
EY-00 l 6E-TP-000 l

VMS Internals

Tests/Exercises

EY-00 l 6E-TP-000 l

VMS Internals

Tests/Exercises

Prepared by Educational Services
of

Digital Equipment Corporation

Copyright© 1982, Digital Equipment Corporation.

All Rights Reserved.

The reproduction of this material, in part or whole, is
strictly prohibited. For copy information, contact the
Educational Services Department, Digital Equipment
Corporation, Bedford, Massachusetts 01730.

Printed in U.S.A.

The information in this document is subject to change
without notice and should not be construed as a com·
mitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished
under a license and may not be used or copied except
in accordance with the terms of such license.

Digital Equipment Corporation assumes no responsibility
for the use or reliability of its software on equipment
that is not supplied by Digital.

The following are trademarks of Digital Equipment Corporation,
Maynard, Massachusetts:

DIGITAL
DEC
PDP
DECUS
UNIBUS

DECsystem-10
DECSYSTEM-20
DIBOL
EDUSYSTEM

VAX
VMS

MASSBUS
OMNIBUS

OS/8
RSTS
RSX
IAS

CONTENTS

1 SYSTEM COMPONENTS

Test/Exercise. • . . 1
Answer Sheet -- . . 3

2 THE PROCESS

Test/Exercise. 5
Answer Sheet 7

3 SYSTEM MECHANISMS

Test/Exercise. 9
Answer Sheet15

4 DEBUGGING TOOLS

Test/Exercise.21
Answer Sheet25

5 SCHEDULING

Test/Exercise.31
Answer Sheet35

6 PAGING

Test/Exercise.39
Answer Sheet47

7 SWAPPING

Test/Exercise.53
Answer Sheet57

iii

8 PROCESS CREATION AND DELETION

Test/Exercise •••
Answer Sheet • • • • • • • • •

9 SYSTEM INITIALIZATION AND SHUTDOWN

Test/Exercise ••
Answer Sheet • • • • • • • • • • • •

iv

.61

.63

.65

.67

System Components

TEST /EXERCISE

For each system component named below, fill in the required
information.

a. Under "Implementation", specify system
procedure (PCR) , exception service routine
service routine (INT), or shared image (SHR).

process (PCS),
(EXC), interrupt

b. Under "Context", indicate system (SYS) or process (PCS).

c. Under "Address Region", specify program (PGM), control
or system (SYS).

(CTL) ,

d. Under "Purpose", briefly describe the primary function of the
component.

Component Address
Name Implementation Context Region Purpose

system PCR PCS SYS common
service internal

function

1. scheduler

2. swapper

3. symbiont

4. AME

5. ACP

6. run-time
library

7. error
logger

8. pager

9. CLI

10. RMS

1

System Components

ANSWER SHEET

Component Address
Name Implementation Context Region Purpose

system PCR PCS SYS common
service internal

function

1. scheduler INT SYS SYS chooses
next process
to execute

2. swapper PCS PCS SYS system-wide
mem.management

3. symbiont PCS PCS PGM input/output
spooling

4. AME EXC PCS PGM implements
compatibility
mode

5. ACP PCS PCS PGM formatting
or protocol
processing

6. run-time PCR PCS PGM common
library subroutines

and functions

7. error PCS PCS PGM records
logger hardware

errors

8. pager EXC PCS SYS process
memory
management

9. CL! SHR PCS CTL command
language
processing

HJ. RMS PCR PCS SYS record/file
management

3

The Process

TEST /EXERCISE

For each feature/resource associated with or used by a process and
listed on the following page:

1. Name the data structure/component that implements or controls
it.

2. State the region (program, control , or system) in which the
data structure/component resides.

3. State whether the data structure/component is paged.

4. State whether the data structure/component is included in the
working set of the process and swapped.

For resources that are not part of a larger data structure (an
example is the user stack), simply copy the name into the data
structure column. For resources that occur in multiple locations,
answer for each location.

5

The Process

TEST /EXERCISE

Data
Resources Structure Region Paged? Swapped?

user stack user stack control yes yes

page tables

privilege mask

CL! data areas

run-time library

general purpose regs.
when process is not
the current one

process priority

quotas/limits on
system resources

VAX-11 RMS code

image of user program

working set list

kernel stack

process I/O
data structures

process ID

CL! code

interrupt stack

6

The Process

ANSWER SHEET

Data
Resources Structure Region Paged? Swapped?

user stack user stack control yes yes

page tables process header system yes yes

privilege mask process header system* no yes
software PCB system no no
pointer page control no yes

CLI data areas CLI data areas control yes yes

run-time run-time program yes yes**
library library

general purpose hardware PCB system* no yes
regs. when
process is not
the current one

process priority software PCB system* no yes

quotas/limits on software PCB system no no
system resources JIB system no no

VAX-11 RMS code RMS code system yes no

image of user image program yes yes**
program

working set list process header system* no yes

kernel stack kernel stack control no yes

process I/O process I/O
data structures data structures control yes yes

process ID software PCB system no no

CLI code CL! code control yes yes**

interrupt stack interrupt stack system no no

*These portions of the process header are also mapped by the
"window" in the control region of the process.

**These software components are or may be global read only
sections. As such, they are included in the working set of the
process, but in certain situations are not outswapped with the
rest of the working set. See the Internals and Data Structures
manual, for further details.

7

System Mechanisms

TEST /EXERCISE

1. A system feature called set attention ASTs is employed by
several device drivers in the system. A process can specify
that it receive an AST when someone writes or reads its
mailbox. A process can receive an AST when someone types a
CTRL-Y or a CTRL-C at the terminal.

In these cases, the mailbox driver or the terminal driver must
call a routine to queue an AST to the process, which requires
modifying scheduling data structures.

