
EY-00 l 6E-SG-000 l

VMS Internals

EY-00l6E-SG-OOO1

VMS Internals

Student Workbook

Prepared by Educational Services
of

Digital Equipment Corporation

Copyright© 1982, Digital Equipment Corporation.
All Rights Reserved.

The reproduction of this material, in part or whole, is
strictly prohibited. For copy information, contact the
Educational Services Department, Digital Equipment
Corporation, Bedford, Massachusetts 01730.

Printed in U.S.A.

The information in this document is subject to change
without notice and should not be construed as a com
mitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished
under a I icense and may not be used or copied except
in accordance with the terms of such license.

Digital Equipment Corporation assumes no responsibility
for the use or reliability of its software on equipment
that is not supplied by Digital.

The following are trademarks of Digital Equipment Corporation,
Maynard, Massachusetts:

DIGITAL
DEC
PDP
DEC US
UNIBUS

DECsystem-10
DECSYSTEM-20
DIBOL
EDUSYSTEM
VAX
VMS

MASS BUS
OMNIBUS
OS/8
RSTS
RSX
IAS

SG STUDENT GUIDE

INTRODUCTION • • • •
COURSE GOALS • • • •
RESOURCES. • • • • • ~ •
COURSE MAP • • • • •
COURSE OUTLINE • • .

1 SYSTEM COMPONENTS

INTRODUCTION • • • •
OBJECTIVES • • • • •
RESOURCES ••••••

Reading •••••
Additional Suggested
Source Modules • • •

TOPICS • • • • • • • • •

Reading •

THREE MAIN PARTS OF VMS ••••••

CONTENTS

• • • • • 3
. . • • . 4

• . • 5
• • . • . 6

. . • • 7

13
14
14
14
14
14
15
17

Scheduling and Process Control ••••••••••
Memory Management •••••••

17
17
17
18
19
20

I/O Subsystem. • • • • • • • •
INVOKING SYSTEM CODE • . • • • • •
HARDWARE MAINTAINED PRIORITY LEVELS •••••
INTERRUPT SERVICING SEQUENCE •
TWO TYPES OF PRIORITY •••••
ACCESS MODES AND COMPONENTS ••••
LOCATION OF CODE AND DATA. • • • •
ENTRY PATHS INTO VMS KERNEL ••••
THREE TYPES OF SYSTEM COMPONENTS •
HARDWARE CLOCK INTERRUPT • • • • •
PERIODIC CHECK FOR DEVICE TIMEOUT.
PERIODIC WAKE OF SWAPPER, ERROR LOGGER
SYSTEM EVENT REPORTING • • • •
PAGE FAULT • • • • • • • • • •
DATA TRANSFER USING RMS ••••••
FILE MANIPULATION USING RMS ••
DATA TRANSFER USING $QIO •
$QIO SEQUENCE OF EVENTS .•••
INTRODUCTION TO DECnet • • • • • •

DECnet Protocols • • • • • • •
DECnet REMOTE FILE ACCESS •••••••
REMOTE FILE ACCESS-DATA FLOW • • • • •

Setting Up Logical Link ••.•••
Data Transfer Within Logical Link.

DECnet TASK-TO-TASK COMMUNICATION •••
TASK-TO-TASK COMMUNICATION DATA FLOW • • • • • • • • •

iii

22
23
24
25
27
28
29
30
31
32
33
34
35
36
37
37
38
39
39
39
40
41

DECnet PERFORMING SET HOST OPERATION
SET HOST DATA FLOW • • • • • • • • • •

DECnet Software Components •
OPCOM, ERROR LOGGER. • • • •
PRINT JOBS • • • • • • • • • • •
BATCH JOBS • • • • • • • • • • • • • • • •
TERMINAL INPUT • • • • •
CARD READER INPUT. • • • • • • • • • •

2 THE PROCESS

INTRODUCTION • • • • • • • •
OBJECTIVES • • • • • • • • •
RESOURCES. • • • ••••

Reading. • • •••
Additional Suggested Reading
Source Modules • • • • • • • • •

TOPICS • • • • • • • • •
PROCESS DATA STRUCTURES OVERVIEW
SOFTWARE PROCESS CONTROL BLOCK (PCB)
PROCESS HEADER (PHD) • • • • • •
PRIVILEGED VS. GENERAL REGISTERS

Privileged • • • • • • • • • • •
General •••••••••••

HARDWARE PROCESS CONTROL BLOCK • • • • • • • • • •
JOB INFORMATION BLOCK. • • • • • • ••••••••
VIRTUAL ADDRESS SPACE OVERVIEW • • • • • • • •

Process Virtual Address Space •••••••••••
S0 VIRTUAL ADDRESS SPACE • • • • • • •
P0 VIRTUAL ADDRESS SPACE • • • • • • • • • • • • • • •
Pl VIRTUAL ADDRESS SPACE • • • • • • • • • • • • • • •

3 SYSTEM MECHANISMS

INTRODUCTION •
OBJECTIVES • • • •
RESOURCES. • •

Reading ••••••
Additional Suggested Reading ••
Source Modules • • •

TOPICS • • • • • • • • • • • • • • •
PROCESSOR STATUS WORD. • • • ••
PROCESSOR STATUS LONGWORD. • ••
HARDWARE CONTEXT • • • • • • • •
HANDLING AND USES OF INTERRUPTS.
HARDWARE INTERRUPTS AND SCB ••
HARDWARE INTERRUPTS AND IPL •••••
SOFTWARE INTERRUPTS AND SCB.

iv

42
43
44
45
46
47
48
49

53
54
55
55
55
55
56
57
58
59
60
60
60
61
62
63
64
64
66
67

71
73
74
74
74
74
75
78
79
80
81
82
83
84

SOFTWARE INTERRUPTS AND IPL. • • • • • • • • • • • • • 85
SOFTWARE INTERRUPT REQUESTS. • • • • • • • • • • • • • 86

Software Interrupt Summary Register. • • • • • • • 86
Software Interrupt Request Register. • 86

LOWERING IPL • • • • • • • • • • • • • • • 87
BLOCKING INTERRUPTS. • • • • • • • • • • • 88
RAISING IPL TO SYNCH • • • • • • • • • • • 89
HOW USER EXECUTES PROTECTED CODE • • • • • 90
ACCESS MODE TRANSITIONS. • • • • • • • • • 91
CHMX AND REI INSTRUCTIONS. • • • • • • • • • • 92

CHMX • 92
RE I • 9 2

REI OCCURS IN FOUR DIFFERENT CONTEXTS. • • • • • • 93
INTERRUPTS VS. EXCEPTIONS. • • • • • • • • • • • • • • 94
EXCEPTIONS AND SCB = = = = = = = = = • • • • • • • • • 95
EXCEPTION AND INTERRUPT DISPATCHING. • • • • • • • • • 96
PATH TO SYSTEM SERVICE • • . • • • • • • • • • • • 98
RETURN FROM SYSTEM SERVICE • • • • • • • • • • 99
NONPRIVILEGED SYSTEM SERVICE • • • • • • • • • • • 100
PATH TO RMS •••••••••••••••••••••• 101
RETURN FROM RMS •••••••••••••••••••• 102
PATH TO USER WRITTEN SERVICE (1) • • • • • • • 103
PATH TO USER WRITTEN SERVICE (2) ••••••••••• 104
RETURN FROM USER WRITTEN SERVICE • • • • • 105
TWO DISPATCHERS. • • • • • . • • • • • • ••• 106
PROCESS SYNCHRONIZATION. • . • • • • ••••••• 107
MUTEX. • • • • • • • • • • • • • • • • • • 108
OBTAINING AND RELEASING MUTEXES. • •••••••• 109

To Obtain a Mutex. • • • • • • • ••••••• 109
To Release a Mutex • • • • • • • • 109

DYNAMIC MEMORY • • • • • • • • • • • • • • • • • • 110
ALLOCATING NON-PAGED POOL. • • • • • • 111
RELEVANT SYSGEN PARAMETERS FOR NON-PAGED POOL. • • 112
ASTs • • • • • • • • • • • • • • • 113

Rules for AST Delivery • • • • • • •••••• 114
AST Delivery Sequence. • • • • • • • • • • 115

TIMER QUEUE ELEMENT. • • • • • • • • • • • • • • • 116
CLOCKS AND TIMER SERVICES. • • • • • • • • • ••• 117
SUMMARY OF SYSTEM MECHANISMS • • • • • • • • • • • 118
APPENDIX A COMMONLY USED SYSTEM MACROS. • • ••• 121
APPENDIX B THE REI INSTRUCTION •••••••••••• 125

4 DEBUGGING TOOLS

INTRODUCTION •
OBJECTIVES
RESOURCES.
TOPICS • • • •

v

• 129
• 129
• 129 • 130

CRASH DUMPS •••••••••••
Causes of Crash Dumps ••••

BUGCHECKS. • • • • • • • • • • • • • • • ••
The Two Types of Bugchecks • • • • • • • • •
How Crash Dumps Are Generated. • • • • • ••
How Bugchecks Are Generated. • • • • • • ••

SAMPLE STACKS AFTER BUGCHECKS ••••••••••••
Access Violation • • • • • • • • • • ••
Page Fault Above IPL 2 • • • • • • • ••
Reserved Operand Fault • • • • • • •••
Machine Check in Kernel Mode (CPU Timeout)- •

SYSTEM MAP FI LE. • • • • • • • • • • • • • • • •
Overview • • • • • • • • • • • • • • • • • •
Sections of SYS.MAP. • • • • • • ••
SYS. MAP and Crash Dumps. • • • • • •
SYS.MAP and Source Code. • •••••••

VAX/VMS DEBUGGING TOOLS. • •••••••
THE SYSTEM DUMP ANALYZER (SDA) • • • • • • • • •

Uses • • • • • • • •
Information Handling • • • • • •••••••
Requirements • • • • • • • • • • • • ••
Activation of SDA ••••••••••••••••
SDA Functions. • • • • • • • • • • • • • ••
Command Format • • • • • • • • • • • • •
Examining a Crash Dump File •••••••••..

DELTA AND XDELTA • • . • • • • • • • • • • •
DELTA Debugger • • • • • • • • • • • • • • • • •
CHMK Program • • • • • • • • • • • • • •
DELTA and XDELTA Functions and Commands •••••

CONSOLE COMMANDS • • • • • • • • • •
PATCH. • • • • • • • • • • • • • • • • • • •
APPENDIX • • • • • • • • • • • • • •

5 SCHEDULING

INTRODUCTION • • • • • • • • • •
OBJECTIVES • • • • • • • • •
RESOURCES. • • • • • • •••••

Reading. • • • • • • • • • • • • ••
Additional Suggested Reading • • • • ••
Source Modules • . • • • • • • • • •

TOPI CS • • • • • • • • • • • • • • • • • • •
PROCESS STATES • • • • • • • • • • •
PROCESS WAIT STATE DIAGRAM • • • • • • •
WAYS TO LEAVE CURRENT STATE. • • • • • • • • • • • •
WAYS TO BECOME COMPUTABLE (INSWAPPED). • ••
INSWAPPED TO OUTSWAPPED TRANSITIONS. • • ••
WAYS TO BECOME COMPUTABLE (OUTSWAPPED) • • •

vi

• 131
• 131
• 131
• 131
• 131
• 132
• 134
• 134
• 135
• 136
• 137
• 138
• 138
• 138
• 139
• 139
• 140
• 141
• 141
• 141
• 141
• 142
• 142
• 142
• 151
• 152
• 153
• 154
• 156
• 158
• 159
• 161

• 171
• 171
• 172
• 172
• 172
• 172
• 173
• 175
• 176
• 177
• 178
• 179
• 180

QUEUES •
IMPLEMENTATION OF STATES BY QUEUES • • • • •

INSQUE Instruction • • • • • • • • • • • • • • •
REMQUE Instruction • • • • • • • • • • •
Implementation of COM and COMO States ••••
Implementation of Wait States .•••••••
Implementation of CEF State •••••••••••

SCHEDULING FIELDS IN SOFTWARE PCB. • • • • • • • • •
SAVING AND RESTORING CPU REGISTERS • • • • • • •
SCHEDULER (SCH ED. MAR) • • • • • • • • • • • • • •
SOFTWARE PRIORITIES AND PRIORITY ADJUSTMENTS • •
STEPS AT QUANTUM END • • • • • • • • • • • • • •

For Real Time Process. • • • • •••
For Normal Process • • • • • • • • • • • • •

WSSIZE VARIATION OVER TIME • • • • • • • • • • •
AUTOMATIC WORKING SET ADJUSTMENT • • • • • •
IOTA • • • • • • • • • • • • • •
SOFTWARE PRIORITY LEVELS OF SYSTEM PROCESSES • • • •
MISCELLANEOUS RESOURCE WAIT STATES (MWAIT) • • •
REPORT SYSTEM EVENT (RSE.MAR) • • • • • •••

6 PAGING

• 181
• 182
• 182
• 182
• 183
• 184
• 185
• 186
• 187
• 188
• 190
• 192
• 192
• 192
• 193
• 194
• 195
• 196
• 197
• 198

INTRODUCTION • • • • . • • • • • • 201
OBJECTIVES • • • • • • • • • • • • • • • • 201
RESOURCES. • • • • • • • • • . • • • • • • 202

Reading. • • • • • • • •••••••• 202
Additional Suggested Reading . • ••• 202
Source Modules • • • • • . • • • • • • • • 202

TOPICS • • • • • • • • • • • • • . • • • • • • • • • • 203
ADDRESS TRANSLATION. • • • • • • • • ••••••• 205
RESOLVING PAGE FAULTS. • • • • • • • • • ••• 206
PROCESS SECTIONS AND IMAGE FILE. • • • • ••• 207
IMAGE FILE AND PROCESS HEADER. • • • • • • • • • • • • 208
IMAGE SECTION DESCRIPTOR FORMATS • • • • • • • • • 209
HOW PTEs, PSTEs ARE FILLED IN ••••••••••••• 210
PAGE TABLES MAP VIRTUAL ADDRESS SPACE. • ••••• 211
DATA STRUCTURES USED BY THE PAGER. • • 212
PHYSICAL ADDRESS SPACE • • • • • • • • • • • • 213
VIRTUAL AND PHYSICAL MEMORY. • • . • • • • • • 214
PFN DATABASE • • • • • • • • • • • • • 215
PROCESS HEADER • • • • • • • • • • • • • • • • • • 216
WORKING SET LIST • • • • • • • • • • • 217
PROCESS SECTION TABLE. • • • • • • • • 218
PROCESS SECTION TABLE ENTRY. • • • • • • • 219
PAGE FILE CONTROL BLOCK. • • • • • • • • • • ••• 220
DIFFERENT FORMS OF PAGE TABLE ENTRY ••.••••••• 221
PROCESS PTEs MAP TO GLOBAL PTEs. • • • • • • • • • 222
RELATIONSHIP AMONG GLOBAL SECTION DATA STRUCTURES ••• 223

vii

SUMMARY OF THE PAGER • • • • • • • • • • • • • • • • • 224
INTRODUCTION - PAGING DYNAMICS EXAMPLES •••••••• 225
INITIAL STATUS OF PROCESS READ/WRITE SECTION PAGE ••• 226
ADDING PROCESS READ/WRITE SECTION TO WORKING SET • • • 227
REMOVING MODIFIED PROCESS READ/WRITE SECTION
PAGE FROM WORKING SET. • • • • • • • •
MOVING PAGE FROM MODIFIED PAGE LIST
TO FREE PAGE LIST. • • • • • • • • • • • •••
REMOVING PAGE FROM FREE PAGE LIST. • • • • • •
INITIAL STATUS OF PROCESS COPY-ON-REFERENCE PAGE •
ADDING PROCESS COPY-ON-REFERENCE PAGE
TO WORKING SET • • • • • • • • • • • • • • • • •
REMOVING PROCESS COPY-ON-REFERENCE SECTION PAGE

• 228

• • 229
230
231

• 232

FROM WORKING SET • • • • • • • • • • • • • • • • • • • 233
REMOVING PROCESS COPY-ON-REFERENCE PAGE FROM MODIFIED
PAGE LIST. • 234
INITIAL STATUS OF GLOBAL READ/WRITE SECTION PAGE • 235
ADDING GLOBAL READ/WRITE SECTION PAGE
TO WORKING SET • • • • • • • • • • • • • • • • • •
INITIAL STATUS OF PTE OF SECOND PROCESS MAPPING
THE SAME GLOBAL SECTION. • • • • • • • • • ••
ADDING GLOBAL READ/WRITE SECTION PAGE
TO SECOND WORKING SET. • • • • • • • • •
REMOVING GLOBAL READ/WRITE SECTION PAGE

236

237

238

FROM WORKING SET • • • • • • • • • • • • • • • • • • • 239
REMOVING GLOBAL READ/WRITE SECTION PAGE FROM LIST. • • 240
APPENDIX . •• 241

7 SWAPPING

INTRODUCTION • • • • • • • • • • • 255
OBJECTIVES • • • • • • • • • • • • • • • • 256
RESOURCES. • • • • • • • • • ••••• 256

Reading. • • • • • •••••••••• 256
Additional Suggested Reading ••••••••••• 256
Source Modules • • • • • • • • • • • • • • 256

TOPICS • • • • • • • • • • • • • • • • • • 257
SWAPPER. • • • • • • • • • • • • • • • • • • • 259
COMPARISON OF PAGING AND SWAPPING. • • • • • • • • 260
SWAPPER MAIN LOOP. • • • • • • • • • • •••••• 261
MAINTAINING FREE PAGE COUNT. • • • • • • • • • 262
ORDER OF SEARCH FOR POTENTIAL OUTSWAP CANDIDATES • 263

For an Outswap Table Section • • • • • • • • • 264
EXPANDING AND SHRINKING WORKING SETS • • • • • • • 265
WAKING THE SWAPPER OR MODIFIED PAGE WRITER • • 266
OVERVIEW OF SWAPPER FUNCTIONS. • • • • • • • • • • 267
LOCATING DISK FILES FOR SWAP • • • • • • • • • 268
HOW SWAPPER'S P0 PAGE TABLE IS USED
TO SPEED SWAP I/O. • • • • • • • • • • • • • • • • 269

viii

SWAPPER'S PSEUDO PAGE TABLES ••••••••••••• 270
PARTIAL OUTSWAPS AND THE PROCESS HEADER. • • • • • 271
OUTSWAP RULES. • • • • • • • • • • • • • • • • • • 272
OUTSWAP - WORKING SET LIST BEFORE OUTSWAP SCAN • • •• 273
OUTSWAP - WORKING SET LIST AFTER OUTSWAP SCAN ••••• 274
OUTSWAP - PROCESS PAGE TABLE CHANGES AFTER SWAPPER'S
WRITE COMPLETES •••••••••••••••••••• 275
INSWAP RULES • 27 6
INSWAP - WORKING SET LIST AND SWAPPER MAP BEFORE
PHYSICAL PAGE ALLOCATION • • • • • • • • • • • • • •• 278
INSWAP - WORKING SET LIST AND SWAPPER MAP AFTER
PHYSICAL PAGE ALLOCATION • • • • • • • • • • • • • •• 279
INSWAP - WORKING SET LIST AND REBUILT PAGE TABLES ••• 280
HOW MODIFIED PAGE WRITER GATHERS PAGES • • • • • • 281
APPENDIX • 283

8 PROCESS CREATION AND DELETION

INTRODUCTION • • • • • • • • • • • 287
OBJECTIVES • • • • • • • • • • • • 288
RESOURCES. • • • • • • • • •• 288

Reading. • • • • • • • •• 288
Source Modules • • • • • • • • • • • • 288

TOPICS • • • • • • • • • • • • • • 289
LIFE OF A PROCESS. • • • • • • • • • • • • •• 291
CREATION OF PCB, JIB, AND PQB. • • • • •• 292
RELATIONSHIPS - PCBs AND JIB • • • • • • • • • • • • • 293
PCB VECTOR • • • • • • • • • • • • • • • • 294
PID AND PCB, SEQUENCE VECTORS. • • • • • • • • 295
SWAPPER'S ROLE IN PROCESS CREATION • • •••• 296
PROCSTRT'S ROLE IN PROCESS CREATION. • •• 297
AFTER PROCESS CREATION, IMAGE RUNS AND EXITS ••••• 298
INTRODUCTION - PROCESS DELETION. • • • • • • • •• 299
PROCESS DELETION • • • • • • • • • • • 300
PROCESS TYPES AND CREATORS • • • • • • • • 301
DCL BASED PROCESSES. • • • • • • • • • • • •• 302
INITIATING INTERACTIVE JOB • • • • • • • • • • • • 303
INITIATING JOB USING $SUBMIT • • • • • • • • • • • 304
INITIATING JOB THROUGH CARD READER • • • • • • • • • • 305
DCL OPERATION. • • • • • • • • • • • ••••••• 306
STEPS IN IMAGE ACTIVATION AND TERMINATION. • • • • 307
IMAGE ACTIVATION • • • • • • • • • • • • • • • • • 308
IMAGE FILE MAPPED TO VIRTUAL ADDRESS SPACE • • • • 309
IMAGE HEADER • • • • • • • • • • • • • • • 310
IMAGE SECTION DESCRIPTOR • • • • • • • • • • • 311
KNOWN FI LE ENTRY, HEADER • • • • • • • • • 312
IMAGE START UP • • • • • • • • • • • • • • 313
EXIT SYSTEM SERVICE. • • • • • • • 314
TERMINATION HANDLERS • • • • • • • • • • • • • •• 315

ix

9 SYSTEM INITIALIZATION AND SHUTDOWN

INTRODUCTION • • • • • 319
OBJECTIVES • • • • • • • • • • • • • • • • • • 319
RESOURCES. • • • • • • • • • • • • • • • • 320

Reading. • • • • • • • • • • • •••••••• 320
Source Modules • • • • • • • • • • • • • • 320

TOPICS • • • • • • • • • • • • • • • • 321
VAX-11/780, 11/750, 11/730 CONSOLE DIFFERENCES • • 323

780 and 730. • • • • • • ••••••••••• 323
750. • . • • • • • . . • . . • ...••. 323

SYSTEM INITIALIZATION. • • • • • • •••••••• 324
SYSTEM INITIALIZATION SEQUENCE • • • • • • • • 325
INITIALIZATION PROGRAMS. • • • • • •••••• 326
PHYSICAL MEMORY DURING INITIALIZATION. • • •• 328
PHYSICAL MEMORY LAYOUT AFTER SYSBOOT ENDS. • • 329
TURNING ON MEMORY MANAGEMENT • • • 330
SYSINIT. • • • • • • • • • • • • • • • • • 331
STARTUP. • • • • • • • • • • • • • •••••• 332

Startup Process. • • • • • • • • • •••• 332
STARTUP.COM. • • • • • • • • • • • • • • • 332
SYSTARTUP.COM. • • • • • • • • • • • • • ••• 332

SYSBOOT AND SYSTEM PARAMETERS. • • • • • • • • •• 333
SYSGEN AND SYSTEM PARAMETERS • • • • • • • • • 334
VAX-11/780 PROCESSOR • • • • • • • • • • • • • •• 335
VAX-11/750 PROCESSOR • • • • • • • • • • • • • •• 336
VAX-11/730 PROCESSOR • • • • • • • • • •• 337
VAX FRONT PANELS • • • • • • • • • • • • • • • • • 338
SHUTDOWN OPERATIONS. • • • • • • • • • •••••• 340
SHUTDOWN PROCEDURES. • • • • • • • • • • • • • •• 341
AUTORESTARTING THE SYSTEM. • • • • • • • • • • • • • • 342
REQUIREMENTS FOR RECOVERY AFTER POWER-FAIL • • • • 343
APPENDIX • • • • • • • • • • • • . • • • • • • • • • • 345

FIGURES

1-1 Invoking System Code. • • • • • • • • • • • • 18
1-2 Example of Interrupt Servicing. • • • • • 20
1-3 Two Types of Priority • • • • • • • • • • • • • • 22
1-4 Access Modes and Components • • • • • • • • • • • • • 23
1-5 Location of Code and Data in Virtual Address Space. • 24
1-6 Entry Paths into VMS Kernel • • • • • • • • • 25
1-7 Three Types of System Components. • • • • • • • • • • 27
1-8 Hardware Clock Interrupt. • • • • • • • • • • 28
1-9 Periodic Check for Device Timeout • • • • • • • • • • 29
1-10 Periodic Wake of Swapper, Error Logger. • • • • • • • 30
1-11 System Event Reporting. • • • • • • • • • • • • • 31

x

1-12
1-13
1-14
1-15
1-16
1-17
1-18
1-19
1-20
1-21
1-22
1-23
1-24
1-25

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25

Page Fault. • • • • • • • • • • • • • • • 32
Data Transfer Using RMS • • • • • • • • • • • 33
File Manipulation Using RMS • • • • • • • • • 34
Data Transfer Using $QIO. • • • • 35
$QIO Sequence of Events • • • • • • • • • • • 36
DECnet Protocol Layers. • • • • • • • • • • • • • • • 37
DECnet Remote File Access (e.g., Copy). • •••• 38
DECnet Task-to-Task Communication • • • • • • 40
DECnet Performing Set Host Operation. • • • • • • 42
OPCOM, Error Logger • • • • • • • 45
Print Jobs. • • • • • • • • • • • • • • • • • • • 46
Batch Jobs. • • • • • • • • • • • 47
Terminal Input. • • • • • • • • • • • • • • • • • 48
Card Reader Input • • • • • • • • • • • • 49

Process Data Structures • • • • • • • • • • • 57
Software Process Control Block (PCB). • • • • 58
Process Header (PHD). • • • • • • • • • • • • • • 59
Hardware Process Control Block. • • • • • • • • • 61
Job Information Block • • • • • • • • 62
Virtual Address Space • • • • • • • • • • 63
S0 Virtual Address Space. • • • • • • • • • • • • 64
P0 Virtual Address Space. • • • • • • • • • • • • • • 66
Pl Virtual Address Space. • • • • • • • • 67

Processor Status Word • • • • • 78
• • • 79
• • • • • 8 0

• • • 8 2

Processor Status Longword • • •••
Hardware Context ••••••••••
Hardware Interrupts and SCB • • • •
Software Interrupts and SCB • • • •
Software Interrupt Requests • • • •

• • • • • • • 84
• • • • • 8 6

Fork Queue ••••••••••••••• • • • 87
Raising IPL to SYNCH. • • • •• • • • 8 9
Access Mode Transitions ••• • • • • • • 91
Exceptions and SCB. • • • • • • • • •
Exception and Interrupt Dispatching
Path to System Service. • • • • ••
Return from System Service ••••••
Nonprivileged System Service ••••
Path to RMS • • • • • • • • • • • •

• • • • • • • • 95
• • • • • 96
• • • 98

• • • • • • • • 99

Return from RMS • • • • • • • •
Path to User Written System Service ••••
Return from User Written System Service
Two Dispatchers • • • • • • • •

• • • • • 10 0
• • • • • 101
• • • • • 10 2
• • • • • 10 3
• • • • • 10 5
• • • • • 106

A Mutex • • • • • • • • • • • • • • 108
Dynamic Memory. • • • • • • • • • • • • • • • • • • • 110
Allocating Non-Paged Pool • • • • • • •••••• 111
ASTs. • • • • • • • • • • 113
AST Delivery Order. • • • • • • • • • 114
AST Delivery Sequence •••••••••••••••• 115

xi

3-26
3-27

4-1
4-2
4-3
4-4
4-5

5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21

6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19

Timer Queue Element • • • • • • • • ••
Clocks and Timer Services • • • • •••

Stack After Access Violation Bugcheck .
Stack After Page Fault Above IPL 2. . .
Stack After Reserved Operand Fault.
Stack After Machine Check in Kernel Mode.
Bugcheck Flow of Control.

116
• 117

. . . 134 . . . 135 . . . 136 137
. . 161

Process State Diagram • • • • • • • • 175
Process Wait State Diagram. • • • • • • • • • 176
Ways to Leave Current State • • • • • • • 177
Ways to Become Computable (Inswapped) • • • • • • 178
Inswapped to Outswapped Transitions • • • •••• 179
Ways to Become Computable (Outswapped). • • • • • 180
Queues. • 181
A State Implemented in Queues • • • • • • • • • • 182
Implementation of COM and COMO States • • • • 183
Example of Computable Queues. • • • • • • •••• 183
Wait State Listhead • • • • • • • • • •••• 184
Implementation of Wait States • • • • • • •••• 184
Implementation of CEF State • • • • • • • • • 185
Scheduling Fields in Software PCB • • • • •••• 186
Saving and Restoring CPU Registers. • •••• 187
Software Priorities and Priority Adjustments. 190
WSSIZE Variation Over Time. • • • • • •••• 193
Automatic Working Set Adjustment. • • • • • • • • • • 194
IOTA. • 195
Software Priority Levels of System Processes ••••• 196
Miscellaneous Resource Wait States (MWAIT). • • • 197

Address Translation • • • • • • • • • • • • • • • 205
Resolving Page Faults • • • • • • • • • • 206
Process Sections and Image File • • • • • 207
Image File and Process Header • • • • • • • • 208
Image Section Descriptor Formats. • • •••• 209
How PTEs, PSTEs Are Filled In • • • • • • 210
Page Tables Map Virtual Address Space • • •• 211
Data Structures Used by the Pager • • • • 212
Physical Address Space. • • • • • • • •••• 213
Virtual and Physical Memory • • • • • • • • • 214
PFN Database. • • • • • • • • • • • • •• 215
Process Header. • • • • • • • • • • • • • •••• 216
Working Set List. • • • • • • • • • • •••••• 217
Process Section Table • • • • • • • • • • • • • • 218
Process Section Table Entry • • • • • 219
Page File Control Block • • • • • • • • • • • • • 220
Different Forms of Page Table Entry • • • •• 221
Process PTEs Map to Global PTEs • • • • • • • 222
Relationship Among Global Section Data Structures •• 223

xii

6-20
6-21
6-22
6-23

6-24

6-25
6-26
6-27

6-28

6-29

6-30
6-31

6-32

6-33

6-34

6-35
6-36
6-37
6-38
6-39
6-40
6-41
6-42
6-43
6-44

7-1
7-2
7-3
7-4
7-5

7-6
7-7
7-8
7-9

7-10

7-11

Summary of the Pager ••••••••••••••••• 224
Initial Status of Process Read/Write Section Page •• 226
Adding Process Read/Write Section to Working Set ••• 227
Removing Modified Process Read/Write
Section Page from Working Set ••••
Moving Page from Modified Page List

• 228

to Free Page List • • • • • • • • • • • • • • 229
Removing Page From Free Page List • • 230
Initial Status of Process Copy-on-Reference Page ••• 231
Adding Process Copy-on-Reference Page
to Working Set •••••••••••••••
Removing Process Copy-on-Reference Section Page
From Working Set ••••••••••••••
Removing Process Copy-on-Reference Page

• 232

• 233

from Modified Page List • • • • • • • • • • • 234
Initial Status of Global Read/Write Section Page ••• 235
Adding Global Read/Write Section Page
to Working Set •••••••••••••
Initial Status of PTE of Second Process Mapping
the Same Global Section • • • • • • • •
Adding Global Read/Write Section Page
to Second Working Set • • • • • • • • •
Removing Global Read/Write Section Page
From Working Set. • • • • • • • • • • •

• 236

• 237

• 238

• 239
Removing Global Read/Write Section Page From List •
Program Sections (.PSECTs) •••••

• 240
• 243

Linker Clusters ••••••••••••••
Program Section Attributes GBL/LCL •••••
Hardware Checks • • • • • • • • • •
Virtual Address Space • • • • • • • ••
Page Table Mapping •••••••••••••
System Space Address Translation. • • •
Process Space Address Translation • • •
Virtual to Physical Address Translation

Swapper Main Loop •••••••••••
Expanding and Shrinking Working Sets ••
Overview of Swapper Functions •
Locating Disk Files for Swap. • • • • • ••
How Swapper's P0 Page Table Is Used
to Speed Swap I/O • • • • • • • • • • •
Swapper's Pseudo Page Tables ••••••••
Outswap - Working Set List Before Outswap Scan.
Outswap - Working Set List After Outswap Scan •
Outswap - Process Table Changes After Swapper's
Write Completes • • • • • • • • • • ••
Inswap - Working Set List and Swapper Map Before
Physical Page Allocation. • • • • • ••
Inswap - Working Set List and Swapper Map After
Physical Page Allocation. • • • • • ••

xiii

• 244
• 245
• 246
• 247
• 248

• • • 249
• • • 250

• 251

• 261
• 265
• 267
• 268

• 269
• 270
• 273
• 274

• 275

• 278

• 279

7-12
7-13

8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8
8-9
8-10
8-11
8-12
8-13
8-14
8-15
8-16
8-17
8-18

9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
9-9
9-10
9-11
9-12
9-13
9-14
9-15

Inswap - Working Set List and Rebuilt Page Tables •• 280
How Modified Page Writer Gathers Pages. • • • 281

Creation of PCB, JIB, and PQB
Relationships - PCBs and JIB.

• • • . • • • • • . 29 2
• • • • 293

PCB Vector ••••••••••••• • • • • • • • 29 4
PID and PCB, Sequence Vectors •
Swapper's Role in Process Creation.
PROCSTRT's Role in Process Creation •
Process Deletion •••••••••••••
Initiating Interactive Job ••••••••
Initiating Job Using $SUBMIT •••••
Initiating Job Through Card Reader ••
DCL Operation • • • • • • • • • • • •
Image File Mapped to Virtual Address Space ••
Image Header. • • • • • • • •••

• • 295
• • 296
• • 297

300
• • • • 30 3

• • 304
• • • • 30 5

306
309
310

• • 311 Image Section Descriptor.
Known File Entry, Header.
Image Startup • • • •

• • • . • • • • • . 312
• • • • • • • • • • 313

Exit System Service •
Termination Handlers •••••

• • • • • • • • • • • • 314
• • • • 315

System Initialization ••••••
System Initialization Sequence ••••••
Physical Memory During Initialization
Physical Memory After SYSBOOT Ends ••••
Turning on Memory Management •••••••
SYSBOOT and System Parameters ••
SYSGEN and System Parameters •••••••
VAX-11/780 Processor.
VAX-11/750 Processor. • • • •••
VAX-11/730 Processor. • • • •••••
VAX Front Panels. • • • • • •••••
Autorestarting the System ••••••
Sample VAX-11/782 Configuration • • •••
Secondary Processor States ••••
MP.EXE Loaded into Non-paged Pool ••••

xiv

324
• • • • 3 25
• • • • 328
• • • • 329

330
• • • • 333
• • • • 334
• • • • 335

336
• • • • 337
• • • • 338
• • • • 342

• • 346
• • 349
• • 352

1-1

2-1

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11

4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11

5-1

TABLES

Summary of System Components and Functions. 26

Functions of Pl Space 68

Keeping Track of CPU, Process State • • • • • 77
Handling and Uses of Interrupts • • • • • • • • • • • 81
Hardware Interrupts and IPL • • • • • • • • • • • 83
Software Interrupts and IPL • • • • • • • 85
Blocking Interrupts • • • • • • • • • • • • • 88
Executing Protected Code. • • • • • • • • • • • • • • 90
Differences Between Interrupts and Exceptions • • • • 94
Process Synchronization • • • • • • • • • • • • • 107
Rules for Selection of ASTs • • • • • • • • • • • 115
Function and Implementation of System Mechanisms ••• 118
Privilege Mask Locations. • • • • • • • • 124

Sample Bugchecks. • • • • • • • • • • • • 132
Environment Vs. Debugging Tools • • • 140
Examining Crash Dump on Current System. • • • 142
SDA Functions and Commands. • • • • • • • • • •• 143
SDA Commands Used to Display Information. • • • • 144
Symbols and Operators • • • • • • • • • • • • • • • • 145
Common Command Usage. • • • • • • • • • • • ••• 145
Comparison of DELTA with XDELTA ••••••••••• 152
DELTA and XDELTA Functions and Commands • • • 156
Console Commands. • • • • • • • • 158
PATCH Commands. • • • • • • • • • • • 159

Reasons for Working Set Size Variations • • 193

6-1 Where Memory Management Information Is Stored • • • • 212
6-2 Fields Pager Uses to Determine Location of Page ••• 221
6-3 Cluster Sizes and Where They Are Stored • • • •••• 242

7-1 Comparison of Paging and Swapping •••••••••• 260
7-2 Order of Search for Potential Outswap Candidates ••• 263
7-3 Selected Events that Cause the Swapper or Modified

Page Writer to Be Awakened •••••••••••••• 266
7-4 Rules for Scan of Working Set List on Outswap •• 272
7-5 Rules for Rebuilding the Working Set List and the

Process Page Tables at Inswap • • • • • • • ••• 276

8-1 Steps in Process Creation and Deletion. • •••• 291
8-2 Three Contexts Used in Process Creation ••••• 291
8-3 Steps in Process Creation and Deletion. • •••• 298
8-4 Process Types and Creators •••••••••••••• 301
8-5 Steps in Image Activation and Termination •••••• 307

xv

8-6

9-1
9-2
9-3
9-4
9-5

3-1
3-2
3-3

4-1
4-2
4-3
4-4
4-5

5-1

7-1

How Termination Handlers Are Set Up for
Different Access Modes. • • ••••••

Initialization Programs •••
Switches on 780, 730, 750 ••••
Shutdown Operations • • • • • • •
Shutdown Procedures • • • • • • • • •
System Locations and the Resulting MP

.
Locations •

• 315

• 326
• 339
• 340
• 341

353

EXAMPLES

IPL Control Macros ••••••••
Argument Probing Macros • • • • •
Privilege Checking Macros • • ••

Sample Console Output After Bugcheck.
Examining an Active System. • • •
Examining a Crash Dump File • • •
The CHMK Program, Run With DELTA.
Sample Crash Dump Analysis ••

Scheduler (SCHED.MAR)

Swapper - Main Loop •

xvi

• 121
• 122
• 123

• 133
• 146
• 151
• 155
• 164

• 188

• 283

STUDENT GUIDE

STUDENT GUIDE

INTRODUCTION
The VAX/VMS Operating System Internals course is intended for

the student who requires an extensive understanding of the
components, structures, and mechanisms contained in the VAX/VMS
operating system. It is also an aid for the student who will go
on to examine and analyze VAX/VMS source code.

