
VMS System Services
Reference Manual
Order Number: AA-LA69B-TE

November 1991

This manual describes a set of routines that the VMS operating system
uses to control resources, to allow process communication, to control
1/0, and to perform other such operating-system functions.

Revision/Update Information: This manual supersedes the VMS
System Services Reference Manual,
Version 5.4.

Software Version: VMS Version 5.5

Digital Equipment Corporation
Maynard, Massachusetts

November 1991

The information in this document is subject to change without notice and should not be construed
as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only
in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied
by Digital Equipment Corporation or its affiliated companies.

©Digital Equipment Corporation 1991.

All Rights Reserved.

The postpaid Reader's Comments forms at the end of this document request your critical evaluation
to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: DECdtm, DECnet, DECwindows,
Digital, HSC, MASSBUS, MicroVAX, MicroVAX II, MSCP, RA, RC, RK, RL, RM, RP, RX, TA, TS,
TU, VAX, VAX Ada, VAX BASIC, VAX C, VAXcluster, VAX COBOL, VAX CORAL 66, VAX DIBOL,
VAX FORTRA_N; VA_X MACRO, VAX Pascal, VA ... X Volume Shadowing, W-X-11/750, W..X-11/780, W X
6000, VAX 8200, VAX 8250, VAX 8300, VAX 8350, VAX 8530, VAX 8550, VAX 8600, VAX 9000, VAXft,
VAXstation, VMS, and the DIGITAL logo.

ZK4527

This document was prepared using VAX DOCUMENT, Version 1.2

Contents

Preface . vii

System Service Descriptions

$ABORT_TRANS . SYS-3
$ABORT_TRANSW ... -. SYS-7
$ADD_HOLDER . SYS-8
$ADD_IDENT . SYS-11
$ADJSTK . SYS-14
$ADJWSL . SYS-17
$ALLOC . SYS-19
$ASCEFC . SYS-22
$ASCTIM . SYS-26
$ASCTOID . SYS-29
$ASSIGN ; . SYS-31
$BINTIM . SYS-36
$BRKTHRU . SYS-39
$BRKTHRUW . SYS-47
$CANCEL . SYS-48
$CANEXH . SYS-50
$CANTIM . SYS-51
$CANWAK . SYS-53
$CHANGE_ACL. SYS-56
$CHECK_ACCESS . SYS-62
$CHKPRO . SYS-67
$CLREF . SYS-74
$CMEXEC . SYS-75
$CMKRNL . SYS-77
$CREATE_RDB . SYS-79
$CRELNM... SYS-81
$CRELNT . SYS-87
$CREMBX . SYS-93
$CREPRC _ . SYS-100
$CRETVA .. SYS-114
$CRMPSC . SYS-117
$DACEFC . SYS-127
$DALLOC . SYS-129
$DASSGN ... SYS-131
$DCLAST . SYS-133

iii

iv

$DCLCMH ... SYS-135
$DCLEXH . SYS-137
$DELLNM ... SYS-139
$DELMBX ... SYS-142
$DELPRC . SYS-144
$DELTVA .. SYS-147
$DEQ . SYS-149
$DEVICE_SCAN . SYS-154
$DGBLSC . SYS-158
$DISMOU ... SYS-161
$DLCEFC . SYS-165
$DNS . SYS-167
$DNSW . SYS-195
$END_TRANS ,,.,,,, SYS-196
$END_TRANSW . SYS-201
$ENQ . SYS-202
$ENQW . SYS-213
$ERAPAT .. SYS-214
$EXIT .. SYS-217
$EXPREG ... SYS-218
$FAO/$FAOL . SYS-221
$FILESCAN . SYS-237
$FIND _HELD . SYS-241
$FIND_HOLDER .. SYS-244
$FINISH_RDB . SYS-24 7
$FORCEX . SYS-249
$FORMAT_ACL ... SYS-252
$FORMAT_AUDIT. SYS-262
$GETDVI . SYS-266
$GETDVIW . SYS-285
$GETJPI . SYS-286
$GETJPIW. SYS-305
$GETLKI . SYS-306
$GETLKIW .. SYS-318
$GETMSG ... SYS-319
$GETQUI . SYS-323
$GETQUIW . SYS-365
$GETSYI . SYS-366
$GETSYIW . SYS-381
$GETTIM . SYS-382
$GETUAI . SYS-383
$GRANTID . SYS-395
$HASH_PASSWORD . SYS-399
$HIBER ... SYS-402
$IDTOASC . SYS-404
$INIT_ VOL . SYS-407
$LCKPAG . SYS-420

$LKWSET . SYS-422
$MGBLSC . SYS-425
$MOD_HOLDER . SYS-430
$MOD_IDENT . SYS-433
$MOUNT . SYS-436
$MTACCESS . SYS-451
$NUMTIM . SYS-455
$PARSE_ACL . SYS-457
$PROCESS_SCAN . SYS-460
$PURGWS ... SYS-473
$PUTMSG . SYS-475
$QIO . SYS-483
$QIOW . SYS-488
$READEF . SYS-489
$RELEASE_ VP . SYS-491
$REM_HOLDER . SYS-492
$REM_IDENT . SYS-494
$RESTORE_ VP _EXCEPTION . SYS-496
$RESTORE_ VP _STATE . SYS-498
$RESUME . SYS-500
$REVOKID . SYS-503
$SAVE_ VP _EXCEPTION . SYS-507
$SCHDWK . SYS-509
$SETAST . SYS-512
$SETEF . SYS-514
$SETEXV . SYS-515
$SETIME . SYS-517
$SETIMR . SYS-519
$SETPRA . SYS-522
$SETPRI . SYS-524
$SETPRN . SYS-527
$SETPRT . SYS-529
$SETPRV . SYS-533
$SETRWM . SYS-538
$SETSTK . SYS-540
$SETSWM . SYS-542
$SETUAI . SYS-544
$SNDERR . SYS-556
$SNDJBC . SYS-558
$SNDJBCW .. SYS-614
$SNDOPR . SYS-615
$START_TRANS .. SYS-629
$START_TRANSW ... SYS-633
$SUSPND . SYS-634
$SYNCH . SYS-637
SYS$RMSRUNDWN . SYS-639
SYS$SETDDIR . SYS-641

v

SYS$SETDFPROT . SYS-643
$TRNLNM . SYS-645
$ULKPAG ... SYS-651
$ULWSET . SYS-653
$UNWIND . SYS-655
$UPDSEC . SYS-657
$UPDSECW . SYS-662
$WAITFR . SYS-663
$WAKE . SYS-665
$WFLAND . SYS-668
$WFLOR . SYS-670

A Obsolete Services

Index

Tables

SYS-1
SYS-2
SYS-3
SYS-4
SYS-5
SYS-6
SYS-7
SYS-8
SYS-9
SYS-10
SYS-11
SYS-12
SYS-13
SYS-14
SYS-15
SYS-16

vi

$ABORT_TRANS Option Flag............................... SYS-3
Abort Reason Codes....................................... SYS-5
User Privileges ... SYS-101
Required and Optional Arguments for the $CRMPSC Service SYS-121
Item Codes and Their Data Types . SYS-182
$END_TRANS Option Flag SYS-197
Abort Reason Codes . SYS-197
Legal QUECVT Conversions SYS-208
List of $FAO Directives . SYS-224
$FAO Output Field Lengths and Fill Characters SYS-227
Attributes of an Identifier . SYS-298
Flags Used with $PROCESS_SCAN. SYS-468
User Privileges . SYS-534
CPU Time Limit Decision Table . SYS-580
Working Set Decision Table SYS-603
$START_TRANS Option Flags SYS-629

Preface

This manual provides reference information about the system services on the VMS
operating system.

You can use VMS system services only in programs written in languages that
produce native code for the VAX hardware. At present these languages include
VAX MACRO and the following high-level languages:

VAX Ada
VAX BASIC
VAX BLISS-32
VAXC
VAX COBOL
VAX COBOL-74
VAX CORAL
VAXDIBOL
VAX FORTRAN
VAX Pascal
VAXPUl

Intended Audience
This manual is intended for system and application programmers who want to call
system services.

Document Structure
This manual provides detailed reference information about each system service.
This information is presented using the documentation format described in the
Introduction to VMS System Services. Service descriptions appear in alphabetical
order by service name. Appendix A lists the obsolete services and the current
services that have replaced them.

For information and guidelines about using the system services, see the
Introduction to VMS System Services.

Associated Documents
The Introduction to VMS System Services describes how to use the system services.

The VAX Procedure Calling and Condition Handling Standard, which is
documented in the Introduction to VMS System Routines, contains useful
information for anyone who wants to call system services.

VAX MACRO programmers can find additional information about calling system
services in the VAX MACRO and Instruction Set Reference Manual.

vii

High-level language programmers can find additional information about calling
system services in the language reference manual and language user's guide
provided with the VAX language.

The following documents may also be useful:

• Guide to Using VMS Command Procedures

• Guide to VMS File Applications

• Guide to VMS System Security

• VMS Networking Manual

• VMS Record Management Services Manual

• VMS I I 0 User's Reference Manual: Part I

• VMS 1/0 User's Reference Manual: Part II

For a complete list and description of the manuals in the VMS document set, see
the Overview of VMS Documentation.

Conventions

viii

The following conventions are used in this manual:

Ctrl/x

PFl x

()

[]

{}

A sequence such as Ctrl/x indicates that you must hold
down the key labeled Ctrl while you press another key
or a pointing device button.

A sequence such as PFl x indicates that you must first
press and release the key labeled PFl, then press and
release another key or a pointing device button.

In examples, a horizontal ellipsis indicates one of the
following possibilities:

• Additional optional arguments in a statement have
been omitted.

• The preceding item or items can be repeated one or
more times.

• Additional parameters, values, or other information
can be entered.

A vertical ellipsis indicates the omission of items from
a code example or command format; the items are
omitted because they are not important to the topic
being discussed.

In format descriptions, parentheses indicate that, if
you choose more than one option, you must enclose the
choices in parentheses.

In format descriptions, brackets indicate that whatever
is enclosed within the brackets is optional; you can
select none, one, or all of the choices. (Brackets are
not, however, optional in the syntax of a directory name
in a file specification or in the syntax of a substring
specification in an assignment statement.)

In format descriptions, braces surround a required
choice of options; you must choose one of the options
listed.

boldface text

italic text

UPPERCASE TEXT

numbers

Boldface text represents the introduction of a new term
or the name of an argument, an attribute, or a reason.

Italic text represents information that can vary in
system messages (for example, Internal error number).

Uppercase letters indicate that you must enter a
command (for example, enter OPEN/READ), or they
indicate the name of a routine, the name of a file, the
name of a file protection code, or the abbreviation for a
system privilege.

Hyphens in coding examples indicate that additional
arguments to the request are provided on the line that
follows.

Unless otherwise noted, all numbers in the text are
assumed to be decimal. Nondecimal radixes-binary,
octal, or hexadecimal-are explicitly indicated.

· See the Introduction to VMS System Services for additional conventions used in
this document.

ix

System Service Descriptions

System services provide basic operating system functions, interprocess
communication, and various control resources to VMS users. This document
provides the reference material needed by users to implement system services.
See the Introduction to VMS System Services for an explanation of the
documentation conventions used in the following system service descriptions.

System Service Descriptions
$ABORT_ TRANS

$ABORT_ TRANS-Abort Transaction

Format

Returns

Arguments

Aborts a transaction.

SYS$ABORT _TRANS [efn] ,[flags] ,iosb [,[astadr] ,[astprm] ,[tid] ,[reason]]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

ef n
VMS Usage:
type:
access:
mechanism:

ef_number
longword (unsigned)
read only
by value

Number of the event flag to be set. The efn argument is a longword containing
this number; however, $ABORT_TRANS uses only the low-order byte. If you do
not specify the efn, $ABORT_TRANS uses the default value 0.

flags
VMS Usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Flags specifying options for $ABORT_TRANS. The flags argument is a longword
bit mask that is the logical OR of each bit set, in which each bit corresponds to
an option. The $DDTMDEF macro defines a symbolic name for each flag bit.

DDTM$M_SYNC, the only flag currently defined, is described in Table SYS-1.

Table SYS-1 $ABORT_ TRANS Option Flag

Flag

DDTM$M_SYNC

Description

Indicates successful synchronous completion by
returning SS$_SYNCH. When synchronous completion is
successful, the completion AST address is not called, the
IOSB is not written, and the event flag is not set.

SYS-3

System Service Descriptions
$ABORT_ TRANS

SYS-4

iosb
VMS Usage:
type:
access:
mechanism:

io_status_block
quadword (unsigned)
write only
by reference

I/O status block (IOSB) to receive the final completion status of the request. The
iosb argument is the address of the quadword I/O status block.

The following diagram shows the structure of the I/O status block. Symbolic
names for abort reason codes that may be returned are in $DDTMMSGDEF. See
Table SYS-2 for a list of abort reason codes.

31 15

Reserved by Digital I

astadr
VMS Usage:
type:
access:
mechanism:

Abort Reason Code

ast_procedure
procedure entry mask
call without stack unwinding
by reference

0

Condition Value

ZK-3667 A-GE

AST service routine to be executed. The astadr argument is the address of the
entry mask of this routine. In the case of synchronous completion, the call might
not take place. Refer to the description of DDTM$M_SYNC in Table SYS-1.

If you specify astadr, the AST routine executes at the same access mode as the
caller of the $ABORT_TRANS service.

Note that the completion AST will not be called if SS$_SYNCH is returned in RO.

astprm
VMS Usage:
type:
access:
mechanism:

user_arg
longword (unsigned)
read only
by value

AST parameter passed to the AST service routine specified by the astadr
argument. The astprm argument is a longword.

tid
VMS Usage:
type:
access:
mechanism:

transaction_id
octaword (unsigned)
read only
by reference

Pointer to the transaction identifier (TID) that designates the transaction to be
aborted. The default value for this parameter is the process default transaction.

reason
VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned) ·
read only
by value

Description

System Service Descriptions
$ABORT_ TRANS

The reason why the calling process is aborting the transaction. This must be
a valid abort reason code. Symbolic names for the valid abort reason codes are
defined in the $DDTMMSGDEF module. See Table SYS-2 for a list of abort
reason codes. The default value for this parameter is DDTM$_ABORTED.

Table SVS-2 Abort Reason Codes

Symbol

DDTM$_ABORTED

DDTM$_COMM_FAIL

DDTM$_INTEGRITY

DDTM$_LOG_FAIL

DDTM$_PART_SERIAL

DDTM$_PART_TIMEOUT

DDTM$_SEG_FAIL

DDTM$_SERIALIZATION

DDTM$_SYNC _FAIL

DDTM$_TIMEOUT

DDTM$_UNKNOWN

DDTM$_ VETOED

Description

Application called $ABORT_TRANS without
giving a reason.

A communication link failed.

Integrity constraint check failed.

A write operation to the transaction log failed.

Resource manager serialization check failed.

A timeout specified by a resource manager
expired before a commit decision was made.

Process or image failed.

DECdtm transaction manager serialization check
failed.

Transaction was not globally synchronized.

A timeout specified on $START_TRANS expired
before a commit decision was made.

Reason unknown.

A resource manager aborted the transaction
without giving a reason.

The Abort Transaction service aborts a specific transaction by invalidating the
transaction identifier (TID) and instructing all resource managers involved to
nullify all the actions of the transaction. This system service can be called only
by the same process that called $START_TRANS.

The $ABORT_ TRANS service can be successfully called before the transaction is
committed. A transaction is committed when the commit record is written to the
transaction log file.

To differentiate the causes of transaction failures, an abort reason argument may
be provided when an application calls $ABORT_TRANS. There is no provision
for returning more than one reason. If multiple abort reasons are supplied by the
application or resource managers, then the coordinating transaction manager will
make an arbitrary decision and return one reason.

$ABORT_TRANS will not complete asynchronously until all resource managers
in the same process have acknowledged phase 2 of the 2-phase commit processing
and DECdtm quotas charged for the transaction have been returned.

Required Privileges
None

Required Quota
ASTLM

SYS-5

System Service Descriptions
$ABORT_ TRANS

Related Services
$ABORT_TRANSW, $END_TRANS, $END_TRANSW, $START_TRANS,
$START_TRANSW .

For more information, see the chapter on DECdtm services in the Introduction to
VMS System Services.

Condition Values Returned

SS$_NORMAL

SS$_SYNCH

SS$_ACCVIO

SS$_BADPARAM

SS$_EXASTLM

SS$_ILLEFC

SS$_INSFMEM

SS$_NOCURTID

SS$_NOSUCHTID

SS$_ WRONGSTATE

The operation was successfully queued.

The synchronous operation completed
successfully.

The IOSB or TID cannot be read by the caller, or
the IOSB cannot be written by the caller.

The options flags are invalid, or an invalid abort
reason code was specified.

The process has exceeded its AST limit quota.

The efn argument specifies an illegal flag
number.

There is insufficient system dynamic memory for
the operation. ·

The calling process does not currently have a
default transaction.

The designated TID is unknown.

The transaction is in the wrong state for the
attempted operation. The application has already
called $END_TRANS.

Condition Values Returned in the 1/0 Status Block

SYS-6

Same as those returned in RO. A value of SS$_NORMAL returned in the I/O
status block indicates that the service completed successfully.

System Service Descriptions
$ABORT_ TRANSW

$ABORT_ TRANSW-Abort Transaction and Wait

Format

Aborts a transaction and waits.

$ABORT_TRANSW completes synchronously; that is, it returns to the caller after
the request has completed.

For asynchronous completion, use the Abort Transaction ($ABORT_TRANS)
service, which returns without waiting for the operation to complete.

In all other respects, $ABORT_TRANSW is identical to $ABORT_TRANS. For all
other information about the $ABORT_ TRANSW service, refer to the section on
$ABORT_TRANS.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service and to the Introduction to VMS System Services.

SYS$ABORT _ TRANSW [efn] ,[flags] ,iosb [,[astadr] ,[astprm] ,[tid] ,[reason]]

SYS-7

System Service Descriptions
$ADD_HOLDER

$ADD_HOLDER-Add Holder Record to Rights Database

Format

Returns

Arguments

SYS-8

Adds a specified holder record to a target identifier.

SYS$ADD_HOLDER id ,holder ,[attrib]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

id
VMS Usage:
type:
access:
mechanism:

rights_id
longword (unsigned)
read only
by value

Target identifier granted to the specified holder when $ADD_HOLDER completes
execution. The id argument is a longword containing the binary value of the
target identifier.

holder
VMS Usage: rights_holder
type: quadword (unsigned)
access: read only
mechanism: by reference

Holder identifier that is granted access to the target identifier when $ADD_
HOLDER completes execution. The holder argument is the address of a
quadword data structure that consists of a longword containing the holder's
UIC identifier followed by a longword containing a value of 0.

attrib
VMS Usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Attributes to be placed in the holder record when the $ADD_HOLDER completes
execution. The attrib argument is a longword containing a bit mask specifying
the attributes. A holder is granted a specified attribute only if the target
identifier has the attribute.

Description

System Service Descriptions
$ADD_HOLDER

Symbol values are offsets to the bits within the longword. You can also obtain the
values as masks with the appropriate bit set using the prefix KGB$M rather than
KGB$V. The symbols are defined in the system macro library ($KGBDEF). The
symbolic name for each bit position is listed in the following table.

Bit Position

KGB$V _DYNAMIC

KGB$V _RESOURCE

Meaning When Set

Allows the unprivileged holder to add or remove the
identifier from the process rights list
Allows the holder to charge resources, such as disk
blocks, to the identifier

The Add Holder Record to Rights Database service registers the specified user as
a holder of the specified identifier with the rights database.

Required Privileges
You need write access to the rights database to use this service. If the database is
in SYS$SYSTEM, which is the default, you need SYSPRV privilege to grant write
access to the database.

Required Quota
None

Related Services
$ADD_IDENT, $ASCTOID, $CHANGE_ACL, $CHECK_ACCESS, $CHKPRO,
$CREATE_RDB, $ERAPAT, $FIND_HELD, $FIND_HOLDER, $FINISH_
RDB, $FORMAT_ACL, $FORMAT_AUDIT, $GRANTID, $HASH_PASSWORD,
$IDTOASC, $MOD_HOLDER, $MOD_IDENT, $MTACCESS, $PARSE_ACL,
$REM_HOLDER, $REM_IDENT, $REVOKID

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_DUPIDENT

SS$_INSFMEM

SS$_IVIDENT

SS$_NOSUCHID

RMS$_PRV

The service completed successfully.

The holder argument cannot be read by the
caller.
The specified attributes contain invalid attribute
flags.
The specified holder already exists in the rights
database for this identifier.
The process dynamic memory is insufficient for
opening the rights database.

The specified identifier or holder is of an invalid
format, the specified holder is 0, or the specified
identifier and holder are equal.
The specified identifier does not exist in the
rights database, or the specified holder identifier
does not exist in the rights database.
The user does not have write access to the rights
database.

SYS-9

System Service Descriptions
$ADD_HOLDER

SYS-10

Because the rights database is an indexed file accessed with VMS RMS, this
service can also return RMS status codes associated with operations on indexed
files. For descriptions of these status codes, refer to the VMS Record Management
Services Manual.

System Service Descriptions
$ADD_IDENT

$ADD_IDENT-Add Identifier to Rights Database

Format

Returns

Arguments

Adds the specified identifier to the rights database.

SYS$ADD_IDENT name ,[id] ,[attrib] ,[resid]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

name
VMS Usage: char-string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Identifier name to be added to the rights database when $ADD_IDENT completes
execution. The name argument is the address of a character-string descriptor
pointing to the identifier name string.

An identifier name consists of 1 to 31 alphanumeric characters, including
dollar signs($) and underscores(_), and must contain at least one nonnumeric
character. Any lowercase characters specified are automatically converted to
uppercase.

id
VMS Usage:
type:
access:
mechanism:

rights_id
longword (unsigned)
read only
by value

Identifier to be created when $ADD_IDENT completes execution. The id
argument is a longword containing the binary value of the identifier to be
created.

If the id argument is omitted, $ADD_IDENT selects a unique available value
from the general identifier space and returns it in resid, if it is specified.

attrib
VMS Usage:
type:
access:
mechanism:

mask_longword
longword (unsigned)
read only
by value

SYS-11

System Service Descriptions
$ADD_IDENT

Description

Attributes placed in the identifier's record when $ADD_IDENT completes
execution. The attrib argument is a longword containing a bit mask that
specifies the attributes.

Symbol values are offsets to the bits within the longword. You can also obtain the
values as masks with the appropriate bit set using the prefix KGB$M rather than
KGB$V. The symbols are defined in the system macro library ($KGBDEF). The
symbolic name for each bit position is listed in the following table.

Bit Position

KGB$V _DYNAMIC

KGB$V _RESOURCE

res id
rights_id

Meaning When Set

Allows the unprivileged holder to add or remove the
identifier from the process rights list.

Allows the holder to charge resources, such as disk
blocks, to the identifier.

VMS Usage:
type:
access:
mechanism:

longword (unsigned)
write only
by reference

Identifier value assigned by the system when $ADD_IDENT completes execution.
The resid argument is the address of a longword in which the system-assigned
identifier value is written.

The Add Identifier to Rights Database service adds the specified identifier to the
rights database.

Required Privileges
You need write access to the rights database to use this service. If the database is
in SYS$SYSTEM, which is the default, you need SYSPRV privilege to grant write
access to the database.

Required Quota
None

Related Services
$ADD_HOLDER, $ASCTOID, $CHANGE_ACL, $CHECK_ACCESS, $CHKPRO,
$CREATE_RDB, $ERAPAT, $FIND_HELD, $FIND_HOLDER, $FINISH_
RDB, $FORMAT_ACL, $FORMAT_AUDIT, $GRANTID, $HASH_PASSWORD,
$IDTOASC, $MOD_HOLDER, $MOD_IDENT, $MTACCESS, $PARSE_ACL,
$REM_HOLDER, $REM_IDENT, $REVOKID

Condition Values Returned

SYS-12

SS$_NORMAL

SS$_ACCVIO

The service completed successfully.

The name argument cannot be read by the
caller, or the resid argument cannot be written
by the caller.

SS$_BADPARAM

SS$_DUPIDENT

SS$_DUPLNAM

SS$_INSFMEM

SS$_IVIDENT

RMS$_PRV

System Service Descriptions
$ADD_IDENT

The specified attributes contain invalid attribute
flags.

The specified identifier already exists in the
rights database.

The specified identifier name already exists in
the rights database.

The process dynamic memory is insufficient for
opening the rights database.

The specified identifier is of invalid format.

The user does not have write access to the rights
database.

Because the rights database is an indexed file accessed with VMS RMS, this
service can also return RMS status codes associated with operations on indexed
files. For descriptions of these status codes, refer to the VMS Record Management
Services Manual.

SYS-13

System Service Descriptions
$ADJSTK

$ADJSTK-Adjust Outer Mode Stack Pointer

Format

Returns

Arguments

SYS-14

Modifies the stack pointer for a less privileged access mode. The VMS operating
system uses this service to modify a stack pointer for a less privileged access
mode after placing arguments on the stack.

SYS$ADJSTK [acmode] ,[adjust] ,newadr

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

acmode
VMS Usage:
type:
access:
mechanism:

access_mode
longword (unsigned)
read only
by value

Access mode for which the stack pointer is to be adjusted. The acmode argument
is this longword value. If not specified, the default value 0 (kernel access mode)
is used.

adjust
VMS Usage:
type:
access:
mechanism:

word_signed
word (signed)
read only
by value

Signed adjustment value used to modify the value specified by the newadr
argument. The adjust argument is a signed longword, which is the adjustment
value.

Only the low-order word of this argument is used. The value specified by the
low-order word is added to or subtracted from (depending on the sign) the value
specified by the newadr argument. The result is loaded into the stack pointer for
the specified access mode.

If the adjust argument is not specified or is specified as 0, the stack pointer is
loaded with the value specified by the newadr argument.

For additional information about the various combinations of values for adjust
and newadr, see the Description section.

Description

newadr
VMS Usage:
type:
access:
mechanism:

address
longword (unsigned)
modify
by reference

System Service Descriptions
$ADJSTK

Value that $ADJUST is to adjust. The newadr argument is the address of this
longword value. The value specified by this argument is both read and written
by $ADJSTK. The $ADJSTK service reads the value specified and adjusts it by
the value of the adjust argument (if specified). After this adjustment is made,
$ADJSTK writes the adjusted value back into the longword specified by newadr
and then loads the stack pointer with the adjusted value.

If the value specified by newadr is 0, the current value of the stack pointer is
adjusted by the value specified by adjust. This new value is then written back
into newadr, and the stack pointer is modified.

For additional information about the various combinations of values for adjust
and newadr, see the Description section.

The Adjust Outer Mode Stack Pointer service modifies the stack pointer for a less
privileged access mode. The operating system uses this service to modify a stack
pointer for a less privileged access mode after placing arguments on the stack.

Combinations of zero and nonzero values for the adjust and newadr arguments
provide the following results:

If the adjust And the Value
Argument Specified by The Stack
Specifies: newadr Is: Pointer Is:

0 0 Not changed

0 An address Loaded with the address specified

A value 0 Adjusted by the specified value

A value An address Loaded with the specified address,
adjusted by the specified value

In all cases, the updated stack pointer value is written into the value specified by
the newadr argument.

Required Privileges
None

Required Quota
None

Related Services
$ADJWSL, $CRETVA, $CRMPSC, $DELTVA, $DGBLSC $EXPREG, $LCKPAG,
$LKWSET, $MGBLSC, $PURGWS, $SETPRT, $SETSTK, $SETSWM, $ULKPAG,
$ULWSET, $UPDSEC, $UPDSECW

SYS-15

System Service Descriptions
$ADJSTK

Condition Values Returned

SYS-16

SS$_NORMAL

SS$_ACCVIO

SS$_NOPRIV

The service completed successfully.

The value specified by newadr or a portion of
the new stack segment cannot be written by the
caller.

The specified access mode is equal to or more
privileged than the calling access mode.

System Service Descriptions
$ADJWSL

$ADJWSL-Adjust Working Set Limit

Format

Returns

Arguments

Description

Adjusts a process's current working set limit by the specified number of pages and
returns the new value to the caller. The working set limit specifies the maximum
number of process pages that can be resident in physical memory.

SYS$ADJWSL [pagcnt] ,[wsetlm]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

pa gent
VMS Usage:
type:
access:
mechanism:

longword_signed
longword (signed)
read only
by value

Signed adjustment value specifying the number of pages to add to (if positive) or
subtract from (if negative) the current working set limit. The pagcnt argument
is this signed longword value.

If pagcnt is not specified or is specified as 0, no adjustment is made and the
current working set limit is returned in the longword specified by the wsetlm
argument (if this argument is specified).

wsetlm
VMS Usage:
type:
access:
mechanism:

longword_ unsigned
longword (unsigned)
write only
by reference

Value of the working set limit, returned by $ADJWSL. The wsetlm argument is
the address of this longword value. The wsetlm argument specifies the newly
adjusted value if pagcnt is specified, and it specifies the old, unadjusted value if
pagcnt is not specified.

The Adjust Working Set Limit service adjusts a process's current working set
limit by the specified number of pages and returns the new value to the caller.
The working set limit specifies the maximum number of process pages that can
be resident in physical memory.

SYS-17

System Service Descriptions
$ADJWSL

If a program attempts to adjust the working set limit beyond the system-defined
upper and lower limits, no error condition is returned; instead, the working set
limit is adjusted to the maximum or minimum size allowed.

Required Privileges
None

Required Quota
The initial value of a process's working set limit is controlled by the working set
default (WSDEFAULT) quota. The maximum value to which it can be increased
is controlled by the working set extent (WSEXTENT) quota; the minimum value
to which it can be decreased is limited by the SYSGEN parameter MINWSCNT.

Related Services
$ADJSTK, $CRETVA, $CRMPSC, $DELTVA, $DGBLSC, $EXPREG, $LCKPAG,
$LKWSET, $MGBLSC, $PURGWS, $SETPRT, $SETSTK, $SETSWM, $ULKPAG,
$ULWSET, $UPDSEC, $UPDSECW

Condition Values Returned

SYS-18

SS$_NORMAL

SS$_ACCVIO

The service completed successfully.

The longword specified by wsetlm cannot be
written by the caller.

System Service Descriptions
$ALLOC

$ALLOC-Allocate Device

Format

Returns

Arguments

Allocates a device for exclusive use by a process and its subprocesses. No other
process can allocate the device or assign channels to it until the image that called
$ALLOC exits or explicitly deallocates the device with the Deallocate Device
($DALLOC) service.

SYS$ALLOC devnam ,[phylen] ,[phybuf] ,[acmode] ,[flags]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

devnam
VMS Usage:
type:
access:
mechanism:

device_name
character-coded text string
read only
by descriptor-fixed length string descriptor

Device name of the device to be allocated. The devnam argument is the address
of a character string descriptor pointing to the device name string.

The string can be either a physical device name or a logical name. If it is a logical
name, it must translate to a physical device name.

phylen
VMS Usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Word into which $ALLOC writes the length of the device name string for the
device it has allocated. The phylen argument is the address of this word.

phybuf
VMS Usage:
type:
access:
mechanism:

device_name
character-coded text string
write only
by descriptor-fixed length string descriptor

Buffer into which $ALLOC writes the device name string for the device it has
allocated. The phybuf argument is the address of a character string descriptor
pointing to this buffer.

SYS-19

System Service Descriptions
$ALLOC

Description

SYS-20

acmode
VMS Usage:
type:
access:
mechanism:

access_mode
longword (unsigned)
read only
by value

Access mode to be associated with the allocated device. The acmode argument is
a longword containing the access mode.

The most privileged access mode used is the access mode of the caller. Only equal
or more privileged access modes can deallocate the device.

flags
VMS Usage:
type:
access:
mechanism:

mask_longword
longword (unsigned)
read only
by value

Longword of status flags indicating whether to interpret the devnam argument
as the type of device to be allocated. Only one flag exists, bit 0. When it is set,
the $ALLOC service allocates the first available device that has the type specified
in the devnam argument.

This feature is available for the following mass storage devices.

RA60 RASO RA81 RC25
RCF25 RK06 RK07 RLOl

RL02 RM03 RM05 RM80
RP04 RP05 RP06 RP07

RXOl RX02 TA78 TA81
TSll TU16 TU58 TU77
TU78 TU80 TU81

The Allocate Device service allocates a device for exclusive use by a process and
its subprocesses. No other process can allocate the device or assign channels to it
until the image that called $ALLOC exits or explicitly deallocates the device with
the Deallocate Device ($DALLOC) service.

When a process calls the Assign 1/0 Channel ($ASSIGN) service to assign a
channel to a nonshareable, nonspooled device, such as a terminal or line printer,
the device is implicitly allocated to the process.

You can use this service only to allocate devices that either exist on the host
system or are made available to the host system in a VAXcluster environment.

Required Privileges
The calling process must have ALLSPOOL privilege to allocate a spooled device.

Required Quota
None.

Related Services
$ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX, $DALLOC,
$DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI, $GETDVIW,
$GETMSG, $GETQUI, $GETQUIW, $INIT_ VOL, $MOUNT, $PUTMSG, $QIO,
$QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SS$_NORMAL

SS$_BUFFEROVF

SS$_DEVALRALLOC

SS$_ACCVIO

SS$_DEVALLOC

SS$_DEVMOUNT

SS$_DEVOFFLINE

SS$_IVDEVNAM

SS$_IVLOGNAM

SS$_IVSTSFLG

SS$_NODEVAVL

SS$_NONLOCAL

SS$_NOPRIV

SS$_NOSUCHDEV

System Service Descriptions
$ALLOC

The service completed successfully.

The service completed successfully. The physical
name returned overflowed the buffer provided,
and has been truncated.

The service completed successfully. The device
was already allocated to the calling process.

The device name string, string descriptor, or
physical name buffer descriptor cannot be read
by the caller, or the physical name buffer cannot
be written by the caller.

The device is already allocated to another
process, or an attempt to allocate an unmounted
shareable device failed because other processes
had channels assigned to the device.

The specified device is currently mounted and
cannot be allocated, or the device is a mailbox.

The specified device is marked off line.

The device name string contains invalid
characters, or no device name string was
specified.

The device name string has a length of 0 or has
more than 63 characters.

The bits set in the longword of status flags are
invalid.

The specified device in a generic search exists
but is allocated to another user.

The device is on a remote node.

The requesting process attempted to allocate a
spooled device and does not have the required
privilege, or the device protection or access
control list (or both) denies access.

The specified device does not exist in the host
system. This error is usually the result of a
typographical error.

SS$_TEMPLATEDEV The process attempted to allocate a template
device; a template device cannot be allocated.

The $ALLOC service can also return any condition value returned by $ENQ. For
a list of these condition values, see the description of $ENQ.

SYS-21

System Service Descriptions
$ASCEFC

$ASCEFC-Associate Common Event Flag Cluster

Format

Returns

Arguments

SYS-22

Associates a named common event flag cluster with a process to execute the
current image and to be assigned a process-local cluster number for use with
other event flag services. If the named cluster does not exist but the process has
suitable privilege, the service creates the cluster.

SYS$ASCEFC efn ,name ,[prot] ,[perm]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

ef n
VMS Usage:
type:
access:
mechanism:

ef_number
longword (unsigned)
read only
by value

Number of any event flag contained within the desired common event flag
cluster. The efn argument is a longword value specifying this number; however,
$ASCEFC uses only the low-order byte.

There are two common event flag clusters: cluster 2 and cluster 3. Cluster 2
contains event flag numbers 64 to 95, and cluster 3 contains event flag numbers
96 to 127. (Clusters 0 and 1 are process-local event flag clusters.)

To associate with common event flag cluster 2, specify any flag number in the
cluster (64 to 95); to associate with common event flag cluster 3, specify any event
flag number in the cluster (96 to 127).

name
VMS Usage:
type:
access:
mechanism:

ef_cluster_name
character-coded text string
read only
by descriptor-fixed length string descriptor

Name of the common event flag cluster with which to associate. The name
argument is the address of a character string descriptor pointing to this name
string.

Common event flag clusters are accessible only to processes having the same
UIC group number, and each such process must associate with the cluster using
the same name (specified in the name argument). The VMS operating system
implicitly associates the group UIC number with the name, making the name
unique to a UIC group.

Description

prot
VMS Usage:
type:
access:
mechanism:

boolean
byte (unsigned)
read only
by value

System Service Descriptions
$ASCEFC

Protection specifier that allows or disallows access to the common event flag
cluster for processes with the same UIC group number as the creating process.
The prot argument is a longword value, which is interpreted as Boolean.

The default value 0 specifies that any process with the same UIC group number
as the creating process may access the event flag cluster. The value 1 specifies
that only processes having the UIC of the creating process can access the event
flag cluster.

perm
VMS Usage:
type:
access:
mechanism:

boolean
byte (unsigned)
read only
by value

Permanent specifier that marks a common event flag cluster as either permanent
or temporary. The perm argument is a longword value, which is interpreted as
Boolean.

The default value 0 specifies that the cluster is temporary. The value 1 specifies
that the cluster is permanent.

The Associate Common Event Flag Cluster service associates a named common
event flag cluster with a process for the execution of the current image and to be
assigned a process-local cluster number for use with other event flag services.

When a process associates with a common event flag cluster, that cluster's
reference count is increased by 1. The reference count is decreased when a
process disassociates from the cluster, whether explicitly with the Disassociate
Common Event Flag Cluster ($DACEFC) service or implicitly at image exit.

Temporary clusters are automatically deleted when their reference count goes
to O; you must explicitly mark permanent clusters for deletion with the Delete
Common Event Flag Cluster ($DLCEFC) service.

Because the $ASCEFC service automatically creates the common event flag
cluster if it does not already exist, cooperating processes need not be concerned
with which process executes first to create the cluster. The first process to call
$ASCEFC creates the cluster and the others associate with it regardless of the
order in which they call the service.

The initial state for all event flags in a newly created common event flag cluster
is 0.

If a process has already associated a cluster number with a named common event
flag cluster and then issues another call to $ASCEFC with the same cluster
number, the service disassociates the number from its first assignment before
associating it with its second.

SYS-23

System Service Descriptions
$ASCEFC

If you previously called any system service that will set an event flag (and the
event flag is contained within the cluster being reassigned), the event flag will be
set in the newly associated named cluster, not in the previously associated named
cluster.

For more information about common event flag clusters in shared memory, refer
to the Introduction to VMS System Services.

Required Privileges
The calling process must have PRMCEB privilege to create a permanent common
event flag cluster.

Required Quota
Creation of temporary common event flag clusters uses the quota of the process
for timer queue entries (TQELM); the creation of a permanent cluster does not
affect the quota. The quota is restored to the creator of the cluster when all
processes associated with the cluster have disassociated.

Related Services
$CLREF, $DACEFC, $DLCEFC, $READEF, $SETEF, $WAITFR, $WFLAND,
$WFLOR

Condition Values Returned

SYS-24

SS$_NORMAL

SS$_ACCVIO

SS$_EXPORTQUOTA

SS$_EXQUOTA

SS$_INSFMEM

SS$_ILLEFC

SS$_INTERLOCK

SS$_IVLOGNAM

The service completed successfully.

The cluster name string or string descriptor
cannot be read by the caller.

The process has exceeded the number of event
flag clusters with which processes on this port of
the multiport (shared) memory can associate.

The process has exceeded its timer queue
entry quota; this quota controls the creation
of temporary common event flag clusters.

The system dynamic memory is insufficient for
completing the service.

You specified an illegal event flag number. The
cluster number must be in the range of event
flags 64 through 127.

The bit map lock for allocating common event
flag clusters from the specified shared memory is
locked by another process.

The cluster name string has a length of 0 or has
more than 15 characters.

SS$_NOPRIV

SS$_NOSHMBLOCK

SS$_SHMNOTCNT

System Service Descriptions
$ASCEFC

The process does not have the privilege to create
a permanent cluster; the process does not have
the privilege to create a common event flag
cluster in memory shared by multiple processors,
or the protection applied to an existing cluster by
its creator prohibits association.

The common event flag cluster has no shared
memory control block available.

The shared memory named in the name
argument is not known to the system. This
error can be caused by a spelling error in the
string, an improperly assigned logical name, or
the failure to identify the multiport memory as
shared at system generation time.

SYS-25

System Service Descriptions
$ASCTIM

$ASCTIM-Convert Binary Time to ASCII String

Format

Returns

Arguments

SYS-26

Converts an absolute or delta time from 64-bit system time format to an ASCII
string.

SYS$ASCTIM [timlen] ,timbuf ,[timadr] ,[cvtflg]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

ti mien
VMS Usage:
type:
access:
mechanism:

word_ unsigned
word (unsigned)
write only
by reference

Length (in bytes) of the ASCII string returned by $ASCTIM. The timlen
argument is the address of a word containing this length.

timbuf
VMS Usage: time_name
type: character-coded text string
access: write only
mechanism: by descriptor-fixed length string descriptor

Buffer into which $ASCTIM writes the ASCII string. The timbuf argument is
the address of a character string descriptor pointing to the buffer.

The buffer length specified in the timbuf argument, together with the cvtflg
argument, controls what information is returned.

timadr
VMS Usage:
type:
access:
mechanism:

date_time
quadword
read only
by reference

Time value that $ASCTIM is to convert. The timadr argument is the address
of this 64-bit time value. A positive time value represents an absolute time. A
negative time value represents a delta time. If you specify a delta time, it must
be less than 10,000 days.

If timadr is not specified or is specified as 0 (the default), $ASCTIM returns the
current date and time.

Description

cvtflg
VMS Usage:
type:
access:
mechanism:

longword_unsigned
longword (unsigned)
read only
by value

System Service Descriptions
$ASCTIM

Conversion indicator specifying which date and time fields $ASCTIM should
return. The cvtflg argument is a longword value, which is interpreted as
Boolean. The value 1 specifies that $ASCTIM should return only the hour,
minute, second, and hundredths-of-second fields. The default value 0 specifies
that $ASCTIM should return the full date and time.

The Convert Binary Time to ASCII String service converts an absolute or delta
time from 64-bit system time format to an ASCII string. The service executes at
the access mode of the caller and does not check whether address arguments are
accessible before it executes. Therefore, an access violation causes an exception
condition if the input time value cannot be read or the output buffer or buffer
length cannot be written.

This service does not check the length of the argument list, and therefore cannot
return the SS$_INSFARG (insufficient arguments) condition value.

The ASCII strings returned have the following formats:

• Absolute Time: dd-mmm-yyyy hh:mm:ss.cc

• Delta Time: dddd hh:mm:ss.cc

The following table lists the length (in bytes), contents, and range of values for
each field in the absolute time and delta time formats.

Length
Field (Bytes) Contents Range of Values

dd 2 Day of month 1-31

1 Hyphen Required syntax

mmm 3 Month JAN, FEB, MAR, APR, MAY, JUN,
JUL, AUG, SEP, OCT, NOV, DEC

1 Hyphen Required syntax

yyyy 4 Year 1858-9999

blank n Blank Required syntax

hh 2 Hour 00-23

1 Colon Required syntax

mm 2 Minutes 00-59

1 Colon Required syntax

SS 2 Seconds 00-59

1 Period Required syntax

cc 2 Hundredths-of- 00-99
second

dddd 4 Number of days 000-9999
(in 24-hr units)

Month abbreviations must be uppercase.

SYS-27

System Service Descriptions
$ASCTIM

The hundredths-of-second field now represents a true fraction; for example, the
string .1 represents ten-hundredths of a second (one-tenth of a second); the string
.01 represents one-hundredth of a second.

Also, you can add a third digit to the hundredths-of-second field; this
thousandths-of-second digit is used to round the hundredths-of-second value.
Digits beyond the thousandths-of-second digits are ignored.

The results of specifying some possible combinations for the values of the cvtflg
and timbuf arguments are as follows.

Buffer Length
Time Value Specified

Absolute 23
Absolute 12
Absolute 11

Delta 16

Delta 11

Required Privileges
None

Required Quota
None

Related Services

CVTFLG Information
Argument Returned

0 Date and time

0 Date

1 Time

0 Days and time

1 Time

$BINTIM, $CANTIM, $CANWAK, $GETTIM, $NUMTIM, $SCHDWK, $SETIME,
$SETIMR

Condition Values Returned

SYS-28

SS$_NORMAL

SS$_BUFFEROVF

SS$_IVTIME

The service completed successfully.

The buffer length specified in the timbuf
argument is too small.

The specified delta time is equal to or greater
than 10,000 days.

System Service Descriptions
$ASCTOID

$ASCTOID-Translate Identifier Name to Identifier

Format

Returns

Arguments

Translates the specified identifier name into its binary identifier value.

SYS$ASCTOID name ,[id] ,[attrib]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

name
VMS Usage:
type:
access:
mechanism:

char _string
character-coded text string
read only
by descriptor-fixed length string descriptor

Identifier name translated when $ASCTOID completes execution. The name
argument is the address of a character-string descriptor pointing to the identifier
name.

id
VMS Usage: rights_id
type: longword (unsigned)
access: write only
mechanism: by reference

Identifier value resulting when $ASCTOID completes execution. The id argument
is the address of a longword in which the identifier value is written.

attrib
VMS Usage: mask_longword
type: longword (unsigned)
access: write only
mechanism: by reference

Attributes associated with the identifier returned in id when $ASCTOID
completes execution. The attrib argument is the address of a longword
containing a bit mask specifying the attributes.

Symbol values are offsets to the bits within the longword. You can also obtain the
values as masks with the appropriate bit set using the prefix KGB$M rather than
KGB$V. The symbols are defined in the system macro $KGBDEF library. The
symbolic names for each bit position are listed in the following table.

SVS-29

System Service Descriptions
$ASCTOID

Description

Bit Position

KGB$V _DYNAMIC

KGB$V _RESOURCE

Meaning When Set

Allows the unprivileged holder to add or remove the
identifier from the process rights list.

Allows the holder to charge resources, such as disk
blocks, to the identifier.

The Translate Identifier Name to Identifier service converts the specified
identifier name to its binary identifier value. Note that when you use wildcards
with this service, the records are returned alphabetically by identifier name.

Required Privileges
None

Required Quota
None

Related Services
$ADD_HOLDER, $ADD_IDENT, $CHANGE_ACL, $CHECK_ACCESS,
$CHKPRO, $CREATE_RDB, $ERAPAT, $FIND_HELD, $FIND_HOLDER,
$FINISH_RDB, $FORMAT_ACL, $FORMAT_AUDIT, $GRANTID, $HASH_
PASSWORD, $IDTOASC, $MOD_HOLDER, $MOD_IDENT, $MTACCESS,
$PARSE_ACL, $REM_HOLDER, $REM_IDENT, $REVOKID

Condition Values Returned

SVS-30

SS$_NORMAL

SS$_ACCVIO

SS$_INSFMEM

SS$_IVIDENT
SS$_NOSUCHID

RMS$_PRV

The service completed successfully.

The name argument cannot be read by the
caller, or the id or attrib arguments cannot be
written by the caller.

The process dynamic memory is insufficient for
opening the rights database.

The specified identifier is of invalid format.
The specified identifier name does not exist in
the rights database.

The user does not have read access to the rights
database.

Because the rights database is an indexed file accessed with VMS RMS, this
service may also return RMS status codes associated with operations on indexed
files. For descriptions of these status codes, refer to the VMS Record Management
Services Manual.

System Service Descriptions
$ASSIGN

$ASSIGN-Assign 1/0 Channel

Format

Returns

Arguments

Provides a process with an I/O channel so that input/output operations can be
performed on a device, or establishes a logical link with a remote node on a
network.

SYS$ASSIGN devnam ,chan ,[acmode] ,[mbxnam] ,[flags]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

devnam
VMS Usage: device_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Name of the device to which $ASSIGN is to assign a channel. The devnam
argument is the address of a character string descriptor pointing to the device
name string.

If the device name contains a double colon (::), the system assigns a channel to
the first available network device (NET:) and performs an access function on the
network.

ch an
VMS Usage:
type:
access:
mechanism:

channel
word (unsigned)
write only
by reference

Number of the channel that is assigned. The chan argument is the address of a
word into which $ASSIGN writes the channel number.

acmode
VMS Usage:
type:
access:
mechanism:

access_mode
longword (unsigned)
read only
by value

Access mode to be associated with the channel. The acmode argument specifies
the access mode. The $PSLDEF macro defines the following symbols for the four
access modes.

SYS-31

System Service Descriptions
$ASSIGN

SYS-32

Symbol

PSL$C_KERNEL

PSL$C_EXEC

PSL$C_SUPER

PSL$C_USER

Access Mode

Kernel

Executive

Supervisor

User

Numeric Value

0

1

2

3

The specified access mode and the access mode of the caller are compared. The
less privileged (but the higher numeric valued) of the two access modes becomes
the access mode associated with the assigned channel. I/O operations on the
channel can be performed only from equal and more privileged access modes. For
more information, see the section on access modes in the Introduction to VMS
System Services.

mbxnam
VMS Usage:
type:
access:
mechanism:

device_name
character-coded text string
read only
by descriptor-fixed length string descriptor

Logical name of the mailbox to be associated with the device. The mbxnam
argument is the address of a character string descriptor pointing to the logical
name string.

If you specify mbxnam as 0, no mailbox is associated with the device. This is the
default.

You must specify the mbxnam argument when performing a nontransparent,
task-to-task, DECnet-to-VAX operation.

Only the owner of a device can associate a mailbox with the device; the owner of a
device is the process that has allocated the device, whether implicitly or explicitly.
Only one mailbox can be associated with a device at any one time.

A mailbox cannot be associated with a device if the device has foreign (DEV$M_
FOR) or shareable (DEV$M_SHR) characteristics.

A mailbox is disassociated from a device when the channel that associated it is
deassigned.

If a mailbox is associated with a device, the device driver can send status
information to the mailbox. For example, if the device is a terminal, this
information might indicate dialup, hangup, or the reception of unsolicited input;
if the device is a network device, it might indicate that the network is connected
or perhaps that the line is down.

For details on the nature and format of the information returned to the mailbox,
refer to the VMS I /0 User's Reference Manual: Part I.

flags
VMS Usage:
type:
access:
mechanism:

mask_longword
longword (unsigned)
read only
by value

The flags argument is an optional device-specific argument. It is a longword bit
mask. For more information regarding the applicability of the flags argument for
a particular device, see the VMS I /0 User's Reference Manual: Part I and the
VMS I /0 User's Reference Manual: Part II.

Description

System Service Descriptions
$ASSIGN

The Assign I/O Channel service (1) provides a process with an 1/0 channel so
that input/output operations can be performed on a device. This service (2)
establishes a logical link with a remote node on a network.

Channels remain assigned until they are explicitly deassigned with the Deassign
I/O Channel ($DASSGN) service or, if they are user-mode channels, until the
image that assigned the channel exits.

The $ASSIGN service establishes a path to a device but does not check whether
the caller can actually perform input/output operations to the device. Privilege
and protection restrictions can be applied by the device drivers.

Required Privileges
The calling process must have NETMBX privilege to perform network operations
and system dynamic memory is required if the target device is on a remote
system.

Required Quota
If the target of the assignment is on a remote node, the process needs sufficient
buffer quota to allocate a network control block.

Related Services
$ALLOC, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX, $DALLOC,
$DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI, $GETDVIW,
$GETMSG, $GETQUI, $GETQUIW, $INIT_ VOL, $MOUNT, $PUTMSG, $QIO,
$QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SS$_NORMAL

SS$_REMOTE

SS$_ABORT

SS$_ACCVIO

SS$_CONNECFAIL

SS$_DEVACTIVE

SS$_DEVALLOC

SS$_DEVNOTMBX

SS$_EXQUOTA

SS$_FILALRACC

The service completed successfully.

The service completed successfully. A logical link
is established with the target on a remote node.

A physical line went down during a network
connect operation.

The device or mailbox name string or string
descriptor cannot be read by the caller, or the
channel number cannot be written by the caller.

For network operations, the connection to a
network object timed out or failed.

You specified a mailbox name, but a mailbox is
already associated with the device.

The device is allocated to another process.

You specified a logical name for the associated
mailbox, but the logical name refers to a device
that is not a mailbox.

The target of the assignment is on a remote node
and the process has insufficient buffer quota to
allocate a network control block.

For network operations, a logical link already
exists on the channel.

SYS-33

System Service Descriptions
$ASSIGN

SYS-34

SS$_DEVOFFLINE

SS$_INSFMEM

SS$_INVLOGIN

SS$_IVDEVNAM

SS$_IVLOGNAM

SS$_LINKEXIT

SS$_NOIOCHAN

SS$_NOLINKS

SS$_NOPRIV

SS$_NOSUCHDEV

SS$_NOSUCHNODE

SS$_NOSUCHOBJ

SS$_NOSUCHUSER

SS$_PROTOCOL

SS$_REJECT

For network operations, the physical link is
shutting down.

The target of the assignment is on a remote node
and there is insufficient system dynamic memory
to complete the request.

For network operations, the access control
information was found to be invalid at the remote
node.

No device name was specified, the logical name
translation failed, or the device or mailbox name
string contains invalid characters. If the device
name is a target on a remote node, this status
code indicates that the Network Connect Block
has an invalid format.

The device or mailbox name string has a length
of 0 or has more than 63 characters.

For network operations, the network partner
task was started, but exited before confirming
the logical link (that is, $ASSIGN to SYS$NET).

No I/O channel is available for assignment.

For network operations, no logical links are
available. The maximum number of logical links
as set for the NCP executor MAXIMUM LINKS
parameter was exceeded.

For network operations, the issuing task does not
have the required privilege to perform network
operations or to confirm the specified logical link.

The specified device or mailbox does not exist,
or, for DECnet-to-VAX operations, the network
device driver is not loaded (for example, the
DECnet-to-VAX software is not currently running
on the local VAX node).

The specified network node is nonexistent or
unavailable.

For network operations, the network object
number is unknown at the remote node; for
a TASK= connect, the named DCL command
procedure file cannot be found at the remote
node.

For network operations, the remote node could
not recognize the login information supplied with
the connection request.

For network operations, a network protocol
error occurred, most likely because of a network
software error.

The network connect was rejected by the network
software or by the partner at the remote node,
or the target image exited before the connect
confirm could be issued.

SS$_REMRSRC

SS$_SHUT

SS$_THIRDPARTY

SS$_TOOMUCHDATA

SS$_UNREACHABLE

System Service Descriptions
$ASSIGN

For network operations, the link could not be
established because system resources at the
remote node were insufficient.

For network operations, the local or remote node
is no longer accepting connections.

For network operations, the logical link
connection was terminated by a third party
(for example, the system manager).

For network operations, the task specified too
much optional or interrupt data.

For network operations, the remote node is
currently unreachable.

SYS-35

System Service Descriptions
$BINTIM

$BINTIM-Convert ASCII String to Binary Time

Format

Returns

Arguments

Description

SYS-36

Converts an ASCII string to an absolute or delta time value in the system 64-bit
time format suitable for input to the Set Timer ($SETIMR) or Schedule Wakeup
($SCHDWK) service.

SYS$BINTIM timbuf ,timadr

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

timbuf
VMS Usage:
type:
access:
mechanism:

time_name
character-coded text string
read only
by descriptor-fixed length string descriptor

Buffer that holds the ASCII time to be converted. The timbuf argument specifies
the address of a character string descriptor pointing to the VMS time string. The
VMS time string specifies the absolute or delta time to be converted by $BINTIM.
The VMS Data Type Table describes the VMS time string.

timadr
VMS Usage:
type:
access:
mechanism:

date_time
quadword
write only
by reference

Time value that $BINTIM has converted. The timadr argument is the address of
the VMS quadword system time, which receives the converted time.

The Convert ASCII String to Binary Time service converts an ASCII string to an
absolute or delta time value in the system 64-bit time format suitable for input to
the Set Timer ($SETIMR) or Schedule Wakeup ($SCHDWK) service. The service
executes at the access mode of the caller and does not check whether address
arguments are accessible before it executes. Therefore, an access violation causes
an exception condition if the input buffer or buffer descriptor cannot be read or
the output buffer cannot be written.

This service does not check the length of the argument list and therefore cannot
return the SS$_INSFARG (insufficient arguments) error status code. If the
service does not receive enough arguments (for example, if you omit required
commas in the call), errors may result.

System Service Descriptions
$BINTIM

The required ASCII input strings have the following format:

• Absolute Time: dd-mmm-yyyy hh:mm:ss.cc

• Delta Time: dddd hh:mm:ss.cc

The following table lists the length (in bytes), contents, and range of values for
each field in the absolute time and delta time formats.

Field

dd

mmm

yyyy

blank

hh

mm

SS

cc

dddd

Length
(Bytes)

2

1

3

1

4

n

2

1

2

1

2

1

2

4

Contents Range of Values

Day of month 1-31

Hyphen Required syntax

Month JAN, FEB, MAR, APR, MAY, JUN,
JUL, AUG, SEP, OCT, NOV, DEC

Hyphen Required syntax

Year 1858-9999

Blank Required syntax

Hour 00-23

Colon Required syntax

Minutes 00-59

Colon Required syntax

Seconds 00-59

Period Required syntax

Hundredths of a 00-99
second

Number of days 000-9999
(in 24-hour units)

Note that month abbreviations must be uppercase and that the hundredths-of
second field represents a true fraction. For example, the string .1 represents
ten-hundredths of a second (one-tenth of a second) and the string .01 represents
one-hundredth of a second. Note also that you can add a third digit to the
hundredths-of-second field; this thousandths-of-second digit is used to round the
hundredths-of-second value. Digits beyond the thousandths-of-second digit are
ignored.

The following two syntax rules apply to specifying the ASCII input string:

• You· can omit any of the date and time fields.

For absolute time values, the $BINTIM service supplies the current system
date and time for nonspecified fields. Trailing fields can be truncated. If
leading fields are omitted, you must specify the punctuation (hyphens, blanks,
colons, periods). For example, the following string results in an absolute time
of 12:00 on the current day:

-- 12:00:00.00

SYS-37

System Service Descriptions
$BINTIM

For delta time values, the $BINTIM service uses a default value of 0
for unspecified hours, minutes, and seconds fields. Trailing fields can be
truncated. If you omit leading fields from the time value, you must specify
the punctuation (blanks, colons, periods). If the number of days in the delta
time is 0, you must specify a 0. For example, the following string results in a
delta time of 10 seconds:

0 : : 10

Note the space between the 0 in the day field and the two colons.

• For both absolute and delta time values, there can be any number of leading
blanks, and any number of blanks between fields normally delimited by
blanks. However, there can be no embedded blanks within either the date or
time field.

Required Privileges
None

Required Quota
None

Related Services
$ASCTIM, $CANTIM, $CANWAK, $GETTIM, $NUMTIM, $SCHDWK, $SETIME,
$SETIMR

Condition Values Returned

Example

SYS-38

SS$_NORMAL
SS$_IVTIME

The service completed successfully.
The syntax of the specified ASCII string is
invalid, or the time component is out of range.

Column 1 of the following table lists legal input strings to the $BINTIM service;
column 2 lists the $BINTIM output of these strings translated through the
Convert Binary Time to ASCII String ($ASCTIM) system service. The current
date is assumed to be 30-DEC-1990 04:15:28.00.

Input to $BINTIM

-- :50
--1990 0:0:0.0
30-DEC-1990 12:32:1.1161

29-DEC-1990 16:35:0.0

0 ::.1

0 ::.06
5 3:18:32.068

20 12:

05

$ASCTIM Output String

30-DEC-1990 04:50:28.00

29-DEC-1990 00:00:00.00
30-DEC-1990 12:32:01.12

29-DEC-1990 16:35:00.00

0 00:00:00.10

0 00:00:00.06
5 03:18:32:07

20 12:00:00.00

0 05:00:00.00

System Service Descriptions
$BRKTHRU

$BRKTHRU-Breakthrough

Format

Returns

Arguments

Sends a message to one or more terminals. The $BRKTHRU service completes
asynchronously; that is, it returns to the caller after queuing the message request,
without waiting for the message to be written to the specified terminals.

For synchronous completion, use the Breakthrough and Wait ($BRKTHRUW)
service. The $BRKTHRUW service is identical to the $BRKTHRU service in
every way except that $BRKTHRUW returns to the caller after the message is
written to the specified terminals.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service and to the Introduction to VMS System Services.

The $BRKTHRU service supersedes the Broadcast ($BRDCST) service. When
writing new programs, you should use $BRKTHRU instead of $BRDCST. When
updating old programs, you should change all uses of $BRDCST to $BRKTHRU.

SYS$BRKTHRU [efn] ,msgbuf [,sendto] [,sndtyp] [,iosb] [,carcon] [,flags] [,reqid]
[,timout] [,astadr] [,astprm]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

ef n
VMS Usage:
type:
access:
mechanism:

ef_number
longword (unsigned)
read only
by value

Number of the event flag to be set when the message has been written to the
specified terminals. The efn argument is a longword containing this number;
however, $BRKTHRU uses only the low-order byte.

When the message request is queued, $BRKTHRU clears the specified event
flag (or event flag 0 if efn is not specified). Then, after the message is sent,
$BRKTHRU sets the specified event flag (or event flag 0).

msgbuf
VMS Usage:
type:
access:
mechanism:

char_string
character-coded text string
read only
by descriptor-fixed length string descriptor

Message text to be sent to the specified terminals. The msgbuf argument is the
address of a descriptor pointing to this message text.

SYS-39

System Service Descriptions
$BRKTHRU

SYS-40

The $BRKTHRU service allows the message text to be as long as 16,350 bytes;
however, both the SYSGEN parameter MAXBUF and the caller's available
process space can affect the maximum length of the message text.

sendto
VMS Usage:
type:
access:
mechanism:

char _string
character-coded text string
read only
by descriptor-fixed length string descriptor

Name of a single device (terminal) or single user name to which the message is
to be sent. The sendto argument is the address of a descriptor pointing to this
name.

The sendto argument is used in conjunction with the sndtyp argument.
When sndtyp specifies BRK$C_DEVICE or BRK$C_USERNAME, the sendto
argument is required.

If you do not specify sndtyp or if sndtyp does not specify BRK$C_DEVICE
or BRK$C_USERNAME, you should not specify sendto; if sendto is specified,
$BRKTHRU ignores it.

sndtyp
VMS Usage:
type:
access:
mechanism:

longword_unsigned
longword (unsigned)
read only
by value

Terminal type to which $BRKTHRU is to send the message. The sndtyp
argument is a longword value specifying the terminal type.

Each terminal type has a symbolic name, which is defined by the $BRKDEF
macro. The following table describes each terminal type.

Terminal Type

BRK$C_ALLUSERS

BRK$C_ALLTERMS

BRK$C_DEVICE

BRK$C_USERNAME

iosb

Description

When specified, $BRKTHRU sends the message to all
users who are currently logged in to the system.

When specified, $BRKTHRU sends the message to all
terminals at which users are logged in and to all other
terminals that are connected to the system except
those with the AUTOBAUD characteristic set.

When specified, $BRKTHRU sends the message to
a single terminal; you must specify the name of the
terminal by using the sendto argument.

When specified, $BRKTHRU sends the message to a
user with a specified user name; you must specify the
user name by using the sendto argument.

VMS Usage:
type:
access:
mechanism:

io_status_block
quadword (unsigned)
write only
by reference

System Service Descriptions
$BRKTHRU

I/O status block that is to receive the final completion status. The iosb argument
is the address of this quadword block.

When the iosb argument is specified, $BRKTHRU sets the quadword to 0 when
it queues the message request. Then, after the message is sent to the specified
terminals, $BRKTHRU returns four informational items, one item per word, in
the quadword I/O status block.

These informational items indicate the status of the messages sent only to
terminals and mailboxes on the local VAX node; these items do not include the
status of messages sent to terminals and mailboxes on other VAX nodes in a
VAX.cluster system.

The following table shows each word of the quadword block and the informational
item it contains.

Word Informational Item

1 A condition value describing the final completion status.

2 A decimal number indicating the number of terminals and mailboxes to
which $BRKTHRU successfully sent the message.

3 A decimal number indicating the number of terminals to which
$BRKTHRU failed to send the message because the write to the
terminals timed out.

4 A decimal number indicating the number of terminals to which
$BRKTHRU failed to send the message because the terminals were
set to the NOBROADCAST characteristic (by using the DCL command
SET TERMINAL/NOBROADCAST).

carcon
VMS Usage:
type:
access:
mechanism:

longword_ unsigned
longword (unsigned)
read only
by value

Carriage control specifier indicating the carriage control sequence to follow the
message that $BRKTHRU sends to the terminals. The carcon argument is a
longword containing the carriage control specifier.

For a list of the carriage control specifiers that you can use in the carcon
argument, refer to the VMS I /0 User's Reference Volume.

If you do not specify the carcon argument, $BRKTHRU uses a default value of
32, which represents a space in the ASCII character set. The message format
resulting from this default value is a line feed, the message text, and a carriage
return.

The carcon argument has no effect on message formatting specified by the
BRK$M_SCREEN flag in the flags argument. See the description of the flags
argument.

flags
VMS Usage:
type:
access;
mechanism:

mask_longword
longword (unsigned)
read only
by value

SYS-41

System Service Descriptions
$BRKTHRU

SYS-42

Flag bit mask specifying options for the $BRKTHRU operation. The flags
argument is a longword value that is the logical OR of each desired flag option.

Each flag option has a symbolic name. The $BRKDEF macro defines the following
symbolic names.

Symbolic Name Description

BRK$V _ERASE_LINES When specified with the BRK$M_SCREEN flag,
BRK$V _ERASE_LINES causes a specified number of
lines to be cleared from the screen before the message
is displayed. When BRK$M_SCREEN is not also
specified, BRK$V _ERASE_LINES is ignored.
Unlike the other Boolean flags, BRK$V _ERASE_
LINES specifies a 1-byte integer in the range 0 to 24.
It occupies the first byte in the longword flag mask.
In coding the call to $BRKTHRU, specify the desired
integer value in the OR operation with any other
desired flags.

BRK$M_SCREEN When specified, $BRKTHRU sends screen-formatted
messages as well as messages formatted through
the use of the carcon argument. $BRKTHRU sends
screen-formatted messages to terminals with the
DEC_CRT characteristic, and it sends messages
formatted by carcon to those without the DEC_CRT
characteristic. You set the DEC_CRT characteristic
for the terminal by using the DCL command SET
TERMINAL/DEC_CRT.
A screen-formatted message is displayed at the top
of the terminal screen, and the cursor is repositioned
at the point it was prior to the broadcast message.
However, the BRK$V _ERASE_LINES and BRK$M_
BOTTOM flags also affect the display.

BRK$M_BOTTOM When BRK$M_BOTTOM is specified and BRK$M_
SCREEN is also specified, $BRKTHRU writes the
message to the bottom of the terminal screen instead
of the top. BRK$M_BOTTOM is ignored if the
BRK$M_SCREEN flag is not set.

BRK$M_NOREFRESH When BRK$M_NOREFRESH is specified,
$BRKTHRU, after writing the message to the screen,
does not redisplay the last line of a read operation
that was interrupted by the broadcast message. This
flag is useful only when the BRK$M_SCREEN flag is
not specified, because BRK$M_NOREFRESH is the
default for screen-formatted messages.

BRK$M_CLUSTER Specifying BRK$M_CLUSTER enables $BRKTHRU
to send the message to terminals or mailboxes on
other VAX nodes in a VAXcluster. If BRK$M_
CLUSTER is not specified, $BRKTHRU sends
messages only to terminals or mailboxes on the
local VAX node.

reqid

System Service Descriptions
$BRKTHRU

VMS Usage:
type:
access:

longword_ unsigned
longword (unsigned)
read only

mechanism: by value

Class requestor identification, which identifies to $BRKTHRU the application
(or image) that is calling $BRKTHRU. The reqid argument is this longword
identification value.

The reqid argument is used by several VMS images that send messages to
terminals and can be used by as many as 16 different user images as well.

When such an image calls $BRKTHRU, specifying reqid, $BRKTHRU notifies
the terminal that this image wants to write to the terminal. This makes it
possible for you to allow the image to write or prevent it from writing to the
terminal.

To prevent a particular image from writing to your terminal, you use the image's
name in the DCL command SET TERMINAL/NOBROADCAST=image-name.
Note that image-name in this DCL command is the same as the value of the
reqid argument that the image passed to $BRKTHRU.

For example, you can prevent the VMS Mail Utility (which is an
image) from writing to the terminal by issuing the DCL command SET
BROADCAST=NOMAIL.

The $BRKDEF macro defines class names that are used by several VMS
components. These components specify their class names by using the reqid
argument in calls to $BRKTHRU. The $BRKDEF macro also defines 16 class
names (BRK$C_USER1 through BRK$C_USER16) for the use of user images
that call $BRKTHRU. The class names and the components to which they
correspond are as follows.

Class Name

BRK$C_GENERAL

BRK$C_PHONE

BRK$C_MAIL

BRK$C_DCL

BRK$C_QUEUE

BRK$C_SHUTDOWN

Component

This class name is used by (1) the VMS image
invoked by the DCL command REPLY and (2) the
callers of the $BRKTHRU service. This is the default
if the reqid argument is not specified.

This class name is used by the VMS Phone Facility.

This class name is used by the VMS Mail Utility.

This class name is used by the DIGITAL Command
Language (DCL) interpreter for the Ctrl/T command,
which displays the process status.

This class name is used by the VMS queue manager,
which manages print and batch jobs.

This class name is used by the VMS system shutdown
image, which is invoked by the DCL command REPLY
/ID=SHUTDOWN.

SYS-43

System Service Descriptions
$BRKTHRU

SYS-44

Class Name

BRK$C_URGENT

BRK$C_USER1
through BRK$C_
USER16

timout

Component

This class name is used by the VMS image invoked
by the DCL command REPLY/ID=URGENT.

These class names can be used by user-written
images.

VMS Usage:
type:
access:
mechanism:

longword_ unsigned
longword (unsigned)
read only
by value

Timeout value, which is the number of seconds that must elapse before an
attempted write by $BRKTHRU to a terminal is considered to have failed. The
timout argument is this longword value (in seconds).

Because $BRKTHRU calls the $QIO service to perform write operations to the
terminal, the timeout value· specifies the number of seconds allotted to $QIO to
perform a single write operation fo the terminal.

If you do not specify the timout argument, $BRKTHRU uses a default value of 0
seconds, which specifies infinite time (no timeout occurs).

The value specified by timout can be 0 or any number greater than 4; the
numbers 1, 2, 3, and 4 are illegal.

When you press Ctrl/S or the No Scroll key, $BRKTHRU cannot send a message
to the terminal. In such a case, the value of timout is usually exceeded and the
attempted write to the terminal fails.

astadr
VMS Usage: ast_procedure
type: procedure entry mask
access: call without stack unwinding
mechanism: by reference

AST service routine to be executed after $BRKTHRU has sent the message to the
specified terminals. The astadr argument is the address of the entry mask of
this routine.

If you specify astadr, the AST routine executes at the same access mode as the
caller of $BRKTHRU.

astprm
VMS Usage:
type:
access:
mechanism:

user_arg
longword (unsigned)
read only
by value

AST parameter to be passed to the AST routine specified by the astadr argument.
The astprm argument specifies this longword parameter.

Description

System Service Descriptions
$BRKTHRU

The Breakthrough service sends a message to one or more terminals. The
$BRKTHRU service completes asynchronously; that is, it returns to the caller
after queuing the message request without waiting for the message to be written
to the specified terminals.

The $BRKTHRU service operates by assigning a channel (by using the $ASSIGN
service) to the terminal and then writing to the terminal (by using the $QIO
service). When calling $QIO, $BRKTHRU specifies the 10$_ WRITEVBLK
function code, together with the 10$M_BREAKTHRU, 10$M_CANCTRLO, and
(optionally) 10$M_REFRESH function modifiers.

The current state of the terminal determines if and when the broadcast message
is displayed on the screen. For example:

• If the terminal is performing a read operation when $BRKTHRU sends the
message, the read operation is suspended, the message is displayed, and
then the line that was being read when the read operation was suspended is
redisplayed (equivalent to the action produced by CTRL/R).

• If the terminal is performing a write operation when $BRKTHRU sends
the message, the message is displayed after the current write operation has
completed.

• If the terminal has the NOBROADCAST characteristic set for all images, or
if you have disabled the receiving of messages from the image that is issuing
the $BRKTHRU call (see the description of the reqid argument), the message
is not displayed.

After the message is displayed, the terminal is returned to the state it was in
prior to receiving the message.

Required Privileges
The calling process must have OPER privilege to send a message to tnore than
one terminal or to a terminal that is allocated to another user.

The calling process must have WORLD privilege to send a message to a specific
user by specifying the BRK$C_USERNAME symbolic code for the sndtyp
argument.

Required Quota
The $BRKTHRU service allows the message text to be as long as 16,350 bytes;
however, both the SYSGEN parameter MAXBUF and the caller's available
process buffered 1/0 byte count limit (BYTLM) quota must be sufficient to handle
the message.

Related Services
$ALLOC, $ASSIGN, $BRKTHRUW, $CANCEL, $CREMBX, $DALLOC,
$DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI, $GETDVIW,
$GETMSG, $GETQUI, $GETQUIW, $INIT_VOL, $MOUNT, $PUTMSG, $QIO,
$QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

SYS-45

System Service Descriptions
$BRKTHRU

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_EXQUOTA

SS$_INSFMEM

SS$_NONLOCAL

SS$_NOOPER

SS$_NOSUCHDEV

The service completed successfully.

The message buffer, message buffer descriptor,
device name string, or device name string
descriptor cannot be read by the caller.

The message length exceeds 16,350 bytes; the
process's buffered I/O byte count limit (BYTLM)
quota is insufficient; the message length exceeds
the value specified by the SYSGEN parameter
MAXBUF; the value of the TIMOUT parameter
is nonzero and less than 4 seconds; the value of
the REQID is outside the range 0 to 63; or the
value of the SNDTYP is not one of the legal ones
listed.

The process has exceeded its buffer space quota
and has disabled resource wait mode with the
Set Resource Wait Mode ($SETRWM) service.

The system dynamic memory is insufficient
for completing the request and the process
has disabled resource wait mode with the Set
Resource Wait Mode ($SETRWM) service.

The device is on a remote node.

The process does not have the necessary OPER
privilege.

The specified terminal does not exist, or it cannot
receive the message.

Condition Values Returned in the 1/0 Status Block

SYS-46

Any condition values returned by the $ASSIGN, $FAO, $GETDVI, $GETJPI, or
$QIO service.

System Service Descriptions
$BRKTHRUW

$BRKTHRUW-Breakthrough and Wait

Format

Sends a message to one or more terminals. The $BRKTHRUW service operates
synchronously; that is, it returns to the caller after the message has been sent to
the specified terminals.

For asynchronous operations, use the Breakthrough ($BRKTHRU) service;
$BRKTHRU returns to the caller after queuing the message request, without
waiting for the message to be delivered.

Aside from the preceding, $BRKTHRUW is identical to $BRKTHRU. For all
other information about the $BRKTHRUW service, refer to the description of
$BRKTHRU.

For additional information about system service completion, refer to the
documentation of the Synchronize ($SYNCH) service and to the Introduction
to VMS System Services.

The $BRKTHRU and $BRKTHRUW services supersede the Broadcast
($BRDCST) service. When writing new programs, you should use $BRKTHRU
or $BRKTHRUW instead of $BRDCST. When updating old programs, you should
change all uses of $BRDCST to $BRKTHRU or $BRKTHRUW. $BRDCST is now
an obsolete system service and is no longer being enhanced.

SYS$BRKTHRUW [efn] ,msgbuf [,sendto] [,sndtyp] [,iosb] [,careen] [,flags] [,reqid]
[,timout] [,astadr] [,astprm]

SYS-47

System Service Descriptions
$CANCEL

$CANCEL-Cancel 1/0 on Channel

Format

Returns

Argument

Description

SYS-48

Cancels all pending I/O requests on a specified channel. In general, this includes
all I/O requests that are queued as well as the request currently in progress.

SYS$CANCEL chan

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

ch an
VMS Usage: channel
type: word (unsigned)
access: read only
mechanism: by value

I/O channel on which I/O is to be canceled. The chan argument is a word
containing the channel number.

The Cancel I/O on Channel service cancels all pending I/O requests on a specified
channel. In general, this includes all I/O requests that are queued, as well as the
request currently in progress.

