
VAX Language-Sensitive Editor and VAX
Source Code Analyzer User Manual
Order Number: AA-PAJLA-TK

December 1989

This manual describes the concepts and features of both the VAX Language-Sensitive
Editor and the VAX Source Code Analyzer.

Revision/Update Information: This document is a new manual.

Operating System and Version: VMS Version 5.1 or higher for LSE
VMS Version 5.2 or higher for SCA

Software Version:

digital equipment corporation
maynard, massachusetts

VAX Language-Sensitive Editor Version 3.0
VAX Source Code Analyzer Version 2.0

First Printing, December 1989

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used
or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1989.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

COD/Plus
DATATRIEVE
DECforms
DECwindows
VAX
VAX DIBOL

VAX Document
VAX MACRO
VAX Notes
VAX SCAN
VAXcluster
VAXset

VAXstation
VMS
VT

ZK5311

Contents

Preface . xvii

Chapter 1 Introduction

1.1 LSE

1.2 SCA .. .

1.3 LSE/SCA Integration

1.4 VAX DEC/Code Management System Integration

1.5 Integration with Other VMS Tools .

Part 1 Using LSE

Chapter 2 Introduction to LSE

2.1 Overview
2.1.1 LSE Features

2.2 Getting Started
2.2.1 Understanding LSE Concepts
2.2.2 Issuing Commands .
2.2.3 Invoking LSE
2.2.4 Getting Help

2.3 Sample Session

1-2

1-4

1-5

1-6

1-6

2-1
2-1

2-3
2-4
2-5
2-7
2-7

2-7

iii

2.4

2.5

2.6

2.7

Chapter 3

3.1

3.2

3.3

3.4

3.5

3.6

iv

2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.3.6
2.3.7
2.3.8
2.3.9

Expanding Nonterminal Placeholders
Deleting Placeholders .
Typing over List Placeholders .
Expanding Menu Placeholders
Expanding Tokens
Expanding Terminal Placeholders
Entering Pseudocode
Moving Pseudocode to Comments
Ending the Sample Session .

Compiling Source Code .

Invoking LSE from VMS Debugger and from VAX Performance and
Coverage Analyzer .

LSE Command Line
2.6.1 LSE Command Line Qualifiers

Running LSE/DECwindows in a Separate Process

Performing Editing Tasks

Using Buffers .
3.1.1 Buffer Attributes

Using Windows

Using the Search and Substitute Operations
3.3.1 Searching Through Buffers
3.3.2 Substituting Text Strings

Working with Files .
3.4.1 Locating, Displaying, and Editing Source Files
3.4.2 Locating Files in Multiple Directories
3.4.3 Setting Directory Defaults
3.4.4 Getting Files Through VAX DEC/Code Management

System

Recovering from a Failed Editing Session

Collapsing and Expanding Program Source
3.6.1 Sample Session
3.6.2 Editing Overviews ·

2-10
2-12
2-13
2-14
2-18
2-19
2-20
2-21
2-22

2-23

2-29

2-30
2-31

2-38

3-1
3-2

3-6

3-9
3-9

3-10

3-11
3-11
3-12
3-13

3-15

3-17

3-19
3-19
3-24

Chapter 4 Using VAX LSE with DECwindows

4.1 Overview
4.1.1 The DECwindows LSE Application Window
4.1.2 Getting Help

4.2 LSE DECwindows Sample Session
4.2.1 Opening a File
4.2.2 Positioning the Cursor and Selecting Text
4.2.3 Searching for Text
4.2.4 Replacing Text
4.2.5 Formatting Text
4.2.6 Using Multiple Windows
4.2. 7 Using a Filter to Open Files
4.2.8 Moving Through Buffers .
4.2.9 Reviewing Source Code

4.3 Querying with SCA
4.3. 1 Ending the Editing Session .

Chapter 5 Performing Language-Specific Tasks

5.1 Using Placeholders

5.2 Using Tokens .. .

5.3 Using Pseudocode
5.3.1 Typing Pseudocode
5.3.2 Creating Comment Text from Pseudocode
5.3.3 Processing Pseudocode

5.4 Using Aliases .

5.5 Packages _

5.6 Using Comments

4-1
4-2
4-4

4-4
4-5
4-6
4-7
4-9

4-10
4-11
4-12
4-14
4-15

4-18
4-20

5-1

5-3

5-4
5-5
5-5
5-7

5-8

5-8

5-10

v

Part 2 Using SCA

Chapter 6 Introduction to SCA

6.1 Overview
6.1.1 SCA Features
6.1.2 Querying with SCA

6.2 SCA Analysis Data Files
6.2.1 Using the VAX Source Code Analyzer ANALYZE Command ..

6.3 Invoking SCA .. .

6.4 SCA Commands

Chapter 7 Performing SCA Tasks

7.1 Getting Started .
7.1.1 Invoking SCA
7.1.2 Getting Help
7.1.3 Selecting a Source Library
7.1.4 Displaying Library Specifications
7.1.5 Displaying Module Information
7.1.6 Using the FIND Command

7.1.6.1 Navigating the Query Display
7.1.6.2 Moving to a Source Declaration

7.1.7 Multiple Queries
7.1.7.1 Moving to a Specified Query
7.1.7.2 Moving to the Next Query
7.1.7.3 Moving to the Previous Query
7.1.7.4 Terminating a Query

7.1.8 Exiting from the SCA Session

Chapter 8 Using the SCA Query Language

8.1 Overview

8.2 Features of the SCA Query Language

8.3 Basic Concepts .

vi

6-1
6-2
6-3

6-4
6-6

6-6

6-7

7-1
7-2
7-2
7-2
7-3
7-3
7-4
7-5
7-7

7-14
7-16
7-17
7-17
7-17
7-18

8-1

8-1

8-2

8.4

Chapter 9

9.1

9.2

9.3

9.4

9.5

9.6

9.7

SCA Query Language Tutorial
8.4.1 Simple Queries
8.4.2 Using the Expand Function to Find Related Occurrences
8.4.3 Using Logical Operators to Select Information
8.4.4 The Current Query
8.4.5 Structured Relationship Expressions
8.4.6 Nonstructured Relationship Expressions
8.4. 7 Other Relationships
8.4.8 The IN Function
8.4.9
8.4.10

Pathnames
Combined Relationship Examples ~

Evaluating SCA Query Expresssions

Query Expression Syntax .

Operato~ Precedence and Associativity .

Default Parenthesizing

Semantics .. .

Attribute Selection Expressions
9.5.1 Name Selection
9.5.2 Symbol Class Selection
9.5.3 Symbol Domain Selection
9.5.4 Occurrence Selection
9.5.5 File Specification Selection

Operator Expressions .
9.6.1 Path-Name Expressions
9.6.2
9.6.3
9.6.4

Intersection Expressions .
Union Expressions
Exclusive-Or Expressions

Function-Call Expressions
9.7.1 Parameter Association
9.7.2 Negation Function
9.7.3 Expansion Function
9.7.4 Indicated Function
9.7.5 Query Usage Function

9. 7.5. 1 The Current Query

8-2
8-3
8-6
8-7

8-11
8-12
8-14
8-16
8-19
8-19
8-21

9-3

9-4

9-4

9-5

9-5
9-6
9-7
9-8
9-9

9-10

9-10
9-10
9-11
9-11
9-11

9-11
9-12
9-13
9-13
9-13
9-14
9-14

vii

9.8

Chapter 10

10.1

10.2

10.3

Chapter 11

11.1

11.2

11.3

viii

9.7.6 Relationship Functions
9.7.6.1 Individual Relationship Functions
9.7.6.2 Relationship Parameters

9.7.7 The IN Function

Abbreviation Rules

Using SCA Libraries

Overview
10.1.1 Using Remote Libraries

Library Manipulation
10.2.1 Creating a Library Directory
10.2.2 Creating a Library
10.2.3 Specifying a Library
10.2.4 Removing a Library
10.2.5 Loading Library Information
10.2.6 Deleting a Library
10.2.7 Multiple Libraries
10.2.8 Library Planning

Library Maintenance
10.3.1 Displaying Library Specifications
10.3.2 Displaying Module Information
10.3.3 Deleting Module Information
10.3.4 Verifying and Recovering a Library
10.3.5 Optimizing a Library

Using the VAX Source Code Analyzer INSPECT Command

Overview

INSPECT Command Concepts
11.2.1 General Checking Philosophy
11.2.2 Routines and Common Blocks
11.2.3 Master Declarations and Checking

INSPECT Command Qualifiers
11.3.1 Performing Various Types of Checking
11.3.2 Severity Levels

9-14
9-15
9-16
9-17

9-18

10-1
10-1

10-2
10-2
10-3
10-5
10-5
10-6
10-7
10-7
10-9

10-11
10-11
10-11
10--12
10-13
10-13

11-1

11-1
11-2
11-2
11-3

11-7
11-7
11-9

11.3.3 Error Limits

11.4 Diagnostic Error Messages .
11.4.1 Fatal-Level Error Messages
11.4.2 Error-Level Error Messages
11.4.3 Warning-Level Error Messages
11.4.4 Informational-Level Error Messages

11.5 Tailoring the INSPECT Command for Diverse Programming Styles .. .
11.5.1 Using Severity Levels to Eliminate Unwanted Messages
11.5.2 Using Error Limits to Eliminate Excessive Messages
11.5.3 Using the /CHARACTERISTICS Qualifier to Eliminate

Unwanted Checks
11.5.4 Using Other Techniques to Eliminate Unwanted Diagnostics ..

Part 3 Designing Programs

Chapter 12 Using LSE and SCA to Design Programs

12.1 Introduction .

12.2 Creating Designs
12.2.1 Designing Routine Declarations
12.2.2 Refining the Design
12.2.3 Designing Data Declarations

12.3 Processing Designs
12.3.1 Loading Design Information into an SCA Library

12.4 Analyzing Designs

12.5 Expressing Design Information in Comments
12.5.1 Using Tagged Comments
12.5.2 Adding New Tags and Keyword Lists
12.5.3 Associating Tags with Objects

12.6 Generating Design Reports
12.6.1 Using Design Report Formats
12.6.2 Creating Online HELP
12.6.3 Creating LSE Package Definitions
12.6.4 Creating INTERNALS Reports

11-10

11-10
11-12
11-12
11-13
11-13

11-14
11-15
11-17

11-18
11-19

12-1

12-2
12-4
12-6
12-7

12-8
12-9

12-10

12-10
12-10
12-12
12-13

12-15
12-15
12-17
12-18
12-19

ix

12.6.5 Creating 2167A Software Design Reports
12.6.5.1 Describing 2167 A Structure in your Code
12.6.5.2 Retrieving 2167 A Structure Information

12.7 Reverse-Engineering a Design
12.7.1 Sample Report
MATRIX_MULTIPLY

Part 4 Customizing Functions

Chapter 13 Customizing Editing Functions

13.1 Modifying LSE
13.1.1 Defining Keys
13.1 .2 Defining Commands
13.1.3 Defining Aliases
13.1 .4 Defining Buffer Attributes
13.1 .5 Customizing Windows
13.1 .6 Redefining Language Elements
13.1.7 Using the VAX Text Processing Utility (VAXTPU)

13.2 Modifying LSE/DECwindows Attributes

13.3 Storing Modifications
13.3.1 Storing Modifications in Text Files
13.3.2 Using Initialization and Command Files

13.4 Speeding Up LSE Initialization
13.4.1 Creating Environment and Section Files
13.4.2 Using Environment and Section Files
13.4.3 Using Multiple Files

Chapter 14 Customizing LSE/DECwindows Menus

14.1 Using the Extend Menu Dialog Box

14.2 Adding a New LSE Command Entry to a Menu

14.3 Saving Menu Modifications

x

12-20
12-21
12-23

12-25
12-26
12-27

13-1
13-2
13-4
13-4
13-5
13-7
13-7

13-10

13-11

13-11
13-11
13-12

13-14
13-15
13-16
13-17

14-1

14-3

14-5

Chapter 15 Defining LSE Templates

15.1 Defining a Text Template
15.1.1 Language Definition
15. 1 .2 Placeholder Definitions .
15.1.3 Token Definitions

15.2 Defining a Programming Language
15.2.1 Language Definition
15.2.2 Defining Language Elements .

15.3 Saving Language Definitions

15.4 Indentation Control .

15.5 Defining a Package
15.5.1 Routine Definitions
15.5.2 Parameter Definitions .

Chapter 16 Providing Diagnostic File Support

16.1 User-File Format Example .

16.2 User-File Format Command Descriptions
END DIAGNOSTIC
END MODULE
MESSAGE/FILE
MESSAGE/TEXT
REGION/FILE .. .
REGION/LIBRARY
REGION/NESTED

15-1
15-3
15-4
15-7

15-8
15-10
15-13

15-25

15-26

15-28
15-29
15-29

16-2

16-6
16-7
16-8
16-9

16-10
16-12
16-15
16-18

REGION/TEXT . 16-20
START DIAGNOSTIC . 16-22
START MODULE....................................... 16-23

xi

Chapter 17

17.1

17.2

17.3

17.4

Chapter 18

18.1

18.2

18.3

18.4

xii

Customizing Overviews

Introduction .

Making Adjustments
17.2.1 Testing Overviews
17.2.2 Using Adjustment Qualifiers

17.2.2.1 Adjusting Single Lines
17.2.2.2 Adjusting Multiple Lines
17.2.2.3 Interactions of Definitions
17.2.2.4 Languages Without Indentation
17.2.2.5 Preventing Text Compression
17.2.2.6 Finding Appropriate Overview Text
17.2.2.7 Inheriting Indentation
17.2.2.8 Blank Lines
17.2.2.9 Prefixes
17.2.2.10 Grouping Comment Lines
17.2.2.11 Bracketed Comments
17.2.2.12 Fixed Comments

17.2.3 Basic Rules for Pattern Matching .
17.2.3.1 Multiple Word Patterns
17.2.3.2 Blank Space and Adjustment Patterns
17.2.3.3 Specifying Columns
17.2.3.4 Pattern Matching Precedence
17.2.3.5 Using Precedence to Hide Patterns
17.2.3.6 Rules for Pattern Strings
17.2.3.7 Using the Pattern Parameter

17.2.4 Special Processing for FORTRAN .

Tab Increments and the DEFINE ADJUSTMENT Command

Debugging .. .

Customizing Reports

Introduction .

How the REPORT Command Invokes VAXTPU

How Reports are Organized

Customizing 2167A Reports
18.4.1 Adding a Section to a 2167 A Report
18.4.2 Using Program C.ode For Report Information

17-1

17-3
17-3
17-4
17-4
17-6
17-7
17-8
17-8
17-9
17-9

17-10
17-11
17-13
17-13
17-14
17-14
17-15
17-16
17-17
17-17
17-18
17-19
17-20
17-20

17-23

17-24

18-1

18-2

18-4

18-6
18-6
18-8

Index

Examples
13-1
13-2
15-1
16-1

Figures
1-1
2-1
2-2
2-3
2-4

2-5
2-6
2-7
2-8

2-9
2-10
2-11

2-12
2-13
2-14
2-15
2-16
2-17
2-18
3-1

3-2
3-3
3-4

3-5

18.4.3 Changing the Mapping of Files .

Sample Initialization File .

Sample Command File

Syntax Summary for the Example Language .

User-File Format Diagnostic .

VAX Language-Sensitive Editor Software Development Environment

Initial String Placeholder in a New Buffer .

Expanding a Nonterminal Placeholder .

Typing over a Placeholder .

Using a List Placeholder . "

Typing over a List Placeholder

Using a Menu Placeholder .

Selecting a Menu Item

Using Tokens in Menu Placeholder .

Selecting a Token from a Menu

Expanding a Token

Expanding a Terminal Placeholder

Typing Pseudocode .

Pseudocode to Comments .

Issuing the COMPILE Command

Result of Issuing the REVIEW Command

GOTO SOURCE Command

NEXT STEP Command

GOTO SOURCE Command

Screen Format .

Buffer Containing Source

Overview of Source .

Expanding to Lower Detail

Expanding to Lowest Detail

18-9

13-13
13-14

15-9
16-3

1-7
2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-19
2-20
2-21
2-22
2-25
2-26
2-27
2-28
2-29

3-7
3-20
3-21
3-22
3-23

xiii

xiv

3-6
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
6-1
7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-11
7-12
13-1
13-2
14-1
14-2
14-3
15-1
16-1
16-2
16-3

Collapsing Code . ~ . .

LSE DECwindows Title Bar and Menus

Open Dialog Box

User Buffer .

Find Dialog Box

Replace Dialog Box .

Indentation Dialog Box ,·

Using Multiple Windows

Specifying a Filter

Displaying a List of Buffers .

The REVIEW Buffer

Corresponding Source Code

SCA Query Buffer .

Source Code Corresponding to First Occurrence

Setting Up an SCA Environment

The SHOW MODULE Display ·

The FIND *table* Display

The Expanded BUILD_ TABLE Display

The GOTO Source Display

The GOTO DECLARATION Display

The FIND EXPAND INDICATED Display

The TRANS_ TABLE Source Display

The FIND calling Display ~

The FIND called_by Display

The Expanded SIGNAL_DUPLICATE Display

The SHOW QUERY Display

The FIND /MODIFY Display

Extracting a Token

Executing a New Definition

Extend Menu Dialog Box .

Adding a Command to a Menu

Menu Item Added .

Memo Template

First Diagnostic and Corresponding Source

Second Diagnostic and Corresponding Source

Supplied Text of the Second Diagnostic and Corresponding Source

3-24
4-2
4-5
4-6
4-8
4-9

4-10
4-11
4-13
4-15
4-16
4-17
4-19
4-20
6-5
7-4
7-5
7-6
7-7
7-9

7-10
7-11
7-12
7-13
7-14
7-15
7-16
13-8
13-9
14-2
14-4
14-5
15-2
16-4
16-5
16-6

Tables
2-1
2-2
2-3
2-4
2-5
3-1
3-2
3-3
9-1
9-2
9-3
9-4
9-5
9-6
11-1
13-1
17-1
17-2
18-1

Commands for Token and Placeholder Manipulation

Manipulation Commands and Their Functions

Commands for Reviewing Compilation Errors

Review Commands and Their Functions

LSE Command Line Qualifiers

Buffer Manipulation Commands

Screen Manipulation Commands

Code Viewing Commands

Attribute Selection Expressions

Binary Operators

Nonrelationship Function Expressions

Function Names

Function Parameters

Query Expression Forms .

/CHARACTERISTICS Type Options

Where LSE Stores Modifications

Named Pattern Elements .

Type Keywords .

VAXTPU Variables

2-8
2-8

2-24
2-24
2-31
3-5
3-8

3-20
9-1
9-1
9-2
9-2
9-2
9-4

11-7
13-17
17-15
17-21

18-2

xv

Preface

This manual explains how to use the VAX Language-Sensitive Editor and
the VAX Source Code Analyzer on the VMS operating system.

Intended Audience

This manual is for experienced programmers, technical writers, and techni
cal managers.

Document Structure

The VAX Language-Sensitive Editor and VAX Source Code Analyzer User
Manual has 18 chapters.

• Chapter 1 provides an overview of both the VAX Language-Sensitive
Editor (LSE) and the VAX Source Code Analyzer (SCA). It describes the ,
concepts of each tool and explains how these tools can be used together
to create an integrated, multilanguage software development environ
ment. This chapter also briefly describes several other productivity tools
that work with LSE and SCA.

• Chapter 2 provides an overview of LSE, including basic LSE features,
the concepts of tokens and placeholders, how to invoke LSE, and how to
compile source code. This chapter also provides a sample editing session
that lets you experiment with the basic features of LSE.

• Chapter 3 describes the text-editing capabilities of LSE. This chapter
provides information on multiple buffer and window support, file location
and manipulation facilities, and LSE's code-viewing features.

xvii

xviii

• Chapter 4 provides an overview of the DECwindows LSE environment.
It describes how to open files, perform basic editing tasks, review source
code, and query source code with DECwindows. This chapter also
provides a sample editing session that lets you experiment with the
basic features of DECwindows LSE.

• Chapter 5 describes the language-sensitive features of LSE. This chapter
provides information on designing, coding, compiling, and debugging
source files.

• Chapter 6 provides an overview of SCA, including the key features of
SCA and its integration with the LSE software development environ
ment. This chapter provides information on how to invoke SCA, SCA
concepts, libraries, and SCA commands.

• Chapter 7 provides a sample session that demonstrates the use of the
basic SCA query commands and related LSE navigational commands.

• Chapter 8 describes advanced uses of the SCA FIND command with the
SCA Query Language. This chapter includes overview information and
a tutorial, which demonstrates the concepts and features of the SCA
Query Language.

• Chapter 9 further describes the SCA Query Language by providing an
encyclopedic summary of its rules, syntax, and components.

• Chapter 10 describes the structure, organization, and use of SCA li
braries. This chapter provides library creation, manipulation, and
maintenance information.

• Chapter 11 describes how to use SCA consistency checking and di
agnostic capabilities. This chapter also demonstrates the features
of the INSPECT command that allow you to tailor SCA for diverse
programming styles.

• Chapter 12 provides a scenario for designing your own programs. In
addition, it provides information on using tagged comments, generating
design reports, and using the various design report formats.

• Chapter 13 describes how to customize your development environment.
This chapter describes how to define keys, commands, and aliases; how
to redefine language elements; and how to execute VAXTPU statements.
The chapter also describes how to store your modifications and how to
speed up LSE initialization.

• Chapter 14 describes how you can use the Menu Extension Service, to
add, modify, or delete menu entries from LSE pop-up and pull-down
menus.

• Chapter 15 explains how to define your own environment files for text
templates and programming-type languages. It describes how to save
and store environment files, and how to define packages.

• Chapter 16 provides information on interfacing non-Digital language
processors to the diagnostic review facility.

• Chapter 1 7 describes how to customize overviews for programming
languages, including languages that Digital does not directly support.

• Chapter 18 describes how to customize reports.

Associated Documents

• The VAX Language-Sensitive Editor and VAX Source Code Analyzer
Reference Manual contains reference material on how to use the VAX
Language-Sensitive Editor and the VAX Source Code Analyzer.

• The VAX Language-Sensitive Editor Installation Guide contains instruc
tions for installing LSE on VMS operating systems.

• The VAX Source Code Analyzer Installation Guide contains instructions
for installing SCA on VMS operating systems.

• The VAX Text Processing Utility Reference Manual describes the VAX
Text Processing Utility features, including the high-level procedural
language available for use with LSE.

• Using VAXset describes how to use the VAX.set products with other
VMS software development facilities to create an effective development
environment.

Convention

CTRUx

KPn

Description

In interactive examples, a label enclosed in a box indi
cates that you press a key on the terminal, for example,
I RETURN I.

The phrase CTRUx indicates that you must press the key
labeled CTRL while you simultaneously press another
key, for example, CTRUY, CTRUZ, CTRUG.

The phrase KPn indicates that you must press the key
labeled with the number or character n on the numeric
keypad, for example, KP6, KP3.

xix

xx

Convention

$ LSEDIT

file-spec, . . .

()

[]

{}

boldface text

italic text

user input

UPPERCASE TEXT

mouse

MB1,MB2,MB3

Description

Interactive examples show all output lines or prompting
characters that the system prints or displays in black
letters. All user-entered commands are shown in red
letters.

A horizontal ellipsis following a parameter, option,
or value in syntax descriptions indicates additional
parameters, options, or values you can enter.

A horizontal ellipsis in a figure or example indicates that
not all of the statements are shown.

A vertical ellipsis indicates the omission of items from
a code example or command format; the items are omit
ted because they are not important to the topic being
discussed.

In format descriptions, parentheses indicate that, if
you choose more than one option, you must enclose the
choices in parentheses.

In format descriptions, brackets indicate that whatever
is enclosed is optional; you can select none, one, or all of
the choices.

In format descriptions, braces surround a required choice
of options; you must choose one of the options listed.

Boldface text represents the introduction of a new term.

Italic text represents parameters, arguments, and infor
mation that can vary in system messages (for example,
Internal error number), as well as book titles.

The hardcopy version of this manual has interactive
examples that show user input in red letters and system
responses or prompts in black letters. The online ver
sion differentiates user input from system responses or
prompts by using a different font.

Uppercase letters indicate the name of a command, a
routine, the name of a file, the name of a file protection
code, or the abbreviation for a system privilege.

The term mouse refers to any pointing device, such as a
mouse, a puck, or a stylus.

MBl indicates the left mouse button, MB2 indicates the
middle mouse button, and MB3 indicates the right mouse
button. (You can redefine the buttons.)

Chapter 1

Introduction

This chapter explains how the VAX Language-Sensitive Editor (LSE)
and the VAX Source Code Analyzer (SCA) work together and with other
VMS productivity tools to create an integrated, multilanguage software
development environment.

LSE is a multilanguage text editor that speeds up writing and compiling
source code. SCA is a multilanguage, interactive cross-reference and static
analysis tool that provides detailed information about source code.

Individually, each of these tools allows you to take advantage of the
multilanguage software development capabilities on VMS systems.

Together, these tools provide an integrated method for designing, creating,
compiling, correcting, and inspecting your source code within a single editing
session. You can include design information that can be processed, analyzed,
and preserved throughout the software development cycle. You can review
and, if necessary, modify the source code for your software project. Instead
of working with each individual file, you can access all your project files
through LSE.

Section 1.1 presents an overview of LSE, and Section 1.2 presents
an overview of SCA. Section 1.3 describes how LSE and SCA work
together. Section 1.4 describes the integration of LSE with VAX DEC/Code
Management System (CMS), and Section 1.5 describes how LSE and SCA
integrate with several other software development tools.

Introduction 1-1

1.1 LSE

LSE is an advanced text editor with language-specific features. Users
familiar with EDT or EVE will recognize the corresponding keypads in LSE
and be able to use LSE immediately.

In addition to text-editing features, LSE provides the following language
specific support:

• Code compilation

• Diagnostic review

• Formatted language constructs

• Online language HELP

• Pseudocode entry support

• Code elision

• Documentation extraction

You can compile source files from within LSE. The VMS compilers write
diagnostics that are read and displayed by LSE. LSE accesses and displays
the corresponding source locations.

LSE supplies the formatted language constructs. These constructs, known
as templates, include keywords, punctuation, and placeholders for most VAX
programming languages. LSE can supply you with the appropriate syntax
for any of the following VAX languages:

• VAXAda

• VAX BASIC

• VAX BLISS

• VAXC

• VAXCDD

• VAX COBOL

• VAX DATATRIEVE

• VAXDIBOL

• VAX FORTRAN

• VAX Pascal

• VAX PL/I

1-2 Introduction

• VAX.SCAN

• VAXELN Pascal

See the release notes or the Software Product Description (SPD) for a more
complete list of supported languages.

In addition to formatted language constructs, LSE provides templates for
subroutine libraries, including the VMS System Service library and the
Record Management System (VAX RMS).

LSE has an online HELP Facility for information on unfamiliar language
constructs, routines, and text insertion. Help is also provided for all LSE
commands and key definitions and all SCA commands.

LSE has features for editing comments efficiently, including word wrapping,
paragraph fill, and comment alignment.

LSE provides for incremental program design and development by using
features that allow you to write structured text, or pseudocode, in source
files. You use this pseudocode to describe the design of the code before you
write the actual program statements. You can process source files that
contain pseudocode by using supported VMS compilers. LSE also provides
functions for capturing this pseudocode in comments when you enter the
actual source code.

LSE provides a facility that lets you view programs at various levels of
detail. The concept is sometimes called outlining, holophrasting, or code
elision. You can generate overviews of programs by collapsing lines of code
to hide detail and expanding overviews to see more detail.

LSE is tightly integrated with the following VMS tools:

• VAX Source Code Analyzer (SCA)

• VAX DEC/Code Management System (CMS)

• VAX Text Processing Utility (V.AXTPU)

All SCA commands are available within LSE. CMS commands are available
within LSE by using the prefix CMS at the LSE command prompt. All
VAXTPU commands are available within LSE by using the prefix DO I TPU
at the LSE command prom pt.

Introduction 1-3

You can call LSE from the following VMS tools:

• VAX DATATRIEVE

• VMS Debugger

• VMS Mail Utility (MAIL)

• VAX Notes

• VAX Performance and Coverage Analyzer

See Sections 1.4 and 1.5 for more details on LSE's integration with VMS
tools.

With LSE, you can customize your editing environment to meet your
programming preference or style. You can also extend your editing
environment to handle highly specialized editing needs.

1.2 SCA

The VAX Source Code Analyzer is a multilanguage, interactive cross
reference and static analysis tool.

SCA helps you understand large-scale software projects by allowing you to
make inquiries about the symbols used in such projects. With SCA, you can
quickly locate information about any identifier. Thus, SCA is useful during
the implementation and maintenance phases of a project, regardless of your
familiarity with the project.

SCA provides the following capabilities:

• Cross-referencing

1-4 Introduction

SCA provides a cross-referencing facility that gives you an index to
information in your source code.
SCA depends on supported VMS compilers for the generation of detailed
source analysis data. Source analysis data consists of a collection of
information relating to all of the symbols, files, and modules contained
in the source. The information is loaded into an SCA library and used
as a database for the SCA cross-reference query and static analysis
features.
The SCA query capabiiities allow you to check for specific symbols, files,
or modules. You can determine such things as declarations of program
symbols, references to the symbols, and references to source files.

• Static analysis

The SCA static analysis facility allows you to extract information about
program structure and the relationship of routines, symbols, and files.
You can display call tree information to determine the relationships
between routines. You can also check whether routines are used in a
consistent manner.

• Library creation and maintenance

SCA takes the information generated by supported VMS compilers and
merges these files together into libraries to create a picture of your
entire project.

Once a library has been set up for a particular software project, you can
use the cross-referencing, query, and source analysis features of SCA on
that software project. You can also set up a personal library, containing
information on only those modules that you are working on, and use this
library with the main library describing the rest of the system.

1.3 LSE/SCA Integration

Using LSE and SCA together gives you more power than using each product
individually. With these tools, you can do the following:

• Access your entire system from LSE
You can tell LSE where to look for your files and modules. SCA allows
you to have full access to all sources for your project from within
LSE. Then, you can browse through all your code to look for specific
declarations or symbols or other pertinent information about your
project.

• Create a private SCA library for your local sources
You can modify modules in your O\yn directory and also access other
modules in your project-wide SCA library.

• Write your source files in more than one language

LSE always provides you with the right language support for the file
you are editing. SCA provides you with global navigation of your entire
project regardless of the languages used in each module.

• Query your source files
Using SCA and LSE together, you can point to an identifier with the
LSE cursor and, with one keystroke, you can bring up the definition of
that identifier in another window. You can also step through the results
of an SCA query, looking at the actual source code corresponding to each
reference found by SCA.

Introduction 1-5

• Generate reports
In addition to getting information directly from SCA queries, you can use
the SCA REPORT command to produce a variety of reports from your
SCA database. Reports provide information in a structured, organized
way. Reports are implemented in TPU, and therefore require LSE. By
changing or rewriting the TPU code, you can customize reports to suit
your needs.

In general, the preferred way to use SCA interactively is through LSE.
However, you can use SCA from the DIGITAL Command Language (DCL)
level for batch jobs and time-consuming tasks, such as creating project-wide
libraries.

1.4 VAX DEC/Code Management System Integration

LSE provides an interface to VAX DEC/Code Management System (CMS)
to simplify program development and source file management. Using CMS
with LSE provides the following capabilities:

• Online storage library

You can create an online library to store your source files. LSE allows
you to use all source files stored in the CMS library. Once LSE is made
aware of the CMS library, you can locate and examine these files from
within LSE.

• Easy file access
You do not have to remember the names or locations of the files
and modules contained in your project. LSE will locate your files
automatically.

• File manipulation
Using LSE's file manipulation commands, you can move a file from the
CMS library, place it in your current buffer, modify it, and return it to
the library without leaving LSE.

1.5 Integration with Other VMS Tools

LSE works with other VMS productivity tools to simplify the program
development process. Figure 1-1 shows how LSE relates to each of these
tools to make up the VAX Language-Sensitive Editor software development
environment.

1-6 Introduction

Figure 1-1: VAX Language-Sensitive Editor Software Development Environment

VMS
Language
Compilers

VMS
Debugger

VAX
PCA

I I
1 LSEDIT Commands 1

L------, r------~
l l

14- ~m_e.ile_Co~"l.an!!S
LSE

1- <2_M~ C~m~~s__.
Source Files

14
_ c~s _o'1>~ _ ----

lvAXTPU I Diagnostic Files _. t.... Source Files .. r--

T --.-
SCA I I SCA

Commands I I Output
i_ I

Analysis Files
__a.I SCA ..

VAX
DEC/CMS

ZK-5928-GE

LSE has links to the following:

• VMS compilers
Using LSE, you can write and compile your source code in one editing
session. The supported VMS compilers can process placeholders and
comments. In addition, compilers generate files that LSE reads when
correcting syntax errors in source code. Thus, you can write and compile
your code within a single editing session.

LSE's multiwindow capability enables you to review your errors while
examining the associated source code. Not only does this feature elim
inate tedious steps in the error-correction process, it also helps ensure
that you fix all the errors before recompiling.

Some compilers, such as VAX C and VAX Ada, provide you with sug
gested corrections for syntax errors. With LSE, it is easy for you to
incorporate the compiler's corrections or to make your own corrections.

Introduction 1-7

In addition, the compilers generate files that contain detailed informa
tion about your source code that SCA uses when performing queries.
Thus, your cross-reference information is available on an interactive
basis.

• VAX Performance and Coverage Analyzer (PCA)
LSE is integrated with the VAX Performance and Coverage Analyzer
(PCA) to simplify the tuning portions of software development. You
can invoke L~E from the analyzer portion of the VAX Performance and
Coverage Analyzer.

• VMS Debugger
You can invoke LSE from the VMS Debugger (debugger) so that errors
detected during a debugging session can be corrected in the original
source code file. This enables you to make corrections immediately.
When you invoke LSE from the debugger, you are positioned in LSE at
the line of source code that corresponds to your position in the debugging
session. When you finish making a correction, you are positioned back in
the debugger where you left off.

• VAXMAIL
You can use LSE as your default editor in MAIL by putting the following
command in your LOGIN.COM file:

$ DEFINE MAIL$EDIT CALLABLE_LSE

• VAX Notes
You can specify LSE as the editor that you want to use in Notes by
issuing the following Notes command:

NOTES> SET PROFILE /EDITOR=(LSE,CALL)

• VAX DATATRIEVE
You can specify LSE as the editor for VAX DATATRIEVE to use when
you issue a DATATRIEVE EDIT command by putting the following
command in your LOGIN.COM file:

$ DEFINE DTR$EDIT LSE

See Using VAXset for a more detailed description of how these software tools
work together to create an effective development environment.

1-8 Introduction

Part 1 Using LSE

This part contains tutorial information on using the VAX Language-Sensitive
Editor and includes the following:

• Performing editing tasks

Using windows and buffers

Working with files
)

Collapsing and expanding program source

• Using LSE/DECwindows

• Performing language-specific tasks

Using placeholders and tokens

Using. pseudocode and comments

Chapter 2

Introduction to LSE

This chapter is a brief introduction to the VAX Language-Sensitive Editor
(LSE). Section 2.1 provides an overview of LSE, including the features of
LSE. Section 2.2 describes how to invoke LSE, enter source code, and leave
LSE. Section 2.3 provides a sample editing session. Section 2.4 describes
how to compile source code within LSE. Section 2.5 describes how to invoke
LSE from the VMS Debugger and from the VAX Performance and Coverage
Analyzer. Section 2.6 describes the format of the LSE command line.

2.1 Overview

LSE is a multilanguage, advanced text editor that is layered on the VAX
Text Processing Utility (VAXTPU). LSE works with VAX languages and VMS
productivity tools to enhance program development.

With LSE, you can control your editing environment and use LSE's
knowledge of specific languages to develop programs quickly and accurately.

2.1.1 LSE Features

LSE provides the following features:

• Error correction and review
The error correction and review feature allows you to compile, review,
and correct compilation errors within a single editing session. LSE
provides an interface to the supported VMS compilers so that you
can perform compilations without leaving LSE. The compilers provide
LSE with compilation diagnostics in a way that allows you to review

Introduction to LSE 2-1

compilation errors in one editing window while displaying the related
source.in another window.

In addition, LSE provides a mechanism for interfacing non-Digital
language processors to the diagnostic review facility.

• Language-specific templates
LSE accesses a collection of formatted language constructs, called
templates, that provide keywords, punctuation, and placeholders for
each supported VAX. language. Templates provide a fast and efficient
way to sketch design ideas and enter source code.

LSE allows you to modify existing templates or define your own language
or text templates.

• Design support
LSE provides program design and development support. You can write
structured text in the form of pseudocode that describes the design of
the code before you write the actual program statements. LSE provides
a mechanism to preserve this design information in comments when you
enter the source code. In addition, LSE provides code-viewing features
that allow you to see more or less detail at a particular point in a
program. LSE and SCA provide a report tool that allows you to present
the overviews you select in a structured manner.

• Integrated programming environment
LSE is integrated into the VMS development environment. LSE is
invoked by using the DIGITAL Command Language (DCL). LSE works
with supported languages, SCA, VAX DEC/Code Management System
(CMS), the VMS Debugger (debugger), and the VAX Performance and
Coverage Analyzer (PCA) to provide a highly interactive environment.
This environment enables you to design, create and edit code, view
multiple source modules, compile programs, and review and correct
compile-time errors in one editing session.

You can invoke LSE directly from the debugger to correct source code
problems found during debugging sessions. In addition, you can invoke
LSE from the VAX Performance and Coverage Analyzer to correct
performance problems found during analyzing sessions.

• Online HELP Facility
LSE provides an online HELP Facility for information on unfamiliar
language constructs and routines. Help is also provided for all LSE's
commands and key definitions.

• Source code analysis
LSE's integration with VAX Source Code Analyzer (SCA) allows you to
search for specific information contained in your source files.

2-2 Introduction to LSE

SCA is a source code cross-reference and static analysis tool that
helps programmers familiarize themselves with complex systems. SCA
accesses source information generated by supported VMS compilers.
SCA allows you to move through this information and gain access to
related source files as necessary. You can find out how a program symbol
was declared, where a particular routine is called, or what module needs
to be recompiled.

• Source code management
An interface with VAX DEC/Code Management System (CMS) simplifies
the functions of program development.

You can issue all CMS commands within LSE. In addition, you can
request to fetch or reserve files directly from a CMS library when you
issue standard LSE file manipulation commands.

• LSE customization

With LSE, you can extend your editing environment to handle highly
specialized editing needs. LSE provides an interface to VAX.TPU.
VAXTPU is part of the VMS operating system. VAXTPU features include
a compiler and an interpreter, and procedures for screen management
and text manipulation. The VAXTPU language is block-structured and
provides looping, conditional, case, and assignment statements, as well
as many built-in procedures so you can perform more powerful editing
tasks.

• EVE/EDT keypads
LSE provides a SET MODE KEYPAD command that sets the key
definitions to be similiar to EVE or EDT.

• System Services and Run-Time Library templates
LSE provides templates for subroutine libraries, including the VMS
System Service library, Run-Time Library (RTL) (LIB$, STR$, SMG$),
and the Record Management System (VAX RMS). In addition, LSE
allows you to define templates for packages of subroutine libraries.

2.2 Getting Started

This section presents some general LSE concepts, including the following:

• Using tokens and placeholders

• Issuing commands

• Invoking LSE

• Invoking the online HELP Facility

Introduction to LSE 2-3

The best way to learn about LSE is to start using it. Section 2.3 guides you
through a sample editing session to familiarize you with the basic features
of LSE. You will learn how to invoke LSE, use templates to enter source
code, and leave LSE.

2.2.1 Understanding LSE Concepts

Before you start using LSE, you need to understand the concepts of tokens
and placeholders, which are language elements that have been predefined
for each of the supported languages. You can expand these elements into
templates for language constructs.

Tokens are reserved words or function names that you type into the
editing buffer and expand to provide templates for corresponding language
constructs. For example, you can type the keyword IF and then expand
it into a complete skeleton IF statement, with consistent indentation and
capitalization.

Placeholders are items surrounded by delimiters that are inserted into
the editing buffer by LSE when you expand other placeholders or tokens.
Placeholders are markers that indicate locations in the source code where
you must provide additional program text or choose from indicated options.

Placeholders are either required or optional. Required placeholders, indi
cated by braces ({}), represent places in the source code where you must
provide program text. Optional placeholders, indicated by brackets ([]),
represent places in the source code where you can either provide additional
constructs or erase the placeholder. For example, a required placeholder
might look like this:

{compilation_ unit}

You can expand, erase, or type directly over placeholders. When you type
over a placeholder, the placeholder is automatically removed and the text
you type is inserted into the buffer. When you erase a placeholder, the
placeholder is automatically deleted. However, if you erase a required
placeholder, LSE displays a message saying that the placeholder is required,
and asks if you want to continue the erase operation. When you press the
EXPAND key (CTRL/E) while the cursor is on a placeholder, one of three
events occurs:

• The placeholder is replaced automatically with a template consisting
of language constructs. This type of placeholder is called a nontermi
nal placeholder because it inserts a template into the buffer when
expanded.

2-4 Introduction to LSE

• Text appears in a separate window to aid you in supplying a value. This
type of placeholder is called a terminal placeholder because it does
not insert a template into the buffer when expanded. Instead, you must
supply the necessary text. You can press the spacebar to remove the
window.

• A menu appears that provides you with options that can be selected
and expanded into templates. This type of placeholder is called a menu
placeholder.

In any of these three cases, you may type the desired text over the place
holder, and the placeholder is erased automatically. When expanding a
menu placeholder, you can move through the options by using the up and
down arrow keys. To select an option, you press the EXPAND key, the
RETURN key, or the ENTER key. To exit from the menu without selecting
an option, you press the spacebar.

Some placeholders are automatically duplicated when expanded. These
placeholders are called list placeholders.

In addition, LSE provides pseudocode placeholders. Pseudocode place
holders are placeholders tha·t contain natural language text that expresses
design information. Pseudocode placeholders, unlike regular placeholders,
are not defined by LSE. LSE inserts pseudocode placeholder delimiters
into the editing buffer when you press the ENTER PSEUDOCODE key
(PFl-spacebar). You type the appropriate design information within the
delimiters. You can move pseudocode placeholder text to program comments.
See Chapter 5 for more details on using pseudocode.

You can construct a complete program by repeatedly expanding templates.
You do not have to continuously expand templates until you reach a terminal
placeholder. Rather, you may find it more appropriate to type in the desired
value yourself at a higher level. See Chapter 5 for additional information on
tokens and placeholders.

2.2.2 Issuing Commands

LSE provides the following two ways to issue commands:

• Keypad mode

• Command line mode

Introduction to LSE 2-5

When you invoke LSE, you are in keypad mode. In keypad mode, text that
you type is inserted into a buffer. Keypad, cursor, and control keys execute
LSE functions. Thus, you can press keys to perform editing functions rather
than typing commands on the command line. LSE binds commonly used
commands to certain keys to simplify editing. LSE provides access to both
the EDT and EVE keypads and commands. When you invoke LSE, the
keypad mode is set to the EDT lrnypad. You use the SET MODE KEYPAD
command to get the EVE keypad. If you are more comfortable with the
EVE keypad, you can put the SET MODE KEYPAD command in your
initialization file so that it will be set to EVE each time you invoke LSE.
(See the SET MODE command in the VAX Language-Sensitive Editor and
VAX Source Code Analyzer Reference Manual for details.) The EDT key
bindings are used in the examples in this manual.

Some LSE commands are not bound to keys. Therefore, they must be
issued in command line mode. There are two command line prompts: LSE
Command> and LSE>.

The LSE Command> prompt processes one command. After that command
is processed, LSE returns to keypad mode. There are two ways to get the
LSE Command> prompt:

• Press the DO key

• Press the COMMAND key (PF1-KP7)

The LSE Command> prompt appears near the bottom of the screen.

Alternatively, the LSE> prompt allows you to issue as many commands
as you want. To get the LSE> prompt, press CTRUZ. The LSE> prompt
appears near the bottom of the screen. To return to keypad mode, you can
press CTRUZ again or issue the CONTINUE command.

The prompts are in either insert or overstrike mode. The setting defaults
to the current setting of the terminal. In LSE/DECwindows, the default is
overstrike. You can change this setting by including the following commands
in an initialization file:

SET INSERT/BUFFER=$COMMANDS
SET INSERT/BUFFER=$PROMPTS

2-6 Introduction to LSE

2.2.3 Invoking LSE

The format for invoking the LSE command line is as follows:

$ LSEDIT [/qualifiers] [file-spec]

LSEDIT invokes LSE; /qualifiers specify command qualifiers; and file-spec
specifies the file to be edited. It must be a VMS file specification.

If you do not specify a file name or file type in your file specification, LSE
uses the file name or file type specified in your last LSEDIT command if
you issued the EXIT command to end that editing session. Otherwise, LSE
creates a new buffer called $MAIN and prompts you for a file name when
you exit from LSE if you have added text to the $MAIN buffer.

2.2.4 Getting Help

To get help at any time during your editing session, do any of the following:

• To see a diagram of the keypad, press the HELP key (PF2).

• To see a list of the keys and their descriptions, press CTRL/Z to get the
LSE> prompt, and type the SHOW KEY command.

• To see a list of LSE commands and their explanations, press CTRL/Z to
get the LSE> prompt, and type the HELP command.

• To see a list of all the predefined tokens or placeholders for the language
of the current buffer, press CTRL/Z to get the LSE> prompt, and type
the SHOW TOKEN or SHOW PLACEHOLDER command.

• To get language-specific help on a particular keyword or placeholder,
position the cursor on the keyword or placeholder and press PF1-PF2.
Help is not available for all keywords and placeholders.

2.3 Sample Session

The following sample editing session helps you experiment with LSE. This
editing session uses a sample language, called EXAMPLE, that is supplied
with LSE. The editing session highlights the following:

• Expanding nonterminal placeholders

• Deleting placeholders

• Typing over list placeholders

• Expanding menu placeholders

Introduction to LSE 2-7

Table 2-1:

Command

EXPAND

UNEXPAND

• Expanding tokens

• Expanding terminal placeholders

• Entering pseudocode placeholders

• Moving pseudocode placeholders to comments

All required placeholders are indicated by braces ({}) and optional language
elements are indicated by brackets ([]). For this example, all commands are
referred to by the command name and corresponding EDT key binding.

You can use several commands for manipulating tokens and placeholders.
Table 2-1. lists these commands and their default key bindings. Table 2-2
lists the manipulation commands and their functions.

Commands for Token and Placeholder Manipulation

EDT EVE VTlOO EVE VT200
Keypad Keypad Keypad

CTRL/E or CTRU/ CTRU/ CTRUI

PFl-CTRUE PFl-CTRU/ PFl-CTRU/
or PFl-CTRU/

ERASE PLACEHOLDER/FORWARD CTR UK CTRUK CTRUK

UNERASEPLACEHOLDER PFl-CTRUK PFl-CTRUK PFl-CTRUK

GOTO PLACEHOLDER/FORWARD CTRL/N CT RUN CTRUN

GOTO PLACEHOLDER/REVERSE CTRL/P CTRUP CTRUP

ENTER PSEUDOCODE PFl-spacebar PFl-spacebar PFl-spacebar

ENTER COMMENT/BLOCK PFl-B PFl-B PFl-B

ENTER COMMENT/LINE PFl-L PFl-L PFl-L

Table 2-2: Manipulation Commands and Their Functions

Command

EXPAND

2-8 Introduction to LSE

Function

The EXPAND key (CTRUE) replaces a placeholder at
the current cursor position with the appropriate body
of text or code. When you press the EXPAND key after
typing a token name, the token expands in much the
same manner as a placeholder.

(continued on next page)

Table 2-2 (Cont.): Manipulation Commands and Their Functions

Command

UNEXPAND

ERASE PLACEHOLDER/FORWARD

UNERASEPLACEHOLDER

GOTO PLACEHOLDER/FORWARD

GOTO PLACEHOLDER/REVERSE

ENTER PSEUDOCODE

ENTER COMMENT/BLOCK

ENTER COMMENT/LINE

Function.

The UNEXPAND key (PFl-CTRUE) reverses the effect
of the last EXPAND command.

The ERASE PLACEHOLDER/FORWARD key (CTRUK)
allows you to remove optional placeholders that are not
necessary for your program.

The UNERASE PLACEHOLDER key (PFl-CTRUK)
restores the text deleted by the corresponding ERASE
PLACEHOLDER command that you most recently
executed.

The GOTO PLACEHOLDER/FORWARD key (CTRUN)
places you on the next placeholder.

The GOTO PLACEHOLDER/REVERSE key (CTRUP)
allows you to move back to the previous placeholder.

The ENTER PSEUDOCODE key (PFl-spacebar) allows
you to enter pseudocode placeholders.

The ENTER COMMENT/BLOCK key (PFl-B) allows
you to move text from a pseudocode placeholder into a
block comment.

The ENTER COMMENT/LINE key (PFl-L) allows you
to move text from a pseudocode placeholder into a line
comment.

To invoke LSE and start the sample session on your screen, type the
following:

$ LSEDIT USER.EXAMPLE

The placeholder {program_unit} appears at the top of your screen. This
placeholder is called the initial string because it is the first language
element that LSE puts into a newly created buffer. Figure 2-1 shows the
initial string {program_ unit}.

Introduction to LSE 2-9

Figure 2-1 : Initial String Placeholder in a New Buffer

~ I

File Edit Format Navigate View Display Customize Help

{prograM_unit}. 0
[End of file] ,...,

'-'
~

~ J~

Creating file DEV$: [USER]USER.EXAMPLE;

2.3.1 Expanding Nonterminal Placeholders

To experiment with placeholders and tokens, use the following steps:

1. Press CTRIJE (the EXPAND key) while the cursor is on {program_unit}.

The initial string expands into a template of language constructs. The
cursor is now positioned on [procedure level comments]. Figure 2-2
shows the resulting screen.

2-10 Introduction to LSE

Figure 2-2: Expanding a Nonterminal Placeholder

:
I

File Edit Format Navigate View Display Customize Help

-- [!rocedure level cof'lll\'lents] '<): ,..,
PROCEDURE {procedure_na~e} ([paral'leter list] ...) IS

[variable-declaration] ... ;

BEGIN

[state~ent] ... ;

END {procedure-na~e};

[End of file]

~
4 ~

Creating file DEV$: [USER]USER.EXAMPLE;

2. Press CTRIJN (the GOTO PLACEHOLDER/FORWARD key) to move the
cursor to {procedure_name}.

3. Type the text sample over {procedure_name}.

4. Press CTRIJN (the GOTO PLACEHOLDER/FORWARD key) to move the
cursor to ([parameter list] ...).

Notice that as soon as you move the cursor from the text, the second occur
rence of {procedure_name} is replaced with the text sample. This is an exam
ple of the AUTO_SUBSTITUTE feature. (See the DEFINE PLACEHOLDER
command in the VAX Language-Sensitive Editor and VAX Source Code
Analyzer Reference Manual for details.) Figure 2-3 shows the resulting
screen.

Introduction to LSE 2-11

Figure 2-3: Typing over a Placeholder

i~ I Jjlfill
File Edit Format Navigate View Display Customize Help

-- [procedure level coJYu'lents] 0
r-

'PROCEDURE saMple ((l!araMeter list] ...) IS

[variable-declaration] ... ;

BEGIN

[stateMent] ... ;

END saMple;

[End of file]

'-'
Q'

~ :J ~

Creating file DEV$: [USER]USER.EXAMPLE;

2.3.2 Deleting Placeholders

1. Press CTRL/K (the ERASE PLACEHOLDER/FORWARD key) to remove
([parameter list] . . .).

The cursor is now positioned on [variable_declaration]

2. Press CTRLJE (the EXPAND key).

Figure 2-4 shows the resulting screen.

2-12 Introduction to LSE

Figure 2-4: Using a List Placeholder

ilf I Jjffill
File Edit Format Navigate View Display customize Help

-- [procedure level COl'll'lents] ~ ,...
PROCEDURE Sal'lple IS

dldentifier} ... : {type} := [initiaLvalue] ... ;
[variable-declaration] ... ;

BEGIN

[statel'lent] ... ;

END sal'lple;

[End of file]

'-
Q

~ ~

Creating file DEV$: [USER]USER.EXAMPLE;

2.3.3 Typing over List Placeholders

The cursor is now positioned on the list placeholder {identifier} A list
placeholder, indicated by the ellipsis (. . .), is automatically duplicated
whenever you type over it or expand it.

1. Type the letter a over {identifier}

2. Press CTRIJN (the GOTO PLACEHOLDER/FORWARD key) to move the
cursor to [identifier]

3. Type the letter b over [identifier]

4. Press CTRIJN (the GOTO PLACEHOLDER/FORWARD key) to move the
cursor to [identifier]

5. Press CTRUK (the ERASE PLACEHOLDER/FORWARD key) to remove
[identifier]

Figure 2-5 shows the resulting screen.

Introduction to LSE 2-13

Figure 2-5: Typing over a List Placeholder

:r.
~ I

File Edit Format Navigate View Display Customize Help

-- [procedure le ve 1 coMl"len ts] 0
~

PROCEDURE saMple IS

a, b : {t1:1pe} :• [initial_value] ... ;
[variable_declaration] ... ;

BEGIN

[stateMent] ... ;

END SaMple;

[End of file]

,_
Q

4 ~

Creating file DEV$: [USER]USER.EXAMPLE;

2.3.4 Expanding Menu Placeholders

The cursor is now on {type}.

1. Press CTRUE (the EXPAND key).

Figure 2-6 shows the resulting screen.

2-14 ·Introduction to LSE

Figure 2-6: Using a Menu Placeholder

File Edit Format Navigate View Display Customize

-- [procedure level coMMents]

PROCEDURE saMple IS

a, b : £l'lype} := [initial_value] ... ;
[variable_declaration] ... ;

BEGIN

[stateMent] ... ;

END saMple;

[End of file]

I > "INTEGER" Integer data type
"BOOLEAN" Boolean data type

Choo~e one or pre~s HELP ~e~

Creating file DEV$: [USER]USER.EXAMPLE;

Help

A menu of options appears at the bottom of the screen. The options are
INTEGER and BOOLEAN. The text after each menu option describes
what will be inserted into your buffer if you select that option.

The up and down arrow keys allow you to move the indicator to the
desired option in the menu.

2. Press CTRL/E (the EXPAND key) or the ENTER or RETURN key ~o
select INTEGER from the menu.
The menu is removed, and option INTEGER is inserted into the buffer.
The cursor is now positioned on [initial_ value] Figure 2-7 shows
the resulting screen.

Introduction to LSE 2-15

Figure 2-7: Selecting a Menu Item

~ VAX Language-Sensitive Editor [!;][!I]
File Edit Format Navigate View Display Customize

-- [procedure level coMMents]

PROCEDURE saMple IS

a, b : INTEGER : = [initiaLvalue],, , ;
[variable_declaration] ... ;

BEGIN

[stateMent],,,;

END saMple;

[End of file]

Creating file DEV$: [USER]USER.EXAMPLE;

Help

3. Press CTRL/N (the GOTO PLACEHOLDER/FORWARD key) twice to
move the cursor to [statement] ...

4. Press CTRUE (the EXPAND key).

Figure 2-8 shows the resulting screen.

2-16 Introduction to LSE

Figure 2-8: Using Tokens in Menu Placeholder

File Edit Format Navigate View Display Customize

-- [procedure level COl"ll"lents]

PROCEDURE sal"lple IS

a, b: INTEGER:= [initiaLvalue] ... ;
[variable-declaration] ... ;

BEGIN

rltatel"lent] ... ;

END Sal"lple;

[End of file]

I
> ASSIG.NMENT : Assignl"lent statel"lent

IF : .IF {expression} THEN ...
LOOP : [loop_ id] : LOOP . . . END LOOP;
EXIT : EXIT [loop_ id] WHEN ...

Choose one or pres~ HELP key

Creating file DEV$: [USER]USER.EXAMPLE;

Help

(>

A menu of options appears at the bottom of the screen. The options
ASSIGNMENT and IF are tokens that you can expand into templates.
The text after each token describes what will be inserted into your buffer
if you select that token.

5. Use the down arrow key to move to the IF token.

6. Press CTRL/E (the EXPAND key) or the ENTER or RETURN key while
the indicator is on the IF token.

Figure 2-9 shows the resulting screen.

Introduction to LSE 2-17

Figure 2-9: Selecting a Token from a Menu

~ I Jjl@]
File Edit Format Navigate View Display Customize Help

-- [procedure level COMMents] 6
!""I

PROCEDURE saMple IS

a, b : INTEGER := [initiaLvalue] ... ;
[variable_declaration] ... ;

BEGIN

IF {boolean_exp}
THEN

{stateMent} ... ;
[ELSE {stateMent} ...]
END IF;
[stateMent] ... ;

END saMple;
'-

[End of file] Q

~(:J~

Creating file DEV$: [USER]USER.EXAMPLE;

The cursor is now positioned on {boolean_exp}.

2.3.5 Expanding Tokens

1. Type the expression a= b.

This replaces {boolean_ exp}.

2. Press CTRL/N (the GOTO PLACEHOLDER/FORWARD key) to position
the cursor on the first list placeholder {statement}

3. Type the text assign.

4. Press CTRLJE (the EXPAND key).

You do not have to type the entire token name ASSIGNMENT; with LSE,
you can abbreviate token names.

In this case, you are typing the token assignment over the {statement} ...
placeholder. However, a token name does not have to be typed over a
placeholder. You can type a token name anywhere in the editing buffer and
press CTRL/E to produce the template for that token.

2-18 Introduction to LSE

The separator text, a semicolon, is automatically placed after the assignment
statement. Figure 2-10 shows the resulting screen.

Figure 2-10: Expanding a Token

~ I

File Edit Format Navigate View Display Customize Help

-- [procedure level COl'll'lents] 6
l""1

PROCEDURE sal'lple IS

a, b : INTEGER : .. [initial_value] ... ;
[variable-declaration] ... ;

BEGIN

IF a = b
THEN

{identifier} : = {expression};
[statel'lent] ... :

[ELSE {stateMent} ...]
END IF;
[stateMent] ... ;

END Sal'lple;
~

4.- J~

Creating file DEV$:[USER]USER.EXAMPLE;

2.3.6 Expanding Terminal Placeholders

The cursor is now positioned on the terminal placeholder {identifier}. If
you press CTRL/E while positioned on a terminal placeholder, LSE displays
information to help you supply the necessary text.

1. Press CTRL/E (the EXPAND key) to see the information for {identifier}.

Figure 2-11 shows the resulting screen.

Introduction to LSE 2-19

Figure 2-11: Expanding a Terminal Placeholder

File Edit Format Navigate View Display Customize

PROCEDURE saMple IS

a, b: INTEGER:= [initiaLvalue] ... ;
[variable_declaration] ... ;

BEGIN

IF a = b
THEN

{Ddentifier} := {expression};
[stateMent] ... ;

[ELSE {stateMent} ...]
END IF;
[stateMent]. , , ;

END saMple;

[End of file]
- A string of letters and digits starting with a letter.

Pre5~ SPACE to lea e or pre~s HELP fe~

Creating file DEV$: [USER]USER.EXAMPLE;

2. Press the spacebar to remove the information about {identifier}

2.3. 7 Entering Pseudocode

LSE provides pseudocode placeholders that enable you to enter design ·
information into your source files. To enter pseudocode, do the following:

1. Press CTRLJN (the GOTO PLACEHOLDER/FORWARD key) twice to
position the cursor on the [statement]... placeholder.

2 .. Press PFl-spacebar (the ENTER PSEUDOCODE key).

LSE inserts the special brackets « and » into the buffer that delimit
pseudocode placeholders and positions the cursor within the delimiters.

3. Type the text compute the total at the cursor position.

2-20 Introduction to LSE

Figure 2-12 shows the resulting screen.

Figure 2-12: Typing Pseudocode

~ I b!llill
File Edit Format Navigate View Display Customize Help

re;
PROCEDURE eaMPle IS .-

a, b : INTEGER :- [initiaLvalue], .. ;
[variable_declaration],, .;

BEGIN

IF a = b
THEN

{identifier} := {expreeeion};
«coMpute the to tall;
[etateMent], .. ;

[ELSE {etatel"lent}. , ,]
END IF;
[etateMent] ... ;

END eaMple;
-Q-

4L J~

Creating file DEV$: [USER]USER.EXAMPLE;

2.3.8 Moving Pseudocode to Comments

With LSE, you can move pseudocode placeholder text to program comments
to preserve design information when implementing your programs. To move
text from a pseudocode placeholder to a block comment, do the following:

1. Press PFl-B (the ENTER COMMENT/BLOCK key) while positioned on
the pseudocode placeholder.

LSE places the pseudocode placeholder text in a comment. In addition,
LSE inserts the' {tbs} placeholder into the buffer to provide an easy way
to enter your code.

2. Type the text total = subtotal + 10 on the {tbs} placeholder.
Notice that the {tbs} placeholder is removed when you type over it.

Introduction to LSE 2-21

Figure 2-13 shows the resulting screen.

Figure 2-13: Pseudocode to Comments

~ I ::Jjlfill
File Edit Format Navigate View Display Customize Help

<>
PROCEDURE saMple IS ,Q

a, b : INTEGER := [initial-value] ... ;
[variable-declaration], .. ;

BEGIN

IF a = b
THEN

{identifier} := {expression};
-- COMpute the total
--
total = subtotal + 101
[stateMent] ... ;

[ELSE {stateMent} ...]
END IF; 'r-1
[stateMent] ... ; u

Q

4 ~

Creating file DEV$: [USER] USER.EXAMPLE;

2.3.9 Ending the Sample Session

To leave LSE, press CTRUZ to get the LSE> prompt. If you want to save
modifications to the file, type the EXIT command. If you do not want to save
the file or any modifications, type the QUIT command.

When you use the EXIT command, LSE remembers the original input file
specification and the current cursor position. Thus, you can return to editing
a file at exactly the same position by typing the LSEDIT command without
specifying any input file parameters. This information is lost, however, when
you log out.

2-22 Introduction to LSE

2.4 Compiling Source Code

While writing your program, you can use the COMPILE and REVIEW
commands to compile your code and review compilation errors without
leaving the editing session. Supported VMS compilers generate a file of
compile-time diagnostic information that LSE can use to review compilation
errors. The diagnostic information is generated with the /DIAGNOSTICS
qualifier. ·

The COMPILE command issues a DCL command in a subprocess to invoke
the appropriate compiler. LSE checks to see if the language supports
diagnostics capabilities. If so, LSE appends the /DIAGNOSTICS qualifier to
the COMPILE command.

For example, if you issue the COMPILE command while in the buffer
TEST.ADA, the resulting DCL command is as follows:

$ADA DEV: [DIRECTORY]TEST.ADA/DIAGNOSTICS=DEV: [DIRECTORY] TEST.DIA

LSE supports all of the compiler's command qualifiers as well as user
supplied command procedures. You can specify DCL qualifiers, such as
/LIBRARY, when invoking the compiler from LSE. In addition, you can
specify the /DESIGN qualifier to process designs. For example, to invoke the
compiler with the /DESIGN qualifier, type the following command:

LSE> COMPILE $/DESIGN

The REVIEW command displays any diagnostic messages that resulted
from a compilation. LSE displays the compilation errors in one window,
with the corresponding source code displayed in a second window. (See the
REVIEW command in the VAX Language-Sensitive Editor and VAX Source
Code Analyzer Reference Manual for more details.)

Multiwindow capability allows you to review your errors while examining
the associated source code. This eliminates tedious steps in the error
correction process and helps ensure that all the errors are fixed before
looping back through the compilation process.

LSE provides several commands to help you review errors and examine your
source code. Table 2-3 lists these commands and their default key bindings.
Table 2-4 lists the review commands and their functions.

Introduction to LSE 2-23

Table 2-3: Commands for Reviewing Compilation Errors

EDT EVE VTlOO EVE VT200
Command Keypad Keypad Keypad

COMPILE/REVIEW

COMPILE

REVIEW

END REVIEW

GOTO SOURCE CTRL/G CTRL/G CTRL/G

NEXT STEP CTRL/F CTRL/F CTRL/F

PREVIOUS STEP CTRL/B CTRL/B CTRL/B

Table 2-4: Review Commands and Their Functions

Command

COMPILE/REVIEW

COMPILE

REVIEW

END REVIEW

GOTO SOURCE

NEXT STEP

PREVIOUS STEP

2-24 Introduction to LSE

Function

The COMPILE/REVIEW command compiles the con
tents of a buffer and then displays a set of diagnostic
messages that results from the compilation.

The COMPILE command compiles the contents of a
buffer.

The REVIEW command selects and displays a set of
diagnostic messages that results from a compilation.

The END REVIEW command ends an LSE REVIEW
session.

The GOTO SOURCE key (CTRL/G) displays the
source corresponding to the current diagnostic item.

The NEXT STEP key (CTRL/F) moves the cursor
forward to the next error.

The PREVIOUS STEP key (CTRL/B) moves the
cursor back to the previous error.

The following example demonstrates how to compile and review errors
within your editing session. Note that this example and the sample
language, called EXAMPLE, do not have compiler support. Therefore, when
experimenting with the COMPILE command, you should construct your own
example using one of the languages that has compiler support.

If you are editing a program and you want to compile it, use the following
steps:

1. Press CTRUZ to get the LSE> prompt and type the COMPILE
command.

Figure 2-14 shows the resulting screen.

Figure 2-14: Issuing the COMPILE Command

~ VAX Language-Sensitive Editor ~~

File Edit Format Navigate View Display Customize

PROCEDURE test (a : INTEGER) IS

b : BOOLEAN;

BEGIN

b : = true;
IF b
THEN

b := a;
ELSE

b := false
END IF;

END test;
[End of file]

Help

While the compilation is running, you may continue to use LSE to edit.
When the compilation ends, a message appears in the message buffer.

2. Type the REVIEW command at the LSE> prompt.
The REVIEW command instructs LSE to review the compilation errors
generated by the COMPILE command. Figure 2-15 shows your screen
with the compilation errors in the top window and the source code in the
bottom window.

Introduction to LSE 2-25

Figure 2-15: Result of Issuing the REVIEW Command

~ VAX Language-Sensitive Editot' ~!5i]
File Edit Format Navigate View Display customize Help

Line 12: b := false
XEXAM-E-INSSEMI. Inserted";" at end of line

Line 1: PROCEDURE test (a : INTEGER) IS
Line 3: b : BOOLEAN;
Line 10: b :a a;
iEXAM-E-ASSIGNNERESTYP, Result t~pe BOOLEAN in predefined STANDARD of variable '<:>
<) ~

PROCEDURE test (a : INTEGER) IS

b : BOOLEAN;

BEGIN

<)

b := true;
IF b
THEN

~

Starting coMpilation: EXAMPLE DEV$: [USER]TEST.EXAMPLE;1 /DIAGNOSTICW=DEV$: [USER•
CoMpilation of buffer TEST.EXAMPLE coMpleted with error status

3. Press CTRUZ to move from the LSE> prompt to the buffer and begin
reviewing the errors.

You can use the NEXT STEP key (CTRUF) and the PREVIOUS STEP
key (CTRUB) to step from error to error in the $REVIEW buffer. If you
want to correct the source code associated with a particular error, press
the GOTO SOURCE key (CTRUG) while the cursor is positioned on that
error.

In addition to the NEXT STEP and PREVIOUS STEP commands, you
can use any cursor movement keys to move around in the $REVIEW
buffer. You can type the GOTO SOURCE command to go to the associ
ated source code. Thus~ you can examine other lines of code associated
with an error.

4. Press CTRUG (the GOTO SOURCE key) to correct the source code
associated with the first error.
Figure 2-16 shows the resulting screen.

