


VMS DECwindows 
Xlib Routines 
Reference Manual 

Order Number: Part II: AA-MG27A-TE 

December 1988 

This manual describes the VMS DECwindows Xlib programming routines. 

Revision/Update Information: This is a new manual. 

Software Version: VMS Version 5.1 

digital equipment corporation 
maynard, massachusetts 



December 1988 

The information in this document is subject to change without notice and should 
not be construed as a commitment by Digital Equipment Corporation. Digital 
Equipment Corporation assumes no responsibility for any errors that may appear 
in this document. 

The software described in this document is furnished under a license and may be 
used or copied only in accordance with the terms of such license. 

No responsibility is assumed for the use or reliability of software on equipment that is 
not supplied by Digital Equipment Corporation or its affiliated companies. 

© Digital Equipment Corporation 1988. 

All Rights Reserved. 
Printed in U.S.A. 

The postpaid Reader's Comments forms at the end of this document request your 
critical evaluation to assist in preparing future documentation. 

The following are trademarks of Digital Equipment Corporation: 

CDA MASS BUS VAX RMS 
DDIF PrintServer 40 VAXstation 
DEC Q-bus VMS 
DECnet ReGIS VT 
DECUS ULTRIX XUI 
DECwindows UNIBUS 
DIGITAL VAX 

~amaomo™ LN03 VAXcluster 

The following are third-party trademarks: 

Postscript is a registered trademark of Adobe Systems, Inc. 

X Window System, Version 1 O and its derivations (X, X10, X Version 10, X Window 
System) are trademarks of the Massachusetts Institute of Technology. 

X Window System, Version 11 and its derivations (X, X11, X Version 11, X Window 
System) are trademarks of the Massachusetts Institute of Technology. 

ZK4732 



8 Property Routines 

Properties are used to store information about a window. This information 
can then be shared among programs and with the window manager. 
Properties are not interpreted by the server; they are interpreted by the 
program sending data to or receiving data from them. 

Xlib contains routines that let you perform the following property 
operations: 

• Set or retrieve values in specified properties 

• Change a property for a specified window 

• Delete the association between a property and its identifier 

• Return description information for a property 

• Return the atom name for an atom identifier 

• Return the atom identifier for an atom name 

• List properties associated with a specified window 

• Shift the positions of properties within a property array 

For concepts related to property routines and information on how to use 
property routines, see the VMS DECwindows Xlib Programming Volume. 

The routines described in this chapter are listed in Table 8-1. 

Table 8-1 Property Routines 

Routine Name 

CHANGE PROPERTY 

CLEAR ICON WINDOW 

CONVERT SELECTION 

DELETE CONTEXT 

DELETE PROPERTY 

FETCH BUFFER 

FETCH BYTES 

FETCH NAME 

Description 

Changes one property for a specified window 

Dissociates the icon window from the regular 
window 

Request to send a window selection event 
notification 

Deletes an entry for a specified window and 
context type 

Deletes the association between a property 
and a specified window 

Returns the data stored in the specified cut 
buffer 

Returns the data stored in cut buffer zero 

Provides the name for the specified window (if 
one exists in the WM_NAME property} 

(continued on next page) 

8-1 



Property Routines 

Table 8-1 (Cont.) Property Routines 

8-2 

Routine Name 

FIND CONTEXT 

GET ATOM NAME 

GET CLASS HINT 

GET ICON NAME 

GET ICON SIZES 

GET ICON WINDOW 

GET NORMAL HINTS 

GET RESIZE HINT 

GET SELECTION OWNER 

GET SIZE HINTS 

GET TRANSIENT FOR HINT 

GET WINDOW PROPERTY 

GET WM HINTS 

GET ZOOM HINTS 

INTERN ATOM 

LIST PROPERTIES 

ROTATE WINDOW PROPERTIES 

SAVE CONTEXT 

SET CLASS HINT 

SET COMMAND 

SET ICON NAME 

Description 

Obtains the data associated with a specified 
window and context type 

Returns the atom name for the specified atom 
identifier 

Obtains the class of a specified window. 

Obtains the name that a window wants 
displayed in its icon 

Obtains the recommended icon sizes from a 
window manager 

Returns the identifier for the icon window 
associated with the specified window 

Obtains recommended values for the size and 
location of a regular window 

Obtains for a window manager program the 
recommended window size and assigns it to 
an application program 

Returns the owner of the specified window 
selection 

Obtains window size hints for any property 
using the WM_SIZE_HINTS format 

Obtains the WM_ TRANSIENT _FOR property 
of a specified window. 

Returns type, format, and description 
information for one property associated with a 
window 

Obtains the window manager hints contained 
in the window manager hints property 

Obtains recommended values for the size and 
location of a window in its zoomed state 

Returns the atom identifier for the specified 
atom name 

Returns a list of all properties associated with 
a window 

Shifts the positions of the properties within the 
property array 

Saves the data associated with a specified 
window and context type 

Sets the class of a specified window. 

Sets the command used to invoke an 
application program 

Specifies a name to be displayed when the 
icon for a window is displayed 

(continued on next page) 



Property Routines 

Table 8-1 (Cont.} Property Routines 

Routine Name 

SET ICON SIZES 

SET ICON WINDOW 

SET NORMAL HINTS 

SET RESIZE HINT 

SET SELECTION OWNER 

SET SIZE HINTS 

SET STANDARD PROPERTIES 

SET TRANSIENT FOR HINT 

SET WM HINTS 

SET ZOOM HINTS 

STORE NAME 

UNIQUE CONTEXT 

8.1 Size Hints Data Structure 

Description 

Sets the recommended sizes for the icon for a 
window 

Sets and displays an icon for the specified 
window 

Sets recommended values for the size and 
location of a regular window 

The recommended window size for use by 
window manager programs 

Sets the owner for the specified window 
selection 

Specifies window size hints for any property 
using the WM_SIZE_HINTS format 

Sets the window name, icon name and pixmap 
to be displayed when window is iconified, 
command name and arguments, and window 
sizing hints for the specified window 

Sets the WM_ TRANSIENT _FOR property of a 
specified window. 

Sets the values for the window manager hints 

Sets recommended size and location for a 
window in the zoomed state 

Assigns a name to a window 

Creates a unique context type 

The size hints data structure is used to specify window hints for regular 
windows and zoom windows. The window manager may not adhere to 
these recommendations. 

The data structure for the VAX binding is shown in Figure 8-1, and 
information about members in the data structure is described in 
Table 8-2. 

Figure 8-1 Size Hints Data Structure (VAX Binding} 

x$1_szhn_flags 

x$1_szhn_x 

x$1_szhn_y 

x$1_szhn_width 

0 

4 

8 

12 

(continued on next page) 

8-3 



Property Routines 
8.1 Size Hints Data Structure 

Figure 8-1 (Cont.) Size Hints Data Structure (VAX Binding) 

x$1_szhn_height 

x$1_szhn_min_width 

x$1_szhn_min_height 

x$1_szhn_max_ width 

x$1_szhn_max_height 

x$1 szhn width inc (· 

- - -

x$1_szhn_height_inc 

x$1_szhn_mnas_x 

x$1_szhn_mnas_y 

x$1_szhn_mxas_x 

x$1_szhn_mxas_y 

Table 8-2 Members of the Size Hints Data Structure (VAX Binding) 

Member Name 

X$L_SZHN_FLAGS 

X$L_SZHN_X 

X$L_SZHN_Y 

X$L_SZHN_WIDTH 

X$L_SZHN_HEIGHT 

X$L_SZHN_MIN_WIDTH 

X$L_SZHN_MIN_HEIGHT 

X$L_SZHN_MAX_WIDTH 

X$L_SZHN_MAX_HEIGHT 

X$L_SZHN_WIDTH_INC 

X$L_SZHN_HEIGHT _INC 

Contents 

Defines which members the client is assigning 
values to 

The x-coordinate that defines window position 

The y-coordinate that defines window position 

Defines the width of the window 

Defines the height of the window 

Specifies the minimum useful width of the window 

The minimum useful height of the window 

Specifies the maximum useful width of the window 

The maximum useful height of the window 

Defines the increments by which the width of the 
window prefers to be resized 

Defines the increments by which the height of the 
window prefers to be resized 

16 

20 

24 

28 

32 

36 

40 

44 

48 

52 

56 

X$L_SZHN_MNAS_X With the X$L_SZHN_MNAS_ Y member, specifies the 
minimum aspect ratio of the window 

(continued on next page) 

8-4 



Property Routines 
8.1 Size Hints Data Structure 

Table 8-2 (Cont.) Members of the Size Hints Data Structure (VAX 
Binding) 

Member Name Contents 

X$L_SZHN_MNAS_ Y With the X$L_SZHN_MNAS_X member, specifies the 
minimum aspect ratio of the window. 

X$L_SZHN_MXAS_X With the X$L_SZHN_MXAS_ Y member, specifies the 
maximum aspect ratio of the window 

X$L_SZHN_MXAS_ Y With the X$L_SZHN_MXAS_X member, specifies the 
maximum aspect ratio of the window. 

Setting the minimum and maximum values indicates 
the preferred range of the size of a window. An aspect 
ratio is expressed in terms of a ratio between x and y. 

For example, if the minimum value of x is 1 and y is 2, 
and the maximum value of x is 2 and y is 5, then the 
minimum window is 1 /2, and the aspect ratio maximum 
is 2/5. Therefore, in this case, a window could have a 
width of 300 pixels and a height of 600 pixels minimally, 
and maximally a width of 600 pixels and a height of 
1500 pixels. 

The data structure for the MIT C binding is shown in Figure 8-2, 
and information about members in the data structure is described in 
Table 8-3. 

Figure 8-2 Size Hints Data Structure (MIT C Binding) 

typedef struct { 
long flags; 
int x,y; 
int width, height; 
int min width,min height; 
int max-width,max-height; 
int width_inc,height_inc; 
struct { 

int x; 
int y; 

}min_aspect,max_aspect; 
XSizeHints; 

Table 8-3 Members of the Size Hints Data Structure (MIT C Binding) 

Member Name 

flags 

x 

y 

width 

Contents 

Defines which members the client is assigning values to. 

The x-coordinate that defines window position. 

The y-coordinate that defines window position. 

Defines the width of the window. 

(continued on next page) 

8-5 



Property Routines 
8.1 Size Hints Data Structure 

Table 8-3 {Cont.) Members of the Size Hints Data Structure {MIT C 
Binding} 

Member Name 

height 

min_ width 

min_height 

max_width 

max_height 

width_inc 

height_inc 

min_aspect_x 

min_aspect_y 

max_aspect_x 

max_aspect_y 

Contents 

Defines the height of the window. 

The minimum useful width of the window. 

The minimum useful height of the window. 

The maximum useful width of the window. 

The maximum useful height of the window. 

Defines the increments by which the width of the window prefers 
to be resized. 

Defines the increments by which the height of the window prefers 
to be resized. 

With the min_aspect_y member, specifies the minimum aspect 
ratio of the window. 

With the min_aspect_x member, specifies the minimum aspect 
ratio of the window. 

With the max_aspect_y member, specifies the maximum aspect 
ratio of the window. 

With the max_aspect_x member, specifies the maximum aspect 
ratio of the window. 

Setting the minimum and maximum values indicates the preferred 
range of the size of a window. An aspect ratio is expressed in 
terms of a ratio between x and y. 

For example, if the minimum value of x is 1 and y is 2, and the 
maximum value of x is 2 and y is 5, then the minimum window is 
1/2, and the aspect ratio maximum is 2/5. Therefore, in this case, 
a window could have a width of 300 pixels and a height of 600 
pixels minimally, and maximally a width of 600 pixels and a height 
of 1500 pixels. 

8.2 Icon Size Data Structure 

8-6 

Usually window manager programs use this data structure to set the 
WM_ICON_SIZE property. Application programs can then read the values 
specified in this property to size icon windows in cooperation with the 
window manager. 

The data structure for the VAX binding is shown in Figure 8-3, and 
information about members in the data structure is described in Table 8-4. 



Property Routines 
8.2 Icon Size Data Structure 

Figure 8-3 Icon Size Data Structure (VAX Binding) 

x$1_icsz_min_width 0 

x$1_icsz_min_height 4 

x$1_icsz_max _width 8 

x$1_icsz_max_height 12 

x$1_icsz_width_inc 16 

x$1_icsz_height_inc 20 

Table 8-4 Members of the Icon Size Data Structure (VAX Binding) 

Member Name 

X$L_ICSZ_MIN_WIDTH, 
X$L_ICSZ_MIN_HEIGHT 

X$L_ICSZ_MAX_WIDTH, 
X$L_ICSZ_MAX_HEIGHT 

X$L_ICSZ_WIDTH_INC, 
X$L_ICSZ_HEIGHT_INC 

Contents 

The minimum size for an icon window. 

The maximum size for an icon window. When an 
increment is added to the base width and height, the new 
base width and height cannot exceed these maximum 
values. 

Specifies increments that can be added to a base width 
and height. Any multiple of the increments can be used 
as long as the total width and height do not exceed the 
maximum values set in X$L_ICSZ_MAX_WIDTH and 
X$L_ICSZ_MAX_HEIGHT. If zero is specified for an 
increment, then no increments should be used. 

The data structure for the MIT C binding is shown in Figure 8-4, 
and information about members in the data structure is described in 
Table 8-5. 

8-7 



Property Routines 
8.2 Icon Size Data Structure 

Figure 8-4 Icon Size Data Structure (MIT C Binding) 

typedef struct { 
int min width,min height; 
int max-width,min-height; 
int width_inc,height_inc; 

}XIconSize; 

Table 8-5 Members of the Icon Size Data Structure (MIT C Binding) 

Member Name 

min_width, min_height 

max_width, max_height 

width_inc, height_inc 

Contents 

The minimum size for an icon window. 

The maximum size for an icon window. When an 
increment is added to the base width and height, 
the new base width and height can.not exceed these 
maximum values. 

Specifies increments that can be added to a base width 
and height. Any multiple of the increments can be used 
as long as the total width and height do not exceed the 
maximum values set in max_width and max_height. If 
zero is specified for an increment, then no increments 
should be used. 

8.3 Window Manager Hints Data Structure 
The window manager hints (WM hints) data structure allows you to 
recommend five window hints to the window manager. It is not guaranteed 
that the window manager will use the values you set. The use of these 
recommendations is dependent on an individual window manager program. 

The data structure for the VAX binding is shown in Figure 8-5, and 
information about members in the data structure is described in Table 8-6. 

Figure 8-5 WM Hints Data Structure (VAX Binding) 

x$1_hint_flags 0 

x$1_hint_input 4 

x$1_hint_initial_state 8 

x$1_hint_icon__pixmap 12 

x$1_hint_icon_window 16 

x$1_hint_icon_x 20 

x$1_hint_icon_y 24 

(continued on next page) 

8-8 



Property Routines 
8.3 Window Manager Hints Data Structure 

Figure 8-5 (Cont.) WM Hints Data Structure (VAX Binding) 

x$1_hint_icon_mask 28 

x$1_hint_window_group 32 

Table 8-6 Members of the WM Hints Data Structure (VAX Binding) 

Member Name 

X$L_HINT _FLAGS 

X$L_HINT_INPUT 

X$L_HINT _INITIAL_STATE 

X$L_HINT _ICON_PIXMAP 

X$L_HINT _ICON_WINDOW 

X$L_HINT_ICON_X 

X$L_HINT_ICON_Y 

X$L_HINT _ICON_MASK 

X$L_HINT_WINDOW_ 
GROUP 

Contents 

The members of the structure that are defined. 

Indicates whether or not the application relies on the 
window manager to get keyboard input. 

Defines how the window should appear in its initial 
configuration. Possible initial states are as follows: 

Constant 

x$c_dont_care_state 

x$c_normal_state 

x$c_zoom_state 

x$c_iconic_state 

x$c _inactive _state 

Description 

Client is not interested in 
the initial state 

Initial state used most 
often 

Window starts zoomed 

Window starts as an icon 

Window is seldom used 

Identifies the pixmap used to create the window icon. 

The window to be used as an icon. 

The initial x-coordinate of the icon position. 

The initial y-coordinate of the icon postion. 

The pixmap that filters which pixels of the icon pixmap 
should be drawn. 

The window identifier of the main application window 
when a group of windows changes state as a unit. 

The data structure for the VAX binding is shown in Figure 8-6, and 
information about members in the data structure is described in 
Table 8-7. 

8-9 



Property Routines 
8.3 Window Manager Hints Data Structure 

Figure 8-6 WM Hints Data Structure (MIT C Binding) 

typedef struct { 
long flags; 
Bool input; 
int initial state; 
Pixmap icon_pixmap; 
Window icon_window; 
int icon_x,icon_y; 
Pixmap icon_mask; 
XID window_group; 

}XWMHints 

Table 8-7 Members of the WM Hints Data Structure (MIT C Binding) 

Member Name 

flags 

input 

initial_ state 

icon_pixmap 

icon_window 

icon_x 

icon_y 

icon_ mask 

window_group 

Contents 

The members of the structure that are defined. 

Indicates whether or not the application relies on the window 
manager to get keyboard input. 

Defines how the window should appear in its initial configuration. 
Possible initial states are as follows: 

Constant 
Name 

DontCareState 

NormalState 

Zoom State 

lconicState 

I nactiveState 

Description 

Client is not interested in the initial state 

Initial state used most often 

Window starts zoomed 

Window starts as an icon 

Window is seldom used 

Identifies the pixmap used to create the window icon. 

The window to be used as an icon. 

The initial x-coordinate of the icon position. 

The initial y-coordinate of the icon position. 

The pixmap that filters which pixels of the icon pixmap should 
be drawn. 

The window identifier of the main application window when a 
group of windows changes state as a unit. 

8.4 Property Routines 
The following pages describe the Xlib property routines. 

8-10 



Property Routines 
CHANGE PROPERTY 

CHANGE PROPERTY 

Changes a property of a specified window. 

VAX FORMAT X$CHANGE_PROPERTV 

argument 
information 

(display, window_id, property_id, type_id, format, 
change_mode, prop_data, num_elements) 

Argument Usage Data Type Access Mechanism 

display identifier uns longword read reference 

window_id identifier uns longword read reference 

property _id identifier uns longword read reference 

type_id identifier uns longword read reference 

format longword longword read reference 

change_mode longword uns longword read reference 

prop_data array byte read reference 

num_elements longword longword read reference 

MIT C FORMAT XChangeProperty 

argument 
information 

ARGUMENTS 

(display, window_id, property_id, type_id, format, 
change_mode, prop_data, num_elements) 

XChangeProperty(display, window_id, property_id, type_id, format, 
change mode, prop data, num elements) 

Display *display; -
Window window_id; 
Atom property_id, type_id; 
int format; 
int change_mode; 
unsigned char *prop_data; 
int num_elements; 

display 
The display information originally returned by OPEN DISPLAY. 

window id 
The identifier of the window. 

property_id 
The identifier of the atom that specifies the property to be changed. 

8-11 



Property Routines 
CHANGE PROPERTY 

8-12 

type_id 
The identifier of the atom that specifies the type of property to be changed. 

format 
The format of the property, which can be an 8-bit, 16-bit, or 32-bit format. 
If the format is 16-bit or 32-bit, the pointer to the property data, specified 
in prop_data, must point to character data. 

change_mode 
The type of property change to be completed by the routine. The 
predefined values for change_mode are as follows: 

VAX C 

X$C_PROP _MODE_ PropModeReplace 
REPLACE 

X$C_PROP _MODE_ PropModePrepend 
PRE PEND 

X$C_PROP _MODE_ PropModeAppend 
APPEND 

None No value specified 

Description 

Deletes the previous property 
value and replaces it with the new 
property value. 

Places the new property data at the 
beginning of the existing data, as 
long as the property type and format 
specified in type_id and format 
match the type and format of the 
specified property. If property is 
undefined, it is treated as defined 
with the correct type and format with 
zero-length data. 

Places the new property data at the 
end of the existing data, as long 
as the property type and format 
specified in type_id and format 
match the type and format of the 
specified property. If property is 
undefined, it is treated as defined 
with the correct type and format with 
zero-length data. 

Assumes that the values for the 
type and format specified match 
the values for the specified property, 
and that the new value is zero. 

Other values specified in this argument are not valid. 

prop_data 
Pointer to the new property data. If the format argument specifies a 
16-bit or 32-bit format, the data pointed to must be character data. 

num elements 
The number of properties in the specified format for the window. 



DESCRIPTION 

XERRORS 

Property Routines 
CHANGE PROPERTY 

CHANGE PROPERTY changes the data for a specified property for the 
specified window. The identifier of the window was originally returned by 
CREATE WINDOW or CREATE SIMPLE WINDOW. When the property is 
changed, a Property Notify event is generated. 

You specify the property to be changed by specifying the identifier of the 
atom associated with the property. The atom identifier was originally 
returned by INTERN ATOM. The property remains associated with its 
atom identifier even after the user who defined it disconnects from the 
server. The property is disassociated from the identifier only after the 
application program performs these actions: 

• Deletes the property with the DELETE PROPERTY routine 

• Destroys the window associated with the property 

• Closes the last connection to the server 

The property type, specified in type_id, is not interpreted by this 
routine. CHANGE PROPERTY passes the property type identifier to 
the application program for later use with GET WINDOW PROPERTY. 

VAX C Description 

X$C_BAD_ALLOC BadAlloc The server did not allocate the requested 
resource for any cause. 

X$C_BAD_ATOM BadAtom The value that you specified in an atom 
argument does not name a defined atom. 

X$C_BAD_ VALUE BadValue Some numeric values fall outside the range 
of values accepted by the request. Unless a 
specific range is specified for an argument, 
the full range defined by the argument's type 
is accepted. Any argument defined as a set 
of alternatives can generate this error. 

X$C_BAD_WINDOW BadWindow A value that you specified for a window 
argument does not name a defined window. 

8-13 



Property Routines 
CONVERT SELECTION 

CONVERT SELECTION 

Requests that the specified selection be converted to the specified target type. 

VAX FORMAT X$CONVERT_SELECTION 

argument 
information 

(display, selection_id, target_id, property_id, 
requestor_id, time) 

Argument Usage Data Type Access 

display identifier uns longword read 

selection_id identifier uns longword read 

target_ id identifier uns longword read 

property _id identifier uns longword read 

requestor_id identifier uns longword read 

time longword uns longword read 

Mechanism 

reference 

reference 

reference 

reference 

reference 

reference 

MIT C FORMAT XConvertSelection 

argument 
information 

ARGUMENTS 

8-14 

(display, selection_id, target_id, property_id, 
requestor_id, time) 

XConvertSelection(display, selection_id, target_id, property_id, 
requestor id, time) 

Display *display; 
Atom selection_id, target_id; 
Atom property_id; 
Window requestor_id; 
Time time; 

display 
The display information originally returned by OPEN DISPLAY. 

selection id 
The identifier of the selection atom. 

target_ id 
The identifier of the target atom" 

property_id 
The identifier of the property. It can be passed as None. 



DESCRIPTION 

XERRORS 

requestor_id 

Property Routines 
CONVERT SELECTION 

The identifier of the window that receives selection notification, if the 
selection has no owner. 

time 
The time when the conversion should take place. Either a timestamp, in 
milliseconds, or the predefined value Current Time can be specified. 

CONVERT SELECTION requests that the specified selection be converted 
to the specified target type. If the specified selection is owned by a window, 
the server sends a selection request event to the owner. If no owner for 
the specified selection exists, the server generates a Selection Notify event 
to the requestor with property None. 

VAX C Description 

X$C_BAD_ATOM BadAtom The value that you specified in an atom 
argument does not name a defined atom. 

X$C_BAD_WINDOW BadWindow A value that you specified for a window 
argument does not name a defined window. 

8-15 



Property Routines 
DELETE CONTEXT 

DELETE CONTEXT 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

ARGUMENTS 

8-16 

Deletes an entry for a specified window and context type. 

status_return = X$DELETE_CONTEXT 
(display, window_id, context_id) 

Argument Usage Data Type Access 

status_return cond_value uns longword write 

display identifier uns longword read 

window_id identifier uns longword read 

context_id identifier uns longword read 

int= XDeleteContext 
(display, window_id, context_id) 

int XDeleteContext(display, window_id, context) 
Display *display; 
Window window_id; 
XContext context; 

status return 

Mechanism 

value 

reference 

reference 

reference 

Error code returned by the function. DELETE CONTEXT returns a 
nonzero error code if an error occurs, and zero if an error does not occur. 

display 
The display information originally returned by OPEN DISPLAY. 

window id 
The identifier of the window with which the data is associated. 

context id 
The identifier of the context type corresponding to the data structure. 



Property Routines 
DELETE CONTEXT 

DESCRIPTION DELETE CONTEXT deletes an entry for a specified window and context 
type from the context manager data structure. The identifier of the 
window was originally returned by CREATE SIMPLE WINDOW. 

DELETE CONTEXT returns a nonzero error code if an error occurs, and 
zero if an error does not occur. 

8-17 



Property Routines 
DELETE PROPERTY 

DELETE PROPERTY 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Deletes the association between a property and a specified window. 

X$DELETE_PROPERTY 
(display, window_id, property_id) 

Argument Usage Data Type Access 

display identifier uns longword read 

window_id identifier uns longword read 

property _id identifier uns longword read 

XDeleteProperty 
(display, window_id, property_id) 

XDeleteProperty(display, window_id, property_id) 
Display *display; 
Window window_id; 
Atom property_id; 

display 

Mechanism 

reference 

reference 

reference 

The display information originally returned by OPEN DISPLAY. 

window id 
The identifier of the window with the property to be deleted. 

property_id 
The identifier of the atom that specifies the property to be deleted. 

DESCRIPTION DELETE PROPERTY deletes the association between a property and 
a specified window. The atom identifier used to reference the property 
can no longer be used. If the property to be deleted was defined on the 
specified window, a Property Notify event is generated. 

8-18 

DELETE PROPERTY deletes the property only ifthe property was defined 
on the specified window. Otherwise, a Bad Atom error is returned. 

The identifier of the window was originally returned by CREATE 
WINDOW or CREATE SIMPLE WINDOW. The identifier of the atom 
was originally returned by INTERN ATOM. 



XERRORS 
VAX C Description 

Property Routines 
DELETE PROPERTY 

X$C_BAD_ATOM BadAtom The value that you specified in an atom 
argument does not name a defined atom. 

X$C_BAD_WINDOW BadWindow A value that you specified for a window 
argument does not name a defined window. 

8-19 



Property Routines 
FETCH BUFFER 

FETCH BUFFER 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

ARGUMENTS 

8-20 

Returns the data stored in the specified cut buffer. 

status_return = X$FETCH_BUFFER 
(display, num_bytes_return, num_buffer, 
buff_addr_return) 

Argument Usage Data Type Access 

status_return cond_value uns longword write 

display identifier uns longword read 

num_bytes_return longword longword write 

num_buffer longword longword read 

buff_addr_return longword longword write 

char= XFetchBuffer 
(display, num_bytes_return, num_buffer) 

Mechanism 

value 

reference 

reference 

reference 

value 

char *XFetchBuffer(display, num_bytes_return, num_buffer) 
Display *display; 
int *num bytes return; 
int num_buffer; 

status_return (VAX only) 
A return value that specifies whether the routine completed successfully. 

char (MIT C only) 
A pointer to the data stored in the specified buffer. 

display 
The display information originally returned by OPEN DISPLAY. 

num_bytes_return 
The number of bytes in the string in the buffer. If there is no data in the 
buffer, the value 0 is returned in the num_bytes_return argument. 



num_buffer 

Property Routines 
FETCH BUFFER 

The buffer in which the byte string is stored. Valid entries are 0 
through 7. 

buff_addr_return (VAX only) 
The address of the stream of bytes. 

DESCRIPTION FETCH BUFFER returns a pointer to the string of bytes stored in the 
specified cut buffer and a value indicating the number of bytes in the 
string. If the buffer contains data, FETCH BUFFER returns the number 
of bytes in the num_bytes_return argument; otherwise, it returns a null 
value and sets num_bytes_return to zero. 

XERRORS 
VAX C 

X$C_BAD_VALUE BadValue 

Description 

Some numeric values fall outside the range 
of values accepted by the request. Unless a 
specific range is specified for an argument, the 
full range defined by the argument's type is 
accepted. Any argument defined as a set of 
alternatives can generate this error. 

8-21 



Property Routines 
FETCH BYTES 

FETCH BYTES 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

ARGUMENTS 

Returns the data stored in cut buffer zero. 

buff_addr_return = X$FETCH_BYTES 
(display, num_bytes_return) 

Argument Usage Data Type 

buff_addr_return longword longword 

display identifier uns longword 

num_bytes_return longword longword 

char= XFetchBytes 
(display, num_bytes_return) 

char *XFetchBytes(display, num bytes return) 
Display *display; - -
int *num_bytes_return; 

buff_addr_return (VAX only) 

Access 

write 

read 

write 

The address of a stream of bytes stored in cut buffer zero. 

char (MIT C only) 
A pointer to the data stored in cut buffer zero. 

display 

Mechanism 

value 

reference 

reference 

The display information originally returned by OPEN DISPLAY. 

num_bytes_return 
The number of bytes in the string in the buffer. FETCH BYTES returns 
the number of bytes in this argument. If there is no data in the buffer, the 
value 0 is returned in this argument. 

DESCRIPTION FETCH BYTES returns the number of bytes in the num_bytes_return 
argument, if the buffer contains data. Otherwise, the function returns 
NULL and sets num_bytes_return to 0. 

8-22 



XERRORS 

Property Routines 
FETCH BYTES 

The appropriate amount of storage is allocated and the pointer is returned; 
the client must free this storage with the FREE routine when finished with 
it. Note that the cut buffer's contents need not be text, so it may contain 
embedded null bytes and cannot end with a null byte. 

VAX C Description 

X$C_BAD_WINDOW BadWindow A value that you specified for a window 
argument does not name a defined window. 

8-23 



Property Routines 
FETCH NAME 

FETCH NAME 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

ARGUMENTS· 

8-24 

Provides the name for the specified window (if one exists in the WM_NAME 
property). 

status_return = X$FETCH_NAME 
(display, window_id, window_name_return 
[,name_len_return]) 

Argument Usage Data Type Access 

status_return cond_value uns longword write 

display identifier uns longword read 

window_id identifier uns longword read 

window _name _return char string char string write 

name_len_return word uns word write 

status return= XFetchName 
(display, window_id, window_name_return) 

int XFetchName(display, window id, window_name_return) 
Display *display; -
Window window_id; 
char **window_name_return; 

status return 

Mechanism 

value 

reference 

reference 

descriptor 

reference 

Return value that specifies whether the routine completed successfully. 
FETCH NAME returns a nonzero error code if an error occurs, and zero in 
the MIT C binding or X$C_SUCCESS in the VAX binding if an error does 
not occur or if no name exists for the window. 

display 
The display information originally returned by OPEN DISPLAY. 

window id 
The identifier of the window to determine the name for. 



DESCRIPTION 

XERRORS 

window name return - -

Property Routines 
FETCH NAME 

The name of the window returned by the routine. If a name has not been 
assigned to the window, a null value is returned. 

name_len_return (VAX only) 
The length of window _name_return. This argument is optional. 

FETCH NAME returns the name of the specified window. The window 
name is stored in the window manager name property. The identifier of 
the window was originally returned by CREATE WINDOW or CREATE 
SIMPLE WINDOW. 

If the window does not have a name, the routine returns a null value to 
the window_name_return argument and zero for failure (in the MIT C 
binding) to status_return. 

After a program has finished using the name, the program must free the 
string storing the window name. 

VAX C Description 

X$C_BAD_WINDOW BadWindow A value that you specified for a window 
argument does not name a defined window. 

8-25 



Property Routines 
FIND CONTEXT 

FIND CONTEXT 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

ARGUMENTS 

8-26 

Obtains the data associated with a specified window and context type. 

status_return = X$FIND_CONTEXT 
(display, window_id, context_id [, window_data_return] 
[,buff_len] [,buff_ptr_return] [,len_return]) 

Argument Usage Data Type Access Mechanism 

status_return cond_value uns longword write value 

display identifier uns longword read reference 

window_id identifier uns longword read reference 

context_id identifier uns longword read reference 

window _data_return longword uns longword read reference 

buff_len longword longword read reference 

buff _ptr _return array byte write reference 

len_return longword uns longword write reference 

status return= XFindContext 
(display, window_id, context_id, window_data_return) 

int XFindContext(display, window_id, context_id, 
window_data_return) 

Display *display; 
Window window_id; 
XContext context; 
caddr_t *window_data return; 

status return 
Error code returned by the function. FIND CONTEXT returns a nonzero 
error code if an error occurs, and zero if an error does not occur. 

display 
The display information originally returned by OPEN DISPLAY. 

window id 
The identifier of the window with which the data is associated. 



Property Routines 
FIND CONTEXT 

context id 
The identifier of the context type to which the data corresponds. 

window data return 
The data a;;ociated with the specified window and type. FIND CONTEXT 
returns the associated data to this argument. This argument is optional in 
the VMS binding. 

buff_len (VAX only) 
The length of the supplied buffer. This argument is optional. 

buff_ptr_return (VAX only) 
The buffer into which data is written. This argument is optional. 

len_return (VAX only) 
The length of the data written into the buffer. This argument is optional. 

DESCRIPTION FIND CONTEXT obtains the data associated with a specified window 
and context type. The identifier of the window was originally returned 
by CREATE SIMPLE WINDOW. The identifier of the context type was 
originally returned by UNIQUE CONTEXT. 

FIND CONTEXT returns the associated data to the window_data_ 
return argument. FIND CONTEXT also returns a nonzero error code to 
status_return if an error occurs, and zero if no errors occur. 

8-27 



Property Routines 
GET ATOM NAME 

GET ATOM NAME 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

8-28 

Returns the atom name associated with the specified atom identifier. 

status_return = X$GET_ATOM_NAME 
(display, atom_id, name_return [,name_len_return]) 

Argument Usage Data Type 

status_return cond_value uns longword 

display identifier uns longword 

atom_id identifier uns longword 

name_return char string char string 

name_len_return word uns word 

name_return = XGetAtomName 
(display, atom_id) 

char *XGetAtomName(display, atom_id) 
Display *display; 
Atom atom_id; 

status_return (VAX only) 

Access Mechanism 

write value 

read reference 

read reference 

write descriptor 

write reference 

Return value that specifies whether the routine completed successfully. 
The routine returns one of the following condition values: 

Value 

SS$_NORMAL 

X$_ERRORREPLY 

Description 

Routine completed successfully. 

Error received from the server. 

name_return (Conly) 
The name associated with the atom specified in atom_id. The name 
return argument is a pointer to a null-terminated character string. 



ARGUMENTS display 

Property Routines 
GET ATOM NAME 

The display information originally returned by OPEN DISPLAY. 

atom id 
The identifier of the atom to return the name for. The atom identifier was 
originally returned by INTERN ATOM. 

name_return (VAX only) 
The name of the atom associated with the identifier specified in atom_id. 
The atom name is returned by the routine. The name_return argument 
is the address of a character string descriptor that points to the string. 

name_len_return (VAX only) 
The length of the atom name. The length is returned by the routine. This 
argument is optional. 

DESCRIPTION GET ATOM NAME returns the atom name associated with the specified 
atom identifier. The atom name remains associated with the identifier 
until the last user disconnects from the server. 

XERRORS 
VAX C 

X$C_BAD_ATOM BadAtom 

Description 

The value that you specified in an atom 
argument does not name a defined atom. 

8-29 



Property Routines 
GET CLASS HINT 

GET CLASS HINT 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

ARGUMENTS 

8-30 

Obtains the class of a specified window. 

status_return = X$GET _CLASS_HINT 
(display, window_id, class_hints_return) 

Argument Usage Data Type Access 

status_return cond_value uns longword write 

display identifier uns longword read 

window_id identifier uns longword read 

class_hints_return record x$class_hint write 

status_return = XGetClassHint 
(display, window_id, class_hints_return) 

Mechanism 

value 

reference 

reference 

reference 

Status XGetClassHint(display, window_id, class_hints_return) 
Display *display; 
Window window_id; 
XClassHint *hints_return; 

status return 
Return value that specifies whether the routine completed successfully. 
GET CLASS HINTS returns zero if no class has been defined on the 
window, and returns nonzero otherwise. 

display 
The display information originally returned by OPEN DISPLAY. 

window id 
The identifier of the window for which you want to obtain the class. 

class hints return 
The cla-; hints data structure, which specifies the class of the window. 



Property Routines 
GET CLASS HINT 

DESCRIPTION GET CLASS HINT obtains the class of a specified window. This 
information is stored in the predefined property WM_CLASS. In addition, 
this routine references a class hints data structure, which contains an 
application name and an application class. Note that this name may differ 
from the name set as WM_NAME. 

XERRORS 
VAX C Description 

X$C_BAD_WINDOW BadWindow A value that you specified for a window 
argument does not name a defined window. 

8-31 



Property Routines 
GET ICON NAME 

GET ICON NAME 

Obtains the name to be displayed for a window in its icon. 

VAX FORMAT status_return = X$GET_ICON_NAME 
(display, window_id, icon_name_return) 

argument 
information 

Argument Usage Data Type Access Mechanism 

status_return cond_value uns longword write value 

display identifier uns longword read reference 

window_id identifier uns longword read reference 

icon_name_return char string char string write descriptor 

MIT C FORMAT status_return = XGetlconName 

argument 
information 

RETURNS 

ARGUMENTS 

8-32 

(display, window_id, icon_name_return) 

int XGeticonName(display, window id, icon_name_return) 
Display *display; -
Window window_id; 
char **icon_name_return; 

status return 
Return value that specifies whether the routine completed successfully. 
GET ICON NAME returns zero if a window manager has not set an icon 
name, and a nonzero value if it has. 

display 
The display information originally returned by OPEN DISPLAY. 

window id 
The identifier of the window to get the icon name for. 

icon name return - -
The name to be displayed when the icon representation of the window is 
displayed. The name is stored in WM_ICON_NAME and is returned by 
the routine. If no icon name has been specified, a null value is returned. 



Property Routines 
GET ICON NAME 

DESCRIPTION GET ICON NAME returns the name to be displayed for a window in its 
icon. The icon name is stored in the predefined property WM_ICON_ 
NAME. 

XERRORS 

When an application program no longer needs to use the icon name, the 
program should free the icon name string. 

To specify the name for the icon, use SET ICON NAME. 

VAX C Description 

X$C_BAD_WINDOW BadWindow A value that you specified for a window 
argument does not name a defined window. 

8-33 



Property Routines 
GET ICON SIZES 

GET ICON SIZES 

Obtains the recommended icon sizes from a window manager. 

VAX FORMAT status_return = X$GET _ICON_SIZES 

argument 
information 

(display, window_id [,size_list_return] [,count_return] 
[,list_size] [,list_buff_return]) 

Argument Usage Data Type Access Mechanism 

status_return cond_value uns longword write value 

display identifier uns longword read reference 

window_id identifier uns longword read reference 

size_list_return address uns longword write reference 

count_return longword longword write reference 

list_ size longword longword read reference 

I ist_ buff _return array uns longword write reference 

MIT C FORMAT status_return = XGetlconSizes 

argument 
information 

RETURNS 

ARGUMENTS 

8-34 

(display, window_id, size_/ist_return, count_return) 

Status XGeticonSizes(display, window_id, size_list_return, 
count return) 

Display *display; -
Window window id; 
XIconSize **size_list_return; 
int *count_return; 

status return 
Return value that states whether or not the routine completed successfully. 
GET ICON SIZES returns zero if no icon size property has been defined 
for the window, and returns a nonzero value otherwise. 

display 
The display information originally returned by OPEN DISPLAY. 

window_id 
The identifier of the window to obtain the icon sizes for. 



DESCRIPTION 

size list return 

Property Routines 
GET ICON SIZES 

The virtual address of a pointer to an array of icon size data, returned by 
the routine and residing in space reserved by Xlib. The recommended icon 
size is defined by minimum, maximum, and incremental width and height 
specifications. If the incremental width and height specifications are zero, 
then a single size is recommended. If the incremental specifications are 
nonzero, then the minimum size plus an increment up to the maximum 
size is permitted. 

For more information on the icon size data structure, see Section 8.2. 

VAX only 

This argument is optional. 

count return 
The number of items in size_list_return. 

VAX only 

This argument is optional. 

list_size (VAX only) 
The size of the buffer in list_buff_return. This argument is optional. 

list_buff_return (VAX only) 
A pointer to a data buffer, residing in space you have reserved, where each 
entry is one icon size data element. The size of the buffer is specified by 
list_size. The icon size data is returned by the routine. This argument is 
optional. 

GET ICON SIZES obtains the sizes for the icon window representation 
of the regular window. Icon sizes are usually set by a window manager 
program and are stored in the WM_ICON_SIZE property. Programs can 
use the sizes to create an icon window that is compatible with the window 
manager. 

The icon sizes include the following values: 

• The minimum height and width 

• The maximum height and width 

• An increment to be added to the minimum height and width 

To specify arguments that describe the icon size data returned by the 
routine, use size_list_return to access data owned by Xlib, or list_size 
and list_buff_return to obtain a private copy of the data. To free the 
storage returned by this routine, use FREE. 

8-35 



Property Routines 
GET ICON SIZES 

XERRORS 

8-36 

VAX C Description 

X$C_BAD_WINDOW BadWindow A value that you specified for a window 
argument does not name a defined window. 



Property Routines 
GET NORMAL HINTS 

GET NORMAL HINTS 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

ARGUMENTS 

Obtains recommended values for the size and location of a regular window. 

status_return = X$GET _NORMAL_HINTS 
(display, window_id, hints_return) 

Argument Usage Data Type 

status_return cond_value uns longword 

display identifier uns longword 

window_id identifier uns longword 

hints_return record x$size_hints 

status_return = XGetNormalHints 
(display, window_id, hints_return) 

Access 

write 

read 

read 

write 

int XGetNormalHints(display, window id, hints_return) 
Display *display; -
Window window_id; 
XSizeHints *hints_return; 

status return 

Mechanism 

value 

reference 

reference 

reference 

Return value that specifies whether the routine completed successfully. 
GET NORMAL HINTS returns zero if no normal hints property has been 
defined on the window, and returns a nonzero value otherwise. 

display 
The display information originally returned by OPEN DISPLAY. 

window id 
The identifier of the window to obtain size and location values for. 

hints return 
The size hints data structure containing the recommended values for the 
window. 

For more information on the size hints data structure, see Section 8.1. 

8-37 



Property Routines 
GET NORMAL HINTS 

DESCRIPTION 

XERRORS 

8-38 

GET NORMAL HINTS obtains recommended values for a regular (as 
opposed to icon or zoom) window size and location. This information 
is stored in the WM_NORMAL_HINTS predefined property. A window 
manager program can use this information to size and locate the window 
according to your specifications. However, a window manager may not use 
this information. 

The following values are specified in the size hints data structure: 

• Which values have been specified (the flags member) 

• The x- and y-coordinates of the initial window location 

• The desired width and height of the regular window 

• The minimum width and height of the regular window 

• The maximum width and height of the regular window 

• An increment to be added to the minimum width and height 

• The preferred aspect ratios 

Use SET NORMAL HINTS to specify recommended values. 

VAX C Description 

X$C_BAD_WINDOW BadWindow A value that you specified for a window 
argument does not name a defined window. 



Property Routines 
GET SELECTION OWNER 

GET SELECTION OWNER 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

ARGUMENTS 

Returns the owner of the specified window selection. 

owner_id_return = X$GET_SELECTION_OWNER 
(display, selection_id) 

Argument Usage Data Type Access 

owner_id_return identifier uns longword write 

display identifier uns longword read 

selection_id identifier uns longword read 

owner_id_return = XGetSelectionOwner 
(display, selection_id) 

Window XGetSelectionOwner(display, selection_id) 
Display *display; 
Atom selection_id; 

owner id return 

Mechanism 

value 

reference 

reference 

The identifierof the window that owns the selection. If no selection is 
specified, the null value is returned. 

display 
The display information originally returned by OPEN DISPLAY. 

selection id 
The identifierof the selection. 

DESCRIPTION GET SELECTION OWNER returns the identifier of the window that 
currently owns the specified selection. If no window owns the selection, 
None is returned. 

8-39 



Property Routines 
GET SELECTION OWNER 

XERRORS 
VAX C 

X$C_BAD_ATOM BadAtom 

8-40 

Descri ptfon 

The value that you specified in an atom 
argument does not name a defined atom. 



Property Routines 
GET SIZE HINTS 

GET SIZE HINTS 

Obtains window size hints for any property, using the WM_SIZE_HINTS 
format. 

VAX FORMAT status_return = X$GET_SIZE_HINTS 
(display, window_id, hints_return, property_id) 

argument 
information 

Argument Usage Data Type Access Mechanism 

status _return cond_value uns longword write value 

display identifier uns longword read reference 

window_id identifier uns longword read reference 

hints_return record x$size_hints write reference 

property _id identifier uns longword read reference 

MIT C FORMAT status_return = XGetSizeHints 

argument 
information 

RETURNS 

ARGUMENTS 

(display, window_id, hints_return, property_id) 

Status XGetSizeHints(display, window_id, hints_return, 
property_id) 

Display *display; 
Window window_id; 
XSizeHints *hints_return; 
Atom property_id; 

status return 
Return value that specifies whether the routine completed successfully. 
GET SIZE HINTS returns zero if no size hint property has been defined 
on the window, and returns nonzero otherwise. 

display 
The display information originally returned by OPEN DISPLAY. 

window_id 
The identifier of the window to obtain size hints for. 

8-41 



Property Routines 
GET SIZE HINTS 

DESCRIPTION 

XERRORS 

8-42 

hints return 
The size hints data structure containing the recommended values for the 
window. 

For more information on the size hints data structure, see Section 8.1. 

property_id 
The identifier of the atom that specifies the size property. The size 
property contains the window size hints. 

GET SIZE HINTS obtains recommended values for a window's size and 
location. This information is stored in the predefined property format 
WM_SIZE_HINTS. This format is used with WM_NORMAL_HINTS and 
WM_ZOOM_HINTS to recommend sizing and location information for 
windows in their regular and zoom states. A window manager program 
can use this information to size and locate the window according to your 
specifications. However, a window manager may not use this information. 

The following values are specified in the size hints data structure: 

• Which values are specified (the flags member) 

• The x- and y-coordinates of the initial window location 

• The desired width and height of the window 

• The minimum width and height of the window 

• The maximum width and height of the window 

• An increment to be added to the minimum width and height 

• The preferred aspect ratios 

VAX C Description 

X$C_BAD_ATOM BadAtom The value that you specified in an atom 
argument does not name a defined atom. 

X$C_BAD_WINDOW BadWindow A value that you specified for a window 
argument does not name a defined window. 



Property Routines 
GET TRANSIENT FOR HINT 

GET TRANSIENT FOR HINT 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

ARGUMENTS 

Obtains the WM_TRANSIENT_FOR property of a specified window. 

status_return = X$GET _TRANSIENT _FOR_HINT 
(display, window_id, prop_window_return) 

Argument Usage Data Type Access Mechanism 

status _return cond_value uns longword write 

display identifier uns longword read 

window_id identifier uns longword read 

prop_window_return identifier uns longword read 

status_return = XGetTransientForHint 
(display, window_id, class_hints_return) 

Status XGetTransientForHint(display, window_id, 
prop_window_return) 

Display *display; 
Window window_id; 
Window prop_window_return; 

status return 

value 

reference 

reference 

reference 

Return value that specifies whether the routine completed successfully. 
GET TRANSIENT FOR HINT returns zero if no transient-for property has 
been defined for the window, and returns nonzero otherwise. 

display 
The display information originally returned by OPEN DISPLAY. 

window id 
The windo;-for which you want to obtain the transient-for property. 

prop_window_return 
The transient-for property of the window specified in the window _id 
argument. 

8-43 



Property Routines 
GET TRANSIENT FOR HINT 

DESCRIPTION GET TRANSIENT FOR HINT obtains the transient-for property of a 
specified window. A transient window is a temporary window that acts on 
behalf of another window (for example, a popup dialog box that partially 
obscures the main application window). Setting the transient-for property 
on the popup window allows the window manager to automatically iconify 
the popup window when it iconifies the main application window. 

XERRORS 

8-44 

VAX C Description 

X$C_BAD_WINDOW BadWindow A value that you specified for a window 
argument does not name a defined window. 



Property Routines 
GET WINDOW PROPERTY 

GET WINDOW PROPERTY 

VAX FORMAT 

argument 
information 

Returns type, format, and description information for one property associated 
with a window. 

status_return = X$GET _WINDOW _PROPERTY 
(display, window_id, property_id, long_offset, 
long_len, delete, requested_type, actuaLtype_return, 
actuaLformaLreturn, num_items_return, 
bytes_after_return, £property_data_return] 
[,property_data_len] [,property_data_buff_return] 
[,num_elements_return) 

Argument Usage Data Type Access Mechanism 

status_return longword uns longword write value 

display identifier uns longword read reference 

window_id identifier uns longword read reference 

property _id identifier uns longword read reference 

long_ offset longword longword read reference 

long_len longword longword read reference 

delete longword uns longword read reference 

requested_type identifier uns longword read reference 

actual_ type_ identifier uns longword write reference 
return 

actual_format_ longword longword write reference 
return 

num_items_ longword longword write reference 
return 

bytes_after_ longword longword write reference 
return 

property_data_ address uns longword write reference 
return 

property_data_ longword longword read reference 
len 

property_ data_ array uns longword write reference 
buff_return 

num_elements_ longword longword write reference 
return 

8-45 



Property Routines 
GET WINDOW PROPERTY 

MIT C FORMAT status_return = XGetWindowProperty 

argument 
information 

RETURNS 

ARGUMENTS 

8-46 

(display, window_id, property_id, long_offset, 
long_len, delete, requested_type, actua/_type_return, 
actua/_format_return, num_items_return, 
bytes_after_return, property_data_return) 

int XGetWindowProperty(display, window_id, property_id, 
long_off set, long_len, delete, 
requested_type, actual_type_return, 
actual_format_return, num_items_return, 
bytes after return, property data return) 

Display *display; - - - -
Window window_id; 
Atom property_id; 
long long_offset, long_len; 
Bool delete; 
Atom requested_type; 
Atom *actual type return; 
int *actual format return; 
unsigned long *num=items_return; 
long *bytes after return; 
unsigned char **property_data_return; 

status return 
Return value that specifies whether the routine completed successfully. 

Conly 

This argument returns zero if the routine completes successfully, and 
nonzero if it does not complete successfully. 

VAX only 

This argument returns zero if the routine completes successfully, and one 
of the following values if it does not complete successfully. 

Value 

X$_ERRORREPL Y 

X$_TRUNCATED 

display 

Description 

Error received from the server. 

Buffer not big enough, therefore the results are truncated. 

The display information originally returned by OPEN DISPLAY. 

window id 
The identifier of the window to obtain atom and property information for. 

property_ id 
The identifier of the property to obtain information for. A property is 
identified by its associated atom identifier. 



Property Routines 
GET WINDOW PROPERTY 

long_ offset 
The offset, in 32-bit units, where data will be retrieved. 

long_len 
The length, in 32-bit units, of the data to be retrieved. 

delete 
Whether to delete a property after it is returned. When delete is true 
and a property is returned, it is deleted from the window. If a property is 
deleted, a Property Notify event is generated for the window. When delete 
is false and a property is returned, it remains associated with the window. 

requested_ type 
The identifier of the atom that specifies the type of property. If a particular 
type is specified, the property is returned in actual_type_return only if 
the type (as known to the server) matches the specified property type. If 
the predefined value of any property type is specified, the type is returned 
in actual_type_return, regardless of its type, and the format is returned 
in actual_format_return. 

actual_ type _return 
The identifier of the atom, returned by the routine, that describes the 
actual type of property, as known to the server. If the property does not 
exist, the value zero is returned. 

actual format return 
The datatype of the property returned by the routine, as known to the 
server. The data type can be 8 bit, 16 bit, or 32 bit. If the property does 
not exist, zero is returned. 

property_ data _return 
The virtual address of a pointer to an array of property data returned by 
the routine and residing in space reserved by Xlib. 

This argument is optional. 

num_items_return 
The number of 8-, 16-, or 32-bit units that were returned to property_ 
data_return. If the property does not exist, or if the property type does 
not match the type specified in requested_type, no value is returned. 

bytes_after_return 
The number of bytes remaining to be read in the property if a partial read 
operation was performed. This value is returned by the routine. If the 
property does not exist, zero is returned. 

property_data_len (VAX only) 
The length of the data buffer specified in property _data_buff_return. 

This argument is optional. 

property_data_buff_return (VAX only) 
A pointer to a data buffer, residing in space you have reserved, where 
each entry is one property element. The length of the buffer is specified by 
property _data_len. The property data is returned by the routine. 

This argument is optional. 

8-47 



Property Routines 
GET WINDOW PROPERTY 

DESCRIPTION 

8-48 

GET WINDOW PROPERTY provides the type, format, and data for 
a property associated with the specified window. The identifier of the 
window was originally returned by CREATE WINDOW or CREATE 
SIMPLE WINDOW. 

These five values are defined with GET WINDOW PROPERTY: 

Value Description 

N Actual length of the stored property in bytes (even if the format is 16 
or 32). 

4 times long_offset. The returned value starts at byte index I in the 
property (indexing from 0). 

T Actual length N minus byte index I. 

L MINIMUM(T, 4 times long_len). The returned value length, in bytes. 
If the value in long_offset results in a negative for L, an error occurs. 

A = N- (I + L) The value of bytes_after_return. 

The returned value starts at byte index I in the property (indexing from 
0) and its length in bytes is L. A Bad Value error results if long_offset 
is given such that L is negative. The value of bytes_after_return is A, 
giving the number of trailing unread bytes in the stored property. 

To specify arguments that describe the property data returned by the 
routine, use property _data_return to access data owned by Xlib, or 
property _data_len and property _data_buff_return to obtain a private 
copy of the data. To free the storage returned by this routine, use FREE. 

GET WINDOW PROPERTY sets the return arguments according to the 
following: 

• If the specified property does not exist for the specified window, GET 
WINDOW PROPERTY returns None to actual_type_return and 
the value 0 to actual_format_return and bytes_after_return. The 
num_items_return argument is empty, and delete is ignored. 

• If the specified property exists, but its type does not match the 
specified type, GET WINDOW PROPERTY returns the actual property 
type to actual_type_return, the actual property format (never zero) 
to actual_format_return, and the property length in bytes (even 
if actual_format_return is 16 or 32) to bytes_after_return. The 
num_items_return argument is empty, and delete is ignored. 

• If the specified property exists and you assign AnyPropertyType to 
req_type or the specified property type matches the actual property 
type, GET WINDOW PROPERTY returns the actual property type 
to actual_type_return and the actual property format (never zero) 
to actual_format_return. It also returns a value to bytes_after_ 
return and num_items_return, by defining the following values: 



XERRORS 

Property Routines 
GET WINDOW PROPERTY 

N=actual length of the stored property in bytes 
(even if the format is 16 or 32) 

I=4*long_offset 
T=N-I 
L=MINIMUM(T,4*long_len) 
A=N- (I+L) 

The returned value starts at byte index I in the property (indexing 
from zero), and its length in bytes is L. A Bad Value error is returned 
if the value for long_offset causes L to be negative. The value of 
bytes_after _return is A, giving the number of trailing unread bytes 
in the stored property. If delete is true and bytes_after _return is 
zero, the function deletes the property from the window and generates 
a Property Notify event on the window. 

VAX C 

X$C_BAD_ATOM BadAtom 

X$C_BAD_VALUE BadValue 

X$C_BAD_WINDOW BadWindow 

Description 

The value that you specified in an atom 
argument does not name a defined atom. 

Some numeric values fall outside the range 
of values accepted by the request. Unless a 
specific range is specified for an argument, 
the full range defined by the argument's type 
is accepted. Any argument defined as a set 
of alternatives can generate this error. 

A value that you specified for a window 
argument does not name a defined window. 

8-49 



Property Routines 
GET WM HINTS 

GET WM HINTS 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

ARGUMENTS 

8-50 

Obtains the window manager hints contained in the window manager hints 
property. 

X$GET WM HINTS 
(display, window_id, wmhints_return) 

Argument Usage Data Type 

display identifier uns longword 

window_id identifier uns longword 

wmhints_return record x$wm_hints 

wmhints_return = XGetWMHints 
(display, window_id) 

XWMHints *XGetWMHints(display, window_id) 
Display *display; 
Window window_id; 

C only-wmhints_return 

Access 

read 

read 

write 

Mechanism 

reference 

reference 

reference 

The window manager hints data structure returned by the routine. If no 
data structure has been set for the window, this argument returns a null 
value. 

For more information on the window manager hints data structure, see 
Section 8.3. 

display 
The display information originally returned by OPEN DISPLAY. 

window id 
The identifier of the window to obtain window manager hints for. 

wmhints_return (VAX only) 
The window manager hints data structure returned by the routine. 

For more information on the window manager hints data structure, see 
Section 8.3. 



DESCRIPTION 

XERRORS 

Property Routines 
GET WM HINTS 

GET WM HINTS obtains the window manager hints in the window 
manager hints property. The following window manager hints are 
returned: 

• Whether the program accepts input 

• How a program is started (as a regular window, zoomed, or as an icon) 

• A pixmap used for the icon representation 

• A window identifier of a window used as the icon 

• The initial position of the icon, relative to the root window 

Use the SET WM HINTS routine to set the window manager hints in the 
window manager hints property. 

When finished with this function, an application must free the space used 
for this structure by calling FREE. 

VAX C Description 

X$C_BAD_WINDOW BadWindow A value that you specified for a window 
argument does not name a defined window. 

8-51 



Property Routines 
GET ZOOM HINTS 

GET ZOOM HINTS 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

ARGUMENTS 

8-52 

Obtains recommended values for the size and location of a window in its 
zoomed state. 

status_return = X$GET_ZOOM_HINTS 
(display, window_id, zhints_return) 

Argument Usage Data Type 

status_return cond_value uns longword 

display identifier uns longword 

window_id identifier uns longword 

zhints_return record x$size_hints 

status_return = XGetZoomHints 
(display, window_id, zhints_return) 

Access 

write 

read 

read 

write 

Mechanism 

value 

reference 

reference 

reference 

Status XGetZoomHints(display, window_id, zhints_return) 
Display *display; 
Window window id; 
XSizeHints *zhints_return; 

status return 
Return value that states whether or not the routine completed successfully. 
GET ZOOM HINTS returns zero if no zoom hints property has been 
defined for the window, and returns a nonzero value otherwise. 

display 
The display information originally returned by OPEN DISPLAY. 

window id 
The identifier of the window to obtain zoom size and location values for. 

zhints return 
The size hints data structure containing the recommended values for the 
zoom window. 

For more information on the size hints data structure, see Section 8.1. 



DESCRIPTION 

XERRORS 

Property Routines 
GET ZOOM HINTS 

GET ZOOM HINTS obtains recommended values for a zoom window's size 
and location. Zoom hints are stored in the WM ZOOM HINTS predefined 
property. A window manager program can use this information to size and 
locate a zoom window according to your specifications. However, it is not 
guaranteed that a window manager will use this information. 

The following values are specified in the size hints data structure: 

• Which values have been specified (the flags member) 

• The x- and y-coordinates of the initial window location 

• The desired width and height .of the window 

• The minimum width and height of the window 

• The maximum width and height of the window 

• An increment to be added to the minimum width and height 

• The mimimum and maximum aspect ratios 

Use SET ZOOM HINTS to specify recommended values. 

VAX C Description 

X$C_BAD_WINDOW BadWindow A value that you specified for a window 
argument does not name a defined window. 

8-53 



Property Routines 
INTERN ATOM 

INTERN ATOM 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

ARGUMENTS 

8-54 

Returns the atom identifier for the specified atom name. 

atom_id_return = X$1NTERN_ATOM 
(display, atom_name, only_if_exists) 

Argument Usage Data Type Access 

atom_id_return identifier uns longword write 

display identifier uns longword read 

atom_name char string char string read 

only_if_exists Boolean longword read 

atom_id_return = XlnternAtom 
(display, atom_name, only_if_exists) 

Atom XInternAtom(display, atom_name, only_if_exists) 
Display *display; 
char *atom_name; 
Bool only_if_exists; 

atom id return 

Mechanism 

value 

reference 

descriptor 

reference 

The identifier for the specified atom name. When only _if_exists is true, 
None is returned in the atom_id argument if there is no associated atom 
identifier for the specified atom name. 

display 
The display information originally returned by OPEN DISPLAY. 

atom_name 
The name of the atom associated with the atom identifier. The name 
specified in this argument must exactly match the name being maintained 
by the server. When supplying the name of the atom, you must use the 
correct uppercase and lowercase characters for each character in the 
string. For example, if you want to know the identifier of the atom name 
String, you must specify String. The names string or STRING would not 
return the correct identifier. 



DESCRIPTION 

XERRORS 

Conly 

Property Routines 
INTERN ATOM 

The atom_name argument must be a null-terminated ASCII string. 

only _if_ exists 
Boolean value that specifies whether to create an atom identifier for an 
atom name without an existing identifier. When only _if_exists is true, 
then None is returned in atom_id_return when no atom identifier exists 
for the named atom. When only _if_exists is false, then a new atom 
identifier is created for the specified atom name and returned in atom_id. 

INTERN ATOM returns the identifier of the atom specified in atom_ 
name. If no identifier exists for the atom, you can specify whether 
INTERN ATOM should create an identifier for the atom or specify that 
none exists. 

The atom identifier is used in other routines to refer to the atom. Any 
atom identifier and its associated name remain defined until the last user 
disconnects from the server. 

VAX C 

X$C _BAD _ALLOC BadAlloc 

X$C_BAD_ VALUE BadValue 

Description 

The server did not allocate the requested 
resource for any cause. 

Some numeric values fall outside the range 
of values accepted by the request. Unless a 
specific range is specified for an argument, the 
full range defined by the argument's type is 
accepted. Any argument defined as a set of 
alternatives can generate this error. 

8-55 



Property Routines 
LIST PROPERTIES 

LIST PROPERTIES 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

ARGUMENTS 

8-56 

Returns a list of all properties associated with a window. 

status_return = X$LIST_PROPERTIES 
(display, window_id, num_prop_return 
[,properties_ return] [,properties_ size] 
[properties_butt_return]) 

Argument Usage Data Type 

status _return cond_value uns longword 

display identifier uns longword 

window_id identifier uns longword 

num_prop_return longword longword 

properties_return address uns longword 

properties_size longword longword 

properties_buff_return array longword 

atom_list = XListProperties 

Access 

write 

read 

read 

write 

write 

read 

write 

(display, window_id, num_prop_return) 

Mechanism 

value 

reference 

reference 

reference 

reference 

reference 

reference 

Atom *XListProperties(display, window_id, num_prop_return) 
Display *display; 
Window window id; 
int *num_prop=return; 

status_return (VAX only) 
Return value that specifies whether the routine completed successfully. 

atom_list (MIT Conly) 
A pointer to an array of atom identifiers. Each element is an atom for the 
specified window. The length of the array is returned by the routine in 
num_prop_return. 

display 
The display information originally returned by OPEN DISPLAY. 



window id 

Property Routines 
LIST PROPERTIES 

The identifier of the window for which the property list will be returned. 

num_prop_return 
A pointer, returned by the routine, to the number of properties associated 
with the specified window. 

properties_return (VAX only) 
The virtual address of a pointer to an array of property data, returned by 
the routine and residing in space reserved by Xlib. 

properties_size (VAX only) 
The size of the properties_buff_return buffer that will receive the 
property list. 

properties_buff_return (VAX only) 
A pointer to a data buffer, residing in space you have reserved, where 
each entry is one property element. The length of the buffer is specified by 
properties_size. The property data is returned by the routine. 

DESCRIPTION LIST PROPERTIES returns all the properties associated with the specified 
window. The identifier of the window was originally returned by CREATE 
WINDOW or CREATE SIMPLE WINDOW. 

XERRORS 

To specify arguments that describe the property data returned by 
the routine, use properties_return to access data owned by Xlib, or 
properties_size and properties_buff_return to obtain a private copy of 
the data. To free the storage returned by this routine, use FREE. 

VAX C Description 

X$C_BAD_WINDOW BadWindow A value that you specified for a window 
argument does not name a defined window. 

8-57 



Property Routines 
ROTATE WINDOW PROPERTIES 

ROTATE WINDOW PROPERTIES 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

8-58 

Shifts the positions of the properties within the property array. 

X$ROTATE_ WINDOW _PROPERTIES 
(display, window_id, properties, num_prop, 
num_positions) 

Argument Usage Data Type Access 

display identifier uns longword read 

window_id identifier uns longword read 

properties array uns longword read 

num_prop longword longword read 

num_positions longword longword read 

XRotateWindowProperties 
(display, window_id, properties, num_prop, 
num_positions) 

XRotateWindowProperties(display, window_id, 

Mechanism 

reference 

reference 

reference 

reference 

reference 

properties, num_prop, num_positions) 
Display *display; 
Window window_id; 
Atom properties[]; 
int num_prop; 
int num_positions; 

display 
The display information originally returned by OPEN DISPLAY. 

window id 
The identifier of the window with the properties to be rotated. 

properties 
A pointer to an array of properties in which each element is an atom 
identifier associated with a property. The length of the array is specified 
by num_prop. 



DESCRIPTION 

XERRORS 

num_prop 

Property Routines 
ROTATE WINDOW PROPERTIES 

The number of properties in the properties array. This value specifies the 
length of the array in properties. 

num_positions 
The number of positions or property names to rotate. 

ROTATE WINDOW PROPERTIES shifts the positions of the properties 
within the property array. If the property names in the properties array 
are viewed as being numbered starting with zero and if there are num_ 
prop property names in the list, then the value associated with property 
name I becomes the value associated with property name (I + num_ 
positions) MOD N, for all I from zero to N -1. The effect is to rotate the 
states by num_positions places around the virtual ring of property names 
(right for positive num_positions, left for negative num_positions). 

A Property Notify event for each property in the order listed is generated. 
If a Bad Atom or Bad Match error is generated, no properties are changed. 

VAX c 
X$C_BAD_ATOM BadAtom 

X$C_BAD_MATCH Bad Match 

X$C_BAD_WINDOW BadWindow 

Description 

The value that you specified in an atom 
argument does not name a defined atom. 

Possible causes are as follows: 

In a graphics request, the root and depth 
of the graphics context do not match 
those of the drawable. 
An input-only window is used as a 
drawable. 
One argument or pair of arguments has 
the correct type and range but fails to 
match in some other way required by 
the request. 
An input-only window lacks this attribute. 

A value that you specified for a window 
argument does not name a defined window. 

8-59 



Property Routines 
SAVE CONTEXT 

SAVE CONTEXT 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

ARGUMENTS 

8--60 

Saves the data associated with a specified window and context type. 

status_return = X$SAVE_CONTEXT 
(display, window_id, context_id, window_data, Jen) 

Argument Usage Data Type Access Mechanism 

status_return cond_value uns longword write value 

display identifier uns longword read reference 

window_id identifier uns longword read reference 

context_id identifier uns longword read reference 

window_data longword uns longword read reference 

len longword longword read reference 

int= XSaveContext 
(display, window_id, context_id, window_data) 

int XSaveContext(display, window id, context_id, window data) 
Display *display; - - \ 
Window window_id; 
XContext context id; 
caddr_t window_data; 

status return 
The error code returned by the function. SAVE CONTEXT returns a 
nonzero error code if an error occurs, and zero if an error does not occur. 

display 
The display information originally returned by OPEN DISPLAY. 

window id 
The identifier of the window with which the data is associated. 

context id 
The identifier of the context type to which the data corresponds. 