When you cancel a request currently in progress, the driver is notified
immediately. The actual cancellation might occur immediately, depending on
the logical state of the driver. When cancellation does occur, the following action
for I/O in progress, similar to that for queued requests, takes place:

1. The specified event flag is set.

2. The first word of the I/O status block, if specified, is set to SS$_ CANCEL if
the I/O request is queued, or to SS$_ABORT if the I/O is in progress.

3. The AST, if specified, is queued.

Proper synchronization between this service and the actual canceling of I/O
requests requires the issuing process to wait for I/O completion in the normal
manner and then note that the I/O has been canceled.

If the I/O operation is a virtual I/O operation involving a disk or tape ACP, the
I/O cannot be canceled. In the case of a magnetic tape, however, cancellation
might occur if the device driver is hung.

Outstanding I/O requests are automatically canceled at image exit.

Required Privileges

System Service Descriptions
$CANCEL

To cancel 1/0 on a channel, the access mode of the calling process must be equal
to or more privileged than the access mode that the process had when it originally
made the channel assignment.

Required Quota
The $CANCEL service requires system dynamic memory and uses the process's
buffered 1/0 limit (BIOLM) quota.

Related Services
$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CREMBX, $DALLOC,
$DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI, $GETDVIW,
$GETMSG, $GETQUI, $GETQUIW, $INIT_VOL, $MOUNT, $PUTMSG, $QIO,
$QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SS$_NORMAL

SS$_EXQUOTA

SS$_INSFMEM

SS$_IVCHAN

SS$_NOPRIV

The service completed successfully.

The process has exceeded its buffered I/O limit
(BIOLM) quota.

The system dynamic memory is insufficient for
canceling the I/O.

You specified an invalid channel, that is, a
channel number of 0 or a number larger than the
number of channels available.

The specified channel is not assigned or was
assigned from a more privileged access mode.

SYS-49

System Service Descriptions
$CANEXH

$CANEXH-Cancel Exit Handler

Format

Returns

Argument

Deletes an exit control block from the list of control blocks for the calling access
mode. Exit control blocks are declared by the Declare Exit Handler ($DCLEXH)
service and are queued according to access mode in a last-in first-out order.

SYS$CANEXH [desblk]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

desblk
VMS Usage:
type:
access:
mechanism:

exit_handler _block
longword (unsigned)
read only
by reference

Control block describing the exit handler to be canceled. If you do not specify the
desblk argument or specify it as 0, all exit control blocks are canceled for the
current access mode. The desblk argument is the address of this control block.

Condition Values Returned

SYS-50

SS$_NORMAL

SS$_ACCVIO

SS$_1VSSRQ

SS$_NOHANDLER

The service completed successfully.

The first longword of the exit control block or the
first longword of a previous exit control block in
the list cannot be read by the caller, or the first
longword of the preceding control block cannot be
written by the caller.

The call to the service is invalid because it was
made from kernel mode.

The specified exit handler does not exist.

System Service Descriptions
$CANTIM

$CANTIM-Cancel Timer

Format

Returns

Arguments

Cancels all or a selected subset of the Set Timer requests previously issued by
the current image executing in a process. Cancellation is based on the request
identification specified in the Set Timer ($SETIMR) service. If you give the same
request identification to more than one timer request, all requests with that
request identification are canceled.

SYS$CANTIM [reqidt] ,[acmode]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

reqidt
VMS Usage:
type:
access:
mechanism:

user_arg
longword (unsigned)
read only
by value

Request identification of the timer requests to be canceled. If you specify it as 0
(the default), all timer requests are canceled. The reqidt argument is a longword
containing this identification.

acmode
VMS Usage:
type:
access:
mechanism:

access_mode
longword (unsigned)
read only
by value

Access mode of the requests to be canceled. The acmode argument is a longword
containing the access mode. The $PSLDEF macro defines the following symbols
for the four access modes.

Symbol

PSL$C_KERNEL

PSL$C_EXEC

PSL$C_SUPER

PSL$C_USER

Access Mode

Kernel

Executive

Supervisor

User

The most privileged access mode used is the access mode of the caller.

SYS-51

System Service Descriptions
$CANTIM

Description

The Cancel Timer Request service cancels all or a selected subset of the Set
Timer requests previously issued by the current image executing in a process.
Cancellation is based on the request identification specified in the Set Timer
($SETIMR) service. If you give the same request identification to more than one
timer request, all requests with that request identification are canceled.

Outstanding timer requests are automatically canceled at image exit.

Required Privileges
The calling process can cancel only timer requests that are issued by a process
whose access mode is equal to or less privileged than that of the calling process.

Required Quota
Canceled timer requests are restored to the process's quota for timer queue
entries (TQELM quota).

Related Services
$ASCTIM, $BINTIM, $CANWAK, $GETTIM, $NUMTIM, $SCHDWK, $SETIME,
$SETIMR

Condition Values Returned

SS$_NORMAL The service completed successfully.

SYS-52

System Service Descriptions
$CANWAK

$CANWAK-Cancel Wakeup

Format

Returns

Arguments

Removes all scheduled wakeup requests for a process from the timer queue,
including those made by the caller or by other processes. The Schedule Wakeup
($SCHDWK) service makes scheduled wakeup requests.

SYS$CANWAK [pidadr] ,[prcnam]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

pidadr
VMS Usage:
type:
access:
mechanism:

process_id
longword (unsigned)
modify
by reference

Process identification (PID) of the process for which wakeups are to be canceled.
The pidadr argument is the address of a longword specifying the PID. The
pidadr argument can refer to a process running on the local node or a process
running on another node in the cluster.

prcnam
VMS Usage:
type:
access:
mechanism:

process_name
character-coded text string
read only
by descriptor-fixed length string descriptor

Name of the process for which wakeups are to be canceled. The prcnam
argument is the address of a character string descriptor pointing to the process
name string. A process running on the local node can be identified with a 1- to
15-character string. To identify a process on a particular node on a cluster, specify
the full process name, which includes the node name as well as the process name.
The full process name can contain up to 23 characters.

The VMS operating system interprets the UIC group number of the calling
process as part of the process name; the names of processes are unique to DIC
groups. Because of this, you can use the prcnam argument only on behalf of
processes in the same group as the calling process.

SYS-53

System Service Descriptions
$CANWAK

Description

The Cancel Wakeup service removes from the timer queue all scheduled wakeup
requests for a process, including those made by the caller or by other processes.
The Schedule Wakeup ($SCHDWK) service makes scheduled wakeup requests.

If the longword at address pidadr is 0, the PID of the target process is returned.

If you specify neither the pidadr nor the prcnam argument, scheduled wakeup
requests for the calling process are canceled.

Pending wakeup requests issued by the current image are automatically canceled
at image exit.

This service cancels only wakeup requests that have been scheduled; it does not
cancel wakeup requests made with the Wake Process from Hibernation ($WAKE)
service.

Required Privileges
Depending on the operation, the calling process might need one of the listed
privileges to use $CANWAK:

• You need GROUP privilege to cancel wakeups for processes in the same group
that do not have the same UIC.

• You need WORLD privilege to cancel wakeups for any process in the system.

Required Quota
Canceled wakeup requests are restored to the process's AST limit (ASTLM) quota.

Related Services
$ASCTIM, $BINTIM, $CANTIM, $GETTIM, $NUMTIM, $SCHDWK, $SETIME,
$SETIMR

Condition Values Returned

SYS-54

SS$_NORMAL

SS$_ACCVIO

SS$_INCOMPAT

SS$_IVLOGNAM

SS$_NONEXPR

SS$_NOPRIV

The service completed successfully.

The process name string or string descriptor
cannot be read by the caller, or the process
identification cannot be written by the caller.

The remote node is running a version of VMS
that is incompatible.

The process name string has a length of 0 or has
more than 15 characters.

The specified process does not exist, or you
specified an invalid process identification.

The process does not have the privilege to cancel
wakeups for the specified process.

SS$_NOSUCHNODE

SS$_REMRSRC

SS$_ UNREACHABLE

System Service Descriptions
$CANWAK

The process name refers to a node that is not
currently recognized as part of the cluster.

The remote node has insufficient resources to
respond to the request. (Bring this error to the
attention of your system manager.)

The remote node is a member of the cluster but
is not accepting requests. (This is normal for a
brief period early in the system boot process.)

SYS-55

System Service Descriptions
$CHANGE_ACL

$CHANGE_ACL-Change Access Control List

Format

Returns

Arguments

SYS-56

Creates or modifies an object's access control list.

SYS$CHANGE_ACL [chan] ,objtyp ,[objnam] ,itmlst ,(acmode] ,[nullarg) ,[contxt]
,[nullarg] [,nullarg]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

ch an
VMS Usage:
type:
access:
mechanism:

channel
word (unsigned)
read only
by value

Number of the I/O channel assigned to the object whose ACL is modified when
$CHANGE_ACL completes execution. The chan argument is a word that
contains the number of the channel. If you specify objnam, you must omit chan
or specify it as 0.

objtyp
VMS Usage:
type:
access:
mechanism:

longword_ unsigned
longword (unsigned)
read only
by reference

Type of object whose ACL is modified when $CHANGE_ACL completes execution.
The objtyp argument is the address of a longword containing a value indicating
whether the object is a file or a device. The symbols are defined in the system
macro $ACLDEF library. The values and their meanings are listed in the
following table.

Value

ACL$C_CAPABILITY

ACL$C_DEVICE

ACL$C_FILE

ACL$C_GROUP _GLOBAL_SECTION

Meaning

Object is a restricted resource; use the
reserved name VECTOR.

Object is a device.

Object is a Files-11 On-Disk Structure
Level 2 file.

Object is a group global section.

Value

ACL$C_JOBCTL_QUEUE

ACL$C_LOGICAL_NAME_TABLE

ACL$C_SYSTEM_GLOBAL_SECTION

objnam
VMS Usage: char_string
type: character-coded text string
access: read only

System Service Descriptions
$CHANGE_ACL

Meaning

Object is a batch or print queue.

Object is a logical name table.

Object is a system global section.

mechanism: by descriptor-fixed length string descriptor

Name of the object whose ACL is modified when $CHANGE_ACL completes
execution. The objnam argument is the address of a character-string descriptor
that points to the name of the object. The maximum length of objnam depends
on the VMS syntax for the objects listed in the objtyp argument.

itmlst
VMS Usage: item_list_3
type: longword (unsigned)
access: read only
mechanism: by reference

Modifications to be made to the ACL when $CHANGE_ACL completes execution.
The itmlst argument is the address of a list of item descriptors, each of which
describes an item of information. The list of item descriptors is terminated
by a longword of 0. The following diagram depicts the format of a single item
descriptor.

31

Item Descriptor Fields

buffer length

Item Code

15

l
Buffer Address

Return Length Address

0

Buffer Length

ZK-1705-GE

A word containing a user-supplied integer specifying the length (in bytes) of the
buffer in which the service is to write the information. The length of the buffer
needed depends upon the item code specified in the item code field of the item
descriptor. If the value of buffer length is too small, the service truncates the
data.

item code
A word containing a user-supplied symbolic code specifying the item of
information that the service is to return.

SYS-57

System Service Descriptions
$CHANGE_ACL

SYS-58

buffer address
A longword containing the user-supplied address of the buffer in which the
service is to write the information.

return length address
A longword that normally contains the user-supplied address of a word in which
the service writes the length in bytes of the information it returned. This is not
used by $CHANGE_ACL and should contain a 0.

$CHANGE_ACL returns an ACE as the result of read, grant, and find operations.
In subsequent read, grant, and find type operations, the service does not return
the same ACE, but rather the next ACE meeting the desired criteria. With
a find ACL operation, however, the behavior is slightly different. A read or
grant following a FNDACLENT uses the ACE located with the FNDACLENT to
perform the read or grant operation.

When you add an ACE with ACL$C_ADDACLENT or locate an ACE with
ACL$C_FNDACETYP or ACL$C_FNDACLENT, $CHANGE_ACL searches the
ACL for a match for the ACE in the ACE buffer. The $CHANGE_ACL service
does not always make a match based on the entire ACE buffer; instead, the ACE
type determines how $CHANGE_ACL makes a match. For example:

• A default protection ACE (ACE$C_DIRDEF) matches only on the type field
(ACE$B_TYPE). An ACL can have only one default protection ACE because
$CHANGE_ACL stops searching after it locates a match.

• An identifier ACE (ACE$C_KEYID) matches on the flags (ACE$W _FLAGS)
and identifier (ACE$L_KEY) fields.

• An alarm ACE (ACE$C_ALARM) matches on the flags (ACE$W _FLAGS) and
access mask (ACE$L_ACCESS) fields.

• All other ACE types match on the entire ACE buffer.

Because $CHANGE_ACL uses these matching rules, adding an ACE sometimes
results in the replacement of another ACE. For example, if you add an identifier
ACE with the same flags and identifier fields but with a different access mask,
the new ACE replaces the old ACE. When you add an ACE on the top of an ACL,
$CHANGE_ACL deletes any matching ACE. If you add an ACE below a matching
ACE in an ACL, the added ACE has no effect.

acmode
VMS Usage:
type:
access:
mechanism:

access_mode
longword (unsigned)
read only
by reference

Access mode to use in checking file access protection. The acmode argument is
the address of a longword containing the access mode. The acmode argument
defaults to kernel mode; however, the system compares acmode against the
caller's access mode and uses the least privileged mode.

The access modes listed in the following table, together with their symbols, are
defined in the system macro $PSLDEF library.

Item Codes

Symbol Access Mode

PSL$C_USER

PSL$C_SUPER

PSL$C_EXEC

PSL$C_KERNEL

User

Supervisor

Executive

Kernel

nullarg
VMS Usage:
type:
access:
mechanism:

null_arg
longword (unsigned)
read only
by value

Reserved for future use.

contxt
VMS Usage:
type:
access:
mechanism:

context
longword (unsigned)
modify
by reference

System Service Descriptions
$CHANGE_ACL

Context value that points to an ACE. The contxt argument is the address of a
longword containing the context value.

The symbols for the item codes are defined in the system macro library
($ACLDEF). The values and their meanings are described in the following
list.

ACL$C_ACLLENGTH
Returns the size, in bytes, of the object's ACL. The bufadr argument points to a
longword that contains the size.

ACL$C_ADDACLENT
Adds an ACE to the beginning of the ACL when contxt is 0, to the end of
the ACL when contxt is -1, or at a location pointed to by a prior ACL$C_
FNDACETYP or ACL$C_FNDACLENT. The bufadr argument points to a
variable-length data structure containing the ACE to be added. You can add more
than one ACE with ACL$C_ADDACLENT; however, buften must contain the
total size of all ACEs contained in the buffer.

$CHANGE_ACL returns an error for a READACE, FNDACETYP, or GRANT_
ACE operation in which the buffer is too small to hold the entire ACE. The
operation attempts to move as much of the ACE as possible, truncating where
necessary, and returns the status SS$_IVBUFLEN. A subsequent read ACE, find
ACE type, or grant ACE operation does not return the same ACE, but the next
one that meets the desired criteria.

ACL$C_DELACLENT
Deletes the ACE pointed to by bufadr or, if bufadr is specified as 0, the ACE
pointed to by a prior ACL$C_FNDACETYP or ACL$C_FNDACLENT.

ACL$C_DELETEACL
Deletes the entire ACL with the exception of protected ACEs.

SYS-59

System Service Descriptions
$CHANGE_ACL

SYS-60

ACL$C_DELETE_ALL
When you specify ACL$C_DELETE_ALL, $CHANGE_ACL deletes the entire
Access Control List (ACL), including protected entries.

ACL$C_FNDACETYP
Locates an ACE of the type pointed to by bufadr.

ACL$C_FNDACLENT
Locates the ACE pointed to by bufadr.

ACL$C_GRANT_ACE
When you specify ACL$C_GRANT_ACE, $CHANGE_ACL reads the next ACE
that matches the process's identifiers into the buffer pointed to by bufadr. The
returned ACE might grant or deny access to the object. Since an ACL can have
more than one matching ACE, you should proceed as follows:

1. Specify an initial value of 0 for contxt.

2. Call $CHANGE_ACL repeatedly, without changing the value of contxt, and
test for the return status SS$_NOMOREACE, which means that the ACL has
no more matching entries.

ACL$C_NEXT _ACE
When you specify ACL$C_NEXT_ACE, $CHANGE_ACL advances through an
ACL, one ACE at a time. The contxt argument defines the initial and final
positions. The value of contxt itself is derived from the previous ACL$C_
FNDACETYP, ACL$C_FNDACLENT, or ACL$C_GRANT_ACE operation.

ACL$C_RLOCK_ACL
Obtains a read lock on an object in order to lock out all writers to the object's
ACL. Regardless of the caller's mode, ACL locks are user-mode locks so that all
access modes will interlock ACLs correctly.

ACL$C_ WLOCK_ACL
Obtains an exclusive lock on an object in order to lock out all other readers
and writers to the object's ACL. Regardless of the caller's mode, ACL locks are
user-mode locks so that all access modes will interlock AC Ls· correctly.

ACL$C_MODACLENT
Replaces the ACE pointed to by a prior ACL$C_FNDACETYP or ACL$C_
FNDACLENT with the ACE pointed to by bufadr.

ACL$C_READACE
Reads the ACE pointed to by ACL$C_FNDACETYP or ACL$C_FNDACLENT into
the buffer pointed to by bufadr.

ACL$C_READACL
Reads the object's ACL. You should initially set the contxt argument to 0.
Complete ACEs are read into the buffer pointed to by bufadr. $CHANGE_ACL
returns an error in a READACL operation when a buffer is too small to hold at
least one ACE. The following read or find operation starts with the ACE following
the last one moved to the buffer. As long as $CHANGE_ACL moves one ACE,
the operation returns success status. However, when the first ACE does not fit
in the buffer, $CHANGE_ACL truncates the ACE and returns the status SS$_
IVBUFLEN. The subsequent read operation returns the next ACE.

Description

ACL$C_UNLOCK_ACL

System Service Descriptions
$CHANGE_ACL

Releases the lock obtained with ACL$C_RLOCK_ACL or ACL$C_ WLOCK_ACL.

The Change Access Control List service creates or modifies an object's ACL. For
information about the various types of ACLs and their associated formats, see the
description of the $FORMAT_ACL service. For information about how to convert
an ASCII string to an ACE, see the description of the $PARSE_ACL service.

Required Privileges
None

Required Quota
None

Related Services
$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CHECK_ACCESS, $CHKPRO,
$CREATE_RDB, $ERAPAT, $FIND_HELD, $FIND_HOLDER, $FINISH_
RDB, $FORMAT_ACL, $FORMAT_AUDIT, $GRANTID, $HASH_PASSWORD,
$IDTOASC, $MOD_HOLDER, $MOD_IDENT, $MTACCESS, $PARSE_ACL,
$REM_HOLDER, $REM_IDENT, $REVOKID

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_INCONOLCK

SS$_INSFARG

SS$_IVACL

SS$_NOPRIV

SS$_NOTQUEUED

The service completed successfully.

The string or its descriptor cannot be read by the
caller; the buffer descriptor cannot be read by the
caller; the buffer cannot be written by the caller;
or the buffer is too small to hold the ACL entry.

You specified an invalid object type, attribute
code, item size, or access mode.

VMS encountered an irrecoverable error. Please
submit a Software Performance Report (SPR)
that describes conditions leading to the error.

The objtyp argument is not specified, or neither
chan nor objnam is specified.

The format of the access control list entry is
invalid.

You do not have privileges for the requested
action.

An attempt to take a write lock on an object fails
because a write lock is already held by another
process on that object.

SYS-61

System Service Descriptions
$CHECK_ACCESS

$CHECK ACCESS-Check Access

Format

Returns

Arguments

SYS-62

Determines on behalf of a third-party user whether that user can access the
object specified.

SYS$CHECK_ACCESS objtyp ,objnam ,usrnam ,itmlst

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

objtyp
VMS Usage:
type:
access:
mechanism:

longword_ unsigned
longword (unsigned)
read only
by reference

Type of object being accessed. The objtyp argument is the address of a longword
containing a value specifying the type of object. The appropriate symbols are
listed in the following table and are defined in the system macro $ACLDEF
library.

Symbol

ACL$C_CAPABILITY

ACL$C_DEVICE

ACL$C_FILE

ACL$C_GROUP _GLOBAL_SECTION

ACL$C_SYSTEM_GLOBAL_SECTION

ACL$C_LOGICAL_NAME_TABLE

objnam
VMS Usage:
type:

char _string
character-coded text string
read only

Meaning

Object is a restricted resource; use the
reserved name VECTOR.

Object is a device.

Object is a Files-11 On-Disk Structure
Level 2 file.

Object is a group global section.

Object is a system global section.

Object is a logical name table.

access:
mechanism: by descriptor-fixed length string descriptor

Name of the object being accessed. The objnam argument is the address of a
character-string descriptor pointing to the object name.

System Service Descriptions
$CHECK_ACCESS

usrnam
VMS Usage:
type:
access:
mechanism:

char _string
character-coded text string
read only
by descriptor-fixed length string descriptor

Name of the user attempting access. The usrnam argument is the address
of a descriptor that points to a character string that contains the name of the
user attempting to gain access to the specified object. The user name string can
contain a maximum of 12 alphanumeric characters.

itmlst
VMS Usage:
type:
access:
mechanism:

item_list_3
longword (unsigned)
read only
by reference

Attributes describing how the object is to be accessed and information returned
after $CHECK_ACCESS performs the protection check (for instance, security
alarm information).

For each item code, you must include a set of four elements and end the list
with a longword containing the value 0 (CHP$_END), as shown in the following
diagram.

31

Item Descriptor Fields

buffer length

Item Code

15

I
Buffer Address

Return Length Address

0

Buff er Length

ZK-1705-GE

A word containing a user-supplied integer specifying the length (in bytes) of the
buffer in which the service is to write the information. The length of the buffer
needed depends upon the item code specified in the item code field of the item
descriptor. If the value of buffer length is too small, the service truncates the
data.

item code
A word containing a user-supplied symbolic code specifying the item of
information that the service is to return.

buffer address
A longword containing the user-supplied address of the buffer in which the
service is to write the information.

SYS-63

System Service Descriptions
$CHECK_ACCESS

Item Codes

SYS-64

return length address
A longword containing the address of a word-long buffer in which SYS$CHECK_
ACCESS writes the number of bytes written to the buffer pointed to by bufadr.
If the buffer pointed to by bufadr is used to pass information to SYS$CHECK_
ACCESS, retlenadr is ignored but must be included.

All items are optional. If you do not specify the access type item code (CHP$_
ACCESS), read access is assumed.

The item codes used with $CHECK_ACCESS are described in the following list
and are defined in the $CHPDEF system macro library.

CHP$_ACCESS
A longword bit mask that represents the desired access ($ARMDEF). Only those
bits set in CHP$_ACCESS are checked against the protection of the object to
determine whether access is granted.

The default for CHP$_ACCESS is READ and SET FLAG. Default definitions are
found in the $ARMDEF macro.

The following table shows the correct settings for CHP$_ACCESS and CHP$_
FLAG item codes to obtain a desired operation.

Desired Operation

READ

WRITE

EXECUTE

DELETE

CHANGE
PROTECTION

CHP$_ACMODE

Setting for CHP$_ACCESS

ARM$M_READ

ARM$M_READ +
ARM$M_ WRITE

ARM$M_EXECUTE

ARM$M_DELETE

ARM$M_CONTROL

Setting for CHP$_FLAG

CHP$V _READ or CHP$V _
USERREADALL

CHP$V _READ + CHP$V _WRITE

CHP$V _READ or CHP$V _
USERREADALL

CHP$V _READ + CHP$V _WRITE

CHP$V _READ + CHP$V _WRITE

A byte that defines the accessor's processor access mode ($PSLDEF). The
following access modes and their symbols are defined in the system macro library
($PSLDEF). Objects supported by the VMS operating system do not consider
access mode in determining object access.

Symbol

PSL$C_USER

PSL$C_SUPER

PSL$C_EXEC

PSL$C_KERNEL

Access Mode

User

Supervisor

Executive

Kernel

The default for CHP$_ACMODE is the caller's mode.

Description

System Service Descriptions
$CHECK_ACCESS

CHP$_FLAG
A longword that defines the accessor's access to the object. The symbols in the
following table are offsets to the bits within the longword. You can also obtain the
values as masks with the appropriate bit set by using the prefix CHP$M rather
than CHP$V.

Symbol

CHP$V_READ

CHP$V _WRITE

CHP$V_USEREADALL

Access

Accessor has read access.

Accessor has write access.

Accessor is eligible for READALL privilege.

The default for CHP$_FLAG is CHP$V _READ + CHP$V _ USEREADALL.

CHP$_ALARMNAME
A character string that contains the alarm name. If the object does not have
security alarms enabled, SYS$CHECK_ACCESS returns retlenadr as 0.

CHP$_AUDITNAME
A ch;:iracter string that contains the alarm name. If the object does not have
auditing enabled, SYS$CHECK_ACCESS returns retlenadr as 0.

CHP$_MATCHEDACE
A variable-length data structure containing the first identifier ACE in the ACL
that allowed the accessor to access the object. The SYS$FORMAT_ACL system
services describes the format of an identifier ACE.

CHP$_PRIVUSED
A longword mask of flags that represent the privileges used to gain access. The
following symbols are offsets to the bits within the longword.

Symbol

CHP$_SYSPRV

CHP$_GRPPRV

CHP$_BYPASS

CHP$_READALL

Meaning

SYSPRV was used to gain the requested access.

GRPPRV was used to gain the requested access.

BYPASS was used to gain the requested access.

READALL was used to gain the requested access.

You can also obtain the values as masks with the appropriate bit set by using the
prefix CHP$M rather than CHP$V. The symbols are defined in the system macro
library ($CHPDEF).

The Check Access system service invokes the standard VMS access check
mechanism, $CHKPRO, to determine whether a named user is allowed the
described access to a named object. A file server, for example, might check the
access attributes of a user who attempts to access a file (the object).

If the user can access the object, SYS$CHECK_ACCESS returns the SS$_
NORMAL status code; otherwise, SYS$CHECK_ACCESS returns SS$_NOPRIV.

The arguments accepted by this service specify the name and type of object being
accessed, the name of the user requesting access to the object, the type of access
desired, and the type of information returned.

SYS-65

System Service Descriptions
$CHECK_ACCESS

An alarm-name string is returned when an alarm ACE is present and an alarm
record is to be written. A nonzero string length specifies the presence of an alarm
request; if no alarm is requested, a zero length is returned. Note that alarms can
be requested whether the protection check succeeds or fails.

Required Privileges
None

Required Quota
None

Related Services
$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CHANGE_ACL, $CHKPRO,
$CREATE_RDB, $ERAPAT, $FIND_HELD, $FIND_HOLDER, $FINISH_
RDB, $FORMAT_ACL, $FORMAT_AUDIT, $GRANTID, $HASH_PASSWORD,
$IDTOASC, $MOD_HOLDER, $MOD_IDENT, $MTACCESS, $PARSE_ACL,
$REM_HOLDER, $REM_IDENT, $REVOKID

Condition Values Returned

SYS-66

SS$_NORMAL

SS$_ACCVIO

SS$_INSFMEM

SS$_NOCALLPRIV

SS$_NOPRIV

SS$_NOSUCHSEC

SS$_ UNSUPPORTED

The service completed successfully; the desired
access is granted.

The item list cannot be read by the caller, or one
of the buffers specified in the item list cannot be
written by the caller.

Identifiers granted to the user exceed the number
allowed.
Caller lacks privilege for attempted operation.

The desired access is not granted.

The specified global section does not exist.

Operations on remote object are not supported.

System Service Descriptions
$CHKPRO

$CHKPRO-Check Access Protection

Format

Returns

Argument

Determines whether an accessor with the specified rights and privileges can
access an object with the specified attributes.

SYS$CHKPRO itmlst

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

itmlst
VMS Usage:
type:
access:
mechanism:

item_list_3
longword (unsigned)
read only
by reference

Protection attributes of the object and the rights and privileges of the accessor.
The itmlst argument is the address of an item list of descriptors used to specify
the protection attributes of the object and the rights and privileges of the accessor.

Item Descriptor Fields

buffer length
A word containing a user-supplied integer specifying the length (in bytes) of the
buffer in which the service is to write the information. The length of the buffer
needed depends upon the item code specified in the item code field of the item
descriptor. If the value of buffer length is too small, the service truncates the
data.

item code
A word containing a user-supplied symbolic code specifying the item of
information that the service is to return. The item codes are defined in the
$ACLDEF system macro library.

buffer address
A longword containing the user-supplied address of the buffer used to transfer
information.

return length address
A longword that normally contains the user-supplied address of a word in which
the service writes the length in bytes of the information it returned. This is not
used by $CHKPRO and should contain a 0.

SYS-67

System Service Descriptions
$CHKPRO

Item Codes

SYS-68

31 15 0

Item Code I Buffer Length

Buffer Address

Return Length Address

ZK-1705-GE

All items are optional.

In all cases, except the item code CHP$_ACMODE, the routine uses the value of
the current process. If the CHP$_ACMODE item code is not specified, the routine
uses the kernel mode value, which is 0. The access mode protection is compared
to a field that is reserved for future use by Digital. The access mode protection,
which defaults to 0,. is compared to the Digital-reserved field, which also contains
0. Therefore, if CHP$_ACMODE is not specified, the check succeeds.

Specifying any particular protection attribute causes that protection check to be
made; any protection attribute not specified is not checked. Rights and privileges
specified are used as needed. If a protection check requires any right or privilege
not specified in the item list, the right or privilege of the caller's process is used.

The item codes used with $CHKPRO are described in following list and are
defined in the $CHPDEF system macro library.

CHP$_ACCESS
A longword bit mask representing the type of access desired ($.ARMDEF). Be
aware that the $CHKPRO service does not interpret the bits in the access mask;
instead, it compares them against the object's protection mask (CHP$_PROT).
Any bits not specified by CHP$_ACCESS or CHP$_PROT are assumed to be clear,
which grants access.

CHP$_ACMODE
A byte that defines the accessor's processor access mode. The following access
modes and their symbols are defined in the $PLSDEF macro.

Symbol

PSL$C_USER

PSL$C_SUPER

PSL$C_EXEC

PSL$C_KERNEL

CHP$_ADDRIGHTS

Access Mode

User

Supervisor

Executive

Kernel

A vector that points to an additional rights list segment to be appended to
existing rights list. Each entry of the rights list is a quadword data structure
consisting of a longword containing the identifier value, followed by a longword
containing a mask identifying the attributes of the holder. The SYS$CHKPRO
service ignores the attributes.

System Service Descriptions
$CH KP RO

A maximum of 11 rights descriptors is allowed. If you specify CHP$_
ADDRIGHTS without specifying CHP$_RIGHTS, the accessor's rights list
consists of the rights list specified by the CHP$_ADDRIGHTS item codes and the
rights list of the current process.

If you specify CHP$_RIGHTS and CHP$_ADDRIGHTS, you should be aware of
the following:

• CHP$_RIGHTS must come first.

• The accessor's UIC is the identifier of the first entry in the rights list specified
by the CHP$_RIGHTS item code.

• The accessor's rights list consists of the rights list specified by the CHP$_
RIGHTS item code and the CHP$_ADDRIGHTS item codes.

CHP$_FLAGS
A longword that defines the accessor's access to the object. The symbols in the
next table are offsets to the bits within the longword. You can also obtain the
values as masks with the appropriate bit set by using the prefix CHP$M rather
than CHP$V. The following symbols are defined only in the system macro library
($CHPDEF).

Symbol

CHP$V_READ

CHP$V _WRITE

CHP$V _USEREADALL

Access

Accessor is making a read access.

Accessor is making a write access.

Accessor is eligible for READALL privilege.

Because the access mask (CHP$_ACCESS) is not interpreted by $CHKPRO,
CHP$FLAGS is used to determine whether the accessor is making a read or write
access to the object, or both.

CHP$_PRIV
A quadword that defines an accessor's privilege mask. To form the symbolic
names for the bits in the privilege mask, you must preface the name of the
privileges with PRV$V _. For example, the bit associated with the BYPASS
privilege is PRV$V _BYPASS. The privilege symbols are defined in the system
macro library ($PRVDEF).

CHP$_RIGHTS
A vector that points to an accessor's rights list. The accessor's UIC is the
identifier of the first entry in the rights list. The accessor's rights list consists of
the rights list specified by CHP$_RIGHTS and optionally the rights list specified
by the CHP$_ADDRIGHTS item codes.

CHP$_ACL
A vector that points to an object's access control list. The buffer address, bufadr,
specifies a buffer containing one or more ACEs. The number that specifies the
length of the CHP$_ACL buffer, buflen, must be equal to the sum of all ACE
lengths. The format of the ACE structure depends on the value of the second byte
in the structure, which specifies the ACE type. The SYS$FORMAT_ACL system
service description describes each ACE type and its format.

You can specify the CHP$_ACL item multiple times to point to multiple segments
of an access control list. You can specify a maximum of 20 segments. The
segments are processed in the order specified.

SYS-69

System Service Descriptions
$CH KP RO

SVS-70

CHP$_MODE
A byte that defines the object's owner access mode. The following access modes
of the object's owner and their symbols are defined in the system macro library
($PSLDEF).

Symbol

PSL$C_USER

PSL$C_SUPER

PSL$C_EXEC

PSL$C_KERNEL

CHP$_MODES

Access Mode

User

Supervisor

Executive

Kernel

A quadword that defines the object's access mode protection. You specify a 2-
bit access mode as shown in CHP$_MODE for each possible access type. The
following diagram illustrates the format of an access mode vector for bit numbers.

31 109876543210

ICIDIEIWIR

63 32

ZK-1943-GE

Each pair of bits in the access mode vector represents the access mode for the
particular type of access. For example, bits <6:7> represent the access mode
value used to check for delete access.

CHP$_0WNER
A longword describing the object's owner identifier (UIC or general identifier).
This might be either a UIC format identifier or a general identifier.

Note ___________ _

CHP$_0WNER is used in conjunction with the CHP$_PROT item code.

CHP$_PROT
A vector describing the object's "SOGW" protection mask. The following diagram
depicts the format for describing the object's protection.

15 11 7

World Group
T r
I I

I _I_
I I

I I
I
I I

I I
__._ _I_
T T

I I
I I

I I
__._ _I_ --.- r

I I
__._

-1~
I I

_t _t

3

Owner
T
I

I

I
I

I
I
T

I
I

I
I
T

I

_t

System
T
I

_L
I

I
.L
I

I
I
T

I
.L
I

I
.L
T

I
I

_t

System Service Descriptions
$CH KP RO

O Access Bits

0-3

4-7

8-11

12-15

16-19

20-23

24-27

28-31

ZK-1704-GE

The first word contains the first four protection bits for each field, the second
word the next four protection bits, and so on. If a bit is clear, access is granted.
By convention, the first five protection bits are (from right to left in each field
of the first word) read, write, execute, delete, and (in the low-order bit in each
field of the second word) control access. You can specify the CHP$_PROT item
in increments of words; if a short buffer is given, zeros are assumed for the
remainder.

The $CHKPRO service compares the low;.order four bits of CHP$_ACCESS
against one of the 4-bit fields in the low-order word of CHP$_PROT, the next
four bits of CHP$_ACCESS against one of the 4-bit fields in the next word of
CHP$_PROT, and so on. The $CHKPRO service chooses a field of CHP$_PROT
based on the privileges specified for the accessor (CHP$_PRIV), the UICs of the
accessor (CHP$_RIGHTS or CHP$_ADDRIGHTS, or both), and the object's owner
(CHP$_0WNER).

You must also specify the identifier of the object's owner with CHP$_0WNER
when you use CHP$_PROT.

CHP$_ALARMNAME
A character string that contains the alarm record. If the object does not have
security alarms enabled, SYS$CHKPRO returns retlenadr as 0.

CHP$_MATCHEDACE
This output item is a variable-length data structure containing the first identifier
ACE in the object's ACL that allowed or denied the accessor to access the object.
The SYS$FORMAT_ACL system service describes the format of an identifier
ACE.

CHP$_PRIVUSED
A longword mask of flags representing privileges used to gain the requested
access. The following symbols are used as offsets to the bits within the longword.

SYS-71

System Service Descriptions
$CH KP RO

Description

SYS-72

Symbol

CHP$V _SYSPRV

CHP$V _GRPPRV

CHP$V _BYPASS

CHP$V _READALL

Meaning

Uses SYSPRV to gain the requested access

Uses GRPPRV to gain the requested access

Uses BYPASS to gain the requested access

Uses READALL to gain the requested access

You can also obtain the values as masks with the appropriate bit set by using the
prefix CHP$M rather than. CHP$V. The symbols are defined in the system macro
library ($CHPDEF).

The Check Access Protection service determines whether an accessor with the
specified rights and privileges can access an object with the specified attributes.
The service invokes the system's access protection check, which permits layered
products and other subsystems to build protected structures that are consistent
with the protection facilities provided by the base operating system. The service
also allows a privileged subsystem to perform protection checks on behalf of a
requester.

If the accessor can access the object, SYS$CHKPRO returns the SS$_NORMAL
status code; otherwise, SYS$CHKPRO returns SS$_NOPRIV.

The item list arguments accepted by this service permit you to specify the
protection of the object being accessed, the rights and privileges of the accessor,
and the type of access desired.

When a protection check is to be invoked on the behalf of another process, the
privilege mask (CHP$_PRIV) is usually mandatory.

An alarm name string is returned when an alarm ACE is present and an
alarm record is to be written. A nonzero string length (as returned in the item
descriptor) specifies the presence of an alarm request; if none is requested, a
length of 0 is returned. Note that you can request alarms whether the protection
check succeeds or fails.

For a flowchart detailing the operation of $CHKPRO, see the chapter on security
services in the Introduction to VMS System Services.

Required Privileges
None

Required Quota
None

Related Services
$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CHANGE_ACL, $CHECK_
ACCESS, $CREATE_RDB, $ERAPAT, $FIND_HELD, $FIND_HOLDER,
$FINISH_RDB, $FORMAT_ACL, $FORMAT_AUDIT, $GRANTID, $HASH_
PASSWORD, $IDTOASC, $MOD_HOLDER, $MOD_IDENT, $MTACCESS,
$PARSE_ACL, $REM_HOLDER, $REM_IDENT, $REVOKID

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_ACLFULL

SS$_BADPARAM

SS$_IVACL

SS$_NOPRIV

SS$_RIGHTSFULL

System Service Descriptions
$CH KP RO

The service completed successfully; the desired
access is granted.

The item list cannot be read by the caller, or one
of the buffers specified in the item list cannot be
written by the caller.

More than 20 CHP$_ACL items were given.

The argument is invalid.

You supplied an invalid ACL segment with the
CHP$_ACL item.

The desired access is not granted.

More than 11 CHP$_ADDRIGHTS items were
given.

SYS-73

System Service Descriptions
$CLREF

$CLREF-Clear Event Flag

Format

Returns

Argument

Clears (sets to 0) an event flag in a local or common event flag cluster.

SYS$CLREF efn

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

ef n
VMS Usage:
type:
access:
mechanism:

ef_number
longword (unsigned)
read only
by value

Number of the event flag to be cleared. The efn argument is a longword
containing this number; however, $CLREF uses only the low-order byte.

Condition Values Returned

SYS-74

SS$_WASCLR

SS$_WASSET

SS$_ILLEFC

SS$_UNASEFC

The service completed successfully. The specified
event flag was previously 0.

The service completed successfully. The specified
event flag was previously 1.

You specified an illegal event flag number.

The process is not associated with the cluster
containing the specified event flag.

System Service Descriptions
$CM EXEC

$CM EXEC-Change to Executive Mode

Format

Returns

Arguments

Description

Changes the access mode of the calling process to executive mode.

SYS$CMEXEC routin ,[arglst]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

rout in
VMS Usage:
type:
access:
mechanism:

procedure
procedure entry mask
call without stack unwinding
by reference

Routine to be executed while the process is in executive mode. The routin
argument is the address of the entry point to this routine.

arglst
VMS Usage:
type:
access:
mechanism:

arg_list
longword (unsigned)
read only
by reference

Argument list to be passed to the routine specified by the routin argument. The
arglst argument is the address of this argument list.

The Change to Executive Mode service allows a process to change its access mode
to executive, execute a specified routine, and then return to the access mode in
effect before the call was issued.

The $CMEXEC service uses standard procedure calling conventions to pass
control to the specified routine. If no argument list is specified, the argument
pointer (AP) contains a 0. However, to conform to the VAX Procedure Calling
Standard, you must not omit the arglist argument.

When you use the $CMEXEC service, the system service dispatcher modifies both
RO and Rl before entry into the target routine. The specified routine must exit
with a RET instruction and should place a status value in RO before returning.

SYS-75

System Service Descriptions
$CM EXEC

All of the Change Mode system services are intended to allow for the execution
of a routine at an access mode more (not less) privileged than the access mode
from which the call is made. If $CMEXEC is called while a process is executing
in kernel mode, the routine specified by the routin argument executes in kernel
mode, not executive mode.

Required Privileges
To call this service, the process must either have CMEXEC or CMKRNL privilege
or be currently executing in executive or kernel mode.

Required Quota
None

Related Services
None

Condition Values Returned

SS$_NOPRIV

All other values

SYS-76

The process does not have the privilege to change
mode to executive.

The routine executed returns all other values.

System Service Descriptions
$CM KR NL

$CMKRNL-Change to Kernel Mode

Format

Returns

Arguments

Description

Changes the access mode of the calling process to kernel mode. This service
allows a process to change its access :tnode to kernel, execute a specified routine,
and then return to the access mode in effect before the call was issued.

SYS$CMKRNL routin ,[arglst]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

routin
VMS Usage:
type:
access:
mechanism:

procedure
procedure entry mask
call without stack unwinding
by reference

Routine to be executed while the process is in kernel mode. The routin argument
is the address of the entry point to this routine.

arglst
VMS Usage:
type:
access:
mechanism:

arg_list
longword (unsigned)
read only
by reference

Argument list to be passed to the routine specified by the routin argument. The
arglst argument is the address of this argument list.

The Change to Kernel Mode service allows a process to change its access mode to
kernel, execute a specified routine, and then return to the access mode in effect
before the call was issued.

The $CMKRNL service uses standard procedure calling conventions to pass
control to the specified routine. If no argument list is specified, the argument
pointer (AP) contains a 0. However, to conform to the VAX Procedure Calling
Standard, you must not omit the arglist argument. Programs should not
use registers R2 through Rll to pass context between the calling and called
procedures.

SYS-77

System Service Descriptions
$CM KR NL

When you use the $CMKRNL service, the system service dispatcher modifies both
RO, Rl, R2, and R4 before entry into the target routine. The specified routine
must exit with a RET instruction and should place a status value in RO before
returning.

The system loads R4 with the address of the Process Control Block (PCB).

Required Privileges
To call the $CMKRNL service, a process must either have CMKRNL privilege or
be currently executing in executive or kernel mode.

Required Quota
None

Related Services
None

Condition Values Returned

SS$_NOPRIV

All other values

SVS-78

The process does not have the privilege to change
mode to kernel.

The routine executed returns all other values.

System Service Descriptions
$CREATE_RDB

$CREATE_RDB-Create Rights Database

Format

Returns

Argument

Description

Initializes a rights database.

SYS$CREATE_RDB [sysid]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

sys id
VMS Usage: system_access_id
type: quadword (unsigned)
access: read only
mechanism: by reference

System identification value associated with the rights database when $CREATE_
RDB completes execution. The sysid argument is the address of a quadword
containing the system identification value. If you omit sysid, the current system
time in 64-bit format is used.

The Create Rights Database initializes a rights database. The database name
is the file equated to the logical name RIGHTSLIST, which must be defined
as a system logical name from executive mode. If the logical name does not
exist, the database is created in SYS$COMMON:[SYSEXE] with the file name
RIGHTSLIST.DAT. If the database already exists, $CREATE_RDB fails with the
error RMS$_FEX.

Required Privileges
You need write access to the rights database to use this service. If the database
is in SYS$SYSTEM (which is the default), you need SYSPRV privilege to grant
write access to the database.

Required Quota
None

Related Services
$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CHANGE_ACL, $CHECK_
ACCESS, $CHKPRO, $ERAPAT, $FIND_HELD, $FIND_HOLDER, $FINISH_
RDB, $FORMAT_ACL, $FORMAT_AUDIT, $GRANTID, $HASH_PASSWORD,
$1DTOASC, $MOD_HOLDER, $MOD_IDENT, $MTACCESS, $PARSE_ACL,
$REM_HOLDER, $REM_IDENT, $REVOKID

SYS-79

System Service Descriptions
$CREATE_RDB

Condition Values Returned

SYS-80

SS$_NORMAL
SS$_ACCVIO

SS$_INSFMEM

RMS$_FEX

RMS$_PRV

The service completed successfully.

The sysid argument cannot be read by the caller.

The process dynamic memory is insufficient for
opening the rights database.
A rights database already exists. To create a new
one, you must explicitly delete or rename the old
one.

The user does not have write access to
SYS$SYSTEM.

Because the rights database is an indexed file accessed with VMS RMS, this
service can also return RMS status codes associated with operations on indexed
files. For descriptions of these status codes, refer to the VMS Record Management
Services Manual.

System Service Descriptions
$CRELNM

$CRELNM-Create Logical Name

Format

Returns

Arguments

Creates a logical name and specifies its equivalence names.

SYS$CRELNM [attr] ,tabnam ,lognam ,[acmode] ,[itmlst]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

attr
VMS Usage:
type:
access:
mechanism:

mask_Jongword
longword (unsigned)
read only
by reference

Attributes to be associated with the logical name. The attr argument is the
address of a longword bit mask specifying these attributes.

Each bit in the longword corresponds to an attribute and has a symbolic name.
These symbolic names are defined by the $LNMDEF macro. To specify an
attribute, specify its symbolic name or set its corresponding bit. The longword
bit mask is the logical OR of all desired attributes. All undefined bits in the
longword must be 0.

If you do not specify this argument or specify it as 0 (no bits set), no attributes
are associated with the logical name.

The attributes are as follows.

Attribute

LNM$M_CONFINE

LNM$M_NO_ALIAS

Description

If set, the logical name is not copied from the process to
its spawned subprocesses. You create a subprocess with
the DCL command SPAWN or the LIB$SPAWN Run
Time Library routine. If the logical name is placed into
a process-private table that has the CONFINE attribute,
the CONFINE attribute is automatically associated with
the logical name. This applies only to process-private
logical names.

If set, the logical name cannot be duplicated in this table
at an outer access mode. If another logical name with
the same name already exists in the table at an outer
access mode, it is deleted.

SYS-81

System Service Descriptions
$CRELNM

SYS-82

tabnam
VMS Usage:
type:
access:
mechanism:

logical_name
character-coded text string
read only
by descriptor-fixed length string descriptor

Name of the table in which to create the logical name. The tabnam argument is
the address of a descriptor that points to the name of this table. This argument
is required.

If tabnam is not the name of a logical name table, it is assumed to be a logical
name and is translated iteratively until either the name of a logical name table is
found or the number of translations allowed by the system has been performed.
If tabnam translates to a list of logical name tables, the logical name is entered
into the first table in the list.

You need SYSNAM or SYSPRV privilege to specify the system table, and
GRPNAM or SYSPRV privilege to specify the group table.

You need SYSPRV privilege to specify the system directory table LNM$SYSTEM_
DIRECTORY.

lognam
VMS Usage:
type:
access:
mechanism:

logical_name
character-coded text string
read only
by descriptor-fixed length string descriptor

Name of the logical name to be created. The lognam argument is the address
of a descriptor that points to the logical name string. Logical name strings of
logical names created within either the system or process directory table must
consist of alphanumeric characters, dollar signs ($), and underscores (_); the
maximum length is 31 characters. The maximum length of logical name strings
created within other tables is 255 characters with no restrictions on the types of
characters that can be used. This argument is required.

acmode
VMS Usage:
type:
access:
mechanism:

access_mode
byte (unsigned)
read only
by reference

Access mode to be associated with the logical name. The acmode argument is
the address of a byte that specifies the access mode.

The access mode associated with the logical name is determined by maximizing
the access mode of the caller with the access mode specified by the acmode
argument, which means that the less privileged of the two is used. Symbols for
the four access modes are defined by the $PSLDEF macro.

You cannot specify an access mode more privileged than that of the containing
table. However, if the caller has SYSNAM privilege, then the specified access
mode is associated with the logical name regardless of the access mode of the
caller.

If you omit this argument or specify it as 0, the access mode of the caller is
associated with the logical name.

itmlst
VMS Usage:
type:
access:
mechanism:

item_list_3
longword (unsigned)
read only
by reference

System Service Descriptions
$CRELNM

Item list describing the equivalence names to be defined for the logical name and
information to be returned to the caller. The itmlst argument is the address of a
list of item descriptors, each of which specifies information about an equivalence
name. The list of item descriptors is terminated by a longword of 0. The following
diagram depicts the format of a single item descriptor.

31 15 0

Item Code l Buffer Length

Buffer Address

Return Length Address

ZK-1705-GE

Item Descriptor Fields

buffer length

Item Codes

A word specifying the number of bytes in the buffer pointed to by the buffer
address field. The length of the buffer needed depends upon the item code
specified in the item code field of the item descriptor. If the value of buffer
length is too small, the service truncates the data.

item code
A word that contains a symbolic code that describes the information in the buffer
or the information to be returned to the buffer, pointed to by the buffer address
field. The item codes are listed in the Item Codes section.

buffer address
A longword containing the address of the buffer that receives or passes
information.

return length address
A longword containing the address of a word that receives the actual length
in bytes of the information returned by $CRELNM in the buffer pointed to by
the buffer address field. The return length address field is used only when
the item code specified is LNM$_ TABLE. Although this field is ignored for all
other item codes, it must nevertheless be present as a placeholder in each item
descriptor.

LNM$_ATTRIBUTES
When you specify LNM$_ATTRIBUTES, the buffer address field of the item
descriptor points to a longword bit mask that specifies the current translation
attributes for the logical name. The current translation attributes are applied to
all subsequently specified equivalence strings until another LNM$_ATTRIBUTES
item descriptor is encountered in the item list. The symbolic names for these

SYS-83

System Service Descriptions
$CRELNM

Description

SYS-84

attributes are defined by the $LNMDEF macro. The symbolic name and
description of each attribute are as follows.

Attribute Description

LNM$M_ CONCEALED If set, RMS interprets the equivalence name as a device
name or logical name with the LNM$M_CONCEALED
attribute.

LNM$M_TERMINAL If set, further iterative logical name translation on the
equivalence name is not to be performed.

LNM$_CHAIN
When you specify LNM$_CHAIN, the buffer address field of the item descriptor
points to another item list that $CRELNM is to process immediately after it has
processed the current item list.

If you specify the LNM$_ CHAIN item code, it must be the last item code in the
current item list.

LNM$_STRING
When you specify LNM$_STRING, the buffer address field of the item
descriptor points to a buffer containing a user-specified equivalence name for the
logical name. The maximum length of the equivalence string is 255 characters.

When $CRELNM encounters an item descriptor with the item code LNM$_
STRING, it creates an equivalence name entry for the logical name using the
most recently specified values for LNM$_ATTRIBUTES. The equivalence name
entry includes the following information:

• Name specified by LNM$_STRING.

• Next available index value. Each equivalence is assigned a unique value from
0 to 127.

• Attributes specified by the most recently encountered item descriptor with
item code LNM$_ATTRIBUTES (if these are present in the item list).

Therefore, you should construct the item list so that the LNM$_ATTRIBUTES
item codes immediately precede the LNM$_STRING item code or codes to which
they apply.

LNM$_TABLE
When you specify LNM$_TABLE, the buffer address field of the item descriptor
points to a buffer in which $CRELNM writes the name of the logical name table
in which it entered the logical name. The return length address field points to
a word that contains a buffer that specifies the length in bytes of the information
returned by $CRELNM. The maximum length of the name of a logical name table
is 31 characters.

This item code can appear anywhere in the item list.

The Create Logical Name service creates a logical name and specifies its
equivalence name. Note that VMS logical names are case sensitive.

Required Privileges

System Service Descriptions
$CRELNM

The calling process must have the following:

• Write access to shareable tables to create logical names in those tables

• SYSNAM privilege to create supervisor, executive, or kernel mode logical
names. See the acmode argument.

• GRPNAM or SYSPRV privilege to enter a logical name into the group logical
name table

• SYSNAM or SYSPRV privilege to enter a logical name into the system logical
name table

Required Quota
The quota for the specified logical name table must be sufficient for the creation
of the logical name.

Related Services
$CRELNT, $DELLNM, $TRNLNM

Condition Values Returned

SS$_NORMAL

SS$_SUPERSEDE

SS$_BUFFEROVF

SS$_ACCVIO

SS$_BADPARAM

SS$_DUPLNAM

SS$_EXLNMQUOTA

SS$_INSFMEM

The service completed successfully; the logical
name has been created.

The service completed successfully; the logical
name has been created and a previously existing
logical name with the same name has been
deleted.

The service completed successfully; the buffer
length field in an item descriptor specified an
insufficient value, so the buffer was not large
enough to hold the requested data.

The service cannot access the locations specified
by one or more arguments.

One or more arguments have an invalid value, or
a logical name table name or logical name was
not specified.

An attempt was made to create a logical name
with the same name as an already existing
logical name, and the existing logical name was
created at a more privileged access mode and
with the LNM$M_NO_ALIAS attribute.

The quota associated with the specified logical
name table for the creation of the logical name is
insufficient.

The dynamic memory is insufficient for the
creation of the logical name.

SYS-85

System Service Descriptions
$CRELNM

SS$_IVLOGNAM

SS$_IVLOGTAB

SS$_NOLOGTAB

SS$_NOPRIV

SYS-86

The tabnam argument, lognam argument, or
the equivalence string specifies a string whose
length is not in the required range of 1 through
255 characters. The lognam argument specifies
a string whose length is not in the required range
of 1 to 31 characters for directory table entries.

The tabnam argument does not specify a logical
name table.

Either the specified logical name table does
not exist or the logical name translation of the
table name exceeded the allowable depth of 10
translations.

The caller lacks the necessary privilege to create
the logical name.

System Service Descriptions
$CRELNT

$CRELNT-Create Logical Name Table

Format

Returns

Arguments

Attribute

Creates a process-private or shareable logical name table.

SYS$CRELNT [attr] ,[resnam] ,[reslen] ,[quota]
,[promsk] ,[tabnam] ,partab ,[acmode]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

attr
VMS Usage:
type:
access:
mechanism:

mask_longword
longword (unsigned)
read only
by reference

Attributes to affect the creation of the logical name table and to be associated
with the newly created logical name table. The attr argument is the address of a
longword bit mask specifying these attributes.

Each bit in the longword corresponds to an attribute and has a symbolic name.
These symbolic names are defined by the $LNMDEF macro. To specify an
attribute, specify its symbolic name or set its corresponding bit. The longword bit
mask is the logical OR of all desired attributes. All unused bits in the longword
must be 0.

If you do not specify this argument or specify it as 0 (no bits set), no attributes
are associated with the logical name table or affect the creation of the new table.

The following table describes each attribute.

Description

LNM$M_CONFINE If set, the logical name table is not copied from the process to its
spawned subprocesses. You create a subprocess with the DCL
command SPAWN or the Run-Time Library LIB$SPAWN routine.
You can specify this attribute only for process-private logical name
tables; it is ignored for shareable tables.

SYS-87

System Service Descriptions
$CRELNT

Attribute Description

The state of this bit is also propagated from the parent table to the
newly created table and can be overridden only if the parent table
does not have the bit set. Thus, if the parent table has the LNM$M_
CONFINE attribute, the newly created table will also have it, no
matter what is specified in the attr argument. On the other hand,
if the parent table does not have the LNM$M_CONFINE attribute,
the newly created table can be given this attribute through the attr
argument.

The process-private directory table LNM$PROCESS_DIRECTORY
does not have the LNM$M_ CONFINE attribute.

LNM$M_CREATE_IF If set, a new logical name table is created only if the specified table
name is not already entered at the specified access mode in the
appropriate directory table. If the table name exists, a new table is
not created and no modification is made to the existing table name.
This holds true even if the existing name has differing attributes or
quota values, or even if it is not the name of a logical name table.
If LNM$M_ CREATE_IF is not set, the new logical name table will
supersede any existing table name with the same access mode within
the appropriate directory table. Setting this attribute is useful when
two or more users want to create and use the same table but do not
want to synchronize its creation.

LNM$M_NO_ALIAS If set, the name of the logical name table cannot be duplicated at an
outer access mode within the appropriate directory table. If this name
already exists at an outer access mode, it is deleted.

SYS-88

resnam
VMS Usage: logical_name
type: character-coded text string
access: write only
mechanism: by descriptor-fixed length string descriptor

Name of the newly created logical name table, returned by $CRELNT. The
resnam argument is the address of a descriptor pointing to this name. The name
is a character string whose maximum length is 31 characters.

res I en
VMS Usage:
type:
access:
mechanism:

word_unsigned
word (unsigned)
write only
by reference

Length in bytes of the name of the newly created logical name table, returned by
$CRELNT. The reslen argument is the address of a word to receive this length.

quota
VMS Usage:
type:
access:
mechanism:

longword_ unsigned
longword (unsigned)
read only
by reference

Maximum number of bytes of memory to be allocated for logical names contained
in this logical name table. The quota argument is the address of a longword
specifying this value.

System Service Descriptions
$CRELNT

If you specify no quota value, the logical name table has an infinite quota. Note
that a shareable table created with infinite quota permits users with write access
to that table to consume system dynamic memory without limit.

promsk
VMS Usage:
type:
access:
mechanism:

file_protection
word (unsigned)
read only
by reference

Protection mask to be associated with the newly created shareable logical name
table. The promsk argument is the address of a word that contains a value that
represents four 4-bit fields, where each field describes the type of access allowed
for system, owner, group, and world users. The following diagram depicts these
protection bits.

World Group Owner System

DEWRDEWRDEWRDEWR
151413121110 9 8 7 6 5 4 3 2 1 0

ZK-1706-GE

Each field consists of four bits specifying protection for the logical name table.
The remaining bits in the protection mask are as follows:

• Read privileges allow access to names in the logical name table.

• Write privileges allow creation and deletion of names within the logical name
table.

• Delete privileges allow deletion of the logical name table.

Note ___________ _

The "E" protection bit is reserved by Digital.

If a bit is clear, access is granted. If you omit the mask, complete access is
granted to system and owner, and no access is granted to world and group.

tabnam
VMS Usage:
type:
access:
mechanism:

logical_name
character-coded text string
read only
by descriptor-fixed length string descriptor

The name of the new logical name table. The tabnam argument is the address
of a character string descriptor pointing to this name string. Table names are
contained in either the process or system directory table (LNM$PROCESS_
DIRECTORY or LNM$SYSTEM_DIRECTORY). Therefore, table names must
consist of alphanumeric characters, dollar signs ($), and underscores (_); the
maximum length is 31 characters.

If you do not specify this argument, a default name in the format LNM$xxxx is
used, where xxxx is a unique hexadecimal number.

You need SYSPRV privilege to specify the name of a shareable logical name table.

SYS-89

System Service Descriptions
$CRELNT

Description

SVS-90

partab
VMS Usage:
type:
access:
mechanism:

char_string
character-coded text string
read only
by descriptor-fixed length string descriptor

Name string for the parent table name. The partab argument is the address
of a character string descriptor pointing to this name string. If the parent table
is shareable, then the newly created table is shareable and is entered into the
system directory LNM$SYSTEM_DIRECTORY. If the parent table is process
private, then the newly created table is process-private and is entered in the
process directory LNM$PROCESS_DIRECTORY. You need SYSPRV privilege
or write access to the system directory to create a named shareable table. This
argument is required.

acmode
VMS Usage:
type:
access:
mechanism:

access_mode
byte (unsigned)
read only
by reference

Access mode to be associated with the newly created logical name table. The
acmode argument is the address of a byte containing this access mode. The
$PSLDEF macro defines symbolic names for the four access modes.

If you do not specify the acmode argument or specify it as 0, the access mode of
the caller is associated with the newly created logical name table.

The access mode associated with the logical name table is determined by
maximizing the access mode of the caller with the access mode specified by
the acmode. The less privileged of the two access modes is used.

However, if the caller has SYSNAM privilege, then the specified access mode is
associated with the logical name table, regardless of the access mode of the caller.

Access modes associated with logical name tables govern logical name table
processing and provide a protection mechanism that prevents the deletion of
inner access mode logical name tables by nonprivileged users. You cannot specify
an access mode more privileged than that of the parent table.

A logical name table with supervisor mode access can contain supervisor mode
and user mode logical names and can be a parent to supervisor mode and user
mode logical name tables, but cannot contain executive or kernel mode logical
names or be a parent to executive or kernel mode logical name tables.

You need SYSNAM privilege to specify executive or kernel mode access for a
logical name table.

The Create Logical Name Table service creates a process-private or a shareable
logical name table.

The $CRELNT service uses the following system resources:

• System paged dynamic memory to create a shareable logical name table

• Process dynamic memory to create a process-private logical name table

System Service Descriptions
$CRELNT

The parent table governs whether the new table is process-private or shareable.
If the parent table is process-private, so is the new table; if the parent table is
shareable, so is the new table.

Note that VMS logical names are case sensitive.

Required Privileges
You need the SYSPRV privilege to create a shareable table, and you need the
SYSNAM privilege to create a table at an access mode more privileged than that
of the calling process.

Required Quota
The parent table must have sufficient quota for the creation of the new table.

Related Services
$CRELNM, $DELLNM, $TRNLNM

Condition Values Returned

SS$_NORMAL

SS$_LNMCREATED

SS$_SUPERSEDE

SS$_ACCVIO

SS$_BADPARAM

SS$_DUPLNAM

SS$_EXLNMQUOTA

SS$_INSFMEM

SS$_IVLOGNAM

SS$_IVLOGTAB

SS$_NOLOGTAB

The service completed successfully; the logical
name table already exists.

The service completed successfully; the logical
name table was created.

The service completed successfully; the logical
name table was created and its logical name
superseded already existing logical names in the
directory table.

The service cannot access the locations specified
by one or more arguments.

One or more arguments have an invalid value, or
a parent logical name table was not specified.

You attempted to create a logical name table
with the same name as an already existing
name within the appropriate directory table,
and the existing name was created at a more
privileged access mode with the LNM$M_NO _
ALIAS attribute.

The parent table has insufficient quota for the
creation of the new table.

The dynamic memory is insufficient for the
creation of the table.

The partab argument specifies a string whose
length is not within the required range of 1 to 31
characters.

The tabnam argument is not alphanumeric or
specifies a string whose length is not within the
required range of 1 to 31 characters.

The parent logical name table does not exist.

SYS-91

System Service Descriptions
$CRELNT

SS$_NOPRIV

SS$_PARENT_DEL

SS$_RESULTOVF

SYS-92

The caller lacks the necessary privilege to create
the table.

The creation of the new table would have
resulted in the deletion of the parent table.

The table name buffer is not large enough to
contain the name of the new table.

System Service Descriptions
$CR EM BX

$CREMBX-Create Mailbox and Assign Channel

Format

Returns

Arguments

Creates a virtual mailbox device named MBAn and assigns an I/O channel to
it. The system provides the unit number n when it creates the mailbox. If a
logical name is specified and a mailbox with the specified name already exists,
the $CREMBX service assigns a channel to the existing mailbox.

SYS$CREMBX [prmflg] ,chan ,[maxmsg] ,[bufquo] ,[promsk] ,[acmode] ,[lognam]
,[flags]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

prmflg
VMS Usage:
type:
access:
mechanism:

boolean
byte (unsigned)
read only
by value

Indicator specifying whether the created mailbox is to be permanent or temporary.
The prmflg argument is a byte value. The value 1 specifies a permanent mailbox;
the value 0, which is the default, specifies a temporary mailbox. Any other values
result in an error.

ch an
VMS Usage: channel
type: word
access: write only
mechanism: by reference

Channel number assigned by $CREMBX to the mailbox. The chan argument is
the address of a word into which $CREMBX writes the channel number.

maxmsg
VMS Usage:
type:
access:
mechanism:

longword_unsigned
longword (unsigned)
read only
by value

Maximum size (in bytes) of a message that can be sent to the mailbox. The
maxmsg argument is a longword value containing this size. If you do not specify
maxmsg or specify it as 0, the VMS operating system provides a default value.

SYS-93

System Service Descriptions
$CR EM BX

SYS-94

bufquo
VMS Usage:
type:
access:
mechanism:

longword_ unsigned
longword (unsigned)
read only
by value

Number of bytes of system dynamic memory that can be used to buffer messages
sent to the mailbox. The bufquo argument is a word value containing this
number. If you do not specify the bufquo argument or specify it as 0, the VMS
operating system provides a default value.

The maximum value that you can specify with the bufquo argument is 65355.
For a temporary mailbox, this value must be less than or equal to the process
buffer quota.

promsk
VMS Usage:
type:
access:
mechanism:

file_protection
longword (unsigned)
read only
by value

Protection mask to be associated with the created mailbox. The promsk
argument is a longword value that is the combined value of the bits set in
the protection mask. Cleared bits grant access and set bits deny access to each of
the four classes of user: world, group, owner, and system. The following diagram
depicts these protection bits.

World Group Owner System

L PWRL PWRL PWRL PWR

151413121110 9 8 7 6 5 4 3 2 1 0

ZK-1707-GE

If you do not specify the promsk argument or specify it as 0, read, write,
physical, and logical access are granted to all users.

The logical access bit must be clear for the class of user requiring access to the
mailbox. The access bit must be clear for all categories of user because logical
access is required to read or write to a mailbox; thus, setting or clearing the read
and write access bits is meaningless unless the logical access bit is also cleared.

The physical access bit is ignored for all categories of user.

Logical access also allows you to queue read or write attention ASTs.

acmode
VMS Usage:
type:
access:
mechanism:

access_mode
longword (unsigned)
read only
by value

Access mode to be associated with the channel to which the mailbox is assigned.
The acmode argument is a longword containing the access mode. The $PSLDEF
macro defines the following symbols for the four access modes.

Symbol

PSL$C_KERNEL

PSL$C_EXEC

PSL$C_SUPER

PSL$C_USER

Access Mode

Kernel

Executive

Supervisor

User

System Service Descriptions
$CREMBX

Numeric Value

0

1

2

3

The most privileged access mode used is the access mode of the caller. The
specified access mode and the access mode of the caller are compared. The less
privileged (but the higher numeric valued) of the two access modes becomes the
access mode associated with the assigned channel. I/O operations on the channel
can be performed only from equal or more privileged access modes.

lognam
VMS Usage:
type:
access:
mechanism:

logical_ name
character-coded text string
read only
by descriptor-fixed length string descriptor

Logical name to be assigned to the mailbox. The lognam argument is the address
of a character string descriptor pointing to the logical name string.

The equivalence name for the mailbox is MBAn. The equivalence name is marked
with the terminal attribute. Processes can use the logical name to assign other
I/O channels to the mailbox.

For permanent mailboxes, the $CREMBX service enters the specified logical
name, if any, in the LNM$PERMANENT_MAILBOX logical name table and,
for temporary mailboxes, into the LNM$TEMPORARY _MAILBOX logical name
table.

flags
VMS Usage:
type:
access:
mechanism:

mask_ longword
longword (unsigned)
read only
by value

The flags argument is used for specifying options for the assign operation that
occurs in $CREMBX. The flags argument is a longword bit mask that enables
the user to specify that the channel assigned to the mailbox is a READ ONLY or
WRITE ONLY channel. If the flags argument is not specified, then the default
channel behavior is READ/WRITE. The $CMBDEF macro defines a symbolic
name for each flag bit. The following table describes each flag.

Flag Description

CMB$M_READONLY When this flag is specified, $CREMBX assigns a read
only channel to the mailbox device. An attempt to
issue a QIO WRITE operation on the mailbox channel
will result in an illegal I/O operation error.

CMB$M_ WRITEONLY When this flag is specified, $CREMBX assigns a write
only channel to the mailbox device. An attempt to
issue a QIO READ operation on the mailbox channel
results in an illegal I/O operation error.

SYS-95

System Service Descriptions
$CREMBX

Description

SYS-96

For more information about the flags argument, see the VMS I!O User's
Reference Manual: Part I.

The Create Mailbox and Assign Channel service creates a virtual mailbox device
named MBAn and assigns an 1/0 channel to it. The system provides the unit
number n when it creates the mailbox. If a mailbox with the specified name
already exists, the $CREMBX service assigns a channel to the existing mailbox.

The $CREMBX service uses system dynamic memory to allocate a device
database for the mailbox and for an entry in the logical name table (if a logical
name is specified).

When a temporary mailbox is created, the process's buffered 1/0 byte count
(BYTLM) quota is reduced by the amount specified in the bufquo argument.
The size of the mailbox unit control block and the logical name (if specified) are
also subtracted from the quota. The quota is returned to the process when the
mailbox is deleted.

After the process creates a mailbox, it and other processes can assign additional
channels to it by calling the Assign 1/0 Channel ($ASSIGN) or Create Mailbox
($CREMBX) service. If the mailbox already exists, the $CREMBX service assigns
a channel to that mailbox; in this way, cooperating processes need not consider
which process must execute first to create the mailbox.

A channel assigned to the mailbox READ ONLY is considered a READER. A
channel assigned to the mailbox WRITE ONLY is considered a WRITER. A
channel assigned to the mailbox READ/WRITE is considered both a WRITER and
READER.

A temporary mailbox is deleted when no more channels are assigned to it.
A permanent mailbox must be explicitly marked for deletion with the Delete
Mailbox ($DELMBX) service; its actual deletion occurs when no more channels
are assigned to it.

A mailbox is treated as a shareable device; it cannot, however, be mounted or
allocated.

The mailbox unit number is determinted when the mailbox is created. A
process can obtain the unit number of the created mailbox by calling the Get
DeviceNolume Information ($GETDVI) service using the channel returned by
$CREMBX.

Mailboxes are assigned sequentially increasing numbers (from 1 to a maximum
of 9999) as they are created. When all unit numbers have been used, the system
starts numbering again at unit 1. Logical names or mailbox names should be
used to identify a mailbox between cooperating processes.

Default values for the maximum message size and the buffer quota (an
appropriate multiple of the message size) are determined for a specific
system during system generation. The SYSGEN parameter DEFMBXMXMSG
determines the maximum message size; the SYSGEN parameter
DEFMBXBUFQUO determines the buffer quota. For termination mailboxes,
the maximum message size must be at least as large as the termination message
(currently 84 bytes).

When you specify a logical name for a temporary mailbox, the $CREMBX service
enters the name into the LNM$TEMPORARY_MAILBOX logical name table.

System Service Descriptions
$CREMBX

Normally, LNM$TEMPORARY_MAILBOX specifies LNM$JOB, the jobwide
logical name table; thus, only processes in the same job as the process that first
creates the mailbox can use the logical name to access the temporary mailbox.
If you want to use the temporary mailbox to enable communication between
processes in different jobs, you must redefine LNM$TEMPORARY_MAILBOX
in the process logical name directory table (LNM$PROCESS_DIRECTORY) to
specify a logical name table that those processes can access.

For instance, if you want to use the mailbox as a communication device for
processes in the same group, you must redefine LNM$TEMPORARY_MAILBOX
to specify LNM$GROUP, the group logical name table. The following DCL
command assigns temporary mailbox logical names to the group logical name
table:

$ DEFINE/TABLE=LNM$PROCESS_DIRECTORY LNM$TEMPORARY_MAILBOX LNM$GROUP

When you specify a logical name for a permanent mailbox, the system enters
the name in the logical name table specified by the logical name table name
LNM$PERMANENT _MAILBOX, which normally specifies LNM$SYSTEM, the
system logical name table. If you want the logical name that you specify for the
mailbox to be entered in a logical name table other than the system logical name
table, you must redefine LNM$PERMANENT _MAILBOX to specify the desired
table. For more information about logical name tables, see the Introduction to
VMS System Services.

If you redefine either LNM$TEMPORARY_MAILBOX or LNM$PERMANENT_
MAILBOX, be sure that the name of the new table appears in the logical name
table LNM$FILE_DEV. RMS and the I/O system services use LNM$FILE_DEV
to translate I/O device names. If the logical name table specified by either
LNM$TEMPORARY_MAILBOX or LNM$PERMANENT_MAILBOX does not
appear in LNM$FILE_DEV, the system will be unable to translate the logical
name of your mailbox and therefore will be unable to access your mailbox as an
I/O device.

If you redirect a logical name table to point to a process-private table, then the
following occurs:

• Other processes cannot access the mailbox by its name.

• If the creating process issues a second call to $CREMBX, a different mailbox
is created and a channel is assigned to the new mailbox. (If the creating
process issues a second call to $CREMBX using a shared logical name, a
second channel is assigned to the existing mailbox.)

• The logical name is not deleted when the mailbox disappears.

Required Privileges
Depending on the operation, the calling process might need one of the following
privileges to use $CREMBX:

• TMPMBX privilege whenever the prm:flg argument is specified as 0. However,
a process which has PRMMBX privilege will also meet this requirement.

• PRMMBX privilege whenever the prmflg argument is specified as 1.

• SYSNAM privilege to place a logical name for a mailbox in the system logical
name table

• GRPNAM privilege to place a logical name for a mailbox in the group logical
name table

SYS-97

System Service Descriptions
$CREMBX

Required Quota
The calling process must have sufficient buffer I/O byte count (BYTLM) quota to
allocate the mailbox UCB or to satisfy buffer requirements. When a temporary
mailbox is created, the process's buffered I/O byte count (BYTLM) quota is
reduced by the amount specified in the bufquo argument. The size of the mailbox
unit control block and the logical name (if specified) are also subtracted from the
quota. The quota is returned to the process when the mailbox is deleted.

Related Services
$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $DALLOC,
$DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI, $GETDVIW,
$GETMSG, $GETQUI, $GETQUIW, $INIT_ VOL, $MOUNT, $PUTMSG, $QIO,
$QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SYS-98

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_EXBYTLM

SS$_INSFMEM

SS$_INTERLOCK

SS$_IVLOGNAM

SS$_IVSTSFLG

SS$_NOIOCHAN

SS$_NOPRIV

SS$_NOSHMBLOCK

SS$_0PINCOMPL

The service completed successfully.

The logical name string or string descriptor
cannot be read by the caller, or the channel
number cannot be written by the caller.

The bufquo argument specified a value greater
than approximately 65355, which is 65535 minus
the size of a mailbox unit control block (UCB).

The process has insufficient buffer I/O byte count
(BYTLM) quota to allocate the mailbox UCB or
to satisfy buffer requirements.

The system dynamic memory is insufficient for
completing the service.

The bit map lock for allocating mailboxes from
the specified shared memory is locked by another
process.

The logical name string has a length of 0 or has
more than 255 characters.

The bit set in the prmfl.g argument is undefined;
this argument can have a value of 1 or 0.

No I/O channel is available for assignment.

The process does not have the privilege to create
a temporary mailbox, a permanent mailbox, a
mailbox in memory that is shared by multiple
processors, or a logical name.

No shared memory mailbox control block is
available for use to create a new mailbox.

A duplicate unit number was encountered while
linking a shared memory mailbox UCB. If this
condition value is returned, submit an SPR to
Digital.

SS$_SHMNOTCNCT

SS$_TOOMANYLNAM

System Service Descriptions
$CREMBX

The shared memory named in the name
argument is not known to the system. This
error can be caused by a spelling error in the
string, an improperly assigned logical name, or
the failure to identify the multiport memory as
shared at system generation time.

The logical name translation of the string named
in the lognam argument exceeded the allowed
depth.

SYS-99

System Service Descriptions
$CREPRC

$CREPRC-Create Process

Format

Returns

Arguments

SYS-100

Creates a subprocess or detached process on behalf of the calling process.

SYS$CREPRC [pidadr] ,[image] ,[input] ,[output] ,[error] ,[prvadr] ,[quota] ,[prcnam]
,[baspri] ,[uic] ,[mbxunt] ,[stsflg]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

pidadr
VMS Usage:
type:
access:
mechanism:

process_id
longword (unsigned)
write only
by reference

Process identification (PID) of the newly created process. The pidadr argument
is the address of a longword into which $CREPRC writes the PID.

image
VMS Usage:
type:
access:
mechanism:

logical_name
character-coded text string
read only
by descriptor-fixed length string descriptor

Name of the image to be activated in the newly created process. The image
argument is the address of a character string descriptor pointing to the file
specification of the image.

