
VAX DOCUMENT
Usi~g Doctypes and
Related Tags

Order Number: AA-JT86B-TE

February 1991

This manual describes the VAX DOCUMENT doctypes and the tags specific
to each of those doctypes. Tags are described by the doctype in which they
can be used. ·

Revision/Update Information: This revised manual supersedes the VAX
DOCUMENT User Manual, Volume 2
Version 1. 1 (Order Number
AA-JT86A-TE).

Operating System and Version: VMS Version 5.3 or higher.

Software Version: VAX DOCUMENT Version 2.0

digital equipment corporation
maynard, massachusetts

First printing, July 1987
Revised, July 1988
Revised, Novem~er 1990
Revised, February 1991

Copyright ©1987, 1988, 1990, 1991 Digital Equipment Corporation

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data
and Computer Software clause at DFAR$ 252.227-7013.

The postpaid Reader's Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS Edu System VAX
DEC/MMS IAS VAXcluster
DECnet MASS BUS VMS
DECsystem-10 PDP VT
DECSYSTEM-20 PDT
DEC US RSTS

mnmnamnTM DECwriter RSX

The following is a third-party trademark:

Postscript is a registered trademark of Adobe Systems, Inc.

This document is available on CDROM.

This document was prepared using VAX DOCUMENT, Version 2.0

ZK5353

Contents

PREFACE

NEW FEATURES

CHAPTER 1 OVERVIEW OF THE DOCTYPE-SPECIFIC TAGS

1.1 USING DOCTVPES AND DOCTYPE-SPECIFIC TAGS

CHAPTER 2 USING THE ARTICLE DOCTYPE

2.1 ARTICLE DOCTVPE COMMON ELEMENTS
2.1.1 Titles and Subtitles
2.1.2 Author Information
2.1.3 Abstracts, Source Notes, and Acknowledgments
2.1.4 Headings
2.1.5 Running Titles and Running Feet
2.1.6 Quotations
2.1.7 Numbered Notes

2.1.7.1 Back Notes • 2-7
2.1.7.2 Reference Notes • 2-7

2.1.8 Bibliographies

2.2 IMPROVING THE FORMAT OF A 2-COLUMN DOCTVPE
2.2.1 Line Breaks in Columns
2.2.2 Wide Tables and Examples
2.2.3 Final Adjustment of Column and Page Breaks

2.3 A SAMPLE USE OF THE ARTICLE DOCTVPE TAGS

2.4 ARTICLE DOCTVPE TAG REFERENCE
<ABSTRACT>
<ACKNOWLEDGMENTS>
<AUTHOR>
<AUTHOR_ADDR>
<AUTHOR_Aff>
<AUTHOR_LIST>
<BACK_NOTE>

xiii

xvii

1-1

1-2

2-1

2-2
2-3
2-3
2-4
2-5
2-5
2-6
2-6

2-8

2-8
2-8
2-9
2-9

2-12

2-16
2-17
2-18
2-19
2-20
2-21
2-22
2-23

iii

.Contents

<BACK_NOTES>
<BIBLIOGRAPHY>
<BIB_ENTRY>
<COLUMN>
<DOCUMENT _ATTRIBUTES>
<QUOTATION>
<REF_NOTE>
<REF _NOTES>
<RUNNING_FEET>
<RUNNING_ TITLE>
<SOURCE_NOTE>
<SUBTITLE>
<TITLE>
<TITLE_SECTION>
<VITA>

CHAPTER 3 USING THE HELP DOCTVPE

3.1 CREATING A HELP FILE
3.1.1 How HELP Interprets Reference Sections
3.1.2 How HELP Interprets the Input File
3.1.3 How to Selectively Include and Exclude Text for Help

Output
3.1.4 How to Handle Special Cases

3.2 HOW TO READ THE HELP FILE ONLINE

3.3 HELP DOCTYPE TAG REFERENCE
<BOOK_ ONLY>
<HELP _ONLY>
<KEEP_HELP_LEVEL>
<SET_HELP_LEVEL>

CHAPTER 4 USING THE LETTER DOCTVPE

4.1 SAMPLE USES OF THE LETTER DOCTYPE TAGS
4.1.1 A Sample Memo
4.1.2 A Sample Letter

iv

2-25
2-26
2-27
2-28
2-30
2-32
2-33
2-35
2-36
2-37
2-39
2-40
2-41
2-42
2-43

3-5
3-6
3-7
3-9

3-1

3-1
3-1
3-2

3-3
3-3

3-3

3-4

4-1

4-3
4-4
4-6

4.2 LETTER DOCTYPE TAG REFERENCE
<CC>
<CCLIST>
<CLOSING>
<DISTLIST>
<FROM_ADDRESS>
<MEMO_DATE>
<MEMO_FROM>
<MEMO_HEADER>
<MEMO_LINE>
<MEMO_TO>
<SALUTATION>
<SUBJECT>
<TO_ADD.RESS>

CHAPTER 5 USING THE MANUAL DOCTYPE

5.1 EXAMPLE OF USING THE MANUAL DOCTYPE

CHAPTER 6 USING THE MILSPEC DOCTYPE

6.1

6.2

6.3

6.4

MILSPEC TEMPLATE FILES

MILSPEC DOCTYPE CONFORMANCE AND FORMAT
6.2.1 Example of Using the MILSPEC.SECURITY and

MILSPEC.DRAFT Doctypes

CREATING MIL-STD-490A DOCUMENTS

CREATING DATA ITEM DESCRIPTION DOCUMENTS

Contents

4-8
4-9

4-11
4-12
4-13
4-14
4-15
4-17
4-18
4-19
4-21
4-22
4-23
4-24

5-1

5-4

6-1

6-2

6-2

6-4

6-11

6-12
6.4: 1 Creating DOD-STD-2167 Documents 6-12

6.5

6.4.2 Creating DOD-STD-2167 A Documents 6-12
6.4.2.1 Using the Data Item Description Template Files • 6-13

MILSPEC DOCTYPE TAG REFERENCE
<CODE_EXAMPLE>
<DOCUMENT _ATTRIBUTES>
<HEADN>
<HIGHEST _SECURITY_ CLASS>
<RUNNING_FEET>
<RUNNING_ TITLE>

6-18
6-20
6-23
6-25
6-26
6-27

6-17

v

Contents

<SECURITY> 6-28
<SET _APPENDIX_NUMBER> 6-31
<SET_CONTENTS_SECURITY> 6-33
<SET_PAGE_SECURITY> 6-35
<SET_SECURITY _CLASS> 6-37
<SIGNATURE_ LINE> 6-39
<SIGNATURE_ LIST> 6-40
<SPECIFICATION_INFO> 6-42
<SPEC_ TITLE> 6-44
<SUBTITLE> 6-45

CHAPTER7 USING THE ONLINE DOCTYPE 7-1

7.1 ONLINE DOCTYPE TAG REFERENCE 7-1
<BOOK_ ONLY> 7-2
<BOOK_REF> 7-3
<EXTENSION> 7-4
<HOTSPOT> 7-6
<HELP_ ONLY> 7-9
<KEEP_HELP_LEVEL> 7-10
<LMF> 7-12
<LMF _ALTNAME> 7-15
<LMF_INFO> 7-16
<LMF _PRODUCER> 7-18
<LMF _PRODUCT> 7-19
<LMF_RELEASE_DATE> 7-20
<LMF _ VERSION_NUMBER> 7-21
<ONLINE_ CHUNK> 7-22
<ONLINE_POPUP> 7-24
<ONLINE_ TITLE> 7-26
<SET_HELP_LEVEL> 7-28
<SET_ ONLINE_ TOPIC> 7-30
<SHELF_ CREATE> 7-33
<SHELF _REF> 7-35

CHAPTER 8 USING THE OVERHEADS DOCTYPE 8-1

8.1 A SAMPLE USE OF THE OVERHEADS DOCTYPE TAGS 8-3

vi

8.2 OVERHEADS DOCTYPE TAG REFERENCE
<AUTHOR_INFO>
<AUTO_NUMBER>
<INTRO_SUBTITLE>
<INTRO_ TITLE>
<RUNNING_FEET>
<RUNNING_ TITLE>
<SLIDE>
<SUBTITLE>
<TEXT_SIZE>
<TITLE>
<TOPIC>

CHAPTER 9 USING THE REPORT DOCTYPE

9.1

9.2

9.3

9.4

CHARACTERISTICS OF THE REPORT DESIGN

SAMPLE USE OF THE REPORT DOCTYPE TAGS

A SAMPLE USE OF THE REPORT.TWOCOL DOCTYPE TAGS

REPORT DOCTYPE TAG REFERENCE
<AUTHOR>
<BYLINE>
<COLUMN>
<DOCUMENT_ATTRIBUTES>
<LEVEL>
<OUTLINE>
<RUNNING_FEET>
<RUNNING_ TITLE>
<SECTION>
<SHOW_LEVELS>
<SIGNATURES>

CHAPTER 10 USING THE SOFTWARE DOCTYPE

10.1 CHARACTERISTICS OF THE SOFTWARE DESIGNS

10.2 COMMON SOFTWARE DESCRIPTION TASKS

8-8
8-9

8-10
8-11
8-12
8-14
8-16
8-18
8-19
8-21
8-22

9-11
9-13
9-15
9-17
9-19
9-20
9-22
9-23
9-25
9-26
9-28

Contents

8-7

9-1

9-1

9-3

9-7

9-10

10-1

10-3

10-6

vii

Contents

10.3 DOCUMENTING TERMINAL KEYS AND KEYPADS 10-6
10.3.1 Describing Individual Keys 10-7
10.3.2 Describing Keypads and Keypad Keys 10-9

10.4 DOCUMENTING CODE FRAGMENTS 10-13

10.5 DOCUMENTING SOFTWARE MESSAG~S 10-14

10.6 DOCUMENTING ARGUMENTS, PARAMETERS, AND QUALIFIERS 10-18

10.7 CREATING A SERIES OF INTERACTIVE OR CODE EXAMPLES 10-22

10.8 USING THE REFERENCE TEMPLATES 10-23

10.9 CREATING YOUR OWN REFERENCE TEMPLATE TAGS 10-27

10.10 CREATING YOUR OWN TEMPLATE TABLES 10-28

10.11 MODIFYING THE REFERENCE TEMPLATES 10-30

10.12 MODIFYING DEFAULT HEADINGS IN A TEMPLATE 10-30

10.13 USING THE TEMPLATE-ENABLING TAGS 10-32
10.13.1 Template-Enabling Tag Behavior in the

SOFTWARE.SPECIFICATION Doctype 10-33

10.14 USING THE <SET_TEMPLATE_templatename> TAGS 10-35
FIND_FIRST 10-37

10.15 USING THE COMMAND TEMPLATE 10-37
10.15.1 Sample SDML File of the Command Template 10-39
10.15.2 Sample Output File of the Command Template 10-41

APPEND 10-42

10.16 USING THE ROUTINE TEMPLATE 10-45
10.16.1 S~mple SDML File of the Routine Template 10-47

viii

Contents

10.16.2 Sample Output File of the Routine Template 10-49
$ENQ 10-50
MTH$XSQRT 10-52

10.17 USING THE STATEMENT TEMPLATE 10-53
10.17.1 Sample SDML File of the Statement Template 10-54
10.17.2 Sample Output File of the Statement Template 10-55

RECORD 10-56
MID$ 10-57

10.18 USING THE TAG TEMPLATE 10-58
10.18.1 Sample SOM L File of the Tag Template 10-60
10.18.2 Sample Output File of the Tag Template 10-61

<SYNTAX> 10-62

10.19 THE SOFTWARE DOCTYPE TAGS 10-64
<ARGDEF> 10-65
<ARGDEFLIST> 10-66
<ARGITEM> 10-69
<ARGTEXT> 10-71
<ARGUMENT> 10-73
<ARG_SEP> 10-74
<AUTHOR> 10-75
<BYLINE> 10-77
<COMMAND> 10-79
<COMMAND_SECTION> 10-81
<CONSTRUCT> 10-85
<CONSTRUCT_LIST> 10-87
<CPOS> 10-90
<DELETE_KEY> 10-91
<DESCRIPTION> 10-92
<DISPLAY> 10-94
<DOCUMENT _ATTRIBUTES> 10-96
<EXAMPLE_ SEQUENCE> 10-98
<EXAMPLES_INTRO> 10-100
<EXC> 10-101
<EXI> 10-102
<EXTEXT> 10-104
<FARG> 10-105
<FARGS> 10-107
<FCMD> 10-109
<FFUNC> 10-112
<FORMAT> 10-114
<FORMAT _SUBHEAD> 10-116
<FPARM> 10-117
<FPARMS> 10-119
<FRTN> 10-121
<FTAG> 10-123
<FUNCTION> 1()....125

ix

Contents

<GRAPHIC> 10-126
<KEY> 10-127
<KEYPAD> 10-129
<KEYPAD_ENDROW> 10-132
<KEYPAD_ROW> 10-133
<KEYPAD_SECTION> 10-134
<KEY_NAME> 10-137
<KEY_PLUS> 10-138
<KEY _SEQUENCE> 10-139
<KEY_TYPE> 10-141
<MESSAGE_SECTION> 10-142
<MESSAGE_ TYPE> 10-145
<MSG> 10-146
<MSGS> 10-148
<MSG_ACTION> 10-150
<MSG_FACILITY> 10-151
<MSG_ SEVERITY> 10-152
<MSG_ TEXT> 10-153
<OVERVIEW> 10-154
<PARAMDEF> 10-155
<PARAMDEFLIST> 10-156
<PA RAM ITEM> 10-159
<PROMPT> 10-161
<PROMPTS> 10-163
<QPAIR> 10-165
<QUALDEF> 10-166
<QUALDEFLIST> 10-167
<QUALITEM> 10-169
<QUAL_LIST> 10-171
<QUAL_LIST _DEFAULT _HEADS> 10-175
<QUAL_LIST _HEADS> 10-1n
<RELATED_ITEM> 10-178
<RELATED_ TAG> 10-179
<RELATED_ TAGS> 10-180
<RESTRICTIONS> 10-182
<RETTEXT> 10-184
<RETURNS> 10-185
<RETURN_ VALUE> 10-187
<RITEM> 10-188
<ROUTINE> 10-189
<ROUTINE_SECTION> 10-191
<RSDEFLIST> 10-196
<RSITEM> 10-198
<RUNNING_FEET> 10-199
<RUNNING_TITLE> 10-200
<SDML_TAG> 10-202
<SET_ TEMPLATE_ARGITEM> 10-203
<SET_ TEMPLATE_COMMAND> 10-206
<SET_ TEMPLATE_HEADING> 10-209
<SET_TEMPLATE_LIST> 10-211
<SET_TEMPLATE_PARA> 10-213
<SET_ TEMPLATE_ROUTINE> 10-215
<SET_TEMPLATE_STATEMENT> 10-218

x

INDEX

EXAMPLES
6-1

FIGURES
2-1
2-2
2-3
4-1
4-2
4-3
5-1
5-2
5-3
6-1
6-2
6-3
6-4
6-5
6-6
8-1
8-2
8-3
9-1
9-2
9-3

<SET_ TEMPLATE_SUBCOMMAND>
<SET_TEMPLATE_TABLE>
<SET_TEMPLATE_TAG>
<SIGNATURES>
<STATEMENT>
<STATEMENT _FORMAT>
<STATEMENT_LINE>
<STATEMENT_SECTION>
<SUBCOMMAND>
<SUBCOMMAND_SECTION>
<SUBCOMMAND_SECTION_HEAD>
<SYNTAX>
<SYNTAX_DEFAULT_HEAD>
<TAG_SECTION>
<TERMINATING_ TAG>

Coding a 2167 A-Formatted Document

ARTICLE Doctype Design
ARTICLE Doctype Output Example, Page 1
ARTICLE Doctype Output Example, Page 2
LETTER Doctype Design
LETTER Doctype Output Example for Memo
LETTER Doctype Output Example for Letter
MANUAL Doctype Designs
MANUAL Doctype Output Example, Title Page
MANUAL Doctype Output Example, Interior Page
MILSPEC Doctype Designs
MILSPEC.SECURITV Doctype Output Example, Title Page
MILSPEC.SECURITV Doctype Output Example, Interior Page
MILSPEC.DRAFT Doctype Output Example, Title Page
MILSPEC.DRAFT Doctype Output Example, Interior Page 1
MILSPEC.DRAFT Doctype Output Example, Interior Page 2
OVERHEADS Doctype Designs
OVERHEADS Doctype Output Example, First Slide
OVERHEADS Doctype Output Example, Second Slide
REPORT Doctype Designs
REPORT Doctype Output Example, Title Page
REPORT Doctype Output Example, Interior Page

Contents

10-220
10-222
10-225
10-227
10-228
10-229
10-231
10-234
10-238
10-240
10-241
10-242
10-244
10-246
10-250

6-13

2-1
2-14
2-15
4-1
4-5
4-7
5-1
5-5
5-6
6-1
6-6
6-7
6-8
6-9

6-10
8-1
8-5
8-6
9-1
9-5
9-6

xi

Contents

9-4
9-5
10-1

TABLES
1
1-1
2-1
2-2
2-3
4-1
4-2
5-1
5-2
5-3
6-1
6-2
6-3

6-4

6-5
8-1
8-2
8-3
9-1
9-2
9-3
9-4
10-1
10-2
10-3
10-4

10-5
10-6
10-7
10-8
10-9
10-10
10-11
10-12

xii

REPORT.TWOCOL Doctype Output Example, Title Page
REPORT.TWOCOL Doctype Output Example, Interior Page
SOFTWARE Doctype Designs

Conventions Used in this Manual
Supported Doctypes
Page Layout of the ARTICLE Design
Tags Available in the ARTICLE Doctype
Doctype-specific Tags Enabled by the <DOCUMENT _ATTRIBUTES> Tag
Page Layout of the LETTER Doctype Design
Tags Available in the LETTER Doctype
Page Layout of the MANUAL.GUIDE Doctype Design
Page Layout of the MANUAL.PRIMER Design
Page Layout of the MANUAL.REFERENCE Design
Page Layout of the MILSPEC Designs
MILSPEC Doctype Tags
MILSPEC Doctype DOD-STD-2167 Data Item Description
Templates
MILSPEC.SECURITY Doctype DOD-STD-2167A Data Item
Description Templates
Doctype-specific Tags Enabled by the <DOCUMENT _ATTRIBUTES> Tag
Page Layout of the OVERHEADS Design
Page Layout of the OVERHEADS.35MM Design
Tags Available in the OVERHEADS Doctype
Page Layout of the REPORT Doctype Design
Page Layout of the REPORT.TWOCOL Doctype Design
Tags Available in the REPORT Doctype
Doctype-specific Tags Enabled by the <DOCUMENT _ATTRIBUTES> tag
Page Layout of the SOFTWARE.BROCHURE Doctype Design
Page Layout of the SOFTWARE.GUIDE Doctype Design
Page Layout of the SOFTWARE.HANDBOOK Doctype Design
Page Layout of the SOFTWARE.POCKET _REFERENCE Doctype
Design

-

-

-

Page Layout of the SOFTWARE.REFERENCE Doctype Design --
Page Layout of the SOFTWARE.SPECIFICATION Doctype Design -
Default Headings of Reference Template Tags
Command Template Tags as Available from DOC$TEMPLATES -
Routine Template Tags as Available from DOC$TEMPLATES --
Statement Template Tags as Available from DOC$TEMPLATES -
Tag Template Tags as Available from DOC$TEMPLATES
Doctype-specific Tags Enabled by the <DOCUMENT _ATTRIBUTES> Tag -

9-8
9-9

10-2

xiv
1-1
2-1
2-2

2-30
4-1.
4-2
5-2
5-2
5-2
6-2
6-3

6-15

6-17
6-21
8-1
8-2
8-2
9-1
9-2
9-3

9-18
10-3
10-3
10-4

10-4
10-5
10-5

10-31
10-37
10-45
10-53
10-58
10-97

Preface

Document Structure
This manual describes the VAX DOCUMENT doctype-specific tags that
are restricted to certain document types (doctypes). These tags are Iiot
available in all doctypes.

With each discussion of doctype-specific tags, an example shows how you
use those tags in an input file, and what the output is when you process
that input file.

The description of tags specific to one style also contains reference
information about the tags. This reference information describes the
syntax and any restrictions associated with each tag. It also provides an
example of the tag used in a Standard DIGITAL Markup Language SDML
file.

Chapter 1 provides an overview of all the doctypes discussed in this
manual. Subsequent chapters are ordered alphabetically by doctype name,
and discuss a specific doctype and its designs. Each chapter provides
examples of tag use in SDML files and corresponding processed outputs.

Intended Audience
This book is intended for writers, editors, and general users who want
to produce articles, business letters and memos, military specifications,
technical manuals, reports, documentation that you can read with
Bookreader, overhead slides, or software documentation using VAX
DOCUMENT. You should be familiar with a Digital text editor.

Associated Documents
This manual is part of the VAX DOCUMENT documentation set that
includes the following books:

• VAX DOCUMENT Producing Online and Printed Documentation

• VAX DOCUMENT Using Global Tags

• VAX DOCUMENT Designing Doctypes

• VAX DOCUMENT Tags Quick Reference

• VAX DOCUMENT Quick Reference Card

• VAX DOCUMENT Graphics Editor User's Guide

• VAX DOCUMENT Installation Guide

xiii

Preface

Conventions
In VAX DOCUMENT Using Doctypes and Related Tags, the discussion
of each tag follows a fixed order. First, the name of the tag is followed
by a brief overview that describes the purpose of the tag. Following the
overview is a syntax section that displays the syntax of the tag: any
required or optional arguments, any related tags, any restrictions on the
use of the tag, and any required terminators to the tag, if needed.

The category of "related tag" is defined broadly. A tag is related to the tag
under discussion if one of the following criteria is met:

• It is required for use of the tag under discussion.

• It marks a text element of the same kind as the tag under discussion.

• It is commonly used with the tag under discussion.

Note: The related tags, restrictions, and required terminator sections
are omitted if there is no relevant information.

Following the syntax section is a description section. The description
expands the overview and presents more detailed information on using the
tag.

The discussion of a tag concludes with at least one example, or a reference
to an example. The example shows how to code the tag in an SDML file.

Each output example is introduced by the sentence "This example produces
the following output:". Output examples may vary, however, depending on
the doctype you use and on whether any doctype modifications have been
made to your local installation of VAX DOCUMENT.

Table 1 lists the typographical conventions used in this manual.

Table 1 Conventions Used in this Manual

Convention

TERM

<TAG>{ argument)

< TAG>[{argument)]

xiv

Meaning

In examples, a vertical ellipsis represents the omission of
data that the system displays in response to a command
or to data you enter.

In examples, a horizontal ellipsis indicates that you can
enter additional parameters, values, or other information.
In tag syntax, a horizontal ellipsis indicates that arguments
to the tag have been omitted.

A term that appears in bold type is defined in the glossary
in the VAX DOCUMENT Producing Online and Printed
Document.

Parentheses enclose an argument to a tag. A lowercase
word as an argument to a tag indicates that a user
specified argument must be entered.

Brackets indicate that the enclosed argument to the tag is
optional.

Preface

Table 1 (Cont.) Conventions Used in this Manual

Convention

<TAG>[(argument-1 [\argument-2])]

< TAG>[([argument-1] \ [argument-2])]

{
argument-1 }

<TAG> [(KEYWORD-1 [\KEYWORD-2])]

< TAG>(KEYWORD)

<TAG>(\ KEYWORD)

\

Meaning

This tag syntax indicates that both arguments are optional.
Only if you use argument-1, however, do you have the
choice of using argument-2.

This tag syntax indicates that both arguments are optional.
You can use either argument as the first argument.

This tag syntax indicates that all arguments are optional.
The braces indicate a choice between argument-1 and
KEYWORD-1 . You must choose your first argument. If
you choose KEYWORD-1, you also have the option of
indicating KEYWORD-2 as the second argument.

An uppercase word within an argument to a tag indicates
that the word is a keyword, and that you must enter the
specific keyword.

A keyword following a backslash in an argument to a tag
indicates that that keyword must follow a backslash.

A backslash separates multiple arguments to a tag.

xv

New Features

The following list contains the new features of VAX DOCUMENT
Version 2.0.

• Support for converting SDML files into VMS Helpfile format with a
HELP doctype.

• Revised and extended documentation. There is a completely new user's
guide, a new summary of the SDML tags, a new quick-reference card,
and a completely revised set of reference documentation.

• A number of new tags added for creating a book with Bookreader.

• Several doctypes developed to use with Bookreader.

• Several new tags added for getting License Management Facility
(LMF) information into Bookreader books.

• Extensions in MILSPEC security marking.

xvii

1 Overview of the Doctype-Specif ic Tags

This manual describes the VAX DOCUMENT doctypes and their
associated tags. These doctype-specific tags are restricted to certain
doctypes and so are not available in all doctypes.

For example, the <SALUTATION> tag is a doctype-specific tag available only
in the LETTER doctype. This tag is restricted to the LETTER doctype
because it is only when you write a letter or memo that you want the
output format associated with this tag. VAX DOCUMENT limits certain
tags to specific doctypes to make the system more modular and to reduce
the number of tags you must learn to use.

Using this Manual

The doctypes and doctype-specific tags are described in this manual in
Chapters 2through10. As shown in Table 1-1, these chapters are ordered
alphabetically by doctype name. Each chapter provides an overview of a
specific doctype and its designs. It describes how to use that doctype and
what doctype-specific tags and global tags are available within it (some
doctypes do not use all the global tags).

The description of doctype-specific tags also contains reference information
about the tags. The reference information describes the syntax and
restrictions associated with each tag.

Each chapter includes an input and output sample of at least one SDML
file that uses these tags.

Table 1-1 lists the supported doctypes, explains what each doctype is
generally used for, and tells which chapters in this manual describe them.

Table 1-1 Supported Doctypes

Doctype Tutorial/Reference
Keyword Used to Create Chapter

ARTICLE Two-column articles Chapter 2

LETTER Letters and memos Chapter 4

HELP .HLP files used for online Chapter 3
Help

MANUAL User manuals about topics Chapter 5
other than software

MILSPEC Military specifications Chapter 6

ONLINE Output that can be read with Chapter 7
the DECwindows Bookreader

1-1

Overview of the Doctype-Specific Tags

Table 1-1 (Cont.) Supported Doctypes

Doctype Tutorial/Reference
Keyword Used to Create Chapter

OVERHEADS Transparencies for overhead Chapter 8
or 35mm slides

REPORT General-purpose documents Chapter 9
or formal outlines

SOFTWARE User manuals containing Chapter 10
software-specific information

1.1 Using Doctypes and Doctype-Specific Tags

1-2

The language you use to mark up a file for processing through VAX
DOCUMENT is called generic because it is used, unchanged, to produce
any type of document. However, part of using VAX DOCUMENT involves
specifying a doctype to create the particular document format you want.
For example, you want a different format for a manual than you want for
a letter.

VAX DOCUMENT automatically specifies the correct formatting
instructions for a chosen doctype, freeing you from the task of formatting
text and letting you concentrate on the task of writing.

All your writing is done in an input file, which is also called an SDML
file because of its file extension of .SDML. When you create a file to be
processed through VAX DOCUMENT, always give the file an .SDML
extension.

2 Using the ARTICLE Doctype

The ARTICLE doctype has one design, shown in Figure 2-1. It lets you
create 2-column articles in an Bl x 11-inch format with numbered or
unnumbered headings. Process files under this doctype by using the
ARTICLE doctype keyword on the DOCUMENT command line.

Figure 2-1 ARTICLE Doctype Design

ZK-1803A-GE

Table 2-1 lists the page layout characteristics of the ARTIC~E doctype
design.

Table 2-1 Page Layout of the ARTICLE Design

Running heads

Running feet

Page numbering

Trim size

Page layout

Right margin

Headings

Paragraphs

Figures, tables, and
examples

Page Layout Characteristics

None

Page number (title text, optional)

Sequential

8 1/2 x 11 inches

Two columns

Justified

Text Element Characteristics

Unnumbered

Indent first line

Numbered

Table 2-2 summarizes the tags available in the ARTICLE doctype and
briefly describes each tag.

2-1

Using the ARTICLE Doctype

Table 2-2 Tags Available in the ARTICLE Doctype

Tag Name

<ABSTR~T>
<ACKNO LEDGMENTS>

<AUTHO >

<AUTHOR ADDA>

<AUTH~R=AFF>
<AUTHOR_ LIST>

<BACK_NOTE>

<BACK_NOTES>

<BIBLIOGRAPHY>

<BIB_ENTRY>

<COLUMN>

Description

Creates an article abstract.

Creates an acknowledgments section in an article.

Specifies the author of an article.

Specifies the address of the author.

Specifies the organizational affiliation of the author.

Creates a list of authors for an article with multiple authors.

Creates a back note entry, and creates a superscript reference number in the
article text.

Causes any accumulated back notes to be output.

Begins a bibliography.

Specifies a single entry in a bibliography.

Specifies that a new column of output begins.

<DOCUMENT _ATTRIBUTES> Enables doctype-specific tags that override the default design format of the
ARTICLE doctype.

<QUOTATION>

<REF_NOTE>

<REF _NOTES>

<RUNNING_FEET>

<RUNNING_ TITLE>

<SOURCE_ NOTE>

<SUBTITLE>

<TITLE>

<TITLE_ SECTION>

<VITA>

Begins a quotation in which your spacing is retained and text is neither filled
(spaces closed up) nor justified (aligned on either margin).

Specifies the text of a reference note, and creates a bracketed reference
number in the article text.

Causes all accumulated reference notes to be output.

Creates a heading at the bottom of each page.

Creates a 1- or 2-line heading at the top of each page.

Specifies the original source of information for an article.

Specifies a subtitle for an article.

Specifies the main title line for an article.

Begins the title section of an article. The title spans both columns of the article.

Abstracts the author's professional history.

2.1 ARTICLE Doctype Common Elements

2-2

The ARTICLE doctype provides tags that let you perform the following
functions:

• Create an article title and subtitle in either a 1- or 2-column format.

• Specify an author (or lis~ of authors) for the article, and provide
professional history, address, affiliation, or other author information.

• Create abstracts, source notes, and acknowledgments.

• Specify whether primary headings are to be numbered or unnumbered.

• Create running titles and running feet.

• Create quotations in which spacing and line breaks are retained as
entered.

2.1.1

2.1.2

Using the ARTICLE Doctype

• Create back notes or reference notes that are automatically numbered
and collated.

• Create bibliographies.

Titles and Subtitles
Create titles and subtitles for an article using the <TITLE_SECTION>,

<TITLE>, and <SUBTITLE> tags.

The <TITLE_SECTION> tag begins a title section that spans both columns
of the article and enlarges the type faces output by the <TITLE> and
<SUBTITLE> tags. If you do not use the <TITLE_SECTION> tag, the <TITLE>

and <SUBTITLE> tags create a title or subtitle restricted to the first column
of the article.

Typically, you use only the <TITLE> and <SUBTITLE> tags in the context
of the <TITLE_SECTION> tag, but you can use the <AUTHOR> tag instead to
have the author's name span both columns.

The following example shows how to use the <TITLE_SECTION> tag to create
a title and subtitle that use the full page width of the article:

<TITLE SECTION>
<TITLE>(A Guide to Instrument Care)
<SUBTITLE>(A Professional's View)
<ENDTITLE SECTION>

Author Information
VAX DOCUMENT provides several tags to specify authors and author
information in the ARTICLE doctype.

Use the <AUTHOR> and <AUTHOR_LIST> tags to specify one or more authors
for an article. Use the following tags to specify information about an
author:

• <AUTHOR_ADDR> specifies the address of the author.

• <AUTHOR_AFF> specifies information about the professional or
educational affiliations of the author.

• <VITA> specifies the professional history of the author.

These tags appear in your output file in whatever order you place them in
your SDML file, with the exception of the <VITA> tag, which places its text
argument at the bottom of the current text column of output.

In the following example, a title, subtitle, and author's name and
professional history are created using the <TITLE>, <SUBTITLE>, <AUTHOR>,

and <VITA> tags, respectively.

The output from this example places the title, subtitle, and author's name
at the top of the first column, and places the text specified as the argument
to the <VITA> tag at the bottom of the first column.

2-3

2.1.3

Using the ARTICLE Doctype

<TITLE>(Computer Graphics)
<SUBTITLE>(Everyone Likes It)
<AUTHOR>(G.R. Edwards)
<VITA>(G.R. Edwards has used graphics editors extensively.)
<P>Computer Graphics really are not for everyone, yet ...

<ENDTITLE SECTION>

You can also use the author information tags in the context of the <TITLE_

SECTION> tag. In the following example, the title, subtitle, and author's
name are output using the full page width because these tags are used in
the context of the <TITLE_SECTION> tag. The information on the author's
affiliations, and then the text of the article, are output in a single column
because those tags were used outside of the context of the <TITLE_SECTION>

tag.

<TITLE SECTION>
<TITLE>(Computer Graphics)
<SUBTITLE>(Everyone Likes It)
<AUTHOR>(G.R. Edwards)
<ENDTITLE SECTION>
<AUTHOR_AFF>(G.R. Edwards is a senior consultant for Terminals, Inc.)
<P>Computer Graphics really are not for everyone, yet ...

Abstracts, Source Notes, and Acknowledgments

<TITLE_SECTION>

Abstract, source note, and acknowledgment sections are special formats
that typically occur at the beginning or end of an article, depending on
your preference.

Abstracts

Use the <ABSTRACT> tag to specify an abstract for an article. You can
specify the <ABSTRACT> tag either in the context of the <TITLE_SECTION>

tag or following it.

In the following example, a short abstract is created in the context of the
<TITLE_SECTION> tag. This causes the abstract to be formatted using the
full page width rather than just a single column. Unlike its use in the
previous example, the <AUTHOR> tag occurs outside of the context of the
<TITLE_SECTION> tag and so formats using a single column.

<TITLE>(A Guide to Instrument Care)
<ABSTRACT>(A summary of brass and keyboard instrument care fundamentals by
a professional musician.)
<ENDABSTRACT>
<ENDTITLE_SECTION>
<AUTHOR>(Dan Dover)

2-4

Source Notes

The <SOURCE_NOTE> tag lets you specify the origin of material for an
article. In the following example, the output from the <SOURCE_NOTE> tag
prints at the bottom of the current column of output:

<SOURCE_NOTE>(From the Boston Globe
<LINE>(<MCS>(COPYRIGHT) 1986 by the Boston Globe))

You can specify source information at the beginning or end of an article.

2.1.4

2.1.5

Using the ARTICLE Doctype

Acknowledgments

Use the <ACKNOWLEDGMENTS> tag to create any necessary
acknowledgments for your article. Enter the text of the acknowledgment
as an argument to the <ACKNOWLEDGMENTS> tag.

The following example shows an acknowledgments section created using
the <ACKNOWLEDGMENTS> tag. Note how you use it near the end of the
SDML file with the <BACK_NOTES> and <REF _NOTES> tags.

<REF_NOTES>(Bibliography)
<BACK_NOTES>(References)
<ACKNOWLEDGMENTS>(I am deeply indebted to my doctor for her support in this
task.)

Headings
The ARTICLE doctype uses the global numbered heading tags
(<HEADl>, <HEAD2>, and so on). However, by default, these headings
are not numbered. Specify numbered headings by using the
<DOCUMENT_ATTRIBUTES> tag, as shown in the following example:

<DOCUMENT_ATTRIBUTES>
<SET_HEADINGS>(NUMBERED)
<ENDDOCUMENT_ATTRIBUTES>

In addition to using them for primary headings, use the global <SUBHEAD!>

and <SUBHEAD2> tags to specify unnumbered paragraph topics or side
headings, as in the following example:

<SUBHEADl>(Rationale.)
<P>
The purpose of this experiment ...

Running Titles and Running Feet
Use the <RUNNING_TITLE> and <RUNNING_FEET> tags to place a title at the
top or bottom of all the pages of your article.

The <RUNNING_FEET> tag accepts a single text argument, which it uses to
create a title at the bottom of the page. The <RUNNING_TITLE> tag accepts
one or two text arguments, which it uses to create a 1- or 2-line title at the
top of the page.

The following example shows a 2-line running title being set for the top
of the page using the <RUNNING_TITLE> tag and a single-line running title
being set for the bottom of the page using the <RUNNING_FEET> tag.

<RUNNING TITLE>(Mr. A. Author and\Mrs. B. Author)
<RUNNING=FEET>(The Story of Our Life Together)

2-5

2.1.6

2.1.7

Using the ARTICLE Doctype

Quotations
You can use either the ARTICLE doctype <QUOTATION> tag or the global
<SAMPLE_TEXT> tag to place extended quotations in an article.

Use the <QUOTATION> tag to format text you want to appear exactly as it is
entered into the SDML file. The following example shows a Haiku poem
formatted using the <QUOTATION> tag:

<P>
A similar Haiku follows.
<QUOTATION>

All lights are frozen;
The cursor box blinks blandly.

Soon, I see the dump.
<ENDQUOTATION>

Use the global <SAMPLE_TEXT> tag to create an extended quotation that
is to be filled and justified in the text. You must supply any internal
punctuation, special spacing, and so on. The following example shows how
to use the <SAMPLE_TEXT> tag to create an extended quotation:

... mankind, as in the following text fragment:
<SAMPLE TEXT>
<P>
<QUOTE>
Many are the ways of mankind. As some strive for recognition, others seek
obscurity. Surely, we are the strangest of creatures.
<ENDQUOTE>
<ENDSAMPLE TEXT>

Numbered Notes

2-6

You can use two types of automatically numbered notes in the ARTICLE
doctype: back notes and reference notes. Back notes, sometimes called end
notes, are referenced in the text of an article using superscript numbers.
Reference notes are similar to back notes, except that the references in the
text are output using normal-sized numbers enclosed in brackets.

Note: Footnotes are similar to back notes, except they are placed at
the bottom of a column of text. To create footnotes, use the
global <FOOTNOTE> tag . However, do not use the <FOOTNOTE>. tag
in an article in which you are using back notes. Both the <FOOT_
NOTE> and the <BACK_NOTE> tags create superscript numbers for
references, and that output would be extremely misleading and
confusing.

VAX DOCUMENT accumulates references to each type of note while the
article processes, and outputs them at the end of the article. Use only one
of these two types of notes in your article.

Using the ARTICLE Doctype

2.1.7 .1 Back Notes
To create a set of notes at the end of an article, use the <BACK_NOTE> tag
and the <BACK_NOTES> tag. Enter the <BACK_NOTE> tag in your SDML file
wherever you want to have a superscript number in the text to show
a note. Enter the text of the note as an argument to the tag. VAX
DOCUMENT sequentially numbers each of the back note entries and
places the appropriate sequential number as a superscript in the output
file.

For example, if you want to cite the book Training Seagulls as a back note,
and this back note was the third in your document, the text where you
cited the book would appear as follows:

These techniques are outlined in Training Seagulls3 .

Back notes are not automatically output at the end of the article so that
you can control their position in the article. Place the <BACK_NOTES> tag in
your SDML file at the point you want the accumulated back notes to print.
When the <BACK_NOTES> tag processes, all the accumulated notes print,
with their correct numbers, and with the text you specified as arguments
to the <BACK_NOTE> tags.

The following example shows how to use the <BACK_NOTE> tag. The <BAOK_

NOTE> tag would b~ replaced by a superscript number in the output, and
the note produced by that tag would be output near the end of the article
using the <BACK_NOTES> tag.

As Ms. Roma so clearly stated <BACK NOTE>(P.A. Roma, <QUOTE>(Computer-Chart
Making from the Graphic Editor's Perspective,) <EMPHASIS>(ACM Computer Graphics,
SIGGRAPH '99 Conf. Proc.), Vol 45. No. 3, July 1999, pp. 247-253.) ...
<BACK_NOTES>

2.1.7 .2 Reference Notes
You can create bibliographic reference notes by using the <REF _NOTE>,

<REF _NOTES>, and optionally, the global <REFERENCE> tags. Place the
<REF_NOTE> tag in your SDML file at the point you want the reference to
appear. This tag is replaced in the output by a number in brackets, which
corresponds to the number assigned to the note text, for example, [4].

Use the <REF _NOTES> tag to process the text of the reference notes you
have created with assigned numbers. Typically, you place this tag at the
end of the SDML file, but you can have the references appear earlier.

To reference a source that you have already referenced using the <REF_

NOTE> tag, specify the symbol name argument to that <REF _NOTE> tag and
use the global <REFERENCE> tag to refer to that symbol.

The following example shows a reference note created using the <REF_

NOTE> tag, a referral to that note using the global <REFERENCE> tag,
and the printing of all the accumulated reference notes using the <REF_

NOTES> tag. Note how the <REF_NOTE> tag was coded with the symbol
CHICAGO_MAN, so that the subsequent <REFERENCE> tag could reference
that symbol and use that same reference note number.

2-7

2.1.8

Using the ARTICLE Doctype

Sorting entries word by word is preferred <REF NOTE>(<EMPHASIS>(A
Manual of Style,) The University of Chicago Pr~ss, 1969.\CHICAGO_MAN) .•.
<P>
Overuse of emphasis can cause confusion <REFERENCE>(CHICAGO MAN) ..•
<REF_NOTES>(References) -

Bibliographies
Use the <BIBLIOGRAPHY> tag to create a bibliography of related reading
when you do not use numbered reference notes to reference other works in
the text of the article. The <BIBLIOGRAPHY> tag enables the <BIB_ENTRY>

tag and lets you specify a heading for the bibliography as an argument to
the <BIBLIOGRAPHY> tag. .

Create each entry in the bibliography by specifying the entry as an
argument to the <BIB_ENTRY> tag. When you use the <BIB_ENTRY> tag,
use the <EMPHASIS> and <QU~TE> tl:J,gs to specify the entry.

The following example shows a bibliography with two entries:

<BIBLIOGRAPHY>(Bibliography)
<p>
The following may also be of interest:
<BIB ENTRY>(<EMPHASIS>(Molecular Connectivity in Chemistry and Drug Research.)
Lamont B. Kier and Lowell H. Hall. Academic Press, l983.)
<BIB_ENTRY>(Arhnheim, Rudolph, <EMPHASIS>(Visual Thinking). University of
California Press, Berkeley, 1984.)
<ENDBIBLIOGRAPHY>

2.2 Improving the Format of a 2-C9lumn Doctype

2.2.1

The ARTICLE doctype cr~ates a 2-column document. Although this
doctype lets you visualize wp.at your document will look like when printed,
it is somewhat less flexible in terms of how it formats SDML tags than the
single-column doctypes. This section summarizes how you can improve the
format of your 2-coluinn document.

Note: The REPORT.TWOCOL doctype also outputs a 2-column document,
and these techniques work for·it also.

Line Breaks in Columns

2-8

The width of the text column for paragraphs is much smaller in the 2-
column doctype than in the single-column doctype~. Furthermore, the
left column is formatted right-justified. As you· enter the text for your
document into, ~he SDML file, do not be overly concerned about text
paragraphs tha~ exceed the right margin during text formatting. The text
formatter issues ~he· following message when a text line exceeds the right
margin:

%TEX-W-LINETOOLONG P, line too
long ... in paragraph ••.

As you complet~ your document, you can use the global <HYPHENATE> and
<KEEP> tags to improve line breaks in your printed document.

2.2.2

2.2.3

Using the ARTICLE Doctype

Use the global <HYPHENATE> tag to specify possible points of hyphenation
in words the text formatter does not know how to hyphenate, but that you
want to allow to hyphenate. This increases the number of places the text
formatter can hyphenate the text, and so creates more even line breaks.

Use the global <KEEP> tag to specify text that you do not want hyphenated
(broken across a line) by the text formatter. Use this tag sparingly,
because it decreases the number of places the text formatter can
hyphenate the text, making it difficult for the text formatter to create
well-placed line breaks.

The text formatter constructs more well-formatted text lines in each
column when it has more places to hyphenate words in the text. The more
places you allow the text formatter to hyphenate your text, the better your
final output formats.

Wide Tables and Examples
When developing examples and tables using a 2-column doctype, be careful
of the following conditions:

• The width of tables and figures (if your figures include monospaced
examples or art)

• Monospaced or unformatted output created using the <CODE_EXAMPLE>

or <QUOTATION> tags that exceed the column width

If a table, figure, or example is wider than the text column width, use the
WIDE argument to specify attributes for the tag.

When you specify the <TABLE_ATTRIBUTES>, <FIGURE_ATTRIBUTES>, or
<EXAMPLE_ATTJUBUTES> tag with the WIDE argument to create a wide
table, figure, or example, that table, figure, or example causes the
2-column output to be suspended and the text entered before that table,
figure, or example to be placed in the two columns above the table, figure,
or example. .

The table, figure, or example then outputs using the full page width, as if
occurring in a single-column doctype. Two-column formatting is restored
after the table, figure, or example ends, and the text after the table, figure,
or example begins again in the first column under the table, figure, or
example.

A code example, itself, using the <CODE_EXAMPLE> and <ENDCODE_

EXAMPLE> example tags, does riot suspend the column output and print the
code example across both columns. You must encase the code example in a
table, figure, or example.

Final Adjustment of Column and Page Breaks
Using a 2-column doctype, you may need to adjust your paged output when
your text is complete. It is sometimes difficult to create balanced pages
with the constraints of a 2-column document. Occasionally, you must
insert explicit line, column, and page breaks into a 2-column document to
improve its appearance.

2-9

Using the ARTICLE Doctype

2-10

Adjusting Column Breaks

When the text formatter creates a. 2-column page, it breaks the text
into two columns so as to create a page in which the columns are of as
nearly equal length as possible. Certain text elements (such as tables and
figures) cannot be easily broken across columns. The text formatter uses
vertical space to adjust the length of the columns. Therefore, you may see
large amounts of vertical white space preceding and following those text
elements that accept a variable amount of white space, such as headings,
lists, and tables.

Specify that columns be explicitly broken by using the <COLUMN> or
<FINAL_CLEANUP>(COLUMN_BREAK) tags. Use the <COLUMN> tag only when
you want the subsequent text to always begin a new column, regardless
of any changes you make to the text. Use the <FINAL_CLEANUP>(COLUMN_

BREAK) tag only after your text is finished and you want to improve the
appearance of your document by specifying a new column of text. In either
case, if the current text is in the first column of a page, starting a new
column places the next text in the second column. If the current text is in
the second column of a page, starting a new column results in a new page
of output.

In some circumstances, the output of a 2-column page may appear to have
lost vertical space before a text element. For example, a heading tag may
have no space before it. When this occurs in a 2-column doctype, ignore
the occurrence until you are ready to give your document a final revision.
If the space is still being lost, use the <FINAL_CLEANUP>(SPECIAL_BREAK)

tag. For example, suppose the following lines represent fragments of a
2-column page:

MAJOR HEADING

Next Heading

shows what happens to

In the previous example, the spacing appears to be lost above the heading
"Next Heading." You correct this by placing the <FINAL_CLEANUP>(SPECIAL_

BREAK) tag in the SDML file between the words that are output on the
final line of the first column, as in the following example:

<P>
... better place. An example <FINAL CLEANUP>(SPECIAL BREAK) shows what
happens to the end of text in this column. -

You should need to use this special column break only in rare instances.

Adjusting Page Breaks

A new page of output explicitly starts whenever the following conditions
exist:

• A <COLUMN> or <FINAL_CLEANUP>(COLUMN_BREAK) occurs in the right
text column and so results in a new page of output.

Using the ARTICLE Doctype

• A <FINAL_CLEANUP>(PAGE_BREAK) tag specifies that text start on a new
page.

In either of these situations, the current page is set in two columns,
without balancing the columns. The length of the text in either column
may be less than that of the regular balanced page.

2-11

Using the ARTICLE Doctype

2.3 A Sample Use of the ARTICLE Doctype Tags

<TITLE_ SECTION>

This section contains a sample input SDML file for an article created using
the ARTICLE doctype tags and processes using the ARTICLE doctype
design. Figure 2-2 shows the corresponding article output from that
SDML file. Comparing these samples may be helpful in understanding
how to use these tags to create 2-column articles. Should you wish to
create this output yourself, you can obtain file ARTICLE_SAMPLE.SDML
from directory DOC$ROOT:[EXAMPLES].

<TITLE>(! Have to Care for This Instrument?)
<SUBTITLE>(One of the Young People's Musical Guides)
<ENDTITLE_SECTION>
<RUNNING_TITLE>(Caring for Instruments)
<RUNNING_FEET>(Instrument Care)

<AUTHOR_LIST>(By)
<AUTHOR>(Dan Dover)
<AUTHOR_AFF>(Cleveland Conservatory of Music)
<AUTHOR_ADDR>(Cleveland, Ohio)

<AUTHOR>(Clair Frobisher)
<AUTHOR_AFF>(Toledo Academy of Fine Arts)
<AUTHOR_ADDR>(Toledo, Ohio)

<ENDAUTHOR LIST>
<ABSTRACT>

Musical instruments of any kind can bring years of enjoyment to the player, and
hopefully to the listener. But the musical instrument must be cared for
properly along the way. This guide discusses basic care of several musical
instruments representative of the major instrument families.
<ENDABSTRACT>
<CHEAD>(Keyboard Instruments)

<P>
The first rule in caring for any keyboard instrument is <EMPHASIS>(Are your
hands clean?) <REF NOTE>(<EMPHASIS>(Tickling the Ivories: Piano for Beginners),
Architect Press, 1982.). Sticky fingers lead to sticky keys. Also, grime and
dirt will scratch the keys and lodge between them as well.

<P>
Even the natural oils of your hand have a bad effect on the keyboard. It is
always a good idea to wash your hands before playing the piano, organ, or other
keyboard instrument. And after you are through playing, take a warm, damp cloth
and wipe down the keyboard. This removes any residual hand oil from the keys.

<column>
<P>
The second rule for keyboard care is <EMPHASIS>(tuning). Like Mary Edith
Whiteout of the Hanscom Music Company says:

<QUOTATION>
You can tell the quality of pianists by the
pitch of their instrument. A well-tuned piano
is as much a joy, as a badly-tuned piano is
a horror.
<ENDQUOTATION>

<P>
Have your piano tuned every 6 months (for the average piano player); if you
play more than 4 hours a day, we recommend you have it tuned every 3 to
4 months.

<P>
If your organ or your accordion goes out of tune, take it to a repairman and
get the offending note fixed. In summary, basic care for your keyboard
instrument entails:

2-12

Using the ARTICLE Doctype

<LIST>(NUMBERED)
<LE>
Clean hands and a clean instrument; wash your hands before, wash the keyboard
after
<LE>
Tune your instrument regularly; 6 months - average use, 3 to 4 months for heavy
use
<ENDLIST>

<COLUMN>

<CHEAD>(Brass Instruments)
<P>
The first rule in caring for any brass instrument is <EMPHASIS>(Keep your mouth
clean.) Be sure to brush your teeth and rinse your mouth if you are going to
play the trumpet <REF NOTE>(<EMPHASIS>(Trumpeter Lullaby: Caring for Your Horn),
County Eeks Press, 19S5), trombone <REF NOTE>(<EMPHASIS>(Trombone Exercises)
Emerald Books, 1983), or other brass instrument. Food particles left in your
mouth will foul up the valves and slides. They may even restrict the air flow,
make the instrument go out of tune, or even damage it permanently.

<P>
The second rule is <EMPHASIS>(Oil your valves and slides regularly.) Use the
recommended oil for your instrument. This will ensure that things move smoothly
and quickly.

<P>
The third rule is <EMPHASIS>(Polish your instrument after each use) with a warm,
damp cloth. This will help keep it from tarnishing from the natural oils in
your hand. In addition to this, you should use a recommended brass polish every
month. In summary, basic care for your brass instrument entails:

<LIST>(NUMBERED)
<LE>
A clean mouth.
<LE>
Oiled valves and slides.
<LE>
Polishing on a regular basis.
<ENDLIST>

<REF_NOTES>(Additional Reading)
<VITA>(Dan Dover is Toscanini Professor of Music at the Cleveland
Conservatory of Music. He publishes the annual Musician's Guide to
Symphonic Opportunities.)
<VITA>(Clair Frobisher is the Director of the Toledo Academy of Fine
Arts. Recently, she instituted the acclaimed Young People's
Symphonies.)
<ACKNOWLEDGMENTS>(The authors are indebted to the Toscanini
Foundation for support in this series of guides.)

Figure 2-2 and Figure 2-3 show the corresponding article output
from that SDML file. Comparing these samples may be helpful in
understanding how to use these tags. Should you wish to create this
output yourself, you can obtain file ARTICLE_SAMPLE.SDML from
directory DOC$ROOT:[EXAMPLES].

2-13

Using the ARTICLE Doctype

Figure 2-2 ARTICLE Doctype Output Example, Page 1

I Have to Care for This Instrument?

One of the Young People's Musical Guides

By

Dan Dover

Cleveland Conservatory of Music

Cleveland, Ohio

Clair Frobisher

Toledo Academy of Fine Arts

Toledo, Ohio

Musical instruments of any kind can bring years
of enjoyment to the player, and hopefully to the
listener. But the musical instrument must be
cared for properly along the way. This guide dis
cusses basic care of several musical instruments
representative of the major instrument families.

Keyboard Instruments

The first rule in caring for any keyboard instru
ment is Are your hands clean? [1] . Sticky fingers
lead to sticky keys. Also, grime and dirt will scratch
the keys and lodge between them as well.

Even the natural oils of your hand have a bad ef
fect on the keyboard. It is always a good idea to
wash your hands before playing the piano, organ,
or other keyboard instrument. And after you are
through playing, take a warm, damp cloth and wipe
down the keyboard. This removes any residual hand
oil from the keys.

The second rule for keyboard care is tuning. Like
Mary Edith Whiteout of the Hanscom Music Com
pany says:

You can tell the quality of pianists by the
pitch of their instrument. A well-tuned piano
is as much a joy, as a badly-tuned piano is
a horror.

2-14

Have your piano tuned every 6 months (for the
average piano player); if you play more than 4 hours
a day, we recommend you have it tuned every 3 to
4 months.

If your organ or your accordion goes out of tune,
take it to a repairman and get the offending note
fixed. In summary, basic care for your keyboard in
strument entails:

1. Clean hands and a clean instrument; wash your
hands before, wash the keyboard after

2. Tune your instrument regularly; 6 months - av
erage use, 3 to 4 months for heavy use

Instrument Care 1

Using the ARTICLE Doctype

Figure 2-3 ARTICLE Doctype Output Example, Page 2

Caring for Instruments

Brass Instruments

The first rule in caring for any brass instrument is
Keep your mouth clean. Be sure to brush your teeth
and rinse your mouth if you are going to play the
trumpet [2] , trombone [3] , or other brass instru
ment. Food particles left in your mouth will foul up
the valves and slides. They may even restrict the
air flow, make the instrument go out of tune, or even
damage it permanently.

The second rule is Oil your valves and slides reg
ularly. Use the recommended oil for your instru
ment. This will ensure that things move smoothly
and quickly.

The third rule is Polish your instrument after each
use with a warm, damp cloth. This will help keep it
from tarnishing from the natural oils in your hand.
In addition to this, you should use a recommended
brass polish every month. In summary, basic care
for your brass instrument entails:

1. A clean mouth.

2 Instrument Care

2. Oiled valves and slides.

3. Polishing on a regular basis.

Additional Reading

[1] 'nckling the Ivories: Piano for Beginners, Architect
Press, 1982.

[2] Trumpeter Lullaby: Caring for Your Hom, County
Eeks Press, 1985

[3] Trombone Exercises Emerald Books, 1983

Acknowledgments

The authors are indebted to the 'Ibscanini Foun
dation for support in this series of guides.

Dan Dover is 'lbscanini Professor of Music at the Cleveland Conserva
tory of Music. He publishes the annual Musician's Guide to Symphonic
Opportunities.

Clair Frobisher is the Director of the 1bledo Academy of Fine Arts. Recently,
she instituted the acclaimed Young People's Symphonies.

2-15

Using the ARTICLE Doctype

2.4 ARTICLE Doctype Tag Reference

2-16

This part of Chapter 2 provides reference information on all the tags
specific to the ARTICLE doctype.

ARTICLE Doctype Tag Reference
<ABSTRACT>

<ABSTRACT>

SYNTAX

ARGUMENTS

related tags

Creates an article abstract and can also specify a heading for that abstract.

<ABSTRACT>[(abstract heading)]

~bstractheading .
This is an optional argument. It specifies a heading for the abstract. If
you do not specify a heading, none is output.

• <TITLE_SECTION>

required <ENDABSTRACT>

terminator

DESCRIPTION The <ABSTRACT> tag creates an article abstract and can also specify a
heading for that abstract.

EXAMPLE
<ABSTRACT>

This tag performs the same function as the global <ABSTRACT> tag, but in
a different context.

The following example shows how to use the <ABSTRACT> tag.

This article presents strong arguments for industries to establish new
programs to educate illiterate employees.
<ENDABSTRACT>

2-17

ARTICLE Doctype Tag Reference
<ACKNOWLEDGMENTS>

<ACKNOWLEDGMENTS>

Creates an acknowledgments section in an article.

SYNTAX <ACKNOWLEDGMENTS> (acknowledgment text)

ARGUMENTS acknowledgment text
Specifies the text of one or more acknowledgments.

related tags • <BACK_NOTES>

• <REF_NOTES>

DESCRIPTION The <ACKNOWLEDGMENTS> tag creates an acknowledgments section

EXAMPLE

in an article. It outputs the heading Acknowledgments for this
section. Enter the text of the acknowledgment as an argument to the
<ACKNOWLEDGMENTS> tag.

Typically, enter the <ACKNOWLEDGMENTS>, <BACK_NOTES>, and <REF_

NOTES> tags at the end of an SDML file.

The following example shows how to use the <ACKNOWLEDGMENTS> tag.
Note how it is used near the end of the SDML file with the <BACK_NOTES>

and <REF _NOTES> tags.

<REF_NOTES>(Bibliography)
<BACK NOTES>(References)
<ACKNOWLEDGMENTS>(! am deeply indebted to my doctor for her support in this
task.)

2-18

<AUTHOR>

SYNTAX

ARGUMENTS

related tags

ARTICLE Doctype Tag Reference
<AUTHOR>

Specifies an author of an article.

<AUTHOR>(author name[\ optional information])

author name
Specifies the name of the author. To include the word By with the author's
name, specify it as part of the author name text.

optional information
This is an optional argument. It specifies additional optional information
about the author. This information formats below the author's name. This
text should be approximately one line long.

• <AUTHOR_ADDR>

• <AUTHOR_AFF>

• <AUTHOR_LIST>

• <SOURCE_NOTE>

• <VITA>

DESCRIPTION The <AUTHOR> tag species the author of an article. Enter the name of
the author as the first argument to the <AUTHOR> tag; specify additional
information about the author as the second argument to the <AUTHOR> tag.

EXAMPLE The following example shows how to use the <AUTHOR> tag.

<AUTHOR>(By A.B. Roma\Publisher)
<AUTHOR AFF>(<emphasis>(Disco Monthly) staff)
<AUTHOR-ADDR>(Top-Ten Corporation,\ 5300 Westlake Boulevard,\ Los Angeles,
California 09945)

2-19

ARTICLE Doctype Tag Reference
<AUTHOR_ADDR>

<AUTHOR ADDR>

Specifies the address of the author.

SYNTAX

ARGUMENTS

related tags

<AUTHOR_ADDR>(address line-1

address line-n

[\ address line-2 . . . [\ address
line-6]])

Specifies in one to six lines the address of the author.

• <AUTHOR>

• <AUTHOR_AFF>

• <AUTHOR_LIST>

• <VITA>

DESCRIPTION The <AUTHOR_ADDR> tag specifies the address of the author. This tag
outputs one to six lines of text based on the number of address line
arguments specified. VAX DOCUMENT places each of these arguments on
a new line on the left margin.

EXAMPLE The following example shows how to use the <AUTHOR_ADDR> tag.

<AUTHOR>(A.B. Roma)
<AUTHOR_AFF>(<emphasis>(Disco Monthly) staff)
<AUTHOR_ADDR>(Top-Ten Corporation,\ 5300 Westlake Boulevard,\ Los Angeles,
California 09945)

2-20

ARTICLE Doctype Tag Reference
<AUTHOR_AFF>

<AUTHOR AFF>

Specifies information about the organizational affiliation of the author.

SYNTAX <AUTHOR_AFF>(affiliation information)

ARGUMENTS affiliation information
Specifies information about the affiliation of the author.

related tags • <AUTHOR>

• <AUTHOR_ADDR>

• <AUTHOR_LIST>

• <VITA>

DESCRIPTION The <AUTHOR_AFF> tag specifies information about the organizational
affiliation of the author. Typically, enter this tag after the <AUTHOR> tag in
the SDML file.

EXAMPLE The following example shows how to use the <AUTHOR> tag.

<AUTHOR>(A.B. Roma)
<AUTHOR AFF>(<emphasis>(Disco Monthly) staff)
<AUTHOR=ADDR>(Top-Ten Corporation,\ 5300 Westlake Boulevard,\ Los Angeles,
California 09945)

2-21

ARTICLE Doctype Tag Reference
<AUTHOR_LIST>

<AUTHOR LIST>

SYNTAX

ARGUMENTS

related tags

Creates a list of authors for an article with multiple authors.

<AUTHOR_LIST>[(heading text)]

heading text
This is an optional argument. It provides an introductory heading for a
list of authors. A sample heading might be By:.

• <AUTHOR>

• <AUTHOR_ADDR>

• <AUTHOR_AFF>

• <VITA>

required <ENDAUTHOR_LIST>

terminator

DESCRIPTION The <AUTHOR_LIST> tag creates a list of authors for an article with multiple
authors. Optionally, specify a heading for the list of authors as an
argument to the <AUTHOR_LIST> tag. Enter the name of each author as
the first argument to the <AUTHOR> tag, and specify additional information
about the author as the second argument to the <AUTHOR> tag.

EXAMPLE For an example showing a list of two authors introduced by the word By,
refer to Figure 2-2, Figure 2-3, and the SDML file that produced this
output.

2-22

ARTICLE Doctype Tag Reference
<BACK_NOTE>

<BACK NOTE>

SYNTAX

ARGUMENTS

related tags

Creates a back note entry and a superscript reference number to that entry in
the article text.

<BACK_NOTE>(back note text)

back note text
Specifies the text to be associated with the back note entry.

• <BACK_NOTES>

• <REF _NOTE>

• The global <FOOTNOTE> tag

restrictions Do not use the <BACK_NOTE> tag in the same document as the global
<FOOTNOTE> tag. Both tags would place superscript numbers into a
document, and references to those numbers would be confusing.

DESCRIPTION The <BACK_NOTE> tag creates a back note entry and a superscript reference
number to that entry in the article text. A back note can also be referred
to as an end note in your document. Enter the <BACK_NOTE> tag in your
SDML file wherever you want to provide a back note citation. VAX
DOCUMENT sequentially numbers each of the back note entries and
places the appropriate sequential number as a superscript in the output
file.

EXAMPLE

For example, if you cite the book Training Seagulls as a back note, and
this back note is the third in your document, the text where you cited the
book would appear as follows:

These techniques are outlined in Training Seagulls3 .

VAX DOCUMENT collects all the automatically numbered back note
entries and outputs them together in their sequential order wherever you
use the <BACK_NOTES> tag. Typically, you would want to use the <BACK_

NOTES> tag at the end of your article.

The following example shows a reference to a back note and the text of
the note as it is to appear at the end of the document. The <BACK_NOTES>

tag at the conclusion of the article causes this note, and any others, to be
output.

2-23

ARTICLE Doctype Tag Reference
<BACK_NOTE>

As Ms. Roma so clearly stated,<BACK NOTE>(P.A. Roma,
<QUOTE>(Computer-Chart Making from the Graphic Editor's Perspective,)
<EMPHASIS>(ACM Computer Graphics, SIGGRAPH '99 Conf. Proc.), Vol 45.
No. 3, July 1999, pp. 247-253.) ...

<BACK NOTES>

2-24

ARTICLE Doctype Tag Reference
<BACK_NOTES>

<BACK NOTES>

SYNTAX

ARGUMENTS

related tags

Outputs all the back notes created with the <BACK_NOTE> tag at the place in
the file where you use the <BACK_NOTES> tag.

<BACK_NOTES>[(heading text)]

heading text
This is an optional argument. It specifies the text to be output above
the back note section. This heading has the default heading format of
the <HEADl> tags in a document using unnumbered heads. If you do not
specify the heading text argument, no heading is output.

• <BACK_NOTE>

DESCRIPTION The <BACK_NOTES> tag outputs all the back notes created with the <BACK_
NOTE> tag at the place in the file where you use the <BACK_NOTES> tag.

EXAMPLES

You can specify a heading for these back notes as an argument to the
<BACK_NOTES> tag. Alternatively, you can specify your own heading with
the heading tag (<HEADl>, <HEAD2>, and so on) that is appropriate for your
document. The heading level tag must precede the <BACK_NOTES> tag, as
shown in the second following example.

The following example shows how you can create the heading References
for a list of back notes by coding that heading as an argument to the
<BACK_NOTES> tag.

D <BACK_NOTES>(References)

The following example shows how you can create the second-level heading
Articles for a list of back notes by coding that heading as an argument
to the <HEAD2> tag, and placing that tag immediately before the <BACK_
NOTES> tag.

~ <HEAD2>(Articles\24_Articles)
<BACK NOTES>

2-25

ARTICLE Doctype Tag Reference
<BIBLIOGRAPHY>

<BIBLIOGRAPHY>

SYNTAX

ARGUMENTS

related tags

Begins a bibliography.

<BIBLIOGRAPHY>[(heading text)]

heading text
This is an optional argument. It specifies the heading for a bibliography.
This heading appears in the format used by <HEADl> tags in an article
with unnumbered heads. By default, no heading outputs.

• <BIB_ENTRY>

• <REF_NOTE>

• <REF_NOTES>

required <ENDBIBLIOGRAPHY>

terminator

DESCRIPTION The <BIBLIOGRAPHY> tag begins a bibliography. Create a bibliography

EXAMPLE

of related reading when you do not use numbered reference notes to
reference other works in the text of the article. Create each entry in
the bibliography using the <BIB_ENTRY> tag. Specify a heading for the
bibliography either as an argument to the <BIBLIOGRAPHY> tag or by using
an unnumbered heading tag immediately before the <BIBLIOGRAPHY> tag.

To create numbered reference notes, use the <REF _NOTE> and <REF _NOTES>

tags instead of <BIB_ENTRY> tags.

The following example shows how to use the <BIBLIOGRAPHY> tag.

<BIBLIOGRAPHY>(Bibliography)
<BIB_ENTRY>(<EMPHASIS>(Molecular Connectivity in Chemistry and Drug Research.)
Lamont B. Kier and Lowell H. Hall. Academic Press, 1983.)
<BIB_ENTRY>(Arhnheim, Rudolph, <EMPHASIS>(Visual Thinking). University of
California Press, Berkeley, 1984.)
<ENDBIBLIOGRAPHY>

2-26

ARTICLE Doctype Tag Reference
<BIB_ENTRY>

<BIB ENTRY>

Specifies a single entry in a bibliography.

SYNTAX <BIB_ENTRY>(bibliography text)

ARGUMENTS bibliography text
Specifies the text of the bibliographic entry.

related tags • <BIBLIOGRAPHY>

restrictions Valid only in the context of a <BIBLIOGRAPHY> tag.

DESCRIPTION The <BIB_ENTRY> tag specifies a single entry in a bibliography. The text of
the bibliographic entry is passed as an argument to the <BIB_ENTRY> tag.
This text can be of any length.

EXAMPLE For an example of how to use a <BIB_ENTRY> tag, see the example in the
<BIBLIOGRAPHY> tag description.

2-27

ARTICLE Doctype Tag Reference
<COLUMN>

<COLUMN>

Specifies that output begins in a new column in a 2-column format.

SYNTAX <COLUMN>

ARGUMENTS None.

related tags • The global <FINAL_CLEANUP> tag

restrictions Valid only in a 2-column doctype such as ARTICLE or REPORT.TWOCOL.

DESCRIPTION The <COLUMN> tag specifies that output begins in a new column in a
2-column format. If this tag occurs in the left text column, the text
immediately following it begins in the right text column. If this tag occurs
in the right text column, the text immediately following it begins in the
left column of the next page.

EXAMPLE

Use the <COLUMN> tag when you always want to begin a new column at
that point in your text. You can use the COLUMN_BREAK argument to
the global <FINAL_CLEANUP> tag to also specify a column break; however,
use this only during the final processing of the 2-column document.

See Section 2.2 for more information on improving the formatting of a
2-column doctype such as ARTICLE or REPORT.TWOCOL.

The following example shows how to use the <COLUMN> tag. In this
example, the writer wants the two instrument descriptions to appear side
by side, one in each column.

<SUBHEADl>(Woodwind Instruments)
<P>
Woodwind instruments have the following attributes:
<LIST>(UNNUMBERED)
<LE>
They are often made of wood, hence their name.
<LE>
Musicians create sound using these instruments by causing a reed to vibrate •.•
<ENDLIST>

<COLUMN>

2-28

<SUBHEADl>(Brass Instruments)
<P>
Brass instruments have the following attributes:
<LIST>(UNNUMBERED)
<LE>
They are often made of brass, hence their name.
<LE>

ARTICLE Doctype Tag Reference
<COLUMN>

Musicians create sound using these instruments by vibrating (buzzing) their lips
into a steel mouthpiece ...
<ENDLIST>

2-29

ARTICLE Doctype Tag Reference
<DOCUMENT _ATTRIBUTES>

<DOCUMENT ATTRIBUTES>

Enables doctype-specific tags that override the default design format of the
ARTICLE doctype.

SYNTAX <DOCUMENT ATTRIBUTES>

ARGUMENTS None.

required <ENDDOCUMENT_ATIRIBUTES>

terminator

DESCRIPTION The <DOCUMENT_ATTRIBUTES> tag enables doctype-specific tags that
override the default design format of the ARTICLE doctype. You can
use the <DOCUMENT_ATTRIBUTES> tag in three doctypes:

• ARTICLE

• REPORT

• SOFTWARE

The <DOCUMENT_ATTRIBUTES> tag enables a group of tags in each of these
doctypes that let you modify the default format of that doctype. These tags
are recognized only in the context of the <DOCUMENT_ATIRIBUTES> tag. If
other VAX DOCUMENT tags occur in this context, they are ignored, as if
they had occurred in the context of a <COMMENT> tag.

Typically, use the <DOCUMENT_ATTRIBUTES> tag at the beginning of an
input file (or in a file processed using the DCL /INCLUDE qualifier) to
alter the default format of a doctype for the processing of that entire file.

Table 2-3 summarizes the formatting tags enabled by the <DOCUMENT_

ATTRIBUTES> tag in each of the three supported doctypes.

Table 2-3 Doctype-specific Tags Enabled by the <DOCUMENT_ATTRIBUTES> Tag

Formatting Tags

<SET_HEADINGS>(UNNUMBERED)
<SET _HEADINGS>(NUMBERED)

2-30

Description

The <SET_HEADINGS> tag specifies whether
numbered or unnumbered headings are produced
by the heading-level tags (<HEAD1>, <HEAD2>, and
so on). By default, headings are not numbered in a
document processed using the ARTICLE doctype.

Use the <SET _HEADINGS>(NUMBERED) tag to
specify that your headings are to be numbered.

ARTICLE Doctype Tag Reference
<DOCUMENT _ATTRIBUTES>

EXAMPLE The following example shows how to use the <DOCUMENT_ATTRIBUTES> tag
to enable a doctype-specific tag that overrides the default design format of
the ARTICLE doctype.

<DOCUMENT_ATTRIBUTES>
<SET HEADINGS>(NUMBERED)
<ENDDOCUMENT_ATTRIBUTES>

2-31

ARTICLE Doctype Tag Reference
<QUOTATION>

<QUOTATION>

SYNTAX

ARGUMENTS

related tags

Begins a quotation in which the spacing is retained and the text is not filled or
justified.

<QUOTATION>

None.

• The global <CODE_EXAMPLE> tag

• The global <SAMPLE_TEXT> tag

required <ENDQUOTATION>

terminator

DESCRIPTION The <QUOTATION> tag begins a quotation in which the spacing is retained
and the text is not filled or justified.

EXAMPLE

The <QUOTATION> tag differs from the global <CODE_EXAMPLE> tag in that
the text of the quotation is not set in a monospaced font. It lets you quote
poetry or passages of text that you do not want formatted.

For long, block-style quotations, use the global <SAMPLE_TEXT> tag.

The following example shows how to use the <QUOTATION> tag.

It is often instructive to remember the words of our founder:
<QUOTATION>
It is better to try again than to fail;
And better still ...

to succeed.
<ENDQUOTATION>

2-32

ARTICLE Doctype Tag Reference
<REF_NOTE>

<REF NOTE>

SYNTAX

ARGUMENTS

related tags

Specifies the text of a reference note and creates a bracketed reference
number in the article text.

<REF _NOTE>(text of note[\ symbol name])

text of note
Specifies the text of the reference note.

symbol name
This is an optional argument. It specifies the name of the symbol used in
all references to this heading.

Symbol names must not exceed 31 characters and must only contain
alphabetic letters, numbers, or underscores. Do not begin a symbol name
with an underscore.

• <BACK_NOTE>

• <BIBLIOGRAPHY>

• <REF_NOTES>

• The global <FOOTNOTE> tag

• The global <REFERENCE> tag

DESCRIPTION The <REF _NOTE> tag specifies the text of a reference note and creates a
bracketed reference number in the article text. Place the <REF _NOTE> tag
in the SDML file at the point at which you are referencing text. This tag
is replaced in the output file by a number in brackets that corresponds to
the number assigned to the note text for example, [4].

EXAMPLE

Use the <REF _NOTES> tag to cause the text of this note and any other
reference notes you have created using the <REF _NOTE> tag to be output.
You generally place the <REF _NOTES> tag at the end of the SDML file.

To reference a source that you have already referenced using the <REF_

NOTE> tag, specify the symbol name argument to that <REF _NOTE> tag and
use the global <REFERENCE> tag to refer to that symbol.

The following example shows how to use the <REF_NOTE> tag both for a
single reference and for two references to the same source. Note how the
second reference to the Hopkins and Johnson article is made using the
<REFERENCE> tag.

2-33

ARTICLE Doctype Tag Reference
<REF_NOTE>

These notes and any others would be output by the <REF _NOTES> tag that
occurs at the end of the article.

Hopkins and Johnson (1968) <REF NOTE>(A.A Hopkins and B.B. Johnson,<QUOTE>(An
Eye for an Eye,) Proceedings of-the American Journal of Comparative Biology,
163:1145-1152.\EYE ARTICLE) noted the preponderance of short cones in type A
subjects. The research of J.Dobbs (1972) <REF NOTE>(J, Dobbs,<quote>(Cones in
Type A and B Subjects), Proceedings of the American Journal of Comparative
Biology, 167:201-227.) corroborated this observation.
<P>
In 1978, the research of Hopkins and Johnson (1968) <REFERENCE>(EYE_ARTICLE),
was shown to have been misleading ... <REF_NOTES>

2-34

ARTICLE Doctype Tag Reference
<REF _NOTES>

<REF NOTES>

SYNTAX

ARGUMENTS

related tags

Outputs all the reference notes created with the <REF _NOTE> tag at the place
in the file where you use the <REF _NOTES> tag.

<REF _NOTES>[(heading text)]

heading text
This is an optional argument. It specifies a heading for the reference
notes.

If you do not specify the heading text argument, no heading is output. You
can specify your own heading with the heading tag (<HEADl>, <HEAD2>, and
so on) that is appropriate to your document.

• <ACKNOWLEDGMENTS>

• <BACK_NOTES>

• <REF _NOTES>

DESCRIPTION The <REF_NOTES> tag outputs all the reference notes created with the
<REF _NOTE> tag at the place in the file where you use the <REF _NOTES> tag.
These references are numbered and correspond to the number placed in
your document by the <REF _NOTE> tag (for example, [4]). Typically, place
the <REF _NOTES> tag at the end of the SDML file so that the accumulated
references appear at the end of the article.

EXAMPLES The following example shows how to create a list of headings with the
heading "References".

D <REF_NOTES>(References)

The following example shows how to use a heading tag as an alternative
heading for the list of references. In this example, the <HEAD2> tag was
used.

~ <HEAD2>(References\25_References)
<REF_NOTES>

2-35

ARTICLE Doctype Tag Reference
<RUNNING_FEET>

<RUNNING FEET>

Creates a single-line heading at the bottom of each page.

SYNTAX <RUNNING_FEET>(footer text)

ARGUMENTS footer text
Specifies the text to be used as a running heading at the foot of the page.

related tags • <RUNNING_TITLE>

DESCRIPTION The <RUNNING_FEET> tag creates a single-line heading at the bottom of
each page. This heading is called a footer because it appears at the foot
of the page. When the same footer is used for several pages, the footers
are collectively called running feet.

EXAMPLE

.
This tag accepts one argument that is the text heading that appears at
the bottom of the page. This text is output exactly as entered, including
spacing and capitalization.

The following example shows how to use the <RUNNING_FEET> tag to place
the heading Getting the Piece of Paper at the bottom of each page. The
running footer outputs exactly as entered.

<RUNNING_FEET>(Getting the Piece of Paper)
<HEAD2>(Getting the Piece of Paper\26_GettingthePieceofPaper)
<P>
You can buy clean paper in most major supermarkets, department stores, and
hardware stores. You should try to get ruled paper so that your letter will be
neat and easy to read.

2-36

ARTICLE Doctype Tag Reference
<RUNNING_ TITLE>

<RUNNING TITLE>

SYNTAX

ARGUMENTS

related tags

Creates a 1- or 2-line running title at the top of each page.

{
OFF }

<RUNNING_ TITLE>(title-1 [\ title-2])
[\ FIRST_PAGE]

OFF
This is an optional keyword argument. It specifies that any existing
running titles created using the <RUNNING_TITLE> tag are disabled for the
page on which this tag occurs and on any subsequent pages.

title-1
This specifies the text of a running title. If you specify a 2-line title, this
title outputs on the upper title line.

title-2
This is an optional argument. It specifies the bottom line of a running title
that has two lines.

FIRST PAGE
This is an optional keyword argument. It specifies that the running title
is to begin output on the first output page. If you do not specify this
keyword, the running title outputs on the page after the current page.

• <RUNNING_FEET>

DESCRIPTION The <RUNNING_TITLE> tag creates a 1- or 2-line title at the top of each
page. Use the FIRST_PAGE argument to the <RUNNING_TITLE> tag to
begin the title lines on the first page of output, rather than on the page
after the current page as is the default.

Use the OFF argument to disable any existing running titles created using
the <RUNNING_TITLE> tag. These titles are then disabled for the page on
which this tag occurs and on any subsequent pages.

2-37

ARTICLE Doctype Tag Reference
<RUNNING_ TITLE>

EXAMPLES The following example shows how to use the <RUNNING_TITLE> tag to
create the 2-line running title An E. B. Bartz Course: and Writing Quality
Correspondence. Note that because you use the FIRST_PAGE argument,
the 2-line running title appears at the top of the first page.

D <RUNNING TITLE>(An E. B. Bartz Course:\Writing Quality
Correspondence\FIRST PAGE)
<HEAD>(How to Write a Letter\27_HowtoWriteaLetter)
<P>
The first thing that you should do in writing a letter is to get a clean piece
of paper and a well-sharpened pencil.

The following example shows how to disable a running title by using the
OFF argument to the <RUNNING_TITLE> tag.

i <RUNNING_TITLE>(OFF)
<HEAD>(An Example of a Letter\28_AnExampleofaLetter) ...

2-38

ARTICLE Doctype Tag Reference
<SOURCE_NOTE>

<SOURCE NOTE>

SYNTAX

ARGUMENTS

related tags

Provides information pertaining to the original source of information for an
article.

<SOURCE_NOTE>(source text)

source text
Specifies the text that describes the source of the article. The text can be
any length and can include any tags not listed in the restrictions section.
The source text is positioned at the bottom of the column of output in
which the tag is specified.

• <AUTHOR>

• <VITA>

restrictions Do not use the following tags as part of the source note text: <CODE_

EXAMPLE>, <EXAMPLE>, <FIGURE>, <FORMAT>, <HEADl> through <HEAD6>,

<INTERACTIVE>, <MATH>, or <NOTE>.

DESCRIPTION The <SOURCE_NOTE> tag provides information pertaining to the original
source of information for an article. Typically, place information provided
in the <SOURCE_NOTE> tag either at the beginning of the first column on
the first page of an article, or at the end of the last column on the last
page. Place the <SOURCE_NOTE> tag in your SDML file to correspond to
where you want the output to appear.

If you want the text to appear on the first page, specify the tag following
the <AUTHOR> tag. If you want the text to appear on the last page, specify
the tag at the end of the SDML file.

EXAMPLE The following example shows how to create a note describing the original
source of an article.

<SOURCE NOTE>(Reprinted from <EMPHASIS>(Visible Discs,) Volume V, Number 3,
Summer l971. c/o The Top-Ten Museum of Art, Cleveland, Ohio, U.S.A., 44106

2-39

ARTICLE Doctype Tag Reference
<SUBTITLE>

<SUBTITLE>

SYNTAX

ARGUMENTS

related tags

Specifies a subtitle for an article.

<SUBTITLE> (title line-1 [\ title line-2[\ title line-3]])

title line-n
Specifies up to three lines of text for a subtitle of an article. The text of
each argument centers on a new line of output. ·

• <TITLE>

• <TITLE_SECTION>

DESCRIPTION The <SUBTITLE> tag specifies a subtitle for an article. This subordinate
article title can have up to three separate lines. Each of the subtitle lines
centers in tl}e column in which the tag occurs (typically.. the first column).
Use the <TIT:i:-E> tag to create a main title for an article.

If you want the subtitle (or title) to span both columns of the article,
use the <TITLE_SECTION> tag in your SDML file before the <SUBTITLE> (or
<TITLE>) tag.

EXAMPLE The following example shows how to code a inain title followed by a
subtitle that spans both columns. Note that the <AUTHOR> tag occurs
outside of the context of the <TITLE_SECTION> tag, so the name of the
author does not span both columns in the output.

<TITLE_SECTION>
<TITLE>(FILE PROCESSING)
<SUBTITLE>(CONCEPTS AND INSTRUCTIONS)
<ENDTITLE SECTION>
<AUTHOR>(A.B. Roma\Contributing Editor)

2-40

<TITLE>

SYNTAX

ARGUMENTS

related tags

DESCRIPTION

EXAMPLE

<TITLE SECTION>

ARTICLE Doctype Tag Reference
<TITLE>

Specifies the main title line for an article.

<TITLE> (title line-1 [\ title line-2[\ title line-3]])

title line-n
Specifies up to three lines of text for the title of the article. The text of
each argument centers on a new line of output.

• <SUBTITLE>

• <TITLE_SECTION>

The <TITLE> tag specifies the main title line for an article. This title can
have up to three separate lines. Each of the title lines is centered in
the column in which the tag occurs (typically the first column). Use the
<SUBTITLE> tag to create a subordinate title for an article.

If you want the title (or subtitle) to span both columns of the article,
use the <TlTLE_SECTION> tag in your SDML file before the <TITLE> (or
<SUBTITLE>) tag.

The following example shows how to code a main title followed by a
subtitle that spans both columns. Note that the <AUTHOR> tag occurs
outside of the context of the <TITLE_SECTION> tag, so the name of the
author does not span both columns in the output.

<TITLE>(FILE PROCESSING\USING THE CALL INTERFACE)
<SUBTITLE>(CONCEPTS AND INSTRUCTIONS)
<ENDTITLE SECTION>
<AUTHOR>(A.B. Roma\Contributing Editor)

2-41

ARTICLE Doctype Tag Reference
<TITLE_SECTION>

<TITLE SECTION>

Begins the title section of an article. The title spans both columns of the
article.

SYNTAX <TITLE SECTION>

ARGUMENTS None.

related tags • <SUBTITLE>

• <TITLE>

required <ENDTITLE_SECTION>

terminator

DESCRIPTION The <TITLE_SECTION> tag begins the title section of an article. The title
spans both columns of the article. Use this tag to create a section at
the beginning of an article whenever you want a title, subtitle, or other
information to span the full page. If you use the <TITLE> or <SUBTITLE>

tag in the context of the <TITLE_SECTION> tag, the typeface output by those
tags will be larger than the typeface output outside of the context of the
<TITLE_SECTION> tag.