DESCRIPTION 

window data 

Property Routines 
SAVE CONTEXT 

The data associated with the specified window and context type. 

/en (VAX only) 
Length of the data associated with the specified window and context type. 

SAVE CONTEXT saves the data value associated with a specified window 
and context type. The identifier of the window was originally returned 
by CREATE SIMPLE WINDOW. The identifier of the context type was 
originally returned by UNIQUE CONTEXT. 

If an entry with the specified window and type already exists, SAVE 
CONTEXT overrides the existing entry with the new entry. However, to 
save time and space, it is recommended that you first delete the existing 
entry with DELETE CONTEXT. 

SAVE CONTEXT returns a nonzero error code if an error occurs, and zero 
if no errors occur. 

8-61 



Property Routines 
SET CLASS HINT 

SET CLASS HINT 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Sets the class of a specified window. 

X$SET_CLASS_HINT 
(display, window_id, class_hints_return) 

Argument Usage Data Type Access 

display identifier uns longword read 

window_id identifier uns longword read 

class_hints_return record x$class_hint write 

XSetClassHint 
(display, window_id, class_hints_return) 

XSetClassHint(display, window id, class_hints_return) 
Display *display; -
Window window_id; 
XClassHint *hints_return; 

Mechanism 

reference 

reference 

reference 

display 
The display information originally returned by OPEN DISPLAY. 

window_id 
The identifier of the window for which you want to set the class. 

class hints return 
The cla-; hints data structure, which specifies the class of the window. 

DESCRIPTION SET CLASS HINT sets the class of a specified window. This information 
is stored in the predefined property WM_CLASS. In addition, this routine 
references a class hints data structure, which contains an application 
name and an application class. Note that this name may differ from the 
name set as WM_NAME. 

8-62 



XERRORS 
VAX C Description 

Property Routines 
SET CLASS HINT 

X$C_BAD_ALLOC BadAlloc The server did not allocate the requested 
resource for any cause. 

X$C_BAD_WINDOW BadWindow A value that you specified for a window 
argument does not name a defined window. 

8-63 



Property Routines 
SET COMMAND 

SET COMMAND 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

8-64 

Sets the command used to invoke an application program. 

X$SET _COMMAND 
(display, window_id, command, num_args) 

Argument Usage Data Type Access Mechanism 

display identifier uns longword read reference 

window_id identifier uns longword read reference 

command char string char string read descriptor 

num_args longword longword read reference 

XSetCommand 
(display, window_id, command, num_args) 

XSetCommand(display, window id, command, num_args) 
Display *display; -
Window window_id; 
char **command; 
int num_args; 

display 
The display information originally returned by OPEN DISPLAY. 

window id 
The identifier of the window to set the command property for. 

command 
A pointer to the command and arguments used to start the application, 
which are specified as an array of pointers to null-terminated strings. 

num_args 
The number of arguments in the command. 



DESCRIPTION 

XERRORS 

Property Routines 
SET COMMAND 

SET COMMAND sets the command used to invoke an application 
program, as well as the arguments used to invoke the application. 

You can also set this property with SET STANDARD PROPERTIES. 
However, when you use SET STANDARD PROPERTIES, you must set 
five other properties as well. It is recommended that simple programs in 
which only the minimum properties are to be set use SET STANDARD 
PROPERTIES, and that applications that are going to set additional 
properties not use it. 

VAX C Description 

X$C_BAD_ALLOC BadAlloc The server did not allocate the requested 
resource for any cause. 

X$C_BAD_WINDOW BadWindow A value that you specified for a window 
argument does not name a defined window. 

8-65 



Property Routines 
SET ICON NAME 

SET ICON NAME 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Specifies a name to be displayed when the icon for a window is displayed. 

X$SET _ICON_NAME 
(display, window_id, icon_name) 

Argument Usage Data Type Access Mechanism 

display identifier uns longword read reference 

window_id identifier uns longword read reference 

icon_name char string char string read descriptor 

XSetlconName 
(display, window_id, icon_name) 

XSeticonName(display, window id, icon_name) 
Display *display; -
Window window_id; 
char *icon_name; 

display 
The display information originally returned by OPEN DISPLAY. 

window id 
The identifier of the window for which the icon name is to be specified. 

icon name 
The name to be displayed on the icon when the icon for the specified 
window is displayed. 

DESCRIPTION SET ICON NAME specifies a name to be displayed in a window's icon. 
This routine sets the predefined property WM_ICON_NAME. 

To obtain the name once it is specified, use GET ICON NAME. 

8-66 



XERRORS 
VAX C Description 

Property Routines 
SET ICON NAME 

X$C_BAD_ALLOC BadAlloc The server did not allocate the requested 
resource for any cause. 

X$C_BAD_WINDOW BadWindow A value that you specified for a window 
argument does not name a defined window. 

8-67 



Property Routines 
SET ICON SIZES 

SET ICON SIZES 

Sets the recommended sizes for the icon for a window. 

VAX FORMAT X$SET_ICON_SIZES 
(display, window_id, size_list, count) 

argument 
information 

Argument Usage Data Type Access Mechanism 

display identifier uns longword read reference 

window_id identifier uns longword read reference 

size_list array uns longword read reference 

count longword longword read reference 

MIT C FORMAT XSetlconSizes 

argument 
information 

ARGUMENTS 

8-68 

(display, window_id, size_list, count) 

XSeticonSizes(display, window id, size_list, count) 
Display *display; -
Window window_id; 
XIconSize *size_list; 
int count; 

display 
The display information originally returned by OPEN DISPLAY. 

window id 
The identifier of the window that the icon sizes are being set for. 

size list 
A pointer to icon size information. The recommended size is defined by 
minimum, maximum, and incremental width and height specifications. If 
the incremental width and height specifications are zero, then a single size 
is recommended. If the incremental width and height specifications are 
nonzero, then the minimum size plus an increment up to the maximum 
size is permitted. 

For more information on the icon size data structure, see Section 8.2. 

count 
The number of items in the icon size data structure specified in size_list. 



DESCRIPTION 

XERRORS 

Property Routines 
SET ICON SIZES 

SET ICON SIZES sets the WM ICON SIZE property, which contains the 
sizes for the icon window representation of the regular window. Usually a 
window manager program uses this routine to specify the acceptable icon 
window sizes for other programs. 

Other programs can use GET ICON SIZES to read the values set by the 
window manager. 

SET ICON SIZES sets the following icon size attributes: 

• The minimum height and width 

• The maximum height and width 

• An increment to be added to the minimum height and width 

VAX C Description 

X$C_BAD_ALLOC BadAlloc The server did not allocate the requested 
resource for any cause. 

X$C_BAD_WINDOW BadWindow A value that you specified for a window 
argument does not name a defined window. 

8-69 



Property Routines 
SET NORMAL HINTS 

SET NORMAL HINTS 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Sets recommended values for the size and location of a regular window. 

X$SET _NORMAL_HINTS 
(display, window_id, hints) 

Argument Usage Data Type 

display identifier uns longword 

window_id identifier uns longword 

hints record x$size_hints 

XSetNormalHints 
(display, window_id, hints) 

Access 

read 

read 

read 

void XSetNormalHints(display, window_id, hints) 
Display *display; 
Window window_id; 
XSizeHints *hints; 

display 

Mechanism 

reference 

reference 

reference 

The display information originally returned by OPEN DISPLAY. 

window_id 
The identifier of the regular window to set size and location values for. 

hints 
The size hints data structure containing the recommended values for the 
window. 

For more information on the size hints data structure, see Section 8.1. 

DESCRIPTION SET NORMAL HINTS specifies recommended values for a regular (as 
opposed to icon or zoom) window's size and location. A window manager 
program can use this information to size and locate the window according 
to your specifications. This information is stored in the WM NORMAL 
HINTS predefined property. However, a window manager may not use this 
information. 

8-70 



XERRORS 

Property Routines 
SET NORMAL HINTS 

The following values are specified in the size hints data structure: 

• Which values have been specified (the flags member) 

• The x- and y-coordinates of the initial window location 

• The desired width and height of the regular window 

• The minimum width and height of the regular window 

• The maximum width and height of the regular window 

• An increment to be added to the minimum width and height 

• The aspect ratios preferred 

It is important to set the flags member within the size hints data structure 
to inform the window manager which specific members have been set. If 
the flags member is not set, a window manager may disregard a call to 
SET NORMAL HINTS. 

Use GET NORMAL HINTS to obtain recommended values that have 
already been specified. 

VAX C Description 

X$C_BAD_ALLOC BadAlloc The server did not allocate the requested 
resource for any cause. 

X$C_BAD_WINDOW BadWindow A value that you specified for a window 
argument does not name a defined window. 

8-71 



Property Routines 
SET SELECTION OWNER 

SET SELECTION OWNER 

Sets the owner for the window selection. 

VAX FORMAT X$SET_SELECTION_OWNER 
(display, selection_id, owner_window_id, time) 

argument 
information 

Argument Usage Data Type Access Mechanism 

display identifier uns longword read reference 

selection_id identifier uns longword read reference 

owner_window_id identifier uns longword read reference 

time longword uns longword read reference 

MIT C FORMAT XSetSelectionOwner 

argument 
information 

ARGUMENTS 

8-72 

(display, selection_id, owner_window_id, time) 

XSetSelectionOwner(display, selection id, owner_window_id, time) 
Display *display; -
Atom selection id; 
Window owner_window_id; 
Time time; 

display 
The display information originally returned by OPEN DISPLAY. 

selection id 
The identifier of the selection. 

owner window id - -
The identifier of the window that owns the selection. If there is no owner, 
this value can be specified as None. 

time 
The time when the selection should take place. Either a timestamp, in 
milliseconds, or the predefined Current Time value can be specified. 



DESCRIPTION 

XERRORS 

Property Routines 
SET SELECTION OWNER 

SET SELECTION OWNER specifies the owner for the selected atom. If 
the new owner is not the same as the current owner of the selection, and 
the current owner is a window, then the current owner receives a Selection 
Clear event. If a window is specified and that window is later destroyed, 
the owner of the selection automatically reverts to None. The selection 
atom is not interpreted by the server. 

All selections are global to the server. 

The time specified must be no earlier than the last-change time of the 
specified selection and no later than the current time, or the selection is 
not made. 

VAX C Description 

X$C_BAD_ATOM BadAtom The value that you specified in an atom 
argument does not name a defined atom. 

X$C_BAD_WINDOW BadWindow A value that you specified for a window 
argument does not name a defined window. 

8-73 



Property Routines 
SET SIZE HINTS 

SET SIZE HINTS 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

8-74 

Specifies window size hints for any property. 

X$SET _SIZE_HINTS 
(display, window_id, hints_return, property) 

Argument Usage Data Type Access Mechanism 

display identifier uns longword read reference 

window_id identifier uns longword read reference 

hints_return record x$size_hints write reference 

property identifier uns longword read reference 

XSetSizeHints 
(display, window_id, hints_return, property) 

XSetSizeHints(display, window id, hints_return, property) 
Display *display; -
Window window id; 
XSizeHints *hints_return; 
Atom property; 

display 
The display information originally returned by OPEN DISPLAY. 

window id 
The identifier of the window to specify size hints for. 

hints_return 
A pointer to the size hints data structure in which the recommended 
values for the window are specified. 

For more information on the size hints data structure, see Section 8.1. 

property 
The identifier of the atom that specifies the size property. The size 
property contains the window size hints. 



DESCRIPTION 

XERRORS 

Property Routines 
SET SIZE HINTS 

SET SIZE HINTS specifies recommended values for a window's size and 
location. This information is stored in the predefined property WM SIZE 
HINTS. This format is used with the WM NORMAL HINTS and WM 
ZOOM HINTS properties to recommend sizing and location information 
for windows in their regular and zoom states. It can also be used with 
any other property that has the predefined property format of WM SIZE 
HINTS. A window manager program can use this information to size and 
locate the window according to your specifications. However, a window 
manager may not use this information. 

The following values are specified in the size hints data structure: 

• Which values have been specified (the flags member) 

• The x- and y-coordinates of the initial window location 

• The desired width and height of the window 

• The minimum width and height of the window 

• The maximum width and height of the window 

• An increment to be added to the minimum width and height 

• The preferred aspect ratios 

VAX C Description 

X$C _BAD _ALLOC BadAlloc The server did not allocate the requested 
resource for any cause. 

X$C_BAD_ATOM BadAtom The value that you specified in an atom 
argument does not name a defined atom. 

X$C_BAD_WINDOW BadWindow A value that you specified for a window 
argument does not name a defined window. 

8-75 



Property Routines 
SET STANDARD PROPERTIES 

SET STANDARD PROPERTIES 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

8-76 

Sets the window name, icon name, icon pixmap, command line, amd window 
sizing for the specified window. 

X$SET STANDARD PROPERTIES 
(display, window_id, window_name, icon_name, 
icon_pixmap, command, num_args, hints) 

Argument Usage Data Type Access Mechanism 

display identifier uns longword read reference 

window_id identifier uns longword read reference 

window_name char string char string read descriptor 

icon_name char string char string read descriptor 

icon_pixmap identifier uns longword read reference 

command char string char string read descriptor 

num_args longword longword read reference 

hints record x$size_hints read reference 

XSetStandardProperties 
(display, window_id, window_name, icon_name, 
icon_pixmap, command, num_args, hints) 

XSetStandardProperties(display, window_id, window_name, 
icon_name, icon_pixmap, command, 
num_args, hints) 

Display *display; 
Window window_id; 
char *window_name; 
char *icon_name; 
Pixmap icon_pixmap; 
char **command; 
int num_args; 
XSizeHints *hints; 

display 
The display information originally returned by OPEN DISPLAY. 

window id 
The identifier of the window to set the properties for. 



DESCRIPTION 

window_name 

Property Routines 
SET STANDARD PROPERTIES 

The name of the window specified in window _id. This argument sets the 
WM_NAME property. 

icon name 
The name to be displayed in the icon. This argument sets the WM_ICON_ 
NAME property. 

icon_pixmap 
The identifier of the pixmap storing the icon to be associated with the 
window running the program. If no pixmap is used, specify None. This 
argument specifies the icon_pixmap member of the WM_HINTS property. 

command 
The name of the command and the list of arguments used to invoke the 
program. This argument sets the WM_COMMAND property. 

num_args 
The number of arguments in the command argument list. 

hints 
The size hints data structure lists the recommended window sizes for the 
program. This argument sets the WM_NORMAL_HINTS property. 

For more information on the size hints data structure, see Section 8.1. 

SET STANDARD PROPERTIES sets five essential window properties for 
your program. The five properties are as follows: 

• WM_NAME-The name of the window 

• WM_ICON_NAME-The name to be displayed when the icon 
representation of the window is displayed 

• WM_HINTS-The flags field and the icon pixmap field 

• WM_COMMAND-The name of the command used to invoke your 
application program, along with the list of its arguments 

• WM_NORMAL_HINTS-The recommended window sizes for the 
regular window running your program 

No default values are assigned to these properties. If you do not set them, 
the window manager program determines the default values. However, 
even if you do set these properties, it does not guarantee that the window 
manager will follow them. 

Use this routine when you want to set these five properties and no others. 
If you want to set more than these five properties or only some of these 
properties, use the individual routines and CHANGE PROPERTY. 

8-77 



Property Routines 
SET STANDARD PROPERTIES 

XERRORS 

8-78 

The following routines can set some of these properties individually: 

• SET COMMAND-Sets the WM_COMMAND property 

• SET ICON NAME-Sets the WM_ICON_NAME property 

• SET NORMAL HINTS-Sets the WM_NORMAL_HINTS property 

• SET WMHINTS-Sets the complete WM_HINTS property 

• STORE NAME-Sets the WM_NAME property 

To set other properties, use CHANGE PROPERTY. 

VAX C Description 

X$C_BAD_ALLOC BadAlloc The server did not allocate the requested 
resource for any cause. 

X$C_BAD_WINDOW BadWindow A value that you specified for a window 
argument does not name a defined window. 



Property Routines 
SET TRANSIENT FOR HINT 

SET TRANSIENT FOR HINT 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Sets the WM_TRANSIENT_FOR property of a specified window. 

X$SET TRANSIENT FOR HINT 
(display, window_ic[ prop window_id) 

Argument Usage Data Type Access 

display identifier uns longword read 

window_id identifier uns longword read 

prop_window_id identifier uns longword read 

XSetTransientForHint 
(display, window_id, prop_window_id) 

Mechanism 

reference 

reference 

reference 

XSetTransientForHint(display, window_id, prop_window_id) 
Display *display; 
Window window_id; 
Window prop_window_id; 

display 
The display information originally returned by OPEN DISPLAY. 

window id 
The window for which you want to set the transient-for property. 

prop_window_id 
The window identifier that the WM_TRANSIENT_FOR property is to be 
set to. 

DESCRIPTION SET TRANSIENT FOR HINT sets the transient-for property of a specified 
window. Window managers may in turn use this information to unmap an 
application's dialog boxes. A transient window is a temporary window 
that acts on behalf of another window (for example, a popup dialog 
box that partially obscures the main application window). Setting the 
transient-for property on the popup window allows the window manager 
to automatically iconify the popup window when it iconifies the main 
application window. 

8-79 



Property Routines 
SET TRANSIENT FOR HINT 

XERRORS 

8-80 

VAX C Description 

X$C _BAD _ALLOC BadAlloc The server did not allocate the requested 
resource for any cause. 

X$C_BAD_WINDOW BadWindow A value that you specified for a window 
argument does not name a defined window. 



Property Routines 
SET WM HINTS 

SET WM HINTS 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Sets the values for the window manager hints. 

X$SET _ WM_HINTS 
(display, window_id, wmhints) 

Argument Usage Data Type 

display identifier uns longword 

window_id identifier uns longword 

wmhints record x$wm_hints 

XSetWMHints 
(display, window_id, wmhints) 

XSetWMHints(display, window_id, wmhints) 
Display *display; 
Window window_id; 
XWMHints *wmhints; 

display 

Access Mechanism 

read reference 

read reference 

read reference 

The display information originally returned by OPEN DISPLAY. 

window id 
The identifier of the window to set the window manager hints for. 

wmhints 
The window manager hints data structure in which values will be set. 

For more information on the window manager hints data structure, see 
Section 8.3. 

DESCRIPTION SET WM HINTS sets the values in the WM HINTS property for 
the window manager hints. SET WM HINTS also tells whether the 
application relies on the window manager for input, tells what its 
initial state should be, and the identifier of a related window group. An 
application program can use this routine to recommend icon information 
and location to the window manager program. However, the window 
manager may not accept these recommendations. 

8-81 



Property Routines 
SET WM HINTS 

XERRORS 

8-82 

Use the GET WM HINTS routine to return the window manager hints 
that may be set in the WM_HINTS property. 

The following window manager hints are set: 

• Whether the program relies on the window manager to get keyboard 
input 

• How a program will be started (as a regular window, a zoom window, 
an icon, or not important how started), or the initial state of the 
window 

• A pixmap to be used for the icon representation 

• A window identifier of a window to be used as the icon 

• The initial position of the icon 

VAX C Description 

X$C_BAD_ALLOC BadAlloc The server did not allocate the requested 
resource for any cause. 

X$C_BAD_WINDOW BadWindow A value that you specified for a window 
argument does not name a defined window. 



Property Routines 
SET ZOOM HINTS 

SET ZOOM HINTS 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Sets recommended size and location for a window in the zoomed state. 

X$SET _ZOOM_HINTS 
(display, window_id, zhints_return) 

Argument Usage Data Type Access 

display identifier uns longword read 

window_id identifier uns longword read 

zhints_return record x$size_hints read 

XSetZoom Hints 
(display, window_id, zhints_return) 

XSetZoomHints(display, window_id, zhints_return) 
Display *display; 
Window window_id; 
XSizeHints *zhints_return; 

display 

Mechanism 

reference 

reference 

reference 

The display information originally returned by OPEN DISPLAY. 

window id 
The identifier of the zoom window to set recommended values for. 

zhints return 
The size hints data structure containing the recommended values for the 
zoom window. 

For more information on the size hints data structure, see Section 8.1. 

DESCRIPTION SET ZOOM HINTS specifies recommended values for a window's zoom 
size and location. This information is stored in the WM_ZOOM_HINTS 
predefined property. A window manager program can use this information 
to size and locate the zoomed window according to your specifications. 
However, it is not guaranteed that a window manager will use this 
information. 

8-83 



Property Routines 
SET ZOOM HINTS 

XERRORS 

8-84 

The following values are specified in the size hints data structure: 

• Which values have been specified (the flags member) 

• The x- and y-coordinates of the initial zoom window location 

• The desired width and height of the zoom window 

• The minimum width and height of the zoom window 

• The maximum width and height of the zoom window 

• An increment to be added to the minimum width and height 

• The preferred aspect ratios 

It is important to set the flags member within the size hints data structure 
to inform the window manager which specific members have been set. If 
the flags member is not set, a window manager may disregard a call to 
SET NORMAL HINTS. 

Use GET ZOOM HINTS to obtain recommended values that have already 
been specified. 

VAX C Description 

X$C_BAD_ALLOC BadAlloc The server did not allocate the requested 
resource for any cause. 

X$C_BAD_WINDOW BadWindow A value that you specified for a window 
argument does not name a defined window. 



Property Routines 
STORE NAME 

STORE NAME 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Assigns a name to a window. 

X$STORE_NAME 
(display, window_id, window_name) 

Argument Usage Data Type Access 

display identifier uns longword read 

window_id identifier uns longword read 

window_name char string char string read 

XStoreName 
(display, window_id, window_name) 

XStoreName(display, window_id, window_name) 
Display *display; 
Window window_id; 
char *window_name; 

display 

Mechanism 

reference 

reference 

descriptor 

The display information originally returned by OPEN DISPLAY. 

window id 
The identifier of the window to assign the name to. 

window name 
The name to assign to the window. 

DESCRIPTION STORE NAME assigns the name specified in window_name to the WM_ 
NAME predefined property for the window. The identifier of the window 
was originally returned by CREATE WINDOW or CREATE SIMPLE 
WINDOW. 

Once the name is assigned to the window, a window manager can refer to 
the window by the name. The window name can be used in an icon display 
of the window or in a title bar. 

After the name has been assigned, you can use FETCH NAME to return 
the name. 

8-85 



Property Routines 
STORE NAME 

XERRORS 

8-86 

VAX C Description 

X$C_BAD_ALLOC BadAlloc The server did not allocate the requested 
resource for any cause. 

X$C_BAD_WINDOW BadWindow A value that you specified for a window 
argument does not name a defined window. 



UNIQUE CONTEXT 

Creates a unique context type. 

Property Routines 
UNIQUE CONTEXT 

VAX FORMAT context_id_return = X$UNIQUE_CONTEXT 

argument 
information 

Argument 

context_id_return 

Usage Data Type 

identifier uns longword 

MIT C FORMAT context_id_return = XUniqueContext 

argument 
information xcontext xuniquecontext () 

RETURNS context id return 
The identifier of the context type. 

Access Mechanism 

read reference 

DESCRIPTION UNIQUE CONTEXT creates a unique context type. This type can then 
be used in subsequent calls to other context routines, such as FIND 
CONTEXT and SAVE CONTEXT. 

8-87 





g Region Routines 

The Xlib region routines allow you to specify a pixmap or a list of 
rectangles to restrict (clip) output to a particular area of a window. 
The image defined by the pixmap or rectangles can be of any shape 
and is called a region. The region structure is associated with a window 
by means of the CLIP_X_ORIGIN, CLIP_Y_ORIGIN, and CLIP_MASK 
members of the graphics context data structure. 

You can use the SET CLIP ORIGIN, SET CLIP MASK, and SET CLIP 
RECTANGLES routines to manipulate the members of the graphics 
context data structure directly. However, the region routines provide you 
with a more convenient method to set the clipping region for a window, 
including the ability to define a region from an arbitrary array of points. 
The region routines also allow you to perform arithmetic operations on the 
regions. 

To use the region routines, you first create a region using either POLYGON 
REGION or CREATE REGION. You can associate a region created by 
POLYGON REGION with a window's graphics context by using the SET 
REGION routine. The most common use of CREATE REGION is to create 
an empty region that you later pass to the other region routines as a 
destination. 

For information on how to use the region routines, see the VMS 
DECwindows Xlib Programming Volume. 

The routines described in this chapter are listed in Table 9-1. 

Table 9-1 Region Routines 

Routine Name 

CLIP BOX 

CREATE REGION 

DESTROY REGION 

EMPTY REGION 

EQUAL REGION 

INTERSECT REGION 

Description 

Generates the smallest rectangle that encloses 
a region. 

Creates a new, empty region and returns the 
region identifier that defines it. 

Deallocates the storage space associated with 
a specified region. 

Indicates whether a specified region contains 
any points. 

Compares the offset, size, and shape of two 
regions to determine if they are equal. 

Computes the intersection of two regions and 
stores the result as a region identifier. 

(continued on next page) 

9-1 



Region Routines 

Table 9-1 (Cont.) Region Routines 

Routine Name 

OFFSET REGION 

POINT IN REGION 

POLYGON REGION 

RECT IN REGION 

SET REGION 

SHRINK REGION 

SUBTRACT REGION 

UNION RECT WITH REGION 

UNION REGION 

XOR REGION 

Description 

Moves a region by the amount of the offset 
that you specify. 

Determines whether a coordinate that you 
specify resides in a particular region. 

Generates a new region from a polygon. 

Determines whether a rectangle that you 
specify resides in a particular region. 

Associates the clip mask of a graphics context 
with the region that you specify. 

Reduces (or expands) the size of a region by 
the amount that you specify. 

Subtracts one region from another. Used to 
determine the portion of the first region that 
does not lie within the second. 

Creates a region from the union of a source 
region and a rectangle. 

Calculates the union of two regions and stores 
the result in another region. 

Calculates the coordinates that fall within the 
union, but not the intersection, of two regions. 

9.1 Rectangle Data Structure 
The rectangle data structure describes the origin, width, and height of a 
rectangle. 

The rectangle data structure for the VAX binding is shown in Figure 9-1. 

Figure 9-1 Rectangle Data Structure (VAX Binding) 

9-2 

x$w_grec_y x$w_grec_x 0 

x$w_grec_height x$w_grec_width 4 

The members of the VAX binding rectangle data structure are described in 
Table 9-2. 



9.2 Region Routines 

Region Routines 
9.1 Rectangle Data Structure 

Table 9-2 Members of the Rectangle Data Structure (VAX Binding) 

Member Name Contents 

X$W_GREC_X Defines the x value of the origin of the rectangle 

X$W_GREC_ Y Defines they value of the origin of the rectangle 

X$W_GREC_WIDTH Defines the width of the rectangle 

X$W_GREC_HEIGHT Defines the height of the rectangle 

The rectangle data structure for the MIT C binding is shown in 
Figure 9-2. 

Figure 9-2 Rectangle Data Structure (MIT C Binding) 

typedef struct { 
short x,y; 
unsigned short width, height; 

}XRectangle 

The members of the MIT C binding rectangle data structure are described 
in Table 9-3. 

Table 9-3 Members of the Rectangle Data Structure (MIT C Binding) 

Member Name 

x 

y 

width 

height 

Contents 

Defines the x value of the origin of the rectangle 

Defines the y value of the origin of the rectangle 

Defines the width of the rectangle 

Defines the height of the rectangle 

The following pages describe the Xlib region routines. 

9-3 



Region Routines 
CLIP BOX 

CLIP BOX 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Generates the smallest rectangle that encloses a region. 

X$CLIP_BOX 
(region_id, rectangle_struc_return) 

Argument usage Data Type 

region_id identifier uns longword 

rectangle_struc_return record x$rectangle 

XClipBox 
(region_id, rectangle_struc_return) 

XClipBox(region_id, rectangle_struc_return) 
Region region_id; 
XRectangle *rectangle_struc_return; 

region_id 

Access Mechanism 

read reference 

write reference 

The region you want to enclose in a rectangle. The region_id argument is 
returned by CREATE REGION or POLYGON REGION when the region is 
created. 

rectangle_ struc _return 
The rectangle that encloses the region specified in region_id. CLIP BOX 
returns the smallest enclosing rectangle to this structure. 

The rectangle data structure is shown in Section 9.1. 

DESCRIPTION CLIP BOX generates the smallest rectangle that encloses region_id and 
returns it in rectangle_struc_return. The rectangle data structure is 
shown in Section 9.1. 

9-4 



Region Routines 
CREATE REGION 

CREATE REGION 

Creates a new, empty region and returns the region identifier that defines it. 

VAX FORMAT region_id_return = X$CREATE_REGION () 

argument 
information 

Argument Usage Data Type Access Mechanism 

region_id_return identifier uns longword write reference 

MIT C FORMAT region_id_return = XCreateRegion () 

argument 
information Region xcreateRegion <) 

RETURNS region_id_return 
The region identifier that describes the new region. This region identifier 
is used in routines such as INTERSECT REGION that store the result of 
a mathematical operation in a region identifier. 

DESCRIPTION CREATE REGION creates a new, empty region and returns a region 
identifier that you pass as a destination to other routines such as 
INTERSECT REGION. 

9-5 



Region Routines 
DESTROY REGION 

DESTROY REGION 

VAX FORMAT 

argument 
information 

Deallocates the storage space associated with a specified region. 

X$DESTROY _REGION (region_id) 

Argument Usage Data Type Access Mechanism 

region_id identifier uns longword read reference 

MIT C FORMAT XDestroyRegion (region_id) 

argument 
information 

ARGUMENTS 

DESCRIPTION 

9-6 

XDestroyRegion(region_id) 
Region region_id; 

region_id 
The region identifier of the region that you want to destroy. The region 
identifier is returned by CREATE REGION or POLYGON REGION when 
the region is created. 

DESTROY REGION deallocates the region that you specify by deallocating 
its storage space. 



Region Routines 
EMPTY REGION 

EMPTY REGION 

Indicates whether a specified region contains any points. 

VAX FORMAT answer_return = X$EMPTY _REGION (region_id) 

argument 
information 

Argument Usage Data Type Access Mechanism 

answer_return longword longword write value 

region_id identifier uns longword read reference 

MIT C FORMAT answer_return = XEmptyRegion (region_id) 

argument 
information 

RETURNS 

ARGUMENTS 

DESCRIPTION 

Bool XEmptyRegion(region_id) 
Region region_id; 

answer return 
When the value of answer_return is zero the region is not empty. When 
the value of answer_return is nonzero the region is empty. 

region_id 
The region identifier of the region that you want to test. The region 
identifier is returned by CREATE REGION or POLYGON REGION when 
the region is created. 

EMPTY REGION determines whether the region that you specify is empty. 

9-7 



Region Routines 
EQUAL REGION 

EQUAL REGION 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

ARGUMENTS 

Compares the offsets, sizes, and shapes of two regions to determine if they 
are equal. 

answer_return = X$EQUAL_REGION 
(region1_id, region2_id) 

Argument Usage Data Type 

answer _return longword longword 

region1_id identifier uns longword 

region2_id identifier uns longword 

answer_return = XEqualRegion 
(region1_id, region2_id) 

Bool XEqualRegion(regionl id, region2 id) 
Region regionl_id, region2_id; -

answer return 

Access 

write 

read 

read 

Mechanism 

value 

reference 

reference 

When the value of answer_return is zero the regions are not equal. 
When the value of answer_return is nonzero the regions are equal. 

region1_id 
The region identifier of the first region to be compared. The region 
identifier is returned by CREATE REGION or POLYGON REGION when 
the region is created. 

region2_id 
The region identifier of the second region to be compared. The region 
identifier is returned by CREATE REGION or POLYGON REGION when 
the region is created. 

DESCRIPTION EQUAL REGION compares the offsets, sizes, and shapes of two regions to 
determine if they are equal and returns a value. 

9-8 



Region Routines 
INTERSECT REGION 

INTERSECT REGION 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Computes the intersection of two regions and stores the result as a region 
identifier. 

X$1NTERSECT _REGION 
(src_region 1_id, src_region2_id, dst_region_id_return) 

Argument Usage Data Type Access Mechanism 

src_region1_id identifier uns longword read reference 

src_region2_id identifier uns longword read reference 

dst_region_id_return identifier uns longword write reference 

XlntersectRegion 
(src_region1_id, src_region2_id, dst_region_id_return) 

XIntersectRegion(src regionl id, src region2 id, 
dst-region id return) -

Region src_regionl_id, src=region2_id, dst_region_id_return; 

src_region1_id 
The region identifier of one of the regions for which you want to compute 
the intersection. The region identifier is returned by CREATE REGION or 
POLYGON REGION when the region is created. 

src_region2_id 
The region identifier of the other region for which you want to compute 
the intersection. The region identifier is returned by CREATE REGION or 
POLYGON REGION when the region is created. 

dst_region_id_return 
The region identifier in which to store the result of the intersection 
computation. The region identifier is returned by CREATE REGION 
or POLYGON REGION when the region is created. 

9-9 



Region Routines 
INTERSECT REGION 

DESCRIPTION INTERSECT REGION computes the intersection of two regions and 
stores the value in the region defined by dst_region_id_return. The 
intersection of two regions is the largest area that is common to the two 
regions. 

9-10 

Figure 9-3 shows the intersection of two regions. 

Figure 9-3 Region Intersection 

src_region1_id src_region2_id 

dst_region_id_return 

ZK-0131A-GE 



Region Routines 
OFFSET REGION 

OFFSET REGION 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Moves a region by the amount of the offset that you specify. 

X$0FFSET _REGION 
(region_id, x_offset, y_offset) 

Argument Usage Data Type 

region_id identifier uns longword 

x_offset longword longword 

y_offset longword longword 

XOffsetRegion 
(region_id, x_offset, y_offset) 

Access 

read 

read 

read 

XOffsetRegion(region id, x offset, y_offset) 
Region region ict; -
int x_offset,-y_offset; 

region_id 

Mechanism 

reference 

reference 

reference 

The identifier of the region that you want to move. The region identifier is 
returned by CREATE REGION or POLYGON REGION when the region is 
created. 

x offset 
The x-offset by which you want to move the region. The offset that you 
specify is relative to the origin of the region. 

y_offset 
The y-offset by which you want to move the region. The offset that you 
specify is relative to the origin of the region. 

DESCRIPTION OFFSET REGION uses region_id, x-offset, and y-offset to move a 
region. The size and shape of the region are not affected. Positive values 
for the x- and y-offsets move the region along the positive axis; negative 
values move the region along the negative axis. 

9-11 



Region Routines 
POINT IN REGION 

POINT IN REGION 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

ARGUMENTS 

9-12 

Determines whether a point whose coordinates you specify resides in a 
particular region. 

answer_return = X$POINT _IN_REGION 
(region_id, x_coord, y_coord) 

Argument Usage Data Type 

answer _return longword longword 

region_id identifier uns longword 

x_coord longword longword 

y_coord longword longword 

answer_return = XPointlnRegion 
(region_id, x_coord, y_coord) 

Access 

write 

read 

read 

read 

Bool XPointinRegion(region_id, x_coord, y_coord) 
Region region id; 
int x_coord, y_coord; 

answer return 

Mechanism 

value 

reference 

reference 

reference 

When the value of answer_return is zero the point is not in the region. 
When the value of answer_return is nonzero the point is within the 
region. 

region_id 
The identifier of the region that you want to evaluate. The region 
identifier is returned by CREATE REGION or POLYGON REGION when 
the region is created. 

x_coord 
The x-coordinate of the point that you want to evaluate. The x-coordinate 
is relative to the region's origin. 

y_coord 
The y-coordinate of the point that you want to evaluate. The y-coordinate 
is relative to the region's origin. 



Region Routines 
POINT IN REGION 

DESCRIPTION POINT IN REGION evaluates a region to determine whether the point 
whose coordinates you specify resides within it. 

9-13 



Region Routines 
POLYGON REGION 

POLYGON REGION 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

ARGUMENTS 

9-14 

Generates a new region from a polygon. 

region_id_return = X$POLVGON_REGION 
(points, num_points, fill_ rule) 

Argument Usage Data Type Access 

region_id_return identifier uns longword write 

points array uns longword read 

num_points longword longword read 

fill_rule longword uns longword read 

region_id_return = XPolygonRegion 
(points, num_points, fil/_rule) 

Region XPolygonRegion(points, num_points, fill_rule) 
XPoint points[]; 
int num_points; 
int fill_rule; 

region_id_return 

Mechanism 

value 

reference 

reference 

reference 

POLYGON REGION returns the region identifier when the region is 
created. 

points 
A pointer to the array of points used to create the region. 

num_points 
The number of points in the polygon. The num_points argument reflects 
the number of points in the points array. 

fill rule 
The-fill rule that you want to set for the specified graphics context. The 
fill rule defines which pixels are inside (drawn) for paths given in FILL 
POLYGON requests. 



DESCRIPTION 

Region Routines 
POLYGON REGION 

The predefined values for fill_rule are described in Table 9-4. 

Table 9-4 Fill Rule Constants 

VAX Binding MIT C Binding 

X$C_EVEN_ODD_RULE EvenOddRule 

X$C_WINDING_RULE Winding Rule 

Description 

A point is inside if an infinite ray 
with the point as origin crosses the 
path an odd number of times. 

A point is inside if an infinite ray 
with the point as origin crosses an 
unequal number of clockwise and 
counterclockwise path segments. 
A clockwise path segment is one 
that crosses the ray from left to 
right as observed from the point. 
A counterclockwise path segment 
is one that crosses the ray from 
right to left as observed from the 
point. 

The case where a directed line 
segment is coincident with the ray 
is "uninteresting" because you can 
choose a different ray that is not 
coincident with a segment. 

For both the Even Odd Rule and Winding Rule constants a point is 
infinitely small and the path is an infinitely thin line. A pixel is inside if 
the center point of the pixel is inside and the center point is not on the 
boundary. If the center point is on the boundary, the pixel is inside if, 
and only if, the polygon interior is immediately to its right (x increasing 
direction). 

Pixels with centers that are along a horizontal edge are a special case and 
are inside if, and only if, the polygon interior is immediately below 
(y increasing direction). 

POLYGON REGION returns a region identifier for the polygon defined by 
the points array and the fill rule that you specify. The point data structure 
describes the x- and y-coordinates of a point. 

The point data structure for the VAX binding is shown in Figure 9-4. 

Figure 9-4 Point Data Structure (VAX Binding) 

x$w_gpnt_y x$w_gpnt_x 0 

9-15 



Region Routines 
POLYGON REGION 

9-16 

The members of the VAX binding point data structure are described in 
Table 9-5. 

Table 9-5 Members of the Point Data Structure (VAX Binding) 

Member Name 

X$W_GPNT_X 

X$W_GPNT_Y 

Contents 

Defines the x-coordinate of a point 

Defines the y-coordinate of a point 

The point data structure for the MIT C binding is shown in Figure 9-5. 

Figure 9-5 Point Data Structure (MIT C Binding) 

typedef struct { 
short x,y; 

} XPoint; 

The members of the MIT C binding point data structure are described in 
Table 9-6. 

Table 9-6 Members of the Point Data Structure (MIT C Binding) 

Member Name 

x 
y 

Contents 

Defines the x-coordinate of a point 

Defines the y-coordinate of a point 



Region Routines 
RECT IN REGION 

RECT IN REGION 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

Determines whether a rectangle that you specify resides in a particular region. 

answer_return == X$RECT _IN_REGION 
(region_id, x_coord, y_coord, width, height) 

Argument Usage Data Type Access Mechanism 

answer_return longword longword write value 

region_id identifier uns longword read reference 

x_coord longword longword read reference 

y_coord longword longword read reference 

width longword uns longword read reference 

height longword uns longword read reference 

answer_return == XRectlnRegion 
(region_id, x_coord, y_coord, width, height) 

int XRectinRegion(region_id, x_coord, y_coord, width, height) 
Region region_id; 
int x_coord, y_coord; 
unsigned int width, height; 

answer return 
RECT IN REGION returns the following values: 

VAX Binding MIT C Binding 

X$C_RECTANGLE_IN Rectangle In 

X$C_RECTANGLE_OUT RectangleOut 

X$C_RECTANGLE_PART Rectangle Part 

Description 

The rectangle is entirely inside 
the specified region 

The rectangle is entirely outside 
the specified region 

The rectangle is partially inside 
the specified region 

9-17 



Region Routines 
RECT IN REGION 

ARGUMENTS region_id 
The region identifier of the region to be evaluated. The region identifier is 
returned by CREATE REGION or POLYGON REGION when the region is 
created. 

x coord 
The x-coordinate of the upper left corner of the rectangle that you want to 
evaluate. 

y_coord 
The y-coordinate of the upper left corner of the rectangle that you want to 
evaluate. 

width 
The width, in pixels, of the rectangle to be evaluated. The width and 
height determine the area of the rectangle to be evaluated. 

height 
The height, in pixels, of the rectangle to be evaluated. The width and 
height determine the area of the rectangle to be evaluated. 

DESCRIPTION RECT IN REGION evaluates a region to determine whether the rectangle 
that you specify resides within it and returns a value to indicate the 
status. 

9-18 



SET REGION 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Region Routines 
SET REGION 

Associates the clip mask of a graphics context with the region that you specify. 

X$SET_REGION 
(display, gc_id, region_id) 

Argument Usage Data Type 

display identifier uns longword 

gc_id identifier uns longword 

region_id identifier uns longword 

XSetRegion 
(display, gc_id, region_id) 

XSetRegion(display, gc_id, region_id) 
Display *display; 
GC gc_id; 
Region region_id; 

display 

Access Mechanism 

read reference 

read reference 

read reference 

The display information originally returned by OPEN DISPLAY. 

gc_id 
The identifier of the graphics context that you want to associate with the 
region. 

region_id 
The region identifier of the region that you want to associate with a 
graphics context. The region identifier is returned by CREATE REGION 
or POLYGON REGION when the region is created. 

DESCRIPTION SET REGION sets the clip mask in the graphics context to the specified 
region. After the clip mask is set in the graphics context, the region can 
be destroyed. When the window is redrawn, output to the window that is 
using this graphics context is restricted to the area defined by the region. 

9-19 



Region Routines 
SHRINK REGION 

SHRINK REGION 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Reduces (or expands) the size of a region by the amount that you specify. 

X$SHRINK_REGION 
(region_id, x_otfset, y_otfset) 

Argument Usage Data Type 

region_id identifier uns longword 

x_offset longword longword 

y_offset longword longword 

XShrinkRegion 
(region_id, x_otfset, y_offset) 

Access 

read 

read 

read 

XShrinkRegion(region id, x offset, y_offset) 
Region region_id; -
int x_offset, y_off set; 

region_id 

Mechanism 

reference 

reference 

reference 

The region identifier of the region that you want to shrink or expand. The 
region identifier is returned by CREATE REGION or POLYGON REGION 
when the region is created. 

x_offset 
The x-offset by which you want to reduce or expand the region. Positive 
values reduce the size of the region; negative values expand the size of the 
region. 

y_offset 
The y-offset by which you want to reduce or expand the region. Positive 
values reduce the size of the region; negative values expand the size of the 
region. 

DESCRIPTION SHRINK REGION uses the region_id, x_offset, and y_offset values 
that you specify to reduce or expand the size of a region while leaving 
it centered at the same position. Positive values reduce the size of the 
region; negative values expand the size of the region. SHRINK REGION 

9-20 



Region Routines 
SHRINK REGION 

applies half of the specified x- and y-offsets to the coordinates of each 
corner in the following way: 

Corner Shrink Region Expand Region 

Upper left (+x,+y) (-x,-y) 

Upper right (-x,+y) (+x,-y) 

Lower left (+x,-y} (-x,+y) 

Lower right (-x,-y) (+x,+y) 

For example, assume the relative coordinates (10,20), (40,20), (10,60), and 
(40,60) define the corners of a region. If you supply SHRINK REGION 
with the values x_offset =2 and y_offset =4, SHRINK REGION divides 
the values by 2 and adds or subtracts them as follows: 

Corner Current Coordinates 

Upper left (10,20) 

Upper right (40,20) 

Lower left (10,60) 

Lower right (40,60) 

Shrink Region 

(+1,+2) 

(-1,+2) 

(+1,-2) 

(-1,-2) 

Result 

{11,22) 

(39,22) 

(11,58) 

(39,58) 

Figure 9-6 shows the result of SHRINK REGION. 

Figure 9-6 Shrinking a Region 

The coordinates of the region 
that you want to shrink. 

(0,0) 

(10,20) (40,20) 

111_ _. .. 
(10,60) (40,60) 

The coordinates of the shrunken 
region. 

(0,0) 

ZK-0130A-GE 

9-21 



Region Routines 
SUBTRACT REGION 

SUBTRACT REGION 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Subtracts one region from another. Used to determine the portion of the first 
region that does not lie within the second. 

X$SUBTRACT _REGION 
(src_region1_id, src_region2_id, dst_region_id_return) 

Argument Usage Data Type Access Mechanism 

src_region 1 _id identifier uns longword read reference 

src_region2_id identifier uns longword read reference 

dst_region_id_return identifier uns longword write reference 

XSubtractRegion 
(src_region 1_id, src_region2_id, dst_region_id_return) 

XSubtractRegion(src_regionl_id, src_region2_id, 
dst region id return) 

Region src_regionl_id, src_region2_id, dst_region_id_return; 

src_region1_id 
The region identifier of the minuend. This is the region from which to 
subtract src_region2_id. The region identifier is returned by CREATE 
REGION or POLYGON REGION when the region is created. 

src_region2_id 
The region identifier of the subtrahend. This is the region to subtract from 
src_regionl_id. The region identifier is returned by CREATE REGION 
or POLYGON REGION when the region is created. 

dst_region_id_return 
The identifier of the region in which to store the result of the subtraction. 
The region identifier is returned by CREATE REGION or POLYGON 
REGION when the region is created. 

DESCRIPTION SUBTRACT REGION subtracts the region specified by src_region2_id 
from the region specified by src_regionl_id. Any part of src_regionl_id 
that is not within src_region2_id is stored in dst_region_id_return. 

9-22 



Region Routines 
SUBTRACT REGION 

Figure 9-7 shows the result of SUBTRACT REGION. 

Figure 9-7 Subtracting a Region 

src_region2_id 

--- Shaded Area Stored As 
' dst_region_id_return 

src_region1_id 

ZK-0132A-GE 

9-23 



Region Routines 
UNION RECT WITH REGION 

UNION RECT WITH REGION 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Creates a region from the union of a source region and a rectangle. 

X$UNION_RECT _ WITH_REGION 
(rectangle_ struc, src _reg ion_ id, dst_region _id_ return) 

Argument Usage Data Type Access Mechanism 

rectangle_struc record x$rectangle read reference 

src_region_id identifier uns longword read reference 

dst_region_id_return identifier uns longword write reference 

XUnionRectWithRegion 
(rectangle_struc, src_region_id, dst_region_id_return) 

XUnionRectWithRegion(rectangle struc, src region id, 
dst_region_id_returnf -

Rectangle *rectangle_struc; 
Region src_region_id, dst_region_id_return; 

rectangle_struc 
The rectangle for which you want to compute the union. 

src_region_id, 
The identifier of the region for which you want to compute the union. The 
region identifier is returned by CREATE REGION or POLYGON REGION 
when the region is created. 

dst_region_id_return 
The identifier of the region in which to store the result of the union 
computation. The region identifier is returned by CREATE REGION or 
POLYGON REGION when the region is created. 

DESCRIPTION UNION RECT WITH REGION creates a region from the union of a source 
region and a rectangle. The created region is defined by dst_region_id_ 
return. The union includes any area that is in either the rectangle or 
region or both. , ' 

The rectangle data structure is shown in Section 9.1. 

9-24 



Region Routines 
UNION RECT WITH REGION 

Figure 9-8 shows the result of UNION RECT WITH REGION. 

Figure 9-8 Union of a Source Region and a Rectangle 

rectangle_struc 

src _region _id 

dst_region _id _return 

ZK-0133A-GE 

9-25 



Region Routines 
UNION REGION 

UNION REGION 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Calculates the union of two regions and stores the result in another region. 

X$UNION_REGION 
(src_region1_id, src_region2_id, dst_region_id_return) 

Argument Usage Data Type Access Mechanism 

src_region1_id identifier uns longword read reference 

src_region2_id identifier uns longword read reference 

dst_region_id_return identifier uns longword write reference 

XUnionRegion 
(src_region1_id, src_region2_id, dst_region_id_return) 

XUnionRegion(src regionl id, src region2 id, 
dst-region id return) -

Region src_regionl_id~ s~c_region2_id, dst region_id_return; 

src_region1_id 
The identifier of one of the regions for which you want to compute 
the union. The region identifier is returned by CREATE REGION or 
POLYGON REGION when the region is created. 

src_region2_id 
The identifier of the other region for which you want to compute the union. 
The region identifier is returned by CREATE REGION or POLYGON 
REGION when the region is created. 

dst_region_id_return 
The identifier of the region in which to store the result of the union 
computation. The region identifier is returned by CREATE REGION or 
POLYGON REGION when the region is created. 

DESCRIPTION UNION REGION computes the union of two regions and stores its value 
in the region defined by dst_region_id_return. The union of two regions 
includes any area that is in either or both regions. 

9-26 



Figure 9-9 shows the result of UNION REGION. 

Figure 9-9 Union of Two Regions 

src _region2 _id 

src_region1_id 

dst_region _id _return 

ZK-0134A-GE 

Region Routines 
UNION REGION 

9-27 



Region Routines 
XOR REGION 

XOR REGION 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Calculates the coordinates that fall within the union, but not the intersection, 
of two regions. 

X$XOR REGION 
( src_region 1 _id, src_region2_id, dst_region_id_ return) 

Argument Usage Data Type Access Mechanism 

src_region 1 _id identifier uns longword read reference 

src_region2_id identifier uns longword read reference 

dst_region_id_return identifier uns longword write reference 

XXorRegion 
(src_region 1_id, src_region2_id, dst_region_id_return) 

XXorRegion(src_regionl_id, src_region2_id, 
dst region id return) 

Region src_regionl_id, src_region2_id, dst_region_id_return; 

src_region1_id 
The region identifier of one of the regions for which you want to calculate 
the XOR. The region identifier is returned by CREATE REGION or 
POLYGON REGION when the region is created. 

src_region2_id 
The region identifier of the other region for which you want to calculate 
the XOR. The region identifier is returned by CREATE REGION or 
POLYGON REGION when the region is created. 

dst_region_id_return 
The identifier of the region in which to store the result of the XOR 
operation. The region identifier is returned by CREATE REGION or 
POLYGON REGION when the region is created. 

DESCRIPTION XOR REGION calculates the difference between the union and intersection 
of two regions. XOR REGION performs an exclusive OR operation and 
stores the region that falls within either region, but not both, in 
dst_region_id_return. 

9-28 



Figure 9-10 shows the result of XOR REGION. 

Figure 9-10 Exclusive OR Operation 

src_region2_id 

src_region1_id 

dst_region_id_return 

ZK-0135A-GE 

Region Routines 
XOR REGION 

9-29 





10 Window and Session Manager Routines 

A window or session manager program performs the following types of 
tasks: 

• Manipulating windows 

• Manipulating color maps 

• Manipulating the pointer 

• Manipulating the keyboard 

• Manipulating the server 

• Controlling processing to other connections 

• Manipulating keyboard settings 

• Manipulating the screen saver 

• Controlling host access 

• Parsing window geometry 

• Obtaining Xlib environment information 

Note: Most clients are not responsible for window or session 
management and do not need to use these routines. A client 
could use these routines if there were no formal window or session 
manager program. However, using window or session manager 
routines must be done with great care as they can affect the 
operation of other applications. 

For information on how to use the window manager routines, see the VMS 
DECwindows Xlib Programming Volume. 

The routines described in this chapter are listed in Table 10-1. 

Table 10-1 Window and Session Manager Routines 

Routine Name Description 

ACTIVATE SCREEN SAVER 

ADD HOST 

ADD HOSTS 

ADD TO SAVE SET 

Enables the screen saver, even if it is currently 
disabled. 

Adds a host to the list of hosts that can 
connect to a display. 

Adds more than one host to the list of hosts 
that can connect to a display. 

Adds a window to the client's save set. 

(continued on next page) 

10-1 



Window and Session Manager Routines 

10-2 

Table 10-1 (Cont.) Window and Session Manager Routines 

Routine Name Description 

ALLOW EVENTS Releases events that were queued because a 
device was grabbed. 

AUTO REPEAT OFF Turns off keyboard auto-repeat. 

AUTO REPEAT ON Turns on keyboard auto-repeat. 

BELL Rings the keyboard bell at the base volume 
that you specify. 

CHANGE ACTIVE POINTER GRAB Changes the dynamic parameters for an active 
grab. 

CHANGE KEYBOARD CONTROL Changes the keyboard settings for the key 
click volume, base bell volume, LEDs, and 
auto-repeat keys. 

CHANGE KEYBOARD MAPPING Specifies key symbols for the selected key 
codes. 

CHANGE POINTER CONTROL Controls the interactive feel of the pointing 
device. 

CHANGE SAVE SET Adds or removes a window from the client's 
save set. 

DELETE MODIFIERMAP ENTRY 

DISABLE ACCESS CONTROL 

ENABLE ACCESS CONTROL 

FORCE SCREEN SAVER 

FREE MODIFIERMAP 

GEOMETRY 

GET DEFAULT 

GET INPUT FOCUS 

GET KEYBOARD CONTROL 

GET KEYBOARD MAPPING 

GET MODIFIER MAPPING 

GET POINTER CONTROL 

GET POINTER MAPPING 

Deletes an entry from a modifier key map 
structure. 

Disables access control mode for a display. 

Enables access control mode for a display. 

Activates the screen saver in the specified 
mode. 

Destroys the specified modifier key map 
structure. 

Parses window geometry. 

Returns the default property string for the user 
environment. 

Obtains information about the current input 
focus. 

Obtains the current control values for the 
keyboard. 

Returns the key symbols for one or more than 
one key code. 

Returns the key codes for the modifier keys. 

Returns the pointer movement values for 
acceleration and the threshold at which 
acceleration should be applied. 

Returns the mapping list, which defines which 
buttons are enabled for the pointing device. 

(continued on next page) 



Window and Session Manager Routines 

Table 10-1 (Cont.) Window and Session Manager Routines 

Routine Name 

GET SCREEN SAVER 

GRAB BUTTON 

GRAB KEY 

GRAB KEYBOARD 

GRAB POINTER 

GRAB SERVER 

INSERT MODIFIERMAP ENTRY 

INSTALL COLORMAP 

KEYCODE TO KEYSYM 

KEYSYM TO KEYCODE 

KEYSYM TO STRING 

KILL CLIENT 

LIST HOSTS 

LIST INSTALLED COLORMAPS 

LOOKUP KEYSYM 

LOOKUP STRING 

NEW MODIFIER MAP 

PARSE COLOR 

PARSE GEOMETRY 

QUERY KEYMAP 

REBIND KEYSYM 

Description 

Returns the following values for screen saving: 
the timeout period, the interval, whether 
to blank the screen, and whether to allow 
exposures. 

Grabs a pointer button. 

Passively grabs one key and specifies the 
processing of the key event. 

Actively grabs control of the main keyboard 
and defines the processing of pointer events. 

Actively grabs the specified pointer. 

Takes exclusive possession of the server 
associated with the display. 

Adds a new entry to the modifier key map 
structure. 

Overwrites the current color map with the 
entries from the specified color map. 

Converts the key code that you specify to a 
defined key symbol. 

Converts the key symbol that you specify to a 
defined key code. 

Converts the key-symbol code that you specify 
to the name of the key symbol. 

Disconnects a client associated with the 
specified resource. 

Returns the list of hosts that can access a 
display. 

Returns a color map identifier of each installed 
color map for a window. 

Returns the key symbol from the list that 
corresponds to the key code in the event that 
you specify. 

Maps a key event to an ISO-Latin1 string. 

Creates a new modifier key map data 
structure. 

Provides the red, green, and blue values for a 
named color. 

Parses standard geometry strings. 

Returns a bit vector that describes that state 
of the keyboard. 

Rebinds the meaning of a key symbol for a 
client program. 

(continued on next page) 

10-3 



Window and Session Manager Routines 

Table 10-1 (Cont.) Window and Session Manager Routines 

10-4 

Routine Name 

REFRESH KEYBOARD MAPPING 

REMOVE FROM SAVE SET 

REMOVE HOST 

REMOVE HOSTS 

REPARENT WINDOW 

RESET SCREEN SAVER 

SET ACCESS CONTROL 

SET CLOSE DOWN MODE 

SET INPUT FOCUS 

SET MODIFIER MAPPING 

SET POINTER MAPPING 

SET SCREEN SAVER 

STRING TO KEYSYM 

UNGRAB BUTTON 

UNGRAB KEY 

UNGRAB KEYBOARD 

UNGRAB POINTER 

UNGRAB SERVER 

UNINSTALL COLORMAP 

WARP POINTER 

Description 

Refreshes the stored modifier and key map 
information. 

Removes the specified window from the 
client's save set. 

Removes a host from the list of hosts that can 
connect to a display. 

Removes multiple hosts from the list of hosts 
that can connect to a display. 

Changes the parent window for the specified 
window and repositions the window within the 
new parent's hierarchy. 

Resets the screen saver. 

Changes the access control mode of a display 
to enabled or disabled. 

Defines what happens to a client's resources 
when the client disconnects. 

Changes the input focus to the specified 
window. 

Specifies the key codes for the modifier keys. 

Enables or disables buttons for the pointer. 

Sets the following values for screen saving: 
the timeout period, the inteNal, whether 
to blank the screen, and whether to allow 
exposures. 

Converts the name of the key symbol to the 
name of the key symbol code. 

Deactivates the passive grab for a pointing 
device button press. 

Releases the key combination on the specified 
window that was grabbed. 

Releases an active grab on the main keyboard 
and any queued events. 

Releases the active grab on the specified 
pointer and any queued events. 

Relinquishes exclusive possession of the 
seNer associated with the display that you 
specify. 

Uninstalls a color map for a screen. 

Moves the pointer to any specified location on 
the screen. 



Window and Session Manager Routines 
10.1 Network Data structure 

10.1 Network Data structure 
The network data structure specifies the format of the network address for 
a display. 

The VAX binding network data structure is shown in Figure 10-1. 

Figure 10-1 Network Data Structure (VAX Binding) 

x$1_host_family 0 

x$1_host_length 4 

x$a_host_address 8 

The members of the VAX binding network data structure are described in 
Table 10-2. 

Table 10-2 Members of the Network Data Structure (VAX Binding) 

Member Name 

X$L_HOST _FAMILY 

X$L_HOST _LENGTH 

X$A_HOST _ADDRESS 

Contents 

Specifies which protocol address family to use. The 
constant X$C_FAMILY_DECNET or FamilyDECnet 
identifies the DECnet protocol. 

The length of the address, in bytes. 

A pointer to host address. 

The MIT C binding network data structure is shown in Figure 10-2. 

Figure 10-2 Network Data Structure (MIT C Binding) 

typedef struct { 
int family; 
int length; 
char *address; 

}XHostAddress; 

The members of the MIT C binding network data structure are described 
in Table 10-3. 

10-5 



10.2 

Window and Session Manager Routines 
10.1 Network Data structure 

Table 10-3 Members of the Network Data Structure (MIT C Binding) 

Member Name 

family 

length 

address 

Contents 

Specifies which protocol address family to use. The constant 
X$C_FAMILY_DECNET or FamilyDECnet identifies the DECnet 
protocol. 

The length of the address, in bytes. 

A pointer to host address. 

Keyboard Control Data Structure 
A window or session manager program can set user-controlled keyboard 
preferences such as key click volume, bell volume, auto-repeat state, and 
LED state. You use the keyboard control value mask to specify values for 
the members of the keyboard control data structure. Table 10-6 lists the 
predefined values and descriptions for setting the value mask. 

The VAX binding keyboard control data structure is shown in 
Figure 10-3. 

Figure 10-3 Keyboard Control Data Structure (VAX Binding) 

10-6 

x$1_kbdc_key _ click_percent 

x$1_kbdc_bell_percent 

x$1_kbdc_ bel l_pitch 

x$1_kbdc_bell_duration 

x$1_kbdc_led 

x$1_kbdc_led_mode 

x$1_kbdc_key 

x$1_kbdc_auto _repeat_mode 

The members of the VAX binding keyboard control data structure are 
described in Table 10-4. 

0 

4 

8 

12 

16 

20 

24 

28 



Window and Session Manager Routines 
10.2 Keyboard Control Data Structure 

Table 10-4 Members of the Keyboard Control Data Structure (VAX 
Binding) 

Member Name Contents 

X$L_KBDC_KEY _CLICK_PERCENT Controls the volume for key clicks between 
O (off) and 100 (loud), inclusive, if possible. 

X$L_KBDC_BELL_PERCENT Controls the base volume for the bell between 
O (off) and 100 (loud), inclusive, if possible. 

X$L_KBDC_BELL_PITCH Controls the pitch (specified in Hz) of the bell, 
if possible. 

X$L_KBDC_BELL_DURATION Controls the duration, specified in milliseconds, 
of the bell, if possible. 

X$L_KBDC_LED Changes the keyboard LED. 

X$L_KBDC_LED_MODE Changes the keyboard LED mode. 

X$L_KBDC_KEY Changes the keyboard auto-repeat key. 

X$L_KBDC_AUTO_REPEAT _MODE Changes the keyboard auto-repeat mode. 

The MIT C binding keyboard control data structure is shown in 
Figure 10-4. 

Figure 10-4 Keyboard Control Data Structure (MIT C Binding) 

typedef struct { 
int key_click_percent; 
int bell_percent; 
int bell_pitch; 
int bell_duration; 
int led; 
int led_mode; 
int key; 
int auto_repeat_mode; 

XKeyboardControl; 

The members of the MIT C binding keyboard control data structure are 
described in Table 10-5. 

Table 10-5 Members of the Keyboard Control Data Structure (MIT C 
Binding) 

Member Name 

key_click_percent 

bell_percent 

bell_pitch 

bell_ duration 

Contents 

Controls the volume for key clicks between 0 (off) and 100 
(loud), inclusive, if possible. 

Controls the base volume for the bell between O (off) and 100 
(loud), inclusive, if possible. 

Controls the pitch (specified in Hz) of the bell, if possible. 

Controls the duration, specified in milliseconds, of the bell, if 
possible. 

(continued on next page) 

10-7 



Window and Session Manager Routines 
10.2 Keyboard Control Data Structure 

Table 10-5 (Cont.) Members of the Keyboard Control Data Structure 
(MIT C Binding) 

Member Name 

led 

led_mode 

key 

auto_repeat_mode 

Contents 

Changes the keyboard LED. 

Changes the keyboard LED mode. 

Changes the keyboard auto-repeat key. 

Changes the keyboard auto-repeat mode. 

10.2.1 Keyboard Control Value Mask 

10-8 

Table 10-6 lists the predefined values and descriptions for setting the 
value mask. 

Table 10-6 Keyboard Control Value Mask 

VAX Predefined 
Bit Value 

2 

3 

4 

5 

X$M_KB_KEY_ 
CLICK_PERCENT 

X$M_KB_BELL_ 
PERCENT 

X$M_KB_BELL_ 
PITCH 

X$M_KB_BELL_ 
DURATION 

X$M_KB_LED 

MIT C Predefined 
Value 

KBKeyClickPercent 

KBBellPercent 

KBBellPitch 

KBBellDuration 

KBLed 

Meaning 

Sets the volume for key 
clicks between O (off) and 
100 (loud), inclusive, if 
possible. A setting of -1 
restores the default. Other 
negative values generate a 
Bad Value error. 

Sets the base volume for the 
bell between O (off) and 1 00 
(loud), inclusive, if possible. 
A setting of -1 restores 
the default. Other negative 
values generate a Bad Value 
error. 

Sets the pitch (specified in 
Hz) of the bell, if possible. 
A setting of -1 restores 
the default. Other negative 
values generate a Bad Value 
error. 

Sets the duration, specified 
in milliseconds, of the bell, 
if possible. A setting of -1 
restores the default. Other 
negative values generate a 
Bad Value error. 

Specifies the keyboard LED. 

(continued on next page) 



Window and Session Manager Routines 
10.2 Keyboard Control Data Structure 

Table 10-6 {Cont.) Keyboard Control Value Mask 

VAX Predefined 
Bit Value 

6 X$M_KB_LED_ 
MODE 

7 X$M_KB_KEY 

8 X$M_KB_AUTO_ 
REPEAT _MODE 

MIT C Predefined 
Value 

KB Led Mode 

KB Key 

KBAuto RepeatMode 

Meaning 

Specifies the keyboard LED 
mode. Valid values are Led 
Mode On and Led Mode Off. 

Specifies the auto-repeat 
key. 

Specifies the auto-repeat 
mode. Valid values are as 
follows: 

Auto Repeat Mode On 
Auto Repeat Mode Off 
Auto Repeat Mode 
Default 

If both LED and LED Mode are specified, the state of those LEDs is 
changed, if this capability is supported. If only Led Mode is specified, the 
state of all LEDs is changed if possible. At most, 32 LEDs, numbered from 
1, are supported. No standard interpretation is defined. A Bad Match 
error is generated if an LED is specified without an LED mode. 

If both Auto Repeat Mode and Key are specified, the auto-repeat mode 
of that key is changed (according to Auto Repeat Mode On, Auto Repeat 
Mode Off, or Auto Repeat Mode Default), if possible. If only Auto Repeat 
Mode is specified, the global auto-repeat mode for the entire keyboard is 
changed, if possible, and does not affect the per-key settings. A Bad Match 
error is generated if a key is specified without an auto-repeat mode. 

Each key has a mode that determines whether it should auto-repeat, 
and a default setting for that mode. In addition, there is a global mode 
that determines whether auto-repeat for all keys should be enabled and 
a default setting for that mode. When the global mode is on, keys obey 
their individual auto-repeat modes; when the global mode is off, no keys 
auto-repeat. 

An auto-repeating key generates alternating Key Press and Key Release 
events. When a key is used as a modifier, it does not auto-repeat, 
regardless of the auto-repeat setting for the key. 

A bell generator that is connected to the console, but is not directly part 
of the keyboard, is treated as if it were part of the keyboard. The order in 
which controls are verified and altered is server dependent. If an error is 
generated, a subset of the controls may have been altered. 

10-9 



10.3 

Window and Session Manager Routines 
10.3 Keyboard State Data Structure 

Keyboard State Data Structure 
The GET KEYBOARD CONTROL routines returns the current keyboard 
control values to the keyboard state data structure. 

The VAX binding keyboard state data structure is shown in Figure 10-5. 

Figure 10-5 Keyboard State Data Structure (VAX Binding) 

x$1_kbds_key_click_percent 0 

x$1_kbds_bell__percent 4 

x$1_kbds _ bell__pitch 8 

x$1_kbds_bell_duration 12 

x$1_kbds_led_mask 16 

x$1_kbds_global_auto_repeat 20 

N .-I... 

l 
x$b_kbds_auto_repeats (32 bytes) T 

--_____________ _____.J 56 

10-10 

The members of the VAX binding keyboard state data structure are 
described in Table 10-7. 

Table 10-7 Members of the Keyboard State Data Structure (VAX 
Binding) 

Member Name Contents 

X$L_KBDS_KEY _CLICK_PERCENT The key click percent value. 

X$L_KBDS_BELL_PERCENT The base volume for the bell. 

X$L_KBDS_BELL_PITCH The bell pitch (specified in Hz). 

X$L_KBDS_BELL_DURATION The bell duration, specified in milliseconds. 

