
EY-1034E-SG-0002

VAX/VMS
Users Introduction

Student Guide

Prepared by Educational Services
of

Digital Equipment Corporation

Copyright© 1982, Digital Equipment Corporation.
All Rights Reserved.

The reproduction of this material, in part or whole, is
strictly prohibited. For copy information, contact the
Educational Services Department, Digital Equipment
Corporation, Bedford, Massachusetts 01730.

Printed in U.S.A.

The information in this document is subject to change
without notice and should not be construed as a com
mitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished
under a license and may not be used or copied except
in accordance with the terms of such license.

Digital Equipment Corporation assumes no responsibility
for the use or reliability of its software on equipment
that is not supplied by Digital.

The following are trademarks of Digital Equipment Corporation,
Maynard, Massachusetts:

DIGITAL DECsystem-10 MASSBUS
DEC DECSYSTEM-20 OMNIBUS
PDP DIBOL OS/8
DECUS EDUSYSTEM RSTS
UNIBUS VAX RSX

VMS IAS

TABLE OF CONTENTS

Chapter Page

1 The User Environment • • • • • • • • • • • • • 1-1
1.1 The Hardware ••••••••••••••••••• 1-2
1.2 The Software • • • • ••••••••••••• 1-4
1.3 Restricting the User Environment • • • • • • • 1-4

2 Getting Started • • • • • • • • • • • • • • • • • 2-1

3

2.1 Logging In and Out • • • • • • •••••••• 2-1
2.2 Special Terminal Keys • • • • • • •••••• 2-4
2.3 DCL Command Format •••••••••••••••• 2-6
2.4 Getting HELP • • • • • • • • • • • • • 2-8
2.5 Obtaining Information About the Environment ••• 2-10
2.6 Modifying the Environment •••••••••••• 2-11

File Naming and Manipulating 3-1
3.1 File Concepts 3-1
3.2 Specifying Files 3-3

3.2.1 File Specification Rules • . . 3-5
3.2.2 Directories and Subdirectories 3-6
3.2.3 Purpose of Directories and Subdirectories . 3-8
3.2.4 Specifying Files in Subdirectories . . . 3-9
3.2.5 Defaults • • • . . 3-10
3.2.6 Changing Defaults • . . . • 3-12
3.2.7 Wildcards 3-13

3.3 Deciphering Error Messages . . . • . . . • 3-15

4 Creating and Manipulating Files •• • • • 4-1
4.1 Creating Files Using EDT ••••••••

4.1.l EDT Line Mode Commands ••••
4.1.2 EDT Keypad Mode Commands •••••
4.1.3 Recovering From a System Failure •

4.2 File Manipulation with DCL Commands

• • • • • 4-1
• • • • • 4-2
• • • • • 4-4

• • • 4-8
• • • • • 4-9

5 Introduction to Program Development • • • • • • • • • 5-1
5.1 Program Development on VAX/VMS •••••••••• 5-2
5.2 Logical Names • • • • • • • • • • •• 5-9
5.3 A Sample Program - GRADES •••••••••••• 5-11

5.3.1 Normal Execution of GRADES ••••••••• 5-12
5. 4 Using the Symbolic Debugger ••••••••••• 5-13

5.4.1 Execution of GRADES with the Debugger ••• 5-15

Table of Contents (cont.)

Chapter Page

5.5 Program Development with MACRO • • • • • • • • 5-28
5.5.1 Source Files • • • • • • • • • • • • • • 5-28
5.5.2 Preparing the Program for Execution •••• 5-30
5.5.3 Debug Commands • • • • • • • • • • • • • 5-34

5.6 Program Development with FORTRAN • • • • • • • 5-35
5.6.1 Source Files • • • • • • • • • • • • • • 5-35

5.6.1.1 Character Per Column Formatting •• 5-35
5.6.1.2 Tab Formatting • • • • • • • • • 5-36

5.6.2 Preparing the Program for Execution •••• 5-38
5.6.3 Debug Commands ••••••••••••••• 5-40

5.7 Program Development with PASCAL • • • • • • • 5-41
5.7.1 Source Files • • • • • • • • • • • • • • 5-41
5.7.2 Preparing the Program for Execution •••• 5-41
5.7.3 Debug Commands • • • • • • • • • • • • • 5-43

5.8 Program Development with BASIC •••••••••• 5-44
5.8.1 Source Files •••••••••••••••• 5-44
5.8.2 Preparing the Program for Execution 5-45
5.8.3 Debug Commands ••••••••••••••• 5-47

5.9 Program Development with COBOL • • • • • • • • 5-48
5.9.1 Source Files • • • • • • • • • • • • 5-48
5.9.2 Preparing the Program for Execution •••• 5-49
5.9.3 Debug Commands ••••••••••••••• 5-52

6 Simplifying a User Session • • • • • • • • 6-1

7

6.1 Creating a Command Procedure • • ••••••• 6-1
6.1.1 The LOGIN.COM Procedure • • • • • • 6-4

6.2 Creating Symbols ••••••••••••••••• 6-5
6.2.1 Parameter Symbols ••••••••••••• 6-6
6.2.2 Interpretation of Symbols • • • • • 6-8

Producing Formatted Text Output 7-1
7.1 Using RUNOFF 7-2
7.2 Input Files 7-3
7.3 Summary of RUNOFF Commands 7-14

8 Miscellaneous VAX/VMS Utilities •••
8.1 Using the MAIL Utility •••••
8.2 Using the PHONE Utility •••

• • • • • • • • 8-1
• • • • • • • 8-1

• • • • 8-4

INTRODUCTION

The purpose of this document is to introduce you to VAX/VMS.
The document is divided into chapters, where each chapter
discusses a different aspect of VAX/VMS from the user's point
of view.

Chapter 1 provides an overview of the user's environment,
discussing the software and hardware available with VAX/VMS.

Chapter 2 gets you started, by discussing how to log in and
out, use the terminal, enter commands, get help when needed,
and obtain information about or modify the user environment.

Chapter 3 discusses file naming conventions, directory
structure, use of defaults, and deciphering error messages.

Chapter 4 discusses file creation using the EDT editor, and
file manipulation commands.

Chapter 5 discusses program development in general, including
program examples for several languages supported on VAX/VMS
(MACRO, FORTRAN, COBOL, BASIC, PASCAL). The VAX-11 Symbolic
Debugger is also discussed in this chapter.

Chapter 6 introduces command procedures and symbols, methods
that can be used to simplify a user session.

Chapter 7 provides an overview of the RUNOFF text formatter,
including examples and a summary of popular commands.

Chapter 8 discusses some other useful utilities, MAIL and
PHONE.

CHAPTER 1

THE USER ENVIRONMENT

1.0 THE USER ENVIRONMENT

A computer system consists of two major parts:

o Hardware

o Software

Hardware is a term used to refer to the physical computer,
which is manufactured in a factory.

Software is a term used to ref er to the programs that
contain instructions to be performed by the hardware.

The combination of hardware and software forms a system.
Many types of hardware and software exist, so computer
systems do not have to be, and rarely are, identical.

A user's environment is defined by the combination of
hardware and software on his/her particular system. Since
the elements forming each system may not be the same, a user
of one system will probably work in a different environment
than a user on another system.

Each system is managed by a system manager. The system
manager is familiar with the system environment, and can
further restrict each user's environment.

THE USER ENVIRONMENT Page 1-2

1.1 THE HARDWARE

The hardware on a system is generally divided into three
parts - the central processing unit (CPU}, main memory, and
peripheral devices.

The central processing unit is where most of the work is
done on a computer system. In the VAX family of computers,
there are four models of the CPU, including the 11-780,
11-750, and 11-730. The 11-780 model is larger than the
11-750. The 11-730 is the smallest model. All do the same
job; some faster than others. There is usually only one
CPU per system. The 11-782 (larger than the 11-780} uses
two CPU's, one as the primary worker, and the other as the
secondary worker. Work is shared between the two processors
according to rules set up by the designers.

Main memory is used for temporary storage of instructions
and data. Main memory can be installed in units, so the
amount of memory on a system can vary. Battery backup is
available so the contents of main memory are not lost in the
case of a power failure. The system manager can set up the
system to start automatically after a failure (such as a
power outage}, and restore the contents of memory.
Therefore, with battery backup, work is rarely lost.

Peripheral devices include disk drives, magnetic tape units,
printers, terminals, and card readers.

Each disk or magnetic tape is referred to as a volume in
this document. The term device is used to refer to the
physical equipment where the volume is mounted.

Disks are used by the system to store currently used
information. A disk can be placed in a disk drive or stored
in a cabinet in the same way a record can be played on a
record player or stored in a cabinet. Although several disk
drives may be attached to a system, the user's information
is normally recorded on one disk only, which may be mounted
in any drive.

In the same way, a person may own several record players to
play records on. If a particular song is recorded on one
record only, the person may play the record on any of the
players and hear the same song. If the creators of another
record decided to include the same song, or a variation of
the song, on their record, the song would be on more than
one record. In the same way, the same information, or
different versions of the information, may be stored on more
than one disk.

THE USER ENVIRONMENT Page 1-3

Magnetic tapes are normally used to store information not in
current use, to free up storage space on the disks. The
owner of the disk decides what will be stored on tape and/or
removed from the disk.

Many different types of disk and magnetic tape drives can be
installed as part of a VAX/VMS system. The storage of
information on disks and magnetic tapes is handled by the
system and the system manager. This document assumes the
user will not be handling disks or magnetic tapes.

Most users of VAX/VMS work with printers and terminals.

Several types of printers are available. The system manager
chooses one of the printers on the system to be the default
printer. All files to be printed are sent to the default
printer unless the user specifies otherwise.

Several types of terminals are available. Some have a video
screen, such as the VT52 and VT100. Others are hardcopy
terminals using paper, such as the LA36 or LA120 (see Figure
1-1). A standard keyboard is built into all DIGITAL
terminals (see Figure 1-2). This document assumes DIGITAL
terminals are being used.

A VIDEO
TERMINAL

Figure 1-1

A HARDCOPY
TERMINAL

Figure 1-2

TK•7319

THE USER ENVIRONMENT Page 1-4

1.2 THE SOFTWARE

The software on a system is generally divided into two major
parts - application software and system software.

Application software includes programs written by users of
the system for specific purposes, such as budgeting,
processing the payroll, running machines, or keeping
personnel records up-to-date.

System software includes programs written by the creators of
the system for such purposes as coordinating users, sharing
resources, running the hardware, and helping the user
communicate with the system.

1.3 RESTRICTING THE USER'S ENVIRONMENT

A user can be restricted from access to:

o The system (i.e., not allowed to work on the system)

o Other users (i.e., so can not affect the work of other
users)

o Certain kinds of software (such as system programs)

o Particular kinds of hardware

Information about each user is stored in a special file,
called the User Authorization File (UAF), on the system.
The system manager can modify any of information stored
there to allow the user more access to hardware and
software, or to restrict the user further.

The information in the UAF includes:

o The user's name and password - needed for access to the
system

o Privileges - to allow or disallow access to hardware
and/or software

o Limits - to restrict the use of system resources

o UIC - User Identification Code

o Priority - used by the scheduler to coordinate users
on a 'higher priority - first serve' basis

THE USER ENVIRONMENT Page 1-5

When a user logs in, VMS uses this information to create a
process. A process contains a complete description of the
user's environment, including all of the information from
the UAF, what the user is doing, and what part of memory the
user is working in. Therefore, the process is equivalent to
the user's environment. Each user works in the context of
their own process. VMS coordinates, manages, and allocates
resources to processes, not users.

Processes are created for the purpose of running programs.
When a user logs in, a special kind of process is created -
an interactive process. The term interactive means that the
user is interacting directly with the system, usually via a
terminal.

VMS runs a program for interactive processes as soon as they
are created. The default program may be changed by the
system manager, but this document assumes that the program
is the command language interpreter for the DIGITAL Command
Language (DCL).

The DCL interpreter accepts a DCL command input by the user
and runs the system program corresponding to that command.
One DCL command is the RUN command, which can be used to
execute user programs. After user or system programs have
completed, VMS runs the DCL interpreter again, so the
process will not be deleted. (If a program is not executing
in a process, VMS deletes the process.)

The user will know if the DCL interpreter program is
executing by the presence of the DCL prompt, $ (a dollar
sign). The dollar sign prompt indicates that the DCL
interpreter is ready to receive a command from the user. If
the dollar sign prompt is not present, another program is
probably executing, and DCL commands should not be input.

Interactive processes are deleted by VMS when the user logs
off the system. Resources which were used by that process
are then available for use by other processes.

CHAPTER 2

GETTING STARTED

2.1 LOGGING IN AND OUT

Before you can log into the system you must obtain
permission to use the computer. The system manager is
usually the person to contact. The system manager will give
you a username and password that will permit you to use the
facilities of the system.

Once you have a username and password you can log in. To
log in to the VAX/VMS system, do one of the following:

o Press the <RETURN> key on the right side of the keyboard

o Press the control key <CTRL> on the left side of the
keyboard. Hold it down and press the C or Y key (both
achieve the same results).

You should see a request for your user name in the format:

Username:

If you do not see the prompt:

o First, check to see if the terminal is plugged
in and turned on.

o Then, try again.

o If you still do not see the prompt, get help
from your system manager or designated expert.

GETTING STARTED Page 2-2

If you received the prompt, enter your user name. The
system should output another prompt requesting your password
in the form:

Password:

Enter your password. The password does not echo (i.e., you
can not see what you type), so type carefully.

The system should output a welcome message. Some systems
also output site-specific informational messages. (These
informational messages can be changed, and added to, by the
system manager.)

If the system outputs an error message instead of a
welcome message:

o Start over and enter the information
carefully

more

o If you still receive an error message, notify
your system manager or designated expert.
(Sometimes the information recorded in the UAF
corresponding to your user name is not correct.
Sometimes the information has not been recorded.
By notifying the system manager, the problem
should be corrected so you will not receive any
more error messages.)

If the system outputs an informational message such
as 'system · busy - try again later' , then obey the
message.

Assuming
see the
terminal
program
ready to

you have been successful in logging in, you should
dollar sign prompt, $, at the left side of your

screen. The $ was output by the DCL interpreter
executing in your process. The DCL interpreter is
receive a valid DCL command.

One valid DCL command is LOGOUT. If you enter this command,
your process is deleted and its resources are returned to
the system.

$LOGOUT

GETTING STARTED

The examples that follow show both a successful
unsuccessful attempt to login to the system.

Example 1 -- Successful Login

<CR>
Username:SMITH
Password:

Welcome to VMS V3.0

$

Example 2 -- Unsuccessful Login

<CR>
Username:SMITH
Password:
User Authorization Failure

Page 2-3

and

GETTING STARTED Page 2-4

2.2 SPECIAL TERMINAL KEYS

A diagram of the standard DIGITAL keyboard can be seen in
chapter 1, Figure 1-2. The following terminal keys can be
used while you are logged in to correct errors or modify the
behavior of programs:

o DELETE - Used to delete the character just entered on
the terminal

For example, If you enter PAPEF when you meant to enter
PAPER, press the DELETE key after entering the F.

On a video screen, the F will be erased, leaving the
cursor after the E. You can then enter the correct
letter, R.

When working on a hardcopy terminal, the deleted
character will be echoed, preceded by a backslash
character. When the correct letter is entered, another
backslash character will appear on the paper, followed
by the new letter.

PAPEF/F/R

o BACKSPACE - Do not use! The character entered by this
key is unacceptable input to the DCL interpreter or a
compiler.

GETTING STARTED Page 2-5

o CTRL - This key is to be used in conjunction with one of
the following keys by holding it down while pressing one
of them:

C or Y suspends the current command line or
currently executing program. The dollar sign prompt
is then output.

R - retypes the current input line on the terminal.
CTRL-R is useful on hardcopy terminals after several
corrections have been made to an input line.

Papef/f/r is a uf/f/seful tb/b/ool (user types CTRL-R)

Paper is a useful tool (line is retyped as the
computer will see it.
Input may continue at
the end of the line.)

U - cancels the current command line

S - stops the display of information on the terminal
screen

Q - continues printing output stopped with the
CTRL/S on the terminal screen

O - suppresses output to the terminal screen but
allows program to continue. Entering another CTRL-0
reverses the effect so the output can be seen again.
(The information output by the program while output
to the terminal screen is suppressed is never seen
by the user.)

NOTE: Sometimes a terminal will not respond to a
user, and appears to have stopped working. Often,
this is because the user accidentally entered a
CTRL-S or a CTRL-0. The terminal will usually
respond if a CTRL-Q or CTRL-0 is entered. If that
fails, enter a CTRL-Y.

GETTING STARTED Page 2-6

2.3 DCL COMMAND FORMAT

Any valid DCL command can be input by the user when the $
prompt is seen. The general format of all DCL commands is
the same. However, some commands may be more explicitly
defined or modified through the use of command options,
parameters and qualifiers.

Table 2-1 lists the major command formats and examples of
commands using those formats.

Table 2-1

Command Format

$command

$command option

$command option/qualifier

$command parameter

$command/qualifier parameter

$command parameter/qualifier

$command parameter,parameter

$command param,param/qualif

Example

$LOGOUT

$SHOW SYSTEM

$SHOW DEVICE/ALL

$TYPE FILE.DAT

$DIRECTORY/FULL FILE.DAT

$PRINT FILE.DAT/COPIES=2

$PRINT FILE.DAT,TEST.FOR

$PRINT A.DAT,B.FOR/COPIES=4

The first four characters of any DCL command, option, or
qualifier uniquely identifies it to the DCL interpreter.
For example, PRINT can be shortened to PRIN, and DIRECTORY
can be shortened to DIRE. Many commands are uniquely
defined by fewer characters than four, so the user rarely
needs to enter the entire command. For example, DIRECTORY
can actually be shortened to DIR.

Many commands require an option or parameter so the DCL
interpreter will know exactly what to do. The interpreter
will prompt the user for missing information. For example,
the PRINT command prompts for a file name.

$PRINT
$_file:

(user pressed <RETURN>
(system prompt ••• user
should input file name)

GETTING STARTED Page 2-7

As soon as the DCL interpreter has received all required
information, it will invoke the corresponding system
program. For example, the PRINT command requires only one
file name. If a user enters one file name and presses the
carriage return, the file will be printed. If the user
intends to enter more than one file name, the carriage
return should not be pressed until all file names have been
entered. For example:

$PRINT
$ file: FILE.DAT

$PRINT

(user pressed <RETURN>)
(user enters file name and presses

<RETURN>. File is printed)

$_file: FILE.DAT,A.DAT,B.DAT (user list names and does not
press <RETURN> until all have
been listed. All files are
printed.)

If a user needs to print so many files that the end of the
line is reached before all files have been listed, a
continuation marker can be placed at the end of the line.
The continuation marker accepted by the DCL interpreter is -
(a hyphen). The user can press the carriage return after
entering the hyphen, and continue to input file names after
the $ prompt on the next line. A carriage return pressed
after- the last name causes all listed files to be printed.
The continuation marker can be used with any DCL command.
For example:

$PRINT FILE.DAT,A.DAT,B.DAT,
$_TEST.FOR,PAYROLL.DAT

GETTING STARTED Page 2-8

2.4 GETTING HELP

All commands listed in Table 2-1 are valid DCL commands.
More information is available on-line for every DCL command.
To obtain this information, enter the command HELP when the
$ prompt is seen.

An alphabetical listing of all DCL commands and other
selected topics will be seen. The HELP program then prompts
for a topic. The name of any topic listed can be input
after the prompt. Information about the topic will be
output, including a statement "additional information
available" preceding a list of subtopics, and a prompt for a
subtopic.

Information about a subtopic listed can be obtained by
inputting its name. If a carriage return is entered
instead, the topic prompt will be output. If another
carriage return is entered, the user will see the $ prompt.
For example:

$

$HELP
(Alphabetical list of commands and topics)

Topic? PRINT (user enters name of topic)

(general information about topic)
(subtopics listed if available)

Subtopic? /COPIES (user enters name of subtopic)

(information about subtopic is output)

Subtopic? (user presses <RETURN>

Topic? (user presses <RETURN>

GETTING STARTED Page 2-9

NOTES:

1. The three words: options, parameters, and/or qualifiers
are usually included in the list of subtopics for
commands. Any of these may be entered as a subtopic to
obtain general information. For example:

Subtopic? parameters

2. If the subtopic is a command qualifier, the / is part of
the name of the qualifier, as seen with /COPIES.

3. Another way to exit from the HELP program is by
inputting a CTRL-C or CTRL-Y.

4. The HELP command accepts a topic and/or subtopic as part
of the HELP command to obtain information more quickly.
For example:

$HELP topic subtopic

Some examples of this include:

$HELP SHOW SYSTEM
$HELP DIRECTORY
$HELP PRINT/COPIES

GETTING STARTED Page 2-10

2.5 OBTAINING INFORMATION ABOUT THE ENVIRONMENT

The environment of a user is defined by the hardware on the
system, the software available, and the information recorded
about the user in the UAF.

Users can look at their environment through the use of one
or more DCL commands listed in Table 2-2. Use HELP to find
out more 1nformation about these commands.

Table 2-2 Commands to obtain information about environment

Information desired Command to use

List of all processes on system $SHOW SYSTEM

Information about own process $SHOW PROCESS/ALL

Current statistics on own process $SHOW STATUS

*Current position (device and $SHOW DEFAULT
directory)

Current system date and time $SHOW TIME

Characteristics of own terminal $SHOW TERMINAL

Characteristics of other devices $SHOW DEVICE

*discussed in Chapter 3 of this document.

GETTING STARTED Page 2-11

2.6 MODIFYING THE ENVIRONMENT

Users can change some of the characteristics of their
environment. Table 2-3 lists the commands used to change
typically modified characteristics. Use HELP to obtain more
information about these commands.

