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Preface

VMS File System Internals provides information about the internal components
of the VMS Version 5.2 file system, which is that part of the VAX/VMS operating
system responsible for storing and managing information and files in memory and
on secondary storage. ’

Intended Audience

This book is intended primarily for software specialists, system programmers,
and other users who wish to understand the underlying components of the VMS
file system.

System managers may benefit from understanding the details of file system data

structures and caches when they configure the system. Application designers may
likewise benefit from understanding the file system structures and logic that may
affect various design decisions.

The audience is assumed to be familiar with the VAX architecture, the VMS
operating system as a whole, I/O devices, and device drivers.

Document Structure

This book contains the following eight chapters:

* Chapter 1 introduces the VMS file system. It provides insight into how
the file system has evolved, and gives an overview to the file system user
interface.

* Chapter 2 discusses the Files-11 On-Disk Structure, including the basic
structures of the VMS file system and general file system concepts.

¢ Chapter 3 covers volume structure processing. Major topics include the
Initialize, Mount, and Dismount Utilities, and the structures of the I/O
database.
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¢ Chapter 4 explains the fundamentals of cache processing on a single node.
This discussion includes cache structures, special caches, and basic caching
algorithms.

¢ Chapter 5 discusses major and miscellaneous ACP functions, including access,
create, delete, modify, deaccess, and ACP control. It also gives an overview to
the Queue I/O (QIO) interface.

¢ Chapter 6 provides a detailed discussion of the XQP and I/O processing,
including an in-depth explanation of the the QIO interface. Topics also
include XQP dispatching, XQP code execution, and I/O postprocessing.

¢ Chapter 7 describes the various serialization techniques used to synchronize
file system activity, including the distributed lock manager, raised IPL, and
the file system structures themselves.

® Chapter 8 discusses the file system in a VAXcluster environment. It covers
the coordination of clusterwide file system structures and resources, and how
file system requests are passed to all nodes of a VAXcluster.
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Conventions

The following conventions are used in this manual:

<>
boldface text

UPPERCASE TEXT

numbers

data structures

system parameter

Executive

In examples, a horizontal ellipsis indicates one of the
following possibilities:

e Additional optional arguments in a statement have
been omitted. ‘

e The preceding item or items can be repeated one or
more times.

e Additional parameters, values, or other information
can be entered.

A vertical ellipsis indicates the omission of items from a
code example or command format; the items are omitted
because they are not important to the topic being discussed.
In format descriptions, angle brackets indicate that the
user must supply the information.

Boldface text represents the introduction of a new term or
the name of an argument, an attribute, or a reason.

Uppercase letters indicate that you must enter a command
(for example, enter OPEN/READ), or they indicate the
name of a routine, the name of a file, the name of a file
protection code, or the abbreviation for a system privilege.
Hyphens in coding examples indicate that additional
arguments to the request are provided on the line that

follows.

Unless otherwise noted, all numbers in the text are
assumed to be decimal. Nondecimal radixes—binary, octal,
or hexadecimal—are explicitly indicated.

All data structures are assumed to run right to left. That
is, the lowest addressed byte (or bit) in a longword is on the
right-hand side of a figure, and the most significant byte (or
bit) is on the left-hand side.

This term is used to describe any of the adjustable
parameters (also called SYSGEN parameters) that are
used to configure the system.

This term refers to those parts of the operating system that
reside in system virtual address space.



Chapter 1
Introduction to the VMS File System

Begin at the beginning . .. and go on till you come to the end: then stop.
Lewis Carroll -

If you want to fix something, you are first obliged to understand, in detail, the
whole system.
Lewis Thomas
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1.1 Introduction

The file system of the VAX/VMS operating system has an interesting history and
has evolved to occupy an interesting and unique place in the computing industry.
This book is intended to deliver a detailed description of the VMS file system for
Version 5.0 of VAX/VMS. Particular attention is given to the methodology and
tactics employed in the file system to achieve the synchronization, efficiency, and
flexibility it does.

1.2 Tasks of a File System

File systems in general are exceptional pieces of code within operating systems.
They are relied upon to deliver data with absolute integrity and virtual immunity
to security problems and media defects. Furthermore, file systems are expected to
do this with minimal impact on system performance. For example, the XQP runs
as a kernel-mode asynchronous system trap (AST) delivered to the requesting
(and owning) process. As a result, the processing performed by the XQP is
absolute overhead, and is measured as such in all forms of monitoring.

A timesharing file system is, by its very nature, unique in the computer science
realm. Its implementation should provide the following:

® The imposition of a hierarchical name space on an otherwise flat logical space
* An immutable name space

¢ Multiplexed usage of block space

* TImplicit synchronization

* A bridge between the unprivileged user and the privileged operating system

¢ File management on secondary storage

* Private and secure storage

* The sharing of files in a controlled fashion

¢ A fault-free environment for the upper layers and to the operating system

A failure (such as a security violation or the detection and repair of a bad
block) is either hidden from upper levels (in the case of bad block handling),
or it is returned to the user as an error (in the case of the security violation).
However, the latter case actually represents a success because the file system
successfully detected an attempted security violation and prevented it.

Most importantly, the file system is expected to perform all these tasks without
making a significant impact on the environment or the users whom it serves.
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1.2.1 Evolution of the VMS File System

The VAX/VMS operating system evolved from the RSX-11M operating system

in the 1970s. On the RSX series of operating systems, the Files-11 On-Disk
Structure Level 1 (ODS-1) file system functions were implemented as a
separate process called an ancilliary control process (ACP). Thus, each request
that involved the file system ACP likewise involved a process context switch to
the ACP, as well as a context switch back to the requesting process.

Early versions of VAX/VMS also used a file system ACP to handle file I/O
functions. Although VAX/VMS provided a more secure domain than that provided
by RSX and, in Version 1.0, tightly bound volume sets under the heading of ODS-
2, these early implementations of the VMS file system still required the context
to be switched and data to be transferred between processes in order to perform
file system operations.

In addition to the overhead incurred by a separate process context, the ACP
design also suffered from being a systemwide bottleneck because all process
requests were funneled through a single ACP for any given disk. Despite

the apparent shortcomings of these early versions of the VMS file system
implementation, synchronization was implicit within the ACP. Updates and
privileged references to the file system in-memory data structures were
synchronized by processor interrupt priority level (IPL), but only one VMS
process had control of any given disk. In other words, all file-system-related
requests were channeled through an entity of atomic or implicit synchronization.

1.2.2 Creation of the XQP

In VAX/VMS Version 4.0, Digital introduced the VAXcluster system. In order
to maintain rational and useful file sharing within the cluster, the file system
had to adopt a different synchronization technique because processes could no
longer depend on the implicit synchronization offered by the scheduling entity
(the ACP). So it became necessary to develop a means by which many “ACPs”
could synchronize across the boundaries within the VAXcluster.

As an answer to the problems posed by the now-outdated ACP, the extended
QIO processor (XQP) was designed. It was intended to perform the following
tasks:

¢ Eliminate the ACP bottleneck
¢ Provide synchronization between processes within a VAXcluster

* Ensure that copies of data structures across the VAXcluster were properly
maintained (generally by an invalidation-and-update technique)
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On the basis of these requirements, the XQP was developed as a “per-process
ACP.” In this way, each process mapped the code of the XQP from a global P1-only
image section and maintained per-process, private, in-memory data structures
relevant to the file system operations of that process. Thus, the file-system
activity of any one process had no impact on that of any other process on the
system, except where file (read and write) sharing was concerned.

The synchronization between processes became solely dependent on the
distributed lock manager, which allowed process-based XQPs to express interest
at a file granularity level as opposed to the volume granularity of the ACP
system. In-memory data structures were still protected by the IPL scheme offered
by VMS (and later by the spin lock mechanism implemented for symmetric
multiprocessing).

So where the ACP was a separate process, the XQP was merged into the process

(so that only the impure area was charged to the working set). The ACP handled
requests for all users; the XQP handled requests for the single user of its process.
The ACP was usually single threaded and lacked cluster synchronization, but the
XQP effectively provided multiple copies and cluster synchronization.

1.2.3 VMS File System in a VAXcluster

The VAX/VMS file system is further distinguished in its involvement in
the Digital VAXcluster technology. Users of VAXclusters have long enjoyed
transparent synchronization and transparent file-sharing by the cluster-
integrated VMS file system.

In fact, the development of the VMS operating system itself is now fully
dependent on its own VAXcluster technology and the accompanying file system.
In 1977, compiling a new VAX/VMS operating system from its source files
consumed the resources of an entire VAX-11/780 for 12 hours. In 1979, building
the VMS operating system consumed the resources of an entire VAX-11/782, with
nearly twice the horsepower, for the same amount of time.

Today, a complete build of the VAX/VMS operating system consumes the resources
of an entire VAXcluster consisting of two VAX 8800-class machines, three VAX
6000-class machines, and miscellaneous VUPs for still the same amount of time.
If it were not for VAXcluster technology, building VMS would probably be a very
lengthy process. Further, if all file activities went through a single-threaded ACP,
more time would be spent waiting for the ACP than for the operation to complete.
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1.2.3.1 VAX/VMS Environment and the File System

The VMS file system stands out in many ways. Unlike many operating system
file systems, the VMS file system was designed as an integral component of the
operating system. In the architectural phase of VAX/VMS hardware and software
development, a successful file system was considered essential to the success of
the hardware-software architectural teams.

For example, data reliability features in the VAX architecture, such as the
CRC (Cyclic Redundancy Check) instruction, were used to advantage in the
VMS file system and related utilities. In addition, the memory-management
unit (the page) is the same size as the file system block. I/O postprocessing
performed by the operating system in response to I/0O completion consists of
explicit considerations of file system I/O.

In addition, the page fault handler of VMS deals directly with files and file blocks
(or pages). In fact, the VMS page-fault mechanism provides the means by which
image pages are read from disk images (files) into memory for execution.

Many parts of the VMS operating system have knowledge of the VMS file system.
The swapper, although it does not have PO or P1 space (and therefore is the only
VMS process that cannot map the XQP code) is involved in file-related I/O and in
file system synchronization.

The XQP has significantly influenced the VMS operating system. Without the
XQP, system-owned locks would not be necessary in the distributed lock manager.
The major premise of the distributed lock manager is that any lock has an owner
process. In the case of the file system, however, it is necessary for some locks to
outlive the process that created them (for example, a disk that has been mounted
clusterwide).

1.3 User Interface to the File System

Perhaps the most distinguishing feature of the VMS file system is that it makes
every attempt to detach itself from all the I/O operations it can. This is a benefit
inherited from the ACP design of the RSX and VMS file systems from which it
evolved. The VMS file system is involved only with I/O that requires access to
the file system metadata. Once the file system has been called to make an access
path to a file, it represents its presence, as far as it can reasonably do, by leaving
nonpaged data structures (window control block, file control blocks) that provide
a mapping from virtual (file-based) blocks to logical (disk-based) blocks.

In this way, the file system only needs to be involved in the initial open operation
(and associated synchronization) and in window turning (updating the virtual-to-
logical map) to provide the user with direct access to the blocks of the file through
the window control block. In this sense, the VMS file system is integrated
completely into the QIO subsystem of the operating system.
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In fact, all I/O to a file can be expressed in terms of virtual QIOs, which allows

a record management subsystem (like RMS or Rdb) to impose its own structure

within files without the involvement of the file system. Despite the level of

integration between the operating system and its file system, the XQP presents

gn i)cll)ject-oriented and hierarchical layer upon which upper-level facilities can
uild.

In addition to these constraints and design decisions presented by the VMS file
system, I/O passed to the XQP can be made completely asynchronous to the upper
layers, and in a transparent manner to the application designer or programmer.

1.3.1 VMS /O System

The VAX/VMS /O system is composed of several layers. The top layer is the VAX
Record Management Services (RMS), which provides controlled access to files and
records. All VAX high level languages invoke VAX RMS to perform I/0. VAX RMS
is also the recommended I/O mechanism for the assembly language programmer.

The middle layer is the Queue I/O ($QI0) system service, which interfaces with
the XQP to perform device-dependent I/0O. A programmer would use the $QIO
system service when accessing devices not supported by RMS; when performing
I/0 operations not supported by RMS; or when performing I/O operations not
supported by the language’s interface to RMS.

The bottom layer is the device driver itself. The $QIO service acts as the
interface to the device driver, which is rarely accessed directly by the application
programmer.

A user program can interface with the I/O system at different levels, depending
on its requirements. At each level, the user program makes tradeoffs between
ease of use and execution speed. As a general rule, the lower the level at which
the user program interfaces with the VAX/VMS executive, the less overhead is
-involved in the I/O operation. On the other hand, less opportunity is provided for
data caching.

In most instances, a programmer uses VAX RMS either directly or implicitly to
perform input and output operations to file-structured devices. Access to real-
time devices is usually done by directly invoking the $QIO system service to the
driver level.

Any functions that can be performed on a device can also be enqueued with an
appropriate $QIO.

Figure 1-1 shows the relationship between the components of the I/O system.
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Figure 1-1: The Components of the 1/0 System
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1.3.2 Queue I/O Request Service

The Queue I/O request service ($QIO) queues an I/O request to a channel
associated with a device. The $QIO service completes asynchronously; that is, it
returns to the caller immediately after queuing the I/O request, without waiting
for the 1/0 operation to complete.

$QIO operates only on assigned I/O channels and only from access modes that are
equal to or more privileged than the access mode from which the original channel
assignment was made.

$QIO0 consumes the process quota for the following resources:
¢ Buffered I/O limit (BIOLM) or direct I/O limit (DIOLM)

¢ Buffered I/O byte count (BYTLM)

e AST limit (ASTLM), if an AST service routine is specified

System dynamic memory is also required to hold a database to queue the I/O
request, and additional memory may be required on a device-dependent basis.
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2.1 Introduction

A major component of the VMS operating system is the file system. The file
system, also called the file control processor (FCP), maintains the structure

and integrity of data stored on file-structured devices such as disks.!
The file system is responsible for the following tasks:

® Maintaining the directory files on the volume

* Opening, closing, creating, deleting, extending, and truncating files
¢ Managing free space on the volume

* Ensuring the integrity of files

* Mapping logical blocks to virtual blocks

¢ Translating RMS data requests for device drivers

The standard file structure for all medium-to-large PDP-11 and VAX systems is
Files-11. This book, and this chapter in particular, describes the Files-11 On-
Disk Structure Level 2 (ODS-2) used by VAX/VMS systems. The following
sections provide a conceptual overview of the basic components of the file
system—volumes, files, and directories.

2.2 Basic Concept of a Volume

A volume is the basic medium with a Files—11 structure. It is an ordered set

of logical blocks. A logical block is an array of 512 8-bit bytes. If the volume
contains n logical blocks, the logical blocks are consecutively numbered from 0 to
n — 1. The number assigned to a logical block is called its logical block number
or LBN.

In practice, a volume should be at least 100 blocks to be useful, and Files—11 can
describe volumes up to 232 blocks.

The logical blocks of a Files—11 volume must be randomly addressable. The
volume must also allow transfers of any length up to 65,536 bytes in multiples of
four bytes. If the data is longer than 512 bytes, consecutively numbered logical
blocks are transferred until no more data remains to be transferred.

In other words, the volume can be viewed as a partitioned array of bytes. It
must allow read and write operations on arrays of any length up to 65,536 bytes,
provided that the array starts on a logical block boundary and that its length is
a multiple of four bytes. When only part of a block is written, the contents of the
remainder of that logical block are undefined.

1 Block addressable storage devices such as disks and TU58 magnetic tapes are the assumed media,
and they are generically referred to as disks.
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The logical blocks of a volume are grouped into clusters. The cluster is the basic
unit of space allocation on the volume. Each cluster contains one or more logical
blocks, and the number of blocks in a cluster is called the volume cluster factor
or the storage bitmap cluster factor.

2.2.1 Volume ldentification

The file system identifies a volume as a Files—11 volume by its home block. The
home block is located at a defined physical location on the volume—usually LBN
1. The file system verifies the home block by its checksums and predictable
values. The home block also contains a volume label, which is an ASCII
character string, to identify the volume.

The home block also serves another important function. It contains a pointer to
the index file INDEXF.SYS, which is the file that contains the information the file
system needs to access the rest of the files on the volume.

For more information on the home block, refer to Section 2.5.1.2.

2.2.2 Volume Integrity

One of the basic concepts of the file system is that it be robust, or tolerant of
system failure, particularly across a VAXcluster. The file system must be able to
tolerate the random failure of a node in the VAXcluster without destroying file
data or access to files from other nodes in the cluster. In other words, a critical
requirement of a robust file system is the integrity of a volume. It is imperative
that the data on a volume be correct and valid at any given time.

The essential way in which the integrity of a volume is ensured is the redundancy
of key structures on the volume. For example, multiple copies of the home block
along the home block search sequence allow access to the volume even if the
primary home block is corrupted. For more information on the home block, see
Section 2.5.1.2.

Another structure that is recorded multiple times on the volume is the index file
header. The backup index file header allows data on the volume to be recovered
even if the primary index file header is corrupted.

A second method that ensures volume integrity is the order in which specific
structures are updated so that a system failure in the middle of an operation does
not compromise the entire volume. For example, to extend a file, the file system
must allocate free storage from the disk. The desired number of blocks is first
reserved in the storage bitmap. Only then does the file system write out to disk
the file header of the file being extended, which associates those blocks with that
particular file.
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If the header were written out to disk before the blocks were reserved in the
storage bitmap, two files could potentially map the same blocks, resulting in
multiply allocated blocks and file corruption. So any structure that involves
multiple disk blocks must be sensitive to the order in which they are written.

Yet another way that volume integrity is ensured is the distinction between
directory structure and file structure. This difference allows files to be recovered
from a directory that has been deleted or corrupted.

2.2.3 Volume Sets

A collection of related disks that is treated as one logical device is called a
volume set. Although each volume contains its own Files—11 structure, there
is only one directory structure on the volume set. Files on the volumes of the set
are referenced with a relative volume number, which uniquely determines the
disk in the set on which the file is located.

2.2.3.1 Tightly Coupled Volume Sets

A volume set that is consistent and self-identifying is called a a tightly coupled
volume set. The volume label of each volume in the set is unique within the
set and is different from the structure name, which is a string of up to twelve
ASCII characters which identifies the volume set. Relative volume 1 (the root
volume) of the set contains a file (VOLSET.SYS) that lists the volume labels of
all the volumes in the set and thus associates volume labels with relative volume
numbers. Each volume is identified as part of the set by its structure name,
volume label, and relative volume number. ‘

For more information on VOLSET.SYS, refer to Section 2.5.6.

2.2.3.2 Loosely Coupled Volume Sets

A loosely coupled volume set is a collection of volumes that is not self-
identifying. It does not contain a file that lists the volume labels. Moreover,
only one file per volume may cross from one volume in the set to the next, and
files that cross volumes may only be processed sequentially.

Loosely coupled volume sets emulate multivolume magnetic tape, which allows a
file to be sequentially read or written with only one volume mounted at a time.

Correct sequencing of the volumes that hold a particular file is the responsibility
of both the system operator and the application using the volume set, although
there are checks and corrections that can catch most handling errors.

The Backup Utility (BACKUP) produces a loosely coupled volume set when, for
instance, a large disk such as an RA81 is backed up onto multiple RA60s.
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2.3 Basic Concept of a File

A file is an organized collection of data. Files contain any data on a volume
or volume set that is of interest (that is, all the blocks that are not currently
available for allocation).

To be independent of disk drivers, the file system imposes a logical structure on
the data on each disk. Essentially, the FCP treats a disk as a logically contiguous
series of data units called logical blocks. A logical block contains 512 8-bit bytes
and is numbered from 0 to n — 1, where n is the number of blocks on the disk.

2.3.1 Logical to Virtual Mapping

A file is an ordered set of virtual blocks, where a virtual block, like a logical
block, is an array of 512 8-bit bytes. The file system regards a file as being
virtually contiguous.

Unlike logical blocks, however, the virtual blocks of a file are consecutively
numbered from 1 to n, where n is the highest numbered block that has been
allocated to the file. A logical block and a virtual block describe the same physical
unit of storage on the disk; the only difference between them is the way they are
numbered.

Logical blocks have logical block numbers (LBNs), and virtual blocks have virtual
block numbers (VBNs). Virtual blocks have LBNs, but logical blocks do not have
VBN, unless they are allocated to a file.

Virtually contiguous does not necessarily mean logically contiguous. There is
more than one file on a disk. As these files consume space on the disk, there
are fewer available contiguous logical blocks. Eventually, the file system creates
or extends a file so that portions of it reside on different parts of the disk. The
blocks retain their serial VBNs, but they are no longer logically contiguous.

Files-11, which is device-independent, is responsible for associating, or mapping,
virtual blocks to unique logical blocks in a volume set. For example, if a user
requests access to a block within a file, the file system calculates the logical block
on the volume that corresponds to the VBN. It takes into account the fact that
the virtual blocks may or may not be logically contiguous.

After calculating the LBN, the file system requests that block from the disk driver
for the device containing the file. The driver then translates that request into the
cylinder/track/sector, or physical block, that the device hardware must read or
write.

Files can be either dense or sparse. A file in which all the VBNs less than or

equal to the highest allocated VBN have been mapped to a corresponding LBN in
the volume set is a dense file.
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On the other hand, files that are sparse contain virtual blocks that have not been
allocated logical blocks. Unallocated virtual blocks are represented by mapping
data that contains an LBN of all 1s. Sparsely allocated files are not currently
supported.

2.3.2 File Identification

Every file in a volume set is uniquely described by a number called a file
identifier, a file ID, or simply a FID. A file ID is a 48-bit binary value that

is supplied by the file system when the file is created. Users must supply it when
they want to access a particular file. The file identifier points to the location of
the file header, which contains a listing of the extent or extents that locate the
actual data on the disk.

The file ID is divided into four fields:
¢ File number

¢ File sequence number

¢ Relative volume number

¢ File number extension

These fields are shown in Figure 2-1 and are described in Table 2-1.

Figure 2-1: Format of the File Identifier

FID$W_SEQ FID$W_NUM 0

FID$B_NMX FID$B_RVN
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Table 2-1: Contents of the File Identifier

Field Name Description

FID$W_NUM File number. This field contains the low 16 bits of the file number. With
the FID$B_NMX field, it forms a 24-bit file number that locates the file
within a particular volume of the volume set.

The set of file numbers on a volume is not totally dense. The file
number uniquely identifies one file on that volume at any one time.
File numbers for a volume start with the number 1; 0 is not valid. File
numbers with zeros in the low 16 bits (multiples of 65,536) are not used.

FID$W_SEQ File sequence number. It represents the current use of a particular
file number on a volume. When a file is deleted, its file number can
be used again. Each time a file number is reused, a different file
sequence number is assigned to distinguish the uses of that particular
file number.

The file sequence number is essential. It prevents a user from
accidentally using the file ID of an already deleted file to access a
file that was later given the same file number.

File sequence numbers are assigned by maintaining the current
sequence number in each file header and incrementing it each time
the header is reused. If the previous value of the header’s sequence
number cannot be obtained, the file sequence number is generated
randomly.

FID$B_RVN Relative volume number. It indicates the volume of a volume set on
which a file is located. If this volume is not part of a volume set, then
this word contains a value of 0. If the volume is part of a volume set,
then the relative volume number (RVN) can range from 1 to 255.

When a file must be referenced in the context of the volume on which it
lies, a relative volume number of 0 is used, regardless of the RVN that
may be assigned to that volume.

FID$B_NMX File number extension. This byte is the high-order part of the file
number. Together with the FID$W_NUM field, it forms the complete
24-bit file number.

2.3.3 File Header

In addition to the file ID, every file on a Files-11 volume is described by a
file header. It is not actually part of the file; rather, it is contained in the
volume’s index file (see Section 2.5.1). The file header is essentially a catalog
of information about the file, such as where the data is located and how it is
structured. It is used by the file system itself, RMS, the Dump Utility, and the
Backup Utility.
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The file header, also called the header block, contains all the information
necessary to access the file, including the list of extents that make up the file.
File extents describe where the file is physically located on the volume. If a file
has a large number of extents, multiple file headers are used to describe them.
The file header also contains such information as the file ownership, protection,
creation date, and creation time.

The file header has six areas:
* Header area

¢ Ident area

¢ Map area

* Access control list area

¢ Reserved area

¢ End checksum

The first five areas vary in size, and only the header area and the end checksum
are mandatory. Because the areas are variable in length, any software that
processes these structures must check their length before accessing any fields.
Fields contained within the fixed portion of the header (that is, the header area
up to, but not including, the FH2$L,_HIGHWATER field) can be assumed to be
present.

The fixed portion includes any fields in the header area before the start of the
ident area. The FH2$B_IDOFFSET field points to the ident area, which is the
first available area in which to store data. In other words, the header may
contain variable-length areas, but its size is fixed at 512 bytes.

A valid file header is defined by the following rules:

¢ The header end checksum in the FH2$W_CHECKSUM field must be correct.
The end checksum (or block checksum) is a word occupying the last two bytes
of the file header, and it is a simple additive checksum of all other words in
the header block. It is verified every time a header is read and is recalculated
every time a header is written.

¢ The value (that is, the address) contained in the FH2$B_IDOFFSET field is
no less than the value represented by wﬁ.

¢ The four offset bytes are related such that the value contained in the
FH2$B_IDOFFSET field is less than or equal to the value in the FH2$B_
MPOFFSET field, which is less than or equal to the value in the FH2$B_
ACOFFSET field, which is less than or equal to the value in the FH2$B_
RSOFFSET field.

¢ The high byte of the FH2$W_STRUCLEYV field contains the value 2.
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¢ The low byte of the FH2$W_STRUCLEYV field contains a value greater than
or equal to 1.

¢ The word FH2$W_FID_NUM contains\the file number.
¢ The word FH2$W_FID_SEQ contains the file sequence number.

¢ The high byte of the FH2$W_FID_RVN field (the FH2$B_ FIX NMX field)
may contain the file number extension.

¢ The contents of the byte FH2$B_MAP_INUSE must be less than or equal to
the value given by FH2$B_ACOFFSET — FH2$B_MPOFFSET.

A deleted file header conforms to the format of a valid file header, with the
following exceptions:

* The FH2$V_MARKDEL bit is set in the FH2$L,_FILECHAR field.

e The FH2$W_FID_NUM, FH2$B_FID_NMZX, and the FH2$B_FID_RVN fields
all contain a value of 0.

e The FH2$W_CHECKSUM field contains a value of 0.

2.3.3.1 Header Area

The header area of the file header always starts at byte 0. It contains information
that allows the file system to make sure that this block is a valid file header and
that this header is the correct one. It contains the file number and file sequence
number of the file as well as its ownership and protection codes.

This area also contains offsets to the other areas of the file header, so it defines
their size as well. Unlike the header area and the end checksum, the ident, map,
access control list, and reserved areas are optional. If an area is not defined, the
offset does not contain a value of 0; rather, the two offsets from which the size
of the area can be calculated are equal. All areas except the end checksum are
variable in length.

The symbol FH2$C_LENGTH contains the size of the header area, excluding the
last field, FH2$R_CLASS_PROT.

The fields in the header area are illustrated in Figure 2-2, and each field is
described in Table 2-2.
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FH2$R_CLASS_PROT (20 bytes)
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Table 2-2: Contents of the Header Area

Field Name

Description

FH2$B_IDOFFSET

FH2$B_MPOFFSET

FH2$B_ACOFFSET

FH2$B_RSOFFSET

FH2$W_SEG_NUM

Ident area offset. This byte contains the number of 16-bit words
between the start of the file header and the start of the ident
area. It defines both the location of the ident area and the size of
the header area.

Map area offset. This byte contains the number of 16-bit words
between the start of the file header and the start of the map
area. It defines both the location of the map area and, with the
FH2$B_IDOFFSET field, the size of the ident area.!

Access control list offset. This byte contains the number of 16-
bit words between the start of the file header and the start of

the access control list. It defines both the location of the access
control list and, with the FD2$B_MPOFFSET field, the size of
the map area.

Reserved area offset. This byte contains the number of 16-

bit words between the start of the header and the start

of the reserved area. The reserved area is not used by
Files—-11, so it may be used for special applications. With the
FH2$B_ACOFFSET field, this byte defines the size of the access
control list. The size of the reserved area can be calculated from
the value in the FH2$B_RSOFFSET field and the end of the
header block (excluding the end checksum).

Extension segment number. This word contains a value n, which
indicates the header’s ordinal position in the file. However, file
headers are numbered sequentially starting with 0, so the header
of value n is actually the header of position n + 1 in the file. For
example, a header defined by the value 2 is the third header in
the file.

1Any free space in the file header should be allocated to the map area. In the primary header of a
file, at least 8 bytes must be available for the map area.

(continued on next page)
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Table 2-2 (Cont.): Contents of the Header Area

Field Name

Description

FH2$W_STRUCLEV

FH2$W_FID

FH2$W_EXT_FID

FH2$W_RECATTR

Structure level and version. This word is used to identify
different versions of Files—11 because they affect the structure of
the file header.

This field also identifies the version of Files—11 used to create a
file, which permits upward compatibility of file structures. Under
the Files—11 On-Disk Structure Level 2, the high byte of this
field must contain the value 2.

The low byte contains the version number (currently version 1 of
structure level 2), which must be greater than or equal to 1. The
version number will be incremented when compatible additions
are made to the Files—11 structure.

File identifier. This field contains the file ID of the file. The
format of a file ID is described in Section 2.3.2. This field
contains the following four subfields:

FH2$W_FID_NUM Low-order file number

FH2$W_FID_SEQ File sequence number

FH2$B_FID_RVN Relative volume number. Because the
file ID refers to itself (and therefore
always points to the same volume), the
value of this field is always 0.

FH2$B_FID_NMX High-order file number

Extension file identifier. This field contains the file ID of the file’s

next extension header, if one exists. A value of 0 indicates that

no extension header exists. This field contains the following four
subfields:

FD2$W_EX_FIDNUM Low-order file number

FH2$W_EX_FIDSEQ File sequence number
FH2$B_EX_FIDRVN Relative volume number
FH2$B_EX_FIDNMX High-order file number

File record attributes. This area is used by the record manager
or any other high-level access mechanism to store information
necessary for processing the file, such as record control data or
an end-of-file (EOF) mark.

(continued on next page)
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Table 2-2 (Cont.): Contents of the Header Area

Field Name

Description

FH2$L_FILECHAR

File characteristics. The following flag bits are defined relative to

the start of this field:
FCH$V_NOBACKUP

FCH$V_WRITEBACK

FCH$V_READCHECK

FCH$V_WRITCHECK

FCH$V_CONTIGB

Set if the file contents are not to
be copied by the Backup Utility
(BACKUP).

Set if a write-back cache may be used.
With this type of caching operation,
the cached data is written to the

disk only when it is removed from
the cache. This bit is clear for write-
through cache operations.

Set if read-check operations are to
be performed. All read operations
on the file, including the file header,
are verified with a read-compare
operation to ensure data integrity.

Set if write-check operations are to
be performed. All write operations
on the file, including modifications of
the file header, are performed with
a read-compare operation to ensure
data integrity.

Set if the file is to be allocated
contiguously in as few contiguous
sections as possible. The storage
bitmap is scanned for this purpose,
causing the file system to perform
extra I/O operations.

The file system allocates the three
largest contiguous pieces. If the
request has not been satisfied, the
file system disregards this bit and
satisfies the request as best it can.
The resulting allocation cannot be
determined.

This bit may be implicitly set or
cleared by file system operations that
allocate space to the file.

(continued on next page)
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Contents of the Header Area

Field Name

Description

FCH$V_LOCKED

FCH$V_CONTIG

FCH$V_BADACL

FCH$V_SPOOL

FCH$V_DIRECTORY
FCH$V_BADBLOCK

FCH$V_MARKDEL

Set if the file was locked on deaccess.
This bit warns that the file was not
properly closed and may contain
inconsistent data. Access to the file is
denied if this bit is set.

Set if the file is logically contiguous
(that is if, for all virtual blocks in the
file, virtual block ¢ maps to logical
block %k + ¢ on one volume for some
constant k).

This bit may be implicitly set or
cleared by file system operations that
allocate space to the file. The user
may only clear it explicitly.

Set if the access control list of this
file is not valid (if, for example, a
system failure occurred while the list
was being updated). In this case, the
access control list for the file is not
used for protection checking.

Set if the file is a spool file (for
example, a temporary storage area
for files that are to be printed later).
File operations not related to spool
file handling are not allowed.

Set if the file is a directory.

Set if there is a bad data block in the
file. It indicates that deferred bad
block processing is to be done on the
file at some suitable later time, such
as after the file is deleted.

Set if the file is marked for deletion.
If this bit is set, further access to the
file is denied, and the file is physically
removed from the disk after the last
user has closed it.

(continued on next page)
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Table 2-2 (Cont.):

Contents of the Header Area

Field Name

Description

FH2$B_MAP_INUSE

FH2$B_ACC_MODE

FH2$L_FILEOWNER

FH2$W_FILEPROT

FCH$V_NOCHARGE Set if the space used by this file is not
to be charged to its owner.

FCH$V_ERASE Set if the file is to be erased or
overwritten when it is deleted.

Map words in use. This byte contains a count of the number of

map area words currently in use.

Accessor privilege level. This byte defines the lowest privilege
level that an accessor must have to access the file.

Each privilege level is a 2-bit integer. A value of 0 indicates
the lowest privilege and 3 the highest. Privilege levels may be
assigned separately to the basic file access modes, using this bit
assignment in the access mode byte:

Read Bits <0:1>
Write Bits <2:3>
Execute Bits <4:5>
Delete Bits <6:7>

File owner identication. This field may be a user identification
code (UIC) identifier or a general identifier. The file owner is
usually, but not necessarily, the creator of the file.

File protection code. This word controls what access all users

in the system can have to the file. When a user tries to open a
file, the user’s UIC is compared to the UIC of the owner of the
file. Depending on the relationship of the UICs, the user may be
classified in one or more of the categories below. Each category is
controlled by a 4-bit field in the protection word.

(continued on next page)
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Contents of the Header Area

Field Name

Description

System  Bits <0:3>

Owner Bits <4:7>

Group Bits <8:11>

World Bits <12:15>

One of these four conditions must
be met:

¢ The group number of the
user’s UIC is less than
or equal to the value set
with the system parameter
MAXSYSGRP (the default is
10g).

¢ The user holds SYSPRV
privilege.

e The user holds GRPPRV
privilege and is in the same
group as the file’s owner.

¢ The user is the owner of the
volume.

The UIC exactly matches the file
owner UIC.

The group number of the UIC
matches the group number of the
file owner UIC. If a file is owned
by a general identifier, however,
group protection checking is not
done.

The user does not fit into any of
the categories above.

Four types of access are defined in Files—11: read (R), write (W),
execute (E), and delete (D). Each 4-bit field in the protection
word is bit-encoded to permit or deny any combination of the four
types of access to that category of accessors. Setting a bit denies
that type of access to that category. The bits within each 4-bit

field have the following uses:

Bit <0> Set to deny read access.
Bit <1> Set to deny write access.
Bit <2> Set to deny execute access.

Bit <3> Set to deny delete access.

(continued on next page)
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Table 2-2 (Cont.):

Contents of the Header Area

Field Name

Description

FH2$W_BACKLINK

FH2$B_JOURNAL

When a user tries to access a file, protection checks are
performed in each category in this order: system, owner, group,
and world. Access to the file is granted if any of the categories
match.

A fifth type of access—control access—governs the right

to change the attributes of a file, such as its protection or

its characteristics. In other words, control access allows
modifications to the file header. Control access is not granted
by a protection mask. It is always available to the system and
owner categories but never to the group and world categories.
Back link file ID. This field contains the file’s back link pointer.
It contains the file ID of the directory file that contains the
primary directory entry for the file. If the file header is an
extension header, the back link contains the file ID of the
primary header. A value of 0 indicates that no back link exists.
This field contains the following four subfields:
FH2$W_BK_FIDNUM Low-order file number

FH2$W_BK_FIDSEQ File sequence number
FH2$W_BK_FIDRVN Relative volume number
FH2$W_BK_FIDNMX High-order file number

Journal control flags. This field is reserved. This field contains
flags used to control the journaling facility provided by a high-

level access method. The following flag bits are defined relative
to the start of this field:

FIN$V_ONLY_RU Set if the file is to be accessed only
in a recovery unit.

FJN$V_RUJINL Set if recovery-unit journaling is to
be enabled.

FIN$V_BIJNL Set if before-image journaling is to
be enabled.

FJN$V_AIJNL Set if after-image journaling is to be
enabled.

FIN$V_ATJINL Set if audit-trail journaling is to be
enabled.

(continued on next page)
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Table 2-2 (Cont.): Contents of the Header Area

Field Name

Description

FH2$B_RU_ACTIVE

FH2$L_HIGHWATER

FH2$R_CLASS_PROT

FJN$V_NEVER_RU Set if the file is not to be accessed
‘ from within a recovery unit.

FIN$V_JOURNAL_FILE Set if the file is an RMS journal file.

Recoverable facility ID number. This field contains an identifier
of the facility managing the file in an active recovery unit.

File highwater mark. This field contains the virtual block
number, plus 1, of the highest block written. This form of
security protection prevents blocks past this point from being
read. ’

If the highwater mark field contains 0, or if the header area is
too short to contain this field (if the disk predates VMS Version
4.0), then no highwater mark has been maintained for the file.
In this case, the file system does not use highwater marking.

Security classification mask. This field contains the security
classification of the file, which is used when the file system
enforces a lattice-model security system incorporating the Bell
and La Padula secrecy model and the Biba integrity model. This
field is not currently supported.

The classification mask block has the structure shown in

Figure 2-3. The following field names are defined relative to

the start of the classification mask block:

CLS$B_SECUR_LEV Secrecy level. This byte contains the
secrecy classification level. A value of
0 indicates the least sensitive level,
and 255 the most sensitive.

CLS$B_INTEG_LEV Integrity level. This byte contains the
integrity classification level. A value
of 0 indicates the least trustworthy
level, and 255 the most trustworthy.

CLS$Q_SECUR_CAT Secrecy category mask. This 8-
byte field contains a bit mask of
the secrecy classes applicable to the
file. In other words, to protect the
confidentiality of the file, a user must
hold the identifiers corresponding to
the individual bits in this mask.

(continued on next page)
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Table 2-2 (Cont.): Contents of the Header Area

Field Name Description

CLS$Q_INTEG_CAT

Integrity category mask. This 8-
byte field contains a bit mask of the
integrity classes applicable to the
file. In other words, to protect the
veracity of the file, a user must hold
the identifiers corresponding to the

individual bits in this mask.

Figure 2-3 shows the classification mask block.

Figure 2-3: Format of the Classification Mask Block

reserved

CLS$B_INTEG_LEV

CLS$B_SECUR_LEV

CLS$Q_SECUR_CAT

CLS$Q_INTEG_CAT

2.3.3.2 Ident Area

The ident area of a file header is an optional area that stores the identification
and accounting data about the file. It contains the primary name of the file; its

12

creation date and time; revision count, date and time; expiration date and time;
and backup date and time.

The ident area of the file begins at the word indicated by the FH2$B_IDOFFSET

field. To allow more room for map pointers and access control list entries, the

ident area is usually truncated in extension headers.
The symbol FI2$C_LENGTH contains the size of the ident area.
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The field names of the ident area are illustrated in Figure 2—-4 and are described

in Table 2-3.

