
UIS Source Code
Annotator User's Guide

Order Number: AA-PBZTA-TE

Software Version:

Operating System:

UIS Source Code Annotator V2.0

VMS V5.1 or above

August 1990

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1990 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The following are trademarks of Digital Equipment Corporation:

DEC
DECwindows
DECUS
DDIF

MicroVAX
PDP
UNIBUS
VAX

VAXstation
VMS

The X Window System, Version 11, and its derivations (X11, X Version 11, and
X Window System are all trademarks of the Massachusetts Institute of T echnolgy.

This document was prepared using VAX DOCUMENT, Version 1.2

Contents

PREFACE v

CHAPTER 1 INTRODUCTION TO THE UIS SOURCE CODE
ANNOTATOR 1-1

1.1 ANNOTATOR FILES 1-1

1.2 ANNOTATOR FUNCTION 1-1

1.3 LANGUAGES THE ANNOTATOR ACCEPTS 1-4

1.4 RESTRICTIONS ON USING THE ANNOTATOR WITH VWS
APPLICATIONS 1-4

CHAPTER 2 USING THE ANNOTATOR 2-1

2.1 INVOKING THE ANNOTATOR 2-1

2.2 USING THE ANNOTATOR 2-1

APPENDIX A UISANN$ROUTINES.TABLE A-1

APPENDIX B ANNOTATOR MESSAGES 8-1

APPENDIX C UIS$ ROUTINES AND EQUIVALENT XLIB ROUTINES C-1

C.1 INTRODUCTION TO UIS$ ROUTINES C-1

Iii

Contents

APPENDIX D UISDC$ ROUTINES AND EQUIVALENT XLIB ROUTINES D-1

D.1 INTRODUCTION TO UISDC$ ROUTINES D-1

APPENDIX E HCUIS$ ROUTINES AND EQUIVALENT XLIB ROUTINES E-1

E.1 INTRODUCTION TO HCUIS$ ROUTINES

APPENDIX F SAMPLE FORTRAN PROGRAM (QIX.FOR)

F.1 THE ORIGINAL FORTRAN PROGRAM

F.2 THE ANNOTATED FORTRAN PROGRAM

F.3 THE SUMMARY REPORT

APPENDIX G SAMPLE PASCAL PROGRAM (UISDC_HOUSE.PAS)

G.1

G.2

G.3

TABLES
C-1
D-1

E-1

iv

THE ORIGINAL PASCAL PROGRAM

THE ANNOTATED PASCAL PROGRAM

THE SUMMARY REPORT

UIS Routines and their Equivalent Xllb Routines
UISDC$ Routines and their Equivalent Xllb Routines

HCUIS$ Routines and their Equivalent Xlib_ Routines

E-1

F-1

F-1

F-5

F-9

G-1

G-1

G-4

G-10-

C-1
D-1

E-1

Preface

The UIS Source Code Annotator User's Guide describes what the UIS
Source Code Annotator is and how to use it.

You must install the UIS Source Code Annotator on VMS V5.1 or above.

Structure of this Manual
This manual describes what the ms Source code Annotator is and how to
use it.

This manual includes two chapters and seven appendixes.

Chapter 1

Chapter 2

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Describes what the Annotator does and it's characteristics.

Describes how to use the Annotator.

Presents a UISANN$ROUTINES.TABLE.

List messages you may encounter while using the Annotator.

Lists UIS$ routines with their equivalent Xlib routines and
describes their functionality.

Lists UISDC$ routines with their equivalent Xlib routines and
describes their functionality.

Lists HCUIS$ routines with their equivalent Xlib routines and
describes their functionality.

Appendix F

Appendix G

Presents two sample FORTRAN programs and a summary report.

Presents two sample PASCAL programs and a summary report.

Related Documents
If you want to migrate your VWS applications to DECwindows, consult the
appropriate documents:

• UIS Source Code Annotator User's Guide for information about using
the source code annotator.

• Using the UIS to DDIF Converter for information about using the ms
to DDIF Converter.

• A Guide to Migrating VW'S Applications to DECwindows for
information about migrating VWS applications to DECwindows and
for an example application.

• Using the DECwindows /Xll Server for V1VS for information about
using the DECwindows/Xll Server for VWS.

• VAXuisx User's Guide for information about using the VAXuisx run
time library.

v

Preface

Conventions

vi

If you are working with VWS, you may wish to consult the following
documents:

• VMS Workstation Software User's Guide for information about how to
use the workstation software.

• VMS Workstation Software Graphics Programming Guide for
information about working with application programs and using
VMS Workstation Software graphics.

• VMS Workstation Software Guide to Printing Graphics for detailed
information about how to print hard copies from the VAXstation.

• VMS Workstation Software SIGHT User's Guide for detailed
information about using SIGHT.

This manual uses the following conventions in user input examples.

Conventions and Meanings

I RETURN I
The I RETURN I key is not always shown in formats and examples. Assume
that you must press the I RETURN I key after typing a command or other
input to the system, unless you are instructed otherwise.

ICTRUXI

I CTRL I followed by a slash and a letter means that you must type the letter
while holding down the /CTRLI key. For example, I CTRUB I means hold down
the I CTRL I key and type the letter B.

Lists
When a format item is followed by a comma and an ellipsis(, ...), you
can enter a single item or a number of items separated by commas. When
a format item is followed by a plus sign and an ellipsis(+ ...), you can
enter a single item or a number of those items connected by plus signs.
If you enter a list (more than one item), you must enclose the list in
parentheses. A single item need not be enclosed in parentheses.

Optional Items
An item enclosed in square brackets ([]) is optional.

Boxes
In examples, boxes enclose user input, such as a key§', a key sequence
I CTRUZ ~ or a parameter I PASSWORD ~

Elll~sls

A vertical ellipsis indicates that some of the format or example is not
shown.

Preface

<Xl
The key on the LK201 terminal keyboard that performs the DELETE
function is labeled QJ.

vii

1 Introduction to the UIS Source Code Annotator

This chapter describes the UIS Source Code Annotator (hereafter called,
the Annotator), what it does, the languages it uses and any restrictions
that you may encounter when using the Annotator with VWS applications.

The Annotator provides information you can use in when transferring your
UIS applications to DECwindows. By passing a UIS application through
the Annotator, you can learn which UIS$ routines have equivalent Xlib
routines and what those routines are. You also can learn which UIS$
routines have no equivalent Xlib routines. You should use the Annotator
along with A Guide to Migrating VWS Applications to DECwindows.

NOTE: VMS Workstation Software (VWS) is only supported on VMS.

1.1 Annotator Files

Consequently, the Annotator is only supported on VMS.

VWS and the Annotator are not supported on ULTRIX.

The Annotator consists of the following four files contained in the
SYS$SYSROOT:[SYSHLP.EXAMPLES.UISANN] directory:

• UISANN.EXE - Executable image being run.

• UISANN$ROUTINES.TABLE - Routines table used for determining
equivalences.

• UISANN$1VP.COM - Installation verification procedure (IVP).

• UISANNMSG.EXE - Message file.

The directory also contains sample programs that the IVP uses to test the
Annotator after the installation. You can use these sample programs if
you want to give the Annotator a "dry run." To see what the original files,
annotated files, and summary reports, QIX.FOR and UISDC_HOUSE.PAS,
should look like, refer to Appendix F and Appendix G.

1.2 Annotator Function
The Annotator assists you in converting a VWS application to
DECwindows. For any VWS application you specify, except those written
in Ada, the Annotator opens the file and searches the code. It flags every
UIS$, UISDC$, and HCUIS$ routine, adding a comment to each routine
that helps you port the application to DECwindows. The Annotator then
produces the annotated and summary output files.

1-1

Introduction to the UIS Source Code Annotator

1-2

The annotated file contains the original code plus comments identifying
which UIS$, UISDC$, and HCUIS$ routines have equivalent Xlib routines
and which ones do not. When an equivalent or similar, Xlib routine exists,
the Annotator lists that routine or an alternate method for acquiring the
best result.

Note: The Annotator creates a new version of your file with a higher
version number. If you are concerned about comments being
added to your file, you may want to create a second copy of your
file before running the Annotator. However, files created by the
Annotator will be compilable.

In some cases, there is no equivalent routine; however, there are methods
of producing the desired result. For more information refer to A Guide to
Migrating VWS Applications to DECwindows.

The annotated file is still a usable UIS application. The comments the
Annotator places in your file do not prevent the annotated file from
compiling successfully. After you compile the annotated file, you can use
the resulting .OBJ file to create a usable image.

The comm,ents the Annotator puts into the file can be up to 125 characters
long. If you print the annotated file on a printer or in a print mode less
than 132 characters wide then the output may be truncated or wrapped.
To make sure you do not lose any of the comments, you should print the
file on a line printer or a laser printer using a landscape format. The
command for printing in a landscape format on an LPS40 or LN03R is:

$ PRINT/PARAMETERm(DATA_TYPE=ANSI,PAGE_ORIENTATION=LANDSCAPE) -
/QUEUE=queue_name filename.ext

The command for printing on a line printer is:

$ PRINT/QUEUE•queue_name filename.ext

The following is a sample of VWS code to be Annotated.

C Create the display and window. Enable the window resize option.
c

CALL UIS$GET_HW_COLOR_INFO('SYS$WORKSTATION' ,,
1 VCM_SIZE)
VCM SIZE=l6
IF (vcM SIZE .EQ. 2) GOTO 55
VCM SIZE z VCM SIZE/4
IF (vcM SIZE .LT. NUM LINES) GOTO 55
NUM LINES - 20 -

55 VCM-ID • UIS$CREATE COLOR MAP(VCM SIZE)
VD ID - UIS$CREATE DISPLAY(WC Xl,WC Yl,WC X2,WC Y2,
1 - - VP=WIDTH~VP_HEIGHT,VCM_ID)
CALL UIS$DISABLE DISPLAY LIST(VD ID)
CALL CREATE COLORS(VCM SIZE,VD ID)
WD ID= UISSCREATE WINDOW(VD ID,'SYS$WORKSTATION' ,'QIX')
CALL UIS$SET RESIZE AST(vd id,wd id,ENABLE WINDOW RESIZE,durnrny,
1 new_~s_x,n;w_abs_y,vp_width,vp_height) -

Introduction to the UIS Source Code Annotator

The following example shows the same code after it has been annotated.

C Create the display and window. Enable the window resize option.
c

C %UIS% Information is available through a number of individual
C calls - Please see "Display Routines".

CALL UIS$GET HW COLOR INFO('SYS$WORKSTATION' ,,
1 - - - VCM_SIZE)
VCM SIZE=l6
IF (VCM SIZE .EQ. 2) GOTO 55
VCM_SIZE = VCM_SIZE/4
IF (VCM_SIZE .LT. NUM_LINES) GOTO 55
NUM LINES = 20

C %UIS% Color m~ps may be created by using the X$ALLOC_COLOR_CELLS.
55 VCM ID= UIS$CREATE COLOR MAP(VCM SIZE)
c %UIS% No equivalent routine exists. -

VD ID = UIS$CREATE DISPLAY(WC Xl,WC Yl,WC X2,WC Y2,
1 - - VP-WIDTH;VP HEIGHT,VCM ID)

c %UIS% Xll provides no equivalents to the UIS$ display list routines.
CALL UIS$DISABLE_DISPLAY_LIST(VD_ID)
CALL CREATE COLORS(VCM SIZE,VD IP)

C %UIS% Please see information on virtual displays.
WD ID= UIS$CREATE WINDOW(VD ID,'SYS$WORKSTATION' ,'QIX')

C %UIS% -There are equiv~lent X events.
CALL UIS$SET RESIZE AST(vd id,wd id,ENABLE WINDOW RESIZE,dumrny,
1 new_~s_x,n;w_abs_y,vp_width,vp_height) -

After the Annotator produces the annotated file, you can consult A Guide
to Migrating VWS Applications for help in converting the VWS application
to a DECwindows application.

The Summary Report has the same name as the source code file, but has a
.LOG extension. It provides the following information:

• The number of UIS$, UISDC$, and HCUIS$ routines found in the
application.

• The number of routines that were valid.

• The number of routines that were invalid, (routines beginning with
UIS$, UISDC$, or HCUIS$, but not part ofVWS).

• The number of times each routine was called.

This is an example of a summary report.

CIRCLE.LOG
Date : ll-MAY-90, Time : 13:20:59

This report is the result of searching of the following files:
CIRCLE.PAS

searching for UIS calls within programs. A summary will
appear at the end of this report.

>>> Examining : DISK2: [SMITH] CIRCLE.PAS
Creating : DISK2:[SMITH)CIRCLE.PAS

Found: 1 - HCUIS$WRITE_DISPLAY
No equivalent routine exists.

Found: 1 - UIS$CIRCLE
Filled circles are drawn using the X$DRAW_ARC routine.

Found: l - UIS$CREATE_DISPLAY
No equivalent routine exists.

1-3

Introduction to the UIS Source Code Annotator

Found: 1 - UIS$DELETE DISPLAY
UIS$DELETE_DISPLAY is similar to X$CLOSE_DISPLAY.

* Total Lines read in : 37

* Total UIS calls (of any type) detected : 4

*** Summary Information --

* Total UIS calls (of any type) - all files : 4

After running a file through the Annotator, you end up with three files in
your directory: the source file, the annotated file, and the summary file.
For example, if you ran the file QIX.FOR;3 through the Annotator, you
would have the following files in your directory:

• QIX.FOR;3 - Source file

• QIX.FOR;4 - Annotated file

• QIX.LOG - Summary file

1.3 Languages the Annotator Accepts
The Annotator accepts VWS applications written in the following
languages:

• BASIC

• BLISS

• COBOL

• LISP

• PL'I

• VAXC

• VAX FORTRAN

• VAX/MACRO

• VAX Pascal

Note: The Annotator does not accept applications written in Ada.

1.4 Restrictions on Using the Annotator with VWS Applications

1-4

To use the Annotator with the VWS sample applications provided with the
VWS kit, you must have VMS V5.1 or above installed.

If you want to compile the two sample programs, QIX.FOR and
UISDC_HOUSE.PAS, you will need the VAX FORTRAN and VAX Pascal
compilers.

2 Using the Annotator

This chapter describes how to invoke and use the Annotator.

2.1 Invoking the Annotator
All the files necessary for running the Annotator can be found in
SYS$SYSROOT:[SYSHLP.EXAMPLES. UISANN]. In addition to the
executables, there is a table file with a list of all the UIS$, UISDC$,
and HCUIS$ routine names. In order to run the annotator the logical
name UISANN$TABLE must point at this file.

You may want to define a symbol in order to simplify running the
Annotator. It would be best to have your System Manager define these on
a system wide basis. If this is not possible, you could define them in your
LOGIN.COM.

$ UISANN =="RUN SYS$COMMON:[SYSHLP.EXAMPLES.UISANN]UISANN"

$ DEFINE UISANN$TABLE -
SYS$COMMON: (SYSHLP.EXAMPLES.UISANN)UISANN$ROUTINES.TABLE

If the logical is not defined, the Annotator will not work and an error
message will be returned.

2.2 Using the Annotator
The Annotator file has the same name and extensions as the source file,
but the version number is one higher. For example, if the file containing
the source code was named QUANTUM.PAS;3, the file containing the
annotated code would be named QUANTUM.PAS;4.

The Annotator produces a Summary Report file that has the same name
as the source code file, but has a .LOG extension. The Summary Report
for QUANTUM.PAS would be QUANTUM.LOG.

The source files you want to annotate must be in your current directory.
The Annotator places the annotated files and the Summary Report in that
directory. You also must have sufficient privileges to access the source files
you want annotated and to access the directory they are in.

2-1

Using the Annotator

2-2

Follow this procedure to use the Annotator:

1 Invoke the Annotator .

2 Select from the Annotator menu the language of the file you want
annotated.

3 Enter the filename and ex.tension (eg. QIX.FOR).

4 Exit from the Annotator.

The remainder of this section takes you through a "dry run" of the
Annotator. You will annotate the example file UISDC_HOUSE.PAS. To
do the dry run, you must have UISDC_HOUSE.PAS in your current
directory. If you do not, the Annotator will not be able to find the file.

1 Invoke the Annotator by typing one of the following:

a. If you or your system manager has defined a global symbol so
UISANN can be issued, type:

$ UISANN

b. If no global symbol exists, type:

$ RUN SYS$COMMON: [SYSHLP.EXAMPLES.UISANN)UISANN

The Annotator initializes the table and then displays the Annotator
menu, which lists the languages the Annotator supports.

The is an example of the Annotator menu.

Select file type to examine or enter ? for help:

BASIC = 1
BLISS = 2
c = 3
COBOL = 4
FORTRAN ""' 5
LISP = 6
PASCAL -= 7
PLI = 8
VAX/MACRO -= 9

or enter 0 or <CTRL/Z> to exit.

File Type to be Examined:

2 To select the language of the file you want, type the number that
corresponds to the language and press I RETURN I.

File Type to be Examined: 7

The Annotator displays a message confirming the language you have
selected.

%UISANN-I-ALLSOUPAS, all source code is assumed to be Pascal

The Annotator then prompts you to enter the name of the file you want
annotated.

Using the Annotator

3 Type UISDC_HOUSE.PAS and press I RETURN I.

Please enter a file name, or file name with Wild Cards (*) . For Help,
Enter ? .

File Name(s) to be Examined : uisdc_house.pas

The Annotator displays a list of UIS$ routines it has found in the
program. For each routine, it identifies one or more Xlib routines that
are equivalent or informs you that it could not find one.

Note: For more information on the comments the Annotator adds
to the file, refer to Appendix C of A Guide to Migrating VWS
Applications to DECwindows.

This is a screen display for IDSDC_HOUSE.PAS.

>>>Examining: DISK2:[SMITH)UISDC HOUSE.PAS
%UISANN-I-CREATING, Creating the next version
of'DISK2: [SMITH)UISDC_HOUSE.PAS'

Found: 1 - UIS$CREATE COLOR MAP
Color maps may be created by using the X$ALLOC_COLOR_CELLS.

Found: 1 - UIS$CREATE_DISPLAY
No equivalent routine exists.

Found: 1 - UIS$CREATE_WINDOW
Please see information on virtual displays.

Found: 1 - UIS$GET DISPLAY SIZE
This may be emulated using x$DISPLAY-WIDTH, X$DISPLAY_WIDTHMM,
X$DISPLAY_HEIGHT, and X$DISPLAY_HEIGHTMM.