2-26 Introduction to LSE

Figure 2-16: GOTO SOURCE Command

~ VAX Language-Sensitive Editor ~~

File Edit Format Navigate View Display Customize Help

Line 12: b := false
XEXAM-E-INSSEMI, Inserted ";" at end of line

Line 1: PROCEDURE test (a : INTEGER) IS
Line 3: b : BOOLEAN;
Line 10: b := a;
XEXAM-E-ASSIGNNERESTYP, Result type BOOLEAN in predefined STANDARD of variable <:>'
4 ~

b : = true;
IF b
THEN

b :• ai

ELSE
b := falsell

END IF;

Starting COMpilation: EXAMPLE DEV$: [USER]TEST.EXAMPLE;1 /DIAGNOSTICW=DEV$: [USER•
CoMpilation of buffer TEST.EXAMPLE coMpleted with error status

Corrections accompany some errors. For example, in Figure 2-16, the
compiler supplied a correction for the missing semicolon. You can accept
or reject the correction.

5. Type Y after the following prompt to accept the correction:

Keep the indicated correction [Y OR NJ?

6. Press CTRIJF (the NEXT STEP key) to move to the next error.

7. Press CTRI.JG (the GOTO SOURCE key).

Figure 2-17 shows the resulting screen.

Introduction to LSE 2-27

Figure 2-17: NEXT STEP Command

~ V,\X Language-Sensitive Editor ~15i]

File Edit Format Navigate View Display Customize Help

6
Line 1: PROCEDURE test (a : INTEGER) IS ~
Line 3: b : BOOLEAN;

XEXAM-E-ASSIGNNERESTYP, Result type BOOLEAN in predefined STANDARD of variable
b at line 3 is not the saMe as type INTEGER in predefined STANDARD of
subprograA 'in' forMal a at line 1

IF b
THEN

ELSE
b := a;

b : • false;
END IF;

END test;
[End of file]

Starting coMpilation: EXAMPLE DEV$: [USER]TEST.EXAMPLE;1 /DIAGNOSTICW=DEV$: [USER•
CoMpilation of buffer TEST.EXAMPLE coMpleted with error status

'O'

Notice that there are several source lines displayed with this error in the
$REVIEW buffer.

8. Press PFl-up arrow (the PREVIOUS WINDOW key) to go to the
$REVIEW buffer.

9. Press the up arrow key to move the cursor to line 3: b: BOOLEAN;.

Notice that line 10 is highlighted and the cursor moved to the declara
tion of b.

10. Press CTRUG (the GOTO SOURCE key). Line 3 is now highlighted.

Figure 2-18 shows your screen with the cursor on the declaration of b.

2-28 Introduction to LSE

Figure 2-18: GOTO SOURCE Command

~ VAX Language-Sensitive Editor mm
File Edit Format Navigate View Display Customize Help

Line 1: PROCEDURE test (a : INTEGER) IS ~

Line 10: b := a;
XEXAM-E-ASSIGNNERESTYP, Resuit type BOOLEAN in predefined STANDARD of variabie

b at iine 3 is not the saAe as type INTEGER in predefined STANDARD of
subprograA 'in' forAai a at iine 1

PROCEDURE test (a : INTEGER) IS

!!! : BOOLEAN;

BEGIN

b := true;
IF b
THEN

Starting coMpilation: EXAMPLE DEV$: [USER]TEST.EXAMPLE;1 /DIAGNOSTICW=DEV$: [USER+
CoMpilation of buffer TEST.EXAMPLE coMpleted with error status

'O

When you finish correcting your program, you can return to a single
window containing the source code.

11. Press CTRL/Z to get the LSE> prompt and type the END REVIEW
command.

2.5 Invoking LSE from VMS Debugger and from VAX
Performance and Coverage Analyzer

While in the VMS Debugger (debugger) or the VAX Performance and
Coverage Analyzer (PCA), you can invoke LSE to edit your code.

The command syntax to invoke LSE from the debugger or PCA is as follows:

DBG> EDIT [/EXIT] [[module-name\] line-number]

LSE positions the cursor at the line in the file that corresponds to the
specified module and line in the debugger or the VAX Performance and
Coverage Analyzer. The default file and line are taken from the current
source display.

Introduction to LSE 2-29

The rules for specifying the module-name and line-number qualifiers are as
follows.

• If both module-name and line-number are specified, their values
determine the module and line at which the file is positioned in LSE.

• If only line-number is specified, the module is assumed to be the module
of the current source display.

• If neither module-number nor line-number is specified, the module is
assumed to be the module of the current source display, and the line
number is assumed to be the central line in the window of that display.

When you invoke LSE from the debugger or PCA, a subprocess is spawned
for the editing session. Control automatically returns to the debugger or the
VAX Performance and Coverage Analyzer after the editing is completed.

You use the edit command to tell LSE exactly what file you are editing. The
EDIT command also checks the file in the debugger or the VAX Performance
and Coverage Analyzer source display to see if it is the most recent version.
LSE always edits the most recent version of the file. If the displayed version
is not the most recent version, LSE issues an error message.

When debugging and editing code, it is faster to use the EDIT/EXIT
command at the DBG> prompt rather than returning to the debugger and
typing the EXIT command. This is useful when only minor editing must be
done before recompiling.

2.6 LSE Command Line

This section describes the format of the LSE command line and includes
detailed descriptions of each command line qualifier.

The LSEDIT command invokes LSE. The LSEDIT command has the
following form:

LSEDIT [/qualifiers] [file-spec]

/qualifiers
Specifies LSEDIT command qualifiers.

file-spec
Specifies the file to be edited. It must be a VMS file specification. LSE
uses the setting of the SET SOURCE_DIRECTORY command or the
corresponding LSE$SOURCE logical name to resolve the file specification.

2-30 Introduction to LSE

LSE reads the file into a buffer if the file exists. The buffer name is taken
from the name and type of the file specification in the command line. The
file type determines the language for the buffer. For example, .FOR is the
file type for FORTRAN, .PLI is the file type for PL/I, and .PAS is the file
type for Pascal. If the file does not exist, it is created when you use the
EXIT command to leave LSE.

If you do not specify a file name or file type in your file specification, LSE
uses the file name or file type specified in your last LSEDIT command,
provided you issued the EXIT command to end that editing session.
Furthermore, the cursor is positioned at the same place as when you last
left LSE. The file name, type, and position are collectively called the current
'file information. The current file information is updated only when you
use the EXIT command to leave LSE. If you use the /NOCURRENT_FILE
qualifier, LSE does not use the file specification from the previous LSEDIT
command as the input file specification. The QUIT command or CTRUY
does not change the current file information.

2.6.1 LSE Command Line Qualifiers

You can use several command line qualifiers to provide additional informa
tion to LSE on how to handle your files. Table 2-5 lists these command
line qualifiers. Detailed descriptions of the qualifiers and their defaults,
indicated by (D), follow the table.

Table 2-5: LSE Command Line Qualifiers

Qualifier

/[NO]COMMAND=file-spec

/[NO]CREATE

/[NOJCURRENT_FILE

/[NOJDEBUG

/[NOJDISPLAY

/[NOJENVIRONMENT=file-spec-list

/[NO]INITIALIZATION =file-spec

/[NOJINTERFACE

/[NOJJOURNAL[=file-spec]

Default

See text

/CREATE

/CURRENT_FILE

/NO DEBUG

/DISPLAY =CHARACTER_ CELL

See text

See text

nNTERFACE=CHARACTER_CELL

/JOURNAL

(continued on next page)

Introduction to LSE 2-31

Table 2-5 (Cont.): LSE Command Line Qualifiers

Qualifier

/LANGUAGE=language

/[NOJMODIFY

Default

/[NOJOUTPUT[=file-spec] /OUTPUT

/[NOJREAD_ONLY

/[NOJRECOVER /NO RECOVER

/[NOJSECTION=file-spec /SECTION =LSE$SECTION

/START _POSIT! ON =(line,character)

/[NOJSYSTEM_ENVIRONMENT /SYSTEM_ENVIRONMENT=LSE$SYSTEM_

/[NOJWRITE

/COMMAND:file-spec
/NOCOMMAND

ENVIRONMENT

Specifies a file containing VAXTPU statements to be executed as part of LSE
initialization.

If you specify the /NOCOMMAND qualifier, LSE does not use a VAXTPU
initialization command file. (See the VAX Text Processing Utility Reference
Manual for more information.)

You can define the logical name LSE$COMMAND to point to a file contain
ing VAXTPU statements. If neither the /COMMAND nor /NOCOMMAND
qualifier appears on the command line, LSE attempts to translate the logical
name LSE$COMMAND. If it has a translation, that value is used in the
same way as the /COMMAND qualifier value.

/CREATE (D)
/NOCREATE
Controls whether LSE creates a new file when the specified input file is not
found. By default, LSE provides a buffer in which to create the file. When
you exit from LSE or write out the contents of the buffer with the WRITE or
COMPILE commands, LSE creates a new file with the input file specification
in the appropriate directory.

When you specify the /NOCREATE qualifier on the LSE command line and
the name of a file to edit, and the named file does not exist, LSE displays an
error message and places you in a buffer called $MAIN.

2-32 Introduction to LSE

/CURRENT_FILE (D)
/NOCURRENT _FILE
Specifies whether or not LSE uses the last file edited as the input file
specification if no file is specified on the command line.

/DEBUG
/NODEBUG (D)
Specifies whether LSE loads, compiles, and executes a file implementing
a VAXTPU debugger. If /DEBUG is specified, LSE reads, compiles, and
executes the contents of a debugger file before executing the procedure
TPU$INIT_PROCEDURE and before executing the command file. (For
more information on VAXTPU's initialization sequence, see the VAX Text
Processing Utility Manual.)

By default, LSE does not load a debugger. If you specify that a debugger
is to be loaded but do not supply a file specification, LSE loads the file
SYS$SHARE:LSE$DEBUG.TPU. (For more information on how to use the
default VAXTPU debugger, see the VAX Text Processing Utility Manual.)

To use a debugger file other than the default, use the /DEBUG qualifier and
specify the device, directory, and file name of the debugger to be used. If you
specify only the file name, LSE searches SYS$SHARE for the file. You can
define the logical name LSE$DEBUG to specify a file containing a debugger
program. Once you define this logical name, if you use /DEBUG without
specifying a file, LSE calls the file specified by LSE$DEBUG.

/DISPLAY:CHARACTER_CELL (D)
/DISPLAY:DECWINDOWS
/DISPLAY =screen_manager _filespec
/NO DISPLAY
Specifies which screen manager you want to run.

The /DISPLAY command qualifier is optional. By default, LSE uses
the character-cell screen manager. As an alternative to the /DISPLAY
qualifier, you can define the logical name LSE$DISPLAY_MANAGER
as DECWINDOWS, CHARACTER_CELL, or as a screen-manager file
specification.

If you specify /DISPLAY =CHARACTER_ CELL, LSE uses the character-cell
screen manager, which runs in a DECterm (or VWS) terminal emulator or
on a physical terminal.

If you specify /DISPLAY =DECWINDOWS, LSE uses the DECwindows
screen manager, which creates a DECwindows window in which to run LSE.

You cannot use the /NODISPLAY qualifier if the logical name LSE$DISPLAY_
MANAGER is pointing to the DECwindows window manager.

Introduction to LSE 2-33

/ENVIRONMENT :file-spec-list
/NOENVIRONMENT(D)
Specifies the name of one or more binary environment files containing LSE
language, token, placeholder, alias, or package definitions. LSE reads in
these definitions as part of the LSE startup. If you specify more than one
file, you must enclose the files in parentheses and separate them with
commas.

If definitions or deletions of items appear in more than one file, the definition
that appears in the file listed first takes precedence.

SYS$LIBRARY: is the default device. The default file type is .ENY.

The logical name LSE$ENVIRONMENT is an alternative to the
/ENVIRONMENT command qualifier. If the /ENVIRONMENT or
/NOENVIRONMENT qualifier does not appear on the command line,
LSE attempts to translate the logical name LSE$ENVIRONMENT. If it has
a translation, the value is used in the same way as the /ENVIRONMENT
qualifier value. LSE translates the first ten indexes of the logical name
LSE$ENVIRONMENT

See the SAVE ENVIRONMENT command in the VAX Language-Sensitive
Editor and VAX Source Code Analyzer Reference Manual for information on
using environment files.

/INITIALIZATION:file-spec
/NOINITIALIZATION
Specifies the name of a file containing a sequence of LSE commands to
be executed as part of the ,LSE startup. Usually this file contains the
occurrences of the DEFINE KEY and DEFINE COMMAND commands.

The logical name LSE$INITIALIZATION is an alternative to the
/INITIALIZATION qualifier. If /INITIALIZATION or /NOINITIALIZATION
does not appear on the command line, LSE attempts to translate the logical
name LSE$INITIALIZATION. If it has a translation, the value is used in
the same way as the /INITIALIZATION qualifier value.

/INTERFACE:CHARACTER_CELL (D)
/INTERFACE:DECWINDOWS
/INTERFACE=screen_manager_filespec
Specifies which screen manager you want to run.

The /INTERFACE qualifier is optional. By default, LSE uses the character
cell screen manager. As an alternative to the /INTERFACE qualifier, you
can define the logical name LSE$DISPLAY_MANAGER as DECWINDOWS,
CHARACTER_ CELL, or ~s a screen-manager file specification.

2-34 Introduction to LSE

If you specify /INTERFACE=CHARACTER_CELL, LSE uses the character
cell screen manager, which runs in a DECterm (or VWS) terminal emulator
or on a physical terminal.

If you specify /INTERFACE=DECWINDOWS, LSE uses the DECwindows
screen manager, which creates a DECwindows window in which to run LSE.

/JOURNAL
/JOURNAL[=file-name] (D)
/NOJOURNAL
Enables buffer-change journaling and keystroke journaling. The /JOURNAL
qualifier enables buffer-change journaling only. The /JOURNAL=file-name
qualifier enables buffer-change journaling and keystroke journaling. One
buffer-change journal file is created per buffer. One keystroke journal file is
created for the entire editing session. The file-name argument specifies the
name for the edit session journal file. The default file name is the file name
from the input file. The default file type for journal files is .TJL.

If you do not want to create a journal file of either type, use the
/NOJOURNAL qualifier.

/LANGUAGE=language
Sets the language for the current input file, overriding the language
indicated by the input file's file type.

/MODIFY
/NOMODIFY
Specifies whether the buffer you create is modifiable or unmodifiable. If you
specify the /MODIFY qualifier, the LSEDIT command creates a modifiable
buffer. If you specify the /NOMODIFY qualifier, the LSEDIT command
creates an unmodifiable buffer. If you do not specify either qualifier,
LSE determines the buffer's modifiable status from the read-only/write
setting. By default, a read-only buffer is unmodifiable and a write buffer is
modifiable.

/OUTPUT[:file-spec] (D)
/NOOUTPUT
Specifies the name of the file LSE is to create when you exit from the editing
session. Specifying a file specification on the /OUTPUT qualifier causes LSE
to ignore the current file information. By default, LSE creates a new version
of the input file.

Missing components of the file specification in the /OUTPUT qualifier take
their values from the corresponding fields of the input file specification.

Introduction to LSE 2-35

When you exit from the editing session, LSE writes other buffers to their
associated files if the buffer contents have been modified during the session.
If you specify the /NOOUTPUT qualifier, LSE prevents the writing back of
the main buffer when you exit.

/READ_ONLV
/NOREAD _ ONLV
Specifies that LSE create a read-only buffer for the input file. LSE does
not create a new output file. Any changes to the file are lost when you exit
from the editing session. This qualifier does not affect the writing back of
other buffers to their associated files if they were modified during the editing
session.

If the /[NOJREAD_ONLY qualifier is not specified explicitly, the read/write
status of the buffer for the input file is determined by the default settings of
the SET DIRECTORY command or LSE$READ_ONLY_DIRECTORY logical
name.

/RECOVER
/NORECOVER (D)
Directs LSE to use the latest version of the input file's corresponding journal
file to recover changes that may have been lost during an abnormal LSE
termination. LSE uses the buffer-change journal files as necessary.

When you recover a session, all files must be in the same state as they were
at the start of the editing session that is being recovered. You must issue the
LSEDIT/RECOVER command with the same qualifiers, initialization file,
section file, and environment file as you did for the session being recovered.
All terminal characteristics must also be in the same state as they were at
the start of the editing session being recovered. If you changed the width
or page length of the terminal, you must change it back to the value it had
at the start of the editing session you want to recover. Check especially the
following values by using the DCL command SHOW TERMINAL:

• Device_type

• Edit_mode

• Eightbit

• Page

• Width

See Chapter 3 for more details on recovering edits.

2-36 Introduction to LSE

/SECTION:file-spec
/SECTION:LSE$SECTION (D)
/NOSE CTI ON
Specifies whether LSE is to map a section file containing VAXTPU proce
dures, key definitions, and variables. By default, LSE maps section file
LSE$SECTION. If you specify another file specification, LSE applies the
default SYS$LIBRARY:.TPU$SECTION when it opens the file.

If you specify the /NOSECTION qualifier, LSE does not use a section
file, and many LSE commands will not work. Therefore, when using the
/NOSECTION qualifier, you should specify the /COMMAND qualifier. The
command file should use only standard VAXTPU built-ins.

/START _POSITION:{line,character)
Specifies the starting line and character in the file (top-of-file is /START_
POSITION=(l,l)). If you do not specify /START_POSITION, LSE starts
either at the top of the file or at the position of the cursor when you last
edited the file.

/SYSTEM_ENVIRONMENT :file-spec
/SYSTEM_ENVIRONMENT :LSE$SYSTEM_ENVIRONMENT (D)
/NOSYSTEM_ENVIRONMENT
Specifies the name of a system environment file. The difference between the
file specified by this qualifier and the file specified by the /ENVIRONMENT
qualifier is that definitions from the system environment file are not saved
by a SAVE ENVIRONMENT command.

The default device is SYS$LIBRARY: and the default file type is .ENY.

/WRITE
/NO WRITE
Specifies that LSE create a new output file when you exit from the editing
session. Any changes you make to the file are saved.

If the /[NO]WRITE qualifier is not specified explicitly, the read/write status
of the buffer for the input file is determined by the default settings of the
SET DIRECTORY command or LSE$READ_ONLY_DIRECTORY logical
name.

Introduction to LSE 2-37

2.7 Running LSE/DECwindows in a Separate Process

When you invoke LSE with the /DISPLAY=DECWINDOWS qualifier to run
LSE/DECwindows, LSE runs in a DECwindows application window and not
in a terminal window. To run LSE from a terminal session without tying
up the terminal windows for the duration of the session, type the following
command:

$ SPAWN /NOWAIT/INPUT=NL: LSEDIT/NOCURRENT/DISPLAY=DECWINDOWS

The /INPUT=NL: qualifier will prevent terminating the subprocess running
LSE if you press CTRL/Y in the parent process. If you run LSE this way,
you· must avoid stopping the parent process.

You can also invoke LSE from File View. The LSEDIT verb is automatically
defined when LSE is installed, but you must add the verb to the menu
where you want it.

In addition, you can run LSE from a detached processing by typing the
following command:

$ RUN/DET/INP=LSE.COM /AUTHORIZE -
_$ sys$system:loginout.exe /OUT=lse.log

The file LSE.COM invokes LSE in DECwindows mode. A typical LSE.COM
file might contain the following:

$ @LOGIN
$ SET DISP/CRE/NODE=name/TRANSPORT=LOCAL
$ LSEDIT/DISP=DECW/NOCURRENT

The LSE.LOG file is useful for diagnosing any problems that might arise.

If you change the transport to be DECnet, you can run LSE on a different
node than the workstation that you are logged into and still have the LSE
window on the workstation. If you have a workstation with little memory,
this can give you significantly better performance. You need to add the node
name and account of the non-local node to the list of authorized users using
the Session Manager Customize/Security... menu item.

2-38 Introduction to LSE

Chapter 3

Performing Editing Tasks

This chapter describes the editing capabilities of LSE. LSE provides you
with many features, including multiple buffer and window support, that
simplify the task of editing major documents or source files. The file location
and manipulation facilities help you to access and modify documents or
source files easily and quickly. In addition, LSE provides code elision
features that allow you to view programs at various levels of detail.

Sections 3.1 and 3.2 provide details on LSE's multiple buffer and window
support. Section 3.3 provides information on LSE's search and substitution
features, and Section 3.4 provides information on file manipulation and
directory searchlists. Section 3.5 describes how to recover edits when
a system or editor failure occurs. Section 3.6 describes the code elision
features, including how to expand and collapse source code, and how to edit
overviews.

3.1 Using Buffers

A buffer is a temporary holding area that provides a workspace for editing
text. You can create a new file or edit an existing file in a buffer. A buffer
becomes visible when it is associated with a window that is mapped to the
screen. Buffers exist only for the duration of your editing session. When you
exit from LSE, the current buffer is discarded and the contents of the buffer
are stored in a file.

With LSE, you can create multiple buffers. Thus, you can edit several
different files in one editing session. You can create additional buffers to
store portions of text that you might want to look at, but not edit, during
your editing session.

Performing Editing Tasks 3-1

System Buffers

Some buffers are used by LSE for special purposes. These are called system
buffers. Unlike user buffers, system buffers do not correspond to files. You
can edit a system buffer like any other buffer, but you should avoid changing
its contents. By convention, system buffer names start with a dollar sign
($). The most frequently used system buffers are $DEFAULTS, $HELP,
$MESSAGES, $REVIEW, and $SHOW. System buffers are not displayed
by the SHOW BUFFER command unless you use the /SYSTEM_BUFFERS
qualifier.

3.1.1 Buffer Attributes

Buffers have many attributes. This section provides details on buffer
attributes and properties. You can use the SHOW BUFFER command to
display the characteristics of one or more buffers.

Buffer Names

A buffer has a name that is displayed in the status line. Buffers are usually
named by the name and type of their associated input file. The GOTO FILE
and GOTO BUFFER commands can create buffers.

lnsert/Overstri ke

LSE has two text entry modes: insert and overstrike. In insert mode, text is
inserted into the buffer at the cursor position. Text to the right of the cursor
moves to the right. In overstrike mode, text typed at the cursor replaces text
that is currently under the cursor.

When you start an editing session, the buffer is automatically placed in
insert mode. To change the text entry mode, you can use the SET INSERT
command, SET OVERSTRIKE command, or CHANGE TEXT_ENTRY_
MODE command. (See Table 3-1 for buffer manipulation commands and
their key bindings.)

Forward/Reverse

LSE maintains a current direction for each buffer. The current direction is
displayed in the status line. This direction is used for SEARCH operations
and most GOTO and ERASE commands. When you start an editing session,
the buff er direction is set to forward. To set the current direction to forward,
you use the SET FORWARD command. To set the current direction to
reverse, you use the SET REVERSE command. Alternatively, you can use
the CHANGE DIRECTION command to change the current direction. (See
Table 3-1 for buffer manipulation commands and their key bindings.)

3-2 Performing Editing Tasks

Input/Output

Buffers may have an associated input or output file. An input file is read
into a buffer when the buffer is created. An output file indicates where LSE
writes a buffer; this is usually a new version of an input file. You can change
the output file name with the SET OUTPUT_FILE command. The GOTO
FILE command creates a buffer and reads a file into it.

Read/Write

Buffers have either the read-only or write attribute. The read-only attribute
indicates that the contents of the buffer is not written to a file when you
exit from the editing session. The write attribute indicates that the buffer is
written to a file when you exit from the editing session.

Usually, a file is associated with a buffer by the GOTO FILE command,
which creates a buffer and fills it with the contents of a file. When the
buffer is written, it is written to a new version of the file. If no file is
associated with a buffer that has the write attribute, LSE prompts for a file
specification when you exit from the editing session. Note that a buffer is
written only if its contents have been modified.

Modifiable/Unmodifiable

Buffers are either modifiable or unmodifiable. Unmodifiable buffers pro
tect the contents of a given buffer. You cannot change an unmodifiable
buffer. You use the GOTO FILE/READ_ONLY and GOTO SOURCE/READ_
ONLY commands to create unmodifiable buffers. If you want to modify
an unmodifiable buffer, you must issue the SET MODIFY or SET WRITE
command.

There are some relationships between the READ-ONLY/WRITE buffer
attributes and the UNMODIFIABLE/MODIFIABLE buffer attributes. Given
these attributes, a buffer may be in one of four possible states. The following
list describes these states and explains how to create these states for a
buffer.

• MODIFIABLE-WRITE

The GOTO FILE/WRITE, GOTO SOURCE/WRITE, SET WRITE, and
RESERVE commands set buffers to this state. It is also the default
for the file specified in the LSEDIT command line. The buffer may be
modified and is written when you exit from the editing session if it has
been modified.

Performing Editing Tasks 3-3

• MODIFIABLE-READ-ONLY
This is the default for the GOTO BUFFER/CREATE command that you
use to create a "scratch" buffer. The buffer may be modified, but it is not
written when you exit from the editing session.

• UNMODIFIABLE-READ-ONLY

The GOTO FILE/READ_ONLY and GOTO SOURCE/READ_ONLY
commands create buffers in this state. The buffer cannot be modified.
If you issue a SET MODIFY command on this buffer and modify the
contents, LSE does not write the contents when you exit from the editing
session unless you also issue the SET WRITE command for the buffer.

• UNMODIFIABLE-WRITE
You can set a buffer to this state when you have completed a set of
changes to a buffer in the MODIFIABLE-WRITE state and then issued
a SET NOMODIFY command for the buffer. This protects the buffer
from accidental change for the remainder of the editing session. LSE
writes the file when you exit from the editing session if it has been
changed during the session.

Languages

Buffers may have a language associated with them. This attribute de
termines which language is used for the language-sensitive features (see
Chapter 5 for details). The file type of the input file associated with your
current buffer determines the language LSE uses. Thus, you can move
between different languages in different buffers, and LSE will provide the
interfaces to the appropriate compilers. The SET LANGUAGE command
associates a language with a buffer.

Overview

You can use buffers for overview operations. The SET OVERVIEW command
enables the COLLAPSE, FOCUS, and VIEW SOURCE commands, and the
use of the EXPAND command on an overview line.

Current Indentation and Tab Settings

LSE maintains two settings to control the action of the tab key: current
indentation level and tab increment. When you are at the left margin, the
tab key indents to the current indentation level. If you are not at the left
margin, the tab key takes you to the next tab column based on the tab
increment setting. The SET INDENTATION command sets the current
indentation level; the SET TAB_INCREMENT command sets the size of the
tab increment.

3-4 Performing Editing Tasks

Wrap/Nowrap

Buffers have either the wrap or nowrap attribute. If the wrap attribute is
set, LSE automatically performs a return to a new line and indent to the left
margin when the text reaches the right margin.

AUTO _ERASE/NO AUTO _ERASE

Buffers have either the AUTO_ERASE or NOAUTO_ERASE attribute. If
the AUTO _ERASE attribute is set, LSE erases the placeholder the cursor is
on as soon as you insert a character over the placeholder.

Margins

Buffers have left and right margin attributes. The SET LEFT_MARGIN
command sets the left margin for the indicated buffer. By default, the left
margin is set at column 1. The SET RIGHT_MARGIN command sets the
right margin for the indicated buffer to the column number you specify. By
default, the right margin is set at column 80. The right margin controls
where LSE wraps words when you type text into a buffer. The right margin
also controls how the FILL command reformats text.

Table 3-1 contains the commands and their default key bindings used for
manipulating buffers.

Table 3-1: Buffer Manipulation Commands

Command

CHANGE DIRECTION

CHANGE TEXT_ENTRY_MODE

GOTO BUFFER

GOTO FILE

GOTO SOURCE

SET AUTO_ERASE

SET FORWARD

SET INDENTATION

SET INSERT

EDT
Keypad

Fll

F14
CTRUA

CTRUG

KP4

EVE VTlOO EVEVT200
Keypad Keypad

PF3 Fll

ENTER F14
CTRUA CTRUA

CTRUG CTRUG

KP4

(continued on next page)

Performing Editing Tasks 3-5

Table 3-1 (Cont.): Buffer Manipulation Commands

Command

SET LANGUAGE

SET MODIFY

SET NOAUTO_ERASE

SET NOMODIFY

SETNOWRAP

SET OUTPUT_FILE

SET OVERSTRIKE

SET OVERVIEW

SET REVERSE

SET TAB_INCREMENT

SET WRAP

SHOW BUFFER

3.2 Using Windows

EDT
Keypad

KP5

EVE VTIOO
Keypad

EVE VT200
Keypad

KP5

A window is a section of your work region that displays the contents of a
buffer.

With LSE, you can split the work region into several windows, each mapped
to a different buffer. By splitting the screen into multiple windows, you can
view multiple buffers simultaneously.

Figure 3-1 shows the screen format for LSE. The screen consists of the
- following regions: a work region, a message region, and a prompt or
command region.

3-6 Performing Editing Tasks

Figure 3-1: Screen Format

~ VAX Language-Sensitive Editor !PJ~
File Edit Format Navigate View Display Customize Help

[End of file] 0

~
Q

~ ~

[End of file] 0

~
Q ,. ~

Each window in the work region has a status line. The status line is
highlighted and provides informatio~ about the associated buffer. The status
line tells you the name of the buffer, whether the buffer is a write or read
only buffer, whether you are in insert or overstrike mode, and whether the
buffer is in a forward or reverse direction.

The message region is located at the bottom of the screen and displays
broadcast messages and messages issued by LSE and SCA.

The prompt region appears above the message region with the LSE> or LSE
Command> prompts, which prompt for commands or required parameters
for commands. You can use LSE commands to manipulate the screen and its
format.

Table 3-2 contains the commands and their default key bindings used for
manipulating screens.

Performing Editing Tasks 3-7

Table 3-2: Screen Manipulation Commands

EDTVT200
CoD1Dland Keypad

CHANGE WINDOW_ PFl-=
MODE

NEXT WINDOW PFl-!

PREVIOUS WINDOW PFl-i

GOTO BUFFER

GOTO FILE

SET SCREEN

SPLIT WINDOW

TWO WINDOWS

DELETE WINDOW

EVE VTlOO
Keypad

PFl-=

PFl-KPO

PFl-keypad period

EVE VT200
Keypad

PFl-=

PF1-E6

PF1-E5

For example, if you are editing a file called MODULEl .PAS, you could issue
the following commands to move a procedure from the MODULE2.PAS file
to the current file.

1. Press the CHANGE WINDOW _MODE key (PFl-=).
This command splits the screen into two windows. Both windows contain
the current buffer. The cursor is placed in the bottom window.

2. Type the command GOTO FILE MODULE2.PAS.
This command puts the contents of the file MODULE2.PAS into the
bottom window. Now that the two files are displayed on the screen, you
can locate both the procedure you want to select and the location in the
current file where you want the procedure placed.

3. Move to the procedure you want and press the SELECT key (keypad
period). Use the arrow keys to select the entire procedure and press the
CUT key (KP6) to capture the procedure.

4. Press the PREVIOUS WINDOW key (PFl-j) to place the cursor in file
MODULEl.PAS.

5. Press the PASTE key (PF1-KP6) at the location where the procedure
should be placed.

6. Press the CHANGE WINDOW_MODE key (PFl-=) to return the screen
to one window containing the current buffer.

3-8 Performing Editing Tasks

3.3 Using the Search and SuJ>stitute Operations

LSE provides a SEARCH command that allows you to search for a string in
a buffer. LSE also provides a SUBSTITUTE command that will replace a
search string with another value.

3.3.1 Searching Through Buffers

The SEARCH command searches through the current buffer for a specific
word, character, or short phrase. The SEARCH command searches in either
a forward or reverse direction. The direction is determined by the current
setting of the buffer.

If an occurrence of the search string is found, the cursor is positioned on
the first character of the string and the search string is highlighted. If
the string is not found, the cursor is not moved and an error message is
displayed in the message buffer.

After you issue a SEARCH command, LSE remembers the search string.
You can continue searching for the same string by using the SEARCH or
SUBSTITUTE command. If you are an EDT keypad user, you can press the
FNDNXT key (PF3), and LSE automatically uses the previous search string.

LSE supports VMS- and ULTRIX-style wildcard characters with the
/PATTERN qualifier on the SEARCH command. For example, the asterisk
(*) character may be used to match any number of characters within
one line. The percent sign (%) character may be used to match any one
character. These wildcard characters match the VMS format for wildcard
representation. (For more details on wildcard characters, refer to the
SEARCH command in the VAX Language-Sensitive Editor and VAX Source
Code Analyzer Reference Manual.)

If you want to search through your file to locate where you reference VMS
Run-Time Library virtual memory routines, you would issue the following
command:

LSE> SEARCH/PATTERN "LIB$*_VM"

If you want to search for an asterisk (*) or percent sign (%) as part of your
pattern, you must include a backslash (\) before using the asterisk (*) or
percent sign (%) in the pattern search string.

For example, if you want to search for 20%, 22%, and so on, in a buffer, you
would issue the following command:

LSE> SEARCH/PATTERN "2%\%"

Performing Editing Tasks 3-9

3.3.2 Substituting Text Strings

The SUBSTITUTE. command replaces occurrences of one text string with
another text string. When you issue the SUBSTITUTE command, LSE
prompts you for the search string and the value of the replacement string.

For example, you can use the SUBSTITUTE command to replace all
occurrences of STR$APPEND with STR$PREFIX as follows:

LSE> SUBSTITUTE
Search for: STR$APPEND

=Replace with: STR$PREFIX

LSE provides case-sensitive substitution. This enables you to specify that
the case of the replacement string should be altered to match the case of the
string located by a SEARCH operation.

For example, you can search for the STR$APPEND function name and
replace it with STR$PREFIX by issuing the following command:

LSE> SUBSTITUTE/CASE_MATCHING
Search for: str$append

=Replace with: str$prefix

Because you have included the /CASE_MATCHING qualifier on the com
mand line, LSE alters the case of str$prefix to match the case of str$append
found in your file.

LSE highlights each occurrence and prompts you for an action. Yes in
structs LSE to replace the occurrence. No instructs LSE not to replace the
occurrence but to search for the next occurrence. Quit ends the command
without replacing the occurrence and stops the SUBSTITUTE operation.
Last instructs LSE to replace the occurrence and then ends the command.
All replaces the occurrence and all remaining occurrences without further
prompting. If you use the /ALL qualifier, LSE replaces all occurrences it
finds without prompting you for an action.

LSE provides the /PATTERN qualifier on the SUBSTITUTE command.
The /PATTERN qualifier uses the same pattern expressions as does the
/PATTERN qualifier on the SEARCH command. The asterisk (*) and
percent sign (%) have the same meaning when used on the SUBSTITUTE
command as they do on the SEARCH command.

An example of using the /PATTERN qualifier on the SUBSTITUTE command
follows:

LSE> SUBSTITUTE/PATTERN "NAME % LENGTH" "NAME B LENGTH"

3-10 Performing Editing Tasks

3.4 Working with Files
•

This section describes the basic file manipulation commands that you
use to bring files into an editing buffer and then write these buffers to
files. Section 3.4.1 describes locating, displaying, and editing source files;
Section 3.4.2 describes locating files in multiple directories; Section 3.4.3
describes how to set default directories; and Section 3.4.4 describes how LSE
provides access to files stored in VAX DEC/Code Management System (CMS)
libraries.

3.4.1 Locating, Displaying, and Editing Source Files

LSE commands bring files into buffers and write contents of buffers to files.

Getting Files

LSE provides several commands for locating, displaying, and editing source
files within your editing session. The commands are as follows:

• GOTO DECLARATION

• GOTO FILE

• GOTO SOURCE

• INCLUDE

• READ

The GOTO DECLARATION command displays the source file corresponding
to the specified or indicated symbol declaration. The GOTO FILE command
locates a file and reads it into a buffer.

The GOTO SOURCE command displays the source file corresponding to the
current diagnostic or query item.

The INCLUDE command inserts a copy of a file at the current cursor
position. The cursor position does not change.

The READ command inserts a copy of a file at the current cursor position.
The cursor moves to the end of the inserted text.

Performing Editing Tasks 3-11

Writing Files

LSE provides several commands for writing the contents of buffers into files.
The commands are as follows:

• COMPILE

• EXIT

• WRITE

The COMPILE command first writes out the current buffer, if it has been
modified, and writes out any other modified buffers associated with the same
language. It then compiles the file associated with the current buffer.

The EXIT command ends an editing session and writes out buffers that have
been modified, provided they are not marked read-only buffers. Buffers that
are read-only are not written out by a COMPILE or EXIT command. (If you
do not want to save your modifications, you can use the QUIT command to
end your editing session.)

The WRITE command writes out your current buffer or a specified buffer.

3.4.2 Locating Files in Multiple Directories

With LSE, you can specify a list of directories for LSE to use when locating
files.

The SET SOURCE_DIRECTORY command specifies a searchlist of directo
ries to be used to find source files. LSE searches the directories in the order
specified on the SET SOURCE_DIRECTORY command line until the source
file is found.

For example, type the following command:

LSE> SET SOURCE_DIRECTORY (AJ, (BJ, [CJ, [DJ

Then, type a file manipulation command, such as GOTO FILE. L_SE searches
through [A], then [B], then [C], then [D], until the source file is found.

You can include CMS$LIB on the SET SOURCE_DIRECTORY directory list
so that LSE will fetch files directly from your CMS library into buffers. Note
that the CMS SET LIBRARY command must be issued first.

The following commands use the source list to locate files:

• GOTO FILE

• GOTO SOURCE

3-12 Performing Editing Tasks

• INCLUDE

• READ

The GOTO FILE command uses the searchlist to resolve the file specified on
the GOTO FILE command line.

The GOTO SOURCE command displays a source file that is specified in
the diagnostics file or SCA data that corresponds to your current review
or query operation. If LSE cannot find the file within an existing buffer,
LSE attempts to find the exact file specified by the current diagnostic or
query operation. If that file cannot be found, LSE uses the SET SOURCE_
DIRECTORY list to locate the file.

The INCLUDE and READ commands also use the SET SOURCE_
DIRECTORY list to resolve file specifications.

3.4.3 Setting Directory Defaults

With the SET DIRECTORY command, you can set the default read/write
status of files in a specified directory. Initially, all directories are set to
write.

The SET DIRECTORY/READ_ONLY command allows you to specify di
rectories that contain files that you do not want to change. If you specify
a directory list as /READ_ONLY, LSE brings the files contained in those
directories into unmodifiable/read-only buffers by default.

Using Default Settings

If you are working on a software project, you might have the following
directories set up:

• [],your current directory.

• [MY_DIRECTORY], which contains the files that you are working on, for
example, MODULEl.PAS and MODULE3.PAS.

• [PROJECT_DIRECTORY], which contains the files that comprise your
project, for example, MODULEl.PAS, MODULE2.PAS, MODULE3.PAS,
MODULE4.PAS, and MODULE5.PAS. These files are shared by your
project team and should not be modified.

For example, type the following commands to set default settings:

LSE> SET SOURCE DIRECTORY [), [MY DIRECTORY), [PROJECT DIRECTORY)
LSE> SET DIRECTORY/READ_ONLY [PROJECT_DIRECTORY) -

Performing Editing Tasks 3-13

Then, type a GOTO FILE or GOTO SOURCE command. LSE searches
through your current directory, MY_DIRECTORY, and the PROJECT_
DIRECTORY to locate files. Those files located in your current directory
and MY_DIRECTORY can be modified. However, those files located in
the PROJECT_DIRECTORY cannot be modified by default because of the
/READ_ONLY qualifier on the SET DIRECTORY command. Thus, you can
modify files MODULEl.PAS and MODULES.PAS, and refer to the other
project files as necessary without the possibility of modifying the wrong files.

For example:

LSE> GOTO FILE MODULE2.PAS

LSE gets the file from the PROJECT_DIRECTORY and puts the file into an
unmodifiable/read-only buffer.

LSE> GOTO FILE MODULEl. PAS

LSE gets the file from MY_DIRECTORY and puts the file into a modifiable
/writeable buffer.

Overriding Default Settings

The GOTO FILE command has the following qualifiers:

• /WRITE

• /READ_ONLY

• /MODIFY

You can use these qualifiers to override any settings established by the
SET DIRECTORY command. (See the GOTO FILE command in the VAX
Language-Sensitive Editor and VAX Source Code Analyzer Reference Manual
for more details.) You can also use the /WRITE and /READ_ONLY qualifiers
on the GOTO SOURCE command to override any settings established by the
SET DIRECTORY command.

- If you want to modify MODULE2.PAS in the [PROJECT_DIRECTORYJ, you
would type the following command:

LSE> GOTO FILE/WRITE MODULE2.PAS

LSE gets MODULE2.PAS out of the PROJECT_DIRECTORY and puts the
file into a modifiable/writeable buffer.

If you want to look at MODULEl.PAS in MY_DIRECTORY, but you do not
want to modify the file, you would type the following command:

LSE> GOTO FILE/READ_ONLY MODULEl .PAS

3-14 Performing Editing Tasks

This command overrides the current settings established by the previous
SET DIRECTORY command, and it brings MODULEl .PAS into a read-only
/unmodifiable buffer.

3.4.4 Getting Files Through VAX DEC/Code Management System

With LSE, you can access files stored in VAX DEC/Code Management
System (CMS) directly. You can also issue all CMS commands from within
LSE. The LSE commands related to CMS are as follows:

• CMS [ems-command]

• SET CMS

• GOTO FILE

• GOTO SOURCE

• INCLUDE

• READ

• RESERVE

• UNRESERVE

• REPLACE

The CMS [ems-command] Command

With the CMS [ems-command] command, you can execute any CMS com
mand from within LSE. This command operates on your current CMS
library.

The SET CMS Command

The SET CMS command sets the defaults for CMS qualifier values for CMS
operations performed by the following commands: GOTO FILE, GOTO
SOURCE, INCLUDE, READ, REPLACE, RESERVE, and UNRESERVE.

The GOTO FILE, GOTO SOURCE, INCLUDE, and READ Commands

When you issue the GOTO FILE, GOTO SOURCE, INCLUDE, or READ
command, if the directory for a file you are looking for is the same as your
current CMS library, then LSE fetches the element from CMS and puts
it into a read-only/unmodifiable buffer. LSE prompts you for confirmation
when performing a fetch operation. This fetch operation does not create a
file.

Performing Editing Tasks 3-15

For example, type the following command, and respond with Y:

LSE> GOTO FILE CMS$LIB:FILE.TYP
FILE.TYP found in CMS library DISK: [PROJECT_CMS_LIBRARY]
Do you want to fetch it [Y or NJ?

LSE fetches the element FILE.TYP and reads it into a buffer of the same
name. Note that LSE does not create a file in your current directory when
doing a fetch operation.

The RESERVE Command

With the RESERVE command, you can reserve an element in your current
CMS library. This element is put into an editing buffer. For example:

LSE> RESERVE element-name

LSE reserves the element element-name in your current CMS library
and reads it into a buffer. If you omit the element-name parameter, the
RESERVE command reserves the element of the same name and type as the
input file associated with your current buffer.

The UNRESERVE Command

With the UNRESERVE command, you can unreserve the CMS element of
the same name and type as the file associated with your current buffer in
your current CMS library. For example:

LSE> UNRESERVE

LSE unreserves the element in your current buffer that you reserved in the
last example.

The REPLACE Command

The REPLACE command replaces the CMS element of the same name and
type as the file associated with your current buffer in your current CMS
library. For example:

LSE> REPLACE

LSE replaces the element in your current buffer into your current CMS
library.

3-16 Performing Editing Tasks

3.5 Recovering from a Failed Editing Session

LSE provides mechanisms to recover edits that exist as changes in LSE
buffers when a system or editor failure occurs. LSE can journal your edits
in two ways: keystroke journaling and buffer-change journaling. Keystroke
journaling records the keys that you press over the course of an editing
session. Buffer-change journaling records the changes made to a buffer over
the course of an editing session.

Keystroke journal files have an extension of .TJL and buffer-change journal
files have an extension of .TPU$JOURNAL. Both types of journaling
periodically write information to their respective journal files. When an
editing session is terminated abnormally, a journal file may not contain
a.record of the last few operations that were performed. However, when
you recover, using a journal file, your cursor remains at the position that
corresponds to the location where the last journaled edit was made.

Using a Keystroke Journal File

Keystroke journal files contain the exact sequence of keys that you pressed
over the course of the editing session. When you recover, using a keystroke
journal file, you must be sure to restore your environment to the state that
it was in when the journaled editing session was started. The following list
describes the types of things that must be restored to your environment
before you can successfully complete a recovery using a keystroke journal
file.

• All files created during the editing session must be either deleted or
placed in a directory that will not be referenced during the recovery
operation. This will prevent the wrong version of the file from being
accessed during the keystroke journal recovery operation.

You can determine what files were created during an editing session by
examining the creation date of the .TJL file. For example, to determine
the creation date of a keystroke journal file, type the following command:

$ DIRECTORY/DATE=CREATE MEMO.TJL

This produces output similar to the following:

Directory DUAO: [SMITH]

MEMO.TJL;l 15-JUN-1989 08:42:20.69

Total of 1 file.

Performing Editing Tasks 3-17

To move files from specific directories that were created since that date
to a directory that is not referenced during the recovery operation, type
the following commands:

$ CREATE/DIRECTORY DUAO: [SMITH.TEMP)
$ COPY/SINCE=lS-JUN-1989:08:42:20 -

$ DUAO: [SMITH ...),DUAO: [PROJECT ...) DUAO: [SMITH.TEMP)
$ DELETE/SINCE=lS-JUN-1989:08:42:20 -
_$ DUAO: [SMITH ...),DUAO: [PROJECT ...)

• You must set the terminal characteristics of the terminal to match the
terminal characteristics that were in effect at the time that the journaled
editing session was started.

• You must invoke LSE with the same command line that you used to
start the journaled editing session. Additionally, you must specify the
/RECOVER qual}fier on the command line.

You may have to take other actions, depending on the events that may have
occurred over the course of your editing session.

If you reserve or replace elements in a CMS library during the editing
session, you may not be able to perform a recovery using a keystroke journal
file because changes in the CMS library cannot be undone. In such cases,
you should use a buffer-change journal file.

Using a Buffer~Change Journal File

A buffer-change journal file contains a record of the changes that you made
to a buffer over the course of an editing session. There is one buffer-change
journal file for each editing buffer.

To recover changes, with a buffer-change journal file, use the following steps:

1. Invoke LSE.

2. Type the RECOVER BUFFER command and specify the name of the file
that you want to recover.

3. Examine the information displayed by LSE to verify that the journal file
corresponds to the source file you want.

4. Type Y at the prompt if you want to recover the buffer.

After you instruct LSE to start the recovery, using a buffer-change journal
file, LSE reads the source file that corresponds to the buffer-change journal
file and begins to apply the journaled changes to the file.

3-18 Performing Editing Tasks

When you recover changes, using a buffer-change journal file, you do not
have to worry about the files that were created during the editing session
or the command line that you used to invoke LSE. Using a buffer-change
journal file is much quicker than using a keystroke journal file because LSE
recovers only files that it is directed to recover.

3.6 Collapsing and Expanding Program Source

With LSE, you can view programs at various levels of detail. The concept is
sometimes called outlining, holophrasting, or code elision.

You can generate overviews of your programs in two ways:

• Interactively in LSE

• In reports

The interactive interface allows you to generate overviews of programs by
collapsing lines of code. The report tool lets you present the overviews you
select in a structured manner.

With LSE, you can hide the details of your source code. LSE generates an
overview line that corresponds to one or more real lines in a program.
LSE displays overview lines as pseudocode placeholders.

For example, the following fragment contains real lines of code:

-- Interchange the numbers.
TEMP := NUMBERS(J);
NUMBERS(J) := NUMBERS(J+l);
NUMBERS(J+l) :=TEMP;

It can be represented by the following overview line:

«--Interchange the numbers ... »

3.6.1 Sample Session

Using LSE's code viewing features, you can see more or less detail at a
particular point in a program. You can specify the level of detail either
uniformly across the buffer or with a focus on a particular line.

Table 3-3 contains the commands and their default key bindings used for
generating overviews.

Performing Editing Tasks 3-19

Table 3-3: Code Viewing Commands

EDTVT200 EVE VTlOO EVEVT200
Command Keypad Keypad Keypad

VIEW SOURCE PFl-> PFl-> PFl->

EXPAND/DEPTH=l CTRL/E CTRUI CTRUI

EXPAND/DEPTH=ALL PFl-< PFl-< PFl-<

FOCUS

COLLAPSE

PFl-period PFl-period PFl-period

CTRU\ CTRU\ CTRU\

The following sample session demonstrates how to expand and
compress source code. This session uses a sample file from the
directory SCA$EXAMPLE, which is supplied with the SCA kit.
Figure 3-2 shows a buffer containing a Pascal code fragment from
SCA$EXAMPLE:BUILDTABLE.PAS.

Figure 3-2: Buffer Containing Source

~ VAX Language-Sensitive Editor ~ :;J

File Edit Format Navigate Display Customize

0GLOBAL] PROCEDURE build-table (orig_vector, repl_vector : code_vector;
orig_len, repl_len : code-vector-length;
COMpleMent : BOOLEAN;

VAR

VAR table : trans_table);

code, replace_code : code_value;
i : 1 .. code_vector-liMit;
COMpress : BOOLEAN;

PROCEDURE signal_duplicate (code : code_value);
VAR

text : VARYING (2] OF CHAR;
BEGIN
IF code < 32
THEN

text := 'A' + CHR (code + 64)
ELSE IF code <= 255
THEN

Help

J~

3-20 Performing Editing Tasks

1. To display a top-level overview of the current file, press the PFl-> key
(the VIEW SOURCE command).

Figure 3-3 shows the resulting screen.

Figure 3-3: Overview of Source

~ VAX Language-Sensitive Editor ~[51]
File Edit Format Navigate Display Customize Help

«llGLOBAL] PROCEDURE build_table (orig_vector, repl_vector : code_vector;» .Q.

[End of file]

<>
4 ~ .

2. To expand the procedure to the next level of detail, press CTRL/E or
CTRLJ/ (the EXPAND key).

Figure 3-4 shows the resulting screen.

Performing Editing Tasks 3-21

Figure 3-4: Expanding to Lower Detail

~~ I :::Rl6iJ

. File Edit Format Navigate Display Customize Help

fli!LOBAL] PROCEDURE build_table (orig_vector, repl_vector : code_ vector; 0
orig_len, repl_len : code_vector_length;
COMpleMent : BOOLEAN;
VAR table : trans_ table);

«VAR»
«PROCEDURE signal_duplicate (code : code_ value);»
BEGIN
«{ Initialize the table to all undefined. }»
«{ CoMpleMented original string. Translate all original characters»
«{ Nor Mal original string. Translate all original characters to the»
END {build- tab le};

[End of file]

~

4 J~

3. To get the lowest level of detail at the current placeholder, do the
following:

a. Position the cursor on the overview line containing the following
text:
«{ Complemented original string. Translate all original characters»

b. Press the PFl-< key (the EXPAND/DEPTH=ALL command).

Figure 3-5 shows the resulting screen.

3-22 Performing Editing Tasks

Figure 3-5: Expanding to Lowest Detail

~ I b!lfill
File Edit Format Navigate Display Customize Help

[GLOBAL] PROCEDURE build_table (orig_vector, repl_vector : code_ vector; 0
orig_len, repl_len : code_vector_length;
corriplel'lent : BOOLEAN;
VAR table : trans_ table);

«VAR»
«PROCEDURE signal-duplicate (code : code_ value);»

BEGIN
« { Initialize the table to all undefined. }»
{ CofYlplefYlented original string. Translate all original characters

to thefYlselves, all others to the replacefYlent code (delete if no
replacefYlent, error if more than one. }

IF complement
THEN

BEGIN
IF repl_len > 1
THEN

lib$signal (IADDRESS (trnlit __ repnotsin), 0);

IF repl_len = 0 <:>
4L :J ~

4. To hide the lowest level of detail near the cursor position, press the
CTRL/\ key (the COLLAPSE command).

Figure 3-6 shows the resulting screen.

Performing Editing Tasks 3-23

Figure 3-6: Collapsing Code

:~ I b!JJ!ill
File Edit Format Navigate Dlspl~y customize Help

C!LOBAL] PROCEDURE build_table (orig_vector, repl_vector : code_ vector; .Q.

orig_len, repl_len : code_vector_length;
col"'lpleMent : BOOLEAN;
VAR table : trans_ table);

«VAR»
«PROCEDURE signaLduplicate (code : code_ value);»

BEGIN
«{ Initialize the table to all undefined. }»
«{ Col"'lplel"'lented original string. Translate all original characters»
«{ Norl"'lal original string. Translate all original characters to the»
END {build_ table};

[End of file]

<?
~(~

5. To display the original source text, type the VIEW SOURCE
/DEPTH=ALL command.

3.6.2 Editing Overviews

The following commands, which remove and insert complete lines, have
special behavior on overview lines.

• CUT

• PASTE

• ERASE LINE

• UNERASE LINE

If you use one of these commands to remove or insert an overview line, the
corresponding source lines are implicitly removed or inserted. For example,
suppose you have a buffer containing the following three functions:

3-24 Performing Editing Tasks

FUNCTION max (a,b)
IF a > b
THEN

RETURN a
ELSE

RETURN b
END max;

FUNCTION add (a,b)
RETURN a + b

END add;

FUNCTION subtract (a,b)
RETURN a + b

END subtract;

To alphabetize them, use PFl- >to represent each function with a single
line, as follows:

«FUNCTION max (a,b) ... »
«FUNCTION add (a,b) ... »
«FUNCTION subtract(a,b) ... »

If you use the ERASE LINE command on the overview line for the "add"
routine, press the up arrow key, then use the UNERASE LINE command,
the resulting display is as follows:

«FUNCTION add (a,b) ... »
«FUNCTION max (a,b) ... »
«FUNCTION subtract(a,b) ... »

When you expand the overview lines, you see that the routines have been
reordered, as follows:

FUNCTION add (a,b)
RETURN a + b

END add;

FUNCTION max (a,b)
IF a > b
THEN

RETURN a
ELSE

RETURN b
END max;

FUNCTION subtract (a,b)
RETURN a + b

END subtract;

If you use the CHANGE INDENTATION command to change the indenta
tion of an overview line, the indentation of the corresponding source lines is
implicitly altered as well.

If you want to change the case of characters or fill text, you must first
expand all the overview lines in the selected range.

Performing Editing Tasks 3-25

Commands that move the cursor to a specified point in the buffer will make
hidden source lines visible. The following commands make the target line
and its context visible.

• GOTO SOURCE

• SEARCH

• GOTOMARK

Editing operations that concatenate an overview line with another line, such
as deleting a line break, are not permitted.

The text on overview lines is not modifiable. If you want to alter the text of
an overview, use the following steps:

1. Press the EXPAND key on the overview.

2. Modify the corresponding source line.

3. Press the COLLAPSE key.

When you use the EXIT, WRITE, or COMPILE commands, LSE writes all
the source lines and none of the overview .lines.

To write out an overview, use the WRITENISIBLE command.

If you define or delete any adjustment definition for a language, define or
delete the language, or modify the overview options for the language, then
all source lines in all buffers associated with the language are automatically
made visible.

3-26 Performing Editing Tasks

Chapter 4

Using VAX LSE with DECwindows

This chapter provides an overview of the DECwindows LSE environment. It
describes the DECwindows interface for LSE and demonstrates how to use
DECwindows LSE to open files, perform basic editing tasks, use multiple
windows and buffers, and review and query source code.

You should understand the basic DECwindows concepts, which are described
in the VMS DECwindows User's Guide and cover the following subjects:

• Using VMS DECwindows user interface

• Beginning a session

• Interacting with the session manager

• Using and managing windows

• Using the mouse to select objects

• Running a DECwindows application

4.1 Overview

This section describes the DECwindows interface to LSE. Figure 4-1 shows
the initial LSE. menu bar and the menus you can select from the menu bar.
To invoke LSE, type the following command in a DECterm window:

$ LSEDIT/DISPLAY=DECWINDOWS filename

Using VAX LSE with DECwindows 4-1

Figure 4-1: LSE DECwindows Title Bar and Menus

Edit Format Navigate View Display Customize Help

New ..•

Open Selected

Open •.•

Include ..•

Save

Save As ...

Close

Alt/N

Alt/0

Undo Erase Character

Cut Alt/X

Copy Alt/C

Paste Alt/V

Clear

Replace ...

Select All

Fill

Center Line

Align

Lowercase

Uppercase

Capitalize

Indentation ..•

Find Next

Find Selected

Find •.•

Replace .•.

Find Symbol

Find Declaration

Expand

Expand All

Collapse

Collapse All

Overview

Source

Focus

Unreserve Element

Replace Element

Reserve Element
Split Window

Delete Window

One Window

Refresh

Define Key ••.

Global Attributes ...

Window Attributes ..•

Search Attributes .•.

Previous Error

Next Error

Symbol

Compile

Review

Quit

Exit

Alt/Q

Show Ruffer
CMS Attributes ..•

Extend Menu ...

Use Last Saved Attributes

Use System Attributes

save current Attributes .••

Overview •..

About .•.

Using LSE Help ...

4.1.1 The DECwindows LSE Application Window

The DECwindows LSE application window contains the following:

• Menu bar

• Work region

• Command region

• Message region

The menu bar contains pull-down menus that allow you to perform the
following tasks:

• Manipulate files-Access and replace files and CMS elements, compile
and review source code, and exit from LSE.

• Edit Text-Add and delete text in a buffer, use clipboard functions, and
restore text.

4-2 Using VAX LSE with DECwindows

• Format text-Rearrange text in a buffer, such as fill, center, indent, and
case-change.

• Navigate-Move the cursor to a new position in a buffer, including text
search, SCA queries, and diagnostic review.

• View Source-Collapse and expand program source, and expand place
holders.

• Manipulate display-Split windows, delete windows, enlarge win
dows, and shrink windows, as well as change which buffers should be
displayed.

• Customize LSE- Select a default keypad, supply new key definitions,
change the window width and height, change fonts, and change default
settings for use with CMS.

• Access the online HELP Facility-Get help on menu items, keypad
layout, control keys, language constructs, tokens and placeholders, and
LSE commands.

You use the work region to display the contents of editing buffers, SCA
query displays, diagnostic review displays, and so on. The work region
consists of one or more windows. Each window has a status line at the
bottom of the window. You can use the mouse to toggle between options on
the status line. For example, you can click on Write to toggle between Write
and Read-only, or click on Insert to toggle between Insert and Overstrike.
Each window has vertical and horizontal scroll bars. You can use the mouse
to establish a position within the work region and select items for commands
to work on.

You use the command region to issue LSE commands and to respond to
prompts. To issue a command, press the Do key to position the cursor on
the command prompt, or click the mouse on the prompt. If you press the
Do key to move the cursor to the command prompt, the cursor returns to its
previous position in the work area after the command is entered. You can
also perform command-line editing by using the usual editing keys.

The message region is below the work region. It is used to display
messages. For example, warnings resulting from executing the contents of a
buffer are displayed in the message region.

Using VAX LSE with DECwindows 4-3

4.1.2 Getting Help

The DECwindows LSE interface provides context-sensitive online help for
all menu and submenu items, commands, and keypad functions.

To get online help on any menu or submenu, use the following steps:

1. Position the pointer to the desired menu item, and hold MBl.

2. Press and hold the Help key.

3. Release MBl; then release the Help key.

To get online help on any dialog box or other object you see on the screen,
use the following steps:

1. Position the pointer in the desired dialog box.

2. Press and hold the Help key and press MBl.

3. Release MBl; then release the Help key.

In addition, you can get online help from the Help menu. The Help menu
contains the following items:

• Overview-Provides information on getting help and provides additional
topics, such as New Users, DECwindows Interface, and the Command
Line Interface.

• About-Provides a brief introduction to LSE and includes copyright and
version information.

• Using LSE help-Provides general information about context-sensitive
help.

You can also get help by typing the HELP command and specifying a topic.
For example, typing HELP SEARCH at the command prompt gets you help
on the SEARCH command.

Most help topics have a list of related commands or other topics. If you are
viewing help on one topic and want to get help on another topic, type the
name of that topic and press the Return key.

4.2 LSE DECwindows Sample Session

The following sample session will help you become familiar with some of the
basic features of LSE with the DECwindows interface. This session uses the
same sample language, called EXAMPLE, that is used in Section 2.3.

4-4 Using VAX LSE with DECwindows

To invoke LSE and start the sample session, type the following:

$ LSEDIT/DISPLAY=DECWINDOWS

4.2.1 Opening a File

When you begin an editing session, you type the name of the file you want to
edit on the LSEDIT command line. If you do not specify a file, LSE creates
an empty buffer called $MAIN, as in this example.

To open an existing file, in this case, LSE$USER.EXAMPLE, perform the
following steps:

1. Pull down the File menu.

2. Choose the Open... menu item.

LSE displays the Open dialog box, and asks you for the name of the file
you want to edit. Figure 4-2 shows the Open dialog box.

Figure 4-2: Open Dialog Box

;~ VAX Language-Sensitive Editor

File Edit Format Naviga Open' ~
(IEnd of file]

File Filter

Files in

o l Filter I

n~I
Li I can •• 1 I

Ill <)Biiiiiiiiiiiiiiill Selection 1M$Hi4QW1it511
I LSE$EXAMPLE:LSE$USER.EXAMPLE!

Help

3. Type LSE$EXAMPLE:LSE$USER.EXAMPLE in the Selection field.

Using VAX LSE with DECwindows 4-5

4. Click on OK

LSE reads the file into the buffer and displays it in the main window.
Figure 4-3 shows the screen with LSE$USER.EXAMPLE as the current
buffer. Section 4.2. 7 describes how to use the filter mechanism.

Figure 4-3: User Buffer

:~ I h!J fill
File Edit Format Navigate View Display Customize Help

PROCEDURE test (a : INTEGER) IS -0. ,...,
b : BOOLEAN;

BEGIN

b . - true;
IF b
THEN

b := a;
ELSE

b := false;
END IF;

END test;
[End of file]

.....
<>

~ :J~

15 lines read froM file SYS$COMMON: [SYSHLP.EXAMPLES.LSE]LSE$USER.EXAMPLE;6

4.2.2 Positioning the Cursor and Selecting Text

You can position the cursor anywhere in the buffer by moving the pointer
to the desired spot and pressing MBl. Each time you do this, you set the
current cursor position to that location.

You· can select text in a buffer to perform an editing operation, such as
changing the case of letters, reformatting a block of text, or copying a block
of text to be inserted elsewhere.

To select text, use the Select All menu item (located in the Edit menu), or
use the mouse, as follows:

1. Press MBl in the work area and drag the mouse to select a block of text.

4-6 Using VAX LSE with DECwindows

2. Release MBl when the text you want is highlighted.

An alternative method to dragging MBl to select text is to press MBl as
follows:

2 clicks selects the current word
3 clicks selects the current line
4 clicks selects the current paragraph
5 clicks selects all of the current buffer

To cancel a selection, choose another selection or press MBl.

4.2.3 Searching for Text

With DECwindows LSE, you can search for a text string. There are two
ways to instruct LSE to search for a particular string:

• Choose the FIND ... menu item from the Navigate menu

• Select text at the current cursor position

To search for the string test by using the FIND ... menu item, perform the
following steps:

1. Pull down the Navigate menu.

2. Choose the Find... menu item.

LSE displays the Find dialog box and asks for a string of text.
Figure 4-4 shows the Find dialog box.

Using VAX LSE with DECwindows 4-7

Figure 4-4: Find Dialog Box

~ VAX Language-Sensitive Editor

File Edit Format Navigate View Display Customize

!ilROCEDURE test (a : INTEGER) IS

b : BOOLEAN;

BEGIN

b :• true;
IF b
THEN

b := a;
ELSE

b : = false;
END IF;

END test;
[End of file]

Find [PJj

Search for ~I te_s_t _____ _

0 Pattern
@ Forward 0 Reverse

Apply I I Cancel I

15 lines read froM file SYS$COMMON: [SYSHLP.EXAMPLES.LSE]LSE$USER.EXAMPLE;6

3. Type the string test.

4. Click on Apply.

LSE moves the cursor to the first occurrence of test.

5. Click on OK

Help

LSE moves the cursor to the next occurrence of test and removes the
Find dialog box.

Alternatively, you can select text at the current cursor position to be the
search string by performing the following steps:

1. Move the pointer to the word you want.

2. Double click MBl on the word to select it.

3. Click MB2 in the work area to get the pop-up menu.

4. Choose the Find Selected menu item.

LSE moves the cursor to the next occurrence of the word.

4-8 Using VAX LSE with DECwindows

4.2.4 Replacing Text

With DECwindows LSE, you can search for a text string and replace it with
another text string. To replace text, perform the following steps:

1. Pull down the Navigate menu.

2. Choose the Replace menu item.

LSE displays the Replace dialog box, as shown in Figure 4-5.

Figure 4-5: Replace Dialog Box

'~ VAX Language-Sensitive Editor
File Edit Format Nav:n~f-n u:n...:rn1~.. rurf-n-:~n

Replace !PJ)
PROCEDURE verify (a :

b : BOOLEAN;

BEGIN

b : = true;
IF b
THEN

b : = a;
ELSE

b : = false;
END IF;

END verifyl
[End of file]

14
1;;;;;1wg1111;wu1

Replaced 2 occurrences.

Search For ._I t_es_t; _____ _

D Pattern
@ Forward 0 Reverse

Replace with ._I v_er_if....;.;y{;__ ____ _

D Case Matching

I Find Next I I Replace

II Replace and Find Next ii Cancel)

Help

I Insert I Fon0ard

3. Type the string test in the Search For field. In this case, test will already
be in the Search For field.

4. Type the string verify in the Replace with field.

5. Click on All.

LSE replaces all occurrences of the string test.

6. Click on Cancel to remove the Replace dialog box.

Using VAX LSE with DECwindows 4-9

4.2.5 Formatting Text

You can format text in many ways, including filling, aligning, centering,
or indenting text. This example shows how to indent text. Perform the
following steps:

1. Click MBl five times to select all of the text.

2. Pull down the Format menu.

3. Choose the Indentation ... menu item.
LSE displays the Indentation dialog box, as shown in Figure 4-6.

4. Click on Increase.

Figure 4-6: Indentation Dialog Box

Edit Format Navigate View Display Customize Help

PPDC EDUPE erif'o) 'a ItlTEl::JEP' r:.

M§1iiiii)IM

Indentation [!ii

I Decrease I I Increase I

jl OK II I Cancel I

<)

Replaced 2 occurrences.

LSE moves all of the lines of text over several spaces.

5. Click on Decrease.

LSE moves the text back to its original location.

6. Click on OK to remove the Indentation dialog box and to cancel the
selection.

4-10 Using VAX LSE with DECwindows

4.2.6 Using Multiple Windows

During an editing session, you can create or edit more than one file, and you
can view two or more files at the same time. This is useful if you want to
cut and paste between files, or refer to a section of a long file while editing
another section.

This example shows how to change the number of windows on the screen
and then open several files. To change the number of windows, perform the
following steps:

1. Pull down the Display menu.

2. Choose the Split Window menu item.

The screen splits into two separate windows. Repeat these steps to display
three windows, as shown in Figure 4-7.

Figure 4-7: Using Multiple Windows

~ VAX Language-Sensitive Editor ~~
File Edit Format Navigate View Display Customize Help

PROCEDURE verify (a : INTEGER) IS 6

b : BOOLEAN; ~
BEGIN 0
4t_ J~

PROCEDURE verify (a : INTEGER) IS 6

b : BOOLEAN; ~
BEGIN 0
4 J~

!IROCEDURE verify (a : INTEGER) IS 6

b : BOOLEAN; ~
BEGIN 0
4 :J~

Using VAX LSE with DECwindows 4-11

4.2. 7 Using a Filter to Open Files

To open additional files while in this editing session, pe~form the following
steps (you should still have three windows on your screen):

1. Position the cursor on the middle window and press MBl to make that
the current window.

2. Pull down the File menu.

3. Choose the Open... menu item.

The Open ... dialog box appears on the screen. Notice that the file
LSE$USER.EXAMPLE, which was specified at the beginning of the
session, is still in the Selection field.