Before this routine (SCH$QAST) is called, the driver requests
fork processing at IPL 6. This fork processing raises IPL to
7 (IPL$_SYNCH), and then calls SCH$QAST.

a. Why can't these drivers simply request fork processing at
IPL 7?

b. Why is IPL 6 used rather than having the driver simply
lower the IPL from the present level to IPL 7?

c. Why can't a mutex be used to lock the scheduler's data
structures?

9

System Mechanisms

TEST /EXERCISE

2. When an exception or interrupt occurs, the PSL and the PC are
pushed onto the stack, and a new PC and PSL are created.

3.

a. Which stack is used?

b. How is the new PC value formed?

c. What are the contents of the current mode and previous
mode fields of the new PSL?

d. What is the new IPL?

e. When an REI instruction is executed, is the previous mode
field of the PSL significant? Explain.

a. The following table illustrates a hypothetical sequence of
hardware and software interrupts. At each step, fill in
the contents of the indicated items. In the "Saved IPL"
column, indicate the stack which contains the saved IPL.
Indicate where control is passed after each REI
instruction. All numbers are decimal. Assume that
software interrupts above IPL 6 are handled on the
interrupt stack, and that those at IPL 1 through IPL 6 are
handled on the kernel stack. Further assume that all
device interrupts are handled on the interrupt stack.

10

System Mechanisms

TEST /EXERCISE

Note that this example is hypothetical and bears little
resemblance to the VAX/VMS operating system. Its purpose
is to explore the workings of interrupts, especially
software interrupts.

Event Stack IPL SISR(hex) Saved IPL

1. Executing
user image

2. Device int.
at IPL 21

3. SOFT INT 8

4. REI to

s. SOFT INT 5

6. SOFT INT 3

7. REI to

8. Device int.
at IPL 20

9. SOFT INT 8

10. REI to

11. SOFT INT 4

12. REI to

13. REI to

14. REI to

15. REI to

11

4.

System Mechanisms

TEST /EXERCISE

b. In steps 7 and 12, a switch is made from the interrupt
stack to the kernel stack. Why?

a. Briefly describe how system services are dispatched.
Assume that no errors occur. Include all steps from the
program's initial call until control is passed back to
that program.

b. Why does the routine SRVEXIT issue an REI instruction?

c. Several system services have access mode as one of their
arguments. The service routines which perform these
requests first call a routine called Maximize Access Mode
which chooses the least privileged access mode of the one
requested and the access mode of the caller. Describe how
this might be done. Why is it done?

12

System Mechanisms

TEST /EXERCISE

5. List two differences between the exception dispatching within
the executive and the common run-time library procedure
LIB$SIGNAL.

13

1.

2.

System Mechanisms

ANSWER SHEET

a. The SCB is set up so that the IPL 7 software interrupts
are serviced by the software timer routine. If a driver
mistakenly issued a request for fork processing at IPL 7,
the system would become confused because the requested
software interrupt would be serviced not by the fork
dispatcher but by the software timer interrupt service
routine (which was not expecting the interrupt).

b. The principle behind using IPL as a synchronization tool
is that all competing software must raise IPL to
synchronization level. Lowering IPL defeats the purpose
of synchronization. Consider the following sequence:

i. A routine following the synchronization conventions
correctly raises IPL to 7 before looking at some
scheduling data.

ii. A device interrupts and the associated interrupt
service routine requests fork processing at IPL 8.

iii. The fork processing entry point of the driver lowers
IPL to 7, writes into the scheduler's data and issues
an REI instruction back to •••

iv. the previously interrupted code (at IPL 7) which
is now looking at changed and possibly corrupted data.

c. Mutexes are a synchronization technique available to
processes. When on the interrupt stack, the system is not
in any process context and hence the method of elevating
IPL is the only synchronization technique available.

a. The entry to an exception or interrupt service routine
must be longword aligned. Thus, the two low bits in the
SCB can be used for other purposes. Bit 0 determines
whether the interrupt is handled on the kernel stack
(bit 0 clear) or on the interrupt stack (bit 0 set).

15

System Mechanisms

ANSWER SHEET

All device interrupts are handled on the interrupt stack.
All software interrupts (except ASTDEL at IPL 2 and
RESCHED at IPL 3) are handled on the interrupt stack.

CHMx exceptions are placed on the resultant per-process
stack. Machine Check, Power Fail, and Kernel Stack Not
Valid exceptions are handled on the interrupt stack. The
rest of the exceptions are handled on the kernel stack.

b. The new PC value is the address found in bits<31:2> of the
SCB entry for this particular exception or interrupt. (PC
bits<l:0> are always cleared.)

c. For all exceptions except CHMU, CHMS and CHME, the current
mode will be zero, kernel access mode.

For exceptions, the previous mode field will be the access
mode that the CPU was in when the exception occurred. In
fact, PSL<previous mode> is the same as the current mode
field of the saved PSL on the stack.

The previous mode field of the PSL is set to 0 (kernel
mode) following an interrupt.

d. The new IPL depends upon the interrupt or exception:

Exceptions

Machine check
Kernel stack not valid
all other exceptions

Software Interrupts

Hardware Interrupts

Interval timer
Console
Other devices
Power fai 1

16

IPL (decimal)

31
31
unchanged!

IPL raised to
corresponding
level

24
20
20-23
30

3.

e.

a.

System Mechanisms

ANSWER SHEET

No, the previous mode field of the PSL is not significant
when an REI executes. The previous mode field is an
historical parameter, recording where the processor came
from. The previous mode field is used by the PROB Ex
instructions.

The relevant field (and the one checked by the REI
instruction microcode) is the current mode field of the
PSL on the stack. If privileged software wishes to alter
its destination, IPL, or mode, then this longword is what
should be changed.

