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Chapter 6 

The XQP and 1/0 Processing 

1/0 processing is the handling of a user request for an input/output operation to 
the driver associated with a particular device. 1/0 processing can be divided into 
three phases: 

• 1/0 request preprocessing 

• Driver-specific processing 

• 1/0 postprocessing 

1/0 request preprocessing is handled in the VMS executive by the $QIO system 
service. Driver-specific processing is performed by the driver associated with 
a particular device. 1/0 postprocessing is also handled by other VMS executive 
routines. 

Although 1/0 can complete without involving the file system, a specific part of the 
file system called the extended QIO processor (XQP) must intervene to perform 
additional processing that cannot be done by either the QIO system service or by 
the driver. Specifically, the XQP performs the following tasks: 

• Processing a non-transfer request (for example, a file access). 

• Handling bad blocks found in the course of performing an 1/0 operation. 

• Processing a transfer request when the current information in memory is 
insufficient to convert the virtual blocks of a file to the logical blocks of the 
disk. 

This chapter describes 1/0 pre- and postprocessing, which is essentially the flow 
of 1/0 requests prior to and beyond the XQP. The following topics are discussed: 

• How and where the XQP is mapped 

• The layout of impure storage 

• The $QIO system service interface to the XQP 

• The format of 1/0 request packets 

• PDT action routines 
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• XQP packet building and processing 

• XQP kernel stack switching 

• Error handling 

• Posting 110 status to the user 

6.1 XQP Initialization 

The Files-11 image (F11BXQP .EXE) contains only pure code, which is code that 
is never written to and thus cannot be modified. It is mapped into Pl, or process 
control, space when the process is created. The mapping can be performed 
quickly and efficiently because no 1/0 needs to be done for the process at this 
time. The XQPMERGE routine in the SYS facility module PROCSTRT performs 
the mapping operation. Because it is kernel mode code, this routine is optimized. 
A single permanent global section is created for the F11BXQP image during 
system initialization by the SYSINIT process. 

If the system parameter ACP _XQP _RES is set, SYSINIT maps the code into 
physical memory so that global valid page faults may be avoided. However, 
under exceptional circumstances, the ACP _XQP _RES parameter may not be set 
(for example, on a system with restricted memory that shows little file activity or 
a system with a small number of users), the code is not resident. 

6.1.1 Allocating Impure Storage 
Once the code has been mapped, the XQPMERGE routine jumps to the lowest 
address mapped-the initialization routine is the INITXQP in the module 
DISPATCH. This routine is linked as the first in the image. 

The initialization routine INITXQP changes mode to kernel, specifying the 
INIT_FCP routine in the INIFCP module. This routine calls the $EXPREG 
system service to add virtual pages in Pl space to map the impure storage area. 
It also sets the process cell CTL$GL_F11BXQP to point to the queue header 
F11B$Q_XQPQUEUE (or XQP_QUEUE) in the XQP impure area. 

There are three major portions of the XQP impure area: 

• A private per-process kernel stack for use by the XQP 

• An XQP queue 

• Per-process XQP data, which includes a context save area 

The INIT_FCP routine locks into the working set of the process the area for the 
kernel stack, the data of the impure area, and the code, which are referenced at 
elevated IPL (any IPL greater than 2); that is, the pages of the impure area are 
counted as part of the working set size. The routine also assigns a channel for the 
XQP and initializes the XQP queue header. 
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At the top of the XQP impure area is the XQP private stack. The stack occupies 5 
pages. When the XQP dispatcher processes requests, the process uses this private 

· kernel stack instead of the normal kernel stack. The stack thus contains normal 
call frames and data normally placed on the kernel stack. How the XQP switches 
from one stack to the other is discussed in more detail in Section 6.4.3~ 

Figure 6-1 shows the Fl lBXQP structure, which is part of the XQP impure area. It 
is pointed to by the process cell CTL$GL_F11BXQP. The FllBXQP structure is an 
external, global structure that defines per-process XQP symbols. It overlays the 
top portion of the actual per-process XQP symbols defined by FCPDEF.B32 in the 
FllX facility. The symbols defined by FCPDEF are internal to the XQP, but the 
Fl lBXQP structure allows the symbols defining the size and location of the XQP 
to be visible to the System Dump Analyzer Utility (SDA). 

Figure 6-1 Format of the F11BXQP Structure 

F118$Q_XQPQUEUE 

F118$L_DISPATCH 

F118$L_CODESIZE 

F118$L_CODEBASE 

F118$L_IMPSIZE 

F118$L_IMPBASE 

Table 6-1 Contents of the F11BXQP Structure 

Field Name 

Fl 1B$Q_XQPQUEUE 

Fl 1B$L_DISPATCH 

Fl 1B$L_ CODESIZE 

Description 

XQP per-process queue header. This queue contains 
the 1/0 request packets (IRPs) that are currently queued 
to the XQP by the process. Each IRP describes an 
individual I/O request. 
Address of XQP dispatch routine EXE$QXQPPKT in 
the module SYSQIOREQ. This routine represents the 
first level ofl/O dispatching. F11B$L_DISPATCH is a 
pointer to the DISPATCH routine in the DISPATCH 
module. 
Size of XQP code in bytes. 
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Table 6-1 (Cont.) Contents of the FllBXQP Structure 

Field Name 

Fl 1B$L_ CODEBASE 

Fl 1B$L_IMPSIZE 
Fl 1B$L_IMPBASE 

· Description 

Base address of XQP code. This field contains the 
starting address of the pure XQP code in Pl space. 
Size of impure area in bytes. 
Base address of XQP impure area. This field dcontains 
the starting address (that is, the top of the XQP private 
kernel stack) of the XQP impure data storage area in Pl 
space. 

The space for the XQP impure area is allocated dynamically, and it can be 
allocated anywhere in Pl space because it is based off a single register. Register 
RlO is the base register for the XQP impure area; and it is initialized to the 
address in CONTEXT_START. 

Figure 6-2 shows the layout of the XQP impure area and code in the process 
control region. The shaded area pointed to by the process cell CTL$GL_Fl 1BXQP 
is expanded in Figure 6-3. 

Figure 6-2 Layout of the XQP 

F11B$L_IMPBASE --> 

CTL$GL_F11BXQP --> 

F11B$L_CODEBASE -> 

+------------------------------+ \ 
I I 
I XQP internal stack I 
I I 
+------------------------------+ 
I\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\! 
+------------------------------+ 
I 
I 
I XQP code 
I 
I I 
+------------------------------+ I 

\ 
\ XQP impure area 
I F11B$L_IMPSIZE = 

I length 

\ 
\ 

I 

\ F11B$L_CODESIZE 
I 

Figure 6-3 shows a further expansion of the XQP impure area. The impure storage 
area is delimited by the symbols STORAGE_START and STORAGE_END. The 
symbol L_DATA_START also points to the beginning of this area. 

The pages represented by the cells located between L_DATA_START and 
L_DATA_END are locked into the working set of the process because they 
must be present at elevated IPL. 

IMPURE_START and IMPURE_END delimit the cells that are initialized to known 
values (usually 0) by the per-request initialization routine. 
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CONTEXT_ START and CONTEXT_END mark the beginning and end of the 
reenterable context area, which must be saved when a secondary operation is 
performed. 

The context save area; delimited by CONTEXT_SAVE and CONTEXT_SAVE_END, 
is the area in which the primary context is saved when a secondary operation is 
performed. This topic is covered in more detail in Section · 6.4.2. 
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Figure 6-3 Format of the Impure Area 

STORAGE_START --> 
L_DATA_START ---> +---------------------------+ 

I XQP _STACK I 
I (5 pages) I 
I I 

CTL$GL_F11BXQP -> +---------------------------+\ 
I XQP _QUEUE I \ 
+-- --+ \ 
+-----------~---------------+ 

XQP_DISPATCHER 
+---------------------------+ 

CODE_ SIZE 
+-------------~-------------+ 

CODE_ADDRESS 
+---------------------------+ 

DATA_SIZE 
+---------------------------+ I 
I DATA_ADDRESS I I 
+---------------------------+/ 
I I 
+---------------------------+ 

BLOCK_LOCKID 
IMPURE_START ---> +---------------------------+ 

I USER_ STATUS I 
+-- --+ 
+---------------------------+ 
+---------------------------+ 

CACHE_HDR I 
CONTEXT_START --> +---------------------------+ 

I CLEANUP_FLAGS I 
+----~----------------------+ 

+---------------------------+ 
PREV_LINK 

CONTEXT_END ---> +---------------------------+ 
CONTEXT_SAVE ---> I Context 

I save 
I area I 

CONTEXT_SAVE_END> +---------------------------+ 

\ 
\ 

I 
I 

\ 
\ Overlaid by 

-- system-wide 
/ F11BXQP structure 
I 

(Continued on next page) 
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Figure 6-3 (Cont.) Format of the Impure Area 

+---------------------------+ 
LB_LOCKID 

+---------------------------+ 
+---------------------------+ 

SECOND_FIB 
+---------------------------+ 

LOCAL_ARB 
L_DATA_END ----> +---------------------------+ 

+---------------------------+ 
AUDIT_COUNT 

IMPURE_END -----> +---------------------------+ 
I PMS statistics I 
I I 
+----·----------------------+ 
+---------------------------+ 

AUDIT_ARGLIST 
STORAGE_END ---> +---------------------------+ 
Table 6-2 lists all cells of the XQP impure area, their size, and a short description 
of each. 

Table 6-2 Contents of the XQP Impure Area 

Impure Symbol 

STORAGE_ START 

L_DATA_START 

XQP_STACK 
XQP_QUEUE 

XQP _DISPATCHER 

CODE_ SIZE 

Size 

0 

0 

5 pages 
2 longwords 

Longword 

Longword 

Description 

Label marking the beginning of the 
impure storage area. 
Label marking the beginning of data 
that has been "locked down," or 
locked in the working set of the 
process. 
XQP kernel stack. 
Two-longword XQP queue head. This 
cell corresponds to the F11B$Q_XQPQUEUE 
field. 
Address of the XQP dispatch 
routine. This cell corresponds to the 
F11B$L_DISPATCH field; 
Length of the XQP code. This cell 
corresponds to the F11B$L_ CODESIZE 
field. 
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Table 6-2 (Cont.) Contents of the XQP Impure Area 

Impure Symbol 

CODE_ ADDRESS 

DATA_ SIZE 

DATA_ADDRESS 

PREV_FP 
PREV _STKLIM 

XQP_STKLIM 
XQP_SAVFP 
IO_CCB 

IO_CHANNEL 

BLOCK_LOCKID 

IMPURE_ START 

Size 

Longword 
/ 

Longword 

Longword 

Longword 
2 longwords 

2 longwords 
Longword 
Longword 

Longword 

Longword 

0 

Description 

· Base address of the XQP code. This 
cell corresponds to the F11B$L_CODEBASE 
field. 
Length of the impure data area. This 
cell corresponds to the F11B$L_IMPSIZE 
field.· 
Base address of the impure data 
area. This cell corresponds to the 
F11B$L_IMPBASE field. 
Saved frame pointer. 
Two-longword saved kernel stack 
limits. 
Two-longword XQP kernel stack limits. 
Saved XQP frame pointer. 
Address of the channel control block of 
IO_ CHANNEL, created by INIT_FCP. 
This cell is set to CURRENT_ UCB 
by GET_REQUEST and to the new 
UCB by SWITCH_ VOLUME. It is 
used to refer to the desired UCB by 
WRITE BLOCK because buffer write 
operations because of LRU replacement 
may be to other than the current UCB. 
Channel number for I/O. This cell 
is used to force mount verification 
on shadow sets; to issue an Unload 
/Available function when the volume 
is dismounted; to erase blocks of 
the index file when the end-of-
file is extended; to read and write 
random blocks; and to erase blocks 
for highwater and erase-on-return 
processing. 
Lock ID of the activity-blocking lock 
held by this process. See Chapter 8 for 
more information. 
Label marking the start of the impure 
data area, the cells of which are 
initialized to known values by the 
per-request initialization routine. 
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Table 6-2 (Cont.) Contents of the XQP Impure Area 

Impure Symbol 

USER_ STATUS 

IO_STATUS 
IO_PACKET 

CURRENT_ UCB 

CURRENT_ VCB 

CURRENT_RVT 

CURRENT_RVN 

SA VE_ VC_FLAGS 

Size 

2 longwords 

2 longwords 
Longword 

Longword 

Longword 

Longword 

Longword 

Word 

Description 

I/O status to be returned to user. It is a 
two-longword vector returned through 
IRP$L_MEDIA, which forms the I/O 
status block (IOSB). 
EXTEND sets the second long
word to the size extended, and 
EXTEND _INDEX purposely zeros 
it. For a contiguous Extend operation 
(ALLOC_BITMAP), this value is the 
largest contiguous extent size found. 
For a Truncate operation, this value 
is the number of blocks left in the file 
such that the truncated file still has an 
integral number of clusters. 
READ WRITEVB sets this value to the 
second word of the I/O status block 
returned by the I/O. See Section 6.5.2 
for more information. 
Status block for XQP I/O. 
Address of the current 1/0 request 
packet, set in the DISPATCHER 
routine. If this cell contains a value 
of 0, the XQP is currently idle. 
Address of the UCB of the current 
request, set in GET_REQUEST and 
SWITCH_ VOLUME. 
Address of the VCB of the current 
request, set in GET_REQUEST arid 
SWITCH_ VOLUME. 
Address of the RVT of the cur
rent volume set, or UCB, set in 
GET_REQUEST. 
Address of the RVN of the current 
volume, set in GET_REQUEST and 
SWITCH_ VOLUME. 
Save volume context flags. These flag 
bits belong to the allocation lock value 
block. They contain the quota file 
buffer sequence number in bits 1 to 15. 
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Table 6-2 (Cont.) Contents of the XQP Impure Area 