4. Click on the File Filter field.

5. Type LSE$EXAMPLE:*.EXAMPLE.

6. Click on Filter.

LSE lists all the files located in LSE$EXAMPLE that have the file type
.EXAMPLE, as shown in Figure 4-8. This is useful when you do not
remember the exact file that you want to access.

4-12 Using VAX LSE with DECwindows

Figure 4-8: Specifying a Filter

~~ VAX Language-Sensitive Editor

File Edit Format Navlga

PROCEDURE verif!:j (a : IN File Filter

b : BOOLEAN; I 1se$example:*.examplq

BEGIN

li4 iiiiiiiiliiiiiiiiiii!ll Files in SVS$COMMON:[SVSHLP.EXAMPLES.LSEI

ROCEDURE verif!:I (a : IN

b : BOOLEAN;

BEGIN
14
1;;;1a;w411;14we11;1
PROCEDURE verif!:I (a : IN

b : BOOLEAN;

BEGIN

E]LSE$USER.EXAMPLE;6

EILSE$USER2.EXAMPLE;6

E]LSE$USER3.EXAMPLE;6

<i

I 4 Selection 1;;;1a;w41111;we1111
I 1se$example:lse$user.exampl~

7. Double click on LSE$USER2.EXAMPLE.

OK

0

~
ILiili!iJI

I Cancel I
0

11 i> D

LSE places the file in the current buffer and removes the Open... dialog
box.

8. Click MBl on the third window to make that the current window.

9. Pull down the File menu.

10. Choose the Open ... menu item.

The Open... dialog box appears on the screen. Notice that the file filter
and list of files specified earlier are still in the dialog box.

11. Double click on LSE$USER3.EXAMPLE to place the file in the current
window and remove the Open... dialog box.

To display only the original buffer, LSE$USER.EXAMPLE, on the screen,
perform the following steps:

1. Position the pointer on the buffer LSE$USER.EXAMPLE and press MBl
to make that the current buffer.

2. Pull down the Display menu.

3. Choose the One Window menu item.

Using VAX LSE with DECwindows 4-13

LSE displays the buffer LSE$USER.EXAMPLE and removes the two other
windows.

4.2.8 Moving Through Buffers

You can move through buffers in two ways:

• Click MBl on the buffer name status line indicator

• Choose the Show Buffer menu item to display a list of buffers

Click MBl on the buffer name indicator to move through buffers $MAIN,
LSE$USER.EXAMPLE, LSE$USER2.EXAMPLE, and LSE$USER3.EXAMPU

When you have many buffers, or when you know which buffer you want, you
can use the Show Buffers menu item in the Display menu to get a list of all
the buffers.

To display a list of buffers by using the Show Buffer menu item, perform the
following steps:

1. Pull down the Display menu.

2. Choose the Show Buffer menu item.

LSE displays a list of the buffers in the current window, as shown in
Figure 4-9.

4-14 Using VAX LSE with DECwindows

Figure 4-9: Displaying a List of Buffers

~ VAX Language-Sensitive Editor ~[fill

File Edit Format Navigate View Display Customize

Buffer Nal'le

IJMAIN
LSE$USER.EXAMPLE
LSE$USER2.EXAMPLE
LSE$USER3.EXAMPLE

Lines Write Mod Col'lpiled Reviewed Locked

0 y
17 y y
13 y
16 y

13 lines read frol'l file SYS$COMMON: [SYSHLP.EXAMPLES.LSE]LSE$USER2.EXAMPLE;6
16 lines read frol'l file SYS$COMMON: [SYSHLP.EXAMPLES.LSE]LSE$USER3.EXAMPLE;6

3. Double click on LSE$USER.EXAMPLE.

Help

LSE removes the list of buffers and displays LSE$USER.EXAMPLE in
the current window.

4.2.9 Reviewing Source Code

The following example shows you how to review source code within LSE.
This example assumes that the current buffer, LSE$USER.EXAMPLE, was
just compiled (by pulling down the File menu and choosing the Compile
menu item).

The REVIEW command instructs LSE to review the compilation errors
generated by the COMPILE command. You can invoke the REVIEW
command as follows:

• Pull down the File menu

• Choose the Review menu item

Using VAX LSE with DECwindows 4-15

However, for this example, you must use the REVIEW/FILE command to
review the errors in LSE$USER.EXAMPLE. This is because you do not
actually compile LSE$USER.EXAMPLE, and the corresponding diagnostic
file is not in your default directory. LSE provides a command line interface,
which is useful in cases like this when you want to issue commands with
specific qualifiers or commands that are not found in any menu.

To review the errors in LSE$EXAMPLE:LSE$USER.EXAMPLE, perform the
following steps:

1. Press the Do Key to get the LSE Command> prompt.

2. Type the command REVIEW/FILE=LSE$EXAMPLE:LSE$USER.DIA.

LSE splits the screen into two windows, displaying the compilation
errors in the top window and the source code in the bottom window, as
shown in Figure 4-10.

Figure 4-10: The REVIEW Buffer

m VAX Language-Sensitive Editor ~lru]

File Edit Format Navigate View Display Customize Help

Line 1: PROCEDURE verify (a : INTEGER) IS 0

Line 3: b : BOOLEAN; ~

~EXAM-E-ASSIGNNERESTYP, Result type BOOLEAN in a predefined STAt4DARD of variable
D at line 3 is not the sal'le as type ItlTEGER in predefined STANDARD Of
subprogral'I 'in' forl'lal a at line 1

[EOB] '9'
~ ~

PROCEDURE verify (a : INTEGER) IS

b : BOOLEAN;

BEGIN

b : = true;
IF b
THEN

3. Position the pointer on Line 7 in the $REVIEW buffer and double click
MBl.
Double clicking MBl makes Line 7 the current error and takes you
to the source code associated with that line, as shown in Figure 4-11.

4-16 Using VAX LSE with DECwindows

(Clicking MBl only once makes Line 7 the current error; it does not take
you to the source code.)

Figure 4-11 : Corresponding Source Code

~ VAX Language-Sensitive Editor ~r;gj

File Edit Format Navigate View Display Customize Help

Line 1: PROCEDURE verify (a : INTEGER) IS o
Line 3: b : BOOLEAN; ~

XEXAM-E-ASSIGNNERESTYP, Result type BOOLEAN in a predefined STANDARD of variable
8 at line 3 is not the saMe as type INTEGER in predefined STANDARD Of
subprograM 'in' forMal a at line 1

[EOB] '9'
~ ~

PROCEDURE verify (a INTEGER) IS

b : BOOLEAN;

BEGIN

b II= true;
IF b
THEN

Buffer: LSEtu~ER EZAMPLE I ldrite I Insert I FonJo;.rd

4. Position the pointer on Line 3, and double click MBl.

Again, LSE takes you to the source code associated with that line. You
can use the mouse to go back and forth between errors and the source
code until you have corrected all the errors.

To end the review session, perform the following steps:

1. Click MB2 in the $REVIEW buffer.

LSE displays the $REVIEW buffer pop-up menu.

2. Choose the End Review menu item.

Using VAX LSE with Df;Cwindows 4-17

4.3 Querying with SCA

You can use the Source Code Analyzer FIND command and the basic LSE
navigational commands to perform queries. The following example uses a
sample SCA library (SCA$EXAMPLE) that is supplied with the SCA kit.
You can duplicate this example on your screen if you have SCA installed on
your system.

To use SCA, you must select an SCA library. This example uses the
SCA$EXAMPLE library, as follows:

1. Press the Do key to get the LSE Command> prompt.

2. Type SET LIBRARY SCA$EXAMPLE.

To display all the occurrences of symbols that begin with the prefix MAX,
perform the following steps:

1. Press the Do key to get the LSE Command> prompt.

2. Type FIND MAX*.

Figure 4-12 shows the resulting query buffer. The first occurrence of the
symbol is highlighted.

4-18 Using VAX LSE with DECwindows

Figure 4-12: SCA Query Buffer

i~ I b!:lfill
File Edit Format Navigate View Display Customize Help

11'"411H1-- 0 ,,,.,.,,., .. ,.
~

BUILD_ TABLE\102 read reference
BUILD-TABLE\134 read reference
TVPES\35 CONST declaration
TVPES\39 reference

MAX-RECORD-LEN constant
Q

4 J~

[End of file] 0

~
Q

4L J~

Your SCA Librar8 is SYS$SYSROOT: [SVSHLP.EXAMPLES.SCA]
9 occurrences found (2 S8mbols, 2 names)

To go to the corresponding source code for the occurrence of MAX_ CODE,
click MBl twice on the first occurrence of MAX_CODE.

Double clicking MBl makes it the current occurrence and takes you to the
corresponding source code. (Clicking MBl only once makes it the current
occurrence; it does not take you to the source code.) The source code is
displayed in another window, as shown in Figure 4-13.

Using VAX LSE with DECwindows 4-19

Figure 4-13: Source Code Corresponding to First Occurrence

;~ I g]fill
File Edit Format Navigate View Display Customize Help

iii'411ii1-- .().

4¥HM§jip5;;44

~
BUILD_TABLE\102 read reference
BUILD_TABLE\134 read reference
TYPES\35 CONST declaration
TYPES\39 reference

MAX-RECORD-LEN constant
9

4 :J~

.().

FOR code := Min_code TO Max_code DO

i BEGIN
table[code]. trans_value := undef_code;
table[code].coMpress : = FALSE;
END;

{ CoMpleMen'ted original string. Translate all original characters
to theMselves, all others to the replaceMent code (delete if no 9

4 :J~

Your SCA Library is SYS$SYSROOT: [SYSHLP.EXAMPLES.SCA]
9 occurrences found (2 syMbols, 2 naMes)

You can also use the query buffer pop-up menu to move between items and
source. To end the query session, perform the following steps:

1. Move the pointer to anywhere in the query buffer.

2. Click MB2.

The query buffer pop-up menu is displayed on the screen.

3. Choose the Delete Query menu item.

4.3.1 Ending the Editing Session

To end this example session, perform the following steps:

1. Pull down the File menu.

2. Choose the Quit menu item.

You can use LSE$USER.EXAMPLE and the SCA$EXAMPLE library at any
time to increase your proficiency with LSE DECwindows. The examples in
this chapter demonstrate only the most basic uses of the features of LSE
and SCA.

4-20 Using VAX LSE with DECwindows

Chapter 5

Performing Language-Specific Tasks

LSE's language-specific features simplify the tasks of developing and
maintaining software systems. These features include language-specific
placeholders and tokens, pseudocode placeholders, aliases, comment and
indentation control, and templates for subroutine libraries. This chapter
describes these features in detail.

Sections 5.1 and 5.2 describe how to use placeholders and tokens.
Section 5.3 describes how to use pseudocode, including typing, processing,
and converting pseudocode into comments. Section 5.4 provides information
on using aliases, and Section 5.5 provides information on using packages.
Section 5.6 provides information on using comments.

5.1 Using Placeholders

You can use LSE as a traditional text editor. In addition, you have the
power of using LSE's tokens and placeholders to step through each program
construct and to supply text for those constructs needing it.

Placeholders are markers in the source code that indicate locations where
you can provide program text. These placeholders help you to supply the
appropriate syntax in a given context. Generally, you do not need to type
placeholders; rather, they are inserted for you by LSE. Placeholders can
be recognized by their surrounding brackets or braces, the choice being
language-dep~~dent. There are four types of placeholders:

• Terminal placeholders

• Non terminal placeholders

• Menu placeholders

• Pseudocode placeholders

Performing Language-Specific Tasks 5-1

Terminal placeholders provide text strings that describe valid replace
ments for the placeholder. Nonterminal placeholders expand into
additional language constructs. Menu placeholders provide a list of
options corresponding to the placeholder. Pseudocode placeholders
are slightly different. They contain free text and are not defined by LSE.
Pseudocode placeholders are delimited by different brackets than the other
placeholders. The type of a placeholder is a property of the placeholder
name.

Placeholders are either optional or required. Required placeholders,
indicated by braces, represent places in the source code where you must
provide program text. Optional placeholders, indicated by brackets,
represent places in the source code where you can either provide additional
constructs or erase the placeholder. Pseudocode placeholders are optional
placeholders that contain design information that you supply.

The following example shows required and optional placeholders. The
declaration

INTEGER {identifier} ...

when expanded becomes

INTEGER id,
[identifier] ..•

The first appearance of the identifier placeholder is surrounded by braces
because you need at least one identifier in this declaration. The second
appearance is surrounded by brackets because additional identifiers are
optional.

Some placeholders are duplicated when expanded. These placeholders are
followed by an ellipsis. Generally, these placeholders represent items such
as identifiers, statements, expressions, datatypes, or any location where
lists of items are expected. A placeholder is duplicated either vertically or
horizontally, depending on the context and the placeholder definition. For
example, the placeholder [identifier] in the previous example was duplicated
vertically.

You may move forward or backward from placeholder to placeholder. In
addition, you can delete or expand placeholders as needed. With LSE, you
can specify uppercase, lowercase, or AS_IS in the language definition for all
text expanded into the buffer.

You may modify placeholder definitions by means of the EXTRACT
command. See the Redefining Language Elements section in Chapter 13 for
information on modifying placeholders.

5-2 Performing Language-Specific Tasks

Placeholder definitions may be stored in an environment file. See Chapter 15
for information on defining your own placeholders.

5.2 Using Tokens

Tokens are typically keywords in programming languages. When expanded,
tokens provide additional language constructs. Tokens are typed directly
into the buffer. Generally, tokens are used in situations when you want to
add additional language constructs where there are no placeholders. For
example, typing IF and pressing the EXPAND key causes a template for an
IF construct to appear on your screen. Tokens are also used to bypass long
menus in situations where expanding a placeholder, such as {statement},
would result in a lengthy menu.

You can use tokens to insert text when editing an existing file. Because
most languages have tokens for built-in functions and keywords, you type
the name for a function or keyword and press the EXPAND key. In addition,
most languages provide a token named statement or expression that expands
into a menu of all possible statements or expressions.

The following example demonstrates how to use tokens to edit an existing
program. In this case, the buffer TEST.EXAMPLE contains the following
code:

PROCEDURE test ()

IF A = B
THEN

A = C + 1
END IF

ENDPROCEDURE test

If you want to add more statements to this program before the IF construct,
do the following:

1. Move the cursor to the beginning of the IF statement line.

2. Press the OPEN LINE key (PFl-KPO).

3. Press the Tab key.

Note that the cursor is placed at the same level of indentation as the IF
statement line.

4. Type statement and press the EXPAND key.

A menu of statements now appears on your screen. You use the arrow keys
to scroll through the menu. To select a menu item, you press the EXPAND,
Enter, or Return key. You can press the spacebar to exit from a menu
without selecting an item.

Performing Language-Specific Tasks 5-3

5.3 Using Pseudocode

Pseudocode placeholders are placeholders that contain natural language
text that expresses design information.

Pseudocode is easy to write and provides a way to sketch your design ideas.
You can convert pseudocode into comments, thus providing a way to preserve
design information. You can use a compiler to process pseudocode to detect
syntax errors and generate SCA data.

For example, the following code fragment contains pseudocode delimited by
the special brackets« and» defined by the DEFINE LANGUAGE command:

procedure my_proc (file_name : in out my_type) is
begin

«read the file»;
if «the file is empty» then

«clean up»;
«Stop»;

else
«process the file»;

end if;
put_message;

end my_proc;

Pseudocode placeholders can appear only in well-defined places, such as in
place of statements, expressions, and declarations; otherwise, the compiler
will issue an error message. The following example shows pseudocode
placeholders used in place of statements:

procedure do_something is
begin

«Open the file.»
«Read and process records.»
«Write the file.»
«Close the file.»

end do_something;

The following examples show pseudocode used in place of expressions:

if «it is a leap year»

while «there is snow» or «it is winter» loop

max := «the largest number in the list»

d := «current temperature» + 50

CASE color FROM «the darkest» to «the lightest» OF

put («the person's full name»);

5-4 Performing Language-Specific Tasks

5.3.1 Typing Pseudocode

To enter pseudocode, use the following steps:

1. Press PFl-spacebar (the ENTER PSEUDOCODE command).

2. Type in the text you want.

When you issue the ENTER PSEUDOCODE command, the cursor can be
positioned on a regular placeholder if the placeholder is defined with the
/PSEUDOCODE qualifier.

For example, position the cursor on the following placeholder:

if {9_ondition}

Press PFl-spacebar. A pseudocode placeholder replaces the {condition}
placeholder, as follows:

if «»

You can type any text between the pseudocode placeholder delimiters, as
follows:

if «the order is for hardware»

In order to use pseudocode, pseudocode placeholder delimiters must be
defined for the target language. See the DEFINE LANGUAGE and MODIFY
LANGUAGE commands in the VAX Language-Sensitive Editor and VAX
Source Code Analyzer Reference Manual for more details.

5.3.2 Creating Comment Text from Pseudocode

With LSE, you can move pseudocode to program comments. This makes it
easy to turn pseudocode into programs. You can specify the comment format
and placement. You can convert pseudocode to block or line comments.

For example, to move text from a pseudocode placeholder into a block
comment, use the following steps:

1. Position the cursor on a pseudocode placeholder.

2. Press PFl-B (the ENTER COMMENT/BLOCK command).

For example, use the following code fragment:

if «this is leap year» then
«Add 1 to the number of days in February»

end if;

Performing Language-Specific Tasks 5-5

Press PFl-B. LSE replaces the target pseudocode placeholder with the
generic placeholder {tbs} and moves the free text into comment text on a new
line above the current line, as follows:

if «this is leap year» then
-- Add 1 to the number of days in February
{tbs}

end if;

To put pseudocode text into a comment at the end of the line, use the
following steps:

1. Position the cursor on a pseudocode placeholder.

2. Press PFl-L (the ENTER COMMENT/LINE command).

Again, use the same code fragment with the cursor positioned on the first
pseudocode placeholder:

if «this is leap year» then
«Add 1 to the number of days in February»

end if;

Press PFl-L. LSE replaces the pseudocode placeholder with the generic
placeholder, {tbs}, and moves the free text into comment text at the end of
the current line, as follows:

if {tbs} then -- this is leap year
«Add 1 to the number of days in February»

end if;

In both examples, the cursor remains on the generic placeholder, so you can
enter program text.

The ENTER COMMENT command also moves sequences of pseudocode into
comments. If there is a selected range active when you issue the ENTER
COMMENT/BLOCK command, LSE copies the selected text into a comment.

For example, use the following code fragment:

if «there is no file»
«for us to open» then
«create a file»

end if;
«open the . file»

If all the lines are selected, and you issue the ENTER COMMENT/BLOCK
command, the code fragment becomes as follows:

5-6 Performing Language-Specific Tasks

-- if there is no file
for us to open then
create a file

-- end if;
-- open the file

if {tbs} then
{tbs}

end if;
{tbs}

If you place the cursor in an existing comment, and issue the ENTER
COMMENT command, LSE converts the next pseudocode placeholder into a
comment. For example, the code fragment

«Average the numbers.»

becomes

-- Average the numbers.
{!_bs}

If the cursor is not in a comment or on a placeholder when you issue the
ENTER COMMENT command, LSE inserts a new comment and puts the
cursor on the first placeholder after the beginning of the comment.

To use the ENTER COMMENT command, the following placeholders must
be defined for the target language:

• LSE$BLOCK_COMMENT

• LSE$LINE_COMMENT

• LSE$GENERIC

See the ENTER COMMENT command in the VAX Language-Sensitive
Editor and VAX Source Code Analyzer Reference Manual for more details.

5.3.3 Processing Pseudocode

When you compile pseudocode, the compiler checks for syntax errors
and generates .ANA files. SCA uses the files to generate reports about
pseudocode, including call trees, dependency tables, and other cross
referencing. ·SCA provides query support for pseudocode just as it does for
source code.

To compile your unfinished programs from within LSE, use the appropriate
compile command for the language you are using. See the compiler
/DESIGN description in the language documentation for more information.

Performing Language-Specific Tasks 5-7

5.4 Using Aliases

An alias is an abbreviation for a long text string or identifier that you want
to enter repeatedly into your source code.

You can use the DEFINE ALIAS command to define an alias. LSE prompts
you for an alias name and value if you do not specify them on the command
line. Expanding aliases results in simple string substitutions.

For example, you can define an alias for a long identifier such as PAS_
COPY_NNT as follows:

LSE> DEFINE ALIAS PCN PAS COPY NNT

Now, you can type PCN and press CTRL/E (the EXPAND key) to insert
PAS_COPY_NNT into the buffer.

When defining an alias that contains nonalphanumeric characters, you must
use quotation marks, as follows:

LSE> DEFINE ALIAS INCR "X = X + l"

You can use the DEFINE ALIAS/INDICATED command (PFl-CTRUA) to
define an alias name for the identifier or text string on which the cursor is
currently located. This eliminates the need to provide the alias value while
defining an alias.

5.5 Packages

LSE provides templates for subroutine packages. These packages define
. VMS System Services, Run-Time Library (LIB$, STR$, SMG$), and VAX
Record Management System (VAX RMS) routines. In addition, LSE provides
a mechanism for defining packages for your own subroutine libraries. (See
Chapter 15 for details on defining your own packages.)

The System Services and VAX RMS packages consist of routine definitions
and parameter definitions that are available automatically when you use
LSE with any of the following languages:

• VAX.Ada

• VAX.BASIC

• VAX.BLISS

• VAXC

• VAX.COBOL

• VAX.FORTRAN

5-8 Performing Language-Specific Tasks

• VAX. Macro

• VAX. Pascal

• VAX. PL/I

Routines are useful for describing subroutine libraries. Not only are they
language-independent but they need to be defined only once. Routine names
are used in the same way tokens are used. For example, if you type the
routine name SYS$FILESCAN and expand it, the following results:

sys$filescan ({srcstr},
{valuelst},
[fldflags])

Most languages access System Services and VAX. RMS routines with the
prefix SYS$. These languages must use the SYSTEM_SERVICES package.
Other languages use different prefixes. For example, VAX. Ada prohibits the
prefix dollar sign ($) and must use the STARLET package. VAX. BLISS and
VAX. Pascal require the prefix dollar sign ($) and must use the KEYWORD_
SYSTEM_SERVICES package.

For example, to call the $SNDOPR system service from a VAX. PI11 program,
you type the following:

status := sys$sndopr

Then, you press the EXPAND key with the cursor just after sys$sndopr.
This would expand to the following:

status := sys$sndopr (
{rnsgbuf},
[chah])

This indicates that the $SNDOPR system service has two parameters:
MSGBUF, which is required, and CHAN, which is optional. Since CHAN is
optional, LSE expands it with an optional placeholder that you can either
delete or expand. Languages other than VAX. Ada and VAX. BLISS have
similar features.

In VAX. Ada, the dollar sign is not used as part of the system service name.
Thus, you could type the following:

starlet.sndopr

Then, you would press the EXPAND key. This would expand to the
following:

STARLET.SNDOPR (
STATUS => {status},
MSGBUF => {rnsgbuf},
[CHAN => {chan}]);

Performing Language-Specific Tasks 5-9

In VAX BLISS, the system services start with a dollar sign, without the
leading SYS. Thus, you could type the following:

status = $sndopr

Then, you would press the EXPAND key. This would expand to the
following:

status = $sndopr (
msgbuf = {-msgbuf-},
[-chan = {-chan-}-))

You can access VMS online help for any of the system services in any
language. If you want help on any routine, place the cursor on the routine
name and press the HELP/INDICATED key (PF1-PF2). You cannot use
HELP/INDICATED on the parameter names; however, the HELP entry for
the system service will contain information on the parameters.

If you want to see the contents of a given package, parameter, or routine,
you can use the SHOW command. If you want to modify the definitions of a
package, you can use the EXTRACT command.

5.6 Using Comments

LSE recognizes many of the comments that occur in code. In many cases,
LSE handles comments specially to help you keep comments aligned. You
can use the ALIGN command to align all the comments within a region
so that they line up in the same column. You can use the FILL command
to both align comments and to fill out each comment line by putting as
many words on a line as will fit within the margins. In addition, LSE treats
comments specially when you erase or duplicate a placeholder.

Special handling of comments applies only to trailing comments. A trailing
comment is one that occurs as the last item on a line, excluding blank space.
Lines containing only comments are considered to be trailing comments.

Two types of comments are recognized: bracketed comments and line
comments. A bracketed comment requires both a beginning and ending
delimiter. For example, Pascal uses either braces ({}) or a parenthesis and
asterisk ((**)) as bracketed comment delimiters. A line comment begins
with a comment delimiter, but is terminated by the end of the line. For
example, Ada uses a double dash (--) to introduce a line comment, while
VAX FORTRAN uses an exclamation mark (!).

Note that some languages, such as BLISS, have both bracketed and line
comments.

5-10 Performing Language-Specific Tasks

The ALIGN command aligns all trailing comments within the current
selected region so that they start in the same column. 'rhe default behavior
is to align the comments under the first comment within the region. You can
also specify an explicit' column with the /COMMENT_COLUMN qualifier.

An example of the ALIGN command follows. In the following examples,
/COMMENT_COLUMN=CONTEXT_DEPENDENT is in effect.

IF (col >= R_Margin) THEN ! This is the start of an
BEGIN ! extended end-of-line comment block
i := i + 1 ;
j := j + i ; ! another comment

!to be filled

When aligned, it would look like this:

IF (col >= R_Margin) THEN ! This is the start of an
BEGIN ! extended end-of-line comment block
i := i + 1
j := j + i ; ! another comment

! to be filled

The operation of the FILL command depends on the FILL setting of the
current language. If the FILL setting is TEXT, then the FILL command
performs an ordinary FILL operation. This is useful for text files or for files
written in a markup language, such as DIGITAL Standard Runoff, but is
usually inappropriate for most programming languages. If the FILL setting
is COMMENTS, then the FILL command affects only the text within the
trailing comments of the region. As with the ALIGN command, you can
use the /COMMENT_COLUMN qualifier to explicitly specify the column in
which to align the comments.

An exam pie of the FILL command follows:

IF (col >= R_Margin) THEN ! This is the start of an
BEGIN ! extended end-of-line comment block
i := i + 1 ;
j := j + i ; ! another comment

!to be filled

When filled, it would look like this:

IF (col >= R_Margin) THEN This is the start of an extended
BEGIN end-of-line comment block
i := i + 1 ;
j := j + i ; another comment to be filled

Note that LSE deleted a comment delimiter. LSE inserts or deletes
comment delimiters as necessary when you expand or erase placeholders
inside comments.

Performing Language-Specific Tasks 5-11

Part 2 Using SCA

This part contains tutorial information on the VAX Source Code Analyzer.

Chapter 6

Introduction to SCA

This chapter provides an overview of the VAX Source Code Analyzer (SCA).
Section 6.1 briefly describes the features of SCA and its integration into the
VAX Language-Sensitive Editor (LSE) software development environment.
Section 6.2 describes the use of compiler analysis data files with SCA.
Section 6.3 describes ways you can invoke SCA. Section 6.4 lists the SCA
commands.

6.1 Overview

The VAX Source Code Analyzer is an interactive, multilanguage, source
code cross-reference and source code analysis tool that aids developers in
understanding large-scale software systems. Because SCA deals with an
entire software system, instead of individual modules, it is an effective tool
during implementation and maintenance phases of a project.

The use of SCA is based on methods commonly used to develop software
with VMS systems. For example, the following techniques are assumed:

• A set of sources is conveniently located for development.

• Developers modify, link, and compile sources until an executable image
is successfully created.

• When an image is successfully built, the specific set of sources associated
with the image are captured as a baseline for further development. (If
the VAX Code Management_System (CMS) were used to store these
sources, a CLASS would probably be formed to contain the baseline
versions.)

• As development continues, developers must work with the information
contained in the build sources.

Introduction to SCA 6-1

With these assumptions, SCA stores compiler-generated information about
the set of build sources for querying in one unique location (an SCA library).
Thus, SCA is a query tool that allows you to reference and query time
stamped source information that directly corresponds to source modules in
your system. When these sources are no longer of value, you can modify or
delete the SCA library. For more information on using SCA libraries, see
Chapter 7 and Chapter 10.

The library data generated by supporting VMS compilers consists of the
names of all of the symbols, modules, and files contained in a specific
snapshot of the source. Once SCA libraries are created, you can select a
library and query its contents from within LSE, at the DCL level, or via
the SCA callable interface. This chapter discusses how to use SCA from
within LSE and at the DCL level. For more information on using the SCA
callable interface, see the appendix on the SCA callable interface in the
VAX Language-Sensitive Editor and VAX Soµrce Code Analyzer Reference
Manual.

The following sections provide a brief description of SCA features, and
demonstrate the use of SCA as an integrated query tool within the LSE
environment. For detailed descriptions of data generation, library creation,
and querying, see Chapter 7.

6.1.1 SCA Features

The following sections provide brief descriptions of the key features of SCA.

Cross-Referencing and Analysis

The cross-referencing and analysis features of SCA provide information
about program symbols and source files. These capabilities are provided by
the FIND command, and allow you to do the following:

• Locate symbols and occurrences of symbols

• Limit queries based on selection of attributes, including symbol name,
symbol class (routine, variable), and occurrence class (primary declara
tion, read or write reference)

• Select one symbol based on the relationships between symbols (variables,
routines, modules)

• Display relationships between symbols (routine calls, type trees)

• Select symbols based on combinations of attributes and relationships

For more information on SCA cross-referencing and analysis, see Chapter 7
and Chapter 8.

6-2 Introduction to SCA

Consistency Checking

The consistency-checking feature of SCA checks occurrences of symbols for
consistent use. This capability is provided by the INSPECT command. For
more information on SCA consistency checking, see Chapter 11.

LSE Integration

Tightly knit fotegration with LSE provides for multimodule navigation and
the ability to read and modify associated source code.

Navigation within LSE is powerful and flexible. Using SCA, you can create
one or more queries. You use cross-reference and analysis commands to
query source information, and navigational commands to move through the
information and to gain access to related sources.

Navigation through a query buffer is provided by the NEXT and PREVIOUS
commands; direct access to source buffers is provided by the GOTO com
mand. For details of query concepts, see Chapter 7.

These features allow you to readily gain access, within a single editing
session, to any or all of the modules and files comprising a software system.
They not only expand your analysis capabilities but further speed up and
simplify your development and maintenance tasks.

6.1.2 Querying with SCA

SC.Ns inquiry and reporting facilities allow you to query a library for the
presence of specific symbol, file, or module information, and to determine
such things as declarations of program symbols, references to the symbols,
and references to source files. You can also determine the call relationships
between routines by displaying call tree information. Within the editing
environment, you can navigate through the complexities of an entire system
and, as necessary, inspect and edit related source files.

SCA provides the following capabilities:

• Interactive query of symbol, module, and file information

• Display of routine call relationships and type trees

• Inspection of routines, variables, and other symbols

• Maintenance of source code information libraries

Introduction to SCA 6-3

LSE provides the following additional capabilities:

• Navigation through one or more SCA queries

• Access and display of source code during an interactive query

With LSE editing features, you can move through an unfamiliar system
without regard for module or file boundaries. For example, given the task of
modifying the characteristics of a variable, you can locate all of the uses of
the variable across the system and make your changes without leaving LSE.

6.2 SCA Analysis Data Files

SCA depends on VMS compilers for the generation of detailed source
analysis data. Source analysis data is information about all of the symbols,
files, and modules contained in the source. The information is loaded into
an SCA library and used as a database for the SCA cross-reference query
and source code analysis features.

This section discusses how you generate and use SCA analysis data files.
Chapter 7 demonstrates the use of analysis data files and SCA libraries.

You produce analysis data by using the DCL command line of the form:

Language/ANAL YSIS_DATA[=file-spec] [/ ...] source-file[, ...]

The I ANALYSIS_DATA qualifier requests that the specified compiler
generate an output file of source information having a default file type of
.ANA. Unless otherwise specified, the .ANA files generated appear in your
current default directory.

For example, the following Pascal command line compiles the specified input
files (.PAS) and creates the requested output files (.OBJ and .ANA).

$ PASCAL/ANALYSIS_DATA PG1,PG2,PG3

Figure 6-1 shows the steps you can use to set up an SCA environment:

1. Create an SCA library in a local subdirectory (PROJ:[MYLIB.SCA]).

2. Create the data analysis files (PGl.ANA, PG2.ANA, PG3.ANA) with the
Pascal compiler.

3. Load the data analysis files into the local SCA library (LOAD).

4. Activate the library (SET LIBRARY) and query the information (FIND).

6-4 Introduction to SCA

Figure 6-1: Setting Up an SCA Environment

(i) Create library

® Compile source
and analysis data

$SCA CREATE LIBRARY PROJ:[MYLIB.SCA]

PROJ :[MYLIB.SCA]

SCA
LIBRARY

..-------$PASCAUANALYSIS_DATA PG1, PG2, PG3

PROJ:[PROJ.SRC]

PG1.PAS

$LINK PG1, PG2, PG3

PG1.EXE

@ Load analysis data

PROJ:[PROJ.SRC] PROJ:[PROJ.SRC]

PG2.PAS PG3.PAS

f $SCA SET LIBRARY PROJ:[MYLIB.SCA]
\$SCA FIND "PAS"

, PG2, PG3

@Activate library
and query symbol

D
ZK-5927-GE

Introduction to SCA 6-5

For a detailed overview of the LSE/SCA integrated environment, see Using
VAXset. For more information on setting up the SCA environment, see
Chapter 10.

6.2.1 Using the VAX Source Code Analyzer ANALYZE Command

SCA provides the ANALYZE command for those languages whose compiler
output do not support SCA. The ANALYZE command creates an analysis
data file that describes the source file by looking at language-specific rules
for forming names (identifiers), comments, quoted strings and placehold
ers. The analysis data files produced by this command have a minimal
description of the source file; they describe the source primarily as a set of
references to unbound names.

The ANALYZE command depends on LSE environment files for infor
mation about particular languages. It uses the same mechanism to
access environment files as LSE does. In particular, it depends on the
LSE$ENVIRONMENT and LSE$SYSTEM_ENVIRONMENT logical names.

You must have a language defined in an environment file to use the
ANALYZE command with that language. See Chapter 15 for more in
formation on defining a language.

6.3 Invoking SCA

You can invoke SCA in three ways:

• With LSE (as an integrated tool)

• At the DCL level (as a standalone tool)

• With the SCA callable interface

As an integrated tool, LSE supports an expanded command language, which
includes all SCA standalone commands and related navigational commands.
SCA-related commands are defined in the Command Dictionary section of
the VAX Language-Sensitive Editor and VAX Source Code Analyzer Reference
Manual. SCA commands are issued in the same manner as LSE commands.

You issue SCA commands within LSE as follows:

LSE> command [parameter] [/qualifier ...]

To invoke standalone SCA, and issue a command at the DCL level, enter the
following:

$ SCA command [parameter] [/qualifier ...]

6-6 Introduction to SCA

You may also invoke standalone SCA at the DCL level by entering the
following:

$SCA

The SCA> prompt appears on your screen as follows:

SCA>

You may enter SCA commands at this prompt in the same way you do at the
LSE prompt within LSE: type each command and execute it by pressing the
Return or Enter key. An EXIT command ends an SCA session and returns
you to the DCL level. You can also press CTRLJZ to end an SCA session.

6.4 SCA Commands

This section lists all SCA commands. You can issue these commands from
within LSE, at the DCL level, or at the SCA level. See the Command
Dictionary section of the VAX Language-Sensitive Editor and VAX Source
Code Analyzer Reference Manual for definitions, descriptions, and examples
of all SCA commands.

Library Commands

• ANALYZE

• CONVERT LIBRARY

• CREATE LIBRARY

• DELETE LIBRARY

• DELETE MODULE

• EXTRACT MODULE

• LOAD

• REORGANIZE

• SET LIBRARY

• SET NOLIBRARY

• SHOW LIBRARY

• SHOW MODULE

• SHOW VERSION

• VERIFY

• VERIFY/RECOVER

Introduction to SCA 6-7

Query Commands

• DELETE QUERY

• FIND

• INSPECT

• REPORT

• SHOWQUERY

Navigation Commands

• COLLAPSE

• EXPAND

• GOTO (DECLARATION, QUERY, SOURCE)

• NEXT (OCCURRENCE, QUERY, STEP, SYMBOL)

• PREVIOUS (OCCURRENCE, QUERY, STEP, SYMBOL)

General Commands

• ATTACH

• EXIT

• HELP

• SPAWN

6-8 Introduction to SCA

Chapter 7

Performing SCA Tasks

This chapter provides a tutorial that integrates the query and analysis
capabilities of SCA with the multiwindow editing capabilities of LSE. For
more information on the querying capabilities of SCA, see Chapter 8.

Section 7.1.1 describes how to invoke SCA. Section 7.1.3 through
Section 7.1.5 show how an SCA environment is typically configured.
The remainder of this chapter demonstrates SCA and SCA/LSE-related
commands used for querying, navigating through query buffers, and
accessing related sources.

7 .1 Getting Started

The following sections describe how to use the basic SCA inquiry commands
and related LSE navigational commands. You can duplicate the displays
shown in the figures by using the SCA$EXAMPLE library and typing the
sample commands. The commands allow you to do the following:

• Verify the successful selection of your SCA library (SHOW LIBRARY)

• Display information about all of the modules contained in your SCA
library (SHOW MODULE)

• Locate occurrences of a specified symbol (FIND) and display the results
in a query buffer

• Navigate through the information in the query buffer (NEXT STEP,
PREVIOUS STEP)

• Access the source related to the specific occurrence of a symbol (GOTO
SOURCE)

• Work with SCA queries (GOTO QUERY, NEXT QUERY, PREVIOUS
QUERY, SHOW QUERY, DELETE QUERY)

Performing SCA Tasks 7-1

7.1.1 Invoking SCA

To begin, invoke the VAX Language-Sensitive Editor (LSE), as described in
Chapter 2.

Once in LSE, you use the SET LIBRARY command to access the example
library. Type the following:

LSE> SET LIBRARY SCA$EXAMPLE

A message appears in the message buffer at the bottom of your screen
to indicate that you have successfully selected an SCA library. For the
SCA$EXAMPLE library, the message reads as follows:

Your SCA Library is SCA$ROOT:[EXAMPLE]

7.1.2 Getting Help

Help is available for SCA within LSE as well as for SCA at the DCL or
subsystem level.

To display help information about SCA$EXAMPLE, type the following:

LSE> HELP SCA TOPICS SCA EXAMPLE

7.1.3 Selecting a Source Library

The SET SOURCE_DIRECTORY command is an LSE command that
selects source directories to be used during your current LSE session. The
command is not required if you use SCA$EXAMPLE (since related sources
are available with the sample library); it is also not required if the sources
corresponding to a selected SCA library are still in the directory from which
they were originally compiled. The command has the following form:

SET SOURCE_DIRECTORY directory-spec [,directory-spec ...]

As an example, the next command first searches for source files in a default
directory, then a project library, and then a CMS library:

LSE> SET SOURCE DIRECTORY [),PROJ: [USER.BASE1.SRC],CMS$LIB

7-2 Performing SCA Tasks

7 .1.4 Displaying Library Specifications

The SHOW LIBRARY command displays each of the currently active SCA
libraries.

To display the library active during your current session, type the following:

LSE> SHOW LIBRARY

For SCA$EXAMPLE, the display in the message buffer reads as follows:

Your SCA Library is SCA$ROOT: [EXAMPLE]

For more information on SCA libraries, see Chapter 10.

7.1.5 Displaying Module Information

The SHOW MODULE command displays information about the modules
contained in the current SCA library.

To display information about the modules contained in the SCA$EXAMPLE
library, type the following:

LSE> SHOW MODULE

The resulting display, Figure 7-1, shows that the library contains six
modules of compiled source information. The integers listed under the
number sign (#) specify the active library from which the information is
derived. Since SCA$EXAMPLE is the first and only active library on the
libraries list, the modules are identified as being from library #1.

Performing SCA Tasks 7-3

Figure 7-1: The SHOW MODULE Display

~ VAX Language-Sensitive Editor ~151]
File Edit Format Navigate View Display Customize

Module It !dent Language COMpiled

BUILD- TABLE 01 Pascal 24-0ct-1989 15 43
COPY-FILE 01 Pascal 24-0ct-1989 15 44
EXPAND-STRING 01 Pascal 24-0ct-1989 15 44
OPEN-FILES 1 01 Pascal 24-0ct-1969 15 43
TRANSL IT 01 Pascal 24-0ct-1969 15 44
TYPES 01 Pascal 24-0ct-1969 15 43

Coro1roi=.nd ccw1plete - pre== RETUPll to continue
Your SCA Librar8 is SCA$ROOT: [EXAMPLE]
Total of 6 Modules

7.1.6 Using the FIND Command

Help

The following examples show how to use the FIND command to query SCA
libraries for information about your source program. The examples also
demonstrate the basic LSE navigational commands.

The first example demonstrates how to find a routine whose name you
cannot remember. All you know is that the word "table" appears in it. To
find all the symbols with the word "table," type the following command:

LSE> FIND *table*

Figure 7-2 shows the resulting display.

7-4 Performing SCA Tasks

Figure 7-2: The FIND *table* Display

~ VAX Language-Sensitive Editor ~][~
File Edit Format Navigate View Display Customize Help H"!•••'' 0

;:;;s;;y;:1u1ug;11;1&1;;41144

~
BUILD-TABLE procedure
BUILD-TABLE Module
COMMAND-TABLES variable
TABLE arguMent
TABLE arguMent
TABLE arguMent 0
4l J~

[End of file] 0

~
0

4 -'~

Total of 6 Modules
41 occurrences found (10 S8Mbols, 6 naMes}

This query display shows the name and the class of all of the symbols whose
name contains "table." The first symbol is a file named BUILDTABLE.PAS.
The first symbol has already been expanded. The second one is a procedure
named BUILD_TABLE.

7.1.6.1 Navigating the Query Display

In a query display, you use navigation commands to move forward or back
ward through the display to select a specific occurrence of a symbol that you
want to investigate. When you select an occurrence, the line is highlighted
and you can then access the related source. You can step through a query
display in increments, using the following commands:

• With the NEXT STEP (CTRL/F) command you can advance through the
display from the current symbol to the next.

• With the PREVIOUS STEP (CTRUB) command you can go back through
the display from the current symbol to the previous one.

Performing SCA Tasks 7-5

You can use the NEXT STEP navigation command to select the BUILD_
TABLE procedure. You can use the EXPAND command (CTRUE) to expand
this one line and display the set of occurrences corresponding to the symbol.
The result of expanding the entry for the BUILD_TABLE procedure is shown
in Figure 7-3.

Figure 7-3: The Expanded BUILD_ TABLE Display

m VAX Language-Sensitive Editor [pJ[51]
File Edit Format Navigate View Display Customize Help

BUILDTABLE.PAS file '6
BUILD_TABLE\1 PASCAL coMMand reference

~ lllH••llllllli iiliiiliil@WMMMYA144
TRANSLIT\61 FORWARD or EXTERNAL PROCEDURE declaration
TRANSLIT\171 call reference

BUILD-TABLE Module
COMMAND-TABLES variable Q

~ :J~

[End of file] 0

~
Q

~ :J~

Total of 6 Modules
41 occurrences found (10 S8Mbols, 6 naMes)

There are three occurrences of BUILD_TABLE. The first is the primary
declaration of the procedure in module BUILD_TABLE at line 41. The
second is an EXTERNAL declaration in module TRANSLIT. The third is a
call to BUILD_TABLE at line 171 in TRANSLIT.

Following the expansion of BUILD_TABLE, the first occurrence is auto
matically selected. You can use the NEXT STEP and PREVIOUS STEP
commands to select other occurrences of BUILD_ TABLE.

You can also look at other symbols within this query display. The easiest
way to do this is to first collapse the information about BUILD_TABLE by
using the COLLAPSE command (CTRU\). Collapsing the entry for the
procedure BUILD_TABLE returns the display to that shown in Figure 7-2.
You can then directly select the next symbol in the display, the module
named BUILD_TABLE, by using the NEXT STEP command. You can

7-6 Performing SCA Tasks

select any of the symbols in the display, expand them, and then select their
occurrences.

Returning to Figure 7-3, you determine that the procedure declaration
of BUILD_TABLE is your target. Since you have already selected the
appropriate entry in the query display, you can use the GOTO SOURCE
command (CTRUG) to access the source. The result of pressing CTRUG is
shown in Figure 7-4.

Figure 7-4: The GOTO Source Display

~ VAX Language-Sensitive Editor [!IJ[51]
File Edit Format Navigate View Display Customize Help

BUILDTABLE.PAS file 0
BUILD_TABLE\1 PASCAL coMMand reference

~ 111••••11 1111111111•1111111111111
TRANSLIT\61 FORWARD or EXTERNAL PROCEDURE declaration
TRANSLIT\171 call reference

BUILD-TABLE Module
COMMAND-TABLES variable 0
<) L ~

translation of all codes not in the original vector. } 0

[GLOBAL] PROCEDURE !uild_table (orig_vector, repl_vector : code_ vector: ! orig_len, repl-len : code_vector_length:
compleMent : BOOLEAN;
VAR table : trans_ table);

VAR
code, replace_code : code_ value; 0

<) J~

41 occurrences found (10 symbols, 6 names)
143 lines read frOM file SCA$ROOT: [EXAMPLE]BUILDTABLE.PAS;1

7 .1.6.2 Moving to a Source Declaration

With the GOTO DECLARATION command, you can automatically access
the source of a requested declaration. The command has the following form:

GOTO DECLARATION [/qualifier] [symbol_name]

The /INDICATED qualifier specifies that the name at the current cursor
position is to be used as the symbol name. The current position in the buffer
and the file specification for the current buffer are used to help identify the
symbol name occurrence on which the cursor is positioned.

Performing SCA Tasks 7-7

If no information exists in the SCA library for the symbol name at the
current cursor position, the name alone is used for the query. If the
/INDICATED qualifier is specified, the symbol_name parameter must not be
specified.

Note that the /INDICATED qualifier is a positional qualifier that must be
typed directly following the GOTO DECLARATION command.

The /PRIMARY qualifier displays the source of a symbol where the primary
declaration is located. A primary declaration is the declaration determined
by SCA to be the most significant. For example, SCA determines that the
primary declaration of a routine is the declaration that describes the body of
the routine. The default is /PRIMARY.

You type the command as follows:

LSE> GOTO DECLARATION/INDICATED/PRIMARY

If you use the /CONTEXT_DEPENDENT qualifier without the /INDICATED
qualifier, the primary declaration of the symbol is displayed (/PRIMARY is
the default).

If you use the /CONTEXT _DEPENDENT qualifier with the /INDICATED
qualifier, the context in which the symbol is found determines which decla
ration is displayed; however, if the symbol is declared in a file not found in
the SCA library, the command ignores context information and displays the
primary declaration. Otherwise, the declaration displayed is determined as
follows:

• If the indicated symbol occurrence is a reference, the declaration referred
to is displayed.

• If the indicated symbol occurrence is an associated declaration, the
primary declaration is displayed.

• If the indicated symbol occurrence is a primary declaration, the associ
ated declaration is displayed.

You type the command as follows:

LSE> GOTO DECLARATION/INDICATED/CONTEXT_DEPENDENT

The I ASSOCIATED qualifier displays the source of a symbol where the
associated declaration is located. An associated declaration is a declaration
related to the primary declaration. The default is /PRIMARY.

You can use the GOTO DECLARATION command to investigate the last
parameter of the procedure BUILD_TABLE. To determine the type of the
parameter TABLE, position the cursor on the occurrence of TRANS_ TABLE,

7-8 Performing SCA Tasks

and enter the GOTO DECLARATION/INDICATED/PRIMARY command
(CTRUD). This brings you directly to the declaration of TRANS_TABLE.

Figure 7-5 shows the resulting display.

Figure 7-5: The GOTO DECLARATION Display

~ VAX Language-Sensitive Editor [!iJ]~
File Edit Format Navigate View Display Customize Help

BUILDTABLE.PAS file
BUILD-TABLE\1 PASCAL COl'll'land reference

i§jlii,,!11••••••!"'' ~~--ma;~~--~a;ii; __ ... _l111l1•lllli+m11•1111m1111111M!!11111111ge+111•0;;11111
TRANSLIT\61 FORWARD or EXTERNAL PROCEDURE declaration
TRANSLIT\171 call reference

BUILD-TABLE Module
COMMAND-TABLES variable • Ouer 1oi 1 I Cc1ro1r•13n1j FiriD +THE.LE+ I Fc1r1.io;r1j

first one is actually translated; subsequent ones are deleted.

Drans_table = ARRAY [code_value] OF RECORD
trans-value : code-value;
co~press : BOOLEAN;

END;

TYPE
paraPLstring = VARYING [256] OF GHAR;

143 lines read froM file SCAtROOT: [EXAMPLE]BUILDTABLE.PAS;1
59 lines read froM file SCA$ROOT: [EXAMPLE]TYPES.PAS;1

You can continue investigating. parameters while you explore the details
of the declaration of TRANS_ TABLE. For example, you can find out more
about the type named CODE_ VALUE by positioning the cursor on that name
and pressing CTRUG.

To see how the definition ofTRANS_TABLE is used throughout the program,
position the cursor on an occurrence of TRANS_ TABLE and enter the FIND
EXPAND INDICATED() command (GOLD CTRUF).

Figure 7-6 shows the resulting display.

Performing SCA Tasks 7-9

Figure 7-6: The FIND EXPAND INDICATED Display

~ VAX Language-Sensitive Editor ~rrui
File Edit Format Navigate View Display Customize Help , ... 0

&uiQRQi!A

~
COPY-FILE\31 reference
TRANSLIT\64 reference
TRANSL IT\ 73 reference
TRANSLIT\222 reference
TRANSLIT\228 reference
TYPES\48 TYPE declaration Q

~ ~

first one is actually translated: subsequent ones are deleted. } 0

trans-table = ARRAY [code_value] OF RECORD

~ trans_ value : code-value;
coMpress : BOOLEAN;

END;

TYPE
paraM_string = VARYING [256] OF CHAR; Q

~ ~

59 lines read frOM file SCA$ROOT:[EXAMPLE]TYPES.PAS;1
7 occurrences found (1 SyMbOl, 1 naMe)

The display shows there are seven occurrences of TYPE_ TABLE. The first
occurrence is the reference with which you began in Figure 7-5. You can
move past it by using the NEXT STEP command (CTRLJF) and then use the
GOTO SOURCE command to view the reference to TRANS_TABLE that is
inside the module COPY_FILE.

Figure 7-7 shows the resulting display.

7-10 Performing SCA Tasks

Figure 7-7: The TRANS_ TABLE Source Display

~ V1iX Language-Sensitive Edito1· ~~
File Edit Format Navigate View Display Customize ... ,.,, .• , .•

BUILD-TABLE\44 reference
CDF ,_FILE c•l reterence
TRANSLIT\64
TRANSL IT\ 73
TRANSLIT\222
TRANSLIT\228
TYPES\48

reference
reference
reference
reference
TYPE declaration

[GLOBAL] PROCEDURE COP!:!- file (VAR in_ file , out_ file : TEXT;
table : Drans_table);

VAR
in-line : VARYING [Max_record_len] OF CHAR;
out-line : PACKED ARRAY [1 .. Max_record_len] OF CHAR;
in_index, out_index : O .. Max_record_len;
code : code_value;

7 occurrences found (1 S!:!Mbol, 1 naMe)
87 lines read froM file SCA$ROOT: [EXAMPLE]COPYFILE.PAS;1

Help

You can use the FIND command to view the relationships between occur
rences. For example, you can see which routines call other routines. If you
want to determine what calls the procedure COPY _FILE, issue the following
command:

LSE> FIND calling copy_file

Figure 7-8 shows the resulting display.

Performing SCA Tasks 7-11

Figure 7-8: The FIND calling Display

VAX Language-Sensitive Editor !l.i :ii
File Edit Format Navigate View Display Customize

llWl§lllPI ip14$calls
COPY-FILE procedure

[GLOBAL] PROCEDURE copy_f ile (VAR in_f ile, out_f ile : TEXT;
table : trans_table);

VAR
in_line : VARYING [Max_record-len] OF CHAR;
out_line : PACKED ARRAY (1 .. Max_record-len] OF CHAR;
in-index, out-index : O .. Max_record-len;
code : code_value;

87 lines read froM file SCA$ROOT: [EXAMPLE]COPYFILE.PAS;l
2 occurrences found (2 syMbols, 2 naMes)

Help

This query display works just like the previous ones. You can use the NEXT
STEP and PREVIOUS STEP commands to select entries. You can expand a
symbol into its corresponding set of occurrences, and you can go to a source
from any of those occurrences.

With the FIND command, you can view multiple levels of call relationships.
For example, you may want to find all of the routines called by TRANSLIT,
and all of the routines called by those routines, and so on, for the entire call
tree below TRANSLIT. However, you may want the display to include only
those routines whose primary declaration appears in the SCA library (which
means, for example, do not include calls to RTL routines).

You initiate the query by entering the following command:

LSE> FIND called_by(translit, expand occ=prim, depth=all

Figure 7-9 shows the resulting display. This is an example of a call tree.
Nested routines are indented three spaces from the routine that calls them.
Routines preceded by a period (.) indicate that the calling routine calls
additional routines. Note also that occurrences are indicated with a fixed
level of indentation, four spaces from the left margin of the display.

7-12 Performing SCA Tasks

Figure 7-9: The FIND called_by Display

~ VAX Language-Sensitive Editor :;J

File Edit Format Navigate View Display Customize

1ifilijilA4i •calls
COPY_FILE procedure
READ_COMMAND-LINE procedure calls

BUILD-TABLE procedure calls
SIGNAL-DUPLICATE procedure

EXPAND_STRING function
OPEN-IN procedure
OPEN-OUT procedure

[GLOBAL] PROCEDURE copy_file (VAR in_file, out_file : TEXT;
table : trans_table);

VAR
in_line : VARYING [Max_record_len] OF CHAR;
out-line : PACKED ARRAY [1 .. Max_record_len] OF CHAR;
in_index, out-index : 0 .. Max_record_len;
code : code_value;

2 occurrences found (2 syMbols, 2 naMes)
13 occurrences found (9 syMbols, 8 naMes)

Help

Again, you can select particular symbols, expand them, and go to the source
associated with particular occurrences.

Figure 7-10 shows the resulting display when you select and expand the
entry for SIGNAL_DUPLICATE.

Performing SCA Tasks 7-13

Figure 7-10: The Expanded SIGNAL_DUPLICATE Display

~ VAX Language-Sensitive Editor ~.;][;:ii]

File Edit Format Navigate View Display Customize
TRANSLIT procedure calls

COPY-FILE procedure
READ-COMMAND-LINE procedure calls

BUILD-TABLE procedure calls

l§!i••lll' •••
BUILD_TABLE\127 call reference

EXPAND_STRING function

IF table[code].trans_value <> undef_code
THEN

lignal_duplicate (code);
table[code].trans_value :=code;
END;

FOR code := Min_code TO ~ax-code DO
BEGIN
IF table[code].trans_value = undef_code
THEN

2 occurrences found (2 syMbols, 2 naMes)
13 occurrences found (9 syMbols, 8 naMes)

Help

The query display shows that SIGNAL_DUPLICATE is called in two differ
ent places within the routine BUILD_TABLE. The declaration of SIGNAL_
DUPLICATE does not appear in the query result because SIGNAL_
DUPLICATE calls only RTL routines. However, this does not pose a prob
lem, because the GOTO DECLARATION/INDICATED command works in
a query buffer. You can get to the declaration of SIGNAL_DUPLICATE by
using the GOTO DECLARATION/INDICATED command (CTRUD).

7.1. 7 Multiple Queries

SCA provides a multiple query feature that allows you to maintain more
than one query session at a time. This feature maximizes the use of SCA by
allowing you to perform simultaneous source investigations.

For example, when you issue a query command, a new query session is
created. If, during a session, you go to the source of an occurrence and find
a symbol that you want to investigate before returning to your last query,
you can issue a new query about the symbol. After the inquiries in your
new session are completed, you can then go back to your previous session by
issuing a PREVIOUS QUERY command.

7-14 Performing SCA Tasks

Current query defines· the last query command issued as the target of
a GOTO QUERY, NEXT QUERY, or PREVIOUS QUERY command. If no
query command has been issued during the current editing session, there
is no current query. Using one of the query commands (FIND, INSPECT,
GOTO QUERY, NEXT QUERY, PREVIOUS QUERY) reestablishes a query
as the current query.

You can also display all the queries you have made during an SCA session
by issuing the SHOW QUERY command. The one marked with asterisks(*)
indicates the current query.

Figure 7-11 shows the resulting display.

Figure 7-11: The SHOW QUERY Display

!JI VAX Language-Sensitive Editor !'.i :i1
File Edit Format Navigate View Display Customize

Nal"le Query expression Description .

TABLE (none}
2 EXPAND INDICATED(} indicated syMbol is TRANS-TABLE
3 CALLING COPV_FILE (none}

(*) 4 CALLED-BY(TRANSLIT, EXPAND OCC=PRIM, DEPTH•ALL}
(none}

2 occurrences found (2 syMbols, 2 naMes}
13 occurrences found (9 syMbols, a naMes)

Help

The SHOW QUERY.display lists all the queries that you have made during
this session of SCA. You can use the GOTO, NEXT, or PREVIOUS QUERY
command to return to an existing query. Query names are shown in the first
column. You can name a query by using the /NAME qualifier on the FIND
command. If you do not specify a query name, SCA generates a unique
name for each new query.

Performing SCA Tasks 7-15

By default, each time you use the FIND command a new query is created.
However, you can use the /MODIFY qualifier on the FIND command to
change some aspect of an existing query. For example, to change the name
of the first query to TABLE, and to create a description for that query, you
type the following command:

LSE> FIND /MODIFY=l /NAME=table /DESC="symbols named *TABLE*"

Figure 7-12 shows the resulting display after typing another SHOW QUERY
command.

Figure 7-12: The FIND /MODIFY Display

VAX Language-Sensitive Editor

File Edit Format Navigate View Display Customize

NaMe

(*) TABLE
2
3
4

Query expression Description

TABLE syMbols naMed *TABLE*
EXPAND INDICATED() indicated syMbol is TRANS-TABLE
CALLING COPY-FILE (none)
CALLED-BY(TRANSLIT, EXPAND OCC=PRIM, DEPTH=ALL)

(none)

Ccirr-1rt13nd corqplete - pre::-:: PETURrJ to continue
2 occurrences found (2 syMbols, 2 naMes)
13 occurrences found (9 syMbols, 8 naMes)

7.1.7.1 Moving to a Specified Query

fill
Help

The GOTO QUERY command moves the cursor to the specified query
session. The command has the following form:

GOTO QUERY name

You type the command as follows:

LSE> GOTO QUERY 1

7-16 Performing SCA Tasks

The GOTO QUERY command causes the query number specified by the
name parameter to become the current query session and maps the buffer
associated with that query session.

7.1.7.2 Moving to the Next Query

The NEXT QUERY command moves the cursor forward through multiple
query sessions. You type. the command as follows:

LSE> NEXT QUERY

The NEXT QUERY command moves forward through the query sessions in
their order of creation. The window is remapped to the buffer associated
with the next query session. If there is no next query session, the previous
query session is used.

7.1. 7.3 Moving to the Previous Query

The PREVIOUS QUERY command moves the cursor backward through
multiple query sessions. You type the command as follows:

LSE> PREVIOUS QUERY

The PREVIOUS QUERY command moves backward through the query
sessions in the reverse order of their creation. The window is remapped to
the buffer associated with the previous query session. If there is no previous
query session, the next query session is used.

7.1.7.4 Terminating a Query

The DELETE QUERY command deletes a query session. The command has
the following form:

DELETE QUERY [name]

You type the command as follows:

LSE> DELETE QUERY 1

The DELETE QUERY command deletes the specified query session·. If no
name is specified, the current query session is deleted. If the current query
session is deleted, then no current query exists.

Performing SCA Tasks 7-17

7.1.8 Exiting from the SCA Session

To end your SCA session and return to the DCL level, enter the EXIT
command or type CTRUZ.

7-18 Performing SCA Tasks

Chapter 8

Using the SCA Query Language

8.1 Overview

This chapter provides an overview of the SCA Query Language. It contains
an overview of the SCA Query Language and its features and demonstrates
using the SCA Query Language for simple to advanced operations. See
Chapter 9 for more information about the SCA Query Language.

The SCA Query Language is an enhancement to the FIND command. By
issuing queries, you can both broaden and refine your use of SCA. With
the SCA Query Language, you can make explicit queries of a large system
and selectively limit queries to the results of previous query operations.
Additional features of the SCA Query Language are also described in this
chapter.

8.2 Features of the SCA Query Language

With the SCA Query Language, you can to do the following:

• Analyze source code by using both file and symbol information

• Use names to select symbols

• Use other attributes to select symbols

• Specify precise search parameters

• Use relationship functions to query relationships between symbols

Using the SCA Query Language 8-1

8.3 Basic Concepts

The SCA Query Language is based on 'the concept of a query expression.
A query expression is a general algebraic expression in the form of a
parameter to the FIND command. It is used to extract specific information
from SCA libraries. A query expression can contain subexpressions joined
by query operators or functions. A query operator is either a logical
operator (such as AND or OR) or an SCA-specific relationship function (such
as CONTAINING or CALLING).

The SCA Query Language uses two primary elements: symbols and
occurrences. A symbol is an abstract entity in a program. An occurrence
is any use of a symbol in source code.

A symbol can be a particular local variable, an RTL routine, a field within
a record, or any other clearly distinguishable item in a program. Each
symbol has an associated name. Symbols also have attributes called symbol
attributes. One symbol attribute is class. Symbol classes are, for example,
variable, literal, macro, function, or task. Symbols also have domain
attributes, for example, global or inheritable.

A symbol has associated with it a set of occurrences of that symbol. Also,
every occurrence has a corresponding symbol.

An occurrence has attributes called occurrence attributes. Occurrence
attributes supply additional information about the nature of a symbol. For
example, an occurrence can be either a declaration or a reference.

8.4 SCA Query Language Tutorial

With the SCA Query Language, you can perform a wide range of operations,
from simple to complex queries. This section contains a set of these
operations, based on a Pascal module. It begins with simple queries and
gradually introduces more sophisticated ways to use the query language.
The FIND commands demonstrated in this section are entered relative to an
SCA library describing the following Pascal module.

8-2 Using the SCA Query Language

1 [INHERIT ('SYS$LIBRARY:STARLET', 'TYPES')]
2 MODULE build_table;
3
4 .PROCEDURE lib$signal (%IMMED args [LIST) UNSIGNED); EXTERNAL;
5
6 VAR
7 trnlit duporig,
8 trnlit:=reptoolon : [EXTERNAL] INTEGER;
9

10 [GLOBAL] PROCEDURE build_table
11
12

orig_vector : code_vector;
orig_len : code_vector_length;
VAR table : trans_table);

13 VAR
code : code value;
i : 1 .. code_vector_limit;

PROCEDURE signal_duplicate (code
VAR

text : VARYING [2] OF CHAR;
BEGIN
IF code < 32
THEN

code value);

14
15
16
17
18
19
20
21
22
23
24

text .
ELSE

+ CHR (code + 64)

25 text .- CHR (code);
26 lib$signal (!ADDRESS (trnlit~duporig), 1, %STDESCR (text));
27 END;
28
29 BEGIN
30 FOR i := 1 TO orig_len DO
31 BEGIN
32 code := orig_vector[i];
33 IF table[code] .trans_value <> undef_code
34 THEN
35 signal_duplicate (code);
36 END;
37 END;
38 END.

The examples shown in this chapter are based on using SCA in standalone
mode. When you use LSE, some results appear differently.

8.4.1 Simple Queries

The simplest query specifies symbols based merely on the name of the
symbol. For example, to get information about all of the occurrences of
symbols named CODE, type the following command:

FIND code

Using the SCA Query Language 8-3

The result follows.

CODE variable
BUILD TABLE\14
BUILD-TABLE\32
BUILD-TABLE\33
BUILD~)ABLE\35

CODE argument

VAR (variable) declaration
write reference
read reference
read reference

BUILD TABLE\17 formal parameter declaration
BUILD-TABLE\21 read reference
BUILD-TABLE\i3 read reference
BUILD-TABLE\25 read reference

%SCA-S-OCCURS, 8 occurrences found (2 symbols, 1 name)

This display shows that SCA found two symbols named. CODE. The first
symbol is a variable and has four occurrences. The first occurrence is the
declaration of the variable and indicates that it is the CODE symbol defined
on line 14 of the sample program. The next three occurrences are references
to this variable.

The second symbol is the argument defined on line 17 of the sample
program. This symbol also has four occurrences.

You can restrict the query in several ways. For example, to get only
declarations of symbols named CODE, type the following command:

FIND code AND occurrence=declaration

The result follows.

CODE variable
BUILD_TABLE\14

CODE argument
VAR (variable) declaration

BUILD TABLE\17 formal parameter declaration
%SCA-S-OCCURS, 2 occurrences found (2 symbols, 1 name)

To get only write references of symbols named CODE, type the following
command:

FIND code AND occurrence=write

The result follows.

CODE variable
BUILD TABLE\32 write reference

%SCA-S-OCCURS, 1 occurrence found (1 symbol, 1 name)

The preceding two examples show query selection based on occurrence
attributes.

With the SCA Query Language, you can use DCL-like wildcards. For
example, to display information about procedures and functions without
regard to their names, type the following command:

8-4 Using the SCA Query Language

FIND * AND symbol=routine

Since the name attribute is a wildcard, it can be left out completely. The
following command is equivalent to the preceding one.

FIND symbol=routine

The result follows.

BUILD TABLE procedure
BUILD_TABLE\10 PROCEDURE declaration

CHR function
BUILD. TABLE\23 call reference
BUILD-TABLE\25 call reference

IADDRESS function
BUILD TABLE\26 call reference

LIB$SIGNAL procedure
BUILD TABLE\4 FORWARD or EXTERNAL PROCEDURE declaration
BUILD=TABLE\26 call reference

SIGNAL DUPLICATE procedure
BUILD TABLE\17 PROCEDURE declaration
BUILD=TABLE\35 call reference

%SCA-S-OCCURS, 8 occurrences found (5 symbols, 5 names)

The preceding example shows query selection based on symbol attributes.
You can combine both symbol and occurrence attributes in one query. For
example, to find the primary declarations of routines, type the following
command:

FIND symbol=routine AND occurrence=primary

The result follows.

BUILD TABLE procedure
BUILD_TABLE\10 PROCEDURE declaration

SIGNAL DUPLICATE procedure
BUILD_TABLE\17 PROCEDURE declaration

%SCA-S-OCCURS, 2 occurrences found (2 symbols, 2 names)

The preceding examples also show the use of logical operators in forming
more complex queries based on subqueries. For more information on logical
operators see Section 8.4.3.

You can further restrict the previous query by adding an expression that
distinguishes module-specific symbols from those that (potentially) span
multiple modules. To display the primary declaration of inter-module
routines (only those that have the potential of spanning multiple modules),
type the following command:

FIND symbol=routine AND occurrence=primary AND domain=multi_module

Using the SCA Query Language 8-5

The result follows.

BUILD TABLE procedure
BUILD_TABLE\10 PROCEDURE declaration

%SCA-S-OCCURS, 1 occurrence found (1 symbol, 1 name)

You can abbreviate attribute-selection expressions like you do with DCL. For
example, you can abbreviate the preceding command as follows:

FIND symb=rout AND occ=prim AND doma=mult

8.4.2 Using the Expand Function to Find Related Occurrences

The process of expanding a set of occurrences to include all of the occur
rences of the corresponding set of symbols is called expansion. This is not
to be confused with the LSE EXPAND command.