Event Stack IPL SISR(hex) Saved IPL

1. Executing
user image user 0 0 --

2. Device int.
at IPL 21 interrupt 21 0 0(I)

3. SOFT INT #8 interrupt 21 urn 0(I)

4. REI to
IPL 8 serv.
routine interrupt 8 0 0(I)

s. SOFT INT #5 interrupt 8 20 0(I)

6. SOFT INT #3 interrupt 8 28 0(I)

7. REI to
IPL 5 serv.
routine kernel 5 8 0(K)

8. Device int.
at IPL 20 interrupt 20 8 S(I) ,0(K)

9. SOFT INT #8 interrupt 20 108 S(I) ,0(K)

10. REI to
IPL 8 serv.
routine interrupt 8 8 S(I) ,0(K)

17

System Mechanisms

ANSWER SHEET

3.a. (continued)

4.

11. SOFT INT #4 interrupt 8 18 S(I),0(K)

12. REI to
interrupted
IPL 5 serv.
routine kernel 5 18 0(K)

13. REI to
IPL 4 serv.
routine kernel 4 8 0(K)

14. REI to
IPL 3 serv.
routine kernel 3 0 0(K)

15. REI to
interrupted
user image user 0 0 --

b. At step 7, the REI triggers a software interrupt at IPL 5.
One of the assumptions was that IPL 5 (actually IPL 6 and
below) interrupts were to be handled on the kernel stack.

At step 12, the restored PSL requires IPL 5 but also
PSL<IS> is clear. The REI instruction microcode then
switches stacks, in this case to the kernel stack.

a. The user program issues a CALLx instruction to the vector
area of system virtual address space. A CHMK or CHME
instruction transfers control to a change mode dispatcher
which builds a call frame and then executes a CASE
instruction to dispatch to the service specific procedure.

When that procedure completes its operations, it executes
an RET instruction which returns control to a routine
SRVEXIT. Because no error occurred (as assumed), an REI
instruction is executed to pass control back to the vector
area where another RET instruction returns control to the
user program.

18

System Mechanisms

ANSWER SHEET

b. The CHMK and CHME instructions cause corresponding
exceptions which push a PSL and PC pair plus a service
code used in dispatching and change access mode to the
required mode. The exit from the exception service
routine must be an REI instruction to restore the previous
access mode and reset the PC and PSL.

c. The caller's access mode can be obtained from either the
previous mode field from the current PSL or from the
current mode field of the saved PSL.

Because the saved PSL may be at an unspecified offset from
the top of the stack, the previous mode field of the
current PSL is simply compared to the access mode passed
as an argument to the system service. The larger (less
privileged) access mode is the one used by the system
service.

This operation is performed to insure that a nonprivileged
image does not gain access rights by, for example, queuing
an executive or kernel mode AST to itself.

5. LIB$SIGNAL may be invoked by any code on detection of an error
that is to be treated as an exception. Software makes the
decision.

The exception dispatcher is entered as a result of hardware
exceptions and a small set of software exceptions.

LIB$SIGNAL, through its alternate entry point LIB$STOP, can
force an image to exit. The exception dispatcher has no such
feature, although a condition handler could issue a $EXIT
system service.

19

Debugging Tools

TEST /EXERCISE

1. Which debugger would you use under the
conditions?

a. Examine the current system

b. Examine a crash dump

c. Debug a user mode image at IPL 0

d. Debug a driver

following

2. Which is NOT a reason for a crash dump to occur?

a. Exception at elevated IPL

b. User mode image error

c. Machine check in kernel mode

21

Debugging Tools

TEST /EXERCISE

3. Use the available executive listings and SYS.MAP to
answer the following questions about the $SUSPND system
service and AST delivery.

$SUSPND System Service

a. Which module contains the code that implements the
$SUSPND system service? {Remember that all system
services have two entry points, one of the form
SYS$name which is the starting address of the vector
entry, and one of the form EXE$name which is the
starting point of the actual code.)

b. What other routines are defined in this module?

c. How long {in bytes) is this module?

d. Which system mechanism is used to suspend a process?

22

Debugging Tools

TEST /EXERCISE

e. List all of the system subroutines that are called
by the $SUSPND system service.

f. A process can suspend another process only if it is
in the same group and the issuing process has GROUP
privilege, or if the issuing process has WORLD
privilege. Where in the code is this check made?
What other system services need to make this check?

g. The $HIBER system service does not make the same UIC
and privilege check that $SUSPND does (see question
f.) • Why?

h. Why does the $SUSPND system service set IPL to zero
in line 125?

AST Delivery

i. What line of the $SUSPND system service actually
queues the AST?

23

Debugging Tools

TEST /EXERCISE

j. What section of code in the routine SCH$NEWLVL
computes the ASTLVL value and stores the value in
the hardware PCB and ASTLVL processor register?

k. Assume that the current process is issuing a $SUSPND
for itself, and that it will be able to complete the
$SUSPND system service without interruption. At
what point in the system service dispatching
sequence will the AST delivery code (the IPL 2
interrupt service routine) be entered? (This is the
code that will transfer control to the AST routine.)

1. Once the AST delivery code has been entered and the
special kernel mode AST routine begins to execute,
something must happen to change the state of the
current process (since a process cannot continue to
execute after a $SUSPND). What line of code in the
$SUSPND special kernel mode AST routine (page 5 of
the module SYSPCNTRL) causes the current process to
change states and give up the CPU? How is this
operation accomplished?

24

1.

2.

Debugging Tools

ANSWER SHEET

a. To examine the current system, use the System Dump
Analyzer.

b. To examine a crash dump, use the System Dump
Analyzer.

c. The symbolic debugger is used to debug user mode
images at IPL 0. For other access modes at IPL 0,
use the DELTA debugger.

d. Use XDELTA to debug a driver, which operates at
elevated IPL in kernel access mode.

A user mode image error will not cause a crash
occur. What will occur is a traceback,
condition handling that has been set up.

25

dump
and

to
any

3.

