tables interrupt 15-146 
reset function 15-53 
types 16-13 

Hard disk controller 
alternate status register 12-25 
command register 12-10 
cylinder number high register 12·8 
cylinder number low register 12-S 
data register 12-3 
diagnose command 12-21 
DIGITAL input register 12-26 
error register 12-5 
features 12-1 
fixed disk register 12-25 



format track command 12-17 
programming example 12-27 
read sector command 12-13 
read verify command 12-19 
registers 12-1 
restore command 12-11 
SDH register 12-9 
sector count register 12-7 
sector interleave 12-18 
sector number register 12-7 
seek command 12-12 
set parameters command 12-22 
status register 12-23 
write precompensation register 

12-4 
write sector command 12-15 

Hard reset 14-13 
causes 14-13 
shutdown byte 14-13 

Hardware 
extended self-test 14-10 
initializing 14-8 
retriggable one-shot 6-4 
starting with Ctrl/Alt/Del 14-12 
system tests at startup 14-1 
triggered strobe 6-7 

Hardware interrupts 
80287 error 15-151 
available (lRQ15) 15-151 
clock tick 15-5 
COMlIserial 15-6 
COM2/modem 15-6 
floppy disk 15-7 
hard disk 15-151 
keyboard 15-5 
local area network controller 

(LANCE) interrupt 15-149 
mouse port 15-150 
nonmaskable interrupt 15-3, 15-76 
real-time clock 15-148 
redirect to interrupt OAH 15-148 
serial printer port 15-150 

I 

110 cycle, wait states introduced by 
LANCE 13-40 

ICONEDIT.EXE 17-83 

Icons 
unique 17-83 

Idle cycle 
DMA controller 4-3 

IEEE 802.3 specification 13-2, 13-4 
10BASE2 specifications 13-40 

Illogical keyboard messages 17-12 

In-service register 3-16 

Include files 
LK250 keyboard A-I0 
ring buffer control structure A-II 
structure declaration A-9 

Incremental stream mode command 
10-3 

Index register 
accessing 7-26 

Industry-standard functions 
begin virtual mode 15-96 
cancel alarm 15-140 
close device 15-89 
device is busy 15-98 
diskette 

errors 15-59 
functions 15-59 
parameter tables 15-59 

enable/disable 256 character 
graphic font 15-30 

execute controller internal diag
nostics 15-56 

font RAM and color map support 
15-31 

format a track 15-47, 15-66 
hard disk reset 15-53 
initialize 

Index 11 



asynchronous port 15-72 
diskette subsystem 15-61 
drive characteristics 15-49 
entire disk subsystem 15-42 
printer 15-125 

interrupt completion handler 15-98 
keyboard input 15-109 
keyboard state 15-11 0 
keyboard status 15-109 
move a block of memory 15-93 
open device 15-89 
read 

character and attribute at 
cursor position 15-19 
current video state 15-27 
cursor position 15-14 
long 15-50 
long 256 byte sector 15-58 
one or more disk sectors 15-44 
one or more track sectors 15-63 
pixel 15-24 
real-time clock 15-137 
system clock 15-136 

recalibrate drive 15-55 
receive character 15-74 
return 

asynchronous port status 15-75 
change line status 15-68 
current drive parameters 15-48 
drive type 15-57, 15-67 
printer status 15-126 
RTC date 15-138 
size above one megabyte 15-95 
status code of last 110 request 
15-43, 15-62 

seek to specific cylinder 15-52 
service system request key 15-91 
set 

a wait interval 15-90 
alarm 15-139 
color palette 15-22 
cursor position 15-13 
cursor type 15-12 
page 15-16 

12 Index 

real-time clock 15-138 
RTC date 15-139 
system clock 15-136 

termination 15-90 
test drive ready 15-54 
transmit character 15-73,15-124 
TTY write string 15-28 
verify one or more disk sectors 

15-46 
verify one or more track sectors 

15-65 
wait (no return to user) 15-92 
write 

character and attribute at 
cursor position 15-20 
character at cursor position 
15-21 
character using terminal emula
tion 15-25 
long 15-51 
one or more disk sectors 15-45 
one or more track sectors 15-64 
pixel 15-23 

Industry-standard functions with 
DIGITAL extensions 

set drive find media type for 
format 15-69 

set video mode 15-10 

Industry-standard interrupts 
80287 error 15-151 
available (lRQ15) 15-151 
diskette parameter tables 15-143 
floppy disk 15-7 
hard disk 15-151 
hard disk parameter tables 15-146 
keyboard break 15-141 
nonmaskable interrupt 15-3, 15-76 
print screen 15-4 
read configuration 15-35 
read light-pen position 15-15 
real-time clock 15-148 
redirect to interrupt OAH 15-148 
return memory size 15-37 



revector of interrupt 13H 15-145 
RTC alarm 15-148 
serial printer port 15-150 
timer tick 15-141 
video parameters 15-142 

Industry-standard interrupts with 
DIGITAL extensions 

asynchronous communications 
15-70 

cassette input/output 15-88 
clock tick 15-5 
COMlIserial 15-6 
COM2/modem 15-6 
disk input/output (110) 15-38 
graphics character table pointer 

15-145 
keyboard 15-5 
keyboard input 15-101 
printer output 15-123 
video input/output 15-8 
time-of-day 15-135 

Initialization for datalink 18-15 

Initialize 
asynchronous port 15-72 
diskette subsystem 15-61 
drive characteristics 15-49 
entire disk subsystem 15-42 
printer 15-125 

Input/output registers 
video processor 7-22 

InquireLatServices 17-70 

Installing 
ANSI.SYS 16-5 
options, extended self-test 14-10 

INT 11H support 17-82 

INT 12H support 17-82 

INT 15H support 17-83 

Interface 
signals, monitor 7-44 
test command, keyboard-interface 

controller 8-12 

Internal registers 
diskette drive controller 

C 11-15 
command 11-7 
D 11-17 
DTL 11-16 
EOT 11-16 
GPL 11-16 
H 11-15 
head/unit select 11-8 
hlt/nd 11-15 
N 11-16 
NCN 11-17 
PCN 11-17 
R 11-15 
SC 11-16 
srt/hut 11-14 
status register 0 11-9 
status register 1 11-10 
status register 2 11-12 
status register 3 11-13 
STP 11-17 