Found: 1 - UIS$SET COLOR
UIS$SET_COLOR is equivalent to X$STORE_COLOR.

Found: 1 - UIS$SET COLORS
UIS$SET_COLORS is equivalent-to X$STORE_COLORS.

Found: 4 - UIS$SET_FILL_PATTERN
UIS fill patterns are equivalent to STIPPLE patterns in Xll; use
X$SET_STIPPLE or X$CHANGE_GC.

Found: 4 - UIS$SET_FONT
UIS$SET FONT is similar to X$SET_FONT. The font ID is obtained from
X$LOAD_FONT.

Found: 4 - UIS$SET_WRITING INDEX
UIS$SET_WRITING_INDEX is similar to X$SET FOREGROUND or X$CHANGE_GC.

Found: 1 - UISDC$CIRCLE
UISDC$CIRCLE is similar to X$DRAW_ARC.

Found: 1 - UISDC$LINE
UISDC$LINE is similar to X$DRAW_SEGMENT or X$DRAW_POINT.

Found: 1 - UISDC$LINE ARRAY
UISDC$LINE_ARRAY is similar to X$DRAW_SEGMENTS or X$DRAW_POINTS.

Found: 4 - UISDC$PLOT
UISDC$PLOT is similar to X$DRAW_LINE, X$DRAW_LINES, or X$DRAW_POINT.

Found: 1 - UISDC$PLOT_ARRAY
UISDC$PLOT ARRAY is similar to X$DRAW_LINE, X$DRAW_LINES, or
X$DRAW_POINT.

Found: 1 - UISDC$SET_CHAR_SIZE
Xll does not provide text scaling.

Found: 1 - UISDC$TEXT
UISDC$TEXT is similar to X$DRAW_TEXT.

2-3

Using the Annotator

2-4

* Total Lines read in 142

* Total UIS calls (of any type) detected 25

*** Summary Information --

* Total UIS calls (of any type) - all files : 25

The information the Annotator displays on the screen is identical to
the information contained in the Summary Report for the program in
UISDC_HOUSE.LOG.

4 Exit from the Annotator, by typing I CTRUZ I and pressing I RETURN I or by
typing 0 and pressing I RETURN I.

A UISANN$ROUTINES.TABLE

This appendix contains the UISANN$ROUTINES.TABLE that the
Annotator uses.

** UISANN$ROUTINES.TABLE - used by the UIS Source Code Annotator
**

**
**
**

*
COPYRIGHT C 1989, 1990 BY

DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.
*

*
** *
** THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED *
** ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE *
** INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER *
** COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY *
** OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY *
** TRANSFERRED. *
** *
** THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE *
** AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT *
** CORPORATION. *
** *
** DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS *
** SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL. *

* * *

**
**A list of up to 512 UIS, UISDC and HCUIS calls & messages. This
** will support any computer language that follows the facname$ convention.
** ADA is not supported.
**
** The format is:
**
**
**
**
**
**
**
**

**
**
**
**
**
**
**
**
**
**
**

**
call:

mess:

NOTE:

= Comment
= Call name (TESTED FOR AS UPPER CASE - UISANN$ROUTINES always

does upper case testing)
• A displayable (to the CRT or a file) message for the user

Upper or lower case may be used as needed.

This table is broken up into three sections. The first section will
contain all the UIS$ calls, the second will contain all UISDC$
calls, and the third all HCUIS$ calls that may be found in a
user application.

The sections will contain the routines in alphabetical order.
This order does not need to be maintained. New routines should
be added alphabetically.

** UIS
** 001
call: HCUIS$BEGIN_TRANSLATOR
mess: No equivalent routine exists.
** 002
call: HCUIS$END_TRANSLATOR
mess: No equivalent routine exists.
** 003
call: HCUIS$READ BUFFER
mess: No equivalent routine exists.

A-1

UISANN$ROUTINES. TABLE

** 004
call: HCUIS$READ DISPLAY
mess: No equival;nt routine exists.
** 005
call: HCUIS$TRANSLATE
mess: No equivalent routine exists.
** 006
call: HCUIS$WRITE BUFFER
mess: No equivalent routine exists.
** 007
call: HCUIS$WRITE_DISPLAY
mess: No equivalent routine exists.
** 008
call: UIS$BEGIN_SEGMENT
mess: Xll provides no equivalents to the UIS$ display list routines.
** 009
call: UIS$CIRCLE
mess: Filled circles are drawn using the X$DRAW_ARC routine.
** 010
call: UIS$CLOSE_WINDOW
mess: UIS$CLOSE_WINDOW is equivalent to a SYS$EXIT system service call.
** 011
call: UIS$COPY_OBJECT
mess: Xll provides no equivalents to the UIS$ display list routines.
** 012
call: UIS$CREATE COLOR MAP
mess: Color maps-may b; created by using the X$ALLOC_COLOR_CELLS.
** 013
call: UIS$CREATE COLOR MAP SEG
mess: UIS$CREATE-COLOR-MAP-SEG may be emulated using X$CREATE_COLORMAP.
** 014 - - -
call: UIS$CREATE DISPLAY
mess: No equival;nt routine exists.
** 015
call: UIS$CREATE KB
mess: No Direct Replacement - Similar to X$SELECT_INPUT.
** 016
call: UIS$CREATE TERMINAL
mess: No DECwindows support provided for this UIS call.
** 017
call: UIS$CREATE TB
mess: Xll does not provide digitizer support.
** 018
call: UIS$CREATE TRANSFORMATION
mess: Xll provid;s only a device dependent integer coordinate space.
** 019
call: UIS$CREATE WINDOW
mess: Please see-information on virtual displays.
** 020
call: UIS$DELETE_COLOR_MAP
mess: UIS$DELETE COLOR MAP is similar to X$FREE_COLORMAP.
** 021 - -
call: UIS$DELETE COLOR MAP SEG
mess: UIS$DELETE-COLOR-MAP-SEG is similar to X$FREE_COLORMAP.
** 022 - - -
call: UIS$DELETE DISPLAY
mess: UIS$DELETE-DISPLAY is similar to X$CLOSE_DISPLAY.
** 023 -
call: UIS$DELETE KB
mess: UIS$DELETE-KB is similar to X$SELECT_INPUT.
** 024 -
call: UIS$DELETE OBJECT
mess: Xll provid;s no equivalents to the UIS$ display list routines.
** 025
call: UIS$DELETE PRIVATE
mess: Xll provid;s no equivalents to the UIS$ display list routines.
** 026
call: UIS$DELETE TB
mess: Xll does not provide digitizer support.
** 027

A-2

UISANN$ROUTINES. TABLE

call: UIS$DELETE TRANSFORMATION
mess: Xll provid;s only a device dependent integer coordinate space.
** 028
call: UIS$DELETE WINDOW
mess: Please see-information on virtual displays.
** 029
call: UIS$DISABLE DISPLAY LIST
mess: Xll provide; no equivalents to the UIS$ display list routines.
** 030
call: UIS$DISABLE KB
mess: UIS$DISABLE=KB is similar to X$SELECT_INPUT.
** 031
call: UIS$DISABLE KB
mess: Xll does to-provide digitizer support.
** 032
call: UIS$DISABLE VIEWPORT KB
mess: There is no-concept of a virtual KB in Xll.
** 033
call: UIS$ELLIPSE
mess: Filled ellipses are drawn using the X$DRAW_ARC routine.
** 034
call: UIS$ENABLE DISPLAY LIST
mess: Xll provid;s no eqilivalents to the UIS$ display list routines.
** 035
call: UIS$ENABLE KB
mess: UIS$ENABLE-KB is remotely similar to X$SET_INPUT_FOCUS.
** 036 -
call: UIS$ENABLE_TB
mess: Xll does not provide digitizer support.
** 037
call: UIS$ENABLE_VIEWPORT_KB
mess: There is not equivalent routine - please see X$SELECT_INPUT.
** 038
call: UIS$END_SEGMENT
mess: Xll provides no equivalents to the UIS$ display list routines.
** 039
call: UIS$ERASE
mess: UIS$ERASE is similar to X$CLEAR_AREA; will repaint using the BG
pixmap if one is declared.
** 040
call: UIS$EXECUTE
mess: Xll provides no equivalents to the UIS$ display list routines.
** 041
call: UIS$EXECUTE DISPLAY
mess: Xll provide; no equivalents to the UIS$ display list routines.
** 042
call: UIS$EXPAND ICON
mess: UIS$EXPAND-ICON is similar to X$SET_WM_HINTS.
** 043 -
call: UIS$EXTRACT_HEADER
mess: Xll provides no equivalents to the UIS$ display list routines.
** 044
call: UIS$EXTRACT_OBJECT
mess: Xll provides no equivalents to the UIS$ display list routines.
** 045
call: UIS$EXTRACT PRIVATE
mess: Xll provide; no equivalents to the UIS$ display list routines.
** 046
call: UIS$EXTRACT REGION
mess: Xll provide; no equivalents to the UIS$ display list routines.
** 047
call: UIS$EXTRACT TRAILER
mess: Xll provide; no equivalents to the UIS$ display list routines.
** 048
call: UIS$FIND PRIMITIVE
mess: Xll provides no equivalents to the UIS$ display list routines.
** 049
call: UIS$FIND SEGMENT
mess: Xll provides no equivalents to the UIS$ display list routines.
** 050

A-3

UISANN$ROUTINES.TABLE

call: UIS$GET ABS POINTER POS
mess: UIS$GET-ABS-POINTER-POS is equivalent to X$QUERY_POINTER.
** 051 - - -
call: UIS$GET ALLIGNED POS
mess: Xll does not provide text formatting functions.
** 052
call: UIS$GET ARC TYPE
mess: Xll does not provide inquiry functions for graphics context.
** 053
call: UIS$GET BACKGROUND INDEX
mess: Xll does Not provide inquiry functions for graphics context.
** 054
call: UIS$GET BUTTONS
mess: UIS$GET=BUTTONS is similar to X$QUERY_POINTER.
** 055
call: UIS$GET CHAR ROTATION
mess: Xll does not-provide text rotation.
** 056
call: UIS$GET CHAR SIZE
mess: Xll does not-provide text scaling.
** 057
call: UIS$GET CHAR SLANT
mess: Xll doe; not-provide text shearing (slant).
** 058
call: UIS$GET CHAR SPACING
mess: Xll does not-provide text formatting functions.
** 059
call: UIS$GET_CLIP
mess: Xll does not provide inquiry functions for graphics context.
** 060
call: UIS$GET_COLOR
mess: UIS$GET COLOR is similar to X$QUERY_COLOR.
** 061 -
call: UIS$GET_COLORS
mess: UIS$GET COLORS is similar to X$QUERY_COLORS.
** 062 -
call: UIS$GET CURRENT OBJECT
mess: Xll provides no-equivalents to the UIS$ display list routines.
** 063
call: UIS$GET DISPLAY SIZE
mess: This may be emulated using X$DISPLAY WIDTH, X$DISPLAY_WIDTHMM,
X$DISPLAY HEIGHT, and X$DISPLAY HEIGHTMM.
** 064 - -
call: UIS$GET FILL PATTERN
mess: Xll does not-provide inquiry functions for graphics context.
** 065
call: UIS$GET_FONT
mess: Xll does to provide inquiry functions for graphics context.
** 066
call: UIS$GET FONT ATTRIBUTES
mess: UIS$GET-FONT-ATTRIBUTES is similar to X$QUERY_FONT.
** 067 - -
call: UIS$GET_FONT_SIZE
mess: UIS$GET FONT SIZE is similar to X$TEXT_WIDTH and X$TEXT_EXTENT.
** 068 - -
call: UIS$GET_HW_COLOR_INFO
mess: Information is available through a number of individual calls -
Please see "Display Routines".
** 069
call: UIS$GET INTENSITIES
mess: UIS$GET=INTENSITIES is similar to X$QUERY_COLORS.
** 070
call: UIS$GET INTENSITY
mess: UIS$GET-INTENSITY is similar to X$QUERY_COLOR.
** 071 -
call: UIS$GET KB ATTRIBUTES
mess: UIS$GET-KB-ATTRIBUTES is similar to X$GET_KEYBOARD_CONTROL; except
for up button-tr~nsitions ..
** 072
call: UIS$GET_LINE_STYLE

A-4

UISANN$ROUTINES.TABLE

mess: Xll does not provide inquiry functions for graphics context.
** 073
call: UIS$GET_LINE_WIDTH
mess: Xll does not provide inquiry functions for graphics context.
** 074
call: UIS$GET_NEXT_OBJECT
mess: Xll provides no equivalents to the UIS$ display list routines.
** 075
call: UIS$GET OBJECT ATTRIBUTES
mess: Xll provides no equivalents to the UIS$ display list routines.
** 076
call: UIS$GET PARENT SEGMENT
mess: Xll provides no equivalents to the UIS$ display list routines.
** 077
call: UIS$GET POINTER POSITION
mess: UIS$GET-POINTER-POSITION is similar to X$QUERY_POINTER.
** 078 - -
call: UIS$GET POSITION
mess: Xll doe-not provide text formatting functions.
** 079
call: UIS$GET PREVIOUS OBJECT
mess: Xll provides no equivalents to the UIS$ display list routines.
** 080
call: UIS$GET ROOT SEGMENT
mess: Xll provides-no equivalents to the UIS$ display list routines.
** 081
call: UIS$GET TB INFO
mess: Xll does not provide digitizer support.
** 082
call: UIS$GET TB POSITION
mess: Xll does not provide digitizer support.
** 083
call: UIS$GET TEXT FORMATTING
mess: Xll does not-provide tgxt formatting functions.
** 084
call: UIS$GET TEXT MARGINS
mess: Xll does not-provide text formatting functions.
** 085
call: UIS$GET TEXT PATH
mess: Xll does not-provide text formatting functions.
** 086
call: UIS$GET_TEXT_SLOPE
mess: Xll does not provide text formatting functions.
** 087
call: UIS$GET VCM ID
mess: Xll has-no equivalent function.
** 088
call: UIS$GET VIEWPORT ICON
mess: Please see the Guide to Xlib Programming, "Using Properties to
Cormnunicate with the Window Manager".
** 089
call: UIS$GET VIEWPORT POSITION
mess: UIS$GET-VIEWPORT-POSITION is similar to X$GET_WINDOW_ATTRIBUTES; note
the change in-origin. -
** 090
call: UIS$GET VIEWPORT SIZE
mess: UIS$GET-VIEWPORT-SIZE is similar to X$GET_WINDOW_ATTRIBUTES; UIS
returns centipoints - X returns pixels.
** 091
call: UIS$GET VISIBILITY
mess: There is no direct way of obtaining this information in Xll. Track
visibility notify events.
** 092
call: UIS$GET WINDOW ATTRIBUTES
mess: UIS$GET-WINDOW-ATTRIBUTES is similar to X$GET_WINDOW_ATTRIBUTES.
** 093 - -
call: UIS$GET_WINDOW_SIZE
mess: UIS$GET_WINDOW_SIZE is similar to X$GET_GEOMETRY: please note the
differences.
** 094

A-5

UISANN$ROUTINES.TABLE

call: UIS$GET WRITING INDEX
mess: Xll does not provide inquiry functions for graphics context.
** 095
call: UIS$GET WRITING MODE
mess: Xll does not provide inquiry functions for graphics Context.
** 096
call: UIS$GET WS COLOR
mess: UIS$GET-WS-COLOR is similar to X$LOOKUP_COLOR.
** 097 - -
call: UIS$GET WS INTENSITY
mess: UIS$GET:ws:INTENSITY is similar to X$LOOKUP_COLOR.
** 098
call: UIS$HLS TO RGB
mess: Xll does not provide color conversion routines.
** 099
call: UIS$HSV TO RGB
mess: Xll does not provide color conversion routines.
** 100
call: UIS$IMAGE
mess: UIS$IMAGE is similar to X$PUT_IMAGE: Note that image formats differ.
** 101
call: UIS$INSERT_OBJECT
mess: Xll provides no equivalents to the UIS$ display list routines.
** 102
call: UIS$LINE
mess: UIS$LINE requires X$DRAW_SEGMENT and X$DRAW_POINT (for the individual
points) .
** 103
call: UIS$LINE ARRAY
mess: UIS$LINE-ARRAY requires X$DRAW_SEGMENT and X$DRAW_POINT (for the
individual poi~ts) .
** 104
call: UIS$MEASURE TEXT
mess: UIS$MEASURE-TEXT is similar to X$QUERY_TEXT_EXTENTS. (NOTE: This
assumes control list/attribute blocks were not used.)
** 105
call: UIS$MOVE AREA
mess: UIS$MOVE-AREA is similar to X$COPY AREA followed by an X$ERASE or
draw of filled-rectangle over area.
** 106
call: UIS$MOVE VIEWPORT
mess: UIS$MOVE-VIEWPORT is similar to X$MOVE_WINDOW.
** 107 -
call: UIS$MOVE WINDOW
mess: There is-no equivalent functionality under Xll.
** 108
call: UIS$NEW_TEXT_LINE
mess: Xll does not provide text formatting functions.
** 109
call: UIS$PLOT
mess: UIS$PLOT is similar to X$DRAW_LINE, X$DRAW_LINES or X$DRAW_POINT.
** 110
call: UIS$PLOT ARRAY
mess: UIS$PLOT-ARRAY is similar to X$DRAW_LINE, X$DRAW_LINES or X$DRAW_POINT.
** 111 -
call: UIS$POP VIEWPORT
mess: UIS$POP-VIEWPORT is equivalent to X$RAISE_WINDOW.
** 112 -
call: UIS$PRESENT
mess: No equivalent call exists, but may be easily adapted in line for
DECwindows.
** 113
call: UIS$PRIVATE
mess: Xll provides no equivalents to the UIS$ display list routines.
** 114
call: UIS$PUSH VIEWPORT
mess: UIS$PUSH-VIEWPORT is similar to X$LOWER_WINDOW.
** 115 -
call: UIS$READ CHAR
mess: No equi~lent call exists, keyboard input is delivered using the X