Figure 2-4: Format of the Ident Area

~ FI2$T_FILENAME (20 bytes)

FI26W_REVISION

FI2$Q_CREDATE

FI28Q_REVDATE

FI2$Q_EXPDATE

FI2$Q_BAKDATE

A FI2$T_FILENAMEXT (66 bytes)

h))
ALY

20

28

36

44

52
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Table 2-3: Contents of the Ident Area

Field Name

Description

FI2$T_FILENAME

FI2$W_REVISION

FI2$Q_CREDATE

FI2$Q_REVDATE

FI2$Q_EXPDATE

FI2$Q_BAKDATE

FI2$T_FILENAMEXT

File name. This field contains the file name in ASCII form. A
period separates the file name from the file type, and a semicolon
separates the file type from the version number; both are always
present. Names shorter than 20 bytes are padded with blanks.
Longer names are continued in the FI2$T FILENAMEXT field.

Revision number. This word contains the revision count of the
file in binary form. The revision count is the number of times the
file has been accessed for writing.

Creation date and time. These eight bytes contain the date
and time at which the file was created. The time is expressed
in the standard internal time format, which is a 64-bit integer
representing tenths of microseconds elapsed since midnight,
November 17, 1858.1

Revision date and time. The revision time is the time at which
the file was last closed after being accessed for write. It is
expressed in the same format as the FI2$Q_CREDATE field.

Expiration date and time. These eight bytes contain the date and
time at which the file becomes eligible for deletion. The format is
the same as that of the FI2$Q_CREDATE and FI2$Q_REVDATE
fields above.

Backup date and time. These eight bytes contain the date and
time at which the file was last backed up. The format is the
same as the other dates and times.

File name extension. This field contains the remainder of the file
name, continued from the FI2$T FILENAME field above. The
86-character file name field allows for the 80 characters of the
file name and type, plus the five digits of the version number. .

1This date, base date for the Smithsonian astronomical calendar, is derived from the Julian Date.
Julian Date (JD) is used by astronomers and is expressed in days elapsed since January 1, 4713
B.C. The modified Julian Date base of JD 2,400,000 was adopted by the Smithsonian Astrophysical
Observatory for satellite tracking, and this date corresponds to the Julian date of November 17,

1858.

2.3.3.3 Map Area

The map area of the file header is an optional area that contains the information
necessary to map the virtual blocks of the file to the logical blocks of the
volume. This area of the file header starts at the word indicated by the
FH2$B_MPOFFSET field.
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The map area consists of a list of retrieval pointers or map pointers describing
the logical blocks allocated to the file. Retrieval pointers are listed in the order of
the virtual blocks they represent.

Each retrieval pointer describes an extent, a consecutively numbered group of
logical blocks allocated to the file. The count field of the pointer contains the
binary value n, which represents a group of n + 1 logical blocks. The logical block
number field contains the logical block number of the first logical block in the

group.
Mapping can be described with the following formula:

® 4 is the total number, plus 1, of the virtual blocks represented by all preceding
retrieval pointers in the current and all preceding headers of the file.

® ks the value contained in the logical block number field.
* nis the value contained in the count field.

Given the arguments in the previous list, then each retrieval pointer maps virtual
blocks j through ;7 + n into logical blocks k through k + n, respectively. Note,
however, that j, k, and »n + 1 must always be integer multiples of the volume
cluster factor (the minimum disk allocation unit in blocks). The cluster factor
default is 3 for disks larger than 50,000 blocks. Otherwise, the default is 1.

Retrieval pointers have four formats, and they may be intermixed within a
file header. The format code of each retrieval pointer is contained in the
FM2$V_FORMAT field, which represents the two high-order bits of the first
word.

The four formats are described in the following sections.

2.3.3.3.1 Retrieval Pointer Format 0

Retrieval pointer format 0 describes a structure called a placement header.
This 2-byte field is represented by the value FM2$C_PLACEMENT, which means
the FM2$V_FORMAT bit contains a value of O(binary). It stores information

in the file header about a file’s allocation. It records the placement options
selected when the file was created so that the conditions of the allocation may
be duplicated.

The format of this retrieval pointer is illustrated in Figure 2-5.
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Figure 2-5: Retrieval Pointer Format 0

FM2$C_PLACEMENT

—— FM2$V_FORMAT
15y 0

FM2W_WORDO

ZK-9580-HC

A placement header, denoted by the FM2$W_WORDO field, contains the following
placement control bits.

Bit Name Description

-FM2$V_EXACT Set if exact placement is requested or if space must be allocated as

specified.
FM2$V_ONCYL Set if space is to be allocated on one cylinder of the volume.
FM2$V_LBN Set if space is to be allocated at the start of the LBN contained in the
next retrieval pointer in the list.
FM2$V_RVN Set if space is to be allocated on the specified volume (the volume on

which this extent is located).

2.3.3.3.2 Retrieval Pointer Format 1

Retrieval pointer format 1 is represented by the value FM2$C_FORMAT1, which
means that FM2$V_FORMAT contains a value of 1(binary). This 4-byte field
provides an 8-bit count field and a 22-bit LBN field. It is therefore capable of
representing a group of up to 256 blocks on a volume of up to 222 blocks in size.

The format of this retrieval pointer is illustrated in Figure 2-6.
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Figure 2-6: Retrieval Pointer Format 1

FM2$C_FORMAT1

— FM2$V_FORMAT

31 Yy Y 0
FM2$W_LOWLBN 01 | FM2$V_HIGHLBN |FM2$B_COUNT1
ZK-9581-HC

The following three field names are associated with this format.

Field Name Description

FM2$B_COUNT1 Block count. This 8-bit count field contains the binary value n,
which represents a group of n + 1 logical blocks.

FM2$W_LOWLBN Low-order LBN. This field contains the logical block number of the
first LBN in the group described by the count field. This field and
the FM2$V_HIGHLBN field form the total 22-bit LBN.

FM2$V_HIGHLBN High-order LBN. This field contains the high 6 bits of the logical
block number. This field and the FM2$W_LOWLBN field form the
total 22-bit LBN.

2.3.3.3.3 Retrieval Pointer Format 2

Retrieval pointer format 2 is represented by the value FM2$C_FORMAT2, which
means that FM2$V_FORMAT contains a value of 2(binary). This 6-byte field
provides a 14-bit count field and a 32-bit LBN field. It is capable of representing

a group of up to 16,384 blocks on a volume of up to 232 blocks.
The format of this retrieval pointer is illustrated in Figure 2-7.
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Figure 2-7: Retrieval Pointer Format 2

FM2$C_FORMAT2

r— FM2$V_FORMAT

31 A 0
FM2$L _LBN2 10 FM2$V_COUNT2
FM23$L _LBN2

ZK-9582-HC
The following two field names are associated with this format.
Field Name Description
FM2$V_COUNT2 Block count. This 14-bit count field contains the binary value n,

which represents a group of n + 1 logical blocks.

FM2$L_LBN2 LBN. This 32-bit field contains the logical block number of the first

LBN in the group described.

2.3.3.3.4 Retrieval Pointer Format 3

Retrieval pointer format 3 is represented by the value FM2$C_FORMATS, which
means that FM2$V_FORMAT contains a value of 3(binary). This 8-byte field
provides a 30-bit count field and a 32-bit LBN field. It is capable of describing a
group of up to 230 blocks on a volume of up to 232 blocks.

The format of this retrieval pointer is illustrated in Figure 2-8.
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Figure 2-8: Retrieval Pointer Format 3
—— FM2$C_FORMAT3

31 v FM2$V_FORMAT 0

FM23W_LOWCOUNT 1 FM2$V_COUNT2

FM2$L _LBN3

ZK-9583-HC

The following three field names are associated with this format.

Field Name Description

FM2$V_COUNT2 High-order 14 bits of the count field. This 30-bit count field
contains the binary value n, which represents a group of n + 1
logical blocks.

FM2$W_LOWCOUNT Low-order 16 bits of the count field. FM2$W_LOWCOUNT and
FM2$V_COUNT?2 form the total 30-bit count field.

FM2$L_LBN3 Logical block number. This 32-bit field contains the logical block
number of the first LBN in the group described by the count
field.

2.3.3.4 Access Control List Area

The access control list (ACL) area is an optional area containing, among other
things, a list of users or identifiers who are allowed to access a file. The access
control list can describe user communities for a particular file that cannot be
expresssed with the regular protection classes.

This area may also be used for storing additional information about the file.

The individual access control entries (ACEs) are stored in the ACL area with
no surrounding structure. The access control list may span multiple headers,
occupying the ACL area in each header.

An ACE cannot cross a file header. A single ACE is limited to a total of 256 bytes
(including the size, type, flags, and access fields).

There may be up to 255 types of ACEs, but only five types are currently
supported. All other types are reserved. The five supported types are as follows:

¢ Alarm ACE—See Section 2.3.3.4.1
¢ Application ACE—See Section 2.3.3.4.2
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¢ Directory default protection ACE—See Section 2.3.3.4.3
¢ Identifier ACE—See Section 2.3.3.4.4
¢ RMS journaling ACE—See Section 2.3.3.4.5

Each has a different format, and each is referenced by a unique symbolic
constant.

However, every ACE structure contains the basic fields shown in Figure 2-9 and
described in Table 2—4. Note, however, that access bits are stored true, as opposed
to existing protection masks. In other words, a bit containing a value of 0 (clear)
denies access, while a value of 1 (set) grants access.

Figure 2-9: Format of the Basic Access Control Entry

ACE$W_FLAGS ACE$B_TYPE ACE$B_SIZE 0

Table 24: Contents of the Basic Access Control Entry

Field Name Description

ACE$B_SIZE ACE size. This size includes the overhead area and all of the keys.

ACE$B_TYPE  ACE type. This type code determines how the remainder of the ACE
is interpreted. A related field, ACE$W_FLAGS, contains both type-
dependent and type-independent flags. The type codes are as follows:

ACE$C_ALARM The name of the journal to
which a security alarm is to be
written when the file is accessed
successfully or unsuccessfully.
(See ACE$V_SUCCESS and
ACE$V_FAILURE for more
information.)

(continued on next page)
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Table 24 (Cont.): Contents of the Basic Access Control Entry

Field Name Description

ACE$C_AUDIT The name of the journal to
which a security audit journal
record is to be written when
the file is either successfully or
unsucessfully accessed. This
format is not supported by VMS
Version 5.0.

ACE$C_DIRDEF The ACE contains default
protection for files created in
a directory. This protection
information is used instead of
the process default protection,
unless it is explicitly overridden.

ACE$C_INFO The ACE contains general
or application-dependent
information. The maximum
length of the information that
can be stored is 252 bytes
although there is no limit to
the number of INFO ACEs that
may appear in a file’s ACL. (See
ACE$V_INFO_TYPE for more
information.)

ACE$C_KEYID The longword identifiers used
to determine who may gain
access to the file. One type of
identifier is the UIC identifier.
The other types of identifiers are
general and system-defined. The
maximum number of identifiers
that can be defined is 62. (See
ACE$V_RESERVED for more
information.)

ACE$C_RMSJNL_AI The location of the RMS after-
image journal.
(continued on next page)
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Table 2—4 (Cont.): Contents of the Basic Access Control Entry

Field Name Description
ACE$C_RMSJNL_AT The location of the RMS audit-
trail journal.
ACE$C_RMSJNL_BI The location of the RMS before-
image journal.
ACE$C_RMSJNL_RU The location of the RMS recovery-
unit journal.
ACE$C_RMSJNL_RU_DEFAULT The location of the default RMS
recovery-unit journal.
ACE$W_FLAGS Type flags. This field, along with the ACE$B_TYPE field, determines

how the ACE is used. This word is divided into two 1-byte fields:
type-dependent flags and type-independent flags.

The type-dependent flags augment the type code, which allows many
different subtypes to be defined. The type-independent flags are used to
provide features that do not depend on the ACE type.

The type-dependent flags are as follows:

ACE$V_INFO_TYPE This 4-bit flag contains a value to indicate
a subtype of the general information ACE.
The following three values are defined for
this field:

¢ The ACE$C_CUST value indicates
that the information belongs to a user
application.

¢ The ACE$C_CSS value indicates that
the information belongs to a Digital
Computer Special Services (CSS)
application.

¢ The ACE$C_VMS value indicates that
the information is valid only for a
specific VAX/VMS utility, application,
or layered product.

(continued on next page)
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Table 24 (Cont.): Contents of the Basic Access Control Entry

Field Name

Description

ACE$V_RESERVED This flag is valid only for the ACE$C_KEYID
type. See Section 2.3.3.4.4 for more
information.

ACE$V_SUCCESS This flag is valid only for the ACE$C_ALARM
type. See Section 2.3.3.4.1 for more
information.

ACE$V_FAILURE This flag is valid only for the ACE$C_ALARM
type. See Section 2.3.3.4.1 for more
information.

The type-independent flag definitions are as follows:

ACE$V_DEFAULT The ACE is a directory default ACE.
This ACE is applied to all files created
in a common directory. When the ACE
is propagated, the DEFAULT option is
removed from the ACE before it is added
to the ACL of the created file.

This option is valid only for directory files.
A default ACE does not control access to
the directory to which it belongs. It only
specifies the ACL for files created in that
directory.

ACE$V_PROTECTED The ACE will not be deleted when
the ACL for the file is deleted (by the
ATR$C_DELETEACL attribute code).
Instead, the ACE must be deleted
explicitly with the ATR$C_DELACLENT
attribute code.

ACE$V_HIDDEN The ACE is not one that the user should
usually see, but it may be used by some
application. The DIRECTORY command,
for example, does not display it.

ACE$V_NOPROPAGATE This ACE should not be copied during any
form of ACL copy operation, either from
one version of a file to a later version of
the same file or from the parent directory
to a newly created file within it.
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2.3.3.4.1 Alarm Access Control Entry

The alarm ACE provides a security alarm when an object is accesssed in a
particular way. It may be referenced by the symbol ACE$C_ALARM. Figure 2-10
shows the format of the alarm ACE type, and Table 2-5 describes the fields

unique to this format.

Figure 2-10: Format of the Alarm ACE

ACE$W_FLAGS ACE$B_TYPE ACE$B_SIZE 0
ACE$L_ACCESS 4
# ACE$T_AUDITNAME (16 bytes) w8
Table 2-5: Contents of the Alarm ACE
Field Name Description
ACE$B_SIZE ACE size.
ACE$B_TYPE ACE type.
ACE$W_FLAGS Type flags. The following two type-dependent flags are valid for
the alarm ACE:

ACE$V_SUCCESS

ACE$V_FAILURE

This field specifies that a security alarm
should be generated when access is
granted to a file. This flag is valid only
for the ACE$C_ALARM type.

This field specifies that a security alarm
should be generated when access is
denied to a file. This flag is valid only
for the ACE$C_ALARM type.

(continued on next page)
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Table 2-5 (Cont.): Contents of the Alarm ACE
Field Name Description

ACE$L_ACCESS Access type. This longword specifies the type of access for
which a security audit or alarm message is to be issued. The
following access rights are defined:

ACE$V_READ A message is issued if read access to
the file is attempted.

ACE$V_WRITE A message is issued if write access to
the file is attempted.

ACE$V_EXECUTE A message is issued if execute access to
the file is attempted.

ACE$V_DELETE A message is issued if delete privilege
for the file is attempted.

ACE$V_CONTROL A message is issued if any of the rights
of the file’s owner are attempted.

ACE$T_AUDITNAME Alarm journal name. This field is the start of the alarm-
journal-name counted string.

2.3.3.4.2 Application Access Control Entry

The application ACE (also called the INFO ACE) contains application-dependent
or user-defined information. It may be referenced by the symbol ACE$C_INFO.
Figure 2-11 shows the format of the application ACE type, and Table 26
describes the fields unique to this format.

Figure 2-11: Format of the Application ACE

ACE$W_FLAGS ACE$B_TYPE ACE$B_SIZE 0

ACESL_INFO_FLAGS 4

¥ ACES$T_INFO_START (248 bytes) ¥ 8
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Table 2-6: Contents of the Application ACE

Field Name Description

ACE$B_SIZE ACE size.

ACE$B_TYPE ACE type.

ACE$W_FLAGS Type flags. No type-dependent flags are valid for the

ACES$L_INFO_FLAGS

ACES$T_INFO_START

application ACE.

Application flags. This longword is used for VMS-specific
application ACEs. This field is currently interpreted as two
VMS-specific word subfields. RMS, for example, uses an
application ACE of this type as an extension of the file header
to store more information about a file, such as file statistics
(see Figure 2-12 and Table 2-7 for more information).
However, other applications are not restricted from using
these application-defined subfields.

The following word subfields are defined:

ACE$W_APPLICATION_FLAGS VMS application flags
field.

ACE$W_APPLICATION_FACILITY VMS application facility
field.

Information area. This location is the start of the application-
dependent information area. The RMS attributes ACE

uses this portion of the application ACE to store additional
information about a file. Figure 2-12 shows the format of the
RMS attributes ACE type, and Table 2-7 describes the fields
unique to this format.

Figure 2-12: Format of the RMS Attributes ACE

ACE$W_FLAGS ACE$B_TYPE ACE$B_SIZE 0
ACESL_INFO_FLAGS 4

reserved ACES$B_FIXLEN ACE$W_RMSATR_VARIANT 8
ACE$W_RMSATR_MAJOR_ID ACE$W_RMSATR_MINOR_ID 12
ACE$L_RMS_ATTRIBUTE_FLAGS 16
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Table 2-7: Contents of the RMS Attributes ACE

Field Name Description

ACE$B_SIZE ACE size.

ACE$B_TYPE ACE type.

ACE$W_FLAGS Type flags. No type-dependent flags are valid for

ACE$L_INFO_FLAGS
ACE$W_RMSATR_VARIANT

ACE$B_RMSATR_FIXLEN

ACE$W_RMSATR_MINOR_ID

ACE$W_RMSATR_MAJOR_ID

ACE$L_RMS_ATTRIBUTE_FLAGS

the application ACE.
Application flags.

" Variant of the RMS attributes ACE. This field is

currently set to 0.

Fixed-format length. This field contains the
length of the fixed portion of the ACE in bytes,
which is currently 20 bytes.

RMS file attributes ACE minor identifier. This
field contains an integer that identifies the
current version of the ACE. This number is
incremented when compatible changes to the
ACE have been made. For VMS Version 5.0, this
field is set to 2.

RMS file attributes ACE major identifier. This
field contains an integer that identifies the
current version of the ACE. This number is
incremented when incompatible changes to the
ACE have been made. For VMS Version 5.0, this
field is set to 1.

RMS file attributes flags definitions. The

following flags are defined for this field:

STATISTICS  If set, statistics monitoring is
enabled for the file.

XLATE_DEC  If set, file semantics are private
to Digital. This field is not
supported for VMS Version 5.0.
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2.3.3.4.3 Directory Default Protection Access Control Entry

The directory default protection ACE (also called the DIRDEF ACE) defines the
default protection for a directory so that protection can be propagated to the files
and subdirectories in that directory. This type of ACE specifies protection for one
directory structure that is different from the default protection applied to other
directories. Default protection ACEs can be applied only to directory files.

This ACE may be referenced by the symbol ACE$C_DIRDEF. Figure 2-13 shows
the format of the directory default protection ACE type, and Table 2-8 describes
the fields unique to this format.

Figure 2-13: Format of a Directory Default Protection Ace

ACESW_FLAGS ACE$B_TYPE ACE$B_SIZE 0

ACES$L_ACCESS (unused) ; 4
ACE$L_SYS_PHOT 8
ACE$L_OWN_PROT 12
ACE$L_GRP_PROT 16
ACES$L_WOR_PROT 20

Table 2-8: Contents of the Directory Default Protection ACE

Field Name Description

ACE$B_SIZE ACE size.

ACE$B_TYPE ACE type.

ACE$W_FLAGS Type flags. No type-dependent flags are valid for the directory
default protection ACE.

ACES$L_ACCESS Access type. This longword is unused.

ACE$L_SYS_PROT Directory default system protection.

ACES$L_OWN_PROT Directory default owrer protection.
(continued on next page)
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Table 2-8 (Cont.): Contents of the Directory Default Protection ACE

Field Name Description

ACES$L_GRP_PROT Directory default group protection.
ACE$L_WOR_PROT Directory default world protection.

2.3.3.4.4 Identifier Access Control Entry

The identifier ACE (also called the KEYID ACE) controls the type of access
allowed to a particular user or group of users as specified by an identifier. Each
ACE contains a list of identifiers that control access to the file or volume. An
identifier is a logical extension to a UIC because it defines a particular entity in
the system. The identifier may represent a UIC or a process rights list entry. In
order to match a particular ACE, all of the identifiers must successfully match
the corresponding identifiers of the accessor. If no ACE is matched or an ACL

is not associated with the file, access is then granted or denied based on the
conventional protection fields.

The identifier ACE is referenced by the symbol ACE$C_KEYID. Figure 2-14
shows the format of the identifier ACE type, and Table 2-9 describes the fields
unique to this format.

Figure 2-14: Format of the Identifier ACE

ACE$W_FLAGS ACE$B_TYPE ACES$B_SIZE 0

ACES$L_ACCESS 4

ACES$L_KEY 8
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Table 2-9: Contents of the Identifier ACE

Field Name Description

ACE$B_SIZE ACE size.

ACE$B_TYPE ACE type.

ACE$W_FLAGS Type flags. One type-dependent flag is valid for the identifier ACE:

ACES$L_ACCESS

ACESL_KEY

ACE$V_RESERVED. This 4-bit flag field indicates the number of
longwords to reserve for CSS or the user. Up to 15 longwords
may be reserved. The reserved area starts at the ACE$L_KEY
field. The actual keys then follow. This field is valid only for the
ACE$C_KEYID type.

Access type. This longword specifies the type of access to be
granted if all the keys are matched. The following access rights
are defined:

ACE$V_READ Read access to the file is granted.

ACE$V_WRITE Write access to the file is granted.
ACE$V_EXECUTE Execute access to the file is granted.
ACE$V_DELETE Delete privileges for the file are granted.

ACE$V_CONTROL The right to change the protection and file
characteristics of the file (that is, access to
the file header) is granted.

Key field. This longword is the start of the variable-length key
field. The number of identifiers listed in the ACE is implied by its
size.

2.3.3.4.5 RMS Journaling Access Control Entries

RMS journaling provides a way to store changes that have been made to a file.
Some journal information may be stored in access control entries. There are five
types of RMS journaling access control entries. Table 2-10 shows each type of
ACE, the symbolic name by which each may be referenced, and a description of

each one.
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Table 2-10: RMS Journaling ACE Types

Type of ACE

Description

RMSJNL_AI

RMSJNL_AT ACE

RMSJNL_BI

RMSJNL_RU

RMSJNL_RU_DEFAULT

The location of the after-image journal. A BI journal records
changes to a file so that the journal can be used to roll the
current copy of the file backward. In other words, the changes
are undone. The journal name must be specified with the SET
FILE/AI_JOURNAL command before a file is modified. Only
one Al ACE may exist per file.

The symbolic name is ACE$C_RMSJNL_AI
The location of the audit-trail journal. An AT journal records

information about file and record accesses. Only one AT ACE
may exist per file,

The symbolic name is ACE$RMSJNL_AT.

The location of the before-image journal. An Al journal
records changes to a file so that the journal can be used to roll
a backup copy of the file forward. In other words, the changes
are redone. The journal name must be specified with the SET
FILE/BI_JOURNAL command before a file is modified. Only
one BI ACE may exist per file.

The symbolic name is ACE$C_RMSJNL_BI.

The lecation of a particular instance of a journal file. An RU
journal records changes made during a recovery unit so that if
the recovery unit aborts, the changes can be undone. The RU
ACE is created at run time when a process uses the file in a
recovery unit for the first time. It is removed when the file is
closed. The RU ACE does not represent a particular journal
stream; instead, it represents the existence of a potentially
active transaction. Multiple RU ACES may exist per file.

The symbolic name is ACE$C_RMSJNL_RU.

The default location of a new journal file. The RU_DEFAULT
ACE allows the RU journal to be created on a different volume
than the volume on which the data file is being journaled,
chiefly for performance reasons. If this ACE is not set, the RU
journal is created on the same volume as the data file being
journaled. Only one RU_DEFAULT ACE may exist per file.

The symbolic name is ACE$C_RMSJNL_RU_DEFAULT.

All these ACEs are created as hidden, protected, and nopropagate.
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These ACEs all have the same format, but not all fields apply to each
type of ACE. For example, the RMSJNL_RU_DEFAULT ACE uses only the
ACE$T_VOLNAM field. Figure 2-15 shows the format of these ACEs, and
Table 2-11 describes the fields unique to this format.

Figure 2-15: Format of the RMS Journaling ACEs

ACE$SW_FLAGS

ACE$B_TYPE ACES$B_SIZE

ACES$T_VOLNAM (12 bytes) 3

<]

ACE$B_RJRVER ACE$B_VOLNAM_LEN

ACE$W_FID

ACESL_JNLIDX

ACE$W_RMSJUNL_FLAGS

ACES$L_JNLIDX

ACE$Q_CDATE

ACES$L_BACKUP_SEQNO

ACE$L_BACKUP_SEQNO

ACE$Q_MODIFICATION_TIME

Table 2-11: Contents of the RMS Journaling ACEs

16

24

: 28

36

;40

Field Name Description
ACE$B_SIZE ACE size.
ACE$B_TYPE ACE type.

(continued on next page)
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Table 2-11 (Cont.): Contents of the RMS Journaling ACEs

Field Name

Description

ACE$W_FLAGS
ACE$T_VOLNAM

ACE$B_VOLNAM_LEN

ACE$B_RJRVER

ACE$W_FID

ACE$W_RMSJNL_FLAGS

ACES$L_JNLIDX

ACE$Q_CDATE

Type flags.

Volume name. This 18-byte field contains the
volume label in ASCII form, padded to 12 bytes
with spaces, plus the 6-byte binary file ID. The
RU_DEFAULT ACE uses only the basic ACE fields
plus this field.

Length of the journal file volume name in bytes.
In other words, this field contains the length of the
nonblank portion of the ACE$T_VOLNAM field.

RMS journal file structure level. This field
contains the version number of the journal format.
Currently, this field is set to 1.

File identifier of the journal file. The format of a
file ID is described in Section 2.3.2.

RMS journaling flags. The following flags are
defined:

e ACE$V_JOURNAL_DISABLED—Indicates
that journaling has been disabled. This bit
applies only to after-image, before-image, and
audit-trail journaling, and it is set by the
Backup Utility.

* ACE$V_BACKUP_DONE—Indicates that this
file has been backed up and that RMS needs
to write a backup marker to the journal file.

Journal stream index number. More than one
file can post entries to a journal file. This field
contains a unique number used to distinguish the
entries posted for one file from the entries posted
for another. '

Creation date and time of the journal file, in
standard VMS format.

(continued on next page)
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Table 2-11 (Cont.): Contents of the RMS Journaling ACEs

Field Name Description

ACE$L_BACKUP_SEQNO Backup sequence number. This field indicates
where to start in the journal. In other words,
this field is incremented each time RMS posts a
backup marker to the journal file. This number is
compared to the backup marker to determine if the
journal entries bracketed by the backup markers
need to be processed.

ACE$Q_MODIFICATION_TIME Time-stamp of the last backup or last journal entry
recovered, in standard VMS format.

2.3.3.5 User-Reserved Area

The optional reserved area of the file header starts at the word indicated by the
byte FH2$B_RSOFFSET. It is only available in the primary header. This area
is not used by the Files-11 file system, so it can be used by Computer Special
Services (CSS) or a user’s applications.

Application-dependent information may also be stored in an information ACE.

2.3.4 Multiheader Files

The size of the file header is fixed, so the mapping or access control information
for some files will not fit in the allocated space. A file in which the information
overflows the allocated space is called a multiheader file. It is represented by a
chain of file headers called an extension linkage.

Each header in the chain maps a consecutive set of virtual blocks, and the
extension linkage links the headers together in the order of ascending virtual
block numbers. The extension pointer (located in the FH2$W_EXT_FID field) in
each file header is the file ID of the next header in the sequence.

The access control list segments in the various headers are likewise considered
one large access control list, concatenated in the order of the file headers. Access
control lists and arrays of map pointers may be intermixed in the various headers
of a file. In other words, each header may contain any amount of map or access
control data regardless of its position in the sequence.

Technically, each header of a multiheader file could be accessed as a file because
it has a file ID of its own. However, since the complete access control information
is visible only from the primary header of a file, the file system prevents access to
extension headers as files so that file protection can be correctly enforced.
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2.3.5 Multivolume Files

Multiple headers are also needed for files that span volumes in a volume set. A
header maps only those logical blocks of a file located on its volume. However,
a multivolume file is represented by a header on each volume that contains a
portion of that file.

If the multivolume file is contained on a loosely coupled volume set, the file ID of
the first header on each continuation volume always has the value 7,7, n, where
n is the RVN of the volume on which the file starts plus the number of preceding
volumes containing portions of the file.

2.4 Basic Concept of a Directory

A directory is simply a file used to locate other files on a volume. It contains a
list of files and their unique internal identifications.

Files-11 provides directories to allow the organization of files in a meaningful
way. The file ID uniquely locates a file on a volume set, but it is not very easy to
remember. Directories are the special files that match alphabetic names with file
identifiers.

2.4.1 Directory Structure

A directory file is always contiguous, and it is identified as a directory by the set
FCH$V_DIRECTORY bit in the file characteristics field (FH2$L_FILECHAR). It

is organized as a sequential file with variable-length records. The FAT$V_NOSPAN
bit is also set, specifying that records may not cross block boundaries. No carriage
control attributes are set.

The last word of the directory file’s record attributes area (FAT$W_VERSIONS) is
used to store the directory’s default version limit. This version limit is assigned
to all new files created in the directory if a version limit is not specified by the
creator.

Directory records within each block of the directory file are packed together

to conform to the variable-length record format. At the end of the sequence of
records in each block, a word containing —1 signals the end of records for that
block. This word is always present in a directory block, but it is optional in the
variable-length record format itself.

The entries in a directory are sorted alphabetically, which allows for optimized
searching. Entries which are multiple versions of the same name and type are
arranged in order of decreasing version numbers to optimize version-related
operations. Each directory record consists of the fields shown in Figure 2-16.
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Figure 2-16: Format of a Directory Record

DIR$W_VERLIMIT DIR$W_SIZE 0
DIR$B_NAMECOUNT DIR$B_FLAGS 4
DIR$T_NAME
12
Value Field

Table 2-12 shows the contents of a directory record.

Table 2-12: Contents of a Directory Record

Field Name

Description

DIR$W_SIZE

DIR$W_VERLIMIT

DIR$B_FLAGS

DIR$B_NAMECOUNT

Record byte count. This field is the standard byte count field
of a variable length record. It contains the length in bytes of
the record (not including the two bytes of the count). The byte
count is always an even number.

File version limit. This word contains the maximum number
of versions that are retained for this file name and type. An
attempt to create more versions than the limit will either cause
the oldest version of the file to be deleted, or it will cause an
error to be returned (if the oldest version cannot be deleted).

Flags. This byte contains the type code of the directory entry

and assorted flag bits. It contains the following subfields and
status bits:

DIR$V_TYPE The type code is contained in the three
low bits of the flags byte.
DIR$C_FID The value field is a list of version

numbers and 48-bit file identifiers.

File name length. This field contains the length (in bytes) of
the file name.

(continued on next page)
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Contents of a Directory Record

Field Name

Description

DIR$T _NAME

Value field

File name string. This field contains the file name and file type
in ASCII form, separated by a period. The period is present
even if either the name or the type, or both, are null. The

file name and type may be composed of any of the standard
name characters: alphanumerics (including the Multinational
Character Set), the dollar sign (reserved for special use by
Digital), the underscore, and the hyphen. The name and type
fields are each limited to 39 characters.

If the length of the name is an odd number, the name string is
padded with a single null character.

Directory entry information. This variable field contains

the information returned to the user by a directory lookup
operation. Its interpretation depends on the directory record
type.

For a file ID record type (the type field is DIR$C_FID), a

list of version numbers and corresponding file identifiers, in
descending order by version number, is returned to the value
field. The number of entries in the list can be calculated with
this formula:

recordlength — overhead — namestring = entries

Figure 2-17 and Table 2-13 describe the format and contents of
an individual directory entry.

Figure 2-17: Format of a Directory Entry

DIR$W_VERSION 0

DIR$W_FID
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Table 2-13: Contents of a Directory Entry

Field Name Description

DIR$W_VERSION Version number. This word contains the version number of the
directory entry in binary form. Version numbers can range from 1 to
32,767.

DIR$W_FID File ID. These three words are the file identifier to which the
directory entry points.

2.4.2 Multiple Directory Records

Directory records may not cross block boundaries, so there is a limit to the
number of file versions that can be contained in one directory record. That
number is 62 for the shortest possible file name.

To represent more versions of a file than will fit into one directory block, multiple
directory records are used. The records are ordered by descending version
numbers, as are the versions within each record. Each record contains the full
file name.

2.4.3 Directory Hierarchies

Because directories are files with no special attributes, they may list files that
are in turn directories. The user may construct directory hierarchies of arbitrary
depth and complexity to structure files as needed. The maximum depth of a
directory hierarchy is nine levels.

Historically, Files—11 on PDP-11 systems supported a two-level directory
hierarchy that relied on UIC syntax. Each UIC was associated with a user
file directory (UFD) and was referenced by a UIC construction of the form
[mnnmmm]. This construction then translated to a user file directory name
of nnnmmm.DIR;1 in the master file directory (MFD).

The current file system uses a multilevel directory hierarchy. The first level below
the volume’s master file directory is the user file directory, but further levels in
the directory structure may be defined; these are called subfile directories (SFDs).
The top-level directory is generally used to represent individual system users

or important facilities. As a result, MFD entries would correspond to the user
names in a multiuser system.

Figure 2-18 shows the hierarchical directory structure.
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Figure 2-18: Hierarchical Directory Structure

MFD

HOBART

DARWIN

PERTH

SuB D

ZK-9705-HC

A directory specifier has the format [namel.name2.name3. ... ]. Each name in
the list translates to a directory file name of the form name.DIR;1 in the current

directory level.

The current file system still supports the former UIC-based directory structure.

2.4.3.1 Multivolume Directory Structure
In a volume set, the MFD for all the user files on the volume set is the MFD of
relative volume 1. Its entries point to UFDs located on any volume in the set.
The UFD entries in turn point to files and subdirectories on any volume in the
set. The MFDs of the remaining volumes in the set list only the reserved files on

each volume.
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2.5 Reserved Files

Any file system must maintain some data structures on the medium that are used
to control the file organization. In Files—11, this data structure is kept in several
files. These files are created when a new volume is initialized. They are unique
in that their file identifiers are known constants.

The relative volume number used when accessing one of these files depends upon
the context. The exact number of these files which is present on a particular
volume may vary, but at least five must be present. None of these files can be
deleted. Table 2—-14 shows the nine reserved files.

Table 2-14: Reserved Files
File ID File Name Description

1,1 INDEXF.SYS;1 Index file. This file is the root of the entire Files—11
structure. It contains the volume’s bootstrap block (or
boot block) and the home block, which identifies the
volume and locates the rest of the file structure. The
index file also contains all of the file headers for the
volume and a bitmap to control their allocation.

2,2 BITMAP.SYS;1 Storage bitmap file. This file controls the allocation of
logical blocks on the volume.

3,3 BADBLK.SYS;1  Bad block file. This file contains all the known bad blocks
on the volume.

4,4 000000.DIR; Master file directory (MFD). This file forms the root of

the volume’s directory structure. The MFD lists the nine
known files, all first-level user directories, and whatever
other files the user chooses to enter.

5,5 CORIMG.SYS;1  System core image file. This file provides a file of
known file identification for the operating system. Its
use depends on the operating system. This file is not
currently used.

6,6 VOLSET.SYS;1 Volume set list file. This file contains a list of the labels of
the volumes in a tightly coupled volume set if this volume
is the first relative volume of such a set.

7,7 CONTIN.SYS;1 Standard continuation file. This file contains the first
segment of the portion of the multivolume file that resides
on a loosely coupled volume set if this volume is part of
such a set.

(continued on next page)
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Table 2-14 (Cont.): Reserved Files

File ID File Name Description

8,8 BACKUP.SYS;1 Backup file. This file logs and controls an incremental
backup system. This file is not currently used.

9,9 BADLOG.SYS;1  Pending bad block log file. This file contains a list of

suspected bad blocks on the volume that have not yet
been turned over to the bad block file.

NOTE: Digital may reserve more file identifiers in the future,
so users should make no assumptions about the values of user-
created file identifiers.

2.5.1 Index File

The index file has file ID 1,1. It is listed in the MFD as INDEXF.SYS;1. The
index file is the root of the Files—11 structure in that it provides the means for
identification and initial access to a Files—11 volume. It also contains the access
data for all files on the volume, including itself. This file has the record format of
512-byte fixed-length records with no carriage control.

Figure 2-19 shows the layout of the blocks in the index file. This figure assumes
a storage map cluster factor greater than 2.
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Figure 2-19: Layout of the First Extent of the Index File
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More Home Blocks
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2.5.1.1 Bootstrap Block

Virtual block 1 of the index file is the volume’s bootstrap block, or boot block.
It is almost always mapped to logical block O of the volume. If the volume is
the system device of an operating system, the boot block contains an operating-
system-dependent program that reads the operating system into memory when
the boot block is read and executed by a machine’s hardware bootstrap.

If the volume is not a system device, the boot block contains a small program that
outputs a message on the system console to inform the operator to that effect. If
block 0 of a volume is bad, VBN 1 of the index file can be mapped to some other
block. However, the volume cannot be used as a system volume.

2.5.1.2 Home Block

Virtual block 2 of the index file is the volume’s home block. The home block
identifies the volume as a Files—11 volume, establishes the specific identity of the
volume, and serves as the entry point into the volume’s file structure. The home
block is recognized as a home block by the presence of checksums in known places
and by the presence of predictable values in certain locations.

The home block is located on the first good block of the home block search
sequence. The formula of the search sequence is

1+ n * delta

where n is a positive integer (such as 0, 1,2, 3, ... ).

The home block search delta is calculated from the geometry of the volume.

If the volume is viewed as a three-dimensional space, the search sequence
approximately travels down the body diagonal of the space. Since volume failures
tend to occur across one dimension, this algorithm minimizes the chance of a
single failure destroying both home blocks of the search sequence.

The volume geometry is expressed in sectors (s), tracks or surfaces (t), and
cylinders (c), and the search delta is calculated according to the following rules, to
handle the cases where one or two dimensions of the volume have a size of 1.

Geometry Delta

sx1x1 1

lxtzxl 1

1 x1zxec 1

sxtx1 s + 1

s x1lzxc s + 1
lxtzxc t +1
sxtzxc (t +1) xs + 1

In most cases, however, the home block is located on LBN 1.
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The fields of the home block are shown in Figure 2-20 and are described in

Files—11 On-Disk Structure

Table 2-15. All copies of the volume’s home block contain the same data, with the
exception of the fields containing the block’s VBN and LBN.