X$L_KBDS_LED_MASK The least significant bit corresponds to LED 1, 
and each one bit indicates an LED that is lit. 

(continued on next page) 



Window and Session Manager Routines 
10.3 Keyboard State Data Structure 

Table 10-7 (Cont.) Members of the Keyboard State Data Structure (VAX 
Binding) 

Member Name Contents 

X$L_KBDS_GLOBAL_AUTO_ 
REPEAT 

Global auto-repeat can be set either on or off. 

X$B_KBDS_AUTO_REPEATS 
(32 BYTES) 

A bit vector where each one bit indicates that 
auto-repeat is enabled for the corresponding 
key. The vector is represented as 32 bytes. 
Byte N (from 0) contains the bits for keys SN 
to SN+7, with the least significant bit in the 
byte representing key SN. 

The MIT C binding keyboard state data structure is shown in 
Figure 10-6. 

Figure 10-6 Keyboard State Data Structure (MIT C Binding) 

typedef struct { 
int key click percent; 
int bell percent; 
unsigned-int bell_pitch, bell_duration; 
unsigned long led_mask; 
int global_auto_repeat; 
char auto_repeats[32]; 

XKeyboardState; 

The members of the MIT C binding keyboard state data structure are 
described in Table 10-8. 

Table 10-8 Members of the Keyboard State Data Structure (MIT C 
Binding) 

Member Name 

key _click_percent 

bell_percent 

bell_pitch 

bell_ duration 

led_mask 

global_auto_repeat 

auto _repeats[32] 

Contents 

The key click percent value. 

The base volume for the bell. 

The bell pitch (specified in Hz). 

The bell duration, specified in milliseconds. 

The least significant bit corresponds to LED 1, and each 
one bit indicates an LED that is lit. 

Global auto-repeat can be set either on or off. 

A bit vector where each one bit indicates that auto-repeat 
is enabled for the corresponding key. The vector is 
represented as 32 bytes. Byte N (from 0) contains the 
bits for keys SN to SN+7, with the least significant bit in 
the byte representing key SN. 

10-11 



10.4 

10.5 

Window and Session Manager Routines 
10.4 Compose Data Structure 

Compose Data Structure 
The compose data structure contains compose-key state information. 

The VAX binding compose data structure is shown in Figure 10-7. 

Figure 10-7 Compose Data Structure (VAX Binding) 

x$a_cmps_compose_ptr 0 

x$1_cmps_chars_matched 4 

The members of the VAX binding compose data structure are described in 
Table 10-9. 

Table 10-9 Members of the Compose Data Structure (VAX Binding) 

Member Name 

X$A_ CMPS_COMPOSE_PTR 

X$L_CMPS_CHARS_MATCHED 

Contents 

Compose state table pointer 

Characters match state 

The MIT C binding compose data structure is shown in Figure 10-8. 

Figure 10-8 Compose Data Structure (MIT C Binding) 

typedef struct _XCornposeStatus 
char *cornpose_ptr; 
int chars_matched; 

} XComposeStatus; 

The members of the MIT C binding compose data structure are described 
in Table 10-10. 

Table 10-10 Members of the Compose Data Structure (MIT C Binding) 

Member Name 

compose_ptr 

chars_matched 

Contents 

Compose state table pointer 

Characters match state 

Modifier Key Map Data Structure 

10-12 

The modifier key map data structure is used to set modifier key codes for 
keys. 



10.6 

Window and Session Manager Routines 
10.5 Modifier Key Map Data Structure 

The VAX binding modifier key map data structure is shown in 
Figure 10-9. 

Figure 10-9 Modifier Key Map Data Structure (VAX Binding) 

x$1_mdky_max_keypermod 

x$a_mdky _modifiermap 

The members of the VAX binding modifier key map data structure are 
described in Table 10-11. 

Table 10-11 Members of the Modifier Key Map Data Structure (VAX 
Binding) 

Member Name 

X$L_MDKY _MAX_KEYPERMOD 

X$A_MDKY _MODIFIERMAP 

Contents 

The server's maximum number of keys per 
modifier 

An 8 by X$L_MDKY _MAX_KEYPERMOD 
array of the modifiers 

The MIT C binding modifier key map data structure is shown in 
Figure 10-10. 

Figure 10-10 Modifier Key Map Data Structure (MIT C Binding) 

typedef struct { 
int max_keypermod; 
KeyCode *modifiermap; 

}XModifierKeymap; 

The members of the MIT C binding modifier key map data structure are 
described in Table 10-12. 

Table 10-12 Members of the Modifier Key Map Data Structure (MIT C 
Binding) 

Member Name Contents 

max_keypermod The server's maximum number of keys per modifier 

modifiermap An 8 by max_keypermod array of the modifiers 

Window and Session Manager Routines 
The following pages describe the Xlib window and session manager 
routines. 

0 

4 

10-13 



Window and Session Manager Routines 
ACTIVATE SCREEN SAVER 

ACTIVATE SCREEN SAVER 

VAX FORMAT 

argument 
information 

Enables the screen saver, even if it is currently disabled. 

X$ACTIVATE_SCREEN_SAVER (display) 

Argument Usage Data Type Access Mechanism 

display identifier uns longword read reference 

MIT C FORMAT XActivateScreenSaver (display) 

argument 
information 

ARGUMENTS 

DESCRIPTION 

10-14 

XActivateScreenSaver(display) 
Display *display; 

display 
The display information originally returned by OPEN DISPLAY. 

ACTIVATE SCREEN SAVER enables the screen saver, even if it is 
currently disabled by a previous SET SCREEN SAVER call. When the 
screen saver is activated on the VMS DECwindows server, the server 
prevents an image from being burned into the screen. 



ADD HOST 

VAX FORMAT 

argument 
information 

Window and Session Manager Routines 
ADD HOST 

Adds a host to the list of hosts that can connect to a display. 

X$ADD_HOST (display, host) 

Argument Usage Data Type Access Mechanism 

display identifier uns longword read reference 

host record x$host_address read reference 

MIT C FORMAT XAddHost (display, host) 

argument 
information 

ARGUMENTS 

XAddHost(display, host) 
Display *display; 
XHostAddress *host; 

display 
The display information originally returned by OPEN DISPLAY. 

host 
A pointer to the network address of the host that you want to add. The 
network data structure is shown in Section 10.1. 

DESCRIPTION ADD HOST dynamically adds one host to the list of hosts that can connect 
to the server controlling a display. For this routine to execute successfully, 
the client issuing the command must reside on the same host as the server 
or a Bad Access error is generated. 

The network data structure is shown in Section 10.1. 

10-15 



Window and Session Manager Routines 
ADD HOST 

XERRORS 
VAX MITC 

X$C_BAD_ACCESS BadAccess 

X$C_BAD_VALUE BadValue 

10-16 

Description 

Possible causes are as follows: 

An attempt to grab a key/button 
combination that has already been 
grabbed by another client 

An attempt to free a color map entry 
that was not allocated by the client 

An attempt to store in a read-only or 
unallocated color map entry 

An attempt to modify the access control 
list from other than the local host 

An attempt to select an event type 
that at most one client can select at a 
time, when another client has already 
selected it 

Some numeric values fall outside the 
range of values accepted by the request. 
Unless you specify a specific range for 
an argument, the full range defined by 
the argument's type is accepted. Any 
argument defined as a set of alternatives 
can generate this error. 



ADD HOSTS 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Window and Session Manager Routines 
ADD HOSTS 

Adds more than one host to the list of hosts that can connect to a display. 

X$ADD_HOSTS 
(display, hosts, num_hosts) 

Argument Usage Data Type 

display identifier uns longword 

hosts array uns longword 

num_hosts longword uns longword 

XAddHosts 
(display, hosts, num_hosts) 

XAddHosts(display, hosts, num_hosts) 
Display *display; 
XHostAddress *hosts; 
int num_hosts; 

display 

Access Mechanism 

read reference 

read reference 

read reference 

The display information originally returned by OPEN DISPLAY. 

hosts 
A pointer to the network addresses of the hosts that you want to add. The 
network data structure is shown in Section 10.1. 

num hosts 
The number of hosts to be added to the access list. 

DESCRIPTION ADD HOSTS dynamically adds more than one host to the list of hosts that 
can connect to the server controlling a display. For this routine to execute 
successfully, the client issuing the command must reside on the same host 
as the server or a Bad Access error is generated. 

The network data structure is shown in Section 10.1. 

10-17 



Window and Session Manager Routines 
ADD HOSTS 

XERRORS 
VAX MITC 

X$C_BAD_ACCESS BadAccess 

X$C _BAD_ VALUE BadValue 

10-18 

Description 

Possible causes are as follows: 

An attempt to grab a key/button 
combination that has already been 
grabbed by another client 
An attempt to free a color map entry 
that was not allocated by the client 

An attempt to store in a read-only or 
unallocated color map entry 

An attempt to modify the access control 
list from other than the local host 

An attempt to select an event type 
that at most one client can select at a 
time, when another client has already 
selected it 

Some numeric values fall outside the 
range of values accepted by the request. 
Unless you specify a specific range for 
an argument, the full range defined by 
the argument's type is accepted. Any 
argument defined as a set of alternatives 
can generate this error. 



Window and Session Manager Routines 
ADD TO SAVE SET 

ADD TO SAVE SET 

Adds a window to the client's save set. 

VAX FORMAT X$ADD_TO_SAVE_SET (display, window_id) 

argument 
information 

Argument Usage Data Type Access Mechanism 

display identifier uns longword read reference 

window_id identifier uns longword read reference 

MIT C FORMAT XAddToSaveSet (display, window_id) 

argument 
information 

ARGUMENTS 

XAddToSaveSet(display, window_id) 
Display *display; 
Window window_id; 

display 
The display information originally returned by OPEN DISPLAY. 

window id 
The identifier of the window you want to add to the client's save set. The 
identifier of the window was originally returned by CREATE SIMPLE 
WINDOW or CREATE WINDOW. 

DESCRIPTION ADD TO SAVE SET adds the specified window to the client's save set. The 
save set is a list of other clients' windows that, if they are inferiors of one 
of the client's windows, should not be destroyed at connection close and 
should be remapped if the window is unmapped. 

The specified window must have been created by another client or a Bad 
Match error is generated. The server automatically removes windows 
from the save set when the windows are destroyed. Refer to the CLOSE 
DISPLAY routine for information about what happens to the save set 
when connections are closed. 

You can also use the CHANGE SAVE SET routine to add windows to a 
save set. 

Also see the REMOVE FROM SAVE SET routine. 

10-19 



Window and Session Manager Routines 
ADD TO SAVE SET 

XERRORS 
VAX MIT C 

X$C_BAD_WINDOW BadWindow 

X$C_BAD_MATCH Bad Match 

10-20 

Description 

A value that you specified for a window 
argument does not name a defined window. 

Possible causes are as follows: 

In a graphics request, the root and 
depth of the graphics context do not 
match those of the drawable. 

An input-only window is used as a 
drawable. 

One argument or pair of arguments 
has the correct type and range but fails 
to match in some other way required 
by the request. 
An input-only window lacks this 
attribute. 



Window and Session Manager Routines 
ALLOW EVENTS 

ALLOW EVENTS 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Releases events that were queued because a device was grabbed. 

X$ALLOW _EVENTS 
(display, event_mode, time) 

Argument Usage Data Type Access Mechanism 

display identifier uns longword read reference 

event_mode longword longword read reference 

time longword uns longword read reference 

XAllowEvents 
(display, event_mode, time) 

XAllowEvents(display, event_mode, time) 
Display *display; 
int event_mode; 
Time time; 

display 
The display information originally returned by OPEN DISPLAY. 

event mode 
The events to be released. The predefined values for event_mode are as 
follows: 

VAX 

X$C_ASYNC_ 
POINTER 

MITC 

AsyncPointer 

Description 

Allows pointer event processing to continue 
normally after a pointer has been stopped. If 
pointer events have been frozen twice by the 
client on behalf of two separate grabs, both 
thaw. There is no effect if the pointer is not 
frozen by the client, but the pointer need not 
be grabbed by the client. 

10-21 



Window and Session Manager Routines 
ALLOW EVENTS 

10-22 

VAX 

X$C_SYNC_ 
POINTER 

X$C_REPLAY_ 
POINTER 

X$C_ASYNC_ 
KEYBOARD 

X$C_SYNC_ 
KEYBOARD 

MITC 

Sync Pointer 

ReplayPointer 

AsyncKeyboard 

SyncKeyboard 

Description 

Allows pointer event processing to continue 
normally, after a pointer has been frozen 
or grabbed, until the next Button Press or 
Button Release event is reported to the 
client. At this time, the device may again 
appear to freeze; however, if the reported 
event causes the grab to be released, then 
the device does not freeze. If the pointer 
has not been frozen or grabbed by the client, 
there is no effect. 

If the pointer is actively grabbed by the client, 
and is frozen as the result of an event having 
been sent to the client either from a GRAB 
BUTTON activation or from a previous call 
to ALLOW EVENTS with mode Sync Pointer 
(but not from a call to GRAB POINTER), the 
pointer grab is released and that event is 
completely reprocessed. This time, however, 
the function ignores any passive grabs at or 
above (towards the root of) the grab window 
of the grab just released. 

The request has no effect if the pointer is not 
grabbed by the client or if the pointer is not 
frozen as the result of an event. 

Allows keyboard event processing to 
continue normally after a keyboard has 
been frozen. If keyboard events have been 
frozen twice by the client on behalf of two 
separate grabs, both thaw. There is no effect 
if the keyboard is not frozen by the client, but 
the keyboard need not be grabbed by the 
client. 

If the keyboard is frozen and actively 
grabbed by the client, keyboard event 
processing continues as usual until the next 
Key Press or Key Release event is reported 
to the client. At this time, the keyboard 
again appears to freeze. However, if the 
reported event causes the keyboard grab to 
be released, the keyboard does not freeze. 

There is no effect if the keyboard is not 
frozen by the client or if the keyboard is not 
grabbed by the client. 



VAX 

X$C_REPLAY_ 
KEYBOARD 

X$C_SYNC_ 
BOTH 

X$C_ASYNC_ 
BOTH 

Window and Session Manager Routines 
ALLOW EVENTS 

MIT C 

ReplayKeyboard 

Sync Both 

AsyncBoth 

Description 

If the keyboard is actively grabbed by the 
client, and is frozen as the result of an event 
having been sent to the client either from 
a GRAB KEY activation or from a previous 
call to ALLOW EVENTS with mode Sync 
Keyboard (but not from a call to GRAB 
KEYBOARD}, the keyboard grab is released 
and that event is completely reprocessed. 
This time, however, the function ignores any 
passive grabs at or above (towards the root 
of) the grab window of the grab just released. 

The request has no effect if the keyboard is 
not grabbed by the client or if the keyboard 
is not frozen as the result of an event. 

If the pointer and keyboard are frozen by the 
client, event processing (for both devices) 
continues normally until the next Button 
Press, Button Release, Key Press, or Key 
Release event is reported to the client for 
a grabbed device (button event for the 
pointer, key event for the keyboard), at which 
time the devices again appear to freeze. 
However, if the reported event causes the 
grab to be released, then the devices do not 
freeze (but if the other device is still grabbed, 
then a subsequent event for it still causes 
both devices to freeze.) 

There is no effect unless both the pointer 
and keyboard are frozen by the client. If the 
pointer or keyboard is frozen twice by the 
client on behalf of two separate grabs, both 
thaw. A subsequent freeze for Sync Both 
freezes each device only once. 

If the pointer and the keyboard are frozen 
by the client, event processing (for both 
devices) continues normally. If a device is 
frozen twice by the client on behalf of two 
separate grabs, Async Both thaws both. 
Async Both has no effect unless both the 
pointer and keyboard are frozen by the 
client. 

Async Pointer, Sync Pointer, and Replay Pointer have no effect on the 
processing of keyboard events. Async Keyboard, Sync Keyboard, and 
Replay Keyboard have no effect on the processing of pointer events. It 
is possible for both a pointer grab and a keyboard grab (by the same or 
different clients) to be active simultaneously. 

If a device is frozen because of either grab, no event processing is 
performed for the device. It is possible for a single device to be frozen 
because of both grabs. In this case, both freezes must be released before 
events can again be processed. 

Other values specified in this argument are not valid. 

10-23 



Window and Session Manager Routines 
ALLOW EVENTS 

time 
The time when the events are to be released. Either a timestamp, 
in milliseconds, or the predefined value X$C_CURRENT_TIME or 
CurrentTime can be specified. 

DESCRIPTION ALLOW EVENTS releases specified queued events after a device is 
stopped by a previous client action. ALLOW EVENTS does not release 
any events if the time specified in time is earlier than the last grab time, 
or is later than the current server time. 

XERRORS 

10-24 

There can be both a pointer and keyboard grab active, by the same or 
different clients. If a device is stopped for either grab, no event processing 
is performed for the device. It is possible for a single device to be stopped 
because of both grabs. Both freezes must be released before events can 
again be processed. 

VAX MITC 

X$C_BAD_ VALUE BadValue 

Description 

Some numeric values fall outside the range of 
values accepted by the request. Unless you 
specify a specific range for an argument, the 
full range defined by the argument's type is 
accepted. Any argument defined as a set of 
alternatives can generate this error. 



Window and Session Manager Routines 
AUTO REPEAT OFF 

AUTO REPEAT OFF 

VAX FORMAT 

argument 
information 

Turns off keyboard auto-repeat. 

X$AUTO_REPEAT_OFF (display) 

Argument Usage Data Type 

display identifier uns longword 

Access Mechanism 

read reference 

MIT C FORMAT XAutoRepeatOff (display) 

argument 
information 

ARGUMENTS 

DESCRIPTION 

XAutoRepeatOff (display) 
Display *display; 

display 
The display information originally returned by OPEN DISPLAY. 

AUTO REPEAT OFF turns off keyboard auto-repeat. Use GET 
KEYBOARD CONTROL to obtain a list of the keyboard auto-repeat 
keys. 

10-25 



Window and Session Manager Routines 
AUTO REPEAT ON 

AUTO REPEAT ON 

VAX FORMAT 

argument 
information 

Turns on keyboard auto-repeat. 

X$AUTO_REPEAT_ON (display) 

Argument Usage Data Type 

display identifier uns longword 

MIT C FORMAT XAutoRepeatOn (display) 

argument 
information 

ARGUMENTS 

XAutoRepeatOn(display) 
Display *display; 

display 

Access Mechanism 

read reference 

The display information originally returned by OPEN DISPLAY. 

DESCRIPTION 

10-26 

AUTO REPEAT ON turns on keyboard auto-repeat. Use GET KEYBOARD 
CONTROL to obtain a list of the keyboard auto-repeat keys. 



BELL 

VAX FORMAT 

argument 
information 

Window and Session Manager Routines 
BELL 

Rings the keyboard bell at the base volume that you specify. 

X$BELL (display, percent) 

Argument Usage Data Type Access Mechanism 

display identifier uns longword read reference 

percent longword longword read reference 

MIT C FORMAT XBell (display, percent) 

argument 
information 

ARGUMENTS 

XBell(display, percent) 
Display *display; 
int percent; 

display 
The display information originally returned by OPEN DISPLAY 

percent 
The volume for the bell. Possible values are -100 (off) to 100 (loud) 
inclusive. 

DESCRIPTION BELL rings the bell on the keyboard of the specified display, if possible. 
The volume that you specify is relative to the base volume for the 
keyboard. If the value for the percent argument is not within the range of 
-100 to 100 inclusive, BELL generates a Bad Value error. 

The volume at which the bell is rung when the percent argument is 
positive is 

base - [(base*percent)/100] +percent 

The volume at which the bell is rung when the percent argument is 
negative is 

base+ [(base*percent)/100] 

To change the base volume of the bell, use CHANGE KEYBOARD 
CONTROL. 

10-27 



Window and Session Manager Routines 
BELL 

XERRORS 
VAX MIT C 

X$C_BAD _VALUE BadValue 

10-28 

Description 

Some numeric values fall outside the range of 
values accepted by the request. Unless you 
specify a specific range for an argument, the 
full range defined by the argument's type is 
accepted. Any argument defined as a set of 
alternatives can generate this error. 



Window and Session Manager Routines 
CHANGE ACTIVE POINTER GRAB 

CHANGE ACTIVE POINTER GRAB 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Changes the dynamic parameters for an active grab. 

X$CHANGE_ACTIVE_POINTER_ GRAB 
(display, event_mask, cursor_id, time) 

Argument Usage Data Type Access 

display identifier uns longword read 

event_ mask mask_longword uns longword read 

cursor_id identifier uns longword read 

time longword uns longword read 

XChangeActivePointerGrab 
(display, event_mask, cursor_id, time) 

Mechanism 

reference 

reference 

reference 

reference 

XChangeActivePointerGrab(display, event_mask, cursor_id, time) 
Display *display; 
unsigned int event_mask; 
Cursor cursor_id; 
Time time; 

display 
The display information originally returned by OPEN DISPLAY. 

event mask 
A bit mask that specifies the pointer events to be reported to the client. 
The mask can be the inclusive OR of the event mask values listed in 
Table 10-13. 

10-29 



Window and Session Manager Routines 
CHANGE ACTIVE POINTER GRAB 

10-30 

Table 10-13 Event Mask Description 

Bit VAX Predefined Value MIT C Predefined Value Description 

2 X$M_BUTTON_PRESS ButtonPressMask Pointer button down 
events wanted 

3 X$M_BUTTON_RELEASE Button Release Mask Pointer button up 
events wanted 

4 X$M_ENTER_Wlr.-JDOW EnterWindowMask Pointer window entry 
events wanted 

5 X$M_LEAVE_WINDOW LeaveWindowMask Pointer window leave 
events wanted 

6 X$M_POINTER_MOTION PointerMotionMask Pointer motion 
events wanted 

7 X$M_POINTER_ PointerMotionHintMask Pointer motion hints 
MOTION_H INT wanted 

8 X$M_BUTTON 1_MOTION Button 1 Motion Mask Pointer motion while 
button 1 down 

9 X$M_BUTTON2_MOTION Button2MotionMask Pointer motion while 
button 2 down 

10 X$M_BUTTON3_MOTION Button3Motion Mask Pointer motion while 
button 3 down 

11 X$M_BUTTON4_MOTION Button4Motion Mask Pointer while button 
4 down 

12 X$M_BUTTON5_MOTION Button5MotionMask Pointer motion while 
button 5 down 

13 X$M_BUTTON_MOTION Button Motion Mask Pointer motion while 
any button down 

14 X$M_KEYMAP_STATE KeyMapStateMask Any keyboard state 
change wanted 

cursor id 
The identifier of the cursor to be displayed. If no cursor is to be displayed, 
use the value None. 

time 
The time when the events are to be released. Either a times tamp, 
in milliseconds, or the predefined value X$C_CURRENT_TIME or 
CurrentTime can be specified. 



Window and Session Manager Routines 
CHANGE ACTIVE POINTER GRAB 

DESCRIPTION CHANGE ACTIVE POINTER GRAB changes the specified dynamic 
parameters if the pointer is actively grabbed by the client. The routine 
does not finish if the time specified in time is earlier than the last pointer 
grab time or later than the current server time. It has no effect on the 
passive parameters of GRAB BUTTON. 

XERRORS 

The interpretation of event_mask and cursor_id is the same as described 
in GRAB POINTER. 

VAX MIT C 

X$C_BAD_VALUE BadValue 

X$C_BAD_CURSOR BadCursor 

Description 

Some numeric values fall outside the range 
of values accepted by the request. Unless 
you specify a specific range for an argument, 
the full range defined by the argument's type 
is accepted. Any argument defined as a set 
of alternatives can generate this error. 

A value that you specified for a cursor 
argument does not name a defined cursor. 

10-31 



Window and Session Manager Routines 
CHANGE KEYBOARD CONTROL 

CHANGE KEYBOARD CONTROL 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

10-32 

Changes the keyboard settings for the key click volume, base bell volume, 
LEDs, and auto-repeat keys. 

X$CHANGE_KEVBOARD_CONTROL 
(display, value_mask, control_ values) 

Argument Usage Data Type 

display identifier uns longword 

value_mask mask_longword uns longword 

control_ values record x$keyboard_ 
control 

XChangeKeyboardControl 
(display, value_mask, control_ values) 

Access Mechanism 

read reference 

read reference 

read reference 

XChangeKeyboardControl(display, value_mask, control_values) 
Display *display; 
unsigned long value_mask; 
XKeyboardControl *control_values; 

display 
The display information originally returned by OPEN DISPLAY. 

value mask 
A bit mask that specifies which keyboard values are to be changed. 

Table 10-6 lists the predefined values and descriptions for setting the 
value mask. This mask is the inclusive OR of the valid control mask bits. 

control values 
A keyboard control data structure that specifies the new values for the 
keyboard control settings. Contains one value for each one bit in 
value_mask. 

The keyboard control data structure is shown in Section 10.2. 



DESCRIPTION 

XERRORS 

Window and Session Manager Routines 
CHANGE KEYBOARD CONTROL 

CHANGE KEYBOARD CONTROL changes the settings for the key 
click volume, the bell volume, the bell pitch, the bell duration, the LED 
illuminations, and the auto-repeat keys. 

Specify the new values in the keyboard control data structure in control_ 
values. Then, set the mask in value_mask to specify which values have 
been changed. Only those values set in the mask are changed. 

The keyboard control data structure is shown in Section 10.2. 

VAX MITC 

X$C_BAD_MATCH Bad Match 

X$C_BAD_VALUE BadValue 

Description 

Possible causes are as follows: 

In a graphics request, the root and depth 
of the graphics context do not match 
those of the drawable. 
An input-only window is used as a 
drawable. 

One argument or pair of arguments has 
the correct type and range but fails to 
match in some other way required by 
the request. 

An input-only window lacks this attribute. 

Some numeric values fall outside the range 
of values accepted by the request. Unless 
you specify a specific range for an argument, 
the full range defined by the argument's type 
is accepted. Any argument defined as a set 
of alternatives can generate this error. 

10-33 



Window and Session Manager Routines 
CHANGE KEYBOARD MAPPING 

CHANGE KEYBOARD MAPPING 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

10-34 

Specifies key symbols for the selected key codes. 

X$CHANGE KEYBOARD MAPPING 
(display, first_keycode, keysyms_per_keycode, 
keysyms_ids,num_keycodes) 

Argument Usage Data Type Access Mechanism 

display identifier uns longword read reference 

first_keycode longword uns longword read reference 

keysyms_per _keycode longword longword read reference 

keysyms_ids array uns longword read reference 

num_keycodes longword longword read reference 

XChangeKeyboardMapping 
(display, first_keycode, keysyms_per_keycode, 
keysyms_ids, num_keycodes) 

XChangeKeyboardMapping(display, first_keycode, 
keysyms_per_keycode, 
keysyms_ids, num_keycodes) 

Display *display; 
int first_keycode; 
int keysyms_per_keycode; 
KeySym *keysyms_ids; 
int num_keycodes; 

display 
The display information originally returned by OPEN DISPLAY. 

first_keycode 
The first key code to have key symbols. This value must be greater than 
or equal to the minimum key code value. 

keysyms_per_keycode 
The number of key symbols to be specified for the key codes. This value 
must be the same for all key codes specified in a single call to this routine. 
The number specified should be large enough to accommodate the highest 
number of key symbols that will be specified with any key code. When 



DESCRIPTION 

Window and Session Manager Routines 
CHANGE KEYBOARD MAPPING 

there are fewer key symbols for a particular key code, the empty key 
symbols should be specified as X$C_NO_SYMBOL or NoSymbol. 

keysyms_ids 
A pointer to a list containing the specified key symbols for the key codes. 
The total number of key symbols specified must be a multiple of keysyms_ 
per_keycode. 

VAX only 

The list is an array where each element contains a key symbol. 

num_keycodes 
The number of key codes that are to be changed. 

CHANGE KEYBOARD MAPPING defines the symbols for the specified 
number of key codes. The symbols for key codes outside this range remain 
unchanged. The number of elements in the key symbols list must be 

num_keycodes * keysyms_per _key code 

The first key code must be greater than or equal to the minimum key 
code that is supplied at connection setup and stored in the display 
structure. Otherwise, a Bad Value error is generated. In addition, the 
following expression must be less than or equal to the maximum key code 
as returned in the connection setup, or a Bad Value error is generated: 

firsLkeycode + (num_keycodes/keysyms_per_keycode) - 1 

The key symbol N (counting from zero) for key code K has the following 
index (counting from zero): 

(K - firsLkeycode) * keysyms_per_keycode + N 

The specified keysyms_per_keycode can be chosen arbitrarily by the 
client to be large enough to hold all desired symbols. A special keysyms_ 
per_keycode value ofX$C_NO_SYMBOL or NoSymbol should be used 
to fill in unused elements for individual key codes. X$C_NO_SYMBOL or 
N oSymbol can appear in nontrailing positions of the effective list for a key 
code. 

CHANGE KEYBOARD MAPPING generates a Mapping Notify event. 
There is no requirement that the server interpret this mapping; it is 
stored for reading and writing by clients. 

10-35 



Window and Session Manager Routines 
CHANGE KEYBOARD MAPPING 

XERRORS 
VAX MIT C 

X$C_BAD_ALLOC BadAlloc 

X$C_BAD_VALUE BadValue 

10-36 

Description 

The server did not allocate the requested 
resource for any cause. 

Some numeric values fall outside the range 
of values accepted by the request. Unless 
you specify a specific range for an argument, 
the full range defined by the argument's type 
is accepted. Any argument defined as a set 
of alternatives can generate this error. 



Window and Session Manager Routines 
CHANGE POINTER CONTROL 

CHANGE POINTER CONTROL 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Controls the interactive feel of the pointing device. 

X$CHANGE_POINTER_ CONTROL 
(display, do_accel, do_threshold, acceLnumerator, 
acceL denominator, threshold) 

Argument Usage Data Type Access Mechanism 

display identifier uns longword read reference 

do_accel Boolean longword read reference 

do_threshold Boolean longword read reference 

accel_numerator longword longword read reference 

accel_denominator longword longword read reference 

threshold longword longword read reference 

XChangePointerControl 
(display, do_accel, do_threshold, acceLnumerator, 
acceLdenominator, threshold) 

XChangePointerControl(display, do accel, do threshold, 
accel_numerator, accel_denominator, 
threshold) 

Display *display; 
Bool do_accel, do_threshold; 
int accel_numerator, accel_denominator; 
int threshold; 

display 
The display information originally returned by OPEN DISPLAY. 

do accel 
The accelerator numerator and denominator values. When do_accel is 
true, the values in accel_numerator and accel_denominator are used. 
When do_accel is false, the values are not used. 

do threshold 
Thethreshold value. When do_threshold is true, the value in threshold 
is used. When do_threshold is false, the value is not used. 

10-37 



Window and Session Manager Routines 
CHANGE POINTER CONTROL 

DESCRIPTION 

XERRORS 

10-38 

accel_numerator 
The numerator for the acceleration multiplier. The accel_numerator 
and the accel_denominator arguments specify the complete acceleration 
multiplier. 

accel denominator 
The denominator for the acceleration multiplier. The accel_numerator 
and the accel_denominator arguments specify the complete acceleration 
multiplier. 

threshold 
The acceleration threshold, in pixels moved during one movement. 

CHANGE POINTER CONTROL defines how the pointing device should 
move. 

An acceleration multiplier is specified as a fraction by accel_numerator 
and accel_denominator. For example, if accel_numerator is 3 and 
accel_denominator is 1, the acceleration multiplier is 3/1. This value 
means that the pointer moves three times as fast as normal. The fraction 
may be rounded by the server arbitrarily. 

The threshold value represents the number of pixels the pointer moves 
in one movement. The acceleration multiplier is applied only when the 
pointer moves faster than a threshold value specified in threshold and 
applies only to the amount beyond the value in threshold. Setting the 
value to -1 restores the default. 

The values of the do_accel and do_threshold arguments must be true 
for the pointer values to be set or the parameters are unchanged. 

Negative values (other than -1) generate a Bad Value error, as does a zero 
value for accel_denominator. 

After the values are set, you can obtain them with GET POINTER 
CONTROL. 

VAX MIT C 

X$C_BAD_VALUE Bad Value 

Description 

Some numeric values fall outside the range 
of values accepted by the request. Unless 
you specify a specific range for an argument, 
the full range defined by the argument's type 
is accepted. Any argument defined as a set 
of alternatives can generate this error. 



Window and Session Manager Routines 
CHANGE SAVE SET 

CHANGE SAVE SET 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Adds or removes a window from the client's save set. 

X$CHANGE_SAVE_SET 
(display, window_id, change_mode) 

Argument Usage Data Type Access 

display identifier uns longword read 

window_id identifier uns longword read 

change_mode longword longword read 

XChangeSaveSet 
(display, window_id, change_mode) 

XChangeSaveSet(display, window_id, change_mode) 
Display *display; 
Window window_id; 
int change_mode; 

display 

Mechanism 

reference 

reference 

reference 

The display information originally returned by OPEN DISPLAY. 

window_id 
The identifier of the window that you want to add or remove from the save 
set. The specified window must have been created by some other client. 
The identifier of the window was originally returned by CREATE SIMPLE 
WINDOW or CREATE WINDOW. 

change_mode 
The predefined values for change_mode are as follows: 

VAX MIT C 

X$C_SET_ SetModelnsert 
MODE_INSERT 

X$C_SET _ SetModeDelete 
MODE_ DELETE 

Description 

Adds the specified windows to the client's 
save set. 

Removes the specified windows from the 
client's save set. 

10-39 



Window and Session Manager Routines 
CHANGE SAVE SET 

DESCRIPTION 

XERRORS 

10-40 

CHANGE SAVE SET adds or removes the window from the client's save 
set depending on the value specified in change_mode. The specified 
window must have been created by some other client. Otherwise, 
CHANGE SAVE SET generates a Bad Match error. The server 
automatically removes windows from the server when they are destroyed. 

You can also use individual routines to add or remove windows from the 
save set: use ADD TO SAVE SET to add windows; use REMOVE FROM 
SAVE SET to remove windows. 

VAX MITC 

X$C_BAD_MATCH Bad Match 

X$C_BAD_ VALUE BadValue 

X$C_BAD_WINDOW BadWindow 

Description 

Possible causes are as follows: 

In a graphics request, the root and 
depth of the graphics context do not 
match those of the drawable. 
An input-only window is used as a 
drawable. 

One argument or pair of arguments 
has the correct type and range but fails 
to match in some other way required 
by the request. 
An input-only window lacks this 
attribute. 

Some numeric values fall outside the 
range of values accepted by the request. 
Unless you specify a specific range for 
an argument, the full range defined by 
the argument's type is accepted. Any 
argument defined as a set of alternatives 
can generate this error. 

A value that you specified for a window 
argument does not name a defined window. 



Window and Session Manager Routines 
DELETE MODIFIERMAP ENTRY 

DELETE MODIFIERMAP ENTRY 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

ARGUMENTS 

Deletes an entry from a modifier key map structure. 

modifier_keys_return = 
X$DELETE_MODIFIERMAP _ENTRY 

(modifier_keys, keycode_entry, modifier) 

Argument Usage Data Type Access Mechanism 

modifier_keys_ record x$modifier _keymap write reference 
return 

modifier _keys record x$modifier _keymap read reference 

keycode _entry identifier uns longword read reference 

modifier longword uns longword read reference 

modifier_keys_return = XDeleteModifiermapEntry 
(modifier_keys, keycode_entry, modifier) 

XModifierKeymap XDeleteModifiermapEntry(modifier_keys, 
keycode_entry, 
modifier) 

XModifierKeymap *modifier_keys; 
KeyCode keycode entry; 
int modifier; -

modifier_keys_return 
A pointer to a modifier keys structure. DELETE MODIFIER MAP ENTRY 
returns the revised modifier key map structure to this client-supplied 
structure. 

modifier_keys 
A pointer to the modifier key map structure from which you want to delete 
an entry. 

keycode_entry 
The key code that is to be deleted. 

10-41 



Window and Session Manager Routines 
DELETE MODIFIERMAP ENTRY 

modifier 
The modifier for which you want to delete a key symbol. There are eight 
modifiers in the order (starting from zero) shift, lock, control, modl, mod2, 
mod3, mod4, and mod5. You can pass the integer value or one of the 
following constants: 

VAX MITC 

X$C_SHIFT_MAP _INDEX Shift 

X$C_LOCK_MAP _INDEX Lock 

X$C_CONTROL_MAP _INDEX Control 

X$C_MOD1_MAP _INDEX Mod1 

X$C_MOD2_MAP _INDEX Mod2 

X$C_MOD3_MAP _INDEX Mod3 

X$C_MOD4_MAP _INDEX Mod4 

X$C_MOD5_MAP _INDEX Mod5 

DESCRIPTION DELETE MODIFIERMAP ENTRY deletes the specified key code from the 
set that controls the specified modifier. DELETE MODIFIERMAP ENTRY 
returns the resulting modifier key map structure. 

10-42 

The modifier map is not shrunk if all of the rows in a column are zero and 
the number of keys per modifier is 1. See the INSERT MODIFIERMAP 
ENTRY routine for more information. 



Window and Session Manager Routines 
DISABLE ACCESS CONTROL 

DISABLE ACCESS CONTROL 

VAX FORMAT 

argument 
information 

Disables access control mode for a display. 

X$DISABLE_ACCESS_CONTROL (display) 

Argument Usage Data Type Access Mechanism 

display identifier uns longword read reference 

MIT C FORMAT XDisableAccessControl (display) 

argument 
information 

ARGUMENTS 

DESCRIPTION 

XDisableAccessControl(display) 
Display *display; 

display 
The display information originally returned by OPEN DISPLAY. 

DISABLE ACCESS CONTROL disables the access control list at 
connection setup. For this routine to execute successfully, the client 
must reside on the same host as the server. 

10-43 



Window and Session Manager Routines 
DISABLE ACCESS CONTROL 

XERRORS 
VAX MITC 

X$C_BAD_ACCESS BadAccess 

10-44 

Description 

Possible causes are as follows: 

An attempt to grab a key/button 
combination that has already been 
grabbed by another client 
An attempt to free a color map entry 
that was not allocated by the client 

An attempt to store in a read-only or 
unallocated color map entry 

An attempt to modify the access control 
list from other than the local host 

An attempt to select an event type 
that at most one client can select at a 
time, when another client has already 
selected it 



Window and Session Manager Routines 
ENABLE ACCESS CONTROL 

ENABLE ACCESS CONTROL 

VAX FORMAT 

argument 
information 

Enables access control mode for a display. 

X$ENABLE_ACCESS_CONTROL (display) 

Argument Usage Data Type Access Mechanism 

display identifier uns longword read reference 

MIT C FORMAT XEnableAccessControl (display) 

argument 
information 

ARGUMENTS 

DESCRIPTION 

XEnableAccessControl(display) 
Display *display; 

display 
The display information originally returned by OPEN DISPLAY. 

ENABLE ACCESS CONTROL enables the access control list at connection 
setup. For this routine to execute successfully, the client must reside on 
the same host as the server. 

10-45 



Window and Session Manager Routines 
ENABLE ACCESS CONTROL 

XERRORS 
VAX MITC 

X$C_BAD_ACCESS BadAccess 

10-46 

Description 

Possible causes are as follows: 

An attempt to grab a key/button 
combination that has already been 
grabbed by another client 

An attempt to free a color map entry that 
was not allocated by the client 

An attempt to store in a read-only or 
unallocated color map entry 

An attempt to modify the access control 
list from other than the local host 

An attempt to select an event type that 
at most one client can select at a time, 
when another client has already selected 
it 



Window and Session Manager Routines 
FORCE SCREEN SAVER 

FORCE SCREEN SAVER 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Activates the screen saver in the specified mode. 

X$FORCE_SCREEN_SAVER 
(display, saver_mode) 

Argument Usage Data Type 

display identifier uns longword 

saver_mode longword longword 

XForceScreenSaver 
(display, saver_mode) 

XForceScreenSaver(display, saver_mode) 
Display *display; 
int saver_mode; 

display 

Access Mechanism 

read reference 

read reference 

The display information originally returned by OPEN DISPLAY. 

saver mode 
How th;-screen saver is activated. The predefined values for mode are as 
follows: 

VAX MITC Description 

X$C_SCREEN_ ScreenSaverActive Activate the screen saver even if it has been 
SAVER_ACTIVE disabled 

X$C_SCREEN_ ScreenSaverReset Reset the screen saver to its inital state 
SAVER_RESET 

DESCRIPTION FORCE SCREEN SAVER forces the screen saver to one of the two modes 
specified in saver_mode. If you specify the Screen Saver Active mode, 
the screen saver is activated even if it was previously disabled with a SET 
SCREEN SAVER call. 

If the screen saver is currently enabled and you specify ScreenSaverReset, 
the screen saver is deactivated. The activation timer is set to its initial 
state, as if device input had been received. 

10-47 



Window and Session Manager Routines 
FORCE SCREEN SAVER 

XERRORS 
VAX 

X$C_BAD_VALUE 

10-48 

MITC 

BadValue 

Description 

Some numeric values fall outside the range of 
values accepted by the request. Unless you 
specify a specific range for an argument, the 
full range defined by the argument's type is 
accepted. Any argument defined as a set of 
alternatives can generate this error. 



Window and Session Manager Routines 
FREE MODIFIERMAP 

FREE MODIFIERMAP 

VAX FORMAT 

argument 
information 

Destroys the specified modifier key map structure. 

X$FREE_MODIFIERMAP (modifier_keys) 

Argument Usage Data Type Access Mechanism 

modifier _keys record x$modifier _keymap read reference 

MIT C FORMAT XFreeModifierMap (modifier_keys) 

argument 
information 

ARGUMENTS 

DESCRIPTION 

XFreeModifierMap(modifier_keys) 
XModifierKeymap *modifier_keys; 

modifier_keys 
A pointer to the modifier key map structure that you want to destroy. 

FREE MODIFIERMAP destroys the modifier key map structure that you 
specify. FREE MODIFIERMAP first frees the modifier map array and 
then the modifier key map structure. 

Use NEW MODIFIERMAP to create one of these structures. 

10-49 



Window and Session Manager Routines 
GEOMETRY 

GEOMETRY 

Parses window geometry. 

VAX FORMAT mask return= X$GEOMETRV 

argument 
information 

(display, screen_number, position, default_position, 
border_width, font_width, font_height, xadd, yadd 
{,x_coord_return] {,y_coord_return] [,width_return] 
[,height_ return]) 

Argument Usage Data Type Access Mechanism 

mask_return mask_longword uns longword write value 

display identifier uns longword read reference 

screen_number longword uns longword read reference 

position char string character string read descriptor 

default_position char string character string read descriptor 

border _width longword uns longword read reference 

font_ width longword longword read reference 

font_ height longword longword read reference 

xadd longword longword read reference 

yadd longword longword read reference 

x_coord_return longword longword write reference 

y_coord_return longword longword write reference 

width_return longword uns longword write reference 

height_return longword uns longword write reference 

MIT C FORMAT mask_return = XGeometry 

10-50 

(display, screen_number, position, default_position, 
border_width, font_width, font_height, xadd, yadd, 
x_coord_return, y_coord_return, width_return, 
height_return) 



argument 
information 

RETURNS 

ARGUMENTS 

Window and Session Manager Routines 
GEOMETRY 

int XGeometry(display, screen_id, position, default_position, 
border_width, font_width, font_height, xadd, yadd, 
x coord return, y coord return, width return, 
height return) - - -

Display *display; 
int screen id; 
char *position, *default position; 
unsigned int border_width; 
unsigned int font_width, font_height; 
int xadd, yadd; 
int *x_coord_return, *y_coord_return; 
int *width_return, *height_return; 

mask return 
A bit mask that specifies which of four values (width, height, x-offset, 
y-offset) were actually found in the string, and whether the x and y values 
are negative. Each bit indicates whether the corresponding value was 
found in the parsed string. For each value found, the corresponding 
argument is updated; for each value not found, the argument is left 
unchanged. 

Table 10-14 lists the predefined values and their descriptions for the 
mask_return. 

Table 10-14 Parse Mask Bits 

Bit VAX MITC Description 

X$M_NO_ VALUE No Value Reserved 

2 X$M_X_VALUE XValue The x-coordinate of the 
origin of a window 

3 X$M_Y_VALUE YValue The y-coordinate of the 
origin of a window 

4 X$M_WIDTH_ VALUE Width Value The width of the window 
in pixels 

5 X$M_HEIGHT_VALUE HeightValue The height of the 
window in pixels 

6 X$M_ALL_ VALUES All Values Indicates if all values 
are present 

7 X$M_X_NEGATIVE_ VALUE XNegative Value Indicates if the 
x-coordinate is negative 

8 X$M_ Y _NEGATIVE_ VALUE YNegativeValue Indicates if the 
y-coordinate is negative 

display 
The display information originally returned by OPEN DISPLAY. 

screen_number 
The identifier of the screen associated with the display. 

10-51 



Window and Session Manager Routines 
GEOMETRY 

10-52 

position 
The position string that you want to parse. 

VAX only 

The position argument is the address of a character string descriptor that 
points to the string. 

MIT Conly 

The position argument is a pointer to the null-terminated character 
string. 

default_position 
The default geometry specification string that you want to parse. 

VAX only 

The default_position argument is the address of a character string 
descriptor that points to the string. 

MIT Conly 

The default_position argument is a pointer to the null-terminated 
character string. 

border width 
The width, in pixels, of the border associated with the window that you 
want to parse. 

font width 
The width, in pixels, of the font associated with the window that you want 
to parse. 

font_ height 
The height, in pixels, of the font associated with the window that you want 
to parse. 

xadd 
Additional interior padding needed in the window. This coordinate is 
relative to the origin of the drawable. 

yadd 
Additional padding needed in the window. This coordinate is relative to 
the origin of the drawable. 

x_coord_return 
The x-coordinate to which GEOMETRY returns the x-offset from the 
specified string. This coordinate is relative to the origin of the drawable. 

VAX only 

This argument is optional in the VAX binding. 



Window and Session Manager Routines 
GEOMETRY 

y_coord_return 
They-coordinate to which GEOMETRY returns they-offset from the 
specified string. This coordinate is relative to the origin of the drawable. 

VAX only 

This argument is optional in the VAX binding. 

width return 
The width value. 

VAX only 

This argument is optional in the VAX binding. 

height_ return 
The height value. 

VAX only 

This argument is optional in the VAX binding. 

DESCRIPTION GEOMETRY determines the placement of a window by using the current 
format to position windows and returns the x- and y-coordinates and width 
and height values of the window. Given a fully qualified default geometry 
specification and an incomplete geometry specification, GEOMETRY 
returns a bit mask value as defined in the PARSE GEOMETRY routine. 

The returned width and height are the width and height that are specified 
by default_position, as overridden by any user-specified position. They 
are not affected by font_ width, font_height, xadd, or yadd. 

The x_coord_return and y_coord_return values are computed by using 
the border width, the screen width and height, any padding specified by 
xadd or yadd, and the font width and height multiplied by the width and 
height from the geometry specifications. 

GEOMETRY is usually called by the window manager. Clients typically 
use the CREATE WINDOW or CREATE SIMPLE WINDOW functions to 
create a window. 

10-53 



Window and Session Manager Routines 
GET DEFAULT 

GET DEFAULT 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

10-54 

Returns the default property string for the user environment. 

status_return = X$GET _DEFAULT 
(display, program_name, option_name, 
defau/t_name_return [,defau/t_/en_return]) 

Argument Usage Data Type 

status_return cond_value uns longword 

display identifier uns longword 

program_ name char string character string 

option_ name char string character string 

default_name_return char string character string 

default_len_return word uns word 

property_name_return = XGetDefault 
(display, program_name, option_name) 

Access 

write 

read 

read 

read 

write 

write 

char *XGetDefault(display, program_name, option_name) 
Display *display; 
char *program_name; 
char *option_name; 

status_return (VAX only) 
Whether the routine completed successfully. 

property_name_return (MIT Conly) 

Mechanism 

value 

reference 

descriptor 

descriptor 

descriptor 

reference 

A pointer to a null-terminated character string that defines the default 
property string for a user environment. GET DEFAULT returns a null 
value if the option name you specify in the option_name argument does 
not exist for the program. 

The window manager uses the string returned by GET DEFAULT to 
establish the user environment; other clients should not attempt to modify 
this string or free the memory that the string occupies. 



ARGUMENTS display 

Window and Session Manager Routines 
GET DEFAULT 

The display information originally returned by OPEN DISPLAY. 

program_name 
The name of the program that specifies the default property string for the 
user environment. 

VAX only 

The program_name argument is the address of a character string 
descriptor that points to the string. 

MIT Conly 

The program_name argument is a pointer to the null-terminated 
character string. 

option_name 
The name of the property option for which you want to determine the user 
environment defaults. 

VAX only 

The option_name argument is the address of a character string descriptor 
that points to the string. 

MIT Conly 

The option_name argument is a pointer to the null-terminated character 
string. 

default_name_return (VAX only) 
The address of a character string descriptor that points to the default 
property string. 

default_len_return (VAX only) 
The length of the default string minus any padding characters added to fill 
the string. This argument is optional. 

DESCRIPTION GET DEFAULT returns a pointer to a character string that defines the 
user default for the window property that you specify. GET DEFAULT 
checks the resource database, DECW$XDEFAULTS.DAT, for the root 
window. If the property is defined for the root window, GET DEFAULT 
uses this definition as the user's default. 

If the property is not defined for the root window, GET DEFAULT 
returns a null value (MIT C binding only). The strings returned by 
GET DEFAULT are owned by Xlib and should not be modified or freed by 
clients. 

10-55 



Window and Session Manager Routines 
GET INPUT FOCUS 

GET INPUT FOCUS 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

10-56 

Obtains information about the current input focus. 

X$GET _INPUT _FOCUS 
(display [,focus _id _return][, revert_ to _return]) 

Argument Usage Data Type Access Mechanism 

display identifier uns longword read reference 

focus_id_return identifier uns longword write value 

revert_ to _return longword longword write value 

XGetlnputFocus 
(display, focus_id_return, revert_to_return) 

XGetinputFocus(display, focus id return, revert_to_return) 
Display *display; - -
Window *focus_id_return; 
int *revert_to_return; 

display 
The display information originally returned by OPEN DISPLAY. 

focus id return 
The identifier of the focus window, Pointer Root, or None. The identifier 
of the window was originally returned by CREATE SIMPLE WINDOW or 
CREATE WINDOW. 

VAX only 

This argument is optional. 

revert to return 
The current input focus state. One of the following predefined values can 
be returned: 



DESCRIPTION 

VAX 

X$C_REVERT_ 
TO_PARENT 

X$C_REVERT_ 
TO_POINTER_ 
ROOT 

X$C_REVERT_ 
TO_NONE 

VAX only 

Window and Session Manager Routines 
GET INPUT FOCUS 

MIT C 

RevertToParent 

RevertToPointerRoot 

Revert To None 

Description 

The input focus is the parent window, or 
the closest viewable ancestor. 

The input focus is Pointer Root. When 
the focus reverts, the server generates 
Focus In and Focus Out events, but the 
last-focus-change time is not affected. 

The input focus is None. When the 
focus reverts, the server generates 
Focus In and Focus Out events, but the 
last-focus-change time is not affected. 

This argument is optional. 

GET INPUT FOCUS returns the focus window identifier and the current 
focus state. The revert_to_return argument returns a value that 
indicates what is done when the focus window becomes unviewable. 
These values were originally set with SET INPUT FOCUS. 

10-57 



Window and Session Manager Routines 
GET KEYBOARD CONTROL 

GET KEYBOARD CONTROL 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Obtains the current control values for the keyboard. 

X$GET_KEVBOARD_CONTROL 
(display, state_values_return) 

Argument Usage Data Type 

display identifier uns longword 

state_ values _return record x$keyboard _state 

XGetKeyboardControl 
(display, state_values_return) 

Access 

read 

write 

XGetKeyboardControl(display, state values return) 
Display *display; - -
XKeyboardState *state_values_return; 

display 

Mechanism 

reference 

reference 

The display information originally returned by OPEN DISPLAY. 

state_ values_return 
A pointer to a keyboard state structure to which the current keyboard 
state is returned. 

DESCRIPTION GET KEYBOARD CONTROL returns the settings for the keyboard, 
including key click volume, bell volume, bell pitch, bell duration, LED 
illuminations, and the auto-repeat keys. 

10-58 

The keyboard state data structure is shown in Section 10.3. 

The CHANGE KEYBOARD CONTROL routine sets the keyboard control 
values. 



Window and Session Manager Routines 
GET KEYBOARD MAPPING 

GET KEYBOARD MAPPING 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

Returns the key symbols for one or more than one key code. 

status_return = X$GET_KEYBOARD_MAPPING 
(display, first_keycode_wanted, keycode_count 
[,keysyms_per_keycode_return] [,keysyms_return] 
[,buff_size] [,key_buff_return]) 

Argument Usage Data Type Access Mechanism 

status_return cond_value uns longword write value 

display identifier uns longword read reference 

first_keycode _wanted identifier uns longword read reference 

keycode_count longword longword read reference 

keysyms _per _keycode _ longword longword write reference 
return 

keysyms_return address uns longword write reference 

buff_size longword longword read reference 

key_buff_return array uns longword write reference 

keysym_return = XGetKeyboardMapping 
(display, first_keycode_wanted, keycode_count, 
keysyms_per_keycode_return) 

KeySym *XGetKeyboardMapping(display, first_keycode_wanted, 
keycode_count, 
keysyms_per_keycode_return) 

Display *display; 
KeyCode first keycode wanted; 
int keycode_count; -
int *keysyms_per_keycode_return; 

status_return (VAX only) 
Whether the routine completed successfully. 

keysym_return (MIT Conly) 
A pointer to a list of key symbols for the specified key codes. 

10-59 



Window and Session Manager Routines 
GET KEYBOARD MAPPING 

ARGUMENTS display 
The display information originally returned by OPEN DISPLAY. 

first_ keycode _wanted 
The first key code that will be returned. 

keycode_count 
The number of key codes that will be returned. 

keysyms_per _keycode _return 
The number of key symbols per key code. This value is equal for all key 
codes requested. The number chosen (by the server) is high enough to 
accommodate the maximum number of key symbols returned with any 
key code in this request. When there are fewer key symbols within a 
particular key code, the empty key symbols have the value X$C_NO_ 
SYMBOL or NoSymbol. 

keysyms_return (VAX only) 
The virtual address of the symbol list. If you specify this optional 
argument, GET KEYBOARD MAPPING determines the size of the buffer 
to create for the symbol list. If you specify keysyms_return, you do not 
need to specify buff_size and key _buff_return. 

buff_size (VAX only) 
The size of the key _buff_return buffer. This argument is optional. 

key_buff_return (VAX only) 
A pointer to an array in which each element is a key symbol. GET 
KEYBOARD MAPPING returns the key symbols to this array. 

This argument is optional. 

DESCRIPTION GET KEYBOARD MAPPING returns the key symbols for the specified 
key codes starting with the first key code. The value specified in the 
first_keycode_ wanted argument must be equal to or greater than 

10-60 

the minimum key code returned in the display structure at connection 
setup. In addition, the following expression must be less than or equal 
to the maximum key code returned in the display structure at connection 
startup: 

fir sLkeycode + ( keycode_count) - 1 

The number of elements in the key list returned by the routine is as 
follows: 

keycode_count * keysyms_per _keycode_return 

The key symbol N (counting from zero) for key code K has the following 
index (counting from zero): 

keysyms_per _keycode_keycode * keysyms_per _keycode_return + N 

The keysyms_per_keycode_return value is chosen arbitrarily by the 
server to be large enough to report all requested symbols. A special key 
symbol value ofX$C_NO_SYMBOL or NoSymbol is used to fill in unused 
elements for individual key codes. 

Use FREE to free the storage returned by GET KEYBOARD MAPPING. 



XERRORS 
VAX 

X$C_BAD_VALUE 

Window and Session Manager Routines 
GET KEYBOARD MAPPING 

MITC 

BadValue 

Description 

Some numeric values fall outside the range 
of values accepted by the request. Unless 
you specify a specific range for an argument, 
the full range defined by the argument's type 
is accepted. Any argument defined as a set 
of alternatives can generate this error. 

10-61 



Window and Session Manager Routines 
GET MODIFIER MAPPING 

GET MODIFIER MAPPING 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

ARGUMENTS 

Returns the key codes for the modifier keys. 

X$GET _MODIFIER_MAPPING 
(display, modifier_keys_return) 

Argument Usage Data Type 

display identifier uns longword 

modifier_keys_return record x$modifier_ 
keymap 

Access Mechanism 

read reference 

write reference 

modifier_keys_return = XGetModifierMapping 
(display) 

XModifierKeymap *XGetModifierMapping(display) 
Display *display; 

modifier_keys_return (MIT Conly) 
Returns a newly created modifier key map structure that contains the 
keys being used as modifiers. 

display 
The display information originally returned by OPEN DISPLAY. 

modifier_keys_return (VAX only) 
The modifier key map data structure containing the values for the modifier 
keys. GET MODIFIER MAPPING returns the values in this argument. 
The modifier key map data structure is shown in Section 10.5. 

DESCRIPTION GET MODIFIER MAPPING returns a newly created modifier key map 
data structure that contains the keys being used as modifiers, such as the 
shift and control keys. Clients that use the VAX binding should first call 
NEW MODIFIER MAP to create a modifier key map data structure. 

10-62 

Clients should use FREE MODIFIER MAP to free the data structure. 
If only zero values appear in the set for any modifier, that modifier is 
disabled. 



Window and Session Manager Routines 
GET MODIFIER MAPPING 

The SET MODIFIER MAPPING routine specifies the key codes for the 
modifier keys. 

The modifier key map data structure is shown in Section 10.5. 

10-63 



Window and Session Manager Routines 
GET POINTER CONTROL 

GET POINTER CONTROL 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

10-64 

Returns the pointer movement values for acceleration and the threshold at 
which acceleration should be applied. 

X$GET _POINTER_ CONTROL 
(display [,acceLnumerator_return] 
[,acceLdenominator_return] [,threshold_return]) 

Argument Usage Data Type Access Mechanism 

display identifier uns longword read reference 

accel_ numerator _return longword longword write reference 

accel_denominator_ longword longword write reference 
return 

threshold_return longword longword write reference 

XGetPointerControl 
(display, acceLnumerator_return, 
acceLdenominator_return, threshold_return) 

XGetPointerControl(display, accel_numerator_return, 
accel denominator return, threshold return) 

-Display *display; -
int *accel_numerator_return, *accel_denominator_return; 
int *threshold_return; 

display 
The display information originally returned by OPEN DISPLAY. 

accel_numerator_return 
The acceleration numerator. The accel_numerator_return and accel_ 
denominator_return arguments specify the complete acceleration 
multiplier. 

VAX only 

This argument is optional. 



Window and Session Manager Routines 
GET POINTER CONTROL 

accel denominator return 
The acceleration denominator. The accel_numerator_return and accel_ 
denominator_return arguments specify the complete acceleration 
multiplier. 

VAX only 

This argument is optional. 

threshold_return 
The acceleration threshold, specified in the number of pixels moved during 
one movement. 

VAX only 

This argument is optional. 

DESCRIPTION GET POINTER CONTROL returns the acceleration multiplier and the 
threshold speed for when to apply the acceleration multiplier. These 
values were previously set with CHANGE POINTER CONTROL. 

An acceleration multiplier is specified as a fraction by accel_numerator_ 
return and accel_denominator_return. The fraction may be rounded 
by the server arbitrarily. The threshold value represents the number of 
pixels the pointer moves in one movement. 

10-65 



Window and Session Manager Routines 
GET POINTER MAPPING 

GET POINTER MAPPING 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

ARGUMENTS 

10-66 

Returns the mapping list, which defines which buttons are enabled for the 
pointer. 

num_elements_return = 
X$GET _POINTER_MAPPING 

(display, map_return, num_map) 

Argument Usage Data Type 

num_elements_return longword longword 

display identifier uns longword 

map_return array byte 

num_map word uns word 

Access 

write 

read 

write 

read 

num_elements_return = XGetPointerMapping 
(display, map_return, num_map) 

int XGetPointerMapping(display, map_return, num_map) 
Display *display; 
unsigned char map_return[]; 
int num_map; 

num elements return 
The number of elements in map_return. 

display 

Mechanism 

value 

reference 

reference 

reference 

The display information originally returned by OPEN DISPLAY. 

map_return 
A pointer to an array of items that define the mapping list. The array is 
indexed, starting with one. The index is a core button number. An empty 
element means the corresponding button is disabled. The length of the 
array is specified by num_map. 

num_map 
The maximum number of items to be returned in the mapping list. This 
value specifies the length of the array in map_return. 



Window and Session Manager Routines 
GET POINTER MAPPING 

DESCRIPTION GET POINTER MAPPING returns the mapping list for the pointer. Each 
item in the mapping list corresponds to a physical button on the pointer. 
When one of the items has an empty value, the corresponding button is 
disabled. The nominal mapping for a pointer is the following identity 
mapping: 

map[i] = i 

Use SET POINTER MAPPING to specify the mapping list. 

10-67 



Window and Session Manager Routines 
GET SCREEN SAVER 

GET SCREEN SAVER 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

10-68 

Returns the following values for screen saving: the timeout period, the 
interval, whether to blank the screen, and whether to allow exposures. 

X$GET_SCREEN_SAVER 
(display [,timeout_return] [,interva/_return] 
[,pref er_ blanking_ return][, allow_ exposures_ return]) 

Argument Usage Data Type Access Mechanism 

display identifier uns longword read reference 

timeout_return longword longword write reference 

interval_return longword longword write reference 

prefer _blanking_retu rn longword longword write reference 

al low_ exposures_return longword longword write reference 

XGetScreenSaver 
(display, timeout_return, interva/_return, 
prefer_blanking_return, allow_exposures_return) 

XGetScreenSaver(display, timeout_return, interval_return, 
prefer blanking return, allow exposures return) 

Display *display; - - -
int *timeout_return, *interval_return; 
int *prefer_blanking_return; 
int *allow_exposures_return; 

display 
The display information originally returned by OPEN DISPLAY. 

timeout return 
The time, in seconds, that the screen saver waits before turning on. The 
time represents the number of seconds when no input from the keyboard 
or pointing device is received. A value of zero means that the screen saver 
is disabled. 



Window and Session Manager Routines 
GET SCREEN SAVER 

VAX only 

This argument is optional. 

interval_ return 
The time, in seconds, from one screen saver invocation to the next. 

VAX only 

This argument is optional. 

prefer_blanking_return 
The screen blanking mode. The predefined values for prefer _blanking_ 
return are as follows: 

VAX MIT C 

X$C_DONT _ DontPreferBlanking 
PREFER_BLANKING 

X$C_PREFER_ PreferBlanking 
BLANKING 

X$C_DEFAULT_ DefaultBlanking 
BLANKING 

VAX only 

This argument is optional. 

al/ow_exposures_return 

Description 

Do not blank the screen. If 
exposures are allowed, or if 
the screen can be regenerated 
without sending exposure events 
to clients, the screen is tiled with 
the root window background tile. If 
exposures are not allowed or the 
exposure events are sent to clients, 
then the screen does not change. 

Blank the screen. This can be used 
only if the hardware supports video 
blanking. 

The default is used. 

The current screen saver control values are returned. The predefined 
values for allow _exposures_return are as follows: 

VAX MITC Description 

X$C_DONT _ALLOW_ DontAllowExposures Exposures are not allowed. 
EXPOSURES 

X$C_ALLOW_ Allow Exposures Exposures are allowed. 
EXPOSURES 

X$C_DEFAULT_ DefaultExposures The default value is used. 
EXPOSURES 

VAX only 

This argument is optional. 

10-69 



Window and Session Manager Routines 
GET SCREEN SAVER 

DESCRIPTION GET SCREEN SAVER returns the screen saver values set by a previous 
SET SCREEN SAVER call. The following values are returned by the 
routine: 

• The time that elapses from the last device input before the screen 
saver turns on ( timeout_return) 

• The time between invocations of the screen saver (interval_return) 

• Whether to blank the screen 

• Whether to allow exposures 

10-70 



Window and Session Manager Routines 
GRAB BUTTON 

GRAB BUTTON 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

Grabs a pointer button. 

X$GRAB_BUTTON 
(display, button, modifiers, window_id, owner_events, 
event_mask, pointer_mode, keyboard_mode, 
confine_id, cursor_id) 

Argument Usage Data Type Access Mechanism 

display identifier uns longword read reference 

button longword longword read reference 

modifiers mask_longword uns longword read reference 

window_id identifier uns longword read reference 

owner_ events Boolean uns longword read reference 

event_ mask mask_longword uns longword read reference 

pointer_mode longword longword read reference 

keyboard _mode longword longword read reference 

confine_id identifier uns longword read reference 

cursor_id identifier uns longword read reference 

XGrabButton 
(display, button, modifiers, window_id, owner_events, 
event_mask, pointer_mode, keyboard_mode, 
contine_id, cursor_id) 

XGrabButton(display, button, modifiers, window_id, owner_events, 
event mask, pointer mode, keyboard_mode, 
confine_id, cursor_id) 

Display *display; 
unsigned int button; 
unsigned int modifiers; 
Window window_id; 
Bool owner_events; 
unsigned int event_mask; 
int pointer_mode, keyboard_mode; 
Window confine_id; 
Cursor cursor_id; 

10-71 



Window and Session Manager Routines 
GRAB BUTTON 

ARGUMENTS 

10-72 

display 
The display information originally returned by OPEN DISPLAY. 

button 
The button on the pointing device to grab when the specified modifier keys 
are down. The possible values are as follows: 

VAX Predefined Value 

X$C_BUTTON1 

X$C_BUTTON2 

X$C_BUTTON3 

X$C_BUTTON4 

X$C_BUTTON5 

X$C_ANY _BUTTON 

MIT C Predefined Value 

Button1 

Button2 

Button3 

Button4 

Buttons 

Any Button 

Other buttons pressed are not grabbed. Specify the predefined value X$C_ 
ANY_BUTTON or AnyButton to grab all possible buttons. 

modifiers 
The set of key masks. This mask is the inclusive OR of the following key 
mask bits: 

Bit VAX Predefined Value MIT C Predefined Value 

X$M_SHIFT ShiftMask 

2 X$M_CAPS_LOCK LockMask 

3 X$M_CONTROL Control Mask 

4 X$M_MOD1 Mod1Mask 

5 X$M_MOD2 Mod2Mask 

6 X$M_MOD3 Mod3Mask 

7 X$M_MOD4 Mod4Mask 

8 X$M_MOD5 Mod5Mask 

The predefined value X$C_ANY_MODIFIER or AnyModifier can be 
specified to allow any set of modifiers to be grabbed. 

window id 
The identifier of the window in which you want to grab the button. The 
identifier of the window was originally returned by CREATE SIMPLE 
WINDOW or CREATE WINDOW. 

owner events 
The owner event flag specifies when a pointer event is reported. When 
true, all pointer events are reported as usual to the client. When false, 
pointer events are reported only when they occur on the window specified 
by window _id and only if they are selected by event_mask. 

event mask 
A bit mask that specifies which pointer events are reported to the client. 



Window and Session Manager Routines 
GRAB BUTTON 

Table 10-15 lists the predefined values for the event_mask. 