A-6

UISANN$ROUTINES.TABLE

event mechanism.
** 116
call: UIS$RESIZE WINDOW
mess: UIS$RESIZE-WINDOW is similar to X$CHANGE_WINDOW_ATTRIBUTES.
** 117 -
call: UIS$RESTORE_CMS_COLORS
mess: UIS$RESTORE CMS COLORS is similar to X$INSTALL_COLORMAP.
** 118 - -
call: UIS$RGB TO HLS
mess: Xll does not provide color conversion routines.
** 119
call: UIS$RGB TO HSV
mess: Xll does not provide color conversion routines.
** 120
call: UIS$SET ADDOPT AST
mess: No equivalent routine exists.
** 121
call: UIS$SET ALLIGNED POSITION
mess: Xll does not provide text formatting functions.
** 122
call: UIS$SET ARC TYPE
mess: UIS$SET=ARC=TYl?E is similar to X$SET_ARC_MODE or X$CHANGE_GC.
** 123
call: UIS$SET BACKGROUND INDEX
mess: UIS$SET=BACKGROUND=INDEX is similar to X$SET_BACKGROUND or X$CHANGE_GC.
** 124
call: UIS$SET BUTTON AST
mess: This is-encompassed by the X event processing routines.
** 125
call: UIS$SET CHAR ROTATION
mess: Xll does not-provide character rotation.
** 126
call: UIS$SET CHAR SIZE
mess: Xll does not-provide text scaling.
**127
call: UIS$SET CHAR SLANT
mess: Xll does to provide character shearing (slant).
** 128
call: UIS$SET_CHAR_SPACING
mess: Xll does not provide text formatting functions.
** 129
call: UIS$SET_CLIP
mess: X$SET_CLIP_RECTANGLES provides UIS clipping and more.
** 130
call: UIS$SET CLOSE AST
mess: The only equivalent concept is encompassed by the DECwindows Toolkit.
** 131
call: UIS$SET COLOR
mess: UIS$SET-COLOR is equivalent to X$STORE_COLOR.
** 132 -
call: UIS$SET COLORS
mess: UIS$SET=COLORS is equivalent to X$STORE_COLORS.
** 133
call: UIS$SET EXPAND ICON AST
mess: No equivalent routi~e exists.
** 134
call: UIS$SET FILL PATTERN
mess: UIS fill patterns are equivalent to STIPPLE patterns in Xll; use
X$SET_STIPPLE or X$CHANGE_GC.
** 135
call: UIS$SET_FONT
mess: UIS$SET FONT is similar to X$SET_FONT. The font ID is obtained from
X$LOAD FONT. -
** 136-
call: UIS$SET GAIN KB AST
mess: There are eqUivalent X events for obtaining input focus.
** 137
call: UIS$SET INSERTION POSITION
mess: Xll provides no equivalents to the UIS$ display list routines.
** 138

A-7

UISANN$ROUTINES.TABLE

call: UIS$SET INTENSITIES
mess: UIS$SET-INTENSITIES is equivalent to X$STORE_COLORS.
** 139 -
call: UIS$SET INTENSITY
mess: UIS$SET-INTENSITY is equivalent to X$STORE_COLOR.
** 140 -
call: UIS$SET KB AST
mess: There are equivalent X events; use X$CHANGE_WINDOW_ATTRIBUTES.
** 141
call: UIS$SET KB ATTRIBUTES
mess: UIS$SET=KB=ATTRIBUTES is similar to X$CH.ANGE_KB_CONTROL.
** 142
call: UIS$SET KB COMPOSE2
mess: X$SET MODIFIER MAPPING and X$CHANGE_KEYBOARD_MAPPING can remap the
keyboard input. -
** 143
call: UIS$SET KB COMPOSE3
mess: X$SET MODIFIER MAPPING and X$CHANGE_KEYBOARD_MAPPING can remap the
keyboard input. -
** 144
call: UIS$SET KB KEYTABLE
mess: X$CHANGE_KEYBOARD_MAPPING and X$SET_MODIFIER_MAl?PING can remap the
keyboard input.
** 145
call: UIS$SET LINE STYLE
mess: UIS$SET-LINE-STYLE is similar to X$SET_LINE_ATTRIBUTES or X$CHANGE_GC.
** 146 - -
call: UIS$SET LINE WIDTH
mess: UIS$SET-LINE-WIDTH is similar to X$SET_LINE_ATTRIBUTES or X$CH.ANGE_GC.
** 147 - -
call: UIS$SET LOSE KB AST
mess: There are eqUivalent X events; use X$CHANGE_WINDOW_ATTRIBUTES.
** 148
call: UIS$SET MOVE INFO AST
mess: There are eq\iival;nt X events.
** 149
call: UIS$SET POINTER AST
mess: There are equivalent X events.
** 150
call: UIS$SET POINTER PATTERN
mess: UIS$SET-POINTER-POSITION is similar to X$DEFINE_CURSOR.
** 151 - -
call: UIS$SET POINTER POSITION
mess: UIS$SET-POINTER-POSITION is similar to X$WARP_POINTER.
** 152 - -
call: UIS$SET POSITION
mess: Xll does not provide text formatting functions.
** 153
call: UIS$SET RESIZE AST
mess: There are equivalent X events.
** 154
call: UIS$SET SHRINK TO ICON AST
mess: There are equival;nt X-events.
** 155
call: UIS$SET TB AST
mess: No equivalent routine exists.
** 156
call: UIS$SET TEXT FORMATTING
mess: Xll does not-provide text formatting functions.
** 157
call: UIS$SET TEXT MARGINS
mess: Xll doe; not-provide text formatting functions.
** 158
call: UIS$SET TEXT PATH
mess: Xll does not-provide text formatting functions.
** 159
call: UIS$SET TEXT SLOPE
mess: Xll doe; not-provide text formatting functions.
** 160
call: UIS$SET_WRITING_INDEX

A-8

UISANN$ROUTINES. TABLE

mess: UIS$SET WRITING INDEX is similar to X$SET_FOREGROUND or X$CHANGE_GC.
** 161 - -
call: UIS$SET WRITING MODE
mess: UIS$SET-WRITING-MODE is similar to X$SET_FUNCTION or X$CHANGE_GC.
** 162 - -
call: UIS$SHRINK TO ICON
mess: UIS$SHRINK-TO-ICON is similar to X$SET_WM_HINTS.
** 163 - -
call: UIS$SOUND_BELL
mess: UIS$SOUND_BELL is similar to X$BELL.
** 164
call: UIS$SOUND_CLICK
mess: There is no way to sound the keyclick in Xll.
** 165
call: UIS$TEST KB
mess: The application should keep track of this through the X event mechanism.
** 166
call: UIS$TEXT
mess: UIS$TEXT is similar to X$DRAW_TEXT.
** 167
call: UIS$TRANSFORM OBJECT
mess: Xll provides no equivalents to the UIS$ display list routines.
** 168
call: UISDC$ALLOCATE DOP
mess: Xll does not have comparable interface to the hardware.
** 169
call: UISDC$CIRCLE
mess: UISDC$CIRCLE is similar to X$DRAW_ARC.
** 170
call: UISDC$ELLIPSE
mess: UISDC$ELLIPSE is similar to X$DRAW_ARC.
** 171
call: UISDC$ERASE
mess: UISDC$ERASE is similar to X$CLEAR AREA or X$CLEAR_WINDOW; X will
repaint the BG using a pixmap if specified.
** 172
call: UISDC$EXECUTE DOP ASYNCH
mess: Xll does not have-a comparable interface to the hardware.
** 173
call: UISDC$EXECUTE DOP ASYNCH
mess: Xll does not have-a comparable interface to the hardware.
** 174
call: UISDC$EXECUTE DOP SYNCH
mess: Xll does not have-a comparable interface to the hardware.
** 175
call: UISDC$GET ALIGNED POSITION
mess: Xll no text formatting nor the concept of a current text writing position.
** 176
call: UISDC$GET CHAR SIZE
mess: Xll does not provide text scaling.
** 177
call: UISDC$GET CLIP
mess: Xll does not provide query routines for Graphics Context.
** 178
call: UISDC$GET POINTER POSITION
mess: UISDC$GET=POINTER=POSITION is similar to X$QUERY_POINTER.
** 179
call: UISDC$GET POSITION
mess: Xll does not provide text formatting.
** 180
call: UISDC$GET TEXT MARGINS
mess: Xll provides no text formatting nor the concept of text margins.
** 181
call: UISDC$GET_VISIBILITY
mess: There is no direct way of obtaining this information in Xll. Track
visibility notify events.
** 182
call: UISDC$IMAGE
mess: UISDC$IMAGE is similar to X$PUT_IMAGE.
** 183

A-9

UISANN$ROUTINES.TABLE

call: UISDC$LINE
mess: UISDC$LINE is similar to X$DRAW_SEGMENT or X$DRAW_POINT.
** 184
call: UISDC$LINE ARRAY
mess: UISDC$LINE-ARRAY is similar to X$DRAW_SEGMENTS or X$DRAW_POINTS.
** 185 -
call: UISDC$LOAD BITMAP
mess: No equivalent routine exists.
** 186
call: UISDC$MEASURE TEXT
mess: UISDC$MEASURE=TEXT is similar to X$QUERY_TEXT_EXTENTS. (Assumes a
UIS control list was not used.)
** 187
call: UISDC$MOVE_AREA
mess: UISDC$MOVE AREA is similar to X$COPY_AREA followed by X$ERASE or draw
of filled rectangle of the area.
** 188
call: UISDC$NEW TEXT LINE
mess: Xll does not provide text formatting.
** 189
call: UISDC$PLOT
mess: UISDC$PLOT is similar to X$DRAW_LINE, X$SRAW_LINES, or X$DRAW_POINT.
** 190
call: UISDC$PLOT ARRAY
mess: UISDC$PLOT=ARRAY is similar to X$DRAW_LINE, X$DRAW_LINES, or X$DRAW_POINT.
** 191
call: UISDC$QUEUE DOP
mess: No equivalent routine exists.
** 192
call: UISDC$READ IMAGE
mess: UISDC$READ=IMAGE is similar to X$GET_IMAGE. CAUTION: The contents
of Xll windows are not guaranteed to be valid.
** 193
call: UISDC$SET_ALIGNED_POSITION
mess: Xll provides no text formatting nor the concept of a current text
writing position.
** 194
call: UISDC$SET BUTTON AST
mess: This function is-encompassed by X event processing.
** 195
call: UISDC$SET CHAR SIZE
mess: Xll does not provide text scaling.
** 196
call: UISDC$SET CLIP
mess: X$SET_CLIP_RECTANGLES provides UIS clipping and more.
** 197
call: UISDC$SET_POINTER_AST
mess: There are equivalent X events; use X$CHANGE_WINDOW_ATTRIBUTES.
** 198
call: UISDC$SET_POINTER_PATTERN
mess: UISDC$SET POINTER PATTERN is similar to X$DEFINE_CURSOR.
** 199 - -
call: UISDC$SET POINTER POSITION
mess: UISDC$SET-POINTER-POSITION is similar to X$WARP_POINTER.
** 200 - -
call: UISDC$SET_POSITION
mess: Xll does not provide text formatting.
** 201
call: UISDC$SET TEXT MARGINS
mess: Xll provides n; teY.t formatting nor the concept of text margins.
** 202
call: UISDC$TEXT
mess: UISDC$TEXT is similar to X$DRAW_TEXT.

A-10

B Annotator Messages

This appendix contains messages you may encounter while using the
Annotator.

ALLSOUBAS, All source code is assumed to be BASIC

Informational: All source code within the specified file is expected to be
BASIC.

User Action: None.

ALLSOUBLI, All source code is assumed to be BLISS

Informational: All source code within the specified file is expected to be
BLISS.

User Action: None.

ALLSOUC, All source code is assumed to be C

Informational: All source code within the specified file is expected to be
c.
User Action: None.

/

ALLSOUCOB, All source code is assumed to be COBOL

Informational: All the source code within the specified file is expected to
be COBOL.

User Action: None.

ALLSOUFOR, All source code is assumed to be FORTRAN

Informational: All source code within the specified file is expected to be
FORTRAN.

User Action: None.

ALLSOULIS, All source code is assumed to be LISP

Informational: All source code within the specified file is expected to be
LISP.

User Action: None.

ALLSOUMAC, All source code is assumed to be VAX/MACRO

Informational: All source code within the specified file is expected to be
MACRO.

User Action: None.

B-1

Annotator Messages

B-2

ALLSOUPAS, All source code is assumed to be PASCAL

Informational: All source code within the specified file is expected to be
PASCAL.

User Action: None.

ALLSOUPLI, All source code is assumed to be PL/I

Informational: All source code within the specified file is expected to be
Pl/I.

User Action: None.

CANCRE, Cannot create the next version of '!AS'/FAO=l

Fatal Error: The attempt to create the next version of the input file has
failed.

User Action: Make sure you have the proper privileges to create files in
your current directory. If you do, make sure you you have not exceeded
any of your quotas. Also make sure the current version number is not
32767.

CREATING, Creating the next version of'!AS'/FAO=l

Informational: The next version of the input file has been successfully
created.

User Action: None.

FILERRVER, File error - Verify the file name and directory

Warning: The input file name or the directory specification provided is
incorrect.

User Action: Verify the file name and the directory specification. If they
are incorrect, reenter them correctly. If they are correct, check the file and
directory protection to make sure you have access.

INITAB, Initializing the tables

Informational: The table of UIS routines is being initialized.

User Action: None.

INVFILNAM, Invalid file name or specification

Warning: The file name or the directory specification you provided did not
exist or did not have the appropriate protection to allow access.

User Action: Verify the file name and directory specifications. If they are
incorrect, reenter them correctly. If they are correct, check the file and
directory protection to make sure you do have access.

INVINPNOT, Invalid input - Nothing entered

Warning: The input to a question was invalid.

User Action: Reread the question and the acceptable input and reenter
your response.

Annotator Messages

INVINPTOO, Invalid input - Too much entered

Warning: The response supplied contained too much information.

User Action: Reread the question and the acceptable input and reenter
your response.

INVLANOPT, Invalid language option selected

Warning: The language option selected is invalid.

User Action: Review the valid options and select the one you want or exit
by entering I CTRUZ I or 0.

NOMODFIL, No modified file will be produced

Informational: A user action has occurred that does not warrant
annotation taking place.

User Action: Determine if you supplied incorrect information to one of
the queries. If you have, rerun the annotator and provide the correct
information. If you have not, no action is required.

NORMAL, Normal successful completion

Informational: The Annotator annotated the file successfully

User Action: None.

UNATOFIN, Unable to find UIS_X_FLAG.TABLE

Fatal Error: The Annotator did not find the table
UISANN$ROUTINES.TABLE.

Use Action: Check the definition of the logical UISANN$TABLE
to make sure it points to the directory that contains the file
UISANN$ROUTINES.TABLE. If UISANN$TABLE is not defined, define it
with the following command:

$ DEFINE UISANN$TABLE SYS$SYSROOT: [SYSHLP.EXAMl?LES.UISANN].

Then ask your system manager to define it system wide.

UNRINPPRO, Unrecognized input provided

Warning: The input provided to a query is not recognized as a valid
response.

User Action: Reread the question and the acceptable inputs and reenter
your response.

B-3

C UIS$ Routines and Equivalent Xlib Routines

This appendix list UIS$ routines you may encounter with their equivalent
XLIB routines and describes their functionality.

C.1 Introduction to UIS$ Routines
Table C-1 gives UIS$ routines with their equivalent Xlib routines, and an
explanation of the routine functionality.

Note: If no equivalent Xlib routine exists for a UIS$ routine, the ''Xlib
Routines" column contains N/A.

Table C-1 UIS Routines and their Equivalent Xlib Routines

UIS$ Routines Xlib Routines

UIS$BEGIN_SEGMENT NIA

UIS$CIRCLE X$DRAW_ARC

UIS$CLOSE_WINDOW SYS$EXIT

UIS$COPY _OBJECT NIA

Explanation

X11 provides no equivalent to the UIS$
display list routines. Programmers must
supply their own display list routines
or reprogram in a higher-level graphic
interface such as GKS or PHIGS.

You use the Xlib draw arc routine
to draw circles. Refer to "Drawing
Graphics" in the VMS DECwindows
Guide to Xlib Programming.

The CLOSE_ WINDOW routine is
equivalent to a SYS$EXIT system
service call and is the def a ult action for
the UIS$CLOSE_AST.

X11 provides no equivalent to the UIS$
display list routines. Programmers must
supply their own display list routines
or reprogram in a higher-level graphic
interface such as GKS or PHIGS.

C-1

UIS$ Routines and Equivalent Xlib Routines

Table C-1 (Cont.) UIS Routines and their Equivalent Xllb Routines

UIS$ Routines Xlib Routines

UIS$CREATE_ COLOR_MAP X$ALLOC_COLOR_CELLS

UIS$CREATE_ COLOR_MAP _SEG X$CREATE_ COLORMAP

UIS$CREATE_DISPLAY NIA

UIS$CREATE_KB X$SELECT _INPUT

UIS$CREATE_ TERMINAL NIA

C-2

Explanation

X11 incorporates the concept of private
colormaps that can be created by
the application and installed (refer to
X$CREATE_COLORMAP). However, the
installation of a colorm ap other than the
default usually alters the described in
"Using Color" in the VMS DECwindows
Guide to Xlib Programming. In general,
to allocate colors for exclusive use (that
is, you intend to alter the color), use
X$ALLOC_COLOR_CELLS, requesting
N planes and 1 color. This provides
you with a single pixel value and a
set of plane mask bits that can then
be permuted to form a colormap that
maintains the ability to be complemented
(when you use GXxor mode with the
plane mask bits). If no arithmetic
operations must be performed on the
bitmap, make the call with 1 plane and
N colors. This has a better chance of
succeeding. For applications using static
colors, you can request "named" colors
such as "red".

To emulate this feature, you must
create and install a private colormap
for the entire hardware colormap,
and the application must manage this
colormap. Refer to "Using Color" in
the VMS DECwindows Guide to Xlib
Programming. Complete control over
the entire colormap is the only way to
accomplish this.

This routine has no counterpart in
X11. VWS uses this routine to initialize
structures and create any needed
colormap. In an X11 application, this
routine would be replaced by more
generic application initialization.

X11 has no equivalent to the UIS virtual
keyboard. In X11, you can select the
types of input events. Refer to "Handling
Events" in the VMS DECwindows Guide
to Xlib Programming.

The DECterm VT340 terminal emulation
windows can only be created from the
DECwindows session manager. No
mechanism exists to create a terminal
window from within a program.