International support 
FONT 16-15 
GRAFTABL 16-16 

Interrupt 
completion handler function 15-98 
enable register 9-4 
identification register 9-6 
line status 9-10 
modem status 9-10 
on terminal count 

three-channel counter and 
speaker mode 6-4 

Interrupt 
2A 18-83, 18-91 
6A 18-64 
6D 18-11 

Interrupt 21H 
function 30H 16-3 
function 38H 16-3 

Interrupt 

Index 13 



address map 2-6 
controller register, accessing 3-4 
controllers. programming example 

3-21 
line, IRQ10 13-40 
processing 3-18 
request lines 3-2 
request register 3-16 

Invalid commands 
keyboard-interface controller com

mand codes 8-23 

Invoke self-test command 10-3 

J 

Joystick support function 15-91 

Jumpers 
processor board testing 14-14 

K 

Kernel 17-2 

Key buffering notification enabled 
15-113 

Key combinations 15-107 
break 15-108 
extended self-test 15-108 
pause 15-108 
print screen 15-108 
system request key 15-107 
system reset 15-107 

Key mappings 
LK25017-13 

Key notification 17-77 
enabled 15-112 
function 15-111 

KEYB.COM. 16-19 
how affected by FONT. COM 16-16 

Keyboard 
break interrupt 15-141 

14 Index 

buffer interface 8-1 
buffer function 15-115 
driver 17-2 
illogical messages 17-12 
input function 15-109 
input interrupt 15-101 
interface lines 8-12 
interrupt 15-5 
key reassignment function 16-12 
layout, LK250 15-103 
LEDs 17-4 
LK250 17-2, 8-1 
map file structure 16-25 
map tables 

creating 16-22 
MS-Windows extensions 17-5 
processing anomalies 17-11 
scan codes 15-104 
setting user preferences 17-6 
state function 15-110 
status function 15-109 
table pointers function 15-120 
translation 15-121 

Keyboard extensions 
DecGetKbdCountry 17-8 
DecSetAutorep 17-7 
DecSetClickVol 17-7 
DecSetComposeState 17-9 
DecSetLockState 17-6 
DecSetNumlockMode 17-10 
enable/disable autorepeat 17-6 
return keyboard nationality 17-6 
select compose processing 17-6 
select Numlock processing 17-6 
set keyclick volume 17-6 
set Shift key 17-6 

Keyboard handling 
inside a window 17-75 
outside a window 17-78 

Keyboard mode 
lock 8-25 
toggling 17-4 
unlock 8-25 

Keyboard remapping 16-19 



Keyboard-interface controller 8-1 
command byte bit definitions 8-10 
command codes 

disable autorepeat 8-24 
disable key scanning and restore 
to defaults 8-28 
echo 8-26 
enable autorepeat 8-24 
enable key scanning 8-28 
enter DIGITAL extended scan 
code mode 8-23 
exit DIGITAL extended scan 
code mode 8-23 
invalid commands 8-23 
keyboard mode lock 8-25 
keyboard mode unlock 8-25 
LEDs on/off 8-26 
request keyboard id 8-23 
resend 8-29 
reserved 8-25, 8-26, 8-29 
reset 8-29 
reset keyboard led 8-24 
restore to defaults 8-26 
set autorepeat delay and rate 
8-27 
set keyboard led 8-23 
set keyclick volume 8-24 

command register 8-5, 8-9 
commands 8-9 
data registers 8-5 
diagnostics 8-4 
disable keyboard 8-12 
enable keyboard 8-12 
error handling 8-14 
interface test 8-12 
keyboard responses 

acknowledge 8-31 
buffer overrun 8-30 
echo 8-30 
release prefix 8-31 
resend 8-31 
self-test failure 8-31 
self-test success 8-30 

physical interface 

to the CPU 8-1 
to the keyboard 8-1 

port bit definitions 8-3 
pulse output port 8-13 
read port 1 8-12 
read port 2 8-13 
read test inputs 8-13 
self-test 8-12 
status register 8-6 
write port 2 8-13 
write status register 8-13 

Keypad 
edit 17-3 
numeric 17-3 

Keys 
Numlock 17-3 
reserved under MS-Windows 17-5 

L 

LANCE 
broadcast address 13-22 
buffer descriptors, see LANCE 

message descriptors 13-27 
buffer management 13-17 
control and status registers 13-3 
control register 13-3 
CRC 13-22 
CSRO 13-5, 13-6, 13-7, 13-8, 13-18 
CSRO-CSR3 13-5 
CSR1 13-4, 13-5, 13-6, 13-7, 13-13 
CSR2 13-4, 13-5, 13-6, 13-7, 13-14 
CSR3 13-4, 13-6, 13-7, 13-15 
CSRs 13-5 
data buffers 13-3, 13-4 
data chaining 13-27 
data structures 13-3 
descriptor entry 13-27 
descriptor rings 13-4 
Ethernet data stream 13-27 
initialization block 13-3, 13-18, 

13-27 

Index 15 



base address 13-18 
mode 13-19 

logical address filter field 13-22 
logical address mask 13-4 
message descriptors 13-27 
mode of operation 13-4 
physical address field 13-19 
physical address mask 13-4 
polling 13-27 
programming 13-3 
programming sequence 13-4 
receive and transmit descriptor 

rings 13-3, 13-4, 13-28 
location of 13-4 

number of entries 13-4 
receive descriptor ring pointer 

field 13-23, 13-24 
receive descriptor rings 
receive message descriptor 1, 

rmd1 13-30. 13-27 
receive mode 13-3 
register address port 13-5, 13-7 
register data port 13-5, 13-6 
RMD213-32 
RMD3 13-33 
status register 13-3 
TMDO 13-34 
TMD1 13-35 
TMD213-37 
TMD3 13-38 
transmit 

descriptor ring pointer 13-25 
message descriptors 13-27 
mode 13-3 

LANCE - see Local Area Network 
Controller 13-2 

LANCE interrupt 15-149 
LAT 

ID switch 18-55 
IG switch 18-56 
IR switch 18-56 
call-back routine 18-58. 18-60 
closing a session 18-58 
command line 18-555 