This course provides a discussion of the interrelationships
among the logic or code, the system data structures, and the
communication/synchronization techniques used in major sections of
the operating system.

Technical background for selected system
application programmer topics is also provided.
information include:

management and
Examples of this

• The implications of altering selected system parameter
("tuning" or "SYSGEN" parameter) values

• The implications of granting privileges, quotas, and
priorities

• How selected system services perform requested actions.

Information is provided to
system-related activities such as:

assist in subsequent

• Writing privileged utilities or programs that access
protected data structures

• Using system tools (e.g., the system map, the system dump
analyzer, and the MONITOR program) to examine a running
system or a system crash.

This course concentrates on the software components included
in (and the data structures defined by) the linked system image.
Associated system processes, utilities, and other programs are
discussed in much less detail. Specifically, the implementation
of I/O and the method of writing a device driver for VAX/VMS are
not discussed in this course.

3

STUDENT GUIDE

COURSE GOALS

1. Describe the contents, use, and interrelationship of
selected VAX/VMS components {e.g., job controller,
ancillary control processes, and symbionts), data
structures {e.g., SCB, PCB, JIB, PHO, and Pl space), and
mechanisms {e.g., synchronization techniques, change mode
dispatching, exceptions and interrupts.)

2. Describe the similarities and differences of
context and process context.

system

3. Discuss programming considerations and system management
alternatives in such problems as:

assigning priorities in a multi-process application,

controlling paging and swapping behavior for a process
or an entire system, and

writing and installing a site-specific system service.

4. Use system-supplied debugging tools and utilities {e.g.,
SDA and XDELTA) to examine crash dumps and to observe a
running system.

5. Describe the data structures and software components used
when a process is created or deleted, an image is
activated and terminated, and the operating system is
initialized.

6. Describe how the following interrupt service routines are
implemented:

AST delivery

Scheduling

Hardware clock

Software timers

4

STUDENT GUIDE

RESOURCES
1. VAX/VMS Internals and Data Structures Manuals

2. VAX/VMS System Dump Analyzer Reference Manual

3. VAX/VMS Operating System Internals Supplemental Listings

5

STUDENT GUIDE

COURSE MAP

TK-9007

6

STUDENT GUIDE

COURSE OUTLINE

I. System Components

A. How VMS implements the functions of an operating system

B. How, and when, operating system code is invoked

c. Interrupts and priority levels

D. Location of code and data in virtual address space

E. Examples of flows for:

1. Hardware clock interrupt
2. System event completion
3. Page fault
4. RMS request for I/O
5. $QIO request for I/O
6. DECNET communication

F. Examples of System processes

1. Operator communication (OPCOM}
2. Error logger (ERRFMT}
3. Job controller (JOB CONTROL}
4. Symbionts (PRTSYMBn)

I I. The Process

A. Overview - process data structures

1. Software context information
2. Hardware context information

B. Overview - virtual address space

1. S0 space (operating system code and data}
2. P0 space (user image code and data}
3. Pl space (command language interpreter, process data)

7

STUDENT GUIDE

III. System Mechanisms

A. Processor and process state

B. Interrupts

C. Access modes and exceptions

D. Synchronization

IV. Debugging Tools

A. Crash dumps and bugchecks

B. The system map file (SYS.MAP)

c. The system dump analyzer (SDA)

D. Other debugging tools (DELTA, XDELTA, CCL, PATCH)

V. Scheduling

A. Process states

1. What they are (current, computable, wait)
2. How defined
3. How they are related

B. How process states are implemented in data structures

1. Queues
2. Process data structures

C. Operating system code that implements process
changes

1. Context switch (SCHED.MAR)
2. Result of system event (RSE.MAR)

D. Steps at quantum end

1. Automatic working set adjustment

E. Boosting software priority of normal processes

8

state

STUDENT GUIDE

VI. Paging

A. Linker action in creating executable files

B. Image activator for setting up process header

C. Invoking pager routine

D. Memory management data structures

E. Following a process page faulted in and out of a process

F. Following a global page faulted in and out of a process

VII. Swapping

A. Comparison of paging and swapping

B. Swapper functions

1. Maintain free page count
• Write modified pages to paging file
• Shrink working sets

2. Outswap - rules and example
3. Inswap - rules and example

C. Selected events that wake swapper

D. Locating disk files for swap

E. How swapper's P0 page table is used to speed disk I/O

9

STUDENT GUIDE

VIII. Process Creation and Deletion

A. Process creation and deletion

1. Roles of operating system programs
2. Creation of process data structures
3. Deletion sequence

B. Initiating jobs

1. Interactive
2. Batch

c. DCL structure and function

D. Image activation and rundown

1. Mapping image file
2. Image startup
3. Termination handlers

IX. System Initialization and Shutdown

A. System initialization sequence

B. Functions of initialization programs

c. How memory is structured and loaded

D. Startup command procedures

E. Hardware differences in the 780, 750, and 730 and how they
affect initialization

F. Front panel switches

G. Shutdown procedures and their functions

H. Auto-restart sequence

I. Power-fail recovery

10

SYSTEM COMPONENTS

SYSTEM COMPONENTS

INTRODUCTION
This module introduces the major software components supplied

in or with the VAX/VMS operating system. As an overview of the
operating structure, it gives a review of facilities introduced in
previous VAX/VMS courses. New terms and logic components are
introduced, but detailed discussion of them is generally deferred
until later modules of this course.

This module does not provide a complete catalog of all
facilities, modules, and programs in the operating system. It
provides an understanding of the relationships and coordination
among the various software components.

Software components may be classified by several attributes,
including:

• Implementation form (service routine, procedure, image, or
process)

• "Closeness" to the linked system image (part of SYS.EXE,
linked with system symbol table, privileged known image,
and so forth)

• Access mode (kernel, executive, supervisor, or user)

• Address region (program, control or system)

• Memory residence characteristics (can be paged, swapped or
shared).

13

SYSTEM COMPONENTS

OBJECTIVES
Upon completion of this module, for each selected VAX/VMS

software component, you will be able to briefly describe:

1. Its primary function

2. Its implementation
procedure; in which
access modes it uses)

(process, service routine, or
address region it resides; what

3. The method or
communication.

methods by which it accomplishes

RESOURCES

Reading

• VAX/VMS Internals and Data Structures Manual, overview

Additional Suggested Reading

• VAX/VMS Internals and Data Structures Manual, Chapters on
I/O System Services, interactive and batch jobs, and
miscellaneous system services.

Source Modules

Facility Name

SYS
DCL,MCR,CLIUTL
RSX
DEBUG
RTL
RMS
FllA,FllB,MTAACP
REM, NETACP
JOBCTL,INPSMB,PRTSMB
OP COM
ERRFMT

14

SYSTEM COMPONENTS

TOPICS
I. How VMS Implements the Functions of an Operating System

II. How, and When, Operating System Code Is Invoked

III. Interrupts and Priority Levels

IV. Location of Code and Data in Virtual Address Space

v. Examples of Flows for:

A. Hardware clock interrupt

B. System event completion

c. Page fault

D. RMS request for I/O

E. $QIO request for I/O

F. DECNET communication

VI. Examples of System Processes

A. Operator Communication (OPCOM)

B. Error logger (ERRFMT)

C. Job controller (JOB_CONTROL)

D. Symbionts (PRTSYMBn)

15

SYSTEM COMPONENTS

THREE MAIN PARTS OF VMS

Scheduling and Process Control

Functions

(1, Pl. 3)

• Assign processor to computable process with
priority

• Attend to process state transitions
• Facilitate synchronization of processes
• Perform checks and actions at timed intervals

Code and Data

• Scheduler interrupt service routine
• Report system event code
• Hardware clock and software timer interrupt

routines
• System services ($WAKE)

Memory Management

Functions

• Translate virtual addresses to physical addresses
• Distribute physical memory among processes

highest

service

• Protect process information from unauthorized access
• Allow selective sharing of information between processes

Code and Data

• Pager fault service routine and swapper process
• PFN database, page tables
• System services ($CRETVA)

1/0 Subsystem

Functions

• Read/write devices on behalf of software requests
• Service interrupts from devices
• Log errors and device timeouts

Code and Data

• Device drivers, device independent routines
• I/O data structures
• System Services ($QIO)

17

SYSTEM COMPONENTS

INVOKING SYSTEM CODE

EVENT -•9 TABLE -•9 EXECUTED CODE

PAGE
FAULT

INTERRUPT

•
•
•

POINTER TO
PAGE FAULT

CODE

II ._ POINTER TO
SCHEDULER

CODE

•
•
•

Figure 1-1 Invoking System Code

--

--

• VAX/VMS driven by interrupts and exceptions

.,

PAGE
FAULT
CODE

SCHEDULER
CODE

• On interrupt or exception, hardware vectors to correct
code

• Example, page fault

Page fault occurs
Hardware vectors through table
Page fault code executes

18

SYSTEM COMPONENTS

HARDWARE MAINTAINED PRIORITY LEVELS

• Processor is always operating at one of 32 possible
hardware maintained priority levels (0 - 31).

Operating at a higher level causes hardware to block
interrupts at the same and lower levels from being
serviced.

• Hardware determines which code will execute after an
interrupt occurs.

• How to get into and out of different levels:

1. Interrupt

Into -

If

Hardware requests interrupt (for example,
from a terminal). Levels 16 through 31.
Software requests interrupt (uses MTPR
instruction). Levels 0 through 15.

.)x~f''c""Dut of - Use REI instruction.

2. Block Interrupt

Into - Software raises priority level (uses MTPR).
Out of - Software lowers priority level (uses MTPR).

• These hardware maintained priority levels are called
Interrupt Priority Levels (IPLs).

19

SYSTEM COMPONENTS

INTERRUPT SERVICING SEQUENCE

• CODE User program being executed.

PC = address of next
instruction to be executed.

PC---t:M 1 PSL = general status

•
•

•

IPL

PSL

PC

PSL

- ADDRESS e - ----

information •

Interrupt occurs. Associated
IPL must be greater than
current IPL in PSL, else
interrupt not serviced •

Hardware saves current PC and
PSL on stack.

Hardware indexes into table of
service routine addresses to
get new PC, and builds new PSL.

NEW PC

SYSTEM CONTROL BLOCK

TK-8949

Figure 1-2 Example of Interrupt Servicing
(Sheet 1 of 2)

20

SYSTEM COMPONENTS

• NEW~~-..:--------~

PC 1 Interrupt service
executes at new IPL.

routine

0

At end, interrupt dismissed
with REI istruction (making

REI sure old PC and PSL are at top
INTERRUPT SERVICE of stack)·
ROUTINE

CODE REI

Pops PC, PSL from stack

Checks PSL
PC----11:~

l
TK-8948

Moves PC,
registers

PSL to

Transfers control to PC

CPU

Interrupted program continues
execution.

Figure 1-2 Example of Interrupt Servicing
(Sheet 2 of 2)

21

SYSTEM COMPONENTS

TWO TYPES OF PRIORITY

IPL
31

!
16

15

requested by
hardware

requested by
software

Hardware
Maintained

Software
Maintained

Figure 1-3 Two Types of Priority

22

15

0

Normal
process

SYSTEM COMPONENTS

ACCESS MODES AND COMPONENTS

Runtime
Library

Program
Development

Tools

RMS

1/0
SCHEDULING

MEMORY
MANAGEMENT

Figure 1-4 Access Modes and Components

User
Images

1. The kernel of the operating system (shown here in the
innermost circle) is protected from the user by several
layers of access protection.

2. The user normally accesses this protected code and data
through the Command Language Interpreter (CL!), Record
Management Services (RMS), and the system services.

3. System services are routines in the operating system
kernel which may be called by the user via a well defined
interface.

23

SYSTEM COMPONENTS

LOCATION OF CODE AND DATA

PER
PROCESS
ADDRESSES

SYSTEM
ADDRESSES

Process A

NATIVE MODE IMAGE

RUN-TIME LIBRARY

DEBUGGER CODE

Process B

COMPATIBILITY
MODE IMAGE

APPLICATION MIGRATION
EXECUTIVE (NATIVE)

PROGRAM REGION (PO)

COMMAND LANGUAGE
INTERPRETER

DATA -- SYMBOL TABLE
CODE

DEBUGGER DATA -
SYMBOL TABLE

COMMAND LANGUAGE
INTERPRETER

DATA -- SYMBOL TABLE -
CODE

CONTROL REGION (P 1)

SYSTEM SERVICES

RECORD MANAGEMENT SERVICES

SYSTEM REGION (SO)

Figure 1-5 Location of Code and Data in
Virtual Address Space

1. Images running within processes use several different
types of software components. Many of these components
are shareable sections, shareable images, or system code.
P0 space (the program region) and Pl space (the control
region) are mapped differently for native and
compatibility mode images.

2. P0 space is where user's code and data are mapped.

3. Pl space is where process-specific information is stored
by the operating system.

4. S0 space is where the operating system resides. One copy
of the operating system is shared by all processes.

24

SYSTEM COMPONENTS

ENTRY PATHS INTO VMS KERNEL

Translation - not - Valid
Fault
(Page Fault)

Rescheduling
Software Interrupt

1PL3

Memory
Management

•Page Fault
Handler

I
Hardware Clock
Interrupt l n 2.. 4

External Device IPL <t) - 2 3 i Hardware Interrupts

Device Driver {'-'2'fR'3 PcJ
Fork Processing J
Software Interrupts

1:.PL ~-II I
.....-- 1/0 Postprocessing

Software Interrupt

~

\
Software Timer ?
Interrupt J:f L

Tf>L j

AST Delivery
Software Interrupt

I PL <.

Figure 1-6 Entry Paths into VMS Kernel

Memory Management

• Brings virtual pages into memory

Process and Time Management

• Saves and restores context of process
• Updates system time
• Checks timer queue entries (TQES), quantum end
• Causes events to be processed

I/O Subsystem

• Reads/writes device
• Finishes I/O processing

25

SYSTEM COMPONENTS

Table 1-1 Summary of System Components and Functions

Function System Component

Assign CPU to highest priority
computable process

Move working set between disk
and memory

Move pages from disk to memory

Update system clock and quantum
field, check for servicing at
intervals

Perform servicing at intervals

• check for quantum end
• cause events to be posted
• check device timeout
• wake swapper and error logger

Handle requests to/replies from
operator

Write errors to error log file

Maintain volume structures for
driver

Create processes for print jobs,
batch jobs, interactive jobs

Control devices, service device
interrupts, check for and report
device errors

Handle printing of files

Handle process state transitions
resulting from event completion

26

SCHEDULER

SWAPPER

PAGER

HARDWARE CLOCK ISR

SOFTWARE TIMER ISR

OPCOM

ERRFMT

ANCILLARY CONTROL
PROCESS

JOB CONTROLLER

DRIVERS

PRINT SYMBIONTS

REPORT SYSTEM EVENT

SYSTEM COMPONENTS

THREE TYPES OF SYSTEM COMPONENTS

THREE TYPES OF SYSTEM COMPONENTS

PROCESSES:

ACP ..._ ____ Jo_s __ c_o_N_T_Ro __ L_LE_R ____ I I OPCOM

SWAPPER ERRFMT

SYMBIONTS

EXCEPTION AND INTERRUPT SERVICE ROUTINES:

SCHEDULER PAGER DRIVERS

HARDWARE CLOCK

SOFTWARE TIMER

ROUTINES:

REPORT SYSTEM EVENT

SYSTEM SERVICES

TK-8946

Figure 1-7 Three Types of System Components

27

SYSTEM COMPONENTS

HARDWARE CLOCK INTERRUPT

Process A Process B Process C

Per Process
Space

Process
Context

System
Space

Process
Context

System
Space

System
Context

DEVICE TIMEOUT
JSB
IPL 20-23

Figure 1-8 Hardware Clock Interrupt

0 Clock
Updates system time and quantum field
Checks first timer queue ·entry

0 Timer
Checks for quantum end
Causes events to be processed

t» Report system event
Changes process state
May request scheduler interrupt

0 Scheduler
Current <----> Computable

0 Swapper
Inswaps computable process

0 Scheduled user program runs

28

®

CONTEXT SWITCH
REI

SYSTEM COMPONENTS

PERIODIC CHECK FOR DEVICE TIMEOUT

Process A

Per Process
Space

Process
Context

System
Space

Process
Context

System
Space

System
Context

SWAPPER

DEVICE
DRIVER

HARDWARE CLOCK
IPL 24

(j)

Process B

DEVICE TIMEOUT @
JSB
IPL 20-23

CLOCK
INTERRUPT

SERVICE
ROUTINE

Process C

USER
PROGRAM

CONTEXT SWITCH
REI

Figure 1-9 Periodic Check for Device Timeout

• Hardware clock interrupt

1.)JsB ~;4'~·
2).MJ'~) ~~&L--1~
3,)~ ~.
'f) VC8 ;(1"-u4
5.J~ ... ~
~~ Pi~SVJA.J

• Once every second, a timer queue entry becomes due which
causes a system subroutine to execute.

• This system subroutine checks for device timeouts, calls
drivers to handle timeouts.

29

SYSTEM COMPONENTS

PERIODIC WAKE OF SWAPPER, ERROR LOGGER

Process A

Per Process
Space

Process
Context

System
Space ·

Process
Context

System
Space

System
Context

SWAPPER

DEVICE
DRIVER

HARDWARE CLOCK
IPL 24

Process B

DEVICE TIMEOUT
JSB
IPL 20-23

CLOCK
INTERRUPT

SERVICE
ROUTINE

Process C

USER
PROGRAM

CONTEXT SWll
REI

REPORT
SYSTEM
EVENT

Figure 1-10 Periodic Wake of Swapper, Error Logger

; $cH1 c.1t'!!E

~
• The same system subroutine may wake the swapper process

and the error logger processes.

• Scheduler interrupt is requested.

• Swapper and error logger will event~ally run.

30

SYSTEM COMPONENTS

SYSTEM EVENT REPORTING

Per Process
Space

Process
Context

System
Space

Process
Context

System
Space

System
Context

Process A

USER
PROGRAM A

PAGER

TIMER
1/0 COMPLEJION
SET EVENT FLAG
WAKE
RESUME

Process B

REPORT
SYSTEM
EVENT

Figure 1-11 System Event Reporting

31

Process C

SYSTEM COMPONENTS

PAGE FAULT

Process A Process B

Per Process
Space

Process
Context

System
Space

Process
Context

System
Space

System
Context

USER
PROGRAM A

TRANSLATION
NOT VALID
FAULT

(j)

1/0
REQUEST

I/ 0 COMPLETION

USER
PROGRAM B

@
REPORT
SYSTEM
EVENT

Figure 1-12 Page Fault

32

Process C

SWAPPER
CODE

SCHEDULER
INTERRUPT

SERVICE
ROUTINE

SYSTEM COMPONENTS

DAT A TRANSFER USING RMS

Per Process
Space

Process
Context

System
Space

Process
Context

System
Space

System
Context

Process A

$010
SYSTEM
SERVICE

FDT
ROUTINE

Figure 1-13 Data Transfer Using RMS

Process B

ACP

When record formats are defined within disk blocks (or
clusters of blocks), then the Record Management Services (VAX-11
RMS) are used.

33

SYSTEM COMPONENTS

FILE MANIPULATION USING RMS

Per Process
Space

Process
Context

System
Space

Process
Context

System
Space

System
Context

Process A

Figure 1-14 File Manipulation Using RMS

Process B

When a file structure is imposed on a volume, the following
operations require the intervention of Ancillary Control Processes
(ACPs) to interpret or manipulate the file structure.

• •
•
•

File open
File close
File delete
Window turn (for read or write)

"~~··-~1fwd

34

SYSTEM COMPONENTS

DAT A TRANSFER USING $QIO

Per Process
Space

Process
Context

System
Space

Process
Context

System
Space

System
Context

Process

Figure 1-15
~~

Data Transfer Using $QIO

35

DEVICE
INTERRUPT
IPL 20· 23

SYSTEM COMPONENTS

$010 SEQUENCE OF EVENTS

YES

YES

USER
ISSUES
$OIO

$010 CHECKS
DEVICE INDEPENDENT
PARAMETERS

FDT CHECKS
DEVICE DEPENDENT
PARAMETERS

RETURN WITH
ERROR MESSAGE

NO

DRIVER REQUESTS
DEVICE ACTIVITY

DEVICE INTERRUPTS
CPU IPL 20-23

INTERRUPT
SERVICE ROUTINE
IPL 20-23

DRIVER DOES
FURTHER PROCESSING
IPL 8-11

DEVICE INDEPENDENT
PROCESSING
IPL 4

AST ROUTINE
INVOKED
IPL 2

USER
CONTINUES
EXECUTING

TK-8968

Figure 1-16 $QIO Sequence of Events

36

SYSTEM COMPONENTS

INTRODUCTION TO DECnet

DECnet Protocols

+--------+
!DATA I
+--------+

+---+--------+
IDAPI I
+---+--------+

+---+---+--------+
INSPI I I
+---+---+--------+

+-----+---+---+--------+
I TRANS I I I I
+-----+---+---+--------+

+-----+-----+---+---+--------+---+
IDDCMPI I I I ICRCI
+-----+-----+---+---+--------+---+

Data in the remote file

Handled by DAP and FAL for
data transfer

Handled by NETDRIVER and NETACP
for data transfer via logical
link

Handled by NETDRIVER and NETACP
to determine routing

Handled by XMDRIVER and DMC/DMR
hardware to detect and retransmit
on-line noise error

Figure 1-17 DECnet Protocol Layers

37

SYSTEM COMPONENTS

DECnet REMOTE FILE ACCESS

LOCAL(SOURCE)NODE REMOTE(TARGET)NODE
USER LEVEL

I I
USER LEVEL

I F 11 ACP F 11 ACP I MTAACP MTAACP

I I
NORMAL I I

USER RMS • I ·B RMS
TASK

I I E.G .. OAP
DCL COMMANDS I
GET.PUT.OPEN

I x x N • • • E I M M T

I
D D D R R
I I R

SOPHISTICATED
I NETACP v v NETACP I

USER E E v
E

TASK I
R R R TARGET

E.G ..
I l USER

$010 TASK
SASSIGN
SDASSGN

R
T

R T
E ... D

PROCESS
M _RT An:
A R

RTPAD c I
p v

I E
R

I
I

Figure 1-18 DECnet Remote File Access (e.g., Copy)

38

SYSTEM COMPONENTS

REMOTE FILE ACCESS-DATA FLOW

Setting Up Logical Link

On source node

1. User issues DCL command:

TYPE NODEB"NAME PASSWORD"::DISK$:[DIRECTORY]FILENAME.EXT

2. RMS detects ::, sets up logical link with process FAL on
NOD EB

3. RMS issues internal QIO to NETDRIVER.

4. NETDRIVER passes the I/O request to NETACP, wakes NETACP.

s. NETACP sets up data structures to support the logical
link.

6. NETDRIVER builds packet and issues internal QIO to
XMDRIVER.

7. XMDRIVER sends packet via DMC/DMR on physical line.

On remote node

1. XMDRIVER receives packet, passes to NETDRIVER.

2. NETDRIVER passes packet to NETACP; sends Connect
Acknowledge back to source node.

3. NETACP sets up data structures, handles process creation
for FAL.

Data Transfer Within Logical Link

1. Logical link has been established to FAL, which issues
requests to RMS on remote node and sends packets back via
NETDRIVER.

2. Protocol headers are added to packet at source and removed
from packet at remote node.

39

SYSTEM COMPONENTS

DECnet TASK-TO-TASK COMMUNICATION

LOCAL(SOURCE)NODE REMOTE(TARGET)NODE
USER LEVEL

I
USER LEVEL

F11 ACP F 11 ACP I
MTAACP MTAACP

I
NORMAL I

USER RMS • I ·B RMS
TASK

I I E.G .. OAP
DCL COMMANDS I
GET.PUT.OPEN

I x x N

I • .. • E M M T

I
D D D R R
I I R

SOPHISTIC A TED

I NETACP v I v NETACP I

USER E E v
E

TASK I
R

I
R R TARGET

E.G ..

I I l USER
SOIO TASK

SASSIGN I I
SDASSGN

I I
I

R

I R
T
T

I E .. D
PROCESS

M _RT An:
A R

RT PAD I c I
p v

I I E
R

I I
I I

Figure 1-19 DECnet Task-to-Task Communication

40

SYSTEM COMPONENTS

TASK-TO-TASK COMMUNICATION DATA FLOW

1. For example, on the source node, the user issues:

$DEF XXX NODEB"""USERID PASSWORD"""::"""TASK=YYY"""

and in the program:

OPEN (NAME=XXX ••••••••••••••)

2. The OPEN command will be passed to RMS.

3. RMS checks the translation and will set up a logical link
with the remote program YYY.

4. The procedure is similar to remote file access with the
following differences:

a. The command procedure YYY.COM must reside on the
directory of USERID on NODEB (SYS$LOGIN).

b. The remote program will use the logical name SYS$NET
to accept connection.

e.g., OPEN (NAME=SYS$NET .•••••.•••••••)

c. The two programs must cooperate. For example, when
one program issues a Read, the other issues a Write.

5. It is possible for a sophisticated user task to bypass
RMS, by issuing QIO's directly to the NETDRIVER.

41

SYSTEM COMPONENTS

DECnet PERFORMING SET HOST OPERATION

LOCAL(SOURCE)NODE
USER LEVEL

NORMAL
USER
TASK
E.G ..

DCL COMMANDS
GET.PUT.OPEN

SOPHISTICA TEO
USER
TASK
E.G ..
SQIO

SASSIGN
SDASSGN

RT PAD

I
I
I
I
I
I
I
I

I
I
I

F11 ACP
MTAACP

RMS

OAP

.. x x
M M ..
0 D
R R
I I
v I v
E E
R

I
R

I
I
I
I
I
I
I
I

REMOTE(TARGET)NODE

I
USER LEVE

F 11 ACP I MTAACP
I
I

RMS .. I ~G
I

N .. E
T
D
R

NETACP I
v
E
R TARGET

! USER
TASK

R
R

T
T

E .. D
PROCESS

M _RT An:
A R
c I
p v

E
R

Figure 1-20 Performing Set Host Operation

42

SYSTEM COMPONENTS

SET HOST DATA FLOW

1. Similar to task-to-task communication with the following
differences:

a. The user task in source node is RTPAD.
types 'SET HOST', RTPAD is initiated.

When user

b. A logical link is set up with REMACP. When the
connection is established, REMACP creates an RT device
and initializes it.

c. The request from the user task on the source node is
first given to REMACP via logical link. REMACP then
gives it to RTTDRIVER. RTTDRIVER passes the request
to VMS as if the request comes from a real terminal.

d. The output from VMS goes directly from RTTDRIVER to
NETDRIVER. The information is then transferred via
the logical link to RTPAD on the source node.

2. REMACP is started at network startup time. It runs as a
detached process and can handle more than one logical
link. Each logical link will be associated with a process
RTAn where n can go up to 15 by default.

43

SYSTEM COMPONENTS

DECnet Software Components

RMS

• Interprets command; issues internal QIO to NETDRIVER.

DAP

• Handles the protocol exchanges for file transfer

NETDRIVER and NETACP

• Handle the protocol exchanges for

NSP (to get to correct task)
Transport (to get to correct node)

• NETDRIVER handles the time critical functions (e.g.,
transmit or receiver data).

• NETACP handles the non-time critical functions (e.g.,
setting up logical link).

XMDRIVER

FAL

• Handles the DMC/DMR hardware which detects line noise
errors and retransmits.

• Access files on remote system.

44

SYSTEM COMPONENTS

OPCOM,ERRORLOGGER

Process A Process B

PER PROCESS
SPACE
PROCESS
CONTEXT

SYSTEM
SPACE
PROCESS
CONTEXT

SYSTEM
SPACE
SYSTEM
CONTEXT

OPCOM Process

Figure 1-21 OPCOM, Error Logger

• Handles requests to and responses from
operator.

Error Logger

Process C

ERROR
MESSAGE
BUFFER

DEVICE ERROR 4 ,,

the system

• Has buffers in memory in which detected errors are
recorded

• Writes to the error log file.

45

SYSTEM COMPONENTS

PRINT JOBS

A. LIS

I
SPRINT A I

I
I

G) I

PROCESS

..L
JOB CONTROLLER

Figure

46

J_

LINE PRINTER

@

PRINT
SYMBIONT

®

SYMBIONT

BATCH JOBS

$SUBMIT A

PROCESS

I
I
I
I

CD I

J_

SYSTEM COMPONENTS

A.COM

JOB CONTROLLER

Figure 1-23 Batch Jobs

47

I

_l

BATCH
JOB

IMAGE

BATCH PROCESS

SYSTEM COMPONENTS

TERMINAL INPUT

I ® I
I I IMAGE

I
I ($CREPRC)

I

@ I I ®

SERVICE ROUTINE
_L

JOB CONTROLLER
.l_

PROCESS

Figure 1-24 Terminal Input

48

CARD READER INPUT

CARO
READER
DRIVER

I
I
I
I

®I

SERVICE ROUTINE
j_

SYSTEM COMPONENTS

JOB CONTROLLER

@

($CREPRC)
I

j_

Figure 1-25 Card Reader Input

49

®

PROCESS

THE PROCESS

THE PROCESS

INTRODUCTION
This module details a familiar part of VAX/VMS: the process.

The definition of a process is fundamental to understanding the
operating system. The process is the representation of each user
of the system. Several of the software components of the system
itself are also processes. (See the "System Components" module.)

The process is the basic scheduling entity of VAX/VMS. A
group of one or more processes forms the basic accounting entity
of VAX/VMS: the job. Some features and resources are only
defined for each process, while other resources and features are
shared among all the processes in a job. Three major classes of
attributes and resources can define a process and the operations
performed within it.

• Hardware process context

• Software process context

• Virtual address space (and associated memory management
data).

Hardware context includes the contents of the hardware
processor registers that contain perprocess values (separate from
system-wide ones). Examples of these registers include:

• The general purpose registers (R0 through Rll)

• The frame pointer (FP), argument pointer (AP),
perprocess stack pointers (KSP,ESP,SSP,USP),
current stack pointer (SP)

the four
and the

• The processor status longword (PSL) and the program
counter (PC)

• Hardware registers that define the state of the AST queue
and the locations and sizes of the page tables of the
process.

53

THE PROCESS

Software context defines the resources and attributes used by
the VAX/VMS software but not used by the VAX-11 hardware.
Examples of this type of information include:

• Resource quotas, privileges, and accumulated accounting
values

• Scheduling or software priority

• Link fields to operating system data structures and queues

• Identification fields such as username, UIC, process name,
and process ID.

Virtual address space includes the mapping information for
and the contents of the perprocess address regions, the program
(or P0) region and the control (or Pl) region. In addition, all
processes implicitly share the system region. Software executing
in any of the three address regions, but using the hardware and
software context of a process is said to be "executing in the
context of the process." Software components using only system
address space and the interrupt stack execute in system context
(outside process context) • Examples inlcude · interrupt service
routines and device drivers.

OBJECTIVES
• Describe the similarities and differences of

context and process context.
system

• Using the System Dump Analyzer on either a crash dump file
or the current system, examine and interpret the software
process control block, process_ header, job information
block, and control region of a specified process.

• Describe how the various process data structures are used,
which of the structures are modified (and when this
occurs), and which of the structures may be reset to
default or initial values (and when this occurs).

• Discuss the SYSGEN
characteristics,
parameters.

parameters that
and the effects

54

relate to process
of altering those

THE PROCESS

RESOURCES
Reading

• VAX/VMS Internals and Data Structures Manual, overview,
chapters on use and listing of map files, and naming
conventions. /

ir

Additional Suggested Reading ~~ \.I
h ~,~1 J

• VAX/VMS Internals and Data Structures Manual, chapte~s on
executive data areas, data structure definitions, and size
of system virtual address space.

• VAX/VMS System Dump Analyzer Reference Manual

Source Modules

Facility Name

SYS

Module Name

SHELL
SYSIMGACT
SYSBOOT
$CHED
PAGEFAULT
SWAPPER

SYS.MAP

55

THE PROCESS

TOPICS
I. Overview - Process Data Structures

A. Software context information

B. Hardware context information

II. Overview - Virtual Address Space

A. S0 space (operating system code and data)

B. P0 space (user image code and data)

c. Pl space (command language interpreter, process data).

56

THE PROCESS

PROCESS DATA STRUCTURES OVERVIEW

! "·. j!6t-pce,~~r~-~--.

50 SPACf.E.,,,J ,·',, .. f~ 'fi~'tt ~
~'lr'·\, -----

_,,, r~~ , i"t I Q\ ·-"· I&-; :P' ,,~, ."q/,~ 14 "'F' ~<kl,:fi-:zr-:

JOB
INFORMATION

BLOCK
(JIB)

SOFTWARE
PROCESS
CONTROL

BLOCK
(PCB)

PO PAGE
TABLE

~
t

P1 PAGE
TABLE

PROCESS
HEADER (PHO)

Figure 2-1 Process Data Structures

/
/

/

-- _____ ..
HARDWARE

PROCESS
CONTROL

BLOCK

• Software Process Control
specific data that must
process outswapped (i.e.,
process header).

Block (PCB) Holds process
always be available, even if
process state, pointer to

• Process Header (PHD) Contains process specific data
needed only when process is memory resident (i.e., P0 and
Pl page tables).

-
• Hardware Process Control Block - Contains saved contents

of general purpose and memory management registers.

• Job Information Block (JIB) - Keeps track of resources for
a detached process and all its subprocesses.

57

THE PROCESS

SOFTWARE PROCESS CONTROL BLOCK (PCB)

--~
STATE QUEUE FORWARD LINK= ---

_;STATE QUEUE BACKWARD LINK

I TYPE I SIZE
s

SCHEDULING
INFORMATION

R

RESOURCES

p

POINTERS TO
OTHER DATA
STRUCTURES

L

LISTHEADS

NAMES & PRIVILEGES N

• VMS standard queue
header

• Size of nonpaged
pool allocation

cheduling Information
• Priority
• Status

Resident/outswapped
Swap/noswap

• State

esources
• I/O limits
• Subprocess count

ointers to:
• Process header
• Hardware PCB
• JIB
• Event flag cluster

istheads
• AST queue
• Lock queue

ames and Privileges
• Process ID (PID)
e Log in UIC
• Privilege mask

Figure 2-2 Software Process Control Block (PCB)

58

THE PROCESS

PROCESS HEADER (PHO)

L_

,:7_
?"