The image name can have a maximum of 63 characters. If the image name
contains a logical name, the equivalence name must be in a logical name table
that the created process can access.

input
VMS Usage: logical_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Equivalence name to be associated with the logical name SYS$INPUT in the
logical name table of the created process. The input argument is the address of a
character string descriptor pointing to the equivalence name string.

output
VMS Usage: logical_name
type: character-coded text string
access: read only

System Service Descriptions
$CREPRC

mechanism: by descriptor-fixed length string descriptor

Equivalence name to be associated with the logical name SYS$0UTPUT in the
logical name table of the created process. The output argument is the address of
a character string descriptor pointing to the equivalence name string.

error
VMS Usage: logical_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Equivalence name to be associated with the logical name SYS$ERROR in the
logical name table of the created process. The error argument is the address of a
character string descriptor pointing to the equivalence name string.

Note that the error argument is ignored if the image argument specifies
SYS$SYSTEM:LOGINOUT.EXE; in this case, SYS$ERROR points to
SYS$0UTPUT.

prvadr
VMS Usage:
type:
access:
mechanism:

mask_privileges
quadword (unsigned)
read only
by reference

Privileges to be given to the created process. The prvadr argument is the
address of a quadword bit vector wherein each bit corresponds to a privilege;
setting a bit gives the privilege. If the prvadr argument is not specified, the
current privileges are used.

Each bit has a symbolic name; the $PRVDEF macro defines these names. You
form the bit vector by specifying the symbolic name of each desired privilege in
a logical OR operation. Table SYS-3 gives the symbolic name and description of
each privilege.

Table SVS-3 User Privileges

Privilege

ALLSJ>OOL

BUGCHK

BYPASS

CMEXEC

CMKRNL

DETACH

DIAGNOSE

DOWNGRADE

Symbolic Name

PRV$V _ALLSPOOL

PRV$V _BUGCHK

PRV$V_BYPASS

PRV$V _CMEXEC

PRV$V _CMKRNL

PRV$V _DETACH

PRV$V _DIAGNOSE

PRV$V _DOWNGRADE

Description

Allocate a spooled device

Make bugcheck error log entries

Bypass UIC-based protection

Change mode to executive

Change mode to kernel

Create detached processes

Can diagnose devices

Can downgrade classification

(continued on next page)

SYS-101

System Service Descriptions
$CREPRC

SVS-102

Table SYS-3 (Cont.) User Privileges

Privilege Symbolic Name

EX QUOTA PRV$V _EXQUOTA

GROUP PRV$V_GROUP

GRPNAM PRV$V _GRPNAM

GRPPRV PRV$V_GRPPRV

LOG_IO PRV$V _LOG_IO

MOUNT PRV$V_MOUNT

NETMBX PRV$V _NETMBX

ACNT PRV$V _NOACNT

OPER PRV$V_OPER

PFNMAP PRV$V _PFNMAP

PHY_IO PRV$V_PHY_IO

PRMCEB PRV$V _PRMCEB

PRMGBL PRV$V _PRMGBL

PRMMBX PRV$V _PRMMBX
PSWAPM PRV$V _PSWAPM

READALL PRV$V _READALL

SECURITY PRV$V _SECURITY

ALTPRI PRV$V _SETPRI

SETPRV PRV$V_SETPRV

SHARE PRV$V _SHARE

SYSGBL PRV$V _SYSGBL

SYSLCK PRV$V _SYSLCK

SYSNAM PRV$V_SYSNAM

SYSPRV PRV$V_SYSPRV

TMPMBX PRV$V _TMPMBX

UPGRADE PRV$V _UPGRADE
VOLPRO PRV$V _ VOLPRO

WORLD PRV$V _WORLD

Description

Can exceed quotas

Group process control

Place name in group logical
name table

Group access via system
protection field

Perform logical I/O operations

Issue mount volume QIO

Create a network device

Create processes for which no
accounting is done

All operator privileges

Map to section by physical page
frame number

Perform physical I/O operations

Create permanent common event
flag clusters

Create permanent global sections

Create permanent mailboxes

Change process swap mode

Possess read access to everything

Can perform security functions
Set (alter) any process priority

Set any process privileges

Can assign a channel to a non
shared device

Create system global sections

Queue systemwide locks

Place name in system logical
name table

Access files and other resources
as if you have a system UIC

Create temporary mailboxes

Can upgrade classification

Override volume protection

World process control

Note that the names of the privilege bits PRV$V _NOACNT and PRV$V _SETPRI
correspond to the names of the DCL privileges ACNT and ALTPRI, yet have
different names.

System Service Descriptions
$CREPRC

You need the user privilege SETPRV to grant a process any privileges other than
your own. If the caller does not have this privilege, the mask is minimized with
the current privileges of the creating process; any privileges the creating process
does not have are not granted, but no error status code is returned.

quota
VMS Usage:
type:
access:
mechanism:

item_ quota_list
longword (unsigned)
read only
by reference

Process quotas to be established for the created process. These quotas limit the
created process's use of system resources. The quota argument is the address of
a list of quota descriptors, where each quota descriptor consists of a 1-byte quota
name followed by a longword that specifies the desired value for that quota. The
list of quota descriptors is terminated by the symbolic name PQL$_LISTEND.

If you do not specify the quota argument or specify it as n, the VMS operating
system supplies a default value for each quota.

For example, in VAX MACRO you can specify a quota list, as follows.

QLIST: .BYTE PQL$_PRCLM Limit number of subprocesses
.LONG 2 Max = 2 subprocesses
.BYTE PQL$_ASTLM Limit number of asts
.LONG 6 Max = 6 outstanding asts
.BYTE PQL$_LISTEND End of quota list

The $PQLDEF macro defines symbolic names for quotas.

Individual Quota Descriptions A description of each quota follows. The
description of each quota lists its minimum value (a SYSGEN parameter), its
default value (a SYSGEN parameter), and whether it is deductible, nondeductible,
or pooled. These terms have the following meaning.

Minimum value

Default value

Deductible quota

Nondeductible quota

You cannot create a process if it does not have a quota
equal to or greater than this minimum. You obtain the
minimum value for a quota by running SYSGEN to
display the corresponding SYSGEN parameter.

If the quota list does not specify a value for a particular
quota, the system assigns the process this default value.
You obtain the default value by running SYSGEN to
display the corresponding SYSGEN parameter.

When you create a subprocess, the value for a deductible
quota is subtracted from the creating process's current
quota and is returned to the creating process when
the subprocess is deleted. There is currently only one
deductible quota, the CPU time limit. Note that quotas
are never deducted from the creating process when a
detached process is created.

Nondeductible quotas are established and maintained
separately for each process and subprocess.

SYS-103

System Service Descriptions
$CREPRC

SYS-104

Pooled quota Pooled quotas are established when a detached process
is created, and they are shared by that process and all
its descendent subprocesses. Charges against pooled
quota values are subtracted from the current available
totals as they are used and are added back to the total
when they are not being used.

To run SYSGEN to determine the minimum and default values of a quota, enter
the following sequence of commands.

$ RUN SYS$SYSTEM:SYSGEN
SYSGEN> SHOW/PQL

Minimum values are named PQL_Mxxxxx, where xxxxx are the last five
characters of the quota name.

Default values are named PQL_Dxxxxx, where xxxxx are the last five characters
of the quota name.

Individual Quotas

PQL$_ASTLM
AST limit. This quota restricts both the number of outstanding AST routines
specified in system service calls that accept an AST address and the number of
scheduled wakeup requests that can be issued.

Minimum: PQL_MASTLM
Default: PQL_DASTLM
Nondeductible

PQL$_BIOLM
Buffered 1/0 limit. This quota limits the number of outstanding system-buffered
I/O operations. A buffered I/O operation is one that uses an intermediate buffer
from the system pool rather than a buffer specified in a process's $QIO request.

Minimum: PQL_MBIOLM
Default: PQL_DBIOLM
Nondeductible

PQL$_BYTLM
Buffered I/O byte count quota. This quota limits the amount of system space that
can be used to buffer I/O operations or to create temporary mailboxes.

Minimum: PQL_MBYTLM
Default: PQL_DBYTLM
Pooled

PQL$_CPULM
CPU time limit, specified in units of 10 milliseconds. This quota limits the total
amount of CPU time that a created process can use. When it has exhausted
its CPU time limit quota, the created process is deleted and the status code
SS$_EXCPUTIM is returned.

If you do not specify this quota and the created process is a detached process, the
detached process receives a default value of 0, that is, unlimited CPU time.

If you do not specify this quota and the created process is a subprocess, the
subprocess receives half the CPU time limit quota of the creating process.

System Service Descriptions
$CREPRC

If you specify this quota as 0, the created process has unlimited CPU time,
provided the creating process also has unlimited CPU time. If, however, the
creating process does not have unlimited CPU time, the created process receives
half the CPU time limit quota of the creating process.

The CPU time limit quota is a consumable quota; that is, the amount of CPU
time used by the created process is not returned to the creating process when the
created process is deleted.

Minimum: PQL_MCPULM
Default: PQL_DCPULM
Deductible

PQL$_DIOLM
Direct 1/0 quota. This quota limits the number of outstanding direct 1/0
operations. A direct 1/0 operation is one for which the system locks the pages
containing the associated 1/0 buffer in memory for the duration of the 1/0
operation.

Minimum: PQL_MDIOLM
Default: PQL_DDIOLM
Non deductible

PQL$_ENQLM
Lock request quota. This quota limits the number of lock requests that a process
can queue.

Minimum: PQL_MENQLM
Default: PQL_DENQLM
Pooled

PQL$_FILLM
Open file quota. This quota limits the number of files that a process can have
open at one time.

Minimum: PQL_MFILLM
Default: PQL_DFILLM
Pooled

PQL$_JTQUOTA
Job table quota. This quota limits the number of bytes of system paged pool used
for the job logical name table. If the process being created is a subprocess, this
item is ignored.

Minimum: PQL_MJTQUOTA
Default: PQL_DJTQUOTA
Deductible

PQL$_PGFLQUOTA
Paging file quota. This quota limits the number of pages that can be used to
provide secondary storage in the paging file for the execution of a process.

Minimum: PQL_MPGFLQUOTA
Default: PQL_DPGFLQUOTA
Pooled

SYS-105

System Service Descriptions
$CREPRC

SYS-106

PQL$_PRCLM
Subprocess quota. This quota limits the number of subprocesses a process can
create.

Minimum: PQL_MPRCLM
Default: PQL_DPRCLM
Pooled

PQL$_TQELM
Timer queue entry quota. This quota limits both the number of timer queue
requests a process can have outstanding and the creation of temporary common
event flag clusters.

Minimum: PQL_MTQELM
Default: PQL_DTQELM
Pooled

PQL$_WSDEFAULT
Default working set size. This quota defines the number of pages in the default
working set for any image the process executes. The working set size quota
determines the maximum size you can specify for this quota.

Minimum: PQL_MWSDEFAULT
Default: PQL_DWSDEFAULT
Nondeductible

PQL$_ WSEXTENT
Working set expansion quota. This quota limits the maximum size to which
an image can expand its working set size with the Adjust Working Set Limit
($ADJWSL) system service.

Minimum: PQL_MWSEXTENT
Default: PQL_DWSEXTENT
Nondeductible

PQL$_WSQUOTA
Working set size quota. This quota limits the maximum size to which an image
can lock pages in its working set with the Lock Pages in Memory ($LCKPAG)
system service.

Minimum: PQL_MWSQUOTA
Default: PQL_DWSQUOTA
Nondeductible

Use of the Quota List The values specified in the quota list are not necessarily
the quotas that are actually assigned to the created process. The $CREPRC
service performs the following steps to determine the quota values that are
assigned:

1. It constructs a default quota list for the process being created, assigning it
the default values for all quotas. Default values are SYSGEN parameters and
so might vary from system to system.

2. It reads the specified quota list, if any, and updates the corresponding items
in the default list. If the quota list contains multiple entries for a quota, only
the last specification is used.

System Service Descriptions
$CREPRC

3. For each item in the updated quota list, it compares the quota value with
the minimum value required (also a SYSGEN parameter) and uses the larger
value. Then, the following occurs:

• If a subprocess is being created or if a detached process is being created
and the creating process does not have DETACH privilege, the resulting
value is compared with the current value of the corresponding quota of
the creating process and the lesser value is used.

Then, if the quota is a deductible quota, that value is deducted from the
creating process's quota, and a check is performed to ensure that the
creating process will still have at least the minimum quota required. If
not, the condition value SS$_EXQUOTA is returned and the subprocess
or detached process is not created.

Pooled quota values are ignored.

• If a detached process is being created and the creating process has
DETACH privilege, the resulting value is not compared with the current
value of the corresponding quota of the creating process and the resulting
value is not deducted from the creating process's quota. The $CREPRC
service does not check that a specified quota value exceeds the maximum
allowed by the system.

prcnam
VMS Usage:
type:
access:
mechanism:

process_name
character-coded text string
read only
by descriptor-fixed length string descriptor

Process name to be assigned to the created process. The prcnam argument is the
address of a character string descriptor pointing to a 1- to 15-character process
name string. '

If a subprocess is being created, the process name is implicitly qualified by the
DIC group number of the creating process. If a detached process is being created,
the process name is qualified by the group number specified in the uic argument.

baspri
VMS Usage:
type:
access:
mechanism:

longword_ unsigned
longword (unsigned)
read only
by value

Base priority to be assigned to the created process. The baspri argument is a
longword value in the range 0 to 31, where 31 is the highest priority and 0 is the
lowest. Usual priorities are in the range 0 to 15, and real-time priorities are in
the range 16 to 31.

If the baspri argument is not specified, the priority defaults to 2 for VAX MACRO
and VAX BLISS-32 and to 0 for all other languages. If you want a subprocess to
have a higher priority than its creating process, you must have ALTPRI privilege
to raise the priority level. If the caller does not have this privilege, the specified
base priority is compared with the caller's priority and the lower of the two values
is used.

SYS-107

System Service Descriptions
$CREPRC

SYS-108

uic
VMS Usage:
type:
access:
mechanism:

UIC

longword (unsigned)
read only
by value

User identification code (UIC) to be assigned to the created process. The uic
argument is a longword value containing the UIC.

If you do not specify the uic argument or specify it as 0 (the default), $CREPRC
creates a process and assigns it the UIC of the creating process.

If you specify a nonzero value for the uic argument, $CREPRC creates a detached
process. This value is interpreted as a 32-bit octal number, with two 16-bit fields:

bits 0-15-member number
bits 16-31-group number

You need DETACH privilege to create a detached process with a UIC that is
different from the UIC of the creating process.

If the image parameter specifies the LOGINOUT.EXE, the UIC of the created
process will be the UIC of the caller of $CREPRC, and the UIC parameter is
ignored.

mbxunt
VMS Usage:
type:
access:
mechanism:

word_unsigned
word (unsigned)
read only
by value

Unit number of a mailbox to receive a termination message when the created
process is deleted. The mbxunt argument is a word containing this number.

If you do not specify the mbxunt argument or specify it as 0 (the default), the
VMS operating system sends no termination message when it deletes the process.

The Get DeviceNolume Information ($GETDVI) service must be used to obtain
the unit number of the mailbox.

If you specify the mbxunt argument, the mailbox is used only after the created
process actually terminates. At that time, the $ASSIGN service is issued for the
mailbox in the context of the terminating process and an accounting message is
sent to the mailbox. If the mailbox no longer exists, cannot be assigned, or is full,
the error is treated as if no mailbox had been specified.

The accounting message is sent before process rundown is initiated but after
the process name has been set to null. Thus, a significant interval of time can
occur between the sending of the accounting message and the final deletion of the
process.

To receive the accounting message, the caller must issue a read to the mailbox.
When the I/O completes, the second longword of the I/O status block, if one is
specified, contains the process identification of the deleted process.

The $ACCDEF macro defines symbolic names for offsets of fields within the
accounting message. The offsets, their symbolic names, and the contents of each
field are shown in the following table. Unless stated otherwise, the length of the
field is 4 bytes.

System Service Descriptions
$CREPRC

Offset Symbolic Name Contents

0 ACC$W _MSGTYP MSG$_DELPROC (2 bytes)

2 Not used (2 bytes)

4 ACC$L_FINALSTS Exit status code

8 ACC$L_PID Process identification

12 Not used (4 bytes)

16 ACC$Q_ TERMTIME Current time in system format at
process termination (8 bytes)

24 ACC$T_ACCOUNT Account name for process, blank
filled (8 bytes)

32 ACC$T_USERNAME User name, blank filled (12 bytes)

44 ACC$L_CPUTIM CPU time used by the process, in
10-millisecond units

48 ACC$L_PAGEFLTS Number of page faults incurred by
the process

52 ACC$L_PGFLPEAK Peak paging file usage

56 ACC$L_ WSPEAK Peak working set size

60 ACC$L_BIOCNT Count of buffered I/O operations
performed by the process

64 ACC$L_DIOCNT Count of direct I/O operations
performed by the process

68 ACC$L_ VOLUMES Count of volumes mounted by the
process

72 ACC$Q_LOGIN Time, in system format, that
process logged in (8 bytes)

80 ACC$L_OWNER Process identification of owner

The length of the termination message is equated to the constant ACC$K_
TERMLEN.

stsflg
VMS Usage:
type:
access:
mechanism:

mask_longword
longword (unsigned)
read only
by value

Options selected for the created process. The sts:flg argument is a longword bit
vector wherein a bit corresponds to an option. Only bits 0 to 10 are used; bits 11
to 31 are reserved and must be 0.

Each option (bit) has a symbolic name, which the $PRCDEF macro defines. You
construct the sts:flg argument by performing a logical OR operation using the
symbolic names of each desired option. The following table describes the symbolic
name of each option.

SYS-109

System Service Descriptions
$CREPRC

SYS-110

Symbolic Name

PRC$M_SSRWAIT

PRC$M_SSFEXCU

PRC$M_PSWAPM

PRC$M_NOACNT

PRC$M_BATCH

PRC$M_HIBER

PRC$M_IMGDMP

PRC$M_NOUAF

PRC$M_NETWRK

PRC$M_DISAWS

PRC$M_DETACH

PRC$M_INTER

Description

Disable resource wait mode.

Enable system service failure exception mode.

Inhibit process swapping. PSWAPM privilege is
required.

Do not perform accounting. NOACNT privilege is
required.

Create a batch process. DETACH privilege is
required.

Force process to hibernate before it executes the
image.

Enable image dump facility. If an image terminates
due to an unhandled condition, the image dump
facility writes the contents of the address space to a
file in your current default directory. The file name
is the same as the name of the terminated image.
The file type is DMP.

Do not check authorization file if the process is
detached and the image is LOGINOUT.EXE. You
should not specify this option if a subprocess is
being created.
In previous versions of VMS, the symbolic name
of this option was PRC$M_LOGIN. The symbolic
name has been changed to more accurately denote
the effect of setting this bit. For compatibility with
existing user programs, you can still specify this bit
as PRC$M_LOGIN.

Create a process that is a network connect object.
DETACH privilege required.

Disable system initiated working set adjustment.

Create a detached process.

Create an interactive process. This option is
meaningful only if the image argument specifies
SYS$SYSTEM:LOGINOUT.EXE. The purpose of
this option is to provide you with information
about the process. When you specify this
option, it identifies the process as one that is in
communication with another user, an interactive
process. For example, if you make an inquiry,
using the DCL lexical function F$MODE, about
a process that has specified the PRC$M_INTER
option, F$MODE returns the value INTERACTIVE.

Description

Symbolic Name

PRC$M_NOPASSWORD

Description

System Service Descriptions
$CREPRC

Do not display the Username: and Password:
prompts if the process is interactive and detached
and the image is SYS$SYSTEM:LOGINOUT.EXE.
If you specify this option in your call to $CREPRC,
the process created by the call is logged in under.
the user name associated with the creating process.
If you do not specify this option for an interactive
process, SYS$SYSTEM:LOGINOUT.EXE prompts
you for the user name and password to be associated
with the process. The prompts are displayed at the
SYS$INPUT device.

Note that options PRCM_BATCH, PRCM_INTER, PRCM_UAF, PRCM_
NETWRK, and PRC$M_NOPASSWORD are intended for use by Digital software.
Complete documentation of the possible ramifications of their use is not provided.

The Create Process service creates a subprocess or detached process on behalf of
the calling process. The $CREPRC service requires system dynamic memory.

A detached process is a fully independent process. For example, the process that
the system creates when you log in is a detached process.

A subprocess, on the other hand, is related to its creating process in a treelike
structure; it receives a portion of the creating process's resource quotas and
must terminate before the creating process. The uic argument or the PRC$M_
DETACH flag controls whether the created process is a subprocess or a detached
process.

Some error conditions are not detected until the created process executes.
These conditions include an invalid or nonexistent image; invalid SYS$INPUT,
SYS$0UTPUT, or SYS$ERROR logical name equivalence; inadequate quotas; or
insufficient privilege to execute the requested image.

All subprocesses created by a process must terminate before the creating process
can be deleted. If subprocesses exist when their creating process is deleted, they
are automatically deleted.

A created process is unable to run an image that calls the Run-Time Library
procedure LIB$DO_COMMAND unless the process was created with the
image argument specifying SYS$SYSTEM:LOGINOUT.EXE. This is so because
SYS$SYSTEM:LOGINOUT.EXE causes a command language interpreter to be
mapped into the created process, a prerequisite for calling LIB$DO_COMMAND.

A detached process is considered an interactive process only if (1) the process
is created with the PRC$M_INTER option specified and (2) SYS$INPUT is not
defined as a file-oriented device.

SYS-111

System Service Descriptions
$CREPRC

Required Privileges
The calling process must have the following:

• DETACH privilege to create any of the following types of process:

A detached process with a UIC that is different from the UIC of the
calling process

A batch process

A network process

• ALTPRI privilege to create a subprocess with a higher base priority than the
calling process

• SETPRV privilege to create a process with privileges that the calling process
does not have

• PSWAPM privilege to create a process with process swap mode disabled

• NOACNT privilege to create a process with accounting functions disabled

• NETMBX privilege to create a network connect object

Required Quota
The number of subprocesses that a process can create is controlled by the
subprocess (PRCLM) quota; this quota is returned when a subprocess is deleted.

The number of detached processes that a process can create with the same user
name is controlled by the MAXDETACH entry in the user authorization file
(UAF).

When a subprocess is created, the value of any deductible quota is subtracted
from the total value the creating process has available, and when the subprocess
is deleted, the unused portion of any deductible quota is added back to the
total available to the creating process. Any pooled quota value is shared by the
creating process and all its subprocesses.

Related Services
$CANEXH, $DCLEXH, $DELPRC, $EXIT, $FORCEX, $GETJPI, $GETJPIW,
$HIBER, $PROCESS_SCAN, $RESUME, $SETPRI, $SETPRN, $SETPRV,
$SETRWM, $SUSPND, $WAKE

Condition Values Returned

SS$_ACCVIO

SS$_DUPLNAM

SS$_EXPRCLM

SYS-112

The caller cannot read a specified input string
or string descriptor, the privilege list, or the
quota list; or the caller cannot write the process
identification.

The specified process name duplicates one
already specified within that group.

The creation of a detached process failed because
the creating process already reached its limit for
the creation of detached processes. This limit
is established by the MAXDETACH quota in
the user authorization file (UAF) of the creating
process.

SS$_EXQUOTA

SS$_INSFMEM

SS$_INSSWAPSPACE

SS$_IVLOGNAM

SS$_IVQUOTAL

SS$_IVSTSFLG

SS$_NOPRIV

SS$_NORMAL

SS$_NOSLOT

System Service Descriptions
$CREPRC

At least one of the three following conditions is
true:

• The process has exceeded its quota for the
creation of subprocesses.

• A quota value specified for the creation of
a subprocess exceeds the creating process's
corresponding quota.

• The quota is deductible and the remaining
quota for the creating process would be less
than the minimum.

The system dynamic memory is insufficient for
the requested operation.

The swap space is insufficient for creating the
process.

At least one of the following two conditions is
true:

• The specified process name has a length of 0
or has more than 15 characters.

• The specified image name, input name,
output name, or error name has more than
255 characters.

The quota list is not in the proper format.

You set a reserved status flag.

The caller violated one of the privilege
restrictions.

The service completed successfully.

No process control block is available; in other
words, the maximum number of processes that
can exist concurrently in the system has been
reached.

SYS-113

System Service Descriptions
$CRETVA

$CRETVA-Create Virtual Address Space

Format

Returns

Arguments

SYS-114

Adds a range of demand-zero allocation pages to a process's virtual address space
for the execution of the current image.

SYS$CRETVA inadr ,[retadr] ,[acmode]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

inadr
VMS Usage:
type:
access:
mechanism:

address_range
longword (unsigned)
read only
by reference

Address of a 2-longword array containing the starting and ending virtual
addresses of the pages to be created. If the starting and ending virtual addresses
are the same, a single page is created. Only the virtual page number portion of
the virtual addresses is used; the low-order nine bits are ignored.

retadr
VMS Usage:
type:
access:
mechanism:

address_range
longword (unsigned)
write only
by reference-array reference or descriptor

Address of a 2-longword array to receive the starting and ending virtual addresses
of the pages created.

acmode
VMS Usage:
type:
access:
mechanism:

access_mode
longword (unsigned)
read only
by value

Access mode and protection for the new pages. The acmode argument is a
longword containing the access mode. The $PSLDEF macro defines the following
symbols for the four access modes.

Description

Symbol

PSL$C_KERNEL

PSL$C_EXEC

PSL$C_SUPER

PSL$C_USER

Access Mode

Kernel

Executive

Supervisor

User

System Service Descriptions
$CRETVA

The most privileged access mode used is the access mode of the caller. The
protection of the pages is read/write for the resultant access mode and those more
privileged.

The Create Virtual Address Space service adds a range of demand-zero allocation
pages to a process's virtual address space for the execution of the current image.

Pages are created starting at the address contained in the first longword of
the location addressed by the inadr argument and ending with the second
longword. The ending address can be lower than the starting address. The
retadr argument indicates the byte addresses of the pages created.

If an error occurs while pages are being created, the retadr argument, if
specified, indicates the pages that were successfully created before the error
occurred. If no pages were created, both longwords of the retadr argument
contain the value -1.

If $CRETVA creates pages that already exist, the service deletes those pages if
they are not owned by a more privileged access mode than that of the caller. Any
such deleted pages are reinitialized as demand-zero pages.

Required Privileges
None

Required Quota
The paging file quota (PGFLQUOTA) of the process must be sufficient to
accommodate the increased size of the virtual address space.

Related Services
$ADJSTK, $ADJWSL, $CRMPSC, $DELTVA, $DGBLSC, $EXPREG, $LCKPAG,
$LKWSET, $MGBLSC, $PURGWS, $SETPRT, $SETSTK, $SETSWM, $ULKPAG,
$ULWSET, $UPDSEC, $UPDSECW

The Expand Program/Control Region ($EXPREG) service also adds pages to a
process's virtual address space.

Note ~~~~~~~~~~~~

Do not use the $CRETVA system service in conjunction with other
user-written procedures or Digital-supplied procedures (including Run
Time Library procedures). This system service provides no means to
communicate a change in virtual address space with other routines.
Digital recommends that you use either $EXPREG or the Run-Time
Library procedure Allocate Virtual Memory (LIB$GET_ VM) to get
memory. You can find documentation on LIB$GET_ VM in the VMS
Run-Time Library Routines Volume. When using $DELTVA, you should
take care to delete only pages that you have specifically created.

SYS-115

System Service Descriptions
$CRETVA

Condition Values Returned

SVS-116

SS$_NORMAL

SS$_ACCVIO

SS$_EXQUOTA

SS$_INSFWSL

SS$_NOPRIV

SS$_PAGOWNVIO

SS$_ VASFULL

The service completed successfully.

The inadr argument cannot be read by the
caller, or the retadr argument cannot be written
by the caller.

The process has exceeded its paging file quota.

The process's working set limit is not large
enough to accommodate the increased size of the
virtual address space.

A page in the specified range is in the system
address space.

A page in the specified range already exists and
cannot be deleted because it is owned by a more
privileged access mode than that of the caller.

The process's virtual address space is full; no
space is available in the page tables for the
requested pages.

System Service Descriptions
$CRMPSC

$CRMPSC-Create and Map Section

Format

Returns

Arguments

Allows a process to associate (map) a section of its address space with (1) a
specified section of a file (a disk file section) or (2) specified physical addresses
represented by page frame numbers (a page frame section). This service also
allows the process to create either type of section and to specify that the section
be available only to the creating process (private section) or to all processes that
map to it (global section).

SYS$CRMPSC [inadr] ,[retadr] ,[acmode] ,[flags] ,[gsdnam] ,[ident] ,[relpag] ,[chan]
,[pagcnt] ,[vbn] ,[prot] ,[pfc]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

inadr
VMS Usage:
type:
access:
mechanism:

address_range
longword (unsigned)
read only
by reference

Starting and ending virtual addresses into which the section is to be mapped.
The inadr argument is the address of a 2-longword array containing, in order,
the starting and ending process virtual addresses. Only the virtual page number
portion of each virtual address is used; the low-order nine bits are ignored.

If the starting and ending virtual addresses are the same, a single page is
mapped, unless you set the SEC$M_EXPREG bit in the flags argument. If you
set this bit, the specified address determines only whether the section is mapped
in the program (PO) or control (Pl) region. Normally, when using the SEC$M_
EXPREG flag the INADR should refer to the program region (PO space).

If you do not specify the inadr argument or specify it as 0, the section is not
mapped. ·

retadr
VMS Usage:
type:
access:
mechanism:

address_range
longword (unsigned)
write only
by reference-array reference or descriptor

Starting and ending process virtual addresses into which the section was actually
mapped by $CRMPSC. The retadr argument is the address of a 2-longword array
containing, in order, the starting and ending process virtual addresses.

SYS-117

System Service Descriptions
$CRMPSC

SYS-118

acmode
VMS Usage:
type:
access:
mechanism:

access_mode
longword (unsigned)
read only
by value

Access mode that is to be the owner of the pages created during the mapping.
The acmode argument is a longword containing the access mode. The $PSLDEF
macro defines the following symbols for the four access modes.

Symbol

PSL$C_KERNEL

PSL$C_EXEC

PSL$C_SUPER

PSL$C_USER

Access Mode

Kernel

Executive

Supervisor

User

The most privileged access mode used is the access mode of the caller.

flags
VMS Usage:
type:
access:
mechanism:

mask_ longword
longword (unsigned)
read only
by value

Flag mask specifying the type of section to be created or mapped to, as well as
its characteristics. The flags argument is a longword bit vector wherein each bit
corresponds to a flag. The $SECDEF macro defines a symbolic name for each
flag. You construct the flags argument by performing a logical OR operation on
the symbol names for all desired flags. The following table describes each flag
and the default value that it supersedes.

Flag

SEC$M_GBL

SEC$M_CRF

SEC$M_DZRO

SEC$M_EXPREG

SEC$M_WRT

SEC$M_PERM

Description

Pages form a global section. The default is private
section.

Pages are copy-on-reference. By default, pages are
shared. ·

Pages are demand-zero pages. By default, they are
not zeroed when copied.

Pages are mapped into the first available space. By
default, pages are mapped into the range specified
by the inadr argument.

Pages form a read/write section. By default, pages
form a read-only section.

Pages are permanent. By default, pages are
temporary.

Flag Description

System Service Descriptions
$CRMPSC

SEC$M_PFNMAP Pages form a page-frame section. By default, pages
form a disk-file section. Pages mapped by SEC$M_
PFNMAP are not included in or charged against
the process's working set; they are always valid. Do
not lock these pages in the working set by using
$LKWSET; this can result in a machine check if
they are in I/O space.

SEC$M_SYSGBL Pages form a system global section. By default,
pages form a group global section.

SEC$M_PAGFIL Pages form a global page-file section. By default,
pages form a disk-file section.

SEC$M_EXECUTE Pages are mapped if the caller has execute access.
This flag is valid only (1) when specified from
executive or kernel mode and (2) when the SEC$M_
GEL flag is also specified. By default, the pages are
mapped whether or not the caller has execute
access.

SEC$M_NO_OVERMAP Pages cannot overmap existing address space. Note
that, by default, pages can overmap existing address
space.

gsdnam
VMS Usage:
type:
access:
mechanism:

section_name
character-coded text string
read only
by descriptor-fixed length string descriptor

Name of the global section. The gsdnam argument is the address of a character
string descriptor pointing to this name string.

For group global sections, the VMS operating system interprets the UIC group as
part of the global section name; thus, the names of global sections are unique to
UIC groups.

ident
VMS Usage:
type:
access:
mechanism:

section_id
quadword (unsigned)
read only
by reference

Identification value specifying the version number of a global section and, for
processes mapping to an existing global section, the criteria for matching the
identification. The ident argument is the address of a quadword structure
containing three fields.

The version number is in the second longword. The version number contains two
fields: a minor identification in the low-order 24 bits and a major identification
in the high-order 8 bits. You can assign values for these fields by installation
convention to differentiate versions of global sections. If no version number is
specified when a section is created, processes that specify a version number when
mapping cannot access the global section.

SYS-119

System Service Descriptions
$CRMPSC

SYS-120

The first longword specifies, in its low-order three bits, the matching criteria. The
valid values, symbolic names by which they can be specified, and their meanings
are as follows.

Value/Name Match Criteria

0 SEC$K_MATALL

1 SEC$K_MATEQU

2 SEC$K_MATLEQ

Match all versions of the section.

Match only if major and minor identifications match.

Match if the major identifications are equal and the
minor identification of the mapper is less than or
equal to the minor identification of the global section.

When a section is mapped at creation time, the match control field is ignored.

If you do not specify the ident argument or specify it as 0 (the default), the
version number and match control fields default to 0.

relpag
VMS Usage:
type:
access:
mechanism:

longword_ unsigned
longword (unsigned)
read only
by value

Relative page number within the global section of the first page in the section to
be mapped. The relpag argument is a longword containing this page number.

You use this argument only for global sections. If you do not specify the relpag
argument or specify it as 0 (the default), the global section is mapped beginning
with the first virtual block in the file. This argument must be 0 for demand-zero
sections in memory shared by multiple processors.

chan
VMS Usage:
type:
access:
mechanism:

channel
word (unsigned)
read only
by value

Number of the channel on which the file has been accessed. The chan argument
is a word containing this number.

The file must have been accessed with the VMS RMS macro $OPEN; the file
options parameter (FOP) in the FAB must indicate a user file open (UFO
keyword). The access mode at which the channel was opened must be the same
as or less privileged than the access mode of the caller.

pa gent
VMS Usage:
type:
access:
mechanism:

longword_ unsigned
longword (unsigned)
read only
by value

Number of pages in the section. The pagcnt argument is a longword containing
this number.

The specified page count is compared with the number of pages in the section file;
if they are different, the lower value is used. If you do not specify the page count
or specify it as 0 (the default), the size of the section file is used. However, for
physical page frame sections, this argument must not be 0.

vbn
VMS Usage:
type:
access:
mechanism:

longword_unsigned
longword (unsigned)
read only
by value

System Service Descriptions
$CRMPSC

Virtual block number in the file that marks the beginning of the section. The vbn
argument is a longword containing this number. If you do not specify the vbn
argument or specify it as 0 (the default), the section is created beginning with the
first virtual block in the file.

If you specified page frame number mapping (by setting the SEC$M_PFNMAP
flag), the vbn argument specifies the page frame number where the section
begins in memory.

Table SYS-4 depicts which arguments are required and which are optional for
three different uses of the $CRMPSC service.

Table SVS-4 Required and Optional Arguments for the $CRMPSC Service

Create/Map Map Global1 Create/Map
Argument Global Section Section Private Section

inadr Optional2 Required Required

retadr Optional Optional Optional

a cm ode Optional Optional Optional

flags

SEC$M_GBL Required Ignored Not used

SEC$M_CRF3 Optional Not used Optional

SEC$M_DZR03 Optional Not used Optional

SEC$M_EXPREG Optional Optional Optional

SEC$M_PERM Optional2 Not used Not used

SEC$M_PFNMAP Optional Not used Not used

SEC$M_SYSGBL Optional Optional Not used

SEC$M_WRT Optional Optional Optional

SEC$M_PAGFIL Optional Not used Not used

gsdnam Required Required Not used

1The Map Global Section ($MGBLSC) service maps an existing global section.

2You can omit the inadr argument only if you want to create but not map a global section; however,
in such a case, you must make the section permanent because temporary sections are automatically
deleted when no processes are mapped to them. You cannot omit the inadr argument for demand-zero
sections in memory shared by multiple processors.

3For physical page frame sections: vbn specifies the starting page frame number; chan must be O;
relpag and pfc are not used; and the SEC$M_CRF and SEC$M_DZRO flag bit settings are invalid.
For page-file sections, chan must be 0, and relpag and pfc are not used.

(continued on next page)

SYS-121

System Service Descriptions
$CRMPSC

SYS-122

Table SYS-4 (Cont.) Required and Optional Arguments for the $CRMPSC
Service

Create/Map Map Global1 Create/Map
Argument Global Section Section Private Section

ident Optional Optional Not used

relpag3 Optional Optional Not used

chan3 Required Required

pagcnt Required Required

vbn3 Optional Optional

prot Optional Not used

pfc3 Optional4 Optional

1The Map Global Section ($MGBLSC) service maps an existing global section.

3For physical page frame sections: vbn specifies the starting page frame number; chan must be O;
relpag and pfc are not used; and the SEC$M_CRF and SEC$M_DZRO flag bit settings are invalid.
For page-file sections, chan must be 0, and relpag and pfc are not used.

4This argument is not used for global sections in memory shared by multiple processors.

prot
VMS Usage:
type:
access:
mechanism:

file_protection
longword (unsigned)
read only
by value

Numeric value representing the protection mask to be applied to the global
section. You logically OR this value with the protection mask associated with the
file; if the file protection does not allow access to a particular category of user and
the protection mask allows access, access is denied.

The mask contains four 4-bit fields. Bits are read from right to left in each field.
The following diagram depicts the mask.

World Group Owner System

DEWRDEWRDEWRDEWR
151413121110 9 8 7 6 5 4 3 2 1 0

ZK-1706-GE

Cleared bits indicate that read, write, execute, and delete access, in that order,
are granted to the particular category of user.

Description

System Service Descriptions
$CRMPSC

Only read, write, and execute access are meaningful for section protection. Delete
access bits are ignored. The $CRMPSC service checks the execute access bit only
for calls from executive or kernel mode.

If you do not specify the prot argument or specify it as 0, read access and write
access are granted to all users.

pf c
VMS Usage:
type:
access:
mechanism:

longword_unsigned
longword (unsigned)
read only
by value

Page fault cluster size indicating how many pages are to be brought into memory
when a page fault occurs for a single page. This argument is not used for page
file sections, physical page frame sections, or global sections in memory shared by
multiple processors.

The Create and Map Section service allows a process to associate (map) a section
of its address space with (1) a specified section of a file (a disk file section) or
(2) specified physical addresses represented by page frame numbers (a page
frame section). This service also allows the process to create either type of section
and to specify that the section be available only to the creating process (private
section) or to all processes that map to it (global section).

Creating a disk file section involves defining all or part of a disk file as a section.
Mapping a disk file section involves making a correspondence between virtual
blocks in the file and pages in the caller's virtual address space. If the $CRMPSC
service specifies a global section that already exists, the service maps it.

Any section created is created as entire pages. See the Memory Management
chapter in the Introduction to VMS System Services.

Depending on the actual operation requested, certain arguments are required
or optional. Table SYS-4 summarizes how the $CRMPSC service interprets the
arguments passed to it and under what circumstances it requires or ignores
arguments.

The $CRMPSC service returns the virtual addresses of the pages created in the
retadr argument, if specified. The section is mapped from a low address to a
high address, whether the section is mapped in the program or control region.

If an error occurs during the mapping of a global section, the retadr argument,
if specified, indicates the pages that were successfully mapped when the error
occurred. If no pages were mapped, both longwords of the retadr argument
contain the value -1.

The SEC$M_PFNMAP flag setting identifies the memory for the section as
starting at the page frame number specified in the vbn argument and extending
for the number of pages specified in the pagcnt argument. Setting the SEC$M_
PFNMAP flag places restrictions on the following arguments.

SYS-123

System Service Descriptions
$CRMPSC

SVS-124

Argument

relpag

ch an

pagcnt

vbn

pfc

SEC$M_CRF

SEC$M_DZRO

SEC$M_PERM

Restriction

Does not apply

Must be 0

Must be specified; cannot be 0

Specifies first page frame to be mapped

Does not apply

Must be 0

Must be 0

Must be 1 if the flags SEC$M_GBL or SEC$M_SYSGBL
are set

Setting the SEC$M_PAGFIL flag places the following restrictions on the following
flags.

SEC$M_CRF

SEC$M_GBL

SEC$M_PFNMAP

Must be 0

Must be 1

Must be 0

The flags argument bits 4 through 13 and 18 through 31 must be 0.

The flag bit SEC$M_ WRT applies only to the way in which the newly created
section is mapped. For a file to be made writable, the channel used to open the
file must allow write access to the file.

If the flag bit SEC$M_SYSGBL is set, the flag bit SEC$M_GBL must be set also.

Required Privileges
If $CRMPSC specifies a global section and the SS$NOPRIV condition value is
returned, the process might not have the required privilege to create that section.
In order to create global sections, the process must have· the following privileges:

• SYSGBL privilege to create a system global section

• PRMGBL privilege to create a permanent global section

• PFNMAP privilege to create a page frame section

• SHMEM privilege to create a global section in memory shared by multiple
processors

Note that you do not need PFNMAP privilege to map an existing page frame
section or SHMEM privilege to map an existing global section in memory shared
by multiple processors.

Required Quota
If the section pages are copy-on-reference, the process must have sufficient paging
file quota (PGFLQUOTA). The systemwide number of global page-file pages is
limited by the SYSGEN parameter GBLPAGFIL.

Related Services
$ADJSTK, $ADJWSL, $CRETVA, $DELTVA, $DGBLSC, $EXPREG, $LCKPAG,
$LKWSET, $MGBLSC, $PURGWS, $SETPRT, $SETSTK, $SETSWM, $ULKPAG,
$ULWSET, $UPDSEC, $UPDSECW

Condition Values Returned

SS$_NORMAL

SS$_CREATED

SS$_ACCVIO

SS$_ENDOFFILE

SS$_EXBYTLM

SS$_EXGBLPAGFIL

SS$_EXPORTQUOTA

SS$_EXQUOTA

SS$_GPTFULL

SS$_GSDFULL

SS$_ILLPAGCNT

SS$_INSFMEM

SS$_INSFWSL

SS$_INTERLOCK

SS$_IVCHAN

SS$_IVCHNLSEC

SS$_IVLOGNAM

System Service Descriptions
$CRMPSC

The service completed successfully. The specified
global section already exists and has been
mapped.

The service completed successfully. The specified
global section did not previously exist and has
been created.

The inadr argument, gsdnam argument, or
name descriptor cannot be read by the caller; or
the retadr argument cannot be written by the
caller.

The starting virtual block number specified is
beyond the logical end-of-file, or the value in the
relpag argument is greater than or equal to the
value in the pagcnt argument.

The process has exceeded the byte count quota;
the system was unable to map the requested file.

The process has exceeded the systemwide limit
on global page-file pages; no part of the section
was mapped.

The process has exceeded the number of global
sections that processes on this port of the
multiport (shared) memory can create.

The process exceeded its paging file quota while
creating copy-on-reference or page-file-backing
store pages.

There is no more room in the system global page
table to set up page table entries for the section.

There is no more room in the system space
allocated to maintain control information for
global sections.

The page count value is negative or is 0 for a
physical page frame section.

Not enough pages are available in the specified
shared memory to create the section.

The process's working set limit is not large
enough to accommodate the increased size of the
address space.

The bit map lock for allocating global sections
from the specified shared memory is locked by
another process.

An invalid channel number was specified, that is,
a channel number of 0 or a number larger than
the number of channels available.

The channel number specified is currently active.

The specified global section name has a length of
0 or has more than 15 characters.

SYS-125

System Service Descriptions
$CRMPSC

SS$_IVLVEC

SS$_IVSECFLG

SS$_IVSECIDCTL

SS$_NOPRIV

SS$_NOSHMBLOCK

SS$_NOTFILEDEV

SS$_NOWRT

SS$_PAGOWNVIO

SS$_SECTBLFUL

SS$_SHMNOTCNCT

SS$_TOOMANYLNAM

SS$_ VA_IN_USE

SS$_ VASFULL

SYS-126

The specified section was not installed using the
/PROTECT qualifier.

An invalid flag, a reserved flag, a flag requiring
a privilege you lack, or an invalid combination of
flags was specified.

The match control field of the global section
identification is invalid.

The process does not have the privileges to
create a system global section (SYSGBL) or a
permanent group global section (PRMGBL).
The process does not have the privilege to create
a section starting at a specific physical page
frame number (PFNMAP).
The process does not have the privilege to create
a global section in memory shared by multiple
processors (SHMEM).
A page in the input address range is in the
system address space.
The specified channel is not assigned or was
assigned from a more privileged access mode.

No shared memory control block for global
sections is available.

The device is not a file-oriented, random-access,
or directory device.

The section cannot be written to because the flag
bit SEC$M_ WRT is set, the file is read only, and
the flag bit SEC$M_ CRF is not set.

A page in the specified input address range is
owned by a more privileged access mode.

There are no entries available in the system
global section table.

The shared memory named in the name
argument is not known to the system. This
error can be caused by a spelling error in the
string, an improperly assigned logical name, or
the failure to identify the multiport memory as
shared at system generation time.

The logical name translation of the gsdnam
argument exceeded the allowed depth.

A page in the specified input address range
is already mapped and the flag SEC$M_NO_
OVERMAP is set.

The process's virtual address space is full; no
space is available in the page tables for the pages
created to contain the mapped global section.

System Service Descriptions
$DACEFC

$DACEFC-Disassociate Common Event Flag Cluster

Format

Returns

Argument

Description

Releases the calling process's association with a common event flag cluster.

SYS$DACEFC efn

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

ef n
VMS Usage:
type:
access:
mechanism:

ef_number
longword (unsigned)
read only
by value

Number of any event flag in the common cluster to be disassociated. The efn
argument is a longword containing this number; however, $DACEFC uses only
the low-order byte. The number must be in the range of 64 through 95 for cluster
2, and 96 through 127 for cluster 3.

The Disassociate Common Event Flag Cluster service disassociates the calling
process from a common event flag cluster and decreases the count of processes
associated with the cluster accordingly. When the image associated with a cluster
exits, the system disassociates the cluster. When the count of processes associated
with a temporary cluster or with a permanent cluster that is marked for deletion
reaches 0, the cluster is automatically deleted.

If a process issues this service specifying an event flag cluster with which it is not
associated, the service completes successfully.

Required Privileges
None

Required Quota
None

Related Services
$ASCEFC, $CLREF, $DLCEFC, $READEF, $SETEF, $WAITFR, $WFLAND,
$WFLOR

SYS-127

System Service Descriptions
$DACEFC

Condition Values Returned

SYS-128

SS$_NORMAL

SS$_ILLEFC

SS$_INTERLOCK

The service completed successfully.

You specified an illegal event flag number. The
number must be in the range of event flags 64
through 127.

The bit map lock for allocating common event
flag clusters from the specified shared memory is
locked by another process.

System Service Descriptions
$DALLOC

$DALLOC-Deallocate Device

Format

Returns

Arguments

Deallocates a previously allocated device.

SYS$DALLOC [devnam] ,[acmode]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

devnam
VMS Usage:
type:
access:
mechanism:

device_name
character-coded text string
read only
by descriptor-fixed length string descriptor

Name of the device to be deallocated. The devnam argument is the address of a
character string descriptor pointing to the device name string. The string might
be either a physical. device name or a logical name. If it is a logical name, it must
translate to a physical device name.

If you do not specify a device name, all devices allocated by the process from
access modes equal to or less privileged than that specified are deallocated.

acmode
VMS Usage:
type:
access:
mechanism:

access_mode
longword (unsigned)
read only
by value

Access mode from which the deallocation is to be performed. The acmode
argument is a longword containing the access mode. The $PSLDEF macro defines
the following symbols for the four access modes.

Symbol

PSL$C_KERNEL

PSL$C_EXEC

PSL$C_SUPER

PSL$C_USER

Access Mode

Kernel

Executive

Supervisor

User

The most privileged access mode used is the access mode of the caller.

SYS-129

System Service Descriptions
$DALLOC

Description

The Deallocate Device service deallocates a previously allocated device. The
issuing process relinquishes exclusive use of the device, thus allowing other
processes to assign or allocate that device. You can deallocate an allocated device
only from access modes equal to or more privileged than the access mode from
which the original allocation was made.

This service does not deallocate a device if, at the time of deallocation, the issuing
process has one or more I/O channels assigned to the device; in such a case, the
device remains allocated.

At image exit, the system automatically deallocates all devices that are allocated
at user mode.

If you attempt to deallocate a mailbox, success is returned but no operation is
performed.

Required Privileges
None

Required Quota
None

Related Services
$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI, $GETDVIW,
$GETMSG, $GETQUI, $GETQUIW, $INIT_VOL, $MOUNT, $PUTMSG, $QIO,
$QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SYS-130

SS$_NORMAL

SS$_ACCVIO

SS$_DEVASSIGN

SS$_DEVNOTALLOC

SS$_IVDEVNAM

SS$_IVLOGNAM

SS$_NONLOCAL

SS$_NOPRIV

SS$_NOSUCHDEV

The service completed successfully.

The device name string or string descriptor
cannot be read by the caller.

The device cannot be deallocated because the
process still has channels assigned to it.

The device is not allocated to the requesting
process.

You did not specify a device name string, or the
device name string contains invalid characters.

The device name string has a length of 0 or has
more than 63 characters.

The device is on a remote node.

The device was allocated from a more privileged
access mode.

The specified device does not exist in the host
system.

System Service Descriptions
$DASSGN

$DASSGN-Deassign 1/0 Channel

Format

Returns

Argument

Description

Deassigns (releases) an 1/0 channel previously acquired using the Assign 1/0
Channel ($ASSIGN) service.

SYS$DASSGN chan

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

ch an
VMS Usage:
type:
access:
mechanism:

channel
word (unsigned)
read only
by value

Number of the 1/0 channel to be deassigned. The chan argument is a word
containing this number.

The Deassign 1/0 Channel service deassigns (releases) an 1/0 channel that it
acquired using the Assign 1/0 Channel ($ASSIGN) service. You can deassign an
1/0 channel only from an access mode equal to or more privileged than the access
mode from which the original channel assignment was made.

When you deassign a channel, any outstanding 1/0 requests on the channel are
canceled. If a file is open on the specified channel, the file is closed.

If a mailbox was associated with the device when the channel was assigned, the
link to the mailbox is cleared.

If the 1/0 channel was assigned for a network operation, the network link is
disconnected.

If the specified channel is the last channel assigned to a device that has been
marked for dismounting, the device is dismounted.

1/0 channels assigned from user mode are automatically deassigned at image
exit.

Required Privileges
None

Required Quota
None

SYS-131

System Service Descriptions
$DASSGN

Related Services
$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI, $GETDVIW,
$GETMSG, $GETQUI, $GETQUIW, $INIT_ VOL, $MOUNT, $PUTMSG, $QIO,
$QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SYS-132

SS$_NORMAL

SS$_IVCHAN

SS$_NOPRIV

The service completed successfully.

You specified an invalid channel number, that is,
a channel number of 0 or a number larger than
the number of channels available.

The specified channel is not assigned or was
assigned from a more privileged access mode.

System Service Descriptions
$DCLAST

$DCLAST-Declare AST

Format

Returns

Arguments

Description

Queues an AST for the calling access mode or for a less privileged access mode.

SYS$DCLAST astadr ,[astprm] ,[acmode]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

astadr
VMS Usage:
type:
access:
mechanism:

ast_procedure
procedure entry mask
call without stack unwinding
by reference

AST service routine to be executed. The astadr argument is the address of the
entry mask of this routine.

astprm
VMS Usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

AST parameter to be passed to the AST routine specified by the astadr argument.
The astprm argument is a longword containing this parameter.

acmode
VMS Usage:
type:
access:
mechanism:

access_mode
longword (unsigned)
read only
by value

Access mode for which the AST is to be declared. The most privileged access
mode used is the access mode of the caller. The resultant mode is the access
mode for which the AST is declared.

The Declare AST service queues an AST for the calling access mode or for a less
privileged access mode. For example, a routine executing in supervisor mode can
declare an AST for either supervisor or user mode.

SYS-133

System Service Descriptions
$DCLAST

The service does not validate the address of the AST service routine. If you
specify an illegal address (such as 0), an access violation occurs when the AST
service routine is given control.

Required Privileges
None

Required Quota
The $DCLAST service requires system dynamic memory and uses the AST limit
(ASTLM) quota of the process.

Related Services
$SETAST, $SETPRA

For more information, see the chapter on AST services in the Introduction to
VMS System Services.

Condition Values Returned

SYS-134

SS$_NORMAL

SS$_EXQUOTA

SS$_INSFMEM

The service completed successfully.

The process has exceeded its AST limit (ASTLM)
quota.

The system dynamic memory is insufficient for
completing the service.

System Service Descriptions
$DCLCMH

$DCLCMH-Declare Change Mode or Compatibility Mode Handler

Format

Returns

Arguments

Specifies the address of a routine to receive control when (1) a Change Mode to
User or Change Mode to Supervisor instruction trap occurs, or (2) a compatibility
mode fault occurs.

SYS$DCLCMH addres ,[prvhnd] ,[type]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

add res
VMS Usage:
type:
access:
mechanism:

address
longword (unsigned)
read only
by reference

Routine to receive control when a change mode trap or a compatibility mode fault
occurs. The addres argument is the exception handling code in the address space
of the calling process.

If you specify the addres argument as 0, $DCLCMH clears the previously
declared handler.

prvhnd
VMS Usage:
type:
access:
mechanism:

address
longword (unsigned)
write only
by reference

Address of a previously declared handler. The prvhnd argument is the address
of a longword containing the address of the previously declared handler.

type
VMS Usage:
type:
access:
mechanism:

longword_ unsigned
longword (unsigned)
read only
by value

Handler type indicator. The type argument is a longword value. The value 0
(the default) indicates that a change mode handler is to be declared for the access
mode at which the request is issued; the value 1 specifies that a compatibility
mode handler is to be declared.

SYS-135

System Service Descriptions
$DCLCMH

Description

The Declare Change Mode or Compatibility Mode Handler service specifies
the address of a routine to receive control when (1) a Change Mode to User
or Change Mode to Supervisor instruction trap occurs, or (2) a compatibility
mode fault occurs. A change mode handler provides users with a dispatching
mechanism similar to that used for system service calls. It allows a routine
that executes in supervisor mode to be called from user mode. You declare the
change mode handler from supervisor mode; then when the process executing
in user mode issues a Change Mode to Supervisor instruction, the change mode
handler receives control and executes in supervisor mode. The top longword
of the stack contains the zero-extended change mode code. The change mode
handler must exit by removing the change mode code from the stack and issuing
an REI instruction.

The operating system uses compatibility mode handlers to bypass normal
condition handling procedures when an image executing in compatibility
mode causes a compatibility mode exception. Before transferring control to
the compatibility mode handler, the system saves the compatibility exception
code, the registers RO through R6, and the PC and PSL in a 10-longword array
starting at the location CTL$AL_ CMCNTX. Before the compatibility mode
handler exits, it must restore the saved registers RO through R6, push the saved
PC and PSL onto the stack, and exit by issuing an REI instruction.

Required Privileges
You can declare a change mode or compatibility mode handler only from user or
supervisor mode.

Required Quota
None

Related Services
$SETEXV, $SETSFM, $UNWIND

Condition Values Returned

SYS-136

SS$_NORMAL

SS$_ACCVIO

The service completed successfully.

The longword to receive the address of the
previous change mode handler cannot be written
by the caller.

System Service Descriptions
$DCLEXH

$DCLEXH-Declare Exit Handler

Format

Returns

Argument

Description

Declares an exit handling routine that receives control when an image exits.

SYS$DCLEXH desblk

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

desblk
VMS Usage:
type:
access:
mechanism:

exit_handler _block
longword (unsigned)
read only
by reference

Exit handler control block. The desblk argument is the address of this control
block. This control block, which describes the exit handler, is depicted in the
following diagram. ·

31 0
Forward Link (Used by VMS only)

Exit Handler Address

These 3 bytes must be 0 l arg. count

Address Condition Value (Written by VMS)

Additional argument for the
exit handler; these are optional;,_,,_,
one argument per longword :r

ZK-1714-GE

The Declare Exit Handler service declares an exit handling routine that receives
control when an image exits. Image exit normally occurs when the image
currently executing in a process returns control to the operating system. Image
exit might also occur when you call the Exit ($EXIT) or Force Exit ($FORCEX)
service.

SYS-137

System Service Descriptions
$DCLEXH

Exit handlers are described by exit control blocks. The operating system
maintains a separate list of these control blocks for user, supervisor, and executive
modes. The $DCLEXH service adds the description of an exit handler to the front
of one of these lists. The actual list to which the exit control block is added is
determined by the access mode of the caller.

At image exit, the exit handlers declared from user mode are called first; they are
called in the reverse order from which they were declared.

Each exit handler is executed only once; it must be redeclared before it can be
executed again. The exit handling routine is called as a normal procedure with
the argument list specified in the third through nth longwords of the exit control
block. The first argument is the address of a longword to receive a system status
code indicating the reason for exit; the system always fills in this longword before
calling the exit handler.

You can call this service only from user, supervisor, and executive modes.

Required Privileges
None

Required Quota
None

Related Services
$CANEXH, $CREPRC, $DELPRC, $EXIT, $FORCEX, $GETJPI, $GETJPIW,
$HIBER, $PROCESS_SCAN, $RESUME, $SETPRI, $SETPRN, $SETPRV,
$SETRWM, $SUSPND, $WAKE

The Cancel Exit Handler ($CANEXH) service removes an exit control block from
the list.

Condition Values Returned

SYS-138

SS$_NORMAL

SS$_ACCVIO

SS$_IVSSRQ

SS$_NOHANDLER

The service completed successfully.

The first longword of the exit control block cannot
be written by the caller.

The call to the service is invalid because it was
made from kernel mode.

The exit handler control block address was not
specified or was specified as 0.

System Service Descriptions
$DELLNM

$DELLNM-Delete Logical Name

Format

Returns

Arguments

Deletes all logical names with the specified name at the specified access mode
or outer access mode, or it deletes all the logical names with the specified access
mode or outer access mode in a specified table.

SYS$DELLNM tabnam ,[lognam] ,[acmode]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

tabnam
VMS Usage:
type:
access:
mechanism:

logical_name
character-coded text string
read only
by descriptor-fixed length string descriptor

Name of a logical name table or a list of tables to be searched for the logical name
to be deleted. The tabnam argument is the address of a descriptor that points to
the table name. This argument is required.

If tabnam is not the name of a logical name table, it is assumed to be a logical
name and is translated iteratively until either the name of a logical name table is
found or the number of translations allowed by the system has been performed.

If tabnam translates to the name of a list of tables, $DELLNM does the
following:

• If you specify the lognam arg11ment, $DELLNM searches (in order) each
table in the list until it finds the first table that contains the specified logical
name. If the logical name is at the specified access mode, $DELLNM then
deletes occurrences of the logical name at the specified access mode and at
outer access modes within the table.

• If you do not specify the lognam argument, $DELLNM deletes all of the
logical names at the specified access mode or at outer access modes from the
first table in the list whose access mode is equal to or less privileged than the
caller's access mode.

SYS-139

System Service Descriptions
$DELLNM

Description

SYS-140

lognam
VMS Usage:
type:
access:
mechanism:

logical_name
character-coded text string
read only
by descriptor-fixed length string descriptor

Logical name to be deleted. The lognam argument is the address of a descriptor
that points to the logical name string.

acmode
VMS Usage:
type:
access:
mechanism:

access_mode
byte (unsigned)
read only
by reference

Access mode to be used in the delete operation. The acmode argument is the
address of a byte containing this access mode. The $PSLDEF macro defines
symbolic names for the four access modes.

You determine the access mode actually used in the delete operation by
maximizing the access mode of the caller with the access mode specified by
the acmode argument; that is, the less privileged of the two is used.

However, if you have SYSNAM privilege, the delete operation is executed at the
specified access mode regardless of the caller's access mode.

If you omit this argument or specify it as 0, the access mode of the caller is used
in the delete operation. The access mode used in the delete operation determines
which tables are used and which names are deleted.

The Delete Logical Name service deletes all logical names with the specified
name at the specified access mode or outer access mode, or it deletes all the
logical names with the specified access mode or outer access mode in a specified
table. If any logical names being deleted are also the names of logical name
tables, then all of the logical names contained within those tables and all of their
subtables are also deleted.

Required Privileges
Depending on the operation, the calling process might need one of the following
privileges to use $DELLNM:

• Write access to the logical name table that contains a logical name to delete
the logical name from a shareable table

• Either delete access to the logical name table or write access to the directory
table that contains the table name to delete a shareable logical name table

• SYSNAM privilege to delete either a logical name or table at an inner access
mode

• GRPNAM or SYSPRV privilege to delete a logical name from a group table

• SYSNAM or SYSPRV privilege to delete a logical name from a system table

Required Quota
None

Related Services
$CRELNM, $CRELNT, $TRNLNM

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_IVLOGNAM

SS$_IVLOGTAB

SS$_NOLOGNAM

SS$_NOLOGTAB

SS$_NOPRIV

SS$_TOOMANYLNAM

System Service Descriptions
$DELLNM

The service completed successfully.

The service cannot access the locations specified
by one or more arguments.

One or more arguments have an invalid value, or
a logical name table name was not specified.

The lognam argument specifies a string whose
length is not in the required range of 1 through
255 characters.

The tabnam argument does not specify a logical
name table.

The specified logical name table does not exist, or
a logical name with an access mode equal to or
less privileged than the caller's access mode does
not exist in the logical name table.

The specified logical name table does not exist.

The caller lacks the necessary privilege to delete
the logical name.

The logical name translation of the table name
exceeded the allowable depth (10 translations).

SYS-141

System Service Descriptions
$DELMBX

$DELMBX-Delete Mailbox

Format

Returns

Argument

Description

SYS-142

Marks a permanent mailbox for deletion.

SYS$DELMBX chan

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

ch an
VMS Usage:
type:
access:
mechanism:

channel
word (unsigned)
read only
by value

Number of the channel assigned to the mailbox that is to be deleted. The chan
argument is a word containing this number.

The Delete Mailbox service marks a permanent mailbox for deletion. The actual
deletion of the mailbox and of its associated logical name assignment occur when
no more I/O channels are assigned to the mailbox.

You can delete a mailbox only from an access mode equal to or more privileged
than the access mode from which the mailbox channel was assigned. Temporary
mailboxes are automatically deleted when their reference count goes to 0.

The $DELMBX service does not deassign the channel assigned by the caller,
if any. The caller must deassign the channel with the Deassign I/O Channel
($DASSGN) service.

Required Privileges
You need PRMMBX privilege to delete a permanent mailbox.

Required Quota
None

Related Services
$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DEVICE_SCAN, $DISMOU, $GETDVI, $GETDVIW,
$GETMSG, $GETQUI, $GETQUIW, $INIT_VOL, $MOUNT, $PUTMSG, $QIO,
$QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SS$_NORMAL

SS$_DEVNOTMBX

SS$_INTERLOCK

SS$_IVCHAN

SS$_NOPRIV

System Service Descriptions
$DELMBX

The service completed successfully.

The specified channel is not assigned to a
mailbox.

The bit map lock for allocating mailboxes from
the specified shared memory is locked by another
process.

You specified an invalid channel number, that is,
a channel number of 0 or a number larger than
the number of channels available.

The specified channel is not assigned to a device;
the process does not have the privilege to delete
a permanent mailbox or a mailbox in memory
shared by multiple processors; or the access mode
of the caller is less privileged than the access
mode from which the channel was assigned.

SYS-143

System Service Descriptions
$DELPRC

$DELPRC-Delete Process

Format

Returns

Arguments

SYS-144

Allows a process to delete itself or another process.

SYS$DELPRC [pidadr] ,[prcnam]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

pidadr
VMS Usage:
type:
access:
mechanism:

process_id
longword (unsigned)
modify
by reference

Process identification (PID) of the process to be deleted. The pidadr argument is
the address of a longword that contains the PID. The pidadr argument can refer
to a process running on the local node or a· process running on another node in
the cluster.

You must specify the pidadr argument to delete processes in other DIC groups.

prcnam
VMS Usage:
type:
access:
mechanism:

process_name
character-coded text string
read only
by descriptor-fixed length string descriptor

Process name of the process to be deleted. The prcnam is the address of a
character string descriptor pointing to the process name string. A process
running on the local node can be identified with a 1- to 15-character string. To
identify a process on a particular node on a cluster, specify the full process name,
which includes the node name as well as the process name. The full process name
can contain up to 23 characters.

You use the prcnam argument to delete only processes in the same DIC group
as the calling process, because process names are unique to DIC groups, and
the VMS operating system uses the DIC group number of the calling process to
interpret the process name specified by the prcnam argument.

You must use the pidadr argument to delete processes in other groups.

Description

System Service Descriptions
$DELP RC

The Delete Process service allows a process to delete itself or another process.
If you specify neither the pidadr nor prcnam argument, $DELPRC deletes the
calling process; control is not returned. If the longword at address pidadr is 0,
the PID of the target process is returned. This system service requires system
dynamic memory.

When you delete a process or subprocess, a termination message is sent to its
creating process, provided the mailbox to receive the message still exists and
the creating process has access to the mailbox. The termination message is sent
before the final rundown is initiated; thus, the creating process might receive the
message before the process deletion is complete.

Due to the complexity of the required rundown operations, a significant time
interval occurs between a delete request and the actual deletion of the process.
However, the $DELPRC service returns to the caller immediately after initiating
the rundown operation.

If you issue subsequent delete requests for a process currently being deleted, the
requests return immediately with a successful completion status. For a complete
list of the actions performed by the system when it deletes a process, see the
Introduction to VMS System Services.

Required Privileges
Depending on the operation, the calling process might need one of the following
privileges to use $DELPRC:

• GROUP privilege to delete processes in the same group that do not have the
same UIC

• WORLD privilege to delete any process in the system

Required Quota
None. Deductible resource quotas granted to subprocesses are returned to the
creating process when the subprocesses are deleted.

Related Services
$CANEXH, $CREPRC, $DCLEXH, $EXIT, $FORCEX, $GETJPI, $GETJPIW,
$HIBER, $PROCESS_SCAN, $RESUME, $SETPRI, $SETPRN, $SETPRV,
$SETRWM, $SUSPND, $WAKE

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_INCOMPAT

SS$_INSFMEM

SS$_NONEXPR

The service completed successfully.

The process name string or string descriptor
cannot be read by the caller, or the process
identification cannot be written by the caller.

The remote node is running a version of VMS
that is incompatible.

The system dynamic memory is insufficient for
completing the operation.

The specified process does not exist, or an invalid
process identification was specified.

SYS-145

System Service Descriptions
$DELP RC

SS$_NOPRIV

SS$_NOSUCHNODE

SS$_REMRSRC

SS$_UNREACHABLE

SYS-146

The caller does not have the privilege to delete
the specified process.

The process name refers to a node that is not
currently recognized as part of the cluster.

The remote node has insufficient resources to
respond to the request. (Bring this error to the
attention of your system manager.)

The remote node is a member of the cluster but
is not accepting requests. (This is normal for a
brief period early in the system boot process.)

System Service Descriptions
$DELTVA

$DELTVA-Delete Virtual Address Space

Format

Returns

Arguments

Deletes a range of addresses from a process's virtual address space. Upon
successful completion of the service, the deleted pages are inaccessible, and
references to them cause access violations.

SYS$DELTVA inadr ,[retadr] ,[acmode]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

inadr
VMS Usage:
type:
access:
mechanism:

address_range
longword (unsigned)
read only
by reference

Starting and ending virtual addresses of the pages to be deleted. The inadr
argument is the address of a 2-longword array containing, in order, the starting
and the ending process virtual addresses. If the starting and ending virtual
addresses are the same, a single page is deleted. Only the virtual page number
portion of each virtual address is used; the low-order nine bits are ignored.

The $DELTVA service deletes pages starting at the address contained in the
second longword of the inadr argument and ending at the address in the first
longword. Thus, if you use the same address array for both the Create Virtual
Address Space ($CRETVA) and the $DELTVA services, the pages are deleted in
the reverse order from which they were created.

retadr
VMS Usage: address_range
type: longword (unsigned)
access: write only
mechanism: by reference

Starting and ending process virtual addresses of the pages that $DELTVA has
deleted. The retadr argument is the address of a 2-longword array containing, in
order, the starting and ending process virtual addresses.

SYS-147

System Service Descriptions
$DELTVA

Description

acmode
VMS Usage:
type:
access:
mechanism:

access_mode
longword (unsigned)
read only
by value

Access mode on behalf of which the service is to be performed. The acmode
argument is a longword containing the access mode.

The most privileged access mode used is the access mode of the caller. The calling
process can delete pages only if those pages are owned by an access mode equal
to or less privileged than the access mode of the calling process.

The Delete Virtual Address Space service deletes a range of addresses from a
process's virtual address space. Upon successful completion of the service, the
deleted pages are inaccessible, and references to them cause access violations. If
any of the pages in the specified range have already been deleted or do not exist,
the service continues as if the pages were successfully deleted.

If an error occurs while pages are being deleted, the retadr argument specifies
the pages that were successfully deleted before the error occurred. If no pages are
deleted, both longwords in the return address array contain the value -1.

Required Privileges
None

Required Quota
None

Related Services
$ADJSTK, .$ADJWSL, $CRETVA, $CRMPSC, $DGBLSC, $EXPREG, $LCKPAG,
$LKWSET, $MGBLSC, $PURGWS, $SETPRT, $SETSTK, $SETSWM, $ULKPAG,
$ULWSET, $UPDSEC, $UPDSECW

Condition Values Returned

SYS-148

SS$_NORMAL

SS$_ACCVIO

SS$_NOPRIV

SS$_PAGOWNVIO

The service completed successfully.

The input address array cannot be read by the
caller, or the return address array cannot be
written by the caller.

A page in the specified range is in the system
address space.

A page in the specified range is owned by an
access mode more privileged than the access
mode of the caller.

System Service Descriptions
$DEQ

$DEQ-Dequeue Lock Request

Format

Returns

Arguments

Dequeues (unlocks) granted locks; dequeues the sublocks of a lock; or cancels an
ungranted lock request. The calling process must have previously acquired the
lock or queued the lock request by calling the Enqueue Lock Request ($ENQ)
service.

SYS$DEQ [lkid] ,[valblk] ,[acmode] ,[flags]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

I kid
VMS Usage:
type:
access:
mechanism:

lock_id
longword (unsigned)
read only
by value

Lock identification of the lock to be dequeued. The lkid argument specifies this
lock identification.

Note that if you do not specify the lkid argument, you must specify the LCK$M_
DEQALL flag in the flags argument.

When you specify the LCK$M_DEQALL flag in the flags argument, different
values (or no value) for the lkid argument produce varying behavior:

• When you do not specify the lkid argument (or specify it as 0) and you do
specify the LCK$M_DEQALL flag, $DEQ dequeues all locks held by the
process, at access modes equal to or less privileged than the effective access
mode, on all resources. The effective access mode is the least privileged of the
caller's access mode and the access mode specified in the acmode argument.

• When you specify the lkid argument as a nonzero value together with the
LCK$M_DEQALL flag, $DEQ dequeues all sublocks of the lock identified
by lkid; it does not dequeue the lock identified by lkid. For this operation,
$DEQ ignores the LCK$M_CANCEL flag if it is set. A sublock of a lock is
a lock that was created when the parid argument in the call to $ENQ was
specified, where parid is the lock ID of the parent lock.

If you omit the lkid argument (or specify it as 0) and the LCK$M_DEQALL
flag is not set, the $DEQ service returns the invalid lock ID condition value
(SS$_IVLOCKID).

SYS-149

System Service Descriptions
$DEQ

SYS-150

valblk
VMS Usage:
type:
access:
mechanism:

lock_ value_block
longword (unsigned)
modify
by reference

Lock value block for the resource associated with the lock to be dequeued. The
valblk argument is the address of the 16-byte lock value block. When you specify
the LCK$M_DEQALL flag, you cannot use this argument.

When a protected write (PW) or exclusive (EX) mode lock is being dequeued and
you specify a lock value block in the valblk argument, the contents of that lock
value block are written to the lock value block in the lock database. Further, if
the lock value block in the lock database was marked as invalid, that condition is
cleared; the block becomes valid.

acmode
VMS Usage:
type:
access:
mechanism:

access_mode
longword (unsigned)
read only
by value

Access mode of the lock to be dequeued. The acmode argument is a longword
containing the access mode.

The acmode argument is valid only if the LCK$M_DEQALL flag of the flags
argument is set. The $PSLDEF macro defines the following symbols for the four
access modes.

Symbol

PSL$C_KERNEL

PSL$C_EXEC

PSL$C_SUPER

PSL$C_USER

Access Mode

Kernel

Executive

Supervisor

User

When dequeuing locks, $DEQ maximizes the access mode of the caller and the
specified acmode argument. The maximized access mode is the less privileged
of the caller's access mode and the acmode argument. If you do not specify
the acmode argument, $DEQ uses the caller's access mode. Only those locks
with an access mode that is equal to or less than the maximized access mode
are dequeued. For more information about access modes see the chapter Calling
System Services in the Introduction to VMS System Services.

flags
VMS Usage:
type:
access:
mechanism:

mask_longword
longword (unsigned)
read only
by value

Flags specifying options for the $DEQ operation. The flags argument is
a longword bit mask that is the logical OR of each bit set, where each bit
corresponds to an option.

Note that if you do not specify the lkid argument, you must specify the LCK$M_
DEQALL flag in the flags argument.

System Service Descriptions
$DEQ

A symbolic name for each flag bit is defined by the $LCKDEF macro. The
following table describes each flag.

Flag

LCK$M_DEQALL

LCK$M_CANCEL

Description

When you specify this flag, $DEQ dequeues multiple
locks, depending on the value of the lkid argument.
Refer to the description of the lkid argument for details.
The acmode argument is ignored if the LCK$M_DQALL
flag is not set. If you specify LCK$M_DEQALL, the
LCK$M_CANCEL flag, if set, is ignored.

When you specify this flag, $DEQ attempts to cancel a
lock request that was queued by $ENQ. You can cancel
only a waiting request. When the request is canceled,
$DEQ returns the condition value SS$_NORMAL.
If you attempt to cancel a granted lock, the request
fails and $DEQ returns the condition value SS$_
CANCELGRANT. There are two types of waiting
requests that can be canceled:

• A request for a new lock

• A request to convert an existing lock

When canceling a new lock request, the following action
is taken:

• If a completion AST was requested, the AST is
queued for delivery and SS$_ABORT is stored in the
lock status block.

When canceling a request to convert an existing lock,
the conversion request is canceled. The existing granted
lock remains unchanged. The following specific actions
are taken:

• The blocking AST address specified for the existing
granted lock is queued for delivery if the granted
mode of the existing lock is blocking other waiting
requests.

• If a completion AST was specified by the conversion
request, the completion AST is queued for delivery
with SS$_CANCEL status stored in the lock status
block that was specified by the conversion request.

If you specify the LCK$M_DEQALL flag, the LCK$M_
CANCEL flag is ignored.

SYS-151

System Service Descriptions
$DEQ

Description

SYS-152

Flag Description

LCK$M_INVVALBLK When you specify this flag, $DEQ marks the lock
value block, which is maintained for the resource in
the lock database, as invalid. The lock value block
remains marked as invalid until it is again written
to. The Description section of the $ENQ service
provides additional information about lock value block
invalidation.
This flag is ignored if (1) the lock mode of the lock being
dequeued is not protected write or exclusive, or (2) you
specify the LCK$M_CANCEL flag.

The Dequeue Lock Request system service dequeues (unlocks) granted locks and
waiting lock requests. The calling process must have previously acquired the lock
or queued the lock request by calling the Enqueue Lock Request ($ENQ) service.