UIS$ Routines and Equivalent Xlib Routines

Table C-1 (Cont.) UIS Routines and their Equivalent Xlib Routines

UIS$ Routines

UIS$CREATE_ TB

UIS$CREATE_
TRANSFORMATION

UIS$CREATE_WINDOW

UIS$DELETE_ COLOR_MAP

UIS$DELETE_COLOR_MAP _
SEGMENT

UIS$DELETE_DISPLAY

UIS$DELETE_KB

UIS$DELETE_OBJECT

Xlib Routines

NIA

NIA

X$CREATE_ WINDOW

X$FREE_ COLORMAP

X$FREE_ COLORMAP

X$CLOSE_DISPLA Y

X$SELECT _INPUT

NIA

Explanation

X11 provides no digitizer support.
Tablets are supported only as
replacements for the mouse.

Since X11 provides only a device
dependent integer coordinate space
with each unit representing a pixel,
programmers must provide their own
world coordinates and transformations.

This routine performs a device
assignment to the workstation
screen. This is the equivalent of
X$0PEN_DISPLAY, which establishes
the link to the display. In addition,
an X$CREATE_WINDOW would be
performed to create and initialize
the window structures; this would be
followed by an X$MAP _WINDOW
to make the window visible. Refer to
"Managing the Client-Server Connection"
and "Working with Windows" in the
VMS DECwindows Guide to Xlib
Programming.

Refer to "Using Color", in the
VMS DECwindows Guide to Xlib
Programming.

Refer to "Using Color", in the
VMS DECwindows Guide to Xlib
Programming.

Closing the display is the nearest
equivalent under X11. The
X$DESTROY _WINDOW call is similar
to moving the viewport offscreen under
VWS. It leaves everything set up (like
the connection), but does not leave the
window.

X11 provides no equivalent to a virtual
keyboard. Types of input events can
be selected and keyboard events
ignored. Refer to "Handling Events",
in the VMS DECwindows Guide to Xlib
Programming.

X11 provides no equivalent to the UIS$
display list routines. Programmers must
supply their own display list routines
or reprogram in a higher-level graphic
interface such as GKS or PH IGS.

C-3

UIS$ Routines and Equivalent Xlib Routines

Table C-1 (Cont.) UIS Routines and their Equivalent Xlib Routines

UIS$ Routines Xlib Routines

UIS$DELETE_PRIVATE NIA

UIS$DELETE_ TB NIA

UIS$DELETE_ TRANSFORMATION NIA

UIS$DELETE_WINDOW X$CLOSE_DISPLAY

UIS$DISABLE_DISPLAY _LIST NIA

UIS$DISABLE_KB X$SELECT _INPUT

UIS$DISABLE_ TB NIA

UIS$DISABLE_VIEWPORT_TB NIA

UIS$ELLIPSE X$DRAW_ARC

Explanation

X11 provides no equivalent to the UIS$
display list routines. Programmers must
supply their own display list routines
or reprogram in a higher-level graphic
interface such as GKS or PH IGS.

X11 provides no digitizer support.
Tablets are supported only as
replacements for the mouse.

Since X11 provides only a device
dependent integer coordinate space
with each unit representing a pixel,
programmers must provide their own
world coordinates and transformations.

Closing the display is the nearest
equivalent under X11. The
X$DESTROY _WINDOW call is more
like moving the viewport offscreen under
VWS. It leaves everything set up (like
the connection), but does not leave the
window.

X11 provides no equivalent to the UIS$
display list routines. Programmers must
supply their own display list routines
or reprogram in a higher-level graphic
interface such as GKS or PHIGS.

X11 provides no equivalent to a virtual
keyboard. The types of input events
can be selected and keyboard events
ignored. Refer to "Handling Events",
in the VMS DECwindows Guide to Xlib
Programming.

X11 provides no digitizer support.
Tablets are supported only as
replacements for the mouse.

UIS uses this routine to disconnect a
virtual KB from a window and remove
the window from the list of windows
that can be cycled to. X11 has no
concept of a virtual KB. You either
accept input focus and keyboard input
events or do not choose to receive
these events of the input focus. Refer to
X$SELECT _INPUT.

Draw ellipses by using the Xlib draw arc
routine. Refer to "Drawing Graphics",
in the VMS DECwindows Guide to Xlib
Programming.

UIS$ Routines and Equivalent Xlib Routines

Table C-1 (Cont.) UIS Routines and their Equivalent Xlib Routines

UIS$ Routines Xlib Routines

U IS$ENABLE_DISPLAY _LIST NIA

U IS$ENABLE_KB X$SET _INPUT _FOCUS

U IS$ENABLE_ TB NIA

UIS$ENABLE_ VIEWPORT _KB NIA

UIS$END_SEGMENT NIA

UIS$ERASE X$CLEAR_AREA

UIS$EXECUTE NIA

UIS$EXECUTE_DISPLAY NIA

Explanation

X11 provides no equivalent to the UIS$
display list routines. Programmers must
supply their own display list routines
or reprogram in a higher-level graphic
interface such as GKS or PHIGS.

This call sets the input focus (the closest
concept to connecting the physical
keyboard to a window).

X11 provides no digitizer support.
Tablets are supported only as
replacements for the mouse.

UIS uses this routine to associate a
virtual KB with a window and add the
window to the list of windows that can
be cycled to. X11 has no concept
of a virtual KB. You either accept
input focus and keyboard input events
or do not choose to receive these
events of the input focus. Refer to
X$SELECT _INPUT.

X11 provides no equivalents to the UIS$
display list routines. Programmers must
supply their own display list routines
or reprogram in a higher-level graphic
interface such as GKS or PHIGS.

Both Clear Area and Clear Window
routines are provided to erase portions
of windows. You cannot use the Clear
Area function on a PIXMAP. Instead,
you should use a filled rectangle the
size of the screen in the background
color. Refer to "Drawing Graphics" in
the VMS DECwindows Guide to Xlib
Programming.

X11 provides no equivalents to the UIS$
display list routines. Programmers must
supply their own display list routines
or reprogram in a higher-level graphic
interface such as GKS or PHIGS.

X11 provides no equivalents to the UIS$
display list routines. Programmers must
supply their own display list routines
or reprogram in a higher-level graphic
interface such as GKS or PHIGS.

C-5

UIS$ Routines and Equivalent Xlib Routines

Table C-1 (Cont.) UIS Routines and their Equivalent Xlib Routines

UIS$ Routines Xlib Routines

UIS$EXPAND _ICON X$SET_WM_HINTS

UIS$EXTRACT _HEADER NIA

UIS$EXTRACT _OBJECT NIA

UIS$EXTRACT _PRIVATE NIA

UIS$EXTRACT _REGION NIA

UIS$EXTRACT _TRAILER NIA

UIS$FIND_PRIMITIVE NIA

UIS$FIND_SEGMENT NIA

C-6

Explanation

Generally, the user controls the state
of the application window. To set the
initial state of a window, use the property
routines to communicate to the server.
In addition, the server honors the hints
after the window has been created and
mapped. Thus, if you specify the Initial
State for the window as X$C _NORMAL_
STATE with the X$SET_WM_HINTS, a
window currently in an icon state will be
expanded.

X11 provides no equivalents to the UIS$
display list routines. Programmers must
supply their own display list routines
or reprogram in a higher-level graphic
interface such as GKS or PHIGS.

X11 provides no equivalents to the UIS$
display list routines. Programmers must
supply their own display list routines
or reprogram in a higher-level graphic
interface such as GKS or PHIGS.

X11 provides no equivalents to the UIS$
display list routines. Programmers must
supply their own display list routines
or reprogram in a higher-level graphic
interface such as GKS or PHIGS.

X11 provides no equivalents to the UIS$
display list routines. Programmers must
supply their own display list routines
or reprogram in a higher-level graphic
interface such as GKS or PHIGS.

X11 provides no equivalents to the UIS$
display list routines. Programmers must
supply their own display list routines
or reprogram in a higher-level graphic
interface such as GKS or PHIGS.

X11 provides no equivalents to the UIS$
display list routines. Programmers must
supply their own display list routines
or reprogram in a higher-level graphic
interface such as GKS or PHIGS.

X11 provides no equivalents to the UIS$
display list routines. Programmers must
supply their own display list routines
or reprogram in a higher-level graphic
interface such as GKS or PHIGS.

UIS$ Routines and Equivalent Xlib Routines

Table C-1 (Cont.) UIS Routines and their Equivalent Xlib Routines

UIS$ Routines Xlib Routines

UIS$GET _ABS_POINTER_POS X$QUERY _POINTER

U IS$GET _ALIGNED _POSITION NI A

UIS$GET_ARC_TYPE NIA

UIS$GET _BACKGROUND_INDEX NIA

U IS$GET _BUTTONS X$QUERY _POINTER

UIS$GET_CHAR_ROTATION NIA

UIS$GET_CHAR_SIZE NIA

UIS$GET_CHAR_SPACING NIA

UIS$GET_CLIP NIA

UIS$GET _COLOR X$QUERY _COLOR

UIS$GET _COLORS X$QUERY _COLORS

UIS$GET_CURRENT_OBJECT NIA

UIS$GET _DISPLAY _SIZE Refer to "Explanation".

UIS$GET_FILL_PATTERN NIA

UIS$GET_FONT NIA

U IS$GET _FONT _ATTRIBUTES X$0UERY _FONT

Explanation

This function returns the position of the
pointer relative to the window as well
as the current state of the modifier keys
and buttons. Refer to the Xlib Routines
Reference Manual, Part 1 , "Window
Routines".

X11 does not provide text formatting
functions.

X11 does not provide inquiry functions
for GCs (the equivalent of UIS ATBs).

X11 does not provide inquiry functions
for GCs (the equivalent of UIS ATBs).

This function returns the position of the
pointer relative to the window as well
as the current state of the modifier keys
and buttons. Refer to the Xlib Routines
Reference Manual, Part 1 , "Window
Routines".

X11 does not provide text rotation.

X11 does not provide text scaling.

X11 does not provide text formatting.

X11 does not provide inquiry functions
for GCs (the equivalent of UIS ATBs).

Provides the RGB values for the
specified index.

Provides the RGB values for the
specified index values.

X11 provides no equivalents to the UIS$
display list routines. Programmers must
supply their own display list routines
or reprogram in a higher-level graphic
interface such as GKS or PHIGS.

The X$DISPLAY _WIDTH,
X$DISPLAY _WIDTH_MM,
X$DISPLAY _HEIGHT, and
X$DISPLAY _HEIGHT _MM calls provide
the information needed to emulate this.

X11 does not provide inquiry functions
for GCs (the equivalent of UIS ATBs).

X11 does not provide inquiry functions
for GCs (the equivalent of UIS ATBs).

This routine, as well as
X$LOOKUP _FONT _WITH_INFO, can
return information associated with this
call.

C-7

UIS$ Routines and Equivalent Xlib Routines

Table C-1 (Cont.) UIS Routines and their Equivalent Xlib Routines

UIS$ Routines

UIS$GET_FONT_SIZE

UIS$GET_HW_COLOR_INFO

UIS$GET _INTENSITIES

UIS$GET _INTENSITY

UIS$GET _KB_ATTRIBUTES

UIS$GET _LINE_STYLE

UIS$GET_LINE_WIDTH

UIS$GET _NEXT_ OBJECT

UIS$GET _OBJECT _ATTRIBUTES

UIS$GET _PARENT _SEGMENT

UIS$GET _POINTER_POSITION

UIS$GET _POSITION

UIS$GET_PREVIOUS_OBJECT

C-8

Xlib Routines

X$QUERY _FONT

NIA

X$0UERY _COLORS

X$0UERY _COLOR

X$GET _KEYBOARD_
CONTROL

NIA

NIA

NIA

NIA

NIA

X$0UERY _POINTER

NIA

NA

Explanation

This routine, as well as
X$LOOKUP _FONT_ WITH_INFO, can
return information associated with this
call.

The information returned by this call is
available through a number of individual
calls. Refer to the Xlib Routines
Reference Manual, Part 1 , "Display
Routines".

Use the X$0UERY _COLORS routines.

Use the X$0UERY _COLOR routines.

The attributes are not specified in the
same manner but are available through
this routine.

X11 does not provide inquiry functions
for GCs (the equivalent of UIS ATBs).

X11 does not provide inquiry functions
for GCs (the equivalent of UIS ATBs).

X11 provides no equivalents to the UIS$
display list routines. Programmers must
supply their own display list routines
or reprogram in a higher-level graphic
interface such as GKS or PHIGS.

X11 provides no equivalents to the UIS$
display list routines. Programmers must
supply their own display list routines
or reprogram in a higher-level graphic
interface such as GKS or PHIGS.

X11 provides no equivalents to the UIS$
display list routines. Programmers must
supply their own display list routines
or reprogram in a higher-level graphic
interface such as GKS or PHIGS.

This function returns the position of the
pointer relative to the window as well
as the current state of the modifier keys
and buttons. Refer to the Xlib Routines
Reference Manual, Part 1, "Window
Routines".

X11 does not provide text formatting
functions.

X11 provides no equivalents to the UIS$
display list routines. Programmers must
supply their own display list routines
or reprogram in a higher-level graphic
interface such as GKS or PHIGS.

UIS$ Routines and Equivalent Xlib Routines

Table C-1 (Cont.) UIS Routines and their Equivalent Xlib Routines

UIS$ Routines Xlib Routines

UIS$GET _ROOT _SEGMENT NA

UIS$GET_TB_INFO NIA

UIS$GET _ TB_POSITION NIA

UIS$GET _TEXT _FORMATTING NIA

UIS$GET _TEXT _MARGINS NIA

UIS$GET_TEXT_PATH NIA

UIS$GET _TEXT _SLOPE NIA

UIS$GET _ VCM_ID NIA

UIS$GET_VIEWPORT_ICON NIA

UIS$GET_VIEWPORT_POSITION X$GET_WINDOW_
ATTRIBUTES

Explanation

X11 provides no equivalents to the UIS$
display list routines. Programmers must
supply their own display list routines
or reprogram in a higher-level graphic
interface such as GKS or PHIGS.

X11 provides no digitizer support.
Tablets are supported only as
replacements for the mouse.

X11 provides no digitizer support.
Tablets are supported only as
replacements for the mouse.

X11 does not provide text formatting
functions.

X11 does not provide text formatting
functions.

X11 does not provide text drawing path
(left-right) functions.

X11 does not provide text slope
(rotation) functions.

X11 has no equivalent function. The
colormap ID for X11 is the nearest
equivalent and is returned when the
colormap is created or the workstation
default can be returned. In general, the
X11 colormap is not equivalent to the
UIS colormap.

In general, icons are managed by the
window manager. Communication and
inquiry are performed via structures
that provide "hints" to the window
manager. Refer to "Using Properties"
in the Guide to Xlib Programming
to Communicate with the Window
Manager. The X$SET_WM_HINTS
routine contains an ICON WINDOW field
that you can optionally use to supply a
window that serves as the icon. This
window ID is user-created. Normally,
icons are supplied when you provide a
PIXMAP to be used as the icon display
data.

You can obtain a data structure
that provides information about the
current position size and other window
attributes.

C-9

UIS$ Routines and Equivalent Xlib Routines

Table C-1 (Cont.) UIS Routines and their Equivalent Xlib Routines

UIS$ Routines Xlib Routines

UIS$GET _ VIEWPORT _SIZE X$GET _WINDOW_
ATTRIBUTES

UIS$GET _VISIBILITY NIA

UIS$GET _WINDOW _ATTRIBUTES X$GET _WINDOW_
ATTRIBUTES

UIS$GET_WINDOW_SIZE X$GET_GEOMETRY

UIS$GET _WRITING_INDEX NIA

UIS$GET _WRITING_MODE NIA

UIS$GET _ WS_ COLOR X$LOOKUP _COLOR

UIS$GET _ WS_INTENSITY X$LOOKUP _COLOR

C-10

Explanation

You can obtain a data structure
that provides information about the
current position size and other window
attributes.

A direct method of obtaining this
information does not exist in X11.
Since the X11 application can be notified
of all requests to expose a window and
can be notified (after the fact) of any
window occlusion, the application can
therefore keep track of the current state
of visibility.

You can obtain a data structure
that provides information about the
current position size and other window
attributes.

You can obtain a data structure
that provides information about the
current position size and other window
attributes.

X11 does not provide inquiry functions
for GCs (the equivalent of UIS ATBs).

X11 does not provide inquiry functions
for GCs (the equivalent of UIS ATBs).

DECwindows contains a set of named
colors. This call returns the closest
RGB values available tor the hardware,
as well as the ideal RGB values for
the specified color. Appendix C of the
Guide to Xlib Programming provides
the names of the predefined colors for
DECwindows.

The intensity is returned as RGB values.
You can use NTSC to convert the RGB
values to an intensity. DECwindows
contains a set of named colors. This
call returns the closest RGB values
available for the hardware, as well as
the ideal RGB values for the specified
color. Appendix C of the Guide to Xlib
Programming provides the names of the
predefined colors for DECwindows.

UIS$ Routines and Equivalent Xlib Routines

Table C-1 (Cont.) UIS Routines and their Equivalent Xlib Routines

UIS$ Routines Xlib Routines

UIS$HLS_TO_RGB N/A

UIS$HSV_TO_RGB N/A

UIS$1MAGE X$PUT _IMAGE

U IS$1NSERT _OBJECT NIA

UIS$LINE X$DRAW _SEGMENT

U IS$LINE_ARRAY X$DRAW_SEGMENTS

UIS$MEASURE_ TEXT X$QUERY_TEXT_EXTENTS

UIS$MOVE_AREA X$COPY _AREA

Explanation

The X11 RGB system is based on a
16-bit integer value, while the UIS RGB
system uses a floating point between
0 and 1. HLS conversion routines are
widely available, and one is included
in Appendix C of A Guide to Migrating
VWS Applications to DECwindows.. Xlib
libraries provide no conversion routines.

The X11 RGB system is based on a
16-bit integer value, while the UIS RGB
system uses a floating point between
0 and 1. HLS conversion routines are
widely available, and one is included
in Appendix C of A Guide to Migrating
VWS Applications to DECwindows. Xlib
libraries provide no conversion routines.

Refer to "Drawing Graphics" in the
VMS DECwindows Guide to Xlib
Programming. Note that you may
have to reformat image data unless you
create and install a colormap for images
greater than 1 bit deep.

X11 provides no equivalents to the UIS$
display list routines. Programmers must
supply their own display list routines
or reprogram in a higher-level graphic
interface such as GKS or PHIGS.

The X$DRAW _POINT routine is also
used to draw individual points (zero
length lines). Refer to "Drawing
Graphics" in the VMS DECwindows
Guide to Xlib Programming.

The X$DRAW _POINTS routine is
also used to draw individual points
(zero length lines). Refer to "Drawing
Graphics" in the VMS DECwindows
Guide to Xlib Programming.