Impure Symbol 

STSFLGS 

BLOCK_ CHECK 
NEW_FID 
NEW_FID_RVN 
HEADER_LBN 

BITMAP_ VBN 

BITMAP_RVN 

BITMAP _BUFFER 

SAVE_ STATUS 

PRIVS_USED 

Size 

Byte 

Byte 
Longword 
Longword 
Longword 

Longword 

Longword 

Longword 

Longword 

Quadword 

Description 

Various internal status flags. These 
are global flags that allow special 
processing to be requested by a routine 
without having to pass extra arguments 
to the routine. 
Operation blocking check. 
File number of the unrecorded file ID. 
RVN of NEW_FID. 
LBN of the last file header read. This 
value is placed into FCB$L_HDLBN by 
FILL_FCB. 
VBN of the current storage map 
block. This value is used along with 
BITMAP RVN to determine the 
validity of BITMAP_BUFFER. This 
value is cleared when the allocation 
lock is released because a bitmap 
buffer cannot be active at this time. 
Invalidating the BITMAP _BUFFER will 
also clear this value. 
RVN of the current storage map block, 
BITMAP _BUFFER. 
Address of the current storage map 
block. This value is used as an 
optimization in ALLOC_ BLOCKS 
to decide if a storage map block 
needs to be read. The validity of 
BITMAP _BUFFER is indicated by a 
non-zero value in BITMAP_ VBN. 
Saved status. During a Create 
operation, this cell holds the saved 
status while attributes are copied in 
READ_IDX_HEADER. During a Delete 
operation, it is used to restore the old 
USER_STATUS if the operation fails. 
Privileges used to gain access. 
This bit array is maintained by 
CHECK PROTECT. This value can 
be returned as a read attribute. 
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Table 6-2 (Cont.) Contents of the XQP Impure Area 

Impure Symbol 

ACB_ADDR 

BFR_LIST 

BFR_ CREDITS 

BFRS_USED 

CACHE_HDR 

CONTEXT_START 

CLEANUP _FLAGS 
FILE_ HEADER 

PRIMARY_FCB 

Size 
· Longword 

4 quadwords 

4 words 

4 words 

Longword 

0 

Longword 
Longword 

Longword 

Description 

Address of the AST control block 
(ACB) for cross-process ASTs, set in 
READ_BLOCK to the CDRP portion of 
the IRP indicated in IO_PACKET. 
Listheads for in-process buffers. See 
Chapter 5 for more information. 
Buffers credited to the process. See 
Chapter 5 for more information. 
Buffers actually in-process. See 
Chapter 5 for more information. 
Address of the buffer cache header, set 
by GET_REQD_BFR_CREDITS. 
Label marking the beginning of the 
reenterable context area, which must 
be saved when a secondary operation 
is performed. 
Cleanup action flags. 
Address of current file header, set 
by CREATE and CREATE_HEADER. 
EXTEND HEADER sets this value 
to the new extension header. 
DELETE FILE zeros FILE HEADER 
when the new header is Written. 
Address of primary file FCB. This 
cell is set by following routines: 
GET_REQUEST, ACCESS, CREATE, 
MARK_DELETE, EXTEND_CONTIG, 
EXTEND_INDEX, OPEN_FILE, 
MODIFY, DEACC_ QFILE, CONN_ QFILE, 
and SHUFFLE_ DIR. 

It is cleared by CLOSE_FILE and 
by MARK_DELETE when the file is 
deleted. It is also cleared by GET_FIB, 
ACCESS, and MODIFY when the FID 
in the user's FIB does not match that of 
the FCB associated with the channel. 
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Table 6-2 (Cont.) Contents of the XQP Impure Area 

·Impure Symbol Size Description 

CURRENT_ WINDOW Longword Address of the file window. This 
cell is set by the following routines: 
GET_REQUEST, ACCESS, CREATE, 
EXTEND_INDEX, and OPEN_FILE. 

It is cleared by GET_FIB, ACCESS, 
DELETE, and MODIFY when the FID 
in the user's FIB does not match that of 
the FCB associated with the channel. 

CURRENT_FIB Longword Pointer to FIB currently in use, 
set to LOCAL_FIB by GET_FIB 
and GET_REQUEST. It is set to 
SECOND _FIB by SA VE_ CONTEXT 
(LOCAL_FIB is not in the context save 
area). 

CURR_LCKINDX Longword Current file header lock index. Refer to 
Chapter 7 for more information. 

PRIM_LCKINDX Longword Primary file lock basis index. Refer to 
Chapter 7 for more information. 

LOC_RVN Longword RVN specified by placement data, set 
by GET_LOC. 

LOC_LBN Longword LBN specified by placement data, set 
by GET_LOC. 

UNREC_LBN Longword Starting LBN of unrecorded blocks. 
UNREC_ COUNT Longword Count of unrecorded blocks. 
UNREC_RVN Longword RVN containing unrecorded blocks. 
PREV_LINK 6 bytes Old back link of file. This length 

of this cell is specified by the 
FID$C_ LENGTH constant, which is 
currently 6 bytes. 

CONTEXT_END 0 Label marking the end of secondary 
context. 

CONTEXT_SA VE 54 bytes Size of the context save area, which is 
the area in which the primary context 
is saved when a secondary operation is 
performed. 

CONTEXT_SA VE_END 0 Label marking the end of the context 
save area. 
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Table 6-2 (Cont.) Contents of the XQP Impure Area 

Impure Symbol ··Size 

LB_LOCKID · · 5 longwords · 

LB_BASIS 5 longwords 

LB_HDRSEQ 5 longwords 

LB_DATASEQ 5 longwords 

LB_FILESIZE 5 longwords 

DIR_FCB Longword 

DIR_ LCKINDX Longword 

DIR_ RECORD Longword 

DIR_ CONTEXT 112 bytes 

OLD_ VERSION_FID 6 bytes 

PREV _VERSION Longword 

Description 

· Serial lock IDs. This length of this cell 
is determined by the LB_NUM literal 
(representing the number of serial lock 
blocks), which is currently 5 .. For more 
information, see Chapter 7. 
Lock name bases. This cell contains 
the system addresses of lock names. 
File header cache sequence numbers. 
For more information, see Chapter 5. 
File data block cache sequence number. 
For more information, see Chapter 5. 
Value block file size. This value is 
taken from a longword in the lock value 
block containing the size of the file 
so that another process can open the 
file from another node, thus allowing 
shared access across a V AXcluster. 
PCB of directory file, set in DIR_ACCESS. 
This field is cleared in DELETE if the 
directory itself is deleted. 
Directory lock basis index. For more 
information, see Chapter 7. 
Record number of found directory 
entry within the block. This value is 
maintained by DIR_ SCAN and FIND. 
It is zeroed before an Enter operation. 
The value in DIR_RECORD, plus 
1, becomes the low order 6 bits of 
the wildcard context (FIB$L_ WCC) 
returned to the user. 
Current directory context. The 
directory context is saved within 
ENTER when it is necessary to do 
another DIR SCAN to find the lowest 
entry to remove. It is restored by 
RESTORE_DIR when a directory 
operation is done at cleanup time. 
FID of the previous version of the file, 
set by DIR_ SCAN. 
Version number of previous directory 
entry. 
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Table 6-2 (Cont.) Contents of the XQP Impure Area 

Impure Symbol Size Description 

PREV_NAME 80+1 bytes Name of the previous entry. 
PADDING_O 1 byte Alignment byte. 
PREV_INAME 86 bytes Previous internal file name from the 

file header. It is used during ·a Rename 
function. 

SUPER_FID 6 bytes File ID of the superseded file. 
LOCAL_ FIB 64 longwords Primary FIB of this operation (see 

CURRENT_FIB). The length of this 
cell is determined by the constant 
FIB$C_LENGTH. 

SECOND_FIB 64 longwords FIB for a secondary file operation 
(see CURRENT_FIB). The length of 
this cell is specified by the constant 
FIB$C_LENGTH. 

LOCAL_ ARB ? Local copy of the caller's access rights 
block (ARB). 

L_DATA_END 0 Label marking the end of the data that 
has been locked into the working set of 
the process. 

QUOTA_ RECORD Longword Record number of the quota file entry, 
returned as wildcard context to the 
user. 

FREE_ QUOTA Longword Record number of the free quota file 
entry. 

REAL_Q_REC Longword Buffer address of the quota record 
read. 

QUOTA_INDEX Longword Cache index of the quota cache entry 
found. 

DUMMY_REC ? Dummy quota record for cache 
contents. This cell is a special case 
in WRITE_ QUOTA, meaning that the 
quota record pointer does not point 
into a cache buffer. 

AUDIT_ COUNT Longword Number of argument lists in 
AUDIT_ARGLIST. 

IMPURE_ END 0 Label marking the end of the impure 
data area. 
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Table 6-2 (Cont.) Contents of the XQP Impure Area 

Impure Symbol 

MATCHING_ ACE 

FILE_ SPEC_LEN 
FULL_ FILE_ SPEC 

PMS_ TOT_READ 
PMS_ TOT_ WRITE 
PMS_ TOT_ CACHE 
PMS_FNC_READ 
PMS_FNC_ WRITE 
PMS_FNC_ CACHE 

PMS_FNC_ CPU 
PMS_FNC_PFA 
PMS_SUB_NEST 
PMS_SUB_FUNC 
PMS_SUB_READ 

PMS;,,.SUB_ WRITE 

PMS_ SUB_ CACHE 
PMS_ SUB_ CPU 
PMS_SUB_PFA 
AUDIT_ARGLIST 

STORAGE_ END 

Size 

? 

Word 
1022 bytes 

Longword 
Longword 
Longword 
Longword 
Longword 
Longword 

Longword 
Longword 
Longword 
Longword 
Longword 

Longword 

Longword 
Longword 
Longword 
64 bytes 

0 

1 In the absence of concealed device definition. 

Description 

Matching access control entry (ACE) 
storage, set by CHECK_PROTECT 
to the ACE which the access 
check matched, returnable via 
READ _ATTRIB. 
Full file specification length. 
Full file specification storage, including 
full directory specification.1 This 
cell is a storage area to hold the 
output of FID_ TO_SPEC, used by 
WRITE_AUDIT and READ_ATTRIB. 
Total number of disk reads. 
Total number of disk writes. 
Total number of cache reads. 
Total number of Read functions. 
Total number of Write functions. 
Total number of cache hits, or how 
many times the desired record was in 
the cache. 
Total CPU time used per function. 
Total number of page faults incurred. 
Nested subfunction flag. 
Subfunction code. 
Number of subfunction read 
operations. 
Number of subfunction write 
operations. 
Number of subfunction cache hits. 
Subfunction CPU time used. 
Number of subfunction page faults. 
Security auditing argument lists. This 
cell is used to accumulate audit records. 
Label marking the end of the impure 
storage area. 

In addition, the SYSINIT process, the first process to be merged in this way when 
the system is booted, creates a permanent mailbox (ACP$BADBLOCK_MBX, 
channel MBX_ CHAN) to communicate with the bad block scanner. 
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6.2 The XQP Call Interface 

The user interface to the XQP is provided by the Queue 1/0 Request ($Ql0) 
system service. All file system functions are QlOs. When a user process issues 
an 1/0 request, QlO gains control and coordinates the preprocessing of the 
request. The QlO system service is dispatched by a system service vector in Pl 
space, which changes the access mode of the process to kernel and dispatches to 
the EXE$Ql0 procedure. 

Also used by the XQP are the l/O request packets (IRPs), the function decision 
table (PDT) of the pertinent driver, and the driver dispatch table (DDT). 

6.2.1 The 1/0 Request Packet 
The 110 request packet (!RP) is the basic argument block passed to the file system 
for all functions. An IRP is a piece of nonpaged pool that describes the l/O 
request. When a process requests that l/O be performed, an IRP is constructed in 
a standard format. 

The IRP contains fields into which the system l/O preprocessing routines write 
information. The packet also includes buffer addresses, a pointer to the target 
device, l/O function codes, and pointers to the 1/0 database. 

Some of the packet is device-independent information filled in by the $QIO 
system service; the rest is device-dependent information filled in by function 
decision table routines. The IRP is first processed by the file system FDT routines, 
which later queue the IRP to the XQP, if necessary. 

lRPs are a part of the l/O database. They are allocated in system space (nonpaged 
pool) so the user cannot change the parameters after the $QIO system service 
validates them and so the driver can access them when the user process is no 
longer resides in memory. QIO fills in the first part of the packet from the 
device-independent parameters, of which there are six: 

1. Event flag number (EFN) 

2. Channel number 

3. l/O function code 

4. AST parameter 

5. AST routine address 

6. l/O status block (IOSB) address 

The fields of the lRP are shown in Figure 6-4 and are described in Table 6-3. 
Note that the fields of the figure run right to left. 