PROCESS PRIVILEGES

SAVED REGISTERS

WORKING SET LIST

• Privilege mask

• Hardware process control
block

• Working set list~~(#~

USED TO LOCATE IMAGE •
SECTIONS IN IMAGE FILES

~:,

- ~ ,. ! --1'~1

VIRTUAL TO PHYSICAL •
•

P0 page table
Pl page table ADDRESS MAPPING

Figure 2-3 Process Header (PHD)

;~.J;f
. st/ .. '

59

THE PROCESS

PRIVILEGED VS. GENERAL REGISTERS

Privileged

• Can only be accessed in kernel mode using MTPR, MFPR
instructions

• Types:

General

Clock Registers

Time of Year (PR$ TOOR)
Interval (PR$_ICR)

Pointers to Data Structures

Hardware Process Control Block (PR$ PCBB)
System Control Block Base (PR$_SCBB)

Hardware Error Registers

SBI Error on 780 (PR$ SBIER)
Cache Error on 750 (PR$_CAER)

Other Registers

Interrupt Priority Level (PR$ IPL)
Software Interrupt Summary (PR$_SISR)

• Can be accessed in any access mode using most instructions

e R0-Rll,AP,FP,SP,PC

60

THE PROCESS

HARDWARE PROCESS CONTROL BLOCK

ST ACK POINTERS

GENERAL PURPOSE
REGISTERS

OTHER REGISTERS
ST A TUS INFORMATION

MEMORY MANAGEMENT
REGISTERS

• PR$_PCBB
•

•

•

•
•

Po

-
-
-
-

inters to:

Kernel stack
Executive stack
Supervisor stack
User stack

R 0, Rl, ••• , Rll

Ar
Fr
Pr
Pr

gurnent Pointer (AP)
a rn e Po i n t e r (F P)
ograrn Counter (PC)
ocessor status longword (PSL)

p
p

0 base register
1 base register

p 0 length register
length register Pl

Figure 2-4 Hardware Process Control Block

61

JOB INFORMATION BLOCK

DETACHED

PCB

SUB

PCB

THE PROCESS

SUB

PCB

LIST OF
AVAILABLE
RESOURCES
& LIMITS

JOB INFORMATION
BLOCK (JIB)

TK-8947

Figure 2-5 Job Information Block

A job consists of. a detached process and its subprocesses.
The job information block (JIB) keeps track of resources allotted
to a job, such as:

• Limit on number of subprocesses (PRCLIM)

e Open File Limit (FILLM)

62

THE PROCESS

VIRTUAL ADDRESS SPACE OVERVIEW

r
I

PO
> SEPARATE MAPPING

FOR EACH PROCESS

P1
~

so } ONE MAPPING FOR
ALL PROCESSES

TK-8942

Figure 2-6 Virtual Address Space

Process Virtual Address Space

P0 - Image, Run Time Library, Debugger

Pl - Command Language Interpreter,
stacks, I/O data areas

S0 - System services, Record Management
Services, other executive code and
data

63

THE PROCESS

SO VIRTUAL ADDRESS SPACE

' ~~
SYSTEM SERVICE VECTORS

EXECUTIVE CODE
& DATA

FILE HANDLING
ROUTINES

ERROR MESSAGE TEXT

DESCRIPTION OF PAGES
IN PHYSICAL MEMORY

SHARED DYNAMIC
DAT A STRUCTURES

SHARED DYNAMIC
DAT A STRUCTURES

INTERRUPT SERVICE ROUTINES
DRIVERS

• System service code
• Scheduler
• Report System Event

e RMS. EXE

• SYSMSG.EXE

• PFN database

• Paged pool
• Global section descriptors

• Non-paged pool
• Software process control

blocks
• Unit control blocks

• Lookaside list
• I/O request packets
• Timer queue elements

Figure 2-7 S0 Virtual Address Space
(Sheet 1 of 2)

64

THE PROCESS

ST ACK USED WHEN • Interrupt stack

INTERRUPTS OCCUR

TABLE FOR VECTORING
BY HARDWARE TO • System control block (SCB)

SERVICE ROUTINES

STORAGE FOR • Balance slots
PROCESS HEADERS

LOCATIONS OF VALID
SYSTEM VIRTUAL ADDRESSES • System header

DATA STRUCTURES USED
- System working set list
- Global section table

TO LOCATE GLOBAL SECTIONS

LOCATION OF EACH
PAGE OF SYSTEM • System page table

VIRTUAL ADDRESS SPACE

LOCATIONS OF
GLOBAL PAGES

• Global page table

Figure 2-7 S0 Virtual Address Space
(Sheet 2 of 2)

65

THE PROCESS

PO VIRTUAL ADDRESS SPACE

Native Mode Image

Native Mode Image

Run Time Library

Debugger

Traceback

not mapped
POLR Pages

3FFFFFFF

Compatibility
Mode Image

not mapped

RSX-11M AME

Native Mode Image

not mapped

Figure 2-8 P0 Virtual Address Space

66

1777778=FFFF16

POLR Pages

3FFFFFFF

THE PROCESS

P1 VIRTUAL ADDRESS SPACE

Image-Specific
User Stack r-ooo

"l Image 1/0 Segment

Per-Process Messa_g_e Section (s)
..,___..
::CTL$G LCTLBASVA

CLI Symbol Table

Process Specifi c CLI Image ..,___..
P 1 Window to Process Header ::MMG$ GL _CTLBASV A

Channel Control Block Table (~ ~)

Static

Process 1/0 Segment JV/IJ
Per Process Common Area +- M
Per Process Common Area (r

Com_E_atibili!l_ Mode Data Pa_g_e

~:;)
Process 1/0 Segment -~

~MS· ·
---~t

~
,

Process Allocation Region ~
~

Generic CLI Data Pages

Image Activator Scratch Pages v Debugger Context
Vectors for Messages and User-Written System Services

Image Header Buffer
Kernel Stack

J
r

Executive Stack

Supervisor Stack
System Service Vectors

P1 Pointer Page

Debugger Symbol Tabl~.l)
7FFFF FFF

Figure 2-9 Pl Virtual Address Space

Image Specific - Deleted on image exit
Process Specific - Changes according to SYSGEN parameters

and CLI used
Static - Does not change

67

THE PROCESS

Table 2-1 Function of Pl Space

Function Pl Area

Images Command Language Interpreter
(DCL, MCR, user written)

Symbol tables Symbolic Debugger
Command Language Interpreter

Pointers System service vectors

Stacks

RMS data
• Record of open

files

Error message text

Storage area

• Data stays around
between images

Other data areas

User written system service
vectors

Pl window to process header
(maps to PHD in S0 space)

Pl pointer page (i.e.,
CTL$GL CTLBASVA). (Address of
primary, secondary, last
change exception)

Message vectors
(per process messages)

Kernel, executive, supervisor,
user

Image I/O segment
Process I/O segment

Per process message section

Per Process Common Area
(LIB$GET_COMMON)

Process allocation region
(i.e., logical names)

Generic CL! data pages
Image Activator scratch pages
Image header buffer
Compatibility mode data page
(used by AME)
Channel control block table
(links process to device)

68

SYSTEM MECHANISMS .

SYSTEM MECHANISMS

INTRODUCTION

Most of the operations associated with an operating system
can be described in terms of software components manipulating data
structures. A variety of control mechanisms must be established
to ensure that components competing for common resources do not
interfere with each other or case a system "deadlock." Several
hardware instructions provide support for these software
mechanisms. Additional mechanisms control the accessibility of
data structures. The user identification code (UIC), file
protection, and privileges are examples of qualitative controls.
Quotas and limits are quantitative controls on system resources
hat may have several synchronous allocations to a process.

The implementation of an interrupt priority strcture provides
a hardware-arbitrated mechanism for synchronizing device requests,
some software component requests (such as scheduling and AST
delivery), and synchronizing the accessibility of some protected
data structures. Interrupts are the result of asynchronous events
occurring within VMS and the hardware configuration.

Several interrupt priority levels are used to protect data
structures by assuming that IPL is raised to the required IPL
value. There must be a mechanism for seralizing requests for some
of these data structures when the requesting software routine is
executing at or above the desired IPL. The fork process mechanism
provides this ability by requiring that an interrupt service
routine or driver first drop IPL below the desired value, then use
common code to raise the IPL value. Because the common code only
services one request from its queue at a time, competing requests
are serialized into exclusive accesses.

Exceptions are synchronous events that result from actions
within a particular process. Common examples include.

• Translation not valid fault (page fault)

• Divide by zero trap

• Compatibility mode fault.

Execution of most system services and record management
services occurs as a result of change mode to kernel and change
mode to executive exceptions (CHMK and CHME instructions).

71

SYSTEM MECHANISMS

Privileges provide qualitative controls over classes of
operations that may be requested by users. Privileges are granted
through:

• The user authorization file

e The $SETPRV system service and the $SET PROCESS/PRIVILEGE
command

• Installation of a known image with enhanced privileges

• User identification code (UIC)

• The file protection mechanism.

Quantitative control over user activities is also required,
and is provided by several quota mechanisms.

• Process-specific quotas or limits, such as the number of
I/O requests, timer requests, and ASTs outstanding

• Job-specific quotas, such as the number of subprocesses
and the consumption of page file pages

• User-specific quotas, such as disk consumption
UIC and volume/volume set)

(based on

• System-wide limits based on system parameters, such as
maximum process count.

Mutual exclusion semaphores (mutexes) are a system mechanism
used to synchronize concurrent accesses to a protected data
structure by more than one process. Mutexes allow one process to
write to the protected data structure or multiple processes to
read the data structure.

Dynamic memory (pool) is used to provide storage for various
classes of VMS data structures. Process data structures are
allocated from a dynamic memory area in the control (Pl) region.
system-wide data structures are allocated from either paged or
nonpaged pools depending on the types of system components
accessing them.

72

SYSTEM MECHANISMS

Asynchronous system traps
method of communication and
process. ASTs are used to:

(ASTs) provide
synchronization

an asynchronous
between VMS and a

• Notify a process of the completion of an operation (I/O or
a timer request, for example)

• Force execution within the context of a target process
(for example, $GETJPI to another process, forced process
deletion, and return of status information after an I/O
request completes).

Timer requests can be issued by user processes to def er
action until some future time. Also, periodic wakeup requests of
user processes and periodic executions of system routines are
provided by the software timer, with support from the hardware
clocks.

OBJECTIVES
Upon completion of this module, you will be able to:

1. Describe how the various VAX/VMS protection,
communication, and synchronization mechanisms are
implemented, and why each of them is used.

2. Discuss the SYSGEN parameters controlling various system
resources (e.g., memory) , and the effects of altering
those parameters.

73

SYSTEM MECHANISMS

RESOURCES
Reading

• VAX/VMS Internals and Data Structures Manual, chapters on
condition handling, system service dispatching, software
interrupts, AST delivery, synchronization techniques and
dynamic memory allocation.

Additional Suggested Reading

1. VAX/VMS Internals and Data Structures Manual, chapters on
hardware interrupts, and timer support

2. VAX-11 Architecture Handbook, Chapter 12

3. VAX-11/780 Hardware Handbook, Chapter 12

Source Modules

Facility Name

SYS

SYS$EXAMPLES

Macros

RTL

74

Module Name

ASTDEL,SCHED
CMODSSDSP
EXCEPTION,SYSUNWIND
MEMORYALC
MUTEX
TIMESCHDL
SYSSCHEVT,SYSCANEVT
FORKCNTRL
IOCIOPOST

USSDISP.MAR,USSLNK.COM
USSTEST.MAR,USSTSTLNK.COM

IFWRT,IFNOWRT,IFRD,IFNORD
IFPRIV,IFNPRIV
SETIPL,DSBINT,ENBINT
LIB SIGNAL

SYSTEM MECHANISMS

TOPICS

I. Processor and Process State

II. Interrupts

III. Access Modes and Exceptions

IV. Synchronization

75

SYSTEM MECHANISMS

Table 3-1 Keeping Track of CPU, Process State

Function

Store processor
state

Save, restore
process state

Implementation

Register

Instruction

77

Name

Processor Status
Longword (PSL)

SVPCTX, LDPCTX

SYSTEM MECHANISMS

PROCESSOR STATUS WORD

15 8 7 6 5 4 3 2

NOT USED

DECIMAL OVERFLOW TRAP ENABLE t t
FLOATING UNDERFLOW TRAP ENABLE

INTEGER OVERFLOW TRAP ENABLE

TRACE TRAP ENABLE -------------......

NEGATIVE CONDITION CODE-------------...

ZERO CONDITION CODE ----------------......
OVERFLOW CONDITION CODE----------------~

1 0

CARRY (BORROW) CONDITION CODE---------------.....

Figure 3-1 Processor Status Word

• Low-order word of Processor Status Longword (PSL)

• Writable by nonprivileged users through

Special Instructions
Entry masks
Results of most instructions

78

SYSTEM MECHANISMS

PROCESSOR STATUS LONGWORD

31

I II
0 0

I I
oj

I I I I I
~~

0 t

20 16 15 0

PROCESSOR STATUS WORD

\..
__ v ___ .1

L INTERRUPT PRIORITY LEVEL

PREVIOUS ACCESS MODE

CURRENT ACCESS MODE

EXECUTING ON THE INTERRUPT ST ACK

INSTRUCTION FIRST PART DONE

TRACE PENDING

COMPATABILITY MODE

Figure 3-2 Processor Status Longword

• High-order word of Processor Status Longword (PSL)

• Read-only to nonprivileged users

• Changed as a result of CHMx, REI, MTPR instructions.

79

SYSTEM MECHANISMS

HARDWARE CONTEXT

PR$_PCBB

I• Process Header / -----------'

~ - - - - - - -tit

Hardware PCB
~ - - - - - - -~

I'

• Working Set List

• Process Section
Table

• Accounting Info

PO Page Table

(Virtual
Address Space

Description)

P1 Page Table

PHO

---- Hardware Process
Control Blocks

, • General Registers

\ •PC, PSL

' • Per Process
' Stack Pointers \

\ •Memory
\ Management
\ Registers

', • ASTLVL
'--------------------.. (Hardware Context)

Figure 3-3 Hardware Context

The LDPCTX and SVPCTX instructions move the contents of the
process-specific hardware registers to and from the hardware
process control blocks of memory-resident processes.

The hardware PCB contains the processor register information
for a process when it is not currently executing.

80

SYSTEM MECHANISMS

HANDLING AND USES OF INTERRUPTS

Table 3-2 Handling and Uses of .. Interrupts

Function

Arbitrate interrupt
requests

Service interrupts
and exceptions

Synchronize execu
tion of system
routines

Request an
interrupt

Synchronize sys
tem's access to
system data
structures

Continue execution
of code at lower
priority

Implementation

Hardware maintained
priority

Table of service
routine addresses

Interrupt service
routines

MACRO

MACRO-raise IPL to 7

Queue request, SOFTINT,
REI

81

Name

Interrupt priority
level (IPL)

System control
block (SCB)

Timer, SCHED, IOPOST •••

SOFT INT

SETI PL

FORK

SYSTEM MECHANISMS

HARDWARE INTERRUPTS AND see

PR$ SCBB """""-

~
-

~ I
Exceptions

Processor Faults

Software Interrupts

Clock and Console

Device Interrupts 1-
1 T.._. :: EXE$GL_SCB

System Control Block

Figure 3-4 Hardware Interrupts and SCB

• System Control Block (SCB) - physically contiguous area of
system space

• .H.ardware register PR$ SCBB contains physical address oL
SCB ,><J"""
~

• Hardware gets service routine address from longword in SCB

• Size of SCB is CPU specific.

82

SYSTEM MECHANISMS

HARDWARE INTERRUPTS AND IPL

Table 3-3 Hardware Interrupts and IPL

FUNCTION VALUE NAME (decimal)

Block all Interrupts 31 IPL$_POWER

Clock Interrupts 24 IPL$_HWCLK

Device Interrupts 20-23 UCB$B_DIPL *
Driver Fork Levels 8-11 UCB$B_FIPL *

*Offset into Device's Unit Control Block

• Interrupt Priority Levels (IPL) above 15 reserved for
hardware interrupts

• Peripheral devices interrupt at IPL 20 to 23

e IPL$ XXXX - IPL level (see $IPLDEF)

UCB$B XXXX - Off set into UCB where device IPL and fork IPL
are stored (see $UCBDEF).

83

SYSTEM MECHANISMS

SOFTWARE INTERRUPTS AND SCB

PR$ SCBB ."""1IL

~
-

~ I
Exceptions

Processor Faults

Software Interrupts

Clock and Console

"'"

Device Interrupts 1--- l l- :: EXE$GL_SCB

System Control Block

Figure 3-5 Software Interrupts and SCB

Hardware gets service routine address from longword in SCB.

84

SYSTEM MECHANISMS

SOFTWARE INTERRUPTS AND IPL

Table 3-4 SOFTWARE INTERRUPTS AND IPL

IPL USE
15-12 Unused

~~-ii 11 IPL= 11 Fork Dispatching/

10 (IPL= 10 Fork Dispatching~
IJJv

9 (IPL=9 Fork Dispatching)

IPL=8 Fork Dispatching - -<rl. \~l/f'""
Software Timer Service Routine

IPL=6 Fork Dispatching}-f'-
I ;

~
5 Used to Enter XDELTA

4 1/0 Post Processing
------ ------------------

3 Rescheduling Interrupt

2 AST Delivery Interrupt

1 Unused

• Interrupt Priority Levels (IPL} 1 through 15, reserved for
software interrupts

• IPLs 2-11 currently used.

85

SYSTEM MECHANISMS

SOFTWARE INTERRUPT REQUESTS

31 4 3 0

IGNORED I REQUEST I

PR$_SIRR Software Interrupt Request Register
(Write Only)

31

MBZ

1 0

PENDING SOFTWARE INTERRUPTS M
B

F E D C B A 9 8 7 6 5 4 3 2 1 Z

PR$_SISR Software Interrupt Summary Register
(Read/Write)

Figure 3-6 Software Interrupt Requests

Software Interrupt Summary Register

• Bits 1 through 15 correspond to IPL 1 through 15.

• Bit set indicates pending software interrupt request.

• Interrupt is serviced as IPL drops below specified level,
when REI is issued.

Software Interrupt Request Register

• To set bit in SISR, write IPL value to SIRR.

e Use SOFTINT macro:

.MACRO SOFTINT IPL
MTPR IPL,SA#PR$_SIRR

.ENDM SOFTINT

86

SYSTEM MECHANISMS

LOWERING IPL

IPL 23 interrupt

Driver int. service routine

•
•

•
•

Processing at IPL 23

Queue UCB to fork
dispatcher (PC in UCB)

Request IPL 8 interrupt

REI

PC: Driver
Processing @IPL 8

RSB

FORK
QUEUE

LISTHEAD
PC

UCB

Figure 3-7 Fork Queue

87

IPL 8 interrupt

Fork dispatcher service
routine

If queue empty, REI

Dequeue UCB

JSB to PC in UCB

Loop

PC

UCB
TK-8943

SYSTEM MECHANISMS

BLOCKING INTERRUPTS

Table 3-5 Blocking Interrupts

WHAT TO BLOCK RAISE IPL TO NAME (decimal)

All Interrupts 31 IPL$_POWER

Clock Interrupts 24 IPL$_HWCLK

Device Interrupts 20-23 UCB$B_DIPL *
Access to 7 IPL$_SYNCH
Scheduler's Data
Structures

Delivery of ASTs 2 IPL$_ASTDEL
(Prevent Process
Deletion)

*Offset into Device's Unit Control Block

IPL can also be used to block interrupt servicing.
IPL$ SYNCH is used to coordinate accesses to critical VMS data
structures, such as the software _ PCBs within the scheduler's
database.

88

SYSTEM MECHANISMS

RAISING IPL TO SYNCH

Convention: raise to IPL$ SYNCH (IPL 7) to access scheduler
data base (PCBs, PHDs, etc). -

IPL

0
23

8
0 0 0

7
0

6

TIME
TK-8945

Figure 3-8 Raising IPL to SYNCH

0 Software timer at IPL 7

0 Device interrupt - driver code at IPL 23

f» Driver forks to IPL 8, then requests IPL 6 interrupt

0 Software timer at IPL 7

0 Driver fork to IPL 6

ct Driver raised to IPL 7

89

SYSTEM MECHANISMS

HOW USER EXECUTES PROTECTED CODE

Table 3-6 Executing Protected Code

Function

Protect memory from
read/write

Change access mode

Implementation

Hardware maintained
access modes

Instruction

Enter system service, Call --> instruction
RMS, user written
system service

90

Name

Kernel, Executive,
Supervisor, User

CHMx, REI

CALL x --> CHMx

SYSTEM MECHANISMS

ACCESS MODE TRANSITIONS

CHMx:

REI:

Figure 3-9 Access Mode Transitions

• Only way to move from less privileged to more privileged
access modes

• Only way to move from more privileged to less privileged
access modes

• Checks for illegal or unauthorized transitions.

91

SYSTEM MECHANISMS

CHMX AND REI INSTRUCTIONS

CHMX

CHMx CODEI

• Stack pointer switches to appropriate mode

• PSL, PC and sign-extended code pushed onto stack

SP --> Sign-extended code

PC of next instruction

Old PSL

• PSL zeroed (except for IPL, CM, PM)

• Current mode of PSL moved to previous mode field

• Current mode changed to appropriate mode

• New PC taken from system control block (SCB).

REI

Replaces current PC and PSL with two longwords popped from the
stack.

Before doing so,

1. Various checks are made to protect the integrity of the
system.

2. Checks for pending ASTs.

3. Checks for pending software interrupts.

4. After placing the PC and PSL in temporary registers, the
SP is switched to the appropriate access mode based on the
current mode field of the PSL.

92

SYSTEM MECHANISMS

REI OCCURS IN FOUR DIFFERENT CONTEXTS

1. To provide user-initiated access to system code and data:

CHMx CODE

REI

2. To service and dismiss a hardware interrupt:

Hardware Interrupt (IPL 16 through 31)

REI

3. To switch to compatibility mode:

PUSHL PSL (Bit 31 set)
PUSHL PC
REI

4. To service and dismiss a software interrupt:

Software Interrupt (IPL 1 through 15)

REI

93

SYSTEM MECHANISMS

INTERRUPTS VS. EXCEPTIONS

Table 3-7 Differences Between Interrupts and Exceptions

Interrupts Exceptions

Asynchronous to the execution
of a process

Serviced on the system-wide
interrupt stack in system

. wide context

Change the interrupt
priority level to that
of the interrupting device

Cannot be disabled, although
lower priority interrupts
are queued behind higher
priority interrupts

94

Caused by process instruction
execution.

Serviced on the process local
stack in process context.

Does not alter interrupt
priority level

Some arithmetic traps can
be disabled.

'

SYSTEM MECHANISMS

EXCEPTIONS AND see

""""'-- ~ -
~ I• I

Exceptions

PR$ SCBB

Processor Faults

Software Interrupts

Clock and Console

f-] 1- :: EXE$GL_SCB

Device Interrupts

System Control Block

Figure 3-10 Exceptions and SCB

Exceptions are serviced by system routines that are initially
dispatched through the system control block.

95

SYSTEM MECHANISMS

EXCEPTION AND INTERRUPT DISPATCHING

EXCEPTION
DISPATCHER LIB$SIGNAL

(HARDWARE)
DETECTED

@ SCB

©
.-s:•

• • • .-s:•
®

EXCEPTION
MODULES

@

• • •

®

SEARCH ROUTINE

CONDITION
HANDLERS

Figure 3-11 Exception and Interrupt Dispatching

96

@

SYSTEM MECHANISMS

Notes to Figure 3-11:

1. PSL, PC and 0 to 2 longwords pushed onto stack

2. Exceptions/interrupts treated by VMS

3. Exceptions not treated by VMS

4. Routines that push "SS$exception name" and "N"
lw now in completed signal array} onto stack.
=~

5. Detected and signaled by Executive

6.

a. Builds mechanism array and argument

b. Search order

1. Primary exception
2. Secondary exception
3. Call frames (maximum 64K)
4. Last chance

7. Alternate condition handling mechanism

a. Signaled by RTL or a user

b. Search mechanism - same as (F)-2.

97

(total of
Notes 1 + 2

SYSTEM MECHANISMS

PATH TO SYSTEM SERVICE

PO I P1 System Space
Space I Space

I
I

Change
Mode Dispatcher

System EXE$CMODxxxx :: I Service Vector
1) Build call frame Service Specific

User Program SYS$service :: 2 l Check argument Procedure

entry mask
list

• CHMx #code
CA SEW

•
• RET • EXE$service :: •

CALLx offsets

I • entry mask
• • • • •
• process ille~al

I
change mo e
codes

RET

I
I
I Common Exit Path

I
I

Figure 3-12 Path to System Service

System services that execute in kernel or executive access
modes are invoked by:

t9 A call to a system service vector.

f» A change mode instruction.

e Dispatching through a CASE instruction
module.

98

in the CMODSSDSP

SYSTEM MECHANISMS

RETURN FROM SYSTEM SERVICE

PO P1
I

Space Space I System Space

I
I

Change
Mode Dispatcher

System

I EXE$CMODxxxx ::
Service Vector

1) Build call frame Service Specific

User Program SYS$service ::

I
2) Check argument Procedure

entry mask
• CHMx #code • I

CALLx

• I •

I
@ I

I

list

CA SEW
• • • offsets
• • • process ille~al

change mo e
codes

• •
REI

EXE$service ::

entry mask

•
•

RET

Figure 3-13 Return from System Service

0 System services return through a
SRVEXIT, that checks the return
system service failure exception if
enabled and the service has failed.

common
status
that

f» REI from CHMx exception service routine.

0 RET for original CALL.

99

code sequence,
code and causes a

feature has been

SYSTEM MECHANISMS

NONPRIVILEGED SYSTEM SERVICE

PO
Space

P1
Space System Space

System
Service Vector

User Program SYS$service ::

entry mask

JMP •
•
•

CALLx

•
•
•

0

I
I
I
I
I
I

@
I
I
I
I
I

Figure 3-14 Nonprivileged System Service

System services that do not require a change
mode have a simpler control passing sequence.

• $FAQ
• Timer conversion services

O Same as 1.

of

Service Specific

Procedure

EXE$service ::

entry mask

RET

access

t» These services are not checked by SRVEXIT for error status
codes.

100

SYSTEM MECHANISMS

PATH TO RMS

PO I P1 I
Space I Space I System Space

I I Change
Mode Dispatcher

I I EXESCMODEXEC ::

RMS Service Vector 1) Build Call Frame

I ® 2) Check Argument
List

User Program
SYS$service ::

I
CA SEW

entry mask • • • CHME #code •
• I

offsets

• BRB • • CALLx •

I I
JSB

•
•

I I Common Exit Path

I I
I I
I I

RMS Synchronization

Routine

I I
I I

Figure 3-15 Path to RMS

tt Same path as executive mode system service.

G Same as 1.

t» Falls off end of system service case table
JSB to RMS case table.

C» Dispatch to RMS procedure.

101

RMS Dispatcher

RMSSDISPATCH:

CA SEW
• • •

offsets
• • •

RSB

@

RMS Service Specific

Procedure

RMS$service ::

entry mask

• •
• •
• •

RET

SYSTEM MECHANISMS

RETURN FROM RMS

PO
Space

User Program

•
•
•

CALLx

•
•
•

@

P1
Space

RMS Service Vector

SYS$service ::

entry mask

CHME #Code

I
I
I
I
I
I
I

®I
I

System Space
Change

Mode Dispatcher

EXE$CMODEXEC ::

1) Build Call Frame
2) Check Argument

List

CA SEW
• • • offsets
• • •

JSB

Common Ex it Path

SRVEXIT:
• • •

REI

RMS Synchronization

Routine

RMSCHK ST ALL: ... ------------------~ --..... --~ . •
•

._ ~----------------------.,_ __ ..,_ ____ RET

Figure 3-16 Return from RMS

Ct Same path as system service.

O Same as 1.

RMS Dispatcher

RMS$DISPATCH:

CA SEW
• • •

offsets
• • •

RSB

RMS Service Specifi<
Procedure

RMS$service ::

entry mask

•
•
•

RET

ft Extra step to manage the synchronous nature of most RMS I/O
operations.

0 RET for original CALL.

102

SYSTEM MECHANISMS

PATH TO USER WRITTEN SERVICE (1)

<D

VECTORS

DISPATCH ER

PO
SPACE

User Program

•
• •

CALLll

•
•
•

~.ENTRY
CHMX •
RET
• • •

CASE

• • • offsets
• • •

RSB

. ENTRY

• •

I
I
I
I
I
I
_.

T
I
I
I

I
P1

SPACE
JSB A

RSB

@

I I
1
I
I
I
I
I
I
I

SYSTEM
SPACE

Change Mode
Dispatcher

:;.. EXESCMOOxxxx ::
1 I Build call frame
21 Check argument

list
CA SEW

• •
•

offsets

•
•
•

JSB
process illegal
change mode codes

•
•
•

Common Exit Path

SRVEXIT:

• • •
REI

ES
.

I I RET PROCEDUR
• .
• I

Figure 3-17 Path to User Written System Service
(Sheet 1 of 2)

Ct To find the appropriate
program calls a global
vector.

user-written service, a user
symbol defining a service entry

0 A change mode instruction with a negative code causes the
change mode dispatcher to loo"K for user-written system
service dispatchers in the image.

103

SYSTEM MECHANISMS

PATH TO USER WRITTEN SERVICE (2)

PO
SPACE

User Program

•
•
•

CALLx

•
• •

. ENTRY
CHMX

~

©

P1
SPACE
JSB A

RSB

I
...., I

SYSTEM
SPACE

I
Change Mode

Dispatcher

EXESCMODxxxx ::

I
1) Build call frame
2) Check argument

@ list

I CA:EW

• I off~ets

VECTORS RET
•

•
~la.-__.-JSB•
T process illegal • I cha;ge mode codes

•
•

CASE i.,_J
• • • I Co;mon Exit Path ~ ~offsets • DISPATCHER
• •

RSB ® -~.ENTRY
• .

SRVEXIT:

• • •
REI •

RET PROCEDURES

I
I
I

e

0

e

• . .

Figure 3-17 Path to User Written System Service
(Sheet 2 of 2)

Code for user-written system service causes JSB at end of case
table to be executed.

When a request can be serviced, the user-written dispatcher
passes control through a CASE instruction to the routine.

Sarne as 4.

104

SYSTEM MECHANISMS

RETURN FROM USER WRITTEN SERVICE

®

VECTORS .._

DISPATCHER

PROCEDURE s

PO
SPACE

User Program

•
•
•

_. CALLx •
• •

. ENTRY
CHMX

to- RET ~

• • •
CASE

• • • offsets
• • •

RSB

,ENTRY

• • •
RET

• • •

I
I
I
I
I
I
I

~
, I
1
T

I

I

@

P1
SPACE
JSB A

RSB

I
I I

I
I
I
I
I
I
I
I
l
I

SYSTEM
SPACE

Change Mode
Dispatcher

EXESCMODxxxx ::
1 l Build call frame
2) Check argument

list
CA SEW

• •
•

offsets

• •
•

JSB
process illegal
change mode codes

•
• •

Common Exit Path

-;. SRVEXIT:

• • •
REI

Figure 3-18 Return from User Written System Service

Cf» When the user-written routine exits, it passes control to
SRVEXIT, as the supplied system services do.

0 The rest of the return path to the user program is similar
the steps for the supplied system services.

0 Same as 7.

105

to

SYSTEM MECHANISMS

TWO DISPATCHERS

VECTORS

DISPATCHER

PROCEDURES

VECTORS

DISPATCHER

PROCEDURES

PO
SPACE

User Program

•
•
•

CALLx

•
•
•

. ENTRY
CHMX
RET
• • •

CASE

• • • offsets
• • •

RSB

. ENTRY

• • •
RET . .
•

Figure 3-19

P1
SPACE
JSB A

JSB B

RSB

Two Dispatchers

• Multiple dispatchers can be linked to an image.

• Dispatchers are searched in order linked.

• Duplicate CHMx code numbers possible.

Only first occurrence recognized.

106

SYSTEM
SPACE

Change Mode
Dispatcher

EXE$CM0Dxxxx ::
1 l Build call frame
2) Check argument

list
CA SEW

•
•
•

offsets

•
•
•

JSB
process illegal
change mode codes

•
•
•

Common Exit Path

SRVEXIT:

• • •
REI

SYSTEM MECHANISMS

PROCESS SYNCHRONIZATION

Table 3-8 Process Synchronization

Function

Synchronize access
to data structures
by processes

Allow process to
execute procedure on
completion of event

Allow process to
request action at a
certain time

Implementation

Semaphore

REI
IPL 2 interrupt ser
vice routine

Ha rd ware clock
interrupt
Queue of requests

107

Name

Mutex

Asynchronous system
trap (AST}

Timer queue

MUTEX

31

Status

SYSTEM MECHANISMS

17 16 15

l I Ownership Count

L Write-in-Progress or
Write-Pending Flag

Figure 3-20 A Mutex

0

• Mutexes protect lists of data structures
conflicting accesses by multiple processes.

against

• One writer or multiple readers are allowed.

• Examples:

Group logical name tables
System logical name table

H'8

SYSTEM MECHANISMS

OBTAINING AND RELEASING MUTEXES

To Obtain a Mutex

MOVAL GAIOC$GL MUTEX,R0
MOVL GASCH$GL-CURPCB,R4
JSB GASCH$LOCKR ;read

GASCH$LOCKW ;write

When returns, have mutex,
but R2-R5 altered, at
IPL=2

To Release a Mutex

MOVAL GAIOC$GL MUTEX,R0
MOVL GASCH$GL CURPCB,R4
JSB GASCH$UNLOCK
SETIPL #0

All mutex symbols defined in
module SYSCOMMON, except for
line printer mutex in LPDRIVER.

109

/

SYSTEM MECHANISMS

DYNAMIC MEMORY

USED

Size of this Block

First Unused
Block

USED

Next Unused •
Block •

•
Beginning of Pool Area
(Filled in When
System is Initialized)

Address of First
Free Block
(Modified by Allocation
and Deallocation Routines)

(Zero in Pointer
Signifies End of List)

Figure 3-21 Dynamic Memory

Dynamic memory regions, or pools, are used for the management
of data structures that must be allocated and deallocated after
the system or process is initialized. Free blocks are stored in
order of ascending addresses.

110

SYSTEM MECHANISMS

ALLOCATING NON-PAGED POOL /t1)
Rest of
Nonpaged
Pool

next
~ ----. size
~----·first

unused
--block

11111 e:: MMG$GL_NPAGEDYN

:: EXE$GL-NONPAGED +4

r-----.------r---r--1.._11111--•:: IOC $ G L _LR PSPL IT

•••

•••

:: IOC$GL_!:!!fFL (P-,. et:)

:: IOC$GL_JB.PFL (Pct~~~~,) ""Jl:tl ~I ~iJ5
rle> hl~e. Af•) ·

Figure 3-22 Allocating Non-Paged Pool

111

SYSTEM MECHANISMS

RELEVANT SYSGEN PARAMETERS FOR NON-PAGED POOL

NPAGEDYN - number of bytes pre-allocated for the non-paged dynamic
pool, exclusive of the lookaside lists

NPAGEVIR - number of bytes to which the non-paged pool may be
extended.

LRPCOUNT - number of large request packets pre-allocated for the
LRP lookaside list.

LRPCOUNTV - number of LRPs to which the LRP list may be extended.

LRPSIZE - number of bytes to allocate per LRP, exclusive of
header. Number of bytes actually allocated per packet is LRPSIZE
+ 64.

IRPCOUNT - number of I/O request packets pre-allocated for the !RP
lookaside list.

IRPCOUNTV - number of IRPs to which the IRP list may be extended.

SRPCOUNT - number of small request packets pre-allocated for the
SRP lookaside list.

SRPCOUNTV - number of SRPs to which the SRP list may be extended.

SRPSIZE - number of bytes to allocate per SRP.

Notes:

1. System page table entries are reserved and physical memory
pre-allocated for NPAGEDYN, LRPCOUNT, IRPCOUNT, and
SRPCOUNT.

2. System page table entries are reserved but no physical
memory pre-allocated for NPAGEVIR, LRPCOUNTV, IRPCOUNTV,
and SRPCOUNTV. Physical memory will be allocated on
demand from the free page list.

3. Size of IRP's is 160 bytes.

112

SYSTEM MECHANISMS

ASTs
Software Process Control Block (PCB)

ASTEN ASTACT
ASTQFL

AST Control Block (ACB) ASTQBL
ASTQFL
ASTQBL

RMOD TYPE SIZE
PIO
AST

ASTPRM
KAST

AS TC NT

Figure 3-23 ASTs

AST control blocks are queued to the software process control
block based on:

• The access mode in which the associated request was made
• The order in which the ASTs are reported to the system.

Delivery of an AST depends on:

• The current access mode of the process
• Whether the access mode of the AST is enabled
• Whether an AST is already active in the same access mode.

113

SYSTEM MECHANISMS

Rules for AST Delivery

AST DELIVERY ORDER:

SPECIAL K
AST

KERNEL
AST

KERNEL

EXEC
AST

EXEC

SUPER
AST

Figure 3-24 AST Delivery Order

SUPER

USER
AST

USER

TK-8944

AST control blocks (ACBs) are queued to the PCB in order
(Special K, Kernel, Exec, Super, User).