If you do not use the <TITLE_SECTION> tag, any titles, subtitles, or
additional information outputs in the appropriate column and does not
span the full page.

EXAMPLES In the following example, the <TITLE> and <SUBTITLE> tags are specified in
the context of the <TITLE_SECTION> tag. The <AUTHOR> tag appears after
the <ENDTITLE_SECTION>, so it will be formatted in the first column of the
article.

D <TITLE SECTION>
<TITLE>(optical Discs)
<SUBTITLE>(The New Documentation Frontier)
<ENDTITLE SECTION>
<AUTHOR>(A.B. Roma)

In the following example, the <TITLE> and <SUBTITLE> tags are used
without the <TITLE_SECTION> tag so the title and subtitle text will be set in
the first column with the author information.

~ <TITLE>(Optical Discs)

2-42

<SUBTITLE>(The New Documentation Frontier)
<AUTHOR>(A. B. Roma)

<VITA>

SYNTAX

ARGUMENTS

related tags

restrictions

DESCRIPTION

EXAMPLE

<AUTHOR>(A.B. Roma)

ARTICLE Doctype Tag Reference
<VITA>

Provides information about the author's professional history.

<VITA>(vita text)

vita text
Specifies information describing the professional history of the author. The
text can be any length and can include any tags that are not listed in the
restrictions section.

• <AUTHOR>

• <AUTHOR_ADDR>

• <AUTHOR_AFF>

• <AUTHOR_LIST>

• <SOURCE_NOTE>

Do not use the following tags as part of the vita text: <CODE_

EXAMPLE>, <EXAMPLE>, <FIGURE>, <FORMAT>, <HEADl> through <HEAD6>,

<INTERACTIVE>, <MATH>, or <NOTE>.

The <VITA> tag provides information about the author's professional
history. Typically, place information provided in the <VITA> tag either
at the beginning of the first column of the first page of an article, or at
the end of the last column on the last page. Place the <VITA> tag in your
SDML file to correspond to where you want the output to appear.

To make the text appear on the first page, specify the <VITA> tag following
the <AUTHOR> tag. To make the text appear on the last page, specify the
<VITA> tag at the end of the SDML file.

The following example shows how to use the <VITA> tag. The descriptive
text is positioned at the bottom of the first column of the first page of the
article.

<VITA>(A.B. Roma is program director for information processing and distribution
for the Top-Ten Corporation. She has published numerous magazine articles.)

2-43

3 Using the HELP Doctype

The HELP doctype lets you create VMS Help files from VAX DOCUMENT
source files. It works with files created explicitly to be used as source
material for Help, and also with the files used to create printed books or
Bookreader documents.

3.1 Creating a HELP File

3.1.1

You create a Help file by coding an SDML file and then processing that file
with VAX DOCUMENT, using the following command:

$ DOCUMENT filename[.SDML] HELP HLP

Notice the destination HLP in this command line. Your output in this case
is not a printed document, but a file with the extension .HLP. This VMS
Help file is used by the VMS Help Librarian to create the Help information
that ultimately is read online.

Using the DOCUMENT command for the HELP doctype is similar to using
it for other doctypes. The command accepts many of the same qualifiers
and parameters. However, with the HELP doctype, the command
ignores the /CONTENTS and /INDEX qualifiers. If you use a symbol
for DOCUMENT that involves these qualifiers, you may receive a message
to the effect that they are being ignored. However, VAX DOCUMENT still
processes the file.

You cannot nest Help tags in the SDML file.

In general, you should keep the text in your Help files sirh pie. Lists
or other unusual formatting within headings may cause unpredictable
output. If you think this may apply to your file, proofread the Help file
before patching it into the system.

How HELP Interprets Reference Sections
In addition to processing standard text, HELP interprets reference sections
(Command, Routine, Statement, and Tag) and generates the appropriate
Help output where possible:

• The <STATEMENT> and <ROUTINE> tags are translated into level-1 Help
by default.

• The <COMMAND> and <SUBCOMMAND> tags are translated into multiple
level Help, starting with level l. A command name will not generate
a Help topic if it has been previously defined in the same document.
This check is sensitive to the current Help level, which is set by default
or by the use of the <SET_HELP _LEVEL> tag.

3-1

3.1.2

Using the HELP Doctype

• Commands with permanently attached qualifiers, such as DEFINE
/KEY, are translated into multiple-level Help, starting with level 1.
Thus, using DEFINE/KEY specifies DEFINE at level 1 and /KEY at
level 2.

• The Description, Qualifier, Parameter, Arguments, and other sections
for each reference item are translated into appropriate, related, lower
level Help. For example, if processing the <COMMAND> tag results in
two levels of help, then the related parameters are assigned to level 3.
(The Format section is treated as part of the text and has no effect on
Help levels.)

• Parameters and qualifiers within definition lists are translated into
unnumbered Help at the appropriate level.

You can always modify a Help level using the <SET_HELP _LEVEL> tag.

How HELP Interprets the Input File

3-2

The HELP doctype is based on the SOFTWARE doctype. Any file that
processes correctly through the SOFTWARE doctype family should process
correctly for HELP.

Just as the command you use to create a Help file ignores certain
arguments and qualifiers, the HELP doctype ignores certain material
within a source file. The following tags (and all material within them) are
automatically ignored for Help output:

<CONTENTS_FILE>

<FOOTNOTE>

<FOOTREF>

<FRONTMATTER>-<ENDFRONT_MATTER>

<INDEX_FILE>

<PART_PAGE>-<ENDPART_PAGE>

Any of these tags within an area of a file specified for Help generates
an informational INVINHELP (INValid IN HELP) message. Avoid these
messages by conditionalizing your files according to Section 3.1.3.

Ordinarily, you may use the following tags to affect formatting of your text
and examples, figures, and tables:

<EXAMPLE_ATTRIBUTES>

<EXAMPLE_SPACE>

<FIGURE_ATTRIBUTES>

<FIGURE_SPACE>

<TABLE_ATTRIBUTES>

Avoid including these tags in material you want in Help. Otherwise,
unexpected spacing may appear in the final Help material.

For the remaining portions of the source file, the HELP doctype processes
the text as usual. Text is indented and headings (such as <HEADl> and
<HEAD2>) are generated as Help levels, numbered 1, 2, and so on.

3.1.3

3.1.4

Using the HELP Doctype

Note: When VAX DOCUMENT processes for Help and encounters a cross
reference, it ignores symbols and outputs only the text of the
reference. For example, a reference to the symbol overview _sec
results in See Overview Section, not See 2.1.1 Overview Section.

How to Selectively Include and Exclude Text for Help Output
Under normal circumstances, VAX DOCUMENT processes everything
in your input file. In some cases, you may want to use text in printed
documentation but exclude it from the Help files, or you may want to do
the opposite. There are two sets of tags defined for HELP-<BOOK_ONLY>
and <HELP _ONLY>-that allow you to exclude or include input text from
Help output.

The <HELP _ONLY> and <ENDHELP _ONLY> tags identify text that is to be
included in Help output only.

The <BOOK_ONLY> and <ENDBOOK_ONLY> tags identify text that is to be
included in printed documentation only.

How to Handle Special Cases
In some cases, you will not want multiple-level Help. To keep all Help
output on a single level, use the <KEEP _HELP _LEVEL> tag.

For example, if you had a command called KUNG FOO and you did not
want a Help file that had KUNG at level 1 and FOO at level 2, you could
use the <KEEP _HELP _LEVEL> tag as follows:

<keep_help_level>
<command>(KUNG FOO)
<endkeep_help_level>

The HELP doctype produces the following output:

1 KUNG_FOO

Note the underscore character (_) inserted between the two parts of
the command. The <KEEP _HELP _LEVEL> concatenates all elements of the
argument and places the result at level 1.

3.2 How to Read the Help File Online
Frequently, the headings for manuals are long and will create extremely
long Help topic strings. The default topic size for VMS Help is 15
characters. If you have Help topics of 15 characters or more and you
are making a Help library, you must use the KEYSIZE clause to the
/CREATE qualifier. For example, use a command like the following:

$ LIBRARY/HELP/CREATE=KEYSIZE=n file file

In this example, "n" is the number of characters in the longest heading.
You may want to set this number quite high. Otherwise, you will have to
count the number of characters in all topics.

3-3

Using the HELP Doctype

The output from this command is an .HLB file. To read this .HLB file
online, use the following command:

$ HELP/LIBRARY=DEVICE: [DIRECTORY]file.HLB

To get more information on creating Help files, on formatting Help files,
on retrieving Help text, and on Help libraries, see these topics in the VMS
Librarian Utility Manual.

3.3 HELP Doctype Tag Reference

3-4

This part of Chapter 3 provides reference information on all the tags
specific to the HELP doctype.

HELP Doctype Tag Reference
<BOOK_ ONLY>

<BOOK ONLY>

Identifies text that you want to include only in printed or online output and not
in Help output.

SYNTAX <BOOK ONLY>

ARGUMENTS None.

related tags • <HELP_ONLY>

• <SET_HELP _LEVEL>

required <ENDBOOK_ONLY>

terminator

DESCRIPTION The <BOOK_ONLY> tag identifies text that you want to include only in
printed or online output and not in Help output.

EXAMPLE This example shows how to code a file so that the text between the <BOOK_

ONLY> and <ENDBOOK_ONLY> tags is included only in printed or online
documentation and not in the Help (.HLP) file.

<BOOK ONLY>
<P>When RSX • • •
<ENDBOOK ONLY>

<P>When the operating system •••

<BOOK_ONLY>
<P>When RSTS • • •
<ENDBOOK ONLY>

In this case, the paragraphs that begin with "When RSX" and "When
RSTS" would not be included in the .HLP file. Only the following
paragraph would appear in the .HLP file:

When the operating system ...

3-5

HELP Doctype Tag Reference
<HELP _ONLY>

<HELP ONLY>

SYNTAX

ARGUMENTS

related tags

Identifies text that you want to include only in Help output and not in printed or
online output.

<HELP ONLY>

None.

• <BOOK_ONLY>

• <SET_HELP _LEVEL>

required <ENDHELP _ONLY>

terminator

DESCRIPTION The <HELP_ONLY> tag identifies text that you want to include only in Help
output and not in printed or online output.

EXAMPLE This example shows how to code a file so that the text between the <HELP_
ONLY> and <ENDHELP _ONLY> tags is included only in the Help (.HLP) file
and not in printed or online output.

<HELP ONLY>
<P>When RSX . . .
<ENDHELP ONLY>

<P>When the operating system ...

<HELP_ONLY>
<P>When RSTS ...
<ENDHELP_ONLY>

3-6

In this case, the paragraphs that begin with "When RSX" and ''When
RSTS" would be included only in the .HLP file. The following paragraph
would appear only in the printed or online output:

When the operating system ...

HELP Doctype Tag Reference
<KEEP_HELP_LEVEL>

<KEEP HELP LEVEL>

SYNTAX

ARGUMENTS

related tags

Allows you to override the default multi-level Help output and keep the
Help output at a single level. This tag affects only the <COMMAND> and
<SUBCOMMAND> tags.

<KEEP HELP LEVEL> - -

None.

• <BOOK_ONLY>

• <HELP_ONLY>

• <SET_HELP _LEVEL>

required <ENDKEEP _HELP _LEVEL>

terminator

DESCRIPTION The <KEEP_HELP_LEVEL> tag allows you to override the default multi-level
Help output and keep the Help output at a single level. This tag affects
only the <COMMAND> and <SUBCOMMAND> tags.

EXAMPLE

Remember that each word in a command is a different Help level, by
default. The <KEEP _HELP _LEVEL> tag concatenates all elements of its
argument and places the entire argument at a single level. For example, if
you have a command called SET TERMINAL and you do not want a Help
file with SET at level-1 and TERMINAL at level-2, which is the default,
but want both SET and TERMINAL at level-1, use the <KEEP_HELP_LEVEL>
and <ENDKEEP _HELP _LEVEL> tags to enclose the command.

This example shows how to use the <KEEP _HELP _LEVEL> and <ENDKEEP _
HELP _LEVEL> tags to cause the enclosed command to be output as level-1
in the Help (.HLP) file.

3-7

HELP Doctype Tag Reference
<KEEP_HELP_LEVEL>

<COMMAND_SECTION>
<KEEP_HELP_LEVEL>
<COMMAND>(SET TERMINAL)
<ENDKEEP_HELP_LEVEL>

<COMMAND>(SET QUEUE)

<COMMAND>(SET PASSWORD)

<ENDCOMMAND_SECTION>

3-8

This example produces the following levels in the .HLP file:

1 SET TERMINAL
1 SET
2 QUEUE
2 PASSWORD

HELP Doctype Tag Reference
<SET_HELP_LEVEL>

<SET HELP LEVEL>

SYNTAX

ARGUMENTS

related tags

DESCRIPTION

Allows you to alter the default Help levels in your Help files.

<SET_HELP_LEVEL>ffnumbe~J

number
This is an optional argument. It specifies a positive or negative number
that is added to or subtracted from the default value to determine a new
Help level. Note that this number is not the Help level number, but a
value to be applied to the default Help level.

To reset the default Help levels, specify zero (0) as the number argument
or do not use an argument. For example, both the <SET_HELP_LEVEL> and
<SET_HELP _LEVEL>(O) tags reset the default Help levels.

• <BOOK_ONLY>

• <HELP_ONLY>

• <KEEP _HELP _LEVEL>

The <SET_HELP _LEVEL> tag allows you to alter the default Help levels in
your Help files. Remember that each word in the command is a different
Help level, by default. This tag changes all the default Help levels until
you explicitly reset them using the tag again without an argument, or with
the zero (0) argument.

For example, by default <HEAD!>, <STATEMENT>, and <COMMAND> tags
produce level-1 Help topics. You may want, however, your level-1
"Command" topic to be a level-2 topic, and the "Format", "Qualifier",
and "Description" sections, which are normally level-2 topics, to be level-3
topics. In this case, use the <SET_HELP _LEVEL>(l) tag before the Help level
you want to alter. Using the argument 1 adds one level to the default
level-1, thus adding one level to each subsequent Help level.

If you use a negative number argument, that number of levels is
subtracted from the default Help level. For example, if you want your
level-2 "Description" section to be a level-1, use the <SET_HELP_LEVEL>(-1)

tag before the <DESCRIPTION> tag. If yol.l want your level-3 "Example"
section to be a level-1, use the <SET_HELP_LEVEL>(-2) tag before the
<EXAMPLE> tag.

When you want to reset the default Help levels, use the <SET_HELP _LEVEL>

tag with or without the zero (0) argument.

3-9

HELP Doctype Tag Reference
<SET_HELP _LEVEL>

EXAMPLE

<COMMAND_SECTION>
<COMMAND>(SET TERMINAL)

<SET_HELP_LEVEL>(l)
<COMMAND>(SET QUEUE)

<SET_HELP_LEVEL>(O)
<COMMAND>(SET PASSWORD)

<ENDCOMMAND SECTION>

3-10

This example shows how to use the <SET_HELP _LEVEL> tag to alter the
default Help levels. One Help level is added to the commands following
the <SET_HELP _LEVEL> tag. You reset the default Help levels with another
<SET_HELP_LEVEL> tag, with the zero (0) argument or without an argument.

This example produces the following levels in the .HLP file:

1 SET
2 TERMINAL
2 SET
3 QUEUE
2 PASSWORD

4 Using the LETTER Doctype

The LETTER doctype has one design, shown in Figure 4-1. It lets you
create various types of correspondence such as business letters, personal
letters, and memos in an si x 11-inch format. Process files under
this doctype using the LETTER doctype keyword on the DOCUMENT
command line.

Figure 4-1 LETTER Doctype Design

Table 4-1 lists the page layout of the LETTER doctype design.

Table 4-1 Page Layout of the LETTER Doctype Design

Running heads

Running feet

Page numbering

Trim size

Right margin

Headings

Paragraphs

Figures, tables, and
examples

Page Layout Characteristics

None

Page number, centered, not on first page

Sequential

8 1/2 x 11 inches

Unjustified (Ragged right)

Text Element Characteristics

Unnumbered

Flush left, no indent

Numbered sequentially

The LETTER doctype does not support the full set of VAX DOCUMENT
global tags. The following tags are not available in the LETTER doctype:

• <APPENDIX>

• <CHAPTER>

• <FRONT_MATTER>

4-1

Using the LETTER Doctype

• <HEAD!> through <HEAD6>

• <PART_PAGE>

Even though the LETTER doctype does not support the global numbered
heading tags (<HEAD!>, <HEAD2>, and so on), it does support the global
unnumbered heads (<SUBHEAD!> and <SUBHEAD2>). See the VAX
DOCUMENT Using Global Tags for more information on global tags.

The LETTER doctype-specific tags let you label and format the text
elements of letters and memos. In general, you use the LETTER doctype
tags with the prefix MEMO __ (for example, the <MEMO_TO> tag) to create
memos; you use the other tags in this doctype to create letters or headings
in either memos or letters. Use the LETTER doctype tags in whatever
order you choose. No one tag is restricted to either a memo or a letter
format.

Table 4-2 summarizes the tags available in the LETTER doctype.
Section 4.2 contains the reference information on the tags listed in this
table.

Table 4-2 Tags Available in the LETTER Doctype

Tag Name Description

<CC> Labels the name of one person who is to receive a copy of the memo or letter. This tag
places the heading cc: on the left margin, and then places the name of the person to the
right of this heading on the same line.

<CCLIST > Begins a list of one or more persons' names who are to receive a copy of the memo or
letter. This tag places the heading cc: on the left margin. Use the <CC> tag to label each
of the names in the list in the context of the <CCLIST > tag.

<CLOSING> Labels the closing text of a letter and formats the closing text at the right margin, flush
left. This text aligns with the output of the <FROM_ADDRESS> tag. This text is typically
a closing line such as Yours Truly, followed by the name of the sender.

<DISTLIST> Begins a list of people to whom the memo or letter is to be distributed. This list formats
on the left margin beneath a heading of Distribution:.

<FROM_ADDRESS> Identifies the name and address of the sender of a letter and formats that information at
the right margin, flush left. This text aligns with the output of the <CLOSING> tag.

<MEMO_DATE> Labels the date of a memo and formats that date near the left margin, flush left. This tag
places the heading Date: on the left margin.

<MEMO_FROM> Identifies the name and address of the sender of a memo and formats that information
near the left margin, flush left. This tag places the heading From: on the left margin.

<MEMO_HEADER> Centers the heading Interoffice Memorandum on the current line of the output page.

<MEMO_LINE> Lets you specify your own information and headings in a format similar to the format used
by the <MEMO_ TO> or <MEMO_FROM> tags. This tag places your heading on the left
margin and then places the first line of information text to the right of that heading on the
same line; an additional line of information can be formatted under the first.

4-2

Using the LETTER Doctype

Table 4-2 (Cont.) Tags Available in the LETTER Doctype

Tag Name

<MEMO_ TO>

<SALUTATION>

<SUBJECT>

<TO_ADDRESS>

Description

Identifies the name and address of the sender of a memo and formats that information
left near the left margin, flush left. This tag places the heading To: on the left margin.

Labels the greeting portion of a letter and formats that greeting on the left margin.

Labels the subject of a memo or letter and formats that information Near the left margin,
flush left. This tag places the heading Subject: on the left margin. The subject text
formats on the same line and to the right of the heading. ·

Identifies the name and address of the receiver of a letter and formats that information on
the left margin, flush left.

4.1 Sample Uses of the LETTER Doctype Tags
This section contains two examples of the LETTER doctype tags. The first
example shows a sample memo and the second example shows a sample
letter. You may find these sample files useful in understanding how the
tags all fit together to create memos and letters.

4-3

4.1.1

Using the LETTER Doctype

A Sample Memo
This is the SDML code for a memo.

<MEMO HEADER>
<MEMO-FROM>(Mr. Thurlow Smith\Corporate Company Accounting)
<MEMO=LINE>(Phone\181-1546)

<MEMO_TO>(Jack Jones\Payroll Accounting)

<MEMO_DATE>(March 17, 1989)
<CCLI ST>
<CC>(Jim Walker)
<CC>(John Beam)
<CC>(D. M. Bones)
<ENDCCLIST>

<CC>(Departmental Distribution)

<SUBJECT>(Conference Report)
<CHEAD>(DEVELOPMENT OF ACCOUNTING TECHNOLOGY)

<P>
This conference was hosted by Numbers Inc. in Seattle, Wash., March 4 through 7.
The goal of the conference was to stimulate the development of accounting
technology.
<P>
My goals for attending the conference were to learn as much as I could about
accounting technology and to find out about existing products or projects
related to accounting methodology.

<SUBHEADl>(Summary of Presentations Attended)
<P>
Major opening and closing presentations were directed at all conference
attendees. In between, there were choices between technical sessions and general
sessions, and I almost always felt a conflict. It was especially annoying
because there were not many clues as to what the differences were. Sometimes
technical seemed excessively technical, while general seemed at times overly
general.
<DISTLIST>
Bert Tom
Harry Lisa
Jim Melinda
Walter Jess

All Trainees
<ENDDISTLIST>

4-4

Figure 4-2 shows the corresponding memo output from that SDML file
when processed with the LETTER keyword. Comparing these samples
may be helpful in understanding how to use these tags to create memos.
Should you wish to create this output yourself, you can obtain file MEMO_
SAMPLE.SDML from directory DOC$ROOT:[EXAMPLES].

Using the LEITER Doctype

Figure 4-2 LETTER Doctype Output Example for Memo

INTEROFFICE MEMORANDUM

FROM: Mr. Smith
Corporate Company Accounting

Phone: 181-1546

TO: Jack Jones
Payroll Accounting

DATE: March 17, 1989

cc: Jim Walker
John Beam
D. M. Bones

cc: Departmental Distribution

SUBJECT: Conference Report

DEVELOPMENT OF ACCOUNTING TECHNOLOGY

This conference was hosted by Numbers Inc. in Seattle, Wash., March 4 through
7. The goal of the conference was to stimulate the development of accounting
technology.

My goals for attending the conference were to learn as much as I could about
accounting technology and to find out about existing products or projects related to
accounting methodology.

Summary of Presentations Attended
Major opening and closing presentations were directed at all conference attendees.
In between, there were choices between technical sessions and general sessions,
and I almost always felt a conflict. It was especially annoying because there were
not many clues as to what the differences were. Sometimes technical was way too
technical and general was way too general.

DISTRIBUTION:

Bert Tom
Harry Lisa
Jim Melinda
Walter Jess
All Trainees

. 4-5

4.1.2

Using the LETTER Doctype

A Sample Letter
This is the SDML code for a letter.

<FROM_ADDRESS>(Harvard University\Cambridge, MA\January 1, 1990, 10:00
A.M. EST)

<TO_ADDRESS>(Carol Jones\World Wide Wicker Co.\Seattle, WA)

<SALUTATION>(Hi Carol;)
<P>
This is a short excerpt from a symposium I went to on letter writing.
I thought you might find it interesting. We really ought to have lunch
some time.
<P>
The excerpt follows:
<P>
There are generally two kinds of letters:
<LIST>(UNNUMBERED)
<LE> Business letters
<LE> Personal letters
<ENDLIST>

<HEAD>(Writing a Business Letter\19_WritingaBusinessLetter)
<P>
When writing a business letter, form can be very important.
In many cases, the form of the letter can be nearly as important as the content
of the letter.

<CHEAD>(Writing a Letter to Request Information)
<P>
A business letter is often used to request information from
an official source. It is important to specify very clearly what
information you need, and for what you need it. If your information needs
are unclear, your request may not be filled.

<CLOSING>(Best Wishes,\Bob Smith\Chairman, CZZA Committee)

4-6

Figure 4-3 shows the corresponding letter output from that SDML file
when processed with the LETTER keyword. Comparing these samples
may be helpful in understanding how to use these tags to create letters.
Should you wish to create this output yourself, you can obtain file
LETTER_SAMPLE.SDML from directory DOC$ROOT:[EXAMPLES].

Using the LETTER Doctype

Figure 4-3 LETTER Doctype Output Example for Letter

Carol Jones
World Wide Wicker Co.
Seattle, WA

Hi Carol,

Harvard University
Cambridge, MA
January 1, 1990, 10:00 A.M. EST

This is a short excerpt from a symposium I went to on letter writing. I thought you
might find it interesting. We really ought to have lunch some time.

The excerpt follows:

There are gem~rally two kinds of letters:

• Bµsiness letters

• Personal letters

~riting a Business Letter

When wtjting a business letter, form can be very important. In many cases, the
form of the letter can be nearly as important as the content of the letter.

Writing a Letter to Request Information

A business letter is often used to request information from an official source. It is
important to specify very clearly what information you need, and for what you need
it. If your information needs are unclear, your request may not be filled.

Best Wishes,

Bob Smith
Chairman, CZZA Committee

4-7

Using the LETTER Doctype

4.2 LETTER Doctype Tag Reference

4-8

This part of Chapter 4 provides reference information on all the tags
specific to the LETTER doctype.

SYNTAX

ARGUMENTS

related tags

DESCRIPTION

EXAMPLES

LETTER Doctype Tag Reference
<CC>

Lists the name of someone who is to receive a copy of a memo or letter.

<CC>(receiver name)

receiver name
Specifies the name of someone who should receive a copy of the memo or
letter.

• <CCLIST>

The <CC> tag lists a single name of someone who is to receive a copy of a
memo or letter. Use this tag by itself or in the context of the <CCLIST> tag.

If you use the <CC> tag alone, it places the heading cc: on the left margin
and places the receiver name argument on the same line as that heading.

If you use the <CC> tag in the context of the <CCLIST> tag, it places the
text of the receiver name argument in the same location as when it is used
without the <CCLIST> tag, but omits the cc: heading.

The following example shows the beginning of a letter using the <CCLIST>

tag with the <CC> tag.

D <MEMO_FROM>(Bob Smith\Harvard University)
<MEMO_TO>(Carol Jones)
<CCLI ST>
<CC>(Mr. A. Square)
<CC>(Ms. B. Box)
<ENDCCLIST>
<SUBJECT>(Ted Fields and Alice Johnson)
<P>
This is some text to show you where the text begins.

4-9

LETTER Doctype Tag Reference
<CC>

4-10

The following example shows the beginning of a letter using only the <CC>
tag.

<MEMO FROM>(Bob Smith\Harvard University)
<MEMO=TO>(Carol Jones)

<CC>(Mr. A. Square)

<SUBJECT>(Ted Fields and Alice Johnson)
<P>
This is some text to show you where the text begins.

<CCLIST>

SYNTAX

ARGUMENTS

related tags

LETTER Doctype Tag Reference
<CCLIST>

Begins a list of persons to whom you want to send a copy of a memo or letter.

<CCLIST>

None.

• <CC>

• <DISTLIST>

required <ENDCCLIST>

terminator

DESCRIPTION The <CCLIST> tag begins a list of persons to whom you want to send a copy
of a memo or letter. The <CCLIST> tag places the heading cc: on the left
margin. Specify the names using the <CC> tag.

The names format such that the argument to the first <CC> tag outputs on
the same line as the heading, and the text arguments associated with any
following <CC> tags are placed immediately beneath the argument to the
first <CC> tag.

EXAMPLE The following example shows how to use the <CC> tag with the <CCLIST>
tag.

<MEMO_FROM>(Bob\Harvard University)
<MEMO_TO>(Carol)
<CCLI ST>
<CC>(Mr. A. Square)
<CC>(Ms. B. Box)
<ENDCCLIST>
<SUBJECT>(Ted and Alice)
<P>
This is some text to show you where the text begins.

<CLOSING>(Best Wishes,\Bob\Chairman, QZZA, Inc.)

4-11

LETTER Doctype Tag Reference
<CLOSING>

<CLOSING>

SYNTAX

ARGUMENTS

related tags

Specifies in one to five lines the closing of a letter.

<CLOSING> (closing line-1 [\ closing line-2 ... [\ closing
line-5]])

closing line-n
Specifies in one to five lines the closing of a letter.

• <FROM_ADDRESS>

• <MEMO_FROM>

• <MEMO_TO>

• <SALUTATION>

• <TO_ADDRESS>

DESCRIPTION The <CLOSING> tag specifies in one to five lines the closing of a letter. The
closing line-n arguments are all placed to the right of the center of the
page. Four blank lines are placed between the first and the second closing
line-n arguments to allow room for the signature of the writer of the letter.

Typically, the first argument is the name of the sender, and the second
through fifth arguments are information about the sender (for example,
the sender's position, title, and so on).

EXAMPLE The following example shows the closing of a letter using the <CLOSING>

tag.

This is the end of the letter text.
<CLOSING>(Best Wishes,\Bob\Chairman, QZZA, Inc.)

4-12

<DISTLIST>

LETTER Doctype Tag Reference
<DISTLIST>

Begins a list of persons to whom you want to distribute a memo or letter.

SYNTAX <DISTLIST>

ARGUMENTS None.

required <ENDDISTLIST>

terminator

DESCRIPTION The <DISTLIST> tag begins a list of persons to whom you want to distribute
a memo or letter. The <DISTLIST> tag places the heading Distribution: on
the left margin. The names of the people on the distribution list appear
beneath the heading, formatted exactly as you entered them between the
<DISTLIST> and <ENDDISTLIST> tags.

EXAMPLE

<DISTLIST>
*Bob
Carol *Ted Alice
Pete Jon *Art

The <DISTLIST> tag retains all spacing and capitalization exactly as
entered. This lets you place asterisks before certain names, indent certain
names, and so on. Compare this tag to the <CCLIST> tag.

The following example shows the end of a letter using the <DISTLIST> tag.
The format of the text in the context of the <DISTLIST> tag will be retained
exactly as entered.

* - Indicates primary reviewer
<ENDDISTLIST>

4-13

LETTER Doctype Tag Reference
<FROM_ADDRESS>

<FROM ADDRESS>

SYNTAX

ARGUMENTS

related tags

DESCRIPTION

EXAMPLE

Places the name and address of the sender of a letter flush left at the right
margin.

<FROM_ADDRESS>(address line-1 [\address
line-2 ... [\ address line-5]])

address line-n
Specifies one to five lines of text that contain the name and address of the
sender of the letter.

• <MEMO_FROM>

• <TO_ADDRESS>

The <FROM_ADDRESS> tag places the name and. address of the sender of
a letter flush left at the right margin. The <FROM_ADDRESS> tag outputs
one to five lines of text based on the number of address line arguments
specified. Each of these arguments outputs flush left on a new line near
the right margin.

Alternatively, you can use the <MEMO_FROM> tag to specify this same
information, but in a different format. See the description of the <MEMO_

FROM> tag in this chapter for more information on that tag.

The following example shows the beginning of a letter that uses the
<FROM_ADDRESS> tag.

<FROM_ADDRESS>(Bob Smith\Harvard University\Cambridge, MA)
<TO_ADDRESS>(Carol Jones\World Wide Wicker Co.\Seattle, WA)
<SUBJECT>(Ted and Alice)
<SALUTATION>(Hi Carol,)
<P>
This is the text of the letter ...

<CLOSING>(Best Wishes,\Bob Smith\Chairman, QZZA, Inc.)

4-14

LETTER Doctype Tag Reference
<MEMO_DATE>

<MEMO DATE>

Creates a line in a memo or letter that displays the date after the heading
Date:.

SYNTAX <MEMO_DATE>(date argument)

ARGUMENTS date argument
Specifies the date of the memo or letter. This argument can be the global
<DATE> tag (which returns the date the file was processed on), or a date
that you specify.

related tags • <FROM_ADDRESS>

• <MEMO_LINE>

• <MEMO_TO>

• The global <DATE> tag

DESCRIPTION The <MEMO_DATE> tag creates a line in a memo or letter that displays the
date after the heading Date:.

If you want the date to be the date on which you processed the file, use the
global <DATE> tag as the argument to the <MEMO_DATE> tag.

If you want a date that does not vary each time you process the file, or a
date that follows a different format than the format output by the <DATE>
tag, enter that date explicitly as a text argument to the <MEMO_DATE> tag.

EXAMPLES The following example shows the beginning of a memo using the <MEMO_
DATE> tag with the global <DATE> tag as an argument.

D <MEMO HEADER>
<MEMO=FROM>(Bob\Dept. of English)
<MEMO TO>(Carol\Dept. of Archeology)
<MEMO=LINE>(Req No.\ARC-132)
<MEMO_DATE>(<DATE>)
<SUBJECT>(Awards for Ted and Alice)
<P>
This is the text of the memo ...

4-15

LETTER Doctype Tag Reference
<MEMO_DATE>

4-16

<MEMO HEADER>

The following example shows the beginning of a memo using the <MEMO_
DATE> tag with a text string as an·argument.

<MEMO-FROM>(Bob Smith\Dept. of English)
<MEMO-LINE>(Phone:\9-5151)
<MEMO-TO>(Carol Jones\Dept. of Archeology)
<MEMO-LINE>(Req No.\ARC-132)
<MEMO-DATE>(January 1, 1987, 10:00 pm)
<SUBJECT>(Awards for Ted and Alice)
<P>
This is the text of the memo ...

LETTER Doctype Tag Reference
<MEMO_FROM>

<MEMO FROM>

SYNTAX

ARGUMENTS

related tags

DESCRIPTION

EXAMPLE
<MEMO HEADER>

Places the name and address of the sender of a memo flush left on the left
margin and adds the heading From:.

<MEMO _FROM> (address line-1 [\ address /ine-2]
. . . [\ address line-5]])

address line-n
Specifies one to five text lines for the sender's name and address.

• <FROM_ADDRESS>

• <MEMO_TO>

The <MEMO_FROM> tag places the name and address of the sender of a
memo flush left on the left margin and adds the heading From:. Each
additional argument formats its text directly beneath the beginning
character of the first address line-n argument.

Alternatively, you can use the <FROM_ADDRESS> tag to specify this same
information, but in a different format.

The following example shows a typical use of the <MEMO_FROM> tag.

<MEMO=FROM>(Bob Smith\Dept. of English)
<MEMO_TO>(Carol Jones\Dept. of Archeology)
<MEMO_LINE>(Req No.\ARC-132)
<MEMO_DATE>(<DATE>)
<SUBJECT>(Ted and Alice)
<P>
This is the text of the memo ...

<CLOSING>(Yours Truly,\Bob Smith\Chairperson, Harvard English Dept)

4-17

LETTER Doctype Tag Reference
<MEMO _HEADER>

<MEMO HEADER>

Centers the heading Interoffice Memorandum in bold letters on the page.

SYNTAX <MEMO HEADER>

ARGUMENTS None.

related tags • <MEMO_FROM>

• <MEMO_TO>

DESCRIPTION The <MEMO_HEADER> tag centers the heading Interoffice Memorandum in
bold letters on the page. This tag accepts no arguments.

EXAMPLE The following example shows a typical beginning of a memo using the
<MEMO_HEADER> tag.

<MEMO HEADER>
<MEMO=FROM>(Bob Smith\Dept. of English)
<MEMO_TO>(Carol Jones\Dept. of Archeology)
<MEMO_DATE>(<DATE>)
<SUBJECT>(Ted and Alice)
<P>
This is the text of the memo ...

4-18

LETTER Doctype Tag Reference
<MEMO_LINE>

<MEMO LINE>

SYNTAX

ARGUMENTS

related tags

Lets you create your own titled informational lines.

<MEMO_LINE>(heading text\ memo line-1
[\ memo line-2 ... [\ memo line-5]])

heading text
Specifies the heading of the <MEMO_LINE>, which is placed on the left
margin. This text must be no more than seven characters, and will have a
colon appended to it.

memoline-n
Specifies one or two lines of text that follow the heading text argument.
The first line formats on the same line as the heading text and the optional
second line formats beneath it.

• <FROM_ADDRESS>

• <MEMO_DATE>

• <MEMO_FROM>

• <MEMO_TO>

restrictions The heading text argument cannot be more than seven characters without
over-writing the text specified to the memo line-1 argument.

DESCRIPTION The <MEMO_LINE> tag lets you create your own titled informational lines.
You can define your own single-line heading and, optionally, place one
line of information after it. For example, you could define a heading of
Corp and follow it with the name of the corporation to whom you are
sending the letter or memo. The <MEMO_LINE> tag creates a heading on
the left margin. You specify this heading with the heading text argument.
Whatever text you supply as this argument will have a colon appended to
it upon output.

This is followed, on the same line, by the text specified with the memo
line-1 argument. Text of an optional second argument formats beneath the
first argument.

See the description of the <MEMO_FROM> tag to compare the output of the
<MEMO_LINE> tag with other tag formats.

4-19

LETTER Doctype Tag Reference
<MEMO_LINE>

EXAMPLE

<MEMO HEADER>

The following example shows how to use the <MEMO_LINE> tag to create
an additional line of information with a heading. In this example, the
heading Corp: is created with the text following it being Drofnats Ltd.
Note that the heading text argument does not exceed seven characters;
note also that even though you want a colon in the heading, you do not
specify it as part of the heading text argument.

<MEMO FROM>(J. Simpson\Accounting Consultant)
<MEMO=LINE>(Corp\Drofnats Ltd.)

<MEMO_TO>(Mr. Smith\ACME Corporate Accounting)

<MEMO_DATE>(March 17, 1986)

<CC>(Departmental Distribution)

<SUBJECT>(Conference Report)

<P>This conference was hosted by Numbers Inc. in Seattle, Washington

4-20

<MEMO TO>

SYNTAX

ARGUMENTS

related tags

LETTER Doctype Tag Reference
<MEMO_TO>

Places the name and address of the receiver of a memo flush left on the left
margin with a heading To:.

<MEMO_TO>(address line-1[\ address
line-2 . . . [\ address line-5]])

address line-n
Specifies one to five lines of text that contain the name and address of the
receiver of the memo.

• <MEMO_FROM>

• <TO_ADDRESS>

DESCRIPTION The <MEMO_TO> tag places the name and address of the receiver of a
memo flush left on the left margin with a heading To:. The tag outputs
the heading on the left margin and places the text from its first argument
on this same line. Each additional argument formats so its text begins
directly beneath the beginning character of the first address line-n
argument.

Alternatively, you use the <TO_ADDRESS> tag to specify this same
information but in a different format.

See the description of the <TO_ADDRESS> tag in this chapter for more
information on that tag.

EXAMPLE The following example shows a typical beginning of a memo using the
<MEMO_TO> tag.

<MEMO HEADER>
<MEMO-FROM>(Bob Smith\Dept. of English)
<MEMO=TO>(Carol Jones\Dept. of Archeology)
<SUBJECT>(Ted and Alice)
<P>
This is the text of the memo ...

4-21

LETTER Doctype Tag Reference
<SALUTATION>

<SALUTATION>

SYNTAX

ARGUMENTS

related tags

DESCRIPTION

EXAMPLE

Specifies the salutation for the letter.

<SALUTATION>(greeting text)

greeting text
Specifies the text of the salutation, including any punctuation.

• <FROM_ADDRESS>

• <MEMO_FROM>

• <MEMO_TO>

• <TO_ADDRESS>

The <SALUTATION> tag specifies the salutation for the letter. The opening
greeting of your letter or memo, for example, might be Dear Sirs:. This·
text begins at the left margin.

You must specify any punctuation that is part of the salutation (such as a
comma, colon, or semicolon) as part of the greeting text argument.

The following example shows a use of the <SALUTATION> tag in the
beginning of a letter. Note that you must provide any needed punctuation,
such as the comma, after Hi Carol in this example.

<FROM_ADDRESS>(Bob Smith\Harvard University\Cambridge, MA)
<TO_ADDRESS>(Carol Jones\World Wide Wicker Co.\Seattle, WA)
<SUBJECT>(Ted and Alice)
<SALUTATION>(Hi Carol,)
<P>
This is the text of the letter ...

4-22

<SUBJECT>

SYNTAX

ARGUMENTS

related tags

LETTER Doctype Tag Reference
<SUBJECT>

Specifies the subject of a memo or letter and places this information with a
heading of Subject: at the left margin.

<SUBJECT>(subject text)

subject text
Specifies the text that describes the subject of a memo or letter.

• <FROM_ADDRESS>

• <MEMO_FROM>

• <MEMO_LINE>

• <MEMO_TO>

DESCRIPTION The <SUBJECT> tag specifies the subject of a memo or letter and places this
information with a heading of Subject: at the left margin. It places the
text from the subject text argument on that same line.

EXAMPLE The following example shows a use of the <SUBJECT> tag in the beginning
of a letter. Note that this tag can also be used in a memo.

<FROM_ADDRESS>(Bob Smith\Harvard University\Cambridge, MA)
<TO_ADDRESS>(Carol Jones\World Wide Wicker Co.\Seattle, WA)
<SUBJECT>(Ted and Alice)
<SALUTATION>(Hi Carol,)
<P>
This is the text of the letter ...

4-23

LETTER Doctype Tag Reference
<TO_ADDRESS>

<TO ADDRESS>

SYNTAX

ARGUMENTS

related tags

Places the name and address of the receiver of a letter flush left on the left
margin.

<TO_ADDRESS>(address line-1

address line-n

[\ address line-2] . . . [\ address
line-5])

Specifies one to five lines of text that contain the name and address of the
receiver of the letter.

• <FROM_ADDRESS>

• <MEMO_TO>

DESCRIPTION The <TO_ADDRESS> tag places the name and address of the receiver of a
letter flush left on the left margin. The tag outputs one to five lines of text,
based on the number of address line arguments specified. Each argument
is placed flush left on a new line at the left margin.

EXAMPLE

Alternatively, you can use the <MEMO_TO> tag to specify this same
information, but in a different format. See the description of the <MEMO_

TO> tag in this chapter for more information.

The following example shows a typical beginning of a letter using the
<TO_ADDRESS> tag.

<FROM_ADDRESS>(Bob Smith\Harvard University\Cambridge, MA)
<TO_ADDRESS>(Carol Jones\World Wide Wicker Co.\Seattle, WA)
<SUBJECT>(Ted and Alice)
<SALUTATION>(Hi Carol,)
<P>
This is the text of the letter ...

4-24

5 Using the MANUAL Doctype

The MANUAL doctype has three designs for printed documentation, shown
in Figure 5-1, and one design for online documentation:

• MANUAL.GUIDE

Creates a users' manual in a 7x9-inch format with numbered headings.
This design is intended for chapter-oriented tutorial material.

• MANUAL.PRIMER

Creates a users' manual in a 7 x 9 inch format with unnumbered
headings. This design is intended for chapter-oriented primer
material.

• MANUAL.REFERENCE

Creates a users' manual in an 8~ x 11 inch format with numbered
headings. This design is intended for reference material, and is the
default design.

• MANUAL.ONLINE

Creates an online users' manual in a 5.9 x 6.6-inch format with
numbered headings and ragged right margin. This design is solely
for online display. Refer to Chapter 7 for information about online
documentation.

Table 5-1, Table 5-2, and Table 5-3 list the page layout characteristics of
the MANUAL doctype designs for printed documentation.

Figure 5-1 MANUAL Doctype Designs

Manual.Reference

ZK-1925A-GE

5-1

Using the MANUAL Doctype

5-2

Table 5-1 Page Layout of the MANUAL.GUIDE Doctype Design

Running heads

Running feet

Page numbering

Trim size

Gutter width

Right margin

Headings

Paragraphs

Figures, tables, and
examples

Page Layout Characteristics

Chapter title text

Chapter number and page number

Chapter-oriented

7 x 9 inches

2.5 picas

Justified

Text Element Characteristics

Numbered

Flush left at gutter width

Numbered, table of contents entry

Table 5-2 Page Layout of the MANUAL.PRIMER Design

Running heads

Running feet

Page numbering

Trim size

Gutter width

Right margin

Headings

Paragraphs

Figures, tables, and
examples

Page Layout Characteristics

Chapter title text

Page number

Chapter oriented

7 x 9 inches

2.5 picas

Justified

Text Element Characteristics

Unnumbered

Flush left at gutter width

Numbered, table of contents entry

Table 5-3 Page Layout of the MANUAL.REFERENCE Design

Running heads

Running feet

Page numbering

Trim size

Gutter width

Right margin

Page Layout Characteristics

None

Chapter title text and page number

Chapter oriented

8 1 /2 x 11 inches

2.5 picas

Justified

Using the MANUAL Doctype

Table 5-3 (Cont.) Page Layout of the MANUAL.REFERENCE Design

Headings

Paragraphs

Figures, tables, and
examples

Text Element Characteristics

Numbered

Flush left at gutter width

Numbered, table of contents entry

The MANUAL doctype designs require no doctype-specific tags, but accept
the full range of VAX DOCUMENT global tags. See the VAX DOCUMENT
Using Global Tags for more information on global tags.

Process a file with the MANUAL doctype by using one of the doctype
keywords in the preceding list on the DOCUMENT command line. The
following example shows how to process a file named MYMANUAL.SDML
with the MANUAL doctype to create a reference manual.

$ DOCUMENT MYMANUAL MANUAL.REFERENCE LN03

5-3

Using the MANUAL Doctype

5.1 Example of Using the MANUAL Doctype

5-4

This section contains a sample SDML file for producing a portion of a
manual. The example is for the first few pages of a hardware manual
created using the MANUAL.REFERENCE doctype. The output of this
manual· sample shows the title page and some numbered headings and
a table in the body of the manual. You may find these samples useful in
understanding how global tags can be used in the MANUAL doctype to
create various kinds of manuals.

<FRONT MATTER>
<TITLE PAGE>
<TITLE>(Series III Overthruster\User Manual)
<ABSTRACT>
This book describes the Series III Overthruster, the Series III
manual-override mode and the Overthruster monitor utilities.
<ENDABSTRACT>
<ENDTITLE PAGE>
<ENDFRONT MATTER>

<CHAPTER>(Introduction to the Overthruster\INTRO_CHAP)
<P>
The Series III Overthruster is an intelligent mass thrust device,
designed to deliver controlled thrust from a ZX-300 type drive unit.
The Series III family provides enhanced data collection and control
utilities far superior to those present in the Series II.

<HEADl>(Series III Overthruster Models\thruster)
<p>
The Series III Overthruster family has three models.
<REFERENCE>(MODEL_TAB) lists these models and the salient
features of each.

<TABLE>(Comparison of Series III Overthruster Models\MODEL_TAB)
<TABLE SETUP>(4\25\10\10)
<TABLE-HEADS>(Feature\(3\LEFT)Models\ \)
<TABLE-HEADS>(\SIII-030\SIII-050\SIII-070)
<TABLE-ROW>(Data Channels Supported\2\4\4)
<TABLE-ROW>(I/O Control Processor \A-L35\J19\J19)
<TABLE-ROW>(Drive Unit\ZX-301\ZX-301\ZX-310A)
<TABLE-ROW>(Power Source\TY-100\TY-lOOA \TY-200)
<TABLE=ROW>(Control Memory\128Kb\128Kb\512Kb)
<TABLE_ROW>(Data Memory\ -- \ -- \512Kb)
<END TABLE>

<HEADl>(Series III Overthruster Functional Description\thruster_func)
<p>
The Series III Overthruster is an intelligent mass thrust device
in accordance with the DS8 architecture.

Figure 5-2 and Figure 5-3 show the corresponding output from that
SDML file. Comparing these samples may be helpful in understanding
how to use these tags to create a manual. Should you wish to create
this output yourself, you can obtain file ARTICLE_SAMPLE.SDML from
directory DOC$ROOT:[EXAMPLES].

Using the MANUAL Doctype

Figure 5-2 MANUAL Doctype Output Example, Title Page

Series Ill Overthruster
User Manual

This book describes the Series Ill Overthruster, the Series Ill manual-override mode and the
Overthruster monitor utilities.

Digital Equipment Corporation

5-5

Using the MANUAL Doctype

Figure 5-3 MANUAL Doctype Output Example, Interior Page

Chapter 1
Introduction to the Overthruster

The Series III Overthruster is an intelligent mass thrust device, designed to deliver controlled
thrust from a ZX-300 type drive unit. The Series III family provides enhanced data collection
and control utilities far superior to those present in the Series II.

1.1 Series Ill Overthruster Models
The Series III Overthruster family has three models. Table 1-1 lists these models and the
salient features of each.

Table 1-1: Comparison of Series Ill Overthruster Models

Feature Models

SID-030 SID-050 Slll-070

Data Channels Supported 2 4 4

IIO Control Processor A-L35 J19 J19

Drive Unit ZX-301 ZX-301 ZX-310A

Power Source TY-100 TY-lOOA TY-200

Control Memory 128Kb 128Kb 512Kb

Data Memory 512Kb

1.2 Series Ill Overthruster Functional Description

5-6

The Series III Overthruster is an intelligent mass thrust device in accordance with the DS8
architecture.

Introduction to the Ouerthruster 1-1

6 Using the MILSPEC Doctype

VAX DOCUMENT has two doctype designs for creating printed
military documents, as shown in Figure 6-1, and one design for online
documentation:

• MILSPEC.SECURITY

Use MILSPEC.SECURITY to produce documents requiring security
classifications or to produce documents that conform to the U.S.
Department of Defense standard DOD-STD-2167 or DOD-STD-2167 A.

MILSPEC.SECURITY includes tags for security classification,
numbering of figures and tables by section number, additional heading
levels, 1- to 4-line running titles, single-line running feet, and the
ability to use proportionally spaced fonts in code examples.

• MILSPEC.DRAFT

Use MILSPEC.DRAFT to produce double-spaced· draft documents.

• MILSPEC.ONLINE

Use MILSPEC.ONLINE to produce documents that can be viewed
with Bookreader. This doctype accepts all tags that are valid in
MILSPEC.SECURITY Refer to Chapter 7 for information about online
documentation.

MILSPEC.ONLINE creates an online document in a 5.9 x 6.6 inch
format with numbered headings and ragged right margin.

Table 6-1 lists the page layout of the MILSPEC doctype designs for
printed documentation.

Figure 6-1 MILSPEC Doctype Designs

Milspec.Security Milspec.Draft

ZK-1926A-GE

6-1

Using the MILSPEC Doctype

Table 6-1 Page Layout of the MILSPEC Designs

Running heads

Running feet

Page numbering

Trim size

Right margin

Headings

Paragraphs

Figures, Examples

Tables

Page Layout Characteristics

Two-line running heading

Sequential using Arabic numerals

Sequential using Arabic numerals

8 1/2 x 11 inches

Justified

Text Element Characteristics

Numbered using Arabic numerals

Numbered using Arabic numerals

Numbered using Arabic numerals

Numbered using Roman numerals

6.1 MILSPEC Template Files
VAX DOCUMENT provides template files for MIL-STD-490A documents
and for DOD-STD-2167 or DOD-STD-2167A Data Item Description
documents in the directory DOC$TEMPLATES. Each template file
contains all the headings, titles, and other text elements required by
the MIL-STD-490A, DOD-STD-2167 and DOD-STD-2167A specifications
for conforming documents. Comments in the template input files guide
you in placing your information into the file. See Section 6.3, Section 6.4.1,
and Section 6.4.2 for more information on using these templates.

Another source of templates exists. If you have the VAX Language
Sensitive Editor (LSE) Version 2.0 or higher installed on your system, you
can access LSE templates for the DOD-STD-2167 or DOD-STD-2167A
Data Item Description documents and then expand the appropriate
placeholders to create source files for these doctypes. See the VAX
DOCUMENT User's Guide, Volume 1 for more information on using
LSE with VAX DOCUMENT.

6.2 MILSPEC Doctype Conformance and Format

6-2

The MILSPEC doctype produces documents conforming to United States
Department of Defense Military Specification Standard MIL-STD-490A,
published June 4, 1985, or documents conforming to United States
Department of Defense Standard DOD-STD-2167, also published
June 4, 1985.

The MILSPEC doctype provides 24 template SDML files for documents
that conform to the Department of Defense standard DOD-STD-2167 for
Data Item Descriptions. Data Item Descriptions are MIL-STD-490A
documents that are specialized for a particular kind of information.
DOD-STD-2167 specifies the exact form of each data item description.
See Section 6.4.1 for more information on creating a.DOD-STD-2167
document. ·

Using the MILSPEC Doctype

Documents produced using the MILSPEC doctype design have the
following general format:

• Pages, formal figures, and formal tables are numbered sequentially
throughout the document and are not numbered by chapter, section, or
appendix.

• Paragraphs are numbered using the global numbered heading tags
(<HEAD!> or <HEAD2>) to create the Arabic numerals. A period
automatically ends the numbered paragraph headings.

• Formal tables are numbered using Roman numerals.

• The global <PREFACE> tag automatically generates a preface section
heading of Foreword rather than Preface. All other VAX DOCUMENT
doctypes use the heading Preface.

• The table of contents begins on page ii rather than on page iii. All
other VAX DOCUMENT doctypes that support the automatic creation
of tables of contents begin the table of contents on page iii.

• Appendixes are numbered using Roman numerals. Sections and
paragraphs in an appendix are numbered in Arabic numerals. The
Arabic numerals correspond to the appendix number multiplied by
10 if there are fewer than 10 such sections or paragraphs or by 100 if
there are 10 or more sections or paragraphs. For example, in Appendix
II, the first major paragraph would be paragraph 20.1, and the second
paragraph would be 20.2.

The MILSPEC doctype accepts the full range of VAX DOCUMENT global
tags, with the exception of the <PART> and <PART_PAGE> tags. Table 6-2
summarizes the tags specific to the MILSPEC doctype, which are also used
in the MILSPEC.SECURITY and MILSPEC.DRAFT doctype designs. See
Section 6.5 for more information on any of these tags.

Table 6-2 MILSPEC Doctype Tags

Tag Name

<SET _APPENDIX_NUMBER>

<SIGNATURE_LINE>

<SIGNATURE_LIST>

<SPECIFICATION_INFO>

<SPEC_ TITLE>

<SUBTITLE>

Description

Overrides the default Roman numeral VAX DOCUMENT usually assigns to an
appendix.

Creates up to two rules on a line (one in each signature column) and places
a name below each rule; each rule serves as a signatory line for the person
listed below it.

Begins a 2-column listing of signature lines on the title page and places a
heading above each column. You create each row of signature lines using
the <SIGNATURE_LINE> tag in the context of the <SIGNATURE_LIST> tag.

Creates a listing of information about the specification document on the title
page and creates a 2-line running heading that lists the specification number
and date for the rest of the document.

Creates a title with up to seven centered lines on the title page.

Creates a subtitle with up to seven centered lines on the title page.

6-3

6.2.1

Using the MILSPEC Doctype

Example of Using the MILSPEC.SECURITY and MILSPEC.DRAFT
Doctypes

This section contains a sample of the first pages of a specification created
using the MILSPEC doctype tags. This sample includes the title page of
the specification and the first page of text after the title page.

Note that <SET_HEADINGS> is used within the <DOCUMENT_ATTRIBUTES> tag
to cause running headings to be centered. Also note that the <SECURITY>
and <HIGHEST_SECURITY_CLASS> tags are used to label text elements with
security classifications.

The SDML code for the specification is shown first, followed by the output
from that SDML code when processed for a POSTSCRIPT destination and
the MILSPEC.SECURITY doctype, and then followed by the output when
processed for a POSTSCRIPT destination and the MILSPEC.DRAFT doctype.

<DOCUMENT ATTRIBUTES>
<SET_HEADINGS>(CENTERED)
<ENDDOCUMENT_ATTRIBUTES>

<FRONT MATTER>
<TITLE PAGE>
<SPECIFICATION_INF0>(12345B\a142-b4\<DATE>\Part I of Three Parts)

<ONLINE_TITLE>(PDS For the Overthruster Monitor System)

<SPEC TITLE>(Preliminary Development Specification
\For the Overthruster Monitor System
\Series (Series Configuration Number)
\Order Number (Approved Order Number))

<SUBTITLE>(Submitted Under\Contract AOOOOO--ll--A--2222\<highest_security_class>)

<set security class>(C LEVEL\CL\C LEVEL\5)
<SIGNATURE_LIST>(Authenticated by!\Approved by:)
<SIGNATURE LINE>(Procurer\Program Manager)
<SIGNATURE-LINE>(Date\Technical Director)
<SIGNATURE=LINE>(\Consultant)
<ENDSIGNATURE LIST>
<ENDTITLE_PAGE>
<COMMENT>(<endsecurity>)
<CONTENTS FILE>
<ENDFRONT MATTER>

<CHAPTER>(Scope\first sec)
<HEADl>(Scope\scope_h~ad)
<P>
This document establishes all specifications for the design and
production of the Overthruster Monitor System (USN-122-233x) by our Corporation.
<HEADl>(Purpose\purpose_sec)
<P>
The purpose of this document is to specify all design and production
dimensions of the Overthruster Monitor System. This will ensure that all
essential requirements are met and that all concerns are addressed.

6-4

Using the MILSPEC Doctype

<set security class>(C LEVEL\CL\C LEVEL\5)
<HEAD2>(Primary Purpose\Primary_purpose_sec)
<P>
The primary purpose is to enrich the quality dimension of our product.
<C01"1MENT>(<endsecurity>)
<HEAD3>(Secondary Purpose\secondary_purpose_sec)
<P>
The secondary purpose is to create a corporate strategy for the product that
encompasses the goals established in <REFERENCE>(primary_purpose_sec\VALUE).
<P>
<ELLIPSIS>
<P>
Production of the Overthruster Monitor System will necessitate a reorganization
of our current production strategy. In order to produce the projected
quantities of the Overthruster Monitor System we will have to make the changes
summarized in <REFERENCE>(OMS_tab).

<set security class>(C LEVEL\CL\C LEVEL\5)
<TABLE>(Overthruster Monitor System <oparen>OMS<cparen> Production Line Impact\OMS_tab)
<TABLE ATTRIBUTES>(WIDE)
<TABLE-SETUP>(2\18)
<TABLE=HEADS>(Production<LINE>Line Name\Production<LINE>Line Modification)
<TABLE ROW>(Alpha<LINE> (System Units)
\100% conversion from Series II OMS production to Series III OMS production.)

<TABLE ROW>(Beta<LINE> (Unit Stands)
\Increase production 30% and designate 50% of
that production for the Overthruster Monitor System sales.)

<TABLE_ROW>(Gamma<LINE> (Model I Power Supplies)
\Phase out production over 6-month time frame.
<COMMENT>(<endsecurity>)
<set security class>(S LEVEL\SL\S LEVEL\6)
Will-be modified to produce the new Model IIA Power Supply.
<COMMENT>(<endsecurity>)
)

<TABLE ROW>(Omega<LINE> (Model IIA Power Supplies)
\Increase production by 35% until Gamma comes on-line in 6 months.)
<END TABLE>

Figure 6-2 and Figure 6-3 show the corresponding output from the sample
SDML file when processed using the MILSPEC.SECURITY doctype.
Comparing these samples may be helpful in understanding how to use
these tags to create Milspec documents. Should you wish to create this
output yourself, you can obtain file MILSPEC_SECURE_SAMPLE.SDML
from directory DOC$ROOT:[EXAMPLES].

Figure 6-4, Figure 6-5 and Figure 6-6 show the corresponding
output from the same sample SDML file when processed with the
MILSPEC.DRAFT doctype. Comparing these samples may be helpful
in understanding how to use these tags to create Milspec draft
documents. Should you wish to create this output yourself, you
can obtain file MILSPEC_DRAFT_SAMPLE.SDML from directory
DOC$ROOT:[EXAMPLESJ.

6-5

Using the MILSPEC Doctype

Figure 6-2 MILSPEC.SECURITY Doctype Output Example, Title Page

S LEVEL

12345B
a142-b4

21 January 1991
Part I of Three Parts

Preliminary Development Specification
For the Overthruster Monitor System
Series (Series Configuration Number)

Order Number (Approved Order Number)

Submitted Under
Contract A00000-11-A-2222

S LEVEL

Authenticated by: Approved by:

Procurer Program Manager

Date Technical Director

Consultant

S LEVEL

6-6

Using the MILSPEC Doctype

Figure 6-3 MILSPEC.SECURITY Doctype Output Example, Interior Page

S LEVEL 12345B
21 January 1991

1. SCOPE

1.1 Scope. This document establishes all specifications for the design and production of the Overthruster
Monitor System (USN-122-233x) by our Corporation.

1.2 Purpose. The purpose of this document is to specify all design and production dimensions of the
Overthruster Monitor System. This will ensure that all essential requirements are met and that all concerns are
addressed.

1.2.1 (CL) Primary Purpose.
product.

(CL) The primary purpose is to enrich the quality dimension of our

1.2.1.1 Secondary Purpose. The secondary purpose is to create a corporate strategy for the product that
encompasses the goals established in 1.2.1.

Production of the Overthruster Monitor System will necessitate a reorganization of our current production strategy.
In order to produce the projected quantities of the Overthruster Monitor System we will have to make the changes
summarized in Table 1.2.1.1-1.

Table 1.2.1.1-1 (CL). Overthruster Monitor System (OMS) Production Line Impact

Production
Line Name

Alpha
(System Units)

Beta
(Unit Stands)

Gamma
(Model I Power Supplies)

Omega
(Model IIA Power Supplies)

Production
Line Modification

100% conversion from Series II OMS production to Series III OMS production.

Increase production 30% and designate 50% of that production for the Over
thruster Monitor System sales.

Phase out production over 6-month time frame.
to produce the new Model IIA Power Supply.

(SL) Will be modified

Increase production by 35% until Gamma comes on-line in 6 months.

S LEVEL

6-7

Using the MILSPEC Doctype

Figure 6-4 MILSPEC.DRAFT Doctype Output Example, Title Page

S LEVEL

12345B

a142-b4

9 January 1991

Part I of Three Parts

Preliminary Development Specification
For the Overthruster Monitor System
Series (Series Configuration Number)

Order Number (Approved Order Number)

Submitted Under
Contract A00000-11-A-2222

S LEVEL

Authenticated by: Approved by:

Procurer Program Manager

Date Technical Director

Consultant

S LEVEL

6-8

Using the MILSPEC Doctype

Figure 6-5 MILSPEC.DRAFT Doctype Output Example, Interior Page 1

S LEVEL 123458
9 January 1991

1. SCOPE

I. I Scope. This document establishes all specifications for the design and production of the Overthruster

Monitor System (USN-122-233x) by our Corporation.

1.2 Purpose. The purpose of this document is to specify all design and production dimensions of the

Overthruster Monitor System. This will ensure that all essential requirements are met and that all concerns are

addressed.

I .2. I (CL) Primary Purpose. (CL) The primary purpose is to enrich the quality dimension of our

product.

1.2. I .l Secondary Purpose. The secondary purpose is to create a corporate strategy for the product that

encompasses the goals established in 1.2.1.

Production of the Overthruster Monitor· System will necessitate a reorganization of our current production strategy.

In order to produce the projected quantities of the Overthruster Monitor System we will have to make the changes

summarized in Table 1.2.1.1-1.

Table 1.2.1.1-1 (CL). Overthruster Monitor System (OMS) Production Line Impact

Production
Line Name

Alpha
(System Units)

Beta
(Unit Stands)

Gamma
(Model I Power Supplies)

Production
Line Modification

100% conversion from Series II OMS production to Series III OMS production.

Increase production 30% and designate 50% of that production for the Over
thruster Monitor System sales.

Phase out production over 6-month time frame.
to produce the new Model IIA Powe.- Supply.

S LEVEL

(SL) Will be modified

6-9

Using the MILSPEC Doctype

Figure 6-6 MILSPEC.DRAFT Doctype Output Example, Interior Page 2

123458
9 January 1991

Production
Line Name

Omega

C LEVEL

Table 1.2.1.1-1 (CL) (Continued). Overthruster
Monitor System (OMS) Production Line Impact

Production
Line Modification

Increase production by 35% until Gamma comes on-line in 6 months.
(Model IIA Power Supplies)

2 C LEVEL

6-10

Using the MILSPEC Doctype

6.3 Creating MIL-STD-490A Documents
To create a MIL-STD-490A document, you copy the template file
MILSPEC_SAMPLE.SDML from the directory DOC$TEMPLATES into
your work directory, then edit it to insert your text. Alternatively, you can
create your own file. If you create a new file, you may still want to look at
the template SDML input file as a guide.

To create documents that conform to MIL-STD-490A, you use the
MILSPEC doctype tags in the following manner:

• Create the required cover page for the document using the <SPEC_

TITLE> and <SPECIFICATION_INFO> tags in the context of the global
<TITLE_PAGE> tag.

The <SPEC_TITLE> tag creates a title for the document and the
<SPECIFICATION_INFO> tag places additional information on the cover
page of the document, and sets the running headings for the rest of
the document, including the table of contents.

The <SPEC_TITLE> may be too long for practical use with Bookreader.
You may want to use the <ONLINE_TITLE> tag and a shorter title just
before the <SPEC_TITLE> tag for use by the Bookreader Library, title
bar, and topic bar. This tag is only valid for Bookreader, and is ignored
when you process for printed documents. Additionally, you must
include the <CONTENTS_FILE> tag if processing for Bookreader. Refer to
Chapter 7 for information about online documentation.

• Create major sections (such as Section 1, Scope,) in your document
using the global <CHAPTER> tag.

Each <CHAPTER> tag that has paragraph text immediately following
it should have a <P> tag placed between the heading and the text
for correct formatting, just as in any document. Chapters that
contain no pertinent information should be coded with the <CHAPTER>
tag, complete with the appropriate title text and the symbol name
argument. Such chapters should contain only the following standard
disclaimer paragraph as specified in MIL-STD-490A.

This section is not applicable to this specification.

• Create the numbered paragraphs in each major section using the
appropriate global numbered heading tags (<HEADl>, <HEAD2>, and so
on). Again, each heading tag that has paragraph text immediately
following it should have a <P> tag placed between the heading and the
text for correct formatting, just as in any document. The MILSPEC
doctype automatically inserts a period at the end of all titled numbered
headings.

To cross-reference numbered paragraphs in your document, specify
them using the <REFERENCE> tag with the VALUE argument so that
the default text Section does not automatically output before the
paragraph number.

Refer to VAX DOCUMENT User's Guide, Volume 1 for information
about using the <REFERENCE> tag and its arguments, such as VALUE.

6-11

Using the MILSPEC Doctype

If you are processing for Bookreader, you can create hotspots to cross
reference information. Refer to Chapter 7 for information about online
documentation.

6.4 Creating Data Item Description Documents

6.4.1

6.4.2

Use VAX DOCUMENT to create a Data Item Description document in
accordance with either U.S. Department of Defense standard DOD
STD-2167 or DOD-STD-2167A. DOD-STD-2167A is a Department of
Defense military standard published February 29, 1988 that supersedes
DOD-STD-2167, published June 4, 1985.

Create a Data Item Description (DID) document in accordance with either
DOD-STD-2167 or DOD-STD"'."2167 A in any of the following ways:

• Copy the appropriate template file from the DOC$TEMPLATES
directory into your directory and edit that file (the template files
contain comments to guide you in their use).

• Edit a file with LSE and expand the appropriate LSE Data Item
Description template.

• Create your own file (if you create your own new file, you may still
want to look at the SDML input file templates or the LSE templates
as guides).

Creating DOD-STD-2167 Documents
To create a DOD-STD-2167 document, copy and edit one of the 24 Data
Item Description (DID) templates listed in Table 6-3, or expand the
appropriate LSE templates available in LSE.

Process your finished SDML input file using the MILSPEC.SECURITY or
MILSPEC.O:r-{LINE doctypes to have a document format that conforms to
DOD-STD-2167.

See Section 6.5 for information on the tags available in the
MILSPEC.SECURITY doctype and Chapter 7 for information on the
additional tags needed for MILSPEC.ONLINE.

Creating DOD-STD-2167 A Documents

6-12

To create a DOD-STD-2167 A document, copy and edit one of the 17 Data
Item Description (DID) templates listed in Table 6-4, or expand the
appropriate LSE templates available in LSE.

You create DOD-STD-2167 A formatted documents by using the
MILSPEC.SECURITY doctype with certain tags enabled in that doctype.
To create a document that follows the 2167 A format specifications, enter
the SDML code shown in Example 6-1 at the top of your SDML file (or
include it from a separate file using either the <INCLUDE> tag or the
/INCLUDE qualifier) and then process it using the MILSPEC.SECURITY
doctype.

Using the MILSPEC Doctype

Example 6-1 Coding a 2167 A-Formatted Document

<DOCUMENT ATTRIBUTES>
<SET_HEADINGS>(CENTERED)
<SET_APPENDIX_ENUMERATION>(ALPHABETIC)
<ENDDOCUMENT ATTRIBUTES>

To create double-spaced draft output of this file, use the same procedure,
but process the file using the MILSPEC.DRAFT doctype.

6.4.2.1 Using the Data Item Description Template Files
VAX DOCUMENT contains Data Item Description (DID) template files to
make creating DOD-STD-2167 and DOD-STD-2167A documents easier.
See Table 6-3 for a list of the DOD-STD-2167 templates; see Table 6-4 for
a list of the DQD-STD-2167 A templates.

The template files supply a framework for each of the supported DID
specifications, so that all you need supply is the text specific to your
document. The document template provides all required tags, including
section and paragraph heaqings.

Each template file is a collection of individual element files coded for
a specific DID or military document. These files are concatenated into
a single file to simplify use and storage. When you use one of these
concatenated files, separate it into several files, one file for each major
section of your document. ·

Each section of the template input file has comments with directions for
its use. Placing each major section in a separate file makes it easier to
maintain your document and lets you use the book-building features of
VAX DOCUMENT. When you are ready to create your book, list these files
in a profile file using the <ELEMENT> tag and process the profile as a VAX
DOCUMENT book build.

Such a profile would appear as follows:

<COMMENT>(SDML profile for My Document)
<PROFILE>
<ELEMENT>(frontmatter.sdml)
<ELEMENT>(scopechap.sdml)
<ELEMENT>(secondchap.sdml)
<ELEMENT>(thirdchap.sdml)
<ELEMENT>(fourthchap.sdml)
<ELEMENT>(fifthchap.sdml)
<ELEMENT>(noteschap.sdml)
<ELEMENT>(firstapx.sdml)
<ENDPROFILE>

For example, if you were to use the file MILSPEC_DID_80025.SDML, you
would place each of the six major sections in a separate file, and also place
the front matter section and the symbol definition section in separate files.
VAX DOCUMENT would place each of these files in your document as it
builds your boqk.

For more information about creating a profile, refer to the <PROFILE> tag
description in VAX DOCUMENT User's Guide, Volume 1.

6-13

Using the MILSPEC Doctype

6-14

To use the DID template files, do the following:

1 Select the template you want by referring to either Table 6-3 for DOD
STD-2167 templates or to Table 6-4 for DOD-STD-2167 A templates.
The names of the template files correspond to their DID document
number.

If the template you want is not listed, use a similar template as the
basis for creating your own template. You may want to read through
the template to make sure it is the one you want.

2 Copy the template file you selected or created into your working
directory before you modify it. Do not modify the VAX DOCUMENT
templates in DOC$TEMPLATES. Other users of VAX DOCUMENT
may also want to use them.

3 Separate the template file into separate files, placing each major
section (beginning with the <CHAPTER> tag) in a separate file. Place
the front matter (beginning with the <FRONT_MATTER> tag) and the
symbol definitions (created using the <DEFINE_SYMBOL> and <DEFINE_

BOOK_NAME> tags) in separate files.

4 Modify the appropriate text arguments to the <DEFINE_SYMBOL> tags
so that the proper text (such as your product's name) automatically
inserts into the template when the symbol is referenced.

Each template file contains references to symbols created using the
<DEFINE_SYMBOL> tag. Comments in the template file identify which
symbols are used by all the templates and which symbols are used
only in that particular template.

5 Create a book-building profile that lists each of the major sections and
the front matter file as book elements. These book elements can then
be built into a single book by VAX DOCUMENT. You may want to
include the <CONTENTS_FILE> and <INDEX_FILE> tags in your profile to
automatically include your table of contents and index files into the
final book.

Do not include the file that contains the symbol definitions in the
profile. Specify the symbol definitions file as an argument to the
DOCUMENT /SYMBOLS qualifier when you process your profile, as
shown in the following example:

$ DOC/LIST/CONTENTS/SYMBOLS=MY SYMBOLS.SDML
$ _MYFILE.SDML MILSPEC LN03 -

The following is a sample book-building profile for a military
specification document. The <CONTENTS_FILE> and <INDEX_FILE> tags
automatically include the table of contents and index files for the
document.

<PROFILE>
<ELEMENT>(frontmatter.sdml)
<CONTENTS FILE>
<ELEMENT>(scopechap.sdml)
<ELEMENT>(secondchap.sdml)
<ELEMENT>(thirdchap.sdml)
<ELEMENT>(fourthchap.sdml)
<ELEMENT>(fifthchap.sdml)
<ELEMENT>(noteschap.sdml)
<ELEMENT>(firstapx.sdml)
<INDEX FILE>
<ENDPROFILE>

Using-the MILSPEC Doctype

If you have a large book element or a book element that contains
sections that change a great deal, you may want to separate that book
element into several files. You include these separated files, called
book subelements, into the book element file with the global <INCLUDE>
tag. The following sample shows the book element file thirdchap.sdml
that includes several book subelement files.

<COMMENT>(File: thirdchap.sdml)
<CHAPTER>(Testing Results\test_results_chap)
<INCLUDE>(testing_intro.sdml)
<INCLUDE>(testl_results.sdml)
<INCLUDE>(test2_results.sdml)
<INCLUDE>(test3_results.sdml)
<INCLUDE>(test4_results.sdml)
<INCLUDE>(testS results.sdml)
<INCLUDE>(testing_conclusions.sdml)

Each of these book subelements can be processed individually and have
all cross-references correctly resolved after the entire book has been
built. The book-building process creates the XREF cross-reference file
that the subelement accesses to resolve the cross-references. See the
VAX DOCUMENT User's Guide, Volume 1 for more information about
creating and using book build profiles, symbol definitions files, and
processing book subelements.

6 Enter the appropriate information for your document into each of the
major sections of the template input file.

Table 6-3 MILSPEC Doctype DOD-STD-2167 Data Item Description Templates

Data Item
Description
Number

None.

D l-CMAN-80008
AMSC No. N3584

D l-MCCR-80009
AMSC No. N3585

Dl-MCCR-80010
AMSC No. N3586

Dl-MCCR-80011
AMSC No. N3587

Template
Description

Sample template for any document
conforming to MIL-STD-490A

System/Segment Specification

Software Configuration Management
Plan

Software Quality Evaluation Plan

Software Standards and Procedures
Manual

Template Files Located
in the Directory
DOC$TEMPLATES

MILSPEC_SAMPLE.SDML

MILSPEC_DID_80008.SDML

MILSPEC_DID_80009.SDML

MILSPEC_DID_8001 O.SDML

MILSPEC_DID_80011.SDML

6-15

Using the MILSPEC Doctype

Table 6-3 (Cont.) MILSPEC Doctype DOD-STD-2167 Data Item Description Templates

Data Item Template Files Located
Description Template in the Directory
Number Description DOC$TEMPLATES

Dl-MCCR-80012 Software Top Level Design Document MILSPEC_DID_80012.SDML
AMSC No. N3588

Dl-MCCR-80013 Version Description Document MILSPEC_DID_80013.SDML
AMSC No. N3589

Dl-MCCR-80014 Software Test Plan MILSPEC_DID_80014.SDML
AMSC No. N3590

Dl-MCCR-80015 Software Test Description MILSPEC_DID_80015.SDML
AMSC No. N3591

Dl-MCCR-80016 Software Test Procedure MILSPEC_DID_80016.SDML
AMSC No. N3592

Dl-MCCR-80017 Software Test Report MILSPEC_DID_80017.SDML
AMSC No. N3593

Dl-MCCR-80018 Computer System Operator's Manual MILSPEC_DID_80018.SDML
AMSC No. N3594

Dl-MCCR-80019 Software User's Manual MILSPEC _DID _80019.SDML
AMSC No. N3595

Dl-MCCR-80020 Computer System Diagnostic Manual MILSPEC_DID_80020.SDML
AMSC No. N3596

Dl-MCCR-80021 Software Programmer's Manual MILSPEC_DID_80021.SDML
AMSC No. N3597

Dl-MCCR-80022 Firmware Support Manual MILSPEC_DID_80022.SDML
AMSC No. N3598

Dl-MCCR-80023 Operational Concept Document MILSPEC_DID_80023.SDML
AMSC No. N3599

Dl-MCCR-80024 Computer Resources Integrated Support MILSPEC_DID_80024.SDML
AMSC No. N3600 Document

Dl-MCCR-80025 Software Requirements Specification MILSPEC_DID_80025.SDML
AMSC No. N3601

Dl-MCCR-80026 Interface Requirements Specification MILSPEC _DID _80026.SDML
AMSC No. N3602

Dl-MCCR-80027 Interface Design Document MILSPEC_DID_80027.SDML
AMSC No. N3603

Dl-MCCR-80028 Data Base Design Document MILSPEC_DID_80028.SDML
AMSC No. N3604

Dl-MCCR-80029 Software Product Specification MILSPEC_DID_80029.SDML
AMSC No. N3605

Dl-MCCR-80030 Software Development Plan MILSPEC_DID_80030.SDML
AMSC No. N3606

Dl-MCCR-80031 Software Detail Design Document MILSPEC_DID_80031.SDML
AMSC No. N3607

6-16

Using the MILSPEC Doctype

Table 6-4 MILSPEC.SECURITY Doctype DOD-STD-2167 A Data Item Description Templates

Data Item Template Files Located
Description Template in the Directory
Number Description DOC$TEMPLATES

Dl-CMAN-80008A System/Segment Specification MILSPEC_DID_80008A.SDML
AMSC No. F4328

D l-CMAN-80534 System/Segment Design Document MILSPEC_DID_80524.SDML
AMSC No. N4329

Dl-MCCR-80012A Software Design Document MILSPEC_DID_80012A.SDML
AMSC No. N4330

Dl-MCCR-80013A Version Description Document MILSPEC_DID_80013A.SDML
AMSC No. N4331

Dl-MCCR-80014A Software Test Plan MILSPEC_DID_80014A.SDML
AMSC No. N4332

Dl-MCCR-8001 SA Software Test Description MILSPEC_DID_80015A.SDML
AMSC No. N4333

Dl-MCCR-80017A Software Test Report MILSPEC_DID_80017A.SDML
AMSC No. N4334

Dl-MCCR-80018A Computer System Operator's Manual MILSPEC_DID_80018A.SDML
AMSC No. N4335

Dl-MCCR-80019A Software User's Manual MILSPEC_DID_80019A.SDML
AMSC No. N4336

Dl-MCCR-80021A Software Programmer's Manual MILSPEC_DID_80021 A.SDML
AMSC No. N4337

Dl-MCCR-80022A Firmware Support Manual MILSPEC_DID_80022A.SDML
AMSC No. N4338

Dl-MCCR-80024A Computer Resources Integrated Support MILSPEC_DID_80024A.SDML
AMSC No. N4339 Document

Dl-MCCR-80025A Software Requirements Specification MILSPEC_DID_80025A.SDML
AMSC No. N4340

Dl-MCCR-80026A Interface Requirements Specification MILSPEC_DID_80026A.SDML
AMSC No. N4341

Dl-MCCR-80027 A Interface Design Document MILSPEC_DID_80027A.SDML
AMSC No. N4342

Dl-MCCR-80029A Software Product Specification MILSPEC_DID_80029A.SDML
AMSC No. N4343

Dl-MCCR-80030A Software Development Plan MILSPEC_DID_80030A.SDML
AMSC No. N4344

6.5 MILSPEC Doctype Tag Reference
This part of Chapter 6 contains reference information on all the tags
available in the MILSPEC doctypes. The MILSPEC doctypes are a full
implementation of the United States Military Specification Standard
MIL-STD-490A.

6-17

MILSPEC Doctype Tag Reference
<CODE_EXAMPLE>

<CODE EXAMPLE>

SYNTAX

ARGUMENTS

related tags

restrictions

Places an example of code in a proportionally spaced font.

<CODE EXAMPLE>
code example text

<ENDCODE EXAMPLE>

code example text
Specifies a code fragment you want to insert into your text.

• The global <INTERACTIVE> tag

• The global <LINE_ART> tag

• The global <VALID_BREAK> tag

Valid only in the context of the MILSPEC doctypes; all other doctypes
use the global <CODE_EXAMPLE> tag, which accepts arguments and has a
different format than the MILSPEC <CODE_EXAMPLE> tag.

Do not use indexing tags (<X> and <Y>) in code examples.

Do not use tab characters to format code examples. Use spaces rather
than tabs.

Do not use text element tags in <CODE_EXAMPLE> (for example, <P>, <LIST>,
or <NOTE>).

required <ENDCODE_EXAMPLE>

terminator

DESCRIPTION The <CODE_EXAMPLE> tag places an example of code in a proportionally
spaced font. It causes the one or more lines of code example text to be
indented from the text that surrounds it.

6-18

The size of the example, whether it will be indented, and how much it
will be indented from· the current left margin of text is controlled by the
document design.

EXAMPLE

<CODE EXAMPLE>

MILSPEC Doctype Tag Reference
<CODE_ EXAMPLE>

Enter the code example text between the <CODE_EXAMPLE> and <ENDCODE_

EXAMPLE> tags. Character spaces and blank lines that you enter to format
the code will be retained. Also, use the <ELLIPSIS> tag in this context to
a vertical ellipsis to indicate you omitted some lines of code. If your code
example is longer than a few lines, use the global <VALID_BREAK> tag to
indicate the acceptable points for a page break.

Use the global <LINE_ART> or <INTERACTIVE> tags to create monospaced
code examples in the MILSPEC doctypes.

The following example shows the coding of a proportionally spaced code
example.

<KEYWORD>(type) DURATION <KEYWORD>(is) <KEYWORD>(delta)
<EMPHASIS>(implementation defined)
<KEYWORD>(range) <EMPHASIS>(implementation defined);

<ENDCODE EXAMPLE> -

This example produces the following output:

type DURATION is delta
implementation_defined range
implementation_ defined;

6-19

MILSPEC Doctype Tag Reference
<DOCUMENT _ATTRIBUTES>

<DOCUMENT ATTRIBUTES>

SYNTAX

related tags

Enables doctype-specific tags that override the default design format of the
MILSPEC doctypes.

<DOCUMENT ATTRIBUTES>

• <RUNNING_FEET>

• <RUNNING_TITLE>

required <ENDDOCUMENT_ATTRIBUTES>

terminator

DESCRIPTION The <DOCUMENT_ATTRIBUTES> tag enables doctype-specific tags that
override the default design format of the MILSPEC doctypes. The
<DOCUMENT_ATTRIBUTES> tag enables a group of tags that let you modify
the default format of these doctypes. The default format of these doctypes
is:

6-20

• Appendixes are numbered by Roman numerals and Arabic numerals.

• Formal tables, figures, and examples are numbered using the current
section (paragraph) number.

• Headings are placed, alternately, on the right and left pages.

• Running footers (running headings at the bottom of the page) are
placed, alternately, on the right and left pages.

The tags that let you modify the default format are recognized only in the
context of the <DOCUMENT_ATTRIBUTES> tag. If you use other SDML tags
ill. this context, they are ignored, as if they had occurred in the context of
a <COMMENT> tag.

Use the <DOCUMENT_ATTRIBUTES> tag at the beginning of an input file (or
in a file specified using the DOCUMENT /INCLUDE qualifier) to alter the
default format of a doctype for the processing of that entire file.

Table 6-5 summarizes the formatting tags enabled by the <DOCUMENT_

ATTRIBUTES> tag in these doctypes'.

MILSPEC Doctype Tag Reference
<DOCUMENT _ATTRIBUTES>

Table 6-5 Doctype-specific Tags Enabled by the <DOCUMENT_ATTRIBUTES> Tag

Formatting Tags Description

Tags Enabled in the MILSPEC.SECURITY and MILSPEC.DRAFT Doctypes

<INDENT_FIRST_LIST>(TRUE) Specifies whether to indent lists that are not nested in
<INDENT_FIRST_LIST>(FALSE) other lists.

<SET _APP EN DIX_ENUMERATION>(ALPHABETIC)
<SET_APPENDIX_ENUMERATION>(ROMAN)

<SET _FORMAL_ELEMENT _NUMBERING>(BY _
SECTION)
<SET _FORMAL_ ELEM ENT_
NUMBERING>(SEQUENTIAL)

<SET _H EADERS>(RIGHT)
<SET _H EADERS>(LEFT)
<SET _HEADERS>(CENTERED)
<SET _HEADERS>(CYCLE)

The TRUE keyword causes lists and their list item
designators (such as numbers or bullets) to be
indented from the current left text margin.

The FALSE keyword causes lists and their list
item designators to be placed flush with the
current left text margin.

The default keyword is FALSE.

