
Guide to VAX DEC/Module 
Management System 
Order Number: AA-P 1190-TE 

May 1989 

This manual describes how to use MMS for building software systems. 

Revision/Update Information: This revised manual supersedes 
the VAX DEC/MMS User's Guide 
Order No. AA-P119C-TE. 

Operating System and Version: VMS Version 5.0 or higher 

Software Version: 

digital equipment corporation 
maynard, massachusetts 

DEC/MMS V2.5 



First printing, March 1983 
Revised, June 1984 
Revised, April 1 987 
Revised, May 1989 

The information in this document is subject to change without notice and should 
not be construed as a commitment by Digital Equipment Corporation. Digital 
Equipment Corporation assumes no responsibility for any errors that may appear in 
this document. 

The software described in this document is furnished under a license and may be 
used or copied only in accordance with the terms of such license. 

No responsibility is assumed for the use or reliability of software on equipment that 
is not supplied by Digital Equipment Corporation or its affiliated companies. 

© Digital Equipment Corporation 1983, 1984, 1987, 1989. 

All Rights Reserved. 
Printed in U.S.A. 

The postpaid Reader's Comments forms at the end of this document request your 
critical evaluation to assist in preparing future documentation. 

The following are trademarks of Digital Equipment Corporation: 

ALL-IN-1 
DEC 
DEC/CMS 
DECMMS 
DECnet 
DECmate 
DECsystem-10 
DECSYSTEM-20 

DECUS 
DECwriter 
DIBOL 
EduSystem 
IAS 
MASSBUS 
PDP 
PDT 

P/OS 
Professional 
Q-bus 
Rainbow 
RSTS 
RSX 
RT 
ULTRIX 

UNIBUS 
VAX 
VAXcluster 
VMS 
VT 
Work Processor 

ZK5208 



Contents 

Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi 

Chapter 1 

1.1 

1.2 

1.3 

Introduction to MMS 

Overview .......................................... . 
1 . 1 . 1 MMS and the Software Development Cycle . . . . . . . . . . . . 
1. 1 .2 Solving Development Problems with MMS ............ . 

Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1.2.1 The MMS Description File ............. : ......... . 
1.2.2 Building a Software System ...................... . 
1.2.3 Rebuilding a Single-Object System ................. . 
1.2.4 Building a Multi-Object Software System ............. . 
1.2.5 Rebuilding a Multi-Object System .................. . 
1.2.6 Building Systems with Multiple Programming Languages .. . 
1.2. 7 Rebuilding a Multiple Programming Language System .... . 
1.2.8 Source Code with Included Files ................... . 
1. 2. 9 Building a System with Included Files . . . . . . . . . . . . . . . . 
1.2.10 Rebuilding a System with Included Files ............. . 
1.2.11 Systems with More Than One Executable Image ....... . 
1.2. 12 Building a System with More Than One Executable 

1.2.13 
1.2.14 
1.2.15 
1.2.16 

Image ..................................... . 
Rebuilding a System with Several Executable Images . . . . . 
Building Systems with Object Libraries . . . . . . . . . . . . . . . 
Rebuilding a System with Object Libraries . . . . . . . . . . . . . 
Using the Description File to Maintain Your System ..... . 

Command Summary .................................. . 
1.3. 1 MMS Command Format ......................... . 
1.3.2 Qualifiers ................................... . 

1-'-1 
1-2 
1-2 

1-4 
1-5 
1-7 
1-7 
1-9 

1-11 
1-12 
1-15 
1-16 
1-18 
1-19 
1-21 

1-22 
1-24 
1-24 
1-26 
1-27 

1-29 
1-29 
1-29 

iii 



Chapter 2 The MMS Description File 

2.1 Overview .......................................... . 

2.2 Using Dependency Rules ............................... . 
2.2. 1 Source and Target Files ......................... . 
2.2.2 Specifying Multiple Targets and Sources ............. . 
2.2.3 Using Mnemonic Names for Targets and Sources ....... . 
2.2.4 Specifying the Target on the Command Line .......... . 
2.2.5 Hierarchy of Rule Application ..................... . 

2.3 Using Built-In Rules .................................. . 
2.3.1 The Suffix Precedence List ....................... . 
2.3.2 Default Macros ............................... . 

2.4 Defining Your Own Macros ............................. . 
2.4.1 Formatting Macro Definitions ..................... . 
2.4.2 Order of Processing Macros ...................... . 
2.4.3 Invoking Macros .............................. . 
2.4.4 Defining Macros on the Command Line .............. . 

2.5 Using Special Macros ................................. . 

2.6 Defining Your Own Rules .............................. . 
2.6. 1 Creating a User-Defined Rule ..................... . 
2.6.2 Using User-Defined Rules ........................ . 

2.7 Using Action Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2. 7. 1 Multiple Action Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.7.2 $STATUS and $SEVERITY ...................... . 
2.7.3 MMS$STATUS ............................... . 
2. 7 .4 Action Line Prefixes ........................... . 
2. 7 .5 The Ignore Prefix (-) ........................... . 
2. 7 .6 The Silent Prefix (@) ........................... . 
2. 7. 7 Action Line Restrictions ......................... . 

2.8 Using Directives ..................................... . 
2.8.1 The .IGNORE Directive .......................... . 
2.8.2 The .SILENT Directive .......................... . 
2.8.3 The .DEFAULT Directive ........................ . 
2.8.4 The .SUFFIXES Directive ........................ . 
2.8.5 Adding a New File Extension to the Suffixes List ....... . 
2.8.6 Using .SUFFIXES in a Description File ............... . 
2.8.7 Building a System with a New File Extension .......... . 

iv 

2-1 

2-2 
2-3 
2-3 
2-5 
2-6 
2-6 

2-7 
2-9 

2-11 

2-12 
2-13 
2-13 
2-14 
2-15 

2-17 

2-19 
2-20 
2-21 

2-21 
2-22 
2-23 
2-24 
2-24 
2-25 
2-26 
2-26 

2-27 
2-28 
2-30 
2-31 
2-32 
2-33 
2-33 
2-35 



Chapter 3 

3.1 

3.2 

3.3 

3.4 

3.5 

3.6 

3.7 

3.8 

3.9 

3.10 

3.11 

2.8.8 
2.8.9 
2.8.10 
2.8.11 
2.8.12 

The .SUFFIXES Directive Used with CMS Files ......... . 
The .INCLUDE Directive ......................... . 
The .FIRST Directive ........................... . 
The .LAST Directive ........................... . 
The .IFDEF, .ELSE, and .ENDIF Directives ............. . 

Advanced Description File Techniques 

Using Double Colon Dependencies ....................... . 

Maintaining a Library of Object Files ...................... . 

Invoking MMS from a Description File ..................... . 
3.3.1 Invoking MMS from a Description File with $(MMS) ..... . 
3.3.2 Process Quotas for MMS Subprocesses ............. . 
3.3.3 Process Quotas for Using MMS ................... . 
3.3.4 MMS Reserved Macros ......................... . 

Invoking MMS from a Command Procedure ................ . 

Invoking a Command Procedure from a Description File ....... . 

Changing System Build Options ......................... . 

Gathering Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3. 7 .1 Finding Missing Sources ........................ . 
3. 7 .2 Creating a Checkpoint File ....................... . 

Creating and Using Time Stamps ........................ . 
3.8.1 Creating a Time Stamp File Using DCL Symbols ........ . 
3.8.2 Creating a Time Stamp File Using Included Files ........ . 

Selectively Deleting Files . . . . . . . . . . . . . . . . . . . . . . . ....... . 
3.9.1 Creating a Command Procedure to Selectively Delete 

Files ...................................... . 
3.9.2 Using a Macro Definition to Selectively Delete Files ..... . 

Doing Parallel Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Complex Examples Using MMS ......................... . 
3.11.1 MMS and Object Libraries ....................... . 
3.11.2 Producing Multiple Outputs with MMS ............... . 

3.11.2.1 When Outputs Are Independent ........... . 
3.11.2.2 When Outputs Are Dependent ............ . 

2-35 
2-36 
2-37 
2-38 
2-39 

3-1 

3-2 

3-3 
3-4 
3-4 
3-5 
3-5 

3-6 

3-9 

3-10 

3-12 
3-12 
3-12 

3-13 
3-14 
3-15 

3-16 

3-17 
3-18 

3-19 

3-19 
3-19 
3-25 
3-26 
3-27 

v 



Chapter 4 

4.1 

4.2 

4.3 

4.4 

4.5 

4.6 

vi 

3.11.3 Multiple Outputs Work-Around .................... . 

Accessing Libraries with MMS 

Creating and Accessing Files in VMS Libraries .............. . 
4. 1. 1 Formatting Library Module Specifications ............. . 
4.1.2 Using Logical Names in a Library Module Specification ... . 
4. 1.3 Specifying Multiple Libraries ...................... . 
4.1.4 Accessing Library Modules with Non-VMS File 

4.1.5 
4.1.6 

Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Using Special Macros with Library Specifications ....... . 
Using Libraries as a Source . . . . . . . . . . . . . . . . . . . . . . . 

Using MMS with CMS ................................ . 
4.2.1 Using CMS Commands in a Description File ... ~ ....... . 
4.2.2 Automatic Access of CMS Elements from Dependency 

4.2.3 

4.2.4 
4.2.5 
4.2.6 
4.2.7 
4.2.8 
4.2.9 

4.2.10 

4.2.11 

Rules ...................................... . 
Explicit References to CMS Elements in Dependency 
Rules ...................................... . 
Building the System Using CMS Elements . . . . . . . . . . . . . 
Rebuilding the System Using CMS Libraries . . . . . . . . . . . . 
Building a System from a Specified CMS Class . . . . . . . . . 
Building a System from a Previous Class . . . . . . . . . . . . . . 
Using the . INCLUDE Directive to Include CMS Files . . . . . . . 
Using a User-Defined Rule to Access a Single CMS 
Element .................................... . 
Accessing a CMS Element Not in the Default CMS 
Library ..................................... . 
Accessing Description Files in CMS Libraries . . . . . . . . . . . 

Checking for Replacement of CMS Elements ................ . 

Accessing Forms in an FMS Library ...................... . 

Accessing Records in the COD .......................... . 

Accessing Files in an SCA Library . . . . . . . . . . . . . . . . . . . . . . . . . 

3-28 

4-1 
4-2 
4-2 
4-3 

4-3 
4-4 
4-4 

4-5 
4-7 

4-7 

4-8 
4-9 

4-11 
4-14 
4-15 
4-18 

4-18 

4-19 
4-19 

4-20 

4-20 

4-21 

4-22 



Command Dictionary 

Appendix A MMS Messages 

A.1 Message Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1 

A.2 MMS Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2 

Appendix B MMS and UNIX make Comparisons 

Appendix C DEC/MMS Built-In Features 

C.1 MMS Default Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-2 

C.2 Default Macro Changes with /SCA_LIBRARY.............. . . C-4 

C.3 MMS Special Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-5 

C.4 MMS Suffixes Precedence List . . . . . . . . . . . . . . . . . . . . . . . . . . . C-6 

C.5 MMS Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-7 

C.6 MMS Built-In Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-8 

C. 7 Built-In Rules for Library Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-9 

C.8 MMS Built-In Rules for /SCA_LIBRARY Qualifier. . . . . . . . . . . . . C-11 

C.9 MMS Built-In Rules for CMS Access. . . . . . . . . . . . . . . . . . . . . . . C-16 

vii 



Glossary 

Index 

Examples 

1-1 
1-2 
1-3 
1-4 
1-5 
1-6 
2-1 
2-2 
2-3 
2-4 

2-5 
2-6 
2-7 
3-1 
3-2 
3-3 
3-4 

4-1 
4-2 

4-3 

4-4 
4-5 
4-6 

viii 

Description File for Multi-Object System . . . . . . . . . . . . . . . . . . . . . . 

Description File Using Multiple Language Compilers ............. . 

Description File with Included Files ......................... . 

Description File Using Multiple Targets ...................... . 

Description File Using Object Libraries . . . . . . . . . . . . . . . . . . . . . . . . 

Description File for Maintaining Your System .................. . 

A Built-In Rule ....................................... . 

A Description File Using Built-In Rules ....................... . 

Macro Definitions in a Description File ....................... . 

A Description File Using a User-Defined Rule .................. . 

A Description File Using Action Lines ....................... . 

A Description File Using Multiple Action Lines ................. . 

A Description File Using .SUFFIXES ........................ . 

Invoking MMS from a Command Procedure ................... . 

Invoking a Command Procedure from a Description File .......... . 

A Command Procedure to Change Build Options ............... . 

Description File Using Object Libraries ....................... . 

Description File Using CMS Libraries ........................ . 

Building a System from CMS Library Elements ................. . 

Rebuilding Using CMS Libraries ........................... . 

Description File for Building from a CMS Class ................. . 

Building a System from a Previous CMS Class ................. . 

Using MMS with the /SCA_LIBRARY Qualifier .................. . 

1-9 
1-13 
1-17 
1-21 
1-25 
1-27 
2-8 

2-11 
2-15 
2-20 
2-22 
2-23 
2-34 
3-8 
3-9 

3-11 
3-20 
4-9 

4-10 

4-12 
4-14 

4-16 
4-23 



Figures 
1-1 
1-2 
1-3 
1-4 
1-5 

2-1 
2-2 
4-1 

Tables 

2-1 
2-2 
3-1 
C-1 
C-2 
C-3 
C-4 
C-5 
C-6 
C-7 
C-8 
C-9 

How MMS Builds a Software System ....................... . 

A Single-Object Software System . . . . . . . . . . . . . . . . . . . . . . . . . . . 

A Multi-Object Software System . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Included Files in a Software System ........................ . 

A System with More Than One Executable Image .............. . 

Relationship Between Suffixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

CMS Rules .......................................... . 

A Software System Using CMS Libraries ..................... . 

MMS Action Line Prefixes ............................... . 

MMS Directives ...................................... . 

MMS Process Quotas .................................. . 

MMS Default Macros ................................... . 

/SCA_LIBRARY Default Macros ........................... . 

MMS Special Macros .................................. . 

The Suffixes Precedence List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

MMS Directives ...................................... . 

MMS Built-In Rules .................................... . 

Built-In Rules for Library Files ............................. . 

Changes to Built-In Rules When Using the /SCA_LIBRARY Qualifier .. 

Built-In Rules for CMS Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1-4 
1-6 

1-10 
1-17 
1-21 
2-9 

2-36 
4-6 

2-24 
2-28 
3-5 
C-2 
C-4 
C-5 
C-6 
C-7 
C-8 
C-9 

C-11 
C-16 

ix 





Preface 

Objective 

This manual explains how to use VAX DEC/Module Management System 
(MMS). It is a guide that provides both tutorial and reference material to 
illustrate basic and advanced techniques. 

Intended Audience 

This manual is primarily intended for software engineers but it can be useful for 
managers, technical writers, and other MMS users. Those with experience using 
the UNIX® make utility should be able to use MMS with little trouble, because 
MMS is patterned after make. 

MMS runs on the VMS operating system Version 5.0 or higher. 

Structure of This Document 

The Guide to VAX DEC/Module Management System is divided into four chap
ters, a command dictionary section, three appendixes, and a glossary. 

• Chapter 1 gives an overview of MMS, describes how MMS automates the 
software development cycle, and offers a tutorial for new users of MMS. 

• Chapter 2 presents the concepts of description files, built-in rules, macro 
definitions, and directives. 

• Chapter 3 describes advanced techniques for using MMS as efficiently as 
possible. 

• Chapter 4 explains how MMS can process files stored in VMS, CMS, and 
VAX FMS libraries and records stored in the VAX Common Data Dictionary. 

• The Command Dictionary explains the MMS command line format and con
tains detailed descriptions of all MMS qualifiers. The qualifier descriptions 
are listed alphabetically by qualifier name. 

® UNIX is a registered trademark of American Telephone and Telegraph Company 

xi 



xii 

• 
• 

• 
• 

Appendix A lists and explains all MMS messages . 

Appendix B describes the differences between MMS and UNIX make 
features. 

Appendix C contains tables of MMS defaults, with explanatory information . 

The Glossary defines important terms . 

Associated Documents 

• The VAX DEC/Module Management System Quick Reference Guide (Order No. 
AV-P120D-TE) provides a concise summary of MMS rules and qualifiers. 

• VAX DEC/Module Management System Installation Guide (Order No. 
AA- P121D-TE) supplies the instructions for installing MMS on a VMS 
system. 

Conventions Used in This Document 

Convention 

[ ] 

{ } 

'string' 

italics 

Meaning 

Brackets indicate that the enclosed item is optional. 

Braces enclose a list from which one element must be 
chosen. 

The OR symbol separates alternatives within braces or 
brackets. For example, { filespec I "macro" means that you 
must type either a file specification or a macro enclosed in 
quotation marks.} 

A horizontal ellipsis indicates that the preceding items can 
be repeated one or more times. 

A term enclosed in apostrophes is information that can 
vary. (This convention is used frequently in Appendix A.) 

A term that appears in italics is defined in the Glossary. 

Unless otherwise noted the following apply: 

• All numeric values are represented in decimal notation. 

• You terminate a command by pressing the RETURN key. 



Chapter 1 

Introduction to MMS 

This chapter introduces you to MMS. It is divided into three sections: 

• A brief overview that describes how MMS can help you to solve some of 
the problems that arise during software development 

• A tutorial section on MMS showing you how to specify building a software 
system, building the system from these specifications, and rebuilding the 
system if parts of it change 

• A summary of MMS command qualifiers 

1 . 1 Overview 

VAX Module Management System (MMS) is a tool that automates and 
simplifies the building of software systems. MMS allows you to specify exactly 
how a software system is to be built. It can build simple programs consisting 
of one or two source files or complex programs consisting of several source 
files, message files, and documentation files. MMS builds software systems 
accurately from their system descriptions and can rebuild systems quickly if 
parts of the systems change. 

If you have used the UNIX® make utility, you should easily be able to make the 
transition to MMS, because MMS is patterned after make. 

® UNIX is a registered trademark of American Telephone and Telegraph Company 

Introduction to MMS 1-1 



1.1.1 MMS and the Software Development Cycle 

Software development is an iterative process that involves the following basic 
steps: 

• Thinking about the problem and creating a design 

• Writing the code based on the design 

• Building the system 

• Testing the software 

MMS automates the building step in the cycle so that you have more time for 
the creative aspects of software development. 

When more than one programmer is working on a software development 
project, the components of the software system are usually stored in a common 
source directory, which may be a VAX Code Management System (CMS) 
library. Each programmer has copies of the sources, which he or she edits and 
then replaces. MMS can simplify this procedure. 

A software system can have hundreds of source files, object libraries, and 
include files. It can have multiple compilers and compilation and linking 
options. Due to these variables, it is hard to exactly reproduce the same 
program image at each build. The MMS description of a software system can 
be used by anyone to accurately create the software. 

1.1.2 Solving Development Problems with MMS 

MMS allows you to specify in a description file exactly how a system is to be 
built. A description file is a text file that you can create with any VMS editor. 
You can describe to MMS all the important components of a system build: the 
source files that make up the system, the compilers to use, the order in which 
to link the modules, and the libraries to use during the link. 

Building Systems Accurately and Consistently 

Each time you run MMS, it follows the description and builds the same system. 
There is no human error during the system creation. You can use older descrip
tions to recreate previous versions of the system. The software can be built by 
anyone with or without technical knowledge. 

1-2 Introduction to MMS 



Identifying Dependencies 

As you describe a system to MMS, you also state logical dependencies in 
that system. For example, you describe the text files used in source files, the 
source files that make up each object, the objects that make up each image, 
and the libraries used in a link. After a system is built once, MMS uses the 
dependencies to rebuild the system quickly. 

Rebuilding Efficiently 

During the development cycle, MMS can determine which components in a 
system have been changed and what other components are affected by these 
changes. For example, if you change several source files, MMS can determine 
which corresponding object modules need to be updated and then can update 
them. Therefore, the entire system is not rebuilt, only those components whose 
sources have been modified. 

If you rebuild a complete system without regard to which components need 
updating, you waste disk space. MMS has a /SKIP__INTERMEDIATE qualifier 
that avoids unnecessary building of intermediate files. For example, if you have 
a source file PROG.C and an executable file PROG.EXE but no intermediate 
PROG.OBJ file, when you use the /SKIP__INTERMEDIATE qualifier, MMS does 
not recreate the intermediate file as long as the executable file is newer than the 
source file. 

Building and Testing Components 

You can use MMS to build and test modules locally before building or testing 
the modules in the source directory or library. If you use MMS in conjunction 
with CMS, you can be sure that the replaced modules do not conflict with 
the edits another programmer may have made. You can use these two tools 
together to ensure that only your changes, and not another programmer's, are 
included in the revised module. 

CMS helps manage a project's files by storing them in a library, tracking 
changes, and controlling access to the library that contains the files. 

Building the System with MMS 

Figure 1-1 depicts a small software system and describes the basic steps MMS 
follows when it builds the system. In this system, Component A is the target
the file that you want to update. Component B is a source for Component A, 
and Components C and D are sources for Component B. The commands that 
update B (by using C and D) and A (by using the updated B) are called actions. 
(For example, the LINK command is the action that uses B.OBJ to update 
A.EXE.) 

Introduction to MMS 1-3 



Figure 1-1 : How MMS Builds a Software System 

I 
I 

I 
I 

/ 
/ 

' I I 
I 
I 

~ 
.,,..B 

\ c 
\ 

' ' ..... --

A 0 
t 
I 
I 
I 
I 

B °' 
D 

~e----"" 

' 

/ 

' \ 
\ 

' I 
I 

I 
/ 

ZK-1090-82 

0 MMS checks the revision time of the target (Component A). 

8 MMS checks the revision time of the first source (Component B). 

0 MMS checks the revision time of Components C and D against that of B. 

8 If the times of Components C or D are more recent than that of Component 
B, MMS updates B according to action lines that you specify in the descrip
tion file (action lines tell MMS what commands to execute to update the 
components of a software system). If Bis more recent than C and D, MMS 
does not do anything because B is already up to date. 

tD Once Component Bis updated, it is more recent than the target. Therefore, 
MMS updates Component A. 

If the target has been modified since the sources were last changed, MMS does 
not update the target. Instead, it issues a message to inform you that the target 
is already up-to-date. 

1 .2 Getting Started 

This section introduces the basic features of MMS including how to create a 
description file, how to use this description file to build your system, and how 
to rebuild your system when only parts of it have changed. This section focuses 
on the built-in and default features of MMS. 

1-4 Introduction to MMS 



1 .2.1 The MMS Description File 

The first step in using MMS is to write a description file for the system you 
want to build. An MMS description file is a text file that describes how to build 
a software system. It must have the .MMS extension or file type. A description 
file can contain the following: 

• The target or goal of building the system (the executable image or set of 
images) 

• The intermediate files that are used to create the target (usually object files) 

• The source files used to create the intermediate files (usually program code) 

• Optional information to help create the target or intermediate files 

You invoke MMS from the DCL command line in the following format: 

$ MMS 

When you invoke MMS, it looks in your current directory for a description 
file called DESCRIP.MMS. If MMS cannot find DESCRIP.MMS, it looks for 
a description file called MAKEFILE. (If both DESCRIP.MMS and MAKEFILE. 
exist in your directory, MMS uses only DESCRIP .MMS.) Once it locates the 
description file, MMS processes it. If you specified a target on the command 
line, MMS begins processing the description file with the first rule that describes 
how to build that target. If you did not specify a target on the command line, 
MMS builds the first target in the description file. If neither DESCRIP.MMS nor 
MAKEFILE. exists, MMS issues an error message and aborts execution. 

You can also use the /NODESCRIPTION qualifier with the MMS command to 
override the use of a description file. If you specify /NODESCRIPTION with 
the MMS command, you must specify the target on the MMS command line so 
that MMS knows what to build. When /NODESCRIPTION is in effect, MMS 
does not look for a description file but relies entirely on its built-in rules to 
update the target. 

The format of a description file dependency rule is as follows: 

target. . . . : [source, . . . ] 
[action line . . . ] 

[! comment] 
[! comment] 

The target is a file that must be built to complete the software system. Targets 
can be executable image files or object files. The source is a file used to create a 
target. For example, object files are sources for executable files and source code 
is the source for object files. The action line is a DCL command that MMS uses 
to update the target. 

Introduction to MMS 1-5 



The hyphen ( - ) is a continuation character and is allowed on any line 
in a description file. You can use the keywords DEPENDS-ON and 
ADDITION ALL Y_DEPENDS_ON in place of the colon and double-colon, 
respectively, in a dependency rule. These keywords are used exclusively in the 
examples in this section for clarity. 

A simple description file called SYSTEMl .MMS could contain the following 
dependencies: 

MAIN.EXE DEPENDS_ON MAIN.OBJ 
MAIN.OBJ DEPENDS_ON MAIN.PAS 

SYSTEMl .MMS is a description file that describes a single-object software 
system. The executable image, MAIN .EXE, is the target of building the system. 
The executable image comes from one object file, MAIN.OBJ. The object file 
is generated from one file of source code, MAIN.PAS. Figure 1-2 shows the 
relationship between the files. 

Figure 1-2: A Single-Object Software System 

MAIN.EXE 

MAIN.OBJ 

MAIN.PAS 

ZK-5883-HC 

MMS builds its own internal dependency tree. By default, it builds the first 
target in the description. It finds the source for the first target and then the 
source of the first target's source using built-in rules to build the software 
system. A built-in rule is an action to build a target with a particular extension 
from a source with a particular file type. A software system must follow built-in 
file-naming conventions for built-in rules to work. 

MMS builds the system from the bottom up. First it builds the targets at the 
bottom of the dependency tree, then the targets that use those sources, then the 
targets that use those sources, and so on, until the primary target is built. 

1-6 Introduction to MMS 



1 .2.2 Building a Software System 

This section explains how to build a single-object software system. Your default 
directory contains the following files: 

$ DIR/DATE=MODIFIED 

Directory DISK1:[BUILD] 

MAIN.PAS;! 
SYSTEM1.MMS;1 

Total of 2 files. 

24-JUL-1987 16:10 
24-JUL-1987 16:11 

You can invoke MMS and give it the name of the description file as follows: 

$ MMS/DESCRIPTION=SYSTEM1 

MMS assumes that the file extension is .MMS. It finds the first target in the 
description and creates an internal picture of the system or dependency tree. 
MMS uses the built-in rules, based on the file extensions, to build the system. 
The built-in rule for building .OBJ files from .PAS files is as follows: 

PASCAL /NOLIST/OBJECT=MAIN MAIN.PAS 

The built-in rule for building .EXE files from .OBJ files is as follows: 

LINK /TRACE/NOMAP/EXEC=MAIN MAIN.OBJ 

After MMS has built your system, the files in your directory are as follows: 

$ DIR/DATE=MODIFIED 

Directory DISK1:[BUILD] 

MAIN.EXE;! 
MAIN.OBJ;! 
MAIN.PAS;! 
SYSTEM1.MMS;1 

Total of 4 files. 

24-JUL-1987 16:13 
24-JUL-1987 16:11 
24-JUL-1987 16:10 
24-JUL-1987 16:11 

1 .2.3 Rebuilding a Single-Object System 

MMS performs efficient system rebuilding. To rebuild a system, invoke MMS 
as you would for an initial build. MMS checks the system from the bottom up 
to see if it is complete and up to date. If any part of the system is missing or 
any target is older than its sources, the system is recreated. For example, if you 
edit your source code file, MAIN.PAS, it would be newer than its object file, 
MAIN.OBJ. 

. Introduction to MMS 1-7 



$ DIR/DATE=MODIFIED 

Directory DISK1: [BUILD] 

MAIN.EXE; 1 
MAIN. OBJ; 1 
MAIN.PAS;2 
SYSTEM1.MMS;1 

Total of 4 files. 

24-JUL-1987 16:13 
24-JUL-1987 16:11 
24-JUL-1987 16:17 
24-JUL-1987 16:11 

When you invoke MMS to rebuild the system, it finds the first target in the 
description, finds the sources for that target and their sources, then compiles 
the source code file, MAIN.PAS, because it is newer than its target, MAIN.OBJ. 
MMS then relinks the object file, MAIN.OBJ, because it is now newer than its 
target, MAIN.EXE. After MMS rebuilds your system, the files in your directory 
are as follows: 

$ DIR/DATE=MODIFIED 

Directory DISK1: [BUILD] 

MAIN.EXE;2 
MAIN.EXE; 1 
MAIN .OBJ;2 
MAIN .OBJ; 1 
MAIN.PAS;2 
MAIN.PAS;! 
SYSTEM1.MMS;1 

Total of 7 files. 

24-JUL-1987 16:19 
24-JUL-1987 16:13 
24-JUL-1987 16:18 
24-JUL-1987 16:11 
24-JUL-1987 16:17 
24-JUL-1987 16:10 
24-JUL-1987 16:11 

MMS works in the same way if one of the components of your system is 
missing. For example, you invoke MMS and it finds that MAIN .EXE does not 
exist. 

$ DIR/DATE=MODIFIED 

Directory DISK1:[BUILD] 

MAIN.OBJ;2 
MAIN.OBJ;! 
MAIN.PAS;2 
MAIN.PAS;! 
SYSTEM1.MMS;1 

Total of 5 files. 

24-JUL-1987 16:18 
24-JUL-1987 16:11 
24-JUL-1987 16:17 
24-JUL-1987 16:10 
24-JUL-1987 16:11 

In this case, MMS builds its internal dependency tree, checks that the system 
is complete and up-to-date, finds that the executable image is missing, and 
recreates the executable image. After MMS rebuilds your system, the files in 
your directory are as follows: 

1-8 Introduction to MMS 



$ DIR/DATE=MODIFIED 

Directory DISK1: [BUILD] 

MAIN.EXE;! 
MAIN .OBJ;2 
MAIN.OBJ;! 
MAIN.PAS;2 
MAIN.PAS;! 
SYSTEM1.MMS;1 

Total of 6 files. 

24-JUL-1987 16:21 
24-JUL-1987 16:18 
24-JUL-1987 16:11 
24-JUL-1987 16:17 
24-JUL-1987 16:10 
24-JUL-1987 16:11 

1 .2.4 Building a Multi-Object Software System 

This section demonstrates two new concepts in system building: 

• A target can have more than one source. 

• An action line can override a built-in rule in building or updating a target. 

A description file called SYSTEM2.MMS has the following dependencies: 

Example 1-1 : Description File for Multi-Object System 

MAIN.EXE DEPENDS_ON MAIN.OBJ, SUB1.0BJ 
LINK MAIN.OBJ, SUB1.0BJ 

MAIN.OBJ DEPENDS_ON MAIN.PAS 
SUB1.0BJ DEPENDS_ON SUB1.PAS 

The target, MAIN.EXE, has two sources: MAIN.OBJ and SUBl.OBJ. The second 
line of the description file is the action line, which explains how to build this 
target. The action line follows a target or source line and specifies how to use 
the source to create the target. You indent the action line and leave a blank line 
before the next dependency rule. The built-in rule for linking objects only links 
one object file; therefore, in this example, you need an action line to override 
this rule. Figure 1-3 shows the relationship between the files. 

Introduction to MMS 1-9 



Figure 1-3: A Multi-Object Software System 

,-- MAIN.EXE t--

MAIN.OBJ SUB1.0BJ 

MAIN.PAS SUB1.PAS 

ZK·5886·HC 

Consider a directory that contains the following files: 

$ DIR/DATE=MODIFIED 

Directory DISK1: [BUILD] 

MAIN.PAS;! 
SUB1.PAS; 1 
SYSTEM2.MMS;1 
Total of 3 files. 

24-JUL-1987 16:17 
24-JUL-1987 16:10 
24-JUL-1987 16:12 

To build your system, invoke MMS with the SYSTEM2.MMS description file as 
follows: 

$ MMS/DESCRIPTION=SYSTEM2 

In this example, MMS identifies the first target, MAIN .EXE, and its sources. 
It then identifies the sources for each of its object files. MMS builds from the 
bottom up by compiling the source code files, then creates the executable image 
from the action line you supplied. After MMS has built your system, the files 
in vour directory are as follows: 

$ DIR/DATE=MODIFIED 

1-10 Introduction to MMS 



Directory DISK1:[BUILD] 

MAIN.EXE;! 
MAIN.OBJ;! 
MAIN.PAS;! 
SUB1.0BJ;1 
SUB1.PAS;1 
SYSTEM2.MMS;1 
Total of 6 files. 

24-JUL-1987 16:21 
24-JUL-1987 16:21 
24-JUL-1987 16:17 

24-JUL-1987 16:20 
24-JUL-1987 16:10 
24-JUL-1987 16:12 

1 .2.5 Rebuilding a Multi-Object System 

MMS saves time in system rebuilding. It does only what it must to rebuild 
the system. To rebuild, invoke MMS as you would for an initial build. MMS 
checks the system from the bottom up to see if it is complete and up-to-date. 
If any part of the system is missing or older than its sources, the system is 
recreated. For example, if you edit your source code file, SUBl.P AS, it would 
be newer than its object file, SUBl.OBJ. 

$ DIR/DATE=MODIFIED 

Directory DISK1: [BUILD] 

MAIN.EXE;! 
MAIN.OBJ;! 
MAIN.PAS;! 
SUB1.PAS;2 
SUB1.PAS; 1 
SUB1.0BJ;1 
SYSTEM2.MMS;1 

Total of 7 files. 

24-JUL-1987 1~:21 
24-JUL-1987 16:21 
24-JUL-1987 16:17 
24-JUL-1987 16:23 
24-JUL-1987 16:20 
24-JUL-1987 16:20 
24-JUL-1987 16:12 

When you invoke MMS to rebuild the system, it finds the first target in 
the description file, finds the sources for that target and their sources, then 
compiles the source code file, SUBl.PAS, because it is newer than its target, 
SUBl.OBJ. Because MAIN.OBJ is newer than MAIN.PAS, MMS does not 
compile MAIN.PAS. However, MAIN.EXE is now older than one of its sources, 
so MMS must relink the system using the action line. After MMS has rebuilt 
your system, the files in your directory are as follows: 

$ DIR/DATE=MODIFIED 

Introduction to MMS 1-11 



Directory DISK1: [BUILD] 

MAIN.EXE;2 
MAIN.EXE;! 
MAIN.OBJ;! 
MAIN.PAS;! 
SUB1.PAS;2 
SUB1.PAS; 1 
SUB1.0BJ;2 
SUB1.0BJ;1 
SYSTEM2.MMS;1 

Total of 9 files. 

24-JUL-1987 16:27 
24-JUL-1987 16:21 
24-JUL-1987 16:21 
24-JUL-1987 16:17 
24-JUL-1987 16:23 
24-JUL-1987 16:20 
24-JUL-1987 16:26 
24-JUL-1987 16:20 
24-JUL-1987 16:12 

Whenever you invoke MMS, it checks that a software system is complete, 
that all components exist. You should not delete object files after using MMS 
because MMS would recompile all the source code files the next time it is 
invoked. If none of your targets or sources have changed since your last system 
build, and you invoke MMS, you will receive the following message from 
MMS: 

$ MMS/DESCRIPTION=SYSTEM2 
Y.MMS-I-GWKCURRNT, Target MAIN.EXE is already up to date. 

MMS determines that nothing needs updating. 

1 .2.6 Building Systems with Multiple Programming Languages 

The previously discussed software systems have used one programming 
language. It is not unusual for systems to use several programming languages. 
MMS easily handles software composed of multiple languages. There is a 
built-in rule for most VAX languages that chooses the correct compiler during 
system building and rebuilding. 

A description file for a multilanguage system is the same as for a single 
language system. MMS uses the different file types to choose the correct 
compiler during the system build. The following sample description file, 
MUL TI_LANG.MMS, uses comment lines denoted by the exclamation point ( ! ) 
and, for readability, blank lines to separate source code files for each language. 

1-12 Introduction to MMS 



Example 1-2: Description File Using Multiple Language Compilers 

!Main executable target, its objects and action line 
! 

MAIN.EXE DEPENDS_ON MAIN.OBJ, SUB1.0BJ, SUB2.0BJ, SUB3.0BJ 
LINK MAIN, SUB1, SUB2, SUB3 

!Source code dependencies 
! 

MAIN.OBJ DEPENDS_ON MAIN.PAS 
SUB1.0BJ DEPENDS_ON SUB1.PAS 

SUB2.0BJ DEPENDS_ON SUB2.FOR 
SUB3.0BJ DEPENDS_ON SUB3.FOR 

Your current directory contains the following files: 

$DIR/DATE=MODIFIED 

Directory DISK1: [BUILD] 

MAIN.PAS;! 
MULTI_LANG.MMS;1 
SUB1.PAS;2 
SUB2.FOR;1 
SUB3.FOR;1 

Total of 5 files. 

24-JUL-1987 16:17 
24-JUL-1987 16:19 
24-JUL-1987 16:23 
24-JUL-1987 16:15 
24-JUL-1987 16:18 

To build your system, invoke MMS with the MULTI_LANG.MMS description 
file as follows: 

$MMS/DESCRIPTION=MULTI_LANG 

In this example, MMS identifies the first target, MAIN.EXE, and its sources. It 
then identifies the sources for each of its object files. MMS uses the PASCAL 
compiler to compile files with a .PAS file type and the FORTRAN compiler to 
compile files with the .FOR file type. After MMS has built your system, the 
files in your directory are as follows: 

$DIR/DATE=MODIFIED 

Introduction to MMS 1-13 



Directory DISK1: [BUILD] 

MAIN.EXE;! 
MAIN .OBJ; 1 
MAIN. PAS; 1 
MULTI_LANG.MMS;1 
SUB1.0BJ;1 
SUB1.PAS;2 
SUB2.FOR;1 
SUB2.0BJ;1 
SUB3.FOR;1 
SUB3.0BJ;1 

Total of 10 files. 

24-JUL-1987 16:29 
24-JUL-1987 16:29 
24-JUL-1987 16:17 
24-JUL-1987 16:19 
24-JUL-1987 16:28 
24-JUL-1987 16:23 
24-JUL-1987 16:15 
24-JUL-1987 16:27 
24-JUL-1987 16:18 
24-JUL-1987 16:26 

If you deleted an object file but still had the executable file, and if you invoked 
MMS, MMS would recompile the source file and also relink the executable 
file, even though your executable file was still compatible with your source file. 
MMS works from the bottom up and propagates any change up the dependency 
tree. 

However, if you deleted your source file and invoked MMS to rebuild the 
system, MMS would return a fatal error because it cannot recreate source code 
from object files or executable files. 

1 .2. 7 Rebuilding a Multiple Programming Language System 

If you have edited two source files in your current directory and want to rebuild 
your system, invoke MMS as you would for building the system. For example, 
your current directory might contain the following files: 

$ DIR/DATE=MODIFIED 

Directory DISK1: [BUILD] 

MAIN.EXE;! 
MAIN.OBJ;! 
MAIN.PAS;2 
MAIN.PAS;! 
MULTI_LANG.MMS;1 
SUB1.0BJ;1 
SUB1.PAS;2 
SUB2.FOR;1 
SUB2.0BJ;1 
SUB3.FOR;2 
SUB3.FOR;1 
SUB3.0BJ;1 

Total of 12 files. 

1-14 Introduction to MMS 

24-JUL-1987 16:29 
24-JUL-1987 16:29 
24-JUL-1987 16:30 
24-JUL-1987 16:17 
24-JUL-1987 16:19 
24-JUL-1987 16:28 
24-JUL-1987 16:23 
24-JUL-1987 16:15 
24-JUL-1987 16:27 
24-JUL-1987 16:31 
24-JUL-1987 16:18 
24-JUL-1987 16:26 



To build your system, invoke MMS with the MULTI_LANG.MMS description 
file as follows: 

$ MMS/DESCRIPTIDN=MULTI_LANG 

This example shows that source code files, MAIN.PAS and SUB3.FOR, have 
been edited, so the source code is newer than the object file. To rebuild the 
system, MMS compiles only the source code that has been updated, and uses 
the correct language compiler in each case. It then links all the objects to 
recreate the executable image. After MMS rebuilds your system, the files in 
your directory are as follows: 

$ DIR/DATE=MODIFIED 

Directory DISK1: [BUILD] 

MAIN.EXE;2 
MAIN.EXE;1 
MAIN.OBJ;2 
MAIN.OBJ;1 
MAIN.PAS;2 
MAIN.PAS;1 
MULTI_LANG.MMS;1 
SUB1.0BJ;1 
SUB1.PAS;2 
SUB2.FOR;1 
SUB2.0BJ;1 
SUB3.FOR;2 
SUB3.FOR;1 
SUB3.0BJ;2 
SUB3.0BJ;1 

24-JUL-1987 16:35 
24-JUL-1987 16:29 

24-JUL-1987 16:35 
24-JUL-1987 16:29 

24-JUL-1987 16:30 
24-JUL-1987 16:17 
24-JUL-1987 16:19 
24-JUL-1987 16:28 
24-JUL-1987 16:23 
24-JUL-1987 16:15 
24-JUL-1987 16:27 
24-JUL-1987 16:31 
24-JUL-1987 16:18 

24-JUL-1987 16:34 
24-JUL-1987 16:26 

Total of 15 files. 

1.2.8 Source Code with Included Files 

Included files are frequently used in software development projects. Any set 
of variables or constant declarations in a software system can be kept in an 
included file. Individual programmers do not have to retype this information 
in their program files; they just include the common file. This ensures that 
common code does not change between developers. If the included file 
changes, all developers automatically have the new code when they use 
the common file. The only drawback to using an included file is that if one 
changes, all source code files that use the file must be recompiled. Fortunately, 
MMS handles this automatically. 

Introduction to MMS 1-1 5 



The description file must specify that included files exist for the system build 
and must list the included files on the same line after the program code that 
uses them. The included files can be listed in any order. 

Nested included files can cause some confusion, but MMS handles nested 
included files in the same way it handles nonnested included files. As long as 
the included files follow the source code file, MMS handles nested included 
files c,orrectly. 

The following sample description file, INCLUDE.MMS, shows how to use 
included files: 

Example 1-3: Description File with Included Files 

Main executable target, its objects, and action line 

MAIN.EXE DEPENDS_ON MAIN.OBJ, SUB1.0BJ, SUB2.0BJ 
LINK MAIN, SUB1, SUB2 

Source code files with included files COPY~1.PAS and COPY_2.PAS 

MAIN.OBJ DEPENDS_ON MAIN.PAS, COPY_1.PAS, COPY_2.PAS 
SUB1.0BJ DEPENDS_ON SUB1.PAS, COPY_1.PAS 
SUB2.0BJ DEPENDS_ON SUB2.PAS 

MAIN.PAS is the source code file for the object file, MAIN.OBJ, and contains 
two included files, COPY_l.P AS and COPY_2.P AS. COPY_l.P AS is shared 
by another source code file, SUBJ.PAS. Figure 1-4 shows the dependencies 
between the files. 

1-16 Introduction to MMS 



Figure 1-4: Included Files in a Software System 

MAIN.EXE 

1 
MAIN.OBJ SUB1.0BJ SUB2.0BJ 

1 
~ MAIN.PAS 1-- SUB1.PAS SUB2.PAS 

copv_2.PAS COPY_1.PAS 

ZK-5884-HC 

During compilation, the PASCAL compiler handles the included files invisibly if 
they exist. If the included files do not exist, MMS returns with a fatal error and 
aborts the process. However, MMS has an /IGNORE qualifier, which allows 
you to control whether MMS aborts after a fatal error. 

1.2.9 Building a System with Included Files 

The ability of MMS to handle included files ensures accurate system building 
in a production environment. In a large system, it is hard to remember which 
compilation depends on which included file, and it is easy to forget to perform 
the compilations when an included file changes. When writing your MMS 
description file, you should inspect all your source code files for statements 
that include other files. You can use the DCL SEARCH command to search for 
these statements. 

Introduction to MMS 1-1 7 



Consider a directory that contains the following files: 

$ DIR/DATE=MODIFIED 

Directory DISK!: [BUILD] 

COPY_!. PAS; 1 
COPY_2.PAS;1 
INCLUDE.MMS;1 
MAIN.PAS;! 
SUB1.PAS; 1 
SUB2.PAS;1 

Total of 6 files. 

24-JUL-1987 16:36 
24-JUL-1987 16:37 
24-JUL-1987 16:38 
24-JUL-1987 16:30 
24-JUL-1987 16:23 
24-JUL-1987 16:39 

To build your system, invoke MMS with the INCLUDE.MMS description file as 
follows: 

$ MMS/DESCRIPTION=INCLUDE 

MMS compiles each source code file and then links them to generate the 
executable image, MAIN .EXE. After MMS has built your system, the files in 
your directory are as follows: 

$ DIR/DATE=MODIFIED 

Directory DISK!: [BUILD] 

COPY_!. PAS; 1 
COPY_2.PAS;1 
INCLUDE.MMS;1 
MAIN.EXE; 1 
MAIN .OBJ; 1 
MAIN.PAS;! 
SUB1.0BJ;1 
SUB1.PAS; 1 
SUB2.0BJ;1 
SUB2.PAS;1 

Total of 10 files. 

24-JUL-1987 16:36 
24-JUL-1987 16:37 
24-JUL-1987 16:38 
24-JUL-1987 16:48 
24-JUL-1987 16:48 
24-JUL-1987 16:30 
24-JUL-1987 16:47 
24-JUL-1987 16:23 
24-JUL-1987 16:47 
24-JUL-1987 16:39 

1 .2.10 Rebuilding a System with Included Files 

If you have edited the included file COPY_l .PAS in your current directory and 
you want to rebuild your system, invoke MMS as you would for a system build. 