Figure 2-20: Format of the Home Block

HM2$L_HOMELBN

HM2$L_ALHOMELBN

HM2$L_ALTIDXLBN

HM2$W_CLUSTER

HM2$W_STRUCLEV

HM2$W_ALHOMEVBN

HM2$W_HOMEVBN

HM2$W_IBMAPVBN

HM2$W_ALTIDXVBN

HM2$L_IBMAPLBN

HM2$L_MAXFILES

HM2$W_RESFILES

HM2$W_IBMAPSIZE

HM2$W_RVN

HM2$W_DEVTYPE

HM2$W_VOLCHAR

HM2$W_SETCOUNT

HM2$L_VOLOWNER

reserved

HM2$W_FILEPROT

HM2$W_PROTECT

HM2$W_CHECKSUM1

reserved

HM2$Q_CREDATE

HM2$W_EXTEND

HM2$B_LRU_LIM

HM2$B_WINDOW

12

16

20

24

28

32

36

40

44

48

52

56

60

68

(continued on next page)
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Figure 2-20 (Cont.): Format of the Home Block

63

HM2$Q_RETAINMIN

72

HM2$Q_RETAINMAX

80

HM2$Q_REVDATE

88

h)]

HM2$R_MIN_CLASS (20 bytes)

b)Y

¢ 96

W

HM2$R_MAX_CLASS (20 bytes)

2116

«

reserved (320 bytes)

a

136

HM2$L_SERIALNUM

456

k) T

HM2$T_STRUCNAME (12 bytes)

A

460

h)Y

HM2$T_VOLNAME (12 bytes)

F

9472

«

HM2$T_OWNERNAME (12 bytes)

b)Y

484

«

HM2$T_FORMAT (12 bytes)

496

HM2$W_CHECKSUM2

reserved

508
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Table 2-15: Contents of the Home Block

Field Name

Description

"HM2$L_HOMELBN

HM2$L_ALHOMELBN

HM2$L_ALTIDXLBN

HM2$W_STRUCLEV

HM2$W_CLUSTER

Home block LBN. This longword contains the logical block
number of this particular copy of the home block. This value
must be nonzero for a valid home block.

Alternate home block LBN. This longword contains the LBN
of the volume’s secondary home block. When scanning the
home block search sequence, the user may determine whether
the block read is the primary or the secondary home block by
comparing the HM2$HOMELBN field with this field. This
value must be nonzero for a valid home block.

Backup index file header LBN. This longword contains the
logical block on which the backup index file header is located.
This value must be nonzero for a valid home block.

Structure level and version. The volume structure level and
version is used to identify different versions of Files—11 when
they affect the structure of all parts of the volume except
the file header. Because the structure level word identifies
the version of Files—-11 that created this particular volume,
upward compatibility of file structures as Files—11 evolves is
assured.

The current structure level of Files—11 is level 2, so the high
byte of this field must contain the value 2. The low byte
contains the version number, which must be greater than or
equal to 1. The version number will be incremented when
compatible additions are made to the Files~11 structure. The
current version is version 1 of structure level 2.

Storage bitmap cluster factor. This word contains the cluster
factor used in the storage bitmap file. The cluster factor is
the number of blocks represented by each bit in the storage
bitmap. This value is also called the volume cluster factor.
It must be nonzero for a valid home block.

(continued on next page)
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Table 2-15 (Cont.): Contents of the Home Block

Field Name

Description

HM2$W_HOMEVBN

HM2$W_ALHOMEVBN

HM2$W_ALTIDXVBN

HM2$W_IBMAPVBN

HM2$L_IBMAPLBN

HM2$L_MAXFILES

HM2$W_IBMAPSIZE

HM2$W_RESFILES

HM2$W_DEVTYPE

Home block VBN. This word contains the virtual block that
this particular copy of the home block occupies in the index
file. This value must be nonzero for a valid home block.

Backup home block VBN. This word contains the virtual
block number that the cluster containing the secondary home
block occupies in the index file. The contents of this word is
calculated with the formula v * 2 + 1, where v is the storage
map cluster factor.

Backup index file header VBN. This word contains the virtual
block number that the backup index file header occupies in
the index file. The contents of this word is calculated with the
formula » * 3 + 1, where v is the storage map cluster factor.

Index file bitmap VBN. This word contains the starting virtual
block number of the index file bitmap. The contents of this
word is calculated with the formula v * 4 + 1, where v is the
storage map cluster factor.

Index file bitmap LBN. This longword contains the starting
logical block address of the index file bitmap. Once the home
block of a volume has been found, this value provides access to
the rest of the index file and to the volume. This value must
be nonzero for a valid home block.

Maximum number of files. This longword contains the
maximum number of files that may be present on the volume
at any time. This value must be greater than the contents
of HM2$W_RESFILES for the home block to be valid. The
maximum number of files cannot exceed 2% — 1.

Index file bitmap size. This 16-bit word contains the number
of blocks that make up the index file bitmap. This value must
be nonzero for a valid home block.

Number of reserved files. This word contains the number of
reserved files on the volume. The file sequence number of
each reserved file is always equal to its file number. Reserved
files may not be deleted, and at least five must be present on
a volume. To be valid, this word cannot contain a value less
than 5.

Disk device type. This word is an index identifying the type
of disk that contains this volume. It is currently not used and
always contains a value of 0.

(continued on next page)
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Table 2-15 (Cont.):

Contents of the Home Block

Field Name

Description

HM2$W_RVN

HM2$W_SETCOUNT

HM2$W_VOLCHAR

HM2$L_VOLOWNER

Relative volume number. This word contains the relative
volume number that this volume has been assigned in a
volume set. If the volume is not part of a volume set, then
this word contains a value of 0.

Number of volumes. This word contains the total number of
volumes in a tightly coupled volume set if this volume is the
first volume of the set (the HM2$W_RVN field contains 1). In
a loosely coupled volume set, this word contains a value of 0.

Volume characteristics. This word contains bits that provide
additional control over access to the volume. The following
bits are defined:

HM2$V_READCHECK Set if read-check operations
are to be performed. All read
operations on the file, both for
data and for file structure, are
verified with a read-compare
operation to ensure data
integrity.

HM2$V_WRITCHECK Set if write-check operations
are to be performed. All write
operations on the file, both
for data and for file structure,
are performed with a read-
compare operation to ensure
data integrity.

HM2$V_ERASE Set if all files on the volume
are to be erased or overwritten
when they are deleted.

HM2$V_NOHIGHWATER  Set if highwater mark
enforcement is to be disabled
on the volume.

Volume owner. This longword contains the binary identifica-

tion code of the owner of the volume. The format is the same

as that of the file owner stored in the file header.

(continued on next page)
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Table 2—15 (Cont.): Contents of the Home Block

Field Name

Description

HM2$W_PROTECT

HM2$W_FILEPROT

HM2$W_CHECKSUM1

HM2$Q_CREDATE

HM2$B_WINDOW

HM2$B_LRU_LIM

HM2$W_EXTEND

Volume protection code. This word contains the protection
code for the entire volume. All operations on all files on the
volume must pass both the volume protection and the file
protection checks to be allowed.

Just as in file protection, accessors to the volume are
categorized into system, owner, group and world. Each
category is controlled by the standard 4-bit field, which is
encoded in the following manner:

Bit <0> If set, files cannot be read.
Bit <1> If set, existing files cannot be written to
(modified).

Bit <2> If set, files cannot be created.
Bit <3> If set, files cannot be deleted.

Default file protection. This word contains the file protection
that is assigned to files created on this volume if no file
protection is specified by the user or the operating system.
This field is not currently supported.

First checksum. This word is an additive checksum of all
preceding entries in the home block. It is computed by the
same sort of algorithm as the file header checksum.

Volume creation date. This quadword contains the date and
time that the volume was initialized. It has the same binary
format as the file header.

Default window size. This byte contains the number of
retrieval pointers that are used for the window (in core file
access data) when files are accessed on the volume, if this
value is not specified by the user.

Directory preaccess limit. This byte contains a count of

the number of directories to be stored in the file system’s
directory access cache. It is also an estimate of the number of
concurrent users of the volume.

Default file extend. This word contains the number of blocks
allocated to a file when a user extends the file and asks for
the system default value for allocation.

(continued on next page)
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Table 2-15 (Cont.):

Contents of the Home Block

Field Name

Description

HM2$Q_RETAINMIN

HM2$Q_RETAINMAX

HM2$Q_REVDATE

HM2$R_MIN_CLASS

HM2$R_MAX_CLASS

HM2$L_SERIALNUM

Minimum file retention period. This field contains the
minimum length of time that a file will be retained by a

file expiration system after that file is last accessed. Its value
is expressed in the standard delta time format (minus the
time in tenths of microseconds).

Maximum file retention period. This field contains the
maximum length of time that a file will be retained by a

file expiration system after that file is last accessed. Its value
is also expressed in the standard delta time format.

The minimum and maximum retention fields are used
together in this way: when a file is accessed, if the sum of
the current time plus the minimum retention period exceeds
the current expiration date of the file, then the file’s expiration
date is reset to the sum of the current time plus the maximum
retention period.

In other words, how often the expiration date of a frequently
accessed file is updated is determined by the difference
between the minimum and the maximum retention periods.

Volume revision date. This field contains the date and time at
which the last significant modification, such as copying during
a full backup, was made to the volume.

Minimum security class. This field contains a classification
mask that represents the minimum secrecy and integrity
classification of files that may be created on this volume.
The structure of this field is the same as that of the secrecy
classification mask (FH2$R_CLASS_PROT) in the header
area.

Maximum security class. This field contains a classification
mask that represents the maximum secrecy and integrity
classification of files that may be created on this volume.
The structure of this field is the same as that of the secrecy
classification mask (FH2$R_CLASS_PROT) in the header
area.

Media serial number. This field contains the binary serial
number of the physical medium on which the volume is
located.

(continued on next page)
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Table 2-15 (Cont.): Contents of the Home Block
Field Name Description

HM2$T_STRUCNAME Structure name. This area contains the name of the volume
set (in ASCII form) to which this volume belongs, padded to 12
bytes with spaces. The characters must be ASCII characters
that can be printed (that is, no control or delete characters).
Moreover, using only alphanumerics is also recommended to
avoid conflicts with command languages.

This field may not be null. If this volume is not a member of a
volume set, this area is filled with spaces.

HM2$T_VOLNAME Volume name. This area contains the volume label in ASCII
form. It is padded to 12 bytes with spaces. The characters
must be ASCII characters that can be printed (that is,
no control or delete characters). Moreover, using only
alphanumerics is also recommended to avoid conflicts with
command languages. This field may not be null.

If the volume is a member of a shadow set, the name is the
same across all the members.

HM2$T OWNERNAME Volume owner. This area contains an ASCII string identifying
the owner of the volume. The area is padded to 12 bytes with
trailing spaces.

HM2$T_FORMAT Format type. This field contains the ASCII string “DECFILE11B”
padded to 12 bytes with spaces. It identifies the volume as
being of Files—11 format, structure level 2.

HM2$W_CHECKSUM2 Second checksum. This word is the last word of the home

: block. It contains an additive checksum of the preceding 255
words of the home block, calculated by the same algorithm
used to calculate the end checksum of the header area.

2.5.1.3 Cluster Filler

If the cluster factor v of the volume is greater than 1, then the next v*2— 2 blocks
of the index file are copies of the home block used to fill out the first two clusters
of the index file. Note that, for cluster factors greater than 1, this method results
in a wasted disk cluster. The benefit of this technique is a much simpler rule for
finding the VBN of parts of the index file.
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2.5.1.4 Backup Home Block

The backup home block is a copy of the home block that is located farther
along the home block search sequence. It permits the volume to be used even if
the primary home block is destroyed.

In general, the backup home block should be allocated on the second good block of
the search sequence. If it is not, then no preceding block of the sequence can be
available for allocation. Otherwise, a malicious user could construct a counterfeit
index file which would be used if the primary home block were corrupted.

The cluster which contains the backup home block is mapped into the index file
as virtual blocks v * 2 + 1 through v * 3, where v is the volume cluster factor.

The backup home block may be located anywhere within this cluster because
there is no definite relationship between the cluster factor and the volume’s track
and cylinder boundaries. The entire cluster is therefore filled out with copies of
the home block. The file system must be able to allocate two good home blocks
on the home block search sequence. The blocks in the sequence preceding the
two home blocks that are not used for home blocks must be marked both bad and
allocated, especially LBN 1.

2.5.1.5 Backup Index File Header

The next cluster of the index file contains the backup index file header so data
on the volume can be recovered if the index file header is corrupted. The cluster
occupies virtual blocks v * 3 + 1 through v *4, where v is the volume cluster factor.

The LBN of the backup index file header is stored in location HM2$L,_ALTIDXLBN
in the home block. The backup index file header occupies the first block of this
cluster. The remaining blocks are not used, so their contents are undefined.

2.5.1.6 Index File Bitmap

The index file bitmap is used to control the allocation of file numbers and file
headers. It is simply a bit string of length n, where n is the maximum number of
files allowed on the volume. This value is stored in the HM2$L,_MAXFILES field
in the home block.

The bitmap spans as many blocks as needed to map the allocation of the files
on the volume. This number is the maximum number of files divided by 4096
and rounded up. The number of blocks in the bitmap is contained in the
HM2$W_IBMAPSIZE field of the home block.

The bits in the index file bitmap are numbered sequentially from 0 to n— 1 from
right to left in each byte, and in order of increasing byte address. Bit 7 is used to
represent file number 5 + 1. If the bit is set (or 1), then that file number is in use;
if the bit is clear (or 0), then that file number is not in use and may be assigned
to a newly created file. The index file bitmap is not used to determine whether a
header is valid when accessing an existing file; the validation is done using the
contents of the header itself.
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The index file bitmap starts at virtual block v+4+1 of the index file and continues
through VBN v * 4 + m, where m is the number of blocks in the bitmap, and v is
the storage map cluster factor. It is located at the logical block indicated by the
HM2$L_IBMAPLBN field in the home block.

2.5.1.7 File Headers

The rest of the index file contains all the file headers for the volume. The first
sixteen file headers (for file numbers 1 to 16) are logically contiguous with the
index file bitmap to make them easy to locate, but the rest may be suitably
allocated wherever the file system decides. Thus, the first sixteen file headexs
may be located from the information in the home block (HM2$W_IBMAPSIZE
and HM2$L_IBMAPLBN) while the rest must be located through the mapping
data in the index file header. The file header for file number n is located at
virtual block v * 4 + m + n, where m is the number of blocks in the index file
bitmap and v is the storage map cluster factor.

The end-of-file (EOF) mark for the index file is located at or beyond the last file
header ever used. All header blocks located before the end-of-file mark must be
validated when they are used to create a new file. If the block does not contain

a valid file header, it is allocated for a new header. The new header is assigned
a file sequence number of 1 if it is the first use of this header block. Index file
blocks beyond the end-of-file mark are assumed not to be valid file headers for the
purpose of creating new file headers.

If the block contains a deleted file header, the new header is assigned a sequence
number one higher than the header currently contained in the block.

A block containing a valid file header must never be used to create a new file,
even if it is marked free in the index file bitmap. This rule prevents files from
being lost if bits are dropped in the bitmap.

2.5.2 Storage Bitmap File

The storage bitmap file has file ID 2,2. It is listed in the MFD as BITMAP.SYS;1.
The storage bitmap is used to control the available space on a volume. It consists
of both a storage control block, or SCB, which contains summary information
about the volume, and the storage bitmap itself, which lists the individual
blocks that are available for allocation.

This file has the format of 512-byte fixed-length records with no carriage control.
The end-of-file mark points to the last block used. The storage bitmap file must
be contiguous.
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2.5.2.1 Storage Control Block

Virtual block 1 of the storage bitmap is the storage control block (SCB). It
contains summary information about the volume. Note that some of the features
in the SCB require it to be written when the volume is mounted or dismounted.
The fields of the SCB are shown in Figure 2-21 and are described in Table 2-16.

Figure 2-21: Format of the Storage Control Block

SCB$W_CLUSTER SCB$W_STRUCLEV 0
SCB$L_VOLSIZE 4
SCBS$L_BLKSIZE 8
SCB$L_SECTORS 12
SCB$L_TRACKS 16
SCB$L_CYLINDER 20
SCB$L_STATUS 24
SCB$L_STATUS2 28
SCB$W_WRITECNT 32

A2 SCB$T_VOLOCKNAME (12 bytes) s
44

SCB$Q_MOUNTTIME

SCB$W_BACKREV 52
SCB$Q_GENERNUM 56
s SCB$B_RESERVED (446 bytes) 7 64
SCB$W_CHECKSUM 508
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Table 2-16: Contents of the Storage Control Block

Field Name

Description

SCB$W_STRUCLEV

SCB$W_CLUSTER

SCB$L_VOLSIZE

SCB$L_BLKSIZE

SCB$L_SECTORS
SCB$L_TRACKS

SCB$L_CYLINDER

Storage map structure level. This word contains the structure
level of the storage control block. The high byte contains the
value 2 to indicate Files—11 structure level 2. The low byte
contains the version number, which must be greater than or
equal to 1.
Storage map cluster factor. This word contains the storage
map cluster factor of the volume. Its contents are identical to
the contents of HM2$W_CLUSTER in the home block. It is
placed here for convenience.
Volume size. This field contains the volume size expressed as
logical blocks.
Blocking factor. This field contains the blocking factor of the
volume, that is, the number of physical blocks or sectors that
make up one logical block.
Sectors per track. This field contains the number of logical
blocks in each track of the volume.
Tracks per cylinder. This field contains the number of tracks
contained in each cylinder of the volume.
Number of cylinders. This field contains the total number
of cylinders on the volume. The preceding three fields allow
space on the physical boundaries of the volume to be allocated
in an optimized manner.

(continued on next page)
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Table 2-16 (Cont.): Contents of the Storage Control Block

Field Name

Description

SCB$L_STATUS

SCB$L_STATUS2

SCB$W_WRITECNT

SCB$T_VOLOCKNAME

Status word. This word contains the volume status flags that
follow; these bits are not currently supported.
SCB$V_MAPDIRTY Set if the storage map is “dirty,” or
only partially updated.
SCB$V_MAPALLOC Set if the storage map is
preallocated, which may result
in lost blocks.

SCB$V_FILALLOC Set if file numbers are preallocated,
which may result in lost header
slots.

SCB$V_QUODIRTY Set if the quota file is “dirty,” or
only partially updated.

SCB$V_HDRWRITE Set if file headers are to be cached
with write-back operations.

Secondary status. This word contains a copy of the status

flags while the volume is mounted for write access. The

volume flag bits match those of the SCB$L_STATUS field.

These bits are not currently supported. The volume status

flags are as follows:

SCB$V_MAPDIRTY2 Set if the storage map is “dirty,” or
only partially updated.

SCB$V_MAPALLOC2 Set if the storage map is
preallocated, which may result
in lost blocks.

SCB$V_FILALLOC2 Set if file numbers are preallocated,
which may result in lost header
slots.

SCB$V_QUODIRTY?2 Set if the quota file is “dirty,” or
only partially updated.

SCB$V_HDRWRITE2 Set if file headers are to be cached
with write-back operations.

Writer count. This word contains the number of systems that

have the volume currently mounted for write access.

Volume lock name. This word contains a unique name used as
a root for file system serialization or resource synchronization
on the volume.

(continued on next page)
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Contents of the Storage Control Block

Field Name

Description

SCB$Q_MOUNTTIME

SCB$W_BACKREV

SCB$Q_GENERNUM

Time of last mount. This field contains the date and time of
the last time the volume was mounted for write access. It is
expressed in the standard time format.

BACKUP revision number. This field indicates the number of
times the volume has been copied using the DCL command
BACKUP/IMAGE.

Shadow set revision number. This field is the basic shadow
volume generation indicator. It has two characteristics:

* Its value always increases.

e It represents the time at which the most recent change in
shadow set status occurred while the volume was still a
mémber of the shadow set.

If the two characteristics conflict, the increasing value takes
priority, and the generation number is updated using the
following algorithm:

Let CURRENT TIME be the current time.
Let OLD_GENERNUM be the generation
number to be increased.
Let NEW_GENERNUM be the increased
generation number.
If CURRENT TIME > OLD_GENERNUM,
then NEW_GENERNUM = CURRENT_ TIME;
otherwise
NEW_GENERNUM = OLD_ GENERNUM + 1.

'The generation number is updated by writing directly to

the shadow set, never to the individual members of the
shadow set. It is updated just before the entire shadow

set is dismounted or after processing is completed when

the membership of the shadow set changes. A change in
membership occurs when a volume is added, a volume is
removed because of hardware failure, or a volume is removed
with a user command. Note that an added volume will receive
the updated generation number, but a removed volume will
not because the generation number is written to the current
membership only after the addition or the removal has been
completed.

(continued on next page)



76  Files—11 On-Disk Structure

Table 2-16 (Cont.): Contents of the Storage Control Block

Field Name Description

SCB$B_RESERVED Reserved.

SCB$W_CHECKSUM End checksum. This word contains the block checksum. It is
calculated using the same algorithm as the end checksum of
the header area.

2.5.2.2 Storage Bitmap

Virtual blocks 2 through n + 1 are the storage bitmap itself. It is best viewed as a
bit string of length m, numbered from 0 to m — 1, where m is the total number of
clusters on the volume rounded up to the next multiple of 4096.

Each cluster contains v logical blocks, where v is the storage map cluster factor
(also referred to as the volume cluster factor) contained in the field in the
home block. The bits are addressed in the usual manner (packed right to left
in sequentially numbered bytes).

Since each virtual block holds 4096 bits, n blocks (where n = zfiz) are used

to hold the bitmap. Bit 7 of the bitmap represents logical blocks 7 * v through

7 * v+ v — 1 of the volume. If the bit is set, the blocks are free; if clear, the
blocks are allocated. The last k bits of the bitmap are always clear, where k is the
difference between the true size of the volume and m, the length of the bitmap.

Rounding the storage map file up to the next multiple of the volume cluster factor
may result in some unused blocks at the end of the file. The end-of-file mark
points to the last block used.

2.5.3 Bad Block File

The bad block file has file ID 3,3. It is listed in the MFD as BADBLK.SYS;1. The
bad block file is simply a file containing all the known blocks on the volume that
cannot reliably store data. This file has the record format of 512-byte fixed-length
records with no carriage control.

On disks containing a bad block descriptor, the last track of the volume comprises
the first several clusters of the bad block file. This rule ensures that the bad
block data is available to software in a file-structured manner and is preserved
when the volume is initialized again.

The end-of-file mark is placed during volume initialization at the end of the bad
blocks found during the initialization. At all times, the end-of-file mark must
point past the bad block descriptor data.
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2.5.3.1 Manufacturer’s Bad Block Descriptor

Many Digital-supplied disks that predate Digital Storage Architecture (DSA)
disks have a manufacturer-supplied format that lists on the volume’s last
(highest) track all the known bad blocks or sectors. It is written in 16-bit format.
Disks of this type include the RK06, RK07, RP06, and the RM03.

The fields of a manufacturer-supplied bad block descriptor are shown in
Figure 2-22 and are described in Table 2-17.

Figure 2-22: Format of the Manufacturer-Supplied Bad Block Descriptor

BBD$L_SERIAL 0

BBD$W_FLAGS BBD$W_RESERVED 4

» Bad block entries (500 bytes) P 8
BBDS$L_LASTWORD 508

Table 2-17: Contents of a Manufacturer-Supplied Bad Block Descriptor

Field Name Description

BBD$L_SERIAL Serial number of the disk.
BBD$W_RESERVED Reserved area.

BBD$W_FLAGS Status flags. This field contains a value of 0 for normal use. A
nonzero value is used to identify maintenance disks, which should
never be initialized.

(continued on next page)
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Table 2-17 (Cont.): Contents of a Manufacturer-Supplied Bad Block Descriptor

Field Name Description

BBD$L_BADBLOCK Bad block entry. This longword is an individual bad block entry,
which identifies a defective block on the disk. The start of the bad
block entries is pointed to by the symbol BBD$C_DESCRIPT. A
list of bad block entries may occupy up to 500 bytes; that is, only
126 bad block entries may be recorded. After the last bad block
has been listed, the rest of the field is padded with all 1s, which
identifies the end of the bad block list.

The format of an individual bad block entry is shown in
Figure 2-23.

BBD$L_LASTWORD Last longword of block. This field contains all 1s to signal the end
of the bad block descriptor to the file system.

Figure 2-23 shows the format of an individual bad block entry. Table 2—-18
describes the bits contained in the BBD$L,_BADBLOCK field.

Figure 2-23: Format of a Bad Block Entry (BBD$L_BADBLOCK)

31 24 16 15 0
BBD$V_TRACK | BBD$V_SECTOR BBD$V_CYLINDER

ZK-9585-HC

Table 2-18: Contents of a Bad Block Entry

Bit Meaning

BBD$V_CYLINDER Cylinder number of the bad block. This field is 15 bits long and
starts at bit 0. .

BBD$V_SECTOR Sector number of the bad block. This field is 8 bits long and starts
at bit 16.

BBD$V_TRACK Track number of the bad block. This field is 7 bits long and starts
at bit 24.

All the sectors on the last track that contain bad block data are written in the
same format as any other track on the disk; that is, they have the same preamble,
gaps, error correction code (ECC), and postamble. The even-numbered sectors of
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the highest ten sectors (that is, sectors 0, 2, 4, 6, and 8) are available for the
manufacturer’s bad block descriptor.

The rest of the sectors on the last track (sectors 10 to 21) contain the software
bad block descriptor. These sectors have the same format as the manufacturer’s
bad block descriptor except that the area for the bad block entries contains all
1s, which indicates that no bad sectors are listed. This area is where the system
software may list the sectors that have become defective while in use.

2.5.3.2 Software Bad Block Descriptor

For disks that do not have factory last-track bad block data and are not DSA
disks, a software-generated bad block map is supplied. It is always located on the
last good block of the volume. There must be at least one reliable block in the
last 256 blocks of the volume for this bad block map to be generated.

The fields of a bad block descriptor are illustrated in Figure 2-24 and are
described in Table 2-19.

Figure 2-24: Format of a Software Bad Block Descriptor

BBMS$B_AVAIL BBMS$B_INUSE BBM$B_LBNSIZE BBM$B_COUNTSIZE 0
~ Retrieval Pointers (506 bytes) ~ 4
BBM$W_CHECKSUM 508

Table 2-19: Contents of a Software Bad Block Descriptor

Field Name Description

BBM$B_COUNTSIZE Count size. This field contains the retrieval pointer count field
size, which must always contain a value of 1.

BBM$B_LBNSIZE Logical block number. This field contains the retrieval pointer
LBN field size, which must always contain a value of 3.
BBM$B_INUSE Map words in use. This field contains the number of retrieval

words that contain bad block data.
(continued on next page)
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Table 2-19 (Cont.): Contents of a Software Bad Block Descriptor

Field Name Description

BBM$B_AVAIL Map words available. This field contains the number of
retrieval words that are available to bad block data.

BBM$W_CHECKSUM End checksum.

Each bad block descriptor retrieval pointer is four bytes long. The fields of a
retrieval pointer are shown in Figure 2-25 and are described in Table 2-20.

Figure 2-25: Format of a Bad Block Descriptor Retrieval Pointer

BBM$W_LOWLBN BBM$B_COUNT BBM$B_HIGHLBN 0

Table 2-20: Contents of a Bad Block Descriptor Retrieval Pointer

Field Name Description

BBM$B_HIGHLBN High-order LBN. This field contains the high-order bits of the
24-bit LBN.

BBM$B_COUNT Block count. This field contains the count field (in excess 1
format).

BBM$W_LOWLBN Low-order LBN. This field contains the low 16 bits of the 24-bit
LBN field.

.2.5.3.3 Bad Block Processing on DSA Disks

Disks conforming to the Digital Storage Architecture (DSA) format have no
visible bad blocks. Disks of this type include the RA60, RA80, RA87, RA81, and
RA90. Instead, the hardware and the disk class driver (DUDRIVER) produce a
logically contiguous range of good blocks. If a block in the user area of the disk
becomes defective, further accesses to that block are revectored to a nearby spare
good block. A percentage of blocks are reserved for revectoring when the disk is
formatted.
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There are two types of block replacement:

¢ Host-initiated—The operating system implements the replacement
algorithm because the disk controller does not have sufficient memory.

¢ Controller-initiated—A disk controller with sufficient memory (such as an
HSC) implements the replacement algorithm.

The list of replacement blocks is kept in the replacement and caching table
(RCT). The RCT provides the control structures and extra storage used during
automatic block replacement operations. The RCT also keeps a list of defective
blocks and replacement blocks currently in use. In a sense, the RCT replaces the
manufacturer’s bad block list because the factory enters any defective blocks in
the RCT before shipment. As a result, it is never necessary to run the Bad Block
Locator Utility (BAD) on DSA disks. Also, the file BADBLK.SYS;1 is empty.

Any inconsistencies in the RCT will cause the disk to be write-locked automati-
cally. The RCT can become invalid in the following two ways:

e All the replacement blocks may be in use. In this case, an entry is made in
the error logger, and the disk is mounted for read access only.

e The blocks of the RCT itself cannot be revectored, so the RCT is recorded
multiple times on the disk. The locations are maintained by the disk
controller. Each copy of the RCT is sequentially read from or updated during
read or write operations. If and only if every copy is defective, the volume is
automatically protected against write access.

2.5.4 Master File Directory

The master file directory has file ID 4,4. It is listed in the MFD (itself) as
000000.DIR;1. The MFD is the root of the volume’s directory structure. It lists
the reserved files plus entries for all top-level user file directories (UFDs). It also
contains whatever files the user chooses to enter.

The format of the MFD is the same as that of all directory files. The format of
directory files is covered in Section 2.4.1.

2.5.5 Core Image File

The core image file has file ID 5,5. It is listed in the MFD as CORIMG.SYS;1. Its
use depends on the operating system. In general, it provides a file of known file
ID for the use of the operating system (as a swap area, for example). This file has
the record format of 512-byte fixed-length records with no carriage control. The
end-of-file mark points to the physical end of the file.
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2.5.6 Volume Set List File

The volume set list file has file ID 6,6. It is listed in the MFD as VOLSET.SYS;1.
It is used only on relative volume 1 of a tightly coupled volume set. It contains a
list of the volume labels of the volumes contained in the volume set.

The format of this file is 64-byte fixed-length records with implied carriage
control. The first 12 bytes of record 1 contain the volume set name. The first 12
bytes of record n contain the volume label of relative volume n— 1. The remaining
52 bytes of each record are reserved.

Figure 2-26 shows the format of the volume set list file.

Figure 2-26: Format of the Volume Set List File
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VSL$T_NAME (12 bytes) A

2 reserved (52 bytes) 12

2.5.7 Continuation File

The standard continuation file has file ID 7,7. It is listed in the MFD as
CONTIN.SYS;1. It is used as the extension file ID when a file crosses from
one volume of a loosely coupled volume set to another.

The purpose of this reserved file ID is to allow a multivolume file to be written
sequentially with only one volume mounted at a time. Ordinarily, when a file is
extended onto another volume, the new header must be created first so that the
new file ID can be obtained before the extension linkage in the current header
can be written. The use of this reserved file ID allows the extension linkage to be
written with a known constant before the next volume is even on line.

2.5.8 Backup Journal File

The backup journal file, also called the backup log file, has file ID 8,8. It is
listed in the MFD as BACKUP.SYS;1. This file contains a history of volume and
incremental backups performed on the volume. This file is not currently used.
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2.5.9 Pending Bad Block Log File

The pending bad block log file has file ID 9,9. It is listed in the MFD as
BADLOG.SYS;1. This file contains a list that identifies the suspected bad blocks
on the volume that are not currently contained in the volume’s bad block file. The
format of this file is 16-byte fixed-length records.

Each record in the file represents one bad block. The format of each record is
shown in Figure 2-27 and is described in Table 2-21.

For more information about how this file is used in bad block processing, see
Section 5.4.8.

Figure 2-27: Format of a Pending Bad Block Log Record

PBB$W_FID 0
PBB$B_COUNT PBB$B_FLAGS 4
PBB$L_VBN 8
PBB$L_LBN ‘ 12

Table 2-21: Contents of a Pending Bad Block Log Record

Field Name Description

PBB$W_FID File ID of the file that contains the bad block.

PBB$B_FLAGS Flags. The following flag bits are defined:
PBB$V_READERR Set if a read error has occurred on this block.

PBB$V_WRITERR Set if a write error has occurred on this block.
PBB$B_COUNT Error count.

PBBS$L_VBN Virtual block number. This field contains the VBN of the bad block of
the file. :

PBB$L_LBN Logical block number. This field contains the LBN of the bad block of
the file.
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3.1 Introduction

This chapter describes the file system operations and data structures involved in
volume structure processing.

Volume structure processing describes a broad spectrum of activities, ranging
from making the disk available to the user to accessing the data on the
disk. It also includes how both the in-memory and the on-disk structures are
manipulated.

Part of making the disk available to the user involves initializing, mounting,
and dismounting the disk. Disk initialization is covered in Section 3.2. Section
3.3 describes the Mount procedure and the primary data structures of the I/O
database. Among these structures are the ACP queue block, the file control block,
the relative volume table, the volume control block, and the window control block.
Rebuilding the bitmap and the disk quota files is also covered in this section. The
Dismount procedure is described in Section 3.4.

3.2 Initializing the Volume

Before files or data can be written to a disk volume for the first time, the volume
must be initialized. The DCL command INITIALIZE is used to format data
structures and to write a label to the volume. In general, the INITIALIZE
command invalidates all existing data (if any) on the volume and creates a new
file structure. One of the most important tasks is to place and write the volume’s
reserved files.

Initializing involves the following main tasks:

* QGathering and checking the preliminary parameters

® Processing the bad blocks on the disk

¢ Performing a Data Security Erase (DSE), should one be requested
¢ Placing the reserved files on the volume

¢ Creating the storage bitmap file

¢ Initializing the index file

¢ Creating the master file directory

Most of the modules pertaining to initializing a disk are located in the INIT
facility; some are located in the MOUNT facility. The main program is located in
the INIVOL module in the INIT facility, and the routine INIT_VOLUME in the
INIVOL module contains most of the initialization logic.
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3.2.1 Checking the Preliminary Parameters

Certain preliminary checking and processing needs to be done before the volume
can actually be initialized. To begin with, the $GETJPI system service obtains
the UIC of the process from which the INITIALIZE command was issued. The
INITIALIZE command line is then parsed to acquire the user’s input, including
the device and volume name, and the results are written to a global data area.

After the command line has been parsed, the device is allocated, and a channel
is assigned to it. If the user has specified a logical name on the command line, it
is translated. The device characteristics are obtained with the $GETDVI system
service, and the device is checked to ensure that it is a file-oriented device.

The routine INIT DISK in the module INIDSK is then called. It defines an
internal allocation table in memory containing an entry for the necessary reserved
structures. The table actually consists of two parallel tables: one stores the size
of allocated areas and the other stores the LBN of each area.

The volume valid bit in the unit control block (UCB$V_VALID) is set, indicating
to the operating system that the volume is valid. A pack acknowledgment
function JO$_PACKACK) is then issued to enable I/O to the volume because

it is not mounted.

The privilege mask of the process that issued the INITIALIZE command is
checked for VOLPRO privilege. If the process does not have that privilege, the
original home block of the volume is read to find the UIC of the volume owner,
which is contained in the HM2$L_VOLOWNER field. The UIC must either be
zero, indicating that the volume is not owned, or it must match the UIC of the
process that issued the INITIALIZE command.

All the volume parameters—including protection, extension size, window size,
and the number of headers—that were not specified on the INITIALIZE command
line are established from the system and group defaults. These parameters are
verified against the volume size and characteristics.

The volume size is calculated and rounded up to the next cluster boundary.

The maximum number of files can either be specified with the INITIALIZE

/MAXIMUM_FILES command or defaulted from the volume size and cluster
factor.

The minimum number of preallocated headers is specified with the INITIALIZE
/HEADERS command. The maximum number of headers is 65,500, and the
default is 16.

The initial position of the index file is determined based on user input. The index
file can be placed at the beginning, the middle, or the end of a disk. It can also
start at a specific LBN. If the user did not speclfy the /INDEX qualifier on the
INITIALIZE command line, the default position is the middle of the disk, which
minimizes the disk seek time.
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3.2.2 Formatting the Disk

The Initialize Utility is capable of formatting floppy disks on RX02, RX33, and
RX23 disk drives. If a /DENSITY qualifier is specified on the command line, an
I0$_FORMAT function is issued with an appropriate density parameter to cause
the disk controller to format the disk.

3.2.3 Processing Software Bad Blocks

After the preliminary checking is completed, the routine INIT_BADBLOCK
performs bad block processing to see in which blocks data cannot be written. DSA
disks with replacement and caching tables (RCT) do not have visible bad blocks,
so they are not processed. Disks that have fewer than 4096 blocks are also not
processed by default.

If the /VERIFIED qualifier was specified on the command line, INIT_BADBLOCK
first establishes whether the volume has factory last-track bad block data

or software bad block data and then calls either the GET_FACTBAD or the
GET_SOFTBAD routine.

If the disk has a manufacturer-supplied format, routine GET_FACTBAD marks
the entire last track of the disk bad (or invalid) to prevent the software from
using it. The last track of the disk contains bad block data written by the factory-
formatting process. The data consists of two sections:

¢ The first block
* The first good block after sector 10

The purpose of this data is to record both factory- and software-detected bad
block data. The list containing the factory bad block data is written in the first
five even-numbered sectors (sectors 0, 2, 4, 6, and 8) of the last track of the disk.
The software bad block data can be written in sectors 10 through 21. For more
information on the manufacturer-supplied disk format, see Section 2.5.3.1.

After a good copy of each of the bad block lists has been found, all the bad block
entries in them are processed. Descriptors containing the cylinder, sector, and
track numbers of the bad blocks are created.

If the disk does not have a manufacturer-supplied format and is not a DSA disk,
the user must first run the Bad Block Locator Utility (BAD) on the disk to detect
defective blocks. The routine GET_SOFTBAD processes the data left by this bad
block scan. It searches backward from the end of the volume to find the bad block
data. When a valid bad block descriptor is found, its LBN is entered in the bad
block list. Then its contents are processed and entered in the bad block list.

If the /NOVERIFIED qualifier was specified on the INITIALIZE command line,
the existing bad block data on the disk is temporarily ignored until the difference
between the disk size and the cluster blocking factor is calculated. Blocks that
form the partial cluster are entered in the bad block file so they cannot be used.
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The bad block entries are stored in descending LBN order. The bad block table
is searched until an entry is found with a starting LBN that is lower than the
current entry. The table is then extended, and the current entry is inserted in its
proper position.

Contiguous or overlapping areas are also merged. Neighboring entries are
compared to see if their LBNs are adjacent; if they are, the two entries are
combined to form one entry expressing a range of LBNs. For more information on
the software bad block format, see Section 2.5.3.2.

If the user has specified the /BADBLOCKS qualifier on the INITIALIZE command
line (if the user has previously run the Bad Block Locator Utility (BAD), for
example), the routine GET_USERBAD is called. It processes any bad block
entries the user entered on the command line and puts them in the bad block
table. If the entry was specified in cylinder/sector/track format, it is first
converted to an LBN.