Specifies whether appendixes are identified using
letters or Roman numerals. By default in the
MILSPEC doctypes, appendixes are assigned Roman
numerals and Arabic numerals. If you specify <SET_
APPENDIX_ENUMERATION>(ALPHABETIC), then
the appendixes will be identified using letters.

Specifies how formal tables, figures, and examples
are to be numbered in a document processed using
the MILSPEC doctypes. By default, formal tables,
figures, and examples are numbered in this doctype
using the current section (paragraph) number.

The SEQUENTIAL keyword indicates that formal
elements are to be numbered sequentially throughout
the document; for example, the eighth formal table in
the document, regardless of what chapter it occurs in,
is numbered Table 8.

Specifies the positioning of running headings near the
top of the page.

The RIGHT keyword causes headings to be
placed on the right-hand side of the page.

The LEFT keyword causes headings to be placed
on the left-hand side of the page.

The CENTERED keyword causes headings to be
centered on the page.

The CYCLE keyword indicates that headings
should appear on the right-hand side when the
page number is odd and on the left-hand side of
the page when the page number is even.

The default keyword is CYCLE.

6-21

MILSPEC Doctype Tag Reference
<DOCUMENT _ATTRIBUTES>

Table 6-5 (Cont.) Doctype-specific Tags Enabled by the <DOCUMENT_ATIRIBUTES> Tag

Formatting Tags Description

Tags Enabled in the MILSPEC.SECURITY and MILSPEC.DRAFT Doctypes

<SET _FOOTERS>(RIG HT)
<SET _FOOTERS>(LEFT)
<SET _FOOTERS>(CYCLE)

Specifies the positioning of running feet near the
bottom of the page.

The RIGHT keyword causes the running footer to
be placed on the right-hand side of the page.

The LEFT keyword causes the running footer to
be placed on the left-hand side of the page.

The CYCLE keyword causes the running footer to
be placed on the right-hand side when the page
is even and on the left-hand side of the page
when the page number is odd.

The default keyword is CYCLE.

EXAMPLE The following example shows how to use the <DOCUMENT_ATTRIBUTES> tag
to create centered headings and to cause appendixes to be ordered using
letters.

<DOCUMENT_ATTRIBUTES>
<SET_HEADINGS>(CENTERED)
<SET_APPENDIX_ENUMERATION>(ALPHABETIC)
<ENDDOCUMENT_ATTRIBUTES>

6-22

<HEADn>

SYNTAX

ARGUMENTS

related tags

MILSPEC Doctype Tag Reference
<HEADn>

Marks a heading of the level specified (1 through 20).

<HEADn>(heading text[\ symbol name])

heading text
Specifies the text of the heading. If the book design you are using outputs
headings that are all capital letters, those headings capitalize regardless
of the way you enter them in your input file. However, use uppercase
and lowercase letters, according to your local conventions, to obtain
the proper capitalization of the heading in the table of contents and in
cross-references.

symbol name
This is an optional argument. It specifies the name of the symbol used in
all references to this heading.

Symbol names must not exceed 31 characters and must only contain
alphabetic letters, numbers, or underscores. Do not begin a symbol name
with an underscore.

• The global <CHEAD> tag

• The global <SUBHEAD!> tag

• The global <SUBHEAD2> tag

DESCRIPTION The <HEADn> tag marks a heading of the level specified (1 through 20).
Each of the 20 tags (<HEAD!> through <HEAD20>) does the following:

• Outputs the heading text specified in its first argument

• Automatically numbers the heading

• Resets all lower heading levels· (if any)

• Specifies the symbol name with which cross-references to that heading
should be made

• Automatically places an entry for the heading in the table of contents

The proper choice of the heading level depends on an understanding of
the logical structure of the document you are writing. A <HEAD2> tag will
always be logically subordinate to a <HEAD!> tag. The same is true for the
relationship between <HEAD3> and <HEAD2>, <HEAD4> and <HEAD3>, and so
on.

6-23

MILSPEC Doctype Tag Reference.
<HEADn>

EXAMPLES The following tag creates a fourth-level heading.

D <HEAD4>(SET and SHOW Tasks\set_show_sec)

The following tag creates an eighth-level heading.

~ <HEAD8>(0ther Tasks\other_sec)

6-24

An example of a heading created by the <HEAD4> tag would be 1.1.1.1 Set.
If the heading number created by the tag was 1.1.1.1, then a reference to
\ set_show_sec would output as Section 1.1.1.1.

Use the <REFERENCE> tag as shown in the following table to modify the
output of the cross-reference.

Reference Output

<REFERENCE>(set_show_sec) Section 1.1.1.1

<REFERENCE>(set_show_sec\value) 1.1.1.1

<REFERENCE>(set_show_sec\ text) Set and Show Tasks

<REFERENCE>(set_show_sec\full) Section 1.1.1.1, Set and Show Tasks

MILSPEC Doctype Tag Reference
<HIGHEST_SECURITV_CLASS>

<HIGHEST SECURITY CLASS>

SYNTAX

related tags

- -
Prints the classification text associated with the highest security classification
encountered in a document.

<HIGHEST _SECURITY_ CLASS>

• <SECURITY>

• <SET_PAGE_SECURITY>

DESCRIPTION The <HIGHEST_SECURITY_CLASS> tag prints the classification text associated
with the highest security classification encountered in a document. When
processing a document, VAX. DOCUMENT keeps track of the security
levels associated with each <SECURITY> tag you specify. VAX DOCUMENT
saves the highest of these security levels and you can place it anywhere in
your document using the <HIGHEST_SECURITY_CLASS> tag.

EXAMPLE

<TITLE PAGE>

For example, to place the highest security level found in a document on the
title page as a subtitle, you would enter the <HIGHEST_SECURITY_CLASS>

tag as an argument to the <SUBTITLE> tag.

The following example shows how to use the <HIGHEST_SECURITY_CLASS>

tag to place the highest security classification found in a document on the
title page as a subtitle.

<SPECIFICATION_INFO>(WS-99999\PAGM NNNN D036\<DATE>)
<SPEC TITLE>(Program Design Specification
\For The
\Machinery Control Program (MCP))
<subtltle>(<HIGHEST_SECURITY_CLASS>)

6-25

MILSPEC Doctype Tag Reference
<RUNNING_FEET>

<RUNNING FEET>

SYNTAX

ARGUMENTS

related tags

Creates a single-line running footer at the bottom of each page, next to the
page number.

<RUNNING_FEET>(footer text)

footer text
Specifies the text of the running footer. The footer appears next to the
page number on the bottom of each page.

• <SET_FOOTERS>

DESCRIPTION The <RUNNING_FEET> tag creates a single-line running footer at the bottom
of each page, next to the page number.

EXAMPLE

use the <SET_FOOTERS> tag, enabled by the <DOCUMENT_ATTRIBUTES> tag,
to alter the position of the page number and title text in the running
footer.

This tag is ignored for Bookreader output.

The following example creates the running footer, Special Report, at the
bottom of the page.

<RUNNING_FEET>(Special Report)

6-26

MILSPEC Doctype Tag Reference
<RUNNING_ TITLE>

<RUNNING TITLE>

SYNTAX

ARGUMENTS

related tags

Creates a 1- to 4-line heading at the top of each page, including the current
page.

<RUNNING_TITLE>(tit/e text-1 [\title text-2 . ..
\ title text-4])

title text-n
Specifies the text of the running title lines. The first title you specify
is the title that appears closest to the top of the page. Subsequent title
arguments output below the first title argument.

• <DOCUMENT_ATTRIBUTES>

• <RUNNING_FEET>

DESCRIPTION The <RUNNING_TITLE> tag creates a 1- to 4-line heading at the top of each
page, including the current page. By default, VAX DOCUMENT places the
running title on the right-hand side of the page when the page number
is odd and on the left-hand side of the page when the page number is
even. The running title you specify only appears on the title page of the
document if you specify the <RUNNING_TITLE> tag before the <ENDTITLE_

PAGE> tag.

use the <SET_HEADERS> tag enabled by the <DOCUMENT_ATTRIBUTES> tag to
change the positioning of the running titles on the page.

EXAMPLE The following example creates a 3-line running title at the top of the page.

<RUNNING_TITLE>(Introduction to SDML\September 1988\Company Confidential)

6-27

MILSPEC Doctype Tag Reference
<SECURITY>

<SECURITY>

SYNTAX

ARGUMENTS

related tags

Assigns a security classification level to a text element.

<SECURITY>(classification keyword)

classification keyword
Is a keyword indicating the classification level. Each keyword has
associated text output with a text element, as well as text printed at
the top and bottom of each page. The following table shows default
classification levels and the keywords associated with them.

Classification Abbreviated Classification Text for
Keyword Text Output Running Headers and Footers

TOP_SECRET (TS) TOP SECRET

SECRET (S) SECRET

CONFIDENTIAL (C) CONFIDENTIAL

UNCLASSIFIED (U) UNCLASSIFIED

You modify classification keywords and associated output text with the
<SET_SECURITY_CLASS> tag.

• <HIGHEST_SECURITY_CLASS>

• <SET_CONTENTS_SECURITY>

• <SET_PAGE_SECURITY>

• <SET_SECURITY_CLASS>

required <ENDSECURITY>

terminator

DESCRIPTION The <SECURITY> tag assigns a security classification level to a text element.

6-28

You can apply a security classification to one of the following text elements:

• <CHAPTER> and <APPENDIX> tags

The classification applies to the title of the chapter or appendix.

• <HEADn> tags

The classification applies to the heading. If a classification is
established before a heading, that classification can be overridden
in the heading text argument.

MILSPEC Doctype Tag Reference
<SECURITY>

• <P> tags

The classification of a paragraph created using the <P> tag outputs
immediately before the text of the paragraph.

• <TABLE> and <FIGURE> tags.

If a classification is in effect when VAX DOCUMENT processes
a <FIGURE> or <TABLE> tag sequence, the classification applies to
the entire figure or table, and is placed in the caption. Specify the
<SECURITY> tag inside the caption argument to <FIGURE> or <TABLE>
tag to apply a security to the caption only. Note that if you place a
security classification in the caption of a multi-page figure or table, all
pages of that figure or table will have that security applied.

• <TABLE_ROW> tag,

You specify <SECURITY> at the beginning of text you want to classify.
Otherwise, security classifications are not automatically applied to
table row text or to paragraph text, marked by <P> tags, in table rows.

The following example illustrates how to mark security codes on text
elements in a table:

<SECURITY>(CONFIDENTIAL)
<TABLE>(Tools Needed to Install the MXXK Internal Circuitry\tools tab)
<TABLE SETUP>(2\15) -
<TABLE-HEADS>(Tool\Part Number)
<TABLE=ROW>(Voltmeter\RQ-3341-2)
<TABLE ROW>(<SECURITY>(SECRET)3-Stage Neutralizer<ENDSECURITY>
\The first neutralizer stage uses part number RQ-3321-1.

<SECURITY>(TOP_SECRET)
<P>
Neutralizer stages 2 and 3 use experimental enhanced RQ-3321-1
parts, RXX-3321-A and RXX-3321-B.
<ENDSECURITY>)

<TABLE_ROW>(Screwdriver\RQ-1221-1)
<END TABLE>
<END SECURITY>

When you specify a <SECURITY> tag, the specified security classification is
in effect for all subsequent text elements (as described in the preceding
list). The abbreviated form of the classification appears in the output text,
on the page on which the text is output.

When the text formatter finishes formatting each page of output, it
determines the highest classification level applied to any text on that
page, and it prints that classification on the top and bottom of the page.

A specific classification stays in effect until you do one of the following:

• Specify the <SECURITY> tag with another classification.

• Specify the <ENDSECURITY> tag, indicating that there is no more
classified material.

You can nest <SECURITY> tags to any level, but all levels must be
terminated using <ENDSECURITY> tags by the end of the file.

6-29

MILSPEC Doctype Tag Reference
<SECURITY>

EXAMPLE

If you use a <SECURITY> tag anywhere in a document, every page of the
document is marked with a security classification. For example, if you
assign only one chapter in a multiple-chapter document the Top Secret
classification, each page of that chapter is marked Top Secret, and all
other pages in the document are automatically marked Unclassified, to
indicate that there is no specific classification attached to text on those
pages.

In the following example, the security applied by the <SECURITY> tag
affects the <CHAPTER>, <P>, and <HEADl> tags shown.

<SECURITY>(TOP SECRET)
<CHAPTER>(MXXK=5 Internal Circuitry)
<p>This document describes the internal circuitry of the MXXK-5.
<headl>(SPECIFICATIONS\specs)
<P>
The following information specifies the internal circuitry of the MXXK-5 unit.

<END SECURITY>

6-30

MILSPEC Doctype Tag Reference
<SET _APPENDIX_NUMBER>

<SET APPENDIX NUMBER>

SYNTAX

ARGUMENTS

related tags

Overrides the default appendix Roman numeral VAX DOCUMENT assigns to
an appendix.

<SET_APPENDIX_NUMBER>(Roman numeral integer)

Roman numeral integer
Specifies an integer equivalent to the Roman numeral for the appendix;
for example, the integer 3 is equivalent to the Roman numeral III. This
argument must be an integer greater than zero.

• The global <APPENDIX> tag

• The global <SET_APPENDIX_LETTER> tag

• The global <SET_CHAPTER_NUMBER> tag

restrictions This tag should not be used in a file that uses a book build profile or
that uses the /PROFILE qualifier during processing. If either of these
conditions occurs, VAX DOCUMENT issues a warning message and
ignores the <SET_APPENDIX_NUMBER> tag for the book build.

DESCRIPTION The <SET_APPENDIX_NUMBER> tag overrides the default appendix Roman
numeral VAX DOCUMENT assigns to an appendix.

The <SET_APPENDIX_NUMBER> tag resets the current appendix Roman
numeral to the integer you specify as the Roman numeral integer.
For example, if you specified 4 as the Roman numeral integer, VAX
DOCUMENT would set the appendix number to rv.
Place the <SET_APPENDIX_NUMBER> tag in your SDML file before the
<APPENDIX> tags you want it to affect. The new appendix number you
specify resets the numbering for all following appendixes. For example, if
you set the appendix number to 2, the next appendix will be numbered II,
the appendix following that appendix will be numbered III, and so on.

The <SET_APPENDIX_NUMBER> can be used multiple times in an SDML file.

6-31

MILSPEC Doctype Tag Reference
<SET_ APPENDIX_ NUMBER>

EXAMPLE In the following example, the <SET_APPENDIX_NUMBER> tag explicitly sets
the appendix to 4. This causes any subsequent appendixes to be numbered
beginning with the Roman numeral Iv.

<SET APPENDIX NUMBER>(4)
<APPENDIX>(Run-time Functions\functions_ap)
<p>
The following functions are used at run time·:

<APPENDIX>(Run-time Messages\messages)
<p>
The following messages may occur at run time:

6-32

MILSPEC Doctype Tag Reference
<SET_CONTENTS_SECURITY>

<SET CONTENTS SECURITY>

SYNTAX

ARGUMENTS

related tags

The <SET_CONTENTS_SECURITY> tag assigns a security classification level to a
text element. VAX DOCUMENT applies this security classification to all pages
in the table of contents and index, overriding the default security classification.

<SET_ CONTENTS_ SECURITY> (classification keyword)

classification keyword
Specifies a keyword indicating the classification level. Each keyword has
associated text displayed in conjunction with a text element, as well as
text printed at the top and bottom of each page. The default classification
levels and the classification keywords associated with them are:

Classification Abbreviated Classification Text for
Keyword Text Output Running Headers and Footers

TOP_SECRET (TS) TOP SECRET

SECRET (S) SECRET

CONFIDENTIAL (C) CONFIDENTIAL

UNCLASSIFIED (U) UNCLASSIFIED

Classification keywords and associated output text can be modified
with the <SET_SECURITY_CLASS> tag. Any keywords defined using <SET_
SECURITY_CLASS> are valid for <SET_CONTENTS_SECURITY>.

• <SECURITY>

• <SET_CONTENTS_SECURITY>

• <SET_SECURITY_CLASS>

DESCRIPTION The <SET_CONTENTS_SECURITY> tag assigns a security classification level
to a text element. By default, when security classification marking
is in effect, the table of contents and index are assigned the highest
classification level assigned to the entire document. For the contents
and index, use the <SET_CONTENTS_SECURITY> tag to override the security
classification that would be applied by default.

6-33

MILSPEC Doctype Tag Reference
<SET_ CONTENTS_SECURITV>

EXAMPLE In the following example, the <SET_CONTENTS_SECURITY> tag specifies
that the pages in the table of contents and index are to be assigned the
UNCLASSIFIED security classification, regardless of the classification of
any of the other pages in the document.

<SET_CONTENTS_SECURITY>(UNCLASSIFIED)
<SECURITY>(SECRET)

6-34

MILSPEC Doctype Tag Reference
<SET_PAGE_SECURITY>

<SET PAGE SECURITY>

SYNTAX

ARGUMENTS

related tags

Specifies that a security classification be applied to a page to override the
default security classification.

<SET_PAGE_SECURITY>(c/assification keyword)

classification keyword
Specifies a keyword indicating the security classification level. Each
keyword has associated text output in conjunction with a text element,
as well as text printed at the top and bottom of each page. The following
table shows the default classification levels and the keywords associated
with them:

Classification Abbreviated
Keyword Text Output

TOP _SECRET (TS)

SECRET (S)

CONFIDENTIAL (C)

UNCLASSIFIED (U)

• <SECURITY>

• <SET_CONTENTS_SECURITY>

• <SET_SECURITY_CLASS>

Classification Text for
Running Headers and Footers

TOP SECRET

SECRET

CONFIDENTIAL

UNCLASSIFIED

DESCRIPTION The <SET_PAGE_SECURITY> tag specifies that a security classification be
applied to a page to override the default security classification.

Keywords defined using <SET_SECURITY_CLASS> are valid as keywords for
the <SET_PAGE_SECURITY> and <SECURITY> tags.

6-35

MILSPEC Doctype Tag Reference
<SET _PAGE_SECURITY>

EXAMPLE

<SECURITY>(TOP_SECRET)

In the following example, the <SET_PAGE_SECURITY> tag specifies that
the current page is to be assigned the UNCLASSIFIED classification,
overriding the highest default classification (SECRET) for that page.

<HEADl>(Installing the MKXX-5 circuit\installing_mkxx_5)
<P>Installation of the MKXX-5 circuit requires 24 steps and the following tools:
<list>(unnumbered)
<le> screwdriver
<le> voltmeter
<endlist>
<ENDSECURITY>
<SECURITY>(SECRET)
<HEAD2>(Beginning the installation\begin install)
<p>Begin the installation by removing the MKXX-5 circuit from the
shipping materials.
<SET_PAGE_SECURITY>(UNCLASSIFIED)

6-36

MILSPEC Doctype Tag Reference
<SET_ SECURITY_ CLASS>

<SET SECURITY CLASS>

SYNTAX

ARGUMENTS

related tags

Establishes a new security classification or overrides the default text
associated with an existing classification.

<SET_SECURITV_CLASS >(classification keyword\ id
text \ classification
text \ priority)

classification keyword
Specifies the keyword to be specified to the <SECURITY> tag to generate the
new or modified id text, classification text, or priority. An example might
be the keyword TOP _SECRET. User-created keywords may also be used.

id text
Specifies the character string that will be placed in text and heading
numbers and figure, example, and table captions, when the security
classification outputs. An example might be the text TS for a top secret
security classification. User-created text strings may also be used.

classification text
Specifies t:µe text that appears at the top and bottom of the page when
the security· classifications output. An example would be the text TOP
SECRET for a top secret security classification. Other user-created text
strings may also be used.

priority
Specifies the numeric priority assigned to the classification, where priority
must be an integer in the range 1 to 6, where 6 indicates the highest
priority. The following table shows the priorities assigned to the default
security classifications:

Class Priority

TOP _SECRET 4

SECRET 3

CONFIDENTIAL 2

UNCLASSIFIED

Priorities 5 and 6 are unassigned by default.

• <IIlGHEST_SECURITY_CLASS>

• <SECURITY>

• <SET_CONTENTS_SECURITY>

• <SET_PAGE_SECURITY>

6-37

MILSPEC Doctype Tag Reference
<SET _SECURITY_ CLASS>

DESCRIPTION

EXAMPLE

The <SET_SECURITY_CLASS> tag establishes a new security classification or
overrides the default text associated with an existing classification. Use
the tag to do the following:

• Modify the text printed in the running header or footer for a given
security classification (the classification text argument).

• Modify the code output in the text when a text element is labeled with
a security classification (the id text argument).

• Modify the priority of a security classification (the priority argument).

• Create one or two additional security classes and specify the associated
text.

The <SET_SECURITY_CLASS> tag requires all four arguments. If you do not
want to specify an argument, leave it blank as a null argument.

The <SET_SECURITY_CLASS> tag establishes keywords and text strings to
be output on a page for the <SECURITY>, <HIGHEST_SECURITY_CLASS>, <SET_

CONTENTS_SECURITY>, and <SET_PAGE_SECURITY> tags.

In the following example, the <SET_SECURITY_CLASS> tag modifies the id
text associated with the keyword CONFIDENTIAL. When you specify a
subsequent <SECURITY>(CONFIDENTIAL) tag, no id text is placed in text or
headings, since that argument was omitted when you specified the <SET_

SECURITY_CLASS> tag. The running header and footer lines will carry the
classification text, WIDGET Company Confidential.

The CONFIDENTIAL keyword has the default priority of 2, as specified in
the final argument to the <SET_SECURITY_CLASS> tag.

<SET_SECURITY_CLASS>(CONFIDENTIAL\\WIDGET Company Confidential\2)

6-38

MILSPEC Doctype Tag Reference
<SIGNATURE_LINE>

<SIGNATURE LINE>

SYNTAX

ARGUMENTS

related tags

Creates up to two rules on a line and places a name below each rule; each
rule serves as a signatory line for the person listed below it.

<SIGNATURE_LINE>([name-1][\ name-2])

name-n
This is an optional argument. Specifies the name or title of the person
who is to sign on the previous line. These names and lines output in two
columns.

• <SIGNATURE_ LIST>

• <SPECIFICATION_INFO>

• <SPEC_TITLE>

• <SUBTITLE>

• The global <FRONT_MATIER> tag

• The· global <TITLE_PAGE> tag

restrictions Valid only in the context of a <SIGNATURE_LIST> tag.

DESCRIPTION The <SIGNATURE_LINE> tag creates up to two rules on a line and places a
name below each rule; each rule serves as a signatory line for the person
listed below it. The tag creates signature lines within a signature list that
has a 2-column format; if you omit a name in either column, no name (or
rule) outputs in that column.

EXAMPLE The following example shows a signature list with two names in the first
row of signatures, a single name in the left column of the second row, .and
a name in the right column of the third row.

<TITLE PAGE>

<SIGNATURE LIST>
<SIGNATURE-LINE>(Otto Baloo\T. c. Leeds)
<SIGNATURE-LINE>(Ted Doe\)
<SIGNATURE=LINE>(\Eunice Smith)
<ENDSIGNATURE_LIST>

6-39

MILSPEC Doctype Tag Reference
<SIGNATURE_LIST>

<SIGNATURE LIST>

SYNTAX

ARGUMENTS

related tags

Begins a 2-column listing of signature lines on the title page of a document
and supplies headings for each of those columns.

<SIGNATURE_LIST>(co/ heading-1 \col heading-2)

col heading-n
Specifies the heading for the column of signatures. These headings are
required.

• <SIGNATURE_LINE>

• <SPECIFICATION_INFO>

• <SPEC_TITLE>

• <SUBTITLE>

• The global <TITLE_PAGE> tag

• The global <FRONT_MATTER> tag

required <ENDSIGNATURE_LIST>

terminator

restrictions Valid only in the context of a global <TITLE_PAGE> tag.

DESCRIPTION The <SIGNATURE_LIST> tag begins a 2-column listing of signature lines
on the title page of a document and supplies headings for each of those
columns. Each argument places a heading over one of the signature line
columns.

6-40

This tag enables the <SIGNATURE_LINE> tag to specify each signature line
and the name associated with it. You can use as many <SIGNATURE_LINE>
tags as you want in the context of the <SIGNATURE_LIST> tag.

EXAMPLE

<FRONT MATTER>
<TITLE_PAGE>

MILSPEC Doctype Tag Reference
<SIGNATURE_LIST>

The following example shows a sample use of the <SIGNATURE_LIST> tag. In
the example, the <SIGNATURE_LIST> tag is used in the context of the global
<TITLE_PAGE> tag.

<SUBTITLE>(Submitted Under\Contract AOOOOO--ll--A--2222)
<SIGNATURE LIST>(Authenticated by:\Approved by:)
<SIGNATURE-LINE>(Procuring Activity\Program Manager)
<SIGNATURE-LINE>(Date\Technical Director)
<SIGNATURE=LINE>(\Consultant)
<ENDSIGNATURE LIST>

<ENDTITLE_PAGE>

6-41

MILSPEC Doctype Tag Reference
<SPECIFICATION_INFO>

<SPECIFICATION INFO>

SYNTAX

ARGUMENTS

related tags

6-42

Creates a listing of information about the specification on the title page and
creates a 2-line running heading for the rest of the document.

<SPECIFICATION_INFO >(specification number
\ code id number

specification number

\ specification date
[\additional info])

Specifies the number associated with this document. This number formats
as the first line in a block of lines in the upper right of the title page. This
number also carries as the top line in a 2-line running heading throughout
the document.

The running title established by the specification number argument can be
overridden in the MILSPEC.SECURITY and MILSPEC.DRAFT doctypes
by the text output by the <RUNNING_TITLE> tag.

code id number
Specifies the identification code number for this document. This number
formats as the second line in a block of lines in the upper right of the title
page.

specification date
Specifies a date for the document. This value can be specified as a text
string (for example, 31 October 1986), or it can be specified using the
global <DATE> tag, which produces the date at the time the file processes.

This date formats as the third line in a block of lines in the upper right of
the title page; it also carries as the bottom line in a 2-line running heading
throughout the document.

The running title established by the specification date argument can be
overridden in the MILSPEC.SECURITY and MILSPEC.DRAFT doctypes
by the running title created by the <RUNNING_TITLE> tag.

additional info
This is an optional tag. Specifies additional information about the
document, for example, Part 1 of 3 parts.

This information formats as the fourth line in a block of lines in the upper
right of the title page.

• <RUNNING_TITLE>

• <SIGNATURE_LIST>

• <SIGNATURE_LINE>

• <SPEC_TITLE>

restrictions

DESCRIPTION

EXAMPLE

<FRONT MATTER>
<TITLE PAGE>

• <SUBTITLE>

• The global <DATE> tag

MILSPEC Doctype Tag Reference
<SPECIFICATION_INFO>

• The global <TITLE_PAGE> tag

• The global <FRONT_MATTER> tag

Valid only in the context of a global <TITLE_PAGE> tag.

The <SPECIFICATION_INFO> tag creates a listing of information about the
specification on the title page and creates a 2-line running heading for the
rest of the document.

The list of information formats on the upper right of the title page. Each
line specifies a particular argument as follows:

• Line one lists the specification number argument.

• Line two lists the code id number argument.

• Line three lists the specification date argument.

• Line four is optional and lists the additional info argument.

Additionally, the specification number and specification date arguments
output throughout the document as the top and bottom lines, respectively,
of a 2-line running heading.

The following example shows a sample use of the <SPECIFICATION_INFO>

tag.

<SPECIFICATION INF0>(12345B\a142-b4\July 4, 1776\Part I of Three Parts)
<SPEC TITLE>(Prime Item Development Specification\
For the \(Approved Title)\of the \Supported \Device)

<ENDTITLE PAGE>

6-43

MILSPEC Doctype Tag Reference
<SPEC_ TITLE>

<SPEC TITLE>

SYNTAX

ARGUMENTS

related tags

Creates a title with up to seven centered lines on the title page.

<SPEC_ TITLE >(title text-1 [\title text-2 ...
[\ title text-7]])

title text-n
Specifies text in a title. Each argument centers on a separate line on the
title page.

• <ONLINE_ TITLE>

• <SIGNATURE_LINE>

• <SIGNATURE_ LIST>

• <SPECIFICATION_INFO>

• <SUBTITLE>

• The global <TITLE_PAGE> tag

• The global <FRONT_MATTER> tag

restrictions Valid only in the context of a global <TITLE_PAGE> tag.

DESCRIPTION The <SPEC_TITLE> tag creates a title with up to seven centered lines on the
title page. Each title line centers on the page beneath the previous title
line. ·

EXAMPLE
<FRONT_MATTER>
<TITLE PAGE>

Use the <SUBTITLE> tag to create a subordinate title for a military
specification.

Use the <ONLINE_TITLE> tag to supply an abbreviated title that will be
used for the Bookreader library, title bar, and topic bar only. The <ONLINE_

TITLE> tag is ignored in printed documents.

The following example shows a sample use of the <SPEC_ TITLE> tag.

<SPECIFICATION INF0>(12345B\a142-b4\July 4, 1776\Part I of Three Parts)
<SPEC TITLE>(Prime Item Development Specification\
For the \(Approved Title)\of
the \Device)

<ENDTITLE_PAGE>

6-44

<SUBTITLE>

SYNTAX

ARGUMENTS

related tags

restrictions

DESCRIPTION

EXAMPLE
<FRONT MATTER>
<TITLE PAGE>

MILSPEC Doctype Tag Reference
<SUBTITLE>

Creates a subtitle with up to seven centered lines on the title page.

<SUBTITLE>(title text-1 [\title text-2 . . . \title text-7])

title text-n
Specifies a text line in a subtitle. You can specify one to seven arguments.
Each argument centers on a separate subtitle line.

• <SIGNATURE_:LIST>

• <SIGNATURE_LINE>

• <SPECIFICATION_INFO>

• <SPEC_TITLE>

• The global <TITLE_PAGE> tag

• The global <FRONT_MATTER> tag

Valid only in the context of a global <TITLE_PAGE> tag.

The <SUBTITLE> tag creates a subtitle with up to seven centered lines on
the title page. Each title line centers on the page beneath the previous
title line.

Use the <SPEC_TITLE> tag to create a main title for a military specification.

The following example shows a sample use of the <SUBTITLE> tag.

<SPECIFICATION INF0>(12345B\al42-b4\July 4, 1776\Part I of Three Parts)
<SPEC TITLE>(Prime Item Development Specification\
For the \(Approved Title)\of the \Device)
<SUBTITLE>(Submitted Under\Contract AOOOOO--ll--A--2222)

<ENDTITLE PAGE>

6-45

7 Using the ONLINE Doctype

The ONLINE doctype is for creating Bcokreader documentation.

The ONLINE doctype has a dynamic design, in that it produces
documentation that you see, not as printed copy, but as a screen display
when you use Bookreader. In general, use the ONLINE keyword to
process your documents for Bookreader. If you are creating an online
manual, military specification, or software reference document, use
MANUAL.ONLINE, MILSPEC.ONLINE, or SOFTWARE.ONLINE,
respectively. For any of these doctypes, use the same tags described in
this chapter. All of the online designs produce documentation in the
default style of the specific doctype. For example, SOFTWARE.ONLINE
produces documentation that looks like SOFTWARE.REFERENCE.

All online designs display an online document in a 5.9 x 6.6-inch format
with numbered headings and ragged right margin. These designs are
solely for online display with Bookreader.

Online tags only function if you use Bookreader. Their presence in your
documents is ignored when you process printed outputs. However, they
are required to produce a Bookreader book.

Coding for online books does not differ much from coding for printed books,
but presenting a book online creates a new set of visual considerations.
Whether preparing existing SDML files for Bookreader or creating new
SDML files, one of your primary concerns is the visual aspect of the
finished book. You need to think about how the book will look when
viewed with Bookreader.

For these reasons, the VAX DOCUMENT documentation set includes VAX
DOCUMENT Producing Online and Printed Documentation. That guide
is specifically written to help you prepare documents for both printed and
online versions.

7.1 ONLINE Doctype Tag Reference
This part of Chapter 7 contains reference information on all the tags
available in the ONLINE doctype.

7-1

ONLINE Doctype Tag Reference
<BOOK_ ONLY>

<BOOK ONLY>

Labels portions of a template that should not appear in the online help file.

SYNTAX <BOOK ONLY>

ARGUMENTS None.

related tags • <HELP_ONLY>

restrictions Used only in a reference template used to generate a help file.

required <ENDBOOK_ONLY>

terminator

DESCRIPTION The <BOOK_ONLY> tag labels portions of a template that should not appear
in the online help file. This tag affects only processing associated with the
creation of a help file and does not affect the formatting of the text.

EXAMPLE The following example shows how to use the <BOOK_ONLY> tag.

<OVERVIEW>
Invokes the Librarian Utility to create, modify, or describe
an object, macro, help, text, or shareable image library.
<book_only>
For a complete description of the Librarian Utility, including
information about the LIBRARY command and its qualifiers,
see the <tag>(reference>(VMS_UTILITIES_REF).
<endbook only
<tag>(endoverview>

7-2

This example shows how to use the <BOOK_ ONLY> tag. The presence of the
tag has no effect on the processing of the text unless you are producing
a help file. If you are producing a help file, the text between the <BOOK_
ONLY> and <ENDBOOK_ONLY> tags is deleted. When processed as a text file,
this example produces the following output:

Invokes the Librarian Utility to create, modify, or describe an object, macro,
help, text, or shareable image library.

For a complete description of the Librarian Utility, including information about
the LIBRARY command and its qualifiers, see the VMS_ UTILITIES_REF.

ONLINE Doctype Tag Reference
<BOOK_REF>

<BOOK REF>

SYNTAX

ARGUMENTS

related tags

Outputs a BOOK entry for a Bookreader bookshelf file.

<BOOK_REF>(symbo/ name \ file spec)

symbol name
Specifies the symbol that is associated with the title of the book.

Symbol names must not exceed 31 characters and must only include
alphabetic letters, numbers, or underscores. Do not begin a symbol name
with an underscore.

Define this symbol in either your source file or a symbol definition
file (using the <DEFINE_BOOK_NAME> tag). If you define it in a symbol
definition file, include it using the /SYMBOLS qualifier on the
DOCUMENT command line.

file spec
Specifies the book file specification that points to the book_
filename.DECW$BOOK file. The file type is not required; the default
of .DECW$BOOK is assumed.

• <SHELF_CREATE>

• <SHELF _REF>

restrictions Valid only in the context of the <SHELF _CREATE> tag.

DESCRIPTION The <BOOK_REF> tag outputs a BOOK entry for a Bookreader bookshelf file.
This entry is a pointer to an existing book file. Do not use the directory or
file type information unless you are including books or shelves outside the
directory where you are building the customized bookshelf file. This tag
has no effect for printed ouput. See VAX DOCUMENT Producing Online
and Printed Documentation for more information on building bookshelves.

EXAMPLE See the example in the discussion of the <SHELF_CREATE> tag.

7-3

ONLINE Doctype Tag Reference
<EXTENSION>

<EXTENSION>

SYNTAX

For Bookreader documentation, the <EXTENSION> tag highlights language
extensions to standards or other information; it displays the extension text as
slightly shaded.

<EXTENSION>[(text)J
or

<EXTENSION>
text

<ENDEXTENSION>

ARGUMENTS text

required
terminator

DESCRIPTION

EXAMPLES

Specifies short pieces of text (for example, single words, short phrases, or
a sentence or two) for highlighting.

<ENDEXTENSION> -Required if you do not provide an argument to the
<EXTENSION> tag.

For Bookreader documentation, the <EXTENSION> tag highlights language
extensions to standards or other information; it displays the extension text
as slightly shaded. You can turn off the shading through the View menu
on the text window. This tag has no effect for printed output.

The following example shows how to use the <EXTENSION> tag.

D <P>This sentence contains one highlighted <EXTENSION>(word).

7-4

This example produces the following online output:

This sentence contains one highlighted word.

The following example shows how to use the <EXTENSION> tag and the
<ENDEXTENSION> tag for an extended piece of text.

~ <EXTENSION>

ONLINE Doctype Tag Reference
<EXTENSION>

<P>By using certain tags,
you can highlight an entire paragraph. This feature is
useful for emphasizing a particular piece of information
in an online book.
<ENDEXTENSION>

This example of text produces the following ortline output:

By using certain tags, you can highlight an entire paragraph. This feature
is useful for emphasizing a particular piece of information in an online
book.

Be sure to code the <P> tag inside the <EXTENSION> tag or the first
character in your paragraph is indented one space.

7-5

ONLINE Doctype Tag Reference
<HOTSPOT>

<HOTSPOT>

SYNTAX

ARGUMENTS

7-6

Changes any text into a hotspot for Bookreader documentation. For printed
documentation, this tag generates the text you specify followed by a reference
(in parentheses) to the section, chapter, or table, and so on.

<HOTSPOT>(symbo/ name[\ text])

symbol name
Specifies the name of a symbol assigned in a text element tag (for example,
<HEADn> or <TABLE>).

The following tags require a symbol name for a book you create for
Bookreader:

• <APPENDIX>

• <CHAPTER>

• <CHEAD>

• <EXAMPLE>

• <FIGURE>

• <HEAD>

• <HEADn>

• <PREFACE>

• <PREFACE_SECTION>

• <SUBHEADn>

• <TABLE>

• <COMMAND>

• <ROUTINE>

• <SDML_TAG>

• <SET_TEMPLATE_COMMAND>

• <SET_TEMPLATE_ROUTINE>

• <SET_TEMPLATE_STATEMENT>

• <SET_TEMPLATE_TAG>

• <STATEMENT>

• <SUBCOMMAND>

The first 11 tags are listed in VAX DOCUMENT Using Global Tags.

related tags

DESCRIPTION

EXAMPLES

ONLINE Doctype Tag Reference
<HOTSPOT>

The following tags, listed in VAX DOCUMENT Using Global Tags, accept
a symbol name, but do not require one, for both printed books and books
you create for Bookreader:

• <FRONT_MATTER>

• <GLOSSARY>

• <PART>

• <MATH>

The following tags accept a symbol name for a printed book; the tags are
ignored for books you create for Bookreader:

• <REF_NOTE>

• <SECTION>

Symbol names must not exceed 31 characters and must only include
alphabetic letters, numbers, or underscores. Do not begin a symbol name
with an underscore.

text
This is an optional argument. It specifies the text you want to use as the
hotspot for Bookreader output. If you do not use this argument, the title
of the Bookreader topic you are referring to is used as the hotspot.

For printed output, the text you specify is generated followed by a
reference (in parentheses) to the section, chapter, or table, and so on.

• <REFERENCE>

• <SET_ONLINE_TOPIC>

The <HOTSPOT> tag changes any text into a hotspot for Bookreader
documentation. For printed documentation, this tag generates the text
you specify followed by a reference (in parentheses) to the section, chapter,
or table, and so on.

The following example shows how to use the <HOTSPOT> tag with the
optional text argument for books displayed by Bookreader:

D <HEADl>(Introduction\intro)
<P>
The section <HOTSPOT>(cat_section\cats) discusses cats.

<HEADl>(All About Cats\cat_section)

This example produces the following Bookreader output:

The section I cats I discusses cats.

7-7

ONLINE Doctype Tag Reference
<HOTSPOT>

The following example shows how to use the <HOTSPOT> tag without the
optional text argument for books displayed by Bookreader:

~ <HEADl>(Introduction\intro)
<P>
The section <HOTSPOT>(cat_section) discusses cats.

<HEADl>(All About Cats\cat_section)

This example produces the following Bookreader output:

The section I All About Cats I discusses cats.

The following example shows how to use the <HOTSPOT> tag with the
optional text argument for printed books:

I <HEADl>(Introduction\intro)
<P>
The section <HOTSPOT>(cat_section\cats) discusses cats.

<HEADl>(All About Cats\cat_section)

This example produces the following Bookreader output:

The section (see Section n.n) discusses cats.

The following example shows how to use the <HOTSPOT> tag without the
optional text argument for printed books:

m <HEADl>(Introduction\intro)
<P>
The section <HOTSPOT>(cat_section) discusses cats.

<HEADl>(All About Cats\cat_section)

This example produces the following Bookreader output:

The section I All About Cats I (see Section n.n) discusses cats.

T

7-8

ONLINE Doctype Tag Reference
<HELP _ONLY>

<HELP ONLY>

SYNTAX

ARGUMENTS

related tags

Identifies text that you want to include only in Help output and not in printed or
Bookreader output.

<HELP ONLY>

None.

• <BOOK._ONLY>

• <SET_HELP _LEVEL>

required <ENDHELP _ONLY>

terminator

DESCRIPTION The <HELP_ONLY> tag identifies text that you want to include only in Help
output and not in printed or Bookreader output.

EXAMPLE The following example shows how to use the <HELP_ONLY> tag.

<HELP ONLY>
<P>When RSX . . .
<ENDHELP ONLY>

<P>When the operating system ...

<HELP ONLY>
<P>When RSTS . . .
<ENDHELP_ONLY>

This example shows how to code a file so that the text between the <HELP_
ONLY> and <ENDHELP _ONLY> tags is included only in the Help (.HLP) file
and not in printed or Bookreader output. In this case, the paragraphs that
begin with "When RSX" and ''When RSTS" would be included only in the
.HLP file. The following paragraph would appear only in the printed or
Bookreader output:

When the operating system ...

7-9

ONLINE Doctype Tag Reference
<KEEP_HELP_LEVEL>

<KEEP HELP LEVEL>

SYNTAX

ARGUMENTS

related tags

Allows you to override the default multi-level Help output and keep the
Help output at a single level. This tag affects only the <COMMAND> and
<SUBCOMMAND> tags of the SOFTWARE doctype.

<KEEP HELP LEVEL> - -

None.

• <BOOK_ONLY>

• <HELP_ONLY>

• <SET_HELP _LEVEL>

required <ENDKEEP _HELP _LEVEL>

terminator

DESCRIPTION The <KEEP_HELP_LEVEL> tag allows you to override the default multi-level
Help output and keep the Help output at a single level. This tag affects
only the <COMMAND> and <SUBCOMMAND> tags of the SOFTWARE doctype.

EXAMPLE
<COMMAND SECTION>
<KEEP HELP LEVEL>
<COMMAND>(SET TERMINAL)
<ENDKEEP_HELP_LEVEL>

<COMMAND>(SET QUEUE)

<COMMAND>(SET PASSWORD)

<ENDCOMMAND SECTION>

7-10

Remember that each word in a command is a different Help level, by
default. The <KEEP _HELP _LEVEL> tag concatenates all elements of its
argument and places the entire argument at a single level. For example, if
you have a command called SET TERMINAL and you do not want a Help
file with SET at level-1 and TERMINAL at level-2, which is the default,
but want both SET and TERMINAL at level-1, use the <KEEP _HELP _LEVEL>
and <ENDKEEP _HELP _LEVEL> tags to enclose the command.

The following example shows how to use the <KEEP _HELP _LEVEL> tag.

ONLINE Doctype Tag Reference
<KEEP_HELP_LEVEL>

This example shows how to use the <KEEP _HELP _LEVEL> and <ENDKEEP _

HELP _LEVEL> tags to cause the enclosed command to be output as level-1
in the Help (.HLP) file. This example produces the following levels in the
.HLP file:

1 SET_TERMINAL
1 SET
2 QUEUE
2 PASSWORD

7-11

ONLINE Doctype Tag Reference
<LMF>

<LMF>

SYNTAX

ARGUMENTS

related tags

restrictions

For Bookreader documentation, the <LMF> tag marks the beginning of the tag
sequence that specifies the License Management Facility (LMF) information
for the document.

<LMF>({ book symbol name }J
multibook license identifier

book symbol name
Specifies the symbol name for the book, which you must define using the
<DEFINE_BOOK_NAME> tag.

multibook license identifier
Refers to a single set of LMF tags, which specify the licensing information
for an entire documentation set or group of documents. This argument
must match the argument to the <LMF _INFO> tag.

• <LMF _ALTNAME>

• <LMF_INFO>

• <LMF _PRODUCER>

• <LMF _PRODUCT>

• <LMF_RELEASE_DATE>

• <LMF _ VERSION_NUMBER>

You can specify only one set of LMF tags per document.

The <LMF> tag must precede the <LMF_INFO> tag.

required <ENDLMF>

terminator

DESCRIPTION For Bookreader documentation, the <LMF> tag marks the beginning of
the tag sequence that specifies the License Man::i.gement Facility (LMF)
information for the document. You can specify the LMF tags in any order
between the <LMF> and <ENDLMF> tags. The <LMF> tag has no effect for
printed output.

7-12

The exact form of the LMF information is case- and punctuation
dependent. All the LMF information you supply as arguments to the
LMF tags must match what exists in the LMF database.

ONLINE Doctype Tag Reference
<LMF>

To view books with the Bookreader, you must have installed at least one
of the products specified in the <LMF _PRODUCT> and <LMF _ALTNAME> tags.
Specify the primary product license in the <LMF _PRODUCT> field. Then,
specify one or more alternate licenses for the book by using separate <LMF _

ALTNAME> tags for each alternate product license.

You must specify all the LMF tags between the .<LMF> and <ENDLMF> tags,
except in the following cases:

• You must specify the <LMF_INFO> tag after the <LMF> tag, but the
<LMF _INFO> tag does not have to fall within the <LMF> and <ENDLMF>

tags.

• You do not have to specify the <LMF _ALTNAME> tag at all, although if
you do not, you receive a warning-level message.

Make sure that if you do not have a specific release date and version
number, you supply an empty field (that is, zero) to both the <LMF_

RELEASE_DATE> and <LMF _ VERSION_NUMBER> tags.

You can code the LMF tags in either the front matter file, the profile file,
or in a symbols file that you process using the /SYMBOLS qualifier on the
DOCUMENT command line. Consider storing the LMF tags in a central
symbols file to make obtaining and updating the information easier.

EXAMPLES The following example shows how to use the <LMF> tag in your front
matter file.

D <FRONT MATTER>(front)
<DEFINE_BOOK_NAME>(book_syrnbol\User's Guide)

<LMF>(book_syrnbol)
<LMF_PRODUCER>(DEC)
<LMF_PRODUCT>(VAX-VMS)
<LMF_RELEASE_DATE>(30-June-1990)
<LMF_VERSION_NUMBER>(V3.0)
<LMF_ALTNAME>(FORTRAN)
<LMF_ALTNAME>(PASCAL)
<ENDLMF>

<TITLE_PAGE>
<LMF_INFO>(book_syrnbol)
<TITLE>(User's Guide)

<ENDTITLE PAGE>
<ENDFRONT MATTER>

This example shows a complete set of LMF tags for a single document.

7-13

ONLINE Doctype Tag Reference
<LMF>

The following example shows how to use the <LMF> tag in a source file or
in a symbols file.

I Code in a symbols file:

7-14

<DErINE BOOK NAME>(his book\User's Guide)
<LMF>(many_books) -
<LMF PRODUCER>(DEC)
<LMF-PRODUCT>(FORTRAN)
<LMF-VER$!0N NUMBER>(O)
<LMF-RELEASE-DATE>(O)
<LMF=ALTNAME>CANOTHER_NAME)
<ENDLMF>

Code in a source file:

<FRONT MATTER>(frbnt)
<TITLE-PAGE>
<DEFINE SYMBOL>(product name\VAX FORTRAN)
<TITLE>(User's Guide) -
<LMF INFO>(many books)
<ORDER NUMBER>(AA-12345-BC)
<ellipsis>
<ENDTITLE_PAGE>
<ENDFRONT_MATTER>

This example shows, for an entire documentation set or any group of
documents, how to use the. <LMF> and <LMF _INFO> tags to access the same
set of LMF tags for all the documents. Notice that you can use a symbols
file to list all the LMF information, and then use the <LMF_INFO> tag in
your front matter file to access the licensing information from the symbols
file.

ONLINE Doctype Tag Reference
<LMF ALTNAME>

<LMF ALTNAME>

SYNTAX

ARGUMENTS

related tags

For Bookreader documentation, the <LMF _ALTNAME> tag specifies an alternate
product name for the software product.

<LMF _ALTNAME>(a/ternate name)

alternate name
Specifies an alternate product name. If you need to specify more than
one alternate product name, use a separate <LMF _ALTNAME> tag for each
alternate product name.

• <ENDLMF>

• <LMF>

• <LMF_INFO>

• <LMF _PRODUCER>

• <LMF _PRODUCT>

• <LMF_RELEASE_DATE>

• <LMF _ VERSION_NUMBER>

restrictions Valid only in the context of the <LMF> tag.

DESCRIPTION For Bookreader documentation, the <LMF_ALTNAME> tag specifies an
alternate product name for the software product. This tag has no effect for
printed output.

EXAMPLE

You may need to supply more than one alternate product name for a
product. You can supply multiple <LMF _ALTNAME> tags in any order.

You do not have to use the <LMF _ALTNAME> tag; if you do not use it,
however, you receive a warning-level message.

See the example in the discussion of the <LMF> tag.

7-15

ONLINE Doctype Tag Reference
<LMF_INFO>

<LMF INFO>

SYNTAX

ARGUMENTS

related tags

For Bookreader documentation, the <LMF _INFO> tag writes licensing information
into the .DECW$BOOK file.

<LMF INFO>({ book symbol name }J
- multibook license identifier

book symbol name
Specifies, for a single book, the book symbol name argument that you
defined in the <DEFINE_BOOK_NAME> tag, thus matching the argument to
the <DEFINE_BOOK_NAME> tag. It must also match the argument to the
<LMF> tag.

multibook license identifier
Refers to a single set of LMF tags, which specify the licensing information
for an entire documentation set or group of documents. This argument
must match the argument to the <LMF> tag.

• <LMF>

• <LMF _ALTNAME>

• <LMF _PRODUCER>

• <LMF _PRODUCT>

• <LMF _RELEASE_DATE>

• <LMF _ VERSION_NUMBER>

restrictions Must not precede the <LMF> tag.

DESCRIPTION For Bookreader documentation, the <LMF_INFO> tag writes licensing
information into the .DECW$BOOK file. For a single book, the argument
to the <LMF _INFO> tag must match the book symbol name argument

7-16

you defined in the <DEFINE_BOOK_NAME> tag and must also match the
argument to the <LMF> tag. Therefore, a set of LMF tags must exist either
in a source file or in a symbols file.

For an entire documentation set or group of documents, use the multibook
license identifier argument to refer to a single set of LMF tags. The
multibook license identifier argument must match the argument to the
<LMF> tag. This avoids having to specify the same LMF information for
every document in the set.

You must specify the <LMF_INFO> tag after the <LMF> tag, but the <LMF_
INFO> tag does not have to fall within the <LMF> and <ENDLMF> tags.

ONLINE Doctype Tag Reference
<LMF_INFO>

EXAMPLES The following example shows how to use the <LMF _INFO> tag in a source
file or in a symbols file for a single document.

D Code in a source file or a symbols file:

<DEFINE BOOK NAME>(my book\VMS Overview)
<LMF>(my_book) -
<LMF_PRODUCER>(DEC)
<LMF_PRODUCT>(VAX-VMS)
<LMF_VERSION_NUMBER>(O)
<LMF_RELEASE_DATE>(O)
<LMF_ALTNAME>(ANOTHER_NAME)
<ENDLMF>

Code in a source file:

<PROFILE>
<LMF_INFO>(my_book)
<ELEMENT>(front matter.sdml)
<ellipsis> -
<ENDPROFILE>

This example shows, for a single document, how to use the <LMF _INFO> tag.
Notice that the arguments to the <LMF> and the <LMF _INFO> tags match
the symbol name argument to the <DEFINE_BOOK_NAME> tag.

The following example shows how to use the <LMF _INFO> tag in a source
file or in a symbols file for a documentation set.

~ Code in a symbols file:

<DEFINE_BOOK_NAME>(his_book\User's Guide)
<LMF>(many_books)
<LMF_PRODUCER>(DEC)
<LMF_PRODUCT>(FORTRAN)
<LMF_VERSION_NUMBER>(O)
<LMF_RELEASE_DATE>(O)
<LMF_ALTNAME>(ANOTHER_NAME)
<ENDLMF>

Code in a source file:

<FRONT_MATTER>(front)
<TITLE PAGE>
<DEFINE_SYMBOL>(product_name\VAX FORTRAN)
<TITLE>(User's Guide)
<LMF_INFO>(many_books)
<ORDER NUMBER>(AA-12345-BC)
<ellip;is>
<ENDTITLE_PAGE>
<ENDFRONT_MATTER>

This example shows, for an entire documentation set or any group of
documents, how to use the <LMF _INFO> tag to access the same set of LMF
tags for all the documents.

7-17

ONLINE Doctype Tag Reference
<LMF _PRODUCER>

<LMF PRODUCER>

SYNTAX

ARGUMENTS

related tags

For Bookreader documentation, the <LMF _PRODUCER> tag specifies the
producer of the software product.

<LMF _PRODUCER>(producer)

producer
Specifies the name of the software producer, for example, DEC. The
spelling of the product name information you supply must match
exactly what exists in the LMF database. The name must not exceed
24 characters.

• <ENDLMF>

• <LMF>

• <LMF _ALTNAME>

• <LMF_INFO>

• <LMF _PRODUCT>

• <LMF_RELEASE_DATE>

• <LMF _ VERSION_NUMBER>

restrictions Valid only in the context of the <LMF> tag.

DESCRIPTION For Bookreader documentation, the <LMF_PRODUCER> tag specifies the
producer of the software product. This tag has no effect for printed output.

EXAMPLE See the example in the discussion of the <LMF> tag.

7-18

ONLINE Doctype Tag Reference
<LMF _PRODUCT>

<LMF PRODUCT>

SYNTAX

ARGUMENTS

related tags

For Bookreader documentation, the <LMF _PRODUCT> tag specifies the software
product.

<LMF _PRODUCT>(product name)

product name
Specifies the name of the software product, for example, VAX-VMS.
The spelling of the product name information you supply must match
exactly what exists in the LMF database. The name must not exceed 24
characters.

• <ENDLMF>

• <LMF>

• <LMF _ALTNAME>

• <LMF _INFO>

• <LMF _PRODUCER>

• <LMF _RELEASE_DATE>

• <LMF _ VERSION_NUMBER>

restrictions Valid only in the context of the <LMF> tag.

DESCRIPTION For Bookreader documentation, the <LMF_PRODUCT> tag specifies the
software product. This tag has no effect for printed output.

EXAMPLE See the example in the discussion of the <LMF> tag.

7-19

ONLINE Doctype Tag Reference
<LMF_RELEASE_DATE>

<LMF RELEASE DATE>

SYNTAX

ARGUMENTS

related tags

For Bookreader documentation, the <LMF _RELEASE_DATE> tag specifies the
release date of the software product.

<LMF _RELEASE_DATE>(dd-mmm-yyyy)

dd-mmm-yyyy
Specifies the day, month, and year of the release of the software product.

• <ENDLMF>

• <LMF>

• <LMF _ALTNAME>

• <LMF _INFO>

• <LMF _PRODUCER>

• <LMF _PRODUCT>

• <LMF _ VERSION_NUMBER>

restrictions Valid only in the context of the <LMF> tag.

DESCRIPTION For Bookreader documentation, the <LMF_RELEASE_DATE> tag specifies the
release date of the software product. This tag has no effect for printed
output.

EXAMPLE See the example in the discussion of the <LMF> tag.

7-20

ONLINE Doctype Tag Reference
<LMF _ VERSION_NUMBER>

<LMF VERSION NUMBER>

SYNTAX

ARGUMENTS

related tags

For Bookreader documentation, the <LMF _ VERSION_NUMBER> tag specifies the
version number of the software product.

<LMF _VERSION_NUMBER>(version number)

version number
Specifies the version number of the software product.

• <ENDLMF>

• <LMF>

• <LMF _ALTNAME>

• <LMF _INFO>

• <LMF _PRODUCER>

• <LMF _PRODUCT>

• <LMF _RELEASE_DATE>

restrictions Valid only in the context of the <LMF> tag.

DESCRIPTION For Bookreader documentation, the <LMF_VERSION_NUMBER> tag specifies
the version number of the software product. This tag has no effect for
printed output.

EXAMPLE See the example in the discussion of the <LMF> tag.

7-21

ONLINE Doctype Tag Reference
<ONLINE_CHUNK>

<ONLINE CHUNK>

SYNTAX

ARGUMENTS

restrictions

related tags

For Bookreader documentation, the <ONLINE_CHUNK> tag breaks lengthy pieces
of text into online chunks to prevent the text formatter from running out of
memory.

<ONLINE CHUNK>

None.

Invalid in formal tables and formal examples.

• <BOOK_ONLY>

• <HELP_ONLY>

DESCRIPTION For Bookreader documentation, the <ONLINE_CHUNK> tag breaks lengthy
pieces of text into online chunks to prevent the text formatter from
running out of memory. Using this tag, then, prevents undesirable breaks
of information. Use this tag carefully and sparingly.

7-22

When the text formatter breaks long code examples, about an inch of white
space is sometimes left in the Bookreader output. Inserting an <ONLINE_

CHUNK> tag before this space removes the extra white space.

This tag has no effect for printed output.

ONLINE Doctype Tag Reference
<ONLINE_ CHUNK>

EXAMPLES The following example shows how to use the <ONLINE_CHUNK> tag.

D <code_example>
SQL> !
SQL> You can see from the following display that the CURRENT_INFO
SQL> view contains an employee with a last name Toliver and an ID
SQL> number 00164.
SQL>
SQL> SELECT LAST_NAME, FIRST_NAME, ID FROM CURRENT INFO ORDER BY ID;

LAST NAME FIRST NAME ID
Toliver Alvin 00164
Smith Terry 00165
Dietrich Rick 00166
Kilpatrick Janet 00167
Nash Norman 00168

<ellipsis>
<valid break>
SQL> !
SQL> SELECT LAST_NAME, FIRST NAME, EMPLOYEE ID
cont> FROM CURRENT JOB
cont> WHERE JOB_START > "AUG-26-1981";
%SQL-F-DATCONERR, Data conversion error
-LIB-F-AMBDATTIM, ambiguous date-time
<tag>(online_chunk)
SQL> !
SQL> Now (finally) the correct way to compare a literal to a
SQL> ! value in a column defined as DATE.
SQL>
SQL> SELECT LAST_NAME, FIRST_NAME, EMPLOYEE ID
cont> FROM CURRENT_JOB
<ellipsis>
<tag>(endcode_example)

This example shows how to use the <ONLINE_CHUNK> tag in a long code
example.

7-23

ONLINE Doctype Tag Reference
<ONLINE_POPUP>

<ONLINE POPUP>

SYNTAX

Specifies that an informal text element appear (that is, pop up) in a separate
window (as do formal examples, formal figures, and formal tables).

<ONLINE_POPUP>(text type)

ARGUMENTS text type

restrictions

required
terminator

related tags

Specifies a short description of the type of text you want to pop up.

A <HEADn> tag is invalid in the context of an <ONLINE_POPUP> tag. Begin a
pop-up after a <HEADn> tag and end it before the next <HEADn> tag. This
includes template headings, such as Description and Examples.

Do not nest <ONLINE_POPUP> tags.

Do not use with formal examples, figures, or tables.

<ENDONLINE_POPUP>

• <ONLINE_CHVNK>

• <ONLINE_TITLE>

DESCRIPTION The <ONLINE_POPUP> tag specifies that an informal text element appear
(that is, pop up) in a separate window (as do formal examples, formal
figures, and formal tables). Use this tag to display the text elements
more clearly and to help keep the online topics that contain the pop-ups
from becoming unmanageably long for Bookreader navigation. This tag
has no effect for printed output.

7-24

Note: The text formatter may run out of memory when processing long
topics that contain many long, informal tables. Use the <ONLINE_

POPUP> tag to pop up the tables in separate windows.

You can use the <ONLINE_POPUP> tag with any segment of text:
paragraphs, lists, or notes. However, use the tag sparingly; too many
pop-up windows can hinder the usability of your document. Pop-up
windows are most useful for displaying graphics or text segments that
are somewhat peripheral to the flow of text in the manual. Experiment to
determine if a pop-up window is a useful and effective means of presenting
peripheral information. Too many pop-up windows create clutter on the
screen and confusion for the user.

EXAMPLES

ONLINE Doctype Tag Reference
<ONLINE_POPUP>

A pop-up window must have an associated text window hotspot at which
the user can point and click. The <ONLINE_POPUP> tag automatically
creates a hotspot and uses the argument you supply. For example, if you
supply the argument table, the hotspot is the following:

TABLE: Click here to display table.

Do not use the <ONLINE_POPUP> tag with formal examples, figures, or
tables. Hotspots for formal elements are created when you use the
<REFERENCE> tag to refer to them.

The following example shows how to use the <ONLINE_POPUP> tag for an
informal table.

D <ONLINE_POPUP>(table)
<TABLE>

<END TABLE>
<ENDONLINE_POPUP>

/

m <EXAMPLE_SEQUENCE>

This example shows how to use the <ONLINE_POPUP> and <ENDONLINE_
POPUP> tags so that an informal table pops up in a separate window.

The following example shows how to use the <ONLINE_POPUP> tag within
an example sequence.

<ONLINE_POPUP>(Example)
<EXC>

<EX TEXT>

<ENDONLINE POPUP>
<ENDEXAMPLE_SEQUENCE>

This example shows how to use the <ONLINE_POPUP> and <ENDONLINE_
POPUP> tags within an example sequence. You can find the <EXAMPLE_
SEQUENCE>, <EXC>, and <EXTEXT> tags in VAX DOCUMENT Using
Doctypes and Related Tags.

7-25

ONLINE Doctype Tag Reference
<ONLINE_ TITLE>

<ONLINE TITLE>

SYNTAX

ARGUMENTS

restrictions

related tags

Specifies text that overrides the default section title in the topic label above
the text in the text window.

<ONLINE_ TITLE>(text)

text
Specifies the text that you want to appear in the title region. The text
should be no longer than 40 characters, because the region where the
title appears is narrow. If part of the title is hidden, you must resize the
window.

Do not use tags in the text argument.

• <ONLINE_CHUNK>

• <ONLINE_POPUP>

DESCRIPTION The <ONLINE_TITLE> tag specifies text that overrides the default section
title in the topic label above the text in the text window. This tag overrides
only the current title; the next topic title is displayed as usual, unless you
override it with another <ONLINE_TITLE> tag. This tag has no effect for
printed output.

Use the <ONLINE_ TITLE> tag on the title page, just before the <TITLE> tag
(or for the MILSPEC.ONLINE doctype, just before the <SPEC_TITLE> tag) to
specify an abbreviated title that will appear in three places: the title bar,
the topic bar, and the Bookreader library. This tag is especially useful for
documents that you create with the MILSPEC.ONLINE doctype, because
these documents often have very long titles.

EXAMPLES The following example shows how to use the <ONLINE_TITLE> tag.

D

7-26

<ONLINE TITLE>(Routine$Name)
<ROUTINE>(ANY$ROUTINE$NAME)

This example specifies that the title be displayed as "Routine$Name",
rather than the full title, "ANY$ROUTINE$NAME".

The following example shows how to use the <ONLINE_TITLE> tag to
produce a Bookreader title that is significantly shorter than the printed
title.

<FRONT MATTER>(front)
<TITLE-J;>AGE>
<ONLINE TITLE>(Short Title)

ONLINE Doctype Tag Reference
<ONLINE_ TITLE>

<TITLE>(A Very Long Title That You Might Want To Abbreviate)
<ENDTITLE_PAGE>
<ENDFRONT_MATTER>

This example shows how to use the <ONLINE_TITLE> tag on the title page of
a document.

7-27

ONLINE Doctype Tag Reference
<SET_HELP_LEVEL>

<SET HELP LEVEL>

SYNTAX

ARGUMENTS

related tags

DESCRIPTION

7-28

Allows you to alter the default Help levels in your Help files.

<SET_HELP_LEVEL>ffnumbery]

number
This is an optional argument. It specifies a positive or negative number
that is added to or subtracted from the default value to determine a new
Help level. Note that this number is not the Help level number, but a
value to be applied to the default Help level.

To reset the default Help levels, specify zero (0) as the number argument
or do not use an argument. For example, both the <SET_HELP_LEVEL> and
<SET_HELP_LEVEL>(O) tags reset the default Help levels.

• <BOOK_ONLY>

• <HELP_ONLY>

• <KEEP _HELP _LEVEL>

The <SET_HELP _LEVEL> tag allows you to alter the default Help levels in
your Help files. Remember that each word in the command is a different
Help level, by default. This tag changes all the default Help levels until
you explicitly reset them using the tag again without an argument, or with
the zero (0) argument.

For example, by default <HEADl>, <STATEMENT>, and <COMMAND> tags
produce level-1 Help topics. You may want, however, your level-1
"Command" topic to be a level-2 topic, and the "Format", "Qualifier",
and "Description" sections, which are normally level-2 topics, to be level-3
topics. In this case, use the <SET_HELP_LEVEL>(l) tag before the Help level
you want to alter. Using the argument 1 adds one level to the default
level-1, thus adding one level to each subsequent Help level.

If you use a negative number argument, one level is subtracted from the
default Help level. For example, if you want your level-2 "Description"
section to be a level-1, use the <SET_HELP_LEVEL>(-1) tag before the
<DESCRIPTION> tag. If you want your level-3 "Example" section to be a
level-1, use the <SET_HELP_LEVEL>(-2) tag before the <EXAMPLE> tag.

When you want to reset the default Help levels, use the <SET_HELP _LEVEL>

tag with or without the zero (0) argument.

EXAMPLE
<COMMAND SECTION>
<COMMAND>(SET TERMINAL)

<SET_HELP_LEVEL>(l)
<COMMAND>(SET QUEUE)

<SET_HELP_LEVEL>(O)
<COMMAND>(SET PASSWORD)

<ENDCOMMAND_SECTION>

ONLINE Doctype Tag Reference
<SET_HELP_LEVEL>

The following example shows how to use the <SET_HELP _LEVEL> tag.

This example shows how to use the <SET_HELP _LEVEL> tag to alter the
default Help levels. One Help level is added to the commands following
the <SET_HELP _LEVEL> tag. You reset the default Help levels with another
<SET_HELP _LEVEL> tag, -with the zero (0) argument or without an argument.
This example produces the following levels in the .HLP file:

1 SET
2 TERMINAL
2 SET
3 QUE;UE
2 PASSWORD

7-29

ONLINE Doctype Tag Reference
<SET_ ONLINE_ TOPIC>

<SET ONLINE TOPIC>

SYNTAX

ARGUMENTS

Specifies the level of topics in your Bookreader document and whether table
of contents entries are issued for ranges of messages or glossary items.

chapter
headt
head2
head3

<SET_ONLINE_TOPIC>(head4)
heads
head6
[MASTER]
[NOMA STER]

chapter .
Specifies that each entire chapter is a topic, rather than each <HEADl> tag
in a chapter beginning a new topic, which is the default.

head1 through head6
Specifies the level of heading you want to begin a topic. That heading and
all higher-level headings and chapters become topics.

MASTER, NOMASTER
These are optional keyword arguments. For a glossary and a messages
appendix, MASTER spacifies that table of contents entries are generated
for the ranges of entries on each topic of messages or glossary items.
NOMASTER suppresses the ranges of entries that are listed in the table
of contents for the glossary or messages appendix.

DESCRIPTION The <SET_ONLINE_TOPIC> tag specifies the level of topics in your Bookreader
document and whether table of contents entries are issued for ranges of
messages or glossary items. The tag is in effect until you override it with
a new <SET_ONLINE_TOPIC> tag. For Bookreader, a topic is equal to a page.
Topics are not broken according to the physical dimension of a page; they
are broken according to topics of contents in the document. This tag has
no effect for printed output.

7-30

By default, chapters, first-level headings, appendixes, parts, templates,
title pages, copyright pages, prefaces, and glossaries are topics. In
addition, because they pop up in separate windows, formal examples,
formal figures, and formal tables are topics. However, these defaults
may not be appropriate for your manual.

ONLINE Doctype Tag Reference
<SET_ ONLINE_ TOPIC>

Use the <SET_ONLINE_CHAPTER>(CHAPTER) tag if you have a short chapter
that you want to designate as a whole topic. This remedies seeing each
level-one heading as a topic, which may be distracting when viewed with
Bookreader.

You can use the <SET_ONLINE_TOPIC> tag as many times as necessary.
By default, Bookreader treats chapters and first-level headings as
topics. If you want various heading levels to specify topics in various
chapters or appendixes, specify the <SET_ONLINE_TOPIC> tag several
times. The heading level you specify in the argument and all higher-level
heading levels become topics. For example, if you specify <SET_ONLINE_
TOPIC>(HEAD2), chapter headings, first-level headings, and second-level
headings all begin new topics.

If you use the <SET_ ONLINE_ TOPIC> tag in your profile file, place the tag
after the <ELEMENT> tag to which it applies.

The <SET_ONLINE_TOPIC> tag also specifies whether table of contents
entries are issued for ranges of messages or glossary items. For messages
and glossaries, use the MASTER argument to specify that table of contents
entries be generated for the ranges of entries on each topic (or page) of
messages or glossary items. This can be helpful to the user in very long
sections of messages or glossary items.

If you want table of contents entries for messages but not for a glossary,
use the NOMASTER argument to suppress the table of contents entries
in the glossary. See VAX DOCUMENT Producing Online and Printed
Documentation for more information on using this tag in a glossary or a
messages appendix.

EXAMPLES The following example shows how to use the <SET_ONLINE_TOPIC> tag to
make online topics out of all heads level-2 and higher.

D <SET ONLINE TOPIC>(head2)
<CHAPTER>(Introduction\intro_chap)

This example specifies that all <HEAD2> tags, <HEADl> tags, and <CHAPTER>
tags start a new topic.

The following example shows how to use the <SET_ONLINE_TOPIC> tag to
make online topics out of chapters.

<SET ONLINE TOPIC>(chapter)
<CHAPTER>(Introduction\intro_chap)

This example specifies that each entire chapter becomes a new topic,
instead of each first-level heading within the chapter.

7-31

ONLINE Doctype Tag Reference
<SET_ONLINE_TOPIC>

The following example shows how to use the <SET_ONLINE_TOPIC> tag in a
profile, first to make online topics out of level-2 heads in one chapter, and
then to reset to the default for following chapters.

&] <PROFILE>
<ELEMENT>(mydisk: [mydir]intro chap.sdml)
<ELEMENT>(mydisk: [mydir]tools=chap.sdml)
<SET ONLINE TOPIC>(head2)
<ELEMENT>(mydisk: [mydir]commands_chap.sdml)
<SET_ONLINE_TOPIC>

<ENDPROFILE>

This example specifies that all <HEAD2> tags in TOOLS_CHAP.SDML
signify the start of a new topic for Bookreader. For COMMANDS_
CHAP.SDML, topics are reset back to the default (<HEAD!>).

The following example shows how to use the <SET_ONLINE_TOPIC> tag
to issue table of contents entries for one section of a document, but not
another.

m <SET_ONLINE_TOPIC>(MASTER)

7-32

<GLOSSARY>
<GTERM>(Term)
<GDEF>(Definition)

<SET_ONLINE_TOPIC>(NOMASTER)
<MESSAGES_SECTION>
<MSG>(Message)
<MSG_TEXT>(Text.)

This example specifies that table of contents entries be issued for the
glossary but not for the messages section.

ONLINE Doctype Tag Reference
<SHELF _CREATE>

<SHELF CREATE>

SYNTAX

Outputs a SHELF entry for the current Bookreader bookshelf file and creates
a separate bookshelf file.

<SHELF _CREATE>(symbo/ name\ file spec)

ARGUMENTS symbol

related tags

Specifies a symbol name that defines the shelf title. Define this symbol
in either your source file or a symbol definition file (using the <DEFINE_
SYMBOL> tag). If you define it in a symbol definition file, include it using
the \SYMBOLS qualifier on the DOCUMENT command line. If you do
not define the bookshelf symbol name, the symbol is used as the title.

Symbol names must not exceed 31 characters and must only contain
alphabetic letters, numbers, or underscores. Do not begin a symbol name
with an underscore.

file spec
Specifies the file name of the bookshelf file. The file type is not required;
the default of .DECW$BOOKSHELF is assumed.

Note: If you specify the directory as well as the file name (for example,
[PROJECT_A.BOOKS]PROGRAMMING.DECW$BOOKSHELF),
the shelf file is created in that directory. Also, the SHELF entry
written to the current bookshelf file includes the directory. If
you do not specify a directory, the file is created in the default
directory.

When building bookshelves for ·ULTRIX systems, type file names in
lowercase.

• <BOOK_REF>

• <SHELF _REF>

required <ENDSHELF _CREATE>

terminator

DESCRIPTION The <SHELF _CREATE> tag outputs a SHELF entry for the current
Bookreader bookshelf file and creates a separate bookshelf file. For
example, if you specify the file spec argument /PROGRAMMING, a
PROGRAMMING.DECW$BOOKSHELF file is created. If you specify a
directory as well as the file specification, the new bookshelf file is created
in that directory and the SHELF entry written to the current bookshelf
file includes that directory. For example, the tag

7-33

ONLINE Doctype Tag Reference
<SHELF _CREATE>

<SHELF_CREATE>(prog_man\[PROJECT_A.BOOKS]PROGRAMMING)

creates a bookshelf file PROGRAMMING.DECW$BOOKSHELF in the
directory [PROJECT_A.BOOKS]. The SHELF entry in the current
bookshelf file is:

SHELF\[PROJECT_A.BOOKS]PROGRAMMING\Programming With XYZ

Note: When you want to refer to an existing shelf or library file, use the
<SHELF _REF> tag.

You can nest bookshelves or create them as individual files. Include
existing bookshelf source (.SDML) files with the <INCLUDE> tag.

EXAMPLE The following example shows how to use the <BOOKREF>, <SHELF_CREATE>,

and <SHELF _REF> tags.

<SHELF CREATE>(vms sys rogmt\LIBRARY)
<BOOK REF>(using bookreader\AA-BOOKS-AA)
<BOOK=REF>(vax_document\AA-LA95A-TE)

<SHELF_REF>(vms_base_docset\VMS_BASE)

<SHELF CREATE>(vms decw usr\VMS DECW USER)
<BOOK REF>(vms dee; overview\AA=MG17A-TE)
<BOOK-REF>(vms-decw-ug\AA-MG18A-TE)
<BOOK=REF>(vms=decw=desk_app\AA-MG19A-TE)

<ENDSHELF CREATE>

<INCLUDE>(vms_system_management.sdml)

<SHELF CREATE>(vrns gen user\VMS GENERAL USER)
<BOOK REF>(vrns gloss\AA-LA03A-TE) -
<BOOK=REF>(vms=intro\AA-LA04A-TE)

<ENDSHELF CREATE>
<ENDSHELF CREATE>

7-34

ONLINE Doctype Tag Reference
<SHELF _REF>

<SHELF REF>

SYNTAX

Outputs a SHELF entry for a Bookreader bookshelf file that points to an
existing bookshelf file.

<SHELF _REF>(symbo/ name\ file spec)

ARGUMENTS symbol name

related tags

Specifies a symbol name that provides the title of the shelf. Define this
symbol in either your source file or a symbol definition file (using the
<DEFINE_SYMBOL> tag). When you define this symbol in a symbol definition
file, include it by using the \SYMBOLS qualifier on the DOCUMENT
command line.

Symbol names must not exceed 31 characters and must only contain
alphabetic letters, numbers, or underscores. Do not begin a symbol name
with an underscore.

file spec
Specifies the book file specification or symbol name that points to the
shelf_Jilename.DECW$BOOKSHELF file. The file type is not required; the
default of .DECW$BOOKSHELF is assumed.

Note: When building bookshelves for ULTRIX systems, type file names in
lowercase.

• <BOOK_REF>

• <SHELF_CREATE>

restrictions Valid only in the context of the <SHELF _CREATE> tag.

DESCRIPTION The <SHELF_REF> tag outputs a SHELF entry for a Bookreader bookshelf
file that points to an existing bookshelf file. This tag has no effect for
printed output. You can use the <INCLUDE> tag in place of the <SHELF _REF>
tag; both produce the same results.

EXAMPLE

Note: If you need to create a new shelf file, you must use the <SHELF_
CREATE> tag.

See the example in the discussion of the <SHELF _CREATE> tag.

7-35

8 Using the OVERHEADS Doctype

The OVERHEADS doctype lets you create pages with large, bold text.
This text copies well and is easy to see. Use these doctype designs to
create transparent slides for an overhead projector or 35mm photographic
mounts for a 35mm slide projector.

The OVERHEADS doctype has two designs, shown in Figure 8-1.

• OVERHEADS

Creates a page with an 8.5 x 11-inch page with a 7 x 8.7-inch image
area. Use this design to create slides that fit on overhead projectors,
or figures that fit into an 8.5 x 11-inch notebook.

• OVERHEADS.35MM

Creates a page with an 8.5 x 11-inch page with a 6.5 x 4.7-inch image
area used to create 35mm slides by photographic reduction.

Figure 8-1 OVERHEADS Doctype Designs

Overheads

Overheads.35mm

ZK-1927A-GE

Table 8-1 lists the page layout characteristics of the OVERHEADS
doctype design. Table 8-2 lists the page layout characteristics of the
OVERHEADS.35MM doctype design.

Table 8-1 Page Layout of the OVERHEADS Design

Running heads

Running feet

Page numbering

Trim size

Gutter width

Right margin

Page Layout Characteristics

Optional

Optional

Optional

7 x 8.7 in. centered on 8.5 x 11 in. paper

0

Unjustified (Ragged right)

8-1

Using the OVERHEADS Doctype

Table 8-1 (Cont.) Page Layout of the OVERHEADS Design

Headings

Paragraphs

Figures, tables, and
examples

Text Element Characteristics

Unnumbered

Flush left at left margin

Numbered

Table 8-2 Page Layout of the OVERHEADS.35MM Design

Running heads

Running feet

Page numbering

Trim size

Gutter width

Right margin

Headings

Paragraphs

Figures, tables, and
examples

Page Layout Characteristics

Optional

Optional

Optional

6.5 x 4.7 in. for reduction to 35 mm slide

0

Unjustified (Ragged right)

Text Element Characteristics

Unnumbered

Flush left at left margin

Numbered

Table 8-3 briefly describes the tags specific to the OVERHEADS doctype.
Section 8.2 contains the reference information on the tags listed in this
table.

Table 8-3 Tags Available in the OVERHEADS Doctype

Tag Name Description

<AUTHOR_INFO> Specifies from one to four lines of information about the slide presentation. This
information outputs on the right side of the slide toward the bottom edge.

<AUTO_NUMBER> Automatically numbers slides that occur in the same file. Additionally, you can specify an
argument to this tag that places a text string at the beginning of each slide number, for
example, Vacation-1.

<INTRO_SUBTITLE> Creates a secondary title of one to four lines on an introductory slide. Typically, titles
created using the <INTRO_SUBTITLE> tag occupy a large amount of space on the slide.

<INTRO_ TITLE> Creates a main title of one to four lines on an introductory slide. Typically, titles created
using the <INTRO_ TITLE> tag occupy a large amount of space on the slide.

<RUNNING_FEET> Places a heading at the bottom right of the current slide and all subsequent slides. If
you use the <RUNNING_FEET> tag with the <AUTO_NUMBER> tag, the slide number
outputs on the bottom right, and the text string outputs on the bottom left.

<RUNNING_ TITLE> Places a title at the top of all subsequent slides.

8-2

Using the OVERHEADS Doctype

Table 8-3 (Cont.) Tags Available in the OVERHEADS Doctype

Tag Name

<SLIDE>

<SUBTITLE>

<TEXT_SIZE>

<TITLE>

<TOPIC>

Description

Begins a new overhead slide. Optionally, use this tag to specify text to be placed at the
bottom of the slide.

Creates a secondary title with one to four title lines for a nonintroductory slide. The
<SUBTITLE> tag produces title lines in a smaller type face with less space between lines
than the title lines produced by the <INTRO_SUBTITLE> tag.

Modifies the size of the type face used in a topic, table, or list on a single slide.

Creates a main title with one to four title lines for a nonintroductory slide. The <TITLE>
tag produces title lines in the same type face, but with less space between lines than the
title lines produced by the <INTRO_TITLE> tag.

Specifies a line of topic text for a slide. This text begins at the left margin and is in a
smaller type font than the font used by the <TITLE> tag.

Process a file with the OVERHEADS doctype using one of the doctype
keywords in the preceding list on the DOCUMENT command line. The
following example shows how to process a file named MYGRAPHIC.SDML
with the OVERHEADS.35MM doctype to create a 35mm slide mount:

$ DOCUMENT mygraphic OVERHEADS.35MM LN03

Use the POSTSCRIPT or LN03 destinations when you create your
overheads. These destinations provide better quality output than the
LINE_PRINTER destination. Then make xerographic copies of your
printed VAX DOCUMENT files and use these copies to create the overhead
transparencies. Xerographic copies of laser printer output often reproduce
better than the original laser printer output.

8.1 A Sample Use of the OVERHEADS Doctype Tags
This section contains an example of two slides produced using
OVERHEADS doctype tags. The first slide is an introductory slide
for a slide presentation. The second slide is the first that follows the
introduction.

The SDML code for the two slides is shown first, followed by the output
from that SDML code using the OVERHEADS doctype.

<SLIDE>(Presented 3/8/90)
<AUTO_NUMBER>(DMS)
<RUNNING TITLE>(Pets Are People Too)
<RUNNING-FEET>(Pet selection seminar)
<INTRO TITLE>(CHOOSING THE\RIGHT PET FOR\YOU)
<INTRO-SUBTITLE>(A Seminar on\Pet Selection)
<AUTHOR_INFO>(D. M. Smith\Veterinarian)

8-3

Using the OVERHEADS Doctype

8-4

<SLIDE>
<TITLE>(Heart Rates\In Pets and Wild Mammals)
<SUBTITLE>(Physiological Data \on Selected Mammals)
<TEXT SIZE>(REGULAR)
<TOPIC>(Nondomesticated Mammal Heart Rates)
<TABLE>
<table attributes>(KEEP)
<table-setup>(3\19\16)
<table-heads>(Common Name\Weight\Heart Rate)
<table-row>(European.hedgehog\500-700 g.\246)
<table-row>(Gray shrew\3-4 g.\782)
<table-row>(Least chipmunk\40 g.\684)
<table-row>(Gray squirrel\500-600 g.\390)
<table-row>(Harbor porpoise\170 kg.\40-110)
<table-row>(Mink\0.7-1.4 kg.\272)
<table=row>(Harbor seal\20-25 kg.\18-25)
<ENDTEXT SIZE>
<end table>

Figure 8-2 and Figure 8-3 show the corresponding output from the
SDML file processed with the OVERHEADS doctype. Comparing these
samples may be helpful in understanding how to use these tags to
create outputs for overheads. Should you wish to create this output
yourself, you can obtain file OVERHEADS_SAMPLE.SDML from directory
DOC$ROOT:[EXAMPLES].

When you process the input file with the OVERHEADS doctype, output
has a trim size image area of 7 x 8. 7 inches. When you process with the
OVERHEADS.35MM doctype, output has a trim size image area of 6.5
x 4. 7 inches, the proper proportion for photographic reduction to 35 mm
slides.

Using the OVERHEADS Doctype

Figure 8-2 OVERHEADS Doctype Output Example, First Slide

Pet selection seminar

CHOOSING THE

RIGHT PET FOR

YOU

A Seminar on
Pet Selection

D. M. Smith
Veterinarian

Presented 3/8/90

8-5

Using the OVERHEADS Doctype

Figure 8-3 OVERHEADS Doctype Output Example, Second Slide

Pets Are People Too

Heart Rates
In Pets and Wild Mammals

Physiological Data
on Selected Mammals

Nondomesticated Mammal Heart Rates

Common Name Weight Heart Rate

European hedgehog 500-700 g. 246
Gray shrew 3-4 g. 782
Least chipmunk 40 g. 684
Gray squirrel 500-600 g. 390
Harbor porpoise 170 kg. 40-110
Mink 0.7-1.4 kg. 272
Harbor seal 20-25 kg. 18-25

Pet selection seminar

8-6

OMS 1

Using the OVERHEADS Doctype

8.2 OVERHEADS Doctype Tag Reference
This part of Chapter 8 provides reference information on all the tags
specific to the OVERHEADS doctype.

8-7

OVERHEADS Doctype Tag Reference
<AUTHOR_INFO>

<AUTHOR INFO>

SYNTAX

ARGUMENTS

related tags

Specifies up to four lines of informational text about the author in an overhead
slide presentation.