Table 2-3 Commands used to modify user environment

Characteristic

Password

Width of line on terminal

*Default position
{device and directory)

Command

$SET PASSWORD

$SET TERMINAL/WIDTH=l32
$SET TERMINAL/WIDTH=80

$SET DEFAULT [directory-name]

*discussed in Chapter 3 of this document

CHAPTER 3

FILE NAMING AND MANIPULATING

3.1 FILE CONCEPTS

The following analogy should help you understand how
information is stored and accessed on VAX/VMS.

A large company, called WERGRATE, owns a building. The
building is divided into many rooms. Some of these rooms
are set aside for the storage of information. Filing
cabinets line the walls of each of these storage rooms.
File folders containing information are stored in most of
the cabinets.

In this analogy, we have defined several places:

The building

Rooms ~n the building

Filing cabinets in each room

One or more file folders in the cabinet

Many different types of information can be
file folders, such as drawings, reports,
records.

stored in the
and personnel

Many different kinds of files can be stored on a computer
system. A file stored on a computer system can contain such
things as text, source code, object code, or executable
code. Files are created by an editor, a compiler, the
linker, or other utilities. Normally, a file is stored on a
disk or magnetic tape.

The storage areas in a company correspond to storage areas
in a computer system as seen in Table 3-1.

FILE NAMING AND MANIPULATING Page 3-2

Table 3-1 Correspondence between a company and a VAX system

A company A VAX system

The building A node

A room A device

A filing cabinet A directory

A file folder A file

To send a person to retrieve a certain file folder,
directions to the folder must be specified. The person must
know which building to enter, where the correct room is, and
which filing cabinet to open to access the folder. It is
assumed the person sent is familiar with buildings, rooms,
file cabinets, and folders. However, if the person is given
incorrect directions, the folder may not be found, or a
different folder may be retrieved.

To send the computer system to access a file, directions to
the file, called a file specification, must be given to the
system. In VAX/VMS, a file specification includes the names
of the node, device, directory, and file. The system is
familiar with nodes, devices, directories, and file names,
and will attempt to locate the file as specified. If the
user gives the system an incorrect file specification, the
system may respond with an error message, or by retrieving a
different file than the user intended.

FILE NAMING AND MANIPULATING Page 3-3

3.2 SPECIFYING FILES

A file specification has the following format:

Node::Device:[Directory]File_name.File_type;Version_number

The fields of a file specification are discussed below.

o Node:: - the name of the system connected to the device
where the file resides.

o Device: - the name of the device containing the volume
(disk pack, magnetic tape) where the file is stored.
Several devices may be connected to the user's system.
Volumes can be moved from device to device. The
information stored on a volume can be accessed only by
specifying the name of the device where the volume is
currently mounted. The system will respond with an
error message if the volume is not available.

o [Directory] - the name of a special file, a directory
file, where the name of the file is listed. The
directory file is stored on the same volume as the file.
Directory files are discussed further in section 3.2.2.

o File name - any name chosen by the user. The name
usually corresponds to the contents of the file.

o .File type - should indicate the kind of information
storea in the file, such as text (.TXT), data (.DAT),
FORTRAN source code (.FOR), object code (.OBJ). The
file type may also be chosen by the user, and does not
have to correspond to the contents of the file.

0 ;Version number - indicates whether this is
second, -third, etc. version of the file.
is created, the system assigns it a version
If the file is modified, the modified
assigned the version number of 2. Each new
is assigned a new number (increment is 1).

the first,
When a file

number of 1.
version is

modification

FILE NAMING AND MANIPULATING Page 3-4

For example:

If the node is NOD EA ,

the device is DRA3 ,
the directory is WHITE ,
the filename is MYFILE ,

the filetype is TXT ,
and the version number is 4 ,
then the full VMS file specification is:

NODEA::DRA3:[WHITE]MYFILE.TXT;4

The following are other
specifications:

examples of

ENGNDE::DRA0:[BROWN]TESTFIL.DAT;2

DEPT0l::DBB3:[SERGIO]DRAWING4.TXT;33

ACCTNG::DBAl:[MANAGER]BUDGET.FOR;l

ACCTNG::DRA0:[SYSEXE]HELP.EXE;l

complete file

FILE NAMING AND MANIPULATING Page 3-5

3.2.1 FILE SPECIFICATION RULES

A few rules must be followed when creating a file
specification:

1. The punctuation marks are required to separate the
fields of the file specification.

2. Spaces are not allowed within a file specification.

3. The name chosen for each portion (except the
version number) may contain digits or characters,
but must begin with a character.

4. Each portion of the file specification is limited
to a certain length:

o Node: 1-6 characters

o Device: 1-15 characters

o Directory: 1-9 characters

o File name: 1-9 characters

o File_type: 0-3 characters

o Version number: 1-5 digits

FILE NAMING AND MANIPULATING Page 3-6

3.2.2 DIRECTORIES AND SUBDIRECTORIES

A directory file is a special kind of file. Directory
files contain a list of names of other files. They are
used by the system to access the other files.
Directories reside on disk volumes. Normally, one
directory file is created for each user on a system.
The name of this file is often the same as the user's
last name.

A master directory file, named 000000.DIR, resides on
each volume. This master file contains a list of the
names of the top-level directory files on the volume
(usually the files whose names correspond to user
names).

For example, a volume could contain the directory files
for BROWN, SMITH, BLACK, and JONES. When the
000000.DIR directory file is listed, all of these names
are seen:

$DIRECTORY NODEA::DRA1:[000000]

BLACK.DIR;l BROWN.DIR;! JONES.DIR;l SMITH.DIR;l

Several conclusions can be drawn from this example:

1. Even though the name of the master directory is
000000.DIR, to specify the name of the directory in
the command, the syntax [000000] must be used.
This is true of all directory files. Their names
are in the form name.DIR, but they must be
specified as [name] in a file specification.

2. The DIRECTORY command always outputs file names in
alphabetical order.

3. Directory files are always version 1.

The 000000.DIR file is a list of files which are
directory files themselves. Each of these directory
files should contain a list of files, some of which
could be directories. The directories listed in the
master file are called top-level directories. The
directories listed in top-level directories are called
subdirectories. Subdirectories are directory files
which contain a list of file names, some of which can
be directories. Directories listed in a subdirectory
are also called subdirectories.

FILE NAMING AND MANIPULATING Page 3-7

Directory files and subdirectories can be better
understood through the use of a tree diagram (like a
family tree), as seen in Figure 3-1.

I
DRA0

I
000000.DIR;l

NOD EA
I
I

I
DRAl

I
000000.DIR;l

I
I
I
I

I
DRA2

I
000000.DIR;l

I I
BLACK.DIR;l

I
BROWN.DIR;3

I
JONES.DIR;S SMITH.DIR;41

I
PROJECTl.DIR;l

I

I
I
I
I

I
FILE.DAT;l0

I
TEST.FOR;4

I
SHIPSPD.BAS;2

I
DATA.DAT;6

I
PROJNOTES.DIR;7

I
NOTESDATA.DAT;3

Figure 3-1

I

I
SHIPNOTES.DAT;9

In this figure, the files listed reside on the volume
mounted in the disk drive, DRAl. The DRAl device, as
well as the DRA0 and DRA2 devices are connected to the
system with the node name NODEA. Each volume contains
a master directory.

The master directory on the volume. mounted in the DRAl
device contains four top-level directories: BLACK.DIR,
BROWN.DIR, JONES.DIR, and SMITH.DIR. The SMITH.DIR
directory file (shown in figure) contains one directory
file, PROJECTl.DIR. PROJECTl.DIR, a subdirectory of
SMITH.DIR, contains a directory file, PROJNOTES.DIR.

FILE NAMING AND MANIPULATING Page 3-8

Notice that directories also contain other kinds of
files.

The number of directory files which may be listed in
any directory file is not limited. Therefore,
SMITH.DIR could contain the names of more than one
subdirectory, and each subdirectory file could contain
the names of several other subdirectory files.
However, only seven levels of directories may be
defined from the top. (SMITH.DIR is a top-level or
first-level directory. PROJECTl.DIR is a second-level
directory. PROJNOTES.DIR is a third-level directory.)

3.2.3 PURPOSE OF DIRECTORIES AND SUBDIRECTORIES

The major reason directories and subdirectories are
created is to logically separate information on a
volume. When users are separated from each other
through the use of top-level directories, each user
appears to own a portion of the volume for storage of
information. VMS supports a protection scheme which
can be used to prevent other users from accessing
files. This protection can be used to protect an
entire directory from access, or to protect only a few
of the files in the directory.

In some situations,
several projects,
Subdirectories can
belonging to one
another.

one user could be working on
each requ1r1ng several files.

be used to separate the files
project from files belonging to

Subdirectories become very useful for a frequent user
because directory listings can be very long. OpWhen
information is separated, each directory is smaller and
easier to work with. Any user can create a
subdirectory with their own directory structure with
the CREATE/DIRECTORY [name] DCL command.

FILE NAMING AND MANIPULATING Page 3-9

3.2.4 SPECIFYING FILES IN SUBDIRECTORIES

The system assumes that a master directory' is stored on
each volume. When a file specification is input, the
system searches the master directory for the directory
name input. If the directory name is listed in the
master file, the system searches the directory file for
the file name.

If a file is stored in a subdirectory, the file name is
not listed in the top-level directory file; rather, it
is listed in the subdirectory file. Therefore, the
system must be given the name of the subdirectory file
to search. In a file specification, this is done in
the [DIRECTORY] portion by specifying the top-level
directory name followed by a period. After the period,
the subdirectory name is specified. If the file name
is listed in a second-level subdirectory, the
[DIRECTORY] portion will contain two names. For
example, to specify DATA.DAT in the subdirectory
PROJECTl.DIR (see Figure 3-1), the following file
specification can be used:

NODEA::DRAl:[SMITH.PROJECTl]DATA.DAT

If the file name is listed in a third-level
subdirectory,- the top-level name and the second-level
name must be specified first to provide a search path
for the system. For example, to specify NOTESDATA.DAT
in the subdirectory PROJNOTES.DIR (see Figure 3-1), the
following specification can be used:

NODEA::DRAl:[SMITH.PROJECTl.PROJNOTES]NOTESDATA.DAT

FILE NAMING AND MANIPULATING Page 3-10

3.2.5 DEFAULTS

Most users never have to input the complete file
specification to uniquely identify a file to the
system. This is because the system supplies several
fields of the specification if the user does not
specify them. These supplied fields are called
defaults. The system stores some default values as
part of the user's process. It is possible to default
any field of the specification except the file name.
However, fields may be defaulted only under certain
conditions:

o The node (the name of the system) may be defaulted
if the file resides on a device attached to the
system where the user is currently working.

o The name of one device where the user's top-level
directory file is stored is recorded in the UAF for
that user. If a device is not included in the
specification, the name of this device (the
default) is supplied.

o The name of the user's top-level directory is
normally recorded in the UAF. The system supplies
this directory name if the user does not specify a
directory.

o The name of each file is unique, so the user must
always supply a file name. The system does not
supply a default.

o The kind of information stored in each file should
be indicated by the file type. Users may choose
any file type desired, but if the standard
file types are used, certain system programs will
suppTy the file type field of the specification.
For example, the PRINT and TYPE programs will
always supply the file type of LIS. However, if
the user desires to print a file of type FOR, the
file type of FOR should be included in the file
specification.

Some system programs which accept input files and
produce output files will assume one file type for
files input to them, and supply a different
file type for the output files~ For example, the
FORTRAN compiler assumes input files have the
file type of FOR, and supplies the OBJ file type
for files output. -

FILE NAMING AND MANIPULATING Page 3-11

o The version number, as previously stated, is set to
1 by default when the file is created. As modified
versions are created, each is given a new version
number. Version numbers are incremented by 1
automatically. A user may assign any version
number to a file or allow the system to assign
numbers. System programs choose the version with
the highest number by default if no number is
given.

Defaulting can be seen in the following example:

Joe Brown is working
on a system whose name is NODEA,
where his files are stored on a device named DRA0
in the top-level directory, [BROWN].

He is working with a file, TESTPRGM,
whose file type is LIS.

This is the third version of the file, and the other two
versions are also residing in the [BROWN] directory.

The program invoked by the PRINT command assumes all
files input are of the type LIS. To print the file,
Joe Brown can use any of the following commands:

$ PRINT NODEA::DRA0:[BROWN]TESTPRGM.LIS;3

$ PRINT DRA0:[BROWN]TESTPRGM.LIS;3

$ PRINT [BROWN]TESTPRGM.LIS;3

$ PRINT TESTPRGM.LIS;3

$ PRINT TESTPRGM.LIS

$ PRINT TESTPRGM

FILE NAMING AND MANIPULATING Page 3-12

3.2.6 CHANGING DEFAULTS

Users can change the defaults recorded in their
process. The SET NODE command is used to change the
default node name to access another system connected by
DECnet to the current system. The SET DEFAULT command
can be used to change either the device name and/or the
directory name. The new device name must correspond to
an actual device on the system, and the new directory
name must correspond to an existing directory.

For example, the device and directory names recorded in
the UAF entry for Joe Smith are DRA0 and [SMITH],
respectively (see Figure 3-1). When Joe logs in, the
system sets his default to DRA0:[SMITH]. To compile
DRA0:[SMITH]TEST.FOR;4, Joe only has to enter the
command:

$FORTRAN TEST

If Joe wants to print DATA.DAT in the subdirectory
PROJECTl.DIR (see Figure 3-1), the following command
can be entered:

$PRINT [SMITH.PROJECTl]DATA.DAT

If Joe wants to work with several files for a while in
that subdirectory, he could change his default:

$SET DEFAULT [SMITH.PROJECT!]

$PRINT DATA.DAT

Notice that Joe only has to enter the file name and
file type after the default has been changed,-since the
default directory name is now [SMITH.PROJECTl].

To change the default directory name back to [SMITH],
the following command can be used:

$SET DEFAULT [SMITH]

$PRINT [SMITH.PROJECTl]DATA.DAT

$PRINT DATA.DAT
error message

Notice that if Joe tries to print DATA.DAT now, the
complete directory specification must be given, or an
error message results.

FILE NAMING AND MANIPULATING Page 3-13

3.2.7 WILDCARDS

To list the names of all files in a directory, the
DIRECTORY command is used:

$DIRECTORY [SMITH]

To list the names of all files whose type is FOR in a
directory, a wildcard, •, may be used instead of any
particular file_name:

$DIRECTORY [SMITH]*.FOR

To list the names of all files whose names begin with G
in a directory, the wildcard may also be used:

$DIRECTORY [SMITH]G*.*

To list all versions of a file:

$DIRECTORY [SMITH]FILE.DAT;*

This wildcard may be used in the directory, file name,
file type, and version number portions of the file
specTfication. The purpose of the wildcard is to save
time and effort on the part of the user.

Another useful wildcard is the period (.). The period
is used -within the [DIRECTORY] portion of the file
specification:

$DIRECTORY [SMITH.PROJECT!]

$DIRECTORY [.PROJECTl]

By using the period, the user did not have to enter the
name SMITH. The system takes the current default value
for the directory name, and includes it before the
period. Then, the completed file specification is used
to search for the requested file.

FILE NAMING AND MANIPULATING Page 3-14

Therefore, if the default value is [SMITH.PROJECT!],
the files in the subdirectory PROJNOTES, can be listed
using:

$DIRECTORY [SMITH.PROJECTl.PROJNOTES]

or

$DIRECTORY [.PROJNOTES]

Two other wildcards may be used with the directory
portion as well; the ellipsis (•••),and the hyphen
(-). The meaning of the ellipsis is to search down
through the directory structure. So, to list all files
in the current directory and all subdirectories:

$DIRECTORY [•••]

The hyphen is used to mean back up one directory level.
So, if the default is set to [SMITH.PROJECT!], and the
user wanted to list the files in [SMITH]:

$DIRECTORY [-]

Wildcards may be used in conjunction with directory
names. So, to list the files in the PROJECT!
subdirectory and all files below it (assuming the
default directory is [SMITH]):

$DIRECTORY [.PROJECT! •••]

If the default is set to [SMITH.PROJECT!], and the user
wanted to list all files in [SMITH] and all files in
the rest of the structure:

$DIRECTORY [- •••]

Other combinations may be used. Users should practice
wildcards with the DIRECTORY command, as this command
does not change anything. However, the wildcards are
valid for use within most DCL commands requiring file
specifications as parameters.

FILE NAMING AND MANIPULATING Page 3-15

3.3 DECIPHERING ERROR MESSAGES

When a problem occurs in a program, utility, or DCL command,
an error message is displayed. The error message contains
four parts and appears in the following format:

%FACILITY-L-IDENT,TEXT

%FACILITY is the name of the system program or utility that
generated this error message (for example, DCL).

L is the level of the error.
errors:

There are five levels of

o S - Successful. No error is reported. Usually, no
message is output if a program is successful.

o I - Informational. No error, but the program outputs
some information needed by the user. Often, these types
of messages do not appear in the above format.
Informational messages usually consist of text only.

0 W Warning. The program may have
successfully, or there may have been an error.
should check to see if the desired task
completed.

completed
The user

has been

o E - Error. The program has encountered an error. The
program outputs the message and attempts to continue if
possible.

o F - Fatal or severe error. The program is not able to
recover from this error and continue. The program is
aborted.

!DENT is a code word that is an abbreviation of the message
text.

TEXT is a descriptive message that tells the user what the
problem is.

FILE NAMING AND MANIPULATING Page 3-16

The following example shows the error message which results
when a command unknown to the DCL interpreter is entered
after the $ prompt.

$SDDD
%DCL-W-IVVERB,unrecognized command

\SDDD\
$

The error message is a warning, output by the
interpreter. The incorrect command is also echoed.
messages include the echoing of incorrect input in
format; not always enclosed in backslashes.)

DCL
(Most
some

Some errors are detected by more than one utility, so
several messages may be output. Usually, the first message
contains the most pertinent information, but the others can
be helpful.

For example:

$PRINT FILE.DAT
%PRINT-W-OPENIN, error opening DRA0:[BROWN]FILE.DAT as input
-RMS-E-FNF, file not found

In this example, the file to be printed could not be found
by RMS, so the PRINT program could not open it to print it.
To correct this error, the user should create the file or
enter the name of an existing file.

The user should ask the following questions when an error is
received, because the problem is usually a common one:

o Is every part of the command spelled correctly?

o Does the command exist (is it a valid DCL command)?

o Were the options, qualifiers,and/or parameters chosen
from the list displayed for the command by the HELP
program?

0 Was the command entered
options, qualifiers, and
correct order)?

correctly (i.e., are the
parameters, if any, in the

o Is the user allowed to use the command?

o Is the user trying to access a non-existent or
restricted piece of hardware or software?

CHAPTER 4

CREATING AND MANIPULATING FILES

4.1 CREATING FILES WITH EDT

EDT is the DIGITAL standard editor for text files. Files
containing text can be created and modified using the EDT
editor. The following command is used to invoke the editor:

$EDIT file_specification

Usually, the file name and file type are sufficient for the
file specification. If the user desires to create a file on
a different device or in a different directory than the
current default values specify, the device and directory
portions of the file specification will have to be included.

When a file is created, the file is assigned the version
number of 1. If the editor is being used to modify an old
file, the editor will open the file of the name given which
has the highest version number.

Some examples:

$EDIT FILE.DAT

$EDIT DRA0:[SMITH]FILE.DAT;l

(uses defaults)

(no defaults used
except system name)

To create a file in a subdirectory, the same kind of command
is used:

Method one:

$SET DEFAULT DRA0:[SMITH.PROJECT1]
$EDIT DATA.DAT

Method two:

$EDIT DRA0:[SMITH.PROJECTl]DATA.DAT

CREATING AND MANIPULATING FILES Page 4-2

When the carriage return is pressed after the command is
input, the editor is invoked. The EDT editor outputs a
message and a prompt. The EDT prompt is an asterisk, *·

The EDT editor is capable of being in one of two modes, line
mode and character mode. The * signals the user that EDT is
in line mode, and is ready to accept line mode commands.
(Note: DCL commands can not be input after the * prompt.)

One line mode command is CHANGE, (can be abbreviated to C).
When this command is input, the mode is changed to character
mode. No prompt is output for character mode, and the
editor will only accept character mode commands. (Note:
Neither DCL commands nor EDT line mode commands are accepted
when there is no prompt.)

A Computer-Based course is available that will teach you how
to use the features of EDT. Contact your system manager to
see if this course is available on your system.

4.1.1 EDT LINE MODE COMMANDS

Since character mode is so easy to use on video
terminals, most line mode commands are only used on
hardcopy terminals. People working on video terminals
will normally use the CHANGE (to enter character mode),
EXIT, QUIT, and SUBSTITUTE line commands.

In line mode, the EDT editor numbers each line so it
can be identified. Line numbers begin at 0 and the
normal increment is 1. However, fractional numbers are
used also. For example, if a line is inserted between
lines 1 and 2, the new line is given the number of 1.5.
When too many lines have been inserted, numbers are not
assigned to the new lines. At this point, the user can
enter the RESEQUENCE command to renumber the file in
increments of 1 (or some other chosen increment).

To indicate a line in a line mode command, the number
of the line should be specified. To indicate several
lines, a range can be specified by entering the number
of the first line, followed by a colon and the number
of the last line. For example, to DELETE lines 2
through 10 (inclusive), the range is specified as 2:10.
To indicate the entire file, as often happens with the
SUBSTITUTE command, the symbol %WH (or %WHOLE) can be
entered (see Table 4-1 for an example).

All EDT line mode commands are terminated by the input
of a carriage return. All commands can be abbreviated
(see Table 4-1) except the QUIT command.

CREATING AND MANIPULATING FILES Page 4-3

Table 4-1 lists a subset of line mode commands. The
EDT editor has on-line HELP, so help can be obtained on
each of the commands listed.