1-18 Introduction to MMS 



For example, consider a directory that contains the following files: 

$ DIR/DATE=MODIFIED 

Directory DISK1: [BUILD] 

COPY_1.PAS;2 
COPY_2.PAS;1 
INCLUDE.MMS;1 
MAIN.EXE;! 
MAIN.OBJ;! 
MAIN.PAS;! 
SUB1.0BJ;1 
SUB1.PAS; 1 
SUB2.0BJ;1 
SUB2.PAS;1 

Total of 10 files. 

24-JUL-1987 16:49 
24-JUL-1987 16:37 
24-JUL-1987 16:38 
24-JUL-1987 16:48 
24-JUL-1987 16:48 
24-JUL-1987 16:30 
24-JUL-1987 16:45 
24-JUL-1987 16:23 
24-JUL-1987 16:46 
24-JUL-1987 16:39 

To rebuild your system, invoke MMS with the INCLUDE.MMS description file 
as follows: 

$ MMS/DESCRIPTION=INCLUDE 

This example shows that the included file has been edited. COPY_l.P AS is 
newer than any file used to build MAIN .EXE. When you invoke MMS, both 
MAIN.PAS and SUBl.PAS that include COPY_l.PAS are recompiled and 
relinked. If you had edited COPY-2.P AS, and you recompiled your system, 
only MAIN.PAS would have been recompiled and relinked. After MMS 
rebuilds your system, the files in your directory are as follows: 

$ DIR/DATE=MODIFIED 

Directory DISK1: [BUILD] 

COPY_ 1. PAS ; 2 
COPY_2.PAS;1 
INCLUDE.MMS;1 
MAIN.EXE;2 
MAIN.OBJ;2 
MAIN.OBJ;! 
MAIN.PAS;! 
SUB1.0BJ;2 
SUB1. OBJ; 1 
SUB1.PAS;1 
SUB2.0BJ;1 
SUB2.PAS;1 

Total of 12 files. 

24-JUL-1987 16:49 
24-JUL-1987 16:37 
24-JUL-1987 16:38 
24-JUL-1987 16:51 
24-JUL-1987 16:51 
24-JUL-1987 16:48 
24-JUL-1987 16:30 
24-JUL-1987 16:50 
24-JUL-1987 16:45 
24-JUL-1987 16:23 
24-JUL-1987 16:46 
24-JUL-1987 16:39 

Introduction to MMS 1-19 



1 .2.11 Systems with More Than One Executable Image 

If a system has a number of executable images that use common object files, it 
is more efficient to build them from one description file. If any one executable 
image is especially complicated, it is advisable to place it in its own description 
file. Executable images that are not related in some significant way should 
not be in the same description file. However, MMS can handle this complex 
system build with a description file that has an overall target that includes each 
executable file. You can choose to build the entire system or selected executable 
images in the system. 

This type of description file is layered with the overall goal coming first, 
followed by the executable images, the object files, and the source code files. 
For example, the following sample description file, named MULTI_EXES.MMS, 
can build an overall target, or one executable image: 

Example 1-4: Description File Using Multiple Targets 

Overall system target 

SYSTEM DEPENDS_ON MAIN.EXE, PROG1.EXE, PROG2.EXE 
! (no special action for system target) 

The executable images and their object files 

MAIN.EXE DEPENDS_ON MAIN.OBJ, SUB1.0BJ 
LINK MAIN.OBJ, SUB1.0BJ 

PROG1.EXE DEPENDS_ON PROG1.0BJ 
LINK PROG1.0BJ 

PROG2.EXE DEPENDS_ON PROG2.0BJ 
LINK PROG2.0BJ 

The object files and their sources 

MAIN.OBJ DEPENDS_ON MAIN.PAS 
SUB1.0BJ DEPENDS_ON SUB1.PAS 
PROG1.0BJ DEPENDS_ON PROG1.PAS 
PROG2.0BJ DEPENDS_ON PROG2.PAS 

1-20 Introduction to MMS 



This description file contains a target, SYSTEM, which includes all the exe
cutable images and a null action because SYSTEM cannot actually be created. 
All the object files and source code files have the same dependencies as in the 
previous examples. Figure 1-5 shows the dependencies between the files. 

Figure 1-5: A System with More Than One Executable Image 

SYSTEM 

MAIN.EXE PROG1 .EXE PROG2.EXE 

MAIN.OBJ SUB1.0BJ PROG1.0BJ PROG2.0BJ 

MAIN.PAS SUB1.PAS PROG1 .PAS PROG2.PAS 

ZK-5885-HC 

1 .2.12 Building a System with More Than One Executable Image 

MMS handles multiple executable files with accuracy during the system build. 
In your description file, the system target is listed first and MMS treats it as 
the goal of the system build. Each executable image is built in the process of 
building the SYSTEM. After the executable images are built, MMS takes any 
specified action to update the SYSTEM target itself, but no action is required. 

Consider a directory that contains the following files: 

Introduction to MMS 1-21 



$ DIR/DATE=MODIFIED 

Directory DISK1: [BUILD] 

MAIN.PAS;! 
MULTI_EXES.MMS;1 
PROG1.PAS; 1 
PROG2.PAS;1 
SUB1.PAS; 1 

Total of 5 files. 

24-JUL-1987 16:30 
24-JUL-1987 16:34 
24-JUL-1987 16:31 
24-JUL-1987 16:33 
24-JUL-1987 16:23 

To build your system, invoke MMS with the MULTI_EXES.MMS description 
file as follows: 

$ MMS/DESCRIPTION=MULTI_EXES 

MMS attempts to build the first target, that is, all the executable images. It 
compiles all the source code files and links them to build the executable images. 
The final action of building SYSTEM is null and the system is complete at this 
time. After MMS builds your system, the files in your directory are as follows: 

$ DIR/DATE=MODIFIED 

Directory DISK1: [BUILD] 

MAIN.EXE;! 
MAIN.OBJ;! 
MAIN.PAS;! 
MULTI_EXES.MMS;1 
PROG1. EXE; 1 
PROG1.0BJ;1 
PROG1.PAS; 1 
PROG2.EXE;1 
PROG2.0BJ;1 
PROG2.PAS;1 
SUB1.0BJ;1 
SUB1.PAS;1 

Total of 12 files. 

24-JUL-1987 16:55 
24-JUL-1987 16:55 
24-JUL-1987 16:30 
24-JUL-1987 16:34 
24-JUL-1987 16:54 
24-JUL-1987 16:54 
24-JUL-1987 16:31 
24-JUL-1987 16:53 
24-JUL-1987 16:53 
24-JUL-1987 16:33 
24-JUL-1987 16:52 
24-JUL-1987 16:23 

You can also invoke MMS to build a specific target or executable image. For 
example: 

$ MMS/DESCRIPTION=MULTI_EXES PROG1.EXE, PROG2.EXE 

This command line invokes MMS with a "target specifier." A target specifier 
is a parameter that directs MMS to build a specific target or targets. A target 
specifier overrules the MMS default of building the first target in the description 
file. Only the specified targets are built. 

1-22 Introduction to MMS 



1 .2.13 Rebuilding a System with Several Executable Images 

If you have deleted one of the executable files, PROG2.EXE, in your current 
directory and you want to rebuild your system, invoke MMS as you would for 
a system build. 

$ MMS/DESCRIPTION=MULTI_EXES 

MMS links PROG2.0BJ to produce the executable image. MMS performs only 
the link necessary to complete the system. After MMS has rebuilt your system, 
the files in your directory are as follows: 

$ DIR/DATE=MODIFIED 

Directory DISK1: [BUILD] 

MAIN.EXE;! 
MAIN.OBJ;! 
MAIN.PAS;! 
MULTI_EXES.MMS;1 
PROG 1. EXE; 1 
PROG1.0BJ;1 
PROGL PAS; 1 
PROG2.EXE;1 
PROG2.0BJ;1 
PROG2.PAS;1 
SUB1.0BJ;1 
SUB1.PAS;1 

Total of 12 files. 

24-JUL-1987 16:55 
24-JUL-1987 16:55 
24-JUL-1987 16:30 
24-JUL-1987 16:34 
24-JUL-1987 16:54 
24-JUL-1987 16:54 
24-JUL-1987 16:31 
24-JUL-1987 16:57 
24-JUL-1987 16:53 
24-JUL-1987 16:33 
24-JUL-1987 16:52 
24-JUL-1987 16:23 

1 .2.14 Building Systems with Object Libraries 

This section assumes that you have some knowledge of VMS libraries. Object 
libraries are useful for faster compiling and linking during debugging sessions. 
MMS handles libraries easily and takes care of library creation, module 
insertion, and updating of libraries during system rebuilds. 

To put an object file into a library, you must have the library file name, an 
object file name, and the library module name. The library file name usually 
has the .OLB extension; the object file name usually has the .OBJ extension. 

The library module name and the object file name are often confused. The 
object file name is a VMS file name of the object file. The library module name 
is governed by the TITLE, MODULE, PROGRAM, or SUBROUTINE name in 
the source code. These two names can be the same. 

Introduction to MMS 1-23 



MMS looks for the library file name just after the target as the main source. 
The library module name is the first after the parentheses and the object file 
name is immediately after the equal sign. For example, examine the following 
sample description file called MAIN _LIB.MMS: 

Example 1-5: Description File Using Object Libraries 

Main executable target, its objects, and action line 

MAIN.EXE DEPENDS_ON MAIN.OBJ, -
MAIN_LIB.OLB(OPTIM=OPTIM.OBJ), -
MAIN_LIB.OLB(GET_RECORD=GETREC.OBJ), -
MAIN_LIB.OLB(PUT_RECORD=PUTREC.OBJ) 

LINK MAIN. OBJ, MAIN_LIB/LIB 

Program source code files 

MAIN.OBJ DEPENDS_ON MAIN.FOR 
OPTIM.OBJ DEPENDS_ON OPTIM.FOR 
GETREC.OBJ DEPENDS_ON GETREC.FOR 
PUTREC.OBJ DEPENDS_ON PUTREC.FOR 

In this description file the executable image, MAIN .EXE, depends on one object 
file and three library entries. Note that this file contains two files where the 
object name and the module name are different, and one where they are the 
same. You can read the library source line as "Use the library name MAIN_ 
LIB, and the object module in it named OPTIM, which comes from the object 
file named OPTIM.OBJ." 

MMS does a large amount of work when using libraries. It compiles each 
source code file, creates the library if necessary, and inserts each object module 
in the library. Library files also have built-in rules. 

Consider a current directory that contains the following files: 

$ DIR/DATE=MODIFIED 

Directory DISK1: [BUILD] 

GETREC.FOR;1 
MAIN.FOR;! 
MAIN_LIB.MMS;4 
OPTIM.FOR;2 
PUTREC.FOR;1 

Total of 5 files. 

1-24 Introduction to MMS 

28-JUL-1987 10:43 
28-JUL-1987 10:43 
28-JUL-1987 10:43 
28-JUL-1987 10:43 
28-JUL-1987 10:43 



To build your system, invoke MMS with the MAIN_LIB.MMS description file 
as follows: 

$ MMS/DESCRIPTION=MAIN_LIB 

To build this system, MMS performs the following tasks: 

• MMS compiles each library entry. 

• MMS checks for the existence of a library and creates the library if one does 
not exist. 

• MMS then inserts each entry into the library. 

The directory includes all parts of the system including the library. Your current 
directory now contains the following files: 

$ DIR/DATE=MODIFIED 

Directory DISK!: [BUILD] 

GETREC.FOR;1 
GETREC.OBJ;1 
MAIN.EXE;! 
MAIN.FOR;! 
MAIN.OBJ;! 
MAIN_LIB. MMS; 4 
MAIN_LIB. OLB; 1 
OPTIM.FOR;2 
OPTIM.OBJ;1 
PUTREC.FOR;1 
PUTREC.OBJ;1 

Total of 11 files. 

28-JUL-1987 10:43 
28-JUL-1987 10:44 
28-JUL-1987 10:45 
28-JUL-1987 10:43 
28-JUL-1987 10:44 
28-JUL-1987 10:43 
28-JUL-1987 10:44 
28-JUL-1987 10:43 
28-JUL-1987 10:44 
28-JUL-1987 10:43 
28-JUL-1987 10:44 

1 .2.15 Rebuilding a System with Object Libraries 

If you have edited the file GETREC.FOR and you want to rebuild your system, 
type the following command line: 

$ MMS/DESCRIPTION=MAIN_LIB 

MMS compiles the source code file GETREC.FOR, checks for the existence of 
the library, and replaces the old library module with the new one. 

Introduction to MMS 1-25 



1.2.16 Using the Description File to Maintain Your System 

The description file in Example 1-6 shows how you can use an MMS descrip
tion file to define macros (a macro gives a name to a character string). It also 
describes dependencies to perform the following functions: 

• Print out the source code files 

• Clean up the directory and show the results 

• Check the portability of the system 

• Generate, print, and delete listings complete with cross references 

The comments in the description file in Example 1-6 explain the dependency 
rules. 

Example 1-6: Description File for Maintaining Your System 

! The macros are defined: 

OBJECTS = MOD1.0BJ, MOD2.0BJ, MOD3.0BJ 

SOURCES = DEFS1.H, DEFS2.H, MOD1.C, MOD2.C, MOD3.C 

CSOURCES = MOD1.C, MOD2.C, MOD3.C 

The following dependency rules describe target-source 
relationships for the system. Built-in rules are 
used so that not all the dependencies need to be 
stated explicitly. 

PROG.EXE DEPENDS_ON $(OBJECTS) 
LINK/EXEC=PROG $(OBJECTS) 
COPY PROG.EXE PRINTNEW. Use PRINTNEW. as a time stamp 

MOD2.0BJ DEPENDS_ON DEFS1.H 

MOD2.0BJ, MOD3.0BJ DEPENDS_ON DEFS2.H 

! The following rule prints out all the source files: 

PRINT : 
PRINT $(SOURCES) 

The following rule cleans up the directory and 
shows the result; the Silent prefix (©) suppresses 
the display of the action lines on your terminal screen 

CLEANUP : 
©DELETE *.BAK;*, *.OBJ;* 
© DIRECTORY/DATE/SIZE 

1-26 Introduction to MMS 

(continued on next page) 



Example 1-6 (Cont.): Description File for Maintaining Your System 

! The following rule prints the sources 
! that have changed since last build: 

PRINTNEW. : $(SOURCES) 
PRINT $(MMS$CHANGED_LIST) 

! The following rule checks the portability of the system: 

PORTABLE : 
CC /STANDARD=PORTABLE/NOOBJECT/NOLIST $(CSOURCES) 

! The following rule generates listings (complete with cross
! references and symbols), prints them, then deletes them: 

CROSSREF : 
CC /CROSS_REFERENCE/LIST/NOMACHINE_CODE/SHOW:SYM $(CSOURCES) 
PRINT/DELETE *.LIS 

With this sample description file, you can perform several system management 
tasks by specifying different targets on the MMS command line. 

To clean up the directory, type the following command: 

$ MMS CLEANUP 

To print all the source files, type the following command: 

$ MMS PRINT 

To print all recently changed source files, type the following command: 

$ MMS PRINTNEW. 

To get a complete set of hardcopy listings with cross-references and the symbol 
table, type the following command: 

$ MMS CROSSREF 

To check the portability of source code, type the following command: 

$ MMS PORTABLE 

As the need for other system management tasks arises, you can add appropriate 
dependency rules to the description file. 

Introduction to MMS 1-27 



1 .3 MMS Command Format 

The format for the MMS command is as follows: 

$ MMS [/qualifier . . . ] [target , . . . ] 

/qualifier 
An MMS qualifier. 

target 
The name of a target, which can be either a VMS file specification or a logical 
name. 

1 .4 Qualifiers 

The qualifiers for the MMS command are as follows: 

Command Qualifiers 
/[NO]ACTION 
/[NO]CHECK_ST A TUS 
/[NO]CMS 
/[NO)DESCRIPTION=filespec ... 
/FROM_SOURCES 
/HELP 
/IDENTIFICATION 

{

WARNING } 
/[NO)IGNORE= ERROR 

FATAL 
/[NO)LOG 

/MACRO= { ~ilespec.. } 
macro ... 

/OUTPUT =filespec 
/[NO]OVERRIDE 
/[NO)REVISE_DA TE 
/[NO]RULES[=filespec] 
/[NO]SCA_LIBRARY[=library-name] 
/[NO]SKIP _INTERMEDIATE 
/[NO)VERIFY 

1-28 Introduction to MMS 

Defaults 
/ACTION 
/NOCHECK_ST A TUS 
/NOCMS 
/DESCRIPTION=DESCRIP .MMS 
None 
None 
None 

/NOIGNORE 

/NOLOG 

None 

/OUTPUT=SYS$0UTPUT 
/NOOVERRIDE 
/NOREVISE_DA TE 
/RULES 
/NOSCA_LIBRARY 
/NOSKIP _INTERMEDIATE 
/VERIFY 



Chapter 2 

The MMS Description File 

Chapter 1 showed you how to use MMS to build a variety of software systems. 
There was a progression from simple systems to complex systems with many 
files of source code, multiple language compilers, and executable images. MMS 
built the systems using its built-in features and information obtained from the 
description file. This chapter describes the elements of the description file and 
how they work together to build a system. 

2. 1 Overview 

The description file instructs MMS how to build your system and explains the 
relationships among the various components of your system. You can create 
and modify the description file with any editor, and once you have created the 
description file, you can invoke it on the MMS command line. 

The description file builds your system using some or all of the following 
elements: 

• Action lines 

• Comment Lines 

• Built-in rules 

• User-defined rules 

• Directives 

The MMS Description File 2-1 



2.2 Using Dependency Rules 

A description file always contains dependency rules. Dependency rules 
indicate how files depend on, or are affected by, other files and specify the 
actions MMS takes to build or update your system. 

A dependency rule consists of targets, optional sources, an optional action 
line, and an optional comment for each target and source line. The format for 
dependency rules is as follows: 

target ... : [source ... ] [!comment] 
[action line ... ] [!comment] 

A target or source can be a VMS file specification or a mnemonic name 
(Section 2.2.3 describes mnemonic names). If you are using DECnet, the file 
specifications for the target and source can include node information. 

A comment is usually a string of text, introduced by an exclamation point ( ! ), 
that documents the description file. You can continue a comment line onto 
the next line with the hyphen or backslash. MMS considers any text on the 
next line following the continuation character as part of the comment line. An 
action line is a command-language command that MMS uses to update the 
target. You can specify any number of action lines for a target. An action line is 
positioned below the corresponding target or source line and must be indented 
by at least one space or tab. MMS interprets all indented lines as action lines 
and associates them with the most recently specified target or source line. If 
you omit the action line, MMS uses built-in rules to update the target if a 
built-in rule exists. (See Section 2.3 for an explanation of built-in rules). 

You begin a target or source line in column 1 of the line and use the colon (:) 
or the keyword DEPENDS_QN to separate the target from the source. If you 
use a colon to separate the target from the source, insert at least one space or 
tab on either side of the colon, so that MMS does not interpret the colon as part 
of a VMS file specification. 

To improve the readability of description files, separate dependency rules from 
each other with one or more blank lines. Do not use blank lines between the 
action lines of a single dependency rule, because a blank line signals the end of 
the dependency rule. 

By default, MMS expects to find the source and target files in the current default 
directory unless you specify other directories in your file specification. 

Any line in a description file can be continued onto the next line with a hyphen 
( - ). This practice makes the description file easier to read when a dependency 
rule is too long to fit on one line. For example: 

2-2 The MMS Description File 



0 TESTS.OBJ DEPENDS_ON -
8 TEST1.BAS, - ! Source modules for TESTS.OBJ- 0 

TEST2.BAS, -
TEST3.BAS, -
TEST4.BAS, -
TEST5.BAS 

BASIC/OBJECT=TESTS TEST1+TEST2+TEST3+TEST4+TEST5 

0 The hyphen means that the next line is treated as part of the current line. 

8 The second through fifth lines are continuations of the target or source line. 

0 A comment can appear after a continuation character without affecting the 
processing of the description file. 

NOTE 

When a hyphen appears as the last character on a line, MMS 
interprets the hyphen as a continuation character, even if the hyphen 
is part of a comment. 

2.2.1 Source and Target Files 

If you specify an action line but omit the source from a dependency rule, 
MMS executes the action line only if the target does not exist in the specified 
directory. For example, consider the following dependency rule: 

[SYSTEM1]TESTS.OBJ : 
PASCAL/DEBUG [SYSTEM1]TESTS.PAS 

In this example, MMS executes the PASCAL command only if TESTS.OBJ does 
not exist in the directory [SYSTEMl ]. 

As MMS checks the revision dates and times of targets and sources, it builds 
a list of times, which it uses in deciding when a target needs to be updated. 
If there is no file associated with a target or source (for example, if the target 
does not exist), MMS records a revision time for it that is older than the times 
of all other existing targets and sources: 17-NOV-1858 00:00:00.0. (This is the 
oldest time used by VMS.) All targets and sources that are not existing files are 
assigned this revision time. 

2.2.2 Specifying Multiple Targets and Sources 

A description file can contain many dependency rules; however, MMS builds 
only one target. You can specify several targets on the MMS command line, but 
such a command is executed as a separate invocation of MMS for each target 
with the specified set of qualifiers. 

The MMS Description File 2-3 



To specify multiple targets and sources, you must separate them with commas, 
spaces, or a combination of both. MMS expands the specification of multiple 
targets into separate dependencies before it executes the action lines. For 
example, consider the following dependency 'rule in a description file: 

KERNEL.OBJ, DRIVER.OBJ DEPENDS_ON COMMON.DEF 

In this example, MMS uses built-in rules to determine what action is needed 
to update KERNEL.OBJ and DRIVER.OBJ and expands the previous rule as 
follows: 

KERNEL.OBJ DEPENDS_ON KERNEL.C, COMMON.DEF 
CC KERNEL.C 

DRIVER.OBJ DEPENDS_ON DRIVER.C, COMMON.DEF 
CC DRIVER.C 

MMS determines from the built-in rules that KERNEL.C and DRIVER.C, which 
are not specified as targets in this dependency rule, are sources for KERNEL.OBJ 
and DRIVER.OBJ, respectively. The original dependency rule expands to two 
dependency rules, resulting in two compilations if both targets need updating. 

Sometimes, if an action line is executed twice, the results may not be what you 
intended, as in the following example: 

A.EXE : A.OBJ, A.LIS 
LINK A.OBJ 

A.OBJ, A.LIS : A.BAS 
BASIC/LIST A.BAS 

MMS expands the second rule to the following two dependency rules: 

A.OBJ : A.BAS 
BASIC/LIST A.BAS 

A.LIS : A.BAS 
BASIC/LIST A.BAS 

Because the second dependency in the description file expands to two de
pendency rules, each with a separate action, MMS executes the command 
BASIC/LIST A.BAS twice and produces two .OBJ files and two .LIS files. 
See Section 3.11.2 for a detailed discussion on avoiding this problem in your 
description file. 

Occasionally MMS executes an action when you do not expect the source to 
be newer than the target. This situation can result from one of the following 
conditions: 

• If sources are being stored in a library to which more than one person 
has access, someone else may replace that source in the library after you 
have invoked MMS but before MMS has checked the source's revision 
time. Therefore, when MMS checks the time, a source newer than the 

2-4 The MMS Description File 



corresponding target may exist in the library. MMS would execute an 
action to update the target. 

• If the sources and targets in your description file do not reside on the same 
node of a network, the clocks on the nodes may not be synchronized and 
a source may have a revision time that is later than the target. Also, in 
V AXcluster environment, clocks on different nodes of the cluster may not 
be synchronized. 

2.2.3 Using Mnemonic Names for Targets and Sources 

You can use a mnemonic name for a source or a target but you must supply 
the action lines that update the target. A mnemonic name is a name that 
identifies the purpose of a sequence of related actions. MMS relies on the 
source and target file types to apply built-in rules. Section 2.3 describes how 
MMS uses built-in rules. 

You can use a mnemonic name to represent a source only if it is also a target 
in a dependency rule in your description file. If MMS encounters a name for 
which it cannot find a matching file in the specified directory, it assumes that 
the name is a mnemonic name. 

Mnemonic names are useful in several cases, for example: 

• To update more than one file 

• To group a variety of related actions under a name that identifies the 
purpose of the whole sequence 

• To give a name to a common action or sequence of actions in building a 
system 

The first of these cases is probably the most important, because by default MMS 
builds only one target. If you need to update several targets, you can make 
them sources in a dependency rule using a mnemonic name for the target as 
follows: 

NEW_SYSTEM DEPENDS_ON A.EXE, B.EXE 
! no action needed 

A.EXE DEPENDS_ON A.OBJ 
LINK A.OBJ 

B.EXE DEPENDS_ON B.OBJ 
LINK B.OBJ 

The target NEW-5YSTEM is considered updated when MMS executes the 
action line or lines that follow it. In this case, both A.EXE and B.EXE are 
updated, if necessary. 

The MMS Description File 2-5 



The following example shows the use of mnemonic names as both targets 
and sources. MMS updates the target, ALL, by updating the two sources, 
PROG.EXE and PRINT, which are themselves targets in subsequent dependency 
rules. 

ALL DEPENDS_ON FROG.EXE, PRINT 
! system completely built and the sources printed 

FROG.EXE DEPENDS_ON MOD1.0BJ, MOD2.0BJ, MOD3.0BJ 
LINK/EXEC=PROG MOD1.0BJ, MOD2.0BJ, MOD3.0BJ 

PRINT DEPENDS_ON MOD1.C, MOD2.C, MOD3.C, DEFS1.H, DEFS2.H 
! Print the source files 
PRINT MOD1.C, MOD2.C, MOD3.C, DEFS1.H, DEFS2.H 

2.2.4 Specifying the Target on the Command Line 

By default, MMS updates the first target specified in the description file. You 
can force MMS to update a target other than the first one by explicitly including 
the target name on the MMS command line. Consider the following description 
file: 

TEST.OBJ DEPENDS_ON A.OBJ B.OBJ 
LINK/EXE=TEST A,B 

A.OBJ DEPENDS_ON A.FOR 
B.OBJ DEPENDS_ON B.FOR 
PRINT DEPENDS_ON 

PRINT A.FOR, B.FOR 

If you specify MMS PRINT on the command line, MMS searches the description 
file for the dependency rule associated with PRINT, the specified target. MMS 
tries to update the target PRINT rather than TEST.OBJ, the default. If PRINT is 
up-to-date, no action takes place. 

MMS updates all sources and their dependencies before updating the main 
target. MMS checks all sources before it updates a target, because sources may 
themselves be targets with sources in other dependency rules. 

2.2.5 Hierarchy of Rule Application 

MMS has a hierarchy of rule application: 

• If an action line exists in a description file, the action line takes precedence 
over all built-in rules and user-defined rules. 

• If a user-defined rule exists in a description file, the user-defined rule takes 
precedence over a built-in rule. 

2-6 The MMS Description File 



• A built-in rule is executed only if no action line or user-defined rule exists 
in the description file. 

• If there is no action line, built-in rule, or user-defined rule for updating a 
target, then MMS issues a fatal-error message. 

2.3 Using Built-In Rules 

When writing a description file, you can explicitly state dependencies and 
actions, or you can abbreviate them by taking advantage of built-in rules, 
which MMS uses to update targets. A built-in rule is MMS' default method for 
updating a target with a particular file type from a source with a particular file 
type. 

Built-in rules are made up of default macros, special macros, and string 
variables. A complete list of the MMS built-in rules is in Table C-6. A file copy 
of the built-in rules resides in [SYSHLP.EXAMPLES.MMS]. 

MMS uses its built-in rules when you omit the action line from a dependency 
rule. If the dependency rule has an action line but no source, then MMS uses 
the action line. 

MMS knows how to build a software system from looking at file types and 
relating them to its built-in rules. Built-in rules are fixed and go into effect 
when you invoke MMS. They cannot be changed, but you can override them 
with user-defined rules. Built-in rules also explain why you must follow 
standard file naming practices. For example, a PASCAL program must have a 
.PAS extension. If your PASCAL program does not have the .PAS extension, 
MMS does not know it is a PASCAL program. 

Built-in rules consist of the file extension of the source, the file extension of 
the target, and the action to update the target using the source. The actions in 
built-in rules use macros extensively. For example, consider the following: 

The MMS Description File 2-7 



Example 2-1: A Built-In Rule 

0 • 
. PAS.OBJ 

8 $(PASCAL) $(PFLAGS) $(MMS$SOURCE) 

0 .PAS is the source file type. 

8 .OBJ is the target file type. 

8 $(PASCAL) $(PFLAGS) $(MMS$SOURCE) is the action line to update the 
target. 

MMS attempts to use its built-in rules only when you omit the action line 
from a dependency rule. For example, MMS has a built-in rule that instructs 
it to use .FOR files when updating .OBJ files and to produce the .OBJ files by 
invoking the FORTRAN compiler. In writing the description file, you can state 
this relationship as follows: 

MOD3.0BJ DEPENDS_ON MOD3.FOR 
FORTRAN MOD3.FOR 

You can rely on MMS built-in rules by omitting the action line as follows: 

MOD3.0BJ DEPENDS_ON MOD3.FOR 

MMS uses its built-in rule to invoke the FORTRAN compiler and build 
MOD3.0BJ from MOD3.FOR. 

If you omit the source, MMS can still use built-in rules to locate it because 
MMS knows about implied dependencies among files with the same name but 
different file types. MMS uses its suffixes precedence list to determine which 
file type (source) would result in the target file type. In the previous example, 
because the target's file name is MOD3, MMS assumes that the source's file 
name is also MOD3. 

MMS also knows that .OBJ files depend on .FOR files with the same file name 
so you can abbreviate the previous dependency rule even further as follows: 

MOD3.0BJ : 

MMS automatically looks for MOD3.FOR and uses it to build MOD3.0BJ 
because MMS knows that .OBJ files depend on .FOR files with the same file 
name. 

However, consider the following line: 

MOD3.0BJ DEPENDS_ON MOD2.0BJ 

2-8 The MMS Description File 



If you omit the action line, MMS does not know how to build the target, and 
you receive an error message. 

2.3.1 The Suffix Precedence List 

MMS checks its suffixes precedence list to determine the file type of the source 
and then uses the built-in rules to determine how the various types of files can 
be generated from the known rules. Consider the following suffixes precedence 
list: 

.EXE .OBJ .BLI .C .FDR .BAS 

According to this list, .EXE files have precedence over .OBJ files, which have 
precedence over . BLI files, which have precedence over . C files, and so on. The 
relationship between the suffixes list and the known rules can be represented as 
follows: 

Figure 2-1: Relationship Between Suffixes 

~ .OBJ .BLI .C 1.FOR I .BAS 

t I t I 
ZK-1664-84 

The arrows in this figure indicate built-in rules. In this figure, a known rule 
specifies how an .EXE file is made from an .OBJ file. Similarly, the built-in 
rules direct MMS how to make an .OBJ file from a .BLI file, a .C file, a .FOR 
file, and a .BAS file. Because .BLI precedes .C in the suffixes list, .BU files have 
priority over .C files as a way to build .OBJ files. (The suffixes precedence list is 
contained in Table C-4; you can alter the order of the suffixes precedence list, 
as described in Section 2.8.4.) 

The figure also shows that .OBJ files can be built from .BLI, .C, .FOR, and .BAS 
files. If MMS is trying to build MOD3.0BJ, it looks first for a source named 
MOD3.BLI. If such a source exists in the specified directory, MMS applies the 
known rule and creates MOD3.0BJ; if it finds no match for the file name and 
type, it continues looking in the specified directory for the same file name and 
the next file type from the suffixes list that can update the target. If MOD3.BLI 

The MMS Description File 2-9 



does not exist, MMS next looks for MOD3.C. If MOD3.C does not exist, the 
next possible source is MOD3.FOR, and so on. 

If MMS finally matches MOD3.0BJ with MOD3.FOR and locates MOD3.FOR in 
your directory, it updates the target MOD3.0BJ from the source MOD3.FOR by 
using its built-in rule. This procedure explains why a dependency rule as brief 
as the following is complete: 

MOD3.0BJ : 

This rule equates to the full dependency rule as follows: 

MOD3.0BJ DEPENDS_ON MOD3.FOR 
FORTRAN/OBJ=MOD3 MOD3.FOR 

If, however, MMS fails to find a source from which to build the new target, 
it repeats the entire process by determining whether it can build one of the 
nonexistent sources. 

If MMS exhausts all the possible file types without finding a way to build any 
of the sources, it issues an error message and aborts processing. 

Once MMS locates the correct source for updating a target, it checks whether 
the source itself needs updating before using it to update the original target. 
To do this, MMS repeats the process of finding a file in the specified directory 
that matches the file name of the source and each file type in the suffixes list 
that can update the target type. MMS repeats this process every time it finds a 
source that could update the target so that all the sources are guaranteed to be 
up-to-date. 

The following example shows a description file where dependencies are explic
itly stated. 

2-10 The MMS Description File 



PROG.EXE DEPENDS_ON MOD1.0BJ, MOD2.0BJ, MOD3.0BJ 
LINK/EXEC=PROG MOD1.0BJ, MOD2.0BJ, MOD3.0BJ 

MOD1.0BJ DEPENDS_ON MOD1.C 
CC MOD1.C 

MOD2.0BJ DEPENDS_ON MOD2.C, DEFDIR:DEFS1.H, DEFDIR:DEFS2.H 
CC MOD2.C 

MOD3.0BJ DEPENDS_ON MOD3.C, DEFDIR:DEFS2.H 
CC MOD3.C 

The following description file of the same system takes advantage of MMS 
built-in rules: 

Example 2-2: A Description File Using Built-In Rules 

0 PROG.EXE DEPENDS_ON MOD1.0BJ, MOD2.0BJ, MOD3.0BJ 
LINK/EXEC=PROG MOD1.0BJ, MOD2.0BJ, MOD3.0BJ 

C9 MOD2.0BJ, MOD3.0BJ DEPENDS_ON DEFDIR:DEFS2.H 

8 MOD2.0BJ DEPENDS_ON DEFDIR:DEFS1.H 

0 The first dependency rule lists the object files and states that PROG.EXE is 
constructed by executing the DCL command LINK. 

8 The rule for building MODI.OBJ need not be specified because a built-in 
rule directs MMS to build it from MODl.C. 

C9 The second dependency rule says that MOD2.0BJ and MOD3.0BJ depend 
on DEFS2.H, which is located in the directory defined by DEFDIR. Neither 
the .C file dependencies nor the actions taken to build the objects are stated. 

8 The third dependency rule says that MOD2.0BJ also depends on 
DEFDIR:DEFSl .H. 

2.3.2 Default Macros 

A macro is a name that represents a character string. MMS default macros 
can help you use MMS more efficiently because they define commonly used 
operations. MMS built-in rules are expressed in terms of default macros. 

The MMS Description File 2-11 



2.4 Defining Your Own Macros 

Macro 

PASCAL 

PFLAGS 

In addition to providing built-in rules, MMS allows you to define your own 
rules. Defining your own rules may involve deleting, adding to, or replacing 
the built-in rules. Section 2.6 describes when and how to define new rules. 
MMS allows you to use three kinds of macros: default macros (VMS utilities 
or qualifiers), special macros (target or source file names), and user-defined 
macros. These macros can use other macros in their definition. The full list of 
default macros is in Table C-1 and the list of special macros is in Table C-3. 

In MMS, macros contain the following information: 

• The names of compilers, the linker and library utilities 

• The default qualifiers for compiling, linking, and using the library utilities 

• The file name of the target 

• The list of sources for each target 

The following table lists some default and special macros available with MMS. 

Description Value 

PASCAL com- PASCAL 
piler 

Default PASCAL /NO LIST /OBJECT=$(MMS$TARGELNAME) 
qualifiers 

MMS$TARGELNAME Target file name Depends on target or source line 

MMS$SOURCE First file name Depends on target or source line 
in source list 

MMS$SOURCE_LIST All file names Depends on target or source line 
in source list 

The default macros, PASCAL and PFLAGS, contain a fixed value and are stored 
in an internal MMS list. They are created when MMS is invoked. The special 
macros, MMS$TARGET_NAME, MMS$SOURCE, AND MMS$SOURCE_LIST, 
are also maintained by MMS but their value changes according to the source or 
target line MMS is evaluating. 

If your description file reuses the same file name or if you have several action 
lines that invoke a compiler with the same set of qualifiers, you can define a 
macro to represent the file name or the list of qualifiers. You then can use the 
macro name throughout your description file. If you need to change the file 
name or qualifiers, you edit only the macro definition. 

2-12 The MMS Description File 



2.4.1 Formatting Macro Definitions 

A macro definition has the following format: 

name = string 

The name of the macro can consist of any characters except a space, a tab, a 
carriage return, an equal sign, the sequence $( ), quotation marks, and control 
characters. A macro name can be any length. The macro string is the text that 
replaces the macro name when the macro is expanded. A macro string can 
consist of any character sequence. You can use a hyphen ( - ) as a continuation 
character to continue a macro string onto the next line of the description file. 

You must begin a macro definition in column 1 of the line. You can place macro 
definitions anywhere in the description file, but placing all macro definitions at 
the beginning of the description file makes it easier to find and modify them. 

After you have defined a macro, you can invoke it anywhere in the description 
file. To invoke a macro, simply specify a macro's name in the following format: 

$(name) 

The dollar sign and parentheses surrounding the macro name are required 
punctuation. MMS replaces the name (and the punctuation) with the equivalent 
text string when it processes your description file. 

Note that you must define a macro before you can use it; otherwise, the 
macro's expanded value is the null string. To determine whether a macro 
has been defined, keep in mind the order in which MMS processes macro 
definitions (see Section 2.4.2). 

2.4.2 Order of Processing Macros 

When processing macros, MMS applies definitions in the following order: 

1. Command line 

2. Description file 

3. Built-in 

4. CLI symbol 

Once MMS finds a definition for a macro, it does not search those locations 
farther down the list for more definitions. 

The MMS Description File 2-13 



You can define a macro only once in a description file. If MMS finds two or 
m:ore definitions of the same macro, it issues an error message and uses the 
first definition in the file. To change a macro definition, you can redefine the 
macro with the /MACRO qualifier on the command line or you can replace the 
definition with the /OVERRIDE qualifier. (See the Command Dictionary for 
descriptions of these qualifiers.) 

2.4.3 Invoking Macros 

A macro string can also contain macro invocations that are expanded when the 
macro is defined. The macro invocations must denote macros that you have 
already defined in the description file. For example, suppose the following 
macro definitions appear in your description file: 

BUILD1 = /DEBUG 
BUILD2 = /LIST $(BUILD1) 

The macro invocation $(BUILD!) is expanded to /DEBUG because BUILD! 
has already been defined. If the positions of the macro definitions were 
reversed, BUILD! would be expanded to the null string because it has not been 
previously defined and therefore cannot be expanded. In this case, MMS does 
not issue an error message. 

MMS macros are not recursive. MMS expands a macro invocation only once. 
If during the expansion of a macro MMS encounters another macro invocation, 
the second invocation is not expanded. 

The following description file, CPROG.MMS, defines two macros: FNAME, 
which expands to the string TESTS, and CCQUALS, which expands to the 
string /NOLIST. 

2-14 The MMS Description File 



Example 2-3: Macro Definitions in a Description File 

FNAME = TESTS 
CCQUALS = /NOLIST 

$(FNAME).EXE: $(FNAME).OBJ, SYS$LIBRARY:STARLET.OLB 
LINK $(FNAME),-

SYS$LIBRARY:STARLET.OLB/LIB 

$(FNAME).OBJ: $(FNAME).C 
CC $(CCQUALS) $(FNAME).C 

When MMS starts building the target (in this case, the .EXE file), it replaces 
every occurrence of FNAME with TESTS and the occurrence of CCQUALS 
with the string /NO LIST. As a result, MMS interprets the description file as the 
following: 

TESTS.EXE : TESTS.OBJ, SYS$LIBRARY:STARLET.OLB 
LINK TESTS,-

SYS$LIBRARY:STARLET.OLB/LIB 

TESTS.OBJ : TESTS.C 
CC /NOLIST TESTS.C 

2.4.4 Defining Macros on the Command Line 

You can define macros on the MMS command line by using the /MACRO 
qualifier. /MACRO allows you to define new macros or to redefine macros 
you defined in the description file. When you redefine an existing macro with 
/MACRO, the new definition overrides the one in the description file. The 
format of the /MACRO qualifier is as follows: 

/MACRO= {filespec I "macro" ... } 

The filespec is a VMS file specification or a logical name for a file that contains 
only macro definitions. The default file type is .MMS. The "macro ''is a macro 
definition enclosed in quotation marks. Use the same format that you would 
use to define a macro in a description file: name= string. If you specify more 
than one macro, separate the macros with commas and enclose the list in 
parentheses. The /MACRO qualifier is described in detail in the Command 
Dictionary. 

To build a new program called TESTl.EXE, you can use the same description 
file with which you built TESTS.EXE (as shown in the Example 2-3). You can 
redefine FNAME and override the macro definition in the description file as 
follows: 

$ MMS/DESCRIPTION=CPROG/MACRO="FNAME=TEST1" 

The MMS Description File 2-15 



MMS then interprets the description file as follows: 

TEST1.EXE : TEST1.0BJ, SYS$LIBRARY:STARLET.OLB 
LINK TEST1,-

SYS$LIBRARY:STARLET.OLB/LIB 

TEST1.0BJ : TEST1.C 
CC/NOLIST TEST1.C 

The definition of the macro CCQUALS remains the same. 

As indicated by the format for /MACRO, you can store macro definitions in 
a file from which MMS extracts them. Suppose that you want to redefine the 
macro FNAME in your description file and change the qualifiers to the CC 
command. First, you create a file to hold the macro definitions. For example, 
a macro definitions file might be called MA.CROS.MMS and contain the 
following: 

FNAME = TEST1 
CCQUALS = /LIST/DEBUG 

Then you invoke MMS with the /MACRO qualifier and the name of the macro 
definitions file: 

$ MMS/DESCRIPTION=CPROG/MACRO=MACROS 

MMS interprets the previous description file as follows: 

TEST1.EXE : TEST1.0BJ, SYS$LIBRARY:STARLET.OLB 
LINK TEST1, SYS$LIBRARY:STARLET.OLB/LIB 

TEST1.0BJ : TEST1.C 
CC/LIST/DEBUG TEST1.C 

You invoke a default macro in a dependency rule just as you would invoke 
a macro you have defined yourself. For example, if you want to compile a C 
program using the /NOLIST and /OBJECT qualifiers, you can instead invoke 
the default macro CFLAGS: 

PROG.OBJ : PROG.C 
CC $(CFLAGS) PROG.C 

MMS expands CFLAGS to its equivalent, /NOLIST /OBJECT, and assumes 
that the object file and the specified target have the same name. Since MMS 
has a built-in rule for generating .OBJ files from .C files, and since this rule 
invokes the default macro CFLAGS, you can get the same results with the 
simple dependency rule: 

PROG.OBJ : 

2-16 The MMS Description File 



You can redefine a default macro so that you can use different qualifiers. The 
following example redefines CFLAGS: 

CFLAGS = /LIST 

FROG.EXE DEFENDS_ON MOD1.0BJ, MOD2.0BJ, MOD3.0BJ 
LINK/EXEC=FROG MOD1.0BJ, MOD2.0BJ, MOD3.0BJ 

MOD1.0BJ DEFENDS~ON 

MOD2.0BJ DEFENDS_ON DEFDIR:DEFS1.H 

MOD2.0BJ, MOD3.0BJ DEPENDS_ON DEFDIR:DEFS2.H 

MMS interprets the description file as follows: 

FROG.EXE DEFENDS_ON MOD1.0BJ, MOD2.0BJ, MOD3.0BJ 
LINK/EXEC=FROG MOD1.0BJ, MOD2.0BJ, MOD3.0BJ 

MOD1.0BJ DEFENDS_ON MOD1.C 
CC/LIST MOD1.C 

MOD2.0BJ DEFENDS_ON MOD2.C, DEFDIR:DEFS1.H, DEFDIR:DEFS2.H 
CC/LIST MOD2.C 

MOD3.0BJ DEFENDS_ON MOD3.C, DEFDIR:DEFS2.H 
CC/LIST MOD3.C 

If you later decide that you want the C source files to be compiled with the 
/DEBUG qualifier, you can redefine CFLAGS on the command line by typing: 

$ MMS/MACRO="CFLAGS=/DEBUG/NOLIST" 

MMS then interprets the description file as follows: 

FROG.EXE DEFENDS_ON MOD1.0BJ, MOD2.0BJ, MOD3.0BJ 
LINK/EXEC=FROG MOD1.0BJ, MOD2.0BJ, MOD3.0BJ 

MOD1.0BJ DEFENDS_ON MOD1.C 
CC/DEBUG/NOLIST MOD1.C 

MOD2.0BJ DEFENDS_ON MOD2.C, DEFDIR:DEFS1.H, DEFDIR:DEFS2.H 
CC/DEBUG/NOLIST MOD2.C 

MOD3.0BJ DEFENDS_ON MOD3.C. DEFDIR:DEFS2.H 
CC/DEBUG/NOLIST MOD3.C 

2.5 Using Special Macros 

MMS special macros expand to source or target names in the dependency 
currently being processed. You use them instead of target and source file 
specifications when you are writing general user-defined rules. 