Figure 6-4 Format of the 110 Request Packet 
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IRP$L_IOQFL 

IRP$L_IOQBL 

IRP$B_RMOD I IRP$B_TYPE IRP$W_SIZE 

IRP$L_PID 

IRP$L_AST 

IRP$L_ASTPRM 

IRP$L_WIND 

IRP$L_UCB 

IRP$B_PRI l IRP$B_EFN IRP$W_FUNC 

IRP$L_IOSB 

IRP$W_STS IRP$W_CHAN 

IRP$L_SVAPTE 

'---> 
IRP$L_BCNT IRP$W_BOFF 

reserved IRP$L_BCNT 

IRP$L_MEDIA 

IRP$B _ CARCON 

IRP$L_ABCNT 

IRP$L_OBCNT 

IRP$L_SEGVBN 

IRP$L_DIAGBUF 

IRP$L_SEQNUM 

IRP$L_EXTEND 

IRP$L_ARB 

IRP$L_KEYDESC 
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Table 6-3 Contents of the 1/0 Request Packet 

Field Name 

IRP$L_IOQFL 

IRP$L_IOQBL 
IRP$W_SIZE 

IRP$B_TYPE 

IRP$B_RMOD 

IRP$L_PID 

IRP$L_AST 

IRP$L_ASTPRM 

IRP$L_WIND 

IRP$L_UCB 

IRP$W_FUNC 

Description 

I/O queue forward link. This field contains the address of the 
listhead of the queue for all system-wide pending 110. 
110 queue backward link. 
Size of the IRP in bytes. The EXE$QIO routine writes the 
constant IRP$C_LENGTH into this field when the routine 
allocates and fills an IRP. 
Structure type for an IRP. The EXE$QIO routine writes 
the constnat DYN$C IRP into this field when the routine 
allocates and fills an IRP. 
Access mode of request. The EXE$QIO routine obtains the 
processor access mode from the PSL and writes the value 
into this field. 
The following field is defined within IRP$B_RMOD. 
IRP$V _MODE Mode subfield. This field indicates the 

mode of AST delivery resulting from the 
completion of the QIO. In this case, for 
efficiency, the front part of the IRP has been 
allocated as an ACB. This field is 2 bits long, 
and occupies bit positions 24 and 25. 

Process ID of requesting process. The EXE$QIO routine 
obtains the PID of the process that issued the 110 request 
from the PCB and writes the value into this field. 
Address of AST routine. If the process specified an AST 
routine address in the call to the $QIO system service, 
EXE$QIO writes the address in this field. 
AST parameter. If the process specified an AST routine and 
a parameter to that AST routine in the $QIO call, EXE$QIO 
writes the parameter in this field. 
Address of the window control block. This field contains the 
address of the WCB that describes the file being accessed in 
the I/O request. 
Address of the device UCB. The EXE$QIO routine copies the 
address of the UCB for the device assigned to the process 
110 channel into this field. 
I/O function code and modifiers. This field specifies the 110 
function code that identifies the function to be performed 
for the 110 request. The EXD$QIO routine and driver FDT 
routines map the code value to its most basic level and copy 
the reduced value into this field. 
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Table 6-3 (Cont.) Contents of the 110 Request Packet 

Field Name 

IRP$B_EFN 

IRP$B_PRI 

IRP$L_IOSB 

IRP$W_CHAN 

IRP$W_STS 

Description 

Based on this function code, EXE$QIO calls FDT action 
routines to preprocess the 1/0 request. Six bits of the 
function code describe the basic function, and the remaining 
10 bits modify the function. 

The following fields are defined within IRP$W_FUNC. 
IRP$V FCODE Function code field. This field is 6 bits 

- long, and starts at bit 0. 
IRP$V _FMOD Function modifier field. This field is 10 

bits long, and starts at bit 6. 
Event flag number and event group. If the 1/0 request call 
does not specify an event flag number, EXE$QIO uses event 
flag 0. 
Base priority of the requesting process. EXE$QIO obtains a 
value for this field from the PCB. This field is used when an 
IRP is inserted into a priority-ordered pending 1/0 queue. 
Address of the 1/0 status block. This field receives the final 
status of the 110 request at 1/0 completion. EXE$QIO writes 
a value into this field if the 1/0 request call specifies an IOSB 
address. 
Process 1/0 channel number. This field contains the index 
number of the process 1/0 channel for the 110 request. 
Request status. EXE$QIO and FDT routines modify this 
field according to the current status of the 110 request. 1/0 
postprocessing routines read this field to determine what 
postprocessing is necessary. 

The status word is used to identify whether the 1/0 is direct 
1/0 or buffered 110. Direct 110 is performed by locking the 
pages of the user buffer in physical memory. Buffered I/O, 
on the other hand, is performed by writing the data to a user 
buffer in nonpaged pool with a special kernel-mode AST. 

This field also contains bits to specify pager 1/0 and swapper 
110, which are performed by special system subroutines, not 
by the $QIO system service. 
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Table 6-3 (Cont.) Contents of the 110 Request Packet 

Field Name Description 

There is also a bit that specifies a virtual request (a request 
for file I/O). If a virtual request for file I/O completes with 
an error. caused by a bad disk block, the XQP is informed as 
part of bad block support The XQP then records in the file's 
header that a bad block was found, so that when the file is 
deleted, appropriate action can be taken. 

Other bits in this field specify complex buffered 110, chained 
buffered 110, and Long virtual 110. 

Complex buffered I/O and chained complex buffered 1/0 are 
used by the XQP. Complex buffered I/O is used for Access 
and Deacess ACP functions, and chained complex buffered 
1/0 is used by the NETACP for transmit QIO requests. 

Long virtual I/O is virtually contiguous in the file, but 
physically discontiguous on the disk. This type of 1/0 is 
usually done by the VMS executive. 

The following bits are defined within IRP$W_STS. These bits 
are adjacent and in order. 

IRP$V _BUFIO 
IRP$V_FUNC 

IRP$V _PAGIO 
IRP$V _ COMPLX 

IRP$V _VIRTUAL 
IRP$V _CHAINED 

IRP$V _ SWAPIO 
IRP$V _DIAGBUF 

IRP$V _PHYSIO 

Buffered I/O function. This is bit 16. 
Function bit. A set bit indicates a read 
function; a clear bit indicates a write 
function. This is bit 17. 

Paging I/O function. This is bit 18. 
Complex buffered 110 function. This 
is bit 19. 

Virtual 110 function. This is bit 20. 
Chained buffered 110 function. This 
is bit 21. 

Swap 110 function. This is bit 22. 
Diagnostic buffer allocated. This is bit 
23. 
Physical 110 function. This is bit 24. 
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Table 6-3 (Cont.) Contents of the 110 Request Packet 

Field Name 

IRP$L_ SVAPTE 

IRP$W_BOFF 

IRP$L_BCNT 

IRP$L_MEDIA 

· Description 

IRP$V _ TERMIO 
IRP$V _MBXIO 

IRP$V _EXTEND 

IRP$V _FILACP 

IRP$V _MVIRP 

Terminal 1/0 function. This is bit 25. 
Mailbox buffered read function. This 
is bit26. 

An extended IRP (an IRPE) is linked to 
this IRP. This is bit 27. 
File ACP I/O (both DIOCNT and 
BIOCNT). This is bit 28. 

Mount verification IRP function. This 
is bit 29. 

IRP$V _JNL_REMREQ Remote 1/0 (slave) request. This is bit 
30. 

IRP$V_KEY IRP$L_KEYDESC contains the address 
of a key for used for encryption. This 
is bit 31. 

This field has two functions. For a direct 110 transfer, this 
field contains the system virtual address of first page table 
entry (PTE) of the 1/0 transfer buffer. 

For a buffered 1/0 transfer, this field contains the address of 
the buffer in system address space. 
Byte offset in first page of a direct 1/0 transfer. FDT routines 
calculate this offset and write the field. 
For buffered 1/0 transfers, FDT routines must write the 
number of bytes to be charged to the process in this field 
because these bytes are used for a system buffer. 
1/0 postprocessing uses this field with the IRP$L_BCNT and 
IRP$L_SVAPTE fields to unlock pages locked for direct 1/0. 
For buffered 1/0, I/O postprocessing adds the value in this 
field to the process byte count quota. 
Byte count of transfer. This field contains the the count 
value, which is calculated by FDT routines. 
For a buffered 1/0 read function, 1/0 postprocessing uses 
IRP$L_ BCNT to determine how many bytes of data to write 
to the user's buffer. 
First 1/0 status longword. The 1/0 postprocessing routine 
copies the contents of this field, also called IRP$L_IOST1, 
into the IOSB. 
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Table 6-3 (Cont.) Contents of the 110 Request Packet 

Field Name 

IRP$L_IOST2 

IRP$B_ CARCON 
IRP$L_ABCNT 

IRP$L_ OBCNT 

IRP$L_SEGVBN 

IRP$L_DIAGBUF 

Description 

Second l/O status longword. The contents of this field are 
also copied into the IOSB during I/O postprocessing. 
Carriage control. 
Accumulated bytes transferred. This field is read and written 
by IOC$IOPOST after a partial virtual transfer. 
Original transfer byte count. This field is read by 
IOC$IOPOST to determine whether a virtual transfer is 
complete, or whether another IIO request is necessary to 
transfer the remaining bytes. 
Virtual block number of the current IIO segment. This field 
is written by IOC$IOPOST after a partial virtual transfer. 
Diagnostic buffer address in system address space. EXE$QIO 
copies the buffer address into this field if the following three 
conditions exist: 

• The IIO request call specifies this address. 

• A diagnostic buffer length is specified in the driver 
dispatch table. 

• The process has diagnostic privilege. 

IRP$L_ SEQNUM I/O transaction sequence number. If an error is logged for the 
request, this field contains the universal error log sequence 
number. 

IRP$L_EXTEND Address of the IIO request packet extension (IRPE). FDT 
routines write an extension address to this field when a 
device requires more context than the IRP can accommodate. 
This field is read by IOC$IOPOST. The IRP$V_EXTEND bit 
in the IRP$W STS field is set if this extension address is 
used. -

IRP$L_ARB Access rights block (ARB) address. This block is located in 
the PCB and contains the process privilege mask and UIC. 

IRP$L_KEYDESC Address of encryption descriptor. 

All IRPs for a particular UCB are linked together through the UCB$L_IOQFL and 
UCB$L_IOQBL fields. All IRPs to be postprocessed are linked together by the 
global cell IOC$GL_PSFL. 

An IRP may also be used as an AST control block. For more information, see 
Section 6.3.5. 
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6.2.2 The Function Decision Table 

Every device driver contains a function decision table (FDT) that lists all the valid 
function codes for the device, and associates valid codes with the addresses of 
IIO preprocessing routines called FDT routines. 

Allocated from nonpaged pool as part of the driver image, an FDT is pointed 
to by an associated driver dispatch table. The FDT routines execute in process 
context, and they access process space (PO and Pl). There are five major FDT 
functions: 

• Access (and Create) 

• Deaccess 

• Modify (and Delete) 

• Mount 

• Read (and Write) 

The FDT routines for file system functions are in the SYS module SYSACPFDT. 

When a user process calls the $QIO system service, the system service uses the 
IIO-function code specified in the request to traverse the FDT. The FDT contains 
information for the device-dependent portion of 1/0 preprocessing, and one or 
more of these routines is selected for execution. 

FDT routines complete the 1/0 preprocessing phase by performing setup and 
initialization functions. For example, for virtual Read and Write requests, the FDT 
routines initialize two fields in the IRP. The IRP$L_OBCNT field contains the total 
number of bytes in the original request, and the IRP$L_ABCNT field, initialized 
to 0, accumulates the total number of bytes actually transferred. The function 
routines then queue the IRP to the XQP for processing. 

FDT routines also detect total mapping failure (that is, the information in memory 
that describes the sections of the disk to be accessed is not sufficient). 

FDT routines are accessed and run in the context of the process that requested the 
1/0. They execute at IPL$_ASTDEL, which prevents ASTs from being delivered 
to the process but allows the FDT routine code to be pageable. ASTs must be 
blocked to prevent process deletion because the address of the allocated 1/0 
packet is held in a register and is not recorded elsewhere in the system. 

QIO processing is also performed in process context. While QIO processes the 
request or while the FDT routines are executing at IPL 2, the process can be 
preempted; therefore, context can be lost. 

Except for two special cases, FDT entries consist of three longwords: two 
longwords containing a 64-bit function mask and one longword containing the 
address of an action routine. 
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The 110 function code requested by the user is 16 bits long and is encoded in two 
fields: 

• The first 6 bits (bits 0-5) contain the function code. 

• The remaining 10 bits (bits 6 thru 15) contain the modifier code. 

The 6-bit function code is used as a bit number into the 64-bit masks. If the bit 
number corresponding to the 1/0 function is set in the mask, QIO dispatches to 
the action routine. 

There are two special cases; each consists of a 64-bit mask. The first of these 
contains bits set to identify legal 1/0 functions for this device, which allows QIO 
to validate the function code. 