Table 4-1 Subset of EDT line mode commands

Command

CHANGE

COPY

DELETE

EXIT

HELP

INSERT

MOVE

QUIT

REPLACE

RESEQUENCE

SUBSTITUTE

Function

To change to character mode

To copy a line or a group of
lines from one area of the
file to BEFORE another line
in the file

Delete a line or group of
lines

Exit from the editor, saving
all changes

Obtain help on all line
mode commands

Add text to the file. Editor
inserts BEFORE current position
or BEFORE line number specified.
No prompt is output while
inserting. To return to the
* prompt, press <CTRL-Z>.

Move a line or lines from one
area of the file to BEFORE a
line in another area

Exit from the editor without
saving any changes

Delete a line or group of lines
and enter Insert mode to add
text

Renumber all lines in the
file in increments of 1

Substitute a new piece of
text for an old piece

Example(s)

*CHANGE or *C

*COPY 10 TO 100
*CO 1:5 TO 8

*DELETE 10
*Dll:25

*EXIT or *EX

*HELP or *H

*INSERT
new text

<CTRL-Z>
*IS

other new text
<CTRL-Z>

*
*MOVE 10 TO 5
*MO 3:4 TO 11

*QUIT

*REPLACE 10 or *Rl0
1 line deleted

new text added
<CTRL-Z>

*
*RESEQUENCE
*RES

*SUBSTITUTE/old/new/%WH
*S/text/newtext/10:20

CREATING AND MANIPULATING FILES Page 4-4

4.1.2 EDT KEYPAD MODE COMMANDS

Character mode in the EDT editor is easy to learn, fast
to use, and powerful. No prompt is output, because all
commands are based on the current position of the
cursor (the flashing light on the screen).

In character mode, the user is always inserting.
Whenever a character is entered from the main keyboard,
it is echoed on the terminal and becomes part of the
file. New lines are created by pressing the carriage
return. Commands are entered by using the keypad to
the right of the keyboard. Character mode commands are
terminated when they are input. (A carriage return
does not mean 'end of command' in character mode.)

Each key on the keypad means something different to the
editor. Figure 4-1 shows the layout of the keypads for
the VT52 and VT100. The commands available on each
terminal are similar, but the keypad layout is
different. Most users cut out a copy of one of these
diagrams to paste to the front of the appropriate
terminal for reference.

The easiest way to learn how to use character mode is
by using it. The following list of character mode
commands should be practiced on a practice file until
the user is familiar with them.

CREATING AND MANIPULATING FILES Page 4-5

MAJOR KEYS

o GOLD used in conjunction with other keys.
Normally, the command associated with a key is the
command listed at the top of the square
corresponding to the key in Figure 4-1. To invoke
the commands at the bottom of the square, press
GOLD, and then press the key. For example, the DEL
C key deletes a character. Pressing GOLD and the
DEL C key will undelete a character.

o HELP - will output a picture of Figure 4-1 for the
current terminal and allow the user to obtain HELP
for any of the keys on the keypad.

o ADVANCE - When pressed, causes the cursor to be in
advance mode (the default). All commands used to
move the cursor will move it in a forward
direction, towards the end of the file.

o BACKUP - When pressed, causes the cursor to be in
backup mode. All commands used to move the cursor
will move it in a backward direction, towards the
beginning of the file.

CREATING AND MANIPULATING FILES Page

Commands affected by ADVANCE or BACKUP

0 SECT - moves the cursor several lines at a time

0 LINE - moves the cursor one line at a time

0 WORD - moves the cursor one word at a time

0 CHAR - moves the cursor one character at a time

o EOL - moves the cursor to the end of a line

Commands not affected by ADVANCE or BACKUP

0 DEL CHAR - deletes the character at the cursor
position

(DELETE - not on the keypad, but on the regular
keyboard, deletes one character to the left of the
cursor as usual)

0 DEL WORD - deletes the word to the right of the
cursor

0 DEL LINE - deletes the line to the right of the
cursor (including the carriage return and line
feed)

Note that when the DEL CHAR, DEL WORD, and DEL LINE
keys are used, the deleted text is saved in a temporary
buffer so the user can UNDelete the text. This is
useful in the case of an accident, where text is
unintentionally deleted. It is also useful when the
user wants the same line of text to be placed in
several places in the file. The user can delete the
line, undelete it, and then move to the other places,
undeleting the line wherever it is needed. However,
these buffers only hold one value (i.e., one line, one
word, or one character) at a time. They are
overwritten by newly deleted values.

If the user would like to save several lines of text in
a buffer, to be placed in another place or several
places in the file, the CUT and PASTE keys should be
used. To save the text, the user should position the
cursor at the beginning of the text and press SELECT.
Then, the user should position the cursor after the end
of the text and press CUT. The selected text will be
removed from the file and placed in a buffer.
Therefore, the text is deleted. The user could stop
here, or replace the text elsewhere in the file by

4-6

CREATING AND MANIPULATING FILES Page 4-7

moving the cursor to the desired position and pressing
PASTE. The text will be inserted before the current
position of the cursor when PASTE is pressed. (Note
that the GOLD key must be pressed before the PASTE key
to enter the PASTE command.)

EDT VERSION 3 KEYPAD FOR VT100

CTRL/A Compute tab lewl

CTRL/D ~Ublewl

CTRL/E 1-- i.!>""'81

CTRL/K Define key

CTRLIT Adjust Ubl

CTRL/U
Del9le to 11art of
line

CTRLIW Refl'elh-

CTRL/Z Exit to EDT com1111nd
mode

DEL Ruboutchlll'Kler

BACK SP Go to beginning of
line

LF Del9le to 11art of
word

VT100 KEYPAD

Other EDT
frequently.
through the

FNDNXT DELL
GOLD HELP

FIND UNDL

PAGE SECT APPEND DELW

COMMAND FILL REPL UNDW

ADVANCE BACKUP CUT DELC

BOTTOM TOP PASTE UNDC

WORD EOL CHAR

CHNGCASE OEL EOL SPECINS ENTER

LINE SELECT SUBS

OPEN LINE RESET

PF1 PF2 PF3 PF4

7 8 9 .

4 6 6

, 2 3

ENTER

0 EDT VERSION 3 KEYPAD FOR VT62

DEL Del9le chlll'Kler

LF
Delete to beginning
of-rd

DELL
GOLD HELP

UNDL
BACK SP Move to beginning of

line PAGE FNDNXT DELW

CTRL/A Compute tab '-'

CTRL/D 0-..tablewl
!COMMAND FIND UNDW

ADVANCE BACKUP PELC
CTRL/E 1-Ublewl

BOTTOM TOP UNDC
CTRL/F Fiil 18xt

WORD EOL CUT
CTRL/K Define key

CTRLIT Adjust Ubl
jcHNGCASE DEL EOL PASTE

LINE SELECT
CTRL/Z Retum to line mode

OPEN LINE RESET

VT52KEYPAD

BLUE RED GRAY

7 B II

4 6 6

, 2 3

0

character mode
Information

HELP facility.

commands
about them

are used less
can be obtained

UP

REPLACE

DOWN

SECT

RIGHT

SPECINS

LEFT

APPEND

ENTER

suss

...
11
I' .tJ

--->

<---

ENTER

CREATING AND MANIPULATING FILES Page 4-8

4.1.3 RECOVERING FROM A SYSTEM FAILURE

Recovering from a system failure during an edit session
is not difficult with the EDT editor. While the user
is editing, EDT is creating a journal file. This
journal file contains a list of all commands entered
since the beginning of the session. After the system
is running again, users can recover all edits done by
using the command:

$EDIT/RECOVER file_specif ication

The user should specify the name of the file which was
being edited at the time of the system crash. The EDT
editor will read the latest version of that file as
input, and use the commands listed in the journal file
of the same name (name.JOU) to reconstruct the work
done. During recovery, the editor will actually repeat
the work done previously by the user. Users should not
touch the keyboard until the editor is done and a
prompt (if they were in line mode) appears. If the
system crashed while the user was in character mode,
the user should wait until the cursor stops moving
around. After the editor completes the journal file's
list of commands, it will accept commands from the
user. (Note: A journal file will also be created if
the user exits the editor incorrectly (i.e. with a
CTRL-Y).)

CREATING AND MANIPULATING FILES Page 4-9

4.2 FILE MANIPULATION WITH DCL COMMANDS

Several DCL commands are useful for moving,
printing, and obtaining information about files.
contains the most commonly used DCL commands
purposes.

copying,
Table 4-2

for these

The * wildcard can be used with any
place of one or more fields of
Notice that most commands will
information. This is especially
command, as shown.

of these commands in
the file specification.
prompt for missing
useful for the COPY

More information about any of the commands in Table 4-2 can
be obtained through the use of the HELP command.

CREATING AND MANIPULATING FILES Page 4-10

Table 4-2 Commonly used DCL commands for file manipulation

Command

DIRECTORY

COPY

RENAME

PRINT

TYPE

DELETE

PURGE

Function

Used to obtain information about
files. The /FULL qualifier is
used to obtain more information.

Used to copy information stored
in one file to another file.
The second file usually has a
different file specification.
(Result is two files
containing the same information)

Used to change the name of a
file.

For printing a file on the
system default printer
designated by the system manager.

For outputting the contents of
a file to the terminal.

To delete a file. Requires a
version number.

To delete all but the latest
version of any or all files
in a directory.

Example

$DIRECTORY
$DIRECTORY/FULL

$COPY
$ from:FILE.TXT
$=to:DATA.DAT

$RENAME
$ from:DATA.DAT
$-to:TEST.FOR

$PRINT BUDGET.FOR

$TYPE FILE.BAS

$DELETE NAME.DAT;3

$PURGE

$PURGE FILE.DAT

CHAPTER 5

PROGRAM DEVELOPMENT

5.0 INTRODUCTION TO PROGRAM DEVELOPMENT

VAX/VMS provides a number of tools that significantly
decrease the time spent developing VAX-11 programs. These
tools include:

0 Interactive Text Editor (EDT)

0 Programming Languages

0 Linker

0 Librarian

0 Common Run-Time Library

0 Symbolic Debugger

0 Record Management Services

The editors, programming languages, and linker, are
utilities that are used to prepare a source program for
execution. The symbolic debugger is used to detect errors
in executable programs (programs that do not appear to
contain errors when compiled/assembled and linked, but,
nevertheless, fail to produce correct results).

The librarian enables storage of frequently-used segments of
code, such as procedures or functions, in specially indexed
files called libraries. Procedures or functions stored in a
library can be referenced in a program. The linker combines
the code from the library with the user's source code to
produce an executable image.

PROGRAM DEVELOPMENT Page 5-2

For the MACRO language, definitions (macros) can be stored
in a different type of library. Libraries containing macros
can be accessed by the assembler to include a specific macro
in the program.

The Run-Time Library is a system library containing a large
number of predefined routines that can be called from user
programs (such as routines to manipulate strings or generate
random numbers). The MACRO programmer will find some of the
I/O routines to be especially useful, while high-level
language programmers will probably use the math or bit
manipulation routines more often. Help can be obtained
on-line for most of the Run-Time Library routines by
entering the DCL command, HELP RTL, and specifying one of
the categories listed as the subtopic.

This chapter begins with a discussion of program development
in general, followed by sections on each of several VAX-11
programming languages (MACRO, FORTRAN, PASCAL, BASIC, and
COBOL). Those sections contain a discussion of the VAX-11
specific conventions regarding that language, a sample
program, and a debug session using the sample program.

5.1 PROGRAM DEVELOPMENT ON VAX/VMS

To develop a program written in a programming language, the
following sequence of steps must be completed:

1. Create a text file with an editor which contains
statements written in a programming language.

2. Compile/Assemble the source program.

3. Link the compiled program to create an executable image.

4. Test the program.

5. Debug (make corrections to)
repeat steps 2 through 5
properly.

the source program and
until the program executes

These steps are explained in detail on the following pages.

PROGRAM DEVELOPMENT Page 5-3

1. Create a text file which contains the source statements
of your program.

The file type should be related to
used. Two reasons that this is
helps you tell a source program in
another, and the compilers will
default file_types as shown below.

the language being
important is that it
one language from
search for certain

Language

MACRO
FORTRAN
BASIC
PASCAL
PL!
COBOL

Default File_Type

.MAR

.FOR

.BAS

.PAS

.PL!

.COB

The entire program may be entered in one text file, or
several files may be created. Usually, if several files
are created, the code representing the main program is
entered in one file, and the subprograms referenced are
each placed in separate files. There is no rule stating
a limit on the number of subprograms per text file.
However, if each is in a separate file, they are more
accessible to other programs.

2. Compile/assemble the text file to produce a
containing object code.

file

The compiler/assembler translates the source statements
of each input file into executable code, producing one
or more object files of type .OBJ.

To compile/assemble the code, the command related to the
language must be used:

Language

MACRO
FORTRAN
BASIC
PASCAL
PL!
COBOL

Compiler/Assembler Command

$MACRO file specification
$FORTRAN f iTe specification
$BASIC file specification
$PASCAL file specification
$PL! file specification
$COBOL file_spe·cification

File types other than the defaults listed earlier must
be included in the file specification. Otherwise, the
appropriate file type will be provided by the command
used. -

PROGRAM DEVELOPMENT Page 5-4

More than one input file may be listed as parameters.
If input file specifications are separated by (,)
commas, a separate object file is created for each input
file. If they are separated by (+) plus signs, one
object file is created containing the code from all
input files.

If syntax errors are found in the source code, an
appropriate message will be output at the user's
terminal. The DCL HELP command can be used to
understand errors output by the compilers for FORTRAN,
BASIC, and COBOL by entering HELP language ERROR.

When the error is understood, an editor should be used
to correct the source code, and the new version of the
text file should be submitted to the compiler/assembler
for translation.

Many qualifiers can be used in conjunction with the
compiler or assembler command. The DCL HELP command can
be used to obtain information about qualifiers by
entering the 'HELP language name' command. Most
compilers will take the following- qualifiers with the
compile command. You should check the user guide for
the specific language for information on other
qualifiers.

Qualifier

/LIST

/CROSS_REFERENCE

/DEBUG

Use

The most commonly used qualifier
that causes a listing file to be
produced as well as the object
file. The file is useful when
trying to debug the program.

The cross reference qualifier
tells the compiler to generate a
cross reference listing. This
type of list contains program
symbols, their class, and the
program lines in which they are
referenced.

The debug qualifier tells the
compiler to provide information
to the symbolic debugger and the
system run-time error traceback
mechanism.

PROGRAM DEVELOPMENT Page 5-5

For example, to compile a BASIC program, called SAMPLE,
and obtain a list of the program as well as cross
referenced listing of program variable you would type:

BASIC/LIST/CROSS_REFERENCE SAMPLE

3. Link the object file or files to produce an executable
image.

The linker assigns virtual addresses to the lines of
executable code in each input file, and resolves
references to symbols between modules. The linker also
searches personal and system libraries for external
procedures and functions that cannot be found in the
input files specified.

To link the object file(s), the VAX-11 Linker is invoked
using the DCL command, LINK. The names of the files to
be linked, such as object code files or modules from
libraries, can be specified following the command.
Names should be separated by commas. The linker assumes
the file_type of input files is .OBJ.

The file output by the linker contains executable code,
and is assigned the file_type of .EXE.

If the linker is unable to resolve certain symbols or to
locate certain subprograms, it displays an appropriate
error message. Linker errors usually indicate one of
two problems:

o A subprogram was referenced but not included in the
list of input files

o A subprogram/variable was not defined/referenced
properly in the program

Linker errors and recommended solutions are described in
the VAX-11 Linker Reference Manual.

Several qualifiers are available for use with the linker
command (enter HELP LINK). Cross-reference listings,
maps, and other information can be written to files or
to the terminal by using these qualifiers. The
information produced is most useful to the more advanced
programmer, and will not be discussed in this document.
The following table shows some of the most common LINK
command qualifiers.

PROGRAM DEVELOPMENT

Qualifier

/MAP

/CROSS_REFERENCE

/DEBUG

Use

This qualifier produces a file
containing a list of the symbols
and data used in the program and
their locations in memory.

This qualifier produces a cross
reference list of each global
symbol used in the program, its
value, the name of the first
module in which is defined, and
the name of each module in which
it is referenced.

Page 5-6

The qualifier causes the linker to:
(1) Generate a Debug Symbol Table
(2) Gives control to the debugger

when the image is run.

The following example illustrates the use of the LINK
command to create an executable image of the program
SAMPLE and creating a map file.

LINK/MAP SAMPLE

PROGRAM DEVELOPMENT Page 5-7

4. Test the image produced from the linker.

To execute a program, enter the DCL command, RUN,
followed by the name of a single executable image file.
The run command assumes the file_type of the input file
is .EXE.

Users should not attempt to execute a program if
compiler and linker errors have not been corrected.

Errors output at run-time could indicate syntax problems
not identified by the compiler/assembler or linker.
Other run-time errors could be output by procedures
referenced by the program, such as system routines.
Some errors output by system routines are documented
on-line. To look at a description of these errors,
enter the DCL command, HELP ERROR, and enter the
appropriate facility code as the subtopic. Information
on other errors can be obtained by entering HELP ERROR
SYSTEM error code.

If all obvious errors have been corrected, errors output
at run-time can indicate logical errors. A logical
error occurs because the organization of the statements
in the program does not do the intended job. A logical
error could produce error messages, or, simply, the
wrong result. Results should be checked carefully. If
the program receives input from the user, it should be
executed several times with various types of input to be
sure it does the required job in all given situations.

To correct the program, the user must debug it to find
out where the error is occurring. When the error is
found, the source program must be modified and submitted
to the compiler/assembler and linker again. Then the
new executable file can be executed to see if the error
was corrected.

PROGRAM DEVELOPMENT Page 5-8

5. Debug the program to correct errors.

To find the cause of a logical error, the user must
examine the program carefully, looking at the source
code one line at a time. Lists of variables and their
contents should be kept on paper, as well as comments on
loops and output to peripherals. Often, in larger
programs, the problem can be isolated to a particular
area of the program, saving the user the time of looking
at every line.

If the problem can be isolated, or the program is not
very large, examining a program using paper is not
difficult, and errors can be easily found. As larger
programs are written, involving more I/O and more
variables and more loops, debugging becomes more
complicated.

The VAX-11 Symbolic Debugger is provided to simplify the
user's debugging job. Symbolic debugger commands
implement the same debugging techniques used on paper.

The flowchart in Table 5-1 summarizes the program
development steps. Although the flowchart in the table
uses a FORTRAN program, the flowchart can be used for a
program written in any programming language.

PROGRAM DEVELOPMENT

CREATE A
SOURCE
FILE

COMPILE THE
SOURCE FILE

RUN THE
IMAGE
FILE

SUCCESS

Developing a Program

CORRECT THE
SOURCE PROGRAM

--,
I
I
I
I

YES I __ J..._

YES

TK.eo99

Page 5-9

PROGRAM DEVELOPMENT Page 5-10

5.2 LOGICAL NAMES

If a file specification or device name is
source fTle for a program, the program
dependent or device dependent. When
dependent, the file or device must exist
executed, and the program always outputs
the file or device specified.

included in the
is said to be file
the program is

when the program is
to or inputs from

File and device independence can be achieved through the use
of logical names. A logical name is created by the DCL
command ASSIGN, and can be used in a program instead of the
file or device name. The ASSIGN command assigns a specified
logical name to a specified device or file name (called the
equivalence name). When the logical name is encountered in
a program, the system translates it into the equivalence
name. The general forms of the DCL ASSIGN command are:

ASSIGN device: logical name
ASSIGN file_specification logical name

The example below illustrates the use of the ASSIGN command
to make a program device and file independent.

PROGRAM!

File dependent program

writes to particular file,
FILE.DAT

Execution of PROGRAM!:

$RUN PROGRAM!
$TYPE FILE.DAT
contains output
from 1st execution

$RUN PROGRAM!
$TYPE FILE.DAT
contains output
from 2nd execution

PROGRAM2

File independent program

writes to logical name,
OUTPUT FILE

Execution of PROGRAM2:

$ASSIGN GENERAL.DAT OUTPUT FILE
$RUN PROGRAM2 -
$TYPE GENERAL.DAT
contains output from
1st execution

$ASSIGN OUTPUT.DAT OUTPUT FILE
$RUN PROGRAM2 -
$TYPE OUTPUT.DAT
contains output from
2nd execution

Notice that PROGRAM! always outputs to FILE.DAT, whereas
PROGRAM2 can send output to a different file each time it is
executed. (The assignment command must be executed prior to
the execution of the program.)

PROGRAM DEVELOPMENT Page 5-11

Several logical names are provided by the system, and are
stored in the user's process logical name table. To look at
the table, use the DCL command SHOW LOGICAL/PROCESS. Table
5-2 lists some of the system-defined logical names commonly
used in programs.

Table 5-2 System-defined logical names

Logical name

SYS$INPUT

SYS$0UTPUT

SYS$DISK

SYS$LOGIN

Equivalence name

Default input device. For the interactive
user, SYS$INPUT is equated to the terminal.

Default output device. For the interactive
user, SYS$0UTPUT is equated to the terminal.

Default user disk established at login time.
Can be changed by SET DEFAULT command.

Default user disk and directory established
at login time. l!Sually the top-level
directory. Specified in the user's UAF
entry by the system manager.

PROGRAM DEVELOPMENT Page 5-12

5.3 A SAMPLE PROGRAM -- GRADES

The GRADES program has been created in each language
discussed in this chapter. The listing file for each
language's implementation of GRADES is included in the
section of the chapter discussing that language (following
this section).