Table 10-15 Event Mask Description 

Bit VAX Predefined Value MIT C Predefined Value Description 

2 X$M_BUTTON_PRESS ButtonPressMask Pointer button down 
events wanted 

3 X$M_BUTTON_RELEASE Button Rel ease Mask Pointer button up 
events wanted 

4 X$M_ENTER_WINDOW EnterWindowMask Pointer window 
entry events wanted 

5 X$M_LEAVE_WINDOW LeaveWindowMask Pointer window 
leave events 
wanted 

6 X$M_POINTER_MOTION PointerMotion Mask Pointer motion 
events wanted 

7 X$M_POINTER_MOTION_ PointerMotionHintMask Pointer motion hints 
HINT wanted 

8 X$M_BUTTON1_MOTION Button1 MotionMask Pointer motion 
while button 1 down 

9 X$M_BUTTON2_MOTION Button2MotionMask Pointer motion 
while button 2 down 

10 X$M_BUTTON3_MOTION Button3MotionMask Pointer motion 
while button 3 down 

11 X$M_BUTTON4_MOTION Button4MotionMask Pointer motion 
while button 4 down 

12 X$M_BUTTON5_MOTION Button5MotionMask Pointer motion 
while button 5 down 

13 X$M_BUTTON_MOTION Button Motion Mask Pointer motion 
while any button 
down 

14 X$M_KEYMAP_STATE KeyMapStateMask Any keyboard state 
change wanted 

pointer_mode 
A constant that controls further processing of pointer events. Clients can 
pass one of the following constants: 

10-73 



Window and Session Manager Routines 
GRAB BUTTON 

10-74 

VAX 

X$C_GRAB_ 
MODE_ SYNC 

X$C_GRAB_ 
MODE_ASYNC 

MIT C Description 

GrabModeSync The pointer event is processed 
synchronously. The state of the pointer 
device appears to freeze, and no further 
pointer events are generated by the server 
until the grabbing client issues a releasing 
ALLOW EVENTS request, or until the pointer 
grab is released. Actual pointer changes are 
not lost while the keyboard is frozen; they 
are queued in the server for later processing. 

GrabModeAsync The pointer event is processed 
asynchronously. Pointer event processing is 
unaffected by activation of the grab. 

Other values specified in this argument are not valid. 

keyboard_mode 
The mode that the keyboard events will use. The predefined values for 
keyboard_mode are as follows: 

VAX 

X$C_GRAB_ 
MODE_ SYNC 

X$C_GRAB_ 
MODE_ASYNC 

confine id 

MIT C Description 

GrabModeSync The keyboard event is processed 
synchronously. The corresponding device 
waits until the client that issued the grab 
request issues a releasing ALLOW EVENTS 
request. While the device is waiting for 
ALLOW EVENTS, no further keyboard 
events are generated by the server. Actual 
keyboard changes are not lost while the 
keyboard is frozen; they are simply queued 
in the server for later processing. 

GrabModeAsync The keyboard event is processed 
asynchronously. Keyboard event processing 
continues normally. If the keyboard is 
currently frozen by this client, processing 
of keyboard events is resumed. 

The identifier of the window in which to confine the pointer. If the pointer 
can be in any window, specify the predefined value X$C_NONE or None. 
The identifier of the window was originally returned by CREATE SIMPLE 
WINDOW or CREATE WINDOW. 

cursor id 
The identifier of the cursor that is displayed during the grab, or the 
predefined value X$C_NONE or None. The identifier of the cursor was 
originally returned by CREATE CURSOR. 



DESCRIPTION 

Window and Session Manager Routines 
GRAB BUTTON 

GRAB BUTTON establishes a passive grab. Consequently, the pointer is 
actively grabbed when the following conditions are true: 

• The pointer is not grabbed, the specified button is logically pressed 
when the specified modifier keys are logically down, and no other 
buttons or modifier keys are logically down. 

• The grab window contains the pointer. 

• The confine-to window (if any) is viewable. 

• A passive grab on the same button/key combination does not exist on 
any ancestor of the grab window. 

The pointer is actively grabbed, as for GRAB POINTER. The last
pointer-grab time is set to the time at which the button was pressed 
(as transmitted in the Button Press event), and the Button Press event is 
reported. 

The interpretation of the remaining arguments is the same as for GRAB 
POINTER. 

The active grab is terminated automatically when the logical state of the 
pointer has all buttons released (independent of the state of the logical 
modifier keys). 

A modifier of Any Modifier is equivalent to issuing the grab request for all 
possible modifier combinations (including the combination of no modifiers). 
It is not required that all modifiers specified have currently assigned key 
codes. A button of Any Button is equivalent to issuing the request for all 
possible buttons. Otherwise, it is not required that the specified button 
currently be assigned to a physical button. 

GRAB BUTTON overrides all previous passive grabs by the same client on 
the same button/key combinations on the same window. The request fails 
and the server generates a Bad Access error if another client has already 
issued a GRAB BUTTON request with the same button/key combination 
on the same window. If you specify Any Modifier or Any Button, the 
request fails and generates a Bad Access error if there is a conflicting grab 
for any combination. The request has no effect on an active grab. 

The logical state of a device (as seen by client applications) might lag 
behind the physical state if device event processing is frozen. 

The UNGRAB BUTTON routine ungrabs a pointing device button. 

10-75 



Window and Session Manager Routines 
GRAB BUTTON 

XERRORS 
VAX MITC 

X$C_BAD_ACCESS BadAccess 

X$C_BAD_CURSOR BadCursor 

X$C_BAD_VALUE BadValue 

X$C_BAD_WINDOW BadWindow 

10-76 

Description 

Possible causes are as follows: 

An attempt to grab a key/button 
combination that has already been 
grabbed by another client 

An attempt to free a color map entry that 
was not allocated by the client 

An attempt to store in a read-only or 
unallocated color map entry 

An attempt to modify the access control 
list from other than the local host 

An attempt to select an event type that 
at most one client can select at a time, 
when another client has already selected 
it 

A value that you specified for a cursor 
argument does not name a defined cursor. 

Some numeric values fall outside the range 
of values accepted by the request. Unless 
you specify a specific range for an argument, 
the full range defined by the argument's type 
is accepted. Any argument defined as a set 
of alternatives can generate this error. 

A value that you specified for a window 
argument does not name a defined window. 



GRAB KEY 

Window and Session Manager Routines 
GRAB KEV 

Passively grabs one key and specifies the processing of the key event. 

VAX FORMAT X$GRAB_KEY 

argument 
information 

(display, keycode, modifiers, window_id, 
owner_events, pointer_mode, keyboard_mode) 

Argument Usage Data Type Access Mechanism 

display identifier uns longword read reference 

key code longword longword read reference 

modifiers longword uns longword read reference 

window_id identifier uns longword read reference 

owner_ events Boolean longword read reference 

pointer_mode longword longword read reference 

keyboard_mode longword longword read reference 

MIT C FORMAT XGrabKey 

argument 
information 

ARGUMENTS 

(display, keycode, modifiers, window_id, 
owner_events, pointer_mode, keyboard_mode) 

XGrabKey(display, keycode, modifiers, window_id, owner_events, 
pointer_mode, keyboard_mode) 

Display *display; 
int keycode; 
unsigned int modifiers; 
Window window_id; 
Bool owner_events; 
int pointer_mode, keyboard_mode; 

display 
The display information originally returned by OPEN DISPLAY. 

key code 
The key code that maps to the key to be grabbed. Clients can pass 
either the key code or the constant X$C_ANY_KEY or AnyKey, which 
is equivalent to issuing a request for all possible key codes. 

10-77 



Window and Session Manager Routines 
GRAB KEY 

10-78 

modifiers 
A bit mask that specifies the set of key masks. This mask is the inclusive 
OR of the following key mask bits: 

Bit VAX Predefined Value MIT C Predefined Value 

1 X$M_SHIFT ShiftMask 

2 X$M_CAPS_LOCK LockMask 

3 X$M_CONTROL Control Mask 

4 X$M_MOD1 Mod1Mask 

5 X$M_MOD2 Mod2Mask 

6 X$M_MOD3 Mod3Mask 

7 X$M_MOD4 Mod4Mask 

8 X$M_MOD5 Mod5Mask 

The predefined value X$C_ANY_MODIFIER or AnyModifier can be 
specified to allow any set of modifiers to be grabbed, including the 
combination of no modifiers. 

window id 
The identifier of the window in which you want to grab the key. 

owner events 
The reporting of pointer events. Pointer events are reported normally if 
this argument is true. If this argument is false, the pointer events are 
reported with respect to the grab window if selected by the event mask. 

pointer_ mode 
The processing of pointer events. The predefined values for pointer_ 
mode are as follows: 

VAX 

X$C_GRAB_ 
MODE_ SYNC 

X$C_GRAB_ 
MODE_ASYNC 

MIT C Description 

GrabModeSync The pointer event is processed 
synchronously. The state of the pointer 
appears to freeze, and no further pointer 
events are generated by the server until the 
grabbing client issues a releasing ALLOW 
EVENTS request, or until the pointer grab 
is released. Actual pointer changes are not 
lost while the keyboard is frozen; they are 
queued in the server for later processing. 

GrabModeAsync The pointer event is processed 
asynchronously. Pointer event processing is 
unaffected by activation of the grab. 

Other values specified in this argument are not valid. 

keyboard_mode 
The processing of keyboard events. The predefined values for keyboard_ 
mode are as follows: 



DESCRIPTION 

VAX 

X$C_GRAB_ 
MODE_SYNC 

X$C_GRAB_ 
MODE_ASYNC 

Window and Session Manager Routines 
GRAB KEY 

MIT C Description 

GrabModeSync The keyboard event is processed 
synchronously. The corresponding device 
waits until the client that issued the grab 
request issues a releasing ALLOW EVENTS 
request. While the device is waiting for 
ALLOW EVENTS, no further keyboard 
events are generated by the server. Actual 
keyboard changes are not lost while the 
keyboard is frozen; they are simply queued 
for later processing. 

GrabModeAsync The keyboard event is processed 
asynchronously. Keyboard event processing 
continues normally. If the keyboard is 
currently frozen by this client, processing 
of keyboard events is resumed. 

GRAB KEY passively grabs the specified key. Consequently, the keyboard 
is actively grabbed when the following conditions are true: 

• The keyboard is not grabbed, and the specified key, which can be a 
modifier key, is logically pressed when the specified modifier keys are 
logically down, and no other keys are logically down. 

• No other modifier keys are logically down. 

• The window specified in window _id is, or is an ancestor of, the 
focus window; or the window is a descendent of the focus window and 
contains the pointer. 

• A passive grab on the same key combination does not exist on any 
ancestor of the grab window. 

The last-keyboard-grab time is set to the time at which the key was 
pressed (as transmitted in the Key Press event) and the Key Press event 
is reported. 

The active keyboard grab is terminated automatically when the logical 
state of the keyboard has the specified key released, independent of the 
logical state of the modifier keys. 

The logical state of a device, as seen by clients, may lag behind the 
physical state of the device if device event processing is frozen. 

The interpretation of the remaining arguments is the same as for GRAB 
KEYBOARD. 

A modifier of Any Modifier is equivalent to issuing the request for all 
possible modifier combinations (including the combination of no modifiers). 
All specified modifiers do not have to have currently assigned key codes. 
A key of Any Key is equivalent to issuing the request for all possible key 
codes. Otherwise, the key must be in the range specified by the minimum 
and maximim key code in the connection setup. 

10-79 



Window and Session Manager Routines 
GRAB KEV 

XERRORS 

10-80 

GRAB KEY overrides all previous passive grabs by the same client on the 
same key combinations on the same window. GRAB KEY fails if another 
client has issued a GRAB KEY request with the same key combination 
on the same window. GRAB KEY also fails when modifiers has either 
the predefined value X$C_ANY_MODIFIER or AnyModifier and there is a 
conflicting grab for any combination. 

A Bad Access error is generated if another client has issued a GRAB KEY 
with the same key combination on the same window. If you specify Any 
Modifier or Any Key, the request fails and the server generates a Bad 
Access error if there is a conflicting grab for any combination. 

The UNGRAB KEY routine ungrabs a key. 

VAX MITC 

X$C_BAD_ACCESS BadAccess 

Description 

Possible causes are as follows: 

An attempt to grab a key/button 
combination that has already been 
grabbed by another client 
An attempt to free a color map entry that 
was not allocated by the client 
An attempt to store in a read-only or 
unallocated color map entry 
An attempt to modify the access control 
list from other than the local host 
An attempt to select an event type that 
at most one client can select at a time, 
when another client has already selected 
it 

X$C_BAD_ VALUE BadValue Some numeric values fall outside the range 
of values accepted by the request. Unless 
you specify a specific range for an argument, 
the full range defined by the argument's type 
is accepted. Any argument defined as a set 
of alternatives can generate this error. 

X$C_BAD_WINDOW BadWindow A value that you specified for a window 
argument does not name a defined window. 



Window and Session Manager Routines 
GRAB KEYBOARD 

GRAB KEYBOARD 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

Actively grabs control of the main keyboard and defines the processing of 
pointer events. 

status return = X$GRAB KEYBOARD 
(display, window_id, owner_events, pointer_mode, 
keyboard_mode, time) 

Argument Usage Data Type Access Mechanism 

status _return cond_value uns longword write value 

display identifier uns longword read reference 

window_id identifier uns longword read reference 

owner_events Boolean longword read reference 

pointer_mode longword longword read reference 

keyboard_mode longword longword read reference 

time longword uns longword read reference 

status_return = XGrabKeyboard 
(display, window_id, owner_events, pointer_mode, 
keyboard_mode, time) 

int XGrabKeyboard(display, window_id, owner_events, pointer_mode, 
keyboard_mode, time) 

Display *display; 
Window window_id; 
Bool owner events; 
int pointer_mode, keyboard_mode; 
Time time; 

status return 
Whetherthe routine completed successfully. GRAB KEYBOARD returns 
one of the following status values: 

VAX 

X$C_GRAB_ 
SUCCESS 

MITC 

GrabSuccess 

Description 

The routine completed successfully. 

10-81 



Window and Session Manager Routines 
GRAB KEYBOARD 

ARGUMENTS 

10-82 

VAX 

X$C_ALREADY_ 
GRABBED 

X$C_GRAB_ 
FROZEN 

X$C_GRAB_ 
INVALID_TIME 

X$C_GRAB_ 
NOT_VIEWABLE 

display 

MIT C Description 

AlreadyGrabbed The keyboard is actively grabbed by another 
client. 

GrabFrozen The keyboard is frozen by an active grab of 
another client. 

GrablnvalidTime The time specified in time is earlier than 
the last pointer grab time, or later than the 
current server time 

GrabNotViewable The windows specified in window_id or 
confine_id are not currently viewable. 

The display information originally returned by OPEN DISPLAY. 

window id 
The identifier of the window in which you want to grab the keyboard. The 
window must be viewable in order for this routine to complete successfully. 
The identifier of the grab window was originally returned by CREATE 
WINDOW or CREATE SIMPLE WINDOW. 

owner events 
The owner events flag that specifies whether standard keyboard events are 
reported. When true, generated key events that are usually reported to the 
client continue to be reported. If the key event is reported to the window 
specified in window _id, it continues to be reported on that window. When 
false, key events associated with the window specified in window _id are 
reported. 

Both Key Press and Key Release events are always reported. 

pointer_mode 
The constant that specifies the processing of pointer events. The 
predefined values for pointer_mode are as follows: 

VAX 

X$C_GRAB_ 
MODE_ SYNC 

X$C_GRAB_ 
MODE_ASYNC 

MIT C Description 

GrabModeSync The pointer event is processed 
synchronously. The state of the pointer 
appears to freeze, and no further pointer 
events are generated by the server until the 
grabbing client issues a releasing ALLOW 
EVENTS request, or until the pointer grab 
is released. Actual pointer changes are not 
lost while the keyboard is frozen; they are 
queued in the server for later processing. 

GrabModeAsync The pointer event is processed 
asynchronously. Pointer event processing is 
unaffected by activation of the grab. 

keyboard_mode 
The processing of keyboard events. The predefined values for keyboard_ 
mode are as follows: 



DESCRIPTION 

XERRORS 

VAX 

X$C_GRAB_ 
MODE_ SYNC 

X$C_GRAB_ 
MODE_ASYNC 

time 

Window and Session Manager Routines 
GRAB KEYBOARD 

MIT C Description 

GrabModeSync The keyboard event is processed 
synchronously. The corresponding device 
waits until the client that issued the grab 
request issues a releasing ALLOW EVENTS 
request. While the device is waiting for 
ALLOW EVENTS, no further keyboard 
events are generated by the server. Actual 
keyboard changes are not lost while the 
keyboard is frozen; they are queued in the 
server for later processing. 

GrabModeAsync The keyboard event is processed 
asynchronously. Keyboard event processing 
continues normally. If the keyboard is 
currently frozen by this client, processing 
of keyboard events is resumed. 

The time when the events are to be released. Either a timestamp, in 
milliseconds, or the predefined value Current Time can be specified. 

GRAB KEYBOARD grabs control of the keyboard and any further key 
events are reported only to the client that issued this call. This routine 
generates Focus In and Focus Out events. 

The window specified by window _id must be viewable when this routine 
is called. 

VAX MIT C Description 

X$C_BAD_VALUE BadValue Some numeric values fall outside the range 
of values accepted by the request. Unless 
you specify a specific range for an argument, 
the full range defined by the argument's type 
is accepted. Any argument defined as a set 
of alternatives can generate this error. 

X$C_BAD_WINDOW BadWindow A value that you specified for a window 
argument does not name a defined window. 

10-83 



Window and Session Manager Routines 
GRAB POINTER 

GRAB POINTER 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

10-84 

Actively grabs the specified pointer. 

status_return = X$GRAB_POINTER 
(display, window_id, owner_events, event_mask, 
pointer_mode, keyboard_mode, confine_id, cursor_id, 
time) 

Argument Usage Data Type Access Mechanism 

status_return cond_value uns longword write value 

display identifier uns longword read reference 

window_id identifier uns longword read reference 

owner_events Boolean longword read reference 

event_ mask mask_longword uns longword read reference 

pointer_mode longword longword read reference 

keyboard_mode longword longword read reference 

confine_id identifier uns longword read reference 

cursor_id identifier uns longword read reference 

time longword uns longword read reference 

status_return = XGrabPointer 
(display, window_id, owner_events, event_mask, 
pointer_mode, keyboard_mode, confine_id, cursor_id, 
time) 

int XGrabPointer(display, window_id, owner_events, event_mask, 
pointer_mode, keyboard_mode, confine_id, 
cursor id, time) 

Display *display;-
Window window_id; 
Bool owner_events; 
unsigned int event mask; 
int pointer mode, keyboard mode; 
Window confine_id; -
Cursor cursor_id; 
Time time; 



RETURNS 

ARGUMENTS 

Window and Session Manager Routines 
GRAB POINTER 

status return 
GRAB POINTER returns the following status: 

VAX 

X$C_GRAB_ 
SUCCESS 

X$C_ALREADY_ 
GRABBED 

X$C_GRAB_ 
FROZEN 

X$C_GRAB_ 
INVALID_TIME 

X$C_GRAB_ 
NOT_VIEWABLE 

display 

MIT C Description 

GrabSuccess The routine completed successfully. 

AlreadyGrabbed The pointer is actively grabbed by another 
client. 

GrabFrozen The pointer is frozen by an active grab of 
another client. 

GrablnvalidTime The time specified in time is earlier than 
the last pointer grab time, or later than the 
current server time. Otherwise, the last 
pointer grab time is set to the specified time. 
CurrentTime is replaced by the current server 
time. 

GrabNotViewable The windows specified in window_id or 
confine_id are not currently viewable, or 
confine_id window lies completely outside 
the boundaries of the root window. 

The display information originally returned by OPEN DISPLAY. 

window id 
The windo.;-identifier of the window to which events are reported while it 
is grabbed. 

owner events 
The owner event flag that specifies when a pointer event is reported. 
When true, all pointer events are reported as usual to the client. When 
false, pointer events are reported only when they occur on the window 
specified by window _id and only if they are selected by event_mask. 

event mask 
A bit mask that specifies the events. 

Table 10-16 lists the predefined values for the event mask. 

Table 10-16 Event Mask Description 

Bit VAX Predefined Value 

2 X$M_BUTTON_PRESS 

3 X$M_BUTTON_RELEASE 

MIT C Predefined Value Description 

ButtonPressMask Pointer button down 
events wanted 

Button Rel ease Mask Pointer button up 
events wanted 

(continued on next page) 

10-85 



Window and Session Manager Routines 
GRAB POINTER 

10-86 

Table 10-16 (Cont.) Event Mask Description 

Bit VAX Predefined Value MIT C Predefined Value Description 

4 X$M_ENTER_WINDOW EnterWindowMask Pointer window 
entry events wanted 

5 X$M_LEAVE_WINDOW LeaveWindowMask Pointer window 
leave events 
wanted 

6 X$M_POINTER_MOTION PointerMotionMask Pointer motion 
events wanted 

7 X$M_POINTER_MOTION_ PointerMotionHintMask Pointer motion hints 
HINT wanted 

8 X$M_BUTTON 1_MOTION Button1 Motion Mask Pointer motion 
while button 1 down 

9 X$M_BUTTON2_MOTION Button2MotionMask Pointer motion 
while button 2 down 

10 X$M_BUTTON3_MOTION Button3MotionMask Pointer motion 
while button 3 down 

11 X$M_BUTTON4_MOTION Button4MotionMask Pointer motion 
while button 4 down 

12 X$M_BUTTON5_MOTION Button5MotionMask Pointer motion 
while button 5 down 

13 X$M_BUTTON_MOTION ButtonMotionMask Pointer motion 
while any button 
down 

14 X$M_KEYMAP_STATE KeyMapStateMask Any keyboard state 
change wanted 

pointer_ mode 
The mode that the pointer events will use. The predefined values for 
pointer_mode are as follows: 

VAX 

X$C_GRAB_ 
MODE_ SYNC 

X$C_GRAB_ 
MODE_ASYNC 

MIT C Description 

GrabModeSync The pointer event is processed 
synchronously. The state of the pointer 
appears to freeze, and no further pointer 
events are generated by the server until the 
grabbing client issues a releasing ALLOW 
EVENTS request, or until the pointer grab 
is released. Actual pointer changes are not 
lost while the keyboard is frozen; they are 
queued in the server for later processing. 

GrabModeAsync The pointer event is processed 
asynchronously. Pointer event processing is 
unaffected by activation of the grab. 

Other values specified in this argument are not valid. 



DESCRIPTION 

Window and Session Manager Routines 
GRAB POINTER 

keyboard_mode 
The processing of keyboard events. The predefined values for keyboard_ 
mode are as follows: 

VAX 

X$C_GRAB_ 
MODE_SYNC 

X$C_GRAB_ 
MODE_ASYNC 

MIT C Description 

GrabModeSync The keyboard event is processed 
synchronously. The corresponding device 
waits until the client that issued the grab 
request issues a releasing ALLOW EVENTS 
request. While the device is waiting tor 
ALLOW EVENTS, no further keyboard 
events are generated by the server. Actual 
keyboard changes are not lost while the 
keyboard is frozen; they are simply queued 
in the server for later processing. 

GrabModeAsync The keyboard event is processed 
asynchronously. Keyboard event processing 
continues normally. If the keyboard is 
currently frozen by this client, processing 
of keyboard events is resumed. 

Other values specified in this argument are not valid. 

confine id 
The identifier of the window that the pointer will be confined to. If there 
is an attempt to move the pointer out of the window, the pointer will not 
move beyond the window. If the pointer can be moved to any window, use 
the predefined value X$C_NONE or None. 

The window must be viewable when this routine is called, or the routine 
will not succeed. 

cursor id 
The identifier of the cursor to be displayed during the grab, or the 
predefined value X$C_NONE or None. 

time 
The time when the events are to be released. Either a timestamp, 
in milliseconds, or the predefined value X$C_CURRENT_TIME or 
CurrentTime can be specified. 

GRAB POINTER actively grabs control of the pointer when the conditions 
specified in the routine have been met and a pointer input event is 
generated. Further pointer events are reported only to the grabbing 
client. GRAB POINTER overrides any active pointer grab by this client. 

If a pointer cursor is specified, it is displayed regardless of what window 
the pointer is in. If no pointer cursor is specified, the normal pointer 
cursor for that window is displayed when the pointer is in window _id 
or one of its child windows. Otherwise, the pointer cursor for window_ 
id is displayed. If the pointer is not initially in the window specified by 
confine_id, it is automatically moved to the closest edge just before the 
grab activates. Standard enter/leave events are generated. If the window 

10-87 



Window and Session Manager Routines 
GRAB POINTER 

XERRORS 

10-88 

specified by confine_id is subsequently reconfigured, the pointer is moved 
automatically as necessary to keep it contained in the window. 

The windows specified by window _id and confine_id do not require 
any relationship. For example, they could have different parents and 
be in completely different window hierarchies. However, for the routine 
to succeed, they both must be viewable at the time GRAB POINTER is 
called. If they are not viewable, UNGRAB POINTER is automatically 
called to release the pointer grab. 

GRAB POINTER generates Enter Notify and Leave Notify events. 
The window identifiers were originally returned by CREATE SIMPLE 
WINDOW or CREATE WINDOW. The cursor identifier was originally 
returned by CREATE CURSOR. 

The UNGRAB POINTER routine releases an active pointer grab. 

VAX MIT c Description 

X$C_BAD_CURSOR BadCursor A value that you specified for a cursor 
argument does not name a defined cursor. 

X$C_BAD_ VALUE BadValue Some numeric values fall outside the range 
of values accepted by the request. Unless 
you specify a specific range for an argument, 
the full range defined by the argument's type 
is accepted. Any argument defined as a set 
of alternatives can generate this error. 

X$C_BAD_WINDOW BadWindow A value that you specified for a window 
argument does not name a defined window. 



Window and Session Manager Routines 
GRAB SERVER 

GRAB SERVER 

Takes exclusive possession of the server associated with the display. 

VAX FORMAT X$GRAB_SERVER (display) 

argument 
information 

Argument Usage Data Type Access Mechanism 

display identifier uns longword read reference 

MIT C FORMAT XGrabServer (display) 

argument 
information 

ARGUMENTS 

DESCRIPTION 

XGrabServer(display) 
Display *display; 

display 
The display information originally returned by OPEN DISPLAY. 

GRAB SERVER takes exclusive possession of the server for the display 
that you specify. No requests are processed, including requests to close 
connections, while the server is grabbed. A client automatically ungrabs 
the server when it closes its connection to that server. 

GRAB SERVER can be useful for window managers or clients that want 
to preserve bits on the screen while temporarily suspending processing on 
other connections. Clients should not grab the server any more than is 
absolutely necessary. 

The UNGRAB SERVER routine releases an active server grab. 

10-89 



Window and Session Manager Routines 
INSERT MODIFIERMAP ENTRY 

INSERT MODIFIERMAP ENTRY 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

ARGUMENTS 

10-90 

Adds a new entry to the modifier key map structure. 

status_return = X$1NSERT_MODIFIERMAP _ENTRY 
(modifier_keys, keycode_entry, modifier, 
modifier_keys_return) 

Argument Usage Data Type Access 

status_return cond_value uns longword write 

modifier_keys record x$modifier_keymap read 

keycode_entry identifier uns longword read 

modifier longword uns longword read 

modifier _keys_ record x$modifier_keymap write 
return 

modifier_keys_return = 
XlnsertModifierKeymapEntry 

(modifier_keys, keycode_entry, modifier) 

XModifierKeymap XInsertModifiermapEntry(modifier_keys, 
keycode_entry, 
modifier) 

XModifierKeymap *modifier_keys; 
KeyCode keycode_entry; 
int modifier; 

status_return (VAX only) 
Whether the routine completed successfully. 

modifier_keys_return (MIT Conly) 
The revised modifier key map structure. 

Mechanism 

value 

reference 

reference 

reference 

reference 

modifier_keys 
A pointer to the modifier key map structure to which you want to add an 
entry. 

keycode _entry 
The key code that is to be added. 



Window and Session Manager Routines 
INSERT MODIFIERMAP ENTRY 

modifier 
The modifier for which you want to add a key symbol. There are eight 
modifiers in the order (starting from zero) shift, lock, control, modl, mod2, 
mod3, mod4, and mod5. You can pass the integer value or one of the 
following constants: 

VAX MITC 

X$C_SHIFT_MAP _INDEX Shift 

X$C_LOCK_MAP _INDEX Lock 

X$C_CONTROL_MAP _INDEX Control 

X$C_MOD1_MAP _INDEX Mod1 

X$C_MOD2_MAP _INDEX Mod2 

X$C_MOD3_MAP _INDEX Mod3 

X$C_MOD4_MAP _INDEX Mod4 

X$C_MOD5_MAP _INDEX Mods 

modifier_keys_return (VAX only) 
INSERT MODIFIER MAP ENTRY returns the revised modifier key map 
data structure. 

DESCRIPTION INSERT MODIFIERMAP ENTRY adds the specified key code to the set 
that controls the specified modifier. INSERT MODIFIERMAP ENTRY 
returns the resulting modifier key map data structure (expanded as 
needed). INSERT MODIFIERMAP ENTRY observes the following rules: 

• If the key code to be added is already in the array, the modifier map is 
not changed. 

• If the row (where modifier equals row) in which it is to be placed 
contains a zero, the key code is added to that spot. 

• If there is a nonzero entry in the row in which the key code is to be 
placed, another column is added. 

For example, Table 10-17 shows the result of adding a key code with 
a value of 72 and a modifier value of 5 (mod3) to a modifier map. The 
number of keys per modifier is 1. 

10-91 



Window and Session Manager Routines 
INSERT MODIFIERMAP ENTRY 

10-92 

Table 10-17 Adding a Key Code to a Zero Value 

Current Map 

65 

70 

68 

0 

0 

0 

0 

0 

New Map 

65 

70 

68 

0 

0 

72 

0 

0 

Table 10-18 shows the result of adding a key code with a value of 80 and 
a modifier value of 2 (control) to a modifier map. The number of keys per 
modifier is 2. 

Table 10-18 Adding a Key Code to a Nonzero Value 

Current Map 

65 

70 

68 

0 

0 

72 

0 

0 

New Column 

0 

0 

80 

0 

0 

0 

0 

0 



Window and Session Manager Routines 
INSTALL COLORMAP 

INSTALL COLORMAP 

Overwrites the current color map with the entries from the specified color map. 

VAX FORMAT X$1NSTALL_COLORMAP (display, colormap_id) 

argument 
information 

Argument Usage Data Type Access Mechanism 

display identifier uns longword read reference 

colormap_id identifier uns longword read reference 

MIT C FORMAT XlnstallColormap (display, colormap_id) 

argument 
information 

ARGUMENTS 

XInstallColormap(display, colormap_id) 
Display *display; 
Colormap colormap_id; 

display 
The display information originally returned by OPEN DISPLAY. 

colormap_id 
The identifier of the color map to be installed. 

DESCRIPTION INSTALL COLORMAP installs the specified color map. The identifier 
of the color map was originally returned by CREATE COLORMAP or 
DEFAULT COLORMAP. All windows associated with the color map 
immediately display the colors specified in the new color map. If the 
color map being installed has not previously been installed, a Colormap 
Notify event is sent to each window using this color map. 

If this installation replaces a different, previously installed color map, the 
previous map is uninstalled. Then a Colormap Notify event is sent to each 
window using the previous color map. Windows that are associated with 
the previous color map may display incorrect colors when the new color 
map is installed. 

The server maintains a subset of the installed color maps in an ordered 
list called the required list. The maximum length of the required list 
is limited to the length of the maps installed for the screen by OPEN 
DISPLAY. 

10-93 



Window and Session Manager Routines 
INSTALL COLORMAP 

10-94 

The server maintains the required list as follows: 

• If you pass a color map resource identifier to colormap_id, it adds the 
color map to the top of the list. The server truncates a color map at 
the bottom of the list if the list would exceed its maximum length. 

• If you pass a color map resource identifier to the colormap_id 
argument of UNINSTALL COLORMAP, and that color map is in 
the required list, the color map is removed from the list. A color map 
is not added to the required list when it is installed implicitly by the 
server; the server cannot implicitly uninstall a color map that is in the 
required list. 

Initially, only the default color map for a screen is installed, but it is not in 
the required list. 



Window and Session Manager Routines 
KEYCODE TO KEYSYM 

KEVCODE TO KEYSYM 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

ARGUMENTS 

Converts the key code that you specify to a defined key symbol. 

keysym_return = X$KEYCODE_ TO _KEYSYM 
(display, keycode, index) 

Argument Usage Data Type Access 

keysym_return identifier uns longword write 

display identifier uns longword read 

keycode word uns word read 

index longword longword read 

keysym_return = XKeycodeToKeysym 
(display, keycode, index) 

KeySym XKeycodeToKeysym(display, keycode, index) 
Display *display; 
KeyCode keycode; 
int index; 

keysym_return 
The key symbol defined for the specified key code. 

display 

Mechanism 

value 

reference 

reference 

reference 

The display information originally returned by OPEN DISPLAY. 

keycode 
The key code that you want to convert to a key symbol. 

index 
The element of the key-code vector. 

DESCRIPTION KEYCODE TO KEYSYM uses internal Xlib tables to return the key 
symbol defined for the specified key code and the element of the key-code 
vector. If no key symbol is defined, KEYCODE TO KEYSYM returns X$C_ 
NO_SYMBOL or NoSymbol. 

10-95 



Window and Session Manager Routines 
KEYSYM TO KEYCODE 

KEYSYM TO KEYCODE 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

ARGUMENTS 

Converts the key symbol that you specify to a defined key code. 

keycode_return = X$KEVSVM_ TO _KEYCODE 
(display, keysym_id) 

Argument Usage Data Type Access 

keycode_return word uns word write 

display identifier uns longword read 

keysym_id identifier uns longword read 

keycode_return = XKeysymToKeycode 
(display, keysym_id) 

KeyCode XKeysymToKeycode(display, keysym_id) 
Display *display; 
KeySym keysym_id; 

keycode_return 
The key code defined for the specified key symbol. 

display 

Mechanism 

value 

reference 

reference 

The display information originally returned by OPEN DISPLAY. 

keysym_id 
The key symbol for which to search. 

DESCRIPTION KEYSYM TO KEYCODE converts the key symbol that you specify into the 
appropriate key code. If the specified key symbol is not defined for any key 
code, KEYSYM TO KEYCODE returns zero. 

10-96 



Window and Session Manager Routines 
KEVSVM TO STRING 

KEYSYM TO STRING 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

ARGUMENTS 

Converts the key-symbol identifier that you specify to the name of the key 
symbol. 

status_return = X$KEYSYM_ TO_STRING 
(keysym_id, keysym_name_return) 

Argument Usage Data Type 

status_return cond value uns longword 

keysym_id identifier uns longword 

keysym_name_return char string character string 

char_return = XKeysymToString 
(keysym_id) 

char *XKeysymToString(keysym_id) 
KeySym keysym_id; 

status_return (VAX only) 
Whether the routine completed successfully. 

char_return (MIT Conly) 
The name of the key symbol. 

keysym_id 
The key symbol that is to be converted. 

keysym_name_return (VAX only) 
The name of the key-symbol string. 

Access 

write 

read 

write 

Mechanism 

value 

reference 

descriptor 

DESCRIPTION KEYSYM TO STRING converts the key-symbol identifier that you specify 
into the appropriate key symbol name. The returned string is in a static 
area and must not be modified. If the specified key symbol is not defined, 
KEYSYM TO STRING returns a null value. 

10-97 



Window and Session Manager Routines 
KILL CLIENT 

KILL CLIENT 

Disconnects a client associated with the specified resource. 

VAX FORMAT X$KILL_CLIENT (display, resource) 

argument 
information 

Argument Usage Data Type Access Mechanism 

display identifier uns longword read reference 

resource longword longword read reference 

MIT C FORMAT XKillClient (display, resource) 

argument 
information 

ARGUMENTS 

XKillClient(display, resource) 
Display *display; 
XID resource; 

display 
The display information originally returned by OPEN DISPLAY. 

resource 
The identifier of the resource associated with the client to be disconnected. 
The predefined value X$C_ALL_TEMPORARY or AllTemporary can be 
specified in place of an identifier. When All Temporary is specified, all 
resources associated with clients that disconnected in Retain Temporary 
mode are destroyed. 

DESCRIPTION KILL CLIENT disconnects the client associated with the resource specified 
in resource. If the client has already disconnected in a Retain Permanent 
or Retain Temporary mode, then all of the client's resources are freed. 

10-98 

If you specify the predefined value All Temporary for resource, then all 
resources for all clients that have disconnected in Retain Temporary mode 
are destroyed. 

For more information about close-down modes, see the SET CLOSE 
DOWN MODE and CLOSE DISPLAY routines. 



XERRORS 

Window and Session Manager Routines 
KILL CLIENT 

VAX MIT C 

X$C_BAD_ VALUE BadValue 

Description 

Some numeric values fall outside the range of 
values accepted by the request. Unless you 
specify a specific range for an argument, the 
full range defined by the argument's type is 
accepted. Any argument defined as a set of 
alternatives can generate this error. 

10-99 



Window and Session Manager Routines 
LIST HOSTS 

LIST HOSTS 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

10-100 

Returns the list of hosts that can access a display. LIST HOSTS also returns 
a pointer to the number of hosts in the access control list and the state of the 
list when the connection was made. 

status_return = X$LIST_HOSTS 
(display, num_hosts_return, state_return 
[,hosts_return] [,hosts_size] [,hosts_buff_return]) 

Argument Usage Data Type Access Mechanism 

status_return cond_value uns longword write value 

display identifier uns longword read reference 

num_hosts_return longword longword write reference 

state _return longword longword write reference 

hosts_return address uns longword write reference 

hosts_size longword longword read reference 

hosts_buff_return array uns longword write reference 

hostaddress_return = XListHosts 
(display, num_hosts_return, state_return) 

XHostAddress *XListHosts(display, num_hosts_return, state_return) 
Display *display; 
int *num_hosts_return; 
Bool *state_return; 

status_return (VAX only) 
Whether the routine completed successfully. Possible status values 
returned by the VAX binding are as follows: 

Value 

X$_ERRORREPLY 

X$_NOHOSTS 

Description 

An error was received from the server. 

There are no hosts available to make connections. 



ARGUMENTS 

Value 

X$_ TRUNCATED 

SS$_NORMAL 

Window and Session Manager Routines 
LIST HOSTS 

Description 

The user buffer specified in time_buff_return was not large 
enough. 

The routine completed successfully. 

hostaddress_return (MIT Conly) 
A pointer to the current access control list defined in the network data 
structure. The network data structure is shown in Section 10.1. 

display 
The display information originally returned by OPEN DISPLAY. 

num hosts return 
A pointer to the ~umber of hosts currently in the access control list. This 
number includes the host structures that were allocated by this routine. 
The memory occupied by num_hosts_return should be freed by using the 
FREE routine when it is no longer needed. 

state_return 
The access control state. Access control is enabled if state_return is true, 
and access control is disabled if state_return is false. 

hosts_return (VAX only) 
The virtual address of the hosts buffer, which contains the current access 
control list, is returned. This argument is optional. If you specify this 
argument, LIST HOSTS determines the size of the hosts buffer to create. 
If you specify hosts_return, you do not need to specify hosts_size and 
hosts_buff_return. 

hosts_size(VAXonly) 
The size of the hosts buffer to which LIST HOSTS returns the list of hosts 
that can access a display. This argument is optional. 

hosts_buff_return (VAX only) 
A pointer to an array of addresses in which each element is the address of 
a host. The length of the array is specified by num_hosts_return. This 
argument is optional. 

DESCRIPTION LIST HOSTS returns the current access control list as well as whether the 
use of the list at connection setup was enabled or disabled. LIST HOSTS 
allows a client to find out which hosts can connect to a display and returns 
a pointer to which the number of hosts currently in the access control list 
is returned. Clients should use FREE to free the memory used by this 
routine. 

The network data structure is shown in Section 10.1. 

10-101 



Window and Session Manager Routines 
LIST INSTALLED COLORMAPS 

LIST INSTALLED COLORMAPS 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

10-102 

Returns a color map identifier of each installed color map for a window. 

status_return = X$LIST _INSTALLED_ COLORMAPS 
(display, window_id, num_colormaps_return 
£colormaps_return] [,colormaps_size] 
£colormaps_buff_return]) 

Argument Usage Data Type Access 

status_return cond_value uns longword write 

display identifier uns longword read 

window_id identifier uns longword read 

num_colormaps_ longword longword write 
return 

colormaps_return address uns longword write 

colormaps_size longword longword read 

colormaps_buff _return array uns longword write 

colormap_return = XListlnstalledColormaps 
(display, window_id, num_colormaps_return) 

Mechanism 

value 

reference 

reference 

reference 

reference 

reference 

reference 

Colormap *XListinstalledColormaps(display, window_id, 
num_colormaps_return) 

Display *display; 
Window window_id; 
int *num_colormaps_return; 

status_return (VAX only) 
Whether the routine completed successfully. Possible status values 
returned by the VAX binding are as follows: 



ARGUMENTS 

Value 

0 

X$_ TRUNCATED 

SS$_NORMAL 

Window and Session Manager Routines 
LIST INSTALLED COLORMAPS 

Description 

None 

The user buffer specified in time_buff_return was not large 
enough. 

The routine completed successfully. 

colormap_return (MIT Conly) 
A pointer to the list of color map identifiers for the screen of the specified 
window. 

display 
The display information originally returned by OPEN DISPLAY. 

window id 
The identifier of the window for which to obtain the color map list. The 
window identifier was originally returned by CREATE SIMPLE WINDOW 
or CREATE WINDOW. 

num_colormaps_return 
The number of currently installed color maps. 

colormaps_return (VAX only) 
The address of the buffer where the list of color map identifiers is 
returned. This argument is optional. If you specify this argument, LIST 
INSTALLED COLORMAPS determines the size of the buffer to create. If 
you specify colormaps_return, you do not need to specify colormaps_ 
size and colormaps_buff_return. 

colormaps_size (VAX only) 
The size of the color map buffer. 

colormaps_buff_return (VAX only) 
A pointer to a buffer where the list of color map identifiers is returned. 

DESCRIPTION LIST INSTALLED COLORMAPS returns a list of the currently installed 
color maps for the screen of the specified window. The order in which the 
color maps appear in the list is not significant, and the required color map 
list is not explicitly indicated. 

XERRORS 

When you no longer need the list, use FREE (X$FREE or XFree) to 
deallocate the storage. 

VAX MIT C Description 

X$C_BAD_WINDOW BadWindow A value that you specified for a window 
argument does not name a defined window. 

10-103 



Window and Session Manager Routines 
LOOKUP KEYSYM 

LOOKUP KEVSYM 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

ARGUMENTS 

Returns the key symbol from the list that corresponds to the key code in the 
event that you specify. 

keysym_id_return = X$LOOKUP _KEVSVM 
(key_event, index) 

Argument Usage Data Type 

keysym_id _return identifier uns longword 

key_event record x$key_event 

index longword longword 

keysym_id_return = XLookupKeysym 
(key_event, index) 

KeySym XLookupKeysym(key_event, index) 
XKeyEvent *key_event; 
int index; 

keysym_id_return 

Access 

write 

read 

read 

Mechanism 

value 

reference 

reference 

The key symbol identifier .returned from the list that corresponds to 
the key code member in the Key Pressed or Key Released event data 
structures. 

key_event 
A pointer to the Key Event structure that is to be used. The event is 
either a Key Pressed or Key Released event. 

index 
The element of the key-code vector. 

DESCRIPTION LOOKUP KEYSYM uses a given keyboard event and the index that you 
specify to return the key-symbol identifier. If no key symbol is defined for 
the key code of the event, LOOKUP KEYSYM returns X$C_NO_SYMBOL 
or N oSymbol. 

10-104 



Window and Session Manager Routines 
LOOKUP STRING 

LOOKUP STRING 

Maps a key event to an ISO-Latin1 string. 

VAX FORMAT buflen_return = X$LOOKUP _STRING 

argument 
information 

(key_event, buff_return, num_bytes, 
keysym_id_return, compose_status_return) 

Argument Usage Data Type Access 

buflen_return longword longword write 

key_event record x$key_event read 

buff _return address longword write 

num_bytes longword uns longword read 

keysym_id _return identifier uns longword write 

compose_status_ record x$compose_ write 
return status 

Mechanism 

value 

reference 

reference 

reference 

reference 

reference 

MIT C FORMAT buflen_return = XLookupString 

argument 
information 

RETURNS 

ARGUMENTS 

(key_event, buff_return, num_bytes, 
keysym_id_return, compose_status_return) 

int XLookupString(key_event, buff_return, num_bytes, 
keysym_id_return, compose_status_return) 

XKeyEvent *key_event; 
char *buff_return; 
int num_bytes; 
KeySym *keysym_id_return; 
XComposeStatus *compose_status_return; 

but/en return 
The length of the string stored in the buffer. 

key_event 
The Key Pressed or Key Released event that you want to map to an 
ISO-Latinl string. 

buff_return 
The translated characters are returned to this buffer. You pass in a buffer 
to which LOOKUP STRING returns the translated characters. 

10-105 



Window and Session Manager Routines 
LOOKUP STRING 

num_bytes 
The length of the buffer. No more than num_bytes of translation are 
returned. 

keysym_id_return 
The key symbol computed from the event, if the key symbol is not a null 
value. 

compose_ status_ return 
A pointer to the compose status data structure used to track compose 
processing information. This should be declared by the caller as a global 
structure to allow consistent compose processing across an application. 

The argument can be null if the caller does not want compose processing 
information. 

The compose status data structure is shown in Section 10.4. 

DESCRIPTION LOOKUP STRING is a convenience routine that can be used to map a key 
event to an ISO-Latinl string, using the modified bits in the key event to 
handle the Shift, Lock, and Control keys. It returns the translated string 
to the user's buffer. It also detects any rebound key symbols (see REBIND 
KEYSYM) and returns the specified bytes. 

10-106 

LOOKUP STRING returns, as its value, the length of the string stored in 
the tag buffer. If the lock modifier has a Caps Lock 'key associated with it, 
LOOKUP STRING interprets the lock modifier. 

The compose status structure records the compose key state, which 
is private to Xlib. The compose key state is preserved to implement 
compose key processing. The compose status data structure is shown in 
Section 10.4. 



Window and Session Manager Routines 
NEW MODIFIER MAP 

NEW MODIFIER MAP 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

ARGUMENTS 

Creates a new modifier key map data structure. 

status_return = X$NEW_MODIFIERMAP 
(max_keys_per_mod, mkeymap_return) 

Argument Usage Data Type Access 

status_return cond value uns longword write 

max_keys_per_mod longword longword read 

mkeymap _return record x$modifier_ write 
keymap 

xmodifierkeymap_return = XNewModifiermap 
(max_keys_per_mod) 

XModifierKeymap XNewModifiermap(max_keys_per_mod) 
int max_keys_per_mod; 

status_return (VAX only) 
Whether the routine completed successfully. 

xmodifierkeymap_return (MIT Conly) 
The new modifier key map data structure. 

max_keys_per_mod 

Mechanism 

value 

reference 

reference 

The maximum number of key codes assigned to any modifier in the map. 

mkeymap_return (VAX only) 
The new modifier key map structure. 

DESCRIPTION NEW MODIFIERMAP returns a modifier key map data structure. The 
modifier key map data structure is shown in Section 10.5. 

10-107 



Window and Session Manager Routines 
PARSE COLOR 

PARSE COLOR 

Provides the red, green, and blue color values for a named color. 

VAX FORMAT status_return = X$PARSE_COLOR 
(display, colormap_id, color_name, screen_def_return) 

argument 
information 

Argument Usage Data Type Access Mechanism 

status _return cond_value uns longword write value 

display identifier uns longword read reference 

colormap_id identifier uns longword read reference 

color_name char string character string read descriptor 

screen_ def _return record x$color write reference 

MIT C FORMAT status_return = XParseColor 

argument 
information 

RETURNS 

ARGUMENTS 

10-108 

(display, colormap_id, color_name, screen_def_return) 

Status XParseColor(display, colormap_id, color_name, 
screen_def_return) 

Display *display; 
Colormap colormap_id; 
char *color_name; 
XColor *screen_def_return; 

status return 
Whether the routine completed successfully. When the value of status is 
zero, the routine did not complete successfully. When the value of status 
is nonzero, the routine completed successfully. 

display 
The display information originally returned by OPEN DISPLAY. 

colormap_id 
The identifier of the color map containing the requested color definition. 

color name 
The name of the color. The string can be either a color name string 
or a numeric specification. If you use a text string, the name must 
be supported by the color database maintained by the server. See the 
SYS$MANAGER:DECW$RGB.COM file for more information. Case is 



DESCRIPTION 

Window and Session Manager Routines 
PARSE COLOR 

not significant. The numeric specification allows you to define the color 
according to red, green, and blue values in four levels of detail: 

• #RGB, where you use one number to define each color component 

• #RRGGBB, where you use two numbers to define each color component 

• #RRRGGGBBB, where you use three numbers to define each color 
component 

• #RRRRGGGGBBBB, where you use four numbers to define each color 
component 

Each number represents a single hexadecimal digit. When you use fewer 
than four digits to represent a value, each digit represents the most 
significant bit of the value. 

For example, suppose you have the following color definition: 

Red-1234 
Green-1234 
Blue-1234 

The first level of representation is single numbers: #111. The 
corresponding value is #100010001000. 

The second level of representation is two numbers: #121212. The 
corresponding value is #120012001200. 

The third level of representation is three numbers: #123123123. The 
corresponding value is #123012301230. 

The fourth level of representation is four numbers: #123412341234. The 
corresponding value is #123412341234. 

This routine fails if you do not follow these numeric formats. For example, 
if you specify a number sign ( #) as the initial character but the rest of the 
string is incorrect, or if you do not specify a number sign even though the 
rest of the string is correct, the routine fails. 

VAX only 

The color_name argument is the address of a character string descriptor 
that points to the string. 

MIT Conly 

The color_name argument is a pointer to the null-terminated character 
string. 

screen_ def_return 
The exact color value used in the color map. The flags member of screen_ 
def_return is set (all three flags are set). 

PARSE COLOR reads a string specification of a color, usually from a 
command line or the GET DEFAULT routine. Then it returns the specific 
color values for that color in the color definition data structure. After these 
values are obtained, you can then use the color definition data structure 
with the ALLOC COLOR routine to obtain a color map entry, or STORE 
COLOR to set the color in a color map entry. 

10-109 



Window and Session Manager Routines 
PARSE COLOR 

You can use the numeric specification if you want to be more precise about 
the color you request. Depending on the level of detail you want, you 
can specify the red, green, and blue values in four levels of detail in the 
color_name argument. The color definition for a numeric specification is 
also returned in the color definition data structure. 

The color definition data structure for the VAX binding is shown in 
Figure 10-11. 

Figure 10-11 Color Definition Data Structure (VAX Binding) 

x$1_colr_pixel 

x$w_colr_green x$w_colr_red 

x$b_colr_pad 

10-110 

l x$b_colr_flags x$w_colr_blue 

The members of the VAX binding color definition data structure are 
described in Table 10-19. 

Table 10-19 Members of the Color Definition Data Structure (VAX 
Binding) 

Member Name 

X$L_COLR_PIXEL 

X$W_COLR_RED 

X$W_COLR_GREEN 

X$W_COLR_BLUE 

X$B_COLR_FLAGS 

X$B_COLR_PAD 

Contents 

Defines a pixel value. 

Defines the red value of the pixel.1 

Defines the green value of the pixel. 1 

Defines the blue value of the pixel. 1 

Defines which color components are to be defined in the 
color map. Possible flags are as follows: 

x$m_do_red Sets red values 

x$m_do_green 

x$m_do_blue 

Sets green values 

Sets blue values 

Makes the structure an even length. 

1Color values are scaled between O and 65535. "On full" in a color is a value of 65535, 
independent of the number of planes of the display. Half brightness in a color is a value of 
32767; off is a value of 0. This representation gives uniform results for color values across 
displays with different color resolution. 

The color definition data structure for the MIT C binding is shown in 
Figure 10-12. 

0 

4 

8 



XERRORS 

Window and Session Manager Routines 
PARSE COLOR 

Figure 10-12 Color Definition Data Structure (MIT C Binding) 

typedef struct { 
unsigned long pixel; 
unsigned short red, green, blue; 
char flags; 
char pad; 

}XColor 

The members of the MIT C binding color definition data structure are 
described in Table 10-20. 

Table 10-20 Members of the Color Definition Data Structure (MIT C 
Binding) 

Member Name 

pixel 

red 

green 

blue 

flags 

pad 

Contents 

Defines a pixel value. 

Specifies the red value of the pixel. 1 

Specifies the green value of the pixel.1 

Specifies the blue value of the pixel.1 

Defines which color components are to be defined in the 
color map. Possible flags are as follows: 

DoRed Sets red values 

DoGreen 

Do Blue 

Sets green values 

Sets blue values 

Makes the structure an even length. 

1 Color values are scaled between O and 65535. "On full" in a color is a value of 65535, 
independent of the number of planes of the display. Half brightness in a color is a value of 
32767; off is a value of 0. This representation gives uniform results for color values across 
displays with different color resolution. 

VAX MIT C 

X$C_BAD_ COLOR Bad Color 

Description 

A value that you specified for a color map 
argument does not name a defined color 
map. 

10-111 



Window and Session Manager Routines 
PARSE GEOMETRY 

PARSE GEOMETRY 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

10-112 

Parses standard geometry strings. 

mask_return = X$PARSE_GEOMETRY 
(parse_string [,x_coord_return] [,y_coord_return] 
[, width_return] [,height_return]) 

Argument Usage Data Type Access Mechanism 

mask_return mask_longword uns longword write value 

parse_string char string character string read descriptor 

x_coord_return longword longword write reference 

y _coord_return longword longword write reference 

width_return longword uns longword write reference 

height_return longword uns longword write reference 

mask_return = XParseGeometry 
(parse_string, x_coord_return, y_coord_return, 
width_return, height_return) 

int XParseGeometry(parse_string, x_coord_return, y_coord_return, 
width_return, height_return) 

char *parse_string; 
int *x_coord_return, *y_coord_return; 
int *width_return, *height_return; 

mask return 
A bit mask that specifies which of four values (width, height, x-offset, 
and y-offset) were actually found in the string, and whether the x and y 
values are negative. Each bit indicates whether the corresponding value 
was found in the parsed string. For each value found, the corresponding 
argument is updated; for each value not found, the argument is left 
unchanged. 

Table 10-21 lists the predefined values and their descriptions for the 
mask. 



ARGUMENTS 

Window and Session Manager Routines 
PARSE GEOMETRY 

Table 10-21 Parse Mask Bits 

Bit VAX MITC Description 

X$M_NO_ VALUE No Value Reserved 

2 X$M_X_VALUE XValue The x-coordinate of the origin 
of a window 

3 X$M_Y_VALUE YValue The y-coordinate of the origin 
of a window 

4 X$M_WIDTH_VALUE Width Value The width of the window in 
pixels 

5 X$M_HEIGHT _VALUE HeightValue The height of the window in 
pixels 

6 X$M_ALL_VALUES AllValues Indicates if all values are 
present 

7 X$M_X_NEGATIVE_ XNegativeValue Indicates if the x-coordinate is 
VALUE negative 

8 X$M_ Y _NEGATIVE_ YNegative Value Indicates if the y-coordinate is 
VALUE negative 

parse_string 
The name of the string that you want to parse. 

VAX only 

The parse_string argument is the address of a character string descriptor 
that points to the string. 

MIT Conly 

The parse_string argument is a pointer to the null-terminated character 
string. 

x coord return 
The x-coordinate to which to return the x-offset from the specified string. 
This coordinate is relative to the origin of the drawable. 

VAX only 

This argument is optional in the VAX binding. 

y_coord_return 
They-coordinate to which to return they-offset from the specified string. 
This coordinate is relative to the origin of the drawable. 

VAX only 

This argument is optional in the VAX binding. 

10-113 



Window and Session Manager Routines 
PARSE GEOMETRY 

width return 
The width, in pixels, from the specified string. 

VAX only 

This argument is optional in the VAX binding. 

height_ return 
The height, in pixels, from the specified string. 

VAX only 

This argument is optional in the VAX binding. 

DESCRIPTION PARSE GEOMETRY parses the string that you specify and returns a 
bit mask to indicate status. When you enter a command line request 
to perform a window operation, the client calls PARSE GEOMETRY to 
extract x- and y-coordinates, width, and height from the command line 
string. 

10-114 

By convention, Xlib clients use a standard string to indicate window size 
and placement. PARSE GEOMETRY allows you to parse the standard 
window geometry to conform to this standard. Specifically, this function 
allows you to parse strings of the following form: 

[=] [(width)x(height)] [{ +-} (xof f set) {+-}(yo ff set)] 

Note: Items enclosed in<> are integers, items in [] are optional, and 
items enclosed in { } indicate that you must choose one of the 
items. 

The items in this form map into the arguments associated with PARSE 
GEOMETRY. 

PARSE GEOMETRY parses the string that you specify and returns a 
bit mask that indicates which of the four values (width, height, x-offset, 
y-offset) are actually found in the string, and whether the x and y values 
are negative. (-0 is not equal to +0.) 

For each value found, the corresponding argument is updated; for each 
value not found, the argument is left unchanged. The bits are set 
whenever one of the values is defined or a sign is set. 

If the function returns either the x-value or the y-value flag, you should 
place the window at the requested position. 

See the GEOMETRY routine for more information. 



Window and Session Manager Routines 
QUERY KEVMAP 

QUERY KEYMAP 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Returns a bit vector that describes the state of the keyboard. 

X$QUERY _KEYMAP 
(display, keys_return) 

Argument Usage 

display identifier 

keys_return array 

XQueryKeymap 
(display, keys_return) 

Data Type 

uns longword 

byte 

XQueryKeymap(display, keys_return) 
Display *display; 
char keys_return[32]; 

display 

Access 

read 

write 

Mechanism 

reference 

reference 

The display information originally returned by OPEN DISPLAY. 

keys_return 
An array of 32 bytes that identifies which keys are pressed down. Each bit 
represents one key of the keyboard. 

DESCRIPTION QUERY KEYMAP returns a bit vector for the logical state of the keyboard, 
where each one bit indicates that the corresponding key is currently 
pressed down. The vector is represented as 32 bytes. Byte N (from 0) 
contains the bits for keys SN to SN+ 7, with the least significant bit in the 
byte representing key 8N. 

The logical state of a device, as seen by the client, may lag behind the 
physical state if device event processing is frozen. 

10-115 



Window and Session Manager Routines 
REBIND KEYSYM 

REBIND KEYSYM 

Rebinds the meaning of a key symbol for a client program. 

VAX FORMAT X$REBIND_KEYSYM 

argument 
information 

(display, keysym_id, keysym_names, mod_count, 
lookup_string, num_bytes) 

Argument Usage Data Type Access Mechanism 

display identifier uns longword read reference 

keysym_id identifier uns longword read reference 

keysym_names array uns longword read reference 

mod_ count longword longword read reference 

lookup_string word uns word read reference 

num_bytes word uns word read reference 

MIT C FORMAT XRebindKeySym 

argument 
information 

ARGUMENTS 

10-116 

(display, keysym_id, keysym_names, mod_count, 
lookup_string, num_bytes) 

XRebindKeysym(display, keysym id, keysym names, mod_count, 
lookup_string, num_bytes) -

Display *display; 
KeySym keysym_id; 
KeySym keysym_names[]; 
int mod count; 
unsigned char *lookup_string; 
int num_bytes; 

display 
The display information originally returned by OPEN DISPLAY. 

keysym_id 
The key symbol that you want to rebind. 

keysym_names 
The key symbols that are being used as modifiers. The length of the array 
is specified by mod_count. 

mod_ count 
The number of modifiers in the modifier list. 



Window and Session Manager Routines 
REBIND KEVSVM 

lookup_ string 
A pointer to the string that is copied and returned by LOOKUP STRING. 

num_bytes 
The length of the string that is returned by LOOKUP STRING. 

DESCRIPTION REBIND KEYSYM rebinds the meaning of a key symbol for a client. 
REBIND KEYSYM does not rebind any key in the server, but it provides 
a way to attach long strings to keys. LOOKUP STRING returns these 
strings when the appropriate set of modifier keys is pressed and when 
the key symbol would have been used for translation. Note that you can 
rebind a key symbol that does not exist. 

10-117 



Window and Session Manager Routines 
REFRESH KEYBOARD MAPPING 

REFRESH KEYBOARD MAPPING 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

DESCRIPTION 

10-118 

Refreshes the stored modifier and key map information. 

X$REFRESH_KEYBOARD _MAPPING 
(event_map) 

Argument Usage Data Type Access Mechanism 

event_ map record x$mapping_event 

XRefreshKeyboardMapping 
(event_map) 

XRefreshKeyboardMapping(event_map) 
XMappingEvent *map_event; 

event_ map 

read reference 

The mapping event for which you want to refresh the keyboard mapping. 
The mapping event structure is a member of the event structure, which is 
shown in Section 4.1. 

REFRESH KEYBOARD MAPPING refreshes the stored modifier and 
key map information. When a Mapping Notify event occurs, you can use 
REFRESH KEYBOARD MAPPING to cause the library to refresh the 
stored modifier and keyboard information. 

You usually call this routine when a Mapping Notify event with a request 
member of MAPPING KEYBOARD or MAPPING MODIFIER occurs. 
REFRESH KEYBOARD MAPPING updates Xlib's keyboard information. 



Window and Session Manager Routines 
REMOVE FROM SAVE SET 

REMOVE FROM SAVE SET 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Removes the specified window from the client's save set. 

X$REMOVE_FROM_SAVE_SET 
(display, window_id) 

Argument Usage Data Type 

display identifier uns longword 

window_id identifier uns longword 

XRemoveFromSaveSet 
(display, window_id) 

XRemoveFromSaveSet(display, window_id) 
Display *display; 
Window window_id; 

display 

Access 

read 

read 

Mechanism 

reference 

reference 

The display information originally returned by OPEN DISPLAY. 

window id 
The identifier of the window you want to remove from the client's save set. 
The identifier of the window was originally returned by CREATE SIMPLE 
WINDOW or CREATE WINDOW. 

DESCRIPTION REMOVE FROM SAVE SET removes the specified window from the 
client's save set. The specified window must have been created by some 
other client or a Bad Match error is generated. The server automatically 
removes windows from the save set when they are destroyed. 

Also see the CHANGE SAVESET and ADD TO SAVESET routines. 

10-119 



Window and Session Manager Routines 
REMOVE FROM SAVE SET 

XERRORS 
VAX MITC 

X$C_BAD_MATCH Bad Match 

Description 

Possible causes are as follows: 

In a graphics request, the root and depth 
of the graphics context do not match 
those of the drawable. 
An input-only window is used as a 
drawable. 

One argument or pair of arguments has 
the correct type and range but fails to 
match in some other way required by 
the request. 

An input-only window lacks this attribute. 

X$C_BAD_WINDOW BadWindow A value that you specified for a window 
argument does not name a defined window. 

10-120 



Window and Session Manager Routines 
REMOVE HOST 

REMOVE HOST· 

Removes a host from the list of hosts that can connect to a display. 

VAX FORMAT X$REMOVE_HOST (display, host) 

argument 
information 

Argument Usage Data Type Access Mechanism 

display identifier uns longword read reference 

host record x$host_address read reference 

MIT C FORMAT XRemoveHost (display, host) 

argument 
information 

ARGUMENTS 

XRernoveHost(display, host) 
Display *display; 
XHostAddress *host; 

display 
The display information originally returned by OPEN DISPLAY. 

host 
A pointer to the network address of the host that you want to remove. The 
network data structure is shown in Section 10.1. 

DESCRIPTION REMOVE HOST dynamically removes a single host from the list of hosts 
that can connect to the server controlling a display. For this routine to 
execute successfully, the client issuing the command must reside on the 
same host as the server or a Bad Access error is generated. If you remove 
your host from the access list, you can no longer connect to that server, 
and this operation cannot be reversed without resetting the server. 

See also the REMOVE HOSTS routine. 

The network data structure is shown in Section 10.1. 

10-121 



Window and Session Manager Routines 
REMOVE HOST 

XERRORS 
VAX MIT C 

X$C_BAD_ACCESS BadAccess 

X$C_BAD_VALUE BadValue 

10-122 

Description 

Possible causes are as follows: 

An attempt to grab a key/button 
combination that has already been 
grabbed by another client 

An attempt to free a color map entry that 
was not allocated by the client 

An attempt to store in a read-only or 
unallocated color map entry 

An attempt to modify the access control 
list from other than the local host 

An attempt to select an event type that 
at most one client can select at a time, 
when another client has already selected 
it 

Some numeric values fall outside the range 
of values accepted by the request. Unless 
you specify a specific range for an argument, 
the full range defined by the argument's type 
is accepted. Any argument defined as a set 
of alternatives can generate this error. 



Window and Session Manager Routines 
REMOVE HOSTS 

REMOVE HOSTS 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Removes multiple hosts from the list of hosts that can connect to a display. 

X$REMOVE_HOSTS 
(display, hosts, num_hosts) 

Argument Usage Data Type 

display identifier uns longword 

hosts array uns longword 

num_hosts longword longword 

XRemoveHosts 
(display, hosts, num_hosts) 

XRemoveHosts(display, hosts, num_hosts) 
Display *display; 
XHostAddress *hosts; 
int num_hosts; 

display 

Access Mechanism 

read reference 

read reference 

read reference 

The display information originally returned by OPEN DISPLAY. 

hosts 
A pointer to the network addresses of the hosts that you want to remove. 
The network data structure is shown in Section 10.1. 

num hosts 
The number of hosts to be removed from the access list. 

DESCRIPTION REMOVE HOSTS dynamically removes more than one host from the list of 
hosts that can connect to the server controlling a display. For this routine 
to execute successfully, the client issuing the command must reside on the 
same host as the server, or a Bad Access error is generated. If you remove 
your host from the access list, you can no longer connect to that server, 
and this operation cannot be reversed without resetting the server. 

See also the REMOVE HOST routine. 

The network data structure is shown in Section 10.1. 

10-123 



Window and Session Manager Routines 
REMOVE HOSTS 

XERRORS 
VAX MITC 

X$C_BAD_ACCESS BadAccess 

X$C_BAD_VALUE BadValue 

10-124 

Description 

Possible causes are as follows: 

An attempt to grab a key/button 
combination that has already been 
grabbed by another client 

An attempt to free a color map entry that 
was not allocated by the client 

An attempt to store in a read-only or 
unallocated color map entry 

An attempt to modify the access control 
list from other than the local host 

An attempt to select an event type that 
at most one client can select at a time, 
when another client has already selected 
it 

Some numeric values fall outside the range 
of values accepted by the request. Unless 
you specify a specific range for an argument, 
the full range defined by the argument's type 
is accepted. Any argument defined as a set 
of alternatives can generate this error. 



Window and Session Manager Routines 
REPARENT WINDOW 

REPARENT WINDOW 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Changes the parent window for the specified window and repositions the 
window within the new parent's hierarchy. 

X$REPARENT _WINDOW 
(display, window_id, parent_id, x_coord, y_coord) 

Argument Usage Data Type Access Mechanism 

display identifier uns longword read reference 

window_id identifier uns longword read reference 

parent_ id identifier uns longword read reference 

x_coord longword longword read reference 

y_coord longword longword read reference 

XReparentWindow 
(display, window_id, parent_id, x_coord, y_coord) 

XReparentWindow(display, window_id, parent_id, x_coord, y_coord) 
Display *display; 
Window window id; 
Window parent=id; 
int x_coord, y_coord; 

display 
The display information originally returned by OPEN DISPLAY. 

window id 
The identifier of the window to receive the new parent window. 