<AUTHOR_INFO>(info line-1[\ info line-2 .. .
[\ info line-4]])

info line-n
Specifies up to four lines of informational text.

• <INTRO_SUBTITLE>

• <INTRO_TITLE>

restrictions Valid only following the <SLIDE> tag.

DESCRIPTION The <AUTHOR_INFO> tag specifies up to four lines of informational text
about the author in an overhead slide presentation.

EXAMPLE The following example shows how to place a name, title, and date on a
main title slide using the <AUTHOR_INFO> tag. This text outputs on the
right side of the slide, toward the bottom of the page.

<SLIDE>
<INTRO_TITLE>(Advanced Development)
<INTRO SUBTITLE>(Status Report)
<AUTHOR_INFO>(J.R. Drofnats\Technical Support\June 1986)

8-8

OVERHEADS Doctype Tag Reference
<AUTO_NUMBER>

<AUTO NUMBER>

SYNTAX

ARGUMENTS

related tags

Specifies that slides be numbered automatically, and that the slide number is
at the bottom of every slide. Optionally, specifies text to be placed in front of
the slide number on each page.

<AUTO_NUMBER>[ffext)J

text
This is an optional argument. It specifies text to be placed in front of the
slide number at the foot of every overhead slide. If you do not specify this
argument, only the slide number prints.

• <RUNNING_FEET>

• <SLIDE>

DESCRIPTION The <AUTO_NUMBER> tag specifies that slides be numbered automatically,
and that the slide number is at the bottom of every slide. Optionally, it
specifies text to be placed in front of the slide number on each page. By
default, no page or slide number appears on the bottom of overhead slides.
To override this default behavior, do the following:

EXAMPLES

D <AUTO NUMBER>

• Use the <AUTO_NUMBER> tag to request numbering or to optionally
specify text to go along with the numbers.

• Use the <RUNNING_FEET> tag to specify text to be placed on the bottom
of every overhead slide.

• Use an argument to the <SLIDE> tag. The text of the tag's argument
outputs on the bottom of the current slide.

In the following example, the <AUTO_NUMBER> tag specifies that the slides
are to be numbered. The current number outputs in the bottom right
corner of every slide.

In the following example, the <AUTO_NUMBER> tag specifies that the slides
are to be numbered and that the numbers are to be preceded with the
word Earnings and placed in the bottom right corner of every slide.

~ <AUTO_NUMBER>(Earnings)

8-9

OVERHEADS Doctype Tag Reference
<INTRO_SUBTITLE>

<INTRO SUBTITLE>

SYNTAX

ARGUMENTS

related tags

Creates a secondary title of up to four lines on an introductory slide.

<INTRO_SUBTITLE>(title line-1[\ title line-2 . ..
[\ title line-4]])

title line-n
Specifies up to four lines of text for the secondary title.

• <INTRO_TITLE>

• <SUBTITLE>

DESCRIPTION The <INTRO_SUBTITLE> tag creates a secondary title of up to four lines
on an introductory slide. The <INTRO_SUBTITLE> and <INTRO_TITLE> tags
place a great deal of vertical space between their title lines. Note that,
depending on the number of title lines you specify, the output of these tags
may not leave room for any other text on the introductory slide.

Use the <SUBTITLE> tag to create a subtitle of a slightly smaller type size,
and with less space between the title lines.

EXAMPLE The following example is for an introductory title slide with a main title
and a subtitle. Note that the title tags do not set text in uppercase by
default.

<SLIDE>
<INTRO TITLE>(LANGUAGES, TOOLS \ AND \DISPLAY SOFTWARE)
<INTRO=SUBTITLE>(A PATH TO \PROGRAMMING PRODUCTIVITY)

8-10

OVERHEADS Doctype Tag Reference
<INTRO_TITLE>

<INTRO TITLE>

SYNTAX

ARGUMENTS

related tags

Creates a main title of up to four lines on an introductory slide.

<INTRO_ TITLE> (title line-1 [\ title line-2 ...
[\ title line-4]])

title line-n
Specifies up to four lines of text for the title.

• <INTRO_SUBTITLE>

• <SLIDE>

• <TITLE>

DESCRIPTION The <INTRO_TITLE> tag creates a main title of up to four lines on an
introductory slide. The <INTRO_TITLE> and <INTRO_SUBTITLE> tags place a
great deal of vertical space between their title lines. Note that, depending
on the number of title lines you specify, the output of these tags may not
leave room for any other text on the introductory slide.

Use the <TITLE> tag rather than the <INTRO_TITLE> tag to create a title of
the same type size, but with less space between the title lines.

EXAMPLE The following example is for a slide with a 2-line main introductory title.

<SLIDE>
<INTRO_TITLE>(Introduction to\The Management System)

8-11

OVERHEADS Doctype Tag Reference
<RUNNING_FEET>

<RUNNING FEET>

SYNTAX

ARGUMENTS

related tags

Specifies text to be placed at the bottom of the next slide and all subsequent
slides.

<RUNNING_FEET>(running footer text)

running footer text
Specifies the text to be placed on the bottom left of your slides.

• <AUTO_NUMBER>

• <SLIDE>

DESCRIPTION The <RUNNING_FEET> tag specifies text to be placed at the bottom of the
next slide and all subsequent slides. This running footer outputs at the
bottom left of the slide. To place running feet on all of your slides, place
this tag in your SDML file before the first occurrence of a <SLIDE> tag.
To disable running feet, place the <RUNNING_FEET> tag in your SDML file
with no argument.

EXAMPLES

By default, no page or slide number outputs on the bottom of overhead
slides. To override this default behavior, do the following:

• Use the <AUTO_NUMBER> tag to request numbering and to optionally
specify text to go along with the numbers.

• Use the <RUNNING_FEET> tag to specify text to be placed on the bottom
of every overhead slide.

• Use an argument to the <SLIDE> tag. The text of the tag's argument
outputs on the bottom of the current slide.

If you specify <RUNNING_FEET> in conjunction with <AUTO_NUMBER>, the
slide number outputs on the right and the text on the left.

In the following example, the <RUNNING_FEET> tag specifies that all slides
are to carry the text May 1986 Presentation at the bottom right corner.

D <RUNNING_FEET>(May 1986 Presentation)
<SLIDE>
<TITLE>(Base Level 13)

8-12

OVERHEADS Doctype Tag Reference
<RUNNING_FEET>

In the following example, the <AUTO_NUMBER> tag creates automatic
numbering of the slides at the bottom right of the slide, and the <RUNNING_
FEET> tag places a running footer on the bottom left of the slide.

~ <RUNNING_FEET>(May 1987)
<AUTO_NUMBER>(Slide)

8-13

OVERHEADS Doctype Tag Reference
<RUNNING_ TITLE>

<RUNNING TITLE>

SYNTAX

ARGUMENTS

related tags

Creates a 1- or 2-line running heading at the top of each slide.

{
OFF }

<RUNNING_ TITLE>(title-1 [\ title-2])
[\ FIRST_PAGE]

OFF
Specifies that any existing running titles created using the
<RUNNING_TITLE> tag are disabled for the slide on which this tag occurs
and on any subsequent slides.

title-1
Specifies the text of a running title. If you specify a 2-line title, this title
outputs on the upper title line.

title-2
This is an optional argument. It specifies the bottom line of a running title
that has two lines.

FIRST PAGE
This is an optional argument. It specifies that the running title is to begin
output on the first slide. If you do not specify this keyword, the running
title begins on the slide after the current slide.

• <RUNNING_FEET>

• <SLIDE>

DESCRIPTION The <RUNNING_TITLE> tag creates a 1- or 2-line running heading at the
top of each slide. To place a running title on all your slides, place this tag
in your SDML file before the first <SLIDE> tag. If you use this tag in the
context of the first <SLIDE> tag and you want the running title to begin on
that slide, use the FIRST_PAGE argument.

8-14

Use the OFF argument to disable any existing running titles created using
the <RUNNING_TITLE> tag. These titles will then be disabled for the slide
page on which this tag occurs and on any subsequent pages.

Use the <RUNNING_FEET> tag to create a heading that appears at the
bottom of the slide page. See the reference description of the <RUNNING_

FEET> tag for more information on that tag.

OVERHEADS Doctype Tag Reference
<RUNNING_ TITLE>

EXAMPLES The following example shows how each occurrence of a <RUNNING_TITLE>

tag creates a running title for the next slide or series of slides.

D <RUNNING_TITLE>(Introduction to SDML)
<SLIDE>
<TOPIC>(What is SDML?)
<SLIDE>
<TOPIC>(What is a Tag?)

<RUNNING_TITLE>(Overview of the Tags)
<SLIDE>
<TOPIC>(The Basic Tags)

The following example shows how to disable a running title by using the
OFF argument to the <RUNNING_TITLE> tag.

~ <COMMENT>(turn off running titles for the next slide)
<RUNNI~G_TITLE>(OFF)

<SLIDE>
<TOPIC>(An Example of Output)

8-15

OVERHEADS Doctype Tag Reference
<SLIDE>

<SLIDE>

Begins a new overhead slide.

SYNTAX <SLIDE>([footer-text])

ARGUMENTS footer-text

related tags

This is an optional argument. It specifies text to be placed at the bottom
of the slide.

• <AUTHOR_INFO>

• <AUTO_NUMBER>

• <RUNNING_FEET>

• <RUNNING_ TITLE>

• <SUBTITLE>

• <TEXT_SIZE>

• <TITLE>

• <TOPIC>

DESCRIPTION The <SLIDE> tag begins a new overhead slide. With an argument, this tag
specifies text to be placed at the bottom of the slide. An overhead slide can
contain the following:

8-16

• Major titles and subtitles

Use the <INTRO_TITLE> and <INTRO_SUBTITLE> tags to create title page
slides.

• Titles and subtitles followed by topics, lists, tables, or text

Use the <TITLE> and <SUBTITLE> tags to place headings at the
top of each new slide. Use the global <LIST>(NUMBERED) and
<LIST>(UNNUMBERED) tags for numbered and unnumbered lists.

Use any of the global tags to specify text elements on any slide page,
except those associated with the creation of front matter, appendixes,
glossaries, indexes, or part pages.

OVERHEADS Doctype Tag Reference
<SLIDE>

EXAMPLES The following example specifies a tag sequence that begins a new slide and
specifies two main topics.

D <SLIDE>
<TITLE>(System Components)
<TOPIC>(Parser)
<TOPIC>(Interpreter)

m <SLIDE>(Slide 1)

The following example specifies a slide with a main heading and a
subheading. The text Slide 1 outputs at the bottom of this slide.

<INTRO_TITLE>(A New\ Production System)
<INTRO_SUBTITLE>(Introduction and Overview)

The following example specifies a slide that uses a numbered list.

I) <SLIDE>
<TITLE>(WORK FLOW)
<LIST>(NUMBERED)
<LE>Create the File
<LE>Run the Checker
<ENDLIST>

8-17

OVERHEADS Doctype Tag Reference
<SUBTITLE>

<SUBTITLE>

Specifies a secondary title for a new slide.

SYNTAX <SUBTITLE>(title line-1 [\ title line-2] ... [\ title line-4])

ARGUMENTS title line-n
Specifies up to four lines of text for the secondary slide title.

related tags • <TITLE>

DESCRIPTION The <SUBTITLE> tag specifies a secondary title for a new slide. This subtitle
may have up to four separate lines. Each of the subtitle lines is centered
on the output page. Use the <TITLE> tag to create a main title for an
overhead slide.

EXAMPLE The following example is for an overhead slide that begins with a main
title followed by a subtitle.

<SLIDE>
<TITLE>(FILE PROCESSING)
<SUBTITLE>(CONCEPTS AND INSTRUCTIONS)

8-18

OVERHEADS Doctype Tag Reference
<TEXT_SIZE>

<TEXT SIZE>

SYNTAX

ARGUMENTS

related tags

Changes the size of type used in the context of topics, tables, and lists on a
single slide.

<TEXT_SIZE>(REGULAR) {
SMALL }

TABLE

SMALL
Reduces the standard point size of type used in topics and lists.

REGULAR
Increases the size of type in tables to that of standard text.

TABLE
Reduces text to the smallest font size available in the OVERHEADS
doctype, which is the standard font size used inside of tables.

• <SLIDE>

required <ENDTEXT_SIZE>

terminator

DESCRIPTION The <TEXT_SIZE> tag changes the size of type used in the context of topics,
tables, and lists on a single slide. This tag alters the typeface used by text
in the following contexts:

• Text specified in a list using the global <LIST> tag

• Text specified as an argument to the <TOPIC> tag

• Text specified in the context of the global <TABLE> tag

The <TEXT_SIZE> tag alters the default size of type only on a single slide.
The following slide will have the default type sizes. To alter the type size
for more than one slide, use the <TEXT_SIZE> tag on each of the slides. If
you use the <TEXT_SIZE> tag in a table, place it right after the <TABLE_

SETUP> tag.

DECLIT AA VAX JTBbB

VAX DOCUMENT using doctypes
and related tags

8-19

OVERHEADS Doctype Tag Reference
<TEXT_SIZE>

EXAMPLE

<SLIDE>

The following example illustrates each of the various formats available
using the <TEXT_SIZE> tag.

<TOPIC>(ANIMALS THAT MAKE GOOD PETS)
<list>(UNNUMBERED)
<LE>Rabbits---Small, furry, generally best as pets for children
growing up in a non-urban setting.
<p>
<TEXT_SIZE>(small)
Rabbits are typically not good pets in urban settings because of their
extreme sensitivity to noise and because of their love of the outdoors,
<ENDTEXT SIZE>
<LE>Dogs---Come in assorted shapes and sizes: a general purpose pet.
<p>
<TEXT_SIZE>(TABLE)
Dogs are man's (and woman's) best friend.
<ENDTEXT SIZE>
<LE>Cats---Cats are ideal pets for apartment dwellers.
<p>
<TEXT_SIZE>(regular)
Cats should not be pets in households that already have tropical fish for pets.
<ENDTEXT SIZE>
<ENDLIST>

8-20

OVERHEADS Doctype Tag Reference
<TITLE>

<TITLE>

Specifies a title for a new slide.

SYNTAX <TITLE>(title line-1 [\ title line-2] ... [\ title line-4])

ARGUMENTS title line-n
Specifies up to four lines of text for a main slide title.

related tags • <SUBTITLE>

DESCRIPTION The <TITLE> tag specifies a title for a new slide. This title may have up to
four separate lines. Each of the title lines centers on the slide. Use the
<SUBTITLE> tag to create a subordinate title for an overhead slide.

EXAMPLES The following example shows a tag sequence that begins a new slide and
specifies a single-line title.

D <SLIDE>
<TITLE>(System Components)
<TOPIC>(Parser)
<TOPIC>(Interpreter)

This example shows how to have a 3-line title, with each line centered.

m <TITLE>(THE \DEVELOPMENT \CYCLE)

8-21

OVERHEADS Doctype Tag Reference
<TOPIC>

<TOPIC>

SYNTAX

, .

ARGU~ENTS

rel~ted tags

DESCRIPTION

J:XAMPLE

<SLIDE>

Specifies a line of topic text for a slide.

<TOPIC>(topic text)

topic text
Specifies text for the topic.

• <SLIDE>

• <TEXT_SIZE>

The <TOPIC> tag specifies a line of topic text for a slide. The text of the
<TOPIC> tag begins at the left margin and has a smaller type font than
the font used by the <TITLE> tag. Alter the size of the topic text with the
<TEXT_~IZE> tag.

The following example illustrates a slide with a title, a topic sentence, and
an unnumbered list.

<TITLE>(THE \DEVELOPMENT \CYCLE)
<TOPIC>(WHO)
<LIST>(UNNUMBERED)
<LE>WRITERS
<LE> EDITORS
<LE>COMPOSITORS AND ARTISTS
<ENDLIST>

8-22

9 Using the REPORT Doctype

The REPORT doctype has two designs, shown in Figure 9-1, and is used
for general-purpose documents such as reports and formal outlines.

• REPORT

Creates an 8~ x 11-inch format with unruled numbered and
unnumbered headings.

• REPORT.TWOCOL

Creates the same format as REPORT, but places the text in two
columns.

Figure 9-1 REPORT Doctype Designs

Report Report.Twocol

ZK-1928A-GE

9.1 Characteristics of the REPORT Design
Table 9-1 lists the page layout of the REPORT doctype design. Table 9-2
lists the page layout of the REPORT.TWOCOL doctype designs.

Table 9-1 Page Layout of the REPORT Doctype Design

Running heads

Running feet

Page numbering

Page Layout Characteristics

None1

Page number, title text optional1

Sequential1

1 You can modify this characteristic

9-1

Using the REPORT Doctype

9-2

Table 9-1 (Cont.) Page Layout of the REPORT Doctype Design

Trim size

Right margin

Headings

Paragraphs

Figures, tables, and
examples

Page Layout Characteristics

8 1/2 x 11 inches

Justified

Text Element Characteristics

Numbered

Flush left

Numbered

Table 9-2 Page Layout of the REPORT.TWOCOL Doctype Design

Running heads

Running feet

Page numbering

Trim size

Right margin

Headings

Paragraphs

Figures, tables, and
examples

Page Layout Characteristics

None1

Page number, title text optional1

Sequential

8 1/2 x 11 inches

Justified

Text Element Characteristics

Unnumbered

First line indent

Numbered

1 You can modify this characteristic

This doctype accepts the full range of VAX DOCUMENT global tags (see
the VAX DOCUMENT Using Global Tags for more information on the
global tags). The REPORT doctype also provides additional tags that let
you perform the following functions:

• Create headings or modify the default attributes of the REPORT
doctype.

• Create signature lines and list author information in the context of the
global <FRONT_MATTER> tag.

• Create formal outlines in the context of the <OUTLINE> tag.

You process a file with the REPORT doctype by using the REPORT or
REPORT.TWOCOL doctype keyword on the VAX DOCUMENT command
line.

Using the REPORT Doctype

$ DOC/LIST/CONTENTS/SYMBOLS=MY SYMBOLS.SDML-
_$ MyFile.sdml REPORT LN03 -

See Chapter 2 for information on special formatting considerations of a
2-column doctype design, and for suggestions on improving final output.

Table 9-3 summarizes the tags available in the REPORT doctype and
provides a brief description of each tag. Section 9.4 contains the reference
information on the tags listed in this table.

Table 9-3 Tags Available in the REPORT Doctype

Tag Name

<AUTHOR>

<BYLINE>

<SIGNATURES>

<COLUMN>

Description

Tags Available in the Front Matter

Places the name of an author and up to two additional lines of information
about the author on the output page.

Creates a rule to be used as a signature line, and places the name of the
signatory beneath the line.

Begins a listing of signature lines created by the <BYLINE> tag. Optionally, you
can use this tag to begin the listing of signature lines on a new page.

Tags Available Throughout the Document

<DOCUMENT _ATTRIBUTES>

<RUNNING_FEET >

<RUNNING_ TITLE>

<SECTION>

Specifies that a new column of output should begin in a 2-column doctype.

Modifies the numbering of pages and formal elements in the document.

Places a heading at the bottom of each page.

Places a heading at the top of each page.

Begins a new page and places an unnumbered heading at the top of the new
page on the left margin.

<LEVEL>

<OUTLINE>

<SHOW_LEVELS>

Tags Available to Create Outlines

Specifies an entry in an outline.

Enables the <LEVEL> and <SHOW_LEVELS> tags and specifies a title for the
outline.

Emphasizes text in the outline using either balding or italics.

9.2 Sample Use of the REPORT Doctype Tags
This section contains an example of the first pages of a report created
using the REPORT doctype tags. This report includes a front matter
section and an outline in the body of the report. Note how the outline
and front matter tags are used in this example. You may find this sample
useful in understanding how the tags all fit together to create reports and
other general-purpose documents.

The SDML code for the report is shown first, followed by the output from
that SDML code.

9-3

Using the REPORT Doctype

<FRONT MATTER>
<TITLE PAGE>
<TITLE>(Equipment Usage in this Company)
<RUNNING_TITLE>(Equipment Used)
<RUNNING_FEET>(A Valuable Resource)
<ABSTRACT>
This is an internal report on equipment usage during
the period (May 1989 - November 1989).
<ENDABSTRACT>
<AUTHOR>(Thomas A. Smith\Comptroller\Eastern Division)
<SIGNATURES>
<BYLINE>(T. A. Smith)
<BYLINE>(John Whorfin\Accounting Consultant)
<DATE>(26-November-1989)
<ENDTITLE PAGE>
<ENDFRONT MATTER>
<CHAPTER>(Equipment Usage Summary)
<P>Equipment usage is a very important quantity to monitor.
If equipment is not used, it is a wasted resource. If equipment is over-used,
it tends to break sooner, and means that people must wait to use it. If people
are waiting, they are not being as productive as they might otherwise be.
<P>The following sections summarize equipment usage in various departments.

<HEADl>(Usage of Official Vehicles\28_Usageof0fficia1Vehicles)
<P>
Official vehicle usage is listed in a separate report CORP-AUT0-1439u2.
This report is organized as in the following outline. Note that there
are two new categories in the report. These categories are italicized
in the following outline.
<OUTLINE>(Outline of Report\CORP-AUT0-1439u2\Motor Vehicle Usage)
<LEVEL>(l\Four wheeled Vehicles)
<LEVEL>(2\Cars)
<LEVEL>(2\Trucks)
<SHOW LEVELS>(ITALIC)
<LEVEL>(3\Heavy trucks)
<LEVEL>(3\Light trucks (less than 2 ton))
<SHOW LEVELS>(OFF)
<LEVEL> (2\Vans)
<ENDOUTLINE>

9-4

Figure 9-2 and Figure 9-3 show the corresponding output from that
SDML file when processed with the REPORT keyword. Comparing these
samples may be helpful in understanding how to use these tags to create
reports. Should you wish to create this output yourself, you can obtain file
REPORT_SAMPLE.SDML from directory DOC$ROOT:[EXAMPLESJ.

Using the REPORT Doctype

Figure 9-2 REPORT Doctype Output Example, Title Page

Equipment Usage in this Company

This is an internal report on equipment usage during the period (May 1989 - November 1989).

Thomas A. Smith

Comptroller

Eastern Division

T. A. Smith

John Whorfin-Accounting Consultant 26-November-1989

Digital Equipment Corporation

9-5

Using the REPORT Doctype

Figure 9-3 REPORT Doctype Output Example, Interior Page

CHAPTER 1

EQUIPMENT USAGE SUMMARY

Equipment usage is a very important quantity to monitor. If equipment is not used, it is a
wasted resource. If equipment is over-used, it tends to break sooner, and means that people
must wait to use it. If people are waiting, they are not being as productive as they might
otherwise be.

The following sections summarize equipment usage in various departments.

1.1 Usage of Official Vehicles

Official vehicle usage is listed in a separate report CORP-AUT0-1439u2. This report is
organized as in the following outline. Note that there are two new categories in the report.
These categories are italicized in the following outline.

I. Four wheeled Vehicles
A. Cars
B. Trucks

1. Heavy trucks

Outline of Report
CORP-AUT0-1439u2
Motor Vehicle Usage

2. Light trucks aess than 2 ton)
C. Vans

9-6

Equipment Usage Summary 1

Using the REPORT Doctype

9.3 A Sample Use of the REPORT.TWOCOL Doctype Tags
This section shows the preceding example modified to show how to use the
<COLUMN> tag and the global <CHEAD> tag.

<FRONT MATTER>
<TITLE PAGE>
<TITLE>(Equipment Usage in this Company)
<RUNNING_TITLE>(Equipment Used)
<RUNNING_FEET>(A Valuable Resource)
<ABSTRACT>
This is an internal report on equipment usage during
the period (May 1989 - November 1989).
<ENDABSTRACT>
<AUTHOR>(Thomas A. Smith\Comptroller\Eastern Division)
<SIGNATURES>
<BYLINE>(T. A. Smith)
<BYLINE>(John Whorfin\Accounting Consultant)
<DATE>(26-November-1989)
<ENDTITLE PAGE>
<ENDFRONT MATTER>
<CHAPTER>CEquipment Usage Summary)
<P>Equipment usage is a very important quantity to monitor.
If equipment is not used, it is a wasted resource. If equipment is over-used,
it tends to break sooner, and means that people must wait to use it. If people
are waiting, they are not being as productive as they might otherwise be.
<P>The following sections summarize equipment usage in various departments.

<HEADl>(Usage of Official Vehicles\28_Usageof0fficia1Vehicles)
<P>
Official vehicle usage is listed in a separate report CORP-AUT0-1439u2.
This report is organized as in the following outline. Note that there
are two new categories in the report. These categories are italicized
in the following outline.
<OUTLINE>(Outline of Report\CORP-AUT0-1439u2\Motor Vehicle Usage)
<LEVEL>(l\Four wheeled Vehicles)
<LEVEL>(2\Cars)
<LEVEL>(2\Trucks)
<SHOW LEVELS>(ITALIC)
<LEVEL>(3\Heavy trucks)
<LEVEL>(3\Light trucks (less than 2 ton))
<SHOW LEVELS>(OFF)
<LEVEL>(2\Vans)
<ENDOUTLINE>
<COLUMN>
<CHEAD>(A Valuable Resource)
<P>
We must all be concerned about the safe handling and preventive
maintenance of all of our vehicles ...

Figure 9-4 shows the corresponding output from that SDML file when
processed with the REPORT.TWOCOL keyword. Comparing these
samples may be helpful in understanding how to use these tags to
create 2-column reports. Should you wish to create this output yourself,
you can obtain file REPORT_TWOCOL_SAMPLE.SDML from directory
DOC$ROOT:[EXAMPLESJ.

9-7

Using the REPORT Doctype

Figure 9-4 REPORT.TWOCOL Doctype Output Example, Title Page

9-8

Equipment Usage in this Company

This is an internal report on equipment usage during the period (May 1989 -
November 1989).

Thomas A. Smith

Comptroller

Eastern Division

T. A. Smith

John Whorfin-Accounting Consultant 26-November-1989
Digital Equipment Corporation

Using the REPORT Doctype

Figure 9-5 REPORT.TWOCOL Doctype Output Example, Interior Page

CHAPTER 1

EQUIPMENT USAGE SUMMARY

Equipment usage is a very important quantity to
monitor. If equipment is not used, it is a wasted
resource. If equipment is over-used, it tends to
break sooner, and means that people must wait to
use it. If people are waiting, they are not being as
productive as they might otherwise be.

The following sections summarize equipment usage
in various departments.

1.1 USAGE OF OFFICIAL VEHICLES

Official vehicle usage is listed in a separate report
CORP-AUT0-1439u2. This report is organized as
in the following outline. Note that there are two
new categories in the report. These categories are
italicized in the following outline.

Outline of Report
CORP-AUT0-1439u2
Motor Vehicle Usage

I. Four wheeled Vehicles
A. Cars
B. Trucks

1. Heavy trucks
2. Light trucks (less than 2 ton)

C. Vans

A Valuable Resource
We must all be concerned about the safe handling
and preventive maintenance of all of our vehicles ...

Equipment Usage Summary 1

9-9

Using the REPORT Doctype

9.4 REPORT Doctype Tag Reference

9-10

This part of Chapter 9 provides reference information on all the tags
specific to the REPORT doctype.

<AUTHOR>

SYNTAX

ARGUMENTS

related tags

REPORT Doctype Tag Reference
<AUTHOR>

Places the name of an author and one or two additional lines of information
about the author in the front matter portion of a document.

<AUTHOR>(author name[\ author info-1] [\author
info-2])

author name
Specifies the name of the author.

author info-n
This is an optional argument. It specifies any additional information about
the author below the author's name. Information you specify as author
info-1 outputs above information you specify as author info-2.

• <BYLINE>

• <SIGNATURES>

• The global <FRONT_MA'ITER> tag

restrictions Valid only in the context of the global <FRONT_MATTER> tag in the REPORT
doctype.

DESCRIPTION The <AUTHOR> tag places the name of an author and one or two additional
lines of information about the author in the front matter portion of
a document. This tag accepts two optional arguments to provide the
additional information about the author.

If you want a signatory line for the author in the front matter, use the
<SIGNATURES> and <BYLINE> tags. See the descriptions of those tags in this
chapter for more information.

9-11

REPORT Doctype Tag Reference
<AUTHOR>

EXAMPLE

<FRONT_MATTER>
<TITLE PAGE>

The following example shows how you can use the <AUTHOR> tag in the
front matter of a document. Note how the optional second argument to the
<AUTHOR> tag specifies the author's title.

<TITLE>(The NYUC Simulator Reference Manual)
<ORDER_NUMBER>(AA-ZOOOO-TE)
<ABSTRACT>
This manual describes the NYUC Simulator.
This program simulates a conversation between three people
by analyzing the syntactic and semantic components of three
related statements, and then synthesizing statements and responses
based upon these original statements.
<ENDABSTRACT>
<REVISION INFO>(This revision is personally signed.)
<AUTHOR>(Mr. Jones\Research Head, STG Inc.)
<SIGNATURES>
<BYLINE>(Nat Jones\Author)
<DATE>(July 11, 1985)
<PRINT_DATE>(June 1987)
<ENDTITLE PAGE>
<ENDFRONT MATTER>

9-12

<BYLINE>

SYNTAX

ARGUMENTS

related tags

REPORT Doctype Tag Reference
<BYLINE>

Places a name and other optional information below a ruled line in a signature
list.

<BYLINE>(name [\additional info])

name
Specifies the name of the signatory. This name outputs under the
beginning of the signature line on the left side of the page.

additional info
This is an optional argument. It specifies any additional information about
the signatory. This information outputs on the same line as the name
argument with an em dash (-) between the two arguments.

• <AUTHOR>

• <SIGNATURES>

• The global <FRONT_MAITER> tag

restrictions Valid only in the context of the global <FRONT_MATTER> tag and after the
<SIGNATURES> tag.

DESCRIPTION The <BYLINE> tag places a name and other optional information below a
ruled line in a signature list. You can place additional information about
the signer by using the additional info argument. Additional information
formats to the right of the name of the signer, on the same line, separated
by an em dash(-).

Use as many <BYLINE> tags as you want to create approval lines in
the front niatter of a document, as long as all these tags follow the
<SIGNATURES> tag. Use the <SIGNATURES> tag to begin all the approval
lines on a separate page of the front matter. See the <SIGNATURES> tag in
this chapter for more information.

9-13

REPORT Doctype Tag Reference
<BYLINE>

EXAMPLE

<FRONT MATTER>
<TITLE_PAGE>

The following example shows three occurrences of the <BYLINE> tag. The
first two occurrences list the positions of the signers using the optional
additional info argument. The third occurrence of the <BYLINE> tag omits
the optional argument. Note that all three tags follow the <SIGNATURES>
tag.

<TITLE>(The NYUC Simulator Reference Manual)
<REVISION INFO>(This revision is personally signed.)
<AUTHOR>(Mr. Jones\Research Head, STG Inc.)
<SIGNATURES>
<BYLINE>(Nat Jones\Author)
<BYLINE>(Cecil Mills\Co-author)
<BYLINE>(Matt Smith)
<DATE>(July 11, 1985)
<PRINT_DATE>(June 1987)
<ENDTITLE_PAGE>
<ENDFRONT_MATTER>

9-14

<COLUMN>

SYNTAX

ARGUMENTS

related tags

REPORT Doctype Tag Reference
<COLUMN>

In a 2-column doctype, specifies that a new column of output begins.

<COLUMN>

None.

• The global <FINAL_CLEANUP> tag

restrictions Valid only in a 2-column doctype.

DESCRIPTION The <COLUMN> tag, in a 2-column doctype, specifies that a new column of
output begins. This causes the text immediately following the tag to be
started in a new column. If this tag occurs in the left text column, the text
immediately following it begins in the right text column. If this tag occurs
in the right text column, the text immediately following it begins in the
left column of the next page.

Use the <COLUMN> tag when you always want to begin a new column at
that point in your text. You can use the COLUMN_BREAK argument to
the global <FINAL_CLEANUP> tag to also specify a column break. However,
only use it during the final processing of the 2-column document.

See Chapter 2 for more information on improving the formatting of a
2-column doctype such as REPORT.TWOCOL and ARTICLE.

9-15

REPORT Doctype Tag Reference
<COLUMN>

EXAMPLE The following example shows how to use the <COLUMN> tag to begin a new
text column. In this example, the writer wants the two descriptions to
appear side by side, one in each column.

<CHEAD>(Woodwind Instruments)
<P>Woodwind instruments have the following
attributes:
<LIST>(UNNUMBERED)
<LE>They are often made of wood, hence their name.
<LE>Musicians create sound using these instruments by causing a reed
to vibrate.

<ENDLIST>
<COLUMN>
<CHEAD>(Brass Instruments)
<P>Brass instruments have the following
attributes:
<LIST>(UNNUMBERED)
<LE>They are often made of brass, hence their name.
<LE>Musicians create sound using these instruments by
vibrating (buzzing) their lips into a steel mouthpiece.

<ENDLIST>

9-16

REPORT Doctype Tag Reference
<DOCUMENT_ATTRIBUTES>

<DOCUMENT ATTRIBUTES>

Enables doctype-specific tags that override the default design format of the
REPORT doctype.

SYNTAX <DOCUMENT _ATTRIBUTES>

ARGUMENTS None.

required <ENDDOCUMENT_ATTRIBUTES>

terminator

DESCRIPTION The <DOCUMENT_ATTRIBUTES> tag enables doctype-specific tags that
override the default design format of the REPORT doctype. This tag is
used in three doctypes:

• ARTICLE

• REPORT

• SOFTWARE

The <DOCUMENT_ATTRIBUTES> tag enables a group of tags in each of these
doctypes that allow you to modify the default format of that doctype. VAX
DOCUMENT recognizes these tags only in the context of the <DOCUMENT_

ATTRIBUTES> tag. If other VAX DOCUMENT tags occur in this context,
VAX DOCUMENT ignores them, as if they had occurred in the context of
a <COMMENT> tag.

Typically, use the <DOCUMENT_ATTRIBUTES> tag at the beginning of an
input file (or in a file processed using the /INCLUDE qualifier on the VAX
DOCUMENT command line) to alter the default format of a doctype for
the processing of that entire file.

Book builds and element builds in this doctype do not save information
about attributes, such as page numbers, specified with the <DOCUMENT_

ATTRIBUTES> tag. To ensure that the same attributes are specified in
both contexts, place <DOCUMENT_ATTRIBUTES> tags in a file that is
included in both book and element builds. To do this, either place the
<DOCUMENT_ATTRIBUTES> tag at the beginning of every element file, or
use the /INCLUDE or /SYMBOLS qualifier to specify a file containing the
<DOCUMENT_ATTRIBUTES> tag.

Table 9-4 summarizes the formatting tags enabled by the <DOCUMENT_

ATTRIBUTES> tag in the REPORT doctype.

9-17

REPORT Doctype Tag Reference
<DOCUMENT _ATTRIBUTES>

Table 9-4 Doctype-specific Tags Enabled by the <DOCUMENT _ATTRIBUTES> tag

Formatting Tags

<SET _H EADINGS>(UNNUMBERED)
<SET_HEADINGS>(NUMBERED)

Description

The <SET _HEADINGS> tag specifies whether the
heading-level tags produce numbered or unnumbered
headings. (<HEAD1>, <HEAD2>, and so on). By
default, headings are not numbered in a document
processed using the ARTICLE doctype.

Use the <SET_HEADINGS>(NUMBERED) tag to
specify numbered headings.

EXAMPLE The following example is of a file that is to be processed under the
REPORT doctype. This example shows how you use the <SET_PAGE_

NUMBERING> and <SET_FORMAL_ELEMENT_NUMBERING> tags to create
page and formal element numbering that is chapter-oriented rather than
sequential. Note how the BY_CHAPTER argument is used by both tags to
specify that numbering should be by chapter rather than sequential.

<DOCUMENT ATTRIBUTES>
<SET_PAGE=NUMBERING>(BY_CHAPTER)
<SET FORMAL ELEMENT NUMBERING>(BY CHAPTER)
<ENDDOCUMENT_ATTRIBUTES> -

9-18

<LEVEL>

SYNTAX

ARGUMENTS

related tags

REPORT Doctype Tag Reference
<LEVEL>

Specifies an outline entry and the organizational level of that outline entry.

<LEVEL>(/eve/ number\ entry text)

level number
Specifies the organizational level of the entry. This argument can be any
whole number from 1 to 6.

entry text
Specifies the text for a particular level.

• <OUTLINE>

• <SHOW _LEVELS>

restrictions Valid only in the context of an <OUTLINE> tag.

DESCRIPTION The <LEVEL> tag specifies an outline entry and the organizational level
of that outline entry. Top-level entries (those specified as <LEVEL>(l)) are
marked using uppercase Roman numerals. At the lowest level, level 6, the
entries are marked with lowercase letters enclosed in parentheses. The
top level formats at the current left margin; each lower level indents from
the level above it.

EXAMPLE The following example illustrates an outline created using the <LEVEL> tag
in the context of the <OUTLINE> tag. Note how you indent the <LEVEL> tags
in the SDML file to make the file easier to read and more maintainable.

<OUTLINE>(<EMPHASIS>(Maxillary Taxonomy)\An Enumeration of the
Maxillae\from a Dentition Perspective)
<LEVEL>(l\Historical introduction)
<LEVEL>(l\Dentition in various groups of vertebrates)

<LEVEL>(2\Reptilia)
<LEVEL>(3\Histology and development of reptile teeth)

<LEVEL>(4\Survey of forms)

9-19

REPORT Doctype Tag Reference
<OUTLINE>

<OUTLINE>

SYNTAX

ARGUMENTS

related tags

Begins an outline and specifies a title for the outline.

<OUTLINE>[(title line-1 [\ title line-2] [\ title line-3])]

title line-n
This is an optional argument. It specifies a title line. You can specify up
to three title lines.

• <LEVEL>

• <SHOW _LEVELS>

required <ENDOUTLINE>

terminator

DESCRIPTION The <OUTLINE> tag begins an outline and specifies a title for the outline.

9-20

An outline is a hierarchical list of numbered elements in which the
hierarchy is conveyed to the reader through the letter or number on
each outline entry and the indentation level. The <OUTLINE> tag begins
an outline that permits up to six levels in the hierarchy. At the top level,
level 1, the outline entries are marked with uppercase Roman numerals.
At the lowest level, level 6, the outline entries are marked with lowercase
letters enclosed in parentheses. The top level formats at the current left
margin; each lower level indents from the level above it.

If you supply one or more title lines as arguments to the <OUTLINE> tag,
the lines center above the outline. You may want to add emphasis to some
or all of the title lines.

The outline usually aligns at the left margin of the text, but you can
embed it in other tags-for example, after an <LE> tag, in which case the
outline aligns with other list elements. Likewise, you can embed other
tags in the outline, so that text or sublists can be interspersed with the
outline entries.

An outline does not affect heading levels established with any of the
heading tags (<HEADl>, <HEAD2>, and so on). Outline entries do not appear
in the table of contents.

REPORT Doctype Tag Reference
<OUTLINE>

EXAMPLE The following example illustrates an outline created using the <OUTLINE>
tag and the tags it enables. Note how you indent the <LEVEL> tags in the
SDML file to make the file easier to read and more maintainable. This
indentation in the SDML file has no effect on the output, which indents
automatically according to the level specified in the <LEVEL> tags.

<OUTLINE>(<EMPHASIS>(Maxillary Taxonomy)\An Enumeration of the
Maxillae\from a Dentition Perspective)
<LEVEL>(l\Historical introduction)
<LEVEL>(l\Dentition in various groups of vertebrates)

<LEVEL>(2\Reptilia)
<LEVEL>(3\Histology and development of reptile teeth)
<LEVEL>(4\Survey of forms)

<LEVEL>(2\Mammalia)
<LEVEL>(3\Histology and development of mammalian teeth)
<LEVEL>(3\Survey of forms)

<LEVEL>(4\Primates)
<LEVEL>(5\Lemuroidea)
<LEVEL>(5\Anthropoidea)

<LEVEL>(6\Platyrrhini)
<LEVEL>(6\Catarrhini)

<LEVEL>(4\Carnivora)
<LEVEL>(5\Creodonta)
<LEVEL>(5\Fissipedia)

<LEVEL>(6\Aeluroidea)
<LEVEL>(6\Arctoidea)

<LEVEL>(5\Pinnipedia)
<LEVEL>(4\Etc<hellipsis>)

<ENDOUTLINE>

9-21

REPORT Doctype Tag Reference
<RUNNING_FEET>

<RUNNING FEET>

Creates a single line heading at the bottom of each page.

SYNTAX <RUNNING_FEET>(tit/e text)

ARGUMENTS title text
Specifies the text for the running feet.

related tags • <CHAPTER>

• <RUNNING_TITLE>

• <SECTION>

DESCRIPTION The <RUNNING_FEET> tag creates a single line heading at the bottom of
each page. This heading is called a footer because it appears at the foot
of the page. When the same footer runs for several pages, the footers are
collectively called running feet.

EXAMPLE

This tag accepts one argument, which is the text that should appear at
the bottom of the page. This text is output exactly as entered, including
spacing and capitalization.

Use the <RUNNING_ TITLE> tag to create a heading at the top of the page.

Note that you can override headings established by the <RUNNING_FEET>

and <RUNNING_ TITLE> tags by a subsequent use of the <CHAPTER> tag or
<SECTION> tag.

The following example shows how to use the <RUNNING_FEET> tag to place
the footer Getting the Piece of Paper at the bottom of each page. The
running footer will be output exactly as entered.

<RUNNING FEET>(Getting the Piece of Paper)
<CHEAD>(Getting the Piece of Paper)
<p>
You can buy clean paper in most major supermarkets, department stores,
and hardware stores. You should try to get ruled paper so that
your letter will be neat and easy to read.

9-22

REPORT Doctype Tag Reference
<RUNNING_ TITLE>

<RUNNING TITLE>

SYNTAX

ARGUMENTS

related tags

Creates a 1- or 2-line running heading at the top of each page.

{
OFF }

<RUNNING_ TITLE>(title-1 [\ title-2])
[\ FIRST_PAGE]

OFF
Specifies that any existing running titles created using the
<RUNNING_TITLE> tag are disabled for the page on which this tag occurs
and on any subsequent pages.

title-1
Specifies the text of a running title. If you specify a 2-line title, this title
outputs on the upper title line.

title-2
This is an optional argument. It specifies the bottom line of a running title
that has two lines.

FIRST_PAGE
This is an optional argument. It specifies that the running title is to be
placed on the first output page. If you do not specify this keyword, the
running title outputs on the page after the current page.

• <RUNNING_FEET>

DESCRIPTION The <RUNNING_TITLE> tag creates a 1- or 2-line running heading at the top
of each page. Use the FIRST_PAGE argument to the <RUNNING_TITLE> tag
to begin the title lines on the first page of output, rather than on the page
after the current page, as is the default.

Use the OFF argument to disable any existing running titles created using
the <RUNNING_TITLE> tag. These titles are then disabled for the page on
which this tag occurs and on any subsequent pages.

Use the <RUNNING_FEET> tag to create a heading that appears at the
bottom of the page. See the <RUNNING_FEET> tag in this chapter for more
information.

Override headings established by the <RUNNING_TITLE> and <RUNNING_

FEET> tags by a subsequent use of the <CHAPTER> tag.

9-23

REPORT Doctype Tag Reference
<RUNNING_ TITLE>

EXAMPLES The following example shows how to use the <RUNNING_TITLE> tag to
create the 2-line running title An E. B. Bartz Course: Writing Quality
Correspondence. Note that because you use the FIRST_PAGE argument,
the 2-line running title appears at the top of the first page.

I <RUNNING TITLE>(An E. B. Bartz Course:\Writing Quality
Correspondence\FIRST PAGE)
<HEAD>(How to Write a Letter\32_HowtoWriteaLetter)
<P>
The first thing that you should do in writing a letter is to get
a clean piece of paper and a well-sharpened pencil.

The following example shows how you can disable a running title by using
the OFF argument to the <RUNNING_TITLE> tag.

I <COMMENT>(turn off running titles for the following example page)
<RUNNING TITLE>(OFF)
<HEAD>(An Example of a Letter\33_AnExampleofaLetter)

9-24

<SECTION>

SYNTAX

ARGUMENTS

related tags

DESCRIPTION

EXAMPLE

REPORT Doctype Tag Reference
<SECTION>

Begins a new page and creates a major heading at the left margin of that
page.

<SECTION>(heading text[\ symbol name])

heading text
Specifies the text of the section heading.

symbol name
This is an optional argument. It specifies the name of the symbol used in
all references to this heading.

Symbol names must not exceed 31 characters and must only contain
alphabetic letters, numbers, or underscores. Do not begin a symbol name
with an underscore.

• The global <CHAPTER> tag

• The global <CHEAD> tag

• The global <HEAD> tag

• The global <HEADl> tag

• The global <REFERENCE> tag

The <SECTION> tag begins a new page and creates a major heading at the
left margin of that page. It is one of the three REPORT doctype-specific
tags that create unnumbered headings. The other tags that produce
unnumbered headings, the global <HEAD> tag and the global <CHEAD> tag,
do not begin a new page of output.

The following example shows how to use the <SECTION> tag to begin a
new page and place an unnumbered heading on that page. Note that this
sample omits the symbol nanie argument to the <SECTION> tag, because
the writer will not be referencing this section.

<SECTION>(Writing Personal Correspondence)
<P>
Writing personal correspondence is more fun and less formal than
writing business correspondence, but many of the same rules apply.
<HEAD>(How to Write a Letter\34_HowtoWriteaLetter)
<P>
The first thing that you should do in writing a letter is to get a
clean piece of paper and a well-sharpened pencil.

9-25

REPORT Doctype Tag Reference
<SHOW _LEVELS>

<SHOW LEVELS>

SYNTAX

ARGUMENTS

related tags

Emphasizes text in an outline.

<SHOW_LEVELS>(ITALIC) {
BOLD }

OFF

BOLD
Specifies that the entry text arguments given to all subsequent <LEVEL>
tags output in a bold typeface.

ITALIC
Specifies that the entry text arguments given to all subsequent <LEVEL>
tags output in an italic typeface.

OFF
Specifies that the entry text arguments given to all subsequent <LEVEL>
tags output in the standard typeface; this is the default.

• <OUTLINE>

• <LEVELS>

restrictions Valid only in the context of an <OUTLINE> tag.

DESCRIPTION The <SHOW_LEVELS> tag emphasizes text in an outline. The text
emphasized is the text associated with one or more <LEVEL> tags. Such
text outputs in a bold typeface if you use the BOLD argument, or in an
italic typeface if you use the ITALIC argument.

EXAMPLE

9-26

The OFF argument disables the holding or italicizing of the text used as
an argument to the <LEVEL> tag. If you do not use the <SHOW _LEVELS> tag,
or if you specify the OFF argument, the standard typeface is used in the
outline.

See the <LEVEL> tag description in this chapter for more information on
the <LEVEL> tag.

The following example shows an outline that uses the <SHOW _LEVELS> tag.

The entry text is italicized using the <SHOW _LEVELS>(ITALIC) tag beginning
with the second-level entry Mammalia through the fourth-level entry
Primates. The italicized text is then turned off using the OFF argument
to the <SHOW _LEVELS> tag.

REPORT Doctype Tag Reference
<SHOW _LEVELS>

<OUTLINE>(<EMPHASIS>(Maxillary Taxonomy)\An Enumeration of the
Maxillae\from a Dentition Perspective)
<LEVEL>(l\Historical introduction)
<LEVEL>(l\Dentition in various groups of vertebrates)

<LEVEL>(2\Reptilia)
<LEVEL>(3\Histology and development of reptile teeth)
<LEVEL>(4\Survey of forms)

<COMMENT>(**Italicize the information covered on this weeks test**)
<SHOW_LEVELS>(ITALIC)

<LEVEL>(2\Mammalia)
<LEVEL>(3\Histology and development of mammalian teeth)
<LEVEL>(3\Survey of forms)

<LEVEL>(4\Primates)

<COMMENT>(**turn off italicization**)
<SHOW_LEVELS>(OFF)

<LEVEL>(S\Lemuroidea)
<LEVEL>(S\Anthropoidea)

<LEVEL>(6\Platyrrhini)
<LEVEL>(6\Catarrhini)

<LEVEL>(4\Carnivora)
<LEVEL>(S\Creodonta)
<LEVEL>(S\Fissipedia)

<LEVEL>(6\Aeluroidea)
<LEVEL>(6\Arctoidea)

<LEVEL>(S\Pinnipedia)
<LEVEL>(4\Etc<hellipsis>)

<ENDOUTLINE>

9-27

REPORT Doctype Tag Reference
<SIGNATURES>

<SIGNATURES>

SYNTAX

ARGUMENTS

related tags

restrictions

DESCRIPTION

EXAMPLE

<FRONT MATTER>
<TITLE PAGE>

Begins a list of signatures that appear in the front matter of a document.

<SIGNATURES>[(NEWPAGE)]

NEWPAGE
This is an optional argument. It specifies that the signature list begins on
a new page.

• <AUTHOR>

• <BYLINE>

• The global <FRONT_MATTER> tag

Valid only following the global <FRONT_MATTER> tag.

The <SIGNATURES> tag begins a list of signatures that appear in the front
matter of a document. You list each person's name by using the <BYLINE>

tag following the <SIGNATURES> tag. The <BYLINE> tag places the name of
the person, and additional information about that person (such as their
title or affiliation), below a line on which the person is to sign.

See the reference description of the <BYLINE> tag for more information on
that tag. ·

The following example shows the <SIGNATURES> tag beginning a list
of signature lines. Note how the <BYLINE> tag is used to create each
signature line.

<TITLE>(The NYUC Simulator Reference Manual)
<REVISION INFO>(This revision is personally signed.)
<AUTHOR>(Dr. Julian Jones\Research Head, STG Inc.)
<SIGNATURES>
<BYLINE>(Julian Jones\Author)
<BYLINE>(Cecil Mills\Co-author)
<ENDTITLE PAGE>
<ENDFRONT MATTER>

9-28

10 Using the SOFTWARE Doctype

The SOFTWARE doctype has six designs for printed software
documentation, shown in Figure 10-1, and one design for Bookreader
documentation.

• SOFTWARE.BROCHURE

Creates a brochure in a 7 x 9-inch format with unnumbered headings.

• SOFTWARE.GUIDE

Creates a users' guide in a 7 x 9-inch format with numbered headings.

• SOFTWARE.HANDBOOK

Creates a handbook in a 7 x 9-inch format with numbered headings.

• SOFTWARE.POCKET_REFERENCE

Creates a pocket reference in a sl x 7-inch format with numbered
headings.

• SOFTWARE.REFERENCE

Creates a reference manual in an Bl x 11-inch format with numbered
headings.

• SOFTWARE.SPECIFICATION

Creates a specification in an 8~ x 11-inch format with numbered
headings.

• SOFTWARE.ONLINE

Creates an online reference manual in a 5.9 x 6.6-inch format with
numbered headings and ragged right margin. This design is solely
for Bookreader display. Refer to VAX DOCUMENT Producing Online
and Printed Documentation for full information about producing
Bookreader documentation.

Note: For simplicity, this chapter refers only to the SOFTWARE doctype
whenever the discussion is appropriate to all SOFTWARE designs.

The SOFTWARE doctype designs differ primarily in size of page, in
margins and rules, and in suitability for documenting tutorial or reference
material.

10-1

Using the SOFTWARE Doctype

Figure 10-1 SOFTWARE Doctype Designs

Software.Brochure Software.Guide

Software.Handbook

10-2

Software.Reference

0
1.1~ r

1.1.1....-..

r.r.r~

Software.Specification

Software.Pocket_ Reference

0 11-••
1.1.1-

1
1.1.1.1-

0 as
-7

ZK-1929A-GE

Using the SOFTWARE Doctype
Characteristics of the SOFTWARE Designs

10.1 Characteristics of the SOFTWARE Designs
The following tables list the page layouts of the SOFTWARE doctype
designs for printed documentation.

• Table 10-1 is for the SOFTWARE.BROCHURE design.

• Table 10-2 is for the SOFTWARE.GUIDE design.

• Table 10-3 is for the SOFTWARE.HANDBOOK design.

• Table 10-4 is for the SOFTWARE.POCKET_REFERENCE design.

• Table 10-5 is for the SOFTWARE.REFERENCE design.

• Table 10-6 is for the SOFTWARE.SPECIFICATION design.

Table 10-1 Page Layout of the SOFTWARE.BROCHURE Doctype Design

Running heads

Running feet

Page numbering

Trim size

Gutter width

Right margin

Headings

Paragraphs

Figures, tables, and
examples

Page Layout Characteristics

None

Chapter title text1 and page number

Chapter oriented

7x9

6 picas

Unjustified (Ragged right)

Text Element Characteristics

Unnumbered

Flush left at gutter width

Numbered, table of contents entry

1 If you give the global <TITLE> tag a second argument, title text-2, this second
argument replaces the chapter title text as the running footer.

Table 10-2 Page Layout of the SOFTWARE.GUIDE Doctype Design

Running heads

Running feet

Page numbering

Trim size

Gutter width

Right margin

Page Layout Characteristics

Chapter title text

Chapter number and page number

Chapter oriented

7 x 9 inches

5 picas

Unjustified (Ragged right)

10-3

Using the SOFTWARE Doctype
Characteristics of the SOFTWARE Designs

10-4

Table 10-2 (Cont.) Page Layout of the SOFTWARE.GUIDE Doctype
Design

Headings

Paragraphs

Figures, tables, and
examples

Text Element Characteristics

Numbered

Flush left at gutter width

Numbered, table of contents entry

Table 10-3 Page Layout of the SOFTWARE.HANDBOOK Doctype
Design

Running heads

Running feet

Page numbering

Trim size

Gutter width

Right margin

Headings

Paragraphs

Figures, tables, and
examples

Page Layout Characteristics

None

Chapter title text and page number

Chapter oriented

7 x 9 inches

6 picas

Unjustified (Ragged right)

Text Element Characteristics

Numbered

Flush left at gutter width

Numbered, table of contents entry

Table 10-4 Page Layout of the SOFTWARE.POCKET _REFERENCE
Doctype Design

Trim size

Gutter width

Right margin

Headings

Paragraphs

Figures, tables, and
examples

Page Layout Characteristics

5 1/2 x 7 inches

0

Unjustified (Ragged right)

Text Element Characteristics

Numbered, rule only under <HEAD1 >

Flush left, no first line indent

Numbered; table of contents entry

Using the SOFTWARE Doctype
Characteristics of the SOFTWARE Designs

Table 10-5 Page Layout of the SOFTWARE.REFERENCE Doctype
Design

Running heads

Running feet

Page numbering

Trim size

Gutter width

Right margin

Headings

Paragraphs

Figures, tables, and
examples

Page Layout Characteristics

Chapter title text

Page number

Chapter oriented

8 1 /2 x 11 inches

9.5 picas

Unjustified (Ragged right)

Text Element Characteristics

Numbered

Flush left at gutter width

Numbered, table of contents entry

Table 10-6 Page Layout of the SOFTWARE.SPECIFICATION Doctype
Design

Trim size

Gutter width

Right margin

Headings

Paragraphs

Figures, tables, and
examples

Page Layout Characteristics

8 1/2 x 11 inches

0

Unjustified (Ragged right)

Text Element Characteristics

Numbered

Flush left, no first line indent

Numbered; table of contents entry

The following example shows how to process a file named
MYSOFTWARE.SDML with the SOFTWARE.GUIDE doctype:

$ DOCUMENT mysoftware SOFTWARE.GUIDE LN03

Of the six available designs, SOFTWARE.REFERENCE is the default. To
use this doctype, you need only enter SOFTWARE (or a truncated form of
SOFTWARE) as a keyword on your DOCUMENT command line.

The SOFTWARE doctype provides four templates for documenting
reference information. In any of the six SOFTWARE doctype designs,
you can use one or more of the following reference templates:

• The Command template

• The Routine template

10-5

10.2

10.3

Using the SOFTWARE Doctype
Characteristics of the SOFTWARE Designs

• The Statement template

• The Tag template

SOFTWARE doctype tags fall into these categories:

• The specific tags used for each SOFTWARE doctype

The SOFTWARE doctype-specific tags are available only in the
SOFTWARE doctype and let you create basic writing elements you
need to describe computer software. See Section 10.19 for detailed
information on these tags.

• The groups of tags specific to each of the four reference templates

The reference template tags are available only in the reference
templates of the SOFTWARE doctype. With these tags, you can
specify the format of a software command, the restrictions on such
commands, prompts used in an interactive environment, and so on.
See Section 10.8 for detailed information on these tags.

Common Software Description Tasks
The SOFTWARE doctype-specific tags let you describe software elements
in structured reference material and in less structured tutorial material.
Use these tags to describe the following, as discussed in following sections:

• Terminal keys and keypads

• Code fragments and their results

• Software messages

• Software arguments, parameters, and qualifiers

• Interactive terminal sessions

Documenting Terminal Keys and Keypads

10-6

The SOFTWARE doctype contains several tags that let you accurately
represent terminal keys, keypads, and key names both in text and in
examples. These tags fall into two groups:

• Tags that describe keys used throughout the SOFTWARE doctype.

• Tags used to create keypad diagrams used only in the context of the
<KEYPAD_SECTION> tag in the SOFTWARE doctype.

10.3.1

Using the SOFTWARE Doctype
Documenting Terminal Keys and Keypads

Describing Individual Keys
Use the following tags to label and describe certain keys and key
sequences that appear on keyboards and keypads.

<CPOS> Creates a typographically distinct marking for the cursor
position in an example.

<DELETE_KEY> Creates a special character that represents the DELETE key
used on most keyboards.

<GRAPHIC> Creates a specially formatted character out of two characters
specified as arguments.

<KEY>

<KEY_NAME>

<KEY_SEQUENCE>

Using the <CPOS> Tag

Creates a label for a key from the keyboard or keypad.

Creates a label for a·key name.

Creates a section for depicting a sequence of keys.

Use the <CPOS> tag to mark the position of the cursor in a terminal
example. The cursor is depicted as the underline character. The following
example shows how to use the <CPOS> tag.

<P>
Correct the directory specification to <QUOTE>([TEXTFILES]) by
moving the cursor to the misspelled letter in the directory
specification, as in the following example:
<DISPLAY>
$ COPY ABC.TXT [T<CPOS>(R)XTFILES]
<ENDDISPLAY>

This example produces the following output:

Correct the directory specification to "[TEXTFILES]" by
moving the cursor to the misspelled letter in the directory
specification, as in the following example:

$ COPY ABC.TXT [T~TFILES]

Using the <DELETE_KEY> Tag

Use the <DELETE_KEY> tag to create the character used on most terminal
and typewriter keyboards for the DELETE key. The following example
shows how to use the <DELETE_KEY> tag.

<P>
Press the DELETE key (<DELETE_KEY>) to delete a character.

This example produces the following output:

Press the DELETE key (<Kl) to delete a character.

Using the <GRAPHIC> Tag

Use the <GRAPHIC> tag to create special graphic characters that appear
on the terminal screen. The <GRAPHIC> tag accepts two characters as
arguments and formats them next to each other, with the second character
formatted slightly below the first character. This tag lets you create
representations of the linefeed and formfeed characters, as well as other
similarly formatted characters.

10-7

Using the SOFTWARE Doctype
Documenting Terminal Keys and Keypads

10-8

The following example shows how to use the <GRAPHIC> tag.

<P>
Two special characters that will appear in your editing session
are the linefeed (<GRAPHIC>(L\F)) and the formfeed (<GRAPHIC>(F\F))
characters.

This example produces the following output:

Two special characters that will appear in your editing
session are the linefeed <Ip) and the formfeed <JF)
characters.

Using the <KEY> Tag

Use the <KEY> tag to represent a terminal key, either in text or in an
example. The <KEY> tag accepts a key label argument, which specifies the
name of the key.

To represent a terminal key in text, use the TEXT keyword argument to
the <KEY> tag to place angle brackets before and after the key label. To
represent a terminal key in an example, use the BOX keyword argument
to the <KEY> tag to place the key label in a box that resembles a key. If
you specify neither the TEXT nor the BOX keyword, the default format is
BOX.

Note that the <KEY> tag is used in the context of the <KEY_SEQUENCE> tag.
See the description of the <KEY_SEQUENCE> tag in this section for more
information on that tag.

The following example shows how to code the <KEY> tag, as it would
appear in text using the TEXT keyword argument, and as it would appear
in an example using the BOX keyword argument.

<P>
You should now press the <KEY>(RETURN\TEXT) key to insert a line.
<KEY SEQUENCE>
<KEY>(RETURN\BOX)
<ENDKEY_SEQUENCE>

This example produces the following output:

You should now press the <RETURN> key to insert a line.

lRETURNI

Using the <KEY _NAME> Tag

Use the <KEY_NAME> tag to differentiate the name of a key from the other
output in an example or in text.

The following example shows how to use the <KEY_NAME> tag.

<P>
Press the <KEY_NAME>(HELP) or the <KEY_NAME>(DO) key for more information.

This example produces the following output:

Press the HELP or the DO key for more information.

Using the SOFTWARE Doctype
Documenting Terminal Keys and Keypads

Using the <KEY _SEQUENCE> Tag

Use the <KEY_SEQUENCE> tag to give an example of a sequence of keys.
For example, you might want to describe the sequence of keys needed to
exit a text editor.

The <KEY_SEQUENCE> tag enables the <KEY_PLUS> and the <KEY_TYPE> tags
to make creating such key sequences easier. The <KEY_PLUS> tag creates a
plus sign (+) between two keys, and the <KEY_TYPE> tag lets you associate
a key sequence with some textual information, such as a terminal type. In
addition to these two tags, you can use the <KEY> tag in the context of the
<KEY_SEQUENCE> tag.

When you use the <KEY> tag in a key sequence, it accepts an additional
argument, which lets you place two key labels rather than one inside a box
or angle brackets. When you use two key labels, they are stacked together
with the first argument placed on the top. This extra argument makes it
possible to specify keys that use two stacked words as their label, such as
the Next Screen key.

The following code fragment contains a series of key examples in a <KEY_

SEQUENCE> section. Note that the <KEY> tag is used in two contexts in this
example. In the context of the <KEY_SEQUENCE> tag, the <KEY> tag accepts
two key label arguments. Outside the context of the <KEY_SEQUENCE> tag,
the <KEY> tag accepts only a single-key label argument.

Note also that the first <KEY> tag is specifed with no keyword argument,
so that the default BOX is used. The second <KEY> tag explicitly uses the
BOX keyword to specify BOX formatting. The third <KEY> tag specifies the
TEXT keyword argument.

<P>
You would use the following sequence of keys:
<KEY SEQUENCE>
<KEY>(Next\Screen) <KEY_PLUS> <KEY>(PF3\BOX)
<ENDKEY_SEQUENCE>
<P>
These keys are not associated with the <key>(WHITE\TEXT) keys.

This example produces the following output:

You would use the following sequence of keys:

These keys are not associated with the <WHITE> keys.

10.3.2 Describing Keypads and Keypad Keys
A keypad is a group of keys separate from those on the typing keyboard.
These keys are typically used for special applications, such as editing, data

10-9

Using the SOFTWARE Doctype
Documenting Terminal Keys and Keypads

10-10

entry, or cursor movement. The following diagram shows such a keypad.

DODD
DODD
DODD
0000 DD
Showing keypads and keypad keys is often difficult because it involves
preparing artwork by hand. Using the SOFTWARE doctype, you can
prepare your own keypad and keypad key diagrams by using the <KEYPAD_
SECTION> tag and the tags it enables.

The <KEYPAD_SECTION> tag begins a section in which keypad diagrams can
be created and described. This section terminates with the <ENDKEYPAD_
SECTION> tag. Each keypad or portion of a keypad is created using the
following tags:

• <KEYPAD>

Begins a single illustration of a keypad or a portion of a keypad, and
optionally allows a title to be placed on each illustration. A keypad
cannot be more than four columns wide or more than five rows long.
This tag is terminated by the <ENDKEYPAD> tag. You cannot create
more than one keypad in a keypad section using the <KEYPAD> and
<ENDKEYPAD> tags.

• <KEYPAD_ROW>

Creates a 4-column keypad row for all but the bottom row of the
keypad.

• <KEYPAD_ENDROW>

Creates a special 3-column keypad row for the larger keys on the
bottom row of the keypad.

If you use the DISPLAY keyword argument with the <KEYPAD> tag, you
can specify arguments to the <KEYPAD_ROW> and <KEYPAD_ENDROW> tags
that place text on the appropriate key in the keypad diagram.

If you do not use the DISPLAY keyword, you can specify only one of three
keywords as arguments to the <KEYPAD_ROW> and <KEYPAD_ENDROW> tags.

The following keywords are accepted by the <KEYPAD_ROW> and <KEYPAD_
ENDROW> tags:

• OPEN-Specifies that the key in that column is to be left blank.
OPEN is the default.

• CLOSED-Specifies that the key in that column is to be shaded in.

• NONE-Specifies that no key should be drawn in that column.

The <KEYPAD_ROW> and <KEYPAD_ENDROW> tags accept the same keyword
arguments, which let you specify whether a key should be drawn, and
whether a key that is drawn should be shaded in. If you specify no
keyword argument for a particular keypad column, the key is drawn and
it is left open (not shaded in).

Using the SOFTWARE Doctype
Documenting Terminal Keys and Keypads

The following examples show how to use the keypad section tags to create
various keypad diagrams. The first example shows a complete keypad
with one key shaded in.

<KEYPAD SECTION>
<KEYPAD>(A Complete Keypad Diagram)
<KEYPAD ROW>(\ \ \)
<KEYPAD-ROW>(\ \ \)
<KEYPAD-ROW>(\ \CLOSED\)
<KEYPAD-ROW>(\ \ \NONE)
<KEYPAD=ENDROW>(\ \)
<ENDKEYPAD>
<ENDKEYPAD SECTION>

This example produces the following output:

A Complete Keypad Diagram

DODD
DODD
DDllD
DDDD DD
The following example shows a single line from the previous keypad
diagram:

<KEYPAD SECTION>
<KEYPAD>(A Single Keypad Line)
<KEYPAD_ROW>(\ \CLOSED\)
<ENDKEYPAD>
<ENDKEYPAD SECTION>

This example produces the following output:

A Single Keypad Line

DDllD
The following example shows the complete keypad with some keys
eliminated from the diagram. You can use the NONE keyword argument
to eliminate keys from the keypad diagram.

<KEYPAD SECTION>
<KEYPAD>(An Irregular Keypad)
<KEYPAD ROW>(\ \ \NONE)
<KEYPAD-ROW>(\CLOSED\ \NONE)
<KEYPAD-ROW>(NONE\ \NONE\NONE)
<KEYPAD=ROW>(CLOSED\ \CLOSED\NONE)
<ENDKEYPAD>
<ENDKEYPAD SECTION>

This example produces the following output:

An Irregular Keypad

DOD
DllD

D
11011

10-11

Using the SOFTWARE Doctype
Documenting Terminal Keys and Keypads

10-12

The following examples show how the DISPLAY keyword argument to the
<KEYPAD> tag lets you specify text in some keys and shade other keys:

<KEYPAD SECTION>
<KEYPAD>(The Editing Keypad with Key Labels\DISPLAY)
<KEYPAD ROW>(PF1\PF2\PF3\PF4)
<KEYPAD-ROW>(7\8\9\-)
<KEYPAD-ROW>(4\5\6\,)
<KEYPAD-ROW>(l\2\3\)
<KEYPAD=ENDROW>(O\.\ENTER)
<ENDKEYPAD>
<ENDKEYPAD_SECTION>

This example produces the following output:

The Editing Keypad with Key Labels

GBBG
DODD
DODD
[][][] EKreR

DD.______.
<KEYPAD SECTION>
<KEYPAD>(The Editing Keypad with Key Labels and Shaded Keys\DISPLAY)
<KEYPAD ROW>(CLOSED\PF2\PF3\PF4)
<KEYPAD-ROW>(7\8\9\-)
<KEYPAD-ROW>(CLOSED\5\6\,)
<KEYPAD-ROW>(l\2\3\)
<KEYPAD=ENDROW>(O\.\ENTER)
<ENDKEYPAD>
<ENDKEYPAD_SECTION>

This example produces the following output:

The Editing Keypad with Key Labels and Shaded Keys

BBB
DODD

DOD
[][][] ENTER

DD.______.

10.4

Using the SOFTWARE Doctype
Documenting Code Fragments

Documenting Code Fragments

<DISPLAY>(WIDE)

There are three tags available in the SOFTWARE doctype that let you
describe software code fragments. These tags let you create syntax
statements, emphasize arguments, and create samples of screen displays.

<SYNTAX> Formats text on the page exactly as entered to allow correct
positioning of code or syntax statements.

<ARGUMENT> Emphasizes arguments to functions, procedures, or tags in text using
an altered text font (such as bold face or italic).

<DISPLAY> Simulates a screen display.

Using the <DISPLAY> tag

The <DISPLAY> tag lets you create an example that simulates a screen
display. You terminate this example with the <ENDDISPLAY> tag. The
<DISPLAY> tag accepts one of two keyword arguments.

The WIDE keyword argument extends the display format into the left
margin if the example is too wide for normal formatting. The KEEP
keyword argument specifies that the entire display example is placed on
the next page if it does not fit on the existing page. You use this argument
to prevent unnecessary page breaks in display examples.

The following example shows how to use the <DISPLAY> tag to simulate
a screen display. This example is coded using the WIDE argument due
to the width of the example. Note that all the spacing in the display is
retained as it was entered.

VAX/VMS V4.4 on node XXXXXX 6-NOV-1986 17:43:18.03 Uptime 0 02:08:56
Pid Process Name State Pri I/0 CPU Page fl ts Ph.Mero

20400080 NULL COM 0 0 0 00:15:46.03 0 0
20400081 SWAPPER HIB 16 0 0 00:00:19.74 0 0
20400085 ERRFMT HIB 7 157 0 00:00:01.32 67 104
20400086 CACHE SERVER HIB 16 6 0 00:00:00.12 57 92
20400087 CLUSTER SERVER HIB 10 14 0 00:00:00.61 109 257
20400088 OPCOM LEF 7 126 0 00:00:01.06 332 77
20400089 JOB CONTROL HIB 8 2081 0 00:00:22.95 190 322
2040008A CONFIGURE HIB 9 19 0 00:00:00.18 99 136
20400092 SYMBIONT 0001 HIB 6 312 0 00:00:06.34 2886 63
<ENDDISPLAY>

This example produces the following output:

VAX/VMS V4.4 on node XXXXXX 6-NOV-1986 17:43:18.03 Uptime 0 02:08:56
Pid Process Name State Pri I/O CPU Page fl ts Ph.Mero

20400080 NULL COM 0 0 0 00:15:46.03 0 0
20400081 SWAPPER HIB 16 0 0 00:00:19.74 0 0
20400085 ERRFMT HIB 7 157 0 00:00:01.32 67 104
20400086 CACHE SERVER HIB 16 6 0 00:00:00.12 57 92
20400087 CLUSTER SERVER HIB 10 14 0 00:00:00.61 109 257
20400088 OPCOM LEF 7 126 0 00:00:01.06 332 77
20400089 JOB_CONTROL HIB 8 2081 0 00:00:22.95 190 322
2040008A CONFIGURE HIB 9 19 0 00:00:00.18 99 136
20400092 SYMBIONT 0001 HIB 6 312 0 00:00:06.34 2886 63

10-13

10.5

Using the SOFTWARE Doctype
Documenting Code Fragments

Using the <SYNTAX> tag

The <SYNTAX> tag lets you distinguish the syntax of a programming
language statement from regular text. The <SYNTAX> tag distinguishes the
syntax statement by making the typeface of the statement different from
the typeface used in the surrounding text. You terminate the <SYNTAX> tag
with the <ENDSYNTAX> tag.

The <SYNTAX> tag accepts two optional arguments. The WIDE keyword
argument allows more width for the syntax statement by letting the
syntax statement extend into the left margin. The alternate heading
argument lets you specify a heading for the syntax statement.

The following example shows how to use the <SYNTAX> tag to separate a
syntax statement from surrounding text. Note that all the spacing in the
statement is retained as it was entered.

<SYNTAX>
IF condition THEN

statement list
[ELSE

statement list];
<END SYNTAX>

This example produces the following output:

IF condition THEN
statement list

[ELSE
statement list];

Using the <ARGUMENT> tag

The <ARGUMENT> tag lets you label an argument by displaying that
argument in a typeface that differs from that of surrounding text (for
example, in some doctypes it may cause the argument to be displayed in a
bold typeface). This tag accepts only the argument name as an argument.

The following example shows how to use the <ARGUMENT> tag to separate
the argument from the surrounding text.

The CHR$ function converts the <ARGUMENT>(char data) argument
into a numeric value.

This example produces the following output:

The CHR$ function converts the char data argument into
a numeric value.

Documenting Software Messages

10-14

You can describe the messages issued by software programs by using the
<MESSAGE_SECTION> tag and the tags it enables ..

Tags enabled by the <MESSSAGE_SECTION> tag are summarized in the
following list:

<MESSAGE_ TYPE>

<MSGS>

<MSG_ TEXT>

Using the SOFTWARE Doctype
Documenting Software Messages

Specifies the type of message being described using the
<MSG> or <MSGS> tag.

Labels and formats up to two lines of message text in the
message description section.

Labels and formats up to nine lines of message text in the
message description section.

Specifies the explanatory text associated with the messages
described with the <MSG> or the <MSGS> tag.

Messages generally come in one of three forms:

• A message text string only. An example of this type of string is System
Resources Unavailable.

• A message text string preceded by a text string identification code. An
example of this type of string is %DIRECT-W-NOFILES, no files found.

• A message text string preceded by a numeric string identification code.
An example of this type of string is % 12883 7 4 file lookup failed.

The <MESSAGE_SECTION> tag begins the message description section. You
terminate this tag by the <ENDMESSAGE_SECTION> tag. Select the tags you
need to use in the message description section based upon the following
criteria:

• The format your messages most closely follows

• The number of lines each message occupies on the terminal display

Using the <MESSAGE_ TYPE> tag

Use the <MESSAGE_ TYPE> tag to specify the type of message labeled by
the <MSG> or <MSGS> tags. The <MESSAGE_ TYPE> tag accepts one of three
keyword arguments to determine the type of messages being described:

• NOIDENT

Specifies that the <MSG> and <MSGS> tags in the message section
will not be given a numeric or text identification string as the first
argument. NOIDENT is the default keyword. Specifying NOIDENT
as the keyword argument has the same effect as not specifying the
<MESSAGE_TYPE> tag at all.

• TEXTIDENT

Specifies that the <MSG> and <MSGS> tags in the message section will
be given a text identification string as an argument.

You specify text i_dentification strings and message text arguments as
pairs. The TEXTIDENT keyword creates a comma (,) between text
identification strings and message text arguments.

• NUMIDENT

Specifies that the <MSG> and <MSGS> tags in the message section will
be given a numeric identification string as an argument.

10-15

Using the SOFTWARE Doctype
Documenting Software Messages

10-16

You specify numeric identification strings and message text arguments
as pairs. The NUMIDENT keyword assumes that the numeric
identification string specified will not exceed a total length of 6 picas
(approximately 10 characters).

The following is a sample use of the <MESSAGE_TYPE> tag. Note how the
NUMIDENT keyword indicates that the message being described has a
numeric identification code.

<MESSAGE SECTION>
<MESSAGE TYPE>(NUMIDENT)
<MSG>(%1288374 \file lookup failed.)

Using the <MSG> tag

Use the <MSG> tag for messages that occupy only one or two lines when
they are output. The arguments accepted by the <MSG> tag are based upon
the type of message being described. The message type is determined by
the keyword argument used with the <MESSAGE_TYPE> tags, as follows:

• NOIDENT keyword

The <MSG> tag requires a message text argument and accepts an
optional second message text argument.

• TEXTIDENT keyword

The <MSG> tag requires a text message identification string and a
message text argument. It also accepts a second line of message text
as an optional third argument. The TEXTIDENT keyword creates
a comma (,) between text identification strings and message text
arguments. The optional second message text argument is stacked
under the first message text.

• NUMIDENT keyword

The <MSG> tag requires a numeric message identification string and a
message text argument. It also accepts a second line of message text
as an optional third argument. The numeric message identification
string must be no longer than 10 characters (6 picas). The optional
second message text argument is stacked under the first message text.

The following is a sample use of the <MSG> tag. Note how the optional
third argument is used for the additional message text.

<MESSAGE_SECTION>
<MESSAGE TYPE>(NUMIDENT)
<MSG>(%1244374\file lookup failed\directory not found)

<ENDMESSAGE SECTION>

Using the <MSGS> tag

Using the SOFTWARE Doctype
Documenting Software Messages

Use the <MSGS> tag for messages that occupy from one to nine lines
when they are output. The arguments accepted by the <MSGS> tag are
based upon the type of message being described. The message type is
determined by the keyword argument used with the <MESSAGE_TYPE> tag.

• NOIDENT keyword

The <MSGS> tag requires one message text argument and accepts up to
a total of nine message text arguments.

• TEXTIDENT keyword

The <MSGS> tag requires text message identification strings as the
first and optionally as the third, fifth, and seventh arguments. It
also requires a message text argument as the second argument
and optionally as the fourth, sixth, and eighth arguments. The
TEXTIDENT keyword creates a comma (,) between text identification
strings and message text arguments. The optional arguments are
stacked under the required arguments.

• NUMIDENT keyword

The <MSGS> tag requires numeric message identification strings as
the first and optionally as the third, fifth, and seventh arguments.
It also requires a message text argument as the second argument
and optionally as the fourth, sixth, and eighth arguments. The text
message identification strings must be no longer than 10 characters
(approximately 6 picas). The optional arguments are stacked under
the required arguments.

The following is a sample use of the <MSGS> tag. Note how the numeric
identification codes and the text strings associated with them are specified
in pairs.

<MESSAGE SECTION>
<MESSAGE TYPE>(NUMIDENT)
<MSGS>(%l33455\read write error\%0000221\disk not available
\$6644544\file not found)

Using the <MSG-'-TEXT> tag

The <MSG_TEXT> tag labels the text that describes the messages listed by
the <MSG> or <MSGS> tags. By default, the <MSG_TEXT> tag has a default
heading of Explanation:. If you want the heading for your text to be more
descriptive, you can specify an alternate heading for this tag (for example,
User Action). Note that any ·alternate heading you specify for the <MSG_
TEXT> tag will have a colon (:) appended to the end of the heading when it
is output.

The following example shows how to use the tags enabled by the
<MESSAGE_SECTION> tag to create a message description section. Note
how using the <MESSAGE_TYPE> tag with the TEXTIDENT keyword results
in a comma (,) being placed after each message identification string.

10-17

10.6

Using the SOFTWARE Doctype
Documenting Software Messages

<MESSAGE_SECTION>
<MESSAGE TYPE>(TEXTIDENT)
<MSG>(BACKLINK\Incorrect directory back link)
<MSG_TEXT>(Facility) VERIFY, Verify Utility
<MSG_TEXT>(Severity) BACKLINK-F-BADLINK
<MSG_TEXT>
The Verify Utility could not process your command, please check the
syntax of your statement.
<MSGS>(UAF-E-NAOFIL\Unable to open file SYSUAF.DAT\-RMS-E-FNF\file not found)
<MSG_TEXT>(User Action)
Check the syntax and reenter the command.
<MSG TEXT>
This-is some explanatory text for the previous message.
<ENDMESSAGE_SECTION>

This example produces the following output:

BACKLINK, Incorrect directory back link

Facility: VERIFY, Verify Utility

BACKLINK-F-BADLINK: The Verify Utility could not process your
command, please check the syntax of your statement.

UAF-E-NAOFIL, Unable to open file SYSUAF.DAT
-RMS-E-FNF, file not found

User Action: Check the syntax and reenter the command.

BACKLINK-F-BADLINK: This is some explanatory text for the previous
message.

Documenting Arguments, Parameters, and Qualifiers

10-18

There are four sets of tags available in the SOFTWARE doctype for
describing arguments, parameters, and qualifiers in a list.

<ARGDEFLIST>

<PARAMDEFLIST >

<OUALDEFLIST >

<OUAL_LIST >

Creates a definition list of arguments

Creates a definition list of parameters

Creates a definition list of qualifiers

Creates a summary list of qualifiers

The tags used to create these SOFTWARE doctype definition lists and the
form of these lists are very similar to those used by the global <DEFINITION_

LIST> tag. The qualifier summary list differs from the definition lists in
that it is designed only as a summary list of qualifiers and contains no
provision for definition text.

These SOFTWARE doctype-specific tags are used to label lists of
arguments, parameters, or qualifiers inside or outside the context of
the reference templates.

Using the SOFTWARE Definition List Tags

The following list describes the software definition list tag sets. Note that
tags that function in the same manner in each of the definition lists are
described together.

Using the SOFTWARE Doctype
Documenting Arguments, Parameters, and Qualifiers

Software Definition List Tags

<ARGDEFLIST>
<PARAMDEFLIST >

<OUALDEFLIST >

Begins each type of list and enables the tags that follow. Each of these
tags allows an optional heading to be specified as an argument. Use the
NONE keyword argument if you want to indicate that the list contains no
items.

If you use these tags inside a reference template, you may define default
headings.

<ARGITEM>
<PARAMITEM>
<OUALITEM>

Labels the argument, parameter, or qualifier to be listed. Each of these
tags requires one argument and accepts up to a total of seven arguments
to list any related arguments, parameters, or qualifiers.

<ARGDEF>
<PARAMDEF>

<OUALDEF>

Labels the text string that describes the appropriate argument, parameter,
or qualifier.

<ENDARGDEFLIST>
<ENDPARAMDEFLIST >
<ENDQUALDEFLIST >

Terminates each type of list and disables the contained tags.

The following examples show how to create a parameter definition list, an
argument definition list, and a qualifier definition list.

The first example shows a parameter definition list in the Command
template. This coding of the <PARAMDEFLIST> tag uses the NOHEAD
keyword to suppress the output of a default heading (in this case, the
heading parameters). If this definition list were coded outside the context
of a reference template, no default heading would be defined and the
NOHEAD argument would not be needed.

<P>The system maintains logical names and their
associated equivalence strings in two types of tables:
<PARAMDEFLIST>(NOHEAD)
<PARAMITEM>(process-private)
<PARAMDEF>These tables contain logical names that are available only
to your process.
<PARAMITEM>(shareable)
<PARAMDEF>These tables contain logical names that are available to other
processes on the system.
<ENDPARAMDEFLIST>

This example produces the following output:

The system maintains logical names ·and their associated equivalence
strings in two types of tables:

10-19

Using the SOFTWARE Doctype
Documenting Arguments, Parameters, and Qualifiers

10-20

process-private
These tables contain logical names that are available only to your process.

shareable
These tables contain logical names that are available to other processes on
the system.

The following example shows how to use the <ALIGN_AFTER> tag for
additional formatting flexibility in an argument definition list outside
a reference template.

<ARGDEFLIST>
<ARGITEM>(STATUS:arg\
<ALIGN_AFTER>(STATUS:)COMMAND\
<ALIGN AFTER>(STATUS:)TASK)
<ARGDEF>Specifies whether exit status is to be returned
from the RUN command.
<ENDARGDEFLIST>

This example produces the following output:

STATUS:arg
COMMAND
TASK

Specifies whether exit status is to be returned from the RUN command.

The following example shows a qualifier definition list in the Command
template. Note how the related qualifiers are stacked.

<COMMAND SECTION>
<QUALDEFLIST>(Qualifiers)
<QUALITEM>(/HERE\/THERE)
<QUALDEF>
The /HERE qualifier specifies the location of your workplace;
the /THERE qualifier specifies the location of your home;
/THERE is the default.
<QUALITEM>(/TIME\/NOTIME)
<QUALDEF>
Specifies the amount of free time you have available.
If the /TIME qualifier is used, an amount must be given;
/NOTIME is the default.
<ENDQUALDEFLIST>
<ENDCOMMAND_SECTION>

This example produces the following output:

Qualifiers

/HERE
/THERE
The /HERE qualifier specifies the location of your workplace; the !rHERE
qualifier specifies the location of your home; /THERE is the default.

/TIME
/NOTIME
Specifies the amount of free time you have available. If the /TIME
qualifier is used, an amount must be given; /NOTIME is the default.

Using the SOFTWARE Doctype
Documenting Arguments, Parameters, and Qualifiers

Using the Software Qualifier Summary List Tags

VAX DOCUMENT provides several tags to create a summary list of
command qualifiers. The list generated by these tags creates two default
headings, and places one heading over each qualifier listed by the <QPAIR>
tag. Although qualifier summary lists are most often used following the
<FORMAT> tag in the Command template, they may be used either inside
or outside the context of the reference templates.