The second identifies buffered I/O functions. This mask prevents the duplication 
of code that would otherwise exist in many routines. 

Every function decision table has this format: two special masks followed by a 
variable number of 3-longword entries. No special entry denotes the end of the 
FDT. 

Figure 6-5 shows the format of a function decision table. 

6.2.3 The Driver Dispatch Table 
The driver dispatch table (DDT) contains the address of the function decision 
table as well as other driver-specific information such as the addresses of the 
entry points of standard routines within the driver. It is pointed to by the UCB 
for the device. 

6.3 Internal Dispatching 

Internal dispatching is a part of the 1/0 preprocessing phase. Dispatching begins 
with a call to the $QIO system service. 

Issuing a QIO results in a call to the SYS$QIO system service vector. The vector 
contains an entry mask, a CHMK #QIO instruction, and a RET instruction. 
Execution of the CHMK instruction causes an exception, which is vectored 
through the system control block to the change mode dispatcher. 

The exception mechanism changes the access mode to kernel mode and places 
the CHMK operand, the #QIO, on top of the stack. All the registers are saved by 
the call, with the exception of RO and .Rl. 

The change mode dispatcher obtains the exception code and verifies that it is 
legitimate. It checks that the argument list is the right length for the QIO and 
that the argument list is may be read in the access mode from which the system 
service request was issued. The change mode dispatcher then calls the QIO 
service routine EXE$QIO. 
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Figure 6-5 Layout of a Function Decision Table 

Art number: ZK921-82 in Driver book 

6.3.1 $010 System Service Dispatching 
QIO preprocessing begins in the SYS module SYSQIOREQ. The EXE$QIO routine 
in the SYSQIOREQ module performs the device-independent preprocessing of 
an I/O request and calls a driver's FDT routines to perform device-dependent 
processing. Once the operation has been started, control returns to the caller, 
who can synchronize I/O completion in one of three ways: 

1. Specifying the address of an AST routine to be executed when the I/O 
completes. 

2. Waiting for the specified event flag to be set. 

3. Checking the specified I/O status block (IOSB) for a completion status. The 
IOSB is an 8-byte block into which a device-dependent system status code can 
be written. 
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There are twelve parameters to the QIO system service: six device-independent 
parameters and six device-dependent parameters defined by the actual device. 
EXE$QIO processes only the device-independent parameters; it defines an PDT 
routine to process the device-dependent parameters. 

To validate the 1/0 request, the following function-independent parameters are 
verified: 

• The event flag number (EPN) must be legal. EPN 0 is the default. Local 
event flags process more quickly than common event flags because the local 
event flags are actually contained in the PCB. Only the addresses of the 
common event flags are contained in the PCB, and therefore, an extra level of 
indirection is incurred. 

• The access mode must be legal. This mode applies to the channel over which 
1/0 has been requested. 

• A UCB must be assigned. The UCB must match the device that has been 
requested. 

• The UCB status word is checked to ensure that the online bit is set. 

• The 1/0 function code, which is validated by the PDT, must be legal for the 
device. 

• The IOSB must be writable in the mode in which the QIO was issued. If the 
1/0 request specifies an IOSB to receive final 1/0 status infromation, EXE$QIO 
determines whether the process issuing the request has write access to the 
status-block locations specified. If the process has write access, EXE$QIO fills 
the IOSB with zeros. If the process does not have write access, the procedure 
terminates the request with an error status. 

• The DIOCNT or BIOCNT quota is checked and updated. IPL is raised to 
IPR$_ASTDEL to prevent process deletion. 

EXE$QIO determines whether satisfying the 1/0 request will cause the process 
to exceed its quota of outstanding direct or buffered I/O requests. If the 
requests remain under quota, the system service allows 1/0 preprocessing to 
continue. If either quota is exceeded, EXE$QIO checks the resource wait flag 
(the PCB$V_SSRWAIT bit in the PCB$L_STS field). 

If the flag is clear, EXE$QIO aborts the 1/0 request. If the flag is set, the 
process is placed in a wait state until the number of requests drops below 
quota. When this occurs, process execution resumes, at which time EXE$QIO 
charges process quotas as appropriate for the requested operation. 

After the request is validated, it is synchronized with any pending access 
or deaccess operations on the channel. The channel cannot be closed until 
outstanding QIOs are completed. 
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The I/O request packet is then allocated from nonpaged pool. Before EXE$QIO 
actually allocates the IRP, it raises the IPL of the processor to IPL$_ASTDEL 
to block any other asynchronous activity in the process. The new IPL prevents 
possible termination of the process; process termination cause the operating 
system to lose track of the system memory allocated to the IRP. 

To save time, EXE$QIO first tries to allocate an IRP from a lookaside list 
containing preallocated IRPs. The EXE$ALLOCIRP routine in the MEMORYALC 
module handles this function. If no preallocated packets exist, the procedure calls 
a routine to allocate an IRP from general nonpaged pool. This allocation routine 
synchronizes with the rest of the system at IPL$L_SYNCH so it can allocate the 
memory needed. 

To keep track of 1/0 requests outstanding on the channel, the channel I/O count 
field (CCB$W_IOq is incremented in the CCB. 

The IRP is then filled in; the function independent parameters and process 
information are copied to the 1/0 packet. The 1/0 function code is validated 
against process privilege and device characteristics. 

If a user AST has been specified for notification of AST completion, the AST 
count quota field (PCB$W _ASTCNT) is checked and decremented, and the AST 
quota update flag (ACB$V_QUOTA in the IRP$B_RMOD field) is set. 

After the IRP is filled in, the driver's FDT routines that correspond to the specified 
function are called. At this point, all device-independent processing is done, and 
device-dependent processing begins. 

Figure 6-6 shows the user, VMS executive, and XQP images that are executed 
while the XQP processes an 1/0 request. 
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Figure 6-6 Images Used to Process an 1/0 Request 

User image VMS executive image 

$QIO ------------> EXE$QIO:: 
I 
I 

v 
FDT routines detect 
an ACP function or 
total map failure, 
so the XQP is needed 

I 
I 

v 
+--> EXE$QXQPPKT:: sends _____ > 

XQP image 

DISPATCH:: 
I an AST to the XQP ___ \\ 1) .Does the requested 
I 
I 2) 

yl 
el 
sl <------------- 3) 

I 
I IOPOST:: 
I Is the QIO incomplete 
<--- or is bad block 

handling needed? 

1) 

2) 
<------- 3) 

I 
(no) I 

v 
Post results to 
the user 
Cleanup 
Performs an REI 

function 
Sets up the IOPOST 
interrupt or calls 
IOPOST directly 
Returns 

6.3.2 Function Decision Table Dispatching 
When the $QIO system service has executed all the device-independent code, 
QIO searches the device database and finds the correct function decision 
table address. The channel control block, located through the channel number 
argument, contains the UCB address. The UCB contains the address of the driver 
dispatch table (DDT), which contains the address of the function decision table. 



The XQP and 1/0 Processing 31 

QIO scans the function decision table, starting at the third entry (that is, the first 
entry after the two special cases), using the 6-bit function code as a bit number 
into each mask. If the bit is set, QIO calls the routine that the bit represents. The 
routine must then finish filling in the device-dependent part of the I/O packet. 

The most frequently used functions are at the front of the table, so scanning is 
fast and very efficient. 

If the FDT routine returns to QIO, QIO advances to the next entry in the FDT and 
checks the 1/0 function code and mask. If the bit is not set, QIO again advances 
to the next FDT entry. If the bit is set, however, QIO dispatches to the indicated 
routine. 

FDT routines send information (such as whether the 1/0 is direct or buffered) to 
the driver in the driver-dependent part of the IRP. At this point, the FDT routines 
determine whether an 1/0 transfer from the disk is needed. If a transfer request 
has been specified (that is, a virtual Read or Write operation), then the WCB is 
read to obtain the mapping information to see if the request can be processed as 
is or whether XQP intervention is necessary. 

When a transfer request if processed, one of two cases exists: 

• The map information in memory is sufficient to map the request either 
successfully or partially; 

• The map information is totally insufficient (total map failure). 

In the first case, the available information is queued to the driver, and the results 
are posted to the user. If a partial mapping occurred, more mapping information 
is sought. 

In the second case, the XQP must obtain new mapping information by turning the 
current window. When the new mapping information is obtained, it is queued to 
the driver's routine to start 1/0 (EXE$QIODRVPKT). 

Figure 6-7 shows the logic that determines the action the file system takes when a 
transfer request is initiated. 

However, if a non-transfer request was specified (that is, a Deaccess operation (if 
the process was not the last writer) or an access to an already accessed file), an 
XQP packet is built instead. 
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Figure 6-7 XQP Logic for an 110 Transfer Request 
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6.3.3 Building the XQP 1/0 Packet 

The IRP sent to the XQP contains the address of an XQP 110 buffer packet (AIB) 
in the IRP$L_SVAPTE field. This XQP packet is built in the SYSACPFDT routine 
BUILDACPBUF. 

The AIB is 12 bytes long. The first longword, the AIB$L_DESCRIPT field, points 
to a vector of buffer descriptors. "Buffer descriptor" refers to a user area into or 
from which information is transferred. The actual user buffers are copied into the 
AIB buffers during FDT processing (see Figure 6-12). They are copied back to the 
user's area during 110 postprocessing in the BUFPOST routine in the SYS module 
IOCIOPOST. For more information on 110 postprocessing, see Section 6.6. 

The format of an XQP 110 buffer packet is shown in Figure 6-8 and described 
in Table 6-4. The AIB contains all the data transmitted from the user to the XQP 
and back during an ACP function. 

Figure 6-8 Format of an XQP 110 Buffer Packet 
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AIB$L_DESCRIPT 

reserved 

reserved I AIB$B_TYPE l AIB$W_SIZE 

Table 6-4 Contents of an XQP 110 Buffer Packet 

Field Name 

AIB$L_DESCRIPT 
AIB$W_SIZE 
AIB$B_TYPE 

Description 

Address of start of descriptors. 
Size of packet in bytes. 
Packet type code. This field contains the constant 
DYN$C_BUFIO for a buffered 1/0 function. 

Before the buffer can be allocated, BUILDACPBUF must ensure that the buffer 
byte count quota has not been exceeded. The user parameters to the QIO (such 
as the FIB) are also checked to make sure they can be accessed. Then the buffer is 
allocated, and the buffer descriptors (ABDs) for each user parameter are inserted 
in the XQP packet. 

Each complex buffer descriptor contains an offset to the text data, the size, and 
the user virtual address of the data. The offset, plus 1, added to the address of 
the buffer descriptor gives the address of the buffer (the preceding byte is the 
access mode taken from IRP$B_RMOD). Each possible user buffer has a reserved 
index in the vector. The indexes are zero origin. The last element reserved 
corresponds to the read/write attribute user function. All buffers from then on 
correspond to Read/Write Attribute buffers. IRP$L_BCNT contains the number 
of buffer descriptors present. (Note that for a window turn, IRP$V _ COMPLX is 
clear, so the above description does not apply). 

The fields of the IRP contain the standard infroamtion, and the SV ATPE field 
points to the complex buffer packet. The byte count word in this case indicates 
the number of buffers; that is, it indicates the number of descriptors and the 
number of buffers that are in the complex buffer packet. 

The complex buffer descriptor consists of the packet header and a list of 
descriptors. Each descriptor contains the actual size of the buffer. There is 
an offset pointer to the data text, which is located farther down in the packet. 

Figure 6-9 shows how the complex buffer descriptor is constructed. 
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Figure 6-9 Locating the Complex Buffer Descriptor 
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The ABD may contain a maximum of 35 descriptors. The first five descriptors 
have special names and uses: 

• The first descriptor, ABD$C_ WINDOW, is for returning the window pointer. 
The user does not supply this buffer. Many file system routines use this field 
differently. 

During FDT processing, the BUILDACPBUF routine sets the window pointer 
return address to the value in the CCB$L_ WIND field. 

When retrieving a request from the XQP queue, the GET_REQUEST routine 
zeros the window pointer return length (except during window turns) so that 
the value is not returned. 
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When accessing a file, the MAKE_ACCESS routine restores the window 
pointer return length to 4 and returns the window pointer. 

If an access attempt fails, the ZCHANNEL cleanup routine returns a zero for 
the window pointer. 

• The second descriptor, ABD$C_FIB, contains the user's FIB. The FIB travels 
in two directions: both from the user to the XQP, and from the XQP back to 
the user. It is copied into the LOCAL_FIB portion of the XQP impure area by 
the GET_FIB routine. The updated FIB is copied back to the FIB buffer by the 
IO_DONE routine. 

• The third descriptor, ABD$C_NAME, contains the filename buffer. It is 
passed as the input to the PARSE_NAME routine from the Enter and Find 
functions to parse the user's filename into the internal name block. The 
COPY_NAME routine (called from the Create and Find functions for spooled 
devices) copies the filename buffer into the result string buffer. It also sets the 
result string length buffer value. 

The filename string travels only in one direction: from the user to the XQP. 
Its counterpart, the resultant name string, is what is sent back to the user 
from the XQP. For efficiency, the IO_DONE routine clears the filename return 
length to prevent it from being written back. 