MMS provides nine special macros, which you can use in the following places 
in a description file: 

• In user-defined rules 

The MMS Description File 2-1 7 



• In macro definitions 

• In action lines 

• In comments 

You cannot redefine a special macro or use a special macro on a target or source 
line in a description file. 

Table C-3 lists the MMS special macros and describes their functions. The 
table also lists a symbol that you can use as an abbreviation for each macro. 

More information on the special macros that relate to the VAX DEC/Code 
Management System (CMS) can be found in Section 4.2. 

NOTE 

The strings$•, $%, and$? always denote special macros. If an 
action line contains these character combinations, the asterisk ( • ), 
percent sign ( % ), and question mark (?) are not interpreted as 
wildcard characters. 

The following example shows how MMS defines a built-in rule using the 
MMS$SOURCE special macro: 

.C.OBJ 
$(CC) $(CFLAGS) $(MMS$SOURCE) 

CC and CFLAGS are default macros that invoke the C compiler with the 
/NOLIST and /OBJECT qualifiers. Consider the following dependency rule: 

[ALDEN]MOD2.0BJ DEPENDS_ON [STANLEY]MOD2.C 

MMS applies the built-in rule that updates an .OBJ file from a .C file, expanding 
the special macros in this rule as follows: 

CC /NOLIST/OBJECT=[ALDEN]MOD2.0BJ [STANLEY]MOD2.C 

You can use the MMS$CHANGED_LIST special macro to get listings of files 
that have changed since the last time the system was built. For example, 
consider the following description file: 

FROG.EXE : PRINT.FLG, MOD1.0BJ, MOD2.0BJ, MOD3.0BJ 
COPY NLAO: PRINT.FLG 
! Make the revision date of PRINT.FLG more current 
PURGE PRINT.FLG 
LINK/EXEC=PROG MOD1.0BJ, MOD2.0BJ, MOD3.0BJ 

PRINT.FLG : MOD1.C, MOD2.C, MOD3.C 
! Print the sources that have changed 
PRINT $(MMS$CHANGED_LIST) 

2-18 The MMS Description File 



The COPY command in the first dependency rule ensures that PRINT .FLG 
has approximately the same revision time as PROG.EXE. Sources newer 
than PROG.EXE will also be newer than PRINT.FLG and will be printed 
only when they are more recent than the last linking of PROG.EXE. The 
MMS$CHANGED_LIST special macro expands to a list of all the source files 
that have changed, and each changed source listing is submitted to the print 
queue. 

The following example shows how you could use MMS$TARGET and 
MMS$CHANGED_LIST in an action line to represent the current target and a 
list of the revised sources. Consider the following description file: 

FROG.EXE DEFENDS_ON MOD1.0BJ, MOD2.0BJ, MOD3.0BJ 
LINK/EXEC=FROG MOD1.0BJ, MOD2.0BJ, MOD3.0BJ 

! Needed to update $(MMS$CHANGED_LIST) to make $(MMS$TARGET) 

Your directory contains the following entries: 

$ DIR/DATE=MODIFIED 

Directory USER$: [MICHAELS] 

MOD1 .OBJ;2 
MOD2.0BJ;1 
MOD3.0BJ;2 
FROG.EXE;1 

Total of 4 files 
$ 

2-DEC-1987 13:50 
2-DEC-1987 09:22 
2-DEC-1987 14:06 
2-DEC-1987 11:47 

Because MODI.OBJ and MOD3.0BJ have changed since PROG.EXE was last 
linked, the following lines are displayed when you run MMS: 

LINK/EXEC=FROG MOD1.0BJ, MOD2.0BJ, MOD3.0BJ 
! Needed to update MOD1.0BJ, MOD3.0BJ to make FROG.EXE 

MMS$TARGET is expanded to the name of the target being updated, and 
MMS$CHANGED_LIST is expanded to a list of the revised sources. 

2.6 Defining Your Own Rules 

MMS has built-in rules that allow it to figure out unstated dependencies and to 
perform actions necessary to update targets. However, the list of built-in rules 
may not contain all the rules you need, or you may want to redefine existing 
rules. MMS provides you with the ability to include user-defined rules in a 
description file. Once you define a new rule, MMS uses the new rule every 
time it builds your system with that description file. The user-defined rule 
overrides the built-in rule. 

The MMS Description File 2-19 



2.6.1 Creating a User-Defined Rule 

You create a user-defined rule by listing the source and target file types and 
writing an action to update the target. The file types of the source and target 
must be known to MMS through the suffixes precedence list. The user-defined 
rule can use multiple action lines that can consist of default macros, special 
macros, or constant strings. 

The format of a user-defined rule is as follows: 

.SRC.TAR [!comment] 
action line ... [!comment] 

.SRC is the file type of the source. . TAR is the file type of the target. The action 
line is a command-language command that MMS should execute to update a 
file of the target type from a file of the source type. You can specify as many 
action lines as necessary to update the target. 

For example, the following description file, NEWLINK.MMS, contains a 
user-defined rule that redefines the default MMS rule for linking. 

Example 2-4: A Description File Using a User-Defined Rule 

$TYPE NEWLINK.MMS 

! User-defined rule 

.OBJ.EXE 
0 $(LINK) $(LINKFLAGS) $(MMS$SOURCE_LIST) 

! 
! Executable images and their sources 
! 

fJ MAIN.EXE DEPENDS_ON MAIN.OBJ, SUB1.0BJ 

! Object files and their sources 
C> MAIN.OBJ DEPENDS_ON MAIN.PAS 

SUB1.0BJ DEPENDS_ON SUB1.PAS 

0 This user-defined rule allows more than one object to link by changing the 
special macro MMS$SOURCE to MMS$SOURCE_LIST, which expands to 
a list of all the target's sources. The user-defined rule also uses the default 
macros, LINK and LINKFLAGS, fpr linking the object files. 

2-20 The MMS Description File 



8 The executable target no longer needs an action line because the user
defined rule takes precedence. 

0 The built-in rule for compiling PASCAL source code files is used because 
there is no user-defined rule to override it. 

You can use this user-defined rule for building a multi-object software system. 
Notice that you do not need another action line for the executable image target. 
The user-defined rule logically comes before any targets in your description 
file. The action line is listed on the line after the source and target pair and is 
indented at least one space or tab. 

2.6.2 Using User-Defined Rules 

To use the description file NEWLINK (shown in Example 2-4) to build your 
software system, you must have the following files in your current directory: 

$ DIR/DATE=MODIFIED 

Directory DISK1: [BUILD] 

MAIN.PAS;1 
NEWLINK.MMS;2 
SUB1.PAS;10 

Total of 3 files. 

3-JUL-1987 13:48 
14-JUL-1987 13:20 
3-JUL-1987 13:47 

$ MMS/DESCRIPTION=NEWLINK 

0 PASCAL /NOLIST/OBJECT=MAIN MAIN.PAS 
PASCAL /NOLIST/OBJECT=SUB1 SUB1.PAS 

fJ LINK /TRACE/NOMAP/EXEC=MAIN MAIN.OBJ, SUB1.0BJ 

0 MMS output shows that MMS uses a built-in rule for compiling. 

8 MMS output shows that MMS uses the user-defined rule for linking. 

2.7 Using Action Lines 

You need action lines when you want to link more than one object file or you 
want to use different compilation options for each source code file. Built-in 
rules do not allow for these cases because built-in rules only handle one object 
file and compile each source code file with the same defaults. 

You can supply an action line for any source or target line. Action lines 
override all built-in rules and user-defined rules in a description file. Action 
lines are made up of any combintion of default macros, special macros, and 
user-supplied strings. To keep your description file simple, use built-in rules as 
much as possible. One user-defined rule can apply to several different target 
and source lines, so it is still preferable to an action line. However, when the 

The MMS Description File 2-21 



action is so specific that it must be described for that individual case, then you 
must use action lines. 

Consider the following description file, ACTION _LINES.MMS: 

Example 2-5: A Description File Using Action Lines 

$TYPE ACTION_LINES.MMS 

! Executable image and its sources 
! 

MAIN.EXE DEPENDS_ON MAIN.OBJ, SUB1.0BJ 
0 $(LINK) $(LINKFLAGS) $(MMS$SOURCE_LIST) 

Object files and their sources 

MAIN.OBJ DEPENDS_ON MAIN.PAS 
8 PASCAL /LIST MAIN.PAS 

SUB1.0BJ DEPENDS_ON SUB1.PAS 
C) $(PASCAL) /LIST /MACHINE_CODE $(MMS$SOURCE) 

0 This action line is composed entirely of macros and controls the way MMS 
links its object files. Earlier you used a user-defined rule for the same result. 
When a rule is used more than once, using a user-defined rule is the better 
approach. However, in this case, the rule is applied only once, so using the 
action line results in a simpler description file. 

8 This action line has no macros, only explicit strings. 

C) This action line has a combination of explicit strings and macros. 

It is better to write a description file with consistent action lines than to mix the 
actions lines as in this example. This was done for the purpose of demonstrat
ing the variety of ways that you can write an action line. 

2. 7 .1 Multiple Action Lines 

Sometimes a target requires a series of actions to update it. In that case, you 
can use more than one action line after a target or source line. Consider the 
description file, BALANCE.MMS: 

2-22 The MMS Description File 



Example 2-6: A Description File Using Multiple Action Lines 

0 RESULTS.DIF DEPENDS_ON ACCOUNTS.EXE, BENCHMARK.DAT 
f;J RUN ACCOUNTS.EXE ! Runs ACCOUNTS 
C) DIFFERENCES/OUTPUT=RESULTS.DIF -

ACCOUNTS.DAT, BENCHMARK.DAT 
! Compares program output to master file 

TYPE RESULTS.DIF ! Displays results of comparison 

ACCOUNTS.EXE DEPENDS_ON ACCOUNTS.OBJ 
LINK ACCOUNTS.OBJ ! Links ACCOUNTS program 

0 If either ACCOUNTS.EXE or BENCHMARK.DAT is newer than 
RESULTS.DIP, MMS executes the action lines that update RESULTS.DIP. If 
ACCOUNTS.OBJ is newer than ACCOUNTS.EXE, MMS first executes the 
action line to update ACCOUNTS.EXE. 

8 MMS then runs the program ACCOUNTS.EXE 

C) MMS runs the DIFFERENCES utility to compare the program's output with 
a master file. 

8 MMS displays the results of the comparison. 

If you use the previous description file example, the output would be as follows: 

$ MMS/DESCRIPTION=BALANCE 
LINK ACCOUNTS.OBJ ! Links ACCOUNTS program 
RUN ACCOUNTS.EXE ! Runs ACCOUNTS 
DIFFERENCES/OUTPUT=RESULTS.DIF ACCOUNTS.DAT, BENCHMARK.DAT 
! Compares program output to master file 
TYPE RESULTS.DIF ! Displays results of comparison 
Number of difference sections found: 0 
Number of difference records found: 0 
DIFFERENCES /MERGED=1/0UTPUT=USER$: [ALISON]RESULTS.DIF;1-

USER$: [ALISON]ACCOUNTS.DAT;19-
USER$:[ALISON]BENCHMARK.DAT;27 

$ 

When you run MMS, all action lines and any comments specified on action lines 
are written to SYS$0UTPUT or to a file you specify with the MMS /OUTPUT 
qualifier. The /OUTPUT qualifier is described in the Command Dictionary. 

2.7.2 $STATUS and $SEVERITY 

As each action line completes execution, MMS executes a command in the 
subprocess to write the value of $STATUS to a mailbox. The parent process 
can then determine if the action line executed successfully. The values of 
$STATUS and $SEVERITY are set when the execution of this internal MMS 
command succeeds. Consequently, $STATUS and $SEVERITY always indicate 

The MMS Description File 2-23 



·success. You cannot test the values of these variables in a description file. You 
can, however, control the behavior of MMS with the /[NO]IGNORE qualifier 
because it tells MMS what to do when it encounters Warning, Error, or Fatal 
errors. See the Command Dictionary for more information on severity errors. 

2.7.3 MMS$STATUS 

MMS uses a special symbol, MMS$STATUS, to record the return status of the 
last action line it executed. MMS$STATUS is set in the parent process running 
MMS and reflects the value of $STATUS returned from the child process. The 
value of MMS$STATUS is constantly changing with the completion of each 
action line. You cannot use MMS$STATUS from within the child process 
because symbols are passed only from the parent to the child process when the 
child process is created. When MMS exits, MMS$STATUS reflects the status of 
the last command executed in the child process. 

If the value of MMS$STATUS is an even number, the last action line terminated 
with an error. If the value of MMS$STATUS is an odd number, the last action 
line executed successfully. To check the value of MMS$STATUS, issue the DCL 
command SHOW SYMBOL after MMS has finished processing your description 
file. Do not confuse MMS$STATUS with the $STATUS condition value 
returned by MMS itself. MMS$STATUS contains the status of the last action 
line executed; $STATUS contains the status resulting from the termination of 
the MMS image. 

2. 7 .4 Action Line Prefixes 

An action line prefix is a single-character modifier that controls the processing 
of a single action line in a description file. 

The two action line prefixes are described in Table 2-1. 

Table 2-1: MMS Action Line Prefixes 

Prefix 

- (Ignore) 

2-24 The MMS Description File 

Function 

Causes MMS to ignore errors generated by the action line 
on which the prefix appears. 

(continued on next page) 



Table 2-1 (Cont.): MMS Action Line Prefixes 

Prefix Function 

@ (Silent) Suppresses the writing to the output file of the action 
line on which the prefix appears. (The output file can be 
either SYS$0UTPUT or the file specified by the /OUTPUT 
qualifier.) 

You cannot override either action line prefix from the MMS command line. 

An action line prefix must appear as the first nonblank character on an action 
line; however, a prefix may not appear in column 1 of the line. The rest of the 
action line must be separated from the prefix by at least one space or tab. You 
can use both prefixes on the same action line by typing them next to each other 
with no intervening spaces or tabs. The following example shows the use of 
both prefixes: 

A : B 
©-Write SYS$0UTPUT "It worked!" 

MMS also provides two directives (discussed in Section 2.8), .IGNORE and 
.SILENT, that are similar in function to - and@, respectively. The difference 
between the action line prefixes and the directives with the same functions 
(.IGNORE and .SILENT) is that a prefix affects the processing of only one line 
in the description file, while a directive affects the processing of the entire file. 

2. 7.5 The Ignore Prefix (-) 

The Ignore action line prefix ( - ) directs MMS to ignore any errors that occur 
during the processing of the action line on which the prefix appears. 

The following dependency rule tests the BASIC compiler with a source file 
known to contain errors. Normally, the BASIC compiler aborts the compilation 
when it encounters an error, and MMS aborts execution as well. In this 
case, the Ignore prefix directs MMS to ignore the error and execute the EDIT 
command. 

TESTERR : ERRORS.BAS 
- BASIC /LIST=ERRORS ERRORS 
EDIT/COMMAND=EXTRACT.EDT ERRORS.LIS 

The MMS Description File 2-25 



2. 7 .6 The Silent Prefix (@) 

The Silent action line prefix ( @ ) stops MMS from writing an action line to 
SYS$0UTPUT or to the file specified by the /OUTPUT qualifier. This prefix, 
which affects only the action lines on which it appears, is useful when you do 
not want certain commands echoed at execution. 

For example, the Silent action line prefix directs MMS to suppress the display 
of the following action line: 

© DELETE *.LIS;* 

The Silent action line prefix can be useful in cleanup procedures. In the next 
example, MMS deletes compilation listings from the [LISTINGS] directory, and 
returns to the [WORKING] directory. Because the Silent prefix suppresses the 
action lines, MMS can do its work silently and then display the text "Cleanup 
done" when the task is completed. 

CLEANUP : 
© SET DEFAULT [LISTINGS] 
© DELETE *.*;* 
© SET DEFAULT [WORKING] 
© WRITE SYS$0UTPUT "Cleanup done" 

MMS assumes that an at sign (@) followed by a space or tab signifies the 
Silent prefix. If you want to invoke a command procedure from an action line, 
you must omit the space between the at sign and the name of the command 
procedure. 

2. 7. 7 Action Line Restrictions 

Action lines are subject to the following restrictions: 

• The maximum length of an uncontinued action line is 251 characters. The 
maximum length of a continued action line is 1019 characters. If you use 
VAX DEC/Shell as your Command Language Interpreter (CLI), the limits 
are 131 and 507 characters, respectively, for uncontinued and continued 
action lines. 

• The maximum length of a quoted string of a comment in action lines is 
restricted to 130 characters. 

• Quotes imbedded in other quotes on action lines may not behave as 
expected. However, if you assign the inner quote to be a DCL symbol, you 
can use the DCL symbol within the outer quoted string. 

2-26 The MMS Description File 



• An action line cannot receive data from SYS$INPUT. For example, an 
action line may not contain the DCL command CREATE and cannot read 
data from the terminal. 

• An action line may not contain the DCL commands LOGOUT, EXIT, or 
STOP. . 

• An action line can spawn a subprocess only by using the $(MMS) reserved 
macro (see Section 3.3). The DCL command SP AWN is not allowed in an 
action line. 

• An action line may not contain the DCL commands SET VERIFY or SET 
ON. You can use these commands in a command procedure that you 
invoke from an action line. If you use SET VERIFY, however, you must be 
sure to issue SET NOVERIFY before the command procedure ends. 

• An action line may not contain the DCL command GOTO or labels. You 
can use GOTO or labels in a command procedure that you invoke from an 
action line because action lines are executed individually. 

• You cannot direct output to TT: from an action line because MMS equates 
TT: as SYS$INPUT and this can result in MMS hanging. 

• You cannot test the values of $STATUS and $SEVERITY in your description 
file because the value is always success. The value is set when the execu
tion of an internal MMS command succeeds. The value of MMS$STATUS 
also changes with the completion of each action line executed. 

2.8 Using Directives 

A directive is a word that instructs MMS to take a certain action as it processes 
a description file. A directive can appear on any line in the description file, but 
it controls the processing of the entire file. 

A directive must start in column 1 of a line. You can type a directive in either 
uppercase or lowercase letters, or a combination of both. Table 2-2 lists 
the directives and their functions. Detailed descriptions of the directives are 
provided in the sections that follow. 

The MMS Description File 2-27 



Table 2-2: MMS Directives 

Directive Function 

.IGNORE Causes MMS to ignore all errors generated by all action 
lines and to continue processing the description file . 

.SILENT Suppresses the writing of all action lines to the output file 
(whether to SYS$0UTPUT or to the file specified by the 
/OUTPUT qualifier) . 

. DEFAULT Indicates actions to be performed if MMS built-in rules or 
user-defined rules do not specify how to update a target. 

.SUFFIXES Clears, adds to, or redefines the suffixes precedence list. 

.INCLUDE Includes the specified file in the description file . 

. FIRST Indicates actions to be performed before MMS has executed 
any action lines to update the target. 

.LAST Indicates actions to be performed after MMS has executed 
all the action lines that update the target. 

.IFDEF Causes subsequent lines of a description file to be processed 
only if the specified macro is defined . 

. ELSE Causes subsequent lines of a description file to be processed 
if the specified macro for the .IFDEF directive is undefined . 

. ENDIF Terminates the set of lines in the description file whose 
processing is controlled by .IFDEF or .ELSE. 

2.8.1 The .IGNORE Directive 

The .IGNORE directive tells MMS to ignore warnings, errors, and fatal errors 
that occur during the execution of an action line and to continue processing 
the description file. Without the .IGNORE directive, MMS aborts execution if it 
detects an error while processing an action line. 

The .IGNORE directive in the following description file tells MMS to continue 
processing even if it encounters errors while running DIGITAL Standard Runoff 
(DSR) to update the target: 

.IGNORE 

BOOK.MEM : CHAPTER1.MEM, CHAPTER2.MEM, CHAPTER3.MEM, CHAPTER4.MEM 
COPY/LOG CHAPTER1.MEM BOOK.MEM 
APPEND/LOG CHAPTER2.MEM BOOK.MEM 
APPEND/LOG CHAPTER3.MEM BOOK.MEM 
APPEND/LOG CHAPTER4.MEM BOOK.MEM 

CHAPTER1.MEM : CHAPTER1.RNO 
RUNOFF CHAPTER! 

2-28 The MMS Description File 



CHAPTER2.MEM : CHAPTER2.RNO 
RUNOFF CHAPTER2 

CHAPTER3.MEM : CHAPTER3.RNO 
RUNOFF CHAPTER3 

CHAPTER4.MEM : CHAPTER4.RNO 
RUNOFF CHAPTER4 

If CHAPTER3.RNO contains DSR errors, and you run MMS with this descrip
tion file (BOOK.MMS), the following lines may appear on your screen. 

$ MMS/DESCRIPTION=BOOK 
RUNOFF CHAPTER! 
DIGITAL Standard Runoff Version V2.0-014: No errors detected 
5 pages written to "USER$:[MICHAELS]CHAPTER1.MEM;1" 
RUNOFF CHAPTER2 
DIGITAL Standard Runoff Version V2.0-014: No errors detected 
16 pages written to "USER$:[MICHAELS]CHAPTER2.MEM;1" 
RUNOFF CHAPTER3 
Y.RUNOFF-W-CJL, Can't justify line 

on output page 2; on input line 46 of page 1 of file "USER$: [MICHAELS] CH 
APTER3.RN0;1" 
Y.RUNOFF-W-CJL. Can't justify line 

on output page 2; on input line 52 of page 1 of file "USER$:[MICHAELS]CH 
APTER3.RN0;1" 
Y.RUNOFF-W-TFE, Too few end commands 

on output page 3; on input line 77 of page 1 of file "USER$: [MICHAELS] CH 
APTER3.RN0;1" 
Y.RUNOFF-W-BMS, Bad margin specification: ".lm70 

on output page 4; on input line 102 of page of file "USER$: [MICHAELS]C 
HAPTER3 . RNO; 1" 
Y.RUNOFF-W-COR, Can't open required file "TABLE1.RNO" 

on output page 5; on input line 154 of page 1 of file "USER$: [MICHAELS]C 
HAPTER3. RNO ; 1" 
DIGITAL Standard Runoff Version 2.0-014: 5 diagnostic messages reported 
10 pages written to "USER$: [MICHAELS]CHAPTER3.MEM;1" 
RUNOFF CHAPTER4 
DIGITAL Standard Runoff Version V2.0-014: No errors detected 
13 pages written to "USER$: [MICHAELS]CHAPTER4.MEM;1" 
COPY/LOG CHAPTER1.RNO BOOK.MEM 
Y.COPY-S-COPIED, USER$:[MICHAELS]CHAPTER1.MEM;1 copied to USER$: [MICHAELS]BOOK.ME 
M;1 (35 blocks) 
APPEND/LOG CHAPTER2.MEM BOOK.MEM 
Y.APPEND-S-APPENDED, USER$: [MICHAELS]CHAPTER2.MEM;1 appended to USER$: [MICHAELS]B 
OOK.MEM;1 (1452 records) 
APPEND/LOG CHAPTER3.MEM BOOK.MEM 
Y.APPEND-S-APPENDED, USER$: [MICHAELS]CHAPTER3.MEM;1 appended to USER$: [MICHAELS]B 
OOK.MEM;1 (1508 records) 
APPEND/LOG CHAPTER4.MEM BOOK.MEM 
Y.APPEND-S-APPENDED, USER$:[MICHAELS]CHAPTER4.MEM;1 appended to USER$: [MICHAELS]B 
OOK.MEM;1 (621 records) 
$ 

The MMS Description File 2-29 



Although errors occurred in the processing of CHAPTER3.RNO, MMS con
tinued to execute action lines, successfully processing CHAPTER4.RNO. Had 
.IGNORE not been specified, MMS would have terminated execution upon 
encountering errors in CHAPTER3.RNO; the last action line would not have 
been executed. 

NOTE 

You should be careful about executing MMS with the .IGNORE 
directive. If errors occur during processing, the target may be 
updated yet still contain errors of which you will be unaware. 

To override the .IGNORE directive for a particular MMS build, use the 
/NOIGNORE, /IGNORE, /IGNORE=WARNING, or /IGNORE=ERROR 
qualifier on the MMS command line when invoking MMS. (See the Command 
Dictionary for more information on the /IGNORE qualifier.) 

2.8.2 The .SILENT Directive 

The .SILENT directive tells MMS to suppress the display of action lines. 
Normally, MMS writes action lines either to SYS$0UTPUT or into a file 
specified by the /OUTPUT qualifier. Action lines are always executed even if 
they are not displayed, unless you specify the /NOACTION qualifier on the 
command line. The /OUTPUT and /NOACTION qualifiers are described in 
the Command Dictionary. 

The .SILENT directive does not suppress the display of error messages gener
ated by execution of action lines. 

The following example illustrates the use of the .SILENT directive . 

. SILENT 

FROG.EXE : MOD1.0BJ, MOD2.0BJ 
LINK/EXEC=PROG MOD1.0BJ, MOD2.0BJ 

MOD1.0BJ : MOD1.C 

MOD2.0BJ : MOD2.C 

MMS processes this description file without displaying action lines. The 
Command Language Interpreter (CLI) prompt returns when the target, 
PROG.EXE, has been updated. 

To override the .SILENT directive for a particular MMS build, use the /VERIFY 
qualifier on the MMS command line when invoking MMS. (The /VERIFY 
qualifier is described in the Command Dictionary.) 

2-30 The MMS Description File 



2.8.3 The .DEFAULT Directive 

The .DEFAULT directive tells MMS to continue processing the description file 
even if it encounters a dependency rule for which there is neither a specified 
action line nor applicable built-in or user-defined rules. Rather than abort 
execution in such a situation, MMS executes the default action you specify and 
continues processing the description file. 

The .DEFAULT directive has the following format: 

.DEFAULT 
action line ... 

The action line is a command-language command that MMS executes by 
default. You can specify as many action lines as you like. 

The .DEFAULT directive can be useful when you are developing a system that 
contains inoperative parts and you want MMS to process the operating portions 
and inform you about the inoperative parts. If you have only one module, 
TEST.D, finished for your system, you can build the system if your description 
file, TESTSYS.MMS, is as follows: 

.DEFAULT 
! Source $(MMS$TARGET) not yet added 

TEST.A TEST.B 

TEST.B : TEST1.C TEST2.E TEST3.F 

TEST1.C : TEST1.D 
COPY TEST1.D TEST1.C 

When MMS processes the TESTSYS.MMS description file, it expands the 
MMS$TARGET special macro to the name of the target and writes the following 
lines to SYS$0UTPUT: 

$ MMS/DESCRIPTION=TESTSYS 
COPY TEST1.D TEST1.C 

Source TEST2.E not yet added 
! Source TEST3.F not yet added 
! Source TEST.B not yet added 
! Source TEST.A not yet added 
$ 

By using the .DEFAULT directive, MMS reminds you of the modules you have 
not yet implemented. 

The MMS Description File 2-31 



Another way to use the .DEFAULT directive is to copy files from one directory 
to another. For example: 

.DEFAULT : 
COPY $(MMS$SOURCE) $(MMS$TARGET) 

TEST.BL! [PROJECT.FILES]TEST.BLI 

PROG.BLI : [PROJECT.FILES]PROG.BLI 

The sources in this description file exist in a common directory for the 
project. Because these dependency rules have no action lines and there are 
no built-in or user-defined rules that apply, MMS executes the action line 
specified by .DEFAULT and copies the required files into your directory. 
{The MMS$SOURCE and MMS$TARGET special macros are described in 
Section 2.5.) 

NOTE 

.DEFAULT cannot be changed or overridden from the MMS com
mand line. 

2.8.4 The .SUFFIXES Directive 

The .SUFFIXES directive allows you to redefine the suffixes precedence list 
so that you can reorder the list of file types, add new file types, or disable 
recognition of all file types. 

MMS uses the suffixes precedence list to determine the order in which it looks 
for sources and targets when applying built-in rules. MMS also uses this list 
to determine which built-in rule will update the specified target. Section 2.3 
contains a detailed discussion of how the suffixes precedence list and MMS 
built-in rules work together. Also, Table C-4 lists the suffixes in order of their 
precedence. 

The .SUFFIXES directive has the following format: 

.SUFFIXES [file types list] 

The file types list is a list of file types in order of precedence. If you omit the 
file types list entirely, the suffixes precedence list is cleared and all built-in rules 
are disabled. 

Once you set up a new list of suffixes, MMS recognizes only the specified file 
types and enables built-in and user-defined rules for the specified suffixes. 

2-32 The MMS Description File 



2.8.5 Adding a New File Extension to the Suffixes List 

In previous examples, the description files used file types that MMS knew 
about through its built-in rules. Sometimes during software development, you 
need file types that MMS does not know about-for example, when you use a 
new programming language, or you use input and output files for a custom 
application, or you have included files with other file types. You can use user
defined rules and action lines in the description file to tell MMS about new file 
types. First, you add the file types to the MMS suffixes list, and then you write 
a user-defined rule or action line for the file type. 

MMS uses the suffixes precedence list to analyze the relationship between file 
types. Table C-4 lists the suffixes or file types in their order of precedence, 
from left to right, targets to sources. The targets at the beginning of the list 
are created from some source to the right in the list. If you attempt to write a 
user-defined rule for a new file type without adding the file type to the list, the 
description file fails when it is run. 

2.8.6 Using .SUFFIXES in a Description File 

To add a new file type to your description file, use the directive .SUFFIXES. 
It clears the default suffixes list and allows you to write a new list in the 
description file. Table 2-2 lists the directives and their functions. 

If you want MMS to access a CMS library, all the file types that could come 
from the library must also be present in the suffixes list. (See Table C-4 
for the Suffixes Precedence List.) When you write a new suffixes list in the 
description file, it must contain all the file types that occur in your software 
system, including the following: 

• The executable files 

• The different types of library files 

• The object files 

• The source code files 

• The included files 

Consider the following description file, NEW_SUFFIX.MMS: 

The MMS Description File 2-33 



Example 2-7: A Description File Using .SUFFIXES 

$ TYPE NEW _SUFFIX . MMS 
! 
! Set a new suffixes list 
I 

-~SUFFIXES 
8.SUFFIXES .EXE .OBJ .NEW .FOR 

! User-defined rules 

•. NEW.OBJ 
@NEW_COMPILER $(MMS$SOURCE) $(MMS$TARGET) 

8.0BJ.EXE 
$(LINK) $(LINKFLAGS) $(MMS$SOURCE_LIST) 

The executable and its sources 

MAIN.EXE DEPENDS_ON MAIN.OBJ, SUB1.0BJ 

Object files and their sources 

(9 MAIN.OBJ DEPENDS_ON MAIN.FOR 
(9 SUB1. OBJ DEPENDS_ON SUB1. NEW 

8 The first .SUFFIXES list clears the default suffix list. If you do not clear the 
default suffixes list before adding a new file type, MMS appends the new 
file types that you add to the end of the list. This is risky because there 
is an implied hierarchy in the suffixes list. Adding a new type of a source 
code file to the end of the list works, but adding an intermediate file type to 
the end of the list destroys the order of the suffixes precedence list. 

8 This line contains the new suffixes list with all the file types used to build 
this system. 

• This is the user-defined rule for the new file type just added to the suffix 
precedence list. The command procedure NEW_COMPILER.COM is 
invoked to call the new compiler. 

8 The new compiler compiles the source code file in MMS$SOURCE into an 
object file named by (MMS$SOURCE_LIST). 

C9 A built-in rule is applied for compiling the FORTRAN code file. 

8 The new user-defined rule is applied for compiling and linking .NEW. 

2-34 The MMS Description File 



2.8. 7 Building a System with a New File Extension 

To build your system with the description file, NEW_SUFFIX, you must have 
the following files in your current directory: 

$ DIR/DATE=MODIFIED 

Directory DISK1: [BUILD] 

MAIN.FOR;2 
NEW_COMPILER.COM;5 
NEW_SUFFIX.MMS;1 
SUB1.NEW;1 

Total of 4 files 

17-JUL-1987 14:27 
17-JUL-1987 14:27 
17-JUL-1987 14:27 
17-JUL-1987 14:27 

$ MMS/DESCRIPTION=NEW_SUFFIX 

FORTRAN /NOLIST/OBJECT=MAIN MAIN.FOR 
0 ©NEW_COMPILER SUB1.NEW SUB1.0BJ 

LINK /TRACE/NOMAP/EXEC=MAIN MAIN.OBJ SUB1.0BJ 

0 MMS uses the new user-defined rule to compile the new language. 

Order of Suffixes 

The order of suffixes changes according to their use: 

• In a dependency rule, the target is on the left and the source is on the right. 

• In suffixes list, the target is on the left and the source is on the right. 

• In a user-defined rule, the source is on the left and the target is on the right. 

2.8.8 The .SUFFIXES Directive Used with CMS Files 

If you add a rule in your description file that directs MMS to build a .FOR file 
by fetching it from a CMS library, the relationship between the rules and the 
file types might be as follows: 

The MMS Description File 2-35 



Figure 2-2: CMS Rules 

.c l .FOR j .BAS 1.FOR-1 

I 
t 

I 

I 

ZK-1665-84 

Section 4.2 explains how to specify CMS elements in description files. (The 
tilde (,._)signifies a file in a CMS library.) When MMS considers .FOR as a 
possible target, it discovers that a rule exists for building .FOR files from .FOR,._ 
files. Therefore, it looks for a file named MOD3.FOR in the CMS library. If one 
exists, it applies the known rule to update the .FOR target; if it cannot find such 
a file, it continues searching for a file to use. If MMS does locate MOD3.FOR in 
the library, it can then use this file to create all the necessary sources that finally 
result in an updated MOD3.EXE, the original target. The simple dependency 
MOD3.EXE : could result in the following sequence of actions: 

MOD3.FOR DEPENDS_ON MOD3.FOR
CMS FETCH MOD3.FOR 

MOD3.0BJ DEPENDS_ON MOD3.FOR 
FORTRAN/OBJ=MOD3 MOD3.FOR 

MOD3.EXE DEPENDS_ON MOD3.0BJ 
LINK/EXEC=MOD3 MOD3.0BJ 

You can specify a null file type in the suffixes precedence list by using a free
standing period. For example, the following precedence list directs MMS to 
look for files with null file types before looking for .B32 files: 

.SUFFIXES .EXE .OBJ .. B32 

2.8.9 The .INCLUDE Directive 

The .INCLUDE directive allows you to include other files in a description file. 
You can use this directive when you have stored common macros or user
defined rules in a separate file that can then be included by several description 
files. 

The .INCLUDE directive has the following format: 

.INCLUDE filespec 

2-36 The MMS Description File 



A filespec is a VMS file specification or a logical name that identifies the 
included file. The default file type is .MMS. 

The line in the description file on which the .INCLUDE directive occurs is 
replaced with the contents of the specified file. 

Included files may themselves include files, up to a depth of 16 or the maximum 
open file limit for your current process (as indicated by the FILLM quota) or 
whichever is less. MMS treats lines read from an included file as though they 
came from the original description file, except when it detects syntax errors. 
If an error occurs, the error message indicates the line number and the file in 
which the error was detected. 

2.8.10 The .FIRST Directive 

The .FIRST directive tells MMS to execute certain action lines before it executes 
the action lines that update the target. The .FIRST directive works with single 
or multiple targets. If you have selected multiple targets, then .FIRST is 
executed before the entire group of targets. 

The .FIRST directive has the following format: 

.FIRST 
action line ... 

The action line is a command-language command that MMS executes before it 
updates the target. You can specify as many action lines with .FIRST as you 
like. 

MMS executes the action lines that accompany the .FIRST directive only if the 
target requires updating. The actions are executed before those that actually 
update the target. 

The following example shows how you might use .FIRST to send a mail 
message to your process to notify you when MMS begins processing your 
description file: 

.FIRST 
OPEN/WRITE MSGTEXT MSGTEXT.TXT 
WRITE MSGTEXT "Build of $(MMS$TARGET) now beginning" 
CLOSE MSGTEXT 
MAIL MSGTEXT.TXT ANDERSON -

/SUBJECT="Report from MMS" 

BOOK.MEM : CHAPTER1.MEM, CHAPTER2.MEM, CHAPTER3.MEM, CHAPTER4.MEM 
COPY/LOG CHAPTER1.MEM BOOK.MEM 
APPEND/LOG CHAPTER2.MEM BOOK.MEM 
APPEND/LOG CHAPTER3.MEM BOOK.MEM 
APPEND/LOG CHAPTER4.MEM BOOK.MEM 

The MMS Description File 2-37 



CHAPTER1.MEM : CHAPTER1.RNO 
RUNOFF CHAPTER! 

CHAPTER2.MEM : CHAPTER2.RNO 
RUNOFF CHAPTER2 

CHAPTER3.MEM : CHAPTER3.RNO 
RUNOFF CHAPTER3 

CHAPTER4.MEM : CHAPTER4.RNO 
RUNOFF CHAPTER4 

When this description file (BOOK.MMS) is processed, the following lines appear 
on your terminal (or in your output file): 

OPEN/WRITE MSGTEXT MSGTEXT.TXT 
WRITE MSGTEXT "Build of BOOK.MEM now beginning" 
CLOSE MSGTEXT 
MAIL MSGTEXT.TXT ANDERSON /SUBJECT="Report from MMS" 
RUNOFF CHAPTER! 
RUNOFF CHAPTER2 
RUNOFF CHAPTER3 
RUNOFF CHAPTER4 
COPY CHAPTER1.MEM BOOK.MEM 
APPEND CHAPTER2.MEM BOOK.MEM 
APPEND CHAPTER3.MEM BOOK.MEM 
APPEND CHAPTER4.MEM BOOK.MEM 

2.8.11 The .LAST Directive 

The .LAST directive tells MMS to execute certain action lines after it has 
executed the action lines that update the target. The .LAST directive works 
with a single target or with multiple targets. If you have selected multiple 
targets, then .LAST is executed after the entire group of targets. 

The .LAST directive has the following format: 

.LAST 
action line ... 

The action line is a command-language command that MMS executes after it 
updates the target or targets. You can specify as many action lines with .LAST 
as you like. 

MMS executes the action lines that accompany the .LAST directive only if the 
target requires updating. The actions are executed after those that actually 
update the target. 

2-38 The MMS Description File 



The following example shows how you might use .LAST: 

A.EXE : A.OBJ 
LINK [GREGORY.OBJECTS]A.OBJ 

A.OBJ : A.FOR 
FORTRAN/LIST=[GREGORY.LISTINGS]A.LIS -

/OBJECT=[GREGORY.OBJECTS] A.FOR 

.LAST 
SET DEFAULT [GREGORY.OBJECTS] 
DELETE/LOG A.OBJ;* 
SET DEFAULT [GREGORY.LISTINGS] 
PURGE/LOG A.LIS 

If A.EXE needs to be updated, the LINK command is executed and produces an 
object file in the directory [GREGORY.OBJECTS]. If A.OBJ needs to be updated 
before it can update A.EXE, the FORTRAN command is executed and produces 
a listing in the directory [GREGORY.LISTINGS]. After A.EXE is up-to-date, the 
action lines associated with .LAST are executed to delete the object file and 
purge the listings directory. Notice the output that might be produced on your 
screen when you use the description file, ADESC.MMS. 

$ MMS/DESCRIPTION=ADESC 
FORTRAN/LIST=[GREGORY.LISTINGS]A.LIS /OBJECT=[GREGORY.OBJECTS] A.FOR 
LINK [GREGORY.OBJECTS]A.OBJ 
SET DEFAULT [GREGORY.OBJECTS] 
DELETE/LOG A.OBJ;* 
YJ>ELETE-I-FILDEL, USER$:[GREGORY]A.OBJ;1 deleted (3 blocks) 
SET DEFAULT [GREGORY.LISTINGS] 
PURGE/LOG A.LIS 
Y.PURGE-I-FILPURG, USER$: [GREGORY.LISTINGS]A.LIS;4 deleted (6 blocks) 

MMS allows you to perfom a set of commands before or after all other actions 
through the use of the .FIRST and .LAST directives. The .FIRST and .LAST 
sections are executed only if MMS decides to take other actions to update a 
target. 

2.8.12 The .IFDEF, .ELSE, and .ENDIF Directives 

The .IFDEF directive tests whether a specified macro is defined. You use this 
directive to cause MMS not to process certain lines in your description file if the 
macro is undefined. 

The .IFDEF directive has the following format: 

.IFDEF macro 
[description file line] ... 
. ENDIF 

Macro is the name of the macro being tested. The description file line is zero or 
more action lines that are valid in a description file. 

The MMS Description File 2-39 



The .IFDEF directive must always be accompanied by a matching .ENDIF 
directive. MMS checks for a definition of the macro specified with the .IFDEF 
directive. If the macro is undefined, all lines of the description file between 
.IFDEF and .ENDIF (even lines that contain .IFDEF directives) are ignored. 

Consider the following description file, FORPROG.MMS: 

.IFDEF VAX 

A.OBJ : A.FOR 
FORTRAN A 

.ENDIF 

.IFDEF PDP11 

A.OBJ : A.FOR 
FORTRAN/PDP11 A 

.ENDIF 

When you invoke MMS with this description file, you can define one of the 
macros on the command line to determine which action line gets executed. For 
example: 

$ MMS/DESCRIPTION=FORPROG/MACRO="VAX" 
FORTRAN A /NOLIST/OBJECT=A.OBJ A.FOR 
LINK A.OBJ 
$ 

Because the command line defines the macro VAX, the command FORTRAN A 
is executed and the commands associated with the undefined macro PDPll are 
ignored. 

You may use the .ELSE directive in conjunction with the .IFDEF directive but 
never alone. If the specified macro for the .IFDEF directive is undefined, MMS 
skips all the subsequent lines of the description file until it comes to a .ELSE or 
a .ENDIF directive. The next example of a description file shows the format for 
a .IFDEF directive using .ELSE and a nested .IFDEF directive: 

.IFDEF VAX 

.IFDEF CURRENT 
A.OBJ : A.FOR 

FORTRAN A 
.ENDIF 
A.EXE : A.OBJ 

LINK A.OBJ 

.ELSE 
A.OBJ : A.FOR 

FORTRAN/PDP11 A 
.ENDIF 

2-40 The MMS Description File 



MMS reads the line beginning with the .IFDEF directive and tests whether 
the macro is defined. If the macro is defined, MMS processes the action lines 
between .IFDEF and the second .ENDIF except for the lines between the .ELSE 
and the second .ENDIF. If the specified macro for the .IFDEF directive is 
undefined, MMS skips all the action lines including the nested .IFDEF, until it 
reaches the .ELSE directive. MMS then processes the subsequent lines to the 
.ENDIF. When you invoke MMS with the FORPROG description file, you can 
define the nested macro on the command line as follows: 

$ MMS/DESCRIPTION =FORPROG/MACRO= "V AX=CURRENT II 
FORTRAN A 
$ 

The MMS Description File 2-41 





Chapter 3 

Advanced Description File Techniques 

Once you become familiar with MMS, you can use advanced techniques in 
your description file to make it more flexible and useful. This chapter describes 
the following techniques: 

• Double colon dependencies 

• Invoking MMS from a description file 

• Invoking MMS from a command procedure 

• Invoking a command procedure from a description file 

• Gathering statistics 

• Doing parallel processing 

• Producing multiple outputs 

• Changing build options 

3.1 Using Double Colon Dependencies 

In writing MMS dependency rules, you can specify the same target in more 
than one dependency rule, provided that you specify only one action for 
updating that target. For example, the following construction is legal: 

MOD2.0BJ, MOD3.0BJ : DEFS1.DEF 

MOD2.0BJ : DEFS2.DEF 
PASCAL MOD2 

MOD2.0BJ appears in the target list of two dependency rules, but only one 
action (PASCAL MOD2) is specified for it. 

Advanced Description File Techniques 3-1 



In contrast, the following construction is invalid: 

MOD2.0BJ, MOD3.0BJ : DEFS1.DEF 
PRINT DEFS1.DEF 

MOD2.0BJ : DEFS2.DEF 
PASCAL MOD2 

Two different actions are specified for MOD2.0BJ, requiring MMS to take two 
different actions if one of MOD2.0BJ's dependencies is changed. 

If you want MMS to take different actions depending on which sources have 
changed, MMS allows you to use a double colon rather than a single colon 
to separate the target list from the source list in a dependency rule. (You 
can use the keyword ADDITIONALLY-DEPENDS_ON in place of the 
double colon.) For example, in the previous dependency rules, MMS was to 
execute the PRINT command if DEFSl.DEF had changed and the PASCAL 
command if MOD2.P AS had changed. The double colon or the keyword 
ADDITIONALLY_DEPENDS_QN directs MMS to allow the same target to 
be specified in more than one dependency rule, each of which may require 
different actions to update the target. By using the double colon, you can 
modify the previous example to execute as you intended: 

MOD2.0BJ, MOD3.0BJ :: DEFS1.DEF ! If at least one source is 
PRINT DEFS1.DEF ! newer than targets, print DEFS1.DEF 

MOD2.0BJ :: DEFS2.DEF ! If MOD2.PAS or DEFS2.DEF is newer than 
PASCAL MOD2 ! MOD2.0BJ, compile MOD2.PAS 

Note that in this example, if DEFS2.DEF or MOD2.PAS is newer than 
MOD2.0BJ and DEFSl.DEF, both action lines are executed. However,that is 
the normal behavior of MMS. In effect, double colons produce the same result 
as single colons, so their usefulness is limited. 

In a description file, a given target can be included in either a single colon 
dependency rule or in a double colon dependency rule, but not in both. MMS 
issues an error message if you try to specify both kinds of rules for the same 
target. 