ASTLVL = 4 if no ACBs, AST delivery is disabled or an AST
is Active

ASTLVL = 0 if AST is Special K AST;

ASTLVL = level of first AST

Note:

ASTLVL Deliverable AS Ts Access Mode Code

0 Kernel Kernel 0
1 Exec Exec 1
2 Super Super 2
3 User User 3
4

Some Special K ASTs

• I/O completion

• Suspend another process

• GETJPI on another process.

114

SYSTEM MECHANISMS

AST Delivery Sequence 'e~-Q~Sf"'
f R~iti.

Exception/ Interrupt
Service Routine
(i.e. Scheduler)

•
•
REI

No Ast >---..... Delivered

IPL 2 INT
Generated

SCH$ASTDEL:

(Recompute ASTLVL)

REI

Special K
AST

IPL=2

USER
AST

IPL:O

Figure 3-25 AST Delivery Sequence

Table 3-9 Rules for Selection of ASTs

Rule Example

a) ASTLVL > new access User AST (3) > kernel access mode (0)
mode

b) ASTLVL ~ new access Super AST (2) ~ super access mode (2)
mode

c) Interrupt stack active (IS) bit set in PSL

d) Final IPL > 2 IPL = 3 scheduler

115

SYSTEM MECHANISMS

TIMER QUEUE ELEMENT

TOFL
TOBL

ROTYPE 1 TYPE T SIZE

1--

~

PIO/PC
AST/FR3 1~n

ASTPRM/FR4 f
11

.~ "l\
""II(',., 41'

TIME -
DELTA -

I EFN l RMOD
ROPID

TQE$B_RQTYPE
765 3210

T

_1

~~ ~~ .. ' '

L{ 0 Process timer request
1 System subroutine request
2 Scheduled wake request

0 One-time request

1

1 Repeat request

AST is associated with
timer event

Figure 3-26 Timer Queue Element

• The timer queue element is inserted in the timer queue
based upon the absolute expiration time of the
request.

• Scheduled wake-up and system subroutine requests may
have a delta time specified for recurring events.

• The AST routine, AST parameter, and event flag fields
are filled from the system service argument list.

116

SYSTEM MECHANISMS

CLOCKS AND TIMER SERVICES

TIMER QUEUE (ELEMENTS ORDERED BY EXPIRATION TIME)

EXE$GL_TOFL

CURRENT SYSTEM TIME

EXE$GO_SYSTI ME

TIME OF DAY CLOCK

----' PR$_ TOOR

INTERVAL CLOCK

PR$_NICR (NEXT INTERVAL COUNT) -----
PR$_1CR (INTERVAL COUNT) -----

QUANTUM

SCH$G L_CURPCB

PCB PHO

PHO QUANT
(10 MSEC INCREMENTS)

Figure 3-27 Clocks and Timer Services

117

TK-8951

SYSTEM MECHANISMS

SUMMARY OF SYSTEM MECHANISMS

Table 3-10 Function and Implementation of System Mechanisms

Function

KeeEin9 Track of CPU,

Store processor
state

Store, restore
process state

Handlin9 and Uses of

Arbitrate interrupt
requests

Service interrupts
and exceptions

Synchronize execu
tion of system
routines

Request an interrupt

Synchronize system's
access to system
data structures

Continue execution
of code at lower
priority

Implementation

Process State

Register

Instruction

Interrupts

Hardware maintained
priority

Table of service rou
tine addresses

Interrupt service
routines

MACRO

MACRO-raise IPL to 7

Queue request,
SOFTINT, REI

How User Executes Protected Code

Protect memory from
read/write

Change access mode

Enter system ser
vice RMS, user
written system
service

Hardware maintained
access modes

Instruction

Call --> instruction

118

Name

Processor status
longword (PSL)

SVPCTX, LDPCTX

Interrupt priority
level (IPL)

System control block
(SCB)

Timer, SCHED, IOPOST.

SOFT INT

SETI PL

FORK

KERNEL, Executive,
Supervisor, User

CHMx, REI

CALL x --> CHMx

SYSTEM MECHANISMS

Table 3-10 Function and Implementation of System
Mechanisms (Cont)

Function Implementation

Process Synchronization

Synchronize access
to data structures
by processes

Allow process to
execute procedure
on completion of
event

Allow process to
request action at
a specific time

Semaphore

REI
IPL2 interrupt service
routine

Hardware clock
interrupt
Queue of requests

119

Name

MUTEX

Asynchronous system
trap (AST)

Timer queue

SYSTEM MECHANISMS

COMMONLY USED SYSTEM MACROS

IPL Control Macros

.MACRO SETI PL IPL
.IF NB IPL
MTPR IPL,S"'#PR$ IPL -.IFF
MTPR #31,S"'#PR$ IPL
.ENDC

.ENDM SETI PL

.MACRO DSBINT IPL,DST
.IF B DST
MFPR S"'#PR$_IPL,-(SP)
.IFF
MFPR S"'#PR$_IPL,DST
.ENDC
.IF B IPL
MTPR #31,S"'#PR$ IPL
.IFF
MTPR IPL,S"'#PR$ IPL
.ENDC

.ENDM DSBINT

.MACRO ENBINT SRC
.IF B SRC
MTPR (SP)+, S"'#PR$ IPL -.IFF
MTPR SRC,S"'#PR$_IPL
.ENDC

.ENDM ENBINT

.MACRO SOFT INT IPL
MTPR IPL,S"'#PR$ SIRR -.ENDM SOFT INT

Example 3-1 IPL Control Macros

121

APPENDIX A

SYSTEM MECHANISMS

Argument Probing Macros

.MACRO

.ENDM

.MACRO

.ENDM

.MACRO

.ENDM

.MACRO

.ENDM

IFRD SIZ,ADR,DEST,MODE=#0
PROBER MODE,SIZ,ADR
BNEQ DEST
IFRD

IFNORD
PROBER
BEQL
IFNORD

IFWRT
PROBEW
BNEQ
IFWRT

SIZ,ADR,DEST,MODE=#0
MODE,SIZ,ADR
DEST

SIZ,ADR,DEST,MODE=#0
MODE,SIZ,ADR
DEST

IFNOWRT SIZ,ADR,DEST,MODE=#0
PROBEW MODE,SIZ,ADR
BEQL DEST
IFNOWRT

Example 3-2 Argument Probing Macros

122

SYSTEM MECHANISMS

Privilege Checking Macros

.MACRO IFPRIV PRIV,DEST,PCBREG=R4
.IF DIF
.IF DIF
BBS
.IFF
BBS
.ENDC
.IFF
BBS
.ENDC

<PRIV>,<Rl>
<PRIV>,<R2>
#PRV$V_'PRIV,@PCB$L_PHD(PCBREG),DEST

PRIV,@PCB$L_PHD(PCBREG),DEST

PRIV,@PCB$L_PHD(PCBREG),DEST

.ENDM IFPRIV

.MACRO IFNPRIV PRIV,DEST,PCBREG=R4
.IF DIF <PRIV>,<Rl>
.IF DIF <PRIV>,<R2>
BBC #PRV$V_'PRIV,@PCB$L_PHD(PCBREG),DEST
.IFF
BBC PRIV,@PCB$L_PHD(PCBREG),DEST
.ENDC
.IFF
BBC PRIV,@PCB$L_PHD(PCBREG),DEST
.ENDC

.ENDM IFNPRIV

Example 3-3 Privilege Checking Macros

123

SYSTEM MECHANISMS

Privilege Mask Locations

Table 3-11

Symbol Name

CTL$GQ_PROCPRIV

PCB$Q_PRIV

PHD$Q PRIVMSK
(PHD oase address)

PHD$Q IMAGPRIV

PHD$Q_AUTHPRIV

Privilege Mask Locations

Use

Process permanent mask
Altered by $SET PROCESS/PRIV= command.
Used to reset current masks.

Current mask, permanently resident.
Altered by known image activation.
Altered by $SETPRV system service.
Reset by image rundown.

Current mask, swappable
Altered by known image activation.
Altered by $SETPRV system service.
Reset by image rundown.
Used by IFPRIV, IFNPRIV macros.

Mask of installed known image
ORed with CTL$GQ PROCPRIV to
Produce current masks.

Mask defined in authorization file
Not changed during life of process.

124

SYSTEM MECHANISMS

APPENDIX B

THE REI INSTRUCTION

The REI instruction will result in a reserved operand fault
if any one of the following operations is attempted

1. Decreasing the access mode value (to a more privileged
access mode). (This is a comparison of the current mode
fields of both the present PSL and the saved PSL on the
stack.)

2. Switching to the interrupt stack from one of the four
perprocess stacks.

3.

4.

6.

7.

Leaving the processor on the interrupt stack in other than
kernel access mode.

Leaving the processor on the interrupt stack at IPL 0.

Leaving the processor at elevated IPL (IPL > 0) and not in
kernel access mode.

Restoring a PSL in which the previous mode field is more
privileged than the current mode field (previous mode <
current mode).

Raising IPL.

8. Setting any of the following bits - PSL<29:28> or PSL<21>
or PSL<l5:8>.

When the processor attempts to enter compatibility mode, the
following checks are made.

1. The first-part-done bit must be clear.

2. The interrupt stack bit must be clear.

3. All three arithmetic trap enables (DV, IV, and FU) must be
clear.

4. The current mode field of the saved PSL must be user
access mode.

125

SYSTEM MECHANISMS

If all the preceding checks are performed without error, the
REI microcode continues by:

1. Saving the old stack pointer (SP register) in the
appropriate processor register (KSP, ESP, SSP, or USP).

2. Setting the trace pending bit in the new PSL if the trace
pending bit in the old PSL is set.

3. Moving the contents of the two temporaries (note 1 above)
into the PC and PSL processor registers.

If the target stack is a perprocess stack!

1. Getting the new stack pointer from the corresponding
processor register (KSP, ESP, SSP, or USP)

2. Checking for potential deliverability of pending ASTs.

126

DEBUGGING TOOLS

DEBUGGING TOOLS

INTRODUCTION
Since VMS runs in Executive and Kernel modes and at elevated

interrupt priority levels, any error is considered serious, and
may cause a system crash.

VMS offers several tools to aid in debugging system level
code. These tools are:

• SDA a symbolic dump analyzer

• DELTA - a debugger for code running in operating modes
from user to kernel.

• XDELTA a debugger for kernel mode code running at elevated
IPLs.

OBJECTIVES
Upon completion of this module, given the lecture notes, you

will be able to:

1. Use various system-supplied debugging tools and utilities
(e.g., SDA, DELTA, XDELTA) to examine crash dumps and to
observe a running system.

2. Use the system map file as an aid in reading source code,
and identifying the source of system crashes.

RESOURCES
1. VAX/VMS System Dump Analyzer Reference Manual

2. VAX/VMS PATCH Utility Reference Manual

3. VAX Hardware Handbook

4. VAX/VMS Guide to Writing a Device Driver

129

DEBUGGING TOOLS

TOPICS

I. Crash Dumps and Bugchecks (System Errors)

A. What they are

B. How they are generated

C. Fatal and nonfatal system errors

D. Sample system errors and stack output

II. The System Map File (SYS.MAP)

A. Contents and format

B • How to use i t

1. For bugchecks
2. For source code

III. . The System Dump Analyzer (SDA)

A. Commands

B. Crash file analysis

c. Active system analysis

IV. Other Debugging Tools

A. DELTA

B. XDELTA

C. CCL (console com~and language)

D. PATCH

130

DEBUGGING TOOLS

CRASH DUMPS

A crash dump is generated when the system decides that it can
not continue functioning. The system stops the normal flow of
work and attempts to copy all the information in physical memory
to a special file on a disk.

Causes of Crash Dumps

A crash dump is a result of a fatal error
(fatal bugcheck) being recognized and declared
the operating system. A bugcheck is declared by
referencing a central routine. Some reasons for
bugcheck are listed below.

• Exception at elevated IPL
• Exception while on interrupt stack
• Machine check in kernel mode
• BUG CHECK macro issued
• HALT instruction restart
• Interrupt stack invalid restart

or inconsistency
by a component of
that component by
declaring a fatal

• Kernel or executive mode exception without exit handler

BUGCHECKS

The Two Types of Bugchecks

• Fatal - system must be taken down; no recovery possible

• Continue - non-fatal; the system may attempt recovery.

How Crash Dumps Are Generated

• Written by the fatal bugcheck code

• For a dump to be written

Bugcheck must be fatal

If non-fatal bugcheck, all bugchecks must be declared
fatal (done by setting BUGCHECKFATAL = 1)

DUMPBUG = 1 (requests dump on fatal bugcheck)

SYS$SYSTEM:SYSDUMP.DMP must be the correct
file size (in blocks) = physical memory
plus 4 pages

131

size
(in pages)

DEBUGGING TOOLS

How Bugchecks Are Generated

BUGCHECKS are generated by using the BUG CHECK macro.

BUG CHECK QUEUEMPTY,FATAL

generates

.WORD

.WORD
"'XFEFF
BUG$QUEUEMPTY ! 4

Bugchecks are generated by system components (EXEC, RMS, ACP,
etc.) after detecting an internal (software) error.

Table 4-1 Sample BUGCHECKS

Name Module Type Description

BADRSEIPL RSE Fatal Bad IPL at entrance to RSE

FATALEXCPI EXCEPTION Fatal Fatal Exec or Kernel mode exception

NOT PCB MUTEX Fatal Structure not PCB

UNABLCREVA EXCEPTION Cont. Unable to create V.A. space

NOTE
When looking at the crash dump, PC minus 4 is
that address at which the BUG CHECK macro is
referenced.

132

"· ., ... E f•
··' ·' ·' 00000000
>>>EIG F
- G
>>>Ell 1

I
>>>El! 2

I
>>>Ell 3

I
>>>Ell 4

OOOOOOOF

00000001

00000002

00000003

I 00000004
>>>DIG F FFFFFFFF
>>>D f' 001FOOOO
>>>C

**** FATAL BUG CHECK, VERSION

CURRENT PROCESS = NULL

REGISTER DUHP

RO 0000001F
R1 OOlFOOOO
R''.> 00000000
RJ 00000000
R4 00000000
RS 00000000
R6 :e 0000(: O(\(l
R7 00000000
RS 00000000
R9 = 00000000
R 1 O= OOOOOOO<i
R11= 0000000(,
AP = OOOO<ivO~:.
Ff' = 00000000
SP = 80000990
PC = 600030C6
PSL= 001F0009

KERNEL/INTERRUPT STACK

DEBUGGING TOOLS

80007(106

00000000

00000000

00000000

S011DAOO

V3.0 INVEXCEPTN, Exce~tion while above ASTDEL or on

MECHANISM ARRAY
800009AO
B00009A4
B00009A8
800009AC
800009BO
800009B4
80000988
B00009BC
B00009CO
B00009C4
800009C8
B00009CC
800009DO
800009D4
800009D8
800009DC
B00009EO
B00009E4
800009E8
B00009EC
800009FO
800009F4
B00009FB

1m1rr--SIGNAL ARRAY

0 00
00000000
00•)000CO
0000000 i
00000000
00000000
00000000
00000000
00000000
00000000
00000000

SS$_ACCVIO
REASON MASK
FAULTING V.A.
PC
PSL

Example 4-1 Sample Console Output After Bugcheck

133

DEBUGGING TOOLS

SAMPLE STACKS AFTER BUGCHECKS

Access Violation

SP ____.., 4

7 F F E C D E 4 ESTABLISHER FRAME

F F F F F F F D DEPTH = -3 LAST CHANCE

14 RO

0 R1

5

c SS$_ACCVIO

1 REASON

12 VA

8 0 0 5 2 1 8 4 PC

1 c 8 0 0 0 0 0 PSL

• •
•

TK-8966

Figure 4-1 Stack After Access Violation Bugcheck

Probable Causes:

• Blown register
• Incorrect data structure field
• Improper synchronization

134

DEBUGGING TOOLS

Page Fault Above IPL 2

SP ~ R4

R5

1 REASON

314 VA

80050200 PC

150000 PSL

• • •
TK-8967

Figure 4-2 StacK After Page Fault Above IPL-2

Probable Causes:

• Blown register in fork interrupt routine
• Improper start I/O routine design

135

DEBUGGING TOOLS

Reserved Operand Fault

SP ~ 4

ESTABLISHER FRAME

DEPTH

RO

R1

3

454 SS$_ROPRAN D

80051234 PC

00070000 PSL

• • •
TK-8964

Figure 4-3 Stack After Reserved Operand Fault

Probable Causes:

• REI f ai 1 ure

IPL problems (allocate memory at wrong IPL)
Blown stack

• RET failure

136

DEBUGGING TOOLS

Machine Check in Kernel Mode (CPU Timeout)

28

0 REASON= CPU TIMEOUT

80014300 VA

TIMEOUT SBI ADDR

80053210 PC

1C150000 PSL

TK-8963

Figure 4-4 Stack After Machine Check in Kernel Mode

Reasons:

• Accessing nonexistant UBA or SBI address
• Corrupted page tables
• Processor device or bus failure

137

DEBUGGING TOOLS

SYSTEM MAP FILE

Overview

• MAP of linked executive

• Available on every VMS system
SYS$SYSTEM:SYS.MAP

• Useful in debugging crash dumps and when reading source
code

Sections of SYS.MAP

1. Object module synopsis

• Listed in order processed by linker
• Includes creation data and source language

2. Image section synopsis

• Lists base virtual address

3. Program section synopsis

• Lists PSECTs by base virtual address
• Includes PSECT size and attributes

4. Symbol cross-reference

• Lists global symbols alphabetically
• Includes symbol value, module(s) that define and

reference it

5. Symbols by value

• Lists global symbols by hexadecimal value
• Multiple symbols have same value

6. Image synopsis

• Miscellaneous information about the output image

7. Link run statistics

• Miscellaneous information about the link run that
produced the image.

138

DEBUGGING TOOLS

SYS.MAP and Crash Dumps

1. Information in crash dumps given by value

• Virtual address of code (PC}
• Contents of data structures

Virtual address references
Symbolic references (i.e., State of process}

2. SYS.MAP can be used to translate numbers to meaningful
information.

• Program section synopsis
module}

(V.A. --> source

• Symbols by value (value --> symbol name}

SYS.MAP and Source Code

1. Layout of linked Executive in S0 space

• Program section synopsis

2. Interrelationship of modules ("who references who"}

• Symbol cross reference

3. Module entry points and global data locations.

139

code

DEBUGGING TOOLS

VAX/VMS DEBUGGING TOOLS

Under the VAX/VMS operating system, there are several ways to
debug or analyze a problem that is occurring in a program. The
method of analysis depends on the environment the program is
running under and the nature of the analysis you wish to do (i.e.,
monitoring only, stepping through a program). The table below
describes the type of analysis, program environment, and the
suggested method of analysis (the debugger).

Table 4-2 Environment Vs. Debugging Tools

Problem/Environment Method of Analysis

Program IPL=0,
User mode
Examine per-process memory

Program IPL = 0,
User to kernel

mode
Examine process

and system memory

Examine active
system

Examine a Crash file

Program IPL > 0

VAX/VMS Symbolic Debugger
(Linked with image or
included at run time,
user mode only)

DELTA debugger
(Linked with an image or
included at run time,
User to kernel mode,)
Nonsymbolic

System Dump Analyzer (SDA)
Activated from DCL, can
examine active system

System Dump Analyzer (SDA)
Activated from DCL

XDELTA DEBUGGER
(Linked with VMS, run from
console terminal only)
Nonsymbolic

140

DEBUGGING TOOLS

THE SYSTEM DUMP ANALYZER (SDA)

Uses

The System Dump Analyzer (SDA) is used to examine:

e The system dump file (SYS$SYSTEM:SYSDUMP.DMP)

• A copy of the dump file containing previous
information

• The active system.

Information Handling

Through the SDA, information can be:

• Displayed on a video terminal

• Printed on a hardcopy terminal

• Sent to a file/line printer.

Requirements

• SYS SYSTEM:SYSDUMP.DMP file must be large enough
Size of file = physical memory plus 4 (in pages)

crash

• Dumpbug (a SYSGEN parameter) must be set (=l) by default,
it is set.

• Console must be allowed to finish printing the bugcheck
output.

• To run SDA:

VIRTUALPGCNT > SYSDUMP.DMP + 1000 (pages)

PGFLQUOTA > SYSDUMP.DMP + 1000 (pages)

• To examine the active system, the CMKRNL privilege is
needed.

• To examine a dump file, read access to the file is needed.

141

DEBUGGING TOOLS

Activation of SDA

$ ANALYZE/qualifier

What you use as a qualifer will determine what you will be
examining.

Table 4-3 Examining Crash Dump or Current System

To Examine

Current System

System Dump File
or
Other Dump File

SDA Functions

Qualifier

/SYSTEM

/CRASH_DUMP

Comment

CMKRNL priv
needed

Read access to
file needed

• Examine locations by address or symbol

• Displays process/system data

• Formats and displays data-known data structures

• Assigns values to symbols as requested.

Command Format

command [parameter] [/qualifier]

142

Functions

DEBUGGING TOOLS

Table 4-4 SDA Functions and Commands

Information

Function

Provides help using SDA

Displays specific
data/information

Format and display '
data structures

Display contents of
location(s)

Manipulation

Preserve second copy
of dump file

Create and define·symbols

Perform computations

Set/reset defaults

Define other VMS symbols

Repeat last command

143

Command

HELP

SHOW

FORMAT

EXAMINE

COPY

DEFINE

EVALUATE

SET

READ

REPEAT
or
<ESC>

DEBUGGING TOOLS

Table 4-5 SDA Commands Used to Display Information

Function

The last crash

I/O data structure

System page table

PFN data base

Dynamic pool

Process specific
information

Stacks

Summary of all
processes

Symbol table

Command

SHOW CRASH

SHOW DEVICE

SHOW PAGE TABLE

SHOW PFN DATA

SHOW POOL

SHOW PROCESS

SHOW STACK

SHOW SUMMARY

SHOW SYMBOL

144

Comments

Dump file only

Device name
parameter
optional

/GLOBAL, /SYSTEM
/ALL (D)

/FREE, /MODIFIED
/SYSTEM, /BAD
/ALL (D)

/!RP, /NONPAGED
/PAGED, /SUMMARY,
/ALL (D)

/PCB (D), /PHD
/WORKING SET, /ALL
/REGISTERS, /PAGE TABLES
/PROCESS SECTION TABLE - -
/INTERRUPT, /KERNEL
/EXECUTIVE, /SUPER
/USER

Symbol-name parameter
optional, /ALL

DEBUGGING TOOLS

Table 4-6 Symbols and Operators

Function

Contents of location

Add 80000000 (S0 base)
to address

Add 7FFE0000 (Pl
stacks) to address

Current location

Hexadecimal number
radix

Octal number radix

Decimal number radix

Symbol or
Operator

@

G

H

"'O

Example

Examine @8000045A

G45A

H7A4

Format

"Hl0

"020

"Dl6

Register symbols R0-Rll, AP, FP,
KSP, ESP, SSP, USP,
P0BR, POLR, PlBR,
Pl LR, PC, PSL

Function

Examine
location(s)

Examine address
at location

Format data

Define symbol

Table 4-7 Common Command Usage

Command

EX •
EX Gl4:G74

EX @USP

Format addr
Format @addr

Define BEGIN =

145

G580

Comment

One location
Several locations

Examine address found
contained in given
location

Format at given location
Format at contents addr

DEBUGGING TOOLS

Examining an Active System

$ ANALYZE/SYSTEMct

VAX/VMS System analyzer

SD A> EVA l U ATE G + (5 0 * 4) - < 4 / 2) + '"'0 7 __..o
Hex = 80000145 Decimal = -2147483323

SDA> EXAMINE G25CO__..e
SCH$GL_SWPPCBt058: 00000000 ••• t

SitA> EXAMINEA
SCH$GL_SWPPCB+osc: 00000000 •• t t

SDA> $<ESC>
SCH$6[. SWPPID: 00010001 t •••

SDA> $<ESC>
SCH$G[_SWPPIDt004! 800023FO '.t .• •

SDA> EX IOC$GL_DEVLIST
IOC$G[_DEVLIST: BOOOOC6C 1 1 ••• •

SDA> EX RO
RO: 00000001

SDA> EX PSL
PSL: o3cooooo

SDA> EX G100:G140
0004001B BFBCOOFC
0004001D 8FBC07FC
0004001F SFBCOFFC
00040021 8FBC003C
00040023 8FBC01FC

•• t •

t • t t

0004001A 8FBC003C
0004001C 8FBCOOFC
0004001E SFBCOOFC
00040020 8FBC01FC
00040022 8FBC0010

< •••••••••••••••
••••••••••••••••
••••••••••••••••
t t t • ••• < ••• ! •••
•••• • •••••••••••

80000100
80000110
80000120
80000130
80000140

Example 4-2 Examining an Active System (Sheet 1 of 5)

146

DEBUGGING TOOLS

SM> SHOW PROCESSA
Process st;~u;! 00040001 RES,PHDRES

PCB address
Master PIIt
PID
PHD address
State
Current Priority
Base Priorit~
UIC
Mute;{ count
Waitin~ EF cluster
Startins wait time
Event flas wait mask
Local EF cluster 0
Local EF cluster 1
Global cluster 2 Pointer
Global cluster 3 Pointer

800E78CO
00050048
00050048
80149COO

CUR
9
4

[011'110]
0
0

00001B1B
F7FFFFFF
CC000001
00000000
00000000
00000000

~:.DA·::- SHDW PFN_DATA/MODIFIED 0
Count: 29
Lolimit! 140
Hi sh limit: 44

JIB .3ddress
Creator PID
Subprocess count
SwaPfile disk address
Termination mailbox
AST's enabled
AST's active
AST's remainins
Buffered I/O count/limit
Direct I/O count/limit
BUFIO b~te count/limit

800E7780
00000000

0
01000421

0000
KESU
NONE

9

t oPen files allowed left
Timer entries allo~ed left
Active Pase table count
Process WS Pase count
Global WS Pa~e count

6/6
6/6

8128/8192
36
10

0
188

12

PFN PTE A[IDRESS BAK REFCNT FLINK BLINK TYPE STATE

0199 8014CC84
011F 8014CACB
01DO 8015FOD4
066F 8015F534
0297 8014C8B8
01E9 8014C9FC
01E7 8014CA04
01E5 8014CAOC

• TITLE GLOBALS

$PHIIDEF GLOBAL
$DPTflEF GLOBAL
$IDBDEF GLOBAL
$CRBDEF GLOBAL
$ADPDEF GLOBAL
$DDBDEF GLOBAL
$UCBDEF GLOBAL
$VCBitEF GLOBAL
$ACBDEF GLOBAL
HRPDEF GLOBAL

• END

04000000
04000000
04000000
04000000
04000000
04000000
04000000
04000000

------ ----------
0 011F 0000 00 PROCESS
0 OHIO 0199 00 PROCESS
0 066F 011F 00 PROCESS
0 0297 01DO 00 Pf\OCESS
0 01E9 066F 00 PROCESS
0 01E7 0297 00 PROCESS
0 01E5 01E9 00 PROCESS
0 01E6 01£7 00 PROCESS

PROCESS HEADER
DRIVER PROLOGUE TABLE
INTERRUPT DATA BLOCK
CHANNEL REQUEST BLOCK
ADAPTER CONTROL BLOCK
DEVICE DATA BLOCK
UNIT CONTROL BLOCK
VOLUME CONTROL BLOCK
AST CONTROL BLOCK
I/O REQUEST PACKET

---------·-

81 MDFYLST
81 MDFYLST
81 MDFYL.ST
81 MDFYLST
81 MDFYLST
81 MDFYLST
81 MDFYLST
81 MDFYLST

Example 4-2 Examining an Active System (Sheet 2 of 5)

147

DEBUGGING TOOLS

SIM> REAII rHELLER JGLOBALS0

SDA> FORMAT @IOCSGL DE'JLIST0
aooooC6c DDBIL_LINK
BOOOOC70 DDBf L_UCB
BOOOOC74 DDB$W_SIZE
BOOOOC76 DDBSB_TYPE
80000C77
BOOOOC78 DDB$L_DDT
80000C7C DDB$L_ACPD

aoooocao
80000C84
aoooocaa
BOOOOCBC
80000C90
80000C99
80000C9C

DDBSB_ACPCLASS
IIDB$T_NAME

DDB$T_DRVNAME

[IIIB$C_LENGTH

SIIA> FORMAT @ .0
80000D9C DDB$L_LINK
BOOOODAO DDB$L_UCB
80000DA4 DDB$W_SIZE
80000DA6 DDB$B_TYPE
BOOOODA7
80000DA8 DDB$L_DDT
BOOOODAC DDB$L_ACPD

BOOOODBO
80000DB4
BOOOODBB
BOOOODBC
SOOOODCO
80000DC9
SOOOODCC

DDB$B_ACPCLASS
DDB$T_NAME

DUB$T_IIRVNAME

DitB$C_LENGTH

snA> s<ESc>O
80000F84 DDB$L_LINK
80000F88 DDB$L_UCB
BOOOOFSC IIDB$W_SIZE
SOOOOFSE DDB$B_TYPE
SOOOOFBF
80000F90 DDB$L_DDT
80000F94 DDB$L_ACPD

80000F98
80000F9C
SOOOOFAO
80000FA4
80000FA8
SOOOOFB1
80000FB4

SDA>

DIIB$8-ACF'CLASS
DDB$T_NAME

DDB$T_DRVNAME

DDB$C_LENGTH

80000D9C
SOOOOCAO

0034
06

00
800B4AFC
01313146

'DRA'
00000000
00000000
00000000
1 DRIIRIVER 1

000000
00000000

80000F84
BOOOODitO

0034
06

00
800B29B3
00000000

'OPA'
00000000
00000000
00000000
'OPERATOR'
000000
00000000

80001144
8000103C

0034
06

00
800013EB
00000000

'MBA'
000000()0
00000000
00000000
'MBDRIVER'
000000
00000000

Example 4-2 Examining an Active System (Sheet 3 of 5)

148

SDA> SHOW POOL/IRP

BUFIO BOODDAOO 160

IRP 800DE680 160

UCB 800DF760 160

PCB 800DF800 160

JIB 800DF8AO 160

CRB 800DFE40 160

DEBUGGING TOOLS

Dump of blocks allocated from IRP lookaside list

00000000
BOOOOCAO
801015CO
00000000
00000041
00000000
00000000
00000000
00000000
00000000

0013009E
800Il203E
101t:FF70
00000001
00000002
800E793C
00000000
00000000
00000000
00000000

800£9440 BOODDAAO
4144530A 8002DB28
7FFB9A14 1B1B0034
00000000 00050050
00000020 00000600
00000000 00001041
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000

00010047 430A009C 80002790 SOOE6D80
8000103C 00000000 00000280 00002FEC
00000000 0403FFEO 00000288 17000021
00000000 00000290 00000000 03200000
8014CCFO 00000001 00000200 00000000
30203635 800E1E9C 20203020 000010CA
80000000 00000000 00000000 FFFFFFFF
54534C59 46444020 31382020 20~02053
800DE70C 00090048 800DE6FC OOOOOOOD
00000000 00000000 00000000 800DE70C

BOODF76C 081000AO 00000000 00000000
00000000 00000000 00000000 800DF76C
00000000 00010047 80106540 801065AO
40000082 00840143 08840043 800E64CO
00000000 00000000 BOODF7AO 800DF7AO
00000000 00000010 80000CAO 03140001
00000000 00000000 00000000 00000001
00000000 8008C958 00000000 00000000
00000000 OOOOOOOF OOOOFFFF 00000000
00000000 00000000 00000000 00000000

OOOOOFOO 180COOAO 800E1E20 SOOE7020
00000000 OOOC4674 800DF810 800DF810
18000007 00001817 00040001 01000181
OOOCOOOC OOOC003F 003BOOOO 00000000
F?FFFFFF 00000000 00000000 OOOOOOOC
00000000 00000000 00000000 4COOOOOO
00544D46 52524506 8011EOOO 0002004A
F3FFFDFF 800DF8AO 00000000 00000000
BOODFSBC 00010006 900DF87C FFFFFFFF
00000000 00000000 00000000 BOODFSBC

00000000 002F0070 00000000 00000000
00000000 00000000 OOOOAOOO 00009FCO
00004FB9 00005000 0040003F 0040003F
OOOAOOOA 00000000 00400000 00000000
54535953 00000000 00000000 0002004A
00000000 00000000 20202020 20204045
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

•••• @ •••• ++•••••
(•••• SDA> ••••••
4 ••••••• i:- •••••••
]
··~· +••+••+A •••
A ••••• ~.<·::1 ••••• ,
•••+ttt+ttttt••~

•••••••• t •••• + t

ttt+ttttt+tt+++t

• t f t f •• t + ••

• m ••• 1
••••• CG •••

I /
t I t t t t t t t f t t • •. t f t

!+t+tttttt++ttff

t+t+t+++tttt+•••

•••• 0 •••• 56 0
••••••••••••••••
'3 Bl MDFYLST
•••••••• H •••••••
•••.•••••••• 1 •••
1 •••••••• •fttttt
• e •• @e •• G •••••• i

.d •• c •.• c •••.•• @

................
•·+•••··x ••••••• ,
••••••••••••••••

} .. ··········· •••••••• tF ••••••
tt++t+!+t •••••••

•••••• ;.'? •••••••
••••••••••••••••
••• L••••••••t•••
J ERRF MT.
·········~···~~t
•••• 1 •••••••••••
................ + ...

~ l
······••l"'t/ttttt

••••••••••••••••
?dL?.@ •• P ••• o ••
•••••• @ ••••• t •••

J ••••••••••• SYST
EM t •••• I • I·
•• t •••••• t ••••••

······~·········
00000008 42050070 SOODFE40 800DFE40 @ ••• @ ••• P •• B ••••
001FOOOO 00000000 00000000 00000000 •••••••••.••• , ••
nntA1,rn nnnn~~rr ~rt ,,r~n AAAAnAAA ~ J

Example 4-2 Examining an Active System (Sheet 4 of 5)

149

DEBUGGING TOOLS

SDA> SHOW STACK/USER
Current 0Perat1ns stack <USER>:

7FFB624C 000125E8
7FFB6250 000011CO SGN$C_MAXPGFL+1CO
7FFB6254 00012C04
7FFB625B 00000000
7FFB625C 00000010
7FFB6260 7FF.B62EO
7FFB6264 7FFB62E.O
7FFB6268 7FFB • .S26C

SP => 7FFB626C 00000001
7FFB6270 7FFB6270
7FFB6274 00000000
7FFB6278 200COOOO
7FFB627C 00001.lCO SGNfC_MAXPGFLtlCO
7FFB6280 7FFB62FO
7FFB6284 0001161E
7FFB6288 00000000
7FFB628C 000125E8
7FFB6290 00000003
7FFB6294 7FFB6800
7FFB6298 7FFB6BOO
7FFB629C 7FF.B626C
7FF B62AO 0000000()
7FFB62A4 8011IIAOO
7FFB62A8 00000400 BUGLIJNEXUBAINT
7FFB62AC 000114AA
7FFB62BO 7FFEAEOO CTLSGL_t\SPINI
7FFB62B4 7FFEAEOO CTL$GL_KSPINI
7FFB62BB 00000600 SWPSAL_PTRPAG
7FFB62BC 00011484
7FFB62CO 7FFEBEOO
7FFB62C4 7FFEBEOO
7FFB62C8 00001000 SGN$C_MAXPGFL
7FFB62CC 00011488
7FFB62DO 7FFEU56C
7FFB62D4 7FFEDEOO SYSStHOW
7FFB62DB 00002000 SGN$C_MAXVPGCNT
7FFB62DC 000114C5
7FFB62EO 7FFB626C
7FFB62E4 7FFB6BOO
7FFB62E8 7FFB6800
7FFB62EC 000114[1()
7FFB62FO 00000000
7FFB62F4 07FCOOOO
7FFB62FB 7FFB636C
7FFB62FC 7FFB6330
7FFB6300 00036C8E
7FFB6304 00000000
7FFB6308 000125E8
7FFB630C 000011CO SGNSC_MAXPGFL+1CO
7FFB6310 00012C04
7FFB6314 00000000
7FFB6318 000011CC SGN$C_MAXPGFL+1CC
7FFB631C 000125E4
7FFB6320 000011[14 SGN$C_HAXPGFL+1D4
7FFB6324 000011F7 SGN$C_MAXPGFL+1F7
7FFB6328 00000000
7FFB632C 00000000
7FFB6330 00000000
7FFB6334 2FFCOOOO
7FFB6338 7FFB63AC
7FFB633C 7FFB6390
7FFB6340 00002DDA SSLEXENQUH396
7f:'f:'Rl.~44 oononrrR ~·:;~ f:")(fll='PTl-1-f.1 nr.