X11 provides an equivalent function to
measure the length of a text string. Note
that control strings and text formatting
are not provided for text output.

This is equivalent to an X$COPY _AREA
followed by one or more
X$CLEAR_AREA operations to clear
the area no longer covered by the area
moved. Refer to "Drawing Graphics"
in the VMS DECwindows Guide to Xlib
Programming.

C-11

UIS$ Routines and Equivalent Xlib Routines

Table C-1 (Cont.) UIS Routines and their Equivalent Xlib Routines

UIS$ Routines

UIS$MOVE_ VIEWPORT

UIS$MOVE_WINDOW

UIS$NEW_TEXT_LINE

UIS$PLOT

UIS$PLOT _ARRAY

UIS$POP _VIEWPORT

UIS$PRESENT

UIS$PRIVATE

UIS$PUSH_ VIEWPORT

UIS$READ_CHAR

UIS$RESIZE_ WINDOW

C-12

Xlib Routines

X$MOVE_ WINDOW

NIA

NIA

X$DRAW_LINE

X$DRAW_LINES

X$RAISE_ WINDOW

NIA

NIA

X$LOWER_ WINDOW

NIA

X$CHANGE_WINDOW_
ATTRIBUTES

Explanation

This function changes the location of
the window on the screen. In X11, this
function can move the window partially
offscreen. This feature is not possible
with the UIS call.

X11 provides no equivalent function,
since this relocates the display list.
When no display list is used, it works
much like UIS$MOVE_AREA.

X11 does not provide text formatting
functions.

The X$DRAW_POINT routine is also
used to draw individual points (zero
length lines). Refer to "Drawing
Graphics" in the VMS DECwindows
Guide to Xlib Programming.

The X$DRAW _POINTS routine is
also used to draw individual points
(zero length lines). Refer to "Drawing
Graphics" in the VMS DECwindows
Guide to Xlib Programming.

These are directly equivalent.

DECwindows applications are generally
started with SYS$0UTPUT and given
a device class of DC$_WORKSTATION
(device controller type WS). Applications
should first check for this device
class as SYS$0UTPUT. If the
class is not DC$_ WORKSTATION,
the application should check for a
logical name DECW$DISPLAY to
be defined. If this logical is present,
the X$0PENDISPLAY call uses this
as the display destination. If both of
these options fail, and your application
supports both UIS and DECwindows,
you can call UIS$PRESENT to see if
UIS is available.

X11 provides no equivalents to the UIS$
display list routines. Programmers must
supply their own display list routines
or reprogram in a higher-level graphic
interface such as GKS or PHIGS.

These are directly equivalent.

Keyboard input is delivered via the X
EVENT mechanism.

You can use this call to resize the X11
window.

UIS$ Routines and Equivalent Xlib Routines

Table C-1 {Cont.) UIS Routines and their Equivalent Xlib Routines

UIS$ Routines Xlib Routines

UIS$RESTORE_ CMS_ COLORS X$1NSTALL_ COLORMAP

UIS$RGB_TO_HLS NIA

UIS$RGB_TO_HSV NIA

UIS$SET_ADDOPT_AST NIA

UIS$SET_ALIGNED_POSITION NIA

UIS$SET _ARC_ TYPE X$SET _ARC _MODE

UIS$SET _BACKGROUND_INDEX X$SET _BACKGROUND

UIS$SET _BUTTON_AST

UIS$SET _CHAR_ROTATION

U IS$SET _CHAR_ SIZE

UIS$SET _CHAR_SLANT

UIS$SET _CHAR_SPACING

UIS$SET_CLIP

UIS$SET _ CLOSE_AST

NIA

NIA

N/A

NIA

NIA

X$SET _CLIP _RECTANGLES

NIA

Explanation

This X11 function installs a colormap.
When you use a private colormap, you
can use this function to do the binding
to the hardware. Note that all colors are
affected by this call.

The X11 RGB system is based on a
16-bit integer value, while the UIS RGB
system uses a floating point between
0 and 1. HLS conversion routines are
widely available, and one is included
in Appendix C of A Guide to Migrating
VWS Applications to DECwindows. Xlib
libraries provide no conversion routines.

The X11 RGB system is based on a
16-bit integer value, while the UIS RGB
system uses a floating point between
0 and 1. HLS conversion routines are
widely available, and one is included
in Appendix C of A Guide to Migrating
VWS Applications to DECwindows. Xlib
libraries provide no conversion routines.

DECwindows has no additional options
selection. Use the DECwindows Toolkit
and the appropriate widget set to find
equivalent functionality.

X11 does not provide text formatting
functions.

Most of the ARC drawing styles are
available in X11 .

This is provided by the appropriate GC
creation or modification command. Refer
to the Xlib Routines Reference Manual,
Part 1, "Graphics Context Routines".
The background index is specified in the
BACKGROUND value in the GC Values
data structure.

This is included ih X EVENT processing.
Refer to the Xlib Reference Manual, Part
1 , "Event Routines".

X11 does not provide character rotation.

X11 does not provide character scaling.

X11 does not provide character slanting.

X11 does not provide text formatting
functions.

This provides a superset of UIS clipping.

The DECwindows Toolkit contains the
only equivalent concept in DECwindows.

C-13

UIS$ Routines and Equivalent Xlib Routines

Table C-1 (Cont.) UIS Routines and their Equivalent Xlib Routines

UIS$ Routines Xlib Routines

UIS$SET _COLOR X$STORE_COLOR

UIS$SET _COLORS X$STORE_COLORS

UIS$SET _EXPAND _ICON_AST NIA

UIS$SET _FILL_PATTERN X$SET _STIPPLE

UIS$SET _FONT X$SET_FONT

UIS$SET_GAIN_KB_AST NIA

UIS$SET _INSERTION_POSITION NIA

C-14

Explanation

X$STORE_ COLOR sets the RGB value
in a previously allocated color cell.
The RGB values must be converted
into 16-bit integer values. Refer to the
Xlib Reference Manual, Part 1 , "Color
Routines".

X$STORE_ COLORS sets RGB values in
a list of previously allocated color cells.
The RGB values must be converted
into 16-bit integer values. Refer to the
Xlib Reference Manual, Part 1 , "Color
Routines".

You can obtain equivalent X EVENTS
by using the EVENT MASK in the
X$CHANGE_ WINDOW _ATTRIBUTES
call. Refer to the Xlib Routines
Reference Manual, Part 1, "Window
Routines", for more information.

UIS fill patterns are the equivalent of
stipple patterns in X11. A stipple is a
single-bit deep PIXMAP. The PIXMAP
must be created and the pattern drawn
into it. Usually this is accomplished
with the X$PUT_IMAGE operation. The
stipple can then be used in a GC as a
pattern or mask.

This routine sets a font ID into a GC.
You must use the X$LOAD_FONT
routine to obtain the font ID. Refer to the
Xlib Routines Reference Manual, Part 1 ,
"Graphics Context Routines" and Part 2,
"Font Routines" for information on these
routines.

Equivalent X EVENTS exist for
obtaining INPUT FOCUS. Refer to
"Handling Events" in the Guide to Xlib
Programming.

X11 provides no equivalents to the UIS$
display list routines. Programmers must
supply their own display list routines
or reprogram in a higher-level graphic
interface such as GKS or PH IGS.

UIS$ Routines and Equivalent Xlib Routines

Table C-1 (Cont.) UIS Routines and their Equivalent Xlib Routines

UIS$ Routines

UIS$SET _INTENSITIES

U IS$SET _INTENSITY

UIS$SET _KB_AST

U IS$SET _KB _ATTRIBUTES

U IS$SET _KB_ COMPOSE2

UIS$SET _KB_COMPOSE3

UIS$SET_KB_KEYTABLE

Xlib Routines

X$STORE_COLOR

X$STORE_COLORS

NIA

X$CHANGE_KEYBOARD_
CONTROL

X$SET _MODIFIER_MAPPING

X$SET _MODIFIER_MAPPING

X$CHANGE_KEYBOARD_
MAPPING

Explanation

X$STORE_ COLOR sets an RGB value
in a previously allocated color cell. RGB
values must be converted into 16-bit
integer values. Derive RGB values by
using the intensity value for each of the
RGB components. Refer to the Xlib
Routines Reference Manual, Part 1 ,
"Color Routines".

X$STORE_ COLORS sets a list of
RGB values in a list of previously
allocated color cells. RGB values must
be converted into 16-bit integer values.
Derive RGB values by using the intensity
value for each of the RGB components.
Refer to the Xlib Routines Reference
Manual, Part 1, "Color Routines".

You can obtain equivalent X EVENTS
by using the EVENT MASK in the
X$CHANGE_ WINDOW _ATTRIBUTES
call. Refer to the Xlib Routines
Reference Manual, Part 1 , Window
Routines" for more information.

The KB can be remapped as
appropriate. Note that this is done
in a completely different fashion in X11.
Refer to the Xlib Routines Reference
Manual, Part 2, Window and Session
Manager Routines" for more information.

Along with the
X$CHANGE_KEYBOARD_MAPPING
routine, this can remap the keyboard
input. Refer to the Xlib Routines
Reference Manual, Part 2, Window
and Session Manager Routines" for
more information.

Along with the
X$CHANGE_KEYBOARD_MAPPING
routine, this can remap the keyboard
input. Refer to the Xlib Routines
Reference Manual, Part 2, "Window
and Session Manager Routines" for
more information.

Along with the
X$SET _KEYBOARD _MAPPING routine,
this can remap the keyboard input.
Refer to the Xlib Routines Reference
Manual, Part 2, Window and Session
Manager Routines" for more information.

C-15

UIS$ Routines and Equivalent Xlib Routines

Table C-1 (Cont.) UIS Routines and their Equivalent Xlib Routines

UIS$ Routines Xlib Routines

UIS$SET _LINE_STYLE X$SET _LINE_ATTRIBUTES

UIS$SET _LINE_WIDTH X$SET _LINE_ATTRIBUTES

UIS$SET _LOSE_KB_AST NIA

UIS$SET _MOVE_INFO _AST N/A

UIS$SET _POINTER_AST NIA

UIS$SET _POINTER_PATTERN X$DEFINE_CURSOR

UIS$SET _POINTER_POSITION X$WARP _POINTER

UIS$SET _POSITION NIA

UIS$SET _RESIZE_AST NIA

UIS$SET_SHRINK_TO_ICON_AST NIA

UIS$SET _ TB_AST NIA

C-16

Explanation

Refer to the Xlib Routines Reference
Manual, Part 1 , Graphic Context
Routines" for more information.

Refer to the Xlib Routines Reference
Manual, Part 1 , "Graphic Context
Routines" for more information.

You can obtain equivalent X EVENTS
by using the EVENT MASK in the
X$CHANGE_WINDOW_ATTRIBUTES
call. Refer to the Xlib Routines
Reference Manual, Part 1 , Window
Routines" for more information.

You can obtain equivalent X EVENTS
by using the EVENT MASK in the
X$CHANGE_ WINDOW _ATTRIBUTES
call. Refer to the Xlib Routines
Reference Manual, Part 1 , "Window
Routines" for more information.

You can obtain equivalent X EVENTS
by using the EVENT MASK in the
X$CHANGE_ WINDOW _ATTRIBUTES
call. Refer to the Xlib Routines
Reference Manual, Part 1 , "Window
Routines" for more information.

Refer to the Xlib Routines Reference
Manual, Part 2, "Cursor Routines", for
more information.

Refer to the Xlib Routines Reference
Manual, Part 2, "Window and Session
Manager Routines" for more information.

X11 does not provide text formatting
functions.

You can obtain equivalent X EVENTS
by using the EVENT MASK in the
X$CHANGE_WINDOW _ATTRIBUTES
call. Refer to the Xlib Routines
Reference Manual, Part 1, "Window
Routines" for more information.

You can obtain equivalent X EVENTS
by using the EVENT MASK in the
X$CHANGE_ WINDOW _ATTRIBUTES
call. Refer to the Xlib Routines
Reference Manual, Part 1 , "Window
Routines" for more information.

X11 provides no digitizer support.
Tablets are supported only as
replacements for the mouse.

UIS$ Routines and Equivalent Xlib Routines

Table C-1 (Cont.) UIS Routines and their Equivalent Xlib Routines

UIS$ Routines

UIS$SET _TEXT _FORMATIING

UIS$SET _TEXT _MARGINS

UIS$SET_TEXT_PATH

UIS$SET _TEXT _SLOPE

UIS$SET _WRITING_MODE

UIS$SHRINK_ TO _ICON

UIS$SOUND_BELL

UIS$SOUND_CLICK

U IS$TEST _KB

UIS$TEXT

UIS$TRANSFORM_ OBJECT

Xlib Routines

NIA

NIA

NIA

NIA

X$SET _FUNCTION

X$SET _WM_HINTS

X$BELL

NIA

NIA

X$DRAWTEXT

NIA

Explanation

X11 does not provide text formatting
functions.

X11 does not provide text formatting
functions.

X11 does not provide text formatting
functions.

X11 does not provide text formatting
functions.

This is provided by the appropriate
GC creation or modification command.
Refer to the Xlib Routines Reference
Manual, Part 1, "Graphics Context
Routines" for more information. The
FUNCTION is the actual logical operator
used for the operation. UIS "modes"
are a combination of FUNCTION, FILL
STYLE, FILL STIPPLE, FOREGROUND,
and BACKGROUND pixel values. A
routine that shows the mapping for
most UIS writing modes is provided in
Appendix G of A Guide to Migrating
VWS Applications to DECwindows.

The state of the application is generally
controlled exclusively by the user. Set
the initial state of a window by using
the property routines to communicate
to the server. In addition, the server
honors the hints after the window has
been created and mapped. Thus, if
you specify the Initial State for the
window as X$C_ICONIC_STATE, a
window currently in a window state will
be iconified.

Refer to the Xlib Routines Reference
Manual, Part 2, "Window and Session
Manager Routines" for more information.

The keyclick cannot be sounded in X11 .

Applications should keep track of this
through the X EVENT mechanism for
INPUT focus gain and lose events.

X11 routines doe not provide any of the
text formatting or control lists provided
by UIS.

X11 provides no equivalents to the UIS$
display list routines. Programmers must
supply their own display list routines
or reprogram in a higher-level graphic
interface such as GKS or PHIGS.

C-17

D UISDC$ Routines and Equivalent Xlib Routines

This appendix lists UISDC$ routines with their equivalent Xlib routines
and describes their functionality.

D.1 Introduction to UISDC$ Routines
In addition to the world coordinate interface (UIS), VWS provides a
device-coordinate, or pixel-level, interface (UISDC) to the graphics system
services.

When an application programs in device coordinates, it must make mixed
use of UIS$ and UISDC$ routines. Only UIS$ routines that use or modify
world coordinate positions are duplicated as UISDC$ routines. Most
informational, attribute, windowing, and display routines exist only in UIS
format and are shared by the two programming levels.

Table D-1 gives UISDC$ routines with their equivalent Xlib routines, and
an explanation of the routine fnnctionality.

NOTE: If an equivalent Xlib routine does not exist, this is indicated in the
table by N/ A.

Table D-1 UISDC$ Routines and their Equivalent Xlib Routines

UISDC$ Routines Xllb Routines

UISDC$ALLOCATE_DOP NIA

UISDC$CIRCLE X$DRAW_ARC

U ISDC$ELLIPSE X$DRAW_ARC

Explanation

The DOP interface is a device
dependent mechanism that queues
drawing packets to the VSll/GPX
and VS2000/GPX. No comparable
hardware interface exists under X11 .

Use the Xlib draw arc routine to draw
circles. Refer to "Drawing Graphics" in
the VMS DECwindows Guide to Xlib
Programming for more information.

Use the Xlib draw arc routine to draw
ellipses. Refer to "Drawing Graphics
in the VMS DECwindows Guide to Xlib
Programming for more information.

D-1

UISDC$ Routines and Equivalent Xlib Routines

Table D-1 (Cont.) UISDC$ Routines and their Equivalent Xlib Routines

UISDC$ Routines Xlib Routines

UISDC$ERASE X$CLEAR_AREA

UISDC$EXECUTE_DOP _ASYNCH NIA

UISDC$EXECUTE_DOP _SYNCH

U ISDC$GET _ALIGNED_
POSITION

UISDC$GET _CHAR_SIZE

UISDC$GET_CLIP

UISDC$GET _POINTER_
POSITION

UISDC$GET _POSITION

UISDC$GET _TEXT _MARGINS

UISDC$GET _VISIBILITY

D-2

NIA

NIA

NIA

NIA

X$0UERY _POINTER

NIA

NIA

NIA

Explanation

Clear Area and Clear Window routines
are both provided to erase portions of
windows. Note that you cannot use
the Clear Area function on a PIXMAP;
instead, a filled rectangle the size of
the screen in the background color
is also equivalent. Refer to "Drawing
Graphics" in the VMS DECwindows
Guide to Xlib Programming for more
information.

The DOP interface is a device
dependent mechanism that queues
drawing packets to the VSlllGPX
and VS20001GPX. No comparable
hardware interface exists under X11.

The DOP interface is a device
dependent mechanism that queues
drawing packets to the VSlllGPX
and VS2000/GPX. No comparable
hardware interface exists under X11.

X11 provides no text formatting or
the concept of a current text-writing
position.

X11 does not provide text scaling.

X11 does not provide query routines
for GCs.

This function returns the position of
the pointer relative to the window. It
also returns the the current state of the
modifier keys and buttons. Refer to the
Xlib Routines Reverence Manual, Part
1, "Window Routines".

X11 provides no text formatting.

X11 provides no text formatting or the
concept of text margins.

Since an X11 application can be
notified of all requests to expose a
window and can be notified of the
occluding of a window after the fact,
there is no direct way to obtain this
information. However, the application
can keep track of the current state of
visibility.

UISDC$ Routines and Equivalent Xlib Routines

Table D-1 (Cont.) UISDC$ Routines and their Equivalent Xlib Routines

UISDC$ Routines Xlib Routines

UISDC$1MAGE X$PUT _IMAGE

UISDC$LINE X$DRAW_SEGMENT

Explanation

Refer to "Drawing Graphics" in the
VMS DECwindows Guide to Xlib
Programming. Note that image data
may require reformatting unless you
create and install a colormap for
images greater than 1 bit deep.

Refer to "Drawing Graphics" in the
VMS DECwindows Guide to Xlib
Programming for more information.