Debugging Tools

ANSWER SHEET

$SUSPND System Service

a. SYSPCNTRL is the module which defines the symbol
EXE$SUSPND. See page 34 of SYS.MAP.

b. There are two ways to find the routines defined in
SYSPCNTRL. The easiest way is to look at the table
of contents of the SYSPCNTRL module listing. This
lists all the entry points:

EXE$SUSPND EXE$WAKE
EXE$RESUME EXE$NAMPID
EXE$HIBER EXE$SETPRN

Another way to answer this question is to first find
the PSECT in which the SYSPCNTRL module resides.
This is accomplished by searching sequentially
through the PSECTs starting on page 5 of SYS.MAP
until SYSPCNTRL is found. Ignore any reference that
shows identical base and end virtual addresses such
as the one under the .BLANK. PSECT on page 9.
SYSPCNTRL appears on page 10 under the AEXENONPAGED
PSECT with a base of 80009FF0 and an end of
8000AlBC. Note that the length of lCD also appears
here, which answers question c. as well. Any
routines defined by SYSPCNTRL must have entry points
that fall between the base and end addresses.

All symbols are listed in numerical order beginning
on page 62 of SYS.MAP. On page 89 you will find the
following entry points:

80009FF0
8000A046
8000A05B
8000A06F
8000A080
8000Al48

EXE$SUSPND
EXE$RESUME
EXE$HIBER
EXE$WAKE
EXE$NAMPID
EXE$SETPRN

c. The length of the module is lCD bytes hexadecimal or
461 bytes decimal. This can be found on page 10 of
SYS.MAP as described in question b, or by looking at
the last line of code in the SYSPCNTRL module (which
occurs on page 14 of the SYSPCNTRL listing).

26

Debugging Tools

ANSWER SHEET

d. The system suspends a process by queuing a special
kernel mode AST to the target process, as mentioned
in the comments on page 3 of SYSPCNTRL (under
Functional Description).

e. The following system subroutines are used:

f.

Line referenced Subroutine name
124 EXE$NAMPID
129 EXE$ALLOCIRP
136 SCH$QAST

These subroutines are invoked on pages 3 and 4 of
SYSPCNTRL.

The UIC and privilege check is made
EXE$NAMPID routine, which begins on page
SYSPCNTRL module. The actual check occurs
439 for group privilege and line 438
privilege.

The other system services
check are:

$DELPRC
$RESUME
$WAKE
$CANWAK

that need

$SCHDWK
$FORCEX
$SETPRI
$GET JP I

to

in the
10 of the

in line
for world

make this

Probably the best way to find this answer is to look
in the table summarizing the system services in
Chapter One of the VAX/VMS System Services
Reference Manual. However, most of these services
can be deduced from the names of the modules which
reference EXE$NAMPID, found on page 33 of SYS.MAP:

SYSPCNTRL SYSFORCEX
$SUSPND $FORCEX
$RESUME SYSGETJPI
$WAKE $GETJPI

SYSCANEVT SYSSCHEVT
$CANWAK $SCHDWK

SYSDELPRC SYSSETPRI
$DELPRC $SETPRI

To verify the check in each case, locate the call to
EXE$NAMPID in the code for each service. (Merely
understanding the process and perhaps doing it in
the case of the SYSPCNTRL module, is sufficient for
this exercise.)

27

Debugging Tools

ANSWER SHEET

g. $BIBER makes no privilege check because a process is
only allowed to hibernate itself (not others),
although it can be awakened by other processes.
This is not mentioned explicitly in the code
comments, but could perhaps be deduced from the
absence of the privilege check or from the fact that
the $BIBER system service does not have any
arguments.

h. $SUSPND sets IPL to zero after the call to
EXE$NAMPID because that routine raises IPL to
synchronization level to access the scheduler's data
base and does not lower it. This is emphasized in
the comments under OUTPUT PARAMETERS for this
subroutine (line 360 on page 10 of SYSPCNTRL). IPL
is actually raised on line 425, page 11.

AST Delivery

i. Line 136 of SYSPCNTRL invokes SCB$QAST to actually
queue the special kernel mode AST to the target
process. The routine SCB$QAST is located in the
module ASTDEL, as indicated on page 54 of SYS.MAP.

j. Lines 603-625 of module ASTDEL calculate the ASTLVL
value and store it. Line 613 extracts the access
mode of the first AST in the queue. Line 618 stores
the ASTLVL value in the hardware PCB field, while
line 619 performs the same operation for the ASTLVL
processor register.

k. The AST delivery mechanism begins with an REI
instruction detecting the deliverability of an AST
and causing a software interrupt at IPL 2. If the
process is not interrupted between the queuing of
the AST in SCB$QAST and the REI instruction in the
SRVEXIT routine, then the first REI instruction
encountered will be that one. As a special kernel
mode AST, the suspend AST will be delivered next
regardless of the previous access mode and any other
ASTs in the queue of the process.

28

Debugging Tools

ANSWER SHEET

1. The state change in the process is not performed in
the SYSPCNTRL module code. The actual location is
indicated by line 174 in SYSPCNTRL, a branch to the
system subroutine SCH$WAITK. This routine is
located in the module SYSWAIT (use SYS.MAP again)
beginning on line 311, page 9. SCH$WAITK changes
the state field in the software PCB (line 314),
inserts the PCB into the appropriate wait queue
(line 313), saves the hardware context of the
current process (line 320), and jumps to the
scheduler (line 327). Note that an IPL 3 software
interrupt is not requested, because there no longer
is a current process to place into a computable wait
queue (see also the "Scheduling" module of this
course).

29

Scheduling

TEST /EXERCISE

1. For each state described below, briefly discuss the properties
of a process in the state (for example, memory-resident, or
executable), what event or system service placed the process
in the state, what system events must occur before the process
can leave the state, and what the next process state can be.

a. CUR

b. HIB

c. SUSPO

d. CEF

e. COLPG

f. PFW

g. COMO

31

Scheduling

TEST /EXERCISE

2. Assuming the same initial conditions (stated below) for each
question, state

• what happens to the currently executing process,

• which process is next selected for execution, and

• at what software priority that process executes.