The GRADES program creates a file containing the names of
students and the average of their grades for a particular
course. The program obtains the names and grades from the
user, computes the average of the grades, and outputs the
results to the terminal and to a designated file. The
logical name 'Course', created before the program is
executed, is assigned to the name of the output file. For
example:

$ASSIGN HISTORY.DAT Course
$RUN GRADES

In this example, the program GRADES is executed to compute
the average of the grades for the students in the history
class. The output file, HISTORY.DAT, is assigned to the
logical name 'Course' before the program is executed. The
program writes results to the logical name 'Course'.

PROGRAM DEVELOPMENT Page 5-13

5.3.l NORMAL EXECUTION OF GRADES

A sample run of the GRADES program follows. The
FORTRAN version was used in this example:

$ASSIGN ENGLISH.DAT COURSE
$FORTRAN GRADES
SLINK GRADES
SRUN GRADES

Student name? JOHN SMITH
Input srade (or 0 to end
InPut srade <or 0 to end
InPut srade <or 0 to end
Input srade (or 0 to end

Student: JOHN SMITH

Are hlOU done ? <Yes/No> N

inPut>: 45
inPut>: 80
inPut>: 99
inPut>: 0

Student name? MARY HAGERTY
InPut srade (or 0 to end inPut>: 82
Input srade <or 0 to end inPut>: 69
InPut srade (or 0 to end inPut>: 94
InPut srade <or 0 to end inPut>: 0

Student: MARY HAGERTY

Are ~ou done ? <Yes/No) N

Student name? HOS I AH HOWER
InPut !~r<~Ci€~ <or 0 to end
InPut srade (or 0 to end
Input srade Cor 0 to end
Input srade (or 0 to end

Student: HOSIAH HOWER

Are ~ou done ? <Yes/No) Y
$
$
STTPE ENGLISH.DAT

Student: JOHN SMITH

Student: MARY HAGERTY

Student: HOSIAH HOWER
$

inPut>:
inPut>:
inPut>:
input>:

90
78
81
0

Averase: 74+7

Averase: 81+7

Averase: 83+0

Averase: 74+7

Averase: 81+7

Averase: 83+0

PROGRAM DEVELOPMENT Page 5-14

5.4 USING THE SYMBOLIC DEBUGGER

Three methods are available for invoking the Symbolic
Debugger:

1. Including the debugger in the executable image.

The debugger is included in the executable image if the
/DEBUG qualifier is entered with the LINK command. When
your program is subsequently executed, the debugger is
automatically invoked, and the debug prompt is output.
For example:

$LINK/DEBUG filename

Unless the /DEBUG qualifier is also included in the
compiler command (/ENABLE=DEBUG with the MACRO command),
local symbol tables will not be included. The symbol
tables contain the names and addresses of various
symbols and variables used in the program. If the user
intends to examine the contents of variables, the tables
should be included. Other debug commands, such as GO,
STEP, or setting tracepoints, work without this
information.

2. Halting the program and invoking the debugger with the
DCL command $DEBUG.

A program can be halted by entering <CTRL/Y> or
<CTRL/C>. The debugger can then be invoked by entering
the DCL command, DEBUG. In this case, the debugger does
not have access to local symbols.

This method can be used to halt a 'hung' program, one
that will not run to completion. The debugger can be
used to determine where the program is hung.

This method can also be used for a program that is
executing in the debugger already in case the user wants
to input a debug command at a time when the debug prompt
is not seen.

3. Running the program with the debugger.

A program can be run with the debugger if the /DEBUG
qualifier is included in the RUN command. Again, if the
debug qualifier was not included with the
compiler/assembler command, the symbol tables will not
be included and the contents of variables can not be
accessed.

PROGRAM DEVELOPMENT Page 5-15

Table 5-3 Major Symbolic Debugger Commands

Feature

Display
values

Change
values

Define
symbols

Calculate
values

Get help

Breakpoints

Tracepoints

Watchpoints

Test
subroutines

Execute
program

Debug
routines

Stop
debugger

Description

Display variable contents
using symbolic names

Modify variable contents

Define symbolic names
for later use

Compute expressions using
symbolic names

Get help for any command

Suspend program execution
at a specified point

Monitor order of execution
of program lines

Suspend program execution
when the content of a
variable changes

Call and pass arguments
to a subroutine

- from a given point

- for a specified
number {n) of
instructions or lines

Command Format

EXAMINE variable

DEPOSIT variable =
value

DEFINE symbol =
value

EVALUATE expression

HELP [command_name]

SET BREAK at line #

SET TRACE at line #

SET WATCH variable

CALL sub name
[{ arg, •••)]

GO [address]

STEP [n]

Make symbols from specified SET MODULE module
module available to debugger

Define default module name SET SCOPE module
for setting tracepoints and
watchpoints on symbols whose
names appear in more than one
module

Leave debugger EXIT
and return to DCL prompt

Note: Fields enclosed in [] {brackets) are optional.

PROGRAM DEVELOPMENT Page 5-16

5.4.1 EXECUTION OF GRADES WITH THE DEBUGGER

Three examples of the GRADES program using the debugger
follow. The FORTRAN version of the program was used.
The syntax of most of the debug commands shown is the
same for other languages. Therefore, these debug
examples and associated comments should be read by all
users. A listing of the FORTRAN program is provided
before the examples.

Each of the languages mentioned earlier is discussed
briefly in the sections following these examples. A
listing of the GRADES program is included, followed by
a discussion on using the symbolic debugger with that
language.

A brief description of most of the commands used can be
found in Table 5-3. The HELP facility in the debugger
can be used to obtain more information. More
discussion of some of the commands and their output is
included with the examples.

PROGRAM DEVELOPMENT

Listins of Main Prosram

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026

10
20

30

40

50

60

PROGRAM GRADES

CHARACTER STUDENT_NAHE*30r DONE*4
REAL AVERAGE

OPEN CUNIT=lr FILE='Course'• STATUS='New'>

TYPE 20
FORMAT (/' Student name? '••>
ACCEPT JOr STUDENT-NAME
FORMAT <1AJO>

TYPE 40rSTUDENT-NAHEr AVERAGE
WRITE <1140> STUDENT-NAHErAVERAGE
FORMAT <I' Student: 'rA30r'Averasae: 'tFl0.1>

TYPE 50
FORHAT (/' Are vou done 1 <Yes/No> 'rt>
ACCEPT 60r DONE
FORMAT <1A4>

IF <DONE.NE.'Y' .AND. DONE.NE.'w'> GOTO 10

CLOSE <UNIT•1 >
END

Listina of Subroutine

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023

10
20

JO

40

INTEGER ICOUNT
REAL TOTAL• GRADE

!COUNT • 0
TOTAL • 0

TYPE 20
FORMAT <' Input •r•d• (or 0 to end inPut>: 'rt>
ACCEPT JOr GRADE
FORMAT CF10.0>

IF CGRADE.NE.O> THEN
ICOUNT = ICOUNT + 1
TOTAL • TOTAL + GRADE
GO TO 10

END IF

IF <ICOUNT.NE.O> AVERAGE = TOTAL/ICOUNT

RETURN
END

Page 5-17

PROGRAM DEVELOPMENT Page 5-18

EXAMPLE 1 -- Setting watchpoints and breakpoints

The following three DCL commands compile, link, and execute the
program GRADES. Because the /DEBUG qualifier was used in the
language compile and LINK command the symbolic debugger will
gain control of the program execution.

$FORTRAN/LIST/DEBUG GRADES
SLINK/DEBUG GRADES
SRUN GRADES

VAX-11 DEBUG Version 3.0-5

%DEBUG-I-INITIALv Lansuase is FORTRANv module set to 'GRADES'

The EXAMINE command of the debugger allows you to check the
contents of variables in the program. The DEPOSIT command
gives you the opportunity to alter the contents of variables.
With the following debug commands the value of the variable
DONE is examined and altered. The SET WATCH command sets
a watchpoint on the variable which causes the debugger to
display the old and new values of the variable whenever the
contents of the variable is altered. The SHOW WATCH command
causes the debugger to display the locations at which
watchpoints have been established.

DBG>EXAMINE DONE
GRADES\DONE<1:4>:
DBG>DEPOSIT DONE="YES"
DBG>EXAMINE DONE
GRADES\DONE<1:4>: YES
DBG>SET WATCH DONE
DBG>SHOW WATCH
watchPoint at GRADES\DONEC1:4> for 4. b~tes.

The GO command causes the program to execute or resume execution
at the point it was suspended.

DBG>GO
routine start at GRADES

Student name? JOE SMITH
InPut Srade <or 0 to end input>: 6
InPut srade (or 0 to end inPut>: 7
InPut srade <or 0 to end inPut>: 0

Student: JOE SMITH Averase: 6.5

Are ~ou done ? <Yes/No) N

PROGRAM DEVELOPMENT Page 5-19

Because a watchpoint was established for the variable DONE the
debugger displays the old and new contents of the variable.

write to GRADES\DONE<1:4> at PC 70649
old value - YES
new value - N

DBG>EXAMINE DONE
GRADES\DONE<1:4>: N

In the following section a breakpoint is set with the SET BREAK
command at line 23. When the program resumes execution with the
GO command the debugger will indicate the module name and the
line number where the program is interrupted.

DBG>SET BREAK %LINE 23
DBG>GO
start at 70659
break at GRADES\%LINE 23
DBG>GO
start at GRADES\%LINE 23
Student name? GERALD HORNER
Input srade <or 0 to
InPut srade <or 0 to
InPut srade (or 0 to

end
end
end

Student: GERALD HORNER

Are you done ? <Yes/No> N

input>:
inPut>:
inPut>:

50
100
0

write to GRADES\DONEC1:4> at PC 70649
old value - N
new value ~ N

Averase 75+0

The CANCEL WATCH command is used to cancel watchpoints that have
been set.

DBG>CANCEL WATCH DONE
DBG>GO
start at 70659
break at GRADES\%LINE 23
DBG>GO
start at GRADES\%LINE 23
Student name? MARY HAGERTY
InPut •rade (or 0 to end input>: 9
InPut Srade (or 0 to end inPut>: 9
InPut Srade <or 0 to end inPut>: 0

Student: MARY HAGERTY

Are wou done 1 <Yes/No> N

Averase 9.0

The CANCEL BREAK command cancels a single breakpoint or by using
the /ALL qualifier cancels all breakpoints set in the program.
Now that all watchpoints and breakpoints have been cancelled
program execution will continue until normal program execution.

PROGRAM DEVELOPMENT

DBG>CANCEL BREAK/ALL
DBG>GfJ
start at GRADES\%LINE 23
Student name? HORACE O'TOOLE
Input Srade <or 0 to end input>: 8
InPut Srade (or 0 to end input>: 0

Student: HORACE O'TOOLE

Are You done 1 <Yes/No> N

Student name? CRAIG SMYTHE
Input srade <or 0 to end inPut>: 10
InPut srade <or 0 to end input>: 10
InPut srade <or 0 to end inPut>: 0

Student: CRAIG SMYTHE

Are You done 1 <Yes/No> Y

Page 5-20

8+0

:1.0+0

The following message and command indicates normal program
termination. Control is then returned to the debugger. The
EXIT command terminates the debugger and returns control to
DCL.

Is 'XSYSTEM-S-NORMAL, normal successful comPletion'
DBG>EXIT
$

PROGRAM DEVELOPMENT Page 5-21

EXAMPLE 2 -- Setting tracepoints and single stepping

Before you can use the symbolic debugger you must first compile
the program with the /DEBUG qualifier, then link the program
again using the /DEBUG qualifier. When you run the program the
symbolic debugger will automatically take control of the
execution of the program.

$FORTRAN/LIST/DEBUG GRADES
SLINK/DEBUG GRADES
$RUN GRADES

VAX-11 DEBUG VERSION 3.0-5

%DEBUG-I-INITIAL, Lan~ua~e is FORTRAN, module set to 'GRADES'

The EXAMINE and DEPOSIT commands allow you to check the values of
variables in a program and alter the contents of those variables.
In this example the value of DONE was examined and its contents
displayed. With the DEPOSIT command the variable DONE was
altered to contain "YES".

DBG>EXAMINE DONE
GRADES\DONE<1:4>:
DBG>DEPOSIT DONE =•YES"

A breakpoint is set at line 23 so that execution of the program
will be interrupted. When the program is interrupted the debugger
displays the DBG> prompt. Using the SET TRACE command tracepoints
are set in the program. Tracepoints allow you to examine the order
in which the statements are being executed.

DBG>SET BREAK %LINE 23
DBG>SET TRACE %LINE 8
DBG>SET TRACE %LINE 13
DBG>SET TRACE %LINE 19
DBG>GO
routine start at GRADES
trace at GRADES\%LABEL 10

Student name? JOE SMITH
trace at GRADES\%LINE 13
Input srade <or 0 to end input>: 6
InPut Srade <or 0 to end inPut>: 7
InPut srade (or 0 to end input>: O

Student: JOE SMITH
trace at GRADES\%LINE 19

Are ~ou done ? <Yes/No) N
break at GRADES\%LINE 23

Averase: 6.5

PROGRAM DEVELOPMENT Page 5-22

While the GO command causes the program to execute until a
breakpoint is reached or the program terminates normally, the
STEP command causes the debugger to execute one single
statement.

DBG>STEF'
start at GRADES\%LINE 23
stePPed to GRADES\XLABEL 10
I:IBG>STEP
start at GRADES\XLABEL 10
trace at GRADES\XLABEL 10

Student name? MARY HAGERTY
trace at GRADES\%LINE 13

I n>.,.••.Jt !~rad~? <or 0 ·to end
Inf.,ut ~.f rmde (or 0 to end
InP•.Jt !~ rc:~de (or 0 tc> €·~1"1d

Student: MARY HAGERTY
trace at GRADES\%LINE 19

Are ~01..1 done ? <Yes/No) N
break at GRADES\%LINE 23

inPut):
:i.nF•l..lt):
:i.nPut):

100
50
0

75.0

The CANCEL TRACE command with the /ALL qualifier cancels all
tracepoints set in the program.

DBG>CANCEL TRACE/ALL
DBG>GO
start at GRADES\%LINE 23

Student name? CRAIG SMYTHE
InPut srade <or 0 to end input>: 9
InPut Srade (or 0 to end :i.nPut>: 9
InPut srade <or 0 to end inPut>: 0

Student: CRAIG SMYTHE

Art;~ ~mu dc:me rt <Yes/No) Y

Because the breakpoint is still set for line 23 the debugger
continues to halt execution.

break at GRADES\%LINE 23
f.l:t(G>GO
start at GRADES\%LINE 23
Is '%SYSTEM-S-NORMAL, normal successful completion'
flBG>EXIT
~;

PROGRAM DEVELOPMENT

EXAMPLE 3 -- Complex debug session of GRADES

$FORTRAN/DEBUG/LIST GRADES
SLINK/DEBUG GRADES
$RUN GRADES

VAX-11 DEBUG Version 3.0-5

Page 5-23

%DEBUG-I-INITIALv Lan9uase is FORTRANv module set to 'GRADES'

DBG> SET LOG SESSION.DAT
DBG> SET OUTPUT LOG
DBG> EXAMINE DONE
GRADES\DONE<1:4>:
DBG> DEPOSIT DONE='YES'
DBG> EXAMINE DONE
GRADES\DONE<1:4>: YES
DBG> SET WATCH DONE
DBG> SHOW WATCH
watchPoint at GRADES\DONE<1:4> for 4+ bytes+
DBG> GO
routine start at GRADES

Student name? JOE
lnPut srade (or 0
InPut srade <or 0
InPut Srade (or 0

Student: JOE SMITH

SMITH
to end
to end
to end

Are ~ou done ? <Yes/No) N

input>: 6
input>: 7
input>: 0

Averase:

write to GRADES\DONE<1:4> at PC 63269
old value - YES
new value = N

----------- (using TRACE while watching DONE) -------------

DBG> SET TRACE %LINE 8
DBG> SET TRACE %LINE 13
DBG> SET TRACE %LINE 19
DBG> GO
start at 63279
trace at GRADES\%LABEL 10

Student name? MARY HAGERTY
trace at GRADES\%LINE 13
InPut srade Cor O to end input>: 9
Input srade (or 0 to end input>: 9
Input srade (or 0 to end inPut>: 0

Student: MARY HAGERTY Averase: 9+0

PROGRAM DEVELOPMENT

trace at GRADES\%LINE 19

Are you done 1 <Yes/No> N
w~ite to GRADES\DONE<1:4> at PC 63269

old vala.Je = N
new val•.Je = N

Page 5-24

--------- (Stop watching DONE. Set break point) ----------

DBG> CANCEL WATCH DONE
DBG> SET BREAK %LINE 23
DBG> GO
start c:Jt 6:3279
break at GRADES\%LINE 23
DBG> GO
start at GRADES\XLINE 23
trace at GRADES\%LABEL 10

Student name? GERALD HORNER
trace at GRADES\%LINE 13
InPut srade <or 0 to end input>: 50
In?ut srade <or 0 to end inP•..1t >: 100
Input srade <or 0 to end input>: 0

Student: GERALD HORNER
trace at GRADES\%LINE 19

Are you done 1 <Yes/No> N
break at GRADES\%LINE 23

7t'5+0

----------- (Try to watch TOTAL. Doesn't work.) -----------

DBG> SET WATCH TOTAL
%DEBUG-W-NOSYMBOLv swmbol 'TOTAL' is not in the swmbol table

----------- (The symbol TOTAL is in subroutine.) -----------

DBG> SHOW MODULE
modu l c~~ n<:~me

GF~1~DES
COMPUTE
total FORTRAN modules: 2+

~:;wmbols size
272

n<:> 304
remainins size: 56776+

------ (The symbol table of subroutine must be loaded) ------

DBG> SET MODULE COMPUTE
DBG> SHOW MDDUl ... E
mo du 1 €~ nr:~me
GRADES
COMPUTE
total FORTRAN modules: 2+

s~1mbc>lr:;. r:;.:i.z€~'

~:l~~'S 272
~:I~'~> :304

r€~mc:d. n ins s i zf.-~: 56572+

----------- (Now we can watch TOTAL.) ------------

PROGRAM DEVELOPMENT

DBG> SET WATCH TOTAL

DBG> GO
start at GRADES\%LINE 23
trace at GRADES\%LABEL 10

Student name? JENNY GRATIN
trace at GRADES\%LINE 13

write to COMPUTE\TOTAL at PC COMPUTE\%LINE 7

DBG> GO

old value =
new value =

start at COMPUTE\%LABEL 10

155+0000
O+OOOOOOOE+OO

Input srade <or 0 to end inPut>: 5

write to COMPUTE\TOTAL at PC COMPUTE\%LINE 16
old value - O+OOOOOOOE+OO
new value = 5+000000

DBG> GO
start at COMPUTE\%LINE 17
Input ~rade (or 0 to end input>: 6

write to COMPUTE\TOTAL at PC COMPUTE\%LINE 16

DBG> GO

old value -
new value =

start at COMPUTE\%LINE 17

5+000000
11.00000

InPut ~rade (or 0 to end input>: 0

Student: JENNY GRATIN

trace at GRADES\%LINE 19

Are wou done 1 <Yes/No> N
break at GRADES\%LINE 23
DBG> SHOW SCOPE
scope: 0 [= GRADES J
DBG> SET SCOPE COMPUTE

DBG> SHOW SCOPE
scoPe: COMPUTE
DBG> SHOW TRACE
tracepoint at GRADES\%LINE 19
tracePoint at GRADES\%LINE 13
tracepoint at GRADES\%LINE 10

DBG> CANCEL WATCH TOTAL

Averase:

Page 5-25

5+5

------ (Cancel traces at lines 13 and 19, module GRADES)------

PROGRAM DEVELOPMENT

DBG> CANCEL TRACE %LINE 13
DBG> CANCEL TRACE %LINE 19
DBG> SHOW TRACE
tracepoint at GRADES\%LABEL 10

Page 5-26

------ (Try to cancel trace at line 10, module GRADES) ------

DBG> CANCEL TRACE %LABEL 10
%DEBUG-I-NOSUCHTPT, no such tracepoint
DBG> SHOW TRACE
tracePoint at GRADES\%LABEL 10

------ (Doesn't work because scope is not set to GRADES) ----

DBG> SET SCOPE GRADES
DBG> CANCEL TRACE %LABEL 10
DBG> SHOW TRACE
%DEBUG-I-NOTRACES, no tracepoints are set, no opcode tracin~

----- (Add a tracepoint in main routine and subroutine) ----

DBG> SHOW SCOPE
scope: GRADES

DBG> SET TRACE %LINE 10
DBG> SET TRACE %LINE COMPUTE\9

DBG> SHOW TRACE
tracepoint at COMPUTE\%LABEL 10
tracepoint at GRADES\%LINE 10

------(If duplicate labels, can specify in normal
way if scope is set to module containing
label to be specified. If scope is not set,
must specify module name also. --------------

DBG> GO
start at GRADES\%LINE 23
trace at COMPUTE\%LABEL 10
Input ~rade (or 0 to end inPut>: 6
trace at COMPUTE\%LABEL 10
InPut ~rade (or 0 to end inPut>: 0

Student: CRAIG SMYTHE

Are ~ou done 1 CYes/No> N
break at GRADES\%LINE 23

6+0

--------------- (Cancel all tracepoints) --------------

DBG> CANCEL TRACE/ALL
DBG> SHOW TRACE
%DEBUG-I-NOTRACESY no tracepoints are set, no oPcode tracin~
DBG> GO
start at GRADES\%LINE 23

PROGRAM DEVELOPMENT

Student name? HORACE O'TOOLE

InPut srade <or 0 to end inPut>: 8
InPut srade (or 0 to end inPut>: 0

Student: HORACE O'TOOLE

Are hlOU done ? <Yes/No> N
break at GRADES\%LINE 23

Page 5-27

Avera~e: 8+0

--------- <Evaluate the exPression TOTAL/ICOUNT> -------

DBG> SET SCOPE COMPUTE
DBG> SET BREAK %LINE 20
DBG> GO
routine start at GRADES\%LINE 23
break at COMPUTE\%LINE 20
DBG> SET WATCH COMPUTE\AVERAGE
DBG> GO
start at COMPUTE\%LINE 20
write to GRADES\AVERAGE at PC COMPUTE\%LINE 20 +7

old value = O.OOOOOOOE+OO
new value = 9+000000

DBG> EVALUATE TOTAL/ICOUNT
9+000000

DBG> EXIT
$

PROGRAM DEVELOPMENT Page 5-28

EXAMPLE 4 -- Aborting and restarting the debugger

$FORTRAN/DEBUG/LIST GRADES
$LINK/DEBUG GRADES
$~~UN GRADES

VAX-11 DEBUG Version 3+0-5

%DEBUG-I-INITIAL, Lansuase is FORTRAN, module set to 'GRADES'
DBG>GO
routine start at GRADES

Studc~nt name'P SUZY QUE
Im·~ut srade <or 0 to end
InPut !!.frade <or 0 to er1d
Im:•1..1t srade (C> r 0 to end
r-.y

~I> CONT I NlJE

Student: SUZY QUE

Are hlou done ? <Yes/No) N

Student name
Input
I nF·•.Jt
:t:nF-ut
~y

$DEBUG
DBG>GD

srade
~lf rcsde
src:H:h~

1) SUZY
(c> r 0 tc>
(() Y' 0 ·to
(or 0 to

start at 2147410216

Student: SUZY QUE

CWE
end
end
end

Are hlou done ? <Yes/No> N
break at GRADES\%LINE 23
DBG>EXIT
$

ir1Put): 4
i rtF1 t.Jt) : 9
inP•.Jt):

6+5

:i. n>-:1 1.Jt) : 4
:i.nPt.Jf,): 9
i l"IF•l.Jt) :

Avf.~rase: 6+5

PROGRAM DEVELOPMENT
with VAX-11 MACRO

Page 5-29

5.5 PROGRAM DEVELOPMENT WITH MACRO

VAX-11 MACRO is the assembly language for VAX/VMS. This
language is provided with the VMS software. Examples of
programs written in VAX-11 MACRO can be found in the
majority of the manuals for VMS. The language reference
manual and user's guide for VAX-11 MACRO are provided as
part of the documentation set.