UISDC$LINE_ARRAY X$DRAW_SEGMENTS Refer to "Drawing" Graphics
in the VMS DECwindows Guide to Xlib Programming for more information.)

UISDC$LOAD_BITMAP N/A This routine loads a user bitmap into
offscreen video memory. In some
ways, this is similar to the X11 concept
of a PIXMAP, but the concepts differ.
The principal use for this under UIS

UISDC$MEASURE_ TEXT

UISDC$MOVE_AREA

UISDC$NEW_ TEXT _LINE

UISDC$PLOT

UISOC$PLOT _ARRAY

UISDC$QUEUE_DOP

X$QUERY_TEXT_EXTENTS

X$COPY _AREA

N/A

X$DRAW_LINE

X$DRAW_LINES

NIA

UISDC$READ _IMAGE X$GET _IMAGE

UISDC$SET _ALIGNED_POSITION NIA

UISDC$SET_BUTTON_AST N/A

is to load font data for drawing with
DOPs.

X11 provides an equivalent function
to measure the length of a text string.
Note that control strings and text
formatting are not provided for text

1output.

Refer to "Drawing Graphics" in the
VMS DECwindows Guide to Xlib
Programming for more information.

X11 provides no text formattin~.

Refer to "Drawing Graphics" in the
VMS DECwindows Guide to Xlib
Programming for more information.

Refer to "Drawing Graphics" in the
VMS DECwindows Guide to Xlib
Programming for more information.

The DOP interface is a device
dependent mechanism that queues
drawing packets to the VSll/GPX
and VS2000/GPX. No comparable
hardware interface exists under X11.

Since the bitmap contents are not
guaranteed under X11 , be extremely
cautious when you use this function.

X11 provides neither text formatting
nor the concept of a current text-writing
position.

This is part of X EVENT processing.
Refer to the Xlib Routines Reference
Manual, Part 1 , "Event Routines".

D-3

UISDC$ Routines and Equivalent Xlib Routines

Table D-1 (Cont.) UISDC$ Routines and their Equivalent Xlib Routines

UISDC$ Routines Xlib Routines

UISDC$SET _CHAR_SIZE NIA

U ISDC$SET _CLIP X$SET _CLIP _RECTANGLES

UISDC$SET _POINTER_AST NIA

UISDC$SET _POINTER_PATTERN X$DEFINE_ CURSOR

UISDC$SET _POINTER_POSITION X$0UERY _POINTER

UISDC$SET _POSITION NIA

UISDC$SET_TEXT_MARGINS NIA

UISDC$TEXT X$DRAW_ TEXT

D-4

Explanation

X11 does not provide text scaling.

X11 provides a superset of UIS
clipping.

You can accomplish equivalent
X EVENTS by using the
EVENT MASK in the
X$CHANGE_ WINDOW _ATTRIBUTES
call. Refer to the Xlib Routines
Reference Manual, Part 1 , "Window
Routines", for more information.

Refer to the Xlib Routines Reference
Manual, Part 2, "Cursor Routines", for
more information.

This function returns the position of the
pointer relative to the window; it also
returns the current state of the modifier
keys and buttons. Refer to the Xlib
Routines Reference Manual, Part 1 ,
"Window Routines".

X11 provides no text formatting.

X11 provides no text formatting or the
concept of text margins.

The X11 routines do not provide any
of the text formatting or control lists
provided by UIS.

E HCUIS$ Routines and Equivalent Xlib Routines

This appendix lists HCUIS$ routines with their equivalent Xlib routines
and describes thier funtionality.

E.1 Introduction to HCUIS$ Routines
Table E-1 gives HCUIS$ routines with their equivalent Xlib routines, and
an explanation of the routine functionality.

Note: If an equivalent Xlib routine does not exist, this is indicated in the
table by N/ A.

Table E-1 HCUIS$ Routines and their Equivalent Xlib Routines

HCUIS$ Routines

HCUIS$BEGIN_ TRANSLATOR

HCUIS$END _TRANSLATOR

HCUIS$RED_BUFFER

HCUIS$READ _DISPLAY

HCUIS$TRANSLATE

HCUIS$WRITE_BUFFER

HCUIS$WRITE_DISPLAY

Xlib Routines

NIA

NIA

NIA

NIA

NIA

NIA

NIA

Explanation

DECwindows does not support a hardcopy library.

DECwindows does not support a hardcopy library.

DECwindows does not support a hardcopy library.

DECwindows does not support a hardcopy library.

DECwindows does not support a hardcopy library.

DECwindows does not support a hardcopy library.

DECwindows does not support a hardcopy library.

E-1

F Sample FORTRAN Program (QIX.FOR)

F.1

This appendix contains two versions of a sample FORTRAN program and
a summary report. The first version is the original program before the
user ran it through the Annotator. The second version is the annotated
program. The Annotator also produced the summary report for the
program it annotated.

The Original FORTRAN Program
This section shows the original FORTRAN program before the user ran it
through the Annotator:

PROGRAM QIX
c **
c * *
c * COPYRIGHT C 1983, 1985, 1986, 1987 BY *
c * DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTTS. *
c * ALL RIGHTS RESERVED . *
c * *
c * THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND *
c * COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE *
c * AND WITH THE INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS *
c * SOFTWARE OR ANY OTHER COPIES THEREOF MAY NOT BE PROVIDED OR *
c * OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON. NO TITLE TO AND *
c * OWNERSHIP OF THE SOFTWARE IS HEREBY TRANSFERRED. *
c *
c *
c *
c *
c *

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT
NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY
DIGITAL EQUIPMENTCORPORATION.

*
*
*
*
*

c * DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY *
c * OF ITS SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.
c *
c *

*
*
*

c **

!++
FACILITY:

Qix demo for vaxstation II

ABSTRACT:

!--

This program is an animation demo that moves a bunch of lines around
within the window. There are 10 lines. The line currently at the front
of the bunch is repeatedly erased then redrawn at the rear of the bunch
to create the illusion that the lines are moving. When the lines
hit any side of the window, they are deflected off.

Implicit inputs

IMPLICIT INTEGER(A-Z)

Include files

INCLUDE 'SYS$LIBRARY:UISUSRDEF'
INCLUDE 'SYS$LIBRARY:UISENTRY'

F-1

Sample FORTRAN Program (QIX.FOR)

F-2

c

Declare AST routines as external

EXTERNAL enable window resize - -
Declarations

REAL
REAL

VP WIDTH,VP HEIGHT,A(l00,2),B(l00,2),XL2,wc xl,wc yl
wc=x2, wc_y2- - -

Declare global variables

COMMON wc_xl,wc_yl,wc_x2,wc_y2,vp_width,vp_height
COMMON new_abs_x,new_abs_y,wd_id,vd_id

Constants

NUMLINES 10
MAXLINELEN = 1024
WID = 1024
LEN = 860
WC Xl O.
WC-Yl 0.
WC X2 = 1024
WC-Y2 = 860

number of lines drawn

Initial sid of cube
Initial length of cube
World coordinate Xl of viewport
World coordinate Yl of viewport
World coordinate X2 of viewport
World coordinate Y2 of viewport

c Prompt the user for the viewport dimensions. Do not allow the user to
C specify viewport dimensions of less than 3/10 of a cm or greater than 70 CI

c

c

PRINT *,'ENTER DESIRED WIDTH AND HEIGHT OF VIEWPORT (IN CENTIMETERS)'
ACCEPT *,VP WIDTH,VP HEIGHT
IF (vp_width .LT .. 30) THEN

vp width = . 30
ELSE IF (vP width .GT. 70) THEN

vp_;idth = 70
END IF
IF (vp_height .LT .. 30) THEN

vp height = .30
ELSE IF (vP height .GT. 70) THEN

vp_height == 70
END IF

C Create the display and window. Enable the window resize option.
c

CALL UIS$GET HW COLOR INFO('SYS$WORKSTATION',,
1 - - - VCM_SIZE)
VCM SIZE=l6
IF (vcM SIZE .EQ. 2) GOTO 55
VCM SIZE = VCM SIZE/4
IF (vcM SIZE .LT. NUM LINES) GOTO 55
NUM LINES = 20 -

55 VCM-ID = UIS$CREATE COLOR MAP(VCM SIZE)
VD ID = UIS$CREATE DISPLAY(WC Xl,WC Yl,WC X2,WC Y2,
1 - - VP-WIDTH-;-VP HEIGHT, VCM ID)
CALL UIS$DISABLE DISPLAY LIST(VD ID) - -
CALL CREATE COLORS(VCM SIZE,VD ID)
WD ID= UIS$CREATE WINDOW(VD ID,'SYS$WORKSTATION' ,'QIX')
CALL UIS$SET RESIZE AST(vd id,wd id,ENABLE WINDOW RESIZE,dummy,
1 new_ibs_x,new_abs_:Y,vp_width,vp_height) -

c
C ATTRIBUTE BLOCK 0 • WRITING MODE OVERLAY
C ATTRIBUTE BLOCK 1 = WRITING MODE ERASE
c

CALL UIS$SET_WRITING_MODE(VD_ID, 0, 1, 9)
c
C Randomize the initial endpoints of the cube.
c

Al INT(RAN(IX)*WID)
A2 = INT (RAN (IX) *LEN)
Bl INT(RAN(IX)*WID)
B2 INT(RAN(IX)*LEN)

Sample FORTRAN Program (QIX.FOR)

CALL RANXY(AlMOD,A2MOD)
CALL RANXY(BlMOD,B2MOD)
ERASE . FALSE .

DO 66 L = 2,VCM SIZE+2-l
CALL UIS$SET_WRITING_INDEX(VD_ID,0,L,L-2)

66 CONTINUE

10 DO 20 L = l,NUMLINES

12

15

IF (ERASE) THEN
CALL UIS$PLOT(VD_ID, 1, A(L,l),A(L,2),B(L,1),B(L,2))
R R + 1.0

END IF

OLDAl Al
OLDA2 A2
OLDBl Bl
OLDB2 B2

CALL NEWPT(Al,AlMOD,A2,A2MOD)
L2 == (((Al+Bl) I 4) **2) + ((A2+B2) **2)
XL2 = L2
XL2 = SQRT(XL2)
LINELEN = JIFIX(XL2)

If (LINELEN .LE. MAXLINELEN) GOTO 15
CALL RANXY(AlMOD,A2MOD)
Al = OLDAl
A2 = OLDA2
GOTO 12

CALL NEWPT(Bl,BlMOD,B2,B2MOD)

L2 = (((Al+Bl) I 4) **2) + ((A2+B2) **2)
XL2 s:: L2
XL2 = SQRT(XL2)
LINELEN = JIFIX(XL2)

If (LINELEN .LE. MAXLINELEN) GOTO 17
CALL RANXY(BlMOD,B2MOD)
Bl • OLDBl
B2 s:: OLDB2
GOTO 15

17 A(L,l) =Al
A(L,2) = A2
B (L, 1) • Bl
B(L,2) = B2
CALL UIS$PLOT(VD ID, COUNTER, A(L,l),A(L,2),B(L,1),B(L,2))

c TYPE *,'DRAW LINE FROM(' ,Al,' ,',A2,') TO (',Bl,',' ,B2,')'
COUNTER=COUNTER+l
IF (COUNTER .LT. VCM SIZE+2) GOTO 20
COUNTER = 2 -

20 CONTINUE

ERASE • . TRUE .

GOTO 10

END

SUBROUTINE RANXY(X,Y)
c
c This subroutine randomizes the values of the integers x and y
C that are passed as input.
c

INTEGER X,Y

F-3

Sample FORTRAN Program (QIX.FOR)

F-4

c

ISTP = 40
X = INT(RAN(IX)*ISTP) - (ISTP/2)
Y = ISTP/2 - ABS(X)
IF (RAN(IX) .GT. 0.5) Y = Y * (-1)
RETURN
END

SUBROUTINE enable window resize - -
C This is the AST routine for the window resize. It will not allow
C the user to make the window dimensions less than 3/10 centimeter.
c

c

COMMON wc_xl,wc_yl,wc_x2,wc_y2,vp_width,vp_height
COMMON new_abs_x,new_abs_y,wd_id,vd_id

IF (vp width .LT .. 25) vp width = .25
IF (vp=height .LT .. 25) vp=height = .25
CALL UIS$RESIZE_WINDOW(vd_id,wd_id,new_abs_x,new_abs_y,
1 vp width,vp height,
2 wc:xl,wc_yl;wc_x2,wc_y2)
RETURN
END

SUBROUTINE NEWPT(X,XMOD,Y,YMOD,MAX)

C This subroutine computes new values for the coordinates x and y that
C are passed as input. If the coordinates of the new point computed
c are greater than 1024 (WID) or 860 (LEN), then the lines have hit thE
C walls of the window. In such a case, the coordinates are recomputed.
c

INTEGER X,Y,XMOD,YMOD
INTEGER XSAV,YSAV

XSAV ., X
YSAV • Y

50 X • X + XMOD
IF ((X .GT. 1024) .OR. (X .LT. 0)) GOTO 100
Y • Y + YMOD
IF ((Y .GT. 860) .OR. (Y .LT. 0)) GOTO 100
RETURN

100 CALL RANXY(XMOD,YMOD)
X • XSAV
Y • YSAV
GOTO 50

END

Sample FORTRAN Program (QIX.FOR)

F.2 The Annotated FORTRAN Program
This section shows the annotated program:

PROGRAM QIX
c **
c * *
c * COPYRIGHT C 1983, 1985, 1986, 1987 BY
c * DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTTS.
c * ALL RIGHTS RESERVED.
c *

*
*
*
*

c * THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND *
c * COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE *
c * AND WITH THE INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS *
c * SOFTWARE OR ANY OTHER COPIES THEREOF MAY NOT BE PROVIDED OR *
c * OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON. NO TITLE TO AND *
c * OWNERSHIP OF THE SOFTWARE IS HEREBY TRANSFERRED. *
c * *
c * THE INFORMATION IN THIS SOFTWARE IS SUBJ'ECT TO CHANGE WITHOUT *
c * NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY *
c * DIGITAL EQUIPMENTCORl?ORATION. *
c * *
c * DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY *
c * OF ITS SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL. *
c * *
c * *
c **

!++
FACILITY:

Qix demo for Vaxstation II

ABSTRACT:

!--

This program is an animation demo that moves a bunch of lines around
within the window. There are 10 lines. The line currently at the front
of the bunch is repeatedly erased then redrawn at the rear of the bunch
to create the illusion that the lines are moving. When the lines
hit any side of the window, they are deflected off.

Implicit inputs

IMPLICIT INTEGER(A-Z)

Include files

INCLUDE 'SYS$LIBRARY:UISUSRDEF'
INCLUDE 'SYS$LIBRARY:UISENTRY'

Declare AST routines as external

EXTERNAL enable_window_resize

Declarations

REAL
REAL

VJ?_WIDTH,VJ?_HEIGHT,A(l00,2),B(l00,2),XL2,wc_xl,wc_yl
wc_x2,wc_y2

F-5

Sample FORTRAN Program (QIX.FOR)

F-6

c

Declare global variables

COMMON wc_xl,wc_yl,wc_x2,wc_y2,vp_width,vp_height
COMMON new_abs_x,new_abs_y,wd_id,vd_id

Constants

NUMLINES 10
MAXLINELEN = 1024
WID = 1024
LEN = 860
WC Xl 0.
WC Yl 0.
WC-X2 1024
WC Y2 860

number of lines drawn

Initial wid of cube
Initial length of cube
World coordinate Xl of viewport
World coordinate Yl of viewport
World coordinate X2 of viewport
World coordinate Y2 of viewport

C Prompt the user for the viewport dimensions. Do not allow the user to
C specify viewport dimensions of less than 3/10 of a cm or greater than 70 Cl

c

c

PRINT *,'ENTER DESIRED WIDTH AND HEIGHT OF VIEWPORT (IN CENTIMETERS)
ACCEPT *,VP WIDTH,VP HEIGHT
IF (vp_width .LT .. 30) THEN

vp width = .30
ELSE IF (vP width .GT. 70) THEN

vp_width = 7o
END IF
IF (vp height .LT .. 30) THEN

- vp_height = .30
ELSE IF (vp_height .GT. 70) THEN

vp_height = 70
END IF

C Create the display and window. Enable the window resize option.
c

C %UIS% Information is available through a number of individual
C calls - Please see "Display Routines".

CALL UIS$GET_HW_COLOR_INFO('SYS$WORKSTATION' ,,
1 VCM_SIZE)
VCM SIZE=16
IF (VCM SIZE .EQ. 2) GOTO SS
VCM SIZE 8 VCM SIZE/4
IF (vcM_SIZE .LT. NUM_LINES) GOTO SS
NUM LINES -= 20

C %UIS% Color maps may be created by using the X$ALLOC_COLOR_CELLS.
SS VCM ID• UIS$CREATE COLOR MAP(VCM SIZE)
C %UIS% No equivalent ro~tine ;xists. -

VD ID s UIS$CREATE DISPLAY(WC Xl,WC Yl,WC X2,WC Y2,
1 - - VP=WIDTH~VP_HEIGHT,VCM_ID)

C %UIS% Xll provides no equivalents to the UIS$ display list routines.
CALL UIS$DISABLE DISPLAY LIST(VD ID)
CALL CREATE COLORS(VCM SIZE,VD ID)

C %UIS% Please s;e information on virtual displays.
WD ID= UIS$CREATE WINDOW(VD ID,'SYS$WORKSTATION' ,'QIX')

c %UIS% -There are equivalent X ev;nts.
CALL UIS$SET RESIZE AST(vd id,wd id,ENABLE WINDOW RESIZE,dummy,
1 new_abs_x,n;w_abs_y,vp_width,vp_height) -

c
C ATTRIBUTE BLOCK 0 = WRITING MODE OVERLAY
C ATTRIBUTE BLOCK 1 = WRITING MODE ERASE
c
C %UIS% UIS$WRITING MODE is similar to X$SET_FUNCTION or X$CHANGE_GC.

CALL UIS$SET_wRITING_MODE(VD_ID, O, 1, 9)
c
C Randomize the initial endpoints of the cube.
c

Al= INT(RAN(IX)*WID)
A2-= INT(RAN(IX)*LEN)
Bl = INT(RAN(IX)*WID)
B2 = INT(RAN(IX)*LEN)

Sample FORTRAN Program (QIX.FOR)

CALL RANXY(AlMOD,A2MOD)
CALL RANXY(BlMOD,B2MOD)
ERASE = .FALSE.