16 Index 

custom application interface 17-66 
data exchange 18-58 
flow control 18-58 
functions 18-64 

close session 18-67 
get next service name 18-70 
get status 18-65 
open session 18-66 
read data 18-68 
send break signal 18-72 
send data 18-69 
service table reset 18-71 

overview 18-54 
program example 18-73 
service directory 18-56 
session control block 18-59 
session start 18-57 
session status word 18-63 
slots 18-57 

LAT control blocks 17-62 

LA T functions 
CloseLat 17-68 
GetLatService 17-71 
GetLatStatus 17-69 
InquireLatServices 17-70 
OpenLat 17-67 
ReadLat 17-68 
SendLatBreak 17-70 
WriteLat 17-69 

LAT support 17-62 

Latches, divisor 9-15 

LCB 17-62 
number available 17-62 

LCOUNTRY 16-27 
file structure 16-27 

LEDs 17-4 
automatic control 15-108 
color indications 14-8 
during powerup test 14-8 
110 board 14-8 
memory board option 14-8 



processor board 14-8 
supported 17-4 

LEDs on/off 
keyboard-interface controller com

mand codes 8-26 

Line 
control register 9-7 
LAT state change call-back 18-9 
status interrupt 9-10 
status register 9-11 

Listen for session 18-107 

LK250 keyboard 8-1, 17-2 
command codes 8-22 
control functions 8-3 
error handling 8-31 
key mappings 17-13 
layout 15-103 
logical interface 8-2 
pass-through mode 8-2 
physical interface 8-2 
programming example 8-46 
responses 8-30 

acknowledge 8-31 
buffer overrun 8-30 
echo 8-30 
release prefix 8-31 
resend 8-31 
self-test failure 8-31 
self-test success 8-30 

scan codes 8-15 
and industry-standard equivalent 
values 8-17 
translated but not used 8-21 

system powerup 8-2 
translate mode 8-2 
U.S. and foreign legends 8-31 

Loadable device drivers 
ANSI.SYS 16-5 

Loading font files 16-19 

Local area network controller 13-2 
(LANCEI interrupt 15-149 

Local Area Transport 

see LAT 18-54 

Loop services 18-42 

Loopbacks 
diagnostic 9-10 

M 

Main status register 11-4 

Maintenance operations protocol 
console server identify self 18-42 
loop services 18-42 
network boot request 18-43 
remote read counters 18-43 

Mapping 
asynch serial comm devices to 

LAT services 17-62 
character position 7-7 
input/output 2-4 
interrupt address 2-6 
memory 2-3 

Memory 
sizing 

and initializing 14-8 
during extended self-test 14-10 
without initializing 14-12 

use in real mode 14-8 
use in virtual protected mode 14-8 
three-channel counter and speaker 

6-3 

Memory map 
physical 2-3 

Messages 
illogical keyboard 17-12 

Mode register, 4-12 
1 10-10 
2 10-11 

Mode-dependent values 
set cursor type function 15-12 

Modem 
connector signals 9-21 

Index 17 



control register 9-9 
programming exceptions 9-17 
status interrupt 9-10 
status register 9-13 

Monitor 
interface signals 7-44 
specifications 7-44 

MOP 18-42 
start and send system ID 18-45 
stop 18-45 

Mouse 10-1, 17-61 
asynchronous serial interface 10-2 
baud rates 10-2, 10-11 
button position 10-3 
commands (table) 10-2 
communication 10-2 
data bytes 10-2 
encoders 10-1 
extended self-test loopback test 

serial ports 14-10 
incremental stream mode com-

mand 10-3 
invoke self-test command 10-3 
movement 10-3 
port interrupt 15-150 
position 10-3 
programming example 10-14 
prompt mode command 10-3 
reports 10-4 - 10-7 
request mouse position command 

10-3 
self-test 10-3 
serial interface 10-2, 10-8 

command register 10-12 
mode register 1 10-10 
mode register 2 10-11 
status register 10-9 

serial interface registers 10-8 
transmit holding register and 
receive buffer 10-8 

Signetics 
SCN2261 enhanced 
programmable communications 
interface 10-2, 10-8 

18 Index 

transmit holding register and re
ceive buffer 10-8 

vendor reserved function command 
10-3 

Mouse reports 
position (byte 1) 10-4 
position (byte 2) 10-5 
position (byte 3) 10-5 
self-test (byte 1) 10-6 
self-test (byte 2) 10-6, 10-7 
self-test (byte 3) 10-7 

Move a block of memory 15-93 

Movement 10-3 

MS-DOS Date and Time Structure 
16-3, 16-4 

MS-Network 
compatible session services 18-92 
session level interface 13-1 

MS-Windows 
applications programming inter

face 17-2 
entry points 

AnsiToOem 17-55 
OemToAnsi 17-58 

Mulicast address 
enable 18-21 
disable 18-22 
format 18-7 

Multiplex messages 18-6 

N 

Name status for session 18-103 

Network 
addressing 18-90 
boot request 18-36, 18-43 
hardware interface 13-1 
interconnect, CSR 13-17 

Network interface 13-2 
CSR 13-5 
external interconnect 13-40 



physical I/O ports 13-5 
register description 13-5 
system bus interconnect 13-40 

Network software 18-1 
components 18-2 
data link 18-5 
overview 18-2 

NI - see Network Interface 13-2 

NI CSR 13-40 

No return to user function 15-92 

Nonmaskable interrupt 15-3, 15-76 

Normal keyboard functions 
fetch next character input from 

keyboard 17-75 
return current shift status 17-76 
test for character available 17-75 