For quota file operations, the file name buffer is used to pass a quota file 
transfer block (DQF). For operations on a spooled device, FDT processing 
places the username and account in the filename string to be placed in the file 
header. 

• The fourth and fifth entries, ABD$C_RESL and ABD$C_RES, are descriptors 
for the result length and the result string, respectively. The RETURN_DIR 
routine, called from the Enter and Find functions, returns the name from the 
DIR_ENTRY and DIR_ VERSION routines into the result string buffer. The 
result string length buffer is also set. The result string is itself passed to the 
PARSE_NAME routine from the Find function when the XQP processed 
a wildcard search. Quota file operations call the RET_QENTRY in the 
QUOTAUTIL module to return the quota record (DQF) into the result string 
buffer. The result string length is set here. 

If a user attribute buffer exists, a Read/Write Attributes function is performed. 
The Access function performs an attribute read. The Create, Deaccess, and 
Modify functions perform an attribute write. The IO_DONE routine sets the 
IRP$L_BCNT field during non-read operations so that the attributes, which are no 
longer needed; are not written back to the user buffers for optimization reasons. 

The attribute list sometimes contains placement data (processed for compatibility) 
when the FIB$V_ALLOCATR field is set. The GET_LOC_ATTR routine, called 
the the Create and Modify functions, scans the user's attribute list for placement 
data and copies it into standard format in the FIB. 
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The fields of a complex buffer descriptor are shown below in Figure 6-10 and 
described in Table 6-5. 

Figure 6-10 Format of a Complex Buffer Descriptor 

ABD$W_COUNT ABD$W_TEXT 

ABD$L_USERVA 

Table 6-5 Contents of a Complex Buffer Descriptor 

Field Name Description 

ABD$W_ TEXT Word offset to the data text in the text area. Figure 6-11 
shows the format of a single data text entry. 

ABD$W _COUNT Length of text in bytes. 
ABD$L_ USERVA User virtual address of text (PO address). This address is 

needed to post buffers back to the user. 

The format of a data text entry is shown below in Figure 6-11. The buffer 
descriptors point to this area. The figure shows the prefix byte in front of the 
data buffer. This byte normally contains the access mode against which the buffer 
is validated. Generally, that is the mode of the caller, with the exception of the 
very first buffer, which is used to access the user's channel control block when 
the CCB needs to be adjusted by the file system. In that case, the prefix byte 
contains the kernel mode code. 

For the attribute buffers, the prefix byte contains the attribute code as the complex 
buffer packet travels from the user to the XQP. When the complex buffer packet 
is sent back to the user, the prefix byte has been changed to contain the access 
mode. 

Figure 6-11 Format of a Data Text Entry 

+------------------+----------+---------+ Access mode from IRP$B_RMOD 
I \ \ \ \ \ \ \ \ \ I or attribute descriptor 

t e x t d a t a +---------+ code 

+------------------+--------------------+ 
Figure 6-12 shows how user information is copied from user context to the XQP. 
In this case, a FIB is copied from the user's stack in Pl space into the data text 
portion of the ABD. A FIB descriptor is created to describe and locate the data. 
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The text offset field points to the data text portion of the ABD. The access mode 
area of the data text entry contains a 1, which indicates executive mode. 

The module GETFIB performs the copy operation from the data portion of the 
ABD into the LOCAL_ FIB portion of the XQP impure area. The CURRENT_FIB 
field, which points to the FIB currently in use, points to the LOCAL_FIB field, 
which points to the primary FIB of this operation. The count field of the ABD 
contains the number of bytes in the FIB text, which are copied to LOCAL_ FIB. 

The number of descriptors is placed in the IRP$L_BCNT field, and the number 
of bytes charged to the buffer byte count quta is written into the IRP$L_ BOFF 
field. In addition, the COMPLX, FILACP, and VIRTUAL bits are set in the 
IRP$W_STS field. Finally; the original UCB address in CCB$L_UCB is placed 
into IRP$L_MEDIA, and IPL is set to IPL$_SYNCH. 

6.3.4 Checking the Volume Status 

The FDT routines ensure that the volume has the correct state for the request. For 
a request to succeed, the volume must not be in the following states: 

• Marked for dismount 

• Not mounted 

• Mounted with the IFORE:IGN qualifier (that is, the volume is not a Files-11 
volume) 

The check dismount routine CHKDISMOUNT ensures that the volume is not 
being dismounted. If the DEV$V_DMT bit is set in the UDB$L_DEBCHAR field, 
the volume has been marked for dismount. 

The CHKMOUNT routine checks to ensure that the following states exist: 

• The device is mounted. If so, the DEV$V_MNT bit is set in the UCB$L_DEVCHAR 
field. 

• The device is not a member of a shadow set. 

• The device is not in the dismount state. If so, the UCB$V_DISMOUNT bit is 
set in the UCB$W ... STS field. 

• The volume is not mounted foreign. 

Once the volume checks succeed, the volume transaction count (contained in 
the VCB$W _TRANS field) is incremented. This update is normally done for 
the volume describing the desired UCB, but it may be done to the UCB on 
which a file is open if the WCB so indicates. The IRP$L_ UCB field is updated to 
this value. The IRP$L_MEDIA field is updated to this UCB if the device is not 
spooled. 
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Figure 6-12 Passing User Information to the XQP 
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6.3.5 Queuing the 1/0 Packet to the XQP 
It is crucial for proper synchronization that the XQP dispatcher be called via 
AST scheduling. XQP packets may be queued, or dispatched, to the XQP by the 
following two routines: 

• IOC$WAKACP in the SYS module IOCIOPOST via a special kernel AST. 
The special kernel AST ensures that the IRP won't be invalidated by process 
deletion between the time IOPOST is exited and the time a normal KAST 
could be delivered to the process. 

• EXE$QIOACPPKT in the SYS module SYSQIOREQ via a normal kernel AST. 

After the FDT routines have completed filling in the device-dependent parame
ters, the last entry usually contains a branch instruction to the EXE$QIOACPPKT 
routine in the SYSQIOREQ module to perform one of the following actions: 

• Terminate the current request with an error status. 

• Put the request in the driver queue, and return an appropriate status to the 
user. 

• Signal that the I/O request has been completed, and return an appropriate 
status to the user. 

EXE$QIOACPPKT is called at IPL$_ASTDEL to prevent the user's process 
from being deleted; the IRP cannot be lost before it is inserted in the XQP 
request queue. The routine generates, within the context of the user's 
process, a kernel mode AST specifying as the AST routine the value found 
in the F11B$L_DISPATCH field, which contains the XQP dispatcher address. 
EXE$QXQPPKT then queues the kernel mode AST to the XQP dispatcher. 

To avoid allocating an AST control block (ACB), the CDRP extension to the IRP 
is used as an ACB. This area is normally used by the disk class driver when 
processing disk I/O requests. 

The fields of the ACB are illustrated in Figure 6-13 and are described in 
Table 6-6. Note that the fields of the figure run right to left. 

Figure 6-13 Format of the AST Control Block 
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(Continued on next page) 
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Figure 6-13 (Cont.) Format of the AST Control Block 
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Table 6-6 Contents of the AST Control Block 

Field Name Description 

ACB$L_ASTQFL AST queue forward link. This field links the ACB into the 
AST queue for the process; the listhead for the queue is the 
PCB$L_ASTQFL field. 

ACB$L_ASTQBL AST queue backward link. This field links the ACB into the 

ACB$W_SIZE 
ACB$B_TYPE 

ACB$B_RMOD 

ACB$L_PID 

ACB$L_AST 

AST queue for the process; the listhead for the queue is the 
PCB$L_ASTQBL field. 
Structure size in bytes. 
Structure type code. This field should contain the constant 
DYN$C_ACB. 
Access mode of the requestor. The following fields are 
defined within ACB$B_RMOD: 

ACB$V_MODE Mode for final delivery. This field 
contains the access mode (0-4) in which 
the AST routine is to execute. This field 
occupies bits 24 and 25. 

ACB$V _PKAST Piggyback special kernel AST. This is bit 
28. 

ACB$V _NODELETE ACB is not deallocated after the AST is 
delivered. This bit generally indicates 
that the ACB is part of a larger structure. 
This is bit 29. 

ACB$V_QUOTA Process AST quota (PCB$W_ASTCNT) 
has been updated. This is bit 30. 

ACB$V_KAST Special kernel AST. This is bit 31. 
Process ID of the process to receive the request, from 
IRP$L_PID. 
AST routine address. EXE$QXQPPKT writes into this field the 
address of the DISPATCH routine from (@CTL$GL_F11BXQP) 
+ F11B$L_DISPATCH. 
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Table 6-6 (Cont.) Contents of the AST Control Block 

Field Name Description 

ACB$L_ASTPRM 
ACB$L_KAST 

AST parameter. This field contains the address of the IRP. 
Internal kernel mode transfer address. This field contains the 
address of the EXE$QXQPPKT routine. 

The following code fragment shows a portion of EXE$QXQPPKT in SYSQIOREQ. 
The XQP packet is queued to the XQP with a normal kernel AST, and the CDRP 
extension to the IRP is used as an ACB. 

EXE$QXQPPKT: : 
MOVL 
MOVAB 
MOVB 

MOVL 
MOVL 
MOVL 
BSBW 
RSB 

GACTL$GL_F11BXQP, RO 
CDRP$L_IOQFL(R5), ACB$L_ASTPRM(R5) 
#PSL$C_KERNEL!ACB$M_NODELETE, -
ACB$B_RMOD(R5) 
PCB$L_PID(R4), ACB$L_PID (R5) 
F11B$L_DISPATCH(RO), ACB$L_AST(R5) 
#PRI$_RESAVL, R2 
SCH$QAST 

;XQP queue head address 
;IRP address is AST parameter 
;Kernel mode---don't delete 
;IRP 
;Copy PID 
;XQP dispatcher address 
;Like waiting for a lock 
;Queue the AST 
;And return 

This code fragment shows a portion of IOC$WAKACP in IOCIOPOST. Like 
the code in EXE$QXQPPKT, the CORP extension to the IRP is used as an ACB; 
however, the XQP packet is queued to the XQP with a special kernel-mode AST 
instead of with a normal kernel AST. 

IOC$WAKACP : : 

TSTL 
BEQL 

XQP:: 
PUSHL 
MOVAB 
MOVB 
MOVL 
MOVAB 
CLRL 
BSBW 
POPL 
RSB 

AQB$L_ACPPID(R2) 
XQP 

R5 
IRP$L_FQFL(R3), R5 
#ACB$M_KAST, ACB$B_RMOD(R5) 
IRP$L_PID(R3) I ACB$L_PID(R5) 
WAEXE$QXQPPKT, ACB$L_KAST(R5) 
R2 
SCH$QAST 
R5 

; No PID if XQP 
;Equal, then branch to XQP 

;Preserve R5 
;Get temp ACB address in R5 
;Note as special kernel AST 
;Copy PID of process 
;Address of queuing routine 
;No priority increment 
;Queue the AST 
;Restore R5 
;And return 
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6.4 XQP Code Execution 

When the kernel AST queued to the XQP dispatcher begins to execute, the code 
in the FllBXQP image is executed. This code is entered from three routines: 

• EXE$QIO via EXE$QXQPPKT-This routine calls the XQP to perform ACP 110 
functions and window turns for IO$_READVBLK/WRITEVBLK with total map 
failure. 

• IOC$IOPOST via IOC$WAKACP-This routine calls the XQP to perform 
dynamic bad block handling and window turns for the next segment of 
discontiguous long virtual 110 with total map failure. 

• DIRPOST via IOC$WAKACP-This routine calls the XQP to queue 
IO$_DEACCESS on an idle channel. 

The DISPATCH routine is the XQP dispatcher routine. The argument to this 
routine (that is, the AST parameter) is the IRP. 

Figure 6-14 illustrates the flow of code through the XQP after the AST has been 
sent to DISPATCH. 

The routine also sets up a register (RlO, called the base register) to point 
to the XQP impure area, the address of which is contained in the cell 
CTL$GL_F11BXQP). All XQP routines assume that RlO points to the XQP_QUEUE 
offset in the XQP storage area. The IRP is then queued onto a per-process queue 
in the impure area called XQP _QUEUE. F11B$Q_XQPQUEUE points to this 
queue. 

The PCB$B_DPC cell is incremented to prevent process deletion while any file 
system request is being processed; 110 cannot be returned to a nonexistent 
process. This field must contain a 0 before the EXE$DELPRC routine, in the SYS 
module SYS$DELPRC, can proceed with process deletion. EXE$DELPRC waits at 
IPL 0 to allow kernel ASTs to be delivered so that pending file system requests 
can complete. Similar code in the process suspension service prevents a process 
from being suspended until pending file system requests are completed. 

Process suspension must be prevented while file system requests are active; 
otherwise, random synchronization locks could be held indefinitely, which could 
potentially hang an entire V AXcluster. On the other hand, process deletion must 
be blocked while a file system request is being processed to prevent problems 
that could be caused by partially -completed operations. 