5.5.1 SOURCE FILES

A MACRO statement consists of the following fields:

o A label field. A label is a symbol used to refer
to a location in your program. A label can be up
to 31 characters long and can contain underscore

0

() and dollar sign ($) characters. Terminate the
label field with a colon (:), a double colon (::)
or a space. If a label extends past column 7,
place it on a line by itself; place the operator
on the following line beginning at column 9.
Labels are optional.

An operator field. An operator specifies the
action to be performed by a statement. The
operator can be a symbol for an instruction, an
assembler directive or a macro instruction.
Terminate the operator field with a tab. The
operator field is required.

o An operand field. The operand field contains
symbolic names or specifications for the addresses
of one or more operands. Operands specify
instruction operands, assembler directive
arguments, or macro arguments. The operand field
is required.

o A comment field. A comment contains text that
explains the function of the preceding statement.
Ideally, you should comment every line of MACRO
code, but they are optional elements of any MACRO
statement. A comment can be continued from one
line to the next. A comment can appear on a line
by itself. Mark the beginning of any comment with
a semicolon (;).

The format of a complete MACRO statement is:

Label: Operator Operandl,Operand2, ••• ;Comment

PROGRAM DEVELOPMENT
with VAX-11 MACRO

Page 5-30

A statement can be continued on several lines by using
a hyphen (-) as the last non-blank character before the
comment field.

Conventionally, each field should begin at the column
indicated by Table 5-4 for readability. The TAB key
should be used the number of times indicated in the
table to move the cursor to the correct column to begin
input.

Table 5-4 Formatting Conventions for MACRO Statements

Field Column Tab Characters

Label 1

Operator 9 1

Operand 17 2

Comment 41 5

PROGRAM DEVELOPMENT
with VAX-11 MACRO

5.5.2 PREPARING THE PROGRAM FOR EXECUTION

Page 5-31

Source programs written in VAX-11 MACRO must be
assembled, not compiled. The assembler produces an
object file which must be linked to produce an
executable image. The following is an example of the
steps of program development for a program written in
MACRO:

1. $EDIT GRADES.MAR

Creates the source file.

2. $MACRO/LIST/ENABLE=DEBUG GRADES

Assembles the source code, producing an object file
and a listing file.

3. $LINK/DEBUG GRADES

4. $RUN GRADES

5. DBG> GO

Control passes to the symbolic debugger
automatically on execution of the program. To run
the program, the debug command GO should be
entered.

0000 1 ; GRADES.HAR
0000 2 ;
0000 3 ; RHS data file structure definitions
0000 4 FABADR: $FAB FNH=<COURSE>r FAC=<PUT>r RAT=CR
0050 5 RABADR: $RAB FAB=FABADRr RBF=HSGr RSZ=HSGSIZ
0094 6 ;
0094 7 ; Hessases to/fro~ user

6E 65 64 75 74 53 0000009C'010E0000' 0094 8 ASK: .ASCID /Student naaeT I
20 3F 65 6D 61 6E 20 74 OOA2

20 74 75 70 6E 49 00000082'010E0000' OOAA 9 GRADE: .ASCID /lnPut srade <or O to end inPut>: I
20 30 20 72 6F 28 20 65 64 61 72 67 0088
74 75 70 6E 69 20 64 6E 65 20 6F 74 OOC4

20 3A 29 OODO
6F 79 20 65 72 41 OOOOOOD8'010E0000' OOD3 10 DONE: .ASCID /Are wou done? <Y or N> I
6F 20 59 28 20 3F 65 6E 6F 64 '20 75 OOEl

20 29 4E 20 72 OOED
59 OOF2 11 y: .ASCII /Y/
79 OOFJ 12 LOWER-Y:.ASCII I'd/

0000003C' OOF4 13 HSGDSC: .LONG HSGSIZ ; strins descriPtor for record
OOOOOOFC' OOF8 14 .ADDRESS HSG ; to write to file

20 3A 74 6E 65 64 75 74 53 OOFC 15 HSG: .ASCII /Student: I
20 20 20 20 20 20 20 20 20 20 20 20 0105 16 HSGl: .ASCII I I
20 20 20 20 20 20 20 20 20 20 20 20 0111

20 20 20 20 20 20 011D
0000001E 0123 17 HSGlLEN = • - HSGl

20 JA 65 67 61 72 65 76 41 0123 18 .ASCII /Averase: I
20 20 20 20 20 20 20 20 20 20 20 20 012C 19 HSG2: .ASCII I I

oooooooc 0138 20 HSG2LEN = • - HSG2
0000003C 0138 21 HSGSIZ = • - HSG

20 20 20 20 20 20 20 20 20 20 20 20 0138 22 BLANKS: .ASCII I I
20 20 20 20 20 20 20 20 20 20 20 20 0144

20 20 2~ 20 20 20 0150
0156 23
0156 24 ; Data storase areas

0000001E 0156 25 NAHE: .LONG 30 ; strins descriptor for
0000015E' 01SA 26 .ADDRESS STUDENT ; student naae
0000017C OlSE 27 STUDENT:.8LK8 30 f text of student naae

0000 017C 28 IHLEN: .WORD 0 ; actual lens&th of naae twPed
OOOOOOOF 017E 29 SCORE: .LONG 15 ; strins descriptor for
00000186' 0182 30 .ADDRESS VALUE ; !irade entered
00000195 0186 31 VALUE: .BLKB 15 ; srade as ASCII strins&

00000000 00000000 0195 32 AVERAGE:.D-FLOATING 0 ; will hold averase !irade
00000000 00000000 019D 33 NUl't: .D-FLOATING 0 ; will hold •rade in float. Pt.

01A5 34
01A5 35 ; Prosraa entrw Point

003C OlAS 36 .ENTRY STARTr ~H<R2rR3rR4tRS> ; save resisters used excePt ROrRl
01A7 37
01A7 38 ; 0Pen channel to file (and create file>
01A7 39 $CREATE FA8=FABADR

03 so ES OU2 40 BLBS ROr 10$; test for errors
oocs 31 0185 41 BRW ERROR ; exit if error

0188 42
0188 43 ; Connect record streaa to file
0188 44 10s: $CONNECT RAB=RABADR

03 50 ES 01C3 45 8LBS ROr 20$; asain check for errors
0084 31 01C6 46 BRW ERROR

01C9 47

MACRO Program Listing (Sheet 1 of 3)

~ '"CJ
..... ::0
rt 0
::r G)

::0
<> > ::s:
><
I 0

...... ~

...... <
~

::s: Lt
>O
() '"CJ
::0 ::s:
o~

z
t-3

'"CJ
QJ

lQ
CD

U'1
I
w
I\.)

BO AF 3F
FEC4 CF 7F

83 AF 7F
OOOOOOOO'GF 03 FB

9F AF B5
EA 13

BJ AF DF
00000286'EF 01 FB

91 AF OF BO
OS DD

SC AF 7F
AO AF DF

OOOOOOOO'GF 03 FB
FFOl CF FF5D CF 1E 28
FF20 CF FF7D CF OC 28

FEE4 CF 7F
OOOOOOOO'GF 01 FB

OJ 50 ES
005S 31

FEA7 CF 7F
FF26 CF 7F

OOOOOOOO'GF 02 FB
FEBJ CF FF22 CF 01 29

20 13
FEAA CF FF1S CF 01 29

23 13
FEB2 CF FEES CF lE 2S
FED1 CF FEEO CF OC 2S
FEFB CF FEDS CF 1E 2S
FF1B CF FEDO CF OC 2S

FF5JI 31

01 50 E9
04

oooc
52 7C

01C9
01C9
OlCC
OlDO
0103
OlDA
01DA
01DA
OlDD
01DF
01DF
OlDF
01E2
01E9
01E9
01E9
OlED
OlEF
01F2
01F5
OlFC
0204
020C
0210
0217
0217
0217
0222
0225
0228
0228
0228
022C
0230
0237
023F
0241
0249
0248
02S3
02S8
0263
0268
026E
026E
026E
0279
027C
0270
0270
0270
02S6
0286
02S6
0288
028A
028A

48 ;
49 20•:
50
51
52
53
54
55
56
S7
SS
59
60
61
62
63
64
65
66
67
6S
69
70
71
72
73
74
7S
76
77
78 ;
79 40$:
so
Sl
S2
83
S4
BS
86
S7
BB
S9
90
91
92 ;
93 so•:
94
95
96
97 ;
9S ERROR:
99

100
101
102
103
104

Get student name
PUSHAW INLEN
PUSHAQ ASK
f'USHAQ NAME
CALLS 13tG~ LIBfGET-INPUT

will have lensth of name t~Ped
Pro•Pt strins to ask for name
describes where to Put name
system-suPPlied Procedure

Test to see if no student name sPecified
TSTW INLEN ; if Just <CR>
BEQL 20$; try asain

Call routine to set srades and compute averase
PUSHAF AVERAGE
CALLS llr COMPUTE

Convert
HOVW
PUSHL
PUSHAQ
PUSH AF
CALLS
HOVC3
HOVC3

averase to ASCII and disPlav on terminal
115.SCORE i reset lensth of buffer

PUSHAQ
CALLS

IS
SCORE
AVERAGE
13r G~FORSCVT-D-TF
lttSG1LENrSTUDENTrttSG1
IHSG2LENtVALUEtHSG2
HSGDSC
11• G~LIBSPUT-OUTPUT

Write naae and averase to file
f PUT RAB=RABADR
BLBS ROt 40$
BRW ERROR

See if
PUS HAQ
PUS HAQ
CALLS
CHPCJ
BEQL
CHPCJ
BEQL
HOV CJ
HOVC3
HOV CJ
HOVC3
BRW

done
DONE
NAME
12t G~LIBfGET-INPUT
tltSTUDENTtY
sos
lltSTUDENTtLOWER-Y
sos
IHSGlLENtBLANKStHSGl
IHSG2LENrBLANKStHSG2
IHSGlLENtBLANKStSTUDENT
IHSG2LENtBLANKStVALUE
20$

Close file before exitins
$CLOSE FAB=FABADR
BLBC ROr ERROR
RET

no •ore than five disits
strins desc. for converted averase
floatins Point averase

coPv student na•e <RO-R5 altered)
COPY ASCII averase <RO-RS altered>
set address of strins desc.
write to terainal

ProaPt •essase desc. address
reuse Previous buffer
ask user if done
test for Y (note RO-R3 altered)

test for v <RO-R3 altered>

reset strin•s to blanks for
next student <RO-RS altered>

close channel to file

exit Pro!ilra111

Error exit Pointr will disPlav error code l stop prosra•
SEXILS RO

Subroutine to !let !ilrades and co111Pute avera!ile
.ENTRY COMPUTE• ~H<R2tR3> i save resisters used
CLRQ R2 ; zero counters CR2 and RJ>

Find srade

MACRO Program Listing (Sheet 2 of 3)

~ "O
..... ::x::i
rt 0 ::r G)

::x::i
<>
)113
:><:
10

...... tZl

...... <
tZl

3 L'
)110
(') "O
::x::i 3
0 tZl

z
i-3

"O

°' l.Q
CD

U'1
I

w
w

.HAIN.

FEFO CF JF 028A 105 Jot:
FE18 CF 7F 028E 106
FEES CF 7F 0292 107

OOOOOOOO'GF 03 FB 0296 108
029D 109
0290 110

FEFC CF OF 0290 111
FED9 CF 7F 02A1 112

OOOOOOOO'GF 02 FB 02A5 113
02AC 114
02AC 115

FEED CF 53 02AC 116
09 13 02BO 117

0282 118
0282 119

52 D6 0282 120
53 FEE5 CF 40 0284 121

CF 11 0289 122
028B 123
02BB 124

52 D5 028B 125 40t:
08 13 02BO 126

52 52 4E 028F 127
04 BC 53 52 47 02C2 128

04 02C7 129 50f:
02C8 130
02C8 131

29-JUL-1982 16:09:53 VAX-11 Hacro VOJ-00 Pase 3
20-APR-1982 01:so:1s DRA1:CROCKY.USERGUIOEJHGRADES.HAR;<1>

PUSHAW
PUSHAQ
PUS HAQ
CALLS

SCORE
GRADE
SCORE
tJ, G~LIBfGET-INPUT

Convert ASCII to floatins value
PUSHAF NUH
PUSHAQ SCORE
CALLS 12, G~OTSfCVT_T_D

Test to see if no srade entered
TSTF NUH
BEQL 40$

UPdate counters and runnins total
INCL R2
AODF2 NUH, RJ
BRB 30$

CoaPute averase
TSTL R2 ;
BEQL 50$;
CVTLF R2rR2 ;
DIVFJ R2r Rl• @4<AP> ;
RET

.END START

uPdate counter
update total
and loop tor next srade

if no srades entered
skiP findins averase

convert counter to floatins
return averaste

MACRO Program Listing (Sheet 3 of 3)

:t: 'O
..... :;l:j
rt 0
:J" G)

:;l:j

~~
><
I tj

......, tZl

......,<
tZl

3 LI
)ii 0
() 'O
:;l:j 3
0 tZl

z
t-3

'O
QI

~
(1)

U1
I
w
.i::i.

PROGRAM DEVELOPMENT
with VAX-11 MACRO

5.5.3 DEBUG COMMANDS

Page 5-35

Refer to the list of debug commands in the discussion
of the FORTRAN language, Section 5.6.3. Debug commands
for MACRO programs can be entered using the same format
except for : .

1. The MACRO programmer usually has a better idea of
what is occurring in their program than the
high-level language programmer. Therefore,
commands such as DEPOSIT and EXAMINE are used to a
greater extent. Locations such as the program
counter, offsets from the argument pointer, and
places in memory can be examined and the
information returned is usually helpful. Locations
are specified using the same syntax as in a MACRO
program (PC, @AP, @AP+5, R2, @AP:@AP+0C, 400).

2. The DEFINE command is useful for making it easier
to work in the debugger. Symbolic names can be
assigned to addresses. After the DEFINE command is
used, the symbolic name can be specified instead of
the address. For example,

DBG> EXAMINE GRADES+4
contents of the location GRADES+4

DBG> DEFINE PLACE = GRADES+4

DBG> EXAMINE PLACE
contents of the location GRADES+4

3. The DEPOSIT command can be used to change an
instruction if the SET TYPE INSTRUCTION command is
input ·first. For example;

DBG> SET TYPE INSTRUCTION

DBG> EXAMINE PLACE
PLACE: MOVL @BAA_SORTED(AP) [R2],@BAA_SORTED(AP) [R2]

DBG> DEPOSIT PLACE='

DBG> EXAMINE PLACE

MOVL @BAA ARRAY(AP) [R2],
@BAA SORTED(AP) [R2] I

PLACE: MOVL @BAA_ARRAY(AP) [R2],@BAA_SORTED(AP) [R2]

4. The SET TYPE command can be used to change the
default type to other types so the EXAMINE and
DEPOSIT commands can be used as intended.

PROGRAM DEVELOPMENT
with VAX-11 FORTRAN

5.6 PROGRAM DEVELOPMENT WITH FORTRAN

5.6.1 SOURCE FILES

Page 5-36

A line in a FORTRAN source program consists of five
fields:

o Comment Indicator Field
o Statement Label Field
o Continuation Indicator Field
o Statement Field
o Sequence Number Field

There are two ways to format these fields in a FORTRAN
line:

1. By means of "character-per-column" formatting

2. By means of "tab" formatting

5.6.1.1 CHARACTER-PER-COLUMN FORMATTING

Character-per-column formatting is used on VAX-11
systems to preserve compatibility with existing
FORTRAN programs and those intended to be
transportable between systems. The
character-per-column format is the format used on
punched cards, and is specified in the ANSI
standard for the FORTRAN language.

The character-per-column format requires that each
field of a FORTRAN line begin in a particular
column. The columns that correspond to each field
in a VAX-11 FORTRAN line are listed in Table 5-5.

PROGRAM DEVELOPMENT
with VAX-11 FORTRAN

Table 5-5 Column Conventions for FORTRAN

Column ANSI Standard Definition

1 Comment indicator (C)

2-5 Line number

6 Continuation indicator

7-72 Valid FORTRAN statement

73-80 Sequence number

5.6.1.2 TAB FORMATTING

Page 5-37

VAX-11 FORTRAN allows the use of the TAB key to
input lines of code. The compiler translates the
TAB character differently depending on where it is
entered in the line. Use of the TAB key makes it
easier to create FORTRAN source files.

Table 5-6 shows the action taken by the compiler
when it encounters the TAB character, or any
characters that are not in the fields defined for
them by the ANSI standard.

PROGRAM DEVELOPMENT
with VAX-11 FORTRAN

Page 5-38

Table 5-6 Using Tab Formatting

If you type:

<TAB>text

<TAB>itext

i<TAB>text

C text

D text

text !comment

text in columns
73-80

then the compiler assumes:

The text is a valid FORTRAN
statement and places it in columns
7-72

The number (i) is a continuation
mark, and places it in column 6,
followed by the text which starts
in column 7

The number (i) is a line number (or
statement label), and places it in
columns 2-5, followed by the text
which starts in column 7

The entire line is a comment and
ignores it

The entire line is a comment and
ignores it unless the /D LINES
qualifier is included with the
compiler command. If the /D LINES
qualifier is included, the compiler
assumes the line contains a valid
FORTRAN statement, and processes it

The text is a valid FORTRAN statement,
and anything following an exclamation
point is a comment; to be ignored

The text is a comment and ignores it
unless the /EXTEND qualifier is
included with the compiler command.
If the /EXTEND qualifier is included,
the compiler assumes the text is a
continuation of the current line, or a
valid FORTRAN statement, and processes
it

PROGRAM DEVELOPMENT
with VAX-11 FORTRAN

5.6.2 PREPARING THE PROGRAM FOR EXECUTION

Page 5-39

Assuming the source file has been created, the next
step is compilation followed by linking; then the
program can be executed. This list, an example of the
steps in program development for a FORTRAN program, is
followed by a partial listing of the program developed.
The debugging session in section 5.4.1 uses the line
numbers in the far-left column of the listing file, as
well as the variable and subroutine names shown.

1. $EDIT GRADES.FOR

Creates the source file.

2. $FORTRAN/LIST/NOOPTIMIZE/DEBUG GRADES

Code is normally optimized by the FORTRAN compiler.
Optimization involves methods which can decrease
the effectiveness of the symbolic debugger. When
using the debugger, the /NOOPTIMIZE qualifier
should always be included to ensure close
correspondence between the object code produced by
the compiler and the source code.

3. $LINK/DEBUG GRADES

4. $RUN GRADES

5. DBG>GO

Control passes to the symbolic debugger immediately
on execution of the program. To run the program,
the debug command GO should be entered.