Initial Conditions:

Process Name Software Priority Process State

A 5 COM
B 7 LEF
c 17 HIB
D 5 CUR

a. System event: quantum end for Process D.

b. System event: post event flag (terminal output completed)
for Process B.

c. System event: scheduled wakeup (from software timer) for
Process C.

32

Scheduling

TEST /EXERCISE

3. Describe, for each of the general process categories listed
below, how processes in the category may be included in
multiprocess applications. Indicate any possible interactions
with system processes that must be considered in assigning
processes to these categories and the expected execution
behavior of processes in the category.

a. time-critical processes

b. normal processes with elevated base priorities

c. normal processes with normal (default) base priorities

d. normal processes with lowered base priorities

33

1.

Scheduling

ANSWER SHEET

a. CUR -- The process is the current executing process. It
is memory-resident. The state is only entered from the
computable, memory-resident state (COM) as a result of a
scheduling operation. A process leaves the CUR state as a
result of quantum end, process deletion, a wait condition,
or preemption by a higher priority COM process.

b. HIB -- The process is memory-resident, but not computable.
The hibernate state is entered by issuing a request to the
$HIBER system service (from the CUR state) or requesting
the action as part of a create process request ($CREPRC).
A process outswapped while hibernating is placed in the
HIBO wait state. A process can be made computable (COM)
by receiving an AST, a $WAKE request, or a process
deletion request.

c. SUSPO The process is neither memory-resident nor
-computable. The state is entered from the CUR state as a
result of a $SUSPND system service request, followed at
some point, by an outswap operation. A process leaves
this state only after a $RESUME system service request
issued by another process, or as a result of a process
deletion request. In each case, the process is next
placed in the appropriate COMO queue.

d. CEF -- The process is waiting for one or more event flags
in a common event flag cluster. Memory-resident and
outswapped CEF processes share the same wait state queue
(for a particular common event flag cluster). When the
combination of event flags is satisfied, the process is
placed into either the computable, resident (COM) or
computable, outswapped (COMO) state depending on the
memory-resident status bit in the software PCB. The
process can also be made computable as a result of AST
delivery and process deletion.

35

2.

Scheduling

ANSWER SHEET

e. COLPG -- The process referenced a page already being read
into memory as a result of other activity in the system.
When the page is available, the process will be made
computable or computable outswapped, depending upon its
memory residence status when the page becomes available.
AST delivery and process deletion also make COLPG
processes computable.

f. PFW -- The process is waiting for a paging operation (page
read I/O) to complete. When the page becomes available,
the process enters the COM or COMO state, depending upon
the memory residence status. A PFW process can also be
made computable as a result of either AST delivery or
process deletion.

g. COMO -- The process is computable but not resident in
memory. The state may be entered from the various
outswapped wait states after any of the system events that
make such a process computable. The COMO state is also
the initial state of a newly created process. The only
transition is to the computable, resident (COM) state, the
event for which the process is waiting.

a. Process D will be rescheduled into the tail of the
priority 5 COM state queue. Process A will be scheduled
by removing it from the head of the priority 5 state queue
and executing it at priority 4.

b. Process D will be rescheduled as in answer a. The event
flag service will make Process B computable at priority 11
(after the terminal input boost is applied). The
scheduler brings Process B into execution at priority 10.

c. Process D will be rescheduled as in answer a. Awakening
Process C makes it computable at priority 17, and it will
be scheduled at priority 17.

36

3.

Scheduling

ANSWER SHEET

a. Time-critical processes are useful for traditional
real-time applications. They are characterized by fast
response times, fixed execution priorities, and
invulnerability to quantum end events. For predictable
scheduling, time-critical processes should be assigned
unique priorities. Otherwise, there is a potential for
round robin scheduling of computable real-time processes.
In addition, these processes should disable swapping to
prevent scheduling conflicts with the swapper, a
time-critical process at priority 16.

b. Normal processes with elevated base priorities are
characterized by fast response times, but they are
susceptible to quantum end events, including working set
adjustment and CPU time expiration. As the base priority
approaches 15, the current priority level tends to remain
more constant than for default processes. Normally,
interaction with the system processes (which are mostly
implemented as processes of this type) is not a serious
concern, because their normal process states are either
HIS or LEF.

c. Normal processes with default or normal base priorities
typically represent the majority of the processes on a
system. The full range of scheduling-related operations
apply round robin scheduling, dynamic priority
recomputation, and quantum end (with working set
adjustment and CPU time limit checking). Interactive
processes in this category tend to be favored over
compute-bound processes because of the priority boost
mechanism.

d. Normal processes with lowered base priorities are
background processes. On a busy system, these processes
will only experience occasional scheduling. This
category, if used at all, is typically reserved for batch
streams, where response time is less critical.

37

Paging

TEST /EXERCISE

1. What is the page replacement algorithm used by the pager?

2.

Explain how this algorithm combines with the page cache (free
and modified page lists) to effectively implement a least
recently used algorithm.

What limitation is imposed on the size
memory management data structures?
limitation at the present time?

39

of a page file by
Is this a restrictive

Paging

TEST /EXERCISE

3. The VAX/VMS operating system uses page table entries of
invalid pages to locate those pages in secondary storage. In
view of the sequence of steps followed in address translation,
what must be the contents of PTE<30:27>? Why?

4. A common programming error involves inadvertently transferring
control to location 0. This problem is neatly caught in VAX
native images using the memory management protection
mechanism. What is the mechanism used? How could the
programmer distinguish this exception from other problems?

40

Paging

TEST /EXERCISE

5. In translating a process virtual address, two address
translations are potentially involved, and thus, two distinct
translation-not-valid faults could occur.

a. What are the translations?

b. Why are two translations not always required?

c. How could one distinguish the two faults?

d. What is the difference between the state of the stack in
the two cases?