3.2.4 Performing a Data Security Erase

If the user specified the /ERASE qualifier on the INITIALIZE command line, a
data security erase (DSE) is performed on the disk. A DSE can either be:

* A one-step procedure that zeroes the designated blocks on the disk
* An iterative procedure that writes a special pattern to the disk

Both procedures use the SERAPAT system service, an erase pattern generator.
The $ERAPAT code is loadable and may vary from site to site, but the default
pattern is 0.

If the default $ERAPAT code is used (or already loaded), the one-step DSE
procedure is performed, and the designated blocks are zeroed.

However, if the flag SGN$V_LOADERAPAT! in the cell SGN$GL_LOADFLAGS
is set, an alternate $ERAPAT has been specified. In this case, the iterative DSE

procedure is performed, and it is repeated until $ERAPAT returns a status of
SS$_NOTRAN.

Before the disk is erased, the area to be erased is determined, making sure that
any bad block data, particularly the factory bad block file, is not overwritten
during the procedure. The disk may be erased either from the beginning to the
start of the allocated extent or, if there is no bad block data, to the end of the
volume.

1 This flag corresponds to the system parameter LOADERAPAT. This parameter is dynamic (it may
be changed on a running system). However, the site-specific $ERAPAT (ERAPAT.EXE) may not be
loaded until the system is rebooted.
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A DSE is performed only when the user explicitly requests it. The /ERASE
qualifier also sets the ERASE volume attribute (HM2$V_ERASE), so when a file
on the disk is deleted, it is overwritten with an erase pattern. This can also be
accomplished with the command SET VOLUME/ERASE_ON_DELETE.

3.2.5 Locating the Volume Structures

After the data security erase is completed, the allocation routine is called. This
routine determines the size and location of each component of the volume’s file
structure.

An allocation table holds descriptors for all the structure components. The bad
block list is part of this table.

Each time a part of the disk is allocated to some structure, an entry is written
to this table. The extent of each entry is rounded up or down to the next cluster
boundary.

The allocation table index entry for the boot block is inserted. This entry has the
effect of locating the boot block at the first available cluster (usually 0).

Next, the primary and secondary home blocks are allocated. If the boot block
starts at LBN 0 and the cluster factor is greater than 1, a dummy primary home
block cluster is allocated because the real home block starts at LBN 1. If the boot
block does not start at LBN 0, the home block search sequence is calculated, and
the home block is allocated to the first available block in the sequence. For more
information on the home block search sequence, refer to Section 2.5.1.2.

The master file directory, the storage bitmap file, the initial index file, and the
alternate index file header are all inserted, in that order, into the allocation table,
provided that the /INDEX=END qualifier was not specified on the INITIALIZE
command line. This logic results in the best placement of the most frequently
referenced portions of the file structure. If the index file is placed at the end of
the volume, these files are allocated in reverse order to achieve the same effect.

3.2.6 Building the Storage Bitmap File

After the volume structures have been located in the allocation table, the storage
bitmap file (file ID 2,2 or BITMAP.SYS;1) is built and initialized. First, the fields
of the storage control block are filled in and written to disk. Then the contents of
the bitmap itself are written, making sure that the areas listed in the allocation
table (the reserved files) are marked as being in use. The table entries are
processed in LBN order, starting with the lowest LBN, to prevent disk thrashing.

The internal allocation table is adjusted to reflect the cluster size. There is one
bit in the bitmap for each cluster on the disk. Therefore, each block (512 bytes) in
the storage bitmap or allocation table can represent 512 * 8 or 4096 clusters.
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3.2.7 Setting Up the Index File

After the SCB and the storage bitmap file have been written to disk, the index file
(file ID 1,1 or INDEXF.SYS;1), the boot block, multiple copies of the home block,
the index file bitmap, and the initial file headers are all initialized.

First, the boot block is written. Then the current system date and time are
obtained with the $GETTIM system service, and the fields of the home block are
constructed in order. The quadword containing the date and time is copied to the
HM2$W_CREDATE field.

The home block is then written to disk multiple times, depending on the cluster
factor. It is written to the remainder of the boot block cluster as well as to the
two home block clusters.

The initial index file bitmap is the next data to be written. Its size is sufficient
to accommodate the specified maximum number of files on the volume. The first
block indicates the reserved files in use. The rest of the blocks contain all Os.

The first file header to be written is the core image file header. The core image
file is used because it is the first file to be written on the volume. The directory
back link field points to the MFD. This initial header is then used as the template
for the remainder of the reserved files. Essentially, the only information that
differs among the file headers is the file ID, the file name, the record attributes
(including the record size, the maximum record size, the highest allocated VBN,
and the end-of-file block), map pointers (if any), and the checksum.

The first header to be constructed and written using the fields of the core image
file header as a guide is the continuation file header. Then the backup journal file
header and the pending bad block log file header are constructed and written to
disk.

The index file header is the next header to be constructed. Retrieval pointers for
the components of the index file are appended to the map area.

The bad block file header and then the storage bitmap file header are constructed.
A retrieval pointer is appended to the map area.

The last header to be constructed is the master file directory header. The
FH2$V_DIRECTORY bit is set, indicating that this reserved file is a directory;
the FAT$M_NOSPAN bit is also set, indicating that the records cannot cross block
boundaries. A retrieval pointer is appended to the map area.

3.2.8 Writing the Master File Directory

Last, the contents of the master file directory (file ID 4,4 or 000000.DIR;1) are
initialized. In other words, the records for all the reserved files, including the
MFD itself, are written into the master file directory.
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The MFD records are copied into a zero-filled buffer and written in this order:

Master file directory record itself
Backup journal file

Bad block file

Pending bad block log file
Storage bitmap file

Standard continuation file

Core image file

Index file

Volume set list file

Each record is 24 bytes long (the record byte count field contains 22, which does
not include its own 2 bytes). The following chart shows the contents of each
directory record in the MFD:

Field Name Meaning Value

DIR$W_VERLIMIT Version limit 1

DIR$B_FLAGS Flags field

DIR$B_NAMECOUNT File name length 10

DIR$T_NAME Name string - Name of the file

DIR$C_FID File ID File identification number of
the file

After the MFD is written to the disk, initialization is complete, and the volume is
ready to be mounted.

3.3 Mounting a Volume

Before files or data on a volume can be processed, the volume must be mounted.
The Mount Utility (MOUNT) is used to make a disk volume and the files it
contains accessible to the file system. It also establishes the necessary resident
I/0 database structures.
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3.3.1 I/O Database

The I/O database is a collection of control blocks generally allocated from
nonpaged system (or dynamic) memory. It consists of two types of data structures:

Those that provide information used by device-oriented components such as
drivers, channel control routines, and device interrupt dispatchers.

They include the unit control block (UCB), the device data block (DDB), the
channel request block (CRB), the I/O request packet (IRP), the interrupt
dispatch block (IDB), the UNIBUS adapter control block (ADP), and the
channel control block! (CCB).

Those that provide information used by file-oriented components such as the
file system.

The file-oriented data structures are created dynamically when a volume is
mounted on a device and file activity starts. The information is specific to
a particular volume and its files and is maintained as long as the volume
remains mounted. There are five major data structures in the I/O database:

— Volume control block—The VCB is a system data structure to describe
volumes.

— ACP queue block—The AQB identifies a file processor. For an ACP, it
contains the I/O queue listhead and a pointer to the ACP process. For the
XQP, however, it points to the buffer cache.

— File control block—The FCB is a collection of per-file process-related
information (such as the file highwater mark, UIC, and protection).

— Window control block—The WCB is the means by which a process looks
at a file.

— Relative volume table—The RVT is a system data structure to track
volume sets. '

All these structures are protected so that users can neither read nor write to
them.

Not only does MOUNT create the data structures of the I/O database and link
the structures but it also creates mount-specific data structures such as mounted
volume list entries, and logical names associated with the mounted volume, which
provide device independence.

The file-oriented data structures are located using a pointer in the appropriate
unit control block to find the associated VCB of the mounted volume. Similarly, a
pointer in the channel control block is used to locate the WCB for an accessed file.

1 Channel control blocks are located in P1 space.
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Figure 3-1 shows the structures of the I/O database and how they are linked.

Figure 3—-1: Relationship Among the File-Oriented Data Structures
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3.3.1.1 Volume Control Block
The volume control block (VCB) contains the information needed to control

access to a volume. It is created when the volume is mounted, and there is

one VCB for each mounted volume (or volume set) on the system. The VCB is
permanent for the life of the volume.

It is located by the address in the UCB$L_VCB field in the unit control block.
The VCB also contains the addresses for other structures in the I/O database,
including the relative volume table and the ACP queue block.

The fields of the VCB are shown in Figure 3-2 and are described in Table 3-1.

Figure 3-2: Format of the Volume Control Block

VCBS$L_FCBFL 0

VCBS$L_FCBBL 4

VCB$B_STATUS VCB$B_TYPE VCB$W_SIZE 8
VCB$W_RVN VCB$W_TRANS 12

VCBS$L_AQB 16

¥ VCBS$T_VOLNAME (12 bytes) F 20
VCB$L_RVT 32

VCB$L_HOMELBN 36

VCB$L_HOME2LBN 40

VCBS$L_IXHDR2LBN 44

VCB$L_IBMAPLBN 48

VCB$L_SBMAPLBN 52

VCB$W_IBMAPVBN VCB$W_IBMAPSIZE 56

(continued on next page)
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VCB$W_SBMAPVBN

VCB$W_SBMAPSIZE

60

VCB$W_EXTEND

VCB$W_CLUSTER

64

VCBS$L_FREE

68

VCB$L_MAXFILES

72

VCB$W_FILEPROT

VCB$B_LRU_LIM VCB$B_WINDOW

76

VCB$B_RESFILES

VCB$B_EOFDELTA

VCB$W_MCOUNT

80

VCB$B_STATUS2

VCB$B_BLOCKFACT

reserved

84

VCB$L_QUOTAFCB

88

VCB$L_CACHE

92

VCB$L_QUOCACHE

96

VCB$W_PENDERR

VCB$W_QUOSIZE

100

VCB$L_SERIALNUM

104

VCB$L_RESERVED1

108

VCB$Q_RETAINMIN

112

VCB$Q_RETAINMAX

120

VCB$L_VOLLKID

128

VCB$T_VOLCKNAM (12 bytes)

o

4132

VCB$L_BLOCKID

144

(continued on next page)
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Figure 3-2 (Cont.): Format of the Volume Control Block

VCB$Q_MOUNTTIME

148

VCB$L_MEMHDFL
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VCB$L_MEMHDBL

160

VCB$B_SHAD_STS

VCB$B_SPL_CNT VCBSW_ACTIVITY

164

VCB$L_SHAD_LKID

168

h)Y
«

VCB$B_ACB (28 bytes)

172

reserved (20 bytes)

4200

reserved (20 bytes)

9220

Table 3-1: Contents of the Volume Control Block

Field Name

Description

VCB$L_FCBFL

VCB$L_FCBBL
VCB$W_SIZE
VCB$B_TYPE

VCB$B_STATUS

Forward link of the FCB listhead. All open files on a volume

are represented by an FCB linked into this list.
Backward link of the FCB listhead.
Size of VCB in bytes.

Structure type. This field contains the DYN$C_VCB type code

to identify the data structure as a volume control block.

Volume status flags. The following flag bits are defined within

VCB$B_STATUS:

(continued on next page)
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Contents of the Volume Control Bilock

Field Name Description

VCB$V_WRITE_IF Index file is open for write access.
This is bit 24.

VCB$V_WRITE_SM Storage map is open for write
access. This is bit 25.

VCB$V_HOMBLKBAD Primary home block is bad. This
is bit 26.

VCB$V_IDXHDRBAD Primary index file header is bad.
This is bit 27.

VCB$V_NOALLOC Allocation and deallocation are
inhibited because of invalid
bitmaps. This is bit 28.

VCB$V_EXTFID This bit is no longer used.

VCB$V_GROUP Volume is mounted /GROUP. This
is bit 30.

VCB$V_SYSTEM Volume is mounted /SYSTEM.
This is bit 31.

VCB$W_TRANS Volume transaction count. This field maintains the number
of files open on the volume plus the number of I/O request
packets in the ACP queue.

VCB$W_RVN Relative volume number (RVN). This field contains the RVN
of the volume within a multivolume set.

VCB$L_AQB Address of ACP queue block.

VCB$T_VOLNAME Volume label.

VCB$L_RVT Address of the RVT or the UCB. This field may contain either

VCB$L_HOMELBN
VCB$L_HOME2LBN
VCB$L_IXHDR2LBN
VCB$L_IBMAPLBN
VCB$L_SBMAPLBN
VCB$W_IBMAPSIZE

the address of the relative volume table if the volume is part
of a volume set or the unit control block for the volume if it is
not.

LBN of the home block for the volume.
LBN of the alternate home block for the volume.
LBN of the alternate index file header.
LBN of the index file bitmap.
LBN of the storage bitmap.
Size of the index file bitmap in blocks.
(continued on next page)



100 Volume Structure Processing

Table 3-1 (Cont.):

Contents of the Volume Control Block

Field Name

Description

VCB$W_IBMAPVBN

VCB$W_SBMAPSIZE
VCB$W_SBMAPVBN

VCB$W_CLUSTER
VCB$W_EXTEND
VCBS$L_FREE
VCB$L_MAXFILES
VCB$B_WINDOW
VCB$B_LRU_LIM

VCB$W_FILEPROT
VCB$W_MCOUNT

VCB$B_EOFDELTA
VCB$B_RESFILES
VCB$B_BLOCKFACT
VCB$B_STATUS2

VCB$V_ERASE

Current VBN in the index file bitmap. This field contains the
virtual block number of the block at which to start the next
file creation scan.

Size of the storage bitmap in blocks.

Current VBN in the storage bitmap. This field contains the
virtual block number of the block at which to start the next
allocation scan.

Volume cluster size.

Default file extension length for the volume.

Number of free blocks on the volume.

Maximum number of files allowed on the volume.

Default window size for the volume.

Directory least recently used (LRU) cache entry limit for the
volume. This field is not supported.

Volume default file protection.

Mount count. This field contains the number of processes that
have the volume mounted. This field applies only to shareable
mounts.

Index file EOF update count. This field is not supported.
Number of reserved files on the volume.

Volume blocking factor.

Second status byte. The following flag bits are defined within
VCB$B_STATUS2:
VCB$V_WRITETHRU Write-through caching is
enabled for the volume. This
is bit 24.

All caching is disabled on
volume. This is bit 25.
Volume can undergo mount
verification. This is bit 26.

Data is erased when blocks are
deleted from the file. This is
bit 27.

VCB$V_NOCACHE

VCB$V_MOUNTVER

(continued on next page)
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Table 3-1 (Cont.): Contents of the Volume Control Block

Field Name

Description

VCB$L_QUOTAFCB
VCB$L_CACHE
VCB$L_QUOCACHE
VCB$W_QUOSIZE
VCB$W_PENDERR
VCB$L_SERIALNUM
VCB$L_RESERVED1
VCB$Q_RETAINMIN
VCB$Q_RETAINMAX
VCB$L_VOLLKID
VCB$T_VOLCKNAM
VCB$L_BLOCKID

VCB$Q_MOUNTTIME
VCB$L_MEMHDFL

VCB$L_MEMHDBL

VCB$V_NOHIGHWATER Highwater marking is disabled.

This is bit 28.

Nonshared mount. This bit
starts at bit 29.

Clusterwide locking is necessary.
This is bit 30.

Address of the FCB of the disk quota file.

Address of the volume cache block.

VCB$V_NOSHARE

VCB$V_CLUSLOCK

Address of the volume quota cache.

Size of the quota cache in bytes.

Count of pending write errors.

Volume serial number.

This field is reserved.

Minimum file retention period in ADT format.
Maximum file retention period in ADT format.
Volume lock ID.

Name for volume lock.

Volume blocking lock. This field contains the 12-byte
unique volume identifier. It is used, along with the
VCB$W_ACTIVITY field, to stall activity on a single volume,
It is also called an activity blocking lock, or blocking lock.
See Section 8.3.5 for more information on the blocking lock.

However, if the volume is a volume set member, the
corresponding fields in the RVT are used instead, so blocking
occurs over the entire volume set. See Section 3.3.1.5 for more
information.

Volume mount time.

Controller shadow set members queue header forward link.
This field contains the linked list pointer from the virtual unit
VCB through the list of physical member VCBs.

Controller shadow set members queue header backward link.
This field contains the linked list pointer from the virtual unit
VCB through the list of physical member VCBs.

(continued on next page)
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Table 3—1 (Cont.): Contents of the Volume Control Block

Field Name Description

VCB$W_ACTIVITY Activity count flag. This field determines whether or not
processing can be performed on the volume. If the low bit of
this field is set (that is, it contains an odd value), status is
normal, and volume activity can proceed.

If the field contains a value of 0, the volume is idle, and
further activity is blocked.

If the field contains an even, nonzero value, the volume is not
idle, and further activity is blocked.

VCB$B_SPL_CNT Count field of devices spooled to the volume. A volume
that has devices spooled to it cannot be dismounted, so
DISMOUNT checks this field for a value of 0. This field is
incremented by the command SET DEVICE/SPOOLED.

VCB$B_SHAD_STS Controller shadowing rebuild state flags.

VCB$L_SHAD_LKID Controller shadowing rebuild synchronization lock ID.
Controller shadowing uses this lock through an AST to
the swapper to synchronize a shadow set rebuild operation
between different VAXcluster nodes.

VCB$B_ACB AST control block for a blocking AST.

3.3.1.2 Window Control Block
The window control block (WCB) has two main purposes:

¢ It provides storage for access control information.

* It contains a set of mapping pointers that allow the virtual block numbers of
a file to be mapped to the logical block numbers on a disk.

In other words, the WCB contains the information necessary to transfer
information from the disk.

The WCB is located in nonpaged pool. It is pointed to by the CCB$L_WCB field
in the channel control block, and it points to both the relative volume table and
the file control block associated with the file.

A WCB is local to one access, and when another access to a file is sought, another

WCB is built. Multiple WCBs may be associated with a single file. Of all the

data structures in the I/O database, it is the most likely to be adjusted because

gf window turns. Also, accessing and deaccessing a file causes the WCB to be
iscarded.



The fields of the WCB are shown in Figure 3-3 and are described in Table 3-2.
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Figure 3-3: Format of the Window Control Block

WCBS$L_WLFL

WCBS$L_WLBL

WCB$B_ACCESS WCB$B_TYPE WCB$W_SIZE

WCBS$L_PID

WCB$L_ORGUCB

WCBS$W_NMAP

WCB$W_ACON

WCBS$L_FCB

WCBS$L_RVT

WCBS$L_LINK

WCB$L_READS

WCBS$L_WRITES

WCBS$L_STVBN

WCBSL_P1_LBN

WCBS$W_P1_COUNT

WCB$W_P2_COUNT

WCBS$L_P1_LBN

WCBSL_P2_LBN
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Table 3-2: Contents of the Window Control Block

Field Name Description

WCBS$SL_WLFL Window list forward link. This field contains the forward
link of the window list that connects all windows for a given
file to their respective file control blocks.

WCB$L_WLBL Window list backward link.

WCB$W_SIZE Size of window block in bytes.

WCB$B_TYPE Structure type. This field contains the DYN$C_WCB type

WCB$B_ACCESS

code to identify the data structure as a window control block.
Access control byte. The following flag bits are defined

within WCB$B_ACCESS:
WCB$V_READ

WCB$V_WRITE

WCB$V_NOTFCP

WCB$V_SHRWCB

WCB$V_OVERDRAWN

WCB$V_COMPLETE

WCB$V_CATHEDRAL

Set if read access is allowed. This
is bit 24.

Set if write access is allowed.
This is bit 25.

Set if the file is not accessed by
the standard file system. This is
bit 26.

Shared window. This is bit 27.

File accessor has overdrawn
the quota allotted to accessor’s
process. This is bit 28.

Set if the window maps the entire
file. This is bit 29.

Large, complex window used

to map the file completely.
Contiguous files are always
completely mapped, but
noncontiguous file may or may
not be completely mapped.
However, if the file is opened with
a cathedral window, complete
mapping may be ensured. All
the mapping information will be
read from the file headers (from
the map area or areas) into a
WCB, so no window turn is ever
necessary. This is bit 30.

(continued on next page)
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Table 3-2 (Cont.): Contents of the Window Control Block
Field Name Description
WCB$V_EXPIRE File expiration date may need to
‘ be set. This is bit 31.
WCB$L_PID Process ID of the accessor process.
WCB$L_ORGUCB Address of the original UCB from the CCB.
WCB$W_ACON Access control information. Note that these bits track the

bits in the FIB$L_ACCTL field. The following flag bits are
defined within WCB$W_ACON:

WCB$V_NOWRITE
WCB$V_DLOCK
WCB$V_SPOOL
WCB$V_WRITECK
WCB$V_SEQONLY
WCB$V_WRITEAC
WCB$V_READCK
WCB$V_NOREAD

WCB$V_NOTRUNC

Other writers are not allowed.
This is bit 0.

Deaccess locking is enabled.
This is bit 1.

File is spooled when it is
closed. This is bit 4.

Write checking is enabled.
This is bit 5.

Sequential access only is
permitted. This is bit 6.

Write access is permitted. This
is bit 8.

Read checking is enabled. This
is bit 9.

Other readers are not allowed.
This is bit 10.

Truncation is not allowed. This
is bit 11.

The following flag bits defined within WCB$W_ACON do not
track the bits in the FIB$L_ACCTL field:

(continued on next page)



106  Volume Structure Processing

Table 3-2 (Cont.): Contents of the Window Control Block
Field Name Description
WCB$V_NOACCLOCK Arbitration lock checking
is not performed (that is,
the file was opened with the
FIB$V_NOLOCK flag set).
This is bit 2.
WCB$V_WRITE_TURN Window turns are forced
during write operations. This
bit starts at bit 12.
WCB$W_NMAP Number of mapping pointers.
WCBS$L_FCB Address of the FCB.
WCBS$L_RVT Address of either the RVT or the UCB (if the volume is not a
member of a volume set).
WCB$L_LINK Link to the next window segment.
WCB$L_READS Count of read operations performed.
WCB$L_WRITES Count of write operations performed.
WCBSL_STVBN Starting VBN mapped by the window.

WCB$W_P1_COUNT
WCBS$L_P1_LBN
WCB$W_P2_COUNT
WCB$L_P2_LBN

Count field of the first pointer in the WCB.
Disk address (LBN field) of the first pointer.
Count field of the second pointer.

Disk address (LBN field) of the second pointer. Format of
retrieval pointer.

3.3.1.3 ACP Queue Block

The AQB represents an instance of an ACP or XQP. For an ACP, the AQB
contains the listhead of the queue of I/O request packets. On the other hand,
the XQP uses the listhead for other purposes, and keeps its queue listhead in the

P1 space of each process.

The AQB is the communication path between the Queue I/O Request ($QIO)
system service and the XQP. Each process has its own AQB, while one AQB
represents the XQP in all processes.

The fields of the AQB are shown in Figure 3—4 and are described in Table 3-3.
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Figure 3—4: Format of the ACP Queue Block

AQBS$L_ACPQFL 0

AQB$L_ACPQBL 4

AQB$B_MNTCNT AQB$B_TYPE AQB$W_SIZE 8
AQBS$L_ACPPID 12

AQBSL_LINK 16

Reserved AQB$B_CLASS AQB$B_ACPTYPE AQB$B_STATUS 20
AQB$L_BUFCACHE 24

Table 3-3: Contents of the ACP Queue Block

Field Name

Description

AQBS$L_ACPQFL

AQBS$L_ACPQBL

AQB$W_SIZE
AQB$B_TYPE

AQB$B_MNTCNT

AQBS$L_ACPPID

AQBS$L_LINK

ACP IRP queue listhead forward link. This field points to the
first IRP in the queue.

However, if the ACB represents an XQP, this queue listhead is
used to synchronize access to the buffer cache.

ACP IRP queue listhead backward link. This field points to the
last IRP in the queue.

Size of the AQB in bytes.

Structure type. This field contains the DYN$C_AQB type code
to identify the data structure as an ACP queue block.

ACP mount count. This field contains the number of volumes
being serviced by an ACP process.

Process identification. This field contains the process
identication (PID) of the ACP process servicing the queue.

If the ACP represents an XQP, this field contains 0.

AQB list linkage.

(continued on next page)
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Table 3-3 (Cont.): Contents of the ACP Queue Block

Field Name Description
AQB$B_STATUS Status byte. The following flag bits are defined within
AQB$B_STATUS:
AQB$V_UNIQUE ACP is unique to this device. This is
bit 0.
AQB$V_DEFCLASS ACP is default for this class. This is
bit 1.
AQB$V_DEFSYS ACP is default for the system. This
is bit 2.
AQB$V_CREATING ACP is currently being created. This
is bit 3.

AQB$V_XQIOPROC Extended QIO processor is being
used. This is bit 4.

AQB$B_ACPTYPE ACP type code—magnetic tape ACP (MTAACP), remote ACP
(REMACP), or network ACP (NETACP).
AQB$B_CLASS ACP class code.

AQB$L_BUFCACHE Pointer to the buffer cache if this is an XQP.

3.3.1.4 File Control Block

The file control block (FCB) contains the information needed to control access to
a file. It is created when a file is accessed for the first time; subsequent accesses
to this file must use the same FCB.

FCBs for recently used directories are retained to optimize repeated access to
directories.

The FCB points to the file header for additional mapping information about the
file. It is pointed to by the WCB$L_FCB field. FCBs are chained together in a
doubly linked list.

A file is represented by one FCB per node, but copies of that FCB exist on
every node of a VAXcluster. In this way, an FCB may be considered global to
a VAXcluster but local to a system.

The fields of the FCB are shown in Figure 3-5 and are described in Table 3-4.
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Figure 3-5: Format of the File Control Block

FCB$L_FCBFL 0

FCB$L_FCBBL 4

FCB$B_ACCLKMODE FCB$B_TYPE FCB$W_SIZE 8
FCBS$L_EXFCB 12

FCBS$SL_WLFL 16

FCBS$L_WLBL 20

FCB$W_ACNT FCB$W_REFCNT 24
FCBSW_LCNT FCB$W_WCNT 28
FCB$W_STATUS FCBSW_TCNT 32
FCB$W_FID 36

FCB$W_SEGN 40
FCB$L_STVBN 44

FCB$L_STLBN 48

FCB$L_HDLBN 52

FCBS$L_FILESIZE 56

FCBS$L_EFBLK 60

. FCB$L_DIRINDX FCB$W_VERSIONS 64
FCB$W_DIRSEQ FCBS$L_DIRINDX . 68
FCB$L_ACCLKID 72

FCB$L_LOCKBASIS 76

FCB$L_TRUNCVBN : 80

(continued on next page)
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Figure 3-5 (Cont.): Format of the File Control Block

FCBS$L_CACHELKID
FCB$L_HIGHWATER
FCBS$L_NEWHIGHWATER
FCB$W_HWM_ERASE FCB$W_HWM_UPDATE
reserved FCB$W_HWM_PARTIAL

FCB$L_HWM_WAITFL

FCB$L_HWM_WAITBL

FCB$L_FILEOWNER

reserved

reserved

reserved

FCB$Q_ACMODE

FCB$L_SYS_PROT

FCB$L_OWN_PROT

FCB$L_GRP_PROT

FCB$L_WOR_PROT

FCB$L_ACLFL

FCBS$L_ACLBL

«w

reserved (20 bytes)

84

88

92

96

100

104

108

112

116

120

124

128

136

140

144

148

152

156

7160

(continued on next page)
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Figure 3-5 (Cont.): Format of the File Control Block

)Y

reserved (20 bytes) 5180

Table 3—4: Contents of the File Control Block

Field Name

Description

FCB$L_FCBFL
FCB$L_FCBBL
FCB$W_SIZE
FCB$B_TYPE
FCB$B_ACCLKMODE

FCB$L_EXFCB

FCB$L_WLFL
FCB$L_WLBL
FCB$W_REFCNT

FCB$W_ACNT

FCB$W_WCNT

FCB list forward link. This field is the forward link for linking
the FCB to the chain of FCBs off the volume control block.

FCB list backward link. This field is the backward link for
linking the FCB to the chain of FCBs off the volume control
block.

Size of FCB in bytes.

Structure type. This field contains the DYN$C_FCB type code
to identify the data structure as a file control block.
Arbitration lock mode. This field contains the highest lock
mode of an accessor on this node of the VAXcluster.

Address of the extension FCB. This field contains the address
of the extension file control block. If one does not exist, this
field contains a 0. An extension FCB is created for each
extension header of a multiheader file.

Forward link of the window listhead.
Backward link of the window listhead.

Reference count. This field gives the total references to this
FCB, which represents the number of channels active to the
file. In other words, it indicates the number of processes that
are currently accessing the file.

File access count. The field gives the number of users that
currently have the file open for access. This count does not
include accesses with the FIB§V_NOLOCK flag, so it can be
less than the reference count.

File writer count. This field gives the number of channels
open to the file that have the ability to write to the file.

(continued on next page)
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Table 3—4 (Cont.): Contents of the File Control Block

Field Name Description

FCB$W_LCNT File lock count. This field gives the number of accessors that
have the file locked against writers.

FCB$W_TCNT Count of truncate locks. This field gives the number of

FCB$W_STATUS

FCB$W_FID
FCB$W_SEGN
FCB$L_STVBN

FCB$L_STLBN

FCB$L_HDLBN
FCB$L_FILESIZE

accessors that have the file locked to prevent truncation.

File status. The following flag bits are defined within
FCB$W_STATUS:

FCB$V_DIR FCB is a directory LRU entry. This
is bit 16.

FCB$V_MARKDEL File is marked for deletion. This is
bit 17.

FCB$V_BADBLK Bad block encountered in file. This
is bit 18.

FCB$V_EXCL File is exclusively accessed. This is
bit 19.

FCB$V_SPOOL File is an intermediate spool file.
This is bit 20.

FCB$V_RMSLOCK File is open with RMS record

locking. This is bit 21.

Data will be erased when the blocks
are removed from the file. This is
bit 22.

ACL is corrupt. This is bit 23.

FCB must be reconstructed from the
file header. This is bit 24.

FCB$V_DELAYTRNC Delayed truncation is pending
against the file. This is bit 25.

FCB$V_ERASE

FCB$V_BADACL
FCB$V_STALE

File identifier.
File segment number.

Starting VBN. This field contains the starting virtual block
number of the file section represented by this FCB.

Starting LBN. This field contains the starting logical block
number of the file, if it is contiguous. If the file is not
contiguous, this field contains a value of 0.

LBN of the file header.
File size in blocks.
(continued on next page)
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Table 34 (Cont.): Contents of the File Control Block

Field Name

Description

FCB$L_EFBLK
FCB$W_VERSIONS

FCB$L_DIRINDX

FCB$W_DIRSEQ

FCB$L_ACCLKID
FCB$L_LOCKBASIS

FCB$L_TRUNCVBN
FCB$L_CACHELKID
FCB$L_HIGHWATER

End-of-file VBN.

Maximum number of versions in directory. This field applies
to directory files only.

Directory index block pointer. This field contains a pointer to
the directory index block in the buffer cache that corresponds
to this directory file. It is used only for directory FCBs.

Directory use sequence number. This field applies to directory
files only.

Access lock ID.

Lock basis for this FCB. This field contains the basis (a file
number and an RVN) for building the resource name for locks
taken against this file.

VBN for delayed truncation.
Cache interlock lock ID.
Highwater mark in file.

FCB$L_NEWHIGHWATER Highwater mark of a pending write operation. This field

FCB$W_HWM_UPDATE

FCB$W_HWM_ERASE
FCB$W_HWM_PARTIAL

FCB$L_HWM_WAITFL

FCB$L_HWM_WAITBL

FCB$L_FILEOWNER
FCB$Q_ACMODE
FCB$L_SYS_PROT
FCB$L_OWN_PROT

contains the highest block in the file that is in the process of
being written.

Count of write operations in progress that affect the highwater
mark.

Count of highwater mark erase operations in progress.

Count of partially validated erase operations. This field
contains a count of pending highwater mark erase operations
that were truncated by end of file. (Corresponding IRPs are
flagged with the IRP$V_PART_HWM bit.)

Highwater mark update queue forward link. This field
contains the queue head for virtual I/Os waiting for conflicting
highwater-mark-related operations to complete. Pending write
operations are stored on the front of the queue.

Highwater mark update queue backward link. Pending read
operations are stored on the back of the queue.

File owner UIC.
Access mode protection vector.
System protection word.
Owner protection word.
(continued on next page)
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Table 34 (Cont.): Contents of the File Control Block

Field Name Description
FCB$L_GRP_PROT Group protection word.
FCB$L_WOR_PROT World protection word.
FCBS$L_ACLFL Access control list forward link.
FCBS$L_ACLBL Access control list backward link.

3.3.1.5 Relative Volume Table

The relative volume table (RVT) contains the information to associate the
volumes of a multivolume set with the address of the UCB of the unit on which
each of the volumes is mounted. In other words, there is one RVT per volume set.
It is pointed to by both the window control block and the volume control block.
The RVT may point to multiple UCBs.

The fields of the RVT are shown in Figure 3-6 and are described in Table 3-5.

Figure 3-6: Format of the Relative Volume Table

RVT$L_STRUCLKID 0

RVTSW_ACTIVITY RVT$W_REFC 4

RVT$B_NVOLS RVT$B_TYPE RVT$W_SIZE 8

g RVT$T_STRUCNAME (12 bytes) A 12

h)Y

> RVT$T_VLSLCKNAM (12 bytes) 2 04
RVTS$L_BLOCKID 36
J RVT$B_ACB (28 bytes) A 40

(continued on next page)
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Format of the Relative Volume Table

RVTSL_UCBLST ¥ 68

Table 3-5: Contents of the Relative Volume Table

Field Name

Description

RVT$L_STRUCLKID
RVT$W_REFC

RVT$W_ACTIVITY

RVT$W_SIZE
RVT$B_TYPE

RVT$B_NVOLS
RVT$T_STRUCNAME
RVT$T_VLSLCKNAM
RVT$L_BLOCKID

RVT$B_ACB

Lock ID of volume set lock.

Reference count, which is the number of volumes in the
volume set that are currently mounted.

Activity count flag. This field determines whether or not
processing can be performed on the volume set. If the low bit
of this field is set (that is, it contains an odd value), status is
normal, and volume set activity can proceed.

If the field contains a 0, the volume set is idle, and further
activity is blocked.

If the field contains an even, nonzero value, the volume is not
idle, and further activity is blocked.

Size of RVT in bytes.

Structure type. This field contains the DYN$C_RVT type code
to identify the data structure as a relative volume table.

Number of volumes in the set.
Volume set name.
Volume set lock name.

Blocking lock ID. This field contains the 12-byte unique vol-
ume set identifier. It is used, along with the RVT$W_ACTIVITY
field, to stall volume set activity. It is also called an activity
blocking lock.

AST control block for blocking AST.

(continued on next page)



116  Volume Structure Processing

Table 3-5 (Cont.): Contents of the Relative Volume Table

Field Name Description

RVT$L_UCBLST Addresses of UCBs. This field contains the beginning of a
table of UCB addresses for all volumes in the set. For a given
relative volume number (RVN), the UCB can be accessed by
using the RVN as an index into the RVT$L_UCBLST table.
For example, the UCB address of relative volume number 1
is at location RVT$L_UCBLST, the UCB address of relative
volume number 2 is at location RVL_UCBLST + 4; and so on.

3.3.2 Processing the Volume Mount

A request to mount a volume occurs because of initial system startup or because
a specific request is received from a user or an operator to mount a volume.
The Mount Utility (MOUNT), which makes a disk available for processing, is

a privileged shareable image. Therefore, it has the privilege to change mode to
kernel so that it can allocate and build the resident I/O database components.

However, MOUNT does as much work as possible in executive mode. For
example, all the disk blocks (including the index file, the storage bitmap headers,
and the storage bitmap itself) are read in executive mode.

The VMOUNT module is the main routine of the $MOUNT system service. It
contains the general control flow of the mount operation.

The module MOUNTIMG is located in the VMOUNT image. This image acquires
the DCL MOUNT command line from the CLI parser, parses this command line,
and calls the $MOUNT system service.

The $MOUNT system service performs the actual mount operation.

3.3.2.1 Obtaining User Input

The main routine SYS$VMOUNT processes the parameters the user entered on
the command line. The user’s current privilege mask is saved, and the following
amplified privileges are granted:

Privilege Meaning
ACNT Disable accounting
ALTPRI Set base priority higher than allotment

BUGCHK Make bugcheck error log entries
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Privilege Meaning

BYPASS Disregard protection

DETACH Create detached processes of arbitrary UIC
EXQUOTA Exceed disk quota

GROUP Control processes in the same group
MOUNT Execute mount volume QIO
PHY_IO Issue physical I/O requests
PSWAPM Change process swap mode
TMPMBX Temporary mailbox

SETPRV Enable any privilege bit

SYSLCK Lock systemwide resources

WORLD Control any process

SYS$VMOUNT transfers control to the routine VMOUNT_ENVELOPE, which
serves as the base call frame for all the executive mode code, and it intercepts
all executive mode conditions. It calls the MOUNT_VOLUME routine, which
attempts to mount the volume.

If the user specified the /SHARE, /GROUP, or the /SYSTEM qualifier on the
command line, the I/O database must be searched for a matching volume label.

The volume lock, which correctly serializes simultaneous shared mounts, is
released by the SYS$VMOUNT routine when the volume has been completely
and successfully mounted.

3.3.2.2 Searching for a Mountable Device
A volume may be mounted in one of two ways:

¢ Shared mount—Specified by the /SHARE, /GROUP, /SYSTEM, or /CLUSTER
qualifier. The device on which the volume is mounted is not allocated; the
volume may be accessed from more than one process.

¢ Private mount—Default. The device that the volume is mounted on is
allocated to the job from which the mount request was issued.

If the volume is to be mounted with the /SHARE, /GROUP, or /SYSTEM qualifier,
the I/O database is searched for a device with the label specified on the command
line. The database must be locked during the search. The list of device data
blocks (DDBs) is walked, and the UCB list off each DDB is followed to find file-
structured devices that are mounted but not allocated. If the search is successful,
the UCB address is returned.
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If the volume is being mounted with the /SYSTEM or the /GROUP qualifier, an
error is signaled if a duplicate volume name is found. Only if the volume is being
mounted for sharing can a duplicate volume name be tolerated. In this case, the
mount count is incremented, and the volume found is successfully mounted.

If the volume is not found or it is being mounted with the /NOSHARE qualifier,
the I/O database is searched again for a device that can be mounted. If a private
mount is requested, the IOC$V_ALLOC flag is set to take out an exclusive lock.
When the device is found, a lock is taken out against the allocation class device
name. An exclusive mode lock is acquired if the device is being allocated (that
is, the volume is being mounted privately) and a protected write mode lock is
acquired if the volume is being mounted publicly. The lock is taken in noqueue
mode, so that if the device is in use elsewhere in the cluster, the lock request
will fail. Once the device is successfully locked, it is allocated with the following
actions:

* The access mode is set to the access mode of the caller.

¢ The DEV$V_ALL bit is set in the UCB$L_DEVCHAR field, indicating that it
is allocated.

¢ The reference count is incremented in the UCB$W_REFC field.
® The device owner is set.