Action taken by the $DEQ service depends on the current state (granted or
waiting) and the type of lock request (new lock or conversion request) to be
dequeued.

When dequeuing a granted lock, the $DEQ service returns the condition value
SS$_NORMAL and the following specific action is taken:

• Any queued blocking ASTs that have not been delivered are removed from the
process's AST queues.

There are two types of waiting requests that can be dequeued:

• A request for a new lock

• A request to convert an existing lock

When dequeuing a new lock request, the $DEQ service returns the condition
value SS$_NORMAL and the following specific action is taken:

• If a completion AST was requested, the completion AST is queued for delivery
with SS$_ABORT stored in the lock status block.

When dequeuing a lock for which there is a conversion request waiting, the
existing lock and its conversion request are dequeued. The $DEQ service returns
the condition value SS$_NORMAL and the following specific actions are taken:

• If a blocking AST was queued to the process, it is removed from the process's
AST queue.

• If a completion AST was specified by the conversion request, the completion
AST is queued for delivery with SS$_ABORT status stored in the lock status
block that was specified by the conversion request.

When a protected write (PW) or exclusive (EX) mode lock is being dequeued and
you specify a lock value block in the valblk argument, the contents of that lock
value block are written to the lock value block in the lock database.

If you specify the LCK$M_INVVALBLK flag in the flags argument and the lock
mode of the lock being dequeued is PW or EX, the lock value block in the lock
database is marked as invalid whether or not a lock value block was specified in
the valblk argument.

System Service Descriptions
$DEQ

The $DEQ, $ENQ, $ENQW, and $GETLKI services together provide the user
interface to the VMS lock management facility. For additional information about
lock management, refer to the descriptions of these other services and to the
Introduction to VMS System Services.

Required Privileges
None

Required Quota
None

Related Services
$ENQ, $ENQW, $GETLKI, $GETLKIW

Condition Values Returned

SS$_ACCVIO

SS$_CANCELGRANT

SS$_IVLOCKID

SS$_NORMAL

SS$_SUBLOCKS

The value block specified by the valblk argument
cannot be accessed by the caller.

The LCK$M_CANCEL flag in the flags
argument was specified, but the lock request that
$DEQ was to cancel had already been granted.

An invalid or nonexistent lock identification
was specified or the process does not have the
privilege to dequeue a lock at the specified access
mode.

The lock was dequeued successfully.

The lock has sublocks and cannot be dequeued.

SYS-153

System Service Descriptions
$DEVICE_ SCAN

$DEVICE_SCAN-Scan for Devices

Format

Returns

Arguments

SYS-154

Returns the names of all devices that match a specified set of search criteria.

SYS$DEVICE_SCAN return_devnam ,retlen ,[search_devnam] ,[itmlst] ,[contxt]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

return_devnam
VMS Usage: char_string
type: character-coded text string
access: write only
mechanism: by descriptor-fixed length string descriptor

Buffer to receive the device name. The return_devnam argument is the address
of a character string descriptor pointing to a buffer into which $DEVICE_SCAN
writes the name of the first or next device that matches the specified search
criteria. The maximum size of any device name is 64 bytes.

retlen
VMS Usage:
type:
access:
mechanism:

word_ unsigned
word (unsigned)
write only
by reference

Length of the device name string returned by $DEVICE_SCAN. The retlen
argument is the address of a word into which $DEVICE_SCAN writes the length
of the device name string.

search_devnam
VMS Usage: device_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Name of the device for which $DEVICE_SCAN is to search. The search_
devnam argument accepts the standard wildcard characters, the asterisk(*),
which matches any sequence of characters, and the percent sign(%), which
matches any one character. If the search_devnam does not include a wildcard
character, an exact match is used for comparison. For example, to match all unit
0 DU devices on any controller, specify *DU%0. This string is compared to the
most complete device name (DVI$_ALLDEVNAM). Only uppercase characters are
accepted.

itmlst
VMS Usage:
type:
access:
mechanism:

item_list_3
longword_ unsigned
read only
by reference

System Service Descriptions
$DEVICE_ SCAN

Item list specifying search criteria used to identify the device names for return by
$DEVICE_SCAN. The itmlst argument is the address of a list of item descriptors,
each of which describes one search criterion. The list of item descriptors is
terminated by a longword of 0.

The following diagram depicts the format of a single item descriptor.

31

Item Descriptor Fields

buffer length

Item Code

15

I
Buffer Address

Return Length Address

0

Buffer Length

ZK-1705-GE

A word containing a user-supplied integer specifying the length (in bytes) of the
buffer from which $DEVICE_SCAN is to read the information. The length of the
buffer needed depends upon the item code specified in the item code field of the
item descriptor.

item code
A word containing a user-supplied symbolic code specifying the item of
information that $DEVICE_SCAN is to return. The $DVSDEF macro defines
these codes. Each item code is described after this list of item descriptor fields.

buffer address
A longword containing the user-supplied address of the buffer from which
$DEVICE_SCAN is to read the information.

return length address
This field is not currently used.

contxt
VMS Usage: quadword_ unsigned
type: quadword (unsigned)
access: modify
mechanism: by reference

Value used to indicate the current position of a $DEVICE_SCAN search. The
contxt argument is the address of the quadword that receives this information.
On the initial call, the quadword should contain 0.

SYS-155

System Service Descriptions
$DEVICE_SCAN

Item Codes

Description

SYS-156

DVS$_DEVCLASS
An input value item code that specifies, as an unsigned longword, the device class
being searched. The $DCDEF macro defines these classes.

The DVS$_DEVCLASS argument is a longword containing this number; however,
DVS$_DEVCLASS uses only the low-order byte of the longword.

DVS$_DEVTVPE
An input value item code that specifies, as an unsigned longword, the device type
for which $DEVICE_SCAN is going to search. The $DCDEF macro defines these
types.

The DVS$_DEVTYPE argument is a longword containing this number; however,
DVS$_DEVTYPE uses only the low-order byte of the longword. DVS$_DEVTYPE
should be used in conjunction with $DVS_DEVCLASS to specify the device type
being searched for.

The Device Scan system service returns the names of all devices that match a
specified set of search criteria. The names returned by $DEVICE_SCAN can then
be passed to another service, for example, $GETDVI or $MOUNT.

The device names are returned for one process per call. A context value is used
to continue multiple calls to $DEVICE_SCAN.

$DEVICE_SCAN allows wildcard searches based on device names, device classes,
and device types. It also provides the ability to perform a wildcard search on
other device-related services.

$DEVICE_SCAN makes it possible to combine search criteria. For example, to
find only RA82 devices, use the following selection criteria:

DVS$_DEVCLASS = DC$_DISK and DVS$_DEVTYPE = DT$_RA82

To find all mailboxes with MB as part of the device name (excluding mailboxes
such as NLAO), use the following selection criteria:

DVS$_DEVCLASS = DC$_MAILBOX and DEVNAM = *MB*

Require~ Privileges
None

Required Quota
None

Related Services
$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DELMBX, $DISMOU, $GETDVI, $GETDVIW,
$GETMSG, $GETQUI, $GETQUIW, $INIT_ VOL, $MOUNT, $PUTMSG, $QIO,
$QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_NOSUCHDEV

SS$_NOMOREDEV

System Service Descriptions
$DEVICE_ SCAN

The service completed successfully.

The search_devnam, itmlst, or contxt
argument cannot be read by the caller, or the
retlen, return_devnam, or contxt argument
cannot be written by the caller.

The contxt argument contains an invalid value,
or the item list contains an invalid item code.

The specified device does not exist on the host
system.

No more devices match the specified search
criteria.

SYS-157

System Service Descriptions
$DGBLSC

$DGBLSC-Delete Global Section

Format

Returns

Arguments

SYS-158

Marks an existing permanent global section for deletion. The actual deletion of
the global section takes place when all processes that have mapped the global
section have deleted the mapped pages.

SYS$DGBLSC [flags] ,gsdnam ,[ident]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

flags
VMS Usage:
type:
access:
mechanism:

mask_longword
longword (unsigned)
read only
by value

Mask indicating global section characteristics. The flags argument is a longword
value. A value of 0 (the default) specifies a group global section; a value of
SEC$M_SYSGBL specifies a system global section.

gsdnam
VMS Usage:
type:
access:
mechanism:

section_name
character-coded text string
read only
by descriptor-fixed length string descriptor

Name of the global section to be deleted. The gsdnam argument is the address
of a character string descriptor pointing to this name string.

For group global sections, the VMS operating system interprets the group UIC as
part of the global section name; thus, the names of global sections are unique to
UIC groups.

ident
VMS Usage:
type:
access:
mechanism:

section_id
quadword (unsigned)
read only
by reference

Identification value specifying the version number of the global section to be
deleted and the matching criteria to be applied. The ident argument is the
address of a quadword structure containing three fields.

Description

System Service Descriptions
$DGBLSC

The version number is in the second longword. The version number contains two
fields: a minor identification in the low-order 24 bits and a major identification
in the high-order 8 bits. Values for these fields can be assigned by installation
convention to differentiate versions of global sections. If you specify no version
number when creating a section, processes that specify a version number when
mapping cannot access the global section.

The first longword specifies, in its low-order three bits, the matching criteria.
The valid values, the symbolic names by which they can be specified, and their
meanings are listed in the following table.

Value

0

1

2

Name

SEC$K_MATALL

SEC$K_MATEQU

SEC$K_MATLEQ

Match Criteria

Match all versions of the section

Match only if major and minor identifications
match

Match if the major identifications are equal and
the minor identification of the mapper is less
than or equal to the minor identification of the
global section

If you specify no address or specify it as 0 (the default), the version number and
match control fields default to 0.

The Delete Global Section service marks an existing permanent global section for
deletion. The actual deletion of the global section takes place when all processes
that have mapped the global section have deleted the mapped pages.

After a global section has been marked for deletion, any process that attempts to
map it receives the warning return status code SS$_NOSUCHSEC.

Temporary global sections are automatically deleted when the count of processes
using the section goes to 0.

A section located in memory that is shared by multiple processors can be marked
for deletion only by a process running on the same processor that created the
section.

Required Privileges
Depending on the operation, the calling process might need one or more of the
following privileges:

• SYSGBL privilege to delete a system global section

• PRMGBL privilege to delete a permanent global section

• PFNMAP privilege to delete a page frame section

• SHMEM privilege to delete a global section located in memory shared by
multiple processors

Required Quota
None

SYS-159

System Service Descriptions
$DGBLSC

Related Services
$ADJSTK, $ADJWSL, $CRETVA, $CRMPSC, $DELTVA, $EXPREG, $LCKPAG,
$LKWSET, $MGBLSC, $PURGWS, $SETPRT, $SETSTK, $SETSWM, $ULKPAG,
$ULWSET, $UPDSEC, $UPDSECW

The $DGBLSC service does not unmap a global section from a process's virtual
address space. To do this, the process should call the Delete Virtual Address
Space ($DELTVA) service, which deletes the pages to which the section is mapped.

Condition Values Returned

SYS-160

SS$_NORMAL

SS$_ACCVIO

SS$_INTERLOCK

SS$_IVLOGNAM

SS$_IVSECFLG

SS$_IVSECIDCTL

SS$_NOPRIV

SS$_NOSUCHSEC

SS$_NOTCREATOR

SS$_SHMNOTCNCT

SS$_TOOMANYLNAM

The service completed successfully.

The global section name or name descriptor or
the section identification field cannot be read by
the caller.

The bit map lock for allocating global sections
from the specified shared memory is locked by
another process.

The global section name has a length of 0 or has
more than 15 characters.

You set an invalid flag, reserved flag, or flag
requiring a user privilege.

The section identification match control field is
invalid.

The caller does not have the privilege to delete a
system global section, does not have read/write
access to a group global section, or does not have
the privilege to delete a global section located in
memory that is shared by multiple processors.

The specified global section does not exist, or the
identifications do not match.

The section is in memory shared by multiple
processors and was created by a process on
another processor.

The shared memory named in the name
argument is not known to the system. This
error can be caused by a spelling error in the
string, an improperly assigned logical name, or
the failure to identify the multiport memory as
shared at system generation time.

The logical name translation of the gsdnam
string exceeded the allowed depth of 10.

System Service Descriptions
$DISMOU

$DISMOU-Dismount Volume

Format

Returns

Arguments

Dismounts a mounted volume or volume sets.

SYS$DISMOU devnam ,[flags]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

devnam
VMS Usage:
type:
access:
mechanism:

device_name
character-coded text string
read only
by descriptor-fixed length string descriptor

Device name of the device to be dismounted. The devnam argument is the
address of a character string descriptor pointing to the device name string. The
string can be either a physical device name or a logical name. If it is a logical
name, it must translate to a physical device name.

flags
VMS Usage:
type:
access:
mechanism:

mask_ longword
longword (unsigned)
read only
by value

A longword bit vector specifying options for the dismount operation. The
flags argument is a longword bit vector wherein a bit, when set, selects the
corresponding option. Each bit has a symbolic name; these names are defined by
the $DMTDEF macro. The flags and their meanings are listed in the following
table.

Flag

DMT$M_ABORT

Meaning

The volume is to be dismounted even if the
caller did not mount the volume. If the volume
was mounted with MNT$M_SHARE specified,
$DISMOU dismounts the volume for all of the
users who mounted it.

SYS-161

System Service Descriptions
$DISMOU

Flag

DMT$M_CLUSTER

DMT$M_NOUNLOAD

DMT$M_OVR_CHECKS

DMT$M_UNIT

DMT$M_UNLOAD

SYS-162

Meaning

To specify DMT$M_ABORT, the caller must:
(1) have GRPNAM privilege for a group
volume, (2) have SYSNAM privilege for a
system volume, or (3) either own the volume or
have VOLPRO privilege.

The volume is to be dismounted clusterwide,
that is, from all nodes in the VAXcluster
system. $DISMOU dismounts the volume
from the caller's node first and then from every
other node in the existing cluster.
DMT$M_CLUSTER dismounts only system or
group volumes. To dismount a group volume
clusterwide, the caller must have GRPNAM
privilege. To dismount a system volume
clusterwide, the caller must have SYSNAM
privilege.
DMT$M_CLUSTER has no effect if the system
is not a member of a cluster. DMT$M_
CLUSTER applies only to disks.

Specifies that the volume is not to be physically
unloaded after the dismount. If both the
DMT$M_UNLOAD and DMT$M_NOUNLOAD
flags are specified, the DMT$M_NOUNLOAD
flag is ignored. If neither flag is specified,
the volume is physically unloaded, unless
the DMT$M_NOUNLOAD flag was specified
on the $MOUNT system service or the
/NOUNLOAD qualifier was specified on the
MOUNT command when the volume was
mounted.

Specifies that the volume should be dismounted
without checking for open files, spooled devices,
installed images, or installed swap and page
files.

The specified device, rather than the entire
volume set, is dismounted.

Specifies that the volume is to be physically
unloaded after the dismount. If both the
DMT$M_UNLOAD and DMT$M_NOUNLOAD
flags are specified, the DMT$M_NOUNLOAD
flag is ignored. If neither flag is specified,
the volume is physically unloaded, unless
the DMT$M_NOUNLOAD flag was specified
on the $MOUNT system service or the
/NOUNLOAD qualifier was specified on the
MOUNT command when the volume was
mounted.

Description

System Service Descriptions
$DISMOU

The Dismount Volume service dismounts a mounted volume or volume sets. To
dismount a private volume, the caller must own the volume.

When you issue the $DISMOU service, $DISMOU removes the volume from your
list of mounted volumes, deletes the logical name (if any) associated with the
volume, and decrements the mount count.

If the mount count does not equal 0 after being decremented, $DISMOU does not
mark the volume for dismounting (because the volume must have been mounted
shared). In this case, the total effect for the issuing process is that the process is
denied access to the volume and a logical name entry is deleted.

If the mount count equals 0 after being decremented, $DISMOU marks the
volume for dismounting. After marking the volume for dismounting, $DISMOU
waits until the volume is idle before dismounting it. A native volume is idle when
no user has an open file to the volume, and a foreign volume is idle when no
channels are assigned to the volume.

Native volumes are Files-11 structured disks or ANSI-structured tapes. Foreign
volumes are not Files-11 or ANSI structured media.

After a volume is dismounted, nonpaged pool is returned to the system. Paged
pool is also returned if you mounted the volume using the /GROUP or /SYSTEM
qualifier.

If a volume is part of a Files-11 volume set and the flag bit DMT$V _UNIT is not
set, the entire volume set is dismounted.

When a Files-11 volume has been marked for dismount, new channels can be
assigned to the volume, but no new files can be opened.

Note that the SS$_NORMAL status code indicates only that $DISMOU has
successfully performed one or more of the actions just described: decremented
the mount count, marked the volume for dismount, or dismounted the volume.
The only way to determine that the dismount has actually occurred is to check
the device characteristics using the Get DeviceNolume Information ($GETDVI)
service.

By specifying the DVI$_DEVCHAR item code in a call to $GETDVI, you can learn
whether a volume is mounted (it is if the DEV$V _MNT bit is set) or whether it is
marked for dismounting (it is if the DEV$M_DMT bit is set). If DEV$V _MNT is
clear or if DEV$M_DMT is set, the mount count is 0.

Required Privileges
Depending on the operation, the calling process might need one of the following
privileges to use $DISMOU:

• GRPNAM privilege to dismount a volume mounted with the /GROUP qualifier

• SYSNAM privilege to dismount a volume mounted with the /SYSTEM
qualifier

Required Quota
None

SYS-163

System Service Descriptions
$DISMOU

Related Services
$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX, I

. $DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $GETDVI, $GETDVIW,
$GETMSG, $GETQUI, $GETQUIW, $INIT_ VOL, $MOUNT, $PUTMSG, $QIO,
$QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SVS-164

SS$_NORMAL

SS$_ACCVIO

SS$_DEVALLOC

SS$_DEVOFFLINE

SS$_DEVNOTMOUNT

SS$_IVDEVNAM

SS$_IVLOGNAM

SS$_NOGRPNAM

SS$_NOIOCHAN

SS$_NONLOCAL

SS$_NOSUCHDEV

SS$_NOSYSNAM

SS$_NOTFILEDEV

The service completed successfully.

The device name descriptor cannot be read or
does not describe a readable device name.

The device is allocated to another process and
cannot be dismounted by the caller.

The specified device is not available.

The specified device is not mounted.

The device name string is not valid.

The device logical name has a length of 0 or is
longer than the allowable logical name length.

GRPNAM privilege is required to dismount a
volume mounted for groupwide access.

No I/O channel is available. To use $DISMOU, a
channel must be assigned to the volume.

The device is on a remote node.

The specified device does not exist.

SYSNAM privilege is required to dismount a
volume mounted for systemwide access.

The specified device is not file structured.

System Service Descriptions
$DLCEFC

$DLCEFC-Delete Common Event Flag Cluster

Format

Returns

Argument

Description

Marks a permanent common event flag cluster for deletion.

SYS$DLCEFC name

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

name
VMS Usage:
type:
access:
mechanism:

ef_cluster _name
character-coded text string
read only
by descriptor-fixed length string descriptor

Name of the common event flag cluster to be deleted. The name argument is the
address of a character string descriptor pointing to the name of the cluster.

The names of event flag clusters are unique to UIC groups, and the UIC group
number of the calling process is part of the name. Refer to the Introduction to
VMS System Services for more information on this argument.

The Delete Common Event Flag Cluster service marks a permanent common
event flag cluster for deletion. The cluster is actually deleted when no more
processes are associated with it. The $DLCEFC service does not disassociate
a process from a common event flag cluster; the Disassociate Common Event
Flag Cluster ($DACEFC) service does this. However, the system disassociates a
process from an event flag cluster at image exit.

If the cluster has already been deleted or does not exist, the $DLCEFC service
returns the status code SS$_NORMAL.

Required Privileges
To delete a common event flag cluster, the calling process must either have
PRMCEB privilege or have the same UIC as the process that created the cluster.

Required Quota
None

Related Services
$ASCEFC, $CLREF, $DACEFC, $READEF, $SETEF, $WAITFR, $WFLAND,
$WFLOR

SYS-165

System Service Descriptions
$DLCEFC

Condition Values Returned

SYS-166

SS$_NORMAL

SS$_IVLOGNAM

SS$_NOPRIV

The service completed successfully.

The cluster name string has a length of 0 or has
more than 15 characters.

The process does not have the privilege to delete
a permanent common event flag cluster, or the
process does not have the privilege to delete a
common event flag cluster in memory shared by
multiple processors.

System Service Descriptions
$DNS

$DNS-Distributed Name Service Clerk

Format

Returns

Arguments

The DIGITAL Distributed Name Service (DECdns) Clerk allows client
applications to store resource names and addresses.

The $DNS system service completes asynchronously; that is, it returns to the
client immediately after making a name service call. The status returned to
the client call indicates whether a request was successfully queued to the name
service.

The DIGITAL Distributed Name Service (DECdns) Clerk Wait ($DNSW) system
service is the synchronous equivalent of $DNS. $DNSW is identical to $DNS in
every way except that $DNSW returns to the caller after the operation completes.

SYS$DNS [efn] ,tune ,itmlst [,dnsb] [,astadr] [,astprm]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services return by immediate value a
return value in RO. Condition values returned by this call are listed in the
section Condition Values Returned in the $DNS Status Block. Errors returned
here are from the DECdns clerk and server.

ef n
VMS Usage:
type:
access:
mechanism:

ef_number
longword (unsigned)
read only
by value

Number of the event flag to be set when $DNS completes. The efn argument is a
longword containing this number. The efn argument is optional; if not specified,
event flag 0 is set.

When $DNS begins execution, it clears the event flag. Even if the service
encounters an error and completes without queuing a name service request, the
specified event flag is set.

tune
VMS Usage:
type:
access:
mechanism:

function_code
longword (unsigned)
read only
by value

Function code specifying the action that $DNS is to perform. The func argument
is a longword containing this function code.

SYS-167

System Service Descriptions
$DNS

A single call to $DNS can specify one function code. Most function codes require
or allow for additional information to be passed in the call with the itmlst
argument.

itmlst
VMS Usage:
type:
access:
mechanism:

item_list_3
longword (unsigned)
read only
by reference

Item list supplying information to be used in performing the function specified
by the func argument. The itmlst argument is the address of the item list.
The item list consists of one or more item descriptors, each of which is three
longwords. The descriptors can be in any order in the item list. Each item
descriptor specifies an item code. Item codes are specified as either input
or output parameters. Input parameters modify functions, set context, or
describe the information to be returned. Output parameters return the requested
information. The item list is terminated by a longword of 0.

The item list is a standard VMS format item list. The following figure depicts the
general structure of an item descriptor.

31 15 0

Item Code J Buffer Length

Buffer Address

Return Length Address

ZK-1705-GE

Descriptor Fields

item code

SYS-168

A word containing a symbolic code describing the nature of the information
currently in the buffer or to be returned in the buffer. The location of the buffer
is pointed to by the buffer address field. Each item code has a symbolic name that
is defined by the $DNSDEF macro. This section provides a detailed description of
item codes following the description of function codes.

buffer length
A word specifying the length of the buffer; the buffer either supplies information
to be used by $DNS or receives information from $DNS. The required length of
the buffer varies depending on the item code specified; each item code description
specifies the required length.

buffer address
A longword containing the address of the buffer that specifies or receives the
information ..

return length address
A longword containing the address of a word specifying the actual length in
bytes of the information returned by $DNS. The information resides in a buffer
identified by the buffer address field. The field applies to output item list entries

System Service Descriptions
$DNS

only and must be 0 for input entries. If the return length address is 0, it is
ignored.

dnsb
VMS Usage:
type:
access:
mechanism:

dns_status_block
quadword (unsigned)
write only
by reference

Status block to receive the final completion status of the $DNS operation. The
dnsb argument is the address of the quadword $DNS status block.

The following figure depicts the structure of a $DNS status block.

31

reserved

Status Block Fields

return status

0

return status

] outlinked l inoutdirect

qualifying status

ZK-1080A-GE

Set on completion of a DECdns clerk request to indicate the success or failure of
the operation. Check the qualifying status word for additional information about
a request marked as successful.

qualifying status
This field consists of two flags that provide additional information about a
successful request to the DECdns server. The two flags are DNS$V _DNSB_
INOUTDIRECT and DNS$V_DNSB_OUTLINKED and are defined as follows:

• DNS$V_DNSB_INOUTDIRECT-Indicates whether the members were found
in the top level group or in one of the subgroups. The values are defined as
follows:

1: The member was found in the top-level group.
0: The member was found in one of the subgroups of the top-level group.

• DNS$V _DNSB_OUTLINKED-If set, indicates that one or more soft links
were encountered while resolving the name specified in a call.

Functions that access the DECdns server return a qualifying status. Name
conversion functions do not return qualifying status.

astadr
VMS Usage:
type:
access:
mechanism:

ast_procedure
procedure entry mask
call without stack unwinding
by reference

Asynchronous system trap (AST) routine to be executed when I/O completes. The
astadr argument, which is the address of a longword value, is the entry mask to
the AST routine.

SYS-169

System Service Descriptions
$DNS

The AST routine executes in the access mode of the caller of $DNS.

astprm
VMS Usage:
type:
access:
mechanism:

user_arg
longword (unsigned)
read only
by value

Asynchronous system trap parameter passed to the AST service routine. The
astprm argument is a longword value containing the AST parameter.

Function Codes

DNS$_ADD_REPLICA

SYS-170

This request adds a directory replica in the specified clearinghouse. Specify
the item code DNS$_REPLICATYPE as either a secondary directory (DNS$K_
SECONDARY) or a read-only directory (DNS$K_READONLY).

You must have control access to the directory being replicated and write access to
the new replica's clearinghouse.

You must specify the following input value item codes:

DNS$_CLEARINGHOUSE
DNS$_DIRECTORY
DNS$_REPLICATYPE

You may specify the following input value item codes:

DNS$_CONF
DNS$_WAIT

$DNS returns the following qualifying status:

DNS$V _DNSB_OUTLINKED

DNS$_ALLOW_CH
This request permits a directory to store clearinghouse objects. This request
takes as input the name of a directory (DNS$_DIRECTORY).

You must have control access to the parent directory.

You must specify the following input value item code:

DNS$_DIRECTORY

You may specify the following input value item codes:

DNS$_CONF
DNS$_WAIT

DNS$_CREATE_DIRECTORY
This request creates a master directory in the specified clearinghouse.

You must have write or control access to the parent directory and Write access to
the master replica's clearinghouse.

You must specify the following input value item code:

DNS$_DIRECTORY

System Service Descriptions
$DNS

You may specify the following input value item codes:

DNS$_CLEARINGHOUSE
DNS$_WAIT

You may specify the following output value item code:

DNS$_0UTCTS

DNS$_CREATE_LINK
This request creates a soft link to a directory, object, soft link, or clearinghouse
in the namespace. Specify the target to which the soft link points in the DNS$_
TARGETNAME item code. Use the DNS$_RESOLVE_NAME function code to
check the existence of the target.

You must have write or control access to the directory in which the soft link is
being created.

You must specify the following input value item codes:

DNS$_LINKNAME
DNS$_TARGETNAME

You may specify the following input value item codes:

DNS$_CONF
DNS$_EXPIRETIME
DNS$_EXTENDTIME
DNS$_WAIT

You may specify the following output value item code:

DNS$_0UTCTS

DNS$_CREATE_OBJECT
This request creates an object in the namespace. Initially, the object has
the attributes of DNSCTS, DNSUTS, DNS$Class, DNS$Clas.sVersion, and
DNS$ACS. The name service creates the DNSCTS, DNSUTS, and DNS$ACS
attributes. The client application supplies the DNS$Class and DNS$ClassVersion
attributes. You can add additional attributes using the DNS$_MODIFY_
ATTRIBUTE function.

The DECdns clerk cannot guarantee that an object has been created. Another
DNS$_CREATE_OBJECT request could supersede the object created by your
call. To verify an object creation, wait until the directory is skulked and then
check to see if the requested object is present. If the value of the directory's
DNS$ALLUPTO attribute is greater than the DNS$CTS of the object, your object
has been successfully created.

If specified, DNS$_0UTCTS holds the creation timestamp of the newly created
object.

This function code returns the following:

SS$_NORMAL
DNS$_ENTRYEXISTS
DNS$_INVALID_OBJECTNAME
DNS$_INVALID_CLASSNAME
Any condition listed in the section Condition Values Returned

You must have write access to the directory where the object will reside.

SYS-171

System Service Descriptions
$DNS

SYS-172

You must specify the following input value item codes:

DNS$_CLASS
DNS$_0BJECTNAME
DNS$_ VERSION

You may specify the following input value item codes:

DNS$_CONF
DNS$_WAIT

You may specify the following output value item code:

DNS$_0UTCTS

DNS$_DELETE_DIRECTORV
This request removes a directory from the namespace.

You must have delete access to the directory being deleted and write, control, or
delete access to the parent directory.

You must specify the following input value item code:

DNS$_DIRECTORY

You may specify the following input value item codes:

DNS$_CONF
DNS$_WAIT

DNS$_DELETE_OBJECT
This request removes the specified object from the namespace.

This function code returns the following:

SS$_NORMAL
DNS$_INVALID_OBJECTNAME
Any condition listed in the section Condition Values Returned

You must have delete access to the object.

You must specify the following input value item code:

DNS$_0BJECTNAME

You may specify the following input value item codes:

DNS$_CONF
DNS$_WAIT

$DNS returns the following qualifying status:

DNS$V _DNSB_OUTLINKED

· DNS$_DISALLOW_CH
This request prevents a directory from storing clearinghouse objects. This request
takes as input the name of a directory (DNS$_DIRECTORY).

You must have control access to the parent directory, and read or control access to
any child directories.

You must specify the following input value item code:

DNS$_DIRECTORY

System Service Descriptions
$DNS

You may specify the following input value item codes:

DNS$_CONF
DNS$_WAIT

DNS$_ENUMERATE_ATTRIBUTES
This request returns a set of attribute names in DNS$_0UTATTRIBUTESET
that are associated with the directory, object, soft link, or clearinghouse. Specify
the entry type in the DNS$_LOOKINGFOR item code. The function returns
either DNS$K_SET or DNS$K_SINGLE along with the set of attribute names.

To manipulate the attribute names returned by this call, you should use the
DNS$REMOVE_FIRST_SET_ VALUE run-time library routine.

The DECdns clerk enumerates attributes in alphabetical order. A return status
of DNS$_MOREDATA implies that not all attributes have been enumerated.
You should make further calls, setting DNS$_CONTEXTVARNAME to the last
attribute in the set returned, until the procedure returns SS$_NORMAL.

This function code returns the following:

SS$_NORMAL
DNS$_MOREDATA
DNS$_INVALID_ENTRYNAME
DNS$_INVALID_CONTEXTNAME
Any condition listed in the section Condition Values Returned

You must have read access to the directory, object, soft link, or clearinghouse.

You must specify the following input value item codes:

DNS$_ENTRY
DNS$_LOOKINGFOR

You must specify the following output value item code:

DNS$_ OUTATTRIBUTESET

You may specify the following input value item codes:

DNS$_CONF
DNS$_CONTEXTVARNAME
DNS$_WAIT

You may specify the following output value item code:

DNS$_CONTEXTVARNAME

$DNS returns the following qualifying status:

DNS$V _DNSB_OUTLINKED

DNS$_ENUMERATE_CHILDREN
This request takes as input a directory name with an optional simple name that
uses a wildcard. The DECdns clerk matches the input against child directory
entries in the specified directory.

The DECdns clerk returns a set of simple names of child directories in the target
directory that match the name with the wildcard. A null set is returned when
there is no match or the directory has no child directories.

SVS-173

System Service Descriptions
$DNS

SYS-174

To manipulate the values returned by this call, you should use the
DNS$REMOVE_FIRST_SET_ VALUE run-time routine. The value returned
is a simple name.

The clerk enumerates child directories in alphabetical order. If the call returns
DNS$_MOREDATA, not all child directories have been enumerated and the
client should make further calls, setting DNS$_CONTEXTVARNAME to the last
child directory in the set returned, until the procedure returns SS$_NORMAL.
Subsequent calls return the child directories, starting with the directory specified
in DNS$_CONTEXTVARNAME and continuing in alphabetical order.

This function code returns the following:

SS$_NORMAL
DNS$_MOREDATA
DNS$_INVALID_DIRECTORYNAME
DNS$_INVALID_CONTEXTNAME
DNS$_INVALID_ WILDCARDNAME

You must have read access to the parent directory.

You must specify the following input value item code:

DNS$_DIRECTORY

You must specify the following output value item code:

DNS$_0UTCHILDREN

You may specify the following input value item codes:

DNS$_CONF
DNS$_CONTEXTVARNAME
DNS$_WAIT
DNS$_ WILDCARD

You may specify the following output value item code:

DNS$_CONTEXTVARNAME

$DNS returns the following qualifying status:

DNS$V _DNSB_OUTLINKED

DNS$_ENUMERATE_OBJECTS
This request takes as input the directory name, a simple name that can use a
wildcard, and a class name that uses a wildcard. The DECdns clerk matches
these against objects in the directory. If a wildcard and class filter are not
specified, all objects in the directory are returned.

The function returns (in DNS$_0UTOBJECTS) a set of simple names of object
entries in the directory that match the name with the wildcard. The function also
returns the class of the object entries, if specified with DNS$_RETURNCLASS. If
no object entries match the wildcard or the directory contains no object entries, a
null set is returned.

To manipulate the values returned by this call, you should use the
DNS$REMOVE_FIRST_SET_ VALUE run-time routine. The value returned
is a simple name structure.

System Service Descriptions
$DNS

The clerk enumerates objects in alphabetical order. If the call returns DNS$_
MOREDATA, not all objects have been enumerated and the client should make
further calls, setting DNS$_CONTEXTVARNAME to the last object in the
set returned, until the procedure returns SS$_NORMAL. If the class filter is
specified, only those objects of the specified classes are returned.

This function code returns the following:

SS$_NORMAL
DNS$_MOREDATA
DNS$_INVALID_DIRECTORYNAME
DNS$_INVALID_CONTEXTNAME
DNS$_INVALID_ WILDCARDNAME
DNS$_INV ALID _ CLASSNAME

You must have read access to the directory.

You must specify the following input value item code:

DNS$_DIRECTORY

You must specify the following output value item code:

DNS$_0UTOBJECTS

You may specify the following input value item codes:

DNS$_CLASSFILTER
DNS$_CONF
DNS$_CONTEXTVARNAME
DNS$_RETURNCLASS
DNS$_WAIT
DNS$_ WILDCARD

You may specify the following output value item code:

DNS$_CONTEXTVARNAME

$DNS returns the following qualifying status:

DNS$V _DNSB_OUTLINKED

DNS$_ENUMERATE_SOFTLINKS
This request takes as input the name of a directory and a wildcarded simple
name. The DECdns clerk matches these against soft links in the directory. It
returns (in DNS$_0UTSOFTLINKS) a set consisting of simple names of soft links
in the directory that match the wildcarded name. If no soft link entries match
the wildcard or the directory contains no soft links, a null set is returned.

If no wildcard is specified, then all soft links in the directory are returned.

To manipulate the values returned by this call, use the DNS$REMOVE_FIRST_
SET_ VALUE run-time library routine. The value returned is a simple name.

The clerk enumerates soft links in alphabetical order. If the call returns DNS$_
MOREDATA, not all matching soft links have been enumerated and the client
should make further calls, setting DNS$_CONTEXTVARNAME to the last soft
link in the set returned, until the procedure returns SS$_NORMAL.

SYS-175

System Service Descriptions
$DNS

SYS-176

This function code returns the following:

SS$_NORMAL
DNS$_INVALID_DIRECTORYNAME
DNS$_INVALID_CONTEXTNAME
DNS$_INVALID_ WILDCARDNAME

You must have read access to the directory.

You must specify the following input value item code:

DNS$_DIRECTORY

You must specify the following output value item code:

DNS$_0UTSOFTLINKS

You may specify the following input value item codes:

DNS$_CONF
DNS$_CONTEXTVARNAME
DNS$_WAIT
DNS$_ WILDCARD

You may specify the following output value item code:

DNS$_CONTEXTVARNAME

$DNS returns the following qualifying status:

DNS$V _DNSB_OUTLINKED

DNS$_FULL_ OPAQUE_ TO _STRING
This request converts a full name in opaque format to its equivalent in string
format. To prevent the namespace nickname from being included in the string
name, set the byte referred to by DNS$_SUPPRESS_NSNAME to 1.

This function code returns the following:

SS$_NORMAL
DNS$_INVALIDNAME

You must specify the following input value item code:

DNS$_FROMFULLNAME

You must specify the following output value item code:

DNS$_TOSTRINGNAME

You may specify the following input value item code:

DNS$_SUPPRESS_NSNAME

DNS$_MODIFV _ATTRIBUTE
This request applies one update to the specified entry in the namespace. The
update operations are as follows:

• Add or remove an attribute.

• Add or remove an attribute value from either a single-valued attribute or a
set-valued attribute.

System Service Descriptions
$DNS

To add a value to a single-valued or set-valued attribute, specify a value in
the DNS$_MODVALUE item code. If you do not specify a value for a single
valued attribute, you receive the error DNS$_INVALIDUPDATE. Single-valued
attributes cannot exist without a value.

If you do not specify a value for a set-valued attribute, the clerk creates the
attribute with an empty set.

To delete an attribute value, use the DNS$_MODVALUE item code to remove
the specified value from an attribute set. If you do not specify the item code, the
name service removes the attribute and all its values.

This function code returns the following:

SS$_NORMAL
DNS$_ WRONGATTRIBUTETYPE
DNS$_INVALIDUPDATE
DNS$_INVALID_ENTRYNAME
DNS$_INVALID_ATTRIBUTENAME

You must have write or delete access to the directory, object, soft link, or
clearinghouse whose attribute is being modified, depending on whether the
operation adds or removes the attribute.

You must specify the following input value item codes:

DNS$_ATTRIBUTENAME
DNS$_ATTRIBUTETYPE
DNS$_ENTRY
DNS$_LOOKINGFOR
DNS$_MODOPERATION

You may specify the following input value item codes:

DNS$_CONF
DNS$_MODVALUE
DNS$_WAIT

$DNS returns the following qualifying status:

DNS$V _DNSB_OUTLINKED

DNS$_NEW_EPOCH
This request reconstructs an entire replica set of a directory and synchronizes the
copies to recover as much of the original directory state as possible. The function
can also be used to change a replica type for configuration management purposes.

This request takes as input the full name of a clearinghouse (DNS$_
CLEARINGHOUSE) and directory (DNS$_DIRECTORY). Specify, optionally,
the full names of clearinghouses in which to store secondary and read-only
replicas (DNS$_SECCHSET and DNS$_READCHSET).

You must have control access to the parent directory and write access to each
clearinghouse for which the replica type will be changed from its current value to
a new value.

You must specify the following input value item codes:

DNS$_CLEARINGHOUS
DNS$_DIRECTORY

SYS-177

System Service Descriptions
$DNS

SYS-178

You may specify the following input value item codes:

DNS$_READCHSET
DNS$_SECCHSET

DNS$_PARSE_FULLNAME_STRING
This request takes a full name in string format and converts it to its equivalent
in opaque format. If you specify the DNS$_NEXTCHAR_PTR item code, the
clerk examines the name specified in DNS$_FROMSTRINGNAME for invalid
characters. The buffer returns the address of the character in the name that
immediately follows a valid DECdns name.

This function code returns the following:

SS$_NORMAL
DNS$_INVALIDNAME

You must specify the following input value item code:

DNS$_FROMSTRINGNAME

You must specify the following output value item code:

DNS$_TOFULLNAME

You may specify the following input value item code:

DNS$_NEXTCHAR_PTR

DNS$_PARSE_SIMPLENAME_STRING
This request takes a simple name in string format and converts it to its
equivalent in opaque' format. If you specify the DNS$_NEXTCHAR_PTR item
code, the clerk examines the name specified in DNS$_FROMSTRINGNAME for
invalid characters. The buffer returns the address of the character in that name
that immediately follows a valid DECdns name.

This function code return the following:

SS$_NORMAL
DNS$_INVALIDNAME

You must specify the following input value item code:

DNS$_FROMSTRINGNAME

You must specify the following output value item code:

DNS$_TOSIMPLENAME

You may specify the following input value item code:

DNS$_NEXTCHAR_PTR

DNS$_READ_ATTRIBUTE
This request returns (in DNS$_0UTVALSET) a set whose members are the
values of the specified attribute.

To manipulate the values returned by this call, use the DNS$REMOVE_FIRST_
SET_ VALUE run-time library routine. The run-time library routine returns the
value of a single-valued attribute or the first value from a set-valued attribute.
The contents of DNS$_0UTVALSET are passed to DNS$REMOVE_FIRST_SET_
VALUE, and the routine returns the value of the attribute.

System Service Descriptions
$DNS

The attribute values are returned in the order in which they were created. If the
call returns DNS$_MOREDATA, not all of the set members have been returned.
The client application can make further calls, setting DNS$_CONTEXTVARTIME
to the timestamp of the last attribute in the set returned, until the procedure
returns SS$_NORMAL.

If the client sets the DNS$_MAYBEMORE item code to 1, the name service
attempts to make subsequent DNS$_READ_ATTRIBUTE calls for the same value
more efficient.

This function code returns the following:

SS$_NORMAL
DNS$_MOREDATA
DNS$_INVALID_ENTRYNAME
DNS$_INVALID_ATTRIBUTENAME

You must have read access to the object whose attribute is to be read.

You must specify the following input value item codes:

DNS$_ATTRIBUTENAME
DNS$_ENTRY
DNS$_LOOKINGFOR

You must specify the following output value item code:

DNS$_0UTVALSET

You may specify the following input value item codes:

DNS$_CONF
DNS$_CONTEXTVARTIME
DNS$_MAYBEMORE
DNS$_WAIT

You may specify the following output value item code:

DNS$_CONTEXTVARTIME

$DNS returns the following qualifying status:

DNS$V _DNSB_OUTLINKED

DNS$_REMOVE_LINK
This request deletes a soft link from the namespace. Only the soft link is deleted.
Any DECdns name that is referenced by the soft link remains unaffected by the
operation.

You must have delete access to the soft link, or delete or control access to its
parent directory.

You must specify the following input value item code:

DNS$_LINKNAME

You may specify the following input value item codes:

DNS$_CONF
DNS$_WAIT

DNS$_REMOVE_REPLICA
This request removes the specified replica of a directory.

SYS-179

System Service Descriptions
$DNS

SYS-180

You must have control access to the replica being removed and write access to the
replica's clearinghouse.

You must specify the following input value item codes:

DNS$_CLEARINGHOUSE
DNS$_DIRECTORY

You may specify the following input value item codes:

DNS$_CONF
DNS$_WAIT

DNS$_RESOLVE_NAME
This request follows a chain of soft links to its target. The function returns the
full name of the target.

Applications that maintain their own databases of opaque DECdns names should
use DNS$_RESOLVE_NAME any time they receive the qualifying status DNS$V _
DNSB_OUTLINKED. The qualifying status indicates that a soft link was followed
to make the request to the DECdns server. After receiving the resolved name,
the application should store it, so future references to the name do not incur the
overhead of following a soft link.

If the application provides a name that does not contain any soft links, DNS$_
NOTLINKED status is returned. If the target of any of the chain of soft links
followed does not exist, the DNS$_DANGLINGLINK status is returned. To obtain
the target of any particular soft link, use the DNS$_READ_ATTRIBUTE function
with DNS$_LOOKINGFOR set to DNS$K_SOFTLINK and request the attribute
DNS$LINKTARGET. This can be useful in discovering which link in a chain does
not point to an existing target. If the DECdns clerk detects a loop, it returns
DNS$_POSSIBLECYCLE status.

This function code returns the following:

SS$_NORMAL
DNS$_INVALID _LINKNAME
DNS$_NOTLINKED
DNS$_POSSIBLECYCLE

You must have read access to each of the soft links in the chain.

You must specify the following input value item code:

DNS$_LINKNAME

You must specify the following output value item code:

DNS$_0UTNAME

You may specify the following input value item codes:

DNS$_CONF
DNS$_WAIT

$DNS returns the following qualifying status:

DNS$V _DNSB_OUTLINKED

DNS$_SIMPLE_ OPAQUE_ TO _STRING
This request takes a simple name in opaque format and converts it to its
equivalent in string format.

System Service Descriptions
$DNS

This function code returns the following:

SS$_NORMAL
DNS$_INVALIDNAME

You must specify the following input value item code:

DNS$_FROMSIMPLENAME

You must specify the following output value item code:

DNS$_TOSTRINGNAME

DNS$_SKULK
This request attempts to ensure that all replicas of the specified directory have
absorbed all updates applied to any replica prior to the time the skulk began.
Successful update of the replica set requires all replicas to be available for an
extended time.

You must have control access to the directory being skulked.

You must specify the following input value item code:

DNS$_DIRECTORY

CNS$_ TEST _ATTRIBUTE
This request tests an object for the presence of a particular attribute value. This
function returns DNS$_TRUE in the $DNS status block if the specified attribute
has one of the following characteristics:

• It is a single-valued attribute and its value matches the specified value.

• It is a set-valued attribute and the attribute contains the specified value as
one of its members.

If the attribute is not present or if the specified attribute does not exist, the
function returns DNS$_FALSE in the $DNS status block.

This function call returns the following:

DNS$_INVALID_ENTRYNAME
DNS$_INVALID_ATTRIBUTENAME

You must have test or read access to the directory, object, soft link, or
clearinghouse whose attribute is to be tested.

You must specify the following input value item codes:

DNS$_ATTRIBUTENAME
DNS$_ENTRY
DNS$_LOOKINGFOR
DNS$_VALUE

You may specify the following input value item codes:

DNS$_CONF
DNS$_WAIT

$DNS returns the following qualifying status:

DNS$V _DNSB_OUTLINKED

SYS-181

System Service Descriptions
$DNS

Item Codes

SYS-182

CNS$_ TEST _GROUP
This request tests a group object for a particular member. It returns DNS$_
TRUE in the $DNS status block if the specified member is a member of the
specified group (or a subgroup thereof), and DNS$_FALSE otherwise. If the clerk
searches a subgroup and one or more of the subgroups is unavailable, the clerk
returns the status encountered in trying to access that group.

The DNS$_INOUTDIRECT argument, on input, controls the scope of the search.
If you set this item code to 1, the clerk searches only the top-level group. If you
set it to 0, the clerk searches all of the subgroups. On output, the clerk returns
a 1 in the DNS$V _DNSB_INOUTDIRECT qualifying status if the member
was found in the top-level group; it returns a 0 if the member was found in a
subgroup.

This function code returns the following:

SS$_NORMAL
DNS$_NOTAGROUP
DNS$_INVALID_GROUPNAME
DNS$_INVALID_MEMBERNAME

You must have test or read access to each of the groups being tested or control
access to their respective directories.

You must specify the following input value item codes:

DNS$_GROUP
DNS$_MEMBER

You may specify the following input value item codes:

DNS$_CONF
DNS$_INOUTDIRECT
DNS$_WAIT

$DNS returns the following qualifying status:

DNS$V _DNSB_INOUTDIRECT
DNS$V _DNSB_OUTLINKED

Table SYS-5 provides a summary of item codes that are valid as an item
descriptor in the itmlst argument. The table lists the item codes and their data
types. Complete descriptions of each item code are provided after the table.

Table SVS-5 Item Codes and Their Data Types

Item Code

DNS$_ATTRIBUTENAME

DNS$_ATTRIBUTETYPE

Data Type

An opaque simple name, which is limited to
31 ISO Latin-1 characters.

A single byte, indicating whether the attribute
is a set (DNSK$_SET) or a single value
(DNS$K_SINGLE), followed by an opaque
simple name.

(continued on next page)

System Service Descriptions
$DNS

Table SYS-5 (Cont.) Item Codes and Their Data Types

Item Code

DNS$_CLASS

DNS$_CLASSFILTER

DNS$_CLEARINGHOUSE

DNS$_CONF

DNS$_CONTEXTVARNAME

DNS$_CONTEXTVARTIME
DNS$_DIRECTORY

DNS$_ENTRY

DNS$_EXPIRETIME

DNS$_EXTENDTIME

DNS$_FROMFULLNAME

DNS$_FROMSIMPLENAME

DNS$_FROMSTRINGNAME

DNS$_GROUP
DNS$_INOUTDIRECT

DNS$_LINKNAME

DNS$_LOOKINGFOR

DNS$_MAYBEMORE

DNS$_MEMBER

DNS$_MODOPERATION

Data Type

An opaque simple name, limited to 31 ISO
Latin-1 characters.

An opaque simple name that can contain a
wild card.
An opaque simple name of a clearinghouse.

The confidence setting, which is a 1-byte
field with the value DNSK_LOW, DNSK_
MEDIUM, or DNS$K_HIGH
An opaque simple name.

A creation timestamp (CTS).

An opaque full name of a directory.
An opaque full name of a directory, soft link,
group, or clearinghouse.

A quadword VMS absolute time
representation.

A quadword VMS relative time
representation.

An opaque full name.

An opaque simple name.

A full or simple name consisting of a string
of IS0-1 Latin characters. The length of the
name is length stored separately in an item
list.

An opaque full name.
A 1-byte Boolean field. Valid values are 0 and
1.

An opaque full name of a soft link.

A 1-byte field. Valid values are DNS$K_
OBJECT, DNS$K_SOFTLINK, DNS$K_
CHILDDIRECTORY, DNS$K_DIRECTORY, or
DNS$K_CLEARINGHOUSE.

A 1-byte Boolean field. Valid values are
DNS$_FALSE and DNS$_TRUE.

A single byte, indicating whether the
member is a principal (DNS$K_GRPMEM_
NOT_GROUP) or another group (DNS$K_
GRPMEM_IS_GROUP), followed by the
opaque full name of the member.

A value indicating that an attribute is
being added (DNS$K_PRESENT) or deleted
(DNS$K_ABSENT).

(continued on next page)

SYS-183

System Service Descriptions
$DNS

Table SYS-5 (Cont.) Item Codes and Their Data Types

SYS-184

Item Code

DNS$_MODVALUE

DNS$_NEXTCHAR_PTR

DNS$_0BJECTNAME
DNS$_0UTATTRIBUTESET

DNS$_0UTCHILDREN

DNS$_0UTCTS
DNS$_0UTNAME
DNS$_0UTOBJECTS

DNS$_ OUTSOFTLINKS

DNS$_0UTVALSET
DNS$_READCHSET
DNS$_REPLICATYPE

DNS$_RETURNCLASS

DNS$_SECCHSET
DNS$_SUPPRESS_NSNAME

DNS$_TARGETNAME

DNS$_TOFULLNAME

DNS$_TOSIMPLENAME

DNS$_TOSTRINGNAME

DNS$_VALUE

Data Type

The structure of this value is dependent on
the application.
The address of an invalid character following
a valid full or simple name.
An opaque full name.
DNS$K_SET or DNS$K_SINGLE in the first
byte followed by a single or set of attribute
names.
A set of opaque simple names of the child
directories found in the parent directory.
A timestamp.
An opaque full name.
A set of opaque simple names. Optionally,
each simple name can be followed by the
value of the DNS$Class attribute.
A set of opaque simple names of the soft links
for an object.
A set of attribute values.
An opaque full name of a read-only directory.
The type of directory replica. Valid values are
secondary replica (DNS$K_SECONDARY) and
read-only replica (DNS$K_READONLY).

A flag indicating that the value of DNS$Class
is returned in DNS$_0UTOBJECTS.
An opaque full name of a secondary directory.
A 1-byte value: a value of DNS$_TRUE
suppresses the namespace name, and a value
of DNS$_FALSE returns the namespace
name.
The opaque full name of an entry in the
namespace to which a soft link will point.
The opaque full name of an object.
The maximum output of DNS$PARSE_
FULLNAME_STRING is 402 bytes.
An opaque simple name. It can be no longer
than,257 bytes.

A name string of 180-1 Latin characters. The
name length is stored separately in an item
list.
An attribute value in string format.

(continued on next page)

System Service Descriptions
$DNS

Table SVS-5 (Cont.) Item Codes and Their Data Types

Item Code

DNS$_ VERSION

DNS$_WAIT

DNS$_ WILDCARD

Data Type

A 2-byte field: the first byte contains the
major version number, the second contains the
minor version number.
A quadword VMS time representation.
An opaque simple name containing a wildcard
character.

This section describes each item code.

DNS$_ATTRIBUTENAME
The DNS$_ATTRIBUTENAME item code specifies the opaque simple name of an
attribute. An attribute name cannot be longer than 31 characters.

DNS$_ATTRIBUTETYPE
The DNS$_ATTRIBUTETYPE item code specifies whether an attribute is set
valued (DNS$K_SET) or single valued (DNS$K_SINGLE).

DNS$_CLASS
The DNS$_CLASS item code specifies the DNS$Class attribute of an object for
the $DNS function DNS$_CREATE_OBJECT. DNS$_CLASS is an opaque simple
name.

DNS$_CLASSFILTER
DNS$_CLASSFILTER specifies a filter that limits the scope of an enumeration
to those objects belonging to a certain class or group of classes. DNS$_
CLASSFILTER is used by the $DNS function DNS$_ENUMERATE_OBJECTS.
DNS$_CLASSFILTER is an opaque simple name, which can contain a wildcard
(either the asterisk or question mark).

DNS$_CLASSFILTER is optional. A wildcard simple name using an asterisk(*)
is used by default, meaning that objects of all classes are enumerated.

DNS$_CLEARINGHOUSE
DNS$_CLEARINGHOUSE specifies the clearinghouse in which the directory will
be added or removed. DNS$_CLEARINGHOUSE is an opaque full name.

DNS$_CONF
DNS$_ CONF specifies for $DNS whether to use the clerk's cache or a DECdns
server to complete the request. DNS$_CONF is 1 byte long and can take one of
the following values.

Confidence Level

DNS$K_LOW

DNS$K_MEDIUM

DNS$K_HIGH

Description

On read requests, services the DECdns request from the
clerk's cache. On create or modify requests, services the
request from a master or secondary directory.
Bypasses any cached information and services the
request directly from a DECdns server.

Services the request from the master directory.

SYS-185

System Service Descriptions
$DNS

SYS-186

DNS$_CONF is optional; if it is not specified, the DECdns clerk assumes a value
of DNS$K_LOW.

DNS$_CONTEXTVARNAME
DNS$_CONTEXTVARNAME specifies and returns a context for the enumeration
functions. On input, specify null to set the initial context. On output, DNS$_
CONTEXTVARNAME returns the opaque simple name of the last item
enumerated.

DNS$_CONTEXTVARNAME is optional. If you do not specify or you specify a
null value for the context variable item, the clerk returns the results from the
beginning of the set. To restart an enumeration where it left off, specify the last
value returned in DNS$_CONTEXTVARNAME.

DNS$_CONTEXTVARTIME
DNS$_CONTEXTVARTIME specifies and returns a timestamp for the DNS$_
READ_ATTRIBUTE function. On input, specify a timestamp to set up the
context for reading attributes. On output, DNS$_CONTEXTVARNAME returns
the timestamp of the last item read.

DNS$_CONTEXTVARTIME is optional. If you do not specify or you specify a
null value for the context variable item, the clerk returns the results from the
beginning of the set. To restart a read operation where it left off, specify the last
value returned in DNS$CONTEXTVARTIME.

DNS$_DIRECTORV
DNS$_DIRECTORY specifies the directory in which the child directories, soft
links, or objects to be enumerated reside. DNS$_DIRECTORY is an opaque full
name.

DNS$_ENTRV
DNS$_ENTRY specifies the opaque full name of an object, soft link, directory, or
clearinghouse in the namespace.

DNS$_EXPIRETIME
DNS$_EXPIRETIME specifies the absolute time when the soft link will expire.
The clerk deletes the soft link at the expiration time. If this item code is a null
value, the clerk neither checks nor deletes the link.

DNS$_EXTENDTIME
DNS$_EXTENDTIME specifies an extension factor to be added to the absolute
time if the soft link still exists. A new expiration time is created by adding the
expiration time and the extend time together.

DNS$_FROMFULLNAME
DNS$_FROMFULLNAME specifies for the DNS$_FULL_OPAQUE_TO_STRING
function the opaque full name that is to be converted into string format.

DNS$_FROMSIMPLENAME
DNS$_FROMSIMPLENAME specifies for the DNS$_SIMPLE_OPAQUE_TO_
STRING function the opaque simple name that is to be converted into string
format.

DNS$_FROMSTRINGNAME
DNS$_FROMSTRINGNAME specifies a simple or full name in string format for
the parse functions DNS$_PARSE_FULLNAME_STRING and DNS$_PARSE_
SIMPLENAME_STRING that is to be converted to opaque format.

DNS$_GROUP

System Service Descriptions
$DNS

DNS$_GROUP specifies for the DNS$_TEST_GROUP function the opaque full
name of the group that is to be tested. DNS$_GROUP must be the name of a
group object.

DNS$_1NOUTDIRECT
DNS$_INOUTDIRECT specifies a value that controls the scope of a test for group
membership.

Value Definition

1 Tests the top-level group specified by the DNS$_GROUP item (the
default).

0 Tests all subgroups of the group named in DNS$_GROUP.

DNS$_INOUTDIRECT is a single-byte value.

DNS$_LINKNAME
DNS$_LINKNAME specifies the opaque full name of a soft link.

DNS$_LOOKINGFOR
DNS$_LOOKINGFOR specifies the type of entry in the namespace on which the
call is to operate. DNS$_LOOKINGFOR can take one of the following values:

• DNS$K_DIRECTORY

• DNS$K_OBJECT

• DNS$K_CHILDDIRECTORY

• DNS$K_SOFTLINK

• DNS$K_CLEARINGHOUSE

DNS$_MAYBEMORE
DNS$_MAYBEMORE is used with the DNS$_READ_ATTRIBUTE function
to indicate that the results of the read operation are to be cached. This is a
single-byte item.

When this item is set to 1, the clerk returns all of the entry's attributes in the
return buffer. The clerk caches all of this information to make later lookups of
attribute information for the same entry quicker and more efficient.

If you do not specify this item, only the requested information is returned.

DNS$_MEMBER
DNS$_MEMBER specifies for the DNS$_TEST_GROUP function of $DNS the
opaque full name of a member that is to be tested for inclusion within a given
group.

DNS$_MODOPERATION
DNS$_MODOPERATION specifies for the DNS$_MODIFY_ATTRIBUTE function
the type of operation that is to take place. There are two types of modifications:
adding an attribute or deleting an attribute. To add an attribute, specify DNS$K_
PRESENT. To delete an attribute, specify DNS$K_ABSENT.

SYS-187

System Service Descriptions
$DNS

SYS-188

DNS$_MODVALUE
DNS$_MODVALUE specifies for the DNS$_MODIFY_ATTRIBUTE function the
value that is to be added to or deleted from an attribute. The structure of this
value is dependent on the application.

DNS$_MODVALUE is an optional argument that affects the overall operation of
the DNS$_MODIFY_ATTRIBUTE function. Note that the DNS$_MODVALUE
item code must be specified to add a single-valued attribute. You can specify a
null value for a set-valued attribute. (See the DNS$_MODIFY_ATTRIBUTE item
code description for more information.)

DNS$_NEXTCHAR_PTR
DNS$_NEXTCHAR_PTR is an optional item code that can be used with the
parse functions DNS$_PARSE_FULLNAME_STRING and DNS$_PARSE_
SIMPLENAME_STRING to return the address of an invalid character that
immediately follows a valid DECdns name. This option is most useful when
applications are parsing command line strings.

Without this item code, the parse functions return an error if any portion of the
name string is invalid.

DNS$_0BJECTNAME
DNS$_0BJECTNAME specifies the opaque full name of an object.

DNS$_0UTATTRIBUTESET
DNS$_ OUTATTRIBUTESET returns a set of enumerated attribute names. This
item code is used with the DNS$_ENUMERATE_ATTRIBUTES functions. The
item code returns either DNS$K_SET or DNS$K_SINGLE along with the set of
attribute names.

The names returned in this set can be extracted from the buffer with the
DNS$REMOVE_FIRST_SET_ VALUE routine. The resulting values are contained
in the $DNSATTRSPECDEF structure. This 1-byte structure indicates whether
an attribute is set-valued or single-valued followed by an opaque simple name.

DNS$_0UTCHILDREN
DNS$_ OUTCHILDREN returns the set of opaque simple names enumerated by
the DNS$_ENUMERATE_CHILDREN function. ,

You can extract the values resulting from the enumeration using the
DNS$REMOVE_FIRST_SET_ VALUE run-time library routine. These values are
the opaque simple names of the child directories found in the parent directory.

DNS$_0UTCTS
DNS$_0UTCTS returns the timestamp (CTS) that the specified entry received
when it was created. This item code is optional and can be used by the $DNS
create functions.

DNS$_0UTNAME
DNS$_0UTNAME returns the opaque full name of the target pointed to by a soft
link. This item code is used with the DNS$_RESOLVE_NAME function.

DNS$_0UTOBJECTS
DNS$_0UTOBJECTS returns the set of opaque simple names enumerated by the
DNS$_ENUMERATE_OBJECTS function.

System Service Descriptions
$DNS

Each object name is followed by the object's class if you specify the DNS$_
RETURNCLASS item code on input. The object's class is the value of the
DNS$Class attribute.

You can extract the values resulting from the enumeration using the
DNS$REMOVE_FIRST_SET_ VALUE run-time library routine. The resulting
values are the opaque simple names of the objects found in the directory.

DNS$_0UTSOFTLINKS
DNS$_0UTSOFTLINKS returns the set of opaque simple names enumerated by
the DNS$_ENUMERATE_SOFTLINKS function.

You can extract the values resulting from the enumeration using the
DNS$REMOVE_FIRST_SET_ VALUE run-time library routine. The resulting
values are the opaque simple names of the soft links found in the directory.

DNS$_0UTVALSET
DNS$_0UTVALSET returns for the DNS$_READ_ATTRIBUTE function a set of
values for the given attribute.

You can extract the values resulting from the enumeration using the
DNS$REMOVE_FIRST_SET_ VALUE run-time library routine. The extracted
values are the values of the attribute.

DNS$_READCHSET
DNS$_READCHSET specifies the names of clearinghouses that contain read-only
replicas of the directory being reconstructed with DNS$_NEW _EPOCH.

DNS$_REPLICATYPE
DNS$_REPLICATYPE specifies the type of directory replica being added in the
specified ciearinghouse. You can add a secondary replica (DNS$K_SECONDARY)
or a read-only replica (DNS$K_READONLY).

DNS$_RETURNCLASS
DNS$_RETURNCLASS specifies that the class of object entries enumerated with
the DNS$_ENUMERATE_OBJECTS function should be returned along with the
object names in the DNS$_0UTOBJECTS item code. The object's class is the
value of the DNS$Class attribute.

DNS$_SECCHSEt
DNS$_SECCHSET specifies the names of clearinghouses that contain secondary
replicas of the directory being reconstructed with DNS$_NEW _EPOCH.

DNS$_SUPPRESS_NSNAME
DNS$_SUPPRESS_NSNAME specifies that the leading namespace name should
not be returned in the converted full name string. This item code is used by the
DNS$_FULL_OPAQUE_TO_STRING function. This is an optional single-byte
value.

A value of 1 suppresses the leading namespace name in the resulting full name
string.

DNS$_ TARGETNAME
DNS$_TARGETNAME specifies the name of an existing entry in the namespace
to which the soft link will point. This item code is used by the DNS$_CREATE_
LINK function.

SYS-189

System Service Descriptions
$DNS

Description

SVS-190

DNS$_ TOFULLNAME
DNS$_TOFULLNAME returns for the DNS$_PARSE_FULLNAME_STRING
function the address of a buffer that contains the resulting opaque full name.

DNS$_ TOSIMPLENAME
DNS$_TOSIMPLENAME specifies for the DNS$_PARSE_SIMPLENAME_
STRING function the address of a buffer that will contain the resulting opaque
simple name.

DNS$_ TOSTRINGNAME
DNS$_TOSTRINGNAME returns the string name resulting from one of the
conversion functions: DNS$_FULL_OPAQUE_TO_STRING or DNS$_SIMPLE_
OPAQUE_TO_STRING. DNS$_TOSTRINGNAME has the following structure:

[NS_name:] [.] Namestring [.Namestring]

• NS_name, if present, is a local system representation of the NSCTS, the
unique identifier of the DECdns server. The DECdns clerk supplies a
namespace name (node-name_NS) if the value is omitted.

• Namestring represents a simple name component. Multiple simple names are
separated by periods.

DNS$_VALUE
DNS$_ VALUE specifies for the DNS$_TEST_ATTRIBUTE function the value that
is to be tested. This item contains the address of a buffer holding the value.

DNS$_VERSION
DNS$_ VERSION specifies the DNS$ClassVersion attribute for the DNS$_
CREATE_OBJECT function. This is a 2-byte structure: the first byte contains
the major version number, the second contains the minor version number.

DNS$_WAIT
DNS$_ WAIT enables the client to specify a timeout value to wait for a
call to complete. If the timeout expires, the call returns either DNS$K_
TIMEOUTNOTDONE or DNS$K_TIMEOUTMAYBEDONE, depending on
whether the namespace was updated by the incomplete operation.

The parameter is optional; if it is not specified, a default timeout value of 30
seconds is assumed.

DNS$_ WILDCARD
DNS$_ WILDCARD is an optional item code that specifies to the enumeration
functions of $DNS the opaque simple name used to limit the scope of the
enumeration. (The simple name does not have to use a wildcard.) Only those
simple names that match the wildcard are returned by the enumeration.

Table SYS-5 provides a summary of the data types for $DNS item codes. The
data types define the encoding of each item list element.

The $DNS system service provides a low-level interface between an application
(client) and DECdns. The DECdns clerk interface is used to create, delete, modify,
and retrieve DECdns names in a namespace.

System Service Descriptions
$DNS

A single system service call supports the DECdns clerk. It has two main
parameters:

• A function code identifying the particular service to perform

• An item list specifying all the parameters for the required function

The use of this item list is similar to that of other system services that use a
single item list for both input and output operations.

The $DNS system service performs DECnet I/O on behalf of the DECdns client.
It requires system dynamic memory to construct a database to queue the I/O
request and may require additional memory on a device-dependent basis.

In addition to the system services, DECdns provides a set of callable run-time
library routines. You can use the clerk run-time library routines to manipulate
output from the system service and to write data that can be specified in a system
service function code.

For further information, see the following documents:

• For an overview of DECdns and DECdns programming concepts, see the
Guide to Programming with DECdns.

• For an introduction to DECdns system services, see the Introduction to VMS
System Services.

• For a complete description of the clerk run-time routines, see the VMS RTL
DECdns (DNS$) Manual.

Required Privileges
None

Required Quota

• The buffered I/O byte count (BYTLM) quota for the process

• The quota for buffered I/O limit (BIOLM) or direct I/O limit (DIOLM) for the
process

• The AST limit (ASTLM) quota, if an AST service routine is specified, for the
process

Related Services
$DNSW

Condition Values Returned

SS$_NORMAL

SS$_BADPARAM

Normal completion of the request.

Either an item code in the item list is out of
range or the item list contains more than the
maximum allowable number of items.

SYS-191

System Service Descriptions
$DNS

Condition Values Returned in the $DNS Status Block

SYS-192

DNS$_ACCESSDENIED

DNS$_BADCLOCK

DNS$_BADEPOCH

DNS$_BADITEMBUFFER

DNS$_CACHELOCKED

DNS$_CLEARINGHOUSEDOWN

DNS$_CLERKBUG

DNS$_CONFLICTINGARGUMENTS

DNS$_DANGLINGLINK

DNS$_DATACORRUPTION

DNS$_ENTRYEXISTS

DNS$_FALSE

DNS$_INVALIDARGUMENT

DNS$_INVALID_ATTRIBUTENAME

DNS$_INVALID_CLASSNAME

DNS$_INVALID_
CLEARINGHOUSENAME
DNS$_INVALID_CONTEXTNAME

DNS$_INVALID_DIRECTORYNAME

DNS$_INVALID_ENTRYNAME

DNS$_INVALIDFUNCTION
DNS$_INVALID_GROUPNAME

Caller does not have required access
to the entry in question. This error is
returned only if the client has some
access to the entry. Otherwise, the
unknown entry status is returned.

The clock at the name server has a
value outside the permissible range.

Copies of directories are not
synchronized.
Invalid output item buffer detected.
(This normally indicates that the
buffer has been modified during the
call.)

Global client cache locked.

Clearinghouse is not available.

Internal clerk error detected.

Two or more optional arguments
conflict; they cannot be specified in
the same function call.

Soft link points to nonexistent target.

An error occurred in accessing the
data stored at a clearinghouse. The
clearinghouse may be corrupted.

An entry with the same full name
already exists in the namespace.

Unsuccessful test operation.

A syntactically incorrect, out of
range, or otherwise inappropriate
argument was specified in the call.
The name given for function is not a
valid DECdns attribute name.

The name given for function is not a
valid DECdns class name.

The name given for function is not a
valid DECdns clearinghouse name.

The name given for function is not a
valid DECdns context name.

The name given for function is not a
valid DECdns directory name.

The name given for function is not a
valid DECdns entry name.

Invalid function specified.
The name given for function is not a
valid DECdns group name.

DNS$_INVALIDITEM

DNS$_INVALID_LINKNAME

DNS$_INVALID_MEMBERNAME

DNS$_INVALIDNAME

DNS$_INVALID_NSNAME

DNS$_INVALID_OBJECTNAME

DNS$_INVALID_TARGETNAME

DNS$_INVALIDUPDATE

DNS$_INVALID_ WILDCARDNAME

DNS$_LOGICAL_ERROR

DNS$_MISSINGITEM

DNS$_MOREDATA

DNS$_NAMESERVERBUG

DNS$_NOCACHE

DNS$_NOCOMMUNICATION

DNS$_NONSNAME

DNS$_NONSRESOURCES

DNS$_NOTAGROUP

DNS$_NOTIMPLEMENTED

DNS$_NOTLINKED

System Service Descriptions
$DNS

Invalid item code was specified in the
item list.
The name given for function is not a
valid DECdns soft link name.

The name given for function is not a
valid DECdns member name.
A name containing invalid characters
was specified in the call.

N amespace name given in name
string is not a valid DECdns name.

The name given for function is not a
valid DECdns object name.

The name given for function is not a
valid DECdns target name.
An update was attempted to an
attribute that cannot be directly
modified by the client.

The name given for function is not a
valid DECdns wildcard name.
Error translating logical name in
given string.

Required item code is missing from
the item list.
More output data to be returned.

A name server encountered an
implementation bug. Please submit
an SPR.
Client cache file not initialized.

No communication was possible
with any name server capable of
processing the request. Check NCP
event 353.5 for the DECnet error.

Unknown namespace name specified.

The call could not be performed due
to lack of memory or communication
resources at the local node to process
the request.
The full name given is not the name
of a group.

This function is defined by the
architecture as optional and is not
available in this implementation.

A soft link is not contained in the
name.

SYS-193

System Service Descriptions
$DNS

SYS-194

DNS$_NOTNAMESERVER

DNS$_NOTSUPPORTED

DNS$_POSSIBLECYCLE

DNS$_RESOURCEERROR

DNS$_TIMEOUTMAYBEDONE

DNS$_TIMEOUTNOTDONE

DNS$_TRUE

DNS$_UNKNOWNCLEARINGHOUSE
DNS$_UNKNOWNENTRY

DNS$_UNTRUSTEDCH

DNS$_ WRONGATTRIBUTETYPE

The node contacted by the clerk
does not have a DECdns server
running. This can happen when the
application supplies the clerk with
inaccurate replica information.
This version of the architecture· does
not support the requested function.

Loop detected in soft link or group.

Failure to obtain system resource.

The operation did not complete in
the time allotted. Modifications may
or may not have been made to the
names pace.

The operation did not complete in the
time allotted. No modifications have
been performed even if the operation
requested them.

Successful test operation.

The clearinghouse does not exist.

Either the requested entry does not
exist or the client does not have
access to the entry.

A DECdns server is not included in
the object's access control set.

The caller specified an attribute type
that did not match the actual type of
the attribute.

System Service Descriptions
$DNSW

$DNSW-Distributed Name Service Clerk

Format

The DECdns clerk is the client interface to the DIGITAL Distributed Name
Service.

The $DNSW service completes synchronously; that is, it returns to the caller after
the operation completes.

For asynchronous completion, use the $DNS service, which returns to the caller
immediately after making a name service call. The return status to the client call
indicates whether a request was successfully queued to the name service.

In all other respects, $DNSW is identical to $DNS. Refer to the $DNS description
for complete information about the $DNSW service.

SYS$DNSW [efn] ,tune ,itmlst [,dnsb] [,astadr] [,astprm]

SYS-195

System Service Descriptions
$END_ TRANS

$END_ TRANS-End Transaction

Format

Returns

Arguments

SYS-196

Initiates processing commitment for the transaction. This service performs
both phases of the commitment. Consequently, it returns a failure status
(SS$_ABORT) if the first of the phases does not complete successfully or if
an error occurs that makes it impossible to commit the transaction.

SYS$END_ TRANS [efn] ,[flags] ,iosb [,[astadr] ,[astprm] ,[tid]]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

ef n
VMS Usage:
type:
access:
mechanism:

ef_number
longword (unsigned)
read only
by value

Number of the event flag to be set. The efn argument is a longword containing
this number; however, $END_TRANS uses only the low-order byte. If you do not
specify efn, $END_TRANS uses the default value 0.

flags
VMS Usage:
type:
access:
mechanism:

mask_longword
longword (unsigned)
read only
by value

Flags specifying options for $END_ TRANS. The flags argument is a longword bit
mask that is the logical OR of each bit set, in which each bit corresponds to an
option. The $DDTMDEF macro defines a symbolic name for each flag bit.

DDTM$M_SYNC, the only flag currently defined, is described in Table SYS-6.

System Service Descriptions
$END_ TRANS

Table SVS-6 $END_ TRANS Option Flag

Flag Description

DDTM$M_SYNC Indicates successful synchronous completion by
returning SS$_SYNCH. When synchronous completion is
successful, the completion AST address is not called, the
IOSB is not written, and the event flag is not set.

iosb
VMS Usage: io_status_block
type: quadword (unsigned)
access: write only
mechanism: by reference

I/O status block (IOSB) to receive the final completion status of the request. The
iosb argument is the address of the quadword I/O status block. If the transaction
ends by being aborted, an abort reason code is returned in the IOSB.

The following diagram shows the structure of the I/O status block. Symbolic
names for abort reason codes that are returned are in $DDTMMSGDEF. See
Table SYS-7 for a list of abort reason codes.

31 15 0

Reserved by Digital l Condition Value

Abort Reason Code

ZK-3667A-GE

Table SVS-7 Abort Reason Codes

Symbol

DDTM$_ABORTED

DDTM$_COMM_FAIL

DDTM$_INTEGRITY
DDTM$_LOG_FAIL

DDTM$_PART_SERIAL
DDTM$_PART_TIMEOUT

DDTM$_SEG_FAIL

DDTM$_SERIALIZATION

DDTM$_SYNC_FAIL

Description

Application called $ABORT_TRANS without
giving a reason.
A communication link failed.

Integrity constraint check failed.

A write operation to the transaction log failed.

Resource manager serialization check failed.
A timeout specified by a resource manager
expired before a commit decision was made.

Process or image failed.

DECdtm transaction manager serialization check
failed.
Transaction was not globally synchronized.

(continued on next page)

SYS-197

System Service Descriptions
$END_TRANS

Description

SYS-198

Table SYS-7 (Cont.) Abort Reason Codes

Symbol Description

DDTM$_TIMEOUT A timeout specified on $START_TRANS expired
before a commit decision was made.

DDTM$_UNKNOWN

DDTM$_ VETOED

Reason unknown.

A resource manager aborted the transaction
without giving a reason.

astadr
VMS Usage:
type:
access:
mechanism:

ast_procedure
procedure entry mask
call without stack unwinding
by reference

AST service routine to be executed when the $END_ TRANS service completes.
The astadr argument is the address of the entry mask of this routine. In the case
of synchronous completion, the call might not take place. Refer to the description
of DDTM$M_SYNC in Table SYS-6.

If you specify astadr, the AST routine executes at the same access mode as the
caller of the $END_ TRANS service.