Example 4-2 Examining an Active System (Sheet 5 of 5)

150

DEBUGGING TOOLS

Examining a Crash Dump File

$ ANALYZE/CRASH-DUMP SYSfSYSTEM!SYSDUMP.DMP
VAX/VHS System dump anal~zer

Dump taken on 7-JUN-1982 17:15!54.12
INVEXCEPJN, Exception while above ASTDEL or on interrupt stack

SDA> SHOW CRASH
Time of s~ste~ crash: 7-JUN-1982 17:15:54.12

Version of system: VAX/VHS VERSION V3.0

Reason for BUGCHECK exception: INVEXCEPTN, Exception while above ASTDEL or on interr

Process currently executin~: NULL

Current IPL: 31 (decimal)

General resisters:

RO = 0000001F Rl = 001FOOOO R.., .. = 00000000 R3 = 00000000
R4 = 00000000 RS = 00000000 R6 = 00000000 R7 = 00000000
RB = 00000000 R9 = 00000000 R10 = 00000000 R11 = 00000000
AP = 00000000 FP = 00000000 SP = 800009AO PC = S0003DC6
PSL = 001F0009

Processor resisters:

f'OBR = 80000000 PCBB = 00121B4C ACCS ··- 00000000
f'OLR = 00000000 SCBB = 0016FEOO TBIIR = 00000000
P1BR = 7FS02000 ASTLVL = 00000004 CADR = 00000000
P1LR = 00200000 SISR = 00000000 MCESR = 00000000
SBR = 00171AOO ICCS = BOOOOOC1 CAER = 00000000
SLR = 00003980 ICR = FFFFF9IlE CMIERR = 00080010

TOIIR = 61392F29

ISP = 8011 IlAOO
KSP = 800009AO
ESP = 00000000
SSf' = 00000000
USP = 00000000

SIIA>

Example 4-3 Examining a Crash Dump File

151

DEBUGGING TOOLS

DELTA AND XDELTA

Table 4-8 Comparison of DELTA with XDELTA

FACTORS

Usage

Terminal used
for control

IPL

DELTA

User images

Any TTY

= 0

How activated Linked or included
at run time

Access mode All modes

Both debuggers are:

• Non-symbolic

• Use name command syntax

• No visible prompt

• Error message is "Eh?".

152

XDELTA

Operating System Drivers

Console only (OPA0:)

>0

Included at boot time

Kernel mode only

DEBUGGING TOOLS

DELTA Debugger

To use the DELTA debugger, assemble and link a program in the
following fashion.

1. $ MACRO prog name+SYS$LIBRARY:LIB/LIB
2. $ LINK/DEBUG-prog name, SYS$SYSTEM:SYS.STB/SELECT
3. $ DEFINE LIB$DEBUG DELTA
4. $ RUN prog_name

Steps:

1. Assembles the program allowing system macros to be defined
(SYS$LIBRARY:LIB/LIB).

2. Links the program with a debugger and resolving any system
symbols (SYS$SYSTEM:SYS.STB).

3. Define the debugger used to be DELTA.

4. Activate the program mapping in DELTA.

153

DEBUGGING TOOLS

CHMK Program

It is often convenient to observe data structures changing
dynamically. One way to gain access to kernel mode data
structures is to run the CHMK program. This program allows any
privileged process (with CMKRNL privilege) to change mode to
kernel, and enter DELTA commands (e.g., to look at system data
structures). Extreme caution should be exercised so that data
structures are not modified, since such modification could lead to
a system crash.

Perform the following steps to use the CHMK program.

1. Assemble CHMK.
2. Link CHMK.
3. Indicate the DELTA debugger.
4. Run the CHMK program.
5. Enter a breakpoint in the program and tell it to proceed.

The Corresponding Commands are:

1. $MACRO CHMK + SYS$LIBRARY:LIB/LIB
2. $ LINK/DEBUG CHMK, SYS$SYSTEM:SYS.STB/SELECT
3. $ DEFINE LIB$DEBUG DELTA
4. $ RUN CHMK
5. 215;B;P

Note that at step 4, no prompt from DELTA is given.

After you receive the "stopped at breakpoint" message, you
are in kernel mode, and may proceed to examine system data
structures. To leave the program, type ';P', followed by EXIT.
(If you just type EXIT, you will be logged off, since kernel mode
exit implies process deletion.)

154

GO:

DEBUGGING TOOLS

.WORD 0
$CMKRNL_S ROUTIN = 10$
RET
.WORD 0
NOP
NOP

MOVZBL #SS$_NOR~AL,RO

RET
.ENO GO

NULL ENTRY MAStc
ENTER KERNEL MODE
All DONE
NULL ENTRY ~ASK

WHERE BPT INSTRUCTION
IS PLACED, BY 215;8
ISSUED BY USER
RETURN SUCCESS STATUS
ALL DONE

Example 4-4 The CHMK Program, Run with DELTA

155

DEBUGGING TOOLS

DELTA and XDEL TA Functions and Commands

Table 4-9 DELTA and XDELTA Functions and Commands

Function

Display contents
of given address

Replace contents
of given address

Display contents
of previous
location

Display contents
of next location

Display range of
locations

Display indirect

Single step
command

Set breakpoint

Display breakpoint

Command

address/

addr/contents new

<ESC>

addr/contents <LF>
addr'/contents

addr,addr'/contents

<TAB>

or
I

s

addr;N;B <RET>
(N is a number 2-8)

;B

156

Example

GA88/00060034

GA88/00060034 GA88

GABB/00060034 'A'
(Replace as ASCII)

80000A88/80000BE4 <ESC>
80000A84/00000000

80000004/8FBC0FFC
80000005/50E9002C

G4,GC/8FBC0FFC
80000008/50E9002C
8000000C/00000400

80000A88/80000BE4 <TAB>
80000BE4/80000078

80000A88/80000BE4/800000'

1 brk at 8000Bl7D
s
8000Bl7E/9A0FBB05

800055F6;2;B

;B
1 80008170
2 800055F6

DEBUGGING TOOLS

Table 4-9 DELTA and XDELTA Functions and Commands (Cont)

Function

Clear
breakpoint

Proceed from
breakpoint

Set base
register

Display base
register

Display general
register

Show value

Executing stored
command strings

Change display
mode

Command

0;N;B <RET>

;P

'value' ,N,X

Xn <RET>
or
Xn=

Rn/
(n is in
Hexadecimal)

expression=

addr;E <ret>

[B
[W
[L
["

157

Example

0;2;B

;P

80000000,0,X

X0
00000003

X0=00000003

R0/00000003

1+2+3+4=0000000A
(+,-,*,%{divide})

80000E58;E

Byte width
Word width
Longword width
ASCII display

DEBUGGING TOOLS

CONSOLE COMMANDS

Table 4-10 Console Commands

Function Command*

Look at Examine
Physical memory
General and processor registers

Place information into Deposit
Physical memory
General and processor registers

Put processor into known state Initialize

Stop the CPU (necessary for 780 only) Halt

Restart halted CPU Continue

Execute one instruction at a time Single step

* Exact form of command is CPU-specific. Consult the
VAX Hardware Handbook.

158

DEBUGGING TOOLS

PATCH

The patch utility enables a user to 'edit' an image file.
Patch is intended to be used on non-DIGITAL software. Application
of patches to DIGITAL software, other than those that are DIGITAL
supplied, invalidate the warranty.

Table 4-11 PATCH Commands

Function Command

Display contents of one Examine
or more locations

Store new contents in Deposit
one or more locations

Insert one or more Insert
symbolic instructions

Verify the replace Replace
contents of location

Display various SHOW parameter
information (e.g.,
module names)

Alter default settings
(e.g., module name
referenced)

SET parameter

159

DEBUGGING TOOLS

SYSTEM
COMPONENT
INVOKES
BUG_CHECK
GENERATES
EXCEPTION

SYSTEM
DISPATCHES
(TH ROUGH SCB)
TO
EXE$0PCDEC

JUMP TO
EXE$BUG_CHECK

APPENDIX
BUGCHECK FLOW OF CONTROL

HANDLE IN
TRADITIONAL
WAY
(EXCEPTION
DISPATCHER,
ETC.)

TK-9009

Figure 4-5 Bugcheck Flow of Control (Sheet 1 of 3)

161

READ FATAL
BUG
CODE FROM
SYS.EXE

DEBUGGING TOOLS

READ
BUG$_XXXX
CODE
FOLLOWING
FF, FE OR FF, FD

$EXIT_S
#SS$_BUGCHECK

WRITE
ERROR LOG
ENTRY

RETURN
(REI)

TK-9010

Figure 4-5 Bugcheck Flow of Control (Sheet 2 of 3)

162

PRINT
INFO
ON
CONSOLE

WRITE
DUMPFILE

BUG$FATAL

BUILD
DUMPFILE
HEADER

DEBUGGING TOOLS

CALL
XDELTA
(BREAKPOINT)

TK-9011

Figure 4-5 Bugcheck Flow of Control (Sheet 3 of 3)

163

DEBUGGING TOOLS

SAMPLE CRASH DUMP ANALYSIS

$ ANALYZE/CRASH SYS$SYSTEH:SYSDUMP.DHP
VAX/VHS S~stem dump analszer

Du•P taken on 10-JUN-1982 12:54:02.76
SSRVEXCEPT, Unexpected ssstea service exception

SDA> SHOW STACK
Current oPeratin~ stack <KERNEL>:

7FFEAD58 7FFED778
7FFEAD5C 7FFEDDD4
7FFEAD60 7FFE7C90
7FFEAD64 7FFEAD90
7FFEAD68 7FFEAD78
7FFEAD6C 7FFEAD70
7FFEAD70 SOOOCFFO
7FFEAD74 00000000

SP => 7FFEAD7B 00000000
7FFEAD7C 00000000
7FFEADSO 00000000
7FFEAD84 7FFEADDO
7FFEAD88 80000014
7FFEADSC 800130Dlo
7FFEAD90 00000002
7FFEAD94 7FFEADB4~
7FFEAD98 7FFEAD9C ..
7FFEAD9C 00000004
7FFEADAO 7FFB6360
7FFEADA4 FFFFFFFD
7FFEADA8 OOC00009
7FFEADAC 00000002
7FFEADBO OOOOOBFS ..
7FFEADB4 00000005~
7FFEADB8 OOOOOOOC
7FFEADBC 00000000
7FFEADCO OOOOOOOC
7FFEADC4 BOOOSBESCt
7FFEADCB OOC00004
7FFEADCC 0000021D
7FFEADDO 00000000
7FFEADD4 00000000
7FFEADDB 7FFB6378
7FFEADDC 7FFEADE4
7FFEADEO 80008089
7FFEADE4 00000000
7FFEADE8 00000000
7FFEADEC 7FFB6378
7FFEADFO 7FFB6360
7FFEADF4 8000CFE6
7FFEADF8 7FFEDE96
7FFEADFC 03COOOOO

CTL$AG_CLIDATA+OSO
CTLSGL_KSTKBASf 590
CTL$GL_KSTKBAS+578
CTL$GL_KSTKBASt570
EXE$EXCPTN+006

CTL$GL_KSTKBASt5DO
SYSSCALL_HANDL+004
EXE$SRCHANDLER+OC5

CTL$6L_KSTKBASt5B4
CTLSGL_KSTKBAS+S9C

VA$M_VPG+1FD
PSL$M_PRVMOD+009

SS$_ENDOFFILEtOB8

HPH$QAST
PSL $fLPRVMOD+004
FIL$C_SIZE+005

CTL$GL_KSTKBASt5E4
EXESCMKRNL+OOD

EXE$CMODEXEC+18E
SYSSCMKRNL+OO.S

Example 4-5 Sample Crash Dump Analysis {Sheet 1 of 4)

164

_DRA7:CSYS.OBJJSYS.EXE;l Z7-APR-198Z 03:46 VAX-11 linker V03-16 Page 10

Psect Name .lo1odule Narre !lase End Length Align l1:1:ribu1:es

---------- ----------- ---- --- ------ ----- ----------
• BLANK • 80007A6E 80008428 OOOOOF!IE C 4030.) BYTE 0 NOPIC1USR,CON1REL1LCL,NOSHR1 EXE, RD, WRT,NOVEC

NL OR IVER 80008AOB 80008408 00000000 (0.) BYTE 0
MTFDT 80008AOB 80008AZB 00000021 C 33. > BYTE 0
CONitHOSP eoooeAZC eoooeazc 00000000 < 0.) BYTE 0
CCMDRVSUB 80008AZC 80008AZC 00000000 C O.) BYTE 0
MAHANOLER 80008AZC 80008A2C 00000000 C 0.) BYTE 0
XDSTRING 80008AZC 80008A2C 00000000 C 0.) BYTE 0
VERSION 80008AZC 80008l2C 00000000 (0.) BYTE 0
DEVICEDAT 80008AZC 80008A2C 00000000 C 0.) BYTE 0
MD4T_ENC: 80008AZC 80008A2C 00000000 C 0.) BYTE 0
SYSSIOOEF 80008AZC 8000BAZC 00000000 C 0.) BYTE 0
lIB$MSt;DEF 80008AZC 80008A2C 00000000 C 0.) BYTE 0
SYSSPROEF 80008AZC 80008A2C 00000000 (0.) BYTE 0
RMSSGLO!IALS 80008l2C 80008A2C 00000000 C 0.) BYTE 0
SYS$SSOEF 80008A2C 80008A2C 00000000 C O.) BYTE 0
SYSSPl_VECTOR 80008AZC 80008A2C 00000000 C 0.) BYTE 0

tJ
ASEXENONPAGED .. 80008A2C 80008F9C 00000571 C 1393.) LONG 2 NOPIC,USR,CON,REL 1 LCL,NOSHR, EXE, RD, WRT,NOVEC tz:l

A STOEL -.eoooea2c eoooecco 00000295 c 661.) LONG 2 to
FORKCNTRL 80008CC4 8000803F 0000007C (124. > LONG 2 c
TIME SCHOL 90008040 80008F9C 00000250 C 605.) LONG 2 G)

~
G)

AESl 80008F90 8000925A 000002BE C 70Z.) BYTE 0 NOPtC,USR1CON1REL1LCL1NOSHR1 EXE, RO, WRT,NOVEC H

°' RSE 80008F90 8000925A 000002BE C 702.) BYTE 0 z
l11 G)

AES2 8000925B 80009286 0000002C C 44.) BYTE 0 NOPtC,USR,CON1REL1LCL1NOSHR1 EXE 1 RD, WRT,NOVEC
QSE 80009258 80009286 0000002(c 44.) BYTE 0

t-3
AEXENONPAGED 80009288 8000A32A 000010A3 C 4259.) LONG 2 NOPIC1USR,CON,REL1LCL1NOSHR1 EXE, RD, WRT,NOVEC 0

SHELL 80009288 80009288 00000004 (4.) BYTE 0 0
:xsueRouT 800092BC 80009360 OOOOOOE2 C 226.) BYTE 0 L'
MEMORYALC 8000936E 800097CO 00000453 C 1101.) BYTE 0 C/)
MU TEX 800097C1 800098DC 0000011C C 284.) BYTE 0
PCSTEF 8000980D 80009A3F 00000163 (355.) BYTE 0
PROC STRT ~0009A40 80009150 00000011 (11.) BYTE 0
SCHE D 80009A54 80009lCA 00000077 C 119.) LONG 2
SYSASCEFC 80009ACB 80009817 00000040 C 11.> BYTE 0
SYSBRDCST 30009B18 80009EF8 000003E4 C 996.) BYTE 0
SYSDELPRC ~0009EFC 80009F49 0000004E (78.) BYTE 0
SYSEVTSRV 80009F4A B0009FE8 0000009F (159. > BYTE 0
SYSGETJPI ~0009FE9 80009FEF 00000007 C 7.) BYTE 0
SYSPCNTRL ~0009FF0'8000A1BC 000001CD C 461.) BYTE 0
SYSSETPFM 3000A1CO 8000AZ4~ 00000087 C 135.) LONG Z
SY SWAIT goooA247 8000AJ2A OOOOOOE4 (228.) BYTE 0

LOCK MGR 9000A32C 9000AC96 00000968 C 2411.) LONG 2 NOPIC,USR,CON,REL,LCL,NDSHR, EXE I RO, WRT,NOVEC
DEADLOCK 9000A3ZC 8000A53F 00000214 (532.) BYTE 0
SYSENQOEQ 9000A540 8000AC96 00000757 C 1879.) LONG

WIONONPAGEO ~OQOAC98 8000CZA9 00001612 (5650.) LONG 2 NOPIC,USR,CON,REL,LCL,NOSHR, EXE, RD, WRT,NOVEC
SUFFERCTL 8000AC98 80COJOJ8 00000081 (129.) BYTE 0
ERROUOG 8000A019 8000AFF4 000002DC (132. > BYTE 0

Example 4-5 Sample Crash Dump Analysis (Sheet 2 of 4)

DEBUGGING TOOLS

01AF 455 • se TTL SCHSQAST • ENQUEUE AST CONTROL BLOC~ FOR P
01AF' 456 :++
~UF 457 FUNCTIONAL DESCRIPTIONS
01AF 458
~lAF 459
01AF 4&0 :
eltAF 461 :
~lAF' 462
0UF 4b3
01AF 4&4 J
~H AF 4b5
~UP' 466
l'11AF 4b7

SCH!QAST INSERTS THE AST CONTROL BLOCK SUPPLIED IN
POSITION BY ACCESS MODE IN THE AST QUEUE OF THE PR
BY THE PIO FIELD OF THE AST CONTROL BLOCK. AN AST
IS THEN REPORTED FOR THE PROCESS TO REACTIVATE FRO
IF APP~OPRIATE. THE AST CONTROL BLOCK WILL BE REL
IF THE PIO SPECIFIES A NON•EXISTENT PROCESS.

LOADABLE MULTI•PROCESSING CODE WILL REPLACE THIS R
ENTIRELY NEW CODE, AT MP~SQAST.

01AF Q68 CALLING SEQUENCEI
~1AF 4b9 J BSBIJSB SCHSQAST
01AF 470
01AF 471 INPUT PARAMETERSI
~lAF 472 : ~2 • PRIORITY INCREMENT CLASS
~UF 473 : R5 • POINTER TO AST CONTROL BLOCK
~tAF 474 J
~1AF 475 : IMPLICIT INPUTS&
01A, 476 PCB OF PROCESS IDENTIFIED BY PIO FIELD
MAF 477 J
euF 478
~UF 47q J
01AF 480
0tAF 481
01AI:' 482 :
01AF ll8J
t!lAF 484 J
fllAF 485 :

OUTPUT PARAMETERSI
R~ • COMPLETION STATUS CODE
R4 • PCB ADDRESS OF PROCESS FOR WHICH AST WAS QUEL

SIDE EFFECTS I
TME PROCESS IDENTIFIED BY THE PIO IN THE AST CONT~
WILL 8E MADE EXECUTABLE IF NOT SUSPENDED.

01AF 486 J COMPLETION CODES&
0tAF 467 SSS.NORMAL • NORMAL SUCCESSFUL COMPLETION STATUE
~tAF 48S J sss.NONEXPR • NON•EXISTENT PROCESS
~lAF' 489 :••
kH AF 490
01AF 491
01AF 492
'1182 493
01B5 494
01BA 1.195
~tee 496
USC 497
i118C 498
fatacO 499
e1c0 500
11c• s01
ltCC 502
fltDl Sa3
0103 5~4

.ENABL
QNONEXPRI

"10VL
BS8w
MOVZWL
BRB

MPHSQAST 11
SCHSQAST 11

0MOVZWL
DSBINT
MOVL
CMPL
BNEQ
CLRL

LSB

R5,R0
EXESOEANONPAGED
#SU ... NONEXPR,R0
QEXIT

RELEASE AST CON1
IF NO SUCH PROCE
SET ERROR STATU~
ANO EXIT

J MULTI•PROCESSINC
J ENQUEUE AST FOR

ACBSL.PIOCRS),R0 GET PROCESS INDE
#IPLS.SYNCH J DISABLE SYSTEM E

•w•scHSGL.PCBVEC[Rl],R4 , LOOK UP PCB ADDF
ACBSL.PIOCR5)1PCBSL•PIDCR4) I C~ECK ,OR M~
QNONEXPR J PIO MISMATCHES
R0 J ASSUME KERNE~ ~C

Example 4-5 Sample Crash Dump Analysis (Sheet 3 of 4)

166

DEBUGGING TOOLS

SDA> SHOW CRASH
Time of s~stem crash: 10-JUN-1982 12:54:02.76

Version of ssstem: VAX/VMS VERSION V3.0

Reason for BUGCHECK excePtion: SSRVEXCEPT, Unexpected s~stem service exception

Process currently executins: _QPAO!

Current imase file naIDe: DRAO:[HELLERJCRASHAST.EXE;1

Current IPL: 0 (deci~al>

General resisters:

RO = 00000000 R1 = SOOOCFEA R2 = 00000004 R3 = 7FFC4B3B
R4 = 800E53EO RS = 000000008 R6 = 31000408 R7 = 7FFED988
RS = 7FFED570 R9 = 7FFEit778 RlO = 7FFEitDil4 R11 = 7FFE7C90
AP = 7FFEAD90 Ff' = 7FFEAD78 SP = 7FFEAD78 PC = 8000CFFO
f'SL = 00000000

Processor re~isters:

POBR = 801A3800 PCBB = 0004AB74 ACCS = 00000000
POLR = 00000003 SCBB = 0016FEOO TBDR = 00000000
P1BR = 7F9B7200 ASTLVL = 00000004 CAI•R = 00000000
f'1LR = 001FFD9E SISR = 00000000 MCESR = 00000000
SBR = 00171AOO ICCS = 800000C1 CAER = 00000000
SLR = 00003980 ICR = FFFFFDAA CM I ERR = 00080010

TODR = 62AC9IIEC

ISP = 8011DAOO
KSP = 7FFEAD78
ESP = 7FFEBEOO
SSf' = 7FFED56C
USP = 7FFB6360

SDA>

Example 4-5 Sample Crash Dump Analysis (Sheet 4 of 4)

167

SCHEDULING

Scheduling is
action or event.
routine at IPL
memory-resident,
control the CPU.
hardware process
processes and the

SCHEDULING

INTRODUCTION
the selection of a process for a particular

The scheduler, a software interrupt service
3, is responsible for selecting which

executable process will be the next one to
The scheduler code performs the exchange of
contexts between the set of resident, computable
currently executing process.

Two portions of the swapper, a system process, select
candidates for removal from, or placement in, the set of
memory-resident processes (the balance set). Outswap operations
move processes in memory-resident states to corresponding
outswapped states. Inswap operations transform executable,
nonresident processes into executable, resident ones.

Additional support routines provide the logic to establish
and satisfy a range of conditions for which processes may wait.
Examples of these conditions include system service requests (such
as $HIBER, $RESUME, or $WAITFR) and resource waits (such as mutex
wait or depleted system dynamic memory).

OBJECTIVES
1. For each process state, describe the properties of a

process in the state, and how a process enters and leaves
the state.

2. Given a set of initial conditions and a description of a
system event, describe the operation of the scheduler.

3. Assign priorities for a multiprocess application.

4. Discuss the effects of altering SYSGEN parameters related
to scheduling.

171

SCHEDULING

RESOURCES

Reading

• VAX/VMS Internals and Data Structures Manual, chapters on
scheduling and swap scheduling.

Additional Suggested Reading

• VAX/VMS Unternals and Data Structures Manual, chapters on
software interrupts, process control and communication,
timer support, and synchronization techniques.

Source Modules

Facility Name

SYS

Module Name

SCHED
RSE
SYSWAIT
SDAT
SWAPPER (local
label SWAPSCHED)
OSWPSCHED
SYSPCNTRL

172

SCHEDULING

TOPICS

I. Process States

A. What they are (current, computable, wait)

B. How they are defined

C. How they are related

II. How Process States Are Implemented in Data Structures

A. Queues

B. Process data structures

III. Operating System Code that Implements Process State Changes

A. Context switch (SCHED.MAR)

B. Result of system event (RSE.MAR)

IV. Steps at Quantum End

A. Automatic working set adjustment

v. Boosting software Priority of Normal Processes.

173

SCHEDULING

PROCESS STATES

DELETE CREATE

(SCHEDULER) (SWAPPER)

Figure 5-1 Process State Diagram

0 CURRENT - executing

f» WAIT - removed from execution to wait for event completion

8 COMPUTABLE - ready to execute

0 WAIT OUTSWAPPED

ft COMPUTABLE OUTSWAPPED

175

SCHEDULING

PROCESS WAIT STATE DIAGRAM

DELETE

Figure 5-2 Process Wait State Diagram

176

SCHEDULING

WAYSTOLEAVECURRENTSTATE

Figure 5-3 Ways to Leave Current State

1. Wait for common event flag(s) set ($WAITFR)
2. Wait for local event flag(s) set ($WAITFR)
3. Hibernate until wake-up ($BIBER)
4. Suspended until resume ($SUSPND)
5. Removed from execution-quantum end or preempted
6. Page read in progress
7. Wait for free page available
8. Wait for shared page to be read in by another process
9. Wait for miscellaneous resources or mutex

10. Deletion.

177

SCHEDULING

WAYS TO BECOME COMPUTABLE (INSWAPPED)

10

Figure 5-4 Ways to Become Computable (Inswapped)

1. Common event flag(s) set
2. Local event flag (s) set
3. Wake-up ($WAKE)
4. Resume ($RESUME)
5. Removed from execution-quantum end or preempt
6. Page read complete
7. Free page available
8. Shared page read complete
9. Miscellaneous resources available or rnutex available

10. Outswapped computable process is inswapped

178

SCHEDULING

INSWAPPED TO OUTSWAPPED TRANSITIONS

e---------~e
e---------~e
0---------~e
8----------~8

~---------------------------~-~~
8----------~8
8----------~8
8----------~8

e----------~e
Figure 5-5 Inswapped to Outswapped Transitions

179

SCHEDULING

WAYS TO BECOME COMPUTABLE (OUTSWAPPED)

Figure 5-6 Ways to Become Computable (Outswapped)

180

SCHEDULING

QUEUES

Information in a table:

LIST - 73 -
280

-5

Information in a queue:

LIST---tM

73 280 -5

In General,

POINTER--... NEXT

PREVIOUS

"LISTHEAD"

DATA DATA DATA

Figure 5-7 Queues

181

SCHEDULING

IMPLEMENTATION OF STATES BY QUEUES

Pointer -+ ... 1-------t
state

"lis thead"

SQFL
SQBL

PCB PCB

Figure 5-8 A State Implemented in Queues

INSQUE Instruction

PCB

The INSQUE instruction changes forward and backward links so
that data structure (here the PCB) is inserted in a queue. For
example, when a process is removed from execution by the
scheduler, its PCB is inserted on a COM queue.

REMQUE Instruction

The REMQUE instruction changes forward and backward links so
that data structure is removed from a queue. For example, when a
process becomes current, its PCB is removed from a COM queue.

182

SCHEDULING

Implementation of COM and COMO States

BITMAP (1 EACH FOR COM, COMO)

FOR STATE COM

BITS 31 00

I I I 111111111111111111111111111111 ~~~~~~~gO~UQ~UE BIT MAP

PRIORITIES 0 31

QUEUE b

PRIORITY 31

1

LISTHEADS (32 EACH FOR COM, COMO)

..-~~~~~~~~~~~~~~~---

-----~---------~-----11

30...__~~--4~-~~----~~----t

QUEUE HEADERS

: :SCH$AQ_COMH
: :SCH$AQ_COMT

Figure 5-9 Implementation of COM and COMO States

TK-8974

Each bit and listhead corresponds to a scheduling queue at a
particular software priority level. Figure 5-10 shows an example
of this for computable processes at priority levels 4 and 6.

BITS 31 0

1111H1111111111111111111111111111
PRIORITIES 0 31

QUEUE 25
PRIORITY 6

PRIORITY 6 ~-------------------i

PRIORITY 5 PCB

PRIORITY 4

PCB

TK-8975

Figure 5-10 Example of Computable Queues

183

SCHEDULING

Implementation of Wait States

• ~

-E I

State Count

Figure 5-11 Wait State Listhead

The listhead for a wait state contains forward and backward
links, a count of the PCBs in the wait queue, and an integer value
corresponding to the wait state. Figure 5-12 shows what two
processes in hibernate state would look like.

HIBER 2

HIBERNATE
LISTHEAD

HIBER

PCB

HIBER

PCB

TK-8952

Figure 5-12 Implementation of Wait States

184

SCHEDULING

Implementation of CEF State

SCH$GQ_CEBHD::

--h CEB

~I 11 I
Wait Queue .. PCB PCB

CEB Name

CEB
...llio. ,..

-11..

Wait Queue """11....
~

PCB

CEB
...llio. --,

-11.. "" Wait Queue """'-
--,.

PCB ..ti._
,,

PCB -

CEB

..lio.. ,,,..

Wait Queue

Figure 5-13 Implementation of CEF State

When a common event flag cluster is created, a data structure
contains both the cluster and listhead for the PCBs of processes
waiting for event flags within the cluster. Therefore, there are
as many CEF state queues as there are clusters.

185

SCHEDULING

SCHEDULING FIELDS IN SOFTWARE PCB

SOFL

SOBL

PRI r

PHY PCB

STS

PRIB] r STATE

Figure 5-14 Scheduling Fields in Software PCB

SQFL, SQBL - state queue forward, backward links, link PCBs in a
given state

STATE - process state

PRI - current software priority

PRIB - base software priority

PHYPCB - physical address of hardware PCB

STS - process Status

186

SCHEDULING

SAVING AND RESTORING CPU REGISTERS

PR$_PCBB.-+ STACK POINTERS

KESU

General Purpose

Registers RO-R 11

AP

FP

PC

PSL

POBR

]AST LVL]] POLR

P1BR

] P1LR

Figure 5-15 Saving and Restoring CPU Registers

Process-specific CPU registers are saved to/restored from
hardware PCB during context switch (state change current <-->
computable).

SVPCTX copies stack pointers, general purpose registers,
argument pointer, frame pointer, PC, and PSL to current process
hardware PCB, then switches to system-wide interrupt stack.

LDPCTX - restores stack pointers, general purpose registers, RP,
FP, AST LVL, P0LR, R0BR, PlLR, PlBR from hardware PCB pointed by
by PR$ PCBB. Pushes saved PC and PSL on stack, since REI which
follows pops them.

187

SCHEDULING

SCHEDULER (SCHED.MAR)

1 SCH$RESCHEO - RESCHEDULING INTERRU~T HANDLER ct
2
3
4

ENVIRONMENT:

~

6

IPL=3 MODE=KERNEL IS=O
INPUT:

7
OOCSP)=PC AT RESCHEDULE INTERRUPT
04CSP)=PSL AT INTERRUPT.

f ;--
9

lf.)
11

.ALIGN LONG
MPH$RESCHEO:: eta
SCH$RESCHEO::

SETIPL #IPLS SYNCH
SVPCTX etc -
MOVL WASCH$GL_CURPC8,Rl

1! MOVZSL PCB$8_PRICR1),R2
lE BBSS R2,WASCHSGL_COMQS,10$
ti 10$: MOVW #SCH$C_COM,PCeiw_STATECR1)
1t MOVAQ WASCH$AQ_COMTCR2),R3

INSQUE CR1),GJCR3)+ ctd 1~

2<> : +
21 ; SCH$SCHED - SCHEDULE NEW PROCESS FOR EXECUTION
2~
23 HPH$SCHEO::
24 SCH$SCHEO::
2~

2E
27
2~

SETI Pl
FFS
3EQL
MOVAQ

2~ REMQUE
3C BYS
~1 BNEQ
32 BBCC
33 zos:
34
35
3t
31
3~

3C3
4(

"l
.. , 30 s:

CMPB
SNEQ
MOVW
MOVL
CMPB
BEQL
BBC
INCB

't? MTPR
44
45
4!

LO PC TX
REI

~; SCHSIOLE:
4(SETI PL

"~ MOVB
5C BRB
~1

5~ QEMPTY:
s~

54 • ENO

Oa
#IPLS_SYNCH Ob
#O,t32 9 WASCHSGL_COMQS,~2
SCH$IOLE
WASCH$AQ_COMHCRZJ,R3
@C~3)+,R4 Oc
QEMPTY
zos
RZ,WASCHSGL_COMQS,20$

#OYNSC_PCB,PCBSB_TYPECR4)
QEMPTY
tSCHC_CUR,PCBW_STATECR4)
R4,WASCHSGL_CURPCB
PCB$8_PRIB(R4),PCB$B_PRI(R4)
30$
#4,PCB$B_PRICR4),30$
PCBSS_PRICR4)
MOVB PCB$B_?RICR4),WASCH$G8_PRI
PC8$L PHYPCBCR4),#PRS PCBB
0 - -

Oe d

UPL$_SCHED
#32,WASCHSGB_PRI
SCH$SCHED

SUG_CHECK QUEUEMPTY,FATAL

Example 5-1 Scheduler (SCHED.MAR)

188

0

SCHEDULING

Comments on SCHED.MAR:

1. Current process ---> computable resident

a. Entry point

b. Synchronize access to scheduler data base

c. Save hardware context of current process in hardware
PCB

d. Insert PCB at tail of COM queue

2. Highest priority computable resident process ---> current

a. Entry point

b. Synchronize access to scheduler data base

c. Remove PCB from head of COM queue

d. Restore hardware context, push PC and PSL onto stack

e. Transfer control to current process.

189

SCHEDULING

SOFTWARE PRIORITIES AND PRIORITY ADJUSTMENTS

QUANTUM

I I

20

18

16 J::AP::L -
14

SOFTWARE

PRIORITY 12

LEVELS
10

8

6

4

2

0

ooe oeoooo•••••••••
TIME~

Figure 5-16 Software Priorities and Priority Adjustments

190

SCHEDULING

Notes on Software Priorities and Priority Adjustments:

0
e

0

Process 'C' becomes computable. Process 'A' is preempted.

'C' hibernates. 'A' executes again, one priority level
· lower. ,,,.~,~

. T' IJ#l'l'lr. - h d . b 'A' experiences quantum end and is resc e uled at its ase
priority. 'B' is computable outswapped.

The swapper process executes to inswap
scheduled for execution.

I BI • I BI is

C) 'B' is preempted by 'C'.

0
0

0

'B' executes again, one priority level lower.

'B' requests an I/O operation (not terminal
executes at its base priority.

'A' requests a terminal output operation.
process executes.

I/O) • I A'

The null

'A' executes following I/O completion at its base priority
plus 3. (The applied boost was 4.)

~ 'A' is preempted by 'C'.

CD 'A' executes again, one priority level lower.

G) 'A' experiences quantum end and is rescheduled at one
priority level lower.

CD 'A' is preempted by 'B'. A priority boost of 2 is not
applied to 'B' because the result would be less than the
current priority.

e I BI is preempted by I c I.

'B' executes again, one priority level lower.

'B' requests an I/O operation.
priority.

'A' executes at its base

'A' experiences quantum end and is rescheduled at the same
priority (its base priority).

'A' is preempted by 'C'.

191

STEPS AT QUANTUM END

For Real Time Process

SCHEDULING

1. Reset PHD$B_QUANT to full quantum value.

2. Clear initial quantum bit PCB$V_INQUAN in PCB$L STS.

For Normal Process

1. Reset PHD$B_QUANT to full quantum value.

2. Clear initial quantum bit PCB$V_INQUAN in PCB$L STS.

3. If any outswapped process computable, set current software
priority PCB$B_PRI to base priority PCB$B PRIB.

4. If SWAPPER needed, wake SWAPPER.

5. If CPU limit imposed, and limit has expired, queue AST to
process for process deletion.

6. If not, then calculate automatic working set adjustment.

7. Request scheduling interrupt at IPL 3.

192

SCHEDULING

WSSIZE VARIATION OVER TIME

WSMAX

l WSEXTENT
@ ® © @ ©

w WSOUOTA N
CJ)
CJ)

~

w-so~f

AWSMIN

MINWSCNT

TIME •

TK-9012

Figure 5-17 WSSIZE Variation Over Time

Table 5-1 Reasons for Working Set Size Variations

Time Reason for WSSIZE Change

a Page faults > PFRATH
Free page count > BORROWLIM

b Page faults < PFRATL

c Page faults < PFRATL

d Page faults > PFRATH
Free page count < BORROWLIM

e Page faults > PFRATH
Free page count > BORROWLIM

193

P~J----- h--~ ~,,..J

~e~u~rj ~~

SCHEDULING

AUTOMATIC WORKING SET ADJUSTMENT

PAGE
FAULT
RATE

PF RATH

PFRATL

t t AWSMIN

MINWSCNT

WORKING SET SIZE

LwsMAX

Figure 5-18 Automatic Working Set Adjustment

194

TK-9008

IOTA

Program 8 $010

SCHEDULING

-----,
I
I

Prog. $WAITFR I
8 I

I
I

-----------'----~_ ___ ___.~ - - - - - .J
1-IOTA--t

Context
Switch

Figure 5-19 IOTA

Program A

The special system parameter IOTA deducts a fixed amount from
the time remaining in the quantum of a process whenever a process
enters a wait state. This surcharge is not applied when the
process is preempted by a process of higher priority. It is used
to force processes to reach quantum end.