Not supported functions 
joystick support 15-91 

Numeric keypad 17-3 

Numlock 
toggling numeric keypad 17-3 

o 

OemToAnsi 17-58 

Open 
datalink portal 18-17 
device function 15-89 
LAT session 18-66 

OpenComm 17-63 

OpenLat 17-67 

Operational states 
diskette drive controller 11-18 

p 

Parallel 
bit stream, converted by LANCE 

13-3 

port retry function 15-131 

Parameters 
disk 16-14 

Pass-through mode 
keyboard 8-2 

Peripheral interrupt controller 
initializing 3-24 

Pointer 
diskette parameter tables 15-143 
graphics character table pointer 

15-145 
hard disk parameter tables 15-146 
video parameters 15-142 

Poll command 3-17 

Port driver 18-5 

Portal 
close 18-21 
defined 18-5 
read list 18-29 
read status 18-30 

Powerup test 14-1, 14·8 
LEDs 14-8 
RAM checks 14-8 
self-test error codes 14-8, 14-10 
sequence 14-1 

Print screen 15-4 

Printer 
connector signals 9-20 
extended self-test loopback test 

14-10 
GDI support 17-83 
output interrupt 15-123 
to Host mode C-12 
type function 15-129 

Priorities 
DMA controller 4-5 
rotation 3-13 

Processor board 
testing 14-14 

Processor modes 
real mode 14-8 

Index 19 



virtual protected mode 14-8 

Programming 
diskette drive controller 11-18 

Programming examples 
counter and speaker 6-20 
datalink 18-46 
diskette drive controller 11-27 
DMA controller 4-15 

constant values 4-15 
data structures 4-17 
disabling DMA channel 4-22 
initializing 4-18 
opening DMA channel 4-19 
preparing DMA channel 4-20 

interrupt controllers 3-21 
LAT 18-73 
LK250 keyboard 8-46 
mouse 10-14 
real-time clock 5-15 
three-channel counter/timer 6-16 
UART (8250A) 9-22 
video controller 7-45 
modem control 9-17 

Prompt mode command 10-3 

Pulse output port command 
keyboard-interface controller 8-13 

R 

RAM 
system 

powerup test checks 14-8 

Rate generator 6-5 

Read 
channel status for datalink 18-27 
character and attribute at cursor 

position function 15-19 
command 8-10 
configuration interrupt 15-35 
current video state function 15-27 
cursor position function 15-14 

20 Index 

data command 11-21 
data for LAT 18-68 
datalink counters 18-32 
DECparm string address 18-39 
deleted data command 11-22 
id command 11-23 
light-pen position function 15-15 
long 256 byte sector 15-58 
long function 15-50 
node entry given index for session 

18-125 
node entry given node name for 

session 18-124 
node entry given node number for 

session 18-123 
one or more disk sectors function 

15-44 
one or more track sectors 15-63 
pixel function 15-24 
port 1 command 8-12 
port 2 command 8-13 
portal list for datalink 18-29 
portal status for datalink 18-30 
real-time clock function 15-137 
sector command 12-13 
system clock function 15-136 
test inputs command 8-13 
track command 11-23 
verify command 12-19 

Read-back command 
three-channel counter and speaker 

6-13 

ReadComm 17-64 

ReadLat 17-68 

Real mode 14-8 

Real-time clock 
address map 5-3 
addressing 5-2 
alarm registers 5-12 
automatic alarm cycles 5-12 
avoiding update cycles 5-13 
battery backup source 5-2 



data register ranges 5-11 
data registers 5-10 
extended self-test 14-10 
features 5-1 
interrupts 5-14 
programming example 5-15 
register A 5-4 
register B 5-6 
register C 5-8 
register D 5-9 
registers 5-3 
update cycle 5-13 

Real-time clock interrupt 15-148 

Recalibrate command 
diskette drive controller 

register sets 11-26 

Recalibrate drive function 15-55 

Receive 
any for session 18-112 
broadcast for session 18-117 
buffer/transmitter holding register 

9-3 
character function 15-74 
datagram for session 18-115 
for datalink 18-10 
for session 18-111 
message descriptor, see RMD 

13-29 

Redirect 
parallel printer function 15-127 
to interrupt OAH interrupt 15-148 

Redirector 18-84 

Register sets 
format track command 11-24 
read data command 11-21 
read deleted data command 11-22 
read id command 11-23 
read track command 11-23 
recalibrate command 11-26 
scan equal command 11-24 
scan high or equal 11-25 
scan low or equal 11-25 

seek command 11-27 
sense drive status command 11-27 
sense interrupt status command 

11-26 
specify command 11-26 
write data command 11-21 
write deleted data command 11-22 

Registers 
8250A UART 9-2 
diskette drive controller 11-2 

C 11-15 
change 11-6 
control 11-3 
D 11-17 
data 11-5 
data transfer rate 11-6 
DTL 11-16 
EOT 11-16 
GPL 11-16 
H 11-15 
head/unit select 11-8 
hlt/nd 11-15 
internal 11-7 
main status 11-4 
N 11-16 
NCN 11-17 
PCN 11-17 
R 11-15 
SC 11-16 
srt/hut 11-14 
status register 0 11-9 
status register 1 11-10 
status register 2 11-12 
status register 3 11-13 
STP 11-17 

DMA controller 4-7 
base and current address 4-7 
base and current word 4-8 
command 4-9 
mode 4-12 
request 4-13 
status 4-14 
temporary 4-14 

interrupt enable 9-4 

Index 21 



interrupt identification 9-6 
keyboard-interface command 8-9 
keyboard-interface controller 

command 8-5 
data 8-5 
status 8-6 

line control 9-7 
line status 9-11 
modem control 9-9 
modem status 9-13 
receive buffer/transmitter holding 