PROGRAM DEVELOPMENT
with VAX-11 FORTRAN

Listins of Main Prosram

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026

10
20

30

40

50

60

PROGRAM GRADES

CHARACTER STUDENT_NAHE*30r DONE*4
REAL AVERAGE

OPEN CUNIT=lr FILE='Course'r STATUS='New'>

TYF'E 20
FORMAT (/' Student name? 'r$)
ACCEPT 30r STUDENT-NAME
FORMAT <1A30)

CALL Get_srades_comPute-averase <AVERAGE>

TYPE 40tSTUDENT_NAHEr AVERAGE
WRITE C1r40) STUDENT_NAHErAVERAGE
FORMAT (/' Student: 'rA30r'Averase: 'tFl0.1>

TYPE 50
FORHAT (/' Are wou done 1 <Yes/No> ',$)
ACCEPT 60r DONE
FORMAT <1A4>

IF CDONE.NE.'Y' .AND. DONE.NE.'w'> GOTO 10

CLOSE <UNIT=l >
END

Listins of Subroutine

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
00;16
Oot7
0018
0019
0020
0021
0022
0023

10
20

30

40

SUBROUTINE Get-Srades-co•Pute_averase <AVERAGE>

INTEGER ICOUNT
REAL TOTALr GRADE

ICDUNT = 0
TOTAL = 0

TYPE 20
FORHAT <' InPut srade <or 0 to end inPut>: 'r$)
ACCEPT 30r GRADE
FORHAT <FlO.O>

IF <GRADE.NE.O> THEN
ICOUNT = ICOUNT + 1
TOTAL = TOTAL + GRADE
GO TO 10

END IF

IF CICOUNT.NE.O> AVERAGE = TOTAL/ICOUNT

RETURN
END

Page 5-40

PROGRAM DEVELOPMENT
with VAX-11 FORTRAN

5.6.3 DEBUG COMMANDS

Page 5-41

One example of each of the debug commands used in the
sample debug session in section 5.4.1 follows:

SET LOG FILE.DAT

SET OUTPUT LOG

SET BREAK %LINE 23

SET MODULE COMPUTE

SET SCOPE COMPUTE

SET TRACE %LINE 8

(Trace and break statements can not be set at
blank lines, comment lines, or lines where a
FORMAT statement is specified.)

SET WATCH DONE

SHOW BREAK

SHOW MODULE

SHOW SCOPE

SHOW TRACE

SHOW WATCH

EXAMINE DONE

DEPOSIT DONE='YES'

EVALUATE TOTAL/ICOUNT

CANCEL BREAK %LINE 23

CANCEL TRACE %LINE 8

CANCEL TRACE/ALL

CANCEL WATCH DONE

CANCEL ALL (equivalent to CANCEL BREAK/ALL)

GO

EXIT

PROGRAM DEVELOPMENT
with VAX-11 PASCAL

5.7 PROGRAM DEVELOPMENT WITH PASCAL

5.7.1 SOURCE FILES

Page 5-42

All procedures and functions should be in the
declaration section of a PASCAL program. Any of these
may be removed and placed in a separate source file.
The source file containing the main program must begin
with the statement PROGRAM. The source files
containing procedures and functions must begin with the
statement MODULE.

5.7.2 PREPARING THE PROGRAM FOR EXECUTION

Assuming the source file has been created, the next
step is compilation followed by linking; then the
program can be executed. This list, an example of the
steps in program development for a PASCAL program, is
followed by a partial listing of the program developed.
The line numbers shown in the left-hand column are used
for symbolic debugger commands requiring line numbers.

1. $EDIT GRADES.PAS

Creates the source file.

2. $PASCAL/LIST/DEBUG/NOSTANDARD/NOWARNING GRADES

Non-standard features, including underscores () in
identifier names, the OPEN statement, and carriage
control specifications in the WRITELN statement,
can be used in a VAX-11 PASCAL program. The VAX-11
PASCAL compiler displays a warning message each
time it encounters one of these extensions. To
suppress the messages, use the /NOSTANDARD
qualifier with the compiler command. To suppress
warning messages regarding unorthodox, but
acceptable syntax in a program, the /NOWARNING
qualifier is used.

3. $LINK/DEBUG GRADES

4. $RUN GRADES

5. DBG>GO

Control passes to the symbolic debugger immediately
on execution of the program. To run the program,
the debug command GO should be entered.

PROGRAM DEVELOPMENT
with VAX-11 PASCAL

Pascal Source Listins

PROGRAM Grades <Course' INPUT, OUTPUT>;

TYPE
Yes-no= ewes.no>;

VAR
Student-name : PACKED ARRAY C1 •• 40J OF CHAR;
Course : TEXH
Icount : INTEGER;
Done : Yes-no;
Grade, Total' Averase : REAL;
st. Av : PACKED ARRAY c1 •• 101 OF CHAR;

VALUE
St := 'Student: 1

;

PROCEDURE Compute;
BEGIN

Av := 'Averase:

Icount := o; Total := o;
REPEAT

I a

'

WRITE (' Input Srade <or 0 to end inPut); ');
READ <Grade>;

IF Grade <> 0
THEN Icount := Icount + 1;

Total := Total + Grade;
UNTIL Grade = o;
Averase := Total I Icountf

ENDf

BEGIN < Hain Procedure >

REWRITE <Course>f
REPEAT
< Get infor•ation for one student >

WRITELN;
WRITE <'Student na~eT ');
READ CStudent_Na~e>;

Co11Pute;
< Output results to terminal and file }

WRITELNf WRITELN;
WRITELN <Str Student_Naae, Avr Averase :J:1>f

Page 5-43

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029.
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050

WRITELN <Course' St, Student-Na11er Av, Averase :3:1>;
< Check if aore students }

WRITELN;
WRITELN <'Are wou done 1 <Yes/No> ');
READ <Done);

UNTIL Done = Yes;
CLOSE (Course>;

END < Prosraa Grades >•

PROGRAM DEVELOPMENT
with VAX-11 PASCAL

5.7.3 DEBUG COMMANDS

Page 5-44

Refer to the list of commands in the discussion of the
FORTRAN language, Section 5.6.3. Debug commands for
PASCAL programs are entered using identical formats
except for:

1. If the SET WATCH command is used to watch a
variable that is stored on the same page in memory
as a file variable, when the file variable is
accessed by the program, errors occur.

2. Trace and break statements can not be set at blank
lines or comment lines.

3. The COMPUTE procedure is
main program, GRADES, so
the debugger. Unless
separate source files,
used, the SET SCOPE and
useful in PASCAL.

considered as part of the
all variables are known to
routines are coded in

and the MODULE statement is
SET MODULE commands are not

4. The DEPOSIT command for depositing 'yes' into DONE
works differently for this version of the PASCAL
program, because DONE is declared as a type. The
possible values of DONE are YES and NO. Since
these are considered to be values, not strings, the
apostrophes are not required
(DBG> DEPOSIT DONE=YES) • If DONE is supposed to
contain a string, the DEPOSIT command would be
identical.

5. Notice that the output from the debugger differs
from the output when a FORTRAN module is being run.

6. The SET WATCH command can not be used
variables declared in subprograms.

with

PROGRAM DEVELOPMENT
with VAX-11 BASIC

5.8 PROGRAM DEVELOPMENT WITH BASIC

5.8.l SOURCE FILES

Page 5-45

VAX-11 BASIC can be used as though it were either an
interpreter or a compiler. A fast RUN command and
support for direct execution of unnumbered statements
(immediate mode} gives the VAX-11 BASIC user the 'feel'
of an interpreter. However, source programs created
with an interactive editor can be compiled, linked, and
run in the same manner as source programs written in
other native-mode languages (see Section 5.1}.

Table 5-7 shows the steps of program development using
VAX-11 BASIC in immediate mode. More information about
immediate mode or other features of VAX-11 BASIC can be
found in the VAX-11 BASIC documentation. Some
information is available while the user is in immediate
mode, if HELP is entered at the "Ready?" prompt.

Table 5-7 BASIC Program Development Using Immediate Mode

Steps

1. $BASIC

2. Enter program

3. [LOAD file_spec]

4. [COMPILE

5. RUN

Comments

Enters the BASIC environment.

Includes line numbers

(optional} Includes any programs
needed by the main program

(optional} Compiles the program
and any subprograms. Only used
if you want to create an object
file that can later that can be
linked with other programs.

Executes program. If a CTRL/C
is typed or a STOP statement is
encountered, immediate mode
debugging statements (see VAX-11
BASIC User's Guide} may be
entered.

PROGRAM DEVELOPMENT
with VAX-11 BASIC

5.8.2 PREPARING THE PROGRAM FOR EXECUTION

Page 5-46

Assuming the source file has been created, the next
step is compilation followed by linking; then the
program can be executed. This list, an example of the
steps in program development for a BASIC program, is
followed by a partial listing of the program developed.

1. $EDIT GRADES.BAS

2. $BASIC/LIST/DEBUG GRADES

3. $LINK/DEBUG GRADES

4. $RUN GRADES

5. DBG>GO

Control passes to the symbolic debugger immediately
on execution of the program. To run the program,
the debug command GO should be entered.

PROGRAM DEVELOPMENT
with VAX-11 BASIC

Listin~ of Main Prosram

1 10 PROGRAM GRADES
1
1 15 OPEN 'Course' FOR OUTPUT AS FILE 1%
1
1 20 PRINT
2 INPUT 'Student name'; STUDENT-NAFIE$
1
1 30 CALL COMPUTE <AVERAGE>
1
1 40 PRINT
2 PRINT 'Studer1t: , ; &
2 STUDENT_NAHE$, &
2

,
2 AVERAGE
3 PRINT IU
4 PRINT 11x, 'Student: , . , &
4 STUDENT_NAHE$r &
4
4 AVERAGE
1
1 60 PRINT
2 INPUT 'Are '=IOU done <Yes/No>'; DONE$

Averase:

Averase:

4 IF DONE$ <> , ~, AND DONES <> 'Y' THEN GOTO 20
1
1 990 CLOSE 1X
1
1 999 END
1
1 '*** 1

Lis tins of SubProsraa

1 10000 SUB COHPUTE <AVERAGE>
1
1 10010 I COUNT = ox
2 TOTAL = ox
1

I ;

, ;

1 10020 INPUT 'Input !ilrade Cor 0 to end input>'; GRADE
1 I
1 10030 IF GRADE <> OX
2 THEN ICOUNT = ICOUNT + u
3 TOTAL = TOTAL + GRADE
4 GOTO 10020
1
1 10040 IF ICOUNT <> ox
2 THEN AVERAGE = TOTAL/ICOUNT
1
1 10099 SUB END

Page 5-47

&

&

PROGRAM DEVELOPMENT
with VAX-11 BASIC

5.8.3 DEBUG COMMANDS

Page 5-48

Several kinds of variables are initialized at run-time
before the code in a VAX-11 BASIC program is executed.
Therefore, before examining the contents of any
variables, set a breakpoint at the first statement, and
input the GO command. This is true for subprograms as
well. The initialization is done as you enter the
subprogram. Therefore, before examining variables in a
subprogram, set a breakpoint at the first statement in
the subprogram and GO to that point.

Most implementations of the BASIC language require the
user to input line numbers for each line of source
code. Users of VAX-11 BASIC are not required to input
any line numbers. However, each line must be numbered
in the listing so the user can use the debugger and
specify a particular line. The VAX-11 BASIC compiler
does not generate more line numbers in the listing
file. Instead, the line numbers in the source code are
used in debug commands in a special way.

In VAX-11 BASIC, several source statements can share
the same line number. The first source statement
associated with a line number is assigned the number 1,
which appears in the left-hand column of the listing
file. The second source statement is assigned the
number 2, and so on. In some cases, a particular
source statement is continued over several text lines.
In the listing, each line will be assigned the same
number.

To designate a particular source line to the debugger,
specify the line number associated with that line. If
the statement is the second statement associated with
the line number, specify the line number, a period, and
the number 2 (line_number.2).

For example, look at the statement with the line number
40 in the listing of the GRADES program. Four source
statements are associated with line 40. To set a
breakpoint at each, the following commands should be
used:

DBG>SET BREAK %LINE 40.l
DBG>SET BREAK %LINE 40.2
DBG>SET BREAK %LINE 40.3
DBG>SET BREAK %LINE 40.4

The first line number can be specified using 40.l or 40
(the 1 is implied). Line numbers can be specified in
the same manner for other debug commands requiring
them.

PROGRAM DEVELOPMENT
with VAX-11 COBOL

5.9 PROGRAM DEVELOPMENT WITH COBOL

5.9.l SOURCE FILES

Page 5-49

The VAX-11 COBOL compiler accepts two source program
coding formats: ASNI standard and terminal. Both
formats are described in terms of character positions
in a line. The ANSI standard, (sometimes call
conventional), format is based on the traditional COBOL
format as applied to an 80-column punched card. The
terminal format is a DEC-specified format for
convenient use with an interactive text editor.

Table 5-8 compares the two formats. Notice that the
terminal format does not allow the sequence number or
identification fields, and both formats accept tab
characters or carriage return characters as line
terminators.

Table 5-8 Character Positions in COBOL Source Files

COLUMNS

Fields ANSI Standard Terminal
--------------~--------------------------------------

Sequence numbers 1-6 not used

Continuation/Comment 7 1
Indicator Area

Area A 8-11 1-4

Area B 12-72 5-56

Identification Field 73-80 not used

Tab stops are defined by the compiler depending on the
format used.

For ANSI standard format, they are set at:

7 I 81 12, 20, 28, 36, 44, 521 60, 68, 73

For terminal format they are set at:

5, 13, 21, 29, 37, 45, 53, 61, 66

PROGRAM DEVELOPMENT
with VAX-11 COBOL

Page 5-50

Terminal format is the compiler default. The use of
terminal format saves a considerable amount of space in
a source file on disk as compared to the use of ANSI
standard format. For this reason, if you have files on
a disk which are in ANSI standard format, you may wish
to convert them to terminal format using the REFORMAT
utility. This utility can also be used to convert a
file in terminal format to conventional format. The
DCL command to invoke the REFORMAT utility is:

$RUN SYS$SYSTEM:REFORMAT

The utility will then prompt you for all pertinent
information. The REFORMAT utility is described in the
VAX-11 COBOL User's Guide.

5.9.2 PREPARING THE PROGRAM FOR EXECUTION

Assuming the source file has been
step is compilation followed by
program can be executed. When you
program, the compiler will assume
terminal format unless you specify
qualifier.

created, the next
linking; then the
compile a COBOL

that you are using
the /ANSI_FORMAT

This list, an example of the steps in program
development for a COBOL program, is followed by a
partial listing of the program developed. The line
numbers shown in the left-hand column can be used with
symbolic debugger commands requiring line numbers.

1. $EDIT GRADES.COB

2. $COBOL/LIST/DEBUG GRADES

or

$COBOL/ANSI_FORMAT/LIST/DEBUG GRADES

3. $LINK/DEBUG GRADES

4. $RUN GRADES

5. DBG>GO

Control passes to the symbolic debugger immediately
on execution of the program. To run the program,
the debug command GO should be entered.

PROGRAM DEVELOPMENT
with VAX-11 COBOL

Source Listins

1 * PROGRAH GRADES
2 * 3 IDENTIFICATION DIVISION.
4 *
5 PROGRAH-ID. GRADES.
6 * 7 ENVIRONMENT DIVISION.
8 INPUT-OUTPUT SECTION.
9 FILE-CONTROL.

10 SELECT COURSE ASSIGN TO 'COURSE'.
11 DATA DIVISION.
12 FILE SECTION.
13 FD COURSE
14 LABEL RECORDS ARE STANDARD.
15 01 OUT-REC PIC X<72>.
16
17 WORKING-STORAGE SECTION.
18 01 STUDENT-MAHE PIC X<40>.
19 01 AVERAGE PIC 999V999 COMP.
20 01 DONE PIC X<4>.
21 01 OUT-LINE.
22 05 FILLER PIC X<9> VALUE IS 'Student: '•
23 05 OUT-NAHE PIC X<40>.
24 05 FILLER PIC X<16> VALUE IS • Avera•e: •
25 05 OUT-AVG PIC zz9.999.
26
27 PROCEDURE DIVISION.
28 BEGIN.
29 OPEN OUTPUT COURSE.
30
31 ACCEPT-STUDENT.
32 DISPLAY ''•
33 DISPLAY ''•
34 DISPLAY 'Student naae? ' WITH NO ADVANCING.
35 ACCEPT STUDENT-MAHE.

Page 5-51

36 CALL 'Get_srades-co•Pute_averase• USING BY REFERENCE AVERAGE.
37 HOVE STUDENT-NAME TO OUT_NAHE.
38 HOVE AVERAGE TO OUT-AVG.
39 DISPLAY ''•
40 DISPLAY ''•
41 DISPLAY OUT-LINE.
42 WRITE OUT-REC FROH OUT-LINE.
43
44 DISPLAY ''•
45 DISPLAY 'Are wou done <YIN>? ' WITH NO ADVANCING.
46 ACCEPT DONE.
47 IF DONE IS NOT EQUAL TO •y• AND DONE IS NOT EQUAL TO 'v'
48 THEN GO TO ACCEPT-STUDENT.
49
50 CLOSE COURSE.
51 STOP RUN.
52 END PROGRAM GRADES.

PROGRAM DEVELOPMENT
with VAX-11 COBOL

Source Listins of SubProsram

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

IDENTIFICATION DIVISION.

* PROGRAM-ID. Get_srades-comPute_averase.

* * DATA DIVISION.
WORKING-STORAGE
01 IN-GRADE
01 GRADE
01 ICOUNT
01 TOTAL

SECTION.
PIC 999.
PIC 999
PIC 999
PIC 999

COMP.
COMP.
COMP.

LINKAGE SECTION.
01 AVERAGE PIC 999V999 COHP.

PROCEDURE DIVISION USING AVERAGE.
BEGIN.

HOVE ZERO TO !COUNT.
HOVE ZERO TO TOTAL.

DISPLAY II

DISPLAY ••.
DISPLAY '<Grades must be 3-disits lens.
DISPLAY 11

ACCEPT-GRADE.
DISPLAY 'Enter srade <or 000 to end inPut>: •

WITH NO ADVANCING.

ACCEPT IN-GRADE.

IF IN-GRADE IS NOT EQUAL TO 0 THEN
ADD 1 TO ICOUNT

END-IF.

ADD IN-GRADE TO TOTAL
GO TO ACCEPT-GRADE

IF ICOUNT IS NOT EQUAL TO 0 THEN

Page 5-52

Pad with leadins O's.>'
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

DIVIDE ICOUNT INTO TOTAL GIVING AVERAGE.

EXIT PROGRAM.

END PROGRAM Get-srades-comPute-averase.

PROGRAM DEVELOPMENT
with VAX-11 COBOL

Page 5-53

5.9.3 DEBUG COMMANDS

Debug commands for programs written in COBOL are
identical to those for FORTRAN programs (see Section
5.6.3) with the exception of:

1. SET WATCH is not available when files are used.

2. STEP is used to step 1 instruction at a time. The
specification of a certain number of steps is not
available.

3. The TYPE command can be used to type out source
statements in modules. Line numbers specified are
those output in the listing file. TYPE is unique
to COBOL. An example follows:

DBG> TYPE 1:4
1r1rJd1..1 l G~ GRADES

1: * PROGRAM GRADES

3: IDENTIFICATION DIVISION.
4: *

DBG> TYPE 55
mcJdu 1 <:~ GRAii ES

55:
DBG> TYPE 65!69
mc>ch.11 e GRADES
%DEBUG-W-NOLINXXX, lines 65:69 do not exist in module GRAIIES
DBG> SHOW MOill.JL.E
mod1..11 £~ n<3mc~

GRADES
COMPUTE
COB$RMS-BLOCKS
LI B$AB""CVTTP._lJ
total modules: 4+
DBG> SET MODULE COMPUTE
DBG> TYPE 6!5: 69
modt1le Gf~ADES

s~m1bc>l ~:>

~e~>

n<:>
no
nc>

remainin~t size!

lar1s1..1ase size
COBOL 56()
COBOL 364
BLISS 52
MACRO 104
569BO+

%DEBUG-W-NOL.INXXXv lines 65t69 do not exist in module GRADES
DBG> TYPE COMPUTE\65!69
mc>d1..1l e cc>mF•ute

65: 0:1.
66: 0:1.
67: 0:1.
6B!

Gl:;:ADE
I COUNT
TOTAL

69! LINKAGE SECTION.

F'IC 999
F'IC 999
F'IC 9<J9

COMF'+
COMP+
COMF'+

PROGRAM DEVELOPMENT
with VAX-11 COBOL

DBG> SET SCOPE COMPUTE
DBG> TYPE 65:69
module comP•Jte

65: 01
66: 01
67: 01
68:

GRADE
I COUNT
TOTAL

69: LINKAGE SECTION.
DBG> EXIT

PIC 999
PIC 999
PIC 999

COMP.
COMP.
COMP.

Page 5-54

CHAPTER 6

SIMPLIFYING A USER SESSION

User sessions can be simplified through the use of command
procedures and symbols. This is especially helpful for the
frequent user. Command procedures are usually created to
perform specified or repetitive jobs.

A command procedure is a text file, created by an editor.
It contains a list of DCL commands, and is formatted in a
standard way. The DCL interpreter can read the DCL commands
from the file instead of from the user's terminal. By
placing commonly used DCL command sequences in a file, the
user can more easily interact with the system.

A symbol is a series of characters representing part or all
of a DCL command. The series of characters for a symbol is
chosen by the user. Using symbols gives the user the
ability to tailor the DCL command language for themselves.

6.1 CREATING A COMMAND PROCEDURE

Command procedures are an easy way of entering commonly-used
DCL command sequences. Since all the necessary commands are
in a file, the exact order and form of the commands is
recorded. Once entered into a file, a command procedure can
be used as many times as needed. The continued reuse of a
command procedure saves users the time needed to find the
correct command sequence and enter it each time.

When the user is working at a terminal, the DCL interpreter
outputs a prompt, $, to indicate when it is ready to receive
a command. When a command procedure is created, each
command listed should be preceded by a $. Any line not
preceded by a $ will be treated as data, not as a command.
(Note: The $ should always be entered in the first column
of the line.)

SIMPLIFYING A USER SESSION Page 6-2

After you create a command procedure, you can execute all
the commands in it with a single command. For example,
suppose a procedure named PROCESS.COM contains the lines:

$FORTRAN/LIST PROGRAM.FOR
$PRINT PROGRAM.LIS
$LINK PROGRAM.FOR
$RUN PROGRAM.FOR

The commands in this file can be executed by entering the
following command at the DCL prompt:

$@PROCESS

The @ (execute procedure) command assumes the filetype is
.COM. Each command in the command procedure is executed in
the order specified.