If there are no other requests being processed, which is the normal case, the 
routine enables the special XQP channel by writing 1 into the CCB$B_AMOD 
field so it appears to be a normal kernel mode channel; the CCB$B_AMOD 
field contains the current access mode (kernel, or 0) plus 1. The channel thus 
becomes inaccessible to any other process at any mode because the privilege 
check for channels in IOC$VERIFYCHAN performs a signed comparison against 
access mode. The system rundown routine, EXE$RUNDWN, in the SYS module 
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Figure 6-14 XQP Code Flow 
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SYSRUNDWN, also does signed comparisons against access mode to determine 
if a given channel should be deassigned. When the XQP is not actively processing 
a request, the special XQP channel contains a negative access mode (that is, -1), 
which prevents it from being deassigned. 

6.4.1 Dispatching a Request 
The main dispatch routine, DISPATCHER, is called from DISPATCH. This routine 
dequeues a request, executes it, and signals the user when the request has been 
completed. The XQP uses its private kernel stack to process the requests. After 
completing the first request, it attempts to dequeue another request and process 
it. 
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The actual requests to be processed are obtained by GET_REQUEST. The routine 
first initializes the impure area, which involves zeroing the impure area and 
setting the user request status USER_STATUS to 1 (or success). The per-process 
buffer (BFR_LIST) queue heads are set to empty lists. Also, PMS monitoring is 
started. 

The pointers to the current UCB, FIB, and WCB are obtained from the current 
1/0 packet and are written to the CURRENT_FIB, CURRENT_ UCB, and 
CURRENT_ WINDOW cells of the XQP impure area. If the low bit of the pointer 
to the window (the IRP$L_ WIND field) is set, a Deaccess function is pending on 
the file, and so CURRENT_ WINDOW is zeroed. 

The values for CURRENT_FIB, CURRENT_ UCB, and PRIMARY_FCB are set if a 
window exists; a window does not exist for Access, Create, or Mount functions. 
Values for CURRENT_ VCB, CURRENT_RVT, and CURRENT_RVN are also 
established. 

If the 1/0 request is a normal FCP request and not a window turn (that is, the 
IRP$V _ COMPLX bit is set), the byte count for the window block descriptor (the 
ABD$C_ WINDOW) field is cleared to prevent the 1/0 completion routines from 
writing it back. 

The SYSPRV flag in the local copy of the access rights block is set if appropriate. 
The VOLOWNER and GROUPOWNER cleanup flags are set, as well as the 
SYSPRV cleanup flag if SYSPRV, BYPASS, or READALL privileges are set. 

Returning to the main flow of DISPATCHER, the file system function code is 
obtained from the IRP$V_FCODE field. The minimum number of buffers needed 
for the function is obtained in the GET_REQD_BUFR_CREDITS routine (see 
Chapter 5. 

The Read and Write Physical Block, ACP control, and Mount functions are 
performed directly. All other functions must first ensure that the activity block 
lock (in the BLOCK_LOCKID cell), which blocks all XQP activity on the volume, 
is free by calling the routine START_REQUEST in the module DISPATCH. 

START_REQUEST sets IPL to SYNCH and tests the VCB$L_BLOCKID field to 
see if a blocking lock already exists. If no blocking lock is currently held on the 
volume, the activity count in RVT$W_ACTIVITY is incremented by 2 (so that the 
count remains even), and IPL is lowered to 0. 

If a blocking lock already exists, IPL is immediately lowered to 0, and the 
routine BLOCK_ WAIT in the module LOCKERS is called, which waits for the 
volume blocking lock to be released. When the blocking lock becomes available, 
START_REQUEST is called again. 

DISPATCHER then calls the appropriate routines to process the designated file 
system function. After the function has compled, PERFORM_AUDIT is called. 
See Section 6.5.3 for more information on PERFORM_AUDIT. 
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.In addition, cleanup is performed. If the status indicates success, then a normal 
cleanup is done; any error invokes ERR_ CLEANUP. 

DISPATCHER then calls the routines that handle termination of 1/0 processing. 
For more information, refer to Section 6.6. 

6.4.2 Processing in Secondary Context 
Some file system functions require what are called secondary functions. ~ 
secondary function is a normal file system function that is generated by, or on 
behalf of, another file system function, called a primary function. The primary 
function is not necessarily dependent on the results of the secondary function in 
order to complete. 

To simplify matters when a secondary function is necessary, the context of 
the primary function, contained in the cells of the impure area delimited by 
CONTEXT_START and CONTEXT_END, is copied to the area delimited by 
CONTEXT_SAVE and CONTEXT_SAVE_END. The secondary function can then 
process as if it were a primary function. Saving the primary context eliminates 
having to allocate and queue another IRP, which makes processing more efficient. 
The secondary save area allows only one secondary operation nested within the 
primary. 

The routines that perform the context change are SA VE_ CONTEXT and 
RESTORE_ CONTEXT in the module GETREQ. 

Figure 6-15 shows how the primary context is copied from the primary function 
area to the context save area. 

Figure 6-15 Saving and Restoring Primary Context in the XQP Impure Area 
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After all processing for the secondary function has been completed, the primary 
context is restored. The ERR_ CLEANUP routine detects if any processing 
has been done in secondary context, and cleans up secondary context before 
switching to primary context 

Secondary context may leave unwritten buffers. However, any serialization 
locks obtained in secondary context must be released, and any buffers protected 
by these locks must be written to disk (refer to Chapters 7 and 5). Also, any 

.unrecorded blocks must be recorded before leaving secondary context (refer to 
Section 6.4.2). 

The following functions require the use of the secondary context area: 

• Mapping VBNs (that is, forcing a window turn) when the existing window 
control blocks do not map the desired VBN during a virtual read or write 
function. MAP_ VBN is responsible for mapping the correct VBN. See Section 
6.4.2.1 for more information. 

• Operating upon the pending bad block file, BADLOG.SYS. The routines re
sponsible for this function are the SCAN_BADLOG and DEALLOCATE_BAD 
routines. See Section 6.4.2.2 for more information. 

• Marking for deletion a file being removed or superseded during a file creation. 
The CREA TE routine handles this function. 

• Opening a file from which attributes are being propagated. The CREA TE 
routine also handles this function. 

• Opening a file to determine placement. The GET_LOC routine is responsible 
for handling this function. 

• Extending the index file. This function is performed by the EXTEND_INDEX 
routine. 

• Extending or compressing a directory. The SHUFFLE_DIR routine handles 
this function. 

6.4.2.1 Window Turning 
A file may contain one or more extents, and the file header contains a pointer to 
each extent. Each pointer consists of a starting LBN and an extent size (in bytes). 

Figure 6-16 shows the virtual and physical representations of a file with nine 
extents. Extents are virtually contiguous, but they may physically reside anywhere 
on the disk. 
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Figure 646 Virtual and Physical Representations of a File 
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For retrieval purposes, these extent pointers reside in a structure in memory 
called a window. The window control block resides in the top portion of the 
window. Each WCB contains a starting VBN and a variable number of retrieval 
pointers. The number of pointers may be set with the following methods: 

• The DCL command INITIALIZE/WINDOWS= n 

• The FAB$B_RTV field at file open time 

• The FDL attribute FILE WINDOW_SIZE 
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• The system paramter ACP _ WINDOW1 

A special type of window that maps the entire file called a cathedral window. 
This type is window is also known as a "segmented window" because multiple 
WCBs are usually required to contain its mapping information. Each WCB in the 
chain is called a "window segment." 

When a data transfer (a virtual Read or Write operation) is requested, a starting 
VBN and the size of the request in bytes is given. The file system then maps the 
VBN to an LBN, which is used to locate the file on disk. 

When an extent whose pointer is not in the current window is accessed, the XQP 
has to read the file header to construct a new window that maps the desired 
extents. This I/O operation is called a window turn. When the file system turns a 
window, it reads the FCB to find the file header that contains the desired retrieval 
pointer. 

Figure 6-17 shows the mapping information in both the file header and the 
window control block. The WCB forms the top portion of the window, and it 
contains mapping information for the first two extents. In this figure, however, 
if the information contained in extents 6-9 is needed, the XQP must turn the 
window. 

Virtual Read or Write operations are processed by the FDT routines, which force 
a window turn if the existing WCBs do not map the desired VBN. A request 
to turn a window is converted into an 10$_READPBLK or 10$_ WRITEPBLK 
operation. The DISPATCHER routine forwards these function codes directly to 
the READ_ WRITEVB routine in the FllX module RWVB. 

READ_ WRITEVB obtains the necessary information (such as the address of the 
current window, the block count, and the desired VBN) from the IRP. It obtains 
the serialization lock on the file and then calls the MAP_ VBN routine. 

The MAP_ VBN routine in the Fl lX module MAPVBN is responsible for mapping 
the specified virtual blocks to their corresponding logical blocks, using the 
supplied window. Because the serialization lock is being held, MAP_ VBN can 
rebuild the FCB (and the extension FCB chain) if the FCB has been modified. 

If an Extend operation was performed on a cathedral window being accessed by 
multiple users, the current window does not map the entire file. In other words, 
the WCB$V _CATHEDRAL bit is set, but the WCB$V _COMPLETE bit is not. The 
REMAP _FILE routine in the ACPCNTRL module is called to remap the file to 
update the mapping information. 

1 Applies only to disks mounted with the /SYSTEM qualifier. 
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Figure 6-17 Mapping a File with a Window Size of 5 
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REMAP _FILE ensures that the entire file is mapped. If necessa1y, it creates 
multiple WCBs (window segments) and links them together. While building the 
window segments, the following situations may occur: 

1. The window completely maps the file. In this case, the WCB$V _COMPLETE 
bit is already set, so REMAP_FILE likewise sets the WCB$V_CATHEDRAL bit 
and returns. 

2. The window was previously complete, but the file was extended. In this case, 
new window pointers must be added to the last window segment. 

3. The window never completely mapped the file. In this case, the FCB chain is 
traversed to build the associated window segments. 
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If the file has extension headers, the FCB chain must be searched for the blocks 
that need to be mapped. The correct FCB is identified either when there are no 
more FCBs or when the starting VBN of the next FCB is greater than the desired 
VBN. After finding the correct FCB, three cases may occur when the I/O transfer 
is attempted: 

1. A successful mapping occurs because the current window contains the desired 
mapping information. 

2. A partial mapping occurs because the window contains the starting VBN, but 
it does not map contiguous extents. 

3. Total map failure occurs because the window does not contain any of the 
desired mapping information. 

If the mapping information in the current window is either totally or partially suffi
cient, the MAP_ WINDOW routine is called to map the tr an sf er. MAP_ WINDOW 
maps the specified virtual blocks into their corresponding logical blocks. It calls 
the system routine IOC$MAPVBLK in the SYS module IOSUBRAMS to perform 
the actual mapping. 

IOC$MAPVBLK searches the WCB list associated with the request to find 
the mapping pointers that locate the desired VBN. It compares the desired 
VBN to the starting VBN in the WCB$L_STVBN field. If the desired VBN 
preceeds the starting VBN, the count of mapping pointers is obtained from 
the WCB$W_NMAP field. 

If the VBN is not contained in the window, total map failure occurs. In this 
case, a new UCB address (the current UCB address may have been modified by 
other code) is obtained from the WCB$L_ORGUCB field, which points to the the 
volume containing the file. The routine then returns. 

If the VBN is in this segment, however, the window is scanned, and the count 
field of each retrieval pointer is subtracted from the .current block number. 
When the retrieval pointer containing the starting VBN is found, the next pointer 
is also scanned to see if it is contiguous with the one just found in case the 
transfer request spans two pointers. The maximum number of contiguous retrieval 
pointers a transfer can span is two. 

If the total transfer has been mapped contiguously, the number of bytes mapped 
and the starting LBN is returned. In addition, the stack pointer is cleared, a 
status of SS$_NORMAL is returned, interrupts are again allowed, and the routine 
performs an RSB. 

If the transfer has not been completely mapped, the routine returns the number 
of unmapped bytes, the LBN of the first block mapped, status, and then performs 
an RSB. 

In either case, the IRP is queued to the driver's starting I/O routine. 
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However, if the map fails because the mapping information in the window is 
not sufficient, the TURN_ WINDOW routine is called to turn the window. This 
routine contains the code to update window control blocks. The routine handles 
cases where the file was truncated or extended, and where the WCBs describe 
VBNs prior to or beyond the desired area. It scans the map area of the supplied 
file header and builds retrieval pointers in the window until one of the following 
conditions is met: 

• . The first retrieval pointer in the window maps the desired VBN. 

• The entire header has been scanned. 

If no window exists, a new window is created. However, if a window1 already 
exists, one of several situations may occur: 

1. The window must be turned to map a different portion of the file. 

2. The header contains pointers which may be added to the existing window 
after the existing window is truncated from the beginning. 

3. The desired VBN is less than the specified starting VBN and the starting VBN 
is greater than 1. 

4. The window already maps a portion of the header and only the new pointers 
(which may include a partial map pointer if two contiguous extents were 
collapsed into one map pointer in the header) have to be mapped. 

Figure 6-18 illustrates the first situation, where a window must be turned to map, 
or point to, a totally different portion of the file because neither the starting VBN 
nor the desired VBN is contained in the current window. In other words, the 
window must be turned because of complete map failure. The end result is a 
window that contains totally new VBNs. 

A "scanning window" is contructed, containing the desired VBNs. When this 
scanning window is complete, all the old VBNs (VBNs 22-99) in the original 
window are discarded, and the new VBNs (VBNs 100-145) are copied to the 
window. 