6. Explain how the VAX hardware uses the modify bit in the page
table entry.

7. State one instance when the VAX/VMS operating system must
invalidate a single entry in the translation buffer.

41

Paging

TEST /EXERCISE

Questions 8 through 12 represent a
involving the interactions among
VAX/VMS. The processes have
characteristics:

Process Software
Name Priority

LOW 4
MEDIUM 10
HIGH 15

sequence of operations
three user processes and
the following initial

Scheduling
State

CUR
LEF
LEF

8. Process LOW causes a page fault in referencing a page in
VAX-11 RMS (a mapped system section in the system region).
The corresponding page table entry (PTE) points to the image
file (SYS$SYSTEM:RMS.EXE).

a. What is the action of the pager?

b. Into what scheduling state is process LOW placed?

c. Into what page state is the physical page (PFN database
entry) placed?

9. While the paging operation is in progress, Process HIGH
becomes computable and also makes a reference to the same page
in RMS as Process LOW referenced.

a. Into what scheduling state is process HIGH placed?

b. What page state is the physical page (PFN database entry)
in now?

42

Paging

TEST /EXERCISE

10. While the paging operation continues, process MEDIUM also
becomes computable and also refers to the same RMS page as
processes HIGH and LOW.

a. Into what scheduling state is process MEDIUM placed?

b. What page state is the physical page (PFN database entry)
in now?

11. The paging read operation completes. Further processing is
performed at IPL 4 by the I/O post processing routine.

a. Into what scheduling state is process LOW placed?

b. Into what scheduling state is process MEDIUM placed?

c. Into what scheduling state is process HIGH placed?

d. Into what page state is the physical page (PFN database
entry) placed?

43

Paging

TEST /EXERCISE

12. IOPOST completes its processing and dismisses the IPL 4
interrupt. A scheduling interrupt (IPL 3) occurs as a result
of the IOPOST operations.

a. Which of the three processes will be scheduled first?

b. Why is this process selected for execution?

13. Several components and utilities of VAX/VMS are required to
cooperate in the implementation of shared sections.

a. How does this feature contribute to reducing the
consumption of disk storage and physical memory?

b. Three different forms of installation of a shareable image
file affect the amount of time necessary to begin use of
the image:

INSTALL
INSTALL/OPEN
INSTALL/OPEN/HEADER

What does each of these options do to affect the startup
time in using shareable images?

44

Paging

TEST /EXERCISE

c. A shareable image requires the use of the global page
table and the global section table to resolve page faults
within the image. What does this fact imply about the
speed of an individual page fault resolution within a
global section? What is the implication of page fault
resolution considering all of the processes on the system?
Why?

14. Using the System Dump Analyzer (optional)

a. Using a copy of the system page table obtained via SDA,
construct a map of the actual placement in physical memory
of the components of the permanently resident portion of
the executive. These include:

the system page table itself
the PFN database
the system header
the nonpaged executive code and data
the interrupt stack
non-paged dynamic memory

HINT

In the Internals and Data Structures manual table
detailing the layout of system virtual address
space, the memory access codes for these
components are given. These can be used to
identify which pages in the SPT are associated
with each component. You might find it easiest to
work from the end of the SDA listing of the system
page table. The components listed in the table
are in the order that they will appear in the SPT.
The actual page frame for each page is also listed
in the SPT.

45

Paging

TEST /EXERCISE

b. Using a copy of the PFN database obtained by using SDA,
determine how many pages of physical memory are available
for paging. Determine how much memory must be used by the
permanently resident executive. Go back to the system
page table and figure out how many pages are required by
each component from question a above, and add the values
together. Does this agree with the value (computed above)
from the PFN database? It should.

46

Paging

ANSWER SHEET

1. The pager replaces the oldest page in the process working set.
The process working set list is a circular buffer, with a
single pointer advancing to the next replacement candidate.

The contents of the physical page are not discarded when the
page is removed from the working set. Rather, the physical
page is placed on either the free page list or the modified
page list. If a page fault occurs while the page is on either
of these lists, the pager simply removes the page from the
list and puts it back into the process working set.

Virtual pages that are frequently referenced will occasionally
be removed from the process working set. However, it is
highly likely that the page will still be on one of the lists
when a subsequent page fault occurs.

2. The page file control block imposes no limitation on the size
of the page file. The form of page table entry that indicates
that a virtual page is in the page file allows 22 bits for
virtual block number. This requires that the page file be
less than four Megablocks. Because disks do not normally
exceed about one Megablock, the maximum size of a single page
file is much larger than the disks available. No limitation
is currently imposed by the data structures.

3. PTE<30:27> must contain a protection code, even for invalid
pages. Because the access check is performed before the valid
bit is tested, the PTE for each page in process or system
virtual space (specified by the contents of the appropriate
region length register) must contain a protection code in
these four bits.

4. The VAX linker sets up the first page of a native image as NO
ACCESS for any access mode (PTE<30:27> = 0). A transfer of
control to location 0 (via a CALLX, JMP, BRx, JSB, or BSBx
instruction) will cause a protection code access violation.

The top two longwords on the stack will both be zero. The
reason mask is a zero and the virtual address causing the
exception is also a zero. This is the key to this type of
programming error.

The third longword on the stack is the PC of the offending
instruction, and the fourth longword is the PSL at the time of
the exception.

47

s.

Paging

ANSWER SHEET

a. Both the process virtual address and the system virtual
address of the corresponding PxPTE must be translated.

b. If a translation buffer hit occurs on the process page
table entry, the physical address can be formed
immediately.

Note that if a translation buffer hit occurs on the SPTE
which maps the PxPTE, two translations are still required.

c. If the translation-not-valid fault occurs on the
associated page table entry, bit 1 in the reason mask (on
the top of the kernel stack) will be set. The second
longword will contain the process virtual address in both
cases.

d. The only difference in the state of the stack is bit 1 in
the reason mask. The faulting virtual address is the
process virtual address in both cases.