Once the device is acquired, the mount lock or mount interlock is taken in
. exclusive mode to synchronize all mounts on this device. It has the following
form:

MOU$<allocation-class-device-name>
This lock is also taken in noqueue mode.

If the MOUS interlock fails, the device is released, and MOUNT queues for the
MOUS$ lock. Once the lock is granted, it is released. MOUNT waits a short
random interval to prevent “livelock” with other processes, and then repeats the
device acquisition procedure.

Figure 3-7 shows the format of the mount lock.
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Figure 3-7: Mount Synchronization Lock

Device Name

ZK-9729-HC

3.3.2.3 Setting Up Device Context

Once the device has been acquired, a channel to the device is obtained with
the $GETCHAN system service. The device characteristics are obtained with
$GETDVI, and the device type is validated. The mount qualifiers are checked to
ensure that they are consistent with the device type.

Next, the device context must be obtained to ensure that mounts of the same
device from different nodes in a cluster are consistent. The mount context
relevant to the device and volume locks must be initialized by acquiring the
value block of the device lock, if it exists. The device lock has the following
form:

SYS$<device-name>

Figure 3-8 shows the format of the device lock.

Figure 3-8: Device Allocation Lock

Device Name

ZK-9728-HC
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Lock modes for the device lock have the following meanings:

Lock Mode Meaning

Concurrent read Channel assigned or mounted.
Protected write Mount is in progress.
Exclusive Device is allocated.

Figure 3-9 shows how the mount and device locks are acquired.
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Figure 3-9: Device Synchronization Flow
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The mount context for a device (if it is already mounted) is contained in the
device lock value block. The lock ID is obtained from the UCB$L_LOCKID
field. The device lock value block is checked when a volume is mounted shared
or clusterwide. The device context of the mounted volume is compared with the
qualifiers specified in the MOUNT command to see if the two are compatible. If
they are incompatible, an error is returned.

The value block of the device lock is heavily used. For example, it tracks the
following MOUNT information:

¢ Mount mode

¢ Structure level of the volume

e UIC

¢ Protection

¢ Whether the volume is mounted read-only or read/write

This information is all used by MOUNT to guarantee consistency in the way the
volume is mounted across the cluster.

Figure 3—10 shows the value block for the device lock.

Figure 3-10: Device Lock Value Block

DC_PROTECTION DC_FLAGS

DC_OWNER_UIC

reserved

reserved

ZK-9704-HC
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Table 3—-6 shows the fields of the device allocation lock value block.

Table 3-6: Contents of the Device Lock Value Block

Field Name Description

DC_FLAGS Device usage flags. This field corresponds to the DAL$W_FLAGS field.
The following flag bits are defined within DC_FLAGS:
DC_NOTFIRST_MNT Not the first time mounted. This bit

is clear if the volume has not been
mounted elsewhere. It corresponds to
the DAL$V_NOTFIRST_MNT bitfield
mask.

DC_FOREIGN The device was mounted with the
MOUNT/FOREIGN command. This bit
corresponds to the DAL$V_FOREIGN
bitfield mask.

DC_GROUP The device was mounted with the
MOUNT/GROUP command. This bit
corresponds to the DAL$V_GROUP
bitfield mask.

DC_SYSTEM The device was mounted with the
MOUNT/SYSTEM command. This bit
corresponds to the DAL$V_SYSTEM
bitfield mask.

DC_WRITE Write access allowed. This bit
corresponds to the DAL$V_WRITE
bitfield mask.

DC_NOQUOTA Quota checking disabled. This bit
corresponds to the DAL$V_NOQUOTA
bitfield mask.

DC_OVR_PROT Override protection. This bit
corresponds to the DAL$V_OVR_PROT
bitfield mask.

DC_OVR_OWNUIC Override volume ownership. This bit
corresponds to the DAL$V_OVR_OWNUIC
bitfield mask.

DC_NOINTERLOCK Access is not VAXcluster inter-
locked. This bit corresponds to the
DAL$V_NOINTERLOCK bitfield mask.

DC_SHADOW_MBR Shadow set member. This bit corre-
sponds to the DAL$V_SHADOW_MBR
bitfield mask.

(continued on next page)
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Table 3-6 (Cont.): Contents of the Device Lock Value Block

Field Name Description

DC_PROTECTION Volume protection.
DC_OWNER_UIC Volume owner UIC.

If the device lock value block is zero, the process is considered the first mounter
on this device.

3.3.2.4 Establishing the Volume Defauilts

The actual process of mounting an ODS-2 disk is handled by the routine
MOUNT_DISK2 in the module MOUDK2. This routine does as much preliminary
work as possible in executive mode. All the disk blocks (including the index file,
the storage bitmap headers, and the storage bitmap itself) are read in executive
mode so that the program can be aborted without corrupting the reserved files or
leaving the structures of the I/O database in an undefined state. Also, prototype
control blocks are built in local storage and then copied into system pool for the
same reason.

The process and volume owner UIC are obtained. The current PCB is located
in the scheduler database, and the process UIC is read from the PCB$L_UIC
field. The volume owner UIC is read from the HM2$L,_VOLOWNER field in the
private copy of the home block. Privilege checks are made for overriding volume
protection and for options requiring operator privilege.

The volume set name is established, either from the /BIND qualifier on the
command line or from the HM2$T STRUCTNAME field in the home block. If
both are present, they must match.

The system defaults are checked to establish the following specialized cache sizes:

¢ Extent cache—If the size of the extent cache has not been set and the user
did not explicitly disable caching for the volume, the default extent cache
size is established from the value set with the ACP_EXTCACHE system
parameter. Otherwise, the cache size is set to 0, disabling extent caching for
the volume.

The default limit of the volume space to which the extent cache can point is
established using the ACP_EXTLIMIT system parameter.

¢ FID cache—The default FID cache size is established from the value set
with the ACP_FIDCACHE system parameter. If no FID cache is needed on
the volume, the cache size is set to 1.
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* Quota cache—The default quota cache size is established from the value set
with the ACP_QUOCACHE system parameter. The cache size is contained in
the VCB$W_QUOSIZE field, and the quota file itself is always placed on RVN
1. If no quota cache is needed on the volume (or on the remaining members
of a volume set), the cache size is set to 0.

The transaction count and the mount count are both set to 1 in the prototype
VCB. Other fields of the prototype VCB are filled in using the fields of the
home block, including the fields HM2$V_ERASE, HM2$L_SERIALNUM, and
HM2$V_NOHIGHWATER. If the volume is being mounted with the /GROUP
qualifier, the VCB$V_GROUP bit is set to 1. If it is being mounted with the
/SYSTEM qualifier, the VCB$V_SYSTEM bit is set to 1.

The value of the VCB$L_HOMELBN field of the prototype VCB is copied from
the LBN of the primary home block. The value of the VCB$L_HOMEZ2LBN field
is likewise copied from the HM2$L_ALHOMELBN field of the home block. If
the value of the two fields is equal, then the VCB$V_HOMBLKBAD bit is set,
indicating that the primary home block is invalid.

The device blocking factor is obtained from the device information block. The
index file bitmap LBN, the volume cluster factor, and the default window size are
also filled in using the fields in the home block. If the current number of window
pointers is 0, the default number of window pointers is set to 7. However, if the
volume is being mounted with the /SYSTEM qualifier, the default number of
pointers is established by the ACP_WINDOW system parameter. Otherwise, the
value is taken from the /WINDOW qualifier the user specified on the command
line.

The LRU limit is the directory preaccess limit. It is a count of the number of
directories to be stored in the directory index cache. For a volume managed by an
ACP, it is an estimate of the number of concurrent users (that is, the number of
directories that will be in use concurrently) on the volume. If the volume is being
mounted with the /SYSTEM qualifier, the default number of directory FCBs to be
cached is set with the ACP_SYSACC system parameter. Otherwise, the value is
taken from the /ACCESS qualifier the user specified on the command line. If the
user explicitly specified that no caching was to be enabled for the volume, then
the LRU limit is set to 0.

For a volume managed by an XQP, however, the LRU limit is obsolete. Accessed
directories are instead managed on a per-buffer-cache basis and are limited by
the ACP_DINDX_CACHE system parameter.

The value in the VCB$W_EXTEND field is copied from the HM2$W_EXTEND
field in the home block. Although the VCB$W_EXTEND field is set up by
MOUNT, it is not used by any other VMS facility (including RMS).

The number of blocks that are allocated to a file when a user extends the file and
asks for the system default allocation is taken from the HM2$W_EXTEND field.
If the current value is 0, it is set to 5. Otherwise, the value is taken from the
/EXTEND qualifier the user specified on the command line.
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The index file bitmap size and the maximum number of files are also established
by the fields of the home block.

If the user specified the /CACHE=WRITETHROUGH qualifier, the VCB$V_WRITETHRU
bit is set to 1. If the INOCACHE qualifier was specified, the VCB§V_NOCACHE
bit is set to 1.

3.3.2.5 Initializing the Prototype Index File FCB

The first step in initializing the FCB of the index file is to read and verify the
index file header. If the header is invalid, the alternate index file header is used
instead. The address of the header is used to initialize the prototype index file
FCB.

The map area of the index file, pointed to by the FH2$B_MPOFFSET field of
the home block, is scanned. The file size is calculated from the value in the
FCBS$L_FILESIZE field, plus the number of retrieval pointers.

In computing the number of retrieval pointers, the type of map pointer is
determined, and the size and LBN fields of the pointer are filled in accordingly.
The pointer count is incremented, and another pointer is fetched; placement
pointers, however, are transparently excluded in the count. For more information
on the format of retrieval pointers, see Sections 2.3.3.3.1 through 2.3.3.3.4.

The rest of the fields in the index file FCB are then filled in. The file attributes of
the FCB are updated using the attributes of the index file header, but the file size
is preserved.

The address of the object rights block (FCB$R_ORB) is noted. The header LBN,
file ID, starting VBN, file owner, and file protection are filled in. The lock basis,
from which a serialization lock is constructed, is extracted from the low-order file
number (FCB$W_FID_NUM), the high-order file number (FCB$B_FID_NMX),
and the relative volume number (FCB$B_FID_RVN). If the directory bit is not
set, add 1 to the volume’s directory LRU.

3.3.2.6 Constructing the Prototype Index File Window

After the prototype index file FCB is set up, the prototype index file window

is built. The WCB$W_SIZE field is calculated by adding the value specified by
WCB$C_LENGTH and the value the user specified with the /WINDOW qualifier
on the MOUNT command line. The WCB$V_READ bit is set to 1, allowing read
access. Then a window is set up that maps as much as possible of the index file,
starting with VBN 3. The presence of the WCB and the FCB causes the index file
to be open on the volume when it is mounted.

The map area of the file header is scanned, and retrieval pointers in the window
are built until one of the following results occurs:

¢ The entire header has been scanned.
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® The first retrieval pointer in the window maps the desired VBN.

The window is scanned for the starting VBN of the header. If the VBN is
contained within the window, the window is truncated so that it maps up to
the start of the header exactly.

However, if the starting VBN of the header is not contained in the window,

the entire window must be discarded (it is retained in cache, if possible) in
preparation for a window turn. However, if the desired VBN precedes the starting
VBN of the header, the existing window is the best possible effort.

After the window is initialized, the necessary pointers are set up. The map area
is scanned and the retrieval pointers are obtained.

As many new retrieval pointers are built as necessary to describe the window. If
the window is full, the entries are shifted up by one until the operation would
cause the pointer mapping the desired VBN to shift off the top. Finally, the
pointer is built, and is included in the count given by the WCB$W_NMAP field.

3.3.2.7 Reading the SCB

The storage map file header is read, and the starting LBN of the storage bitmap
is calculated. The size of the storage bitmap is computed from the volume size
and cluster factor because the storage bitmap file is rounded up to the next
cluster boundary.

The storage control block is read. The shared file system cannot tolerate failure
to read the storage control block because that is where the volume label used for
locking is stored.

3.3.2.8 Establishing the Volume Lock

The volume lock is obtained and the volume lock name is established. The
resource name used for the volume allocation lock is stored in the VCB.

If the volume is being mounted with the /NOSHARE qualifier, the resource name
is a unique node identifier plus a unique device identifier. The node identifier

is taken from the global cell SCS$GB_NODENAME and stored in the prototype
VCB$T_VOLCKNAM field. The device identifier is taken from the UCB of the
device being mounted.

For shared mounts, however, the resource name is the volume label. Because
volume labels may change after the volume is mounted, the first process

to mount the device for write access writes the volume label used into the
SCB$T_VOLOCKNAME field. All other processes mounting the volume read
the SCB$T _VOLOCKNAME field for the resource name and write it into the
prototype VCB$T_VOLCKNAM field.
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The volume allocation lock is then acquired in protected write mode, which is
necessary to allow the value block to be written later. If this is a nonshared
mount, the system-owned lock (stored in the global cell EXE$GL_SYSID_LOCK)
is used as a parent lock to cause the lock to be mastered locally without any
cluster message traffic from the distributed lock manager.

A $GETLKI function is also performed on the volume allocation lock to determine
the number of locks granted on that resource (that is, the number of VAXcluster
nodes that have this volume mounted). This information is later used to
determine whether a rebuild operation should be performed on the volume after
it is mounted.

If the count of volume locks does not match the count in the storage control block
(SCB$W_WRITECNT), the count is updated, and the volume is marked to be
rebuilt, if necessary (depending on the flags set in the SCB$L_STATUS?2 field).
The SCB$L_STATUS2 flags are cleared only upon successful completion of a
rebuild, so rebuilds are attempted until the volume is actually rebuilt.

The flags in the SCB$L_STATUS field are set to mark which caches are enabled.
If the size of the extent cache has been established, the SCB$V_MAPALLOC
bit is set. Likewise, if the size of the file ID cache has been established, the
SCB$V_FILALLOC bit is set. If the size of the quota cache has been established
and the device is not part of a volume set, the SCB$V_QUODIRTY bit is set.
These bits may already be set if the disk has been mounted elsewhere in the
VAXcluster with the same caches enabled.

The storage bitmap sequence number in the volume lock value block is
incremented to invalidate potential copies in the file system caches. The storage
control block is rewritten; if the write fails, the volume is write-locked.

If this is not the first mount for this device, essential mount parameters are
checked to make sure they are consistent. The information from the current
mount request is compared with the value block of the device lock, which contains
information about this device from all nodes in the cluster. This information must
be consistent across the cluster, and it includes the following parameters, for
example:

* The ownership of the volume

* The protection of the volume

¢  Whether the volume is locked or enabled for write access

¢  Whether the volume has been mounted foreign or file-structured

The device and volume lock value blocks are also compared to see if this is the
first mount for this device. If the value blocks do not match, another volume of
the same name is already mounted in the cluster.
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3.3.2.9 Locating the Highest File Number

The index file bitmap is scanned backwards from the end to find the highest file
number. The VBN of this file is compared to the index file end-of-file mark. If the
EOF is short, the EOF delta is set higher so that the first create operation will
update the index file header. If this is not the initial mount of the volume, the
index file EOF is copied from the value block.

If this is the first mount of the volume, the storage map is scanned to compute
the number of free blocks on the volume, and the VCB$L_FREE field is updated.

3.3.2.10 Allocating the I/O Database Structures

The routine MAKE_DISK_MOUNT performs all of the database manipulation
needed to mount a volume. The mode is set to kernel to gain write access to the
I/O database.

This routine allocates the real VCB, FCB, and WCB in nonpaged system pool,
and links them. The control blocks are all allocated in advance to avoid having to
back out of some awkward situations later. The one exception is the AQB, which
is either found or allocated by the START ACP routine.

The first required control block to be allocated is the VCB. The following actions
are performed:

* Memory is allocated according to the size indicated by the VCB$C_LENGTH
field.

® The constant DYN$C_VCB is written to the VCB$B_TYPE field.
* The UCB is established, and forward and backward links are set up.

¢ The object rights block (ORB) is established, and forward and backward links
are set up.

The index file FCB is the second structure to be constructed. The following
actions are performed:

¢ Memory is allocated according to the size indicated by the FCB$C_LENGTH
field.

* The constant DYN$C_FCB is written to the FCB$B_TYPE field.
¢ The forward and backward links to the window listhead are set up.
¢ The ACL fields in the ORB are initialized.

e The FCB is inserted as the first element on the volume control block’s FCB
list.
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The index file WCB is the third structure to be constructed. The following actions
are performed:

¢ Memory is allocated according to the size indicated by the WCB$C_LENGTH
field and the number of mapping pointers indicated by the WCB$W_NMAP
field.

* The constant DYN$C_WCB is written to the WCB$B_TYPE field.
* The WCB is inserted on the file control block’s WCB listhead.

The cache block (VCA) for the volume is then allocated. Its size is computed from
the cache parameters. The address of the VCA is written to the VCB$L_CACHE
field, and the constant DYN$C_VCA is written to the VCB$B_TYPE field.

If the volume is part of a volume set, the volume is attached to the RVT for the
set, creating an RVT if one does not exist. The pointers to the VCB and the WCB,
as well as a lock basis, are established. The volume set lock is taken out, and the
volume set structure name is checked to ensure that it is unique.

Space is allocated for logical name and mounted volume list entries. If a logical
name is given in the command, it is assigned to the volume. Otherwise, the
logical name is constructed from the volume label.

3.3.2.11 Creating the AQB

At this point, all data blocks except the AQB have been allocated. Before the
AQB can be allocated, the volume ownership and protection must be set up in
the VCB (in the ORB$L_OWNER field). The default comes from the volume
UIC; otherwise, a volume owner is established on the command line by the
/OWNER_UIC qualifier. The rest of the data structures are hooked up in the
device database.

The VCB pointer in the UCB is set up. The I/O database mutex (I0OC$GL_MUTEX)
is acquired. Nonpaged dynamic memory for the AQB is allocated and initialized,
and the DYN$C_AQB constant is copied into the AQB$B_TYPE field. The mount
count is initialized to 1, indicating that a single volume is being handled. The
AQB$V_XQIOPROC field is set to 1, indicating that an XQP is being used.

The AQB forward and backward links are set up. The AQB is linked into the
system AQB list, headed by the system cell IOC$GL_AQBLIST.

The routine SETUP_BLOCKCACHE is called to allocate dynamic memory and
initialize it for use in the buffer cache.

The UCB$V_MOUNTING field is initialized to 1. The address of the AQB is
moved into the VCB.
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3.3.2.12 Establishing File System Context

The various value block contexts are stored by converting the volume, volume set
(if present), and device locks to their system-owned compatible modes.

The device lock may not be present if the device is not cluster-accessible.

In addition, the IO$_MOUNT function is issued to synchronize the file system to
the newly mounted volume. The following actions then occur:

e The function decision table (FDT) processing for I0O$_MOUNT checks and
clears the UCB$V_MOUNTING bit.

e The file system finds the AQB and verifies that the file structure type is one
that it supports.

o The file system sets the UCB$V_MOUNTED bit.

MOUNT also creates the mounted volume list entry (MTL), or mount list
entry, and the logical name for the volume. An MTL appears in the job mounted
volume list for each volume mounted by the process with either the /SHARE or
the /NOSHARE qualifier. In addition, each volume mounted with the /SYSTEM
or the /GROUP qualifier has an entry in the systemwide mounted volume list.
The list itself is a doubly linked list.

The fields of the mounted volume list entry are shown in Figure 3-11 and are
described in Table 3-7.

Figure 3—-11: Format of the Mounted Volume List Entry

MTL$L_MTLFL 0

MTL$L_MTLBL 4

MTL$B_STATUS MTL$B_TYPE MTLSW_SIZE 8
MTL$L_UCB 12

MTL$L_LOGNAME 16

reserved 20
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Table 3-7: Contents of the Mounted Volume List Entry

Field Name Description

MTL$L_MTLFL Forward pointer to the rest of the entries in the list.

MTL$L_MTLBL Backward pointer to the rest of the entries in the list.

MTL$W_SIZE Structure size in bytes.

MTL$B_TYPE Structure type code. This field contains the DYN$C_MTL type
code to identify the data structure as a mounted volume list
entry.

MTL$B_STATUS Status byte. MTL$V_VOLSET is defined within MTL$B_STATUS.
This mounted volume list entry is for a volume set. This is
bit 24.

MTL$L_UCB Pointer to device UCB.

MTL$L_LOGNAME Pointer to the logical name associated with the volume. If this
field contains a value of 0, no logical name exists for the volume.

3.3.3 Processing a Volume Set

A volume set is a collection of related volumes that is normally treated as

a single logical device. Information about a volume set is maintained in the
relative volume table (RVT), which is a dynamic structure in the I/O database
that is allocated from nonpaged pool. The format of the relative volume table is
discussed in Section 3.3.1.5.

Each volume in a volume set contains its own Files—11 structure; however, files
on the various volumes in a volume set may be referenced with a relative volume
number that uniquely determines on which volume in the set the file is located.

A volume set has a structure name associated with it, which is a string of up to
twelve ASCII characters which identifies the volume set. The characters in the
structure name should not include control characters or the delete character, and
the structure name cannot be null.

The volume label of each of the volumes making up the set must be unique
within the set, and must be different from the structure name. The first relative
volume of the set contains a volume set list file (VOLSET.SYS, located in the
master file directory) which lists the volume labels of all the volumes in the set,
thus associating volume labels with relative volume numbers. Each volume is
identified as being part of the set by carrying the structure name, its volume
label, and its relative volume number.
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Volume set processing differs from single-volume processing in two main areas:

* Space management—When a file is created, the file is located on the volume
with the most space, unless the user explicitly specifies the placement. Once
created, a file is always extended on the volume on which it resides unless the
volume is full or the user specifies the placement.

* Root volume—The root volume must be mounted for any of the remaining
volumes in the set to be referenced.

3.3.3.1 Creating a Volume Set

Two or more disk volumes may be bound into a volume set using the MOUNT
/BIND=volume-set-structure-name command. The volumes specified in the
volume-label list are assigned relative volume numbers based on their position in
the label list. The first volume specified becomes the root volume (relative volume
1) of the volume set.

Also, a volume may be added to an existing volume set that is already mounted
by using the MOUNT/BIND command. The /BIND qualifier needs to be specified
the first time the volume set is created or when a new volume is added. On
subsequent mounts, the MOUNT command uses the information (for example,
the structure name and the relative volume number) recorded in the home block
to form the volume set.

3.3.3.2 Mounting a Volume Set

The following steps are performed for each volume set member when a volume
set is created or mounted:

¢ The volume set structure name is established.

If the relative volume number field in the home block (the HM2$W_RVN field)
contains a value of 0, indicating that this volume has never been a part of any
volume set, then the structure name is established from the /BIND qualifier
on the MOUNT command line.

If the HM2$W_RVN field contains a nonzero value, then the structure name
in the HM2$T STRUCNAME field is used.

When the /BIND qualifier is specified and the HM2$W_RVN field contains a
nonzero value, then the structure names specified in the /BIND qualifier and
the HM2$T_STRUCNAME field in the home block must match.

¢ The volume is mounted as a single volume.

e A routine is called to enter this volume into the relative volume table. This
routine finds the RVT of this volume set by its structure name.
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If such an RVT does not exist (that is, this volume is the first volume of the
set to be mounted), an RVT is created, and the relative volume number for
this volume is set to 1 if its RVN was 0.

If an RVT already exists (that is, this volume is not the first to be mounted),
this volume is entered in the RVT. When a new volume is added to.the set,
the relative volume number is set to the previous number of volumes in the
set, plus 1. For an existing volume already bound to the volume set, the value
in the HM2$W_RVN field is used as the relative volume number.

¢  When a volume set is created, or when a volume is added to an existing
volume set (with the MOUNT/BIND command), the new volume must be
bound into the volume set. Its volume label is entered into the volume set
list file, which is the VOLSET.SYS file in the MFD on the root volume.
For this reason, the root volume must be mounted first (or be already
mounted) in a /BIND operation. Also, the home block of this new volume
must be updated to reflect that it is a member of the volume set. That is, the
HM2$T_STRUCNAME field and the HM2$W_RVN field are updated to reflect
this volume’s membership in the volume set.

3.3.4 Rebuilding the Bitmap and Disk Quota Files

If a disk volume has been improperly dismounted (for example, as a result of a
system failure), the index file bitmap, the allocation bitmap, and the quota file
must be rebuilt in order to recover caching contents that were enabled on the
volume at the time of the dismount. By default, MOUNT attempts the rebuild.
The rebuild may consume a considerable amount of time, mainly depending upon
the number of files on the volume.

The following three types of caches may be enabled on a volume:

¢ Extent cache—preallocated free space. Blocks are allocated from the volume
and marked in the storage bitmap as being in use.

¢ File ID cache—preallocated file numbers. File IDs are preallocated from the
index file and marked in the index file bitmap as being in use.

* Quota cache—disk quota usage.
Sections 4.2.8 through 4.2.10 contain more information on these caches.

If both extent caching and file ID caching were enabled, the rebuild time is
directly proportional to the greatest number of files that ever existed on the
volume at one time. If disk quota caching was enabled, additional time to handle
quota processing may be required.

If none of these caches was in effect, then the rebuild is not necessary and does
not occur.
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When a volume is rebuilt, the ACP control function I0$_ACPCONTROL is issued
to lock the volume against modifications while the rebuild is taking place. The
FIB$C_LOCK_VOL constant is specified in the FIB§W_CNTRLFUNC field. The
ACP control function sets the VCB lock bit in the VCB$W_ACTIVITY field.

Virtual memory for I/O buffers is allocated with a call to LIB§GET_VM.

The index file INDEXF.SYS is opened with the ACP function IO$_ACCESS (or
the ACP subfunction IO$M_ACCESS). The home block is read and validated, and
the volume characteristics are established, including the VBN offset for the file
headers of the volume, the cluster factor of the volume, the VBN offset of the
index file bitmap, and the end of the index file. The INDEXF.SYS file is then
deaccessed by the ACP function I0$_DEACCESS.

The storage bitmap file is accessed so that the SCB can be checked to see if a
rebuild is still necessary. The flags of the SCB$L_STATUS2 field are set when the
volume is mounted if the following two conditions exist:

* The corresponding flags are set in the SCB$L_STATUS field.

¢ The current count of VAXcluster nodes enabled for write access to the volume
(contained in the SCB$§W_WRITECNT field) does not match the current
number of outstanding locks. This condition indicates that caching was
enabled on the volume and that the volume was improperly dismounted.

If the volume is part of a volume set, the index file is accessed for each volume in
the set to obtain the characteristics of each volume.

Two types of rebuild operations may occur: conditional or unconditional. If the
rebuild is conditional (that is, if the QUODIRTY or MAPDIRTY bits are set in
the SCB, meaning that the quota file or storage map are only partially updated),
the quota file is checked to see if it needs to be rebuilt; it is not rebuilt unless

it was active. If the quota file has to be rebuilt, the storage bitmap file and the
allocation bitmap are also rebuilt. If nothing needs to be rebuilt, the volume lock
is released and the rebuild is finished.

If the rebuild is not conditional (that is, the volume will be rebuilt regardless),
the FIB$C_ENA_QUOTA constant is moved into the FIB§L_CNTRLFUNC field
to enable the quota file. The quota file is then scanned from beginning to end

to build the usage table. The usage table is a chained hash table consisting of
entries for all the quota file records that show zero blocks in use. The key to the
hash table is the UIC that is to be stored there. The hash function is a simple
modulus function on the UIC of the file in question with the number of entries in
the table. The overflow caused by collisions is handled by chaining each bucket.
The quota file is then deaccessed.
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The main reasons for having conditional and unconditional rebuilds is because
the System Management Utility (SYSMAN)! and the SET VOLUME/REBUILD
command specify rebuild operations.

The bitmap file is opened for each volume in the volume set, and all the file
headers are read. The SCB is also read to obtain the volume size and cluster
factor. From these, the size of the allocation bitmap is calculated. The allocation
bitmap is then initialized to show all the space available on the volume. A set bit
in the bitmap indicates a free block on the volume.

The index file is opened. Virtual memory for a working copy of the index file
bitmap is allocated. The old index file bitmap is read into a buffer.

All the virtual blocks in the index file are scanned. The file headers, starting with
the MFD, are read, and each is verified to ensure that it is valid. The verification
includes the following checks:

* The structure level contained in the FH2$B_STRUCLEV must equal 2.
¢ The area offsets and the retrieval pointer use counts must be consistent.

* The file number (comprised of the FH2$W_FID_NUM and FH2$B_FID_NMX
fields) cannot equal 0.

¢ The header checksum is calculated and validated.

¢ The header file number (FH2$W_FID_NUM) and file sequence number
(FH2$W_FID_SEQ) are compared to the file number (FID$W_NUM) and
file sequence number (FID$W_SEQ).

If the file header is valid, the number of blocks it occupies is computed and then
charged to the owner UIC. The blocks in use are marked in the storage bitmap,
and, if quotas are being rebuilt, are entered in the quota hash table under the
owner UIC of the file.

However, if the file header is not valid, a check is made to see if it is marked as
being in use in the index file bitmap. If it is, the sequence number of the file ID
is incremented and written. The header is then marked as being free in the index
file bitmap.

If an I/O error occurs while a header is being read, an invalid header with a
random sequence number is written to the header slot. This action is to prevent a
valid file header from reappearing later, if the I/O error happens to be transient.

After all the headers have been accounted for, all the unreferenced bits past the
end of the index file are cleared. The index file bitmap is written back to disk.
The virtual memory for the working copy of the index file bitmap is released.

1 SYSMAN includes the functions of the Disk Quota Utility (DISKQUOTA), which operated as a
standalone utility in VMS Version 4.6.
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The new storage bitmap is written back to disk and any working memory is also
released. The pertinent flag bits (SCB$V_MAPDIRTY2, SCB$V_MAPALLOC?2,
and SCB$V_FILALLOC?2) are cleared in the SCB.

The number of free blocks (that is, the volume size) is updated in the VCB.

At this point, the entire volume set has been scanned, and a table of total disk
usage (the usage table) for the volume exists. Each table entry is used to update
the corresponding quota file entry in QUOTA.SYS. The update consists of two
passes:

1. Existing entries are updated and the volume is unlocked.

2. New quota file records are created for UICs that have blocks in use but have
no corresponding quota file entries. Because the quota file may have to be
extended, this action must be done after the volume is unlocked.

The SCB$V_QUODIRTY2 flag bit must be updated in the SCB, so the storage
bitmap file is opened for write access. The flag bit is cleared, and the SCB is then
written back to disk. The storage bitmap file is then closed.

At this point, the volume has been rebuilt. Any remaining virtual memory is
released, and the rebuild exit handler is canceled.

3.4 Dismounting a Volume

The volume dismount operation is the complement of the volume mount. Like
the Mount Utility, the Dismount Utility (DISMOUNT) is a privileged shareable
image. Its chief function is to mark a volume for dismount.

A volume will not be dismounted?! if the transaction count is greater than 1,
which can be caused by any of the following reasons:

¢ Paging files, swapping files, or images have been installed on the volume.
¢ Devices are spooled to the volume.

¢ Secondary page or swap files are resident on the volume.

¢ Files are open on the volume.

When a dismount operation for a Files—11 volume is requested, the volume is only
marked for dismount. Once the volume is marked, the final cleanup operations
(for example, the deallocation of the FCBs and the VCB) are done by the file
system when the last file on the volume is closed. Therefore, there is a delay from
the time the volume is marked for dismount to the time the volume is actually
dismounted.

1 This can be overridden by the DISMOUNT/OVERRIDE=CHECKS command.
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The asynchronous nature of the volume dismount requires that three different
components of the system be involved in the dismount procedure:

Component Function

Dismount Utility Prepares the volume to be dismounted
IOC$DISMOUNT routine Handles device-independent dismount processing
File system Handles the actual dismount of the volume

3.4.1 Beginning the Dismount Procedure
A volume dismount may be triggered by two events:

¢ If a process explicitly issues a dismount request with the DCL DISMOUNT
command or the $DISMOU system service.

* If a top-level process is deleted, then all volumes that were mounted either
privately or shareable by this job are implicitly dismounted.

When a dismount operation is requested, the dismount image is activated. The
main module of the Dismount Utility is DISMOU, located in the DISMOU facility.
This module includes the SYS$DISMOU routine, which contains the basic logic of
the DISMOUNT command.

3.4.1.1 Preparing the Volume to be Dismounted

In general, when a dismount is requested, certain information about the device
has to be acquired. For example, the mounted volume list entry for this particular
device is retrieved, and the name of the device to be dismounted is determined.
If a logical name is associated with the physical device name descriptor, it is
first translated, and then a channel is assigned to the device using the $ASSIGN
system service. A channel is needed for two reasons:

® The device UCB address is needed, and it is contained in the CCB.

* The assigned channel acts as an interlock to prevent premature deallocation
of the VCB.

The user is granted the BUGCHECK and EXQUOTA privileges using the
$SETPRYV system service.

To prevent race conditions between simultaneous dismounts on the same volume,
the dismount interlock on the device is obtained and taken out in exclusive
mode. This lock has the following form:

DMT$<allocation-class~device-name>
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The allocation class device name is established using the $GETDVI system
service. Figure 3-12 shows the format of the dismount interlock.

Figure 3—12: Format of the Dismount Lock
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3.4.1.2 Validating the Volume Characteristics

The routine MAKE_DISMOUNT is called to dismount the volume. This routine
does the kernel-mode validation and initial setup of the dismount operation. The
following device characteristics, returned by the $GETDVI system service, are
checked to ensure that the volume can be dismounted:

Device Characteristic Description

DEV$V_FOD The device is file-oriented. If this bit is not set, a status of
SS$_NOTFILEDEYV is returned.

DEV$V_MNT The device is properly mounted. See the description of the
DEV$V_DMT bit for more information.

DEV$V_DMT If this bit is set, the device is in the process of being
dismounted.

If this bit and the DEV$V_MNT bit are clear, the device
is idle (that is, dismounted). In this case, a status of
SS$_DEVNOTMOUNT is returned.

If this bit is clear and the DEV$V_MNT bit is set, the
volume is mounted.

DEV$V_AVL The device is available for use. If this bit is not set, a
status of SS$_DEVOFFLINE is returned.

The primary and secondary device characteristics must match; otherwise, the
device may be spooled.
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The UCB and the VCB addresses for the channel are obtained. If this is a volume
set, the RVT address is also obtained. The address of the channel comes from the
global cell CTL$GL_CCBBASE, which contains the base address of the CCB table.
The address of the UCB comes from the CCB$L_UCB field, and the address of
the VCB comes from the UCB$L_VCB field.

The job mounted volume list is searched for entries of the volume; if found, they
are removed and the dismount procedure may proceed. If none is found, the
system mounted volume list is searched for any volumes that were mounted with
the /GROUP or /SYSTEM qualifiers. Dismounting these volumes requires the
appropriate privilege. If the volume is mounted by the current process and the
dismount request is a normall one, no privilege checks need to be made.

3.4.1.3 Checking Privileges

In the course of verifying whether the dismounter has the proper privileges
to dismount the volume, various conditions are checked for. The four main
conditions are as follows:

¢ If the volume was mounted privately
¢ If DISMOUNT/ABORT or /CLUSTER was specified
¢ If the volume was mounted privately by another process

¢ If the volume was mounted for group or system access

3.4.1.3.1 Checking for a Private Mount

The process mount list is searched for a privately mounted volume if the /ABORT
or the /CLUSTER qualifier was not specified on the DISMOUNT command line.
This is done by obtaining the address of the job information block from the
PCBS$L_JIB field in the current process control block whose address is stored in
the scheduler database. The address of the process or jobwide mount list can then
be obtained from the JIB$L,_MTLFL field.

The I/0O mutex IOC$GL_MUTEX is then acquired to synchronize operations
while the entries of the mounted volume list are searched to see if the volume is -
privately mounted.

The mounted volume list is searched for the entry representing the desired UCB
(the MTL$L_UCB field). If the MTL$B_TYPE field does not contain the constant
DYN$C_MTL, an error is returned.

After the search concludes, the I/O database mutex is released. If a mounted
volume list entry was found, a success status is returned; no privilege is required
to dismount a private volume. At this point, a privately mounted volume has
been properly dismounted.

1 /ABORT, /OVERRIDE, /GROUP, or /SYSTEM was not specified on the command line.
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3.4.1.3.2 Checking for a Volume Mounted with /ABORT or /CLUSTER

If no MTL was found in the process mount list or if the process mount list was
not searched because the /ABORT or the /CLUSTER qualifier was specified on
the DISMOUNT command line, then the system mount list is searched. The
address of the systemwide mounted volume list is contained in the global cell
I0C$GQ_MOUNTLST.

To determine if the process has the necessary privilege to dismount the volume,
the privilege mask contained in the PHD$Q_PRIVMSK field pointed to by the
global cell CTL$GL_PHD is obtained. The address of the VCB contained in the
UCBS$L_VCB field is also obtained to determine whether the volume was mounted
for group or systemwide access.

3.4.1.3.3 Checking for a Volume Mounted Privately by Another Process

If an MTL is not found in the system mount list, then the volume must be
mounted privately by some other process. In order for the current process to
dismount the volume, the process must meet the following two conditions:

* Must have specified the /ABORT qualifier on the DISMOUNT command line

¢ Must either own the volume or have the necessary privilege to override
volume protection (VOLPRO)

The DISMOUNT/ABORT command allows a user to dismount a volume that is
owned by a different process. It is useful, for example, when a volume is mounted
shareable (that is, many processes have MTLs for the volume). /ABORT also
performs the following tasks:

¢ Cancels pending I/0
¢ Cancels mount verification

The address of the object rights block (ORB) is obtained from the UCB in order
to determine which process owns the volume. The I/O mutex is then released.
The UIC of the current process is obtained from the PCB$L_UIC field in the PCB
of the current process. A status value of SS$_NOPRIV is returned if any of the
following conditions are met:

e The DMT$V_ABORT bit is set.
¢ The UIC does not match the UIC contained in the ORB$L._OWNER field.
¢ The dismounting process does not have VOLPRO privilege.
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3.4.1.3.4 Checking for a Volume Mounted for Group or System Access

If an MTL was found in the system mount list, the following two conditions must
exist:

¢ The volume must be mounted for group or system access. The VCB$V_GROUP
bit is set if the volume has been mounted with the /GROUP qualifier.

¢ The current process must have the correct privileges necessary to dismount
the volume.

If the PRVSV_SYSNAM bit is set in the privilege mask for the process, the
process has SYSNAM privilege, which means that the process can dismount
volumes owned by any group, and no further checking needs to be done.

If the process has the PRV$V_GRPNAM bit set in its privilege mask (meaning
that it has GRPNAM privilege), the ownership of the volume must be checked to
see if the current process is in the same group as the volume owner. This is done
by determining which group owns the logical name table that contains the logical
name for the volume.

If there is no logical name associated with the volume (the MTL$L_LOGNAME
field contains a value of 0), it is assumed that the process is in the correct group.
However, if there is a logical name associated with the volume, then the logical
name mutex is obtained, and the MTL$L_LOGNAME field is used to obtain
the address of the logical name block. The address of the logical name table

is obtained from the LNMB$L_TABLE field in the logical name block, and the
address of the object rights block is obtained from the LNMTHS$L_ORB field in
the logical name table.

The UIC or the volume owner is then obtained from the ORB and the logical
name mutex released. The upper 16 bits of the volume owner UIC (the UIC group
number) are then compared with the UIC group number of the current process
(contained in the PCB$W_GRP field in the PCB of the current process). If they
do not match, the I/O mutex is released, and a status value of SS$_NOGRPNAM
is returned.