DO 66 L = 2,VCM SIZE+2-l
C %UIS% UIS$WRITING INDEX is similar to X$SET FOREGROUND or X$CHANGE_GC.

CALL UIS$SET_WRITING_INDEX(VD_ID~O,L,L-2)
66 CONTINUE

10 DO 20 L = l,NUMLINES

IF (ERASE) THEN
C %UIS% UIS$PLOT is similar to X$DRAW_LINE, X$DRAW_LINES or X$DRAW_POINT.

12

15

CALL UIS$PLOT(VD_ID, 1, A(L,l),A(L,2),B(L,l),B(L,2))
R=R+l.O

ENDIF

OLD Al Al
OLDA2 A2
OLDBl Bl
OLDB2 = B2

CALL NEWPT(Al,AlMOD,A2,A2MOD)
L2 = (((Al+Bl) /4) **2) + ((A2+B2) **2)
XL2 = L2
XL2 = SQRT(XL2)
LINELEN = JIFIX(XL2)

If (LINELEN .LE. MAXLINELEN) GOTO 15
CALL RANXY(AlMOD,A2MOD)
Al -= OLDAl
A2 = OLDA2
GOTO 12

CALL NEWPT(Bl,BlMOD,B2,B2MOD)

L2 = (((Al+Bl)/4)**2) + ((A2+B2)**2)
XL2 = L2
XL2 = SQRT(XL2)
LINELEN = JIFIX(XL2)

If (LINELEN .LE. MAXLINELEN) GOTO 17
CALL RANXY(BlMOD,B2MOD)
Bl = OLDBl
B2 • OLDB2
GOTO 15

17 A(L,l) •Al
A(L, 2) "" A2
B(L,l) =Bl
B (L, 2) B2

C %UIS% UIS$PLOT is similar to X$DRAW_LINE, X$DRAW_LINES or X$DRAW_POINT.

CALL UIS$PLOT(VD ID, COUNTER, A(L,l),A(L,2),B(L,l),B(L,2))
c TYPE *,'DRAW LINE FROM (',Al,,, I ,A2, I) TO (',Bl, I,, ,B2,,),

COUNTERsCOUNTER+l
IF (COUNTER .LT. VCM SIZE+2) GOTO 20
COUNTER -= 2 -

20 CONTINUE

ERASE -= .TRUE.

GOTO 10

END

SUBROUTINE RANXY(X,Y)
c
C This subroutine randomizes the values of the integers x and y that
C are passed as input.
c

INTEGER X,Y

F-7

Sample FORTRAN Program (QIX.FOR)

F-8

c

ISTJ? = 40
X = INT(RAN(IX)*ISTJ?) - (ISTJ?/2)
Y = ISTP/2 - ABS(X)
IF (RAN(IX) .GT. 0.5) Y = Y * (-1)
RETURN
END

SUBROUTINE enabie window resize - -
C This is the AST routine for the window resize. It will not allow th
C user to make the window dimensions less than 3/10 centimeter.
c

COMMON wc xl,wc yl,wc x2,wc y2,vp width,vp height
COMMON ne;_abs_i,new_ibs_y,;d_id,~d_id -

IF (vp width .LT .. 25) vp width = .25
IF (vp-height .LT .. 25) vp-height = .25

c %UIS% UIS$RESIZE WINDOW is si;ilar to X$CHANGE WINDOW ATTRIBUTES.
CALL UIS$RESIZE_WINDOW(vd_id,wd_id,new_abs_x,new_abs_y,
1 vp_width,vp_height,
2 wc_xl,wc_yl,wc_x2,wc_y2)
RETURN
END

SUBROUTINE NEWPT(X,XMOD,Y,YMOD,MAX)
c
C This subroutine computes new values for the coordinates x and y that
C are passed as input. If the coordinates of the new point computed
C are greater than 1024 (WID) or 860 (LEN), then the lines have hit th
C walls of the window. In such a case, the coordinates are recomputed
c

INTEGER X,Y,XMOD,YMOD
INTEGER XSAV,YSAV

XSAV -= X
YSAV • Y

50 X • X + XMOD
IF ((X .GT. 1024) .OR. (X .LT. 0)) GOTO 100
Y • Y + YMOD
IF ((Y .GT. 860) .OR. (Y .LT. 0)) GOTO 100
RETURN

100 CALL RANXY(XMOD,YMOD)
X -= XSAV
Y • YSAV
GOTO 50

END

Sample FORTRAN Program (QIX.FOR)

F.3 The Summary Report
This section shows the Summary Report the Annotator produced for the
FORTRAN program it annotated:

QIX.LOG
Date : 22-NOV-89, Time : 08:Sl:02

This report is the result of a simple search of the following files
searching for UIS$Y..xx calls within programs. A summary will
appear at the end of this report.

>>>Examining : DISKS: [WINGATE.UISANN.SRC]QIX.FOR
Creating : DISKS: [WINGATE.UISANN.SRC]QIX.FOR

Found: 1 - UIS$CREATE COLOR MAP
Color maps may be created by using th; X$ALLOC_COLOR_CELLS.

Found: 1 - UIS$CREATE_DISPLAY
No equivalent routine exists.

Found: 1 - UIS$CREATE WINDOW
Please see information on virtu~l displays.

Found: 1 - UIS$DISABLE DISPLAY LIST
Xll provides no equivalents to the UIS$ display list routines.

Found: 1 - UIS$GET HW COLOR INFO
Information is available through a n~er of individual calls
- Please see "Display Routines".

Found: 2 - UIS$PLOT
UIS$PLOT is similar to X$DRAW_LINE, X$DRAW_LINES or X$DRAW_POINT.

Found: 1 - UIS$RESIZE WINDOW
UIS$RESIZE_WINDOW is similar to-X$CHANGE_WINDOW_ATTRIBUTES.

Found: 1 - UIS$SET_RESIZE_AST
There are equivalent X events.

Found: 1 - UIS$SET WRITING INDEX
UIS$SET_WRITING_INDEX is similar to X$SET_FOREGROUND or X$CHANGE_GC.

Found: 1 - UIS$SET WRITING MODE
UIS$SET_WRITING_MODE is similar to x$sET_FUNCTION or X$CHANGE_GC.

* Total Lines read in 24S

* Total UIS calls (of any type) detected 11

*** Summary Information --

* Total UIS calls (of any type) - all files : 11

F-9

G Sample Pascal Program (UISDC_HOUSE.PAS}

This appendix contains two versions of a sample Pascal program and
a summary report. The first version is the original program before the
user ran it through the Annotator. The second version is the annotated
program. The Annotator also produced the summary report for the
program it annotated.

G.1 The Original Pascal Program
This section shows the original Pascal program before the user ran it
through the Annotator:

[INHERIT ('SYS$LIBRARY:UISENTRY.PEN','SYS$LIBRARY:UISUSRDEF.PEN',
'SYS$LIBRARY:STARLET.PEN')]

{
{ COPYRIGHT C 1989 BY
{ DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.
{
{ THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
{ ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
{ INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
{ COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
{ OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
{ TRANSFERRED.
{

{ THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
{ AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
{ CORPORATION.
{

{ DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
{ SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.
{ }

PROGRAM HOUSE(INPUT, OUTPUT);

VAR

VCM_ID, WD_ID, VD_ID : UNSIGNED;
RETWIDTH,RETHEIGHT : REAL;
RETRESOLX,RETRESOLY : REAL;
RETPWIDTH, RETPHEIGHT : INTEGER;
MAX_X, MAX_Y : REAL;
CHAR_WIDTH, CHAR_HEIGHT : INTEGER;
I : CHAR;
SCALING : BOOLEAN;
RED COLORS, GREEN COLORS, BLUE COLORS : ARRAY [1 .. 6] OF REAL;
X_ARRAY, Y_ARRAY 7 ARRAY [l .. 20] OF INTEGER;

BEGIN
UIS$GET DISPLAY SIZE ('SYS$WORKSTATION' ,RETWIDTH,RETHEIGHT,RETRESOLX,

RETRESOLY, RETPWIDTH, RETPHEIGHT);

MAX X := 22.0 * RETRESOLX;
MAX=Y :• 22.0 * RETRESOLY;

VCM ID := UIS$CREATE COLOR MAP(6);
VD ID :• UIS$CREATE-DISPLAY(0.0,0.0,MAX X, MAX_Y, RETPWIDTH, RETPHEIGHT,

- - VCM_ID); -
RED COLORS[l] := 1.0;
GREEN COLORS[l] := 1.0;
BLUE_COLORS[l] := 1.0;

G-1

Sample Pascal Program (UISDC_HOUSE.PAS)

G-2

RED COLORS[2] := 0.0;
GREEN COLORS[2) := 0.0;
BLUE_COLORS[2) := 0.0;

RED COLORS[3) := 0.0;
GREEN COLORS[3] := 1.0;
BLUE_COLORS[3] := 0.0;

RED COLORS[4] := 1.0;
GREEN COLORS[4] := 0.0;
BLUE_COLORS[4] := 0.0;

RED COLORS[5] := 1.0;
GREEN COLORS[5) := 1.0;
BLUE_COLORS[5] := 0.0;

RED COLORS[6] := 0.0;
GREEN COLORS[6] := 0.0;
BLUE_COLORS[6] := 0.0;

UIS$SET_COLORS(VD_ID, 0, 6, RED_COLORS, GREEN_COLORS, BLUE_COLORS);

WD_ID := UIS$CREATE_WINDOW(VD_ID, 'SYS$WORKSTATION' ,'Have A Nice Day');

UIS$SET WRITING INDEX(VD ID,
UIS$SET-WRITING-INDEX(VD-ID,
UIS$SET-WRITING-INDEX(VD-ID,
UIS$SET=WRITING=INDEX(VD=ID,

0,
0,
0,
0,

1, 2);
2, 3);

3, 4);
4, 5);

UIS$SET FONT(VD ID, 1, 1, 'UIS$FILL PATTERNS');
UIS$SET-FILL PATTERN(VD ID, 1, 1, PATT$C FOREGROUND);
UIS$SET-FONT(VD ID, 2, 2, 'UIS$FILL PATTERNS');
UIS$SET-FILL PATTERN(VD ID, 2, 2, PATT$C FOREGROUND);
UIS$SET-FONT(VD ID, 3, 3, 'UIS$FILL PATTERNS');
UIS$SET-FILL PATTERN(VD ID, 3, 3, PATT$C FOREGROUND);
UIS$SET-FONT(VD ID, 4, 4, 'UIS$FILL PATTERNS');
UIS$SET=FILL_PATTERN(VD_ID, 4, 4, PATT$C_FOREGROUND);

UISDC$PLOT(WD_ID, 1, 0, (RETPHEIGHT DIV 3), RETPWIDTH, (RETPHEIGHT DIV 3),
RETPWIDTH, 0, 0, 0);

X ARRAY[l) :• RETPWIDTH DIV 4;
X=ARRAY[2) :s X_ARRAY[l];
X ARRAY[3] : -= RETPWIDTH DIV 2;
X=ARRAY[4] :• X_ARRAY[3];

Y_ARRAY[l) := RETPHEIGHT DIV 3;
Y ARRAY[2] :• Y ARRAY[l] + (RETPWIDTH DIV 4);
Y=ARRAY[3) !"" Y-ARRAY[2);
Y_ARRAY[4] :• Y=ARRAY[l);

UISDC$PLOT_ARRAY(WD_ID, 2, 4, X_ARRAY, Y_ARRAY);

UISDC$PLOT(WD ID, 4, X ARRAY[2], Y ARRAY[2], ((3*RETPWIDTH) DIV 8),
Y_ARRAY[2J+(RETPHEIGHT DIV 7), X_ARRAY[3], Y_ARRAY[3]);

UISDC$PLOT(WD ID, 4, ((X ARRAY[2] + X ARRAY[3)) DIV 2) - 20, Y ARRAY[l),
((X ARRAY[2] + X ARRAY[3])-DIV 2) - 20, Y ARRAY[l] + 80,
((X-ARRAY[2] + X-ARRAY[3]) DIV 2) + 20, Y-ARRAY[l] + 80,
((X=ARRAY[2) + X=ARRAY[3]) DIV 2) + 20, Y=ARRAY[l]);

UISDC$CIRCLE(WD_ID, 3, RETPWIDTH-150, RETPHEIGHT-150, 50);

X ARRAY[l] :• RETPWIDTH-100;
X-ARRAY[2] :• RETPWIDTH-50;
X-ARRAY[3] :• RETPWIDTH-250;
X-ARRAY[4] : ... RETPWIDTH-200;
X-ARRAY[5] :• RETPWIDTH-150;
X-ARRAY[6] :• RETPWIDTH-150;
X=ARRAY[7) : ... RETPWIDTH-150;
X_ARRAY[B] :• RETPWIDTH-150;

Sample Pascal Program (UISDC_HOUSE.PAS)

Y ARRAY[l) := RETPHEIGHT-150;
Y-ARRAY[2] := RETPHEIGHT-150;
Y=ARRAY[3] := RETPHEIGHT-150;
Y ARRAY[4] := RETPHEIGHT-150;
Y-ARRAY[5] := RETPHEIGHT-100;
Y-ARRAY[6] := RETPHEIGHT-50;
Y-ARRAY[7] := RETPHEIGHT-200;
Y=ARRAY[8] := RETPHEIGHT-250;

UISDC$LINE_ARRAY(WD_ID, 3, 8, X_ARRAY, Y_ARRAY);

UISDC$SET_CHAR_SIZE(WD_ID, 0, 6, 'G', 15, 20);

UISDC$TEXT(WD_ID, 6, 'Have a Nice Day!' 1 50, RETPHEIGHT-50);

READLN (INPUT, I);

END.

G-3

G.2

Sample Pascal Program (UISDC_HOUSE.PAS)

The Annotated Pascal Program

G-4

This section shows the annotated program:

[INHERIT ('SYS$LIBRARY:UISENTRY.PEN','SYS$LIBRARY:UISUSRDEF.PEN' I

'SYS$LIBRARY:STARLET.PEN')]

COPYRIGHT 0 1989 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
TRANSFERRED.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
CORPORATION.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.
}

PROGRAM HOUSE(INPUT, OUTPUT);

VAR
VCM_ID, WD_ID, VD_ID : UNSIGNED;
RETWIDTH,RETHEIGHT : REAL;
RETRESOLX,RETRESOLY : REAL;
RETPWIDTH, RETPHEIGHT : INTEGER;
MAX_X, MAX_Y : REAL;
CHAR_WIDTH, CHAR_HEIGHT : INTEGER;
I : CHAR;
SCALING : BOOLEAN;
RED COLORS, GREEN COLORS, BLUE COLORS : ARRAY [1 .. 6] OF REAL;
X_ARRAY, Y_ARRAY - ARRAY [1 .. 20] OF INTEGER;

BEGrN
{ %UIS% This may be emulated using X$DISPLAY WIDTH, X$DISPLAY WIDTHMM,
X$DISPLAY HEIGHT, and X$DISPLAY HEIGHTMM. } UIS$GET_DISPLAY_SIZE
('SYS$WORKSTATION' ,RETWIDTH,RETHEIGHT,RETRESOLX, RETRESOLY, RETPWIDTH,

RETPHEIGHT) ;

MAX X :-= 22.0 * RETRESOLX;
MAXY := 22.0 * RETRESOLY;

%UIS% Color maps may be created by using the X$ALLOC_COLOR_CELLS.
VCM ID :• UIS$CREATE COLOR MAP(6);

{ %UIS% No equival;nt routine exists. }
VD ID :• UIS$CREATE_DISPLAY(0.0,0.0,MAX_X, MAX_Y, RETPWIDTH, RETPHEIGHT

VCM ID);
RED_COLORS[lJ := 1.0;
GREEN COLORS[l] := 1.0;
BLUE_COLORS[l] :• 1.0;

RED_COLORS[2] :-= 0.0;
GREEN COLORS[2] :- 0.0;
BLOE_COLORS[2] := 0.0;

RED_COLORS[3] :-= 0.0;
GREEN COLORS[3] := 1.0;
BLOE_COLORS[3] :• 0.0;

RED_COLORS[4] :c 1.0;
GREEN COLORS[4] := 0.0;
BLUE_COLORS[4] ·= 0.0;

Sample Pascal Program (UISDC_HOUSE.PAS)

RED COLORS[S] := 1.0;
GREEN COLORS[S] := 1.0;
BLUE_COLORS[S] := 0.0;

RED COLORS[6] := 0.0;
GREEN COLORS[6] := 0.0;
BLUE_COLORS[6] := 0.0;

%UIS% UIS$SET COLOR is equivalent to X$STORE COLOR. }
%UIS% UIS$SET-COLORS is equivalent to X$STORE COLORS.