Note that the completion AST will not be called if SS$_SYNCH is returned in RO.

astprm
VMS Usage:
type:
access:
mechanism:

user_arg
longword (unsigned)
read only
by value

AST parameter passed to the AST service routine specified by the astadr
argument. The astprm argument is a longword.

tid
VMS Usage:
type:
access:
mechanism:

transaction_id
octaword (unsigned)
read only
by reference

Pointer to the transaction identifier (TID) that designates the transaction to be
ended. The default value for this parameter is the process default transaction.

The End Transaction service requests the DECdtm services to commit a
transaction. When $END_TRANS is called, the DECdtm transaction manager
initiates a commit protocol to inform all the transaction's participants (any
resource managers and transaction managers involved in the transaction) to start
commit processing.

$END_TRANS can be called only by the same process that called the
$START_ TRANS service.

System Service Descriptions
$END_ TRANS

As part of the commit processing, the DECdtm transaction manager queries all
participants to verify whether they can complete their work on the transaction.
If all the participants respond that they can complete their work, the transaction
manager orders the participants to commit the transaction. A transaction is
complete when all its actions, such as changes to databases, are made permanent.

If an application calls $ABORT_ TRANS or $ABORT_TRANSW, or if any of the
participants have failed to prepare successfully, the transaction is aborted. For
example, a resource manager might fail to prepare successfully due to a process
failure, machine failure, or hardware failure. In the abort phase, the transaction
manager orders all participants to abort the transaction and roll back their
transaction processing work. Thus, none of the actions of the transaction are
made permanent.

Note that if the timout argument has been specified when calling the Start
Transaction service, then the transaction will be aborted if the transaction
exceeds the time specified in the timout argument.

$END_TRANS returns a failure status (SS$_ABORT) if the prepare phase does
not complete successfully or if an error occurs that makes it impossible to commit
the transaction. In this event, an abort reason code is returned in the second
longword in the IOSB.

$END_TRANS will not complete asynchronously until all resource managers in
the same process have acknowledged phase 2 of the 2-phase commit processing
and DECdtm quotas charged for the transaction have been returned.

Required Privileges
None

Required Quota
ASTLM

Related Services
$ABORT_TRANS, $ABORT_TRANSW, $END_TRANSW, $START_TRANS,
$START_TRANSW

For more information, see the chapter on DECdtm services in the Introduction to
VMS System Services.

Condition Values Returned

SS$_NORMAL

SS$_SYNCH

SS$_ABORT

SS$_ACCVIO

SS$_BADPARAM

SS$_EXASTLM

SS$_ILLEFC

The operation was successfully queued.

The synchronous operation completed
successfully.

The transaction aborted during processing.

The IOSB or TID cannot be read by the caller, or
the IOSB cannot be written by the caller.

The option flags are invalid, or the application
did not call $START_ TRANS for this transaction.

The process has exceeded its AST limit quota.

The efn argument specifies an illegal flag
number.

SYS-199

System Service DescripJions
$END_TRANS

SS$_INSFMEM

SS$_NOCURTID

SS$_NOSUCHTID
88$_ WRONGACMODE

SS$_ WRONGSTATE

There is insufficient system dynamic memory for
the operation.
The calling process does not currently have a
default transaction.
The designated TID is unknown.
The transaction was started in an inner access
mode.
The transaction is in the wrong state for the
attempted operation. The application has already
called $END_TRANS or $ABORT_TRANS.

Condition Values Returned in the 110 Status Block

SYS-200

Same as those returned in RO. A value of SS$_NORMAL returned in the I/O
status block indicates that the service completed successfully.

System Service Descriptions
$END_ TRANSW

$END_TRANSW-End Transaction and Wait

Format

Initiates processing commitment for the transaction. This service performs
both phases of the commitment. Consequently, it returns a failure status
(SS$_ABORT) if the first of the phases does not complete successfully or if an
error occurs that makes it impossible to commit the transaction.

$END_TRANSW completes synchronously; that is, it returns to the caller after
the request has completed.

For asynchronous completion, you use the End Transaction ($END_TRANS)
system service, which returns without waiting for the operation to complete.

In all other respects, $END_TRANSW is identical to $END_TRANS. For all other
information about $END_TRANSW, refer to the section on $END_TRANS.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service and to the Introduction to VMS System Services.

SYS$END_ TRANSW [efn] ,[flags] ,iosb [,[astadr] ,[astprm] ,[tid]]

SYS-201

System Service Descriptions
$ENQ

$ENQ-Enqueue Lock Request

Format

Returns

Arguments

SYS-202

Queues a new lock or lock conversion on a resource.

The $ENQ, $ENQW, $DEQ (Dequeue Lock Request), and $GETLKI (Get Lock
Information) services together provide the user interface to the VMS lock
management facility. Refer to the descriptions of these other services and to
the Introduction to VMS System Services for additional information about lock
management.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service and to the Introduction to VMS System Services.

SYS$ENQ [efn] ,lkmode ,lksb [,flags] [,resnam] [,parid] [,astadr] [,astprm] [,blkast]
[,acmode] [,nullarg]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

ef n
VMS Usage:
type:
access:
mechanism:

ef_number
longword (unsigned)
read only
by value

Number of the event flag to be set when the request has been granted or
canceled. Cancellation occurs if you use $DEQ with the cancel modifier or if the
waiting request is chosen to break a deadlock. The efn argument is a longword
containing this number; however, $ENQ uses only the low-order byte.

Upon request initiation, $ENQ clears the specified event flag (or event flag 0
if efn was not specified). Then, when the lock request is granted, the specified
event flag (or event flag 0) is set unless you specified the LCK$M_SYNCSTS flag
in the flags argument.

lkmode
VMS Usage:
type:
access:
mechanism:

longword_ unsigned
longword (unsigned)
read only
by value

Lock mode requested. The lkmode argument is a longword specifying this lock
mode.

System Service Descriptions
$ENQ

Each lock mode has a symbolic name. The $LCKDEF macro defines these
symbolic names. The following table gives the symbolic name and description for
each lock mode.

Lock Mode

LCK$K_NLMODE

LCK$K_CRMODE

LCK$K_CWMODE

LCK$K_PRMODE

LCK$K_PWMODE

LCK$K_EXMODE

lksb

Description

Null mode. This mode grants no access to the resource
but serves rather as a placeholder and indicator of future
interest in the resource. The null mode does not inhibit
locking at other lock modes; further, it prevents the
deletion of the resource and lock value block, which would
otherwise occur if the locks held at the other lock modes
were dequeued.

Concurrent read. This mode grants the caller read access
to the resource while permitting write access to the
resource by other users. This mode is used to read data
from a resource in an unprotected manner, because other
users can modify that data as it is being read. This
mode is typically used when additional locking is being
performed at a finer granularity with sublocks.

Concurrent write. This mode grants the caller write
access to the resource while permitting write access to the
resource by other users. This mode is used to write data
to a resource in an unprotected fashion, because other
users can simultaneously write data to the resource. This
mode is typically used when additional locking is being
performed at a finer granularity with sublocks.

Protected read. This mode grants the caller read access
to the resource while permitting only read access to the
resource by other users. Write access is not allowed. This
is the traditional share lock.

Protected write. This mode grants the caller write access
to the resource while permitting only read access to
the resource by other users; the other users must have
specified concurrent read mode access. No other writers
are allowed access to the resource. This is the traditional
update lock.

Exclusive. The exclusive mode grants the caller write
access to the resource and allows no access to the resource
by other users. This is the traditional exclusive lock.

VMS Usage:
type:
access:
mechanism:

lock_status_block
longword (unsigned)
write only
by reference

Lock status block in which $ENQ writes the final completion status of the
operation. The lksb argument is the address of the 8-byte lock status block.

SYS-203

System Service Descriptions
$ENQ

The lock status block can optionally contain a 16-byte lock value block. When you
specify the LCK$M_ VALBLK flag in the flags argument, the lock status block
contains a lock value block; in this case, the 16-byte lock value block appears
beginning at the first byte following the eighth byte of the lock status block,
bringing the total length of the lock status block to 24 bytes.

The following diagram shows the format of the lock status block and the optional
lock value block.

31 15 0

Reserved l VMS Condition Value

Lock Identification

16-byte Lock Value Block
(Used only when the LCK$M_ VALBLK flag is set)

ZK-1708-GE

Lock Status Block Fields

SYS-204

condition value
A word in which $ENQ writes a VMS condition value describing the final
disposition of the lock request, for example, whether the lock was granted,
converted, and so on. The condition values returned in this field are described
in the Condition Values Returned in the Lock Status section, which appears
following the list of condition values returned in RO.,,

reserved
A word reserved by Digital.

lock identification
A longword containing the identification of the lock.

For a new lock, $ENQ writes the lock identification of the requested lock into this
longword when the lock request is queued.

For a lock conversion on an existing lock, you must supply the lock identification
of the existing lock in this field.

lock value block
A user-defined, 16-byte structure containing information about the resource. This
information is interpreted only by the user program.

When a process acquires a lock on a resource, the lock management facility
provides that process with a process-private copy of the lock value block
associated with the resource, provided that process has specified the LCK$M_
VALBLK flag in the flags argument. The copy provided to the process is a copy
of the lock value block stored in the lock manager's database.

The copy of the lock value block maintained in the lock database is updated in
the following way: whenever a process either (1) dequeues a lock at protected
write (PW) or exclusive (EX) mode or (2) converts a lock at one of these modes to
a lower lock mode, VMS stores the caller's lock value block in the lock database,
provided the caller has specified the LCK$M_ VALBLK flag.

System Service Descriptions
$ENQ

Callers of $ENQ are provided with copies of the updated lock value block from
the lock database in the following way: when $ENQ grants a new lock to the
caller or converts the caller's existing lock to a higher lock mode, $ENQ copies the
lock value block from the lock database to the caller's lock value block, provided
the caller has specified the LCK$M_ VALBLK flag.

The Description section describes events that can cause the lock value block to
become invalid.

flags
VMS Usage:
type:
access:
mechanism:

mask_longword
longword (unsigned)
read only
by value

Flags specifying options for the $ENQ operation. The flags argument is
a longword bit mask that is the logical OR of each bit set, where each bit
corresponds to an option.

The $LCKDEF macro defines a symbolic name for each flag bit. The following
table describes each flag.

Flag

LCK$M_NOQUEUE

LCK$M_SYNCSTS

LCK$M_SYSTEM

LCK$M_ VALBLK

LCK$M_CONVERT

Description

When this flag is specified, $ENQ does not queue
the lock request unless the lock can be granted
immediately. By default, $ENQ always queues the
request.
If you specify LCK$M_NOQUEUE in a lock conversion
operation and the conversion cannot be granted
immediately, the lock remains in the original lock
mode.

When you specify this flag, $ENQ returns the
successful condition value SS$_SYNCH in RO if the
lock request is granted immediately; in this case, no
completion AST is delivered and no event flag is set.
If the lock request is queued successfully but cannot
be granted immediately, $ENQ returns the condition
value SS$_NORMAL in RO; then when the request is
granted, $ENQ sets the event flag and queues an AST
if the astadr argument was specified.

When you specify this flag, the resource name is
interpreted as systemwide. By default, resource names
are qualified by the UIC group number of the creating
process. This flag is ignored in lock conversions.

When you specify this flag, the lock status block
contains a lock value block. See the description of
the lksb argument for more information.

When you specify this flag, $ENQ performs a lock
conversion. In this case, the caller must supply (in
the second longword of the lock status block) the lock
identification of the lock to be converted.

SYS-205

System Service Descriptions
$ENQ

SYS-206

Flag

LCK$M_NODLCKWT

Description

By specifying this flag, a process indicates to the
lock management services that it is not blocked
from execution while waiting for the lock request to
complete. For example, a lock request might be left
outstanding on the waiting queue as a signaling device
between processes.
This flag helps to prevent false deadlocks by providing
the lock management services with additional
information about the process issuing the lock request.
When you set this flag, the lock management services
do not consider this lock when trying to detect deadlock
conditions.

A process should specify the LCK$M_NODLCKWT flag
only in a call to the $ENQ system service. The $ENQW
system service waits for the lock request to be granted
before returning to the caller; therefore, specifying the
LCK$M_NODLCKWT flag in a call to the $ENQW
system service defeats the purpose of the flag and can
result in a genuine deadlock being ignored.
The lock management services make use of the
LCK$M_NODLCKWT flag only when the lock specified
by the call to $ENQ is in either the waiting or the
conversion queue.
Improper use of the LCK$M_NODLCKWT flag can
result in the lock management services ignoring
genuine deadlocks.

LCK$M_NODLCKBLK By specifying this flag, a process indicates to the lock
management services that, if this lock is blocking
another lock request, the process intends to give up
this lock on demand. When you specify this flag, the
lock management services do not consider this lock as
blocking other locks when trying to detect deadlock
conditions.
A process typically specifies the LCK$M_NODLCKBLK
flag only when it also specifies a blocking AST. Blocking
ASTs notify processes with granted locks that another
process with an incompatible lock mode has been
queued to access the same resource. Use of blocking
ASTs can cause false deadlocks, because the lock
management services detect a blocking condition, even
though a blocking AST has been specified; however,
the blocking condition will disappear as soon as the
process holding the lock executes, receives the blocking
AST, and dequeues the lock. Specifying the LCK$M_
NODLCKBLK flag prevents this type of false deadlock.

Flag

LCK$M_NOQUOTA

LCK$M_CVTSYS

LCK$M_EXPEDITE

LCK$M_QUECVT

Description

System Service Descriptions
$ENQ

To enable blocking ASTs, the blkast argument of the
$ENQ system service must contain the address of a
blocking AST service routine. If the process specifies
the LCK$M_NODLCKBLK flag, the blocking AST
service routine should either dequeue the lock or
convert it to a lower lock mode without issuing any
new lock requests. If the blocking AST routine does
otherwise, a genuine deadlock could be ignored.
The lock management services make use of the
LCK$M_NODLCKBLK flag only when the lock
specified by the call to $ENQ has been granted.
Improper use of the LCK$M_NODLCKBLK flag can
result in the lock management services ignoring
genuine deadlocks.

This flag is reserved by Digital. When you set this
flag, the calling process is not charged Enqueue Limit
(ENQLM) quota for this new lock. The calling process
must be running in executive or kernel mode to set this
flag. This flag is ignored for lock conversions.

This flag is reserved by Digital. When you set this
flag, the lock is converted from a process-owned lock
to a system-owned lock. The calling process must be
running in executive or kernel mode to set this flag.

This flag is valid only for new lock requests. Specifying
this flag allows a request to be granted immediately,
provided the requested mode when granted would not
block any currently queued requests in the resource
conversion and wait queues. Currently, this flag is
valid only for NLMODE requests. If this flag is
specified for any other lock mode, the request will
fail and an error of SS$_UNSUPPORTED returned.

This flag is valid only for conversion operations. A
conversion request with the LCK$M_ QUECVT flag
set will be forced to wait behind any already queued
conversions.
The conversion request is granted immediately, if there
are no already queued conversions.
The QUECVT behavior is valid only for a subset of all
possible conversions. Table SYS-8 defines the legal set
of conversion requests for LCK$M_QUECVT. Illegal
conversion requests are failed with SS$_BADPARAM
returned.

SYS-207

System Service Descriptions
$ENQ

SYS-208

Table SYS-8 Legal QUECVT Conversions

Lock Mode Lock Mode to Which Lock Is Converted
at Which
Lock Is Held NL

NL No

CR No

cw No

PR No

PW No

EX No

Key to Lock Modes

NL-Null lock
CR-Concurrent read
CW-Concurrent write
PR-Protected read
PW-Protected write
EX-Exclusive lock

CR CW

Yes Yes

No Yes

No No

No Yes

No No

No No

resnam
VMS Usage:
type:

char _string
character-coded text string
read only

PR PW

Yes Yes

Yes Yes

Yes Yes

No Yes

No No

No No

access:
mechanism: by descriptor-fixed length string descriptor

EX

Yes

Yes

Yes

Yes

Yes

No

Name of the resource to be locked by this lock. The resnam argument is the
address of a character string descriptor pointing to this name. The name string
can be from 1 to 31 bytes in length.

If you are creating a new lock, the resnam argument should be specified because
the default value for the resnam argument produces an error when it is used to
create a lock. The resnam argument is ignored for lock conversions.

par id
VMS Usage:
type:
access:
mechanism:

lock_id
longword (unsigned)
read only
by value

Lock identification of the parent lock. The parid argument is a longword
containing this identification value.

If you do not specify this argument or specify it as 0, $ENQ assumes that the
lock does not have a parent lock. This argument is optional for new locks and is
ignored for lock conversions.

astadr
VMS Usage:
type:
access:
mechanism:

ast_procedure
procedure entry mask
call without stack unwinding
by reference

AST service routine to be executed when the lock is either granted or converted.
The astadr argument is the address of the entry mask of this routine. The AST
is also delivered when the lock or conversion request is canceled. Cancellation

System Service Descriptions
$ENQ

occurs if you use $DEQ with the cancel modifier or if the waiting request is
chosen to break a deadlock.

If you specify the astadr argument, the AST routine executes at the same access
mode as the caller of $ENQ.

astprm
VMS Usage:
type:
access:
mechanism:

user_arg
longword (unsigned)
read only
by value

AST parameter to be passed to the AST routine specified by the astadr argument.
The astprm argument specifies this longword parameter.

blkast
VMS Usage:
type:
access:
mechanism:

ast_procedure
procedure entry mask
call without stack unwinding
by reference

Blocking AST routine to be called whenever this lock is granted and is blocking
any other lock requests. The blkast argument is the address of the entry mask
to this routine.

You can pass a parameter to this routine by using the astprm argument.

acmode
VMS Usage:
type:
access:
mechanism:

access_mode
longword (unsigned)
read only
by value

Access mode to be associated with the resource name. For more information on
the components of the resource name, see the Resource Names section in the
Introduction to VMS System Services. The acmode argument indicates the least
privileged access mode from which locks can be queued on the resource.

This argument does not affect the access mode associated with the lock or its
blocking and completion ASTs. The acmode argument is a longword containing
the access mode. The $PSLDEF macro defines the following symbols for the four
access modes.

Symbol

PSL$C_KERNEL

PSL$C_EXEC

PSL$C_SUPER

PSL$C_USER

Access Mode

Kernel

Executive

Supervisor

User

The $ENQ service associates an access mode with the lock in the following way:

• If you specified a parent lock (with the parid argument), $ENQ uses the
access mode associated with the parent lock and ignores both the acmode
argument and the caller's access mode.

SYS-209

System Service Descriptions
$ENQ

Description

SYS-210

• If the lock has no parent lock (you did not specify the parid argument or
specified it as 0), $ENQ uses the least privileged of the caller's access mode
and the access mode specified by the acmode argument. If you do not specify
the acmode argument, $ENQ uses the caller's access mode.

nullarg
VMS Usage:
type:
access:
mechanism:

null_arg
longword (unsigned)
read only
by value

Placeholding argument reserved by Digital.

The Enqueue Lock Request service queues a new lock or lock conversion on
a resource. The $ENQ service completes asynchronously; that is, it returns
to the caller after queuing the lock request without waiting for the lock to be
either granted or converted. For synchronous completion, use the Enqueue Lock
Request and Wait ($ENQW) service. The $ENQW service is identical to the
$ENQ service in every way except that $ENQW returns to the caller when the
lock is either granted or converted.

The $ENQ service uses system dynamic memory for the creation of the lock and
resource blocks.

When $ENQ queues a lock request, it returns the status of the request in RO
and writes the lock identification of the lock in the lock status block. Then,
when the lock request is granted, $ENQ writes the final completion status in the
lock status block, sets the event flag, and calls the AST routine if this has been
requested.

When $ENQW queues a lock request, it returns status in RO and in the lock
status block when the lock has been either granted or converted. Where
applicable, it simultaneously sets the event flag and calls the AST routine.

Invalidation of the Lock Value Block In some situations, the lock value block
can become invalid. In these situations, $ENQ warns the caller by returning the
condition value SS$_ VALNOTVALID in the lock status block, provided the caller
has specified the flag LCK$M_VALBLK in the flags argument.

The SS$_ VALNOTVALID condition value is a warning message, not an error
message. Therefore, the $ENQ service grants the requested lock and returns this
warning on all subsequent calls to $ENQ until either a new lock value block is
written to the lock database or the resource is deleted. Resource deletion occurs
when no locks are associated with the resource.

The following events can cause the lock value block to become invalid:

• If any process holding a protected write or exclusive mode lock on a resource
is terminated abnormally, the lock value block becomes invalid.

• If a VAX node in a VAX.cluster fails and a process on that node was holding
(or might have been holding) a protected write or exclusive mode lock on the
resource, the lock value block becomes invalid.

System Service Descriptions
$ENQ

• If a process holding a protected write or exclusive mode lock on the resource
calls the Dequeue Lock Request ($DEQ) service to dequeue this lock and
specifies the flag LCK$M_INVVALBLK in the flags argument, the lock value
block maintained in the lock database is marked invalid.

Required Privileges
To queue a lock on a systemwide resource, the calling process must either have
SYSLCK privilege or be executing in executive or kernel mode.

To specify a parent lock when queuing a lock, the access mode of the caller must
be equal to, or less privileged than, the access mode associated with the parent
lock.

To queue a lock conversion, the access mode associated with the lock being
converted must be equal to, or less privileged than, the access mode of the calling
process.

Required Quota

• Enqueue Limit (ENQLM) quota

• AST limit (ASTLM) quota in lock conversion requests that you specify either
the astadr or blkast argument

Related Services
$DEQ, $ENQW, $GETLKI, $GETLKIW

Condition Values Returned

SS$_ACCVIO

SS$_BADPARAM

SS$_CVTUNGRANT

SS$_EXDEPTH

SS$_EXENQLM

SS$_INSFMEM

SS$_IVBUFLEN

SS$_IVLOCKID

SS$_NOLOCKID

SS$_NORMAL

The lock status block or the resource name
cannot be read.

You specified an invalid lock mode in the lkmode
argument.
You attempted a lock conversion on a lock that is
not currently granted.

The limit of levels of sublocks has been exceeded.

The process has exceeded its Enqueue Limit
(ENQLM) quota.

The system dynamic memory is insufficient for
creating the necessary data structures.

The length of the resource name was either 0 or
greater than 31.

You specified an invalid or nonexistent lock
identification, or the lock identified by the lock
identification has an associated access mode that
is more privileged than the caller's, or the access
mode of the parent was less privileged than that
of the caller.

No lock identification was available for the lock
request.
The service completed successfully; the lock
request was successfully queued.

SYS-211

System Service Descriptions
$ENQ

SS$_NOSYSLCK

SS$_NOTQUEUED

SS$_PARNOTGRANT

SS$_SYNCH

The LCK$M_SYSTEM flag in the flags argument
was specified, but the caller lacks the necessary
SYSLCK privilege.

The lock request was not queued; the LCK$M_
NOQUEUE flag in the flags argument was
specified, and $ENQ was not able to grant the
lock request immediately.

The parent lock specified in the parid argument
was not granted.

The service completed successfully; the LCK$M_
SYNCSTS flag in the flags argument was
specified, and $ENQ was able to grant the lock
request immediately.

Condition Values Returned in the Lock Status Block

SVS-212

SS$_NORMAL

SS$_ABORT

SS$_CANCEL

SS$_DEADLOCK

88$_ VALNOTVALID

The service completed successfully; the lock was
successfully granted or converted.

The lock was dequeued (by the $DEQ service)
before $ENQ could grant the lock.

The lock conversion request has been canceled
and the lock has been regranted at its previous
lock mode. This condition value is returned when
$ENQ queues a lock conversion request, the
request has not been granted yet (it is in the
conversion queue), and, in the interim, the $DEQ
service is called (with the LCK$M_ CANCEL flag
specified) to cancel this lock conversion request.
If the lock is granted before $DEQ can cancel the
conversion request, the call to $DEQ returns the
condition value SS$_CANCELGRANT, and the
call to $ENQ returns SS$_NORMAL.

A deadlock was detected.

The lock value block is marked invalid. This
warning message is returned only if the caller
has specified the flag LCK$M_ VALBLK in the
flags argument. Note that the lock has been
successfully granted despite the return of this
warning message. Refer to the Description
section for a complete discussion of lock value
block invalidation.

System Service Descriptions
$ENQW

$ENQW-Enqueue Lock Request and Wait

Format

The Enqueue Lock Request and Wait service queues a lock on a resource. The
$ENQW service completes synchronously; that is, it returns to the caller when the
lock has been either granted or converted. For asynchronous completion, use the
Enqueue Lock Request ($ENQ) service; $ENQ returns to the caller after queuing
the lock request, without waiting for the lock to be either granted or converted.
In all other respects, $ENQW is identical to $ENQ. Refer to the documentation of
$ENQ for all other information about the $ENQW service.

For additional information about system service completion, refer to the
documentation of the Synchronize ($SYNCH) service and to the Introduction
to VMS System Services.

The $ENQ, $ENQW, $DEQ, and $GETLKI services together provide the user
interface to the VMS lock management facility. For additional information about
lock management, refer to the descriptions of these other services and to the
Introduction to VMS System Services.

SYS$ENQW [efn] ,lkmode ,lksb [,flags] [,resnam] [,parid] [,astadr] [,astprm] [,blkast]
[,acmode] [,nullarg]

SYS-213

System Service Descriptions
$ERAPAT

$ERAPAT-Get Security Erase Pattern

Format

Returns

Arguments

SYS-214

Generates a security erase pattern.

SYS$ERAPAT [type] ,[count] ,[patadr]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

type
VMS Usage:
type:
access:
mechanism:

longword_ unsigned
longword (unsigned)
read only
by value

Type of storage to be written over with the erase pattern. The type argument is
a longword containing the type of storage. The three storage types, together with
their symbolic names, are defined by the $ERADEF macro and are listed in the
following table.

Storage Type

Main memory

Disk

Tape

count
VMS Usage:
type:
access:
mechanism:

Symbolic Name

ERA$K_MEMORY

ERA$K_DISK

ERA$K_TAPE

longword_ unsigned
longword (unsigned)
read only
by value

Number of times that $ERAPAT has been called in a single security erase
operation. The count argument is a longword containing the iteration count.

You should call the $ERAPAT service initially with the count argument set to
1, the second time with the count argument set to 2, and so on, until the status
code SS$_NOTRAN is returned.

patadr
VMS Usage:
type:
access:
mechanism:

longword_ unsigned
longword (unsigned)
write only
by reference

Description

System Service Descriptions
$ERAPAT

Security erase pattern to be written. The patadr argument is the address of a
longword into which the security erase pattern is to be written.

The Get Security Erase Pattern service generates a security erase pattern that
can be written into memory areas containing outdated but sensitive data to make
it unreadable. This service is used primarily by the VMS operating system, but
it can also be used by users who want to perform security erase operations on
foreign disks.

You should call the $ERAPAT service iteratively until the completion status
SS$_NOTRAN is returned.

The following example demonstrates how to use the $ERAPAT service to perform
a security erase to a disk. Note that, after each call to $ERAPAT, a test for the
status SS$_NOTRAN is made. If SS$_NOTRAN has not been returned, $QIO is
called to write the pattern returned by $ERAPAT onto the disk. After this write,
$ERAPAT is called again and the cycle is repeated until the code SS$_NOTRAN
is returned, at which point the security erase procedure is complete.

; Code fragment that erases 20 blocks (blocks 15 through 34)
; on a disk
i
PATTERN:

.LONG 0
CHANNEL:

Cell to contain output from $ERAPAT

.WORD 0
DEVICE: .ASCID /DISK:/

Channel assigned to disk device
Disk device name

$ASSIGN_S DEVNAM=DISK,
CHAN=CHANNEL

BLBC RO, EXIT

MOVL #1, R2

$ERADEF

Assign a channel to the device

Branch if error

Set initial count

Macro to define names
used by $ERAPAT

10$: $ERAPAT_S - Call the $ERAPAT service
COUNT=R2,-
TYPE=#ERA$K_DISK, -
PATADR=PATTERN

BLBC RO, EXIT Branch if error
CMPL #SS$_NOTRAN, RO Are we done?
BEQL EXIT Branch if so
$QIO_S CHAN=CHANNEL,-

FUNC=#I0$_WRITELBLK!IO$M_ERASE,- ; Call
Pl=PATTERN,- to the $QIO service
P2=#<20*512>,- to write the erase
P3=#15 pattern

INCL R2 Increase count

BRB 10$

EXIT:

SYS-215

System Service Descriptions
$ERAPAT

Required Privileges
None

Required Quota
None

Related Services
$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CHANGE_ACL, $CHECK_
ACCESS, $CHKPRO, $CREATE_RDB, $FIND_HELD, $FIND_HOLDER,
$FINISH_RDB, $FORMAT_ACL, $FORMAT_AUDIT, $GRANTID, $HASH_
PASSWORD, $IDTOASC, $MOD_HOLDER, $MOD_IDENT, $MTACCESS,
$PARSE_ACL, $REM_HOLDER, $REM_IDENT, $REVOKID

Condition Values Returned

SS$_ACCVIO

SS$_BADPARAM

SS$_NORMAL

SS$_NOTRAN

SYS-216

The patadr argument cannot be written by the
caller.

The type argument or count argument is
invalid.

The service completed successfully; proceed with
the next erase step.

The service completed successfully; security erase
completed.

System Service Descriptions
$EXIT

$EXIT-Exit

Format

Argument

Description

Initiates image rundown when the current image in a process completes
execution. Control normally returns to the command interpreter.

SYS$EXIT [code]

code
VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
read only
by value

Longword value to be saved in the process header as the completion status of the
current image. If you do not specify this argument in a macro call, a value of 1 is
passed as the completion code for VAX MACRO and VAX BLISS-32, and a value
of 0 is passed for other languages. You can test this value at the command level
to provide conditional command execution.

The $EXIT service is unlike all other system services in that it does not return
status codes in RO or anywhere else. The $EXIT service does not return control
to the caller; it performs an exit to the command interpreter or causes the process
to terminate if no command interpreter is present.

For a summary of the actions taken by the system at image exit, see the
Introduction to VMS System Services.

Required Privileges
None

Required Quota
None

Related Services
$CANEXH, $CREPRC, $DCLEXH, $DELPRC, $FORCEX, $GETJPI, $GETJPIW,
$HIBER, $PROCESS_SCAN, $RESUME, $SETPRI, $SETPRN, $SETPRV,
$SETRWM, $SUSPND, $WAKE

Condition Values Returned

None

SYS-217

System Service Descriptions
$EXPREG

$EXPREG-Expand Program/Control Region

Format

Returns

Arguments

SYS-218

Adds a specified number of new virtual pages to a process's program region or
control region for the execution of the current image. Expansion occurs at the
current end of that region's virtual address space.

SYS$EXPREG pagcnt ,[retadr] ,[acmode] ,[region]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

pa gent
VMS Usage:
type:
access:
mechanism:

longword_ unsigned
longword (unsigned)
read only
by value

Number of pages to add to the current end of the program or control region. The
pagcnt argument is a longword value containing this number.

retadr
VMS Usage:
type:
access:
mechanism:

address_range
longword (unsigned)
write only
by reference

Starting and ending process virtual addresses of the pages that $EXPREG has
actually added. The retadr argument is the address of a 2-longword array
containing, in order, the starting and ending process virtual addresses.

acmode
VMS Usage:
type:
access:
mechanism:

access_mode
longword (unsigned)
read only
by value

Access mode to be associated with the newly added pages. The acmode argument
is a longword containing the access mode.

The most privileged access mode used is the access mode of the caller.

The newly added pages are given the following protection: (1) read and write
access for access modes equal to or more privileged than the access mode used in
the call, and (2) no access for access modes less privileged than that used in the
call.

Description

region
VMS Usage:
type:
access:
mechanism:

longword_ unsigned
longword (unsigned)
read only
by value

System Service Descriptions
$EXPREG

Number specifying which program region is to be expanded. The region
argument is a longword value. A value of 0 (the default) specifies that the
program region (PO region) is to be expanded. A value of 1 specifies that the
control region (Pl region) is to be expanded.

The Expand Program/Control Region service adds a specified number of new
virtual pages to a process's program region or control region for the execution of
the current image. Expansion occurs at the current end of that region's virtual
address space.

The new pages, which were previously inaccessible to the process, are created as
demand-zero pages.

Because the bottom of the user stack is normally located at the end of the control
region, expanding the control region is equivalent to expanding the user stack.
The effect is to increase the available stack space by the specified number of
pages.

The starting address returned is always the first available page in the designated
region; therefore, the ending address is smaller than the starting address when
the control region is expanded and is larger than the starting address when the
program region is expanded.

If an error occurs while pages are being added, the retadr argument (if specified)
indicates the pages that were successfully added before the error occurred. If no
pages were added, both longwords of the retadr argument contain the value -1.

Required Privileges
None

Required Quota
The process's paging file quota (PGFLQUOTA) must be sufficient to accommodate
the increased size of the virtual address space.

Related Services
$ADJSTK, $ADJWSL, $CRETVA, $CRMPSC, $DELTVA, $DGBLSC, $LCKPAG,
$LKWSET, $MGBLSC, $PURGWS, $SETPRT, $SETSTK, $SETSWM, $ULKPAG,
$ULWSET, $UPDSEC, $UPDSECW

Typically, the information returned in the location addressed by the retadr
argument (if specified) can be used as the input range to the Delete Virtual
Address Space ($DELTVA) service.

SYS-219

System Service Descriptions
$EXP REG

Condition Values Returned

SYS-220

SS$_NORMAL

SS$_ACCVIO

SS$_EXQUOTA

SS$_ILLPAGCNT

SS$_INSFWSL

SS$_ VASFULL

The service completed successfully.

The return address array cannot be written by
the caller.

The process exceeded its paging file quota.

The specified page count was less than 1.

The process's working set limit is not large
enough to accommodate the increased virtual
address space.

The process's virtual address space is full. No
space is available in the process page table for
the requested regions.

System Service Descriptions
$FAO/$FAOL

$FAO/$FAOL-Formatted ASCII Output Services

Format

Returns

Arguments

The Formatted ASCII Output service (1) converts a binary value into an ASCII
character string in decimal, hexadecimal, or octal notation and returns the
character string in an output string, and (2) inserts variable character string
data into an output string.

The Formatted ASCII Output with List Parameter service provides an alternate
method for specifying input parameters when calling the $FAO system service.

The formats for both services are shown in the Format section.

SYS$FAO ctrstr ,[outlen] ,outbuf ,[p1] ... [pn]

SYS$FAOL ctrstr ,[outlen] ,outbuf [,prmlst]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

ctrstr
VMS Usage:
type:
access:
mechanism:

char _string
character-coded text string
read only
by descriptor-fixed length string descriptor

Control string passed to $FAO that contains the text to be output together with
one or more $FAO directives. $FAO directives are used to specify repeat counts
or the output field length, or both, and they are preceded by an exclamation point
(!). The ctrstr argument is the address of a character string descriptor pointing
to the control string. The formatting of the $FAO directives is described in the
Description section.

There is no restriction on the length of the control string nor on the number of
$FAQ directives it can contain. However, if an exclamation point must appear
in the output string, it must be represented in the control string by a double
exclamation point (!!). A single exclamation point in the control string indicates
to $FAQ that the next characters are to be interpreted as FAQ directives.

When $FAQ processes the control string, it writes to the output buffer each
character that is not part of an $FAQ directive.

If the $FAO directive is valid, $FAQ processes it. If the directive requires a
parameter, $FAQ processes the next consecutive parameter in the specified
parameter list. If the $FAQ directive is not valid, $FAQ terminates and returns a
condition value in RO.

SYS-221

System Service Descriptions
$FAO/$FAOL

SYS-222

Table SYS-9 lists and describes the $FAO directives. Table SYS-10 shows the
$FAO output field lengths and their fill characters.

The $FAO service reads parameters from the argument list specified· in the
call; these arguments have the names pl, p2, p3, and so on, up to pl 7. Each
argument specifies one parameter. Because $FAO accepts a maximum of 17
parameters in a single call, you must use $FAOL if the number of parameters
exceeds 17. The $FAOL service accepts any number of parameters used with the
prmlst argument.

outlen
VMS Usage:
type:
access:
mechanism:

word_ unsigned
word (unsigned)
write only
by reference

Length in bytes of the fully formatted output string returned by $FAO. The
outlen argument is the address of a word containing this value.

outbuf
VMS Usage: char_string
type: character-coded text string
access: write only
mechanism: by descriptor-fixed length string descriptor

Output buffer into which $FAO writes the fully formatted output string. The
outbuf argument is the address of a character string descriptor pointing to the
output buffer.

p1 to pn
VMS Usage:
type:
access:
mechanism:

varying_arg
longword (signed)
read only
by value

$FAO directive parameters. The pl argument is a longword containing the
parameter needed by the first $FAO directive encountered in the control string,
the p2 argument is a longword containing the parameter needed for the second
$FAO directive, and so on for the remaining arguments up to pl 7. If an $FAO
directive does not require a parameter, that $FAO directive is processed without
reading a parameter from the argument list.

Depending on the directive, a parameter can be a value to be converted, an
address of a string to be inserted into the output string, or a length or argument
count. Each directive in the control string might require a corresponding
parameter or parameters.

prmlst
VMS Usage: vector_longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

List of $FAO directive parameters to be passed to $FAOL. The prmlst argument
is the address of a list of longwords wherein each longword is a parameter. The
$FAOL service processes these parameters sequentially as it encounters, in the
control string, $FAO directives that require parameters.

Description

System Service Descriptions
$FAO/$FAOL

The parameter list can be a data structure that already exists in a program and
from which certain values are to be extracted.

The Formatted ASCII Output service (1) converts a binary value into an ASCII
character string in decimal, hexadecimal, or octal notation and returns the
character string in an output string, and (2) inserts variable character string
data into an output string.

The Formatted ASCII Output with List Parameter ($FAOL) service provides an
alternate way to specify input parameters for a call to the $FAO system service.
The formats for both $FAO and $FAOL are shown in the Format section.

The $FAO_S macro form uses a PUSHL instruction for all parameters (pl
through pl 7) passed to the service; if you specify a symbolic address, it must be
preceded with a number sign (#) or loaded into a register.

You can specify a maximum of 17 parameters on the $FAO macro. If more than
17 parameters are required, use the $FAOL macro.

This service does not check the length of the argument list and therefore cannot
return the SS$_INSFARG (insufficient arguments) error status code. If the
service does not receive a sufficient number of arguments (for example, if you
omit required commas in the call), you might not get the desired result.

$FAQ Directives $FAO directives can appear anywhere in the control string.
The general format of an $FAO directive is as follows:

!DD

The exclamation point (!) specifies that the following characters are to be
interpreted as an $FAO directive, and the characters DD represent a 1- or
2-character $FAO directive.

Note ___________ _

When the characters of the $FAO directive are alphabetic, they must be
uppercase.

An $FAO directive can optionally specify the following:

• A repeat count. The format is as follows:

!n(DD)

In this case n is a decimal value specifying the number of times that $FAO is
to repeat the directive. If the directive requires a parameter or parameters,
$FAO uses successive parameters from the parameter list for each repetition
of the directive; it does not use the same parameters for each repetition. The
parentheses are required syntax.

• An output field length. The format is as follows:

!mDD

In this case m is a decimal value specifying the length of the field (within
the output string) into which $FAO is to write the output resulting from the
directive. The length is expressed as a number of characters.

SYS-223

System Service Descriptions
$FAO/$FAOL

SYS-224

• Both a repeat count and output field length. In this case the format is as
follows:

!n(mDD)

You can specify repeat counts and output field lengths as variables by using a
number sign (#)in place of an absolute numeric value.

• If you specify a number sign for a repeat count, the next parameter passed to
$FAQ must contain the count.

• If you specify a number sign for an output field length, the next parameter .
must contain the length value.

• If you specify a number sign for both the output field length and for the
repeat count, only one length parameter is required; each output string will
have the specified length.

• If you specify a number sign for the repeat count, the output field length, or
both, the parameters specifying the count, length, or both must precede other
parameters required by the directive.

Table SYS-9 lists $FAQ directives.

Table SYS-9 List of $FAQ Directives

Directive Description

Directives for Character String Substitution

!AC

!AD

!AF

!AS

!AZ

Inserts a counted ASCII string. It requires one parameter: the
address of the string to be inserted. The first byte of the string
must contain the length in characters of the string.

Inserts an ASCII string. It requires two parameters: the length
of the string and the address of the string. Each of these
parameters is a separate argument.

Inserts an ASCII string and replaces all nonprintable ASCII codes
with periods (.). It requires two parameters: the length of the
string and the address of the string. Each of these parameters is
a separate argument.

Inserts an ASCID string. It requires one parameter: the
address of a character string descriptor pointing to the string.
$FAQ assumes that the descriptor is a CLASS_S (static) string
descriptor. Other descriptor types might give improper results.

Inserts a zero-terminated (ASCIZ) string. It requires one
parameter: address of a zero-terminated string.

(continued on next page)

System Service Descriptions
$FAO/$FAOL

Table SYS-9 (Cont.) List of $FAQ Directives

Directive Description

Directives for Zero-Filled Numeric Conversion

!OB

!OW

!OL

!XB

!XW

!XL

!ZB

!ZW

!ZL

Converts a byte value to the ASCII representation of the value's
octal equivalent. It requires one parameter: the value to be
converted. $FAO uses only the low-order byte of the longword
parameter.

Converts a word value to the ASCII representation of the value's
octal equivalent. It requires one parameter: the value to be
converted. $FAO uses only the low-order word of the longword
parameter.

Converts a longword value to the ASCII representation of the
value's octal equivalent. It requires one parameter: the value to
be converted.

Converts a byte value to the ASCII representation of the value's
hexadecimal equivalent. It requires one parameter: the value to
be converted. $FAO uses only the low-order byte of the longword
parameter.

Converts a word value to the ASCII representation of the value's
hexadecimal equivalent. It requires one parameter: the value to
be converted. $FAO uses only the low-order word of the longword
parameter.

Converts a longword value to the ASCII representation of the
value's hexadecimal equivalent. It requires one parameter: the
value to be converted.

Converts an unsigned byte value to the ASCII representation of
the value's decimal equivalent. It requires one parameter: the
value to be converted. $FAO uses only the low-order byte of the
longword parameter.

Converts an unsigned word value to the ASCII representation of
the value's decimal equivalent. It requires one parameter: the
value to be converted. $FAO uses only the low-order word of the
longword parameter.

Converts an unsigned longword value to the ASCII representation
of the value's decimal equivalent. It requires one parameter: the
value to be converted.

Directives for Blank-Filled Numeric Conversion

!UB

!UW

Converts an unsigned byte value to the ASCII representation of
the value's decimal equivalent. It requires one parameter: the
value to be converted. $FAO uses only the low-order byte of the
longword parameter.

Converts an unsigned word value to the ASCII representation of
the value's decimal equivalent. It requires one parameter: the
value to be converted. $FAO uses only the low-order word of the
longword parameter.

(continued on next page)

SYS-225

System Service Descriptions
$FAO/$FAOL

SYS-226

Table SYS-9 (Cont.) List of $FAQ Directives

Directive Description

Directives for Blank-Filled Numeric Conversion

!UL

!SB

!SW

!SL

Converts an unsigned longword value to the ASCII representation
of the value's decimal equivalent. It requires one parameter: the
value to be converted.

Converts a signed byte value to the ASCII representation of
the value's decimal equivalent. It requires one parameter: the
value to be converted. $FAO uses only the low-order byte of the
longword parameter.

Converts a signed word value to the ASCII representation of
the value's decimal equivalent. It requires one parameter: the
value to be converted. $FAO uses only the low-order word of the
longword parameter.

Converts a signed longword value to the ASCII representation of
the value's decimal equivalent. It requires one parameter: the
value to be converted.

Directives for Output String Formatting

!/

!A

!!

!%S

!%T

!%U

!%1

!%D

Inserts a new line, that is, a carriage return and line feed. It
takes no parameters.

Inserts a tab. It takes no parameters.

Inserts a form feed. It takes no parameters.

Inserts an exclamation point. It takes no parameters.

Inserts the letter S if the most recently converted numeric value
is not 1. An uppercase Sis inserted if the character before the
!%S directive is an uppercase character; a lowercase Sis inserted
if the character is lowercase.

Inserts the system time. It takes one parameter: the address of
a quadword time value to be converted to ASCII. If you specify 0,
the current system time is inserted.

Converts a longword integer UIC to a standard UIC specification
in the format [xxx,yyy], where xxx is the group number and yyy is
the member number. It takes one parameter: a longword integer.
The directive inserts the surrounding brackets ([]) and comma
(').

Converts a longword to the appropriate alphanumeric identifier.
If the longword represents a UIC, surrounding brackets ([])and
comma (,) are added as necessary. If no identifier exists and the
longword represents a UIC, the longword is formatted as in !%U.
Otherwise it is formatted as in !XL with a preceding !%X added
to the formatted result.

Inserts the system date and time. It takes one parameter: the
address of a quadword time value to be converted to ASCII. If you
specify 0, the current system date and time is inserted.

(continued on next page)

System Service Descriptions
$FAO/$FAOL

Table SVS-9 (Cont.) List of $FAQ Directives

Directive Description

Directives for Output String Formatting

!n%C

!%E

!%F

!n<

!>

!n*c

Inserts a character string when the most recently evaluated
argument has the value n. (Recommended for use with
multilingual products.)

Inserts a character string when the value of the most recently
evaluated argument does not match any preceding !n%C
directives. (Recommended for use with multilingual products.)

Makes the end of a plurals statement.

See description of next directive (!>).

This directive and the preceding one (!n<) are used together
to define an output field width of n characters within which all
data and directives to the right of !n< and to the left of!> are
left-justified and blank-filled. It takes no parameters.

Repeats the character c in the output string n times.

Directives for Parameter Interpretation

!-

!+

Causes $FAQ to reuse the most recently used parameter in the
list. It takes no parameters.

Causes $FAQ to skip the next parameter in the list. It takes no
parameters.

Table SYS-10 shows the $FAQ output field lengths and their fill characters.

Table SVS-10 $FAQ Output Field Lengths and Fill Characters

Conversion/Substitution
Type

Hexadecimal
Byte
Word
Longword

Octal
Byte
Word
Longword

Default Length of Output
Field

2 (zero-filled)
4 (zero-filled)
8 (zero-filled)

3 (zero-filled)
6 (zero-filled)
11 (zero-filled)

Action When Explicit
Output Field Length Is
Longer Than Default

ASCII result is right
justified and blank
filled to the specified
length.

Hexadecimal or octal
output is always zero
filled to the defauit
output field length,
then blank-filled to
specified length.

Action When Explicit
Output Field Length
Is Shorter Than
Default

ASCII result is
truncated on the
left.

(continued on next page)

SYS-227

System Service Descriptions
$FAO/$FAOL

Table SYS-10 (Cont.) $FAQ Output Field Lengths and Fill Characters

Action When Explicit
Action When Explicit Output Field Length

Conversion/Substitution Default Length of Output Output Field Length Is Is Shorter Than
Type Field Longer Than Default Default

Signed or unsigned As many characters as ASCII result is right- Signed and
decimal necessary justified and blank- unsigned decimal

filled to the specified output fields and
length. completely filled

with asterisks (*).
Unsigned zero-filled As many characters as ASCII result is right-
decimal

ASCII string
substitution

necessary

Length of input
character string

Required Privileges
None

Required Quota
None

Related Services

justified and zero-filled
to the specified length.

ASCII string is left- ASCII string is
justified and blank- truncated. on the
filled to the specified right.
length.

$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI,
$GETDVIW, $GETMSG, $GETQUI, $GETQUIW, $INIT_ VOL, $MOUNT,
$PUTMSG, $QIO, $QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SS$_ACCVIO

SS$_BADPARAM

SS$_BUFFEROVF

SS$_NORMAL

The ctrstr, pl through pn or prmlst arguments
cannot be read, or the outlen argument cannot
be written (it can specify 0).

You specified an invalid directive in the $FAO
control string.

The service completed successfully. The
formatted output string overflowed the output
buffer and has been truncated.

The service completed successfully.

$FAQ Control String Examples

SYS-228

Each of the following examples shows an $FAO control string with several
directives, parameters defined as input for the directives, and the calls to
$FAO to format the output strings.

Each example is accompanied by notes. These notes show the output string
created by the call to $FAO and describe in more detail some considerations
for using directives. The sample output strings show the underscore character
(_) for each space in all places where $FAO output contains multiple spaces.

1.

System Service Descriptions
$FAO/$FAOL

Each of the first 10 examples (numbered 1 through 10) refers to the following
output fields but does not include these fields within the examples.

FAODESC:
.LONG 80
.ADDRESS -

FAOBUF
FAOBUF: .BLKB 80
FAOLEN: .BLKW 1

.BLKW 1

Descriptor for output buffer
Output buff er length

Address of buff er
80-character buffer
Receive length of output
Reserve word for $QIO

Each of the 10 examples also assumes that each call to $FAO will be followed
by a call to $QIO to write the output string produced by $FAO. The $QIO
system service requires that the length be specified as a longword; therefore,
an extra word (commented as Reserve word for $QIO in the previous code
example) is provided following the word defined to receive the length of the
output string returned by $FAO.

The final example (numbered 11) shows a segment of a VAX FORTRAN
program used to output an ASCII string.

$FAO macro - illustrating !AC, !AS, !AD, and !/ directives

Control String and input parameters

SLEEPSTR: .ASCID "!/SAILORS: !AC !AS !AD" Descriptor for control
string

I

WINKEN: .ASCIC
BLINKEN:

/WINKEN/ Counted ASCII string

.ASCID
NOD: .ASCII

/BLINKEN/
!NOD!
NODLEN-NOD

Character string descriptor
ASCII string

NODLEN: .LONG

Call to $FAO

$FAO_S CTRSTR=SLEEPSTR, -
OUTLEN=FAOLEN, -
OUTBUF=FAODESC,
Pl=#WINKEN, -
P2=#BLINKEN I -

P3=NODLEN, -
P4=#NOD

Length of ASCII string

$FAO writes the following output string into FAOBUF:

<CR><KEY>(LF\TEXT)SAILORS: WINKEN BLINKEN NOD

The !/directive provides a carriage-return/line-feed character (shown as
<CR><KEY>(LF\ TEXT)) for terminal output.

The !AC directive requires the address of a counted ASCII string (pl
argument); the number sign (#) is required to specify the parameter, so
that the PUSHL instruction used by the $FAO macro pushes the address
rather than its contents.

The !AS directive requires the address of a character string descriptor (p2
argument).

The !AD directive requires two parameters: the length of the string to be
substituted (p3 argument) and its address (p4 argument).

SYS-229

System Service Descriptions
$FAO/$FAOL

2.

SYS-230

$FAO macro - illustrating J J, and !AS directives, repeat count,
output field length

Control string and input parameters

NAMESTR:
.ASCID /UNABLE TO LOCATE !3(8AS) J !/ ; Descriptor for

; control string
I

JONES: .ASCID /JONES/
HARRIS: .ASCID /HARRIS/
WILSON: .ASCID /WILSON/

Call to $FAO

$FAO_S CTRSTR=NAMESTR, -
OUTLEN=FAOLEN, -
OUTBUF=FAODESC,
Pl=#JONES, -
P2=#HARRIS, -
P3=#WILSON

Name descriptor
Name descriptor
Name descriptor

$FAO writes the following output string into FAOBUF:

UNABLE TO LOCATE JONES~HARRIS WILSON !

The !3(8AS) directive contains a repeat count: three parameters (addresses of
character string descriptors) are required. $FAQ left-justifies each string into
a field of eight characters (the output field length specified).

The double exclamation point directive (!!) supplies a literal exclamation
point (!)in the output.

If the directive were specified without an output field length, that is, if
the directive were specified as !3(AS), the three output fields would be
concatenated, as follows:

UNABLE TO LOCATE JONESHARRISWILSONJ

3.

4.

System Service Descriptions
$FAO/$FAOL

$FAO macro - illustrating !UL, !XL, !SL directives

Control strings and input parameters for next three examples

Descriptor for control string (longword conversion)
LONGSTR:

.ASCID /VALUES !UL (DEC) !XL (HEX) !SL (SIGNED)/
I

; Descriptor for control string (byte conversion)
BYTESTR:

.ASCID /VALUES !UB (DEC) !XB (HEX) !SB (SIGNED)/
I

VALl:
VAL2:
VAL3:

.LONG

.LONG

.LONG

200
300
-400

Example 3: Call to $FAO

$FAO_S CTRSTR=LONGSTR, -
OUTBUF=FAODESC, -
OUTLEN=FAOLEN,
Pl=VALl, -
P2=VAL2, -
P3=VAL3

$FAO writes the following output string:

Decimal 200
Decimal 300
Negative 400

VALUES 200 (DEC) 0000012C (HEX) -400 (SIGNED)

The longword value 200 is converted to decimal, the value 300 is converted to
hexadecimal, and the value -400 is converted to signed decimal. The ASCII
results of each conversion are placed in the appropriate position in the output
string.

Note that the hexadecimal output string has eight characters and is zero-filled
to the left. This is the default output length for hexadecimal longwords.

$FAOL macro - illustrating !UL, !XL, !SL directives

Call to $FAOL

$FAOL_S CTRSTR=LONGSTR, -
OUTBUF=FAODESC, -
OUTLEN=FAOLEN,
PRMLST=VALl

$FAO writes the following output string:

VALUES 200 (DEC) 0000012C (HEX) -400 (SIGNED)

The results are the same as the results of Example 3. However, unlike the
$FAO macro, which requires each parameter on the call to be specified, the
$FAOL macro points to a list of consecutive longwords, which $FAO reads as
parameters.

SYS-231

System Service Descriptions
$FAO/$FAOL

5.

6.

SYS-232

$FAOL macro - illustrating !UB, !XB, !SB directives

Call to $FAOL

$FAOL_S CTRSTR=BYTESTR, -
OUTLEN=FAOLEN, -
OUTBUF=FAODESC,
PRMLST=VALl

$FAQ writes the following output string:

VALUES 200 (DEC) 2C (HEX) 112 (SIGNED)

The input parameters are the same as those for Example 4. However, the
control string (BYTESTR) specifies that byte values are to be converted.
$FAQ uses the low-order byte of each longword parameter passed to it. The
high-order three bytes are not evaluated. Compare these results with the
results of Example 4.

$FAQ macro - illustrating !XW, !ZW, !- directives, repeat count,
output field length

Control string

MULTSTR:
.ASCID /HEX: !2(6XW) ZERO-DEC: !2(-) !2(7ZW)/

Call to $FAQ

$FAO_S CTRSTR=MULTSTR, -
OUTLEN=FAOLEN, -
OUTBUF=FAODESC,
Pl=#lOOOO, -
P2=#9999

$FAQ writes the following output string:

HEX:~2710~270F ZERO-DEC: 00100000009999

Each of the directives !2(6XW) and !2(7ZW) contains repeat counts and output
lengths. First, $FAQ performs the !XW directive twice, using the low-order
word of the numeric parameters passed. The output length specified is two
characters longer than the default output field width of hexadecimal word
conversion, so two spaces are placed between the resulting ASCII strings.

The !- directive causes $fAQ to back up over the parameter list. A repeat
count is specified with the directive so that $FAQ skips back over two
parameters; then, it uses the same two parameters for the !ZW directive. The
!ZW directive causes the output string to be zero-filled to the specified length,
in this example, seven characters. Thus, there are no spaces between the
output fields.

7.

System Service Descriptions
$FAO/$FAOL

$FAOL macro - illustrating !AS, !UB, !%S, !- directives, variable
repeat count

Control string and input parameters
i
ARGSTR: .ASCID /!AS RECEIVED !UB ARG!%S: !-!#(4UB)/
i
LISTA: .ADDRESS -

i
LISTB:

;
ORION:

LYRA:

ORION
.LONG 3
.LONG 10
.LONG 123
.LONG 210

.ADDRESS -
LYRA

.LONG 1

.LONG 255

.ASCID /ORION/

.ASCID /LYRA/

Calls to $FAO

$FAOL_S CTRSTR=ARGSTR, -
OUTLEN=FAOLEN, -
OUTBUF=FAODESC,
PRMLST=LISTA

$FAOL_S CTRSTR=ARGSTR, -
OUTLEN=FAOLEN, -
OUTBUF=FAODESC,
PRMLST=LISTB

Address of name string
Number of args in list
Argument 1
Argument 2
Argument 3

Address of name string
Number of args in list
Argument 1

Descriptor for process ORION

Descriptor for process LYRA

After the first call to $FAOL, $FAO writes the following output string:

ORION RECEIVED 3 ARGS:~lO 123 210

Following the second call, $FAO writes the following output string:

LYRA RECEIVED 1 ARG:~255

In each of the examples, the PRMLST argument points to a different
parameter list; each list contains, in the first longword, the address of a
character string descriptor. The second longword begins an argument list,
with the number of arguments remaining in the list. The control string
uses this second longword twice: first to output the value contained in the
longword, and then to provide the repeat count to output the number of
arguments in the list (the !- directive indicates that $FAO should reuse the
parameter).

The !%8 directive provides a conditional plural. When the last value
converted has a value not equal to 1, $FAQ outputs the character S; if
the valu.e is a 1 (as in Example 2), $FAQ does not output the character S.

The output field length defines a width of four characters for each byte value
converted, to provide spacing between the output fields.

SYS-233

System Service Descriptions
$FAO/$FAOL

8.

9.

SYS-234

$FAO macro- illustrating !n*c (repeat character), !%D directives;

Control string

TIMESTR:
.ASCID /!5*> NOW IS: !%D/

Call to $FAO

$FAO_S CTRSTR=TIMESTR, -
OUTLEN=FAOLEN, -
OUTBUF=FAODESC,
Pl=#O

$FAO writes the following output string:

>>>>> NOW IS: dd-rnmrn-yyyy hh:rnrn:ss.cc

where:

dd

mmm
yyyy

hh:mm:ss.cc

is the day of the month

is the month

is the year

is the time in hours, minutes, seconds, and hundredths of
a second

The !5*> directive requests $FAO to write five greater-than (>) characters
into the output string. Because there is a space after the directive, $FAO also
writes a space after the greater-than characters on output.

The !%D directive requires the address of a quadword time value, which must
be in the system time format. However, when the address of the time value
is specified as 0, $FAO uses the current date and time. For information on
how to obtain system time values in the required format, see the Introduction
to VMS System Services. For a detailed description of the ASCII date and
time string returned, see the discussion of the Convert Binary Time to ASCII
String ($ASCTIM) system service.

$FAO macro - illustrating !%D and !%T (with output field lengths), !n
(with variable repeat count)

Control string
;
DAYTIMSTR:

.ASCID /DATE: !11%D!5*_TIME: !5%T/

Call to $FAO

$FAO_S CTRSTR=DAYTIMSTR, -
OUTLEN=FAOLEN, -
OUTBUF=FAODESC,
Pl=#O, -
P2=#5, -
P3=#0

10.

System Service Descriptions
$FAO/$FAOL

$FAO writes the following output string:

DATE: dd-mrnrn-yyyy __ TIME: hh:nun

An output length of 11 bytes is specified with the !%D directive so that $FAO
truncates the time from the date and time string, and outputs only the date.

The !#_directive requests that the underscore character (_)be repeated the
number of times specified by the next parameter. Because p2 is specified as
5, five underscores are written into the output string.

The !%T directive normally returns the full system time. The !5%T directive
provides an output length for the time; only the hours and minutes fields of
the time string are written into the· output buffer.

$FAO macro - illustrating !< and !> (define field width), !AC, and !UL

Control string and parameters
I

WIDTHSTR:
.ASCID /!25<VAR: !AC VAL: !UL!>TOTAL: !7UL/

I

VARlNAME:
.ASCIC /INVENTORY/

VARl: .LONG 334
VARlTOT:

.LONG 6554
I

VAR2NAME:
.ASCIC /SALES/

VAR2: .LONG 280
VAR2TOT:

.LONG 10750

Calls to $FAO

$FAO_S CTRSTR=WIDTHSTR, -
OUTLEN=FAOLEN, -
OUTBUF=FAODESC,
Pl=#VARlNAME, -
P2=VAR1, -
P3=VAR1TOT

$FAO_S CTRSTR=WIDTHSTR, -
OUTLEN=FAOLEN, -
OUTBUF=FAODESC,
Pl=#VAR2NAME, -
P2=VAR2, -
P3=VAR2TOT

Variable 1 name
Current value

Var 1 total

Var 2 name
Current value

Var 2 total

After the first call to $FAO, $FAO writes the following output string:

VAR: INVENTORY VAL: 334~TOTAL: 6554

After the second call, $FAO writes the following output string:

VAR: SALES VAL: 280 __ TOTAL: 10750

SYS-235

System Service Descriptions
$FAO/$FAOL

11.

SYS-236

The !25< directive requests an output field width of 25 characters; the end
of the field is delimited by the !> directive. Within the field defined are two
directives, !AC and !UL. The strings substituted by these directives can vary
in length, but the entire field always has 25 characters.

The !7UL directive formats the longword passed in each example (p2
argument) and right-justifies the result in a 7-character output field.

2
2

INTEGER STATUS,
SYS$FAO,
SYS$FAOL

Resultant string
CHARACTER*80 OUTSTRING
INTEGER*2 LEN
! Array for directives in $FAOL
INTEGER*4 PARAMS(2)

! File name and error number
CHARACTER*80 FILE
INTEGER*4 FILE_LEN,
2 ERROR
! Descriptor for $FAOL
INTEGER*4 DESCR(2)

! These variables would generally be set following an error
FILE = I [BOELITZ]TESTING.DAT'
FILE_LEN = 18
ERROR = 25

! Call $FAO
STATUS = SYS$FAO
2
2
2
2
IF (. NOT. STATUS)

('File !AS aborted at error !SL',
LEN,
OUTSTRING,
FILE(l:FILE_LEN),
%VAL (ERROR))
CALL LIB$SIGNAL (%VAL(STATUS))

TYPE*, 'From SYS$FAO:'
TYPE *,OUTSTRING (l:LEN)

! Set up descriptor for filename
DESCR(l) = FILE_LEN ! Length
DESCR(2) = %LOC(FILE) ! Address
! Set up array for directives
PARAMS(l) = %LOC(DESCR) ! File name
PARAMS(2) = ERROR ! Error number
! Call $FAOL
STATUS = SYS$FAOL
2
2
2
IF (.NOT. STATUS)

('File !AS aborted at error !SL',
LEN,
OUTSTRING,
PARAMS)

CALL LIB$SIGNAL (%VAL(STATUS))

TYPE *,'From SYS$FAOL:'
TYPE *,OUTSTRING (l:LEN)

END

This example shows a segment of a VAX FORTRAN program used to output
the following string:

FILE [BOELITZ]TESTING.DAT ABORTED AT ERROR 25

System Service Descriptions
$FILESCAN

$FILESCAN-Scan String for File Specification

Format

Returns

Argu_ments

Searches a string for a file specification and parses the components of that file
specification.

SYS$FILESCAN srcstr ,valuelst ,[fldflags]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a· condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

srcstr
VMS Usage:
type:
access:
mechanism:

char _string
character-coded text string
read only
by descriptor-fixed length string descriptor

String to be searched for the file specification. The srcstr argument is the
address of a descriptor pointing to this string.

valuelst
VMS Usage:
type:
access:
mechanism:

itetn_list_2
longword (unsigned)
modify
by reference

Item list specifying which components of the file specification are to be returned
by $FILESCAN. The components are the node, device, directory, file name, file
type, and version number. The itmlst argument is the address of a list of item
descriptors wherein each item descriptor specifies one component. The list of item
descriptors is terminated by a longword of 0.

The following diagram depicts a single item descriptor.

31 15 0

Item Code I Component Length

Component Address

ZK-1709-GE

SYS-237

System Service Descriptions
$FILESCAN

Item Descriptor Fields

component length

Item Codes

SVS-238

A word in which $FILESCAN writes the length (in characters) of the requested
component. If $FILESCAN does not locate the component, it returns the value 0
in this field and in the component address field and returns the SS$_NORMAL
condition value.

item code
A user-supplied, word-length symbolic code that specifies the component desired.
The $FSCNDEF macro defines the item codes.

component address
A longword in which $FILESCAN writes the starting address of the component.
This address points to a location in the input string itself.

fldflags
VMS Usage:
type:
access:
mechanism:

mask_ longword
longword (unsigned)
write only
by reference

Longword flag mask in which $FILESCAN sets a bit for each file specification
component found in the input string. The fldflags argument is the address of
this longword flag mask.

The $FSCNDEF macro defines a symbolic name for each significant flag bit. The
following table shows the file specification component that corresponds to the
symbolic name of each flag bit.

Symbolic Name

FSCN$V_NODE

FSCN$V _DEVICE

FSCN$V _ROOT

FSCN$V _DIRECTORY

FSCN$V _NAME

FSCN$V _TYPE

FSCN$V _VERSION

Corresponding Component

Node name

Device name

Root directory name string

Directory name

File name

File type

Version number

The fldflags argument is optional. When you want to know which components of
a file specification are present in a string but do not need to know the contents or
length of these components, you should specify fl.dflags instead of valuelst.

FSCN$_FILESPEC
When you specify FSCN$_FILESPEC, $FILESCAN returns the length and
starting address of the full file specification. The full file specification contains
the node, device, directory, name, type, and version.

FSCN$_NODE
When you specify FSCN$_NODE, $FILESCAN returns the length and starting
address of the node name. The node name includes the double colon (::), as well
as an access control string (if present).

Description

FSCN$_DEVICE

System Service Descriptions
$FILESCAN

When you specify FSCN$_DEVICE, $FILESCAN returns the length and starting
address of the device name. The device name includes the single colon (:).

FSCN$_ROOT
When you specify FSCN$_ROOT, $FILESCAN returns the length and starting
address of the root directory string. The root directory name string includes the
square brackets ([]) or angle brackets (<>).

FSCN$_DIRECTORV
When you specify FSCN$_DIRECTORY, $FILESCAN returns the length and
starting address of the directory name. The directory name includes the square
brackets ([]) or angle brackets (<>).

FSCN$_NAME
When you specify FSCN$_NAME, $FILESCAN returns the length and starting
address of the file name. The file name includes no syntactical elements.

In addition, when you specify FSCN$_NAME, $FILESCAN returns the length
and starting address of a quoted file specification following a node name (as in the
specification NODE::"FILE-SPEC". The beginning and ending quotation marks
are included.

FSCN$_TVPE
When you specify FSCN$_TYPE, $FILESCAN returns the length and starting
address of the file type. The file type includes the preceding period (.).

FSCN$_ VERSION
When you specify FSCN$_ VERSION, $FILESCAN returns the length and
starting address of the file version number. The file version number includes the
preceding period (.) or semicolon (;) delimiter.

The Scan String for File Specification service searches a string for a file
specification and parses the components of that file specification. When
$FILESCAN locates a partial file specification (for example, DISK:[FOO]), it
returns the length and starting address of those components that were requested
in the item list and were found in the string. If a component was requested in
the item list but not found in the string, $FILESCAN returns a length of 0 and
starting address of 0 to the component length and component address fields
of the item descriptor for that component.

The information returned about all of the individual components describes the
entire contiguous file specification string. For example, to extract only the file
name and file type from a full file specification string, you can add the length of
these two components and use the address of the first component (file name).

The $FILESCAN service does not perform comprehensive syntax checking.
Specifically, it does not check that a component has a valid length.

However, $FILESCAN does check for the following information:

• The component must have required syntactical elements; for example, a
directory component must be enclosed in brackets and a node name must be
followed by a double colon (: :).

SYS-239

System Service Descriptions
$FILESCAN

• The component must not contain invalid characters. Invalid characters are
specific to each component. For example, a comma (,) is a valid character in
a directory component but not in a file type component.

• Spaces, tabs, and carriage returns are permitted within quoted strings, but
are invalid anywhere else.

Invalid characters are treated as terminators. For example, if $FILESCAN
encounters a space within a file name component, it assumes that the space
terminates the full file specification string.

The $FILESCAN service recognizes the DEC Multinational alphabetical
characters (such as a) as alphanumeric characters.

The $FILESCAN service does not (1) assume default values for unspecified file
specification components, (2) perform logical name translation on components,
(3) perform wildcard processing, or (4) perform directory lookups.

Required Privileges
None

Required Quota
None

Related Services
$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI,
$GETDVIW, $GETMSG, $GETQUI, $GETQUIW, $!NIT_ VOL, $MOUNT,
$PUTMSG, $QIO, $QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SYS-240

SS$_NORMAL
SS$_ACCVIO

SS$_BADPARAM

The service completed successfully.

The service could not read the string pointed to
by the srcstr argument or could not write to an
item descriptor in the item list specified by the
valuelst argument.
The item list contains an invalid item code.

System Service Descriptions
$FIND_HELD

$FIND_HELD-Find Identifiers Held by User

Format

Returns

Arguments

Returns the identifiers held by a specified holder.

SYS$FIND_HELD holder ,[id] ,[attrib] ,[contxt]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

holder
VMS Usage: rights_holder
type: quadword (unsigned)
access: read only
mechanism: by reference

Holder whose identifiers are to be found when $FIND_HELD completes execution.
The holder argument is the address of a quadword data structure containing the
holder identifier. This quadword data structure consists of a longword containing
the holder UIC, followed by a longword containing the value 0.

id
VMS Usage:
type:
access:
mechanism:

rights_id
longword (unsigned)
write only
by reference

Identifier value found when $FIND_HELD completes execution. The id argument
is the address of a longword containing the identifier value with which the holder
is associated.

attrib
VMS Usage:
type:
access:
mechanism:

mask_longword
longword (unsigned)
write only
by reference

Attributes associated with the identifier returned in id when $FIND_HELD
completes execution. The attrib argument is the address of a longword
containing a bit mask specifying the attributes.

Symbol values are offsets to the bits within the longword. You can also obtain the
values as masks with the appropriate bit set using the prefix KGB$M rather than
KGB$V. The symbols are defined in the system macro library ($KGBDEF). The
following are the symbols for each bit position.

SYS-241

System Service Descriptions
$FIND_HELD

Description

SYS-242

Bit Position

KGB$V _DYNAMIC

KGB$V _RESOURCE

contxt
context

Meaning When Set

Allows the unprivileged holder to add or remove the
identifier from the process rights list

Allows the holder to charge resources, such as disk
blocks, to the identifier

VMS Usage:
type:
access:
mechanism:

longword (unsigned)
modify
by reference

Context value used when repeatedly calling $FIND_HELD. The contxt argument
is the address of a longword used while searching for all identifiers. The context
value must be initialized to 0, and the resulting context of each call to $FIND_
HELD must be presented to each subsequent call. After contxt is passed to
SYS$FIND_HELD, you must not modify its value.

The Find Identifier Held by User service returns the identifiers associated
with the specified holder. To determine all the identifiers held by the specified
holder, call SYS$FIND_HELD repeatedly until it returns the status code SS$_
NOSUCHID. When SS$_NOSUCHID is returned, $FIND_HELD has returned all
the identifiers, cleared the context value, and deallocated the record stream.

If you complete your calls to SYS$FIND_HELD before SS$_NOSUCHID is
returned, you use SYS$FINISH_RDB to clear the context value and deallocate
the record stream.

Note that, when you use wildcards with this service, the records are returned in
the order that they were originally written because the first record is located on
the basis of the holder ID. Thus, all the target records have the same holder ID
or, in other words, they have duplicate keys, which leads to retrieval in the order
in which they were written.

Required Privileges
None

Required Quota
None

Related Services
$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CHANGE_ACL, $CHECK_
ACCESS, $CHKPRO, $CREATE_RDB, $ERAPAT, $FIND_HOLDER, $FINISH_
RDB, $FORMAT_ACL, $FORMAT_AUDIT, $GRANTID, $HASH_PASSWORD,
$IDTOASC, $MOD_HOLDER, $MOD_IDENT, $MTACCESS, $PARSE_ACL,
$REM_HOLDER, $REM_IDENT, $REVOKID

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_IVCHAN

SS$_INSFMEM

SS$_IVIDENT

SS$_NOIOCHAN

SS$_NOSUCHID

RMS$_PRV

System Service Descriptions
$FIND_HELD

The service completed successfully.

The id argument cannot be read by the caller, or
the holder, attrib, or contxt argument cannot
be written by the caller.

The contents of the contxt longword are not
valid.

The process dynamic memory is insufficient for
opening the rights database.

The specified holder identifier is of invalid
format.

No more rights database context streams are
available.

The specified holder identifier does not exist, or
no further identifiers are held by the specified
holder.

You do not have read access to the rights
database.

Because the rights database is an indexed file accessed with VMS RMS, this
service can also return RMS status codes associated with operations on indexed
files. For descriptions of these status codes, refer to the VMS Record Management
Services Manual.

SYS-243

System Service Descriptions
$FIND_HOLDER

$FIND_HOLDER-Find Holder of Identifier

Format

Returns

Arguments

SYS-244

Returns the holder of a specified identifier.

SYS$FIND_HOLDER id ,[holder] ,[attrib] ,[contxt]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

id
VMS Usage: rights_id
type: longword (unsigned)
access: read only
mechanism: by value

Binary identifier value whose holders are found by $FIND_HOLDER. The id
argument is a longword containing the binary identifier value.

holder
VMS Usage: rights_holder
type: quadword (unsigned)
access: write only
mechanism: by reference

Holder identifier returned when $FIND_HOLDER completes execution. The
holder argument is the address of a quadword containing the holder identifier.
The first longword contains the UIC of the holder with the high-order word
containing the group number and the low-order word containing the member
number. The second longword contains the value 0.

attrib
VMS Usage:
type:
access:
mechanism:

mask_longword
longword (unsigned)
write only
by reference

Mask of attributes associated with the holder record specified by holder. The
attrib argument is the address of a longword containing the attribute mask.

Symbol values are offsets to the bits within the longword. You can also obtain the
values as masks with the appropriate bit set using the prefix KGB$M rather than
KGB$V. The symbols are defined in the system macro library ($KGBDEF). The
following are the symbols for each bit position.

Description

Bit Position

KGB$V _DYNAMIC

KGB$V _RESOURCE

contxt
context

Meaning When Set

System Service Descriptions
$FIND_HOLDER

Allows the unprivileged holder to add or remove the
identifier from the process rights list

Allows the holder to charge resources, such as disk
blocks, to the identifier

VMS Usage:
type:
access:
mechanism:

longword (unsigned)
modify
by reference

Context value used while searching for all the holders of the specified identifier
when executing $FIND_HOLDER. The contxt argument is the address of
a longword containing the context value. When calling $FIND_HOLDER
repeatedly, contxt must be set initially to 0 and the resulting context of each
call to $FIND_HOLDER must be presented to each subsequent call. After the
argument is passed to SYS$FIND_HOLDER, you must not modify its value.

The Find Holder of Identifier service returns the holder of the specified identifier.
To determine all the holders of the specified identifier, you call SYS$FIND_
HOLDER repeatedly until it returns the status code SS$_NOSUCHID, which
indicates that $FIND_HOLDER has returned all identifiers, cleared the context
longword, and deallocated the record stream. If you complete your calls to
$FIND_HOLDER before SS$_NOSUCHID is returned, you use the $FINISH_
RDB service to clear the context value and deallocate the record stream.

Note that when you use wildcards with this service, the records are returned in
the order in which they were originally written. (This action results from the fact
that the first record is located on the basis of the identifier. Thus, all the target
records have the same identifier or, in other words, they have duplicate keys,
which leads to retrieval in the order in which they were written.)

Required Privileges
None

Required Quota
None

Related Services
$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CHANGE_ACL, $CHECK_
ACCESS, $CHKPRO, $CREATE_RDB, $ERAPAT, $FIND_HELD, $FINISH_
RDB, $FORMAT_ACL, $FORMAT_AUDIT, $GRANTID, $HASH_PASSWORD,
$IDTOASC, $MOD_HOLDER, $MOD_IDENT, $MTACCESS, $PARSE_ACL,
$REM_HOLDER, $REM_IDENT, $REVOKID

SYS-245

System Service Descriptions
$FIND_HOLDER

Condition Values Returned

SYS-246

SS$_NORMAL

SS$_ACCVIO

SS$_IVCHAN

SS$_INSFMEM

SS$_IVIDENT

SS$_NOIOCHAN

SS$_NOSUCHID

RMS$_PRV

The service completed successfully.

The id argument cannot be read by the caller, or
the holder, attrib, or contxt argument cannot
be written by the caller.