6. When a page is brought into a process working set, the modify
bit is initially clear. Each time a write or modify access is
made to a page, the modify bit is checked. If the bit is
clear, it will be set by hardware both in the translation
buffer and in the page table entry in physical memory.

Thus, the first write or modify access will cause the bit to
be set. All subsequent accesses (until the page is removed
from the working set) will have no effect on the modify bit.

The state of the modify bit will be checked when the page is
removed from the working set. If the bit is set, the page
must be put on the modified page list and written to secondary
storage before the physical page can be reused by another
process.

48

Paging

ANSWER SHEET

7. The most common example of invalidating a single page table
entry in the translation buffer is when the page is removed
from the working set. If virtual addresses are deleted from a
process (as a result of $CNTREG, $DELTVA, or $DGBLSC system
services or at image exit) their associated translation buffer
entries must be invalidated.

8.

9.

If page protection is changed
service, the corresponding
invalidated.

a. The pager

by using
translation

the $SETPRT system
buffer entries are

o determines that the page is in an image file,

o allocates a physical page,

o allocates a working set list entry (WSLE) from the
system working set list,

o initiates the read operation, and

o sets the process scheduling state to page fault wait
(PFW) •

b. Page fault wait state (PFW) (see question 9)

c. Read-in-progress

a. Collided page wait state (COLPG)

b. Read-in-progress (as in question 8) but with the collided
page bit set

49

10.

11.

12.

13.

Paging

ANSWER SHEET

a. Collided page wait state (COLPG)

b. No further change from answer 8b. The collided page bit
is already set.

a. Computable (COM)

b. Computable (COM)

c. Computable (COM)

d. Active and valid

a. Process HIGH

b. Scheduling is based strictly upon the relative priorities
of computable processes, and not upon circumstances such
as which process caused the initial page fault. Thus,
although process LOW caused the initial page fault, and
most of the work was performed by the pager in its
context, process HIGH is likely to be the first process to
use the valid page as a result of its higher priority.

a. Disk storage is reduced because each image file does not
require a separate copy of the shared sections. Physical
memory requirements are reduced because only one copy of a
shared section needs to exist in the system (and only
those pages of a section actually used by one or more
processes occupy physical memory).

50

Paging

ANSWER SHEET

b. INSTALL allows a file to be opened by file ID and sequence
number. This improves the speed of the OPEN operation.

INSTALL/OPEN makes the file permanently opened. There is
no wait for the OPEN operation.

INSTALL/OPEN/HEADER makes the file open and the file
header permanently resident. Not only is there no OPEN
processing, but one less disk read operation is required
during the section mapping or the image activation.

c. Although there is an additional level of indirection
involved in resolving addresses within a shared image,
address resolution only seems longer. With several
processes referring to the section, there is a higher
probability that the global page table entry (GPTE) is
active and valid. If this is the case, page fault
resolution is rapid. The working set list must be
modified, the contents of the GPTE copied into the process
PxPTE, and the share count for the physical page
incremented in the PFN database.

51

Swapping

TEST /EXERCISE

1. Describe the special treatment given to pages with direct I/O
in progress both at outswap and inswap times. Be sure to
include the special case of the inswap occurring before the
read or write operation completes.

2. Discuss the special treatment given global pages by the
swapper. Include both global read-only and global read-write
pages in your discussion.

53

Swapping

TEST /EXERCISE

3. List one advantage of implementing swapping in an operating
system that already implements paging.

Questions 4 through 7 describe the interaction of two
real-time processes and the swapper over an interval of time.
Each question describes a particular event. For each process,
indicate which process state will be occupied by that process.
If a process does not exist, indicate this instead of a
process state.

The initial process characteristics are:

Name

SWAPPER
LOW
HIGH

Priority

16
20
22

State

HIB
CUR
not yet
created

4. Process LOW issues a $CREPRC system service request and
continues to execute.

a. SWAPPER

b. LOW

c. HIGH

54

Swapping

TEST /EXERCISE

5. Process LOW issues a $HIBER system service request.

6.

a. SWAPPER

b. LOW

c. HIGH

The inswap operation completes and is reported
scheduler. Assume that the SWAPPER performs
operations at IPL 7 before dropping the interrupt
level.

a. SWAPPER

b. LOW

c. HIGH

to the
further

priority

7. The SWAPPER drops the interrupt priority level from IPL 7 to
IPL 0.

a. SWAPPER

b. LOW

c. HIGH

55

Swapping

ANSWER SHEET

1. For either read-in-progress or write-in-progress, the pages in
question are written to the swap file with the rest of the
working set. However, because the reference count will not go
to zero at outswap completion if the read or write is still
outstanding, the pages will not be released to the free page
list.

If the read or write is still outstanding when the process is
swapped back into memory, the swapper will take this into
account by putting the page left behind into the rebuilt
working set of the process and releasing the page frame from
the swapper's special I/O page table.

If the operation in progress was a write, the contents of the
swap file are accurate, and the page is released to the free
page list when the write operation completes.

If the operation is progress was a read, the contents of the
swap file are out of date. The write of the page to the swap
file merely served to reserve a place in the swap file. This
block is noted in the SWPVBN array in the PFN database. When
the read operation completes, the page will be released to the
modified page list. Subsequently, the modified page writer
will write this page not to the page file but to its reserved
location in the swap file. (If the inswap occurs before the
modified page writer writes this page to the swap file, the
page is simply faulted in from the modified page list while
the swapper rebuilds the working set.)

Note that the only I/O that is relevant here is direct I/O
because only direct I/O locks pages in the working set until
I/O completion. Buffered I/O uses an intermediate buffer in
system virtual address space (non-paged dynamic memory).
Thus, buffered operations do not require the user buffer to be
in memory while the request is being processed. On a buffered
write, the appropriate FDT routine transfers (perhaps with
modification) data from the user buffer to a system buffer.
On a buffered read, the I/O completion special kernel mode AST
routine transfers the data from the system buffer into the
specified user buffer.