UIS$SET_COLORS(VD=ID, 0, 6, RED_COLORS, GREEN_COLORS, BLUE_COLORS);

%UIS% Please see information on virtual displays. }
WD_ID := UIS$CREATE_WINDOW(VD_ID, 'SYS$WORKSTATION' ,'Have A Nice Day');

%UIS% UIS$SET_WRITING_INDEX is similar to X$SET_FOREGROUND or
X$CHANGE GC. }

UIS$SET-WRITING INDEX(VD ID, 0, 1, 2);
{ %UIS% UIS$SET_WRITING_INDEX is similar to X$SET_FOREGROUND or
X$CHANGE GC. }

UIS$SET-WRITING INDEX(VD ID, 0, 2, 3);
{ %UIS% UIS$SET_WRITING_INDEX is similar to X$SET_FOREGROUND or
X$CHANGE GC. }

UIS$SET-WRITING INDEX(VD ID, 0, 3, 4);
{ %UIS% UIS$SET_WRITING_INDEX is similar to X$SET_FOREGROUND or
X$CHANGE GC . }

UIS$SET=WRITING_INDEX(VD_ID, 0, 4, 5);

%UIS% UIS$SET_FONT is similar to X$SET_FONT. The font ID is obtained
from X$LOAD FONT. }

UIS$SET FONT(VD ID, 1, 1, 'UIS$FILL PATTERNS');
{ %UIS% UIS fill patterns are equivalent to STIPPLE patterns in Xll; use
X$SET STIPPLE or X$CHANGE GC. }

UIS$SET FILL PATTERN(VD ID, 1, 1, PATT$C FOREGROUND);
{ %UIS% UIS$SET FONT is similar to X$SET_FONT. The font ID is obtained
from X$LOAD FONT. }

UIS$SET FONT(VD ID, 2, 2, 'UIS$FILL PATTERNS');
{ %UIS% UIS fill patterns are equivalent to STIPPLE patterns in Xll; use
X$SET STIPPLE or X$CHANGE GC. }

UIS$SET FILL PATTERN(VD ID, 2, 2, PATT$C FOREGROUND);
{ %UIS% UIS$SET FONT is similar to X$SET_FONT. The font ID is obtained
from X$LOAD_FONT. }

UIS$SET FONT(VD ID, 3, 3, 'UIS$FILL PATTERNS');
{ %UIS% UIS fill patterns are equivalent to STIPPLE patterns in Xll; use
X$SET STIPPLE or X$CHANGE GC. }

UIS$SET FILL PATTERN(VD ID, 3, 3, PATT$C FOREGROUND);
{ %UIS% UIS$SET FONT is similar to X$SET_FONT. The font ID is obtained
from X$LOAD_FONT. }

UIS$SET FONT(VD ID, 4, 4, 'UIS$FILL PATTERNS');
{ %UIS% UIS fill patterns are equivalent to STIPPLE patterns in Xll; use
X$SET STIPPLE or X$CHANGE GC. }

UIS$SET_FILL_PATTERN(VD_ID, 4, 4, PATT$C_FOREGROUND);

%UIS% UISDC$PLOT is similar to X$DRAW_LINE, X$SRAW_LINES, or
X$DRAW POINT. }

UISDC$PLOT(WD ID, 1, 0, (RETPHEIGHT DIV 3), RETPWIDTH, (RETPHEIGHT DIV 3),
RETPWIDTH~ 0, 0, O);

X_ARRAY[l] :• RETPWIDTH DIV 4;
X ARRAY[2] ::a: X_ARRAY[l];
X-ARRAY[3] := RETPWIDTH DIV 2;
X=ARRAY[4] := X_ARRAY[3];

Y ARRAY[l] :-= RETPHEIGHT DIV 3;
Y=ARRAY[2J :• Y_ARRAY[l] + (RETPWI_DTH DIV 4);
Y_ARRAY[3] !'"' Y_ARRAY[2];
Y_ARRAY[4) :- Y_ARRAY[l];

%UIS% UISDC$PLOT is similar to X$DRAW_LINE, X$SRAW_LINES, or
X$DRAW_POINT. }
{ %UIS% UISDC$PLOT ARRAY is similar to X$DRAW_LINE, X$DRAW_LINES, or
X$DRAW POINT . } -

UISDC$PLOT_ARRAY(WD_ID, 2, 4, X_ARRAY, Y_ARRAY);

G-5

Sample Pascal Program (UISDC_HOUSE.PAS)

G-6

{ %UIS% UISDC$PLOT is similar to X$DRAW_LINE, X$SRAW_LINES, or
X$DRAW POINT. }

UISDC$PLOT(WD_ID, 4, X_ARRAY[2], Y ARRAY[2], ((3*RETPWIDTH) DIV 8),
Y_ARRAY[2]+(RETPHEIGHT DIV 7); X_ARRAY[3], Y_ARRAY[3]);

{ %UIS% UISDC$PLOT is similar to X$DRAW_LINE, X$SRAW_LINES, or
X$DRAW POINT. }

UISDC$PLOT(WD ID, 4, ((X ARRAY[2] + X ARRAY[3]) DIV 2) - 20, Y ARRAY[l),
((X ARRAY[2J + x ARRAY[3]) DIV 2) - 20, y ARRAY[l] + 80,

((X ARRAY[2) + x ARRAY[3]) DIV 2) + 20, y ARRAY[l] + 80,
((X=ARRAY[2] + X=ARRAY[3]) DIV 2) + 20, Y=ARRAY[l]);

%UIS% UISDC$CIRCLE is similar to X$DRAW ARC. }
UISDC$CIRCLE(WD_ID, 3, RETPWIDTH-150, RETPHEIGHT-150, 50);

X ARRAY[l) := RETPWIDTH-100;
x::ARRAY[2) := RETPWIDTH-50;
X ARRAY[3] := RETPWIDTH-250;
X=ARRAY[4] := RETPWIDTH-200;
X ARRAY[5] := RETPWIDTH-150;
X-ARRAY[6] := RETPWIDTH-150;
X-ARRAY[7] := RETPWIDTH-150;
X=ARRAY[8] := RETPWIDTH-150;

Y_ARRAY[l] := RETPHEIGHT-150;
Y_ARRAY[2) := RETPHEIGHT-150;
Y ARRAY[3) := RETl?HEIGHT-150;
Y-ARRAY[4] ·= RETPHEIGHT-150;
Y-ARRAY[5] := RETPHEIGHT-100;
Y-ARRAY[6] := RETPHEIGHT-50;
Y=ARRAY[7] := RETPHEIGHT-200;
Y_ARRAY[8] := RETPHEIGHT-250;

%UIS% UISDC$LINE is similar to X$DRAW SEGMENT or X$DRAW POINT. }
%UIS% UISDC$LINE ARRAY is similar to X$DRAW SEGMENTS pr-X$DRAW POINTS.

UISDC$LINE _ARRAY (WD - ID I 3, 8 I x _ARRAY I y - ARRAY); -

%UIS% Xll does not provide text scaling. }
UISDC$SET_CHAR_SIZE(WD_ID, 0, 6, 'G' I 15, 20);

%UIS% UISDC$TEXT is similar to X$DRAW TEXT.
UISDC$TEXT(WD_ID, 6, 'Have a Nice Day!', so, RETPHEIGHT-50);

READLN (INPUT, I) ;

END.

[INHERIT ('SYS$LIBRARY:UISENTRY.PEN' ,'SYS$LIBRARY:UISUSRDEF.PEN' I

'SYS$LIBRARY:STARLET.PEN')J
{
{ COPYRIGHT C 1989 BY
{ DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.
{
{ THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
{ ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
{ INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
{ COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
{ OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
{ TRANSFERRED.
{
{ THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
{ AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
{ CORPORATION.
{
{ DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
{ SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.
{ }

PROGRAM HOUSE(INPUT, OUTPUT);

Sample Pascal Program (UISDC_HOUSE.PAS)

VAR

VCM_ID, WD ID, VD ID : UNSIGNED;
RETWIDTH,RETHEIGHT : REAL;
RETRESOLX,RETRESOLY : REAL;
RETPWIDTH, RETPHEIGHT : INTEGER;
MAX_X, MAX_Y : REAL;
CHAR_WIDTH, CHAR_HEIGHT : INTEGER;
I : CHAR;
SCALING : BOOLEAN;
RED_COLORS, GREEN_COLORS, BLUE_COLORS : ARRAY [1 .. 6] OF REAL;
X_ARRAY, Y_ARRAY ARRAY [l .. 20] OF INTEGER;

BEGIN
{ %UIS% This may be emulated using X$DISPLAY WIDTH,
X$DISPLAY WIDTHMM, X$DISPLAY HEIGHT, and X$DISPLAY HEIGHTMM.

UIS$GET_DISPLAY_SIZE ('SYS$WORKSTATION' ,RETWIDTH,RETHEIGHT,RETRESOLX,
RETRESOLY, RETPWIDTH, RETPHEIGHT);

MAX X := 22.0 * RETRESOLX;
MAX_Y := 22.0 * RETRESOLY;

%UIS%
VCM ID :=

{ %uis%
VD ID :•

Color maps may be created by using the X$ALLOC_COLOR_CELLS.
UIS$CREATE COLOR MAP(6);
No equival;nt routine exists. }
UIS$CREATE_DISPLAY(0.0,0.0,MAX_X, MAX_Y, RETPWIDTH, RETPHEIGHT,

VCM_ID);

{

{

{

RED COLORS[l] := 1.0;
GREEN_COLORS[l] := 1.0;
BLUE_COLORS[l] := 1.0;

RED COLORS[2] := 0.0;
GREEN_COLORS[2] := 0.0;
BLUE_COLORS[2] := 0.0;

RED COLORS[3] :• 0.0;
GREEN COLORS[3] := 1.0;
BLUE_COLORS[3] := 0.0;

RED COLORS[4] :• 1.0;
GREEN COLORS[4] := 0.0;
BLUE_COLORS[4] :• 0.0;

RED COLORS[S) :• 1.0;
GREEN COLORS[S] :• 1.0;
BLUE_COLORS[S] :• 0.0;

RED COLORS[6] :• 0.0;
GREEN COLORS[6] := 0.0;
BLUE_COLORS[6] :• 0.0;

%UIS% UIS$SET COLOR is equivalent to X$STORE COLOR. }
%UIS% UIS$SET=COLORS is equivalent to X$STORE_COLORS.

UIS$SET_COLORS(VD_IO, 0, 6, RED_COLORS, GREEN_COLORS, BLUE_COLORS);

%UIS% Please see information on virtual displays. }
WD_ID :• UIS$CREATE_WINDOW(VD_ID, 'SYS$WORKSTATION' ,'Have A Nice Day');

%UIS% UIS$WRITING INDEX is similar to X$SET_FOREGROUND or X$CHANGE_GC}
UIS$SET WRITING INDEX(VD ID, o, 1, 2);

%UIS% UIS$wRITING INDEX is similar to X$SET_FOREGROUND or X$CHANGE_CG}
UIS$SET WRITING INDEX(VD ID, 0, 2, 3);

%UIS% UIS$wRITING INDEX is similar to X$SET_FOREGROUND or X$CHANGE_CG}
UIS$SET WRITING INDEX(VD ID, 0, 3, 4);

%UIS% UIS$wRITING INDEX is similar to X$SET_FOREGROUND or X$CHANGE_CG}
UIS$SET_WRITING_INDEX(VD - ID, 0, 4, S) ;

G-7

Sample Pascal Program (UISDC_HOUSE.PAS)

G-8

%UIS% UIS$SET FONT is similar to X$SET FONT. The font ID is
obtained from X$LOAo FONT. } -

UIS$SET FONT(VD ID,-1, 1, 'UIS$FILL PATTERNS');
{ %UIS% UIS fill patterns are equivalent to STIPPLE patterns in Xll; use :

UIS$SET FILL PATTERN(VD ID, 1, 1, PATT$C FOREGROUND);
{ %UIS% UIS$SET FONT is similar to X$SET FONT. The font ID is
obtained from X$LOAo FONT. } -

UIS$SET FONT(VD ID,-2, 2, 'UIS$FILL PATTERNS');
{ %UIS% UIS fill patterns are equivalent to STIPPLE patterns in Xll; use

UIS$SET FILL PATTERN(VD ID, 2, 2, PATT$C FOREGROUND);
{ %UIS% UIS$SET FONT Is similar to X$SET FONT. The font ID is
obtained from X$LOAo FONT. } -

UIS$SET FONT(VD ID,-3, 3, 'UIS$FILL PATTERNS');
{ %UIS% UIS fill patterns are equivalent to STIPPLE patterns in Xll; use

UIS$SET FILL PATTERN(VD ID, 3, 3, PATT$C FOREGROUND);
{ %UIS% UIS$SET FONT is similar to X$SET FONT. The font ID is
obtained from X$LOAo FONT. } -

UIS$SET FONT(VD ID,-4, 4, 'UIS$FILL PATTERNS');
{ %UIS% UIS fill patterns are equivalent to STIPPLE patterns in Xll; use

UIS$SET_FILL_PATTERN(VD_ID, 4, 4, PATT$C_FOREGROUND);

{ %UIS% UISDC$PLOT is similar to X$DRAW_LINE, X$SRAW_LINES, or
X$DRAW POINT. }

UISDC$PLOT(WD_ID, 1, O, (RETPHEIGHT DIV 3), RETPWIDTH, (RETPHEIGHT DIV 3),
RETPWIDTH, 0, 0, O);

X ARRAY[l] := RETPWIDTH DIV 4;
X-ARRAY[2] := X_ARRAY[l);
X-ARRAY[3] := RETPWIDTH DIV 2;
X=ARRAY[4) := X_ARRAY[3];

Y_ARRAY[l] := RETPHEIGHT DIV 3;
Y ARRAY[2] : == Y ARRAY[l] + (RETPWIDTH DIV 4);
Y-ARRAY[3] := Y-ARRAY[2];
Y=ARRAY[4] := Y=ARRAY[l];

{ %UIS% UISDC$PLOT is similar to X$DRAW_LINE, X$SRAW_LINES, or
X$DRAW POINT. }
{ %UIS% UISDC$PLOT ARRAY is similar to X$DRAW_LINE, X$DRAW_LINES,
or X$DRAW POINT. } -

UISDC$PLOT_ARRAY(WD_ID, 2, 4, X_ARRAY, Y_ARRAY);

{ %UIS% UISDC$PLOT is similar to X$DRAW_LINE, X$SRAW_LINES, or
X$DRAW POINT. }

UISDC$PLOT(WD ID, 4, X ARRAY[2], Y ARRAY[2], ((3*RETPWIDTH) DIV 8),
Y_ARRAY[2]+(RETPHEIGHT DIV 7), X_ARRAY[3], Y_ARRAY[3]);

{ %UIS% UISDC$PLOT is similar to X$DRAW_LINE, X$SRAW_LINES, or
X$DRAW POINT. }

UISDC$PLOT(WD ID, 4, ((X ARRAY[2] + X ARRAY[3]) DIV 2) - 20, Y ARRAY[l],
((X ARRAY[2] + X ARRAY[3)) DIV 2) - 20, Y ARRAY[l] + 80,
((X-ARRAY[2] + X-ARRAY[3]) DIV 2) + 20, Y=ARRAY[l] + 80,
((X=ARRAY[2] + X=ARRAY[3]) DIV 2) + 20, Y_ARRAY[l]);

{ %UIS% UISDC$CIRCLE is similar to X$DRAW ARC. }
UISDC$CIRCLE(WD_ID, 3, RETPWIDTH-150, RETPHEIGHT-150, 50);

X ARRAY[l] := RETPWIDTH-100;
X-ARRAY[2) := RETPWIDTH-50;
X-ARRAY[3] := RETPWIDTH-250;
X-ARRAY[4] := RETPWIDTH-200;
X-ARRAY[5] := RETPWIDTH-150;
X=ARRAY[6) := RETPWIDTH-150;
X ARRAY[7] := RETPWIDTH-150;
X=ARRAY[8] := RETPWIDTH-150;

Sample Pascal Program (UISDC_HOUSE.PAS)

Y AR.RAY[l] := RETPHEIGHT-150;
Y-AR.RAY[2] : = RETPHEIGHT-150;
Y=AR.RAY[3] := RETPHEIGHT-150;
Y AR.RAY [4] := RETPHEIGHT-150;
Y=ARRAY[5] := RETPHEIGHT-100;
Y _ARRAY [6] := RETPHEIGHT-50;
y AR.RAY[?] := RETPHEIGHT-200;
Y=ARRAY[S] : == RETPHEIGHT-250;

%UIS% UISDC$LINE is similar to X$DRAW SEGMENT or X$DRAW POINT. }
%UIS% UISDC$LINE ARRAY is similar to X$DRAW SEGMENTS or-X$DRAW POINTS.

UISDC$LINE_ARRAY(WD_ID, 3, S, X_ARRAY, Y_ARRAY); -

%UIS% Xll does not provide text scaling. }
UISDC$SET_CHAR_SIZE(WD_ID, 0, 6, 'G', 15, 20);

%UIS% UISDC$TEXT is similar to X$DRAW TEXT.
UISDC$TEXT(WD_ID, 6, 'Have a Nice Day!', SO, RETPHEIGHT-50);

READLN (INPUT, I);

END.

G-9

G.3

Sample Pascal Program (UISDC_HOUSE.PAS)

The Summary Report

G-10

This section shows the Summary Report the Annotator produced for the
Pascal program it annotated:

UISDC HOUSE.LOG
Date 7 23-MAR-90, Time : 16:21:34

This report is the result of searching of the following files:
UISDC HOUSE.PAS

searching for UIS calls within programs. A summary will
appear at the end of this report.

>>>Examining : WORK2: [SMITH.MIG]UISDC HOUSE.PAS
Creating : WORK2: [SMITH.MIG]UISDC_HOUSE.PAS

Found: 1 - UIS$CREATE COLOR MAP
Color maps may be created by using th; X$ALLOC_COLOR_CELLS.

Found: 1 - UIS$CREATE_DISPLAY
No equivalent routine exists.

Found: 1 - UIS$CREATE_WINDOW
Please see information on virtual displays.

Found: 1 - UIS$GET DISPLAY SIZE
This may be emulated using x$DISPLAY-WIDTH, X$DISPLAY_WIDTHMM,
X$DISPLAY_HEIGHT, and X$DISPLAY_HEIGH

Found: 1 - UIS$SET COLOR
UIS$SET_COLOR is equivalent to X$STORE_COLOR.

Found: 1 - UIS$SET COLORS
UIS$SET_COLORS is equivalent-to X$STORE_COLORS.

Found: 4 - UIS$SET_FILL_PATTERN
UIS fill patterns are equivalent to STIPPLE patterns in Xll; use
X$SET_STIPPLE or X$CHANGE_GC

Found: 4 - UIS$SET FONT
UIS$SET FONT is similar to x$sET_FONT. The ,font ID is obtained fron
X$LOAD_FONT.

Found: 4 - UIS$SET WRITING INDEX
UIS$SET WRITING_INDEX is similar to X$SET_FOREGROUND or X$CHANGE_G1

Found: 1 - UISDC$CIRCLE
UISDC$CIRCLE is similar to X$DRAW_ARC.

Found: 1 - UISDC$LINE
UISDC$LINE is similar to X$DRAW_SEGMENT or X$DRAW_POINT.

Found: 1 - UISDC$LINE_ARRAY
UISDC$LINE_ARRAY is similar to X$DRAW SEGMENTS or X$DRAW POINTS.

Found: 4 - UISDC$PLOT
UISDC$PLOT is similar to X$DRAW_LINE, X$SRAW_LINES, or X$DRAW_POIN~

Found: 1 - UISDC$PLOT ARRAY
UISDC$PLOT ARRAY is similar to X$DRAW_LINE, X$DRAW_LINES, or
X$DRAW_POINT.

Found: 1 - UISDC$SET_CHAR_SIZE
Xll does not provide text scaling.

Found: 1 - UISDC$TEXT
UISDC$TEXT is similar to X$DRAW_TEXT.

* Total Lines read in 142

* Total UIS calls (of any type) detected 25

Sample Pascal Program (UISDC_HOUSE.PAS)

*** Summary Information --

* Total UIS calls (of any type) - all files : 25

G-11