To perform an expansion operation, SCA first finds all the occurrences
that match the subexpression of the expand function. Once that set 'of
occurrences is found, SCA finds all the symbols that correspond to that set
of occurrences. Finally, the result of the query is all occurrences of those
symbols.

With SCA, you can specify that you want to see all the information available
for symbols that have certain types of occurrences. For example, to display
all of the occurrences of routines that have primary declarations in the SCA
library being queried, type the following command:

FIND EXPAND (occurrence=primary AND symbol=routine)

The result follows.

BUILD_TABLE procedure
BUILD_TABLE\10 PROCEDURE declaration

SIGNAL DUPLICATE procedure
BUILD TABLE\17 PROCEDURE declaration
BUILD=TABLE\35 call reference

%SCA-S-OCCURS, 3 occurrences found (2 symbols, 2 names)

The parenthetical expression is the same query used earlier. The addition of
the expansion operation causes the result to contain all occurrences of the
symbols found, not just those specified by the subexpression.

You can follow an expansion with more restrictions. For example, to display
the call references of routines that have primary declarations in the SCA
library being queried, type the following command:

FIND EXPAND (occurrence=primary AND symbol=routine) AND occ=call

8-6 Using the SCA Query Language

This is an example of a nested query expression. The inner query expres
sion, EXPAND (occurrence=primary AND symbol=routine), is evaluated
first, resulting in a set of all the occurrences of routines for which there are
primary declarations. That set of occurrences is the input to the outer query
expression, which has the following form:

query-expression AND occ=call

The outer query expression removes all occurrences except those that are
call-references.

The result follows.

SIGNAL DUPLICATE procedure
BUILD_TABLE\35 call reference

%SCA-S-OCCURS, 1 occurrence found (1 symbol, 1 name)

In another example of expansion, to display declarations of symbols that
have write references, type the following command:

FIND EXPAND (occ=write) AND occ=decl

To evaluate this query, SCA begins by finding the set of write reference
occurrences. Next, SCA expands this set to include all occurrences of these
symbols. Finally, ·the new set is intersected with the set containing all
primary declaration occurrences.

The result follows.

CODE variable
BUILD TABLE\14

I variable
BUILD_TABLE\15

TEXT variable

VAR (variable) declaration

VAR (variable) declaration

BUILD_TABLE\19 VAR (variable) declaration
%SCA-S-OCCURS, 3 occurrences found (3 symbols, 3 names)

8.4.3 Using Logical Operators to Select Information

The SCA Query Language can apply logical operations to the results of other
query expressions. The logical operations that are supported are union,
intersection, negation, and exclusive-or. Some previous examples showed
logical operations.

A union expression merges two sets, resulting in a set containing all
occurrences that exist in either set.

An intersection expression identifies occurrences that exist in two
different sets, resulting in a set containing each occurrence that exists in
both sets; occurrences that appear in only one of the sets are not included.

Using the SCA Query Language 8-7

A negation expression identifies occurrences that are not in the set.

An exclusive-or expression selects the unique occurrences in two different
sets, resulting in a set containing all occurrences that exist in only one of
the sets.

For example, if you want to find all the symbols that have TABLE in their
name, but you want to exclude those symbols whose name is simply TABLE,
type the following command:

FIND *table* AND NOT table

The result follows.

BUILDTABLE.PAS file
BUILD_TABLE\l

BUILD TABLE procedure
PASCAL command reference

BUILD_TABLE\10 PROCEDURE declaration
BUILD TABLE module

BUILD_TABLE\2 MODULE declaration
TRANS TABLE type

BUILD_TABLE\12 reference
%SCA-S-OCCURS, 4 occurrences found (4 symbols, 3 names)

If you want to find all symbols that begin with CODE, but not those symbols
that have read or write references; type the following command:

FIND code* AND NOT EXPAND(occ=read OR occ=write)

The result follows.

CODE VALUE type
BUILD TABLE\14 reference
BUILD=TABLE\17 reference

CODE VECTOR type
BUILD_TABLE\10 reference

CODE VECTOR LENGTH type
BUILD_TABLE\11 reference

CODE VECTOR LIMIT constant
BUILD_TABLE\15 reference

%SCA-S-OCCURS, 5 occurrences found (4 symbols, 4 names)

The previous query could also be written as follows:

FIND code* AND NOT EXPAND occ=(read,write)

To display the declarations of the symbols that are both read and written,
type the following command:

FIND (EXPAND(occ=read) AND EXPAND(occ=write)) AND occ=decl

8-8 Using the SCA Query Language

The result follows.

CODE variable
BUILD_TABLE\14

I variable
BUILD_TABLE\15

TEXT variable

VAR (variable) declaration

VAR (variable) declaration

BUILD_TABLE\19 VAR (variable) declaration
%SCA-S-OCCURS, 3 occurrences found (3 symbols, 3 names)

Alternately, to display the declarations of the symbols that are either read
or written, but not both, type the following command:

FIND (EXPAND(occ=read) XOR EXPAND(occ=write)) AND occ=decl

The result follows.

CODE variable
BUILD_TABLE\14

CODE argument
BUILD_TABLE\17

I variable
BUILD_TABLE\15

ORIG LEN argument
BUILD_TABLE\11

ORIG VECTOR argument
BUILD_TABLE\10

TABLE argument
BUILD_TABLE\12

TEXT variable

VAR (variable) declaration

formal parameter declaration

VAR (variable) declaration

formal parameter declaration

formal parameter declaration

formal parameter declaration

BUILD_TABLE\19 VAR (variable) declaration
%SCA-S-OCCURS, 7 occurrences found (7 symbols, 6 names)

To find all the symbols that are declared but never referenced, type the
following command:

FIND NOT EXPAND occ=ref

This finds all occurrences of the symbols that are never referenced. The
result follows.

Using the SCA Query Language 8-9

scalar type
BUILD_TABLE\15

array
BUILD_TABLE\19

array index
BUILD_TABLE\19

array component
BUILD_TABLE\19

ARGS argument
BUILD_TABLE\4

BUILD TABLE procedure
BUILD_TABLE\10

BUILD TABLE module

scalar type declaration

ARRAY declaration

array index declaration

array component declaration

formal parameter declaration

PROCEDURE declaration

MODULE declaration

formal parameter declaration

BUILD_TABLE\2
REPL LEN argument

BUILD_TABLE\11
REPL VECTOR argument

BUILD_TABLE\10 formal parameter declaration
TRNLIT REPTOOLON variable

BUILD_TABLE\8 EXTERNAL or predefined variable declaration
%SCA-S-OCCURS, 10 occurrences found (10 symbols, 6 names)

If you enter this command and realize that your chosen language(s) and code
practices tend to give some unimportant cases of declared but not referenced
symbols (like modules and formal parameters), you may want to further
qualify your request by typing the following command:

FIND (NOT EXPAND occ=ref) AND NOT symbol=(module,argument)

The result is a display that removes modules and parameters (called
ARGUMENTS) from the set of occurrences of the symbols that are never
referenced. The result follows.

scalar type
BUILD_TABLE\15

array
BUILD_TABLE\19

array index
BUILD_TABLE\19

array component
BUILD_TABLE\19

BUILD TABLE procedure

scalar type declaration

ARRAY declaration

array index declaration

array component declaration

BUILD_TABLE\10 PROCEDURE declaration
TRNLIT REPTOOLON variable

BUILD TABLE\8 EXTERNAL or predefined variable declaration
%SCA-S-OCCURS, 6 occurrences found (6 symbols, 3 names)

8-1 O Using the SCA Query Language

8.4.4 The Current Query

SCA maintains a current query. A current query is the result of the
previously entered query or the one to which you are set using the NEXT
QUERY, PREVIOUS QUERY, and GOTO QUERY commands. The current
query is specified the same way as any other query. The name of the current
query is SCA$CURRENT_QUERY.

The following is an example of a command sequence using the current query:

FIND *table* AND NOT table
FIND (NOT @sca$current_query) AND symbol=routine AND occurrence=decl

The @ function defaults to the current query. Consequently you can also
write the previous commands as follows:

FIND *table* AND NOT table
FIND (NOT@()) AND symbol=routine AND occ=decl

The@ function, written without parameters, takes the following form:

@ ()

You can assign a name to a query. A query remains available for use
throughout a given invocation of SCA, unless it is explicitly deleted using
the DELETE QUERY command. If you do not name a query, then SCA
automatically assigns a name to it. For example, the preceding command
sequence could be rewritten as follows:

FIND/NAME=table *table* AND NOT table
FIND/NAME=routine decls symbol=routine AND occ=decl
FIND (NOT @table)-AND @routine_decls

You can use the SHOW QUERY command to display all currently available
queries. For example, if you follow the preceding set of FIND commands
with a SHOW QUERY command, the result follows.

Name Query expression Description

TABLE *TABLE* AND NOT TABLE (none)
ROUTINE DECLS

(*) 1

SYMBOL=ROUTINE AND OCC=DECL
(none)

(NOT @TABLE) AND @ROUTINE_DECLS
(none)

Using the SCA Query Language 8-11

8.4.5 Structured Relationship Expressions

With the SCA Query Language, you can select occurrences based on their
relationship to other occurrences. For example, type the following command:

FIND CALLED_BY signal_duplidate

The result follows.

%SCA-W-NOOCCUR, no symbol occurrence matches your selection criteria

You can interpret the previous command as "Find what is called by
SIGNAL_DUPLICATE."

You can ask the reverse question, "Find what is calling SIGNAL_
DUPLICATE," by typing the following command:

FIND CALLING signal_duplicate

The result follows.

BUILD_TABLE procedure calls
SIGNAL_DUPLICATE procedure

%SCA-S-OCCURS, 2 occurrences found (2 symbols, 2 names)

You can use the depth parameter to request that more than one level of
structure be displayed. The depth parameter sets the number of levels of
structure that you want SCA to trace. By default, one level of structure is
traced.

To request a depth level of 2, type the following command:

FIND CALLED_BY(build_table, depth=2)

The result follows.

BUILD_TABLE procedure calls
SIGNAL DUPLICATE procedure calls

CHR-function
IADDRESS function
LIB$SIGNAL procedure

%SCA-S-OCCURS, 7 occurrences found (5 symbols, 5 names)

You can us the DEPTH=ALL option to specify that all levels of call relation
ship are to be traced. To trace all call relationships from BUILD_TABLE
. down, type the following command:

FIND CALLED_BY(build_table, depth=all)

Since the example program is so simple, this command gives the same result
as the previous command.

8-12 Using the SCA Query Language

If you want to know if one routine can be called from within another directly
or indirectly (for example, to display all of the paths of the call-graph that
lead from BUILD_TABLE to LIB$SIGNAL), type the following command:

FIND CALLED_BY(build_table, lib$signal, depth=all)

The result follows.

BUILD_TABLE procedure calls
SIGNAL DUPLICATE procedure calls

LIB$SIGNAL procedure
%SCA-S-OCCURS, 4 occurrences found (3 symbols, 3 names)

You can interpret the preceding command as follows: "Find what is called by
BillLD_TABLE, tracing any number oflevels of structure, but include only
the paths that lead to LIB$SIGNAL."

One common problem with call-tree displays is that they often contain
a large percentage of lines describing routines that are not a part of the
application under development. These are utility routines that are either
RTL routines, system services, RMS routines, or some other set of routines
that are viewed by the developer as being a part of the base system. Having
these utility routines in a call-tree is often considered a nuisance, for they
make it difficult to see the most important structure of the call-tree.

The primary declarations of such utility routines are not described in the
SCA library of an application. Hence, you can modify the previous FIND
command to remove the unwanted routines, as follows:

FIND CALLED_BY(build_table, EXPAND(occ=primary), depth=all)

You can interpret the preceding command as follows: "Find what is called
by BillLD_TABLE, tracing any number oflevels of structure, but include
only the paths that lead to routines that have primary declarations." A more
succinct interpretation is "Trace the calls from BUILD_TABLE through the
routines that have primary declarations."

The result follows.

BUILD_TABLE procedure calls
SIGNAL DUPLICATE procedure

%SCA-S-OCCURS, 2 occurrences found (2 symbols, 2 names)

You have even more control over the tracing of relationships by using the
TRACE parameter. The TRACE parameter specifies a query expression. As
the CALLED_BY function iteratively traces the calls, it continues tracing
the called-by relationship only through the occurrences that match the
trace-expression, specified as the value of the TRACE parameter.

Using the SCA Query Language 8-13

For example, to display all of the paths of the call-graph from BUILD_
TABLE down, except the call-relationships traced through the routine
SIGNAL_DUPLICATE, type the following command:

FIND CALLED_BY(build_table, depth=all, trace=(NOT signal_duplicate))

The result follows. '

BUILD_TABLE procedure calls
SIGNAL_DUPLICATE procedure

%SCA-S-OCCURS, 2 occurrences found (2 symbols, 2 names)

Note that SIGNAL_DUPLICATE is included in the result, but the tracing of
the called-by relationship does not continue through SIGNAL_DUPLICATE.

The TRACE parameter does not affect the first iteration. That first iteration
is controlled by the BEGIN parameter.

Note that you can terminate tracing the called-by relationship through
SIGNAL_DUPLICATE and you can exclude calls to SIGNAL_DUPLICATE,
by typing the following command:

FIND CALLED_BY(build_table, -
NOT signal_duplicate, -
depth=all, -
trace=(NOT signal_duplicate)

This command displays all of the paths of the call-graph from BUILD_
TABLE down, except that it will not match calls to the routine SIGNAL_
DUPLICATE. As a result, SIGNAL_DUPLICATE is not included in the
display. The result follows.

%SCA-W-NOOCCUR, no symbol occurrence matches your selection criteria

8.4.6 Nonstructured Relationship Expressions

There is a simple but important difference between the commands about
to be described and those described in the previous section. Both sets
of commands use information about the relationships between occur
rences. However, the commands described in the previous sections use
that relationship information to create a collection of occurrences and the
relationships between those occurrences. The commands described in the
following sections discard the relationship information from the query re
sult. Consequently, these relationship query expressions are considered
nonstructured because the result is solely a flat set of occurrences.

8-14 Using the SCA Query Language

Nonstructured relationship expressions are realized by using the result
parameter of the relationship functions. For example, you saw in the
previous section the results of the following command:

FIND CALLED_BY signal_duplicate

The result follows.

BUILD_TABLE procedure calls
SIGNAL_DUPLICATE procedure calls

CHR function
IADDRESS function
LIB$SIGNAL procedure

%SCA-S-OCCURS, 7 occurrences found (5 symbols, 5 names)

A nonstructured version of the same command follows:

FIND CALLED_BY(signal_duplicate, result=nostructure)

The result follows.

CHR function
BUILD TABLE\23 call reference
BUILD=TABLE\25 call reference

IADDRESS function
BUILD TABLE\26 call reference

LIB$SIGNAL procedure
BUILD_TABLE\26 call reference

SIGNAL DUPLICATE procedure
BUILD_TABLE\17 PROCEDURE declaration

%SCA-S-OCCURS, 5 occurrences found (4 symbols, 4 names)

You can also use the result-parameter to restrict the result to just the
beginning or just the end of the relationship expression. For example, if
you want to identify the routines that call RTL routines, type the following
command:

FIND CALLING(lib$*, result=begin)

The result follows.

SIGNAL DUPLICATE procedure
BUILD_TABLE\17 PROCEDURE declaration

%SCA-S-OCCURS, 1 occurrence found (1 symbol, 1 name)

You can interpret this command as follows: "Find what is calling LIB$*, and
report only the caller, SIGNAL_DUPLICATE, not the callee, LIB$*."

If you want to find all the occurrences of routines that call RTL routines,
expand the result of the previous query expression by typing the following
command:

FIND EXPAND CALLING(lib$*, result=begin)

Using the SCA Query Language 8-15

The result follows.

SIGNAL DUPLICATE procedure
BUILD TABLE\17 PROCEDURE declaration
BUILD=TABLE\35 call reference

%SCA-S-OCCURS, 2 occurrences found (1 symbol, 1 name)

You can also find routines that call LIB$* indirectly by typing the following
command:

FIND CALLING(lib$*, depth=all, result=begin)

This command asks for the routines that call an RTL routine either directly
or indirectly. The result follows.

BUILD TABLE procedure
BUILD_TABLE\10 PROCEDURE declaration

SIGNAL DUPLICATE procedure
BUILD_TABLE\17 PROCEDURE declaration

%SCA-S-OCCURS, 2 occurrences found (2 symbols, 2 names)

8.4. 7 Other Relationships

TYPING and CONTAINING also allow you to query a software system. For
example, you can determine the type of the routine parameter TABLE by
typing the following command:

FIND TYPING table

The result follows.

TABLE argument is typed by
TRANS_TABLE type

%SCA-S-OCCURS, 2 occurrences found (2 symbols, 2 names)

You can trace these type ,relationships through multiple levels. Suppose
TRANS_TABLE is defined as follows:

TYPE
trans table= ARRAY (1 .. 10] OF RECORD

trans value : INTEGER;
compress : BOOLEAN;
END;

You can trace multiple levels by typing the following command:

FIND TYPING(table, depth=all)

8-16 Using the SCA Query Language

The result follows.

TABLE argument is typed by
TRANS TABLE type is typed by

array is typed by
array component is typed by

record is typed by
COMPRESS component is typed by

BOOLEAN scalar type
TRANS_VALUE component is typed by

CODE_VALUE type is typed by
scalar type is typed by

INTEGER scalar type
CODE_VALUE type (See above)

%SCA-S-OCCURS, 14 occurrences found (11 symbols, 8 names)

You can also find all variables of type INTEGER by typing the following
command:

FIND TYPED_BY(integer, symbol=variable, result=begin)

The result follows.

TRNLIT~DUPORIG variaple
BUILD_TABLE\7 EXTERNAL or predefined variable declaration

TRNLIT REPTOOLON variable
BUILD_TABLE\8 EXTERNAL or predefined variable declaration

%SCA-S-OCCURS, 2 occurrences found (2 symbols, 2 names)

You can interpret the preceding command as follows: "Find the sym
bols that are typed-by INTEGER and that match the query expression,
SYMBOL= VARIABLE, and return just the beginning of the typed-by
relationship."

There is a general "containment" relationship. You can use it to get a
"declaration-tree." To show the (primary) declaration structure of the
module BUILD_TABLE, type the following command:

FIND CONTAINED_BY(build_table, occurrence=primary, depth=all

The first parameter says "begin at BUILD_TABLE." The second parameter
says "End with primary declarations." The third parameter says "Repeat
any number of levels." The result follows.

Using the SCA Query Language 8-17

BUILD_TABLE module contains
BUILD_TABLE procedure contains

CODE variable
I variable contains

scalar type
ORIG_LEN argument
ORIG_VECTOR argument
REPL_LEN argument
REPL_VECTOR argument
SIGNAL_DUPLICATE procedure contains

CODE argument
TEXT variable contains

array contains
array index contains

array component
TABLE argument

LIB$SIGNAL procedure contains
ARGS argument

%SCA-S-OCCURS, 18 occurrences found (18 symbols, 13 names)

You can use the containment relationship to specify more precisely which
symbol you want. To request all of the occurrences of symbols named CODE
that are directly contained by the routine BUILD_TABLE, type the following
command:

FIND CONTAINED_BY(build_table, code, result=begin)

The result follows.

CODE variable
BUILD TABLE\14 VAR (variable) declaration
BUILD-TABLE\32 write reference
BUILD-TABLE\33 read reference
BUILD-TABLE\35 read reference

%SCA-S-OCCURS, 4 occurrences found (1 symbol, 1 name)

Alternately, to request all of the occurrences of symbols named CODE that
are directly or indirectly contained by the routine BUILD_TABLE, type the
following command:

FIND CONTAINED_BY(build_table, code, depth=all, result=begin)

The result follows.

CODE variable
BUILD TABLE\14
BUILD-TABLE\32
BUILD-TABLE\33
BUILD=TABLE\35

CODE argument

VAR (variable) declaration
write reference
read reference
read reference

BUILD TABLE\17 formal parameter declaration
BUILD-TABLE\21 read reference
BUILD-TABLE\23 read reference
BUILD=TABLE\25 read reference

%SCA-S-OCCURS, 8 occurrences found (2 symbols, 1 name)

8-18 Using the SCA Query Language

t4.8 The IN Function

The CONTAINED_BY function is so general that even the most common
queries involve the specification of several parameters. Therefore, the IN
function has been defined as a special case of the CONTAINED_BY function.

The IN function returns all of the specified occurrences that are contained
directly or indirectly (DEPTH=ALL) by a specified (set of) occurrences. See
Chapter 9 for more information.

As an example, the FIND CONTAINED_BY command in the previous
section could be more simply written as follows:

FIND IN(build_table, code)

You can interpret this command as "Find all occurrences in BUILD_TABLE
named CODE."

To find all occurrences in BUILD_TABLE, including those nested within
declarations of BUILD_TABLE, you omit the second parameter, as shown in
the following command:

FIND IN build table

As another example, imagine that you are working on a compiler project
and that you have defined a query named PARSER to contain the list of
all of the modules that make up the parser. To find all of the occurrences
of symbols named LIB$GET_ VM contained directly or indirectly within the
parser modules, type the following command:

FIND IN(@parser, lib$get_vm

~.4.9 Pathnames

The SCA query language accepts pathname notation. For example, to
find only symbols named CODE that are declared directly within BUILD_
TABLE, type the following command:

FIND build_table\code

The result follows.

CODE variable
BUILD TABLE\14 VAR (variable) declaration
BUILD-TABLE\32 write reference
BUILD-TABLE\33 read reference
BUILD-TABLE\35 read reference

%SCA-S-OCCURS, 4 occurrences found (1 symbol, 1 name)

Using the SCA Query Language 8-19

Alternately, you can type the following command:

FIND signal_duplicate\code

The result follows.

CODE argument
BUILD TABLE\17 formal parameter declaration
BUILD-TABLE\21 read reference
BUILD-TABLE\23 read reference
BUILD=TABLE\25 read reference

%SCA-S-OCCURS, 4 occurrences found (1 symbol, 1 name)

You can build up pathnames repeatedly to increase precision. For example,
the previous display could have been produced by typing the following
command:

FIND build_table\signal_duplicate\code

You can use wildcards within pathnames. For example, the previous display
could also have been produced by typing the following command:

FIND build_table*\code

You can interpret this command as "Find symbols named CODE that
are declared within any primary declaration that is contained within the
primary declaration of BUILD_TABLE."

You can specify that any number of containment levels are acceptable. This
is done by leaving out a pathname, as in the following command:

FIND build_table\\code

You can interpret this command as "Find symbols named CODE that are
declared directly or indirectly by the primary declaration of BUILD_TABLE."
The result follows.

CODE variable
BUILD_TABLE\14
BUILD TABLE\32
BUILD-TABLE\33
BUILD=TABLE\35

CODE argument

VAR (variable) declaration
write reference
read reference
read reference

BUILD TABLE\17 formal parameter declaration
BUILD-TABLE\21 read reference
BUILD-TABLE\23 read reference
BUILD=TABLE\25 read reference

%SCA-S-OCCURS, 8 occurrences found (2 symbols, 1 name)

You can include a general query expression as a pathname by typing the
following command:

FIND (modl OR mod2)\\code

8-20 Using the SCA Query Language

You can interpret this command as "Find symbols named CODE that are
declared directly or indirectly by the primary declaration of either MODl or
MOD2."

Similarly, if you are working on a compiler project, and you have defined a
query named PARSER to contain the list of all of the modules that make up
the parser, then to find all of the symbols named CODE that are declared in
the parser, type the following command:

FIND @parser\\code

8.4.10 Combined Relationship Examples

You can combine more than one relationship function into one query. If
you.want to know whether or not it is possible for a call to the routine
BUILD_TABLE to modify a global variable, you need to consider not only
BUILD_TABLE itself, but also the whole call-tree from BUILD_TABLE
down. You can find out by typing the following command:

FIND IN(CALLED BY(build table, depth=all), -
sym=var AND occ=;rite AND domain=multi)

The result follows.

%SCA-W-NOOCCUR, no symbol occurrence matches your selection criteria

In a still more complicated query, you may want to find all of the occurrences
of symbols of type TRANS_TABLE that are contained within the call-tree
from BUILD_TABLE down. To make this query you type the following
command:

FIND IN(CALLED BY(build table, depth=all), -
EXPAND-TYPED_BY(-trans_table, result=begin))

The result follows.

TABLE argument
BUILD TABLE\12 formal parameter declaration
BUILD=TABLE\33 read reference

%SCA-S-OCCURS, 2 occurrences found (1 symbol, 1 name)

You can use the TRACE parameter to restrict a query to a particular subset
of a program.

If you were a developer working on a LOAD· command, and the module
LOAD contained one entry point, LOAD _FILE, you could show all of the
call relationships within the module LOAD beginning with the routine
LOAD_FILE by typing the following command:

FIND CALLED_BY(load_file, depth=all, trace=IN(load))

Using the SCA Query Language 8-21

This command shows all calls that occur within module LOAD, but traces
through only the routines whose primary declaration is within LOAD. For
example, if LOAD_FILE calls to a routine READ_EVENT whose primary
declaration is outside of LOAD, then the call to READ_EVENT shows up in
the display, but no calls within READ_EVENT are included. This is because
tracing is turned off outside of the module LOAD.

Alternately, to trace call-relationships from LOAD_FILE down, but display
calls only to routines whose primary declaration occurs within LOAD, you
type the following command:

FIND CALLED_BY(load_file, IN(load), depth=all, trace=IN(load))

You can interpret this command (via the TRACE parameter) as "Only
continue tracing the called-by relationship through routines whose primary
declaration occurs within LOAD;" and (via the BEGIN parameter) "Only
include the paths that end with routines whose primary declaration occurs
within LOAD." Consequently, this command does not include calls to READ_
EVENT.

You can trace all call-relationships from LOAD_FILE down, subject to
only one limitation: each path must end with a routine whose primary
declaration occurs within LOAD. Since the TRACE expression has been
defaulted (to *),this command traces the called-by expression through any
routine as long as the path eventually leads back to a routine declared in
LOAD. You can perform this operation by typing the following command:

FIND CALLED_BY(load_file, IN(load), depth=all)

8-22 Using the SCA Query Language

Chapter 9

Evaluating SCA Query Expresssions

This chapter describes the rules governing the use of the SCA Query
Language. The following tables provide an overview of the components of
the SCA Query Language.

Table 9-1 : Attribute Selection Expressions

Attribute

name

symbol class

symbol domain

occurrence class

file specification

Syntax

name

symbol=symbol_class

domain=symbol_domain

occurrence=occ_class

file=file_spec

Example/Usage

foo

symbol=argument

domain= global

occur= primary

file="foo.b32"

See Section 9.5 for a list of attribute selection values and their meanings.

Table 9-2: Binary Operators

Type Syntax Example/Usage

pathname expl \exp2 subrx\y

expl \ \exp2 routa\ \y

intersection expl AND exp2 a AND occ=decl

union expl OR exp2 symb=arg OR symb=var

exclusive or expl XOR exp2 occ=read XOR occ=write

Evaluating SCA Query Expresssions 9-1

Table 9-3: Nonrelationship Function Expressions

Function Syntax Example/Usage

negation NOT query expression l* AND NOT lib*

expansion EXPAND query expression EXPAND (occ=primary)

indicated INDICATED() EXPAND INDICATED()

query usage @query name @any _query and domain=module

Relationship function expressions have the following general syntax, which
is described in more detail in Table 9-4 and Table 9-5:

rel function name(end=query expression,
- - begin=query expression,

depth=n, -
result=result_keyword,
trace=query_expression)

Table 9-4: Function Names

Function Name/Example

CALLINGx

CALLED_BY (a,b,depth=all)

TYPING (y,depth=all)

TYPED_BY real

CONTAINED (x,symbol=rout)

CONTAINING (domain=global, sym
bol=module, result=begin, depth=all)

Description

displays who is calling X

displays the call tree from A to B

displays the type information of Y

displays all symbols of type REAL

displays all routines in X

displays modules that contain glob
ally defined symbols

Table 9-5: Function Parameters

Parameter Type Default

END query expression *

BEGIN query expression *
DEPTH integer 1

RESULT keyword value STRUCTURE

TRACE query expression *

See Section 9. 7 .6.2 for a list of RESULT keyword values and their meanings.

9-2 Evaluating SCA Query Expresssions

~.1 Query Expression Syntax

This section defines the syntax of a query expression. The following example
is a high-level description of the syntax. It defines, for example, the form of
a function call, but it does not describe which functions are available. The
low-level details are described in later sections.

query-expression ::=attribute-selection-expression
binary-op-expression I
function-call-expression I
(query-expression)

attribute-selection-expression::= actual-parameter

binary-op-expression::= query-expression binary-operator query-expression

binary-operator ::=AND I OR I XOR I \ I \\

function-call-expression::= function-name actual-parameter
function-name ([actual-parameter], ...

function-name ::= nonwildcard-string

actual..,.parameter ::=named-actual-parameter I positional_actual_parameter

named-actual-parameter ::=formal-parameter-name= actual-parameter-value

positional_actual_parameter ::=actual-parameter-value

formal-parameter-name ::= nonwildcard-string

actual-parameter-value ::=query-expression I name-expression

keyword-list

keyword-list ::=keyword I (keyword, ...

keyword::= nonwildcard-string

number ::=digit ... I ALL

range-list : : = range I (range, ...

range ::=number I number:number

range-list I number

name-expression ::=simple-string I "complex-string"

nonwildcard-string ::={letter I digit ! graphic-character} ...

simple-string::= {letter I digit I graphic-character I
wildcard-character I escape-character} ...

complex-string::= any-character ...

letter::= any-alphabetic-character

digit ::= 0 I 1 I 2 I 3 4 5 I 6 I 7 I 8 I 9

graphic-character ::= - $

wildcard-character ::= * %

escape-character ::= &

Evaluating SCA Query Expresssions 9-3

9.2 Operator Precedence and Associativity

Table 9-6 is a syntax diagram that gives the forms of query expressions.
The forms are grouped into priority levels, and an associativity is given for
each priority level. In the following table,

expl = query-expression
exp2 = query-expression

Table 9-6: Query Expression Forms

Priority

highest

lowest

Operator Expression

function-name actual-parameter

expl \ exp2, expl \ \ exp2

expl AND exp2

expl OR exp2

expl XOR exp2

9.3 Default Parenthesizing

Associates from

right to left

left to right

left to right

left to right

left to right

Default parenthesizing for query expressions is determined by the operator
priorities and associativity given in the previous diagram. The following
rules apply:

• Parenthesize the functions and operators of a given expression in order
of descending priority. That is, first parenthesize all function calls
(highest priority), then parenthesize pathname expressions (\ and \ \)
(next highest priority), and so on.

• If an expression contains several occurrences of the same operator, then
parenthesize those operators in the order indicated by their associativity.

When an operator is parenthesized, the parentheses surround the operator
and the one or two operands required by the operator.

As an example of the application of these rules, consider the following query
expression:

CALLING CALLED_BY x OR y AND NOT z

9-4 Evaluating SCA Query Expresssions

This expression contains two binary operators and three function calls
(NOT is a function). There are many .ways in which it could be explicitly
parenthesized. The following steps illustrate adding default parenthesizing:

CALLING CALLED_BY(x) OR y AND NOT (z)

CALLING(CALLED_BY(x) OR y AND NOT(z)

CALLING(CALLED_BY(x)) OR (y AND NOT(z))

(CALLING(CALLED_BY(x)) OR (y AND NOT(z)))

9.4 Semantics

SCA evaluates a query expression as follows:

1. Evaluates the operand(s) of the expression.

2. Calculates a value according to the specific rules for the given operator.
The value obtained from this step is the value of the expression.

The order in which SCA evaluates the operands of a query expression
is not defined. Since query expressions have no side effect, the order of
evaluation does not matter. Furthermore, expressions are not necessarily
evaluated from the innermost to the outermost, but they are evaluated in a
semantically equivalent way.

The value of a query expression is a collection of symbol occurrences
and, possibly, relationships between occurrences. A query result that
has information about relationships between occurrences is called a
structured query result. A nonstructured collection of occurrences has no
interoccurrence relationship information.

A structured query result is a directed graph (possibly cyclic and possibly
disjoint) in which the nodes are occurrences and the arcs are relationships
between occurrences. A nonstructured query result is simply a special
instance of a structured set: a graph in which every node is disjoint from
every other node.

9.5 Attribute Selection Expressions

An attribute-selection expression selects occurrences based on the setting of
occurrence and symbol attributes. An attribute-selection expression has the
following form:

attribute-selection-exp::= [attribute-name=] actual-parameter

Evaluating SCA Query Expresssions 9-5

If no attribute name is specified, then the name-expression attribute is
assumed.

SCA supports the following types of attribute selection:

• Name

• Symbol class

• Symbol domain

• Occurrence class

• File specification

The rest of this section describes the types of attribute selection in more
detail.

9.5.1 Name Selection

A name-selection expression selects occurrences that have names that match
a specified name expression.

A name-selection expression has the following form, where name is a formal
parameter name and a name-expression is a string of characters, possibly
including wildcards.

name-selection-exp::= name-expression
name=name-expression
name=(name-expression, ...

An attribute-selection expression with no formal parameter name is a name
selection expression. A name expression that includes a wildcard character
is equivalent to a union of all the names that match the name-selection
expression. A list of name expressions is equivalent to a union of name
selection expressions, each having a single name expression. Given these
rules, the following three examples are equivalent:

name=(namexpl, namexp2)

name=namexpl OR name=namexp2

namexpl OR namexp2

When a complex string is enclosed in quotation marks, the string can contain
any ASCII character except a quotation mark. If you want a quotation mark
in such a string, it must be represented by two successive quotation marks.
For example, the following quoted complex string contains a single quotation
mark enclosed in parentheses:

"one quotation mark ("")"

9-6 Evaluating SCA Query Expresssions

You can override the wildcard characters(% and*) using the escape
character(&). For example, you can find the name consisting of a single
asterisk by means of the name expression &*. If you want an ampersand in
a string, it must be represented by two successive ampersands. For example,
the name consisting of a single ampersand can be found by means of the
name expression &&.

The enclosing of a complex string in quotation marks does not affect the
case-sensitivity of the matching. String matching is not sensitive to the case
of the string specified in the name expression.

Note that while a hyphen(-) is allowed in a simple name, a command line
that ends in a hyphen is a continued command, just as in DCL.

9.5.2 Symbol Class Selection

A symbol-class-selection expression selects occurrences whose symbol
class is one of those specified in the symbol-class-selection expression. A
symbol-class-selection expression has the following form:

symbol-class-selection-exp::= symbol=symbol-class I
symbol=(symbol-class, ...

Symbol is a formal parameter name and symbol-class is one of the following
keywords:

• ARGUMENT - Formal argument (such as a routine argument or macro
argument)

• COMPONENT, FIELD - Component of a record

• CONSTANT, LITERAL - Named compile-time constant value

• EXCEPTION - Exception

• FILE- File

• FUNCTION, PROCEDURE, PROGRAM, ROUTINE, SUBROUTINE -
Callable program function

• GENERIC - Generic unit

• KEYWORD - Keyword

• LABEL - User-specified label

• MACRO - Macro

• MODULE, PACKAGE - Collection of logically related elements

• PLACEHOLDER-Marker where program text is needed

• PSECT - Program section

Evaluating SCA Query Expresssions 9-7

• TAG - Comment heading

• TASK-Task

• TYPE - User-defined type

• UNBOUND - Unbound name

• VARIABLE - Program variable

• OTHER - Any other class of symbol

You use one or more of the generic (multilanguage) keywords to request spe
cific classes of symbols. Since different languages use different terminology,
several alternatives are provided for some classes of symbols.

A list of symbol classes is equivalent to a union of symbol-class-selection
expressions, each having a single symbol class.

9.5.3 Symbol Domain Selection

A symbol-domain-selection expression selects occurrences whose symbol
domain is one of those specified in the symbol-domain-selection expression.

Symbol domain is the range of source code in which a symbol has the
potential of being used. For example, a BLISS OWN declaration creates a
symbol that has a module-specific symbol domain; it cannot be used outside
of that module. On the other hand, a BLISS GLOBAL declaration creates
a symbol that has a multimodule symbol domain; it has the potential of
being used in more than one module. The symbol domain of a GLOBAL is
multimodule regardless of how many modules there are in which the symbol
is used.

A symbol-domain-selection expression has the following form:

symbol-domain-selection-exp ::= domain=symbol-domain I
domain=(symbol-domain, ...)

Domain is a formal parameter name and symbol-domain is one of the
following keywords:

• INHERITABLE - Able to be inherited into other modules (for example,
by means of BLISS library, Pascal environment, or Ada compilation
system mechanisms)

• GLOBAL - Known to multiple modules via linker global symbol
definitions

• PREDEFINED - Defined by the language (examples: BLISS ap,
FORTRAN sin, Pascal writeln)

9-8 Evaluating SCA Query Expresssions

• MULTI_MODULE-Domain spans more than one module
(domain=multi_module is equivalent to domain=(inheritable,global,
predefined)

• MODULE_SPECIFIC - Domain is limited to one module

A list of symbol domains is equivalent to a union of symbol-domain-selection
expressions, each having a single symbol domain.

9.5.4 Occurrence Selection

An occurrence-selection expression selects occurrences whose occurrence
class is one of those specified in the occurrence-selection expression. An
occurrence-selection expression has the following form:

occurrence-selection-exp::= occurrence=occurrence-class
occurrence=(occurrence-class, ...)

Occurrence is a formal parameter name and occurrence-class is one of the
following keywords:

Declarations

• PRIM.ARY - Most significant declaration (such as FUNCTION)

• ASSOCIATED - Associated declaration (such as EXTERNAL)

References

• READ, FETCH - Fetch of a symbol value

• WRITE, STORE - Assignment of a symbol value

• ADDRESS, POINTER - Reference to the location of a symbol

• CALL - Call to a routine or macro

• COMMAND_LINE - Command line file reference

• INCLUDE - Source file include reference

• PRECOMPILED - Precompiled file include reference

• OTHER - Any other kind of reference (such as a macro expansion or
use of a constant)

Other Occurrence Classes

• EXPLICIT- Explicitly declared

• IMPLICIT- Implicitly declared

• VISIBLE - Occurrence appears in the source

Evaluating SCA Query Expresssions 9-9

• HIDDEN - Occurrence does not appear in the source

• COMPILATION_UNIT - Occurrence is compilation-unit

9.5.5 File Specification Selection

A file-specification-selection expression selects occurrences whose source
position is in one of the files specified in the file-specification-selection
expression. A file-specification-selection expression has the following form;

file-spec-selection-exp::= fi1e spec=name-expression I
fi1e.=spec=(name-expression, ...)

File_specification is a formal parameter name and name-expression is a
name expression that is interpreted as a file specification.

9.6 Operator Expressions

This section describes the operators you use with the SCA Query Language.
Operators are a mechanism for querying SCA libraries. The value of an
operator expression is the set of occurrences and relationships that result
from applying the operator to the operands. SCA query expression operators
are similar to functions in high-level languages, such as Pascal and Ada.
Operator expressions have an operator name, enclosed by two operands,
which are query expressions. The result of an operator expression is a
query-expression result.

9.6.1 Path~Name Expressions

A path-name expression identifies symbols based on the nesting of primary
declarations. The expression has the following form:

pathname-expression ::= expl \ exp2 I
expl \\ exp2

The pathname operators (\ and \ \) are actually special cases of the general
CONTAINED_BY function. The expression expl \ exp2 is equivalent to the
following expression:

EXPAND CONTAINED_BY(expl AND occ=primary,
exp2 AND occ=primary,
result=begin,
depth=all,
trace="")

9-10 Evaluating SCA Query Expresssions

The expression expl \ \ exp2 is equivalent to the following expression:

EXPAND CONTAINED_BY(expl AND occ=primary,
exp2 AND occ=primary,
result=begin,
depth=all)

9.6.2 Intersection Expressions

An intersection expression identifies occurrences that exist in two different
sets. The expression has the following form:

intersection-expression::= expl AND exp2

The value of this expression is a set containing each occurrence that exists
in both sets (expl and exp2); occurrences that appear in only one of the sets
are not included.

9.6.3 Union Expressions

A union expression merges two sets. The expression has the following form:

union-expression::= expl OR exp2

The value of this expression is a set containing all occurrences that exist in
either set (expl or exp2).

9.6.4 Exclusive-Or Expressions

An exclusive-or expression selects the unique occurrences in two different
sets. The expression has the following form:

exclusive-or-expression ::= expl XOR exp2

The value of this expression is a set containing all occurrences that exist in
only one of the sets (expl and exp2); occurrences that appear in both sets
are not included.

9.7 Function-Call Expressions

Function-call expressions are a general mechanism for querying SCA
libraries. The value of a function-call expression is the set of occurrences
and relationships that result from the evaluation of the function body.

Evaluating SCA Query Expresssions 9-11

SCA query expression functions are similar to functions in high-level
languages, such as Pascal and Ada. Functions have a name, a parameter
list, and a result. The result of a function is a query-expression result.

A parameter list consists of zero, one, or more parameters. Every parameter
has a data type and, optionally, a default actual parameter value. All
predefined functions described in this section have default actual parameter
values for all parameters. A data type is either a query expression, a name
expression, a keyword list, a range list, or a number.

The typical form of a function-call expression is as follows:

function-call-expression ::=function-name([actual-parameter], ...

A function-call expression is a function name followed by an actual
parameter list enclosed in parentheses. An actual parameter list can
be empty if the function has no parameters or all of the parameters
have default actual parameter values. In this case, the function-call
expression consists of a function name followed by empty parentheses, or
function-name().

If the actual parameter list consists of exactly one parameter, then the
parentheses can be dropped. This form of the function-call expression is as
follows:

function-call-expression ::=function-name actual-parameter

9. 7 .1 Parameter Association

A function call must pass exactly one actual parameter for each formal
parameter. The actual parameter is either listed explicitly in the function
call or is supplied by means of a default value in the function declaration.
When a function call supplies no actual parameter for a formal parameter
that was declared with a default value, you use the default. An error occurs
if you fail to supply an actual parameter for a formal parameter that does
not have a default value. All formal parameters for predefined functions
have default values. ·

One way of establishing the correspondence between actual and formal
parameters is .fo give the parameter in each list the same position. That
is, the association of the actual and formal parameters proceeds from left
to right, item by item, through both lists. This form of association is called
positional.

9-12 Evaluating SCA Query Expresssions

Another way of establishing correspondence is to specify the formal param
eter name and the actual parameter being passed to it. You can associate
an actual parameter with a formal parameter by using the assignment(==)
operator. The actual parameters in the call do not have to appear in the
same order that the formal parameters appeared in the declaration. This
form of association is called named.

You may use both positional and named actual parameters in the same call.
However, you must still supply at most one actual parameter for any formal
parameter, and you must list the positional parameters first.

9. 7.2 Negation Function

The negation function finds occurrences that do not match a query expres
sion. The function has the following form:

FUNCTION NOT(query_expression : query-expression= *)

The result of a call to this function is a set containing all occurrences that
are not contained in query_expression. Note that the expression NOT() ·
evaluates to the empty set.

9. 7.3 Expansion Function

The expansion function expands a set of occurrences to include all the
occurrences of the symbols that correspond to the original occurrence set.

The function has the following form:

FUNCTION EXPAND(query_expression : query-expression= *)

See Section 8.4.2 in Chapter 8 for an example of the expansion function.

9.7.4 Indicated Function

The indicated function is available only from within LSE. The indi
cated function matches the occurrence that the cursor is pointing at.
Section 7.1.6.2 in Chapter 7 shows an example of the indicated function.
The function has the following form:

FUNCTION INDICATED

Evaluating SCA Query Expresssions 9-13

The indicated function has no parameters. Thus, a call to the indicated
function must have the following form:

INDICATED()

An indicated function can be nested within other query expressions.

9. 7.5 Query Usage Function

A query usage function incorporates the results of previous queries into
query expressions. The. function has the following form:

FUNCTION@(query_name : query-name= sca$current_query)

The value of this expression is that of the expression that is specified as
query_name. The default query is the current query, SCA$CURRENT_
QUERY.

9.7.5.1 The Current Query

The current query specifies the result of the previous query or the one to
which you are set using the NEXT QUERY, PREVIOUS QUERY, and GOTO
QUERY commands. The name of the current query is SCA$CURRENT_
QUERY. The current query is used as follows:

@sca$current_query

Since the @ function defaults to the current query, this expression may also
be written as follows:

@ ()

9.7.6 Relationship Funqtions

A relationship function selects occurrences based on relationships between
occurrences. There are two kinds of relationship expressions: structured
relationship expressions and nonstructured-relationship expressions.

A structured-relationship expression selects both occurrences and rela
tionships between them. A structured-relationship expression preserves
relationship information in the value of the expression. The result of such
an expressio:µ is a structured query result.

9-14 Evaluating SCA Query Expresssions

A nonstructured-relationship expression selects occurrences based on
relationships between occurrences. A nonstructured-relationship expression
uses information about the relationships between occurrences, but does not
preserve relationship information in the result of the expression. The result
of such an expression is a nonstructured query result.

All of the relationship functions have the same set of parameters. The
different relationship functions differ in their name and, of course, in their
semantics. A relationship function has the following form:

FUNCTION function-name(end : query-expression=*,
begin : query-expression = *,
depth : number = 1,
result : keyword-list = structure,
trace : query-expression = *)

9.7.6.1 Individual Relationship Functions

This section describes the individual relationship functions. There are two
kinds of relationship functions: basic functions and inverse functions. You
can trari.sform every basic function into its corresponding inverse function by
removing the ING at the end of the function and adding ED_BY.

For example, you can transform the basic function CALLING to the inverse
function, CALLED_BY. So the two commands, CALLING(y,x) and CALLED_
BY(x,y), produce the same result: a graph of call relationships from X to Y.

Relationship Functions

CALLING

CALLED_BY

The CALLING relationship finds those occurrences in begin-exp that are
calling occurrences in end-exp. Typically, if not exclusively, declarations in
begin-exp call references in end-exp. The CALLED_BY relationship finds
those occurrences in begin-exp that are called by occurrences in end-exp.

CONTAINING

CONTAINED_BY

The CONTAINING relationship finds those occurrences in begin-exp that
contain occurrences in end-exp. The CONTAINED_BY relationship finds
those occurrences in begin-exp that contain occurrences in end-exp.

Evaluating SCA Query Expresssions 9-15

TYPING

TYPED_BY

The TYPING relationship finds those occurrences in begin-exp that deter
mine the type of occurrences in, or are typing, end-exp. The TYPED _BY
relationship finds those occurrences in begin-exp whose type is one of the
occurrences in, or are typed by, end-exp.

9.7.6.2 Relationship Parameters

Relationship parameters determine the precise semantics of a relationship
expression. The following is a list of relationship parameters and how you
~se them.

Relationship Parameters

END:end-expression
Specifies those occurrences at which the tracing of relationships can end.
Only paths that end on one of these occurrences are included in the result.
The default is end=*.

BEGIN=begin-expression
Specifies those occurrences at which the tracing of relationships can begin.
Only paths that begin on one of these occurrences are included in the result.
The default is begin=,'~.

DEPTH:depth-level
Specifies the number of levels of structure that are to be traced. The default
depth-level is 1. Depth=all indicates that there is no limit to the number of
levels of structure that are to be traced. -

RESULT =result-keyword-list
Where result-keyword-list is one or more of the following keywords:

• [NOJSTRUCTURE - Indicates whether relationship information is to be
preserved in the query result.

• ANY_PATH ..,.__ Indicates that ~ny path that traces from the begin
expression to the end-expression will satisfy the query. SCA will
return the first complete path(s) it finds. By default, all such paths are
returned.

9-16 Evaluating SCA Query Expresssions

• BEGIN - Indicates that only those occurrences that begin the
relationship graph are to be included in the result. This key
word implies RESULT=NOSTRUCTURE. It is incompatible with
RESULT=STRUCTURE.

• END - Indicates that only those occurrences that end the re
lationship graph are to be included in the result. This key
word implies RESULT=NOSTRUCTURE. It is incompatible with
RESULT=STRUCTURE.

The default is result=structure.

TRACE:trace-expression
A query expression whose result specifies those occurrences through which
relationship tracing is to be continued. The trace parameter does not affect
the first iteration. That first iteration is controlled by the begin parameter.
The default is trace=*.

9.7.7 The IN Function

The IN function restricts a set of occurrences to those occurrences that are
directly or indirectly contained by another set of occurrences.

The function has the following form:

FUNCTION IN(end : query-expression = *,
begin : query-expression = *

CONTAINED BY(end AND decl=primary,
- begin,

result=begin,
depth=all)

The IN function is a special case of the CONTAINED_BY function. It
has been included in the set of predefined functions because it provides
a particularly useful subset of the capabilities of the CONTAINED_BY
function.

Evaluating SCA Query Expresssions 9-17

9.8 Abbreviation Rules

You may abbreviate attribute-selection formal parameter names and
attribute-selection actual parameter keywords to their first four characters.
You may truncate these names and keywords to fewer characters as
long as the truncation is unique. For example, the symbol-class-selection
attribute name is the only such name that begins with S. Therefore, you can
abbreviate the symbol attribute name to just one character.

Attribute-selection actual parameter keywords work the same way.

Special considerations apply when you type these names and keywords in
command procedures. To ensure readability, you should not abbreviate at
all. If you do abbreviate, never abbreviate to fewer than four characters or
you risk the possibility that your command procedure may not be compatible
with future releases of SCA.

Only attribute-selection formal parameter names and attribute-selection
actual parameter keywords can be abbreviated.

9-18 Evaluating SCA Query Expresssions

Chapter 10

Using SCA Librarie~

This chapter describes SCA libraries, their capabilities, and associated
commands.

10.1 Overview

An SCA library is a- collection of source information that is generated by
supporting VMS compilers in the form of .ANA files. Unless otherwise
specified, an .ANA file is created in your current default directory from
which the source information can be loaded (with a LOAD command) into a
specified SCA library. Each .ANA file contains one or more modules of data
with each module being a logically complete set of source information or, in
compiler terms, a compilation unit.

Library commands allow you to create and manipulate libraries and their
contents. The commands allow you to produce and maintain a library list,
which establishes a library for selection and manipulation (such as loading,
querying, or deletion of library modules) or for access to multiple physical
libraries as a single virtual library.

10.1.1 Using Remote Libraries

With SCA, you can access SCA libraries over the network. To use an SCA
library over the network, use either the SET LIBRARY or the CREATE
LIBRARY command with a directory specification that includes a node
name. Once the SET LIBRARY or CREATE LIBRARY command has
completed, you can issue queries and update the library as if it were local.

Using SCA Libraries 10-1

There are two requirements for using a remote SCA library.

1. The target node you specify must have the SCA server installed. If you
use the SET LIBRARY command to connect a node that does not have
an SCA server, you will get an error message.

2. The target SCA library also must be accessible to the SCA server. SCA
automatically grants the SCA server access to your SCA library through
an Access Control List when you create the library.

The following is an example of how to specify a remote SCA library directory
on the node MYNODE using the SET LIBRARY command.

$SCA SET LIBRARY MYNODE::MYDEV$: [USER.PROJ.SCALIB]

You can also give an access control string or a proxy account name as part
of the node specification for the library. The SCA server ensures that only
authorized remote users access your library.

10.2 Library Manipulation

With the following commands you can create, select, load, and delete SCA
libraries. You can use these commands within LSE or at the DCL level.

• CREATE LIBRARY

• SET LIBRARY

• SET NOLIBRARY

• LOAD

• DELETE LIBRARY

10.2.1 Creating a Library Directory

The first step in creating an SCA library is to create a directory for it at the
DCL level. The following command creates a subdirectory for a local SCA
library:

$ CREATE/DIRECTORY PROJ: [USER.LIBl]

10-2 Using SCA Libraries

10.2.2 Creating a Library

With the CREATE LIBRARY command, you can initialize a new SCA library
by specifying its directory. The command has the following form:

CREATE LIBRARY [/qualifier ...] directory-spec[, ...]

In the following example, the CREATE LIBRARY command initializes and
activates two libraries (LIBl ,LIB3) in the local subdirectories specified.

$ SCA CREATE LIBRARY [.LIBl], [.LIB3]
%SCA-S-NEWLIB, SCA Library created in PROJ: [USER.LIBl]
%SCA-S-LIB, your SCA Library is PROJ: [USER.LIBl]
%SCA-S-NEWLIB, SCA Library created in PROJ: [USER.LIB3]
%SCA-S-LIB, your SCA Libraries are
-SCA-S-LIB, PROJ: [USER.LIBl]
-SCA-S-LIB, PROJ: [USER.LIB3]

Adding Libraries to the Front of a List

SCA searches for libraries in the order they are listed on library lists.
The /BEFORE qualifier adds the libraries specified on the command line
to the beginning of the current library list. The /BEFORE=library-spec
qualifier inserts the libraries specified on the command line before the
library specified by the qualifier.

In the following example, the CREATE LIBRARY command creates a library
(LIB2) and inserts its directory specification in the current library list before
the library (LIB3) specified by the /BEFORE qualifier.

$ SCA CREATE LIBRARY/BEFORE=[.LIB3] [.LIB2]
%SCA-S-NEWLIB, SCA Library created in PROJ: [USER.LIB2]
%SCA-S-LIB, your SCA Libraries are
-SCA-S-LIB, PROJ: [USER.LIBl]
-SCA-S-LIB, PROJ: [USER.LIB2]
-SCA-S-LIB, PROJ: [USER.LIB3]

Replacing an Existing Library

The /[NO]REPLACE qualifier replaces an existing library in the specified
directory with a new empty library. The default is /NOREPLACE. In the
following example, the CREATE LIBRARY command reinitializes LIB3.

$ SCA CREATE LIBRARY/REPLACE [.LIB3]
%SCA-S-NEWLIB, SCA Library created in PROJ: [USER.LIB3]
%SCA-W-NEWLIB, your SCA Library is PROJ: [USER.LIB3]

Using SCA Libraries 10-3

Adding Libraries to the End of a List

The I AFTER qualifier adds the libraries specified on the command line to
the end of the current library list. The /AFTER=library-spec qualifier inserts
libraries specified on the command line after the library specified by the
qualifier.

In the following example, the CREATE LIBRARY command inserts the
library specified on the command line (LIB4) in the list following the library
(LIB3) specified by the /AFTER qualifier.

$ SCA CREATE LIBRARY /AFTER= [. LIB3] [. LIB4]
%SCA-S-NEWLIB, SCA Library created in PROJ: [USER.LIB4]
%SCA-S-LIB, your SCA Libraries are
-SCA-S-LIB, PROJ: [USER.LIB!]
-SCA-S-LIB, PROJ:[USER.LIB2]
-SCA-S-LIB, PROJ: [USER.LIB3]
-SCA-S-LIB, PROJ: [USER.LIB4]

Estimating Numbers of Modules

The /MODULES=module-count qualifier specifies an estimated size for a
library, expressed in terms of the numbers of modules that will appear. The
default is /MODULES=25. The number serves only as an estimate of initial
library size for performance purposes. It does not restrict a library from
expanding beyong the module number specified.

Specifying Library Size

The /SIZE=block-count qualifier specifies an estimated size for a library, ex
pressed in terms of numbers of blocks of compiler-generated source analysis
data. The default is /SIZE=250 (blocks).

Network Access

SCA allows network access as part of the CREATE LIBRARY command.
SCA adds the following access control list to the library directory:

(IDENTIFIER=[SCA$SERVER],ACCESS=READ+WRITE+EXECUTE)
(IDENTIFIER=[SCA$SERVER],OPTIONS=DEFAULT,ACCESS=READ+WRITE+_
EXECUTE+DELETE+CONTROL)

This ensures that the SCA server will have access to your library for remote
commands. The SCA server verifies that any remote user has the proper
access to your library before allowing any remote commands.

10-4 Using SCA Libraries

10.2.3 Specifying a Library

You must specify an SCA library for use during an SCA session. To do this,
you use the SET LIBRARY command. If a library list exists, it is replaced
by default. The SET LIBRARY command has the following form:

SET LIBRARY [/qualifier •..] directory-spec[, ...]

In the following example, the SET LIBRARY command replaces the entries
on the library list with those specified (LIBl ,LIB2) and selects them for
access as a single virtual library.

$ SCA SET LIBRARY [.LIBl], [.LIB2]
%SCA-S-LIB, your SCA libraries are
-SCA-S-LIB, PROJ: [USER.LIBl]
-SCA-S-LIB, PROJ: [USER.LIB2]

Adding Libraries to a List

The /BEFORE and /AFTER qualifiers add libraries specified on the command,
line to the current library list as described for the CREATE LIBRARY
command.

10.2.4 Removing a Library

You use the SET NOLIBRARY command to remove SCA libraries from the
list of current libraries. The SET NOLIBRARY command has the following
form:

SET NOLIBRARY [/qualifier] [library-spec[, ...]]

In the following example, the SET NOLIBRARY command removes the
specified libraries from the current library list. The parameter specifies the
libraries to be removed. If you omit the parameter, all the libraries will be
removed from the list.

$ SCA SET NOLIBRARY [.LIBl], [.LIB2]
%SCA-S-LIBREM, SCA LIBRARY PROJ: [USER.LIBl] deactivated
%SCA-S-LIBREM, SCA LIBRARY PROJ: [USER.LIB2] deactivated

The only qualifiers available with this command are the message control
qualifiers (/LOG (the default) and /NOLOG).

Using SCA Libraries 10-5

10.2.5 Loading Library Information

The LOAD command loads one or more files of compiler-generated source
analysis data (.ANA) into an SCA library. If you want to load more than one
.ANA file, you may use wildcard file specifications to identify the files. The
LOAD command has the following form:

LOAD [/qualifier ...] file-spec[, ...]

When you issue a LOAD command, the first library on the current list is
loaded by default unless you specify another library. For example, if the first
library on the list is located at [.LIBl], loading occurs as follows:

$ SCA LOAD PG1,PG2,PG3
$ SCA LOAD/LIBRARY=[.LIB2] PG4,PG5
$ SCA LOAD/LIBRARY=[.LIB3] PG6,PG7

By default, the first command loads the first library listed (LIBl) with the
modules contained in the specified data analysis files (PG1-PG3); the next
commands then load the libraries (LIB2,LIB3) specified by the /LIBRARY
qualifier. You must use the /LIBRARY qualifier to specify libraries on your
library list.

Replacing and Adding Analysis Data

The /REPLACE qualifier replaces modules in the specified library, if they
exist, and adds any newly specified modules. The /NOREPLACE qualifier
adds new modules to the library. The default is /REPLACE.

In the following example, the /NOREPLACE qualifier adds a new file of
source analysis data to the current primary library (/LIBRARY =primary
library by default).

$ SCA LOAD/NOREPLACE PG1,PG4
%SCA-W-LOADED, module PGl has already been loaded
%SCA-S-LOADED, module PG4 loaded
%SCA-S-COUNT, 1 module loaded, (1 new, 0 replaced)

Specifying the Update Library

The /LIBRARY =library-spec qualifier specifies the SCA library to be up
dated. The update library must be one of the libraries on the current list.
The default is /LIBRARY =primary-library.

In the following example, the LOAD command replaces (/REPLACE by
default) the specified module (PGl) if it exists in the specified library (LIB2).
If the module does not exist, it is added to the library.

$ SCA LOADVLIBRARY=LIB2 PGl
%SCA-S-LOADED, module PGl loaded

10-6 Using SCA Libraries

Deleting Analysis Data Files

The /DELETE qualifier deletes an .ANA file from its present location when
it is successfully loaded into an SCA library. You can recover deleted .ANA
files from SCA libraries by using the EXTRACT MODULE command.

10.2.6 Deleting a Library

The DELETE LIBRARY command deletes the library in the local subdi
rectory specified. The file containing the library is deleted and the library
returns to its state before a CREATE LIBRARY command was issued. The
DELETE LIBRARY command has the following form:

DELETE LIBRARY [/qualifier .•.) directory-spec[, ...)

10.2. 7 Multiple Libraries

A virtual library is formed by specifying multiple physical libraries in a
search list. Multiple libraries give all users access to common physical
libraries while allowing individuals to modify separate physical libraries.
Multiple libraries also have the following benefits:

• Make more effective use of disk space

• Relieve concurrent usage problems

• Perform LOAD and REORGANIZE operations faster than large single
libraries

• Allow REORGANIZE operations to -proceed when limited disk space
impedes the same operation on a large single library

A virtual library appears to the user as one large physical library. The
precise location of the modules in the virtual library is unimportant.

You set up a virtual library with a library search list, which includes the
names of the physical libraries to com prise the virtual library. A search
list is a comma-separated list on a CREATE LIBRARY or SET LIBRARY
command line. Identical modules are never duplicated; modules contained
in libraries in a search list supersede modules of the same name contained
in libraries later on in the search list.

Using SCA Libraries 10-7

For example, you might create three (empty) libraries in three separate
directories. Each library is then separately loaded with the following
modules:

LI Bl LIB2 LIB3

Modules: A, B, C B, C, D D, E, F

Next, with the following command, Modules A, B, and C are selected from
LIBl; Module D is selected from LIB2; and Modules E and F are selected
from LIB3:

$ SCA SET LIBRARY LIB1,LIB2,LIB3

The multiple physical libraries (LIBl, LIB2, LIB3) are thus defined by SCA
for the current session as a single virtual library containing Modules A, B,
C, D, E, and F.

For access purposes, the selected modules are defined as visible modules.
Those modules passed over because they have the same name as a module
already selected are defined as hidden modules.

Virtual libraries can satisfy the separate and collective library needs of the
members of a project team. For instance, LIBl, in the virtual library shown,
could be a local library dedicated to a task assigned to an individual team
member. LIB2 could be a group library, used for a task shared with other
members of the team, while LIB3 could be a project-wide library that is
used by all team members. Thus, each team member is capable of "seeing"
through their local work area to other work areas. If a module is not found
in a local area, the search continues automatically through each area listed
until the module is found.

The Library List

A library list provides you with a modifiable search list of library directories.
Once you define a library list, it remains available for the current process;

, you can then use SCA commands during subsequent sessions to access the
listed libraries for manipulation or querying.

When you initialize a new library by issuing a CREATE LIBRARY command,
a library is created in each library directory specified on the command line.
If a library list does not exist when the command is executed, the specified
directories will form the list; if a library list does exist, it will be replaced by
the specified directories.

The list remains defined for the current process or until it is either replaced
or modified by another CREATE LIBRARY command, or replaced or modified
by a SET LIBRARY command.

10-8 Using SCA Libraries

As an example of the production and modification of a library list, assume
that the following commands are executed during a single process.

The following command initializes a library in the directory specified.

$ SCA CREATE LIBRARY [.LIBl]

This command initializes the new library (LIBl) for subsequent access, and
establishes it as the new virtual library.

You can now position a library (or group of libraries) anywhere within the
current list by using a /BEFORE or /AFTER qualifier on the command line.
For example:

$ SCA CREATE LIBRARY/AFTER=[.LIBl] [.LIB2]
$ SCA CREATE LIBRARY/AFTER=[.LIB2] [.LIB3]

These commands create the specified libraries (LIB2,LIB3) and insert them
in the current library list following the libraries (LIBl ,LIB2) specified by the
qualifier. At this point, the libraries listed are LIBl ,LIB2,LIB3.

Once the libraries are loaded, you can use commands to query the contents
of the libraries currently listed (LIBl, LIB2, LIB3). Note that all three
libraries will be viewed as a single virtual library.

10.2.8 Library Planning

There are many ways to incorporate SCA libraries into software develop
ment projects. This section briefly describes one method of planning and
maintaining your libraries during the development of a large-scale software
system.

You can arrange an SCA library system to provide an index of detailed
source information for your project that includes the following:

• A single comprehensive project-wide SCA library that reflects the
development of an entire software system

• Individual SCA libraries that reflect local sources required for individual
development tasks

Basic Library Structures

Prior to implementing development work, if an earlier version of your
application software exists, you create a project-wide SCA library to reflect
the preliminary version of the system. Such a library grows with the
development process, and allows current information and sources to be
made interactively available to all members of your project team.

Using SCA Libraries 10-9

During development, SCA libraries are individually created by team mem
bers to reflect local sources and provide small temporary working libraries.
Such libraries are created and updated to serve a specific task, and their
use is enhanced by the ability of SCA to view several physical libraries as
a single virtual library. Thus, each team member sets up a virtual library
structure consisting of their individual libraries followed (in the library list)
by the project-wide library.

As interim tasks are completed, and source files are updated in your source
library, you also update your project-wide SCA library by replacing existing
modules of source analysis data with new information. This allows the
library to reflect current modifications and to keep the project team informed
of interim developments. Finally, when predefined milestones are met and
major system builds are initiated, you may choose to re-create your entire
project-wide library to allow current build sources and development status
to be tied to specific milestones.

Library Maintenance

When the final development phases of a project are completed, a project
wide SCA library is created or modified to ensure library information is
in place that reflects the current version of the software. Repeating this
procedure for each subsequent version of a system provides comprehensive
SCA libraries that satisfy the need for both debugging information during
the maintenance phase of development and general information for future
development.

Note, however, that project-wide SCA libraries can absorb a significant
amount of disk space, and can be reproduced. Therefore, except for specific
applications, multiple versions should not be kept.

Creating and modifying local personal libraries is the responsibility of the
individual user. Because such libraries generally serve a temporary need,
updates will reflect an individual's need for current information.

In all cases, build procedures can be created or modified to update SCA
libraries at appropriate times (such as during the compilation of local source
files or during major system builds).

Structures and Concurrent Access

A virtual library structure can contain one or more physical libraries. When
you set up a multiple library system, the size and volatility of each physical
library composing the system should be considered in the following context:

• A physical library can be concurrently queried by multiple users.

• Exclusive access is imposed on a physical library during updating.

10-10 Using SCA Libraries

• Small physical libraries are more efficiently updated than large physical
libraries.

These facts recommend a library structure for a team environment that
arranges small volatile libraries, independently, followed by a large (and
essentially static) project-wide library. Such arrangements allow most of the
physical libraries within a structure to remain concurrently available to the
members of your team while exclusive updates to other libraries are being
performed.

10.3 Library Maintenance

With the following commands, you can display and reorganize information
about your libraries and their contents. You can use these commands within
LSE or at the DCL level.

• SHOW LIBRARY

• SHOW MODULE

• DELETE MODULE

• VERIFY

• REORGANIZE

10.3.1 Displaying Library Specifications

You can display the directory specifications for the current SCA library with
the following command:

$ SCA SHOW LIBRARY
%SCA-S-LIB, your current SCA library is PROJ: [USER.SCA]
$

10.3.2 Displaying Module Information

The SHOW MODULE command selectively displays information about
modules in SCA libraries. The SHOW LIBRARY command has the following
form:

SHOW MODULE [/qualifier ...] [module-name-expr[, ...]]

Complete or partial information about all modules, or selected modules, can
be displayed. The terms "visible" and "hidden" refer to the results of the
module selection process that occur when multiple libraries are accessed.

Using SCA Libraries 10-11

Selecting a Library

The /LIBRARY =library-spec qualifier specifies the directory specification of
the library from which module information is displayed.

Displaying Abbreviated Information

If you use a general module query, abbreviated information is displayed.
The default qualifier is /BRIEF. For example:

$ SCA SHOW MODULE
Module I dent Language Compiled

BUILD TABLE 1 01 Pascal 24-0ct-1989 15:43
COPY FILE 1 01 Pascal 24-0ct-1989 15:44
EXPAND_STRING 1 01 Pascal 24-0ct-1989 15:44
OPEN FILES 1 01 Pascal 24-0ct-1989 15:43
TRAN SLIT 1 01 Pascal 24-0ct-1989 15:44
TYPES 1 01 Pascal 24-0ct-1989 15:43
%SCA-S-MODULES, total of 6 modules

Displaying Detailed Information

If you use a general module query with the /FULL qualifier, details of all the
module information in the library are displayed.