3.2 Maintaining a Library of Object Files 

You can use MMS to maintain a library of object files. Consider the library 
called UTIL.LIB, which contains three object modules: MODl.OBJ, MOD2.0BJ, 
and MOD3.0BJ. If one of these object modules is updated, it should be added 
to the library. A description file for this system might look like the following: 

3-2 Advanced Description File Techniques 



UTIL.LIB :: MOD1.0BJ 
LIBR UTIL.LIB MOD1.0BJ 

UTIL.LIB :: MOD2.0BJ 
LIBR UTIL.LIB MOD2.0BJ 

UTIL.LIB :: MOD3.0BJ 
LIBR UTIL.LIB MOD3.0BJ 

UTIL.LIB depends on all three object modules, but MMS takes different actions 
depending on which module is out of date. However, library module file 
specifications are not allowed as targets in double colon dependency rules. 
For example, the following dependency rules cause MMS to perform the same 
actions as the previous examples but they are written with the single colon rule: 

UTIL(MOD1) : MOD1.0BJ 
LIBR UTIL.LIB MOD1.0BJ 

UTIL(MOD2) : MOD2.0BJ 
LIBR UTIL.LIB MOD2.0BJ 

UTIL(MOD3) : MOD3.0BJ 
LIBR UTIL.LIB MOD3.0BJ 

When using the library module specification format, only the single colon is 
acceptable to MMS. 

3.3 Invoking MMS from a Description File 

When you invoke MMS, it runs two processes as it updates a target. The first 
process, your current process, executes MMS. The second process, a spawned 
subprocess, executes the action line you specified in the description file to 
update the target. MMS creates a spawned subprocess only when the target 
needs updating, and it creates only one spawned subprocess to execute all the 
actions in the description file. The subprocess is created when the first action is 
executed; it remains active until the MMS image terminates. 

While a subprocess executes an action (such as a DCL command), the parent 
process waits until it is notified that the subprocess has finished executing 
commands. If you monitor the parent process, you may find it idle. 

You can invoke MMS from a description file while MMS is updating a target. 
Consider the following description file: 

MAIN.EXE DEPENDS_ON MAIN.OBJ 
MMS/DESCRIPTION=TOOLS_LIB 
LINK MAIN.OBJ, TOOLS_LIB/LIB 

MAIN.OBJ DEPENDS_ON MAIN.PAS 

Advanced Description File Techniques 3-3 



In this example, the executable file MAIN .EXE is rebuilt if MAIN .OBJ has 
been changed since the last build. However, before MMS performs the linking 
action, an MMS subprocess is invoked to rebuild and update the library if 
necessary. 

3.3.1 Invoking MMS from a Description File with $(MMS) 

You can also invoke MMS from within a description file by specifying the 
reserved macro $(MMS) on an action line where you want MMS to be invoked 
again. 

When you invoke MMS from a description file with the $(MMS) reserved 
macro, another subprocess is used to execute the new invocation of MMS. 
The second invocation of MMS runs as a spawned subprocess that inherits 
any existing symbol definitions. The original subprocess is treated as a parent 
process for the subsequent MMS execution. 

As MMS processes the description file, it executes any action line that contains 
the reserved macro $(MMS), even if you specified the /NOACTION qualifier 
on the command line. (/NOACTION suppresses the execution of action lines 
and is described in the Command Dictionary.) Thus, the MMS subprocess is 
created but no other actions are performed. 

3.3.2 Process Quotas for MMS Subprocesses 

When a subprocess is created, the VMS operating system automatically assigns 
it a portion of the quotas established for your main process. Under heavily 
loaded systems, it is possible for the top-level MMS subprocess to complete 
before VMS has finished with the exit-cleanup code for the second-level MMS 
subprocess. If MMS tries to invoke another subprocess, you may receive the 
following error message: 

Y.MMS-F-DRVINSQUO, Your process needs a PRCLM of at least 2, current value is 0. 

In this case, you can increase your PRCLM quota or add the DCL WAIT 
statement in your description file, for example: 

IF F$SEARCH (' (MMS$SOURCE") . NES . 1111 THEN
DESCRIPTION = 11 /DESCRIPTION=$(MMS$SOURCE) 11 

- $(MMS) /NOSKIP 11 MMS_QUALFIERS 11 -

/0VERRIDE/RULES=BUILD_COM:DESCRIP _BUILD
"DESCRIPTION" $(MMS$SOURCE) 
WAIT 0:0:5 

- $(MMS) /NOSKIP"MMS_QUALIFIERS"
/OVERRIDE/RULES=BUILD_COM:PLI
/DESCRIPTION=$(MMS$SOURCE) 

3-4 Advanced Description File Techniques 



3.3.3 Process Quotas for Using MMS 

To invoke MMS as a top-level process, you need the following minimum 
process quotas: 

Table 3-1: MMS Process Quotas 

Process 

PRCLM 

FILLM 

BYTLM 

ASTLM 

Quota 

A subprocess limit of 2 

An open file limit of 16 

A buffered 1/0 byte limit of 8192 (nonrecursive) and 13000 (recursive) 

An asynchronous trap limit of 25 

If you get the error message reflecting a "virtual memory exceeded" error, you 
may also need to increase your PGFLQUO (page file quota). If you use MMS 
recursively, that is, you invoke MMS from within an MMS process, then MMS 
requires even higher quotas. 

3.3.4 MMS Reserved Macros 

MMS includes two other reserved macros, $(MMSQUALIFIERS) and 
$(MMSTARGETS), which you can use when you invoke MMS as a sub
process. Both of these qualifiers pass to the subprocess the same information 
you specified on the command line that invoked MMS: 

• $(MMSQUALIFIERS) passes the command-line qualifiers. 

• $(MMSTARGETS) passes the targets from the command line. 

These two macros and $(MMS) are reserved macros; you cannot redefine them. 

The $(MMSQUALIFIERS) macro does not pass the /DESCRIPTION, 
/OUTPUT, /IGNORE, and /NORULES qualifiers. To use these qualifiers 
when invoking MMS from a description file, you must explicitly specify them 
after $(MMSQUALIFIERS), as shown in the following example: 

TESTS.EXE : 
$(MMS) $(MMSQUALIFIERS) -

/DESCRIPTION=[GREGORY]TESTBUILD -
$(MMSTARGETS) 

If you do not use the $(MMSQUALIFIERS) macro, MMS uses the default 
qualifiers. A list of the default qualifiers and complete descriptions of all MMS 
qualifiers are contained in the Command Dictionary. 

Advanced Description File Techniques 3-5 



The following example shows a description file, ALL.MMS, that contains two 
subprocess invocations of MMS: 

ALL.EXE : A.OBJ, B.OBJ 
LINK/EXEC=ALL A, B 

A.OBJ : 
$(MMS) $(MMSQUALIFIERS) /DESCRIPTION=A A.OBJ 

B.OBJ : 
$(MMS) $(MMSQUALIFIERS) /DESCRIPTION=B B.OBJ 

Before MMS can update the target, ALL.EXE, it must check the two sources, 
A.OBJ and B.OBJ, to make sure they are up to date. If either needs to be 
updated, MMS spawns a subprocess, using the specified description file. If 
both A.OBJ and B.OBJ need to be updated, the output from this example is the 
following: 

$MMS/DESCRIPTION=ALL 
MMS /DESCRIPTION=A A.OBJ 
PASCAL A 
MMS /DESCRIPTION=B B.OBJ 
PASCAL B 
LINK/EXEC=ALL A,B 
$ 

If you invoke MMS with the /NOACTION qualifier and the same description 
file, the following output results: 

$MMS/DESCRIPTION=ALL/NOACTION 
MMS /NOACTION /DESCRIPTION=A A.OBJ 
PASCAL A 
MMS /NOACTION /DESCRIPTION=B B.OBJ 
PASCAL B 
LINK/EXEC=ALL A,B 
$ 

The MMS subprocesses are created, but the PASCAL and LINK commands are 
not executed to update the targets because you specified /NOACTION on the 
MMS command line. 

3.4 Invoking MMS from a Command Procedure 

The previous description files have built software systems in a fixed way. You 
can build variations of your software system without modifying the description 
file by invoking MMS from a command procedure. The command procedure 
controls the actions MMS performs. You can use user-defined macros in a 
command procedure to change MMS' s default actions. 

3-6 Advanced Description File Techniques 



Some of the ways you can vary building your software systems can include the 
following: 

• Using /DEBUG versus /NODEBUG images 

• Producing listing files versus no listing files during compilation 

• Using /OPTIMIZE versus /NOOPTIMIZE during compilaton 

It is better to have the description file reflect the basic structure of your software 
system and use command procedures to produce variations in your build 
process. The description ,file should not be concerned with changing the details 
of compile and link options. 

Command Procedures and User-Defined Macros 

MMS has two types of built-in macros: default macros and special macros. 
MMS default macros stand for parts of built-in actions and can be overridden. 
MMS special macros stand for targets and sources and cannot be overridden. 
The special macros are defined when you invoke MMS and cannot be changed. 
Default macros are a set of string variables containing the names of VMS 
utilities and qualifiers. 

You can create a user-defined macro for a CU symbol. With the /OVERRIDE 
qualifier, you can instruct MMS to use the value of the user-defined macro in 
your command procedure over the default value of the CU symbol. For exam
ple, consider the following command procedure, DEBUG_ VERSION.COM, and 
the MMS description file SYSTEMl .MMS: 

Advanced Description File Techniques 3-7 



Example 3-1: Invoking MMS from a Command Procedure 

$ TYPE DEBUG_ VERSION. COM 

$ -------------------------------------------------------
$ 
$ Command procedure using the /OVERRIDE qualifier with MMS 
$ 
$ Create the user defined macros we want 
$ ! 

0 $ PFLAGS = "/LIST/NOOPTIM/DEBUG" 
0 $ LINKFLAGS = "/MAP/DEBUG" 

$ ! 
$ ! Invoke MMS and direct it to use our macros 
$ ! 

8 $ MMS /DESCRIPTION=SYSTEM1 /OVERRIDE 
$ 
$ ! -------------------------------------------------------
$ ! 

8 $ TYPE SYSTEM! . MMS 

MAIN.EXE DEPENDS_ON MAIN.OBJ 
MAIN.OBJ DEPENDS_ON MAIN.PAS 

0 PFLAGS and LINKFLAGS are CLI symbols with the same names as those 
of the default macros but set with new values. 

8 MMS with the /OVERRIDE qualifier is invoked from within the command 
procedure to use the new CLI symbol values instead of the built-in default 
values. 

8 The description file describes the dependencies. 

This example produces a software system very different from the one MMS 
would normally have built. The user-defined macro definitions in the command 
procedure appear in the MMS output exactly where the default macro actions 
would have appeared. To invoke this command procedure you need the 
following files in your current directory: 

$ DIR/DATE=MODIFIED 

Directory DISK1: [BUILD] 

MAIN.PAS;3 18-JUL-1987 16:35 
DEBUG_VERSION.COM;2 18-JUL-1987 16:35 
SYSTEM1.MMS;1 18-JUL-1987 16:35 

Total of 3 files. 

$ ©DEBUG_VERSION 

3-8 Advanced Description File· Techniques 



PASCAL /LIST/NOOPTIM/DEBUG MAIN.PAS 
LINK /MAP/DEBUG MAIN.OBJ 

MMS uses the user-defined rules to compile and link your program. 

3.5 Invoking a Command Procedure from a Description 
File 

You can invoke DCL command procedures from your description file. The 
following example describes a command procedure that loops until a given 
file becomes available. You can invoke that command procedure, called 
GETFILE.COM, from your description file as in Example 3-2. 

Example 3-2: Invoking a Command Procedure from a Description File 

$TYPE GETFILE.COM 
$ LABEL: 
$ IF 111 1F$SEARCH( 11 1 P1 1 

") 
111 .NES. "" THEN GOTO DONE 

$ WAIT + : I P2 I 
$ GOTO LABEL 
$ DONE: 
$TYPE GET_NEXT.MMS 
GET_NEXT_INFO : 

MAIL NL: $(MY_PROC)/SUBJECT="string" 
©GETFILE ANSWER.IN 15 
©ANSWER. IN 

$ MMS/DECRIPTION=GET_NEXT 

You can use this command procedure when you start MMS in a batch job. 
ANSWER.IN corresponds to the Pl parameter, and 15 is the polling interval (in 
minutes) that corresponds to the P2 parameter. ANSWER.IN might modify the 
environment in some way-for example, it might set a CMS library at a point 
where MMS cannot find the right CMS library. 

The $(MY_pRQC) macro in this description file is assumed to be a DCL symbol 
that represents a valid electronic mail address. 

NOTE 

Be sure you do not leave a space between the /1 at" sign ( @ ) and the 
name of the command procedure, so that MMS does not interpret 
the /1 at" sign as the Silent action line prefix. 

Advanced Description File Techniques 3-9 



3.6 Changing System Build Options 

During software development, the number of description files and major 
aspects of build procedures can change frequently. You can edit the command 
procedure to make the changes. As the MMS description file becomes stable, 
you can create a command procedure that prompts you for different system 
building options. You can write a very complicated command procedure that 
asks you for compilation options, for link options, and for executable targets 
(when your description file has multiple targets). The command procedure can 
send you mail when the build is complete and move the results to another 
directory. You can also do some error checking for your input or add a default 
option for your input. 

The following command procedure CHANGE_OPTIONS.COM uses the DCL 
INQUIRE command to change compiling and linking options for a system 
build: 

Example 3-3: A Command Procedure to Change Build Options 

$ TYPE CHANGE_OPTIONS.COM 

$ 
$ Command procedure to vary build options for MMS 
$ 
$ Ask for compilation and linking options 
$ 
$ INQUIRE PFLAGS "Enter PASCAL compilations options" 
$ INQUIRE LINKFLAGS "Enter link options" 
$ ! 
$ ! Invoke MMS and direct it to use new default macros 
$ ! 
$ MMS /DESCRIPTION=SYSTEM1 /OVERRIDE 
$ ! 

$ TYPE SYSTEM1.MMS 

MAIN.EXE DEPENDS_ON MAIN.OBJ 
MAIN.OBJ DEPENDS_ON MAIN.PAS 

«t Enter PASCAL compilations options: /LIST/NOOPTIM/DEBUG 
«t Enter link options: /MAP/DEBUG 
~PASCAL /LIST/NOOPTIM/DEBUG MAIN.PAS 
~LINK /MAP/DEBUG MAIN.OBJ 

0 $ EDIT MAIN.PAS 

3-1 0 Advanced Description File Techniques 

(continued on next page) 



Example 3-3 (Cont.): A Command Procedure to Change Build 
Options 

9 $ ©CHANGE_OPTIONS 

., Enter PASCAL compilations options: /NODEBUG/NOLIST 

., Enter link options: /NOMAP/NODEBUG 

fJ PASCAL /NODEBUG/NOLIST MAIN.PAS 
fJ LINK /NOMAP/NODEBUG MAIN.OBJ 

., The command procedure prompts you for compiling and linking options. 

fJ The system is built using the options you supplied. 

8 The MAIN.PAS file is edited to force MMS to rebuild the system. If you 
invoked MMS again without changing anything, MMS would find the 
system up-to-date and take no action. 

9 The command procedure prompts you for options that change the way you 
built your system the last time. 

Note that if you change the way a system is built either by modifying the 
description file or by modifying the command procedure that calls it, MMS does 
not necessarily rebuild the system. MMS bases its actions on the dates of the 
software system itself. MMS does not compile or relink the system just because 
you added a user-defined macro to your description file or your command 
procedure. 

To invoke the CHANGE-OPTIONS command procedure, you need the follow
ing files in you·r current directory: 

$ DIR/DATE=MODIFIED 

Directory DISK1: [BUILD] 

CHANGE_OPTIONS.COM;1 

MAIN.PAS;3 
SYSTEM1.MMS;1 

Total of 3 files. 

$ ©CHANGE_OPTIONS 

21-JUL-1987 15:51 
18-JUL-1987 16:35 
18-JUL-1987 16:35 

Advanced Description File Techniques 3-11 



3. 7 Gathering Statistics 

The examples in the following sections describe the methods for using MMS to 
gather statistics about your files. 

3. 7 .1 Finding Missing Sources 

If you have stored the sources for your software system in a source directory or 
CMS library, and want to make sure all the sources you need are there, you can 
get a list of any missing files by inserting a default action in your description 
file, using the .DEFAULT directive. For example: 

.DEFAULT : 
IF II 11 F$SEARCH("MISSING.SRC") I II .EQS. 1111 -

THEN OPEN/WRITE MSING MISSING.SRC 
IF II I 1 F$SEARCH( 11 MISSING.SRC") I II .NES. "" . 
THEN OPEN/APPEND MSING MISSING.SRC 
WRITE MSING "missing $(MMS$TARGET_NAME)" 
CLOSE MSING 

When you process this description file with MMS, MISSING.SRC contains the 
list of missing files. 

3. 7 .2 Creating a Checkpoint File 

You can use MMS to create a checkpoint file that indicates when MMS finishes 
building a target. For example, if your directory contains source files TESTl.C, 
TEST2.C, and TEST3.C and you want MMS to create .EXE files from each 
of these sources and also to inform you when each target is complete, the 
following example shows a description file that accomplishes these tasks. This 
description file builds TESTl.EXE, TEST2.EXE, and TEST3.EXE and creates 
a file called CHECK.PNT that indicates the time the executable files were 
completed. 

! Suffixes list with .PNT in the first position . 
. SUFFIXES 
.SUFFIXES .PNT .EXE .OBJ .C .c-

! User-defined rule to build .EXE files from .PNT files . 
. EXE.PNT : 

IF 1111 F$SEARCH("CHECK.PNT11
)

111 .EQS. "" -
THEN OPEN/WRITE CHECK CHECK.PNT 

IF 1111 F$SEARCH( 11 CHECK.PNT 11
)

111 .NES. "" -
THEN OPEN/APPEND CHECK CHECK.PNT 

WRITE CHECK "Completed build of $ (MMS$SOURCE) at 1 1 f$time () 1
" 

CLOSE CHECK 

3-12 Advanced Description File Techniques 



MAIN_TARGET : TEST1.PNT, TEST2.PNT, TEST3.PNT 
MAIL CHECK.PNT MICHAELS -
/SUBJECT="Build summary of $(MMS$TARGET_NAME) ending at 1 1 f$timeO 111 

DELETE CHECK.PNT; 

NOTE 

The executable files will be built before the .PNT files are processed. 
They are temporary files that allow the actions that produce the file 
to be localized in one place (the .EXE.PNT rule). 

When you run MMS, the action lines are displayed as follows: 

CC /NOLIST TEST1.C 
LINK /TRACE TEST1.0BJ 
IF 111 'F$SEARCH("CHECK.PNT") 111 .EQS. 1111 THEN OPEN/WRITE CHECK CHECK.PNT 
IF 1111 F$SEARCH( 11 CHECK.PNT11

)
111 .NES. ""THEN OPEN/APPEND CHECK CHECK.PNT 

WRITE CHECK "Completed build of TEST1. EXE at 1 1 f$time () 1
" 

CLOSE CHECK 
CC /NOLIST TEST2.C 
LINK /TRACE TEST2.0BJ 
IF 1111 F$SEARCH( 11 CHECK.PNT") 111 .EQS. "" THEN OPEN/WRITE CHECK CHECK.PNT 
IF 1111 F$SEARCH("CHECK.PNT11

)
111 .NES. ""THEN OPEN/APPEND CHECK CHECK.PNT 

WRITE CHECK "Completed build of TEST2. EXE at 1 'f$time () 1 
" 

CLOSE CHECK 
CC /NOLIST TEST3.C 
LINK /TRACE TEST3.0BJ 
IF 111 1 F$SEARCH("CHECK.PNT11

) 
111 .EQS. 1111 THEN OPEN/WRITE CHECK CHECK.PNT 

IF 1111 F$SEARCH("CHECK.PNT 11
)

111 .NES. ""THEN OPEN/APPEND CHECK CHECK.PNT 
WRITE CHECK "Completed build of TEST3. EXE at 1 1 f$time () 1

" 

CLOSE CHECK 
MAIL CHECK.PNT MICHAELS/SUBJECT="Build summary of MAIN_TARGET 
ending at 1 1 f$time () 1 

" 

DELETE CHECK.PNT; 

The mail message sent to your process looks like the following: 

From: 
To: 
Subj: 

MICHAELS 
MICHAELS 

21-FEB-1987 14:48 

Build summary of MAIN_TARGET ending at 21-FEB-1987 14:48:06.85 

Completed build of TEST1.EXE at 21-FEB-1987 14:47:32.99 
Completed build of TEST2.EXE at 21-FEB-1987 14:47:49.65 
Completed build of TEST3.EXE at 21-FEB-1987 14:48:06.33 

3.8 Creating and Using Time Stamps 

You can use MMS to create time stamps for such purposes as tracking the 
progress of the system and determining whether any sources have changed 
since the last time the system was built. 

You can use either DCL symbols or included files to create a time stamp. 

Advanced Description File Techniques 3-13 



3.8.1 Creating a Time Stamp File Using DCL Symbols 

The following description file creates the file CMSMODS.RPT, which reports 
the number of modified sources by checking replace operations in the CMS 
library. 

PROJECT_SOURCES = PARSE.Y, TOUCH.C, GM.C, DRIVE.C, CLP.C, -
LEX.C, GRAFBUILD.C, GRAFWALK.C, LFS.C, -
MACROBANK.C, MB.C, MMSPRINT.C, UTILS.C, -
EXECCMD.C, RULES.C, LBR.C, CMSACCESS.C, -
MMSMSG.MSG, FILTER.C, GRAPH.H, GLOBALS.H, -
LBRDEF.H, PDEFS.H, TOKEN.H, CLP.H, TC.H 

Special CMS filetypes not included by default . 
. SUFFIXES : .Y .Y-

! New CMS rules (Note: no real CMS fetches occur) 
.MSG-.MSG : 

COPY NL: $(MMS$TARGET_NAME).MSG ! Create the new time stamp file 
PUR $(MMS$TARGET_NAME).MSG ! Remove the old one, if any 
MODS = MODS + 1 ! Increment the modification counter 

.H-.H : 
COPY NL: $(MMS$TARGET_NAME).H 
PUR $(MMS$TARGET_NAME).H 
MODS = MODS + 1 

.c-.c : 
COPY NL: $(MMS$TARGET_NAME).C 
PUR $(MMS$TARGET_NAME).C 
MODS = MODS + 1 

.Y-.Y : 
COPY NL: $(MMS$TARGET_NAME).Y 
PUR $(MMS$TARGET_NAME).Y 
MODS = MODS + 1 

Primary Target 
MODS : !NIT $(PROJECT_SOURCES) 

IF 111 'F$SEARCH("CMSMODS.RPT") I II .EQS. 1111 
-

THEN OPEN/WRITE CHECK CMSMODS.RPT 
IF 1111 F$SEARCH( 11 CMSMODS.RPT 11

)
111 .NES. "" -

THEN OPEN/APPEND CHECK CMSMODS.RPT 
WRITE CHECK II I 'MODS' MODIFICATIONS DETECTED AT I 'F$TIME() I II 

CLOSE CHECK 

!NIT : 
MODS = 0 

CMSMODS.RPT can be used in some form as input to a program that prints 
a graph of CMS replace operations with relation to a number of days. Such a 
graph can be used as an indication of how stable a given project's source code 
is with respect to its milestones. 

It is a good idea to run a description file such as the one in this example on a 
daily or otherwise frequent basis. You may want to put the appropriate MMS 
command in your LOGIN.COM file. 

3-14 Advanced Description File Techniques 



3.8.2 Creating a Time Stamp File Using Included Files 

Consider the following directories and files: 

[DIR1] contains FILE1.X 

[DIR2] contains FILE2.Y 

[DIR3] contains FILE3.Z 

MMS can build a file to report changes to these files. The following description 
file creates the file CHANGES.DOC, which reports when changes were made 
to the source . 

. SILENT 

RECORD_CHANGE = .INCLUDE CHANGE.REC 

REPORT_CHANGE : !NIT FILE1.TIM FILE2.TIM FILE3.TIM 
IF II I 

1 F$SEARCH( 11 CHANGES.DOC 11 ) 
111 .NES. 1111 -

THEN TYPE CHANGES.DOC 
IF II I 1 F$SEARCH( 11 CHANGES.DOC") 111 .EQS. 1111 -

THEN WRITE SYS$0UTPUT "No changes detected" 

!NIT : 
IF 1111 F$SEARCH( 11 CHANGES.DOC 11

)'
11 .NES. 

THEN DELETE CHANGES.DOC;*/NOLOG 

Testing the time stamps 
FILE1.TIM : [DIR1]FILE1.X 
$(RECORD_CHANGE) 

FILE2.TIM : [DIR2]FILE2.Y 
$(RECORD_CHANGE) 

FILE3.TIM : [DIR3]FILE3.Z 
$(RECORD_CHANGE) 

Because the .SILENT directive suppresses the display of action lines, MMS 
displays one of two pieces of information when it processes this description file: 

• If no changes were made to the files, MMS prints ''No changes detected," as 
instructed in the REPORT_CHANGE action line. 

• If changes were made to the files, MMS displays the contents of the file 
CHANGES.DOC, as instructed in the REPORT_CHANGE action line. 
CHANGES.DOC lists the files that were changed and the times the changes 
were made. 

CHANGE.REC, the file included by the RECORD_CHANGE macro, is the 
recording procedure (rule) for making a change. It contains the following 
actions: 

Advanced Description File Techniques 3-15 



IF 111 1 F$SEARCH( 11 CHANGES.DOC 11 ) I II .NES. 1111 
-

THEN OPEN/APPEND CHANGE CHANGES.DOC 
IF II I I F$SEARCH ("CHANGES. DOC") I II • EQS. 1111 -

THEN OPEN/WRITE CHANGE CHANGES.DOC 
WRITE CHANGE "Changes to $ (MMS$SOURCE) noted 1 1 f$time () 111 

CLOSE CHANGE 
COPY NL: $(MMS$TARGET_NAME).TIM 
PURGE $(MMS$TARGET_NAME).TIM 

You can substitute different recording procedure files for CHANGES.REC 
without changing the description file every time. To do so, create the same 
description file described in the example, but omit the RECORD_CHANGE 
macro. Also, replace the invocations of the RECORD-CHANGE macro with 
.INCLUDE $(REC_pROC). After these changes, the description file looks like 
this: 

.SILENT 

REPORT_CHANGE : !NIT FILE1.TIM FILE2.TIM FILE3.TIM 
IF 1111 F$SEARCH( 11 CHANGES.DOC 11

)
111 .NES. 1111 

-

THEN TYPE CHANGES.DOC 
IF 1111 F$SEARCH( 11 CHANGES.DOC 11

) Ill .EQS. 1111 
-

THEN WRITE SYS$0UTPUT "No changes detected" 

!NIT : 
IF 1111 F$SEARCH( 11 CHANGES.DOC 11 ) Ill .NES. 1111 

-

THEN DELETE CHANGES.DOC;*/NOLOG 

Testing the time stamps 
FILE1.TIM : [DIR1]FILE1.X 
.INCLUDE $(REC_PROC) 

FILE2.TIM : [DIR2]FILE2.Y 
.INCLUDE $(REC_PROC) 

FILE3.TIM : [DIR3]FILE3.Z 
.INCLUDE $(REC_PROC) 

REC_pROC is a macro that you define on the MMS command line to be the 
name of a recording procedure file you want to use at the time. Type the 
following command line to use the file of your choice: 

$ MMS/MACR0= 11 REC_PROC=©filename 11 

3. 9 Selectively Deleting Files 

Usually after updating your system, you will want to delete the intermediate 
files from your working directory. Or you might want intermediate files to be 
deleted automatically after an MMS build. You can accomplish this task in 
three different ways: 

• Create a command procedure. 

• Use a macro definition. 

3-1 6 Advanced Description File Techniques 



• Use the .LAST directive. 

The first two methods are described in the following sections. The use of the 
.LAST directive is described in Section 2.8.11. 

3.9.1 Creating a Command Procedure to Selectively Delete Files 

To use a command procedure to delete files selectively, create the procedure in 
the description file. Modify the dependencies or the default rules to include the 
following actions: 

IF "' 'F$SEARCH("DELETE.COM") I II .EQS. 1111 
-

THEN COPY NL: DELETE.COM 
OPEN/APPEND DEL_FILE DELETE.COM 

WRITE DEL_FILE "$DELETE $(MMS$SOURCE);" 

NOTE 

Usually, you will want to modify only the .OBJ.OLB rule to include 
these actions. However, to delete everything, you can modify all the 
rules you use; take care that you are deleting only those files you 
want deleted. 

The modified .OBJ.OLB rule looks like this: 

.OBJ.OLB : 
IF "I I F$SEARCH ( "$ (MMS$TARGET) II) Ill • EQS. II II -

THEN $(LIBR)/CREATE $(MMS$TARGET) 
$(LIBR) $(LIBRFLAGS) $(MMS$TARGET) $(MMS$SOURCE) 
IF " I I F$SEARCH ("DELETE. COM") I II • EQS. II" -

THEN COPY NL: DELETE.COM 
OPEN/APPEND DEL_FILE DELETE.COM 
WRITE DEL_FILE "$DELETE $(MMS$SOURCE);" 

Once you have modified the rule, add a target such as the following to your 
description file: 

DELETE : MYPROG. EXE ! The name of the target 
- ©DELETE.COM 

Note that the Ignore action line prefix ( - ) is used to prevent MMS from aborting 
execution if it detects errors (such as the absence of files) while deleting files. 

To delete .OBJ files that MMS created during a build, you need type only the 
following: 

$ MMS/SKIP_INTERMEDIATE DELETE 

The /SKIP-1NTERMEDIATE qualifier causes MMS not to rebuild the files that 
were deleted. 

Advanced Description File Techniques 3-1 7 



3.9.2 Using a Macro Definition to Selectively Delete Files 

There are two ways of using macros for the selective deletion of files: 

• Use a macro definition on the MMS command line. 

• Use a DCL symbol as a macro. 

To use a macro on the command line to delete files, modify the desired rule to 
include the following action: 

IF "$(CLEAN)" .NES 1111 THEN DELETE $(MMS$SOURCE); 

Thus, the .OBJ.OLB rule looks like this: 

.OBJ.OLB : 
IF II I I F$SEARCH (II$ (MMS$TARGET) II) I II • EQS. 1111 -

THEN $(LIBR)/CREATE $(MMS$TARGET) 
$(LIBR) $(LIBRFLAGS) $(MMS$TARGET) $(MMS$SOURCE) 
IF "$(CLEAN)" .NES 1111 THEN DELETE $(MMS$SOURCE); 

The command line is the following: 

$ MMS/CMS/SKIP/MACR0= 11 CLEAN=CLEAN 11 

You can equate the macro to any character string that you like; MMS simply 
needs to be able to expand the CLEAN macro to something other than the null 
string. 

To use a DCL symbol as a macro for deleting files, add the same action line to 
the desired rule as for using a macro on the command line. However, substitute 
"CLEAN' for $(CLEAN), as follows, where CLEAN is a global CLI symbol: 

.OBJ.OLB : 
IF II I I F$SEARCH (II$ (MMS$TARGET) II) I II • EQS. II II -

THEN $(LIBR)/CREATE $(MMS$TARGET) 
$(LIBR) $(LIBRFLAGS) $(MMS$TARGET) $(MMS$SOURCE) 
IF "''CLEAN'" .NES ""THEN DELETE $(MMS$SOURCE); 

You can use the same macro definition on the command line as in the previous 
example. If you do not want to define the macro on the command line, make 
sure that the DCL symbol CLEAN is defined before you invoke MMS. Then the 
command line can be shortened as follows: 

$ MMS/CMS/SKIP 

3-18 Advanced Description File Techniques 



3.10 Doing Parallel Processing 

If you have a very large system to build, you can process different parts of it 
simultaneously by adding rules, such as the following, to the beginning of your 
existing description file: 

FARALLEL_FROC : TARG1 TARG2 TARG3 ! Names for parts of your system 
! Files submitted 

TARG1 : 
MMS/CMS/OUT=TARG1.COM/NOACTION FROG.EXE 
SUBMIT $(MMS$TARGET_NAME) 

TARG2 : 
MMS/CMS/OUT=TARG2.COM/NOACTION MOD.EXE 
SUBMIT $(MMS$TARGET_NAME) 

The rules building the parts of your system 
FROG.EXE : FROG.OBJ 

action 

MOD.EXE : MOD.OBJ 
action 

This description file causes MMS to process the parts of your system "in 
parallel" or simultaneously, resulting in shorter processing time and earlier error 
detection. 

3.11 Complex Examples Using MMS 

This section demonstrates advanced uses of MMS: 

• A description file that uses object libraries 

• A description file that results in multiple outputs 

3.11 .1 MMS and Object Libraries 

Example 3-4 contains a sample MMS description file using object libraries. 

Advanced Description File Techniques 3-19 



Example 3-4: Description File Using Object Libraries 

DESCRIP.MMS 

' This command procedure builds the INTERCOM facility. 9, 
!+ 

Define macros for the following commands and built-in rules 

DEBUG 
TRACE 
LIST 
BF LAGS 
MF LAGS 
CLO FLAGS 
!LIBRFLAGS 
LIBRFLAGS 
LINKFLAGS 

= /noDEBUG 
= /noTRACE 
= /LIST=LIS$: 
= $(LIST) $(DEBUG) /TERM=STAT 
= $(LIST) $(DEBUG) 
= $(LIST) 
= /LOG 

= /FULL $(DEBUG) $(TRACE) /MAP=LIS$: 

! TNAME gives just the name portion of the target 
! 
TNAME = 'F$PARSE("MMS$TARGET_NAME" .. , 11 NAME 11

,
11 SYNTAX_ONLY") 

.SUFFIXES 

.SUFFIXES 

.B32.0BJ 

.MSG.OBJ 

.MAR.OBJ 

.CLO.OBJ 

.REQ.L32 

Define "built-in" rules 

.EXE .OLB .OBJ -

.B32 .BLI .MAR .CLO .L32 .R32 .REQ .SOL .MSG 

$(BLISS) $(BFLAGS) /OBJ=$(MMS$TARGET) $( MMS$SOURCE) 
MESSAGE $(LIST) /OBJ=$(MMS$TARGET) $(MMS$SOURCE) 
$(MACRO) $(MFLAGS) /OBJ=$(MMS$TARGET) $(MMS$SOURCE) 
SET COMMAND /OBJECT=$(MMS$TARGET) $(CLDFLAGS) $(MMS$SOURCE) 
$(BLISS) /LIBRARY $(BFLAGS) /NOOBJ $(MMS$SOURCE) 

(continued on next page) 

3-20 Advanced Description File Techniques 



Example 3-4 (Cont.): Description File Using Object Libraries 

8.0BJ.OLB 
© IF F$SEARCH(F$PARSE( 11 $(MMS$TARGET) 11

) .NES. F$SEARCH( 11 $(MMS$TARGET) 11 )

THEN COPY/LOG $(MMS$TARGET) $(MMS$TARGET) 

!+ 

© IF F$SEARCH(F$PARSEF$SEARCH( 11 $(MMS$TARGET) 11
) .EQS. 1111 

-

THEN $(LIBR)/CREATE/LOG $(MMS$TARGET) 
$(LIBR) $(LIBRFLAGS) $(MMS$TARGET) $(MMS$SOURCE) 

Define groups of OBJs, how modules in the OLB relate to OBJs 

OLB_ELEMENTS = 
NOTEFILE=OBJ$:NOTEFILE.OBJ 
CLASS=OBJ$:CLASS.OBJ 
ENTRY=OBJ$:ENTRY.OBJ 
KEYWORD=OBJ$:KEYWORD.OBJ 
NOTE=OBJ$:NOTE.OBJ 
PROFILE=OBJ$:PROFILE.OBJ 
USER=OBJ$:USER.OBJ 
CALLABLE_INTERCOM=OBJ$:CALLABLE_INTERCOM.OBJ -
CALLUSER=OBJ$:CALLUSER.OBJ 
PARSEACT=OBJ$:PARSEACT.OBJ 
INTERCOMTPU=OBJ$:INTERCOMTPU.OBJ 

FILEIO=OBJ$:FILEIO.OBJ 
HANDLER=OBJ$:HANDLER.OBJ 
ITEMSIZE=OBJ$:ITEMSIZE.OBJ 
ITEMLIST=OBJ$:ITEMLIST.OBJ 
IDPARSE=OBJ$:IDPARSE.OBJ 
INTERCOMMSG=OBJ$:INTERCOMMSG.OBJ 
INTERCOMUTIL=OBJ$:INTERCOMUTIL.OBJ 
INTERCOM$COMMAND_TABLE=OBJ$:COMMANDS.OBJ 
INTERCOM$MAIN=OBJ$:INTERCOM$MAIN.OBJ 
INTERCOM$SERVER=OBJ$:INTERCOM$SERVER.OBJ 
TFRVEC=OBJ$:TFRVEC.OBJ 

! + 
! Define the main targets. These are put in the kit. 

MAIN_TARGETS = 
OBJ$:INTERCOM$SHARE.EXE, -
OBJ$:INTERCOM$MAIN.EXE, -
OBJ$:INTERCOM$SERVER.EXE, -
OBJ$:INTERCOM$SECTION.GBL, -
OBJ$:INTERCOM$HELP.HLB, -
SRC$:INTERCOM_INTERFACE.TPU, -
SRC$:INTERCOM$STARTUP.COM, -
SRC$:INTERCOMDCL.CLD 

(continued on next page) 

Advanced Description File Techniques 3-21 



Example 3-4 (Cont.): Description File Using Object Libraries 

!+ 
Define dependency rules . 

. FIRST 
CONTINUE No initialization needed 

!+ 
Specify the main target(s) -- everything. 
This is the first dependency rule in this file; 
by calling this target "*", we can say "MMS *" at DCL level. 

* : $(MAIN_TARGETS) 
CONTINUE 

!+ 
Define the kit (this is not built by default) 
Use "MMS OBJ$:INTERCOM_KIT" to build the installation kit. 

OBJ$:INTERCOMOOO.A OBJ$:INTERCOM_KIT 
CONTINUE 

OBJ$:INTERCOMOOO.A 
9, 

$(MAIN_TARGETS), SRC$:KITINSTAL.COM SRC$:SPKITBLD.COM 

!+ 

- DELETE NNP$: [INTERCOM.TEMP]*.*·* 
COPY $(MAIN_TARGETS), SRC$:KITINSTAL.COM NNP$: [INTERCOM.TEMP] 
©SRC$:SPKITBLD.COM $(TNAME) OBJ$: NNP$: [INTERCOM.TEMP]*.* 
SET NOON 
- DELETE NNP$: [INTERCOM.TEMP]*.*·* 
SET ON 

! Build the documents (not built by default) 

SPECS OBJ$:INTERCOMPLAN.MEM, OBJ$:INTERCOMSPEC.MEM 
CONTINUE 

OBJ$:INTERCOMPLAN.MEM SRC$:INTERCOMPLAN.RNO 

!To say "MMS SPECS" at DCL 

COPY NL: SYS$SCRATCH:INTERCOMPLAN.RNT !Create dummy file 
RUNOFF /INTERMEDIATE=SYS$SCRATCH:INTERCOMPLAN /NOOUTPUT SRC$:INTERCOMPLAN 
RUNOFF /CONTENTS /OUTPUT=SYS$SCRATCH:INTERCOMPLAN SYS$SCRATCH:INTERCOMPLAN 
RUNOFF SRC$:INTERCOMPLAN /OUT=OBJ$:INTERCOMPLAN 
SET NOON 
- DELETE SYS$SCRATCH:INTERCOMPLAN.*;* 
SET ON 

OBJ$:INTERCOMSPEC.MEM : SRC$:INTERCOMSPEC.RNO 
COPY NL: SYS$SCRATCH:INTERCOMSPEC.RNT !Create dummy file 
RUNOFF /INTERMEDIATE=SYS$SCRATCH:INTERCOMSPEC /NOOUTPUT SRC$:INTERCOMSPEC 
RUNOFF /CONTENTS /OUTPUT=SYS$SCRATCH:INTERCOMSPEC SYS$SCRATCH:INTERCOMSPEC 
RUNOFF SRC$:INTERCOMSPEC /OUT=OBJ$:INTERCOMSPEC 
SET NOON 
- DELETE SYS$SCRATCH:INTERCOMSPEC.*;* 
SET ON 

3-22 Advanced Description File Techniques 

(continued on next page) 



Example 3-4 (Cont.): Description File Using Object Libraries 

!+ 
! Build the executables and libraries 
I 

ctLINK_SHR = $(LINK) $(LINKFLAGS) /SHAR=$(MMS$TARGET) $(MMS$SOURCE)/OPT /NODEBU 
LINK_EXE = $(LINK) $(LINKFLAGS) /EXEC=$(MMS$TARGET) $(MMS$SOURCE)/OPT 

OBJ$:INTERCOM$SHARE.EXE 
0BJ$:INTERCOM$MAIN.EXE 
OBJ$:INTERCOM$SERVER.EXE 

SRC$:INTERCOM$SHARE.OPT OBJ$:INTERCOM.OLB 
SRC$:INTERCOM$MAIN.OPT OBJ$:INTERCOM.OLB 
SRC$:INTERCOM$SERVER.OPT OBJ$:INTERCOM.OLB 

~ (LINK_SHR) 
$ (LINK_EXE) 
$ (LINK_EXE) 

OBJ$:INTERCOM$SECTION.GBL SRC$:INTERCOM_INTERFACE.TPU 
DEFINE /NOLOG /USER INTERCOM$SECTION 0BJ$:INTERCOM$SECTION 
- EDIT /TPU /SECTION=EVESECINI /NOJOURNAL /NODISPLAY /COMMAND=$(MMS$SOURCE) 

C)oBJ$:INTERCOM$HELP.HLB : SRC$:INTERCOMHELP.HLP 
CO IF F$SEARCH(F$PARSEF$SEARCH( 11 $(MMS$TARGET) 11

)) .NES. F$SEARCHF$SEARCH( 11 $(MMS$TARGET) 11
)

THEN COPY/LOG $(MMS$TARGET) $(MMS$TARGET) 
co IF F$SEARCH (F$PARSEF$SEARCH ( 11$ (MMS$TARGET) II)) • EQS. II II -

THEN $(LIBR)/CREATE/LOG/HELP $(MMS$TARGET) 
$(LIBR) $(LIBRFLAGS) /HELP $(MMS$TARGET) $(MMS$SOURCE) 

Anything depending on INTERCOM.OLB is presumed to depend on all its modules. 

0BJ$:INTERCOM.OLB 
CONTINUE 

: OBJ$:INTERCOM.OLB($(0LB_ELEMENTS)) 

! Any BLISS modules that REQUIRE 'INTERCOMREQ' also depend on INTERCOMLIB.L32, 
! since it is referenced by INTERCOMREQ.REQ. We combine these two in a macro. 
! 
COM_REQ = SRC$:INTERCOMREQ.REQ OBJ$:INTERCOMLIB.L32 

! . B32 sources 

OBJ$:NOTEFILE.OBJ 
OBJ$:CLASS.OBJ 
OBJ$:ENTRY.OBJ 
OBJ$:NOTE.OBJ 
OBJ$:KEYWORD.OBJ 
OBJ$:PROFILE.OBJ 
OBJ$:USER.OBJ 
OBJ$:FILEIO.OBJ 
OBJ$:HANDLER.OBJ 
OBJ$:ITEMLIST.OBJ 
OBJ$:ITEMSIZE.OBJ 
0BJ$:INTERCOMUTIL.OBJ 
OBJ$:IDPARSE.OBJ 
OBJ$:CALLUSER.OBJ 
OBJ$:PARSEACT.OBJ 
OBJ$:INTERCOMTPU.OBJ 
OBJ$:INTERCOM$MAIN.OBJ 
OBJ$:INTERCOM$SERVER.OBJ 
OBJ$:CALLABLE_INTERCOM.OBJ 

SRC$:NOTEFILE.B32 
SRC$:CLASS.B32 
SRC$:ENTRY.B32 
SRC$:NOTE.B32 
SRC$:KEYWORD.B32 
SRC$:PROFILE.B32 
SRC$:USER.B32 
SRC$:FILEIO.B32 
SRC$:HANDLER.B32 
SRC$:ITEMLIST.B32 
SRC$:ITEMSIZE.B32 
SRC$:INTERCOMUTIL.B32 
SRC$:IDPARSE.B32 
SRC$:CALLUSER.B32 
SRC$:PARSEACT.B32 
SRC$:INTERCOMTPU.B32 
SRC$:INTERCOM$MAIN.B32 
SRC$:INTERCOM$SERVER.B32 
SRC$:CALLABLE_INTERCOM.B32 

$(COM_REQ) OBJ$:CXF.L32 
$(COM_REQ) OBJ$:CXF.L32 
$(COM_REQ) OBJ$:CXF.L32 
$(COM_REQ) OBJ$:CXF.L32 
$(COM_REQ) OBJ$:CXF.L32 
$(COM_REQ) OBJ$:CXF.L32 
$(COM_REQ) OBJ$:CXF.L32 
$(COM_REQ) 
$(COM_REQ) 
$(COM_REQ) 
$(COM_REQ) 
$(COM_REQ) 
$(COM_REQ) 
$(COM_REQ) OBJ$:USERDEF.L32 
$(COM_REQ) OBJ$:USERDEF.L32 
$(COM_REQ) OBJ$:USERDEF.L32 
$(COM_REQ) 
$(COM_REQ) 
$(COM_REQ) OBJ$:USERDEF.L32 

(continued on next page) 

Advanced Description File Techniques 3-23 



Example 3-4 (Cont.): Description File Using Object Libraries 

! . MAR sources 

OBJ$:TFRVEC.OBJ 

! . REQ sources 

OBJ$:CXF.L32 
OBJ$:USERDEF.L32 

SRC$:TFRVEC.MAR 

: SRC$:CXF.REQ 
: SRC$:USERDEF.REQ 

OBJ$:INTERCOMLIB.L32 
OBJ$:INTERCOMLIB.L32 

! Several require files are combined to form a single BLISS library 
! 
OBJ$:INTERCOMLIB.L32 : SRC$:INTERCOMTRUC.REQ SRC$:INTERCOMMAC.REQ SRC$:RTN.REQ -

! . MSG source 

OBJ$:INTERCOMMSG.R32 OBJ$:NOTEITEMS.R32 
$(BLISS) /LIBRARY $(BFLAGS) /NOOBJ /NOLIST /LIBR=$(MMS$TARGET)

SRC$: INTERCOMTRUC.REQ+SRC$:INTERCOMMAC.REQ+SRC$:RTN .REQ+
OBJ$:INTERCOMMSG.R32+0BJ$:NOTEITEMS.R32 

OBJ$:INTERCOMMSG.OBJ SRC$:INTERCOMMSG.MSG 

! . CLD sources 

OBJ$:COMMANDS.OBJ SRC$:COMMANDS.CLD 

0 The following logical names are used in this MMS file: 

SRC$ Directory containing all sources that can be modified 

OBJ$ Directory containing all machine-produced files 

LIS$ Directory containing listing files 

A simple command procedure is used to define these logical names. These 
can refer to the group-wide source directory or can be defined as a search 
list for a local copy of a module instead of the group-wide or shared 
module. The logical names were defined in either of the following formats: 

$ DEFINE SRC$ NNP$: [INTERCOM.SRC] 

$DEFINE SRC$ NNP$: [HILT.INTERCOM.SRC], NNP$: [INTERCOM.SRC] 

No CMS elements are explicitly mentioned in the MMS description file. 
Instead, NNP$:[INTERCOM.SRC] is specified as a CMS reference directory 
(see HELP CMS MODIFY LIBRARY /REFERENCE-COPY). Any module 
replaced in the CMS library causes a new version of the file to be put in 
this directory. 