Use the following tags to create a qualifier summary list:

• <QUAL_LIST>

Begins the list and enables the <QUAL_LIST_HEADS>, <QUAL_LIST_

DEFAULT_HEADS>, <QPAIR>, and <ENDQUAL_LIST> tags. This tag places
two default headings on the page. The heading Command Qualifiers
is placed over the first list column and the heading Defaults is placed
over the second list column. You may override these headings by using
the <QUAL_LIST_HEADS> or <QUAL_LIST_DEFAULT_HEADS> tags.

Use the NONE keyword argument to indicate there are no qualifiers.
If you use the NONE keyword, do not use the <ENDQUAL_LIST> tag.
Otherwise, terminate tqis tag with the <ENDQUAL_LIST> tag.

• <QUAL_LIST_HEADS>

Creates alternate headings for a single qualifier summary list. This
tag requires two arguments that specify the alternate headings. If
either argument is null, the associated heading is not output.

• <QUAL_LIST_DEFAULT_HEADS>

Creates new default headings for all subsequent qualifier summary
lists. This tag requires two arguments that specify the new default
headings. If either argument is null, the associated heading is not
output.

• <QPAIR>

Specifies the pair of qualifiers to be listed. This tag requires two
qualifier arguments; the first argument is listed under the default
heading Command Qualifiers, and the second argument is listed under
the default heading Defaults.

The following example shows a qualifier summary list. Note how no
description text is used. Note also how each list has a default heading.

<QUAL LIST>
<QPAIR>(/HERE\/THERE)
<QPAIR>(/TIME\/NOTIME)
<ENDQUAL_LIST>

This example produces the following output:

Command Qualifiers
!HERE
!TIME

Defaults
!THERE
!NOT/ME

10-21

10.7

Using the SOFTWARE Doctype
Creating a Series of Interactive or Code Examples

Creating a Series of Interactive or Code Examples

10-22

Often, it is useful to explain concepts through the use· of examples. You
can create a series of numbered interactive and code examples by using
the <EXAMPLE_SEQUENCE> tag.

Interactive and code examples in an example sequence have the same
form and accept the same tags as examples created using the global
<INTERACTIVE> and <CODE_EXAMPLE> tags.

You can use the following tags to construct a sequence of examples:

• <EXAMPLE_SEQUENCE> tag

Begins a sequence of numbered, informal examples. This tag accepts
two optional arguments, used to alter the heading and suppress the
numbering of examples.

The heading info argument alters the example sequence heading. This
argument can be one of the following:

An alternate heading for the example sequence.

The NOHEAD keyword, which suppresses the output of a heading
for the example sequence.

The EXAMPLE keyword, which suppresses numbering of the
examples in the sequence and outputs the heading Example; this
keyword should be used when you have a single informal example
rather than a series of examples.

The NONUMBER keyword argument suppresses the numbering
of examples in an example sequence. When you use the keyword
EXAMPLE as the heading info argument, the NONUMBER keyword
argument is unnecessary.

The <EXAMPLE_SEQUENCE> tag enables the <EXAMPLES_INTRO>, <EXC>,

<EXI>, and <EXTEXT> tags. You terminate this tag by the <ENDEXAMPLE_

SEQUENCE> tag.

• <EXAMPLES_INTRO>

Specifies introductory text for the example sequence.

• <EXC>

Specifies the beginning of a code example in an example sequence. You
format this code example exactly the same as you would if using the
global <CODE_EXAMPLE> tag. You terminate the code example by the
<EXTEXT> tag.

• <EXI>

Specifies the beginning of an interactive example in an example
sequence. This tag uses the global <S> and <U> tags in the example in
the same manner as the global <INTERACTIVE> tag. You terminate the
interactive example by the <EXTEXT> tag.

10.8

Using the SOFTWARE Doctype
Creating a Series of Interactive or Code Examples

• <EXTEXT>

Specifies text that explains the previous example in the sequence. You
must use this tag to terminate examples begun using the <EXC> and
<EXI> tags.

The following example shows how to use the example sequence tags.
Note the alternate heading specified as an argument to the <EXAMPLE_

SEQUENCE> tag.

<EXAMPLE_SEQUENCE>(An Interactive Example and a Code Example)
<EXAMPLES INTRO>
This is introductory text for the sample examples.
<exi><S>($)<U>(SET WORK/NOTIME)
<EXTEXT>
This command sets the /NOTIME qualifier to the SET WORK command.
<EXC>This is a code example, ined, exactly as entered.

note how f a
0 t
r e
matting is r

<EX TEXT>
This shows the flexibility available in a code example in an example
sequence.
<ENDEXAMPLE_SEQUENCE>

This example produces the following output:

An Interactive Example and a Code Example

This is introductory text for the sample examples.

D $ SET WORK/NOTIME

This command sets the /NOTIME qualifier to the SET WORK command.

This is a code example, ined, exactly as entered.
note how f

0

r e
matting is r

a
t

This shows the flexibility available in a code example in an example
sequence.

Using the Reference Templates
The SOFTWARE doctype contains four templates called reference
templates that help you create software reference documentation.
A reference template is a set of tags intended for some specialized
documentation purpose, such as creating an outline, composing the front
matter of a book, or documenting a set of software commands.

Every reference template has a beginning and an end. These template
boundaries are set by a pair of tags:

• The template-enabling tag begins the template and sets up all the
template-specific formats and tag definitions.

• The template-ending tag ends the template and disables the
. template:.specific formats and tag definitions.

10-23

Using the SOFTWARE Doctype
Using the Reference Templates

10-24

If template-specific tags are encountered outside the template in which
they are defined, VAX DOCUMENT treats these tags as undefined and
issues a warning message.

There is one rule about using templates:

1 You must end one template before you begin another template; you
may not nest one template inside another.

Reference templates are especially useful in creating and maintaining
reference documentation. They make the coding of reference information
easier in several ways:

• The structured nature of reference templates makes it easier to
consistently code, format, and order reference information.

• Text coded into a reference template is more modular and structured
than the text in a nontemplated SDML file, which makes it easier to
modify and maintain reference information.

• Using a template for reference information allows the writer to fill in
the blanks, and helps ensure that no essential information, such as
restrictions or the lack of restrictions on a command, is omitted.

• Using a tag template for reference information lets you use default
formats, headings, and tags. This helps guarantee that even when
several writers work on different portions of the same book, all of
these portions look alike.

Using the SOFTWARE Doctype Reference Templates

There are four reference templates available in the SOFTWARE doctype:

• Command template

Describes commands and their various components. Examples of
command descriptions are the descriptions of the DCL commands used
in the VMS operating system.

• Routine template

Describes software routines and their various components. Examples
of routines descriptions are the descriptions of the VMS run-time
library routines.

• Statement template

Describes programming language constructs (such as statements
and functions) and their various components. An example of a
statement description is the CASE statement available in the VAX
Pascal programming language.

• Tag template

Describes VAX DOCUMENT tags and their components. Examples of
tag descriptions can be found in all chapters in this manual.

Using the SOFTWARE Doctype
Using the Reference Templates

All reference templates are similar in design because all are intended to
be used to create similarly formatted reference material. This similarity
means that certain tags are common to all four templates. However,
because each template is customized for the presentation of a particular
kind of information, several tags are available only in specific templates.
For example, all four templates have a description section that describes
the current command, routine, statement, or tag. However, only the
Routine template has a section for describing in detail the values returned
by a routine.

Like all tag templates, the software reference templates are begun by a
template-enabling tag (for example, the <COMMAND_SECTION> tag), and
terminated by a similarly named template-ending tag (for example, the
<ENDCOMMAND_SECTION> tag). However, because the reference templates
are designed to create reference-oriented documentation, they also must
contain one or more reference element tags.

A reference element is a single element in a reference section, such as the
description of a single command in a command reference section, or the
description of a single routine in a routine reference section. The collection
of these single elements into a group creates a reference section.

The default reference element tag names match the templates they are
used in. The <COMMAND> tag occurs in the Command template, the
<ROUTINE> tag occurs in the Routine template, and so on. When these
reference element tags occur in a reference template, they signal the
beginning of a new reference element description.

By default, each new reference element description begins on a new output
page, with the name of the current reference element output at the top of
the page.

Reference element tags are not terminated by matching ending tags,
as are most template tags. Instead, a reference element description is
terminated either by the next reference element tag, by the end of the
reference template, or by the end of the SDML file.

Note that of all the tags used in the various reference templates, only the
template-enabling tags and the reference element tags are required; all
other tags used in the templates are optional.

10-25

Using the SOFTWARE Doctype
Using the Reference Templates

10-26

The following list shows the template-enabling tag and the reference
element tag for each template.

Template Template-Enabling Reference Element
Name Tag Tag

Command <COMMAND_SECTION> <COMMAND>

Routine <ROUTINE_SECTION> <ROUTINE>

Statement <STATEMENT _SECTION> { <STATEMENT>1 }
<FUNCTION>

Tag <TAG_ SECTION> <SDML_TAG>

1 The use of braces indicates that the enclosed tag names are used interchangeably.
VAX DOCUMENT provides two such names to improve the readability of your SDML
file.

The Default Format of the Reference Templates

The software reference templates all have the same default output format.
When a reference template is begun by specifying a template-enabling tag,
the template has the following format:

• A new reference element description is begun and placed at the
beginning of a new output page.

For example, each time a <COMMAND> tag is encountered in the
command template, a new reference element description is begun
and placed at the beginning of the next output page.

• The name of the current reference element is placed on each output
page. The placement of this name depends on the doctype used. In
most doctypes, this name is placed at the top of the page.

For example, if a command called SET TIME was being
described and had been specified as <COMMAND>CSET TIME) in the
SOFTWARE.REFERENCE doctype, then the single line running
heading SET TIME would be placed at the top of the output page
above the reference description.

• Each page is numbered using the last major page number prefix.

For example, if Chapter 2 was the immediately preceding chapter,
then 2 would be the prefix associated with the page numbers in the
reference section. Similarly, A would be the prefix if appendix A had
preceded the reference section.

• Default headings are defined by the reference template for those tags
that have such headings.

For example, the <RESTRICTIONS> tag has associated with it the default
heading text Restrictions in the templates in which it is available.

10.9

Using the SOFTWARE Doctype
Using the Reference Templates

Using the NONE Keyword Argument to Template Tags

Most of the reference template tags place a heading on the output page.
Almost all of these tags accept the keyword NONE as an argument. This
keyword indicates that the heading should be placed on the output page
followed by the text None.

By using the NONE keyword, you ensure that a particular kind of
information is explicitly declared as nonexistent or not applicable in a
reference element description. Use the NONE keyword rather than typing
the word None under the heading because inconsistencies in formatting
and spelling of the word may otherwise be introduced.

When you use the NONE keyword as an argument to a template tag, the
tag that terminates that template tag must be omitted. For example,
if you specify the NONE argument to the <PARAMDEFLIST> tag, the
<ENDPARAMDEFLIST> tag must be omitted.

Of all the tags that output a heading in the reference templates, only the
<FORMAT>, <STATEMENT_FORMAT>, and <DESCRIPTION> tags do not accept a
keyword argument of NONE, because placing the text None beneath the
headings output by any of these tags would be inappropriate. If there are
no format or description sections, these tags should be omitted.

Using Samples of the Reference Templates

VAX DOCUMENT provides the following sample reference template SDML
files in the directory DOC$TEMPLATES:

Command Template: DOC$TEMPLATES:COMMAND.SDML

Routine Template:

Statement Template:

Tag Template:

DOC$TEMPLATES:ROUTINE.SDML

DOC$TEMPLATES:STATEMENT.SDML

DOC$TEMPLATES:TAG.SDML

You can also enter an editing session with LSE and expand the appropriate
template tags into a reference template SDML file. See VAX DOCUMENT
User's Guide, Volume 1 for more information on using LSE with VAX
DOCUMENT.

See the template samples at the end of this chapter for examples of the
SDML code and output from each of the four reference templates.

Creating Your Own Reference Template Tags
VAX DOCUMENT provides the following tags for the creation of
specialized reference template tags:

• <SET_TEMPLATE_LIST>

Creates a user-defined set of tags for creating your own headed list in
the template.

• <SET_TEMPLATE_PARA>

Creates a user-defined set of tags for creating your own headed
paragraph section in the template.

10-27

10.10

Using the SOFTWARE Doctype
Creating Your Own Reference Template Tags

• <SET_TEMPLATE_TABLE>

Creates a user-defined set of tags for creating your own headed table
in the template.

Each of these tags defines a template tag and its terminator for use in a
template section. You can specify the following arguments to these tags:

• Name by which a template tag is to be invoked

• Default heading for the tag when it is invoked

• Name of tags defined in the context of the template tag

For example, if you specify MYLIST as the first argument to the <SET_

TEMPLATE_LIST> tag, you would define a list that is begun by the <MYLIST>

tag and terminated by the <ENDMYLIST> tag. If you specify My List as
the second argument to the <SET_TEMPLATE_LIST> tag, you would define a
default heading for this list of My List. And if you specify MY_ITEM as
the third argument to the <SET_TEMPLATE_LIST> tag, you would define the
<MY_ITEM> tag as a tag to be used in the context of the <MYLIST> tag.

Each of the tags defined using these tags accepts an alternate heading
argument and the NONE keyword argument. Note that these user-defined
template tags have the same behavior as standard template tags. If the
NONE keyword argument is specified, the terminating tag must not be
used.

Creating Your Own Template Tables

10-28

The <SET_TEMPLATE_TABLE> tag lets you create your own set of tags for
making a table with optional headings in a template. Tables created using
this tag can have either two or three columns. This tag requires five
arguments and accepts the optional table column headings argument. This
tag has the following syntax:

Syntax

<SET_TEMPLATE_TABLE>(table tag name
\default table heading
\table row tag name
\column count
\column widths
[\table column headings])

The following list summarizes the arguments allowed by this tag in the
order in which you must specify them:

table tag name
Specifies the user-defined name of the tag that begins the user-defined
table.

default table heading
Specifies the default text heading to be output over the entire user-defined
table. You override this heading by an alternate heading specified as an
argument to the table tag name tag.

table row tag name

Using the SOFTWARE Doctype
Creating Your Own Template Tables

Specifies the name of the tag to be used to indicate individual table rows in
the table being defined. For example, if the table row tag name argument
is specified as SAMP _ROW, the individual table row tag will be
<SAMP _ROW>.

The tag you create by this argument is similar to the global <TABLE_ROW>
tag.

column count
Specifies the number of columns in the user-defined table. The accepted
arguments are:

• 2 - Specifies that the table is to have two columns.

• 3 - Specifies that the table is to have three columns.

table column widths
Specifies the approximate widths of the table columns. The width of the
last table column is determined by VAX DOCUMENT. So, if you specify a
2-column list, you must specify only one column-width argument, as shown
in the following code example.

<SET_TEMPLATE_TABLE>(KEYVALS\Keyword Values\KEYVAL\2\10\Keyword\Value)

If you specify a 3-column list, you must specify two column-width
arguments, as shown in the following code example.

<SET TEMPLATE TABLE>(KEYVAL LIST\Keyword Ranges\KEYVAL\3\10\10
\Keyword\High\Lower) -

table column headings
Specifies optional default headings for each column in the user-defined
table. If you specified a 2-column list, you may specify up to two heading
arguments. If you specified a 3-column list, you may specify up to three
heading arguments.

The following examples show a definition of the user-defined
<RECORDTABLE> table tags. In this example, the <RECORDTABLE> tag is
defined as a 2-column list with column headings, and with a default table
heading of Best Songs.

The first use of these table tags in the following example sets the text
supplied to the two <45RPM> tags in the table, and then terminates the
table. The second use shows how the NONE keyword argument can be
used.

<SET_TEMPLATE_TABLE>(RECORDTABLE\Best Songs\45RPM\2\12\Performer\Song Title)
<RECORDTABLE>
<45RPM>(Sinatra\Strangers in the Night)
<45RPM>(Moody Blues\Nights in White Satin)
<ENDRECORDTABLE>
<RECORDTABLE>(NONE)

This example produces the following output:

10-29

10.11

10.12

Using the SOFTWARE Doctype
Creating Your Own Template Tables

best songs

best songs

Performer

Sinatra

Moody Blues

None.

Song Title

Strangers in the Night

Nights in White Satin

Modifying the Reference Templates
In most cases, you will not find it necessary to modify the reference
templates. However, if you do want to modify these formats, you can do so
by using one of the following tags:

• <SET_TEMPLATE_HEADING> tag

Creates new default headings for tags used in the reference templates.

• Template-enabling tags

Modifies the format of the entire template. This includes creating
running headings, creating page number prefixes, and setting whether
the reference template (and any reference elements in it) begins on a
new page of output.

• <SET_TEMPLATE_templatename> tags

Modifies the format of the reference element tags used in each
template. This includes specifying the current reference element
name as a secondary running heading, specifying that the reference
element heading has additional information stacked beneath it, and
specifying whether the reference element tag should begin on a new
page of output.

The modifications made by these tags only affect those tags that follow the
modifying tag in the SDML file in the current reference template.

Modifying Default Headings in a Template

10-30

Each reference template enables several tags that place default headings
on the output page. In most cases you will not want to change these
default headings, because of the possibility of introducing typographical
errors into the text of the heading. Changing the default headings can
also cause your new headings to be incompatible with other headings in
the current template or with headings in other reference sections.

However, if you do want to modify these headings, you can do so by using
the <SET_TEMPLATE_HEADING> tag, which lets you specify a new default
heading for a template tag in one of the reference templates. This tag has
the following syntax:

CONDITIONS
SIGNALLED

Using the SOFTWARE Doctype
Modifying Default Headings in a Template

Syntax

<SET_ TEMPLATE_HEADING> (element keyword\ default heading)

The <SET_TEMPLATE_HEADING> tag accepts two arguments: the name of
the template tag to receive the new default heading, and the text of the
new default heading. The new default heading will then be used by all
subsequent uses of the template tag named as an argument to the <SET_

TEMPLATE_HEADING> tag in the current template. This heading overrides
any previously defined default heading for that template tag in the current
template.

A default heading created using the <SET_TEMPLATE_HEADING> tag will be
in effect until that heading is reset in the current template by another
<SET_TEMPLATE_HEADING> tag. Note also that the <SET_TEMPLATE_

HEADING> tag has no effect on templates other than the one in which
it is used.

The following example shows how you would create a new default heading.
In this example, the default heading for the <RSDEFLIST> tag is set to be
Conditions Signalled.

<ROUTINE SECTION>
<SET_TEMPLATE_HEADING>(RSDEFLIST\Conditions Signalled)
<RSDEFLIST>
<RSITEM>(SS$ NORMAL\Service successfully completed.)
<RSITEM>(SS$=ACCVIO\Access violation.)
<ENDRSDEFLIST>

This example produces the following output:

SS$_NORMAL

SS$_ACCVIO

Service successfully completed.

Access violation.

Table 10-7 summarizes the default headings assigned to the standard
template tags.

Table 10-7 Default Headings of Reference Template Tags

Template Tag

<FORMAT>

<PARAMDEFLIST >

<OUALDEFLIST >

<DESCRIPTION>

<RESTRICTIONS>

<PROMPTS>

Default Heading

Command Template Tags

Format

Parameters

Qualifiers

Description

Restrictions

Prompts

10-31

10.13

Using the SOFTWARE Doctype
Modifying Default Headings in a Template

Table 10-7 (Cont.) Default Headings of Reference Template Tags

Templat~ Tag

<FORMAT>

<ARGDEFLIST>

<DESCRIPTION>

<RSDEFLIST >

<FORMAT>

<PARAMDEFLIST >

<RELATED_TAGS>

<TERMINATING_ TAG>

<DESCRIPTION>

<STATEMENT _FORMAT>

<DESCRIPTION>

<FORMAT>

Default Heading

Routine Template Tags

Format

Arguments

Description

Return Values

Tag Template

Format

Arguments

Related Tags

Required Terminator

Description

Statement Template

Format

Description

Format

Using the Template-Enabling Tags

10-32

You use template-enabling tags to begin a reference template, and may
optionally use them to alter the default format of that template. The
following table lists the template-enabling tags for each template.

Templat~ Name

Command Template

Routine Template

Statement Template

Tag Template

Template-enabling Tag

<COMMAND_SECTION>

<ROUTINE_ SECTION>

<STATEMENT _SECTION>

<TAG_ SECTION>

All the template-enabling tags have the same syntax and perform the
same functions. The syntax for the Command template form of the
template-enabling tags is as follows:

<COMMAND_SECTION>[([running title] [\number prefix] [\NEWPAGE])]

<ENDCOMMAND_SECTION>

Arguments to the template-enabling tags are optional. However, if you
use arguments, you must specify them in the order shown in the previous
syntax description.

Using the SOFTWARE Doctype
Using the Templat~-Enabling Tags

If you decide to modify a template using the template-enabling tag, these
modifications will be in effect only in that particular template. The
three arguments accepted by the template-enabling tags are given in
the following list.

running title
Sets the second running heading for the page to be the text specified as the
running title argument. This argument is valid only when double running
heads are being used in the template.

number prefix
Sets the numbering prefix to be used to construct page numbers and
formal figure, table, and example numbers. Such numbers might be
DCL-12, STAT-5, or Table STAT-3.

NEWPAGE
Causes the initial text for the reference section to start on a new page.
This argument also causes any template reference element (such as the
<COMMAND> tag) to begin on a new page.

10.13.1 Template-Enabling Tag Behavior in the SOFTWARE.SPECIFICATION
Doctype

When you use the SOFTWARE.SPECIFICATION doctype, an SDML file
that contains both reference templates and chapters has the following
output format:

• The doctype uses the current chapter title as a running footer on the
right of the page bottom when the page number is odd and on the left
of the page bottom when the page number is even. The chapter title
overrides the running footer created by a template-enabling tag, such
as <COMMAND> _SECTION> or <ROUTINE_SECTION>.

• The doctype uses the name of the current reference element, such as
a <COMMAND> or <ROUTINE> tag, as a running title on the right of the
page top when the page number is odd and on the left of the page top
when the page number is even.

The doctype also uses the name of the current reference element as a
running footer on the left of the page bottom when the page number
is odd and on the right of the page bottom when the page number is
even.

• A <RUNNING_TITLE> tag, if used, overrides the running title created
by the reference element at the top of the page for the current
reference template. A running title created using the <RUNNING_

TITLE> tag exists only for the current reference template and ends
with the template-ending tag, such as <ENDCOMMAND_SECTION> or
<ENDROUTINE_SECTION>.

When you use the SOFTWARE.SPECIFICATION doctype, an SDML file
that contains reference templates but no chapters has the following output
format:

10-33

Using the SOFTWARE Doctype
Using;, the Template-Enabling Tags

10-34

• The doctype uses the current template-enabling tag, such as
<COMMAND>_SECTION> or <ROUTINE_SECTION>, as a running footer
on the right of the page bottom when the page number is odd and on
the left of the page bottom when the page number is even.

• The doctype uses the name of the current reference element, such as
<COMMAND> or <ROUTINE>, as a running title at the top of the page.

• A <RUNNING_ TITLE> tag, if use4, overrides the running title created by
the reference element for the current reference template. A running
title created using the <RUNNING_TITLE> tag exists only for the current
reference template and ends with the template-ending tag, such as
<ENDCOMMAND_SECTION> or <ENDROUTINE_SECTION>.

When you use a reference template, you typically use it in one of the
following contexts:

• In a part begun using the global <PART> tag in a large document.
Generally, the part follows one or more chapters that are numbered
using the chapter number as the prefix for page numbers and for
formal figure, table, and example numbers.

• In a chapter begun using the global <CHAPTER> tag in a book with
chapter-oriented page numbers.

• In an appendix begun using the global <APPENDIX> tag that contains
reference information intended to stand alone, that can be pulled out
of the book in which it appears and placed in a binder with other
system commands or routines.

In any of these situations you can use multiple reference templates, so
long as each is terminated before the next reference template begins.

Note: VAX DOCUMENT does not allow you to nest reference templates
inside one another and will signal an error if this occurs.

Using Reference Templates in Chapters

When a set of command or routine sections occur in a chapter, page
and formal element numbering remain the same. That is, if the current
chapter is 2, page numbering will continue to be 2-n.

You can let the chapter-heading text be carried at the top of each page (if
that is the current doctype style), with the command name as the second
level heading. In a doctype in which the chapter heading text is carried at
the bottom of the page, the running feet will remain unchanged.

By specifying the following tags and arguments:

<CHAPTER>(debug_chap)

<COMMAND_SECTION>(Debugger Commands)
<SET_TEMPLATE_COMMAND>(DBG_COMMAND\DOUBLERUNNINGHEADS)
<DBG_COMMAND>(ALLOCATE)

10.14

Using the SOFTWARE Doctype
Using the Template-Enabling Tags

the page numbering will use the current number as the page number
prefix, for example 3--n, with formal elements being numbered in the same
way. In the command reference descriptions, the top-level title Debugger
Commands will appear at the top of each page. The name of the current
command will appear just below this heading.

When a document consists of chapters, each of which contains related
reference elements, the chapter's running title will almost always be used
as the running title. However, you can override this heading with the
reference section enabling tags:

<CHAPTER>(aci_routines_chap)
<ROUTINE_SECTION>(ACI Routine~)

When you specify a character-string prefix follo\\ing a <CHAPTER> tag, the
prefix will be used for:

• Page numbering

• Formal element (figure, table, and example) numbering

For example:

<CHAPTER>(FDL routines chap)
<COMMAND_SECTION>(\FDL)

In this example, the <COMMAND_SECTION> tag sets the folio using the string
FDL. The header levels in this chapter will continue to be numbered using
the chapter number (that is, 2.1, 2.1.1, and so on) but the pages and formal
figures, tables, and examples will be numbered FDL-1, FDL-2, and so on.

Using Reference Templates in the Appendix Document Zone

If you want to document routines or commands or other reference elements
in pull-out sections suitable for placing in a binder with other system
commands or routines, and want these sections to be distinctly labeled,
you can specify a character-string prefix to be used throughout your
pullout reference section.

Using the <SET_TEMPLATE_templatename> Tags
The <SET_TEMPLATE_templatename> tag is not a VAX DOCUMENT tag. It is
a generic name given to a set of four tags that have the same syntax, and
that perform the same functions. These tags differ only in their names
and in the templates in which they are available:

Command Template <SET_ TEMPLATE_ COMMAND>

Routine Template <SET_TEMPLATE_ROUTINE>

Statement Template <SET_ TEMPLATE_ STATEMENT>

Tag Template <SET_ TEMPLATE_ TAG>

These tags have the following syntax (illustrated by the
<SET_TEMPLATE_COMMAND> tag in this case):

10-35

Using the SOFTWARE Doctype
Using the <SET_TEMPLATE_templatename> Tags

10-36

Syntax

<SET_ TEMPLATE_ COMMAND> (tag name[\ attribute] [\attribute][\ attribute])

These tags let you override the default formatting attributes for reference
elements used in each of the reference templates. These tags require
a first argument that is the name of the reference element tag in the
template. You can specify the name of the default reference element tag
(such as the <ROUTINE> tag in the Routine template), or you can specify a
new tag name (such as <MY_ROUTINE>).

If you specify a new reference element tag name, you may not use the old
tag name. It is no longer valid. The new tag name replaces the previous
reference element tag. All subsequent uses of a reference element tag
should use the last established tag name.

You can then specify one or more of the following keywords that are
accepted by these tags (note that these keyword arguments must be
separated by backslashes):

NONEWPAGE
Specifies that reference descriptions are not to start on new pages. By
default, the tag defined by the first argument of the <SET_TEMPLATE_
templatename> tag begins a command description on a new page.

DOUBLERUNNINGHEADS
Specifies that the command descriptions have two running titles at the top
of every page. You set the top running title by the <COMMAND_SECTION>
tag or by the heading of the most recent <CHAPTER> tag. By default, if a
doctype design option does not call for running top titles, only the current
command name is placed at the top of each page.

STACK
Specifies that when there are multiple arguments for the tag defined by
the first argument to the <SET_TEMPLATE_templatename> tag, the arguments
are stacked at the beginning of the page.

By default, when you specify multiple arguments, the second and third
arguments are assumed to be optional descriptive information and output
on the same line as the command name.

The following code example shows a sample use of the <SET_TEMPLATE_
COMMAND> tag. In this example, the tag <XYZ_COMMAND> is defined
and used. The keyword argument NONEWPAGE is specified to the
<COMMAND_SECTION> tag so that the first description will not start on a
new page. The keyword argument STACK is specified so that the two
arguments FIND _FIRST and FF are stacked with the first argument on
top.

<COMMAND SECTION>(XYZ Cornmands\\NEWPAGE)
<SET TEMPLATE COMMAND>(XYZ COMMAND\NONEWPAGE\STACK)
<XYZ=COMMAND>CFIND_FIRST\FF)

This example produces the following output:

10.15

FIND FIRST
FF

Using the SOFTWARE Doctype
FIND_FIRST

Using the Command Template
Table 10-8 summarizes the tags available in the Command template,
the default headings associated with them, and how they should be
used. The table presents the tags in the same order as in the template
in directory DOC$TEMPLATES. Use these tags to create a command
reference section. In most manuals, a command section is an encyclopedic
reference section that describes each command the software system offers:
its format, restrictions, prompts, parameters, functional description,
command qualifiers, and positional qualifiers, plus examples of its use.

This section also contains a sample input and output file using
the Command template. You may find these sample files useful in
understanding how the Command template tags fit together.

• Section 10.15.1 contains the SDML file of a sample use of the
Command template tags.

• Section 10.15.2 contains the output file created using the sample
SDML file.

These samples describe the APPEND command. They are intended only
as samples, and should not be used as a source of reference for this
command.

Table 10-8 Command Template Tags as Available from DOC$TEMPLATES

Default
Tag Name Heading

<COMMAND_SECTION> None

<SET_ TEMPLATE_ COMMAND> None

<SET_ TEMPLATE_HEADING> None

<SET_TEMPLATE_PARA> None

<SET_ TEMPLATE_LIST > None

<SET_TEMPLATE_TABLE> None

<COMMAND> None

<OVERVIEW> None

<FORMAT> Format

<PARAMDEFLIST > Parameters

Template Usage

Begins a Command section

Alters the default format of a Command section

Alters the default headings in a reference section

Creates user-defined tags for a specially formatted
paragraph in a reference section

Creates user-defined tags for a specially formatted list
in a reference section

Creates user-defined tags for a specially formatted
table in a reference section

Begins each new element to be referenced in the
template; this is the default reference element tag in
the Command reference template

Labels an overview of the reference element

Labels the format of the reference element's syntax

Begins a definition list of the parameters or arguments
associated with the reference element

10-37

Using the SOFTWARE Doctype
Using the Command Template

Table 10-8 (Cont.) Command Template Tags as Available from DOC$TEMPLATES

Tag Name

<RESTRICTIONS>

<PROMPTS>

<DESCRIPTION>

<OUALDEFLIST >

<EXAMPLE_ SEQUENCE>

<SUBCOMMAND_SECTION>

<SUBCOMMAND_SECTION_
HEAD>

<SET_ TEMPLATE_
SUBCOMMAND>

<SUBCOMMAND>

10-38

Default
Heading

Restrictions

Prompts

Description

Qualifiers

Examples

None

None

None

None

Template Usage

Begins a list of zero or more restrictions on the
reference element's use

Begins a list of the prompts associated with the
reference element

Labels a reference element description section

Begins a definition list of zero or more qualifiers
associated with the reference element

Begins a sequence of one or more examples

Begins a section of subcommands in a Command
section

Specifies the heading for introductory text that precedes
a subcommand section

Alters the name of the <SUBCOMMAND> tag, and
optionally lets you specify that each use of that tag
should not begin output on a new page

Begins a new subcommand element to be described in
a subcommand section

Using the SOFTWARE Doctype
Using the Command Template

10.15.1 Sample SDML File of the Command Template
The following is an extended code example showing a VAX DOCUMENT
SDML file that uses the Command template:

<COMMAND_SECTION>(Using the SOFTWARE Doctype\\NEWPAGE)
<SET_TEMPLATE_COMMAND>(DCL_COMMAND)

<DCL_COMMAND>(APPEND)
<OVERVIEW>
Adds the contents of one or more specified input files to the end of the
specified output file.
<ENDOVERVIEW>

<format>(Syntax)
<fCMD>(APPEND) <FPARMS>(input file spec[,<hellipsis>J output file spec)

<QUAL LIST>(Command Qualifiers)
<QPAIR>(/BACKUP\/CREATED)
<QPAIR>(/BEFORE[=time]\/BEFORE=TODAY)
<ENDQUAL_LIST>

<QUAL LIST>(Positional Qualifiers)
<QPAIR>(/ALLOCATION=n\See text.)
<QPAIR>(/[NO]CONTIGUOUS\None.)
<ENDQUAL __ LIST>
<END FORMAT>

<RESTRICTIONS>(NONE)

<PROMPTS>
<PROMPT>(From:\input file spec[,<hellipsis>J)
<PROMPT>(To:\output file spec)
<ENDPROMPTS>
<PARAMDEFLIST>
<PARAMITEM>(input file spec[,<hellipsis>J)
<PARAMDEF>Specifies the names of one or more input files to be appended.
<P>
If you specify more than one input file, separate the specifications with
either commas (,) or plus signs (+).
Commas and plus signs are equivalent. All input files
are appended, in the order specified, to the end of the output file.
<P>
You can use wildcard characters in the file specification(s).

<PARAMITEM>(output file spec)
<PARAMDEF>
Specifies the name of the file to which the input files will be appended.
<P>
You must include at least one field in the output file specification. If you
do not specify a device and/or directory, the APPEND command uses the current
default device and directory. For other fields that you do not specify, the
APPEND command uses the corresponding field of the input file specification.
<P>
If you use the asterisk wildcard character in any field(s) of the
output file specification, the APPEND command uses the corresponding field of
the input file specification. If you are appending more than one
input file, APPEND uses the corresponding fields from the first input file.
<ENDPARAMDEFLIST>

<DESCRIPTION>
The APPEND command is similar in syntax and function to the COPY command.
Normally, the APPEND command adds the contents of one or more files
to the end of an existing file without incrementing the version number.
The /NEW VERSION qualifier causes the APPEND command to create a new output
file if no file with that name exists.
<ENDDESCRIPTION>

10-39

Using the SOFTWARE Doctype
Using the Command Template

<QUALDEFLIST>(Command Qualifiers)
<QUALITEM>(/BACKUP)
<QUALDEF>
Selects files according to the dates of their most recent backup.
This qualifier is relevant only
when used with the /BEFORE or /SINCE qualifier. Use of the
/BACKUP qualifier is incompatible with /CREATED, /EXPIRED, and /MODIFIED.
The default is /CREATED.
<QUALITEM>(/BEFORE[=time])
<QUALDEF>
Selects only those files that are dated before the specified time.
<P>
You can specify
either an absolute time or a combination of absolute and delta times.
<comment>
See Section <reference>(time_sec) for complete information on
specifying time values.
<endcomment>
You can also use the
keywords TODAY, TOMORROW, and YESTERDAY. If no time is specified,
TODAY is assumed.
<ENDQUALDEFLIST>

<QUALDEFLIST>(Positional Qualifiers)
<QUALITEM>(/ALLOCATION=n\)
<QUALDEF>
Forces the initial allocation of the output file to the number of 512-byte
blocks specified as n.
<P>
This qualifier is valid in conjunction with the /NEW_VERSION qualifier.
The allocation size is
applied only if a new file is actually created. If you create a new
file and you do not specify /ALLOCATION, the initial allocation of the
output file is determined by the size of the input file(s).
<QUALITEM>(/CONTIGUOUS\/NOCONTIGUOUS)
<QUALDEF>
Indicates whether the output file is contiguous, that is, whether the file
must occupy consecutive physical disk blocks.
<P>
By default, the APPEND command creates an output file in the same format as
the corresponding input file. If an input file is contiguous, the APPEND
command attempts to create a contiguous output file, but does not
report an error if there is not enough space. If you append multiple
input files of different formats, the output file might or might not
be contiguous. Use the /CONTIGUOUS qualifier to ensure that the
output file is contiguous.
<ENDQUALDEFLIST>

<EXAMPLE SEQUENCE>
<EXI><S>($) <U>(APPEND TEST.DAT NEWTEST.DAT)
<EX TEXT>
The APPEND command appends the contents of the file TEST.DAT from the default
disk and directory to the file NEWTEST.DAT also located on the default disk
and directory.
<EXI>(WIDE)<S>($) <U>(APPEND/NEW VERSION/LOG *.TXT T.SUM)
<S>(%APPEND-I-CREATED, 01$: [MAL]T.SUM;l created)
<S>(%APPEND-S-COPIED, Dl$: [MAL]A.TXT;2 copied to Dl$: [MAL]T.SUM;l (1 block))
<S>(%APPEND-S-APPENDED, Dl$: [MAL]B.TXT;3 appended to Dl$: [MAL]T.SUM;l (3 records))
<S>(%APPEND-S-APPENDED, Dl$: [MAL]G.TXT;7 appended to Dl$: [MAL]T.SUM;l (51 records))
<S>(%APPEND-S-NEWFILES, 1 file created)
<EXTEXT>
The APPEND command appends all files with file types of TXT to a file named
T.SUM. The /LOG qualifier requests a display of the specifications of each
input file appended. If the file T.SUM does not exist, the APPEND command
creates it, as the output shows. The number of blocks or records shown in the
output refers to the SDML file and not to the target file total.
<ENDEXAMPLE_SEQUENCE>
<ENDCOMMAND SECTION>

10-40

Using the SOFTWARE Doctype
Using the Command Template

10.15 .. 2 Sample Output File of the Command Template
The following is the output from the extended code example in
Section 10.15.1, produced using the SOFTWARE.REFERENCE doctype
design. Note that your own output may vary, depending on the
SOFTWARE design under which you process the SDML file.

10-41

Using the SOFTWARE Doctype
Command Template Output Example

APPEND

SYNTAX

Adds the contents of one or more specified input files to the end of the
specified output file.

APPEND input file spec[, ...] output file spec

Command Qualifiers
!BACKUP
!BEFORE[=time]

Positional Qualifiers
!ALLOCATION=n
![NO]CONTIGUOUS

Defaults
!CREATED
!BEFORE= TODAY

Defaults
See text.
None.

restrictions None.

prompts From:
To:

input file spec[, . . .]
output file spec

PARAMETERS input file spec[, ...]

10-42

Specifies the names of one or more input files to be appended.

If you specify more than one input file, separate the specifications with
either commas(,) or plus signs(+). Commas and plus signs are equivalent.
All input files are appended, in the order specified, to the end of the output
file.

You can use wildcard characters in the file specification(s).

output file spec
Specifies the name of the file to which the input files will be appended.

You must include at least one field in the output file specification. If you
do not specify a device and/or directory, the APPEND command uses the
current default device and directory. For other fields that you do not
specify, the APPEND command uses the corresponding field of the input
file specification.

If you use the asterisk wildcard character in any field(s) of the output file
specification, the APPEND command uses the corresponding field of the
input file specification. If you are appending more than one input file,
APPEND uses the corresponding fields from the first input file.

DESCRIPTION

COMMAND
QUALIFIERS

POSITIONAL
QUALIFIERS

EXAMPLES

Using the SOFTWARE Doctype
Command Template Output Example

The APPEND command is similar in syntax and function to the COPY
command. Normally, the APPEND command adds the contents of one or
more files to the end of an existing file without incrementing the version
number. The /NEW_ VERSION qualifier causes the APPEND command to
create a new output file if no file with that name exists.

/BACKUP
Selects files according to the dates of their most recent backup. This
qualifier is relevant only when used with the /BEFORE or /SINCE
qualifier. Use of the /BACKUP qualifier is incompatible with /CREATED,
/EXPIRED, and /MODIFIED. The default is /CREATED.

/BEFORE[=time]
Selects only those files that are dated before the specified time.

You can specify either an absolute time or a combination of absolute and
delta times. You can also use the keywords TODAY, TOMORROW, and
YESTERDAY. If no time is specified, TODAY is assumed.

/ALLOCATION:n
Forces the initial allocation of the output file to the number of 512-byte
blocks specified as n.

This qualifier is valid in conjunction with the /NEW_ VERSION qualifier.
The allocation size is applied only if a new file is actually created. If
you create a new file and you do not specify /ALLOCATION, the initial
allocation of the output file is determined by the size of the input file(s).

/CONTIGUOUS
/NOCONTIGUOUS
Indicates whether the output file is contiguous, that is, whether the file
must occupy consecutive physical disk blocks.

By default, the APPEND command creates an output file in the same
format as the corresponding input file. If an input file is contiguous, the
APPEND command attempts to create a contiguous output file, but does
not report an error if there is not enough space. If you append multiple
input files of different formats, the output file might or might not be
contiguous. Use the /CONTIGUOUS qualifier to ensure that the output
file is contiguous.

D $ APPEND TEST.DAT NEWTEST.DAT

The APPEND command appends the contents of the file TEST.DAT from
the default disk and directory to the file NEWTEST.DAT also located on
the default disk and directory.

10-43

Using the SOFTWARE Doctype
Command Template Output Example

~ $ APPEND/NEW_VERSION/LOG *.TXT T.SUM
%APPEND-I-CREATED, D1$:[MAL]T.SUM;l created
%APPEND-S-COPIED, D1$: [MAL]A.TXT;2 copied to D1$: [MAL]T.SUM;l (1 block)
%APPEND-S-APPENDED, D1$: [MAL]B.TXT;3 appended to D1$: [MAL]T.SUM;l (3 records)
%APPEND-S-APPENDED, D1$: [MAL]G.TXT;7 appended to D1$: [MAL]T.SUM;l (51 records)
%APPEND-S-NEWFILES, 1 file created

10-44

The APPEND command appends all files with file types of TXT to a file
named T.SUM. The /LOG qualifier requests a display of the specifications
of each input file appended. If the file T.SUM does not exist, the APPEND
command creates it, as the output shows. The number of blocks or records
shown in the output refers to the SDML file and not to the target file total.

10.16

Using the SOFTWARE Doctype
Using the Routine Template

Using the Routine Template
Table 10-9 summarizes the tags available in the Routine template, the
default headings associated with them, and how they should be used. The
table presents the tags in the same order as in the template in directory
DOC$TEMPLATES. Use these tags to create a routine reference section.
In most manuals, a routine reference section describes each routine the
software offers: the routine's format, returns, arguments, full routine
description (perhaps with figures and tables), return values, and shows
examples of its use.

This section also contains a sample input and output file using the Routine
template. You may find these sample files useful in understanding how
the Routine template tags fit together.

• Section 10.16.1 contains the SDML file of a sample use of the Routine
template tags.

• Section 10.16.2 contains the output file created using the sample
SDML file.

These samples describe the $ENQ and MTH$xSORT routines. They are
intended only as samples, and should not be used as a source of reference
for these routines.

Table 10-9 Routine Template Tags as Available from DOC$TEMPLATES

Default
Tag Name Heading

<ROUTINE_ SECTION> None

<SET_ TEMPLATE_ROUTINE> None

<SET_ TEMPLATE_HEADING> None

<SET_TEMPLATE_PARA> None

<SET_ TEMPLATE_LIST > None

<SET_TEMPLATE_TABLE> None

<ROUTINE> None

<OVERVIEW> None

<FORMAT> Format

<RETURNS> Returns

<RETTEXT> None

<ARGDEFLIST > Arguments

<DESCRIPTION> Description

Template Usage

Begins a Routine section

Alters the default format of a Routine section

Alters the default headings in a reference section

Creates user-defined tags for a specially formatted
paragraph in a reference section

Creates user-defined tags for a specially formatted list in a
reference section

Creates user-defined tags for a specially formatted table in
a reference section

Begins each new element to be referenced in the
template; this is the default reference element tag in
the Routine reference template

Labels an overview of the reference element

Labels the format of the reference element's syntax

Provides specific information about the attributes of the
value returned by the routine

Provides general information about the attributes of the
value returned by the routine

Begins a definition list of the arguments associated with
the reference element

Labels a reference element description section

10-45

Using the SOFTWARE Doctype
Using the Routine Template

Table 10-9 (Cont.) Routine Template Tags as Available from DOC$TEMPLATES

Tag Name

<RSDEFLIST >

<EXAMPLE_ SEQUENCE>

10-46

Default
Heading

Return Values

Examples

Template Usage

Begins a definition list of zero or more routine return status
codes and their meanings

Begins a sequence of one or more examples

Using the SOFTWARE Doctype
Using the Routine Template

10.16.1 Sample SDML File of the Routine Template
The following is an extended code example showing a VAX DOCUMENT
SDML file that uses the Routine template:

<routine section>(Using the SOFTWARE Doctype\\NEWPAGE)
<set template routine>(VMS ROUTINE\doublerunningheads)
<VMS=ROUTINE>C$ENQ\Enqueue-Resource)

<OVERVIEW>This is the brief description section. It contains one or
two sentences describing what the routine does.
<ENDOVERVIEW>

<format>(Syntax)
<frtn>($ENQ) <fargs>([efn), lkmode, lksb, itmlst)
<ENDFORMAT>

<RETURNS>(cond_value\longword integer\read only\by value in RO)
<RETTEXT>At times, it may be necessary to include a sentence or two
here to further describe the nature of the information returned.
<ENDRETTEXT>

<ARGDEFLIST>
<ARGITEM>(efn\cond value\longword integer\read only\by value)
<ARGDEF>Number of the event flag that is to be set when access is
granted to the specified resource. If not specified, the default is
event flag number 0. ·
<ARGITEM>(lkmode\cond_value\longword integer\read only\by descriptor\varying string
array descriptor)
<ARGDEF>Name of lock mode requested. May be one of the following:
<TABLE>
<TABLE SETUP>(2\17)
<TABLE-HEADS>(Narne of Lock Mode\Description)
<TABLE-ROW>(LCK$K NLMODE\Null lock mode)
<TABLE-ROW>(LCK$K-CRMODE\Concurrent read mode)
<TABLE=ROW>(LCK$K=CWMODE\Concurrent write mode)
<ENDTABLE>
<ARGITEM>(lksb\cond value\longword integer\write only\by value)
<ARGDEF>Address of the lock status block. The lock status block
receives the final completion status .and lock I.D., and optionally
contains a lock value block.
<ARGITEM>(itmlst)
<ARGDEF>
Item list specifying the lock information that $GETLKI is to return. The
<variable>(itmlst) argument is the address of a list of item descriptors, each
of which describes an item of information. The list of item descriptors is
terminated by a longword of 0.
<line art>

31 15 0

+--+
I item code I buffer length I
+------------------------+-------------------------+
I buffer address I
+--+
I return length address I
+--+

<endline art>
<endargdeflist>

<DESCRIPTION>
This section contains the full, detailed description of the routine.
It may contain tables and figures. There is no fixed size for this
description section.
<ENDDESCRIPTION>

10-47

Using the SOFTWARE Doctype
Using the Routine Template

<RSDEFLIST>
<RSITEM>(SS$ NORMAL\Indicates successful completion)
<RSITEM>(SS$=ABORT\This description contains a full explanation of some of
the possible causes for the abortion)
<RSITEM>(SS$ DEADLOCK\This description contains a full explanation of
some possible causes for the deadlock situation.)
<ENDRSDEFLIST>

<EXAMPLE_SEQUENCE>
<examples intro>
This section contains an example of the use of the routine.
This section can also contain figures and tables.
<ENDEXAMPLE_SEQUENCE>

<VMS ROUTINE>(MTH$xSQRT)
<OVERVIEW>The square root procedure returns the square root of the
input parameter. The input parameter may have one of four data types:
F_Floating, D_Floating, G_Floating, and H_Floating.
<ENDOVERVIEW>

<format>(Syntax)
<ffunc>(MTH$SQRT\(x))
<ffunc>(MTH$DSQRT\(x))
<ffunc>(MTH$GSQRT\(x))
<ffun~>(MTH$HSQRT\(x))

<ENDFORMAT>

<RETURNS>(cond value\F Floating, D_Floating, or G_Floating
\write only\by-value in RO)
<RETURNS>(headonly)
<RETTEXT>The square roots of F Floating, D Floating, and G Floating
input parameters are returned by immediate-value in RO and-Rl. The
square root of an H_Floating parameter is returned by reference
in the output parameter <VARIABLE>(sqrt).
<ENDRETTEXT>

<ARGDEFLIST>(Argument)
<ARGITEM>(x\cond value\F Floating,D Floating, G Floating, or H_Floating
\read only\by reference)- - -
<ARGDEF>The number for which the square root is desired.
<ARGITEM>(sqrt\cond value\H Floating\write only\by reference)
<ARGDEF>The square ~oot of the H_Floating parameter.
<ENDARGDEFLIST>

<DESCRIPTION>
This is a description of the MTH$xSQRT function.
<ENDDESCRIPTION>
<ENDROUTINE_SECTION>

10-48

Using the SOFTWARE Doctype
Using the Routine Template

10.16.2 Sample Output File of the Routine Template
The following is the output from the extended code example in
Section 10.16.1, produced using the SOFTWARE.REFERENCE doctype
design. Note that. your own output may vary, depending on the
SOFTWARE design under which you process the SDML file.

10-49

Using the SOFTWARE Doctype
Routine Template Output Example

$ENQ
Enqueue Resource

SYNTAX

RETURNS

ARGUMENTS

10-50

This is the brief description section. It contains one or two sentences
describing what the routine does.

$ENQ [efn], lkmode, lksb, itmlst

VMS Usage: cond_value
type: longword integer
access: read only
mechanism: by value in RO

At times, it may be necessary to include a sentence or two here to further
describe the nature of the information returned.

ef n
VMS Usage: cond_value
type: longword integer
access: read only
mechanism: by value
Number of the event flag that is to be set when access is granted to the
specified resource. If not specified, the default is event flag number 0.

/km ode
VMS Usage: cond_value
type: longword integer
access: read only
mechanism: by descriptor-varying string array descriptor
Name of lock mode requested. May be one of the following:

Name of Lock Mode

LCK$K_NLMODE

LCK$K_CRMODE

LCK$K_CWMODE

lksb

Description

Null lock mode

Concurrent read mode

Concurrent write mode

VMS Usage: cond_value
type: longword integer
access: write only
mechanism: by value
Address of the lock status block. The lock status block receives the final
completion status and lock I.D., and optionally contains a lock value block.

DESCRIPTION

RETURN
VALUES

EXAMPLES

Using the SOFTWARE Doctype
Routine Template Output Example

itmlst
Item list specifying the lock information that $GETLKI is to return. The
itmlst argument is the address of a list of item descriptors, each of which
describes an item of information. The list of item descriptors is terminated
by a longword of 0.

31 15 0
+--+
I item code I buffer length I
+------------------------+--~----------------------+
I buffer address I
+--+
I return length address
+--+

This section contains the full, detailed description of the routine. It may
contain tables and figures. There is no fixed size for this description
section.

SS$_NORMAL

SS$_ABORT

SS$_DEADLOCK

Indicates successful completion.

This description contains a full explanation of some of
the possible causes for the abortion.

This description contains a full explanation of some
possible causes for the deadlock situation.

This section contains an example of the use of the routine. This section
can also contain figures and tables.

10-51

Using the SOFTWARE Doctype
Routine Template Output Example

MTH$xSQRT

SYNTAX

RETURNS

RETURNS

ARGUMENT

The square root procedure returns the square root of the input parameter. The
input parameter may have one of four data types: F _Floating, D_Floating, G_
Floating, and H_Floating.

MTH$SQRT (x)
MTH$DSQRT (x)
MTH$GSQRT (x)
MTH$HSQRT (x)

VMS Usage: cond_value
type: F _Floating, D_Floating, or G_Floating
access: write only
mechanism: by value in RO

The square roots of F _Floating, D_Floating, and G_Floating input
parameters are returned by immediate value in RO and Rl. The square
root of an H_Floating parameter is returned by reference in the output
parameter sqrt.

x
VMS Usage: cond_value
type: F _Floating,D_Floating, G_Floating, or H_Floating
access: read only
mechanism: by reference
The number for which the square root is desired.

sqrt
VMS Usage: cond_value
type: H_Floating
access: write only
mechanism: by reference
The square root of the H_Floating parameter.

DESCRIPTION This is a description of the MTH$xSQRT function.

10-52

10.17

Using the SOFTWARE Doctype
Using the Statement Template

Using the Statement Template
Table 10-10 summarizes the tags available in the Statement template, the
default headings associated with them, and how they should be used. The
table presents the tags in the same order as in the template in directory
DOC$TEMPLATES.

Use these tags to create a statement reference section. In most manuals,
a statement reference section describes each statement the software offers:
its purpose and detailed format, plus examples of its use.

This section also contains a sample input and output file using
the Statement template. You may find these sample files useful in
understanding how the Statement template tags fit together.

• Section 10.17.1 contains the SDML file of a sample use of the
Statement template tags.

• Section 10.17 .2 contains the output file created using the sample
SDML file.

These samples describe the RECORD statement and the MID$ function.
They are intended only as samples, and should not be used as a source of
reference for these statements and functions.

Table 10-1 O Statement Template Tags as Available from DOC$TEMPLATES

Tag Name

<STATEMENT _SECTION>

<SET_TEMPLATE_STATEMENT>

<SET_ TEMPLATE_HEADING>

<SET_TEMPLATE_PARA>

<SET_ TEMPLATE_ LIST>

<SET_TEMPLATE_TABLE>

{ <STATEMENT>1

<FUNCTION> }

<OVERVIEW>

<STATEMENT _FORMAT>

<FORMAT>

<DESCRIPTION>

<EXAMPLE_ SEQUENCE>

Default
Heading

None

None

None

None

None

None

None

None

Format

Format

Description

Examples

Template Usage

Begins a Command section

Alters the default format of a Statement section

Alters the default headings in a reference section

Creates user-defined tags for the creation of a
specially formatted paragraph in a reference section

Creates user-defined tags for a specially formatted list
in a reference section

Creates user-defined tags for a specially formatted
table in a reference section

Begins each new element to be referenced in the
template; this is the default reference element tag in
the Statement reference template

Labels an overview of the reference element

Labels the format of the reference element's syntax

Labels the format of the reference element's syntax

Labels a reference element description section

Begins a sequence of one or more examples

1The use of braces indicates that the enclosed tag names are used interchangeably. VAX DOCUMENT provides
two such names to improve the readability of your SDML file.

10-53

Using the SOFTWARE Doctype
Using the Statement Template

10.17.1 Sample SDML File of the Statement Template
The following is an extended code example showing a VAX DOCUMENT
SDML file that uses the Statement template:

<STATEMENT_SECTION>(Using the SOFTWARE Doctype\\NEWPAGE)
<STATEMENT>(RECORD)

<OVERVIEW>
The RECORD statement lets you name and define data structures in a
BASIC program and provides the BASIC interface to the VAX Common Data
Dictionary (CDD) . You can use the defined RECORD name anywhere a
BASIC data-type keyword is valid.
<END OVERVIEW>

<STATEMENT FORMAT>
<FCMD>(RECORD)
<FPARMS>(rec nam)
<STATEMENT_LINE>(rec component)
<ELLIPSIS>
<FCMD>(END RECORD)
<FPARMS> ([rec nam])
<construct list>(rec component:)
<construct>(rec component:)<list>(stacked\braces)

<le>data type rec item [, [data type] rec item]
<le>group clause
<le>variant clause<endlist>

<construct>(rec item:)<list>(stacked\braces)
<le>unsubs vbl [= int const
<le>array (int const, ...) [int const]
<le><keyword>(FILL) [(int const)] [=int const]<endlist>

<construct>(group clause:)
<keyword>(GROUP) group nam [(int const, •..
<statement line>(rec component\indent)
<ellipsis>-
<statement_line> (<keyword> (END GROUP) [group nam])

<construct>(variant clause:)
~keyword>(VARIANT)

<statement_line>(case clause\indent)
<ellipsis>
<statement_line>(<keyword>(END VARIANT))

<construct>(case clause:)
<keyword>(CASE)
<statement line>([rec component]\indent)

<endconstruct_list>

<ENDSTATEMENT_FORMAT>

<function>(MID$)

<OVERVIEW>
The MID$ function extracts a specified substring from the middle of a
string, leaving the main string unchanged.
<ENDOVERVIEW>

<STATEMENT FORMAT>
<fcmd>()<fparms>(str vbl =<list>(stacked\braces)

<le>MID
<le>MID$ <endlist> <keyword>((str exp, int expl, int exp2)))

<ENDSTATEMENT_FORMAT>

<ENDSTATEMENT_SECTION>

10-54

Using the SOFTWARE Doctype
Using the Statement Template

1 0.17 .2 Sam pie Output Fi le of the Statement Tern plate
The following is the output from the extended code example in
Section 10.17.1, produced using the SOFTWARE.REFERENCE doctype
design. Note that your own output may vary, depending on the
SOFTWARE design under which you process the SDML file.

10-55

Using the SOFTWARE Doctype
Statement Template Output Example

RECORD

The RECORD statement lets you name and define. data structures in a
BASIC program and provides the BASIC interface to the VAX Common Data
Dictionary (COD). You can use the defined RECORD name anywhere a
BASIC data-type keyword is valid.

Format

RECORD rec nam
rec component

END RECORD [rec nam]

10-56

{

data type rec item [, [data type] rec item] }
rec component: group clause

variant clause

{

unsubs vb/ [= int const] }
rec item: array (int const, ...) [= int const]

FILL [(int const)] [= int const]

group clause: GROUP group nam [(int const, ...)]
rec component

END GROUP [group nam]

variant clause: VARIANT

case clause:

case clause

END VARIANT

CASE
[rec component]

MID$

F9rmat

Using the SOFTWARE Doctype
Statement Template Output Example

The MID$ function extracts a specified substring from the middle of a string,
leaving the main string unchanged.

str vb/= { ~~g$ } (str exp, int exp1, int exp2)

10-57

10.18

Using the SOFTWARE Doctype
Using the Tag Template

Using the Tag Template
Table 10-11 summarizes the tags available in the Tag template, the
default headings associated with them, and how they should be used. The
table presents the tags in the same order as in the template in directory
DOC$TEMPLATES.

Use these tags to create a tag reference section, such as the one at the
end of this chapter. In most manuals, a tag reference section describes
each tag the software offers: each tag's format, syntax, arguments, related
tags, restrictions, required terminators, and functional description, plus
examples of its use.

This section also contains a sample input and output file using the Tag
template. You may find these sample files useful in understanding how
the Tag template tags fit together.

• Section 10.18.1 contains the SDML file of a sample use of the Tag
template tags.

• Section 10.18.2 contains the output file created using the sample
SDML file.

This sample describes the <SYNTAX> tag. It is intended only as a sample,
and should not be used as a source of reference for this tag.

Table 10-11 Tag Template Tags as Available from DOC$TEMPLATES

Tag Name

<TAG_ SECTION>

<SET_TEMPLATE_TAG>

<SET_ TEMPLATE_HEADING>

<SET_TEMPLATE_PARA>

<SET_ TEMPLATE_LIST>

<SET_TEMPLATE_TABLE>

<SDML_TAG>

<OVERVIEW>

<FORMAT>

<PARAMDEFLIST >

<RELATED_ TAGS>

10-58

Default
Heading

None

None

None

None

None

None

None

None

Format

Arguments

Related Tags

Template Usage

Begins a Tag section

Alters the default format of a Tag section

Alters the default headings in a reference section

Creates user-defined tags for a specially formatted
paragraph in a reference section

Creates user-defined tags for a specially formatted list in a
reference section

Creates user-defined tags for a specially formatted table in
a reference section

Begins each new element to be referenced in the template;
this is the default reference element tag in the Tag reference
template

Labels an overview of the reference element

Labels the format of the reference element's syntax

Begins a definition list of the arguments associated with the
reference element

Begins a list of zero or more tags related to the tag being
described

Using the SOFTWARE Doctype
Using the Tag Template

Table 10-11 (Cont.) Tag Template Tags as Available from DOC$TEMPLATES

Tag Name

<TERMINATING_ TAG>

<RESTRICTIONS>

<DESCRIPTION>

<EXAMPLE_ SEQUENCE>

Default
Heading

Required
Terminator

Restrictions

Description

Examples

Template Usage

Labels the tag that terminates the tag being described

Begins a list of zero or more restrictions on the reference
element's use

Labels a reference element description section

Begins a sequence of one or more examples

10-59

Using the SOFTWARE Doctype
Using the Tag Template

10.18.1 Sample SDML File of the Tag Template
The following is an extended code example showing a VAX DOCUMENT
SDML file that uses the Tag template:

<TAG_SECTION>(Using the SOFTWARE Doctype\\NEWPAGE)
<SDML_TAG>(SYNTAX)

<OVERVIEW>
Lets you use special characters to describe language
syntaxes.
<ENDOVERVIEW>

<format>(Syntax)
<FTAG>(SYNTAX\<LIST>(STACKED\braces)

<LE>heading text [<ARG SEP>WIDE]
<LE>WIDE<ENDLIST>\OPTIONAL)

<END FORMAT>

<PARAMDEFLIST>
<PARAMITEM>(heading text)
<PARAMDEF>Specifies a heading. The doctype controls the font used to

display the heading. By default, this tag has no heading. You may want to create
a heading using the <TAG>(SYNTAX_DEFAULT_HEAD) tag.

<PARAMITEM>(WIDE)
<PARAMDEF>Specifies that the syntax statement may exceed the normal right

margin of the text. If you are using doctype designs that indent
the text body, a wide syntax example will extend into the left margin.
<ENDPARAMDEFLIST>

<RELATED_TAGS>
<RELATED_TAG>(display)
<RELATED_TAG>(syntax_default_head)
<RELATED ITEM>The global <TAG>(CODE EXAMPLE) tag
<RELATED=ITEM>The global <TAG>(FORMAT) tag
<ENDRELATED TAGS>

<RESTRICTIONS>
You cannot use tab characters,
index tags (such as the <TAG>(x) and <TAG>(Y) tags),
or text element tags (such as <TAG>(p), <TAG>(list), or <TAG>(note))
in this type of example.
<ENDRESTRICTIONS>

<TERMINATING_TAG>(ENDSYNTAX)

<DESCRIPTION>
The <TAG>(SYNTAX) tag lets you accurately describe language
syntax. Languages can include programming languages, command
languages, application defined languages, and so forth. This tag also
separates the syntax example from the remaining text, retains blank
spaces and open lines, and labels the example (if you specified one)
using a doctype-specific font different from the current text font.
<ENDDESCRIPTION>

<EXAMPLE_SEQUENCE>(EXAMPLE)
<EXC><LITERAL><P>The COPY command has the following syntax:
<SYNTAX>

<END SYNTAX>

<ENDLITERAL>
<EX TEXT>

COPY input_file output_file

This example produces the following output:
<P>
The COPY command has the following syntax:
<SYNTAX>

COPY input_file output_file
<END SYNTAX>
<ENDEXAMPLE_SEQUENCE>

10-60

Using the SOFTWARE Doctype
Using the Tag Template

10.18.2 Sample Output File of the Tag Template
The following is the output from the extended code example in
Section 10.18.1, produced using the SOFTWARE.REFERENCE doctype
design. Note that your own output may vary, depending on the
SOFTWARE design under which you process the SDML file.

10-61

Using the SOFTWARE Doctype
Tag Template Output Example

<SYNTAX>

SYNTAX

ARGUMENTS

related tags

Lets you use special characters to describe language syntaxes.

<SYNTAX>[({ heading text [\ WIDE] }H
WIDE

heading text
Specifies a heading. The doctype controls the font used to display the
heading. By default, this tag has no heading. You may want to create a
heading using the <SYNTAX_DEFAULT_HEAD> tag.

WIDE
Specifies that the syntax statement may exceed the normal right margin
of the text. If you are using doctype designs that indent the text body, a
wide syntax example will extend into the left margin.

• <DISPLAY>

• <SYNTAX_DEFAULT_HEAD>

• The global <CODE_EXAMPLE> tag

• The global <FORMAT> tag

restrictions You cannot use tab characters, index tags (such as the <X> and <Y> tags, or
text element tags (such as <P>, <LIST>, or <NOTE>) in this type of example.

required <ENDSYNTAX>

terminator

DESCRIPTION The <SYNTAX> tag lets you accurately describe language syntax. Languages
can include programming languages, command languages, application
defined languages, and so forth. This tag also separates the syntax
example from the remaining text, retains blank spaces and open lines,
and labels the example (if you specified one) using a doctype-specific font
different from the current text font.

10-62

Using the SOFTWARE Doctype
Tag Template Output Example

EXAMPLE
<P>The COPY command has the following syntax:
<SYNTAX>

COPY input_file output_file
<END SYNTAX>

This example produces the following output:

The COPY command has the following syntax:

COPY input_file output_file

10-63

Using the SOFTWARE Doctype
The SOFTWARE Ooctype Tag~ .

10.19 The SOFTWARE Doctype Tags

10-64

This part of Chapter 10 provides reference information on the SOFTWARE
doctype tags· and templates.

SOFTWARE Doctype Tag Reference
<ARGDEF>

<ARGDEF>

Begins the text that defines an item in an argument definition list.

SYNTAX <ARGDEF>

ARGUMENTS None.

related tags • <ARGDEFLIST>

• <ARGITEM>

restrictions Valid only in the context of the <ARGDEFLIST> tag.

DESCRIPTION The <ARGDEF> tag begins the text that defines an item in an argument
definition list. This text describes the item listed by the previous
<ARGITEM> tag. Terminate the text begun by the <ARGDEF> tag with
the next <ARGITEM> or <ENDARGDEFLIST> tag.

EXAMPLE The following example shows an argument definition list used outside the
routine template.

<ARGDEFLIST>(Arguments)
<ARGITEM>(data-l\data-2)
<ARGD~F>Specifies the arguments through which data is given to the routine.
<ENDARGDEFLIST>

ARGUMENTS

This example produces the following output:

data-1
data-2
Specifies the arguments through which data is given to the routine.

10-65

SOFTWARE Doctype Tag Reference
<ARGDEFLIST>

<ARGDEFLIST>

SYNTAX

ARGUMENTS

related tags

required
terminator

DESCRIPTION

10-66

Begins a definition list of arguments.

<ARGDEFLIST>[(NOHEAD)] {

alternate heading }

NONE

alternate heading
This is an optional argument. It specifies a heading to override the current
default text heading. The default heading provided by VAX DOCUMENT
for the <ARGDEFLIST> tag can vary. See the DESCRIPTION section for
more information on default argument definition list headings.

NO HEAD
This is an optional keyword argument. It suppresses the output of the
default heading for the <ARGDEFLIST> tag.

NONE
This is an optional keyword argument. It causes the text None to be
written to indicate that no arguments are available. Note that when you
use the NONE keyword, do not use the <ENDARGDEFLIST> tag.

• <ARGDEF>

• <ARGITEM>

• <ARGTEXT>

• <PARAMDEFLIST>

• <QUALDEFLIST>

• <SET_TEMPLATE_ARGITEM>

• <SET_TEMPLATE_HEADING>

• The global <DEFINITION_LIST> tag

<ENDARGDEFLIST>

Required unless you specify the NONE keyword as an a?'.'gument to the
<ARGDEFLIST> tag.

The <ARGDEFLIST> tag begins a definition list of arguments. This tag is
similar in format and syntax to the global <DEFINITION_LIST> tag. See VAX
DOCUMENT Using Global Tags for more information on the <DEFINITION_

LIST> tag.

EXAMPLES

SOFTWARE Doctype Tag Reference
<ARGDEFLIST>

The <ARGDEFLIST> tag enables two tags to create an argument definition
list. The <ARGITEM> tag labels the list item being defined, and the
<ARGDEF> tag begins the definition of the list item.

When you use the <ARGDEFLIST> tag in the Routine template, the
arguments accepted by the <ARGITEM> tag are changed, and the <ARGTEXT>

tag is enabled. The change in the arguments accepted by the <ARGITEM>

tag and the addition of the <ARGTEXT> tag give you a more structured
environment in which to create Routine template argument definition lists.
See the descriptions of these tags in this chapter for more information.

When you use the <ARGDEFLIST> tag in the templates, a default heading
is provided. Modify this heading for that single argument definition list
using the alternate heading argument. A heading specified in this way
overrides any existing default heading.

Use the <SET_TEMPLATE_HEADING> tag to create your own default headings
in a reference template. Using this tag modifies the default headings for
all subsequent <ARGDEFLIST> tags used in that reference template. See
the reference description of the <SET_TEMPLATE_HEADING> tag for more
information on that tag.

When you use the <ARGDEFLIST> tag outside a template, you define no
default heading. Create your own heading for a single argument definition
list by specifying that heading as the alternate heading argument.

The following informal table lists the default headings for the
<ARGDEFLIST> by their context:

Context

Command Template

Routine Template

Statement Template

Tag Template

Outside a Template

Default Heading

Arguments

Arguments

No default heading

Arguments

No default heading

The following examples show various uses of the <ARGDEFLIST> tag. The
following example shows an argument definition list used outside the
context of the Routine template. Note the syntax used for the <ARGITEM>

tag.

D <ARGDEFLIST>(Arguments)
<ARGITEM>(data-l\data-2)
<ARGDEF>Specifies the arguments through which data is given to the routine.
<ENDARGDEFLIST>

This example produces the following output:

10-67

SOFTWARE Doctype Tag Reference
<ARGDEFLIST>

ARGUMENTS

~ <ROUTINE_ SECTION>

<ARGDEFLIST>

data-1
data-2
Specifies the arguments through which data is given to the routine.

The following example shows two argument definition lists used in the
Routine template. The first list is coded using the Routine template
specific <ARGITEM> tag syntax. Note the headings produced by the
<ARGITEM> tag in the output of this example.

The second argument definition list illustrates a use of the <ARGTEXT> tag.
Typically, the <ARGTEXT> tag is used instead of the <ARGITEM> or <ARGDEF>
tags.

<ARGITEM>(x\floating_point\F_Floating, D_Floating, G_Floating, or.H_Floating
\read only\by reference\rnay also be given by value)
<ARGDEF>The number for which the square root is desired.
<ENDARGDEFLIST>
<ARGDEFLIST>
<ARGTEXT>
The arguments to the SYS$NONE routine are identical to those used
by the SYS$NULL routine. See the description of the SYS$NULL routine for
more information on these arguments.
<ENDARGTEXT>
<ENDARGDEFLIST>

<ENDROUTINE_SECTION>

ARGUMENTS

ARGUMENTS

10-68

This example produces the following output:

x
VMS Usage: floating_point
type: F _Floating, D_Floating, G_Floating, or H_Floating
access: read only
mechanism: by reference-may also be given by value
The number for which the square root is desired.

The arguments to the SYS$NONE routine are identical to those used by
the SYS$NULL routine. See the description of the SYS$NULL routine for
more information on these arguments.

<ARGITEM>

SYNTAX

ARGUMENTS

related tags

SOFTWARE Doctype Tag Reference
<ARGITEM>

Labels one to seven routine argument items to be defined in an argument
definition list outside the Routine template, or a single routine argument and
its attributes in the Routine template.

<ARGITEM>(item-1 [\ item-2 . .. [\ item-7]])

<ARGITEM>(arg name[\ usage information

item-n

\ data type \ access
\mechanism[\ mechanism info]])

Specifies the item in the argument list to be defined. This tag accepts a
minimum of one item-n argument and a maximum of seven. When you
specify more than one item-n argument, each subsequent item-n argument
after the initial argument formats under the first argument.

argname
Specifies the descriptive name assigned to the argument for reference
purposes.

usage information
This is an optional argument. It specifies a keyword indicating the
category of data to which the argument's value belongs. These keywords
are system dependent, and are specified by agreed-upon conventions.

data type
This is an optional argument. It specifies the data type of the argument;
for example, longword, byte, G_floating, and so on.

access
This is an optional argument. It specifies the access applied to the
argument; for example, read-only, write-only, and so on.

mechanism
This is an optional argument. It specifies the mechanism by which the
argument is passed; for example, by descriptor, py reference, or by value.

mechanism info
This is an optional argument. It specifies additional information you may
append to the mechanism argument output.

• <ARGDEF>

• <ARGDEFLIST>

• <ARGTEXT>

10-69

SOFTWARE Doctype Tag Reference
<ARGITEM>

restrictions

required
terminator

DESCRIPTION

EXAMPLE

10-70

The first syntax listed in the format section is valid in an argument
definition list outside the Routine template. The second syntax listed in
the format section is valid only in an argument definition list inside the
Routine template.

<ARGDEF>

The <ARGITEM> tag labels one to seven routine argument items to be
defined in an argument definition list outside the Routine template, or a
single routine argument and its attributes in the Routine template. This
tag accepts one of two sets of arguments, depending on whether or not the
<ARGITEM> tag is used in the Routine reference template.

Outside the Routine template, the <ARGITEM> tag accepts the item-n
argument, which may be repeated up to seven times, as specified in the
first syntax listed in the Format section. This form of the <ARGITEM> tag
lets you label one to seven routine argument items inside an argument
definition list.

In the Routine template, the <ARGITEM> tag uses the arguments listed in
the second syntax listed in the Format section. This form of the <ARGITEM>

tag lets you label a single routine argument and its attributes.

See the example in the <ARGDEFLIST> tag description.

<ARGTEXT>

SYNTAX

related tags

SOFTWARE Doctype Tag Reference
<ARGTEXT>

Labels definition text in an argument definition list that replaces the information
contained in a pair of <ARGITEM> and <ARGDEF> tags.

<ARGTEXT>

• <ARGDEF>

• <ARGDEFLIST>

• <ARGITEM>

restrictions ·Valid only in the context of the <ARGDEFLIST> tag in the Routine template.

required <ENDARGTEXT>

terminator

DESCRIPTION The <ARGTEXT> tag labels definition text in an argument definition list that
replaces the information contained in a pair of <ARGITEM> and <ARGDEF>

tags. This tag is most useful when the arguments to be described are
already listed elsewhere in the reference documentation.

EXAMPLE The following example shows how to use the <ARGTEXT> tag to replace a
pair of <ARGDEF> and <ARGITEM> tags. Note that this tag is restricted to
argument definition lists used in the context of the Routine template.

<ROUTINE SECTION>

<argdeflist>
<argtext>
The arguments to the SYS$NONE routine are identical to those used
by the SYS$NULL routine. See the description of the SYS$NULL routine for
more information on these arguments.
<endargtext>
<endargdeflist>

<endroutine section>

This example produces the following output:

10-71

SOFTWARE Ooctype Tag Reference
<ARGTEXT>

ARGUMENTS

10-72

The arguments to the SYS$NONE routine are identical to those used by
the SYS$NULL routine. See the description of the SYS$NULL routine for
more information on these arguments.

SOFTWARE Doctype Tag Reference
<ARGUMENT>

<ARGUMENT>

Emphasizes an argument name in text.

SYNTAX <ARGUMENT>(argument name)

ARGUMENTS argument name
Specifies an argument name to be emphasized.

related tags • <KEYWORD>

• <VARIABLE>

DESCRIPTION The <ARGUMENT> tag emphasizes an argument name in text. This tag
causes the argument name to appear in an altered font (such as boldface).
However, the tag does not alter the case of its argument.

EXAMPLE The following example shows a sample use of the <ARGUMENT> tag.

<P>
The <ARGUMENT>(newadr) argument to the $ADJSTK function
provides the address of a longword to receive the updated value.

This example produces the following output:

The newadr argument to the $ADJSTK function provides the address of
a longword to receive the updated value.

10-73

SOFTWARE Doctype Tag Reference
<ARG_SEP>

<ARG SEP>

SYNTAX

ARGUMENTS

related tags

Creates a separator character (\) between arguments in the FORMAT section
of a tag description.

<TAG_NAME>(argument-1<ARG_SEP>argument-2)

argument-1
Whenever you specify an argument to a tag, use the <ARG_SEP> tag to
create the argument separator character, the backslash (\).

argument-2
Whenever you specify an argument to a tag, use the <ARG_SEP> tag to
create the argument separator character, the backslash (\).

• <FTAG>

restrictions Valid only in the FORMAT section of a <FTAG> tag description in the Tag
template.

DESCRIPTION The <ARG_SEP> tag creates a separator character (\)between arguments
in the FORMAT section of a tag description.

The <ARG_SEP> tag has no other function than to output the tag separator
character (the backslash) in a Tag template format section.

EXAMPLE The following example shows how to use the <ARG_SEP> tag to separate
the arguments in a tag description that has one required and two optional
arguments.

<format>
<ftag>(ROUTINE\name[<arg sep>infol[<arg sep>info2]])
<endformat> - -

This example produces the following output:

FORMAT <ROUTINE>(name[\ info1[\ info2}])

10-74

<AUTHOR>

SYNTAX

ARGUMENTS

related tags

SOFTWARE Doctype Tag Reference
<AUTHOR>

Places the name of an author and one or two additional lines of information
about the author in the front matter portion of a document processed using
the SOFTWARE.SPECIFICATION doctype.

<AUTHOR> (author name [\ author info-1] [\ author
info-2])

author name
Specifies the name of the author. If you use the author info-n arguments,
this line will be the top line.

author info-n
This is an optional argument. It specifies any additional information
on the author. Information specified as author info-1 is placed above
information specified as author info-2.

• <BYLINE>

• <SIGNATURES>

• The global <FRONT_MATTER> tag

restrictions Available only in the SOFTWARE.SPECIFICATION doctype following the
global <FRONT_MATTER> tag.

DESCRIPTION The <AUTHOR> tag places the name of an author and one or two additional
lines of information about the author in the front matter portion of a
document processed using the SOFTWARE.SPECIFICATION doctype.
This tag accepts two optional arguments to provide additional information
about the author.

If you want a signatory line for the author in the front matter, use the
<BYLINE> and <SIGNATURES> tags. See the reference descriptions of those
tags in this chapter for more information.

10-75

SOFTWARE Doctype Tag Reference
<AUTHOR>

EXAMPLE

<FRONT_MATTER>
<TITLE_PAGE>

The following example shows how to use the <.AUTHOR> tag in the front
matter of a document. Note how the optional second argument to the
<AUTHOR> tag lists the position of the author.

<TITLE>(The NYUC Simulator Reference Manual)
<ORDER_NUMBER>(AA-ZOOOO-TE)
<ABSTRACT>
This manual describes the NYUC Simulator.
This program simulates a conversation between three people
by analyzing the syntactic and semantic components of three
related statements, and then synthesizing statements and responses
based upon these original statements.
<ENDABSTRACT>
<REVISION INFO>(This revision is personally signed.)
<AUTHOR>(Mr. Jones\Research Head, STG Inc.)
<SIGNATURES>
<BYLINE>(Nat Jones\Author)
<DATE>(July 11, 1985)
<PRINT_DATE>(June 1987)
<ENDTITLE PAGE>
<ENDFRONT MATTER>

10-76

<BYLINE>

SYNTAX

ARGUMENTS

related tags

SOFTWARE Doctype Tag Reference
<BYLINE>

Places a name and other optional information below a ruled line in a signature
list processed using the SOFTWARE.SPECIFICATION doctype.

<BYLINE>(name [\additional info])

name
This is an optional argument. It specifies the name of the signatory. This
name is placed under the beginning of the signature line on the left side of
the page.

additional info
Specifies any additional information about the signatory. This information
is placed on the same line as the name argument with an em dash (-)
between the two arguments.

• <AUTHOR>

• <SIGNATURES>

• The global <FRONT_MATTER> tag

restrictions Valid only in the context of the <SIGNATURES> tag.

DESCRIPTION The <BYLINE> tag places a name and other optional information
below a ruled line in a signature list processed using the
SOFTWARE.SPECIFICATION doctype. One use of this tag is to create
an approval line in the front matter of a document and to place the name
of the signatory beneath that line. You can optionally place additional
information about the signer by using the additional info argument.
Additional information formats to the right of the name of the signer, on
the same line, separated by an em dash (-).

Use as many <BYLINE> tags as you want to create approval lines in
the front matter of a document, as long as all these tags follow the
<SIGNATURES> tag. Use the <SIGNATURES> tag to begin all the approval
lines on a separate page of the front matter. See the reference description
of the <SIGNATURES> tag in this section for more information on that tag.

10-77

SOFTWARE Doctype Tag Reference
<BYLINE>

EXAMPLE

<FRONT MATTER>
<TITLE PAGE>

The following example shows three occurrences of the <BYLINE> tag.
The first two occurrences list the positions of the signers using the
optional additional info argument; the third occurrence omits the optional
argument. Note that all three tags follow the <SIGNATURES> tag.

<TITLE>(The NYUC Simulator Reference Manual)
<REVISION INFO>(This revision is personally signed.)
<AUTHOR>(Mr. Jones\Research Head, STG Inc.)
<SIGNATURES>
<BYLINE>(Nat Jones\Author)
<BYLINE>(Cecil Mills\Co-author)
<BYLINE>(Matt Smith)
<DATE>(July 11, 1985)
<PRINT_DATE>(June 1987)
<ENDTITLE PAGE>
<ENDFRONT_MATTER>

10-78

SOFTWARE Doctype Tag Reference
<COMMAND>

<COMMAND>

SYNTAX

ARGUMENTS

related tags

Begins a new command description.

<COMMAND>(command name[\ informational
name]\ symbol name)

command name
Names the command described in the section.

informational name
This is an optional argument. It specifies an optional description of the
command's function.

symbol name
Specifies the name of the symbol used in all references to the command.

Symbol names must not exceed 31 characters and must only contain
alphabetic letters, numbers, or underscores. Do not begin a symbol name
with an underscore.

• <COMMAND_SECTION>

• <SET_TEMPLATE_ARGITEM>

• <SET_TEMPLATE_COMMAND>

restrictions Valid only in the context of the Command template.

DESCRIPTION The <COMMAND> tag to begins a new command description. This
description is for a single command in the context of the <COMMAND_

SECTION> tag. This tag has the following default format:

• Each <COMMAND> tag begins a new page of output.

• Each output page carries a single running title, which is the current
command name.

• If the optional informational name argument is used with the
<COMMAND> tag, this argument will be output after the command
name argument and the two arguments will be separated by an em
dash(-).

use the <SET_ TEMPLATE_ COMMAND> tag to replace the <COMMAND> tag
with a tag specific to your task (for example, <INTERNAL_COMMAND>), or to
change the default attributes of the <COMMAND> tag. See the description of
the <SET_TEMPLATE_COMMAND> tag in this chapter for more information.

10-79

SOFTWARE Doctype Tag Reference
<COMMAND>

EXAMPLES

D <COMMAND_SECTION>
<COMMAND>(OPEN)
<OVERVIEW>

The following example shows a command section begun using the
<COMMAND_SECTION> tag. in this command section, the <COMMAND> tag
begins the command description for the OPEN command.

In the following example, the <COMMAND> tag has two arguments. The
command name, CLOSE, appears at the beginning of the command
description. The text specified in the second argument, Close a File, is
printed on the same line as the command name, separated by an em dash
(-).

<COMMAND SECTION>
<COMMAND>(CLOSE\Close a File)

10-80

SOFTWARE Doctype Tag Reference
<COMMAND_SECTION>

<COMMAND SECTION>

SYNTAX

ARGUMENTS

related tags

Begins a command reference section, enables tags reserved for use in
command sections, and sets paging attributes.

<COMMAND_ SECTION> ([([running-title]
[\ number-prefix]
[\ NEWPAGE])])

running title
This is an optional argument. It specifies a top-level running heading to be
used throughout the command section. If you do not specify this argument,
the running headings are determined as described in Section 10.13.

number prefix
This is an optional argument. It specifies a character-string prefix to
be used to construct page numbers (folios) and formal figure, table, and
example numbers. If you do not specify this argument, the page and
formal element numbering are determined as described in Section 10.13.

NEWPAGE
This is an optional keyword argument. It specifies that the command
section should begin on a new page. This argument is only meaningful in
two cases:

• When you have previously entered the <SET_TEMPLATE_COMMAND> tag
with the NONEWPAGE keyword to specify that each new command in
this command section should not begin on a new page

• When you want to place one or more pages of text between the end of
a part page and the beginning of a command section

• <COMMAND>

• <DESCRIPTION>

• <EXAMPLE_SEQUENCE>

• <FCMD>

• <FORMAT>

• <FPARM>

• <FPARMS>

• <OVERVIEW>

• <PARAMDEFLIST>

• <PROMPTS>

• <QUALDEFLIST>

10-81

SOFTWARE Doctype Tag Reference
<COMMAND_ SECTION>

restrictions

required
terminator

DESCRIPTION

EXAMPLES

D <PART>
<PART_PAGE>

• <RESTRICTIONS>

• <SET_TEMPLATE_ARGITEM>

• <SET_ TEMPLATE_ COMMAND>

• <SET_TEMPLATE_HEADING>

• <SET_TEMPLATE_LIST>

• <SET_TEMPLATE_PARA>

• <SET_TEMPLATE_TABLE>

Valid only in the context of the Command template.