195

SCHEDULING

SOFTWARE PRIORITY LEVELS OF SYSTEM PROCESSES

PROCESS

NULL
default user
INPSYMB
OPCOM
Disk ACPs
Tape ACPs
ERRFMT
JOB CONTROL
PRTSYMBn
NETACP
REMACP

SWAPPER

,.-
'-- - I

T
r-- - -
1----
L..- -

T

r-- - -

1-- - -
L..- - -

T
T

- - -
_J ____________ ...,

-- - -1-------------'
-]------------..., - -------------t

T
______________ _,

I
_ _J ____________ ...,

-J-------------t - ____________ _,

ID

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 31

"Normal" Processes Real-Time Processes

Figure 5-20 Software Priority Levels of System Processes

Most system processes have a fixed base priority established
during system initialization. The base priority of disk and tape
ACPs is controlled by the system parameter ACP BASEPRIO. The
initial base priority of a process is controlled by an argument to
the $CREPRC system service.

196

SCHEDULING

MISCELLANEOUS RESOURCE WAITST ATES {MWAIT)

MWAIT~ EFWM
STATE 1--~~~~~~~~--1

PCB

TK-8953

Figure 5-21 Miscellaneous Resource Wait States (MWAIT}

• Nonpaged Dynamic Memory

• Modified Page List Too Large

• Paged Dynamic Memory

See $RSNDEF.

197

SCHEDULING

REPORT SYSTEM EVENT {RSE.MAR)

1. System events cause transitions between process states.

2. These transitions are effected by the routine RSE.MAR.

3. Inputs to RSE

a. PCB address

b. Event number (i.e., number for WAKE, CEF SET, etc.)

4. RSE flow

a. Event checked for significance (e.g., WAKE only if in
HIBER state).

b. PCB removed from wait queue and wait queue header
count decremented.

c. PCB inserted on COM or COMO state queue after priority
adjustment, and summary bit set.

d. Swapper process may be awakened (if PCB was inserted
on COMO queue).

e. Scheduler interrupt at IPL 3 requested if the new
computable process has software priority greater than
that of current process.

198

PAGING

PAGING

INTRODUCTION
There are two functions required of the memory management

subsystem of the operating system. The first gives each user
program the impression that it is running in contiguous physical
memory, starting at address zero. The second function divides the
available physical memory equitably among the users of the system.

The first function requires that the user's virtual address
be translated to a physical address. If the data is already in
memory, the translation is done by hardware. When a program
refers to data that is on disk, software is invoked to bring the
data into memory. This software is an exception service routine
called the pager.

VMS implements the second function by using working sets and
paging. Each process is required to execute with a limited amount
of its data in memory. To avoid fragmentation of physical memory,
this data is divided into 512 byte pieces, called pages. The
number of valid pages a process has in memory at any time is
called the working set.

Because the working set limit represents the amount of
physical memory "owned" by a process, processes at their working
set limits must replace pages in the working set with newly
demanded ones (rather than simply acquiring more physical memory).
This replacement is performed by the pager.

OBJECTIVES
Upon completion of this module, you will be able to:

•

•

Describe the effects of changing working set
creating/deleting virtual address space,
creating/mapping a global section.

Discuss the programming considerations that affect
overhead.

size,
and

paging

• Given a set of initial conditions and a page request,
describe the changes in the status and locations of pages
and the changes in process states.

• Discuss the effects of
governing paging.

201

altering SYSGEN parameters

PAGING

RESOURCES
Reading

1. VAX/VMS Internals and Data Structures Manual, chapters on
memory management data structures, paging dynamics, and
memory management system services.

Additional Suggested Reading

1. VAX/VMS Internals and Data Structures Manual, chapter on
image activation and termination.

Source Modules

Facility Name

SYS

RTL

202

Module Name

PAGEFAULT
ALLOCPFN
SVAPTE

SYSADJWSL,SYSLKWSET,
SYSPURGWS
SYSCRMPSC,SYSDGBLSC
SYSCREDEL
RSE
IOCIOPOST

LIBVM

'PAGING

TOPICS
Paging: Per process memory management

Order of topics to be discussed:

1. Linker action in creating executable files

2. Image activator setting up Process Header

3. Invoking pager routine

4. Memory management data structures

5. Following a process page faulted in and out of a process

6. Following a global page faulted in and out of a process

Reason for study:

To understand how various sections of VMS interrelate for
memory management

How SYSGEN parameters relate to memory management code and
data structures

To be able to read the paging code

203

PAGING

ADDRESS TRANSLATION

VIRTUAL ADDRESS
31 9 8 0

VIRTUAL PAGE NO. IB~~~~N I

PTE

IV p M
R
0
T

PAGE TABLE

20 0

PAGE FRAME NO.

29
,,
,..., 9 8 ,....., 0

,_~---------........ ------~~ '
I PAGE FRAME NO. I s;r~iN I

PHYSICAL ADDRESS
Figure 6-1 Address Translation

Address translation is the hardware operation of converting a
virtual address into a physical address for actual execution of an
instruction. The conversion, or mapping, information is located
in an entry in the appropriate page table.

205

RESOLVING PAGE FAULTS

PER PROCESS
SPACE
PROCESS
CONTEXT

SYSTEM
SPACE
PROCESS
CONTEXT

PAGE FAULT

Process

USER
CODE

PAGER

PAGING

VIRTUAL ADDRESS SPACE

Image File(s)

Physical
Memory

STORAGE DEVICES

Figure 6-2 Resolving Page Faults

• Pager is an exception service routine executing within the
context of the process that incurred the page fault

• Not already in memory - read I/O issued to image file or
page file

• Already in memory - taken from free or modified page list,
or valid global page

206

PAGING

PROCESS SECTIONS AND IMAGE FILE

MODULEl (.OBJ) IMAGE FILE (.EXE)

.PSECT A CON, EXE,NOWRT I R/O NOE XE

Al II R/W C/R NOE XE

.PSECT B CON,NOEXE,NOWRT Ill R/O EXE

I Bl I IV R/W DMZ NOEXE

.PSECT c CON,NOEXE, WRT v R/O EXE

I Cl I 9 VI RIO EXE

.PSECT D OVR,NOEXE, WRT VII R/W C/R NOE XE

Dl

.PSECT E CON, EXE,NOWRT [J[J
I El I

MODULE2 (.OBJ) II [Q
.PSECT A CON, EXE,NOWRT

I I A3

.PSECT B CON,NOEXE,NOWRT [LJ I B2 I Ill

.PSECT D OVR,NOEXE, WRT

I D2 I

Figure 6-3 Process Sections and Image File

Image Sections Stored in Image File

I.
II.

III.
IV.

v.
VI.

VII.

Read Only Data
Read/Write Data
Code
User Stack

If Run Time Library Referred to -
RTL Transfer Vectors
RTL Code
RTL Private Impure Data

207

IMAGE
SECTION
DESCRIPTORS

IMAGE
SECTIONS

TK-8954

PAGING

IMAGE FILE AND PROCESS HEADER

I

II

111

IV

v
VI

VII

II

111

IMAGE Fl LE (.EXE) PROCESS HEADER

R/0 NOE XE

R/W C/R NOEXE

R/O EXE IMAGE WSL
R/W DMZ NO EXE > SECTION t
R/0 EXE DESCRIPTORS J

h

R/O EXE PSTE I
>

R/W C/R NOE XE PSTE II
r"'I

DD w
PSTE 111,..i

ACTIVATOR
.

OGJ ($RUN)

IMAGE > SECTIONS POPT

GJ !
r

P1PT

Figure 6-4 Image File and Process Header

PROCESS
SECTION
TABLE

TK-8959

Image Activator

Fills in Process Section Table entries from the image
section descriptors.

Fills in the Page table entries from DMZ, private and
global pages.

Resolves any shared addresses.

208

PAGING

IMAGE SECTION DESCRIPTOR FORMATS

number of pages
in this section

size of ISO
(in bytes)

page fa ult
cluster

type
0

starting virtual page
number for this section

section flags
end of demand ";"· 253
zero section descriptor -.......i7•

normal
user stack

base virtual block number
end of process in image file for this section
private section descriptor~~----------------.....

ident for global section

count

global section name -
-

end of global
section descriptor) -------------------'

Figure 6-5 Image Section Descriptor Formats

209

PAGING

HOW PTEs, PSTEs ARE FILLED IN

DEMAND ZERO SECTION

IMAGE SECTION DESCRIPTOR

NUMBER OF PAGES I StzE=12

PAGE FAULT
BASE VIRTUAL PAGE NUMBER CLUSTER

TYPE SECTION FLAGS

NUMBER
OF
PAGES

PROCESS PRIVATE SECTION

IMAGE SECTION DESCRIPTOR

NUMBER OF PAGES] SIZE= 16

PAGE FAULT
BASE VIRTUAL PAGE NUMBER CLUSTER

TYPE SECTION FLAGS

BASE VIRTUAL BLOCK NUMBER
IN IMAGE FILE

PROCESS PAGE TABLE

/",

0 DEMAND ~RO'

0 DEMAND ZERO

0 DEMAND ZERO

0 DEMAND ZERO

0 DEMAND ZERO

PROCESS SECTION
TABLE

• •
•

PROCESS SECTION
TABLE ENTRY

PO PAGE
TABLE

I+-

0 PSTX ... I--

NUMBER [0 PSTX ... I--
OF PAGES

0 PSTX__

GLOBAL SECTION

IMAGE SECTION DESCRIPTOR PO PAGE TABLE GLOBAL PAGE TABLE

NUMBER OF PAGES l SIZE= 32

PAGE FAULT
BASE VPN CLUSTER

0 GPTX ~ GLOBAL PAGE TABLE ENTRY

0 GPTX ~ GPTE

TYPE SECTION FLAGS 0 GPTX ~ GPTE

0 GPTX ~ GPTE
BASE VIRTUAL BLOCK NUMBER r--

0 GPTX ~ GPTE
I

MAJOR ID I MINOR ID 0 GPTX ~ GPTE
I

IMAGE SECTION NAME
1 COUNT

0 GPTX ~ GPTE

0 GPTX ~ GPTE.

.__ NUMBER OF PAGES
TK-8956

Figure 6-6 How PTEs, PSTEs Are Filled In

210

PAGING

PAGE TABLES MAP VIRTUAL ADDRESS SPACE

P0 Space

•
• •

Pl Space

•
•

PROCESS HEADER

WSL
t
_!

PSTE I

PSTE II

PSTE II I
}

PROCESS _,///

SECTION //
TABLE /

/
/

/

POPT

~
t

P1PT

v

......

/
/

' '

/
/

/

' ' ' ' ' ' ' '

/

VIRTUAL ADDRESS SPACE

/ NO ACCESS / .,__ ___ -I

// I
/

II

Ill

C1

B1
82

D1, D2, D3

Al
A3
E1

-001

-002

-003

PO

' '' '' '' ' ' ~v J--_s_T_A_CK_-1 1Pl

' ' FIXED PART

TK-8969

Figure 6-7 Page Tables Map Virtual Address Space

No Access Page
Image and Code
VMSRTL (Run Time Library)

User Stack
Image Specific Portion

211

PAGING

DATASTRUCTURESUSEDBYTHEPAGER

PER PROCESS
SPACE
PROCESS
CONTEXT

SYSTEM
SPACE
PROCESS
CONTEXT

PAGE FAULT

Process

USER
CODE

PAGER

POPT

P1PT

System
...__sw_s_L----t Header

GST

SPT

GPT

Database
VIRTUAL ADDRESS SPACE D PFN

STORAGE DEVICES

Figure 6-8 Data Structures Used by the Pager

Table 6-1 Where Memory Management Information is Stored

Memory Management
Information

Process (P0 and Pl space)

System (S0 space)

Global Sections

Physical Memory

Data Structure

Process Header - Process Section Table
- Page Table

System Header - System Page Table

System Header - Global Page Tables

PFN Data base
(Page Frame Number)

212

PHYSICAL ADDRESS SPACE

00 000 000

MEMORY

1F FFF FFF1--~~~~----1
20 000 ODO

ADAPTERS,
1/0 DEVICES,
ETC.

3F FFF FFF------------....
PHYSICAL ADDRESS
SPACE

PAGING

512-BYTE
PAGES

PAGE FRAME NUMBER (PFN)

000 000

000 001

000 002

• •
•

•
• •

1 FF FFD

1 FF FFE

1 F FFF

TK-8961

Figure 6-9 Physical Address Space

*SYSGEN
PHYSICALPAGES

213

PAGING

VIRTUAL AND PHYSICAL MEMORY

Virtual page number 0

Virtual page number 1

Virtual page number 2

PROCESS A
VIRTUAL MEMORY

Virtual page number 0

Virtual page number 1

Virtual page number 2

Virtual page number 3

PROCESS B
VIRTUAL MEMORY

.. -.. -

.... -..

PROCESS A
PAGE
TABLE

PROCESS B
PAGE

TABLE

Figure 6-10 Virtual and Physical Memory

• Process A has Allocated
PFN 1
PFN 4
PFN 6

• Process B has Allocated
PFN 2
PFN 5
PFN 7
PFN 8

Page frame number ·

Page frame number :

Page frame number :

Page frame number "

Page frame number !

Page frame number t

Page frame number ~

Page frame number ~

Page frame number !

PHYSICAL
MEMORY

• Translation from virtual to physical address done using Page
Tables (see Appendix)

214

PFN DATABASE

Array
of

Longwords

BAK

WSLX, BLINK

SHRCNT,FLINK

PTE

REFCNT

STATE

SWAPVBN

TYPE

PAGING

Array
of

Longwords

Figure 6-11 PFN Database

Page in Process
Working Set

free or modified
page list

where page should go if it must leave memory

index into working set list,

number of processes sharing

virtual address of PTE that maps this page

number of reasons not to put page on free or
modified page list

specifies list or activity

virtual block number in swap file or page file

type of page - e.g., process, system global

Note: PFN is index into arrays.
FLINK, BLINK arrays may be longwords for large
physical memory.

PROCESS HEADER

PAGING

Fixed Portion of Process Header

Working Set List

~
Process Section Table

Empty Pages

Arrays for Process Header Pages

PO Page Table

P 1 Page Table

Figure 6-12 Process Header

The process header contains all of the memory management
information about a process.

Four major areas of the process header are used in paging
operations:

Area

• P0 page table
• Pl page table
• Process Section Table
• Working set list

*SYSGEN -

VIRTUALPAGECNT

SYSGEN Parameters

VIRTUALPGCNT

PROCSECTCNT
WSMAX

216

WORKING SET LIST
PCB$L_PHD

(PHO)

WSLIST

WSLOCK

WSDYN

WSNEXT

WSLAST

WSQUOTA

WSEXTENT

•

•
•
•
•
•
•
•

PAGING

~ ~

I- ~

~ ~

~ ~

I- -
~ -

PAGES LOCKED IN
WORKING SET BY VMS

PAGES LOCKED BY
USER

WORKING SET LIST
DYNAMIC SPACE

ROOM FOR EXPANSION OF WSL

Figure 6-13 Working Set List

• WSLAST can move to

LOCKED
PAGES

CURRENT
WORKING SET
LIST

ROOM FOR
EXPANSION

WSQUOTA if few free pages {free page count <BORROWLIM)
WSEXTENT if many free pages {free page count >BORROWLIM)

• WSNEXT - latest entry put in working set list

• Page replacement scheme is First In, First Out

*SYSGEN -

BORR OWL IM

WSMAX

PQL_DWSDEFAULT, PQL_MWSDEFAULT

PQL_DWSEXTENT, PQL_MWSEXTENT

PQL_DWSQUOTA, PLQ_MWSQUOTA

MINWSCNT

217

PROCESS SECTION TABLE

PCB$L_PHD
(PHO)

End of Process Section Table

Process

Section
Table

f>f/{) 4$- Ps'ft3f151ff'.

)It

r ..

~-r

PAGING

Working Set List

Room for Expansion of PST

Last Allocated PSTE

PSTE

PO Page Table, P1 Page Table

• Movable Boundary
between WSL and P~

I
PSTX

_J
Figure 6-14 Process Section Table

The process section table:

• Contains entries that locate image sections on disk

• Grows toward lower offsets in the variable portion of the
process header

*SYSGEN -

PROCSECTCNT

218

PAGING

PROCESS SECTION TABLE ENTRY

POINTER TO CHANNEL CONTROL BLOCK ~

PAGE STARTING VIRTUAL
FAULT

PAGE NUMBER (22 BITS) CLUSTER

ADDRESS OF WINDOW CONTROL BLOCK (~

BASE VIRTUAL BLOCK NUMBER
FOR THIS SECTION

CONTROL
FLAGS

NUMBER OF PAGES IN /
THIS SECTION l/

/

/
/

/

~

/1

PROCESS HEADER

PROCESS SECTION
TABLE

PSTE

Figure 6-15 Process Section Table Entry

The process section table entry establishes the relationship
between virtual pages in the address space and virtual blocks in
an image file.

This information is constructed from information provided by
the linker in the image section descriptor.

Control flags describe attributes of the section, such as:

Global
Copy on Reference
Demand zero
Writable

219

PAGING

PAGE FILE CONTROL BLOCK

l::~MG$GL_PAGSWPVC
CONTROL BLOCK FOR

SHELL

CONTROL BLOCK FOR
SWAPFILE.SYS.

• • •

I
I

I

PAGE FILE CONTROL BLOCK

I

PAGE
FAULT TYPE SIZE

CLUSTER

SWAPFILE # M
M:SWPFILCNT POINTER TO WINDOW CONTROL BLOCK

CONTROL BLOCK
FOR PAGEFILE.SYS

• • •

PAGE FILE# N
N:PAGFILCNT

\
\

\
\J

~

~

Figure 6-16 Page File Control Block

Control Block

• address of bitmap
• page fault cluster
• pointer to window control block
• base virtual block number
• pages which may be allocated or reserved

Bitmap

• one bit per block in the page file
• bit set implies block available

*SYSGEN -

SWPFILCNT

PAGFILCNT

220

.

BITMAP •

PAGING

DIFFERENT FORMS OF PAGE TABLE ENTRY

VA LI D PTE (V= 1)

I v I PROT M I FOR osl PFN

INVALID PTE (V=O)

I v I PROT I TYPE I POINTER

TK-8965

Figure 6-17 Different Forms of Page Table Entry

Page Table Entry Field PROT

Read/Write protection in Kernel, Executive, Supervisor, and User
Access Modes.

Table 6-2 Fields Pager Uses to Determine Location of Page

Type Pointer

Demand zero page

Page in transition Page Frame Number (PFN)

Invalid global page Global Section Table Ind~x

Page in paging file Paging File Virtual Block Number

Page in image file Process Section Table Index

221

PAGING

PROCESS PTEs MAP TO GLOBAL PTEs

MMG$GL_GPTBASE:: ----------1,... ..

Process Page Table

0 GPT Index

0 GPTlndex

0 GPT Index

0 GPTlndex

0 GPT Index

0 GPT Index

0 GPTlndex

0 GPT Index

Global Page Table • N Entries

Global Page Table Entry

GPTE

GPTE

GPTE

GPTE

GPTE

GPTE

GPTE

Figure 6-18 Process PTEs Map to Global PTEs

The page table entries associated with a global section table
entry are in the global page table.

When processes map a global section, correspondence is
established between process PTEs and global PTEs.

*SYSGEN -

GBLPAGES

GBLPAGFIL

222

PAGING

RELATIONSHIP AMONG GLOBAL SECTION
DATA STRUCTURES

I-

f-

Global Section
Table Entry

l l

'
Section

Name

' ' ' ' ' '

;'
;' ,,,

i.."'

~

-
-
...,

' ' '

,,, ,,,

System Header

-
Global

Section Table

' ~----------------~ GSTE ,,, ~----------------~

Global
Page Table

~---------------~
" "

" " "

" "

" " "

~--------------- ~-------

GPTE
GPTE
GPTE
GPTE
GPTE
GPTE

Global
Page
Table

Entries

Global Section Descriptor

Figure 6-19 Relationship Among Global Section Data Structures

Three data structures contain global section information.

• global page table and

• global section table perform similar roles to those of the
process page tables and process section table

• global section descriptors allow the location of global
section information by name

• GSDs are placed in either a system queue or a group queue

*SYSGEN -

GBLSECTIONS

223

PAGING

SUMMARY OF THE PAGER

PER PROCESS
SPACE
PROCESS
CONTEXT

SYSTEM
SPACE
PROCESS
CONTEXT

PAGE FAULT

Process

USER
CODE

PAGER

VIRTUAL ADDRESS SPACE

Process
WSL Header
PST

POPT

P1PT

System
SWSL Header
GST

SPT

GPT

Database D PFN

Image File(s)

•••

Physical
Memory

STORAGE DEVICES

Figure 6-20 Summary of the Pager

224

PAGING

INTRODUCTION - PAGING DYNAMICS EXAMPLES

• Process Read/Write Section Page
Result of $CRMPSC for private section

• Process Copy-on-Reference Page
For example, read/write data

• Global Read/Write Section Page
Result of $CRMPSC for global section

225

PAGING

INITIAL STATUS OF PROCESS READ/WRITE
SECTION PAGE

Process Header

WSL

~----------------·
~----------------·

PFN Database Arrays

WSLX

BAK
Somewhe re

PST

~----------------~~----Locates Image ~
Section on Disk

~----------------·

Page Table

~-c,--I--P"six-- .. ~--i.__ __
~---- ----------1

Else

@

....,,,,,__ --~ -- PTE

® FREE PAGE
LIST STATE

Figure 6-21 Initial Status of Process Read/Write Section Page

A. Page must be found through the process section table entry
pointing to portion of an image file.

B. No connection between the process header structures and the
PFN data base.

226

®

PAGING

ADDING PROCESS READ/WRITE SECTION
TO WORKING SET

Process Header

WSL
PFN Database Arrays

©---
---------------_ J._-!---------r- WSLX

PST

Locates Image
Section on Disk

Page Table @

PSTX

VALID

BAK

PTE

STATE

Figure 6-22 Adding Process Read/Write Section to Working Set

Page read complete

A. PTE contains PFN

B. Working set list entry points to PTE

C. Index to working set list entry

D. Index to process section table entry (was filled in from
PTE)

E. Backward pointer to system virtual address of PTE

227

PAGING

REMOVING MODIFIED PROCESS READ/WRITE SECTION
PAGE FROM WORKING SET

Process Header

PFN Database Arrays
WSL

PST

Locates Image
Section on Disk

®

Page Table @

@

: 9:: I:::~ e ~ :--:-: t:ii:=::: ______ ___.

©

MODIFIED
PAGE
LIST

WSLX

BAK

PTE

STATE

Figure 6-23 Removing Modified Process Read/Write Section Page
from Working Set

A. Links to WSL have been broken

B. PFN still in PTE allows page to be faulted without disk
I/O

C. Index to PSTE still on BAK - where to save now modified
page

D. Backward pointer to PTE for modified page writer

228

PAGING

MOVING PAGE FROM MODIFIED PAGE LIST
TO FREE PAGE LIST

Process Header

WSL

PST

Locates Image
Section on Disk

Page Table
®

©

PFN Database Arrays

®

FREE PAGE
LIST

WSLX

BAK

PTE

STATE

Figure 6-24 Moving Page from Modified Page List to
Free Page Li st

(Page has been written back to image file on disk by modified page
writer.)

A. PFN still in PTE allows page to be faulted without I/O

B. Index to PSTE still in BAK - must save for PTE

c. Backward pointer to PTE for pager

229

PAGING

REMOVING PAGE FROM FREE PAGE LIST

Process Header

PFN Database Arrays
WSL

~----------------~
~----------------·

PST

~----------------~~-----Locates Image
Section on Disk

~----------------~

Page Table

~ -cf_ I_ -t:>sfx- -; .. ~....--
~ ---- ---------~ ®

?

?
Somewhe re

""""-- --~ --Else

A
? ®

Figure 6-25 Removing Page from Free Page List

If page not faulted from free page list:

A. PFN data base entries point somewhere else

WSLX

BAK

PTE

STATE

B. Process section table index has been put back into PTE

Data structures back to original states.

230

PAGING

INITIAL STATUS OF PROCESS COPY-ON-REFERENCE PAGE

Process Header

WSL

~----------------·
~----------------·

PST

~----------------~~-----Locates Image '""'
Section on Disk

~----------------·

Page Table

~ -cf_ I_ -P's"fx- - ~.-...... ~--
~ ---- ---------·

PFN Database Arrays

WSLX

BAK
Somewhe re

~ -.
""'I{" --Else PTE

FREE PAGE
LIST STATE

Figure 6-26 Initial Status of Process Copy-on-Reference Page

The initial state of this example is identical to that of a
process read/write section page, except that copy-on-reference
bits are set in the process section table entry and the PTE.

231

PAGING

ADDING PROCESS COPY-ON-REFERENCE PAGE
TO WORKING SET

Process Header i
PFN Database A rrays

WSL

-
~----------------

"""-
~

.....
WSLX

--~ :_ --------------. Page In

@ Pagefile BAK

.....
PST

PTE

~----------------~ VALID
Locates Image

STATE

Section on Disk
~----------------~ ®

_llo, -,

Page Table

--- -r------ -~-~
~ _ _1__ ---~'=~----· L

~ ,,
PAGEFILE

Figure 6-27 Adding Process Copy-on-Reference
Page to Working Set

When the page is faulted into the working set, the same basic
operations are performed as for a process read/write section page,
except that

A. BAK indicates a reserved page in the page file

B. the modify bit in the STATE array is automatically set

This page is never associated with the original image file
again.

232

PAGING

REMOVING PROCESS COPY-ON-REFERENCE SECTION PAGE
FROM WORKING SET

Process Header
~~

PFN Database A
WSL

~----------------~
~----------------· Page In

- Pagefile

..... -PST
MODIFIED

~----------------· Locates Image PAGE LIST

Section on Disk
~----------------·

Page Table

~ ----r--------- -..!!
~ - p_ - ---~E ~--- - ~· ~ ------, .. ,----

I PAGEFI~

rrays

WSLX

BAK

PTE

STATE

Figure 6-28 Removing Process Copy-on-Reference Section
Page from Working Set

When this page is removed from the working set, it is placed
in the modified list because the modify bit had been set in the
previous step.

233

PAGING

REMOVING PROCESS COPY-ON-REFERENCE PAGE FROM
MODIFIED PAGE LIST

Process Header

PFN Database Arrays
WSL

PST

Locates Image
Section on Disk

Page Table
©

@

Somewhere
Else

@

? WSLX

? BAK

PTE

? STATE

Figure 6-29 Removing Process Copy-on-Reference Page from
Modified Page List

A. When this page filters through the modified list, the
contents of the page are written to the page file.

B. When the page is allocated to another process from the
head of the free list, all links between the process
header and the PFN data base are broken.

c. The PTE points to the location of the page in the page
file, from which it can later be faulted.

234

PAGING

INITIAL STATUS OF GLOBAL READ/WRITE
SECTION PAGE

Process Header A System Header

WSL
~----------------~

~---------------- Global
Section Table

PAGE TABLE ~---------------- i....-,
© Locates Global

~ -cf- I- -Ci PT_x _ -;- 1 Section on Disk
~----------------~ ~---- ___________ ,

Global
Page Table

........ ~ --cr-1---Gsi"x--; ~ -- ~---- ----------~

PFN Database Arrays

SH RC NT

BAK

PTE

STATE

®

Figure 6-30 Initial Status of Global Read/Write Section Page

A. When Process A maps the global section, the PTEs point to
the corresponding global page table entries for the
section.

B. Each of the GPTEs points to the global section table entry
which, in turn, points to the section file.

235

PAGING

ADDING GLOBAL READ/WRITE SECTION PAGE
TO WORKING SET

Process Header A System Header

WSL @ PFN Database Arrays

PAGE TABLE

Global
Section Table

-[oca-tes-Ciiof>a i-
section on Disk

Global
Page Table

:I] :::P:F:ti:::

©
1

GSTX

® GPTE

VALID

Figure 6-31 Adding Global Read/Write Section Page to
Working Set

When Process A faults the global page

SHRCNT

BAK

PTE

STATE

A. both the process PTE and the GPTE contain the page frame
number

B. the PFN data base points only to the system header data
structures (GSTE and GPTE)

c. the SHRCNT is initialized to 1

236

PAGING

INITIAL STATUS OF PTE OF SECOND PROCESS MAPPING
THE SAME GLOBAL SECTION

Process Header A System Header 1
WSL PFN Datab ase Arrays

~ --- --------------.
Global

~----------------· Section Table

1
PAGE TABLE ~----------------· h Locates Global

~GSTX Section on Disk
~ -y-1- --PFI\(- -:- . ~----------------
~---- -----------· 1-.e GPTE -

VALID

Process Header B

WSL

~----------------· Global

~----------------~
Page Table

~:f:i:::j>£~:::
~

~
""I(" ... --PAGE TABLE @

~-cf _I_ -Gi>Yx·-:.-~
~---- -----------·

Figure 6-32 Initial Status of PTE of Second Process
Mapping the Same Global Section

SH RC NT

BAK

PTE

STATE

A. When Process B maps the same global section, its PTE
contains the GPTX.

237

PAGING

ADDING GLOBAL READ/WRITE SECTION PAGE
TO SECOND WORKING SET

Process Header A System Header H
WSL PFN Datab ase Arrays

~----------------

Global ® Section Table

2 SHRCNT
PAGE TABLE ~----------------~ h Locates Global

~GSTX Section on Disk
!....+ ~ --f- I- --PFN- --:- • ~----------------·

~---- -----------· ~GPTE
BAK

PTE

VALID STATE

Process Header B

WSL
~:.----------------! Global
~:----------------! Page Table

r-: 1: [::}>!:~::~-I --.... ~

PAGE TABLE

~ ~:I: 1:: R~~=:: ::·
@

Figure 6-33 Adding Global Read/Write Section Page
to Second Working Set

A. When Process B faults the same global page as Process A,
the PTE of Process B also points to the page frame.

B. The only change in the system data structures is the
incrementing of the SHRCNT value to two.

238

PAGING

REMOVING GLOBAL READ/WRITE SECTION PAGE FROM WORKING SET

Process Header A System Header l
WSL PFN Datab ase Arrays

----------------·
----------------· Global

Section Table
© 0

PAGE TABLE ~----------------~ h Locates Global
~ GSTX Section on Disk

~: 9:]:: gp]X:: ~:. ---------------- ® ,.... 1-e GPTE

FREE PAGE
LIST

Process Header B

WSL

~----------------~ Global

~----------------
Page Table

~ r---.. --1- --------- """-
~ __ Q. ____ _Pf_~---~

PAGE TABLE
©

~ -cf_ I_ -Gi>Yx. - :.- .
~---- -------·---·

Figure 6-34 Removing Global Read/Wri~e Section Page
from Working Set

SH RC NT

BAK

PTE

STATE

Eventually both processes release the global pages from their
working sets.

A. As each process loses page from working set, the PFN in
the process PTE is overwritten by GPTX.

B. The relationships between the system header data
structures and the PFN data base are similar to those for
a process private page on the free list.

C. The global page is placed on the page lists only after
SHRCNT is decremented to zero.

239

PAGING

REMOVING GLOBAL READ/WRITE SECTION PAGE FROM LIST

Process Header A System Header Somewhere
Else

WSL A~ a a PFN D t base Arrays

~----------------

~----------------~ Global
Section Table

?
PAGE TABLE ~----------------· Locates Global ~

~ -cf -I --Ci f> ;--x- --: -• Section on Disk -------------------- -----------~ ® --

?

Process Header B

WSL

r----------------~ Global

r----------------· Page Table

_.
r::cf :I:::g~rK:~ _;. ~

-- @
PAGE TABLE

: : 9:]: :G!>J:>C:~:~

Figure 6-35 Removing Global Read/Write Section
Page from Li st

SH RC NT

BAK

PTE

STATE

, When the page is allocated to another process from the head
of the free list

A. The system header data structures are returned to their
initial states.

B. All links to the PFN data base are destroyed.

240

PAGE READ CLUSTERING

Why Cluster Pages

• More efficient QIO.

PAGING

• Makes image activation easier.

APPENDIX

• Bring into working set pages that potentially will be
referenced.

How a Cluster Is Made

Pager scans successive PTE's for the same backing store
address.

Examples:

e PSTX

• Consecutive pagefile VBN's

• Consecutive GPTE's with same GSTX

Pager scans until:

• No more WSLE's are available

• No physical pages available

• Page table page for PTE not valid

• Maximum cluster size reached

If no page can be clustered, previous PTE's are scanned using
above rules.

241

PAGING

Maximum Cluster Size Determination

Table 6-3 Cluster Sizes and Where They Are Stored

Page

Global Page Tables
Process Page Tables
Paging Fi le Pages
Process, Global Sections

Cluster Size

1
PAGTBLPFC
PFL$B PFC/PFCDEFAULT
SEC$B=PFC/PFCDEFAULT

Changing/Controlling Cluster Size

• SYSGEN parameters

PFCDEFAULT
PAGTBLPFC

e PFC argument in $CREPRC

• Linker option
(cluster=clustername,[base_adr] ,[pfc]file spec[, •••]

242

PAGING

PROGRAM SECTIONS {.PSECTs)

.PSECT

.PSECT

.PSECT

.PSECT

.PSECT

.PSECT

.PSECT

.PSECT

.PSECT

.PSECT

.PSECT

.PSECT

.PSECT

.PSECT

A

I
B

I
c

I
D

MODULE1
CON, EXE,NOWRT

A 1 I
CON,NOEXE,NOWRT

s1 I
CON,NOEXE,

C1 I
OVR,NOEXE,

01 I

WRT

WRT

A

I
EXE,NOWRT

--A-2--,
CON,

E CON, EXE,NOWRT
--E-1--, I

MODULE2

A CON, EXE,NOWRT

A3 I
B CON,NOEXE,NOWRT

I 82 I
D OVR,NOEXE, WRT

I 02 I
E CON, EXE,NOWRT

I E2 I
MODULE3

D OVR,NOEXE, WRT

03 I
$CODE

I $CODE

$PDATA

I $PDATA

$LOCAL

I $LOCAL

VIRTUAL ADDRESS SPACE

$PDATA
81
82

$LOCAL
C1
01, D2, D3

$CODE
A1
A2
A3
E1
E2

TK-8960

Figure 6-36 Program Sections (.PSECTs)

243

LINKER CLUSTERS

OBJECT MODULES

A

B

c

D

E

F

PAGING

VIRTUAL ADDRESS SPACE

CLUSTER
ONE

EACH CLUSTER MAY
CONSIST OF SEVERAL

....._ ____ SECTIONS, EACH

CLUSTER
TWO

$LINK A.OPT/OPTIONS

CLUSTER=ONE, I ,A,D,E
CLUSTER=TWO, I ,B,C,F

WITH DIFFERENT
ATTRIBUTES.

TK-8962

Figure 6-37 Linker Clusters

244

PAGING

PROGRAM SECTION ATTRIBUTES GBL/LCL

GBL

MODULE1.0BJ IMAGE FILE

$LINK A.OPT/OPTIONS

CLUSTE R=AA,,,MODU LE 1
CLUSTER=BB ,,,MODULE2

MODULE.OBJ

[.PSECT A}

LCL

IMAGE FILE

-
CLUSTER AA > CLUSTER AA

CLUSTER BB

Since MODULE1 is the first to contribute to
.PSECT A, and since MODULE 1 is designated
as being in cluster AA, all future .PSECT A
contributions go to cluster AA.

MODULE2.0BJ

_.,
[.rsECT A} - > CLUSTER BB

Since .PSECT A is designated LCL, each
module's contribution goes to that
module's own cluster.