If the VCB$V_SYSTEM bit is set, the volume has been mounted for system
access. If the PRV$V_SYSNAM bit is not set in the privilege mask, then the I/O
database mutex is released and a status value of SS$_NOSYSNAM is returned.

After the process has been checked to see if it has the necessary privileges to
dismount a volume that was mounted for group or system access, the I/O mutex
is released. One last check compares the UIC of the device being dismounted
with the UIC of the system disk.

A system disk cannot be dismounted; otherwise, all I/O to the system disk, such
as image activation, fails. The global cell EXE$GL_SYSUCB contains the address
of the UCB of the system device. If the device being dismounted is a system disk,
the dismount operation fails with a value of DISM$_SYSDEV.
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3.4.1.4 Setting Up the Local Mounted Volume Database

The routine SETUP_MTL sets up a local mounted volume database by collecting
the appropriate mount list entries from the system’s mounted database. How it
is set up depends on whether a normal dismount or DISMOUNT/ABORT was
specified.

If DISMOUNT/ABORT was specified (the DMT$V_ABORT bit is set) the I/O
database must be scanned. This requires raising IPL to IPL$_SYNCH (IPL 8)
so that systemwide data structures can be searched. Also, no page faults can be
incurred while at IPL$_SYNCH, so the pages are explicitly locked in memory.

The PCB of the null process is obtained from the scheduler database (to be
able to distinguish a nonnull process), and the I/O database mutex is acquired.
The scheduler database is searched for valid processes that have MTLs for the
mounted volume.

The IPL is lowered to IPL$_ASTDEL (IPL 2—the highest level at which page
faults are permitted) because mounted volume lists are located in paged pool.
This can be done because the existence of a mounted volume list entry means
that this process will not be deleted until the I/O database mutex is released. At
this point, the jobwide mount listhead JIB§L_MTLFL is used to find the correct
entry.

Setting up the local mounted volume database is much more simple in the case of
a normal dismount. If a normal dismount was specified (the DMT$V_ABORT flag
is not set), the scheduler database is used to find the address of the JIB contained
in the PCB$L_JIB field. After the I/O database mutex is acquired, the jobwide
mount listhead JIB$L,_MTLFL is used to find the correct entry.

All the mounted volume list entries for the current process must be found so
that the local mounted volume database can be set up. Figure 3—-13 shows the
relationship of the data structures in the mounted volume database.

The MOVE_MTL routine removes all the appropriate MTLs from the mounted
database and moves them to the local mounted volume database. If the volume
is a member of a volume set, then the routine loops for each volume. If the
DMT$V_UNIT flag is set, however, the requested UCB points to a single
volume rather than to a member of a volume set. The address of the RVT is
obtained from the VCB$L_RVT field, and that of the UCB is obtained from the
RVT$L_UCBLST field.

If an entry is found, it is removed from the old list and inserted into the new
list representing the local mounted volume list database. After all the entries
have been located, the I/0O database mutex is released, and the system dismount
routine is called.
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Figure 3-13: Mounted Volume Database
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3.4.2 Device-Independent Dismount Processing

In the second step of the volume dismount procedure, the device-independent
dismount routine in the VAX/VMS executive—the IOC$DISMOUNT routine—

is called to dismount the volume. This routine is called when any device is
dismounted, regardless of whether the volume is mounted Files—11 or as a foreign
volume. It performs some of the device-independent dismount operations for the
indicated MTL entry.

To begin with, the routine performs the following three actions:

* The logical name associated with the volume is deallocated.

¢ The mount list entry is deallocated.

¢ The mount count in the VCB (the VCB$W_MCNT field) is decremented.

If the mount count is nonzero (for example, more than one process mounted
the volume with the /SHARE qualifier), this routine is complete, and control
is returned to the caller.

When the mount count reaches zero, the device is marked for dismount. At this
point, the volume’s mount verification bit (VCB$V_MOUNTVER) is cleared to
disable future mount verification on the volume.

A channel is assigned to the device. For nonforeign devices, an ACP control
function with the dismount subfunction is issued to the file system (whether the
file system is the XQP, the F11AACP, or the MTAACP). When the ACP control
function completes, the channel is deassigned, and control is returned to the
caller.
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3.4.3 Final Dismount Processing

The initial file system dismount occurs when the file system receives an ACP
control function with the dismount subfunction.

This routine in the XQP performs the following actions:
¢ The FID cache, the extent cache, and the quota cache are flushed.

¢ The SCB$§W_WRITECNT field in the storage control block is decremented,
indicating that the volume has been properly dismounted.

Any subsequent file operations are done without caching to preservé the integrity
of the volume.

Final file system dismount processing occurs after two conditions have been met:
® The last file is closed on the volume.
* The last queued file system function has been processed.

In the XQP’s I/O completion routine, the CHECK_DISMOUNT routine is called to
check if the volume is marked for dismount. If it is, and the volume transaction
count in the VCB$W_TRANS field is 1, then the volume is dismounted
immediately. The UCB$V_DISMOUNT bit in the device UCB is set to stop
further activity.

CHECK_DISMOUNT performs the following tasks:

¢ Makes an error log entry to record this dismount operation and send it to the
error logger.

e Issues an available (or an unload) I/O function to the driver to clear the
drive’s volume valid status (or to unload the device).

¢ Raises the device lock to protected write mode, if the volume was mounted
shareable, so the lock can be written back later. If the mount was private, the
device lock is already at exclusive mode.

* Marks the volume as dismounted by clearing the following bits:

DEV$V_MNT Device is mounted.
DEV$V_DMT Device is marked for dismount.
DEV$V_SWL Device is software-writelocked.

¢ Decrements the device reference count in the UCB$W_REFC field.
¢ Clears the device protection fields in the ORB.

¢ Disconnects the VCB from the UCB by clearing the pointer to the VCB (the
UCBS$L_VCB field).

¢ Decrements the mount count on the AQB (the AQB$B_MNTCNT field). If
this mount count has a value of 0, this AQB will be deallocated later.
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* Deallocates all FCBs.

* Deallocates the FID cache, the extent cache, and the quota cache, and
dequeues the corresponding cache locks.

¢ Dequeues the volume allocation lock.
¢ Deallocates the VCB.

* Demotes the device lock to the appropriate mode. If this is the final dismount
in the cluster, the device lock value block is zeroed.

¢ Deallocates the device if the device is marked as deallocate-on-dismount.

¢ Deallocates the AQB, if necessary. The buffer cache associated with the AQB
is also deallocated.

At this point the volume is completely dismounted.



Chapter 4
Cache Processing on a Single Node

Buffer n. [Origin obscure: possibly Italian buffo “farcical, comic” or Latin bufo “a
toad.”] 1 A region between two devices designed to distort or, if possible, prevent
the flow of data in either direction. 2 An old, greasy, and abrasive rag used to
clean tape heads.

Stan Kelly-Bootle

Cache A very expensive part of the memory system of a computer that no one is

supposed to know is there.
Jeff Pesis
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4.1 Introduction

Cache processing is a part of volume structure processing because it is an efficient
way of transferring data from disk to memory and back again. The contents of
the cache buffers are copies of the corresponding disk blocks (with the exception
of the directory index cache).

The file system manages its cache buffers as an LRU, or least recently used,
cache whose purpose is to retain in memory the buffers corresponding to the disk
blocks that the file system has most recently referenced. In this way, the data
does not have to be transferred from disk after it has already been read from
disk.

A major task of the XQP 1/0 buffer cache is to provide a shared, systemwide
cache in a multithreaded, procedure-based environment. Each node maintains
a systemwide I/0 buffer cache. All XQP I/O is performed to the buffers in the
cache.

To maintain coordinated access to the file structure and to the buffer cache, the
XQP uses the distributed lock manager. Because the file structure components
(such as file headers, bitmaps, and directories) are themselves contained in or
associated with files, the components are generally synchronized with locks
corresponding to their associated files. For example, both the header and all

the data blocks of a directory are synchromzed under a single lock based on the
directory’s file ID. Each data block in the buffer cache is therefore identified by
the lock under which it is read.

4.2 Buffer Initialization and Allocation

The XQP uses a systemwide (single-node) I/O buffer cache allocated from paged
pool. The Mount Utility qualifiers are used to control buffer cache creation when
a disk is mounted. By default, all mounted volumes share the same buffer cache
that is allocated when the system disk is mounted during the boot process. If the
system parameter ACP_MULTIPLE is set, a new cache for each different device
type will be created.

A separate, private I/O buffer cache can be specified with the MOUNT qualifier
/PROCESSOR=UNIQUE. A specific I/O buffer cache can be specified with the
/PROCESSOR=SAME:mntdev qualifier, where mntdev is the name of an already
mounted device. In VMS Version 3, these qualifiers created unique ACP processes
for concurrency and caching. In Version 4, they create unique caches, and
concurrency is provided by the XQP design.

For most systems, increasing the size of the system default cache is better than
creating multiple caches (that is, one 800-block cache is more adaptive than
two 400-block caches). In rare circumstances, unique caches might be useful to
prevent activity on one set of volumes from flushing caches on a second set of
volumes.
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The SHOW DEVICE/FULL command shows the maximum buffers in the
file system cache and the size of the cache in blocks. This number should
approximate the sum of the various ACP_xxxCACHE system parameters.

If an attempt is made to allocate a separate cache but the allocation fails because
of a lack of sufficient contiguous space in paged pool, MOUNT will try to allocate
a minimal size cache instead. If the minimal size cache can be allocated, a
reduced cache message (REDCACHE) will be issued, and the volume will be
mounted successfully. However, performance will be greatly degraded because,
due to the lack of available buffers, only one request at a time can be processed.
If the minimal cache allocation attempt fails, an error is returned to the user.

4.2.1 Layout of the I/O Buffer Cache

The cache for a given mounted device is found by following the UCB$L_VCB
pointer to the VCB, then the VCB$L_AQB pointer to the ACP queue block, and
finally the AQB$L_BUFCACHE pointer to the cache header. There is a single
AQB for each buffer cache. However, multiple VCBs may (and usually do) point
to a single AQB. The file system always uses the AQB to find the correct cache.

Figure 4-1 shows the how the structures of the I/O database point to the I/O
buffer cache.
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Figure 4-1: Finding the XQP I/O Buffer Cache
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The buffer cache itself consists of various areas:

¢ Fixed overhead area—A fixed area called the cache header containing the
addresses and the sizes of the following variable areas. The cache header, or
F11BC structure, also contains the queue headers discussed in Section 4.2.2.

¢ Buffer descriptor array—A variable area containing an array of buffer
descriptors, or BFRD structures. These structures describe what disk block
a given buffer belongs to (by LBN and UCB address), whether it is valid or
modified or being used, and what type of buffer it is. It also has an index to
its associated lock descriptor.

¢ Lock descriptor array—A variable area containing an array of lock
descriptors, or BFRL structures. These structures describe the locks
associated with the buffers in the cache.
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¢ Buffer LBN hash table—A variable area containing an array of word
indexes into the BFRD array. It tends to reduce the amount of time required
to search the cache to determine if a given LBN is already in the cache (over
what a linear search of all the descriptors would involve). '

* Lock basis hash table—A variable area serving a similar function to the
LBN hash table. It allows a relatively quick search of the BFRLs to determine
if one already exists for a given lock basis. A lock basis, consisting of a file
number and an RVN, is a unique way of locating a file on a volume set. It is
essentially another representation of the file ID, where the sequence number
is irrelevant (and is thus omitted). The lock basis becomes a component of the
lock resource name for its associated lock.

* Array of page-aligned buffers—Buffer pools of variable size. The number
of pages allocated for each of the pools is taken from the active values of the
ACP system parameters. Caches exist for the following types of blocks:

Block Type Minimum Size Location
Storage bitmap blocks 1 block Pool 0
Directory index blocks 1 block Pool 3
Directory data blocks 2 blocks Pool 1
Disk quota file blocks 2 blocks Pool 1
Random data blocks 2 blocks Pool 1
File header blocks 3 blocks Pool 2
Index file bitmap blocks 3 blocks Pool 2

Figure 4-2 shows the layout of the XQP I/O buffer cache.
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Figure 4-2: Contents of the XQP Buffer Cache
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The cache header, represented by the prefix F11BCS$, contains pointers to the
variable areas that follow it. The cache header and the buffers are each allocated
as a single contiguous portion of paged pool. However, the descriptor area may
be allocated separately from the buffers. The total area occupied by the cache
header is about 10% of the area occupied by the buffers.
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The fields of a cache header are shown in Figure 4-3 and are described in
Table 4-1.

Figure 4-3: Format of the Cache Header

F11BC$L_BUFBASE 0

F11BC$L_BUFSIZE 4

F11BC$B_SUBTYPE F11BC$B_TYPE F11BC$W_SIZE 8
F11BC$L_REALSIZE 12

F11BC$L_LBNHSHBAS 16

F11BC$W_BFRCNT F11BC$W_LBNHSHCNT 20
F11BC$L_BFRDBAS 24

F11BC$L_BFRLDBAS 28

F11BC$L_BLHSHBAS 32

F11BC$W_FREEBFRL F11BC$W_BLHSHCNT 36

¢ F11BC$Q_POOL_LRU (32 bytes) A 40
J F11BC$Q_POOL_WAITQ (32 bytes) A 72
¢ F11BC$L_POOLAVAIL (16 bytes) A104
F11BC$W_POOLCNT 120

F11BC$L_AMBIGQFL 128

(continued on next page)
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Figure 4-3 (Cont.): Format of the Cache Header

F11BC$L_AMBIGQBL 132
F11BC$L_PROCESS_HITS 136
F11BC$L_VALID_HITS 140
F11BC$L_INVALID_HITS 144
F11BC$L_MISSES 148
F11BC$L_DISK_READS 152
F11BC$L_DISK_WRITES 156
F11BC$L_CACHE_SERIAL 160
F11BC$L_CACHE_STALLS 164
F11BC$L_BUFFER_STALLS 168
] F11BC$T_CACHENAME (24 bytes) 172
Table 4-1: Contents of the Cache Header
Field Name Description
F11BC$L_BUFBASE Base address of the buffer area.
F11BC$L_BUFSIZE Size of the buffer area in bytes.
F11BC$W_SIZE Standard size field. This field contains the size of the

block. However, because the total size of the buffer
cache may exceed 65Kb, the contents of this cell may
not reflect the true size of the structure.

F11BC$B_TYPE Standard (VMS control block) type field. This field
contains the DYN$C_F11BC constant.
F11BC$B_SUBTYPE Standard subtype field.

(continued on next page)
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Table 4-1 (Cont.): Contents of the Cache Header

Field Name

Description

F11BC$L_REALSIZE

F11BC$L_LBNHSHBAS
F11BC$W_LBNHSHCNT
F11BC$W_BFRCNT
F11BC$L_BFRDBAS
F11BC$L_BFRLDBAS
F11BC$L_BLHSHBAS
F11BC$W_BLHSHCNT
F11BC$W_FREEBFRL
F11BC$Q_POOL_LRU

F11BC$Q_POOL_WAITQ

F11BC$L_POOLAVAIL

F11BC$W_POOLCNT

F11BC$L_AMBIGQFL
F11BC$L_AMBIGQBL
F11BC$L_PROCESS_HITS

F11BC$L_VALID_HITS

F11BC$L_INVALID_HITS

F11BC$L_MISSES

Size of memory allocated for the whole cache
structure.

Pointer to the beginning of the LBN hash table.
Count of entries in the LBN hash table.

Total number of buffers.

Base address of the buffer descriptor area.
Base address of the buffer lock descriptor area.
Base address of the buffer lock hash table.
Number of entries in the buffer lock hash table.
First free buffer lock descriptor in the chain.
Array of quadword LRU queue headers for each

buffer pool. Buffers are arranged in the queues in
least recently used order.
Array of quadword cache wait queue headers for
each buffer pool. IRPs are inserted in a queue if the
process runs out of credits from a particular pool.
Number of available buffers in each of the buffer
pools.
Count of buffers in each of the buffer pools. This field
is composed of four word subfields (that is, 8 bytes),
each of which represents the buffer count in the pool
with which it is associated, as Figure 4—4 shows.
Ambiguity queue forward link.
Ambiguity queue backward link.
In-process buffer hits. This field counts the number
of times a buffer was reused from the in-process list.
Valid buffer cache hits. This field counts the number
of times a valid buffer is successfully found in the
cache.
Invalid buffer cache hits. This field counts the
number of times a buffer is successfully found in
the cache but the contents are invalid.
Buffer not found. This field counts the number of
times the buffer being sought is not present in the
cache.

(continued on next page)
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Table 4-1 (Cont.): Contents of the Cache Header

Field Name . Description

F11BC$L_DISK_READS Number of read operations from disk into the buffer.

F11BC$L_DISK_WRITES Number of write operations from the buffer to disk.

F11BC$L_CACHE_SERIAL Number of cache serialization calls.

F11BC$L_CACHE_STALLS Number of cache serialization stalls.

F11BC$L_BUFFER_STALLS Number of stalls caused by the lack of available
buffers.

F11BC$T_CACHENAME Name of the cache. This field contains the device and

cache name for which the cache was created. The
format is device:“xgpcache”. The cache name tells
whether the disk is using the default systemwide file
system cache or whether the disk was mounted using
a private cache. If the disk is using a systemwide
cache, the cache name refers to the system disk
because that disk is mounted first.

Figure 4—4 shows the format of the four word subfields of the F11BC$W_POOLCNT
field.

Figure 4—4: Format of the Four Buffer Pool Subfields

Pool 1 Pool O

Pool 3 Pool 2
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4.2.3 Buffer Descriptors

A buffer descriptor, or BFRD, identifies the contents of a given buffer and
its status. Among other things, a BFRD identifies the LBN and the UCB from
which a buffer’s contents were obtained. Each BFRD may be accessed quickly
and efficiently by using the modulus of the LBN and the LBN hash count as an
index into the LBN hash table.

Because the buffer descriptors, lock descriptors, and block buffers are all arrays,
they are generally referenced by array index. The total count is limited to 65K,
so the array index is limited to a word, saving space in the descriptors.
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Each buffer in the buffer pools is represented by a buffer descriptor. Because of
this one-to-one correspondence, the buffer descriptors, like the buffers themselves,

are likewise divided into pools. The buffer and its descriptor are associated

simply by using a common index value to locate either of them. The pool to which

a BFRD belongs can be found in the BFRD$B_FLAGS field.

There are as many BFRDs as buffers, so the size of the descriptor area is directly

proportional to the number of buffers in the cache.

Free BFRDs may be found on their respective LRU queues. If the BFRD is not in

the LRU queue, it is on an in-process queue.

The fields of a buffer descriptor are shown in Figure 4-5 and are described in

Table 4-2.

Figure 4-5: Format of a Buffer Descriptor

BFRDS$L_QFL

BFRD$L_QBL

BFRD$L_LBN

BFRD$L_UCB

BFRD$L_LOCKBASIS

BFRD$L_SEQNUM

BFRD$W_CURPID BFRD$B_BTYPE BFRD$B_FLAGS

BFRD$W_BFRL BFRD$W_NXTBFRD

reserved BFRD$W_SAME_BFRL

12

16

20

24

28

32
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Table 4-2: Contents of a Buffer Descriptor

Field Name Description

BFRD$L_QFL Queue forward link. The queue can be either an in-process
queue (BFR_LIST) or a pool queue (POOL_LRU).

BFRD$L_QBL Queue backward link. The queue can be either an in-process
queue (BFR_LIST) or a pool queue (POOL_LRU).

BFRD$L_LBN LBN of buffer. This field, with the BFRD$L_UCB field,
uniquely identifies the contents of the buffer.

BFRD$L_UCB UCB of buffer. This field, with the BFRD$L_LBN field,

BFRD$L_LOCKBASIS

BFRD$L_SEQNUM

BFRD$B_FLAGS

BFRD$B_BTYPE

uniquely identifies the contents of the buffer.

Unique file identifier. This field contains the FID (without its
sequence number) used in the lock. This number follows the
prefix F11B$s in the resource name.

Buffer validation sequence number. This field contains the
clusterwide buffer sequence number initially obtained from
the value block.

Status flags. The following fields are defined within
BFRD$B_FLAGS:

BFRD$V_POOL Pool number to which this buffer
belongs.

BFRD$V_DIRTY Dirty buffer. If set, this bit indicates
that the buffer has been modified.

BFRD$V_VALID Valid buffer. If set, this bit indicates

that the buffer’s contents are current
and may be used as is.

Buffer type. The following chart shows the possible buffer
values and their meanings.

Value Description

Header block

Bitmap block
Directory data block
Index file block
Random data block
Quota file block
Directory index block

O W N = O

(continued on next page)
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Table 4-2 (Cont.): Contents of a Buffer Descriptor

Field Name Description

BFRD$W_CURPID Process index of the current process. This field contains the
process index of the process that owns the buffer.

BFRD$W_NXTBFRD Index of next BFRD. This field contains the index of the next
buffer descriptor in the hash chain.

BFRD$W_BFRL Index to buffer lock hash chain. This field contains the index

to the BFRL to which this buffer belongs.
BFRD$W_SAME_BFRL Index to the next BFRD under the same BFRL.

4.2.4 Buffer Lock Block Descriptors

A buffer lock block descriptor, or BFRL, describes the lock associated with
each buffer in the cache. Because each buffer descriptor may have a lock
associated with it, the number of BFRLs equals the number of BFRDs. Unlike
buffer descriptors, however, buffer lock descriptors are not divided into pools.

A single lock may be associated with more than one buffer descriptor when
multiple blocks are read under the same lock, such as for the quota file, a
directory, or a multiheader file.

Essentially, BFRLs are used to associate buffers with a particular file. One BFRL
exists for each BFRD for a file, and one BFRD represents one disk block. Thus,
multiple BFRDs per BFRL are possible, but multiple BFRLs per BFRD are not.

BFRLs are used to keep track of system-owned null locks that are always

on a block in one of the block caches. They are not used for protected write
serialization process locks. For more information on serialization of file system
activity on a single node and in a VAXcluster environment, see Chapters 7 and 8.

The fields of the buffer lock block descriptor are shown in Figure 4-6 and are
described in Table 4-3.

Figure 4-6: Format of the Buffer Lock Block Descriptor

BFRL$W_BFRD BFRL$W._NXTBFRL 0

reserved BFRL$W_REFCNT 4

(continued on next page)



Figure 4-6 (Cont.):

Cache Processing on a Single Node 161

Format of the Buffer Lock Block Descriptor

BFRL$L_LKID 8
BFRL$L_LCKBASIS 12
BFRL$L_PARLKID 16

Table 4-3: Contents of the Buffer Lock Block Descriptor

Field Name

Description

BFRL$W_NXTBFRL

BFRL$W_BFRD
BFRL$W_REFCNT
BFRL$L_LKID
BFRL$L_LCKBASIS

BFRL$L_PARLKID

Index to the next BFRL in the hash chain. This field also serves
as an index to the next entry in the buffer lock descriptor chain
(F11BC$W_FREEBFRL) that contains all the BFRLs that are
not in use.

The buffer index is used as a word pointer. The last entry in
the list is indicated by a value of 0. The most-recently-used
entry is inserted at the beginning of the list, and all allocations
also take place from the beginning of the list.

The free BFRL list is shown in Figure 4-7.

Index to first BFRD.

Number of buffers represented by this lock.

Lock ID of buffer lock.

Unique file identifier. This FID follows the prefix F11B$s to
form the resource name. Because this field is used as an index
to the lock hash table, it provides fast access to the locks.
Parent lock ID. This field contains the lock ID of the volume
allocation lock of the volume to which the buffer contents
belong.
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Figure 4-7: Free Buffer Lock Descriptor List
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4.2.5 LBN and the Lock Basis Hash Tables

The LBN hash table and the lock basis hash table (or buffer lock hash table)
both contain a minimum of one word each per buffer. An extra page is added

to the total so the buffers themselves are always aligned on a page boundary
regardless of where the space is actually allocated in paged pool. Any extra space
between the lock descriptors and the start of the buffers is split between the two
hash tables.

The chief purpose of the LBN hash table is to provide fast access to the LBNs in
the cache. The hash function is a modulo function using the desired LBN and the
size of the hash table (contained in F11BC$W_LBNHSHCNT) in words. Collisions
are handled by chaining the BFRDs. The last entry in the hash chain is indicated
by a value of 0. The hash table entries and chain links are both buffer index word
pointers.

Buffers without valid blocks are not contained in the hash table.

Figure 4-8 shows the relationship between the cache header, the LBN hash table,
and the buffer descriptors.
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Figure 4-8: Layout of the LBN Hash Table
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The lock basis hash table also provides quick access to buffer locks by using a lock
basis, which is a longword composed of a relative volume number, an extended file
number, and a file ID. This lock basis is used in the lock resource name, prefixed
by F11B$s. The BFRL$L_PARLKID field identifies the volume on which the file
is located.

The hash function is a modulo function using a unique identifier (obtained by
adding the BFRL$L_LCKBASIS and the BFRL$L_PARLKID fields) and the size
of the hash table (contained in F11BC$W_BLHSHCNT) in words. The last entry
in the hash chain is indicated by a value of 0. The hash table entries and chain
links are both buffer index word pointers.

Figure 4-9 shows the relationship between the cache header, the lock basis hash
table, and the buffer lock descriptors.
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Figure 4-9: Layout of the Lock Basis Hash Table
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Figure 4-10 shows the relationship between the cache header, the buffer
descriptors, and the buffer pool.

Figure 4-10: Layout of the XQP Block Cache
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4.2.6 Buffer Pools
The remainder of the I/O buffer cache is divided into four pools of data buffers:
* Storage bitmap blocks and the SCB

These are all the data blocks mapped by the BITMAP.SYS file. See
Section 4.2.6.1.

* Directory data blocks, random data blocks, and quota file blocks

This is the only pool on which multiblock read operations may be performed.
See Sections 4.2.6.3 and 4.2.10.

¢ File headers and index file bitmap blocks
These are all data blocks mapped by the index file. See Section 4.2.6.2.
¢ Directory index blocks

This cache is used by the directory index caching mechanism. These pages
are not I/O buffers, but they are managed by the buffer caching routines
because they provide the necessary cluster validation See Section 4.2.6.4.

The constant F11BC$K_NUM_POOLS, currently equal to 4, indicates the number
of buffer pools.

A least recently used, or LRU, algorithm is used to replace buffers (that is, the
first three cache pools). When the desired disk block cannot be found in the cache,
the buffer that was referenced earliest is discarded and replaced with the desired
block.

This algorithm is accomplished by linking all BFRDs for a given pool onto a
queue header for that pool. This address of this queue header is contained in the
F11BC$Q_POOL_LRU field, which is actually a vector of four queue headers that
represent the four pools.

The pool to which a buffer belongs is contained in the BFRD$B_FLAGS field.
Also, because more than one buffer type resides in a pool, the BFRD$B_BTYPE
field is used to differentiate between the buffer types.

The four pools are numbered from 0 through 3, and the POOL array is used to
find the pools.

Buffers read by file system operations are not “locked down”; rather, they may
be reused any time further reads are issued in the same buffer pool. The buffer
manager guarantees that the last n buffers read in each pool will be available,
where n is the minimum buffer credit reserved for that pool (see Section 4.3). If
it is necessary to read a set of blocks that exceeds the minimum credit, the local
and global variables pointing to the blocks that were read earlier may no longer
be valid. In this case, the original blocks must be read again.
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When there is no file system activity, the four values in the F11BC$L_POOLAVAIL
vector equal the four values in the F11BC$W_POOLCNT field. In addition, all
buffers for a given pool are linked onto their respective F11BC$Q_POOL_LRU
queue headers.

Figure 4-11 shows the location of the available queue and the POOLCNT array
in the cache header.

Figure 4-11:

Cache Header

Relationship Between F11BC$L_POOLAVAIL and F11BC$W_

POOLCNT

Pool O

Pool 1

Pool 2

Pool 3

Pool 1

Pool O

Pool 3

Pool 2

F11BC$L_POOLAVAIL

F11BC$SW_POOLCNT
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When a buffer is being used by a particular process during an operation, it is
removed from the POOL_LRU queue and inserted onto a per-process (or in-
process) BFR_LIST queue. The BFR_LIST structure itself is a vector of queue
headers, one for each pool. Each process also has two four-element vectors,
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BFR_CREDITS and BFRS_USED, representing, respectively, the number of
buffers reserved and the number actually in use.

Figure 4-12 shows the in-process queue and two vectors in the XQP impure area
that keep track of buffer information.

Figure 4-12: Location of BFR_LIST, BFR_CREDITS, and BFRS_USED
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The purpose behind buffer credits is to avoid resource deadlocks. The credits
prevent stalls in critical sections of XQP code (any section where a lock is held
on a systemwide resource such as a cache). A stall could potentially cause a
deadlock. If credits are obtained before any processing can proceed, XQP code
can be executed more quickly and without stalling. For more information on how
buffer credits are extended, refer to Section 4.3.1.
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The number of BFRDs in each queue header in the BFR_LIST structure must
always correspond to the value in the BFRS_USED vector. When a BFRD is on
the BFR_LIST queue, the BFRD$W_CURPID field contains the internal PID
index for that process.

4.2.6.1 Storage Bitmap Cache

The storage bitmap cache contains blocks from the storage bitmaps of volumes
mounted on the system. Each bit in the bitmap for a given volume represents one
disk cluster of disk space.

The size of this cache is controlled by the ACP_MAPCACHE system parameter.
The default value is eight blocks, which is sufficient unless many volumes are
mounted and they all have a significant amount of file creation and extension
activity.

Caching the entire bitmap on a volume that is heavily fragmented may benefit
performance; the file system makes multiple passes over the bitmap in the
following cases:

* When trying to cache a reasonable amount of disk space in the extent cache

¢ When determining whether or not a contiguous file creation or extension
operation may be completed if the existing entries in the bitmap cache cannot
satisfy the space requirement

The file system makes three complete searches of the storage bitmap to satisfy
a contiguous-best-try allocation request. If this request cannot be satisfied, the
allocation will be fragmented.

Access to this cache is synchronized by the volume lock of the block being
accessed.

4.2.6.2 File Header and Index File Bitmap Cache

The file header cache greatly decreases the time needed to open a file. The file
header contains information used to construct the FCB, the data structure that
the file system uses to control access to the file. It also contains the mapping
pointers that define the locations of all the data blocks associated with the file.

This pool also contains the index file bitmap cache. This cache holds blocks
from the index file bitmap that are used to allocate unused file IDs to the FID
cache when the FID cache is depleted.

The size of this cache is controlled by the ACP_HDRCACHE system parameter.
The default value of 128 pages allows slightly less than 128 file headers to be
cached. Files that have multiple extension headers because of fragmentation and
large ACLs take up more space in the cache and decrease the number of files for
which headers are cached.
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If the file header is in the cache, the performance decrease caused by a window
turn is lessened because the file header (or headers) contains all the mapping
information for the file.

Each entry (that is, each page) in this cache has its own lock.

4.2.6.3 Directory Data Block Cache

The directory data block cache contains directory data blocks so that file
lookups can be performed more quickly. That is, the cache contains the contents
of recently referenced directories.

The size of this cache is controlled by the ACP_DIRCACHE system parameter,
and the default is 80 pages. The ACP_MAXREAD system parameter controls the
maximum number of directory data blocks read in one I/O operation. For more
information, refer to Section 4.4.

Each entry (that is, each page) in this cache is synchronized by its own lock.

4.2.6.4 Directory Index Cache

The directory index cache is the fourth pool in the buffer cache. It is located
in paged pool. Unlike the other pools, this pool does not contain buffers; rather,
it contains an index into a given directory file, constructed while the directory is
being processed.

Figure 4-13 shows the relationship between the directory file FCB, the XQP
impure area, and the buffer descriptor.
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Figure 4-13: Locating the Directory Index Cache
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Each entry in the DINDX cache points to a particular location in a directory file.
One page is dedicated to each directory; entries consist of the last file entered in
each directory data block. This cache allows the file system to search a directory
for a given file without having to do a linear search on the entire directory. This
advantage saves time and also reduces the number of block buffers used in the
directory cache.

Figure 4-14 shows an example of entries in the directory index cache.

Figure 4-14: Directory Index Cache Entries

VBN1 VBN2
4 4 AAA.DAT;1 CCC.DAT;1
1 15
nnn
BBB.DAT;1
DDD.DAT;2 BBB.DAT;1 DDD.DAT;2
FFF.DAT;3
VERY_LONG_FILENAME.DAT ;4 e
VBN3 VBN4
EEE.DAT:1 VERY_LONG_FILENAME.DAT: 4
Last 29 entries unused FFF.DAT;3

ZK-9712-HC

The size of this cache is controlled by the ACP_DINDXCACHE system parameter.
Its value should equal the number of active directories on the system. For large
directories, each cache entry represents a group of blocks rather than a single
block, so that the number of groups does not exceed the fixed size of the index.

For more information on the directory index cache, see Section 8.6.5.
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4.2,7 Specialized Caches

There are three specialized caches on a disk volume:
* Extent cache

¢ TFile ID cache

¢ Quota cache

The volume cache block (VCA) points to two of these caches: the file ID cache
and the extent cache. These two caches are located together in one block. The
quota cache, however, is located separately in another block.

The volume cache block is located in nonpaged pool, and is pointed to by the VCB.

The fields of the volume cache block are shown in Figure 4-15 and are described
in Table 4—4.

Figure 4-15: Format of the Volume Cache Block
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Table 4-4: Contents of the Volume Cache Block

Field Name Description

VCAS$L_FIDCACHE Pointer to the file ID cache.

VCASL_EXTCACHE Pointer to the extent cache.

VCA$W_SIZE Block size.

VCA$B_TYPE Block type code.

VCA$B_FLAGS Flags. The following fields are defined within VCA$B_FLAGS:
VCA$V_FIDC_VALID FID cache valid
VCA$V_EXTC_VALID Extent cache valid
VCA$V_FIDC_FLUSH FID cache to be flushed to disk
VCA$V_EXTC_FLUSH Extent cache to be flushed to

disk

4.2.8 Extent Cache

The extent cache is essentially a preallocated section of the storage bitmap file.
It contains a list of known free (unused) extents that can be allocated when a file
is newly created or extended. An extent is a pointer (consisting of an LBN and a
size) that maps a logically contiguous area of disk space on a disk volume.

The main purpose of the extent cache is to maintain a certain fraction of the
free space on the disk in the extent cache. It is found from the addresses in
the VCB$L_CACHE and the VCA$SL_EXTCACHE fields. A default value of 64
extents is controlled by the system parameter ACP_EXTCACHE. The cache is
allocated from nonpaged pool.

When the file system tries to allocate an extent, the extent cache is checked first.
If the cache allocation fails, the storage bitmap itself is scanned. It is scanned
twice: once from the given starting point to the end, and, if necessary, again from
the beginning of the bitmap to the end.

After the allocation, an attempt is made to refill the extent cache from the bitmap
block in memory, and then from the bitmap itself. The VBN of the bitmap block
last used to allocate disk blocks is recorded in the storage bitmap VBN field
(SBMAPVBN) in the allocation lock value block.

When the file system returns blocks (for example, when a file is deleted), they
are returned to the extent cache. If the cache overflows, some extents are purged
back to the storage map.
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Note that the system parameter ACP_EXTLIMIT controls only how many extents
are actually in the cache, and this number will never be more than the following

value:
ACP_EXTLIMIT

0 percent of the free space on the volume

Once this limit is reached, no more extents will be added to the cache. On
volumes with large amounts of contiguous free space, the cache will not contain
many extents.

The extent cache consists of the cache header, followed by a quadword vector of
extents, densely packed. Each quadword contains a block count and a starting
LBN.

The fields of the extent cache are shown in Figure 4-16 and are described in
Table 4-5.

Figure 4-16: Format of the Extent Cache Block

VCASW_EXTCOUNT VCA$W_EXTSIZE 0
VCAS$L_EXTTOTAL 4

reserved VCASW_EXTLIMIT 8

VCAS$L_EXTCLKID 12

e VCA$B_EXTCACB (28 bytes) ¥ 16

VCAS$Q_EXTLIST
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Table 4-5: Contents of the Extent Cache Block

Field Name Description

VCA$W_EXTSIZE Number of entries allocated, controlled by the system
parameter ACP_EXTLIMIT

VCA$W_EXTCOUNT Number of entries currently in use

VCAS$L_EXTTOTAL Total number of blocks contained in cache

VCA$W_EXTLIMIT Limit of volume to be cached, in tenths of a percent

VCAS$L_EXTCLKID Extent cache lock ID

VCA$B_EXTCACB Extent cache blocking AST control block (ACB)

VCA$Q_EXTLIST First entry in list

Figure 4-17 shows the format of an extent cache entry. The VCA$L_EXTBLOCKS
field represents the number of blocks, and the VCA$L_EXTLBN field contains the
starting LBN.

Figure 4-17: Format of an Extent Cache Entry

VCAS$L_EXTBLOCKS 0

VCAS$L_EXTLBN 4
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Figure 4-18 shows how the address in the VCB$L_CACHE field locates the
volume cache block and the extent cache.

Figure 4-18: Locating the Extent Cache from the Volume Cache Block

VvCB

b))

CC
3N
<

VCBS$L _CACHE

b )
«
b))}
«

VCA

VCASL _EXTCACHE

b))
C

b))
- CC

e o - - - - - —— —— ]

A

\SY

~ Extent Cache A

ZK-9594-HC



180 Cache Processing on a Single Node

4.2.9 File ID Cache

The file ID, or FID cache, is effectively a preallocated section of the index
file bitmap. In other words, it is a cache of unused file identifiers that can be
allocated when a file is created or an extension header for a file is needed.

The FID cache is found using the addresses in the VCB$L_CACHE and the
VCASL_FIDCACHE fields. The default value of 64 file IDs is obtained from the
system parameter ACP_FIDCACHE. The cache is allocated from nonpaged pool.

When the file system allocates a file ID, the FID cache is checked first. If the
cache is empty, blocks are read from the index file map until a block with a free
bit is found, and the free bits are then added to the FID cache. The file header
for this file ID must, of course, be available.

The index file bitmap block is written to the disk during this operation. If it is
not written back, two processes searching for a free FID in the bitmap might
allocate the same FID.

The fields of the file ID cache are shown in Figure 4-19 and are described in
Table 4-6.

Figure 4-19: Format of the File ID Cache Block

VCAS$SW_FIDCOUNT VCAS$W_FIDSIZE

VCAS$L_FIDCLKID

)
1y

7 VCA$B_FIDCACB (28 bytes)

N
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N

VCASL_FIDLIST

¢ 36
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Table 4-6: Contents of the File ID Cache Block

Field Name. Description

VCA$W_FIDSIZE Number of entries allocated to the cache
VCA$W_FIDCOUNT Number of entries present in the cache
VCAS$L_FIDCLKID FID cache lock ID

VCA$B_FIDCACB FID cache blocking AST control block
VCAS$L_FIDLIST First entry in list

Figure 4-20 shows how the address contained in the VCB$L_CACHE field locates
the volume cache block and the file ID cache.
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Figure 4-20: Locating the File ID Cache from the Volume Cache Block
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4.2.10 Quota Cache

The quota cache contains UIC-based entries to keep track of the allowed usage
and current usage of disk blocks without continually having to read and write the
blocks of the QUOTA.SYS file. This cache is irrelevant if the volume has been
mounted with the /NOQUOTA qualifier or does not have quotas enabled. The
quota cache is pointed to by the address in the VCB$L_QUOCACHE field. It is
allocated from nonpaged pool.
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Each quota entry contains a UIC, the quota information, a lock status block used
with the quota cache entry locks, the quota file record number, and LRU indexes.
The cache header contains a LRU counter; when a new entry is added, the value
is put into the entry, and this counter is incremented.