1 Does not include cathedral windows. 
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Figure 6-18 Turning a Window Because of Complete Map Failure 
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Figure 6-19 illustrates the second situation, where the header contains pointers 
which may be added to the existing window after the existing window is truncated 
from the beginning (or the top). 

This situation usually occurs when a file is extended without causing a new file 
header to be created. The difference between this case and the previous one is 
that the starting VBN of the file header is contained within the current window, 
which prevents the window from being discarded totally. In this example, the 
starting VBN is VBN 18, and the desired VBN is VBN 26. The new window must 
include both VBNs. 
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Figure 6-19 Turning a Window to Map Additional Pointers 
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Figure 6-20 shows how the existing window is truncated from the top, or the 
beginning of the window. The pointer containing the starting VBN (VBN 18) was 
part of the old window, but it becomes the beginning of the new window. The 
new window also includes the desired VBN (VBN 26). 
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Figure 6-20 Truncating an Existing Window 
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Figure 6-21 illustrates the third situation, where the desired VBN is less than 
the specified starting VBN and the starting VBN is greater than 1. This situation 
occurs when a file is extended and a new file header (an extension header) is 
created. 

In this example, the current window is mapped by extents (VBNs 150-199) from 
the extension header, and extents mapped by the primary header (VBNs 22-99) 
are desired. In effect, as the primary file header is read, the window is turned 
''backwards.'' 
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Figure 6-21 Turning a Window to Map a Previous Header 
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Figure 6-22 illustrates the fourth situation, where the window already maps a 
portion of the header and only the new pointers (which may include a partial 
map pointer if two contiguous extents were collapsed into one map pointer in the 
header) have to be mapped. 

In this example, VBNs 1-100 are mapped by a single contiguous extent, and VBNs 
101-105 are mapped by a second single contiguous extent. If the file is extended 
contiguously, the new VBNS may also be mapped by the second extent. 
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Figure 6-22 Turning a Window to Map a Contiguous Extent 
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Figure 6-23 shows how the file system efficiently collapses, or combines, the 
contiguous extents into a single extent. The second pointer in the file header now 
reflects the addition of the new VBNs. 
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Figure 6-23 Collapsing the Contiguous Extents 
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After the new window has been initialized, the new window pointers are 
constructed in a buffer. They are copied into the WCB at IPL$_SYNCH to 
synchronize with other PDT routines trying to map virtual requests. 

After TURN_ WINDOW returns, MAP_ WINDOW again tries to obtain the 
mapping information. 

When control is returned to READ_ WRITEVB, the routine checks to see if the 
IRP$V _VIRTUAL bit is set and if this operation affects a reserved file (the index 
file or the bitmap file). For a cluster, all cached buffers are invalidated. The 
appropriate lock (allocation or serial) is obtained so that the sequence number in 
the value block is updated. On a single node, the buffers are purged from the 
cache outright. 

Once the block has been mapped, the IRP is requeued to the driver for which 
it was originally intended for 1/0. REQUEUE_REQ, in the module REQUEU, 
translates the LBN into the corresponding physical block number and converts 
the 1/0 function code into the appropriate physical function. The number of 
unmapped blocks is deducted from the byte count. 
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If the transfer was only partially mapped, the number of unmapped bytes is 
subtracted from the value in the IRP$L_BCNT field, and the byte count is rounded 
to the next block boundary. 

If the transfer was totally mapped, the UCB$L_MAXBCNT is checked for the 
largest transfer allowed. If this value is still under the limit in the IRP$L_BCNT 
field, then the IOC$CVTLOGPHY routine is called to convert to a logical block 
to a physical block. After this conversion, the EXE$INSIOQ routine is called to 
queue the IRP back to driver. 

If the IRP$V _VIRTUAL bit is not set, an 110 error has occurred in a file sent for 
bad block processing1 . The bad block bit in the FCB is set, and the bad block 
itself is entered in the bad block log. 

6.4.2.2 Dynamic Bad Block Processing 
A file is found to have bad or defective blocks when an attempt is made to read 
or write the file, and an error occurs. The file system sets the bad block bit in the 
file header. Dynamic bad block processing occurs when the file is deleted. 

Blocks declared as bad will likewise be handled by the 10$_READPBLK or 
10$_ WRITEPBLK functions to be sent to the XQP. Again, the DISPATCHER 
forwards these 1/0 function codes directly to READ_ WRITEVB. Bad block 
processing is invoked when the FCB is flagged as having bad blocks. If the virtual 
bit in the IRP$L_IOST1 field is not set, there is a parity, format, or datacheck error 
in the file. 

The MARKBAD_FCB routine in the RWVB module sets the bad block bit 
(the FCB$V_BADBLK) in the indicated FCB. Setting FCB$V_BADBLK causes 
the Deaccess function to set the FH2$V_BADBLOCK bit in the file header. 
Likewise, INIT_FCB2, which initializes the FCB according to the given file 
header, sets the FCB$V_BADBLK bit if the FH2$V_BADBLOCK bit is set. Setting 
FH2$V_BADBLOCK, in turn, causes the DELETE_FILE routine to send the file to 
the bad block scanner for deletion. 

Normally, when a file is deleted, the mapped blocks are returned to the storage 
bitmap. If the badblock flag in the header is set, the routine SEND_BADSCAN 
(in the SNDBAD module) sends a message through the special mailbox 
(ACP$BADBLOCK_MBX) created by INIT_FCP during SYSINIT, and it specifies 
the UCB and FID of the file to be deleted. If the message is sent successfully, a 
request is made for a process called BADBLOCK_SCAN. 

The bad block scanner contains all privileges, and its UIC is [1,3]. Its job is to 
scan the deleted file to locate the bad blocks. Blocks that do not have errors 
after this scan are returned to the storage bitmap, and those that do have errors 
are appended to BADBLK.SYS (by moving the map pointer from the deleted 

1 Reserved files are not subject to dynamic bad block processing. 
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file to BADBLK.SYS).1 To find the defective blocks, the bad block scanner runs 
BADBLOCK.EXE in the BADBLK facility. 

The main BADBLOCK processing routine, MAIN_BAD (in the BADBLK module 
GETREQ) reads each message from the bad block mailbox. For each, it resets the 
UCB address in a CCB it holds for that purpose to the UCB address of the file 
containing the suspected bad blocks. The routine SCAN (in the BADBLK module 
SCANFILE) searches through the file to determine which blocks are defective. 

The SCAN routine tests each block of the file, truncating the trailing blocks from 
the file. This function occurs in user mode, and retries are inhibited to prevent 
the disk driver from automatically performing offset recovery. If the block is 
found to be bad, SCAN uses the MARKBAD truncate option FIB$V_MARKBAD. 
This option causes the specified blocks (only the last cluster) to be sent to 
DEALLOCATE_BAD. This operation requires SYSPRV. 

DEALLOCATE_BAD, in secondary context, serializes on the BADBLOCK file. A 
map pointer is added to the last header to map the bad blocks. The end-of-file 
mark and highwater mark are reset to include these blocks. 

In secondary context, SCAN_BADLOG in the FllX module BADSCN is called 
to scan the pending bad block log and remove any existing BADLOG entries for 
these blocks. The bad block scanner will also check the BADLOG file for any 
references to the file when it is done. 

When all blocks are truncated from the file, the empty file is deleted and 
deaccessed. 

6.4.3 Switching Stacks 
The XQP has an independent operating stack in the impure area that it uses when 
processing an XQP request. Switching to this private stack ensures efficient and 
quick exit handling. It also allows synchronization of kernel mode resources. In 
the case of insufficient resources, the XQP has to wait, or stall, in the mode of 
the requestor. The normal kernel stack must be emptied before returning, but the 
XQP private stack allows the call frames on the stack to be saved. 

The DISPATCH routine saves the current kernel stack variables in the impure 
area. The current kernel stack base, contained in the cell CTL$AL_STACK, is 
written into the first longword of PREV_STKLIM in the XQP impure area. The 
current stack limit, contained in CTL$AL_STACKLIM, is written into the second 
longword of PREV_STKLIM. The current frame pointer is saved in PREV_FP in 
the impure area. 

1 Note that, logically, DSA disks contain no bad blocks. On a DSA disk, bad blocks are be revectored 
to the RCT when they are written or read. If an error occurs while a block is being read, it is 
flagged as a "forced error". Rewriting the block is necessary to clear the forced error flag. 
Because DSA disks relocate bad blocks when they are rewritten, the bad block scanner never finds 

the bad blocks again after it rewrites its test pattern. As a result, BADBLK.SYS is always empty on 
DSA disks. 
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DISPATCH then sets the first longword of XQP_STKLIM, the base of the private 
XQP kernel stack, to be CTL$AL_STACK. It also sets the second longward of 
XQP _STKLIM to be CTL$AL_STACKLIM. XQP _STKLIM also becomes the new 
stack pointer, which initially points to the base of the private XQP kernel stack. 

Below is a list of the pointer updates that occur when the XQP switches from the 
normal kernel stack to its own private stack. The values in the first column are set 
to be the values in the second column. 

Original Variable 

CTL$AL_STACK 
CTL$AL_STACKLIM 
FP 
XQP_STKLIM 
XQP _STKLIM (second longword) 

New Variable 

PREV _STKLIM (first longword) 
PREV_STKLIM (second longword) 
PREV_FP 
CTL$AL.;_STACK (also SP) 
CTL$AL_ STACKLIM 

Figure 6-24 shows how the XQP switches from the normal kernel stack to the its 
own internal stack. Note that the stack in this figure grows from bottom to top. 
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Figure 6-24 Switching from the Kernel Stack to the XQP Internal Stack 
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6.4.4 Stalling a Transaction 
Because the XQP is multithreaded, an XQP request may be processing, have to 
stall for a resource wait, and then return to the point of execution. The XQP stalls 
in the mode of the caller, not kernel mode. The XQP private stack is used to store 
the context, and ASTs are used to signal that execution may resume. 

The XQP is initially entered via AST delivery, so ASTs are blocked while the 
XQP code is executing (that is, XQP operations are performed at AST level). 
When the XQP has to stall in the caller's mode for either 1/0, a cache wait, or an 
enqueued lock request, the file system dismisses this kernel AST. A completion 
AST resumes the thread of execution. XQP activity is generally asynchronous with 
respect to normal process operation; however, the XQP is itself a serial function. 

Two routines in the DISPATCH module are used to accomplish stalls: 
WAIT_FOR_AST and CONTINUE_ THREAD. 
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If a QIO or ENQ request is queued for which the XQP must stall, the 
WAIT_FOR_AST routine is called to exit from the current AST so that the 
completion AST may be delivered. This routine performs the following actions: 

• The current frame pointer is saved in XQP _SA VFP in the impure area. 

• The XQP channel is made inaccessible by writing a -1 into the CCB$B_AMOD 
field. 

• The previous kernel stack limits and frame pointer are restored. 

• A RET instruction is performed to dismiss the AST. Because the frame pointer 
has been restored, the RET resumes where execution stalled on the original 
kernel stack. 

Performance Monitoring Services (PMS) metering is stopped for the duration of 
the stall. 

The following list shows the pointer updates that occur when the XQP switches 
from the XQP internal stack to the normal kernel stack. 

Original Variable 

FP 
PREV _ STKLIM (first longword) 
PREV_STKLIM (second longword) 
PREV,;,.FP 

New Variable 

XQP_SAVFP 
CTL$AL_ STACK 
CTL$AL_ STACKLIM 
FP 

Figure 6-25 illustrates the kernel stack and the XQP internal stack before and 
after a stall. The process-specific pointers point to the XQP internal stack before 
the stall and to the normal kernel stack after the stall. Note that the stack in this 
figure grows from bottom to top. 
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Figure 6-25 Stalling a Transaction 
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The QIO or ENQ request that was queued specifies the impure pointer (contained 
in RlO) as the AST parameter and the routine CONTINUE_ THREAD as the AST 
routine. CONTINUE_ THREAD resets the kernel stack limits to the XQP private 
stack and restores the saved frame pointer. It then returns to resume execution of 
the request at the instruction following the WAIT_FOR_AST call. 

When the AST is delivered to the CONTINUE_ THREAD routine, the following 
actions occur: 

• The impure pointer is restored from the AST paramet~r. 

• The stack limits are set to point back to the XQP stack. 

• The saved XQP frame pointer is restored. 

• The XQP channel is made accessible again by writing 1 into the CCB$B_AMOD 
field to indicated a normal kernel mode channel. 

• PMS monitoring (including CPU time and number of page faults) resumes. 

• A RET instruction is executed, which returns control to the caller of the 
WAIT_FOR_AST routine (that is, the stalled thread). 
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Figure 6-26 illustrates the kernel stack and the XQP private stack during and after 
a stall. The process-specific pointers point to the normal kernel stack before the 
stall and to the XQP internal stack after the stall. Note that the stack grows from 
bottom to top. 

Figure 6-26 Unstalling a Transaction 
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6.5 Error Processing, Status, and Cleanup 

One of the basic philosophies of the file system is that it either has to complete 
an operation successfully or to bugcheck. The routine CLEANUP in the module 
CLENUP performs the functions necessary to leave file system structures in a 
more consistent state after a successfully completed file operation. 