10-125 



Window and Session Manager Routines 
REPARENT WINDOW 

DESCRIPTION 

10-126 

parent_ id 
The identifier of the new parent window for the window specified in 
window _id. The routine fails under the following conditions: 

• If the new parent window is not on the same screen as the old parent 
window 

• If the new parent window is the specified window or an inferior of the 
specified window 

• If the specified window has a Parent Relative background and if the 
new parent window is not the same depth as the specified window 

x coord 
The x-coordinate of the new position of the window relative to the new 
parent window's origin. The x- and y-coordinates define the upper left 
corner of the new position for the specified window. 

y_coord 
The y-coordinate of the new position of the window relative to the new 
parent window's origin. The x- and y-coordinates define the upper left 
corner of the new position for the specified window. 

REPARENT WINDOW reparents the specified window by inserting it as 
the child of the specified parent. If the window specified in window _id 
is mapped, REPARENT WINDOW automatically unmaps it. REPARENT 
WINDOW then moves the specified window from its current position in the 
hierarchy and inserts it as the child of the specified parent. The window is 
placed on top in the stacking order with respect to sibling windows. 

After reparenting the specified window, REPARENT WINDOW causes 
the server to generate a Reparent Notify event. The override redirect 
member of the Reparent Event structure returned by this event is set to 
the window's corresponding override redirect attribute. 

The override redirect member specifies whether the window manager 
should intercept any map or configuration request for the window. Window 
manager clients normally ignore the Reparent Notify event if the override 
redirect member is set to true. 

If the specified window was originally mapped, the server performs a MAP 
WINDOW request on it. The server performs normal exposure processing 
on formerly obscured windows. The server might not generate exposure 
events for regions from the initial UNMAP WINDOW request that are 
immediately obscured by the final MAP WINDOW request. 



XERRORS 
VAX 

X$C_BAD_MATCH 

Window and Session Manager Routines 
REPARENT WINDOW 

MITC 

Bad Match 

Description 

Possible causes are as follows: 

In a graphics request, the root and depth 
of the graphics context do not match 
those of the drawable. 
An input-only window is used as a 
drawable. 

One argument or pair of arguments has 
the correct type and range but fails to 
match in some other way required by 
the request. 

An input-only window lacks this attribute. 

X$C_BAD_WINDOW BadWindow A value that you specified for a window 
argument does not name a defined window. 

10-127 



Window and Session Manager Routines 
RESET SCREEN SAVER 

RESET SCREEN SAVER 

Resets the screen saver. 

VAX FORMAT X$RESET_SCREEN_SAVER (display) 

argument 
information 

Argument 

display 

Usage Data Type 

identifier uns longword 

MIT C FORMAT XResetScreenSaver (display) 

argument 
information 

ARGUMENTS 

XResetScreenSaver(display) 
Display *display; 

display 

Access 

read 

Mechanism 

reference 

The display information originally returned by OPEN DISPLAY. 

DESCRIPTION 

10-128 

RESET SCREEN SAVER resets the screen saver as if device input had 
been received. The timeout period is started over. 

See the SET SCREEN SAVER routine. 



Window and Session Manager Routines 
SET ACCESS CONTROL 

SET ACCESS CONTROL 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Changes the access control mode of a display to enable or disable. 

X$SET_ACCESS_CONTROL 
(display, access_mode) 

Argument Usage Data Type 

display identifier uns longword 

access_mode longword longword 

XSetAccessControl 
(display, access_mode) 

XSetAccessControl(display, access_mode) 
Display *display; 
int access_mode; 

display 

Access Mechanism 

read reference 

read reference 

The display information originally returned by OPEN DISPLAY. 

access mode 
Whether you want to change the access control mode. The predefined 
values for access_mode are as follows: 

VAX 

X$C_ENABLE_ACCESS 

X$C _DISABLE_ACCESS 

MITC 

EnableAccess 

DisableAccess 

Description 

Enables access control for the 
display. 

Disables access control for 
the display. 

DESCRIPTION SET ACCESS CONTROL either enables or disables the use of the access 
control list at connection setups. For this routine to execute successfully, 
the client must reside on the same host as the server. 

10-129 



Window and Session Manager Routines 
SET ACCESS CONTROL 

XERRORS 
VAX MIT C 

X$C_BAD_ACCESS BadAccess 

X$C_BAD_ALLOC BadAlloc 

10-130 

Description 

Possible causes are as follows: 

An attempt to grab a key/button 
combination that has already been 
grabbed by another client 

An attempt to free a color map entry that 
was not allocated by the client 

An attempt to store in a read-only or 
unallocated color map entry 

An attempt to modify the access control 
list from other than the local host 

An attempt to select an event type that 
at most one client can select at a time, 
when another client has already selected 
it 

The server did not allocate the requested 
resource for any cause. 



Window and Session Manager Routines 
SET CLOSE DOWN MODE 

SET CLOSE DOWN MODE 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Defines what happens to a client's resources when the client disconnects. 

X$SET _ CLOSE_DOWN_MODE 
(display, close_mode) 

Argument Usage 

display identifier 

close_mode longword 

XSetCloseDownMode 
(display, close_mode) 

Data Type 

uns longword 

longword 

XSetCloseDownMode(display, close_mode) 
Display *display; 
int close_mode; 

display 

Access Mechanism 

read reference 

read reference 

The display information originally returned by OPEN DISPLAY. 

close mode 
The close-down mode for the client's resources. The predefined values for 
close_mode are as follows: 

VAX MITC Description 

X$C_DESTROY _ALL Destroy All All client resources are freed. 

X$C_RETAIN_ Retain Permanent All client resources are marked as 
PERMANENT permanent. 

X$C_RETAIN_ Retain Temporary All client resources are marked as 
TEMPORARY temporary. 

DESCRIPTION SET CLOSE DOWN MODE defines what happens to a client's resources 
when the client disconnects from the server. The default mode is Destroy 
All, which frees all client resources. See the CLOSE DISPLAY routine for 
more information about close-down modes. 

10-131 



Window and Session Manager Routines 
SET CLOSE DOWN MODE 

XERRORS 
VAX MIT C 

X$C_BAD_ VALUE BadValue 

10-132 

Description 

Some numeric values fall outside the range of 
values accepted by the request. Unless you 
specify a specific range for an argument, the 
full range defined by the argument's type is 
accepted. Any argument defined as a set of 
alternatives can generate this error. 



Window and Session Manager Routines 
SET INPUT FOCUS 

SET INPUT FOCUS 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Changes the input focus to the specified window. 

X$SET _INPUT _FOCUS 
(display, focus_id, revert_to, time) 

Argument Usage Data Type Access 

display identifier uns longword read 

focus_id identifier uns longword read 

revert_to longword longword read 

time longword uns longword read 

XSetlnputFocus 
(display, focus_id, revert_to, time) 

XSetinputFocus(display, focus_id, revert_to, time) 
Display *display; 
Window focus_id; 
int revert_to; 
Time time; 

display 

Mechanism 

reference 

reference 

reference 

reference 

The display information originally returned by OPEN DISPLAY. 

focus id 
The window identifier of the window in which you want to set the input 
focus. 

The identifier of the window was originally returned by CREATE SIMPLE 
WINDOW or CREATE WINDOW. When the window identifier is specified, 
that window becomes the keyboard's focus window. When keyboard events 
are normally reported to this window (or its inferiors), the events continue 
to be reported. Otherwise, the event is reported with respect to the focus 
window. 

One of the following predefined values can be specified instead of the 
window identifier: 

10-133 



Window and Session Manager Routines 
SET INPUT FOCUS 

DESCRIPTION 

10-134 

VAX 

X$C_POINTER_ 
ROOT 

X$C_NONE 

revert to 

MITC 

PointerRoot 

None 

Description 

The focus window is the root window of 
the screen that the pointer is on at each 
keyboard event. The revert_to argument is 
not taken into account. 

All keyboard events are discarded until a new 
focus window is set. The window specified in 
revert_to is not taken into account. 

Where the input focus moves to when the focus window becomes 
unviewable. 

One of the following predefined values can be specified: 

VAX 

X$C_REVERT_ 
TO_PARENT 

X$C_REVERT_ 
TO_POINTER_ 
ROOT 

X$C_REVERT_ 
TO_NONE 

time 

MITC 

Revert To Parent 

RevertToPointerRoot 

Revert To None 

Description 

The input focus is changed to the 
parent window, or the closest viewable 
ancestor, and the new revert_to value is 
taken to be Revert To None. 

The input focus reverts to Pointer Root. 
When the focus reverts, the server 
generates Focus In and Focus Out 
events, but the last-focus-change time is 
not affected. 

The input focus reverts to None. When 
the focus reverts, the server generates 
Focus In and Focus Out events, but the 
last-focus-change time is not affected. 

The time when the events are to be released. Either a timestamp, 
in milliseconds, or the predefined value X$C_CURRENT_TIME or 
CurrentTime can be specified. 

SET INPUT FOCUS changes the input focus and the last-focus-change 
time. The specified window must be viewable when SET INPUT FOCUS 
is called or a Bad Match error is generated. If the window specified (in 
focus_id) later becomes unviewable, the routine determines a new focus 
window according to the revert_to argument. 

The routine generates Focus In and Focus Out events. 

If the time specified in time is earlier than the current last-focus-change 
time, or if it is later than the current server time, the input focus does not 
change. 

Use the GET INPUT FOCUS routine to obtain the values specified in 
focus_id and revert_to. 



XERRORS 
VAX 

X$C_BAD_MATCH 

Window and Session Manager Routines 
SET INPUT FOCUS 

MITC 

Bad Match 

Description 

Possible causes are as follows: 

In a graphics request, the root and depth 
of the graphics context do not match 
those of the drawable. 
An input-only window is used as a 
drawable. 
One argument or pair of arguments has 
the correct type and range but fails to 
match in some other way required by 
the request. 

An input-only window lacks this attribute. 

X$C_BAD_ VALUE BadValue Some numeric values fall outside the range 
of values accepted by the request. Unless 
you specify a specific range for an argument, 
the full range defined by the argument's type 
is accepted. Any argument defined as a set 
of alternatives can generate this error. 

X$C_BAD_WINDOW BadWindow A value that you specified for a window 
argument does not name a defined window. 

10-135 



Window and Session Manager Routines 
SET MODIFIER MAPPING 

SET MODIFIER MAPPING 

Specifies the key codes for the modifier keys. 

VAX FORMAT status_return = X$SET_MODIFIER_MAPPING 
(display, modifier_keys) 

argument 
information 

Argument Usage Data Type Access Mechanism 

status_return cond_value uns longword write value 

display identifier uns longword read reference 

modifier _keys record x$modifier_keymap read reference 

MIT C FORMAT status_return = XSetModifierMapping 
(display, modifier_keys) 

argument 
information 

RETURNS 

10-136 

int XSetModifierMapping(display, modifier_keys) 
Display *display; 
XModifierKeymap *modifier_keys; 

status return 
A server can impose restrictions on how modifiers can be changed. If 
such a restriction is violated, SET MODIFIER MAPPING returns a status 
message. SET MODIFIER MAPPING returns the following status: 

VAX MIT C Description 

X$C_MAPPING_ MappingSuccess The routine completed successfully. 
SUCCESS 

X$C_MAPPING_ Mapping Failed None of the modifiers is changed. 
FAILED 

X$C_MAPPING_ MappingBusy New key codes specified for a modifier differ 
BUSY from those currently defined and any (current 

or new) keys for that modifier are in the 
logically down state. None of the modifiers is 
changed. 



ARGUMENTS 

DESCRIPTION 

XERRORS 

display 

Window and Session Manager Routines 
SET MODIFIER MAPPING 

The display information originally returned by OPEN DISPLAY. 

modifier_ keys 
A pointer to the modifier key map data structure. 

SET MODIFIER MAPPING specifies the key codes of the keys, if any, that 
are to be used as modifiers. Up to eight modifier keys are allowed; if more 
that eight are specified in the modifier key map data structure, a Bad 
Length error is generated. 

There are eight modifiers, and the modifier map member of the modifier 
key map data structure contains eight sets of maximum key-per-modifier 
key codes, one for each modifier in the order shift, lock, control, modl, 
mod2, mod3, mod4, and mod5. Only nonzero key codes have meaning in 
each set. 

Nonzero key codes must be in the range specified by minimum key code 
and maximum key code in the display structure or else a Bad Value error 
is generated. No key code may appear twice in the entire map, or else a 
Bad Value error is generated. 

See the GET MODIFIER MAPPING routine. 

VAX MITC 

X$C _BAD _ALLOC BadAlloc 

X$C_BAD_VALUE BadValue 

Description 

The server failed to allocate the requested 
resource for any cause. 

Some numeric values fall outside the range of 
values accepted by the request. Unless you 
specify a specific range for an argument, the 
full range defined by the argument's type is 
accepted. Any argument defined as a set of 
alternatives can generate this error. 

10-137 



Window and Session Manager Routines 
SET POINTER MAPPING 

SET POINTER MAPPING 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

10-138 

Enables or disables buttons for the pointer. 

status_return = X$SET_POINTER_MAPPING 
(display, pointer_map, num_maps) 

Argument Usage Data Type Access 

status_return cond_value uns longword write 

display identifier uns longword read 

pointer_map array byte read 

num_maps word uns word read 

status_return = XSetPointerMapping 
(display, pointer_map, num_maps) 

Mechanism 

value 

reference 

reference 

reference 

int XSetPointerMapping(display, pointer_map, num_maps) 
Display *display; 
unsigned char pointer_map[]; 
int num_maps; 

status return 
Whether the routine completed successfully. SET POINTER MAPPING 
returns one of the following status messages: 

VAX MIT C Description 

X$C_MAPPING_ MappingSuccess The mapping list is successfully defined. 
SUCCESS 

X$C_MAPPING_ MappingBusy One of the buttons to be altered is in the 
BUSY logically down state. The mapping list is not 

changed. 

X$C_MAPPING_ MappingFailed The mapping list is not changed. 
FAILED 



ARGUMENTS 

DESCRIPTION 

XERRORS 

display 

Window and Session Manager Routines 
SET POINTER MAPPING 

The display information originally returned by OPEN DISPLAY. 

pointer_map 
A pointer to an array of elements that define the mapping list. The array 
is indexed, starting from one. The index is a "core" button number. An 
empty element disables its corresponding button. No two elements can 
have the same nonzero value. The length of the array is specified by 
num_maps. 

num_maps 
The number of items in the mapping list. Each item corresponds to 
a physical button. The value must match that returned by the GET 

L POINTER MAPPING routine. This value specifies the length of the array 
in pointer_map. 

SET POINTER MAPPING defines the mapping list for the pointer. Each 
item in the mapping list corresponds to a physical button. When one of 
the items has an empty value, the corresponding button is disabled. 

Use GET POINTER MAPPING to obtain the mapping list once it is 
defined. 

VAX MITC 

X$C_BAD_VALUE BadValue 

Description 

Some numeric values fall outside the range 
of values accepted by the request. Unless 
you specify a specific range for an argument, 
the full range defined by the argument's type 
is accepted. Any argument defined as a set 
of alternatives can generate this error. 

10-139 



Window and Session Manager Routines 
SET SCREEN SAVER 

SET SCREEN SAVER 

Sets the following values for screen saving: the timeout period, the interval, 
whether to blank screen, and whether to allow exposures. 

VAX FORMAT X$SET_SCREEN_SAVER 

argument 
information 

(display, timeout, interval, prefer_blanking, 
allow_exposures) 

Argument Usage Data Type Access 

display identifier uns longword read 

timeout longword longword read 

interval longword longword read 

prefer_ blanking longword longword read 

allow_exposures longword longword read 

Mechanism 

reference 

reference 

reference 

reference 

reference 

MIT C FORMAT XSetScreenSaver 

argument 
information 

ARGUMENTS 

10-140 

(display, timeout, interval, prefer_blanking, 
allow_exposures) 

XSetScreenSaver(display, timeout, interval, prefer_blanking, 
allow_exposures) 

Display *display; 
int timeout, interval; 
int prefer_blanking; 
int allow_exposures; 

display 
The display information originally returned by OPEN DISPLAY. 

timeout 
The time, in seconds, that the screen saver waits before being invoked. 
The time represents the number of seconds when no input from the 
keyboard or pointing device is received. A value of -1 restores the default 
value. If timeout is nonzero, the screen saver is enabled. 

interval 
The time, in seconds, from one screen saver invocation to the next. A 
value of 0 indicates that no periodic change is made. 



DESCRIPTION 

Window and Session Manager Routines 
SET SCREEN SAVER 

prefer_blanking 
The mode for whether to blank the screen during a screen save operation. 
The predefined values for prefer_blanking are as follows: 

VAX 

X$C_DONT_ 
PREFER_ 
BLANKING 

X$C_PREFER_ 
BLANKING 

X$C_DEFAULT_ 
BLANKING 

MIT C Description 

DontPreferBlanking Do not blank the screen. If exposures are 
allowed, or if the screen can be regenerated 
without sending exposure events to clients, 
the screen is tiled with the root window 
background tile. If exposures are not allowed 
or the exposure events are sent to clients, 
then the screen does not change. 

PreferBlanking Blank the screen. This can be used only if 
the hardware supports video blanking. 

DefaultBlanking Use the default. 

Other values specified in this argument are not valid. 

allow_ exposures 
The screen saver control values. The predefined values for allow_ 
exposures are as follows: 

VAX MITC Description 

X$C_DONT _ALLOW_ DontAllowExposures Exposures are not allowed. 
EXPOSURES 

X$C_ALLOW_ Allow Exposures Exposures are allowed. 
EXPOSURES 

X$C_DEFAULT_ Default Exposures Use the default value. 
EXPOSURES 

Other values specified in this argument are not valid. 

SET SCREEN SAVER specifies how the screen saver should work. You set 
the following values: 

• The time that elapses from the last device input before the screen 
saver is invoked (timeout) 

• The time between invocations of the screen saver (interval) 

If the server-dependent screen saver method supports periodic change, 
interval serves as an indication as to how long the change period 
should be. Zero indicates that no periodic change should be made. 

• Whether to blank the screen (prefer_blanking) 

For each screen, if blanking is preferred and the hardware supports 
video blanking, the screen becomes blank. Otherwise, either if 
exposures are allowed or if the screen can be regenerated without 
sending exposure events to the clients, the screen is tiled with the root 
window background tile randomly re-originated at interval minutes. 

10-141 



Window and Session Manager Routines 
SET SCREEN SAVER 

XERRORS 

10-142 

Otherwise, the state of the screen does not change and the screen 
saver is not activated. 

• Whether to allow exposures (allow _exposures) 

All screen states are restored at the next input from a device or at the 
next call to FORCE SCREEN SAVER with a mode of Screen Saver Reset. 
Examples of ways to change the screen include scrambling the color map 
periodically, moving an icon image around the screen periodically, or tiling 
the screen with the root window background tile. 

See the RESET SCREEN SAVER routine. 

VAX MITC 

X$C_BAD_VALUE BadValue 

Description 

Some numeric values fall outside the range 
of values accepted by the request. Unless 
you specify a specific range for an argument, 
the full range defined by the argument's type 
is accepted. Any argument defined as a set 
of alternatives can generate this error. 



Window and Session Manager Routines 
STRING TO KEVSVM 

STRING TO KEYSYM 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

ARGUMENTS 

DESCRIPTION 

Converts the name of the key symbol to the name of the key symbol code. 

keysym_return = X$STRING_ TO _KEVSVM 
(keysym_name) 

Argument Usage Data Type 

keysym _return identifier uns longword 

keysym_name char string character string 

keysym_return = XStringToKeysym 
(keysym_name) 

KeySym XStringToKeysym(keysym_name) 
char *keysym_name; 

keysym_return 

Access 

write 

read 

Mechanism 

value 

descriptor 

The key symbol code for the key symbol name that you specify. 

keysym_name 
The name of the key symbol that is to be converted. 

STRING TO KEYSYM converts the name of the key symbol 
to the key-symbol code. Valid key-symbol names are listed in 
SYS$LIBRARY:DECW$XLIBDEF and DECW$INCLUDE:KEYSYMDEF.H. 
If the specified string does not match a valid key symbol, STRING returns 
X$C_NO_SYMBOL or NoSymbol. 

10-143 



Window and Session Manager Routines 
UNGRAB BUTTON 

UNGRAB BUTTON 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

10-144 

Deactivates the passive grab for a pointing device button press. 

X$UNGRAB_BUTTON 
(display, button, modifiers, window_id) 

Argument Usage Data Type Access 

display identifier uns longword read 

button longword longword read 

modifiers mask_longword uns longword read 

window_id identifier uns longword read 

XUngrabButton 
(display, button, modifiers, window_id) 

XUngrabButton(display, button, modifiers, window_id) 
Display *display; 
unsigned int button; 
unsigned int modifiers; 
Window window_id; 

display 

Mechanism 

reference 

reference 

reference 

reference 

The display information originally returned by OPEN DISPLAY 

button 
The button on the pointing device that is no longer grabbed. The possible 
values are as follows: 

VAX Predefined Value 

X$C_BUTTON1 

X$C_BUTTON2 

X$C_BUTTON3 

X$C_BUTTON4 

X$C_BUTTON5 

X$C_ANY _BUTTON 

MIT C Predefined Value 

Button1 

Button2 

Button3 

Button4 

Buttons 

Any Button 

The predefined value X$C_ANY_BUTTON or AnyButton can be specified 
to allow any pointer button to be released. 



DESCRIPTION 

XERRORS 

Window and Session Manager Routines 
UNGRAB BUTTON 

modifiers 
A bit mask that specifies the set of key masks associated with the button 
grab. This mask is the inclusive OR of these key mask bits: 

Bit VAX Predefined Value MIT C Predefined Value 

X$M_SHIFT ShiftMask 

2 X$M_CAPS_LOCK LockMask 

3 X$M_CONTROL Control Mask 

4 X$M_MOD1 Mod1Mask 

5 X$M_MOD2 Mod2Mask 

6 X$M_MOD3 Mod3Mask 

7 X$M_MOD4 Mod4Mask 

8 X$M_MOD5 Mod5Mask 

Clients can also pass the X$_ANY_MODIFIER or AnyModifier constants, 
which is equivalent to issuing the ungrab request for all possible modifier 
combinations (including the combination of no modifiers). 

window id 
The windo;- associated with the button to be ungrabbed. The window 
identifier was originally returned by CREATE SIMPLE WINDOW or 
CREATE WINDOW. 

UNGRAB BUTTON releases a passive grab on a specified pointing device 
button press. This routine does not affect any active grab. 

See the GRAB BUTTON routine. 

VAX MIT C Description 

X$C_BAD_ VALUE BadValue Some numeric values fall outside the range 
of values accepted by the request. Unless 
you specify a specific range for an argument, 
the full range defined by the argument's type 
is accepted. Any argument defined as a set 
of alternatives can generate this error. 

X$C_BAD_WINDOW BadWindow A value that you specified for a window 
argument does not name a defined window. 

10-145 



Window and Session Manager Routines 
UNGRAB KEV 

UNGRAB KEY 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

10-146 

Releases the key combination on the specified window that was grabbed. 

X$UNGRAB_KEY 
(display, keycode, modifiers, window_id) 

Argument Usage Data Type Access 

display identifier uns longword read 

keycode longword longword read 

modifiers mask_longword uns longword read 

window_id identifier uns longword read 

XUngrabKey 
(display, keycode, modifiers, window_id) 

XUngrabKey(display, keycode, modifiers, window_id) 
Display *display; 
int keycode; 
unsigned int modifiers; 
Window window_id; 

display 
The display information originally returned by OPEN DISPLAY. 

keycode 

Mechanism 

reference 

reference 

reference 

reference 

The key code that maps to the specific key to be released. You can pass 
either the key code or predefined value X$C_ANY_KEY or AnyKey, which 
is equivalent to issuing the request for all possible key codes. 

modifiers 
A bit mask that specifies the set of key masks associated with the button 
grab. This mask is the inclusive OR of these key mask bits: 

Bit 

2 

3 

VAX Predefined Value 

X$M_SHIFT 

X$M_CAPS_LOCK 

X$M_CONTROL 

MIT C Predefined Value 

ShiftMask 

LockMask 

Control Mask 



DESCRIPTION 

XERRORS 

Window and Session Manager Routines 
UNGRAB KEV 

Bit VAX Predefined Value MIT C Predefined Value 

4 X$M_MOD1 Mod1Mask 

5 X$M_MOD2 Mod2Mask 

6 X$M_MOD3 Mod3Mask 

7 X$M_MOD4 Mod4Mask 

8 X$M_MOD5 Mod5Mask 

Clients can also pass the X$_ANY_MODIFIER or AnyModifier constants, 
which is equivalent to issuing the ungrab request for all possible modifier 
combinations (including the combination of no modifiers). 

window id 
The identifier of the window associated with the keys to be ungrabbed. 
The identifier of the window was originally returned by CREATE SIMPLE 
WINDOW or CREATE WINDOW. 

UNGRAB KEY releases the key combination on the specified window from 
a previous GRAB KEY by the same client. 

See the GRAB KEY routine. 

VAX MIT C Description 

X$C_BAD_VALUE BadValue Some numeric values fall outside the range 
of values accepted by the request. Unless 
you specify a specific range for an argument, 
the full range defined by the argument's type 
is accepted. Any argument defined as a set 
of alternatives can generate this error. 

X$C_BAD_WINDOW BadWindow A value that you specified for a window 
argument does not name a defined window. 

10-147 



Window and Session Manager Routines 
UNGRAB KEYBOARD 

UNGRAB KEYBOARD 

Releases an active grab on the main keyboard and any queued events. 

VAX FORMAT X$UNGRAB_KEYBOARD (display, time) 

argument 
information 

Argument Usage Data Type Access Mechanism 

display identifier uns longword read reference 

time longword uns longword read reference 

MIT C FORMAT XUngrabKeyboard (display, time) 

argument 
information 

ARGUMENTS 

XUngrabKeyboard(display, time) 
Display *display; 
Time time; 

display 
The display information originally returned by OPEN DISPLAY. 

time 
The time when the events are to be released. Either a timestamp, 
in milliseconds, or the predefined value X$C_CURRENT_TIME or 
CurrentTime can be specified. 

MIT Conly 

If the time specified in time is earlier than the last-pointer-grab time, or if 
it is later than the current server time, the keyboard is not released. 

DESCRIPTION UNGRAB KEYBOARD releases an active grab on the main keyboard and 
any queued events from a GRAB KEYBOARD or GRAB KEY request by 
the same client. It generates Focus In and Focus Out events. 

See the GRAB KEYBOARD routine. 

10-148 



Window and Session Manager Routines 
UNGRAB POINTER 

UNGRAB POINTER 

Releases the active grab on the specified pointer and any queued events. 

VAX FORMAT X$UNGRAB_POINTER (display, time) 

argument 
information 

Argument Usage Data Type Access Mechanism 

display identifier uns longword read reference 

time longword uns longword read reference 

MIT C FORMAT XUngrabPointer (display, time) 

argument 
information 

ARGUMENTS 

XUngrabPointer(display, time) 
Display *display; 
Time time; 

display 
The display information originally returned by OPEN DISPLAY. 

time 
The time when the events are to be released. Either a times tamp, 
in milliseconds, or the predefined value X$C_CURRENT_TIME or 
CurrentTime can be specified. 

MIT Conly 

If the time specified in time is earlier than the last-pointer-grab time, or if 
it is later than the current server time, the pointer is not released. 

DESCRIPTION UN GRAB POINTER releases the pointer and any queued events if this 
client has actively grabbed the pointer with a GRAB POINTER, GRAB 
BUTTON or normal button press. It generates Enter Notify and Leave 
Notify events. The server automatically ungrabs the pointer when the 
event window or confine-to window for an active pointer grab is not 
viewable, or if window reconfiguration causes the confine-to window to lie 
completely outside the boundaries of the root window. 

See the GRAB POINTER routine. 

10-149 



Window and Session Manager Routines 
UNGRAB SERVER 

UNGRAB SERVER 

VAX FORMAT 

argument 
information 

Relinquishes exclusive possession of the server associated with the display 
that you specify. 

X$UNGRAB_SERVER (display) 

Argument Usage Data Type Access Mechanism 

display identifier uns longword read reference 

MIT C FORMAT XUnGrabServer (display) 

argument 
information 

ARGUMENTS 

DESCRIPTION 

10-150 

XUngrabServer(display) 
Display *display; 

display 
The display information originally returned by OPEN DISPLAY. 

UNGRAB SERVER relinquishes possession of a server that you grabbed 
in a previous call to GRAB SERVER. A client automatically ungrabs the 
server when it closes its connection to that server. 

See the GRAB SERVER routine. 



Window and Session Manager Routines 
UNINSTALL COLORMAP 

UNINSTALL COLORMAP 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Uninstalls a color map for a screen. 

X$UNINSTALL_ COLORMAP 
(display, colormap_id) 

Argument Usage 

display identifier 

colormap_id identifier 

XUninstallColormap 
(display, colormap_id) 

Data Type 

uns longword 

uns longword 

XUninstallColormap(display, colormap_id) 
Display *display; 
Colormap colormap_id; 

display 

Access Mechanism 

read reference 

read reference 

The display information originally returned by OPEN DISPLAY. 

colormap _id 
The identifier of the color map to be replaced. If you pass a color map 
identifier, and that color map is in the required list, the color map is 
removed from the required list. 

DESCRIPTION UNINSTALL COLORMAP removes the specified color map from the 
required list for the associated screen. As a result, the specified color 
map might be uninstalled, and the server might implicitly install or 
uninstall additional color maps. The color maps that are installed or 
uninstalled are server-dependent, except that the required list must 
remain installed. The identifier of the color map was originally returned 
by CREATE COLORMAP. 

If the specified color map becomes uninstalled, the server generates a 
Colormap Notify event on every window having colormap_id as the color 
map. In addition, for every other color map that is installed or uninstalled 
as a result of calling UNINSTALL COLORMAP, the server generates a 
Colormap Notify event on every window having colormap_id as the color 
map. 

10-151 



Window and Session Manager Routines 
UNINSTALL COLORMAP 

As soon as the replacement color map is installed, the colors are 
immediately displayed on the windows associated with that color map. 

XERRORS 
VAX 

X$C_BAD_COLOR 

10-152 

MITC 

BadColor 

Description 

A value that you specified for a color map 
argument does not name a defined color map. 



Window and Session Manager Routines 
WARP POINTER 

WARP POINTER 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Moves the pointer to any specified location on the screen. 

X$WARP _POINTER 
(display, src_window_id, dst_window_id, src_x_coord, 
src_y_coord, src_width, src_height, dst_x_coord, 
dst_y_coord) 

Argument Usage Data Type Access Mechanism 

display identifier uns longword read reference 

src_window_id identifier uns longword read reference 

dst_window_id identifier uns longword read reference 

src_x_coord longword longword read reference 

src_y_coord longword longword read reference 

src_width longword uns longword read reference 

src_height longword uns longword read reference 

dst_x_coord longword longword read reference 

dst_y_coord longword longword read reference 

XWarpPointer 
(display, src_window_id, dst_window_id, src_x_coord, 
src_y_coord, src_width, src_height, dst_x_coord, 
dst_y_coord) 

XWarpPointer(display, src_window_id, dest_window_id, src_x_coord, 
src_y_coord, src_width, src_height, dst_x_coord, 
dst _y _coo rd) 

Display *display; 
Window src_window_id, dest_window_id; 
int src x coord, src y coord; 
unsigned int src_width~ src_height; 
int dst_x_coord, dst_y_coord; 

display 
The display information originally returned by OPEN DISPLAY. 

10-153 



Window and Session Manager Routines 
WARP POINTER 

10-154 

src window id - -
The identifier of the window where the pointer is currently located. 
Clients can pass the window identifier or the constant X$C_NONE or 
None. If none is specified, the move is independent of the current pointer 
position. If src_ window _id is a window, the move takes place only if src_ 
window _id contains the pointer, and the pointer is currently contained in 
the specified rectangle of the source window. 

The identifiers of the windows were originally returned by CREATE 
SIMPLE WINDOW or WINDOW. 

dst_window_id 
The identifier of the window where the pointer will be located. Clients 
can pass the window identifier or the constant X$C_NONE or None. If 
a window identifier is specified, WARP POINTER moves the pointer to 
dst_x_coord and dst_y _coord relative to the origin of dst_ window _id. 

If none is specified, the pointer is moved by offsets specified by dst_x_ 
coord and dst_y _coord relative to the current position of the pointer. 

The identifiers of the windows were originally returned by CREATE 
SIMPLE WINDOW or WINDOW. 

src_x_coord 
The x-coordinate within the source window. The source x- and y
coordinates define the current location of the pointer and are relative 
to the origin of src_ window _id. 

src_y_coord 
They-coordinate within the source window. The source x- and y
coordinates define the current location of the pointer and are relative 
to the origin of src_ window _id. 

src width 
The width of a rectangle in the source window. The width and height 
define the area of the source window. If src_width is zero, WARP 
POINTER replaces it with the current width of the source window, minus 
src_x_coord. 

src_height 
The height of a rectangle in the source window. The width and height 
define the area of the source window. If src_height is zero, WARP 
POINTER replaces it with the current height of the source window, minus 
src_y _coord. 

dst_x_coord 
The x-coordinate within the destination window. The destination x- and 
y-coordinates define the new location of the pointer. 

dst_y_coord 
The y-coordinate within the destination window. The destination x- and 
y-coordinates define the new location of the pointer. 



DESCRIPTION 

XERRORS 

Window and Session Manager Routines 
WARP POINTER 

WARP POINTER moves the pointer to any location on the screen. This 
task is usually done with the mouse or other pointing device and there is 
seldom any need to call this routine. However, if pointer motion must be 
done with this routine, the same events are generated as if the pointer had 
been physically moved. 

Note that you cannot use WARP POINTER to move the pointer outside the 
confine_to window of an active pointer grab; an attempt to do so moves the 
pointer only as far as the closest edge of the confine_ to window. 

VAX MIT C Description 

X$C_BAD_WINDOW BadWindow A value that you specified for a window 
argument does not name a defined window. 

10-155 





11 Pixmap and Bitmap Routines 

The pixmap and bitmap routines allow you to create and work with 
off screen images. The format of the file name by which a bitmap is read or 
written is operating system specific. The format of the bitmap itself is as 
follows: 

#define name width width 
#define name_height height 
#define name x hot x 
#define name_y_hot y 
static char name_bits[]={ OxNN, ... } 

Note: If you are using a language other than C, your program must 
translate the bitmap format into something that it can interpret. 

Variables ending with the suffixes x_hot and y_hot are optional and are 
present only if a hotspot is defined for the bitmap. The other variables are 
required. The bit array must be large enough to contain the bitmap. The 
bitmap unit is 8. (Refer to the description of the image data structure in 
the VMS DECwindows Xlib Programming Volume for more information 
about the bitmap_unit member.) The bitmap file name is derived by 
deleting the path and file extension from the file name that you specify. 

For information on how to use the pixmap routines, see the VMS 
DECwindows Xlib Programming Volume. 

The routines described in this chapter are listed in Table 11-1. 

Table 11-1 Pixmap and Bitmap Routines 

Routine Name Description 

CREATE BITMAP FROM DATA 

CREATE PIXMAP 

CREATE PIXMAP FROM BITMAP 
DATA 

FREE PIXMAP 

READ BITMAP FILE 

WRITE BITMAP FILE 

Includes a bitmap written by WRITE BITMAP 
FILE. 

Creates a pixmap of a given size. 

Creates a pixmap and then calls PUT IMAGE 
to format the bitmap data. 

Frees pixmap storage. 

Reads a file that contains a bitmap into 
separate in-memory components. 

Writes an existing bitmap to a file. 

11.1 Pixmap and Bitmap Routines 
The following pages describe the Xlib pixmap and bitmap routines. 

11-1 



Pixmap Routines 
CREATE BITMAP FROM DATA 

CREATE BITMAP FROM DATA 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

ARGUMENTS 

11-2 

Includes a bitmap written by the WRITE BITMAP FILE routine. 

pixmap_id_return = X$CREATE_BITMAP _FROM_DATA 
(display, drawable_id, data, width, height) 

Argument Usage Data Type Access Mechanism 

pixmap_id_return identifier uns longword write value 

display identifier uns longword read reference 

drawable_id identifier uns longword read reference 

data array byte read reference 

width longword uns longword read reference 

height longword uns longword read reference 

pixmap_id_return = XCreateBitmapFromData 
(display, drawable_id, data, width, height) 

Pixmap XCreateBitmapFromData(display, drawable_id, data, width, 
height) 

Display *display; 
Drawable drawable_id; 
char *data; 
unsigned int width, height; 

pixmap_id_return 
The identifier of the pixmap that CREATE BITMAP FROM DATA returns. 

display 
The display information originally returned by OPEN DISPLAY. 

drawable id 
The identifier of the drawable. This is used to determine the screen for 
which to create the bitmap. 

data 
The data from which to create the bitmap. 



width 

Pixmap Routines 
CREATE BITMAP FROM DATA 

The width of the bitmap to be created. 

height 
The height of the bitmap to be created. 

DESCRIPTION CREATE BITMAP FROM DATA creates a bitmap file from data written by 
WRITE BITMAP FILE, or from data that you produced yourself in the Xll 
bitmap format. For example, the following MIT C binding example shows 
how to get a gray bitmap: 

XERRORS 

#include "gray.bitmap" 

Pixmap XCreateBitrnapFromData(display, window, gray_bits, 
gray_width, gray_height); 

CREATE BITMAP FROM DATA should be used to create bitmaps for 
specifying stipple patterns, clipping regions, cursor shades, and icon 
shapes. 

If insufficient working storage was allocated, CREATE BITMAP FROM 
DATA returns a null value. Clients must free the bitmap by using FREE 
PIXMAP when done. 

VAX MITC 

X$C _BAD _ALLOC BadAlloc 

Description 

The server did not allocate the requested 
resource for any cause. 

11-3 



Pixmap Routines 
CREATE PIXMAP 

CREATE PIXMAP 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

ARGUMENTS 

11-4 

Creates a pixmap of a given size. 

pixmap_id_return = X$CREATE_PIXMAP 
(display, drawable_id, width, height, depth) 

Argument Usage Data Type Access 

pixmap_id_return identifier uns longword write 

display identifier uns longword read 

drawable_id identifier uns longword read 

width longword uns longword read 

height longword uns longword read 

depth longword longword read 

pixmap_id_return = XCreatePixmap 
(display, drawable_id, width, height, depth) 

Mechanism 

value 

reference 

reference 

reference 

reference 

reference 

Pixmap XCreatePixmap(display, drawable_id, width, height, depth) 
Display *display; 
Drawable drawable_id; 
unsigned int width, height; 
unsigned int depth; 

pixmap_id_return 
The identifier of the pixmap created. This identifier is used to manipulate 
the pixmap in subsequent routines. 

display 
The display information originally returned by OPEN DISPLAY. 

drawable id 
The identifier of the drawable on which the new pixmap is created. The 
drawable can be an input-only window. 

width 
The width, in pixels, of the pixmap. This must be a positive value. The 
width and height define the two-dimensional size of the pixmap. 



DESCRIPTION 

XERRORS 

height 

Pixmap Routines 
CREATE PIXMAP 

The height, in pixels, of the pixmap. This must be a positive value. The 
width and height define the two-dimensional size of the pixmap. 

depth 
The depth of the pixmap. The depth must be supported by the root of the 
drawable, specified by drawable_id. A pixmap of depth 1 is a bitmap. 

CREATE PIXMAP creates a pixmap of the width, height, and depth that 
you specify and assigns a pixmap identifier to it. It is valid to pass a 
window whose class is input only to the drawable argument. The width 
and height arguments must be nonzero. Otherwise, a Bad Value error is 
generated. The depth argument must be one of the depths supported by 
the screen of the specified drawable or a Bad Value error is generated. 

The server uses the identifier specified in drawable_id to determine the 
screen on which to store the new pixmap. The new pixmap can be used 
only on this screen and only with other drawables of the same depth. 
(See the COPY PLANE routine for an exception to this rule.) The initial 
contents of the pixmap are undefined. 

VAX MIT C 

X$C_BAD_ALLOC BadAlloc 

X$C_BAD_DRAWABLE BadDrawable 

X$C_BAD_ VALUE BadValue 

Description 

The server did not allocate the requested 
resource for any cause. 

A value that you specified for a drawable 
argument does not name a defined 
window or pixmap. 

Some numeric values fall outside the 
range of values accepted by the request. 
Unless a specific range is specified for 
an argument, the full range defined by 
the argument's type is accepted. Any 
argument defined as a set of alternatives 
can generate this error. 

11-5 



Pixmap Routines 
CREATE PIXMAP FROM BITMAP DATA 

CREATE PIXMAP FROM BITMAP DATA 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

11-6 

Creates a pixmap of the specified depth and then calls PUT IMAGE to format 
the bitmap data into the pixmap. 

pixmap_id_return = 
X$CREATE_PIX_FROM_BITMAP _DATA 

(display, drawable_id, data, width, height, foreground, 
background, depth) 

Argument Usage Data Type 

pixmap_id_return identifier uns longword 

display identifier uns longword 

drawable_id identifier uns longword 

data array byte 

width longword uns longword 

height longword uns longword 

foreground longword uns longword 

background longword uns longword 

depth longword longword 

pixmap_id_return = 
XCreatePixmapFromBitmapData 

Access Mechanism 

write value 

read reference 

read reference 

read reference 

read reference 

read reference 

read reference 

read reference 

read reference 

(display, drawable_id, data, width, height, foreground, 
background, depth) 

Pixmap XCreatePixmapFromBitmapData(display, drawable_id, 
data, width, height, 
foreground, background, 
depth) 

Display *display; 
Drawable drawable_id; 
char *data 
unsigned int width, height; 
unsigned long foreground, background 
unsigned int depth; 



RETURNS 

ARGUMENTS 

pixmap_id_return 

Pixmap Routines 
CREATE PIXMAP FROM BITMAP DATA 

The identifier of the pixmap created. This identifier is used to manipulate 
the pixmap in subsequent routines. 

display 
The display information originally returned by OPEN DISPLAY. 

drawable id 
The identifie;_:-of the drawable for which the new pixmap is created. 

data 
Specifies the data in bitmap format. 

width 
The width, in pixels, of the pixmap. The width and height define the 
two-dimensional size of the pixmap. 

height 
The height, in pixels, of the pixmap. The width and height define the 
two-dimensional size of the pixmap. 

foreground 
The foreground pixel values to use. 

background 
The background pixel values to use. 

depth 
The depth of the pixmap. The depth must be supported by the root of the 
drawable, specified by drawable_id. A pixmap of depth 1 is a bitmap. 

DESCRIPTION CREATE PIXMAP FROM BITMAP DATA creates a pixmap of the given 
depth and then calls PUT IMAGE to format the bitmap data into the 
pixmap. CREATE PIXMAP FROM BITMAP DATA should be used to 
create pixmaps for tiles and images in bitmap format. 

Note that in the VAX binding the name of this routine has been shortened 
to stay within the 32 character limit. 

11-7 



Pixmap Routines 
FREE PIXMAP 

FREE PIXMAP 

Dissociates the pixmap storage as well as the identifier. 

VAX FORMAT X$FREE_PIXMAP (display, pixmap_id) 

argument 
information 

Argument Usage Data Type Access 

display identifier uns longword read 

pixmap_id identifier uns longword read 

MIT C FORMAT XFreePixmap (display, pixmap_id) 

argument 
information 

ARGUMENTS 

XFreePixmap(display, pixmap_id) 
Display *display; 
Pixmap pixmap_id; 

display 

Mechanism 

reference 

reference 

The display information originally returned by OPEN DISPLAY. 

pixmap_id 
The identifier of the pixmap to be freed. 

DESCRIPTION FREE PIXMAP dissociates the identifier from the specified pixmap. The 
server frees the pixmap storage when no other resources reference the 
pixmap. The pixmap should never be referenced again. The identifier 
of the pixmap was originally returned by CREATE PIXMAP, CREATE 
BITMAP FROM DATA or CREATE PIXMAP FROM BITMAP DATA. 

XERRORS 
VAX MIT C 

X$C_BAD_PIXMAP BadPixmap 

11-8 

Description 

A value that you specified for a pixmap 
argument does not name a defined pixmap. 



Pixmap Routines 
READ BITMAP FILE 

READ BITMAP FILE 

Reads a file that contains a bitmap into separate in-memory components. 

VAX FORMAT status_return = X$READ_BITMAP _FILE 

argument 
information 

(display, drawable_id, filename[, width_return] 
[,height_return] [,bitmap_id_return] 
[,x_hot_coord_return] [,y_hot_coord_return]) 

Argument Usage Data Type Access 

status _return cond value uns longword write 

display identifier uns longword read 

drawable_id identifier uns longword read 

filename char string character string read 

width_return longword uns longword write 

height_return longword uns longword write 

bitmap_id_return identifier uns longword write 

x_hot_coord_return longword longword write 

y _hot_coord_return longword longword write 

Mechanism 

value 

reference 

reference 

descriptor 

reference 

reference 

reference 

reference 

reference 

MIT C FORMAT status_return = XReadBitmapFile 

argument 
information 

(display, drawable_id, filename, width_return, 
height_return, bitmap_id_return, x_hot_coord_return, 
y_hot_coord_return) 

int XReadBitmapFile(display, drawable_id, filename, 
width_return, height_return, 
bitmap_id_return, x_hot_coord_return, 
y_hot_coord_return) 

Display *display; 
Drawable drawable_id; 
char *filename; 
unsigned int *width_return, *height_return; 
Pixmap *bitmap_id_return; 
int *x_hot_coord_return, *y_hot_coord_return; 

11-9 



Pixmap Routines 
READ BITMAP FILE 

RETURNS 

ARGUMENTS 

11-10 

status return 
Returns one of the following values to indicate the status: 

VAX 

X$C_BITMAP _SUCCESS 

X$C_BITMAP _OPEN_FAILED 

X$C_BITMAP _FILE_INVALID 

X$C_BITMAP _NO_MEMORY 

display 

c 

BitmapSuccess 

BitmapOpenFailed 

Bitmap File Invalid 

BitmapNoMemory 

Description 

The file is readable and 
valid. 

READ BITMAP FILE 
cannot open the file. 

READ BITMAP FILE 
opens the file but the file 
does not contain valid 
bitmap data. 

There is not enough 
memory to load the 
bitmap file. 

The display information originally returned by OPEN DISPLAY. 

drawable id 
The identifie;:-of the drawable. READ BITMAP FILE uses this argument 
to determine the screen that is being used. 

filename 
The file specification of the bitmap file. The format of the file is dependent 
on the operating system on the client side of the client-server connection. 
VAX binding file names are parsed using RMS$PARSE and logical names, 
search strings, and so on are supported. MIT C binding file names are 
parsed using fopen. The maximum length of a file specification is 255 
bytes. Wildcards are not supported. The default file name is [ Jbitmap.dat. 

VAX only 

The filename argument is the address of a character string descriptor 
that points to the string. 

MIT Conly 

The filename argument is a pointer to a null-terminated character string. 

width return 
The width of the read-in bitmap file. 

VAX only 

The width_return argument is optional in the VAX binding. 



height_ return 
The height of the read-in bitmap file. 

VAX only 

Pixmap Routines 
READ BITMAP FILE 

The height_return argument is optional in the VAX binding. 

bitmap_ id _return 
The bitmap identifier. 

VAX only 

The bitmap_id_return argument is optional in the VAX binding. 

x hot coord return 
The x-coordinate of the hotspot, which is defined as the point in the cursor 
that corresponds to the x- and y-coordinates reported for the pointer, is 
returned. If x_hot_coord_return and y _hot_coord_return are not 
null, READ BITMAP FILE sets x_hot_coord_return and y _hot_coord_ 
return to the value of the hotspot as defined in the file. 

If no hotspot is defined, READ BITMAP FILE sets x_hot_coord_return 
and y_hot_coord_return to (-1, -1). 

VAX only 

The x_hot_coord_return argument is optional in the VAX binding. 

y_hot_coord_return 
The y-coordinate of the hotspot, which is defined as the point in the cursor 
that corresponds to the x- and y-coordinates reported for the pointer, is 
returned. If x_hot_coord_return and y _hot_coord_return are not 
null, READ BITMAP FILE sets x_hot_coord_return and y _hot_coord_ 
return to the value of the hotspot as defined in the file. 

If no hotspot is defined, READ BITMAP FILE sets x_hot_coord_return 
and y_hot_coord_return to (-1, -1). 

VAX only 

The y _hot_coord_return argument is optional in the VAX binding. 

DESCRIPTION READ BITMAP FILE reads in a file that contains a bitmap and assigns 
the bitmap's height, width, and hotspot coordinates, as read from the file, 
to the caller's height and width variables and hotspot coordinates. READ 
BITMAP FILE creates a pixmap of the appropriate size, reads the bitmap 
data from the file into the pixmap, and assigns the pixmap to the caller's 
bitmap variable. READ BITMAP FILE reads files in the format output by 
WRITE BITMAP FILE. 

The caller must free the bitmap by using FREE PIXMAP when done. 

See the WRITE BITMAP FILE routine. 

11-11 



Pixmap Routines 
WRITE BITMAP FILE 

WRITE BITMAP FILE 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

11-12 

Writes an existing bitmap to a file in X11 format. 

status_return = X$WRITE_BITMAP _FILE 
(display, filename, bitmap_id, width, height, 
x_hot_coord, y_hot_coord) 

Argument Usage Data Type Access 

status_return cond value uns longword write 

display identifier uns longword read 

filename char string character string read 

bitmap_id identifier uns longword read 

width longword uns longword read 

height longword uns longword read 

x_hot_coord longword longword read 

y_hot_coord longword longword read 

status_return = XWriteBitmapFile 
(display, filename, bitmap_id, width, height, 
x_hot_coord, y_hot_coord) 

Mechanism 

value 

reference 

descriptor 

reference 

reference 

reference 

reference 

reference 

int XWriteBitmapFile(display, filename, bitmap_id, width, 
height, x_hot_coord, y_hot_coord) 

Display *display; 
char *filename; 
Pixmap bitmap id; 
unsigned int ;idth, height; 
int x_hot_coord, y_hot_coord; 

status 
Returns one of the following values to indicate the status: 

VAX c 

X$C_BITMAP _SUCCESS BitmapSuccess 

Description 

The write operation was 
successful. 



ARGUMENTS 

VAX c 

X$C_BITMAP _OPEN_FAILED BitmapOpen Failed 

X$C_BITMAP _NO_MEMORY BitmapNoMemory 

display 

Pixmap Routines 
WRITE BITMAP FILE 

Description 

WRITE BITMAP FILE 
cannot open the file. 

There is not enough 
memory to load the 
bitmap file. 

The display information originally returned by OPEN DISPLAY. 

filename 
The name of the file in which WRITE BITMAP FILE writes the bitmap. 
The format of the file is dependent on the operating system on the client 
side of the client-server connection. VMS logical names, search strings, 
and so on are supported. The maximum length of a file specification is 255 
bytes. Wildcards are not supported. The default file name is [ ]bitmap.dat. 

VAX only 

The filename argument is the address of a character string descriptor 
that points to the string. 

MIT Conly 

The filename argument is a pointer to a null-terminated character string. 

bitmap_id 
The bitmap that you want to write to a file. 

width 
The width of the bitmap to be written. 

height 
The height of the bitmap to be written. 

x hot coord - -
The x-coordinate at which to place the hotspot, which is defined as the 
point in the cursor that corresponds to the x- and y-coordinates reported 
for the pointer. If x_hot_coord and y_hot_coord are not (-1, -1), WRITE 
BITMAP FILE writes them out as the hotspot coordinates for the bitmap. 

y_hot_coord 
The y-coordinate at which to place the hotspot, which is defined as the 
point in the cursor that corresponds to the x- and y-coordinates reported 
for the pointer. Ifx_hot_coord and y_hot_coord are not (-1, -1), WRITE 
BITMAP FILE writes them out as the hotspot coordinates for the bitmap. 

DESCRIPTION WRITE BITMAP FILE writes out a bitmap to the file that you specify. See 
the READ BITMAP FILE routine. 

11-13 





12 Color Routines 

There are two basic concepts to understand in order to work with color, as 
follows: 

• The type of color device you are working with and its associated color 
map data structure 

• Allocating and defining colors in color maps 

The Xlib color routines perform the following operations: 

• Creating and manipulating color maps 

For most color implementations, the default color map provides 
adequate resources. For unusual implementations, you might consider 
creating and using your own color map. 

• Allocating color definitions from the color map 

• Defining colors 

• Specifying the red, green, and blue values of a specific color 

This chapter covers how to use the color routines to accomplish color tasks. 
For concepts related to color routines and information on how to use color 
routines, see the VMS DECwindows Xlib Programming Volume. 

The routines described in this chapter are listed in Table 12-1. 

Table 12-1 Color Routines 

Routine Name Description 

ALLOC COLOR 

ALLOC COLOR CELLS 

ALLOC COLOR PLANES 

ALLOC NAMED COLOR 

Returns the shareable color index for a given 
color definition. The routine also returns the 
color definition closest to the one specified 
that can be supported by the hardware. 

Allocates reserved color definitions from the 
color map using a pseudocolor model. 

Allocates the specified number of entries and 
planes from the color map for a direct color 
type device. 

Returns the shareable color index for a given 
named color. The routine also returns the 
color definition closest to the one specified 
that can be supported by the hardware. 

(continued on next page) 

12-1 



12.1 

Color Routines 

Table 12-1 (Cont.) Color Routines 

Routine Name 

COPYCOLORMAPANDFREE 

CREATE COLORMAP 

FREE COLORMAP 

FREE COLORS 

GET STANDARD COLORMAP 

GET VISUAL INFO 

LOOKUP COLOR 

MATCH VISUAL INFO 

QUERY COLOR 

QUERY COLORS 

SET STANDARD COLORMAP 

SET WINDOW COLORMAP 

STORE COLOR 

STORE COLORS 

STORE NAMED COLOR 

Description 

Creates a color map with the same allocations 
for a client as exist in the current color map. 
Other color definitions in the new color map 
are undefined. The definitions allocated by the 
client in the current color map are freed. 

Creates a color map and returns a color map 
identifier. The entries in the color map are 
undefined. 

Deletes the specified color map. 

Deallocates the specified color index or plane. 

Obtains a standard color map that may have 
been specified by another client. 

Obtains a list of visual information structures 
that match a specified template. 

Obtains the color values for a specified color 
name. 

Obtains a visual that can be used with a 
specified screen, depth, and class. 

Obtains the red, green, and blue values for the 
specified color index. 

Obtains the red, green, and blue values for 
each color index specified. 

Specifies a standard color map. 

Specifies the current color map for the 
specified window. 

Sets a color map entry, previously allocated, to 
a specified color. 

Sets more than one color n:iap entry, 
previously allocated, to a specified color. 

Sets the specified color map entry to the 
named color. 

Standard Color Map Data Structure 

12-2 

Standard color map routines are provided to allow clients to exchange 
information about color maps. This information is stored in a window 
property, formatted as a standard colormap data structure. 

There are six predefined color map properties. Each property uses the 
predefined property type of RGB_ COLOR_MAP. 

Note that VMS DECwindows software does not currently make use of 
standard color maps. 



Color Routines 
12.1 Standard Color Map Data Structure 

The standard colormap data structure for the VAX binding is shown 
in Figure 12-1, and members of the data structure are described in 
Table 12-2. 

Figure 12-1 Standard Color Map Data Structure {VAX Binding) 

x$1_scmp_colormap 0 

x$1_scmp_red_max 4 

x$1_scmp_red_mult 8 

x$1_scmp_green_max 12 

x$1_scmp_green_mult 16 

x$1_scmp_blue_max 20 

x$1_scmp_blue_mult 24 

x$1_scmp_base_pixel 28 

Table 12-2 Members of the Standard Color Map Data Structure (VAX 
Binding) 

Member Name 

X$L_SCMP _COLORMAP 

X$L_SCMP _RED_MAX, 
X$L_SCMP _GREEN_MAX, 
X$L_SCMP _BLUE_MAX 

X$L_SCMP _RED_MULT, 
X$L_SCMP _GREEN_ 
MULT, X$L_SCMP _BLUE_ 
MULT 

Contents 

A color map identifier returned by CREATE 
COLOR MAP. 

The maximum number of red, green, and blue values 
that are being used. The value actually used can range 
from 0 to the maximum specified in these members and 
is referred to as the coefficient. The coefficient is used 
with the multipliers (red_mult, green_mult, and blue_ 
mult) and base_pixel to compute a full color index. For 
example, on an 8-plane display with 3 planes allocated 
for red, 3 planes for green and 2 planes for blue, red_ 
max is 7, green_max is 7, and blue_max is 3. 

The scale factors used to compose a full color index. 
For example, on an 8-plane display with 3 planes 
allocated for red, 3 planes allocated for green, and 2 
planes allocated for blue, red_mult could be 32, green_ 
mult could be 4, and blue_mult could be 1. 

(continued on next page) 

12-3 



Color Routines 
12.1 Standard Color Map Data Structure 

12-4 

Table 12-2 (Cont.) Members of the Standard Color Map Data Structure 
(VAX Binding) 

Member Name Contents 

X$L_SCMP _BASE_PIXEL The base color index used to compose a full color 
index. The color index is returned by ALLOC COLOR 
PLANES. 

The equation to compute a full color index from the 
coefficients, the scale factors, and the base pixel is as 
follows: 

(red_coefficient * red_mult) 
+ {green_coefficient * green_mult) 
+ (blue_coefficient * blue_mult) 
+ base_pixel 

The standard color map data structure for the MIT C binding is shown 
in Figure 12-2, and members of the data structure are described in 
Table 12-3. 

Figure 12-2 Standard Color Map Data Structure (MIT C Binding) 

typedef struc { 
Colormap colormap; 
unsigned long red_max; 
unsigned long red_mult; 
unsigned long green_max; 
unsigned long green_mult; 
unsigned long blue_max; 
unsigned long blue_mult; 
unsigned long base_pixel; 

}XStandardColormap; 

Table 12-3 Members of the Standard Color Map Data Structure (MIT C 
Binding) 

Member Name Contents 

colormap A color map identifier returned by CREATE 
COLORMAP. 

red_max, green_max, blue_ The maximum number of red, green, and blue values 
max that are being used. The value actually used can range 

from 0 to the maximum specified in these members and 
is referred to as the coefficient. The coefficient is used 
with the multipliers (red_mult, green_mult, and blue_ 
mult) and base_pixel to compute a full color index. For 
example, on an 8-plane display with 3 planes allocated 
for red, 3 planes for green and 2 planes for blue; red_ 
max is 7, green_max is 7, and blue_max is 3. 

(continued on next page) 



12.2 

Color Routines 
12.1 Standard Color Map Data Structure 

Table 12-3 (Cont.) Members of the Standard Color Map Data Structure 
(MIT C Binding) 

Member Name Contents 

red_mult, green_mult, blue_ The scale factors used to compose a full color index. 
mult For example, on an 8-plane display with 3 planes 

allocated for red, 3 planes allocated for green, and 2 
planes allocated for blue; red_mult could be 32, green_ 
mult could be 4, and blue_mult could be 1. 

base_pixel The base color index used to compose a full color 
index. The color index is returned by ALLOC COLOR 
PLANES. 

The equation to compute a full color index from the 
coefficients, the scale factors, and the base pixel is as 
follows: 

Color Definition Data Structure 

(red_coefficient * red_mult) 
+ (green_coefficient * green_mult) 
+ (blue_coefficient * blue_mult) 
+ base_pixel 

The routines use a color definition data structure to specify and receive 
the following information about a color: 

• The color index for the color definition (pixel) 

• The red, green, and blue values 

• A flag that identifies whether to refer to the red, green, or blue values 
(relevant for direct color and true color visual types) 

Use the data structure as follows: 

• When you use a shared color, use the data structure to specify the red, 
green, and blue values you want with the ALLOC COLOR routine. 
This routine returns the color index in the pixel member that points to 
the color definition with the closest color to yours that can be displayed 
on the screen. The flag field is ignored. 

• When you use a reserved color, use STORE COLOR or STORE 
COLORS to specify in the data structure the red, green and blue 
values for the color you want. You also supply the color index that 
was previously returned by ALLOC COLOR CELLS or ALLOC 
COLOR PLANES. You use the flags to specify which part of the 
color specification should actually be changed. 

• When you want to know what color is stored in a particular color 
definition, use QUERY COLOR or QUERY COLORS to specify the 
color index in the pixel member of the data structure. QUERY COLOR 
or QUERY COLORS returns the color values in the red, green, and 
blue members. 

12-5 



Color Routines 
12.2 Color Definition Data Structure 

• When you want to know the color values for a particular color name 
(such as red), use LOOKUP COLOR to specify the color name. 
LOOKUP COLOR returns the color values in the red, green and 
blue members of the data structure. 

The color definition data structure for the VAX binding is shown in 
Figure 12-3, and members of the data structure are described in 
Table 12-4. 

Figure 12-3 Color Definition Data Structure (VAX Binding) 

12-6 

x$1_colr_pixel 0 

x$w_colr_green x$w_colr_red 4 

x$b_colr_pad l x$b_colr_flags x$w_colr_blue 

Table 12-4 Members of the Color Definition Data Structure (VAX 
Binding) 

Member Name 

X$L_ COLR_PIXEL 

X$W_COLR_RED 

X$W_COLR_GREEN 

X$W_COLR_BLUE 

X$B_ COLR_FLAGS 

X$B_COLR_PAD 

Contents 

Defines a pixel value. 

Defines the red value of the pixel.1 

Defines the green value of the pixel. 1 

Defines the blue value of the pixel. 1 

Defines which color members are to be defined in the 
color map. Possible flags are as follows: 

X$M_DO_RED Sets red values 

X$M_DO_GREEN Sets green values 

X$M_DO_BLUE Sets blue values 

Makes the structure an even length. 

8 

1 Color values range from O to 65535. "On full" in a color is a value of 65535, independent of 
the number of planes of the display. Half brightness in a color is a value of 32767; off is a value 
of 0. This representation gives uniform results for color values across displays with different 
color resolution. 

The color definition data structure for the MIT C binding is shown 
in Figure 12-4, and members of the data structure are described in 
Table 12-5. 



12.3 Color Routines 

Color Routines 
12.2 Color Definition Data Structure 

Figure 12-4 Color Definition Data Structure (MIT C Binding) 

typedef struct { 

}XColor; 

unsigned long pixel; 
unsigned short red,green,blue; 
char flags; 
char pad; 

Table 12-5 Members of the Color Definition Data Structure (MIT C 
Binding) 

Member Name 

pixel 

red 

Contents 

Defines a pixel value. 

Specifies the red value of the pixel.1 

Specifies the green value of the pixel. 1 

Specifies the blue value of the pixel.1 

green 

blue 

flags Defines which color members are to be defined in the color map. 
Possible flags are as follows: 

pad 

DoRed Sets red values 

DoGreen 

Do Blue 

Sets green values 

Sets blue values 

Makes the structure an even length. 

1 Color values range from O to 65535. "On full" in a color is a value of 65535, independent of 
the number of planes of the display. Half brightness in a color is a value of 32767; off is a value 
of 0. This representation gives uniform results for color values across displays with different 
color resolution. 

The following pages describe the Xlib color routines. 

12-7 



Color Routines 
ALLOC COLOR 

ALLOC COLOR 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

ARGUMENTS 

12-8 

Returns the shareable color index for a given color definition. The routine also 
returns the color definition closest to the one specified that can be supported 
by the hardware. 

status_return = X$ALLOC_COLOR 
(display, colormap_id, screen_def_return) 

Argument Usage Data Type Access 

status_return longword longword write 

display identifier uns longword read 

colormap_id identifier uns longword read 

screen_def_return record x$color read/write 

status return=XAllocColor 
(display, colormap_id, screen_def_return) 

Mechanism 

value 

reference 

reference 

reference 

Status XAllocColor(display, colormap_id, screen_def_return) 
Display *display; 
Colormap colormap_id; 
XColor *screen_def_return; 

status return 
Specifies whether or not the routine completed successfully. If there was 
a problem, usually because of lack of resources, status_return is zero. If 
the routine was successful, status_return is nonzero. 

display 
The display information originally returned by OPEN DISPLAY. 

colormap_id 
The identifier of the color map where the color definition will be stored. 
The identifier of the color map was originally returned by DEFAULT 
COLORMAP, CREATE COLORMAP, or COPY COLORMAP AND FREE. 

screen def return - -
The color definition data structure that defines the color requested and 
that receives the exact color and the index that were allocated. The red, 
green, and blue color values of the color requested are specified in this 



DESCRIPTION 

XERRORS 

Color Routines 
ALLOC COLOR 

data structure. The color index (pixel value) is returned in the pixel 
member of the data structure. The red, green, and blue values of the 
closest color supported by the hardware are returned in the red, green, 
and blue members. 

The color definition data structure is described in Section 12.2. 

ALLOC COLOR returns the color index in the color definition data 
structure. ALLOC COLOR stores the color definition closest to the one you 
specified that can be supported by the hardware. It stores the definition in 
the specified color map and returns its color index. 

You specify the red, green, and blue values for the color that you want in 
the red, green, and blue members of the color definition data structure. 
The routine returns the red, green, and blue values that are closest to 
those you specified that can be supported by the hardware. The red, 
green, and blue values you specified in the color definition data structure 
are overwritten by the returned values. 

The entry identified by ALLOC COLOR is a read-only shared color 
definition. After you specify the color, you cannot change it. Subsequent 
calls to ALLOC COLOR for the same color by any client will return the 
same pixel value. The color definition is not deallocated until the last 
client using it has deallocated it. 

To allocate an entry for your exclusive use, use ALLOC COLOR CELLS or 
ALLOC COLOR PLANES. 

VAX c 
X$C _BAD _ALLOC BadAlloc 

X$C_BAD_COLOR BadColor 

Description 

The server did not allocate the requested 
resource. 

A value that you specified for a color map 
argument does not name a defined color 
map. 

12-9 



Color Routines 
ALLOC COLOR CELLS 

ALLOC COLOR CELLS 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

12-10 

Allocates reserved color indexes from the color map using a pseudocolor 
model. 

status_return = X$ALLOC_COLOR_CELLS 
(display, colormap_id, contig, plane_masks_return, 
num_planes, pixels_return, num_colors) 

Argument Usage Data Type Access Mechanism 

status_return longword longword write value 

display identifier uns longword read reference 

colormap_id identifier uns longword read reference 

contig Boolean longword read reference 

plane_masks_return array longword write reference 

num_planes longword longword read reference 

pixels_return array longword write reference 

num_colors longword longword read reference 

status return= XAllocColorCells 
(display, colormap_id, contig, plane_masks_return, 
num_planes, pixels_return, num_colors) 

Status XAllocColorCells(display, colormap_id, contig, 
plane_masks_return, num_planes, pixels_return, num_colors) 

Display *display; 
Colormap colormap_id; 
Bool contig; 
unsigned long plane_masks_return[]; 
unsigned int num_planes; 
unsigned long pixels_return[]; 
unsigned int num_colors; 

status return 
Return value that specifies whether or not the routine completed 
successfully. If there was a problem, usually because of lack of server 
resources or of available color cells in the color map, status_return is 
zero. If the routine was successful, status_return is nonzero. 