When the cache is flushed, each entry is returned to disk, and the corresponding
record on disk is located and updated. Any quota entry locks are released, and
the quota cache lock is converted to null mode.

The quota cache consists of the cache header, followed by the cache entries. Each
cache entry is a block as defined below.

The fields of the quota cache header block are shown in Figure 4-21 and are
described in Table 4-7.

Figure 4-21: Format of the Quota Cache Header Block

VCASW_QUOLRU VCASW_QUOSIZE 0
VCAS$L_QUOCLKID 4

VCAS$B_QUOCFLAGS reserved 8
F VCA$B_QUOACB (28 bytes) & 12
T VCA$B_QUOFLUSHACB (28 bytes) 2 40

VCAS$L_QUOLIST r 68

)
W
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Table 4-7: Contents of the Quota Cache Header Block

Field Name Description

VCA$W_QUOSIZE Number of entries allocated.
VCA$W_QUOLRU Current LRU counter.

VCA$L_QUOCLKID Whole cache lock ID.

VCA$B_QUOCFLAGS Flags. The following fields are defined within

VCA$B_QUOCFLAGS:

VCA$V_CACHEVALID Valid cache. The cache is
enabled and may contain
entries.

VCA$V_CACHEFLUSH Cache is to be flushed.

VCA$B_QUOACB ACB to deliver blocking AST on the cache lock.
VCA$B_QUOFLUSHACB  ACB to deliver cache flush AST.
VCA$L_QUOLIST Start of entries.

Figure 4-22 shows the fields of a quota cache entry. These 24 bytes form the

substructure VCA$R_QUOLOCK, which is used for the lock status block Note

that-the fields of the figure run right-to left.

Figure 4-22: Format of a Quota Cache Entry

VCA$W_QUOLRUX

'VCA$W_QUOSTATUS

VCAS$L_QUOLKID

VCA$B_QUOFLAGS

VCA$L_QUORECNUM
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VCASL_PERMQUOTA

VCASL_OVERDRAFT

VCA$L_QuUoOUIC
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24
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Table 4-8: Contents of a Quota Cache Entry

Field Name

Description

VCA$W_QUOSTATUS

VCA$W_QUOLRUX
VCAS$L_QUOLKID
VCA$L_QUORECNUM
VCA$B_QUOFLAGS

VCA$L_USAGE
VCA$L_PERMQUOTA
VCAS$L_OVERDRAFT
VCAS$L_QUOUIC

Current $ENQ status. This field is also used to hold the value
of VCA$W_QUOINDEX, which represents the number of this
entry in the quota cache.

LRU index for entry.

Lock ID of cache entry.

Record number.

Flags. The following fields are defined within
VCA$B_QUOFLAGS:

VCA$V_QUOVALID Valid entry is present. This flag
indicates that the quota cache
entry is valid and contains current
data.

VCA$V_QUODIRTY Modified entry is present. This
- flag indicates that the quota cache
entry has been modified but not yet
written to the quota file.

Current usage.
Permanent quota.
Overdraft limit.
UIC.

Figure 4-23 shows how the quota cache may be located from the VCB.
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Figure 4-23: Locating the Quota Cache from the Volume Control Block
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4.3 Obtaining Buffers

Before a given file system operation is allowed to use any buffers in the cache
or before any operation is allowed to hold any locks, the minimum number of
buffers required to perform the operation must first be reserved. The process of
obtaining buffers is managed by maintaining counters, one for each pool, in the
fixed overhead area. These counters represent the number of buffers currently
reserved for concurrent file system activity. The number of buffers currently
available in each pool is contained in the F11BC$L_POOLAVAIL vector. The
currently required buffer credits are as follows:

*  One bitmap block buffer

* Two directory data block buffers
Three file header buffers

*  One directory index buffer

A process is stalled until enough buffers are available to complete the activity.
The F11BC$Q_POOL_WAITQ vector has listheads for each pool, and an IRP is
queued on the pool wait queue while the request is stalled. The process is sent an
AST when buffer credits are returned.

The logic behind the process of obtaining buffers prevents resource deadlocks that
could result if the following three conditions exist:

* A partially completed operation requires additional buffers to complete.
* No free buffers are available.

¢ Other processes holding buffers are waiting for the partially completed
operation to complete.

The obtaining of credits is controlled by the cache interlock. The buffer credits
are returned to the free pool counts, under the cache interlock, but only if the
buffers are not in use. If there is a process either on the pool wait queue or on
the ambiguity queue, the process is added to the cache interlock queue after the
current process. The process is awakened when the cache interlock is released.
For more information on the cache interlock, see Chapter 7.

4.3.1 Extending Buffer Credits

A certain number of buffers must be reserved before any process is allowed to
start a file system operation. For example, three buffers from the file header
pool are always reserved. If only six buffers were resident in the file header pool
(set by the ACP_HDRCACHE system parameter), only two processes would be
allowed to proceed concurrently. Until one of them completed, a third process
could be stalled.



188 Cache Processing on a Single Node

In this situation, if a file with four headers is accessed, the process would have
to discard from its buffer the first header read from its BFR_LIST and use that
buffer to read the fourth header. The BFR_LIST structure is managed with an
LRU algorithm, and the oldest buffer is always discarded.

However, if there are more than six unreserved buffers in a given pool, additional
buffer credits are extended to a process to avoid invalidating a recently accessed
buffer (as the previous example did). This operation is done by decrementing
the contents of the F11BC$L,_POOLAVAIL field and then incrementing a pool
counter when the additional buffer is desired, but only if the number in the
F11BC$L_POOLAVAIL field is greater than or equal to six.

In other words, the file system uses as many buffers from the pool as are available
without affecting other users.

4.4 Multiblock Disk Read Operations

The directory and quota file data block pool allow multiblock read operations.
A contiguous group of buffers is assembled to be used in a single multiblock
QIO operation when the buffer desired by the caller is not already in the cache.
Directory and quota file processing also request multiblock read operations. The
number of buffers assembed in the caches-is limited by the value of the system
parameter ACP_MAXREAD.

The contiguous group of buffers is assembled starting with a BFRD pulled
from the POOL_LRU list. The file system tries to assemble adjacent BFRDs

in ascending memory sequence. If the end of the pool is reached, the file system
then tries to proceed from the starting BFRD in descending memory sequence.

Assembling a group of contiguous buffers may fail under three conditions:
o I_f any BFRD is already in use (that is, the BFRD$W_CURPID is nonzero)

e Ifthe LBN the file system intended to read into that BFRD is already in the
cache somewhere

¢ If the buffer credits for the process are exceeded and the process is not
extended any more credits

4.5 Disk Write Operations

All Writing to disk (except for normal virtual write functions and erase
functions) is performed by the WRITE_BLOCK routine (in RDBLOK) or the
WRITE_HEADER routine (also in RDBLOK), which performs a checksum ﬁrst.
Buffers can be explicitly written in this way.
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WRITE_BLOCK is invoked automatically when it is necessary to remove a
buffer from the in-process list (dirty buffers must be only on the in-process list).
WRITE_DIRTY can be called to write all dirty buffers associated with a lock basis
(which implies that all buffers should be written).

TOSS__CACHE_DATA will do the same for a given lock array index, except that it
also invalidates the cache buffers. This is done when closing a file opened using
OPEN_FILE.

Most operations that modify buffers will simply mark them as dirty and allow
CLEANUP to write them with the WRITE_DIRTY routine. There are various
exceptions, as follows:

* ERR_CLEANUP force writes the current directory buffer when it performs a
re-enter function.

e CREATE_HEADER force writes the index file header when advancing the
EOF (not currently done). CREATE_HEADER also force writes blocks of the
index file bitmap when filling the FID cache. DELETE_FID performs likewise
when returning FIDs to the index file bitmap.

e DEALLOCATE_BAD force writes modified file headers. SCAN_BADLOG
force writes the pending bad block file (BADLOG) file header when extending
its header.

¢ MARK DELETE force writes the updated (marked as deleted or actually
deleted) headers out to disk. DELETE_FILE does likewise.

¢ EXTEND_CONTIG force writes data bIocks as it copies them to the new
extended contiguous file. The new header is force written. Likewise,
SHUFFLE_DIR force writes directory blocks during its copy.

e TRUNCATE force writes the file header with the map pointers truncated so
that the header is guaranteed to be updated before the storage bitmap shows
the blocks as free.

¢ WRITE_AUDIT force writes all modified buffers given the primary lock basis
before doing the FID_TO_SPEC translation, which releases the lock basis.

4.6 Systemwide Buffer Validation

Buffers are located in one of two places:
¢ In the system list, possibly marked as containing valid data read from disk

* In an in-process list, containing either valid data from disk or “dirty” data
that has been modified but not yet written to disk

When a buffer is moved from the system list to the in-process list, it is read if the
buffer descriptor describes it as invalid.
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CREATE_BLOCK is a general-purpose routine that creates a new buffer filled
with 0s. Under some circumstances, though, it is called with a backing LBN of
—1. This means that the desired buffer is a scratch buffer and does not represent
any data on disk.

The file system uses this technique in a truncate function. Two copies of the file
header are temporarily needed because the updated file header must be written
before the blocks are freed.

A truncate function performs the following steps when it is creating a new file
header:

1. Calls CREATE_BLOCK with an LBN argument of -1

Copies the file header into the created block

Zeroes the map area of the original file header and updates it
Uses the file header copy to free the blocks

Deallocates the copy by calling INVALIDATE

AR ST o

4.6.1 Invalidating a Buffer

When a buffer is invalidated, it is moved to the front of the in-process LRU list
and marked as not valid (but not dirty). The following operations will mark a
buffer invalid:

¢ Any process that performs either a read or a write operation to the SCB
(such as a dismount function) invalidates the buffers to ensure that the
SCB is not cached on behalf of a shadow set (since mount verification writes
asynchronously to the SCB).

¢ When a new header is being created, the file system may invalidate the
header if it finds it does not want to use the header (if, for instance, the
header appears to be valid). This invalidation prevents confusion if the
header is found in the cache when it should not be.

e When a new header is being read and the operation fails, a test is performed
to see if the block can be written. If the write operation succeeds, the buffer
is invalidated, and a read operation is tried again.

¢  When an unused header is sought and found, the file system reads and
validates it. However, the validation is expected to fail because only invalid
headers should exist in the buffer. If the validation succeeds, then a problem
may occur because the header already points to another file. In this case, the
buffer is marked invalid and then discarded.

* Any buffer being discarded is also invalidated.
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*  When a directory is marked to be deleted, the first data block of the directory
is read to make sure the directory is empty. The buffer read is invalidated
since it is no longer needed. The directory cache is also flushed to write out
its data blocks. Turning off the directory bit for a directory also flushes the
directory blocks.

*  When the volume is being dismounted or is being mounted with the
/NOCACHE qualifier, the buffers of the cache are flushed. This operation
invalidates all the buffers associated with a particular UCB. Buffers in the
system list are purged; buffers in the process list are marked invalid; and
buffers in other process lists are ignored.

* When a directory is write-accessed, the directory data block and directory
index pool are flushed, thus invalidating the buffers associated with the
current UCB. This invalidation is performed only on a single node because
the sequence numbers associated with the serialization locks protect these
buffers in a VAXcluster.

* The special file write virtual function also scans through all the BFRDs in the
cache, discarding those in the specified pool for the current UCB when the
user writes to the following special files:

— Index file
— Storage bitmap file
—  Quota file
— Directory

For more information about how writing to these special files is done in a
VAXcluster system, see Chapter 8. ’

* When the quota file is deaccessed, all the quota file blocks that were modified
are written out to disk after the quota cache is cleared. Then the buffers
associated with the quota file data blocks are purged.

4.6.2 Changing the LBN of a Buffer

When the index file header is modified (in the CREATE_HEADER routine), the
LBN of the buffer is changed by the RESET_LBN routine to reflect the alternate
index file header. This modification ensures that a file header will be available
when a block is written to disk. The buffers containing the alternate index file
header are immediately invalidated to avoid confusion.

A similar operation is performed when the index file header is either read or
extended (in the READ_IDX _HEADER routine). If the file size from the header
is incorrect, the alternate index file header is read, and the LBN of the buffer is
changed. If either operation fails, the buffer is simply invalidated. Likewise, the
LBN of a buffer must be changed when the index file itself is extended.
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The RESET_LBN routine is also used when a contiguous file is copied to extend
it. It performs the following actions:

¢ Reads the blocks of the old file as data blocks
¢ Changes the LBNs associated with the buffers
*  Writes the blocks explicitly

The blocks may remain in the cache because the LBN recorded matches their new
location. This operation is also performed when a directory is compressed.
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5.1 Introduction

Accessing data on disk is controlled by the ACP functions and function modifiers,
which are part of the QIO interface to the file system. The seven main functions
are as follows:

® Accessing a file

¢ Creating a file

® Deaccessing a file

* Modifying a file

¢ Deleting a file

* Mounting a disk!

e ACP control (disk quota adjustments, dismounting a disk)

These virtual I/O functions may be invoked by the $QIO system service:
* Directly by the user

¢ Implicitly as part of an RMS operation

¢ As a result of the MOUNT command

e As a result of using the System Management Utility (SYSMAN)?2

5.2 ACP-QIO Interface

The file system data structures are represented by on-disk information. The XQP
replaces the metadata (that is, the information about the file) on disk with in-
memory copies or representations of the same things—WCBs, FCBs, VCBs, and
S0 on.

All the functions require access to the file header. For example, the functions
must read the header or alter it. An open operation (which is expressed as an
access function with access modifier; without the access modifier, it is a lookup
function) takes the map data from the header and represents some of it in a
window control block in the privileged I/O database.

1 The XQP does not perform the entire mount. The SYS$MOUNT service does most of the work and
sets up file system data structures; the IO$_MOUNT QIO executed by the XQP simply verifies and
acknowledges the mount.

2 SYSMAN includes the DISKQUOTA command set, which operated as a standalone utility in VMS
Version 4.6.
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All the major functions are executed by the XQP, where they are translated to
logical read and write QIO functions. In the normal case, read and write requests
go through the SYSQIOREQ module, not through the XQP, which must reference
WCBs, VCBs, and FCBs. If the necessary disk information is mapped and if the
access is legitimate, the $QIO request may bypass the XQP altogether. In fact,
this is the desired outcome.

In a sense, the XQP merely takes care of the housekeeping functions (the
metadata-establishing functions), and the XQP code is often avoided. For
example, the major ACP functions are usually only performed once: once per
file open, per file remap, and so on. And because I/O is a limiting factor, data
is often represented with absolute data structures such as cathedral windows
(which avoid the remap function).

Figure 5-1 shows how data travels from the user through the I/O subsystem to
the XQP.

Figure 5-1: ACP-QIO Interface
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When performing I/0, the file system is awakened in a manner that is appropriate
to its environment. With an ACP, a $WAKE is issued to the ACP. On the other
hand, the XQP is entered when a kernel-mode AST is queued, and control is then
transferred to the XQP dispatcher.
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In either case, the following four steps are performed:
1. Getting the request

2. Dispatching to the main operation

3. Posting the results of the 6peration
4

Returning resources

5.2.1 Getting the Request

When the user issues a $QIO system service request with a main function and a
function modifier, the $QIO service and its associated function decision table
(FDT) routines verify the correctness of the parameters passed and construct a
complex buffer packet, or ABD. The routine EXE$QXQPPKT is then called,
which queues a kernel-mode AST to the process with the following two pieces of
information: B

* The XQP entry point F11B$L_DISPATCH as the AST routine address
* The IRP address as the AST parameter in the call to SCH$QAST

The routine DISPATCH queues the IRP to the tail of the XQP work queue and
returns if a request is currently in progress. This can be determined by checking
whether IO_PACKET (in the XQP impure area) has a nonzero value. If there are
no packets in the queue, DISPATCH performs the following actions:

¢ Prohibits process deletion

* Changes the access mode of the I/O channel to kernel

¢ Switches to the XQP private stack as the kernel stack

¢ Saves the frame pointer

¢ Calls the main XQP routine DISPATCHER

At this point, DISPATCHER takes the following three actions:
¢ Finds the (next) requeét on the work queue

The DISPATCHER routine first calls the routine GET_REQUEST to remove

an IRP from the XQP work queue. An ACP maintains its work queue using a

queue header in the system pool. The queue header of the XQP work queue is
~ part of the XQP impure area in P1 space and is therefore process specific.
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Validates the information

After DISPATCHER dequeues the request packet, it performs the necessary
validation. It initializes the value of the per-operation performance counters
and the common data area (the impure area). DISPATCHER also checks

the device control blocks that the request references to ensure they are valid
and that the device is mounted. In addition, it validates the user-supplied
parameters to make sure they are consistent with each other for an operation.
For example, an extend operation and a truncate operation at the same time
are not allowed.

DISPATCHER sets up UCB and VCB pointers to point to the correct device,
and then assigns the I/O channel to the UCB. If the operation involves a
volume set, DISPATCHER also assigns a pointer to the RVT of the current
volume, and obtains the relative volume number.

A local copy of the user’s privileges is made and is used for all subsequent
privilege checks. The SYSPRYV bit is set in this local copy if any of the
following conditions is true:

— The user has a UIC group less than or equal to MAXSYSGROUP.
— The user is the owner of the volume.

— The user’s UIC group matches the volume owner group and the user has
GRPPRYV privilege.

Also, the following cleanup flags are set:

— CLF_VOLOWNER or CLF_GRPOWNER, if the user is the owner of the
volume or has GRPPRV and the volume group matches the owner’s group

— CLF_SYSPRY, if the user has BYPASS, READALL, or SYSPRYV privileges

Sets up the impure area

After GET_REQUEST zeroes the impure area to clear the fields from the
previous operation, it sets up pointers to the control blocks that are relevant
for the operation. For example, if the operation is on an open file, pointers
are set up to point to the file control block and to the window control block so
that access to all of the relevant data structures is established.
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5.2.2 Dispatching the Operation

There is a major function routine for each of the major functions, and every
function involves the following steps:

1. Setting up the operation.

An important part of setting up the operation is obtaining the required
number of buffers, or buffer credits, to perform the operation. The routine
GET_REQD_BFR_CREDITS ensures that the process has sufficient buffer
credits to proceed with any function. The buffer credit quota mechanism
prevents a process from stalling for lack of available buffers while it holds a
lock on a critical system resource.

This routine checks buffer credits for all three buffer pools, and if they are
sufficient for the operation, it releases the cache lock. If there is an entry
waiting in the ACP queue block, an AST is queued to resume the stalled
thread for that process. If there are not enough credits, the process is
inserted in the pool wait queue and stalled with the usual WAIT _FOR_AST-
CONTINUE_THREAD mechanism.

Performing the requested operation.
Cleaning up after the operation.

Lowering the IPL to allow process deletion.

S NN

Restoring the stack.

This approach is followed because many cleanup functions should be performed
in a centralized manner. When these functions are done at the end of processing,
they must be done only once. However, potentially, they might need to be done
many times during the course of processing a request. For example, functions
such as performing checksum operations on file headers and reinitializing the file
control block are usually done more than once while a request is being processed.

5.2.3 Posting the Resulis
The following actions occur after the request has been processed:

¢ The complex buffer packet is modified; any buffers that need to be returned to
the user are written back to the complex buffer packet.

¢ The completion status is placed in the I/O packet.

® The I/O packet is sent to the VMS common I/O post facility. Here, the complex
buffer is disassembled, and the individual pieces are revalidated and written
back to the user buffers from which they came.
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Although necessary in the ACP environment, copying buffers back to the user
is not strictly necessary in the XQP environment because the XQP executes in
the context of the requesting process. The same mechanism is used for both
the ACP and the XQP to simplify the QIO interface. Also, because the XQP
does not access user buffers directly, address probing is not necessary.

5.2.4 Returning Resources

Once the file operation has been completed, any resources are returned. The file
system uses two major resources when it is processing a request:

* Locks—Any locks that were taken out to synchronize the operation or to
protect data are released.

¢ Buffers—Any buffers that were allocated for this operation are released.

5.3 Major ACP Functions

The file system ACP functions are well-structured. Utility routines exist within
the file system that the file system itself uses, so a map of what routines call
other routines is meaningless.

ACP function execution can be divided into four levels:

Level Description

Dispatch level Handles user input and dispatches requests. This level
consists of modules such as SYSACPFDT (in the SYS
facility) and DISPATCH and DISPAT (in the F11X

facility).

Function level Consists of the top-level ACP function routines such as
ACCESS and CREATE.

Synchronization level Controls access to file system entities by means of locking,

FCB invalidation, system blocking routines, and other
routines in the LOCKERS module.

Utility routine level Performs the low-level simple functions such as reading
a file header (READ_HEADER), writing a file header
(WRITE_HEADER), or establishing a connection to the
quota file (CONN_QFILE).
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There is a separate top-level routine in the file system for each of the major
functions:

Function Meaning

Access Opens a file or looks up a file (establishes that it exists). It also retrieves
information from a file. For example, a directory lookup to take a
file name and return the file ID would use the access function. The
IO$M_ACCESS modifier establishes an access path to the file. For more
information, refer to Section 5.3.1.

Create Creates a file. It also creates a directory entry, either for the file that
is being created or for an existing file. The IO$M_ACCESS modifier
establishes an access path to the file. For more information, refer to
Section 5.3.2.

Delete Deletes a file. It can also remove the directory entry for the file that is
being deleted. For more information, refer to Section 5.3.3.

Modify Changes the characteristics of an existing file, which may involve
extending it, writing attributes to it, or truncating it. For more
information, refer to Section 5.3.4.

Deaccess Deaccesses a file. For more information. refer to Section 5.3.5.
ACP control Consists of miscellaneous functions. For more information, refer to
Section 5.4.

5.3.1 Access Function

Part of the QIO interface to the XQP is the ACP function I0$_ACCESS. This
function searches a directory for a specified file and accesses the file, if it is found.
It can take two function modifiers:

e IO$M_CREATE—Creates the file if it does not exist.
¢ IO$M_ACCESS—Opens the file on the user’s channel.

Because the function is IO$_ACCESS, the routine ACCESS is called. The access
function performs the following tasks:

¢ Finds the directory entry, if necessary.

e Serializes processing to the file, allowing stable FCBs to be found or created.
Establishing serial access to the file and to the FCB chain is important
because it prevents another process from changing the information in the
FCB chain while the chain is being scanned. Serializing access to the file also
prevents the file itself from changing state (including protection, size, access
by other users) while the current request is in progress.
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* Locates the file control block. If the wrong lock basis was serialized on (that
is, if the user was trying to access an extension header directly), this problem
is detected. In this case, the serial lock is released, and the correct lock basis
(for the primary header) is serialized on.

* The file header is read, and a file control block is created if one was not found.
e The primary FCB is created if one is not found.

® Checks access conflicts, and obtains the access lock in the appropriate mode.
For more information on the access lock, refer to 8.3.2.

e (Creates a window to the file. The routine MAKE_ACCESS threads the
window onto the FCB and updates the access counts.

e Sets the WCB$V_WRITE_TURN bit for directories and other special files
(such as QUOTA.SYS) whose contents may be contained in the XQP cache.
Write operations to such files cause the cache contents to be invalidated.

¢ Checks the expiration date.

¢ Builds and validates extension FCBs

* Checks and audits user access to the file, if necessary.
- . _Flushes the caches if the file is a special one.-

¢ Obtains the appropriate cache lock.

* Reads attributes if they were requested.

¢ Determines the need for cathedral windows.

5.3.2 Create Function

Create file is a virtual I/O function that creates a directory entry or a file on a
disk or tape.

The function modifiers are:
¢ IO$M_CREATE—Creates a file.
e I0$M_ACCESS—Opens the file on the specified channel.

¢ IO$M_DELETE—Marks the file for deletion when it is created. No directory
entry for the file is made because it is only a temporary file.

If the modifier IO$M_CREATE is specified, a file is created. The file ID of the
file created is returned in the file information block (FIB). If the modifier
IO$M_DELETE is specified, the file is marked for deletion immediately.
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If a nonzero directory ID is specified in the FIB, a directory entry is created. The
file name specified by the user is entered in the directory, together with the
file ID.

The create function is invoked if an I0$_CREATE function code is specified, or if
DISPATCHER detects SS$_NOSUCH FILE from ACCESS when IO$M_CREATE
(create_if) was specified. The create function performs the following basic steps:

¢ Performs a cleanup operation from a failed access attempt if this is a create-if
operation.

¢ Performs a write access check on the parent directory because the FIND
routine within the access operation only checked execute access.

* Finds the volume for the file.

¢ Checks the user’s rights to create files on that volume.

* Creates a file header.

* Creates the primary FCB.

* Enters the file (if it is not a temporary one) into the specified directory.

* Serializes access to the previous version of the file if attributes are to be
propagated. The FCB-list is searched, andan FCB is created, if necessary.
Also, attributes are copied to the file.

* Determines the back link.
* Writes the updated header to disk.

* Performs write-attribute processing, and updates any ACLs to include the
creator.

* Charges quota for the file (if quotas are enabled).

* Accesses the file if requested.

* Extends the file to the desired length.

* Updates the file header chain with the ACL.

* Remaps the file if it was extended (and if cathedral windows were specified).

* Deletes any file that was superseded or removed (which is a cleanup function).
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5.3.3 Delete Function

Delete file is a virtual I/O function that removes a directory entry or file header
from a disk. It can take one function modifier, IO$M_DELETE, which deletes the
file (or marks it for deletion).

If the function modifier IOSM_DELETE is specified, the file is marked for
deletion. If the file is not currently open, it is deleted immediately. If the file
is open, it is marked to be deleted when the last accessor deaccesses it.

If IO$M_DELETE is not specified, the directory entry only is removed.

If a nonzero directory ID is specified in the FIB, a lookup subfunction is
performed. The file name located is removed from the directory.

The DELETE function is invoked if an IO$_DELETE function code is specified. It
performs the following basic steps:

* Finds and removes the directory entry.
* Serializes access to the file, and reads its header. -
¢ Seeks for and creates the FCB if necessary.

¢ Checks if the directory entry removed was the primary entry. If it is not, the
file itself is not deleted. A directory entry is considered the primary entry if
the directory file ID matches the file’s back link and the name in the directory
matches the name stored in the header.

¢ Checks for delete access to the file.

® Checks to guarantee that the file is empty if the file is a directory.
* Audits the deletion if required. e
® Checks for other accessors.

* Marks the header for deletion.

¢ Returns any cached buffers for the file (directories only).

* Marks the FCB for deletion.

* Deletes the file if this process is the only accessor.

¢ Releases the access lock (manipulated when checking for other accessors).

¢ Deletes any FCBs.
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5.3.4 Modify Function

Modify file is a virtual I/O function that modifies the file attributes or allocation
of a disk file. The I0$_MODIFY function is not applicable to magnetic tape.

The function code I0O$_MODIFY takes no function modifiers. It is used for
modifying the characteristics of an existing file, which means extending it, writing
attributes, or truncating it.

The MODIFY function is invoked if an IO$MODIFY function code is speciﬁed. It
performs the following basic steps:

* Locates the directory entry if required

* Serializes access to the file

¢ Seeks for and creates the FCB if necessary

* Interlocks against other accessors

¢ Checks access to the file

¢ Performs and audits write-attributes processing if necessary
* Performs extension or truncation

¢ Updates the file header chain

5.3.5 Deaccess Function

Deaccess file is a virtual I/0O function that deaccesses the file. It has no function
modifiers.

Because the function is IO$_DEACCESS, the routine DEACCESS is called. It
performs the following basic steps:

* Serializes access to the file.
* Rebuilds the FCBs if any operation must be done to the file.

¢ Requests cleanup deletion of the file if it is marked for deletion and this is the
last access.

* Updates the revision count.
¢ Updates the file highwater mark.

® C(Clears the deaccess lock flag if attributes are being written.
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e  Writes the attributes.

* Performs any requested truncation. If this process is not the only accessor,
delayed truncation is performed. However, if this process is the last accessor
and delayed truncation was requested, truncation is performed at this time.

The ERR_CLEANUP routine actually deaccesses the file; it is is invoked after the
DEACCESS routine exits.

5.3.6 ACP Control Functions

Miscellaneous control functions are performed by the ACP control functions. All
ACP control functions originate from the ACPCONTROL routine.

The following table lists these control functions and what they do:

Function Description
Remap The REMAP function invokes REMAP_FILE under the file
serialization lock to completely map the file.
Lock volume The LOCK_VOL function locks the current volume by taking
. the blocking lock for the volume (TAKE_BLOCK_LOCK).
Unlock volume The UNLK_VOL function clears the VCB$V_NOALLOC bit,

establishes the free space value clusterwide (referenced in
the free space allocation lock block field), and dequeues the
blocking lock.

Mount verification The FORCE_MV function forces a shadow set virtual
unit through mount verification to ensure that the SCB
is consistent and that shadowing information is updated
throughout the cluster. This function can be requested by a
process with SYSPRV.

Mount The MOUNT function informs the file system when a volume
is mounted. This function is part of the volume mount
procedure only, so users cannot access it directly. For more
information on the volume mount procedure, see Section 3.3.
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Function Description

Disk quota Enables disk quota enforcement on a volume or volume set.
This function includes two types of operations:

e To enable and disable the quota file itself
¢ To manipulate individual quota entries

For more information on disk quota operations, see
Section 5.4.1.

Dismount Flushes all caches and marks the SCB as the volume being
dismounted. The interesting aspect of this operation is that
the SCB is possibly written to (asynchronously) by mount
verification. The SCB I/O must be retried to make sure that a
consistent SCB is read or written.

5.4 Miscellaneous File System Requests

The major ACP functions are represented by QIO functions. Moreover,
multiplexed under those are a variety of operations that are distributed across
those major functions. A number of these other functions may occur as a result of
any of several major functions. Although some of these file system functions are
performed explicitly, others are performed implicitly on behalf of the user.

Miscellaneous file system functions include the following:
* Disk quota operations

¢ Directory manipulation

* Space management

e Attribute handling

¢ Bad block processing

5.4.1 Disk Quota Operations

Some quota operations are implicit, in that when space is allocated or deallocated,
the user’s quota is automatically adjusted.

Disk quota enforcement is enabled by a quota file on the volume, or on relative
volume 1 if the file is on a volume set. The quota file appears in the volume’s
master file directory under the name QUOTA.SYS;1.



208 The ACP Functions

Operations that may be performed on the quota file include the following:
¢ Enable

¢ Disable

e Add entry

¢ Examine entry

¢ Modify entry
* Remove entry

5.4.1.1 Quota File Operations

A user can request that various ACP control functions be performed on the quota
file. These quota operations involve explicit manipulation of the quota file, and
they are called by the System Management Utility (SYSMAN)L. The quota file
is never manipulated directly by VMS because its individual entries are cached
by the file system. Rather, the operations interlock with the cache, so consistent
results are always seen.

These user-invoked quota operations are performed by the QUOTA_FILE_OP
routine, which handles enabling and disabling quota processing, and adding,
examining, modifying, and deleting quota file entries.

The XQP synchronization rules dictate that the file serialization lock must be
acquired before the volume allocation lock. The lock basis for the quota file
is contained in the quota file FCB, which is located by means of the pointer
VCB$L_QUOTAFCB. However, the allocation lock protects the quota file FCB;
that is, VCB$L_QUOTAFCB is not stable except under the allocation lock.

The solution is for QUOTA_FILE_OP to perform the following loop:

1. Request the serialization lock on the quota file (using whatever random value
it gets by looking at VCB$L_QUOTAFCB)

2. Take out the allocation lock
3. Check that VCB$L_QUOTAFCB matches
4. Unlock and retry until it does

However, an additional aspect of these quota operations is that the blocking
lock is requested for an add quota function. DISPATCHER does not request the
blocking lock for ACP control functions because some affect the blocking lock
state.

QUOTA_FILE_OP also checks protection and permission to the file (by privilege
or access).

1 SYSMAN includes the DISKQUOTA command set, which operated as a standalone utility in VMS
Version 4.6.
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The following table describes the quota operations and their functions:

Quota Function

Description

Enable
Disable
Examine
Add entry
Modify

Remove entry

Connects to the quota file. In other words, it enables quota for the
volume.

Flushes the quota cache, forces writes of any quota file buffer
blocks, and then performs the actual quota file deaccess
(DEACC_QFILE).

Returns a quota file record.

Finds the next free record, writes the quota information, and calls
the EXTEND_CONTIG routine if it is necessary to enlarge the file.

Changes an entry and writes it. The process must hold the volume
blocking lock to modify the usage figure.

Returns an old entry. The entry is zeroed under an exclusive lock
on the quota entry.

5.4.1.2 Quota Cache

The quota cache has entries based on UICs to keep track of allowed usage,
current usage, and so on, without having to read and write the QUOTA.SYS
file itself all the time. The quota cache is allocated in nonpaged pool by
MAKE_DISK _MOUNT in the MOUNT module MOUDK2 and deallocated by
CHECK_DISMOUNT.

The quota cache is found by following the VCA block pointer in the VCB$L_

QUOCACHE field.

Each quota cache entry contains the following information:

e UIC

* Quota information (usage, permanent quota, overdraft)

¢ Lock status

¢ Block used with the quota cache entry locks

* Quota file record number

¢ LRU indexes

The cache header contains an LRU counter. When a new entry is added, the
value is put into the entry, and this counter is incremented.
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The following routines operate on the quota cache:

Routine

Function

FLUSH_QUO_CACHE

SCAN_QUO_CACHE

CLEAN_QUO_CACHE

ENTER_QUO_CACHE

Flushes all entries to disk. The corresponding record on disk
is located and updated (by CLEAN_QUO_CACHE). Any quota
entry locks are released, including a conversion to null mode
of the quota cache lock itself.

Finds an entry in the cache. If the cache is marked invalid,
this routine tries to get the normal protected read cache lock
to enable the cache.

If the entry is not valid, the quota entry lock (protected write)
is obtained to make it valid and to get the current quota
values from the lock value block.

If the entry is not found in the cache, it is added to the cache
(either by LRU replacement or by expansion).

SCAN_QUO_CACHE also sets the VCA$V_CACHEFLUSH
flag in the cache header if it finds the quota cache invalid and
cannot obtain the cache lock. The CLEANUP routine checks
for this condition and flushes the quota cache when processing
is finished (to reflect the changes to the process holding the
quota cache lock).

Updates the disk record from a cache entry. The disk buffer is
marked as dirty, and the cache entry is marked as clean.
Copies a given record into the cache. The LRU index is
updated if requested, and the entry is marked as dirty if
requested.

5.4.1.3 Accessing the Quota File

Enabling quota processing on a volume makes a call to CONN_QFILE. The
CONN_QFILE routine establishes a connection to the quota file and calls the
FIND routine to locate the quota file. CONN_QFILE performs these additional

actions:

¢ Finds or creates the FCB under the quota file serialization lock
* Builds the extension FCBs

* Requests write access for the quota file

e Allocates the quota cache, linking it to the VCB

* Sets up the ACBs in the cache header for the various blocking routines

* Takes out the quota cache lock if the quota file is already write-accessed
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5.4.1.4 Processing the Quota File

The quota file is a sequential contiguous file with no version limit, and quota
file records are fixed-length 32-byte records. The main routine for quota file
processing is SEARCH_QUOTA. This routine locates a quota record for a given
UIC.

SEARCH_QUOTA scans the quota cache, updating the quota file from the cache
entry if necessary. It scans the quota file if the record cannot be found, or if a
wildcard search was requested.

If a wildcard search was specified, the scan of the quota file is performed before
the scan of the quota cache to return the records in order by UIC. If the record
returned is in the cache, the returned address is that of DUMMY_REC within
CHARGEQ. This value takes on special-case status in other places within
CHARGEQ.

REAL_Q_REC is the address of the buffer containing the actual disk quota record,
if there is one. WRITE_QUOTA updates the cache entry and the disk record (in
which case the buffer is marked as dirty) depending on these variables.

CHARGE_QUOTA performs the system processing of charging for quota, checking
for overdrawn quota, and so on. It writes out the new quota record if the quota
charge is valid.

5.4.1.5 Deaccessing the Quota File

The inverse of connecting the quota file is done by DEACC_QFILE, which
deaccesses the quota file. It starts by returning any quota file buffers (in
KILL_BUFFERS). It performs these other actions:

¢ Demotes the access lock on the quota file to show that the process has
deaccessed the file

¢ Deallocates the quota cache

* Releases the quota cache lock if it was taken out

5.4.2 Directory Manipulation

Directory manipulation is an implicit file system function in many ways. Several

of the file functions result in a directory search to look up a file. For example, in

the case of a delete function, a directory entry is removed. In the case of a create
function, a directory entry may be created. This type of directory processing is all
handled with a common mechanism.

Directory manipulation is done with a common set of directory routines. First of
all, the directory file must be located, so there is a process for implicitly accessing
the directory. A window does not have to be built because directories are always
contiguous. As a result, there is enough information in the file control block to
find the directory on disk.
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Because there is bounded access control information, the file system keeps
file control blocks for recently referenced directories, which is a performance
optimization. Repeated references to the same directory eliminate the I/O
bottleneck of having to go to the disk to read the file header for the directory
file every time a directory operation is requested for that directory.

There is a common directory scanner routine that does all the directory processing
for all the components of the file system. This scanner implements wildcard
searching so it can find the next occurrence of the specified wildcard string. It
accepts input pointers to specify a point at which to start scanning the directory,
and it returns the output pointers of where it has stopped scanning. It also
returns pointers to the previous directory entry. The interface to this scanner is
enormous because it is used by so many different facilities in the file system.

Once a directory has been scanned, several conditions can result:

e For a directory access, the scanner obtains the directory entry and returns
the file ID.

¢ For a create function, the file system either has the pointers to where a file
should be created or the pointers to a previously existing directory entry that
is to be superseded.

¢ For a delete function, the scanner returns the pointer to the directory entry
that is to be removed. '

These operations are then performed by separate routines.

5.4.3 Space Management

Space management is another common mechanism. Any of the following
functions can result in either allocating or deallocating disk space:

¢ The extend and truncate routines operate on the file header and call the
common allocation and deallocation routines.

¢ The allocation routines manipulate the storage bitmap as well as some of the
allocation caches. They are capable of several different types of allocation.

The default is random allocation, which is based on the assumption that
most file activity is dynamic. That is, for files that are written once and may
be read once, or never, or twice, it is more efficient to do the allocation as
quickly as possible without trying to optimize file placement. As a result,
these routines simply take whatever disk blocks are readily available at hand
and allocate them to the file being created or extended.

For files that have a greater degree of permanance, there are several other
options:

— Contiguous allocation guarantees that all of the space allocated is in one
area.
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- Contiguous-best-try allocation specifies that the allocation is contiguous if
possible (within three tries).

— Placed allocation specifies that the first attempts at allocation occur at
a specified location on the volume. That is very useful for co-locating
different portions of an active database.