The contents of the contxt longword are not
valid.

The process dynamic memory is insufficient for
opening the rights database.

The specified identifier or holder identifier is of
invalid format.

No more rights database context streams are
available.

The specified identifier does not exist in the
rights database, or no further holders exist for
the specified identifier.

The user does not have read access to the rights
database.

Because the rights database is an indexed file accessed with VMS RMS, this
service can also return RMS status codes associated with operations on indexed
files. For descriptions of these status codes, refer to the VMS Record Management
Services Manual.

System Service Descriptions
$FINISH_RDB

$FINISH_RDB-Terminate Rights Database Context

Format

Returns

Argument

Description

Deallocates the record stream and clears the context value used with $FIND_
HELD, $FIND_HOLDER, or $IDTOASC.

SYS$FINISH_RDB contxt

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

contxt
VMS Usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Context value to be cleared when $FINISH_RDB completes execution. The
contxt argument is a longword containing the address of the context value.

The Terminate Rights Database Context service clears the context longword
and deallocates the record stream associated with a sequence of rights database
lookups performed by the $IDTOASC, $FIND_HOLDER, and $FIND_HELD
services.

If you repeatedly call $IDTOASC, $FIND_HOLDER, or $FIND_HELD until
SS$_NOSUCHID is returned, you do not need to call $FINISH_RDB because the
record stream has already been deallocated and the context longword has already
been cleared.

Required Privileges
None

Required Quota
None

Related Services
$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CHANGE_ACL, $CHECK_
ACCESS, $CHKPRO, $CREATE_RDB, $ERAPAT, $FIND_HELD, $FIND_
HOLDER, $FORMAT_ACL, $FORMAT_AUDIT, $GRANTID, $HASH_
PASSWORD, $IDTOASC, $MOD_HOLDER, $MOD_IDENT, $MTACCESS,
$PARSE_ACL, $REM_HOLDER, $REM_IDENT, $REVOKID

SYS-247

System Service Descriptions
$FINISH_RDB

Condition Values Returned

SYS-248

SS$_NORMAL

SS$_ACCVIO

SS$_1VCHAN

The service completed successfully.

The contxt argument cannot be written by the
caller.

The contents of the contxt longword are not
valid.

Because the rights database is an indexed file accessed with VMS RMS, this
service can also return RMS status codes associated with operations on indexed
files. For descriptions of these status codes, refer to the VMS Record Management
Services Manual.

System Service Descriptions
$FORCEX

$FORCEX-Force Exit

Format

Returns

Arguments

Causes an Exit ($EXIT) service call to be issued on behalf of a specified process.

SYS$FORCEX [pidadr] ,[prcnam] ,[code]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

pidadr
VMS Usage:
type:
access:
mechanism:

process_id
longword (unsigned)
modify
by reference

Process identification (PID) of the process to be forced to exit. The pidadr
argument is the address of a longword containing the PID. The pidadr argument
can ref er to a process running on the local node or a process running on another
node in the cluster.

The pidadr argument is optional but must be specified if the process that is to be
forced to exit is not in the same UIC group as the calling process.

prcnam
VMS Usage:
type:
access:
mechanism:

process_name
character-coded text string
read only
by descriptor-fixed length string descriptor

Process name of the process that is to be forced to exit. The prcnam argument is
the address of a character string descriptor pointing to the process name string.
A process running on the local node can be identified with a 1- to 15-character
string. To identify a process on a particular node on a cluster, specify the full
process name, which includes the node name as well as the process name. The
full process name can contain up to 23 characters.

The prcnam argument can be used only on behalf of processes in the same UIC
group as the calling process. To force processes in other groups to exit, you must
specify the pidadr argument. This restriction exists because the VMS operating
system interprets the UIC group number of the calling process as part of the
specified process name; the names of processes are unique to UIC groups.

SYS-249

System Service Descriptions
$FORCEX

Description

SYS-250

code
VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
read only
by value

Completion code value to be used as the exit parameter. The code argument is
a longword containing this value. If you do not specify the code argument, the
value 0 is passed as the completion code.

If you specify neither the pidadr nor the prcnam argument, the caller is forced
to exit and control is not returned.

If the longword at address pidadr is 0, the PID of the target process is returned.

The Force Exit system service requires system dynamic memory.

The image executing in the target process follows normal exit procedures. For
example, if any exit handlers have been specified, they gain control before the
actual exit occurs. Use the Delete Process ($DELPRC) service if you do not want
a normal exit.

When a forced exit is requested for a process, a user-mode AST is queued for the
target process. The AST routine causes the $EXIT service call to be issued by the
target process. Because the AST mechanism is used, user mode ASTs must be
enabled for the target process, or no exit occurs until ASTs are reenabled. Thus,
for example, a suspended process cannot be stopped by $FORCEX. The process
that calls $FORCEX receives no notification that the exit is not being performed.

If an exit handler resumes normal processing, the process will not exit. In
particular, if the program is written in Ada and there is a task within the
program that will not terminate, the program will not exit.

The $FORCEX service completes successfully if a force exit request is already in
effect for the target process but the exit is not yet completed.

Required Privileges
Depending on the operation, the calling process may need a certain privilege to
use $FORCEX:

• You need GROUP privilege to force an exit for a process in the same group
that does not have the same UIC as the calling process.

• You need WORLD privilege to force an exit for any process in the system.

Required Quota
None

Related Services
$CANEXH, $CREPRC, $DCLEXH, $DELPRC, $EXIT, $GETJPI, $GETJPIW,
$HIBER, $PROCESS_SCAN, $RESUME, $SETPRI, $SETPRN, $SETPRV,
$SETRWM, $SUSPND, $WAKE

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_INCOMPAT

SS$_INSFMEM

SS$_IVLOGNAM

SS$_NONEXPR

SS$_NOPRIV

SS$_NOSUCHNODE

SS$_REMRSRC

SS$_UNREACHABLE

System Service Descriptions
$FORCEX

The service completed successfully.

The process name string or string descriptor
cannot be read by the caller, or the process
identification cannot be written by the caller.

The remote node is running an incompatible
version of the VMS operating system.

The system dynamic memory is insufficient for
the operation.

The process name string has a length equal to 0
or greater than 15.

The specified process does not exist, or an invalid
process identification was specified.

The process does not have the privilege to force
an exit for the specified process.

The process name refers to a node that is not
currently recognized as part of the cluster.

The remote node has insufficient resources to
respond to the request. (Bring this error to the
attention of your system manager.)

The remote node is a member of the cluster but
is not accepting requests. (This is normal for a
brief period early in the system boot process.)

SYS-251

System Service Descriptions
$FORMAT _A CL

$FORMAT _ACL-Format Access Control List Entry

Format

Returns

Arguments

SYS-252

Formats the specified ACL entry (ACE) into a text string.

SYS$FORMAT _ACL aclent ,[acllen] ,aclstr ,[width] ,[trmdsc] ,[indent] ,[accnam]
,[nullarg]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

aclent
VMS Usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Description of the ACE formatted when $FORMAT_ACL completes execution.
The aclent argument is the address of a descriptor pointing to a buffer containing
the description of the input ACE. The first byte of the buffer contains the length
of the ACE; the second byte contains a value that identifies the type of ACE,
which in turn determines the ACE format.

For more information about the ACE format, see the Description section.

acllen
VMS Usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length of the output string resulting when $FORMAT_ACL completes execution.
The acllen argument is the address of a word containing the number of
characters written to aclstr.

aclstr
VMS Usage:
type:
access:
mechanism:

char _string
character-coded text string
write only
by descriptor-fixed length string descriptor

Formatted ACE resulting when $FORMAT_ACL completes its execution. The
aclstr argument is the address of a string descriptor pointing to a buffer
containing the output string.

width
VMS Usage:
type:
access:
mechanism:

word_unsigned
word (unsigned)
read only
by reference

System Service Descriptions
$FORMAT _ACL

Maximum width of the formatted ACE resulting when $FORMAT_ACL completes
its execution. The width argument is the address of a word containing the
maximum width of the formatted ACE. If this argument is omitted or contains
the value 0, an infinite length display line is assumed. When the width is
exceeded, the character specified by trmdsc is inserted.

trmdsc
VMS Usage:
type:
access:
mechanism:

char _string
character-coded text string
read only
by descriptor-fixed length string descriptor

Line termination characters used in the formatted ACE. The trmdsc argument
is the address of a descriptor pointing to a character string containing the
termination characters that are inserted for each formatted ACE when the width
has been exceeded.

indent
VMS Usage:
type:
access:
mechanism:

word_unsigned
word (unsigned)
read only
by reference

Number of blank characters beginning each line of the formatted ACE. The
indent argument is the address of a word containing the number of blank
characters that you want inserted at the beginning of each formatted ACE.

accnam
VMS Usage:
type:
access:
mechanism:

access_bit_names
longword (unsigned)
read only
by reference

Names of the bits in the access mask when executing the $FORMAT_ACL. The
accnam argument is the address of an array of 32 quadword descriptors that
define the names of the bits in the access mask. Each element points to the name
of a bit. The first element names bit 0, the second element names bit 1, and so
on. If you omit accnam, the following names are used:

Bit Name

Bit 0 READ

Bit 1 WRITE

Bit 2 EXECUTE

Bit 3 DELETE

Bit 4 CONTROL

Bit 5 BIT_5

SYS-253

System Service Descriptions
$FORMAT _ACL

Description

SYS-254

Bit Name

Bit 6 BIT_6

Bit 31 BIT_31

nullarg
VMS Usage:
type:
access:
mechanism:

null_arg
longword (unsigned)
read only
by value

Placeholding argument reserved by Digital.

The Format Access Control List Entry service formats the specified ACL entry
(ACE) into text string representation. There are four types of ACE:

• Alarm ACE

• Application ACE

• Directory default ACE

• Identifier ACE

The format for each of the ACE types is described in the following sections and
the byte offsets and type values for each ACE type are defined in the $ACEDEF
system macro library.

Alarm ACE
The access alarm ACE sets a security alarm. Its format is as follows.

flags I type J length

access

alarm name

ZK-1710-GE

The following table describes the ACE fields and lists the symbol name for each.

Field Symbol Name

length ACE$B_SIZE

type ACE$B_TYPE

Description

Byte containing the length in bytes of
the ACE buffer

Byte containing the type value
ACE$C_ALARM

System Service Descriptions
$FORMAT _ACL

Field Symbol Name Description

flags ACE$W _FLAGS Word containing alarm ACE
information and ACE type
independent information

access ACE$L_ACCESS Longword containing a mask
indicating the access modes to be
watched

alarm name ACE$T_AUDITNAME Character string containing the alarm
name

The flag field contains information specific to alarm ACEs and information
applicable to all types of ACEs. The following symbols are bit offsets to the alarm
ACE information.

Bit Position

ACE$V _SUCCESS

ACE$V _FAILURE

Meaning When Set

Indicates that the alarm is raised when access is
successful

Indicates that the alarm is raised when access fails

The following symbols are bit offsets to ACE information that is independent of
ACE type.

Bit Position

ACE$V _DEFAULT

ACE$V _HIDDEN

Meaning When Set

This ACE is added to the ACL of any file created
in the directory whose ACL contains this ACE.
This option is applicable only for an ACE in a
directory file's ACL.
This ACE is application dependent. You cannot
use the DCL ACL commands and the ACL
editor to change the setting; the DCL command
DIRECTORY/ACL does not display it.

ACE$V_NOPROPAGATE This ACE is not propagated among versions of the
same file.

ACE$V _PROTECTED This ACE is not deleted if the entire ACL is
deleted; instead you must delete this ACE
explicitly.

The following symbol values are offsets to bits within the access mask. You can
also obtain the symbol values as masks with the appropriate bit set using the
prefix ACE$M rather than ACE$V.

Bit

ACE$V_READ

ACE$V _WRITE

ACE$V _EXECUTE

Meaning When Set

Read access is monitored.

Write access is monitored.
Execute access is monitored.

SYS-255

System Service Descriptions
$FORMAT _A CL

SYS-256

Bit

ACE$V _DELETE

ACE$V_CONTROL

Application ACE

Meaning When Set

Delete access is monitored.

Modification of the access field is monitored.

The application ACE contains application dependent information. Its format is as
follows.

Flags l Type l Length

Application Mask

•
•

Application Information
• •

ZK-1711-GE

The following table describes the ACE fields and lists the symbol name for each.

Field

length

type

flags

application mask

application
information

Symbol Name

ACE$B_SIZE

ACE$B_TYPE

ACE$W _FLAGS

ACE$L_INFO _FLAGS

ACE$T_INFO_START

Description

Byte containing the length in
bytes of the ACE buffer.

Byte containing the type value
ACE$C_INFO.

Word containing application
ACE information and ACE
type-independent information.

Longword containing a mask
defined and used by the
application.

Variable length data structure
defined and used by the
application. The length of this
data is implied by length field.

The flag field contains information specific to application ACEs and information
applicable to all types of ACEs. The following symbol is a bit offset to the
application ACE information.

Bit

ACE$V_INFO_TYPE

Meaning When Set

Four-bit field containing a value indicating whether
the application is a CSS application (ACE$C_CSS) or
a customer application (ACE$C_CUST)

The following symbols are bit offsets to ACE information that is independent of
ACE type.

Bit

ACE$V _DEFAULT

ACE$V _HIDDEN

ACE$V_NOPROPAGATE

ACE$V _PROTECTED

Directory Default ACE

System Service Descriptions
$FORMAT _A CL

Meaning When Set

This ACE is added to the ACL of any file created
in the directory whose ACL contains this ACE.
This bit is applicable only for an ACE in a
directory file's ACL.

This bit is application dependent. You cannot
use the DCL ACL commands and the ACL
editor to change the setting; the DCL command
DIRECTORY/ACL does not display it.

This ACE is not propagated between versions of
the same file.

This ACE is not deleted if the entire ACL is
deleteQ.; instead you must delete this ACE
explicitly.

The directory default ACE specifies the UIC-based protection for all files created
in the directory. You can use this type of ACE only in the ACL of a directory file.
Its format is as follows.

Flags l Type J Length

Spare

System

Owner

Group

World

ZK-1712-GE

The following table describes the ACE fields and lists the symbol name for each.

Field Symbol Name

length ACE$B_SIZE

type ACE$B_TYPE

flags ACE$W _FLAGS

spare ACE$L_SPARE1

system ACE$L_SYS_PROT

Description

Byte containing the length in bytes of the
ACE buffer.

Byte containing the type value ACE$C_
DIRDEF.

Word containing ACE type-independent
information.

Longword that is reserved for future use
and must be 0.

Longword containing a mask indicating the
access mode granted to system users. Each
bit represents one type of access.

SYS-257

System Service Descriptions
$FORMAT _A CL

SYS-258

Field Symbol Name Description

owner ACE$L_OWN_PROT Longword containing a mask indicating the
access mode granted to the owner. Each bit
represents one type of access.

group ACE$L_GRP _PROT Longword containing a mask indicating the
access mode granted to group users. Each
bit represents one type of access.

world ACE$L_ WOR_PROT Longword containing a mask indicating the
access mode granted to the world. Each bit
represents one type of access.

The flag field contains information applicable to all types of ACEs. The following
symbols are bit offsets to ACE information that is independent of ACE type.

Bit Position

ACE$V _DEFAULT

ACE$V _HIDDEN

Meaning When Set

This ACE is added to the ACL of any file created
in the directory whose ACL contains this ACE.
This option is applicable only for an ACE in a
directory file's ACL.

This ACE is application dependent. You cannot
use the DCL ACL commands and the ACL
editor to change the setting; the DCL command
DIRECTORY/ACL does not display it.

ACE$V_NOPROPAGATE This ACE is not propagated among versions of the
same file.

ACE$V _PROTECTED This ACE is not deleted if the entire ACL is
deleted; instead you must delete this ACE
explicitly.

The system interprets the bits within the access mask as shown in the following
table. The following symbol values are offsets to bits within the mask indicating
the access mode granted in the system, owner, group, and world fields.

Bit Position

ACE$V_READ

ACE$V _WRITE

ACE$V _EXECUTE

ACE$V _DELETE

Meaning When Set

Read access is granted.

Write access is granted.

Execute access is granted.

Delete access is granted.

You can also obtain the symbol values as masks with the appropriate bit set by
using the prefix ACE$M rather than ACE$V.

Identifier ACE
The identifier ACE controls access to an object based on identifiers. Its format is
as follows.

Flags l
Access

Reserved

Reserved

•
• •

Identifier

Identifier

• •
•

Type l

System Service Descriptions
$FORMAT _ACL

Length

ZK-1713-GE

The following table describes the ACE fields and lists the symbol name for each.

Field

length

type

flags

access

reserved

identifier

Symbol Name

ACE$B_SIZE

ACE$B_TYPE

ACE$W _FLAGS

ACE$L_ACCESS

ACE$V _RESERVED

ACE$L_KEY

Description

Byte containing the length in bytes of
the ACE buffer.

Byte containing the type value
ACE$C_KEYID.

Word containing identifier ACE
information and ACE type
independent information.

Longword containing a mask
indicating the access mode granted to
the specified identifiers.

Longwords containing application
specific information. The number of
reserved longwords is specified in the
flags field.

Longwords containing identifiers.
The number of longwords is implied
by ACE$B_SIZE. If an accessor holds
all of the listed identifiers, the ACE
is said to match the accessor, and the
access specified in ACE$L_ACCESS
is granted.

The flags field contains information specific to identifier ACEs and information
applicable to all types of ACEs. The following symbol is a bit offset to identifier
ACE information.

SYS-259

System Service Descriptions
$FORMAT _ACL

SYS-260

Bit Meaning When Set

ACE$V _RESERVED Four-bit field containing the number of longwords to
reserve for application-dependent data. The number must
be between 0 and 15. The reserved longwords, if any,
immediately precede the identifiers.

The following symbols are bit offsets to ACE information that is independent of
ACE type.

Bit

ACE$V _DEFAULT

ACE$V _HIDDEN

Meaning When Set

This ACE is added to the ACL of any file created
in the directory whose ACL contains this ACE.
This bit is applicable only for an ACE in a
directory file's ACL.

This bit is application dependent. You cannot
use the DCL ACL commands and the ACL
editor to change the setting; the DCL command
DIRECTORY/ACL does not display it.

ACE$V_NOPROPAGATE This ACE is not propagated between versions of
the same file.

ACE$V _PROTECTED This ACE is not deleted if the entire ACL is
deleted; instead you must delete this ACE
explicitly.

The following symbol values are offsets to bits within the mask indicating the
access mode granted in the system, owner, group, and world fields.

Bit Position

ACE$V_READ

ACE$V _WRITE

ACE$V _EXECUTE
ACE$V _DELETE

ACE$V_CONTROL

Meaning When Set

Read access is granted.

Write access is granted.

Execute access is granted.
Delete access is granted.

Modification of the access field is granted.

You can also obtain the symbol values as masks with the appropriate bit set by
using the prefix ACE$M rather than ACE$V.

Required Privileges
None

Required Quota
None

Related Services
$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CHANGE_ACL, $CHECK_
ACCESS, $CHKPRO, $CREATE_RDB, $ERAPAT, $FIND_HELD, $FIND_
HOLDER, $FINISH_RDB, $FORMAT_AUDIT, $GRANTID, $HASH_PASSWORD,
$IDTOASC, $MOD_HOLDER, $MOD_IDENT, $MTACCESS, $PARSE_ACL,
$REM_HOLDER, $REM_IDENT, $REVOKID

Condition Values Returned

SS$_ACCVIO

SS$_BUFFEROVF

SS$_NORMAL

System Service Descriptions
$FORMAT _ACL

The ACL entry or its descriptor cannot be read
by the caller, or the string descriptor cannot
be read by the caller, or the length word or the
string buffer cannot be written by the caller.

The service completed successfully. The output
string has overflowed the buffer and has been
truncated.

The service completed successfully.

SYS-261

System Service Descriptions
$FORMAT _AUDIT

$FORMAT _AUDIT-Format Security Audit Event Message

Format

Returns

Arguments

SYS-262

Converts a security auditing event message from binary format to ASCII text and
filters information the user considers too sensitive to display.

SYS$FORMAT _AUDIT [fmttyp] ,audmsg ,[outlen] ,[outbuf] ,[width] ,[trmdsc] ,[routin]
[,fmtflg]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values returned by this
service are listed in the Condition Values Returned section.

fmttyp
VMS Usage:
type:
access:
mechanism:

longword_ unsigned
longword (unsigned)
read only
by value

Format for the message. The fmttyp argument is a value indicating whether the
security audit message should be in brief format, which is one line of information,
or full format. The default is full format. See the VMS Audit Analysis Utility
Manual for examples of formatted output.

The following table defines the brief and full formats.

Value Meaning

NSA$C_FORMAT_STYLE_BRIEF

NSA$C_FORMAT_STYLE_FULL

Use a brief format for the message.

Use a full format for the message.

audmsg
VMS Usage:
type:
access:
mechanism:

char_string
character-coded text string
read only
by reference

Security auditing message to format. The audmsg argument is the address of
a character descriptor pointing to a buffer containing the message that requires
formatting.

outlen
VMS Usage:
type:
access:
mechanism:

word_ unsigned
word (unsigned)
write only
by reference

System Service Descriptions
$FORMAT _AUDIT

Length of the formatted security audit message. The outlen argument is the
address of the word receiving the final length of the ASCII message.

outbuf
VMS Usage:
type:
access:
mechanism:

char _string
character-coded text string
read only
by descriptor

Buffer holding the formatted message. The outbuf argument is the address of a
descriptor pointing to the buffer receiving the message.

width
VMS Usage:
type:
access:
mechanism:

word_ unsigned
word (unsigned)
read only
by reference

Maximum width of the formatted message. The width argument is the address
of a word containing the line width value. The default is 80 columns.

trmdsc
VMS Usage:
type:
access:
mechanism:

char _string
character-coded text string
read only
by descriptor

Line termination characters used in a full format message. The trrndsc
argument is the address of a descriptor pointing to the line termination
characters to insert within a line segment whenever the width is reached.

routin
VMS Usage:
type:
access:
mechanism:

longword_ unsigned
procedure
read only
by reference

Routine that writes a formatted line to the output buffer. The routin argument
is the address of a routine called each time a line segment is formatted. The
argument passed to the routine is the address of a character string descriptor for
the line segment.

When an application wants event messages in the brief format, $FORMAT_
AUDIT calls the routine twice to format the first event message. The first time it
is called, the routine passes a string containing the column titles for the message.
The second and subsequent calls to the routine pass the formatted event message.
By using this routine argument, a caller can gain control·.at various points in the
processing of an audit event message.

SVS-263

System Service Descriptions
$FORMAT _AUDIT

Description

fmtflg
VMS Usage:
type:
access:
mechanism:

longword (unsigned)
mask_longword
read only
by value

Determines the formatting of certain kinds of audit messages. The fmtflg
argument is a mask specifying whether sensitive information, such as passwords,
should be displayed or column titles built for messages in brief format. The
following table describes the significant bits.

Bit

0

1

Value

1

0

1

0

Description

Do not format sensitive information, for example, passwords.

Format sensitive information.

Build a column title for messages in brief format. (You must
specfy a fmttyp of brief and a routin argument.)

Do not build column titles.

The Format Audit service converts a security auditing event message from
binary format to ASCII text and can filter information-for example, passwords.
$FORMAT_AUDIT allows the caller to format a message in a multiple-line format
or a single-line format and tailor the information for a display device of a specific
width.

$FORMAT_AUDIT is intended for utilities that need to format the security
auditing event messages received from the audit server listener mailbox or the
system security audit log file.

Required Privileges
None

Required Quota
$FORMAT_AUDIT can cause a process to exceed the paging file limit
(PGFLQUOTA) if it has to format a long auditing event message. The caller
of $FORMAT_AUDIT can also receive quota violations from services that
$FORMAT_AUDIT uses, such as $IDTOASC, $FAO, and $GETMSG.

Related Services
None

Condition Values Returned

SYS-264

SS$_NORMAL

SS$_MSGNOTFND

SS$_ACCVIO

SS$_BADPARAM

The service completed successfully.

The service completed successfully; however,
the message code cannot be found and a default
message has been returned.

The item list cannot be read by the caller, or the
buffer length or buffer cannot be written by the
caller.

The item list contains an invalid identifier.

SS$_BUFFEROVF

SS$_INSFMEM

SS$_IVCHAN

SS$_IVIDENT

SS$_NOSUCHID

System Service Descriptions
$FORMAT _AUDIT

The service completed successfully; however, the
formatted output string overflowed the output
buffer and has been truncated.

The process dynamic memory is insufficient for
opening the rights database.

The specified identifier is not of valid format.
This condition value returned is not directly
returned by $FORMAT_AUDIT. It is indirectly
returned when $FORMAT_AUDIT in turn calls
another service, such as an identifier translation
or binary time translation service.

The specified identifier is of invalid format.

The specified identifier name does not exist in the
rights database. This condition value returned is
not directly returned by $FORMAT_AUDIT. It is
indirectly returned when $FORMAT_AUDIT in
turn calls another service, such as an identifier
translation or binary time translation service.

Because the rights database is an indexed file that you access with VMS RMS,
this service can also return RMS status codes associated with operations on
indexed files. For descriptions of these status codes, refer to the VMS Record
Management Services Manual.

SYS-265

System Service Descriptions
$GETDVI

$GETDVl-Get DeviceNolume Information

Format

Returns

Arguments

SYS-266

Returns information related to the primary and secondary device characteristics
of an I/O device.

For synchronous completion, use the Get DeviceNolume Information and Wait
($GETDVIW) service. The $GETDVIW service is identical to the $GETDVI
service in every way except that $GETDVIW returns to the caller with the
requested information.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service and to the Introduction to VMS System Services.

SYS$GETDVI [efn] ,[chan] ,[devnam] ,itmlst [,iosb] [,astadr] [,astprm] [,nullarg]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

ef n
VMS Usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag to be set when $GETDVI returns the requested
information. The efn argument is a longword containing this number; however,
$GETDVI uses only the low-order byte.

Upon request initiation, $GETDVI clears the specified event flag (or event flag 0 if
efn was not specified). Then, when $GETDVI returns the requested information,
it sets the specified event flag (or event flag 0).

ch an
VMS Usage:
type:
access:
mechanism:

channel
word (unsigned)
read only
by value

Number of the I/O channel assigned to the device about which information is
desired. The chan argument is a word containing this number.

To identify a device to $GETDVI, you can specify either the chan or devnam
argument, but you should not specify both. If you specify both arguments, the
chan argument is used.

System Service Descriptions
$GETDVI

If you specify neither chan nor devnam, $GETDVI uses a default value of 0 for
chan.

devnam
VMS Usage:
type:
access:
mechanism:

device_name
character-coded text string
read only
by descriptor-fixed length string descriptor

The name of the device about which $GETDVI is to return information. The
devnam argument is the address of a character string descriptor pointing to this
name string.

The device name string may be either a physical device name or a logical name.
If the first character in the string is an underscore (_), the string is considered
a physical device name; otherwise, the string is considered a logical name and
logical name translation is performed until either a physical device name is found
or the system default number of translations has been performed.

If the device name string contains a colon (:), the colon and the characters that
follow it are ignored.

To identify a device to $GETDVI, you can specify either the chan or devnam
argument, but you should not specify both. If both arguments are specified, the
chan argument is used.

If you specify neither chan nor devnam, $GETDVI uses a default value of 0 for
chan.

itmlst
VMS Usage:
type:
access:
mechanism:

item_list_3
longword (unsigned)
read only
by reference

Item list specifying which information about the device is to be returned. The
itmlst argument is the address of a list of item descriptors, each of which
describes an item of information. The list of item descriptors is terminated
by a longword of 0. The following diagram depicts the format of a single item
descriptor.

31 15 0

Item Code l Buffer Length

Buffer Address

Return Length Address

ZK-1705-GE

SYS-267

System Service Descriptions
$GETDVI

Item Descriptor Fields

buffer length

SYS-268

A word containing a user-supplied integer specifying the length (in bytes) of the
buffer in which $GETDVI is to write the information. The length of the buffer
needed depends upon the item code specified in the item code field of the item
descriptor. If the value of buffer length is too small, $GETDVI truncates the data.

item code
A word containing a user-supplied symbolic code specifying the item of
information that $GETDVI is to return. The $DVIDEF macro defines these
codes. Each item code is described under Item Codes.

buffer address
A longword containing the user-supplied address of the buffer in which $GETDVI
is to write the information.

return length address
A longword containing the user-supplied address of a word in which $GETDVI
writes the length in bytes of the information it returned.

iosb
VMS Us~ge:
type:
access:
mechanism:

io_status_block
quadword (unsigned)
write only
by reference

I/O status block that is to receive the final completion status. The iosb argument
is the address of the quadword I/O status block.

When you specify the iosb argument, $GETDVI sets the quadword to 0 upon
request initiation. Upon request completion, a condition value is returned to the
first longword; the second longword is reserved by Digital.

Though this argument is optional, Digital strongly recommends that you specify
it, for the following reasons:

• If you are using an event flag to signal the completion of the service, you can
test the I/O status block for a condition value to be sure that the event flag
was not set by an event other than service completion.

• If you are using the $SYNCH service to synchronize completion of the service,
the I/O status block is a required argument for $SYNCH.

• The condition value returned in RO and the condition value returned in the
I/O status block provide information about different aspects of the call to the
$GETDVI service. The condition value returned in RO gives you information
about the success or failure of the service call itself; the condition value
returned in the I/O status block gives you information about the success or
failure of the service operation. Therefore, to accurately assess the success or
failure of the call to $GETDVI, you must check the condition values returned
in both RO and the I/O status block.

Refer to the Introduction to VMS System Services for more information about
system service completion.

Item Codes

astadr
VMS Usage: ast_procedure
type: procedure entry mask
access: call without stack unwinding
mechanism: by reference

System Service Descriptions
$GETDVI

AST service routine to be executed when $GETDVI completes. The astadr
argument is the address of the entry mask of this routine.

If you specify astadr, the AST routine executes at the same access mode as the
caller of the $GETDVI service.

astprm
VMS Usage:
type:
access:
mechanism:

user_arg
longword (unsigned)
read only
by value

AST parameter to be passed to the AST service routine specified by the astadr
argument. The astprm argument is the longword parameter.

nullarg
VMS Usage:
type:
access:
mechanism:

null_arg
quadword (unsigned)
read only
by reference

Placeholding argument reserved by Digital.

DVl$_ACPPID
When you specify DVI$_ACPPID, $GETDVI returns the ACP process ID as a
4-byte hexadecimal number.

DVl$_ACPTYPE
When you specify DVI$_ACPTYPE, $GETDVI returns the ACP type code as a
4-byte hexadecimal number. The following symbols define each of the ACP type
codes that $GETDVI can return.

Symbol

DVI$C_ACP _Fll Vl

DVI$C_ACP _Fll V2

DVI$C_ACP _MTA

DVI$C_ACP _NET

DVI$C_ACP _REM

DVl$_ALLDEVNAM

Description

Files-11 Level 1

Files-11 Level 2

Magnetic tape

Networks

Remote 1/0

When you specify DVI$_ALLDEVNAM, $GETDVI returns the allocation-class
device name, which is a 64-byte hexadecimal string. The allocation-class device
name uniquely identifies each device that is currently connected to any VAX node
in a VAXcluster system or to a single-node VAX system. This item code generates
a single unique name for a device even if the device is dual ported.

SYS-269

System Service Descriptions
$GETDVI

SVS-270

One use for the allocation-class device name might be in an application wherein
processes need to coordinate their access to devices (not volumes) using the VMS
lock manager. In this case, the program would make the device a resource to be
locked by the VMS lock manager, specifying as the resource name the following
concatenated components: (1) a user facility prefix followed by an underscore
character and (2) the allocation-class device name of the device.

Note that the name returned by the DVI$_DEVLOCKNAM item code should be
used to coordinate access to volumes.

DVl$_ALLOCLASS
When you specify DVI$_ALLOCLASS, $GETDVI returns the allocation class of
the host as a longword integer between 0 and 255. An allocation class is a unique
number between 0 and 255 that the system manager assigns to a pair of hosts
and the dual-pathed devices that the hosts make available to other nodes in the
cluster.

The allocation class provides a way for you to access dual-pathed devices through
either of the hosts that act as servers to the VAXcluster. In this way, if one host
of an allocation class set is not available, you can gain access to a device specified
by that allocation class through the other host of the allocation class. You do not
have to be concerned about which host of the allocation class provides access to
the device. Specifically, the device name string has the following format:

$allocation_class$device_name

For a detailed discussion of allocation classes, refer to the VMS VAXcluster
Manual.

DVl$_ALT _HOST _AVAIL
When you specify DVI$_ALT_HOST_AVAIL, $GETDVI returns a longword that is
interpreted as Boolean. A value of 1 indicates that the host serving the alternate
path is available; a value of 0 indicates that it is not available.

The host is the node that makes the device available to other nodes in the
VAXcluster. A host node can be either a VAX system with an MSCP server or an
HSC50 controller.

A dual-pathed device is one that is made available to the VAXcluster by two
hosts. Each of the hosts provides access (serves a path) to the device for users.
One host serves the primary path; the other host serves the alternate path. The
primary path is the path that the system creates through the first available host.

You should not be concerned with which host provides access to the device. When
accessing a device, you specify the allocation class of the desired device, not the
name of the host that serves it.

If the host serving the primary path fails, the system automatically creates a
path to the device through the alternate host.

DVl$_ALT_HOST_NAME
When you specify DVI$_ALT_HOST_NAME, $GETDVI returns the name of the
host serving the alternate path as a 64-byte zero-filled string.

For more information about hosts, dual-pathed devices, and primary and
alternate paths, refer to the description of the DVI$_ALT_HOST_AVAIL item
code.

System Service Descriptions
$GETDVI

DVl$_ALT _HOST_ TYPE
When you specify DVI$_ALT_HOST_TYPE, $GETDVI returns, as a 4-byte string,
the hardware type of the host serving the alternate path. Each hardware type
has a symbolic name. The following table shows each symbolic name and the host
it denotes.

Name Host

VAX

HS50

HS70

Any VAX family processor

HSC50

HSC70

For more information about hosts, dual-pathed devices, and primary and
alternate paths, refer to the description of the DVI$_ALT_HOST_AVAIL item
code.

DVl$_CLUSTER
When you specify DVI$_CLUSTER, $GETDVI returns the volume cluster size as
a 4-byte decimal number. This item code is applicable only to disks.

DVl$_CYLINDERS
When you specify DVI$_CYLINDERS, $GETDVI returns the number of cylinders
on the volume as a 4-byte decimal number. This item code is applicable only to
disks.

DVl$_DEVBUFSIZ
When you specify DVI$_DEVBUFSIZ, $GETDVI returns the device buffer size
(for example, the width of a terminal or the block size of a tape) as a 4-byte
decimal number.

DVl$_DEVCHAR
When you specify DVI$_DEVCHAR, $GETDVI returns device-independent
characteristics as a 4-byte bit vector. Each characteristic is represented by a bit.
When $GETDVI sets a bit, the device has the corresponding characteristic. Each
bit in the vector has a symbolic name. The $DEVDEF macro defines the following
symbolic names.

Symbol

DEV$V_REC

DEV$V_CCL

DEV$V_TRM

DEV$V_DIR

DEV$V_SDI

DEV$V_SQD

DEV$V_SPL

DEV$V_OPR

DEV$V_RCT

DEV$V_NET

Description

Device is record oriented.

Device is a carriage control device.

Device is a terminal.

Device is directory structured.

Device is single-directory structured.

Device is sequential and block oriented.

Device is being spooled.

Device is an operator.

Disk contains Revector Cache Table (RCT). This bit is set
for every DAA disk.

Device is a network device.

SYS-271

System Service Descriptions
$GETDVI

SYS-272

Symbol

DEV$V_FOD

DEV$V_DUA

DEV$V_SHR

DEV$V_GEN

DEV$V_AVL

DEV$V_MNT

DEV$V_MBX

DEV$V_DMT

DEV$V_ELG

DEV$V_ALL

DEV$V_FOR

DEV$V_SWL

DEV$V_IDV

DEV$V_ODV

DEV$V_RND

DEV$V_RTM

DEV$V_RCK

DEV$V_WCK

Description

Device is files oriented.

Device is dual ported.

Device is shareable.

Device is a generic device.

Device is available for use.

Device is mounted.

Device is a mailbox.

Device is marked for dismount.

Device has error logging enabled.

Device is allocated.

Device is mounted foreign.

Device is software write locked.

Device can provide input.

Device can provide output.

Device allows random access.

Device is a real-time device.

Device has read-checking enabled.

Device has write-checking enabled.

Note that each device characteristic has its own individual $GETDVI item
code with the format DVI$_xxxx, where xxxx are the characters following the
underscore character in the symbolic name for that device characteristic.

For example, when you specify the item code DVI$_REC, $GETDVI returns a
longword value that is interpreted as Boolean. If the value is 0, the device is
not record oriented; if the value is 1, it is record oriented. This information is
identical to that returned in the DEV$V _REC bit of the longword vector specified
by the DVI$_DEVCHAR item code.

The buffer must specify a longword for all of these device-characteristic item
codes.

DVl$_DEVCHAR2
When you specify DVI$_DEVCHAR2, $GETDVI returns additional device
independent characteristics as a 4-byte bit vector. Each bit in the vector, when
set, corresponds to a symbolic name. The $DEVDEF macro defines the following
symbolic names.

Symbol

DEV$V_CLU

DEV$V_DET

DEV$V_RTT

DEV$V_CDP

DEV$V_2P

Description

Device is available clusterwide.

Device is detached terminal.

Device has remote terminal UCB extension.

Dual-pathed device with two UCBs.

Two paths are known to this device.

Symbol

DEV$V_MSCP

DEV$V_SSM

DEV$V_SRV

DEV$V_RED

DEV$V_NNM

DEV$V_WBC

DEV$V_WTC

DEV$V_HOC

DEV$V_LOC

DEV$V_DFS

DEV$V_DAP

DEV$V_NLT

DEV$V_SEX

DEV$V_SHD

DEV$V_VRT

DEV$V_LDR

DEV$V_NOLB

DEV$V_NOCLU

DEV$V_VMEM

DEV$V_SCSI

DEV$V_WLG

DEV$V_NOFE

DVl$_DEVCLASS

Description

System Service Descriptions
$GETDVI

Device accessed using MSCP (disk or tape). Before
using this bit to differentiate between types of disk and
tape devices, be sure that no other more appropriate
differentiation mechanism exists.

Device is a shadow set member.

Device is served by the MSCP server.

Device is redirected terminal.

Device has node$ prefix.

Device supports write-back caching.

Device supports write-through caching.

Device supports host caching.

Device accessible by local (non-emulated) controller.

Device is DFS-served.

Device is DAP accessed.

Device is not-last-track; that is, it has no bad block.
Information is on its last track.

Device (tape) supports serious exception handling.

Device is a member of a host-based shadow set.

Device is a shadow set virtual unit.

Loader present (tapes).

Device ignores server load balancing requests.

Device will never be available clusterwide.

Virtual member of a constituent set.

Device is an SCSI device.

Device has write-logging capability.

Device does not support forced error.

When you specify DVI$_DEVCLASS, $GETDVI returns the device class as a
4-byte decimal number. Each class has a corresponding symbol. The $DCDEF
macro defines these symbols. The following table describes each device class
symbol.

Symbol

DC$_DISK

DC$_TAPE

DC$_SCOM

DC$_CARD

DC$_TERM

Description

Disk device

Tape device

Synchronous communications device

Card reader

Terminal

SYS-273

System Service Descriptions
$GETDVI

SYS-274

Symbol

DC$_LP

DC$_REALTIME

DC$_MAILBOX

DC$_MISC

DVl$_DEVDEPEND

Description

Line printer

Real-time

Mailbox

Miscellaneous device

When you specify DVI$_DEVDEPEND, $GETDVI returns device-dependent
characteristics as a 4-byte bit vector. To determine what information is returned
for a particular device, refer to the VMS I /0 User's Reference Volume.

Note that, for terminals only, individual $GETDVI item codes are provided for
most of the informational items returned in the DVI$_DEVDEPEND longword bit
vector. The names of these item codes have the format DVI$_TT_xxxx, where xxxx
is the characteristic name. The same characteristic name follows the underscore
character in the symbolic name for each bit (defined by the $TTDEF macro) in
the DVI$_DEVDEPEND longword. For example, the DVl$_TT_NOECHO item
code returns the same information as that returned in the DVI$_DEVDEPEND
bit whose symbolic name is TT$V _NOECHO.

Each such item code requires that the buffer specify a longword value, which is
interpreted as Boolean. A value of 0 indicates that the terminal does not have
that characteristic; a value of 1 indicates that it does.

The list of these terminal-specific item codes follows this list of item codes.

DVl$_DEVDEPEND2
When you specify DVI$_DEVDEPEND2, $GETDVI returns additional device
dependent characteristics as a 4-byte bit vector. Refer to the VMS I I 0 User's
Reference Volume to determine what information is returned for a particular
device.

Note that, for terminals only, individual $GETDVI item codes are provided for
most of the informational items returned in the DVI$_DEVDEPEND2 longword
bit vector. As with DVI$_DEVDEPEND, the same characteristic name appears
in the item code as appears in the symbolic name defined for each bit in the
DVl$_DEVDEPEND2 longword, except that in the case of DVI$_DEVDEPEND2,
the symbolic names for bits are defined by the $TT2DEF macro.

The list of these terminal-specific item codes follows this list of item codes.

DVl$_DEVLOCKNAM
When you specify DVI$_DEVLOCKNAM, $GETDVI returns the device lock
name, which is a 64-byte hexadecimal string. The device lock name uniquely
identifies each volume or volume set in a VAXcluster system or in a single-node
VAX system. This item code is applicable only to disks.

The item code is applicable to all disk volumes and volume sets: mounted, not
mounted, mounted shared, mounted private, or mounted foreign.

The device lock name is assigned to a volume when it is first mounted, and you
cannot change this name, even if the volume name itself is changed. This allows
any process on any VAX node in a VAXcluster to access a uniquely identified
volume.

System Service Descriptions
$GETDVI

One use for the device lock name might be in an application wherein processes
need to coordinate their access to files using the VMS lock manager. In this
case, the program would make the file a resource to be locked by the VMS lock
manager, specifying as the resource name the following concatenated components:
(1) a user facility prefix followed by an underscore character, (2) the device lock
name of the volume on which the file resides, and (3) the file ID of the file.

DVl$_DEVNAM
When you specify DVI$_DEVNAM, $GETDVI returns the device name as a
64-byte, zero-filled string. The node name is not returned.

DVl$_DEVSTS
When you specify DVI$_DEVSTS, $GETDVI returns device-dependent status
information as a 4-byte bit vector. The $UCBDEF macro defines symbols for the
status bits. For this device-dependent information, refer to the VMS I I 0 User's
Reference Volume.

DVl$_DEVTYPE
When you specify DVI$_DEVTYPE, $GETDVI returns the device type as a 4-byte
decimal number. The $DCDEF macro defines symbols for the device types.

DVl$_DFS_ACCESS
When you specify DVI$_DFS_ACCESS, $GETDVI returns a Boolean value
indicating whether a device is a DFS served disk. A value of 0 indicates that the
device is a DFS served disk; a value of 1 indicates that the device is not.

This information allows you to determine if a function works on local disk devices
with DFS. Access Control Lists (ACLs), for example, cannot be set or displayed on
local disk devices with DFS.

DVl$_DISPLAY _DEVNAM
When you specify DVI$_DISPLAY_DEVNAM, $GETDVI returns the preferred
device name for user displays as a 256-byte zero-filled string. The DVI$_
DISPLAY_DEVNAM item code is not recommended for use with the $ASSIGN
service. Use the DVI$_ALLDEVNAM item code to return an allocation class
device name that is usable as input to a program.

DVl$_ERRCNT
When you specify DVI$_ERRCNT, $GETDVI returns the device's error count as a
4-byte decimal number.

DVl$_FREEBLOCKS
When you specify DVI$_FREEBLOCKS, $GETDVI returns the number of free
blocks on a disk as a 4-byte decimal number. This item code is applicable only to
disks.

DVl$_FULLDEVNAM
When you specify DVI$_FULLDEVNAM, $GETDVI returns the node name and
device name as a 64-byte, zero-filled string.

The DVI$_FULLDEVNAM item code is useful in a VAXcluster environment
because, unlike DVI$_DEVNAM, DVI$_FULLDEVNAM returns the name of the
VAX node on which the device resides.

SYS-275

System Service Descriptions
$GETDVI

SYS-276

One use for the DVI$_FULLDEVNAM item code might be to retrieve the name
of a device in order to have that name displayed on a terminal. However, you
should not use this name as a resource name as input to the lock manager; use
the name returned by the DVI$_DEVLOCKNAM item code for locking volumes
and the name returned by DVI$_ALLDEVNAM for locking devices.

DVl$_HOST_AVAIL
When you specify DVI$_HOST_AVAIL, $GETDVI returns a longword, which is
interpreted as Boolean. A value of 1 indicates that the host serving the primary
path is available; a value of 0 indicates that it is not available.

For more information about hosts, dual-pathed devices, and primary and
alternate paths, refer to the description of the DVI$_ALT_HOST_AVAIL item
code.

DVl$_HOST_COUNT
When you specify DVI$_HOST_COUNT, $GETDVI returns, as a longword
integer, the number of hosts that make the device available to other nodes in the
VAX.cluster. One or two hosts, but no more, can make a device available to other
nodes in the VAX.cluster.

For more information about hosts, dual-pathed devices, and primary and
alternate paths, refer to the description of the DVI$_ALT_HOST_AVAIL item
code.

DVl$_HOST_NAME
When you specify DVI$_HOST_NAME, $GETDVI returns the name of the host
serving the primary path as a 64-byte, zero-filled string.

For more information about hosts, dual-pathed devices, and primary and
alternate paths, refer to the description of the DVI$_ALT_HOST_AVAIL item
code.

DVl$_HOST _TYPE
When you specify DVI$_HOST_TYPE, $GETDVI returns, as a 4-byte string, the
type of host serving the primary path. Each hardware type has a symbolic name.
The following table shows each symbolic name and the host it denotes.

Name

VAX

HS50

HS70

Host

Any VAX family processor

HSC50

HSC70

For more information about hosts, dual-pathed devices, and primary and
alternate paths, refer to the description of the DVI$_ALT_HOST_AVAIL item
code.

DVl$_LOCKID
When you specify DVI$_LOCKID, $GETDVI returns the lock ID of the lock on a
disk. The VMS lock manager locks a disk if it is available to all VAX nodes in a
VAX.cluster and it is either allocated or mounted. A disk is available to all VAX
nodes in a VAX.cluster if, for example, it is served by an HSC controller or MSCP
server or if it is a dual-ported MASSBUS disk.

The buffer must specify a longword into which $GETDVI is to return the 4-byte
hexadecimal lock ID.

DVl$_LOGVOLNAM

System Service Descriptions
$GETDVI

When you specify DVI$_LOGVOLNAM, $GETDVI returns the logical name of the
volume or volume set as a 64-byte string.

DVl$_MAXBLOCK
When you specify DVI$_MAXBLOCK, $GETDVI returns the maximum number
of blocks on the volume as a 4-byte decimal number. This item code is applicable
only to disks.

DVl$_MAXFILES
When you specify DVI$_MAXFILES, $GETDVI returns the maximum number of
files on the volume as a 4-byte decimal number. This item code is applicable only
to disks.

DVl$_MEDIA_ID
When you specify DVI$_MEDIA_ID, $GETDVI returns the nondecoded media ID
as a longword. This item code is applicable only to disks and tapes.

DVl$_MEDIA_NAME
When you specify DVI$_MEDIA_NAME, $GETDVI returns the name of the
volume type (for example, RK07 or TA 78) as a 64-byte, zero-filled string. This
item code is applicable only to disks and tapes.

DVl$_MEDIA_ TVPE
When you specify DVI$_MEDIA_TYPE, $GETDVI returns the device name prefix
of the volume (for example, DM for an RK07 device or MU for a TA78 device) as a
64-byte, zero-filled string. This item code is applicable only to disks and tapes.

DVl$_MOUNTCNT
When you specify DVI$_MOUNTCNT, $GETDVI returns the mount count for the
volume as a 4-byte decimal number.

DVl$_MSCP _UNIT_NUMBER
When you specify DVI$_MSCP _UNIT_NUMBER, $GETDVI returns the internal
coded value for MSCP unit numbers as a longword integer. This item code is
reserved by Digital.

DVl$_NEXTDEVNAM
When you specify DVI$_NEXTDEVNAM, $GETDVI returns the device name of
the next volume in the volume set as a 64-byte, zero-filled string. This item code
is applicable only to disks.

DVl$_0PCNT
When you specify DVI$_0PCNT, $GETDVI returns the operation count for the
volume as a 4-byte decimal number.

DVl$_0WNUIC
When you specify DVI$_0WNUIC, $GETDVI returns the user identification code
(UIC) of the owner of the device as a standard 4-byte VMS UIC.

DVl$_PID
When you specify DVI$_PID, $GETDVI returns the process identification (PID) of
the owner of the device as a 4-byte hexadecimal number.

SYS-277

System Service Descriptions
$GETDVI

SYS-278

DVl$_RECSIZ
When you specify DVI$_RECSIZ, $GETDVI returns the blocked record size as a
4-byte decimal number.

DVl$_REFCNT
When you specify DVl$_REFCNT, $GETDVI returns the number of channels
assigned to the device as a 4-byte decimal number.

DVl$_REMOTE_DEVICE
When you specify DVI$_REMOTE_DEVICE, $GETDVI returns a longword, which
is interpreted as Boolean. A value of 1 indicates that the device is a remote
device; a value of 0 indicates that it is not a remote device. A remote device is
a device that is not directly connected to the local node, but instead is visible
through the VAXcluster.

DVl$_ROOTDEVNAM
When you specify DVI$_ROOTDEVNAM, $GETDVI returns the device name of
the root volume in the volume set as a 64-byte, zero-filled string. This item code
is applicable only to disks.

DVl$_SECTORS
When you specify DVI$_SECTORS, $GETDVI returns the number of sectors per
track as a 4-byte decimal number. This item code is applicable only to disks.

DVl$_SERIALNUM
When you specify DVI$_SERIALNUM, $GETDVI returns the serial number of
the volume as a 4-byte decimal number. This item code is applicable only to
disks.

DVl$_SERVED_DEVICE
When you specify DVI$_SERVED_DEVICE, $GETDVI returns a longword, which
is interpreted as Boolean. A value of 1 indicates that the device is a served
device; a value of 0 indicates that it is not a served device. A served device is one
whose local node makes it available to other nodes in the VAXcluster.

DVl$_SHDW_CATCHUP _COPYING
When you specify DVI$_SHDW _CATCHUP _COPYING, $GETDVI returns a
longword, which is interpreted as Boolean. The value 1 indicates that the device
is the target of a full copy operation.

DVl$_SH DW _FAILED _MEMBER
When you specify DVI$_SHDW_FAILED_MEMBER, $GETDVI returns a
longword, which is interpreted as Boolean. The value 1 indicates that the
device is a member that has been removed from the shadow set by the remote
server. The DVI$_SHDW_FAILED_MEMBER item code is for use only with VAX
Volume Shadowing (Phase I).

DVl$_SHDW_MASTER
When you specify DVl$_SHDW _MASTER, $GETDVI returns a longword, which
is interpreted as Boolean. The value 1 indicates that the device is a virtual unit.

DVl$_SHDW_MASTER_NAME
When you specify DVI$_SHOW _MASTER_NAME and the specified device is a
shadow set member, $GETDVI returns the device name of the virtual unit that
represents the shadow set of which the specified device is a member. $GETDVI

System Service Descriptions
$GETDVI

returns a null string if the specified device is not a member or is itself a virtual
unit.

Note ___________ _

Shadow set members must have a nonzero allocation class to operate in
a VAX.cluster system. See the VMS Volume Shadowing Manual for more
information.

Because the shadow set virtual unit name can include up to 64 characters, the
buffer length field of the item descriptor should specify 64 (bytes).

DVl$_SHDW_MEMBER
When you specify DVI$_SHDW _MEMBER, $GETDVI returns a longword, which
is interpreted as Boolean. The value 1 indicates that the device is a shadow set
member.

DVl$_SHDW_MERGE_COPYING
When you specify DVI$_SHDW _MERGE_COPYING, $GETDVI returns a
longword, which is interpreted as Boolean. The value 1 indicates· that the
device is a merge member of the shadow set.

DVl$_SHDW_NEXT_MBR_NAME
When you specify DVI$_SHDW_NEXT_MBR_NAME, $GETDVI returns the
device name of the next member in the shadow set. If you specify a virtual unit,
$GETDVI returns the shadow set member device names in random order. If
you specify the name of a device that is neither a virtual unit nor a member,
$GETDVI returns a null string.

$GETDVI returns the device name of the next member in the shadow set even if
the remote server has removed the next member from the shadow set.

When the shadow set members have a nonzero allocation class, the device name
returned by $GETDVI contains the allocation class; the name has the form
$allocation-class$device. For example, if a shadow set has an allocation class of
255 and the device name is DUSlO, $GETDVI returns the string 255DUS10.

Note ___________ _

Shadow set members must have a nonzero allocation class to operate in
a VAX.cluster system. See the VMS Volume Shadowing Manual for more
information.

Because a device name can include up to 64 characters, the buffer length field of
the item descriptor should specify 64 (bytes).

DVl$_STS
When you specify DVI$_STS, $GETDVI returns the device unit status as a 4-byte
bit vector. Each bit in the vector, when set, corresponds to a symbolic name that
is defined by the $UCBDEF macro. The following table describes each name.

SYS-279

System Service Descriptions
$GETDVI

SYS-280

Symbol

UCB$V_TIM

UCB$V_INT

UCB$V _ERLOGIP

UCB$V_CANCEL

UCB$V_ONLINE

UCB$V _POWER

UCB$V _TIMOUT

UCB$V _INTTYPE

UCB$V_BSY

UCB$V _MOUNTING

UCB$V_DEADMO

UCB$V _VALID

UCB$V_UNLOAD

UCB$V_TEMPLATE

UCB$V _MNTVERIP

UCB$V _ WRONGVOL

UCB$V _DELETEUCB

DVl$_TRACKS

Description

Timeout is enabled.

Interrupt is expected.

Error log is in progress on unit.

I/O on unit is canceled.

Unit is on line.

Power failed while unit busy.

Unit timed out.

Receiver interrupt.

Unit is busy.

Device is being mounted.

Deallocate at dismount.

Volume is software valid.

Unload volume at dismount.

Template UCB from which other UCBs for this device
type are made.

Mount verification is in progress.

Wrong volume detected during mount verification.

Delete this UCB when reference count equals 0.

When you specify DVI$_TRACKS, $GETDVI returns the number of tracks per
cylinder as a 4-byte decimal number. This item code is applicable only to disks.

DVl$_ TRANSCNT
When you specify DVI$_ TRANSCNT, $GETDVI returns the transaction count for
the volume as a 4-byte decimal number.

DVl$_ TT _ACCPORNAM
When you specify DVI$_TT_ACCPORNAM, $GETDVI returns the name of the
remote access port associated with a channel number or with a physical or virtual
terminal device number. If you specify a device that is not a remote terminal or
a remote type that does not support this feature, $GETDVI returns a null string.
The $GETDVI service returns the access port name as a 64-byte zero-filled string.

The $GETDVI service returns the name in the format of the remote system.
If the remote system is a LAT terminal server, $GETDVI returns the name as
server _name I port_name. The names are separated by the slash (I) character.
If the remote system is an X.29 (VAX PSI) terminal, the name is returned as
network. remote_DTE.

When writing applications, you should use the string returned by DVI$_
ACCPORNAM, instead of the physical device name, to identify remote terminals.

DVl$_ TT _PHYDEVNAM
When you specify DVI$_TT_PHYDEVNAM, $GETDVI returns a string containing
the physical device name of a terminal. If the caller specifies a disconnected
virtual terminal or a device that is not a terminal, $GETDVI returns a null
string. $GETDVI returns the physical device name as a 64-byte zero-filled string.

DVl$_UNIT

System Service Descriptions
$GETDVI

When you specify DVI$_UNIT, $GETDVI returns the unit number as a 4-byte
decimal number.

DVl$_ VOLCOUNT
When you specify DVI$_ VOLCOUNT, $GETDVI returns the number of volumes
in the volume set as a 4-byte decimal number. This item code is applicable only
to disks.

DVl$_VOLNAM
When you specify DVI$_ VOLNAM, $GETDVI returns the volume name as a
12-byte zero-filled string.

DVl$_ VOLNUMBER
When you specify DVI$_ VOLNUMBER, $GETDVI returns the volume number
of this volume in the volume set as a 4-byte decimal number. This item code is
applicable only to disks.

DVl$_ VOLSETMEM
When you specify DVI$_ VOLSETMEM, $GETDVI returns a longword value,
which is interpreted as Boolean. A value of 1 indicates that the device is part of a
volume set; a value of 0 indicates that it is not. This item code is applicable only
to disks.

DVl$_VPROT
When you specify DVI$_ VPROT, $GETDVI returns the volume protection mask
as a standard 4-byte protection mask.

DVl$_ TT _xxxx
DVI$_TT_xxxx is the format for a series of item codes that return information
about terminals. This information consists of terminal characteristics. The xxxx
portion of the item code name specifies a single terminal characteristic.

Each of these item codes requires that the buffer specify a longword into which
$GETDVI will write a 0 or 1: 0 if the terminal does not have the specified
characteristic, and 1 if the terminal does have it. The one exception is the DVI$_
TT_PAGE item code, which when specified causes $GETDVI to return a decimal
longword value that is the page size of the terminal.

You can also obtain this terminal-specific information by using the DVI$_
DEVDEPEND and DVI$_DEVDEPEND2 item codes. Each of these two item
codes specifies a longword bit vector wherein each bit corresponds to a terminal
characteristic; $GETDVI sets the corresponding bit for each characteristic
possessed by the terminal.

Following is a list of the item codes that return information about terminal
characteristics. For information about these characteristics, refer to the
description of the F$GETDVI lexical function in the VMS DCL Dictionary.

Terminal-Specific $GETDVI Item
Codes

DVI$_TT_NOECHO

DVI$_TT_HOSTSYNC

DVI$_TT_ESCAPE

DVI$_TT_NOTYPEAHD

DVI$_TT_TTSYNC

DVI$_TT_LOWER

SYS-281

System Service Descriptions
$GETDVI

SYS-282

Terminal-Specific $GETDVI Item
Codes

DVI$_TT_MECHTAB

DVI$_TT_LFFILL

DVI$_TT_CRFILL

DVI$_TT_EIGHTBIT

DVI$_TT_READSYNC

DVI$_TT_NOBRDCST

DVI$_TT_MODEM
DVI$_TT_LOCALECHO

DVI$_TT_PAGE

DVI$_TT_MODHANGUP

DVI$_TT_DMA
DVI$_TT_ANSICRT

DVI$_TT_AVO

DVI$_TT_BLOCK

DVI$_TT_EDITING
DVI$_TT_DIALUP

DVI$_TT_FALLBACK

DVI$_TT_PASTHRU

DVI$_TT_PRINTER

DVI$_TT_DRCS

DVI$_TT_DECCRT2

DVI$_TT_DECCRT3
DVI$_TT_DECCRT4

DVl$_yyyy

DVI$_TT_WRAP

DVI$_TT_SCOPE

DVI$_TT_SETSPEED

DVI$_TT_MBXDSABL
DVI$_TT_MECHFORM

DVI$_TT_HALFDUP

DVI$_TT_OPER

DVI$_TT_AUTOBAUD

DVI$_TT_HANGUP

DVI$_TT_BRDCSTMBX

DVI$_TT_ALTYPEAHD
DVI$_TT_REGIS

DVI$_TT_EDIT

DVI$_TT_DECCRT

DVI$_TT_INSERT
DVI$_TT_SECURE

DVI$_TT_DISCONNECT

DVI$_TT_SIXEL

DVI$_TT_APP _KEYPAD

DVI$_ TT _SYSPWD

DVI$_yyyy is the format for a series of item codes that return device-independent
characteristics of a device. There is an item code for each device characteristic
returned in the longword bit vector specified by the DVI$_DEVCHAR item code.

In the description of the DVI$_DEVCHAR item code is a list of symbol names in
which each symbol represents a device characteristic. To construct the $GETDVI
item code for each device characteristic, substitute for yyyy that portion of the
symbol name that follows the underscore character. For example, the DVI$_REC
item code returns the same information as the DEV$V _REC bit in the DVI$_
DEVCHAR longword bit vector.

The buffer for each of these item codes must specify a longword value, which
is interpreted as Boolean. The $GETDVI service writes the value 1 into the
longword if the device has the specified characteristic and the value 0 if it does
not.

Description

System Service Descriptions
$GETDVI

The Get DeviceNolume Information service returns primary and secondary device
characteristics information about an I/O device. You can use the chan argument
only if (1) the channel has already been assigned, and (2) the caller's access
mode is equal to or more privileged than the access mode from which the original
channel assignment was made.

The caller of $GETDVI does not need to have a channel assigned to the device
about which information is desired.

The $GETDVI service returns information about both primary device
characteristics and secondary device characteristics. By default, $GETDVI
returns information about the primary device characteristics only.

To obtain information about secondary device characteristics, you must logically
OR the item code specifying the information desired with the code DVI$C_
SECONDARY.

You can obtain information about primary and secondary devices in a single call
to $GETDVI.

In most cases, the two sets of characteristics (primary and secondary) returned
by $GETDVI are identical. However, the two sets provide different information in
the following cases:

• If the device has an associated mailbox, the primary characteristics are those
of the assigned device and the secondary characteristics are those of the
associated mailbox.

• If the device is a spooled device, the primary characteristics are those of the
intermediate device (such as the disk) and the secondary characteristics are
those of the spooled device (such as the printer).

• If the device represents a logical link on the network, the secondary
characteristics contain information about the link.

Unless otherwise stated in the description of the item code, $GETDVI returns
information about the local node only.

Required Privileges
None

Required Quota
Sufficient AST quota.

Related Services
$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVIW,
$GETMSG, $GETQUI, $GETQUIW, $INIT_VOL, $MOUNT, $PUTMSG, $QIO,
$QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

SYS-283

System Service Descriptions
$GETDVI

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_EXASTLM

SS$_IVCHAN

SS$_IVDEVNAM

SS$_IVLOGNAM

SS$_NONLOCAL

SS$_NOPRIV

SS$_NOSUCHDEV

The service completed successfully.

The device name string descriptor, device name
string, or itmlst argument cannot be read; or
the buffer or return length longword cannot be
written by the caller.

The item list contains an invalid item code, or
the buffer address field in an item descriptor
specifies less than four bytes for the return
length information.

The process has exceeded its AST limit quota.

You specified an invalid channel number, that
is, a channel number larger than the number of
channels.

The device name string contains invalid
characters, or neither the devnam nor chan
argument was specified.

The device name string has a length of 0 or has
more than 63 characters.

The device is on a remote system.

The specified channel is not assigned or was
assigned from a more privileged access mode.

The specified device does not exist on the host
system.

Condition Values Returned in the 1/0 Status Block

Same as those returned in RO.

SYS-284

System Service Descriptions
$GETDVIW

$GETDVIW-Get DeviceNolume Information and Wait

Format

The Get DeviceNolume Information and Wait service returns information
about an I/O device; this information consists of primary and secondary device
characteristics.

The $GETDVIW service completes synchronously; that is, it returns to the caller
with the requested information. Digital recommends that you use an IOSB with
this service. An IOSB prevents the service from completing prematurely. In
addition, the IOSB contains additional status information.

For asynchronous completion, use the Get DeviceNolume Information ($GETDVI)
service; $GETDVI returns to the caller after queuing the information request,
without waiting for the information to be returned. In all other respects,
$GETDVIW is identical to $GETDVI. For all other information about the
$GETDVIW service, refer to the documentation of $GETDVI.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service and to the Introduction to VMS System Services.

SYS$GETDVIW [efn] ,[chan] ,[devnam] ,itmlst [,iosb] [,astadr] [,astprm] [,nullarg]

SYS-285

System Service Descriptions
$GETJPI

$GET JPl-Get Job/Process Information

Format

Returns

Arguments

SYS-286

Returns information about one or more processes on the system or across the
cluster.

The $GETJPI service completes asynchronously. For synchronous completion, use
the Get Job/Process Information and Wait ($GETJPIW) service.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service and to the Introduction to VMS System Services.

SYS$GET JPI [efn] ,[pidadr] ,[prcnam] ,itmlst ,[iosb] ,[astadr] ,[astprm]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under Condition Values Returned.

ef n
VMS Usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag to be set when $GETJPI returns the requested
information. The efn argument is a longword containing this number; however,
$GETJPI uses only the low-order byte.

Upon request initiation, $GETJPI clears the specified event flag (or event flag 0 if
efn was not specified). Then, when $GETJPI returns the requested information,
it sets the specified event flag (or event flag 0).

pidadr
VMS Usage: process_id
type: longword (unsigned)
access: modify
mechanism: by reference

Process identification (PID) of the process about which $GETJPI is to return
information. The pidadr argument is the address of a longword containing the
PID. The pidadr argument can refer to a process running on the local node or a
process running on another node in the cluster.

If you give pidadr the value -1, $GETJPI assumes a wildcard operation and
returns the requested information for each process on the system that it has the
privilege to access, one process per call. To perform a wildcard operation, you
must call $GETJPI in a loop, testing for the condition value SS$_NOMOREPROC
after each call and exiting from the loop when SS$_NOMOREPROC is returned.

System Service Descriptions
$GETJPI

If you use $GETJPI with $PROCESS_SCAN you can perform wildcard searches
across the cluster. In addition, with $PROCESS_SCAN you can search for specific
processes based on many different selection criteria.

You cannot abbreviate a PID. All significant digits of a PID must be specified;
only leading zeros can be omitted.

For more information, see the Introduction to VMS System Services.

prcnam
VMS Usage:
type:
access:
mechanism:

process_name
character-coded text string
read only
by descriptor-fixed length string descriptor

Name of the process about which $GETJPI is to return information. The prcnam
argument is the address of a character string descriptor pointing to this name
string.

A process running on the local node can be identified with a 1- to 15-character
string. To identify a process on a cluster, you must specify the full process name,
which includes the node name as well as the process name. The full process name
can contain up to 23 characters.

A local process name can look like a remote process name. Therefore,
if you specify ATHENS::SMITH, the system checks for a process named
ATHENS: :SMITH on the local node before checking node ATHENS for a process
named SMITH.

You may use the prcnam argument only if the process identified by prcnam has
the same UIC group number as the calling process. If the process has a different
group number, $GETJPI returns no information. To obtain information about
processes in other groups, you must use the pidadr argument.

itmlst
VMS Usage:
type:
access:
mechanism:

item_list_3
longword (unsigned)
read only
by reference

Item list specifying which information about the process or processes is to be
returned. The itmlst argument is the address of a list of item descriptors, each of
which describes an item of information. The list of item descriptors is terminated
by a longword of 0. The following diagram depicts the format of a single item
descriptor.

31 15 0

Item Code l Buffer Length

Buffer Address

Return Length Address

ZK-1705-GE

SYS-287

System Service Descriptions
$GETJPI

Item Descriptor Fields

buffer length

SYS-288

A word containing a user-supplied integer specifying the length (in bytes) of the
buffer in which $GETJPI is to write the information. The length of the buffer
needed depends upon the item code specified in the item code field of the item
descriptor. If the value of buffer length is too small, $GETJPI truncates the
data.

item code
A word containing a user-supplied symbolic code specifying the item of
information that $GETJPI is to return. The $JPIDEF macro defines these
codes. Each item code is described after this list of item descriptor fields.

buffer address
A longword containing the user-supplied address of the buffer in which $GETJPI
is to write the information.

return length address
A longword containing the user-supplied address of a word in which $GETJPI
writes the length in bytes of the information it actually returned.

iosb
VMS Usage:
type:
access:
mechanism:

io_status_block
quadword (unsigned)
write only
by reference

I/O status block that is to receive the final completion status. The iosb argument
is the address of the quadword I/O status block.

When you specify the iosb argument, $GETJPI sets the quadword to 0 upon
request initiation. Upon request completion, a condition value is returned to the
first longword; the second longword is reserved for future use.

Though this argument is optional, Digital strongly recommends that you specify
it, for the following reasons:

• If you are using an event flag to signal the completion of the service, you can
test the I/O status block for a condition value to be sure that the event flag
was not set by an event other than service completion.

• If you are using the $SYNCH service to synchronize completion of the service,
the I/O status block is a required argument for $SYNCH.

• The condition value returned in RO and the condition value returned in the
I/O status block provide information about different aspects of the call to the
$GETJPI service. The condition value returned in RO gives you information
about the success or failure of the service call itself; the condition value
returned in the I/O status block gives you information about the success or
failure of the service operation. Therefore, to accurately assess the success or
failure of the call to $GETJPI, you must check the condition values returned
in both RO and the I/O status block.

For more information about system service completion, refer to the Introduction
to VMS System Services.

Item Codes

astadr
VMS Usage:
type:
access:
mechanism:

ast_procedure
procedure entry mask
call without stack unwinding
by reference

System Service Descriptions
$GETJPI

AST service routine to be executed when $GETJPI completes. The astadr
argument is the address of the entry mask of this routine.

If you specify astadr, the AST routine executes at the same access mode as the
caller of the $GETJPI service.

astprm
VMS Usage:
type:
access:
mechanism:

user_arg
longword (unsigned)
read only
by value

AST parameter to be passed to the AST service routine specified by the astadr
argument. The astprm argument is the longword parameter.

JPl$_ACCOUNT
When you specify JPI$_ACCOUNT, $GETJPI returns the account name of the
process, which is an 8-byte string, filled with trailing blanks if necessary.

JPl$_APTCNT
When you specify JPI$_APTCNT, $GETJPI returns the active page table count of
the process, which is a longword integer value.

JPl$_ASTACT
When you specify JPI$_ASTACT, $GETJPI returns the names of the access modes
having active ASTs. This information is returned in a longword bit vector. When
bit 0 is set, an active kernel mode AST exists; bit 1, an executive mode AST; bit
2, a supervisor mode AST; and bit 3, a user mode AST.

JPl$_ASTCNT
When you specify JPI$_ASTCNT, $GETJPI returns a count of the remaining AST
quota, which is a longword integer value.

JPl$_ASTEN
When you specify JPI$_ASTEN, $GETJPI returns the names. of the access modes
having ASTs enabled. This information is returned in a longword bit vector.
When bit 0 is set, kernel mode has ASTs enabled; bit 1, executive mode; bit 2,
supervisor mode; and bit 3, user mode.

JP1$_ASTLM
When you specify JPI$_ASTLM, $GETJPI returns the AST limit quota of the
process, which is a longword integer value.

JPl$_AUTHPRI
When you specify JPI$_AUTHPRI, $GETJPI returns the authorized base priority
of the process, which is a longword integer value. The authorized base priority is
the highest priority a process without ALTPRI privilege can attain by means of
the $SETPRI service.

SYS-289

System Service Descriptions
$GETJPI

SYS-290

JPl$_AUTHPRIV
When you specify JPI$_AUTHPRIV, $GETJPI returns the privileges that the
process is authorized to enable. These privileges are returned in a quadword
privilege mask and are defined by the $PRVDEF macro.

JPl$_BIOCNT
When you specify JPI$_BIOCNT, $GETJPI returns a count of the remaining
buffered I/O quota, which is a longword integer value.

JPl$_BIOLM
When you specify JPI$_BIOLM, $GETJPI returns the buffered I/O limit quota of
the process, which is a longword integer value.

JPl$_BUFIO
When you specify JPI$_BUFIO, $GETJPI returns a count of the buffered I/O
operations of the process, which is a longword integer value.

JPl$_BVTCNT
When you specify JPI$_BYTCNT, $GETJPI returns the remaining buffered I/O
byte count quota of the process, which is a longword integer value.

JPl$_BYTLM
When you specify JPI$_BYTLM, $GETJPI returns the buffered I/O byte count
limit quota of the process, which is a longword integer value.

JPl$_CHAIN
When you specify JPI$_CHAIN, $GETJPI processes another item list immediately
after processing the current one. The buffer address field in the item descriptor
specifies the address of the next item list to be processed. You must specify the
JPI$_CHAIN item code last in the item list.

JPl$_CLINAME
When you specify JPI$_CLINAME, $GETJPI returns the name of the command
language interpreter that the process is currently using. Because the CLI name
can include up to 39 characters, the buffer length field in the item descriptor
should specify 39 bytes.

JP1$_CPU_ID
When you specify JPI$_CPU_ID, $GETJPI returns, as a longword integer, the ID
of the CPU on which the process is running or on which it last ran. This value is
returned as -1 if the system is not a multiprocessor.

JPl$_CPULIM
When you specify JPI$_CPULIM, $GETJPI returns the CPU time limit of the
process, which is a longword integer value.

JPl$_CPUTIM
When you specify JPI$_CPUTIM, $GETJPI returns the process's accumulated
CPU time in 10-millisecond ticks, which is a longword integer value.

JPl$_CREPRC_FLAGS
When you specify JPI$_CREPRC_FLAGS, $GETJPI returns the flags specified by
the stsflg argument in the $CREPRC call that created the process. The flags are
returned as a longword bit vector.

JPl$_CURPRIV

System Service Descriptions
$GETJPI

When you specify JPI$_CURPRIV, $GETJPI returns the current privileges of
the process. These privileges are returned in a quadword privilege mask and are
defined by the $PRVDEF macro.

JPl$_DFPFC
When you specify JPI$_DFPFC, $GETJPI returns the default page fault cluster
size of the process, which is a longword integer value.

JPl$_DFWSCNT
When you specify JPI$_DFWSCNT, $GETJPI returns the default working set size
of the process, which is a longword integer value.

JPl$_DIOCNT
When you specify JPI$_DIOCNT, $GETJPI returns the remaining direct I/O
quota of the process, which is a longword integer value.

JPl$_DIOLM
When you specify JPI$_DIOLM, $GETJPI returns the direct I/O quota limit of
the process, which is a longword integer value.

JPl$_DIRIO
When you specify JPI$_DIRIO, $GETJPI returns a count of the direct I/O
operations of the process, which is a longword integer value.

JPl$_EFCS
When you specify JPI$_EFCS, $GETJPI returns the state of the process's local
event flags 0 through 31 as a longword bit vector.

JPl$_EFCU
When you specify JPI$_EFCU, $GETJPI returns the state of the process's local
event flags 32 through 63 as a longword bit vector.

JPl$_EFWM
When you specify JPI$_EFWM, $GETJPI returns the event flag wait mask of the
process, which is a longword bit vector.

JPl$_ENQCNT
When you specify JPI$_ENQCNT, $GETJPI returns the remaining lock request
quota of the process, which is a longword integer value.

JPl$_ENQLM
When you specify JPI$_ENQLM, $GETJPI returns the lock request quota of the
process, which is a longword integer value.

JPl$_EXCVEC
When you specify JPI$_EXCVEC, $GETJPI returns the address of a list of
exception vectors for the process. Each exception vector in the list is a longword.
There are eight vectors in the list: these are, in order, a primary and a secondary
vector for kernel mode access, for executive mode access, for supervisor mode
access, and for user mode access.

The $GETJPI service cannot return this information for any process other than
the calling process; if you specify this item code and the process is not the calling
process, $GETJPI returns the value 0 in the buffer.

SYS-291

System Service Descriptions
$GETJPI

SYS-292

JPl$_FAST_VP _SWITCH
When you specify JPI$_FAST_ VP _SWITCH, $GETJPI returns an unsigned
longword containing the number of times this process has issued a vector
instruction that resulted in an inactive vector processor being enabled without
the expense of a vector context switch. In other words, this count reflects those
instances where the process has reenabled a vector processor on which the
process's vector context has remained intact.

JPl$_FILCNT
When you specify JPI$_FILCNT, $GETJPI returns the remaining open file quota
of the process, which is a longword integer value.

JPl$_FILLM
When you specify JPI$_FILLM, $GETJPI returns the open file limit quota of the
process, which is a longword value.

JPl$_FINALEXC
When you specify JPI$_FINALEXC, $GETJPI returns the address of a list of final
exception vectors for the process. Each exception vector in the list is a longword.
There are four vectors in the list, one for each access mode, in this order: kernel,
executive, supervisor, and user.