57

Swapping

ANSWER SHEET

2. At outswap time, each global read-write page is removed from
the working set of the process. Each page must be refaulted
into the working set after inswap only if it is referenced
after inswap.

Each global read-only page is written to the swap file if
either the PFN database SHRCNT value is one (only this process
is using this page). Otherwise, the global page is removed
from the working set and will need to be refaulted if it is
referenced after inswap.

At inswap time, global read-only pages are read along with the
rest of the working set of the process. If the corresponding
global page table entry (GPTE) is either valid or in
transition, then the PxPTE points to the existing physical
page, and the duplicate page is released to the free page
list. If the GPTE is pointing to the global section table
entry, the page is retained and both the PxPTE and GPTE are
made valid.

3. The primary advantage of swapping is that it provides a way of
obtaining a large amount of physical memory, an entire process
working set (typically 100 pages or more). This does not
imply that paging is slow. In fact, paging operations are
both simpler and faster than swapping operations. However,
the swapper frees much larger amounts of physical memory in
single operations.

A second advantage is that implementing swapping provides
further flexibility in supporting a wide range of processes
with differing demands on the resources of the system. An
example of this second advantage is the use of the swapper in
process creation (see also the next module). Each process is
brought into being in the COMO state with its initial swap
image in a pseudo swap file known as the shell process.
Further, the swapper's role in balancing the system-wide
demands on the physical memory resource isolates these
responsibilities in a single software component.

58

4.

s.

6.

7.

Swapping

ANSWER SHEET

a. COM process creation will awaken the swapper process.

b. CUR the stated assumption.

c. COMO -- the initial process state for every process.

a. CUR the highest priority computable process.

b. HIB the stated assumption.

c. COMO -- same as 4c.

a. CUR the swapper is still executing.

b. HIB same as Sb.

c. COM the purpose of the inswap operation is to make this
process computable.

a. COM -- dropping IPL will enable an IPL 3 scheduling
interrupt to occur.

b. HIB same as Sb.

c. CUR the highest priority computable process.

59

Process Creation and Deletion

TEST /EXERCISE

1. List two advantages to performing process deletion in the
context of the process being deleted.

2. Name two errors that can result from process creation. One of
the errors should be returned from the $CREPRC system service
request and the other only through a termination mailbox.
Explain why the $CREPRC system service is not capable of
detecting the second type of error.

61

Process Creation and Deletion

TEST /EXERCISE

3. Explain why an interactive process is not deleted when an
image exits.

62

Process Creation and Deletion

ANSWER SHEET

1. When executing in the context of the process being deleted,
all the virtual address space of that process is accessible.
In particular, the contents of the control region (Pl space)
that describe the state of the process at the time of deletion
is readily available.

In addition, the full support of VAX/VMS (including RMS and
all the system services) is available to aid in the process
deletion. Much of this support is not available to code
executing outside of process context.

2. The complete list of errors that can be detected by the
$CREPRC system service is listed in the description of $CREPRC
in the VAX/VMS System Service Reference Manual. Possible
errors include privilege violation, insufficient quota, and
process name errors.

Several errors can be detected only when the newly created
process executes. These errors include the specification of
an image that does not exist or bad equivalence strings for
SYS$INPUT, SYS$0UTPUT, or SYS$ERROR.

By the time that the new process is placed into execution, the
$CREPRC system service has already completed its work for the
creator and returned a status code. All errors that cannot be
detected except in the context of the newly created process
can only be reported to the creator through a termination
mailbox.

63

Process Creation and Deletion

ANSWER SHEET

3. Image exit results in all previously declared termination
handlers being called. The command language interpreter (DCL
or MCR) has declared a handler that runs the image down,
restores the supervisor stack to its state before the image
was initially called, and looks for the next command from
SYS$INPUT. This allows multiple images to execute
sequentially in the same process. Only a special action, such
as a LOGOUT command within the process, an external STOP/ID=
command, can cause such a process to be deleted.

64

System Initialization and Shutdown

TEST /EXERCISE

Differentiate the two programs SYSBOOT and SYSGEN, including their

• purposes,

• environments, and

• command syntax.

65

System Initialization and Shutdown

ANSWER SHEET

SYSBOOT

• Purpose: SYSBOOT is the program that performs the secondary
phase of the bootstrap sequence. It reads parameters from the
system image and, optionally, from a parameter file. All
adjustable parameters are calculated. The system page table
is set up. The system image is read into memory.

SYSBOOT is not involved in determining which devices are
present or in loading the drivers and associated data
structures for these devices

• Environment: SYSBOOT executes in a standalone environment
with memory management turned off. All communication with the
console terminal and all file operations must be performed by
code contained in the SYSBOOT image, because there is no RMS
or ACP to provide these services.

• Command Syntax: SYSBOOT does not recognize those commands
associated with loading device drivers. The WRITE command is
also ignored by SYSBOOT.

SYSBOOT begins its operation by reading the
adjustable parameters from the system image file.
implied USE CURRENT command.

SYSGEN

values of
This is an

• Purpose: SYSGEN is not directly involved in the bootstrap
operation. Its primary purpose is to create a parameter file
that will be used by SYSBOOT during future bootstrap
operations.

SYSGEN also loads device drivers for all devices that it finds
on the system or in response to explicit commands. The data
structures required by the driver are allocated and
initialized by SYSGEN.

• Environment: SYSGEN is a normal image that executes in full
process context. This means that services of the VAX/VMS
operating system are available for file operations including
terminal communication.

67

System Initialization and Shutdown

ANSWER SHEET

• Command Syntax: All commands can be performed by SYSGEN.
However, SET commands do not normally affect the current
system, but merely change the values in a table that will be
written to a parameter file. A WRITE CURRENT command will
establish the parameter values used in the next system
initialization. A WRITE ACTIVE command can change the values
of dynamic system parameters on the running system.

68