5.4.4 Attribute Handling

Attribute handling interprets the attributes that are specified in the complex
buffer packet, and it involves either the reading or writing of attributes. For
instance, the access function causes attributes to be read from the file back to the
user. The create, modify, and deaccess functions result in attributes being written
or propagated to the file.

A number of file attributes are protected. That is, they can be read but they can
only be written in a controlled way.

However, some attributes cannot be written at all. This restriction is primarily
to protect the integrity of the file system. These attributes are represented as
follows in the file header field FH2$L_FILECHAR:

Bit Name Meaning

FCH$V_CONTIG The file is contiguous. This bit can only be cleared by the
user. It is possible for a user to take a file that has been
marked contiguous and mark it noncontiguous. However, the
file system does not allow the reverse to be done (that is, it
is not possible for a user to mark a file as contiguous).

FCH$V_SPOOL The file is spooled. The spool bit is a special case for the
internal handling of spooled files on transparently spooled
devices. The file system does not allow a user to modify this
bit.

FCH$V_BADBLOCK The file contains a bad block. It indicates that bad block
processing is to be performed on the file at a later time,
such ag after it is deleted. For more information, see
Section 5.4.8.

FCH$V_NOCHARGE The file space is not charged against quota. The nocharge bit
suppresses charging the space of a file to its owner’s quota.

One of the last functions performed in an XQP request is to
reflect new disk usage in the quota file. This is done unless
FIB$V_NOCHARGE is set (a user cannot set this bit because
GET_FIB clears it).
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Bit Name Meaning

FCH$V_MARKDEL The file is marked for deletion. The mark-for-delete bit is
used for the internal purposes of the file system, so a user
cannot modify it directly.

5.4.5 Dynamic Highwater Marking

Disk scavenging is a security problem where a user allocates disk space and
then searches it for interesting contents of previous files that have been deleted.
VMS solves this problem with the combination of the two following techniques:

¢ Erase-on-allocate
* Highwater marking

Both are enabled when the highwater marking volume attribute is enabled with
the SET VOLUME/HIGHWATER command.

VMS maintains a highwater mark which indicates how far the file has been
written in its allotted space on the disk. All blocks in the file up to the highwater
mark are guaranteed to have been written since they were allocated to the file.
The user is not permitted to read beyond the highwater mark, and thus cannot
read stale data from the file.

Erase-on-allocate is the more costly but conservative technique. It is used when
the file is open, allowing any form of shared access or nonsequential access.
Erase-on-allocate, as its name implies, simply means erasing all disk blocks when
they are allocated to the file. The file’s highwater mark is set to point to the end
of the newly allocated and erased space.

Highwater marking is used only when the file is open for write with exclusive
access in sequential-only mode.! In this mode, the highwater mark is maintained
in memory and cannot be maintained across multiple nodes of a cluster with
acceptable performance (which is why access is limited to a single accessor).

This is a restrictive but common set of circumstances that allow the file system to
perform the following functions:

* Maintain a valid highwater mark dynamically
¢ Incur erase operations only under unusual circumstances

Sequential-only access is specified to the XQP with the FIB$V_SEQONLY bit in
an I0$_ACCESS function. It is a declaration that the file is a sequential file, but
it does not enforce any ordering of disk I/O. This type of access contributes to the
complexity of the highwater marking logic.

1 This mode of access results when a sequential file is opened for write through RMS with the usual
defaults.
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Sequential-only access is an enabling factor in highwater marking to prevent
possible corruption of nonsequential file organizations (such as indexed files)
during a system failure. The highwater mark is maintained in the FCB while
a file is open and is written to disk only when the file is closed. Thus, should
the system fail while the file is open, the blocks written past the last-recorded
highwater mark will be lost.

This loss can be tolerated and controlled with sequential files, but it can cause
arbitrary corruption in nonsequential file organizations. Nonsequential files are
therefore opened without FIB$V_SEQONLY and are handled with the erase-on-
extend technique.

5.4.5.1 Basic Highwater Mark Algorithm

The basic principle of highwater marking is not to allow the process to read what
has not yet been written. The highwater mark indicates the highest block that
has been written in the file. If the user attempts to read past the highwater
mark, the read is stopped. No error status is returned; as far as the user is
concerned, the read has completed successfully.

When a write function occurs that extends past the current highwater mark,
the highwater mark is updated to reflect the point at which the write operation
ended.

Finally, when a write occurs that begins beyond the current highwater mark, the
blocks between the current highwater mark and the start of the write function
are erased to fill the gap that would otherwise be left in the file. The code that
implements this simple algorithm is deceptively complex because the VMS I/O
system allows multiple concurrent read and write functions whose interactions
must be controlled.

5.4.5.2 Highwater Mark Handling Routines

Most highwater mark processing is handled by the executive I/O routines in
SYSACPFDT and IOCIOPOST. Certain exception cases are handled by the
module RWVB in the XQP, along with the other exception cases of virtual I/O.

Highwater mark processing begins in the IOC$MAPVBLK routine. This routine
enforces the highwater mark for read operations by not mapping blocks past the
highwater mark. Thus, if a read QIO extends past the highwater mark, it is
treated as a segmented read, and the following actions occur:

e The portion of the file that lies within the highwater mark is mapped and is
executed by the driver.

¢ The IOCIOPOST routine then attempts to map the remaining portion, as it
would for any segmented I/0.

* Total map failure occurs, which causes the IRP to be sent to the XQP.



216 The ACP Functions

In this circumstance, IOC$MAPVBLK indicates that the IRP starts past the
highwater mark by setting the flag IRP$V_START_PAST HWM. This flag causes
the RWVB routine to recognize the IRP as a read-past-highwater IRP, and it
immediately returns the IRP to the user.

Write operations past the highwater mark are permitted, and they are mapped by
the IOC$MAPVBLK routine. However, a write-past-highwater operation requires
the highwater mark to be updated. This checking is done by IOC$CHECK_HWM,
located in SYSACPFDT.

While a write-past-highwater operation is in progress, the highwater mark is
in transition; until the write completes, it is impossible to know whether the
blocks affected by the write operation have been written or not. Therefore, the
file system does not permit read operations into the transition region of the file.

Concurrent reads and writes are managed by having two highwater marks for the
file:

* FCBS$L_HIGHWATER—Is the current highwater mark. All blocks up to this
location are known to have been written and therefore may be read.

¢ FCB$L_NEWHIGHWATER—Is the new highwater mark. All blocks between

this location and FCB$L_HIGHWATER are in the process of being written.
Each write operation that goes past the current value of FCB§L_NEWHIGHWATER
causes its value to be updated. The following two fields are also modified:

* The IRP is flagged with the bit IRP$V_END_PAST_HWM to indicate that it
affects the highwater mark.

¢ The counter FCB$W_HWM_UPDATE is incremented to reflect the outstand-
ing update.

While writes are in progress in the transition region, reads cannot be allowed in
the transition region because the file system does not know which blocks have or
have not been written. Such reads must be stalled until the writes complete and
the highwater mark is again stable. This stalling is done by queuing read-past-
highwater IRPs onto the end of the FCB$L_HWM_WAITFL queue.

Completed writes flagged with the IRP$V_END_PAST_HWM flag are processed
by the routine HWM_END in IOCIOPOST. This routine performs the following
actions:

* Decrements the pending write counter. If the counter goes to zero, it means
that all blocks in the transition region have been written and that the new
highwater mark is stable.

* Copies FCBSL_NEWHIGHWATER into FCB$L_HIGHWATER.

¢ Dequeues any pending reads on the wait queue, and reprocesses them by
sending them through the IOC$QNXTSEG routine.
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Write operations that start beyond the new highwater mark cause considerably
more trouble. If such a write were simply executed, it would leave a gap in
the blocks written to the file. This gap must be filled by erasing the blocks
between where the FCB$L_NEWHIGHWATER field indicates and where the
write actually begins. This type of write operation is flagged with the bit
IRP$V_START_PAST_HWM, and the file system performs the following actions:

¢ Copies the starting VBN of the gap (represented by the current value of
FCB$L_NEWHIGHWATER) into IRP$L._ERASE_VBN.

¢ Increments the pending erase counter FCB$W_HWM_ERASE.

* Queues the IRP to the XQP routine RWVB, which uses the routine
ERASE_VIRTUAL to erase the appropriate file blocks.

While the erase operation is in progress, asynchronous writes to the transition
region of the file cannot be allowed because there is no way to guarantee whether
the write operations or the erase operation will be processed first by the disk
driver. As a result, while the pending erase count is nonzero, write operations
into the transition region are likewise stalled on the FCB$L_HWM_WAIT queue.
Pending read operations are stored on the back of the queue (that is, in the
FCB$L_HWM_WAITBL field), and pending writes are stored on the front of the
queue.

After the RWVB routine has executed the erase operation, the following actions
occur:

¢ Its subroutine END_HWM_ERASE decrements the pending erase counter.

¢ If the counter goes to zero, RWVB pulls any pending write operations (but not
reads) from the front of the stall queue and restarts them by means of the
IOC$QNXTSEG routine in a manner similar to IOC$HWM_END.

¢ Finally, the write that incurred the erase operation is sent to the driver
through the REQUEUE_REQ routine. This write operation is now a normal
write-past-highwater operation and is treated as one.

Additional complexity can be introduced by undisciplined software that attempts
to write past the end of the file’s allocated space. Because the file can also be
extended asynchronously, such a write only extends the highwater mark to the
end of the allocated space (where the write operation will stop if the file is not
extended), and its IRP is flagged with IRP$V_PART_HWM.

If the file is extended while the I/O is in progress, a subsequent trip through
IOC$QNXTSEG will map the new blocks. The IRP$V_PART_HWDM flag indicates
that the IRP must be revalidated with another call to IOC$CHECK_HWM before
proceeding.
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Finally, write-past-highwater operations that encounter an I/O error require
special handling. If the write contained multiple blocks, some blocks usually
remain unwritten because the I/O was stopped short by the error. Because the
advance of the highwater mark has already been committed, these blocks must be
overwritten to avoid having unwritten blocks in the file. This is accomplished (in
RWVB) by erasing the unwritten blocks of the transfer before returning the error
to the user.

5.4.6 Spool File Processing

A spool file is a file without a directory entry that is flagged as spooled. It is
sent to the symbiont when it is deaccessed. The idea behind spooling is to allow
a process to pretend it is writing to a printer, when in fact it is writing to an
intermediate file.

The IRP$L_UCB field (which is loaded into the impure cell CURRENT_UCB by
the GET_REQUEST routine) refers to the spool file. IRP$L_MEDIA is set to
the spooled device UCB (a printer). Spool file operations are recognized when a
process sends a create function to a printer specified as spooled, and this function
is then translated into the creation of a spooled file.

Requests to operate on spool files are recognized in FDT processing. The file
name user buffer is replaced by the user name and account to become the file
name in the header. GET_REQUEST then notices that IRP$L._UCB is different
from IRP$L_MEDIA, and sets the cleanup flag CLF_SPOOLFILE.

The spool flag is set in the file header for spool files by the CREATE routine.
This flag causes the FILL_FCB routine to set the FCB$V_SPOOL bit in the file
control block. This flag is one of the characteristics that cannot be changed by
WRITE_ATTRIB.

When a spool file is deaccessed, the IO$_DEACCESS FDT processing transmits
the caller’s user name in the P2 string buffer of the complex buffer packet. The
user name is used by an ACP-type file processor to submit the queued request
under the right user name; it is not used by the XQP because the XQP is running
in the caller’s process.

In the file system, the CLF_DOSPOOL cleanup flag is set, which causes a queue
request to be sent to the job controller containing the following information:

¢ TFileID

¢ Filename string constructed from the device name and the name in the file
header

* Queue name taken from the VCB of the spooled device

If the symbiont request fails, the file is deleted (by setting CLF_DELFILE), and
the job controller error status is returned to the user (in USER_STATUS).
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5.4.7 Access Control List Processing

Access control lists (ACLs) are also managed through attribute handling. There
are several attribute control codes that are used to read either the entire access
control list or selected entries, to update the access control list, and so on.

The access control list is contained in the ACL area of a file header. Although
an ACL can be relatively large, unrestricted use of access control lists forces
multiheader files to be created—an important performance consideration. A file
header is 512 bytes long, and when either the access control list or the map
pointer space exceeds this length, extension headers must be created and chained
to the original header to control the overflow.

The address of the ACL for a file is a parameter passed to the CHECK_PROTECT
routine. It is created (copied from the file header chain) only during initial FCB
creation.

For an open file, the access control list is maintained in paged pool, and it can
be located from the ACL queue of the ORB, which is located in the primary FCB
for the file. When an ACL is processed, the file system actually uses the access
control list in paged pool. When the ACL processing is complete, the entire ACL
is copied back into the file header on disk.

The ACL is returned to the user through a read attributes function, and it is set
by WRITE_ATTRIB. The GET_FIB routine initially sets the FIB$L._ACL_STATUS
field to success. This field gets its real value in the routines READ_ATTRIB
and WRITE_ATTRIB. Writing to the ACL causes the FCB to be marked stale
clusterwide, which forces the in-memory ACL to be rebuilt across the cluster.

The CHECK_DISMOUNT routine deletes any ACLs when it deallocates any
FCBs associated with a device.

5.4.8 Dynamic Bad Block Processing

Bad block processing is not invoked explicitly by any user operations but happens
as the result of normal file system processing in a way that is mostly transparent
to the user. It is initiated when a hard I/O error occurs during file I/O, on either
a read or a write function. The failing I/O is turned over to the file system, which
flags the file as having a bad block but does nothing more at that time; dynamic
bad block processing occurs when the file is deleted.

When this flagged file is deleted, it is sent to a special bad block scanner process
instead of being directly deallocated. This process, created by the file system,
asynchronously scans the file and accesses the blocks to search for the error.
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5.4.8.1 Handling an 1/O Error

When a read or write function on a file returns from a driver with an error status,
the IOPOST routine clears the IRP$V_VIRTUAL bit in the IRP and queues it to
the XQP. (Clearing the virtual bit distinguishes I/O error processing from requests
for window turns and highwater mark processing, which arrive at the XQP with
IRP$V_VIRTUAL set.) The XQP performs bad block processing if the error

code in IRP$L_IOST1 is a parity, format, or datacheck error. Other error codes
indicate problems other than media errors and do not cause bad block processing.

The MARKBAD_FCB routine in the RWVB module sets the bad block bit
(FCB$V_BADBLK) in the indicated FCB. The routine SCAN_BADLOG is called
to locate the block in BADLOG.SYS, the pending bad block log file. BADLOG.SYS
is opened in secondary context and is searched for the LBN on which the I/O
failed. If an entry is found, it is updated. If one is not found, it is created.

If the deaccess function sees that the bad block bit is set in the file header, it
sets the FH2$V_BADBLOCK bit in the file header. Likewise, INIT_FCB2, which
initializes the FCB according to the given file header, sets the FCB$V_BADBLK
bit if the FH2$V_BADBLOCK bit is set. Setting FH2$V_BADBLOCK, in turn,
causes the DELETE_FILE routine to send the file to the bad block scanner for
deletion.

5.4.8.2 The Bad Block Scanner

Normally, when a file is deleted, the mapped blocks are returned to the storage
bitmap. If the bad block flag in the header is set, the routine SEND_BADSCAN
(in the SNDBAD module) sends a message through the special mailbox
(ACP$BADBLOCK_MBX) created by INIT_FCP during SYSINIT, and it specifies
the UCB and FID of the file to be deleted. If the message is sent successfully,

a request is made for a process called BADBLOCK_SCAN, or the bad block
scanner.

The bad block scanner contains all privileges, and its UIC is [1,3]. Its job is to
scan the deleted file to locate the bad block. When the block that generated
the error is found, it is exercised by being written and read three times to
determine whether the error can be reproduced. If the block can be read and
written satisfactorily all three times, then the file system continues to use the
block. (In fact, most of these errors are not repeated, and the block is read and
written satisfactorily.) However, if it cannot be read or written any one of those
three times, the block is considered bad, and it is retired.

Blocks that do not have errors after this scan are returned to the storage bitmap,
and those that do have errors are appended to BADBLK.SYS (by moving the map
pointer from the deleted file to BADBLK.SYS).!

1 Note that, logically, DSA disks contain no bad blocks. On a DSA disk, bad blocks are revectored in
the RCT when they are written or read. If an error occurs while a block is being read, it is flagged
as a “forced error.” Rewriting the block is necessary to clear the forced error flag. Because DSA
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For more information on bad block processing on DSA disks, see Section 2.5.3.3.
To find the defective blocks, the bad block scanner runs BADBLOCK.EXE in the
BADBLK facility.

The main BADBLOCK processing routine, MAIN_BAD (in the BADBLK module
GETREQ) reads each message from the bad block mailbox. For each, it resets the
UCB address in a CCB it holds for that purpose to the UCB address of the file
containing the suspected bad blocks. The routine SCAN (in the BADBLK module
SCANFILE) searches through the file to determine which blocks are defective.

The SCAN routine tests each block of the file, truncating the trailing blocks from
the file. This function occurs in user mode, and retries are inhibited to prevent
the disk driver from automatically performing offset recovery. If the block is
found to be bad, SCAN uses the MARKBAD truncate option FIB§V_MARKBAD.
This option causes the specified blocks (only the last cluster) to be sent to
DEALLOCATE_BAD. This operation requires SYSPRV.

DEALLOCATE_BAD, in secondary context, serializes on the bad block file. A
map pointer is added to the last header to map the bad blocks. The end-of-file
mark and highwater mark are reset to include these blocks.

In secondary context, SCAN_BADLOG in the F11X module BADSCN is called
to scan the pending bad block log and remove any existing BADLOG entries for
these blocks. The bad block scanner will also check the BADLOG file for any
references to the file when it is done.

When all blocks are truncated from the file, the empty file is deleted and
deaccessed.

Figure 5-2 shows a diagram of virtual I/O error handling.

disks relocate bad blocks when they are rewritten, the bad block scanner never finds the bad blocks
again after it rewrites its test pattern. As a result, BADBLK.SYS is always empty on DSA disks. In
other words, if the file system finds a block with a forced error, the bad block processor runs when
the block is deallocated. A DSA disk will try to read and write the block repeatedly; if the block
cannot be read or written, it is revectored. So no bad blocks are entered in BADBLK.SYS for DSA
disks.
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Figure 5-2: Virtual I/O Error Handling
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5.4.9 Window Handling

A file may contain one or more extents, and the file header contains a pointer
to each extent. Each pointer consists of a starting LBN and an extent size (in

bytes).

Figure 5-3 shows the virtual and physical representations of a file with nine

extents. Extents are virtually contiguous, but they may physically reside
anywhere on the disk.
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Figure 5-3: Virtual and Physical Representations of a File
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For retrieval purposes, these extent pointers reside in a structure in memory
called a window. The window control block resides in the top portion of the
window. Each WCB contains a starting LBN and a variable number of retrieval
pointers. The number of pointers may be set with the following methods:

¢ The DCL command INITIALIZE/WINDOWS=n
¢ The FAB$B_RTV field at file open time

¢ The FDL attribute FILE WINDOW_SIZE

¢ The system paramter ACP_WINDOW1

* The DCL command MOUNT/WINDOWS=n

A special type of window that maps the entire file is called a cathedral window.
This type is window is also known as a “segmented window” because multiple
WCBs are usually required to contain its mapping information. Each WCB in the
chain is called a “window segment.”

When a data transfer (a virtual read or write operation) is requested, a starting
VBN and the size of the request in bytes is given. The file system then maps the
VBN to an LBN, which is used to locate the file’s blocks on disk.

When an extent whose pointer is not in the current window is accessed, the XQP

- has to read the file header to construct a new window that maps the desired
extents. This I/O operation is called a window turn. When the file system turns
a window, it reads the header chain to find the file header that contains the
desired retrieval pointer.

Figure 5—4 shows the mapping information in both the file header and the
window control block. The WCB forms the top portion of the window, and it
contains mapping information for the first two extents. In this figure, however, if
the information contained in extents 6 through 9 is needed, the XQP must turn
the window.

1 Applies only to disks mounted with the /SYSTEM qualifier.
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Figure 5-4: Mapping a File with a Window Size of 5
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Virtual read or write operations are processed by the FDT routines, which force
a window turn if the existing WCBs do not map the desired VBN. A request
to turn a window is converted into an I0$_READPBLK or 10$_WRITEPBLK
operation. The DISPATCHER routine forwards these function codes directly to
the READ_WRITEVB routine in the F11X module RWVB.

READ_WRITEVB obtains the necessary information (such as the address of the
current window, the block count, and the desired VBN) from the IRP. It obtains
the serialization lock on the file and then calls the MAP_VBN routine.
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5.4.9.1 Mapping a Window

The MAP_VBN routine in the F11X module MAPVBN is responsible for mapping
the specified virtual blocks to their corresponding logical blocks, using the
supplied window. Because the serialization lock is being held, MAP_VBN can
rebuild the FCB (and the extension FCB chain) if the FCB has been modified.

If an extend operation was performed on a cathedral window being accessed by
multiple users, the current window does not map the entire file. In other words,
the WCB$V_CATHEDRAL bit is set, but the WCB$V_COMPLETE bit is not. The
REMAP_FILE routine in the ACPCNTRL module is called to remap the file to
update the mapping information.

REMAP_FILE ensures that the entire file is mapped. If necessary, it creates
multiple WCBs (window segments) and links them together. While building the
window segments, the following situations may occur:

* The window completely maps the file. In this case, the WCB$V_COMPLETE
bit is already set, so REMAP_FILE likewise sets the WCB$V_CATHEDRAL
bit and returns.

¢ The window was previously complete, but the file was extended. In this case,
new window pointers must be added to the last window segment, or a new
WCB added.

¢ The window never completely mapped the file. In this case, the header chain
is traversed to build the associated window segments.

If the file has extension headers, the FCB chain must be searched for the blocks
that need to be mapped. The correct FCB is identified either when there are no
more FCBs or when the starting VBN of the next FCB is greater than the desired
VBN. After finding the correct FCB, three cases may occur when the I/O transfer
is attempted:

¢ A successful mapping occurs because the current window contains the desired
mapping information.

* A partial mapping occurs because the window contains the starting VBN, but
it does not map contiguous extents.

¢ Total map failure occurs because the window does not contain any of the
desired mapping information.

If the mapping information in the current window is either totally or partially suf-
ficient, the MAP_WINDOW routine is called to map the transfer. MAP_WINDOW
maps the specified virtual blocks into their corresponding logical blocks. It calls
the system routine IOC$MAPVBLK in the SYS module IOSUBRAMS to perform
the actual mapping.
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IOC$MAPVBLK searches the WCB list associated with the request to find the
mapping pointers that locate the desired VBN. It compares the desired VBN to
the starting VBN in the WCB$L_STVBN field. If the desired VBN precedes the
starting VBN, the count of mapping pointers is obtained from the WCB$§W_NMAP
field.

If the VBN is not contained in the window, total map failure occurs. In this case,
a new UCB address (the current UCB address may have been modified by other
code) is obtained from the WCB$L_ORGUCB field, which points to the volume
containing the file.

If the VBN is in this segment, however, the window is scanned, and the count
field of each retrieval pointer is subtracted from the current block number. When
the retrieval pointer containing the starting VBN is found, the next pointer is
also scanned to see if it is contiguous with the one just found, in case the transfer
request spans two pointers. The maximum number of contiguous retrieval
pointers checked for a segment is two. Although some DSA disks support longer
transfers, this limitation only affects transfers greater than 65K blocks, which are
extremely rare.

If the total transfer has been mapped contiguously, IOC$MAPVBLK performs the
following actions:

¢ Returns the number of bytes mapped
¢ Returns the starting LBN

* Returns a status of SS$_NORMAL

¢ Allows interrupts

¢ Performs an RSB

However, if the transfer has not been completely mapped, the routine performs
the following actions:

¢ Returns the number of unmapped bytes

* Returns the LBN of the first block mapped
¢ Returns status

¢ Performs an RSB

In both cases, if the file is on a volume set, the LBN field in the map pointer
contains an RVN in bits <24:31>. This RVN is used to index into the RVT to fetch
the UCB address for the volume containing the blocks mapped. The UCB address
is returned to the caller.

After the file has been mapped, the IRP is queued to the driver’s start I/O routine.
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5.4.9.2 Turning a Window

However, if the map fails because the mapping information in the window is
not sufficient, the TURN_WINDOW routine is called to turn the window. This
routine contains the code to update window control blocks. The routine handles
cases where the file was truncated or extended, and where the WCBs describe
VBN prior to or beyond the desired area. It scans the map area of the supplied
file header and builds retrieval pointers in the window until one of the following
conditions is met:

¢ The first retrieval pointer in the window maps the desired VBN.
¢ The entire header has been scanned.

If no window exists, a new window is created. However, if a window! already
exists, one of several situations may occur:

¢ The window must be turned to map a different portion of the file.

e The header contains pointers which may be added to the existing window
after the existing window is truncated from the beginning.

® The desired VBN is less than the specified starting VBN and the starting
VBN is greater than 1.

¢ _The window already maps-a portion of the header-and only the new pointers
(which may include a partial map pointer if two contiguous extents were
collapsed into one map pointer in the header) have to be mapped.

Figure 5-5 illustrates the first situation, where a window must be turned to map,
or point to, a totally different portion of the file because neither the starting VBN
nor the desired VBN is contained in the current window. In other words, the
window must be turned because of complete map failure. The end result is a
window that contains totally new VBNs.

A “scanning window” is contructed, containing the desired VBNs. When this
scanning window is complete, all the old VBNs (VBNs 22 through 99) in the
original window are discarded, and the new VBNs (VBNs 100 through 145) are
copied to the window.

1 Does not include cathedral windows.
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Figure 5-5: Turning a Window Because of Complete Map Failure
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Figure 5-6 illustrates the second situation, where the header contains pointers
that may be added to the existing window after the existing window is truncated

from the beginning (or the top).

This situation usually occurs when a file is extended without causing a new file
header to be created. The difference between this case and the previous one is
that the starting VBN of the file header is contained within the current window,
which prevents the window from being discarded totally. In this example, the
starting VBN is VBN 18, and the desired VBN is VBN 26. The new window must
include both VBNs.
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Figure 5-6: Turning a Window to Map Additional Pointers
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Figure 5-7 shows how the existing window is truncated from the top, or
beginning, of the window. The pointer containing the starting VBN (VBN 18)
was part of the old window, but it becomes the beginning of the new window. The
new window also includes the desired VBN (VBN 26).
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Figure 5-7: Truncating an Existing Window
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Figure 5-8 illustrates the third situation, where the desired VBN is less than the
specified starting VBN and the starting VBN is greater than 1. This situation
occurs when a file is extended and a new file header (an extension header) is
created.

In this example, the current window is mapped by extents (VBNs 150 through
199) from the extension header, and extents mapped by the primary header
(VBNs 22 through 99) are desired. In effect, as the primary file header is read,
the window is turned “backwards.”
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Figure 5-8: Turning a Window to Map a Previous Header

Map area in primary
header

Map area in
extension header

File on disk
VBN 22
Desired VBNs *
| |
VBN 99 |
Extents mapped by primary header |
B NN I ——— _..|
Extents mapped by extension header |
|
VBN 150 {
Current window
VBN 199

ZK-9611-HC

Figure 5-9 illustrates the fourth situation, where the window already maps a
portion of the header and only the new pointers (which may include a partial
map pointer if two contiguous extents were collapsed into one map pointer in the

header) have to be mapped.
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In this example, VBNs 1 through 100 are mapped by a single contiguous extent,
and VBNs 101 through 105 are mapped by a second single contiguous extent.
If the file is extended contiguously, the new VBNS may also be mapped by the
second extent.

Figure 5-9: Turning a Window to Map a Contiguous Extent
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Figure 5-10 shows how the file system efficiently collapses, or combines, the
contiguous extents into a single extent. The second pointer in the file header now
reflects the addition of the new VBNs.

Figure 5-10: Collapsing the Contiguous Extents
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After the new window has been initialized, the new window pointers are
constructed in a buffer. They are copied into the WCB at IPL$_SYNCH to
synchronize with other FDT routines trying to map virtual requests.

After TURN_WINDOW returns, MAP_WINDOW again tries to obtain the
mapping information.

When control is returned to READ_WRITEVB, the routine checks to see if the
IRP$V_VIRTUAL bit is set and if this operation affects a reserved file (the index
file or the bitmap file). For a cluster, all cached buffers are invalidated. The
appropriate lock (allocation or serial) is obtained so that the sequence number
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in the value block is updated. On a single node, the buffers are purged from the
cache.

Once the block has been mapped, the IRP is requeued to the driver for which it
was originally intended. REQUEUE_REQ, in the module REQUEU, translates
the LBN into the corresponding physical block number and converts the /O
function code into the appropriate physical function. The number of unmapped
blocks is deducted from the byte count.

If the transfer was only partially mapped, the number of unmapped bytes is
subtracted from the value in the IRP$L_BCNT field, and the byte count is
rounded to the next block boundary.

If the transfer was mapped at all, the UCB$L_MAXBCNT is checked for the
largest transfer allowed. If this value is still under the limit in the IRP$L_BCNT
field, then the IOC$CVTLOGPHY routine is called to convert a logical block to a
physical block. After this conversion, the EXE$INSIOQ routine is called to queue
the IRP back to the driver.

5.5 ACP Functions and Buffer Caching

The file “subsystem” uses or consumes resources external to itself as it does work
for the user or the system. There are three major resources in VMS:

¢ Memory
 CPU
e I/O

Like any system, the file system must balance these resources in an adaptive
fashion. A cache is nothing more than an in-memory resource management
scheme.

File system operations involve at least two levels:

* Metadata, or information about the data, such as file headers, directory
entries, and in-memory data structures

¢ Data, such as user blocks

Table 5-1 shows the I/O operations that the file system uses to create a file if
caching is not available.
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Table 5-1: Number of QlOs with Caching Disabled
Action QIOs Used (Estimated)

Scan index file (that is, the bitmap) for a free headert 2
Read directory for placementt

Read storage bitmap to find free blocks?t
Read quota blockt

Write header

Write directory block

Write quota block

Total (estimated) number of QIOs 15

o = W W

FMust be found before being allocated

This number represents the number of QIOs needed to create a file before data
is written. That is, it represents only the number of QIOs needed to perform the
housekeeping or overhead functions.

The balance is heavily against I/O, so caching is performed to balance I/O against
memory. I/O is the limiting factor, and memory is inexpensive. Five special
caches are as follows:

¢ Extent cache (bitmap cache)
¢ FID cache (file ID cache)

* Directory block cache

* Quota cache

¢ Directory index cache

Table 5-2 shows how many I/O operations the file system performs to do a create
operation with a cache hit rate of 100%.
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Table 5-2: Number of QIOs with Caching Enabled

QIOs QIOs
Action Cache Used Used Saved
Search in-memory bitmap and cachet FID cache 0 2
Search cache by binary searcht Directory block cache and 0 3
directory index cache
Search cache Extent cache 0 4
Search cache Quota cache 0 3
Write header (remove entry from cache) FID cache 1 0
Update caches and write header Directory block cache and 1 0
directory index cache
Update (write-back) cache Quota cache 0 1%
Total number of QIOs 2 13

TMust be found before being allocated
fDeferred

The performance gain with caching provides speed and efficiency for the price of

some memory and CPU usage.

The file system has resources it must manage, and these resources have a price:

¢ Directory blocks

* Directory lookups (searches)
¢ Headers (file IDs)

¢ Quota entries

¢ Data blocks (bitmap)

So it makes sense to cache them, just as it makes sense to cache pages in the
memory management subsystem (free page list and modified page list). In
addition, the caches are coordinated across the cluster.

With a VAXcluster, caching is more important because there is more contention
on each disk. It is more complex because the distributed or shared nature of a
VAXcluster system necessarily requires more synchronization. However, there are

more advantages.
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There are two schemes that promote resource sharing within a VAXcluster
system:

* Competition (highest demand is next)
¢ Sharing, or coordinated payback

Table 5-3 shows the types of file system caches and identifies the type of resource
sharing they provide.

Table 5-3: Caches and Resource Sharing

Cache Type of Resource Sharing
Quota Competitive. Shifts as needed from node to node.
Extent Shared cache with coordinated payback. Resource is shared or

divided among the participants. If the usage on one node is very
great, the coordinated payback is initiated, after which demand is
lower. The cache flush blocking AST is used.

Created on delete and truncate, debited on create and extend.
Flushed by AST and DISMOUNT, and populated by MOUNT.

Directory index Shared with coordinated invalidation. -
Directory block Shared with coordinated invalidation.
Bitmap block Shared with coordinated invalidation.
Header block Shared with coordinated invalidation.
File ID Shared cache with coordinated payback. Resource is shared or

divided among the participants. If the usage on one node is very
great, the coordinated payback is initiated, after which demand is
lower. The cache flush blocking AST is used.

Created on delete and truncate, debited on create and extend.
Flushed by AST and DISMOUNT, and populated by MOUNT.




Chapter 6
The XQP and I/O Processing

Dispatch is the soul of business.
Philip Dormer Stanhope, Earl of Chesterfield

A mighty maze! but not without a plan.
Alexander Pope
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6.1 Introduction

I/O processing is the handling of a user request for an input/output operation to
the driver associated with a particular device. I/O processing can be divided into
three phases:

* T/O request preprocessing
¢ Driver-specific processing
¢ I/O postprocessing

I/O request preprocessing is handled in the VMS executive by the $QIO system
service. Driver-specific processing is performed by the driver associated with a
particular device. I/O postprocessing is also handled by other VMS executive
routines.

Although I/O can complete without involving the file system, a specific part of the
file system called the extended QIO processor (XQP) must intervene to perform
additional processing that cannot be done by either the QIO system service or by
the driver. Specifically, the XQP performs the following tasks:

* Processes a nontransfer request (for example, a file access)
¢ Handles bad blocks found in the course of performing an I/O operation

® Processes a transfer request when the current information in memory is
insufficient to convert the virtual blocks of a file to the logical blocks of the
disk

This chapter describes I/O pre- and postprocessing, which is essentially the flow
of I/O requests into and out of the XQP itself. The following topics are discussed:
¢ How and where the XQP is mapped

¢ The layout of impure storage

e The $QIO system service interface to the XQP

® The format of I/O request packets

¢ FDT action routines

¢ XQP packet building and processing

e XQP kernel stack switching

s  Error handling

¢ Posting I/O status to the user
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6.2 XQP Initialization

The Files—11 image (F11BXQP.EXE) contains only pure code, which is code that
is never written to and thus cannot be modified. It is mapped into P1, or process
control, space when the process is created. The mapping can be performed quickly
and efficiently because no I/O needs to be done for the process at this time.

The XQPMERGE routine in the SYS facility module PROCSTRT performs the
mapping operation. Because it is kernel mode code, this routine is optimized. A
single permanent global section is created for the F11BXQP image during system
initialization by the SYSINIT process.

If the system parameter ACP_XQP_RES is set, SYSINIT maps the code into
physical memory so that global valid page faults may be avoided. However, under
exceptional circumstances, the ACP_XQP_RES parameter may not be set (for
example, on a system with restricted memory that shows little file activity or a
system with a small number of users), the code is not resident.

In addition, when the XQP initializes the impure area in the SYSINIT process
(the first process to execute in the system), it creates a permanent mailbox named
ACP$BADBLOCK_MBX to communicate with the bad block processor.

6.2.1 Allocating Impure Storage

Once the code has been mapped, the XQPMERGE routine jumps to the lowest
address mapped—the initialization routine is the INITXQP in the module
DISPATCH. This routine is linked as the first in the image.

The initialization routine INITXQP changes mode to kernel, specifying the
INIT_FCP routine in the INIFCP module. This routine calls the $EXPREG
system service to add virtual pages in P1 space to map the impure storage area.
It also sets the process cell CTL$GL_F11BXQP to point to the queue header
F11B$Q_XQPQUEUE (or XQP_QUEUE) in the XQP impure area.

There are three major portions of the XQP impure area:

e A private per-process kernel stack for use by the XQP

¢ An XQP queue '

* Per-process XQP data, which includes a context save area

The INIT_FCP routine locks into the working set of the process the area for the
kernel stack and those portions of the impure area and the XQP code that may be
referenced at an elevated IPL (any IPL greater than 2). In other words, the pages
of the impure area are counted as part of the working set size. The routine also
assigns a channel for the XQP and initializes the XQP queue header.
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At the top of the XQP impure area is the XQP private stack. The stack occupies 5
pages. When the XQP dispatcher processes requests, the process uses this private
kernel stack instead of the normal kernel stack. The stack thus contains normal
call frames and data normally placed on the kernel stack. How the XQP switches
from one stack to the other is discussed in more detail in Section 6.5.3.

Figure 6-1 shows the F11BXQP structure, which is part of the XQP impure area.
It is pointed to by the process cell CTL$GL_F11BXQP. The F11BXQP structure is
an external, global structure that defines per-process XQP symbols. It overlays
the top portion of the actual per-process XQP symbols defined by FCPDEF.B32 in
the F11X facility. The symbols defined by FCPDEF are internal to the XQP, but
the F11BXQP structure allows the symbols defining the size and location of the
XQP to be visible to the System Dump Analyzer Utility (SDA).

Figure 6-1: Format of the F11BXQP Structure

F11B$Q_XQPQUEUE 0
F11B$L_DISPATCH 8
F11B$L_CODESIZE 12

F11B$L_CODEBASE » 16

F11BS$L_IMPSIZE 20
F11B$L_IMPBASE 24
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Table 6-1 describes the contents of the F11BXQP structure.

Table 6-1: Contents of the F11BXQP Structure

Field Name

Description

F11B$Q_XQPQUEUE

F11B$L_DISPATCH

F11B$L_CODESIZE
F11B$L_CODEBASE

F11B$L_IMPSIZE
F11B$L_IMPBASE

XQP per-process queue header. This queue contains the I/O
request packets (IRPs) that are currently queued to the XQP
by the process. Each IRP describes an individual I/O request.

Entry point to the XQP for first-level request dispatching.
This longword is a pointer to the DISPATCH routine in the
DISPATCH module.

Size of XQP code in bytes.

Base address of XQP code. This field contains the starting
address of the pure XQP code in P1 space.

Size of impure area in bytes.

Base address of XQP impure area. This field contains the

starting address (that is, the top of the XQP private kernel
stack) of the XQP impure data storage area in P1 space.

The space for the XQP impure area is allocated dynamically, and it can be
allocated anywhere in P1 space because it is based off a single register. All
variables in the context area are defined as offsets to the base register. Register
R10 is the base register for the XQP impure area, and it is initialized to the
address labeled CONTEXT_START.

Figure 62 shows the layout of the XQP impure area and code in the process
control region. The shaded area pointed to by the process cell CTL$GL_F11BXQP
is expanded in Figure 6-3.
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Figure 6-2: Layout of the XQP

< F11B$L _IMPBASE

XQP Internal Stack

XQP impure area

F11BSL_IMP =
$ SIZE = length CTL$GL_F11BXQP

F11B$L_CODEBASE

F11B$L _CODESIZE XQP Code

ZK-9597-HC

Figure 6-3 shows a further expansion of the XQP impure area. The impure
storage area is delimited by the symbols STORAGE_START and STORAGE_END.
The symbol L_DATA_START also points to the beginning of this area.

The pages represented by the cells located between L_DATA_START and
L_DATA_END are lock<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>