9-3 
special purpose 9-18 
three-channel counter and speaker 

6-8 
control 6-11 
system 6-9 

video controller 
color select 7-39 
control register A 7-41 
control register B 7-43 
status 7-37, 7-38 
write data 7-39 

Release prefix 
LK250 keyboard responses 8-31 

Remapping 
keyboard 16-19 

Remote read counters 18-43 

Repeating key 
changing focus 17-11 

Request 
line, DMA 13-40 
mouse position command 10-3 
register 4-13 
transmit buffer for datalink 18-25 

Request keyboard id 17-78 
function 15-118 
keyboard-interface controller com

mand codes 8-23 

Resend 
keyboard-interface controller com

mand codes 8-29 

22 Index 

LK250 keyboard responses 8-31 

Reserved 
keyboard-interface controller com

mand codes 8-25, 8-26, 8-29 

Reset 
for session 18-98 
keyboard-interface controller com

mand codes 8-29 
keyboard led 

keyboard-interface controller 
command codes 8-24 

mode function 16-11 
processor 14-13 

Restore command 12-11 

Restore to defaults 
keyboard-interface controller com-

mand codes 8-28 

Result state 
diskette drive controller 11-20 

Retry on timeout error 15-86 

Return 
asynchronous port status function 

15-75 
change line status function 15-68 
current drive parameters function 

15-48 
current shift status flag 17-76 
days-since-read counter function 

15-140 
DIGITAL configuration word 

15-99 
drive type function 15-57, 15-67 
keyboard nationality 17-6 
memory size above one megabyte 

function 15-95 
memory size interrupt 15-37 
printer status function 15-126 
RTC date function 15-138 
status code of last 110 request 

15-62, 15-43 

Return codes 



datalink 18-12 
session 18-93 

Revector of interrupt 13H interrupt 
15-145 

RMDO 13-29 

ROM BIOS 
available (IRQ15) interrupt 15-151 
basic interrupt 15-132 
bootstrap interrupt 15-133 
clock tick interrupt 15-5 
COMlIserial interrupt 15-6 
COM2/modem interrupt 15-6 
during soft reset 14-12 
firmware diagnostics and 14-8 
initialization procedure 14-12 
loading operating system 14-12 
local area network controller 

(LANCE) interrupt 15-149 
mouse port interrupt 15-150 
nonmaskable interrupt 15-3, 15-76 
print screen interrupt 15-4 
read configuration interrupt 15-35 
real-time clock interrupt 15-148 
redirect to interrupt OAH inter-

rupt 15-148 
return memory size interrupt 

15-37 
revector of interrupt 13H interrupt 

15-145 
RTC alarm interrupt 15-148 
serial printer port interrupt 15-150 

ROM BIOS 80287 error interrupt 
15-151 

ROM BIOS asynchronous communi
cations interrupt 15-70 

extended mode 15-77 
initialize asynchronous port func-

tion 15-72 
receive character 15-74 
retry on timeout error 15-86 
return asynchronous port status 

15-75 
send break 15-84 

set baud rate 15-87 
set modem control 15-85 
transmit character 15-73 

ROM BIOS cassette input/output in-
terrupt 15-88 

begin virtual mode 15-96 
close device 15-89 
device is busy 15-98 
interrupt completion handler 15-98 
joystick support 15-91 
move a block of memory 15-93 
open device 15-89 
return DIGITAL configuration 

word 15-99 
return memory size above one 

megabyte 15-95 
service system request key 15-91 
set a wait interval 15-90 
termination 15-90 
wait (no return to user) 15-92 

ROM BIOS disk I/O interrupt 15-38 
diskette errors 15-59 
diskette functions 15-59 
diskette parameter tables 15-59 
execute controller internal diag-

nostics 15-56 
format track 15-47, 15-66 
hard disk 

errors 15-40 
functions 15-40 
parameter tables 15-41 
reset function 15-53 

initialize 
diskette subsystem 15-61 
drive characteristics 15-49 
entire disk subsystem 15-42 

read long 256 byte sector 15-58 
read long 15-50 
read one or more disk sectors 15-

44 
read one or more track sectors 15-

63 
recalibrate drive 15-55 
return change line status 15-68 

Index 23 



return current drive parameters 
15-48 

return drive type 15-57, 15-67 
return status code of last 110 

request 15-43, 15-62 
seek to specific cylinder 15-52 
set drive and media type for 

format 15-69 
test drive ready 15-54 
verify one or more disk sectors 15-

46 
verify one or more track sectors 

15-65 
write long 15-51 
write one or more disk sectors 15-

45 
write one or more track sectors 

15-64 

ROM BIOS diskette 
errors 15-59 
functions 15-59 
parameter tables 15-59 

interrupt 15-143 

ROM BIOS floppy disk interrupt 
15-7 

ROM BIOS graphics character table 
pointer interrupt 15-145 

ROM BIOS hard disk 
interrupt 15-151 
parameter tables interrupt 15-146 

ROM BIOS initialization procedure 
14-12 

ROM BIOS interrupt 
02H 15-3, 15-76 
05H 15-4 
08H 15-5 
09H 15-5 
OBH 15-6 
OCH 15-6 
OEH 15-7 
llH 15-35 
12H 15-37 

24 Index 

18H 15-132 
19H 15-133 
1BH 15-141 
1CH 15-141 
10H 15-142 
1EH 15-143 
40H 15-145 
41H 15-146 
46H 15-146 
4AH 15-148 
70H 15-148 
71H 15-148 
72H 15-149 
73H 15-150 
74H 15-150 
75H 15-151 
76H 15-151 
77H 15-151 