3-24 Advanced Description File Techniques 



All file references include the file directory to allow the MMS file to be used 
correctly from any default directory. Similarly, dependencies are explicitly 
described. 

8 Only the necessary suffixes were included in the suffixes list. This together 
with explicit specification of the dependencies should help MMS improve 
performance. 

f) The rules for building an .OLB from .OBJ files (or an .HLB from .HLP files) 
takes search-lists into account. Only the first directory in the search-list is 
used to store the new .OBJs. 

The default actions were redefined to allow you to use the entire source 
and target specifications instead of just the file name. For example, 
/OBJ=OBJ$:CLASS.OBJ was used instead of just /OBJ=CLASS. 

The first action line checks whether local .OLB is different from the first 
.OLB found by the search list. If so, the .OLB is copied to the local direc
tory. The second line tests whether the .OLB really exists, and the third 
inserts the .OBJ into the .OLB. The first two lines are prefixed by@, so they 
are not echoed in the log files. 

8 The SPKITBLD command procedure builds a VMS installation kit. Creating 
an empty, temporary subdirectory as a staging area is necessary because 
SPKITBLD uses BACKUP to create the save-set. BACKUP would copy all 
versions instead of only the highest versions of the files. 

9 Options files are used to build all the executable images. The LINK_EXE 
and LINK_SHR macros are used to specify the actions and the qualifiers 
to produce the .EXE file. LINK_SHR overrides any /DEBUG qualifier that 
might be specified in LINKFLAGS. 

3.11 .2 Producing Multiple Outputs with MMS 

Using MMS to describe and build systems that have actions with more than 
one output becomes complicated because MMS cannot express multiple output 
dependencies. Most actions involved in building a system have a single input 
and a single output. For example: 

ABC.OBJ DEPENDS_ON ABC.FOR 
FORTRAN/NOLIST/OBJECT=ABC ABC.FOR 

This example contains the action line that uses the FORTRAN compiler to 
produce an object file from a FORTRAN source file. 

MMS can also describe cases in which multiple inputs are present. For example: 

ABC.OBJ DEPENDS_ON ABC.FOR DEF.TXT 
FORTRAN/NOLIST/OBJECT=ABC ABC.FOR 

Advanced Description File Techniques 3-25 



This example contains a source file, ABC.FOR, which contains an include file, 
DEF.TXT. Both files are needed to produce the object file, ABC.OBJ. 

However, MMS syntax cannot express the case in which multiple outputs are 
needed. For example, if you want to produce a listing of the compilation in the 
first example, you could use the following dependency and action lines. 

ABC.LIS ABC.OBJ DEPENDS_ON ABC.FOR 
FORTRAN/LIST=ABC/OBJECT=ABC ABC.FOR 

This example does produce the correct results, in that valid listing and object 
files will be produced, but it does not produce the results correctly. The 
previous example is really a shorthand notation for the following: 

ABC.LIS DEPENDS_ON ABC.FOR 
FORTRAN/LIST=ABC/OBJECT=ABC ABC.FOR 

ABC.OBJ DEPENDS_ON ABC.FOR 
FORTRAN/LIST=ABC/OBJECT=ABC ABC.FOR 

We can assume that both the listing and object target appear as sources 
elsewhere in the description file. When you invoke MMS, both targets are built 
but the action line is triggered twice. This example produces the listing and 
object files redundantly and, therefore, violates the principle of minimal action 
of MMS. 

3.11.2.1 When Outputs Are Independent 

In the previous example, you may consider the object and the listing files as 
independent. The compiler produces them independently and the revision 
time of the files is different. When the outputs are independent, it seems safe 
to produce them independently. You might describe their relationship in the 
following description file: 

ABC.LIS DEPENDS_ON ABC.FOR 
FORTRAN/LIST=ABC/NOOBJECT=ABC ABC.FOR 

ABC.OBJ DEPENDS_ON ABC.FOR 
FORTRAN/NOLIST/OBJECT=ABC ABC.FOR 

This example solves the problem of producing two listings and does produce 
correct results because no actions on listing and object files are sensitive to 
whether the files were created by the same operation. However, if a config
uration change occurs (for example, the compiler is updated), and the object 
file ABC.OBJ is missing, then invoking MMS with this description file results 
in a new object file but no new listing file. This demonstrates that the files are 
not independent. You would normally expect that listing and object files are 
produced by the same operation. The files are consistent as long as they convey 
the same information-for example, compiler version indentification. 

3-26 Advanced Description File Techniques 



3.11.2.2 When Outputs Are Dependent 

The dependence of outputs is demonstrated clearly by the environment files 
and object files produced from a PASCAL source file. Consider the following 
two PASCAL source files, A.PAS and B.P AS: 

{A.PAS} 
[ INHERIT('b') ] PROGRAM a ; 
BEGIN 
bproc 
END. 

{B.PAS} 
MODULE b 
PROCEDURE bproc; 

BEGIN 
END; 

END. 

When compiled and linked, these modules produce the executable image, 
AB.EXE. Consider the dependencies in the following description file: 

AB.EXE DEPENDS_ON A.OBJ B.OBJ 
LINK/EXECUTABLE=AB.EXE A.OBJ, B.OBJ 

A.OBJ DEPENDS_ON A.PAS B.PEN 
PASCAL/OBJECT=A A.PAS 

B.OBJ DEPENDS_ON B.PAS 
PASCAL/ENVIRONMENT=B/OBJECT=B B.PAS 

This description file should work correctly but it is flawed. The file, B.PEN, 
never appears as a target. It is created when B.PAS is compiled and is then 
used as a source for creating A.OBJ. The description file would be more accurate 
if the B.OBJ dependency rule is changed as follows: 

B.OBJ B.PEN DEPENDS_ON B.PAS 
PASCAL/ENVIRONMENT=B/OBJECT=B B.PAS 

This example does produce a redundant compilation, but at least the description 
file is complete and consistent. However, under certain circumstances, the 
system does not link correctly because the linker checks that all references 
to an environment file are consistent. The linker does the checking with an 
u entity identification check," which is inserted into object files that refer to an 
environment file. Because you cannot predict the order of compilation in all 
circumstances, MMS can produce object files referring to different environment 
files (with different identifications). The linker then sends the warning message 
ENTIDMTCH. 

Advanced Description File Techniques 3-27 



If you attempt to produce the environment file separately, you may build the 
system incorrectly. For example, consider the following description file: 

B.OBJ DEPENDS_ON B.PAS 
PASCAL/NOENVIRONMENT=B/OBJECT=B B.PAS 

B.PEN DEPENDS_ON B.PAS 
PASCAL/ENVIRONMENT=B/OBJECT=B B.PAS 

In this example, an object file produced with the /NOENVIRONMENT qualifier 
does not contain the entity indentification check, and therefore, strong typing 
across modules is defeated. 

3.11 .3 Multiple Outputs Work-Around 

Because you cannot safely express the idea of multiple outputs in the source
target part of the dependency rule, you can modify the action line to produce 
safe results. It is safest to proceed from the redundant compilation description 
file. If you can avoid the extra compilation, then the description file is complete 
and the resulting system is built correctly and with a minimum of actions. 

You can introduce a context variable into the action block to monitor whether 
the compilation has or has not been performed. Consider the following 
description file: 

AB.EXE DEPENDS_ON A.OBJ B.OBJ 
LINK/EXECUTABLE=AB.EXE A.OBJ, B.OBJ 

A.OBJ DEPENDS_ON A.PAS B.PEN 
PASCAL/OBJECT=A A.PAS 

B.OBJ B.PEN DEPENDS_ON B.PAS 
IF F$TYPE(B_COMPILED) .EQS. 1111 THEN B_COMPILED=O 
IF .NOT. B_COMPILED THEN

PASCAL/ENVIRONMENT=B/OBJECT=B B.PAS 
IF .NOT. B_COMPILED THEN-

B_COMPILED=1 

In this example, B.OBJ and B.PEN are always produced by the same operation. 
However, the case in which B.OBJ is missing still generates an inconsistency. 
You can avoid this only by introducing false information into the A.OBJ 
dependency rule, as follows: 

A.OBJ DEPENDS_ON A.PAS B.PEN B.OBJ 
PASCAL/OBJECT=A A.PAS 

In this example, MMS can guarantee that both B.OBJ and B.PEN must exist, 
and because of their coproduction, they are simultaneously updated. The net 
effect of this work-around is to treat B.OBJ and B.PEN as one entity. 

3-28 Advanced Description File Techniques 



Chapter 4 

Accessing Libraries vvith MMS 

This chapter describes how you can specify sources and targets that are stored 
in libraries. The following sections describe how MMS can access or update 
information in: 

• VMS libraries created with the LIBRARY utility 

• VAX DEC/Code Management System (CMS) libraries 

• VAX FMS libraries 

• The VAX Common Data Dictionary (COD) 

• VAX Source Code Analyzer (SCA) libraries 

4. 1 Creating and Accessing Files in VMS Libraries 

You can use MMS to access files that are contained in VMS libraries and to 
create library files using certain built-in rules. The built-in rules that MMS uses 
to create library files are listed in Table C-7 in Appendix C. These rules tell 
MMS to create the specified library if one does not already exist; they then 
cause MMS to replace the source module in the target library. 

NOTE 

You cannot use MMS to access modules in an RSX library because 
only a module's revision date is recorded, not its revision time. 

Accessing Libraries with MMS 4-1 



4. 1 . 1 Formatting Library Module Specifications 

To specify that a source or target in a dependency rule is a module in a VMS 
library, use the following format. Avoid adding any spaces or tabs; they can 
cause problems in processing. 

library(module[=filespec], . . . ) 

The library is a VMS file specification th;...t denotes a library. The default file 
type is .OLB if you are referring to a module within the library. If you are 
referring to the entire library, there is no default file type. The module is the 
name of the module in the library. The filespec is the VMS file specification 
that corresponds to the module in the library. The default file type depends on 
the file type of the library. 

The format shown in this section describes how to refer to modules within 
a library. You can also use MMS to process the library file itself simply by 
providing the library file specification (for example, CRTLIB.OLB). 

There is a restriction in using library module specifications as targets in a 
double-colon dependency rule. See Section 3.1 for more information. 

4.1 .2 Using Logical Names in a Library Module Specification 

You can use a logical name for the name of the module if you supply the 
action lines that update the target. MMS cannot apply its built-in rules to a 
logical name because it relies on file types to determine which built-in rule is 
appropriate. 

For example, CRTLIB(C$STRLEN=STRLEN.OBJ) designates that the module 
C$STRLEN is in library CRTLIB.OLB; C$STRLEN is found in the file named 
STRLEN.OBJ. 

If you use a logical name as the directory name of an object library, that logical 
name must not translate to another logical name because the built-in rules 
that MMS uses to update libraries are defined in terms of the DCL function 
F$SEARCH. F$SEARCH translates only one level of logical name. 

4-2 Accessing Libraries with MMS 



4.1 .3 Specifying Multiple Libraries 

You can specify multiple modules in the same library in two ways: 

• You can enclose the module names in one set of parentheses and sepa
rate them with commas. For example, to refer to three modules in the 
library CRTLIB.OLB, you can specify CRTLIB(C$STRLEN=STRLEN.OBJ, 
C$STRP AD=STRPAD.OBJ, C$STRIND=STRIND.OBJ). 

• You can use the VMS * and % wildcard characters. For example, the 
specification CRTLIB(C$•) directs MMS to look for all modules in the 
library CRTLIB.OLB whose names begin with the characters C$. In the 
same way, the specification CRTLIB(C$STR%) directs MMS to look for all 
modules in CRTLIB.OLB whose names begin with the characters C$STR 
followed by only one character. 

4.1.4 Accessing Library Modules with Non-VMS File Specifications 

You can use a complete library specification when you need to access library 
modules whose names do not correspond to VMS file specifications (for 
example, C$STRLEN=STRLEN.OBJ). However, MMS can interpret shorter 
specifications as follows: 

• If the module's name in the library is the same as its file name, you can 
provide just the module name in parentheses after the library name. For 
example, if the module in the previous example were named STRLEN, you 
could refer to the module in the library as CRTLIB(STRLEN). 

• If the module's file type is associated by default with the type of the library, 
you can omit the file type. In the specification CRTLIB(STRLEN), MMS 
assumes that the file name is STRLEN.OBJ, because .OLB libraries are 
assumed to contain .OBJ modules. If the module's file type is something 
other than the default for that kind of library, you must supply the file 
type. For example, if the module were STRLEN.C, you would have to 
specify CRTLIB(STRLEN.C). MMS would then expand this specification to 
the following two dependencies: 

CRTLIB(STRLEN=STRLEN.OBJ) : STRLEN.OBJ 

STRLEN.OBJ : STRLEN.C 

Accessing Libraries with MMS 4-3 



4. 1 . 5 Using Special Macros with Library Specifications 

When used with library specifications, certain MMS special macros have slightly 
different meanings: 

• If a library is the source in a dependency rule, MMS$SOURCE expands 
to the complete specification of the module in the library. For example, in 
the specification CRTLIB(C$STRLEN=STRLEN), MMS$SOURCE expands to 
CRTLIB.OLB(C$STRLEN=STRLEN.OBJ). 

• If a library is the target in a dependency rule, MMS$TARGET ex
pands to the name of the library. For example, in the specification 
CRTLIB(C$STRLEN), MMS$TARGET becomes CRTLIB. 

• If a library is the target in a dependency rule, MMS$TARGET_NAME 
expands to the module name (without its file type). For example, if the 
library module is STRLEN, MMS$TARGELNAME expands to STRLEN. 

In addition to these MMS special macros, there is another special macro, 
MMS$LIB-ELEMENT, which you can use only in library specifications. 
MMS$LIB-ELEMENT expands to the string between parentheses, that is, 
to the module name and its corresponding file specification. For exam -
ple, in the specification CRTLIB(STRLEN), MMS$LIB-ELEMENT becomes 
STRLEN=STRLEN.OBJ. The expansion of MMS$LIB-ELEMENT does not de
pend on whether the library is the source or the target in a dependency rule. 
If the library is specified as both the source and the target, then the target is 
expanded. 

4.1.6 Using Libraries as a Source 

The use of libraries as a source is illustrated in the following example. Suppose 
your description file contains the following dependency rules: 

TOOLTITLE.EXE: SYS$LIBRARY:CRTLIB.OLB, USER$:[WATKINS]FLIB.OLB 
LINK TOOLTITLE.OBJ, SYS$LIBRARY:VAXCRTL/LIB, USER$:[WATKINS]FLIB/LIB 

TOOLTITLE.OBJ : SMGTEXLIB.TLB(SMGDEF=SMGDEF.H) 
CC TOOLTITLE + SMGTEXLIB/LIB 

TOOLTITLE.C is a C program that includes the file SMGDEF.H, which is 
stored in the text library SMGTEXLIB.TLB under the name SMGDEF. The 
action line in the second dependency rule invokes the C compiler to compile 
TOOLTITLE.C and the text library. You must state this action line explicitly. 
In this case specifying only the target and source is not sufficient. The first 
depepdency rule invokes the VAX Linker to link TOOL TITLE.OBJ with one 
system library and one user library. 

4-4 Accessing Libraries with MMS 



4.2 Using MMS with CMS 

If the VAX DEC/Code Management System (CMS) is installed on your system, 
you can use MMS to access elements in CMS libraries. CMS elements are 
denoted by the tilde (,...., ). You should be familiar with CMS before you read 
this section. 

MMS provides default macros and special macros tailored for use with CMS. 
Appendix C lists the default macros and the special macros. 

MMS can build your system software from source code files stored in CMS 
libraries. MMS fetches the source code file from its library, compiles the code 
into object files, then links the object files into executable images. MMS treats 
the CMS library as the source for your source code files. 

MMS treats the source code in your directory and an element in a CMS library, 
just as it does any other source or target pair. If the source code file in the 
default directory is missing, MMS fetches that element from its CMS library. If 
the source code file in the default directory is older than the library element, 
MMS fetches the element. Figure 4-1 illustrates a software system using CMS 
libraries. 

Accessing Libraries with MMS 4-5 



Figure 4-1 : A Software System Using CMS Libraries 

MAIN.EXE 

I 

MAIN.OBJ SUB1 .OBJ 

MAIN.PAS SUB1.PAS 

MAIN.PAS- SUB1.PAS-

ZK 5887-HC 

0 The executable file depends on the object files. 

0 The object files depend on the sources in the your directory. 

0 The sources in your directory depend on elements in CMS libraries. 

MMS supports only one CMS qualifier: /GENERATION. The default macro 
CMSFLAGS expands to the /GENERATION qualifier. You can also specify 
/GENERATION and a generation number after the tilde (,....,)in the element 
name, as shown in this example: 

FROG.OBJ : [OTHER.CMS]PROG.C-/GEN=4A1 

The tilde format for an explicit reference to a CMS element is useful when you 
are certain that the most up-to-date source is stored in the CMS library. A more 
convenient use of MMS with CMS is to let MMS determine where the newest 
source is located and to fetch the CMS element automatically, if necessary. To 
take advantage of this feature, you must use the /CMS qualifier on the MMS 
command line and you should not use the tilde format for specifying the source. 

4-6 Accessing Libraries with MMS 



4.2.1 Using CMS Commands in a Description File 

You can use any CMS command in an MMS description file. 

As MMS examines target and source lines in your main process, it uses the 
CMS$LIB logical name to establish the CMS directory from which sources will 
be fetched if the target must be updated. If you use the CMS SET LIBRARY 
command in an action line, that command is executed in the subprocess 
where MMS normally executes action lines. Such an action establishes a new 
library as the current default for any subsequent action lines that execute CMS 
commands; however, the value of CMS$LIB is not changed in the main process 
because the CMS SET LIBRARY command is executed in the subprocess. MMS 
still looks for sources in the library represented by CMS$LIB. 

The MMS qualifier /REVISE-DATE has no effect when MMS is accessing 
elements in CMS libraries. 

4.2.2 Automatic Access of CMS Elements from Dependency Rules 

The /CMS qualifier directs MMS to look for sources in the current default CMS 
library, as well as in the directories specified in the description file. If the CMS 
element has been replaced in the library since the file in the specified directory 
was last revised, MMS directs CMS to fetch the source from the library so that 
the target can be rebuilt. MMS has built-in rules that instruct CMS how to 
find the correct source (see Table C-9 for the built-in CMS rules). MMS uses 
the sources fetched from CMS to update the target by executing the action 
lines in the description file. The CMSFLAGS default macro determines which 
generation of an element is fetched as the source or from which class the source 
element is fetched. 

If the file in the specified directory is newer than the CMS element, MMS 
uses that file. Therefore, you could edit a source in your directory and build a 
new system with the edited source, rather than with the corresponding CMS 
element. 

For example, consider a description file that contains the following 
dependencies: 

A.EXE : A.OBJ 

A.OBJ : A.PAS 

Accessing Libraries with MMS 4-7 



If you invoke MMS with the /CMS qualifier, MMS processes the description 
file by looking in the current default CMS library for A.PAS. If it locates that 
source, it compares the revision time with the revision time of A.PAS in the 
current directory (if A.PAS exists there). If the CMS element is newer, MMS 
uses it to update A.OBJ. 

The CMSFLAGS default macro always fetches the most recent generation 
of an element on the main line of descent. You can redefine CMSFLAGS to 
indicate a specific element generation or the element generation that belongs 
to a particular class. However, if you do so, you must be aware that if newer 
generations exist in the library, they will not be fetched; MMS will check the 
time of the element designated by the CMSFLAGS macro against the time of 
the file in your directory. If the file is newer, MMS will use it even though 
more recent generations of the element may exist in the library. 

The /NOCMS qualifier directs MMS not to look automatically for sources in the 
current default CMS library; /NOCMS is the default. The /CMS and /NOCMS 
qualifiers are described in full in the Command Dictionary. 

4.2.3 Explicit References to CMS Elements in Dependency Rules 

The /CMS qualifier causes MMS to compare the times of a CMS element and 
a file in the specified directory, if both exist. You can also direct MMS to check 
only the CMS element by putting a tilde immediately after the source file name 
in a dependency rule. For example, the tilde in the following target or source 
line directs MMS to look for the source PROG.C in the current default CMS 
library: 

PROG.OBJ : PROG.c-

If you use the tilde format to indicate CMS elements, you can specify only one 
element in a given dependency rule. You cannot specify a list of CMS elements 
if their file specifications are followed by tildes. 

If the element is in a CMS library other than the current default library, you 
must type the library specification before the element name: 

PROG.OBJ : [OTHER.CMS]PROG.c-

You may not be able to access elements in a CMS library that reside on a 
DECnet node other than your own. 

4-8 Accessing Libraries with MMS 



4.2.4 Building the System Using CMS Elements 

The following example demonstrates how to build your software system with 
CMS elements. Consider the following description file CMS_MMS.MMS: 

Example 4-1 : Description File Using CMS Libraries 

$ TYPE CMS_MMS.MMS 

Executable target 

8 MAIN.EXE : MAIN.OBJ, SUB1.0BJ 
LINK $(MMS$SOURCE_LIST) 

Object files and their sources 

f) MAIN.OBJ : MAIN.PAS 
SUB1.0BJ : SUB1.PAS 

! 
! Where the sources are stored 

., MAIN.PAS : DISK1: [SYSTEM2_LIB]MAIN.PAS
SUB1.PAS : DISK1:[SYSTEM2_LIB]SUB1.PAS-

8 The executable target is stated. 

f) The objects or targets are stated. 

_, Each source code file has a target or source line. The element in the CMS 
library is the source. 

You can build your system with the description file CMS-MMS.MMS as shown 
in Example 4-2. 

Accessing Libraries with MMS 4-9 



Example 4-2: Building a System from CMS Library Elements 

0 $ DIR/DATE=MODIFIED 
Directory DISK1: [TEST] 
CMS_MMS.MMS;1 30-JUL-1987 13:10 

Total of 1 file. 

8 $ MMS/DESCRIPTION=CMS_MMS 

mms$cmslib :== 1f$logical( 11 CMS$LIB 11 ) 

IF mms$cmslib .nes. 11 DISK1: [SYSTEM2_LIB]" THEN 
CMS SET LIBRARY DISK1: [SYSTEM2_LIB] 

C) CMS FETCH MAIN.PAS /GEN=1+ 1111 

%CMS-S-FETCHED, generation 1 of element MAIN.PAS fetched 
IF mms$cmslib .EQS. 1111 THEN CMS SET LIBRARY 1234 
IF mms$cmslib .NES. 1111 .AND. mms$cmslib .NES. 11 DISK1:[SYSTEM2_LIB] 11 

THEN CMS SET LIBRARY 'mms$cmslib' 
0 PASCAL /NOLIST/OBJECT=MAIN MAIN.PAS 
mms$cmslib :== 1f$logical( 11 CMS$LIB 11 ) 

IF mms$cmslib .nes. "DISK1: [SYSTEM2_LIB] 11 THEN 
CMS SET LIBRARY DISK1: [SYSTEM2_LIB] 

6) CMS FETCH SUB1.PAS /GEN=1+ 1111 

%CMS-S-FETCHED, generation 1 of element SUB1.PAS fetched 
IF mms$cmslib .EQS. 1111 THEN CMS SET LIBRARY 1234 
IF mms$cmslib . NES. 1111 

• AND. mms$cmslib . NES. "DISK1: [SYSTEM2_LIB]" 
THEN CMS SET LIBRARY 'mms$cmslib' 

CD PASCAL /NOLIST/OBJECT=SUB1 SUB1.PAS 
f) LINK MAIN.OBJ, SUB1.0BJ 

C) $ DIR/DATE=MODIFIED 

Directory DISK1: [TEST] 

MAIN .EXE;1 
MAIN .OBJ; 1 
MAIN.PAS;! 
SUB1.0BJ;1 
SUB1.PAS;1 
CMS_MMS.MMS;1 

Total of 6 files. 

30-JUL-1987 13:19 
30-JUL-1987 13:19 
30-JUL-1987 13:10 
30-JUL-1987 13:19 
30-JUL-1987 13:10 
30-JUL-1987 13:10 

0 The default directory contains only the software description. 

8 MMS is invoked using the CMS_MMS.MMS description file. 

C) MMS fetches the missing source code file MAIN.PAS from CMS. Note that 
MMS fetches the latest generation of each element by using the 1 + notation. 

0 MMS compiles the source code file MAIN.PAS. 

8 MMS fetches missing source code file SUBl.PAS from CMS. 

CD MMS compiles the source code file SUBl.PAS. 

f) MMS links the object files using the action line. 

4-10 Accessing Libraries with MMS 



0 The default directory has a complete software system. 

MMS fetches sources from CMS if the source code file in your directory is 
missing or older. In this example, only the description file is in the default 
directory before you invoke MMS. There is no source code to compile in your 
default directory, but because the description file states the source of each 
source code file, MMS fetches the source code files from CMS. 

Because of the MMS built-in rule for accessing CMS libraries, MMS generates 
more output when it fetches source files from CMS than when it builds a 
system with files from your directory. The extra actions reflected in the output 
are concerned with checking that the CMS library is set to the correct place 
before and after the fetch in case the source code is stored in more than one 
library. 

Appendix C contains a full list of extensions that MMS must know to fetch files 
from a CMS library and to access other libraries. 

4.2.5 Rebuilding the System Using CMS Libraries 

Rebuilding a system from a CMS library is similar to all other system rebuilding 
in that MMS first checks that all parts of the system are present and up-to-date 
and then recreates executable files and object files that are old or missing. MMS 
also uses the CMS library as the source to update old and missing source code. 

Example 4-3 is a real example of what can happen during the software 
development cycle. You reserve an element, fix a bug in the element, and 
test the fix before replacing the code element in the library. No one else has 
updated the library element since the last system build. 

Accessing Libraries with MMS 4-11 



Example 4-3: Rebuilding Using CMS Libraries 

0 $ DIR/DATE=MODIFIED 

Directory DISK!: [TEST] 

MAIN .EXE; 1 
MAIN.OBJ;! 
MAIN.PAS;! 
SUB1.OBJ;1 
SUB1.PAS; 1 
CMS_MMS.MMS;1 

Total of 6 files. 

30-JUL-1987 13:15 
30-JUL-1987 13:13 
30-JUL-1987 13:10 
30-JUL-1987 13:13 
30-JUL-1987 13:10 
30-JUL-1987 13:10 

$ CMS SET LIBRARY DISK!: [SYSTEM2_LIB] 
%CMS-I-LIBIS, CMS library is DISK!: [SYSTEM2_LIB] 

fJ $ CMS RESERVE SUB1. PAS "Fixing a bug in stack handler" 
%CMS-S-RESERVED, generation 1 of element SUB1.PAS reserved 

9 $ EDIT SUB1. PAS 

$ PURGE 
0 $ DIR/DATE=MODIFIED 

Directory DISK!: [TEST] 

MAIN .EXE; 1 
MAIN.OBJ;! 
MAIN.PAS;! 
SUB1.0BJ;1 
SUB1.PAS;3 
CMS_MMS.MMS;1 

Total of 6 files. 

30-JUL-1987 13:15 
30-JUL-1987 13:13 
30-JUL-1987 13:10 
30-JUL-1987 13:13 
30-JUL-1987 13:17 
30-JUL-1987 13:10 

0 $ MMS/DESCRIPTION=CMS_MMS 

(D PASCAL /NOLIST/OBJECT=SUB1 SUB1.PAS 
LINK MAIN.OBJ, SUB1.0BJ 

0 You have a complete, up-to-date system from a previous system build. 

8 You reserve a CMS element. 

9 You modify SUB 1.P AS to fix a bug. 

0 One source code file SUBl.PAS is newer than its object SUBl.OBJ. 

0 You invoke MMS to rebuild the system. 

0 MMS rebuilds the system from files in your default directory fetching 
nothing from the library. MMS compiles SUBl.PAS and links MAIN.OBJ 
and SUBl.OBJ. 

When you invoke MMS in Example 4-3, MMS does not fetch any files from the 
CMS library. Nothing in your directory is missing and nothing is older than its 
library element. 

4-12 Accessing Libraries with MMS 



However, in the next example, you have a complete, up-to-date copy of the 
entire system in your directory. However, another person has updated one of 
the code files in the CMS library after you built your copy of the system. When 
you invoke MMS to see if your system is up-to-date, MMS detects the newer 
file in the CMS library and fetches the updated file from the library. It rebuilds 
the system using the newly fetched file. This demonstrates how MMS uses the 
CMS library as the source of your targets. Just as an object file is rebuilt if the 
code has changed, your file is updated if the library has changed. 

For example, 

0 $ DIR/DATE=MODIFIED 

Directory DISK1: [TEST] 

MAIN.EXE;2 
MAIN.OBJ;! 
MAIN.PAS;! 
SUB1.0BJ;2 
SUB1.PAS;3 
CMS_MMS.MMS;1 

Total of 6 files. 

30-JUL-1987 13:15 
30-JUL-1987 13:13 
30-JUL-1987 13:10 
30-JUL-1987 13:13 
30-JUL-1987 13:10 
30-JUL-1987 13:10 

f) $ ! (Another user reserves, changes and replaces MAIN.PAS) 

• $ MMS/DESCRIPTION=CMS_MMS 

mms$cmslib :== 1f$logical( 11 CMS$LIB 11
) 

IF mms$cmslib .nes. 11 DISK1:[SYSTEM2_LIB]" THEN 
CMS SET LIBRARY DISK1: [SYSTEM2_LIB] 

8 CMS FETCH MAIN.PAS /GEN=1+ 1111 

%CMS-I-FILEXISTS, file already exists, DISK1: [TEST]MAIN.PAS;2 created 
%CMS-S-FETCHED, generation 2 of element MAIN.PAS fetched 
IF mms$cmslib .EQS. 1111 THEN CMS SET LIBRARY 1234 
IF mms$cmslib .NES. 1111 .AND. mms$cmslib .NES. 11 DISK1: [SYSTEM2_LIB]" 

THEN CMS SET LIBRARY 'mms$cmslib 1 

Ct PASCAL /NOLIST/OBJECT=MAIN MAIN.PAS 
LINK MAIN.OBJ, SUB1.0BJ 

0 Your directory has a complete, up-to-date system. 

f) Another person updates a file in the project's CMS library. 

e You invoke MMS to update your system. 

e MMS fetches the newer source code in the library. 

Ct MMS compiles and links the newer source code. 

When creating the "official" release of a software product, you want to be sure 
that the release is built from code in the library, not from test code that you 
may have in your default directory. It is better to create a [RELEASE] directory 
that is used only for building the system from its CMS libraries. No other 
operations are performed in that directory. 

Accessing Libraries with MMS 4-13 



4.2.6 Building a System from a Specified CMS Class 

You can build your system from a specified CMS class. Building with a class 
specifier in CMS is identical to building from current generations in CMS. 

In building a system from a specified CMS class, MMS still uses the CMS 
elements as the sources but it uses the designated class of generations, not 
necessarily the current generations. MMS allows you to find and modify old 
source code and recreate previous versions of your system by building from a 
specific CMS class. 

MMS looks for the description file on the main line of descent unless you 
override the default macro CMSFLAGS. If you specify /MACRO="CMSFLAGS= 
/GENERATION=class-name", MMS instead uses the specified class. If MMS 
cannot find a description file in either your default directory or the CMS library, 
it aborts execution. 

You can use a user-defined macro to control the class that MMS fetches. The 
user-defined macro is used as a qualifier to one of MMS's actions. For example, 
you define the macro CMSFLAGS, which contains the qualifiers MMS uses 
when it fetches an element from a CMS library. A /GENERATION qualifier on 
this macro causes MMS to fetch files from a certain class. Consider the com
mand procedure BUILD_CLASS.COM and the description file SYSTEM3.MMS 
in Example 4-4. 

Example 4-4: Description File for Building from a CMS Class 

~ $ TYPE BUILD_CLASS.COM 

$ 
$ Command procedure to build any CMS class of SYSTEM2. 
$ 
$ Create the user defined macros we want 
$ ! 
8 $ INQUIRE CLASS "Enter name of class to build" 
0 $ CMSFLAGS = "/GENERATION=" + CLASS 
$ ! 
$ ! Invoke MMS and direct it to use our macros 
$ ! 
C» $ MMS /DESCRIPTION=SYSTEM3 /OVERRIDE 
$ ! 

Cl $ TYPE SYSTEM3.MMS 

Executable target 

4-14 Accessing Libraries with MMS 

(continued on next page) 



Example 4-4 (Cont.): Description File for Building from a CMS Class 

MAIN.EXE : MAIN.OBJ, SUB1.0BJ, SUB2.0BJ 

LINK $(LINKFLAGS) $(MMS$SOURCE_LIST) 

Object files and their sources 

MAIN.OBJ MAIN.PAS 
SUB1.0BJ SUB1.PAS 
SUB2.0BJ SUB2.PAS 

! Where the sources are stored 

MAIN.PAS 
SUB1.PAS 
SUB2.PAS 

DISK!: [SYSTEM3_LIB]MAIN.PAS
DISK1: [SYSTEM3_LIB]SUB1.PAS
DISK1: [SYSTEM3_LIB]SUB2.PAS-

0 The command procedure invokes MMS. 

8 The command procedure prompts you for the name of CMS class to build. 

0 The CMSFLAGS macro (which is used by the built-in rule for fetching your 
source files) is set and the /GENERATION qualifier is added to the class 
name. 

8 The procedure invokes MMS with the /OVERRIDE qualifier so that your 
macro is used instead of the default. 

CD The description file lists where the source files are stored in the CMS 
library. 

You can insert the MMS description file and its calling command procedure 
into the appropriate CMS class. In this way, the description file in a given class 
builds that class. As a system changes, you can continue to put a copy of the 
description file in each new class you create. 

4.2. 7 Building a System from a Previous Class 

In this example, you build your system from a previous class in a directory 
that is empty except for the command procedure and the description file. MMS 
fetches files from CMS only if the library copy is newer than your copy. The 
files in the previous class are certain to be older than your code, so MMS does 
not fetch them unless you build the previous releases in a clean directory. For 
example, consider the system build shown in Example 4-5. 

Accessing Libraries with MMS 4-1 5 



Example 4-5: Building a System from a Previous CMS Class 

0 $ DIR/DATE=MODIFIED 

Directory DISK!: [VERSION13] 

BUILD_CLASS.COM;4 
SYSTEM3.MMS;3 

Total of 2 files. 

fJS ©BUILD_CLASS 

5-AUG-1987 13:17 
5-AUG-1987 13:09 

Ct Enter name of class to build: VERSION 1 3 

mms$cmslib :== 1f$logical( 11 CMS$LIB 11 ) 

IF mms$cmslib .nes. "DISK1:[SYSTEM3_LIB]" THEN 
CMS SET LIBRARY DISK1:[SYSTEM3_LIB] 

%CMS-I-LIBIS, CMS library is DISK1: [SYSTEM3_LIB] 
8 CMS FETCH MAIN.PAS /GEN=VERSION_1_3 1111 

%CMS-S-FETCHED, generation 2 of element MAIN.PAS fetched 
IF mms$cmslib . EQS. '"' THEN 

CMS SET LIBRARY 1234 
%CMS-E-NOREF, error referencing 1234 
-CMS-E-MUSTBEDIR, 1234 must be a directory specification 
%CMS-W-UNDEFLIB, CMS library is now undefined 
IF mms$cmslib .NES. "" .AND. mms$cmslib .NES. "DISK!: [SYSTEM3_LIB] 11 

THEN CMS SET LIBRARY 'mms$cmslib' 
PASCAL /NOLIST/OBJECT=MAIN MAIN.PAS 
mms$cmslib :== 1f$logical( 11 CMS$LIB 11 ) 

IF mms$cmslib .nes. "DISK1:[SYSTEM3_LIB]" THEN 
CMS SET LIBRARY DISK1:[SYSTEM3_LIB] 

%CMS-I-LIBIS, CMS library is DISK!: [SYSTEM3_LIB] 
8 CMS FETCH SUB1.PAS /GEN=VERSION_1_3 1111 

%CMS-S-FETCHED, generation 1 of element SUB1.PAS fetched 
IF mms$cmslib .EQS. 1111 THEN 

CMS SET LIBRARY 1234 
%CMS-E-NOREF, error referencing 1234 
-CMS-E-MUSTBEDIR, 1234 must be a directory specification 
%CMS-W-UNDEFLIB, CMS library is now undefined 
IF mms$cmslib . NES. " 11 

• AND. mms$cmslib . NES. "DISK!: [SYSTEM3_LIB] 11 

THEN CMS SET LIBRARY 'mms$cmslib' 
PASCAL /NOLIST/OBJECT=SUB1 SUB1.PAS 
mms$cmslib :== 'f$logical("CMS$LIB") 
IF mms$cmslib .nes. "DISK1:[SYSTEM3_LIB]" THEN 

CMS SET LIBRARY DISK1:[SYSTEM3_LIB] 
%CMS-I-LIBIS, CMS library is DISK!: [SYSTEM3_LIB] 

4-1 6 Accessing Libraries with MMS 

(continued on next page) 



Example 4-5 (Cont.): Building a System from a Previous CMS Class 

Q CMS FETCH SUB2.PAS /GEN=VERSION_1_3 1111 

%CMS-S-FETCHED, generation 3 of element SUB2.PAS fetched 
IF mms$cmslib .EQS. 1111 THEN 

CMS SET LIBRARY 1234 
%CMS-E-NOREF, error referencing 1234 
-CMS-E-MUSTBEDIR, 1234 must be a directory specification 
%CMS-W-UNDEFLIB, CMS library is now undefined 
IF mms$cmslib .NES. 1111 .AND. mms$cmslib .NES. 11 DISK1:[SYSTEM3_LIB] 11 

THEN CMS SET LIBRARY 'mms$cmslib' 
Ct PASCAL /NOLIST/OBJECT=SUB2 SUB2.PAS 

LINK /TRACE/NOMAP/EXEC=MAIN MAIN.OBJ, SUB1.0BJ, SUB2.0BJ 

C!) $ DIR/DATE=MODIFIED 

Directory DISK1: [VERSION13] 

BUILD_CLASS.COM;4 
MAIN .EXE; 1 
MAIN.OBJ;! 
MAIN .PAS; 1 
SUB1.0BJ; 1 
SUB1.PAS; 1 
SUB2.0BJ;1 
SUB2.PAS;1 
SYSTEM3.MMS;3 

Total of 9 files. 

5-AUG-1987 13:17 
5-AUG-1987 13:22 
5-AUG-1987 13:21 

30-JUL-1987 13:22 
5-AUG-1987 13:22 

30-JUL-1987 13:10 
5-AUG-1987 13:22 
5-AUG-1987 13:12 
5-AUG-1987 13:09 

0 Your directory contains the command procedure and the description file. 

8 You invoke the command procedure. 

0 You enter the class name. 

8 MMS fetches all program code from the chosen class using the macro 
CMSFLAGS to override the default. 

Ct The source code is compiled and linked normally. 

0 Your directory contains the complete system. 

After you have built the previous version of your system, you can fix the bug 
you may have found. The following steps ensure a complete and accurate 
system: 

• Reserve the CMS element generation with the bug. 

• Edit the element to fix the bug. 

• Replace the CMS element as an alternate line of descent. 

Accessing Libraries with MMS 4-1 7 



• Replace the generation that was in the CMS class with the fixed version 
(CMS INSERT GENERATION /SUPERSEDE). 

Using Logical Names for CMS Library Specifications 

When writing CMS library specifiers in a description file, you can use logical 
names instead of a hard-coded device and directory name. This allows the 
exact location of the library to change, and can make the description file easier 
to read. The command procedure that invokes MMS can set the logical name. 
(Or perhaps it is set in a group or system logical name table.) 

4.2.8 Using the .INCLUDE Directive to Include CMS Files 

You can also use the tilde format with the .INCLUDE directive to include files 
that are stored in the current default CMS library. For example: 

.INCLUDE RULES-

This line in the description file directs MMS to fetch the file RULES.MMS 
from the current CMS library. (The .INCLUDE directive is discussed in 
Section 2.8.9.) 

When a tilde occurs in your description file, MMS looks for the file in the 
current CMS library, even if you specify /NOCMS on the command line. 
However, if the CMS element is newer than the target in the dependency, the 
element is not fetched from its CMS library unless an action line directs CMS to 
fetch the source. 

4.2.9 Using a User-Defined Rule to Access a Single CMS Element 

The following example shows a user-defined rule for accessing a single-file 
CMS element . 

. c-.OBJ : 
CMS FETCH $(MMS$CMS_ELEMENT) $(CMSFLAGS) $(CMSCOMMENT) 
$(CC) $(CFLAGS) $(MMS$CMS_ELEMENT) 

This dependency rule tells MMS to do the following: 

1. Fetch the .C source file from the current default CMS library, applying 
the qualifiers specified by the CMSFLAGS macro and writing to the CMS 
history file the remark specified by the CMSCOMMENT macro. 

2. Run the C compiler on the file fetched from the CMS library, applying the 
qualifiers specified by the CFLAGS macro. 

4-18 Accessing Libraries with MMS 



CMSFLAGS and CMSCOMMENT are default MMS macros.You can redefine 
them so that the same qualifiers or the same remarks are used for all accesses 
to CMS elements. 

4.2.10 Accessing a CMS Element Not in the Default CMS Library 

The next example shows how to access a CMS element that is not in the current 
default CMS library. 

TEST.C : [OTHER.CMS]TEST.c-
CMS SET LIBRARY [OTHER.CMS] 
CMS FETCH TEST.C "Auto fetch from MMS" 

This dependency rule causes MMS· to set the current default CMS library to 
[OTHER.CMS], fetch the element TEST.C, and write the specified remark to the 
CMS history file. (MMS does not reset the CMS library back to the default in 
this example. This action differs from that of the built-in rules for CMS element 
access. See Table C-9 in Appendix C.) 

4.2.11 Accessing Description Files in CMS Libraries 

If a description file does not exist in your default directory, and if you have 
defined a CMS library, you can request that MMS retrieve the description file 
from the CMS library by using the /CMS qualifier on the MMS command line. 
If the description file exists in your directory and is newer than the element in 
the CMS library, MMS uses the file in your directory. 

If you know that the description file you want to use is stored in a CMS 
library, you can explicitly request MMS to use that file. When you use the 
/DESCRIPTION qualifier on the MMS command line, you can follow the name 
of the description file with a tilde character so that MMS automatically fetches 
the file from the current CMS library. For example: 

$ MMS/DESCRIPTION=ALL -

This command directs MMS to fetch the description file ALL.MMS from the 
current CMS library. 

If the file you specify with /DESCRIPTION does not exist in the current CMS 
library, MMS issues an error message. 