TK-8957

Figure 6-38 Program Section Attributes GBL/LCL

245

PAGING

HARDWARE CHECKS

PTE
3130 27

Protection Code

Allowed

Access Request •

NOT Allowed (Access Violation Fault)

31
~rrentMode

0

I I

PSL 00 - Kernel
01 - Executive
10 - Supervisor
11 - User

Figure 6-39 Hardware Checks

Before address translation occurs, the hardware checks the
type of request (read or modify/write) against

• The protection field of the corresponding page table entry
(PTE) •

• The current access mode field of the processor status
longword (PSL)

If access is denied, no address translation occurs and an
access violation condition is signaled.

246

0

PAGING

VIRTUAL ADDRESS SPACE

VIRTUAL VIRTUAL PAGE
ADDRESS (VA) NUMBER (VPN)

00 000 000§ 000 000

00 000 200 000 001

00 000 400 000 002 40 000 400

..... to' 40 000 401-

3F FFF AOO 1 FF FFD

3F FFF coo
1FF FFF I ,~ ·~

3 2 1 0
3F FFF EOO 1FF FFF

7 6 5 4
40 000 000 000 000

••• 8
40 000 200 000 001

VIRTUAL PAGE - BYTE WITHIN PAGE
40 000 400 000 002 (BWP) NUMBER 000 002

::::~ :: ~
IN P1 SPACE

503 • • • 7F FFF AOO 1FF FFD\j 507 506 505 504
7F FFF coo 1 FF FFE

511 510 509 508
7F FFF EOO 1FF FFF • ~~

80 000 000
(

000 000

80 000 200 000 001 .__40 000 5F E

80 000 400 000 002 40 000 5FF
..... '"' ::::~ ..,I'-

BF FFF AOO 1F FFD

BF FFF coo 1 FF FFE

BF FFF EOO 1 FF FFF

co 000 000 000 000
co 000 200 000 001 32-BIT VI RTU AL ADDRESS

co 000 400 000 002 3130 29 09 08 00
,....'"' -'-' I I I VPN I BWP I

FF FFF AOOB 1 FF FFD 0 0- PO
FF FFF coo 1 FF FFE 0 1 - P1

1 0-SO
FF FFF EOO 1FF FFF 1 1 - S1

TK-8958

Figure 6-40 Virtual Address Space

247

PAGING

PAGE TABLE MAPPING

S REGION
VIRTUAL ADDRESS

SPACE POPT POBR PO t. 0 t ~ I Base Address

MAPPED LengthO POLR PAGES 2 + I D l
LengthO

I NON-EXISTENT I
I PT Es I

UNMAPPED
L ________ ...J

PAGES

P1 P1BR r--------., t.

D ~ L Base Address
UNMAPPED t : NON-EXISTENT : PAGES

211 PTEs I P1LR 2 I I (0 l
I I 2

21
- Length1

I I s
SBR

SPT I

D
MAPPED r{ Base Address PAGES

t SLR
I

D I Length2 2

UNMAPPED l I NON-EXISTENT I
I PT Es I

PAGES I I L ________ .J

PHYSICAL
MEMORY

Figure 6-41 Page Table Mapping

All page tables are mapped in system space. Each page table
is located through the corresponding processor base register, and
its length is indicated by the corresponding processor length
register. The system page table is permanently resident in memory
and located by physical address.

248

PAGING

SYSTEM SPACE ADDRESS TRANSLATION

CHECK THAT ADDRESS
IS WITHIN BOUNDS OF
PAGE TABLE

CALCULATE PHYSICAL
ADDRESS OF PTE

ENTER

>----NO. PROCESS SPACE

EXTRACT VPN FROM
VIRTUAL ADDRESS
BITS <29:9>

,_YE_s_.ACCESS CONTROL VIOLATION

PTE PHYSICAL
ADDRESS=
(SBR) + (4 X VPN)

CHECK CURRENT
MODE AGAINST
PROTECTION FIELD
IN PTE

NO

>--N_o __ TRANSLATION NOT VALID

FORM PHYSICAL ADD
RESS FROM PFN (BITS
<20:0> OF PTE) AND
BYTE OFFSET (BITS
<8:0> OF VIRTUAL
ADDRESS)

(PAGE FAULT)

LEGEND

VPN - VIRTUAL PAGE NUMBER
SLR - SYSTEM LENGTH REGISTER
SBA - SYSTEM BASE REGISTER
PTE - PAGE TABLE ENTRY

ACCESS PHYSICAL
MEMORY

PFN - (PHYSICAL) PAGE FRAME NUMBER

LEGEND
VPN
SLR
SBR
PTE
PFN

TK-8972

Figure 6-42 System Space Address Translation

virtual page number
system length register
system base register
page table entry
(physical) page frame number

249

PAGING

PROCESS SPACE ADDRESS TRANSLATION

ENTER

EXAMINE VIRTUAL
ADDRESS

FORM PHYSICAL
ADDRESS OF
SYSTEM PTE

FETCH SYSTEM PTE
FROM MEMORY

SUMMARY

1. FIND SVA OF PTE

NO,
PROCESS SPACE
~-----

2. GET PHYSICAL ADDRESS OF PTE
3. GET PHYSICAL ADDRESS OF PO PAGE

FORM SYSTEM VI R-
TUAL ADDRESS OF
PROCESS PAGE TABLE

FORM PHYSICAL
ADDRESS OF
SYSTEM PTE (TO
MAP PROCESS PAGE
TABLE)

FETCH SYSTEM PTE
FROM MEMORY

FORM PHYSICAL
ADDRESS OF
PROCESS PTE

FETCH PROCESS PTE
FROM MEMORY

FORM PHYSICAL
ADDRESS OF
OPERAND

TRANSLATION DONE

TK-8971

Figure 6-43 Process Space Address Translation
Summary

1. Find SVA of PTE
2. Get physical address of PTE
3. Get physical address of P0 page

250

PAGING

VIRTUAL TO PHYSICAL ADDRESS TRANSLATION

3130 29 09 08 00

PROCESS VA IN PX REGION 0 x VIRTUAL PAGE NUMBER BYTE IN PAGE

31 23 22 02 01 00

VPN INDEXES INTO PAGE TABLE 0 VPN 0 0

3130 29 8 02 01 00

PXBR (SVA OF PAGE TABLE) 11 1°1 1°1°1
3130 29 + 02 0100 rlol 1°1°1

SVA OF PAGE TABLE ENTRY
31 30 29 09 08

1 0 VPN BYTE IN PAGE

31 23 22

VPN INDEXES INTO SYSTEM PT 0 VPN

31 30 29 8 02 01 00

SOBR (PHYSICAL ADDRESS OF SPT) 1°1°1 1°1°1
313029 t 02 01 00

PHYSICAL ADDRESS OF SPTE 1°1°1 1°1°1

3130 21 20 00

SPTE CONTENTS PAGE FRAME NUMBER

313029 0908 00

PHYSICAL ADDRESS OF PTE 0 0 PFN BYTE IN PAGE ~~~~~~~~~ ~~~----

31 30 21 20 00

PXPTE CONTENTS PFN

313029 09 08 00

PHYSICAL ADDRESS OF DATA 0 0 PFN BYTE IN PAGE ... ---

31 00
DATA

TRANSLATION
BUFFER HIT

SPTES CACHED IN
TRANSLATION BUFFER

TRANSLATION
BUFFER HIT

PXPTES CACHED IN
TRANSLATION BUFFER

TK-8955

Figure 6-44 Virtual to Physical Address Translation

Note: This figure assumes that all SPTEs are valid.

251

SWAPPING

SWAPPING

INTRODUCTION
The swapper is a process. The code of the swapper is part of

the system image and executes in kernel access mode in 80 space.

The swapper is responsible for memory management on a
system-wide basis. While the pager is the component servicing the
demands within a process, the swapper balances the demands for
physical memory by all of the processes in the system and the
pageable portion of the operating system. To accomplish this
purpose, three operations are performed by the swapper:

• inswap/outswap

• modified page writing

• shrinking working sets

Inswap/outswap operations are transfers of working sets
between memory and disk.

Outswapping operations typically release over 100 pages at a
time, and provide a rapid way to replenish the free page list.
Included in these transfers are:

• the P0 and Pl space pages that are memory-resident and
valid, and

• the process headers (including the hardware context,
accounting information, and all of the memory management
data structures of the process).

The only information normally retained in physical memory
after a process has been outswapped is found in data structures
allocated from nonpaged dynamic memory, particularly the software
process control block (PCB) and the job information block (JIB).

Modified page writing also is performed by the swapper
process. When pages are needed, they always are allocated from
the free page list.

Pages are provided for allocation by writing modified pages
to their backing storage locations and then inserting the pages on
the free page list.

Before the swapper outswaps a process, it will attempt to
replenish the free page list by taking pages from the process
working set (shrinking the working set).

255

SWAPPING

The swapper also is involved in both process creation and
system initialization.

This is discussed in the course modules "Process Creation and
Deletion" and "System Initialization and Shutdown."

OBJECTIVES
1. Describe the swapping operation (inswap/outswap, handling

I/O in progress, and global pages).

2. Determine the best size and placement for a system's swap
file or files.

3. Explain why swapping is performed when paging also is
implemented in VAX/VMS.

4. Discuss the effects of altering SYSGEN parameters relating
to swapping.

RESOURCES
Reading

1. VAX/VMS Internals and Data Structures Manual, chapter on
swapping

Additional Suggested Reading

1. VAX/VMS Internals and Data Structures Manual, chapters on
memory management data structures, paging dynamics, and
memory management system services

Source Modules

Facility Name

SYS

Module Name

PAGEFILE
SWAPPER
OSWPSCHED
SDAT
SHELL
WRTMFYPAG

IOCIOPOST
SYSUPDSEC

256

SWAPPING

TOPICS

I. Comparison of Paging and Swapping

II. Swapper functions

A. Maintain free page count

Write modified pages to paging file
Shrink working sets

B. Outswap - rules and example

C. Inswap - Rules and Example

III. Selected Events that Wake Swapper

IV. Locating Disk Files for Swap

V. How Swapper's P0 Page Table Is Used to Speed Disk I/O

257

SWAPPING

SWAPPER

• Description of Code

located in 80 space

separate process

part of system image

executes in kernel mode only

• Function

To control memory for the entire system through:

modified page writing

shrinking of working sets

inswapping/outswapping of working sets

259

SWAPPING

COMPARISON OF PAGING AND SWAPPING

Table 7-1 Comparison of Paging and Swapping

Differences

Function

Paging

Supports programs with
very large address
spaces.

Implementation Moves pages into and
out of process
working sets.

How Invoked

Unit

Similarities

Exception service
routine that executes
in the context of the
process that incurred
the page fault.

the page

Swapping

Supports a large
number of con
currently active
processes.

Moves entire processes
into and out of
physical memory.

Separate process that
is awakened from its
hibernating state by
components that detect
a need for swapper
activity.

The process working
set

1. The pager and swapper work from a common data base.

2. The pager and swapper do conventional I/O.

3. Both components attempt to maximize the number of blocks read
or written with a given I/O request.

*SYSGEN -
MPWPRIO
SW PPR IO

260

SWAPPING

SWAPPER MAIN LOOP

Wake Swapper---~•

*SYSGEN -

MPW WRTCLUSTER

FREEL IM

MPW HILIMIT

MPW LOLIMIT

Maintain Free
Page Count

Write Modified
Pages

OUTSWAP/
INSWAP

Hibernate

Figure 7-1 Swapper Main Loop

261

Yes

SWAPPING

MAINTAINING FREE PAGE COUNT

to:
To maintain at least FREELIM free pages, swapper will attempt

1. Reclaim pages from deleted process headers

2. Write modified pages

• if (FREEGOAL minus number on free list) <
(number on modified list minus MPW_LOLIMIT)

e will stop writing at MPW_LOLIMIT

3. Shrink working sets to SWPOUTPGCNT pages

4. Outswap processes

*SYSGEN -

SWPOUTPGCNT

262

SWAPPING

ORDER OF SEARCH FOR POTENTIAL OUTSWAP CANDIDATES

Table 7-2 Order of Search for Potential Outswap Candidates

Process State (Mnemonic)

Suspended (SUSP)

Priority
Important

No

Local Event Flag Wait (LEF) No

Hibernating (HIB) No

Common Event Flag Wait (CEF) No

Local Event Flag Wait (LEF) No

Hibernating (BIB) No

Free Page Wait (FPG) Yes

Collided Page Wait (COLPG) Yes

Miscellaneous Wait (MWAIT) No

Common Event Flag Wait (CEF) Yes

Local Event Flag Wait (LEF) Yes

Page Fault Wait (PFW) Yes

Computable (COM) Yes

263

Initial
Quantum

No

No

No

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Additional
Notes

Direct I/O count must
be zero, longwait

Longwai t

Direct I/O count
must be zero

Direct I/O count
must be zero, not
longwait

Not longwa it

Direct I/O count
cannot be zero

Direct I/O count
cannot be zero

SWAPPING

For an Outswap Table Section

Shrink candidates' working sets to WSQUOTA

Shrink candidates' working sets to SWPOUTPGCNT (initial
quantum check)

Select outswap candidate (initial quantum check)

If free page deficit not balanced and no outswap candidate,
go to next outswap table section.

*SYSGEN

LONGWAIT

264

SWAPPING

EXPANDING AND SHRINKING WORKING SETS

CD t
BORROWLIM

FREEGOAL

FREELIM I
®+

GROWLIM

0

Number of Pages
on Free Page List

WSEXTENT

WSQUOTA

®

SWPOUTPGCNT

MINWSCNT

Number of Pages
in Working Set

Figure 7-2 Expanding and Shrinking Working Sets

t9 If free page count > BORROWLIM, working set may grow past
WSQUOTA to WSEXTENT.

f» If free page count < FREELIM, swapper will attempt to

- Shrink working sets from WSEXTENT to WSQUOTA

- Shrink working sets from WSQUOTA to SWPOUTPGCNT

265

SWAPPING

WAKING THE SWAPPER OR MODIFIED PAGE WRITER

Table 7-3 Selected Events that Cause the Swapper or
Modified Page Writer to Be Awakened

Event Module

Process that is outswap- RSE
ped becomes computable

Quantum end RSE

CPU time expiration RSE

Process enters wait SYSWAIT
state

Modified page list ALLOCPFN
exceeds upper limit
threshold

Free page list drops ALLOCPFN
below low limit
threshold

Balance slot of deleted SYSDELPRC
process becomes
available

Process header reference PAGEFAULT
count goes to zero

System timer subroutine TIMESCHDL
executes

266

Additional Comments

Swapper will attempt to make
this process resident

Outswap previously blocked by
initial quantum flag setting
may now be possible

Process may be deleted, allowing
previously blocked inswap to occur

Process that entered wait state
may be suitable outswap candidate

Modified page writing is performed
by swapper

Swapper must balance free page cour
by:

1. Writing modified pages
2. Swapping headers of previously

outswapped process bodies
Shrinking working sets

3. Swapping more processes

Previously blocked inswap may now
be possible

Process header can now be outswappe
to join previously outswapped pro
cess body

The swapper is awakened every
second to check if there is any
work to be done

SWAPPING

OVERVIEW OF SWAPPER FUNCTIONS

User Process

E1
Control
Region
Data

• • Per-Process Space
Process Context

System Space
System Context

Process }
Header

Swapper Process
Pseudo POPT

I SWAPPER

SHELL
.......... (SYS.EXE)

Figure 7-3 Overview of Swapper Functions

Outswap

Free
Page
List

a P0 and Pl pages are "adopted" into swappers P0 space
d,e Process outswapped to swap file/page file
b PHD pages are "adopted" into swappers P0 space
d,e PHD outswapped to swap file/page file

In swap
Reverse of outswap

Modified page Writing
f Selected modified pages "adopted" to swappers P0 space
e Modified pages written to page file
g "Modified" pages transferred to free page list

Process Creation
c SHELL copied to swappers P0 space
a,b SHELL code and data transferred to Pl and PHD

of new process

267

SWAPPING

LOCATING DISK FILES FOR SWAP

PROCESSES X, Y
ALREADY EXIST
AND ARE
CURRENTLY
OUTSWAPPED

PCB
tor

Process X

WSSWP

PCB
tor

Process Y

WSSWP

Entry 1
Locates SWAPFILE.SYS

• • •

Entry SWPFILCNT + 1
Locates PAGEFILE.SYS

• • •

Figure 7-4 Locating Disk Files for Swap

lswap Slot
for Process X

L Swap Slot
for Process Y

The choice of swap file or page file is determined by a field
in the PCB called WSSWP.

The use of a swap file is optional;
files should improve performance.

however, using swap

Swap slots are assigned dynamically in
SWAPALLOCINC, up to WSQUOTA pages.

*SYSGEN -

SWPFILCNT

PAGFILCNT

268

increments of

SWAPPING

HOW SWAPPER'S PO PAGE TABLE IS USED TO SPEED SWAP 1/0

Process' Swapper's VAX
Virtual Virtual PO Physical

Address Address Memory
Space Space

1

3 .. 1 SWAP SLOT

2 2 1

3

2

3

@ ® ©
Figure 7-5 How Swapper's P0 Table Is Used to Speed Swap I/O

t» Working set pages usually virtually discontiguous in
process address space.

f» Mapped to virtually contiguous addresses in swapper's P0
space.

_, Both virtual pages correspond to same PFNs in physical
memory.

0 $QIO on swapper's contiguous virtual addresses--> one I/O
to disk (QIO issued with base virtual address and byte
count).

269

SWAPPING

SWAPPER'S PSEUDO PAGE TABLES

SWP$Gl_MAP:: e •
(This address is stored
in the swapper's PO
base register.)

MPW$AL-PTE::••----••

Swapper's
1/0

Page Table
Entry

Array of
Longwords

Modified
Page Writer's

1/0
Page Table

Entry
Array of

Longwords

WSMAX
elements
(This number is stored in
the swapper's PO length
register.)

MPW-WRTCLUSTER
elements

MPW's
Process
Header
Vector
Index
Array

of
Words

+-e :: MPW$A W-PHVIND

Figure 7-6 Swapper's Pseudo Page Tables

Swapper can have one swap I/O and one modified page write I/O
in progress at the same time.

270

SWAPPING

PARTIAL OUTSWAPS AND THE PROCESS HEADER

• In partial outswap, process body outswapped, process
header remains resident

• Reason for partial outswap - pages locked in memory

$LCKPAG or direct I/O

Locked pages and PHD stay in memory

• Note that $LCKWSET has no effect on PHD being outswapped

• Effects of partial outswap

Balance slot still occupied, preventing another
process getting inswapped (BALSETCNT = maximum number
of resident processes, MAXPROCCNT >= BALSETCNT)

On inswap, if PHD still resident, only process body is
inswapped, so process page tables are rebuilt, but not
system page table entries mapping PHD.

e PHO size = f (PHD$K_LENGTH,
VIRTUALPAGECNT)

271

WSMAX, PROCSECTCNT,

SWAPPING

OUTSWAP RULES

Table 7-4 Rules for Scan of Working Set List on Outswap

Type of Page

1. Process
Page

2. System
Page

3. Global
Read Only

4. Global
Read/Write

5. Page Table
Page

Valid

Valid

Valid

Action of Swapper for this Page

Outswap page.

If there is outstanding I/O and the
page is modified, load SWPVBN array
element with block in swap/page file
where the updated page contents
should be written when the I/O
completes.

Impossible for system page to be in
process working set. Swapper
generates an error.

a. If SHRCNT = 1, then outswap.

b. If SHRCNT > 1, DROP from working set,
It is highly likely that process can
fault page later without I/O. This
check avoids multiple copies of same
page in swap page file.

DROP from working set. It is ex
tremely difficult to determine whethE
page in memory was modified after
this copy was written to the swap pa~
file.

Not part of process body. However,
while scanning process body, VPN
field in WSL is modified to reflect
offset from beginning process
header because page table pages will
probably be located at different
virtual addresses following inswap.

The scan of the working set list on outswap is keyed off a
combination of the physical page type (WSL<3:1>) and the valid bit
(PTE< 31>).

272

SWAPPING

OUTSWAP - WORKING SET LIST BEFORE OUTSWAP SCAN

vpn W

Process Header for
swapped process

Working Set List

vpn y GRO
vpn z PPG
vpn w GRW
vpn x PPG

~ ~

PO Page Table

1 pfn B

wsle 1
wsle 2
wsle 3
wsle 4

pte W

WSLX PTE BAK STATE TYPE

A gpte a gstx [!ill IGRol

B gpte R gstx [!ill IGRwl

c wsle 2 pte Z pg fix [!ill IPPGI

D wsle 4 pte X pstx [!ill IPPGI

FN Database Arrays

other

lsHRCNT: 11

lsHRCNT: 41

IREFCNT = 21

vpn X 1 pf n D pte X global page table

gpte a valid. pfn A

SWPSGLMAP " l':J
Swapper's

vpn Y 1 pfn A pte Y 1/0 Map

gpte R valid. pfn B
1--~~~~~~~-1

1 pf n C vpn Z pte Z

Figure 7-7 Outswap - Working Set List Before Outswap Scan

Y Global read only, in only this process working set
Z - Process page, direct I/O in progress
W - Global read/write, in four process working sets
X - Process page

This is the state of the data structures before the swapper
takes any action.

273

SWAPPING

OUTSWAP - WORKING SET LIST AFTER OUTSWAP SCAN

vpn W

vpn X

vpn Y

vpn Z

~

Process Header for
swapped process

Working Set List

vpn y GRO

vpn z PPG

vpn x PPG

-
PO Page Table

0 gptx (R)

1 pfn D

1 pfn A

1 pfn C

A

B
wsle 1

wsle 2

wsle 3
c

wsle 4
D

pte W

pte X

gpte a
pte Y

gpte R

pte Z

WSLX PTE BAK STATE TYPE other

gpte a
I I gstx B IGROI I SHRCNT = 1 I

gple A
I I gstx B IGRWI I SHRCNT = 31

wsle 2 pte Z
I I pg fix B I PPG I I REFCNT = 2 I

wsle 4 pte X
I I pstx B I PPG I

PFN Database Arrays

global page table SWP$GL~MAP" ~

valid. pfn A Swapper's

1-----------------1 1/0 Map

valid. pfn B

1------------------1 1 pfn A

1 pfn c @
1 pin D

Figure 7-8 Outswap - Working Set List After Outswap Scan

0 The global read/write page is
set.

removed from the working

0 The remaining elements of the working set are mapped
the I/O map, and then the I/O request is made.

274

by

SWAPPING

OUTSWAP - PROCESS PAGE TABLE CHANGES AFTER
SWAPPER'S WRITE COMPLETES

0

0
e

Process Header for
swapped process

Working Set List

vpn y GRO
vpn z PPG

vpn x PPG

WSLX

G)A BLINK

wsle 1
B

wsle 2 @c wsle 3 wsle 2

wsle 4 @o BLINK

PTE BAK STATE TYPE other

gpte a gstx B jGROI I SHRCNT = 0 I
gpte R gstx B lGRwl I SHRCNT = 31
pte Z pg fix B I PPG I I REFCNT = 1 I

0 B I PPG I

PFN Database Arrays

~ -
PO Page Table

vpn W 0 gptx (RJ pte W

vpn X 0 pstx pte X

vpn Y 0 gptx (0) pte Y

0 pfn C vpn Z pte Z

global page table

trans. pfn A

valid. pfn B

SWP$GL-MAP "=i:J
Swapper's
1/0 Map

Figure 7-9 Outswap - Process Table Changes After Swapper's
Write Completes

The global read-only page and the process page without I/O are
placed on the free list.

Same as one.

The remaining process page
decremented by one.

275

(with I/O) has its REFCNT

SWAPPING

INSWAP RULES

Table 7-5 Rules for Rebuilding the Working Set List and the
Process Page Tables at Inswap

Type of Page Table
Entry

1. PTE is val id

2. PTE indicates a transition
page (probably due to
outstanding I/O when pro
cess was outswapped)

3. PTE contains a global page
table index (GPTX)

(Page must be global read
only because global read/
write pages were dropped
from the working set at
outswap time)

276

Action of Swapper for this
Page

Page is locked into memory and
was never outswapped.

Fault transition page into
process working set. Release
duplicate page that was just
swapped in.

Swapper action is based on the
contents of the global page
table entry (GPTE).

a. If the global page table
entry is valid, add the
PFN in the GPTE to the
process working set and
release the duplicate page.

b. If the global page table entry
indicates a transition page,
make the global page table
entry valid, add that physical
page to the process working
set, and release the duplicate
page.

c. If the global page table entry
indicates a global section
table index, then keep the page
just swapped in, and make that
the master page in the global
page table entry as well as the
slave page in the process page
table entry.

SWAPPING

Table 7-5 Rules for Rebuilding the Working Set List and the
Process Page Tables at Inswap (Cont)

Type of Page Table
Entry

4. PTE contains a page file
index or a process section
table index

Action of Swapper for this
Page

This is the usual content for
pages that did not have out
standing I/O or other page re
ferences when the process was
outswapped.

The PFN in the swapper map is
inserted into the process page
table. The PFN arrays are
initialized for that page.

At inswap time the swapper uses the contents of the page
table entry to determine what action to take for each particular
page.

277

SWAPPING

INSWAP - WORKING SET LIST AND SWAPPER MAP BEFORE
PHYSICAL PAGE ALLOCATION

Process Header for
swapped process WSLX PTE BAK STATE TYPE

A BLINK pte Z pg fix ~ D Working Set list

other

wsle 1
B gpte S gstx ~ IGRol lSHRCNT = 31 vpn x GRO

wsle 2 c BLINK 0 pg fix I free I D wsle 3
vpn w PPG
vpn y GRO

wsle 4 I free I D D BLINK 0 pstx
vpn z PPG

• • • PFN Database Arrays • • • ~ -
PO Page Table

vpn W 0 pstx pte W

vpn X 0 gptx (T) pte X global page table

valid, pfn B

SWPSGL_MAP " l':J
Swapper's

vpn Y 0 gptx (S) pte Y 1/0 Map

gpte T gstx

0 pf n A vpn Z pte Z

Figure 7-10 Inswap - Working Set List and Swapper Map
Before Physical Page Allocation

X - Global read only, not in memory
W - Process page, not in memory
Y - Global read only, copy in memory (valid GPTE)
Z - Process page, on free page list

This is the state of the data structures before the swapper
takes any action.

NOTE
Process header was not outswapped so it does
not need to be inswapped.

278

SWAPPING

INSWAP - WORKING SET LIST AND SWAPPER MAP AFTER
PHYSICAL PAGE ALLOCATION

0

Process Header for
swapped process WSLX PTE BAK STATE TYPE other

A BLINK pte Z pg fix I free I D Working Set List

wsle 1
B gpte S gstx ~ IGRol lsHRCNT = Jl

vpn x GRO
wsle 2

~ D wsle 3 c 0
vpn w PPG
vpn y GRO

wsle 4
~ D D 0

CD
E 0 ~ D

vpn z PPG

F 0 ~ D
~ ~

PO Page Table

vpn W 0 pstx pte W PFN atabase Arrays

vpn X 0 gptx (Tl pte X global page table SWPSGL-MAP " 1-:J
0 gptx (S) vpn Y pte Y

gpte S valid, pfn B Swapper's
1/0 Map

gpte T gstx
1 pfn D

0 pfn A vpn Z pte Z 1 pfn c
1 pfn E ®
1 pfn F

Figure 7-11 Inswap - Working Set List and Swapper Map After
Physical Page Allocation

Swapper allocates pages from free page list for every page in
the process working set.

O Swapper copies PFNs into its P0 space.

Swapper issues read from disk which copies swapped working set
into physical memory.

279

SWAPPING

INSWAP - WORKING SET LIST AND REBUILT PAGE TABLES

vpn W

vpn X

vpn Y

vpn Z

Process Header for
swapped process

Working Set List

vpn x GRO
vpn w PPG
vpn y GRO
vpn z PPG

~ -
PO Page Table

1 pfn C

1 pfn D

1 pfn B

1 pf n A

Figure 7-12 Inswap - Working Set List and Rebuilt Page Tables

0

0

e
0

- pfn A still on free list so made valid.
- pfn E --> free page list

- pfn B still valid so SHRCNT upped to 4
- pfn copied to PTE Y
- pfn F --> free page list

pfn C copied to PTE W

- pfn D copies to PTE X
- SHRCNT = 1

The actual order of operations is 4,3,1,2.

280

SWAPPING

HOW MODIFIED PAGE WRITER GATHERS PAGES

Modified
Page List

PTE
A
B
c
D
E
F
• • •

---- I

~

Balance Slot
Area

transition PTE (free List)

0 PFN D

1
0 PFN A

• • •
0 PFN C

1 PFN (valid)

• • •
process section table index

0 PFN E

• • •
0 PFN B

• • •
0 PFN F
correct PGFLX but cluster
full

~

~

II
I

I
I

I

"1

1

Modified Page
Writer's Map

1 PFN D

I
1 PFN A

• • •
1 PFN C

1 PFN E

• • •
1 PFN B

• 1
1 PFN F

Figure 7-13 How Modified Page Writer Gathers Pages

Gather pages around selected PTE from modified pages list
until PTE is:

free page PTE
valid PTE
PSTX in PTE
PGFLX in PTE but cluster is full

*SYSGEN -
MPW CLUSTER

281

SWAPPING

APPENDIX

1 • SBTTL SWAPPER - MAIN LOOP
2 ;++
3 FUNCTIONAL DESCRIPTION:
4 THE MAIN LOOP OF THE SWAPPER IS EXECUTED WHENEVER THE SWAPPER IS AWAKEN
c: _,
6

FOR ANY REASON. EACH OF THE FUNCTIONAL ROUTINES WILL CHECK TO SEE IF
THEY HAVE ANY ACTION TO ?ERFORM.

7 ;-
B .PSECT SAEXENONPAGEO NON-PAGEO PSECT
9

1C
11
12
13
14
15
It':·
17
1S
1~
2()
21
2'2
23

LOOP: BSBB BALANCE SALANCE FREE PAGE COUNT
BSBW MMG$WRTMFYPAG WRITE MODIFIED PAGES
BSBB SWAPSCHED SCHEDULE SWAP
TSTL WAEXE$GL_PFATIM CHECK FOR POWER FAIL TIME
BEQL 15$ BRANCH IF NO POWERFAIL
JSB EXESPOWERAST GIVE ANY REQUIRED POWER FAIL ASTS

15$: MOVL WASCH$Gl_CURPC8,R4 ; GET PROPER PC~ ADDRESS
MOVAQ WASCH$GQ_HIBWQ,R2 ; ANO ADDRESS OF WAIT QUEUE HEADER
SETIPL #IPL$_SYNCH ; BLOCK SYSTEM EVENTS WHILE CHECKING
BBSC #PCB$V_WAKEPEN,PCB$L_STSCR4),20$; TEST ANO CLEAR WAKE PENDING
PUSHL #0 NULL PSL
BSBW SCH$WAITK WAIT WITH STAC~ CLEAN

20$: SETIPL *O OROP IPL
BRB LOOP CHECK FOR WORK TO DO
.DISABLE LSB

Example 7-1 Swapper - Main Loop

283

SWAPPING

MODIFIED PAGE WRITE CLUSTERING

• Scans PTE's in reverse order from page read clustering

• Can write clusters to

page file
image file

• If SWPVBN=0, page going to swap file, no clustering.

• When building clusters

cluster size
MPW WRTCLUSTER

determined

scan terminated if

by SYSGEN parameter

1. PTE indicates page not on modified page list

2. PTE points to page in shared memory, or page
mapped by PFN

3. PSTX or GSTX doesn't match that of original PTE

• When writing to page file

build up several mini-clusters into one larger cluster

use one I/O to write larger cluster to disk

note that on later page read, mini-clusters may be
read separately.

284

PROCESS CREATION
AND DELETION

PROCESS CREATION AND DELETION

INTRODUCTION

This module discusses the operations required

• to create and delete processes under VAX/VMS, and

• to activate and rundown images within existing processes.

Process creation and deletion involve several different
components of VMS. Discussion in this module focuses on the
process context of each component. Some operations execute in the
context of the process that requests the particular action, while
others execute in the context of the target process.

Image activation and rundown involve construction and removal
of the data structures and the virtual memory that are defined for
a specific image rather than for the process.

Interactive and batch processes involve additional components
such as command language interpreters (CLis), the job controller,
and possibly the input symbiont process. In addition, interactive
and batch processes require execution of the LOGINOUT image for
authorization (only in the case of interactive processes), and
also to map the CLI.

The discussion of the life cycles of processes and images
should contribute to a better understanding of

• the implications of multiprogramming application designs,
and

• the more fundamental concepts of process and
themselves.

287

image

PROCESS CREATION AND DELETION

OBJECTIVES
Upon completion of this module, you will be able to:

1. List and explain several differences between user-created
processes, interactive processes, and batch processes, in
terms of:

how the processes are created and deleted
how images are activated and exited

2. Discuss the effects of altering SYSGEN parameters related
to process creation and deletion, as well as image
activation.

RESOURCES

Reading

1. VAX/VMS Internals and Data Structures Manual, chapters on
process creation and deletion, image activation and
termination, process deletion, and interactive and batch
jobs.

Source Modules

Facility Name

SYS

DCL

MCR

LOGIN
JOBCTL
INPSMB

Module Name

SHELL
PROCSTRT
SYSCREPRC, SYSDELPRC
SYSEXIT
SYSIMGACT, SYSIMGSTA, SYSRUNDWN

HANDLE, IMAGECTRL, IMAGEXECT, COMMAND

MCRHANDLE, MCRIMGCTL, MCRIMGEXE, MCRCOMD

288

PROCESS CREATION AND DELETION

TOPICS
I. Process Creation and Deletion

A. Roles of operating system programs

B. Creation of process data structures

c. Deletion sequence

II. Initiating Jobs

A. Interactive

B. Batch

III. DCL Structure and Function

IV. Image Activation and Rundown

A. Mapping image file

B. Image startup

C. Termination handlers

289

PROCESS CREATION AND DELETION

LIFE OF A PROCESS

Table 8-1 Steps in Process Creation and Deletion

Action Code

Creating process SYS$CREPRC

In swapped SWAPPER

Process startup PROCSTRT

Process deleted SYS$DELPRC

Table 8-2 Three Contexts Used in Process Creation

Creator's
Context

$CREPRC

e PCB

e JIB

• PQB (temp)

Process re
turned COMO

Swapper's New Process's
Context Context

From SHELL PC= EXE$PROCSTRT

PHD filled in PSL= K mode, IPL=2

COMO --> COM Sets up:

SW priority boost - logical names (sys$input •••)
- Catch-all cond. hand.
- RMS dispatcher
- Image name moved to PHD
- Image activated

291

PROCESS CREATION AND DELETION

CREATION OF PCB, JIB, AND PQB

JIB
L

' Creator
(Pooled
Quotas)

PCB
N ew Process

$CREPRC
arguments

PCB

--
--

Control
Region

Process

Process
Header

Figure 8-1 Creation of PCB, JIB and PQB

1. $CREPRC allocates from nonpaged pool.

PCB
JIB (if new process is detached)
PQB (temporary)

2. These new data structures are filled from:

$CREPRC arguments (e.g., process name)
Creator's PCB (e.g., owner PID)

Quota
Block

(PQB)

I+-

Creator's control region (e.g., user name)
Creator's process header (e.g., default privileges)

292

PROCESS CREATION AND DELETION

RELATIONSHIPS - PCBs AND JIB

name w
PIO 10035

® PRCCNT 2

OWNER 0

JIB --
®~ JIB for

7 all processes

x y
in this job

name name
~----------1

PIO 10033 PIO 10031 MPID = 10035
~---------~

PRCCNT 0 @ PRCCNT 1 pooled
OWNER 10035 OWNER 10035 quotas

JIB - JIB -- --

name z
PIO 1002E

PRCCNT 0

OWNER 10031

JIB --
Figure 8-2 Relationships - PCBs and JIB

ta All PCBs point to JIB

W created X and Y

0 W's PRCCNT is 2

8 X and Y owner PIO is W PID

Y created z

No pointers from creator to subprocess

293

PROCESS CREATION AND DELETION

PCB VECTOR

...__---1,....-___.I :: SCH$GL_PCBVEC

NULL ~ PCB I+-,..
of

~ SWAPPER , PCB NULL

NULL "'
of PROCESS
SWAPPER

~
PIPPIN ~

.... ~

MERRY II"': ~ ,
SAM ~ ,..
NULL !-'

FRO DO ~ ,..
NULL ~

ER RF MT .~ ,..
OPCOM ~

---, PCB
JOB.CONTROL PCB of ,..

~ of OPCOM
DBAOACP --,. Job

PRTSYMB1 ~ Controller
PCB
of
PRTSYMB1

Figure 8-3 PCB Vector

• On process creation, search for unused vector

• Unused vectors point to Null's PCB

• Table of pointers to all PCBs

• Index into table is PID

• SCH$GL_PCBVEC points to start of table

*SYSGEN

MAXPROCESSCNT

Maximum number of processes allowed on the system.