ROM BIOS Interrupt 10H 15-8 
enable/disable 256 character 

graphic font 15-30 
font RAM and color map support 

15-31 
read character and attribute at 

cursor position 15-19 
read current video state 15-27 
read cursor position 15-14 
read light-pen position 15-15 
read pixel 15-24 
scroll active page down 15-17 
scroll active page up 15-17 
set color palette 15-22 
set cursor position 15-13 
set cursor type 15-12 
set page 15-16 
set video mode 15-10 
TTY write string 15-28 
write character and attribute at 

cursor position 15-20 
write character at cursor position 

15-21 
write character using terminal 

emulation 15-25 



write pixel 15-23 

ROM BIOS interrupt 13H 15-38 
diskette errors 15-59 
diskette functions 15-59 
diskette parameter tables 15-59 
execute controller internal diag-

nostics 15-56 
format a track 15-47, 15-66 
hard disk 

errors 15-40 
functions 15-40 
parameter tables 15-41 

reset 15-53 
initialize 

diskette subsystem 15-61 
drive characteristics 15-49 
entire disk subsystem 15-42 

read long 256 byte sector 15-58 
read long 15-50 
read one or more disk sectors 

15-44 
read one or more track sectors 

15-63 
recalibrate drive 15-55 
return 

change line status 15-68 
current drive parameters 15-48 
drive type 15-57, 15-67 
status code of last I/O request 
15-43, 15-62 

seek to specific cylinder 15-52 
set drive and media type for 

format 15-69 
test drive ready 15-54 
verify one or more disk sectors 

15-46 
verify one or more track sectors 

15-65 
write long 15-51 
write one or more disk sectors 

15-45 
write one or more track sectors 

15-64 

ROM BIOS interrupt 14H 15-70 

extended mode 15-77 
initialize asynchronous port 15-72 
receive character 15-74 
retry on timeout error 15-86 
return asynchronous port status 

15-75 
send break 15-84 
set baud rate 15-87 
set modem control 15-85 
transmit character 15-73 

ROM BIOS interrupt 15H 15-88 
begin virtual mode 15-96 
close device 15-89 
device is busy 15-98 
interrupt completion handler 15-98 
joystick support 15-91 
move a block of memory 15-93 
open device 15-89 
return digital configuration word 

15-99 
return memory size above one 

megabyte 15-95 
service system request key 15-91 
set a wait interval 15-90 
termination 15-90 
wait (no return to user) 15-92 

ROM BIOS interrupt 16H 15-101 
character count 15-114 
extended codes and functions 

15-116 
key notification 15-111 
keyboard buffer 15-115 
keyboard input 15-109 
keyboard state 15-11 0 
keyboard status 15-109 
keyboard table pointers 15-120 
request keyboard 10 15-118 
send to keyboard 15-119 

ROM BIOS interrupt 17H 15-123 
initialize printer 15-125 
parallel port retry 15-131 
printer type 15-129 
redirect parallel printer 15-127 

Index 25 



return printer status 15-126 
transmit character 15-124 

ROM BIOS interrupt 1AH 15-135 
cancel alarm 15-140 
read real-time clock 15-137 
read system clock 15-136 
return 

days-since-read counter 15-140 
RTC date 15-138 

set alarm 15-139 
set real-time clock 15-138 
set RTC date 15-139 
set system clock 15-136 

ROM BIOS interrupt vectors 15-1, 
15-2 

ROM BIOS keyboard 
break interrupt 15-141 
input interrupt 15-101 
interrupt 15-5 

character count 15-114 
extended codes and functions 
15-116 
keyboard buffer 15-115 
keyboard input 15-109 
keyboard notification 15-111 
keyboard state 15-11 0 
keyboard status 15-109 
keyboard table pointers 15-120 
request keyboard ID 15-118 
send to keyboard 15-119 

ROM BIOS printer output interrupt 
15-123 

initialize printer 15-125 
parallel port retry 15-131 
printer type 15-129 
redirect parallel printer 15-1Z7 
return printer status 15-126 
transmit character 15-124 

ROM BIOS time-of-day interrupt 
15-135 

cancel alarm 15-140 
read real-time clock 15-137 
read system clock 15-136 

26 Index 

return days-since-read counter 
15-140 

return rtc date 15-138 
set alarm 15-139 
set real-time clock 15-138 
set rtc date 15-139 
set system clock 15-136 

ROM BIOS timer tick interrupt 
15-141 

ROM BIOS video 
modes 15-10 
parameters interrupt 15-142 

ROM BIOS video input/output inter
rupt 15-8 

enable/disable 256 character 
graphic font 15-30 

font RAM and color map support 
15-31 

functions 15-9 
read character and attribute at 

cursor position 15-19 
read current video state 15-27 
read cursor position 15-14 
read light-pen position 15-15 
read pixel 15-24 
scroll active page down 15-17 
scroll active page up 15-17 
set color palette 15-22 
set cursor position 15-13 
set cursor type 15-12 
set page 15-16 
set video mode 15-10 
tty write string 15-28 
write character and attribute at 

cursor position 15-20 
write character at position 15-21 
write character using terminal 

emulation 15-25 
write pixel 15-23 

ROM diagnostics 14-1, 14-8 
extended self-test 14-10 
powerup test 14-1, 14-8 

Rotating priority 



DMA controller 4-5 

RTC alarm interrupt 15-148 

S 

Scan codes 15-102 
LK250 keyboard 8-15, 8-17 
translated but not used 8-21 

Scan equal command 
diskette drive controller 
register sets 11-24 

Scan high or equal command 
diskette drive controller 
register sets 11-25 

Scan low or equal command 
diskette drive controller 
register sets 11-25 

Scroll active page down function 15-
17 

Scroll active page up function 15-17 

SDH register 12-9 

Sector 
count register 12-7 
interleave 12-18 
number register 12-7 

Seek command 12-12 
diskette drive controller 
register sets 11-27 

Seek to specific cylinder 15-52 

Select 
compose processing 17-6 
numlock processing 17-6 

Self-test command 
keyboard-interface controller 8-12 

Self-test failure 
LK250 keyboard responses 8-31 

Self-test success 
LK250 keyboard responses 8-30 

Send 

break signal for LAT 18-72 
broadcast for session 18-116 
data for LAT 18-69 
datagram for session 18-114 
double for session 18-110 
for session 18-109 