<ENDCOMMAND_SECTION>

The <COMMAND_SECTION> tag begins a new command description. Place
a command section in a chapter or an appendix, or following a part page
(that is, in a document section begun with the <PART_PAGE> tag). You
code a command section in a chapter or an appendix in the same manner;
command sections in parts are handled differently.

If your command section follows a part page, and you include text between
the part page and the command section, specify the NEWPAGE keyword
as the third argument to the <COMMAND_SECTION> tag. This causes the
command section to begin on a new page. The following code fragment
shows a command section that begins on a new page:

<COMMAND_SECTION>(\CD\NEWPAGE)

The following example shows how to begin a command section in a
document part.

<TITLE>(Part III\Command Dictionary)
<ENDPART PAGE>(RENUMBER)
<COMMAND=SECTION>(Command Dictionary\CD)
<SET_TEMPLATE_COMMAND>(DCL_COMMAND)

<DCL_COMMAND>(GOTO)
<OVERVIEW>
Transfers control to a labeled statement in a command procedure.
<ENDOVERVIEW

<ENDCOMMAND SECTION>

10-82

SOFTWARE Doctype Tag Reference
<COMMAND_SECTION>

The tags in the previous example perform the following functions:

• The global <PART> tag begins the part.

• The global <PART_PAGE> tag creates a part page.

• The global <TITLE> tag is used in the context of the <PART_PAGE> tag to
create a title on the part page.

• The RENUMBER argument to the global <ENDPART_PAGE> tag specifies
that the pages should be renumbered beginning with the part page.
This causes the first page of text following the part page to be
numbered page 3 (page 1 is the unnumbered page the part page
title is placed on, page 2 is the back of page 1, and page 3 is the first
numbered page after the part page).

• The <COMMAND_SECTION> tag begins the command section and specifies
the running title Command Dictionary as the running title for the
command section. If the <SET_TEMPLATE_COMMAND> tag were used
with the DOUBLERUNNINGHEADS argument, the title Command
Dictionary would be used as the top running title.

The <COMMAND_SECTION> tag also specifies that the prefix CD should
be used to construct numbers for pages and for formal figures, tables,
and examples in the command section (for example, CD-11, CD-32,
Table CD-1, Example CD-2, and so on).

• The <SET_TEMPLATE_COMMAND> tag specifies that all command
descriptions in this command section will be identified using the
<DCL_COMMAND> tag rather than the default <COMMAND> tag. The
<DCL_COMMAND> tag will have the default attributes of the <COMMAND>

tag.

The following example shows how to create a command section in which
each command description (begun with a <COMMAND> tag) is in a separate
SDML file, and all these descriptions are included into a primary command
description file. For example, the file MYCOM.SDML contains the
following SDML tags:

<INCLUDE>(CLOSE.SDML)
<INCLUDE>(OPEN.SDML)
<INCLUDE>(READ.SDML)
<INCLUDE>(WRITE.SDML)

Each of the included files contains one command reference description
begun with a <COMMAND> tag. For these files to process correctly, you
must precede them with the <COMMAND_SECTION> tag, which enables
the <COMMAND> tag. These files can have the necessary tags processed
before them by specifying the /INCLUDE qualifier on the command line to
include a startup definition file.

10-83

SOFTWARE Doctype Tag Reference
<COMMAND _SECTION>

<COMMAND SECTION>(Command Dictionary\CD)
<SET_TEMPLATE_COMMAND>(COMMAND\DOUBLERUNNINGHEADS)

10-84

If this startup file were named CM_DCT_ST_UP.SDML, it could be
included using the DOCUMENT /INCLUDE qualifier, as in the following
example:

$DOCUMENT mycom SOFT.REF LN03 /INCLUDE=CM_DCT_ST_UP.SDML

When each individual file in MYCOM.SDML is processed, the correct
sequence of tags will be read in to begin the command section.

Process multiple files together by using the <INCLUDE> tag to include them
into a single master file (such as MYCOM.SDML), or include them into a
bookbuild profile.

Use the <ELEMENT> tags to include multiple fil~s into a profile. For
example, the bookbuild profile file CDPRO.SDML could contain the
following tags:

<PROFILE>
<ELEMENT>(CLOSE.SDML)
<ELEMENT>(OPEN.SDML)
<ELEMENT>(READ.SDML)
<ELEMENT>(WRITE.SDML) <COMMENT>(contains <ENDCOMMAND_SECTION> tag)
<ENDPROFILE>

Note that the PROFILE file includes the <ENDCOMMAND_SECTION> tag in
the appropriate file, so that the template terminates and the book builds
correctly.

SOFTWARE Doctype Tag Reference
<CONSTRUCT>

<CONSTRUCT>

SYNTAX

ARGUMENTS

related tags

restrictions

DESCRIPTION

EXAMPLE

<statement format>

Specifies a variable construct and gives its expansion.

<CONSTRUCT>[(construct name)]

construct name
This is an optional argument. It specifies the name of a construct. If
you omit this argument, text following the <CONSTRUCT> tag formats as if
you had specified text. The text is set at the same margin as additional
construct items.

• <CONSTRUCT_LIST>

• <STATEMENT_LINE>

Valid only in the context of the <STATEMENT_FORMAT> tag in the Statement
template.

The <CONSTRUCT> tag specifies a variable construct and gives its
expansion.

The following example shows statement format for a statement with a
single construct list. Note the use of <LIST> tags to specify the output and
the <KEYWORD> tag to control the representation of programming keywords
in variable name text.

<FCMD>(REMAP) <FPARMS>((map nam) remap item,<hellipsis>)
<construct list>(remap item:)
<construct>(remap item:)<list>(stacked\braces)

<le>num vbl nam
<LE>str array nam ([int exp,<hellipsis>]) [= int exp]
<LE>[data type] <keyword>(FILL) [(int exp)] [= int exp
<LE><keyword>(FILL%) [(int exp)]
<LE><keyword>(FILL$) [(int exp)] [=int exp]
<endlist>

<endconstruct_list>
<endstatement format>

This example produces the following output:

10-85

SOFTWARE Doctype Tag Reference
<CONSTRUCT>

Format

REMAP (map nam) remap item, ...

10-86

num vblnam
str array nam ([int exp, . . .])[= int exp]

remap item: [data type] FILL [(int exp)] [=int exp]
FILL 0/o [(int exp)]
FILL$ [(int exp)][=int exp]

SOFTWARE Doctype Tag Reference
<CONSTRUCT _LIST>

<CONSTRUCT LIST>

SYNTAX

ARGUMENTS

related tags

Begins a list of construct items and definitions that expand on variables
specified in the context of the <STATEMENT_FORMAT> tag.

<CONSTRUCT_ LIST> (construct name)

construct name
Specifies the text of the longest name referenced in the construct list; that
is, a name specified as an argument to <CONSTRUCT>.

• <CONSTRUCT>

• <STATEMENT_LINE>

restrictions Valid only in the context of a <STATEMENT_FORMAT> tag section in the
Statement template.

required <ENDCONSTRUCT_LIST>

terminator

DESCRIPTION The <CONSTRUCT_LIST> tag begins a list of construct items and definitions
that expand on variables specified in the context of the <STATEMENT_
FORMAT> tag. A construct list is a set of semantic rules for a
programming language. Each item in a construct list is a semantic entity
that may expand to one or more sets of additional constructs or entities.
Using the global <LIST> tag in a construct list in a statement section,
you can present the semantic rules for language statements in a highly
structured way.

EXAMPLES The following are two examples of various uses of the <CONSTRUCT_
LIST>tag in the context of the <STATEMENT_FORMAT> tag. Output from
these coding examples appear after the last input example.

10-87

SOFTWARE Doctype Tag Reference
<CONSTRUCT _LIST>

D

The following example shows a construct list with only one construct.

<statement format>
<fcmd>(<list>(stacked\braces)
<le>COM
<le>COMMON<endlist>) <fparms>([(com nam)] {[data type] com item },<hellipsis>)
<construct list>(com item:)
<construct>(com item:)
<list>(stacked\braces)
<le><VARIABLE>(num unsubs vbl nam)
<le><VARIABLE>(num array nam (int const,<hellipsis>))
<le><VARIABLE>(str unsubs vbl nam =int const)
<le><VARIABLE>(str array nam (int const,<hellipsis>) [=int const])
<le><VARIABLE>(<keyword>(FILL) [(int const)] [=int const])
<le><VARIABLE>(<keyword>(FILL%) [(int const)])
<le><VARIABLE>(<keyword>(FILL$) [(int const) J [=int const])
<endlist>
<endconstruct list>
<endstatement format>

The following example illustrates a construct list with more than one
construct. The argument to the <CONSTRUCT_LIST> tag sets the margins for
the individual items identified by <CONSTRUCT> tags. Note that the text of
the longest item, formal param:, is specified.

~ <FCMD>(<list>(stacked\braces)
<le>END SUB
<le>SUBEND<endlist>) <FPARMS>()

<construct list>(formal param:)
<construct>(pass mech:)<list>(stacked\braces)

<le><keyword>(BY DESC)
<le><keyword>(BY REF)<endlist>

<construct>(formal param:)
[data type J <list>(stacked\braces)

<le>unsubs vbl nam
<le>array nam (<list>(stacked\brackets)

<endconstruct list>
<endstatement format>

<le>int const
<le><keyword>(,)<endlist>
<list>(stacked)
<le><keyword>(,<hellipsis>)
<le><keyword>(<hellipsis>)<endlist>)<endlist>

The SDML examples produce the following output:

10-88

SOFTWARE Doctype Tag Reference
<CONSTRUCT_LIST>

Format

{ gg:MON } [(com nam)] {[data type] com item}, ...

num unsubs vb/ nam
num array nam (int const, ...)
str unsubs vb/ nam = int const

com item: str array nam (int const, . . .) [= int const]
FILL [(int const)][= int const]

Format

{
E,, ND SUB }
SU BEND

pass mech:

FILL o/o [(int const)]
FILL$ [(int const)][= int const]

{
BYDESC}
BYREF ,

J unsubs vb/ nam

formal param: [data type] l array nam ([:nt canst] [• ." ." .'
]J l

10-89

SOFTWARE Doctype Tag Reference
<CPOS>

<CPOS>

SYNTAX

ARGUMENTS

related tags

DESCRIPTION

EXAMPLE

<P>

Marks the cursor position in a screen display.

<CPOS> (placement character)

placement character
Specifies the character occupying the position of the cursor. This character
can be a blank space.

• <DISPLAY>

• <KEY>

• <KEY_SEQUENCE>

The <CPOS> tag marks the cursor position in a screen display. It places a
special character in the screen display.

The following example shows how to use the <CPOS> tag to indicate a
cursor's position. In this case the cursor is placed on the letter X in the
directory specification [TRXTFILES].

To correct the file specification, move the
cursor to the incorrect letter as shown in the following example:
<DISPLAY>

$ COPY ABC.TXT, [TR<CPOS>(X)TFILES]
<ENDDISPLAY>

10-90

This example produces the following output:

To correct the file specification, move the cursor to the incorrect letter as
shown in the following example:

$ COPY ABC.TXT [T~TFILES]

SOFTWARE Doctype Tag Reference
<DELETE_KEY>

<DELETE KEY>
Creates a special character resembling a DELETE key on a keyboard.

SYNTAX <DELETE KEY>

ARGUMENTS None.

related tags • <GRAPHIC>

• <KEY>

DESCRIPTION The <DELETE_KEY> tag creates a special character resembling a DELETE
key on a keyboard.

EXAMPLE The following example shows how to use the <DELETE_KEY> tag to create
the delete key symbol.

<P>
Press the DELETE key (<DELETE_KEY>) to delete the text.

This example produces the following output:

Press the DELETE key (<KI) to delete the text.

10-91

SOFTWARE Doctype Tag Reference
<DESCRIPTION>

<DESCRIPTION>

SYNTAX

ARGUMENTS

related tags

Begins a section of descriptive text providing detailed information on the
current reference element.

<DESCRIPTION>[(alternate heading)]

alternate heading
This is an optional argument. It specifies a heading. The default heading
is Description. For information on how to modify the default headings for
all subsequent <DESCRIPTION> tags, refer to the description of the <SET_
TEMPLATE_HEADING> tag in this section.

• <OVERVIEW>

• <SET_TEMPLATE_HEADING>

• Any reference element tag: <COMMAND>, <ROUTINE>, <STATEMENT>,

<FUNCTION>, or <SDML_TAG>

restrictions Valid only in the context of a reference template. Valid only in the context
of a reference section tag: <COMMAND_SECTION>, <ROUTINE_SECTION>,

<STATEMENT_SECTION>, or <TAG_SECTION>.

required <ENDDESCRIPTION>

terminator

DESCRIPTION The <DESCRIPTION> tag begins a section of descriptive text providing
detailed information on the current reference element. It separates and
labels detailed descriptive text concerning the current reference element
(command, routine, and so on). This text can describe the following aspects
of the reference element:

10-92

• Suggested use

• Special considerations

• Use with other reference elements

Do not use a <P> tag immediately after the <DESCRIPTION> tag. The
<DESCRIPTION> tag generates the initial open line so that you need only
begin typing the first paragraph of text.

SOFTWARE Doctype Tag Reference
<DESCRIPTION>

EXAMPLE The following example shows a sample use of the <OVERVIEW> and
<DESCRIPTION> tags in the context of the Command template. The
Command template <COMMAND> tag and the global <FORMAT> and
<PARAMDEFLIST> tags are included to make a more complete example.
Notice that the <COMMAND> tag forces a page break by default.

<COMMAND_SECTION>
<COMMAND>(SET TIME)
<OVERVIEW>
Resets the system time to the time specified as a parameter to this command.
<END OVERVIEW>
<format>(Syntax)
<FCMD>(SET TIME)
<FPARMS>(time specification)
<ENDFORMAT>
<PARAMDEFLIST>
<PARAMITEM>(time specification)
<PARAMDEF> Specifies the time to which the system should be set.
<ENDPARAMDEFLIST>
<DESCRIPTION>
The SET TIME command resets the system time to the time specified as a
parameter to this command. You generally use this command to reset the
system clock on your VMS system, for example to allow for daylight
savings time and other such events.
<ENDDESCRIPTION>
<ENDCOMMAND SECTION>

10-93

SOFTWARE Doctype Tag Reference
<DISPLAY>

<DISPLAY>

SYNTAX

ARGUMENTS

related tags

restrictions

required
terminator

10-94

Simulates the appearance and position of characters on a terminal screen.

<DISPLAY>(disp/ay text)

KEEP
<DISPLAY>[(WIDE[\ MAXIMUM])]

display text
Specifies a display fragment you want to insert into your text. If you do
not specify this argument, the <ENDDISPLAY> tag is required.

KEEP
This is an optional keyword argument. It specifies that the display
example should be placed on the next page rather than breaking it
between the current page and the next page. If the display example is
longer than a single page, it breaks between the current page and the next
page.

WIDE
This is an optional keyword argument. It specifies a wide display that
may exceed the normal right margin of the text.

MAXIMUM
This is an optional keyword argument. It specifes that the example may
require adjustment to fit in the bounds of the text page. May be used only
with the WIDE keyword. Using this argument may result in the display
text being output in a smaller type face.

• <SYNTAX>

• The global <INTERACTIVE> tag

• The global <VALID_BREAK> tag

You cannot use tab characters, index tags (such as <X> and <Y>), text
element tags (such as <P>, <LIST>, or <NOTE>), or the <MATH> tag in any
example.

<ENDDISPLAY> Required if you do not specify the display example as the
display text argument.

DESCRIPTION

EXAMPLES

D <P>

SOFTWARE Doctype Tag Reference
<DISPLAY>

The <DISPLAY> tag simulates the appearance and position of characters
on a terminal screen. This tag lets you create display examples either as
fragments in text or as extended examples. Such display examples are
distinguished typographically from the surrounding text upon output.

To place a display fragment in the text of your document, specify the
display text argument as the only argument to the <DISPLAY> tag and do
not specify the <ENDDISPLAY> tag. This format is shown first in the format
section of the <DISPLAY> tag.

If you have a long display example that you want to appear distinctly
separate from the text of your document, place the text for the example
between the <DISPLAY> and <ENDDISPLAY> tags. This format is shown
second in the format section of the <DISPLAY> tag.

Display examples specified in this way retain all spaces and line breaks as
entered. This lets you position the text in the example so that it appears
similar to a terminal screen display. When you specify display examples in
this form, you use the KEEP, WIDE, and MAXIMUM keyword arguments
to control the formatting of your example.

If you have an especially long display example, you may want to use the
<VALID_BREAK> tag in your example to indicate where a page may break.

The following example shows a display example that uses the <DISPLAY>

and <ENDDISPLAY> tags. Note the use of the KEEP keyword to ensure that
the display example is not broken across the page.

The operating system indicates success with the following
message:
<DISPLAY>(KEEP)

Welcome to VAX/VMS Version 5.2
Username:

<ENDDISPLAY>

This example produces the following output:

The operating system indicates success with the following message:

Welcome to VAX/VMS Version 5.2

Username:

The following example shows the <DISPLAY> tag used to create a display
fragment in text. Note that the <ENDDISPLAY> tag is omitted and that no
keywords to the <DISPLAY> tag can be specified.

~ <P>The message <DISPLAY>(Welcome to VAX/VMS Version 5.2)
is issued by default when a user presses RETURN.

This example produces the following output:

The message Welcome to VAX I VMS Thrsion 5.2 is issued by default when
a user presses RETURN.

10-95

SOFTWARE Doctype Tag Reference
<DOCUMENT_ATTRIBUTES>

<DOCUMENT ATTRIBUTES>

Enables doctype-specific tags that override the default design format of the
SOFTWARE doctype.

SYNTAX <DOCUMENT ATTRIBUTES>

ARGUMENTS None.

required <ENDDOCUMENT_ATTRIBUTES>

terminator

DESCRIPTION The <DOCUMENT_ATTRIBUTES> tag enables doctype-specific tags that
override the default design format of the SOFTWARE doctype. This
tag can be used in three doctypes:

10-96

• ARTICLE

• REPORT

• SOFTWARE

The <DOCUMENT_ATTRIBUTES> tag enables a group of tags in each of
these doctypes that allow you to modify the default format of that
doctype. These tags are recognized only in the context of the <DOCUMENT_

ATTRIBUTES> tag. If other VAX DOCUMENT tags occur in this context,
they are ignored just as if they had occurred in the context of a <COMMENT>

tag.

Typically, use the <DOCUMENT_ATTRIBUTES> tag at the beginning of an
input file (or in a file specified using the /INCLUDE qualifier in the
DOCUMENT command line) to alter the default format of a doctype for
the processing of that entire file.

Table 10-12 summarizes the formatting tags enabled by the <DOCUMENT_

ATTRIBUTES> tag in the SOFTWARE doctypes.

SOFTWARE Doctype Tag Reference
<DOCUMENT _ATTRIBUTES>

Table 10-12 Doctype-specific Tags Enabled by the <DOCUMENT_ATTRIBUTES> Tag

Formatting Tags

<SET_RUNNING_ TITLES>(BY _HEADONE)

Description

The <SET_RUNNING_ TITLES> tag specifies that the
running title at the top of each page is composed of
two lines: the first line is the title of the chapter,
and the second line is the heading text of the
current <HEAD1> tag. Note that the argument
BY _HEADONE is required.

By default, the chapter title is used as a single-line
running title.

EXAMPLE The following example of a file processed with the SOFTWARE doctype
shows how you specify a 2-line running title using the <SET_RUNNING_
TITLES> tag. This title has the title of the current chapter as the first line,
and the heading text of the current <HEADl> t'ag as the second line.

<DOCUMENT ATTRIBUTES>
<SET_RUNNING_TITLES>(BY_HEADONE)
<ENDDOCUMENT ATTRIBUTES>

10-97

SOFTWARE Doctype Tag Reference
<EXAMPLE_SEQUENCE>

<EXAMPLE SEQUENCE>

SYNTAX

ARGUMENTS

related tags

Begins a numbered sequence of informal examples.

{

EXAMPLE }
<EXAMPLE_SEQUENCE>[(heading text

NOHEAD
\NONUMBER)]

EXAMPLE
This is an optional keyword argument. It causes the singular heading
Example to be output. It also suppresses numbering of the example. Use
this argument when you supply only one example.

heading text
This is an optional argument. It causes the specified text to be used as a
heading rather than the default heading Examples.

NOHEAD
This is an optional keyword argument. It suppresses the output of a
heading for the section.

NON UMBER
This is an optional keyword argument. It suppresses numbering of
the examples. When EXAMPLE is supplied as the first argument, the
NONUMBER argument is unnecessary.

• <EXAMPLES_INTRO>

• <EXC>

• <EX!>

• <EXTEXT>

required <ENDEXAMPLE_SEQUENCE>

terminator

DESCRIPTION The <EXAMPLE_SEQUENCE> tag begins a numbered sequence of informal
examples. Use this tag (and the tags it enables to create the examples)
inside or outside the reference templates.

10-98

Even though the examples are numbered, they are generally not referred
to by these numbers. Instead, explanatory text directly follows each
example. The example sections in this chapter provide examples of output
from the <EXAMPLE_SEQUENCE> tag.

EXAMPLE

SOFTWARE Doctype Tag Reference
<EXAMPLE_ SEQUENCE>

Following the <EXAMPLE_SEQUENCE> tag, each example begins with either
the <EXC> or <EXI> tags. Use the <EXC> tag to present code examples; use
the <EXI> tag to present interactive examples. Use the <EXTEXT> tag to
terminate an example begun using the <EXI> or <EXC> tags and to begin
the text that explains the example.

For some doctypes the <EXC> and <EXI> tags use the full page width, which
causes the example to begin on the far left of the page. The <EXTEXT> tag,
however, causes the text to be left justified at the normal text margin.

The following example shows two short interactive examples, a code
example, and their explanatory text. The <8> and <U> tags label the
system and user portions of the interaction.

<example sequence>(Debugging Examples)
<exi><s>(DBG>)<u>(SCROLL/LEFT)
<extext>This command scrolls the screen left by 8 spaces or columns.
<exi><s>(DBG>)<u>(SCROLL/UP:4)
<extext>This command scrolls 4 lines up through the display.
<exc>PSL: CMP TP FPD IS CURMOD PRVMOD IPL DV FU IV TN Z V C

0 0 0 0 USER USER 0 0 0 1 0 0 0 0

<ext ext>

!Display formatted the PSL.
!All bits are cleared.

This shows you the contents of the PSL after issuing the EXAMINE command.
<endexample_sequence>

DEBUGGING
EXAMPLES

D DBG> SCROLL/LEFT

~ DBG> SCROLL/UP:4

This example produces the following output:

This command scrolls the screen left by 8 spaces or columns.

This command scrolls 4 lines up through the display.

S PSL: CMP TP FPD IS CURMOD PRVMOD IPL DV FU IV TN Z V C
0 0 0 0 USER USER 0 0 0 1 0 0 0 0

!Display formatted the PSL.
!All bits are cleared.

This shows you the contents of the PSL after issuing the EXAMINE
command.

10-99

SOFTWARE Doctype Tag Reference
<EXAMPLES INTRO>

<EXAMPLES INTRO>

SYNTAX

ARGUMENTS

related tags

restrictions

DESCRIPTION

EXAMPLE

Provides introductory text before an example.

<EXAMPLES INTRO>

None.

• <EXAMPLE_SEQUENCE>

• <EXC>

• <EXI>

• <EXTEXT>

Available only in the context of the <EXAMPLE_SEQUENCE> tag.

The <EXAMPLES_INTRO> tag provides introductory text before an example.

The following example shows introductory text to two interactive examples
and their explanatory text.

<EXAMPLE_SEQUENCE>(Debugging Examples)
<EXAMPLES INTRO>
The following examples show various uses of the DBG Utility:
<EXI><S>(DBG>)<U>(SCROLL/LEFT)
<EXTEXT>
This command scrolls the screen left by 8 spaces or columns.
<EXI><S>(DBG>)<U>(SCROLL/UP:4)
<EX TEXT>
This command scrolls 4 lines up through the display.
<ENDEXAMPLE_SEQUENCE>

DEBUGGING
EXAMPLES
D DBG>SCROLL/LEFT

~ DBG>SCROLL/UP:4

10-100

This example produces the following output:

The following examples show various uses of the DBG Utility:

This command scrolls the screen left by 8 spaces or columns.

This command scrolls 4 lines up through the display.

<EXC>

SYNTAX

ARGUMENTS

related tags

restrictions

SOFTWARE Doctype Tag Reference
<EXC>

Begins a code example in a series of numbered informal examples.

<EXC>

None.

•
•
•
•
•

<EXAMPLE_SEQUENCE>

<EXAMPLES_INTRO>

<EXI>

<EXTEXT>

The global <CODE_EXAMPLE> tag

• Valid only in the context of the <EXAMPLE_SEQUENCE> tag.

• The first line of the code example must be on the same source file line
as the <EXC> tag.

• Indexing tags such as <X> and <Y> tags are invalid in the context of the
code example.

required <EXTEXT>

terminator

DESCRIPTION The <EXC> tag begins a code example in a series of numbered informal
examples. The text following the <EXC> tag is treated as the text of the
code example until you terminate that example with the <EXTEXT> tag.

EXAMPLE

use the <EXC> and <EXTEXT> tags much like the global <CODE_EXAMPLE>

and <ENDCODE_EXAMPLE> tags, with the exception that when using the
<EXC> tag to begin a code example, the first line of the code example text
must be on the same source file line as the <EXC> tag. This ensures that
the code example formats correctly on the page.

See the example in the <EXAMPLE_SEQUENCE> tag description.

10-101

SOFTWARE Doctype Tag Reference
<EXI>

<EXI>

SYNTAX

ARGUMENTS

related tags

restrictions

Begins an interactive example in a series of numbered informal examples.

<EXI>

None.

• <EXAMPLE_SEQUENCE>

• <EXC>

• <EXTEXT>

• The global <INTERACTIVE> tag

• The global <S> tag

• The global <U> tag

• Valid only in the context of the <EXAMPLE_SEQUENCE> tag.

• The first line of the interactive example must be on the same source
file line as the <EXI> tag.

required <EXTEXT>

terminator

DESCRIPTION The <EXI> tag begins an interactive example in a series of numbered
informal examples. The text following the <EXI> tag is taken as the text of
the interactive example until that example is terminated by the <EXTEXT>

tag. Use the global <U> and <S> tags in the context of the <EX!> tag in the
same way they are used in the context of the global <INTERACTIVE> tag.

The <EXI> and <EXTEXT> tags can be used just like the <INTERACTIVE> and
<ENDINTERACTIVE> tags, with the exception that when using the <EXI> tag
to begin an interactive example, the first line of the interactive example
text must be on the same source file line as the <EXI> tag. This ensures
that the interactive example formats correctly on the page.

EXAMPLE The following example shows how to use the <EXI> tag in the context of the
<EXAMPLE_SEQUENCE> tag to begin an interactive example.

10-102

SOFTWARE Doctype Tag Reference
<EXI>

To produce a space between the DCL prompt and the user-entered
command, include the space in the argument to the <8> tag.

<EXAMPLE SEQUENCE>(DCL Examples)
<EXI><S>C$)<U>(SHOW TIME)
<8>(16-APR-1984 15:18:44)
<EXTEXT>This example shows how to use the DCL command SHOW TIME to
request a display of the date and time.
<ENDEXAMPLE_SEQUENCE>

$ SHOW TIME
16-APR-1984 15:18:44

This example produces the following output:

This example shows how to use the DCL command SHOW TIME to
request a display of the date and time.

10-103

SOFTWARE Doctype Tag Reference
<EXTEXT>

<EXTEXT>

SYNTAX

ARGUMENTS

related tags

Terminates an example and begins an explanation in a sequence of numbered
examples.

<EXTEXT>

None.

• <EXAMPLES_INTRO>

• <EXC>

• <EXI>

restrictions Required in the context of an <EXAMPLE_SEQUENCE> tag.

DESCRIPTION The <EXTEXT> tag terminates an example and begins an explanation

EXAMPLE

10-104

in a sequence of numbered examples. In an <EXAMPLE_SEQUENCE> tag
section, each numbered example begins with either the <EXC> or <EXI> tag,
depending on whether you want a code example or an interactive example.
You terminate both kinds of examples with the <EXTEXT> tag, which labels
the beginning of the text that explains the previous example.

Use the <EXAMPLES_INTRO> tag to place explanatory text before the first
example in the example sequence. See the description of the <EXAMPLES_

INTRO> tag for more information.

See the examples in the <EXAMPLE_SEQUENCE> and <EXI> tag descriptions.

<FARG>

SYNTAX

ARGUMENTS

related tags

SOFTWARE Doctype Tag Reference
<FARG>

Adds a single argument line to a list of arguments in a routine syntax format
section.

<FARG>(argument name)

argument name
Specifies a single-line item to be formatted for a routine's argument list.

• <FARGS>

• <FFUNC>

• <FORMAT>

• <FRTN>

• <ROUTINE_SECTION>

restrictions Valid only in the context of the <FORMAT> tag following an <FRTN> tag and
an <FARGS> tag sequence.

DESCRIPTION The <FARG> tag adds a single argument line to a list of arguments in a
routine syntax format section.

10-105

SOFTWARE Doctype Tag Reference
<FARG>

EXAMPLE

<format>

The following example shows how to use the <FARG> tag to format a
routine that allows a number of keyword arguments, each of which may
specify several values.

<frtn>($FAB)<fargs>(ALQ =allocation quantity,)
<farg>(BKS =bucket size,)
<farg>(DEQ =extension quantity,)
<farg>(DNA =default filespec address,)
<farg>(FNA = filespec string address,)
<farg>(ORG = <list>(stacked\braces)

<le> REL
<le> SEQ
<le>IDX<endlist>,)

<farg>(RAT = <list>(stacked\braces)
<le>CR
<le><BLK FTN>
<le>PRN<endlist>,)

<farg>(RTV =window size,)
<farg>(SHR = <list>(stacked)

<le><PUT GET DEL
<le>UPD NIL MSE UPI><endlist>,)

<farg>(XAB = xab address)
<endformat>

FORMAT
SAMPLE

10-106

This example produces the following output:

$FAB ALO = allocation quantity,
BKS = bucket size,
DEQ = extension quantity,
DNA = default filespec address,
FNA = filespec string address,

ORG= { ~~~ }'
/DX

RAT= { ~;LK FTN> }'
PRN

RTV = window size,

SHR = { ~~~7t~~itPI> }•
XAB = xab address

<FARGS>

SYNTAX

ARGUMENTS

related tags

restrictions

DESCRIPTION

SOFTWARE Doctype Tag Reference
<FAR GS>

Provides the argument portion of a routine syntax statement in the context of
the <FORMAT> tag.

<fARGS>(argument list[\ STACK])

argument list
Lists the routine arguments. If there are no arguments, specify the
argument list as null in the following way:

<FRTN>($HIBER) <FARGS>()

Parameters specified in this argument differ on output from parameters
specified using the second argument to the <FRTN> tag. For distinctions
between these output differences, see the Examples section in the <FRTN>
tag description.

STACK
This is an optional keyword argument. It specifies that the routine's
argument list is not formatted on the same line as the routine name, but
placed on the next line.

This keyword is required only for long routine names in certain doctypes.
See if the output looks wrong before you use this argument.

• <FARG>

• <FFUNC>

• <FRTN>

Use the <FARGS> tag with the <FRTN> tag in the context of the <FORMAT>

tag in the Routine template.

The <FARGS> tag provides the argument portion of a routine syntax
statement in the context of the <FORMAT> tag.

When you use this tag to contain an argument list with multiple words
or text strings, enter blank spaces between the words and text strings
(including punctuation) according to the syntax rule of the routine you
are describing. If the parameter list argument text does not fit on one
line, suitable line breaks are chosen based on the presence of spaces.
Hyphenated text is not broken across lines.

Select explicit line breaks in an argument list by using the <FARG> tag.

10-107

SOFTWARE Doctype Tag Reference
<FARGS>

EXAMPLES The following examples show how to use the <FARG> tag to code a format
argument list in the context of a <FORMAT> tag in a routine section.

In the first example, the <FARGS> tag specifies a long argument list. By
convention, if routine arguments are normally delimited by commas, you
should place blank spaces in your SDML file preceding the commas. This
allows suitable page breaks to be chosen during page composition.

D <FRTN>(LIB$CRF OUTPUT) <FARGS>(ctl tbl ,width ,pagl
,pag2 ,mode ind ,del sav ind)

SYNTAX

This example produces the following output:

LIB$CRF _OUTPUT ct/ tbl ,width ,pag1 ,pag2 ,mode ind
,de/ sav ind

The following example shows how to position an argument list when
a routine name is very long. You will want to use this form only if
examination of your output indicates a formatting problem.

<FRTN>(SMG$BEGIN PASTEBOARD UPDATE)
<FARGS>(pasteboa;d id\stack)

SYNTAX

10-108

This example produces the following output:

SMG$BEGIN_PASTEBOARD _UPDATE
pasteboard id

<FCMD>

SYNTAX

ARGUMENTS

related tags

restrictions

DESCRIPTION

SOFTWARE Doctype Tag Reference
<FCMD>

Specifies a statement or function keyword and an optional parameter list in
the context of the <STATEMENT_FORMAT> tag.

<FCMD>(statement keyword[\ parameter list])

statement keyword
Specifies the name of the first part of the format statement; typically, this
is the principal statement name or the function name. This text outputs
in the left portion of the format description.

parameter list
This is an optional argument. It specifies one or more parameters of
the statement or function keyword. This text outputs to the right of the
statement or function in the format description with no space between the
statement keyword and the parameter list text.

Parameters you specify using the parameter list argument are output
differently than parameters specified using the <FPARMS> tag. See the
examples in this tag description for illustrations of these differences.

• <COMMAND_SECTION>

• <FORMAT>

• <FPARMS>

• <STATEMENT_FORMAT>

• Valid only in the context of the <FORMAT> or <STATEMENT_FORMAT> tags
in the Statement template.

• If you do not provide a second argument to the <FCMD> tag, you should
explicitly declare the absence of parameters by using the <FPARMS> tag
as follows:

<FCMD>(STATEMENT KEYWORD) <FPARMS>()

If you do not specify a second argument to the <FCMD> tag and the
<FPARMS> tag is not specified, VAX DOCUMENT issues a warning
message.

The <FCMD> tag specifies a statement or function keyword and an optional
parameter list in the context of the <STATEMENT_FORMAT> tag. Use
the parameter list argument to this tag to create a list of one or more
parameters that format with no space between the statement or function
keyword and the parameter list.

10-109

SOFTWARE Doctype Tag Reference
<FCMD>

EXAMPLES

Use the <FPARMS> tag in conjunction with the <FCMD> tag to create a
statement format with the statement or function keyword and the one or
more parameters separated by a space.

If the text of the parameter list argument does not fit on a single line in the
statement format section, the text formatter selects suitable line breaks
based on the presence of spaces in the parameter list text. Hyphenated
text is not broken across lines.

The following are five examples of various uses of the <FCMD> tag in
the context of the <STATEMENT_FORMAT> tag. Output from these coding
examples appear after the last input example.

The first input example specifies a statement keyword with no parameters.
Use the <FPARMS> after the <FCMD> to explicitly specify the absence of any
parameters.

D <STATEMENT FORMAT>
<FCMD>(EXIT) <FPARMS>()
<ENDSTATEMENT FORMAT>

The second input example also specifies a statement keyword with no
parameters. This coding, however, specifies a null second argument to the
<FCMD> tag rather than using the <FPARMS> tag to explicitly specify the
absence of any parameters.

<STATEMENT FORMAT>
<FCMD>(EXIT\)
<ENDSTATEMENT FORMAT>

The third input example specifies both the statement keyword and the
parameter list arguments to the <FCMD> tag. Note in the output sample
how these two arguments format together with no intervening spaces.

<STATEMENT FORMAT>
<FCMD>(RETURN\ident_field, numeric_field)
<ENDSTATEMENT FORMAT>

The fourth input example specifies a statement keyword with a single
parameter using the <FCMD> and <FPARMS> tags. Note that coding the
parameters using the <FPARMS> tag outputs a space between the command
keyword and the parameter.

m <STATEMENT FORMAT>
<FCMD>(RECORD) <FPARMS>(rec nam)
<ENDSTATEMENT FORMAT>

10-110

The fifth input example specifies the <FCMD> tag using the global
<KEYWORD> tag as part of the parameter list argument text. Note how
the global <KEYWORD> tag alters the output.

SOFTWARE Doctype Tag Reference
<FCMD>

<STATEMENT FORMAT>
<FCMD>(RETURN\ident_field, numeric_field,<keyword>([/LENGTH]))
<ENDSTATEMENT FORMAT>

Format

EXIT

Format

Format

These input examples produce the following outputs:

RETURNident_tield, numeric_field

Format

RECORD rec nam

Format

RETURNident_fie/d, numeric_field,[/LENGTH]

10-111

SOFTWARE Doctype Tag Reference
<FFUNC>

<FFUNC>

SYNTAX

ARGUMENTS

related tags

Labels a function in the context of a <FORMAT> or <STATEMENT_FORMAT> tag
section.

FFUNC { function name[\ arg list] }
< > (return value \ function name[\ arg list])

function name
Specifies the name of the function.

arg list
This is an optional argument. It specifies the function's argument list.

return val
This is an optional argument. It specifies a variable name to which a
function returns its value.

• <STATEMENT_FORMAT>

restrictions Valid only in the context of the <STATEMENT_FORMAT> tag in the Statement
template.

DESCRIPTION The <FFUNC> tag labels a function in the context of a <FORMAT> or
<STATEMENT_FORMAT> tag section. The <FFUNC> tag lets you create a
syntax that includes the following:

EXAMPLES

<STATEMENT FORMAT>

• The name of the function

• The return value of the function

• Any arguments that the function may require

The following two input examples show various uses of the <FCMD> tag
in the context of the <STATEMENT_FORMAT> tag. Output from these coding
examples appear after the second input example.

The first input example shows a statement format in which a function has
several forms.

I
<ffunc>(real vbl\=ABS<VARIABLE>((real exp)))
<ENDSTATEMENT FORMAT>

The second input example shows the 3-argument form of the <FFUNC> tag.

10-112

SOFTWARE Doctype Tag Reference
<ffUNC>

<STATEMENT FORMAT>
<FFUNC>(status\=AAA$CODE\(arg-one , arg-two ,arg-three ,arg-four ,arg-five
,arg-six ,arg-seven))
<ENDSTATEMENT FORMAT>

These input examples produce the following output:

Format

real vbl=ABS(real exp)

Format

status:AAA$CODE(arg-one, arg-two ,arg-three ,arg-four ,arg-five
,arg-six ,arg-seven)

10-113

SOFTWARE Doctype Tag Reference
<FORMAT>

<FORMAT>

SYNTAX

ARGUMENTS

related tags

Begins a section that illustrates the syntax of a routine, command, or tag,
including keywords and arguments.

<FORMAT>[(alternate heading)]

alternate heading
This is an optional argument. It specifies a heading to override the current
default text heading for this use of the <FORMAT> tag. The default heading
provided by VAX DOCUMENT is Format. See the reference description
of the <SET_TEMPLATE_HEADING> tag for information on how to modify the
default headings for all <FORMAT> tags.

• <FARG>

• <FARGS>

• <FFUNC>

• <FRTN>

required <ENDFORMAT>

terminator

DESCRIPTION The <FORMAT> tag begins a section that illustrates the syntax of a routine,
command, or tag, including keywords and arguments. This tag is a global
tag and is not restricted to routine sections. However, in the context

10-114

of the <ROUTINE_SECTION> and <TAG_SECTION> tags, the <FORMAT> tag
enables certain additional tags for specialized format descriptions. These
additional tags are not available outside the context of routine or tag
sections.

The global <FORMAT> tag enables the <FCMD>, <FPARMS>, and <FPARM> tags,
which label specific portions of a format statement. In a routine section,
the <FORMAT> tag also enables these additional tags.

You can use the <FORMAT> tag and the tags it enables in a variety of ways
to show the syntax of a routine. The following list of code examples show
some of the most regularly used format section tag combinations:

• <.FRTN>(routine keyword) <.FAilGS>(argument list)

This is the standard form, in which the routine keyword and its
argument list are separated by a blank space. If the output argument
list is more than a single line, additional lines are aligned at the
beginning of the argument list.

EXAMPLES

II <FORMAT>

SOFTWARE Doctype Tag Reference
<FORMAT>

• <.FRTN>(routine keyword\ argument list)

Use this form for routine functions, in which a routine and its
arguments are not separated by blank spaces.

• <.FRTN>(return val\ routine keyword\ argument list)

This form provides three distinct elements for a routine description:
the return value, the function name (shown here as the routine
keyword), and the argument list.

• <.FRTN>(keyword part) <.FARGS>(argument-1) <.FARG>(argument-2)

This form is useful for routines with long argument lists and in which
the argument names themselves are either long or need additional
information.

• <.FFUNC>(routine keyword\ argument list)

This form does not separate the routine name from its argument list
and so is appropriate for function routines.

• <.FFUNC>(return val\ routine keyword\ argument list)

This form provides three distinct values: the return value, the function
name, and the argument list.

The following example shows how to use the <FRTN> and <FARGS> tags in
the context of the <FORMAT> tag to format a routine name and argument
list. In this example, the argument list is null.

<FRTN>(SYS$HIBER) <FARGS>()
<END FORMAT>

The following example shows how to use multiple <FFUNC> tags in a format
section.

(i <FORMAT>
<ffunc>(MTH$SQRT\(x))
<ffunc>(MTH$DSQRT\(x))
<ffunc>(MTH$GSQRT\(x))
<ffunc>(MTH$HSQRT\(x))
<END FORMAT>

10-115

SOFTWARE Doctype Tag Reference
<FORMAT _SUBHEAD>

<FORMAT SUBHEAD>

SYNTAX

ARGUMENTS

related tags

Introduces one of a set of multiple formats in a statement template.

<FORMAT_SUBHEAD>(heading text)

heading text
Specifies the text of the heading to be used before a specific format
presentation.

• <FCMD>

• <FPARMS>

• <STATEMENT_FORMAT>

restrictions Valid only in the context of the <STATEMENT_FORMAT> tag if you specify the
MULTIPLE keyword as the second argument to the <STATEMENT_FORMAT>

tag in the Statement template.

DESCRIPTION The <STATEMENT_FORMAT> tag introduces one of a set of multiple formats
in a statement template.

EXAMPLE The following example shows how to use the <FORMAT_SUBHEAD> tag in a
series of formats for a single statement.

<statement_format>(\multiple)
<FORMAT_SUBHEAD>(String Variable To Array)
<FCMD>(CHANGE) <FPARMS>(str exp <KEYWORD>(TO) num array)
<FORMAT_SUBHEAD>(Array to String Variable)
<FCMD>(CHANGE) <FPARMS>(num array <KEYWORD>(TO) str vbl)
<endstatement_format>

This example produces the following output:

Format

String Variable To Array

CHANGE str exp TO num array

Array to String Variable

CHANGE num array TO str vb/

10-116

<FPARM>

SYNTAX

ARGUMENTS

related tags

restrictions

DESCRIPTION

EXAMPLE
<format>
<fcmd>(SET TERMINAL)

SOFTWARE Doctype Tag Reference
<FPARM>

Adds a single parameter line to a list of parameters in a command or
statement syntax format section.

<FPARM> (parameter)

parameter
Adds a single parameter to a parameter list in a command or statement
format section.

• <FCMD>

• <FPARMS>

• <STATEMENT_FORMAT>

• <STATEMENT_SECTION>

Valid only after an <FCMD> tag and <FPARMS> tag sequence in a format
section in the Command and Statement templates.

The <FPARM> tag adds a single parameter line to a list of parameters in a
command or statement syntax format section.

The following example shows how to use the <FPARM> tag.

<fparms>([device name[:]])
<fparm>(/DEVICE_TYPE=<list>(stacked\braces)

<le><keyword>(UNKNOWN)
<le><keyword>(LA34)
<le><keyword>(VT100)
<le><keyword>(PRO SERIES)<endlist>)

<fparm>(<list>(stacked\brackets) -
<le>LINE_EDITING
<le>NOLINE EDITING<endlist>)

<fparm>(<list>(stacked\brackets)
<le>PASSALL
<le>NOPASSALL<endlist>)

<ENDFORMAT>

This example produces the following output:

10-117

SOFTWARE Doctype Tag Reference
<FPARM>

SYNTAX SET TERMINAL [device name[:]]

!DEVICE_ TYPE= f ~1:0WN l
l PRO SERIES

[
!LINE EDITING]
!NOLINE_EDITING

[
/PASSALL]
/NOPASSALL

10-118

<FPARMS>

SYNTAX

ARGUMENTS

related tags

SOFTWARE Doctype Tag Reference
<FPARMS>

Specifies the parameters to a command or statement keyword.

<FPARMS> (parameter)

parameter
Specifies the parameters to a command or statement keyword in a format
section.

Use this command also to explicitly declare that a command or keyword
marked with the <FCMD> tag has no parameters, as shown in this example.

<FCMD>(EXIT) <FPARMS>()

Parameters you specify using the <FPARMS> tag· are printed differently
than parameters specified in the parameter list argument to the <FCMD>
tag. See the examples in this tag description for illustrations of the
different output styles.

• <COMMAND_SECTION>

• <FCMD>

• <FORMAT>

• <FPARM>

• <STATEMENT_FORMAT>

restrictions Valid only in the context of the Command and Statement templates. The
<FPARMS> tag should be used with the <FCMD> tag in the context of the
<FORMAT> tag.

DESCRIPTION The <FPARMS> tag specifies the parameters to a command or statement
keyword. The command or keyword is identified with the <FCMD> tag.
These tags should only be used in a format section. That is, they should
only occur following the <FORMAT> tag and before the <ENDFORMAT> tag.

When you use this tag to define a parameter list that contains multiple
words or text strings, include blank spaces between the words and text
strings (including punctuation) according to the syntax rules of the
command you are describing.

If the text of the parameter list argument will not fit on a single line in the
format section, the text formatter selects suitable line breaks based on the
presence of spaces in the parameter list text. Hyphenated text does not
break across lines.

Use the <FPARM> tag to select explicit line breaks in a parameter list.

10-119

SOFTWARE Doctype Tag Reference
<FPARMS>

EXAMPLES

D <FCMD>(ON)

The following two input examples show how to use the <FPARMS> tag.
Output from these coding examples appear after the second input example.

The following input example uses the <FPARMS> tag to list additional
command keywords in the parameters portion of a command format.

<FPARMS>(condition <keyword>(THEN [$)) command)

The following input example shows how to format a line in which
command parameters appear before the command keyword.

~ <FCMD>()<FPARMS>(input_specifier output_specifier<keyword>(/OVERLAY))

These input examples produce the following output:

FORMAT ON condition THEN [$] command

FORMAT input_ specifier output_ specifier/OVERLAY

10-120

<FRTN>

SYNTAX

ARGUMENTS

related tags

restrictions

SOFTWARE Doctype Tag Reference
<FRTN>

Specifies the routine-keyword portion of a routine syntax statement in the
context of the <FORMAT> tag.

<FRTN> ([return val\]routine keyword[\ argument list])

return val
This is an optional argument. It indicates that the routine's format
includes the descriptive name of a variable. The routine returns a value to
this argument. Note that this argument is optional.

routine keyword
Specifies the name of the first part of the format statement; typically, this
is the routine name or an operating system keyword.

argument list
This is an optional argument. It specifies the arguments to be listed in the
format statement.

Parameters specified in this argument are different from parameters
specified using the <FARGS> tag. The Examples section in this description
shows the differences.

• <FARG>

• <FARGS>

• <FFUNC>

If you specify <FRTN> with a null second argument, you should explicitly
declare the absence of arguments using the <FARGS> tag as follows:

<FRTN>(KEYWORD PART) <FARGS>()

If you do not specify a second argument and do not specify the <FARGS>

tag, VAX DOCUMENT issues a warning message.

DESCRIPTION The <FRTN> tag specifies the routine-keyword portion of a routine syntax
statement in the context of the <FORMAT> tag.

EXAMPLES The following four input examples show various uses of the <FRTN> tag.
Output from these coding examples appears after the last input example.

10-121

SOFTWARE Doctype Tag Reference
<f RTN>

D <format>(Syntax)

The following input example shows how to specify a single routine
keyword. The <FARGS> tag is explicitly specified as null.

<FRTN>($HIBER) <FARGS>()
<END FORMAT>

The following input example specifies the routine keyword and its
arguments using both the <FRTN> and <FARGS> tags. Note that blank
spaces precede the commas that delimit the arguments. The spacing
provides reasonable page-break points for use if the argument list does not
fit in a single line of output.

~ <frtn>($ENQ) <fargs>([efn] ,lkmode ,lksb, [flags]
, [resname] , [parid] , [astadr])

The following input example shows the output when two arguments are
specified to the <FRTN> tag.

m <FRTN>(NBR$AAA\(command.rt.dx))

The following input example shows the 3-argument form of the <FRTN>
tag.

m <FRTN>(status\=AAA$CODE\arg-one , arg-two ,arg-three ,arg-four ,arg-five
,arg-six ,arg-seven)

SYNTAX

SYNTAX

SYNTAX

SYNTAX

10-122

These input examples produce the following output:

$HIBER

$ENQ [efn] ,lkmode ,lksb ,[flags] ,[resname] ,[parid]
,[astadr]

NBR$AAA(command.rt.dx)

status=AAA$CODE arg-one, arg-two ,arg-three
,arg-four ,arg-five ,arg-six
,arg-seven

<FTAG>

SYNTAX

ARGUMENTS

related tags

SOFTWARE Doctype Tag Reference
<FTAG>

Specifies the name of a tag and its arguments in the context of a <FORMAT>
tag.

<FTAG>(tag name[\ argument list[\ OPTIONAL]])

tag name
Is the name of the tag. This name must be a valid tag name.

argument list
This is an optional argument. It lists the arguments, if any. If you do not
specify this argument, you indicate that the tag has no arguments.

When you specify arguments, use the <ARG_SEP> tag to denote the
argument separator character, the backslash (\).

OPTIONAL
This is an optional keyword argument. When you specify this keyword,
the argument list argument is placed in square brackets to indicate that
those arguments are optional.

• <ARG_SEP>

• <FORMAT>

restrictions Valid only in a <FORMAT> tag section in the Tag template.

DESCRIPTION The <FTAG> tag specifies the name of a tag and its arguments in the
context of a <FORMAT> tag. This tag uses the <ARG_SEP> tag to create tag
separator characters (\) in the argument list argument.

EXAMPLES

D <format>(Syntax)
<ftag>(OVERVIEW)
<endformat>

The <ARG_SEP> tag has no other function than to output the tag separator
character (the backslash) in a Tag template format section.

The following four input examples show various uses of the <FTAG> tag.
Output from these coding examples appears after the last input example.

The following input example shows how to use the <FTAG> tag to show the
syntax of a tag that has no argument list.

The following input example illustrates how to specify the format of a tag
that has a single optional argument by using the OPTIONAL keyword.

10-123

SOFTWARE Doctype Tag Reference
<FTAG>

<format>
<ftag>(DESCRIPTION\heading text\OPTIONAL)
<endf ormat>

The following input example illustrates how to specify a tag that has
one required and two optional arguments. Note how the <ARG_SEP> tag
separates the arguments.

<format>
<ftag>(ROUTINE\name[<arg_sep>info-l[<arg_sep>info2]])
<endformat>

EJ <format>

The following input example shows a tag format in which all of the tag's
arguments are optional and positional.

<ftag>(ROUTINE SECTION\[running title]<line>
[<arg sep>prefix]<line>
[<arg=sep>NEWPAGE]\OPTIONAL)
<endformat>

FORMAT

FORMAT

FORMAT

FORMAT

10-124

These input examples produce the following output:

<OVERVIEW>

<DESCRIPTION>[(heading text)]

<ROUTINE>(name[\ info-1[\ info2]])

<ROUTINE_SECTION>[([running title]
[\prefix]
[\ NEWPAGE])]

<FUNCTION>

SYNTAX

ARGUMENTS

related tags

DESCRIPTION

EXAMPLE

<STATEMENT_SECTION>
<FUNCTION>(OPEN)
<OVERVIEW>

SOFTWARE Doctype Tag Reference
<FUNCTION>

Begins a new function description.

<FUNCTION> (function name)

function name
Specifies the name of the function to be described.

• <SET_TEMPLATE_STATEMENT>

• <STATEMENT>

• <STATEMENT_SECTION>

The <FUNCTION> tag begins a new function description. This description is
for a single function in the context of the <STATEMENT_SECTION> tag. This
tag has the following default format:

• Each <FUNCTION> tag begins a new page of output.

• Each output page carries a single running title, which is the current
function name.

use the <SET_TEMPLATE_STATEMENT> tag to replace the <FUNCTION> tag
with a tag specific to your task (for example, <ABC_FUNCTION>), or to
change the default attributes of the <FUNCTION> tag. See the description of
the <SET_TEMPLATE_STATEMENT> tag in this chapter for more information.

Note that the <FUNCTION> and the <STATEMENT> tags work in exactly the
same manner. The two tag names are provided so that you may encode
your source file more generically.

In the following example, the <STATEMENT_SECTION> tag enables the tags
for a function description. The description of the function OPEN will, by
default, have the following attributes:

• The function description begins on a new page.

• If the function carries for more than a page, the name OPEN is carried
as a running top title on each page.

10-125

SOFTWARE Doctype Tag Reference
<GRAPHIC>

<GRAPHIC>

SYNTAX

ARGUMENTS

related tags

Displays terminal graphics characters.

<GRAPHIC>(char-1 \ char-2)

char-1
Specifies the character to be used as the top portion of the graphics
character.

char-2
Specifies the character to be used as the bottom portion of the graphics
character.

• <KEY>

DESCRIPTION The <GRAPHIC> tag displays terminal graphics characters. It creates
a single graphics terminal character (such as the linefeed or formfeed
characters) by combining the two characters you specify as arguments.
The second character you specify appears lower and adjacent to the first
character.

EXAMPLE The following example shows how to use the <GRAPHIC> tag to create the
linefeed and formfeed characters that can appear on a computer terminal.

<P>
The <GRAPHIC>(F\F) and the <GRAPHIC>(L\F)
are two characters that the terminal displays.

This example produces the following output:

The FF and the Ip are two characters that the terminal displays.

10-126

SYNTAX

ARGUMENTS

related tags

restrictions

SOFTWARE Doctype Tag Reference
<KEY>

Depicts a key from a keyboard or keypad graphically.

<KEY> (key /abel-1 [\ key label-2] { f: ~~:~ })
keylabel-1
Labels the key.

keylabel-2
This is an optional argument. It stacks a second key label under key
label-1.

BOX
This is an optional keyword argument. It draws a box around the key
labels for devices that support this feature. BOX is the default key format.

TEXT
This is an optional keyword argument. It encloses the key labels in angle
brackets. This format is useful when you specify keys in a body of text.

• <GRAPHIC>

• <KEY_NAME>

• <KEY_PLUS>

• <KEY_SEQUENCE>

Only specify the. argument key label-2 when using the <KEY> tag in a key
sequence example. For more information, refer to the <KEY_SEQUENCE> tag
in this section.

Use the BOX keyword argument only for devices that support graphics
(such as laser printers).

DESCRIPTION The <KEY> tag depict.s a key from a keyboard or keypad graphically. If you
are using the <KEY> tag with the <KEY_SEQUENCE> tag, you can specify a
second label that this tag stacks under the first.

The optional keyword arguments BOX and TEXT determine how the key
labels appear in your document. If you specify BOX (the default), this tag
draws a box around the labels. If you specify TEXT, this tag encloses the
labels in angle brackets.

10-127

SOFTWARE Doctype Tag Reference
<KEY>

EXAMPLE

<P>

In the following example, note that in the context of the <KEY_SEQUENCE>

tag, the <KEY> tag accepts two key label-n arguments. Outside the context
of the <KEY_SEQUENCE> tag, it accepts only a single key label-n argument.

Note also that the first <KEY> tag is specified with no keyword argument.
This tag uses the default keyword argument BOX. The second <KEY> tag
includes the BOX keyword argument to specify BOX formatting. The third
<KEY> tag includes the TEXT keyword argument.

You would use the following sequence of keys:
<KEY SEQUENCE>
<KEY>(Next\Screen) <KEY_PLUS> <KEY>(PF3\BOX)
<ENDKEY_SEQUENCE>
<P>
These keys are not associated with the <KEY>(WHITE\TEXT) keys.

This example produces the following output:

You would use the following sequence of keys:

These keys are not associated with the <WHITE> keys.

10-128

<KEYPAD>

SYNTAX

ARGUMENTS

related tags

SOFTWARE Doctype Tag Reference
<KEYPAD>

Specifies an individual keypad diagram and optionally supplies a title for that
diagram.

<KEYPAD>[({ alternate heading[\ DISPLAY] }JJ
DISPLAY

alternate heading
Specifies the text of a heading for a keypad diagram.

DISPLAY
This is an optional keyword argument that lets you specify individual key
labels as arguments to the tags <KEYPAD_ROW> and <KEYPAD_ENDROW>.

• <KEYPAD_ENDROW>

• <KEYPAD_ROW>

• <KEYPAD_SECTION>

restrictions Valid only in the context of the <KEYPAD_SECTION> tag.

required <ENDKEYPAD>

terminator

DESCRIPTION The <KEYPAD> tag specifies an individual keypad diagram and optionally
supplies a title for that diagram. If you use the DISPLAY keyword
argument, the <KEYPAD> tag lets you specify individual key labels as
arguments to the <KEYPAD_ROW> and <KEYPAD_ENDROW> tags. For more
information, see the <KEYPAD_ROW> and <KEYPAD_ENDROW> tag descriptions
in this chapter.

EXAMPLES The following examples show three keypads.

The following example does not include the DISPLAY keyword argument.

D <KEYPAD SECTION>
<KEYPAD>(Using the Command Keypad Function)
<KEYPAD ROW>(CLOSED\\\)
<KEYPAD-ROW>(CLOSED\\\)
<KEYPAD-ROW>(\\\)
<KEYPAD-ROW>(\\\)
<KEYPAD=ENDROW>(\\)
<ENDKEYPAD>
<ENDKEYPAD SECTION>

10-129

SOFTWARE Doctype Tag Reference
<KEYPAD>

<KEYPAD SECTION>

This example produces the following output:

Using the Command Keypad Function

llDDD
llDDD
DODD
ODDO DD
The following example includes the DISPLAY keyword argument.

<KEYPAD>(The Editing Keypad with Key Labels\DISPLAY)
<KEYPAD ROW>(PF1\PF2\PF3\PF4)
<KEYPAD-ROW>(7\8\9\-)
<KEYPAD-ROW>(4\5\6\,)
<KEYPAD-ROW>(l\2\3\)
<KEYPAD=ENDROW>(O\.\ENTER)
<·ENDKEYPAD>
<ENDKEYPAD SECTION>

m <KEYPAD_SECTION>

This example produces the following output:

The Editing Keypad with Key Labels

GGGG
[][][][]
[][][][]
[][][] ENTER

DD~
The following example includes the DISPLAY keyword argument, and
shades two keys.

<KEYPAD>(The Editing Keypad with Key Labels and Shaded Keys\DISPLAY)
<KEYPAD ROW>(CLOSED\PF2\PF3\PF4)
<KEYPAD-ROW>(7\8\9\-)
<KEYPAD-ROW>(CLOSED\5\6\,)
<KEYPAD-ROW>(l\2\3\)
<KEYPAD=ENDROW>(O\.\ENTER)
<ENDKEYPAD>
<ENDKEYPAD_SECTION>

This example produces the following output:

10-130

SOFTWARE Doctype Tag Reference
<KEYPAD>

The Editing Keypad with Key Labels and Shaded Keys

BBB
[][][JD

ODD
[][][] ENTER

I 0 ID

10-131

SOFTWARE Doctype Tag Reference
<KEYPAD _EN DROW>

<KEYPAD ENDROW>

SYNTAX

ARGUMENTS

related tags

Displays the bottom row of an editing keypad that has up to three keys.

<KEYPAD_ENDROW>(co/-1 arg \ col-2 arg \ co/-3 arg)

col-1 arg
col-2arg
col-3arg
Represents one of the three keys that make up the bottom row in the
editing keypad. By default, each column accepts one of the following three
arguments:

• CLOSED - Shades the key in that column.

• NONE - No key appears in that column.

• OPEN - Creates an unshaded box. This is the default.

If you use the DISPLAY keyword argument to the <KEYPAD> tag, you can
specify alphanumeric strings as individual key labels.

• <KEYPAD>

• <KEYPAD_ROW>

• <KEYPAD_SECTION>

restrictions Valid only in the context of a <KEYPAD_SECTION> tag.

DESCRIPTION The <KEYPAD_ENDROW> tag displays the bottom row of an editing keypad
that has up to three keys. The first key is double in width, the second is
standard size, and the third is connected with the last key in the previous
keypad row. For more information, refer to the examples in the description
of <KEYPAD_SECTION> in this section.

EXAMPLE See the example in the <KEYPAD_SECTION> tag description.

10-132

SOFTWARE Doctype Tag Reference
<KEYPAD_ROW>

<KEYPAD ROW>

SYNTAX

ARGUMENTS

related tags

restrictions

Displays a row of an editing keypad that has up to four keys.

<KEYPAD_ ROW> (col-1 arg \ col-2 arg \ col-3 arg \ col-4
arg)

col-1 arg
col-2arg
col-3arg
col-4arg
Represents one of the four keys that make up a row in the editing keypad.
By default, each column accepts one of the following three arguments:

• CLOSED - This tag shades the key in that column.

• NONE - No key appears in that column.

• OPEN -This tag creates an unshaded box. This is the default.

If you use the DISPLAY keyword argument in the <KEYPAD> tag, you can
specify alphanumeric strings as individual key labels.

• <KEYPAD>

• <KEYPAD_ENDROW>

• <KEYPAD_SECTION>

Valid only in the context of a <KEYPAD_SECTION> tag.

When this tag is used just before the <KEYPAD_ENDROW> tag, the col-4
arg is ignored to leave room for the large ENTER key created by the third
argument to the <KEYPAD_ENDROW> tag. See the example in the discussion
of the <KEYPAD_SECTION> tag for more information.

DESCRIPTION The <KEYPAD_ROW> tag displays a row of an editing keypad that has up to
four keys. For more information, refer to the examples in the description
of the <KEYPAD_SECTION> tag in this section.

EXAMPLE See the example in the <KEYPAD_SECTION> tag description.

10-133

SOFTWARE Doctype Tag Reference
<KEYPAD _SECTION>

<KEYPAD SECTION>

Begins a series of one or more keypad diagrams.

SYNTAX <KEYPAD SECTION>

related tags • <KEYPAD>

• <KEYPAD_ENDROW>

• <KEYPAD_ROW>

restrictions Only create files containing keypad diagrams for output on devices that
support graphics (such as laser printers).

required <ENDKEYPAD_SECTION>

terminator

DESCRIPTION The <KEYPAD_SECTION> tag begins a series of one or more keypad diagrams.
This tag enables the <KEYPAD>, <KEYPAD_ENDROW>, and <KEYPAD_ROW>

tags to graphically depict one or more terminal editing keypads. You must
begin each of the keypads (or partial keypads) illustrated in a keypad
section with the <KEYPAD> tag and terminate it with the <ENDKEYPAD> tag.

EXAMPLES The following examples show several uses of the <KEYPAD_SECTION> tag. In
the first example, notice how you use the <KEYPAD_ENDROW> tag to create
the large-sized keys found on many calculator keypads.

D <KEYPAD SECTION>
<KEYPAD>(The VT200 Series Editing Keypad)
<KEYPAD ROW>(\\\)
<KEYPAD-ROW>(\\\)
<KEYPAD-ROW>(\\\)
<KEYPAD-ROW>(\\\)
<KEYPAD=ENDROW>(\\)
<ENDKEYPAD>
<ENDKEYPAD SECTION>

10-134

This example produces the following output:

The VT200 Series Editing Keypad

DODD
DODD
DODD
0000 DD

SOFTWARE Doctype Tag Reference
<KEYPAD _SECTION>

The following example shows two keypads created in a single keypad
section.

The first keypad shows a command keypad with two keys filled in.

~ <KEYPAD SECTION>
<KEYPAD>(Using the Command Keypad Function)
<KEYPAD ROW>(CLOSED\\\)
<KEYPAD-ROW>(CLOSED\\\)
<KEYPAD-ROW>(\\\)
<KEYPAD-ROW>(\\\)
<KEYPAD=ENDROW>(\\)
<ENDKEYPAD>
<ENDKEYPAD SECTION>

The second keypad is an irregularly shaped keypa4.

m <KEYPAD SECTION>
<KEYPAD>(Using the SELECT Key)
<KEYPAD ROW>(\\\NONE)
<KEYPAD-ROW>(CLOSED\\\NONE)
<KEYPAD-ROW>(NONE\\NONE\NONE)
<KEYPAD=ROW>(\\\NONE)
<ENDKEYPAD>
<ENDKEYPAD SECTION>

This example produces the following output:

Using the Command Keypad Function

11000
11000
DODD
~BO
Using the SELECT Key

DOD
llDD

D
DOD
The following example shows, how to create a keypad with the key names
placed on each keypad key. Note how the DISPLAY keyword argument is
used with the <KEYPAD> tag.

<KEYPAD SECTION>
<KEYPAD>(The Editing Keypad with Key Labels\DISPLAY)
<KEYPAD ROW>(PF1\PF2\PF3\PF4)
<KEYPAD-ROW>(7\8\9\-)
<KEYPAD-ROW>(4\5\6\,)
<KEYPAD-ROW>(l\2\3\ENTER)
<KEYPAD=ENDROW>(O\.\ENTER)
<ENDKEYPAD>
<ENDKEYPAD SECTION>

This example produces the following output:

10-135

SOFTWARE Doctype Tag Reference
<KEYPAD _SECTION>

10-136

The Editing Keypad with Key Labels

GBGG
DODD
DODD
[][][] ENTER

OD...______.

SOFTWARE Doctype Tag Reference
<KEV NAME>

<KEY NAME>

SYNTAX

ARGUMENTS

related tags

Emphasizes the name of a key in text.

<KEY_NAME>(key name)

key name
Specifies the name of the key. This often corresponds to the name on a key
label.

• <CPOS>

• <GRAPHIC>

• <KEY>

• <KEY_SEQUENCE>

DESCRIPTION The <KEY_NAME> tag emphasizes the name of a key in text. This tag alters
the appearance of a key name in text using uppercase letters, boldface, or
italics.

EXAMPLE In the following example, the <KEY_NAME> tag alters the appearance of the
GOLD key.

<P>
In EDT, the <KEY_NAME>(GOLD) key changes the function of the other keys
on the keypad.

This example produces the following output:

In EDT, the GOLD key changes the function of the other keys on the
keypad.

10-137

SOFTWARE Doctype Tag Reference
<KEY_PLUS>

<KEV PLUS>
Creates a plus sign between keys in a key sequence example.

SYNTAX <KEY PLUS>

ARGUMENTS None.

related tags • <KEY>

• <KEY_SEQUENCE>

• <KEY_TYPE>

restrictions Valid only in the context of the <KEY_SEQUENCE> tag.

DESCRIPTION The <KEY_PLUS> tag creates a plus sign between keys in a key sequence
example.

EXAMPLE The following example shows how you use the <KEY_PLUS> tag to create a
plus sign between the BREAK and FlO keys in the context of the <KEY_

SEQUENCE> tag.

<KEY SEQUENCE>
<KEY>(BREAK) <KEY_PLUS> <KEY>(FlO) =Exit from Function.
<ENDKEY_SEQUENCE>

This example produces the following output:

I BREAK I + IF1 ol = Exit from Function.

10-138

SOFTWARE Doctype Tag Reference
<KEV_SEQUENCE>

<KEY SEQUENCE>

SYNTAX

ARGUMENTS

related tags

restrictions

required
terminator

DESCRIPTION

EXAMPLES

I <KEY_SEQUENCE>

Begins a section containing one or more key representations.

<KEY_ SEQUENCE>

None.

• <CPOS>

• <GRAPHIC>

• <KEY>

• <KEY_PLUS>

• <KEY_TYPE>

Not available in the context of the example-producing tags (<CODE_

EXAMPLE>, <DISPLAY>, <SYNTAX>, and so on) or the <MATH> tag.

<ENDKEY_SEQUENCE>

The <KEY_SEQUENCE> tag begins a section containing one or more key
representations. This tag labels an informal example of keys and
sequences of keys, and enables two tags that make it easier for you to
combine keys and text in your document. The two enabled tags are <KEY_

PLUS> and <KEY_TYPE>. For more information concerning these tags, refer
to the program example in this section, or refer to the <KEY_PLUS> and
<KEY_TYPE> tag descriptions in this section.

The following examples show how to create informal examples of keys and
key sequences in your documentation.

The following example shows how you use the <KEY_PLUS> and the <KEY>

tags.

<key>(HELP) = <key>(PFl) <KEY_PLUS> <KEY>(PF2)
<ENDKEY_SEQUENCE>

This example produces the following output:

IHELPI = IPF1 I + IPF21

10-139

SOFTWARE Doctype Tag Reference
<KEY _SEQUENCE>

~ <KEY_SEQUENCE>

The following example shows how you use other tags in a <KEY_SEQUENCE>

tag section and then gives a sample of that output.

The <CPOS>(q)uick brown fox
jumped over the lazy dog.
<KEY>(ADV)<KEY>(WORD)
The quick <CPOS>(b)rown fox
jumped over the lazy dog.
<KEY>(WORD)
The quick brown <CPOS>(f)ox
jumped over the lazy dog.
<KEY>(DEL W)
The quick brown <CPOS>()
jumped over the lazy dog.
<ENDKEY_SEQUENCE>

10-140

This example produces the following output:

The ,9.Uick brown fox
jumped over the lazy dog.
IADVIWORDI

The quick !?_rown fox
jumped over the lazy dog.
IWORDI

The quick brown fox
jumped over the lazy dog.
!DEL WI

The quick brown
jumped over the lazy dog.

SOFTWARE Doctype Tag Reference
<KEY TYPE>

<KEY TYPE>

Provides a descriptive label for keys in a key sequence.

SYNTAX <KEY_TYPE>(/abe/ing text string\ key text string)

ARGUMENTS labeling text string
Labels the keys and text specified in the key text string argument.

key text string
Specifies keys and related text.

related tags • <GRAPHIC>

• <KEY_PLUS>

• <KEY_SEQUENCE>

restrictions Valid only in the context of a <KEY_SEQUENCE> tag.

DESCRIPTION The <KEY_TYPE> tag provides a descriptive label for keys in a key sequence.
For instance, if you discuss keys from various keyboards (such as the
VT125, VT240, and so forth), you may want to label the different types of
keys as you describe them in a <KEY_SEQUENCE> tag example.

The <KEY_TYPE> tag outputs the labeling text string argument in a bold
face font and appends a colon (:) to it. The key text string argument
outputs on the same line in the standard text font.

EXAMPLE The following example shows how to use the <KEY_TYPE> tag to label a
sequence of keys.

<KEY SEQUENCE>
<KEY=TYPE>(LK201\<KEY>(F10) =Exit from Function.)
<ENDKEY_SEQUENCE>

This example produces the following output:

LK201: IF1ol =Exit from Function.

10-141

SOFTWARE Doctype Tag Reference
<MESSAGE_ SECTION>

<MESSAGE SECTION>

Begins a section of error message descriptions.

SYNTAX <MESSAGE_SECTION>

ARGUMENTS None.

related tags • <MESSAGE_ TYPE>

• <MSG>

• <MSGS>

• <MSG_ACTION>

• <MSG_FACILITY>

• <MSG_SEVERITY>

• <MSG_ TEXT>

required <ENDMESSAGE_SECTION>

terminator

DESCRIPTION The <MESSAGE_SECTION> tag begins a section of error message descriptions.

10-142

This tag enables the message tags listed as related tags in this tag
description.

Messages generally come in one of three forms:

• A message text string only; for example, System Resources
Unavailable.

• A message text string preceded by a text string identification code; for
example, %DIRECT-W-NOFILES, no files found.

• A message text string preceded by a numeric string identification code;
for example, %1288374 file lookup failed.

Select the tags you need to use in the message description section based
upon the following criteria:

• The format your messages most closely resemble

• The number of lines each message occupies on the terminal display

Specify the format for your message section by using the <MESSAGE_TYPE>

tag. The <MESSAGE_ TYPE> tag accepts one of three keywords:

• NOIDENT-Specifies that the message contains no message
identification string and that only message text will be specified.

EXAMPLES

D <MESSAGE_SECTION>

SOFTWARE Doctype Tag Reference
<MESSAGE_ SECTION>

• TEXTIDENT-Specifies that the message contains a text message
identification string as well as message text.

• NUMIDENT-Specifies that the message contains a numeric message
identification string as well as message text.

Select one of two message labeling tags (<MSG> or<MSGS>) based upon the
number of messages or message text lines you need to describe in a single
tag.

• <MSG>

Describes a single message with one or two lines of message text.

• <MSGS>

Describes either a single message with up to nine lines of message
text, or up to four message identification string/message text pairs.

Use the <MSG_TEXT> tag to describe the error messages. Each use of the
<MSG_TEXT> tag creates a separate description section that you can label
with a single word heading (such as Facility or Severity). If you do not
specify a heading for this tag, it uses the heading, Explanation:. You can
use the <MSG_TEXT> tag as many times as you find necessary in the error
message description section.

To complete your error message section, repeat using the <MSG> (or
<MSGS>) and <MSG_ TEXT> tags until you describe all your messages. End
the error message section by using the <ENDMESSAGE_SECTION> tag.

The following examples illustrate the two syntaxes available with the
<MSG> tag and how they are specified. The second example also shows a
sample use of the <MSGS> tag so you can compare the output of the <MSG>
and <MSGS> tags.

In the first example, the NOIDENT keyword argument is used with
the <MESSAGE_TYPE> tag. Therefore, the <MSG> tag only accepts two
arguments.

In the second example, the TEXTIDENT keyword is used with the
<MESSAGE_TYPE> tag. Therefore, the <MSG> tags in this section will accept
one message identifier and up to two message text arguments. Note also
that the <MSGS> tag used in this example accepts two pairs of message
identifier/message text arguments.

<MESSAGE TYPE>(NOIDENT)
<MSG>(error initiating system\initialization file not found)
<MSG TEXT>
The system could not begin operation because it could not find
the system initialization file.
<MSG TEXT>(User Action)
Check for the existence of the system initialization file.
If it exists, check that it is in your current default directory.
<ENDMESSAGE_SECTION>

This example produces the following output:

10-143

SOFTWARE Doctype Tag Reference
<MESSAGE_SECTION>

error initiating system
initialization file not found

Explanation: The system could not begin operation because it could not
find the system initialization file.

User Action: Check for the existence of the system initialization file. If it
exists, check that it is in your current default directory.

~ <MESSAGE SECTION>
<MESSAGE TYPE>(TEXTIDENT)
<MSG>(BCK-F-BADLNK\Incorrect directory back link\Directory not found)
<MSG_TEXT>(Facility) VERIFY, Verify Utility
<MSG_TEXT>(Severity) Fatal
<MSG TEXT>
The Verify Utility could not process your command. Please check the
syntax of your statement.
<MSG_TEXT>(User Action)
Check the syntax of the command, especially the directory specification,
and reenter the command.
<MSGS>(UAF-E-NAOFIL\unable to open file SYSUAF.DAT\-RMS-E-FNF\file not found)
<MSG TEXT>
The AUTHORIZE Utility could not locate the file SYSUAF.DAT.
<MSG_TEXT>(User Action)
Check that your process is currently set to the system default directory,
SYS$SYSTEM, and then reissue the command.
<ENDMESSAGE SECTION>

10-144

This example produces the following output:

BCK-F-BADLNK, Incorrect directory back link
Directory not found

Facility: VERIFY, Verify Utility

Fatal: The Verify Utility could not process your command. Please check
the syntax of your statement.

User Action: Check the syntax of the command, especially the directory
specification, and reenter the command.

UAF Utility could not locate the file SYSUAF.DAT,

User Action: Check that your process is currently set to the system
default directory, SYS$SYSTEM, and then reissue the command.

SOFTWARE Doctype Tag Reference
<MESSAGE_ TYPE>

<MESSAGE TYPE>

SYNTAX

ARGUMENTS

related tags

Establishes the format for error messages in the context of the <MESSAGE_

SECTION> tag.

<MESSAGE_TYPE>(NUMIDENT)
{

NO/DENT }

TEXT/DENT

NO/DENT
This keyword argument indicates that only message text will be used as
arguments to the <MSG> or <MSGS> tag. This is the default.

NU Ml DENT
This keyword argument indicates that the message has two parts, a
numeric identification string and a line of message text. These two
arguments are then required by the <MSG> or <MSGS> tag.

TEXT/DENT
This keyword argument indicates that the message has two parts, a text
identification string and a line of message text. These two arguments are
then required by the <MSG> or <MSGS> tag.

• <MESSAGE_SECTION>

• <MSG>

• <MSGS>

• <MSG_TEXT>

restrictions Valid only in the context of a <MESSAGE_SECTION> tag.

DESCRIPTION The <MESSAGE_TYPE> tag establishes the format for error messages in the
context of the <MESSAGE_SECTION> tag. The format determines the number
of arguments given to the <MSG> and <MSGS> tags.

EXAMPLE

For a complete description of the message section tags, refer to the
description of <MESSAGE_SECTION> in this section.

See the example in the <MESSAGE_SECTION> tag description.

10-145

SOFTWARE Doctype Tag Reference
<MSG>

<MSG>

SYNTAX

ARGUMENTS

related tags

Formats the text of a message in a series of error message descriptions.

<MSG>(message id[\ message text-1[\ message
text-2]])

message id
Specifies a unique message identification string. This argument can be
either a text string or a numeric string. You can only specify this keyword
argument if you have specified either the NUMIDENT or the TEXTIDENT
keyword argument to the <MESSAGE_TYPE> tag.

message text-1
Specifies the text of the message.

message text-2
This is an optional argument. It specifies the second line of the text of the
message.

• <MESSAGE_SECTION>

• <MESSAGE_TYPE>

• <MSG_TEXT>

• <MSGS>

restrictions Valid only in the context of a <MESSAGE_SECTION> tag.

DESCRIPTION The <MSG> tag formats the text of a message in a series of error message
descriptions.

10-146

The message id argument corresponds to the %FAC-S-IDENT portion of a
system or application message in the VMS operating system programming
environment.

If you are using the NUMIDENT format, the message id argument must
be a numeric message identification string of not more than 6 picas
(approximately 10 characters) in length.

If you are using the TEXTIDENT format, the message id argument has a
comma (,) placed between it and the following message text argument.

For a complete description of the message section tags, refer to the
description of the <MESSAGE_SECTION> tag in this section.

EXAMPLE

SOFTWARE Doctype Tag Reference
<MSG>

See the example in the <MESSAGE_SECTION> tag description.

10-147

SOFTWARE Doctype Tag Reference
<MSGS>

<MSGS>

SYNTAX

ARGUMENTS

related tags

Formats the text of one or more messages in a series of error message
descriptions.

<MSGS>(message text-1[\ message text-2 . ..
[\ message text-9]])

<MSGS>(message id-1 \message text-1
[\message id-2 \ message text-2]
[\ message id-3 \ message text-3]
[\message id-4 \message text-4])

message text-n
Specifies up to nine lines of text for the message.

message id-n
Specifies up to four unique message identification strings. This argument
can be either a text string or a numeric string. You can only specify this
argument if you have specified eith.ar the NUMIDENT or the TEXTIDENT
keyword arguments to the <MESSAGE_TYPE> tag.

• <MESSAGE_SECTION>

• <MESSAGE_TYPE>

• <MSG>

• <MSG_TEXT>

restrictions Valid only in the context of a <MESSAGE_SECTION> tag.

DESCRIPTION The <MSGS> tag formats the text of one or more messages in a series
of error message descriptions. If you are using the NOIDENT keyword
argument to the <MESSAGE_TYPE> tag, or if you do not specify the
<MESSAGE_TYPE> tag, you must use the first syntax listed.

10-148

If you are using either the TEXTIDENT or NUMIDENT keywords as
arguments to the <MESSAGE_TYPE> tag, you must use the second syntax
listed. Note that if you use this second syntax, you must specify the
message id and message text arguments as pairs.

The message id argument corresponds to the %FAC-S-IDENT portion of a
system or application message in the VMS operating system programming
environment.

EXAMPLE

SOFTWARE Doctype Tag Reference
<MSGS>

If you are using the NUMIDENT format, the message id argument must
be a numeric message identification string of not more than 6 picas
(approximately 10 characters).

If you are using the TEXTIDENT format, the message id argument has a
comma (,) placed between it and the following message text argument.

For a complete description of the message section tags, refer to the
description of <MESSAGE_SECTION> in this section.

See the example in the <MESSAGE_SECTION> tag description.

10-149

SOFTWARE Doctype Tag Reference
<MSG_ACTION>

<MSG ACTION>

SYNTAX

related tags

Labels the text explanation of what action is to be taken in response to an
error message from a system or application.

<MSG ACTION>

• <MESSAGE_SECTION>

• <MESSAGE_ TYPE>

• <MSG>

• <MSGS>

• <MSG_FACILITY>

• <MSG_SEVERITY>

• <MSG_ TEXT>

restrictions Valid only in the context of the <MESSAGE_SECTION> tag.

DESCRIPTION The <MSG_ACTION> tag labels the text explanation of what action is to be
taken in response to an error message from a system or application.

EXAMPLES See the example in the discussion of the <MESSAGE_SECTION> tag.

10-150

SOFTWARE Doctype Tag Reference
<MSG_FACILITY>

<MSG FACILITY>

SYNTAX

ARGUMENTS

related tags

Labels up to four message sources in a series of system or application error
messages.

<MSG_FACILITY>(faci/ity \ facility\ facility\ facility)

facility
The name of the software component reporting the message. If more than
one facility reports the same message, you can specify up to four facility
names as arguments to the <MSG_FACILITY> tag.

• <MESSAGE_SECTION>

• <MESSAGE_TYPE>

• <MSG>

• <MSGS>

• <MSG_ACTION>

• <MSG_SEVERITY>

restrictions Valid only in the context of the <MESSAGE_SECTION> tag.

DESCRIPTION The <MSG_FACILITY> tag labels up to four message sources in a series of
system or application error messages.

EXAMPLES See the example in the <MESSAGE_SECTION> tag description.

10-151

SOFTWARE Doctype Tag Reference
<MSG_SEVERITY>

<MSG SEVERITY>

SYNTAX

related tags

Labels the severity of a message in a series of system or application error
messages.

<MSG SEVERITY>

• <MESSAGE_SECTION>

• <MESSAGE_TYPE>

• <MSG>

• <MSGS>

• <MSG_ACTION>

• <MSG_FACILITY>

• <MSG_TEXT>

restrictions Valid only in the context of the <MESSAGE_SECTION> tag.

DESCRIPTION The <MSG_SEVERITY> tag labels the severity of a message in a series of
system or application error messages.

EXAMPLES See the example in the <MESSAGE_SECTION> tag description.

10-152

SOFTWARE Doctype Tag Reference
<MSG_ TEXT>

<MSG TEXT>

SYNTAX

ARGUMENTS

restrictions

required
terminator

DESCRIPTION

EXAMPLE

Labels text that describes a message in a <MESSAGE_SECTION> tag section.

<MSG_ TEXT>[(alternate heading)]

alternate heading
This is an optional heading. It specifies the label for the text of the
message description. This text automatically has a colon (:)appended to
the end of it. If you do not specify this argument, the default heading is
Explanation:.

Valid only in the context of the <MESSAGE_SECTION> tag.

<ENDMESSAGE_SECTION, MSG, OR MSGS>

The text labeled by the <MSG_TEXT> tag is terminated either by the next
<MSG> or <MSGS> tag, or by the <ENDMESSAGE_SECTION> tag.