If you type a specific module name, detailed information on the specified
module is displayed.

Displaying Visible Modules

The NISIBLE qualifier displays only visible modules. The default is
NISIBLE.

Displaying Hidden Modules

The /HIDDEN qualifier displays hidden modules.

Displaying All Modules

The I ALL qualifier displays all modules (both visible and hidden).

10.3.3 Deleting Module Information

The DELETE MODULE command deletes source information from the
current library for one or more source modules. The DELETE MODULE
command has the following form:

DELETE MODULE [/qualifier ...] module-name-exp[, ...]

10-12 Using SCA Libraries

In the following example, Module PGl is deleted from the specified library.

$ SCA DELETE MODULE/LIBRARY=[.LIBl] PGl

Specifying a Library

The /LIBRARY[=library-spec] qualifier specifies the current library (estab
lished by a SET LIBRARY command) containing the modules to be deleted.
The default is /LIBRARY =primary-library.

Confirming Deletions

The /CONFIRM qualifier provides a confirmation prompt for each module
specified for deletion. The default is /NOCONFIRM.

10.3.4 Verifying and Recovering a Library

The VERIFY command makes the following validity checks:

• Checks for corrupted libraries resulting from abnormal termination of a
LOAD, DELETE MODULE, or REORGANIZE command

• Optionally, recovers corrupted ifbraries

The VERIFY command has the following form:

VERIFY [/qualifier •••] [library-spec[, •..] J

The parameter specifies the SCA libraries to be verified. If no library is
specified, the first library on the library list is assumed.

Recovering a Corrupted Library

The /RECOVER qualifier indicates whether a corrupted library should be
recovered. The default is /NORECOVER.

The library is repaired by deleting the module that was being processed at
the time of the LOAD or DELETE MODULE failure.

10.3.5 Optimizing a Library

The REORGANIZE command sorts, compresses, and reorders the data
structures in an SCA library, freeing up memory space and improving
library performance. The result is a smaller, more efficient SCA library.

The REORGANIZE command has the following form:

REORGANIZE [/qualifier •••] [library-spec[, •.•]]

Using SCA Libraries 1~13

You can use this command after a library has been substantially updated,
such as after creation and loading, or after a series of LOAD or DELETE
MODULE commands. For example, the following sequence is recommended
to create an SCA library. You can change the qualifiers on the CREATE
LIBRARY command to suit your needs.

$ SCA
SCA> CREATE LIBRARY/SIZE=8000/MOD=200 library-directory
SCA> LOAD data-file-directory:*.ANA
SCA> REORGANIZE

The library-directory parameter specifies the location of the library to be
reorganized. The default is the current library directory.

The REORGANIZE commands creates scratch files in SYS$SCRATCH
approximately equal in size to the files in the library being reorganized.

10-14 Using SCA Libraries

Chapter 11

Using the VAX Source Code Analyzer INSPECT
Command

This chapter describes the functions and use of the INSPECT command.
Section 11.1 is an overview. Section 11.2 describes INSPECT command
concepts. Section 11.3 discusses the qualifiers for the INSPECT command.
Section 11.4 describes INSPECT command diagnostic error messages.
Section 11.5 tells you how you can tailor SCA for diverse programming
styles.

11.1 Overview

SCA provides the INSPECT command to allow you to check consistency in
a software system both within modules and across module boundaries. As
with the FIND command, the results are reported in the form of a query
with· diagnostic error messages.

The INSPECT command has the following form:

INSPECT [/qualifier ...] query_expression

11.2 INSPECT Command Concepts

This section covers INSPECT command concepts, including the following:

• General checking philosophy, query expressions, and results

• Routines and common blocks

• Master declarations and checking

Using the VAX Source Code Analyzer INSPECT Command 11-1

11.2.1 General Checking Philosophy

The INSPECT command checks elements within a software system that
have a high probability of causing genuine problems. With the INSPECT
command, you can tailor checks and eliminate elements from a check
that you have established are correct. This allows you to focus on more
questionable areas. The INSPECT command tries to avoid producing
voluminous output, making it easy for you to search for problem areas.

The format of the INSPECT command is like that of the FIND command.
You use query expressions to specify what to check just as you would with
FIND. Used with the /CHARACTERISTICS qualifier, query expressions
form part of your input to direct which checks are applied to your software
system.

The output, or result, of each INSPECT check is reported as a query with
diagnostic error messages. The query display reveals the structure of
routines and common blocks.

11.2.2 Routines and Common Blocks

As the INSPECT command performs checks, it takes into account the
relationships between routines and their arguments, and the relationships
between common blocks and the variables in common blocks. When you
check a routine or common block, the INSPECT command also checks the
arguments of the routine or the variables contained in the common block;
an exception is the case of unused symbol checks, where only the routine is
checked.

You should note that the INSPECT command treats routines somewhat
differently than you might expect. Because INSPECT checks both the
routine and its arguments, its arguments determine the outcome of the
INSPECT operation. The same holds true for common blocks and their
variables.

Checking an argument or common block variable by itself checks only for
that occurrence of the routine or common block.

11-2 Using the VAX Source Code Analyzer INSPECT Command

11.2.3 Master Declarations and Checking

The INSPECT command performs three different kinds of checking: consis
tency checks, symbol checks, and occurrence checks.

To perform checking, INSPECT chooses a master declaration within your
system against which other elements are compared. The master declaration
is displayed in the result, allowing you to confirm what the INSPECT
command has used as the basis for a check. Sometimes (typically when type
checking), the INSPECT command is unable to locate a master declaration
because of more stringent requirements. For example, when doing type
checking, the master declaration must have type information. In this case,
the INSPECT command produces a message saying it was unable to locate
the master declaration.

The TYPE and UNIQUE_NAMES options of the /CHARACTERISTICS
qualifier perform consistency checking.

The consistency check exam pl es in this section are based on the following
program:

PROGRAM progl
COMMON /commonl/ a, b, i, j
COMMON /common2/ e, f, g, h
a = 1.0
b = 1.0
i = 1
j = 0
e = 1.0
f = 2.0
g = 3.0
h = 4.0

CALL subl

TYPE * I i,j
END

SUBROUTINE subl
COMMON /commonl/ a, i, j, b
COMMON /common2/ e, f, g, h

i = j * h
j = i * f

RETURN
END

The following INSPECT command checks the common blocks in the example
program for consistency. Specifically, it looks for type mismatches and name
mismatches. Notice that although the common block COMMON! has the
same variable names in both PROG 1 and SUBl, the order is different, so B,
I, or Jin SUBl are not the same as in PROGl. Also, notice that the variable

Using the VAX Source Code Analyzer INSPECT Command 11-3

Jin PROGl, which corresponds to variable I in SUBl, has the same type, so
checking for type mismatches would not find it.

INSPECT symbol=psect/CHARACTERISTICS=(TYPE,UNIQUE_NAMES)

The result follows.

COMMONl common block has fatal errors
PROGl\2 COMMON declaration
SUBl\3 COMMON declaration

B variable has fatal errors
PROGl\2 variable declaration
SUBl\3 declaration is mistyped

declaration has the wrong name
I variable has the wrong name

PROGl\2 variable declaration
SUBl\3 declaration has the wrong name

J variable has fatal errors
PROGl\2 variable declaration
SUBl\3 declaration is mistyped

declaration has the wrong name
%SCA-S-OCCURS, 5 problems found (2 names, 4 symbols, 4 occurrences)

The result of checking for type mismatches follows.

COMMONl common block has fatal errors
PROGl\2 COMMON declaration
SUBl\3 COMMON declaration

B variable has fatal errors
PROGl\2 variable declaration
SUBl\3 declaration is mistyped

J variable has fatal errors
PROGl\2 variable declaration
SUBl\3 declaration is mistyped

%SCA-S-OCCURS, 2 problems found (2 names, 4 symbols, 4 occurrences)

The INSPECT command also checks for problems with a particular symbol.
Symbol check errors indicate errors with the whole symbol rather than
with a particular occurrence. The resulting display shows occurrences that
indicate which symbol has an error to help you determine exactly where the
error is. Symbol checks do not require master declarations.

The USAGE and UNUSED_SYMBOLS options perform symbol checks.

The symbol check example in this section is based on the following program:

PROGRAM fortran test2
COMMON /common_blockl/ a, b, c, d
COMMON e, f, g, h

11-4 Using the VAX Source Code Analyzer INSPECT Command

a 1. O
b 2.0
c 3.0
l 4
CALL fortran sub2
IF (a .EQ. e) THEN

WRITE (UNIT=*, FMT=*) 'A E'
END IF

END
SUBROUTINE fortran sub2
COMMON /common_blockl/ a, b, c, d
COMMON e, f, g, h

e 1
f 2
g 3
h 4
RETURN
END

The following INSPECT command checks all common blocks for any unused
symbols, or symbols with usage problems. These are symbol-level errors;
there is no particular occurrence that is in error, although the INSPECT
command places all declarations it finds into the result to help you find the
real problem.

INSPECT symbol=psect/CHARACTERISTICS=(UNUSED,USAGE)

The result follows.

$BLANK common block is never read
FORTRAN SUB2\3 COMMON declaration (hidden)
FORTRAN=TEST2\3 COMMON declaration (hidden)

F variable is never
FORTRAN SUB2\3
FORTRAN-TEST2\3

G variable is never
FORTRAN SUB2\3
FORTRAN=TEST2\3

read
declaration
declaration

read
declaration
declaration

read

is never read
is never read

is never read
is never read

declaration is never read
declaration is never read

block has warnings

H variable is never
FORTRAN SUB2\3
FORTRAN=TEST2\3

COMMON BLOCKl common
FORTRAN SUB2\2
FORTRAN=TEST2\2

COMMON declaration
COMMON declaration

B variable is never read
FORTRAN SUB2\2 declaration is never read
FORTRAN=TEST2\2 declaration is never read

C variable is never read
FORTRAN SUB2\2 declaration is never read
FORTRAN=TEST2\2 declaration is never read

D variable is never used
FORTRAN SUB2\2 declaration is never used
FORTRAN=TEST2\2 declaration is never used

%SCA-S-OCCURS, 6 problems found (2 names, 4 symbols, 4 occurrences)

Using the VAX Source Code Analyzer INSPECT Command 11-5

The INSPECT command checks occurrences to determine whether a
particular occurrence is correct on its own. Like symbol checks, occurrence
checks do not require master declarations.

The IMPLICIT DECLARATIONS option checks occurrences.

The occurrence check example in this section is based on the following
program:

:ff:module main

int b ();

main()
{

char pl [10);
int p2;

b(pl,p2);

:ff:module b

int b(pl,p2)
char *pl;
int p2;

float x;
int i;

x = atof (pl);
for (i = 0; i < p2; i++)
{

printf("X = %f\n", x);

The following INSPECT command checks all routines in the example
program for implicit declarations. Since the ATOF function is not explicitly
declared, the C compiler gives it an implicit declaration, returning a type of
int. ATOF is returning a double, so the value returned is going to be wrong
most of the time. However, implicit declarations are usually an indication of
poor coding practices rather than genuine problems.

INSPECT symbol=routine/CHARACTERISTICS=IMPLICIT

The result follows.

ATOF function is implicit
B\10 declaration is implicit

PRINTF function is implicit
B\13 declaration is implicit

%SCA-S-OCCURS, 2 problems found (4 names, 4 symbols, 8 occurrences)

11-6 Using the VAX Source Code Analyzer INSPECT Command

11.3 INSPECT Command Qualifiers

You can use the following command qualifiers with the INSPECT command:

• All FIND command qualifiers

• /CHARACTERISTICS

• /SEVERITY_LEVEL

• /[NOJERROR_LIMIT

The following three sections describe specific uses of the INSPECT command
qualifiers. For additional information on command qualifiers, see Chapters
7, 10, and the Command Dictionary section of the VAX Language-Sensitive
Editor and VAX Source Code Analyzer Reference Manual.

11.3.1 Performing Various Types of Checking

With the /CHARACTERISTICS qualifier, you can perform different types of
checks. The type of check to be done is indicated with an option keyword.
Adding a query expression parameter specifies the set of occurrences to be
inspected.

The /CHARACTERISTICS qualifier has the following form:

INSPECT/CHARACTERISTICS=option query_expression

Table 11-1 shows the options available for use with the /CHARACTERISTICS
qualifier.

Table 11-1: /CHARACTERISTICS Type Options

Option

TYPE

UNIQUE_NAME

Type of Check

Compares occurrences of symbols to see that they
have the same type, especially within routines and
common blocks where the symbol's position is the key
to its meaning.

Checks whether multiple declarations of the same
symbol have the same name.

(continued on next page)

Using the VAX Source Code Analyzer INSPECT Command 11-7

Table 11-1 (Cont.}: /CHARACTERISTICS Type Options

Option

USAGE

Type of Check

Finds variables read and not written or variables
written and not read.

UNUSED_SYMBOL Checks to see if each symbol is referenced; reports
symbols declared but never used.

IMPLICIT_DECLARATION Finds symbols used without previously declaring
them; for languages such as FORTRAN.

ALL Performs all characteristics checks.

NONE Performs no characteristics checks. This is the default
option.

You can negate any option keyword except ALL or NONE, for example,
NOTYPE.

With the UNIQUE_NAMES option, symbols are assumed to be the same
based on symbol information, such as the module where the symbol is
declared, domain, and so on. The name of the symbol is compared to other
symbol names as a consistency check. You use this option with routine
parameters or common block variables ..

The following is an example of using INSPECT type-checking to find
a problem with type mismatches in a cross-language routine call. The
type-checking example in this section is based on the following program:

INTEGER FUNCTION do_something(argumentl, argument2)
INTEGER*4 argumentl
REAL*8 argument2

IF (argumentl .GT. 0) THEN
do_something = 1
argument2 = argumentl * argumentl * 3.14159

ELSE
do_something = 0

END IF
RETURN
END

PROGRAM using_characteristics input, output

VAR
input_value, output_value INTEGER;
output_result : REAL;
count : INTEGER;

FUNCTION do_something(paraml : INTEGER;
VAR param2 : REAL

: INTEGER ; EXTERNAL;

BEGIN

11-8 Using the VAX Source Code Analyzer INSPECT Command

count := 0;
REPEAT

WRITELN('Enter an integer, or 0 to end');
READLN(input_value);
IF input_value <> 0
THEN

BEGIN
output_value := do_something(input_value, output_result);
IF output_value <> 1
THEN

WRITELN(input_value, ' is an invalid value'
ELSE

WRITELN('The result is , output_result);
count := count + 1
END

UNTIL input_value = O;
WRITELN('A total of ', count, ' values were processed'

END.

If you apply the INSPECT command as follows:

INSPECT symbol=routine/CHARACTERISTICS=TYPE

The result follows.

DO SOMETHING function has type mismatches
DO SOMETHING\1 FUNCTION declaration
USING_CHARACTERISTICS\8

FORWARD or EXTERNAL FUNCTION declaration
ARGUMENT2 argument is mistyped

DO SOMETHING\1 formal argument declaration
USING_CHARACTERISTICS\9

declaration is mistyped
%SCA-S-OCCURS, 1 problem found (4 names, 4 symbols, 9 occurrences)

The problem in this example is that Pascal passes an F _FLOAT as the
second parameter, while FORTRAN expects a D_FLOAT. When FORTRAN
writes the new parameter out, it writes over an extra 4 bytes.

11.3.2 Severity Levels

The INSPECT command results contain diagnostic error messages of four
severity levels: fatal, error, warning, and informational. Section 11.4 gives
more information about the INSPECT command diagnostic error messages.

The /SEVERITY_LEVEL qualifier limits the depth of the INSPECT com
mand checks to the minimum severity level you assign. Thus, you can
effectively turn off the reporting of unwanted messages. The /SEVERITY_
LEVEL qualifier has the following form:

INSPECT/SEVERITY_LEVEL=severity-level

The default value is /SEVERITY_LEVEL=INFORMATIONAL.

Using the VAX Source Code Analyzer INSPECT Command 11-9

11.3.3 Error Limits

To avoid generating excessive numbers of diagnostic error messages when
a single error affects many aspects of the software system, you can use the
INSPECT command with the /ERROR_LIMIT qualifier to set global and
local error limits. The /ERROR_LIMIT qualifier has the following form:

INSPECT/[NO]ERROR_LIMIT=(global-limit[,symbol-limit])

Global error limits set the total number of errors to be reported by a single
INSPECT check. Once INSPECT reaches this limit, the check ends.

Local error limits set the number of errors pertaining to a single symbol.
Once INSPECT reaches this limit, it stops reporting errors for this symbol.
However, it will continue to check other elements of the software system.

The symbol-limit parameter is optional. The default is /NOERROR_LIMIT.

11.4 Diagnostic Error Messages

The results of the INSPECT command checks contain diagnostic error
messages. Error messages are assigned a severity-level status based on the
four DCL error severity categories, as follows:

• FATAL

• ERROR

• WARNING

• INFORMATIONAL

The diagnostic message exam pies in this section are based on the following
program:

PROGRAM prog3
COMMON /common3/ a, i, b, j
COMMON /common4/ e, f, g, h
COMMON x, y, z
INTEGER n
INTEGER m
a = 1. 0
b = 1. 0
i = 1
j = 0
e = 1. 0
f = 2.0
g = 3.0
h = 4.0
n = 10
m = 20

11-10 Using the VAX Source Code Analyzer INSPECT Command

CALL sub3(n, m)
CALL pascal_proc

TYPE *, i,
END

SUBROUTINE sub3(n, m)
INTEGER*2 n
INTEGER*2 m
COMMON /common3/ a, b, j, i
COMMON /common4/ e, f, g, h
COMMON x, y, z

i j * h + n
j i * f + m
n = n + 1
m m + 1
RETURN
END
SUBROUTINE sub4(n, m)
INTEGER n
INTEGER M

n = m + 1
m = n + 1
RETURN
END

MODULE severity_levels2(input, output);

PROCEDURE sub4(VAR n, m [READONLY]integer) ; EXTERNAL;
FUNCTION funcl(VAR n, m : integer) : INTEGER; EXTERNAL;

PROCEDURE pascal_proc;
VAR

n, m, result : integer;
BEGIN
n := 1;
m := 2;
sub4(n, m);
writeln('N and Mare', n, ' and' m);
result := funcl(n, m);
writeln('Result is ', result);
END;

END.

MODULE severity_levels3;

[GLOBAL]
FUNCTION funcl(n, m: [READONLY

END.

BEGIN
funcl := n * m
END;

integer) integer

Using the VAX Source Code Analyzer INSPECT Command 11-11

11.4.1 Fatal-Level Error Messages

Fatal-level error messages indicate an error that will probably cause the
software system to fail when run. Fatal-level error messages are reported
only when the TYPE option of the /CHARACTERISTICS qualifier is used.

The INSPECT command follows.

INSPECT corrunon*/CHARACTERISTICS=TYPE

The result follows.

COMMON3 corrunon block is mistyped
PROG3\2 COMMON declaration
SUB3\5 COMMON declaration

B variable is mistyped
PROG3\2 variable declaration
SUB3\5 declaration is mistyped

I variable is mistyped
PROG3\2 variable declaration
SUB3\5 declaration is mistyped

%SCA-S-OCCURS, 2 problems found (2 names, 4 symbols, 4 occurrences)

11.4.2 Error-Level Error Messages

Error-level error messages indicat.e a condition that may cause serious
problems within the software system when it is run. Error-level error mes
sages are reported only when the TYPE option of the /CHARACTERISTICS
qualifier is used.

The following INSPECT command checks PROCl for any type mismatches
and related errors. In this case, there are no real type mismatches, but
there are a number of attribute mismatches on the parameters of the
routine PROCl.

INSPECT funcl/CHARACTERISTICS=TYPE

The result follows.

FUNCl function has attribute mismatches
SEVERITY LEVELS2\4 FORWARD or EXTERNAL FUNCTION declaration
SEVERITY=LEVELS3\4 FUNCTION declaration

M argument has attribute mismatches
SEVERITY_LEVELS2\4 declaration should not be an output parameter

declaration should be read-only
SEVERITY_LEVELS3\4 formal parameter declaration

N argument has attribute mismatches
SEVERITY_LEVELS2\4 declaration should not be an output parameter

declaration should be read-only
SEVERITY_LEVELS3\4 formal parameter declaration

%SCA-S-OCCURS, 5 problems found (1 name, 1 symbol, 3 occurrences)

11-12 Using the VAX Source Code Analyzer INSPECT Command

11.4.3 Warning-Level Error Messages

Warning-level error messages indicate a condition that may cause problems
within the software system when it is run. Warning-level error messages are
reported when the USAGE or trYPE options of the /CHARACTERISTICS
qualifier are used.

The INSPECT command follows.

INSPECT sub3/CHARACTERISTICS=TYPE

The result follows.

SUB3 procedure is possibly mistyped
PROG3\18 call reference
SUB3\2 SUBROUTINE or PROGRAM declaration

actual argument is possibly mistyped
PROG3\18 declaration is possibly mistyped
SUB3\2 formal argument declaration

actual argument is possibly mistyped
PROG3\18 declaration is possibly mistyped
SUB3\2 formal argument declaration

%SCA-S-OCCURS, 2 problems found (1 name, 1 symbol, 3 occurrences)

11.4.4 Informational-Level Error Messages

Informational-level error messages indicate a condition that may cause
maintenance problems within the software system. Error messages of
this level show where system cleanup and streamlining may be done.
Informational-level error messages are reported when the USAGE,
IMPLICIT_DECLARATION, UNUSED_SYMBOL, and UNIQUE_NAME
options of the /CHARACTERISTICS qualifier are used.

The INSPECT command follows.

INSPECT symbol=psect/CHARACTERISTICS=UNUSED

The result follows.

Using the VAX Source Code Analyzer INSPECT Command 11-13

$BLANK common block has unused variables
PROG3\4 COMMON declaration (hidden)
SUB3\7 COMMON declaration (hidden)

X variable is never used
PROG3\4 declaration is never used
SUB3\7 declaration is never used

Y variable is never used
PROG3\4 declaration is never used
SUB3\7 declaration is never used

Z variable is never used
PROG3\4 declaration is never used
SUB3\7 declaration is never used

%SCA-S-OCCURS, 3 problems found (3 names, 6 symbols, 6 occurrences)

11.5 Tailoring the INSPECT Command for Diverse
Programming Styles

With the INSPECT command, you can tailor searches according to the
programming language that you use and your special needs or situation.
This section provides examples of tailoring in four categories as follows:

• Using severity levels to eliminate unwanted messages

• Using error limits to eliminate excessive messages

• Using the /CHARACTERISTICS qualifier to eliminate unwanted checks

• Using other techniques to eliminate unwanted diagnostics

The tailoring examples in this section are based on the following program:

PROGRAM progS
COMMON /common4/ a, b, i, j
COMMON /commons/ e, f, g, h

a = 3.0
e 1. 0
f 4.0
h 0.0
CALL subs (a, i
CALL subs (a, i
CALL subS(a, i
CALL subS(a, i
CALL subS(a, i
CALL subS(a, i
CALL subS(a, i
CALL subS(a, i
CALL sub5(a, i
CALL subS(a, i
CALL subS(a, i
END
SUBROUTINE subs
COMMON /common4/ a, j, b, i
COMMON /commons/ e, f, g, h

11-14 Using the VAX Source Code Analyzer INSPECT Command

j = j + 1
b = b * i
f = f + 1.0
g = 3.14159
h = h + 1.0
i = i - 1
RETURN
END

11.5.1 Using Severity Levels to Eliminate Unwanted Messages

By limiting the severity of diagnostics, you can avoid looking at relatively
unimportant problems until after the serious problems are fixed. Also, some
minor problems may be a result of the same errors that cause the type
mismatches.

This section presents two ways of using the INSPECT command. The first
is an example of using INSPECT without limiting the results by setting a
minimum severity level. It finds all the problems with the common blocks
in an SCA library. There are some type mismatches and several lesser
errors that should be examined, but the large number of these lesser error
messages obscure the more serious problems.

The first example of using the INSPECT command follows.

INSPECT symbol=psect

The result follows.

Using the VAX Source Code Analyzer INSPEqT Command 11-15

COMMON4 common block has problems
PROGS\2 COMMON declaration
SUBS\2 COMMON declaration

A variable has usage problems
PROGS\2 declaration is implicit

declaration may never be read
SUBS\2 declaration is implicit

declaration may never be read
B variable has fatal errors

PROGS\2 declaration is implicit
SUBS\2 declaration is mistyped

declaration is implicit

SUBS\5
SUBS\5

declaration has the wrong name
reference has the wrong name
reference has the wrong name

I variable has fatal errors
PROGS\2 declaration is implicit
SUBS\2 declaration is mistyped

declaration is implicit

SUBS\6
SUBS\6

declaration has the wrong name
reference has the wrong name
reference has the wrong name

J variable has warnings
PROGS\2 declaration is implicit
SUBS\2 declaration is implicit

SUBS\6
SUBS\10
SUBS\10

declaration has the wrong name
reference has the wrong name
reference has the wrong name
reference has the wrong name

COMMONS common block has usage problems
PROGS\3 COMMON declaration
SUBS\3 COMMON declaration

E variable has usage problems
PROGS\3 declaration

declaration
SUBS\3 declaration

declaration
F variable is implicit

PROGS\3 declaration
SUBS\3 declaration

G variable has usage problems
PROGS\3 declaration

SUB5\3
declaration
declaration
declaration

H variable is implicit

is implicit
is never read
is implicit
is never read

is implicit
is implicit

is implicit
is never read
is implicit
is never read

PROGS\3 declaration is implicit
SUBS\3 declaration is implicit

%SCA-S-OCCURS, 31 problems found (2 names, 4 symbols, 4 occurrences)

The second example shows the same INSPECT command operating on the
same program, but with severity levels limited to tailor the result so that
the most important information is reported. The command follows.

INSPECT symbol=psect/SEVERITY=ERROR

11-16 Using the VAX Source Code Analyzer INSPECT Command

The result follows.

COMMON4 common block is mistyped
PROGS\2 COMMON declaration
SUBS\2 COMMON declaration

B variable is mistyped
PROGS\2 variable declaration
SUBS\2 declaration is mistyped

I variable is mistyped
PROGS\2 variable declaration
SUBS\2 declaration is mistyped

%SCA-S-OCCURS, 2 problems found (2 names, 4 symbols, 4 occurrences)

11.5.2 Using Error Limits to Eliminate Excessive Messages

Another way to reduce the size of the output is to set an error limit. The
INSPECT command stops checking after a certain number of errors are
found. You can set either global error limits to specify the maximum number
of errors overall, or local error limits to specify the number of errors allowed
for each symbol.

The following command sets the global limit at 10 and the local limit at 1.

INSPECT syrnbol=psect/ERROR_LIMIT=(l0,1)

The result follows.

COMMON4 common block has exceeded an error limit
PROGS\2 COMMON declaration

A variable is implicit
PROGS\2 declaration is implicit

B variable is implicit
PROGS\2 declaration is implicit

I variable is implicit
PROGS\2 declaration is implicit

J variable is implicit
PROGS\2 declaration is implicit

COMMONS common block has exceeded an error limit
PROGS\3 COMMON declaration

E variable is implicit
PROGS\3 declaration is implicit

F variable is implicit
PROGS\3 declaration is implicit

G variable is implicit
PROGS\3 declaration is implicit

H variable is implicit
PROG5\3 declaration is implicit

%SCA-S-OCCURS, 8 problems found (2 names, 4 symbols, 4 occurrences)

Using the VAX Source Code Analyzer INSPECT Command 11-17

11.5.3 Using the /CHARACTERISTICS Qualifier to Eliminate Unwanted
Checks

With an undifferentiated INPSECT command, the results may contain
several diagnostic error messages about elements of your software system
that result from individual coding practices, but which may not be errors,
such as implicit declarations. These results may contain useless information,
as shown in the example at the beginning of Section 11.5.

, You can use the /CHARACTERISTICS qualifier to limit the INSPECT check,
as follows:

INSPECT symbol=psect/CHARACTERISTICS=(ALL,NOIMPLICIT)

The result follows.

COMMON4 common block has fatal errors
PROG5\2 COMMON declaration
SUB5\2 COMMON declaration

A variable may never be read
PROG5\2 declaration may never be read
SUB5\2 declaration may never be read

B variable has fatal
PROG5\2
SUB5\2

SUB5\5
SUB5\5

errors
variable declaration
declaration is mistyped
declaration has the wrong name
reference has the wrong name
reference has the wrong name

I variable has fatal errors
PROG5\2 variable declaration
SUB5\2 declaration is mistyped

SUB5\6
SUB5\6

declaration has the wrong name
reference has the wrong name
reference has the wrong name

J variable
PROG5\2
SUB5\2

has the wrong name

SUB5\6
SUB5\10
SUB5\10

COMMONS common block is
PROG5\3
SUB5\3

variable declaration
declaration has the wrong name
reference has the wrong name
reference pas the wrong name
reference has the wrong name

never read
COMMON declaration
COMMON declaration

E variable is never read
PROG5\3 declaration is never read
SUBS\3 declaration is never read

G variable is never read
PROGS\3 declaration is never read
SUBS\3 declaration is never read

%SCA-S-OCCURS, 15 problems found (2 names, 4 symbols, 4 occurrences)

11-18 Using the VAX Source Code Analyzer INSPECT Command

11.5.4 Using Other Techniques to Eliminate Unwanted Diagnostics

You can use the INSPECT command with both the /CHARACTERISTICS
and /ERROR_LIMIT qualifiers to reduce the number of diagnostic error
messages reported.

To begin, consider the example at the beginning of Section 11.5.

This INSPECT command produces several diagnostics, making it likely that
you may miss the type mismatches. You cannot control this by limiting
the severity levels reported because you would then not get the diagnostic
messages relating to using the incorrect name that indicate a serious
problem in this case. You could eliminate the implicit declarations by using
the /CHARACTERISTICS qualifier, but you would still get several messages
about incorrect names, and it would be preferable to have only a few.

You can use the /CHARACTERISTICS qualifier and /ERROR_LIMIT
qualifiers, as follows, to reduce the number of diagnostic messages reported,
without compromising your ability to find real problems.

INSPECT syrnbol=psect/CHARACTERISTICS=(ALL,NOIMPLICIT)/ERROR_LIMTI=(20,3)

The result follows.

COMMON4 common block has fatal errors
PROG5\2 COMMON declaration
SUB5\2 declaration has exceeded an error limit

B variable has fatal
PROG5\2
SUB5\2

SUB5\5
SUBS\5

errors
variable declaration
declaration is mistyped
declaration has the wrong name
reference has the wrong name
reference has the wrong name

I variable has fatal errors
PROG5\2 variable declaration
SUB5\2 declaration is mistyped

SUBS\6
SUB5\6

declaration has the wrong name
reference has the wrong name
reference has the wrong name

J variable
PROGS\2
SUB5\2
SUBS\6
SUBS\10
SUBS\10

has the wrong name

COMMONS common block is
PROG5\3
SUBS\3

E variable
PROG5\3
SUBS\3

G variable
PROGS\3
SUBS\3

is never

is never

variable declaration
declaration has the wrong name
reference has the wrong name
reference has the wrong name
reference has the wrong name

never read
COMMON declaration
COMMON declaration

read
declaration is never
declaration is never

read
declaration is never
declaration is never

read
read

read
read

Using the VAX Source Code Analyzer INSPECT Command 11-19

%SCA-S-OCCURS, 14 problems found (2 names, 4 symbols, 4 occurrences)

Many more combinations of the INSPECT command qualifiers are possible.
The use and results of these checks depend on your software system and
your own programming style.

11-20 Using the VAX Source Code Analyzer INSPECT Command

Part 3 Designing Programs

This part contains tutorial information on using LSE, SCA, and VMS
compilers to design programs.

Chapter 12

Using LSE and SCA to Design Programs

This chapter provides a scenario of how you might generate a detailed
program design. This is only a guideline, which takes you through the
stages of generating a detailed design. In addition, this chapter describes
how to create and process the design. It also shows how to evolve an
implementation from this design, and shows how to reverse-engineer the
implementation to retrieve a design corresponding to the original.

Section 12.1 is an introduction. Section 12.2 describes how to use LSE to
create the design. Section 12.3 describes how to use the VMS compilers and
SCA to process the design. Section 12.4 describes how to analyze designs.
Section 12.5 shows how to store design information in tagged comments and
how to define new tags and keyword lists. Section 12.6 describes how to
generate design reports, and Section 12. 7 describes how to reverse-engineer
designs.

12.1 Introduction

In many software engineering environments, the last step before actual
coding is generating a detailed design. Frequently, a Program Design
Language (PDL) is used for that purpose. In the VAX/VMS environment,
you create detailed designs as follows:

• Use traditional programming languages

• Embed design information in comments

• Write algorithms with pseudocode placeholders

The language you use for your implementation can be your Program Design
Language.

Using LSE and SCA to Design Programs 12-1

Once written, you can process and analyze designs to produce a variety of
design reports. You can reverse-engineer existing code to create a design
report that describes the design of the code as actually implemented.

Definitions for a detailed design vary, but detailed designs usually include
the following:

• A specification of module organization

• Global interfaces

• Global data and data types

• Outlines of crucial algorithms

Since design is an ongoing, iterative process, there are no rules for
determining when a design is complete, or for which pieces of a design
must be specified. In the VMS environment, designs consist of one or more
modules, in one or more of the available languages. Within each module,
there is great flexibility concerning how much must be fully specified and
how much can be left as pseudocode.

12.2 Creating Designs

When you create a design for a single module that contains two routines,
such a design is likely to identify some general information about the
module, such as name, purpose, global data, design issues, and so on.
Similarly, it will identify the routines, their purposes, basic algorithms, and
possibly parameters, return values, and other design information.

The following example shows how to generate a design, using Ada as the
base language. Use the following steps:

1. Invoke LSE to create a new Ada file.

LSE creates a file containing the single placeholder {compilation_unit}.

2. Expand the placeholder and choose the package body.

3. Expand the header comment and start filling it in.

12-2 Using LSE and SCA to Design Programs

The following example shows how it might appear:

++
FACILITY:

Sample facility 1

-- ABSTRACT:

This package is a sample package used to illustrate the way you
use LSE and SCA to create a detailed design.

AUTHORS:

Dave Ang

CREATION DATE: 4 July 1989

DESIGN ISSUES:

This is a sample design. There is one module, which contains two
routines and one global data declaration.

To illustrate the various levels of design that are possible, you
can expand one of the routines in some detail, while leaving the other
routine at a very abstract level.

KEYWORDS:

Examples, sample design

MODIFICATION HISTORY:

[context_clause] ...
{package_body}

This example shows how you can use comment tags for design information.
Most tags contain ordinary text that describes specific pieces of the design.
Here, keyword tags are used to express relationships and associations. The
keyword tag FACILITY indicates that this module is part of Sample facility
1. In addition, the keyword tag KEYWORDS is used to associate the terms
examples and sample design with this module.

If you establish appropriate conventions for such tags, you can use SCA for
queries such as "find all packages that belong to a particular facility" or
"find all packages that have to do with examples." For any given project,
there will probably be tags that are specific to that project. Section 12.5.2
discusses how to add new tags.

Using LSE and SCA to Design Programs 12-3

To write the outline of the package body, expand the {package_body}
placeholders to provide skeletons for the following:

• Type declaration

• Function body declaration

• Procedure body declaration

The following results:

package body first module is
type {identifier} ([discriminant_part]) is {type_definition};

function function_l ([formal_part]) return {type_mark} is
-- [function header comment]

[declarative_part]
begin

[statement] ...
return {expression};

[exception_part]
end function_l;

procedure procedure_2 ([formal_part]) is
-- [procedure header comment]

[declarative_part]
begin

{statement} ...
[exception_part]
end procedure 2;

begin -
{statement} ...

end first_module;

The next section shows how to expand these placeholders to obtain useful
routine designs.

12.2.1 Designing Routine Declarations

To create designs for individual routines, you expand LSE placeholders
as necessary. Use tags and pseudocode placeholders to contain design
information that is still at an abstract level, and use actual language
constructs for those portions of the algorithm that are known.

12-4 Using LSE and SCA to Design Programs

If, for example, the design has only a few details, it might appear as follows:

function function_l (
Pl : in Pl_type;
P2 : in P2 type := null_P2)

return-integer is
++
FUNCTIONAL DESCRIPTION:

This function computes the integer function of the Pl, with
or without P2s.

FORMAL PARAMETERS:

Pl:

The Pl whose function we want.

P2:

The P2 to involve with the Pl.

RETURN VALUE:

The computed function.

ALGORITHM:

Use the regular function algorithm if the P2 is
present, and use Murphy's function algorithm if
it isn't.

[logical properties]

[optional subprogram tags]

[declarative_part]
begin

[statement] ...
return {expression};

[exception_part]
end function_l;

Much of the calling sequence has been specified. This information is useful
to people who use this function. Thus far, this example shows how you
can use the ALGORITHM tag to describe the top layer of the algorithm in
ordinary English. Later, you can use pseudocode to describe the algorithm.
Other placeholders are left in place, as they will also be expanded as work
progresses.

To complete the algorithm design, use the ENTER PSEUDOCODE command
to write the algorithm design.

Using LSE and SCA to Design Programs 12-5

The following example shows only the routine body:

partial_function,

final function : integer;
begin -

Used to store the partial
results from Murphy's algorithm
Used to store the final result

if «the P2 is present» then 8
«Use the standard algorithm» 8

else
«Use Murphy's algorithm»
final function :=

fix_partial_function(partial_function); @)
end if;
[statement] ... e
return final function;

end function_l; -

Line 8 uses pseudoc,0de as the conditional expression in the if
statement.

Line 8 uses pseudocode to represent the entire body of the then clause
of the statement.

Line @) shows a procedure call. The procedure specification (not
shown) must also be present for Ada to recognize this procedure call.
Subsequently, you will be able to use SCA to get information about calls
to this routine, including this call.

Line 8 contains an ordinary LSE placeholder. You can use placeholders
as part of a design in any context in which they normally appear. In
this example, the [statement] ... placeholder remains as a convenience
because the algorithm is not yet complete.

12.2.2 Refining the Design

As the design is refined, more details may be filled in. To preserve the
original design information, use the ENTER COMMENT command. This ap
plies both during the low-level design phase and during the implementation
phase.

12-6 Using LSE and SCA to Design Programs

For example, the if statement in the previous example might be refined as
follows:

if P2 /= null P2 then -- the P2 is present 0
-- Use th; standard algorithm 8
[loop_identifier] : loop

else

«Calculate function iteratively from P2»
end loop;
{tbs}

«Use Murphy's algorithm»
final_function := fix_partial_function(partial_function);

end if;

On line 0 the ENTER COMMENT/LINE command is used to move
the pseudocode for the if statement over to the right, before writing the
actual condition.

On line 8 the ENTER COMMENT/BLOCK comment is used to turn the
pseudocode placeholder into a block comment before writing the first
statement, which is. a loop statement. The ENTER COMMENT/BLOCK
command produces the {tbs} placeholder.

12.2.3 Designing Data Declarations

The design of data structures is an important part of a detailed design.
If the design calls for an array of records to be shared between the two
routines, but not visible outside the package, such an array would be
declared in the package body, before the declaration of the two subprograms.
Furthermore, if the design has specified only a few of the fields of the record
and has not specified the length of the array, the design would appear as
follows:

type record_type is
record

count : integer := O;

record name: string({discrete range} ...);0

subfield 1 : «A type suitable for subfield 1»;8

«subfield 2, which has property x»t)
[component declaration] ...
[variant_part]

end record;
shared_array: array ({discrete_range} ...) of record_type;

In this example, LSE placeholders are used several ways. On line 0
LSE generates the placeholder discrete_range.

Line 8 shows a pseudocode placeholder. This is created using the
ENTER PSEUDOCODE command, and then typing the contents.

Using LSE and SCA to Design Programs 12-7

Line 6) shows a pseudocode placeholder, which describes the next field of
the record in general terms.

Two important points concerning pseudocode placeholders are illustrated by
this example.

• The contents of a pseudocode placeholder typically has whatever
information is available to describe the object. The level of detail and
the nature of the information varies from design to design.

• Whenever possible, it is preferable to fill in as much detail of the design
as possible in the native language.

The previous example could have been declared as follows:

type record type is
«a complicated record definition»;

While this format may seem to have the same information, it actually
suppresses information that could be parsed by the compiler and entered
in your SCA database. For instance, in this case, the compiler does not
recognize the type definition as a record definition and will not be able to do
as much design checking later. This would make subsequent review of your
design more difficult. Of course, if the nature of the high-level design makes
it improper to make decisions, such as the names of the field, then it may
be appropriate to use the natural language description in pseudocode. The
choice depends upon the particular goals of the low-level design.

12.3 Processing Designs

Once there is a partial or complete design, you can process the design by
using a VMS compiler and the VAX Source Code Analyzer.

With all of the VMS compilers that suifi}ort SCA Version 2.0, you use the
/DESIGN qualifier to tell the compiler to process design information. This
qualifier takes two keyword values, as follows:

• [NO]COMMENT

This tells the compiler to search inside comments for program design
information.

• [NO]PLACEHOLDERS

This tells the compiler to recognize placeholders as valid program
syntax.

12-8 Using LSE and SCA to Design Programs

To process the previous design, you could type the following command:

$ ADA first_module/DESIGN=(COMMENT,PLACEHOLDERS)/ANALYSIS_DATA

Because the default keyword values for the /DESIGN qualifier are
(COMMENT,PLACEHOLDERS), you could also type the following:

$ ADA first_module/DESIGN/ANALYSIS_DATA

12.3.1 Loading Design Information into an SCA Library

To load analysis data files created with the /DESIGN qualifier into an SCA
library, you use the VAX Source Code Analyzer LOAD command. From the
point of view of SCA, there is no difference between an analysis data file
containing design information and one containing pure code. If a design
evolves directly into an implementation, you can use the same arrangement
of libraries during design as· during implementation.

To preserve your design as a fixed reference point while continuing imple
mentation, you can set up your SCA libraries to keep design information in
one file and the implementation in another file. With SCA, you can use a
list of individual SCA libraries as your current virtual library. If a module
appears in more than one library in the list, the first instance of the module
occludes subsequent instances. Thus, you can set up your SCA libraries so
that modules being implemented occlude their designs. For those modules
that have not been converted to code, the designs are still available. For
example:

$ SCA SET LIBRARY [user.code.sea library], [project.code.sea library], -
[user.design.sca_library], [project.design.sca_library] -

To refer to both the code and the designs from SCA at the same time, you
have two options.

• You can choose a naming convention at the module level to distinguish
between the design of a module and its code. This is necessary because
SCA allows only one module of a given name in any virtual library; any
other modules are occluded.

• You can switch back and forth, using the VAX Source Code Analyzer
SET LIBRARY command.

Using LSE and SCA to Design Programs 12-9

12.4 Analyzing Designs

Once the analysis data files from a design are loaded into an SCA library,
you can use SCA queries to retrieve information, as with any other SCA
library. There are a number of symbol classes defined by SCA specifically
for design information, such as keyword, placeholder, and tag. To get the
indicated design information, you use these classes with the SYMBOL=
construct.

For example, if you want to find all routines that are marked with the
keyword interface, you could use the following SCA query:

$ SCA FIND CONTAINED_BY(SYMBOL=routine, 'interface' AND -
SYMBOL=KEYWORD, DEPTH=l)

12.5 Expressing Design Information in Comments

You can capture much of a detailed design by using pseudocode placeholders;
however, a significant amount of information is expressed using tagged
comments. With LSE, you can easily enter tagged comments into your
programs. The templates for LSE include a standard set of comment tags.
In addition, you can change these tags or add new tags.

When programs are compiled with the /DESIGN=COMMENTS and
/ANALYSIS_DATA qualifiers, the compiler performs the following:

• Scans the contents of comments

• Parses tags and their values

• Inserts relevant data about those comments into the SCA analysis file

This information can then be retrieved by SCA and matched with corre
sponding identifiers, such as routine names that appear in the code, and
used to generate design reports.

12.5.1 Using Tagged Comments

Tagged comments are based upon a simple structure. Each comment is
treated as a sequence of (tag, tag value) pairs. You define tags in LSE
and save the definitions in an LSE environment file, which is read by the
compiler. Default tags are in the LSE$SYSTEM_ENVIRONMENT file,
where they are also available to compilers. There are several types of tags,
and the value of the tag is parsed differently depending on the tag type.

12-10 Using LSE and SCA to Design Programs

There are also a number of special case tags, each of which begins with a
dollar sign($).

As the compiler scans comments, it groups the comments into comment
blocks. Comment blocks are separated either by code (any visible text that
is not contained in a comment) or by a totally blank line (any blank line that
is not contained in a comment). Within each comment block, the compiler
scans the text of the comment line by line, looking for tags. In order to be
recognized, the tag must be the first text on the line of the comment"' not
counting the comment delimiters. Furthermore, the tag must either be the
only text on the line, or the tag must be terminated by a colon or hyphen.
Anything after the tag, either on the same line or on subsequent lines, forms
the value of the tag, up to but not including the next tag found.

There are three types of tags: text, keyword, and structured.

Text tags contain ordinary text and are the most common type of tag. No
further processing or special scanning is done on the value of a text tag.

Keyword tags contain a list of zero or more keywords that are used to flag
sections of code. Any given keyword tag may be defined so as to accept
keywords from a predefined list, which in turn is defined with the DEFINE
KEYWORD command, or may take arbitrary keywords. In either case,
keywords are separated by commas, and may contain space characters. The
keywords are scanned by the compiler, and each keyword is stored in the
SCA analysis file, making subsequent retrieval easy.

Structured tags add a second level of structure to the tag. The value of a
structured tag consists of a sequence of one or more subtags. For example,
the FORMAL PARAMETERS tag consists of a sequence in which each
parameter name is a subtag, and the description of the parameter is the
value of the subtag. Unlike ordinary tags, subtags need not be predefined.
To be recognized, subtags must conform to the following rules:

• Each subtag must be preceded by a blank comment line.

• The subtag must be indented at least as much as the structured tag to
which it belongs.

• The subtag must be terminated by a colon or hyphen.

To make sure that the next tag after the structured tag is properly recog
nized as a new tag, and not as a subtag or the value of a subtag, it too must
conform to the following special rules:

• It must be preceded by a blank comment line.

Using LSE and SCA to Design Programs 12-11

• One of the following must hold:

Indented less than the previous subtag and less than or equal to the
indentation of the previous tag, or

Terminated with a punctuation character different from the one used
to terminate the last subtag

Two implicit tags are defined for all languages. These are the $UNTAGGED
tag and the $REMARK tag. The $UNTAGGED tag refers to any comment
text that occurs at the beginning of a comment block, before the first tag of
the comment block is found.

For example:

function function_l (...)

-- This function computes the integer function of the Pl,
-- with or without P2s.

-- FORMAL PARAMETERS:

The text This function computes the integer .. . would be the value of the
$UNTAGGED tag, because no tag name precedes it in the comment block.

The $REMARK tag is the first line of text in the comment block, not
counting any tag names. In the previous example, the $REMARK string
would be This function computes the integer function of the Pl,. You use the
$REMARK tag for cases where only a single line of text is required. They
are especially useful in sequences of variable declarations, which frequently
look like the following:

vl,
v2,

vN : INTEGER;

remark for vl
remark for v2

remark for vN

12.5.2 Adding New Tags and Keyword Lists

You can use user-defined tags to represent various kinds of design informa
tion. To define new tags, use the DEFINE TAG and DEFINE KEYWORDS
commands. To save tag definitions in an environment file, use the SAVE
ENVIRONMENT command. To tell the compiler about the tag definitions,
define the logical name LSE$ENVIRONMENT to include the environment
file (LSE$ENVIRONMENT can be a search list). Then these tags are
available when,compiling programs with the /DESIGN qualifier.

12-12 Using LSE and SCA to Design Programs

For example, to label each module with a list of requirements that are
satisfied by this module, type the following commands:

DEFINE TAG requirements/TYPE=KEYWORD/KEYWORDS=requirement_list/LANGUAGE=ADA

DEFINE KEYWORDS requirement_list
"Requirement l"
"Requirement 2"
"Requirement 3"

END DEFINE

Now you can save these definitions in an environment file by typing the
following command:

LSE> SAVE ENVIRONMENT/NEW MYDISK: [MYDIRECTORY]MYTAGS

The /NEW qualifier tells LSE to save only the new definitions that you
have added during the current editing session. This creates a file called
MYDISK:[MYDIRECTORY]MYTAGS.ENY. To have the compilers and LSE
use this file, type the following DCL command:

$ DEFINE LSE$ENVIRONMENT MYDISK: [MYDIRECTORY]MYTAGS.ENV

You can now use the /DESIGN qualifier to compile your program.

12.5.3 Associating Tags with Objects

You can use tagged comments to associate design information with objects
in your program. They are meaningful only when used in conjunction with
declarations. Tagged comments that occur in executable portions of your
code, where there are no adjacent declarations, are not used for design
reports.

To find the association between tags and objects, use the SCA containment
functions, CONTAINING and CONTAINED_BY. See the appendix that
describes SCA query expressions in the VAX Language-Sensitive Editor and
VAX Source Code Analyzer Reference Manual for more details. To find the
FUNCTIONAL DESCRIPTION of routine Rl, for example, you could specify
the following SCA command:

FIND CONTAINED_BY (-
Rl AND SYMBOL=ROUTINE, -
"FUNCTIONAL DESCRIPTION" AND SYMBOL=TAG, -
1)

Since, in some languages, routines can contain other routines, it is important
to specify the DEPTH parameter in the CONTAINED_BY function as 1.
There are two important exceptions to this.

Using LSE and SCA to Design Programs 12-13

• The $REMARK tag is always contained inside another tag, typically
inside the $UNTAGGED tag. Hence it will be at DEPTH=2.

• Subtags of structured tags are contained inside the structured tag.
Therefore, subtags will be at DEPTH=2 with respect to the associated
object, and DEPTH=l with respect to the structured tag that contains
the subtags.

Because the SCA containment functions can be slow for depths greater than
1, you should use only DEPTH=2 when necessary, that is, when you know
that you are in one of these situations.

Sometimes tagged comments are not strictly nested inside a declaration.
For example, a common formatting style for the C programming language is
to put the comment block for a function in front of the function declaration.
A strict interpretation of containment would imply that the function
declaration does not contain the comment block. To solve this problem,
SCA implicitly extends the lexical range of definitions so that they include
comment blocks that are adjacent to those definitions.

SCA generally looks for the closest declaration that is immediately adjacent
to the comment block. If the code fragments on both sides of the comment
block are not part of declarations, then no comment association is done by
SCA. In that case, the comment is simply contained in whatever outer-level
declaration contains the comment, if any.

This comment association can sometimes be ambiguous. For example,
suppose you had the fol.lowing C fragment:

int x;
/* This comment describes a variable */
int y;

Then the declarations of x and y would both be adjacent to the comment.
You can control this explicitly by putting in blank lines to create the
association you want. For example:

int x;
/* This comment describes a variable */

int y;

This results in the comment being associated with x.

int x;

/* This comment describes a variable */
int y;

This results in the comment being associated with y.

12-14 Using LSE and SCA to Design Programs

If you leave an ambiguous situation in your code, SCA uses the setting of the
/COMMENT=(ASSOCIATED _IDENTIFIER=keyword) qu,alifier on the LSE
command DEFINE LANGUAGE. (See the entry for DEFINE LANGUAGE in
the VAX Language-Sensitive Editor and VAX Source Code Analyzer Reference
Manual for more details on the syntax of this qualifier.)

The ASSOCIATED_IDENTIFIER=keyword qualifier is subtle. SCA does
not use the current value of the qualifier when you run SCA from within
LSE. Rather, when you use the /DESIGN=COMMENTS qualifier to compile
your source program, the compiler uses your LSE$ENVIRONMENT file and
the LSE$SYSTEM_ENVIRONMENT file to determine the setting of the
/COMMENT=(ASSOCIATED_IDENTIFIER=keyword) qualifier. That setting
is stored in your .ANA file. SCA performs the comment association, using
that setting, at the time you. load the file into the SCA library. If you wish
to change the setting of that qualifier, you must change the setting in LSE,
save a new LSE environment file, recompile your program, and load the new
.ANA file into SCA.

12.6 Generating Design Reports

In addition to getting information directly from SCA queries, you can
produce a variety of reports based upon your design in your SCA database.
Typically, reports cover all or a designated part of your SCA database and
present information in a structured, organized way. You must have both
LSE and SCA on your system to generate reports.

You generate reports with the SCA command REPORT. The REPORT
command requires both SCA and LSE because the reports are actually
implemented in TPU code. REPORT uses the SCA callable interface that is
available in TPU code running under LSE. The REPORT command cannot
use the TPU that is supplied with VMS because that version does not have
the SCA callable interface.

You can customize reports by modifying the TPU code or writing new code.
See Chapter 18 for information on customizing reports.

12.6.1 Using Design Report Formats

You use the REPORT command both for reports provided by Digital and for
customized reports that you have created. The REPORT command takes the
following form:

LSE> REPORT report_name

Using LSE and SCA to Design Programs 12-15

The reports provided by Digital are as follows:

• HELP-A VMS Help file generated from your design or code.

• PACKAGE-An LSE package definition.

• INTERNALS-A general report that describes your entire design in an
organized manner.

• 2167A_DESIGN-A report that produces a document that meets the
requirements of the U.S. Defense Department's DOD-STD-2167A
Software Design Document.

The output of the REPORT command is typically not in its final state. For
example, HELP reports must be loaded by the VMS librarian into a help
library, and PACKAGE reports must be executed by LSE to produce package
definitions. With INTERNALS and 2167A reports, you can produce reports
that can be read in three different ways: directly, with VAX Document, or
with Digital Standard Runoff. You get more power by using either VAX
Document or Digital Standard Runoff.

Since reports typically perform many SCA queries over your SCA library,
they can be time-consuming. For this reason, Digital recommends that you
use the REPORT command from batch jobs. However, when customizing
reports, you should use a small SCA library for testing purposes. You should
debug these reports by executing them from within LSE, and by using TPU
features to help with your debugging.

You make reports work by building an SCA query that represents the files
in your system. To extract the data for the report, it steps through the files
one at a time and steps through the routines within each file one at a time.
Most of the data in reports is taken directly from the appropriate comment
tags in your program. Certain significant data is based on properties of your
code, such as the parameters to a routine. Reports are designed to accept a
variety of synonymous tags for specific sections of reports. For example, the
FORMAL PARAMETERS and FORMAL ARGUMENTS tags are treated as
synonyms.

The reports provided by Digital use tags that are included in the system
environment file supplied with LSE. You can use the SHOW TAGS command
to show the tags for a particular language.

An important convention obeyed by these tags is that the tags that are
applicable for an entire file or module are distinct from the tags that
are applicable for a single subroutine. For example, the ABSTRACT tag
describes a module, while the FUNCTIONAL DESCRIPTION tag describes
a subroutine or function. This convention makes it easier for the report tool
to distinguish between the two levels of tag information.

12-16 Using LSE and SCA to Design Programs

Because there are so many tags, not all of them are actually used by reports,
so that the reports do not become unwieldy. You can customize reports to
include tags of interest to you, and you can add new tags in addition to the
tags supplied by Digital. See Chapter 18 for details on customizing reports.

The default domain for reports is the set of all files that have command line
references in your SCA library, as follows:

FIND SYMBOL=FILE AND OCCURRENCE=COMMAND LINE

To limit reports to specific files in your system, use the following steps:

1. Determine an SCA query that represents the specific files.

2. Perform the query, and give it a name by using the FIND/NAME
command.

3. Use the query name as the domain for the report.

The following example limits the report to just those files that contain the
string "matrix" as part of the file name.

FIND/NAME=myquery -
matrix AND SYMBOL=FILE AND OCCURRENCE=COMMAND LINE

REPORT/DOMAIN=myquery report_name

Reports are driven by the source files, and this limits the ability of the
reports to present information that is not explicit in your source files. For
example, if a routine declaration or comment block crosses a file boundary
by including another file, then the report may behave unpredictably. In
addition, declarations that are generated by macros or preprocessors are
not processed by the reports provided by Digital. Declarations that occur in
precompiled files, such as BLISS library files or Pascal environment files,
will show up in the report for the precompiled file-not for the source files
that use the precompiled file.

An additional restriction is that your SCA library must reflect the current
state of your source files. Otherwise, the report tool will be unable to locate
the tags in your source files. In many cases, you can customize reports to
solve particular problems of this nature.

12.6.2 Creating Online HELP

The HELP report produces an .HLP file, suitable for loading by the VMS
Librarian into a standard VMS help library. See the VMS Librarian Utility
Manual for information on help libraries. The default output file name for
the HELP report is HELP.HLP. You can change this by using the /OUTPUT
qualifier on the REPORT command to specify a different file name.

Using LSE and SCA to Design Programs 12-17

The HELP report recognizes the HELP and HLP target types, both of which
result in .HLP files. Since this is the default, there is no need to specify the
/TARGET qualifier when using the HELP report supplied by Digital, unless
you have added customizations for different targets.

For each file in the domain, the HELP report creates a top-level entry for
the file. The help information for that entry is taken verbatim from the
module description tag for the file. (The tags MODULE DESCRIPTION,
PROGRAM DESCRIPTION, PACKAGE DESCRIPTION, and ABSTRACT
are considered synonyms for this purpose.) Then, for each routine in the file,
a level 2 entry is created. Again, the help text is taken from a tag (in this
case, the FUNCTIONAL DESCRIPTION tag) for the routine. Finally, level
3 entries are created for the parameters of the routine, with the text from
the comment associated with the parameter or the text from the appropriate
subtag of the FORMAL PARAMETERS tag used as the help text. (The tags
FORMAL PARAMETERS, FORMAL ARGUMENTS, PARAMETERS, and
ARGUMENTS are considered synonyms.)

The /FILL qualifier is not meaningful for the HELP report. All output text
in the help report is copied verbatim from tags in your program, with no
filling or justification.

12.6.3 Creating LSE Package Definitions

The PACKAGE report produces an .LSE file, suitable for execution by LSE
to define LSE packages for your program. (See Section 5.5 for information
on packages.) The default output file name for the PACKAGE report is
PACKAGE.LSE. You can change this by using the /OUTPUT qualifier on the
REPORT command to specify a different file name.

The PACKAGE report recognizes only the LSE target type. Since this is the
default, there is no need to specify the /TARGET qualifier when using the
PACKAGE report.

For each file in the domain, the PACKAGE report creates an LSE DEFINE
PACKAGE command. It then generates a DEFINE ROUTINE command
for each routine in the file and DEFINE PARAMETER commands, as
appropriate. The description string on the DEFINE ROUTINE command is
the $REMARK string associated with the routine. The /TOPIC string for the
DEFINE PACKAGE command is the name of the package, while the /TOPIC
string for each DEFINE ROUTINE is the name of the routine.

12-18 Using LSE and SCA to Design Programs

The PACKAGE report uses two additional qualifiers. The /HELP _LIBRARY
qualifier specifies the name of the help library to use for the DEFINE
PACKAGE commands created by the report. The /LANGUAGES qualifier
specifies the languages to use for the DEFINE PACKAGE command.

The /FILL qualifier is not meaningful for the package report.

12.6.4 Creating INTERNALS Reports

The INTERNALS report is a comprehensive report on the design of your
system, on a module-by-module, routine-by-routine basis. The INTERNALS
report extracts information from tags contained in comments to describe
the various aspects of your program. For example, information under the
FUNCTIONAL DESCRIPTION tag is used to describe each routine, while
information under the RETURN VALUE tag is used to describe the return
value of each routine. The INTERNALS report also uses the LSE overview
mechanism to present the code of each routine in a structured, top-down
way.

Three targets are recognized by the INTERNALS report. These targets are
as follows:

• DOCUMENT-This is the default target. This outputs an .SDML file
suitable for processing by VAX DOCUMENT.

• RUNOFF-This outputs an .RNO file suitable for processing by Digital
Standard Runoff (DSR).

• TEXT-This outputs a .TXT file that you can read directly.

The default file name in all three cases is INTERNALS, with the default
file type being determined from the target type. For example, if you want to
produce an INTERNALS report that can be processed by VAX DOCUMENT,
type the following command:

SCA> REPORT INTERNALS/TARGET=DOCUMENT

When you process the resulting file with VAX DOCUMENT, you must use
the SOFTWARE.REFERENCE doctype, as follows:

$ DOCUMENT INTERNALS.SDML SOFTWARE.REFERENCE destination

The /FILL qualifier is important for INTERNALS reports. In cases where
text tags are copied into the report, the /FILL qualifier determines whether
or not the text will be filled. Use /NOFILL if your comments typically
contain tables or other formatted output that should not be filled.

Using LSE and SCA to Design Programs 12-19

For each file in the domain, the INTERNALS report creates a chapter in the
output file. The chapter contains the following:

• Description of the file or module, taken from the ABSTRACT or
MODULE DESCRIPTION tags

• Sections that describe the global objects of the module, such as imported
variables and exported variables

• A section on each routine
The format of each routine section is similar to the format of routines
in the VMS Run-Time Library Routines Volume. That is, each routine
section has a title, a brief description of the routine (taken from the
$REMARK tag for the routine), a sample invocation, a more complete
description (taken from the FUNCTIONAL DESCRIPTION tag), sections
for the other tags in the comment block for the routine, and the body of
the routine.

The body of the routine is presented in a top-down, hierarchical fashion,
using overviews to hide details at the upper layers, and proceeding until the
entire body has been produced. For each overview placeholder that appears
in the body, there is a cross-reference number (white-on-black callout
for DOCUMENT output; boldface for RUNOFF output) to the expansion
corresponding to that placeholder. An example of the output for a routine in
the INTERNALS report is presented in Section 12.7.

12.6.5 Creating 2167 A Software Design Reports

You can use the REPORT command to automatically create the body of a
report that conforms to the requirements of the Software Design Document
that is specified by MIL-STD-2167 A. The report tool creates the design
section, which is Section 4 of the 2167 A Software Design report. You can
include these output files in your complete Software Design Report, as
follows:

• Use the VAX DOCUMENT <INCLUDE> or <ELEMENT> tags for VAX
DOCUMENT reports.

• Use the .REQUIRE directive for Digital Standard Runoff (DSR) reports.

• Manually merge the output of the report tool with other text, for text
reports.

12-20 Using LSE and SCA to Design Programs

Sample template files for the top levels of these reports are included in the
SCA$2167A directory, as follows:

2167A_PROFILE.SDML
2167A PROFILE.RNO

The PROFILE files use the appropriate commands to include the lower-level
files in the report. This examples directory also contains stub files for each
of those lower-level files. Typically, you create the chapters, other than the
requirements chapter, manually or you use some other design tool.

To create one file with the default file name 2167A_DESIGN and a default
file type appropriate for the target, type the following SCA command:

$ SCA REPORT 2167A DESIGN

The profile files use 2167A_DESIGN as the name of the file to include as
Section 4 of the report. If you change the output file name by specifying the
/OUTPUT qualifier on the REPORT command, you must also change the
profile file to correspond to the new file name.

12.6.5.1 Describing 2167A Structure in your Code

The specifications for the DOD-STD-2167A Software Design Report call for a
hierarchy of program elements. A design is separated into COMPONENTS,
which may be further separated into sub-level COMPONENTS, or into
UNITS. UNITS are the lowest level of entity described in the design. The
design facility allows you to use tagged comments to represent this structure
in your code.

The mapping implemented by the 2167A_DESIGN report treats the indi
vidual files in your system as the UNITS of the 2167 A design. You specify
design information relevant to each unit by including the information in a
comment block in the source file corresponding to that unit. Because 2167 A
COMPONENTS are collections of units and other components, the 2167A_
DESIGN report maps sets of files into components. However, it would be
redundant to duplicate all of the design information at the component level
in each file of the component. Instead, you select one file as the main design
file of the component and put the design information there. The other files
in the component contain a single tag that names the component to which
they belong.

The special tags used to designate 2167A relationships are as follows:

• UNIT OF

• COMPONENT

• COMPONENT OF

Using LSE and SCA to Design Programs 12-21

The UNIT OF tag is used in each unit (each file of your system) and names
the component to which the file belongs.

The COMPONENT tag is used only in those files that you have designated
as the design file for specific components; the tag names the component that
the file specifies.

The COMPONENT OF tag is used to establish the relationships between
components. It, too, is used only in designated design files, but it names the
parent of the component being specified in the file. For example:

File: TOP LEVEL COMPONENT .ADA - - -
COMPONENT: Top level component
ABSTRACT: This is the top level component in a system.
[additional tags that describe the design of the component]

package top level component is
This can-be an-empty package, or it might contain data that is used

-- throughout the component, or perhaps data exported by the component, or
-- even an entire unit.
end top_level_component

File: SUB LEVEL COMPONENT .ADA - - -
COMPONENT: Sub-level component
COMPONENT OF: Top level component
ABSTRACT: This is a lower-level component in a system. Note that the
value of the COMPONENT OF tag in this file must be spelled exactly the
same as the value of the COMPONENT tag in the parent component.
[additional tags that describe the design of the component]

UNIT OF: Sub-level component
UNIT DESCRIPTION: For the purposes of this example, we assume that
this file contains a complete unit. Therefore, it must also have the
UNIT OF tag, even though the component has already been named in the
COMPONENT tag.
[additional tags that describe the design of the unit]
package sub_level_component

package sub_level_component is
procedure .. .
function .. .
[other declarations]
end sub_level_component

File: UNIT 1 .ADA
UNIT OF: top level component
UNIT DESCRIPTION: -This is a simple unit that belongs to the
top level component.
[additional tags that describe the design of the unit]

package unit 1 is
function ... -
end unit 1

12-22 Using LSE and SCA to Design Programs

UNIT OF: sub level component
UNIT DESCRIPTION: -This is another simple unit that belongs to the
sub level component.
[additional tags that describe the design of the unit]

package unit 2 is
function ... -
end unit 2

You can find a more complete example in the SCA$2167A directory, assum
ing this option was chosen when SCA was installed. For this example, use
the following steps:

1. To set your SCA library to be SCA$2167 A, type the following command:

$ SCA SET LIBRARY SCA$2167A

2. To create a report, type the following command:

$ SCA REPORT 2167A_DESIGN/OUTPUT=mydir:2167a_design

To process the report with VAX DOCUMENT, use the following steps:

1. Copy the SDML files from SCA$2167A into your directory, as follows:

$ COPY SCA$2167A:*.SDML mydir:

2. Define 2167A_DESIGN to point at the version you just generated, as
follows:

$ DEFINE 2167A_DESIGN mydir:2167a_design.sdml

3. Invoke VAX DOCUMENT with a destination~type recognized by VAX
DOCUMENT, such as POSTSCRIPT, or LINE. as follows:

$ DOCUMENT 2167A_PROFILE MILSPEC destination_type

12.6.5.2 Retrieving 2167A Structure Information

You can use SCA to get information about the structure of your system. For
example, if you want to find all the components in your system, type the
following query:

SCA> FIND COMPONENT AND SYMBOL=TAG

Because the three primary 2167 A tags are all keyword tags, you can use
them in keyword queries. For example, if you want to find all the units of a
component named Component 1, use the following query expression:

CONTAINED_BY (-
END = "UNIT OF" AND SYMBOL=TAG, -
BEGIN = "Component l" AND SYMBOL=KEYWORD, -
DEPTH = 1)

Using LSE and SCA to Design Programs 12-23

Similarly, you can use queries on the COMPONENT OF tag to find sub-level
components of a given component.

The 2167A_DESIGN report uses these mappings to create the report. It
starts with the following SCA query expression:

CONTAINED_BY(-
END = "COMPONENT", -
BEGIN = SYMBOL=KEYWORD, -
DEPTH = 1, -
RESULT = BEGIN)

This returns the occurrences of the names of each component of the system.
The report then goes through the components one at a time, and writes the
component section for each. For each component, it then constructs a query
of the following form:

CONTAINED_BY(-
END = "UNIT OF", -
BEGIN = component_name AND SYMBOL=KEYWORD, -
DEPTH = 1, -
RESULT= BEGIN),

This returns the UNITS that belong to this component. For each such unit,
the corresponding unit subsection is written.