ARGUMENTS 

DESCRIPTION 

display 

Color Routines 
ALLOC COLOR CELLS 

The display information originally returned by OPEN DISPLAY. 

colormap_id 
The identifier of the color map to allocate entries from. The identifier 
of the color map was originally returned by DEFAULT COLORMAP, 
CREATE COLORMAP, or COPY COLORMAP AND FREE. 

contig 
Specifies whether the bits in the plane mask are contiguous. When true, 
the bits are contiguous. When false, the bits may not be contiguous. 

plane_ masks_ return 
A pointer to an array of plane masks in which each element contains a 
plane mask returned by the routine. The length of the array is specified 
by num_planes. No mask has any bits in common with any other mask, 
or with any of the color indexes. 

num_planes 
The number of planes requested. This value must be nonnegative. Specify 
0 for no planes. The number of planes allocated must be supported by 
the device you are working with. The num_planes argument specifies 
the number of plane masks that is returned in plane_masks_return and 
thereby specifies the length of that array. 

pixels_return 
A pointer to an array of color indexes in which each element is a color 
index, returned by the routine. The color index (pixel value) is an index 
into the color map for the color definition allocated for the program's use. 
The color definition allocated is read/write. The length of the array is 
specified by num_colors. 

num_colors 
The number of color indexes to be set in the color map. This value specifies 
the number of data structures and thereby specifies the length of pixels_ 
return and thereby the length of that array. 

ALLOC COLOR CELLS allocates color indexes and color planes for 
reserved use. Use this routine primarily for pseudocolor type devices, 
or when you want the screen to act like a pseudocolor device. 

The identifier of the color map was originally returned by DEFAULT 
COLORMAP, CREATE COLORMAP, or COPY COLORMAP AND FREE. 

The color definitions allocated are read and write entries. The colors 
are not defined. You can define the colors for these entries with STORE 
COLOR, STORE COLORS, or STORE NAMED COLOR. 

When you allocate both color definitions and planes, you must combine 
the planes and indexes to get actual pixel values. The actual pixel 
values you have allocated can be determined by taking each pixel value 
and combining it with all possible combinations of plane masks. The 
actual number of color definitions allocated can be computed by (num_ 
colors*2num_planes). The bits in the color index do not have any bits in 
common with any of the plane masks or any other color index. 

12-11 



Color Routines 
ALLOC COLOR CELLS 

XERRORS 

12-12 

For example, if you wanted to allocate one color map entry (num_colors 
equals 1) and two planes (num_planes equals 2), the following might be 
returned: 

• Color index= 6 (00110) 

• Plane mask 1 = 8 (01000) 

• Plane mask 2 = 16 (10000) 

The color definitions allocated would be as follows: 

• Index 6 (pixel value) 

• Index 14 (pixel-value OR plane-mask-1 is 0000 1110) 

• Index 22 (pixel-value OR plane-mask-2 is 0001 0110) 

• Index 30 (pixel-value OR plane-mask-1 OR plane-mask-2 is 0001 1110) 

Four color definitions are reserved (or 1 pixel-value * 22planes). 

You ask for contiguous planes (contig is true) if you want to perform 
arithmetic on the plane values. If you do not want to do calculations, then 
the planes can be noncontiguous (contig is false). 

For gray-scale and pseudocolor visual types, each plane mask has one bit. 
For direct color, each plane mask has three bits. When contig is true and 
the logical OR operation of the masks is calculated, a single contiguous 
set of bits is formed for gray-scale, pseudocolor, or visual types, and three 
contiguous sets of bits (one within each pixel submember) for direct color. 

If you have a direct color type device, or you want the screen to act 
like a direct color device, use ALLOC COLOR PLANES to allocate color 
definitions and planes. 

VAX c 
X$C _BAD _ALLOC BadAlloc 

X$C_BAD_COLOR BadColor 

X$C_BAD_VALUE BadValue 

Description 

The server did not allocate the requested 
resource for any cause. 

A value that you specified for a color map 
argument does not name a defined color 
map. 

Some numeric values fall outside the range 
of values accepted by the request. Unless a 
specific range is specified for an argument, 
the full range defined by the argument's type 
is accepted. Any argument defined as a set 
of alternatives can generate this error. 



Color Routines 
ALLOC COLOR PLANES 

ALLOC COLOR PLANES 

Allocates the specified number of entries and planes from the color map for a 
direct color type device. 

VAX FORMAT status_return = X$ALLOC_COLOR_PLANES 

argument 
information 

(display, colormap_id, contig, pixels_return, 
num_colors, num_reds, num_greens, num_blues, 
rmask_return, gmask_return, bmask_return) 

Argument Usage Data Type Access Mechanism 

status_return longword longword write value 

display identifier uns longword read reference 

colormap_id identifier uns longword read reference 

contig Boolean uns longword read reference 

pixels_return array longword write reference 

num_colors longword longword read reference 

num_reds longword longword read reference 

num_greens longword longword read reference 

num_blues longword longword read reference 

rmask_return mask_longword uns longword write reference 

gmask_return mask_longword uns longword write reference 

bmask_return mask_longword uns longword write reference 

MIT C FORMAT status_return = XAllocColorPlanes 
(display, colormap_id, contig, pixels_return, 
num_colors, num_reds, num_greens, num_blues, 
pixels_return, rmask_return, gmask_return, 
bmask_return) 

12-13 



Color Routines 
ALLOC COLOR PLANES 

argument 
information 

RETURNS 

ARGUMENTS 

12-14 

Status XAllocColorPlanes(display, colormap id, contig, 
pixels return, num colors, num reds, num greens, num blues, 
pixels=return, rmask_return, gmask_return, bmask_ret~rn) 

Display *display; 
Colormap colormap_id; 
Bool contig; 
unsigned long pixels_return[]; 
int num_colors; 
int num_reds, num_greens, num_blues; 
unsigned long *rmask_return, *gmask_return, *bmask_return; 

status return 
Specifieswhether or not the routine completed successfully. If there was 
a problem, usually because of lack of server resources or of available 
color cells in the color map, status_return is zero. If the routine was 
successful, status_return is nonzero. 

display 
The display information originally returned by OPEN DISPLAY. 

colormap_id 
The identifier of the color map to allocate entries from. The identifier 
of the color map was originally returned by DEFAULT COLORMAP, 
CREATE COLORMAP, or COPY COLORMAP AND FREE. 

contig 
Boolean argument that specifies whether the bits in each plane mask 
must be contiguous. When true, the bits in each plane mask must be 
contiguous. When false, the bits need not be contiguous. 

pixels_return 
A pointer to an array of color indexes where each element is a color index 
returned by the routine. The color index (pixel value) is an index into 
the color map for the color definition allocated for the program's use. The 
length of the array is specified by num_colors. 

num_colors 
The number of color definitions to be set in the color map. This value 
specifies the number of data structures and thereby specifies the length of 
pixels_return and thereby the length of that array. 

num_reds 
The number of planes required to control red values. This value must be 
nonnegative. 

num_greens 
The number of planes required to control green values. This value must 
be nonnegative. 

num_blues 
The number of planes required to control blue values. This value must be 
nonnegative. 



DESCRIPTION 

Color Routines 
ALLOC COLOR PLANES 

rmask return 
The mask that identifies the planes allocated for the red values. 

gmask_return 
The mask that identifies the planes allocated for the green values. 

bmask_return 
The mask that identifies the planes allocated for the blue values. 

ALLOC COLOR PLANES allocates reserved color definitions and color 
planes for a direct color type device. Use this routine primarily for direct 
color type devices, or when you want the screen to act as a direct color 
device. 

The color definitions allocated are read and write entries. The colors 
are not defined. You can define the colors for these entries with STORE 
COLOR, STORE COLORS, or STORE NAMED COLOR. 

Specify the number of color definitions you want to allocate in the num_ 
colors argument. For each color definition requested, a color index into 
the color map is returned in pixels_return. 

To allocate color planes, use the num_reds, num_greens, and num_ 
blues arguments. For each color member, a mask is returned that 
identifies the planes which have been allocated for the red, green, and 
blue members. 

Each plane mask lies within the corresponding portion of the color index 
that points to the same color member. For example, the red plane mask 
lies within the portion of the color index that points to the red structure. 
If the logical OR operation of subsets of masks with color indexes is 
calculated, different indexes are derived. You can reference and use each 
of these indexes. The following number of indexes can be produced: 

num_colors * (2nu.m_reds+nu.m-ureens+nttm-blu.es) 

In the color map there are only num_colors * 2nu.m_reds independent 
red entries, num_colors * 2num-ureens independent green entries, and 
num_colors * 2nu.m_blues independent blue entries, even for a device that is 
really a pseudocolor device. 

If you change the color definition within a color map (using STORE 
COLOR, STORE COLORS, or STORE NAMED COLOR), its index is 
decomposed according to the masks, and the corresponding independent 
entries are updated. If you have a pseudocolor device, or you want the 
screen to act as a pseudocolor device, use ALLOC COLOR CELLS to 
allocate color definitions and planes. 

12-15 



Color Routines 
ALLOC COLOR PLANES 

XERRORS 
VAX 

X$C_BAD_ALLOC 

X$C_BAD_COLOR 

X$C_BAD_VALUE 

12-16 

c 
BadAlloc 

BadColor 

BadValue 

Description 

The server did not allocate the requested 
resource for any cause. 

A value that you specified for a color map 
argument does not name a defined color 
map. 

Some numeric values fall outside the range 
of values accepted by the request. Unless a 
specific range is specified for an argument, 
the full range defined by the argument's type 
is accepted. Any argument defined as a set 
of alternatives can generate this error. 



Color Routines 
ALLOC NAMED COLOR 

ALLOC NAMED COLOR 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

Returns the shareable color index for a given named color. The routine also 
returns the color definition closest to the one specified that can be supported 
by the hardware. 

status_return = X$ALLOC_NAMED_COLOR 
(display, colormap_id, color_name 
[,screen_ def_return] [,exact_ def_return]) 

Argument Usage Data Type 

status_return longword longword 

display identifier uns longword 

colormap_id identifier uns longword 

color_name char string char string 

screen_def_return record x$color 

exact_def_return record x$color 

status_return = XAllocNamedColor 
(display, colormap_id, color_name, 
screen_ def_ return, exact_ def_ return) 

Access 

write 

read 

read 

read 

write 

write 

Mechanism 

value 

reference 

reference 

descriptor 

reference 

reference 

Status XAllocNamedColor(display, colormap_id, color_name, 
screen def return, exact def return) 

Display *display; - -
Colormap colormap_id; 
char *color_name; 
XColor *screen_def_return, *exact_def_return; 

status return 
Specifies whether or not the routine completed successfully. If there was 
a problem, usually because of lack of server resources or of available 
color cells in the color map, status_return is zero. If the routine was 
successful, status_return is nonzero. 

12-17 



Color Routines 
ALLOC NAMED COLOR 

ARGUMENTS display 
The display information originally returned by OPEN DISPLAY. 

colormap_id 
The identifier of the color map where the requested color will be stored. 
The identifier of the color map was originally returned by DEFAULT 
COLORMAP, CREATE COLORMAP, or COPY COLORMAP AND FREE. 

color name 
The name of the requested color. The color name you specify must be 
supported by the color database. Use the ISO Latin-1 encoding. Uppercase 
or lowercase characters do not matter. 

Conly 

The color_name argument is a null-terminated character string. 

screen_ def_return 
The color definition data structure that returns the color definition of the 
color actually used by the server. The color definition and the color index 
are returned in the color definition data structure. 

For more information about the color definition data structure, see 
Section 12.2. 

VAX only 

This argument is optional. 

exact def return 
The col~ definition data structure that defines the exact color as specified 
in the color database. The color definition is returned in the color 
definition data structure. The color definition data structure is shown 
in Section 12.2. 

VAX only 

This argument is optional. 

DESCRIPTION ALLOC NAMED COLOR provides two color definitions (red, green, and 
blue values) for the color name you specify: 

12-18 

• The exact color definition as it is defined in the color database. 

• The closest color definition available for the hardware you are using. 
The color definition is read-only and can be shared among application 
programs. 

ALLOC NAMED COLOR also provides the color index where the closest 
color definition is stored. 

Because the color definition may vary between the exact definition and 
the closest definition available, use this routine to determine what the 
variation is. 



XERRORS 

Color Routines 
ALLOC NAMED COLOR 

To obtain the color definition data, you supply the name of the color as 
a text string. A database that associates the color name with the correct 
color structure is maintained by the server to resolve the correct definition 
for the color name string. 

VAX C 

X$C_BAD_ALLOC BadAlloc 

X$C_BAD_COLOR BadColor 

X$C_BAD_NAME BadName 

Description 

The server did not allocate the requested 
resource for any cause. 

A value that you specified for a color map 
argument does not name a defined color 
map. 

The font or color that you specified does not 
exist. 

12-19 



Color Routines 
COPY COLORMAP AND FREE 

COPY COLORMAP AND FREE 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

ARGUMENTS 

12-20 

Creates a color map with the same allocations for a client as exist in the 
specified color map. Other color definitions in the new color map are 
undefined. The definitions allocated by the client in the current color map 
are freed. 

X$COPY_COLORMAP_AND_FREE 
(display, colormap_id) 

Argument Usage Data Type 

colormap_id_return identifier uns longword 

display identifier uns longword 

colormap_id identifier uns longword 

Access Mechanism 

write value 

read reference 

read reference 

colormap_id_return = XCopyColormapAndFree 
(display, colormap_id) 

Colormap XCopyColormapAndFree(display, colormap_id) 
Display *display; 
Colormap colormap_id; 

colormap_id_return 
The identifier of the new color map. 

display 
The display information originally returned by OPEN DISPLAY. 

colormap_id 
The identifier of the color map to be freed. The identifier of the color map 
was originally returned by DEFAULT COLORMAP, CREATE COLORMAP, 
or COPY COLORMAP AND FREE. Color definitions that have been 
reserved in this map using the specified display are copied to the new 
color map. Then the reserved color definitions in the current color map are 
freed. 



DESCRIPTION 

XERRORS 

Color Routines 
COPY COLORMAP AND FREE 

COPY COLORMAP AND FREE creates a new color map and returns its 
identifier in colormap. The new color map is of the same visual type and 
for the same screen as the current color map (colormap_id). 

The new color map has the same color definitions reserved for the client 
program as were reserved for the client, with ALLOC COLOR CELLS or 
ALLOC COLOR PLANES, in the current color map (colormap_id). All 
color definitions specified for the reserved colors are the same in the new 
color map. Any other color definitions in the new color map are undefined. 
The reserved color definitions in the current color map (colormap_id) are 
deallocated. 

You are likely to use this routine when there are no more color definitions 
available for reserved use in the default color map. This routine creates a 
private color map for your use. 

This routine does not dissociate the current color map identifier 
(colormap_id) from the current color map. To dissociate a color map, 
use the FREE COLORMAP routine. 

The current color map identifier was originally returned by DEFAULT 
COLORMAP, CREATE COLORMAP, or COPY COLORMAP AND FREE. 

VAX C 

X$C_BAD_ALLOC BadAlloc 

X$C_BAD_COLOR BadColor 

Description 

The server did not allocate the requested 
resource for any cause. 

A value that you specified for a color map 
argument does not name a defined color 
map. 

12-21 



Color Routines 
CREATE COLORMAP 

CREATE COLORMAP 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

ARGUMENTS 

12-22 

Creates a color map and returns a color map identifier. The entries in the 
color map are undefined. 

colormap_id_return = X$CREATE_COLORMAP 
(display, window_id, visual_struc, alloc) 

Argument Usage Data Type Access 

colormap_id_return identifier uns longword write 

display identifier uns longword read 

window_id identifier uns longword read 

visual_struc record x$visual read 

alloc longword longword read 

colormap_id_return = XCreateColormap 
(display, window_id, visual_struc, alloc) 

Mechanism 

value 

reference 

reference 

reference 

reference 

Colormap XCreateColormap(display, window_id, visual_struc, alloc) 
Display *display; 
Window window_id; 
Visual *visual_struc; 
int alloc; 

colormap _id_ return 
The identifier of the new color map. 

display 
The display information originally returned by OPEN DISPLAY. 

window id 
The identifier of the window that identifies the root for which the color 
map will be created. 

visual struc 
A pointe;-to a visual structure associated with the window. 



DESCRIPTION 

XERRORS 

a/toe 

Color Routines 
CREATE COLORMAP 

The allocation mode of color map entries. The values for alloc are as 
follows: 

VAX 

X$C_ALLOC_NONE 

X$C _ALLOC _ALL 

c 

AllocNone 

AllocAll 

Description 

No entries are preallocated. 

All entries were preallocated to the current 
client. No more entries can be allocated from 
the color map by any client. 

Other values specified in this argument are not valid. 

If static gray, static color, or true color is specified in visual_struc, no 
entries can be allocated from the color map. 

CREATE COLORMAP creates a private color map and returns a color map 
identifier. For most applications, you do not need to use a private color 
map; the default color map has sufficient resources. However, for some 
applications, you use this routine to create a private color map for your 
program's use. 

After the color map identifier is returned, use this identifier to refer to the 
color map in any subsequent routines. The contents of the new colormap 
are undefined for the visual types gray scale, pseudocolor, or direct color. 

After you create the color map for the visual types gray scale, pseudocolor, 
or direct color, you can specify colors within it. If the alloc argument 
requires you to allocate (reserve) color definitions (that is, alloc is Alloc 
None), you use the ALLOC COLOR CELLS or ALLOC COLOR PLANES 
routines. Then use STORE COLOR, STORE COLORS, or STORE NAMED 
COLOR to specify color definitions. 

If the alloc argument specified that all entries are allocated to you, (in 
other words, alloc is Alloc All), use STORE COLOR or STORE NAMED 
COLOR to define any indexes in the color map. 

Use the DEFAULT VISUAL routine to determine the visual type of the 
screen. 

VAX c 

X$C _BAD _ALLOC BadAlloc 

X$C_BAD_MATCH Bad Match 

Description 

The server did not allocate the requested 
entries. 

The specified visual type does not match the 
specified window. 

12-23 



Color Routines 
CREATE COLORMAP 

12-24 

VAX C Description 

X$C_BAD_VALUE BadValue Either visual_struc or alloc has an incorrect 
value. 

X$C_BAD_WINDOW BadWindow A value that you specified for a window 
argument does not name a defined window. 



Color Routines 
FREE COLORMAP 

FREE COLORMAP 

Deletes the specified color map. 

VAX FORMAT X$FREE_COLORMAP (display, colormap_id) 

argument 
information 

Argument Usage Data Type Access Mechanism 

display identifier uns longword read reference 

colormap_id identifier uns longword read reference 

MIT C FORMAT XFreeColormap (display, colormap_id) 

argument 
information 

ARGUMENTS 

XFreeColormap(display, colormap_id) 
Display *display; 
Colormap colormap_id; 

display 
The display information originally returned by OPEN DISPLAY. 

colormap_id 
The identifier of the color map to be freed. The identifier of the color map 
was originally returned by DEFAULT COLORMAP, CREATE COLORMAP, 
or COPY COLORMAP AND FREE. 

DESCRIPTION FREE COLORMAP deletes the color map. However, it cannot free the 
default color map for a screen. 

If the color map is an installed map, it is uninstalled and another color 
map is installed. If colormap_id is currently the color map attribute 
of a window (set using CREATE WINDOW or CHANGE WINDOW 
ATTRIBUTES), the color map attribute for the window is changed to 
None and a Color Map Notify event is generated. 

12-25 



Color Routines 
FREE COLORMAP 

XERRORS 

12-26 

VAX C 

X$C_BAD_COLOR BadColor 

Description 

The value that you specified for the color 
map argument does not name a defined 
color map. 



Color Routines 
FREE COLORS 

FREE COLORS 

Deallocates the specified color definition or plane. 

VAX FORMAT X$FREE_COLORS 
(display, colormap_id, pixels, num_pixels, planes) 

argument 
information 

Argument Usage Data Type Access Mechanism 

display identifier uns longword read reference 

colormap_id identifier uns longword read reference 

pixels array longword read reference 

num_pixels longword longword/ read reference 

planes longword uns longword read reference 

MIT C FORMAT XFreeColors 

argument 
information 

ARGUMENTS 

(display, colormap_id, pixels, num_pixels, planes) 

XFreeColors(display, colormap_id, pixels, num_pixels, planes) 
Display *display; 
Colormap colormap_id; 
unsigned long pixels[]; 
int num_pixels; 
unsigned long planes; 

display 
The display information originally returned by OPEN DISPLAY. 

colormap_id 
The identifier of the color map from which the color definitions and planes 
will be deallocated. The identifier of the color map was originally returned 
by DEFAULT COLORMAP, CREATE COLORMAP, or COPY COLORMAP 
AND FREE. 

pixels 
A pointer to an array of color indexes (pixel values) where each element 
points to a color definition in the color map to be freed. The length of the 
array is specified by num_pixels. 

num_pixels 
The number of color definitions in the color map to be freed. This value 
specifies the number of elements in pixels. 

12-27 



Color Routines 
FREE COLORS 

DESCRIPTION 

XERRORS 

12-28 

planes 
The planes that are to be freed. The logical OR of the planes to be freed is 
calculated. If there are no planes to be freed, this argument must be zero. 

FREE COLORS deallocates color definitions in the color map and frees 
planes. After FREE COLORS is used, the color definitions that are freed 
are available for allocation. However, a color definition originally allocated 
with ALLOC COLOR PLANES is not completely freed until all related 
color definitions are also freed. 

If you incorrectly specified a color index, all other specified color definitions 
are freed anyway. 

The color indexes (pixel values) and planes were originally returned when 
you allocated color definitions and planes with ALLOC COLOR, ALLOC 
COLOR CELLS, ALLOC COLOR PLANES, or ALLOC NAMED COLOR. 

VAX c 

X$C_BAD_ACCESS Bad Access 

X$C_BAD_COLOR Bad Color 

X$C_BAD_VALUE Bad Value 

Description 

You attempted to free a color map entry 
that you did not allocate. 

The value that you specified for a color 
map argument does not name a defined 
color map. 

The planes or pixels you specified fall 
outside the available range. 



Color Routines 
GET STANDARD COLORMAP 

GET STANDARD COLORMAP 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

Obtains a standard color map. 

status_return = X$GET_STANDARD_COLORMAP 
(display, window_id, standard_colormap_return, 
property_id) 

Argument Usage Data Type Access Mechanism 

status _return longword longword write value 

display identifier uns longword read reference 

window_id identifier uns longword read reference 

standard - record x$standard_ write reference 
colormap_return colormap 

property _id identifier uns longword read reference 

status_return = XGetStandardColormap 
(display, window_id, standard_colormap_return, 
property_id) 

Status XGetStandardColormap(display, window_id, 
standard_colormap_return, 
property_id) 

Display *display; 
Window window_id; 
XStandardColormap *standard colormap return; 
Atom property_id; /* RGB_BEST_MAP, etc. */ 

status return 
Return value that specifies whether or not the routine completed 
successfully. The routine fails if the standard color map property has 
not been defined for the specified window. 

Conly 

This argument returns zero if the routine completes successfully, and 
nonzero if it does not complete successfully. 

12-29 



Color Routines 
GET STANDARD COLORMAP 

ARGUMENTS 

VAX only 

This argument returns one of the following values. 

Value 

SS$_NORMAL 

X$_PROPUNDEF 

X$_ERRORREPL Y 

X$_ TRUNCATED 

display 

Description 

Routine completed successfully. 

The standard color map property has not been defined for the 
specified window. 

Error received from the server. 

The buffer is not big enough, therefore the results are 
truncated. 

The display information originally returned by OPEN DISPLAY. 

window id 
The identifier of the window that the standard color map properties 
are attached to. The root window usually has the standard color map 
properties. 

standard_ colormap _return 
The standard color map data structure that defines the standard color map 
is returned by the routine. 

For more information about the standard color map data structure, see 
Section 12.1. 

property_id 
The identifier of the property type for the standard color map to be 
obtained. A property type is specified by an atom. There are six predefined 
property types for standard color maps: 

• RGB_DEFAULT_MAP 

• RGB_BEST_MAP 

• RGB_RED_MAP 

• RGB_GREEN_MAP 

• RGB_BLUE_MAP 

• RGB_GRAY_MAP 

DESCRIPTION GET STANDARD COLORMAP obtains a predefined standard color map 
that has been stored on a window by another client. 

12-30 



XERRORS 
VAX C 

X$C_BAD_ATOM BadAtom 

X$C_BAD_WINDOW BadWindow 

Color Routines 
GET STANDARD COLORMAP 

Description 

The value that you specified in an atom 
argument does not name a defined atom. 

A value that you specified for a window 
argument does not name a defined window. 

12-31 



Color Routines 
GET VISUAL INFO 

GET VISUAL INFO 

Obtains a list of visual information structures that match a specified template. 

VAX FORMAT status_return = X$GET_ VISUAL_INFO 

argument 
information 

(display, vinfo_mask, vinfo_template, 
num_items_return [,items_return] [,items_size] 
[,items_buft_return]) 

Argument Usage Data Type Access Mechanism 

status_return longword longword write value 

display identifier uns longword read reference 

vinfo_mask mask_longword uns longword read reference 

vinfo_template record x$visual_info read reference 

num_items_return longword longword write reference 

items_return address uns longword write reference 

items_size longword longword read reference 

items_buff_return record uns longword read reference 

MIT C FORMAT XVisuallnfo = XGetVisuallnfo 

argument 
information 

RETURNS 

12-32 

(display, vinfo_mask, vinfo_template, 
num_items_return) 

XVisualinfo *XGetVisualinfo(display, vinfo_mask, vinfo_template, 
num_items_return) 

Display *display; 
long vinfo_mask; 
XVisualinfo *vinfo_template; 
int *num_items_return; 

status_return (VAX only) 
Specifies whether or not the routine completed successfully. 

XVisuallnfo (MIT C only) 
A list of visual information structures that match the specified template. 



ARGUMENTS 

Color Routines 
GET VISUAL INFO 

display 
The display information originally returned by OPEN DISPLAY. 

vinfo mask 
A bit mask that specifies which visual mask attributes this routine will try 
to match. 

Table 12-6 lists each bit for vinfo_mask, its predefined value, and its 
description. 

Table 12-6 Visual Information Mask Bits 

Predefined Bit Value 

Visual No Mask 

VisuallDMask 

VisualScreenMask 

Visual Depth Mask 

VisualClassMask 

VisualRedMaskMask 

VisualGreenMaskMask 

VisualBlueMaskMask 

VisualColormapSizeMask 

VisualBitsPerRGBMask 

VisualAllMask 

vinfo _template 

Meaning When Set 

Use no mask attributes 

Use the identifier attribute 

Use the screen attribute 

Use the depth attribute 

Use the class attribute 

Use the red mask attribute 

Use the green mask attribute 

Use the blue mask attribute 

Use the color map size attribute 

Use the bits-per-RGB attribute 

Use all attributes 

A template of visual attributes that are to be used in matching the visual 
information structures. Each attribute corresponds to a bit that is set in 
the vinfo_mask. See the description section for information on the visual 
information structure. 

num items return - -
The number of matching visual information structures in items_return. 

items_return (VAX only) 
The virtual address of a pointer to an array of visual information data 
returned by the routine and residing in space reserved by Xlib. 

items_ size (VAX only) 
The size of the buffer specified in items_buff_return. 

items_buff _return (VAX only) 
A pointer to a data buffer, residing in space you have reserved, where each 
entry is one visual information element. The size of the buffer is specified 
by items_size. 

12-33 



Color Routines 
GET VISUAL INFO 

DESCRIPTION GET VISUAL INFO obtains a list of visual information structures that 
match the attributes specified by a template. If there are no visual 
information structures that match the template, GET VISUAL INFO 
returns a null value. 

12-34 

To specify arguments that describe the visual information data returned 
by the routine, use items_return to access data owned by Xlib, or items_ 
size and items_buff_return to obtain a private copy of the data. 



Color Routines 
LOOKUP COLOR 

LOOKUP COLOR 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

Obtains the color values for a specified color name. 

status_return = X$LOOKUP _COLOR 
(display, colormap_id, color_name 
[,screen_def_return] [,exact_def_return]) 

Argument Usage Data Type 

status_return longword longword 

display identifier uns longword 

colormap_id identifier uns longword 

color_name char string char string 

screen_ def _return record x$color 

exact_def_return record x$color 

status_return = XLookupColor 
(display, colormap_id, color_name, 
screen_def_return, exact_def_return) 

Access 

write 

read 

read 

read 

write 

write 

Status XLookupColor(display, colormap_id, color_name, 

Mechanism 

value 

reference 

reference 

descriptor 

reference 

reference 

screen_def _return, exact_def _return) 
Display *display; 
Colormap colormap_id; 
char *color_name; 
XColor *screen_def _return, *exact_def_return; 

status return 
Return value that specifies whether or not the routine completed 
successfully. If there was a problem, usually because of lack of resources, 
status_return is zero. If the routine was successful, status_return is 
nonzero. 

12-35 



Color Routines 
LOOKUP COLOR 

ARGUMENTS 

DESCRIPTION 

12-36 

display 
The display information originally returned by OPEN DISPLAY. 

colormap _id 
The identifier of the color map that the server will use to compute screen_ 
def_return. The identifier of the color map was originally returned by 
DEFAULT COLORMAP, CREATE COLORMAP, or COPY COLORMAP 
AND FREE. 

color_name 
The name of the requested color. The color name you specify must be 
supported by the color database. Use the ISO Latin-1 encoding. Uppercase 
or lowercase characters do not matter. 

Conly 

The color_name argument is a null-terminated character string. 

screen def return - -
The color definition data structure where the red, green, and blue values 
of the closest color supported by the screen hardware are returned. The 
screen is determined from the specified color map. 

For more information about the color definition data structure, see 
Section 12.2. 

VAX only 

This argument is optional. 

exact_ def_ return 
The color definition data structure where the red, green, and blue values 
of the exact color as defined in the color database are returned. The pixel, 
pad, and flags members are not used. 

For more information about the color definition data structure, see 
Section 12.2. 

VAX only 

This argument is optional. 

LOOKUP COLOR obtains the color values for the specified color name. To 
obtain the color definition data, you supply the name of the color as a text 
string. A database that associates the color name with the correct color 
structure is maintained by the server to resolve the correct definition for 
the color name string. 

The routine returns the color definition for the exact color, as maintained 
in the color database, and the color definition for the closest color that can 
be supported by the screen associated with the specified color map. 



XERRORS 
VAX C 

X$C_BAD_COLOR BadColor 

X$C_BAD_NAME Bad Name 

Description 

Color Routines 
LOOKUP COLOR 

A value that you specified for a color map 
argument does not name a defined color 
map. 

The color that you specified does not exist. 

12-37 



Color Routines 
MATCH VISUAL INFO 

MATCH VISUAL INFO 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

ARGUMENTS 

12-38 

Obtains visual information that can be used with a specified screen, depth, 
and class. 

status return = X$MATCH VISUAL INFO 
(display, screen_number, depth, class, vinfo_return) 

Argument Usage Data Type Access Mechanism 

status_return longword longword write value 

display identifier uns longword read reference 

screen_number uns longword uns longword read reference 

depth longword longword read value 

class longword longword read value 

vinfo_return record x$visual_info write reference 

status_return = XMatchVisuallnfo 
(display, screen_number, depth, class, vinfo_return) 

Status XMatchVisualinfo(display, screen_number, depth, class, 
vinfo_return) 

Display *display; 
int screen_nurnber; 
int depth; 
int class; 
XVisualinfo *vinfo_return; 

status return 
Return value that specifies whether or not the routine completed 
successfully. 

display 
The display information originally returned by OPEN DISPLAY. 

screen number 
The number of the screen for which the visual information is to be 
obtained. 

depth 
The depth to be matched on the specified screen. 



class 
The class to be matched on the specified screen. 

vinfo return 

Color Routines 
MATCH VISUAL INFO 

A pointer to which MATCH VISUAL INFO returns the matching visual 
information for the specified class and screen. 

DESCRIPTION MATCH VISUAL INFO obtains the visual information for a visual that 
matches a specified screen depth and class for a screen. Multiple visuals 
that match a specified depth and class can exist; in this case, the exact 
visual chosen by MATCH VISUAL INFO is undefined. 

If a matching visual exists, MATCH VISUAL INFO returns true and the 
information on the visual is returned to the vinfo_return argument. If a 
matching visual is not found, MATCH VISUAL INFO returns false. 

12-39 



Color Routines 
QUERY COLOR 

QUERY COLOR 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

12-40 

Provides the red, green, and blue values for the index specified in the color 
definition data structure. 

X$QUERY _COLOR 
(display, colormap_id, screen_det_return) 

Argument Usage Data Type Access 

display identifier uns longword read 

colormap_id identifier uns longword read 

screen_ def _return record x$color read/write 

XQueryColor 
(display, colormap_id, screen_det_return) 

XQueryColor(display, colormap_id, screen_def_return) 
Display *display; 
Colormap colormap_id; 
XColor *screen_def_return; 

display 

Mechanism 

reference 

reference 

reference 

The display information originally returned by OPEN DISPLAY. 

colormap_id 
The identifier of the color map containing the specified Golor definition. 
The identifier of the color map was originally returned by DEFAULT 
COLORMAP, CREATE COLORMAP, or COPY COLORMAP AND FREE. 

screen def return - -
The color definition data structure for the specified color definition. The 
color index is specified in the pixel member of the data structure. The 
color values stored at the color definition referenced by the color index 
are returned in the red, green, and blue members. The flags member is 
ignored. 

When the red, green, and blue values are returned by the routine, they 
overwrite any current values specified in the data structure. 

For more information about the color definition data structure, see 
Section 12.2. 



DESCRIPTION 

XERRORS 

Color Routines 
QUERY COLOR 

QUERY COLOR provides the color definition for a specified color index. 
The color index is specified in the pixel member of the color definition 
data structure. The red, green, and blue values are returned in the same 
data structure for the specified color index. The flags member in the data 
structure is ignored. 

If the color definition specified in screen_def_return is unallocated, the 
red, green, and blue values returned are undefined. 

When you want the color definitions for more than one color index, use the 
QUERY COLORS routine. 

VAX C 

X$C_BAD_COLOR BadColor 

X$C_BAD_ VALUE BadValue 

Description 

A value that you specified for a color map 
argument does not name a defined color 
map. 

The index you specified lies outside the 
range of the colormap. 

12-41 



Color Routines 
QUERY COLORS 

QUERY COLORS 

Provides the red, green, and blue values for each color index specified. 

VAX FORMAT X$QUERY_COLORS 

argument 
information 

(display, colormap_id, screen_defs_return, 
num_colors) 

Argument Usage Data Type Access 

display identifier uns longword read 

colormap_id identifier uns longword read 

screen_ defs _return record x$color read/write 

num_colors longword longword read 

Mechanism 

reference 

reference 

reference 

reference 

MIT C FORMAT XQueryColors 

argument 
information 

ARGUMENTS 

12-42 

(display, colormap_id, screen_defs_return, 
num_colors) 

XQueryColors(display, colormap_id, screen_defs_return, 
num_colors) 

Display *display; 
Colormap colormap_id; 
XColor screen_defs_return[]; 
int num_colors; 

display 
The display information originally returned by OPEN DISPLAY. 

colormap_id 
The identifier of the color map containing the specified color indexes. 
The identifier of the color map was originally returned by DEFAULT 
COLORMAP, CREATE COLORMAP, or COPY COLORMAP AND FREE. 

screen defs return - -
An array of color definition data structures where each element in the 
array defines the color for one color index. There is one array entry for 
each color index requested by num_colors. 



DESCRIPTION 

XERRORS 

Color Routines 
QUERY COLORS 

The color indexes are specified in the pixel member of each color definition 
data structure. The color values are returned in the red, green, and blue 
members of each data structure. The flags member in each data structure 
is ignored. 

For more information about the color definition data structure, see 
Section 12.2. 

num_colors 
The number of color indexes to be set in the color map. This value specifies 
the number of data structures and thereby specifies the length of the 
screen_defs_return array. 

QUERY COLORS provides the color definitions for more than one color 
index in an array of color definition data structures. Use the pixel member 
in the color definition data structures to specify the color indexes you want 
definitions for. The red, green, and blue values are returned in the same 
data structures for the specified entries. The flags members in the data 
structures are ignored. 

If a color definition specified in screen_defs_return is unallocated, the 
red, green, and blue values returned are undefined. 

When you want the color definitions for one color index, use the QUERY 
COLOR routine. 

The color map identifier was originally returned by DEFAULT 
COLORMAPorCREATECOLORMAP. 

VAX c 

X$C_BAD_COLOR Bad Color 

X$C_BAD_VALUE BadValue 

Description 

A value that you specified for a color map 
argument does not name a defined color 
map. 

The index you specified lies outside the 
range of the color map. 

12-43 



Color Routines 
SET STANDARD COLORMAP 

SET STANDARD COLORMAP 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

12-44 

Specifies a standard color map. 

X$SET_STANDARD_COLORMAP 
(display, window_id, standard_colormap, property_id) 

Argument Usage Data Type Access Mechanism 

display identifier uns longword read reference 

window_id identifier uns longword read reference 

standard - record x$standard_ read reference 
colormap colormap 

property _id identifier uns longword read reference 

XSetStandardColormap 
(display, window_id, standard_colormap, property_id) 

XSetStandardColormap(display, window_id, standard_colormap, 
property id) 

Display *display; -
Window window_id; 
XStandardColormap *standard colormap; 
Atom property_id; /* RGB_BEST_MAP, etc. */ 

display 
The display information originally returned by OPEN DISPLAY. 

window id 
The identifier of the window to associate with the standard color map, once 
created. This window is usually the root window. 

standard_ colormap 
The standard color map data structure that defines the standard color map 
to attach to the window. 

For more information about the standard color map data structure, see 
Section 12.1. 



DESCRIPTION 

XERRORS 

property_id 

Color Routines 
SET STANDARD COLORMAP 

The identifier of the property type for the standard color map to be 
associated with the window. A property type is specified by an atom. 
There are six predefined property types for standard color maps: 

• RGB_DEFAULT_MAP 

• RGB_BEST_MAP 

• RGB_RED_MAP 

• RGB_GREEN_MAP 

• RGB_BLUE_MAP 

• RGB_GRAY_MAP 

For more information about properties, see Chapter 8. 

SET STANDARD COLORMAP associates a standard color map with the 
specified window (usually the root window). This routine is usually only 
used by a window manager program. 

First, you must create a standard color map and specify the colors for it. 
After it has been created and a standard color map data structure has 
been specified for it, use this routine to associate it as a property with the 
window. 

VAX C 

X$C_BAD_ALLOC BadAlloc 

X$C_BAD_ATOM BadAtom 

X$C_BAD_WINDOW BadWindow 

Description 

The server did not allocate the requested 
resource for any cause. 

The value that you specified in an atom 
argument does not name a defined atom. 

A value that you specified for a window 
argument does not name a defined window. 

12-45 



Color Routines 
SET WINDOW COLORMAP 

SET WINDOW COLORMAP 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Specifies the current color map for the specified window. 

X$SET _WINDOW_ COLORMAP 
(display, window_id, colormap_id) 

Argument Usage Data Type 

display identifier uns longword 

window_id identifier uns longword 

colormap_id identifier uns longword 

XSetWindowColormap 
(display, window_id, colormap_id) 

Access 

read 

read 

read 

XSetWindowColormap(display, window_id, colormap_id) 
Display *display; 
Window window_id; 
Colormap colormap_id; 

display 

Mechanism 

reference 

reference 

reference 

The display information originally returned by OPEN DISPLAY. 

window id 
The identifier of the window to be associated with the color map specified 
in colormap_id. 

colormap_id 
The identifier of the new color map to be associated with the window 
specified in window _id. The identifier of the color map was originally 
returned by DEFAULT COLORMAP, CREATE COLORMAP, or COPY 
COLORMAP AND FREE. 

DESCRIPTION SET WINDOW COLORMAP associates the specified color map with 
the window. The identifier for the color map was originally returned by 
DEFAULT COLORMAP, CREATE COLORMAP, or COPY COLORMAP 
AND FREE. The identifier of the window was originally returned by 
CREATE SIMPLE WINDOW or CREATE WINDOW. 

12-46 

Note that associating a new color map with a window may not immediately 
change the window colors. 



XERRORS 
VAX C 

X$C_BAD_COLOR BadColor 

X$C_BAD_MATCH Bad Match 

X$C_BAD_WINDOW BadWindow 

Color Routines 
SET WINDOW COLORMAP 

Description 

A value that you specified for a color map 
argument does not name a defined color 
map. 

The color map depth or visual type does 
not match the specified window depth or 
visual type. 

A value that you specified for a window 
argument does not name a defined window. 

12-47 



Color Routines 
STORE COLOR 

STORE COLOR 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

12-48 

Sets a color map entry, previously allocated, to the closest color supported by 
the hardware. 

X$STORE_ COLOR 
(display, colormap_id, color_def) 

Argument Usage Data Type Access 

display identifier uns longword read 

colormap_id identifier uns longword read 

color_def record x$color modify 

XStoreColor 
(display, colormap_id, color_def) 

XStoreColor(display, colormap_id, color_def) 
Display *display; 
Colormap colormap_id; 
XColor *color_def; 

display 

Mechanism 

reference 

reference 

reference 

The display information originally returned by OPEN DISPLAY. 

colormap_id 
The identifier of the color map where the color definition will be stored. 
The identifier of the color map was originally returned by DEFAULT 
COLORMAP, CREATE COLORMAP, or COPY COLORMAP AND FREE. 

color def 
The color definition data structure that specifies the desired red, green, 
and blue color values; the color index where the color definition should be 
stored; and the flags member that specifies whether to set the red, green, 
or blue entries in the color map. To set the flags member, do a bitwise OR 
with these predefined members: 

VAX c Description 

X$M_DO_RED Do Red Modify the red definition 



DESCRIPTION 

XERRORS 

VAX 

X$M_DO_GREEN 

X$M_DO _BLUE 

c 

DoGreen 

DoBlue 

Description 

Color Routines 
STORE COLOR 

Modify the green definition 

Modify the blue definition 

The color stored is the closest color supported by the hardware. The color 
definition must be a read/write entry. 

For more information about the color definition data structure, see 
Section 12.2. 

STORE COLOR sets one color definition in the specified color map. To 
change more than one color, use STORE COLORS. 

In using this routine: 

• You must have already allocated the color index using ALLOC COLOR 
CELLS or ALLOC COLOR PLANES. These routines allow read and 
write access to the allocated color definition and return the color index. 

• You specify the color index, where you want the color set, in the pixel 
member of the color definition data structure. 

• You specify the color you want by defining the red, green, and blue 
values in the color definition data structure. 

• You specify which of the color definitions will be modified by doing 
a bitwise OR on the flag member with the predefined values DoRed, 
DoGreen, and DoBlue. 

The color that is set in the color map is the one closest to what you 
specified that is supported by the hardware. If the color map specified is 
an installed color map, the new color is visible immediately. 

The identifier of the color map was originally returned by DEFAULT 
COLORMAP, CREATE COLORMAP, or COPY COLORMAP AND FREE. 

VAX C 

X$C_BAD_ACCESS BadAccess 

X$C_BAD_COLOR BadColor 

X$C_BAD_ VALUE BadValue 

Description 

An attempt was made to store into a read
only or unallocated color map entry. 

A value that you specified for a color map 
argument does not name a defined color 
map. 

The index value you specified is not valid for 
the color map. 

12-49 



Color Routines 
STORE COLORS 

STORE COLORS 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

12-50 

Sets more than one color definition, previously allocated, to the closest colors 
supported by the hardware. 

X$STORE_COLORS 
(display, colormap_id, color_defs, num_colors) 

Argument Usage Data Type Access Mechanism 

display identifier uns longword read reference 

colormap_id identifier uns longword read reference 

color_defs array x$color write reference 

num_colors longword longword read reference 

XStoreColors 
(display, colormap_id, color_defs, num_colors) 

XStoreColors(display, colormap_id, color_defs, num_colors) 
Display *display; 
Colormap colormap_id; 
XColor color_defs[]; 
int num_colors; 

display 
The display information originally returned by OPEN DISPLAY. 

colormap_id 
The identifier of the color map where the color definitions will be set. 
The identifier of the color map was originally returned by DEFAULT 
COLORMAP, CREATE COLORMAP, or COPY COLORMAP AND FREE. 

color defs 
The color definition data structure that specifies the desired red, green, 
and blue color values; the color index where the color definition should be 
stored; and the flags member that specifies whether to set the red, green, 
or blue entries in the color map. To set the flags member, do a bitwise OR 
with these predefined members: 



DESCRIPTION 

XERRORS 

VAX c 
X$M_DO_RED Do Red 

X$M_DO_GREEN DoGreen 

X$M_DO_BLUE Do Blue 

Description 

Color Routines 
STORE COLORS 

Modify the red definition 

Modify the green definition 

Modify the blue definition 

The color stored is the closest color supported by the hardware. The color 
definition must be a read/write entry. 

For more information about the color definition data structure, see 
Section 12.2. 

num colors 
The number of color definitions to be set in the color map. This value 
specifies the number of color definition data structures and thereby 
specifies the length of the color_defs array. 

STORE COLORS sets more than one color definition in the specified color 
map. To change only one color, use STORE COLOR. 

To use this routine: 

• You must have already allocated the color indexes using ALLOC 
COLOR CELLS or ALLOC COLOR PLANES. These routines allow 
read and write access to the allocated color definitions and return the 
color indexes. 

• You specify the color indexes where you want the colors set in the pixel 
members of the color definition data structures. If the color map is 
installed, the new colors are visible immediately. 

• You specify the colors you want by defining the red, green, and blue 
values in the color definition data structures. 

• You specify which color definition members to set by doing a bitwise 
OR operation on the flag members with the predefined values do red, 
do green, and do blue. 

The colors that are set in the color definitions are as close to what you 
specified as the hardware supports. 

VAX C 

X$C_BAD_ACCESS BadAccess 

X$C_BAD_COLOR BadColor 

X$C_BAD_ VALUE BadValue 

Description 

An attempt was made to store in to a read
only or unallocated color map entry. 

A value that you specified for a color map 
argument does not name a defined color 
map. 

The index value you specified is not valid for 
the color map. 

12-51 



Color Routines 
STORE NAMED COLOR 

STORE NAMED COLOR 

Sets the specified color map entry to the named color. 

VAX FORMAT X$STORE_NAMED_COLOR 
(display, colormap_id, color_name, pixel, flags) 

argument 
information 

Argument Usage Data Type Access Mechanism 

display identifier uns longword read reference 

colormap_id identifier uns longword read reference 

color_name char string char string read descriptor 

pixel uns longword uns longword read reference 

flags uns longword uns longword read reference 

MIT C FORMAT XStoreNamedColor 

argument 
information 

ARGUMENTS 

12-52 

(display, colormap_id, color_name, pixel, flags) 

XStoreNamedColor(display, colormap_id, color_name, pixel, flags) 
Display *display; 
Colormap colormap_id; 
char *color_name; 
unsigned long pixel; 
int flags; 

display 
The display information originally returned by OPEN DISPLAY. 

colormap_id 
The identifier of the color map where the color will be set. The identifier 
of the color map was originally returned by DEFAULT COLORMAP, 
CREATE COLORMAP, or COPY COLORMAP AND FREE. 

color name 
The name of the new color. The color name specified must be supported by 
the color database. Use the ISO Latin-1 encoding. Case is not significant. 



DESCRIPTION 

XERRORS 

Conly 

Color Routines 
STORE NAMED COLOR 

The color_name argument is a null-terminated character string. 

pixel 
The color index (pixel value) of the entry to be set in the color map. 

flags 
Specifies whether to write the red, green, or blue values. Do a bitwise OR 
operation with these predefined values: 

VAX 

X$M_DO_RED 

X$M_DO_GREEN 

X$M_DO_BLUE 

c 
Do Red 

DoGreen 

Do Blue 

Description 

Use the red member 

Use the green member 

Use the blue member 

STORE NAMED COLOR sets one color definition in the specified color 
map according to the color you specify by name. 

To use this routine: 

• You must have already allocated the color definition using ALLOC 
COLOR CELLS or ALLOC COLOR PLANES. These routines allow 
read and write access to the allocated color definition and return the 
color index. 

• You specify the color index, where you want the color set, in pixel. 

• You specify the color you want in color_name. The name you specify 
must be supported in the color database maintained by the server. The 
color database provides the red, green, and blue values for the named 
color to the specified color definition. 

• You specify which colors to set by doing a bitwise OR operation in the 
flags argument with the predefined values do red, do green, and do 
blue. 

VAX C 

X$C_BAD_ACCESS BadAccess 

X$C_BAD_COLOR BadColor 

X$C_BAD_NAME Bad Name 

X$C_BAD_ VALUE BadValue 

Description 

An attempt was made to store in to a read-only 
or unallocated color map entry. 

A value that you specified for a color map 
argument does not name a defined color map. 

The font or color that you specified does not 
exist. 

The index value you specified is not valid for 
the color map. 

12-53 





13 Font Routines 

This chapter describes routines that perform the following functions: 

• Loading fonts 

• Freeing fonts 

• Defining fonts 

• Getting information about fonts 

For concepts related to font routines and information on how to use font 
routines, see the VMS DECwindows Xlib Programming Volume. 

The routines described in this chapter are listed in Table 13-1. 

Table 13-1 Window and Session Font Routines 

Routine Name Description 

FREE FONT Frees all storage associated with the specified font 
and closes the font. 

FREE FONT INFO 

FREE FONT NAMES 

FREE FONT PATH 

GET CHAR STRUCT 

GET FONT PATH 

GET FONT PROPERTY 

LIST FONT 

LIST FONT WITH INFO 

LIST FONTS 

Frees storage created for font information returned by 
LIST FONTS WITH INFO. This routine is used only 
with the MIT C binding. 

Releases the storage occupied by the specified list of 
font names. This routine is used only with the MIT C 
binding. 

Releases the storage occupied by the specified font 
path. This routine is used only with the MIT C binding. 

Fetches character data structure information from a 
font data structure. This routine is used only with the 
VAX binding. 

Returns the current directory path used by the server 
to locate fonts. 

Returns the value of a specified font property, given 
the property's associated atom and the font data 
structure address. 

Returns the font name of a specified font, if the font 
exists. This routine is used only with the VAX binding. 

Returns the font name of a specified font, if the font 
exists, and information about that font. This routine is 
used only with the VAX binding. 

Returns a list of font names that match the specified 
naming pattern. 

(continued on next page) 

13-1 



13.1 

Font Routines 

Table 13-1 {Cont.) Window and Session Font Routines 

Routine Name 

LIST FONTS WITH INFO 

LOAD FONT 

LOAD QUERY FONT 

QUERY FONT 

SET FONT PATH 

UNLOAD FONT 

Description 

Returns a list of font names of loaded fonts and 
information about those fonts. 

Loads the specified font into server memory. 

Loads a specified font and returns information about it 
in a font data structure. 

Returns information about a loaded font. How the 
returned information is accessed differs depending on 
the binding you use. 

Defines the directory path used by the server to locate 
fonts. 

Closes the specified font and, if no other processes 
are referencing the font, unloads it from server 
memory. 

The following three structures define a font: 

VAX 

X$FONT _STRUCT 

X$CHAR_STRUCT 

X$FONT _PROP 

c 

XFontStruct 

XCharStruct 

XFontProp 

The sections that follow describe these structures. 

Font Data Structure 
The font data structure contains information about a font associated with 
a display. 

The font data structure for the VAX binding is shown in Figure 13-1, and 
members of the data structure are described in Table 13-2. 

Figure 13-1 Font Data Structure {VAX Binding) 

x$a_fstr_ext_ data 0 

x$1_fstr _fid 4 

x$1_fstr_direction 8 

x$1_fstr_min_char_or_byte2 12 

x$1_fstr_max_char_or_byte2 16 

x$1_fstr_min_byte1 20 

(continued on next page) 

13-2 



Font Routines 
13.1 Font Data Structure 

Figure 13-1 (Cont.) Font Data Structure (VAX Binding) 

x$1_fstr_max_byte1 24 

x$1_fstr_all_chars_exist 28 

x$1_fstr_default_char 32 

x$1_fstr _n_properties 36 

x$a_fstr_properties 40 

x$a_fstr_min_bounds 44 

x$a_fstr_max_bounds 48 

x$a_fstr_per_char 52 

x$1_fstr _ascent 56 

x$1_fstr_descent 60 

Table 13-2 Members of the Font Data Structure (VAX Binding) 

Member Name 

X$A_FSTR_EXT_DATA 

X$L_FSTR_FID 

X$L_FSTR_DIRECTION 

X$L_FSTR_MIN_CHAR_OR_BYTE2 

X$L_FSTR_MAX_CHAR_OR_BYTE2 

X$L_FSTR_MIN_BYTE1 

X$L_FSTR_MAX_BYTE1 

X$L_FSTR_ALL_ CHARS _EXIST 

X$L_FSTR_DEFAULT_CHAR 

Contents 

Data used by extensions. 

Identifier of the font. 

Hint about the direction in which the font is painted. The direction 
can be either left to right, specified by the constant x$c_font_left_ 
to_right; or right to left, specified by the constant x$c_font_right_to_ 
left. The core protocol does not support vertical text. 

The first character in the font. 

The last character in the font. 

First row that exists. 

Last row that exists. 

If the value of this member is true, all characters in the array 
pointed to by X$A_FSTR_PER_CHAR have nonzero bounding 
boxes. 

The character used when an undefined or nonexistent character is 
specified. The default character is a 16-bit, not a 2-byte, character. 
For a multiple-row font, X$L_FSTR_DEFAULT_CHAR has byte 1 in 
the most signficant byte and byte 2 in the least significant byte. If 
X$L_FSTR_DEFAULT_CHAR specifies an undefined or nonexistent 
character, the server does not print an undefined or nonexistent 
character. 

(continued on next page) 

13-3 



Font Routines 
13.1 Font Data Structure 

Table 13-2 (Cont.) Members of the Font Data Structure (VAX Binding) 

Member Name 

X$L_FSTR_N_PROPERTIES 

X$A_FSTR_PROP ERTi ES 

X$R_FSTR_MIN_BOUNDS 

X$R_FSTR_MAX_BOUNDS 

X$A_FSTR_PER_CHAR 

X$L_FSTR_ASCENT 

X$L_FSTR_DESCENT 

Contents 

The number of properties associated with the font. 

The address of an array of font property structures that define font 
properties. 

The minimum metrics values of all the characters in the font. The 
metrics define the left and right bearings, ascent and descent, and 
width of characters. 

For a description of the use of X$R_FSTR_MIN_BOUNDS, see 
X$R_FSTR_MAX_BOUNDS. 

The maximum metrics values of all the characters in the font. 

Using the values of X$R_FSTR_MIN_BOUNDS and X$R_FSTR_ 
MAX_BOUNDS, clients can compute the bounding box of a font. 
The bounding box of the font is determined by first computing the 
minimum and maximum value of the left bearing, right bearing, 
ascent, descent, and width of all characters, and then subtracting 
minimum from maximum values. The upper left coordinate of the 
font bounding box (x,y) is defined as follows: 

x + X$R_FSTR_MIN_BOUNDS.X$W_CHAR_LBEARING, 
y - X$R_FSTR_MAX_BOUNDS.X$W_CHAR_ASCENT 

The width of the font bounding box is defined as follows: 

X$R_FSTR_MAX_BOUNDS.X$W_CHAR_RBEARING -
X$R_FSTR_MIN_BOUNDS.X$W_CHAR_LBEARING 

Note that this is not the width of a font character. 

The height is defined as follows: 

X$R_FSTR_MAX_BOUNDS.X$W_CHAR_ASCENT + 
X$R_FSTR_MAX_BOUNDS.X$W_CHAR_DESCENT 

The address of an array of character structures that define each 
character in the font. For a fixed font the value of this member is 
null. 

The distance from the baseline to the top of the bounding box. With 
X$L_FSTR_DESCENT, X$L_FSTR_ASCENT is used to determine 
line spacing. Specific characters in the font may extend beyond the 
font ascent. 

The distance from the baseline to the bottom of the bounding 
box. With X$L_FSTR_ASCENT, X$L_FSTR_DESCENT is used to 
determine line spacing. Specific characters in the font may extend 
beyond the font descent. 

The font data structure for the MIT C binding is shown in Figure 13-2, 
and members of the data structure are described in Table 13-3. 

13-4 



Font Routines 
13.1 Font Data Structure 

Figure 13-2 Font Data Structure (MIT C binding) 

typedef struct 
XExtData *ext_data; 
Font fid; 
unsigned direction; 
unsigned min_char_or_byte2; 
unsigned max char or byte2; 
unsigned min=bytel; -
unsigned max bytel; 
Bool all=chars_exist; 
unsigned default_char; 
int n_properties; 
XFontProp *properties; 
XCharStruct min_bounds; 
XCharStruct max_bounds; 
XCharStruct *per_char; 
int ascent; 
int descent; 

XFontStruct; 

Table 13-3 Members of the Font Data Structure (MIT C Binding) 

Member Name Contents 

Data used by extensions. 

Identifier of the font. 

ext_ data 

fid 

direction Hint about the direction the font is painted. The direction 
can be either left to right, specified by the constant 
FontleftToRight; or right to left, specified by the constant 
FontRightToleft. The core protocol does not support vertical 
text. 

min_char_or_byte2 

max_char_or_byte2 

min_byte1 

max_byte1 

all_chars_exist 

default_ char 

n_properties 

properties 

The first character in the font. 

The last character in the font. 

First row that exists. 

Last row that exists. 

If the value of this member is true, all characters in the array 
pointed to by per_char have nonzero bounding boxes. 

The character used when an undefined or nonexistent 
character is printed. The default character is a 16-bit, not a 
2-byte, character. For a multiple-row font, default_char has 
byte 1 in the most signficant byte and byte 2 in the least 
significant byte. If default_char specifies an undefined or 
nonexistent character, the server does not print an undefined 
or nonexistent character. 

The number of properties associated with the font. 

The address of an array of additional font properties. 

(continued on next page) 

13-5 



13.2 

Font Routines 
13.1 Font Data Structure 

Table 13-3 (Cont.) Members of the Font Data Structure (MIT C Binding) 

Member Name 

min_bounds 

max_bounds 

per_char 

ascent 

descent 

Contents 

The minimum bounding box value of all the elements in the 
array of character structures that define each character in 
the font. For a description of the use of min_bounds see 
max_ bounds. 

The maximum metrics values of all the characters in the font. 

Using the values of min_bounds and max_bounds, clients 
can compute the bounding box of the font. The bounding 
box of the font is determined by first computing the minimum 
and maximum values of the left bearing, right bearing, width, 
ascent, and descent of all characters, and then subtracting 
minimum from maximum values. The upper-left coordinate of 
the bounding box (x,y) is defined as follows: 

x + min_bounds.lbearing, y - max_bounds.ascent 

The width of the font bounding box is defined as follows: 

max_bounds.rbearing - min_bounds.lbearing 

Note that this is not the width of a character in the font. 

The height is defined as follows: 

max bounds.ascent +max bounds.descent - -
The address of an array of character structures that define 
each character in the font. 

The distance from the baseline to the top of the bounding 
box. With descent, ascent is used to determine line spacing. 
Specific characters in the font may extend beyond the font 
ascent. 

The distance from the baseline to the bottom of the bounding 
box. With ascent, descent is used to determine line spacing. 
Specific characters in the font may extend beyond the font 
descent. 

Character Data Structure 

13-6 

The character data structure for the VAX binding is shown in Figure 13-3, 
and members of the data structure are described in Table 13-4. 



Figure 13-3 Character Data Structure (VAX Binding) 

x$w _char _rbearing 

x$w_char_ascent 

x$w_char_attributes 

Font Routines 
13.2 Character Data Structure 

x$w _char _lbearing 0 

x$w_char_width 4 

x$w _char_ descent 8 

Table 13-4 Members of the Character Data Structure (VAX Binding) 

Member Name 

X$W_CHAR_LBEARING 

X$W_ CHAR_RBEARING 

X$W_CHAR_WIDTH 

X$W_CHAR_ASCENT 

X$W_CHAR_DESCENT 

X$W_ CHAR_ATTRIBUTES 

Contents 

Distance from the origin to the left edge of the 
bounding box. When the value of this member 
is zero, the server draws only pixels whose 
x-coordinates are less than the value of the 
origin x-coordinate. 

Distance from the origin to the right edge of 
the bounding box. 

Distance from the current origin to the origin 
of the next character. Text written right to left, 
such as Arabic, uses a negative width to place 
the next character to the left of the current 
origin. 

Distance from the baseline to the top of the 
bounding box. 

Distance from the baseline to the bottom of 
the bounding box. 

Attributes defined in the bitmap distribution 
format file. A character is not guaranteed to 
have any attributes. 

The character data structure for the MIT C binding is shown in 
Figure 13-4, and members of the data structure are described in 
Table 13-5. 

13-7 



13.3 

Font Routines 
13.2 Character Data Structure 

Figure 13-4 Character Data Structure (MIT C Binding) 

typedef struct 
short lbearing; 
short rbearing; 
short width; 
short ascent; 
short descent; 
unsigned short attributes; 

XCharStruct; 

Table 13-5 Members of the Character Data Structure (MIT C Binding) 

Member Name 

I bearing 

rbearing 

width 

ascent 

descent 

attributes 

Contents 

Distance from the origin to the left edge of the bounding box. 
When the value of this member is zero, the server draws only 
pixels whose x-coordinates are less than the value of the origin 
x-coordinate. 

Distance from the origin to the right edge of the bounding box. 

Distance from the current origin to the origin of the next character. 
Text written right to left, such as Arabic, uses a negative width to 
place the next character to the left of the current origin. 

Distance from the baseline to the top of the bounding box. 

Distance from the baseline to the bottom of the bounding box. 

Attributes of the character defined in the bitmap distribution format 
(BDF) file. A character is not guaranteed to have any attributes. 

Font Property Data Structure 

13-8 

Any number of properties or no properties at all may be associated with 
a font. If properties are associated with a font, they are defined in a font 
property data structure. 

Property values can be obtained with the QUERY FONT, LOAD QUERY 
FONT, and GET FONT PROPERTY routines. Whether a property is 
signed or unsigned must be determined from prior knowledge of the 
property. 

The font property data structure for the VAX binding is shown in 
Figure 13-5, and members of the data structure are described in 
Table 13-6. 



13.4 

Font Routines 
13.3 Font Property Data Structure 

Figure 13-5 Font Property Data Structure {VAX Binding) 

Font Routines 

x$1_fntp_name 0 

x$1_fntp_card32 4 

Table 13-6 Members of the Font Property Data Structure {VAX Binding) 

Member Name Contents 

X$L_FNTP _NAME The string of characters that names the property 

X$L_FNTP _CARD32 A 32-bit value that defines the font property 

The font property data structure for the MIT C binding is shown 
in Figure 13-6, and members of the data structure are described in 
Table 13-7. 

Figure 13-6 Font Property Data Structure {MIT C Binding) 

typedef struct { 
Atom name; 
unsigned long card32; 

} XFontProp; 

Table 13-7 Members of the Font Property Data Structure {MIT C 
Binding) 

Member Name 

name 

card32 

Contents 

The string of characters that names the property 

A 32-bit value that defines the font property 

The following pages describe the Xlib font routines. 

13-9 



Font Routines 
FREE FONT 

FREE FONT 

VAX FORMAT 

argument 
information 

Frees all storage associated with the specified font and closes the font. 

X$FREE_FONT (display, font_struct) 

Argument Usage Data Type Access Mechanism 

display identifier uns longword read reference 

font_struct record x$font_struct read reference 

MIT C FORMAT XFreeFont (display, font_struct) 

argument 
information 

ARGUMENTS 

XFreeFont(display, font struct) 
Display *display;
XFontStruct *font_struct; 

display 
The display information originally returned by OPEN DISPLAY. 

font struct 
The address of a structure that holds font information. For information 
about the font data structure, see Section 13.3. 

DESCRIPTION FREE FONT frees all storage used by the font data structure, effectively 
closing the font. When a font is no longer needed by an application, the 
application should call FREE FONT. The associated font identifier is 
invalid after the storage is freed and should no longer be referenced. 

XERRORS 
VAX C 

X$C_BAD_FONT BadFont 

13-10 

Description 

A value that you specified for a font argument 
does not name a defined font (or, in some 
cases, a graphics context). 



Font Routines 
FREE FONT INFO 

FREE FONT INFO 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Frees storage created for font information returned by LIST FONTS WITH 
INFO. This routine is used only with the MIT C binding. 

XFreeFontlnfo 
(font_names_ptr, info_addr, count) 

XFreeFontinfo(font_names_ptr, info_addr, count) 
char **font_names_ptr; 
XFontStruct *info_addr; 
int count; 

font_names _ptr 
A pointer to the list of font names whose storage is to be freed. The 
pointer is returned by LIST FONTS WITH INFO. 

info_addr 
The address of an array of font data structures containing information 
related to the fonts listed by font_names_ptr. The address is returned by 
LIST FONTS WITH INFO. 

count 
The actual number of font names. This value is returned by LIST FONTS 
WITH INFO. 

DESCRIPTION FREE FONT INFO frees memory used to store font information returned 
by LIST FONTS WITH INFO. 

13-11 



Font Routines 
FREE FONT NAMES 

FREE FONT NAMES 

Releases the storage occupied by the specified list of font names. This 
routine is used only with the MIT C binding. 

MIT C FORMAT XFreeFontNames (list_addr) 

argument 
information 

ARGUMENTS 

DESCRIPTION 

13-12 

XFreeFontNames(list addr) 
char *list_addr[]; 

list addr 
A pointer to an array of null-terminated string pointers. The pointer is 
returned by LIST FONTS. 

FREE FONT NAMES releases the storage occupied by the specified list of 
font names. 



Font Routines 
FREE FONT PATH 

FREE FONT PATH 

Releases the storage occupied by the specified font path. This routine is used 
only with the MIT C binding. 

MIT C FORMAT XFreeFontPath (lisLaddr) 

argument 
information 

ARGUMENTS 

DESCRIPTION 

XFreeFontPath(list_addr) 
char **list_addr; 

list addr 
A pointer to an array of null-terminated string pointers. The pointer is 
returned by GET FONT PATH. 

FREE FONT PATH releases the storage occupied by the specified font 
path. 

13-13 



Font Routines 
GET CHAR STRUCT 

GET CHAR STRUCT 

VAX FORMAT 

argument 
information 

ARGUMENTS 

Fetches character structure information from a font data structure. This 
routine is used only with the VAX binding. 

X$GET_CHAR_STRUCT 
(font_info, char_code, char_struc) 

Argument Usage Data Type 

font_info record x$font_ struct 

char_code longword uns longword 

char_struc record x$char_struct 

font info 

Access Mechanism 

read reference 

read reference 

read reference 

The address of the font data structure that holds the character information 
to be accessed. See Section 13.3 for a description of the font data structure. 

char code 
The ASCII value of the character for which information is returned. 

char struc 
The address of a structure that holds information about the specified 
character. The character data structure is described in Section 13.2. 

DESCRIPTION GET CHAR STRUCT returns information about a particular character 
in a font, given the address of the font data structure that contains the 
information and the ASCII value of the character. 

13-14 



Font Routines 
GET FONT PATH 

GET FONT PATH 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

ARGUMENTS 

Returns the current directory path used by the server to locate fonts. 

status_return = X$GET_FONT_PATH 
(display, num_paths_return, directories_return 
[,len_return]) 

Argument Usage Data Type Access Mechanism 

status_return longword uns longword 

display identifier uns longword 

num_paths_return longword uns longword 

directories_return char string char string 

len_return word uns word 

directories_return = XGetFontPath 
(display, num_paths_return) 

write 

read 

read 

write 

write 

char **XGetFontPath(display, num_paths_return) 
Display *display; 
int *num_paths_return; 

status_return (VAX only) 

value 

reference 

reference 

descriptor 

reference 

Return value that specifies whether the routine completed successfully. 

directories_return (MIT Conly) 
A pointer to a string array of null-terminated directory names that make 
up the current font directory path. 

display 
The display information originally returned by OPEN DISPLAY. 

num_paths_return 
Number of strings that make up the directory path. 

directories_return (VAX only) 
Comma-separated list of directories that make up the current font 
directory path. 