294

PROCESS CREATION AND DELETION

PIO AND PCB, SEQUENCE VECTORS

NULL

SWAPPER

OPCOM

JOB CONTROL

to PCB of
new process

:: SCH$GL_PCBVEC

.__~-t.__~~l::scH$GL_SEQVEC

INDEX

Process ID

Old seq. no.

Figure 8-4 PID and PCB, Sequence Vectors

• PID contains two parts:

Index (into PCB vector and sequence vector)
Count (sequence number)

• PID formed at process creation.
• Old sequence number + 1 =new sequence number.
• SCH$GL_SEQVEC points to start of sequence vector.

295

I

PROCESS CREATION AND DELETION

SWAPPER'S ROLE IN PROCESS CREATION

WSSWP ±I Slot #I VBN

WSSWP

PCB

Figure 8-5 Swapper's Role in Process Creation

• For new process, WSSWP is negative
e Negative WSSWP --> SHELL copied
• Swapper

Stores SYSGEN parameters in PHD
Initializes pointers, counters in PHD
Initializes system page table entries

296

PROCESS CREATION AND DELETION

PROCSTRT'S ROLE IN PROCESS CREATION

New Process

PCB

Process
Quota
Block

(PQB)

JIB

Control
Region

Process
Header

Figure 8-6 PROCSTRT's Role in Process Creation

• Hardware PCB defined in SHELL
• PC and IPL invoke PROCSTRT at IPL 2
• Code located in SYS.EXE
• Functions

PQB --> PHD and Pl
Change to user mode, IPL 0
Call SYS$IMGACT
Call image at transfer vector

297

PROCESS CREATION AND DELETION

AFTER PROCESS CREATION, IMAGE RUNS AND EXITS

Table 8-3 Steps in Process Creation and Deletion

Action Code

Creating process

In swapped

Process startup

Process deleted

SYS$CREPRC

SWAPPER

PROCSTRT

SYS$DELPRC

298

PROCESS CREATION AND DELETION

INTRODUCTION - PROCESS DELETION

• All traces of process removed from system.

• All system resources returned.

• Accounting information passed to job controller.

• For subprocess, all quotas and limits returned to creator.

• Creator notified of deletion.

299

PROCESS CREATION AND DELETION

PROCESS DELETION

name OTG

PIO 10035

PRCCNT 2

OWNER 0

name BERT name

PIO 10033 PIO

PRCCNT 0 PRCCNT

OWNER 10035 OWNER

Figure 8-7 Process Deletion

• Deleted by special KAST while CURRENT.
• Sequence

$DELPRC (subprocesss)
Accounting information to job controller
Call SYS$RUNDOWN
Delete Pl space
Free PCBVEC and SWAP slots, page file space
Decrement counts

Balance set
Total processes

Jump to SCH$SCHED

300

ERNIE

10031

0

10035

PROCESS CREATION AND DELETION

PROCESS TYPES AND CREATORS

Table 8-4 Process Types and Creators

Process Type

Interactive

Batch

Subprocess

Detached

Code

$CREPRC

$CREPRC

$CREPRC=
$RUN
$SPAWN (DCL)

$CREPRC
$RUN (DCL)

Note: RUN and SPAWN call $CREPRC

After system initialization

Created By

Job Controller

Job Controller

Owner

Owner

A process is created by another process

Process creation is done by $CREPRC

301

PROCESS CREATION AND DELETION

DCL BASED PROCESSES

e Image run is LOGINOUT.EXE

e LOGINOUT functions:

Interactive
prompts for username, password
checks SYSUAF.DAT

Batch
no prompting

Alters process characteristics to match UAF record
privileges
quotas

Activates login command procedure

302

PROCESS CREATION AND DELETION

INITIATING INTERACTIVE JOB

SYSSINPUT

SYS$0UTPUT

SYSSERROR

SYSSCOMMAND

Job
Controller

LOGINOUT.EXE

1) Verify Username/Password

~)

2) Alter process characteristics

Set up process permanent files

3) Map requested CLI into
P 1 Space and pass
control to CLI in
supervisor mode

Context of Job
Controller Process

Context of Newly
Created Process

Figure 8-8 Initiating Interactive Job

• Job controller notified by driver
• Job controller creates process TTcu:
e LOGINOUT runs
e DCL, MCR mapped

303

PROCESS CREATION AND DELETION

INITIATING JOB USING $SUBMIT

Notifies
Job Controller

$SUBMIT X.COM
SUBMIT utility

CLI activates

SUBMIT utility

notifies Job Controller

Job
Controller

SY SS INPUT

SYSSCOMMAND

EXCOM3••t
SYSSOUTPUT

SYSSERROR

Creates
process

LOGINOUT.EXE

1) No username/password
verification

2) SYSSINPUT and SYS$0UTPUT
~ are different

~ ... ___ _
Figure 8-9 Initiating Job Using $SUBMIT

• Similar to interactive process but

Job controller notified by DCL ($SUBMIT)

User already validated

Files are assigned:
SYS$INPUT to batch stream
SYS$0UTPUT to log file

304

PROCESS CREATION AND DELETION

INITIATING JOB THROUGH CARD READER

S SUBMIT X COM

CLI actev1l1es

SUBMIT ulolity

SYSSINPUT

Job
Controller

_,
SUBMIT utility
noM1es Job Controller

Job
Controller

Creates
process

SYSSCOMMANO

Figure 8-10

LOGINOUT.EXE

1) No username: password
ver1hcat1on

21 SYSSINPUT and SYSSOUTPUT
are d1Uerent

Initiating Job Through Card Reader

ct Job controller notified by card reader driver

f» Job controller creates input symbiont process

user authorization
read cards into command file
submit as batch job

8 Same as for $SUBMIT

305

PROCESS CREATION AND DELETION

DCL OPERATION

DEBUG Command

Generate
SS$_ DEBUG
signal

STOP Command

EXIT Command

CONTINUE
Command

14--------- from LOGINOUT
CU Initialization
Code

Beginning of CU
Command
Processing Loop

~ External
~ ~mage -------

Service internal
commands

If CONTINUE. STOP.

Portion of CU that
activates and calls
external images

$EXIT

System
Service

Supervisor Mode
Termination Handler
Declared by CLI

(CTRL-Y) AST transfer-address
LOGINOUT .. ---~

CALL image

CALL SYS$EXIT

Image Code

Figure 8-11 DCL Operation

• Glorified exit handler
• Main command loop

prompts for command
uses DCL tabes to decide

image
internal routine

• Command code
image, runs in P0 space
internal routine, runs in Pl space

• Control-Y AST
e $EXIT (image)
e LOGOUT (LOGINOUT. EXE)

306

PROCESS CREATION AND DELETION

STEPS IN IMAGE ACTIVATION AND TERMINATION

Table 8-5 Steps in Image Activation and Termination

Action Code

1. Image activation SYS$IMGACT

2. Image startup SYS$IMGSTA

3. Image executes

4. Image exit SYS$EXIT

307

PROCESS CREATION AND DELETION

IMAGE ACTIVATION

SYS$IMGACT:

System service, executive mode

Called by DCL, INSTALL

Sequence

• Open image file

• Read image header

• Map image

308

PROCESS CREATION AND DELETION

IMAGE FILE MAPPED TO VIRTUAL ADDRESS SPACE

Object
File(s)

Linker

Image Header

Image Section
Descri tors

Image

Image
Activator

Fixed Portion

WSL
t
+

PST

POPT
t

+
P1PT

Executable
File

Process
Header

Figure 8-12 Image File Mapped to Virtual Address Space

309

PROCESS CREATION AND DELETION

IMAGE HEADER

, ,
""'

Image Header

~
\
\

Image Itself \
\

Debug and
Other Symbol
Tables

Fixup Vector

Image File

...,
,

,' 0

\
\

®

©

®

\ ®
\

'®
\

.-

Fixed Portion of
Image Header

Transfer Address I'
Array

\

Debug and Global
Symbol Table Offsets

Image Name and
IDENT Strings

Patch Data

Image Section
~ ... """' \\~~-----D-e-sc_r_•p_t_o-rs ______ _,~

Image Header

\
\
\

\

\

, ,

\
\
\
\
\
\

Figure 8-13 Image Header

• Image file contains

Image header
Image
Symbol tables
Fixup vector

310

,.

\

'

Offset to@ Size of Header

Offset to@ Offset to@

lo-

Spare Offset to@

minor ID major ID

Spare image l Header
type Blocks

Requested

-
Privilege Mask

Image 1/0 1/0
Seg. Pages Channels

Image Flags

Global Section ID

System Version Number

Fixed Portion of
Image Header

PROCESS CREATION AND DELETION

IMAGE SECTION DESCRIPTOR

number of pages
in this section

size of ISO

page fault
cluster

starting virtual page
number for this section

type
O•normal

end of demand '" 253 •user stack
zero section descriptor ---,•t-----.._-----------t

section flags

base virtual block number
end of process in image file for this section
private section descriptor ~1--------------------t

ident for global section

count

global section name -

-
end of global
section descriptor ---....ii~ .. '"-----------------'

Image Section Flags

Bit

0

1

2

3

4-6

7

8

Meaning

Global

Copy on Reference

Demand Zero

Writeable

Match Control Field

Last Cluster in PO
Space

Copy Always from
Image File

9-16 Spare

17 Vector Contained
in Image Section

18 Image Section
is Protected

Figure 8-14 Image Section Descriptor

• Image section descriptors for

Demand zero sections
Process private sections
Global sections

311

PROCESS CREATION AND DELETION

KNOWN FILE ENTRY, HEADER

Known File Entry (KFI) Known File Header (KFH)

Known File Queue Forward Link L
~

Known File Link Backward Link

Control l
Bits

Type

1
Size of KFI

Pointer to WCB
File ID/Sequence Number

Image Header Address --ii Header Resident -
Privileged Image

~ -
Privilege Mask

Global Section Identification

Device Name. Directory.
File Name. File Type ~ v L' y

One of these for each
installed image

l .- Address of Associated KFI -
J Type l Size ol KFH

~
Image Header ol Known
File that was installed
header-resident

1
One of these in Paged
Pool for each known file
installed/HEADER RESIDENT

Figure 8-15 Known File Entry, Header

• Image file marked as known in image header
• Known file lists searched
e Created by INSTALL utility

*SYSGEN

KFILSTCNT

312

J

PROCESS CREATION AND DELETION

IMAGE START UP

SYS$1MGSTA

Transfer address of
user image

0

0

I

I
I
I
I

SYS$1MGSTA

LIB$1NITIALIZE

Transfer address of
user image

0

$LINK

or

$LINK/DEBUG

or

$LINK/DEBUG = filespec

---- ~- ---------
Transfer address of

user image

0

0

0

no entries in PSECT
LIBS INITIALIZE

I
I
I
I
I
I

LIB$1NITIALIZE

Transfer address of
user image

0

0

non-zero contribution to
PSECT LIB$1NITIALIZE

$LINK/ NOTRACEBACK

Figure 8-16 Image Startup

e SYS$IMGSTA

Functions
Purge working set
Map debugger
Establish traceback handler
Alter argument list - point to next transfer

vector address

LIB$INITIALIZE

Transfer address obtained from image header.

313

PROCESS CREATION AND DELETION

EXIT SYSTEM SERVICE

YES

$EXIT

YES

YES

YES

NO

$DELPRC

REITO
CORRESPONDING
MODE

CALL
CORRESPONDING
HANDLERS LIFO

CALL $EXIT

TK-8970

Figure 8-17 Exit System Service

314

PROCESS CREATION AND DELETION

TERMINATION HANDLERS

0 ~ ~

' -- ::CTL$GL_THEXEC
~-------1

(exec) (exec) ::CTL$GL_THSUPR

E F

(first) (second)

0

(super)

D 'I
forward link

exit handler address
.,,

0 ~ -- L --~ - ~ --
0 1 N

address in which to store
(user) (user) (user) reason for exit

A B c
(first) (second) (third)

..... ~ additional arguments ~

_____ J~------------(i-f a_n_y) ____ __.J
Figure 8-18 Termination Handlers

Table 8-6 How Termination Handlers Are Set Up For
Different Access Modes

Mode Set Up By

User User image

Supervisor DCL

Executive PROCSTRT for RMS rundown

• Exit in kernel mode causes process deletion.

315

SYSTEM INITIALIZATION
AND SHUTDOWN

SYSTEM INITIALIZATION AND SHUTDOWN

INTRODUCTION
The study of the initialization of a VAX/VMS system provides

a convenient summary of many of the topics previously discussed in
this course. It is during initialization that the structures,
mechanisms, and other features of the VMS environment are
established.

Each component of the initialization sequence is discussed
from turning on the power to the final startup command procedure
and the enabling of logins. Included is an explanation of:

• why each component executes in its particular environment,
and

• why it executes at its
initialization sequence.

position in the overall

In addition, some time is spent discussing the shutdown and
recovery sequences involved in power failure and bugcheck.

OBJECTIVES
Upon completion of this module, you will be able to describe,

in general terms the sequence of operations involved in:

1. initial bootstrap

2. powerfail and recovery

3. bugcheck and reinitialization

Differences between 780/750/730

Discuss the effects of altering SYSGEN parameters relating to
system initialization.

319

SYSTEM INITIALIZATION AND SHUTDOWN

RESOURCES
Reading

1. VAX/VMS Internals and Data Structures Manual, chapters on
error handling, bootstrap procedures, operating system
initialization, and powerfail recovery.

Source Modules

Faci 1 i ty Name

BOOTS

SYS

SYS IN I

Hardware Microfiche

Module Name

SYSBOOT, SYSGEN
VMB
!NIT
IN I LOA
SYSPARAM
POWERFAIL
BUGCHECK, BUGCHKMSG
SYSINIT

CONSOLE.SYS
Memory ROM program

320

SYSTEM INITIALIZATION AND SHUTDOWN

TOPICS
I. Initialization

A. System initialization sequence

B. Functions of initialization programs

C. How memory is structured and loaded

D. Startup command procedures

E. SYSBOOT, SYSGEN

F. 780, 750, 730 hardware differences and how they affect
initialization

II. Shutdown and Restart

A. Front panel switches

B. Shutdown procedures and their functions

C. Autorestart sequence

D. Power-fail recovery

321

SYSTEM INITIALIZATION AND SHUTDOWN

VAX-11 /780, 11 /750, 11/730 CONSOLE DIFFERENCES

780 and 730

750

contain a console microprocessor

780 - LSill
730 - 8085

boot/restart information available on console media

780 - floppy
730 - TU58

no console microprocessor

boot/restart information in ROM (normally) or on disk

323

SYSTEM INITIALIZATION AND SHUTDOWN

SYSTEM INITIALIZATION

TEST

LOAD INITIAL
PROGRAM

OBTAIN SYSTEM
PARAMETERS

LOAD OPERATING
SYSTEM

RUN INITIALIZATION
CODE

ACTIVATE STANDARD
COMMAND PROCEDURE

ACTIVATE SITE'S
COMMAND PROCEDURE

Figure 9-1 System Initialization

324

SYSTEM INITIALIZATION AND SHUTDOWN

SYSTEM INITIALIZATION SEQUENCE

CD

11/750

' CONSOLE PROGRAM

11 /780, 11 /730
t

MICROPROCESSOR
STARTS UP

0
0
e

' DEVICE SPECIFIC
INFORMATION

1
Ill ~ •

VMB.EXE
~

SYSBOOT.EXE
~

SYS.EXE
~

SYSINIT.EXE
~

STARTUP.COM
~

SYSTARTUP.COM

+
BOOT BLOCK

PROGRAM
~

CONSOL.SYS

+

®

Figure 9-2 System Initialization Sequence

Bootstrap computer using ROMs in CPU.
Bootstrap computer using LSI-11 (780) or 8085 (730)
Finish system initialization

- Finish preparing system
- Load operating system
- Run operating system initialization code

@

- Activate VMS standard and site specific DCL procedures

325

SYSTEM INITIALIZATION AND SHUTDOWN

INITIALIZATION PROGRAMS

Program

CONSOLE.SYS
{CONSOLE.EXE
on 7 30)

VMS.EXE

SYSBOOT.EXE

!NIT
{in SYS. EXE)

SYS IN IT

Table 9-1 Initialization Programs

Function

Loads VAX writeable diagnostic control store
Acts as monitor for console terminal commands
On boot command loads, passes control to
VMB. EXE

Sizes physical memory, discovers external
adapters

Sets up primitive SCB
Locates, loads, and passes control to

SYSBOOT.EXE

Loads SYSBOOT parameters
Sizes system space, sets up system page table
Locates and loads SYS.EXE
Sets up full SCB
Maps nonpaged pool into high end of physical

memory
Sets up P0 page table
Passes control to !NIT in SYS.EXE

Turns on memory management
Maps and initializes the I/O adapter
Maps paged pool
Loads terminal driver and system disk driver
Initializes several scheduling and memory
management data structures

Invokes SCHED.MAR

Opens and stores locations of page files,
files, swap files, and dump file

Maps RMS and system message file as system
sections

Creates disk ACP process

326

Environment

LSI (780)
8085 {730)
CPU (750)

VAX memory
Physical
address

VAX memory
Physical
address

VAX memory
Physc i a 1
address/

Virtual
address

Process

SYSTEM INITIALIZATION AND SHUTDOWN

Table 9-1 Initialization Programs (Cont)

Program Function Environment

STARTUP.COM Creates several system logical names Process
Creates job controller, error log formatter,

OPCOM processes
Invokes INSTALL
Invokes SYSGEN for autoconf igure
Invokes RMSSHARE
Invokes SYSTARTUP.COM

SYSTARTUP.COM Site specific, such as: Process
• Create logical names
• Load user written device drivers
• Install privileged and shareable images
• Set up queues and terminal characteristics

327

SYSTEM INITIALIZATION AND SHUTDOWN

PHYSICAL MEMORY DURING INITIALIZATION

ON ENTRY TO VMS.EXE

Restart Parameter
Block (APB)

Primary
Bootstrap
Program

VMB

4 SP

ON ENTRY TO SYSBOOT.EXE

Restart Parameter
Block (RPB)

Primary
Bootstrap
Program

VMB

System Control Block (SCB)
for VMB

PFN Bitmap

Bootstrap Stack

Secondary
Bootstrap
Program

SYSBOOT

+-RPB$L.BASE
+""X200

+-PR$_SCBB

+-SP

Figure 9-3 Physical Memory During Initialization

• Console or ROM programs have located 64K bytes of good
contiguous memory.

• On entry to VMS.EXE

Console program has loaded VMB into the known good memory,
leaving 512 bytes for the Restart Parameter Block.

e On entry to SYSBOOT.EXE

VMB has loaded

Restart Parameter Block with values from R0-R5
System Control Block with vectors pointing to one
routine
PFN Bitmap with map of error free pages in physical
memory
SYSBOOT.EXE

VMB has also allocated Bootstrap Stack, used by VMB and
SYS BOOT

328

SYSTEM INITIALIZATION AND SHUTDOWN

PHYSICAL MEMORY LAYOUT AFTER SYSBOOT ENDS

Dynamic Pages

PFN Database

Nonpaged Executive
Code and Data

Nonpaged Dynamic Memory

Interrupt Stack

System Control Block

System Header

System Page Table

.-o

._, MMG$GL-MAXPFN
(Physical Page Number)

.-PR$_SCBB
(Physical Address)

.-PR$_SBR
(Physical Address)

._.Largest PFN

Figure 9-4 Physical Memory After SYSBOOT Ends

SYSBOOT has

• Sized the pieces of memory shown above
• Filled in the SCB and part of the system header
• Mapped and read in SYS.EXE (Executive code)

329

SYSTEM INITIALIZATION AND SHUTDOWN

TURNING ON MEMORY MANAGEMENT

PO
Region

@

@
System
Space

I
Virtual Address Space

From SYSBOOT L Physical Address Space
I

EXE$1NIT:: EXE$1NIT:: <D
MOVL RPBSL-BOOTRS(R 11).FP MOVL RPB$L_BOOTRS(R 11).FP

MTPR # 1.S"#MAPEN _MTPR # 1.S"#PR$_MAPEN@

r
JMP ~)# 10$ JMP @l# 10$

~ ~

10$: 10$:

MOVL EXESGL-INTSTK.SP MOVL EXE$GL_INTSTK,SP
• • • • •

•

EXESINIT::

MOVL RPBSL-BOOTRS(R 11),FP

MTPR # 1.S"#MAPEN

JMP @#10$

10$:__
MOVL EXE$GL_INTSTK,SP

• • •
Figure 9-5 Turning on Memory Management

e Done by INIT in SYS.EXE
• Physical to virtual transition:

ct - All address references treated as physical addresses

- !NIT page table entries set up so P0 virtual address
equals physical address

0

- S0 and P0 page table entries for !NIT contain same
PFNs

Writing a
following
addresses

'l' to processor register MAPEN causes
address references to be treated as virtual

e Next instruction is found in P0 space

0 When INIT was linked, base was in S0 space, so
@#10$ causes jump to address in S0 space

330

JMP

SYSTEM INITIALIZATION AND SHUTDOWN

SY SI NIT

• Created by swapper as part of one-time initialization
routine.

• Selected from COM queue after SWAPPER goes into normal
HIB.

• Major functions

Open and record locations of page, swap and dump files

Map RMS and system message files

Mount system disk, creating disk ACP

Create STARTUP process

331

SYSTEM INITIALIZATION AND SHUTDOWN

STARTUP

Startup Process

Runs as final part of initialization

Runs using DCL command procedures

STARTUP.COM

SYSTARTUP.COM

STARTUP.COM

Assigns logical names

Creates system processes

ERRFMT

JOB CONTROL

OPCOM

Installs VMS images

Autoconf igures all devices

SYSTARTUP .COM

Mounts volumes other than the system disk

Assigns site specific logical names

Sets up site specific

Terminal characteristics

Print and batch queues

Installs site specific images

Starts DECnet

Loads user written device drivers

332

SYSTEM INITIALIZATION AND SHUTDOWN

SYSBOOT AND SYSTEM PARAMETERS

Default
Parameter
Settings
Internal

to
SYSBOOT

SYSBOOT
Table

of
Working
Values

USE
SET

®

CONTINUE (EXIT)

Parameter
Settings

in Memory
Image of
Executive

Figure 9-6 SYSBOOT and System Parameters

SYSBOOT:

• Brings in current parameters
• Allows changes if conversational boot requested
• Writes parameters to loaded SYS.EXE
• Runs as part of system initialization
• Can alter all parameters used in present system
• Cannot create alternate parameter files

333

SYSTEM INITIALIZATION AND SHUTDOWN

SYSGEN AND SYSTEM PARAMETERS

Default
Parameter
Settings
Internal

to
SYSGEN

SYSGEN:

Parameter
Settings

in Memory
Emage of
Executive

@
USE
SET
WRITE
EXIT (CONTINUE)

WRITE filespec

~

Figure 9-7 SYSGEN and System Parameters

• Runs as an editor-like utility under VMS
• Can alter dynamic parameters on present system
• Can create alternate parameter files

WRITE
CURRENT

WRITE
ACTIVE

Parameter
Settings

in Memory
Image of
Executive

• Can alter parameters used on next system initialization

334

SYSTEM INITIALIZATION AND SHUTDOWN

VAX-11/780 PROCESSOR

FLOPPY
DISK

LA120

INDICATES
OPTIONAL
EQUIPMENT

FPA UCS

SYSTEMS
CONSOLE VAX-11/780

CPU MEMORY MEMORY MUL TIPORT MUL TIPORT
CONTROLLER CONTROLLER MEMORY MEMORY

REMOTE
DIAGNOSIS

CACHE

1 STANDARD

3 OPTIONAL

MEMORY

1/0 ADAPTORS

MASSBUS,,

~
4 OPTIONAL

Figure 9-8 VAX-11/780 Processor

DR780

• 1 OPTIONAL

Program on ROM causes CONSOLE.SYS to be loaded from floppy
into LSI-11 memory

CONSOLE.SYS runs on LSI-11

loads diagnostic control store

cause ROM in memory controller to find 64K good bytes

loads VMS.EXE from floppy disk to VAX memory

335

SYSTEM INITIALIZATION AND SHUTDOWN

VAX-11/750 PROCESSOR

TU58

LA120

SYSTEMS
CONSOLE

REMOTE
DIAGNOSIS

ucs

VAX-11/750
CPU

CACHE

MEMORY
CONTROLLER

MEMORY

1/0 ADAPTORS

I I
INDICATES
OPTIONAL
EQUIPMENT

UNIBUS

• 1 STANDARD

MASSBUS,,

• 3 OPTIONAL

Figure 9-9 VAX-11/750 Processor

console program stored in ROM with CPU

locates 64K good bytes

passes control to device ROM

device ROM

reads boot block from device

boot block program

loads VMB.EXE from specified system device

336

SYSTEM INITIALIZATION AND SHUTDOWN

VAX-11/730 PROCESSOR

RD

DualTU58s

LA120

Console
Subsystem

FPA

COMBO
Board

Data Path

Control Store

Memory Controller I
Input/Output

IDC

Figure 9-10 VAX-11/730 Processor

4-RL02s
or,

3-RL02s
& 1-RSO

D Optional

Program on ROM causes CONSOLE.EXE to be loaded from TU58
into 8085 memory

CONSOLE.EXE runs on 8085

loads microcode into CPU from TU58

executes DEFBOO - loads registers of CPU, finds 64K
good bytes

loads VMS.EXE from TU58

337

SYSTEM INITIALIZATION AND SHUTDOWN

VAX FRONT PANELS

CPU STATE

POWER RUN

0 0

KEY SWITCH

LOCAL

OFF a REMOTE

LOCAL @REMOTE DISABLE

0
DISABLE

VAX 11 /780 Front Panel

BOOT DEVICE POWER ON ACTION

ERROR INITIALIZE RESTART
BOOT~

0 0 HALT

RESTART

VAX 11/750 Front Panel

RUN DC ON BATT R/D !D~DllD VAC1V730 0 0 0 0 LOCAL \ I LOC DSBL
AUTO REST ART BOOT

'8/REMDSBL ON STD BY

II 01 II OFF REMOTE

VAX 11 /730 FRONT PANEL

Figure 9-11 VAX Front Panels

338

KEY SWITCH
LOCAL/

SECUREillREMOTE/
SECURE

OFF 0 REMOTE

11/780

OFF

LOCAL/DISABLE

LOCAL

REMOTE

SYSTEM INITIALIZATION AND SHUTDOWN

Table 9-2 Switches on 780, 730, 750

11/750

OFF

SECURE

LOCAL

REMOTE

11/730 Effects on Console
Terminal and System

STANDBY Power partially off

LOCAL/DISABLE Local terminal-program
I/O mode only. Remote
disabled.

LOCAL Local terminal-program
I/O mode and console
I/O mode. Remote dis
abled.

REMOTE Local terminal disabled.
Remote-console I/O
mode and program I/O
mode.

REMOTE/DISABLE REMOTE/SECURE REMOTE/DISABLE Local terminal disabled.
Remote-program I/O
mode only.

OFF Power completely off

339

SYSTEM INITIALIZATION AND SHUTDOWN

SHUTDOWN OPERATIONS

Action

Clean shutdown

Quick shutdown

Forced crash

Halt system

Table 9-3 Shutdown Operations

Operation

$ @SYS$SYSROOT:[SYSEXE]SHUTDOWN

$ RUN SYS$SYSTEM:OPCCRASH

F
0
1
2
3
4

(on OPA0:)
(780/7 30 only)
(750 only)

Control/P
>>>@CRASH
>>>E p
>>>E/G
>>>E/I
>>>E/I
>>>E/I
>>>E/I
>>>E/I
>>>D/G
>>>D p
>>>C

F FFFFFFFF
001F0000

Control/P
>>>H

(on OPA0:)
(780/730 only)

340

SYSTEM INITIALIZATION AND SHUTDOWN

SHUTDOWN PROCEDURES

Procedure

SHUTDOWN.COM

OPCCRASH

CRASH.CMD

Table 9-4 Shutdown Procedures

Function

- Warns users of shutdown
- Stops queues

Removes installed images
- Stops processes
- Runs OPCCRASH

- Marks system disk for dismount (to force
cache flushing)

- Flushes modified page list
- Requests "operator" BUGCHECK

- Hal ts CPU
- Examines PSL and all SPs
- Deposits -1 in PC

1F000 in PSL
- Continues

341

SYSTEM INITIALIZATION AND SHUTDOWN

AUTORESTARTING THE SYSTEM

START

TURN MEM. MANAGE
MENT ON

RESTORE INTERRUPT
STACK

CALCULATE NEW
SYSTEM TIME

SCAN TIMER QUEUE

MAKE ERROR LOG
ENTRY

INITIALIZE
ADAPTERS

NOTIFY DEVICE
DRIVERS OF POWER
FAIL

RESTORE REGISTERS

REBOOT VMS

TK-8973

Figure 9-12 Autorestarting the System

342

SYSTEM INITIALIZATION AND SHUTDOWN

REQUIREMENTS FOR RECOVERY AFTER POWER-FAIL

• Battery backup

• Memory Valid (battery not run down)

• RPB & Memory valid and warm restart flag oleared

• VAX-11/780 - Autorestart On

RESTART.CMD on console floppy

RESTART.CMD contains right TR
number for system disk adapter

• VAX-11/750 Power action SW on
'Restart/Halt'

• VAX-11/730 - Enable Restart

343

'Restart/Boot' or

VAX-11/782

Definitions

Loosely Coupled:

Tightly Coupled:

Symmetric:

Assymmetric:

Primary Processor:

Secondary Processor:

APPENDIX

Each processor executes a separate copy of the
operating system. This is good for
high-availability.

Both processors share the same copy of the
operating system.

All processors execute all the
system code.

All processors cannot
operating system code.

execute

operating

all the

The CPU that executes Kernel-mode code as well
as Executive, Supervisor, and User.

The CPU that cannot execute Kernel-mode code.
It executes Executive, Supervisor, and User
mode code.

The VAX-11/782 is a tightly-coupled multi-processing system
that is assymmetric for kernel-mode and symmetric for the other
modes.

345

PROCESSOR
A

Primary
en
:::::>
a:::i

z
<(

a: ~
w ~ .. __________

UNIBUS OR MASSBUS ~
Cl
<(

shared
memory

PROCESSOR
B

Secondary

TK-9021

Figure 9-13 Sample VAX-11/782 Configuration

• Two VAX-ll/780s connected to the same shared memory.

• The primary (on the left) has the I/O devices. The
secondary or attached processor (on the right) has just
the CPU.

• Minimum local physical memory (256Kb) on each CPU for
diagnostics only.

• All information in the shared memory.

• Eight Meg maximum physical memory for the shared memory.

• Primary Processor runs all interrupt and Kernel-mode code.
Both processors run Executive, supervisor, and user mode
code.

• Multi-processing code takes approximately 8K bytes (16
pages) in non-paged pool.

346

1. In it i a 1 i z at ion

a. Start primary processor.

The DEFBOO.CMD file used to boot the primary processor
"request" that the MA780 memory be used instead of the
local physical memory. The memory on MA780 #1 starts
at physical address 0.

b. After the normal system is booted, a privileged
program (MP.EXE) is run in the site-specific command
file. MP.EXE is activated by the START/CPU DCL
command. MP.EXE does the following:

c.

Allocates nonpaged pool and loads in the MP code.

Connects the 'hooks' into the VMS code (discussed
later).

New SCB initialized for the secondary CPU.

Primary SCB slightly modified to handle

• scheduling code for secondary processor
• MA780 interrupt communication

Start Secondary processor. Accomplished
with an abbreviated command file in
results in:

initialization of memory configuration
start executing at address in RPB.

347

by booting
CSA!. This

2. Hooks into VMS

Naming Conventions

• MPH$samename

indicates a routine that will be entirely replaced by
a MP routine of the same name.

• MPH$newnameHK

indicates a location of a hook to additional MP code
(instead of a replacement).

• MPH$newnameCONT

indicates a location where additional MP code will
return to normal flow of code.

Locations of Hoods (Executive Module Names)

• • • •

ASTDEL
BUGCHECK
PAGEFAULT
SCH ED

AST delivery and queueing
BUGCHECK for both processors
Translation buffer invalidations
Process scheduling and rescheduling

3. SCB changes

e CPU2

New SCB created for the secondary processor in
nonpaged pool. This SCB points to different routines
than those used by the primary CPU.

e CPU!

MA780 vectors redirected to point to new MP
primary CPU interrupt routine.

IPL=S SCB interrupt vector now contains address of
MP secondary scheduling routine.

XDELTA interrupt is moved from IPL=S to IPL=F.

348

4. Secondary Processor States
p

<INIT>

j
--~~-p~~-<DROP>

l p ls
<STOP>

p
<IDLE> <EXEC>

j ls
______ P __ ~• <BUSY>

P PRIMARY MAKES TRANSITION
S SECONDARY MAKES TRANSITION

TK-9013

Figure 9-14 Secondary Processor States

The current state of the secondary processor is recorded
in the state variable in nonpaged pool. The contents of
this variable (the state) is used to by the primary
processor to determine whether to schedule word for the
secondary processor or not.

<INIT> Processor state when MP.EXE runs.
I
v

<IDLE> After MP.EXE (initialization code runs)
I
v

<BUSY> when a process is found for CPU2
I
v

<EXECUTE> After a LDPCTX instruction is issued
I
v

<DROP> At quantum end or kernel mode request
by CPU2, a SVPCTX issued, the state
changed to DROP, interrupt primary.

v
<IDLE> After CPUl takes back process

<STOP> Requested by system manager ($STOP/CPU)
requested by CPUl

349

If there is not process for CPU2 to run, an AST is used to
indicate when a process falls below the kernel mode level.
The AST delivery is turned into a rescheduling interrupt.

5. Exceptions for CPU2

If there is a transition to Kernel mode:

A SVPCTX is issued
Process is "handed" to CPUl

AST Delivery and quantum End both execute have special
code.

A separate SCB for the secondary processor allows the
enforcement of the rules.

6. MA780

Has the ability to interrupt either processor.

Reasons for CPUl to interrupt CPU2

1. To request an invalidation of a System
Address.

2. AST has arrived for process on CPU2

3. BUGCHECK

Reasons for CPU2 to interrupt CPUl

1. To request rescheduling

2. Log an error

3. Request a BUGCHECK

350

Virtual

7. Faults

e POWERFAIL

If CPU2 goes, CPUl continues
If CPUl goes, CPU2 waits

e BUGCHECK

If a BUGCHECK occurs, CPU2 goes IDLE while CPUl writes
the sysdump file and reboots.

e MACHINE CHECK

Like normal VMS

8 • Rest r i ct ions

The processors must be "twins" (ECO, WCS level, FPA)

First MA780 must be at physical address 0

Same TR # for the MA780s on both CPUs

No DR780

No high speed RP07s (2.2mb), l.3mb allowed

NOTE
Before MP.EXE runs, the RPB contains a
self-jump loop. After MP.EXE runs, RPB
contains the address of the secondary CPU
startup code. In this way the secondary CPU
(CPU2) can be started before the primary CPU
(CPUl) is finished booting.

351

MPS$GL ISP
MPS$GL-SCBB
MPS$GL-STRTVA
MPS$GL-MPMBASE
MPS$GL-CURPCB
MPS$GL-STATE

(Attached's SCB)

(Relocated initial ISP address)
(Physical address of attached's SCB)
(SVA of starting instruction address)
(SVA of shared memory controller regs)
(Attached's current process PCB addr)
(Attached processor's state)

other header page data

pointers to code below

vector 44 (CHME)
vector 48 (CHMS)
vector 4C (CHMU)

pointers to code below

MPS$AL __ INTSTK (1024 byte interrupt stack for attached)

CODE
CODE
CODE

Figure 9-15 MP.EXE Loaded into Nonpaged Pool

352

(EXE$CMODEXE
(EXE$CMODSUF
(EXE$CMODUSE

See next pag

CODE Section from diagram on previous page contains:

1. Addresses being pointed to by almost all of the SCB
vectors

2. System locations that are jumped to as a result of being
modified by the MP.EXE code. See Table 9-5.

Table 9-5 System Locations and the Resulting MP Locations

System Locations MP Locations

SCH$SCHED SCH$MSCHED

SCH$RESCHED SCH$MRESCHED

MPH$QAST MPS$QAST

MMG$INVALIDATE MPS$INVALID

MPH$BUGCHKH MPS$BUGVHECK

MPH$ASTDELHK MPS$ASTSCHEDCHK

MPH$NEWLVLHK MPS$ASTNEWLVL

353