The actual data in the 2167A Software Design Report is obtained from the
various tags in your program. The general description information for com
ponents is taken from the COMPONENT DESCRIPTION tag. The general
description information for units is taken from the UNIT DESCRIPTION
tag. The following tables show the tags corresponding to other paragraphs
in the report:

TAGS FOR COMPONENT INFORMATION:

Tag:

INPUT/OUTPUT DATA
ALGORITHMS
ERROR HANDLING
DATA CONVERSION
LOGIC FLOW
REQUIREMENTS ALLOCATION

TAGS FOR UNIT INFORMATION:

Tag:

12-24 Using LSE and SCA to Design Programs

Description of corresponding section:

Input and output data for the component
Algorithms used by the component
Error detection/recovery features
Data conversions done by the component
Logic flow of the component
Requirements satisfied by this component

Description of corresponding section:

INPUT/OUTPUT DATA ELEMENTS
LOCAL DATA ELEMENTS
INTERRUPTS AND SIGNALS
UNIT ALGORITHMS
UNIT ERROR HANDLING
UNIT DATA CONVERSION
USE OF OTHER ELEMENTS
UNIT LOGIC FLOW
DATA STRUCTURES
LOCAL DATA FILES
LOCAL DATABASES
LIMITATIONS
REQUIREMENTS ALLOCATED TO
THIS UNIT

Input and output data for the unit
Data used only in this unit
Interrupts/signals handled by this unit
Algorithms used by this unit
Error detection/recovery for the unit
Data conversions done by unit
Other elements used by this unit
Logic flow of the unit
Data structures implemented by unit
Data files or databases used by unit
Same as LOCAL DATA FILES
Limitations of the unit

Requirements satisfied by this unit

For Ada programs, these tags can be put into your comment headers auto
matically by expanding the 2167 A placeholder in the header comment for
the file.

Because the exact mapping between elements of your program and 2167A
items is highly dependent on your particular application and policies, the
2167A report as supplied by Digital makes no attempt to use program
elements (packages, routines, etc.). All information in the report is obtained
from tags. It is, however, possible to customize reports to use information
from your program elements. It is also possible to change the mapping of
UNITS to files and COMPONENTS to sets of files. (See Chapter 18 for more
information on customizing 2167A reports.) It is expected that you will want
to use TPU to do at least some. customization of the 2167 A report.

12.7 Reverse-Engineering a Design

A powerful feature of the VMS design environment is the ability to
reverse-engineer existing code into layers at various levels, thus retrieving
much of the actual algorithm design. The INTERNALS report produces
this decomposition. You can fine-tune the report with the DEFINE
ADJUSTMENT command. The following example is taken out of context
from an Ada package.

Using LSE and SCA to Design Programs 12-25

12.7.1

function matrix_multiply (left, right
return integer_matrix is

in integer_matrix)

++
FUNCTIONAL DESCRIPTION:

This function computes the matrix product of two integer matrices.

It uses a simple, triple-nested loop, and does not do any checking t
see if the matrices conform.

FORMAL PARAMETERS:

left:
The left operand.

right:
The right operand.

FUNCTION VALUE:

The result of multiplying the two matrices.

result matrix :
integer_matrix(left'range,right'range(2));

:= (others=> (others=> 0));
begin

Loop over the rows of the left matrix
outer loop: for i in left'range loop

-~ loop over the columns of the right matrix
middle_loop: for j in right'range(2) loop

-- compute the inner product of the current row and column
inner loop: fork in left'range(2) loop

result_matrix(i,j)
:= result_matrix (i,j) + left(i,k) * right(k,j);

end loop inner loop;
end loop middle_loop;

end loop outer_loop;
return result_matrix;

end matrix_multiply;

Sample Report

You could compile the previous function design, load it into an SCA library,
and then type the following command to produce an INTERNALS report:

LSE> REPORT INTERNALS

The report might include a routine section similar to that on the ,following
pages.

12-26 Using LSE and SCA to Design Programs

matrix_multiply

matrix_multiply

This function computes the matrix product of two integer matrices.

Format

result := matrix_multiply left, right

Returns

The result of multiplying the two matrices.

Arguments

left
The left operand.

right
The right operand.

Description

This function computes the matrix product of two integer matrices.

It uses a simple, triple-nested loop, and does not do any checking to see if
the matrices conform.

Using LSE and SCA to Design Programs 12-27

matrix_multiply

Body

0
Loop over the rows of the left matrix

outer loop: for i in left'range loop -= loop over the columns of the right matrix
middle_loop: for j in right'range(2) loop

«compute the inner product of the current row and column» ft
end loop middle_loop;

end loop outer_loop;
return result_matrix;

ft -- compute the inner product of the current row and column
inner_loop: fork in left'range(2) loop

result_matrix(i,j)
:= result_matrix (i,j) + left(i,k) * right(k,j);

end loop inner_loop;

12-28 Using LSE and SCA to Design Programs

Part 4 Customizing Functions

This part contains tutorial information on modifying your programming
development environment, including the following:

• Customizing editing functions

• Customizing LSE/DECwindows Menus

• Defining LSE templates

• Providing diagnostic file support

• Customizing overviews

• Customizing reports

Chapter 13

Customizing Editing Functions

With the VAX Language-Sensitive Editor, you can customize the devel
opment environment according to your programming style. This chapter
describes the following customizing options:

• Defining your own keys and commands

• Defining aliases

• Redefining tokens and placeholders

• Using VAXTPU

• Using initialization and command files

• Using environment and section files

Section 13.1 describes how to define keys, commands, and aliases; how
to redefine language elements; and how to execute VAXTPU statements.
Section 13.2 describes modifying LSE/DECwindows attributes. Section 13.3
describes how to store modifications, and Section 13.4 describes how to
speed up LSE initialization once you have modified LSE.

13.1 Modifying LSE

With LSE, you can bind commands to keys and define your own set of
commands. You can also redefine tokens and placeholders. As you use the
language-supplied tokens and placeholders, you may find that some are not
suited to your needs. For example, a language template may contain an
optional phrase or clause that you never use and therefore always delete. In
this situation, it would be more convenient to permanently eliminate that
clause from the template.

Customizing Editing Functions 13-1

You can modify LSE, as follows:

• Make modifications interactively while in an editing session

These changes are kept only as long as you are in the current editing
session.

• Create a text file containing your modifications that you execute on LSE
startup

These changes are available automatically each time you use LSE.

• Save your modifications in binary files if you want to speed up LSE
startup

LSE reads in the modifications each time LSE is invoked.

Modifications that are made interactively remain in effect for only the
current editing session. For information on saving modifications, see
Section 13.3 and Section 13.4.

13.1.1 Defining Keys

With LSE, you can bind any command to a key. Keys that have already been
defined can be redefined.

You can define a key interactively by using the DEFINE KEY command.
You must include the name of the key you want defined and the command
string you want bound to that key. (For key names, refer to the DEFINE
KEY command description in the VAX Language-Sensitive Editor and VAX
Source Code Analyzer Reference Manual.)

For example, if you want to define. a key to exit from LSE, you would type
the following command:

LSE> DEFINE KEY CTRL B KEY "EXIT"

Now you can press CTRL/B to exit from this editing session.

In addition, you can define a key by pressing that key at the _Key: prompt
instead of typing the name of the key. For example, type the following
command:

LSE> DEFINE KEY

LSE prompts for a key. Press CTRL/B.

_key: !CTRUBI

LSE responds, as follows:

_Key: "CTRL/B"

13-2 Customizing Editing Functions

You must press the RETURN key to confirm. (You can erase the key name
and press another key if you want.) LSE prompts you for a string. Then,
you type the EXIT command at the prompt, as follows:

_String: EXIT

With LSE, you can also bind a user-defined command to a key. For example,
you can bind a previously defined MAIL command (see Section 13.1.2) to a
key by typing the following command:

LSE> DEFINE KEY Fl7 "MAIL"

Now you can press the Fl 7 key to enter the Mail Utility.

In addition, you can bind several commands to a key. To do this, you must
use the DO command and follow the DIGITAL Command Language (DCL)
quoting rules. The following example shows you how to bind the ENTER
LINE and TAB commands to one key.

~SE> DEF KEY CTRL_M_KEY "DO ""SET INDENT CURRENT"", '"'ENTER LINE"",'"'ENTER TAB"""

Now you can position the cursor at the end of the line above where you want
to insert text, and press the Return key. A blank line is inserted and the
cursor is placed at the proper depth for your code.

As an alternative to binding commands to a key, you can bind a sequence of
keystrokes to a key. This is called a learn sequence. To begin recording a
learn sequence, type the following command:

LSE Command> DEFINE KEY/LEARN

At the key prompt, press the key that you want to define, for example:

_Key : [f:!Z]

LSE echoes the key name.

Next, press the RETURN key to start recording keystrokes. Every key that
you press now will be recorded. This includes all keys that enter text into
the editing buffer. All commands typed at the LSE Command> prompt and
all responses to prompts such as "_Search for:" are also recorded.

To end the sequence, press the key that you are defining, in this case the
Fl 7 key.

Press Fl 7 again to replay the learn sequence.

Customizing Editing Functions - 13-3

13.1.2 Defining Commands

You can define your own commands or abbreviate an existing command by
using the DEFINE COMMAND command. For example, if you use the SET
SELECT_MARK command frequently, you can abbreviate the command by
typing the following command:

LSE> DEFINE COMMAND MARK "SET SELECT MARK"

Now you can type MARK at the command prompt to issue the SET
SELECT_MARK command.

You can also define your own commands. For example, if you want to define
a command to suspend the current editing session and automatically enter
the Mail Utility (MAIL), you type the following command:

LSE> DEFINE COMMAND MAIL "SPAWN MAIL"

Now you can type MAIL at the LSE> prompt to suspend the editing session
and enter the Mail Utility. When you exit from the Mail Utility, the editing
session resumes.

In addition, you can define a command that is composed of multiple com
mands. For example, you may find that you change the case of words
frequently while editing. To simplify that task, type the following command:

LSE> DEF COMMAND CHANGE_WORD "DO '"'SET SELECT'"', ""GOTO WORD/FOR"", ""CHANGE CASE"""

With the DO command, you can execute multiple commands. Note the use of
double quotation marks in the example. LSE follows the DCL quoting rules.
(See the appendix that describes VAXTPU Builtins in the VAX Language
Sensitive Editor and VAX Source Code Analyzer Reference Manual for an
example of defining a command that invokes VAXTPU.)

13.1.3 Defining Aliases

With LSE, you can substitute a short name (an alias) for long identifier
names in your source code. Once you define an alias, you can type the alias
name in your current buffer and press the EXPAND key. The value of the
alias appears in the buffer. To define an alias interactively, you type the
DEFINE ALIAS command with an abbreviation name for the text string you
want inserted into the buffer, and the value of the text string.

13-4 Customizing Editing Functions

For example, if you use a routine frequently, you can define a short, easy-to
remember name for that routine. By typing the following DEFINE ALIAS
command, you can reduce the amount of typing.

LSE> DEFINE ALIAS EXE PPL_EXECUTE_COMMAND

Then, you can type EXE and expand it to get the text PPL_EXECUTE_
COMMAND inserted into your buffer.

If you want to define an alias for a string of text including nonidentifier
characters, you must enclose the text in quotes.

In addition, you can use the DEFINE ALIAS/INDICATED command to
associate a specified alias name with the value of a contiguous string of
identifier characters at the current buffer position. Thus, you do not have to
specify the value of the alias name when defining an alias.

For example, if you define a variable named PPL_GLS_COMMAND_TABLE
that you will be referencing frequently, you can define an alias for it by
using the DEFINE ALIAS/INDICATED command (PFl-CTRL/A). You put
the cursor on the variable name and press PFl-CTRL/A. LSE prompts you
for an alias name, as follows:

_Alias:

You can type the alias name CMDTAB at the prompt and press the Return
key. Now you can type the alias name and press the EXPAND key to get
PPL_GLS_COMMAND_TABLE inserted into the buffer.

Once an alias is defined, it is associated with the language of your current
buffer. If your current buffer is not associated with a language, you must
specify the /LANGUAGE qualifier on the DEFINE ALIAS command line.

13.1.4 Defining Buffer Attributes

LSE sets the buffer attributes and properties for each newly created buffer.
However, you can override these settings by using an initialization file. This
can be accomplished, as follows:

1. Create a file in which to put your commands.
This file is known as an initialization file. (See Section 13.3.2 for details
on initialization files.)

2. When you want these buffer attributes, invoke LSE with the
/INITIALIZATION qualifier, as follows:

$ LSEDIT/INITIALIZATION=init_filename filename

Customizing Editing Functions 13-5

Now each buffer you create while in that editing session will have these new
buffer attributes. The following commands set buffer attributes:

• SET AUTO_ERASE

• SET FORWARD

• SET INDENTATION

• SET INSERT

• SET LANGUAGE

• SET LEFT_MARGIN

• SET MODIFY

• SET NOAUTO_ERASE

• SET NOMODIFY

• SETNOWRAP

• SET OUTPUT_FILE

• SET OVERSTRIKE

• SET READ_ONLY

• SET REVERSE

• SET RIGHT_MARGIN

• SET TAB_INCREMENT

• SET WRAP

• SET WRITE

There are several cases where these attributes are overridden. They are as
follows:

• If a language can be determined from the file type, then the attributes
for that language are in effect.

• If a newly created buffer is associated with a defined language, then the
left margin, right margin, tab increment, and wrap attributes defined for
that language are used.

• When a buffer is created by the READ or CUT commands, the buffer is
always modifiable.

13-6 Customizing Editing Functions

13.1.5 Customizing Windows

You can set the characteristics of the screen to meet your needs. You can
save these setting in an initialization file (see Section 13.1.4 for details on
saving the settings).

For example, you can specify the number of windows LSE displays on the
screen, as follows:

LSE> SET SCREEN WINDOW=2

If you put this command in your initialization file, LSE displays that number
of windows on the screen each time you invoke LSE.

In addition, you might want to alter the message window. The message
window is located at the· bottom of the screen and displays broadcast
messages and messages issued by LSE and SCA. These messages are
flashed in reverse video. You can disable the flashing by using the following
command:

LSE> DO/TPU "SET (MESSAGE_ACTION_TYPE, NONE)"

You can alter the size of the message window by issuing the VAXTPU
statement, as follows:

• Press PFl-CTRUZ to get the TPU> prompt.

• Issue the EVE$SET_MESSAGE_ WINDOW _SIZE(2) command.

13.1.6 Redefining Language Elements

You can redefine token, placeholder, package, and language definitions
interactively. Thus, you can add or delete constructs, reformat menus,
or edit descriptions withln existing definitions. The EXTRACT command
places the current definition of a token, placeholder, package, or language
in the current buffer. You can then make the appropriate modifications and
execute the new definitions.

To redefine a token, placeholder, package, or language, use the following
steps:

1. Issue the GOTO BUFFER/CREATE command and a new buffer name to
enter an empty buffer.

2. Issue the EXTRACT TOKEN, EXTRACT PLACEHOLDER, EXTRACT
PACKAGE, or EXTRACT LANGUAGE command followed by the name
of the token, placeholder, or language.

Customizing Editing Functions 13-7

3. Edit the definition of the selected token, placeholder, package, or
language.

4. Issue the DO command to execute the new definition.

When redefining tokens or placeholders, the previous definitions must be
deleted. As shown in Figure 13-1, the EXTRACT command automatically
puts a DELETE command before the DEFINE command when it places
the definition in the buffer. The DELETE TOKEN command deletes the
previous definition of a token, and the DEFINE TOKEN command provides
a new definition.

For example, if you want to add a BEGIN/END construct to the definition of
a Pascal WHILE statement, use the following steps:

1. Issue the following command while in an empty buffer:

LSE> EXTRACT TOKEN WHILE /LANGUAGE=PASCAL

Figure 13-1: Extracting a Token

File Edit Format Navigate View Display Customize

DELETE TOKEN WHILE -
/LANGUAGE=PASCAL

DEFINE TOKEN WHILE -
/LANGUAGE=PASCAL -
/DESCRIPTION="WHILE expression DO stateMent" -
/TOPIC•"StateMents WHILE"

"WHILE Z{expression}Z DO"
" Z{stateMent}Z"

END DEFINE
[End of file]

Help

2. Press CTRL/Z to remove the LSE> prompt and edit the token by adding
BEGIN and END statements.

13-8 Customizing Editing Functions

3. Press CTRUZ to get the LSE> prompt once you have the definition the
way you want it.

4. Issue the DO command to execute the new definition, as shown in
Figure 13-2.

Now each time you use the WHILE token in Pascal in the current editing
session, LSE will provide you with the new definition.

Figure 13-2: Executing a New Definition

iRt I b!l fill
File Edit Format Navigate View Display Customize Help

6
DELETE TOKEN WHILE - ,...,

/LANGUAGE=PASCAL
DEFINE TOKEN WHILE -

/LANGUAGE=PASCAL -
/DESCRIPTION="WHILE expression DO stateMent" -
/TOPIC="StateMents WHILE"

"WHILE ~{expressionH"
"DO"
" BEGIN"
" ~{staterrient}~ ... "
" END"

END DEFINE
[End of file]

'-'
Q

~
~

You can use the MODIFY LANGUAGE command as an alternative method
for redefining language definitions. This method works best when you
want to modify just one or two qualifiers in your language definition or the
attributes of all the languages. (See the MODIFY LANGUAGE command in
the VAX Language-Sensitive Editor and VAX Source Code Analyzer Reference
Manual for details.)

For example, if you want to change the setting of the /EXPAND_CASE
qualifier from AS_IS to UPPER, you type the following command:

LSE> MODIFY LANGUAGE PASCAL /EXPAND_CASE=UPPER

The MODIFY LANGUAGE command lets you modify your language defini
tion without having to execute the language definition again.

Customizing Editing Functions 13-9

13.1. 7 Using the VAX Text Processing Utility {VAXTPU)

VAXTPU is a hlgh-performance programmable editing tool that is part of
LSE. LSE provides two methods of executing VAXTPU statements.

• The CALL command, which invokes a VAXTPU procedure

• The DOtrPU command, which executes a VAXTPU statement

You can use the DOtrPU command in several different ways, as follows:

• Type the DOtrPU/PROMPT="TPU>" command (or press PFl-CTRUZ) to
get the TPU> prompt, and issue your VAXTPU statement.

• Type the DOtrPU command with your VAXTPU statement at the LSE>
prompt.

• Type the DOtrPU command to execute a buffer ofVAXTPU statements.

For example, if you want to access the VAXTPU built-in JOURNAL_ CLOSE,
press CTRUZ to get the LSE> prompt, then type the following command:

LSE> DO/TPU JOURNAL_CLOSE

The DOtrPU command passes one command to the VAXTPU command
interpreter and returns to the LSE> prompt.

An alternative way of accessing a VAXTPU built-in is to issue the built-in
at the TPU> prompt. This avoids having to follow the DCL quoting rules.
For example, if you want to access the VAXTPU built-in ERASE with the
predefined buffer, message_buffer, press PFl-CTRUZ to get the TPU>
prompt, then type the following command:

TPU> ERASE (MESSAGE_BUFFER)

The VAXTPU command interpreter executes the command and resumes the
editing session.

In addition, with VAXTPU, you can write functions not provided by LSE. You
can define VAXTPU statements or functions interactively during an editing
session or put them into a file for later use. See the VAX Text Processing
Utility Reference Manual for information on the sophisticated text processing
capabilities available through VAXTPU.

There are some restrictions on altering the LSE interface to VAXTPU. See
the appendix that describes how to write and execute VAXTPU procedures in
the VAX Language-Sensitive Editor and VAX Source Code Analyzer Reference
Manual for details on these restrictions. Also see the CALL and DOtrPU
commands in the VAX Language-Sensitive Editor and VAX Source Code
Analyzer Reference Manual.

13-10 Customizing Editing Functions

13.2 Modifying LSE/DECwindows Attributes

You can modify the LSE/DECwindows attributes by using the Customize
menu. You can set the number of windows, the width and height of screens,
and change the menus and menus items. See Chapter 14 for more details on
customizing menus.

The prompts are in either insert or overstrike mode. The setting defaults
to the current setting of the terminal. In LSE/DECwindows, the default is
overstrike. You can change this setting by including the following commands
in an initialization file:

SET INSERT/BUFFER=$COMMANDS
SET INSERT/BUFFER=$PROMPTS

13.3 Storing Modifications

The previous sections explained how to make modifications interactively.
Such modifications remain in effect only for the current editing session. If
you want to keep your modifications, you can put them into a file and then
access that file whenever you want to use the modifications. Alternatively,
you can create an initialization file or a command file that allows you
to automatically access the modifications at LSE startup. The following
sections describe these methods of storing and using your modifications.

13.3.1 Storing Modifications in Text Files

To store your modifications in a file, you can create a text file with a file
extension of .LSE. Similarly, if you want to keep your VAXTPU statements,
you can create a text file with a file extension of .TPU.

With LSE, you can use these files interactively when you need them.
The following examples show how you execute your commands. The DO
command directs LSE to execute the commands found in the specified buffer.
In both these examples, the current buffer is used.

Press CTRL/Z to get the LSE> prompt, and type the following commands:

For LSE commands:

LSE> GOTO FILE filename.LSE
LSE> DO

Customizing Editing Functions 13-11

For VAXTPU statements:

LSE> GOTO FILE filename.TPU
LSE> DO/TPU

Now the commands contained in the text file you just executed with the DO
command will affect the current editing session.

13.3.2 Using Initialization and Command Files

You may want your modifications automatically executed when you invoke
LSE. You can do this by specifying the file when you invoke LSE. An
initialization file contains LSE commands that are executed when LSE is
invoked. A command file contains VAXTPU statements that are executed
when LSE is invoked.

To use your LSE modifications, type the following command:

$ LSEDIT/INITIALIZATION=device: [directory]filename.LSE

To use your VAXTPU file, type the following command:

$ LSEDIT/COMMAND=device: [directory]filename.TPU ...

You can use both the /INITIALIZATION and /COMMAND qualifiers on the
LSEDIT command line to use both your files.

You can also use your initialization and command files without specifying
the files each time you invoke LSE. To do this, add the following commands
to your LOGIN.COM file.

$DEFINE LSE$INITIALIZATION device: [directory]filename.LSE
$DEFINE LSE$COMMAND device~ [directory]filename.TPU

LSE will execute the initialization and command files each time you type the
LSEDIT command.

Example 13-1 shows the types of modifications you can put into an initial
ization file.

13-12 Customizing Editing Functions

Example 13-1 : Sample Initialization File

!Sample initialization file

Command to spawn a subprocess, run MAIL, and clear the message
buffer when the e~iting session is resumed.

DEFINE COMMAND MAIL "DO ""SPAWN MAIL"",""CLEAR_MESSAGE"""

! Command to clear the message window by writing three blank lines

DEFINE COMMAND CLEAR_MESSAGE-
"DO/TPU ""MESSAGE("""""""")"", ""MESSAGE("""""""")"", ""MESSAGE("""""""")"""

Command to bind the MAIL command to a key.

DEFINE KEY F20 "MAIL"

! DEFINE ALIAS command for abbreviating the name of an include file in Pascal.

DEFINE ALIAS DEFS/LANGUAGE=PASCAL "USERl: [PROJECT]COMMON_DEFINITIONS.PAS"

DEFINE TOKEN command to redefine the DO token in C, so that it always contains a
compound statement

!DELETE TOKEN DO -
/LANGUAGE=C

DEFINE TOKEN DO -
/LANGUAGE=C -
/DESCRIPTION="executes a statement as long as a particular condition is satisfied" -
/TOPIC="Language_topics Statements do"

"do"
"{"

{@statement@} ... "
"}"

"while

END DEFINE

({@expression@});"

VAXTPU statements to change the scrolling of LSE windows so that the
screen only scrolls when the cursor is at the bottom or top of the screen.

DO/TPU "SET

DO/TPU "SET

DO/TPU "SET

(SCROLLING, LSE$MAIN - WINDOW I ON, 0, 0, 0) II

(SCROLLING, LSE$TOP_WINDOW, ON, 0, 0, 0) II

(SCROLLING I LSE$BOTTOM_WINDOW, ON, 0, 0, 0) II

Example 13-2 shows the types of VAXTPU procedures you can put into a
command file. Note that procedure definitions must precede statements in a
command file.

Customizing Editing Functions 13-13

Example 13-2: Sample Command File

Sample command file

VAXTPU procedure to replace tabs with spaces. In this example, the tabs
are set at 8.

PROCEDURE ELIMINATE TABS

local target,
n,
saved mode;

position(beginning of(current buffer));
loop - -

target := search(ascii(9), FORWARD);
exitif (target= 0);
position(beginning_of(target));
erase_character(l);
n := current offset;
n := n - (8 * (n I 8));
saved mode :=get info (current buffer, "mode");
set (insert, current_buffer); -
copy_text (substr (" ", 1, 8 - n));
set (saved_mode, current_buffer);

endloop;
END PROCEDURE

! LSE command to invoke the ELIMINATE TABS procedure.
LSE$DO COMMAND("DEFINE COMMAND NOTABS-""CALL ELIMINATE TABS""");
! Command to change the text of the "Working ... " message to "BUSY ... "
SET (TIMER, ON, "BUSY ... ");

! VAXTPU procedure to change the scrolling of LSE windows so that the screen
! only scrolls when the cursor is at the bottom or top of the screen.
set (scrolling, lse$main window, ON, 0, 0, 0);
set (scrolling, lse$top window, ON, 0, 0, 0);
set (scrolling, lse$bottom_window, ON, 0, 0, 0);

13.4 Speeding Up LSE Initialization

LSE provides two mechanisms for speeding up LSE initialization.

• An environment file, which contains all language-specific definitions

• A section file, which contains all key definitions and VAXTPU procedures

Since both environment and section files are binary files, LSE does not have
to execute them each time LSE is invoked. This saves time at LSE startup.

In addition, environment files and section files have a mechanism for a
system manager to provide users with a tailored environment while still
allowing you to do some customization of your own with the use of command
files and initialization files.

13-14 Customizing Editing Functions

If your initialization file or command file is large, you may want to put your
changes into an environment file or a section file. If you do, you should save
your source files for future LSE updates because LSE sometimes requires
you to rebuild your environment and section files when you install a new
version of LSE.

13.4.1 Creating Environment and Section Files

To create an environment or section file, establish the language definitions,
placeholder definitions, command and key definitions, and mode settings
that you want to save. Then type the SAVE ENVIRONMENT or SAVE
SECTION commands while in an editing session.

The SAVE ENVIRONMENT command saves the following:

• Languages

• Packages

• Placeholders

• Tokens

• Aliases

• Routines

• Parameters

• Adjustments

• Keywords

• Tags

The SAVE SECTION command saves the following:

• All current key definitions

• VAXTPU procedures and variables

• Learn sequences

• User-defined commands

• Mode settings

You must include the name of the environment or section file, including
device and directory names, when you type the SAVE ENVIRONMENT or
SAVE SECTION commands.

Customizing Editing Functions 13-15

The following examples show you how to create environment and sec
tion files. Press CTRL/Z to get the LSE> prompt, and type the following
commands:

For creating environment files:

LSE> DO
LSE> SAVE ENVIRONMENT filename

For creating section files:

LSE> DO/TPU
LSE> SAVE SECTION filename

13.4.2 Using Environment and Section Files

To use your definitions, you must type the /ENVIRONMENT or /SECTION
qualifiers on the LSE command line.

To use your environment file, type the following command:

$ LSEDIT/ENVIRONMENT=device: [directory]filename.ENV

You can include a list of file specifications with the /ENVIRONMENT
qualifier.

To use your section file, type the following command:

$ LSEDIT/SECTION=device: [directory]filename.TPU$SECTION

You can automatically access all language-specific definitions from one
editing session to another without specifying the /ENVIRONMENT qualifier
each time you invoke LSE. To do this, add the following command to your
LOGIN.COM file:

$DEFINE LSE$ENVIRONMENT device: [directory]filename.ENV

You can automatically access all your key definitions and VAXTPU proce
dures from one editing session to another without specifying the /SECTION
qualifier each time you invoke LSE. To do this, add the following command
to your LOGIN.COM file:

$DEFINE LSE$SECTION device: [directory]filename.TPU$SECTION

13-16 Customizing Editing Functions

13.4.3 Using Multiple Files

With LSE, you can specify any combination of the /INITIALIZATION,
/COMMAND, /ENVIRONMENT, and /SECTION qualifiers on the command
line. LSE processes these files in the following order:

1. /SECTION

2. /COMMAND

3. /ENVIRONMENT

4. /INITIALIZATION

If you specify more than one environment file with the /ENVIRONMENT
qualifier, the definitions in the first file on the list take precedence over
definitions in subsequent environment files. All environment file definitions
take precedence over /SYSTEM_ENVIRONMENT file definitions.

Table 13-1 lists where your modifications to LSE are stored.

Table 13-1 : Where LSE Stores Modifications

Text Files

Initialization Command

LSE commands VAXTPU statements

Environment

Language-specific
definitions

Binary Files

Section

Key definitions

VAXTPU procedures

VAXTPU symbol names

DEFINE COMMAND
definitions

Learn sequences

LSE mode settings

Customizing Editing Functions 13-17

Chapter 14

Customizing LSE/DECwindows Menus

LSE provides a Menu Extension Service that allows you to add, modify, or
delete menu entries from LSE pop-up and pull-down menus. This chapter
describes how to use this Menu Extension Service.

Menu entries are limited to pushbutton widgets and separator widgets. You
can add widgets only to the bottom of a menu.

14.1 Using the Extend Menu Dialog Box

You use the Extend Menu dialog box to customize menus. To access the
menu, perform the following steps:

1. Pull down the Customize menu.

2. Choose the Extend Menu... menu item.

LSE displays the Extend Menu dialog box, as shown in Figure 14-1.

Customizing LSE/DECwindows Menus 14-1

Figure 14-1 : Extend Menu Dialog Box

Extend fl.1enu ~

Available Entries

Call

Cancel Mark

Cancel Select_mark

Capitalize Word

Center Line

Change Case

Click on a command name
to select it

LSE Command:

Menu Entry Label:

Available Menus

File Pulldown

Edit Pulldown

Format Pulldown

Navigate Pulldown

View Pulldown

Display Pulldown

Click on a menu in which
to add/delete an entry

ii Enter ii I Delet~ I

Entries in Selected Menu

0 New

~
Open Selected

Open •..

Include ••.

Separatorl

0 save

~ I Remove

0 Separator

Dismiss

The Extend Menu dialog box has three list boxes as follows:

0

~
0

• Available Entries-This list contains all the currently available com
mands.

• Available Menus-This list contains the currently available pull-down
and pop-up menus.

• Entries in Selected Menu-This list contains the menu items found
within the selected menu in the Available Menus list.

There are two text widgets: LSE Command: and Menu Entry Label:.
When you click on a command name in the Available Entries list, the LSE
Command: text widget displays the selected command, and the Menu Entry
Label: text widget displays the selected command name, which is the default
label. This is the default program executed by the menu entry.

14-2 Customizing LSE/DECwindows Menus

14.2 Adding a New LSE Command Entry to a Menu

To add an available LSE command entry to a menu, perform the following
steps:

1. Click on the command entry you want in the Available Entries list box.

2. Choose the menu to which you want to add a menu entry.

3. Click on Add, which is located directly below the Entries in Selected
Menu box.

4. Click on Dismiss to remove the Extend Menu dialog box.

For example, if you want to add the Show Buffer menu entry to the View
menu, use the following steps:

1. Click on the Show Buffer menu entry in the Available Entries list. The
menu entry is highlighted.

Note that the text widget Menu Entry: now contains the Show
Buffer command name. The Menu Entry Label: is the name of the
LSE command as it appears in the Available Entry: text widget.
The program bound to that menu entry is what appears·in the LSE
Command: text widget.

2. Click on the View Pulldown menu entry in the Available Menus list box.

The View Pulldown entry is highlighted. In addition, the Entries in
Selected Menu box lists the menu entries currently contained in the
View Pulldown menu, as shown in Figure 14-2.

Customizing LSE/DECwindows Menus 14-3

Figure 14-2: Adding a Command to a Menu

Extend l\·1enu l!i]

Available Entries

Set Overview

Set Read_only

Set Wrap

Set Write

Show Adjustment

Show Buffet·

Click on a command name
to select it

LSE Command: I Show Buffe~

Menu Entry Label: i·show Buffet{

Available Menus

File Pulldown

Edit Pulldown

Format Pulldown

Navigate Pulldown

View Pulldown

Display Pulldown

Click on a menu in which
to add/delete an entry

lJ Enter JI I Delete

6

~
Q

Entries in Selected Menu

Expand 6

Expand All

~ Collapse

Collapse All

Overview

Source Q

C!!O Remove

0 Separator

Dismiss

3. Click on Add, which is directly below the Entries in Selected Menu box.

The Entries in Selected Menu list box is updated to show that Show
Buffer has been added as a menu entry at the bottom of the menu, as
shown in Figure 14-3.

14-4 Customizing LSE/DECwindows Menus

Figure 14-3: Menu Item Added

Extend ~1enu ~

Available Entries

Set Overview

Set Read_only

Set Wrap

Set Write

Show Adjustment

Show Euffer

Click on a command name
to select it

LSE Command: I Show Buffe~

Menu Entry Label: I Show Buffer

Available Menus

File Pulldown

Edit Pulldown

Format Pulldown

Navigate Pulldown

View Pulldown

Display Pulldown

Click on a menu in which
to add/delete an entry

18) I Delete I

Entries in Selected Menu

Collapse

Collapse All

Overview

Source

Focus

Show Buffef"

~ I Remove I
D Separator

Dismiss

If the separator toggle is On, a separator widget is added before the
menu entry.

4. Click on Dismiss to remove the Extend Menu dialog box.

Now when you click on the View pull down menu, you can choose the Show
Buffer menu item.

14.3 Saving Menu Modifications

If you want to keep your modifications, use the following steps while you are
still in the editing session:

• Pull down the Customize menu.

• Choose the Save Current Attributes... menu item.

The Save Current Attributes: dialog box appears on the screen.

• Click on OK.

Customizing LSE/DECwindows Menus 14-5

Chapter 15

Defining LSE Templates

With LSE, you can define your own languages. In addition to programming
languages, you can define languages for memos, letters, or other written
material. Once you have defined your own language, you can save your
language in an environment file, recall it for later editing sessions, and
update it with new definitions. A single environment file can contain sets of
templates for several languages.

This chapter describes how to define your own templates and how to create
and use environment files. 'It also includes two examples of environment
files created with LSE. Section 15.1 provides an example of a text template
for a memo. Section 15.3 describes how to save language definitions.
Section 15.2 describes how to define a template for a programming language.
Section 15.4 provides information on how LSE controls indentation of tokens
and placeholders. Section 15.5 describes how to define packages.

LSE provides a mechanism for interfacing non-Digital processors to the
diagnostic review facility. See the appendix on user diagnostic file format in
the VAX Language-Sensitive Editor and VAX Source Code Analyzer Reference
Manual for details.

15.1 Defining a Text Template

When defining a language, you create a file in which to put LSE commands
that will be used to define elements of your language. Once the file is
complete, you execute the commands in the source file and create an
environment file for use with LSE. This section describes how to create a
language for writing memos. This memo language is defined using LSE
language, placeholder, and token definitions.

Defining LSE Templates 15-1

Before starting, you should be aware of the following coding rules:

• If a command and its qualifiers extend beyond one line, a hyphen must
be the last character on each continuation line except the last line of the
command.

• Comment lines begin with an exclamation point (!), and ignore leading
blank spaces.

• Lines containing only comments do not terminate continued commands.

Figure 15-1 shows a screen display of the memo template as it appears after
you expand the initial string, {memo_template}.

Figure 15-1 : Memo Template

15-2 Defining LSE Templates

15.1.1 Language Definition

All template definitions, whether text- or language-oriented, must begin
with a language definition. To define a language, you use the DEFINE
LANGUAGE command. This command takes a series of qualifiers that set
the characteristics of the language.

The following example shows the language definition for a memo.

DEFINE LANGUAGE MEMO -
/IDENTIFIER_CHARACTERS = -
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890" -
/INITIAL STRING= "{memo template}" -
/FILE TYPES= (.MEMO) - -
/TAB INCREMENT = 4 -
/PLACEHOLDER_DELIMITERS = (-

REQUIRED = (" {"I " } ") I -

REQUIRED_LIST = ("{","} ... "), -
OPTIONAL = ("["I"]") I -

OPTIONAL LIST=("[","] ... ")) -
/PUNCTUATION_CHARACTERS=" I; ()II

The /IDENTIFIER_CHARACTERS qualifier determines what sequences of
characters LSE considers to be a word. A word is any sequence of identifier
characters delimited by either white space or a nonidentifier character. The
/IDENTIFIER_CHARACTERS qualifier also specifies what characters may
appear in alias names. Typically, identifier characters include the alphabet
(both uppercase and lowercase), digits, and a few special characters.

The /INITIAL_STRING qualifier specifies the initial text that will appear
in a newly created file. LSE automatically inserts this text whenever you
use either the LSEDIT command from the DCL command line or the GOTO
FILE/CREATE command from within LSE to create a new file.

The /FILE_TYPES qualifier specifies what file types correspond to this
language. In this case, when you edit a file with the file type .MEMO, LSE
automatically sets the language MEMO for the buffer.

The /TAB_INCREMENT qualifier sets the tab stops at every four columns.

The /PLACEHOLDER_DELIMITERS qualifier specifies the starting and
ending strings that delimit placeholders. Placeholders can be required
or optional, and they may specify single constructs or lists of constructs.
There are four types of placeholder delimiters: required, optional, required
list, and optional list. The delimiters for each type are specified as a pair
of quoted strings separated by commas and enclosed in parentheses. By
convention, list placeholders are indicated by appending ellips'es (...) to
the corresponding nonlist placeholders.

Defining LSE Templates 15-3

The /PUNCTUATION_CHARACTERS qualifier specifies the characters that
are considered punctuation marks or delimiters. Punctuation characters ar€
not important to the MEMO language. The value specified in the language
definition is simply the default value. For a more detailed discussion of
both punctuation characters and identifier characters, see Section 15.2 on
defining a programming language.

15.1.2 Placeholder Definitions

There are three types of placeholders:

• Nonterminal placeholders, which expand into text that is inserted into
the buffer

• Terminal placeholders, which expand into descriptive text that is
displayed in a temporary window

• Menu placeholders, which provide a list of options for expanding the
placeholder

To define a placeholder, you use the DEFINE PLACEHOLDER command.
For the MEMO language example, define the initial string memo_template
as a nonterminal placeholder. In this case, the definition will contain a
placeholder body. A placeholder body contains the text that is inserted
in the buffer when you expand the placeholder. Each line of the placeholder
body must be enclosed in quotation marks. Quotation marks with no text
produce a blank line when expanded.

The following example shows how the memo_template placeholder is defined.

15-4 Defining LSE Templates

DEFINE PLACEHOLDER memo template -
/LANGUAGE = MEMO - -
/TYPE = NONTERMINAL
/DESCRIPTION = "Interoffice Memorandum"
"-------------------------------------"
" N 0 C T U R N A L A V I A T I 0 N
"-------------------------------------"

"To: {name}"

"Date: {current date}"
"From: Judy Snyder"
"Dept: FT Publications"
"[additional_info] ... "

"Subject: {subject_line}"

"{memo_body}"
END DEFINE

INTEROFFICE MEMORANDUM"

The /LANGUAGE qualifier specifies that this placeholder is associated with
the MEMO language.

The /DESCRIPTION qualifier specifies a single line of text that is displayed
along with the placeholder name whenever the placeholder appears in a
menu.

The text following the /DESCRIPTION qualifier in the memo_template
placeholder definition is the placeholder body. Placeholder bodies represent
the text that is inserted into the buffer when the placeholder is expanded.
Text within a placeholder body can include additional placeholders. These
placeholders must include the appropriate delimiters so that LSE will know
how to expand them.

All placeholders found within a placeholder body must be defip.ed. These
placeholders do not have to be defined in any particular order. When
defining placeholders, you do not include delimiters.

In this case, the name, current_date, subject_line, and memo_body
placeholders are defined as terminal placeholders, indicated by the
ITYPE=TERMINAL qualifier. Terminal placeholders, when expanded,
provide a description of the appropriate values you must type over the
text to replace the placeholder. The text for a terminal placeholder can be
as many lines as are needed to explain the correct text insertion for the
placeholder. You must use quotation marks at the beginning and end of each
line of text.

Note that the additional_info placeholder appears within the delimiters for
an optional list. See the additional_info placeholder definition at the end of
this section for more information on list placeholders.

Defining LSE Templates 15-5

The following example shows how the terminal placeholders are defined.

DEFINE PLACEHOLDER name -
/LANGUAGE = MEMO -
/TYPE = TERMINAL
"Name of the person receiving this memo."

END DEFINE

DEFINE PLACEHOLDER current_date -
/LANGUAGE = MEMO -
/TYPE = TERMINAL
"Date the memo is written."
"Date can be of the format day/month/year."

END DEFINE

DEFINE PLACEHOLDER subject line -
/LANGUAGE = MEMO - -
/TYPE = TERMINAL
"Subject of the memo."

END DEFINE

DEFINE PLACEHOLDER memo body
/LANGUAGE = MEMO - -
/DESCRIPTION= "Body of the memo." -
/TYPE = TERMINAL
"Supply the text of the memo here."

END DEFINE

The additional_info placeholder is defined as a menu placeholder.

DEFINE PLACEHOLDER additional info -
/LANGUAGE = MEMO - -
/DESCRIPTION = "Additional identification information" -
/DUPLICATION = VERTICAL -
/TYPE = MENU
"Phone" /TOKEN
"Location" /TOKEN
"Network" /TOKEN
"CC" /TOKEN
"All" /TOKEN

END DEFINE

The additional_info placeholder is also used as an optional list placeholder,
indicated by the delimiters ([]) Since additional_info is used as a
list placeholder, you need to specify what type of duplication should be per
formed when the placeholder is expanded by using the /DUPLICATION qual
ifier. Duplication options are VERTICAL, HORIZONTAL, and CONTEXT_
DEPENDENT. In this case, the VERTICAL option is used, which places
the duplicate placeholder on the next line, immediately under the original
placeholder.

15-6 Defining LSE Templates

Next, use the /TYPE qualifier to specify that this is a menu placeholder.
The placeholder body for a menu placeholder is defined the same way as
a nonterminal placeholder and contains the elements of the menu. In this
case, each element in the menu is defined as a token, as is indicated by the
trOKEN qualifier. The next section describes how to define tokens.

15.1.3 Token Definitions

Tokens are keywords that you type directly into the buffer and expand into
additional templates. This example uses tokens for additional fields of the
memo header. By using tokens instead of placeholders, you simplify the
entry of frequently used options.

To define a token, use the DEFINE TOKEN command. The /LANGUAGE
qualifier in the following token definitions tells LSE that this token is
defined for the MEMO language.

With the /DESCRIPTION qualifier, you can supply a text string that
is displayed with the token name in a menu. In this case, each token
definition includes the /DESCRIPTION qualifier. Thus, when the
additional_info placeholder is expanded into a menu, each token and its
description is displayed.

The body of a token is defined in the same way as nonterminal and terminal
placeholders.

By defining these elements as tokens, you can type the token name you
want directly into the buffer and expand it without going through a menu.

The following example shows how tokens are defined.

DEFINE TOKEN phone -
/LANGUAGE = MEMO -
/DESCRIPTION = "Office phone number"
"Phone: 523-440-3287"

END DEFINE

DEFINE TOKEN location -
/LANGUAGE = MEMO -
/DESCRIPTION = "Office location"
"LOC: URE-0096"

END DEFINE

DEFINE TOKEN network -
/LANGUAGE = MEMO -
/DESCRIPTION = "Network address"
"NET: EMLEN::SNYDER"

END DEFINE

Defining LSE Templates 15-7

DEFINE TOKEN cc -
/LANGUAGE = MEMO -
/DESCRIPTION= "Name of person to receive a copy of this memo."
"CC: {name}"

END DEFINE

DEFINE TOKEN all -
/LANGUAGE = MEMO -
/DESCRIPTION= "Choose all options in menu."
"Phone: 523-440-3287"
"LOC: URE-0096"
"NET: EMLEN::SNYDER"
"CC: {name}"

END DEFINE

The token definitions for cc and all include the name placeholder. All
placeholders found within a token body must be defined. In this case, you
already defined name in the previous section, so you do not have to define it
again.

Now that the template definition is complete, you must execute your source
file. The following section describes how to execute your source file and
create an environment file for later use.

15.2 Defining a Programming Language

This section describes how to define templates for a programming language.
The concepts and coding rules for defining templates for a programming
language are similar to those introduced in the MEMO language. However,
some advanced features necessary for handling more complex templates are
introduced.

The following sections explain how the EXAMPLE language, used in the
sample editing session in Chapter 2, was defined. The EXAMPLE language
is available on line with the VAX Language-Sensitive Editor.

You should follow a grammar, or other syntax summary, as a guide if you
are defining a programming language. A grammar provides a summary
from which to work when defining the equivalent LSE definitions. It also
helps you avoid mistakes. Example 15-1 contains a syntax summary for the
EXAMPLE language.

Those expressions on the left side of the syntax summary are known as
nonterminals. Typically, nonterminals with multiple options, such as
statement, are defined as menu placeholders. Nonterminals that expand into
a single option, such as if_stmnt, are defined as nonterminal placeholders
or tokens. Nonterminals that expand into text you must supply, such as
identifier, are defined as terminal placeholders. Optional syntactic elements,
such as [else statement_list], require placeholders that do not explicitly

15-8 Defining LSE Templates

appear as nonterminals in the syntax summary. Major keywords, such as
IF, are defined as tokens.

Example 15-1: Syntax Summary for the Example Language

program_unit

procedure name
identifier
identifier chars
alphabetic
numeric
alphanumeric
parameter_list
parameter
var decl list
var decl
identifier list
init value-list
initial value
statement list
statement
if stmnt
assignment_stmnt
expression
boolean_exp
re lop
arithmetic_exp
oper
unary
loop_construct
label
exit stmt
type

::=PROCEDURE procedure_name [(parameter_list)] IS
[variable_declarations]
BEGIN
statement list
END
ENDPROCEDURE procedure_name

: : = identifier
::=alphabetic I alphabetic identifier_chars
::=alphanumeric I alphanumeric identifier chars
: := a I b I ... I z
: := 0 I 1 I .•. I 9
::=alphabetic I numeric
::= parameter:type I parameter:type, parameter_list
: : = identifier
::=var decl; I var decl; var decl list
::=identifier list-: type [init value list]
::=identifier-I identifier, identifier list
::=initial value I initial value, init-value list
::=boolean-exp I arithmetic exp - -
::=statement; I statement; statement list
: : = if stmnt· I assignment stmt I loop - construct I exit stmt
::=IF-expression THEN statement_list-[ELSE statement=list] ENDIF
::=identifier:= expression
::=boolean exp I arithmetic exp
::=identifier I unary identifier I identifier relop identifier
::= = I <> I < I > I <= I >=
::=identifier oper identifier
::= + I - I * I I
: :=NOT
::= [label:] LOOP statement_list END LOOP
::=identifier
::=EXIT [label] WHEN expression
::=BOOLEAN I INTEGER

Defining LSE Templates 15-9

15.2.1 Language Definition

To define a language (in this case, EXAMPLE) use the DEFINE LANGUAGE
command and its qualifiers (see the VAX Language-Sensitive Editor and
VAX Source Code Analyzer Reference Manual for details on the LANGUAGE
command). The following example shows the language definition for the
EXAMPLE language.

DEFINE LANGUAGE EXAMPLE -
/CAPABILITIES = NODIAGNOSTICS -
/COMMENT= (BEGIN= "/*", END= "*/", TRAILING= "--") -
/COMPILE COMMAND = "" -
/EXPAND CASE = AS IS -
/FILE TYPES= (.EXAMPLE) -
/HELP-LIBRARY = "" -
/IDENTIFIER_CHARACTERS = -
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890$ "
/INITIAL STRING = "{program unit}" - -
/LEFT MARGIN = CONTEXT DEPENDENT -
/RIGHT MARGIN = 80 - -
/PUNCTUATION CHARACTERS= ",; () .' :" -
/PLACEHOLDER=DELIMITERS = (-

REQUIRED = (" { ", "} ") , -
REQUIRED_LIST = (" { ", "} ... "), -
OPTIONAL = (" ["' "l II) '
PSEUDOCODE = ("<",">")) -

/NOQUOTED ITEM -
/TAB INCREMENT = 4 -
/TOPIC STRING = "" -
/VERSION = "2.3" -
/NO WRAP

The /CAPABILITIES qualifier specifies whether or not the compiler for
the language creates a diagnostic file when it is compiled from within
LSE. If /CAPABILITIES=DIAGNOSTICS is specified, LSE automatically
appends the /DIAGNOSTICS qualifier to the compile command. There
is no compiler for the EXAMPLE language. This is consistent with the
/COMPILE_COMMAND qualifier having a null value. If a compiler existed,
it could optionally produce a diagnostic file upon compilation. Then the LSE
command REVIEW would use this file.

The /COMMENT qualifier specifies the character sequences of comments
in the language. The BEGIN="/*" and END="*/'' qualifiers specify that
bracketed comments begin with the sequence "/*" and terminate with the
sequence "* f'. Bracketed comments can extend over several lines. The
TRAILING="-" qualifier specifies that trailing comments begin with a pair
of dashes. Trailing comments terminate at the end of the line.

15-10 Defining LSE Templates

The /COMPILE_COMMAND qualifier specifies the default command string
to be used to invoke the language processor when you issue· the LSE
command COMPILE. If there were an actual compiler for the EXAMPLE
language, you would specify the command that invokes that compiler
here. In the definition of the VAX C language, for example, the qualifier is
/COMPILE_COMMAND="cc".

The /EXPAND_CASE qualifier specifies the case that the text of inserted
templates is to have. The AS_IS parameter specifies that the expanded text
is to retain the same case as in the placeholder or token definition.

The /FILE_TYPES qualifier specifies what file type corresponds to the
EXAMPLE language. When you specify the file type .EXAMPLE, LSE
automatically sets the language EXAMPLE for the buffer. You must not
specify a file type that is already associated with another language.

The /HELP _LIBRARY qualifier specifies the name of a help library from
which LSE will get help for the placeholders and tokens defined in the
language. The default library is SYS$HELP:HELPLIB.HLB, but you can
also create your own help library for the language.

The /TOPIC_STRING qualifier also looks up help on placeholders and to
kens. This qualifier specifies a common prefix string to which the topic_
string parameter specified in a placeholder or token definition is concate
nated. For example, in the definition of VAX Pascal, the language topic
string is "Pascal", and the help library qualifier is null. The definition
of the token IF contains the qualifier /TOPIC_STRING="statement IF_
THEN_ELSE". If a user gives the HELP/INDICATED command while po
sitioned on the token IF in a Pascal buffer, LSE forms the string "PASCAL
STATEMENT IF _THEN_ELSE", and uses that as an index into the default
help library SYS$HELP:SYSHELP.HLB.

If there is a common prefix for all the help topics for a language, the
/TOPIC_STRING qualifier should not be specified. If you have created your
own help library for the language, and help for this language is the only
topic in this help library, then the /TOPIC_STRING qualifier should not
be specified. This is because the single topic in the library is looked up by
default.

The /IDENTIFIER_CHARACTERS qualifier specifies what characters
are considered as part of a word. A word in LSE is defined as either
any nonwhite space, nonidentifier character, or a sequence of identifier
characters delimited by white space or a nonidentifier character. In addition
to all alphanumeric characters, you may want to have other characters, sucl),
as those that often appear in variable names (eg "$"or"_"), be identifier
characters.

Defining LSE Templates 15-11

The /PUNCTUATION_CHARACTERS qualifier specifies those characters
that LSE considers as punctuation characters. LSE uses punctuation char
acters in two ways, as follows (both affect how LSE deletes placeholders):

• When a placeholder is erased and only punctuation characters are left
on the line, the line is deleted and the punctuation characters are moved
to the end of the preceding line. For example:

INTEGER (x,
[var]);

When the placeholder [var] is erased, only"";) is left on the line.
Assuming both '"') and ";" are specified as punctuation characters for the
language, "";) is moved to the end of the preceding line. (The comma is
also erased if specified as the separator for var.

• When a placeholder is erased, LSE examines the characters immediately
before and after the placeholder. If neither of these are punctuation
characters, LSE inserts a blank between them. For example:

IF [NOT] {boolean_expression} THEN

If the optional placeholder is deleted, and the brace is a punctuation
character, the following results:

IF{boolean_expression} THEN

Thus, in this case it would be better to have the brace ({) not be included
as a punctuation character.

The /INITIAL_STRING qualifier specifies the initial text that appears in
a newly created buffer. For example, when you create a new file with an
extension of .EXAMPLE, the buffer contains just the initial string {program_
unit}.

The /LEFT_MARGIN and /RIGHT_MARGIN qualifiers specify the left
and right margin values, respectively, to be associated with the language.
/LEFT_MARGIN=CONTEXT_DEPENDENT means that the left margin
varies depending on the surrounding context. For example, the FILL
command uses the indentation of the first line of the text being filled as the
left margin for the fill operation. When wrap mode is enabled, the right
margin value is used to determine where to break the line. It is also used by
the FILL command. The FILL command packs text up to, but not beyond,
the right margin. When filling comments, the close comment delimiters are
placed at the right margin. ·

The /PLACEHOLDER_DELIMITERS qualifier specifies the starting and
ending strings that delimit placeholders. Placeholders can be required or
optional, and they may specify single constructs or lists of constructs.

15-12 Defining LSE Templates

By convention, braces are used for required placeholder delimiters, and
square brackets are used for optional delimiters in all Digital languages.
If these characters are part of the syntax of the language, then some other
character is used with them.

The trAB_INCREMENT qualifier indicates that tab stops are set at every
four columns.

The /QUOTED_ITEM qualifier specifies the characters to be used in the
language as delimiters for strings and escape characters. For example,
/QUOTED_ITEM=(QUOTES="""'", ESCAPE="\") (which is the specification
for some VAX languages) specifies that strings in the language may be
delimited by either quotes (")or apostrophes ('), and that the escape
character for the language is the backslash (\). LSE always assumes
that the strings begin and end with the same character, although different
strings can use different delimiters. Note that DCL quoting conventions
are used here, so that the value being provided for the /QUOTED_ITEM
qualifier must be surrounded by quotes; if you want to include the quote
character within this value, you must use double quotes.

You can optionally use the /VERSION qualifier to help you keep track of
your product. LSE does not actually use this value, except to display it in
the SHOW LANGUAGE command. You may want to use it to show what
revision number the language definition is, for example, or what version of
the associated compiler the templates support.

The /WRAP qualifier specifies whether or not wrap mode is in effect by
default in the language. The /WRAP qualifier affects the left margin value
if the /LEFT_MARGIN qualifier was specified with a value of CONTEXT_
DEPENDENT.

15.2.2 Defining Language Elements

Now you can define the placeholders that Will be used in this language.
To define a placeholder, use the DEFINE PLACEHOLDER command (see
the command descriptions in the VAX Language-Sensitive Editor and VAX
Source Code Analyzer Reference Manual for more details). Referring to
the syntax summary, start with the top-level nonterminal of the language,
program_unit. This is a nonterminal placeholder.

DEFINE PLACEHOLDER program unit -
/LANGUAGE = EXAMPLE - -
/DESCRIPTION = "Program unit" -
/DUPLICATION = CONTEXT DEPENDENT -
/TYPE = NONTERMINAL -

Defining LSE Templates 15-13

"-- [procedure level comments]"

"PROCEDURE {procedure_name} ([parameter list] ...) IS"

[variable_declaration] ... ;"

"BEGIN"

[statement] ... ;"

"END {procedure_name};"

END DEFINE

The /LANGUAGE qualifier on the DEFINE PLACEHOLDER command tells
LSE that this placeholder is defined for the language EXAMPLE.

The /DESCRIPTION qualifier supplies the description "Program unit" for
the program_unit placeholder.

The /TYPE qualifier shows that this is a nonterminal placeholder. This
means that the body for the placeholder follows. The placeholder body
for program_unit is specified after the qualifiers. A placeholder body is
the template that is inserted into the buffer when you expand program_
unit. Each line of the placeholder body is enclosed in quotation marks.
The quotation marks with no text between them produce blank lines at
expansion.

The placeholder body for program_unit references other placeholders that
have not yet been defined, specifically, procedure level comments, procedure_
name, parameter list, variable_declaration, and statement.

The procedure level comments placeholder is enclosed by optional placeholder
delimiters. Therefore, if you do not want to have comments at the top of
your EXAMPLE program, you can erase the placeholder. LSE recognizes
the fact that the placeholder is the only item in a trailing comment. After
erasing the placeholder, LSE also erases the comment string and the line.
This way, unwanted blank comment lines are not left behind.

15-14 Defining LSE Templates

DEFINE PLACEHOLDER "procedure level comments" -
/DESCRIPTION = "PROCEDURE LEVEL COMMENT TEMPLATE" -
/LANGUAGE = EXAMPLE -
/TYPE = NONTERMINAL
"PROCEDURE:"

{tbs}"

"AUTHOR:"

{tbs}"

"DESCRIPTION:"

{tbs}••• II

END DEFINE

The placeholder name may contain spaces, but if it does, it must be put in
quotation marks.

The procedure level comments placeholder is another nonterminal place
holder. It expands into a template for comments at the head of the
procedure. Templates like this are useful for projects where you want to
be sure certain information appears consistently throughout the project.
In this case, there are three pieces of information: PROCEDURE NAME,
AUTHOR, and DESCRIPTION. For each category there exists the single
placeholder tbs. The placeholder body contains no comment characters.
When you expand a multiline or vertically duplicating placeholder within a
comment, the lines into which it expands have comment characters inserted
automatically. For example:

-- [procedure level comments]

When you expand it, LSE recognizes that "-" is a comment string and
repeats the comment string at the beginning of each line of the expansion,
thus producing the following:

-- PROCEDURE:

{tbs}

-- AUTHOR:

{tbs}

-- DESCRIPTION:

{tbs} ...

Defining LSE Templates 15-15

The lines in the placeholder body that are simply a quoted space character
correspond to lines in the expansion that contain only the comment delim
iter. If the lines in the placeholder body were null strings, the corresponding
line in the expansion would be completely empty.

Note that the tbs placeholder under DESCRIPTION is a list placeholder,
while the other two are not. List placeholders are automatically duplicated
when expanded or typed over. The duplicate placeholder is always optional.

You should use required list delimiters to indicate a list that must be
replaced by at least one element, for example, {tbs} You should use
optional list delimiters to indicate a list that is optional, for example,
[parameter list]

The tbs placeholder is a terminal placeholder. Its definition is as follows:

DEFINE PLACEHOLDER tbs -
/DESCRIPTION = "tbs" -
/DUPLICATION = VERTICAL -
/LANGUAGE = EXAMPLE -
/TYPE = TERMINAL
"to be specified"

END DEFINE

Since you use the placeholder as a list placeholder, you should specify the
/DUPLICATION qualifier. It tells LSE how to duplicate the placeholder. In
this case, VERTICAL is specified, telling LSE to duplicate the placeholder on
the next line. As with the previous example, when you type on the list tbs
placeholder, it gets duplicated, and LSE automatically inserts the comment
string at the beginning of the line.

The /TYPE qualifier indicates that tbs is a terminal placeholder. When
defining a terminal placeholder, the text can be as many lines as are needed
to explain the correct text insertion for the placeholder. You must use
quotation marks at the beginning and end of each line of text. In this case,
the text "to be specified" is displayed when you expand the tbs placeholder.
When you press any key, the text is removed from the screen.

The next placeholder to be defined is the procedure_name placeholder.

DEFINE PLACEHOLDER procedure name -
/LANGUAGE = EXAMPLE - -
/AUTO_SUBSTITUTE -
/DESCRIPTION ,,;,, "Procedure name" -
/TYPE = TERMINAL
"A string of letters and digits starting with a letter."

END DEFINE

15-16 Defining LSE Templates

The I AUTO _SUBSTITUTE qualifier specifies that during source code entry,
the next occurrence of procedure_name is automatically replaced with the
same text that you typed over the current procedure_name placeholder. This
is useful for languages that require matching names.

The /TYPE qualifier indicates that procedure_name is also a terminal
placeholder. In this case, the text, ''A string of letters and digits starting
with a letter" is displayed when you expandprocedure_name.

The parameter list placeholder is defined next. It expands to a template
corresponding to the form for a parameter list given in the syntax summary.
Since it is a list placeholder, the /DUPLICATION qualifier is specified. Also
the /SEPARATOR qualifier is given.

DEFINE PLACEHOLDER "parameter list" -
/LANGUAGE = EXAMPLE -
/DESCRIPTION = "Parameter list" -
/DUPLICATION = CONTEXT DEPENDENT -
/LEADING="(" - -
/SEPARATOR= "; II -

/TRAILING=")" -
/TYPE = TERMINAL
"{param_name} ... : {type}"

END DEFINE

The definition of parameter list is described later in this section.

The /DUPLICATION qualifier tells LSE that the duplicated parameter list
placeholder should be duplicated according to context, the context being
whether or not the placeholder is the only item within its segment.

The /SEPARATOR qualifier indicates that a semicolon (;) is inserted in the
text to separate the duplicated placeholders. Note also the trailing space
on the /SEPARATOR qualifier. This makes a horizontal expansion more
readable.

The expansion contains two placeholders: param_name and type.

DEFINE PLACEHOLDER param name -
/LANGUAGE = EXAMPLE - -
/DESCRIPTION = "Parameter name" -
/DUPLICATION = HORIZONTAL -
/SEPARATOR= ", II -

/TYPE = TERMINAL
"A string of letters and digits starting with a letter."

END DEFINE

The /DUPLICATION qualifier tells LSE that the param_name placeholder
should be duplicated horizontally. That is, the duplicated placeholder
appears on the same line, following the original placeholder.

Defining LSE Templates 15-17

The /SEPARATOR qualifier indicates that a comma (,)is inserted in the text
to separate the duplicated placeholders. Note, also, the trailing space on the
/SEPARATOR qualifier. This makes a horizontal expansion more readable.

The type placeholder is defined as a menu placeholder.

DEFINE PLACEHOLDER type -
/LANGUAGE = EXAMPLE -
/DESCRIPTION = "Type" -
/TYPE = MENU -
"INTEGER"/DESCRIPTION="Integer data type"
"BOOLEAN"/DESCRIPTION="Boolean data type"

END DEFINE

The !TYPE qualifier indicates that type is a menu placeholder.

When type is expanded, a menu is displayed in the buffer. The placeholder
body for a menu placeholder is defined in a similar way as a nonterminal
placeholder and contains the elements of the menu.

The expansion of variable_declaration looks much like the expansion of
parameter list. The difference is the addition of an optional initial_value
placeholder. In the EXAMPLE language, the placeholder allows you to
optionally initialize the variables you are declaring.

DEFINE PLACEHOLDER variable declaration -
/LANGUAGE=EXAMPLE - -
/DESCRIPTION="Declare a variable" -
/DUPLICATION=VERTICAL -
/SEPARATOR=";" -
/TRAILING=";" -
/TYPE=NONTERMINAL
"{identifier} ... : {type}:= [initial_value] ... "

END DEFINE

If you do not have any variables to declare in your program, you can erase
the optional variable_declaration placeholder. But you do not want to
leave the semicolon(;) behind. The /TRAILING qualifier in the definition
of variable_declaration /TRAILING=";" specifies that the string";" be
associated with the variable_declaration placeholder. If -the placeholder is
deleted, LSE looks immediately to the right (not including white space). If it
sees the trailing string, it deletes it.

15-18 Defining LSE Templates

The initial_value placeholder is defined as follows:

DEFINE PLACEHOLDER "initial value" -
/DESCRIPTION = "Variabl; declaration initial value" -
/DUPLICATION = HORIZONTAL -
/LANGUAGE = EXAMPLE -
/LEADING= ":=" -
/SEPARATOR = II I II -

/TYPE = TERMINAL
"The initial value of identifier - either Integer or Boolean"

END DEFINE

If you do not want to initialize the v~riables, you can erase the optional
placeholder. But you do not want to leave the ":=" behind. This is analogous
to the";" after the variable_declaration placeholder. In this case, use the
/LEADING qualifier in the definition of initial_value. /LEADING=":="
specifies that the string":=" be associated with the initial_value placeholder.
If the placeholder is deleted, LSE looks immediately to the left (not including
white space). If it sees the leading string, it deletes it. A placeholder may
have both leading and trailing characters associated with it.

The preceding descriptions of the /LEADING and trRAILING qualifiers are
n:ot quite complete. Based on the descriptions given thus far, the definition
of parameter _list, repeated here for convenience, would appear to be wrong.

DEFINE PLACEHOLDER "parameter list" -
/LANGUAGE = EXAMPLE -
/DESCRIPTION = "Parameter list" -
/DUPLICATION = CONTEXT_DEPENDENT -
/LEADING="(" -
/SEPARATOR= "; II -

/TRAILING=")" -
/TYPE = TERMINAL
"{param_name} ... : {type}"

END DEFINE

For example, after a few expansions of program_unit, the following code
fragment may result:

PROCEDURE x (a: INTEGER; [parameter list] ...) IS

Deleting optional placeholders based on the previous description incorrectly
leaves the following:

PROCEDURE X (a : INTEGER IS

That is, both the separator string";", and the trailing string"'') have been
removed. But if you go through these steps, using the EXAMPLE language
provided with LSE, you find that this does not happen. What actually
results is correct, as follows:

PROCEDURE X (a : INTEGER) IS

Defining LSE Templates 15-19

The full procedure that LSE goes through when a placeholder is deleted
follows:

1. Is the placeholder in a comment? If so, delete the comment characters
as well (leading, trailing, and separator characters are not used in this
situation).

2. Is a separator defined for the placeholder? Is the placeholder preceded
by the separator? If so, delete it and skip the next step.

3. Have leading or trailing strings been defined for the placeholder? If so,
look for the leading and trailing strings, and if they are found, delete
them.

4. If, after these deletions, nothing or only punctuation characters remain
on the line, then delete the white space, except one blank.

5. Finally, if one or both characters immediately to the left and right of the
deletion are punctuation characters, delete all white space.

In the example, step 2 causes the parameter _list placeholder to work as you
want it to. Because the placeholder was expanded, a separator character
was present. After LSE found and deleted it, LSE did not go on to look for
leading or trailing strings. Thus, the parentheses correctly remained around
the parameter.

The statement placeholder is defined as a menu placeholder. It is also used
as a list placeholder, as specified in the program_unit placeholder definition.

DEFINE PLACEHOLDER statement -
/LANGUAGE = EXAMPLE -
/DESCRIPTION = "EXAMPLE statements" -
/DUPLICATION = VERTICAL -
/SEPARATOR= ";" -
/TYPE = MENU
"ASSIGNMENT" /TOKEN
"IF" /TOKEN
"LOOP" /TOKEN
"EXIT" /TOKEN

END DEFINE

The /DUPLICATION qualifier tells LSE that the statement list placeholder
should be duplicated vertically. The /SEPARATOR qualifier indicates that a
semicolon is used to separate the duplicated placeholders.

The /TOKEN qualifier on the menu options indicates that ASSIGNMENT,
IF, LOOP, and EXIT are tokens. They are defined as tokens so that you can
type ASSIGNMENT, IF, LOOP, or EXIT directly into the buffer.