13-15 



Font Routines 
GET FONT PATH 

len_return (VAX only) 
The length of the returned string. This argument is optional. 

DESCRIPTION GET FONT PATH returns the current directory path used by the server 
when it is locating a font. A directory path may be made up of one or more 
directory names. 

13-16 

You can change the font directory path using the SET FONT PATH 
routine. 

Use the FREE FONT PATH routine to free the data in the font path when 
the data is no longer needed. 



Font Routines 
GET FONT PROPERTY 

GET FONT PROPERTY 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

ARGUMENTS 

Returns the value of a specified font property, given the property's associated 
atom and the font data structure address. 

status_return = X$GET _FONT _PROPERTV 
(font_struct, atom_id, value_return) 

Argument Usage Data Type Access 

status_return cond_value uns longword write 

font_struct record x$font_struct read 

atom_id identifier uns longword read 

value_return longword longword write 

status_return = XGetFontProperty 
(font_struct, atom_id, value_return) 

Mechanism 

value 

reference 

reference 

value 

Bool XGetFontProperty(font_struct, atom_id, value_return) 
XFontStruct *font_struct; 
Atom atom_id; 
unsigned long *value_return; 

status return 
Return value that specifies whether the routine completed successfully. 

font struct 
Address of the font data structure, returned by the LOAD FONT and 
FONT routines. The font data structure contains a pointer to font property 
information. 

atom_id 
Identifier of the atom associated with the property you want returned. 

value return 
The returned property value. 

13-17 



Font Routines 
GET FONT PROPERTY 

DESCRIPTION GET FONT PROPERTY returns the value of a font property, given the 
associated atom and the address of the font data structure. 

13-18 

A set of predefined atoms exists for font properties in the <Xll/Xatom.h> 
library. For a complete description of predefined atoms, see Chapter 4. 



LIST FONT 

VAX FORMAT 

argument 
information 

RETURNS 

ARGUMENTS 

Font Routines 
LIST FONT 

Returns the name of a specified font, if the font exists. This routine is used 
only with the VAX binding. 

status return = X$LIST FONT 
(display, pattern_name, context, name [,len_return]) 

Argument Usage Data Type Access Mechanism 

status _return longword longword write value 

display identifier uns longword read reference 

pattern_name char string char string read descriptor 

context context uns longword modify reference 

name char string char string write descriptor 

len_return word uns word write reference 

status return 
Return value that states whether or not the routine completed successfully. 
This argument returns one of the following values: 

Value 

1 

X$_NOTFOUND 

X$_NOMORE 

LIB$STRTRU 

display 

Description 

A font name matching the pattern has been returned. 

No fonts match the specified pattern. 

No more fonts match the pattern. 

A matching font name was returned but the fixed length 
destination string could not contain all of the characters 
copied from the font name. 

The display information originally returned by OPEN DISPLAY. 

pattern_name 
The address of a descriptor that points to a string. The string specifies 
a pattern that the returned font name must match. Both wildcard 
characters are acceptable-use an asterisk ( * ) for any number of 
characters and use a question mark ( ? ) for a single character. 

13-19 



Font Routines 
LIST FONT 

context 
The address of a longword that stores the state of the search. The 
argument should not be modified if repetitive searches are desired. 

You must initialize context to 0 before starting a search. 

name 
The address of a descriptor that points to a character string. The character 
string contains the returned font name. 

len_return 
The length of the returned string. 

DESCRIPTION LIST FONT returns a single font name that matches the string specified 
by the pattern_name argument. 

13-20 



Font Routines 
LIST FONT WITH INFO 

LIST FONT WITH INFO 

VAX FORMAT 

argument 
information 

RETURNS 

ARGUMENTS 

Returns the name of a specified font, if the font exists, and information about 
that font. This routine is used only with the VAX binding. 

status return = X$LIST FONT WITH INFO 
(display, pattern_name, context, font name_return 
[,len_return], font_struct_return) 

Argument Usage Data Type Access Mechanism 

status_return longword longword write value 

display identifier uns longword read reference 

pattern_ name char_string character string read descriptor 

context context uns longword modify reference 

font_name_return char string char string write descriptor 

len_return word uns word write reference 

font_ struct_retu rn record x$font_struct write reference 

status return 
Return value that states whether or not the routine completed successfully. 
This argument returns one of the following values: 

Value 

1 

X$_NOTFOUND 

X$_NOMORE 

LIB$STRTRU 

display 

Description 

A font name matching the pattern has been returned. 

No fonts match the specified pattern. 

No more fonts match the pattern. 

A matching font name was returned but the fixed length 
destination string could not contain all of the characters 
copied from the font name. 

The display information originally returned by OPEN DISPLAY. 

pattern_ name 
The address of a descriptor that points to a string. The string specifies 
a pattern that the returned font name must match. Both wildcard 
characters are acceptable-use an asterisk ( * ) for any number of 
characters and use a question mark ( ? ) for a single character. 

13-21 



Font Routines 
LIST FONT WITH INFO 

context 
The address of a longword that stores the state of the search. The 
argument should not be modified if repetitive searches are desired. 

You must initialize context to 0 before starting a search. 

font name return - -
The address of a descriptor that points to a character string. The character 
string contains the returned font name. 

/en return 
The length of the returned string. 

font struct return - -
The address of the font data structure associated with the font. 

DESCRIPTION LIST FONT WITH INFO returns a single font name that matches the 
string specified by the pattern_name argument, as well as information 
associated with that font. 

13-22 



LIST FONTS 

Font Routines 
LIST FONTS 

Returns a list of font names that match the specified naming pattern. 

VAX FORMAT status_return = X$LIST_FONTS 

argument 
information 

(display, pattern_name, match_limit, 
actuaLcounLreturn, names_return [,len_return]) 

Argument Usage Data Type Access Mechanism 

status_return cond_value uns longword write value 

display identifier uns longword read reference 

pattern_name char string char string read descriptor 

match_limit longword longword read reference 

actual_ count_retu rn longword longword write value 

names_return char string char string write descriptor 

len_return word uns word write reference 

MIT C FORMAT font_ptr = XListFonts 

argument 
information 

RETURNS 

(display, pattern_name, match_limit, 
actuaLcounLreturn) 

char **XListFonts(display, pattern_name, match_limit, 
actual_count_return) 

Display *display; 
char *pattern name; 
int match_limit; 
int *actual_count_return; 

status_return (VAX only) 
Return value that specifies whether the routine completed successfully. 

font_ptr (MIT C only) 
A pointer to an array of available font names. 

13-23 



Font Routines 
LIST FONTS 

ARGUMENTS display 
The display information originally returned by OPEN DISPLAY. 

pattern_ name 
A character string specifying a pattern that the returned font names 
must match. Use ISO Latin-1 encoding to specify the string. Both 
wildcard characters are acceptable--use an asterisk ( * ) for any number of 
characters and use a question mark ( ? ) for a single character. 

match limit 
The number of font names in the requested list. 

actual_ count_ return 
The actual number of font names returned. 

names_return (VAX only) 
A character string containing all the returned font names separated by 
commas. 

len_return (VAX only) 
The length of the returned string of font names. This argument is 
optional. 

DESCRIPTION LIST FONTS returns a list of font names that match the string pattern 
defined by pattern_name. The number of font names returned is limited 
to the value specified by actual_count_return. 

13-24 

When finished with the font name list, a client should free server memory 
with FREE FONT NAMES. 



Font Routines 
LIST FONTS WITH INFO 

LIST FONTS WITH INFO 

Returns a list of names of loaded fonts and information about those fonts. 

FORMAT status_return = X$LIST_FONTS_WITH_INFO 

argument 
information 

(display, pattern_name, maxnames, counLreturn, 
fonLnames_return [,len_return] [,info_return] 
[,info_size] [,info_buft_return]) 

Argument Usage Data Type Access Mechanism 

status_return cond value uns longword write value 

display identifier uns longword read reference 

pattern_name char string char string read descriptor 

maxnames longword longword read reference 

count_return longword longword write reference 

font_names_return char string char string write descriptor 

len_return word uns word write reference 

info_return address uns longword read reference 

info_size longword longword read reference 

info_buff_return v uns longword uns longword write reference 

MIT C FORMAT font_names_ptr = XListFontsWithlnfo 

argument 

(display, pattern_name, maxnames, counLreturn, 
fonLnames_return) 

information char **XListFontsWithinfo(display, pattern_name, maxnames, 

RETURNS 

Display *display; 
char *pattern_name; 
int maxnames; 
int *count_return; 

count_return, font_names __ return) 

XFontStruct **font names_return; 

status_return (VAX only) 
Return value that specifies whether the routine completed successfully. 

font_names_ptr (MIT Conly) 
A pointer to the address of a list of font names. 

13-25 



Font Routines 
LIST FONTS WITH INFO 

ARGUMENTS 

DESCRIPTION 

13-26 

display 
The display information originally returned by OPEN DISPLAY. 

pattern_ name 
A null-terminated character string specifying a pattern that the returned 
font names must match. Both wildcard characters are acceptable-use an 
asterisk ( * ) for any number of characters and use a question mark ( ? ) for 
a single character. 

maxnames 
The maximum number of font names to be returned. 

count return 
The actual number of matched font names. 

font_names_return 
The virtual address of a pointer to an array of font data, returned by the 
routine and residing in space reserved by Xlib. 

len_return (VAX only) 
The length of the string of font names returned in font_names_return. 

info_return (VAX only) 
The virtual address of a pointer to an array of font information data, 
returned by the routine and residing in space reserved by Xlib. 

info_size (VAX only) 
The size of the buffer specified in info_buff_return. 

info_buff_return (VAX only) 
A pointer to a data buffer, residing in space you have reserved, where each 
entry is one font information element. The length of the buffer is specified 
by info_size. The property data is returned by the routine. 

LIST FONTS WITH INFO returns a list of font names that match the 
pattern given in the pattern_name argument. The routine also returns 
information associated with each font that matches the pattern. 

The list of names returned is limited to the number defined with 
maxnames. 

To specify arguments that describe the font information data returned by 
the routine, use info_ret~rn to access data owned by Xlib, or info_size 
and info_buff_return to obtain a private copy of the data. 

The information returned for each font is identical to what LOAD QUERY 
FONT returns, except that the character metrics are not returned. 



LOAD FONT 

VAX FORMAT 

argument 
information 

Loads the specified font into server memory. 

Font Routines 
LOAD FONT 

fonLid = X$LOAD_FONT (display, fonLname) 

Argument Usage Data Type Access Mechanism 

font_id identifier uns longword write value 

display identifier uns longword read reference 

font_ name char string char string read descriptor 

MIT C FORMAT fonLid = XLoadFont (display, font_name) 

argument 
information 

RETURNS 

ARGUMENTS 

font_id XLoadFont(display, font_name) 
Display *display; 
char *name; 

font id 
The font identifier returned by the server after the specified font is loaded. 
This identifier is used in subsequent routines that manipulate the font. 

If the specified font cannot be loaded, the server returns a zero in place of 
the font identifier. Before attempting to use an identifier, an application 
should test the validity of the identifier. 

display 
The display information originally returned by OPEN DISPLAY. 

font name 
The name of the font to be loaded into server memory. 

DESCRIPTION LOAD FONT loads the specified font into server memory and returns an 
identifier for the font. A font must be loaded in server memory before it 
can be used by any subsequent routines. 

When a font is no longer needed, remove it from server memory using the 
CLOSE FONT routine. 

13-27 



Font Routines 
LOAD FONT 

XERRORS 

13-28 

VAX 

X$C _BAD _ALLOC 

X$C _BAD _NAME 

c 
BadAlloc 

Bad Name 

Description 

The server did not allocate the requested 
resource for any cause. 

The font or color that you specified does not 
exist. 



Font Routines 
LOAD QUERY FONT 

LOAD QUERY FONT 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

ARGUMENTS 

Loads a specified font and returns information about it in a font data structure. 

status_return = X$LOAD _ QUERV _FONT 
(display, font_name, font_struct_return) 

Argument Usage Data Type 

status _return cond_value uns longword 

display identifier uns longword 

font_ name char string char string 

to nt_ struct_retu rn record x$font_ struct 

font_struct_return = XloadQueryFont 
(display, font_name) 

Access 

write 

read 

read 

write 

XFontStruct *XLoadQueryFont(display, font_name) 
Display *display; 
char *font_name; 

status_return (VAX only) 

Mechanism 

value 

reference 

descriptor 

reference 

Return value that specifies whether the routine completed successfully. 

font_struct_return (MIT Conly) 
A pointer to the font data structure associated with the specified font. 
This pointer can be used to access any of the information in the font data 
structure, as shown in Section 13.3. 

If the information cannot be returned, the server returns a null value. 

display 
The display information originally returned by OPEN DISPLAY. 

font_ name 
The name of the font to be accessed for information. 

font_struct_return (VAX only) 
The address of the font data structure associated with the font. 

13-29 



Font Routines 
LOAD QUERY FONT 

DESCRIPTION LOAD QUERY FONT loads a specified font into server memory and 
returns information about the font in the font data structure shown in 
Section 13.3. If the font does not exist, LOAD QUERY FONT returns a 
null value. 

XERRORS 
VAX 

X$C_BAD _ALLOC 

13-30 

c 
BadAlloc 

Description 

The server did not allocate the requested 
resource for any cause. 



Font Routines 
QUERY FONT 

QUERY FONT 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

ARGUMENTS 

Returns information about an available font. 

status_return = X$QUERV _FONT 
(display, font_id, font_struct_return) 

Argument Usage Data Type 

status_return cond_value uns longword 

display identifier uns longword 

font_id identifier uns longword 

font_ struct_retu rn record x$fo nt_ struct 

font_struct_return = XQueryFont 
(display, font_id) 

XFontStruct *XQueryFont(display, font_id) 
Display *display; 
XID font_id; 

status_return (VAX only) 

Access Mechanism 

write value 

read reference 

read reference 

write reference 

Return value that specifies whether the routine completed successfully. 

font_struct_return (MIT Conly) 
A pointer to the font data structure associated with the specified font. 
This pointer can be used to access any of the information in the font data 
structure, as shown in Section 13.3. 

If the information cannot be returned, the server returns a null value. 

display 
The display information originally returned by OPEN DISPLAY. 

font_ id 
The identifier that specifies the font being queried. A font identifier is 
returned by LOAD FONT or LOAD QUERY FONT. Additionally, graphics 
contexts identify fonts. If you want to use the font specified in the graphics 
context, use the relevant identifier returned by CREATE GC. 

13-31 



Font Routines 
QUERY FONT 

font_struct_return (VAX only) 
The address of the font data structure associated with the font. To obtain 
character structure information from the font data structure, use the GET 
CHAR STRUCT routine after calling LOAD QUERY FONT. 

DESCRIPTION QUERY FONT returns information associated with a specified font that 
has been loaded into server memory with LOAD FONT. Access to font 
information varies according to the type of binding used. 

13-32 



Font Routines 
SET FONT PATH 

SET FONT PATH 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Defines the directory path used by the server to locate fonts. 

X$SET _FONT _PATH 
(display, directory_names) 

Argument Usage Data Type 

display identifier uns longword 

di rectory_ names char. string char string 

XSetFontPath 

Access 

read 

read 

(display, directory_names, num_dirs) 

XSetFontPath(display, directory_names, num_dirs) 
Display *display; 
char **directory_names; 
int num_dirs; 

display 

Mechanism 

reference 

descriptor 

The display information originally returned by OPEN DISPLAY. 

directory_names 
A pointer to a character string that specifies the directory path used to 
look for the font. 

Specifying no directory path restores the server's default path. 

num_dirs (MIT Conly) 
Number of directories that make up the directory path. 

DESCRIPTION SET FONT PATH defines the directory path when it is locating a font, for 
example, during a LOAD FONT routine. 

Call SET FONT PATH before loading a font into server memory. Note 
that SET FONT PATH defines the directory font path for all clients. A 
directory path consists of one or more directory names. If you place fonts 
in a directory other than the default, specify the directory path using SET 
FONT PATH before you try to access the font. 

When executed, SET FONT PATH :flushes all cached information about 
fonts for which no explicit resource identifiers are allocated. 

13-33 



Font Routines 
SET FONT PATH 

XERRORS 

13-34 

VAX 

X$C_BAD_VALUE 

c 
BadValue 

Description 

Some numeric values fall outside the range 
of values accepted by the request. Unless a 
specific range is specified for an argument, 
the full range defined by the argument's type 
is accepted. Any argument defined as a set 
of alternatives can generate this error. 



Font Routines 
UNLOAD FONT 

UNLOAD FONT 

FORMAT 

argument 
information 

Closes the specified font and, if no other processes are referencing the font, 
unloads it from server memory. 

X$UNLOAD_FONT (display, font_id) 

Argument 

display 

font_id 

Usage 

identifier 

identifier 

Data Type 

uns longword 

uns longword 

Access 

read 

read 

Mechanism 

reference 

reference 

MIT C FORMAT XUnloadFont (display, font_id) 

argument 
information 

ARGUMENTS 

XUnloadFont(display, font_id) 
Display *display; 
Font font_id; 

display 
The display information originally returned by OPEN DISPLAY. 

font id 
The identifier of the font to be closed. The font identifier is returned by 
the GET FONT or LOAD QUERY FONT routines when the font is loaded. 

DESCRIPTION UNLOAD FONT closes the specified font and, if no other processes are 
referencing the font, unloads it from server memory. 

XERRORS 

Use UNLOAD FONT when your application no longer needs the font. 
Once unloaded, the font should not be referenced. 

VAX C 

X$C_BAD_FONT BadFont 

Description 

A value that you specified for a font argument 
does not name a defined font (or, in some 
cases, a graphics context). 

13-35 





14 

14.1 

Cursor Routines 

Cursor Routines 

This chapter describes routines that perform the following functions: 

• Creating a cursor 

• Changing a cursor 

• Destroying a cursor 

• Associating a cursor with a window 

For concepts related to cursor routines and information on how to use 
cursor routines, see the VMS DECwindows Xlib Programming Volume. 

The routines described in this chapter are listed in Table 14-1. 

Table 14-1 Window and Session Cursor Routines 

Routine Name Description 

CREATE FONT CURSOR 

CREATE GLYPH CURSOR 

CREATE PIXMAP CURSOR 

DEFINE CURSOR 

FREE CURSOR 

QUERY BEST CURSOR 

RECOLOR CURSOR 

UNDEFINE CURSOR 

Creates a cursor from a library of standard 
fonts. 

Creates a cursor using font glyphs. 

Creates a cursor from two pixmaps. One 
pixmap defines the shape of the cursor. 
Another pixmap specifies the mask that 
determines how the cursor is displayed on the 
screen. 

Defines the cursor to be displayed when the 
mouse is mapped to a window. 

Deletes the cursor identifier specified by the 
user and releases storage allocated for the 
cursor. 

Determines the largest size cursor, supported 
by display hardware, that most closely 
matches the cursor specified by a user. 

Changes the color of a cursor specified by the 
user. If the cursor is currently displayed, the 
change is immediately visible. 

Removes the association of a cursor with a 
window. 

The following pages describe the Xlib cursor routines. 

14-1 



Cursor Routines 
CREATE FONT CURSOR 

CREATE FONT CURSOR 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

ARGUMENTS 

Creates a cursor from a library of standard fonts. 

cursor_id_return = X$CREATE_FONT _CURSOR 
(display, cursor_shape) 

Argument Usage Data Type Access 

cursor_id_return identifier uns longword write 

display identifier uns longword read 

cursor_shape longword uns longword read 

cursor id return = XCreateFontCursor 
(display, cursor_shape) 

Cursor XCreateFontCursor(display, cursor_shape) 
Display *display; 
unsigned int cursor_shape; 

cursor id return 

Mechanism 

value 

reference 

reference 

The cursor identifier returned by the server after the cursor is created. 
This identifier is used in subsequent routines that manipulate the cursor. 

display 
The display information originally returned by OPEN DISPLAY. 

cursor_shape 
The glyph used to create the cursor. 

DESCRIPTION CREATE FONT CURSOR creates a cursor from a library of standard fonts, 
Xll \ cursorfont.h, and returns a cursor identifier. For a description of the 
library of standard fonts, see the VMS DECwindows Xlib Programming 
Volume. 

14-2 

Specify the cursor shape with the cursor_shape argument, which 
uniquely identifies a glyph within the standard font library. 



XERRORS 
VAX c 
X$C_BAD _ALLOC BadAlloc 

X$C_BAD_VALUE BadValue 

Cursor Routines 
CREATE FONT CURSOR 

Description 

The server did not allocate the requested 
resource for any cause. 

Some numeric values fall outside the range 
of values accepted by the request. Unless a 
specific range is specified for an argument, 
the full range defined by the argument's type 
is accepted. Any argument defined as a set 
of alternatives can generate this error. 

14-3 



Cursor Routines 
CREATE GLYPH CURSOR 

CREATE GLYPH CURSOR 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

14-4 

Creates a cursor using font glyphs. 

cursor_id_return = X$CREATE_ GLYPH_ CURSOR 
(display, src_font_id, mask_font_id, src_char, 
mask_char, foreground_color, background_color) 

Argument Usage Data Type Access Mechanism 

cursor_id_return identifier uns longword write value 

display identifier uns longword read reference 

src_font_id identifier uns longword read reference 

mask_font_id identifier uns longword read reference 

src_char longword uns longword read reference 

mask_char longword uns longword read reference 

foreground_color record x$color read reference 

background_color record x$color read reference 

cursor_id_return = XCreateGlyphCursor 
(display, src_font_id, mask_font_id, src_char, 
mask_char, foreground_color, background_color) 

Cursor XCreateGlyphCursor(display, src_font_id, mask_font_id, 
src_char, mask_char, foreground_color, 
background_color) 

Display *display; 
Font src font id, mask font id; 
unsigned-int src_char,-mask=char; 
XColor *foreground_color; 
XColor *background_color; 

cursor id return 
The cursor identifier returned by the server after the cursor is created. 
This identifier is used in subsequent routines that manipulate the cursor. 



ARGUMENTS 

DESCRIPTION 

Cursor Routines 
CREATE GLYPH CURSOR 

display 
The display information originally returned by OPEN DISPLAY. 

src font id - -
Identifier of the source font that includes the glyph used to create the 
cursor. The identifier is returned by LOAD FONT. 

mask_font_id 
Identifier of the font containing masks that control how the cursor is 
displayed on the screen. The identifier is returned by LOAD FONT, or 
None. 

src char 
The glyph that defines the cursor. 

mask char 
The mask used to control how the glyph is displayed on the screen. The 
set bits of the mask determine which pixels of the glyph are displayed. 

foreground_color 
Red, green, and blue values of the cursor foreground. 

See Chapter 12 for an illustration of the color definition data structure. 

background_color 
Red, green, and blue values of the cursor background. 

See Chapter 12 for an illustration of the color definition data structure. 

CREATE GLYPH CURSOR creates a cursor from a font glyph and returns 
a unique cursor identifier. 

Specify the character to be used to create the cursor with the src_font_ 
id and src_char arguments. The src_font_id argument identifies a font 
data structure of which the character is a member; the src_char argument 
identifies the character within the font data structure that you want to 
use as a cursor. The src_char must be a defined glyph in src_font_id. 

To control how the glyph is displayed on the screen, specify a mask 
using the mask_font_id and mask_char arguments. The mask_font_ 
id argument identifies a font data structure that contains masks. The 
mask_char argument identifies the mask you want to use to modify the 
character. The mask_char must be a defined glyph in the mask_font_id. 
The mask_font_id could be None, and all pixels of the source would be 
displayed. 

Red, green, and blue values must be specified for the foreground and the 
background, even if the server has only a monochrome screen. The set bits 
of the source define the foreground; the zero bits define the background. 

The hotspot of the displayed cursor is predefined. The x-coordinate is the 
left bearing of the displayed character; the y-coordinate is the ascent of the 
displayed character. 

14-5 



Cursor Routines 
CREATE GLYPH CURSOR 

XERRORS 
VAX 

X$C _BAD _ALLOC 

X$C_BAD_FONT 

X$C_BAD_VALUE 

14-6 

c 

BadAlloc 

Bad Font 

BadValue 

Description 

The server did not allocate the requested 
resource for any cause. 

A value that you specified for a font argument 
does not name a defined font (or, in some 
cases, a graphics context). 

Some numeric values fall outside the range 
of values accepted by the request. Unless a 
specific range is specified for an argument, 
the full range defined by the argument's type 
is accepted. Any argument defined as a set 
of alternatives can generate this error. 



Cursor Routines 
CREATE PIXMAP CURSOR 

CREATE PIXMAP CURSOR 

Creates a cursor from two pixmaps. One pixmap defines the source cursor. 
Another pixmap specifies the mask that determines how the cursor is 
displayed on the screen. 

VAX FORMAT cursor_id_return = X$CREATE_PIXMAP _CURSOR 

argument 
information 

(display, src, mask, foreground_color, 
background_color, x_hot_coord, y_hot_coord) 

Argument Usage Data Type Access Mechanism 

cursor _id_return identifier uns longword write value 

display identifier uns longword read reference 

src identifier uns longword read reference 

mask identifier uns longword read reference 

foreground_color record x$color read reference 

background_color record x$color read reference 

x_hot_coord longword longword read reference 

y_hot_coord longword longword read reference 

MIT C FORMAT cursor_id_return = XCreatePixmapCursor 
(display, src, mask, foreground_color, 
background_color, x_hot_coord, y_hot_coord) 

argument 
information 

RETURNS 

Cursor XCreatePixmapCursor(display, src, mask, foreground_color, 
background color, x hot coord, y_hot_coord) 

Display *display;-
Pixmap src; 
Pixmap mask; 
XColor *foreground_color; 
XColor *background_color; 
unsigned int x_hot_coord, y_hot_coord; 

cursor id return 
The cursor identifier returned by the server after the cursor is created. 
This identifier is used in subsequent routines that manipulate the cursor. 

14-7 



Cursor Routines 
CREATE PIXMAP CURSOR 

ARGUMENTS 

DESCRIPTION 

14-8 

display 
The display information originally returned by OPEN DISPLAY. 

src 
Identifier of the source pixmap used to create the cursor. The pixmap 
identifier is returned by CREATE PIXMAP. 

mask 
Identifier of the mask that controls how the cursor is displayed on the 
screen. The mask identifier is returned by CREATE PIXMAP. 

foreground_color 
The red, green, and blue values of the cursor foreground. 

background_ color 
The red, green, and blue values of the cursor background. 

x hot coord - -
Cursor hotspot x-coordinate. The x_hot_coord and y _hot_coord 
argument match the displayed cursor's position with the movements of 
the mouse when the mouse is mapped to a window. 

y_hot_coord 
Cursor hotspot y-coordinate. The x_hot_coord and y _hot_coord 
argument match the displayed cursor's position with the movements of 
the mouse when the mouse is mapped to a window. 

CREATE PIXMAP CURSOR creates a cursor from two pixmaps and 
returns a unique cursor identifier. 

Specify the pixmap to be used to create a new cursor with the src 
argument. 

The source cursor and mask can originate from any drawable pixmaps. 

Both the source and mask must have a depth of one. 

To control how the cursor is displayed on the screen, specify a mask with 
the mask argument. The mask argument specifies the shape of the 
cursor. The server performs a logical AND operation on the source and 
the mask. The resulting set bits determine which pixels are displayed 
when the cursor is visible. The mask pixmap must be the same size as the 
source pixmap. 

Red, green, and blue values must be specified for the foreground and the 
background, even if the server has only a monochrome screen. The set bits 
of the source define the foreground; the zero bits define the background. 

The x_hot_coord and y _hot_coord arguments define the cursor's 
hotspot, coordinates that reflect the location of a mouse when it is mapped 
to a window. The hotspot must be a point within the source cursor pixmap. 



XERRORS 
VAX C 

X$C_BAD_ALLOC BadAlloc 

X$C_BAD_PIXMAP BadPixmap 

Cursor Routines 
CREATE PIXMAP CURSOR 

Description 

The server did not allocate the requested 
resource for any cause. 

A value that you specified for a pixmap 
argument does not name a defined pixmap. 

14-9 



Cursor Routines 
DEFINE CURSOR 

DEFINE CURSOR 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Defines the cursor to be displayed when the mouse is mapped to a window. 

X$DEFINE_ CURSOR 
(display, window_id, cursor_id) 

Argument Usage Data Type Access Mechanism 

display identifier uns longword read reference 

window_id identifier uns longword read reference 

cursor_id identifier uns longword read reference 

XDefineCursor 
(display, window_id, cursor_id) 

XDefineCursor(display, window id, cursor_id) 
Display *display; -
Window window_id; 
Cursor cursor_id; 

display 
The display information originally returned by OPEN DISPLAY. 

window id 
Identifier of the window with which the cursor is associated. The window 
identifier is returned by CREATE WINDOW or WINDOW. 

cursor id 
Identifier of the cursor associated with a window. The cursor identifier is 
returned by CREATE PIXMAP CURSOR, CREA'rE FONT CURSOR, or 
CREATE GLYPH CURSOR. 

DESCRIPTION DEFINE CURSOR associates a cursor with a window. After it is defined, 
the cursor is displayed whenever the mouse is associated with the specified 
window and the window is visible. 

14-10 



XERRORS 
VAX C 

X$C _BAD_ CURSOR BadCursor 

X$C_BAD_WINDOW BadWindow 

Description 

Cursor Routines 
DEFINE CURSOR 

A value that you specified for a cursor 
argument does not name a defined cursor. 

A value that you specified for a window 
argument does not name a defined window. 

14-11 



Cursor Routines 
FREE CURSOR 

FREE CURSOR 

VAX FORMAT 

argument 
information 

Deletes the cursor specified by the user and releases storage allocated for the 
cursor. 

X$FREE_CURSOR (display, cursor_id) 

Argument Usage Data Type Access Mechanism 

display identifier uns longword read reference 

cursor_id identifier uris longword read reference 

MIT C FORMAT XFreeCursor (display, cursor_id) 

argument 
information 

ARGUMENTS 

XFreeCursor(display, cursor_id) 
Display *display; 
Cursor cursor_id; 

display 
The display information originally returned by OPEN DISPLAY. 

cursor id 
Identifier ~f the cursor to be deleted. The cursor identifier is returned 
by CREATE FONT CURSOR, CREATE GLYPH CURSOR, or CREATE 
PIXMAP CURSOR. 

DESCRIPTION FREE CURSOR deletes a cursor specified by the cursor_id argument and 
releases server memory that has been allocated for the cursor. 

XERRORS 

14-12 

You cannot refer to the cursor after it is deleted. 

VAX C 

X$C _BAD_ CURSOR BadCursor 

Description 

A value that you specified for a cursor 
argument does not name a defined cursor. 



Cursor Routines 
QUERY BEST CURSOR 

QUERY BEST CURSOR 

Determines the largest cursor, supported by display hardware, that most 
closely matches the cursor specified by a user. 

VAX FORMAT X$QUERV_BEST_CURSOR 

argument 
information 

(display, drawable_id, width, height, width_return, 
height_return) 

Argument Usage Data Type Access Mechanism 

display identifier uns longword read reference 

drawable_id identifier uns longword read reference 

width longword uns longword read reference 

height longword uns longword read reference 

width _return longword uns longword write reference 

height_return longword uns longword write reference 

MIT C FORMAT XQueryBestCursor 

argument 
information 

ARGUMENTS 

(display, drawable_id, width, height, width_return, 
height_return) 

Status XQueryBestCursor(display, drawable_id, width, height, 
width_return, height_return) 

Display *display; 
Drawable drawable_id; 
unsigned int width, height; 
unsigned int *width_return, *height_return; 

display 
The display information originally returned by OPEN DISPLAY. 

drawable id 
The identifier of the window or pixmap with which the cursor is associated. 
The drawable identifier can be either a window identifier or a pixmap 
identifier. If the drawable is a window, the identifier is returned by 
CREATE WINDOW or WINDOW. If the drawable is a pixmap, the 
identifier is returned by CREATE PIXMAP. 

width 
The width of a cursor specified by the user. 

14-13 



Cursor Routines 
QUERY BEST CURSOR 

height 
The height of a cursor specified by the user. 

width return 
The width of an actual cursor supported by display hardware that most 
closely matches the cursor specified by the user. 

height_return 
The height of the actual cursor, supported by display hardware that most 
closely matches the cursor specified by the user. 

DESCRIPTION QUERY BEST CURSOR determines the size of the cursor, supported by 
hardware, that most closely matches a cursor specified by a user. 

XERRORS 

14-14 

Specify the size of a cursor using the width and height arguments. 
QUERY BEST CURSOR returns the size in the width_return and 
height_return arguments of the largest cursor supported by display 
hardware. 

VAX C 

X$C_BAD_DRAWABLE BadDrawable 

Description 

A value that you specified for a drawable 
argument does not name a defined 
window or pixmap. 



Cursor Routines 
RECOLOR CURSOR 

RECOLOR CURSOR 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Changes the color of a cursor specified by the user. If the cursor is currently 
displayed, the change is immediately visible. 

X$RECOLOR_CURSOR 
(display, cursor_id, foreground_color, 
background_color) 

Argument Usage Data Type Access 

display identifier uns longword read 

cursor_id identifier uns longword read 

foreground_color record x$color read 

background_color record x$color read 

XRecolorCursor 
(display, cursor_id, foreground_color, 
background_color) 

XRecolorCursor(display, cursor_id, foreground_color, 
background color) 

Display *display; -
Cursor cursor_id; 
XColor *foreground_color, *background_color; 

display 

Mechanism 

reference 

reference 

reference 

reference 

The display information originally returned by OPEN DISPLAY. 

cursor id 
The identifier of the cursor whose color is to be changed. The cursor 
identifier is returned by CREATE FONT CURSOR, CREATE GLYPH 
CURSOR, or CREATE PIXMAP CURSOR. 

foreground_ color 
Red, green, and blue values of the cursor foreground. 

See Chapter 12 for an illustration of the color definition data structure. 

background_color 
Red, green, and blue values of the cursor background. 

See Chapter 12 for an illustration of the color definition data structure. 

14-15 



Cursor Routines 
RECOLOR CURSOR 

DESCRIPTION 

X.ERRORS 

14-16 

RECOLOR CURSOR changes the color of a cursor identified by the 
cursor_id argument. 

Specify the new foreground color with the foreground_color argument 
and the new background color with the background_color argument. 

Red, green, and blue values must be specified for the foreground and the 
background, even if the server has only a monochrome screen. The set bits 
of the source define the foreground; the zero bits define the background. 

VAX C 

X$C_BAD_CURSOR BadCursor 

Description 

A value that you specified for a cursor 
argument does not name a defined cursor. 



Cursor Routines 
UNDEFINE CURSOR 

UNDEFINE CURSOR 

Removes the association of a cursor with a window. 

VAX FORMAT X$UNDEFINE_CURSOR (display, window_id) 

argument 
information 

Argument Usage Data Type Access Mechanism 

display identifier uns longword read reference 

window_id identifier uns longword read reference 

MIT C FORMAT XUndefineCursor (display, window_id) 

argument 
information 

ARGUMENTS 

XUndefineCursor(display, window_id) 
Display *display; 
Window window_id; 

display 
The display information originally returned by OPEN DISPLAY. 

window id 
The identifier of the window with which the cursor is associated. The 
identifier is returned by CREATE WINDOW or WINDOW. 

DESCRIPTION UNDEFINE CURSOR removes the association of a cursor with a window. 

XERRORS 

After the user defined cursor has been dissociated from the window, 
the cursor of the window's parent is displayed whenever the mouse is 
associated with the specified window and the window is visible. 

When no cursor is specified in a root window after completion of the 
routine, the default cursor is restored. 

VAX C 

X$C_BAD_WINDOW BadWindow 

Description 

A value that you specified for a window 
argument does not name a defined window. 

14-17 





15 Resource Manager Routines 

The resource manager is essentially a database manager. The resources 
managed by the resource manager include various attributes of the 
DECwindows environment. For example, an application button might 
require resources such as a title string, font, foreground color, and 
background color. Each of these resources is an entry in a resource 
database. 

DECwindows provides a set of routines that allow users to manipulate the 
resource manager. These functions provide for 

• Storing and retrieving resources 

• Retrieving database levels 

• Converting resource values 

• Merging two resource databases 

• Retrieving and storing databases 

The resource manager routines described in this chapter are listed in 
Table 15-1. 

Table 15-1 Resource Manager Routines 

Routine Name Description 

PERMALLOC 

RM GET FILE DATABASE 

RM GET RESOURCE 

RM GET STRING DATABASE 

RM INITIALIZE 

RM MERGE DATA BASES 

RM PUT FILE DATABASE 

RM PUT LINE RESOURCE 

RM PUT RESOURCE 

RM PUT STRING RESOURCE 

RM Q GET RESOURCE 

RM Q GET SEARCH LIST 

Allocates memory for permanently allocated 
storage. 

Retrieves a database in text file format. 

Retrieves a resource from the database. 

Creates a database from a string. 

Initializes the resource manager. 

Merges the contents of one database into 
another. 

Stores a copy of the application's current 
database in nonvolatile storage. 

Adds a single resource entry to a specified 
database. 

Stores a resource in the database. 

Adds a resource that is specified as a string. 

Retrieves a resource from the database. 

Returns a list of database levels. 

(continued on next page) 

15-1 



15.1 

Resource Manager Routines 

Table 15-1 (Cont.) Resource Manager Routines 

Routine Name 

RM Q GET SEARCH RESOURCE 

RM Q PUT RESOURCE 

RM Q PUT STRING RESOURCE 

RM QUARK TO STRING 

RM STRING TO BIND QUARK LIST 

RM STRING TO QUARK 

RM STRING TO QUARK LIST 

RM UNIQUE QUARK 

Description 

Searches for resource database levels for a 
given resource. 

Stores a resource in the database. 

Adds a string resource, using quarks as a 
specification. 

Converts a quark to a string. 

Converts a string with one or more 
components to a binding list and a quark 
list. 

Converts a string to a quark. 

Converts a string with one or more 
components to a quark list. 

Allocates a new quark. 

The Resource Manager 

15-2 

The resource manager is a database manager but with a difference. 
In most database systems, you perform a query using an imprecise 
specification and get back a set of records. The resource manager, however, 
allows you to specify a large set of values with an imprecise specification, 
to query the database with a precise specification, and to get back only a 
single value. This should be used by applications that need to know what 
the user prefers for colors, fonts, and other resources. 

For example, a user of your application may want to specify that all 
windows should have a blue background but that all mail reading windows 
should have a red background. Presuming that all applications use the 
resource manager, a user can define this information using only two lines 
of specification. Your personal resource database usually is stored in a file 
and is loaded onto a server property when you log in. This database is 
retrieved automatically by Xlib when a connection is opened. 

As an example of how the resource manager works, consider a mail 
reading application called xmh. Assume that it is designed in such a 
manner that it uses a complex window hierarchy all the way down to 
individual command buttons, which may be actual small subwindows in 
some toolkits. These are often called objects. In such toolkit systems, 
user interface objects (called widgets in the X toolkit) can be composed 
of other objects. Each user interface object can be assigned a name and 
a class. Fully qualified names or classes can have arbitrary numbers of 
component names, but a fully qualified name always has the same number 
of component names as a fully qualified class. This generally reflects the 
structure of the application as composed of these objects, starting with the 
application itself. 



15.2 

Resource Manager Routines 
15.1 The Resource Manager 

For example, the xmh mail program has a name, xmh, and is one of a class 
of Mail programs. By convention, the first character of a class component 
is capitalized, while the first letter of a name component is in lowercase. 
Each name and class finally have an attribute (for example foreground or 
font). If each window is properly assigned a name and class, it becomes 
easy for the user to specify attributes of any portion of the application. 

At the top level, the application might consist of a paned window (that 
is, a window divided into several sections) named toe. One pane of 
the paned window is a button box window named buttons filled with 
command buttons. One of these command buttons is used to retrieve 
(include) new mail and has the name include. This window has a fully 
qualified name, xmh.toc.buttons.include, and a fully qualified class, 
Xmh. VPaned.Box. Command. Its fully qualified name is the name of 
its parent, xmh.toc.buttons, followed by its name, include. Its class is 
the class of its parent, Xmh. VPaned.Box, followed by its particular class, 
Command. The fully qualified name of a resource is the attribute's name 
appended to the object's fully qualified name, and the fully qualified class 
is its class appended to the object's class. 

This include button needs the following resources: 

• Title string 

• Font 

• Foreground color for its inactive state 

• Background color for its inactive state 

• Foreground color for its active state 

• Background color for its active state 

Each of the resources that this button needs is considered to be an 
attribute of the button and, as such, has a name and a class. For example, 
the foreground color for the button in its active state might be named 
activeForeground, and its class would be Foreground. 

When an application looks up a resource (for example, a color), it passes 
the complete name and complete class of the resource to a lookup routine. 
After lookup, the resource manager returns the resource value and the 
representation type. 

The resource manager allows applications to store resources by an 
incomplete specification of name, class, and representation type, as well as 
to retrieve them given a fully qualified name and class. 

Resource Manager Matching Rules 
The algorithm for determining which resource name or names match a 
given query is the heart of the database. Resources are stored with only 
partially specified names and classes, using pattern matching constructs. 
An asterisk is used to represent any number of intervening components 
(including none). A dot or period is used to separate immediately adjacent 
components. All queries fully specify the name and class of the resource 
needed. The lookup algorithm then searches the database for the name 

15-3 



15.3 

Resource Manager Routines 
15.2 Resource Manager Matching Rules 

Quarks 

15-4 

that most closely matches (is most specific) to this full name and class. In 
order of precedence, the rules for a match are as follows: 

1 The attributes of the name and class must match. For example, the 
following queries will not match the database entry xterm.scrollbar:on. 

xterm.scrollbar.background 
XTerm.Scrollbar.Background 

(name) 
(class) 

2 Database entries with name or class prefixed by a period are more 
specific than those prefixed by an asterisk. For example, the entry 
xterm.geometry is more specific than the entry xterm*geometry. 

3 Names are more specific than classes. For example, the 
entry *scrollbar.background is more specific than the entry 
*Scrollbar.Background. 

4 A name or class is more specific than omission. For example, the entry 
Scrollbar*Background is more specific than the entry *Background. 

5 Left components are more specific than right components. For 
example, *vtlOO*background is more specific than the entry 
*scrollbar*background, for the query .vtlOO.scrollbar.background. 

6 If neither a period nor an asterisk is specified at the beginning, a 
period is implicit. For example, xterm.background is identical to 
.xterm. background. 

Names and classes can be mixed. As an example of these rules, assume 
the following user preference specification: 

xmh*background: red 
*command.font: x 
*command.background: blue 
*Command.Foreground: green 
xmh.toc*Command.activeForeground:black 

A query for the name xmh.toc.messagefunctions.include.activeForeground 
and class Xmh. VPaned.Box.Command.Foreground would match 
xmh.toc*Command.activeForeground and return black. However, it 
also matches *Command.Foreground. Using the precedence algorithm 
described above, the resource manager would return the value specified by 
xmh.toc*Command.activeForeground. 

Most uses of the resource manager involve defining names, classes, and 
representation types as string constants. However, always referring 
to strings in the resource manager can slow performance. To improve 
performance, the resource manager uses a shorthand name for a string 
during many resource manager functions. Simple comparisons can then 
be performed, rather than string comparisons. The shorthand name for 
a string is called a quark, and is the type X$RM_QUARK or XrmQuark. 
(Quarks can also be called representations.) On some occasions, you may 
want to allocate a quark that has no string equivalent. A quark is to a 
string what an atom is to a property name in the server, but its use is 
entirely local to your application. 



15.4 

Resource Manager Routines 
15.4 The Resource Manager Value Data Structure 

The Resource Manager Value Data Structure 
The definitions for the resource manager's use are contained in the 
Xresource.h header file. Xlib also uses the resource manager internally 
to allow for non-English-language error messages. 

The resource manager value data structure defines database values. 
Database values consist of a size, an address, and a representation type. 
The size is specified in bytes. The representation type is a way for you to 
store data tagged by some application-defined type (for example, font or 
color). It has nothing to do with the MIT C data type or with its class. 

The resource manager value data structure for the VAX binding is shown 
in Figure 15-1, and members of the data structure are described in 
Table 15-2. 

Figure 15-1 Resource Manager Value Data Structure (VAX Binding) 

x$1_ rval_ size 0 

x$a_rval_addr 4 

Table 15-2 Members of the Resource Manager Value Data Structure 
(VAX Binding) 

Member Name 

X$L_RVAL_SIZE 

X$L_RVAL_ADDR 

Contents 

Size of the database 

Address of the database 

The resource manager value data structure for the MIT C binding is 
shown in Figure 15-2, and members of the data structure are described in 
Table 15-3. 

15-5 



15.5 

Resource Manager Routines 
15.4 The Resource Manager Value Data Structure 

Figure 15-2 Resource Manager Value Data Structure (MIT C Binding) 

typedef struct { 
unsigned int size; 
caddr_t addr; 

} XrmValue, *XrmValuePtr: 

Table 15-3 Members of the Resource Manager Value Data Structure 
(MIT C Binding) 

Member Name 

size 

address 

Contents 

Size of the database 

Address of the database 

Resource Manager Routines 
The following pages describe the Xlib resource manager routines. 

15-6 



PERMALLOC 

VAX FORMAT 

argument 
information 

Resource Manager Routines 
PERMALLOC 

Allocates memory for permanently allocated storage. 

location_return = X$PERM_ALLOC (size) 

Argument Usage Data Type Access Mechanism 

location_return longword longword write value 

size longword longword read reference 

MIT C FORMAT location_return = Xpermalloc (size) 

argument 
information 

RETURNS 

ARGUMENTS 

char *Xpermalloc(size) 
unsigned int size; 

location return 
The location of the allocated storage. 

size 
The size, in bytes, of the storage. 

DESCRIPTION PERMALLOC allocates memory space for permanently allocated storage. 

15-7 



Resource Manager Routines 
RM GET FILE DATABASE 

RM GET FILE DATABASE 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

ARGUMENTS 

DESCRIPTION 

15-8 

Retrieves a database from nonvolatile storage. 

database_id_return = X$RM_GET _FILE_DATABASE 
(file_name) 

Argument Usage Data Type Access 

database _id _return identifier uns longword write 

file_name char string char string read 

database id return = XrmGetFileDatabase 
(file_name) 

XrmDatabase XrmGetFileDatabase(file_name) 
char *file_name; 

database id return 
The identifierof the returned file database. 

file name 
The resource database file name. 

Mechanism 

value 

descriptor 

RM GET FILE DATABASE retrieves a database from nonvolatile storage. 
This function opens the file specified by file_name, creates a new resource 
database, and loads it with the specifications read in from the specified 
file. The specified file must contain lines in the format accepted by RM 
PUT LINE RESOURCE. If it cannot open the specified file, RM GET FILE 
DATABASE returns a null value. 



Resource Manager Routines 
RM GET RESOURCE 

RM GET RESOURCE 

Retrieves a resource from the database. 

VAX FORMAT status_return = X$RM_GET_RESOURCE 

argument 
information 

(database_id, name_list_string, class_list_string, 
repr_type_return [,repr_value_return] lbuf_len] 
[, vaLbuf_return] [,len_return]) 

Argument Usage Data Type Access Mechanism 

status_return longword longword write value 

database _id identifier uns longword read reference 

name_list_string char string char string read descriptor 

class_list_string char string char string read descriptor 

repr_type_return char string char string write descriptor 

repr_value_return record x$rm_value write reference 

buf_len longword longword read reference 

val_ but_ return vector uns longword write reference 
longword 

len_return longword longword write reference 

MIT C FORMAT XrmGetResource 

argument 
information 

RETURNS 

(database_id, name_/ist_string, class_list_string, 
repr_type_return, repr_value_return) 

XrmGetResource(database_id, name_list_string, class_list_string, 
repr_type_return, repr_value_return) 

XrmDatabase database_id; 
char * name_list_string; 
char * class_list_string; 
char **repr_type_return; 
XrmValue *repr_value_return; 

status return 
Return value that specifies whether or not the routine completed 
successfully. 

15-9 



Resource Manager Routines 
RM GET RESOURCE 

ARGUMENTS database id 
The descriptor of the resource database. 

name_list_string 
The full inheritance name of the value being retrieved. 

class _list_ string 
The full inheritance class of the value being retrieved. 

repr_type_return 
The representation type of the destination. 

repr_ value_return 
The descriptor into which the value is returned, representing the address 
of the database. This argument is optional in the VAX binding only. 

buf_len (VAX only) 
The length of the buffer in which the value is returned. This argument is 
optional. 

val_buf_return (VAX only) 
The address of the buffer containing the returned value. This argument is 
optional. 

len_return (VAX only) 
The length of the returned value contained in the return value buffer. This 
argument is optional. 

DESCRIPTION RM GET RESOURCE retrieves a resource from the specified database. 
The value returned points to database memory. 

15-10 



Resource Manager Routines 
RM GET STRING DATABASE 

RM GET STRING DATABASE 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

ARGUMENTS 

DESCRIPTION 

Creates a database from a string. 

database_id_return = 
X$RM_ GET _STRING_DATABASE 

(contents_name) 

Argument Usage Data Type 

database _id _return identifier uns longword 

contents_name char string char string 

Access 

write 

read 

database_id_return = XrmGetStringDatabase 
(contents_name) 

XrmDatabase XrmGetStringDatabase (contents_name) 
char *contents_name; 

database id return 
The identifierof the created database. 

contents name 
The string that specifies the contents of the database. 

Mechanism 

value 

descriptor 

RM GET STRING DATABASE creates a new database and fills it with 
the resources in the specified null-terminated string. RM GET STRING 
DATABASE is similar to RM GET FILE DATABASE, except that it reads 
the information out of a string instead of a file. Each line is separated by a 
new-line character in the format accepted by RM PUT LINE RESOURCE. 

15-11 



Resource Manager Routines 
RM INITIALIZE 

RM INITIALIZE 

Initializes the resource manager. 

VAX FORMAT status_return = X$RM_INITIALIZE 

argument 
information 

Argument Usage 

status_return longword 

MIT C FORMAT Xrmlnitialize 

argument 
information void Xrminitialize ( ) 

Data Type 

longword 

RETURNS status_return (VAX only) 

Access Mechanism 

write value 

Return value that states whether or not the routine completed successfully. 

DESCRIPTION RM INITIALIZE initializes the resource manager. 

15-12 



Resource Manager Routines 
RM MERGE DATABASES 

RM MERGE DATABASES 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Merges the contents of one database into another. 

X$RM_MERGE_DATABASES 
(src_database_id, dst_database_id) 

Argument Usage Data Type Access 

src_database_id longword uns longword read 

dst_database_id longword uns longword modify 

XrmMergeDatabases 
(src_database_id, dst_database_id) 

XrmMergeDatabases(src_database_id,dst_database_id) 
Xrrr~atabase src_database_id, *dst_database_id; 

src database id 

Mechanism 

reference 

reference 

The descriptor of the resource database to be merged into the existing 
database. 

dst_database_id 
The descriptor of the resource database into which the new database will 
be merged. 

DESCRIPTION RM MERGE DATABASES merges the contents of one database into 
another. The function may overwrite entries in the destination database. 
This procedure is used to combine databases, for example, an application
specific database of defaults and a database of user preferences. 

15-13 



Resource Manager Routines 
RM PARSE COMMAND 

RM PARSE COMMAND 

Loads a resource database from a command line. 

VAX FORMAT X$PARSE_COMMAND 

argument 
information 

(database_id, options, num_options, prefix_name, 
argc, argv) 

Argument Usage Data Type Access Mechanism 

database_id identifier uns longword read reference 

options any v uns longword read reference 

num_options longword longword read reference 

prefix_name char string char string read descriptor 

argc longword longword read modify 

argv any byte read modify 

MIT C FORMAT XrmParseCommand 

argument 
information 

ARGUMENTS 

15-14 

(database_id, options, num_options, prefix_name, 
argc, argv) 

void XrmParseCorrunand (database_id, options, num_options, 
pref ix_name, argc, argv) 

XrrnDatabase *database_id; 
XrmOptionList options; 
int num_options; 
char *prefix_name; 
int *argc; 
char **argv; 

database id 
A pointer to the resource database. If the database contains a null value, 
a new resource database is created and a pointer to it is returned in the 
database. 

options 
The table containing a list of command line arguments to be parsed. 

num_options 
The number of entries in the table specified in options. 



DESCRIPTION 

prefix_name 

Resource Manager Routines 
RM PARSE COMMAND 

The prefix to be appended to the resources. 

argc 
Argument that specifies the number of arguments in the command line 
and returns the number of remaining arguments. 

argv 
Argument that specifies a pointer to the command line arguments and 
returns the remaining arguments. 

RM PARSE COMMAND loads a resource database from a command line. 
RM PARSE COMMAND parses an (argc, argv) pair according to the 
specified option table, loads recognized options into the specified database, 
and modifies the (argc, argv) pair to remove all recognized options. 

The specified table is used to parse the command line. Recognized entries 
in the table are removed from argv, and entries are made in the specified 
resource database. The table entries contain information on the option 
string, the option name, which style of option, and a value to provide if the 
option kind is XrmoptionN oArg. The argc argument specifies the number 
of arguments in argv and is set to the remaining number of arguments 
that were not parsed. The name argument should be the name of your 
application for use in building the database entry. The name argument 
is prefixed to the resource name in the option table before the resource 
manager stores the specification. No separating (binding) character is 
inserted. The table must contain either a period or an asterisk as the 
first character in the resource name entry. To specify a more completely 
qualified resource name, the resource name entry can contain multiple 
components. 

15-15 



Resource Manager Routines 
RM PUT FILE DATABASE 

RM PUT FILE DATABASE 

Stores a copy of the application's current database in nonvolatile storage. 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

X$RM_PUT _FILE_DATABASE 
(database_id, file_name) 

Argument Usage Data Type 

database_id identifier uns longword 

file_name char string char string 

XRmPutFileDatabase 
(database_id, file_name) 

Access 

read 

read 

XRrnPutFileDatabase (database_id, file_name) 
XrmDatabase database id; 
char *file_name; -

database id 
The identifierof the application's current database. 

file_name 
The file name for the stored database. 

Mechanism 

reference 

descriptor 

DESCRIPTION RM PUT FILE DATABASE stores a copy of the application's current 
database in the file specified by file_name. This file is an ASCII text file. 
The file contains lines in the format that is accepted by RM PUT LINE 
RESOURCE. 

15-16 



Resource Manager Routines 
RM PUT LINE RESOURCE 

RM PUT LINE RESOURCE 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Adds a single resource entry to a specified database. 

X$RM_PUT _LINE_RESOURCE 
(database_id, resource_line) 

Argument Usage Data Type 

database_id record uns longword 

resource_line char string char string 

XrmPutlineResource 
(database_id, resource_line) 

Access 

modify 

read 

XrmPutLineResource(database_id, resource_line) 
XrmDatabase *database_id; 
char *resource_line; 

database id 

Mechanism 

reference 

descriptor 

A pointer to the resource database. If the database contains a null value, 
a new resource database is created and a pointer to it is returned in the 
database. 

resource line 
The resource/value pair as a single string. A colon separates the name 
from the value. 

DESCRIPTION RM PUT LINE RESOURCE adds a resource entry to the specified 
database. Any space before or after the name or colon in the resource_ 
line argument is ignored. The value is terminated by a new-line or a null 
character. 

To allow values to contain embedded new-line characters, a line-feed 
character (\n) is recognized and replaced by a new-line character. For 
example, a line might have the value 

xterm*background:green\n 

This adds an extra byte to the length of the return value. Null-terminated 
strings without a new line are also permitted. 

15-17 



Resource Manager Routines 
RM PUT RESOURCE 

RM PUT RESOURCE 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Stores a resource in the database. 

X$RM_PUT_RESOURCE 
(database_id, specifier_name, type_name 
£resource_ value] £buf_len] [, va/_buf]) 

Argument Usage Data Type Access 

database_id identifier uns longword modify 

specifier_name char string char string read 

type_name char string char string read 

resource_ value record x$rm_value read 

buf_len longword longword read 

val_buf uns longword uns longword read 

XrmPutResource 
(database_id, specifier_name, type_name, 
resource_ value) 

XrmPutResource(database_id,specifier_name,type_name, 
resource_value) 

XrmDatabase *database_id; 
char *specifier_name; 
char *type __ name; 
XrmValue *resource_value; 

database id 
The resource database. 

specifier _name 
The partial name or class list of the resource to be stored. 

type_name 
The data representation of the resource to be stored. 

resource_ value 

Mechanism 

descriptor 

descriptor 

descriptor 

reference 

reference 

reference 

The descriptor for the resource entry. This argument is optional in the 
VAX binding only. 

15-18 



buf_len (VAX only) 

Resource Manager Routines 
RM PUT RESOURCE 

Length of the value buffer. This argument is optional. 

val_buf (VAX only) 
Address of the value buffer. This argument is optional. 

DESCRIPTION RM PUT RESOURCE stores a resource database, specified by descriptor, 
in a file on nonvolatile storage. The value is copied into the specified 
database. 

15-19 



Resource Manager Routines 
RM PUT STRING RESOURCE 

RM PUT STRING RESOURCE 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Adds a resource that is specified as a string. 

X$RM PUT STRING RESOURCE 
(database id, resource_name, value_name) 

Argument Usage Data Type Access Mechanism 

database_id identifier uns longword modify reference 

resource_name char string char string read descriptor 

value_name char string char string read descriptor 

XrmPutStringResource 
(database_id, resource_name, value_name) 

XrmPutStringResource(database_id,resource_name,value_name) 
XrmDatabase *database_id; 
char *resource_name; 
char *value_name; 

database id 
A pointer to the resource database. If the database contains a null value, 
a new resource database is created and a pointer to it is returned in the 
database. 

resource name 
A character string that specifies the name of the resource. 

value name 
A character string that specifies the value of the resource. 

DESCRIPTION RM PUT STRING RESOURCE adds a resource with a specified value to 

15-20 

a database. RM PUT STRING RESOURCE takes both resource_name 
and value_name as null-terminated strings, converts them to quarks, and 
then calls RM Q PUT RESOURCE, using a string representation type. 



Resource Manager Routines 
RM Q GET RESOURCE 

RM Q GET RESOURCE 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Retrieves a resource from the database. 

status_return = X$RM_Q_GET_RESOURCE 
(database_id, name_lisLid, class_lisLid, 
repr_type_id_return, repr_ value_id_return, buf_len, 
va/_but_return, /en_return) 

Argument Usage Data Type Access 

status _return longword longword write 

database _id identifier uns longword read 

name_list_id identifier uns longword read 

class_list_id identifier uns longword read 

re pr_ type _id _return identifier uns longword read 

repr _value _id_return record x$rm_value write 

buf_len longword longword read 

val_buf _return record byte write 

len_return longword longword write 

XrmQGetResource 
(database _id, name _list_ id, class_list_id, 
repr_type_id_return, repr_ value_id_return) 

Mechanism 

value 

reference 

reference 

reference 

reference 

reference 

reference 

reference 

reference 

XrmQGetResource(database_id, name_list_id, class_list_id, 
repr_type_id_return, repr_value_id_return) 

XrmDatabase *database_id; 
XrmNameList name list id; 
XrmClassList class list id; 
XrmRepresentation *repr=type_id_return; 
XrmValue *repr_value_id_return; 

database id 
The descriptor of the resource database. 

name_list_id 
The full inheritance name of the value being retrieved. 

15-21 



Resource Manager Routines 
RM Q GET RESOURCE 

class list id - -
The full inheritance class of the value being retrieved. 

repr_type_id_return 
The representation type of the destination. 

repr_ value_id_return 
The descriptor into which the value is returned, representing the address 
of the database. 

buf_len (VAX only) 
The length of the buffer in which the value is returned. 

val_buf_return (VAX only) 
The address of the buffer containing the returned value. 

len_return (VAX only) 
The length of the returned value contained in the return value buffer. 

DESCRIPTION RM Q GET RESOURCE retrieves a resource from the specified database. 
The value returned points to database memory. 

15-22 



Resource Manager Routines 
RM Q GET SEARCH LIST 

RM Q GET SEARCH LIST 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

ARGUMENTS 

Returns a list of database levels. 

X$RM Q GET SEARCH LIST 
(database_id-: name_list id, class_list_id, 
search_list_id_return, list_/en) 

Argument Usage Data Type Access 

database _id identifier uns longword read 

name_list_id identifier uns longword read 

class_list_id identifier uns longword read 

search _I ist_id _return identifier uns longword write 

list_len uns longword uns longword read 

XrmQGetSearchlist 
(database_id, name_list_id, class_/ist_id, 
search_/ist_id_return, list_len) 

Mechanism 

reference 

reference 

reference 

reference 

reference 

Bool XrmQGetSearchList (database id, name list id, class list id, 
search_list_id_return,-list_len)- -

XrmDatabase database_id; 
XrmNameList name list id; 
XrmClassList class list id; 
XrmSearchList search_list_id_return; 
int list_len; 

Boo/ (MIT C only) 
Boolean argument that specifies whether the size of search_list_id_ 
return is large enough. RM Q GET SEARCH LIST returns true to this 
argument if search_list_id_return is large enough, and returns false if it 
is not. 

database id 
The identifier of the database to be used. 

name list id - -
A list of resource names. 

15-23 



Resource Manager Routines 
RM Q GET SEARCH LIST 

class_ list_ id 
A list of resource classes. 

search list id return - - -
The search list of database levels that is returned. 

list /en 
The number of entries allocated for search_list_id_return. 

DESCRIPTION RM Q GET SEARCH LIST takes a list of resource names and resource 
classes and returns a list of database levels where a match may occur. 
The list uses the same algorithm as RM GET RESOURCE for determining 
precedence. 

15-24 

The size required for search_list_id_return is dependent on the number 
of levels and wildcards in the resource specifiers that are stored in the 
database. 

When you use RM Q GET SEARCH LIST before multiple searches for 
resources with a common name and class prefix, you should specify only 
the common prefix in the name_list_id and class_list_id arguments. 



Resource Manager Routines 
RM Q GET SEARCH RESOURCE 

RM Q GET SEARCH RESOURCE 

Searches for resource database levels for a given resource. 

VAXFORMAT X$RM_Q_GET_SEARCH_RESOURCE 

argument 
information 

(search_lisLid, name_id, class_id, 
repr_type_id_return [,repr_value_return] 
[,buf_len] [, va/_buf_return] [,reLlen_return]) 

Argument Usage Data Type Access 

search_list_id _return identifier uns longword read 

name_id identifier uns longword read 

class_id identifier uns longword read 

repr_type_id_return identifier uns longword write 

repr_value_return record xrm$value write 

buf_len longword longword read 

val_buf_return record byte write 

ret_len_return longword longword write 

Mechanism 

reference 

reference 

reference 

reference 

reference 

reference 

descriptor 

reference 

MIT C FORMAT XrmQGetSearchResource 
(search_lisLid, name_id, class_id, 
repr_type_id_return [,repr_ value_return]) 

argument 
information 

RETURNS 

Bool XrmQGetSearchResource (search_list_id, name_id, class_id, 
repr_type_id_return [,repr_value_return]) 

XrmSearchList search_list_id; 
XrmName name_id; 
XrmClass class_id; 
XrmRepresentation *repr_type_id_return; 
XrmValue *repr_value_return; 

Boo/ (MIT C only) 
An argument that specifies whether the resource was found. RM Q GET 
SEARCH RESOURCE returns true if the resource is found, and false if 
the resource is not found. 

15-25 



Resource Manager Routines 
RM Q GET SEARCH RESOURCE 

ARGUMENTS search list id 
The search list returned from GET SEARCH LIST. 

name id 
The resource name. 

class id 
The resource class. 

repr_type_id_return 
The returned data representation type. 

repr_value_return . 
The returned value descriptor. This argument is optional in the VAX 
binding only. 

buf_len (VAX only) 
The length of the following buffer. This argument is optional. 

val_buf_return (VAX only) 
The returned buffer containing the value in the database. This argument 
is optional. 

ret_len_return (VAX only) 
The length of the data written to the buffer. This argument is optional. 

DESCRIPTION RM Q GET SEARCH RESOURCE searches the specified database levels 
for the resource that is identified by name_id and class_id. The search 
stops when a match is found. 

15-26 

A call to RM Q GET SEARCH LIST with a name and class list containing 
all but the last component of a resource name, followed by a call to RM 
Q GET SEARCH RESOURCE with the last component name and class, 
returns the same database entry as RM GET RESOURCE or RM Q GET 
RESOURCE with the fully qualified name and class. 



Resource Manager Routines 
RM Q PUT RESOURCE 

RM Q PUT RESOURCE 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Stores a resource in the database. 

X$RM_Q_PUT_RESOURCE 
(database_id, binding_list_id, repr_list_id, 
repr_type_id, repr_value, vaL/en, vaLbuf) 

Argument Usage Data Type Access 

database_id identifier uns longword modify 

binding_list_id identifier uns longword read 

repr_type_id identifier uns longword read 

repr_value record x$rm_value read 

val_len longword longword read 

val_buf any vector uns longword read 

XrmQPutResource 
(database_id, binding_list_id, repr_type_id, 
repr_value) 

Mechanism 

reference 

reference 

reference 

reference 

reference 

reference 

XrmQPutResource(database_id,binding_list_id,repr_type_id, 
repr_value) 

XrmDatabase *database id; 
XrmBindingList binding_list_id; 
XrmRepresentation repr_type_id; 
XrmValue repr_value; 

database id 
Identifier of the resource database. 

binding_list_id 
A list of bindings defining the resource. 

repr_type_id 
Identifier of the data representation of the resource to be stored. 

repr_value 
The descriptor for the resource entry. This argument is optional in the 
VAX binding only. 

15-27 



Resource Manager Routines 
RM Q PUT RESOURCE 

val_len (VAX only) 
Length of the value buffer. This argument is optional. 

val_buf (VAX only) 
Address of the value buffer. This argument is optional. 

DESCRIPTION RM Q PUT RESOURCE stores a resource database, specified by descriptor, 
in a file on nonvolatile storage. The value is copied into the specified 
database. 

15-28 



Resource Manager Routines 
RM Q PUT STRING RESOURCE 

RM Q PUT STRING RESOURCE 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Adds a string resource, using quarks as a specification. 

X$RM_ Q_PUT _ STRING_RESOURCE 
(database_id, binding_/ist_id, repr_list_id, 
value_name) 

Argument Usage Data Type Access 

database_id identifier uns longword modify 

binding_list_id identifier uns longword read 

repr_list_id identifier uns longword read 

value_name char string char string read 

XrmQPutStringResource 
(database_id, binding_list_id, repr_list_id, 
value_name) 

XrmQPutStringResource (database_id, binding_list_id, 
repr_list_id, value_name) 

XrmDatabase *database_id; 
XrmBindingList binding_list_id; 
XrmQuarkList repr_list_id; 
char *value_name; 

database id 

Mechanism 

reference 

reference 

reference 

descriptor 

A pointer to the resource database. If the database contains a null value, 
a new resource database is created and a pointer to it is returned in the 
database. If the resource database is null, a new database is created. 

binding_list_id 
A list of bindings defining the resource. 

repr _list_ id 
A list of quarks defining the resource. 

value name 
A character string that specifies the value of the resource. 

15-29 



Resource Manager Routines 
RM Q PUT STRING RESOURCE 

DESCRIPTION RM Q PUT STRING RESOURCE adds a string resource, using quarks 
as a specification. This routine constructs a resource manager value data 
structure for the value string, and then calls RM Q PUT RESOURCE, 
using a string representation type. 