The $GETJPI service cannot return this information for any process other than
the calling process; if you specify this item code and the process is not the calling
process, $GETJPI returns the value 0 in the buffer.

JPl$_FREPOVA
When you specify JPI$_FREPOVA, $GETJPI returns the address of the first free
page at the end of the program region (PO space) of the process.

JPl$_FREP1VA
When you specify JPl$_FREP1VA, $GETJPI returns the address of the first free
page at the end of the control region (Pl space) of the process.

JPl$_FREPTECNT
When you specify JPI$_FREPTECNT, $GETJPI returns the number of pages that
the process has available for virtual memory expansion. This value is a longword
integer value.

JPl$_GET JPl_CONTROL_FLAGS
When you specify JPl$_GETJPI_CONTROL_FLAGS, $GETJPI returns the names
of flags that provide additional control over $GETJPI in retrieving information.
$GETJPI may be unable to retrieve all the data requested in an item list because
JPI$_GETJPI_CONTROL_FLAGS requests that $GETJPI not perform certain
actions that may be necessary to collect the data. For example, a $GET JPI
control flag may instruct the calling program not to retrieve a process that has
been swapped out of the balance set.

If $GETJPI is unable to retrieve any data item because of the restrictions
imposed by the control flags, it returns the data length as 0. To verify that
$GETJPI received a data item, examine the data length to be sure that it is not
0. To ensure the verification, be sure to specify the return length for each item in
the $GETJPI item list when any of the JPl$_GETJPI_CONTROL_FLAGS flags is
used.

System Service Descriptions
$GETJPI

Unlike other $GETJPI item codes, the JPI$_GETJPI_CONTROL_FLAGS item is
an input item. The item list entry should specify a longword buffer. The desired
control flags should be set in this buffer.

Since the JPI$_GETJPl_CONTROL_FLAGS item code tells $GETJPI how to
interpret the item list, it must be the first entry in the $GETJPI item list. The
error code SS$_BADPARAM is returned if it is not the first item in the list.

The JPI$_GETJPI_CONTROL_FLAGS item code includes the following.

Flag

JPI$M_NO_TARGET_
INSWAP

JPl$M_NO_TARGET_AST

Description

Does not retrieve a process that has been swapped
out of the balance set. This control flag is used
to avoid adding the additional load of swapping
processes into a system. By using this control flag
and requesting information from a process that
has been swapped out, the following occurs:

• Any data stored in the virtual address space of
the process is not accessible.

• Any data stored in the process header (PHD)
may not be accessible.

• Any data stored in resident data structures,
such as the process control block (PCB) or the
job information block (JIB), is accessible.

You must examine the return length of an item to
verify that the item was retrieved.

Does not deliver a kernel-mode AST to the
target process. This control flag is used to avoid
executing a target process in order to retrieve
information. By using this control flag and not
delivering an AST to a target process, the following
occurs:

• Any data stored in the virtual address space of
the process is not accessible.

• Any data stored in system data structures,
such as the process header (PHD), the process
control block (PCB), or the job information
block (JIB), is accessible.

You must examine the return length of an item to
verify that the item was retrieved.
The use of this control flag also implies that
$GETJPI does not swap in a process, because
$GETJPI would only bring a process into memory
to deliver an AST to that process.

SYS-293

System Service Descriptions
$GETJPI

SYS-294

Flag

JPI$M_IGNORE_TARGET_
STATUS

JPl$_GPGCNT

Description

Attempts to retrieve as much information as
possible, even though the process might be
suspended or is being deleted. This control flag
is used to retrieve all possible information from a
process.

When you specify JPI$_GPGCNT, $GETJPI returns the process's global page
count in the working set, which is a longword integer value.

JPl$_GRP
When you specify JPI$_GRP, $GETJPI returns the group number of the process's
UIC. This is a longword integer value.

JPl$_1MAGECOUNT
When you specify JPI$_IMAGECOUNT, $GETJPI returns, as a longword integer
value, the number of images that have been run down for the process.

JPl$_1MAGNAME
When you specify JPI$_IMAGNAME, $GETJPI returns, as a character string, the
directory specification and the image file name.

JPl$_1MAGPRIV
When you specify JPI$_IMAGPRIV, $GETJPI returns a quadword mask of the
privileges with which the current image was installed. If the current image was
not installed, $GETJPI returns the value 0 in the buffer.

JPl$_JOBPRCCNT
When you specify JPI$_JOBPRCCNT, $GETJPI returns the total number of
subprocesses owned by the job, which is a longword integer value.

JPl$_JOBTYPE
When you specify JPI$_JOBTYPE, $GETJPI returns the execution mode of
the process at the root of the job tree, which is a longword integer value. The
symbolic name and value for each execution mode are listed in the following
table. The $JPIDEF macro defines the symbolic names.

Mode Name Value

JPI$K_DETACHED 0

JPI$K_NETWORK 1

JPI$K_BATCH 2

JPI$K_LOCAL 3

JPI$K_DIALUP 4

JPI$K_REMOTE 5

JPl$_LAST _LOGIN_I
When you specify JPI$_LAST_LOGIN_I, $GETJPI returns, as a quadword
absolute time value, the date of the last successful interactive login prior to the
current session. It returns a quadword of 0 when processes have not executed the
LOGINOUT image.

JPl$_LAST _LOGIN_N

System Service Descriptions
$GETJPI

When you specify JPI$_LAST_LOGIN_N, $GETJPI returns, as a quadword
absolute time value, the date of the last successful noninteractive login prior to
the current session. It returns a quadword of 0 when processes have not executed
the LOGINOUT image.

JPl$_LOGIN_FAILURES
When you specify JPI$_LOGIN_FAILURES, $GETJPI returns the number of
login failures that occurred prior to the current session. It returns a longword of
0 when processes have not executed the LOGINOUT image.

JPl$_LOGIN_FLAGS
When you specify JPI$_LOGIN_FLAGS, $GETJPI returns a longword bitmask
containing information related to the login sequence. It returns a longword of 0
when processes have not executed the LOGINOUT image. The following bits are
defined.

Symbolic Name

JPl$M_NEW _MAIL_AT_LOGIN

JPI$M_PASSWORD_CHANGED

JPl$M_PASSWORD _EXPIRED

JPl$M_PASSWORD_ WARNING

JPl$M_PASSWORD2_CHANGED

JPI$M_PASSWORD2_EXPIRED

JPl$M_PASSWORD2_ WARNING

JPl$_LOGINTIM

Description

User had new mail messages waiting
at login.

User changed the primary password
during login.

User's primary password expired
during login.

System gave the user a warning
at login that the account's primary
password would expire within 5 days.

Account's secondary password was
changed during login.

Account's secondary password expired
during login.

System gave the user a warning at
login that the account's secondary
password would expire within 5 days.

When you specify JPI$_LOGINTIM, $GETJPI returns the time at which the
process was created, which is a standard 64-bit absolute time.

JPl$_MASTER_PID
When you specify JPI$_MASTER_PID, $GETJPI returns the process
identification (PID) of the master process in the job. The PID is a longword
hexadecimal value.

JPl$_MAXDETACH
When you specify JPI$_MAXDETACH, $GETJPI returns the maximum number
of detached processes allowed for the user who owns the process specified in the
call to $GETJPI. This limit is set in the UAF record of the user. The number is
returned as a word decimal value. A value of 0 means that there is no limit on
the number of detached processes for that user name.

SYS-295

System Service Descriptions
$GETJPI

SYS-296

JPl$_MAXJOBS
When you specify JPI$_MAXJOBS, $GETJPI returns the maximum number of
active processes allowed for the user who owns the process specified in the call to
$GETJPI. This limit is set in the UAF record of the user. The number is returned
as a word decimal value. A value of 0 means that there is no limit on the number
of active processes for that user name.

JPl$_MEM
When you specify JPI$_MEM, $GETJPI returns the member number of the
process's UIC, which is a longword integer value.

JPl$_MODE
When you specify JPI$_MODE, $GETJPI returns the mode of the process, which
is a longword integer value. The symbolic name and value for each mode are
listed in the following table; the $JPIDEF macro defines the symbolic names.

Mode Name Value

JPI$K_OTHER 0

JPI$K_NETWORK 1

JPI$K_BATCH 2

JPI$K_INTERACTIVE 3

JPl$_MSGMASK
When you specify JPI$_MSGMASK, $GETJPI returns the default message mask
of the process, which is a longword bit mask.

JPl$_NODENAME
When you specify JPI$_NODENAME, $GETJPI returns, as a character string,
the name of the VAXcluster node on which the process is running.

JPl$_NODE_CSID
When you specify JPI$_NODE_CSID, $GETJPI returns, as a longword
hexadecimal integer, the cluster ID of the VAXcluster node on which the process
is running.

JPl$_NODE_ VERSION
When you specify JPI$_NODE_ VERSION, $GETJPI returns, as a character
string, the VMS version number of the VAXcluster node on which the process is
running.

JPl$_0WNER
When you specify JPI$_0WNER, $GETJPI returns the process identification
(PID) of the process that created the specified process. The PID is a longword
hexadecimal value.

JPl$_PAGEFLTS
When you specify JPI$_PAGEFLTS, $GETJPI returns the total number of page
faults incurred by the process. This is a longword integer value.

JPl$_PAGFILCNT
When you specify JPI$_PAGFILCNT, $GETJPI returns the remaining paging file
quota of the process, which is a longword integer value.

JPl$_PAGFILLOC

System Service Descriptions
$GETJPI

When you specify JPI$_PAGFILLOC, $GETJPI returns the current paging file
assignment of the process. The fourth byte of the returned longword value is the
index of the system page file to which the process is currently assigned.

JPl$_PGFLQUOTA
When you specify JPI$_PGFLQUOTA, $GETJPI returns the paging file quota of
the process, which is a longword integer value.

JPl$_PHDFLAGS
When you specify JPI$_PHDFLAGS, $GETJPI returns the process header flags
as a longword bit vector.

JPl$_PID
When you specify JPI$_PID, $GETJPI returns the process identification (PID) of
the process. The PID is a longword hexadecimal value.

JPl$_PPGCNT
When you specify JPI$_PPGCNT, $GETJPI returns the number of pages the
process has in the working set. This is a longword integer value.

JPl$_PRCCNT
When you specify JPI$_PRCCNT, $GETJPI returns, as a longword integer value,
the number of subprocesses created by the process. The number returned by
JPI$_PRCCNT does not include any subprocesses created by subprocesses of the
process named in the procnam argument.

JPl$_PRCLM
When you specify JPI$_PRCLM, $GETJPI returns the subprocess quota of the
process, which is a longword integer value.

JPl$_PRCNAM
When you specify JPI$_PRCNAM, $GETJPI returns, as a character string, the
name of the process. Because the process name can include up to 15 characters,
the buffer length field of the item descriptor should specify at least 15 bytes.

JPl$_PRI
When you specify JPI$_PRI, $GETJPI returns the current priority of the process,
which is a longword integer value.

JPl$_PRIB
When you specify JPI$_PRIB, $GETJPI returns the base priority of the process,
which is a longword integer value.

JPl$_PROCESS_RIGHTS
When you specify JPI$_PROCESS_RIGHTS, $GETJPI returns the binary content
of the process rights list as an array of quadword identifiers. Each entry consists
of a longword identifier value and longword identifier attributes, shown in
Table SYS-11. Allocate a buffer that is sufficient to hold the process rights list
because $GET JPI returns only as much of the list as will fit in the buffer.

SYS-297

System Service Descriptions
$GETJPI

SYS-298

Table SYS-11 Attributes of an Identifier

Symbolic Name

KGB$M_RESOURCE

KGB$M_DYNAMIC

JPl$_PROC_INDEX

Description

Resources can be charged to the identifier.

Identifier can be enabled or disabled.

When you specify JPI$_PROC_INDEX, $GETJPI returns, as a longword integer
value, the process index number of the process. The process index number
is a number between 1 and the SYSGEN parameter MAXPROCESSCNT, which
identifies the process. Although process index numbers are reassigned to different
processes over time, at any one instant, each process in the system has a unique
process index number.

You can use the process index number as an index into system global sections.
Because the process index number is unique for each process, its use as an index
into system global sections guarantees no collisions with other system processes
accessing those sections.

The process index is intended to serve users who formerly used the low-order
word of the PID as an index number.

JPl$_PROCPRIV
When you specify JPI$_PROCPRIV, $GETJPI returns the default privileges of the
process in a quadword bit mask.

JPl$_RIGHTSLIST
When you specify JPI$_RIGHTSLIST, $GETJPI returns, as an array of quadword
identifiers, all identifiers applicable to the process. This includes the process
rights list (JPI$_PROCESS_RIGHTS) and the system rights list (JPI$_SYSTEM_
RIGHTS). Each entry consists of a longword identifier value and longword
identifier attributes, shown in Table SYS-11. Allocate a buffer that is sufficient
to hold the rights list because $GET JPI returns only as much of the list as will fit
in the buffer.

JPl$_RIGHTS_SIZE
When you specify JPI$_RIGHTS_SIZE, $GETJPI returns the number of bytes
required to buffer the rights list. The rights list includes both the system rights
list and the process rights list. Because the space requirements for the rights list
can change between the time you request the size of the rights list and the time
you fetch the rights list with JPI$_RIGHTSLIST, you might want to allocate a
buffer that is 10 percent larger.

JPl$_SHRFILLM
When you specify JPI$_SHRFILLM, $GET JPI returns the maximum number of
open shared files allowed for the job to which the process specified in the call to
$GETJPI belongs. This limit is set in the UAF record of the user who owns the
process. The number is returned as a word decimal value. A value of 0 means
that there is no limit on the number of open shared files for that job.

JPl$_SITESPEC
When you specify JPI$_SITESPEC, $GETJPI returns the per-process, site-specific
longword, which is a longword integer value.

System Service Descriptions
$GETJPI

JPl$_SLOW_VP _SWITCH
When you specify JPI$_SLOW _VP _SWITCH, $GETJPI returns an unsigned
longword containing the number of times this process has issued a vector
instruction that resulted in an inactive vector processor being enabled with a full
vector context switch. This vector context switch involves the saving of the vector
context of the process that last used the vector processor and the restoration of
the vector context of the current process.

JPl$_STATE
When you specify JPI$_STATE, $GETJPI returns the state of the process, which
is a longword integer value. Each state has a symbolic representation. If the
process is currently executing, its state is always SCH$K_CUR. The $STATEDEF
macro defines the following symbols, which identify the various possible states.

State

SCH$C_CEF

SCH$C_COM

SCH$C_COMO

SCH$C_CUR

SCH$C_COLPG

SCH$C_FPG

SCH$C_HIB

SCH$C_HIBO

SCH$C_LEF

SCH$C_LEFO

SCH$C_MWAIT

SCH$C_PFW

SCH$C_SUSP

SCH$C_SUSPO

JPl$_STS

Description

Common event flag wait

Computable

Computable, out of balance set

Current process

Collided page wait

Free page wait

Hibernate wait

Hibernate wait, out of balance set

Local event flag wait

Local event flag wait, out of balance set

Mutex and miscellaneous resource wait

Page fault wait

Suspended

Suspended, out of balance set

When you specify JPI$_STS, $GETJPI returns the status flags of the process,
which are contained in a longword bit vector. The $PCBDEF macro defines the
following symbols for these flags.

Symbol

PCB$V _ASTPEN

PCB$V _BATCH

PCB$V _DELPEN

PCB$V _DISAWS

PCB$V _FORCPEN

PCB$V _HARDAFF

PCB$V _HIBER

PCB$V _INQUAN

PCB$V _INTER

Description

AST pending

Process is a batch job

Delete pending

Disable automatic working set adjustment

Force exit pending

Process bound to a particular CPU

Hibernate after initial image activate

Initial quantum in progress

Process is an interactive job

SVS-299

System Service Descriptions
$GETJPI

SYS-300

Symbol

PCB$V _LOGIN

PCB$V _NETWRK

PCB$V _NOACNT

PCB$V _NODELET

PCB$V _PHDRES

PCB$V _PREEMPTED

PCB$V _PSWAPM

PCB$V _PWRAST

PCB$V _RECOVER

PCB$V_RES

PCB$V _RESPEN

PCB$V _SECAUDIT

PCB$V_SOFTSUSP

PCB$V _SSFEXC

PCB$V _SSFEXCE

PCB$V _SSFEXCS

PCB$V _SSFEXCU

PCB$V _SSRWAIT

PCB$V _SUSPEN

PCB$V _SWPVBN

PCB$V _ WAKEPEN

PCB$V_WALL

JPl$_STS2

Description

Log in without reading authorization file

Process is a network connect object

No accounting for process

No delete

Process header resident

Kernel mode suspend has overridden supervisor mode
suspend

Process swap mode (l=noswap)

Power fail AST

Process can recover locks

Resident, in balance set

Resume pending, skip suspend

Mandatory security auditing

Process is in supervisor mode suspend

System service exception enable (kernel)

System service exception enable (exec)

System service exception enable (super)

System service exception enable (user)

System service resource wait disable

Suspend pending

Write for swap VBN in progress

Wake pending, skip hibernate

Wait for all events in mask

When you specify JPI$_STS2, $GETJPI returns the second longword of the
process status flags. The returned value is a longword bit vector. The $PCBDEF
macro defines the following symbol for these flags.

Flag

PCB$V _QUANTUM_
RESCHED

JPl$_SWPFILLOC

Description

Quantum-oriented process reschedule

When you specify JPI$_SWPFILLOC, $GETJPI returns the location of the
process's swapping file, which is a longword hexadecimal value. If the number
returned is positive, the fourth byte of this value identifies a specific swapping
file, and the lower three bytes contain the VBN within the swapping file. If
the number returned is 0 or negative, the swap file location information is not
currently available for the process.

JPl$_SVSTEM_RIGHTS
When you specify JPI$_SYSTEM_RIGHTS, $GETJPI returns the system rights
list as an array of quadword identifiers. Each entry consists of a longword
identifier value and longword identifier attributes, shown in Table SYS-11.

System Service Descriptions
$GETJPI

Allocate a buffer that is sufficient to hold the system rights list because $GETJPI
only returns as much of the list as will fit in the buffer.

JPl$_ TABLENAME
When you specify JPI$_TABLENAME, $GETJPI returns the file specification of
the process's current command language interpreter (CLI) table. Because the file
specification can include up to 255 characters, the buffer length field in the item
descriptor should specify 255 bytes.

JPl$_ TERMINAL
When you specify JPI$_TERMINAL, $GETJPI returns, for interactive users,
the process's login terminal name as a character string. Because the terminal
name can include up to 8 characters, the buffer length field in the item descriptor
should specify at least 8 bytes. Trailing zeros are written to the output buffer if
necessary.

JPl$_TMBU
When you specify JPI$_TMBU, $GETJPI returns the termination mailbox unit
number, which is a longword integer value.

JPl$_TQCNT
When you specify JPI$_TQCNT, $GETJPI returns the remaining timer queue
entry quota of the process, which is a longword integer value.

JPl$_TQLM
When you specify JPI$_TQLM, $GETJPI returns the process's limit on timer
queue entries, which is a longword integer value.

JPl$_ TT _ACCPORNAM
When you specify JPI$_TT_ACCPORNAM, $GETJPI returns the access port
name for the terminal associated with the process. (The terminal name is
returned by JPI$_TERMINAL.) If the terminal is on a terminal server, this item
returns the terminal server name and the name of the line port on the server. If
the terminal is a DECnet remote terminal, this item returns the source system
node name and the user name on the source system. Otherwise, it returns a null
string.

JPl$_ TT _PHYDEVNAM
When you specify JPI$_TT_PHYDEVNAM, $GETJPI returns the physical
device name of the terminal associated with the process. This name is the
same as JPI$_TERMINAL unless virtual terminals are enabled, in which case
JPI$_TERMINAL returns the name of the virtual terminal and JPI$_TT_
PHYDEVNAM returns the name of the physical terminal. If JPI$_TERMINAL
is null or if the virtual terminal is disconnected from the physical terminal,
JPI$_TT_PHYDEVNAM returns a null string.

JPl$_UAF _FLAGS
When you specify JPI$_UAF _FLAGS, $GETJPI returns the UAF flags from
the UAF record of the user who owns the process. The flags are returned as
a longword bit vector. For a list of the symbolic names of these flags, see the
UAI$_FLAGS item code under the $GETUAI system service.

JPl$_UIC
When you specify JPI$_UIC, $GETJPI returns the UIC of the process in the
standard longword format.

SYS-301

System Service Descriptions
$GETJPI

Description

SYS-302

JPl$_USERNAME
When you specify JPI$_USERNAME, $GETJPI returns the user name of the
process as a 12-byte string. If the name is less than 12 bytes, $GETJPI fills out
the 12 bytes with trailing blanks and always returns 12 as the string length.

JPl$_ VIRTPEAK
When you specify JPI$_VIRTPEAK, $GETJPI returns the peak virtual address
size of the process as a longword integer value.

JPl$_ VOLUMES
When you specify JP!$_ VOLUMES, $GETJPI returns the number of volumes
that the process currently has mounted, which is a longword integer value.

When you specify JPI$_ VP _CONSUMER, $GETJPI returns a byte, the low-order
bit of which, when set, indicates that the process is a vector consumer.

JPl$_ VP _CPUTIM
When you specify JPI$_ VP _CPUTIM, $GETJPI returns an unsigned longword
that contains the total amount of time the process has accumulated as a vector
consumer.

JPl$_WSAUTH
When you specify JPl$_ WSAUTH, $GETJPI returns the maximum authorized
working set size of the process as a longword integer value.

JPl$_WSAUTHEXT
When you specify JPI$_ WSAUTHEXT, $GETJPI returns the maximum
authorized working set extent of the process as a longword integer value.

JPl$_WSEXTENT
When you specify JPI$_ WSEXTENT, $GETJPI returns the current working set
extent of the process as a longword integer value.

JPl$_WSPEAK
When you specify JPI$_ WSPEAK, $GETJPI returns the peak working set size of
the process as a longword integer value.

JPl$_WSQUOTA
When you specify JPI$_WSQUOTA, $GETJPI returns the working set size quota
of the process as a longword integer value.

JPl$_WSSIZE
When you specify JPI$_ WSSIZE, $GETJPI returns the current working set size
of the process as a longword integer value.

The Get Job/Process Information service returns information about one or more
processes on the system or across the cluster. Using $GETJPI with $PROCESS_
SCAN, you can perform selective or clusterwide searches.

Getting information about another process is an asynchronous operation because
the information might be contained in the other process's virtual address space,
and the process might have a lower priority or might be currently swapped out of
the balance set. To allow your program to overlap other functions with the time
needed to schedule the other process for execution or swap it into the balance

System Service Descriptions
$GETJPI

set, $GETJPI returns immediately after it has queued its information-gathering
request to the other process.

Required Privileges
The calling process must have GROUP privilege to obtain information about other
processes with the same group UIC number as the calling process. The calling
process must have WORLD privilege to obtain information about other processes
on the system that are not in the same group as the calling process.

Required Quota
None

Related Services
$GETJPIW, $HIBER, $PROCESS_SCAN, $RESUME

Condition Values Returned

SS$_ACCVIO

SS$_BADPARAM

SS$_INCOMPAT

SS$_IVLOGNAM

SS$_NOMOREPROC

SS$_NONEXPR

SS$_NOPRIV

SS$_NORMAL

SS$_NOSUCHNODE

SS$_REMRSRC

SS$_SUSPENDED

SS$_UNREACHABLE

The item list cannot be read by the caller, or the
buffer length or buffer cannot be written by the
caller.

The item list contains an invalid identifier.

The remote node is running a version of VMS
that is incompatible.

The process name string has a length of 0 or has
more than 15 characters.

In a wildcard operation, $GET JPI found no more
processes.

The specified process does not exist, or an invalid
process identification was specified.

The process does not have the privilege to obtain
information about the specified process.

The service completed successfully.

The specified node is not currently a member of
the cluster.

The remote node has insufficient resources to
respond to the request. (Bring this error to the
attention of your system manager.)

The specified process is suspended or in a
miscellaneous wait state, and the requested
information cannot be obtained.

The remote node is a member of the cluster but
is not accepting requests. This is normal for a
brief period early in the system boot process.

Condition Values Returned in the 1/0 Status Block

Same as those returned in RO.

SYS-303

System Service Descriptions
$GETJPI

Example

SYS-304

PID:
ITEMS:

$JPIDEF

.LONG -1

. WORD 12

.WORD JPI$_USERNAME

.ADDRESS -
UN AME

.ADDRESS -
UN AMES

Define $GETJPI item codes

"Wild card" PID
Size of username buff er
Username item code

Address of username buffer

.LONG
UNAME: .BLKB
UNAMES: .BLKL
IOSB: .BLKQ

0
12
1
1

Address to return username size
End of list
Username buffer
Username size buff er
Completion status

START: .WORD 0

LOOP: $GETJPI_S -
EFN=#l, -
PIDADR=PID, -
ITMLST=ITEMS, -
IOSB=IOSB

BLBS RO,WAIT ; If success, continue
CMPW R0,#SS$_NOPRIV ; No privilege to get info on process?
BEQL LOOP ; If no priv, try next process
CMPW R0,#SS$_SUSPENDED ; Process suspended?
BEQL LOOP ; If yes, try next process
CMPW RO,#SS$_NOMOREPROC ; No more processes?
BEQL DONE If yes, all done
BSBW ERROR Else, error

WAIT: $WAITFR_S -
EFN=#l

MOVZWL IOSB,RO
BSBW ERROR
BSBW DISPLAY_NAME
BRB LOOP

Wait for information
Get completion status
Check for errors
Display the name

This example shows a segment of a program used to obtain the user name of
every process for which the caller has the privilege to obtain information.

System Service Descriptions
$GETJPIW

$GET JPIW-Get Job/Process Information and Wait

Format

The Get Job/Process Information and Wait service returns information about one
or more processes on the system.

The $GETJPIW service completes synchronously; that is, it returns to the caller
with the requested information. Digital recommends that you use an IOSB with
this service. An IOSB prevents the service from completing prematurely. In
addition, the IOSB contains status information.

For asynchronous completion, use the Get Job/Process Information ($GETJPI)
service; $GETJPI returns to the caller after queuing the information request,
without waiting for the information to be returned.

In all other respects, $GETJPIW is identical to $GETJPI. For all other
information about the $GETJPIW service, refer to the description of $GETJPI in
this manual.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service and to the Introduction to VMS System Services.

SYS$GET JPIW [efn] ,[pidadr] ,[prcnam] ,itmlst ,[iosb] ,[astadr] ,[astprm]

SYS-305

System Service Descriptions
$GETLKI

$GETLKl-Get Lock Information

Format

Returns

Arguments

SYS-306

Returns information about the lock database on a VMS system.

The $GETLKI service completes asynchronously; for synchronous completion, you
use the Get Lock Information and Wait ($GETLKIW) service.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service and to the Introduction to VMS System Services.

The $GETLKI, $GETLKIW, $ENQ, $ENQW, and $DEQ services together
provide the user interface to the VMS lock management facility. For additional
information about lock management, refer to the descriptions of these other
services and to the Introduction to VMS System Services.

SYS$GETLKI [efn] ,lkidadr ,itmlst [,iosb] [,astadr] [,astprm] [,nullarg]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under Condition Values Returned.

ef n
VMS Usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag to be set when $GETLKI completes. The efn argument
is a longword containing this number; however, $GETLKI uses only the low-order
byte. If you do not specify efn, $GETLKI sets event flag 0.

lkidadr
VMS Usage:
type:
access:
mechanism:

lock_id
longword (unsigned)
modify
by reference

Lock identification (lock ID) for the lock about which information is to be
returned. The lock ID is the second longword in the lock status block, which was
created when the lock was granted. The lkidadr argument is the address of this
longword.

If the value specified by lkidadr is 0 or -1, $GETLKI assumes a wildcard
operation and returns information about each lock to which the calling process
has access, one lock per call.

To use the $GETLKI service, you must have read/write access to the lock ID.

itmlst
VMS Usage:
type:
access:
mechanism:

item_list_3
longword (unsigned)
read only
by reference

System Service Descriptions
$GETLKI

Item list specifying the lock information that $GETLKI is to return. The itrnlst
argument is the address of a list of item descriptors, each of which describes an
item of information. The list of item descriptors is terminated by a longword of 0.
The following diagram depicts the format of a single item descriptor.

31

Item Descriptor Fields

buffer length

Item Code

15

I
Buffer Address

Return Length Address

0

Buffer Length

ZK-1705-GE

A word containing a user-supplied integer specifying the length (in bytes) of
the buffer in which $GETLKI is to write the information. The length of the
buffer needed depends upon the item code specified in the item code field of the
item descriptor. If the value of the buffer length field is too small, $GETLKI
truncates the data and returns the success condition value SS$_NORMAL.

item code
A word containing a user-supplied symbolic code specifying the item of
information that $GETLKI is to return. The $LKIDEF macro defines these
codes. Each item code is described in the list of $GETLKI item codes that follows
the argument descriptions.

buffer address
A longword containing the user-supplied address of the buffer in which $GETLKI
is to write the information.

return length address
A longword containing the user-supplied address of a longword in which
$GETLKI writes return length information. This longword contains the following
three bit fields.

Bits

0 to 15

Description

In this field $GETLKI writes the length in bytes of the data
actually written to the buffer specified by the buffer address field
in the item descriptor.

SYS-307

System Service Descriptions
$GETLKI

SYS-308

Bits

16 to 30

31

iosb
VMS Usage:
type:
access:
mechanism:

Description

$GETLKI uses this field only when the item code field of the
item descriptor specifies LKI$_BLOCKEDBY, LKI$_BLOCKING,
or LKI$_LOCKS, each of which requests information about a list
of locks. $GETLKI writes in this field the length in bytes of the
information returned for a single lock in the list. You can divide
this length into the total length returned for all locks (bits 0 to 15)
to determine the number of locks located by that item code request.

$GETLKI sets this bit if the user-supplied buffer length
argument specifies too small a buffer to contain the information
returned. Note that in such a case $GETLKI will return the
SS$_NORMAL condition value in RO. Therefore, to locate any
faulty item descriptor, you need to check the state of bit 31 in
the longword specified by the return length field of each item
descriptor.

io_status_block
quadword (unsigned)
write only
by reference

I/O status block that is to receive the final completion status. The iosb argument
is the address of a quadword.

When $GETLKI is called, it sets the 1/0 status block to 0. When $GETLKI
completes, it writes a condition value to the first longword in the quadword. The
remaining two words in the quadword are unused.

Although this argument is optional, Digital strongly recommends that you specify
it, for the following reasons:

• If you are using an event flag to signal the completion of the service, you can
test the I/O status block for a condition value to be sure that the event flag
was not set by an event other than service completion.

• If you are using the $SYNCH service to synchronize completion of the service,
the I/O status block is a required argument for $SYNCH.

• The condition value returned in RO and the condition value returned in the
I/O status block provide information about different aspects of the call to the
$GETLKI service. The condition value returned in RO gives you information
about the success or failure of the service call itself; the condition value
returned in the I/O status block gives you information about the success or
failure of the service operation. Therefore, to accurately assess the success or
failure of the call to $GETLKI, you must check the condition values returned
in both RO and the I/O status block.

astadr
VMS Usage:
type:
access:
mechanism:

ast_procedure
procedure entry mask
call without stack unwinding
by reference

AST service routine to be executed when the service completes. The astadr
argument is the address of the entry mask of this routine.

Item Codes

System Service Descriptions
$GETLKI

If you specify this argument, the AST routine executes at the same access mode
as the caller of the $GETLKI service.

user_arg
astprm
VMS Usage:
type:
access:
mechanism:

longword (unsigned)
read only
by value

AST parameter to be passed to the AST service routine specified by the astadr
argument. The astprm argument is the longword parameter.

null_arg
nullarg
VMS Usage:
type:
access:
mechanism:

longword (unsigned)
read only
by value

Placeholding argument reserved by Digital.

LKl$_BLOCKEDBY
When you specify LKI$_BLOCKEDBY, $GETLKI returns information about all
locks that are currently blocked by the lock specified by lkidadr. The $GETLKI
service returns eight items of information about each blocked lock.

The $LKIDEF macro defines the following symbolic names that refer to the eight
items in the buffer.

Symbolic Name

LKI$L_MSTLKID

LKI$L_PID

LKI$L_MSTCSID

LKI$B_RQMODE

LKI$B_GRMODE

LKI$B_QUEUE

LKI$L_LKID

LKI$L_CSID

Description

Lock ID of the blocked lock on the system
maintaining the resource (4 bytes)

Process ID (PID) of the process that took out the
blocked lock (4 bytes)

Cluster system identifier (CSID) of the VAX node
maintaining the resource that is locked by the blocked
lock (4 bytes)

Lock mode requested for the blocked lock; this lock
mode was specified by the lkmode argument in the
call to $EN Q (1 byte)

Lock mode granted to the blocked lock; this lock mode
is written to the lock value block (1 byte)

Name of the queue on which the blocked lock
currently resides (1 byte)

Lock ID of the lock on the system where the lock was
requested (4 bytes)

Cluster system identifier (CSID) of the system where
the lock was requested (4 bytes)

The values that $GETLKI can write into the LKIB_RQMODE, LKIB_
GRMODE, and LKI$B_QUEUE items have symbolic names; these symbolic
names specify the six lock modes and the three types of queue in which a lock can
reside. The Description section describes these names.

SYS-309

System Service Descriptions
$GETLKI

SYS-310

Thus, the buffer specified by the buffer address field in the item descriptor will
contain the eight items of information, repeated in sequence, for each blocked
lock.

The length of the information returned for each blocked lock is returned in bits
16 to 30 of the longword specified by the return length address field in the item
descriptor, while the total length of information returned for all blocked locks is
returned in bits 0 to 15. Therefore, to determine the number of blocked locks, you
divide the value of bits 16 to 30 into the value of bits 0 to 15.

LKl$_BLOCKING
When you specify LKI$_BLOCKING, $GETLKI returns information about all
locks that are currently blocking the lock specified by lkidadr. The $GETLKI
service returns eight items of information about each blocking lock.

The $LKIDEF macro defines the following symbolic names that refer to the eight
items in the buffer.

Symbolic Name

LKI$L_MSTLKID

LKI$L_PID

LKI$L_MSTCSID

LKI$B_RQMODE

LKI$B_GRMODE

LKI$B_QUEUE

LKI$L_LKID

LKI$L_CSID

Description

Lock ID of the blocked lock on the system
maintaining the resource (4 bytes)

Process ID (PID) of the process that took out the
blocking lock (4 bytes)

Cluster system identifier (CSID) of the VAX node
maintaining the resource that is locked by the
blocking lock (4 bytes)

Lock mode requested for the blocking lock; this lock
mode was specified by the lkmode argument in the
call to $ENQ (1 byte)

Lock mode granted to the blocking lock; this lock
mode is written to the lock value block (1 byte)

Name of the queue on which the blocking lock
currently resides (1 byte)

Lock ID of the lock on the system where the lock was
requested (4 bytes)

Cluster system identifier (CSID) of the system where
the lock was requested (4 bytes)

The values that $GETLKI can write into the LKIB_RQMODE, LKIB_
GRMODE, and LKI$B_QUEUE items have symbolic names; these symbolic
names specify the six lock modes and the three types of queue in which a lock can
reside. The Description section describes these names.

Thus, the buffer specified by the buffer address field in the item descriptor will
contain the eight items of information, repeated in sequence, for each blocking
lock.

The length of the information returned for each blocking lock is returned in bits
16 to 30 of the longword specified by the return length address field in the item
descriptor, while the total length of information returned for all blocking locks is
returned in bits 0 to 15. Therefore, to determine the number of blocking locks,
you divide the value of bits 16 to 30 into the value of bits 0 to 15.

System Service Descriptions
$GETLKI

LKl$_CSID
When you specify LKI$_CSID, $GETLKI returns the Cluster System ID (CSID)
of the system where the process owning the lock resides. LKI$_CSID returns the
CSID of the node where the $GETLKI system service is issued when the resource
is mastered on that node. When the processor is not part of a VAX.cluster, LKI$_
CSID returns 0.

The buffer length field in the item descriptor should specify 4 (bytes).

LKl$_CVTCOUNT
When you specify LKI$_CVTCOUNT, $GETLKI returns the total number oflocks
that are currently on the conversion queue of the resource associated with the
lock. These locks are granted at one mode and are waiting to be converted to
another.

The buffer length field in the item descriptor should specify 4 (bytes).

LKl$_GRANTCOUNT
When you specify LKI$_GRANTCOUNT, $GETLKI returns the total number of
locks that are currently on the grant queue of the resource associated with the
lock. Note that the total number of granted locks on the resource is equal to the
sum of LKI$_CVTCOUNT and LKI$_GRANTCOUNT.

The buffer length field in the item descriptor should specify 4 bytes.

LKl$_LCKREFCNT
When you specify LKI$_LCKREFCNT, $GETLKI returns the number of locks
that have this lock as a parent lock. When these locks were created, the parid
argument in the call to $ENQ or $ENQW specified the lock ID of this lock.

The buffer length field in the item descriptor should specify 4 (bytes).

LKl$_LKID
When you specify LKI$_LKID, $GETLKI returns the lock ID of the lock on the
system where the process owning the lock resides. The lock ID returned by this
item code is meaningful only on the system specified in the value returned by the
LKI$_CSID item code.

The buffer length field in the item descriptor should specify 4 (bytes).

LKl$_LOCKID
When you specify LKI$_LOCKID, $GETLKI returns the lock ID of the current
lock. The current lock is the one specified by the lkidadr argument unless
lkidadr is specified as -1 or 0, which indicates a wildcard operation. Thus, this
item code is usually specified only in wildcard operations where it is useful to
know the lock IDs of the locks that $GETLKI has discovered in the wildcard
operation.

The lock ID is a longword value, so the buffer length field in the item descriptor
should specify 4 (bytes).

LKl$_LOCKS
When you specify LKI$_LOCKS, $GETLKI returns information about all locks on
the resource associated with the lock specified by lkidadr. These locks are the
sum of blocking locks and blocked locks.

SYS-311

System Service Descriptions
$GETLKI

SYS-312

The $LKIDEF macro defines the following symbolic names that refer to the eight
items in the buffer.

Symbolic Name

LKI$L_MSTLKID

LKI$L_PID

LKI$L_MSTCSID

LKI$B_RQMODE

LKI$B_GRMODE

LKI$B_QUEUE

LKI$L_LKID

LKI$L_CSID

Description

Lock ID of the blocked lock on the system
maintaining the resource (4 bytes)

Process ID (PID) of the process that took out the lock
(4 bytes)

Cluster system identifier (CSID) of the VAX node
maintaining the resource that is locked by the lock (4
bytes)

Lock mode requested for the lock; this lock mode
was specified by the lkmode argument in the call to
$ENQ (1 byte)

Lock mode granted to the lock; this lock mode is
written to the lock value block (1 byte)

Name of the queue on which the lock currently
resides (1 byte)

Lock ID of the lock on the system where the lock was
requested (4 bytes)

Cluster system identifier (CSID) of the system where
the lock was requested (4 bytes)

The values that $GETLKI can write into the LKIB_RQMODE, LKIB_
GRMODE, and LKI$B_QUEUE items have symbolic names; these symbolic
names specify the six lock modes and the three types of queue in which a lock can
reside. The Description section describes these names.

Thus, the buffer specified by the buffer address field in the item descriptor will
contain the eight items of information, repeated in sequence, for each lock.

The length of the information returned for each lock is returned in bits 16 to 30 of
the longword specified by the return length address field in the item descriptor,
while the total length of information returned for all locks is returned in bits 0 to
15. Therefore, to determine the number of locks, you divide the value of bits 16
to 30 into the value of bits 0 to 15.

LK1$_MSTCSID
When you specify LKI$_MSTCSID, $GETLKI returns the Cluster System ID
(CSID) of the node currently mastering the resource that is associated with the
specified lock. Although the resource can be locked by processes on any node in
the cluster, the resource itself is maintained on a single node. You can use the
DCL command SHOW CLUSTER or the $GETSYI service to determine which
VAX node in the cluster is identified by the CSID that $GETLKI returns.

Because the processor mastering the lock can change at any time, multiple calls
to $GETLKI for the same lock can produce different values for this item code.
LKI$_MSTCSID returns the CSID of the node where the $GETLKI system
service is issued when the resource is mastered on that node. When the processor
where the $GETLKI was issued is not part of a VAXcluster, this item code returns
0.

The buffer length field in the item descriptor should specify 4 (bytes).

LKl$_MSTLKID

System Service Descriptions
$GETLKI

When you specify LKI$_MSTLKID, $GETLKI returns the lock ID for the current
master copy of the lock. Although the resource can be locked by processes on any
node in the cluster, the resource itself is maintained on a single node. Because
lock IDs are unique to each processor on a VA.Xcluster, the lock ID returned by
this item code has meaning only on the processor that is specified in the value
returned by the LKI$_MSTCSID item code.

Because the processor mastering the lock can change at any time, multiple calls
to $GETLKI for the same lock can produce different values for this item code.
When the lock is mastered on the node where the $GETLKI system service is
issued, or when the node is not a member of a VA.Xcluster, this item code returns
the same information as LKI$_LKID.

The buffer length field in the item descriptor should specify 4 (bytes).

LKl$_NAMSPACE
When you specify LKI$_NAMSPACE, $GETLKI returns information about the
resource name space. This information is contained in a longword consisting of
four bit fields; therefore, the buffer length field in the item descriptor should
specify 4 (bytes).

Each of the four bit fields can be referred to by its symbolic name; the $LKIDEF
macro defines the symbolic names. The following table lists, in order, the
symbolic name of each bit field.

Symbolic Name

LKI$W_GROUP

LKI$B_RMOD

LKI$B_STATUS

LKI$V _SYSNAM

LKl$_PARENT

Description

In this field (bits 0 to 15) $GETLKI writes the UIC group
number of the process that took out the first lock on the
resource, thereby creating the resource name. This process
issued a call to $ENQ or $ENQW specifying the name of the
resource in the resnam argument.
However, if this process specified the LCK$_SYSTEM
flag in the call to $ENQ or $ENQW, the resource name is
systemwide. In this case, the UIC group number of the
process is not associated with the resource name.
Consequently, this field (bits 0 to 15) is significant only if the
resource name is not systemwide. $GETLKI sets bit 31 if the
resource name is systemwide.

In this field (bits 16 to 23) $GETLKI writes the access mode
associated with the first lock taken out on the resource.

This field (bits 24 to 30) is not used. $GETLKI sets it to 0.

This field (bit 31) indicates whether the resource name is
systemwide. $GETLKI sets this bit if the resource name is
systemwide and clears it if the resource name is qualified by
the creating process's UIC group number. The state of this
bit determines the interpretation of bits 0 to 15.

When you specify LK.1$_PARENT, $GETLKI returns the lock ID of the parent
lock for the lock, if a parent lock was specified in the call to $ENQ or $ENQW. If
the lock does not have a parent lock, $GETLKI returns the value 0.

SYS-313

System Service Descriptions
$GETLKI

SYS-314

Because the parent lock ID is a longword, the buffer length field in the item
descriptor should specify 4 (bytes).

LKl$_PID
When you specify LKI$_PID, $GETLKI returns the process identification (process
ID) of the process that owns the lock.

The process ID is a longword value, so the buffer length field in the item
descriptor should specify 4 (bytes).

LKl$_RESNAM
When you specify LKI$_RESNAM, $GETLKI returns the resource name string
and its length, which must be from 1 to 31 bytes. The resource name string was
specified in the resnam argument in the initial call to $ENQ or $ENQW.

The $GETLKI service returns the length of the string in the return length
address field in the item descriptor. However, in the call to $GETLKI, you do
not know how long the string is. Therefore, to avoid buffer overflow, you should
specify the maximum length (31 bytes) in the buffer length field in the item
descriptor.

LKl$_RSBREFCNT
When you specify LKI$_RSBREFCNT, $GETLKI returns the number of
subresources of the resource associated with the lock. A subresource has the
resource as a parent resource. Note, however, that the number of subresources
can differ from the number of sublocks of the lock, because any number of
processes can lock the resource. If any of these processes then locks another
resource, and in doing so specifies the lock ID of the lock on the first resource as a
parent lock, then the second resource becomes a subresource of the first resource.

Thus, the number of sublocks on a lock is limited to the number of sublocks that
a single process takes out, whereas the number of subresources on a resource is
determined by (potentially) multiple processes.

The subresource reference count is a longword value, so the buffer length field
in the item descriptor should specify 4 (bytes).

LKl$_STATE
When you specify LKI$_STATE, $GETLKI returns the current state of the lock.
The current state of the lock is described by the following three 1-byte items (in
the order specified): (1) the lock mode requested (in the call to $ENQ or $ENQW)
for the lock, (2) the lock mode granted (by $ENQ or $ENQW) for the lock, and
(3) the name of the queue on which the lock currently resides.

The buffer length field in the item descriptor should specify 3 (bytes). The
$LKIDEF macro defines the following symbolic names that refer to the three
1-byte items in the buffer.

Symbolic Name

LKI$B_STATE_RQMODE

LKI$B_STATE_GRMODE

LKI$B_STATE_QUEUE

Description

Lock mode requested

Lock mode granted

Name of queue on which the lock resides

The values that $GETLKI can write into each 1-byte item have symbolic names;
these symbolic names specify the six lock modes and the three types of queue in
which a lock can reside. The Description section describes these names.

Description

LKl$_ VALBLK

System Service Descriptions
$GETLKI

When you specify LKI$_ VALBLK, $GETLKI returns the lock value block of the
locked resource. This lock value block is the master copy that the lock manager
maintains for the resource, not the process-private copy.

Because the lock value block is 16 bytes, the buffer length field in the item
descriptor should specify 16.

LKl$_WAITCOUNT
When you specify LKI$_ WAITCOUNT, $GETLKI returns the total number of
locks that are currently on the wait queue of the resource associated with the
lock. These locks are waiting to be granted.

The buffer length field in the item descriptor should specify 4 (bytes).

The Get Lock Information service returns information about the lock database on
a VMS system.

The access mode of the calling process must be equal to or more privileged than
the access mode at which the lock was initially granted.

When locking on a resource is clusterwide, a single master copy of the resource
is maintained on the node that owns the process that created the resource by
taking out the first lock on it. When a process on another VAX node locks that
same resource, a local copy of the resource is copied to the node and the lock is
identified by a lock ID that is unique to that node.

In a VAXcluster environment, however, you cannot use $GETLKI to obtain
directly information about locks on other nodes in the cluster; that is, you cannot
specify in a call to $GETLKI the lock ID of a lock held by a process on another
node. The $GETLKI service interprets the lkidadr argument as the lock ID of a
lock on the caller's node, even though the resource associated with a lock might
have its master copy on the caller's node.

However, because a process on another node in the cluster can have a lock on
the same resource as the caller of $GETLKI, the caller, in obtaining information
about the resource, can indirectly obtain some information about locks on the
resource that are held by processes on other nodes. One example of information
indirectly obtained about a resource is the contents of lock queues; these queues
contain information about all locks on the resource, and some of these locks can
be held by processes on other nodes.

Another example of information more directly obtained is the remote lock ID of a
lock held by a process on another node. Specifically, if the caller of $GETLKI on
node A specifies a lock (by means of lkidadr) and that lock is held by a process on
node B, $GETLKI will return the lock ID of the lock from node B's lock database
if the LKl$_REMLKID item code is specified in the call.

Item codes LKI$_BLOCKEDBY, LKl$_BLOCKING, LKI$_LOCKS, and LKI$_
STATE specify that $GETLKI return various items of information; some of these
items are the names of lock modes or the names of lock queues. The $LCKDEF
macro defines the following symbolic names.

SYS-315

System Service Descriptions
$GETLKI

Symbolic Name

LCK$K_NLMODE

LCK$K_CRMODE

LCK$K_CWMODE

LCK$K_PRMODE

LCK$K_PWMODE

LCK$K_EXMODE

Symbolic Name

LKI$C_GRANTED

LKI$C_CONVERT

LKI$C_ WAITING

Required Privileges

Lock Mode

Null mode

Concurrent read mode

Concurrent write mode

Protected read mode

Protected write mode

Exclusive mode

Queue Name

Granted queue, holding locks that have been granted

Converting queue, holding locks that are currently being
converted to another lock mode

Waiting queue, holding locks that are neither granted
nor converting (for example, a blocked lock)

Depending on the operation, the calling process might need one of the following
privileges to use $GETLKI:

• You need WORLD privilege to obtain information about locks held by
processes in other groups.

• To obtain information about system locks, you either need SYSLCK privilege
or the process must be executing in executive or kernel access mode.

Required Quota
The caller must have sufficient ASTLM or BYTLM quota.

Related Services
$DEQ, $ENQ, $ENQW, $GETLKIW

Condition Values Returned

SYS-316

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_EXQUOTA

SS$_INSFMEM

SS$_IVLOCKID

SS$_IVMODE

The service completed successfully.

The item list cannot be read; the areas specified
by the buffer address and return length
address fields in the item descriptor cannot be
written; or the location specified by the lkidadr
argument cannot be written.

You specified an invalid item code.

The caller has insufficient ASTLM or BYTLM
quota.

The nonpaged dynamic memory is insufficient for
the operation.

The lkidadr argument specified an invalid lock
ID.

A more privileged access mode is required.

SS$_NOMORELOCK

SS$_NOSYSLCK

SS$_NOWORLD

System Service Descriptions
$GETLKI

The caller requested a wildcard operation by
specifying a value of 0 or -1 for the lkidadr
argument, and $GETLKI has exhausted the
locks about which it can return information to
the caller; or no lkidadr argument is specified.
This is an alternate success status.

The caller attempted to acquire information
about a systemwide lock and did not have the
required SYSLCK privilege.

The caller attempted to acquire information
about a lock held by a process in another group
and did not have the required WORLD privilege.

Condition Values Returned in the 1/0 Status Block

Same as those returned in RO.

SYS-317

System Service Descriptions
$GETLKIW

$GETLKIW-Get Lock Information and Wait

Format

SYS-318

The Get Lock Information and Wait service returns information about the lock
database on a VMS system.

The $GETLKIW service completes synchronously; that is, it returns to the caller
with the requested information.

For asynchronous completion, you use the Get Lock Information ($GETLKI)
service; $GETLKI returns to the caller after queuing the information request,
without waiting for the information to be returned.

In all other respects, $GETLKIW is identical to $GETLKI. For all other
information about the $GETLKIW service, refer to the description of $GETLKI in
this manual.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service and to the Introduction to VMS System Services.

The $GETLKI, $GETLKIW, $ENQ, $ENQW, and $DEQ services together provide
the user interface to the VMS lock management facility. Refer to the descriptions
of these other services and to the Introduction to VMS System Services for
additional information about lock management.

SYS$GETLKIW [efn] ,lkidadr ,itmlst [,iosb] [,astadr] [,astprm] [,nullarg]

System Service Descriptions
$GETMSG

$GETMSG-Get Message

Format

Returns

Arguments

Returns message text associated with a given message identification code into the
caller's buffer. The message can be from the system message file or a user-defined
message.

SYS$GETMSG msgid ,msglen ,bufadr ,[flags] ,[outadr]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

msgid
VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
read only
by value

Identification of the message to be retrieved. The msgid argument is a longword
value containing the message identification. Each message has a unique
identification, contained in bits 3 through 27 of system longword condition
values.

msglen
VMS Usage:
type:
access:
mechanism:

word_ unsigned
word (unsigned)
write only
by reference

Length of the message string returned by $GETMSG. The msglen argument is
the address of a word into which $GETMSG writes this length.

bufadr
VMS Usage:
type:
access:
mechanism:

char _string
character-coded text string
write only
by descriptor-fixed length string descriptor

Buffer to receive the message string. The bufadr argument is the address of a
character string descriptor pointing to the buffer into which $GETMSG writes the
message string. The maximum size of any message string is 256 bytes.

SYS-319

System Service Descriptions
$GETMSG

Description

SYS-320

flags
VMS Usage:
type:
access:
mechanism:

mask_longword
longword (unsigned)
read only
by value

Message components to be returned. The flags argument is a longword bit vector
wherein a bit, when set, specifies that the message component is to be returned.
The following table describes the significant bits.

Bit Value Description

0 1 Include text of message

0 Do not include text of message

1 1 Include message identifier

0 Do not include message identifier

2 1 Include severity indicator

0 Do not include severity indicator

3 1 Include facility name

0 Do not include facility name

If you omit this argument in a VAX. MACRO or BLISS-32 service call, it defaults
to a value of 15; that is, all flags are set and all components of the message are
returned. If you omit this argument in a FORTRAN service call, it defaults to a
value of O; the value 0 causes $GETMSG to use the process default flags.

outadr
VMS Usage: vector_byte_unsigned
type: byte (unsigned)
access: write only
mechanism: by reference

Optional information to be returned by $GETMSG. The outadr argument is the
address of a 4-byte array into which $GETMSG writes the following information.

Byte Contents

0 Reserved

1 Count of FAO arguments associated with message

2 User-specified value in message, if any

3 Reserved

The Get Message service locates and returns message text associated with a given
message identification code into the caller's buffer. The message can be from the
system message file or a user-defined message. The VMS operating system uses
this service to retrieve messages based on unique message identifications and to
prepare to output the messages.

The message identifications correspond to the symbolic names for condition
values returned by system components; for example, SS$_code from system
services, RMS$_code for VMS RMS messages, and so on.

System Service Descriptions
$GETMSG

When you set all bits in the flags argument, $GETMSG returns a string in the
following format:

facility-severity-ident, message-text

where:

facility

severity

Identifies the component of the operating system

Is the severity code (the low-order three bits of the 'condition
value)

ident Is the unique message identifier

message-text Is the text of the message

For example, if you specify the MSGID=#SS$_DUPLNAM argument, the
$GETMSG service returns the following string:

%SYSTEM-F-DUPLNAM, duplicate process name

You can define your own messages with the Message Utility. See the VMS
Message Utility Manual for additional information.

The message text associated with a particular 32-bit message identification can
be retrieved from one of several places. This service takes the following steps to
locate the message text:

1. All message sections linked into the currently executing image are searched
for the associated information.

2. If the information is not found, the process-permanent message file is
searched. (You can specify the process-permanent message file by using the
SET MESSAGE command.)

3. If the information is not found, the systemwide message file is searched.

4. If the information is not found, the SS$_MSGNOTFND condition value is
returned in RO and a message in the following form is returned to the caller's
buffer:
%facility-severity-NONAME, message=xxxxxxxx[hex], (facility=n, message=n[dec])

Required Privileges
None

Required Quota
None

Related Services
$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI,
$GETDVIW, $GETQUI, $GETQUIW, $INIT_ VOL, $MOUNT, $PUTMSG, $QIO,
$QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SS$_NORMAL

SS$_BUFFEROVF

The service completed successfully.

The service completed successfully. The string
returned overflowed the buffer provided and has
been truncated.

SYS-321

System Service Descriptions
$GETMSG

Example

SYS-322

SS$_INSFARG

SS$_MSGNOTFND

CODE: .LONG SS$_DUPLNAM
LENGTH: .WORD 0
BUFDESC:

.LONG 256

.ADDRESS -
BUFFER

BUFFER: .BLKB 256
FLAGS: .WORD ABOOOl

$GETMSG_S -

The call arguments are insufficient.

The service completed successfully; however, the
message code cannot be found, and a default
message has been returned.

Message identification

Message flags - text only

MSGID=CODE, -
MSGLEN=LENGTH, -
BUFADR=BUFDESC, -
FLAGS=FLAGS

This example shows a segment of a program used to obtain only the text portion
of the message associated with the system message code SS$_DUPLNAM. The
$GETMSG service returns the following string:

duplicate process name

System Service Descriptions
$GETQUI

$GETQUl-Get Queue Information

Format

Returns

Arguments

Returns information about queues and the jobs initiated from those queues.

The $GETQUI service completes asynchronously; for synchronous completion, you
use the Get Queue Information and Wait ($GETQUIW) service.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service and to the Introduction to VMS System Services.

SYS$GETQUI [efn] ,tune [,nullarg] [,itmlst] [,iosb] [,astadr] [,astprm]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

ef n
VMS Usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag to be set when $GETQUI completes. The efn argument
is a longword containing this number; however, $GETQUI uses only the low-order
byte. The efn argument is optional.

When the request is queued, $GETQUI clears the specified event flag (or event
flag 0 if efn was not specified). Then, when the operation completes, $GETQUI
sets the specified event flag (or event flag 0).

func
VMS Usage: function_ code
type: word (unsigned)
access: read only
mechanism: by value

Function code specifying the function that $GETQUI is to perform. The func
argument is a word containing this function code. The $QUIDEF macro defines
the names of each function code.

You can specify only one function code in a single call to $GETQUI. Most function
codes require or allow for additional information to be passed in the call. You
pass this information by using the itmlst argument, which specifies a list of one
or more item descriptors. Each item descriptor in turn specifies an item code,
which either describes the specific information to be returned by $GETQUI, or
otherwise affects the action designated by the function code.

SYS-323

System Service Descriptions
$GETQUI

You can use wildcard mode to make a sequence of calls to $GETQUI to get
information about all characteristics, form definitions, queues, or jobs contained
in the system job queue file. For information on using wildcard mode, see the
Description section.

nullarg
VMS Usage:
type:
access:
mechanism:

null_arg
longword (unsigned)
read only
by value

Placeholding argument reserved by Digital.

it mist
VMS Usage:
type:
access:
mechanism:

item_list_3
longword (unsigned)
read only
by reference

Item list supplying information to be used in performing the function specified
by the func argument. The itmlst argument is the address of the item list. The
item list consists of one or more item descriptors, each of which contains an item
code. The item list is terminated by an item code of 0 or by a longword of 0. The
following diagram depicts the structure of a single item descriptor.

31 15 0

Item Code I Buffer Length

Buffer Address

Return Length Address

ZK-1705-GE

Item Descriptor Fields

buffer length

SYS-324

A word specifying the length of the buffer; the buffer either supplies input
information for $GETQUI or receives information from $GETQUI. The required
length of the buffer varies depending on the item code specified and is given in
the description of each item code.

item code
A word containing an item code, which identifies the nature of the information
supplied for $GETQUI or which is received from $GETQUI. Each item code has a
symbolic name; the $QUIDEF macro defines these symbolic names that have the
following format:

QUl$_code

There are two types of item code:

• Input value item code. The $GETQUI service has only three input value
item codes: QUI$_SEARCH_NAME, QUI$_SEARCH_NUMBER and QUI$_
SEARCH_FLAGS. These item codes specify the object name or number for
which $GETQUI is to return information and the extent of $GETQUI's search

System Service Descriptions
$GETQUI

for these objects. Most function codes require that you specify at least one
input value item code. The function code or codes for which each item code is
valid is shown in parentheses after the item code description.

For input value item codes, the buffer length and buffer address fields of
the item descriptor must be nonzero; the return length field must be zero.
Specific buffer length requirements are given in the description of each item
code.

• Output value item code. Output value item codes specify a buffer for
information returned by $GETQUI. For output value item codes, the buffer
length and buffer address fields of the item descriptor must be nonzero; the
return length field can be zero or nonzero. Specific buffer length requirements
are given in the description of each item code.

Several item codes specify a queue name, form name, or characteristic name to
$GETQUI or request that $GETQUI return one of these names. For these item
codes, the buffer must specify or be prepared to receive a string containing from 1
to 31 characters, exclusive of spaces, tabs, and null characters, which are ignored.
Allowable characters in the string are the uppercase alphabetic characters, the
lowercase alphabetic characters (which are converted to uppercase), the numeric
characters, the dollar sign ($), and the underscore (_).

buffer address
Address of the buffer that specifies or receives the information.

return length address
Address of a word to receive the length of information returned by $GETQUI.

See the Item Codes section for a description of the $GETQUI item codes.

iosb
VMS Usage:
type:
access:
mechanism:

io_status_block
·quadword (unsigned)
write only
by reference

1/0 status block into which $GETQUI writes the completion status after the
requested operation has completed. The iosb argument is the address of the 1/0
status block.

At request initiation $GETQUI sets the value of the quadword 1/0 status block
to 0. When the requested operation has completed, $GETQUI writes a condition
value in the first longword of the 1/0 status block. It writes the value 0 into the
second longword; this longword is unused and reserved for future use.

The condition values returned by $GETQUI in the 1/0 status block are condition
values from the JBC facility, which are defined by the $JBCMSGDEF macro. The
condition values returned from the JBC facility are listed in the section titled
Condition Values Returned in the I I 0 Status Block.

Though this argument is optional, Digital strongly recommends that you specify
it, for the following reasons:

• If you are using an event flag to signal the completion of the service, you can
test the 1/0 status block for a condition value to be sure that the event flag
was not set by an event other than service completion.

• If you are using the $SYNCH service to synchronize completion of the service,
the 1/0 status block is a required argument for $SYNCH.

SYS-325

System Service Descriptions
$GETQUI

• The condition value returned in RO and the condition value returned in the
I/O status block provide information about different aspects of the call to the
$GETQUI service. The condition value returned in RO gives you information
about the success or failure of the service call itself; the condition value
returned in the I/O status block gives you information about the success or
failure of the service operation. Therefore, to accurately assess the success or
failure of the call to $GETQUI, you must check the condition values returned
in both RO and the I/O status block.

astadr
VMS Usage: ast_procedure
type: procedure entry mask
access: call without stack unwinding
mechanism: by reference

AST service routine to be executed when $GETQUI completes. The astadr
argument is the address of the entry mask of this routine.

If specified, the AST routine executes at the same access mode as the caller of
$GETQUI.

astprm
VMS Usage:
type:
access:
mechanism:

user_parm
longword (unsigned)
read only
by value

AST parameter to be passed to the AST service routine specified by the astadr
argument. The astprm argument is this longword parameter.

Function Codes

SYS-326

This section lists each of the $GETQUI function codes, describes the function and
lists the related item codes.

QUI$_ CANCEL_ OPERATION ..
This request terminates any wildcard operation that may have been initiated by a
previous call to $GETQUI by releasing the GETQUI context block (GQC) that the
system maintains for your process. Because only one wildcard search sequence
can be outstanding at any one time, you do not have to specify any item codes.

When you call $GETQUI to perform a series of wildcard requests to retrieve
information about characteristics, forms, queues (and their associated jobs and
files) or job entries, the job controller maintains a GQC between calls that
points to the next object in the wildcard sequence. The system retains this
information until (1) you have made calls to $GETQUI to examine every object
in the sequence; (2) your process has terminated; or (3) you explicitly cancel
the wildcard operation by using the QUI$_CANCEL_OPERATION function code.
If your calls to $GETQUI have located all the objects in the sequence in which
you are interested, you should terminate the wildcard operation. This frees job
controller resources and allows you to initiate another $GETQUI operation.

QUl$_DISPLAY _CHARACTERISTIC
This request returns information about a specific characteristic definition, or the
next characteristic definition in a wildcard operation.

System Service Descriptions
$GETQUI

A successful QUI$_DISPLAY_CHARACTERISTIC wildcard operation
terminates when the $GETQUI service has returned information about all
characteristic definitions included in the wildcard sequence. The $GETQUI
service indicates termination of this sequence by returning the condition value
JBC$_NOMORECHAR in the I/O status block. If the $GETQUI service does
not find any characteristic definitions, it returns the condition value JBC$_
NOSUCHCHAR in the I/O status block.

For more information on how to request information about characteristics, see the
Description section.

You must specify one of the following input value item codes; you may specify
both:

QUI$_SEARCH_NAME
QUI$_SEARCH_NUMBER

You may specify the following input value item code:

QUI$_SEARCH_FLAGS

You may specify the following output value item codes:

QUI$_CHARACTERISTIC_NAME
QUI$_CHARACTERISTIC_NUMBER

QUl$_DISPLAY _ENTRV
This request returns information about a specific job entry, or the next job entry
that matches the selection criteria in a wildcard operation. You use the QUI$_
SEARCH_NUMBER item code to specify the job entry number.

In wildcard mode, the QUI$_DISPLAY_ENTRY operation also establishes a
job context for subsequent QUI$_DISPLAY_FILE operations. The job context
established remains in effect until you make another call to the $GETQUI
service that specifies either the QUI$_DISPLAY_ENTRY or QUI$_CANCEL_
OPERATION function code.

~

A successful QUI$_DISPLAY_ENTRY wildcard operation terminates when the
$GETQUI service has returned information about all job entries for the specified
user (or the current user name if the QUI$_SEARCH_USERNAME item code
is not specified). The $GETQUI service signals termination of this sequence by
returning the condition value JBC$_NOMOREENT in the I/O status block. If
the $GETQUI service does not find a job with the specified entry number, or
does not find a job meeting the search criteria, it returns the condition value
JBC$_NOSUCHENT in the first longword of the I/O status block.

You may specify the following input value item codes:

QUI$_SEARCH_FLAGS
QUI$_SEARCH_JOB_NAME
QUI$_SEARCH_NUMBER
QUI$_SEARCH_USERNAME

You may specify the following output value item codes:

QUI$_ACCOUNT_NAME
QUI$_AFTER_ TIME
QUI$_ASSIGNED_QUEUE_NAME
QUI$_CHARACTERISTICS
QUI$_CHECKPOINT_DATA
QUI$_CLI

SYS-327

System Service Descriptions
$GETQUI

SYS-328

QUI$_COMPLETED_BLOCKS
QUI$_ CONDITION_ VECTOR
QUI$_CPU_LIMIT
QUI$_ENTRY_NUMBER
QUI$_FORM_NAME
QUI$_FORM_STOCK
QUI$_JOB_COMPLETION_QUEUE
QUI$_JOB_COMPLETION_TIME
QUI$_JOB_COPIES
QUI$_JOB_COPIES_DONE
QUI$_JOB_FLAGS
QUI$_JOB_NAME
QUI$_JOB_PID
QUI$_JOB_RETENTION_TIME
QUI$_JOB_SIZE
QUI$_JOB_STATUS
QUI$_LOG_QUEUE
QUI$_LOG_SPECIFICATION
QUI$_NOTE
QUI$_0PERATOR_REQUEST
QUI$_PARAMETER_l through 8
QUI$_PENDING_JOB_REASON
QUI$_PRIORITY
QUI$_PROCESSOR
QUI$_ QUEUE_FLAGS
QUI$_QUEUE_NAME
QUI$_ QUEUE_STATUS
QUI$_REQUEUE_QUEUE_NAME
QUI$_RESTART_QUEUE_NAME
QUI$_SUBMISSION_TIME
QUI$_UIC
QUI$_USERNAME
QUI$_ WSDEFAULT
QUI$_ WSEXTENT
QUI$_ WSQUOTA

QUl$_DISPLAY _FILE
This request returns information about the next file defined for the current job
context. You normally make this request as part of a nested wildcard sequence
of queue-job-file operations or a nested wildcard sequence of entry-file operations;
that is, before you make a call to $GETQUI to request file information, you have
already made a call to the $GETQUI service to establish the job context of the job
that contains the files in which you are interested.

The $GETQUI service signals that it has returned information about all the
files defined for the current job context by returning the condition value JBC$_
NOMOREFILE in the I/O status block. If the current job context contains no
files, $GETQUI returns the condition value JBC$_NOSUCHFILE in the I/O
status block.

A batch job can make a call to the $GETQUI service to request information about
the command file that is currently executing without first making calls to the
service to establish a queue and job context. To do this, the batch job specifies the
QUI$V _SEARCH_THIS_JOB option of the QUI$_SEARCH_FLAGS item code.
The system does not save the queue or job context established in such a call.

System Service Descriptions
$GETQUI

For more information about how to request file information, see the Description
section.

You may specify the following input value item code:

QUI$_SEARCH_FLAGS

You may specify the following output value item codes:

QUI$_FILE_COPIES
QUI$_FILE_COPIES_DONE
QUI$_FILE_FLAGS
QUI$_FILE_IDENTIFICATION
QUI$_FILE_SETUP _MODULES
QUI$_FILE_SPECIFICATION
QUI$_FILE_STATUS
QUI$_FIRST_PAGE
QUI$_LAST_PAGE

QUl$_DISPLAY _FORM
This request returns information about a specific form definition, or the next form
definition in a wildcard operation.

A successful QUI$_DISPLAY_FORM wildcard operation terminates when the
$GETQUI service has returned information about all form definitions included
in the wildcard sequence. The $GETQUI service signals termination of this
wildcard sequence by returning the condition value JBC$_NOMOREFORM in the
I/O status block. If the $GETQUI service finds no form definitions, it returns the
condition value JBC$_NOSUCHFORM in the I/O status block.

For more information on how to request information about forms, see the
Description section.

You must specify one of the following input value item codes. You may specify
both:

QUI$_SEARCH_NAME
QUI$_SEARCH_NUMBER

You may specify the following input value item code:

QUI$_SEARCH_FLAGS

You may specify the following output value item codes:

QUI$_FORM_DESCRIPTION
QUI$_FORM_FLAGS
QUI$_FORM_LENGTH
QUI$_FORM_MARGIN_BOTTOM
QUI$_FORM_MARGIN_LEFT
QUI$_FORM_MARGIN_RIGHT
QUI$_FORM_MARGIN_TOP
QUI$_FORM_NAME
QUI$_FORM_NUMBER
QUI$_FORM_SETUP _MODULES
QUI$_FORM_STOCK
QUI$_FORM_ WIDTH
QUI$_PAGE_SETUP _MODULES

SYS-329

System Service Descriptions
$GETQUI

SYS-330

QUl$_DISPLAV _JOB
This request returns information about the next job defined for the current queue
context. You normally make this request as part of a nested wildcard queue-job
sequence of operations; that is, before you make a call to $GETQUI to request job
information, you have already made a call to the $GETQUI service to establish
the queue context of the queue that contains the job in which you are interested.

In wildcard mode, the QUI$_DISPLAY_JOB operation also establishes a job
context for subsequent QUI$_DISPLAY _FILE operations. The job context
established remains in effect until another call is made to the $GETQUI service
that specifies the QUI$_DISPLAY_JOB, QUI$_DISPLAY_QUEUE, or QUI$_
CANCEL_OPERATION function code.

The $GETQUI service signals that it has returned information about all the jobs
contained in the current queue context by returning the condition value JBC$_
NOMOREJOB in the I/O status block. If the current queue context contains
no jobs, $GETQUI returns the condition value JBC$_NOSUCHJOB in the first
longword of the I/O status block.

A batch job can make a call to the $GETQUI service to request information about
itself without first making a call to the service to establish a queue context. To
do this, the batch job must specify the QUI$V _SEARCH_THIS_JOB option of the
QUI$_SEARCH_FLAGS item code. The system does not save the queue or job
context established in such a call.

For more information about how to request job information, see the Description
section.

You may specify the following input value item code:

QUI$_SEARCH_FLAGS

You may specify the following output value item codes:

QUI$_ACCOUNT_NAME
QUI$_AFTER_ TIME
QUI$_ CHARACTERISTICS
QUI$_CHECKPOINT_DATA
QUI$_CLI
QUI$_ COMPLETED _BLOCKS
QUI$_ CONDITION_ VECTOR
QUI$_ CPU _LIMIT
QUI$_ENTRY_NUMBER
QUI$_FORM_NAME
QUI$_FORM_STOCK
QUI$_INTERVENING_BLOCKS
QUI$_INTERVENING_JOBS
QUI$_JOB_COMPLETION_QUEUE
QUI$_JOB_COMPLETION_TIME
QUI$_JOB_COPIES
QUI$_JOB_COPIES_DONE
QUI$_JOB_FLAGS
QUI$_JOB_NAME
QUI$_JOB_PID
QUI$_JOB_RETENTION_TIME
QUI$_JOB_SIZE
QUI$_JOB_STATUS
QUI$_LOG_ QUEUE

System Service Descriptions
$GETQUI

QUI$_LOG_SPECIFICATION
QUI$_NOTE
QUI$_0PERATOR_REQUEST
QUI$_PARAMETER_l through 8
QUI$_PENDING_JOB_REASON
QUI$_PRIORITY
QUI$_QUEUE_NAME
QUI$_REQUEUE_QUEUE_NAME
QUI$_RESTART_QUEUE_NAME
QUI$_SUBMISSION_TIME
QUI$_UIC
QUI$_USERNAME
QUI$_ WSDEFAULT
QUI$_ WSEXTENT
QUI$_ WSQUOTA

QUl$_DISPLAV _QUEUE
This request returns information about a specific queue definition, or the next
queue definition in a wildcard operation.

In wildcard mode, the QUI$_DISPLAY _QUEUE operation also establishes a
queue context for subsequent QUI$_DISPLAY_JOB operations. The queue
context established remains in effect until another call is made to the $GETQUI
service that specifies either the QUI$_DISPLAY_QUEUE or QUI$_CANCEL_
OPERATION function code.

The $GETQUI service indicates that it has returned information about all the
queues contained in the current wildcard sequence by returning the condition
value JBC$_NOMOREQUE in the I/O status block. If no queue is found,
$GETQUI returns the condition value JBC$_NOSUCHQUE in the first longword
of the I/O status block.

A batch job can make a call to the $GETQUI service to request information
about the queue in which it is contained without first making a call to the
service to establish a queue context. To do this, the batch job must specify the
QUI$V _SEARCH_THIS_JOB option of the QUI$_SEARCH_FLAGS item code.
The system does not save the queue context established in such a call.

For more information about how to request queue information, see the
Description section.

You must specify the following input value item code:

QUI$_SEARCH_NAME

You may specify the following input value item code:

QUI$_SEARCH_FLAGS

You may specify the following output value item codes:

QUI$_ASSIGNED_QUEUE_NAME
QUI$_BASE_PRIORITY
QUI$_ CHARACTERISTICS
QUI$_CPU_DEFAULT
QUI$_ CPU _LIMIT
QUI$_DEFAULT_FORM_NAME
QUI$_DEFAULT_FORM_STOCK
QUI$_DEVICE_NAME

SYS-331

System Service Descriptions
$GETQUI

Item Codes

SYS-332

QUI$_EXECUTING_JOB_COUNT
QUI$_FORM_NAME
QUI$_FORM_STOCK
QUI$_ GENERIC_ TARGET
QUI$_HOLDING_JOB_COUNT
QUI$_JOB_LIMIT
QUI$_JOB_RESET_MODULES
QUI$_JOB_SIZE_MAXIMUM
QUI$_JOB_SIZE_MINIMUM
QUI$_LIBRARY_SPECIFICATION
QUI$_0WNER_UIC
QUI$_PENDING_JOB_BLOCK_COUNT
QUI$_PENDING_JOB_COUNT
QUI$_PROCESSOR
QUI$_PROTECTION
QUI$_QUEUE_DESCRIPTION
QUI$_ QUEUE_FLAGS
QUI$_QUEUE_NAME
QUI$_ QUEUE_STATUS
QUI$_RETAINED_JOB_COUNT
QUI$_SCSNODE_NAME
QUI$_TIMED_RELEASE_JOB_COUNT
QUI$_ WSDEFAULT
QUI$_ WSEXTENT
QUI$_ WSQUOTA

QUI$_ TRANSLATE_ QUEUE
This request translates a logical name for a queue to the equivalence name
for the queue. The logical name is specified by QUI$_SEARCH_NAME. The
translation is performed iteratively until the equivalence string is found or the
number of translations allowed by the system has been reached.

You must specify the following input value item code:

QUI$_SEARCH_NAME

You may specify the the following output value item code:

QUI$_QUEUE_NAME

QUl$_ACCOUNT _NAME
When you specify QUI$_ACCOUNT_NAME, $GETQUI returns, as a character
string, the account name of the owner of the specified job. Because the account
name can include up to 8 characters, the buffer length field of the item descriptor
should specify 8 (bytes).

(Valid for QUI$_DISPLAY_ENRY, QUI$_DISPLAY_JOB function codes)

QUl$_AFTER_ TIME
When you specify QUI$_AFTER_TIME, $GETQUI returns, as a quadword
absolute time value, the system time at or after which the specified job can
execute.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

System Service Descriptions
$GETQUI

QUl$_ASSIGNED_QUEUE_NAME
When you specify QUI$_ASSIGNED_QUEUE_NAME, $GETQUI returns, as a
character string, the name of the execution queue to which the logical queue
specified in the call to $GETQUI is assigned. Because the queue name can
include up to 31 characters, the buffer length field of the item descriptor should
specify 31 (bytes).