Accessing Libraries with MMS 4-19 



4.3 Checking for Replacement of CMS Elements 

If more than one programmer is working on a project, you may want to wait 
for someone else to replace an element in the project CMS library before you 
do a particular task. MMS can automatically check for element replacements at 
specified intervals by using the command procedure in the following example. 
Besides the command procedure, you also need a description file that tells MMS 
which element to look for and how to notify you when the element has been 
replaced. Such a description file might be named THERE.MMS and look like 
this: 

THERE.TIM : NEEDED.FOR- ! The name of the element 
IF 1111 F$SEARCH( 11 THERE.TIM") "' .NES 1111 -

THEN MAIL NL: 1F$GETJPI( 11 11 , 11 USERNAME 11 ) 1-
/SUBJECT=11$(MMS$SOURCE) is back in the CMS library." 
SET DEFAULT 1234567890 ! Causes MMS to abort with $STATUS = failure 

The command procedure CHECKCMS.COM that loops until the specified 
element is available in the CMS library is as follows: 

$ CMS SET LIBRARY [LOUISE] 
$ SET DEFAULT [LOUISE.WORK] 
$IF 1111 F$SEARCH( 11 THERE.TIM 11

)
111 

$ LOOP: 
$ MMS/DESCRIPTION=THERE 
$ IF .NOT. $STATUS THEN EXIT 
$ WAIT 0:5 ! or some interval 
$ GOTO LOOP 

! The CMS library 
! Your working directory 
.EQS. 1111 THEN COPY NL: THERE.TIM 

When submitted to the batch queue, this command procedure runs MMS, 
which checks to see whether the element in the CMS library is newer than 
THERE. TIM. If it is not {that is, if the element has not been replaced in the 
CMS library), $STATUS is 1, and MMS waits the specified interval before trying 
again. If the element has been replaced, the first bit in $STATUS is 0, and MMS 
mails you the message "NEEDED.FOR is back in the CMS library." 

You can run this procedure in a subprocess (instead of submitting it to the 
batch queue) by typing the following command: 

$ SPAWN/NOWAIT ©CHECKCMS 

4.4 Accessing Forms in an FMS Library 

If VAX FMS is installed on your system, you can use MMS to access forms 
stored in FMS libraries. You should be familiar with FMS before reading this 
section. 

4-20 Accessing Libraries with MMS 



To specify an FMS form in a dependency rule, use the same syntax as for files 
in VMS libraries. This syntax is explained in detail in Section 4.1. The file type 
.FLB after the library name informs MMS that the library contains FMS forms. 
The default file type for FMS forms is .FRM. 

For example, consider the following dependency rule: 

A.FLB(B) : B.FRM 
$(FMS) $(FMSFLAGS) A.FLB B.FRM 

B.FRM is the source that updates the target B in the FMS library A.FLB. FMS 
and FMSFLAGS are default macros that invoke FMS with the /REPLACE 
qualifier. 

MMS uses the insertion time of a form in an FMS library to determine whether 
a source is newer than the target. You cannot use the /REVISE_DATE qualifier 
with references to FMS forms. (See the Command Dictionary for a description 
of /REVISE_DATE.) 

4.5 Accessing Records in the COD 

If the VAX Common Data Dictionary (CDD) is installed on your system, you 
can use MMS to access records stored in the CDD. You should be familiar with 
the Common Data Dictionary before reading this section. 

In a dependency rule, you follow the path name of a CDD record description 
with the caret or an up-arrow character ( ") to inform MMS that the source is 
stored in the CDD. For example: 

A.OBJ : A.PAS. CDD$TOP.B.C.D.E
PASCAL A.PAS 

! CDD record referred to in A.PAS 

MMS uses the CDD path specification to find the source and check its revision 
time against that of the target, A.OBJ. In this example, A.OBJ resides in your 
current directory. 

The COD maintains a history list that includes the date and time that a CDD 
record was accessed and an optional remark that you supply to document the 
access. To insert a remark in the CDD history list when MMS accesses a CDD 
record, you can use the /AUDIT qualifier after the caret in the CDD record 
specification. The /AUDIT qualifier is followed by a quoted string that contains 
the remark that is to be inserted in the CDD history file. For example: 

A.OBJ : A.PAS, CDD$TDP.B.C.D.E-/AUDIT=11 Accessed by MMS to update A" 
PASCAL A 

MMS writes the remark that follows the /AUDIT qualifier into the CDD history 
list for the specified record. 

Accessing Libraries with MMS 4-21 



When used with the CDD record specification, the /AUDIT qualifier must 
follow the caret character; separate the qualifier from the remark with an equal 
sign or colon. You cannot use /AUDIT on the MMS command line. 

MMS also provides the default macro CDDFLAGS. This macro is defined to be 
the null string, but it can be redefined so that the same remark is written to the 
history file for all accesses to CDD records. For example, you could set up your 
description file as follows: 

CDDFLAGS = /AUDIT="Record accessed by MMS" 

A.OBJ : A.PAS, CDD$TOP.B.C.D.E-
PASCAL A 

Q.OBJ : Q.PAS, CDD$TOP.L.M.N.o
PASCAL Q 

V.OBJ : V.PAS, CDD$TOP.W.x.v.z
PASCAL V 

When MMS accesses one of these sources from the CDD, it writes the string 
that is the value of CDDFLAGS into the history file. 

The following restrictions apply to CDD access: 

• You cannot access CDD records that reside on a different DECnet node 
than your own. 

• You cannot use the /REVISE_DATE qualifier with references to CDD 
records. (See the Command Dictionary for a description of 
/REVISE_DATE.) 

• /AUDIT information is not examined during CDD node comparisons. 

• The /NOACTION qualifier has no effect on the/ AUDIT qualifier. That is, 
if you have suppressed the execution of action lines with the /NOACTION 
qualifier, the remark you supplied with /AUDIT is still written to the CDD 
history file. 

4.6 Accessing Files in an SCA Library 

When you use MMS with the /SCA_LIBRARY qualifier, MMS allows you to 
generate an SCA library during the build process. Example 4-6 demonstrates 
how to use MMS with the /SCA_LIBRARY qualifier. 

4-22 Accessing Libraries with MMS 



Example 4-6: Using MMS with the /SCA-LIBRARY Qualifier 

$ SET DEFAULT [SYSTEM!] 
t» $ SCA CREATE LIB [.SCALIB] 

%SCA-S-NEWLIB, SCA Library created in DISK1$:[SYSTEM1.SCALIB] 
%SCA-S-LIB, your SCA Library is DISK1$: [SYSTEM1.SCALIB] 
$ 

fj $ TYPE SCA.MMS 
PROG.EXE PROG.OBJ 

PROG.OBJ : PROG.C 
$ 

C) $ TYPE PROG.C 
main () 

{ 

int total; 

total = 2 + 2· 
} 

$ 

~ $ MMS/SCA_LIBRARY/DESCRIPTION=SCA PROG.EXE 
CC /NOLIST/OBJECT=PROG/ANALYSIS_DATA=PROG PROG.C 
mms$scalib = F$TRNLNM( 11 SCA$LIBRARY 11 ) 

mms$scasetlib = 0 
IF mms$scalib . EQS. 1111 

• AND. "SCA$LIBRARY:" . NES. -
11 SCA$LIBRARY: 11 THEN mms$scasetlib = 2 

IF mms$scalib . NES. 1111 .AND. 11 SCA$LIBRARY: 11 
• NES. -

11 SCA$LIBRARY: 11 • AND. mms$scalib . NES. 11 SCA$LIBRARY: 11 THEN-
mms$scasetlib = 3 

IF F$SEARCH( 11 SCA$LIBRARY:SCA$EVENT.DAT") .EQS. 1111 THEN
mms$scasetlib = (mms$scasetlib .AND .. NOT. 2) .OR. 4 

IF (mms$scasetlib .AND. 4) .EQ. 4 THEN SCA CREATE LIBRARY SCA$LIBRARY: 
IF (mms$scasetlib .AND. 2) .EQ. 2 THEN SCA SET LIBRARY SCA$LIBRARY: 

(it SCA LOAD PROG 

$ 

%SCA-S-LOADED, module PROG loaded 
%SCA-S-COUNT, 1 module loaded (1 new, 0 replaced) 
IF mms$scasetlib THEN SCA SET LIBRARY 1 mms$scalib 1 

LINK /TRACE/NOMAP/EXEC=PROG PROG.OBJ 

Accessing Libraries with MMS 4-23 



0 Set default to your system directory, and initialize the SCA library. A side 
effect of initializing the library is that the logical name SCA$LIBRARY is 
now defined. 

8 The MMS description file describing the system dependencies. 

0 The source code file that MMS uses to compile and link our target and 
sources. 

8 MMS/SCA_LIBRARY is invoked with the target PROG.EXE specified. 

0 SCA loads the SCA data file into the SCA library. 

4-24 Accessing Libraries with MMS 



Command Dictionary 





This Command Dictionary describes the elements of the MMS command 
line, defines the syntax rules for entering commands, and describes the MMS 
command and its qualifiers. 

Command Format 

The MMS command has the following format: 

NMS [/qualifier ... ] [target, ... ] 

Parameters 
qualifier 
An MMS qualifier. 

target 
The name of a target, which can be either a VMS file specification, a library 
specification enclosed in quotes, or a mnemonic name. 

Unless you use the /NODESCRIPTION qualifier on the command line, you 
need not type the qualifiers and targets you want to use. MMS assumes default 
qualifiers and updates the first target in the description file whenever you type 
the MMS command. 

Qualifiers 

The MMS command qualifiers modify the command and can be placed any
where on the command line after the MMS command. The MMS command 
activates the following default qualifiers: 

/ACTION 
/NOCHECK_STATUS 
/NOCMS 
/DESCRIPTION=DESCRIP.MMS or /DESCRIPTION=MAKEFILE. 
/NOIGNORE 
/NO LOG 
/OUTPUT=SYS$0UTPUT 
/NOOVERRIDE 
/NOREVISE_DATE 
/RULES 
/NOSCA_LIBRARY 
/NOSKIP-1NTERMEDIATE 
/VERIFY 

CD-1 



CD-2 

You can abbreviate all MMS qualifiers and their parameters. However, you 
must be sure that the abbreviations are unique, so they will not be confused 
with other CLI qualifiers. If you type an ambiguous abbreviation, the CLI issues 
an error message. 

You can continue an MMS command to the next line by using the DCL contin
uation character, a hyphen ( - ), as the last character on the command line. 

The MMS qualifiers are described in alphabetic order, and that description notes 
whether the qualifier affects the behavior of MMS, the execution of action lines, 
or both. The notation ( D) following a qualifier indicates the default form. 



MMS 

Format 

MMS 

The command MMS invokes the VAX DEC/Module Management System. By 
default, it searches for the description file descrip.mms or makefile. in the current 
directory and looks to the first action line for the target. To use MMS, your 
directory must contain one of these files. 

MMS [/qualifier . .. . ] [target, ... ] 

Command Qualifiers 
/ACTION 
/CHECK_ST A TUS 
/CMS 
/DESCRIPTION 
/FROM_SOURCES 
/HELP 
/IDENTIFICATION 
/IGNORE 
/LOG 
/MACRO 
/OUTPUT 
/OVERRIDE 
/REVISE_DA TE 
/RULES _ 
/SCA_LIBRARY 
/SKIP _INTERMEDIATE 
/VERIFY 

Defaults 
/NO ACTION 
/NOCHECK_ST A TUS 
/NOCMS 
/NODESCRIPTION 

/NOIGNORE 
/NOLOG 

/NOOVERRIDE 
/NOREVISE_DATE 
/NORULES 
/NOSCA_LIBRARY 
/NOSKIP _INTERMEDIATE 
/NO VERIFY 

Command Parameters 

/qualifier 
An MMS qualifier. 

Command Dictionary CD-3 



MMS 

target 
The name of a target, which can be either a VMS file specification or a logical 
name. 

Command Qualifiers 

/ACTION (D) 
/NOACTION 
The /ACTION and /NOACTION qualifiers control whether MMS executes the 
action lines in a description file. These qualifiers affect only the execution of 
action lines, not the behavior of MMS. The /ACTION qualifier directs MMS to 
execute action lines. 

The /NOACTION qualifier directs MMS not to execute action lines, but still 
to write them to the output file. (The output file can be either SYS$0UTPUT 
or the file specified by the /OUTPUT qualifier.) /NOACTION is useful for 
determining what actions MMS would have executed had the system actually 
been built. You can also use /NOACTION in combination with the /OUTPUT 
qualifier to generate a command procedure (refer to the description of the 
/OUTPUT qualifier). 

/NOACTION overrides the Silent action line prefix (@) described in 
Section 2.7.6. Note that the $(MMS) reserved macro is executed even if 
you specify /NOACTION. Therefore, you can see what actions MMS would 
have executed in the subprocess. See Section 3.3 for information about the 
$(MMS) macro. 

The /NOACTION qualifier does not affect the /AUDIT qualifier that you 
can provide with references to COD records. That is, if you have suppressed 
the execution of action lines with the /NOACTION qualifier, the remark you 
supplied with /AUDIT is still written to the COD history file. The /AUDIT 
qualifier and the use of COD records with MMS is described in Section 4.5. 

/CHECK-STATUS 
/NOCHECK_STATUS (D) 
The /CHECK-STATUS and /NOCHECK_STATUS qualifiers control whether 
MMS returns a value in the symbol MMS$STATUS, instead of updating a 
target. This symbol contains the status of the last action line executed by MMS. 
These qualifiers affect both the execution of action lines and the behavior of 
MMS. 

CD-4 Command Dictionary 



MMS 

/CHECK_STATUS directs MMS to check whether a target is up-to-date by 
determining whether any actions would be executed if MMS /ACTION were 
specified. MMS issues an informational message and sets MMS$STATUS to 1 if 
no actions would be executed (that is, if the target is up-to-date). If the target 
needs to be updated, MMS sets the MMS$STATUS value to 0. 

The /CHECK_STATUS qualifier has precedence over both the /ACTION and 
/REVISE_DATE qualifiers if they appear on the same command line. In these 
cases, only /CHECK_STATUS is processed. 

The /NOCHECK-5TATUS qualifier directs MMS to process the description file 
as it normally would, executing action lines if necessary. 

/CMS 
/NOCMS (D) 
If CMS is installed on your system, you can use the /CMS and /NOCMS 
qualifiers to control whether MMS looks for source files, description files, and 
included files in the current default CMS library, as well as in the specified 
directories. See Section 4.2 for information on using MMS to access elements in 
CMS libraries. These qualifiers affect both the execution of action lines and the 
behavior of MMS. 

The /CMS qualifier directs MMS to look for source files in the current default 
CMS library and in the specified directories. If the source in the CMS library is 
newer, it is fetched from there. If the source in the CMS library is older, MMS 
uses the source in the specified directory rather than fetch it from the CMS 
library. /CMS also directs MMS to look in the current default CMS library for 
a description file and any files included with the .INCLUDE directive. If MMS 
cannot find a description file in either the specified directory or the current 
default CMS library, it aborts execution. (The .INCLUDE directive is described 
in Section 2.8.9.) 

The /CMS qualifier also directs MMS to apply CMS built-in rules where 
appropriate. (See Table C-9 for a table of CMS built-in rules.) 

The /NOCMS qualifier directs MMS not to look in the current default CMS 
library for source files, description files, or included files. However, if any file 
specifications in the description file are followed by a tilde ( ,...., ) to indicate 
specific CMS elements, MMS looks for the files in the CMS library even if 
/NOCMS is in effect. 

If you specify /NOCMS or the combination /CMS/NORULES, and the sources 
do not exist in the specified directory, MMS aborts execution. 

Command Dictionary CD-5 



MMS 

/DESCRIPTION (D) 
/NODESCRIPTION 
The /DESCRIPTION and /NODESCRIPTION qualifiers control whether MMS 
looks for a description file to update the target. These qualifiers affect the 
behavior of MMS but not the execution of action lines. 

$ MMS/DESCRIPTION=filespec ... 
$ MMS/NODESCRIPTION target 

The filespec is a VMS file specification or a logical name that identifies the 
description file. The default file type is .MMS. If a tilde ( ,..._,) follows the file 
specification, MMS fetches the description file from the default CMS library 
even if the description file exists in the default directory. The target is a VMS 
file specification or a mnemonic name that designates the target to be built. 

When you specify more than one description file, separate the file specifications 
with either commas (,) or plus signs ( +) and enclose them in parentheses or 
quotation marks 

If you use commas, the description files are processed separately and the list of 
files must be enclosed in parentheses: 

$ MMS/DESCRIPTION=(A, B) 

If you use plus signs, the description files are concatenated and processed as 
one file. The list of files must be enclosed in quotation marks. 

$ MMS/DESCRIPTION="A + B" 

The following command line directs MMS to process A.MMS and B.MMS as 
one file, and CLEANUP.MMS as another. Since you are specifying essen
tially two description files here, you must use commas to separate the file 
specifications. 

$ MMS/DESCRIPTION=("A + B", CLEANUP) 

In this case: there are two default targets: the first one in either A.MMS or 
B.MMS (depending on the contents of the two files) and the second one in 
CLEANUP.MMS. 

If you specify a list of description files in parentheses and a list of targets, the 
rules for updating all the listed targets must occur in all the listed description 
files. Consider the following command: 

$ MMS/DESC= (A ,B) X, Y, Z 

CD-6 Command Dictionary 



MMS 

In this case, the rules for updating X, Y, and Z must appear in both description 
files, A.MMS and B.MMS. 

If you specify a concatenated list of description files and a list of targets, 
the rules for updating all the listed targets must occur in the concatenated 
description file. Consider the following command: 

$ MMS/DESC="A + B" X,Y,Z 

In this case, the description file formed by the concatenation of A.MMS and 
B.MMS must contain the rules for updating X, Y, and Z. 

If you specify /DESCRIPTION without the name of a description file, MMS 
looks for the default description file DESCRIP.MMS. If it cannot locate that file, 
it looks for MAKEFILE.; if it cannot find MAKEFILE., it issues an error message 
and aborts execution. 

If you do not specify /DESCRIPTION, MMS looks first for DESCRIP.MMS. If 
it cannot locate that file, it looks for one called MAKEFILE .. If that search also 
fails, MMS issues an error message and aborts execution. 

The /NODESCRIPTION qualifier directs MMS to ignore all description 
files and to build the target specified on the command line. When you use 
the /NODESCRIPTION qualifier, MMS does not automatically look for 
DESCRIP.MMS and MAKEFILE. You must specify a target on the command 
line; otherwise, MMS does not know what target to build. 

/FROM_SQURCES 
The /FROM_SOURCES qualifier directs MMS to build a target from its sources, 
regardless of whether the target is already up to date. This qualifier affects the 
execution of action lines and the behavior of MMS. 

When you specify /FROM_SOURCES on the command line, MMS does not 
compare the revision times of the specified sources and target. Instead, it 
executes the action lines in the description file necessary to update the target. 
The /FROM_SOURCES qualifier is useful when you want to guarantee that an 
entire system is rebuilt, perhaps for an internal release. 

If you specify /CMS/FROM_SOURCES qualifiers on the MMS command line, 
MMS uses the sources found in the default CMS library. If you do not use 
/CMS, MMS locates the sources in the specified directory. 

The /FROM_SOURCES qualifier overrides the /SKIP-1NTERMEDIATE 
qualifier. 

Command Dictionary CD-7 



MMS 

/HELP 
The /HELP qualifier allows you to obtain information about MMS and its 
qualifiers. This qualifier affects the behavior of MMS but not the execution of 
action lines. 

$ MMS/HELP[="topic"] 

The topic is a MMS topic on which you want information. 

The /HELP qualifier displays on your terminal the information in the HELP 
library specific to MMS. If you use the /HELP qualifier alone, you are presented 
with general information about MMS and a list of its qualifiers and other topics 
on which more detailed information is available. To see the information about 
one of these topics, follow the /HELP qualifier with an equal sign (=) and the 
topic. The topic must be enclosed in quotation marks. 

/IDENTIFICATION 
The /IDENTIFICATION qualifier directs MMS to print an informational 
message with the version number of the MMS image and the copyright date. 
This qualifier affects the behavior of MMS but not the execution of action lines. 

The /IDENTIFICATION qualifier provides you with the version number 
and copyright date of the MMS image you are running. When you use 
/IDENTIFICATION, MMS does not process any description files or qualifiers; 
it simply prints an informational message on your screen. You should include 
the version number and copyright date when you submit Software Performance 
Reports (SPRs) about MMS. 

/IGNORE 
/NOIGNORE (0) 
The /IGNORE qualifier specifies the severity levels of errors that MMS should 
ignore when it executes action lines. The parameters correspond to the DCL 
severity levels W, E, and F. /NOIGNORE directs MMS to abort execution when 
it finds any error. These qualifiers affect the execution of action lines but not 
the behavior of MMS. The format of this qualifier is as follows: 

$ MMS/IGNORE=[WARNING] IERROR I FATAL 

$ MMS/NOIGNORE 

CD-8 Command Dictionary 



MMS 

The WARNING directs MMS to ignore W errors and continue processing, but to 
abort execution when it finds either an E or an F error. If you specify /IGNORE 
without parameters, WARNING is the default. The ERROR string directs MMS 
to ignore both Wand E errors, but to abort execution when it finds an F error. 
The FATAL directs MMS to ignore all errors, and to continue processing the 
description file. This parameter is equivalent to the .IGNORE directive. 

The errors that MMS ignores when you specify /IGNORE are those errors gen
erated by the execution of action lines, rather than MMS errors. /IGNORE does 
not stop MMS error messages from being generated or displayed. Informational 
messages are always displayed, regardless of any use of the /IGNORE qualifier. 

You should be careful about executing MMS with the /IGNORE qualifier. If 
errors occur during processing, the target may be updated but still contain 
errors of which you will not be aware. 

The .IGNORE directive and the Ignore action line prefix are similar to the 
/IGNORE=FATAL qualifier. Instead of typing them on the command line, 
however, you include them in the description file. Sections 2.8.1 and 2.7.5 
describe the Ignore action line prefix and the .IGNORE directive in detail. 

If you want to override the .IGNORE directive contained in a description 
file, you must type the /IGNORE[=WARNING], /IGNORE=ERROR, or 
/IGNORE=FATAL qualifier explicitly on the MMS command line. You cannot 
override the Ignore action line prefix from the MMS command line. 

/LOG 
/NOLOG (D) 
The /LOG and /NOLOG qualifiers control whether MMS displays on your 
terminal informational messages about its findings and assumptions as it 
processes the description file. These qualifiers affect the behavior of MMS but 
not the execution of action lines. 

The /LOG qualifier directs MMS to write all informational messages to your 
terminal screen while it processes the description file. The /LOG qualifier 
is useful for debugging your description files. These messages indicate what 
MMS finds and what it assumes as it processes the description file. You should 
include these messages with any Software Performance Reports (SPRs) that you 
submit about MMS. To save these messages in a file, type the following: 

$ DEFINE SYS$0UTPUT MYFILE.LOG 
$ MMS/LOG 
$ DEASSIGN SYS$0UTPUT 

Command Dictionary CD-9 



MMS 

The /NOLOG qualifier directs MMS not to display informational messages 
about its assumptions while it processes the description file. 

However, if you specify /NOLOG/CHECK_STATUS on the same command 
line, MMS does display the informational message that reports the value 
of MMS$STATUS. (Refer to the description of /CHECK-STATUS for more 
information about MMS$STATUS.) 

/MACRO 
The /MACRO qualifier directs MMS to add to or override the macro definitions 
in the description file. This qualifier affects the behavior of MMS but not the 
execution of action lines. The syntax of this qualifier is as follows: 

MMS/MACRO=filespec I 11macro 11 • . . . 

The filespec is a VMS file specification or a logical name that identifies a file of 
macro definitions. The default file type is .MMS. The macro string is a macro 
definition enclosed in quotation marks. Use the same format as for macro 
definitions in description files, that is, name = string. 

The /MACRO qualifier allows you to specify a macro definition on the MMS 
command line. It also allows you to specify a file of macro definitions that you 
want to use in your description file. Section 2.4.2 gives a detailed discussion of 
the use of macros. 

You can define macros in three locations: 

• In a description file 

• In a macro definitions file 

• On the command line 

To specify more than one macro definition on the MMS command line, enclose 
the list of macros in parentheses. For example: 

$ MMS/MACRO=("A=MAC1 II. "B=MAC2") 

You can also specify both a macro definition and a file on the same command 
line: 

$ MMS/MACRO= (II A=MAC1 II • MACROS) 

CD-10 Command Dictionary 



MMS 

/OUTPUT 
The /OUTPUT qualifier directs MMS to write action lines and output to the 
specified file. Error messages preceded by n°/oMMS" are not written to this 
output file, but instead are written to SYS$ERROR. This qualifier affects the 
behavior of MMS but not the execution of action lines. 

$ MMS/OUTPUT=filespec 

The filespec is a VMS file specification or a logical name that identifies the 
output file. The default file type is .LOG. 

If you specify the /NOVERIFY qualifier on the same MMS command line with 
/OUTPUT, MMS does not write action lines to the output file. 

If you specify /OUTPUT and your command-line interpreter is DCL, MMS 
automatically prefixes a dollar sign ( $ ) to any action line that does not begin 
with one. This technique allows you to use the file generated by /OUTPUT as 
a DCL command procedure. 

If you do not specify the /OUTPUT qualifier on the MMS command line, MMS 
writes all action lines, messages, and output to SYS$0UTPUT. 

/OVERRIDE 
/NOOVERRIDE (D) 
The /OVERRIDE and /NOOVERRIDE qualifiers control the order in which 
MMS applies definitions when it processes macros. These qualifiers affect the 
behavior of MMS but not the execution of action lines. 

The /OVERRIDE qualifier directs MMS to override the macro definitions in the 
description file with CLI symbol definitions. To find the macro definitions that 
should have precedence, MMS looks at symbols defined by the CLI assignment 
statement, scanning the CLI symbol table for the body of the macro. If the 
body of the macro is not in the CLI symbol table, MMS substitutes a null string 
for all invocations of the macro. 

The /OVERRIDE qualifier imposes the following order of application when 
MMS processes macro definitions: 

1. Command-line 

2. CU symbol 

3. Description file 

4. Built-in 

Command Dictionary CD-11 



MMS 

Once MMS finds a definition for a macro, it does not search those locations 
farther down the list for more definitions. If MMS finds more than one 
definition in the same location (such as on a command line), it uses the last 
definition it processed, unless the location is a description file. MMS issues an 
error message if a macro is defined more than once in a description file. 

The /NOOVERRIDE qualifier imposes the following order, which is the default 
hierarchy: 

1. Command-line 

2. Description file 

3. Built-in 

4. CU symbol 

/REVISE-DATE 
/NOREVISE_DATE (D) 
The /REVISE_DATE and /NOREVISE_DATE qualifiers control whether MMS 
changes only the revision dates of all targets that need updating, rather than 
actually performing the update. These qualifiers affect the behavior of MMS, 
not the execution of action lines. 

The /REVISE_DATE qualifier directs MMS to change only the revision dates 
of any target that needs updating; it does not direct MMS to execute the action 
lines that actually do the updating. If any files are missing, /REVISE_DATE 
causes MMS to create them. If MMS cannot create a missing file, or if it cannot 
update the revision date of an existing file, it issues an error message. 

The /REVISE-DATE qualifier is useful for reducing the number of superfluous 
compilations-for example, when only a comment line was changed in a 
required file. However, /REVISE_DATE can defeat the purpose of using MMS, 
so you should use this qualifier with caution. 

As it changes the revision times, MMS writes the name of the revised files to 
the output file (either SYS$0UTPUT or the file specified by the /OUTPUT 
qualifier). If you specify /REVISE_DATE/NOVERIFY, the names of revised 
files are suppressed. (Section 2.8.2 describes the .SILENT directive.) 

Unless you specify a target on the command line, the /REVISE_DATE qualifier 
causes the first target in the description file and its sources to be revised by 
MMS. If you specify multiple targets on the command line, those targets 
and their sources are revised. /REVISE_DATE does not change the value of 
MMS$STATUS (see Section 2.7 for information about MMS$STATUS). 

CD-12 Command Dictionary 



MMS 

The /REVISE_DATE qualifier has precedence over the/ ACTION qualifier if 
they both appear on the same command line. In that case, only /REVISE_ 
DATE is processed. 

The /NOREVISE_DATE qualifier directs MMS to build the system by updating 
targets as necessary (as long as the /CHECK-STATUS qualifier does not appear 
on the same command line). 

/RULES (D) 
/NORULES 
The /RULES and /NORULES qualifiers control whether MMS applies built-in 
rules and the suffixes precedence list when it builds a system. These qualifiers 
affect the behavior of MMS but not the execution of action lines. 

$ MMS/RULES[=filespec] 

$ MMS/NORULES 

Filespec is a VMS file specification or a logical name that identifies the file of 
default rules that MMS is to use. 

The /RULES qualifier directs MMS to use built-in rules and the suffixes 
precedence list. If you supply a file specification with /RULES, MMS reads 
the specified file and uses the rules and suffixes list it contains as the built-in 
rules. The rules in this file replace the built-in rules that MMS normally uses. 
If you specify /RULES without a file specification, MMS translates the logical 
name MMS$RULES to find the file of built-in rules to use. If MMS$RULES is 
not defined, MMS uses its own built-in rules. Therefore, if you want to replace 
MMS's built-in rules with default rules of your own, you have two choices: 

• You can create a file of your rules and specify the file with the /RULES 
qualifier on the MMS command line. The file specified with /RULES has 
precedence over the file represented by MMS$RULES. 

• You can assign the logical name MMS$RULES to the file specification of 
your rules file. 

The /NORULES qualifier directs MMS not to use its built-in rules or the 
suffixes precedence list. It also prevents MMS from applying user-defined rules 
and default macros. 

This qualifier is useful when the description file makes explicit all actions MMS 
should take in building a system. When you specify /NORULES, MMS applies 
only the dependency rules contained in the description file. 

Command Dictionary CD-13 



MMS 

/SCA_LIBRARY[=library-name] 
/NOSCA_LI BRARY (D) 
The /SCA_LIBRARY qualifier controls whether MMS generates an SCA library 
during the build process. 

$ MMS/SCA_LIBRARY[=library--name] 

$ MMS/NOSCA_LIBRARY 

When you specify a library name with the /SCA_LIBRARY qualifier, MMS 
defines the macro $(SCALIBRARY) to be that library name. If you use /SCA_ 
LIBRARY without specifying a library name, SCA$LIBRARY is the value of 
$(SCALIBRARY). If the /SCA_LIBRARY qualifier is not specified, /NOSCA_ 
LIBRARY is the default. 

The macro $(SCA) is defined to be SCA regardless of the setting of the /SCA_ 
LIBRARY qualifier. 

The macro $(MMSQUALIFIERS) contains the setting of the /SCA_LIBRARY 
qualifier. 

If the /SCA_LIBRARY qualifier is specified, macros and built-in rules for 
BASIC, BLISS-32, C, FORTRAN, PASCAL, and PU change. Table C-2 lists the 
macros that change when MMS is used with the /SCA_LIBRARY qualifier. 

NOTE 

You may find it preferable to defer the loading of modules into the 
SCA library until after all the compilations have been completed. In 
this case you should define the default rules for compilation in your 
description file to be the same as the default rule provided by MMS 
when /NOSCA_LIBRARY is specified. You should also include a 
.LAST directive, which then loads the SCA database. For example, 

.LAST : 
$(SCA) SET LIBRARY $(SCALIBRARY) 
$(SCA) LOAD * 

/SKIP_INTERMEDIATE 
/NOSKI P _INTERMEDIATE (D) 
The /SKIP-1NTERMEDIATE and /NOSKIP-1NTERMEDIATE qualifiers control 
whether MMS builds intermediate source/target files. These qualifiers affect the 
behavior of MMS, not the execution of action lines. 

CD-14 Command Dictionary 



MMS 

The /SKIP-1NTERMEDIATE qualifier directs MMS to determine whether the 
target is up to date without rebuilding intermediate files unless they need to 
be updated. If MMS cannot find some intermediate files, it skips over them as 
though they already existed. Suppose, for example, that you have a .C file and 
an .EXE file, but no .OBJ file, and the time of the .EXE file is more recent than 
that of the .C file. /SKIP-1NTERMEDIATE directs MMS not to build the .OBJ 
file and not to rebuild the .EXE file because the target is already up-to-date with 
regard to its nearest source. Using /SKIP-1NTERMEDIATE saves time and disk 
space. 

The /NOSKIP-1NTERMEDIATE qualifier directs MMS to make sure that all 
intermediate source files exist and are up-to-date. If any intermediate source 
files do not exist, MMS builds them. 

When you use the /SKIP-1NTERMEDIATE qualifier, be aware that certain 
MMS actions (such as invoking the VAX Linker) require all sources to be 
present. Other actions (such as invoking the VMS librarian) may operate 
correctly only on the sources used to update the current target. 

MMS dependencies cannot distinguish between a situation in which all sources 
must be present for MMS to perform the specified action and a situation in 
which only one of the specified sources may be required. 

The following example shows a situation in which all of the sources must be 
present for MMS to perform the action: 

FROG.OBJ : PROG.C, DEFS.H 
CC PROG 

PROG.C and DEFS.H do not depend on each other, but both must be present 
for MMS to build PROG.OBJ. If one source has changed, and you specify 
/SKIP-1NTERMEDIATE, MMS does not verify that the other source is present 
in the directory; therefore, it cannot build the target. You will not encounter a 
situation such as this one if you use /NOSKIP-1NTERMEDIATE (the default). 

/VERIFY (D) 
/NOVERIFY 
The /VERIFY and /NOVERIFY qualifiers control whether MMS displays action 
lines before executing them. These qualifiers affect the behavior of MMS, not 
the execution of action lines. 

The /VERIFY qualifier directs MMS to display each action line before executing 
it. MMS writes action lines either to SYS$0UTPUT or into the file specified by 
the /OUTPUT qualifier. 

Command Dictionary CD-15 



MMS 

If you specify the /REVISE_DATE qualifier on the same command line, the 
/VERIFY qualifier causes MMS to display the names of files whose dates have 
been revised. 

The /NOVERIFY qualifier suppresses the display (but not the execution) of 
action lines. Any error messages generated by the execution of action lines 
continue to be displayed. If you specify /REVISE_DATE/NOVERIFY on the 
same command line, the names of files whose dates have been revised are not 
displayed. 

The behavior of the /NOVERIFY qualifier is identical to that of the .SILENT 
directive and the Silent action line prefix (see Sections 2.8.2 and 2.7.6, re
spectively). If a description file contains the .SILENT directive, but you want 
to override it, you must type the /VERIFY qualifier explicitly on the MMS 
command line. You cannot override the Silent action line prefix from the MMS 
command line. 

CD-16 Command Dictionary 



Appendix A 

MMS Messages 

This appendix lists the MMS messages. These messages are listed alphabetically 
by identifier, and when necessary are explained. Where possible, suggestions 
for actions needed to recover from errors are included. 

MMS messages are displayed on the current output device. If you are running 
MMS interactively, this device is a terminal. If you are running MMS in batch 
mode, messages are written into the log file. 

A.1 Message Format 

The general format of messages displayed by the VMS operating system is the 
following: 

%FACILITY-L-IDENT, text 

MMS messages range in purpose from confirming the successful completion 
of your last MMS command to notifying you of an error that caused the last 
command to be terminated. 

The severity level of a message indicates the general nature of the message. 
MMS messages have one of three severity levels: I, W, or F. These severity 
levels indicate the following: 

• Informational (I) messages indicate MMS's actions during the process 
of building the system. The display of many of these messages can be 
controlled by the /LOG qualifier on the command line. Other informational 
messages are displayed regardless of whether you specified /LOG. 

• Warning (W) messages indicate that MMS has encountered a minor error. 
If the error occurred during the execution of an action line, processing 
stops unless you specified the /IGNORE=FATAL, /IGNORE=ERROR, or 
/IGNORE=[WARNING] qualifiers on the command line. 

MMS Messages A-1 



• Fatal (F) messages indicate that MMS is about to terminate because of a 
problem that prevents it from continuing any further. Processing of the 
command stops. 

MMS does not generate Success ( S) or Error ( E ) messages. 

For some error messages, the recommended action is to submit a Software 
Performance Report (SPR). See the VAX DEC/Module Management System 
Installation Guide for information on submitting SPRs. 

A.2 MMS Messages 

This section lists all MMS messages along with brief descriptions and recom
mended user actions. A term enclosed in single quotation marks is variable 
information. 

ABORT, For target 'target name,' CLI returned abort status: %X'status.' 

Explanation: Execution of an action line in the description file re
turned a fatal or warning error. By default, MMS aborts execution. 

User Action: Correct the error in the action line. 

BADTARG, Specified target 'target name' does not exist in the description file. 

Explanation: You specified a target on the command line that does 
not exist in your description file. 

User Action: Correct the command line or the target specification in 
the description file. 

CDDACCERR, COD access error on path 'path specification.' 

Explanation: The VAX Common Data Dictionary (COD) signaled an 
error while attempting to access the path specified in your description 
file. 

User Action: Verify the path specification and correct the description 
file. 

CDDNOAUD, COD audit string not found. 

A-2 MMS Messages 

Explanation: You used the /AUDIT qualifier with a COD record 
specification, but you did not supply a remark to be included in the 
COD audit history file. 

User Action: Edit the description file to remove the /AUDIT qualifier 
or to include a remark with it. 



CDDNOTIME, CDD path 'name' has no time attribute. 

Explanation: The CDD path specification in your description file is 
not associated with a revision time. Therefore, MMS cannot determine 
whether the CDD record is newer than your target. 

User Action: You cannot use a CDD record that is not associated with 
a revision time. Correct the description file to specify a different CDD 
record. 

CDDPRIERR, Prior severe CDD error has occurred. 

Explanation: An error occurred earlier in the processing of your de
scription file when MMS tried to access a CDD record. This message 
is preceded by one of MMS's other error messages that pertain to the 
CDD and by a message from the CDD itself to help you locate the 
error. 

User Action: Correct the condition that caused the first error and try 
again. 

CLPHELP, Please type HELP MMS for help on DEC/MMS. 

Explanation: For some reason MMS cannot access the help library 
from the /HELP qualifier on the MMS command. 

User Action: Type the DCL command HELP MMS instead. 

CMSABORT, Aborted with CMS errors. 

Explanation: One or more errors were returned by Callable CMS and 
MMS cannot continue processing. 

User Action: The CMS message printed after %MMS-W-CMSCALL 
will describe what caused the problem. Refer to the Guide to 
DEC/Code Management System for more information. 

CMSBADGEN, Illegal generation 'value' specified in description file. 

Explanation: The generation value specified by the /GENERATION 
qualifier is not valid. 

User Action: Correct the generation value or the CMS library. 

CMSBADLIB, There is a problem with the specified CMS library 'library 
name.' 

Explanation: MMS is unable to access the specified CMS library. 

User Action: Correct the CMS library or the description file. 

MMS Messages A-3 



CMSBADTIM, Invalid time field in CMS history file for file 'filespec.' 

Explanation: The time field in the history portion of the file in the 
element is in a nonstandard format. 

User Action: Reserve, then replace the CMS element that contains 
the specified file. If this element belongs to a specified CMS class, 
perform the steps necessary to replace the newly created generation of 
that element into that CMS class. 

CMSCALL, Callable CMS has returned an error. 

Explanation: Callable CMS, used in conjunction with CMS Version 2 
libraries, has returned an error to MMS. The specific error is printed 
on the next line. 

User Action: Refer to the Guide to DEC/Code Management System for 
more information on the CMS error returned. 

CMSNOCLAS, Specified class name 'name' not found in CMS library 'library 
name.' 

Explanation: MMS could not find the given class name (specified 
with /GENERATION in the CMS library.) 

User Action: Correct the CMS library or the description file. 

CMSNOELE, Element 'element name' not found in CMS library. 

Explanation: MMS could not find the specified element in the CMS 
library. 

User Action: Correct the CMS library or the description file. 

CMSNOFIL, File filespec not found in CMS library. 

Explanation: MMS could not find the specified file in the CMS 
library. 

User Action: Correct the CMS library or the description file. 

CMSNOGEN, No generation value specified. 

A-4 MMS Messages 

Explanation: You did not specify a value with the /GENERATION 
qualifier. 

User Action: Add the value to the /GENERATION qualifier. 



CMSNOLIB, Your default CMS library is undefined. 

Explanation: You do not have a CMS library defined but you used 
/CMS on the command line or a tilde (,....,) in the description file. 

User Action: Define a CMS library. 

CMSNOV2SUP, DEC/CMS is installed without DEC/CMS Version 2.0 
support. 

Explanation: You are trying to access a source in a CMS Version 2.0 
library, but MMS was installed without CMS Version 2.0 support. 

User Action: CMS Version 2 must already be installed on your 
system before you install MMS if you want access to CMS Version 2.0 
libraries. 

CMSPROBLEM, Problem with CMS control file 'filespec.' 

Explanation: The specified control file is either missing or has been 
opened by another user without using CMS. 

User Action: Check to see whether the file is in the specified CMS 
library. If it is, make sure it is closed and try running MMS again. If 
the file is not in the CMS library, correct the library. 

CMSPROCED, Proceeding with CMS library access. 

Explanation: MMS is now accessing the specified CMS library. 

User Action: None. This is an informational message that appears 
after the CMSWAIT message when MMS finally succeeds in accessing 
the library. 

CMSWAIT, CMS library 'library name' is in use. Please wait ... 

Explanation: The specified CMS library is currently being accessed 
by another user. This message is printed at 4-second intervals until 
access is successful. 

User Action: Wait until MMS succeeds in accessing the CMS library. 

DRVBADP ARSE, Parser detected a fatal syntax error in the description file. 

Explanation: The description file contains a syntax error. MMS did 
not attempt to build the system. 

User Action: Correct the erroneous line in the description file. 

MMS Messages A-5 



DRVDEPFIL, Using description file 'filespec.' 

Explanation: MMS is using the specified description file to build the 
system. 

User Action: None. This is an informational message that appears 
only if you have invoked MMS with the /LOG qualifier. 

DRVFMSSUP, DEC/MMS is installed with support for VAX FMS. 

Explanation: You can access forms stored in VAX FMS libraries with 
this version of MMS. 

User Action: None. This is an informational message that appears 
only if you have invoked MMS with the /LOG qualifier. 

DRVINSQUO, Your process needs a 'quota name' of at least 'value,' current 
value is 'value.' 

Explanation: At least one of the process quotas set by your system 
manager has been exceeded, and the remaining process quotas at 
the time MMS was invoked were insufficient to run MMS reliably. 
The BYTLM value relates to the buffered 1/0 byte count quota; the 
ASTLM value relates to the AST limit of your process; the PRCLM 
value relates to the subprocess limit of your process; and the FILLM 
value relates to the open file limit of your process. You can obtain 
information about your process-specific parameters by typing the DCL 
command SHOW PROCESS/QUOTA. 

User Action: Request that your system manager increase process 
quotas. 

DRVNOFMSSUP, DEC/MMS is installed without support for VAX FMS. 

Explanation: You cannot access forms stored in VAX FMS libraries 
because you did not install FMS before you installed MMS on your 
system. 

User Action: None. This is an informational message that appears 
only if you have invoked MMS with the /LOG qualifier. 

DRVOUTFIL, Using output file 'filespec.' 

A-6 MMS Messages 

Explanation: MMS is writing all action lines and their resulting 
output to the specified output file. Note that messages preceded by 
no/oMMS" are not written into this file, but to SYS$ERROR. 

User Action: None. This is an informational message. It appears only 
if you have invoked MMS with the /LOG qualifier. 



DRVP ARSERR, Parser error: 'message' in file 'filename,' line 'number.' 

Explanation: The MMS parser failed, for the reason explained in the 
message text. 

User Action: Correct the erroneous action line in the description file. 

DRVQUALIF, Using non-defaulted qualifiers 'qualifier name.' 

Explanation: MMS is processing your description file using the 
specified qualifiers. These qualifiers, which are not enabled by default, 
correspond to the value of the $(MMSQUALIFIERS) reserved macro. 

User Action: None. This is an informational message that appears 
only if you have invoked MMS with the /LOG qualifier. 

DRVRULFIL, Using rules file 'filespec.' 

Explanation: MMS is reading its default rules from the specified rules 
file. 

User Action: None. This is an informational message that appears 
only if you have invoked MMS with the /LOG qualifier. 

DRVSUBCLI, Using 'CLI name' for the subprocess CLI. 

Explanation: MMS is using the specified CLI to execute the 
subprocess. 

User Action: None. This is an informational message that appears 
only if you have invoked MMS with the /LOG qualifier. 

EXEBADREAD, Could not read command output from subprocess. 

Explanation: The MMS main process was unable to read the results 
of the action lines executed by the subprocess. 

User Action: This message indicates a problem with your system, 
resulting possibly from insufficient quotas or a mailbox problem. 
Check with your system manager. 

EXEBADWRT, Could not write command line to subprocess. 

Explanation: The MMS main process was unable to send an action 
line to the subprocess for execution. 

User Action: This message indicates a problem with your system, 
resulting possibly from insufficient quotas or a mailbox problem. 
Check with your system manager. 

MMS Messages A-7 



EXECANTWAKE, Could not wake up main process. 

Explanation: After executing an action line, the subprocess was 
unable to wake up the main process. 

User Action: This message indicates a problem with your system, 
resulting possibly from insufficient quotas or a mailbox problem. 
Check with your system manager. 

EXEDELPROC, Subprocess terminated abnormally. 

Explanation: The subprocess terminated unexpectedly, possibly 
because you used illegal commands like STOP or LOGOUT in your 
description file or because the subprocess was stopped by another 
process. 

User Action: Remove any invalid commands from the description file. 

EXEDELSES, Cleanup of subprocess %X'value' failed. 