15-30 



Resource Manager Routines 
RM QUARK TO STRING 

RM QUARK TO STRING 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

ARGUMENTS 

Converts a quark to a string. 

X$RM_QUARK_TO_STRING 
(repr_id, repr_name) 

Argument Usage Data Type 

repr_id identifier uns longword 

repr_name char string char string 

Access 

read 

write 

repr_id_return = XrmQuarkToString 
(repr_name) 

char XrmQuarkToString(repr_id) 
XrmQuark repr_id; 

repr_id_return (MIT Conly) 
The string returned for the quark specified in repr_name. 

repr_id 
The quark for which you want to obtain an equivalent string. 

repr_name (VAX only) 
The string returned for the quark specified in repr_id. 

Mechanism 

reference 

descriptor 

DESCRIPTION RM QUARK TO STRING converts a quark to a string. The string returned 
in repr_name must not be modified or freed. If no equivalent string exists 
for repr_id, RM QUARK TO STRING returns a null value. 

15-31 



Resource Manager Routines 
RM STRING TO BIND QUARK LIST 

RM STRING TO BIND QUARK LIST 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

ARGUMENTS 

Converts a string with one or more components to a binding list and a quark 
list. 

X$RM STRING TO BIND QUARK LIST 
(value_name,binding_list id_return, 
repr_list_id_return) 

Argument Usage Data Type 

value_name char string char string 

binding_list_id_return identifier uns longword 

repr _list_id_return identifier uns longword 

XrmStringToBindingQuarklist 
(va/ue_name, binding_/ist_id_return, 
repr_/ist_id_return) 

Access 

read 

write 

write 

Mechanism 

descriptor 

reference 

reference 

XrmStringToBindingQuarkList(value_name, binding_list_id_return, 
repr_list_id_return) 

char *value name; 
XrmBindingList binding list id return; 
XrmQuarkList repr_list=id_return; 

value name 
The name of the character string for which a quark is to be allocated. 

binding_list_id_return 
The returned binding list. The caller must allocate sufficient space for the 
binding list before calling RM STRING TO BIND QUARK LIST. 

repr_list_id_return 
The returned quarks list. The caller must allocate Ruf:ficient space for the 
quarks list before calling RM STRING TO BIND QUARK LIST. 

DESCRIPTION RM STRING TO BIND QUARK LIST converts a string with one or more 
components to a binding list and a quark list. Component names in the 
list must be separated by either a period or an asterisk. 

15-32 



Resource Manager Routines 
RM STRING TO QUARK 

RM STRING TO QUARK 

VAX FORMAT 

argument 
information 

MITCFORMAT 

argument 
information 

RETURNS 

ARGUMENTS 

DESCRIPTION 

Converts a string to a quark. 

repr_id_return = X$RM_STRING_ TO_ QUARK 
(repr_name) 

Argument Usage Data Type Access 

repr_id_return identifier uns longword write 

repr_name char string char string read 

repr_id_return = XrmStringToQuark 
(repr_name) 

XrmQuark XrmStringToQuark (repr_name) 
char *repr_name 

repr_id_return 
The identifier of the quark allocated for the specified string. 

repr_name 
The string for which a quark is to be allocated. 

RM STRING TO QUARK converts a string to a quark. 

Mechanism 

value 

descriptor 

15-33 



Resource Manager Routines 
RM STRING TO QUARK LIST 

RM STRING TO QUARK LIST 

Converts a string with one or more components to a quark list. 

VAX FORMAT X$RM_STRING_TO_QUARK_LIST 
(repr_name, repr_list_id_return) 

argument 
information 

Argument Usage Data Type 

repr_name char string char string 

repr _list_id_retu rn identifier uns longword 

MIT C FORMAT XrmStringToQuarklist 
(repr_name, repr_list_id_return) 

argument 

Access 

read 

write 

information XrmStringToQuarkList(repr_name, repr_list_id_return) 

ARGUMENTS 

char *repr_name; 
XrmQuarkList repr_list_id_return; 

repr_name 
The string for which a quark is to be allocated. 

repr _ list_id _return 
The returned quark list. 

Mechanism 

descriptor 

reference 

DESCRIPTION RM STRING TO QUARK LIST converts a string with one or more 
components to a quark list. The component names in the list are separated 
by either a period or an asterisk. 

15-34 



RM UNIQUE QUARK 

Allocates a new quark. 

Resource Manager Routines 
RM UNIQUE QUARK 

VAX FORMAT repr_id_return = X$RM_UNIQUE_QUARK () 

argument 
information 

Argument Usage 

repr_id_return identifier 

Data Type Access 

uns longword write 

MIT C FORMAT repr_id_return = XrmUniqueQuark () 

argument 
information xrmQuark xrmuniqueQuark ( ) 

RETURNS repr_id_return 
The identifier of the new quark. 

Mechanism 

value 

DESCRIPTION RM UNIQUE QUARK allocates a new quark. This quark does not 
represent any representation type that is known to the resource manager. 

15-35 





Index 

A 
Access control 

disabling • 10-43, 10-129 
enabling • 10-45, 10-129 

Access type• 1-7 
ACTIVATE SCREEN SAVER routine• 10-14 
ADD HOST routine• 10-15 
ADD HOSTS routine• 10-17 
Adding 

resource • 15-20, 15-29 
resource entry • 15-17 

ADD PIXEL routine• 6-11 
ADD TO SAVE SET routine• 10-19 
Allocating 

quark • 15-35 
Allocating storage • 15-7 
Allocation of color planes • 12-13 
ALLOC COLOR CELLS routine• 12-10 
ALLOC COLOR PLANES routine• 12-13 
ALLOC COLOR routine • 12-8 
ALLOC NAMED COLOR routine• 12-17 
ALLOW EVENTS routine • 10-21 
ALL PLANES routine• 2-5 
Arc 

drawing• 6-30 
drawing more than one • 6-34 
filling• 6-61 
filling more than one • 6-64 

Arc data structure • 6-5 
Arc mode 

setting • 5-43 
Arguments section • 1-5 
AST (asynchronous system trap)• 4-42 
Asynchronous System Trap 

See AST • 4-42 
Atom 

obtaining type• 8-45 
returning identifier• 8-54 
returning name• 8-28 

Auto-repeat 
changing value • 10-32 
obtaining value• 10-58 

AUTO REPEAT OFF routine• 10-25 
See also AUTO REPEAT ON routine 

AUTO REPEAT ON routine• 10-26 

AUTO REPEAT ON routine (cont'd.) 

See also AUTO REPEAT OFF routine 

B 
Background 

changing in graphics context• 5-45, 5-77 
window 

see Window background 
Background tile 

window 
see Window background tile 

Backing store• 2-37 
Bell• 10-32 

obtaining value • 10-58 
BELL routine • 10-27 
Binding information • 1-3 
Bitmap 

creating from data • 11-2 
description • 11-1 
leftmost bit • 2-6 
reading file• 11-9 
unit• 2-8 
writing file • 11-12 

BITMAP BIT ORDER routine• 2-6 
BITMAP PAD routine• 2-7 
Bitmap routines • 11-2 to 11-13 
BITMAP UNIT routine• 2-8 
Bit plane 

copying • 6-21 
BLACK PIXEL OF SCREEN routine• 2-10 
BLACK PIXEL routine • 2-9 
Border 

See Window border 
Button 

grabbing passively• 10-71 
ungrabbing • 10-144 

By descriptor passing mechanism • 1-8 
By reference passing mechanism • 1-8 
By value passing mechanism • 1-8 

c 
Cap style 

changing • 5-70 

lndex-1 



Index 

C binding • 1-3 
CHANGE ACTIVE POINTER GRAB routine• 10-29 
CHANGE GC routine• 5-25 
CHANGE KEYBOARD CONTROL routine• 10-32 
CHANGE KEYBOARD MAPPING routine• 10-34 
CHANGE POINTER CONTROL routine• 10-37 
CHANGE PROPERTY routine• 8-11 
CHANGE SAVE SET routine• 10-39 
CHANGE WINDOW ATTRIBUTES routine· 3-15 
Changing 

clip mask • 5-4 7 
Changing cap style• 5-70 
Changing color definition • 12-48, 12-50 

by name • 12-52 
Changing corner patterns • 5-70 
Changing endpoint patterns • 5-70 
Changing join style• 5-70 
Changing line style values • 5-70 
Changing line width • 5-70 
Changing window attributes • 3-15 
Character data structure • 13-6 
CHECK IF EVENT routine• 4-12 
CHECK MASK EVENT routine• 4-14 

See also MASK EVENT routine 
CHECK TYPED EVENT routine• 4-16 
CHECK TYPED WINDOW EVENT routine• 4-18 
CHECK WINDOW EVENT routine• 4-20 

See also WINDOW EVENT routine 
CIRCULATE SUBWINDOWS DOWN routine• 3-20 
CIRCULATE SUBWINDOWS routine• 3-18 
CIRCULATE SUBWINDOWS UP routine• 3-22 
Circulating subwindow • 3-18, 3-20, 3-22 
CLEAR AREA routine • 6-12 
Clearing a rectangular area• 6-12 
Clearing a window • 6-15 
CLEAR WINDOW routine• 6-15 
Client 

kill• 10-98 
sending event to • 4-48 

CLIP BOX routine• 9-4 
Clip origin 

setting in graphics context• 5-49 
Clipping 

changing clip mask• 5-47 
setting clip rectangles • 5-51 
setting origin in graphics context • 5-49 

Clip rectangle 
setting • 5-51 

CLOSE DISPLAY routine• 2-12 
Closing display • 2-12 

lndex-2 

Closing down 
defining client resources• 10-131 
forced • 10-98 

Color 
See Color definition data structure • 

Color definition 
changing • 12-48, 12-50 

by name • 12-52 
closest color • 12-8 
deallocating • 12-27 
determining value • 12-40, 12-42 
obtaining• 12-35 
obtaining values• 10-108 
reserving • 12-1 O 
setting • 12-48 
specifying • 12-8 

Color definition data structure• 12-5 to 12-7 
Color index 

black• 2-9 
white• 2-68 

Color map 
cells· 2-11, 2-26 
creating• 12-20, 12-22 
default• 2-15, 2-16 
freeing • 12-25 
installing • 10-93 
installing new• 10-151 
list of installed • 10-102 
obtaining maximum supported by screen • 2-45 
obtaining minimum supported by screen • 2-46 
replacing• 12-46 
standard color map data structure· 12-2 

Color map, standard 
obtaining • 12-29 
setting • 12-44 

Color map data structure 

See Standard color map data structure 
Color plane 

allocating • 12-13 
Color routines• 12-8 to 12-53 

list of• 12-1 
Color value • 10-108 
Color values 

allocating • 12-17 
Compose data structure • 10-12 
CONFIGURE WINDOW routine• 3-24 
Configuring a window • 3-24 
Connection number 

returning • 2-14 
CONNECTION NUMBER routine• 2-14 



Converting 
quark to string• 15-31 
string to binding list • 15-32 
string to quark• 15-33 
string to quark list • 15-32, 15-34 

CONVERT SELECTION routine• 8-14 
Coordinate data structure 

See time coordinate data structure 
Coordinates 

transferring • 3-75 
COPY AREA routine• 6-17 
COPY COLORMAP AND FREE routine• 12-20 
COPY GC routine• 5-27 
Copying a bit plane• 6-21 
Copying graphics context• 5-27 
COPY PLANE routine • 6-21 
Corner patterns 

changing• 5-70 
CREATE BITMAP FROM DATA routine• 11-2 
CREATE COLORMAP routine• 12-22 
CREATE FONT CURSOR routine• 14-2 
CREATE GC routine • 5-29 
CREATE GLYPH CURSOR routine• 14-4 
CREATE IMAGE routine • 6-25 
CREATE PIXMAP CURSOR routine• 14-7 
CREATE PIXMAP FROM BITMAP DATA routine• 

11-6 
CREATE PIXMAP routine• 11-4 
CREATE REGION routine• 9-5 
CREATE SIMPLE WINDOW routine· 3-27 
CREATE WINDOW routine• 3-31 
Creating 

database • 15-11 
Creating a cursor 

from bitmaps• 14-7 
from font glyphs • 14-4 
from fonts • 14-2 

Creating a window• 3-27, 3-31 
Ctrl key 

obtaining key code • 10-62 
Cursor 

best size • 5-34 
changing the color • 14-15 
defining for a window • 14-1 O 
deleting • 14-12 
determining size supported by hardware • 14-13 
dissociating from a window• 14-17 

Cursor routines• 14-2 to 14-17 
list of • 14-1 

Cut buffer 
obtaining data stored in• 8-20, 8-22 

Cut buffer (cont'd.) 

rotating • 2-57 
storing data in • 2-63 

Cut buffer zero • 8-22 
storing data in • 2-65 

D 
Dashed line 

changing length • 5-54 
changing offset • 5-54 

Database 
creating • 15-11 
loading • 15-14 
merging• 15-13 
retrieving • 15-8 
storing• 15-16 

Data structure 
arc• 6-5 
character • 13-6 
compose• 10-12 
description • 1-9 
error event • 4-9 
event• 4-3 
font• 13-2 
font property • 13-8 
graphics context• 5-2 
icon size • 8-6 
image• 6-7 
keyboard control • 1 0-6 
keyboard state • 1 0-1 O 
modifier key map • 1 0-12 
network • 1 0-5 
point• 6-2 
rectangle • 6-4, 9-2 
resource manager value• 15-5 
segment • 6-3 
set window attributes • 3-3 
size hints • 8-3 
standard color map • 12-2 
time coordinate • 4-6 
visual information • 12-32 
window attributes • 3-9 
window changes• 3-7 
window manager hints• 8-8 

Data type• 1-5 
Deallocating color definitions • 12-27 

Index 

DEFAULT COLORMAP OF SCREEN routine• 2-16 
DEFAULT COLORMAP routine• 2-15 
DEFAULT DEPTH routine• 2-17 

lndex-3 



Index 

DEFAULT GC routine• 2-19 
DEFAULT ROOT WINDOW routine• 2-21 
DEFAULT SCREEN OF DISPLAY routine• 2-23 
DEFAULT SCREEN routine• 2-22 
DEFAULT VISUAL OF SCREEN routine• 2-25 
DEFAULT VISUAL routine• 2-24 
DEFINE CURSOR routine• 14-10 
DELETE CONTEXT routine· 8-16 
DELETE MODIFIERMAP ENTRY routine• 10-41 
DELETE PROPERTY routine• 8-18 
Deleting property • 8-18 
Description section • 1-9 
Descriptor passing mechanism • 1-8 
DESTROY IMAGE routine• 6-29 
Destroying all subwindows • 3-35 
Destroying a window• 3-37 
DESTROY REGION routine• 9-6 
DESTROY SUBWINDOWS routine• 3-35 
DESTROY WINDOW routine• 3-37 
DISABLE ACCESS CONTROL routine• 10-43 
Disconnection 

See Closing down 
Display 

closing • 2-12 
obtaining for specified screen• 2-31 
opening • 2-49 

DISPLAY CELLS routine • 2-26 
DISPLAY HEIGHT MM routine• 2-28 
DISPLAY HEIGHT routine• 2-27 
DISPLAY NAME routine• 2-29 
DISPLAY OF SCREEN routine• 2-31 
DISPLAY PLANES routine • 2-32 
Display routines• 2-4 to 2-71 

list of• 2-1 
DISPLAY STRING routine• 2-33 
DISPLAY WIDTH MM routine• 2-36 
DISPLAY WIDTH routine• 2-35 
Documentation format • 1-4 to 1-9 
DOES BACKING STORE routine • 2-37 
DOES SAVE UNDERS routine• 2-38 
Drawable 

copying rectangular area from • 6-17 
obtaining geometry • 3-39 

DRAW ARC routine• 6-30 
DRAW ARCS routine • 6-34 
DRAW IMAGE STRING 16 routine• 7-8 
DRAW IMAGE STRING routine • 7-5 
Drawing 

image text string (16-bit) • 7-8 
image text string (8-bit) • 7-5 
text (16-bit) • 7-20 

lndex-4 

Drawing (cont'd.) 

text (8-bit) • 7-17 
text string (16-bit) • 7-14 
text string (8-bit) • 7-11 

Drawing arc • 6-30 
more than one • 6-34 

Drawing point • 6-45 
more than one • 6-4 7 

Drawing rectangle • 6-51 
more than one • 6-55 

Drawing segment • 6-58 
DRAW LINE routine • 6-37 
DRAW LINES routine• 6-40 
DRAW POINT routine • 6-45 
DRAW POINTS routine • 6-47 
DRAW RECTANGLE routine• 6-51 
DRAW RECTANGLES routine • 6-55 
DRAW SEGMENTS routine• 6-58 
DRAW STRING 16 routine• 7-14 
DRAW STRING routine• 7-11 
DRAW TEXT 16 routine• 7-20 
DRAW TEXT routine • 7-17 

E 
EMPTY REGION routine • 9-7 
ENABLE ACCESS CONTROL routine • 10-45 
Endpoint patterns 

changing • 5-70 
Entry in color map 

determining color• 12-42 
EQUAL REG ION routine • 9-8 
Error 

getting database text• 4-25 
getting text • 4-27 

Error codes 
list• 4-8 

Error event data structure• 4-9, 4-10, 4-11 
attributes • 4-54 

Error handler 
See also SET ERROR HANDLER routine 
description• 4-7 
nonfatal • 4-7, 4-53 
specifying nonfatal handler • 4-53 

Error handling• 4-7 
Event 

allowing events • 10-21 
checking and removing if matching • 4-32 
checking for match • 4-12 
checking number queued • 4-22 



Event (cont'd.) 

checking type • 4-16 
description • 4-1 
disabling synchronization • 4-57 
enabling synchronization • 4-57 
flushing • 4-24 
getting mouse motion event• 4-29 
introduction • 4-1 
matching window and type • 4-18 
peeking at and copying• 4-37 
peeking at and copying if matching• 4-38 
pushing back onto queue • 4-41 
releasing from grab• 10-21 
removing for specified window • 4-59 
removing next • 4-36 
removing next matching• 4-14, 4-34 
returning number of pending • 4-40 
selecting asynchronous input types • 4-44 
selecting asynchronous types • 4-42 
selecting input types • 4-46 
sending to client• 4-48 
single synchronization • 4-56 
specifying synchronization handler• 4-51 

Event data structure• 4-3 
Event mask • 4-4 

in CHANGE ACTIVE POINTER GRAB routine• 
10-29 

initial root • 2-39 
obtaining • 2-39 
table• 4-4 

EVENT MASK OF SCREEN routine • 2-39 
Event routines• 4-12 to 4-60 

list of• 4-1 
EVENTS QUEUED routine• 4-22 
Exposures 

allowing • 10-140 
obtaining values • 10-68 

F 
Fatal error 

handling• 4-55 
FETCH BUFFER routine• 8-20 
FETCH BYTES routine • 8-22 
FETCH NAME routine• 8-24 
FILL ARC routine • 6-61 
FILL ARCS routine• 6-64 
Filling 

more than one rectangle• 6-75 
Filling rectangle • 6-72 

FILL POLYGON routine • 6-67 
FILL RECTANGLE routine • 6-72 
FILL RECTANGLES routine• 6-75 
Fill style 

changing • 5-57, 5-60 
FIND CONTEXT routine• 8-26 
Flags 

for defining color values • 10-110, 10-111 
FLUSH routine • 4-24 
Focus window 

obtaining identifier • 10-56 
Font 

bounding box of• 13-4, 13-6 

Index 

changing value in graphics context• 5-62 
freeing storage of• 13-10, 13-11, 13-12, 13-13 
getting directory path • 13-15 
listing • 13-19, 13-21 , 13-23 
listing with information • 13-25 
loading • 13-27 
properties • 13-17 
returning information about• 13-29, 13-31 
setting the directory path • 13-33 
unloading • 13-35 

Font characters • 13-14 
Font data structure • 13-2 
Font property data structure • 13-8 
Font routines • 13-1 O to 13-35 

list of• 13-1 
FORCE SCREEN SAVER routine • 10-47 
Foreground color 

changing in graphics context• 5-64, 5-77 
Format of documentation • 1-4 to 1-9 
Format section • 1-4 
FREE COLORMAP routine• 12-25 
FREE COLORS routine• 12-27 
FREE CURSOR routine• 14-12 
FREE FONT INFO routine• 13-11 
FREE FONT NAMES routine• 13-12 
FREE FONT PATH routine• 13-13 
FREE FONT routine• 13-10 
FREE GC routine • 5-32 
Freeing color map • 12-20 
FREE MODIFIER MAP routine• 10-49 
FREE PIXMAP routine• 11-8 
FREE routine • 2-40 
Function 

changing in graphics context• 5-77 
changing value • 5-66 

lndex-5 



Index 

G 
GC 

See Graphics context 
GCONTEXT FROM GC routine • 5-33 
Geometry 

obtaining for specified drawable • 3-39 
parsing• 10-112 
parsing window• 10-50 

GEOMETRY routine• 10-50 
GET ATOM NAME routine• 8-28 
GET CHAR STRUCT routine• 13-14 
GET CLASS HINT routine• 8-30 
GET DEFAULT routine• 10-54 
GET ERROR DATABASE TEXT routine• 4-25 
GET ERROR TEXT routine• 4-27 
GET FONT PATH routine• 13-15 
GET FONT PROPERTY routine• 13-17 
GET GEOMETRY routine• 3-39 
GET ICON NAME routine• 8-32 
GET ICON SIZES routine• 8-34 
GET IMAGE routine• 6-78 
GET INPUT FOCUS routine• 4-58, 10-56 
GET KEYBOARD CONTROL routine• 10-58 
GET KEYBOARD MAPPING routine• 10-59 
GET MODIFIER MAPPING routine• 10-62 
GET MOTION EVENTS routine • 4-29 
GET NORMAL HINTS routine• 8-37 
GET PIXEL routine• 6-81 
GET POINTER CONTROL routine• 10-64 
GET POINTER MAPPING routine• 10-66 
GET SCREEN SAVER routine• 10-68 
GET SELECTION OWNER routine• 8-39 
GET SIZE HINTS routine• 8-41 
GET STANDARD COLORMAP routine• 12-29 
GET SUBIMAGE routine· 6-83 
GET TRANSIENT FOR HINT routine• 8-43 
GET VISUAL INFO routine• 12-32 
GET WINDOW ATTRIBUTES routine• 3-42 
GET WINDOW PROPERTY routine• 8-45 
GET WM HINTS routine• 8-50 
GET ZOOM HINTS routine• 8-52 
Grabbing 

button• 10-71 
changing active pointer • 10-29 
key• 10-77 
keyboard • 1 0-81 
pointer• 1 0-84 

Grabbing server • 10-89 
GRAB BUTION routine • 10-71 

lndex-6 

GRAB BUTTON routine (cont'd.) 

See also UNGRAB BUTTON routine 
GRAB KEYBOARD routine• 10-81 

See also UNGRAB KEYBOARD routine 
GRAB KEY routine· 10-77 

See also UNGRAB KEY routine 
GRAB POINTER routine• 10-84 

See also UNGRAB POINTER routine 
GRAB SERVER routine • 10-89 

See also UNGRAB SERVER routine 
Graphics context 

changing clip mask• 5-47 
changing clip origin• 5-49, 5-51 
changing dash members • 5-54 
changing font • 5-62 
changing values • 5-25 
copying • 5-27 
creating• 5-29 
default • 2-19, 2-20 
default values• 5-21 
freeing • 5-32 
obtaining resource identifier • 5-33 
setting for region • 9-19 
setting stipple • 5-80 
setting tile • 5-84 

Graphics context data structure• 5-2 
Graphics context routines • 5-25 to 5-87 

list of• 5-1 
Graphics exposures 

changing • 5-68 
Graphics routines • 6-11 to 6-93 

list of• 6-1 

H 
HEIGHT MM OF SCREEN routine• 2-41 
Height of screen • 2-27, 2-28, 2-41, 2-42 
Host 

I 

adding multiple to connect list• 10-17 
adding single to connect list• 10-15 
listing accessible • 10-100 
removing from access list• 10-121, 10-123 

110 error handler • 4-55 
Icon 

getting name • 8-32 



Icon (cont'd.) 

getting recommended sizes • 8-34 
setting recommended sizes • 8-68 
specifying name • 8-66 

Icon size data structure • 8-6 
IF EVENT routine • 4-32 

See also CHECK IF EVENT routine 
Image 

allocating memory for image • 6-25 
copying a portion of existing image • 6-92 
deallocating memory for image• 6-29 
obtaining • 6-78, 6-87 
obtaining pixel value• 6-81 
setting pixel value • 6-90 

IMAGE BYTE ORDER routine• 2-43 
Image data structure• 6-7 
Image text string (16-bit) 

drawing• 7-8 
Image text string (8-bit) 

drawing• 7-5 
Information routines 

GET CHAR STRUCT• 13-14 
GET FONT PROPERTY• 13-17 
LIST FONT• 13-19 
LIST FONTS • 13-23 
LIST FONT WITH INFO• 13-21 

Initializing 
resource manager • 15-12 

Input event queue 
obtaining length • 2-54 

Input focus 
changing • 10-133 
obtaining • 10-56 

INSERT MODIFIERMAP ENTRY routine• 10-90 
INSTALL COLORMAP routine• 10-93 

See also UNINSTALL COLORMAP routine 
INTERN ATOM routine • 8-54 
Intersection 

computing for region • 9-9 
INTERSECT REGION routine· 9-9 

J 
Join style 

changing • 5-70 

K 
Key 

passively grabbing• 10-77 
releasing from grab • 10-146 

Keyboard 
changing mapping • 10-34 
changing settings • 10-32 
conditions for active grab• 10-79 
grabbing control • 10-81 
obtaining logical state • 10-115 
obtaining mapping • 10-59 
obtaining modifier keys • 10-62 
obtaining settings • 10-58 
passively grabbing key• 10-77 
releasing active grab • 10-148 
setting modifier keys • 10-1 36 

Keyboard bell 
ringing • 10-27 

Keyboard control data structure • 1 0-6 
Keyboard control value mask• 10-8 
Keyboard keys 

turning off auto-repeat• 10-25 
turning on auto-repeat• 10-26 

Keyboard mapping 
refreshing • 10-118 

Keyboard state data structure • 10-1 O 
Key click • 1 0-32 

obtaining value • 10-58 
Key code • 10-59, 10-62 

Index 

converting from key symbol • 10-96, 10-143 
converting to key symbol • 10-95 
returning corresponding key symbol• 10-104 
setting key symbols • 10-34 

Key codes 
setting modifier keys• 10-136 

KEY CODE TO KEYSYM routine • 10-95 
See also KEYSYM TO KEYCODE routine 

Key event 
mapping to string • 10-105 

Key map 
querying • 10-115 

Key symbol 
converting from key code • 10-95 
converting to key code • 10-96, 10-143 
converting to string • 10-97 
looking up • 10-104 
obtaining mapping • 10-59 
rebinding to string• 10-116 
specifying• 10-34 

lndex-7 



Index 

KEYSYM TO KEYCODE routine• 10-96 
See also KEYCODE TO KEYSYM routine 

KEYSYM TO STRING routine• 10-97 
KILL CLIENT routine• 10-98 

L 
LAST KNOWN REQUEST PROCESSED routine• 

2-44 
LED• 10-32 

obtaining value• 10-58 
Line 

drawing • 6-37 
drawing connected lines• 6-40 
drawing unconnected lines• 6-58 

Line style 
changing values • 5-70 

Line width 
changing• 5-70 

LIST FONT routine• 13-19 
LIST FONTS routine • 13-23 
LIST FONTS WITH INFO routine• 13-25 
LIST FONT WITH INFO routine• 13-21 
LIST HOSTS routine• 10-100 
LIST INSTALLED COLORMAPS routine• 10-102 
LIST PROPERTIES routine• 8-56 
LOAD FONT routine • 13-27 
Loading 

database • 15-14 
LOAD QUERY FONT routine• 13-29 
LOOKUP COLOR routine• 12-35 
LOOKUP KEYSYM routine• 10-104 
LOOKUP STRING routine• 10-105 

See also REBIND KEYSYM routine 
Lowering a window• 3-44 
LOWER WINDOW routine • 3-44 

M 
Mapping all subwindows • 3-4 7 
Mapping a window • 3-46 
Mapping windows and all subwindows • 3-48 
MAP RAISED routine • 3-46 
MAP SUBWINDOWS routine• 3-47 
MAP WINDOW routine• 3-48 
Mask event • 4-4 
MASK EVENT routine • 4-34 

See also CHECK MASK EVENT routine 

lndex-8 

MATCH VISUAL INFO routine• 12-38 
MAX CMAPS OF SCREEN routine • 2-45 
Mechanism• 1-8 
Merging 

databases • 15-13 
MIN CMAPS OF SCREEN routine • 2-46 
Modifier key map data structure • 10-12 
Modifier keys 

obtaining key code• 10-62 
setting • 10-136 

Modifier map 
deleting entry • 1 0-41 
freeing storage• 10-49 
inserting entry • 10-90 
setting modifier keys• 10-136 

Mouse 
getting motion event • 4-29 

MOVE RESIZE WINDOW routine• 3-50 
MOVE WINDOW routine• 3-53 
Moving a window• 3-50, 3-53 

N 
Network data structure • 10-5 
NEW MODIFIER MAP routine• 10-107 
NEXT EVENT routine• 4-36 
NEXT REQUEST routine • 2-47 
Nonfatal error handler• 4-53 
NO OP routine • 2-48 

0 
OFFSET REGION routine• 9-11 
OPEN DISPLAY routine• 2-49 
Origin 

tile or stipple • 5-86 

p 
Parent window 

changing• 10-125 
PARSE COLOR routine• 10-108 
PARSE COMMAND routine• 15-14 
PARSE GEOMETRY routine• 10-112 
Passing mechanism • 1-8 



Passive grab 

deactivating for pointer button press • 10-144 
PEEK EVENT routine • 4-37 
PEEK IF EVENT routine• 4-38 
PENDING routine• 4-40 
PERMALLOC routine• 15-7 
Pixel 

black• 2-10 
incrementing values in pixmap • 6-11 
obtaining value from image• 6-81 
setting value for image • 6-90 
white• 2-69 

Pixel value • 2-9 
white• 2-68 

Pixmap 
creating • 11-4 
creating from bitmap data• 11-6 
description • 11-1 
freeing storage • 11-8 
incrementing pixel values• 6-11 

Pixmap routines• 11-2 to 11-13 
list of• 11-1 

Plane 
allocating• 12-1 o, 12-13 
changing plane mask• 5-75 
obtaining number in screen• 2-51 
screen • 2-32 

Plane mask 
changing in graphics context• 5-77 

PLANES OF SCREEN routine• 2-51 
Point 

drawing • 6-45 
drawing more than one• 6-47 

Point data structure • 6-2 
Pointer • 1-8 

acceleration of• 10-37, 10-64 
actively grabbing • 10-84 
changing active pointer grab • 10-29 
deactivating passive grab • 10-144 
defining movement• 10-37 
moving • 10-153 
obtaining coordinates • 3-55 
obtaining mapping • 10-66 
obtaining movement values • 10-64 
obtaining root window • 3-55 
passive grabbing • 10-71 
releasing active grab • 10-149 
setting mapping • 10-138 
threshold speed of • 10-37 

Pointer mapping 
obtaining list • 10-66 

POINT IN REGION routine• 9-12 

Polygon 
filling • 6-67 

POLYGON REGION routine• 9-14 
Predicate procedure • 4-6 
Property 

changing • 8-11 
definition• 8-1 
deleting • 8-18 
getting window manager hints • 8-50 
icon sizes • 8-34, 8-68 
obtaining format• 8-45 
obtaining list• 8-56 
regular window sizes• 8-37, 8-70 
rotating • 8-58 
setting command• 8-64 
setting standard• 8-76 
setting window manager hints• 8-81 
zoom window sizes • 8-52 

Property routines• 8-11 to 8-87 
list of• 8-1 

Protocol requests• 1-1 O 
Protocol revision number 

obtaining • 2-52 
PROTOCOL REVISION routine• 2-52 
Protocol routines • 1-1 O 
Protocol version number 

obtaining • 2-53 
PROTOCOL VERSION routine• 2-53 
Pseudocolor 

allocating entries and planes • 12-1 O 
PUT BACK EVENT routine• 4-41 
PUT IMAGE routine• 6-87, 11-6 
PUT PIXEL routine• 6-90 

Q 
Q LENGTH routine • 2-54 
Quark 

allocating • 15-35 
converting to string • 15-31 

Quarks • 15-4 
QUERY BEST CURSOR routine• 14-13 
QUERY BEST SIZE routine• 5-34 
QUERY BEST STIPPLE routine• 5-37 
QUERY BEST TILE routine• 5-40 
QUERY COLOR routine• 12-40 
QUERY COLORS routine• 12-42 
QUERY FONT routine• 13-31 
QUERY KEYMAP routine• 10-115 

Index 

lndex-9 



Index 

QUERY POINTER routine• 3-55 
QUERY TEXT EXTENTS 16 routine• 7-26 
QUERY TEXT EXTENTS routine• 7-23 
QUERY TREE routine• 3-58 

R 
RAISE WINDOW routine· 3-61 
Raising a window• 3-46, 3-61 
READ BITMAP FILE routine• 11-9 
REBIND KEYSYM routine• 10-116 

See also LOOKUP STRING routine 
RECOLOR CURSOR routine• 14-15 
Rectangle 

drawing• 6-51 
drawing more than one • 6-55 
filling • 6-72 
filling more than one• 6-75 
generating smallest enclosing • 9-4 

Rectangle data structure• 6-4, 9-2 
Rectangle location within region• 9-17 
RECT IN REGION routine• 9-17 
Reference passing mechanism• 1-8 
REFRESH KEYBOARD MAPPING routine• 10-118 
Region 

calculating the exclusive OR • 9-28 
calculating the union • 9-26 
calculating the union rectangle • 9-24 
computing the intersection • 9-9 
creating• 9-1, 9-14 
creating empty region • 9-5 
deallocating storage • 9-6 
definition• 9-1 
destroying region • 9-6 
determining if empty • 9-7 
determining if equal • 9-8 
determining location of rectangle • 9-17 
determining point location• 9-12 
expanding size of· 9-20 
introduction • 9-1 
moving by offset• 9-11 
reducing size of• 9-20 
setting graphics context for• 9-19 
subtracting regions • 9-22 

Region routines • 9-4 to 9-29 
list of• 9-1 

REMOVE FROM SAVE SET routine• 10-119 
See also ADD TO SAVE SET routine 

REMOVE HOST routine• 10-121 

lndex-10 

REMOVE HOST routine (cont'd.) 

See also REMOVE HOSTS routine 
REMOVE HOSTS routine• 10-123 

See also REMOVE HOST routine 
REPARENT WINDOW routine• 10-125 
Replacing color map• 12-46 
RESET SCREEN SAVER routine• 10-128 
RESIZE WINDOW routine• 3-62 
Resizing a window • 3-50, 3-62 
Resource 

adding • 15-20, 15-29 
retrieving • 15-9, 15-21 
searching • 15-25 
storing • 15-18, 15-27 

Resource entry 
adding• 15-17 

Resource manager • 15-2 to 15-4 
initializing • 15-12 
matching rules • 15-3 

Resource manager routines• 15-7 to 15-35 
list of• 15-1 

Resource manager value data structure• 15-5 
Restacking array of windows • 3-64 
RESTACK WINDOWS routine· 3-64 
Retrieving 

resource • 15-21 
Retrieving database· 15-8 
Retrieving resource • 15-9 
RM GET FILE DATABASE routine• 15-8 
RM GET RESOURCE routine• 15-9 
RM GET STRING DATABASE routine• 15-11 
RM INITIALIZE routine• 15-12 
RM MERGE DATABASES routine• 15-13 
RM PUT FILE DATABASE routine• 15-16 
RM PUT LINE RESOURCE routine• 15-17 
RM PUT RESOURCE routine• 15-18 
RM PUT STRING RESOURCE routine• 15-20 
RM Q GET RESOURCE routine• 15-21 
RM Q GET SEARCH LIST routine• 15-23 
RM Q GET SEARCH RESOURCE routine• 15-25 
RM Q PUT RESOURCE routine• 15-27 
RM Q PUT STRING RESOURCE routine• 15-29 
RM QUARK TO STRING routine• 15-31 
RM STRING TO BIND QUARK LIST routine• 15-32 
RM STRING TO QUARK LIST routine• 15-34 
RM STRING TO QUARK routine• 15-33 
RM UNIQUE QUARK routine• 15-35 
Root window 

default• 2-21 
obtaining default depth• 2-17 
obtaining identifier• 2-55, 2-56 



ROOT WINDOW OF SCREEN routine• 2-56 
ROOT WINDOW routine• 2-55 
ROTATE BUFFERS routine• 2-57 
ROTATE WINDOW PROPERTIES routine• 8-58 
Routine name section • 1-4 
Routines 

ACTIVATE SCREEN SAVER• 10-14 
ADD HOST• 10-15 
ADD HOSTS• 10-17 
ADD PIXEL• 6-11 
ADD TO SAVE SET• 10-19 
ALLOC COLOR • 12-8 
ALLOC COLOR CELLS• 12-10 
ALLOC COLOR PLANES· 12-13 
ALLOC NAMED COLOR• 12-17 
ALLOW EVENTS• 10-21 
ALL PLANES• 2-5 
AUTO REPEAT OFF• 10-25 
AUTO REPEAT ON • 10-26 
BELL• 10-27 
BITMAP BIT ORDER• 2-6 
BITMAP PAD• 2-7 
BITMAP UNIT• 2-8 
BLACK PIXEL• 2-9 
BLACK PIXEL OF SCREEN• 2-1 O 
CELLS OF SCREEN· 2-11 
CHANGE ACTIVE POINTER GRAB• 10-29 
CHANGE GC • 5-25 
CHANGE KEYBOARD CONTROL• 10-32 
CHANGE KEYBOARD MAPPING• 10-34 
CHANGE POINTER CONTROL• 10-37 
CHANGE PROPERTY• 8-11 
CHANGE SAVE SET• 10-39 
CHANGE WINDOW ATTRIBUTES• 3-15 
CHECK IF EVENT• 4-12 
CHECK MASK EVENT• 4-14 
CHECK TYPED EVENT• 4-16 
CHECK TYPED WINDOW EVENT• 4-18 
CHECK WINDOW EVENT• 4-20 
CIRCULATE SUBWINDOWS • 3-18 
CIRCULATE SUBWINDOWS DOWN• 3-20 
CIRCULATE SUBWINDOWS UP• 3-22 
CLEAR AREA • 6-12 
CLEAR WINDOW• 6-15 
CLIP BOX • 9-4 
CLOSE DISPLAY• 2-12 
CONFIGURE WINDOW· 3-24 
CONNECTION NUMBER• 2-14 
CONVERT SELECTION • 8-14 
COPY AREA • 6-17 
COPY COLORMAP AND FREE • 12-20 

Routines (cont'd.) 

COPY GC • 5-27 
COPY PLANE• 6-21 
CREATE BITMAP FROM DATA• 11-2 
CREATE COLORMAP • 12-22 
CREATE FONT CURSOR• 14-2 
CREATE GC • 5-2~ 
CREATE GLYPH CURSOR• 14-4 
CREATE IMAGE • 6-25 
CREATE PIXMAP• 11-4 
CREATE PIXMAP CURSOR• 14-7 

Index 

CREATE PIXMAP FROM BITMAP DATA• 11-6 
CREATE REGION • 9-5 
CREATE SIMPLE WINDOW• 3-27 
CREATE WINDOW• 3-31 
DEFAULT COLORMAP • 2-15 
DEFAULT COLORMAP OF SCREEN• 2-16 
DEFAULT DEPTH• 2-17 
DEFAULT DEPTH OF SCREEN• 2-18 
DEFAULT GC • 2-19 
DEFAULT GC OF SCREEN• 2-20 
DEFAULT ROOT WINDOW• 2-21 
DEFAULT SCREEN• 2-22 
DEFAULT SCREEN OF DISPLAY• 2-23 
DEFAULT VISUAL• 2-24 
DEFAULT VISUAL OF SCREEN• 2-25 
DEFINE CURSOR• 14-10 
DELETE CONTEXT• 8-16 
DELETE MODIFIERMAP ENTRY• 10-41 
DELETE PROPERTY• 8-18 
DESTROY IMAGE • 6-29 
DESTROY REGION • 9-6 
DESTROY SUBWINDOWS • 3-35 
DESTROY WINDOW• 3-37 
DISABLE ACCESS CONTROL• 10-43 
DISPLAY CELLS• 2-26 
DISPLAY HEIGHT• 2-27 
DISPLAY HEIGHT MM • 2-28 
DISPLAY NAME• 2-29 
DISPLAY OF SCREEN• 2-31 
DISPLAY PLANES• 2-32 
DISPLAY STRING • 2-33 
DISPLAY WIDTH • 2-35 
DISPLAY WIDTH MM• 2-36 
DOES BACKING STORE• 2-37 
DOES SAVE UNDERS • 2-38 
DRAW ARC· 6-30 
DRAW ARCS• 6-34 
DRAW IMAGE STRING• 7-5 
DRAW IMAGE STRING 16 • 7-8 
DRAW LINE• 6-37 
DRAW LINES• 6-40 

lndex-11 



Index 

Routines (cont'd.) 

DRAW POINT• 6-45 
DRAW POINTS • 6-47 
DRAW RECTANGLE• 6-51 
DRAW RECTANGLES • 6-55 
DRAW SEGMENTS• 6-58 
DRAW STRING• 7-11 
DRAW STRING 16 • 7-14 
DRAW TEXT• 7-17 
DRAW TEXT 16 • 7-20 
EMPTY REGION• 9-7 
ENABLE ACCESS CONTROL • 10-45 
EQUAL REGION• 9-8 
EVENT MASK OF SCREEN • 2-39 
EVENTS QUEUED • 4-22 
FETCH BUFFER• 8-20 
FETCH BYTES • 8-22 
FETCH NAME• 8-24 
FILL ARC • 6-61 
FILL ARCS• 6-64 
FILL POLYGON• 6-67 
FILL RECTANGLE• 6-72 
FILL RECTANGLES • 6-75 
FIND CONTEXT• 8-26 
FLUSH• 4-24 
FORCE SCREEN SAVER• 10-47 
FREE• 2-40 
FREE COLORMAP • 12-25 
FREE COLORS • 12-27 
FREE CURSOR• 14-12 
FREE FONT• 13-10 
FREE FONT INFO• 13-11 
FREE FONT NAMES• 13-12 
FREE FONT PATH• 13-13 
FREE GC • 5-32 
FREE MODIFIERMAP • 10-49 
FREE PIXMAP• 11-8 
GCONTEXT FROM GC • 5-33 
GEOMETRY• 10-50 
GET ATOM NAME • 8-28 
GET CHAR STRUCT• 13-14 
GET CLASS HINT• 8-30 
GET DEFAULT• 10-54 
GET ERROR DATABASE TEXT• 4-25 
GET ERROR TEXT• 4-27 
GET FONT PATH• 13-15 
GET FONT PROPERTY• 13-17 
GET GEOMETRY• 3-39 
GET ICON NAME• 8-32 
GET ICON SIZES• 8-34 
GET IMAGE • 6-78 
GET INPUT FOCUS • 10-56 

lndex-12 

Routines (cont'd.) 

GET KEYBOARD CONTROL• 10-58 
GET KEYBOARD MAPPING • 10-59 
GET MODIFIER MAPPING • 10-62 
GET MOTION EVENTS• 4-29 
GET NORMAL HINTS• 8-37 
GET PIXEL• 6-81 
GET POINTER CONTROL• 10-64 
GET POINTER MAPPING• 10-66 
GET SCREEN SAVER• 10-68 
GET SELECTION OWNER• 8-39 
GET SIZE HINTS• 8-41 
GET STANDARD COLORMAP • 12-29 
GET SUBIMAGE • 6-83 
GET TRANSIENT FOR HINT• 8-43 
GET VISUAL INFO• 12-32 
GET WINDOW ATTRIBUTES• 3-42 
GET WINDOW PROPERTY• 8-45 
GET WM HINTS• 8-50 
GET ZOOM HINTS • 8-52 
GRAB BUTTON • 10-71 
GRAB KEY• 10-77 
GRAB KEYBOARD• 10-81 
GRAB POINTER• 10-84 
GRAB SERVER• 10-89 
HEIGHT MM OF SCREEN • 2-41 
HEIGHT OF SCREEN • 2-42 
IF EVENT• 4-32 
IMAGE BYTE ORDER• 2-43 
INSERT MODIFIERMAP ENTRY• 10-90 
INSTALL COLORMAP • 10-93 
INTERN ATOM• 8-54 
INTERSECT REGION • 9-9 
KEY CODE TO KEYSYM • 10-95 
KEYSYM TO KEYCODE • 10-96 
KEYSYM TO STRING• 10-97 
KILL CLIENT• 10-98 
LAST KNOWN REQUEST PROCESSED• 2-44 
LIST FONT• 13-19 
LIST FONTS • 13-23 
LIST FONTS WITH INFO• 13-25 
LIST FONT WITH INFO• 13-21 
LIST HOSTS • 10-1 00 
LIST INSTALLED COLORMAPS • 10-102 
LIST PROPERTIES • 8-56 
LOAD FONT• 13-27 
LOAD QUERY FONT• 13-29 
LOOKUP COLOR• 12-35 
LOOKUP KEYSYM • 10-104 
LOOKUP STRING• 10-105 
LOWER WINDOW• 3-44 
MAP RAISED • 3-46 



Routines (cont'd.) 

MAP SUBWINDOWS • 3-47 
MAP WINDOW• 3-48 
MASK EVENT • 4-34 
MATCH VISUAL INFO• 12-38 
MAX CMAPS OF SCREEN • 2-45 
MIN CMAPS OF SCREEN • 2-46 
MOVE RESIZE WINDOW• 3-50 
MOVE WINDOW• 3-53 
NEW MODIFIER MAP• 10-107 
NEXT EVENT• 4-36 
NEXT REQUEST• 2-47 
NO OP• 2-48 
OFFSET REGION• 9-11 
OPEN DISPLAY• 2-49 
organization • 1-2 
PARSE COLOR• 10-108 
PARSE COMMAND• 15-14 
PARSE GEOMETRY• 10-112 
PEEK EVENT• 4-37 
PEEK IF EVENT• 4-38 
PENDING • 4-40 
PERMALLOC • 15-7 
PLANES OF SCREEN• 2-51 
POINT IN REGION• 9-12 
POLYGON REGION• 9-14 
PROTOCOL REVISION • 2-52 
PROTOCOL VERSION • 2-53 
PUT BACK EVENT• 4-41 
PUT IMAGE• 6-87 
PUT PIXEL• 6-90 
Q LENGTH • 2-54 
QUERY BEST CURSOR• 14-13 
QUERY BEST SIZE• 5-34 
QUERY BEST STIPPLE• 5-37 
QUERY BEST TILE• 5-40 
QUERY COLOR• 12-40 
QUERY COLORS• 12-42 
QUERY FONT• 13-31 
QUERY KEYMAP • 10-115 
QUERY POINTER• 3-55 
QUERY TEXT EXTENTS• 7-23 
QUERY TEXT EXTENTS 16 • 7-26 
QU ERV TREE • 3-58 
RAISE WINDOW• 3-61 
READ BITMAP FILE• 11-9 
REBIND KEYSYM • 10-116 
RECOLOR CURSOR• 14-15 
RECT IN REGION• 9-17 
REFRESH KEYBOARD MAPPING• 10-118 
REMOVE FROM SAVE SET• 10-119 
REMOVE HOST• 10-121 

Routines (cont'd.) 

REMOVE HOSTS • 10-123 
REPARENT WINDOW• 10-125 
RESET SCREEN SAVER• 10-128 
RESIZE WINDOW• 3-62 
RESTACK WINDOWS• 3-64 
RM GET FILE DATABASE • 15-8 
RM GET RESOURCE• 15-9 
RM GET STRING DATABASE• 15-11 
RM INITIALIZE• 15-12 
RM MERGE DATABASES• 15-13 
RM PUT FILE DATABASE• 15-16 
RM PUT LINE RESOURCE• 15-17 
RM PUT RESOURCE• 15-18 
RM PUT STRING RESOURCE• 15-20 
RM Q GET RESOURCE• 15-21 
RM Q GET SEARCH LIST• 15-23 

Index 

RM Q GET SEARCH RESOURCE• 15-25 
RM Q PUT RESOURCE• 15-27 
RM Q PUT STRING RESOURCE• 15-29 
RM QUARK TO STRING• 15-31 
RM STRING TO BIND QUARK LIST• 15-32 
RM STRING TO QUARK• 15-33 
RM STRING TO QUARK LIST• 15-34 
RM UNIQUE QUARK• 15-35 
ROOT WINDOW• 2-55 
ROOT WINDOW OF SCREEN • 2-56 
ROTATE BUFFERS • 2-57 
ROTATE WINDOW PROPERTIES• 8-58 
SAVE CONTEXT• 8-60 
SCREEN COUNT• 2-59 
SCREEN OF DISPLAY• 2-60 
SELECT ASYNC EVENT • 4-42 
SELECT ASYNC INPUT• 4-44 
SELECT INPUT• 4-46 
SEND EVENT• 4-48 
SERVER VENDOR• 2-61 
SET ACCESS CONTROL• 10-129 
SET AFTER FUNCTION• 4-51 
SET ARC MODE • 5-43 
SET BACKGROUND• 5-45 
SET CLASS HINT• 8-62 
SET CLIP MASK• 5-47 
SET CLIP ORIGIN • 5-49 
SET CLIP RECTANGLES• 5-51 
SET CLOSE DOWN MODE• 10-131 
SET COMMAND• 8-64 
SET DASHES • 5-54 
SET ERROR HANDLER • 4-53 
SET FILL RULE• 5-57 
SET FILL STYLE• 5-60 
SET FONT• 5-62 

lndex-13 



Index 

Routines (cont'd.) 

SET FONT PATH • 13-33 
SET FOREGROUND• 5-64 
SET FUNCTION• 5-66 
SET GRAPHICS EXPOSURES• 5-68 
SET ICON NAME • 8-66 
SET ICON SIZES • 8-68 
SET INPUT FOCUS• 10-133 
SET 10 ERROR HANDLER• 4-55 
SET LINE ATTRIBUTES• 5-70 
SET MODIFIER MAPPING• 10-136 
SET NORMAL HINTS• 8-70 
SET PLANE MASK• 5-75 
SET POINTER MAPPING• 10-138 
SET REGION• 9-19 
SET SCREEN SAVER• 10-140 
SET SELECTION OWNER• 8-72 
SET SIZE HINTS• 8-74 
SET STANDARD COLORMAP • 12-44 
SET STANDARD PROPERTIES• 8-76 
SET STATE• 5-77 
SET STIPPLE• 5-80 
SET SUBWINDOW MODE• 5-82 
SET TILE· 5-84 
SET TRANSIENT FOR HINT• 8-79 
SET TS ORIGIN • 5-86 
SET WINDOW BACKGROUND• 3-66 
SET WINDOW BACKGROUND PIXMAP• 3-68 
SET WINDOW BORDER• 3-70 
SET WINDOW BORDER PIXMAP• 3-72 
SET WINDOW BORDER WIDTH• 3-74 
SET WINDOW COLORMAP • 12-46 
SET WM HINTS• 8-81 
SET ZOOM HINTS • 8-83 
SHRINK REGION• 9-20 
STORE BUFFER• 2-63 
STORE BYTES • 2-65 
STORE COLOR • 12-48 
STORE COLORS • 12-50 
STORE NAME • 8-85 
STORE NAMED COLOR• 12-52 
STRING TO KEYSYM • 10-143 
SUBIMAGE • 6-92 
SUBTRACT REGION• 9-22 
SYNC• 4-56 
SYNCHRONIZE• 4-57 
TEXT EXTENTS• 7-29 
TEXT EXTENTS 16 • 7-32 
TEXT WIDTH • 7-35 
TEXT WIDTH 16 • 7-37 
TRANSLATE COORDINATES• 3-75 
UNDEFINE CURSOR• 14-17 

lndex-14 

Routines (cont'd.) 

UNGRAB BUTTON• 10-144 
UNGRAB KEY• 10-146 
UNGRAB KEYBOARD• 10-148 
UNGRAB POINTER• 10-149 
UNGRAB SERVER• 10-150 
UNINSTALL COLORMAP • 10-151 
UNION RECT WITH REGION • 9-24 
UNION REGION• 9-26 
UNIQUE CONTEXT• 8-87 
UNLOAD FONT• 13-35 
UNMAP SUBWINDOWS • 3-78 
UNMAP WINDOW• 3-79 
VENDOR RELEASE• 2-67 
WARP POINTER• 10-153 
WHITE PIXEL• 2-68 
WHITE PIXEL OF SCREEN• 2-69 
WIDTH MM OF SCREEN• 2-70 
WIDTH OF SCREEN • 2-71 
WINDOW EVENT• 4-59 
WRITE BITMAP FILE• 11-12 
XOR REGION • 9-28 

Routine template • 1-4 

s 
SAVE CONTEXT routine• 8-60 
Save set 

adding to• 10-19 
changing • 10-39 
removing windows from • 10-119 

Save unders • 2-38 
Scan line • 2-7 
Screen 

default• 2-22, 2-23 
height• 2-27, 2-28, 2-41, 2-42 
obtaining default depth• 2-18 
obtaining for specified display • 2-60 
width • 2-35, 2-36, 2-70, 2-71 

Screen blanking 
obtaining values• 10-68 
setting values for • 10-140 

SCREEN COUNT routine• 2-59 
SCREEN OF DISPLAY routine• 2-60 
Screen saver 

activating • 1 0-14 
forcing on• 10-47 
invoking• 10-47 
obtaining values • 10-68 
resetting• 10-128 



Screen saver (cont'd.) 

setting values for • 1 0-140 
Screen timeout period 

obtaining values • 10-68 
Searching 

resource• 15-25 
Segment data structure • 6-3 
SELECT ASYNC EVENT routine • 4-42 
SELECT ASYNC INPUT routine• 4-44 
SELECT INPUT routine• 4-46 
SEND EVENT routine• 4-48 
Server 

grabbing • 10-89 
ungrabbing • 10-150 

Server release number• 2-67 
SERVER VENDOR routine• 2-61 
Session manager 

function of• 10-1 
Session manager routines • 10-14 to 10-155 

list of• 10-1 
SET ACCESS CONTROL routine• 10-129 
SET AFTER FUNCTION routine• 4-51 
SET ARC MODE routine • 5-43 
SET BACKGROUND routine• 5-45 
SET CLASS HINT routine• 8-62 
SET CLIP MASK routine• 5-47, 9-1 
SET CLIP ORIGIN routine• 5-49, 9-1 
SET CLIP RECTANGLES routine• 5-51, 9-1 
SET CLOSE DOWN MODE routine• 10-131 
SET COMMAND routine• 8-64 
SET DASHES routine• 5-54 
SET ERROR HANDLER routine• 4-53 
SET FILL RULE routine • 5-57 
SET FILL STYLE routine • 5-60 
SET FONT PATH routine• 13-33 
SET FONT routine • 5-62 
SET FOREGROUND routine• 5-64 
SET FUNCTION routine• 5-66 
SET GRAPHICS EXPOSURES routine• 5-68 
SET ICON NAME routine• 8-66 
SET ICON SIZES routine• 8-68 
SET INPUT FOCUS routine• 10-133 
SET 10 ERROR HANDLER routine • 4-55 
SET LINE ATTRIBUTES routine• 5-70 
SET MODIFIER MAPPING routine• 10-136 
SET NORMAL HINTS routine • 8-70 
SET PLANE MASK routine• 5-75 
SET POINTER MAPPING routine• 10-138 
SET REGION routine• 9-19 
SET SCREEN SAVER routine• 10-140 
SET SELECTION OWNER routine• 8-72 
SET SIZE HINTS routine• 8-74 

Index 

SET STANDARD COLORMAP routine• 12-44 
SET STANDARD PROPERTIES routine• 8-76 
SET STATE routine • 5-77 
SET STIPPLE routine• 5-80 
SET SUBWINDOW MODE routine• 5-82 
SET TILE routine • 5-84 
SET TRANSIENT FOR HINT routine• 8-79 
SET TS ORIGIN routine• 5-86 
Set window attributes data structure• 3-3 
SET WINDOW BACKGROUND PIXMAP routine• 

3-68 
SET WINDOW BACKGROUND routine• 3-66 
SET WINDOW BORDER PIXMAP routine• 3-72 
SET WINDOW BORDER routine • 3-70 
SET WINDOW BORDER WIDTH routine• 3-74 
SET WINDOW COLORMAP routine• 12-46 
SET WM HINTS routine• 8-81 
SET ZOOM HINTS routine• 8-83 
Shift key 

obtaining key code • 10-62 
SHRINK REGION routine• 9-20 
Shutdown 

See Closing down 
Size hints data structure • 8-3 
Standard color map 

obtaining • 12-29 
setting• 12-44 

Standard color map data structure • 12-2 
Stipple 

changing pixmap • 5-80 
optimal size· 5-34, 5-37 

Stipple origin 
changing in graphics context • 5-86 

STORE BUFFER routine• 2-63 
STORE BYTES routine • 2-65 
STORE COLOR routine • 12-48 
STORE COLORS routine • 12-50 
STORE NAMED COLOR routine· 12-52 
STORE NAME routine• 8-85 
Storing 

database • 15-16 
resource• 15-18, 15-27 

String 
converting from key symbol • 10-97 
converting to binding list• 15-32 
converting to quark • 15-33 
converting to quark list • 15-32, 15-34 
returning length • 7-35, 7-37 
returning logical extents• 7-29, 7-32 

STRING TO KEYSYM routine• 10-143 
See also KEYSYM TO STRING routine 

lndex-15 



Index 

Subimage 
obtaining• 6-83 

SUBIMAGE routine• 6-92 
SUBTRACT REGION routine• 9-22 
Subwindow 

circulating down • 3-20 
circulating in specified direction • 3-18 
circulating up • 3-22 
destroying • 3-35 
mapping• 3-47 
unmapping all • 3-78 

Subwindow mode 
changing • 5-82 

Synchronization 
disabling • 4-57 
enabling• 4-57 

Synchronization handler 
specifying through SET AFTER FUNCTION 

routine• 4-51 
Synchronization routine 

setting default• 4-58 
SYNCHRONIZE routine • 4-57 

See also SYNC routine 
SYNC routine • 4-56 

See also SYNCHRONIZE routine 
Syntax• 1-4 

T 
Text (16-bit) 

drawing• 7-20 
Text (8-bit) 

drawing• 7-17 
TEXT EXTENTS 16 routine• 7-32 
TEXT EXTENTS routine • 7-29 
Text routines• 7-5 to 7-38 
Text string (16-bit) 

drawing• 7-14 
Text string (8-bit) 

drawing• 7-11 
TEXT WIDTH 16 routine• 7-37 
TEXT WIDTH routine• 7-35 
Tile 

best size • 5-34, 5-40 
changing pixmap • 5-84 

Tile origin 
changing in graphics context • 5-86 

Time coordinate data structure· 4-6, 4-7 
TRANSLATE COORDINATES routine• 3-75 

lndex-16 

u 
UNDEFINE CURSOR routine• 14-17 
Ungrabbing a key • 10-146 
Ungrabbing a keyboard• 10-148 
Ungrabbing a pointer• 10-149 
Ungrabbing server• 10-150 

· UNGRAB BUTTON routine• 10-144 
See also GRAB BUTTON routine 

UNGRAB KEYBOARD routine• 10-148 
See also GRAB KEYBOARD routine 

UNGRAB KEY routine• 10-146 
See also GRAB KEY routine 

UNGRAB POINTER routine• 10-149 
See also GRAB POINTER routine 

UNGRAB SERVER routine• 10-150 
See also GRAB SERVER routine 

UNINSTALL COLORMAP routine• 10-151 
Union 

calculating for region • 9-24, 9-26 
UNION RECT WITH REGION routine• 9-24 
UNION REGION routine• 9-26 
UNIQUE CONTEXT routine• 8-87 
UNLOAD FONT routine• 13-35 
Unmapping all subwindows • 3-78 
Unmapping a window• 3-79 
UNMAP SUBWINDOWS routine• 3-78 
UNMAP WINDOW routine• 3-79 
User environment 

obtaining defaults • 10-54 
Utility routines• 1-10 

v 
Value passing mechanism • 1-8 
VAX binding• 1-3 
Vendor 

identifying• 2-61 
VENDOR RELEASE routine• 2-67 
Visual information data structure • 12-32 
Visual type 

default • 2-24, 2-25 

w 
WARP POINTER routine• 10-153 



WHITE PIXEL OF SCREEN routine• 2-69 
WHITE PIXEL routine • 2-68 
WIDTH MM OF SCREEN routine• 2-70 
Width of screen• 2-35, 2-36, 2-70, 2-71 
WIDTH OF SCREEN routine• 2-71 
Window 

adding to save set• 10-19, 10-39 
assigning name • 8-85 
changing and repainting border tile• 3-72 
changing border width• 3-74 
changing location and size • 3-50 
changing parent• 10-125 
clearing • 6-15 
configuring • 3-24 
creating• 3-27, 3-31 
defining a cursor • 14-1 O 
destroying• 3-37 
getting class hint • 8-30 
getting size hints• 8-41 
getting transient for hint• 8-43 
lowering • 3-44 
mapping• 3-48 
mapping and raising • 3-46 
moving• 3-53 
obtaining attributes • 3-42 
obtaining list of children • 3-58 
obtaining number of children • 3-58 
obtaining parent • 3-58 
providing name • 8-24 
raising• 3-61 
recommended sizes• 8-37, 8-70 
recommended zoom sizes • 8-52 
recommended zoom values • 8-83 
removing child • 10-119 
removing from a save set • 10-39 
resizing • 3-62 
restacking array• 3-64 
setting background • 3-66 
setting background tile • 3-68 
setting border• 3-70 
setting class hint• 8-62 
setting size hints• 8-74 
setting standard properties• 8-76 
setting transient for hint• 8-79 
undefining a cursor• 14-17 
unmapping • 3-79 

Window attributes 
changing• 3-15 
obtaining • 3-42 

Window attributes data structure • 3-9 

Window background 

setting• 3-66 
Window background tile 

setting • 3-68 
Window border 

changing width• 3-74 
setting • 3-70 

Window border tile 
changing • 3-72 
repainting• 3-72 

Window changes data structure• 3-7 
Window coordinates 

transferring• 3-75 
WINDOW EVENT routine• 4-59 
Window manager 

function of• 10-1 
getting hints• 8-50 
regular sizes• 8-37, 8-70 
setting hints• 8-81 
zoom hints • 8-83 
zoom window sizes • 8-52 

Index 

Window manager hints data structure • 8-8 
Window manager routines • 10-14 to 10-155 

list of• 10-1 
using• 10-1 

Window routines • 3-15 to 3-80 
list of• 3-1 

Window selection• 8-14, 8-39, 8-72 
WM_HINTS • 8-81 
WM_ICON_SIZES • 8-68 
WM_NORMAL_HINTS • 8-70 
WRITE BITMAP FILE routine• 11-12 
Writing bitmap file • 11-12 

x 
X binding 

See C binding 
XOR REGION routine• 9-28 
X protocol 

See Binding information 

lndex-17 





How to Order Additional Documentation 

Technical Support 
If you need help deciding which documentation best meets your needs, call 800-343-4040 before placing 
your electronic, telephone, or direct mail order. 

Electronic Orders 
To place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using a 1200- or 2400-baud 
modem. If you need assistance using the Electronic Store, call 800-DIGITAL (800-344-4825). 

Telephone and Direct Mail Orders 

Your Location 

Continental USA, 
Alaska, or Hawaii 

Puerto Rico 

Canada 

International 

Internal1 

Call 

800-DIGITAL 

809-754-7575 

800-267-6215 

Contact 

Digital Equipment Corporation 
P.O. Box CS2008 
Nashua, New Hampshire 03061 

Local DIGITAL subsidiary 

Digital Equipment of Canada 
Attn: DECdirect Operations KA02/2 
P.O. Box 13000 
100 Herzberg Road 
Kanata, Ontario, Canada K2K 2A6 

Local DIGITAL subsidiary or 
approved distributor 

SDC Order Processing - WMO/E15 
or 
Software Distribution Center 
Digital Equipment Corporation 
Westminster, Massachusetts 01473 

1 For internal orders, you must submit an Internal Software Order Form (EN-01740-07). 





Reader's Comments VMS DECwindows 
Xlib Routines 

Reference Manual 
Part I: AA-MG26A-TE 
Part II: AA-MG27A-TE 

Please use this postage-paid form to comment on this manual. If you require a written reply to a software 
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your 
comments on an SPR form. 

Thank you for your assistance. 

I rate this manual's: Excellent 

Accuracy (software works as manual says) D 
Completeness (enough information) D 
Clarity (easy to understand) D 
Organization (structure of subject matter) D 
Figures (useful) D 
Examples (useful) D 
Index (ability to find topic) D 
Page layout (easy to find information) D 

I would like to see more/less 

What I like best about this manual is 

What I like least about this manual is 

I found the following errors in this manual: 

Page Description 

Additional comments or suggestions to improve this manual: 

I am using Version ___ of the software this manual describes. 

Name/Title 

Company 

Mailing Address 

Good Fair Poor 

D D D 
D D D 
D D D 
D D D 
D D D 
D D D 
D D D 
D D D 

Dept. 

Date 

Phone 



-- Do Not Tear - Fold Here and Tape -------------------[lllr--------------
No Postage 

mnmnDmD™ ~;~:::~v 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

DIGIT AL EQUIPMENT CORPORATION 
Corporate User Publications-Spit Brook 
ZK01-3/J35 110 SPIT BROOK ROAD 
NASHUA, NH 03062-9987 

111 ..... 11.11 .... 11 .... 1.11.1 .. 1.1 .. 1 •• 1.1 ... 1.11 .. 1 

in the 
United States 

-- Do Not Tear - Fold Here --------------------------------------------



Reader's Comments VMS DECwindows 
Xlib Routines 

Reference Manual 
Part I: AA-MG26A-TE 
Part II: AA-MG27A-TE 

Please use this postage-paid form to comment on this manual. If you require a written reply to a software 
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your 
comments on an SPR form. 

Thank you for your assistance. 

I rate this manual's: Excellent 

Accuracy (software works as manual says) D 
Completeness (enough information) D 
Clarity (easy to understand) D 
Organization (structure of subject matter) D 
Figures (useful) D 
Examples (useful) D 
Index (ability to find topic) D 
Page layout (easy to find information) D 

I would like to see more/less 

What I like best about this manual is 

What I like least about this manual is 

I found the following errors in this manual: 

Page Description 

Additional comments or suggestions to improve this manual: 

I am using Version ___ of the software this manual describes. 

Name/Title 

Company 

Mailing Address 

Good Fair Poor 

D D D 
D D D 
D D D 
D D D 
D D D 
D D D 
D D D 
D D D 

Dept. 

Date 

Phone 



-- Do Not Tear - Fold Here and Tape ------------------~lllr--------------
No Postage 

~nmnamn™ ~:::i~=~y 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

DIGIT AL EQUIPMENT CORPORATION 
Corporate User Publications-Spit Brook 
ZK01-3/J35 110 SPIT BROOK ROAD 
NASHUA, NH 03062-9987 

111 ..... 11.11 .... 11 .... 1.11.1 .. 1.1 .. 1 .. 1.1 ••• 1.11 .. 1 

in the 
United States 

-- Do Not Tear - Fold Here --------------------------------------------

I 
I 
I 
I 
I 
I 