The <MSG_TEXT> tag labels a message description in an error message
section. The text of this description begins after the <MSG_TEXT> tag and
continues until the next message section tag is encountered.

To use this tag to label various portions of the message explanation, you
specify this tag several times using various alternate headings.

For example, first you could have a brief explanation of the message
under the default heading Explanation:. Then you could specify the <MSG_

TEXT> tag again, with the alternate heading of User Action. This use of
the <MSG_TEXT> tag labels the tasks the user should perform to correct
the condition that caused the error message. Note that when specifying
alternate headings, a colon (:)is supplied at the end of the heading.

For a complete description of all the message section tags, refer to the
description of the <MESSAGE_SECTION> tag in this section.

See the example in the <MESSAGE_SECTION> tag description.

10-153

SOFTWARE Doctype Tag Reference
<OVERVIEW>

<OVERVIEW>

Provides a summary description of a reference element.

SYNTAX <OVERVIEW>

related tags • <DESCRIPTION>

restrictions Valid only in the context of a SOFTWARE reference template.

required <ENDOVERVIEW>

terminator

DESCRIPTION The <OVERVIEW> tag provides a summary description of a reference
element. Use the <DESCRIPTION> tag to create a separate subsection
that contains more detailed information to the user concerning the
reference element. See the description of the <DESCRIPTION> tag for more
information.

EXAMPLE

10-154

You do not need to use a <P> tag immediately after the <OVERVIEW> tag.
The <OVERVIEW> tag generates the initial open line; you need only type the
first paragraph of text.

You can use the <HELP_ONLY> and <ENDHELP_ONLY> tags in the overview to
provide text more appropriate to the context of the VMS HELP facility.

See the example in the <DESCRIPTION> tag description.

SOFTWARE Doctype Tag Reference
<PARAMDEF>

<PARAMDEF>

Begins the text that defines an item in a parameter definition list.

SYNTAX <PARAMDEF>

ARGUMENTS None.

related tags • <PARAMDEFLIST>

• <PARAMITEM>

restrictions Valid only in the context of the <PARAMDEFLIST> tag.

DESCRIPTION The <PARAMDEF> tag begins the text that defines an item in a parameter
definition list. This text describes the item listed by the previous
<PARAMITEM> tag. The text begun by the <PARAMDEF> tag is terminated by
the next <PARAMITEM> or <ENDPARAMDEFLIST> tag.

EXAMPLE See the example in the <PARAMDEFLIST> tag description.

10-155

SOFTWARE Doctype Tag Reference
<PARAMDEFLIST>

<PARAMDEFLIST>

SYNTAX

ARGUMENTS

related tags

required
terminator

DESCRIPTION

10-156

Begins a definition list of parameters or arguments.

<PARAMDEFLIST>[(NOHEAD)] {
alternate heading }

NONE

alternate heading
This is an optional argument. It specifies a heading to override the current
default text heading. The default heading for the <PARAMDEFLIST> tag can
vary. See the DESCRIPTION section for more information on default
parameter definition list headings.

NOHEAD
This is an optional keyword argument. It suppresses the output of the
default heading for the <PARAMDEFLIST> tag.

NONE
This is an optional keyword argument. It causes the text None. to be
output beneath the heading for the parameter definition list to indicate
that no parameters are available. Note that if you use the NONE keyword,
you should not use the <ENDPARAMDEFLIST> tag.

• <ARGDEFLIST>

• <PARAMDEF>

• <PARAMITEM>

• <QUALDEFLIST>

• <SET_TEMPLATE_HEADING>

• The global <DEFINITION_LIST> tag

<ENDPARAMDEFLIST>

Required unless you specify the NONE keyword as an argument to the
<PARAMDEFLIST> tag.

The <PARAMDEFLIST> tag begins a definition list of parameters or
arguments. This tag is available both inside and outside the context of
the reference templates.

The <PARAMDEFLIST> tag is similar in format and syntax to the global
<DEFINITION_LIST> tag. See VAX DOCUMENT Using Global Tags for
more information on the <DEFINITION_LIST> tag. The <PARAMDEFLIST> tag
enables two tags to create a parameter definition list. The <PARAMITEM>

EXAMPLES

SOFTWARE Doctype Tag Reference
<PARAMDEFLIST>

tag labels the list item being defined, and the <PARAMDEF> tag begins the
definition of the list item.

A default heading is provided when you use the <PARAMDEFLIST> tag in
a reference template; no default heading is provided when you use the
<PARAMDEFLIST> tag outside a reference template.

Create your own heading for an individual parameter definition list by
specifying that heading as the alternate heading argument. A heading
specified in this way overrides any existing default headings.

Use the <SET_TEMPLATE_HEADING> tag to alter the default headings used
by all subsequent <PARAMDEFLIST> tags. See the description of the <SET_

TEMPLATE_HEADING> tag for more information.

The following informal table lists the default headings for the
<PARAMDEFLIST> by their context.

Context

Command Template

Routine Template

Tag Template

Statement Template

Outside a Template

Default Heading

Parameters

Arguments

Arguments

No default heading

No default heading

The following examples show variations on the use of the <PARAMDEFLIST>

tag.

This chapter uses the Tag template for its reference descriptions. In
this template, the heading for a parameter definition list is defined as
Arguments. You can see a sample of this heading just after the format
section at the start of this tag description.

The following example uses the NOHEAD argument to the
<PARAMDEFLIST> tag to suppress the output of a heading in a template.
If this example were coded outside a template, there would be no default
heading for the parameter definition list, and so there would be no need to
use the NOHEAD argument to suppress a heading.

I The system maintains logical names and their associated equivalence strings in
two types of tables:
<PARAMDEFLIST>(NOHEAD)
<PARAMITEM>(process-private)
<PARAMDEF>These tables contain logical names that are available only
to your process.
<PARAMITEM>(shareable)
<PARAMDEF>These tables contain logical names that are available to other
processes on the system.
<ENDPARAMDEFLIST>

This example produces the following output:

The system maintains logical names and their associated equivalence
strings in two types of tables:

10-157

SOFTWARE Doctype Tag Reference
<PARAMDEFLIST>

process-private
These tables contain logical names that are available only to your process.

shareable
These tables contain logical names that are available to other processes on
the system.

~ The following example shows how to use the global <.ALIGN_AFTER> tag for
additional formatting flexibility in the parameter definition list. Note that
this <PARAMDEFLIST> tag is used in the Command template and so has the
default heading Parameters.

m <COMMAND SECTION>

<PARAMDEFLIST>
<PARAMITEM>(STATUS:arg\
<ALIGN_AFTER>(STATUS:)COMMAND\
<ALIGN AFTER>(STATUS:)TASK)
<PARAMDEF>Specif ies whether status information is to be returned
from the RUN command.
<ENDPARAMDEFLIST>

<ENDCOMMAND SECTION>

This example produces the following output:

PARAMETERS STATUS:arg
COMMAND
TASK

10-158

Specifies whether status information is to be returned from the RUN
command.

SOFTWARE Doctype Tag Reference
<PA RAM ITEM>

<PARAMITEM>

SYNTAX

ARGUMENTS

related tags

restrictions

required
terminator

DESCRIPTION

EXAMPLE

Labels one to seven items to be defined in a parameter definition list.

<PARAMITEM>(item-1[\ item-2 . .. [\ item-7]])

item-n
Specifies the item in the parameter list to be defined. This tag accepts
a minimum of one item-n argument and a maximum of seven item-n
arguments. When you specify more than one argument, each subsequent
optional item-n argument after the initial argument formats flush left
under the first argument.

• <PARAMDEF>

• <PARAMDEFLIST>

Valid only in the context of the <PARAMDEFLIST> tag.

<ENDPARAMDEF>

The <PARAMITEM> tag labels one to seven items to be defined in a
parameter definition list. You can specify one to seven arguments as
items requiring a single definition in the parameter definition list. If you
specify more than one item-n argument, the item-n arguments are stacked
from top to bottom in the order in which they were specified.

If you need to format the item-n arguments differently than the default
flush left formatting, use the global <ALIGN_AFTER> tag. A sample use of
this tag is illustrated in the following example. See VAX DOCUMENT
Using Global Tags for more information on the <ALIGN_AFTER> tag.

The following example shows how to use the global <ALIGN_AFTER> tag in
the context of a parameter definition list for special formatting purposes.
Note how it is used outside the <PARAMITEM> tag.

<PARAMDEFLIST>(NOHEAD)
<PARAMITEM>(STATUS:arg\
<ALIGN_AFTER>(STATUS:)COMMAND\
<ALIGN AFTER>(STATUS:)TASK)
<PARAMDEF>Specif ies whether status information is to be returned
from the RUN command.
<ENDPARAMDEFLIST>

This example produces the following output:

10-159

SOFTWARE Doctype Tag Reference
<PARAMITEM>

10-160

STATUS:arg
COMMAND
TASK

Specifies whether status information is to be returned from the RUN
command.

<PROMPT>

SYNTAX

ARGUMENTS

related tags

SOFTWARE Doctype Tag Reference
<PROMPT>

Identifies a prompt that appears on a separate line from other prompts, and
any parameters associated with that prompt.

<PROMPT>(prompt text\ related parameter
[\ prompt width])

prompt text
Specifies the prompt being described. All spacing and capitalization is
retained as entered in the output.

related parameter
Specifies any parameters related to the prompt.

prompt width
This is an optional argument. It specifies the pica width of the column
in which the prompt text is formatted. You must specify this value as a
positive integer.

By default, the width of the column is 5 picas, including any space between
the prompt text and the related parameter columns (there are 6 picas to an
inch). If the prompt text and the related parameter text format too closely
together, you should increase this value.

• <PROMPTS>

restrictions Valid only in the context of the ~PROMPTS> tag.

DESCRIPTION The <PROMPT> tag identifies a prompt that appears on a separate line from
other prompts, and any parameters associated with that prompt.

EXAMPLES The following example shows how to use the <PROMPT> tag to specify two
command prompts.

D <PROMPTS>
<PROMPT>(Device:\equivalence name[,,,])
<PROMPT>(Log name:\logical name:)
<ENDPROMPTS>

This example produces the following output:

prompts Device: equivalence name[,,,]
Log name: logical name:

10-161

SOFTWARE Doctype Tag Reference
<PROMPT>

~ <PROMPTS>

The following example shows how to specify the prompts for a SET
PASSWORD command. In this example, the prompt width argument
extends the width of the prompt text to 7 picas.

<PROMPT>(Old password:\old password\7)
<PROMPT>(New password:\new password\7)
<PROMPT>(Verification:\new password\7)
<ENDPROMPTS>

prompts

10-162

This example produces the following output:

Old password:
New password:
Verification:

old password
new password
new password

<PROMPTS>

SYNTAX

ARGUMENTS

related tags

SOFTWARE Doctype Tag Reference
<PROMPTS>

Begins a summary of interactive prompts.

<PROMPTS>[(alternate heading[\ NONE])]

alternate heading
This is an optional argument. It specifies a heading to override the
current default text heading for this use of the <PROMPTS> tag. The default
heading provided by VAX DOCUMENT is Prompts. If you want to use a
different heading, specify it here. Also see the <SET_TEMPLATE_HEADING>
tag description for information on modifying the default headings for all
the <PROMPTS> tags.

NONE
This is an optional keyword argument. It indicates that there are no
prompts for this command. If you use the NONE keyword, do not use the
<ENDPROMPTS> tag to end the <PROMPTS> list.

• <COMMAND_SECTION>

• <PROMPT>

• <SET_TEMPLATE_HEADING>

required <ENDPROMPTS>

terminator

DESCRIPTION The <PROMPTS> tag begins a summary of interactive prompts.

EXAMPLES The following example illustrates a command with a single prompt.

D <PROMPTS>(Prompt)
<PROMPT>(File:\filespec)
<ENDPROMPTS>

This example produces the following output:

prompt File: file spec

The following example illustrates a command with no prompts. Note that
the terminator, <ENDPROMPTS>, is not specified.

10-163

SOFTWARE Doctype Tag Reference
<PROMPTS>

~ <PROMPTS>(NONE)

This example produces the following output:

prompts None.

10-164

<QPAIR>

SYNTAX

ARGUMENTS

related tags

SOFTWARE Doctype Tag Reference
<QPAIR>

Labels a qualifier pair in a qualifier format list.

<QPAIR>(qualifier name\ default qualifier name)

qualifier name
The command qualifier to be listed. A common convention indicates the
negative form of the qualifier by placing brackets around the negative
prefix, as in [NO]CHECK.

default qualifier name
The default value of the qualifier.

• <QUAL_LIST>

• <QUAL_LIST_HEADS>

restrictions Valid only in the context of a <QUAL_LIST> tag.

DESCRIPTION The <QPAIR> tag labels a qualifier pair in a qualifier format list.

EXAMPLE See the example in the <QUAL_LIST> tag description.

10-165

SOFTWARE Doctype Tag Reference
<QUALDEF>

<QUALDEF>

Begins the text that defines an item in a qualifier definition list.

SYNTAX <QUALDEF>

ARGUMENTS None.

related tags • <QUALDEFLIST>

• <QUALITEM>

restrictions Valid only in the context of a <QUALDEFLIST> tag.

DESCRIPTION The <QUALDEF> tag begins the text that defines an item in a qualifier
definition list. This text describes the item listed by the previous
<QUALITEM> tag. The text begun by the <QUALDEF> tag is terminated
by the next <QUALITEM> or <ENDQUALDEFLIST> tag.

EXAMPLE See the example in the <QUALDEFLIST> tag description.

10-166

SOFTWARE Ooctype Tag Reference
<QUALDEFLIST>

<QUALDEFLIST>

SYNTAX

ARGUMENTS

related tags

required
terminator

DESCRIPTION

Begins a definition list describing command qualifiers.

{

alternate heading }
<QUALDEFLIST>[(NOHEAD)]

NONE

alternate heading
This is an optional argument. It specifies a heading to override the current
default text heading. The default heading provided by VAX DOCUMENT
for the <QUALDEFLIST> tag can vary. See the DESCRIPTION section for
more information on default qualifier definition list headings.

NOHEAD
This is an optional keyword argument. It suppresses the output of the
default heading for the <QUALDEFLIST> tag.

NONE
This is an optional keyword argument. It causes the text None to be
output beneath the heading for the qualifier definition list to indicate that
no qualifiers are available. Note that when you use the NONE keyword,
you do not use the <ENDQUALDEFLIST> tag.

• <ARGDEFLIST>

• <PARAMDEFLIST>

• <QUALDEF>

• <QUALITEM>

• <SET_TEMPLATE_ARGITEM>

• <SET_TEMPLATE_HEADING>

• The global <DEFINITION_LIST> tag

<ENDQUALDEFLIST> Required unless you specify the NONE keyword as an
argument to the <QUALDEFLIST> tag.

The <QUALDEFLIST> tag begins a definition list describing command
qualifiers. It is similar in format and syntax to the global <DEFINITION_

LIST> tag. See VAX DOCUMENT Using Global Tags for more information.

The <QUALDEFLIST> tag enables two tags to create a qualifier definition list.
The <QUALITEM> tag labels the list item being defined, and the <QUALDEF>

tag begins the definition of the list item. These tags are functionally
the same as the <DEFLIST_ITEM> and <DEFLIST_DEF> tags enabled by the

10-167

SOFTWARE Doctype Tag Reference
<QUALDEFLIST>

EXAMPLE

<COMMAND_SECTION)

global <DEFINITION_LIST> tag. A default heading is provided when the
<QUALDEFLIST> tag is used in a reference template; no default heading is
provided when the <QUALDEFLIST> tag is used outside a reference template.

Create your own heading for an individual qualifier definition list by
specifying that heading as the alternate heading argument. A heading
specified in this way overrides any existing default headings.

Use the <SET_TEMPLATE_HEADING> tag to alter the default headings used
by all subsequent <QUALDEFLIST> tags. See the description of the <SET_
TEMPLATE_HEADING> tag for more information.

The following informal table lists the default headings for the
<QUALDEFLIST> by their context.

Context

Command Template

Tag Template

Routine Template

Statement Template

Outside a Template

Default Heading

Qualifiers

Qualifiers

No default heading

No default heading

No default heading

The following example shows a qualifier definition list in the context of the
Command template.

<QUALDEFLIST>
<QUALITEM>(/LOG\/NOLOG (D))
<QUALDEF>Specifies whether or not output logging is used.
The default is /NOLOG.
<QUALITEM>(/ECHO\/NOECHO (D))
<QUALDEF>Specifies whether or not input echoing is used.
The default is /NOECHO.
<ENDQUALDEFLIST>

<ENDCOMMAND SECTION>

QUALIFIERS

10-168

This example produces the following output:

/LOG
/NOLOG(D)
Specifies whether or not output logging is used. The default is /NOLOG.

/ECHO
/NOECHO(D)
Specifies whether or not input echoing is used. The default is /NOECHO.

SOFTWARE Doctype Tag Reference
<QUALITEM>

<QUALITEM>

SYNTAX

ARGUMENTS

related tags

Labels one to seven items to be defined in a qualifier definition list.

<OUALITEM>(item-1[\ item-2 . .. [\ item-7]])

item-n
Specifies the item in the qualifier list to be defined. This tag accepts
a minimum of one item-n argument and a maximum of seven item-n
arguments. When you specify more than one argument, each subsequent
item-n argument after the initial argument formats flush left under the
first optional argument.

• <QUALDEF>

• <QUALDEFLIST>

restrictions Valid only in the context of a <QUALDEFLIST> tag.

required <QUALDEF>

terminator

DESCRIPTION The <QUALITEM> tag labels one to seven items to be defined in a qualifier
definition list. You can specify one to seven arguments as items requiring
a single definition in the qualifier definition list. If you specify more than
one item-n argument, the item-n arguments are stacked from top to bottom
in the order in which they were specified.

You may find it convenient to use the item-n arguments to the
<QUALDEFLIST> tag in pairs. The first item in the pair could be the positive
form of the qualifier, and the second item could be the negative form of the
qualifier (for example, /LOG and /NOLOG). Use the global <ALIGN_AFTER>

to format the item-n arguments differently than the default flush left
formatting.

A sample use of this tag is illustrated in the following example. See VAX
DOCUMENT Using Global Tags for more information on the <ALIGN_

AFTER> tag.

10-169

SOFTWARE Doctype Tag Reference
<QUALITEM>

EXAMPLE The following examples show several uses of the <QUALITEM> tag. The first
two uses of the <QUALITEM> tag show how positive and negative forms of
a qualifier may be grouped together. The third use of the <QUALITEM> tag
shows how you use the global <ALIGN_AFTER> tag for special formatting.

<QUALDEFLIST>
<QUALITEM>(/LOG\/NOLOG (D))
<QUALDEF>Specifies whether or not output logging should be used.
The default is /NOLOG.
<QUALITEM>(/ECHO\/NOECHO (D))
<QUALDEF>Specifies whether or not input echoing should be used.
The default is /NOECHO.
<QUALITEM>(/DEVICE=device type\
<ALIGN_AFTER>(DEVICE=)VTlOO\
<ALIGN_AFTER>(DEVICE=)VT220)
<QUALDEF>Specifies the type of device to be used.
<ENDQUALDEFLIST>

QUALIFIERS

10-170

This example produces the following output:

!LOG
/NOLOG(D)
Specifies whether or not output logging should be used. The default is
/NOLOG.

!ECHO
/NOECHO(D)
Specifies whether or not input echoing should be used. The default is
/NOECHO.

/DEVICE:device type
VT100
VT220

Specifies the type of device to be used.

SOFTWARE Doctype Tag Reference
<QUAL_LIST>

<QUAL LIST>

SYNTAX

ARGUMENTS

Begins a qualifier summary list.

{

alternate heading }
<OUAL_LIST>[(NONE

SPECIAL

{

\ alternate heading }
\ column width \ WIDE)]
\WIDE

alternate heading
This is an optional argument. It causes this text to be used instead of the
default heading in the first column, Command Qualifiers. This default
heading can be modified or suppressed by using the <QUAL_LIST_DEFAULT_
HEADS> tag. .

NONE
This is an optional keyword argument. It indicates that there are no
qualifiers or defaults and causes the text None to appear under the default
headings for the first and second columns (Command Qualifiers and
Defaults).

SPECIAL
This is an optional keyword argument. It labels an unusual case and
causes VAX DOCUMENT to expect a value in the second argument that
will set the width of the first qualifier column.

alternate heading
This is an optional argument. It causes this text to be used in column
two in place of the default heading Defaults. This default heading can be
modified or suppressed by using the <QUAL_LIST_DEFAULT_HEADS> tag.

column width
This is an optional argument. It provides VAX DOCUMENT with the size
in picas of the desired width of the first column (there are 6 picas to an
inch). This value must be a nonzero positive integer and can be used only
when the first argument is SPECIAL.

WIDE
This is an optional keyword argument. It causes the margins to be
adjusted to accommodate a wide list.

10-171

SOFTWARE Doctype Tag Reference
<CUAL_LIST>

related tags

restrictions

required
terminator

DESCRIPTION

10-172

WIDE
This is an optional keyword argument. It causes the margins to be
adjusted to accommodate a wide list. Use this third argument only in
the two following cases:

• When you have used the first two arguments to specify headings for
the first two columns.

• When you have used the first two arguments to specify a special list
and the width of the first column.

• <QPAIR>

• <QUAL_LIST_DEFAULT_HEADS>

• <QUAL_LIST_HEADS>

If you use the SPECIAL argument, you must use the <QUAL_LIST_HEADS>

tag to specify headings for the qualifier list.

<ENDQUAL_LIST>

The <QUAL_LIST> tag begins a qualifier summary list. A qualifier summary
list provides a short table listing the qualifiers that are applicable for a
system command. It is an optional part of the command template, but
you can use it in any context in a SOFTWARE doctype document. In the
context of the command template, it provides a brief listing of qualifiers
for quick lookup.

The arguments you specify to the <QUAL_LIST> tag provide you with
formatting :flexibility, and the choice of overriding the default headings
that are output.

• When you specify the tag with no arguments, the column widths
are set using the doctype design's default settings, and the default
headings Command Qualifiers and Defaults are output.

• When you specify text in the arguments to the <QUAL_LIST> tag, the
default headings are replaced:

<QUAL_LIST>(Subsystem Qualifier\Comment)

This changes the default heading for this qualifier summary list only.

• You override the default headings for all qualifier summary lists
in your document by using the <QUAL_LIST_DEFAULT_HEADS> tag, as
follows:

<QUAL_LIST_DEFAULT_HEADS>(Subsystem Qualifier\Comment)

To suppress either heading, enter the alternate heading text as a null
argument:

<QUAL_LIST_DEFAULT_HEADS>(\)

SOFTWARE Doctype Tag Reference
<QUAL_LIST>

• If items in the second column of your list result in output that does not
fit horizontally in the SOFTWARE design you are using, specify the
keyword argument WIDE in any of the following positions:

<QUAL_LIST>(WIDE)

This example uses the default headings, and shifts both columns of the
list to the left, as far left as the doctype design allows.

<QUAL_LIST>(heading text\WIDE)

This example modifies the default heading for the first column, uses
the default heading for the second column, and shifts both columns of
the list to the left, as far left as the document design allows.

<QUAL_LIST>(heading text\second heading text\WIDE)

This example modifies the default headings for both the first and
second columns, and shifts both columns of the list to the left, as far
left as the doctype design allows.

<QUAL_LIST>(SPECIAL\18)
<QUAL_LIST_HEADS>(Qualifiers)

If the default column width of the first . column of the qualifier
summary list is too narrow (for example, when qualifier names are
long or include lengthy argument specifications), widen that column by
specifying the SPECIAL keyword as the first argument to the <QUAL_

LIST> tag.

The <QUAL_LIST> tag will then accept the column width argument as a
second argument that specifies the width of the first column of the list
in picas (there are 6 picas to an inch). If you use the <QUAL_LIST> tag
in this manner, you must explicitly enter the headings for the qualifier
summary list using the <QUAL_LIST_HEADS> tag.

EXAMPLES The following example shows how to use the <QUAL_LIST> tag to create a
qualifier summary list.

D <QUAL LIST>
<QPAIR>(/BOOK\None.)
<QPAIR>(/[NO]CHECK\/CHECK)
<QPAIR>(/[NO]FAMILY=keyword\/NOFAMILY)
<QPAIR>(/OUTPUT=file spec\/OUTPUT=input file name)
<QPAIR>(/PROFILE=file spec\None.)
<QPAIR>(/TYPE=keyword\See text.)
<ENDQUAL_LIST>

This example produces the following output:

Command Qualifiers
!BOOK
l[NO]CHECK
l[NO]FAMILY =keyword
!OUTPUT =file spec
IPROFILE=file spec
/TYPE=keyword

Defaults
None.
!CHECK
INOFAMILY
!OUTPUT =input file name
None.
See text.

10-173

SOFTWARE Doctype Tag Reference
<OUAL_LIST>

The following example shows how to control the headings of the two
columns of output by specifying the headings you want in arguments one
and two. Compare the results here with the example in the discussion of
the <QUAL_LIST_HEADS> tag.

<QUAL LIST>(Input Save Set Qualifiers\Default)
<QPAIR>(/[NO]REWIND\/REWIND)
<QPAIR>(/SAVE SET\None.)
<QPAIR>(/SELECT=(file spec[, ...])\None.)
<ENDQUAL_LIST>

This example produces the following output:

10-174

Input Save Set Qualifiers
/[NO]REWIND
/SAVE_SET
/SELECT =(file spec[, ...])

Default
/REWIND
None.
None.

SOFTWARE Doctype Tag Reference
<CUAL_LIST _DEFAULT _HEADS>

<QUAL LIST DEFAULT HEADS> - - -
Specifies the default heading used by the <OUAL_LIST> tag.

SYNTAX <OUAL_LIST _DEFAULT _HEADS>(heading-1
\ heading-2)

ARGUMENTS heading-1
Specifies the default heading text for the first column. If this argument is
specified as null, no first column heading is output.

heading-2
The default heading text for the second column. If this argument is
specified as null, no second column heading is output.

related tags • <QPAIR>

• <QUAL_LIST>

• <QUAL_LIST_HEADS>

restrictions Valid only in the context of a <QUAL_LIST> tag.

DESCRIPTION The <QUAL_LIST_DEFAULT_HEADS> tag specifies the default heading used by
the <QUAL_LIST> tag. If you specify the heading-1 or heading-2 arguments
to this tag as null, the appropriate default heading (either the first or the
second) is set to null and that heading is not output.

EXAMPLE The following example shows how to use the <QUAL_LIST_DEFAULT_HEADS>
tag to supress a default heading in a qualifier summary list.

<QUAL_LIST>
<QUAL LIST DEFAULT HEADS>(Command Qualifiers\)
<QPAIR>(/BOOK\None~)
<QPAIR>(/[NO]CHECK\/CHECK)
<QPAIR>(/[NO]FAMILY=keyword\/NOFAMILY)
<QPAIR>(/OUTPUT=file spec\/OUTPUT=input file name)
<QPAIR>(/PROFILE=file spec\None.)
<QPAIR>(/TYPE=keyword\See text.)
<ENDQUAL_LIST>

This example produces the following output: .

10-175

SOFTWARE Doctype Tag Reference
<CUAL_LIST _DEFAULT _HEADS>

10-176

Command Qualifiers
/BOOK
/[NO]CHECK
/[NO]FAMILY=keyword
/OUTPUT =file spec
IPROFILE=file spec
/TYPE=keyword

Defaults
None.
!CHECK
/NOFAMILY
!OUTPUT =input file name
None.
See text.

SOFTWARE Doctype Tag Reference
<QUAL_LIST~HEADS>

<QUAL LIST HEADS> - -

SYNTAX

ARGUMENTS

related tags

Labels the headings for one or both of the columns in a qualifier format list
when you use the SPECIAL argument qualifier to the <OUAL_LIST> tag in
unusual cases for formatting control.

<QUAL_LIST _HEADS>(heading-1 \ heading-2)

heading-1
Specifies the heading text for the left column.

heading-2
Specifies the heading text for the right column. If you do not specify this
heading, you will obtain the default heading, Defaults.

• <QPAIR>

• <QUAL_LIST>

restrictions Valid only in the context of a <QUAL_LIST> tag.

DESCRIPTION The <QUAL_LIST_HEADS> tag labels the headings for one or both of the
columns in a qualifier format list when you use the SPECIAL argument
qualifier to the <QUAL_LIST> tag in unusual cases for formatting control.

EXAMPLE The following example shows how to use the <QUAL_LIST_HEADS> tag to
create qualifier summary list headings.

<P>The following is a partial list of the qualifiers you may use
with the BACKUP command:
<QUAL_LIST>(SPECIAL\18)
<QUAL LIST HEADS>(Output File Qualifiers\Qualifier Defaults)
<QPAIR>(/OWNER UIC[=option]\/OWNER UIC=DEFAULT)
<QPAIR>(/REPLACE\None.) -
<ENDQUAL_LIST>

This example produces the following output:

The following is a partial list of the qualifiers you may use with the
BACKUP command:

Output File Qualifiers
IOWNER_ UJC[=option]
/REPLACE

Qualifier Defaults
!OWNER_UIC=DEFAULT
None.

10-177

SOFTWARE Doctype Tag Reference
<RELATED _ITEM>

<RELATED ITEM>

SYNTAX

ARGUMENTS

related tags

Provides a text description of a tag or set of tags that may be related to the
tag being described.

<RELATED ITEM>

None.

• <RELATED_TAG>

• <RELATED_TAGS>

restrictions Valid only in the context of a <RELATED_TAGS> tag section in the Tag
template.

DESCRIPTION The <RELATED_ITEM> tag provides a text description of a tag or set of tags
that may be related to the tag being described. This text begins right after
the <RELATED_ITEM> tag and is terminated by the next related tag section
tag.

EXAMPLE The following example shows how to enter text describing information
related to the use of a tag.

<RELATED TAGS>
<RELATED ITEM> Use the <TAG>(INTRO) and <TAG>(ENDINTRO) tags
to label-introductory material in your book.
<ENDRELATED TAGS>

related tags

10-178

This example produces the following output:

• Use the <INTRO> and <ENDINTRO> tags to label introductory material in
your book.

SOFTWARE Doctype Tag Reference
<RELATED TAG>

<RELATED TAG>

SYNTAX

ARGUMENTS

related tags

Specifies a single tag that is related to the current tag.

<RELATED_TAG>(tag name)

tag name
Specifies the name of a VAX DOCUMENT tag. Do not place angle brackets
around the tag name; the <RELATED_TAG> tag supplies them by default.

• <RELATED_ITEM>

• <RELATED_TAGS>

restrictions Valid only in the context of the <RELATED_TAGS> tag in the Tag template.

DESCRIPTION The <RELATED_TAG> tag specifies a single tag that is related to the current
tag. The <RELATED_TAG> tag automatically places angle brackets around
the tag name argument, so angle brackets should not be specified.

EXAMPLE

Use the <RELATED_ITEM> tag to list related tag information in another
format.

The following example specifies the names of two related tags in the
context of the <RELATED_TAGS> tag. Note how the names of the related
tags are specified without the angle brackets.

<RELATED TAGS>
<RELATED_TAG>(SET_TEMPLATE_TAG)
<RELATED_TAG>(TAG_SECTION)
<ENDRELATED TAGS>

This example produces the following output:

related tags • <SET_TEMPLATE_TAG>

• <TAG_SECTION>

10-179

SOFTWARE Doctype Tag Reference
<RELATED_TAGS>

<RELATED TAGS>

SYNTAX

ARGUMENTS

related tags

Provides a summary of tags whose use is related to the tag being described.

<RELATED_TAGS>ffNONEll

NONE
This is an optional keyword argument. It indicates that there are no tags
whose use is related to the tag being described.

• <RELATED_ITEM>

• <RELATED_TAG>

restrictions Valid only in the context of the Tag template. If you specify NONE, do not
specify the <ENDRELATED_TAGS> tag.

required <ENDRELATED_TAGS>

terminator

DESCRIPTION The <RELATED_TAGS> tag provides a summary of tags whose use is related
to the tag being described.

EXAMPLES The following example shows how to specify two related tags in a
<RELATED_TAGS> tag section.

D <RELATED_TAGS>
<RELATED_TAG>(SET_TEMPLATE_TAG)
<RELATED_TAG>(TAG_SECTION)
<ENDRELATED TAGS>

related tags

10-180

This example produces the following output:

• <SET_TEMPLATE_TAG>

• <TAG_SECTION>

The following example shows how to use the NONE keyword to show that
there are no related tags. Note that, in this case, the <ENDRELATED_TAGS>

tag is omitted.

~ <RELATED_TAGS>(NONE)

SOFTWARE Doctype Tag Reference
<RELATED_ TAGS>

This example produces the following output:

related tags None.

10-181

SOFTWARE Doctype Tag Reference
<RESTRICTIONS>

<RESTRICTIONS>

SYNTAX

ARGUMENTS

related tags

Provides the restrictions on the use of a tag.

<RESTRICTIONS>[(NONE)] {

alternate heading[\ LIST] }

LIST

alternate heading
This is an optional argument. It specifies a heading to override the current
default text heading for this use of the <RESTRICTIONS> tag. The default
heading provided by VAX DOCUMENT is Restrictions. See the reference
description of the <SET_TEMPLATE_HEADING> tag for information on how to
modify the default headings for the <RESTRICTIONS> tag.

NONE
This is an optional keyword argument. It indicates that there are no
restrictions on the use of the tag. If you specify the NONE keyword, do
not use the <ENDRESTRICTIONS> tag to end the <RESTRICTIONS> tag section.

LIST
This is an optional keyword argument. It indicates that a number of
restrictions are to be listed. To list the restrictions, use the <RITEM> for
each of the individual restriction items in the list.

• <RITEM>

• <TAG_SECTION>

restrictions Valid only in the context of the Tag template. If you specify NONE, do not
specify the <ENDRESTRICTIONS> tag.

required <ENDRESTRICTIONS>

terminator

DESCRIPTION The <RESTRICTIONS> tag provides the restrictions on the use of a tag.

10-182

EXAMPLES

D <RESTRICTIONS>

SOFTWARE Doctype Tag Reference
<RESTRICTIONS>

The following example shows how to set a simple paragraph of text for the
restrictions section using the <RESTRICTIONS> tag.

Valid only in the context of the
<tag>(COMMAND_SECTION) tag.
<ENDRESTRICTIONS>

This example produces the following output:

restrictions Valid only in the context of the <COMMAND_SECTION> tag.

The following example shows how to use the NONE keyword to indicate
that there are no restrictions on the use of a tag.

~ <RESTRICTIONS>(NONE)

This example produces the following output:

restrictions None.

The following example shows how to create a set of restrictions in a list.

I <RESTRICTIONS>(LIST)
<RITEM>If you specify NONE, you must not specify <tag>(ENDPARAMDEFLIST).
<RITEM>Use of a default heading is restricted to the reference templates.
<ENDRESTRICTIONS>

This example produces the following output:

restrictions • If you specify NONE, you must not specify <ENDPARAMDEFLIST>.

• Use of a default heading is restricted to the reference templates.

10-183

SOFTWARE Doctype Tag Reference
<RETTEXT>

<RETTEXT>

SYNTAX

related tags

Provides general information about the attributes of the value returned by the
routine.

<RETIEXT>

• <RETURNS>

required <ENDRETTEXT>

terminator

restrictions Valid only following the <RETURNS> tag in the Routine template.

DESCRIPTION The <RETTEXT> tag provides general information about the attributes of
the value returned by the routine. It places one or more paragraphs of
information after some usage of the <RETURNS> tag. This information
begins immediately after the <RETTEXT> tag and continues until the
<ENDRETTEXT> tag is encountered.

EXAMPLE

10-184

You typically use this tag when the arguments given to the <RETURNS> tag
are not sufficiently descriptive.

See the example in the <RETURNS> tag description.

<RETURNS>

SYNTAX

ARGUMENTS

related tags

SOFTWARE Doctype Tag Reference
<RETURNS>

Provides information about the value returned by a routine.

<RETURNS>(usage information
\ data type \ access \ mechanism
[\ optional info])

<RETURNS>(HEADONLY)

usage information
Specifies a keyword indicating the category of data to which the return
value belongs. These keywords are system dependent, and are specified by
agreed-upon conventions.

data type
Indicates the data type of the return value, for example, longword, byte,
G_floating, and so on.

access
Indicates the access applied to the return value, for example, read-only,
write-only, and so on.

mechanism
Specifies the mechanism by which the return value is passed; for example,
by descriptor, by reference, or by value.

optional info
This is an optional argument. It specifies additional information which
may be appended to the mechanism argument output.

HEADONLY
This alternative keyword argument indicates that specific usage
information is not relevant, and that text will be provided to describe
the return attributes of the routine.

• <RETTEXT>

restrictions Valid only in the context of the Routine template.

DESCRIPTION The <RETURNS> tag provides information about the value returned by
a routine. The returns section of the Routine reference template and
its specialized argument list are used only by convention for those
documenting callable routines.

10-185

SOFTWARE Doctype Tag Reference
<RETURNS>

EXAMPLES The following two input examples show various uses of the <RETURNS> tag.
Outputs from these coding examples appear after the last input example.

The following input example shows how to specify multiple arguments to
the <RETURNS> tag.

D <RETURNS>(floating_point\
F_Floating, D_Floating, or G_Floating\write only\by value in RO)

I <RETURNS>(headonly)

The following input example shows a use of the HEADONLY argument.
The return value from a routine or set of related routines may be too
complex to express using the conventional arguments.

<RETTEXT>The square roots of F Floating, D Floating, and G Floating
input parameters are returned by immediate-value in RO and-Rl. The
square root of an H_Floating parameter is returned by reference
in the output parameter <VARIABLE>(sqrt).
<ENDRETTEXT>

RETURNS

RETURNS

10-186

These input examples produce the following output:

VMS Usage: floating_point
type: F _Floating, D_Floating, or G_Floating
access: write only
mechanism: by value in RO

The square roots of F _Floating, D _Floating, and G_Floating input
parameters are returned by immediate value in RO and Rl. The square
root of an H_Floating parameter is returned by reference in the output
parameter sqrt.

SOFTWARE Doctype Tag Reference
<RETURN_ VALUE>

<RETURN VALUE>

Labels a character string return value.

SYNTAX <RETURN_ VALUE>[(a/ternate heading)]

ARGUMENTS alternate heading
This is an optional argument. It specifies a heading to override the current
default text heading for this use of the <RETURN_ VALUE> tag. The default
heading provided by VAX DOCUMENT is Return Value. See the reference
description of the <SET_TEMPLATE_HEADING> tag for information on how to
modify the default headings for all <RETURN_ VALUE> tags.

restrictions Valid only in the context of the Command template.

required <ENDRETURN_VALUE>

terminator

DESCRIPTION The <RETURN_ VALUE> tag labels a character string return value.

EXAMPLE The following example shows how to use the <RETURN_VALUE> tag.

<RETURN VALUE>
abc-def-ghi
<ENDRETURN_VALUE>

return value

This example produces the following output:

abc-def-ghi

10-187

SOFTWARE Doctype Tag Reference
<RITEM>

<RITEM>

Labels an item in a list of restrictions.

ARGUMENTS None.

SYNTAX <RITEM>

related tags • <RESTRICTIONS>

restrictions Valid only in the context of the <RESTRICTIONS> tag.

DESCRIPTION The <RITEM> tag labels an item in a list of restrictions.

EXAMPLE The following example shows how to create a list of restrictions. Note
how you specify the <RESTRICTIONS> tag with the LIST keyword argument.
Note how this enables the <RITEM> tag.

<RESTRICTIONS>(LIST)
<RITEM~You must not unplug this appliance while it is operating.
<RITEM>This appliance should not be immersed in water.
<ENDRESTRICTIONS>

This example produces the following output:

restrictions • You must not unplug this appliance while it is operating.

• This appliance should not be immersed in water.

10-188

<ROUTINE>

SYNTAX

ARGUMENTS

related tags

SOFTWARE Doctype Tag Reference
<ROUTINE>

Begins a new routine description.

<ROUTINE>(routine name[\ info1[\ info2]]\ symbol
name)

routine name
Specifies the name of the routine to be described.

info1
info2
These are optional arguments. They specify an optional text description of
the routine's function.

symbol name
Specifies the name of the symbol used in all references to the routine.

Symbol names must not exceed 31 characters and must only contain
alphabetic letters, numbers, or underscores. Do not begin a symbol name
with an underscore.

• <ROUTINE_SECTION>

• <SET_TEMPLATE_ROUTINE>

restrictions Valid only in the context of the Routine template.

DESCRIPTION The <ROUTINE> tag begins a new routine description. This description is
for a single routine in the context of the <ROUTINE_SECTION> tag. This tag
has the following default format:

• Each <ROUTINE> tag begins a new page of output.

• Each output page carries a single running title, which is the current
routine name.

• If you use the optional info arguments with the <ROUTINE> tag, these
arguments output after the routine name argument and are separated
from the routine name argument by an em dash(-).

To replace the <ROUTINE> tag with a tag more specific to a certain task (for
example, the <DCL_ROUTINE>) tag, or to change the default attributes of the
<ROUTINE> tag, use the <SET_TEMPLATE_ROUTINE> tag. See the description
of the <SET_TEMPLATE_ROUTINE> tag in this chapter for more information.

10-189

SOFTWARE Doctype Tag Reference
<ROUTINE>

EXAMPLES

D <ROUTINE SECTION>
<ROUTINE> ($OPEN)
<OVERVIEW>

In the following example, the <ROUTINE_SECTION> tag enables the tags for
a routine description.

The description of the routine $OPEN has the following default attributes:

• The routine description starts a new page.

• If the routine carries for more than a page, the name $OPEN is carried
as a running top title on each page.

m <ROUTINE>($CLOSE\Close a File)

When two arguments are specified to the <ROUTINE> tag, the routine
name, $CLOSE, appears at the beginning of the routine description. The
text specified in the second argument, Close a File, follows the routine
name at the top of the page, separated from the routine name by an em
dash(-).

I] <ROUTINE>(SMG$BEGIN_PASTEBOARD_UPDATE\\Begin Batching of Pasteboard Updates)

This example illustrates special coding required when a routine's name
is extremely long and may require special formatting. If the second
argument is null, the third argument is stacked under the first argument.
No em dash is output:

SMG$BEGIN_PASTEBOARD_UPDATE
Begin Batching of Pasteboard Updates

Use this form only if the output from the other formats appears wrong.

<ROUTINE>(OTS$SCOPY R DX\Copy a Source String \Passed by Reference to a
Destination String)- -

10-190

This example illustrates special coding required when a routine's name
and descriptive name creates unreasonable output using the default
formatting attributes. If you specify three arguments, the first and second
arguments are output on the first line, separated by an em dash. The
third argument is stacked under the first argument (instead of wrapping)
following the em dash:

OTS$SCOPY R DX---Copy a Source String
given by Reference to a Destination String

Use this form only if examination of your output indicates a formatting
problem.

SOFTWARE Doctype Tag Reference
<ROUTINE_ SECTION>

<ROUTINE SECTION>

SYNTAX

ARGUMENTS

related tags

Begins a routine reference section, enables tags reserved for use in routine
sections, and sets paging attributes.

<ROUTINE_SECTION>[([running title]

running title

[\ number prefix]
[\ NEWPAGE])]

This is an optional argument. It specifies a top-level running heading to be
used throughout the routine section. If you do not specify this argument,
the running headings are determined as described in Section 10.13.

number prefix
This is an optional argument. It specifies a character-string prefix used
to construct page numbers (folios) and formal figure, table, and example
numbers. If you do not specify this argument, the page and formal element
numbering are determined as described in Section 10.13.

NEWPAGE
This is an optional keyword argument. It indicates that the routine section
begins on a new page. This argument is only meaningful in two cases:

• When you have previously entered the <SET_TEMPLATE_ROUTINE> tag
with the NONEWPAGE keyword to specify that each new routine in
this routine section should not begin on a new page

• When you want to place one or more pages of text between the end of
a part page and the beginning of a routine section

• <ARGDEF>

• <ARGDEFLIST>

• <ARGITEM>

• <ARGTEXT>

• <DESCRIPTION>

• <EXAMPLE_SEQUENCE>

• <FARG>

• <FARGS>

• <FFUNC>

• <FORMAT>

• <FRTN>

• <OVERVIEW>

10-191

SOFTWARE Doctype Tag Reference
<ROUTINE_SECTION>

required
terminator

DESCRIPTION

10-192

• <RETURNS>

• <RE'ITEXT>

• <ROUTINE>

• <RSDEFLIST>

• <RS ITEM>

• <SET_TEMPLATE_HEADING>

• <SET_TEMPLATE_LIST>

• <SET_TEMPLATE_PARA>

• <SET_TEMPLATE_TABLE>

<ENDROUTINE_SECTION>

The <ROUTINE_SECTION> tag begins a routine reference section, enables
tags reserved for use in routine sections, and sets paging attributes. You
can place more than one routine section in a single document. However,
you must end each previous routine section before you begin the next one.

You can tailor the default format of the routine reference template to
meet your own documentation requirements. Either you can alter the
default attributes of the <ROUTINE_SECTION> tag by specifying one of the
arguments to that tag, or you can use the <SET_TEMPLATE_ROUTINE> tag
to alter the default attributes for the <ROUTINE> tag that begins each new
routine description.

You can place a routine section in a chapter or an appendix, or following
a part page (that is, in a document section begun with the <PART_pAGE>

tag). You code a routine section in a chapter or an appendix in the same
manner; command sections in parts are handled differently.

If your routine section follows a part page, and you include text between
the part page and the routine section, specify the NEWPAGE keyword as
the third argument to the <ROUTINE_SECTION> tag. This causes the routine
section to begin on a new page. The following code fragment shows a
routine section that begins on a new page:

<ROUTINE SECTION>(\AB\NEWPAGE)
<HEADl>(Routine Forrnat\42_RoutineForrnat)

When you use the <ROUTINE_SECTION> tag in a chapter or an appendix,
and you want to place text after the routine section in that chapter
or appendix, you must end the routine section with the <ENDROUTINE_

SECTION> tag and place the text after that tag. By default, this text begins
on a new page of output.

Specify the NONEWPAGE argument to the <ENDROUTINE_SECTION> tag if
you do not want the text to begin on a new page of output. The following
code fragment shows the end of a routine section that specifies that the
subsequent text not be placed on a new page:

EXAMPLES

D <PART>
<PART PAGE>

SOFTWARE Doctype Tag Reference
<ROUTINE_SECTION>

<ENDROUTINE_SECTION>(NONEWPAGE)

When the <ENDROUTINE_SECTION> tag is specified in the context of a
chapter or appendix, it resets the default running titles to those in effect
for the chapter or appendix, so the last page of the last routine description
in the routine section may not carry the last routine's name as the running
heading. Instead it may carry the running title used by the chapter or
appendix.

The following example shows how to begin a routine section in a document
part.

<TITLE>(PART II\AAA Routine Descriptions)
<ABSTRACT>This Part contains complete reference descriptions of
the AAA routines.
<ENDABSTRACT>
<ENDPART_PAGE>(RENUMBER)
<endtag_section>

<ROUTINE SECTION>(AAA Routines\AAA)
<SET_TEMPLATE_ROUTINE>(AAA_ROUTINE\DOUBLERUNNINGHEADS)

<AAA_ROUTINE>(AAA$CLOSE)

<OVERVIEW>
Closes the specified file.
<ENDOVERVIEW

<ENDROUTINE_SECTION>

The tags in the previous example perform ·the following functions:

• The global <PART> tag begins the part.

• The global <PART_PAGE> tag creates a part page.

• The global <TITLE> tag is used in the context of the <PART_PAGE> tag to
create a title on the part page.

• The RENUMBER argument to the global <ENDPART_PAGE> tag specifies
that the pages are renumbered beginning with the part page. This
causes the first page of text following the part page to be numbered
page 3 (page 1 is the unnumbered page the part page title is placed
on, page 2 is the back of page 1, and page 3 is the first numbered page
after the part page).

• The <ROUTINE_SECTION>. tag begins the routine section and specifies
the running title AAA Routines as the running title for the routine
section.

The <ROUTINE_SECTION> tag also specifies that the prefix AAA should
be used to construct numbers for pages and for formal figures, tables,
and examples in the routine section (for example, AAA-11, AAA-32,
Table AAA-1, Example AAA-2, and so on).

10-193

SOFTWARE Doctype Tag Reference
<ROUTINE_ SECTION>

• The <SET_TEMPLATE_ROUTINE> tag specifies that all routine descriptions
in this routine section are identified using the tag <AAA_ROUTINE>

rather than the default <ROUTINE> tag. The <AAA_ROUTINE> tag has
the default attributes of the <ROUTINE> tag.

The DOUBLERUNNINGHEADS argument to the <SET_TEMPLATE_

ROUTINE> tag specifies that the routine section has a double running
heading at the top of the page. The top heading is the running title
specified as an argument to the <ROUTINE_SECTION> tag, and the lower
heading is the name of the current routine.

The following example shows how to create a routine section in which
each routine description (begun with a <ROUTINE> tag) is in a separate
SDML file, and all these descriptions are included into a primary routine
description file. For example, the file MYROUTINES.SDML contains the
following SDML tags:

<INCLUDE>(AAA$CLOSE.SDML)
<INCLUDE>(AAA$0PEN.SDML)
<INCLUDE>(AAA$READ.SDML)
<INCLUDE>(AAA$WRITE.SDML)

Each of the included files contains one routine reference description
begun with a <ROUTINE> tag. For these files to process correctly, you
must precede them with the <ROUTINE_SECTION> tag, which enables
the <ROUTINE> tag. These files can have the necessary tags processed
before them by specifying the /INCLUDE qualifier on the command line
to include a startup definition file. This startup file might include the
following tags:

<ROUTINE SECTION>(AAA Routines\AAA)
<SET_TEMPLATE_ROUTINE>(ROUTINE\DOUBLERUNNINGHEADS)

If this startup file were named AAAROUTINE_STARTUP.SDML, it could
be included using the DOCUMENT /INCLUDE qualifier as in the following
example:

$ DOCUMENT myroutines SOFT.REF LN03-
_$ /INCLUDE=AAAROUTINE_STARTUP.SDML

When each individual file in MYROUTINES.SDML is processed, the
correct sequence of tags will be read in to begin the routine section.

Process multiple files together by using the <INCLUDE> tag to include them
into a single master file (such as MYROUTINES.SDML), or include them
into a bookbuild profile.

Use the <ELEMENT> tags to include multiple files into a profile. For
example, the bookbuild profile file AAAPRO.SDML could contain the
following tags:

<PROFILE>
<ELEMENT>(AAA$CLOSE.SDML)
<ELEMENT>(AAA$0PEN.SDML)
<ELEMENT>(AAA$READ.SDML)
<ELEMENT>(AAA$WRITE.SDML) <COMMENT>(contains <ENDROUTINE_SECTION> tag)
<ENDPROFILE>

10-194

SOFTWARE Doctype Tag Reference
<ROUTINE_ SECTION>

Note that the PROFILE file should include the <ENDROUTINE_SECTION>

tag in the appropriate file, so that the template terminates and the book
builds correctly.

10-195

SOFTWARE Doctype Tag Reference
<RSDEFLIST>

<RSDEFLIST>

SYNTAX

ARGUMENTS

related tags

Begins a return status definition list in the Routine template.

<RSDEFLIST>[({ alternate heading[{ : ~~:-F } }JJ
NONE

alternate heading
This is an optional argument. It specifies a heading to override the
current default text heading for this use of the <RSDEFLIST> tag. The
default heading provided by VAX DOCUMENT is Return Values. See the
reference description of the <SET_TEMPLATE_HEADING> tag for information
on how to modify the default headings for all <RSDEFLIST> tags.

TEXT
This is an optional keyword argument. It specifies that a block of text
appears in place of a list of return status values. If you use this keyword,
you must position it as the second argument to the <RSDEFLIST> tag.

To use the default heading and to indicate that text follows, specify the
following:

<RSDEFLIST>(\TEXT)

NONE
This is an optional keyword argument. It indicates that the routine does
not return any values.

• <RSITEM>

restrictions Valid only in the context of the Routine template. If you specify NONE as
an argument to the <RSDEFLIST> tag, do not use the <ENDRSDEFLIST> tag.

required <ENDRSDEFLIST>

terminator

DESCRIPTION The <RSDEFLIST> tag begins a return status definition list in the
Routine template. VAX DOCUMENT formats this list as a 2-column,
multipage table. This lets you use the <TABLE_ROW _BREAK>CFIRST) and
<TABLE_ROW _BREAK>(LAST) tags to control page breaks in the table if such
control is needed.

10-196

EXAMPLES

D <RSDEFLIST>

SOFTWARE Doctype Tag Reference
<RSDEFLIST>

The following, three input examples show various uses of the <RSDEFLIST>
tag. Outputs from these coding examples appear after the last input
example.

The following input example illustrates a return status definition list for a
routine with two possible return values.

<RSITEM>(SS$ NORMAL\Service successfully completed.)
<RSITEM>(SS$=ACCVIO\Access violation.)
<ENDRSDEFLIST>

~ <RSDEFLIST>(NONE)

~ <RSDEFLIST>(\TEXT)

The following input example uses the NONE keyword argument to
indicate that a routine does not return any status values. Note that
the <ENDRSDEFLIST> tag must not be specified.

The following input example illustrates a single line of descriptive text in
a Return Status section.

Any condition values returned by the Record Management Service (RMS),
Parse.
<ENDRSDEFLIST>

RETURN
VALUES

RETURN
VALUES

RETURN
VALUES

These input examples produce the following outputs:

SS$_NORMAL

SS$_ACCVIO

None.

Service successfully completed.

Access violation.

Any condition values returned by the Record Management Service (RMS),
Parse.

10-197

SOFTWARE Doctype Tag Reference
<RSITEM>

<RSITEM>

SYNTAX

ARGUMENTS

related tags

Specifies the return status value of a routine and lists its meaning.

<RSITEM>(code \code description)

code
Specifies the system keyword assigned to the status value.

code description
Specifies the descriptive text explaining the meaning of the return status
value.

• <RSDEFLIST>

restrictions Valid only in the context of the <RSDEFLIST> tag.

DESCRIPTION The <RSITEM> tag specifies the return status value of a routine and lists its
meaning.

EXAMPLES

D <RSDEFLIST>

These examples show only code fragments, and no actual output. See the
<RSDEFLIST> tag description for sample output.

<RSITEM>(SS$ NORMAL\Normal, successful completion.)
<RSITEM>(SS$=ACCVIO\Access violation.)
<ENDRSDEFLIST>

~ <RSDEFLIST>

This example illustrates a Return Status section for a routine that has two
possible return values.

<RSITEM>(SS$ NORMAL\Normal successful completion.)
<RSITEM>(SMG$ WRONNUMARG\Wrong number of arguments.)
<RSITEM>((2\LEFT)Any condition values returned by
LIB$SCOPY_DXDX, SMG$ADD_KEY_DEF, or by CLI$ routines.)
<ENDRSDEFLIST>

10-198

This example illustrates the Return Status definition list for a routine that
has two specific return values, and uses the tag to place additional
explanatory text in the table.

SOFTWARE Doctype Tag Reference
<RUNNING_FEET>

<RUNNING FEET>

SYNTAX

ARGUMENTS

related tags

Creates a single line heading at the bottom of each page in a document
processed using the SOFTWARE.SPECIFICATION doctype.

<RUNNING_FEET>(tit/e text)

title text
Specifies the text to be used as a running heading at the foot of the page.

• <RUNNING_TITLE>

restrictions Valid only in the SOFTWARE.SPECIFICATION doctype.

DESCRIPTION The <RUNNING_FEET> tag creates a single line heading at

EXAMPLE

the bottom of each page in a document processed using the
SOFTWARE.SPECIFICATION doctype. This heading is called a footer
because it appears at the foot of the page. When the same footer is used
for several pages, the footers are collectively called running feet.

This tag accepts one argument, the text that should appear as the footer
at the bottom of the page. This text outputs exactly as entered, including
spacing and capitalization.

Use the <RUNNING_TITLE> tag to create a heading at the top of the
page. See the reference description of the <RUNNING_TITLE> tag for more
information on that tag.

The following example shows how to use the <RUNNING_FEET> tag to place
the heading Getting the Piece of Paper at the bottom of each page. Note
that the running footer will be output exactly as entered.

<RUNNING FEET>(Getting the Piece of Paper)
<HEAD2>(Getting the Piece of Paper\36 GettingthePieceofPaper)
<P> -
You can buy clean paper in most major supermarkets, department stores,
and hardware stores. You should try to get ruled paper so that
your letter will be neat and easy to read.

10-199

SOFTWARE Doctype Tag Reference
<RUNNING_ TITLE>

<RUNNING TITLE>

SYNTAX

ARGUMENTS

related tags

Creates a 1- or 2-line running heading at the top of each page in a document
processed using the SOFTWARE.SPECIFICATION doctype.

{
OFF }

<RUNNING_ TITLE>(title-1 [\ title-2])
[\ FIRST_PAGE]

OFF
Specifies that any existing running titles created using the
<RUNNING_TITLE> tag should be disabled for the page on which this tag
occurs and on any subsequent pages.

title-1
Specifies the text of a running title. If a 2-line title is specified, this title
outputs on the upper title line.

title-2
Specifies the optional bottom line of a running title that has two lines.

FIRST PAGE
This is an optional keyword argument. It specifies that the running title
is to begin output on the first output page. If you do not specify this
keyword, the running title is output on the page after the current page.

• <RUNNING_FEET>

restrictions Valid only in the SOFTWARE.SPECIFICATION doctype.

DESCRIPTION The <RUNNING_TITLE> tag creates a 1- or 2-line running heading

10-200

at the top of each page in a document processed using the
SOFTWARE.SPECIFICATION doctype. Use the FIRST_PAGE argument
to the <RUNNING_TITLE> tag to begin the title lines on the first page of
output, rather than on the page after the current page as is the default.

Use the OFF argument to disable any existing running titles created using
the <RUNNING_TITLE> tag. These titles will then be disabled for the page
on which this tag occurs and on any subsequent pages.

Use the <RUNNING_FEET> tag to create a heading that appears at the
bottom of the page. See the reference description of the <RUNNING_FEET>

tag for more information on that tag.

SOFTWARE Doctype Tag Reference
<RUNNING_ TITLE>

EXAMPLES The following example shows how to use the <RUNNING_TITLE> tag to
create the 2-line running title An E. B. Bartz Course: and Writing Quality
Correspondence. Since the FIRST_PAGE argument is used, the 2-line
running title will appear at the top of the first page.

D <RUNNING TITLE>(An E. B. Bartz Course:\Writing Quality Correspondence\FIRST PAGE)
<HEADl>(How to Write a Letter\37_HowtoWriteaLetter) -
<P>
The first thing that you should do in writing a letter is to get
a clean piece of paper and a well-sharpened pencil.

The following example shows how to disable a running title by using the
OFF argument to the <RUNNING_TITLE> tag.

~ <COMMENT>(turn off running titles for the following example page)
<RUNNING TITLE>(OFF)
<HEAD>(An Example of a Letter\38_AnExampleofaLetter)

10-201

SOFTWARE Doctype Tag Reference
<SDML_TAG>

<SDML TAG>

SYNTAX

ARGUMENTS

related tags

Begins a new tag description.

<SDML_TAG>(tag name\ symbol name)

tag name
Specifies the name of the tag to be described.

symbol name
Specifies the name of the symbol used in all references to the tag.

Symbol names must not exceed 31 characters and must only contain
alphabetic letters, numbers, or underscores. Do not begin a symbol name
with an underscore.

• <SET_TEMPLATE_TAG>

• <TAG_SECTION>

restrictions Valid only in the context of the Tag template.

DESCRIPTION The <SDML_TAG> tag begins a new tag description. The <SDML_TAG> tag has
the following default format:

EXAMPLE

• Each <SDML_TAG> tag begins a new page of output.

• Each output page carries a single running title, which is the current
SDML tag name.

Use the <SET_TEMPLATE_TAG> tag to replace the <SDML_TAG> tag with a tag
specific to your task (for example, <LOCAL_TAG>) or if you want to change
the default attributes of the <SDML_TAG> tag. See the description of the
<SET_TEMPLATE_TAG> tag in this chapter for more information.

The following example shows the Tag template begun using the <TAG_
SECTION> tag. In this tag section, the <SDML_TAG> tag begins the tag
description for the local <LEVELl> tag.

<TAG SECTION>(Local Tags)
<SDML_TAG>(LEVELl\level_tag_sym)
<OVERVIEW>
Labels the first level of a diagram.
<ENDOVERVIEW>

10-202

SOFTWARE Doctype Tag Reference
<SET_ TEMPLATE_ARGITEM>

<SET TEMPLATE ARGITEM>

SYNTAX

ARGUMENTS

Sets up a user-defined argument list for documenting callable routines for
multiple operating system platforms. Also allows translation of the argument
list.

<SET_ TEMPLATE_ARGITEM>(tag name
\text one
\text two
\text three

tag name
Defines the <ARGITEM> tag name.

text one

[\text four]
[\ text five]
\ longest text

)

Defines the first related text to be automatically output for argument two
in the list.

text two
Defines the second related text to be automatically output for argument
three in the list.

text three
Defines the third related text to be automatically output for argument four
in the list.

text four
This is an optional argument; if you do not use it, you must specify it
as null. Defines the fourth related text to be automatically output for
argument five in the list.

text five
This is an optional argument; if you do not use it, you must specify it as
null. Defines the fifth related text to be automatically output for argument
six in the list.

longest text
Defines the longest text in the argument list. It is positional; it must be
argument seven.

10-203

SOFTWARE Doctype Tag Reference
<SET_ TEMPLATE_ARGITEM>

related tags

restrictions

DESCRIPTION

EXAMPLE
<ROUTINE SECTION>

• <ARGDEFLIST>

• <ARGITEM>

• <ROUTINE_SECTION>

Valid only in the context of a <ROUTINE_SECTION> tag.

Only one <SET_TEMPLATE_ARGITEM> tag has effect at a time, so that an
occurrence of the <SET_TEMPLATE_ARGITEM> tag cancels the setting of a
previous one.

The <SET_TEMPLATE_ARGITEM> tag sets up a user-defined argument list for
documenting callable routines for multiple operating system platforms.
This tag also allows translation of the argument list.

The following example shows how to use the <SET_TEMPLATE_ARGITEM> tag.

<SET TEMPLATE ARGITEM>(UNIX ARGS
- - \UNIX-type

<ARGDEFLIST>

\MS-DOS type
\access
\mechanism
\special
\MS-DOS type) <COMMENT>(Longest text)

<UNIX ARGS>(unix argument\one\two\three\four)
<ARGDEF>This invocation of <UNIX_ARG> tag has four parameters.

<UNIX_ARGS>(unix argument two\one\two\three\four\five)
<ARGDEF>This invocation of <UNIX_ARG> tag has five parameters.
<ENDARGDEFLIST>

<SET TEMPLATE ARGITEM>(MSDOS ARGS
- - \MS-DOS type

\access
\mechanism
\usage
\ <COMMENT>(Note blank argument; longest

text must be in argument 7!)
\additionallongertext)

<ARGDEFLIST>
<ARGITEM>(argument\one\two\three\four)
<ARGDEF>This is a standard <ARGDEF> tag.

<MSDOS_ARGS>(msdos argument two\one\two\three\four)
<ARGDEF>This is a new tag, overriding the last.

<ARGITEM>(argument\one\two\three\four)
<ARGDEF>This is a standard <ARGDEF> tag.

<ENDARGDEFLIST>
<ARGDEFLIST>
<MSDOS_ARGS>(msdos argument two\one\two\three\four)
<ARGDEF>This is a new tag, overriding the last.

<ENDARGDEFLIST>

10-204

SOFTWARE Doctype Tag Reference
<SET_ TEMPLATE_ARGITEM>

<SET TEMPLATE ARGITEM>(OST ARGS
- - \OST type

\access
\mechanism
\ <COMMENT>(Note blank argument;

longest text must be in argument 7!)
\
\additionallongertext)

<ARGDEFLIST>
<MGDOS ARGS>(msdos argument two\one\two\three)
<ARGDEF>This is a new tag, overriding the last.

<MGDOS ARGS>(msdos argument two\one\two\three)
<ARGDEF>This is a new tag, overriding the last.

<MGDOS ARGS>(msdos argument two\one\two\three\four)
<ARGDEF>This is a new tag, overriding the last.

<ENDARGDEFLIST>
<ENDROUTINE SECTION>

10-205

SOFTWARE Doctype Tag Reference
<SET_TEMPLATE_COMMAND>

<SET TEMPLATE COMMAND>

SYNTAX

ARGUMENTS

10-206

Defines a new tag with the same function as the <COMMAND> tag, and changes
the format of command descriptions produced using the new tag.

<SET_TEMPLATE_COMMAND>(tag name

(
~ei~~~~EADS] l
[\ NONEWPAGE]
[\STACK]

[\symbol
name])

tag name
Specifies the name of the template tag being defined. This tag name must
be a valid tag name less than 31 characters and must not be the same as
an existing tag name other than COMMAND (the default tag name).

DOUBLERUNNINGHEADS
This is an optional keyword argument. It enables two running titles at the
top of every page. The top running title is set by the <COMMAND_SECTION>
tag or by the heading of the most recent <CHAPTER> or <APPENDIX> tag. By
default, if a doctype does not call for running top titles, only the current
command name is placed at the top of each page.

NONEWPAGE
This is an optional keyword argument. It prevents command descriptions
from starting on new· pages. By default, each tag name template tag
begins a command description on a new page.

STACK
This is an optional keyword argument. It stacks multiple arguments
to the tag name tag. By default, when you specify multiple arguments,
the second and third arguments are assumed to be optional descriptive
information, and output on the same line as the command name.

symbol name
This is an optional argument for printed output, but is required for using
the file in a bookbuild for Bookreader. This argument specifies the name
of the symbol used in all references to this tag.

Symbol names must not exceed 31 characters and must only contain
alphabetic letters, numbers, or underscores. Do not begin a symbol name
with an underscore.

SOFTWARE Doctype Tag Reference
<SET_ TEMPLATE_ COMMAND>

related tags • <COMMAND>

• <COMMAND_SECTION>

restrictions Valid only in the context of the <COMMAND_SECTION> tag in the Command
template.

DESCRIPTION The <SET_TEMPLATE_COMMAND> tag defines a new tag with the same
function as the <COMMAND> tag, and changes the format of command
descriptions produced using the new tag.

This tag also changes the default attributes associated with the
<COMMAND> tag, or gives your new tag different attributes than the
<COMMAND> tag.

EXAMPLES

D <COMMAND SECTION>(FDL Cornmands\\NEWPAGE)
<SET TEMPLATE COMMAND>(FDL COMMAND\NONEWPAGE\STACK\DOUBLERUNNINGHEADS)
<FDL=COMMAND>CSTARTUP_FILE\STF)

These tags· begin a command section and define the <FDL_COMMAND> tag
as the command descriptor tag. The attributes set are as follows:

• Commands do not start on new pages.

• When two arguments are specified to the <FDL_COMMAND> tag, the
arguments are stacked. That is, the second argument is printed under
the first.

• Each page carries a 2-line running title. The top line is FDL
Commands and the second line is the name of the command
description that is current at the top of the page.

Note that this command sequence is most appropriate for a series of
command descriptions that occur in a chapter.

~ <PART>
<PART PAGE>
<TITLE>(PART II\XYZ Commands)
<ENDPART PAGE>(RENUMBER)
<COMMAND=SECTION>(XYZ Cornmands\XYZ)
<SET_TEMPLATE_COMMAND>(XYZ_COMMAND)

These tags begin a document part in which only command descriptions
occur. The RENUMBER argument on the <ENDPART_PAGE> tag specifies
that the first page of the new Part (the part page itself) should be
numbered page 1. The <COMMAND_SECTION> tag sets the folio prefix to
XYZ; that is, pages will be numbered XYZ-3, XYZ-4, and so on.

10-207

SOFTWARE Doctype Tag Reference
<SET_ TEMPLATE_ COMMAND>

10-208

No attributes are specified for the command descriptions produced by
the <XYZ_COMMAND> tag. These commands will have default attributes.
The first command will start on a new page. Since RENUMBER was
specified on the <ENDPART_PAGE>tag, the first command will be on the page
numbered XYZ-3.

SOFTWARE Doctype Tag Reference
<SET_ TEMPLATE_HEADING>

<SET TEMPLATE HEADING:>

SYNTAX

ARGUMENTS

Overrides the heading for all subsequent uses of a template tag.

<SET_ TEMPLATE_HEADING>(e/ement keyword
\ default heading)

element keyword
Specifies the standard reference template element whose default heading
you want to override. The reference element keywords, the related
template tags, and the system default headings are listed in the following
table.

Keyword

Command Template

DESCRIPTION

FORMAT

PARAMDEFLIST

PROMPTS

QUALDEFLIST

RETURN_ VALUE

RESTRICTIONS

Routine Template

ARGDEFLIST

DESCRIPTION

FORMAT

RSDEFLIST

Statement Template

Template Tag

<DESCRIPTION>

<FORMAT>

<PARAMDEFLIST>

<PROMPTS>

<OUALDEFLIST >

<RETURN_ VALUE>

<RESTRICTIONS>

<ARGDEFLIST >

<DESCRIPTION>

<FORMAT>

<RSDEFLIST >

STATEMENT _FORMAT <STATEMENT _FORMAT>

Tag Template

All defaults established for the command template.

ARGDEFLIST <ARGDEFLIST >

PARAMDEFLIST

RELATED_ TAGS

TERMINATOR

<PARAMDEFLIST >

<RELATED_ TAGS>

<TERMINATING_ TAG>

Default Heading

Description

Format

Parameters

Prompts

Qualifiers

Return Value

Restrictions

Arguments

Description

Format

Return Values

Format

Arguments

Parameters

Related Tags

Required Terminator

10-209

SOFTWARE Doctype Tag Reference
<SET_ TEMPLATE_HEADING>

related tags • <SET_TEMPLATE_LIST>

• <SET_TEMPLATE_PARA>

• The global <LIST> tag

DESCRIPTION The <SET_TEMPLATE_HEADING> tag overrides the heading for all subsequent
uses of a template tag.

EXAMPLE The following example shows how to use the <SET_TEMPLATE_HEADING>

tag to change the Command template so that the default heading of the
keyword FORMAT is changed from Format to Syntax.

<COMMAND SECTION>(FDL Commands)
<SET_TEMPLATE_HEADING>(FORMAT\Syntax)

10-210

SOFTWARE Doctype Tag Reference
<SET_TEMPLATE_LIST>

<SET TEMPLATE LIST>

SYNTAX

ARGUMENTS

related tags

Creates a user-defined set of tags for listing information.

<SET_TEMPLATE_LIST>(list tag name

list tag name

\ default list heading
\ list item tag name
\list type
[\ heading level])

Specifies the name of the tag that will introduce the list of items in the list
template being defined. This tag name must be a valid tag name less than
28 characters; it must not be the same as an existing SDML tag name.

default list heading
Specifies the default text heading to be output by the list template being
defined.

item tag name
Specifies the name of the tag to be used to indicate individual items in the
list being defined. This name must be a valid tag name.

list type
Specifies the keyword that indicates the type of list the list being defined
is based on. These keywords create the same list format as the same
keywords used with the global <LIST> tag. These keywords are as follows:

SIMPLE
NUMBERED
UNNUMBERED

heading level
This is an optional argument. It specifies the template heading level
to be associated with the tag. Valid values are 1 and 2, indicating a
primary template heading or a secondary template heading. If you do not
specify this argument, the value defaults to 2, and the secondary template
heading is used.

• <SET_TEMPLATE_HEADING>

• <SET_TEMPLATE_PARA>

• <SET_TEMPLATE_TABLE>

• The global <LIST> tag

10-211

SOFTWARE Doctype Tag Reference
<SET_ TEMPLATE_ LIST>

restrictions Valid only in the context of a <COMMAND_SECTION>, <ROUTINE_SECTION>,

<STATEMENT_SECTION>, or <TAG_SECTION> tag.

DESCRIPTION The <SET_TEMPLATE_LIST> tag creates a user-defined set of tags for listing
information.

EXAMPLES The following examples in this section assume that the following tag has
been specified to enable the <SHOPPING_LIST>, <SITEM>, and <ENDSHOPPING_

LIST> tags.

D <SHOPPING LIST>
<SITEM>one item
<SITEM>second
<ENDSHOPPING LIST>

shopping list

<SET_TEMPLATE_LIST>(SHOPPING_LIST\Shopping List\SITEM\NUMBERED)

The following example generates the default heading Shopping List, and
starts a numbered list. Each <SITEM> tag generates another numeric item
in the list, as follows:

This example produces the following output:

1 one item

2 second

The following example shows how to override the default heading shopping
list heading and produce the text None.

~ <SHOPPING_LIST>(Bloomingdales\NONE)

This example produces the following output:

bloomingdales None.

10-212

SOFTWARE Doctype Tag Reference
<SET_TEMPLATE_PARA>

<SET TEMPLATE PARA>

SYNTAX

ARGUMENTS

related tags

Defines a set of template tags for setting the format of a paragraph of
information.

<SET_TEMPLATE_PARA>ffagname

tag name

\ default heading
[\ heading level])

Specifies the user-defined name of the tag that begins the paragraph
template and marks the beginning of the text in that paragraph. This tag
name must be a valid tag name less than 28 characters; it must not be the
same as an existing SDML tag name.

default heading
Specifies a default heading to be associated with the paragraph template.
You can override this default heading in the tag invocation, if needed.

heading level
This is an optional argument. It specifies the template heading level to
be associated with the tag. Valid values are 1 and 2, indicating a primary
template heading or a secondary template heading. If you do not specify
this argument, it defaults to 2 and the secondary template heading is
used.

• <SET_TEMPLATE_HEADING>

• <SET_TEMPLATE_LIST>

• <SET_TEMPLATE_TABLE>

restrictions Valid only in the context of a reference template.

DESCRIPTION The <SET_TEMPLATE_PARA> tag defines a set of template tags for setting the
format of a paragraph of information.

EXAMPLES The following examples show how to use the <SET_TEMPLATE_PARA> tag.

The <SET_TEMPLATE_PARA> tag in the following example creates the
template tags <SIDE_EFFECTS> and <ENDSIDE_EFFECTS> as the beginning
and ending tags of a paragraph template with a default heading of Side
Effects:.

10-213

SOFTWARE Doctype Tag Reference
<SET_TEMPLATE_PARA>

Note that this definition of the <SIDE_EFFECTS> tag is the one used in the
following examples.

D <SET_TEMPLATE_PARA>(SIDE_EFFECTS\Side Effects:)

<SIDE EFFECTS>
Modifying the arguments to the PLACE command changes the positioning of the
page number.
<ENDSIDE EFFECTS>

The following example shows how to specify the template tag <SIDE_
EFFECTS> with the alternate heading Desired Effect=.

~ <SIDE_EFFECTS>(Desired Effect=)
Modifying the arguments to the PLACE command changes the positioning of the
page number.
<ENDSIDE EFFECTS>

The following example shows how to specify the NONE keyword to the
<SIDE_EFFECTS> template tag.

~ <SIDE_EFFECTS>(NONE)

10-214

SOFTWARE Doctype Tag Reference
<SET_ TEMPLATE_ROUTINE>

<SET TEMPLATE ROUTINE>

SYNTAX

ARGUMENTS

Defines a new reference element tag name to use in the routine template, and
specifies the formatting attributes for the new tag.

<SET_TEMPLATE_ROUTINE>(tag name

tag name

(

[\ DOUBLE- l
RUNNINGHEADS]
[\ NONEWPAGE]
[\STACK]

[\symbol name])

Specifies the name of the template tag being defined. This tag name must
be a valid tag name less than 31 characters and must not be the same as
an existing tag name other than ROUTINE (the default tag name).

DOUBLERUNNINGHEADS
This is an optional keyword argument. It specifies that the routine
descriptions will have two running titles at the top of every page. The
top running title is either the title you set with the <ROUTINE_SECTION>
tag, or the heading set in the most recent <CHAPTER> or <.APPENDIX> tag.
By default, if a doctype does not call for running top titles, only the current
routine name is placed at the top of each page.

NONEWPAGE
This is an optional keyword argument. Routine descriptions are not to
start on new pages. By default, each tag name template tag begins a
routine description on a new page.

STACK
This is an optional keyword argument. It specifies that when you give
multiple arguments to the tag name tag, the arguments are stacked at the
beginning of the page.

By default, when you give multiple arguments, the second and third
arguments are assumed to be optional descriptive information, and output
as shown in the examples in the <ROUTINE> tag description.

symbol name
This is an optional argument for printed output, but is required for using
the file in a bookbuild for Bookreader. This argument specifies the name
of the symbol used in all references to this tag.

Symbol names must not exceed 31 characters and must only contain
alphabetic letters, numbers, or underscores. Do not begin a symbol name
with an underscore.

10-215

SOFTWARE Doctype Tag Reference
<SET_ TEMPLATE_ROUTINE>

related tags

restrictions

DESCRIPTION

EXAMPLES

• <ROUTINE>

• <ROUTINE_SECTION>

Valid only in the context of the <ROUTINE_SECTION> tag in the Routine
template.

The <SET_TEMPLATE_ROUTINE> tag defines a new reference element
tag name to use in the routine template, and specifies the formatting
attributes for the new tag.

This tag also changes the default attributes associated with the <ROUTINE>
tag or your new tag.

The following two examples show how to use the <SET_TEMPLATE_ROUTINE>

tag.

The first tag sequence begins a routine section and defines the <FDL_

ROUTINE> tag as the routine descriptor tag. The attributes set are as
follows:

• Routines do not start on new pages. However, because NEWPAGE is
specified to the <ROUTINE_SECTION> tag, the first reference description
begins on a new page.

• When two arguments are specified to the <FDL_ROUTINE> tag, the
arguments are stacked; that is, the second argument is placed under
the first on output.

• Each page carries a 2-line running title. The top line is FDL Routines
and the second line is the name of the routine description that is
current at the top of the page.

Note that this routine sequence is most appropriate for a series of routine
descriptions that occur in a chapter.

D <ROUTINE SECTION>(FDL Routines\\NEWPAGE)
<SET TEMPLATE ROUTINE>(FDL ROUTINE\NONEWPAGE\STACK\DOUBLERUNNINGHEADS)
<FDL=ROUTINE>($STARTUP_FILE\$STF)

10-216

The second tag sequence begins a document part in which only routine
descriptions occur. The RENUMBER argument on the <ENDPART_PAGE>

tag specifies that the first page of the new part (the part page itself) is
numbered page 1. The <ROUTINE_SECTION> tag sets the folio prefix to XYZ;
that is, pages will be numbered XYZ-3, XYZ-4, and so on.

No attributes are specified for the routine descriptions produced by the
<XYZ_ROUTINE> tag. These routines will have default attributes. The first
routine will start on a new page. Because RENUMBER was specified on
the <ENDPART_PAGE> tag, the first routine will be on the page numbered
XYZ-3.

~ <PART>
<PART PAGE>
<TITLE>(PART II\XYZ Routines)
<ENDPAET_PAGE>(RENUMBER)

SOFTWARE Doctype Tag Reference
<SET_ TEMPLATE_ROUTINE>

10-217

SOFTWARE Doctype Tag Reference
<SET_TEMPLATE_STATEMENT>

<SET TEMPLATE STATEMENT>

SYNTAX

ARGUMENTS

10-218

Defines a new reference element tag name to use in the statement template
and specifies the formatting attributes for the new tag.

<SET_ TEMPLATE_STATEMENT>(tag name

tag name

l
[\ DOUBLE-)
RUNNINGHEADS]
[\ NONEWPAGE]
[\STACK]

[\symbol
name])

Specifies the name of the template tag being defined. This tag name must
be a valid tag name less than 31 characters and must not be the same as
an existing tag name other than STATEMENT or FUNCTION (which are
the default tag names).

DOUBLERUNNINGHEADS
This is an optional keyword argument. It specifies that the statement
descriptions will have two running titles at the top of every page. The top
running title is set by the <STATEMENT_SECTION> tag or by the heading of
the most recent <CHAPTER> or <APPENDIX> tag. By default, if a doctype
does not call for running top titles, only the current statement name is
placed at the top of each page.

NONEWPAGE
This is an optional keyword argument. It specifies that statement
descriptions are not to start on new pages. By default, each tag name
template tag begins a statement description on a new page.

STACK
This is an optional keyword argument. It specifies that when multiple
arguments are specified for the tag name tag, the arguments should be
stacked at the beginning of the page.

By default, when multiple arguments are specified, the second and third
arguments are assumed to be optional descriptive information, and are
output on the same line as the statement name.

symbol name
This is an optional argument for printed output, but is required for using
the file in a bookbuild for Bookreader. This argument specifies the name
of the symbol used in all references to this tag.

Symbol names must not exceed 31 characters and must only contain
alphabetic letters, numbers, or underscores. Do not begin a symbol name
with an underscore.

SOFTWARE Doctype Tag Reference
<SET_TEMPLATE_STATEMENT>

related tags • <FUNCTION>

• <STATEMENT>

• <STATEMENT_SECTION>

restrictions Valid only in the context of the <STATEMENT_SECTION> tag.

DESCRIPTION The <SET_TEMPLATE_STATEMENT> tag defines a new reference element
tag name to use in the statement template and specifies the formatting
attributes for the new tag.

This tag also lets you change the default attributes associated with the
<STATEMENT> tag or your new tag.

EXAMPLES The following tag sequence begins a statement section and defines the tag
<BASIC_STATEMENT> as the statement descriptor tag. The attributes set are
as follows:

D

• Statements do not start on new pages.

• Each page carries a 2-line running title. The top line is BASIC
Statements and the second line is the name of the statement
description that is current at the top of the page.

Note that this statement sequence is most appropriate for a series of
statement descriptions that occur in a chapter.

<STATEMENT SECTION>(BASIC Statements\\NEWPAGE)
<SET TEMPLATE STATEMENT>(BASIC STATEMENT\NONEWPAGE\DOUBLERUNNINGHEADS)
<BASIC_STATEMENT>(STARTUP_FILE\STF)

The following tag sequence begins a document part in which only
statement descriptions occur. The RENUMBER argument on the
<ENDPART_PAGE> tag specifies that the first page of the new part (the
part page itself) should be numbered page 1. The <STATEMENT_SECTION>

tag sets the folio prefix to XYZ; that is, pages will be numbered XYZ-3,
XYZ-4, and so on.

No attributes are specified for the statement descriptions produced by
<XYZ_STATEMENT>; these statements have default attributes. The first
statement will start on a new page. Because RENUMBER was specified on
the <ENDPART_PAGE> tag, the first statement will be on the page numbered
XYZ-3.

~ <PART>
<PART PAGE>
<TITLE>(PART II\XYZ Statements)
<ENDPART PAGE>(RENUMBER)
<STATEMENT_SECTION>(XYZ Statements\XYZ)
<SET_TEMPLATE_STATEMENT>(XYZ_STATEMENT)

10-219

SOFTWARE Doctype Tag Reference
<SET_ TEMPLATE_ SUBCOMMAND>

<SET TEMPLATE SUBCOMMAND>

SYNTAX

ARGUMENTS

related tags

Changes the name of the <SUBCOMMAND> tag to the name you specify, and
specifies formatting attributes for the new tag.

<SET_ TEMPLATE_SUBCOMMAND>(tag name
[\ NONEWPAGE])

tag name
Specifies the name of the template tag being defined. This tag name must
be a valid tag name less than 31 characters; it must not be the same as an
existing SDML tag name other than SUBCOMMAND (which is the default
tag name).

NONEWPAGE
This is an optional argument. It specifies that the corresponding
subcommand reference description does not start on a new page of output.

• <COMMAND_SECTION>

• <SUBCOMMAND>

• <SUBCOMMAND_SECTION>

restrictions Valid only in the context of the <COMMAND_SECTION> tag.

DESCRIPTION The <SET_TEMPLATE_SUBCOMMAND> tag changes the name of the
<SUBCOMMAND> tag to the name you specify, and specifies formatting
attributes for the new tag. This helps you customize your source file
coding.

EXAMPLE The following example shows how to create a subcommand section in a
command section. The subcommand section is used to describe keywords
associated with the command.

<SUBCOMMAND_SECTION>(Qualifiers)
<SET TEMPLATE SUBCOMMAND>(QUALIFIER)
<QUALIFIER>(/OUTPUT)
<overview>

10-220

SOFTWARE Doctype Tag Reference
<SET_ TEMPLATE_ SUBCOMMAND>

The following default attributes are set in the previous example:

• Each subcommand description that begins with the <QUALIFIER> tag
starts on a new page of output.