Explanation: The $DELPRC system service could not delete the 
subprocess that was executing action lines. 

User Action: Type the DCL command SHOW SYSTEM/SUB to 
determine whether the subprocess still exists. If it does, type the 
STOP command to delete it: STOP /ID=' value'. If the subprocess 
does not still exist and this message was preceded by the message 
%MMS-F-EXEDELPROC, the subprocess was probably deleted by 
a user command such as LOGOUT. If this is the case, remove the 
offending command from the description file. 

EXENCRE, Could not create subprocess for executing action lines. 

Explanation: MMS could not create the subprocess for executing 
action lines. 

User Action: Check your quotas, and raise them if necessary. This 
message could also indicate a system problem; you should notify your 
system manager. 

EXENEF, Unable to allocate event flag. 

A-8 MMS Messages 

Explanation: MMS was unable to allocate an event flag that allows 
the MMS main process to communicate with the subprocess. 

User Action: This message indicates a system problem. Check with 
your system manager. 



EXENOAST, Could not enable AST. 

Explanation: MMS could not enable an AST that allows the main 
MMS process to send input to the subprocess and the subprocess to 
send output back to the main process. 

User Action: This message indicates a system problem. Check with 
your system manager. 

EXENOMBX, Unable to create mailbox for communicating with subprocess. 

Explanation: MMS could not create a mailbox for the MMS main 
process to use in communicating with the subprocess. 

User Action: This message indicates a problem with your process's 
creation of mailboxes. Check with your system manager. 

EXEPROCID, PID of created subprocess is %X'value.' 

Explanation: The process ID of your subprocess is the value specified 
in the message. 

User Action: None. This is an informational message that appears 
only if you have invoked MMS with the /LOG qualifier. 

EXESTRING, Quoted string must be under 'value' characters. 

Explanation: A quoted string in an action line exceeded the maximum 
length allowed. 

User Action: Correct the action line in the description file. 

EXETOOBIG, Command too large. Maximum length is 'value' characters. 

Explanation: The command on an action line exceeded the maximum 
command length allowed. 

User Action: Correct the command in the description file. 

FMSNOSUPP, DEC/MMS is installed without VAX FMS support. 

Explanation: Your description file specifies a form in an FMS library 
but you installed MMS without FMS support. 

User Action: VAX FMS must already be installed on your system 
before you install MMS if you want access to FMS forms. 

MMS Messages A-9 



FMSNOWILD, Wild cards are not allowed for VAX FMS library access. 

Explanation: You cannot use a wild card character in the specification 
of an FMS form. 

User Action: Correct the description file to specify the forms you 
want MMS to access. 

GFBTYPEMIX, Illegal single/double colon rule mix for 'item' in line 'number.' 

Explanation: The item named was specified as a target in both a 
single colon and a double colon dependency rule. 

User Action: Choose the rule you want for the build and make the 
description file consistent with respect to this target. 

GMBADMOD, Missing left parenthesis in library specification 'filespec.' 

Explanation: A library specification is missing a left parenthesis. 

User Action: Insert the missing parenthesis. 

GMTIMFND, Time for 'filespec' is 'time.' 

Explanation: The specified time is the latest revision time MMS found 
for the specified file. 

User Action: None. This is an informational message that appears 
only if you have invoked MMS with the /LOG qualifier. 

GWKBEGWLK, Starting the build at target 'target name.' 

Explanation: MMS will start its build process by trying to update the 
specified target. 

User Action: None. This is an informational message that appears 
only if you have invoked MMS with the /LOG qualifier. 

GWKCANT, MMS cannot update target 'target name.' 

Explanation: MMS cannot update the specified target because neither 
the description file nor the built-in rules indicate how to do it. Because 
you instructed MMS to ignore severe errors (using either .IGNORE or 
/IGNORE=FATAL), processing of the description file continues. 

User Action: Revise the description file. Either remove the depen
dency on the target or describe how to update the target. 

A-10 MMS Messages 



GWKCONECT, Target 'target name' found in circular dependency. 

Explanation: The specified targets are involved in a circular depen
dency; that is, a source depends on its target. This message is always 
issued after the GWKLOOP message, which indicates the target for 
which a circular dependency was detected in the description file. 

User Action: Revise the description file to remove circular 
dependencies. 

GWKCURRNT, Target 'target name' is already up-to-date. 

Explanation: MMS has not updated the specified target because it is 
already up-to-date. 

User Action: None. This is an informational message. 

GWKEXESTS, Status of executed command is %X'condition code.' 

Explanation: MMS has executed a CLI command in an attempt to 
update a target. The resulting condition code of the command is 
displayed in this message, and MMS attempts to decode its text in the 
following message line. If the next message line is blank, MMS cannot 
decode the message. 

User Action: None. This is an informational message that appears 
only if you have invoked MMS with the /LOG qualifier. 

GWKHSHOVER, Internal Hashtable Overflow. 

Explanation: This is an MMS internal error. 

User Action: Collect as much information as possible and submit a 
Software Performance Report (SPR). 

GWKLOOP, Circular dependency detected at target 'target name.' 

Explanation: The specified target is indirectly its own source. That is, 
you are asking MMS to make a target from the target itself, which is 
not legal. The ensuing GWKCONECT messages specify all relevant 
targets involved in the circular dependency. 

User Action: Revise the description file to remove circular 
dependencies. 

GWKNEEDUPD, An update is required for target 'name.' 

Explanation: This message is issued when /CHECK_STATUS is 
specified. 

User Action: None. This is an informational message. 

MMS Messages A-11 



GWKNOACTS, Actions to update 'target name' are unknown. 

Explanation: MMS cannot determine what actions to take in updating 
the specified target. This message may indicate a problem with the 
.SUFFIXES list or with your user-defined rules. There may be no 
built-in rule or user-defined rule for MMS to use. The file types in the 
user-defined rule might not be in the .SUFFIXES list, or they might be 
in the wrong order. 

User Action: Revise the description file. Specify the actions needed to 
update the target. 

GWKNOPRN, There are no known sources for the current target 'target 
name.' 

Explanation: MMS has found no sources for the current target. 

User Action: Create a source file that can update the target. 

GWKNOREV, Cannot update modification time for file 'filespec.' 

Explanation: MMS is unable to modify the revision time of the 
specified file, as directed by the /REVISE_DATE qualifier on the 
command line, because an error occurred. A possible reason for the 
error is that the file's protection prohibited write access. 

User Action: Correct the file protection so that write access is allowed. 

GWKOLDNOD, Target 'target name' is older than 'source names.' 

Explanation: The specified target is older than the specified sources, 
so MMS will update it. 

User Action: None. This is an informational message that appears 
only if you have invoked MMS with the /LOG qualifier. 

GWKUPDONE, Completed update for target 'target name.' 

Explanation: MMS has updated the specified target. 

User Action: None. This is an informational message that appears 
only if you have invoked MMS with the /LOG qualifier. 

GWKUPDTIM, Updating modification time for file 'filespec.' 

Explanation: MMS is changing the revision time of the specified file, 
as directed by the /REVISE_DATE qualifier. 

User Action: None. This is an informational message that appears 
only if you have invoked MMS with the /LOG qualifier, in addition 
to /REVISE-DATE. 

A-12 MMS Messages 



GWKWILLEX, MMS will try executing action line to update target 'target 
name.' 

Explanation: MMS will execute the action line to update the current 
target for one of the following reasons: at least one source may be 
more recent than the target, or the target may have no sources. 

User Action: None. This is an informational message that appears 
only if you have invoked MMS with the /LOG qualifier. 

IDENT, DEC/MMS 'version' COPYRIGHT ( C) DIGITAL EQUIPMENT 
CORPORATION 'date' 

Explanation: This message provides the version number and copy
right date of the MMS image installed on your system. You should 
include this information with any Software Performance Reports 
(SPRs) that you submit about MMS. 

User Action: None. This is an informational message that appears 
only if you have invoked MMS with the /IDENTIFICATION qualifier. 

INTERNERR, Internal MMS Error. Please Report Error #'number.' 

Explanation: An MMS internal component failed. 

User Action: Collect as much information as possible and submit a 
Software Performance Report (SPR). 

LBRNOELEM, Illegal library element is specified in 'filespec.' 

Explanation: You used incorrect syntax to specify a library module. 

User Action: Correct the module syntax in the description file. 

LEXFILELOOP, Included file 'filespec' is already open. 

Explanation: An included file is itself included at some deeper level. 
If undetected, this situation would cause an infinite sequence of 
included files. 

User Action: Remove the second level of inclusion in the file. 

LEXIFERR, Encountered .ENDIF without matching .IFDEF. 

Explanation: MMS found an .ENDIF directive in your description file 
but no corresponding .IFDEF directive. 

User Action: Correct the description file to remove the .ENDIF 
directive or add the necessary .IFDEF. 

MMS Messages A-13 



LEXILLNAME, Specified target name 'target' on line 'number' is illegal. 

Explanation: You used incorrect syntax to indicate the target on the 
specified line number of the description file. 

User Action: Correct the description file. 

LEXUNEXEND, Continuation character found at end of file. 

Explanation: MMS found a hyphen ( - ) or a backslash ( \) continua
tion character at the end of the description file. 

User Action: Revise the description file. Delete the continuation 
character or add another line. 

LFSBADFP, Cannot find source for target 'filespec.' 

Explanation: MMS cannot process an invalid file specification. This 
error can occur if you specified an undefined logical name as the 
target. 

User Action: Correct the syntax of the file specification and invoke 
MMS again. 

MBBADMODE, Unknown mode parameter 'mode number.' 

Explanation: An internal MMS component failed. 

User Action: Collect as much information as possible and submit a 
Software Performance Report (SPR). 

MBREDEFILL, Illegal attempt to redefine macro 'macro name.' 

Explanation: You attempted to redefine the specified macro in the 
description file. You cannot define the same macro twice in one 
description file. The attempt is ignored, and the original definition 
applies. 

User Action: If you want to redefine a macro, you must use the 
/MACRO qualifier on the MMS command line. 

NOACCESS, Unable to access file 'file'. 

Explanation: This message is followed by one or more messages 
describing why the file could not be accessed. 

User Action: Modify the file protection of the inaccessible file. 

A-14 MMS Messages 



NOLIBSPECDBL, Library module specifications not allowed as targets in 
double colon rules: 'filespec'. 

Explanation: You used a library module specification as a target in a 
double colon dependency rule. 

User Action: Rewrite the dependency as a single colon dependency 
using the library module specification or use only the library file 
name in your double colon dependency rule. You can write the 
preferred single colon syntax by using library module specifications. 
For example: 

UTIL(MOD1) : MOD1.0BJ 
LIBR UTIL.LIB MOD1.0BJ 

UTIL(MOD2) : MOD2.0BJ 
LIBR UTIL.LIB MOD2.0BJ 

The following dependency rule is correct for the double colon use: 

UTIL.OLB :: MOD1.0BJ 
LIBR UTIL.LIB MOD1.0BJ 

UTIL.OLB :: MOD2.0BJ 
LIBR UTIL.LIB MOD2.0BJ 

NOMACFIL, Cannot open macro file 'filespec.' 

Explanation: You specified either an illegal or a nonexistent file in the 
command line macro definitions. 

User Action: Create the file, or correct the file specification. 

NOOUTFIL, Cannot open output file 'filespec.' 

Explanation: MMS failed to create the output file. 

User Action: Verify that the file specification is legal, check your disk 
quota, or check the protection of an existing file of the same name as 
the output file. 

NOSTATUS, Unable to set MMS$STATUS to 'value.' 

Explanation: MMS received an error from VMS when trying to set 
the symbol MMS$STATUS. This error may occur if you have exceeded 
the available space for symbols defined by your process, or if symbol 
scope is set to noglobal. 

User Action: Either remove some of your symbols or have the system 
manager change the SYSGEN parameter CLISYMTBL or set symbol 
scope to global. 

MMS Messages A-15 



NOTARGET, No target specified. 

Explanation: You did not specify a target for MMS to build. 

User Action: Specify a target on the MMS command line, or correct 
the description file so that it specifies a target. 

UTLALLOCFAIL, Failed to allocate memory for dynamic data structures. 

Explanation: An MMS call to obtain more virtual memory failed. 
Either your description file is too large or a system service failed 
unexpectedly. 

User Action: Try trimming your description file. If this fails, consult 
your system manager about increasing the size of virtual address space 
available to your system processes. If this fails, submit a Software 
Performance Report (SPR). 

UTLBADMAC, Unterminated macro name 'string.' 

Explanation: The character combination$( was encountered without 
a matching closing parenthesis. As a result, on the line that contains 
the offending macro, all characters to the right of the$( are ignored. 

User Action: Correct the erroneous line. 

UTLUNDERFLOW, Deallocation of unallocated space. 

Explanation: This is an internal MMS error. 

User Action: Collect as much information as possible and submit a 
Software Performance Report (SPR). 

A-16 MMS Messages 



Appendix B 

MMS and UNIX 111ake Comparisons 

This appendix briefly compares the characteristics of MMS and UNIX make 
Version 7. It is designed to ease the transition to MMS for users already 
familiar with make. 

Because VMS and UNIX are very different operating systems, certain system
imposed changes were necessary to provide the features of make on VMS. The 
experienced user of make will notice the following differences: 

• In the absence of a /DESCRIPTION or /NODESCRIPTION qualifier, MMS 
looks first for the description file DESCRIP .MMS. It looks for MAKEFILE. 
only if it cannot locate DESCRIP .MMS. 

• In the target or source line of a dependency rule, there must be at least one 
space or tab on either side of the colon or double colon that separates the 
list of targets from the list of sources. The space or tab prevents MMS from 
trying to interpret the colon or colons as part of a VMS file specification. 

• MMS allows you to use commas as well as spaces to separate the elements 
in a list of targets or sources. 

• MMS allows either a number sign ( # ) or an exclamation point ( ! ) to be 
used as a comment character. On target or source lines, as well as on blank 
lines that separate dependency rules, the number sign and the exclamation 
point can be used interchangeably; however, on action lines, only the 
exclamation point may be used to indicate a comment. 

• In MMS, subprocesses are not executed independently of one another. 
Therefore, it is possible to define logical names, change directories, and in 
general manipulate the subprocess environment at will. 

• The dummy target .PRECIOUS, found in make, is not implemented in 
MMS. 

• When invoking a macro in MMS, you must enclose the macro name in 
parentheses. That is, $(A) is a legal invocation of an MMS macro, but $A is 
not. 

MMS and UNIX make Comparisons 8-1 



• MMS action lines may begin with either a space or a tab, and MMS 
assumes that any line that begins with a space or tab is an action line 
(unless the preceding line ends with a continuation character). 

• MMS has different built-in rules from those of make. See Table C-6 for the 
format and contents of MMS built-in rules. 

• MMS requires you to separate the Silent (@) and Ignore ( - ) action line 
prefixes from the rest of the action line by at least one space. 

• In a description file, the line continuation character can be either a hyphen 
( - ) or a backslash ( \ ). On the MMS command line, only the hyphen is 
legal. 

• In the specification of a VMS library module, you can use the question 
mark (?) wildcard character as a synonym for the percent sign ( % ) 
wild card. 

• MMS allows an optional format for dependency rules: 

PROG.OBJ DEPENDS_ON PROG.C 

UTIL.LIB ADDITIONALLY_DEPENDS_ON MOD1.0BJ 

In this format. DEPENDS-ON is used in place of the colon and 
ADDITIONALL Y_DEPENDS_ON is used in place of the double colon. 

For compatibility with make, MMS provides alternative formats for dependency 
rules, user-defined rules, and directives, and recognizes 2-character 
abbreviations for special macros. The experienced user of make will recognize 
the following make features in MMS: 

• MMS allows the following alternative format for dependency rules: 

target . . . [source . . . ] ; [action line . . . J 

In this format, the only legal comment character is an exclamation point ( ! ). 
You cannot use the Ignore ( - ) action line prefix with this format because 
the hyphen is interpreted as a line continuation character. 

• MMS allows the following alternative format for user-defined rules: 

. SRC. TAR : ; action line . . . 

In this format, you must include at least one space or tab on each side of 
the colon and the semicolon to prevent MMS from trying to interpret the 
rule as a file specification. You cannot use the Ignore ( - ) action line prefix 
with this format because the hyphen is interpreted as a line continuation 
character. 

• The name of a directive can be followed by a colon. For example, you can 
specify either .SILENT or .SILENT: in a description file. 

B-2 MMS and UNIX make Comparisons 



• The period preceding the .INCLUDE directive is optional. 

• MMS special macros can be abbreviated to two characters; see Table C-3. 

MMS and UNIX make Comparisons B-3 





Appendix C 

DEC/MMS Built-In Features 

This appendix contains tables of certain MMS built-in features, namely, the 
suffixes precedence list, the built-in rules, and the default macros. Chapter ,2 
contains detailed information about how these three features work together in 
MMS. 

The tables in this appendix are arranged as follows: 

• Table C-1 lists the default macros. 

• Table C-2 lists the changed default macros when you use the /SCA_ 
LIBRARY qualifier. 

• Table C-3 lists the special macros. 

• Table C-4 contains the suffixes precedence list. 

• Table C-5 lists and describes the directives used in a description file. 

• Table C-6 contains the standard built-in rules. 

• Table C-7 describes the built-in rules for accessing VMS libraries. 

• Table C-8 lists the built-in rules that change when you use the /SCA_ 
LIBRARY qualifier. 

• Table C-9 includes the built-in rules for accessing CMS library elements. 

For information on using MMS to create and access elements in VMS libraries, 
see Section 4.1; in CMS libraries, Section 4.2. 

DEC/MMS Built-In Features C-1 



C.1 MMS Default Macros 

MMS uses default macros to build your system if none are specified or 
redefined. 

Table C-1: MMS Default Macros 

Macro 

ANLFLAGS 

AS 

BASIC 

BASFLAGS1 

BLISS 

BLISS16 

BFLAGS1 

BLIBFLAGS1 

cc 
CFLAGS1 

COD FLAGS 

CLO FLAGS 

CMS 

CMSCOMMENT 

CMS FLAGS 

COBOL 

COBFLAGS 

CORAL 

CORFLAGS 

DIBOL 

DBLFLAGS 

FMS 

FMSFLAGS 

FORT 

Definition 

/OUTPUT=$(MMS$TARGET_NAME).ANL 

MACRO 

BASIC 

/NOLIST /OBJECT=$(MMS$TARGET_NAME).OBJ 

BLISS 

BLISS /PDPl 1 

/NOLIST /OBJECT=$(MMS$TARGET_NAME).OBJ 

/NO LIST 

cc 
/NOLIST /OBJECT=$(MMS$TARGET_NAME).OBJ 

null string 

null string 

CMS 

null string 

/GEN=$(MMS$CMS_GEN) 

COBOL 

/NOLIST /OBJECT=$(MMS$TARGET_NAME).OBJ 

CORAL 

/NOLIST /OBJECT=$(MMS$TARGET_NAME).OBJ 

DIBOL 

/NOLIST /OBJECT=$(MMS$TARGET_NAME).OBJ 

FMS 

/REPLACE 

FORTRAN 

1This default macro changes when you use the /SCA_LIBRARY qualifier. 

(continued on next page) 

C-2 DEC/MMS Built-In Features 



Table C-1 (Cont.): MMS Default Macros 

Macro 

FFLAGS1 

LIBR 

LIBRFLAGS 

LINK 

LINKFLAGS 

MACRO 

MFLAGS 

MSG FLAGS 

PASCAL 

PENVFLAGS 

PFLAGS1 

PLI 

PLIFLAGS 

RPG 

RPG FLAGS 

RUNOFF 

RFLAGS 

SCA 

SCAFLAGS 

SCALIBRARY1 

Definition 

/NOLIST /OBJECT=$(MMS$TARGELNAME).OBJ 

LIBRARY 

/REPLACE 

LINK 

/TRACE/NOMAP /EXEC=$(MMS$TARGET_NAME).EXE 

MACRO 

/NOLIST /OBJECT=$(MMS$TARGET_NAME).OBJ 

/NOLIST /OBJECT=$(MMS$TARGET_NAME).OBJ 

PASCAL 

/NO LIST 

/NOLIST /OBJECT=$(MMS$TARGET_NAME).OBJ 

PLI 

/NOLIST /OBJECT=$(MMS$TARGET_NAME).OBJ 

RPG 

/NOLIST /OBJECT=$(MMS$TARGET_NAME).OBJ 

RUNOFF 

/OUTPUT=$(MMS$TARGET_NAME).OBJ 

SCA 

/LOG 

Not defined 

1This default macro changes when you use the /SCA_LIBRARY qualifier. 

DEC/MMS Built-In Features C-3 



C.2 Default Macro Changes with /SCA_LIBRARV 

Table C-2: /SCA_LIBRARY Default Macros 

Macro 

SCA 

SCA LIBRARY 

BAS FLAGS 

BLIBFLAGS 

BFLAGS 

CFLAGS 

FFLAGS 

PFLAGS 

PLIFLAGS 

Definition 

SCA 

library name from /SCA_LIBRARY qualifier 

/NOLIST /OBJECT=$(MMS$TARGELNAME).OBJ /ANALYSIS_ 
DATA=$(MMS$TARGET_NAME).ANA 

/NOLIST /ANAL YSIS_DATA=$(MMS$TARGELNAME).ANA 

/NOLIST /OBJECT=$(MMS$TARGET_NAME).OBJ /ANALYSIS_ 
DATA=$(MMS$TARGET_NAME).ANA 

/NOLIST /OBJECT=$(MMS$TARGET_NAME).OBJ /ANALYSIS_ 
DATA=$(MMS$TARGET_NAME).ANA 

/NOLIST /OBJECT=$(MMS$TARGET_NAME).OBJ /ANALYSIS_ 
DATA=$(MMS$TARGET_NAME).ANA 

/NOLIST /OBJECT=$(MMS$TARGET_NAME).OBJ /ANALYSIS_ 
DATA=$(MMS$TARGET_NAME).ANA 

/NOLIST /OBJECT=$(MMS$TARGET_NAME).OBJ /ANALYSIS_ 
DATA=$(MMS$TARGET_NAME).ANA 

C-4 DEC/MMS Built-In Features 



C.3 MMS Special Macros 

Table C-3 lists the MMS special macros and describes their functions. The 
table also lists a symbol that you can use as an abbreviation for each macro. 

Table C-3: MMS Special Macros 

Macro 

MMS$TARGET 

MMS$TARGET_NAME 

MMS$SOURCE 

MMS$SOURCE_LIST 

MMS$CHANGED_LIST 

MMS$LIB_ELEMENT 

MMS$CMS_ELEMENT 

MMS$CMS_GEN 

MMS$CMS_LIBRARY 

Symbol Meaning 

$@ Expands to the mnemonic name or the 
complete file specification of the target 
currently being updated. 

$• Expands to the mnemonic name or the 
file name (excluding the file type) of 
the target being updated. The device, 
directory, and node information are 
included. 

$ < Expands to the source file specification. 

$+ Expands to a comma list of the full file 
specifications of all sources specified 
in this dependency rule, including any 
sources implied by built-in rules. 

$? Expands to a comma list of the full 
file specifications of all sources that 
have changed since the target was 
updated, including any sources implied 
by built-in rules. 

$ % Expands to the name of a module 
in a VMS library and its file name, 
including the file type (see Section 4.1). 

$ < Expands to the implicit CMS element 
specification (if the source file is a CMS 
element). 

$& Expands to the CMS generation speci
fied by the source file (if the source is a 
CMS element). 

$@ Expands to the CMS library specifica
tion (if the source is a CMS element). 

DEC/MMS Built-In Features C-5 



C.4 MMS Suffixes Precedence List 

Table C-4: The Suffixes Precedence List 

.SUFFIXES .ANL .EXE .OLB .MLB .HLB .TLB .FLB .OBJ .BLI .B32 .C 
.COB .FOR .BAS .Bl6 .PLI .PEN .PAS .MAC .MAR .CLD 
.MSG .COR .DBL .RPG .MEM .RNO .HLP .RNH .L32 .REQ 
.R32 .Ll6 .R16 .TXT .H .FRM .MMS .DDL .COM .DAT 
.OPT .ANL-- 1.BAS-- .BLI-- .B32-- .B16-- .C-- .CLD-
.COB-- .COM-- .COR-- .DAT-- .DDL-- .FOR-- .FRM-
.HLP-- .H-- .MAC-- .MAR-- .MMS-- .DBL-- .MSG-
.OPT-- .PAS-- .PLI-- .REQ-- .R32-- .R16-- .RNH-
.RNO-- .RPG-- .TXT--

1 A tilde ( - ) after a file type indicates that the file is in a CMS library. See Section 4.2 for 
information on using MMS to access CMS elements. 

C-6 DEC/MMS Built-In Features 



C.5 MMS Directives 

Table C-5: 

Directive 

.IGNORE 

.SILENT 

.DEFAULT 

.SUFFIXES 

.INCLUDE 

.FIRST 

.LAST 

.IFDEF 

.ELSE 

.ENDIF 

MMS Directives 

Function 

Causes MMS to ignore all errors generated by all action 
lines and to continue processing the description file. 

Suppresses the writing of all action lines to the output file 
(whether to SYS$0UTPUT or to the file specified by the 
/OUTPUT qualifier). 

Indicates actions to be performed if MMS built-in rules or 
user-defined rules do not specify how to update a target. 

Clears, adds to, or redefines the suffixes precedence list. 

Includes the specified file in the description file . 

Indicates actions to be performed before MMS has executed 
any action lines to update the target. 

Indicates actions to be performed after MMS has executed 
all the action lines that update the target. 

Causes subsequent lines of a description file to be processed 
only if the specified macro is defined. 

Causes subsequent lines of a description file to be processed 
if the specified macro for the .IFDEF directive is undefined. 

Terminates the set of lines in the description file whose 
processing is controlled by .IFDEF or .ELSE. 

DEC/MMS Bullt-ln Features C-7 



C.6 MMS Built-In Rules 

Table C-6: MMS Built-In Rules 

Source Target Action 

.BAS1 .OBJ $(BASIC) $(BASFLAGS) $(MMS$SOURCE) 

.BLl1 .OBJ $(BLISS) $(BFLAGS) $(MMS$SOURCE) 

.B161 .OBJ $(BLISS16) $(BFLAGS) $(MMS$SOURCE) 

.B321 .OBJ $(BLISS) $(BFLAGS) $(MMS$SOURCE) 

.C1 .OBJ $(CC) $(CFLAGS) $(MMS$SOURCE) 

.CLD .OBJ SET COMMAND /OBJECT=$(MMS$TARGELNAME) 

$(CLDFLAGS) $(MMS$SOURCE) 

.COB .OBJ $(COBOL) $(COBFLAGS) $(MMS$SOURCE) 

.COR .OBJ $(CORAL) $(CORFLAGS) $(MMS$SOURCE) 

.DBL .OBJ $(DIBOL) $(DBLFLAGS) $(MMS$SOURCE) 

.EXE .ANL ANALYZE/IMAGE $(ANLFLAGS) $(MMS$SOURCE) 

.FOR1 .OBJ $(FORT) $(FFLAGS) $(MMS$SOURCE) 

.MAC .OBJ $(MACRO) $(MFLAGS) $(MMS$SOURCE) 

.MAR .OBJ $(MACRO) $(MFLAGS) $(MMS$SOURCE) 

.MSG .OBJ MESSAGE $(MSGFLAGS) $(MMS$SOURCE) 

.OBJ .EXE $(LINK) $(LINKFLAGS) $(MMS$SOURCE) 

.OBJ .ANL ANALYZE/OBJECT $(ANLFLAGS) $(MMS$SOURCE) 

.PAS1 .OBJ $(PASCAL) $(PFLAGS) $(MMS$SOURCE) 

.PAS .PEN $(PASCAL) /ENVIRON=$(MMS$TARGET) 

$(PENVFLAGS) $(MMS$SOURCE) 

.PLI1 .OBJ $(PLI) $(PLIFLAGS) $(MMS$SOURCE) 

.RNH .HLP $(RUNOFF) $(RFLAGS) $(MMS$SOURCE) 

.RNO .MEM $(RUNOFF) $(RFLAGS) $(MMS$SOURCE) 

1The use of the /SCA_LIBRARY qualifier changes some of these built-in rules. See Table C-8 for 
a list of rules changes. 

(continued on next page) 

C-8 DEC/MMS Built-In Features 



Table C-6 (Cont.): MMS Built-In Rules 

Source Target Action 

.REQ1 .L32 $(BLISS) /LIBRARY=$(MMS$TARGET) 

$(BLIBFLAGS) $(MMS$SOURCE) 

.RPG .OBJ $(RPG) $(RPGFLAGS) $(MMS$SOURCE) 

.Rl61 .L16 $(BLISS16) /LIBRARY=$(MMS$TARGET) 

$(BFLAGS) $(MMS$SOURCE) 

.R321 .L32 $(BLISS) /LIBRARY=$(MMS$TARGET) 

$(BFLAGS) $(MMS$SOURCE) 

1The use of the /SCA_LIBRARY qualifier changes some of these built-in rules. See Table C-8 for 
a list of rules changes. 

C. 7 Built-In Rules for Library Files 

Table C-7: Built-In Rules for Library Files 

.HLP.HLB 
IF II I I F$SEARCH (II$ (MMS$TARGET) II) I II • EQS. 1111 -

THEN $(LIBR)/CREATE/HELP $(MMS$TARGET) 
$(LIBR) $(LIBRFLAGS) $(MMS$TARGET) $(MMS$SOURCE) 

To build a macro library: 

.MAR.MLB 
IF 1111 F$SEARCH( 11 $(MMS$TARGET) 11 ) Ill .EQS. 1111 

-

THEN $(LIBR)/CREATE/MAC $(MMS$TARGET) 
$(LIBR) $(LIBRFLAGS) $(MMS$TARGET) $(MMS$SOURCE) 

.MAC.MLB 
IF 1111 F$SEARCH( 11 $(MMS$TARGET) 11

) Ill .EQS. 1111 
-

THEN $(LIBR)/CREATE/MAC $(MMS$TARGET) 
$(LIBR) $(LIBRFLAGS) $(MMS$TARGET) $(MMS$SOURCE) 

(continued on next page) 

DEC/MMS Built-In Features C-9 



Table C-7 (Cont.): Built-In Rules for Library Files 

To build an object library: 

.OBJ.OLB 
IF 111 1 F$SEARCH( 11 $(MMS$TARGET) 11

) 'II .EQS. 1111 
-

THEN $(LIBR)/CREATE $(MMS$TARGET) 
$(LIBR) $(LIBRFLAGS) $(MMS$TARGET) $(MMS$SOURCE) 

.TXT.TLB 
IF II I 'F$SEARCH ( 11 $ (MMS$TARGET) II) I II • EQS. "" -

THEN $(LIBR)/CRF..ATE/TEXT $(MMS$TARGET) 
$(LIBR) $(LIBRFLAGS) $(MMS$TARGET) $(MMS$SOURCE) 

To build an FMS library: 

.FRM.FLB 
IF 111 1 F$SEARCH( 11 $(MMS$TARGET)") 'II .NES. 1111 

-

THEN $(FMS)/LIBRARY $(FMSFLAGS) $(MMS$TARGET) $(MMS$SOURCE) 

IF '" ' F$SEARCH (II$ (MMS$T ARGET) ") "' . EQS . II" -
THEN $(FMS)/LIBRARY/CREATE $(MMS$TARGET) $(MMS$SOURCE) 

C-1 0 DEC/MMS Built-In Features 



C.8 MMS Built-In Rules for /SCA_LIBRARY Qualifier 

Table C-8: Changes to Built-In Rules When Using the /SCA_LIBRARY Qualifier 

.BAS.OBJ : 
$(BASIC) $(BASFLAGS) $(MMS$SOURCE) 
mms$scalib = F$TRNLNM( "SCA$LIBRARY" 
mms$scasetlib = 0 
IF mms$scalib .EQS. 1111 .AND. 11 $(SCALIBRARY) 11 .NES. 11 SCA$LIBRARY: 11 THEN

mms$scasetlib = 2 
IF mms$scalib .NES. 1111 .AND. 11 $(SCALIBRARY) 11 .NES. 11 SCA$LIBRARY: 11 .AND.

mms$scalib .NES. 11 $(SCALIBRARY) 11 THEN mms$scasetlib = 3 
IF F$SEARCH( 11 $(SCALIBRARY)SCA$EVENT.DAT") .EQS. '"' THEN -

mms$scasetlib = (mms$scasetlib .AND .. NOT. 2) .OR. 4 
IF (mms$scasetlib .AND. 4) .EQ. 4 THEN $(SCA) CREATE LIBRARY $(SCAFLAGS) -

$(SCALIBRARY) 
IF (mms$scasetlib .AND. 2) .EQ. 2 THEN $(SCA) SET LIBRARY $(SCAFLAGS) -

$(SCALIBRARY) 
$(SCA) LOAD $(SCAFLAGS) $(MMS$TARGET_NAME).ANA 
IF mms$scasetlib THEN $(SCA) SET LIBRARY $(SCAFLAGS) 'mms$scalib' 

.BLI.OBJ : 
$(BLISS) $(BFLAGS) $(MMS$SOURCE) 
mms$scalib = F$TRNLNM( "SCA$LIBRARY" 
mms$scasetlib = 0 
IF mms$scalib .EQS. 1111 .AND. 11 $(SCALIBRARY) 11 .NES. "SCA$LIBRARY:" THEN -

mms$scasetlib = 2 
IF mms$scalib .NES. '"' .AND. 11 $(SCALIBRARY) 11 .NES. "SCA$LIBRARY:" .AND. -

mms$scalib .NES. 11 $(SCALIBRARY) 11 THEN mms$scasetlib = 3 
IF F$SEARCH( 11 $(SCALIBRARY)SCA$EVENT.DAT11

) .EQS. 1111 THEN -
mms$scasetlib = (mms$scasetlib .AND .. NOT. 2) .OR. 4 

IF (mms$scasetlib .AND. 4) .EQ. 4 THEN $(SCA) CREATE LIBRARY $(SCAFLAGS) -
$(SCALIBRARY) 

IF (mms$scasetlib .AND. 2) .EQ. 2 THEN $(SCA) SET LIBRARY $(SCAFLAGS) -
$(SCALIBRARY) 

$(SCA) LOAD $(SCAFLAGS) $(MMS$TARGET_NAME).ANA 
IF mms$scasetlib THEN $(SCA) SET LIBRARY $(SCAFLAGS) 'mms$scalib' 

(continued on next page) 

DEC/MMS Built-In Features C-11 



Table C-8 (Cont.): Changes to Built-In Rules When Using the /SCA_LIBRARY 
Qualifier 

.B32.0BJ : 
$(BLISS) $(BFLAGS) $(MMS$SOURCE) 
mms$scalib = F$TRNLNM( 11 SCA$LIBRARY 11 

mms$scasetlib = 0 
IF mms$scali b . EQS. 1111 

• AND. 11 $ (SCALIBRARY) 11 • NES. 11 SCA$LIBRARY: 11 THEN -
mms$scasetlib = 2 

IF mms$scali b . NES. 1111 
• AND. 11 $ (SCALIBRARY) 11 

• NES. 11 SCA$LIBRARY: 11 
• AND. -

mms$scalib .NES. 11 $(SCALIBRARY) 11 THEN mms$scasetlib = 3 
IF F$SEARCH( 11 $(SCALIBRARY)SCA$EVENT.DAT11 ) .EQS. 1111 THEN -

mms$scasetlib = (mms$scasetlib .AND .. NOT. 2) .OR. 4 
IF (mms$scasetlib .AND. 4) .EQ. 4 THEN $(SCA) CREATE LIBRARY $(SCAFLAGS) -

$(SCALIBRARY) 
IF (mms$scasetlib .AND. 2) .EQ. 2 THEN $(SCA) SET LIBRARY $(SCAFLAGS) -

$(SCALIBRARY) 
$(SCA) LOAD $(SCAFLAGS) $(MMS$TARGET_NAME).ANA 
IF mms$scasetlib THEN $(SCA) SET LIBRARY $(SCAFLAGS) 1mms$scalib 1 

.C.OBJ : 
$(CC) $(CFLAGS) $(MMS$SOURCE) 
mms$scalib = F$TRNLNM( 11 SCA$LIBRARY 11 

mms$scasetlib = 0 
IF mms$scalib .EQS. 1111 .AND. 11 $(SCALIBRARY) 11 .NES. 11 SCA$LIBRARY: 11 THEN -

mms$scasetlib = 2 
IF mms$scalib .NES. 1111 .AND. 11 $(SCALIBRARY) 11 .NES. 11 SCA$LIBRARY: 11 .AND. -

mms$scalib .NES. 11 $(SCALIBRARY) 11 THEN mms$scasetlib = 3 
IF F$SEARCH( 11 $(SCALIBRARY)SCA$EVENT.DAT11

) .EQS. 1111 THEN -
mms$scasetlib = (mms$scasetlib .AND .. NOT. 2) .OR. 4 

IF (mms$scasetlib .AND. 4) .EQ. 4 THEN $(SCA) CREATE LIBRARY $(SCAFLAGS) 
$(SCALIBRARY) 

IF (mms$scasetlib .AND. 2) .EQ. 2 THEN $(SCA) SET LIBRARY $(SCAFLAGS) 
$(SCALIBRARY) 

$(SCA) LOAD $(SCAFLAGS) $(MMS$TARGZT_NAME).ANA 
IF mms$scasetlib THEN $(SCA) SET LIBRARY $(SCAFLAGS) 1mms$scalib 1 

(continued on next page) 

C-12 DEC/MMS Built-In Features 



Table C-8 (Cont.): Changes to Built-In Rules When Using the /SCA_LIBRARY 
Qualifier 

.FOR.OBJ : 
$(FORT) $(FFLAGS) $(MMS$SOURCE) 
mms$scalib = F$TRNLNM( 11 SCA$LIBRARY 11 

mms$scasetlib = 0 
IF mms$scali b . EQS. 1111 

• AND. 11 $ (SCALIBRARY) 11 
• NES . 11 SCA$LIBRARY: 11 THEN -

mms$scasetlib = 2 
IF mms$scalib .NES. 1111 .AND. 11 $(SCALIBRARY) 11 

• NES. 11 SCA$LIBRARY: 11 .AND. -
mms$scalib .NES. 11 $(SCALIBRARY) 11 THEN mms$scasetlib = 3 

IF F$SEARCH( 11 $(SCALIBRARY)SCA$EVENT.DAT11 ) .EQS. 1111 THEN -
mms$scasetlib = (mms$scasetlib .AND .. NOT. 2) .OR. 4 

IF (mms$scasetlib .AND. 4) .EQ. 4 THEN $(SCA) CREATE LIBRARY $(SCAFLAGS) -
$(SCALIBRARY) 

IF (mms$scasetlib .AND. 2) .EQ. 2 THEN $(SCA) SET LIBRARY $(SCAFLAGS) -
$(SCALIBRARY) 

$(SCA) LOAD $(SCAFLAGS) $(MMS$TARGET_NAME).ANA 
IF mms$scasetlib THEN $(SCA) SET LIBRARY $(SCAFLAGS) 1mms$scalib 1 

.PAS.OBJ : 
$(PASCAL) $(PFLAGS) $(MMS$SOURCE) 
mms$scalib = F$TRNLNM( 11 SCA$LIBRARY11 

mms$scasetlib = 0 
IF mms$scalib .EQS. 1111 .AND. 11 $(SCALIBRARY) 11 • NES. 11 SCA$LIBRARY: 11 THEN -

mms$scasetlib = 2 
IF mms$scalib .NES. 1111 .AND. 11 $(SCALIBRARY) 11 .NES. 11 SCA$LIBRARY: 11 .AND. -

mms$scalib .NES. 11 $(SCALIBRARY) 11 THEN mms$scasetlib = 3 
IF F$SEARCH( 11 $(SCALIBRARY)SCA$EVENT.DAT11 ) .EQS. 1111 THEN -

mms$scasetlib = (mms$scasetlib .AND .. NOT. 2) .OR. 4 
IF (mms$scasetlib .AND. 4) .EQ. 4 THEN $(SCA) CREATE LIBRARY $(SCAFLAGS) -

$ (SCALIBRARY) 
IF (mms$scasetlib .AND. 2) .EQ. 2 THEN $(SCA) SET LIBRARY $(SCAFLAGS) -

$(SCALIBRARY) 
$(SCA) LOAD $(SCAFLAGS) $(MMS$TARGET_NAME) .ANA 
IF mms$scasetlib THEN $(SCA) SET LIBRARY $(SCAFLAGS) 1mms$scalib 1 

(continued on next page) 

DEC/MMS Built-In Features C-13 



Table C-8 (Cont.): Changes to Built-In Rules When Using the /SCA_LIBRARV 
Qualifier 

.PLI.OBJ : 
$(PL!) $(PLIFLAGS) $(MMS$SOURCE) 
mms$scalib = F$TRNLNM( 11 SCA$LIBRARY 11 

mms$scasetlib = 0 
IF mms$scalib .EQS. 1111 .AND. 11 $(SCALIBRARY) 11 .NES. 11 SCA$LIBRARY: 11 THEN -

mms$scasetlib = 2 
IF mms$scali b . NES. '"' . AND. 11 $ (SCALIBRARY) 11 

• NES. "SCA$LIBRARY: 11 
• AND. -

mms$scalib .NES. 11 $(SCALIBRARY) 11 THEN mms$scasetlib = 3 
IF F$SEARCH( 11 $(SCALIBRARY)SCA$EVENT.DAT11

) .EQS. 1111 THEN -
mms$scasetlib = (mms$scasetlib .AND .. NOT. 2) .OR. 4 

IF (mms$scasetlib .AND. 4) .EQ. 4 THEN $(SCA) CREATE LIBRARY $(SCAFLAGS) -
$ (SCALIBRARY) 

IF (mms$scasetlib .AND. 2) .EQ. 2 THEN $(SCA) SET LIBRARY $(SCAFLAGS) -
$(SCALIBRARY) 

$(SCA) LOAD $(SCAFLAGS) $(MMS$TARGET_NAME).ANA 
IF mms$scasetlib THEN $(SCA) SET LIBRARY $(SCAFLAGS) 'mms$scalib' 

.REQ.L32 : 
$(BLISS)/LIBRARY=$(MMS$TARGET) $(BLIBFLAGS) $(MMS$SOURCE) 
mms$scalib = F$TRNLNM( 11 SCA$LIBRARY 11 

) 

mms$scasetlib = 0 
IF mms$scalib .EQS. 1111 .AND. 11 $(SCALIBRARY) 11 .NES. 11 SCA$LIBRARY: 11 THEN -

mms$scasetlib = 2 
IF mms$scalib .NES. 1111 .AND. 11 $(SCALIBRARY) 11 .NES. 11 SCA$LIBRARY: 11 .AND. -

mms$scalib .NES. 11 $(SCALIBRARY) 11 THEN mms$scasetlib = 3 
IF F$SEARCH( 11 $(SCALIBRARY)SCA$EVENT.DAT11

) .EQS. 1111 THEN -
mms$scasetlib = (mms$scasetlib .AND .. NOT. 2) .OR. 4 

IF (mms$scasetlib .AND. 4) .EQ. 4 THEN $(SCA) CREATE LIBRARY $(SCAFLAGS) -
$(SCALIBRARY) 

IF (mms$scasetlib .AND. 2) .EQ. 2 THEN $(SCA) SET LIBRARY $(SCAFLAGS) -
$(SCALIBRARY) 

$(SCA) LOAD $(SCAFLAGS) $(MMS$TARGET_NAME).ANA 
IF mms$scasetlib THEN $(SCA) SET LIBRARY $(SCAFLAGS) 'mms$scalib' 

(continued on next page) 

C-14 DEC/MMS Built-In Features 



Table C-8 (Cont.): Changes to Built-In Rules When Using the /SCA_LIBRARY 
Qualifier 

.R32.L32 : 
$(BLISS)/LIBRARY=$(MMS$TARGET) $(BLIBFLAGS) $(MMS$SOURCE) 
mms$scalib = F$TRNLNM( "SCA$LIBRARY" ) 
mms$scasetlib = 0 
IF mms$scalib .EQS. "" .AND. 11 $(SCALIBRARY) 11 .NES. 11 SCA$LIBRARY: 11 THEN -

mms$scasetlib = 2 
IF mms$scalib .NES. 1111 .AND. 11 $(SCALIBRARY) 11 .NES. "SCA$LIBRARY:" .AND. -

mms$scalib .NES. 11 $(SCALIBRARY) 11 THEN mms$scasetlib = 3 
IF F$SEARCH( 11 $(SCALIBRARY)SCA$EVENT.DAT11

) .EQS. "" THEN -
mms$scasetlib = (mms$scasetlib .AND .. NOT. 2) .OR. 4 

IF (mms$scasetlib .AND. 4) .EQ. 4 THEN $(SCA) CREATE LIBRARY $(SCAFLAGS) -
$(SCALIBRARY) 

IF (mms$scasetlib .AND. 2) .EQ. 2 THEN $(SCA) SET LIBRARY $(SCAFLAGS) -
$(SCALIBRARY) 

$(SCA) LOAD $(SCAFLAGS) $(MMS$TARGET_NAME) .ANA 
IF mms$scasetlib THEN $(SCA) SET LIBRARY $(SCAFLAGS) 'mms$scalib' 

DEC/MMS Built-In Features C-15 



C.9 MMS Built-In Rules for CMS Access 

The following table lists the rules for accessing specific libraries when using 
MMS. 