15-20 Defining LSE Templates

When statement is expanded, a menu is displayed and another copy of
statement with optional list delimiters is inserted on the next line in the
buffer. When this menu is displayed, the text strings associated with the
/DESCRIPTION qualifier on the token definitions is displayed as well. These
text strings also appear when you issue the .SHOW TOKEN command.

Token Definitions

Tokens are defined for keywords or punctuation characters that you want
to type directly into the buffer. When expanded, they provide templates for
corresponding language constructs.

ASSIGNMENT, IF, LOOP, and EXIT are defined as tokens. To define a
token, use the DEFINE TOKEN command, as follows.

DEFINE TOKEN ASSIGNMENT -
/LANGUAGE = EXAMPLE -
/DESCRIPTION = "Assignment statement"
"{identifier} := {expression}"

END DEFINE

The /LANGUAGE qualifier tells LSE that this token is defined for the
EXAMPLE language.

The /DESCRIPTION qualifier supplies the description "Assignment state
ment" for the token ASSIGNMENT. This text string appears in the menu
when you expand {statement} ... as well as when you issue the SHOW
TOKEN command.

Token names may consist of any combination of characters. However, token
names may not have leading or trailing white space. This feature allows you
to define tokens with names that are suited for the context in which they
may be used. It would be useful to define the assignment operator, colon
equal sign (:=), as a token so that if you wanted to insert an assignment
operation into an editing buffer, you would type the assignment operator
(:=)followed by the EXPAND key and have {identifier} := {expression} placed
in the editing buffer.

In addition to the ASSIGNMENT token, the assignment operator (:=) is
defined as a token, as follows:

DEFINE TOKEN ":=" -
/LANGUAGE = EXAMPLE -
/DESCRIPTION = "Assignment statement"
"{identifier} := {expression}"

END DEFINE

Defining LSE Templates 15-21

The IF statement contains an optional ELSE statement_list construct, as
indicated in the syntax summary. Therefore, you must include the construct
in the IF token definition and define an additional placeholder for ELSE
statement _list.

DEFINE TOKEN IF -
/LANGUAGE = EXAMPLE -
/DESCRIPTION= "IF {expression} THEN ... "
"IF {boolean_exp}"
"THEN"

{statement} ... ;"
"[ELSE {statement} ...]"
"END IF"

END DEFINE

DEFINE PLACEHOLDER "ELSE {statement} ... " -
/LANGUAGE = EXAMPLE -
/DESCRIPTION= "ELSE {statement}"
"ELSE"

{statement} ... ;"
END DEFINE

The definition for the LOOP token is as follows:

DEFINE TOKEN "LOOP" -
/DESCRIPTION= "[loop id]: LOOP ... END LOOP;" -
/LANGUAGE = EXAMPLE -
"[loop_id]: LOOP"
" {statement} ... ;"
"END LOOP"

END DEFINE

The colon (:) following the optional loop _id placeholder presents a problem
analogous to the ";" after the variable_declaration placeholder. That is, if the
optional placeholder is erased, the colon is left behind.

DEFINE PLACEHOLDER "loop id" -
/DESCRIPTION = "LOOP LABEL" -
/LANGUAGE = EXAMPLE -
/TRAILING = ":" -
/TYPE = TERMINAL
"A string of letters and digits starting with a letter."

END DEFINE

Once again, use the trRAILING qualifier. If the loop _id placeholder is
erased, LSE looks immediately to the right for the colon (:). If it is found, it
is erased.

Finally, the definition for the token EXIT follows:

DEFINE TOKEN EXIT -
/DESCRIPTION = "EXIT [loop id] WHEN If -

/LANGUAGE = EXAMPLE - -
"EXIT [loop_id] WHEN {boolean_exp}"

END DEFINE

15-22 Defining LSE Templates

All placeholders referenced in token definitions must be defined. The identi
fier placeholder is a terminal placeholder and is defined as follows:

DEFINE PLACEHOLDER identifier -
/LANGUAGE = EXAMPLE -
/DESCRIPTION = "Identifier" -
/TYPE = TERMINAL
"A string of letters and digits starting with a letter."

END DEFINE

In the syntax summary, expression is specified as a menu placeholder and is
defined as follows:

DEFINE PLACEHOLDER expression -
/LANGUAGE=EXAMPLE -
/DESCRIPTION="Boolean or arithmetic expression" -
/TYPE=MENU
"boolean exp" /PLACEHOLDER
"arithmetic_exp" /PLACEHOLDER

END DEFINE

You use the /PLACEHOLDER qualifier on the menu items to specify that
boolean_exp and arithmetic_exp are placeholders. As such, they need to be
defined. When you expand {expression} and select one of the menu options,
the /PLACEHOLDER qualifier causes the expansion of the menu item to be
placed into the buffer, not the menu item itself.

DEFINE PLACEHOLDER boolean exp -
/LANGUAGE = EXAMPLE - -
/DESCRIPTION = "Boolean expression" -
/TYPE = NONTERMINAL
"[NOT] {identifier} [relop identifier]"

END DEFINE

DEFINE PLACEHOLDER "arithmetic exp" -
/LANGUAGE = EXAMPLE - -
/DESCRIPTION = "Arithmetic expression" -
/TYPE = TERMINAL
"An arithmetic expression"

END DEFINE

For example, if you select boolean_exp from the menu, the following is
inserted into the buffer: ·

"[NOT] {identifier} [relop identifier]"

You would have to expand {boolean_exp} again to have it inserted into the
buffer. arithmetic_exp is a terminal placeholder, so selecting it causes {arith
metic_exp} to appear in the buffer along with its expanded description. The
same thing occurred earlier, in the definition of statement. ASSIGNMENT
(for example) was a menu item, with the trOKEN qualifier appended.
Choosing ASSIGNMENT from the menu causes the expansion of the
ASSIGNMENT token to appear in the buffer.

Defining LSE Templates 15-23

If you do not want automatic expansion, the definition of expression would
appear as follows:

DEFINE PLACEHOLDER expression -
/LANGUAGE=EXAMPLE -
/DESCRIPTION="Boolean or arithmetic expression" -
/TYPE=MENU
"{boolean exp}"
"{arithmetic_exp}"

END DEFINE

NOT is a keyword, so it should be defined as a token. But it is also used
as a placeholder in the expansion of boolean_exp. This is an example of a
situation in which you could use the alternate form of the DEFINE TOKEN
command.

DEFINE TOKEN NOT -
/PLACEHOLDER = NOT

DEFINE PLACEHOLDER NOT -
/DESCRIPTION = "KEYWORD NOT" -
/LANGUAGE = EXAMPLE -
/TYPE = NONTERMINAL
"NOT"

END DEFINE

The token NOT takes its parameters from the placeholder NOT. That is,
even though it is not explicitly specified, the token is associated with the
EXAMPLE language and has the description "Keyword NOT."

The final placeholders are defined as follows:

DEFINE PLACEHOLDER "relop identifier" -
/LANGUAGE = EXAMPLE -
/DESCRIPTION = "Optional part of a boolean expression" -
/TYPE = NONTERMINAL
"{relop} {identifier}"

END DEFINE

DEFINE PLACEHOLDER relop -
/LANGUAGE = EXAMPLE -
/DESCRIPTION = "rel op" -
/TYPE = MENU

"<>"
"<"
">"
"<="
">="

END DEFINE

DEFINE PLACEHOLDER "arithmetic exp" -
/LANGUAGE = EXAMPLE - -
/DESCRIPTION = "arithmetic expression" -
/TYPE = TERMINAL
"An arithmetic expression"

END DEFINE

15-24 Defining LSE Templates

Additional placeholders for the arithmetic expressions are not defined.
Rather, the arithmetic_exp placeholder is defined as a terminal placeholder
to notify you that an arithmetic expression is required. A choice such as this
is strictly up to the author of the templates. It all depends upon the level of
detail you want. A relevant criterion might be, for example, the knowledge
of the people using the templates.

Now that the template definition is complete, you must execute the com
mands in your source file. Refer to Section 15.3 for details on executing your
source file and creating an environment file for later use.

15.3 Saving Language Definitions

To create and save an environment file for a new language, use the following
steps:

1. Create your source file in an empty buffer. The source file should have
an extension of .LSE.

2. Put all the necessary LSE language, token, and placeholder definitions
into that source file.

3. Execute the commands in the source file with the DO command while in
LSE.

This loads the definitions into the current editing session but does not
save them.

4. Issue the SAVE ENVIRONMENT command while in LSE.

The SAVE ENVIRONMENT command saves your definitions and
produces a binary file with a file extension of .ENV.

The following sequence of commands must be issued to create this binary
file (press CTRUZ to get the LSE> prompt):

LSE> DO
LSE> SAVE ENVIRONMENT filename
LSE> EXIT

The SAVE ENVIRONMENT command writes out all user-defined languages,
placeholders, tokens and aliases to an editing environment file. This
command executes immediately to save the environment active at the
moment you issue the command.

To use your environment file, you must specify the following command when
invoking LSE:

$ LSEDIT/ENVIRONMENT=device: (directory]filename.ENV

Defining LSE Templates 15-25

To automatically access your environment file, add the following command
to your LOGIN.COM file:

$ DEFINE LSE$ENVIRONMENT device: [directory]filename.ENV

15.4 Indentation Control

LSE controls the indentation of tokens and placeholders that are placed
in an editing buffer by the EXPAND command. Tabulation is determined
by the format of the placeholder or token template. In addition, LSE
provides the SET TAB_INCREMENT command, which enables you to adjust
indentation to your needs.

When LSE expands a template, it inspects each line· of the template for
leading tab characters. Each tab character is evaluated using the current
TAB_INCREMENT setting. Thus, if the TAB_INCREMENT is three, then
a leading tab is expanded into three spaces. The initial TAB_INCREMENT
for a buffer is taken from the language definition. You can change the
TAB_INCREMENT setting with the SET TAB_INCREMENT command.

The starting column for the expansion is determined by the first line of the
template. If the first line is null (an empty string), then the expansion starts
under the first nonblank character in the line containing the item being
expanded. If the line is riot empty, then the expansion starts in the first
character position of the item being expanded.

For example, suppose you have a placeholder with <TAB> indicating a single
ASCII tab character defined as follows:

DEFINE.PLACEHOLDER RECORD TYPE DEFINITION -

/TYPE=NONTERMINAL

"~record"
"~~[component declaration] ... "
"~~[variant_part]"
" ~end record"

END DEFINE

You have the following text:

type MYTYPE is {record_type_definition};

If you expand the placeholder with the TAB _INCREMENT set to 4, the
result is as follows:

15-26 Defining LSE Templates

type MYTYPE is
record

[component declaration] ...
[variant_part]

end record

The third and fourth lines each have a single leading tab and no leading
spaces, while the second and fifth lines each have four leading spaces. This
is because LSE compresses spaces into tabs after positioning the expanded
text.

Using the same example text, remove the first empty line in the placeholder
definition and the first tab from the remaining lines, as follows:

DEFINE PLACEHOLDER RECORD TYPE DEFINITION -

/TYPE=NONTERMINAL
"record"
"~[component declaration] ... "
"~[variant_partJ"
"end record"

END DEFINE

Then, if you expand the placeholder with the TAB_INCREMENT set to 4,
the result is as follows:

type MYTYPE is record
[component_declaration] ...
[variant_part]

end record

Now, insert a line containing a single blank at the front of the definition, as
follows:

DEFINE PLACEHOLDER RECORD TYPE DEFINITION -

/TYPE=NONTERMINAL

"record"
"~[component declaration] ... "
"~[variant_part]"
"end record"

END DEFINE

Then, if you expand the placeholder with the TAB_INCREMENT set to 4,
the result is as follows:

type MYTYPE is
record

[component_declaration] ...
[variant_part]

end record

Defining LSE Templates 15-27

For more information about indentation control, see the DEFINE
PLACEHOLDER, DEFINE TOKEN, and EXPAND commands in the
VAX Language-Sensitive Editor and VAX Source Code Analyzer Reference
Manual.

15.5 Defining a Package

The following section provides instructions on how to define your own
packages.

You can use the following commands to create package definitions:

• DEFINE PACKAGE

• DEFINE ROUTINE

• DEFINE PARAMETER

The DEFINE PACKAGE command defines a subroutine package for which
subroutine-call templates are automatically generated. Packages can
contain routine dennitions that describe calls to subroutines, and parameter
definitions that describe parameters for subroutine calls. The DEFINE
ROUTINE command defines templates for a routine within a subroutine
package. This command makes the routine an element of a package. The
DEFINE PARAMETER command defines a parameter within a package.

The following is an example of a package definition:

DEFINE PACKAGE system services -
/LANGUAGES =(BASic;c,COBOL,FORTRAN,PLI) -
/HELP_LIBRARY = HELPLIB -
/TOPIC STRING = "system services" -
/ROUTINE EXPAND = "LSE$PKG EXPAND ROUT " - ! Special routines for
/PARAMETER_EXPAND = "LSE$PKG_EXPAND_PARM_" ! system services

LSE provides two sets of predefined VAXTPU routines to help you write
your own packages. The sets of routines are useful in most cases. However,
you may want to create your own VAXTPU procedures to help you write
more complex packages. For more details, see the appendix in the VAX
Language-Sensitive Editor and VAX Source Code Analyzer Reference Manual
that 1describes writing VAXTPU procedures for the package facility.

15-28 Defining LSE Templates

15.5.1 Routine Definitions

When you define a routine, LSE automatically generates the necessary
DEFINE TOKEN or DEFINE PLACEHOLDER command to produce the
templates for the given procedure call. Thus, you can expand and unexpand
routines in the same manner as tokens. The following is an example of a
routine definition and the corresponding LSE command DEFINE TOKEN:

DEFINE ROUTINE sys$add holder -
id/BY VALUE, - -
holder/BY REFERENCE, -
attrib/BY-VALUE/OPTIONAL -
/PACKAGE ~ system services -
/DESCRIPTION = "Add Holder Record To The Rights Database"

LSE generates a DEFINE TOKEN sys$add_holder command with the
appropriate body for the current language.

15.5.2 Parameter Definitions

You can associate a parameter with more than one routine within a package.
You use the DEFINE ROUTINE command to associate parameters with
routines. The following are examples of parameter definitions:

DEFINE PARAMETER id -
/PACKAGE = system_services -

DEFINE PARAMETER holder -
/PACKAGE = systern_services -

DEFINE PARAMETER attrib -
/PACKAGE = systern_services -

Defining LSE Templates 15-29

Chapter 16

Providing Diagnostic File Support

Diagnostic files communicate diagnostic messages to LSE from various
tools. A tool, such as a compiler, generates a diagnostic file that LSE uses to
display the diagnostics. Once you have displayed a diagnostic file in LSE,
you can navigate through the file from one diagnostic to the next. You can
use the GOTO SOURCE command to display the source that corresponds to
a diagnostic in another window.

There are two formats for diagnostic files:

• User-file format

• Digital internal-file format

The user-file format provides a simple format for customer tools to
communicate diagnostic information to LSE. You can list this format without
a special dump utility.

The Digital internal-file format is a binary format that is used by Digital
products to communicate diagnostic messages to LSE.

You can concatenate user-file and Digital internal-file diagnostic modules
into one file and review them together.

Typically, a tool generates a module of zero or more diagnostics each time
it processes a source file. For example, a compiler generates a diagnostic
module for each compilation. Diagnostics typically are errors. Each
diagnostic consists of the following:

• Regions

• Messages

Regions define the location of the source that is associated with the
diagnostic. There can be more than one region.

Providing Diagnostic File Support 16-1

Messages are textual descriptions that explain the diagnostic. There can be
more than one message.

The rules that apply to DCL apply to the user-file format. For example,
nonquoted strings are converted to uppercase.

Section 16.1 shows an example diagnostic module in the user-file format
and explains how the module is used. Section 16.2 describes each of the
commands that are used in the user-file format.

16.1 User-File Format Example

Example 16-1 shows a diagnostic module in the user-file format. Comments
are introduced by an exclamation mark (!).

Key to Example 16-1

0 The first diagnostic shows how regions and messages work together.

8 The file regions refer to lines in the source that cause the error described
in the text message.

@) The nested regions in each of the file regions refer to the location in each
line that contributes to the error.

8 The second diagnostic shows how a text region can be used to display
macro text for error messages.

Figure 16-1 shows the screen after the GOTO SOURCE command is exe
cuted with the cursor positioned on the line number of the first diagnostic.
The source file is displayed in the lower window, and the cursor is positioned
at the beginning of the innermost nested region of the primary region.

16-2 Providing Diagnostic File Support

Example 16-1 : User-File Format Diagnostic

start module ! This command signals the start of a module.

t) start diagnostic ! This region marks line 1 in the file, and

it is not a primary region.

~ region/file DEV$: [user.exl]test.ada;l/line=l/column_range=(l,65535)

@) region/nested/column_range=(18) ! Marks the 18th column in the above region.

2nd region

region/file DEV$: [user.exl]test.ada;l/line=3/column_range=(l,65535)

! The following nested region marks column 4 of line 3 for the file specified above.

region/nested/column_range=(4) ! Marks the 4th column in the above region.

! This is the primary region that LSE will highlight when positioned on this
! diagnostic.

region/file DEV$: [user.exl]test.ada;l/line=lO/column range=(l,65535)-
/primary ! This region marks all of line 10 in-the file.

region/nested/column_range=(4,4) ! Specifies a subregion at the above region.

! Messages

message/text=quoted 11 %ADAC-E-ASSIGNNERESTYP, Result type BOOLEAN in pre

message/text=quoted 11

message/text=quoted 11

end diagnostic

bat line 3 is not the same as type INTEGER ... 11

subprogram 'in' formal a at line 1 [LSM 5.2(1)]"

The next example is taken from a C diagnostic. The file region refers to a line
in the text that contains a macro call and the text supplied by the text
region is the macro expansion.

~ start diagnostic

region/file DEV$: [user.c]macro.c;2/line=ll/column_range=(5,25)
/primary

region/text 11 if (i>O) j=k else l=m; 11
-

/line=l/column_range=(l,26)

message/text=quoted "%CC-W-INSBEFORE, Insert 1111
;

11
" before reserved word

end diagnostic

end module

Providing Diagnostic File Support 16-3

Figure 16-1 : First Diagnostic and Corresponding Source

~ VAX Language-Sensitive Editor l~ :ii
File Edit Format Navigate View Display Customize

Line 1:
Line 3:

PROCEDURE test (a : INTEGER) is
b: BOOLEAN;

Line 10: b := a;

Help

XADAC-E-ASSIGNNERE~TYP, 'Result type BOOLEAN in predefined STANDARD of variable
b at line 3 is not the saAe as type INTEGER in predefined STANDARD of
subprograA 'in' forAal a at line 1 [LRM 5.2(1)]

Line 11:

BEGIN

b := true;
IF b
THEN

b := a;
ELSE

[at source line 11 in file DEV$: [USER.C]MACRO.C;2]

b .- false

15 lines read froM file DEV$: [USER.EX1]TEST.ADA;1

Figure 16-2 shows the screen after the GOTO SOURCE command is exe
cuted with the cursor positioned on the line number of the second diagnostic.
The supplied text from the text region refers to the expanded macro "test" in
the source.

16-4 Providing Diagnostic File Support

Figure 16-2: Second Diagnostic and Corresponding Source

~ VAX Language-Sensitive Editor l!i]lm]
File Edit Format Navigate View Display Customize

b at line 3 is not the saMe as t~pe INTEGER in predefined STANDARD of
subprogr~ 'in' forMal a at line 1 [LRM 5.2(1)]

Line 11: test (i>O. j=k, l=n);
Supplied text: if (i>O) j=k else l=M;
1cc-1&1-INSBEFORE, Inert "l" before reserved word "else"

[EOB]

c

Main()
{

int i,j,k,l,M;

}
[End of file]

15 lines read froM file DEV$: [USER. EX1]TEST.ADA;1
12 lines read froM file DEV$: [USER.C]MACRO.C;2

Help

Figure 16-3 shows the screen after the GOTO SOURCE command is exe
cuted with the cursor positioned on the supplied text of the second diagnos
tic. Since the NEXT and PREVIOUS ERROR commands always position the
cursor on the line of the diagnostic that is the primary region, you must use
the arrow keys to position the cursor on the supplied text. The area defined
for the text region is underlined after GOTO SOURCE is executed.

Providing Diagnostic File Support 16-5

Figure 16-3: Supplied Text of the Second Diagnostic and Corresponding
Source

~ VAX Language-Sensitive Editor [!i]~
File Edit Format Navigate View Display Customize

b at line 3 is not the saMe as t~pe INTEGER in predefined STANDARD of
subprograM 'in' forMal a at line 1 [LRM 5.2(1))

Line 11: test (i>O. j=k. l=A);
biDJ.PMMMM
XCC-W-INSBEFORE. Inert "1" before reserved word "else"

[EOB]

c

Main()
{

int i,j ,k,l,M;

test (i>O, j=k, l=M);
}

[End of file]

15 lines read froM file DEV$: [USER.EX1]TEST.ADA;1
12 lines read froM file DEV$: [USER.C]MACRO.C;2

16.2 User-File Format Command Descriptions

Help

The following section describes the commands that define the user-file
format.

16-6 Providing Diagnostic File Support

END DIAGNOSTIC

END DIAGNOSTIC

Ends a diagnostic that begins with a START DIAGNOSTIC command.

Format

END DIAGNOSTIC

Description

Example

The END DIAGNOSTIC command ends a sequence of commands that make
up a diagnostic.

See Example 16-1 for a sample of the END DIAGNOSTIC command.

Providing Diagnostic File Support 16-7

END MODULE

END MODULE

Format

Ends a module in the user,.file format that begins with the START MODULE
command.

END MODULE

Description

Example

The END MODULE command ends a sequence of commands that make up
a user-file format diagnostic module.

See Example 16-1 for a sample of the END MODULE command.

16-8 Providing Diagnostic File Support

MESSAGE/FILE

MESSAGE/FILE

Format

Defines a message in a file for a diagnostic that appears in the REVIEW
buffer during a review session.

MESSAGE/FILE file-spec

Command Parameter

file-spec
Specifies the file containing the message.

Description

Example

The MESSAGE/FILE command specifies a file that contains the message
to be displayed in the REVIEW buffer for a diagnostic. The entire file is
displayed in the REVIEW buffer. The message is usually an error message.

MESSAGE/FILE DEV$: [USER]MESSAGE.TXT

The contents of the file specified are displayed as the message in the
REVIEW buffer.

Providing Diagnostic File Support 16-9

MESSAGE/TEXT

MESSAGE/TEXT

Format

Defines a quoted or unquoted message for a diagnostic that appears in the
REVIEW buffer during a review session.

MESSAGE/TEXT :[U N]QUOTED message-definition

Command Parameter

message-definition
Specifies the message.

Description

The MESSAGE/TEXT=QUOTED command specifies that the message for
the diagnostic is a quoted string. A quoted message is enclosed in quotes ("")
with double quotes("""") used to embed quotes in the string.

The MESSAGE!TEXT=UNQUOTED command specifies that the message
is the remaining text in the line. It does not have to be quoted. N onquoted
text is converted to uppercase, and leading and trailing white space is
removed.

The message is usually an error message. If no qualifier is specified for the
MESSAGE command, !TEXT_QUOTED is the default.

16-1 O Providing Diagnostic File Support

MESSAGE/TEXT

Examples

1. MESSAGE/TEXT=UNQUOTED Here is another message.

This message is displayed in the REVIEW buffer. Leading and trailing
white space is truncated and the lowercase letters are converted to
uppercase, as follows:

HERE IS ANOTHER MESSAGE.

~ MESSAGE "Inserted ";" at end of line"

If no qualifier is specified or /TEXT alone is specified, the default
becomes /TEXT=QUOTED. This message is included in the REVIEW
buffer without the beginning and trailing quotes, as follows:

Inserted ";" at end of line.

Providing Diagnostic File Support 16-11

REGION/FILE

REGION/FILE

Format

Specifies that the source location associated with a diagnostic is in a file.

REGION/FILE file-spec

Command Qualifiers
/LINE=number
/COLUMN_RANGE=(number,number)
/LABEL=string
/PRIMARY

Defaults
/LINE=1
/COLUMN_RANGE=(1, 1)
See text

Command Qualifiers

ILINE:number
ILINE:1 (D)
Specifies the line number in the file for the region. The first line in a file
is 1. The valid range for the /LINE qualifier is -1 and higher. The -1
indicates a line after the last line and 0 indicates a line before the first line.
If the line value is 0 or -1, any column range values specified are ignored.

ICOLUMN_RANGE:{number,number)
ICOLUMN_RANGE:{1, 1) (D)
Specifies a range of columns in the file that defines the region. If only.
the first number is specified, then the second number defaults to the
value of the first number; that is, /COLUMN_RANGE=5 is equivalent to
/COLUMN_RANGE=(5,5). The valid range of numbers for column range is
1 to 65535, inclusive, with 65535 indicating the end-of-line and 1 indicating
the first column on a line. Therefore, /COLUMN_RANGE=(12,65535) defines
a region that starts in column 12 and runs to the end-of-line.

16-12 Providing Diagnostic File Support

REGION/FILE

ILABEL:string
Specifies a short message that is appended to the beginning of the region in
the REVIEW buffer. The default is Line n, where n is the line number of
the source specified with the /LINE qualifier and the default for text regions
is supplied text. The string must contain 14 or fewer characters.

!PRIMARY
Specifies the primary region among a group of regions. U::?E positions
the cursor on the primary region for a diagnostic when reviewing that
diagnostic. If no region is specified as primary, the first sequential region
(any region but a nested region) is assumed to be primary. If more than one
region in a diagnostic is marked primary, the first one is used.

:ommand Parameter

file-spec
Specifies the file that contains the region. The full file specification for the
file region, which includes device, directory, and version, should be used to
help ensure that LSE accesses the correct file when the GOTO SOURCE
command is executed.

Description

The REGION/FILE command defines an area in a file that is associated
with a diagnostic. This area cannot span more than one line. If /FILE,
/LIBRARY, /NESTED, or trEXT is not specified with the REGION command,
/FILE is the default and therefore need not be typed.

Providing Diagnostic File Support 16-13

REGION/FILE

Example

REGION/FILE DEV$: [user]program.src;23 -
/LINE=lO -
/COLUMN_RANGE=l -
/Label="Src Line 10:" -
/PRIMARY

This region points to the first column of the tenth line in file
DEV$:[user]program.src;23. The region has a user-specified label and is a
primary region.

16-14 Providing Diagnostic File Support

REGION/LIBRARY

REGION/LIBRARY

Format

Specifies that the source location associated with a diagnostic is in a module
within a text library.

REGION/LIBRARY file-spec

Command Qualifiers Defaults
/MODULE=module-name
/LINE=number
/COLUMN_RANGE=(number,number)
/LABEL=string
/PRIMARY

/LINE=1
/COLUMN_RANGE=(1, 1)
See text

Command Qualifiers

/MODULE=module-name
Specifies the module in the library that contains the region.

ILINE=number
/LINE:1 (DJ
Specifies the line number in the library module for the region. The first line
in the module is 1. The valid range for the /LINE qualifier is -1 and higher.
The -1 indicates a line after the last line and 0 indicates a line before the
first line. If the line value is 0 or -1, any column range values specified are
ignored.

ICOLUMN_RANGE:(number,numberJ
ICOLUMN_RANGE:{1, 1J (DJ
Specifies a range of columns in a module that defines the region. If only
the first number is specified, then the second number defaults to the
value of the first number; that is, /COLUMN_RANGE=5 is equivalent to
/COLUMN_RANGE=(5,5). The valid range of numbers for column range is
1 to 65535, inclusive, with 65535 indicating the end-of-line and 1 indicating

Providing Diagnostic File Support 16-15

REGION/LIBRARY

the first column on a line. Therefore, /COLUMN_RANGE=(12,65535) defines
a region that starts in column 12 and runs to the end-of-line.

ILABEL:string
Specifies a short message that is appended to the beginning of the region in
the REVIEW buffer. The default is Line n, where n is the line number of
the source specified with the /LINE qualifier and the default for text regions
is supplied text. The string must contain 14 or fewer characters.

!PRIMARY
Specifies the primary region among a group of regions. LSE positions
the cursor on the primary region for a diagnostic when reviewing that
diagnostic. If no region is specified as primary, the first sequential region
(any region but a nested region) is assumed to be primary. If more than one
region in a diagnostic is marked primary, the first one is used.

Command Parameter

file-spec
Specifies the library that contains the region. The full file specification for
the library region, which includes device, directory, and version, should
be used to help ensure that LSE accesses the correct file when the GOTO
SOURCE command is executed.

Description

The REGION/LIBRARY command defines an area in a library module for a
diagnostic. This area cannot span more than one line.

16-16 Providing Diagnostic File Support

Example

REGION/LIBRARY DEV$: [user]textlib.tlb;3 -
/MODULE=textmod -
/LINE=l -
/COLUMN_RANGE=(l,65535)

REGION/LIBRARY

This region defines the entire first line in module textmod of library
DEV$:[user]textlib.tlb;3. No label is specified, so the default of line 1 is
used. This is not a primary region.

Providing Diagnostic File Support 16-17

REGION/NESTED

REGION/NESTED

Format

Specifies that the source location associated with a diagnostic is a subregion
of the previous region.

REGION/NESTED

Command Qualifier
/COLUMN_RANGE=(number,number)

Default
/COLUMN_RANGE=(1, 1)

Command Qualifier

!COLUMN_RANGE:{number,number)
ICOLUMN_RANGE:{1, 1) (D)
Specifies a range of columns that define a subregion of the previous region.
If only the first number is specified, then the second number defaults to the
value of the first number; that is, /COLUMN_RANGE=5 is equivalent to
/COLUMN_RANGE=(5,5). The valid range of numbers for column range is
1 to 65535, inclusive, with 65535 indicating the end-of-line and 1 indicating
the first column on a line. Therefore, /COLUMN_RANGE=(l2,65535) defines
a region that starts in column 12 and runs to the end-of-line.

Description

The REGION/NESTED command defines an area that is a subregion of the
/FILE, /TEXT, /LIBRARY, or /NESTED region. This area cannot span more
than one line.

Each type of sequential region (file, text, or library) can have a nested
region inside it. Nested regions can have nested regions. However, each
subsequent nested region must fit inside the previous region. Regions of the
same size are considered to fit inside each other. A nested region cannot
appear by itself; it must be a subregion of a sequential region. If more than
four nested regions follow a sequential region, the rest are ignored.

16-18 Providing Diagnostic File Support

Example

REGION/NESTED

If the GOTO SOURCE command is executed when reviewing a diagnostic
file, LSE moves to the beginning of the innermost region of the region it is
positioned on in the REVIEW buffer.

REGION/FILE DEV$: [user]program.src;l -
/LINE=lO -
/COLUMN_RANGE=(l,65535)

REGION/NESTED/COLUMN_RANGE=(2,10)

REGION/NES'l:ED/COLUMN_RANGE=lO

The nested regions define subregions of the file region. The first nested
region defines the area from column 2 to column 10, inclusive, on line 10
in file DEV$:[user]program.src;l. The second nested region defines the last
column in that region.

Providing Diagnostic File Support 16-19

REGION/TEXT

REGION/TEXT

Format

Specifies that the source location associated with a diagnostic is in the text
that is included in this command as arguments.

REGION/TEXT string [,string ...]

. Command Qualifiers
/LINE=number
/COLUMN_RANGE=(number,number)
/LABEL=string
/PRIMARY

Defaults
/LINE=1
/COLUMN_RANGE={1, 1)
See text

Command Qualifiers

ILINE:number
ILINE:1 (D)
Specifies the line number of the strings included in the region. The first
string included is line 1. The valid range for the /LINE qualifier is -1 and
higher. The -1 indicates a line after the last line and 0 indicates a line
before the first line. If the line value is 0 or -1, any column range values
specified are ignored.

ICOLUMN_RANGE:(number,number)
ICOLUMN_RANGE={1, 1) (D)
Specifies a range of columns in the specified string that defines the region.
If only the first number is specified, then the second number defaults to the
value of the first number; that is, /COLUMN_RANGE=5 is equivalent to
/COLUMN_RANGE=(5,5). The valid range of numbers for column range is
1 to 65535, inclusive, with 65535 indicating the end-of-line and 1 indicating
the first column on a line. Therefore, /COLUMN_RANGE=(12,65535) defines
a region that starts in column 12 and runs to the end-of-line.

16-20 Providing Diagnostic File Support

REGION/TEXT

ILABEL:string .
Specifies a short message that is appended to the beginning of the region in
the REVIEW buffer. The default is Line n, where n is the line number of
the source specified with the /LINE qualifier and the default for text regions
is supplied text. The string must contain 14 or fewer characters.

/PRIMARY
Specifies the primary region among a group of regions. LSE positions
the cursor on the primary region for a diagnostic when reviewing that
diagnostic. If no region is specified as primary, the first sequential region
(any region but a nested region) is assumed to be primary. If more than one
region in a diagnostic is marked primary, the first one is used.

Command Parameter

string[,string ...]
A quoted string (or strings separated by commas) that is the supplied text
for this command. This text appears in the REVIEW buffer for the region.

Description

Example

The REGIONfl'EXT command defines an area in the text supplied with the
command for a diagnostic. This area cannot span more than one line.

REGION/TEXT "A := B;", -
"C := D, II -

/LINE=l -
/COLUMN RANGE=(7,7)
/PRIMARY

This region points to the last column of the first supplied string. No label is
specified, so the default of supplied text is used. This is a primary region.
See Example 16-1 for more samples.

Providing Diagnostic File Support 16-21

START DIAGNOSTIC

START DIAGNOSTIC

Format

Specifies the start of a diagnostic.

START DIAGNOSTIC

Diagnostic Body

END DIAGNOSTIC

Command Parameter

Diagnostic Body
A diagnostic consists of a START DIAGNOSTIC command, one or more
regions, one or more messages, and an END DIAGNOSTIC command.

Description

This command marks the start of a diagnostic module in the user format.

Example

See Example 16-1 for samples of the START DIAGNOSTIC command.

16-22 Providing Diagnostic File Support

START MODULE

START MODULE

Format

Specifies the start of a diagnostic module in the user format.

START MODULE

Module Body

END MODULE

Command Parameter

Module Body
A module consists of a START MODULE command, zero or more diagnostics,
and an END MODULE command.

Description

This command marks the start of a diagnostic module in the user format.

Example

See Example 16-1 for a sample of the START MODULE command.

Providing Diagnostic File Support 16-23

Chapter 17

Customizing Overviews

This chapter provides guidance for those who need to customize overviews
for programming languages, including languages that Digital does not
directly support.

Section 1 7 .1 is an introduction. Section 1 7 .2 describes how to customize
overviews by using the DEFINE ADJUSTMENT command. Section 1 7 .3
provides information on tab increments, and Section 1 7.4 provides
information on debugging DEFINE ADJUSTMENT definitions.

17 .1 Introduction

Overviews hide the details of your source code. An overview line is
generated by LSE and represents a sequence of lines in a buffer. Each
overview line is displayed as a pseudocode placeholder. For example:

«--Put each pair of numbers in order .•• »

A source or real line is a line of code that occurs in a program. For
example:

if NUMBERS(J) > NUMBERS(J+l) then

A detailed line is a line that is hidden by an overview line. It can be either
a source line or a lower-level overview line.

A group is a sequence of lines where the first line is indented less than any
other line in the sequence and the same as or more than the first line of text
after the sequence.

The grouping of lines depends upon indentation conventions, combined with
simple language-specific syntax processing. In the following example, the
first five lines constitute a group:

Customizing Overviews 17-1

WHILE x
BEGIN
a = b
c = d
END

q = r

When the group is compressed, a single line represents the five lines, as
follows:

«WHILE x ••• »
q = r

You can nest groups of lines, so it is possible to present a single program at
various levels of detail. The following example shows an indented, nested
group of lines associated with an if statement:

--Put each pair of numbers in order
for Jin 1 .. HOW MANY - 1 loop

if NUMBERS(J)-> NUMBERS(J+l) then
--Interchange the numbers
TEMP := NUMBERS(J);
NUMBERS(J) := NUMBERS(J+l);
NUMBERS(J+l) :=TEMP;

--We are not finished sorting
SORTED := FALSE;

end if;
end loop;

The indented lines can be represented by pseudocode, as follows:

--Put each pair of numbers in order
for Jin 1 .. HOW MANY - 1 loop

if NUMBERS(J)-> NUMBERS(J+l) then
«--Interchange the numbers ... »
«--We are not finished sorting ... »

end if;
end loop;

The entire code fragment can be represented by a single overview line, as
follows:

«--Put each pair of numbers in order ... »

There are two kinds of indentation to consider: visible indentation and
adjusted indentation. The visible indentation of a line is the column
number of the first visible character on the line. The visible indentation of a
blank line is 0.

The adjusted indentation of a line is how LSE treats the indentation when
it has been "adjusted." You cannot see such adjusted indentation because
LSE does not actually move any text; it just treats lines as though the
indentation has changed.

17-2 Customizing Overviews

Details of the overviews are specific to the language you are using.
Sometimes visible indentation information alone is not enough to generate
good overviews. To adjust the indentation of your code, use the DEFINE
ADJUSTMENT command. With the DEFINE ADJUSTMENT command, you
can modify the behavior of overviews to match your formatting conventions.
In addition, you can develop overview support for languages that Digital
does not provide. You can save the DEFINE ADJUSTMENT commands in
LSE environment files.

You can use the VIEW SOURCE/DEBUG command to generate a copy of
the source buffer showing the indentation as LSE views the indentation (all
source lines visible with numeric values for the indentation).

17.2 Making Adjustments

The following sections describe how to use the DEFINE ADJUSTMENT
command to customize overviews. Adjustment definitions are stored in LSE
environment files. Each adjustment definition supplies a pattern and a set
of adjustment actions. If a source line matches the pattern, LSE applies the
corresponding adjustment actions.

The DEFINE ADJUSTMENT command has the following format:

DEFINE ADJUSTMENT name [pattern] [action-qualifiers] [/LANGUAGE=language-name]

17.2.1 Testing Overviews

If you are going to write definitions for a new language, look at the
adjustments for a similar language to learn how to make the adjustments.

If you are going to modify the behavior of overviews to match your coding
conventions, you can start with the adjustments shipped with a language.
You can see the adjustments defined for a language by typing the following
command:

LSE> SHOW ADJUSTMENT *

To test overviews, choose or create some typical program text. Your test files
need not be complete programs. Then try the VIEW SOURCE command on
your test programs. Without adjustment definitions, LSE relies exclusively
on visible indentation. You may want to try your definitions on larger, more
realistic files later.

Customizing Overviews 17-3

This exercise shows you which language constructs need attention.
Overviews should make sense. For those language constructs that produce
good overviews, you do not need to write definitions. However, you should
write DEFINE ADJUSTMENT commands for those portions of the program
that do not have good overviews.

The following are some general criteria for judging the quality of the
overviews you generate:

• Each major language construct should be compressible to a single line.

• Comments should hide the constructs they describe.

• Low-level constructs should never hide high-level constructs.

17 .2.2 Using Adjustment Qualifiers

In the following examples, if you do not specify the /LANGUAGE qualifier,
LSE defaults to the language of the current buffer.

17.2.2.1 Adjusting Single Lines

You use the /CURRENT qualifier with most indentation adjustment
commands. It instructs LSE to treat the current line as though the
indentation were changed. Use it to adjust the indentation of a single
line. For example, the following definitions are suitable for use with the
parts of if statements:

DEFINE ADJUSTMENT then /CURRENT=l
DEFINE ADJUSTMENT else /CURRENT=l

Consider the following lines of COBOL code:

IF P
THEN

ELSE

ADD 5 TO K
END-ADD

ADD 6 TO K
END-ADD

The adjustment definitions cause these lines to be treated as though they
were indented as follows:

17-4 Customizing Overviews

IF P
THEN

ADD 5 TO K
END-ADD

ELSE
ADD 6 TO K
END-ADD

The highest-level overview for this fragment of code is as follows:

«IF P»

This technique works well for any construct that is similarly well-structured
and indented and that has multiple keywords at the same indentation level.
The idea is to adjust the lines so that the first line appears to be indented
less than the lines that follow. Then the first line can serve as an overview
for the entire construct.

The following definitions are suitable for use with Ada BEGIN blocks:

DEFINE ADJUSTMENT exception /CURRENT=l
DEFINE ADJUSTMENT end /CURRENT=l

When implemented, such definitions cause the following text to be
compressed to a single line.

begin
{statement} ...

exception
{exception_handler} ...

end;

Situations may arise when you want to adjust the indentation of a line to
the left instead of to the right. For example, comments should frequently be
adjusted to the left. To do this, use negative values.

The following definition for BASIC comments uses a negative value:

DEFINE ADJUSTMENT "!" /CURRENT=-1

With this adjustment, LSE treats comment lines as though they were shifted
one column to the left. For example:

! Store away the info needed to update the history.
Update_info::Edit_no = Edit_no
Update_info::Version_record = Rec_num

Customizing Overviews 17-5

LSE treats the construct as follows:

! Store away the info needed to update the history.
Update info::Edit no= Edit no
Update=info::Version_record-= Rec_num

Thus, these lines resolve to the following overview:

«--Store away the info needed to update the history ... »

17.2.2.2 Adjusting Multiple Lines

If a program construct does not have an indented body, then use the
DEFINE ADJUSTMENT command to indent the whole construct. For
example, if the lines between BLISS BEGIN and END are not indented, you
can adjust for that with the following definitions:

DEFINE ADJUSTMENT begin /SUBSEQUENT=l
DEFINE ADJUSTMENT end /SUBSEQUENT=-1

These definitions mean "If the word BEGIN occurs, adjust all subsequent
lines in the buffer one column to the right. If the word END occurs, adjust
subsequent lines one column to the left." These adjustments are cumulative.
See Section 17.2.2.3 for more complicated definitions for BEGIN and END.

Consider the following program lines:

BEGIN
a
b
END
x
y

The result of applying the preceding definitions is as follows:

BEGIN
a

x
y

b
END

This compresses the BEGIN block to one line.

When you use the /SUBSEQUENT qualifier, be sure the total of the values.
for a single construct add up to zero. For example, in Ada and Pascal the
PROCEDURE keyword sometimes has a matching END and sometimes
does not. Therefore, the /SUBSEQUENT qualifier should not be applied to
PROCEDURE.

17-6 Customizing Overviews

Definitions with the /SUBSEQUENT qualifier need not be in pairs, with
values of N and -N. Groups of three or more definitions are acceptable as
long as the combined values add up to zero.

17 .2.2.3 Interactions of Definitions

Choose adjustment numbers and signs for definitions carefully so that they
interact well together. For example, the following set of definitions needs
more work:

DEFINE ADJUSTMENT begin /SUBSEQUENT=2
DEFINE ADJUSTMENT end /SUBSEQUENT=-2
DEFINE ADJUSTMENT"!" /CURRENT=-1

Consider these definitions operating on the following text:

BEGIN
! Do something.
a
b
END

The resulting adjustment is as follows:

BEGIN
! Do something.
a
b
END

When the code after the comment is compressed, the END line is hidden
but the BEGIN line is not. When a construct has two "endpoints" it is
inappropriate to display one and not the other. To remedy the situation, add
a /CURRENT value to the END definition, as follows:

DEFINE ADJUSTMENT begin /SUBSEQUENT=2
DEFINE ADJUSTMENT end /SUBSEQUENT=-2 /CURRENT=-1
DEFINE ADJUSTMENT II! II /CURRENT=-1

Then the preceding sample program code is adjusted as follows:

BEGIN
! Do something.
a
b

END

The comment hides only the two lines immediately following it, not the END
statement.

Customizing Overviews 17-7

Sometimes it is difficult to decide whether to move text to the left or to the
right. For example, if your coding convention has IF and THEN keywords at
the same indentation level, and you want the adjusted indentation to have
the THEN indented more than the IF, you can adjust the IF to the left or
you can adjust the THEN to the right; either way, the THEN gets indented
more than the IF. Your choice should be influenced by the interaction of this
definition with other definitions, in particular those involving comments.

Moving comments to the left and code to the right works well for most
situations.

17.2.2.4 Languages Without Indentation

Languages without indentation can still take advantage of overviews. For
example, tools such as VAX DOCUMENT use files containing markup
language "tags." Many of these tags are constructs with well-marked
beginnings and ends that can be treated as follows:

DEFINE ADJUSTMENT "<NOTE>" /SUBSEQUENT=2
DEFINE ADJUSTMENT "<ENDNOTE>" /SUBSEQUENT=-2 /CURRENT=-1

VAX DOCUMENT markup language constructs that do not have visible
endings can be treated as follows:

DEFINE ADJUSTMENT "<CHAPTER>" /CURRENT= -1
DEFINE ADJUSTMENT "<HEADl>" /CURRENT= -1
DEFINE ADJUSTMENT "<HEAD2>" /CURRENT= -1
DEFINE ADJUSTMENT "<HEAD3>" /CURRENT= -1

17.2.2.5 Preventing Text Compression

The /NOCOMPRESS qualifier means "If a group starts on the current line,
do not compress it." For example, you might decide that LSE should never
compress BEGIN blocks like the following:

«BEGIN»

The following definition instructs LSE to display the detailed text instead of
the overview line:

DEFINE ADJUSTMENT begin /NOCOMPRESS

In very high-level overviews, the whole BEGIN block could be hidden as part
of a higher-level structure.

17-8 Customizing Overviews

17.2.2.6 Finding Appropriate Overview Text

Usually, LSE takes the overview text for a group from the first line of that
group. This text may not always be appropriate, for example, if it is a
blank line, an empty comment, or a row of stars. LSE looks for identifier
characters in the text, and if there are none, it looks at subsequent lines for
better text. If no suitable overview text is found in a group, the group is not
formed.

You can explicitly control what text appears in overview lines by using the
/[NO]OVERVIEW qualifier. If a string is inappropriate as overview text, you
can define it using the /NOOVERVIEW qualifier. For example, suppose your
C programs are formatted as follows:

char *
getline(row)
int row;
{

If each C function is compressed to a single line, then char * becomes
the overview text. However, char * is not informative text. getline is the
function name and should be the overview text. To prevent char * from
appearing as the overview text, use the following definition:

DEFINE ADJUSTMENT "char *" /NOOVERVIEW

17 .2.2. 7 Inheriting Indentation

In some situations, the visible indentation of a line is not a good indication
of what its adjusted indentation should be. The visible indentation of a
blank line is always 0. The visible indentation of a FORTRAN or COBOL
comment line is usually 1. In these situations, you can use the /INHERIT
qualifier to cause a line to inherit its visible indentation from the adjusted
indentation of a neighboring line.

The /INHERIT qualifier takes one of the following values:

• PREVIOUS-The visible indentation for the current line is taken from
the adjusted indentation of the previous line.

• NEXT-The visible indentation for the current line is taken from the
adjusted indentation of the next line.

• MINIMUM-The visible indentation for the current line is taken from
the adjusted indentation of either the previous line or the next line,
whichever is smaller.

Customizing Overviews 17-9

• MAXIMUM-The visible indentation for the current line is taken from
the adjusted indentation of either the previous line or the next line,
whichever is larger.

A possible adjustment for COBOL comment lines is /INHERIT=NEXT
/CURRENT=-1 /UNIT. For example:

*
* RESET WORK-CTR FOR ALPHA FIELDS
*

MOVE 15 TO WORK-CTR.

When you collapse the previous example, it becomes as follows:

«* RESET WORK-CTR FOR ALPHA FIELDS ... »

With C conditional compilation, a common coding convention is to type the
conditional compilation lines at the left margin, although the corresponding
program code is indented. For example:

DEFINE ADJUSTMENT "$(COLUMN=l)#if" /INHERIT=NEXT

When you use this. definition, LSE takes the indentation of a conditional
compilation line from the indentation of the line below it.

The /INHERIT qualifier is typically used in adjustments for blank lines,
form feeds, conditional compilations, and labeled lines.

17.2.2.8 Blank Lines

The default adjustment for blank lines is /INHERIT=MAXIMUM /UNIT
/NOCOUNT. This usually causes a blank line to be absorbed into a
neighboring group. For example:

BEGIN

a = b;

In this example, the blank line following BEGIN inherits the adjusted
indentation of the a = b line because that line is indented more than the
BEGIN line. Therefore, the blank line is part of the group that starts with
the BEGIN line.

Consider the following code fragment:

IF something
THEN

a = b;

ELSE
c = d;

17-10 Customizing Overviews

The blank line preceding ELSE inherits the adjusted indentation of the
a = b line. Therefore, the blank line is part of the group that starts with the
THEN line.

To redefine the behavior of blank lines, you must define an adjustment for
the LINE_END predefined pattern. (See Section 1 7 .2.3 for details on pattern
matching.) For example:

DEFINE ADJUSTMENT "$(LINE END)" /UNIT/NOCOUNT -
/INHERIT=NEXT/CURRENT=-1/NOCOMPRESS

You may use this adjustment if you want a blank line to terminate a group
started by a preceding comment line. For example, suppose you use this
definition with the following code fragment:

! comment text
IF something

THEN
a = b;

c = d;

The group started by the comment line will include only the lines through
the a= b line.

In languages where there is little syntax to distinguish program constructs,
such as VAX C, you can define empty space to be significant. For example:

DEFINE ADJUSTMENT "$(LINE END)" /CURRENT= -1
DEFINE ADJUSTMENT "$(FORMFEED)" /CURRENT= -2

This definition causes every blank line to have an adjusted indentation of -1
since its visible indentation is always 0, and every form-feed line to have an
adjusted indentation of -1 (if each form feed is in column 1).

17 .2.2.9 Prefixes

In some situations you want to avoid having the first text on the line
determine indentation or influence adjustment. Labels are a common
example of such prefix text. To instruct LSE to treat leading text on a line
as prefix text, use the PREFIX pattern element and the /PREFIX qualifier.
The PREFIX pattern element defines a specified part of a pattern as a
prefix. The /PREFIX qualifier indicates what action to perform when LSE
encounters a source line that matches a pattern that includes the PREFIX
element.

Customizing Overviews 17-11

The following example instructs LSE to treat an identifier followed by a
colon as a prefix if a BEGIN construct follows the identifier and colon on a
source line:

DEFINE ADJUSTMENT "$(IDENTIFIER) :$(PREFIX)BEGIN"

BEG IN is the first text after the prefix.

If you use PREFIX in an adjustment pattern, then you must specify the
/PREFIX qualifier on the definition. Conversely, if you specify the /PREFIX
qualifier on the definition, then PREFIX must appear in the pattern string.

The following is an example of a prefix definition with
(FOLLOWING,FOLLOWING):

DEFINE ADJUSTMENT "$(IDENTIFIER) :$(OPTIONAL SPACE)$(PREFIX)" -
/PREFIX=(FOLLOWING,FOLLOWING) -

This definition matches the labeled line in the following example:

a = b;
loop: WHILE c DO

d = e;
f = g;

In this example, the indentation is that of WHILE, adjusted by the qualifiers
for the definition for WHILE (or defaults if there is no definition for WHILE).

The following is an example of a prefix definition with
(CURRENT,FOLLOWING):

DEFINE ADJUSTMENT "$(IDENTIFIER) :$(OPTIONAL SPACE)$(PREFIX)" -
/PREFIX=(CURRENT,FOLLOWING) -

This definition matches the labeled line in the following example:

a = b;
labell:BEGIN

d = e;
f = g

END;

In this example, the indentation is that of the label adjusted by the qualifiers
for the definition for BEGIN.

The following is an example of a definition that you could use for COBOL
comments where the indentation of the comment indicator is insignificant
but the fact that the line is a comment is significant:

DEFINE ADJUSTMENT "$(COLUMN=l)*$(PREFIX)" -
/PREFIX=(FOLLOWING,CURRENT) /CURRENT=-1

17-12 Customizing Overviews

In this example, the indentation of a line with an asterisk in column 1 is
taken from the first visible text after the asterisk, adjusted by -1 because
of the /CURRENT=-1 qualifier on the current definition. The text after the
asterisk is not compared against any patterns.

17 .2.2.10 Grouping Comment Lines

With the /UNIT qualifier, you can treat contiguous comment lines as a single
unit if they have the same adjusted indentation. For example:

! Store away the info needed to update
! the history.
Update info::Edit no= Edit no
Update=info::Version_record-= Rec_num

Suppose you used the following definition, which does not include a /UNIT
qualifier:

DEFINE ADJUSTMENT "!" /CURRENT=-1

When LSE applies this adjustment, the following overview appears:

! Store away the info needed to update
« !the history ... »

The result is undesirable because the second comment becomes the overview
line for the assignments.

To treat both comment lines as one unit, and to have the first comment
serve as the overview for both comment lines and the associated statements,
combine the comment lines into one group by using the following definition:

DEFINE ADJUSTMENT "!" /CURRENT=-1 /UNIT

When LSE applies this adjustment, the comment lines are treated as a unit,
and the following overview appears:

« Store away the info needed to update»

17.2.2.11 Bracketed Comments

Language compilers and LSE do not necessarily have the same definitions
for comments. LSE treats a line as a comment only if it includes comment
delimiting text. The second line in the following example is not a comment
in LSE:

/*
Open the file.

*/

Customizing Overviews 17-13

Consider the following adjustment definition:

DEFINE ADJUSTMENT "/*" /CURRENT=-1

This particular style does not present a problem for the overview facility.
Since the inner lines of a comment are indented further than the comment
delimiter text, LSE treats the whole comment as one group.

You can write definitions for "/*" and "*f' with the /SUBSEQUENT qualifier
to cause intervening lines to indent. Use this approach with caution,
however, because if"*/" does not appear at the beginning of a line, LSE
cannot detect the"*/."

17.2.2.12 Fixed Comments

In some languages, such as FORTRAN and COBOL, the indentation of a
comment is of no interest because it is in a fixed column. One way to handle
this situation is to adjust the comment to inherit the indentation from the
line after the comment line. To do this, use the /INHERIT qualifier, as
follows:

DEFINE ADJUSTMENT "$(COLUMN=l)C" -
/INHERIT=NEXT/CURRENT=-1/UNIT

Another approach is to ignore the comment marker and take the visible
indentation from the text that follows on the line. To do this, use the
/PREFIX qualifier, as follows:

DEFINE ADJUSTMENT "$(COLUMN=1)*$(PREFIX)" -
/PREFIX = (FOLLOWING,CURRENT)

See Section 1 7 .2.4 for FORTRAN-specific information.

17 .2.3 Basic Rules for Pattern Matching

Pattern matching is insensitive to case. For example:

DEFINE ADJUSTMENT "begin"

LSE matches this definition to any of the following strings:

begin
BEGIN
Begin

Pattern matching completes with a word break. For example:

DEFINE ADJUSTMENT "begin"

LSE does not match the definition "begin" with the string "beginstuff'.

17-14 Customizing Overviews

You must explicitly specify any blank space in the definition pattern. For
example:

DEFINE ADJUSTMENT "begin"

LSE does not match the definition "begin" with the string "beg in".

Table 17-1 contains named pattern elements that are valid in LSE.

Table 17-1 : Named Pattern Elements

Named Pattern

COLUMN

IDENTIFIER

FORMFEED

LINE_END

NUMBER

OPTIONAL_SPACE

PREFIX

Description

Limits the columns in which the text may start. See
Section 1 7 .2.3.3.

Indicates a sequence of identifier characters.

Indicates a form-feed character.

Specifies the end of a line, preceded by optional white
space.

Indicates a sequence of digits.

Indicates a sequence of spaces and tabs

See Section 1 7 .2;2.9

FORTRAN_FUNCTION See Section 1 7 .2.4
FORTRAN_ COMMENT

You must use the $() convention to enclose named pattern elements. Thus,
the following definition matches any sequence of identifier characters:

DEFINE ADJUSTMENT "$(IDENTIFIER)"

To match any blank line, use the following definition:

DEFINE ADJUSTMENT "$(1INE_END)"

17 .2.3.1 Multiple Word Patterns

An adjustment pattern may consist of multiple words, as in the following
example:

DEFINE ADJUSTMENT "end if"

A pattern may include a combination of literal text and named patterns. For
example, the following definition matches any. identifier that is followed by a
colon:

DEFINE ADJUSTMENT "$(IDENTIFIER):"

Customizing Overviews 17-15

Use LINE_END at the end of a pattern to specify that the pattern text is the
only text on a matching source line. For example, the following definition
matches any line that contains the word case without any text after it.

DEFINE ADJUSTMENT "CASE$(LINE_END)"

17.2.3.2 Blank Space and Adjustment Patterns

Blank space in adjustment pattern specifications is always explicit. If blank
space occurs in an adjustment pattern, then matching buffer text must
also have blank space between words. The number of blank columns does
not matter and both tabs and spaces are interpreted as blank space. For
example:

DEFINE ADJUSTMENT "end if"

This definition matches each of the following strings:

end if
end if
end if

However, the same definition does not match

endif

If blank space is not included in the definition, the matching buffer text
cannot have blank space. For example, the following definition matches xxx:
but does not match xxx :, that is, the same string with a blank separating
the last x and the colon:

DEFINE ADJUSTMENT "$(IDENTIFIER):"

To indicate that blank space is optional, use the predefined
OPTIONAL_SPACE pattern. For example:

DEFINE ADJUSTMENT "end$(0PTIONAL_SPACE)if"

This definition matches. each of the following strings:

endif
end if
end if

Another definition example follows:

DEFINE ADJUSTMENT "$(IDENTIFIER)$(0PTIONAL_SPACE) :"

17-16 Customizing Overviews

This definition matches each of the following strings:

xxx:
xxx:
xxx

17.2.3.3 Specifying Columns

To indicate that a pattern must begin in a particular column, use the
predefined COLUMN pattern. For example, the following definition matches
end only if it begins in column 1:

DEFINE ADJUSTMENT "$(COLUMN=l)end"

The next definition matches any identifier that begins in column 3, 4, or 5:

DEFINE ADJUSTMENT "$(COLUMN=3,5)$(IDENTIFIER)"

When you use the predefined COLUMN pattern, you must place it at the
beginning of the pattern parameter and follow it with some specification of
visible text, that is, a literal string or any named pattern element except
$(0PTIONAL_SPACE) or $(LINE_END).

17.2.3.4 Pattern Matching Precedence

Long patterns take precedence over short ones and more restrictive patterns
take precedence over less restrictive ones. In each of the following example
pairs, the first definition takes precedence over the second:

DEFINE ADJUSTMENT "end if"
DEFINE ADJUSTMENT end

DEFINE ADJUSTMENT "$(IDENTIFIER):="
DEFINE ADJUSTMENT "$(IDENTIFIER):"

DEFINE ADJUSTMENT end
DEFINE ADJUSTMENT "$(IDENTIFIER)"

Matching is word by word; thus, the source string endmorestuff matches
$(IDENTIFIER), not end. The precedence rules are subject to word breaks.

The patterns have the following order of decreasing precedence:

1. COLUMN

2. Literal strings

3. Required white space

4. OPTIONAL_SPACE

5. LINE_END

6. FORMFEED

Customizing Overviews 17-17

7. FORTRAN_COMMENT

8. FORTRAN_FUNCTION

9. NUMBER

10. IDENTIFIER

If multiple patterns are distinguished only by their column values, they
are ordered by the first column number, then the second. In the following
example, the first definition has precedence over the second: ·

DEFINE ADJUSTMENT "$(COLUMN=l,2)xyz"
DEFINE ADJUSTMENT "$(COLUMN=2,7)xyz"

Patterns are matched from left to right, so a definition for which there
is no match is possible. The following example has no blank space; if a
string consists of a sequence of identifiers followed by an x, the match for
IDENTIFIER consumes the x.

DEFINE ADJUSTMENT "$(IDENTIFIER)x"

In the following example, the OPTIONAL_SPACE named pattern element
matches all the blank space before the z, leaving nothing to go with the
required space.

DEFINE ADJUSTMENT "y$(0PTIONAL_SPACE) z"

17.2.3.5 Using Precedence to Hide Patterns

You can use the relative precedence of patterns to hide definitions. For
example, if you want to treat an identifier followed by a colon in a special
way, and only when the identifier is not the word "default", use the following
pattern definitions:

DEFINE ADJUSTMENT "default:"
DEFINE ADJUSTMENT "$(IDENTIFIER):"

The first definition takes precedence over the second, so any source line
that begins with "default:" uses the action qualifiers specified on the first
definition (or the defaults, if you do not specify any qualifiers). Any source
line that begins with another sequence of identifier characters followed by a
colon uses the second definition. (Note that the order of the definitions is not
significant; however, the relative precedence of the patterns is significant.)

Similarly, you can use pattern length to hide definitions. For example, if you
want to treat an identifier followed by a colon in a special way, unless an
equal sign follows the colon, use the following definitions:

DEFINE ADJUSTMENT "$(IDENTIFIER):"
DEFINE ADJUSTMENT "$(IDENTIFIER):="

17-18 Customizing Overviews

The second pattern takes precedence because it is longer.

17.2.3.6 Rules for Pattern Strings

A pattern string is a sequence of literal strings and named pattern elements
subject to the following rules:

• Blank space may not appear between the parentheses of named pattern
specifications. The following is invalid:

"$(COLUMN= 1)"

• If a pattern string includes the COLUMN named pattern specification,
COLUMN must appear first. The following is invalid:

"x $ (COLUMN=7) y"

• The COLUMN named pattern specification always -requires at least one
value.

• A pattern may not begin with the OPTIONAL_SPACE named pattern or
any explicit white space. Thus, the following patterns are invalid:

"$(0PTIONAL_SPACE)end"
" end"
"$ (COLUMN=4) $ (OPTIONAL_SPACE) end"

• A pattern may not begin with the PREFIX named pattern. The following
is invalid:

"$(PREFIX) x"

• The LINE_END named pattern must be the last pattern. The following
is invalid:

"$(LINE_END)x"

• If a pattern includes PREFIX, then the definition must also include the
/PREFIX qualifier.

• FORTRAN_COMMENT named patterns may be used only with the
FORTRAN language.

• Patterns must not include line breaks. If a pattern includes multiple
words, the whole pattern must appear on one line.

Customizing Overviews 17-19

17 .2.3. 7 Using the Pattern Parameter

By default, the pattern parameter is the same as the adjustment name. You
should specify the pattern parameter if the pattern string is ,not suitable
as a name. For example, you may find a name difficult to remember when
you want to issue the DELETE, SHOW, or EXTRACT command on the
definition. The following example shows a pattern that is too long to be a
good adjustment name:

"$(IDENTIFIER)$(0PTIONAL_SPACE) :$(0PTIONAL_SPACE)$(PREFIX)begin"

To avoid this problem, create a distinctive adjustment name, as in the
following example:

DEFINE ADJUSTMENT label -
"$(IDENTIFIER)$(0PTIONAL_SPACE) :$(0PTIONAL_SPACE)$(PREFIX)begin"

You can then use the name label to refer to the definition. Or you can create
a naming convention to group similar definitions, as follows:

DEFINE ADJUSTMENT end
DEFINE ADJUSTMENT endl "$(COLUMN=l)end"

You can then use the wildcard name end* to refer to the definitions with end
as the first visible text.

17 .2.4 Special Processing for FORTRAN

In the FORTRAN language, the adjustment actions LSE applies depend on
whether a line is a comment line, a continuation line, or neither of these.

A continuation line is treated as though defined with DEFINE
ADJUSTMENT /INHERIT=MAXIMUM/CURRENT=l!UNIT. If the line
is a comment line, LSE matches against adjustments that contain the
FORTRAN_COMMENT pattern element (described later). If the line
is neither a comment nor a continuation line, LSE matches against
adjustments for noncomments (adjustments that do not contain the
FORTRAN_COMMENT pattern element) and examines only the text in
the statement field. COLUMN=l refers to the first column in the statement
field.

Pattern elements defined for FORTRAN are as follows:

17-20 Customizing Overviews

FORTRAN_FUNCTION

LSE defines a special pattern, called FORTRAN_FUNCTION, for matching
the first line of a FORTRAN function subprogram. The format of such a line
is as follows:

type [*number] FUNCTION

type
Is one of the keywords in Table 1 7-2.

Table 17-2: Type Keywords

BYTE

CHARACTER

COMPLEX

DOUBLE COMPLEX LOGICAL

DOUBLE PRECISION REAL

INTEGER

number
Is either a series of digits or an asterisk(*).

FORTRAN_COMMENT

LSE recognizes a special pattern element, FORTRAN_ COMMENT. This
pattern element may appear only as the first element of a pattern and
means "Apply this definition only if the source line is known to be a
comment." This meaning is conceptually similar to COLUMN, which means
"Apply this definition if the text starts in the correct column."

An adjustment is a comment adjustment if the pattern begins with
FORTRAN_COMMENT. Otherwise, it is a noncomment adjustment.

Examples

Each of the following examples starts in column 1. All examples are for
ANSI format.

Example 1:

DEFINE ADJUSTMENT "$(FORTRAN_COMMENT)C**"

This definition matches each of the following lines of code:

C**
c**
C**stuff

Customizing Overviews 17-21

However, the definition does not match any of the following lines:

C stuff
c **
CC**

!**

C**

12345 x = y
end

!continuation

Example 2:

DEFINE ADJUSTMENT "$(FORTRAN_COMMENT) !"

This definition matches each of the following lines of code:

!stuff

! *

However, it does not match either of the following lines:

c

Example 3:

DEFINE ADJUSTMENT "endif"

This definition matches each of the following lines of code:

12345 endif
endif

Oendif
52 endif

endif

However, it does not match either of the following lines:

C endif
lendif

Example 4:

DEFINE ADJUSTMENT "$(COLUMN=l)end"

This definition matches each of the following lines of code:

12345 end
end

Oend

17-22 Customizing Overviews

However, it does not match any of the following lines:

12345 end
end

C end

17.3 Tab Increments and the DEFINE ADJUSTMENT
Command

The DEFINE ADJUSTMENT command adjusts indentation by columns.
When you write definitions, you need to make assumptions about the size of
a tab.

For example:

IF x GTR y
THEN

max := x

Consider the following definition:

DEFINE ADJUSTMENT then /CURRENT=2

With a tab increment of 4, this definition yields the following adjusted
result:

IF x GTR y
THEN

max := x

However, if the tab increment is 2 instead of 4, the actual indentation is as
follows:

IF x GTR y
THEN

max := x

The following is the adjusted indentation:

IF x GTR y
THEN
max := x

This is not a desirable result. The solution is to inform LSE what tab
increments the definitions work with.

Customizing OveNiews 17-23

The DEFINE LANGUAGE and MODIFY LANGUAGE commands have
an /OVERVIEW _OPTIONS=TAB_RANGE qualifier that specifies the tab
increment for buffers associated with a given language. TAB_RANGE takes
two numbers. The second number must be at least twice as big as the first
number. The range specifies the tab increment values that work with the.
DEFINE ADJUSTMENT command. If the first number is M and the second
number is N, then the DEFINE ADJUSTMENT command is assumed to be
correct for tab increments from M to N, inclusive.

For example, the following definition instructs LSE to indent Ada code
with a tab increment of 2, and indicates that the relevant DEFINE
ADJUSTMENT commands were written assuming a tab increment of 4:

DEFINE LANGUAGE ADA /TAB_INCREMENT=2 /OVERVIEW_OPTIONS=(TAB_RANGE=(4,8))

LSE makes the appropriate adjustments so the definitions will work with
the smaller tab increment. It does this by doubling the indentation of each
source line before applying any other indentation adjustments.

For best performance and format of the VIEW SOURCE/DEBUG output,
make sure the trAB_INCREMENT value is within the range specified on
/OVERVIEW _OPTIONS=TAB_RANGE. For most uses, the recommended
definition is as follows:

/TAB_INCREMENT=4 /OVERVIEW_OPTIONS=(TAB_RANGE=2,8)

The trAB_INCREMENT value is usually 4. If you choose a tab range of
(2,8), be wary of definitions such as the following:

DEFINE ADJUSTMENT x /SUBSEQUENT=6
DEFINE ADJUSTMENT y /CURRENT=-2

You choose the /SUBSEQUENT and /CURRENT values because they work
well with a tab of 4. But the x definition will probably be wrong with a tab
value of 8. The y definition will probably be wrong with a tab value of 2. To
fix this, change the tab range and/or change the DEFINE ADJUSTMENT
qualifier values so they work well together.