As a general rule, the file system modules do not clean up after themselves. 
An operation performed in secondary context must clean up before returning 
to primary context, but the primary context need not be cleaned up. In primary 
context, the dispatcher invokes a routine that cleans up before considering the 
request finished. · 

Errors can occur at various places while a request processed. Some routines 
return an error status that is handled by the calling routine. Other file system 
routines signal errors. When a fatal error is signalled, the dispatcher invokes the 
ERR_ CLEANUP routine, and the error is reported in USER_STATUS. 
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If ERR_ CLEANUP does not initially succeed in leaving file system structures in a 
consistent state, it is called again. If it succeeds, however, CLEANUP is called. 
If CLEANUP fails, ERR_ CLEANUP is invoked again. This procedure is repeated 
for a very large, but not infinite, number of times before the file system gives up. 
ERR_ CLEANUP is also resonsible for cleaning up secondary context. 

6.5.1 XQP Normal Cleanup 
After the XQP has finished successfully processing a request, it must restore the 
file system structures to their proper state. Normal XQP cleanup involves the 
following steps: 

• Context is changed back to primary if secondary context is current because 
secondary context is resonsible for performing its own normal cleanup. 
ERR_ CLEANUP resolves secondary context before secondary context is left. 

• If the quota file is open for write access, the quota cache is flushed. The 
VCA$V _ CACHEFLUSH bit is set in the quota cache header when an attempt 
to acquire the quota cache lock fails because the the quota file is write-locked. 
If the volume has been mounted with the /NOCACHE qualifier, or if it is 
currently marked for dismount, the buffer caches are flushed. 

All modified buffers are also written to disk, storage map buffers first, in case 
the storage map is updated before the file headers. No more modified buffers 
may be created until this request has been completed. 

• All windows are invalidated, if requested. 

• The directory FCB is deallocated. The FCB is saved if a directory index block 
is associated with it. If the directory is open for write access, though, directory 
buffers are discarded, and the directory index block is invalidated. 

• The primary FCB is marked stale cluster-wide, if requested. The FCBs 
are purged unless they are currently accessed or directory index block are 
associated with them. 

6.5.2 XQP Error Handling 
When a routine detects an error, it can take one of three actions: 

• It can return the error as a return status. 

• It can store the error status in the user return status cell (USER_ STATUS) by 
calling the ERR_STATUS macro. USER_STATUS is a two-longword vector 
that is returned to the user in the IRP$L_MEDIA field. These two longwords 
form the IOSB returned to the user. ERR_STATUS only stores the status 
value if the existing value is either success or informational. This action 
is taken for errors that are not fatal but that the user should see. Because 
invoking ERR_STATUS writes USER_STATUS directly, calling routines 
cannot intercept the error. 
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• It can invoke the ERR_EXIT macro. This macro signals the condition value by 
performing a CHMU instruction of the argument, which declares an exception 
to VMS. If a condition handler is present, it will deal with the condition. 
Otherwise, the macro performs a return instruction with the value left in RO. 

The error is reported in USER_STATUS. The DISPATCHER condition 
handler MAIN_HANDLER copies the argument into USER_STATUS (unless 
USER_STATUS already indicates an error}, places USER_STATUS fato the 
value that will be restored into RO, and unwinds to the routine that established 
the handler. The mainline call to an XQP processing routine returns with the 
status value passed to ERR_EXIT, and the processing routine is aborted. No 
XQP routines handle the unwind condition. 

6.5.3 Event Notification 
The file system provides two sets of messages. A privileged user may request 
notification of interesting file system events. The system itself requests 
notification of security-related events. These two sets of events are reported 
in the following way: 

• The SET WATCH command allows a suitably privileged user to request 
notification of significant events in the file system. The list of significant 
events is stored as bits in the array PIO$GW_DFPROT, which is indexed 
by the XQP event index. Various routines in the file system check their 
corresponding bit and invoke the NOTIFY_ USER routine to send the user a 
message. 

• When all file system activity has been completed for a request, the 
PERFORM_AUDIT routine is called, if necessary. During the course of 
the request, audit blocks were placed by CHECK_PROTECT in the impure 
cell AUDIT_ARGLIST. These requests are passed to NSA$EVENT_AUDIT 
one at a time. 

For each audit entry, the specified file ID from the supplied header must 
be translated to a full file specification. As a result, performing an audit is 
deferred until the request has been processed because the FID _TO_ SPEC 
routine seriously affects other file system operations; it releases the primary 
serialization lock. The one exception is that a WRITE_AUDIT call appears in 
the MARK_DELETE routine because the file will no exist to be audited after 
MARK_DELETE operates. 
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6.6 Termination of Processing 

After all pending requests have been processed and the necessary cleanup has 
been performed, DISPATCHER calls the UNLOCK_XQP routine to release the 
XQP synchronization locks. The serialization lock is released, the value block is 
updated, the current volume allocation lock (if any) is released, the in-process 
buffer credits are returned to the buffer pool, PMS monitoring is halted, and the 
cache interlock is released. DISPATCHER then calls the routine IO_ DONE. 

IO_DONE posts 110 completion for the file system request. It performs the 
following actions: 

• Moves USER_STATUS into IRP$L_MEDIA (which is actually a quadword). 

• Decrements the transaction count for the VCB. 

• Clears the name string descriptor length in the complex buffer packet to 
prevent the name from being written back for efficiency. 

• Copies the local FIB back into the complex buffer packet. If attributes have 
been changed (for instance, a Rename operation was performed), the most 
recent copy of the FIB needs to be preserved. 

• Sets IRP$L_BCNT to ABD$C_ATTRIB for non-read functions so that the 
attributes don't get written back to the user's buffer. However, if the READ 
bit (IRP$V_FUNC in the IRP$W_STS field) is set, the attribute text is kept. 

• Calls the CHECK_DISMOUNT routine. 

The CHECK_ DISMOUNT routine, in the CHKDMO module, performs deferred 
dismount processing. The UCB linked list for the volume or volume set is 
traversed, and any volume is dismounted whose DEV$V_DMT bit is set (which 
indicates that the volume is marked for dismount) and whose transaction count is 
1 (which indicates that the volume is idle, except for the current process.) 

During a volume dismount, the following steps are taken: 

• The UCB$V_DISMOUNT bit is set while the I/O database is locked to prevent 
other processes from starting 1/0 on the volume. 

• An IO$_ UNLOAD/IO$_AVAILABLE function is issued. 

• If the volume is mounted cluster-wide, the value block for the volume lock is 
obtained in PW mode. 

• The high bit of the UCB$W_DIRSEQ field is cleared to warn RMS of the 
volume dismount (for more information, refer to the Section on the RMS 
directory cache). 

• The UCB$W_REFC field is decremented. 

• The AQB$W_MNTCNT field is decremented and if it is zero, it is removed 
from the AQB list. 
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• All FCBs, ACBs, and WCBs are deallocated, and the access locks are 
dequeued by forcing FCB$W_REFCNT to 0. 

• The FID and extent cache locks are dequeued, and the caches are deallocated. 

• The quota cache lock is dequeued, and the quota cache is deallocated. 

• The volume lock (VCB$L_ VOLLKID) is dequeued. 

• The shadow lock is dequeued. 

• For volume sets, the RVT list entry is cleared, and the RVT$W_REFC field 
is decremented. If it is zero, the structure lock and the blocking lock are 
dequeued. BLOCK_ CHECK is cleared so DISPATCHER will not release the 
block lock, and the RVT is deallocated. 

• For single volumes, the blocking lock is dequeued. 

• The VCB is deallocated. 

• Demote the volume lock, if any, either to CR mode if the volume is not 
allocated or to EX if it is. The value block is cleared if this is the final 
dismount. 

• The routine IOC$DALLOC_DMT in the SYS module IOSUBPAGD is called 
to deallocate the volume. 

• The buffer cache and the AQB are deallocated. 

CHECK_DISMOUNT then returns to IO_DONE to finish posting I/O completion 
for the request. 

The I/O postprocessing routines (in the SYS module IOCIOPOST) are chiefly 
responsible for accumulating the total number of bytes transferred in the I/O 
request and for starting further I/O processing if the request has not been 
completed. When the IRP$V_ VIRTUAL bit in the IRP$W_STS field is set, the 
XQP adds the number of bytes transferred (contained in IRP$L_BCNT) to the 
number of bytes accumulated so far (contained in IRP$L_ABCNT). The value in 
IRP$L_ABCNT is then compared to the value in IRP$L_OBCNT, which gives the 
original byte count. When the two values are equal, the request is complete. 

Different routines in IOCIOPOST are called depending on whether the request 
need to be completed in process or system context. Virtual I/O requests are 
completed in process context, and so the IOC$BUFPOST routine is called. 

Device I/O requests are completed in system context, and so the routine IOPOST 
is called. 
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6.6.1 Virtual 1/0 

Because the XQP performs virtual file system functions within process context, 
issuing an IOPOST software interrupt and a special kernel AST to post 110 
completion is unnecessary. As a result, IO_DONE optimizes the code by calling 
(via JSB) the special entry point IOC$BUFPOST in IOCIOPOST. 

IOC$"6UFPOST executes the same code executed by the IOPOST software 
interrupt; PCB quotas are reset, and the equivalent of the special kernel mode 
AST completion routine is set up, which specifies one of the two following 
routines: 

• BUFPOST for XQP functions (except window turns) requiring a complex buffer 
and buffer 1/0. 

• DIRPOST for direct 1/0. 

If, however, the IRP$L_PID field is negative, which indicates a system address, 
special 1/0 postprocessing must be performed, and an I/O post interrupt must be 
signalled. 

After returning, IO_DONE posts an event flag, and then another JSB instruction 
executes the special kernel AST code to complete posting of the I/O completion. 
If the specified completion routine was BUFPOST, the !RP-described buffers 
(such as the FIB) are copied back to the user buffers, the accumulated buffered 
I/O count in PHD$L_BIOCNT is incremented, the complex buffer is deallocated, 
and DIRPOST is called. 

DIRPOST performs the following general I/O completion activities: 

• Updates process header quotas (PHD$L_DIOCNT is incremented). 

• Decrements the channel activity count in CCB$W _IOC, showing that there is 
no more 1/0 in progress. 

• Sends a deaccess request to the XQP if the activity count is zero and 
CCB$L_DIRP indicates a pending deaccess operation (CCB$L_DIRP contains 
a non-zero value). 

• Writes the user IOSB. 

• Sets the event flag specified in the $QIO call by calling SCH$POSTEF. 

• Queues the user AST by using the IRP as an ACB. 

• Deallocates the I/O packet or the IRPE. 

Finally, the DISPATCHER routine calls FINISH_REQUEST. This routine sets 
IPL to IPL$_SYNCH and lowers the volume activity count by decrementing the 
value in the VCB$L_ACTIVITY field by 2. For a volume set, the activity count is 
decremented in the RVT$L_ACTIVITY field of each volume. FINISH_REQUEST 
then resets IPL to 0 and returns to the DISPATCH routine-the routine to which 
the original AST was delivered. 
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DISPATCH restores the original kernel stack limits and frame pointer, decrements 
the PCB$B_DPC field to allow process deletion and suspension again, makes the 
XQP channel inaccesible, and returns. 

Figure 6-27 illustrates the kernel stack and the XQP private stack after the request 
has been completed. The process-specific pointers are reset from the XQP 
internal stack to the normal kernel stack. Note that the stack grows from bottom 
to top. 

Figure 6-27 XQP Transaction Completion 
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6.6.2 Device 1/0 
Because the XQP executes within process context, it does not have to issue an 
IOPOST software interrupt and a special kernel AST to post I/O completion. 
However, when a device driver or FDT routine posts I/O completion, it calls a 
routine (IOC$REQCOM) that inserts the IRP at the tail of the I/O postprocessing 
queue (located by the global cell IOC$GL_PSBL) and requests a software interrupt 
at IPL$_IOPOST (IPL 4). 

The routine IOPOST in the SYS module IOCIOPOST executes as a result of the 
I/O posting interrupt. All driver I/O is completed there. It removes I/O packets 
from the postprocessing queue (located by the global cell IOC$GL_PSFL) and 
processes them until completion. IOPOST also performs the following actions: 

• Unlocks any system memory used for the I/O request. 
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· • Increases process quota usage by incrementing the PCB$W_BIOCNT or 
PCB$W_DIOCNT fields. 

• Unlocks the userts pages if the request was a direct IIO (indicated by the bits 
in the IRP$W_STS field). 

• Deallocates the buffer if the request was a buffered write. 

• Transfers the information from the buffer to the user's part of the addresss 
space if the 1/0 was a buffered read. 

• Posts the IIO status to the user's IIO status block. 

However; because a driver or FDT routine does not execute in process context, 
a special kernel AST is queued to the process that initiated the 1/0 request. The 
IIO packet is turned into an AST control block and placed into the AST queue 
for the process that reqeusted the IIO. The kernel AST routine address is set up 
to be a part of the IOPOST code. The IOPOST interrupt service routine then 
loops back to remove another 1/0 packet from the beginning of the post queue 
(located through global pointer IOC$GL_PSFL). When the queue is empty, the 
IPL 4 software interrupt is dismissed. 