The commands in a DCL command procedure are not normally
displayed as they are executed. The user will see any
output or error messages normally associated with the
command, but not the command itself. If the user inputs the
SET VERIFY command, the commands will be seen. Commands
will continue to be seen for all command procedures
subsequently executed until a SET NOVERIFY is input.

The SET commands can be included in the command procedure or
entered interactively by the user. Users will find the SET
VERIFY command to be especially helpful when a new procedure
has been created, and they are trying to determine whether
it is working as intended or not. For example:

User creates three files:

SHOW.COM

$SHOW TIME
$SHOW USERS

SHOW2.COM

$SET VERIFY
$SHOW TIME
$SHOW USERS

DO.COM

$@SHOW
$@SHOW2
$@SHOW

SIMPLIFYING A USER SESSION Page 6-3

User invokes the DO.COM procedure in an interactive session
and observes the output:

$@DO
5-APR-1982 09:57:25

VAX/VMS Interactive Users - Total = 1
5-APR-1982 09:57:25.54

TTAl: DRAG I

$SHOW TIME
5-APR-1982 09:57:25

$SHOW USERS

00040035

VAX/VMS Interactive Users - Total = 1
5-APR-1982 09:57:26.07

TTAl:

$@SHOW
$SHOW TIME

DRAG I

5-APR-1982 09:57:26
$SHOW USERS

00040035

VAX/VMS Interactive Users - Total = 1
5-APR-1982 09:57:26.95

TTAl: DRAG I 00040035

Commands (if SET VERIFY is activated), output from commands,
and error messages can be saved in a file by including the
/OUTPUT qualifier to the @ command:

$@DO/OUTPUT=DO.LIS
$

Errors will appear on the terminal as well as in the output
file. If no errors occur, no output will be seen. The
output file must be printed or typed to observe the results.

Commands should not be abbreviated in a command procedure.
Using the complete command makes the procedure more readable
and self-commenting. If extra comments are needed within a
procedure, they can be placed anywhere in a line if preceded
by an exclamation point (!). The DCL interpreter ignores
everything on a line after an is read. Therefore,
comments are not executed.

DCL commands are normally executed in the order they appear
in the command procedure, in the same way statements are
executed in the order they appear in programs.

SIMPLIFYING A USER SESSION Page 6-4

Some DCL commands are available to change the order of
execution, including IF, GOTO, and EXIT. Other commands are
available for the manipulation of files from a command
procedure, including OPEN, READ, and WRITE. These commands
are not needed in simple procedures, but more sophisticated
users can learn about them through the use of the HELP
facility.

If any command executed in a command procedure causes an
error or severe error to occur, an appropriate message will
be output and the command procedure will be terminated.
Successful commands, and those causing warning messages to
be output, will not terminate the procedure.

6.1.1 THE LOGIN.COM PROCEDURE

Most users will create at least one command procedure
with the name LOGIN.COM. This procedure, stored in the
user's top-level directory, is executed by the system
each time the user logs in. The LOGIN.COM file
typically contains commands to change the user
environment, output information to the user, and create
symbols (see Section 6.2). For example:

The LOGIN.COM file contains the following lines:

$SET VERIFY
$!
$! Obtain information
$!
$SHOW SYSTEM
$SHOW USERS
$SHOW PROCESS
$SHOW TIME
$!
$! Modify the environment
$!
$SET TERMINAL/VT52
$!
$! Create symbols
$!

After the LOGIN.COM has been created or modified, the
user should always test it before logging out:

$@LOGIN

This precaution is necessary, because if the procedure
contains certain errors, the user may not be able to
log back in again. When the procedure executes without
error, the user can log out and log in to observe that
the system executes the procedure automatically.

SIMPLIFYING A USER SESSION Page 6-5

6.2 CREATING SYMBOLS

Symbols can be used to create synonyms for DCL commands or
parts of DCL commands. Symbols are created through the use
of an assignment statement. For example, the symbol LIST
could be defined to equate to the DCL command DIRECTORY as
follows:

$LIST "DIRECTORY"

The symbol can be used as follows:

$LIST

(output for the directory command is seen)

When the user inputs LIST as a command, the DCL interpreter
looks in the table where symbols are stored and translates
LIST to be DIRECTORY. Then the interpreter executes the
DIRECTORY command.

A symbol can also be equated to a portion of a command, as
follows:

$FL == "FORTRAN/LIST"

Since FORTRAN/LIST requires a file specification to be
complete, FL also requires a file specification:

$FL PRGM.FOR

A symbol created by a user is valid only for that user. Two
kinds of symbols can be created, local and global. Global
symbols are most useful to the average user, and that is the
kind of symbol created in the previous examples. To list
all global symbols created during a user session, the
command "SHOW SYMBOL/GLOBAL/ALL" can be entered. To delete
a symbol, the command "DELETE/SYMBOL/GLOBAL symbol name" can
be entered. -

SIMPLIFYING A USER SESSION Page 6-6

6.2.1 PARAMETER SYMBOLS

Eight local symbols, called parameter symbols, are
created automatically for the user whenever a command
procedure is invoked. These can be used to input
information to the procedure at the time of activation.
The names of these symbols are Pl, P2, P3, P4, PS, P6,
P7, and PS.

Procedures are executed with the command:

$@f ile_specification

Information can be input optionally on this command
line following the file specification. The information
can be any string of characters. The first piece of
information is automatically equated to the Pl symbol.
The second piece of information is equated to the P2
symbol, and so on, up to eight pieces of information.

Parameter symbols exist for the duration of the command
procedure only. When the command procedure is done,
the symbols are deleted by the system. If the
procedure is invoked again, the symbols are re-created.

Parameter symbols are commonly used to input file names
or instructions to the procedure, as shown in the
following examples:

Example 6-1

The file PROCESS.COM contains the following statements:

$SET VERIFY
$FORTRAN/LIST 'Pl'
$PRINT 'Pl'
$LINK 'Pl'
$RUN 'Pl'

!Notice that Pl is enclosed
!in apostrophes to indicate
!to the DCL interpreter that
!it is a symbol

SIMPLIFYING A USER SESSION Page 6-7

A user executes the procedure, passing PRGM as the
value of Pl:

$
$@PROCESS PRGM
$FORTRAN/LIST PRGM
$PRINT PRGM

Job 509 entered on queue SYS$PRINT
$LINK PRGM
$RUN PRGM
HI

During the execution of the command procedure, the DCL
interpreter will substitute PRGM wherever Pl appears.
Default values for portions of file specifications not
input are available within command procedures.
Therefore, PRGM is sufficient, as the FORTRAN compiler
will add the file type of .FOR, the PRINT program will
add the file type of .LIS, the LINK program will add
the file type of .OBJ, and the RUN program will add the
file_type of .EXE.

Example 6-2

The file LOGOUT.COM contains the following lines:

$SET VERIFY
$!
$IF Pl.NES."PURGE"
$!
$PURGE [•••] *. *
$!

THEN GOTO LOGOUT !String
comparison

$LOGOUT:
$!

!Label - indicated by colon
terminator

$LOGOUT

When the user inputs the command @LOGOUT, with no
parameter, the LOGOUT command will be executed. If the
user inputs any string as a parameter other than PURGE,
the LOGOUT command will be executed. If the PURGE
string is input for Pl, then the PURGE command will be
executed followed by the LOGOUT command.

$@LOGOUT
user is logged out

$@LOGOUT JKLM
user is logged out

$@LOGOUT PURGE
all files are purged
user is logged out

SIMPLIFYING A USER SESSION Page 6-8

6.2.2 INTERPRETATION OF SYMBOLS

Symbols can be used in several places. The previous
examples have shown three ways a symbol can be used.
Many rules exist by which DCL interprets symbols. Some
of these rules follow:

1. The DCL interpreter assumes any string input after
the $ prompt, during an interactive session, could
be a symbol. Therefore, the interpreter always
checks the symbol table to see if the first string
input is a symbol.

2. In some DCL commands used within command
procedures, such as IF, WRITE, and INQUIRE, the
interpreter assumes certain strings could be
symbols. If the string is found in the symbol
table, the substitution is made and the command is
executed.

3. In other DCL commands, the interpreter must be
informed that a string is a symbol, such as TYPE,
PRINT, FORTRAN, and LINK. The interpreter can be
informed in these cases by enclosing the symbol in
single apostrophes.

For example, in the case of the FORTRAN command, if
the user inputs FORTRAN Pl, the FORTRAN program
will add the file type .FOR to Pl, and attempt to
compile Pl.FOR. -

To inform the interpreter that Pl is really a
symbol equated to a value (in this case, the name
of the file), Pl should be enclosed in quotes. The
command input should be FORTRAN 'Pl'. The
interpreter substitutes the value equated to Pl;
the FORTRAN program adds the file type of .FOR, and
the correct file is compiled. -

SIMPLIFYING A USER SESSION Page 6-9

For most DCL commands, the DCL interpreter must be
informed (by using apostrophes) that a string is a
symbol. If the documentation states that the input
string may be a symbol, then no apostrophes are needed.
For example, look at the documentation for IF and
WRITE, using the HELP command as follows:

$HELP IF parameters

$HELP WRITE parameters

Contrast that documentation with the information output
for the FORTRAN command:

$HELP FORTRAN parameters

CHAPTER 7

PRODUCING FORMATTED TEXT OUTPUT

The RUNOFF utility is a text formatter. The utility accepts
an input file and produces an output file. The input file
contains text and RUNOFF formatting commands. The output
file contains the formatted text. The formatted output file
includes line feeds and form feeds at appropriate points for
output on a line printer. By learning and using a few
RUNOFF commands, users can produce professional looking
text.

PRODUCING FORMATTED TEXT OUTPUT Page 7-2

7.1 USING RUNOFF

To use the RUNOFF utility, the following steps should be
taken:

1. Create the input file using an editor

- file_type should be .RNO

2. Exit the editor, saving the contents

3. Create the formatted output file by using the command:

$RUNOFF file name

4. Print or type the output file

- f ile_type is .MEM

While the RUNOFF utility is processing the input file, it
may encounter incorrect commands. If this occurs, an error
message will be output describing the error. The message
usually includes the number of the line in the input file
where the error occurred. To correct the error, the input
file must be modified using an editor. After modification,
the new version of the input file should be processed by
RUNOFF to produce a new output file.

When the input file has been processed successfully, the
output file should be examined. If the output is formatted
as intended, a final copy can be printed. Otherwise, the
input file should be modified with an editor to reflect any
corrections, and the new version of the input file should be
processed by RUNOFF. These steps should be repeated until
the output file is acceptable.

Several qualifiers are available to be used with the RUNOFF
command. Use the DCL HELP utility to learn more about these
qualifiers.

PRODUCING FORMATTED TEXT OUTPUT Page 7-3

7.2 INPUT FILES

RUNOFF commands always begin with a period (.). This period
must appear in the first column followed by the command (no
space between period and first word of command).

Some RUNOFF commands are normally included before or after
text. Others are usually included at the beginning of the
input file rather than repetitively within the file. Some
special commands called symbols appear within text strings.
Most commands are input in one of the following formats:

1. .command

2. .command number

3. • command; TEXT

4. .command
TEXT

5. .command;TEXTsymbolTEXTsymbolTEXT

The next section of this chapter contains examples of input
files and their corresponding output files. Tables listing
all commands used can be found in the section following the
example listings. A few commands are discussed further
within the examples. Some of the output files included
several form feeds to display the action of RUNOFF commands.
These form feeds will be indicated by the following (which
would not normally be seen in an output file):

----------- <Form Feed> ------------

PRODUCING FORMATTED TEXT OUTPUT

.page size 58,70
• title EXAMPLE 1
.first title
.autoparagraph
.set paragraph 0,1,2
.flags bold
.center;Introduction

.blank 2

This is example number one. This paragraph will be
automatically formatted by RUNOFF so all lines will
look like they are the same length. Notice that the
.autoparagraph command is set at the beginning of the
file. Since this paragraph begins with a space, it
will be formatted as a new paragraph.

This is a new paragraph. RUNOFF starts a new paragraph
if a blank line or a space at the beginning of a line
are read.

All paragraphs are output with the .set paragraph
format. Therefore;

.list "o"

.le;Paragraphs are not indented

.le;One blank line is output before each paragraph

.le;If only one line of a paragraph can fit on a page,
a form feed is done first •
• end list

To make the input file easy to read, paragraphs
should be separated by a blank line A*and* begun with
a space. (If this file were processed by RUNOFF, and
the resulting file were printed, the 'and' in the
previous sentence would be bolded.)

The other commands listed at the beginning of this
file are:

.list

.le; .title

.le;-.first title
• le;-. flags bold
.le; .center
.le;-.page size
.end-list

Page 7-4

PRODUCING FORMATTED TEXT OUTPUT Page 7-5

EXAMPLE 1 Page 1

Introduction

This is example number one. This paragraph will be automatically
formatted by RUNOFF so all lines will look like they are the same
length. Notice that the .autoparagraph command is set at the
beginning of the file. Since this paragraph begins with a space, it
will be formatted as a new paragraph.

This is a new paragraph. RUNOFF starts a new paragraph if a blank
line or a space at the beginning of a line are read.

All paragraphs are output with the .set paragraph format. Therefore;

o Paragraphs are not indented

o One blank line is output before each paragraph

o If only one line of a paragraph can fit on a page, a form
feed is done first.

To make the input file easy to read, paragraphs should be separated by
a blank line and begun with a space. (If this file were processed
by RUNOFF, and the resulting file were printed, the 'and' in
the previous sentence would be bolded.)

The other commands listed at the beginning of this file are:

1. .title

2. .first title

3. .flags bold

4. .center

s. .page size

PRODUCING FORMATTED TEXT OUTPUT Page 7-6

.page size 20,70
• !

!Range of values is: length, 13 - 9999
width, 3 - 150

• title EXAMPLE 2
.set paragraph 5,1,2
.spacing 2
• !

.center;Introduction

.paragraph

!Causes all lines in the output file
to be double-spaced

This paragraph begins with an indentation of 5 spaces, as
specified in the .set paragraph command. The title, EXAMPLE 2,
should not appear until the second page of this document.
When 20 lines have been entered on this page, the RUNOFF
formatter will automatically insert a form feed into the output
file, and begin a new page •

• spacing 1 !Changes the spacing to single spacing again
.! Notice that comments do not appear in the output file

.header level 1 Discussion of header levels and paragraphs

.paragraph
Notice that the title, 'DISCUSSION OF HEADER LEVELS AND
PARAGRAPHS', follows the number 1.0 in the output file.
A new section of text, usually discussing the item described
in the title, begins after the section header. Sections
are set apart by blank lines before and after the number and
name of the sections. (Notice that this paragraph is also
indented by 5 spaces, and that it is necessary to use the
.paragraph command to indicate a new paragraph.) If the
.paragraph command is not used, and .autoparagraph is not
set, all text will be included in the same paragraph.
Notice that if .autoparagraph was set, this paragraph would
be set apart as a separate paragraph. Since it is not set,
this paragraph is included as part of the preceding paragraph •

• header level 2 More discussion of paragraphs

.paragraph 3,1,2
The .paragraph command can be used to change the indentation

and other characteristics of paragraphs also •
• paragraph
Notice that all letters in the top header level are

capitalized by default, and the first letters of the second
level are capitalized •

• header level 3 displaying header level 1 characteristics

.paragraph
For third level header levels, the first character of each

word in the title is capitalized, and the title is followed
by a hyphen.

PRODUCING FORMATTED TEXT OUTPUT Page 7-7

Introduction

This paragraph begins with an indentation of 5 spaces, as

specified in the .set paragraph command. The title, EXAMPLE 2, should

not appear until the second page of this document. When 20 lines have

been entered on this page, the RUNOFF formatter will automatically

insert a form feed into the output file, and begin a new page.

----------- <Form Feed> ------------

EXAMPLE 2 Page 2

1.0 DISCUSSION OF HEADER LEVELS AND PARAGRAPHS

Notice that the title, 'DISCUSSION OF HEADER LEVELS AND
PARAGRAPHS', follows the number 1.0 in the output file. A new section
of text, usually discussing the item described in the title, begins
after the section header. Sections are set apart by blank lines
before and after the number and name of the sections. (Notice that
this paragraph is also indented by 5 spaces, and that it is necessary
to use the .paragraph command to indicate a new paragraph.) If the
.paragraph command is not used, and .autoparagraph is not set, all
text will be included in the same paragraph. Notice that if
.autoparagraph was set, this paragraph would be set apart as a
separate paragraph. Since it is not set, this paragraph is included
as part of the preceding paragraph.

----------- <Form Feed> ------------

EXAMPLE 2 Page 3

1.1 More Discussion Of Paragraphs

The .paragraph command can be used to change the indentation and
other characteristics of paragraphs also.

Notice that all letters in the top header level are capitalized by
default, and the first letters of the second level are capitalized.

1.1.1 Displaying Header Level 1 Characteristics -

For third level header levels, the first character of each word in
the title is capitalized, and the title is followed by a hyphen.

PRODUCING FORMATTED TEXT OUTPUT

.page size 58,70
• title EXAMPLE 3
.first title
.autoparagraph
.set paragraph 0,1,2
.center;INTRODUCTION
.blank 2

Page 7-8

In many types of documents, reports, and memos, lists of items
must be created. When creating a list, items are usually set
apart by numbering, or bulleting each item. These methods are
shown in Example#l. This example shows other methods of
identifying list elements by using the .display element command.
The colors of the United States of America's flag are:

.blank 2

.indent 2;Lowercase letters:

.list

.display element " ",LL," "

.le;red

.le;white

.le;blue

.end list

.blank 2

.indent 2;Lowercase letters followed by a period:

.list

.display element " ",LL,"."

.le;red

.le;white

.le;blue

.end list

.blank 2

.indent 2;Uppercase letters surrounded by parentheses:

.list

.display element "(",LU,")"

.le;red

.le;white

.le;blue

.end list

.blank 2

.indent 2;Lowercase Roman numerals:

.list

.display element " ",RL,"."

.le;red

.le;white

.le;blue

.end list

PRODUCING FORMATTED TEXT OUTPUT Page 7-9

EXAMPLE 3 Page 1

INTRODUCTION

In many types of documents, reports, and memos, lists of items must be
created. When creating a list, items are usually set apart by
numbering, or bulleting each item. These methods are shown in
Example 1. This example shows other methods of identifying list
elements by using the .display element command. The colors of the
United States of America's flag are:

Lowercase letters:

a red

b white

c blue

Lowercase letters followed by a period:

a. red

b. white

c. blue

Uppercase letters surrounded by parentheses:

(A} red

(B} white

(C} blue

Lowercase Roman numerals:

i. red

ii. white

iii. blue

PRODUCING FORMATTED TEXT OUTPUT

.page size 58,70
• title EXAMPLE 4
.first title
.subtitle
.autosubtitle
.autoparagraph
.set paragraph 2,1,2
.center;INTRODUCTION

Page 7-18

Several commands are used to center, set apart, or display
text in unconventional manners. The commands include:
.blank 1
.list 0,"-"
.le; .literal
.le;-.end literal
.le;-.note
.le;-.end note
.le;-.right margin i
.le;-.left margin _i
.end-list

.note
The notes command is used to set text apart from other
text by indenting the text an equal distance from each
margin. The word NOTE is placed before the indented text •
• end note

.left margin +2

.right margin -2

.blank 1

.center;NOTE
To create a note that appears differently from the normal

NOTE command's output, the .left margin and right margin
commands can be used. These commands reset the margin,
and all text is then formatted within the new margins.
The margins can be reset to the original margins at any
time, or they can be reset to other new margins •
• right margin +2
.left margin -2

.blank 1

.literal
Some text is required to appear

in a certain format regardless of what the margins are.
For this purpose, the .literal command
is used. Text following the .literal
command appears in the output file to be identical to
the text in the input file until a .end literal command
is reached •
• blank 2
Notice that commands are ignored within a literal •

• end literal

PRODUCING FORMATTED TEXT OUTPUT Page 7-11

EXAMPLE 4 Page 1

INTRODUCTION

Several commands are used to center, set apart, or display text in
unconventional manners. The commands include:

.literal

.end literal

.note

.end note

.right margin i

.left margin i

NOTE

The notes command is used to set text
apart from other text by indenting the
text an equal distance from each margin.
The word NOTE is placed before the
indented text.

NOTE

To create a note that appears differently from the normal NOTE
command's output, the .left margin and right margin commands can
be used. These commands reset the margin, and all text is then
formatted within the new margins. The margins can be reset to the
original margins at any time, or they can be reset to other new
margins.

Some text is required to appear
in a certain format regardless of what the margins are.
For this purpose, the .literal command
is used. Text following the .literal
command appears in the output file to be identical to
the text in the input file until a .end literal command
is reached •
• blank 2
Notice that commands are ignored within a literal.

PRODUCING FORMATTED TEXT OUTPUT

.require "FORMAT.RNO"
• title EXAMPLE 5
.number chapter 5

Page 7-12

The FORMAT.RNO file is listed below. It contains the
general formatting information used by this example:

Contents of FORMAT.RNO

.page size 58,70

.first· title

.subtitle

.autosubtitle

.autoparagraph

.set paragraph 2,1,2

.center;INTRODUCTION

.header level 1 Chapters

The output of
the .chapter command can be seen by looking at the beginning
of each chapter. The .number chapter n command was used at
the beginning of each chapter to indicate the chapter number.
The new number was then incorporated as part of the page
identification •

• page

Notice that a form feed is done even though 58 lines have not
been output because of the .page command •

• header level 2 Layout
The default was used for the .layout command, and all pages

are numbered using decimal numbers. Notice that the first
header level is used as the subtitle •

• page
.autosubtitle 2
.header level 2 Commands not shown in examples

Notice that the second header level title is used as the
subtitle because of the .autosubtitle command.