Send break function 15-84 

Send to keyboard function 15-119 

SendLatBreak 17-70 

Sense 
drive status 11-27 
interrupt status 11-26 

Serial 
data 9-1 
printer port interrupt 15-150 
bit stream, converted by LANCE 

13-3 
interface adapter 13-2, 13-3 

Server message block 18-127 

Service 
directory 18-56 
table reset for LAT 18-71 
system request key function 15-91 

Session 
start for LAT 18-57 
status word 18-63 
for LAT 18-57 
asynchronous notification routine 

18-90 
asynchronous requests 18-89 
functions 18-91 

add a node 18-120 
add name 18-101 
call 18-105 
cancel 18-97 
check for presence 18-96 
delete all node entries 18-126 
delete entry given node name 
18-122 
delete entry given node number 
18-121 
delete name 18-102 

Index 27 



DIGITAL function check 18-119 
DIGITAL-specific 18-118 
hangup 18-108 
listen 18-107 
name status 18-103 
read node entry given index 
18-125 
read node entry given node 
name 18-124 
read node entry given node 
number 18-123 
receive 18-111 
receive any 18-112 
receive broadcast 18-117 
receive datagram 18-115 
reset 18-98 
send 18-109 
send broadcast 18-116 
send datagram 18-114 
send double 18-11 0 
status 18-99 

MS-Network compatible services 
18-92 

network addressing 18-90 
overview 18-83 
return codes 18-93 
status buffer 18-100 
synchronous requests 18-89 

Session control block (SCB) 18-85 
fields 18-86 
for LAT 18-59 

Set 
a wait interval function 15-90 
alarm function 15-139 
autorepeat delay and rate 8-27 
baud rate function 15-87 
color palette function 15-22 
country code function 16-3 
cursor position function 15-13 
cursor type function 

Mode-dependent values 15-12 
DECparm string address 18-40 
drive and media type for format 

function 15-69 

28 Index 

graphics rendition function 16-8 
keyboard led 8-23 
keyclick volume 8-24 
mode function 16-10 
modem control function 15-85 
page function 15-16 
parameters command 12-22 
real-time clock function 15-138 
RTC date function 15-139 
system clock function 15-136 
video mode function 15-10 

SetCommBreak 17-65 

SetCommEventMask 17-65 

SetCommState 17-65 

Shift key 
affect on numeric keypad 17-3 

SIA - See Serial Interface Adapter 
13-2 

Signals 
communications connector 9-19 
modem connector 9-21 
printer connector 9-20 

Signetics 
SCN2261 enhanced programmable 

communications interface 10-2, 
10-8 

Single transfer mode 
DMA controller 4-3 

Slots for LAT 18-57 

5MB 
get current date and time 18-128 
overview 18-127 

Soft reset 14-12 

Software interrupts 
asynchronous communictaions 

15-70 
basic 15-132 
bootstrap 15-133 
cassette input/output 15-88 
disk input/output (i/o) 15-38 



keyboard break 15-141 
keyboard input 15-101 
print screen 15-4 
printer output 15-123 
read configuration 15-35 
return memory size 15-37 
revector of interrupt 13h 15-145 
RTC alarm 15-148 
time-of-day 15-135 
timer tick 15-141 
video input/output 15-8 

Software triggered strobe 
three-channel counter and speaker 

6-6 

SORT 16-30 

Sort tables 16-32 
creating 16-30 

SORT.EXE 
how affected by FONT. COM 16-16 

Sorting 
format 16-30 

Special purpose register 7-23, 9-18 

Specify command 
diskette drive controller 
register sets 11-26 

Speed 
indicator control signal 9-17 
select control signal 9-17 

Square wave model 
three-channel counter and speaker 

mode 6-5 

Standard applications support 17-74 
temporarily suspending 17-79 

Standard communication of the 
V AXmate workstation 13-2 

Startup 
diagnostics 14-1, 14-8 
diagnostics test modes 14-1 

Status 
buffer for session 18-100 

for session 18-99 

Status register 4-14, 7-3, 10-9, 12-23 
A 7-37 
B 7-38 
keyboard-interface controller 8-6 

Status response 
three-channel counter and speaker 

6-14 

STDUS.KEY 16-25 
changing to 16-25 

Subroutines 
assembly language A-I 

Synchronous requests 18-89 

SYSREQ 17-5 

System 
bus 13-2, 13-40 
configuration list 

during extended self-test 14-10 
newly installed options 14-10 

powerup 8-4 
RAM powerup test checks 14-8 
register 6-9 

T 

Temporary register 4-14 

Terminal emulation 
font size 17-73 

Termination function 15-90 

Test 
drive ready function 15-54 
for character available 17-75 
reports for mouse self-test 10-3 

Text modes 7-6 
cursor rate 7-8 
cursor size 7-8 

ThinWire 
Ethernet 13-3 
interconnect 13-3 

Index 29 



network interface 13-4 

Three-channel counter and speaker 
control word register 6-11 
counter and speaker example 6-20 
counter-latch command 6-12 
mode 0 6-4 
mode 1 6-4 
mode 2 6-5 
mode 3 6-5 
mode 4 6-6 
mode 5 6-7 
mode definitions 6-3 
modes of operation 6-3 
programming example 6-16 
read-back command 6-13 
status response 6-14 
system register 6-9 

Time-of-Day interrupt 15-135 

Timer tick interrupt 15-141 

Toggling keyboard mode 17-4 

Translate mode 
keyboard 8-2 

TranslateMessage 17-4 

Translating 
attribute data 7-18 
graphic color data 7-18 
the keyboard 15-121 

Transmit 
character function 15-73, 15-124 
for datalink 18-10, 18-23 
holding register and receive buffer 