Table C-9: Built-In Rules for CMS Access 

CMS Rules 

.ANL-.ANL : 
mms$cmslib :== 1 f$trnlnm( 11 CMS$LIB 11

) 

IF mms$cmslib .nes. 11 $(MMS$CMS_LIBRARY) 11 THEN $(CMS) SET LIBRARY -
$(MMS$CMS_LIBRARY) 

$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).ANL -
$(CMSFLAGS) $(CMSCOMMENT) 

IF mms$cmslib .NES. 1111 .AND. mms$cmslib .NES. 11 $(MMS$CMS_LIBRARY) 11 -

THEN $(CMS) SET LIBRARY 1mms$cmslib 1 

.BAS-.BAS : 
mms$cmslib :== 1 f$trnlnm( 11 CMS$LIB 11 ) 

IF mms$cmslib .nes. 11 $(MMS$CMS_LIBRARY) 11 THEN $(CMS) SET LIBRARY -
$(MMS$CMS_LIBRARY) 

$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).BAS -
$(CMSFLAGS) $(CMSCOMMENT) 

IF mms$cmslib .NES. 1111 .AND. mms$cmslib .NES. 11 $(MMS$CMS_LIBRARY) 11 -

THEN $(CMS) SET LIBRARY 1mms$cmslib 1 

.BLr .BL! : 
mms$cmslib :== 1 f$trnlnm( 11 CMS$LIB 11 ) 

IF mms$cmslib .nes. 11 $(MMS$CMS_LIBRARY) 11 THEN $(CMS) SET LIBRARY -
$(MMS$CMS_LIBRARY) 

$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).BLI -
$(CMSFLAGS) $(CMSCOMMENT) 

IF mms$cmslib .NES. 1111 .AND. mms$cmslib .NES. 11 $(MMS$CMS_LIBRARY) 11 -

THEN $(CMS) SET LIBRARY 1mms$cmslib 1 

(continued on next page) 

C-16 DEC/MMS Built-In Features 



Table C-9 (Cont.): Built-In Rules for CMS Access 

CMS Rules 

.B16- .B16 : 
mms$cmslib :== 1f$trnlnm( 11 CMS$LIB 11

) 

IF mms$cmslib .nes. "$(MMS$CMS_LIBRARY)" THEN $(CMS) SET LIBRARY -
$(MMS$CMS_LIBRARY) 

$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).B16 -
$(CMSFLAGS) $(CMSCOMMENT) 

IF mms$cmslib .NES. "" .AND. mms$cmslib .NES. 11 $(MMS$CMS_LIBRARY) 11 
-

THEN $(CMS) SET LIBRARY 'mms$cmslib' 

.B32-.B32 : 

.c-.c 

mms$cmslib :== 'f$trnlnm("CMS$LIB") 
IF mms$cmslib .nes. "$(MMS$CMS_LIBRARY)" THEN $(CMS) SET LIBRARY -

$(MMS$CMS_LIBRARY) 
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).B32 -

$(CMSFLAGS) $(CMSCOMMENT) 
IF mms$cmslib .NES. "" .AND. mms$cmslib .NES. 11 $(MMS$CMS_LIBRARY) 11 

-

THEN $(CMS) SET LIBRARY 'mms$cmslib' 

mms$cmslib :== 'f$trnlnm("CMS$LIB") 
IF mms$cmslib .nes. 11 $(MMS$CMS_LIBRARY) 11 THEN $(CMS) SET LIBRARY -

$(MMS$CMS_LIBRARY) 
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).C -

$(CMSFLAGS) $(CMSCOMMENT) 
IF mms$cmslib .NES. 1111 .AND. mms$cmslib .NES. 11 $(MMS$CMS_LIBRARY)" -

THEN $(CMS) SET LIBRARY 'mms$cmslib' 

.cLD-.CLD : 
mms$cmslib :== 1f$trnlnm( 11 CMS$LIB 11 ) 

IF mms$cmslib .nes. 11 $(MMS$CMS_LIBRARY) 11 THEN $(CMS) SET LIBRARY -
$(MMS$CMS_LIBRARY) 

$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).CLD -
$(CMSFLAGS) $(CMSCOMMENT) 

IF mms$cmslib .NES. 1111 .AND. mms$cmslib .NES. 11 $(MMS$CMS_LIBRARY)" -
THEN $(CMS) SET LIBRARY 'mms$cmslib' 

(continued on next page) 

DEC/MMS Built-In Features C-17 



Table C-9 (Cont.): Built-In Rules for CMS Access 

CMS Rules 

.coB-.coB : 
mms$cmslib :== 1f$trnlnm( 11 CMS$LIB 11 ) 

IF mms$cmslib .nes. 11 $(MMS$CMS_LIBRARY) 11 THEN $(CMS) SET LIBRARY -
$(MMS$CMS_LIBRARY) 

$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).COB -
$(CMSFLAGS) $(CMSCOMMENT) 

IF mms$cmslib . NES. 1111 • AND. mms$cmslib . NES. 11 $ (MMS$CMS_LIBRARY) 11 -

THEN $(CMS) SET LIBRARY 'mms$cmslib' 

.CoR-.CoR : 
mms$cmslib :== 1f$trnlnm( 11 CMS$LIB 11 ) 

IF mms$cmslib .nes. 11 $(MMS$CMS_LIBRARY) 11 THEN $(CMS) SET LIBRARY -
$(MMS$CMS_LIBRARY) 

$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).COR -
$(CMSFLAGS) $(CMSCOMMENT) 

IF mms$cmslib . NES. 1111 • AND. mms$cmslib . NES. 11 $ (MMS$CMS_LIBRARY) 11 -

THEN $(CMS) SET LIBRARY 'mms$cmslib' 

.coM-.coM : 
mms$cmslib :== 1f$trnlnm( 11 CMS$LIB 11 ) 

IF mms$cmslib .nes. 11 $(MMS$CMS_LIBRARY) 11 THEN $(CMS) SET LIBRARY -
$(MMS$CMS_LIBRARY) 

$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).COM -
$(CMSFLAGS) $(CMSCOMMENT) 

IF mms$cmslib . NES. 1111 • AND. mms$cmslib . NES. 11 $ (MMS$CMS_LIBRARY)" -
THEN $(CMS) SET LIBRARY 'mms$cmslib' 

.DAr.DAT : 
mms$cmslib :== 'f$trnlnm( 11 CMS$LIB 11 ) 

IF mms$cmslib .nes. 11 $(MMS$CMS_LIBRARY) 11 THEN $(CMS) SET LIBRARY -
$(MMS$CMS_LIBRARY) 

$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).DAT -
$(CMSFLAGS) $(CMSCOMMENT) 

IF mms$cmslib .NES. 1111 .AND. mms$cmslib .NES. 11 $(MMS$CMS_LIBRARY) 11 -

THEN $(CMS) SET LIBRARY 'mms$cmslib' 

(continued on next page) 

C-18 DEC /MMS Built-In Features 



Table C-9 (Cont.): Built-In Rules for CMS Access 

CMS Rules 

.DBL-.DBL : 
mms$cmslib :== 'f$trnlnm( 11 CMS$LIB 11

) 

IF mms$cmslib .nes. 11 $(MMS$CMS_LIBRARY) 11 THEN $(CMS) SET LIBRARY -
$(MMS$CMS_LIBRARY) 

$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).DBL -
$(CMSFLAGS) $(CMSCOMMENT) 

IF mms$cmsli b . NES. 1111 • AND. mms$cmsli b . NES. 11 $ (MMS$CMS_LIBRARY) 11 -

THEN $(CMS) SET LIBRARY 'mms$cmslib' 

.DDL-.DDL : 
mms$cmslib :== 1f$trnlnm( 11 CMS$LIB 11

) 

IF mms$cmslib .nes. 11 $(MMS$CMS_LIBRARY)" THEN $(CMS) SET LIBRARY -. 
$(MMS$CMS_LIBRARY) 

$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).DDL -
$(CMSFLAGS) $(CMSCOMMENT) 

IF mms$cmslib . NES. 1111 
• AND. mms$cmslib . NES. 11 $ (MMS$CMS_LIBRARY) 11 -

THEN $(CMS) SET LIBRARY 'mms$cmslib' 

.FOR-.FOR : 
mms$cmslib :== 'f$trnlnm("CMS$LIB11 ) 

IF mms$cmslib .nes. 11 $(MMS$CMS_LIBRARY)" THEN $(CMS) SET LIBRARY -
$(MMS$CMS_LIBRARY) 

$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).FOR -
$(CMSFLAGS) $(CMSCOMMENT) 

IF mms$cmslib .NES. 1111 .AND. mms$cmslib .NES. 11 $(MMS$CMS_LIBRARY) 11 -

THEN $(CMS) SET LIBRARY 'mms$cmslib' 

.FRM-.FRM : 
mms$cmslib :== 1f$trnlnm("CMS$LIB 11

) 

IF mms$cmslib .nes. 11 $(MMS$CMS_LIBRARY) 11 THEN $(CMS) SET LIBRARY -
$(MMS$CMS_LIBRARY) 

$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).FRM -
$(CMSFLAGS) $(CMSCOMMENT) 

IF mms$cmslib .NES. 1111 .AND. mms$cmslib .NES. 11 $(MMS$CMS_LIBRARY) 11 -

THEN $(CMS) SET LIBRARY 'mms$cmslib' 

(continued on next page) 

DEC/MMS Built-In Features C-19 



Table C-9 (Cont.): Built-In Rules for CMS Access 

CMS Rules 

mms$cmslib :== 1 f$trnlnm( 11 CMS$LIB 11 ) 

IF mms$cmslib .nes. 11 $(MMS$CMS_LIBRARY) 11 THEN $(CMS) SET LIBRARY -
$(MMS$CMS_LIBRARY) 

$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).H -
$(CMSFLAGS) $(CMSCOMMENT) 

IF mms$cmslib .NES. 1111 .AND. mms$cmslib .NES. 11 $(MMS$CMS_LIBRARY) 11 -

THEN $(CMS) SET LIBRARY 1mms$cmslib' 

.HLP-.HLP : 
mms$cmslib :== 'f$trnlnm( 11 CMS$LIB 11 ) 

IF mms$cmslib .nes. 11 $(MMS$CMS_LIBRARY) 11 THEN $(CMS) SET LIBRARY -
$(MMS$CMS_LIBRARY) 

$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).HLP -
$(CMSFLAGS) $(CMSCOMMENT) 

IF mms$cmslib .NES. 1111 .AND. mms$cmslib .NES. 11 $(MMS$CMS_LIBRARY) 11 -

THEN $(CMS) SET LIBRARY 'mms$cmslib' 

.MAc-.MAc : 
mms$cmslib :== 'f$trnlnm( 11 CMS$LIB 11 ) 

IF mms$cmslib .nes. 11 $(MMS$CMS_LIBRARY) 11 THEN $(CMS) SET LIBRARY -
$(MMS$CMS_LIBRARY) 

$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).MAC -
$(CMSFLAGS) $(CMSCOMMENT) 

IF mms$cmslib .NES. 1111 .AND. mms$cmslib .NES. 11 $(MMS$CMS_LIBRARY) 11 -

THEN $(CMS) SET LIBRARY 'mms$cmslib' 

.MAR-.MAR : 
mms$cmslib :== 'f$trnlnm( 11 CMS$LIB 11 ) 

IF mms$cmslib .nes. 11 $(MMS$CMS_LIBRARY) 11 THEN $(CMS) SET LIBRARY -
$(MMS$CMS_LIBRARY) 

$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).MAR -
$(CMSFLAGS) $(CMSCOMMENT) 

IF mms$cmslib .NES. 1111 .AND. mms$cmslib .NES. 11 $(MMS$CMS_LIBRARY) 11 -

THEN $(CMS) SET LIBRARY 'mms$cmslib' 

(continued on next page) 

C-20 DEC/MMS Built-In Features 



Table C-9 (Cont.): Built-In Rules for CMS Access 

CMS Rules 

.MMs-.MMs : 
mms$cmslib :== 'f$trnlnm("CMS$LIB") 
IF mms$cmslib .nes. 11 $(MMS$CMS_LIBRARY) 11 THEN $(CMS) SET LIBRARY -

$(MMS$CMS_LIBRARY) 
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).MMS -

$(CMSFLAGS) $(CMSCOMMENT) 
IF mms$cmslib . NES. "" . AND. mms$cmslib . NES. "$ (MMS$CMS_LIBRARY)" -

THEN $(CMS) SET LIBRARY 'mms$cmslib' 

.MsG-.MsG : 
mms$cmslib :== 'f$trnlnm("CMS$LIB") 
IF mms$cmslib .nes. 11 $(MMS$CMS_LIBRARY)" THEN $(CMS) SET LIBRARY -

$(MMS$CMS_LIBRARY) 
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).MSG -

$(CMSFLAGS) $(CMSCOMMENT) 
IF mms$cmslib .NES. "" .AND. mms$cmslib .NES. 11 $(MMS$CMS_LIBRARY)" -

THEN $(CMS) SET LIBRARY 'mms$cmslib' 

.OPr.OPT : 
mms$cmslib :== 'f$trnlnm("CMS$LIB") 
IF mms$cmslib .nes. 11 $(MMS$CMS_LIBRARY) 11 THEN $(CMS) SET LIBRARY -

$(MMS$CMS_LIBRARY) 
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).OPT -

$(CMSFLAGS) $(CMSCOMMENT) 
IF mms$cmslib .NES. "" .AND. mms$cmslib .NES. 11 $(MMS$CMS_LIBRARY)" -

THEN $(CMS) SET LIBRARY 'mms$cmslib' 

.PAS-.PAS : 
mms$cmslib :== 'f$trnlnm("CMS$LIB") 
IF mms$cmslib .nes. 11 $(MMS$CMS_LIBRARY)" THEN $(CMS) SET LIBRARY -

$(MMS$CMS_LIBRARY) 
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).PAS -

$(CMSFLAGS) $(CMSCOMMENT) 
IF mms$cmslib .NES. "" .AND. mms$cmslib .NES. 11 $(MMS$CMS_LIBRARY) 11 

-

THEN $(CMS) SET LIBRARY 'mms$cmslib' 

(continued on next page) 

DEC/MMS Built-In Features C-21 



Table C-9 (Cont.): Built-In Rules for CMS Access 

CMS Rules 

.PLr .PLI : 
mms$cmslib :== 1 f$trnlnm( 11 CMS$LIB 11

) 

IF mms$cmslib .nes. 11 $(MMS$CMS_LIBRARY) 11 THEN $(CMS) SET LIBRARY -
$(MMS$CMS_LIBRARY) 

$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).PLI -
$(CMSFLAGS) $(CMSCOMMENT) 

IF mms$cmslib .NES. 1111 .AND. mms$cmslib .NES. 11 $(MMS$CMS_LIBRARY) 11 
-

THEN $(CMS) SET LIBRARY 'mms$cmslib' 

.REQ-.REQ : 
mms$cmslib :== 1 f$trnlnm( 11 CMS$LIB 11 ) 

IF mms$cmslib . nes. 11 $ (MMS$CMS_LIBRARY)" THEN $(CMS) SET LIBRARY -
$(MMS$CMS_LIBRARY) 

$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).REQ -
$(CMSFLAGS) $(CMSCOMMENT) 

IF mms$cmslib .NES. "" .AND. mms$cmslib .NES. 11 $(MMS$CMS_LIBRARY) 11 -

THEN $(CMS) SET LIBRARY 'mms$cmslib' 

.RNH-.RNH : 
mms$cmslib :== 1 f$trnlnm( 11 CMS$LIB 11

) 

IF mms$cmslib .nes. 11 $(MMS$CMS_LIBRARY) 11 THEN $(CMS) SET LIBRARY -
$(MMS$CMS_LIBRARY) 

$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME) .RNH -
$(CMSFLAGS) $(CMSCOMMENT) 

IF mms$cmslib .NES. 1111 .AND. mms$cmslib .NES. 11 $(MMS$CMS_LIBRARY) 11 -

THEN $(CMS) SET LIBRARY 'mms$cmslib' 

.RNo-.RNo : 
mms$cmslib :== 1 f$trnlnm( 11 CMS$LIB 11 ) 

IF mms$cmslib .nes. 11 $(MMS$CMS_LIBRARY) 11 THEN $(CMS) SET LIBRARY -
$(MMS$CMS_LIBRARY) 

$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME) .RNO -
$(CMSFLAGS) $(CMSCOMMENT) 

IF mms$cmslib .NES. 1111 .AND. mms$cmslib .NES. 11 $(MMS$CMS_LIBRARY)" -
THEN $(CMS) SET LIBRARY 'mms$cmslib' 

(continued on next page) 

C-22 DEC/MMS Built-In Features 



Table C-9 (Cont.): Built-In Rules for CMS Access 

CMS Rules 

.R16-.R16 : 
mms$cmslib :== 1 f$trnlnm( 11 CMS$LIB 11 ) 

IF mms$cmslib .nes. 11 $(MMS$CMS_LIBRARY) 11 THEN $(CMS) SET LIBRARY -
$(MMS$CMS_LIBRARY) 

$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).R16 -
$(CMSFLAGS) $(CMSCOMMENT) 

IF mms$cmslib .NES. 1111 .AND. mms$cmslib .NES. 11 $(MMS$CMS_LIBRARY)" -
THEN $(CMS) SET LIBRARY 'mms$cmslib' 

.R32-.R32 : 
mms$cmslib :== 1 f$trnlnm( 11 CMS$LIB 11

) 

IF mms$cmslib .nes. 11 $(MMS$CMS_LIBRARY) 11 THEN $(CMS) SET LIBRARY -
$(MMS$CMS_LIBRARY) 

$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).R32 -
$(CMSFLAGS) $(CMSCOMMENT) 

IF mms$cmslib .NES. 1111 .AND. mms$cmslib .NES. 11 $(MMS$CMS_LIBRARY) 11 
-

THEN $(CMS) SET LIBRARY 'mms$cmslib' 

.RPG-.RPG : 
mms$cmslib :== 'f$trnlnm( 11 CMS$LIB 11 ) 

IF mms$cmslib .nes. 11 $(MMS$CMS_LIBRARY) 11 THEN $(CMS) SET LIBRARY -
$(MMS$CMS_LIBRARY) 

$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).RPG -
$(CMSFLAGS) $(CMSCOMMENT) 

IF mms$cmslib .NES. 1111 .AND. mms$cmslib .NES. 11 $(MMS$CMS_LIBRARY) 11 
-

THEN $(CMS) SET LIBRARY 'mms$cmslib' 

.Txr.TXT : 
mms$cmslib :== 1 f$trnlnm( 11 CMS$LIB 11 ) 

IF mms$cmslib .nes. 11 $(MMS$CMS_LIBRARY) 11 THEN $(CMS) SET LIBRARY -
$(MMS$CMS_LIBRARY) 

$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).TXT -
$(CMSFLAGS) $(CMSCOMMENT) 

IF mms$cmslib .NES. 1111 .AND. mms$cmslib .NES. 11 $(MMS$CMS_LIBRARY) 11 -

THEN $(CMS) SET LIBRARY 'mms$cmslib' 

A tilde (,....,) after a file type indicates that the file is in a CMS library. 

DEC/MMS Built-In Features C-23 





Glossary 

action 
A command-language command that MMS executes to update a target. 
(See also action line.) 

action line 
The part of the dependency rule that contains the commands that tell MMS 
how to use the source or sources to update the target. (See also dependency 
rule.) 

action line prefix 
A special character placed at the beginning of an action line that influences 
how MMS executes the action. (See also action line.) 

built-in rule 
A command that MMS uses when the description file does not explicitly 
describe the processing needed to update a target. 

default macro 
A name that represents a character string that defines commonly used 
operations. MMS built-in rules are expressed in terms of default macros. 
(See also macro and built-in rule.) 

dependency rule 
The description of a relationship between a target and one or more sources, 
and the action or actions required to update the target. Dependency rules 
are contained in the description file. (See also description file.) 

description file 
A text file that contains the dependency rules, comments, macros, and 
directives that MMS uses to build your system. (See also dependency rule, 
macro, and directive.) 

Glossary-1 



Glossary-2 

directive 
A word that specifies an action for the processing of the description file. 

library module specification 
A VMS file specification for a module in a library. 

macro 
A name that represents a character string. The string is substituted for the 
name in a dependency rule. 

macro invocation 
The execution of the macro that replaces the macro name with its 
definition. 

mnemonic name 
A name that identifies the purpose of a sequence of related actions. It can 
be used as either a source or a target in the description file. (See also source 
and target.) 

source 
In a dependency rule, an entity that is used to create or to update the 
target. A source can be a VMS file specification or a mnemonic name. (See 
also dependency rule and mnemonic name.) 

special macro 
A name that represents a character string that expands to source or target 
names in the dependency currently being processed. A special macro is 
used instead of a target or source file specification when writing general 
user-defined rules. (See also target, macro, dependency rule.) 

suffixes precedence list 
A list of file types to which MMS refers when it needs to know which 
source file can update the specified target. 

target 
In a description file, the entity that is to be updated. A target can be a VMS 
file specification or a mnemonic name. (See also mnemonic name.) 

user-defined rule 
A rule that the user specifies in the description file to add to and/ or replace 
MMS built-in rules. (See also built-in rule.) 



A 
Action line, 1-5, 1-9, 2-2, 2-21 

built-in rules, 1-9 
command procedures, 2-27 
comments, 2-23 
effect of /ACTION on, CD-4 
errors, 2-28 
example, 2-22 
format of, 2-2 
multiple, 2-2, 2-22 
multiple objects, 2-21 
null, 1-23 
omitting source, 2-3 
precedence, 2-21 
restriction, A-9 
restrictions on, 2-26 
suppression of display, 2-26 

Action line prefixes 
see also individual prefix 
directives 

difference between, 2-25 
format of, 2-24 
ignore (-), 2-25 
silent (@), 2-26 

/ACTION qualifier, CD-4 
ADDITIONALLY _DEPENDS_ON, 1-5 

in dependency rules, 3-2 
ASTLM, 3-5 
/AUDIT qualifier, 4-21, CD-4, A-2 

B 
Backslash 

continuation character, B-2 
Built-in macro, 3-7 

Index 

Built-in rule, 2-4, 2-7 to 2-17, 2-32, CD-13, 
B-2 

action line, 1-9 
default macros, 2-11 
example of, 2-7, 2-10 
for CMS libraries, C-16 
for libraries, C-9 
for library files, 1-25 

table, C-9 
linking objects, 1-9 
modifying, 3-17 
override, 2-7 
table, C-8 
with /SCA_LIBRARY, C-11 

BYTLM, 3-5 

c 
Callable CMS, A-3 
Caret format 

See up-arrow character 
COD, 4-1 

access 
restrictions, 4-22 

history list, 4-21 
path specification, 4-21 
record, CD-4, A-3 

access to, 4-21 
syntax of, 4-21 

CDDFLAGS default macro, 4-22 
CFLAGS 

default macro, 2-16, 4-18 
Checkpoint file, 3-12 
/CHECK_ST A TUS qualifier, CD-4 

precedence, CD-5 

lndex-1 



f nild process, 2-23 
.;u symbol, 3-7, 3-8 
CU symbol table, CD-11 
CLISYMTBL 

SYSGEN parameter, A-15 
CMS, 1-2, 1-3,2-35,3-14,4-5 

access to single element, 4-18 
building from current generations, 4-14 
callable, A-3 
class 

specifying, 4-14 
commands 

in description files, 4-7 
elements 

access restriction, 4-8 
automatic access of, 4-7 
explicit references to, 4-8 
including with .INCLUDE, 4-18 
library specfication, 4-8 
specifying, 4-8 

.INCLUDE directive, 4-18 
libraries, 4-1 

access to, 4-5, A-3 
built-in rules for, C-16 

rules, 4-18, CD-5 
user-defined rules, 4-18 
using with MMS, 4-5 

CMS$LIB logical name, 4-7 
CMSCOMMENT default macro, 4-18 
CMSFLAGS default macro, 4-6, 4-7, 4-14, 4-18 

redefining, 4-8 
CMS INSERT command, 4-18 
/CMS qualifier, 3-18, 4-6, 4-7, 4-8, 4-19, CD-5 
CMS qualifier 

/GENERATION, 4-14 
CMS SET LIBRARY I 4-7 
CMSW AIT I A-5 
Colon, 2-2 

in dependency rules, 1-5 
Command procedure, 3-6 

generated with /OUTPUT, CD-11 
invoke 

from description file, 3-9 
invoking MMS, 3-6 

Command summary, 1-29 
Comment 

in dependency rules, 1-5 
Comment character (!), B-1 
Comment character (#), B-1 

restnct1on, B-1 
Comment line, 1-5, 1-12, 2-2, 2-3, 2-23 

lndex-2 

Continuation character 
backslash, B-2 
hyphen, 1-6,2-2,2-3,2-13,A-14 
hyphen(-), B-2 

Continuation character (-), B-2 

D 
DCL commands, 1-18, 2-27 
DCL severity levels, CD-8 
DCL symbol, 3-9, 3-14 
DCL w AIT I 3-4 
/DEBUG qualifier 

compiling with, 2-17 
.DEFAULT directive, 2-31, 3-12 

overriding, 2-32 
Default features, 1-5 
Default macro, 2-11, 3-7 

CDDFLAGS, 4-22 
CMSCOMMENT I 4-18 
CMSFLAGS, 4-7, 4-14 
FMSFLAGS, 4-21 
LINK, 2-20 
LINKFLAGS, 2-20 
redefine 

example, 2-17 
redefining, 2-17 
table, C-2 
table of, C-2 
with /SCA_LIBRARY 

table, C-4 
$DELPRC system service, A-8 
Dependency rule, 1-5, 2-2 

action lines, 1-5, 2-2 
ADDITIONALLY_DEPENDS_QN, 1-5, 3-2 
alternative format for, B-2 
circular dependency restriction, A-11 
colon, 1-5 
comments in, 1-5, 2-2 
continuing, 2-2 

example, 2-2 
DEPENDS_QN, 1-5 
double-colon in, 1-5, 3-1, 3-2, A-10 
format, 1-5, 2-2 
implied, 2-8, 2-19 
multiple dependencies, 3-1 
optional format, B-2 
source, 1-5, 2-2 

omitting, 2-8 
tab restriction, B-1 
target, 1-5, 2-2 



Dependency tree, 1-6, 1-7, 1-15 
DEPENDS_ON, 1-5,2-2 

in dependency rules, 1-5 
DESCRIP.MMS, 1-5, CD-3, B-1 
Description file, 1-5, 1-27, 1-28, 2-1 to 2-41 

advanced techniques, 3-1 
built-in rules, 2-11 
CMS commands in, 4-7 
components, 1-2 
concatenated, CD-6 
creation of, 2-1 
cross-referencing, 1-27 
delete listings, 1-27 
elements, 2-1 

action lines, 2-1 
built-in rules, 2-1 
comment lines, 2-1 
directives, 2-1 
user-defined rules, 2-1 

example of, 2-11 
executable image, 1-6 
format, 1-5 
generate listings, 1-27 
included file, 1-16 
in CMS libraries, 4-19 
invoking, 2-1 
invoking command procedures, 3-9 
invoking MMS from, 3-3 
null action, 1-23 
print listings, 1-27 
.SUFFIXES 

example, 2-33 
system maintenance 

example, 1-27 
/DESCRIPTION qualifier, 4-19, CD-6, B-1 
DIFFERENCES utility, 2-23 
Directives, 2-27 

see also individual directives 
.DEFAULT, 2-31 
.ELSE, 2-39 
.ENDIF I 2-40 
.FIRST, 2-37 
.IFDEF, 2-39 
.IGNORE, 2-28 
.INCLUDE, 2-36 
.LAST, 2-38 
.SILENT I 2-30 
.SUFFIXES, 2-32 
table, 2-27, C-7 

Directory 
clean-up procedure, 1-27 

Double colon 
in dependency rules, 1-5, 3-2 

E 
.ELSE directive, 2-39 
.ENDIF directive, 2-40, A-13 
Error message, 3-5, A-1 

COD, A-2 
fatal, 2-24 
format, A-1 
severity level, A-1 
warning, 2-24, A-2 

Executable image, 1-6 
description file, 1-21 
object files, 1-6 
targets, 1-6 

EXIT DCL command, 2-27 

F 
F$SEARCH DCL function, 4-2 
Fatal error, 2-24, CD-9 
File 

access in SCA library, 4-22 
deleting, 3-16 
intermediate, CD-14 
protection, A-12 
specifications 

library modules, 3-3 
types, 1-12, 1-15, 2-32 

adding new, 2-33 
built-in rule, 2-7 
null, 2-36 
precedence, 2-33 

File,checkpoint 
See checkpoint file 

File, included 
See included file 

FILLM, 3-5 
quota, 2-37 

.FIRST directive, 2-37 
example of, 2-37 

FMSFLAGS default macro, 4-21 
FMS forms 

access to, 4-20 
syntax of, 4-21 

FMS libraries, 4-1, A-6 
/FROM_SOURCES qualifier, CD-7 

precedence, CD-7 

lndex-3 



G 
/GENERATION CMS qualifier, 4-6, 4-14, A-3 
GOTO DCL command, 2-27 

H 
HELP library, CD-8 
/HELP qualifier, CD-7, A-3 
Hierarchy of rule application, 2-6 
Hyphen 

see continuation character 

/IDENTIFICATION qualifier, CD-8, A-13 
.IFDEF directive, 2-39, A-13 
.IGNORE directive, 2-28, CD-9 

overriding, 2-30 
Ignore prefix(-), 2-25, 3-17, CD-9 

restriction, CD-9, B-2 
/IGNORE qualifier, 1-17, 2-24, 2-30, CD-8, A-2 

restriction, CD-9 
Image, executable 

See executable image 
Included files, 2-33, 3-15 

infinite loop, A-13 
ne~ed, 1-16,2-37 
nonexistent, 1-17 
source code, 1-16 

.INCLUDE directive, 2-36, 4-18, CD-5, B-3 
INQUIRE command, 3-10 
Invoking MMS, 1-5 

L 
.LAST directive, 2-38, 3-17, CD-14 

example, 2-39 
multiple targets, 2-38 

Library 
as sources, 4-4 
built-in rules for, C-9 
CMS, 4-5 

access to elements in, 4-7, 4-8 
FMS, 4-20 

syntax of forms in, 4-21 
system building, 1-24 
VMS, 4-1 

syntax of modules in, 4-2 
Library module, 4-2 

as targets, 3-3 

lndex-4 

Library module (cont'd.) 

double colon dependencies, 3-3, 4-2 
file specifications, 3-3, 4-2 

restriction, 4-2 
logical names, 4-2 
multiple, 4-3 
non-VMS file specifications, 4-3 
specification, A-15 

Line, action 
See action line 

LINK DCL command, 2-39 
LINKFLAGS 

redefined, 3-8 
Logical names, 3-24 

CMS library specifications, 4-18 
library modules, 4-2 
restriction, 4-2 
SCA$LIBRARY I 4-24 

LOGOUT DCL command, 2-27 
/LOG qualifier, CD-9, A-1 

M 
Macro, 2-11 

built-in, 3-7 
CU symbol, 2-13, 3-18 
default, 2-11, 3-7 

LINK, 2-20 
LINKFLAGS, 2-20 
table of, C-2 

defining, 2-13, 2-14, 2-19 
defining in a file, 2-16 
defining on command line, 2-15 
defining on the command line, 3-18, CD-10 
definition file, 2-16 
example of, 2-14 
expanding, 2-14, 3-18 
format of, 2-13 
invoking, 2-13, 2-14 
$MMS, 3-4 
$(MMSOUALIFIERS), 3-5 
$(MMST ARGETS) I 3-5 
processing 

order of, 2-13 
punctuation, 2-13 
recursive, 2-14 
redefining, 2-15, 2-17 
special, 2-17, 3-7 

abbreviations, B-3 
definition, 2-17 
expansion of, 2-19 



Macro 
special (cont'd.) 

MMS$T ARGET I C-5 
MMS$T ARGELNAME, C-5 
replacing, 2-17 
symbols, 2-18 
table of, C-5 
used with libraries, 4-4 

user-defined, 2-19, 3-7 
/MACRO qualifier, 2-14, 2-15, 3-16, 4-14, 

CD-10,A-14 
MAKEFILE., 1-5, CD-3, B-1 
make utility, 1-1 

differences with MMS, B-1 
Messages, MMS, A-1 
$MMS 

special macro, 2-27 
MMS$CHANGED_LIST 

example of, 2-18 
MMS$Lf B_ELEMENT I 4-4 
MMS$RULES 

logical name, CD-13 
MMS$SOURCE, 2-8, 2-12, 2-18, 2-20, 2-34 

example of, 2-18 
used with libraries, 4-4 

MMS$SOURCE_LIST, 2-12, 2-20, 2-34 
MMS$STATUS, 2-24, CD-5, CD-10, CD-12, 

A-15 
MMS$TARGET, 2-31, C-5 

example of, 2-19 
used with libraries, 4-4 

MMS$T ARGELNAME, 2-12 
special macro, C-5 
used with libraries, 4-4 

$(MMS) reserved macro, 3-4, CD-4 
MMS command, CD-3 

abbreviating, CD-2 
format, 1-29 
format of, CD-1 
qualifiers, CD-2 

see also Qualifiers 
summary, 1-29 

$(MMSQUALIFIERS) reserved macro, 3-5, CD-14 
MMS quotas, 3-5 
$(MMST ARGETS) reserved macro, 3-5 
Mnemonic names, 2-2, 2-5 
Multiple outputs, 3-25 

N 
/NOACTION qualifier, 2-30, 3-4, 4-22, CD-4 

/NOCHECK_ST A TUS qualifier, CD-4 
/NOCMS qualifier, 4-8, 4-18, CD-5 
/NODESCRIPTION qualifier, 1-5, CD-1, CD-6, 

CD-7 
/NOIGNORE qualifier, CD-8 
/NOLIST qualifier, 2-16, 2-18 
/NOLOG qualifier, CD-9 
/NOOVERRIDE qualifier, CD-11 
/NOREVISE_DA TE qualifier, CD-12 
/NORULES qualifier, CD-5, CD-13 
/NOSCA_LfBRARY qualifier, CD-14 
/NOSKIP _INTERMEDIATE qualifier, CD-14 
/NO VERIFY qualifier, CD-15, CD-16 
Null string, 4-22 

0 
Object files, 3-3 

source code, 1-6 
Object Ubraries, 1-25, 3-19 

example, 1-25 
maintaining, 3-2 

/OBJECT qualifier, 2-16, 2-18 
/OUTPUT qualifier, 2-23, 2-25, 2-30, CD-4, 

CD-11, CD-16 
/OVERRIDE qualifier, 2-14, 3-7, 4-15, CD-11 

p 
Page file quota, 3-5 
Parallel processing, 3-19 
Parent process, 2-23, 3-3 
PASCAL, 2-8,2-12 

environment files, 3-28 
.PEN files, 3-28 
PFLAGS, 2-8, 2-12 

redefined, 3-8 
PGFLQUO, 3-5 
PRCLM, 3-4,3-5 
Precedence list, 2-32 

table of, C-6 
.PRECIOUS restriction, 8-1 
Process quotas 

See quotas 

Q 
Qualifiers 

abbreviating, CD-2 
/ACTION, CD-4 
I AUDIT I 4-21 

lndex-5 



Qualifiers (cont'd.) 

/CHECK_STATUS, CD-4 
/CMS, 4-7,4-19,CD-5 
defaults, CD-1 
/DESCRIPTION, CD-6 
/FRQM_SOURCES, CD-7 
/HELP, CD-7 
/IDENTIFICATION, CD-8 
/IGNORE, CD-8 
/LOG, CD-9 
/MACRO, CD-10 
/OUTPUT I CD-11 
/OVERRIDE, CD-11 
/REVISE_DA TE, CD-12 
/RULES, CD-13 
/SCA_LIBRARY I CD-14 
/SKIP _INTERMEDIATE, CD-14 
/VERIFY I CD-15 

Quotas, A-7 

R 

page file, 3-5 
process, 3-5, A-6 

Reserved macros 
$(MMS), 3-5 
$(MMSQUALIFIERS), 3-5 
$(MMST ARGETS), 3-5 

Restrictions to CDD access, 4-22 
/REVISE_DATE qualifier, CD-12, CD-16, A-12 

CMS libraries, 4-7 
FMS forms, 4-21 
precedence, CD-13 
restriction, CD-12 

Revision time, 2-3, CD-7, A-3 
RSX libraries, 4-1 
Rule 

built-in 
see built-in rules 

dependency 
see dependency rule 

file, 4-18 
hierarchy of application, 2-6 
user-defined 

see user-defined rules 
/RULES qualifier, CD-13 

precedence, CD-13 

lndex-6 

s 
SCA 

data file, 4-24 
library, 4-1, 4-22 

$(SCA) macro, CD-14 
SCA database, CD-14 
$(SCA_LIBRARY) macro, CD-14 
/SCA_LIBRARY qualifier, 4-22, CD-14 

built-in rule changes, C-11 
macro changes, C-4 

SEARCH DCL command, 1-18 
SET NOVERIFYDCL command, 2-27 
SET ON DCL command, 2-27 
SET VERIFY DCL command, 2-27 
$SEVERITY, 2-23 
Severity errors, 2-24, A-10 
.SILENT directive, 2-30, 3-15, CD-16 

example, 2-30 
overriding, 2-30 
used with a colon, B-2 

Silent prefix(@), 2-25, 2-26, CD-4, CD-16 
restriction, B-2 

/SKIP _INTERMEDIATE qualifier, 3-1 7, 3-18, 
CD-14 

restrictions, CD-15 
Software system 

building, 1-4, 1-7 
components, 1-2 
development cycle, 1-2 
figure, 1-3 
included file 

figure, 1-19 
multiple executable images, 1-21 
multiple languages, 1-12 
multiple targets 

figure, 1-21 
rebuilding, 1-7 
relinking, 1-11 
single object, 1-6 

figure, 1-6 
Source, 1-3, 1-5, 2-2 

a non-file, 2-3 
dependency rule, 1-5 
libraries, 4-4 
missing, 3-12 
mnemonic names for, 2-5 
multiple, 2-3 

Source code 
file, 2-3 
files 

printing, 1-27 
included files, 1-16 



Source code (cont'd.) 

object files, 1-6 
SPAWN DCL command, 2-27 
Special macros, 2-12 

See Macro, special 
expansion of, 2-19 
See Macro, special, 2-18 

Statistics, 3-12 
$STATUS, 2-23,4-20 
STOP DCL command, 2-27, A-8 
Subprocesses, 4-20, A-8, B-1 

CMS as a, 4-7 
invoking MMS as, 3-3 
process quotas, 3-4 
spawned, 3-3 

.SUFFIXES directive, 2-32, A-12 
adding new file type, 2-33 
format of, 2-32 

Suffixes precedence list, 2-9, 2-32, CD-13 
figure, 2-9 
null file type, 2-36 
table of, C-6 

Symbol scope, A-15 
SYS$ERROR, CD-11,A-6 
SYS$1NPUT I 2-27 
SYS$0UTPUT, 2-23,2-30,2-31,CD-4 
SYSGEN parameter 

CLISYMTBL, A-15 
System building 

T 

changing options, 3-10 
from CMS class, 4-14 
included file, 1-18 
inserting files into libraries, 1-26 
libraries, 1-24 

creation, 1-26 
local testing, 1-3 
missing component, 1-8 
multiple languages, 1-12 
multiple targets, 1-21 
problem solving, 1-2, 1-3 
rebuilding, 1-3 
recreating previous versions, 4-14 
specifying target, 1-23 
user-defined rules, 2-21 

Target, 1-5, 2-2, 2-22 
a non-file, 2-3 
default, CD-6 
in dependency rule, 1-5 

Target (cont'd.) 

mnemonic names for, 2-5 
multiple, 1-21, 2-3 
multiple sources, 1-9 
on command line, 1-5, 2-3, 2-6 
specifier, 1-23 

Tilde 
CMS elements, 4-5 
format, 4-5, 4-6, 4-8, 4-18, 4-19, CD-5, 

A-5 
Time, revision 

See revision time 
Time stamps, 3-13 

u 
Up-arrow character n, 4-21 
User-defined macros, 2-12, 3-7, 3-16 
User-defined rules, 2-19 

v 

accessing CMS element, 4-18 
alternative format for, B-2 
built-in rule 

precedence, 2-19 
creating, 2-20 
example of, 2-20 
format, 2-20 

/VERIFY qualifier, 2-30, CD-15 
Virtual memory, 3-5 
VMS library access, 4-1 
VMS wildcard characters 

See wildcards 

w 
Warning errors, CD-9 
Warning message, A-2 
Wildcards, A-10 

%, B-2 
?, B-2 
VMS, 4-3 

lndex-7 





How to Order Additional Documentation 

Technical Support 
If you need help deciding which documentation best meets your needs, call 800-343-4040 
before placing your electronic, telephone, or direct mail order. 

Electronic Orders 
To place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using 
a 1200- or 2400-baud modem. If you need assistance using the Electronic Store, 
call BOO-DIGITAL (800-344-4825). 

Telephone and Direct Mail Orders 

Your Location 

Continental USA, 
Alaska, or Hawaii 

Puerto Rico 

Canada 

International 

Internal1 

Call 

BOO-DIGITAL 

809-754-75 75 

800-267-6215 

Contact 

Digital Equipment Corporation 
P.O. Box CS2008 
Nashua, New Hampshire 03061 

Local DIGITAL subsidiary 

Digital Equipment of Canada 
Attn: DECdirect Operations KA02/2 
P.O. Box 13000 
100 Herzberg Road 
Kanata, Ontario, Canada K2K 2A6 

Local DIGITAL subsidiary or 
approved distributor 

SDC Order Processing - WMO/E15 
or 
Software Distribution Center 
Digital Equipment Corporation 
Westminster, Massachusetts 01473 

1For internal orders, you must submit an Internal Software Order Form (EN-01740-07). 





Reader's Comments Guide to VAX DEC/Module 
Management System 

Order number: AA-P119D-TE 

Please use this postage-paid form to comment on this manual. If you require a written reply 
to a software problem and are eligible to receive one under Software Performance Report 
(SPR) service, submit your comments on an SPR form. 

Thank you for your assistance. 

I rate this manual's: Excellent 

Accuracy (software works as manual says) D 
Completeness (enough information) D 
Clarity (easy to understand) D 
Organization (structure of subject matter) D 
Figures (useful) D 
Examples (useful) D 
Index (ability to find topic) D 
Page layout (easy to find information) D 

I would like to see more /less 

What I like best about this manual is 

What I like least about this manual is 

I found the following errors in this manual: 
Page Description 

Additional comments or suggestions to improve this manual: 

Good 

D 
D 
D 
D 
D 
D 
D 
D 

I am using Version ___ of the software this manual describes. 

Name/Title 

Company 

Mailing Address 

Dept. 

Phone 

Fair Poor 

D D 
D D 
D D 
D D 
D D 
D D 
D D 
D D 

Date 



i 
I 
I 
I 
I 
I -- Do Not Tear - Fold Here and Tape 

--------------ir---~-----------;~~;~---
if Mailed 

m the 
United States 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

DIGIT AL EQUIPMENT CORPORATION 
Corporate User Publications-Spit Brook 
ZK01-3/J35 
110 SPIT BROOK ROAD 
NASHUA, NH 03062-9987 

111 ..... 11.11 .... 11 .... 1.11.1 •• 1.1 .. 1 •• 1.1 ••• 1.11 .. 1 

-- Do Not Tear - Fold Here --------------------------------------------

c 

.! 
"" ., 
~ 
c 

' ~ 
I 
~ 
1~ 

I 1 
It. 
! 



Reader's Comments Guide to VAX DEC/Module 
Management System 

Order number: AA-P11 90-TE 

Please use this postage-paid form to comment on this manual. If you require a written reply 
to a software problem and are eligible to receive one under Software Performance Report 
(SPR) service, submit your comments on an SPR form. 

Thank you for your assistance. 

I rate this manual's: Excellent 

Accuracy (software works as manual says) D 
Completeness (enough information) 0 
Clarity (easy to understand) D 
Organization (structure of subject matter) D 
Figures (useful) 0 
Examples (useful) D 
Index (ability to find topic) D 
Page layout (easy to find information) D 

I would like to see more /less 

What I like best about this manual is 

What I like least about this manual is 

I found the following errors in this manual: 
Page Description 

Additional comments or suggestions to improve this manual: 

Good 

D 
D 
D 
0 
D 
D 
0 
D 

I am using Version ___ of the software this manual describes. 

Name/Title 

Company 

Mailing Address 

Dept. 

Phone 

Fair Poor 

D D 
0 0 
0 D 
D D 
D 0 
D D 
D D 
D 0 

Date 



I 
I 
I 
I 
I 

- Do Not Tear • Fold Here and Tape 

--------------ir---~-----------~;~----
1 

if Mailed 
in the 

United States 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 33 MAYNARD MASS. 

POST AGE WILL BE PAID BY ADDRESSEE 

DIGIT AL EQUIPMENT CORPORATION 
Corporate User Publications-Spit Brook 
ZK01-3/J35 
110 SPIT BROOK ROAD 
NASHUA, NH 03062-9987 

111 ..... 11.11 .... 11 .... 1.11.1 .. 1.1 .. 1 .. 1.1 ... 1.11 .. 1 

- Do Not Tear • Fold Here --------------------------------------------

Q 

.~ ... 