These examples have contained
most of the commands listed in the following tables. The
commands not depicted are more advanced. Users should be
able to read the syntax of the command from the table to
incorporate it in their input file.

PRODUCING FORMATTED TEXT OUTPUT Page 7-13

INTRODUCTION

1.0 CHAPTERS

The output of the .chapter command can be seen by looking at the
beginning of each chapter. The .number chapter n command was used at
the beginning of each chapter to indicate the chapter number. The new
number was then incorporated as part of the page identification.

----------- <Form Feed> ------------

EXAMPLE 5 Page 5-2
CHAPTERS

Notice that a form feed is done even though 58 lines have not been
output because of the .page command.

1.1 Layout

The default was used for the .layout command, and all pages are
numbered using decimal numbers. Notice that the first header level is
used as the subtitle.

----------- <Form Feed> ------------

EXAMPLE 5 Page 5-3
Commands Not Shown In Examples

1.2 Commands Not Shown In Examples

Notice that the second header level title is used as the subtitle
because of the .autosubtitle command.

These examples have contained most of the commands listed in the
following tables. The commands not depicted are more advanced. Users
should be able to read the syntax of the command from the table to
incorporate it in their input file.

PRODUCING FORMATTED TEXT OUTPUT Page 7-14

7.3 SUMMARY OF RUNOFF COMMANDS

Commonly used RUNOFF commands are summarized in several
tables in the next section. Commands are listed in tables
by function for reference purposes.

The

0

0

0

0

0

0

0

0

0

tables contain commands affecting the following:

Table 7-1 - Paragraph format

Table 7-2 - Text format

Table 7-3 - Creation of lists

Table 7-4 - Symbols

Table 7-5 - Recognition of symbols

Table 7-6 - Title information

Table 7-7 - Amount of text on a page

Table 7-8 - Page identification

Table 7-9 - General format

NOTE

Any of the commands listed in the tables can be
included anywhere in the input file. Abbreviations
for each command are included in parentheses under
each command although command files are more
readable and self-documented when abbreviations are
not used. Optional portions of commands are
enclosed in square brackets (e.g. [optional])

PRODUCING FORMATTED TEXT OUTPUT Page 7-15

Table 7-1 Commands affecting paragraph format

Command

.autoparagraph
(.ap)

.no autoparagraph
(.nap)

.set paragraph [i,v,t]
(.spr)

• paragraph [i,v,t]
(.p)

Effect on output file

Enables the automatic recognition
of paragraphs. A new paragraph is
begun in the output file if a blank
line or a line beginning with a
space is read in the input file

Disables automatic paragraph
recognition (default)

Describes the format of each paragraph.
i designates how many spaces to indent
before text begins. v designates the
number of vertical line feeds before a
paragraph. t designates how many lines
can be output before a form feed must
be done. If the specified number of
lines can not be output, the form feed
is output first; then the paragraph.
Default is 5,1,2 •

Specifies that the following text is a
new paragraph. Needed only if
.autoparagraph is not specified.
Can reset paragraph characteristics
(see .set paragraph)

PRODUCING FORMATTED TEXT OUTPUT Page 7-16

Table 7-2 Commands used to format specific portions of text

Command

.center;text
(.c)

.indent n
(. i)

• left margin n
(. lm)

.right margin n
(.rm)

.break
(. br or •)

.literal
(.1 t)

.end literal
(.el)

.note [title]

.end note

(.n and .en)

Effect on output file

Center the specified text. Text may
follow .center; or may be input on
the subsequent line. Only one line
will be centered.

Indent next line n spaces to the right
or left (if n is negative) of the left
margin •

Set the left margin to column nor;
Move the left margin:

- to the right if n is positive
- to the left if n is negative

Set the right margin to column n or;
Move the right margin:

- to the right if n is positive
- to the left if n is negative

End the current line without filling
or justifying it and begin new line.

Specify that the subsequent text is
not to be formatted. It will appear
in the output file exactly as it
appears in the input file. (Caution:
The TAB is the exception. TAB is
is translated as a space. Use the
SPACE bar instead of TAB.)

Causes RUNOFF to begin formatting
text again.

Indent text between .note and .end
note from both margins. Precedes and
follows the text with blank lines.
Also precedes the text with the word
NOTE (or optional title centered on
a line.

PRODUCING FORMATTED TEXT OUTPUT Page 7-17

Table 7-3 Commands used for the creation of lists

Command

.list n,"c"
(.ls)

Effect on output file

Begin a list with n blank lines between
each item. Each item begins with the
character indicated by "c", by default,
decimal numbers incremented by 1.
Typical values for "c" are "o", or " ",
or "-"

• display element "a","b","c"
(.dle)

Identify list items •

.list element;text
(.le)

• end list
(.els)

"a" and "c" are single characters
to be displayed before and/or after
"b"

"b" is defined using a code
chosen from the following list:

Code

D
RU
RL
RM
LU
LL
LM

Output

Decimal numbers
Roman uppercase numerals
Roman lowercase numerals
Roman mixed case numerals
Letters, uppercase
Letters, lowercase
Letters, mixed case

(mixed case - 1st letter
only is uppercase)

Specifies item to be listed. This
command must precede each item.

Identifies the end of the list •

PRODUCING FORMATTED TEXT OUTPUT Page 7-18

Table 7-4 Symbols used within text lines to format text

Symbol Effect on output file

The following symbols are automatically enabled:

&

A&text\&

Underscore. Causes any character following it
to be accepted as normal text. Useful when a
special symbol is to be included in text as
text.

Number sign. Outputs exactly one space.

Ampersand. Underlines the character
immediately following it.

The text between the up-arrow ampersand
and backslash ampersand symbols is underlined.

The following symbols must be enabled to have any effect:

*

A*text*

%

Asterisk. Causes the character immediately
following it to be bolded. (Appears darker
if output file is printed)

The text between the up-arrow asterisk and
backslash ampersand symbols is bolded.

Percent sign. When inserted between two
characters, causes the preceding character
to be overstruck by the subsequent character.

PRODUCING FORMATTED TEXT OUTPUT Page 7-19

Table 7-5 Commands used to enable/disable recognition of symbols

Command

.flags bold
(. f 1 bold)

• no flags bold
(.nfl bold)

.flags overstrike
(.fl overstrike)

.no flags overstrike
(.nfl overstrike)

Effect on output file

Enables recognition of * as the holding
command.

Disables recognition of * as holding command

Enables recognition of % as the overstrike
command.

Disables recognition of % as the overstrike
command.

PRODUCING FORMATTED TEXT OUTPUT Page 7-20

Table 7-6 Commands affecting titles output on pages

Command

.title text
(. t)

• subtitle text
(.st)

.first title
(.ft)

.autosubtitle n
(. ast)

.noautosubtitle
(.nast)

.header level n text
(.hl)

.display level code

Effect on output file

Includes the specified title, TEXT,
as the first line on each page
except the first page

Enables automatic subtitling •
If a subtitle, TEXT, is specified,
includes it under the title on every
page except the first page.
If .autosubtitle is also input
as a command, includes header level
titles as subtitles instead

Causes the title and subtitle to be
output on the first page also

Causes header level titles up to and
including the level indicated by n
(default is 1) to be used as subtitles
if .subtitle is also input as a command.

Disables autosubtitling

Allows use of section numbering:

Value of n:

1

2

3

Type of Output

2.1 text
2.2 text

2.1.1 text
2.1. 2 text
2.1.3 text

2.1.1.1 text
2.1.1. 2 text
2.1.1. 3 text

Displays header level numbers in format
according to code (see .display element
for codes). Default is decimal numbers.

PRODUCING FORMATTED TEXT OUTPUT Page 7-21

Table 7-7 Commands affecting amount of text on a page

Command

• page size l,w
{ .ps)

.page
{.pg)

.spacing n
{. sp)

.test page n
{. tp)

.blank n
{. b)

Effect on output file

Determines the size of each page •
1 designates the length {lines per
page), and w designates the width
{characters per line). Default is
58,60.

Starts a new page

Establishes spacing between lines
{l=single space, 2=double space,
etc. up to 5)

Start a new page if there are less
than n lines left on current page

Output n blank lines

PRODUCING FORMATTED TEXT OUTPUT Page 7-22

Table 7-8 Commands affecting Page Identification

Command

.no number
(.nnm)

• number page n
(.nmpg)

• display number code
(.dnm)

• chapter [title]
(.ch)

.number chapter n
(.nmch)

• display chapter code
(.dch)

Effect on output file

Disable listing (but not counting) of
page numbers •

Resume sequential page numbering,
using page number n as first page.
If n is not specified, use current
page number •

Display page numbers in format
according to code (see .display
element for code). Default is
decimal numbers •

Start a new chapter on a new page
using title specified.

Specify the number of the current
chapter. If n is not specified,
1 is used •

Display chapter numbers in format
according to code (see .display
element for code). Default is
decimal numbers.

PRODUCING FORMATTED TEXT OUTPUT Page 7-23

Table 7-9 Commands affecting overall format of output file

Command

.require "file"
(.req)

.layout n,[m]
(.lo)

.! comment

Effect on output file

Causes the specified file to be read and
processed. The file usually contains commands
to set up the general format of the output
file.

Specifies the location of the title/subtitle
and page identification.

Use one of the following codes for n (0 is
default):

0 Title/subtitle flush left
Page id flush right

1 Title/subtitle centered at top of page
Page id centered at bottom of page

2 Title/subtitle flush right (odd page)
and flush left (even page)

Page id centered at bottom of page

3 Title/subtitle flush left
Page id flush right and page numbers
incremented by 1 centered at bottom
of each page. (e.g. at top, page
number is 4-7; at bottom, page
number is 132)

The second argument, m, is used to indicate
the number of blank lines which should be
inserted between the page id at the bottom
of the page, and the last line of text.
(required for codes 1 to 3)

To include comments which will not appear
in the formatted output file

CHAPTER 8

MISCELLANEOUS VAX/VMS UTILITIES

The MAIL and PHONE utilities allow interactive users to
communicate on-line. The MAIL utility is used to send
messages to one or more users on a system (or to users on
another system via DECnet) in the same way a person would
mail a letter. The PHONE utility allows users to
communicate interactively in the same way a person would use
a telephone.

8.1 USING THE MAIL UTILITY

All mail sent to a user is stored in a file, MAIL.MAI, in
the user's top-level directory. This file is accessed by
the MAIL utility.

To use the MAIL utility, enter the DCL command MAIL. The
mail utility will be invoked, and the MAIL prompt will be
output. If the HELP command is entered, all available MAIL
commands are listed. Help can be obtained on any of the
commands listed by using the HELP facility in the same
manner as the DCL HELP facility.

Most MAIL commands ask for the name of the user you are
sending the mail to, and the subject of the message. The
user name can be preceded by a node name if the user is
working on another system.

Examples of user names:

Smith
NODEA::Jones
GREAT::Howeser

Several MAIL commands will not work unless you are reading
or have just read a piece of mail. For example, the FORWARD
command forwards the mail just read to the specified user.
The discussion of the command output by HELP should be read

MISCELLANEOUS VAX/VMS UTILITIES Page 8-2

carefully to notice which commands are in this category.

Table 8-1 lists the major MAIL commands and their functions.

Table 8-1 MAIL commands

Function

Send mail to another user

List all available messages

Display a message on the terminal

Copy the current message to the printer

Copy the current message to a file

Send a copy of the current message to
another user

Reply to the current message

Remove the current message from
the mail file

Command

SEND [file_name]

DIRECTORY

READ [i]

PRINT

FILE file name

FORWARD

REPLY

DELETE

When a message is sent to a user, the user is notified by
the MAIL utility. A message will appear on the screen, 'new
mail from user name'. The user name in the message is the
name of the user who sent the mail.

If:
o The user does not read the mail
o The user is not logged in when the mail is sent

then the MAIL utility keeps track of the number of messages
sent. When the user logs in again, the MAIL utility sends a
message to his/her terminal indicating the number of
messages that have not been read.

To list the available messages, the DIRECTORY command should
be used. The READ command accepts a number as a parameter
so a specific message can be read. When the user enters
MAIL and specifies the READ command without a number, MAIL
displays the latest messages received.

MISCELLANEOUS VAX/VMS UTILITIES

$MAIL

MAIL> SEND
to: Joe Smith

Page 8-3

subj: Sending example of the latest version of GRADES
Enter your message below. Press CTRL/Z when complete, CTRL/C to quit:

Hi ••• I am sending you a copy of the latest version of
the GRADES program in the next message for your interest.

MAIL> SEND GRADES.FOR
to: Joe Smith
subj: Here it is!

MAIL> EXIT
$

To send a file or message to more than one user, list the
user names (separated by commas) after the to: prompt, or
specify a distribution list. Distribution lists are lists
of user names (separated by commas or on separate lines).
These lists are stored in files of file type .DIS. Create a
distribution list by using an editor. -Use the @ command to
specify the file. For example,

Contents of NAMES.DIS:

SMITH, JONES, BARKER

$MAIL

MAIL> SEND Meeting.dat
to: @NAMES
subj: Meeting tomorrow

MAIL> EXIT
$

MISCELLANEOUS VAX/VMS UTILITIES Page 8-4

8.2 USING THE PHONE UTILITY

To PHONE another user, enter the PHONE utility by typing the
DCL command, PHONE. The information on the terminal screen
will be replaced by a screen formatted for the use of PHONE.
The PHONE format includes:

o A command line - beginning with a % prompt.

o A section of the screen for the caller's use.

o The lower section of the screen for the callee's use.

The HELP utility in PHONE will list all PHONE commands if
HELP is entered on the command line (after the% prompt}.
Help can be obtained on any PHONE command by entering HELP
command.

Users can phone other users, put calls on hold, send short
messages using the MAIL utility while in PHONE, send files
to other users, and refuse to accept calls. Commands are
listed in Table 8-2.

DIAL is the default command. To phone another user, enter
DIAL username on the command line (or simply enter the
username}. Users on other nodes can be dialed via DECnet by
specifying the node (node::username}.

PHONE rings the other users terminal. If the other user
enters the DCL command, PHONE, following by the PHONE
command, ANSWER, communication can begin. Users enter text
which will appear in the top half of their own terminal
screen and the bottom half of the other users screen.
Several lines of text can be entered. As the user enters
text, the text appears on the other user's terminal.

All text entered after the call has begun is assumed to be
part of the message. Commands must be entered on the
command line only. To get to the command line while
entering a message, the switchhook character should be
entered. The default switchhook character is the percent
sign (%}. One command may be entered; then the user is
returned to the message area. This is useful for entering
commands such as HOLD or REJECT (see Table 8-2}.

MISCELLANEOUS VAX/VMS UTILITIES

Table 8-2 PHONE Commands

Function

Place a call (Default)

Answer a call while in PHONE

Display a list of available users
(including users on other nodes)

Send the contents of a file to
all users involved in the conversation

Place a caller on hold

Reject a call from a caller

Take a caller off hold

Send a short (one line) message
to a user who is unavailable for
a PHONE conversation

Hangup your own phone

Obtain help on PHONE commands

Page 8-5

Command

DIAL username

ANSWER

DIRECTORY [node::]

FACSIMILE file name

HOLD

REJECT

UN HOLD

MAIL

HANGUP (or CTRL-Z)

HELP

VAX/VMS CUSTOMER CURRICULUM

VAX/VMS
DECNET USER

LEC/LAB

PROGRAMMING VMS IN
VAX-11 BASIC

LEC/LAB OR SPI

SPI

PROGRAMMING VMS
IN DSM

VAX/VMS
SYSTEM MANAGEMENT

LEC/LAB

VAX/VMS OPERATOR

LEC/LAB OR SPI

KEY

LECTURE

LEC/LAB

VAX/VMS
DEVICE DRIVER

VAX/VMS
OPERATING SYSTEM INTERNALS

LEC/LAB

PROGRAMMING VMS IN
VAX-11 COBOL

LEC/LAB OR SPI

OPERATING SYSTEM INDEPENDENT
PROGRAMMING LANGUAGES

BASIC/FORTRAN/COBOL
LEC OR SPI

VAX/VMS
UTILITIES AND COMMANDS

LEC/LAB OR SPI

LEC
LEC/LAB
SP!
A/V

LECTURE AND LAB
SELF-PACED INSTRUCTION
AUDIOVISUAL INSTRUCTION

DESIGN OF APPLICATIONS
UNDER VAX/VMS

SEMINAR

PROGRAMMING VMS IN
VAX-11 FORTRAN/MACRO

LEC/LAB OR SPI

ASSEMBLY LANGUAGE
PROGRAMMING IN VAX-11 MACRO

LEC

A/V

VAX-11
INSTRUCTION SET

V AX-11 CONCEPTS

A/V OR LEC

TK-9040

For more information concerning VAX/VMS Education, contact your Educational Services Marketing
Representative, Digital Sales Representative or your nearest Digital Training Center.

Australia:
Digital Equipment Australia Pty Ltd.
Educational Services Department
Chatswood Plaza Building
P.O. Box 384
Chatswood, New South Wales, 2067
Telephone: (02) 412 S2S2

Canada:
Digital Equipment of Canada Ltd.
Educational Services Department
100 Herzberg Road
P.O. Box 13000
Kanata, Ontario K2K 2A6
Telephone: (613) S92Sl11

Digital Equipment of Canada Ltd.
Educational Services Department
165 Attwell Road
Rexdale, Ontario M9W SYS
Telephone: (416) 674 2S80

Digital Equipment of Canada Ltd.
Educational Services Department
10711 Cambie Road, Suite 130
Richmond, British Columbia
V6X 3C9
Telephone: (604) 278 3466

Digital Equipment of Canada Ltd.
Educational Services Department
394 lsabey Street
St.-Laurent, Quebec
H4T 1V3
Telephone: (S14) 342 S321

Europe:

Belgium
Digital Equipment N. V.-S.A.
Educational Services Department
Boulevard Brand Whitlock 8 7
B-1040 Brussels
Telephone: [32]-(2)-733-96SO

England
Digital Equipment Co. Ltd.
Educational Services Department
Fountain House, The Butts Center
Reading RG 1 7QN
Te~phone: [44]~734)-583S5S

Digital Equipment Co. Ltd.
Education Services Department
Arndale House
Chester Road, Stretford
Manchester M32 9BH
Telephone: [44]-(61)-86S-078S

Finland
Digital Equipment Corporation OY
Educational Services Department
P.O. Box 16
SF-02201 Espoo 20
Telephone: [358]-(0)-423Sl 1

1957-1982

France
Digital Equipment France
Service Education
2 rue Gaston Cremieux
Evry les Epinettes
BP 136
F-9100 Evry Cedex
Telephone: [33)-(6)-077-8292

Ireland
Digital Equipment Ireland Ltd.
Educational Services Department
Park House
North Circular Road
Dublin 7
Telephone: [3S3]-(1)-308-433

Italy
Digital Equipment Corporation S.p.A.
Educational Services Department
Viale Fulvio Testi 117
1-20092 Cinisello Balsamo
Milam
Telephone: [39)-(2)-61797

Netherlands
Digital Equipment BV
Educational Services
Ratelaar 38
3434 EQ Nieuwegein
Telephone: [31)-(3402)-45654

Spain
Digital Equipment Corporation S.A.
Educational Services Department
Agustin de Foxa, 27
Madrid 16
Telephone: [34)-(1)-733-1900

Sweden
Digital Equipment AB
Educational Services Department
Box 12SO
S-1 71 24 Solna
Telephone: [46)-(8)-7300200

Switzerland
Digital Equipment Corporation, SA
Educational Services Department
Schaffhauserstrasse 144
CH-8 302 Kloten/ZH
Telephone: [41)-(1)-8169111

West Germany
Digital Equipment GmbH
Educational Services Department
W allensteinplatz 2
D-8000 Munich 40
Telephone: [49]-(89)-3S030

Japan:
Digital Equipment Corporation lnt.1
Educational Services Department
Sunshine 60, P.O. Box 1l3S 36th floor
1-1 Higashi lkebukuro 3-Chome
Toshima-Ku, Tokyo 170, Japan
Telephone: (03) 989 7180

Digital Equipment Corporation lnfi
Educational Services Department
Koei Building Shinkan 4F
3-7 Nishitenma 6-Chome
Kitaku, Osaka S30, Japan
Telephone: (06) 364 0401

Mexico:
Digital Equipment de Mexico,
Educational Services Department
Nueva York 115, Col. Napoles
03810 Mexico, D.F.
Telephone: (90S) 687 6681

United States:

Boston
Digital Equipment Corporation
Educational Services Department
1 2 Crosby Drive
Bedford, Massachusetts 01730
Telephone: (617) 276 4111

Chicago
Digital Equipment Corporation
Educational Services Department
5 600 Apollo Drive
Rolling Meadows, Illinois 60008
Telephone: (312) 640 SS20

Dallas
Digital Equipment Corporation
Educational Services Department
12100 Ford Road
Suite 110
Dallas, Texas 7S234
Telephone: (214) 620 20Sl

Los Angeles
Digital Equipment Corporation
Educational Services Department
4311 Wilshire Boulevard
Suite 400
Los Angeles, California 90010
Telephone: (213) 937 3870

New York
Digital Equipment Corporation
Educational Services Department
One Penn Plaza
New York, New York 10001
Telephone: (212) 971 3S4S

San Francisco
Digital Equipment Corporation
Educational Services Department
2S2S Augustine Drive
Santa Clara, California 9 SOS l
Telephone: (408) 727 0200

Washington
Digital Equipment Corporation
Educational Services Department
Lanham 30 Office Building
S900 Princess Garden Parkway
Lanham, Maryland 20801
Telephone: (301) 4S9 7900

EDUCATIONAL SERVICES