• Each page carries a 2-line running title. The top line is Qualifiers and
the second line is the name of the subcommand description that is
current at the top of the page.

10-221

SOFTWARE Doctype Tag Reference
<SET_TEMPLATE_TABLE>

<SET TEMPLATE TABLE>

SYNTAX

ARGUMENTS

10-222

Defines a set of template tags for setting information in 2- or 3-column lists.

<SET_TEMPLATE_TABLE>(table tag name

table tag name

\ default table heading
\ table row tag name
\ column count
\ column widths
[\table column headings])

Specifies the user-defined name of the tag that begins the user-defined
table. This tag name must be a valid tag name less than 28 characters; it
must not be the same as an existing SDML tag name.

default table heading
Specifies a default heading to be output over the entire user-defined table.

table row tag name
Specifies the name of the tag to be used to indicate individual table rows
in the table being defined. This name must be a valid tag name. For
example, if the table row tag name argument is specified as SAMP _ROW,
the individual table row tag will be <SAMP _ROW>. The user-defined tag
created by this argument is similar to the global <TABLE_ROW> tag.

column count
Specifies the number of columns in the user-defined table. The accepted
arguments are as follows:

• 2 - Specifies that the table is to have two columns.

• 3 - Specifies that the table is to have three columns.

column widths
Specifies the approximate widths of the table columns. The width of the
last table column is determined by VAX DOCUMENT. If you specify a
2-column table, you must specify only a single column width argument, as
shown in the following code example:

<SET_TEMPLATE_TABLE>(KEYVALS\Keyword Values\KEYVAL\2\10\Keyword\Value)

If you specify a 3-column table, you must specify two column-width
arguments, as shown in the following code example:

<SET TEMPLATE TABLE>(KEYVAL TABLE\Keyword Ranges
\KEYVAL\3\10\lO\Keyword\High\Lower)

related tags

SOFTWARE Doctype Tag Reference
<SET_TEMPLATE_TABLE>

table column headings
This is an optional argument. It specifies the default headings for each
column in the user-defined table. If you specify a 2-column table, you can
specify up to two heading arguments. If you specify a 3-column table, you
can specify up to three heading arguments.

• <SET_TEMPLATE_LIST>

• <SET_TEMPLATE_PARA>

restrictions Valid only in the context of a reference template.

DESCRIPTION The <SET_ TEMPLATE_ TABLE> tag defines a set of template tags for setting
information in 2- or 3-column lists. Tables created using this tag may have
either two or three columns. This tag requires five arguments and accepts
the optional table column headings argument.

EXAMPLES

If you choose to omit the table column headings argument, then the table
will not have any column headings and will not output rules in the table.

In the following example, the <SET_TEMPLATE_TABLE> tag sets the default
heading to be Best Songs, enables a 2-column table, sets the text supplied
to the two <45RPM> tags in the table, and then terminates the table.

D <SET_TEMPLATE_TABLE>(RECORDTABLE\Best Songs\45RPM\2\12\Perforrner\Song Title)
<RECORD TABLE>
<45RPM>(Sinatra\Strangers in the Night)
<45RPM>(Moody Blues\Nights in White Satin)
<END RECORD TABLE>

best songs

S <RECORDTABLE>(NONE)

best songs

This example produces the following output.

Performer

Sinatra

Moody Blues

Song Title

Strangers in the Night

Nights in White Satin

The following example shows how to specify the NONE keyword to the
<RECORDTABLE> tag.

This example produces the following output.

None.

The following example shows how to define a 3-column table with
headings. The tags defined are the <OPCODES>, <ENDOPCODES>, and <OPS>

tags.

10-223

SOFTWARE Doctype Tag Reference
<SET_TEMPLATE_TABLE>

§ <SET_TEMPLATE_TABLE>(OPCODES\codes\OPS\3\6\6\2-byte\3-byte\4-byte)
<OPCODES>
<OPS>(abc\def\ghi)
<ENDOPCODES>

This example produces the following output.

codes

2-byte 3-byte 4-byte

abc def ghi

10-224

SOFTWARE Doctype Tag Reference
<SET_TEMPLATE_TAG>

<SET TEMPLATE TAG>

SYNTAX

ARGUMENTS

Defines a new reference element tag name to use in the tag template, and
specifies formatting attributes for the newly defined tag.

<SET_TEMPLATE_TAG>~agname

tag name

(

[\DOUBLE- l
RUNNINGHEADS]
[\ NONEWPAGE]
[\STACK]

[\symbol name])

Specifies the name of the template tag being defined. This tag name must
be a valid tag name less than 31 characters and must not be the same
as an existing tag name other than SDML_TAG (which is the default tag
name).

DOUBLERUNNINGHEADS
This is an optional keyword argument. It specifies that the tag
descriptions for the tag name tag will have two· running titles at the
top of every page. The top running title is set by the <TAG_SECTION> tag
or by the heading of the most recent <CHAPTER> or <APPENDIX> tag. By
default, if a doctype does not call for running top titles, only the current
tag name prints at the top of each page.

NONEWPAGE
This is an optional keyword argument. It specifies that tag descriptions
are not to start on new pages. By default, each tag name template tag
begins a tag description on a new page.

STACK
This is an optional keyword argument. It specifies that when you give
multiple arguments to the tag name tag, the arguments are stacked at the
beginning of the page.

By default, when you specify multiple arguments, the second and third
arguments are assumed to be optional descriptive information, and are
output on the same line as the tag name.

symbol name
This is an optional argument for printed output, but is required for using
the file in a bookbuild for Bookreader. This argument specifies the name
of the symbol used in all references to this tag.

Symbol names must not exceed 31 characters and must only contain
alphabetic letters, numbers, or underscores. Do not begin a symbol name
with an underscore.

10-225

SOFTWARE Doctype Tag Reference
<SET_TEMPLATE_TAG>

related tags • <SDML_TAG>

• <TAG_SECTION>

restrictions Valid only in the context of the <TAG_SECTION> tag.

DESCRIPTION The <SET_TEMPLATE_TAG> tag defines a new reference element tag name
to use in the tag template, and specifies formatting attributes for the
newly-defined tag.

EXAMPLE

This tag also lets you alter the default attributes associated with the
<SDML_TAG> tag (or the tag you replaced with the <SDML_TAG> tag using
the <SET_TEMPLATE_TAG> tag).

The following example shows how to use the <SET_TEMPLATE_TAG> tag to
alter the default format of the Tag template.

<TAG SECTION>(Tag Template Tags)
<SET=TEMPLATE_TAG>(LOCAL_TAG\DOUBLERUNNINGHEADS)
<LOCAL_TAG>(LEVELl)

10-226

This tag sequence begins a tag section and defines the <LOCAL_TAG> tag for
introducing new tag descriptions. These attributes are as follows:

• Each tag description begins on a new page.

• Each page carries a 2-line running title. The top line is Tag Template
Tags and the second line is the name of the tag description that is
current at the top of the page.

SOFTWARE Doctype Tag Reference
<SIGNATURES>

<SIGNATURES>

SYNTAX

ARGUMENTS

related tags

Begins a list of signatures that are to appear in the front matter portion of a
document processed using the SOFTWARE.SPECIFICATION doctype.

<SIGNATURES>[(NEWPAGE)]

NEWPAGE
This is an optional keyword argument. It specifies that the signature list
is to begin on a new page.

• <AUTHOR>

• <BYLINE>

• The global <FRONT_MATTER> tag

restrictions Available only in the SOFTWARE.SPECIFICATION doctype following the
global <FRONT_MATTER> tag.

DESCRIPTION The <SIGNATURES> tag begins a list of signatures that are to appear
in the front matter portion of a document processed using the
SOFTWARE.SPECIFICATION doctype. Each person's name is listed

EXAMPLE

by using the <BYLINE> tag following the <SIGNATURES> tag. The <BYLINE>

tag places the name of the person, and additional information about that
person (such as his or her title or affiliation), below a line on which the
person is to sign.

See the reference description of the <BYLINE> tag for more information on
that tag.

See the example in the <BYLINE> tag description.

10-227

SOFTWARE Doctype Tag Reference
<STATEMENT>

<STATEMENT>

SYNTAX

ARGUMENTS

related tags

Begins a new statement description.

<STATEMENT>(statement name\ symbol name)

statement name
Specifies the name of the statement to be described.

symbol name
Specifies the name of the symbol used in all references to the tag.

Symbol names must not exceed 31 characters and must only contain
alphabetic letters, numbers, or underscores. Do not begin a symbol name
with an underscore.

• <FUNCTION>

• <SET_TEMPLATE_STATEMENT>

• <STATEMENT_SECTION>

DESCRIPTION The <STATEMENT> tag begins a new statement description. This description
is for a single statement in the context of the <STATEMENT_SECTION> tag.
This tag has the following default format:

EXAMPLE

10-228

• Each <STATEMENT> tag begins a new page of output.

• Each output page carries a single running t!tle, which is the current
statement name.

Use the <SET_TEMPLATE_STATEMENT> tag to replace the <STATEMENT>
tag with a tag specific to your task (for example, the <ABC_STATEMENT>

tag), or if you wish to change the default attributes of the <STATEMENT>

tag. See the description of the <SET_TEMPLATE_STATEMENT> tag for more
information.

In the following example, the <STATEMENT_SECTION> tag enables the tags
for a statement description. By default, the description of the statement
OPEN has the following attributes:

• The statement description begins on a new page.

• If the statement carries for more than a page, the name OPEN is
carried as a running top title on each page.

<STATEMENT SECTION>
<STATEMENT>(OPEN)
<OVERVIEW>
<ellipsis>

SOFTWARE Doctype Tag Reference
<STATEMENT _FORMAT>

<STATEMENT FORMAT>

SYNTAX

ARGUMENTS

related tags

Begins a section that illustrates the syntax of a statement or function, including
keywords and parameters.

<STATEMENT _FORMAT>[([a/ternate heading]
[\MULTIPLE])]

alternate heading
This is an optional argument. It specifies a heading to override the
current default text heading for this use of the <STATEMENT_FORMAT> tag.
The default heading provided by VAX DOCUMENT is Format. See the
reference description of the <SET_TEMPLATE_HEADING> tag for information
on how to modify the default headings for all <STATEMENT_FORMAT> tags.

MULTIPLE
This is an optional keyword argument. It indicates that the statement
has more than one format, and that each format will be introduced using
the <FORMAT_SUBHEAD> tag. This keyword is valid only as the second
argument to the <STATEMENT_FORMAT> tag.

• <CONSTRUCT_LIST>

• <FCMD>

• <FFUNC>

• <FORMAT_SUBHEAD>

• <FPARMS>

• <STATEMENT_LINE>

required <ENDSTATEMENT_FORMAT>

terminator

DESCRIPTION The <STATEMENT_FORMAT> tag begins a section that illustrates the syntax
of a statement or function, including keywords and parameters. Like the
global <FORMAT> tag, the <STATEMENT_FORMAT> tag enables the <FCMD>
and <FPARMS> tags to label specific portions of a statement format section.

The following is a list of some of the most regularly used statement format
section tag combinations:

• <.FCMD>(statement-keyword) <.FPARMS>(parameter-list)

This is the standard form in which the statement keyword and its
· parameter list are separated by a blank space. If the parameter list,

on output, is more than a single line, additional lines are aligned at
the beginning of the parameter list.

10-229

SOFTWARE Doctype Tag Reference
<STATEMENT_FORMAT>

EXAMPLES

• <.FCMD>(statement-keyword\parameter-list)

This form should be used for statement functions, in which a statement
and its parameters are not separated by blank spaces.

Following the formatted statement, the <CONSTRUCT_LIST> and
<STATEMENT_LINE> tags can be used to expand on the meanings of variable
names specified in the format. Such variable names can be coded using
the <VARIABLE> or <KEYWORD> tags.

The following two input examples show various uses of the <STATEMENT_

FORMAT> tag. Output from these coding examples appears after the last
input example.

The following input example shows a statement format section that uses
the <FFUNC> tag to present the format of a statement.

D <STATEMENT FORMAT>
<FFUNC>{real-vbl\=ABS<VARIABLE>{{real-exp)))
<endstatement_format>

The following input example illustrates the use of multiple formats for a
single statement, with special headings for each. Note the special use of
the <FORMAT_SUBHEAD> tag to introduce each specific format.

~ <statement_format>(\multiple)
<FORMAT_SUBHEAD>(String Variable To Array)
<FCMD>(CHANGE) <FPARMS>(str-exp <KEYWORD>(TO) num-array)
<FORMAT_SUBHEAD>(Array to String Variable)
<FCMD>(CHANGE) <FPARMS>(num-array <KEYWORD>(TO) str-vbl)
<endstatement format>

These input examples produce the following output:

Format

real-vbl=ABS(real-exp)

Format

String Variable To Array

CHANGE str-exp TO num-array

Array to String Variable

CHANGE num-arrayTO str-vbl

10-230

SOFTWARE Doctype Tag Reference
<STATEMENT _LINE>

<STATEMENT LINE>

SYNTAX

ARGUMENTS

related tags

Indicates the position of a valid statement line in the context of a statement
format or a construct list.

<STATEMENT_LINE>[(text[\ INDENT])]

text
This is an optional argument. It specifies the text for a valid statement
line. If no text is specified, the default statement line output is as follows:

[statement]

INDENT
This is an optional keyword argument. It indicates that the statement line
is to be indented from the margin at which the current statement format
or construct list is being set.

• <CONSTRUCT>

• <FCMD>

• <FPARMS>

restrictions Valid only in the context of the Statement reference template.

DESCRIPTION The <STATEMENT_LINE>tag indicates the position of a valid statement line
in the context of a statement format or a construct list.

EXAMPLES The following three input examples show various uses of the <STATEMENT_
LINE> tag. Output from these coding examples appear after the last input
example.

The following input example shows how to use <STATEMENT_LINE> in a
formatted statement section.

D <STATEMENT_FORMAT>
<FCMD>(RECORD) <FPARMS>(rec-nam)
<STATEMENT_LINE>(rec-component)
<ELLIPSIS>
<FCMD>(END RECORD) <FPARMS>([rec-nam])
<ENDSTATEMENT FORMAT>

The following input example shows how to use the <STATEMENT_LINE> tag
in a construct list. Note that the first use of the tag specifies INDENT as
the second argument.

10-231

SOFTWARE Doctype Tag Reference
<STATEMENT _LINE>

~ <STATEMENT FORMAT>
<CONSTRUCT_LIST>(group-clause:)
<construct>(group-clause:)

<keyword>(GROUP) group-nam [(int-const,<hellipsis>)]
<statement line>(rec-component\indent)
<ellipsis>-
<statement_line> (<keyword> (END GROUP) [group-nam])

<ENDCONSTRUCT_LIST>
<ENDSTATEMENT FORMAT>

i] <STATEMENT_E'ORMAT>

The followjng input example shows the default output for the <STATEMENT_

LINE> tag when it is used in a statement format section.

<FCMD>(SUB) <FPARMS>(sub-name [pass-mech] [([formal-param],
<hellipsis>)])

<statement line>
<FCMD>(<list>(stacked\braces)

<le>END SUB
<le>SUBEND<endlist>) <FPARMS>()

<endstatement_format>

These input examples produce the following outputs:

Format

RECORD rec-nam
rec-component

END RECORD [rec-nam]

Format

group-clause: GROUP group-nam [(int-const, ...)]
rec-component

END GROUP [group-nam]

10-232

Format

SOFTWARE Doctype Tag Reference
<STATEMENT LINE>

SUB sub-name [pass-mech] [([formal-param], ...)]
[statement}. ..

{
END SUB}
SU BEND

10-233

SOFTWARE Doctype Tag Reference
<STATEMENT _SECTION>

<STATEMENT SECTION>

SYNTAX

ARGUMENTS

related tags

10-234

Begins a statement reference section, enables tags reserved for use in
statement sections, and sets paging attributes.

<STATEMENT_SECTION>([([running title]
[\ number prefix]
[\ NEWPAGE])])

running title
This is an optional argument. It specifies a top-level running heading
to be used throughout the statement section. If you do not specify this
argument, the running headings are determined as described in 10.13.

number prefix
This is an optional argument. It specifies a character-string prefix to
be used to construct page numbers (folios) and formal figure, table, and
example numbers. If you do not specify this argument, the page and
formal element numbering are determined as described in 10.13.

NEWPAGE
This is an optional keyword argument. It indicates that the statement
section should begin on a new page. This argument is only meaningful in
two cases:

• When you have previously entered the <SET_TEMPLATE_STATEMENT> tag
with the NONEWPAGE keyword to specify that each new statement in
this statement section should not begin on a new page

• When you want to place one or more pages of text between the end of
a part page and the beginning of a statement section.

• <CONSTRUCT>

• <CONSTRUCT_LIST>

• <FCMD>

• <FFUNC>

• <FPARMS>

• <FORMAT_SUBHEAD>

• <FUNCTION>

• <OVERVIEW>

• <SET_TEMPLATE_HEADING>

• <SET_TEMPLATE_LIST>

• <SET_TEMPLATE_PARA>

required
terminator

DESCRIPTION

SOFTWARE Doctype Tag Reference
<STATEMENT _SECTION>

•
•
•
•
•

<SET_TEMPLATE_STATEMENT>

<SET_TEMPLATE_TABLE>

<STATEMENT>

<STATEMENT_FORMAT>

<STATEMENT_LINE>

<ENDSTATEMENT_SECTION>

The <STATEMENT_SECTION> tag begins a statement reference section,
enables tags reserved for use in statement sections, and sets paging
attributes. You can locate a statement section in a chapter or an appendix,
or following a part page (that is, in a document section begun with the
<PART_PAGE> tag). You code a statement section in a chapter or an
appendix in the same manner; statement sections in parts are handled
differently.

If your statement section follows a part page, and you include text between
the part page and the statement section, specify the NEWPAGE keyword
as the third argument to the <STATEMENT_SECTION> tag. This causes the
statement section to begin on a new page. The following code fragment
shows a statement section that begins on a new page:

<STATEMENT_SECTION>(\SD\NEWPAGE)
<HEADl>(Statement Format\44_StatementFormat)

When you use the <STATEMENT_SECTION> tag in a chapter or an appendix,
and you want to place text after the statement section in that chapter or
appendix, you must end the statement section with the <ENDSTATEMENT_

SECTION> tag and place the text after that tag. By default, this text begins
on a new page of output.

Specify the NONEWPAGE argument to the <ENDSTATEMENT_SECTION> tag
if you do not want the text to begin on a new page of output. The following
code fragment shows the end of a statement section that specifies that the
subsequent text not be placed on a new page:

<ENDSTATEMENT_SECTION>(NONEWPAGE)

When the <ENDSTATEMENT_SECTION> tag is specified in the context of
a chapter or appendix, it resets the default running titles to those in
effect for the chapter or appendix, so the last page of the last statement
description in the statement section may not carry the last statement's
name as the running heading. Instead it may carry the running title used
by the chapter or appendix.

The <STATEMENT_SECTION> tag can be used more than once in a document.
By specifying arguments to that tag, and by using the <SET_TEMPLATE_

STATEMENT> tag to specify additional attributes, you can tailor statement
sections that meet the specific requirements of your documentation.

10-235

SOFTWARE Doctype Tag Reference
<STATEMENT_SECTION>

EXAMPLES

D <PART>
<PART PAGE>

The following example shows how to begin a statement section in a
document part.

<TITLE>(Part III\BASIC Statements and Functions)
<ENDPART PAGE>(RENUMBER)
<STATEMENT_SECTION>(Statements and Functions\SF)
<SET_TEMPLATE_STATEMENT>(BASIC_STATEMENT)

<BASIC_STATEMENT>(GROUP)
<OVERVIEW>
Creates a group in a database.
<ENDOVERVIEW

<ENDSTATEMENT SECTION>

10-236

The tags in the previous example perform the following functions:

• The global <PART> tag begins the part.

• The global <PART_PAGE> tag creates a part page.

• The global <TITLE> tag is used in the context of the <PART_PAGE> tag to
create a title on the part page.

• The RENUMBER argument to the global <ENDPART_PAGE> tag specifies
that the pages should be renumbered beginning with the part page.
This causes the first page of text following the part page to be
numbered page 3 (page 1 is the unnumbered page the part page
title is placed on, page 2 is the back of page 1, and page 3 is the first
numbered page after the part page).

• The <STATEMENT_SECTION> tag begins the statement section and
specifies Statements and Functions as the running title for the
statement section. If the <SET_TEMPLATE_STATEMENT> tag were used
with the DOUBLERUNNINGHEADS argument, Statements and
Functions would be used as the top running title.

The <STATEMENT_SECTION> tag also specifies that the prefix SF should
be used to construct numbers for pages and for formal figures, tables,
and examples in the statement section (for example, SF-11, SF-32,
Table SF-1, Example SF-2, and so on).

• The <SET_TEMPLATE_STATEMENT> tag specifies that all statement
descriptions in this statement section will be identified using the
<BASIC_STATEMENT> tag rather than the default tags <FUNCTION>
or <STATEMENT>. The <BASIC_STATEMENT> tag created by the <SET_
TEMPLATE_STATEMENT> tag will have the default attributes of the
default tags <FUNCTION> and <STATEMENT>.

The following example shows how you can create a statement section
in which each statement description (begun with a <STATEMENT> or
<FUNCTION> tag) is in a separate SDML file, and all these descriptions
are included into a primary statement description file. For example, the
file MYSTATEMENTS.SDML contains the following SDML tags:

SOFTWARE Doctype Tag Reference
<STATEMENT _SECTION>

<INCLUDE>(CLOSE_GROUP.SDML)
<INCLUDE>(OPEN_GROUP.SDML)
<INCLUDE>(READ_GROUP.SDML)
<INCLUDE>(WRITE_GROUP.SDML)

Each of the included files contains one statement reference description
begun with a <STATEMENT> or <FUNCTION> tag. For these files to process
correctly, they must be preceded with the <STATEMENT_SECTION> tag that
enables the <STATEMENT> and <FUNCTION> tag. These files can have the
necessary tags processed by specifying the /INCLUDE qualifier on the
command line to include a startup definition file. This startup file might
include the following tags:

<STATEMENT SECTION>(Group Statements\GS)
<SET_TEMPLATE_STATEMENT>(STATEMENT\DOUBLERUNNINGHEADS)

If this startup file were named GS_STATEMENT_STARTUP.SDML, it
could be included using the DOCUMENT HEAD/INCLUDE qualifier as in
the following example:

$ DOCUMENT mystatements SOFT.REF LN03-
_$ /INCLUDE=GS_STATEMENT_STARTUP.SDML

When each individual file in MYSTATEMENTS.SDML is processed, the
correct sequence of tags is read in to begin the statement section.

You can process multiple files together by using the <INCLUDE> tag to
include them into a single master file (such as MYSTATEMENTS.SDML),
or you can include them into a bookbuild profile ..

Use the <ELEMENT> tags to include multiple files into a profile. For
example, the bookbuild profile file GS_STATEPRO.SDML could contain
the following tags:

<PROFILE>
<ELEMENT>(CLOSE_GROUP.SDML)
<ELEMENT>(OPEN_GROUP.SDML)
<ELEMENT>(READ_GROUP.SDML)
<ELEMENT>(WRITE_GROUP.SDML

<COMMENT>(**contains <ENDSTATEMENT_SECTION> tag**)
<ENDPROFILE>

Note that the PROFILE file should include the <ENDSTATEMENT_SECTION>

tag in the appropriate file, so that the template will be terminated and the
bookbuild will process correctly.

10-237

SOFTWARE Doctype Tag Reference
<SUBCOMMAND>

<SUBCOMMAND>

SYNTAX

ARGUMENTS

related tags

DESCRIPTION

EXAMPLES

Begins a new subcommand description.

<SUBCOMMAND>(subcommand name\ symbol name)

subcommand name
Names the command described in the subcommand section.

symbol name
Specifies the name of the symbol used in all references to the subcommand.

Symbol names must not exceed 31 characters and must only contain
alphabetic letters, numbers, or underscores. Do not begin a symbol name
with an underscore.

• <SET_TEMPLATE_SUBCOMMAND>

• <SUBCOMMAND_SECTION>

The <SUBCOMMAND> tag begins a new subcommand description.
Subcommand sections have these format defaults:

• Each <SUBCOMMAND> tag begins a new page of output.

• The subcommand name appears as the single running title on each
page.

To change the name of the <SUBCOMMAND> tag, or to change its default
attributes, see the description of the <SET_TEMPLATE_SUBCOMMAND> tag.

In the following example, the <SUBCOMMAND_SECTION> tag enables the tags
for a subcommand description. The description of the subcommand OPEN,
by default, has the following attributes:

1 The subcommand description begins on a new page.

2 If the subcommand carries for more than a page, the name OPEN is
carried as a running top title on each page.

D <SUBCOMMAND SECTION>
<SUBCOMMAND>(OPEN)
<OVERVIEW>

10-238

SOFTWARE Doctype Tag Reference
<SUBCOMMAND>

In the following example, the <SUBCOMMAND_SECTION> tag starts a
subcommand section and gives it the title File System Subcommands.
In this command section, each page of output carries this title at the top
of the page, with the name of the current subcommand just below it, until
the <ENDSUBCOMMAND_SECTION> tag ends that titling.

~ <SUBCOMMAND_SECTION>(File System Subcommands)
<SUBCOMMAND>(CLOSE)

10-239

SOFTWARE Doctype Tag Reference
<SUBCOMMAND _SECTION>

<SUBCOMMAND SECTION>

SYNTAX

ARGUMENTS

related tags

Begins a subcommand reference section for subordinate commands in the
command section.

<SUBCOMMAND_SECTION>[(running title
[\ NEWPAGE])]

running title
This is an optional argument. It specifies text to be placed at the top of
each page of the subcommand section.

NEWPAGE
This is an optional keyword argument. It specifies that the subcommand
section is to start on a new page. Note that this argument is required
only if subcommands themselves do not start on new pages, or if you use
the <SUBCOMMAND_SECTION_HEAD> tag to provide introductory text for the
subcommand section.

• <COMMAND_SECTION>

• <SET_TEMPLATE_SUBCOMMAND>

• <SUBCOMMAND>

• <SUBCOMMAND_SECTION_HEAD>

restrictions Valid only in the context of the <COMMAND_SECTION> tag.

required <ENDSUBCOMMAND_SECTION>

terminator

DESCRIPTION The <SUBCOMMAND_SECTION> tag begins a subcommand reference section
for subordinate commands in the command section.

EXAMPLE The following example illustrates a subcommand section in a command
section. The subcommand section is used to describe subordinate
commands.

10-240

<SUBCOMMAND_SECTION>(File System Subcommands)
<SUBCOMMAND>(CLOSE)
<overview>

SOFTWARE Doctype Tag Reference
<SUBCOMMAND_ SECTION_HEAD>

<SUBCOMMAND SECTION HEAD>

SYNTAX

ARGUMENTS

related tags

restrictions

DESCRIPTION

EXAMPLE

Specifies the heading for text that precedes a subcommand section.

<SUBCOMMAND_SECTION_HEAD>(heading)

heading
Specifies a heading that precedes introductory text for the subcommand
section.

• <SET_TEMPLATE_SUBCOMMAND>

• <SUBCOMMAND>

Valid only in the context of the <SUBCOMMAND_SECTION> tag.

The <SUBCOMMAND_SECTION_HEAD> tag specifies the heading for text that
precedes a subcommand section. This tag lets you provide introductory
text for a section of command descriptions that are subordinate to a
specific command description.

The following example illustrates a subcommand section in a command
section. The subcommand section is used to describe subordinate
commands.

<SUBCOMMAND_SECTION>(File System Subcommands\NEWPAGE)
<SUBCOMMAND_SECTION_HEAD>(Subcommand Descriptions)
<p>This section provides information about each of the subcommands
you can enter while you are conversing with the file subsystem.
<SUBCOMMAND>(CLOSE)
<overview>

10-241

SOFTWARE Doctype Tag Reference
<SYNTAX>

<SYNTAX>

SYNTAX

ARGUMENTS

related tags

Lets you use special characters to describe language syntaxes.

<SYNTAX>[({ heading text[\ WIDE] }Jl
WIDE

heading text
This is an optional argument. It specifies a heading. The doctype controls
the font used to display the heading. By default, this tag has no heading.
You may want to create a heading using the <SYNTAX_DEFAULT_HEAD> tag.

WIDE
This is an optional keyword argument. It specifies that the syntax
statement can exceed the normal right margin of the text. If you are
using doctype designs that indent the text body, a wide syntax example
will extend into the left margin.

• <DISPLAY>

• <SYNTAX_DEFAULT_HEAD>

• The global <CODE_EXAMPLE> tag

• The global <FORMAT> tag

restrictions You cannot use tab characters, index tags (such as the <X> and <Y> tags), or
text element tags (such as <P>, <LIST>, or <NOTE>) in this type of example.

required <ENDSYNTAX>

terminator

DESCRIPTION The <SYNTAX> tag lets you use special characters to describe language
syntaxes. Languages can include programming languages, command
languages, application-defined languages, and so forth. This tag also
separates the syntax example from the remaining text, retains blank
spaces and open lines, and labels the example (if you specified one) using
a doctype-specific font different from the current text font.

10-242

EXAMPLE

SOFTWARE Doctype Tag Reference
<SYNTAX>

The following example shows how to use the <SYNTAX> tag to describe a
language's syntax.

<P>The COPY command has the following syntax:
<SYNTAX>

<END SYNTAX>
COPY input_file output_file

This example produces the following output.

The COPY command has the following syntax:

COPY input_file output_file

10-243

SOFTWARE Doctype Tag Reference
<SYNTAX_DEFAULT_HEAD>

<SYNTAX DEFAULT HEAD>

SYNTAX

ARGUMENTS

related tags

Creates a default heading for the <SYNTAX> tag.

<SYNTAX DEFAULT HEAD>({ heading text }J
- - OFF

heading text
Specifies a heading to be used by all subsequent <SYNTAX> tags. The
doctype controls the font used to display this heading. By default, the
<SYNTAX> tag has no heading.

OFF
Disables any heading established by a previous use of the <SYNTAX_
DEFAULT_HEAD> tag.

• <SYNTAX>

DESCRIPTION The <SYNTAX_DEFAULT_HEAD> tag creates a default heading for the
<SYNTAX> tag. Use the <SYNTAX_DEFAULT_HEAD> tag to create the same
default heading above each use of the <SYNTAX> tag.

To disable all subsequent default headings, specify the OFF argument to
the <SYNTAX_DEFAULT_HEAD> tag.

EXAMPLES The following example shows how to use the <SYNTAX_DEFAULT_HEAD> tag
to create a default heading for all subsequent <SYNTAX> tags.

D <P>
The COPY command has the following general syntax:
<SYNTAX>

COPY input-file output-file
<END SYNTAX>

<COMMENT>(Set up default headings for syntax statements)
<SYNTAX_DEFAULT_HEAD>(What the User Types)
<P>
An actual user would type the following:
<SYNTAX>
$ COPY MYFILE.TXT NEWFILE.TXT
<END SYNTAX>

This example produces the following output:

The COPY command has the following general syntax:

COPY input-file output-file

10-244

SOFTWARE Doctype Tag Reference
<SYNTAX_DEFAULT_HEAD>

An actual user would type the following:

What the User Types

$ COPY MYFILE.TXT NEWFILE.TXT

The following example shows how to disable the <SYNTAX_DEFAULT_HEAD>

tag for all subsequent <SYNTAX> tags.

I <COMMENT>(Set up default headings for syntax statements)
<SYNTAX_DEFAULT_HEAD>(What the User Types)
<P>
An actual user would type the following:
<SYNTAX>
$ COPY MYFILE.TXT NEWFILE.TXT
<END SYNTAX>

<COMMENT>(Disable default headings for syntax statements)
<SYNTAX_DEFAULT_HEAD>(OFF)

<P>The following is a semantic statement of the COPY operation.
<SYNTAX>
COPY [the existing file specification to] [the new file specification]
<END SYNTAX>

This example produces the following output:

An actual user would type the following:

What the User Types

$ COPY MYFILE.TXT NEWFILE.TXT

The following is a semantic statement of the COPY operation.

COPY [the existing file· specification to] [the new file specification]

10-245

SOFTWARE Doctype Tag Reference
<TAG_SECTION>

<TAG SECTION>

SYNTAX

ARGUMENTS

related tags

10-246

Begins a tag reference section, enables tags reserved for use in tag sections,
and sets paging attributes.

<TAG_SECTION>[([running title]
[\number-prefix]
[\ NEWPAGE])]

running title
This is an optional argument. It specifies a top-level running heading to
be used throughout the tag section. If this argument is not specified, the
running headings are determined as described in Using the Template
Enabling Tags (see Section 10.13).

number prefix
This is an optional argument. It specifies a character-string prefix to
be used to construct page numbers (folios) and .formal figure, table,
and example numbers. If this argument is not specified, the page and
formal element numbering are determined as described in Using the
Template-Enabling Tags (see Section 10.13).

NEWPAGE
This is an optional keyword argument. It indicates that the tag section
should begin on a new page. This argument is only meaningful in two
cases:

• When you have previously entered the <SET_TEMPLATE_TAG> tag with
the NONEWPAGE keyword to specify that each new tag in this tag
section should not begin on a new page.

• When you want to place one or more pages of text between the end of
a part page and the beginning of a tag section.

• <DESCRIPTION>

• <EXAMPLE_SEQUENCE>

• <FORMAT>

• <FTAG>

• <OVERVIEW>

• <PARAMDEFLIST>

• <RELATED_ITEM>

• <RELATED_TAG>

• <RELATED_TAGS>

• <RESTRICTIONS>

required
terminator

DESCRIPTION

SOFTWARE Doctype Tag Reference
<TAG_SECTION>

• <RITEM>

• <SDML_TAG>

• <SET_TEMPLATE_HEADING>

• <SET_TEMPLATE_LIST>

• <SET_TEMPLATE_PARA>

• <SET_TEMPLATE_ROUTINE>

• <SET_TEMPLATE_TABLE>

• <SET_ TEMPLATE_ TAG>

• <TERMINATING_ TAG>

<ENDTAG_SECTION>

The <TAG_SECTION> tag begins a tag reference section, enables tags
reserved for use in tag sections, and sets paging attributes. You can
locate a tag section in a chapter or an appendix, or following a part page
(that is, in a document section begun with the <PART_PAGE> tag). You code
a tag section in a chapter or an appendix in the same manner; tag sections
in parts are handled differently.

If your tag section follows a part page, and you include text between the
part page and the tag section, specify the NEWPAGE keyword as the third
argument to the <TAG_SECTION> tag. This causes the tag section to begin
on a new page. The following code fragment shows a tag section that
begins on a new page:

<TAG_SECTION>(\TD\NEWPAGE)
<HEADl>(Tag Dictionary\46_TagDictionary)

When you use the <TAG_SECTION> tag in a chapter or an appendix, and
want to place text after the tag section in that chapter or appendix, you
must end the tag section with the <ENDTAG_SECTION> tag and place the
text after that tag. By default, this text begins on a new page of output.

Specify the NONEWPAGE argument to the <ENDTAG_SECTION> tag if you
do not want the text to begin on a new page of output. The following code
fragment shows the end of a tag section that specifies that the subsequent
text not be placed on a new page:

<ENDTAG_SECTION>(NONEWPAGE)

When the <ENDTAG_SECTION> tag is specified in the context of a chapter
or appendix, it resets the default running titles to those in effect for the
chapter or appendix, so the last page of the last tag description in the tag
section may not carry the last tag's name as the running heading. Instead
it may carry the running title used by the chapter or appendix.

10-247

SOFTWARE Doctype Tag Reference
<TAG_ SECTION>

EXAMPLES

D <PART>
<PART PAGE>

The following example shows how to begin a tag section in a document
part.

<TITLE>(Part III\Tag Dictionary)
<ENDPART PAGE>(RENUMBER)
<TAG_SECTION>(Tag Dictionary\TD)
<SET_TEMPLATE_TAG>(LOCAL_TAG)

<LOCAL_TAG>(SITETAG)

<OVERVIEW>
This is a site-specific tag.
<ENDOVERVIEW>

<ENDTAG SECTION>

10-248

The tags in the previous example perform the following functions:

• The global <PART> tag begins the part.

• The global <PART_PAGE> tag creates a part page.

• The global <TITLE> tag is used in the context of the <PART_PAGE> tag to
create a title on the part page.

• The RENUMBER argument to the global <ENDPART_PAGE> tag specifies
that the pages should be renumbered beginning with the part page.
This causes the first page of text following the part page to be
numbered page 3 (page 1 is the unnumbered page the part page
title is placed on, page 2 is the back of page 1, and page 3 is the first
numbered page after the part page).

• The <TAG_SECTION> tag begins the tag section and specifies the
running title Tag Dictionary as the running title for the tag
section. If the <SET_TEMPLATE_TAG> tag were used with the
DOUBLERUNNINGHEADS argument, the title Tag Dictionary would
be used as the top running title.

The <TAG_SECTION> tag also specifies that the prefix TD should be
used to construct numbers for pages and for formal figures, tables, and
examples in the tag section (for example, TD-11, TD-32, Table TD-1,
Example TD-2, and so on).

• The <SET_TEMPLATE_TAG> tag specifies that all tag descriptions in this
tag section will be identified using the <LOCAL_TAG> tag rather than
the default <TAG> tag. The <LOCAL_TAG> tag will have the default
attributes of the <TAG> tag.

The following example shows how you can create a tag section in which
each tag description (begun with an <SDML_TAG> tag) is in a separate
SDML file, and all these descriptions are included into a primary routine
description file. For example, the file MYTAGS.SDML contains the
following SDML tags:

SOFTWARE Doctype Tag Reference
<TAG_SECTION>

<INCLUDE>(CLOSE_FILE.SDML)
<INCLUDE>(OPEN_FILE.SDML)
<INCLUDE>(READ_FILE.SDML)
<INCLUDE>(WRITE_FILE.SDML)

Each of the included files contains one tag reference description begun
with an <SDML_TAG> tag. For these files to process correctly, they must
be preceded with the <TAG_SECTION> tag that enables the <SDML_TAG>

tag. These files can have the necessary tags processed before them by
specifying the /INCLUDE qualifier on the command line to include a
startup definition file. This startup file might include the following tags.

<TAG SECTION>(File Handling Tags\TAGS)
<SET=TEMPLATE_TAG>(SDML_TAG\DOUBLERUNNINGHEADS)

If this startup file were named FILE_TAG_STARTUP.SDML, it could be
included using the DOCUMENT /INCLUDE qualifier as in the following
example:

$ DOCUMENT mytags SOFT.REF LN03 /INCLUDE=FILE_TAG_STARTUP.SDML

When each individual file in MYTAGS.SDML is processed, the correct
sequence of tags will be read in to begin the tag section.

You can process multiple files together by using the <INCLUDE> tag to
include them into a single master file (such as MYTAGS.SDML), or you
can include them into a bookbuild profile.

You use the <ELEMENT> tags to include multiple files into a profile. For
example, the bookbuild profile file TAGPRO.SDML could contain the
following tags:

<PROFILE>
<ELEMENT>(CLOSE_FILE.SDML)
<ELEMENT>(OPEN_FILE.SDML)
<ELEMENT>(READ_FILE.SDML)
<ELEMENT>(WRITE_FILE.SDML) <COMMENT>(contains <ENDTAG_SECTION> tag)
<ENDPROFILE>

Note that the PROFILE file should include the <ENDTAG_SECTION> tag
in the appropriate file, so that the template will be terminated and the
bookbuild will process correctly.

10-249

SOFTWARE Doctype Tag Reference
<TERMINATING_ TAG>

<TERMINATING TAG>

SYNTAX

ARGUMENTS

related tags

restrictions

DESCRIPTION

EXAMPLES

Specifies the required terminator for a tag.

<TERMINATING TAG>({ tag name[\ additional text] }J
- NONE

tag name
Specifies the name of the terminating tag.

additional text
This is an optional argument. It specifies additional text you can insert to
briefly explain the terminating tag.

NONE
Indicates that there is no terminating tag.

• <RELATED_TAG>

• <TAG_SECTION>

Valid only in the context of the <TAG_SECTION> tag.

The <TERMINATING_TAG> tag specifies the required terminator for a tag.
Provide additional information about the terminating tag by specifying
this text as the second argument to the <TERMINATING_TAG> tag.

Use the NONE keyword argument to explicitly specify that no terminating
tag is needed. This keyword places the text None beneath the heading
output by this tag.

The following example shows a terminating tag specified with both the tag
name argument and the additional text argument.

D <TERMINATING_TAG>(ENDRECORDLIST\
<p>
Omit this tag if you use the
NONE keyword with the <TAG>(RECORDLIST) tag.)

required
terminator

10-250

This example produces the following output:

<ENDRECORDLIST>

Omit this tag if you use the NONE keyword with the <RECORDLIST> tag.

The following example shows the <TERMINATING_TAG> tag used with the
NONE keyword.

m <TERMINATING_TAG>(NONE)

SOFTWARE Doctype Tag Reference
<TERMINATING_ TAG>

This example produces the following output:

required None.

terminator

10-251

Index

A
<ABSTRACT>• 2-2, 2-4, 2-17

description of • 2-17

related tags

<TITLE_ SECTION>

<ACKNOWLEDGMENTS> • 2-2, 2-5, 2-18

description of• 2-18

related tags

<BACK_NOTES>

<REF _NOTES>

<ARGDEF> • 1 0-65

description of• 10-65

related tags

<ARGDEFLIST>

<ARGITEM>

<ARGDEFLIST> • 10-66

description of • 10-66

related tags

<ARGDEF>

<ARGITEM>

<ARGTEXT>

<PARAMDEFLJST>

<OUALDEFLIST>

<SET_ TEMPLATE __ ARGITEM>

<SET_ TEMPLATE_HEADING>

The global <DEF1N1T10N_LJST> tag
<ARGITEM> • 1 0-69

description of • 10-69

related tags

<ARGDEF>

<ARGDEFLIST>

<ARGTEXT>

<ARGTEXT> • 10-71

description of• 10-71

related tags

<ARGDEF>

<ARGDEFLIST>

<ARGITEM>

<ARGUMENT> • 10-73

description of• 10-73

related tags

<KEYWORD>

<ARGUMENT>

related tags (cont'd)

<VARIABLE>

<ARG_SEP> • 1 0-7 4

See also <FTAG>

description of• 10-74

related tags

ARTICLE doctype • 2-1

abstracts • 2-4

acknowledgments • 2-5

author information • 2-3

back notes• 2-6, 2-7

bibliographies • 2-8

headings • 2-5

improving format of
See Two-column doctype designs • 2-8

page layout of • 2-1

quotations • 2-6

reference notes• 2-6, 2-7

running headings • 2-5

running titles • 2-5

sample SDML file • 2-12

source notes • 2-4

subtitles • 2-3

tags• 2-16

titles• 2-3

<AUTHOR>•2-2, 2-3, 2-19, 2-20, 9-11, 10-75

description of· 2-19, 2-20, 9-11, 10-75

in ARTICLE doctype • 2-19

in REPORT doctype • 9-3, 9-11

in SOFTWARE doctype • 10-75

related tags

<AUTHOR_ADDR>

<AUTHOR_AFF>

<AUTHOR_LJST>

<BYLINE>

<SIGNATURES>

<SOURCE_NOTE>

<VITA>

<AUTHOR_ADDR> • 2-2, 2-3

description of • 2-20

related tags

<AUTHOR>

<AUTHOR_AFF>

<AUTHOR_ LIST>

lndex-1

Index

<AUTHOR_ADDR>

related tags (cont'd)

<VITA>

<AUTHOR_AFF> • 2-2, 2-3, 2-21
description of• 2-21

related tags

<AUTHOR>

<AUTHOR_ADDR>

<AUTHOR_LIST>

<VITA>

<AUTHOR_INFO> • 8-2, 8-8
description of• 8-8

related tags

<INTRO _SUBTITLE>

<INTRO_ TITLE>

<AUTHOR_LIST> • 2-2, 2-3, 2-22
description of • 2-22

related tags

<AUTHOR>

<AUTHOR_ADDR>

<AUTHOR_AFF>

<VITA>

<AUTO_NUMBER> • 8-2, 8-9
description of • 8-9

related tags

B

<RUNNING_FEET>

<SLIDE>

Back notes
in ARTICLE doctype • 2-6

<BACK_NOTE> • 2-2, 2-23
description of• 2-23

related tags

<BACK_NOTES>

<REF_NOTE>

<BACK_NOTES> • 2-2, 2-25
description of • 2-25

related tags

<BACK_NOTE>

<BIBLIOGRAPHY> • 2-2, 2-8, 2-26
description of • 2-26

related tags

<BIB_ENTRY>

<REF_NOTE>

<REF _NOTES>

lndex-2

<BIB_ENTRY> • 2-2, 2-8, 2-27
description of • 2-27

related tags

<BIBLIOGRAPHY>

Bookreader • 7-1
<BOOK_ONLY> • 3-5, 7-2

description of• 3-5, 7-2

related ~ags

<ENDBOOK_ONLY>

<HELP _ONLY>

<HELP _ONLY>

<KEEP_HELP_LEVEL>

<SET_HELP_LEVEL>

<SET_HELP_LEVEL>

<BOOK_REF> • 7-3
description of• 7-3

related tags

<SHELF _CREATE>

<SHELF _REF>

<BYLINE> • 9-13, 10-77
description of• 9-13, 10-77
in REPORT doctype • 9-3, 9-13

related tags

c

<AUTHOR>

<SIGNATURES>

The global <FRONT_MATIER>

<CC> • 4-2, 4-9
description of • 4-9

related tags

<CCLIST>

<CCLIST> • 4-2, 4-11
description of • 4-11

related tags

<DISTLIST>

<CLOSING> • 4-2, 4-12
description of • 4-12

related tags

<FROM_AODRESS>

<MEMO_FROM>

<MEMO_ TO>

<SALUTATION>

<TO_AODRESS>

Code fragments

See SOFTWARE doctype
<CODE_EXAMPLE> • 6-1 8

definition of • 6-19
description of • 6-18, 6-19

related tags

the global <INTERACTIVE> tag

the global <LINE_ART> tag

the global <VALID_BREAK> tag
<COLUMN>• 2-2, 2-28, 9-15

description of • 2-28, 9-15
in REPORT doctype • 9-3, 9-15

related tags

the global tag <BIBLIOGRAPHY>

<COMMAND>• 10-79
description of• 10-79

related tags

<COMMAND_SECTION>

<SET_ TEMPLATE_ COMMAND>

Command template

See SOFTWARE doctype
<COMMAND_SECTION> • 10-81

description of • 10-81, 10-82

related tags

<COMMAND>

<DESCRIPTION>

<EXAMPLE_ SEQUENCE>

<FCMD>

<FORMAT>

<FPARM>

<FPARMS>

<OVERVIEW>

<PARAMDEFLIST>

<PROMPTS>

<OUALDEFLIST>

<RESTRICTIONS>

<SET _TEMP LATE_ COMMAND>

<SET_ TEMPLATE_HEADING>

<SET_ TEMPLATE_LIST>

<SET_TEMPLATE_PARA>

<SET_TEMPLATE_TABLE>

<STATEMENT _LINE>

<CONSTRUCT> • 1 0-85
description of • 10-85

related tags

<CONSTRUCT _LIST>

<STATEMENT _LINE>

<CONSTRUCT_LIST> • 10-87
description of • 1 0-87

<CPOS> • 1 0-90
description of • 1 0-90

related tags

<KEY>

<KEY _SEQUENCE>

Creating reference templates
in SOFTWARE doctype • 10-27

Creating template tables
in SOFTWARE doctype • 10-28

D
Data Item Description documents (DID)

See MILSPEC Doctype
Default online topic• 7-30
<DELETE_KEY> • 1 0-91

description of• 10-91

related tags

<GRAPHIC>

<KEY>

<DESCRIPTION> • 10-92
description of • 10-92

related tags

<OVERVIEW>

<SET_ TEMPLATE_HEADING>

<THE GLOBAL <INTERACTIVE> TAG>

<THE GLOBAL <VALID_BREAK> TAG>

DID documents
See MILSPEC Doctype

<DISPLAY> • 1 0-94
description of • 1 0-94

related tags

<SYNTAX>

<DISTLIST> • 4-2, 4-13
description of • 4-13

Doctype
ARTICLE• 2-1
LETTER•4-1
list of• 1-1
MANUAL•5-1
MILSPEC • 6-1
ONLINE• 7-1
OVERHEADS• 8-1
REPORT• 9-1
SOFTWARE • 10-1

Index

lndex-3

Index

Doctype
two-column

See Two-column doctype
using• 1-2

Doctype(xs)HELP • 3-1
Doctype-specific tags • 1-1

using• 1-2
<DOCUMENT_ATTRIBUTES> • 2-30, 6-20, 9-17, 10-96

description of• 2-30, 6-20, 6-22, 9-17, 10-96
in ARTICLE doctype • 2-2, 2-5
in MILSPEC.SECURITY doctype • 6-22
in MILSPEC doctypes • 6-20
in REPORT doctype • 9-3, 9-17
in SOFTWARE doctype • 10-96

related tags

E

<RUNNING_FEET>

<RUNNING_ TITLE>

<ENDBOOK_ONLY> • 3-5
<ENDHELP _ONLY>• 3-6, 7-9
<ENDKEEP _HELP _LEVEL> • 3-7, 7-1 0
End notes

See <BACK_NOTES>

in ARTICLE doctype • 2-6
<EXAMPLES_INTRO> • 1 0-1 00

description of• 10-100
<EXAMPLE_SEQUENCE> • 10-98

description of • 10-98

related tags

<EXAMPLES_INTRO>

<EXAMPLE_SEQUENCE>

<EXC>

<EXI>

<EXTEXT>

<EXC> • 10-101
description of• 10-101

related tags

<EXAMPLES_INTRO>

<EXAMPLE_ SEQUENCE>

<EXC>

<EXI>

<EXTEXT>

The global <CODE_EXAMPLE> tag

The global <INTERACTIVE> tag

The global <S> tag

The global <U> tag

lndex-4

<EXI> • 10-102
description of• 10-102

related tags

<EXAMPLE_ SEQUENCE>

<EXTENSION> • 7-4
description of• 7-4

related tag

<ENDEXTENSION>

<EXTEXT> • 1 0-1 04
description of • 10-1 04

related tags

<EXAMPLE_INTRO>

<EXC>

<EXI>

Extracts
See <OUOTATION>

F
<FARG> • 1 0-1 05

description of• 10-105

related tags

<FARGS>

<FFUNC>

<FORMAT>

<FRTN>

<ROUTINE_ SECTION>

<FARGS> • 1 0-1 07
description of • 10-1 07

related tags

<FARG>

<FARGS>

<FRTN>

<FCMD> • 1 0-1 09
description • 1 0-1 09
in Statement template • 10-109

related tags

<COMMAND_SECTION>

<FORMAT>

<FPARMS>

<STATEMENT_FORMAT>

<FFUNC> • 1 0-11 2
description 9f • 10-112
in Statementtemplate • 10-112

related tags

<STATEMENT_FORMAT>

Footers
in SOFTWARE.SPECIFICATION doctype • 10-33

<FORMAT>• 10-114
description of • 10-114
in Routine template • 10-114

related tags

<FARG>

<FAR GS>

<FFUNC>

<FRTN>

<FORMAT_SUBHEAD> • 10-116
description of • 10-116

related tags

<FCMD>

<FPARMS>

<STATEMENT _FORMAT>

<FPARM> • 10-117
description of • 1 0-117
in Statement template • 10-117

related tags

<FCMD>

<FPARMS>

<STATEMENT _FORMAT>

<STATEMENT _SECTION>

<FPARMS> • 1 0-119
description of • 10-119
in Command and Statement templates • 10-119

related tags

<COMMAND_SECTION>

<FCMD>

<FORMAT>

<FPARM>

<STATEMENT _FORMAT>

<FROM_ADDRESS> • 4-2, 4-14
description of • 4-14

related tags

<MEMO_FROM>

<TO_ADDRESS>

<FRTN> • 10-121
description of • 10-121

related tags

<FARG>

<FARGS>

<FFUNC>

<FTAG> • 10-123
description of • 10-123

related tags

<:ARG_SEP>

<FORMAT>

<FUNCTION> • 1 0-125
description of • 1 0-125

related tags

G

<SET_TEMPLATE_STATEMENT>

<STATEMENT>

<STATEMENT _SECTION>

<GRAPHIC> • 1 0-126
description of • 1 0-126

related tags

<KEY>

H
Headers

Index

in SOFTWARE.SPECIFICATION doctype • 10-33
<HEADN> • 6-23

description of • 6-23

related tags

HELP

the global <CHEAD> tag

the global <SUBHEAD1> tag

the global <SUBHEAD2> tag

using• 3-1
HELP doctype • 3-1

tags •3-4
<HELP_ONLY> • 3-6, 7-9

description of• 3-6, 7-9

related tags

<BOOK_ ONLY>

<BOOK_ ONLY>

<ENOHELP _ONLY>

<KEEP_HELP_LEVEL>

<SET_HELP_LEVEL>

<SET_HELP_LEVEL>

<SET_HELP _ONLY>

<HIGHEST_SECURITY_CLASS> • 6-25
description of • 6-25

related tags

<SECURITY>

<SET_PAGE_SECURITY>

<HOTSPOT>• 7-6
description of• 7-6

lndex-5

Index

<HOTSPOT> (cont'd)

related tags

<REFERENCE>

<SET _ONLINE_ TOPIC>

Hotspots
using the <ONLINE_POPUP> tag • 7-25

I
Informal online topic

popping it up• 7-24
dNTRO_SUBTITLE> • 8-2, 8-10

description of • 8-1 O

related tags

<INTRO_ TITLE>

<SUBTITLE>

<INTRO_TITLE> • 8-2, 8-11
description of • 8-11

related tags

K

<INTRO_SUBTITLE>

<SLIDE>

<TITLE>

<KEEP _HELP _LEVEL> • 3-7, 7-10
description of• 3-7, 7-10

related tags

<BOOK_ ONLY>

<ENDBOOK_ONLY>

<ENDHELP _ONLY>

<ENDKEEP_HELP_LEVEL>

<HELP _ONLY>

<KEEP_HELP_LEVEL>

<SET_HELP_LEVEL>

<KEY>• 10-127
description of • 1 0-127

related tags

<GRAPHIC>

<KEY_NAME>

<KEY_PLUS>

<KEY _SEQUENCE>

<KEYPAD> • 1 0-129
description of• 10-129

lndex-6

<KEYPAD>

related tags

<KEYPAD_ENDROW>

<KEYPAD_ROW>

<KEYPAD_SECTION>

<KEYPAD_ENDROW> • 10-132
description of • 10-132

related tags

<KEYPAD>

<KEYPAD_ROW>

<KEYPAD_SECTION>

<KEYPAD_ROW> • 10-133
description of • 1 0-133

related tags

<KEYPAD>

<KEYPAD_ENDROW>

<KEYPAD_SECTION>

<KEYPAD_SECTION> • 10"'-134
description of • 10-134

related tags

<KEYPAD>

<KEYPAD_ENDROW>

<KEYPAD_ROW>

<KEY _NAME> • 1 Q-137
description of• 10-137

related tags

<CPOS>

<GRAPHIC>

<KEY>

<KEY_SEOUENCE>

<KEY _PLUS> • 1 0-138
description of• 10-138

related tags

<KEY>

<KEY_SEOUENCE>

<KEY_TYPE>

<KEY _SEQUENCE> • 1 Q-139
description of • 1 0-139

related tags

<CPOS>

<GRAPHIC>

<KEY>

<KEY_PLUS>

<KEY_TYPE>

<KEY_ TYPE> • 1 0-141
description of• 10-141

related tags

<GRAPHIC>

<KEY_PLUS>

<KEY_TYPE>

related tags (cont'd)

<KEY _SEQUENCE>

L
Language extensions• 7-4
Layout, page

of ARTICLE doctype design • 2-1
of LETIER doctype design • 4-1
of MANUAL doctype

MANUAL.GUIDE design• 5-2
MANUAL.PRIMER design• 5-2
MANUAL.REFERENCE design• 5-2

of MILSPEC doctype • 6-2
of OVERHEADS.35MM doctype design • 8-2
of OVERHEADS doctype design• 8-1
of REPORT.TWOCOL doctype • 9-2
of REPORT doctype • 9-1
of SOFTWARE.BROCHURE doctype • 10-3
of SOFTWARE.GUIDE doctype • 10-3
of SOFTWARE.HANDBOOK doctype • 10-4
of SOFTWARE.POCKET_REFERENCE doctype •

10-4
of SOFTWARE.REFERENCE doctype • 10-4
of SOFTWARE.SPECIFICATION doctype • 10-5

LETIER doctype • 4-1
characteristics of • 4-1
page layout of • 4-1
sample SDML file

to create a letter • 4-6
to create a memo • 4-4

tags• 4-8
<LEVEL> • 9-3, 9-19

description of • 9-19

related tags

<OUTLINE>

<SHOW_LEVELS>

License Management Facility•7-12, 7-15, 7-16,
7-18, 7-19, 7-20, 7-21

<LMF> • 7-12
description of• 7-12

related tags

<LMF _ALTNAME>

<LMF_INFO>

<LMF _PRODUCER>

<LMF _PRODUCT>

<LMF_RELEASE_DATE>

<LMF _ VERSION_NUMBER>

<LMF_ALTNAME> • 7-15
description of • 7-15

related tags

<ENDLMF>

<LMF>

<LMF_INFO>

<LMF _PRODUCER>

<LMF _PRODUCT>

<LMF_RELEASE_DATE>

<LMF _VERSION_NUMBER>

<LMF _INFO> • 7-16
description of• 7-16

related tags

<LMF>

<LMF _ALTNAME>

<LMF _PRODUCER>

<LMF _PRODUCT>

<LMF_RELEASE_DATE>

<LMF _ VERSION_NUMBER>

<LMF _PRODUCER> • 7-18
description of • 7-18

related tags

<ENDLMF>

<LMF _ALTNAME>

<LMF_INFO>

<LMF _PRODUCT>

<LMF_RELEASE_DATE>

<LMF _ VERSION_NUMBER>

<LMF_PRODUCT> • 7-19
description of • 7-19

related tags

<ENDLMF>

<LMF>

<LMF _ALTNAME>

<LMF_INFO>

<LMF _PRODUCER>

<LMF_RELEASE_DATE>

<LMF _VERSION_NUMBER>

<LMF _RELEASE_DATE> • 7-20
description of • 7-20

related tags

<ENDLMF>

<LMF>

<LMF _ALTNAME>

<LMF_INFO>

<LMF _PRODUCER>

<LMF _PRODUCT>

Index

lndex-7

Index

<LMF_RELEASE_DATE>

related tags (cont'd)

<LMF _ VERSION_NUMBER>

<LMF _VERSION_NUMBER> • 7-21
description of• 7-21

related tags

M

<LMF>

<LMF _ALTNAME>

<LMF_INFO>

<LMF _PRODUCER>

<LMF _PRODUCT>

<LMF_RELEASE_DATE>

<LMF _ VERSION_NUMBER>

MANUAL doctype • 5-1, 5-4
page layoutof•5-2
sample input file • 5-4
sample output file • 5-4
sample SDML file• 5-4

Memo
See LETTER doctype

<MEMO_DATE> • 4-2, 4-15
description of • 4-15

related tags

<FROM_ADDRESS>

<MEMO_LINE>

<MEMO_ TO>

The global <DATE> tag
<MEMO_FROM> • 4-2, 4-17

description of • 4-17

related tags

<FROM_ADDRESS>

<MEMO_TO>

<MEMO_HEADER> • 4-2, 4-18
description of • 4-18

related tags

<MEMO_FROM>

<MEMO_TO>

<MEMO_LINE> • 4-2, 4-19
description of • 4-19

related tags

<FROM_ADDRESS>

<MEMO_DATE>

<MEMO_FROM>

<MEMO_TO>

lndex-8

<MEMO_ TO>• 4-3, 4-21
description of• 4-21

related tags

<MEMO_FROM>

<TO_ADDRESS>

Messages

See SOFTWARE doctype

<MESSAGE_FACILITY>

related tags

<MESSAGE_ SECTION>

<MSG>

<MSGS>

<MSG_ACTION>

<MSG_ TYPE>

<MESSAGE_SECTION> • 1 Q-142
description of • 10-142

related tags

<MESSAGE_ TYPE>

<MSG>

<MSGS>

<MSG_ACTION>

<MSG_FACILITY>

<MSG_ SEVERITY>

<MSG_ TEXT>

<MESSAGE_SEVERITY>

related tags

<MESSAGE_ SECTION>

<MESSAGE_ TYPE>

<MSG>

<MSGS>

<MSG_ACTION>

<MSG_FACILITY>

<MSG_ TEXT>

<MESSAGE_TYPE> • 10-145
description of • 10-145

related tags

<MESSAGE_ SECTION>

<MSG>

<MSGS>

<MSG_ TEXT>

Military specifications

See MILSPEC Doctype
MILSPEC.DRAFT doctype

sample output file • 6-5
sample SDML file • 6-4, 6-5

MILSPEC.SECURITY doctype
sample output file • 6-5
sample SDML file • 6-4, 6-5

MILSPEC doctype • 6-1, 6-45
DOD-STD-2167 documents• 6-12, 6-16
M IL-STD-490A documents • 6-11 , 6-12
page layout of • 6-2
tags• 6-17, 6-45
templates • 6-15

MIL-STD-490A documents
See MILSPEC doctype

Modifying reference templates
in SOFTWARE doctype • 10-30

Modifying template defaults
in SOFTWARE doctype • 10-30

<MSG>• 10-146
description of • 10-146

related tags

<MESSAGE_ SECTION>
<MESSAGE_ TYPE>
<MSGS>
<MSG_ TEXT>

<MSGS> • 1 0-148
description of • 10-148

related tags

<MESSAGE_ SECTION>
<MESSAGE_ TYPE>

<MSG>
<MSG_ TEXT>

MSG_ ACTION • 10-150
<MSG_ACTION> • 1 0-150

description of • 10-150

related tags

<MESSAGE_ SECTION>
<MESSAGE_ TYPE>

<MSG>
<MSGS>
<MSG_FACILITY>
<MSG_ SEVERITY>
<MSG_ TEXT>

MSG_FAC ILITY • 10-151
<MSG_FACILITY> • 1 0-151

description of • 10-151
MSG_SEVERITY • 10-152
<MSG_SEVERITY> • 1 0-152

description of • 10-152
<MSG_TEXT> • 10-153

description of• 10-153

N
Notes

back notes • 2-6
See <BAcK_NOTES>

end notes • 2-6
footnotes • 2-6
reference notes • 2-6

See<REF _NOTES>
source notes

See <SouRcE_NOTE>

0
ONLINE doctype • 7-1

tags• 7-1
Online topic• 7-30
<ONLINE_CHUNK> • 7-22

description of• 7-22

<ONLINE_CHUNK>
related tags

<ONLINE_POPUP>
<ONLINE_ TITLE>

<ONLINE_POPUP> • 7-24
description of• 7-24

related tags

<ONLINE_CHUNK>
<ONLINE_ TITLE>

<ONLINE_TITLE> • 7-26
description of • 7-26

related tags

<ONLINE_ CHUNK>
<ONLINE_POPUP>

<OUTLINE> • 9-3, 9-20
description of • 9-20

related tags

<LEVEL>
<SHOW_LEVELS>

OVERHEADS.35MM doctype
pagelayoutof•8-2

OVERHEADS doctype • 8-1
page layout of • 8-1
sample SDML file • 8-3
tags• 8-7

Overhead slide
See OVERHEADS doctype

Index

lndex-9

Index

<OVERVIEW> • 1 0-154
description of • 10-154

related tags

<DESCRIPTION>

p
Page layout

of ARTICLE doctype design • 2-1
of LETTER doctype design• 4-1
of MANUAL doctype

MANUAL.GUIDE design • 5-2
MANUAL. PRIMER design • 5-2
MANUAL.REFERENCE design• 5-2

of MILSPEC doctype • 6-2
of OVERHEADS.35MM doctype design • 8-2
of OVERHEADS doctype design• 8-1
of REPORT. TWOCOL doctype • 9-2
of REPORT doctype • 9-1
of SOFTWARE.BROCHURE doctype • 10-3
of SOFTWARE.GUIDE doctype • 10-3
of SOFTWARE.HANDBOOK doctype • 10-4
of SOFTWARE.POCKET_REFERENCE doctype •

10-4
of SOFTWARE.REFERENCE doctype • 10-4
of SOFTWARE.SPECIFICATION doctype • 10-5

<PARAMDEF> • 1 0-155
description of • 1 0-155

related tags

<PARAMDEFLIST>

<PARAMITEM>

<PARAMDEFLIST> • 10-156
description of • 1 0-156

related tags

<ARGDEFLIST>

<PARAMDEF>

<PARAMITEM>

<OUALDEFLIST>

<SET_ TEMPLATE_HEADING>

<PARAMITEM> • 1 0-1 59
description of • 1 0-159

related tags

<PARAMDEF>

<PARAMDEFLIST>

Pop-up• 7-24
<PROMPT>• 10-161

description of• 10-161

lndex-10

<PROMPT>

related tags

<PROMPTS>

<PROMPTS> • 1 0-163
description of • 1 0-163

related tags

Q

<COMMAND_SECTION>

<PROMPT>

<SET_ TEMPLATE_HEADING>

<OPAIR> • 1 0-165
description of • 10-165

related tags

<OUAL_LIST>

<OUAL_LIST_HEADS>

<OUALDEF> • 1 0-1 66
description of • 10-166

related tags

<OUALDEFLIST>

<OUALITEM>

<OUALDEFLIST> • 10-167
description of • 10-167

related tags

<ARGDEFLIST>

<PARAMDEFLIST>

<OUALDEF>

<OUALITEM>

<SET_ TEMPLATE_HEADING>

<OUALITEM> • 1 0-169
description of • 1 0-169

related tags

<OUALDEF>

<OUALDEFLIST>

<OUAL_LIST> • 10-171
description of• 10-171

related tags

<OPAIR>

<OUAL_LIST _DEFAULT _HEADS>

<OUAL_LIST _HEADS>

<OUAL_LIST_DEFAULT_HEADS> • 10-175
description of • 10-175

related tags

<OPAIR>

<OUAL_LIST>

<OUAL_LIST _HEADS>

<OUAL_LIST_HEADS> • 10-177
description of • 1 0-177

related tags

<OPAIR>

<OUAL_LIST>

<OUOTATION> • 2-2, 2-32
description of • 2-32

related tags

R

<CODE_ EXAMPLE>

<SAMPLE_ TEXT>

Reference notes
in ARTICLE doctype • 2-6

Reference template

See SOFTWARE doctype
<REF_NOTE> • 2-2, 2-7, 2-33

description of • 2-33

related tags

<BACK_NOTE>

<BIBLIOGRAPHY>

<REF _NOTES>

<REF_NOTES> • 2-2, 2-7, 2-35
description of • 2-35

related tags

<ACKNOWLED.GEMENTS>

<BACK_NOTES>

<REF _NOTES>

<RELATED_ITEM> • 10-178
description of • 10-178

related tags

<RELATED_ TAG>

<RELATED_TAGS>

<RELATED_TAG> • 10-179
description of • 1 0-179

related tags

<RELATED_ITEM>

<RELATED_TAGS>

<RELATED_ TAGS> • 1 0-180
description of• 10-180

related tags

<RELATED_ITEM>

<RELATED_ TAG>

REPORT. TWOCOL doctype
improving format of

REPORT. TWOCOL doctype
improving format of (cont'd)

Index

See Two-column doctype designs • 2-8
page layoutof•9-2
sample output file • 9-7
sample SDML file• 9-7

REPORT doctype • 9-1
improving format of REPORT.TWOCOL

See Two-column doctype designs • 9-3
page layout of • 9-1
sample output file • 9-4
sample SDML file • 9-3
tags• 9-10

<RESTRICTIONS> • 1 0-182
description of • 10-182
in Tag template • 10-182

related tags

<RITEM>

<TAG_ SECTION>

<RETTEXT> • 10-184
description of• 10-184

related tags

<RETURNS>

<RETURNS> • 1 0-185
description of • 10-185

related tags

<RETTEXT>

<RETURN_ VALUE> • 1 0-187
description of • 10-187

<RITEM> • 1 0-1 88
description of • 10-188
in Command template• 10-188

related tags

<RESTRICTIONS>

<ROUTINE> • 1 0-1 89
description of • 10-189

related tags

<ROUTINE_ SECTION>

Routine template

See SOFTWARE doctype
<ROUTINE_SECTION> • 1 Q-191

description of• 10-191

related tags

<ARGDEF>

<ARGDEFLIST>

<ARGITEM>

<ARGTEXT>

<DESCRIPTION>

<EXAMPLE_ SEQUENCE>

lndex-11

Index

<ROUTINE_SECTION>

related tags (cont'd)

<FARG>

<FARGS>

<FFUNC>

<FORMAT>

<FRTN>

<OVERVIEW>

<RETTEXT>

<RETURNS>

<ROUTINE>

<RSDEFLIST>

<RSITEM>

<SET_ TEMPLATE_HEADING>

<SET_ TEMPLATE_LIST>

<SET_TEMPLATE_PARA>

<SET_TEMPLATE_TABLE>

<RSDEFLIST> • 1 0-196
description of• 10-196

related tags

<RS ITEM>

<RSITEM> • 1 0-198
description of • 10-198

related tags

<RSDEFLIST >

<RUNNING_FEET> • 2-36, 6-26, 8-12, 9-22, 10-199
description of • 2-36, 6-26, 8-12, 9-22, 10-199
in ARTICLE doctype • 2-2, 2-5, 2-36
in MILSPEC doctype • 6-26
in OVERHEADS doctype • 8-2, 8-12
in REPORT doctype • 9-3, 9-22
in SOFTWARE doctype • 10-199

related tags

<AUTO_NUMBER>

<CHAPTER>

<RUNNING_ TITLE>

<SET _FOOTERS>

<SLIDE>

<RUNNING_TITLE> • 2-37, 6-27, 8-14, 9-23, 10-200
description of• 2-37, 6-27, 8-14, 9-23, 10-200
in ARTICLE doctype • 2-2, 2-5, 2-37
in MILSPEC.SECURITY doctype • 6-27
in OVERHEADS doctype • 8-2, 8-14
in REPORT doctype • 9-3, 9-23
in SOFTWARE doctype • 10-200

related tags

<DOCUMENT _ATTRIBUTES>

<RUNNING_FEET>

<SLIDE>

lndex-12

s
<SALUTATION> • 4-3, 4-22

description of • 4-22

related tags

<FROM_ADDRESS>

<MEMO_FROM>

<MEMO_TO>

<TO_ADDRESS>

<SDML_ TAG>.• 1 0-202
description of • 10-202

related tags

<SET_TEMPLATE_TAG>

<TAG_ SECTION>

<SECTION> • 9-3, 9-25
description of • 9-25

<SECURITY> • 6-28
description of • 6-28

related tags

<HIGHEST_SECURITY _CLASS>

<SET_CONTENTS_SECURITY>

<SET_PAGE_SECURITY>

<SET _SECURITY _CLASS>

<SET_APPENDIX_NUMBER> • 6-31
description of • 6-31

related tags

the global <APPENDIX> tag

the global <SET_APPENDIX_LETTER> tag

the global <SET_CHAPTER_NUMBER> tag
<SET_APPENDIX_NUMBER> tag• 6-3
<SET_CONTENTS_SECURITY> • 6-33

description of • 6-33

related tags

<SECURITY>

<SET _PAGE_SECURITY>

<SET_SECURITY _CLASS>

<SET_HELP _LEVEL>• 3-9, 7-28
description of• 3-9, 7-28

related tags

<BOOK_ ONLY>

<BOOK_ ONLY>

<HELP _ONLY>

<HELP _ONLY>

<KEEP_HELP_LEVEL>

<KEEP_HELP_LEVEL>

<SET_HELP_LEVEL>

<SET_ONLINE_TOPIC> • 7-30
description of• 7-30

<SET_PAGE_SECURITY> • 6-35
description of • 6-35

related tags

<SECURITY>

<SET_ CONTENTS_ SECURITY>

<SET _SECURITY _CLASS>

<SET_SECURITY_CLASS> • 6-37
description of • 6-37, 6-38
in MILSPEC.SECURITY doctype • 6-37, 6-38

related tags

<HIGHEST _SECURITY _CLASS>

<SECURITY>

<SET _CONTENTS_SECURITY>

<SET _PAGE_ SECURITY>

<SET_TEMPLATE_ARGITEM> • 10-203
description of • 1 0-203

related tags

<ARGDEFLIST>

<ARGITEM>

<ROUTINE_ SECTION>

<SET_TEMPLATE_COMMAND> • 10-206
description of • 10-206

related tags

<COMMAND>

<COMMAND_SECTION>

<SET_TEMPLATE_HEADING> • 10-209
description of • 10-209

related tags

<SET_ TEMPLATE_LIST>

<SET_TEMPLATE_PARA>

the global <SET_TEMPLATE_HEADING> tag
<SET_TEMPLATE_LIST> • 10-211

description of• 10-211

related tags

<SET _TEMPLATE_HEADING>

<SET_TEMPLATE_PARA>

the global <LIST> tag
<SET_TEMPLATE_PARA> • 10-213

description of• 10-213

related tags

<SET_ TEMPLATE_HEADING>

<SET _TEMPLATE_LIST>

<SET_ TEMPLATE_ TABLE>

<SET_TEMPLATE_ROUTINE> • 10-215
description of• 10-215

<SET_ TEMPLATE_ROUTINE>

related tags

<ROUTINE>

<ROUTINE_ SECTION>

<SET_TEMPLATE_STATEMENT> • 10-218
description of • 1 0-218

related tags

<FUNCTION>

<STATEMENT>

<STATEMENT _SECTION>

<SET_TEMPLATE_SUBCOMMAND> • 10-220
description of • 1 0-220

related. tags

<COMMAND_SECTION>

<SUBCOMMAND>

<SUBCOMMAND_SECTION>

<SET_TEMPLATE_TABLE> • 10-222
description of • 1 0-222

related tags

<SET_ TEMPLATE_LIST>

<SET_TEMPLATE_PARA>

<SET_TEMPLATE_TAG> • 10-225
description of • 10-225

related tags

<SDML_TAG>

<TAG_ SECTION>

<SHELF _CREATE> • 7-33
description of• 7-33

related tags

<BOOK_ REF>

<SHELF _REF>

<SHELF _REF> • 7-35
description of• 7-35

related tags

<BOOK_REF>

<SHELF _CREATE>

<SHOW_LEVELS> • 9-3, 9-26
description of • 9-26

related tags

<LEVELS>

<OUTLINE>

<SIGNATURES> • 9-28, 10-227
description of • 9-28, 10-227
in REPORT doctype • 9-3, 9-28
in SOFTWARE doctype • 10-227

related tags

<AUTHOR>

<BYLINE>

Index

lndex-13

Index

<SIGNATURE_LINE> • 6-39
description of • 6-39

related tags

<SIGNATURE_LIST>

<SPECIFICATION_INFO>

<SPEC_ TITLE>

<SUBTITLE>

the global <FRONT_MATIER> tag

the global <TITLE_PAGE> tag
<SIGNATURE_LIST> • 6-40

description of • 6-40

related tags

<SIGNATURE_LINE>

<SPECIFICATION_INFO>

<SPEC_TITLE>

<SUBTITLE>

<TITLE_PAGE>

<SLIDE>• 8-2, 8-16
description of • 8-16

related tags

Slides

<AUTHOR_ INFO>

<AUTO_NUMBER>

<RUNNING_FEET>

<RUNNING_ TITLE>

<SUBTITLE>

<TEXT_SIZE>

<TITLE>

<TOPIC>

See OVERHEADS doctype
SOFTWARE.BROCHURE doctype

page layoutof•10-3
SOFTWARE.GUIDE doctype

page layoutof•10-3
SOFTWARE.HANDBOOK doctype

page layoutof•10-4
SOFTWARE. POCKET _REFERENCE doctype

page layoutof•10-4
SOFTWARE. REFERENCE doctype

page layoutof•10-4
SOFTWARE.SPECIFICATION doctype

headers and footers • 1 0-33
page layoutof•10-5
using template-enabling tags • 10-33

SOFTWARE doctype
arguments, parameters and qualifiers• 10-18
code fragments • 1 0-13
creating reference templates • 10-27
creating template tables • 10-28

lndex-14

SOFTWARE doctype (cont'd)

interactive or code examples • 10-22
messages

See software messages • 10-14
modifying reference templates • 10-30
modifying template defaults • 10-30
reference templates

Command template • 10-37
sample output file • 10-41
sample SDML file • 10-39

Routine template • 10-45
sample output file • 10-49
sample SDML file• 10-47

Statement template • 10-53
sample output file • 10-55
sample SDML file • 10-54

Tag template• 10-58
sample output file • 10-61
sample SDML file • 10-60

software messages • 10-14
tags• 10-64

in all of doctype • 10-64
terminal keys and keypads • 10-6
using reference templates • 10-23
using template-enabling tags • 10-32

Software messages

See SOFTWARE doctype

Software specifications

See MILSPEC doctype

See SOFTWARE doctype
<SOURCE_NOTE> • 2-2, 2-4, 2-39

description of • 2-39

related tags

<AUTHOR>

<VITA>

Specifications

for military

See MILSPEC doctype

for software
See SOFTWARE doctype

<SPECIFICATION_INFO> • 6-42
description of • 6-42, 6-43

related tags

<SIGNATURE_LINE>

<SIGNATURE_LIST>

<SPEC_ TITLE>

<SUBTITLE>

<SPECIFICATION_INFO> tag • 6-3

<SPEC_TITLE> • 6-44
description of • 6-44

related tags

<ONLINE_ TITLE>

<SIGNATURE_LINE>

<SIGNATURE_LIST>

<SPECIFICATION_INFO>

<SUBTITLE>

<STATEMENT> • 10-228
description of • 10-228

related tags

<FUNCTION>

<SET_TEMPLATE_STATEMENT>

<STATEMENT _SECTION>

Statement template

See SOFTWARE doctype
<STATEMENT_FORMAT> • 10-229

description of • 10-229

related tags

<CONSTRUCT _LIST>

<FCMD>

<FFUNC>

<FORMAT _SUBHEAD>

<FPARMS>

<STATEMENT _LINE>

<STATEMENT _LINE> • 1 0-231
description of • 10-231

related tags

<CONSTRUCT>

<FCMD>

<FPARMS>

<STATEMENT _SECTION> • 1 0-234
description of • 10-234

related tags

<CONSTRUCT>

<CONSTRUCT _LIST>

<FCMD>

<FFUNC>

<FORMAT_SUBHEAD>

<FPARMS>

<FUNCTION>

<OVERVIEW>

<SET_ TEMPLATE_HEADING>

<SET_ TEMPLATE_LIST>

<SET_TEMPLATE_PARA>

<SET_TEMPLATE_STATEMENT>

<SET_TEMPLATE_TABLE>

<STATEMENT>

<STATEMENT _SECTION>

related tags (cont'd)

<STATEMENT_FORMAT>

<STATEMENT_SECTION>

<SUBCOMMAND> • 1 0-238
description of • 10-238

related tags

<SET_ TEMPLATE_SUBCOMMAND>

<SUBCOMMAND_SECTION>

<SUBCOMMAND_SECTION> • 10-240
description of • 10-240

related tags

<COMMAND_SECTION>

<SET_ TEMPLATE_SUBCOMMAND>

<SUBCOMMAND>

<SUBCOMMAND_SECTION_HEAD>

<SUBCOMMAND_SECTION_HEAD> • 10-241
description of • 10-241

related tags

<SET_ TEMPLATE_SUBCOMMAND>

<SUBCOMMAND>

<SUBJECT> • 4-3, 4-23
description of • 4-23

related tags

<FROM_ADDRESS>

<MEMO_FROM>

<MEMO_LINE>

<MEMO_TO>

<SUBTITLE>• 2-40, 6-45, 8-3, 8-18
description of• 2-40, 6-45, 8-18
in ARTICLE doctype • 2-2, 2-3, 2-40
in MILSPEC doctype • 6-3, 6-45
in OVERHEADS doctype • 8-18

related tags

<SIGNATURE_ LINE>

<SIGNATURE_LIST>

<SPECIFICATION_INFO>

<SPEC_ TITLE>

<TITLE>

<TITLE_ SECTION>

<SYNTAX> • 10-242
description of • 10-242

related tags

<DISPLAY>

<SYNTAX_DEFAULT_HEAD>

<SYNTAX_DEFAULT_HEAD> • 10-244
description of • 10-244

related tags

<SYNTAX>

Index

lndex-15

Index

T
Tags, doctype_specific

using• 1-2

Tag template

See SOFTWARE doctype
<TAG_SECTION> • 10-246

description of • 10-246

related tags

<DESCRIPTION>

<EXAMPLE_ SEQUENCE>

<FORMAT>

<FTAG>

<OVERVIEW>

<PARAMDEFLIST>

<RELATED_ITEM>

<RELATED_ TAG>

<RELATED_ TAGS>

<RESTRICTIONS>

<RITEM>

<SDML_TAG>

<SET_ TEMPLATE_HEADING>

<SET_ TEMPLATE_ LIST>

<SET_TEMPLATE_PARA>

<SET_ TEMPLATE_ROUTINE>

<SET_TEMPLATE_TABLE>

<SET_TEMPLATE_TAG>

<TERMINATING_ TAG>

Technical manual
for military specifications

See MILSPEC doctype

for software
See SOFTWARE doctype

general purpose

See MANUAL doctype

Technical report

See REPORT doctype

Templates

See MILSPEC doctype

See SOFTWARE doctype
<TERMINATING_ TAG> • 1 0-250

description of • 10-250

related tags

<RELATED_ TAG>

<TAG_SECTION>

lndex-16

Text formatter memory• 7-22
running out of with long informal text elements '

7-24
<TEXT_SIZE> • 8-3, 8-19

description of • 8-19

related tags

<SLIDE>

<TITLE> • 2-41, 8-3, 8-21
description of• 2-41, 8-21
in ARTICLE doctype • 2-2, 2-3, 2-41
in OVERHEADS doctype • 8-21

related tags

<SUBTITLE>

<TITLE_ SECTION>

<TITLE_SECTION> • 2-2, 2-42
description of • 2-42

related tags

<SUBTITLE>

<TITLE>

<TOPIC> • 8-3, 8-22
description of • 8-22

related tags

Topics

<SLIDE>

<TEXT_SIZE>

default online • 7-30
<TO_ADDRESS> • 4-3, 4-24

description of • 4-24

related tags

<FROM_ADDRESS>

<MEMO_ TO>

Transparency

See OVERHEADS doctype
Two-column doctype designs

improving format of• 2-8

u
Using reference templates

in SOFTWARE doctype • 10-23
Using template-enabling tags

in SOFTWARE.SPECIFICATION doctype • 10-33
in SOFTWARE doctype • 10-32

v
<VITA> • 2-2, 2-3, 2-43

description of • 2-43

related tags

<AUTHOR>

<AUTHOR_ADDR>

<AUTHOR_AFF>

<AUTHOR_LIST>

<SOURCE_NOTE>

Index

lndex-17

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040 before placing
your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using a 1200- or 2400-baud
modem. If you need assistance using the Electronic Store, call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internal1

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

USASSB Order Processing - WMO/E15
or
U.S. Area Software Supply Business
Digital Equipment Corporation
Westminster, Massachusetts 01473

1For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments VAX DOCUMENT
Using Doctypes and

Related Tags
AA-JT868-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

I
I
I
I
I
I

Do Not Tear - Fold Here and Tape -------------------~111r-------;~~~; ___ I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POST AGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35
110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11. 11 11 1.11.1 .. 1.1 .. I .. I. 1 ... 1.11 .. I

in the
United States

-- Do Not Tear - Fold Here --

Reader's Comments VAX DOCUMENT
Using Doctypes and

· Related Tags
AA-JT86B-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Nameflltle

Company

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

I
I
I
I
I
I

- Do Not Tear - Fold Here and Tape -------------------~lllr-------;~E~; ___ I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POST AGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35
110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

Ill 11111II1 II 111 .11 1.11.1 .. 1.1 .. 1 .. 1. 1 ... 1.11 .. 1

in the
United States

-- Do Not Tear - Fold Here --