17.4 Debugging

There are two ways to debug DEFINE ADJUSTMENT definitions. One
way is to use the viewing commands on sample text and experiment with
DEFINE ADJUSTMENT definitions until you are satisfied with the results.

17-24 Customizing Overviews

Alternatively, you can debug your definitions by using the VIEW
SOURCE/DEBUG command. This command generates a representation of
the source buffer, indented as LSE perceives the indentation, as specified
by the adjustment definitions. The result is displayed in a system buffer,
$OVERVIEW.

For example:

DEFINE ADJUSTMENT "!"
DEFINE ADJUSTMENT BEGIN
DEFINE ADJUSTMENT END

/CURRENT = -1 /UNIT
/SUBSEQUENT = 2 /NOCOMPRESS
/CURRENT = -1 /SUBSEQUENT = -2

Suppose you have executed the VIEW SOURCE/DEBUG command when the
cursor is in a buffer containing the following source text (assuming each line
begins in column 1):

! Swap the numbers
BEGIN
temp = a;
a = b;
! Get the value from temporary storage.
b = temp
END

This puts the following text in the $OVERVIEW buffer:

u

u

NC
3 0 0 ! Swap the numbers.
4 0 1 BEGIN
1 2 3 temp = a;
1 2 3 a = b;
3 2 2 ! Get the value
1 2 3 b = temp
5 2 2 END

Left margin numbers (in order) :
adjustment number
/SUBSEQUENT running total
effective indentation

from temporary storage.

U = /UNIT NC = /NOCOMPRESS NO = /NOOVERVIEW N# = /NOCOUNT
IP = /INHERIT=PREV IN = /INHERIT=NEXT, IO = /INHERIT=NEITHER
I< = /INHERIT=MINIMUM, I> = /INHERIT=MAXIMUM

Adjustment
number: name use count

1: default 3
2: default blank 0
3: 2
4: BEGIN 1
5: END 1

Customizing Overviews 17-25

The information in this buffer explains the following:

• The first line used adjustment #3 (the adjustment for!). This adjustment
includes a /UNIT qualifier. This line's effective indentation is 0 because
its visible indentation is 1 and its adjustment includes /CURRENT=-1.

• The second line used adjustment #4 (the adjustment for BEGIN).
This adjustment includes a /NOCOMPRESS qualifier. This line's
effective indentation is 1. The adjustment for this line also includes
/SUBSEQUENT=2, so the /SUBSEQUENT running total for the next
line is 2.

• The third line used the default adjustment (adjustment #1) because its
text does not match the pattern of any defined adjustment. This line's
effective indentation is 3 because its visible indentation is 1 and the
running total of /SUBSEQUENT values is 2.

• The fourth and sixth lines are similar to the third line.

• The fifth line used the same adjustment as the first line. Since the
running total of /SUBSEQUENT values is 2 when you reach this line, its
effective indentation is 3.

• The seventh line used adjustment #5 (the adjustment for END). This
line's effective indentation is 2. Its visible indentation is 1. This is
adjusted by the /SUBSEQUENT running total of 2, and the adjustment
qualifier /CURRENT= -1. The calculation is: 1 + 2 - 1 = 2.

You can judge the quality of your definitions by looking at the relative
indentation of the lines. A line hides all the lines that follow it until a line
occurs that has the same or less indentation. In this example: the first
comment hides all the other lines; the second comment hides only one line;
and none of the assignment lines hide any lines.

When some lines have an adjusted indentation that is negative, the display
is appropriately altered.

17-26 Customizing Overviews

Chapter 18

Customizing Reports

This chapter provides guidance for those who need to customize reports or
create new reports. Section 18.1 is an introduction. Section 18.2 describes
how the REPORT command invokes VAXTPU. Section 18.3 describes how
the reports are organized. Section 18.4 describes how to customize 2167A
reports.

18.1 Introduction

The SCA command REPORT uses the VAX Text Processing Utility
(VAXTPU) to generate reports. You can customize the reports and/or
create your own reports by writing additional VAXTPU routines. You can
access the VAXTPU source files for the SCA command REPORT in the
SYS$LIBRARY directory.

Customizing reports requires that you understand how to invoke V AXTPU
procedures. You should study the VAXTPU code provided by Digital and
then make minor changes by modifying that code. With experience, you can
write complete reports from scratch.

The VAXTPU procedures use the SCA callable interface. See the appendix
that describes the SCA callable interface in the VAX Language-Sensitive
Editor and VAX Source Code Analyzer Reference Manual. You must
understand the callable interface in order to retrieve SCA data for your
reports.

The interface between VAXTPU and SCA is built into the version of
VAXTPU that is embedded in LSE. Therefore, you must use LSE for access
to the VAXTPU/SCA interface, even if you do not use LSE for other editing
tasks. You cannot use the version ofVAXTPU provided with VMS for this
purpose.

Customizing Reports 18-1

18.2 How the REPORT Command Invokes VAXTPU

When you issue the REPORT command, SCA first checks to see whether
or not LSE has been activated, and if necessary, activates LSE. Then
the command is parsed and a number of global VAXTPU variables are
initialized, based on the settings of the qualifiers and parameters on the
command. Table 18-1 shows these variables and their defaults.

Table 18-1 : VAXTPU Variables

Variables Values

SCA$REPORT_NAME The name of the report. There is no default
value.

SCA$REPORT_DOMAIN_QUERY The name of the query to use as the domain
for the report, as a string. The default for
this is the null string, which by convention
implies that the entire SCA database is the
domain.

SCA$REPORT_TARGET The type of target file to produce. The
default value for this is the null string.
The interpretation of this depends upon the
particular report being produced.

SCA$REPORT_FILL The setting of the /FILL qualifier. This
value can be either the integer 1, for true,
or the integer 0, for false. The default value
is 1, meaning that FILL is turned on for
those reports for which it is meaningful.

SCA$REPORT_OUTPUT The output file for the report.' The default
value is the null string, which by convention
is interpreted to mean that the report name
is used as the file name, while the file type
is implied by the target type.

SCA$REPORT_REST_OF_LINE The remainder of the REPORT command
line. This is a single string. The

18-2 Customizing Reports

default value is the empty string. The
interpretation of this value depends upon
the particular report being produced.

(continued on next page)

Table 18-1 (Cont.): VAXTPU Variables

Variables

SCA$REPORT_HELP _LIBRARY

SCA$REPORT_LANGUAGES

Values

The name of the help library to use as the
value of the /HELP _LIBRARY qualifier
on all DEFINE PACKAGE commands
generated by this report. This value is used
only by the PACKAGE report and is ignored
for other reports. If omitted, the PACKAGE
report will omit the /HELP _LIBRARY
qualifier from any DEFINE PACKAGE
commands it generates.

A list of one or more languages to use as
the value of the /LANGUAGE qualifier
on all DEFINE PACKAGE commands
generated by this report. This value is
used only by the PACKAGE report and is
ignored for other reports. If omitted, the
PACKAGE report inserts a placeholder
for the value of the /LANGUAGE qualifier
on the DEFINE PACKAGE commands it
generates. You must then replace that
placeholder manually before you can use
the DEFINE PACKAGE command.

Reports supplied by Digital inspect the value of SCA$REPORT_DOMAIN_
QUERY to see whether or not it is empty. If it is empty, then the entire
SCA database is used as the domain for the report. If it is not empty, it
is presumed to be the name of an SCA query that was· qualified by the
SCA query attributes SYMBOL=FILE AND OCCURRENCE=COMMAND.
(Refer to the appendix that describes SCA query expressions in the VAX
Language-Sensitive Editor and VAX Source Code Analyzer Reference Manual
for more details on these query attributes.) The report is then limited to just
the programs contained within the files determined by this query.

After these variables have been set, SCA and LSE construct the name of the
VAXTPU procedure that implements the report by concatenating the string
SCA_REPORT_ to the name of the report, as you specified on the REPORT
command.

If you specify REPORT myreport, SCA and LSE look for a VAXTPU
procedure named SCA_REPORT_MYREPORT. If that procedure does not
exist, an error is issued. If it does exist, it is invoked with no parameters.
Thus, if you want to create a new report called myreport, you write a
VAXTPU procedure SCA_REPORT_MYREPORT, taking no parameters, to

Customizing Reports 18-3

implement the report. You get the other information from the REPORT
command by inspecting the values of the VAXTPU variables that were
initialized by SCA and LSE.

For the reports provided by Digital, the SCA_REPORT_xxx routines load
the remainder of the report tool. They do this by checking for the existence
of a known procedure (SCA$REPORT_OUTPUT_MODULE_IDENT),
and if it is not present, load a fixed set of TPU files from
SYS$LIBRARY. These files are described in the next section. If the
SCA$REPORT_OUTPUT_MODULE_IDENT procedure already exists, then
no further loading is performed.

18.3 How Reports are Organized

Source code for the reports are in the SYS$LIBRARY directory. Each
file has a name of the form SCA$REPORT_module.TPU, with the
exception of the file SCA$QUERY_CALLABLE.TPU. As indicated
previously, the top-level routines for each report have a name of the form
SCA_REPORT_report_name. All other routines for the reports provided
by Digital have names of the form SCA$REPORT _routine_name. Digital
suggests that if you want to modify one of the routines furnished by Digital,
you first rename it by changing the dollar sign to an underscore. This is an
iterative process, since all routines that call a changed routine have to be
changed as well.

The files are organized as follows:

• SCA$REPORT_GLOBALS.TPU-This file contains a number of global
constants and variables that are used in the process of generating the
report. In particular, it contains constants that represent the names of
tags that correspond to particular sections of reports.

• SCA$REPORT_INTERNALS.TPU-This file implements the
INTERNALS report.

• SCA$REPORT_2167A_DESIGN.TPU-This file implements the 2167A
report.

• SCA$REPORT_HELP.TPU-This file implements the HELP report.

• SCA$REPORT_PACKAGE.TPU-This file implements the PACKAGE
report.

• SCA$REPORT_VALIDATE.TPU-This file contains routines that are
used to validate the parameters passed to the reports.

18-4 Customizing Reports

• SCA$REPORT_FORMAT.TPU-This file contains routines that format
output based on the target text processor (VAX DOCUMENT, RUNOFF,
or ordinary text). Each routine dispatches to a lower-level routine based
on the current target.

• SCA$REPORT_FORMAT_DOCUMENT.TPU-This file contains the
routines that format text for VAX DOCUMENT output.

• SCA$REPORT_FORMAT_RUNOFF.TPU-This file contains routines
that format text for RUNOFF output.

• SCA$REPORT_FORMAT_TEXT.TPU-This file contains routines that
format text for ordinary text output. (There are no formatting routines
for the HELP and PACKAGE reports because they do not have distinct
concepts, such as chapters, sections, or headings.)

• SCA$REPORT_OUTPUT.TPU-This file contains generic routines for
inserting text into the output file. The output file is implemented as one
or more VAXTPU buffers, which are merged and written when the entire
report is complete.

• SCA$REPORT_UTILITIES.TPU-This file contains a variety of
general-purpose routines that are used for retrieving design data from
the SCA database.

If you wish to modify parts of one or more of these files, the simplest
approach is to copy the relevant files from SYS$LIBRARY into a personal
directory and make the changes you want. Then, by defining logical names
for the modified files, you can get the SCA_REPORT _ routines to load your
modified version.

For example, suppose you want to add a new tag called DEVELOPERS, and
change the reports so that DEVELOPERS is treated synonymously with the
AUTHORS tag. Simply defining the tag, as described in Section 12.5, does
not tell the reports how to interpret the tag. To make the change for the
report, you copy over the SCA$REPORT_GLOBALS.TPU file. In that file
there is a set of tag synonym definitions. The one for the AUTHORS tag
looks similar to the following:

Tag synonyms: These let us have several different tags that
map onto the same section of a report. For example, AUTHOR and
AUTHORS are synonyms, as are FORMAL PARAMETERS and FORMAL
ARGUMENTS.

CONSTANT
sca$report_authors .

' ("AUTHOR"'
+'OR "AUTHORSrl)',

Customizing Reports 18-5

You could change this to be the following:

CONSTANT
sca$report_authors :=

'("AUTHOR"'
+ 'OR "AUTHORS"'
+'OR "DEVELOPERS")',

Then define (at the DCL level) the logical name SCA$REPORT_GLOBALS
to point at the new version of the file. When you run the reports, your
version of this file is loaded. When the report code generates the AUTHORS
section of the report, it creates an SCA query from the following TPU string:

'SYMBOL=TAG AND ' + sca$report_authors

This evaluates to the following SCA query expression:

SYMBOL=TAG AND ("AUTHOR" OR "AUTHORS" OR "DEVELOPERS")

For more complicated changes to the report tool, read the source code as
provided by Digital.

18.4 Customizing 2167A Reports

Because the relationships between your program design or code and the
DOD 2167A Software Design Document are highly dependent upon policies
and procedures established at your site, it is expected that you will need to
customize the report.

In this section, three simple types of customizations are presented. The
first example adds a section to a report. The next example shows how you
can generate the INPUT/OUTPUT section of a report automatically from
data declarations in the code, instead of getting the information directly
from comment tags. The final section shows how to change the mapping of
UNITS to files to mapping UNITS to packages.

18.4.1 Adding a Section to a 2167 A Report

In the case of the 2167 A design reports, sections for components are
written by the TPU procedure SCA$REPORT_2167A_DESIGN_BODY.
Sections for units are written by the TPU procedure
SCA$REPORT_2167A_UNITS. These routines are contained in
SYS$LIBRARY:SCA$REPORT_2167 A_DESIGN. TPU.

18-6 Customizing Reports

Each of these routines uses a pair of TPU arrays to determine
the sections to write. The arrays are initialized in the procedure
SCA$REPORT_2167A_GLOBALS_INITIALIZE, which is contained in
the file SYS$LIBRARY:SCA$REPORT_GLOBALS.TPU.

One array is used to contain the names of relevant tags. The other contains
the title strings to output as the heading for the corresponding section of the
report.

For units, the arrays are called SCA$REPORT_2167A_UNIT_
SECTION_HEADINGS, and SCA$REPORT_2167A_UNIT_TAGS. For
components, the arrays are called SCA$REPORT_2167 A_ COMPONENT_
SECTION_HEADINGS, and SCA$REPORT_2167A_COMPONENT_TAGS.

If you wanted to add a section called PERFORMANCE CONSIDERATIONS
for units, you would begin by defining a UNIT PERFORMANCE
CONSIDERATIONS tag by using the DEFINE TAG command, as follows:

DEFINE TAG "UNIT PERFORMANCE CONSIDERATIONS"/TYPE=TEXT -
/LANGUAGE=your_language

You can also modify your LSE templates to make this tag available at an
appropriate point in the comment header.

Next, you edit the SCA$REPORT_GLOBALS file to add the tag and the
corresponding section heading to the appropriate arrays. If you look in the
SCA$REPORT_2167A_GLOBALS_INITIALIZE procedure, you will find a
sequence of assignment statements for the arrays corresponding to units.
Each set looks similar to the following:

sca$report_2167A_unit_section_headings {section_index}
:= 'Heading to use for the item';

sca$report_2167A_unit_tags {section_index}
:='("TAG TO USE FOR THE ITEM")';

section_index := section_index + 1;

Simply add three more statements for the section you want to add, as
follows:

sca$report_2167A_unit_section_headings {section_index}
:= 'Performance considerations';

sca$report_2167A_unit_tags {section_index}
:='("UNIT PERFORMANCE CONSIDERATIONS")';

section_index := section_index + 1;

Digital recommends that you use distinct names for tags at the component
and unit level. In this case PERFORMANCE CONSIDERATIONS would be
an appropriate tag to use at the component level. Since the correct level for
section headings is apparent from the context in the report output, it is not
necessary to use distinct section headings, although you may do so.

Customizing Reports 18-7

18.4.2 Using Program Code For Report Information

As supplied by Digital, the 2167A design report does not use any of the
declarations in your design or code for its data; only tag information is used.
Depending on your particular needs, it may be quite reasonable for you
to use declarations for some sections of the report. The following example
shows how you can get the INPUT/OUTPUT DATA ELEMENTS section for
a given unit by using your knowledge of the relationship between program
elements and the 2167 A concept.

For the purpose of this example, suppose that you are using a language such
as Ada or Pascal, where imported and exported data are explicitly declared.
In Ada, this is done with packages. In Pascal it is done with GLOBAL and
EXTERNAL attributes. Either way, SCA can identify such data with the
following query expression:

SYMBOL=VARIABLE AND OCCURRENCE=DECLARATION AND DOMAIN=MULTI_MODULE

If this is precisely the set of data you want to identify as INPUT/OUTPUT
DATA ELEMENTS for each unit, the question now is twofold: How do you
locate the data for a given unit? How do you put out the information for
that data?

By looking at the TPU procedure that is responsible for writing unit
data, SCA$REPORT_2167A_UNITS, you can determine that units are
identified by their file name, which is available in the local TPU variable
unit_file_name. Thus, the following TPU expression creates a string with
the appropriate SCA query expression.

'SYMBOL=VARIABLE AND OCCURRENCE=DECLARATION ' -
+ 'AND DOMAIN=MULTI_MODULE AND FILE= ' + unit_file_name

This is the basic idea behind the report tool, namely the generation of SCA
query expressions that correspond to meaningful sets of data.

Having identified the correct query expression, you must create the query in
the TPU code, walk through all occurrences found by the query, and write
something reasonable for each occurrence. To do this, use the SCA callable
interface, a subset of which is available directly in TPU. (See the appendix
describing the SCA callable interface in the VAX Language-Sensitive Editor
and VAX Source Code Analyzer Reference Manual for details.) Queries
must be initialized, parsed, found, and cleaned up. Thus, the following code
fragment is a suitable outer shell:

18-8 Customizing Reports

sca$query initialize(
lse$sca_cornmand_context, Always use this when initializing

queries from TPU
input output query);

sca$query=parse(
input_output_query,
'SYMBOL=VARIABLE AND OCCURRENCE=DECLARATION '
+' AND DOMAIN=MULTI MODULE AND FILE=' + unit_file_name);

sca_status := sca$query_find (input_output_query);

IF NOT INT (sca_status)
THEN

! No input/output data was found
!
sca$report start header document

csc le~el + 2, -, Headings for units are two levels deeper
- ! than headings for the component (CSC)

'INPUT/OUTPUT DATA ELEMENTS');
sca$report_paragraph ('No Input/Output data elements were found')

ELSE
! We found some. Let's loop through them.

LOOP
sea status :=

-sca$query get occurrence
input-output query,
input=output=query_entity);

EXITIF NOT INT (sca_status);
«Write appropriate data»

END LOOP
ENDIF;
sca$report_cleanup(input_output_query);

Depending on exactly what information you want to write, you can get
suitable information by using an SCA containment operation to find tags
that are associated with the declaration of this item, or by using an SCA
typing operation to find the type of the item.

18.4.3 Changing the Mapping of Files

The 2167A design report implements the mapping of files to units via SCA
queries, in the procedure SCA$REPORT_2167A_UNITS, contained in file
SYS$LIBRARY:SCA$REPORT_2167 A_DESIGN. TPU. This procedure takes
as its parameters the name of the current component, and the heading level
for the component. (The heading level is used to insure that chapter and
section headings in the output are numbered correctly. It is not relevant to
the discussion that follows.) The procedure constructs an SCA containment
query using the component name to determine the units of the query, and
then steps through the units.

Customizing Reports 18-9

The key principle is that the connection between program elements and
2167 A concepts is created by building an SCA query and walking through
it. In some cases, the result of the SCA query exactly matches the 2167 A
concept you want, in which case every occurrence found by the query is
reported. In more complicated cases, the occurrences in the query must be
filtered further. The occurrences in the query can be :filtered by doing one or
more of the following:

• Asking SCA for some of the attributes of the occurrence

• Asking SCA for tags that are associated with the occurrence

• Using the SCA information to locate the source position and looking for
further information at that point in the source file

• Using naming conventions

• Applying other particular knowledge you may have about the
organization and relationships of your code

In this case, the query that is constructed by this procedure is as follows:

CONTAINED_BY (-
END = "UNIT OF" AND SYMBOL=TAG, -
BEGIN = component_name AND SYMBOL=KEYWORDS, -
DEPTH = 1, -
RESULT =BEGIN);

This query returns all occurrences of the component name that is contained
by the UNIT OF tag. That is, it returns all occurrences that look like the
following:

-- UNIT OF: component_name

This locates the units that are associated with the given component_name,
but does not identify the program structure that is the unit. As
shipped, the 2167 A design report identifies that program structure
as the file containing the occurrence. The :fj.le name is determined
by the routine SCA$REPORT_GET_FILE_FROM_ENTITY (from
SYS$LIBRARY:SCA$REPORT_UTILITIES.TPU). Then, for each relevant
tag in the unit, a query of the following form is computed to find the text
related to the tag for this unit:

SYMBOL=TAG AND specific_tag_name AND FILE=unit_file_name

This is done implicitly by the routine SCA$REPORT_ WRITE_TAGS_
SUBSECTION (also in SYS$LIBRARY:SCA$REPORT_UTILITIES.TPU). A
string of the form FILE=unit_file_name and a string containing a particular
tag of interest are passed to this routine, which then looks for the tag inside
the file and writes the appropriate section if the tag is found.

18--10 Customizing Reports

If, instead of basing units on files, you want to base them on packages,
you need to create a query that determines the package in which the
UNIT OF tag occurred. First, you must build a query that represents the
single occurrence of the UNIT OF tag that is of interest. Assuming that
the current occurrence of the UNIT OF tag is indicated by the variable
unit_entity, the following TPU code fragment creates the query and gets its
name:

SCA$QUERY INITIALIZE (lse$sca command context, unit entity query);
SCA$SELECT ENTITY (unit entity query,-unit entity);- -
SCA$QUERY_GET_NAME(unit=entity=query, unit=entity_query_name);

Now you can build the query that determines the associated package. Use
the following TPU code fragment:

SCA$QUERY INITIALIZE (lse$sca command context, package_query);
SCA$QUERY=PARSE (-

package_query,
'CONTAINED _BY ('

+ 'END= SYMBOL=MODULE AND OCCURRENCE=DECLARATION,'
+ 'BEGIN= @' + unit_entity_query_name + ','
+ 'DEPTH=l, '
+ 'RESULT=END');

IF NOT INT SCA$QUERY_FIND(package_query)
THEN

ELSE

This UNIT OF occurrence is not directly contained by a PACKAGE.
« Take appropriate other action »

We have the package that contains this UNIT OF occurrence.
Get the occurrence of this package

SCA$QUERY GET OCCURRENCE (package query, package entity);
SCA$QUERY-INITIALIZE (lse$sca command context, p~ckage entity query)
SCA$QUERY=SELECT_OCCURRENCE (package_entity_query, package_entity);
SCA$QUERY GET NAME (package entity query, package entity query name);
unit_query_expression := package_entity_query_name; - -
«Write the sections corresponding to this package »

END IF

Note that once the package has been found, you must use SCA$QUERY_
SELECT_OCCURRENCE to create a ~query that contains just
that occurrence. You must also determine the name of that query.
In this case, the routine that writes out individual sections,
SCA$REPORT_ WRITE_TAGS_SUBSECTION, takes the name of the
query that refers to the package_entity _query _name package as its first
parameter and looks for the given tags inside that query. Thus, instead of
building the preceding query, SCA$REPORT_ WRITE_TAGS_SUBSECTION
builds a query of the following form:

Customizing Reports 18-11

CONTAINED BY (-
END =-@package_entity_query_name, -
BEGIN = specific_tag_name AND SYMBOL=TAG, -
DEPTH = 1, -
RESULT= BEGIN);

You can construct much more complicated reports by using the SCA callable
interface and the report tool procedures, while relying on particular
conventions or knowledge of your own code. If you want to do advanced
report customizations, read the TPU files for the report tool with names of
the form SCA$REPORT_*.TPU in SYS$LIBRARY.

18-12 Customizing Reports

A
2167 A report

adding a section to, 18-6
customizing, 18-6

2167 A_DESIGN report
changing the mapping of files, 18-9
definition of, 12-20
describing structure in code, 12-21
format, 12-16
retrieving structure information, 12-23

ABSTRACT tag, 12-16
Adjusting multiple lines, 17-6
/AFTER qualifier, 10-4
ALGORITHM tag, 12-5
Alias

defining, 5-8, 13-4
expanding, 5-8, 13-4

ALIGN command, 5-11
/ANALYSIS_DATA qualifier, 6-4, 12-10
ANALYZE command, 6-6
Analyzing designs, 12-10
Application window, 4-2
/ASSOCIATED qualifier, 7-8
Auto_substitute feature, 2-11
/AUTO_SUBSTITUTE qualifier, 15-17

B
/BEFORE qualifier, 10-3
Blank lines, 17-10
Blank space, 17-16
Bracketed comments, 17-13
/BRIEF qualifier, 10-11
Buffer

See also System buff er

Buffer (Cont.)

definition of, 3-1
manipulating, 3-5, 4-14
multiple, 3-1, 4-11, 4-12
searching through, 3-9
user (figure), 4-6

Buffer attributes
AUTO_ERASE, 3-5
current direction, 3-2
current indentation, 3-4
defining, 13-5
input/output file, 3-3
languages, 3-4
modifiable/unmodifiable, 3-3
names, 3-2
overview, 3-4
prompt settings, 2-6, 13-11
read-only/write, 3-3
tab settings, 3-4
text-entry modes, 3-2

Buffer-change journal file, 3-18
Buffer manipulation commands

CHANGE DIRECTION, 3-5
CHANGE TEXT _ENTRY _MODE, 3-5
GOTO BUFFER, 3-5
GOTO FILE, 3-5
GOTO SOURCE, 3-5
SET AUTO_ERASE, 3-5
SET FORWARD, 3-5
SET INDENTATION, 3-5
SET INSERT, 3-5
SET LANGUAGE, 3-6
SET MODIFY, 3-6
SET NOAUTO_ERASE, 3-6
SET NOMODIFY, 3-6
SET NOWRAP, 3-6

Index

lndex-1

Buffer manipulation commands (Cont.)

SET OUTPUT _FILE, 3-6
SET OVERSTRIKE, 3-6
SET OVERVIEW, 3-6
SET REVERSE, 3-6
SET TAB_INCREMENT, 3-6
SET WRAP, 3-6
SHOW BUFFER, 3-6

Buffer states
modifiable/read-only, 3-3
modifiable/write, 3-3
unmodifiable/read-only, 3-4
unmodifiable/write, 3-4

c
/CAPABILITIES qualifier, 15-10
CHANGE DIRECTION command, 3-5
CHANGE TEXT_ENTRY _MODE command, 3-2, 3-5
CHANGE WINDOW_MODE command, 3-8
/CHARACTERISTICS

qualifier, 11-3
type options, 11-7

CMS Integration
See VAX DEC/CMS

COLLAPSE command, 3-20
Collapsing program source, 3-19
COLUMN pattern element, 17-15
Command file, 2-32

creating, 13-11
definition of, 13-11
example file, 13-14
using, 13-12

Command line
file specification, 2-30
for LSE, 2-30

Command line mode, 2-6
Command prompts

DECwindows LSE, 4-3
LSE>, 2-6, 3-7
LSE Command>, 2-6
settings, 2-6, 13-11
TPU>, 13-10

/COMMAND qualifier, 2-32, 13-12
Command region, 4-2, 4-3
Commands

ALIGN, 5-11
binding to keys, 13-3
CHANGE DIRECTION, 3-5
CHANGE TEXT _ENTRY _MODE, 3-5
CHANGE WINDOW_MODE, 3-8

lndex-2

Commands (Cont.)

COMPILE, 3-12
DEFINE ADJUSTMENT, 17-3
DEFINE KEYWORD, 12-11, 12-12
DEFINE LANGUAGE, 15-3
DEFINE PACKAGE, 12-18, 15-28
DEFINE PARAMETER, 12-18, 15-28
DEFINE PLACEHOLDER, 15-4
DEFINE ROUTINE, 12-18, 15-28
DEFINE TAG, 12-12
DEFINE TOKEN, 15-7
defining, 13-4
DELETE WINDOW, 3-8
DO, 15-25
ENTER COMMENT, 12-6
ENTER COMMENT/BLOCK, 2-8, 5-6, 12-7
ENTER COMMENT/LINE, 2-8, 5-6, 12-7
ENTER PSEUDOCODE, 2-8, 5-5, 12-6, 12-7
ERASE PLACEHOLDER, 2-8
EXPAND, 2-8
FILL, 15-12
for viewing code

COLLAPSE, 3-20
EXPAND/DEPTH=1, 3-20
EXPAND/DEPTH=ALL, 3-20
FOCUS, 3-20
VIEW SOURCE, 3-20

GOTO BUFFER, 3-5, 3-8
GOTO FILE, 3-5, 3-8, 3-15
GOTO PLACEHOLDER/FORWARD, 2-8
GOTO PLACEHOLDER/REVERSE, 2-8
GOTO SOURCE, 3-5, 3-15
INCLUDE, 3-15
issuing

keypad mode, 2-5
line mode, 2-6

NEXT WINDOW, 3-8
PREVIOUS WINDOW, 3-8
READ, 3~15
RECOVER BUFFER, 3-18
related to diagnostic file support

END DIAGNOSTIC, 16-7
END MODULE, 16-8
MESSAGE/FILE, 16-9
MESSAGE/TEXT, 16-10
REGION/FILE, 16-12
REGION/LIBRARY, 16-15
REGION/NESTED, 16-18
REGION/TEXT, 16-20
START DIAGNOSTIC, 16-22
START MODULE, 16-23

Commands (Cont.)

related to VAX DEC/CMS
CMS [ems-command], 3-15
GOTO FILE, 3-15
GOTO SOURCE, 3-15
INCLUDE, 3-15
READ, 3-15
REPLACE, 3-15
RESERVE, 3-15
SET CMS, 3-15
UNRESERVE, 3-15

REPLACE, 3-16
REPORT, 12-15, 18-1
RESERVE, 3-16
SAVE ENVIRONMENT, 12-12, 15-25
SCA, 6-7
SET AUTO _ERASE, 3-5
SET CMS [ems-command], 3-15
SET FORWARD, 3-5
SET INDENTATION, 3-5
SET INSERT, 3-5
SET LANGUAGE, 3-6
SET MODE KEYPAD, 2-3
SET MODIFY, 3-6
SET NOAUTO_ERASE, 3-6
SET NOWRAP, 3-6
SET OUTPUT _FILE, 3-6
SET OVERSTRIKE, 3-6
SET OVERVIEW, 3-6
SET REVERSE, 3-6
SET SCREEN, 3-8
SET TAB_INCREMENT, 3-6
SET WRAP, 3-6
SHOW BUFFER, 3-6
SHOW TAGS, 12-16
SPLIT WINDOW, 3-8
TWO WINDOWS, 3-8
UNERASE PLACEHOLDER, 2-8
UNEXPAND, 2-8
UNRESERVE, 3-16
VIEW SOURCE/DEBUG, 17-3

Comment block
definition of, 12-11

/COMMENT qualifier, 12-15, 15-10
Comments

See also Tagged comments
aligning, 5-1 O
block

defintion of, 12-11
bracketed, 5-10, 17-13
creating from pseudocode, 5-5

Comments (Cont.)

defining syntax for, 15-1 O
expressing design information in, 12-1 O
filling, 5-10
fixed, 17-14
from pseudocode placeholders, 2-21
grouping lines, 17-13
line, 5-10
Line, 15-10
trailing, 5-1 O

/COMMENT_COLUMN qualifier, 5-11
COMPILE command, 2-23, 2-24, 3-12
COMPILE/REVIEW command, 2-24
/COMPILE_COMMAND qualifier, 15-11
COMPONENT OF tag, 12-21, 12-22
COMPONENTS

definition of, 12-21
COMPONENT tag, 12-21, 12-22
COMPONMENT DESCRIPTION tag, 12-24
/CONFIRM qualifier, 10-13
/CONTEXT_DEPENDENT qualifier, 7-8
CREATE LIBRARY command, 10-3
/CREATE qualifier, 2-32
Creating designs with PDF, 12-2
Creating INTERNALS reports, 12-19
Creating LSE package definitions, 12-18
Creating online HELP, 12-17
/CURRENT qualifier, 17-4
/CURRENT_FILE qualifier, 2-33
Customizing DECwindows LSE menus

See Menu Extension Service
Customizing overviews, 17-1
Customizing reports, 18-1
Customizing windows, 13-7

D
Data declarations

designing, 12-7
Debugging adjustment definitions, 17-24
/DEBUG qualifier, 2-33
DECwindows LSE, 2-38

accessing files, 4-5
application window, 4-2
command region, 4-3
HELP

accessing, 4-4
invoking, 4-1
menu bar, 4-2
message region, 4-3
modifying, 13-11

lndex-3

DECwindows LSE (Cont.)

opening a file, 4-5
overview, 4-1
screen format, 4-2
status line, 4-3
using filter, 4-12
work region, 4-3

Defaults
overriding, 3-14
setting, 3-13

DEFINE ADJUSTMENT command, 12-25, 17-3,
17-23

DEFINE ALIAS command, 5-8, 13-4
See also Alias

DEFINE COMMAND command, 13-4
DEFINE KEY command, 13-2

See also Keys
DEFINE KEYWORD command, 12-11, 12-12
DEFINE LANGUAGE command, 15-10

coding rules, 15-2
example definition, 15-3, 15-1 O

DEFINE PACKAGE command, 12-18, 15-28
DEFINE PARAMETER command, 12-18, 15-28
DEFINE PLACEHOLDER command, 15-4, 15-13
DEFINE ROUTINE command, 12-18, 15-28
DEFINE TAG command, 12-12
DEFINE TOKEN command, 13-8, 15-7
Defining a package, 15-28
Defining a text template, 15-1
Defining buffer attributes, 13-5
Defining language elements, 15-13
Defining your own languages, 15-1
DELETE LIBRARY command, 10-7
DELETE MODULE command, 10-12
/DELETE qualifier, 10-7
DELETE QUERY command, 7-17
DELETE TOKEN command, 13-8
DELETE WINDOW command, 3-8
Delimiters, 15-3, 15-12
Describing 2167 A structure in your code, 12-21
/DESCRIPTION qualifier, 15-5, 15-7, 15-14
/DESIGN=(COMMENT) qualifier, 12-8
/DESIGN=(PLACEHOLDER) qualifier, 12-8
Designing data declarations, 12-7
Designing routine declarations, 12-4
/DESIGN qualifier, 12-8, 12-10
Design support

See Program Design Facility (PDF)
Detailed line

definition of, 17-1
Diagnostic file support, 2-23

lndex-4

Diagnostic file support (Cont.)
definition of, 16-1
format, 16-1

Digital internal-file, 16-1
user-file, 16-1

command descriptions, 16-6
example, 16-2

Diagnostics
See also Diagnostic file support, 16-1

Dialog box
Extend Menu, 14-1
Find, 4-7
Indentation, 4-1 O
Open, 4-5, 4-12
replace, 4-9

Directory
locating multiple, 3-12
modifiable, 3-12
overriding, 3-14
read-only, 3-13
searchlist, 3-12
setting defaults, 3-13

. /DISPLAY qualifier, 2-33
DO command, 13-3, 13-4, 13-10, 15-25
DOD-STD-2167 A

See 2167 A_ DESIGN report
/DUPLICATION qualifier, 15-6, 15-17

E
Editing Overviews, 3-24
EDT, 2-23
END DIAGNOSTIC command, 16-7
END MODULE command, 16-8
END REVIEW command, 2-24, 2-29
ENTER COMMENT/BLOCK command, 2-8, 2-9, 5-6,

12-7
ENTER COMMENT command, 12-6
ENTER COMMENT/LINE command, 2-8, 2-9, 5-6,

12-7
ENTER PSEUDOCODE command, 2-8, 2-9, 5-5,

12-6, 12-7
Environment

LSE and SCA integration, 1-5
multilanguage, 1-5
tools integration, 1-3, 1-6

Environment file, 2-34
adjustment definitions, 17-3
creating, 13-15, 15-1, 15-8, 15-25
description of, 13-14
saving, 15-25

Environment file (Cont.)

using, 13-16, 15-25
/ENVIRONMENT qualifier, 2-34, 13-16
ERASE command, 2-9
ERASE PLACEHOLDER command, 2-8, 2-9
Error correction and review, 2-1
Error Messages

error-level, 11-12
fatal-level, 11-12
informational-level, 11-13
warning-level, 11-13

EXIT command, 2-22, 3-12
Exiting from

SCA, 6-7, 7-18
EXPAND command, 2-8
EXPAND/DEPTH=1 command, 3-20
EXPAND/DEPTH=ALL command, 3-20
Expanding

list placeholder, 2-5
menu placeholder, 2-5, 2-14
nonterminal placeholder, 2-4, 2-10
terminal placeholder, 2-5, 2-19
tokens, 2-18

Expanding program source, 3-19
EXPAND key, 5-3
/EXPAND_CASE qualifier, 15-11
Extend Menu dialog box, 14-1
EXTRACT command; 13-7

F
FACILITY keyword tag, 12-3
Features of LSE, 2-1
File

See Command file
See Environment file
See Initialization file
See Section file
accessing through DECwindows LSE, 4-5, 4-12
accessing through LSE, 3-11
accessing through VAX DEC/Code Management

System, 3-15
Buffer-change journal, 3-18
Changing the mapping of, 18-9
diagnostics, 2-23
Digital internal-file format, 16-1
displaying, 3-11
editing, 3-11
getting, 3-11
keystroke journal, 3-17
locating, 3-12

File (Cont.)

locating multiple directories, 3-12
manipulating, 3-11
user-file format, 16-1
writing, 3-12

/FILE_ TYPES qualifier, 15-3, 15-11
FILL command, 5-11, 15-12
FIND command, 4-18
FIND Command, 6-2
Find dialog box, 4-7
Fixed comments, 17-14
FOCUS command, 3-20
FORMAL PARAMETERS tag, 12-11
FORMFEED pattern element, 17-15
FORTRAN_ COMMENT pattern, 17-21
FORTRAN_FUNCTION pattern, 17-21
FORTRAN_FUNCTION pattern element, 17-15
/FULL qualifier, 10-11
FUNCTIONAL DESCRIPTION tag, 12-16
Function body declaration, 12-4

G
Generating design reports, 12-15
GOTO BUFFER command, 3-5, 3-8
GOTO BUFFER/CRE,ATE command, 3-4
GOTO DECLARATION command, 3-11, 7-7
GOTO FILE command, 3-3, 3-5, 3-8, 3-11, 3-14,

3-15, 13-11
GOTO FILE/READ_ONLY command, 3-3, 3-4
GOTO PLACEHOLDER command, 2-9
GOTO PLACEHOLDER/FORWARD command, 2-8
GOTO PLACEHOLDER/REVERSE command, 2-8
GOTO QUERY command, 7-16
GOTO SOURCE command, 2-24, 2-26, 3-3, 3-4,

3-5, 3-11, 3-13, 3-15
Group

definition of, 17-1
Grouping comment lines, 17-13

H
HELP

DECwindows LSE
accessing, 4-4

LSE
accessing, 2-2, 2-7
command, 2-7
keypad layout, 2-7
language-specific, 2-7

online, 2-2

lndex-5

HELP (Cont.)

SCA
accessing, 7-2

HELP report
definition of, 12-17
format, 12-16

/HELP _LIBRARY qualifier, 15-11
/HIDDEN qualifier, 10-12

IDENTIFIER pattern element, 17-15
/IDENTIFIER_CHARACATERS qualifier, 15-3
/IDENTIFIER_CHARACTERS qualifier, 15-11
INCLUDE command, 3-11, 3-13
Indentation

adjusted, 17-2
conventions, 17-1
inheriting, 17-9
language without, 17-8
visible, 17-2, 17-9

Indentation control, 15-26
Indentation dialog box, 4-1 O
/INDICATED qualifier, 7-7
/INHERIT qualifier, 17-9, 17-14
Initialization, 13-1

LSE, 2-34, 13-12
speeding up, 13-14

Initialization file
creating, 13-11
definition of, 13-11
example file, 13-13
using, 13-12

/INITIALIZATION qualifier, 2-34, 13-5, 13-12
Initial string placeholder, 2-9
/INITIAL_STRING qualifier, 15-3, 15-12
INSPECT command

/CHARACTERISTICS
type checking, 11-7

concepts, 11-1
error limits, 11-10
master declarations, 11-3
overview, 11-1
philosophy of checking, 11-2
qualifiers, 11-7
query expressions, 11-2
results as queries, 11-2
routines and common blocks, 11-2
severity levels, 11-9
tailoring, 11-14

using error limits, 11-17

lndex-6

INSPECT command
tailoring (Cont.)

using other techniques, 11-19
using severity levels, 11-15
using the /CHARACTERISTICS qualifier,

11-18
INSPECT Command, 6-3
Integrated programming environment, 2-2
/INTERFACE qualifier, 2-34
INTERNALS report

creating, 12-19
definition of, 12-19, 12-25
format, 12-16
targets

DOCUMENT, 12-19
RUNOFF, 12-19
TEXT, 12-19

Invoking LSE, 2-7, 2-22, 2-30
from VAX Performance and Coverage Analyzer,

2-29
from VMS Debugger, 2-29

Invoking LSE DECwindows, 4-1
issuing

SCA commands, 6-6

J
Journaling

buffer-change, 3-18
Keystroke, 3-17

/JOURNAL qualifier, 2-35

K
Key

defining, 13-2
redefining, 13-2

Keypad
EDT, 2-3, 2-6
EVE, 2-3, 2-6

Keypad mode, 2-6
Keys

EXPAND, 5-3
for buffer manipulation, 3-5
for reviewing compilation errors, 2-23
for screen manipulation, 3-7
for token and placeholder manipulation, 2-8
for viewing code, 3-19

Keystroke journaling, 3-17
Keyword list ·

adding, 12-12

KEYWORDS tag, 12-3
Keyword tag

L

defining, 12-11
definition of, 12-11
FACILITY, 12-3
KEYWORDS, 12-3

Language

See DEFINE LANGUAGE command
redefining, 13-7

/LANGUAGE qualifier, 2-35, 15-5, 15-14
Language-Sensitive Editor

See LSE
Language-specific templates

See Templates
definition of, 2-2

/LEADING qualifier, 15-19
Learn sequence

See DEFINE KEY command
LEFT_MARGIN qualifier, 15-12
library

SCA
displaying module information, 7-3

Library
concurrency, 10-1 O
contents, 6-2
LSE

SCA

subroutine libraries
Record Management System, 5-8
System Services, 5-8

concepts, 10-1
containing design information, 12-9
creating, 10-2
deleting, 10-7
deleting module information, 10-12
directory, 10-2
displaying module information, 10-: 11
displaying specifications, 7-3, 1 0-11
initializing, 10-3
list, 10-8
loading, 10-6
loading design information into, 12-9
maintenance, 10-11
manipulation commmands, 10-2
multiple, 10-7
network Usage, 10-1
optimizing, 10-13

Library
SCA (Cont.)

planning, 10-9
Remote, 10-1
removing, 10-5
selecting, 7-2
specifying, 10-5
verifying and recovering, 1 0-13

VAX DEC/CMS, 3-15
/LIBRARY qualifier, 10-6
Line comment, 15-1 O
LINE_END pattern element, 17-15
List placeholder, 2-5

defining, 15-6, 15-17
duplicating, 5-2
typing over, 2-13

LOAD command, 10-6
Loading design information into an SCA library, 12-9
LSE

command line, 2-30
concepts, 2-4
customization, 2-3
exiting from, 2-22
features, 2-1
getting started, 2-3
HELP, 2-2, 2-7
integration

with other VMS tools, 1-6
with SCA, 1-5
with VAX DEC/CMS, 1-6

invoking, 2-7, 2-9
from Debugger, 2-29
from PCA, 2-29

modifying, 13-1
DECwindows, 13-11

overview, 1-2 to 1-4
qualifiers, 2-31

LSE$BLOCK_COMMENT, 5-7
LSE$COMMAND, 2-32, 13-12
LSE$DISPLAY _MANAGER, 2-33
LSE$ENVIRONMENT, 2-34, 12-12, 13-16
LSE$GENERIC, 5-7
LSE$1NITIALIZATION, 2-34, 13-12
LSE$LINE_COMMENT, 5-7
LSE$SECTION, 2-37, 13-16
LSE$SYSTEM_ENVIRONMENT, 12-10
LSE$USER.EXAMPLE, 4-6

M
Menu bar, 4-2

lndex-7

Menu Extension Service, 14-1
adding a new LSE Command entry to a menu,

14-3
storing menu modifications, 14-5

Menu placeholder, 2-5, 2-14, 2-15, 2-17
defining, 5-2, 15-4, 15-6, 15-8, 15-20

MESSAGE/FILE command, 16-9
Message region, 3-6, 3-7, 4-2, 4-3
Messages, 16-2
MESSAGEffEXT command, 16-10
MIL-STD-2167A

See 2167A_DESIGN report
Modifications

DECwindows LSE, 13-11
DECwindows LSE menus, 14-1
LSE, 13-1
overviews, 17-1
reports, 18-1

Modifying DECwindows LSE, 13-11
Modifying LSE, 13-1
/MODIFY qualifier, 2-35
/MODULES qualifier, 1 Q-4
Multiple files

using, 13-17
Multiple windows, 4-11

N
/NEW qualifier, 12-13
NEXT command, 6-3
NEXT QUERY command, 7-17
NEXT STEP command, 2-24, 2-26
NEXT WINDOW command, 3-8
/NOCOMPRESS qualifier, 17-8
Nonterminal placeholder

defining, 5-2, 15-4, 15-8
definition of, 2-4
expanding, 2-10

/NOREPLACE qualifier, 10-6
NUMBER pattern element, 17-15

0
Online HELP Facility, 2-2
Open dialog box, 4-5, 4-12
OPTIONAL_SPACE pattern element, 17-15, 17-16
/OUTPUT qualifier, 2-35
Overview line

definition of, 17-1
example of, 17-2

/OVERVIEW qualifier, 17-9

lndex-8

Overviews
customizing, 17-1

p

debugging adjustment definitions, 17-24
editing, 3-24
finding appropriate text, 17-9
special processing for FORTRAN, 17-20
testing, 17-3

Package
defining, 15-28
example definition, 15-28
HELP, 5-10
modifying, 5-1 O
redefining, 13-7
routine names, 5-9
subroutine libraries, 5-8

PACKAGE report
definition of, 12-18
format, 12-16

Parameter
defining, 15-29
example definition, 15-29

Pattern
matching

basic rules for, 17-14
precedence, 17-17

multiple word, 17-15
pattern parameter, 17-20
rules for pattern strings, 17-19
specifying columns, 17-17
using precedence to hide patterns, 17-18

Pattern element
COLUMN, 17-15
FORMFEED, 17-15
FORTRAN_COMMENT, 17-21
FORTRl4.N_FUNCTION, 17-15, 17-21
IDENTIFIER, 17-15
LINE_END, 17-15
list of named, 17-15
NUMBER, 17-15
OPTIONAL_SPACE, 17-15
PREFIX, 17-11, 17-15

Placeholder
See also Initial string placeholder
aligning, 5-1 O
automatic substitution, 2-11, 15-17
body, 15-4, 15-14
defining, 2-10, 5-1, 15-4
definition of, 2-4

Placeholder (Cont.)
deleting, 2-12
delimiters, 2-4, 2-8, 5-2, 15-3, 15-12
duplicating, 5-2, 15-6, 15-17
example definitions, 15-4, 15-13
expanding nonterminal, 2-4
indentation control, 15-26
list, 2-5

See List placeholder
manipulating, 2-8, 5-2
menu, 2-5, 2-14

See Menu placeholder
nonterminal

See Nonterminal placeholder
definition of, 2-4
expanding, 2-10

optional, 5-2
pseudocode, 2-5,2-20

See Pseudocode placeholder
definition of, 5-4

redefining, 13-7
required, 5-2
terminal, 2-5, 2-19

See Terminal placeholder
Placeholder definitions

modifying, 5-2
storing, 5-3

Placeholders
menu, 15-4
nonterminal, 15-4
terminal, 15-4

/PLACEHOLDER_DELIMITERS qualifier, 15-12
/PLACEHOLDER_DELIMITERS qualifiers, 15-3
Pop-up menu

query buffer, 4-20
review buffer, 4-17
user buffer, 4-8

Prefixes, 17-11
PREFIX pattern element, 17-11, 17-15
/PREFIX qualifier, 17-11
Preserving designs as a fixed reference point, 12-9
Preventing text compression, 17-8
PREVIOUS command, 6-3
PREVIOUS QUERY command, 7-17
PREVIOUS STEP command, 2-24, 2-26
PREVIOUS WINDOW command, 3-8
/PRIMARY qualifier, 7-8
Procedure body declaration, 12-4
Processing designs, 12-8
Processing pseudocode, 5-7
Program Design Facility

Program Design Facility (Cont.)
See PDF

Program Design Facility (PDF), 2-2
analyzing designs, 12-10
collapsing program source, 3-19
creating designs, 12-2
expanding program source, 3-19
generating design reports, 12-15
loading design information into an SCA library,

12-9
processing designs, 12-8
refining designs, 12-6
reverse-engineering a design, 12-25

Program Design Language
See POL

Program Design Language (POL), 12-1
Prompt region, 3-6, 3-7

See also Command prompts
Pseudocode

creating comment text from, 5-5
entering, 2-5, 2-20
example of, 12-5, 17-2
moving, 2-21
processing, 5-7
typing, 5-5
writing the algorithm design, 12-6

Pseudocode placeholder, 2-5
defining, 5-2
definition of, 5-4
example of, 5-4

/PUNCTUATION_CHARACTERS qualifier, 15-4,
15-12

Q
qualifier

/CHARACTERISTICS, 11-3
type options, 11-7

Qualifier
/ANALYSIS_DATA, 12-10
/AUTO_SUBSTITUTE, 15-17
/CAPABILITIES, 15-10
/COMMAND, 2-32
/COMMENT, 12-15, 15-10
/COMMENT _COLUMN,. 5-11
/COMPILE_COMMAND, 15-11
/CREATE, 2-32
/CURRENT, 17-4
/CURRENT _FILE, 2-33
/DEBUG, 2-33
/DESCRIPTION, 15-5, 15-7, 15-14

lndex-9

Qualifier (Cont.)

/DESIGN, 12-8, 12-10
/DESIGN=(COMMENT), 12-8
/DESIGN=(PLACEHOLDER), 12-8
/DISPLAY, 2-33
/DUPLICATION, 15-6, 15-17
/ENVIRONMENT, 2-34
/EXPAND_CASE, 15-11
/FILE_TYPES, 15-3, 15-11
/HELP _LIBRARY, 15-11
/IDENTIFIER_CHARACTERS, 15-3, 15-11
/INHERIT, 17-9
/INITIALIZATION, 2-34
/INITIAL_STRING, 15-3, 15-12
/INTERFACE, 2-34
/JOURNAL, 2-35
/LANGUAGE, 2-35, 15-5, 15-14
/LEADING, 15-19
/LEFT_MARGIN, 15-12
/MODIFY, 2-35
/NEW, 12-13
/NOCOMPRESS, 17-8
/OUTPUT, 2-35
/OVERVIEW, 17-9
/PLACEHOLDER_DELIMITERS, 15-3, 15-12
/PREFIX, 17-11
/PUNCTUATION_CHARACTERS, 15-4, 15-12
/QUOTED_ITEM, 15-13
/READ_ONLY, 2-36
/RECOVER, 2-36
RIGHT_MARGIN, 15-12
/SECTION, 2-37
/SEPARATOR, 15-17
/START _POSITION, 2-37
/SUBSEQUENT, 17-6
/SYSTEM_ENVIRONMENT, 2-37
/TAB_INCREMENT, 15-3, 15-13
/TOKEN, 15-20
/TOPIC_STRING, 15-11
/TRAILING, 15-18
/TYPE, 15-7, 15-14
/UNIT, 17-13
/VERSION, 15-13
/WRAP, 15-13
/WRITE, 2-37

Queries
See GOTO DECLARATION command

Query buffer, 4-18
pop-up menu, 4-20

Query Language, 8-1 to 8-22
abbreviation, 9-17

lndex-10

Query Language (Cont.)

attribute selection expressions, 9-5
file specification, 9-1 O
name, 9-6
occurrence, 9-9
symbol class, 9-7
symbol domain, 9-8

concepts, 8-2
current query, 8-11, 9-14
defaults, 9-4
evaluation, 8-2
exclusive-or expressions, 9-11
expand function, 8-6
expansion function, 9-13
features, 8-1
file specification selection, 9-10
function call expressions, 9-11

negation, 9-13
parameter association, 9-12

indicated function, 9-13
individual relationship functions, 9-15
IN function, 8-19, 9-17
intersection expressions, 9-11
logical operators, 8-7
name selection, 9-6
negation function, 9-13
occurrence selection, 9-9
operator expressions, 9-1 O

exclusive-or, 9-11
intersection, 9-11
pathname, 9-1 O
union, 9-11

operators, 9-4
overview, 8-1
parameter association, 9-12
pathname expressions, 9-10
pathnames, 8-19
query usage function, 9-14
relationship examples, 8-21
relationship expressions

nonstructured, 8-14
structured, 8-12

relationship functions, 9-14
relationship parameters, 9-16
relationships, 8-16
rules, 9-1 to 9-18
semantics, 9-5
simple queries, 8-3
symbol class selection, 9-7
symbol domain selection, 9-8
syntax, 9-3

Query Language (Cont.)
tutorial, 8-2
union expressions, 9-11

Query session

See also Queries
See DELETE QUERY command
See GOTO QUERY command
See NEXT QUERY command
See PREVIOUS QUERY command
See SHOW QUERY command
creating, 7-14
current query, 7-14
example, 4-18
multiple, 7-14
navigating

query display, 7-5
QUIT command, 2-22
/QUOTED_ITEM qualifier, 15-13

R
$REMARK tag, 12-12
READ command, 3-11, 3-13, 3-15
/READ_ONLY qualifier, 2-36
Real line

definition of, 17-1
Record Management System, 5-8
RECOVER BUFFER command, 3-18
Recovering from a failed editing session, 3-17
/RECOVER qualifier, 2-36, 10-13
Refining designs with PDF, 12-6
REGION/FILE command, 16-12
REGION/LIBRARY command, 16-15
REGION/NESTED command, 16-18
Regions, 16-1
REGION/TEXT command, 16-20
REORGANIZE command, 10-13
REPLACE command, 3-16
Replace dialog box (figure), 4-9
/REPLACE qualifier, 10-3, 10-6
REPORT command, 12-15, 18-1
Reports

2167A_DESIGN, 12-16, 12-20
creating, 18-1
customizing, 18-1
generating, 12-15
HELP, 12-16, 12-17
INTERNALS, 12-16, 12-19, 12-25
organization of, 18-4
PACKAGE, 12-16, 12-18
sample, 12-26

Reports (Cont.)

sample templates files, 12-21
source code location, 18-4
using design formats, 12-15

RESERVE command, 3-16
Retrieving 2167 A structure information, 12-23
Reverse-engineering a design, 12-25
Review buffer, 4-17

pop-up menu, 4-17
REVIEW command, 2-23, 2-24, 2-25
Review commands

COMPILE, 2-24
COMPILE/REVIEW, 2-24
END REVIEW, 2-24
GOTO SOURCE, 2-24
NEXT STEP, 2-24
PREVIOUS STEP, 2-24
REVIEW, 2-24

review mode, 2-23
Review mode .

$REVIEW buffer, 4-16
RIGHT_MARGIN qualifier, 15-12
Routine

defining, 15-29
example definition, 15-29

Routine declarations
designing, 12-4

Rules for pattern strings, 17-19
Run-lime Library, 2-3, 5-8

s
Sample report, 12-26

templates files, 12-21
Sample session

DECwindows LSE, 4-4
ending, 4-20
invoking, 4-5

LSE, 2-7
ending, 2-22
invoking, 2-9
viewing source code, 3-19

SCA, 7-1
SAVE ENVIRONMENT command, 12-12, 13-15,

15-25
SAVE SECTION command, 13-15
Saving language definitions, 15-25
SCA

analysis data files, 6-4
error messages, 11-10

error, 11-12

lndex-11

SCA
error messages (Cont.)

fatal, 11-12
informational, 11-13
warning, 11-13

features, 6-2
analysis, 6-2
consistency checking, 6-3
cross-referencing, 6-2

FIND command, 7-4
integration with LSE, 1-5, 6-3
invoking, 6-6, 7-2
Network Access, 10-4
overview, 1-4 to 1-5, 6-1
querying with, 4-18, 6-3

SCA$EXAMPLE, 4-18
SCA$REPORT_2167A_DESIGN.TPU, 18-4
SCA$REPORT _DOMAIN_QUERY variable, 18-2
SCA$REPORT _FILL variable, 18-2
SCA$REPORT_FORMAT.TPU, 18-4
SCA$REPORT _FORMAT _DOCUMENT.TPU, 18-5
SCA$REPORT _FORMAT _RUNOFF.TPU, 18-5
SCA$REPORT_FORMAT_TEXT.TPU, 18-5
SCA$REPORT _GLOBALS.TPU, 18-4
SCA$REPORT_HEL~TPU, 18-4
SCA$REPORT _HELP _LIBRARY variable, 18-2
SCA$REPORT_INTERNALS.TPU, 18-4
SCA$REPORT_LANGUAGES variable, 18-3
SCA$REPORT _NAME variable, 18-2
SCA$REPORT_OUTPU~TPU, 18-5
SCA$REPORT_OUTPUT variable, 18-2
SCA$REPORT _PACKAGE.TPU, 18-4
SCA$REPORT_REST_OF _LINE variable, 18-2
SCA$REPORT_TARGET variable, 18-2
SCA$REPORT_UTILITIES.TPU, 18-5
SCA$REPORT_VALIDATE.TPU, 18-4
SCA containment functions

CONTAINING, 12-13
CONTAIN_BY, 12-13

Screen format
DECwindows LSE, 4-2
L.SE, 3-6

Screen manipulation commands
CHANGE WINDOW_MODE, 3-8
DELETE WINDOW, 3-8
GOTO BUFFER, 3-8
GOTO FILE, 3-8
NEXT WINDOW, 3-8
PREVIOUS WINDOW, 3-8
SET SCREEN, 3-8
SPLIT WINDOW, 3-8

lndex-12

Screen manipulation commands (Cont.)

TWO WINDOWS, 3-8
SEARCH command, 3-9
Section file

creating, 13-15
description of, 13-14
using, 13-16

/SECTION qualifier, 2-37, 13-16
/SEPARATOR qualifier, 15-17
Separator text, 2-19
Separator widget, 14-5
SET AUTO_ERASE command, 3-5
SET CMS command, 3-15
SET CMS [ems-command] command, 3-15
SET FORWARD command, 3-2, 3-5
SET INDENTATION command, 3-4, 3-5
SET INSERT command, 2-6, 3-2, 3-5, 13-11
SET LANGUAGE command, 3-6
SET LIBRARY command, 10-5
SET MODE KEYPAD command, 2-3
SET MODIFY command, 3-3, 3-6
SET NOAUTO_ERASE command, 3-6
SET NOLIBRARY command, 10-5
SET NOMODIFY command, 3-4, 3-6
SET NOWRAP command, 3-6
SET OUTPUT _FILE command, 3-3, 3-6
SET OVERSTRIKE command, 3-2, 3-6
SET OVERVIEW command, 3-6
SET REVERSE command, 3-6
SET SCREEN command, 3-8
SET SOURCE_DIRECTORY command, 3-12, 7-2
SET TAB_INCREMENT command, 3-4, 3-6
SET WRAP command, 3-6
SET WRITE command, 3-3
SHOW BUFFER command, 3-6
SHOW KEY command, 2-7
SHOW LIBRARY command, 7-3, 10-11
SHOW MODULE command, 7-3, 10-11
SHOW PLACEHOLDER command, 2-7
SHOW TAGS command, 12-16
SHOW TOKEN command, 2-7
/SIZE qualifier, 10-4
Source code

compiling, 2-23
entering, 2-4
error correction, 2-27
management, 2-3
reviewing, 2-23, 4-15

Source Code Analyzer

See SCA
Source Code Analyzer (SCA), 2-2

Source line
definition of, 17-1

Special processing for FORTRAN, 17-20
SPLIT WINDOW command, 3-8
START DIAGNOSTIC command, 16-22
START MODULE command, 16-23
/START_POSITION qualifier, 2-37
Status line, 3-7, 4-3
Storing modifications, 13-11

in text files, 13-11
Structured tag

subtags, 12-11
/SUBSEQUENT qualifier, 17-6
SUBSTITUTE command, 3-10
Syntax summary

EXAMPLE language, 15-8
SYS$LIBRARY, 18-4
System buffer

$DEFAULTS, 3-2
definition of, 3-2
$HELP, 3-2
$MAIN, 2-7
$MESSAGES, 3-2
$OVERVIEW, 17-25
query, 4-18, 7-14
$REVIEW, 2-26, 3-2
$SHOW, 3-2

System Services, 2-3, 5-8
/SYSTEM_ENVIRONMENT qualifier, 2-37

T
Tab increments, 17-23

. TAB_INCREMENT command, 15-26
frAB_INCREMENT qualifier, 15-3, 15-13
Tag, 12-18

See also Keyword tag
ABSTRACT, 12-16
adding new, 12-12
COMPONENT, 12-21, 12-22
COMPONENT DESCRIPTION, 12-24
COMPONENT OF, 12-21, 12-22
FORMAL PARAMETERS, 12-11
FUNCTIONAL DESCRIPTION, 12-16
list of, 12-24
$REMARK, 12-12
types of

keyword, 12-11
structured, 12-11
text, 12-11

UNIT DESCRIPTION, 12-24

Tag (Cont.)
UNIT OF, 12-21, 12-22
$UNTAGGED, 12-12

Tagged comments
associating tags with objects, 12-13
definition of, 12-10
using, 12-10

Templates
defining text, 15-1
language definition, 15-3
language-specific, 2-4
Run-lime Library, 2-3

Terminal placeholder, 2-5, 2-19
defining, 5-2, 15-4, 15-6, 15-8, 15-17

Testing overviews, 17-3
Text

formatting, 4-10
replacing, 4-9
searching for, 4-7
selecting, 4-6

Text string
substituting, 3-1 o

Text tag
definition of, 12-11

Text widget
Available Entry:, 14-3
LSE Command:, 14-2, 14-3
Menu Entry:, 14-3
Menu Entry Label:, 14-2

Token
and placeholder manipulation commands

ENTER COMMENT/BLOCK, 2-9
ENTER COMMENT/LINE, 2-9
ENTER PSEUDOCODE, 2-9
ERASE PLACEHOLDER, 2-9
EXPAND, 2-8
GOTO PLACEHOLDER, 2-9
UNERASE PLACEHOLDER, 2-9
UNEXPAND, 2-9

defining, 5-3, 15-7, 15-9, 15-21
definition of, 2-4
example definitions, 15-7
expanding, 2-18, 5-3
indentation control, 15-26
inserting, 5-3
manipulating, 2-8
names as punctuation, 15-21
redefining, 13-7
typing in, 2-18

/TOKEN qualifier, 15-20
/TOPIC_STRING qualifier, 15-11

lndex-13

!TRAILING qualifier, 15-1 S
TWO WINDOWS command, 3-8
Type declaration, 12-4
!TYPE qualifier, 15-7, 15-14
Typing pseudocode, 5-5

u
$UNTAGGED tag, 12-12
UNERASE PLACEHOLDER command, 2-8, 2-9
UNEXPAND command, 2-8, 2-9
UNIT DESCRIPTION tag, 12-24
UNIT OF tag, 12-21, 12-22
/UNIT qualifier, 17-13
UNITS

definition of, 12-21
UNRESERVE command, 3-16
User buffer, 4-6

pop-up menu, 4-8
Using adjustment qualifiers, 17-4
Using design report formats, 12-15
Using multiple files, 13-17
Using precedence to hide patterns, 17-18
Using program code for report information, 18-8
Using the Extend Menu dialog box, 14-1
Using the pattern parameter, 17-20

v
VAX DEC/CMS

support, 1-6, 3-15
VAX Performance and Coverage Analyzer support,

1-8, 2-29
terminating, 2-30

VAX Text Processing Utility
See VAXTPU

VAXTPU
command file, 13-12
command interpreter, 13-10
command mode, 13-10
defining functions, 13-1 0
definition of, 13-10
executing built-ins, 13-1 O
invoking procedures, 18-1
restrictions, 13-10
using, 13-1 O
using REPORT command to invoke procedures,

18-2
VAXTPU variables

SCA$REPORT _DOMAIN_OUERY, 18-2
SCA$REPORT _FILL, 18-2

lndex-14

VAXTPU variables (Cont.)
SCA$REPORT _HELP _LIBRARY, 18-2
SCA$REPORT _LANGUAGES, 18-3
SCA$REPORT _NAME, 18-2
SCA$REPORT_OUTPUT, 18-2
SCA$REPORT_REST_OF _LINE, 18-2
SCA$REPORT_TARGET, 18-2

VERIFY command, 10-13
/VERSION qualifier, 15-13
VIEW SOURCE command, 3-20
VIEW SOURCE/DEBUG command, 17-3
/VISIBLE qualifier, 10-12
VMS Debugger support, 1-8

command qualifiers, 2-30
terminating, 2-30

w
Widget

See Text widget
separator, 14-5

Window
command region, 4-3
customizing, 13-7
definition of, 3-6
manipulating, 3-7
menu bar, 4-2
message region, 4-3
multiple, 3-6, 4-11
review mode format, 2-23, 2-25
screen format, 3-6, 4-2

message region, 3-7
prompt region, 3-7
status line, 3-7

status line, 4-3
work region, 4-3

Work region, 3-6, 4-2, 4-3
/WRAP qualifier, 15-13
WRITE command, 3-12
/WRITE qualifier, 2-37

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040
before placing your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using
a 1200- or 2400-baud modem. If you need assistance using the Electronic Store,
call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internal1

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

USASSB Order Processing - WMO/E15
or
U.S. Area Software Supply Business
Digital Equipment Corporation
Westminster, Massachusetts 01473

1 For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments VAX Language-Sensitive Editor and VAX
Source Code Analyzer User Manual

AA-PAJLA-TK

Please use this postage-paid form to comment on this manual. If you require a written
reply to a software problem and are eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:
Page Description

Good

D
D
D
D
D
D
D
D

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.
N ametritle Dept.

Company

Mailing Address

Phone

Fair Poor

D D
D D
D D
D D
D D
D D
D D
D D

Date

Do Not Tear - Fold Here and Tape

· Do Not Tear - Fold Here

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POST AGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35
110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

I II 11111 II 1 II 1111II1111I1 I I 1 I 11 1.1 .. 1 .. 1.1 ... 1.11 .. 1

No Postage
Necessary
if Mailed

in the
United States

I ~
I
I

Reader's Comments VAX Language-Sensitive Editor and VAX
Source Code Analyzer User Manual

AA-PAJLA-TK

Please use this postage-paid form to comment on this manual. If you require a written
reply to a software problem and are eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:
Page Description

Good

D
D
D
D
D
D
D
D

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.
Name/Title Dept.

Company

Mailing Address

Phone

Fair Poor

D D
D D
D D
D D
D D
D D
D D
D D

Date

I
I
I
I
I

Do '.\'ot Tear - Fold Here and Tape ---------------------------------------1

Do Not Tear - Fold Here

BUSINESS HEPL Y MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POST AGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35
110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 II • 11 11 I. 11.1 .. 1.1 .. I .. I • I •.. 1.11 .. I

No Postage
Necessary

1f Mailed
1n the

United States

I