10-8 
descriptor ring pointer 13-26 

TransmitCommChar 17-64 

Transport error codes 18-95 

TTY write string function 15-28 

u 

UART (8250AI registers 9-2 

30 Index 

programming example 9-22 

Universal asynchronous receiverl 
transmitters (8250A UART) 9-1 

User call-back routines for datalink 
18-8 

v 

VAXmate 
address decode logic 13-5 
diagnostics 13-4 
expansion box 13-40 
110 board 13-1 
110 bus 13-5 
110 functions 13-2 
memory option 13-40 
network software 18-1 
video display memory 13-40 
workstation 

base configuration 1-1 
optional components 1-2 

Verify 
one or more disk sectors function 

15-46 
one or more track sectors 15-65 

Video 
input/output interrupt 15-8, 15-9 
modes for the ROM BIOS 15-10 
parameters interrupt 15-142 

Video controller 
color select register 7 -3 9 
control register A 7-41 
control register B 7-43 
enhancements to industry-standard 

features 7-2 
graphic features 7-2 
industry-standard features 7-1 
programming example 7-45 
status register A 7-37 
status register B 7-38 
text modes 7-6 
unavailable industry-standard fea-



tures 7-2 
video modes 7-5 
write data register 7-39 

Video memory 7-3 

Video modes 7-5 
handling inside a window 17-79 
no ROM BIOS 

DIGITAL-extended 7-12, 7-14 
ROM BIOS 

industry-standard 7-11, 7-13 
ROM BIOS 

DIGITAL-extended 7-15, 7-16, 
7-17 

Video processor 
input/output registers 7-22 
look-up table 7-18 

Virtual protected mode 14-8 

VT220 
additional emulator escape se-

quences C-6 
announcing C-8 
character set differences C-5 
communications differences C-3 
DA C-8 
DECAUPSS C-6 
DECRQUPSS C-6 
differences between emulator and 

terminal C-2 
keyboard differences C-4 
printing C-9 
SCS C-6, C-7 
video differences C-2 

VT240 
additional emulator escape se-

quences C-13 
announcing C-16 
character set differences C-13 
communications differences C-12 
DA C-15, C-16 
DECAUPSS C-13 
DECRQUPSS C-14 
difference between emulator and 

terminal C-10 

w 

keyboard differences C-12 
Printer to Host mode C-12 
SCS C-14, C-15 
video differences C-10 

Windows 
keyboard extensions 17-5 
layer 17-2 
reserved keys 17-5 

Write 
all mask bits 4-11 
character and attribute at cursor 

position 15-20 
character at cursor position 15-21 
character using terminal emulation 

15-25 
long 15-51 
one or more track sectors 15-64 
one or more disk sectors 15-45 
pixel 15-23 

Write command 
keyboard-interface controller 8-10 

Write data command 
diskette drive controller register 

sets 11-21 

Write data register 7-39 

Write deleted data command 
diskette drive controller register 

sets 11-22 

Write port 2 command 
keyboard-interface controller 8-13 

Write precompensation register 12-4 
sector command 12-15 
single mask bit 4-11 
status register command keyboard

interface controller 8-13 

WriteComm 17-63 

WriteLat 17-69 

Index 31 





Technical Reference Manual 
Volume 2 

AA-HD95A-TK 
Reader's Comments 

Your comments on this manual will help improve our product quality and usefulness. 

Please indicate the type of reader you most closely represent. 

D First-time user D Programmer D Experienced user 

D Application user D Other (please specify) 

How would you rate this manual for: 

Excellent Good Fair Poor 
Completeness of Information D D D D 
Accuracy of Information D D D D 
Easy to Read/Use D D D D 
Usefulness of Examples D D D D 
Number of Examples D D D D 
Illustrations D D D D 
Table of Contents D D D D 
Index D D D D 
Format D D D D 
Binding Style D D D D 
Print Quality D D D D 

Did you find any errors in this manual? Please specify by page and paragraph. 

Incorrect information: ________________________ _ 

Information left out: 

Hard to understand: 

What suggestions do you have for improving this manual? Attach a second sheet if 
necessary. 

Name ________________ TitIe ______________ _ 

Company Dept. _____________ _ 

Street City _______________ _ 

State/Country Postal/Zip Code _________ _ 
Telephone Date ______________ _ 



- - - - - Do Not Tear - Fold Here and Tape - -

- - - - - DoNotTear-FoldHere - -

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO.33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

SOFTWARE PUBLICATIONS 
200 FOREST STREET MR01-2 L 12 

MARLBOROUGH. MA 01752 

1110000011011000011000010110100101001010011000001011 

No Postage 
Necessary 

if Mai led in the 
United States 

I 
- - - - - - -I 

I 
I 
I 
I 



Technical Reference Manual 
Volume 2 

AA-HD95A-TK 
Reader's Comments 

Your comments on this manual will help improve our product quality and usefulness. 

Please indicate the type of reader you most closely represent. 

o First-time user o Programmer o Experienced user 

o Application user o Other (please specify) ___________ _ 

How would you rate this manual for: 

Completeness of Information 
Accuracy of Information 
Easy to Read/Use 
Usefulness of Examples 
Number of Examples 
Illustrations 
Table of Contents 
Index 
Format 
Binding Style 
Print Quality 

Excellent 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

Good 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

Fair 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

Poor 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

Did you find any errors in this manual? Please specify by page and paragraph. 

Incorrect information: 

Information left out: 

Hard to understand: 

What suggestions do you have for improving this manual? Attach a second sheet if 
necessary. 

Name _______________ Title _____________ _ 

Company Dept. _____________ _ 
Street City _____________ _ 

State/Country Postal/Zip Code _________ _ 
Telephone Date _____________ _ 



- - Do Not Tear· Fold Here and Tape -

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO.33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

SOFTWARE PUBLICATIONS 

200 FOREST STREET MR01-2 L12 

MARLBOROUGH, MA 01752 

111"",11,11""11""1,11,1,,1,1,,1,1,,11,,,,,1,11 

No Postage 
Necessary 

if Mailed in the 

United States 

- - - - - Do Not Tear· Fold Here - - - - - - - - - - - - - - - - - - - - -