(Valid for QUI_DISPLAY_ENTRY, QUI_DISPLAY_QUEUE function codes)

QUl$_AUTOSTART _ON
When you specify QUI$_AUTOSTART_ON for a batch queue, $GETQUI returns,
as a character string in a comma-separated list, the names of the VAX nodes on
which the specified autostart queue can be run. Each node name is followed by a
double colon (::).

When you specify QUI$_AUTOSTART_ON for an output queue, $GETQUI
returns, as a character string in a comma-separated list, the names of the VAX
nodes and devices to which the specified autostart queue's output can be sent.
Each node name is followed by a double colon(::). Each device name may be
followed by the optional colon [:].

For more information on the autostart feature, see the Guide to Maintaining a
VMS System.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_8ASE_PRIORITV
When you specify QUI$_BASE_PRIORITY, $GETQUI returns, as a longword
value in the range 0 to 15, the priority at which batch jobs are initiated from a
batch execution queue or the priority of a symbiont process that controls output
execution queue~.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_CHARACTERISTIC_NAME
When you specify QUI$_CHARACTERISTIC_NAME, $GETQUI returns, as
a character string, the name of the specified characteristic. Because the
characteristic name can include up to 31 characters, the buffer length field of
the item descriptor should specify 31 (bytes).

(Valid for QUI$_DISPLAY_CHARACTERISIC function code)

QUl$_CHARACTERISTIC_NUMBER
When you specify QUI$_CHARACTERISTIC_NUMBER, $GETQUI returns, as a
longword value in the range 0 to 127, the number of the specified characteristic.

(Valid for QUI$_DISPLAY_CHARACTERISTIC function code)

QUI$_ CHARACTERISTICS
When you specify QUI$_CHARACTERISTICS, $GETQUI returns, as a 128-bit
string (16-byte field), the characteristics associated with the specified queue or
job. Each bit set in the bit mask represents a characteristic number in the range
0 to 127.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB, QUI$_DISPLAY_
QUEUE function codes)

SYS-333

System Service Descriptions
$GETQUI

SYS-334

QUI$_ CHECKPOINT _DATA
When you specify QUI$_CHECKPOINT_DATA, $GETQUI returns, as a character
string, the value of the DCL symbol BATCH$RESTART when the specified batch
job is restarted. Because the value of the symbol can include up to 255 characters,
the buffer length field of the item descriptor should specify 255 (bytes).

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_CLI
When you specify QUI$_CLI, $GETQUI returns, as an RMS file name component,
the name of the command language interpreter used to execute the specified
batch job. The file specification returned assumes the logical name SYS$SYSTEM
and the file type EXE. Because a file name can include up to 39 characters, the
buffer length field in the item descriptor should specify 39 (bytes). This item code
is applicable only to batch jobs.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_COMPLETED_BLOCKS
When you specify QUI$_COMPLETED_BLOCKS, $GETQUI returns, as a
longword integer value, the number of blocks that the symbiont has processed for
the specified print job. This item cod'? is applicable only to print jobs.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPALY_JOB function codes)

QUI$_ CONDITION_ VECTOR
When you specify QUI$_CONDITION_ VECTOR, $GETQUI returns, as a
longword condition value, the completion status of the specified job.

(Valid for QUI$_DISPLAY ENTRY, QUI$_DISPLAY _JOB function codes)

QUl$_CPU_DEFAULT
When you specify QUI$_CPU_DEFAULT, $GETQUI returns, as a longword
integer value, the default CPU time limit specified for the queue in 10-millisecond
units. This item code is applicable only to batch execution queues.

For more information about default forms, see the Guide to Maintaining a VMS
System.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_CPU_LIMIT
When you specify QUI$_CPU_LIMIT, $GETQUI returns, as a longword integer
value, the maximum CPU time limit specified for the specified job or queue in
10-millisecond units. This item code is applicable only to batch jobs and batch
execution queues.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB, QUI$_DISPLAY_
QUEUE function codes)

QUl$_DEFAU LT _FORM_NAM E
When you specify QUI$_DEFAULT_FORM_NAME, $GETQUI returns, as a
character string, the name of the default form associated with the specified
output queue. Because the form name can include up to 31 characters, the buffer
length field of the item descriptor should specify 31 (bytes).

For more information about default forms, see the Guide to Maintaining a VMS
System.

(Valid for QUI$_DISPLAY_QUEUE function code)

System Service Descriptions
$GETQUI

QUl$_DEFAULT _FORM_STOCK
When you specify QUI$_DEFAULT_FORM_STOCK, $GETQUI returns, as a
character string, the name of the paper stock on which the specified default
form is to be printed. Because the name of the paper stock can include up to 31
characters, the buffer length field of the item descriptor should specify 31 (bytes).

For more information on default forms, see the Guide to Maintaining a VMS
System.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_DEVICE_NAME
When you specify QUI$_DEVICE_NAME, $GETQUI returns, as a character
string: the name of the device on which the specified output execution queue is
located. Because the device name can include up to 31 characters, the buffer
length field of the item descriptor should specify 31 (bytes).

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_ENTRY _NUMBER
When you specify QUI$_ENTRY_NUMBER, $GETQUI returns, as a longword
integer value, the queue entry number of the specified job.

(Valid for QUl$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QU1$_EXECUTING_JOB_COUNT
When you specify QUI$_EXECUTING_JOB_COUNT, $GETQUI returns, as
a longword integer value, the number of jobs in the queue that are currently
executing.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_FILE_COPIES
When you specify QUI$_FILE_COPIES, $GETQUI returns the number of times
the specified file is to be processed, ·which is a longword integer value in the range
1 to 255. This item code is applicable only to output execution queues.

(Valid for QUI$_DISPLAY_FILE function code)

QUl$_FILE_COPIES_DONE
When you specify QUI$_FILE_COPIES_DONE, $GETQUI returns the number of
times the specified file has been processed, which is a longword integer value in
the range 1 to 255. This item code is applicable only to output execution queues.

(Valid for QUI$_DISPLAY_FILE function code)

QUl$_FILE_FLAGS
When you specify QUI$_FILE_FLAGS, $GETQUI returns, as a longword bit
vector, the processing options that have been selected for the specified file. Each
processing option is represented by a bit. When $GETQUI sets a bit, the file is
processed according to the corresponding processing option. Each bit in the vector
has a symbolic name. The $QUIDEF macro defines the following symbolic names:

SYS-335

System Service Descriptions
$GETQUI

SYS-336

Symbolic Name

QUI$V _FILE_BURST

QUI$V _FILE_DELETE

QUI$V _FILE_DOUBLE_SPACE

QUI$V _FILE_FLAG

QUI$V _FILE_ TRAILER

QUI$V _FILE_PAGE_HEADER

QUI$V _FILE_PAGINATE

QUI$V _FILE_PASSALL

Description

Burst and flag pages are to be printed
preceding the file.

File is to be deleted after execution of
request.

Symbiont formats the file with double
spacing.

Flag page is to be printed preceding the
file.

Trailer page is to be printed following the
file.

Page header is to be printed on each page
of output.

Symbiont paginates output by inserting
a form feed whenever output reaches the
bottom margin of the form.

Symbiont prints the file in PASSALL
mode.

(Valid for QUI$_DISPLAY_FILE function code)

QUl$_FILE_IDENTIFICATION
When you specify QUI$_FILE_IDENTIFICATION, $GETQUI returns, as a
28-byte string, the internal file-identification value that uniquely identifies the
selected file. This string contains (in order) the following three file-identification
fields from the RMS NAM block for the selected file: the 16-byte NAM$T_DVI
field, the 6-byte NAM$W _FID field, and the 6-byte NAM$W _DID field.

(Valid for QUI$_DISPLAY_FILE function code)

QUl$_FILE_SETUP _MODULES
When you specify QUI$_FILE_SETUP_MODULES, $GETQUI returns, as a
comma-separated list, the names of the text modules that are to be extracted
from the device control library and copied to the printer before the specified file
is printed. Because a text module name can include up to 31 characters and is
separated from the previous text module name with a comma, the buffer length
field of the item descriptor should specify 32 (bytes) for each possible text module.
This item code is meaningful only for output execution queues.

(Valid for QUI$_DISPLAY_FILE function code)

QUl$_FILE_SPECIFICATION
When you specify QUI$_FILE_SPECIFICATION, $GETQUI returns the fully
qualified RMS file specification of the file about which $GETQUI is returning
information. Because a file specification can include up to 255 characters, the
buffer length field of the item descriptor should specify 255 (bytes).

System Service Descriptions
$GETQUI

Note ___________ _

The file specification is the result of an RMS file-passing operation that
occurs at the time you submit the job. If you renamed the file or created
the job as a result of copying a file to a spooled device, then you cannot
use this file specification to access the file through RMS. You use QUI$_
FILE_IDENTIFICATION to obtain a unique identifier for the file.

(Valid for QUI$_DISPLAY_FILE function code)

QUl$_FILE_STATUS
When you specify QUI$_FILE_STATUS, $GETQUI returns file status information
as a longword bit vector. Each file status condition is represented by a bit. When
$GETQUI sets the bit, the file status corresponds to the condition represented by
the bit. Each bit in the vector has a symbolic name. The $QUIDEF macro defines
the following symbolic names.

Symbolic Name

QUI$V _FILE_ CHECKPOINTED

QUI$V _FILE_EXECUTING

Description

File is checkpointed.

File is being processed.

(Valid for QUI$_DISPLAY_FILE function code)

QUl$_FIRST _PAGE
When you specify QUI$_FIRST_PAGE, $GETQUI returns, as a longword integer
value, the page number at which the printing of the specified file is to begin. This
item code is applicable only to output execution queues.

(Valid for QUI$_DISPLAY_FILE function code)

QUl$_FORM_DESCRIPTION
When you specify QUI$_FORM_DESCRIPTION, $GETQUI returns, as a
character string, the text string that describes the specified form. Because
the text string can include up to 255 characters, the buffer length field in the
item descriptor should specify 255 (bytes).

(Valid for QUI$_DISPLAY_FORM function code)

QUl$_FORM_FLAGS
When you specify QUI$_FORM_FLAGS, $GETQUI returns, as a longword bit
vector, the processing options that have been selected for the specified form. Each
processing option is represented by a bit. When $GETQUI sets a bit, the form is
processed according to the corresponding processing option. Each bit in the vector
has a symbolic name. The $QUIDEF macro defines the following symbolic names.

Symbolic Name

QUI$V _FORM_SHEET_FEED

QUI$V _FORM_TRUNCATE

Description

Symbiont pauses at the end of each
physical page so that another sheet of
paper can be inserted.

Printer discards any characters that
exceed the specified right margin.

SYS-337

System Service Descriptions
$GETQUI

SYS-338

Symbolic Name

QUI$V _FORM_ WRAP

Description

Printer prints any characters that
exceed the specified right margin on
the following line.

(Valid for QUI$_DISPLAY_FORM function code)

QUl$_FORM_LENGTH
When you specify QUI$_FORM_LENGTH, $GETQUI returns, as a longword
integer value, the physical length of the specified form in lines. This item code is
applicable only to output execution queues.

(Valid for QUI$_DISPLAY_FORM function code)

QUl$_FORM_MARGIN_BOTTOM
When you specify QUI$_FORM_MARGIN_BOTTOM, $GETQUI returns, as a
longword integer value, the bottom margin of the specified form in lines.

(Valid for QUI$_DISPLAY_FORM function code)

QUl$_FORM_MARGIN_LEFT
When you specify QUI$_FORM_MARGIN_LEFT, $GETQUI returns, as a
longword integer value, the left margin of the specified form in characters.

(Valid for QUI$_DISPLAY_FORM function code)

QUl$_FORM_MARGIN_RIGHT
When you specify QUI$_FORM_MARGIN_RIGHT, $GETQUI returns, as a
longword integer value, the right margin of the specified form in characters.

(Valid for QUI$_DISPLAY_FORM function code)

QUl$_FORM_MARGIN_ TOP
When you specify QUI$_FORM_MARGIN_TOP, $GETQUI returns, as a longword
integer value, the top margin of the specified form in lines.

(Valid for QUI$_DISPLAY _FORM function code)

QUl$_FORM_NAME
When you specify QUI$_FORM_NAME, $GETQUI returns, as a character string,
the name of the specified form or the mounted form associated with the specified
job or queue. Because the form name can include up to 31 characters, the buffer
length field of the item descriptor should specify 31 (bytes).

For more information about mounted forms, see the Guide to Maintaining a VMS
System.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_FORM, QUI$_DISPLAY_
JOB, QUI$_DISPLAY_QUEUE function codes)

QUl$_FORM_NUMBER
When you specify QUI$_FORM_NUMBER, $GETQUI returns, as a longword
integer value, the number of the specified form.

(Valid for QUI$_DISPLAY_FORM function code)

System Service Descriptions
$GETQUI

QUl$_FORM_SETUP _MODULES
When you specify QUI$_FORM_SETUP _MODULES, $GETQUI returns, as a
comma-separated list, the names of the text modules that are to be extracted
from the device control library and copied to the printer before a file is printed on
the specified form. Because a text module name can include up to 31 characters
and is separated from the previous text module name by a comma, the buffer
length field of the item descriptor should specify 32 (bytes) for each possible text
module. This item code is meaningful only for output execution queues.

(Valid for QUI$_DISPLAY_FORM function code)

QUl$_FORM_STOCK
When you specify QUI$_FORM_STOCK, $GETQUI returns, as a character string,
the name of the paper stock on which the specified form is to be printed. Because
the name of the paper stock can include up to 31 characters, the buffer length
field of the item descriptor should specify 31 (bytes).

For more information about forms, see the Guide to Maintaining a VMS System.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_FORM, QUI$_DISPLAY_
JOB, QUI$_DISPLAY_QUEUE function codes)

QUl$_FORM_ WIDTH
When you specify QUI$_FORM_ WIDTH, $GETQUI returns, as a longword
integer value, the width of the specified form in characters.

(Valid for QUI$_DISPLAY_FORM function code)

QUl$_GENERIC_ TARGET
When you specify QUI$_GENERIC_TARGET, $GETQUI returns, as a comma
separated list, the names of the execution queues that are enabled to accept work
from the specified generic queue. Because a queue name can include up to 31
characters and is separated from the previous queue name with a comma, the
buffer length field of the item descriptor should specify 32 (bytes) for each possible
queue name. A generic queue can send work to up to 124 execution queues. This
item code is meaningful only for generic queues.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_HOLDING_JOB_COUNT
When you specify QUI$_HOLDING_JOB_COUNT, $GETQUI returns, as a
longword integer value, the number of jobs in the queue being held until explicitly
released.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_1NTERVENING_BLOCKS
When you specify QUI$_INTERVENING_BLOCKS, $GETQUI returns, as a
longword integer value, the size (in blocks) of files associated with pending jobs
in the queue that were skipped during the current call to $GETQUI. These jobs
were not reported because they did not match the selection criterion in effect for
the call to $GETQUI. ·

The value of QUI$_INTERVENING_BLOCKS is 0 when (1) the job is not a
pending job, or (2) the job that matches the selection criterion is the first pending
job in the queue, or (3) the preceding pending job in the queue was reported in
the previous call to $GETQUI.

This item code only applies to output queues.

SYS-339

System Service Descriptions
$GETQUI

SYS-340

In a wildcard sequence of calls to $GETQUI using the QUI$_DISPLAY_JOB
function code, only information about jobs that match the $GETQUI selection
criteria is returned.

(Valid for QUI$_DISPLAY_JOB function code)

QUl$_1NTERVENING_JOBS
When you specify QUI$_INTERVENING_JOBS, $GETQUI returns, as a longword
integer value, the number of pending jobs in the queue that were skipped during
the current call to $GETQUI. These jobs were not reported because they did not
match the selection criterion in. effect for the call to $GETQUI.

The value of QUI$_INTERVENING_JOBS is 0 when (1) the job is not a pending
job, or (2) the job that matches the selection criterion is the first pending job
in the queue, or (3) the preceding pending job in the queue was reported in the
previous call to $GETQUI.

This item code only applies to output queues.

In a wildcard sequence of calls to $GETQUI using the QUI$_DISPLAY _JOB
function code, only information about jobs that match the $GETQUI selection
criteria is returned.

(Valid for QUI$_DISPLAY_JOB function code)

QUl$_JOB_COMPLETION_QUEUE
When you specify QUI$_JOB_COMPLETION_QUEUE, $GETQUI returns, as
a character string, the name of the queue on which the specified job executed.
Because a queue name can include up to 31 characters, the buffer length of the
item descriptor should specify 31 bytes.

This item code has a value only if the QUI$_JOB_RETAINED bit is set in the
QUI$_JOB_STATUS longword item code.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_JOB_COMPLETION_ TIME
When you specify QUI$_JOB_COMPLETION_TIME, $GETQUI returns, as a
quadword absolute time value, the system time at which the execution of the
specified job completed.

This item code has a value only if the QUI$_JOB_RETAINED bit is set in the
QUI$_JOB_STATUS longword item code.

(Valid for QUI$_DISPLAY _ENTRY, QUI$_DISPLAY _JOB function codes)

QUl$_JOB_COPIES
When you specify QUI$_JOB_COPIES, $GETQUI returns, as a longword integer
value, the number of times the specified print job is to be repeated.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_JOB_COPIES_DONE
When you specify QUI$_JOB_COPIES_DONE, $GETQUI returns, as a longword
integer value, the number of times the specified print job has been repeated.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_JOB_FLAGS

System Service Descriptions
$GETQUI

When you specify QUI$_JOB_FLAGS, $GETQUI returns, as a longword bit
vector, the processing options that have been selected for the specified job. Each
processing option is represented by a bit. When $GETQUI sets a bit, the job is
processed according to the corresponding processing option. Each bit in the vector
has a symbolic name. The $QUIDEF macro defines the following symbolic names.

Symbolic Name

QUI$V _JOB_CPU_LIMIT

QUI$V _JOB_ERROR_RETENTION

QUI$V _JOB_FILE_BURST

QUI$V _JOB_FILE_BURST_ONE

QUI$V _JOB_FILE_FLAG

QUI$V _JOB_FILE_FLAG_ONE

QUI$V _JOB_FILE_PAGINATE

QUI$V _JOB_FILE_TRAILER
QUI$V _JOB_FILE_ TRAILER_ ONE

QUI$V _JOB_LOG_DELETE

QUI$V _JOB_LOG_NULL
QU1$V _JOB_LOG_SPOOL

QUI$V _JOB_LOWERCASE

QUI$V _JOB_NOTIFY

QUI$V _JOB_RESTART

Description

CPU time limit for the job.

The user requested that the job be
retained in the queue, if the job

· completes unsuccessfully. If the queue
is set to retain all jobs because the
QUI$V _QUEUE_RETAIN_ALL bit of
the QUI$_QUEUE_FLAGS item code is
set, the job may be held in the queue
even if it completes successfully. For
more information about user-specified job
retention, see the /RETAIN qualifier for
the PRINT or SUBMIT command in the
VMS DCL Dictionary.

Burst and flag pages precede each file in
the job.
Burst and flag pages precede only the
first copy of the first file in the job.

Flag page precedes each file in the job.

Flag page precedes only the first copy of
the first file in the job.
Symbiont paginates output by inserting
a form feed whenever output reaches the
bottom margin of the form.

Trailer page follows each file in the job.

Trailer page follows only the last copy of
the last file in the job.

Log file is deleted after it is printed.

No log file is created.
Job log file is queued for printing when
job is complete.

Job is to be printed on printer that can
print both uppercase and lowercase
letters.
Message is broadcast to terminal when
job completes or aborts.

Job will restart after a system failure or
can be requeued during execution.

SYS-341

System Service Descriptions
$GETQUI

SYS-342

Symbolic Name

QUI$V _JOB_RETENTION

QUI$V _JOB_ WSDEFAULT

QUI$V _JOB_ WSEXTENT

QUI$V _JOB_ WSQUOTA

Description

The user requested that the job be
retained in the queue regardless of
the job's completion status. For more
information about user-specified job
retention, see the /RETAIN qualifier for
the PRINT or SUBMIT command in the
VMS DCL Dictionary.

Default working set size is specified for
the job.
Working set extent is specified for the job.

Working set quota is specified for the job.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_JOB_LIMIT
When you specify QUI$_JOB_LIMIT, $GETQUI returns the number of jobs that
can execute simultaneously on the specified queue, which is a longword integer
value in the range 1 to 255. This item code is applicable only to batch execution
queues.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_JOB_NAME
When you specify QUI$_JOB_NAME, $GETQUI returns, as a character string,
the name of the specified job. Because the job name can include up to 39
characters, the buffer length field of the item descriptor should specify 39 (bytes).

(Valid for QUI$_DISPLAY _ENTRY, QUI$_DISPLAY _JOB function codes)

QUl$_JOB_PID
When you specify QUI$_JOB_PID, $GETQUI returns the process identification
(PID) of the executing batch job in standard longword format.

(Valid for QUI$_DISPLAY _ENTRY, QUI$_DISPLAY _JOB function codes)

QUl$_JOB_RESET _MODULES
When you specify QUI$_JOB_RESET_MODULES, $GETQUI returns, as a
comma-separated list, the names of the text modules that are to be extracted
from the device control library and copied to the printer before each job in the
specified queue is printed. Because a text module name can include up to 31
characters and is separated from the previous text module name by a comma,
the buffer length field of the item descriptor should specify 32 (bytes) for each
possible text module. This item code is meaningful only for output execution
queues.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_JOB_RETENTION_ TIME
When you specify QUI$_JOB_RETENTION_TIME, $GETQUI returns, as a
quadword time value, the system time until which the user requested the job be
retained in the queue. The system time may be expressd in either an absolute or
delta time format.

For more information, see the /RETAIN qualifier for PRINT or SUBMIT in VMS
DCL Dictionary.

System Service Descriptions
$GETQUI

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_JOB_SIZE
When you specify QUI$_JOB_SIZE, $GETQUI returns, as a longword integer
value, the total number of disk blocks in the specified print job.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_JOB_SIZE_MAXIMUM
When you specify QUI$_JOB_SIZE_MAXIMUM, $GETQUI returns, as a
longword integer value, the maximum number of disk blocks that a print job
initiated from the specified queue can contain. This item code is applicable only
to output execution queues.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_JOB_SIZE_MINIMUM
When you specify QUI$_JOB_SIZE_MINIMUM, $GETQUI returns, as a longword
integer value, the minimum number of disk blocks that a print job initiated
from the specified queue can contain. This item code is applicable only to output
execution queues.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_JOB_STATUS
When you specify QUI$_JOB_STATUS, $GETQUI returns the specified job's
status flags, which are contained in a longword bit vector. The $QUIDEF macro
defines the following symbolic names for these flags. ·

Symbol Name

QUI$V _JOB_ABORTING

QUI$V _JOB_EXECUTING
QUI$V _JOB_HOLDING

QUI$V _JOB_INACCESSIBLE

QUI$V _JOB_PENDING

Description

System is attempting to abort execution
of job.

Job is executing or printing.

Job will be held until it is explicitly
released.

Caller does not have Read access to the
specific job and file information in the
system queue file. Therefore, the QUI$_
DISPLAY_JOB and QUI$_DISPLAY_
FILE operations can return information
for only the following output value item
codes:
QUI$_AFTER_ TIME
QUI$_COMPLETED_BLOCKS
QUI$_ENTRY _NUMBER
QUI$_INTERVENING_BLOCKS
QUI$_INTERVENING_JOBS
QUI$_JOB_SIZE
QUI$_JOB_STATUS

Job is pending. See QUI$_PENDING_
JOB_REASON for the reason the job is in
a pending state.

SYS-343

System Service Descriptions
$GETQUI

SYS-344

Symbol Name

QUI$V _JOB_REFUSED

QUI$V _JOB_RETAINED

QUI$V _JOB_STALLED

QUI$V _JOB_STARTING

QUI$V _JOB_SUSPENDED

QUI$V _JOB_TIMED_RELEASE

Description

Job was refused by symbiont and is
waiting for symbiont to accept it for
processing.

Job has completed, but it is being
retained in the queue.

Execution of the job is stalled because
the physical device on which the job is
printing is stalled.

The job has been scheduled for execution.
Confirmation of execution has not been
received.

Execution of the job is suspended because
the queue on which it is executing is
paused.

Job is waiting for specified time to
execute.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_LAST _PAGE
When you specify QUI$_LAST_PAGE, $GETQUI returns, as a longword integer
value, the page number at which the printing of the specified file should end.
This item code is applicable only to output execution queues.

(Valid for QUI$_DISPLAY_FILEfunction code)

QUl$_LIBRARY _SPECIFICATION
When you specify QUI$_LIBRARY_SPECIFICATION, $GETQUI returns, as
an RMS file name component, the name of the device control library for the
specified queue. The library specification assumes the device and directory name
SYS$LIBRARY and a file type of TLB. Because a file name can include up to 39
characters, the buffer length field of the item descriptor should specify 39 (bytes).
This item code is meaningful only for output execution queues.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_LOG_QUEUE
When you specify QUI$_LOG_QUEUE, $GETQUI returns, as a character string,
the name of the queue into which the log file produced for the specified batch
job is to be entered for printing. This item code is applicable only to batch jobs.
Because a queue name can contain up to 31 characters, the buffer length field of
the item descriptor should specify 31 (bytes).

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_LOG_SPECIFICATION
When you specify QUI$_LOG_SPECIFICATION, $GETQUI returns, as an
RMS file specification, the name of the log file to be produced for the specified
job. Because a file specification can include up to 255 characters, the buffer
length field of the item descriptor should specify 255 (bytes). This item code is
meaningful only for batch jobs.

System Service Descriptions
$GETQUI

The string returned is the log file specification that was provided to the $SNDJBC
service to create the job. Therefore, to determine whether a log file is to be
produced, testing this item code for a zero-length string is insufficient; instead,
you need to examine the QUI$V _JOB_LOG_NULL bit of the QUI$_JOB_FLAGS
item code.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_NOTE
When you specify QUI$_NOTE, $GETQUI returns, as a character string, the
note that is to be printed on the job flag and file flag pages of the specified job.
Because the note can include up to 255 characters, the buffer length field of the
item descriptor should specify 255 (bytes). This item code is meaningful only for
output execution queues.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_0PERATOR_REQUEST
When you specify QUI$_0PERATOR_REQUEST, $GETQUI returns, as a
character string, the message that is to be sent to the queue operator before
the specified job begins to execute. Because the message can include up to 255
characters, the buffer length field of the item descriptor should specify 255
(bytes). This item code is meaningful only for output execution queues.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_0WNER_UIC
When you specify QUI$_0WNER_UIC, $GETQUI returns the owner UIC as a
longword value in standard UIC format. For information on UIC format, see the
Introduction to VMS System Services.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_PAGE_SETUP _MODULES
When you specify QUI$_PAGE_SETUP _MODULES, $GETQUI returns, as a
comma-separated list, the names of the text modules to be extracted from the
device control library and copied to the printer before each page of the specified
form is printed. Because a text module name can include up to 31 characters and
is separated from the previous text module name by a comma, the buffer length
field of the item descriptor should specify 32 (bytes) for each possible text module.
This item code is meaningful only for output execution queues.

(Valid for QUI$_DISPLAY_FORM function code)

QUl$_PARAMETER_ 1 through QUl$_PARAMETER_8
When you specify QUI$_PARAMETER_l through QUI$_PARAMETER_8,
$GETQUI returns, as a character string, the value of the user-defined parameters
that in batch jobs become the value of the DCL symbols Pl through P8
respectively. Because these parameters can include up to 255 characters, the
buffer length field of the item descriptor should specify 255 (bytes).

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_PENDING_JOB_BLOCK_COUNT
When you specify QUI$_PENDING_JOB_BLOCK_COUNT, $GETQUI returns, as
a longword integer value, the total number of blocks for all pending jobs in the
queue (valid only for output execution queues).

(Valid for QUI$_DISPLAY_QUEUE function code)

SYS-345

System Service Descriptions
$GETQUI

SYS-346

QUl$_PENDING_JOB_COUNT
When you specify QUI$_PENDING_JOB_COUNT, $GETQUI returns, as a
longword integer value, the number of jobs in the queue in a pending state.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_PENDING_JOB_REASON
When you specify QUI$_PENDING_JOB_REASON, $GETQUI returns, as a
longword bit vector, the reason that the job is in a pending state. The $QUIDEF
macro defines the following symbolic names for the flags.

Symbolic Name

QUI$V _PEND_CHAR_MISMATCH

QUI$V _PEND_JOB_SIZE_MAX

QUI$V _PEND_JOB_SIZE_MIN

QUI$V_PEND_LOWERCASE_MISMATCH

QUI$V _PEND_NO_ACCESS

QUI$V _PEND_QUEUE_BUSY

QUI$V _PEND_QUEUE_STATE

QUI$V _PEND _STOCK_MISMATCH

Description

Job requires characteristics
that are not available on the
execution queue.

Block size of job exceeds
the upper block limit of the
execution queue.

Block size of job is less than
the lower limit of the execution
queue.

Job requires lowercase printer.

Owner of job does not have
access to the execution queue.

Job is pending because the
number of jobs currently
executing on the queue equals
the job limit for the queue.

Job is pending because the
execution queue is not in
a running, open state as
indicated by QUI$_QUEUE_
STATUS.

Stock type required by the job's
form does not match the stock
type of the form mounted on
the execution queue.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_PRIORITV
When you specify QUI$_PRIORITY, $GETQUI returns the scheduling priority of
the specified job, which is a longword integer value in the range 0 through 255.

Scheduling priority affects the order in which jobs assigned to a queue are
initiated; it has no effect on the base execution priority of a job. The lowest
scheduling priority value is 0, the highest is 255; that is, if a queue contains a
job with a scheduling priority of 10 and a job with a scheduling priority of 2, the
queue manager initiates the job with the scheduling priority of 10 first.

(Valid for QUI$_DISPLAY _ENTRY, QUI$_DISPLAY _JOB function codes)

QUl$_PROCESSOR

System Service Descriptions
$GETQUI

When you specify QUI$_PROCESSOR, $GETQUI returns, as an RMS file name
component, the name of the symbiont image that executes print jobs initiated
from the specified queue. The file name assumes the device and directory name
SYS$SYSTEM and the file type EXE. Because an RMS file name can include up
to 39 characters, the buffer length field of the item descriptor should specify 39
(bytes).

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_QUEUE function codes)

QUl$_PROTECTION
When you specify QUI$_PROTECTION, $GETQUI returns, as a word, the
specified queue's protection mask.

Protection Value

World Group Owner System

DEWRDEWRDEWRDEWR
151413121110 9 8 7 6 5 4 3 2 1 0

ZK-3823A-GE

Bits 0 through 15 specify the protection value: the four types of access (read,
write, execute, delete) to be granted to the four classes of user (system, owner,
group, world). Set bits deny access and clear bits allow access.

For more information, see the $CHKPRO system service in the VMS System
Services Reference Manual.

(Valid for QUI$_DISPLAY_QUEU~.function code)

QUl$_QUEUE_DESCRIPTION
When you specify QUI$_QUEUE_DESCRIPTION, $GETQUI returns, as a
character string, the text that describes the specified queue. Because the text can
include up to 255 characters, the buffer length field of the item descriptor should
specify 255 (bytes).

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_QUEUE_FLAGS
When you specify QUI$_QUEUE_FLAGS, $GETQUI returns, as a longword bit
vector, the processing options that have been selected for the specified queue.
Each processing option is represented by a bit. When $GETQUI sets a bit,
the jobs initiated from the queue are processed according to the corresponding
processing option. Each bit in the vector has a symbolic name. The $QUIDEF
macro defines the following symbolic names.

Symbolic Name

QUI$V _QUEUE_ACL_SPECIFIED

Description

An access control list has been
specified for the queue. You cannot
retrieve a queue's ACL through the
$GETQUI service. Instead, you must
use the $CHANGE_ACL service.

SYS-347

System Service Descriptions
$GETQUI

SYS-348

Symbolic Name

QUI$V _QUEUE_AUTOSTART

QUI$V _QUEUE_BATCH

QUI$V _QUEUE_CPU_DEFAULT

QUI$V _QUEUE_ CPU _LIMIT

QUI$V _ QUEUE_FILE_BURST

QUI$V _ QUEUE_FILE_BURST _ONE

QUI$V _ QUEUE_FILE_FLAG

QUI$V _ QUEUE_FILE_FLAG_ ONE

QUI$V _QUEUE_FILE_PAGINATE

QUI$V _ QUEUE_FILE_ TRAILER

QUI$V _ QUEUE_FILE_ TRAILER_ ONE

QUI$V_QUEUE_GENERIC

QUI$V _QUEUE_GENERIC_
SELECTION

QUI$V _QUEUE_JOB_BURST

QUI$V _QUEUE_JOB_FLAG

QUI$V _QUEUE_JOB_SIZE_SCHED

QUI$V _QUEUE_JOB_TRAILER

QUI$V _QUEUE_PRINTER

Description

Queue is designated as an autostart
queue.

Queue is a batch queue or a generic
batch queue.

A default CPU time limit has been
specified for all jobs in the queue.

A maximum CPU time limit has been
specified for all jobs in the queue.

Burst and flag pages precede each
file in each job initiated from the
queue.

Burst and flag pages precede only
the first copy of the first file in each
job initiated from the queue.

Flag page precedes each file in each
job initiated from the queue.

Flag page precedes only the first copy
of the first file in each job initiated
from the queue.

Output symbiont paginates output
for each job initiated from this queue.
The output symbiont paginates
output by inserting a form feed
whenever output reaches the bottom
margin of the form.

Trailer page follows each file in each
job initiated from the queue.

Trailer page follows only the last
copy of the last file in each job
initiated from the queue.

The queue is a generic queue.

The queue is an execution queue
that can accept work from a generic
queue.

Burst and flag pages precede each
job initiated from the queue.

A flag page precedes each job
initiated from the queue.

Jobs initiated from the queue are
scheduled according to size, with
the smallest job of a given priority
processed first (meaningful only for
output queues).

A trailer page follows each job
initiated from the queue.

The queue is a printer queue.

Symbolic Name

System Service Descriptions
$GETQUI

Description

QUI$V _QUEUE_RECORD_BLOCKING The symbiont is permitted to
concatenate, or block together, the
output records it sends to the output
device.

QUI$V _QUEUE_RETAIN_ALL

QUI$V _QUEUE_RETAIN_ERROR

QUI$V _QUEUE_SWAP

QUI$V _QUEUE_ TERMINAL

QUI$V _QUEUE_ WSDEFAULT

QUI$V _QUEUE_ WSEXTENT

QUI$V _QUEUE_ WSQUOTA

All jobs initiated from the queue
remain in the queue after they
finish executing. Completed jobs are
marked with a completion status.

Only jobs that do not complete
successfully are retained in the
queue.

Jobs initiated from the queue can be
swapped.

The queue is a terminal queue.

Default working set size is specified
for each job initiated from the queue.

Working set extent is specified for
each job initiated from the queue.

Working set quota is specified for
each job initiated from the queue.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_QUEUE function codes)

QUl$_QUEUE_NAME
When you specify QUI$_QUEUE_NAME, $GETQUI returns, as a character
string, the name of the specified queue or the name of the queue that contains
the specified job. Because a queue name can include up to 31 characters, the
buffer length field of the item descriptor should specify 31 (bytes).

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB, QUI$_DISPLAY_
QUEUE function codes)

QUl$_QUEUE_STATUS
When you specify QUI$_QUEUE_STATUS, $GETQUI returns the specified
queue's status flags, which are contained in a longword bit vector. Some of these
bits describe the queue's state, others provide additional status information. The
$QUIDEF macro defines the following symbolic names for these flags.

Symbolic Name

QUI$V _QUEUE_ALIGNING

QUI$V _QUEUE_AUTOSTART_
INACTIVE

QUI$V _QUEUE_AVAILABLEt

QUI$V_QUEUE_BUSYt

Description

Queue is printing alignment pages.

Autostart queue is stopped due to failure
or manual intervention and needs to be
manually started.

Queue is processing work but is capable
of processing additional work.

Queue cannot process additional jobs
because of work in progress.

tBit describes the current state of the queue. Only one of these bits can be set at any time.

SYS-349

System Service Descriptions
$GETQUI

SYS-350

Symbolic Name

QUI$V _QUEUE_ CLOSED

QUI$V _QUEUE_DISABLEDt

QUI$V _QUEUE_IDLEt

QUI$V _QUEUE_LOWERCASE

QUI$V _QUEUE_PAUSEDt

QUI$V _QUEUE_PAUSINGt

QUI$V _QUEUE_REMOTE

QUI$V _QUEUE_RESETTING

QUI$V _ QUEUE_RESUMINGt

QUI$V _QUEUE_SERVER

QUI$V _QUEUE_STALLEDt

QUI$V _QUEUE_STARTINGt

QUI$V _QUEUE_STOP _PENDING

QUI$V _QUEUE_STOPPEDt

QUI$V _QUEUE_STOPPINGt

QUI$V _QUEUE_UNAVAILABLE

Description

Queue is closed and will not accept new
jobs until the queue is put in an open
state.

Queue is not capable of being started or
submitted to.

Queue contains no job requests capable of
being processed.

Queue is associated with a printer that
can print both uppercase and lowercase
characters.

Execution of all current jobs in the queue
is temporarily halted.

Queue is temporarily halting execution.

Queue is assigned to a physical device
that is not connected to the local node.

Queue is resetting and stopping.

Queue is restarting after pausing.

Queue processing is directed to a server
symbiont.

Physical device to which queue is
assigned is stalled; that is, the device
has not completed the last I/O request
submitted to it.

Queue is starting.

Queue will be stopped when work
currently in progress has completed.

Queue is stopped.

Queue is stopping.

Physical device to which queue is
assigned is not available.

tBit describes the current state of the queue. Only one of these bits can be set at any time.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_REQUEUE_QUEUE_NAME
When you specify QUI$_REQUEUE_QUEUE_NAME, $GETQUI returns, as a
character string, the name of the queue to which the specified job is reassigned.
This item code only has a value if the QUI$V _JOB_ABORTING bit is set in the
QUI$_JOB_STATUS longword, and the job is going to be requeued to another
queue. Because a queue name can include up to 31 characters, the buffer length
of the item descriptor should specify 31 bytes.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_RESTART _QUEUE_NAME
When you specify QUI$_RESTART_QUEUE_NAME, $GETQUI returns, as a
character string, the name of the queue in which the job will be placed if the job
is restarted.

System Service Descriptions
$GETQUI

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_RETAINED_JOB_COUNT
When you specify QUI$_RETAINED_JOB_COUNT, $GETQUI returns, as a
longword integer value, the number of jobs in the queue retained after successful
completion plus those retained on error.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_SCSNODE_NAME
When you specify QUI$_SCSNODE_NAME, $GETQUI returns, as a character
string, the name of the VAX node on which the specified execution queue is
located. Because the node name can include up to 6 characters, the buffer length
field of the item descriptor should specify 6 (bytes).

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_SEARCH_FLAGS
When you specify QUI$_SEARCH_FLAGS, an input value item code, it specifies a
longword bit vector wherein each bit specifies the scope of $GETQUI's search for
objects specified in the call to $GETQUI. The $QUIDEF macro defines symbols
for each option (bit) in the bit vector. The following table contains the symbolic
names for each option and the function code for which each flag is meaningful.

Symbolic Name Function Code

QUI$V _SEARCH_FREEZE_CONTEXT QUI$_DISPLAY_
CHARACTERISTIC
QUI$_DISPLAY_ENTRY
QUI$_DISPLAY_FILE
QUI$_DISPLAY_FORM
QUI$_DISPLAY_JOB
QUI$_DISPLAY_QUEUE

QUI$V _SEARCH_ALL_JOBS QUI$_DISPLAY_JOB

QUI$V _SEARCH_BATCH QUI$_DISPLAY_ENTRY
QUI$_DISPLAY_QUEUE

QUI$V _SEARCH_EXECUTING_JOBS QUI$_DISPLAY_ENTRY
QUI$_DISPLAY_JOB
QUI$_DISPLAY_QUEUE

QUI$V _SEARCH_GENERIC QUI$_DISPLAY_ENTRY
QUI$_DISPLAY_QUEUE

QUI$V _SEARCH_HOLDING_JOBS QUI$_DISPLAY_ENTRY
QUI$_DISPLAY_JOB
QUI$_DISPLAY_QUEUE

Description

Does not advance
wildcard context to
process current service
call.

$GETQUI searches
all jobs included in
the established queue
context. If you do
not specify this flag,
$GETQUI only returns
information about jobs
that have the same user
name as the caller.

Selects batch queues.

Selects executing jobs,
or queues with executing
jobs.

Selects generic queues.

Selects jobs on
unconditional hold,
or queues with jobs on
unconditional hold.

SYS-351

System Service Descriptions
$GETQUI

Symbolic Name

QUI$V _SEARCH_PENDING_JOBS

QUI$V _SEARCH_PRINTER

QUI$V _SEARCH_RETAINED_JOBS

QUI$V _SEARCH_SERVER

QUI$V _SEARCH_SYMBIONT

QUI$V _SEARCH_TERMINAL

QUI$V _SEARCH_THIS_JOB

QUI$V _SEARCH_TIMED_RELEASE_
JOBS

QUI$V _SEARCH_ WILDCARD

Function Code

QUI$_DISPLAY_ENTRY
QUI$_DISPLAY_JOB
QUI$_DISPLAY_QUEUE

QUI$_DISPLAY_ENTRY
QUI$_DISPLAY_QUEUE

QUI$_DISPLAY_ENTRY
QUI$_DISPLAY _JOB
QUI$_DISPLAY_QUEUE

QUI$_DISPLAY_ENTRY
QUI$_DISPLAY_QUEUE

QUI$_DISPLAY_ENTRY
QUI$_DISPLAY_QUEUE

QUI$_DISPLAY_ENTRY
QUI$_DISPLAY_QUEUE

QUI$_DISPLAY _FILE
QUI$_DISPLAY _JOB
QUI$_DISPLAY_QUEUE

QUI$_DISPLAY_ENTRY
QUI$_DISPLAY_JOB
QUI$_DISPLAY_QUEUE

QUI$_DISPLAY_
CHARACTERISTIC
QUI$_DISPLAY_ENTRY
QUI$_DISPLAY_FORM
QUI$_DISPLAY_QUEUE

QUl$_SEARCH_JOB_NAME

Description

Selects pending jobs,
or queues with pending
jobs.

Selects printer queues.

Selects jobs being
retained, or queues
with jobs being retained.

Selects server queues.

Selects output queues.

Selects terminal queues.

$GETQUI returns
information about
the calling batch job,
the command file
being executed, or the
queue associated with
the calling batch job.
$GETQUI establishes
a new queue and job
context based on the
job entry of the caller;
this queue and job
context is dissolved
when $GETQUI
finishes executing. If
you specify QUI$V _
SEARCH_THIS_JOB,
$GETQUI ignores all
other QUI$_SEARCH_
FLAGS options.

Selects jobs on hold
until a specified time, or
queues with jobs on hold
until a specified time.

$GETQUI performs a
search in wildcard mode
even if QUI$_SEARCH_
NAME contains no
wildcard characters.

QUI$_SEARCH_JOB_NAME is an input value item code that specifies a 1- to
39-character string that $GETQUI uses to restrict its search for a job or jobs.
$GETQUI searches for job names that match the job name input value for the
given user name. Wildcard characters are acceptable.

(Valid for QUI$_DISPLAY_ENTRY function code)

SYS-352

System Service Descriptions
$GETQUI

QUl$_SEARCH_NAME
QUI$_SEARCH_NAME is an input value item code, which specifies, as a 1- to
31-character string, the name of the object about which $GETQUI is to return
information. The buffer must specify the name of a characteristic, form, or queue.

To direct $GETQUI to perform a wildcard search, you specify QUI$_SEARCH_
NAME as a string containing one or more of the wildcard characters(% or*).

(Valid for QUI$_DISPLAY_CHARACTERISTIC, QUI$_DISPLAY_FORM, QUI$_
DISPLAY_QUEUE, QUI$_TRANSLATE_QUEUE function codes)

QUl$_SEARCH_NUMBER
QUI$_SEARCH_NUMBER is an input value item code, which specifies, as a
longword integer value, the number of the characteristic, form, or job entry about
which $GETQUI is to return information. The buffer must specify a longword
integer value.

(Valid for QUI$_DISPLAY_CHARACTERISTIC, QUI$_DISPLAY_ENTRY, QUI$_
DISPLAY_FORM function codes)

QUl$_SEARCH_USERNAME
QUI$_SEARCH_USERNAME is an input value item code, which specifies as a 1-
to 12-character string, the user name for $GETQUI to use to restrict its search
for jobs. By default, $GETQUI searches for jobs whose owner has the same user
name as the calling process.

(Valid for QUI$_DISPLAY_ENTRY function code)

QUI$_ SUBMISSION_ TIME
When you specify QUI$_SUBMISSION_TIME, $GETQUI returns, as a quadword
absolute time value, the time at which the specified job was submitted to the
queue.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUI$_ TIMED _RELEASE_JOB _COUNT
When you specify QUI$_TIMED_RELEASE_JOB_COUNT, $GETQUI returns, as
a longword value, the number of jobs in the queue on hold until a specified time.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_UIC
When you specify QUI$_UIC, $GETQUI returns, in standard longword format,
the UIC of the owner of the specified job.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_USERNAME
When you specify QUI$_USERNAME, $GETQUI returns as a character string,
the user name of the owner of the specified job. Because the user name can
include up to 12 characters, the buffer length field of the item descriptor should
specify 12 (bytes).

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_WSDEFAULT
When you specify QUI$_ WSDEFAULT, $GETQUI returns the default working
set size specified for the specified job or queue, which is a longword integer in
the range 1 through 65,535. This value is meaningful only for batch jobs and
execution and output queues.

SYS-353

System Service Descriptions
$GETQUI

Description

SYS-354

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB, QUI$_DISPLAY_
QUEUE function codes)

QUl$_WSEXTENT
When you specify QUI$_ WSEXTENT, $GETQUI returns the working set extent.
specified for the specified job or queue, which is a longword integer in the range
1 through 65,535. This value is meaningful only for batch jobs and execution and
output queues.

(Valid for QUI$_DISPLAY _ENTRY, QUI$_DISPLAY _JOB, QUI$_DISPLAY _
QUEUE function codes)

QUl$_WSQUOTA
When you specify QUI$_ WSQUOTA, $GETQUI returns the working set quota for
the specified job or queue, which is a longword integer in the range 1 through
65,535. This value is meaningful only for batch jobs and execution and output
queues.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB, QUI$_DISPLAY_
QUEUE function codes)

The Get Queue Information service returns information about queues and the
jobs initiated from those queues. The $GETQUI and $SNDJBC services together
provide the user interface to the VMS Job Controller, which is the VMS queue
and accounting manager. See the Description section of the $SNDJBC service for
a discussion of the different types of jobs and queues.

The $GETQUI service completes asynchronously; that is, it returns to the caller
after queuing the request, without waiting for the operation to complete. For
synchronous completion, use the Get Queue Information and Wait ($GETQUIW)
service. The $GETQUIW service is identical to $GETQUI in every way except
that $GETQUIW returns to the caller after the operation has completed.

You can specify the following function codes to return information for the object
types listed:

Function Code

QUI$_DISPLAY_CHARACTERISTIC

QUI$_DISPLAY_FORM

QUI$_DISPLAY_QUEUE

QUI$_DISPLAY _JOB

QUI$_DISPLAY _FILE

QUI$_DISPLAY_ENTRY

Object Type

Characteristic

Form

Queue

Job within a queue context

File within a job context

Job independent of queue

When you call the $GETQUI service, the job controller establishes an internal
GETQUI context block (GQC). The system uses the GQC to store information
temporarily and to keep track of its place in a wildcard sequence of operations.
The system provides only one GQC per process; therefore, only one $GETQUI
operation can be in progress at any one time.

System Service Descriptions
. $GETQUI

To allow you to obtain information either about a particular object in a single call
or about several objects in a sequence of calls, $GETQUI supports three different
search modes. The following search modes affect the disposition of the GQC in
different ways:

• Nonwildcard mode-$GETQUI returns information about a particular object
in a single call. After the call completes, the system dissolves the GQC.

• Wildcard mode-$GETQUI returns information about several objects of the
same type in a sequence of calls. The system saves the GQC between calls
until the wildcard sequence completes.

• Nested wildcard mode-$GETQUI returns information about objects defined
within another object. Specifically, this mode allows you to query jobs
contained in a selected queue or files contained in a selected job in a sequence
of calls. After each call, the system saves the GQC so that the GQC can
provide the queue or job context necessary for subsequent calls.

The sections that follow describe how each of the three search methods affects
$GETQUI's search for information; how you direct $GETQUI to undertake each
method; and how each method affects the contents of the GQC.

Nonwildcard Mode
In nonwildcard mode, $GETQUI can return information about the following
objects:

• A specific characteristic or form definition that you identify by name or
number.

• A specific queue definition that you identify by name.

• A specific batch or print job that you identify by job entry number.

• The queue, job, or executing command procedure file associated with the
calling batch job. You invoke this special case of nonwildcard mode by
specifying the QUI$_SEARCH_THIS_JOB option of the QUI$_SEARCH_
FLAGS item code for a display queue, job, or file operation.

To obtain information about a specific characteristic or form definition, you call
$GETQUI using the QUI$_DISPLAY_CHARACTERISTIC or QUI$_DISPLAY_
FORM function code. You need to specify either the name of the characteristic or
form in the QUI$_SEARCH_NAME item code or the number of the characteristic
or form in the QUI$_SEARCH_NUMBER item code. The name string you specify
cannot include either of the wildcard characters(* or%). You can specify both the
QUI$_SEARCH_NAME and QUI$_SEARCH_NUMBER item codes, but the name
and number you specify must be associated with the same characteristic or form
definition.

To obtain information about a specific queue definition, you specify the QUI$_
DISPLAY_QUEUE function code and provide the name of the queue in the QUI$_
SEARCH_NAME item code. The name string you specify cannot include the
wildcard characters(* or%).

To obtain information about a specific batch or print job, you specify the QUI$_
DISPLAY_ENTRY function code and provide the entry number of the job in the
QUI$_SEARCH_NUMBER item code.

SYS-355

System Service Descriptions
$GETQUI

SYS-356

Finally, the $GETQUI service provides an option that allows a batch job to obtain
information about the queue, job, or command file that the associated batch
job is executing without first entering wildcard mode to establish a queue or
job context. You can make a call from the batch job that specifies the QUI$_
DISPLAY_QUEUE function code to obtain information about the queue from
which the batch job was initiated; the QUI$_DISPLAY_JOB function code to
obtain information about the batch job itself; or the QUI$_DISPLAY _FILE
function code to obtain information about the command file for the batch job. For
each of these calls, you must select the QUI$V_SEARCH_THIS_JOB option of
the QUI$_SEARCH_FLAGS item code. When you select this option, $GETQUI
ignores all other options in the QUI$_SEARCH_FLAGS item code.

Wildcard Mode
In wildcard mode, the system saves the GQC between calls to $GETQUI so
that you can make a sequence of calls to $GETQUI to get information about
all characteristics, form definitions, queues, or jobs contained in the system job
queue file.

To set up a wildcard search for characteristic or form definitions, specify the
QUI$_DISPLAY_CHARACTERISTIC or QUI$_DISPLAY_FORM function code
and specify a name in the QUI$_SEARCH_NAME item code that includes one or
more wildcard characters(* or%).

To set up a wildcard search for queue definitions, you specify the QUI$_
DISPLAY_QUEUE function code and specify a name in the QUI$_SEARCH_
NAME item code that includes one or more wildcard characters(* or%). You
can indicate the type of the queue you want to search for by specifying any
combination of the following options for the QUI$_SEARCH_FLAGS item code:

QUI$V _SEARCH_BATCH
QUI$V _SEARCH_PRINTER
QUI$V _SEARCH_SERVER
QUI$V _SEARCH_ TERMINAL
QUI$V _SEARCH_SYMBIONT
QUI$V _SEARCH_GENERIC

For example, if you select the QUI$V _SEARCH_BATCH option, $GETQUI
returns information only about batch queues; if you select the QUI$V _SEARCH_
SYMBIONT option, $GETQUI returns information only about output queues
(printer, terminal, and server queues). If you specify none of the queue type
options, $GETQUI searches all queues.

To set up a wildcard search for jobs, you specify the QUI$_DISPLAY_ENTRY
function code and the QUI$_SEARCH_ WILDCARD option of the QUI$_SEARCH_
FLAGS item code. When you specify this option, omit the QUI$_SEARCH_
NUMBER item code. You can restrict the search to jobs having particular
status or to jobs residing in specific types of queues, or both, by including any
combination of the following options for the QUI$_SEARCH_FLAGS item code:

QUI$V _SEARCH_BATCH
QUI$V _SEARCH_EXECUTING_JOBS
QUI$V _SEARCH_HOLDING_JOBS
QUI$V _SEARCH_PENDING_JOBS
QUI$V _SEARCH_PRINTER
QUI$V _SEARCH_RETAINED_JOBS

QUI$V _SEARCH_SERVER
QUI$V _SEARCH_SYMBIONT
QUI$V _SEARCH_TERMINAL

System Service Descriptions
$GETQUI

QUI$V _SEARCH_TIMED_RELEASE_JOBS

You can also force wildcard mode for characteristic, form, or queue display
operations by specifying the QUI$V _SEARCH_ WILDCARD option of the QUI$_
SEARCH_FLAGS item code. If you specify this option, the system saves the GQC
between calls, even if you specify a nonwildcard name in the QUI$_SEARCH_
NAME item code. Whether you specify a wildcard name in the QUI$_SEARCH_
NAME item code, selecting the QUI$V _SEARCH_ WILDCARD option ensures
that wildcard mode is enabled.

Once established, wildcard mode remains in effect until one of the following
actions occurs, which causes the GQC to be released:

• $GETQUI returns a JBC$_NOMORExxx or JBC$_NOSUCHxxx condition
value on a call to display characteristic, form, queue, or entry information,
where xxx refers to CHAR, FORM, QUE, or ENT.

• You explicitly cancel the wildcard operation by specifying the QUI$_CANCEL_
OPERATION function code in a call to the $GETQUI service.

• Your process terminates.

Note that wildcard mode is a prerequisite for entering nested wildcard mode.

Nested Wildcard Mode
In nested wildcard mode, the system saves the GQC between calls to $GETQUI
so that you can make a sequence of calls to $GETQUI to get information about
jobs that are contained in a selected queue or files of the selected job. Nested
wildcard mode reflects the parent-child relationship between queues and jobs and
between jobs and files. The $GETQUI service can locate and return information
about only one object in a single call. However, queues are objects that contain
jobs and jobs are objects that contain files. Therefore, to get information about an
object contained within another object, you must first make a call to $GETQUI
that specifies and locates the containing object and then make a call to request
information about the contained object. The system saves the location of the
containing object in the GQC along with the location of the contained object.

Two of $GETQUI's operations, QUI$_DISPLAY_JOB and QUI$_DISPLAY_FILE,
can be used only in a nested wildcard mode, with one exception. The exceptional
use of these two operations involves calls made to $GETQUI from a batch job to
find out more information about itself. This exceptional use is described at the
end of the Nonwildcard Mode section.

You can enter nested wildcard mode from either wildcard display queue mode or
from wildcard display entry mode. To obtain job and file information in nested
wildcard mode, you can use a combination of QUI$_DISPLAY_QUEUE, QUI$_
DISPLAY_JOB, and QUI$_DISPLAY_FILE operations. To obtain file information,
you can use a combination of QUI$_DISPLAY_ENTRY and QUI$_DISPLAY_FILE
operations as an alternative.

To set up a nested wildcard search for job and file information, you first perform
one or more QUI$_DISPLAY_QUEUE operations in wildcard mode to establish
the queue context necessary for the nested display job and file operations. Next
you specify the QUI$_DISPLAY_JOB operation repetitively; these calls search the
current queue until a call locates the job that contains the file or files you want.
This call establishes the job context. Having located the queue and the job that

SYS-357

System Service Descriptions
$GETQUI

SYS-358

contain the file or files, you can now use the QUI$_DISPLAY _FILE operation
repetitively to request file information.

You can enter the nested wildcard mode for the display queue operation in
two different ways: by specifying a wildcard name in the QUI$_SEARCH_
NAME item code or by specifying a nonwildcard queue name and selecting the
QUI$V _SEARCH_ WILDCARD option of the QUI$_SEARCH_FLAG item code.
The second method of entering wildcard mode is useful if you want to obtain
information about one or more jobs or files within jobs for a specific queue and
want to specify a nonwildcard queue name but still want to save the GQC after
the queue context is established.

When you make calls to $GETQUI that specify the QUI$_DISPLAY_JOB function
code, by default $GETQUI locates all the jobs in the selected queue that have the
same user name as the calling process. If you want to obtain information about
all the jobs in the selected queue, you select the QUI$V _SEARCH_ALL_JOBS
option of the QUI$_SEARCH_FLAGS item code.

After you establish a queue context, it remains in effect until you either change
the context by making another call to $GETQUI that specifies the QUI$_
DISPLAY_QUEUE function code or until one of the actions listed at the end
of the Wildcard Mode section causes the GQC to be released. An established job
context remains in effect until you change the context by making another call
to $GETQUI that specifies the QUI$_DISPLAY_JOB function code or $GETQUI
returns a JBC$_NOMOREJOB or JBC$_NOSUCHJOB condition value. While
the return of either of these two condition values releases the job context, the
wildcard search remains in effect because the GQC continues to maintain
the queue context. Similarly, return of the JBC$_NOMOREFILE or JBC$_
NOSUCHFILE condition value signals that no more files remain in the current
job context. However, these condition values do not cause the job context to be
dissolved.

To set up a nested wildcard search for file information for a particular entry, you
first perform one or more QUI$_DISPLAY _ENTRY operations in wildcard mode
to establish the desired job context. Next you call $GETQUI iteratively with the
QUI$_DISPLAY _FILE function code to obtain file information for the selected job.

When you make calls to $GETQUI that specify the QUI$_DISPLAY _ENTRY
function code, by default $GETQUI locates all jobs that have the same user name
as the calling process. If you want to obtain information about jobs owned by
another user, you specify the user name in the QUI$_SEARCH_USERNAME
item code.

You can use the QUI$_SEARCH_FREEZE_CONTEXT option of the QUI$_
SEARCH_FLAGS item code in any wildcard or nested wildcard call to prevent
advancement of context to the next object on the list. This allows you to make
successive calls for information about the same queue, job, file, characteristic, or
form.

Required Privileges
The caller must have Read access to the job or SYSPRV or OPER privilege to
obtain job and file information. If the caller does not have privilege to access
a job specified in a QUI$_DISPLAY_JOB or QUI$_DISPLAY_FILE operation,
$GETQUI returns a successful condition value. However, it sets the QUI$V _
JOB_INACCESSIBLE bit of the QUI$_JOB_STATUS item code and returns
information only for the following item codes:

QUI$_AFTER_TIME

System Service Descriptions
$GETQUI

QUI$_COMPLETED_BLOCKS
QUI$_ENTRY_NUMBER
QUI$_INTERVENING_BLOCKS
QUI$_INTERVENING_JOBS
QUI$_JOB_SIZE
QUI$_JOB_STATUS

Required Quota
AST limit quota must be sufficient.

Related Services
$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI,
$GETDVIW, $GETMSG, $GETQUIWI, $1NIT_VOL, $MOUNT, $PUTMSG, $QIO,
$QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_DEVOFFLINE

SS$_EXASTLM

SS$_ILLEFC

SS$_INSFMEM

SS$_MBFULL

SS$_MBTOOSML

SS$_UNASEFC

The service completed successfully.

The item list or input buffer cannot be read by
the caller; or the return length buffer, output
buffer, or status block cannot be written by the
caller.

The function code is invalid; the item list
contains an invalid item code; a buffer descriptor
has an invalid length; or the reserved parameter
has a nonzero value.

The job controller process is not running.

The astadr argument was specified, and the
process has exceeded its ASTLM quota.

The efn argument specifies an illegal event flag
number.

The space for completing the request is
insufficient.

The job controller mailbox is full.

The mailbox message is too large for the job
controller mailbox.

The efn argument specifies an unassociated
event flag cluster.

Condition Values Returned in the 1/0 Status Block

JBC$_NORMAL

JBC$_INVFUNCOD

JBC$_1NVITMCOD

JBC$_INVPARLEN

JBC$_INVQUENAM

The service completed successfully.

The specified function code is invalid.

The item list contains an invalid item code.

The length of a specified string is outside the
valid range for that item code.

The queue name is not syntactically valid.

SYS-359

System Service Descriptions
$GETQUI

Examples

JBC$_JOBQUEDIS

JBC$_MISREQPAR

JBC$_NOJOBCTX

JBC$_NOMORECHAR

JBC$_NOMOREENT

JBC$_NOMOREFILE

JBC$_NOMOREFORM

JBC$_NOMOREJOB

JBC$_NOMOREQUE

JBC$_NOQUECTX

JBC$_NOSUCHCHAR

JBC$_NOSUCHENT

JBC$_NOSUCHFILE

JBC$_NOSUCHFORM

JBC$_NOSUCHJOB

JBC$_NOSUCHQUE

The request cannot be executed because the
system job queue manager has not been started.

An item code that is required for the specified
function code has not been specified.

No job context has been established for a QUI$_
DISPLAY _FILE operation.

No more characteristics are defined, which
indicates the termination of a QUI$_DISPLAY_
CHARACTERISTIC wildcard operation.

There are no more job entries for the specified
user or current user name, which indicates
termination of a QUI$_DISPLAY_ENTRY
wildcard operation.

No more files are associated with the current
job context, which indicates the termination of a
QUI$_DISPLAY_FILE wildcard operation for the
current job context.

No more forms are defined, which indicates
the termination of a QUI$_DISPLAY_FORM
wildcard operation.

No more jobs are associated with the current
queue context, which indicates the termination
of a QUI$_DISPLAY_JOB wildcard operation for
the current queue context.

No more queues are defined, which indicates
the termination of a QUI$_DISPLAY_QUEUE
wildcard operation.

No queue context has been established for a
QUI$_DISPLAY_JOB or QUI$_DISPLAY_FILE
operation.

The specified characteristic does not exist.

There is no job with the specified entry number,
or there is no job for the specified user or current
username.

The specified file does not exist.

The specified form does not exist.

The specified job does not exist.

The specified queue does not exist.

1. ! Declare system service related symbols
INTEGER*4 SYS$GETQUIW,
2 LIB$MATCH_COND,
2 STATUS
INCLUDE I ($QUIDEF) I

SYS-360

System Service Descriptions
$GETQUI

! Define item list structure
STRUCTURE /ITMLST/

UNION
MAP

INTEGER*2 BUFLEN, ITMCOD
INTEGER*4 BUFADR, RETADR

END MAP
MAP

INTEGER*4 END_LIST
END MAP

END UNION
END STRUCTURE

! Define I/0 status block structure
STRUCTURE /IOSBLK/
INTEGER*4 STS, ZEROED
END STRUCTURE
! Declare $GETQUIW item list and I/0 status block
RECORD /ITMLST/ GETQUI_LIST(4)
RECORD /IOSBLK/ IOSB

! Declare variables used in $GETQUIW item list
CHARACTER*31 QUEUE_NAME
INTEGER*2 QUEUE_NAME_LEN
INTEGER*4 SEARCH_FLAGS,
2 ENTRY_NUMBER

! Initialize item list
GETQUI_LIST(l) .BUFLEN = 4
GETQUI_LIST(l) .ITMCOD = QUI$_SEARCH_FLAGS
GETQUI_LIST(l) .BUFADR = %LOC(SEARCH_FLAGS)
GETQUI_LIST(l) .RETADR = 0
GETQUI_LIST(2) .BUFLEN = 4
GETQUI_LIST(2) .ITMCOD = QUI$_ENTRY_NUMBER
GETQUI_LIST(2) .BUFADR = %LOC(ENTRY_NUMBER)
GETQUI_LIST(2) .RETADR = 0
GETQUI_LIST(3) .BUFLEN = 31
GETQUI_LIST(3) .ITMCOD = QUI$_QUEUE_NAME
GETQUI_LIST(3) .BUFADR = %LOC(QUEUE_NAME)
GETQUI_LIST(3) .RETADR = %LOC(QUEUE_NAME_LEN)
GETQUI_LIST(4) .END_LIST = 0

SEARCH_FLAGS = QUI$M_SEARCH_THIS_JOB

! Call
STATUS
2
2
2

$GETQUIW service to obtain job information
SYS$GETQUIW (I

%VAL(QUI$_DISPLAY_JOB) ,,
GETQUI_LIST,
IOSB, I)

IF (LIB$MATCH_COND (IOSB.STS, %LOC(JBC$_NOSUCHJOB))) THEN
! The search_this_job option can be used only by
! a batch job to obtain information about itself

.TYPE*, '<<<this job is not being run in batch mode>>>'
ENDIF
IF (STATUS) STATUS = IOSB.STS
IF (STATUS) THEN

! Display information
TYPE*, 'Job entry number , ENTRY_NUMBER
TYPE *, 'Queue name= ', QUEUE_NAME(l:QUEUE_NAME_LEN)

ELSE
! Signal error condition
CALL LIB$SIGNAL (%VAL(STATUS))

ENDIF
END

This FORTRAN program demonstrates how a batch job can obtain
information about itself from the system job queue file by using the

SYS-361

System Service Descriptions
$GETQUI

2.

SYS-362

$GETQUIW system service. Use of the QUI$M_SEARCH_THIS_JOB option
in the QUI$_SEARCH_FLAGS input item requires that the calling program
run as a batch job; otherwise, the $GETQUIW service returns a JBC$_
NOSUCHJOB error.

! Declare
INTEGER*4
2

system service related symbols
SYS$GETQUIW,
STATUS_Q,

2 STATUS_J,
2 NOACCESS
INCLUDE I ($QUIDEF) I

! Define item list structure
STRUCTURE /ITMLST/

UNION
MAP

INTEGER*2 BUFLEN, ITMCOD
INTEGER*4 BUFADR, RETADR

END MAP
MAP

INTEGER*4 END_LIST
END MAP

END UNION
END STRUCTURE

! Define I/0 status block structure
STRUCTURE /IOSBLK/
INTEGER*4 STS, ZEROED
END STRUCTURE

! Declare $GETQUIW item lists and I/0 status block
RECORD /ITMLST/ QUEUE_LIST(4)
RECORD /ITMLST/ JOB_LIST(6)
RECORD /IOSBLK/ IOSB

! Declare variables used in $GETQUIW item lists
CHARACTER*31
CHARACTER*31
CHARACTER*39
CHARACTER*12
INTEGER*2
2
2
2
INTEGER*4
2
2

SEARCH_NAME
QUEUE_ NAME
JOB_NAME
USERNAME
SEARCH_NAME_LEN,
QUEUE_NAME_LEN,
JOB_NAME_LEN,
USERNAME_LEN
SEARCH_FLAGS,
JOB_SIZE,
JOB_STATUS

Solicit queue name to search; it may be a wildcard name
TYPE 9000
ACCEPT 9010, SEARCH_NAME_LEN, SEARCH_NAME

! Initialize item list for the display queue operation
QUEUE_LIST(l) .BUFLEN = SEARCH_NAME_LEN
QUEUE_LIST(l) .ITMCOD = QUI$_SEARCH_NAME
QUEUE_LIST(l) .BUFADR = %LOC(SEARCH_NAME)
QUEUE_LIST(l) .RETADR = 0
QUEUE_LIST(2) .BUFLEN = 4
QUEUE_LIST(2) .ITMCOD = QUI$_SEARCH_FLAGS
QUEUE_LIST(2) .BUFADR = %LOC(SEARCH_FLAGS)
QUEUE_LIST(2) .RETADR = 0
QUEUE_LIST(3) .BUFLEN = 31
QUEUE_LIST(3) .ITMCOD = QUI$_QUEUE_NAME
QUEUE_LIST(3) .BUFADR = %LOC(QUEUE_NAME)
QUEUE_LIST(3) .RETADR = %LOC(QUEUE_NAME_LEN)
QUEUE_LIST(4) .END_LIST = 0

System Service Descriptions
$GETQUI

! Initialize item list
JOB_LIST(l) .BUFLEN =
JOB_LIST(l) .ITMCOD =
JOB_LIST(l) .BUFADR =
JOB_LIST(l) .RETADR =
JOB_LIST(2) .BUFLEN =
JOB_LIST(2) .ITMCOD =
JOB_LIST(2) .BUFADR =
JOB_LIST(2) .RETADR =
JOB_LIST(3) .BUFLEN =
JOB_LIST(3) .ITMCOD =
JOB_LIST(3) .BUFADR =
JOB_LIST(3) .RETADR =
JOB_LIST(4) .BUFLEN =
JOB_LIST(4) .ITMCOD =
JOB_LIST(4) .BUFADR =
JOB_LIST(4) .RETADR =
JOB_LIST(5) .BUFLEN =
JOB_LIST(5) .ITMCOD =
JOB_LIST(5) .BUFADR =
JOB_LIST(5) .RETADR =
JOB_LIST(6) .END_LIST

for the display job operation
4
QUI$_SEARCH_FLAGS
%LOC(SEARCH_FLAGS)
0
4
QUI$_JOB_SIZE
%LOC(JOB_SIZE)
0
39
QUI$_JOB_NAME
%LOC(JOB_NAME)
%LOC(JOB_NAME_LEN)
12
QUI$_USERNAME
%LOC(USERNAME)
%LOC(USERNAME_LEN)
4
QUI$_JOB_STATUS
%LOC(JOB_STATUS)
0
0

Request search of all jobs present in output queues; also force
wildcard mode to maintain the internal search context block after
the first call when a non-wild queue name is entered--this preserves
queue context for the subsequent display job operation

SEARCH_FLAGS (QUI$M_SEARCH_WILDCARD .OR.
2 QUI$M_SEARCH_SYMBIONT .OR.
2 QUI$M_SEARCH_ALL_JOBS)

Dissolve any internal search context block for the process
STATUS_Q = SYS$GETQUIW (,%VAL(QUI$_CANCEL_OPERATION),,,, ,)

! Locate next output queue; loop until an error status is returned
DO WHILE (STATUS_Q)

STATUS_Q = SYS$GETQUIW (,
2 %VAL (QUI$_DISPLAY_QUEUE),,
2 QUEUE_LIST,
2 IOSB,,)

IF (STATUS_Q) STATUS_Q = IOSB.STS
IF (STATUS_Q) TYPE 9020, QUEUE_NAME(l:QUEUE_NAME_LEN)
STATUS_J = 1

! Get information on next job in queue; loop until error return
DO WHILE (STATUS_Q .AND. STATUS_J)

STATUS_J SYS$GETQUIW (,
2 %VAL(QUI$_DISPLAY_JOB),,
2 JOB_LIST,
2 IOSB,,)

IF (STATUS_J) STATUS_J = IOSB.STS
IF ((STATUS_J) .AND. (JOB_SIZE .GE. 500)) THEN

NOACCESS = (JOB_STATUS .AND. QUI$M_JOB_INACCESSIBLE)
IF (NOACCESS .NE. 0) THEN

TYPE 9030, JOB_SIZE
ELSE

TYPE 9040, JOB_SIZE,
2 USERNAME (1: USERNAME_LEN) ,
2 JOB_NAME(l:JOB_NAME_LEN)

END DO
END DO

ENDIF
ENDIF

SYS-363

System Service Descriptions
$GETQUI

SYS-364

9000
9010
9020
9030
9040

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
2
2
END

(' Enter queue name to search: ', $)
(Q, A31)
('OQueue name
(' Job size= '
(' Job size= '

Username
Job name = '

A)
IS, I

IS,
A, T46,
A)

<no read access privilege>')

This FORTRAN program demonstrates how any job can obtain information
about other jobs from the system job queue file by using the $GETQUIW
system service. This program lists all print jobs in output queues with a job
size of 500 blocks or more. It also displays queue name, job size, user name,
and job name information for each job listed.

System Service Descriptions
$GETQUIW

$GETQUIW-Get Queue Information and Wait for Completion

Format

Returns information about queues and jobs initiated from those queues. The
$SNDJBC service is the major interface to the VMS Job Controller, which is the
VMS queue and accounting manager. For a discussion of the different types of job
and queue, see the Description section of $SNDJBC.

The $GETQUIW service completes synchronously; that is, it returns to the
caller with the requested information. For asynchronous completion, you use
the Get Queue Information ($GETQUI) service; $GETQUI returns to the caller
after queuing the information request, without waiting for the information to be
returned.

In all other respects, $GETQUIW is identical to $GETQUI. For all other
information about $GETQUIW, refer to the description of $GETQUI in this
manual.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service and to the Introduction to VMS System Services.

SYS$GETQUIW [efn] ,func [,nullarg] [,itmlst] [,iosb] [,astadr] [,astprm]

SYS-365

System Service Descriptions
$GETS VI

$GETSYl-Get Systemwide Information

Format

Returns

Arguments

SYS-366

Returns information about the local VAX system or about other VAX systems
in a cluster. The $GETSYI service completes asynchronously; for synchronous
completion, use the Get Systemwide Information and Wait ($GETSYIW) service.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service and to the Introduction to VMS System Services.

SYS$GETSYI [efn] ,[csidadr] ,[nodename] ,itmlst [,iosb] [,astadr] [,astprm]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

ef n
VMS Usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag to be set when the $GETSYI request completes. The
efn argument is a longword containing this number; however, $GETSYI uses only
the low-order byte.

Upon request initiation, $GETSYI clears the specified event flag (or event flag 0
if efn was not specified). Then, when the request completes, the specified event
flag (or event flag 0) is set.

csidadr
VMS Usage: process_id
type: longword (unsigned)
access: modify
mechanism: by reference

Cluster system identification of the node about which $GETSYI is to return
information. The csidadr argument is the address of a longword containing this
identification value.

The cluster-connection software assigns the cluster system identification of
a node. You can obtain this information by using the DCL command SHOW
CLUSTER. The value of the cluster system identification for a node is not
permanent; a new value is assigned to a node whenever it joins or rejoins the
VAXcluster.

System Service Descriptions
$GETS YI

You can also specify a node to $GETSYI by using the nodename argument. If
you specify csidadr, you need not specify nodename, and vice versa. If you
specify both, they must identify the same node. If you specify neither argument,
$GETSYI returns information about the local node. However, for wildcard
operations, you must use the csidadr argument.

If you specify csidadr as -1, $GETSYI assumes a wildcard operation and returns
the requested information for each node in the cluster, one node per call. In this
case, the program should test for the condition value SS$_NOMORENODE
after each call to $GETSYI and should stop calling $GETSYI when SS$_
NOMORENODE is returned.

nodename
VMS Usage:
type:
access:
mechanism:

process_name
character-coded text string
read only
by descriptor-fixed length string descriptor

Name of the node about which $GETSYI is to return information. The
nodename argument is the address of a character string descriptor pointing
to this name string.

The node name string must contain from 1 to 15 characters and must correspond
exactly to the node name; no trailing blanks or abbreviations are permitted.

You can also specify a node to $GETSYI by using the csidadr argument. See the
description of csidadr.

itmlst
VMS Usage:
type:
access:
mechanism:

item_list_3
longword (unsigned)
read only
by reference

Item list specifying which information is to be returned about the node or nodes.
The itmlst argument is the address of a list of item descriptors, each of which
describes an item of information. The list of item descriptors is terminated by a
longword of 0. The following diagram depicts a single item descriptor.

31

Item Descriptor Fields

buffer length

Item Code

15

I
Buffer Address

Return Length Address

0

Buffer Length

ZK-1705-GE

A word containing a user-supplied integer specifying the length (in bytes) of
the buffer in which $GETSYI is to write the information. The length of the
buffer needed depends upon the item code specified in the item code field of the
item descriptor. If the value of the buffer length field is too small, $GETSYI
truncates the data.

SYS-367

System Service Descriptions
$GETSYI

SYS-368

item code
A word containing a user-supplied symbolic code specifying the item of
information that $GETSYI is to return. The $SYIDEF macro defines these
codes. A description of each item code is given in the Item Codes section.

buffer address
A longword containing the user-supplied address of the buffer in which $GETSYI
is to write the information.

return length address
A longword containing the user-supplied address of a word in which $GETSYI
writes the length in bytes of the information it actually returned.

See the Item Codes section for a description of the various $GETSYI item codes.

iosb
VMS Usage:
type:
access:
mechanism:

io_status_block
quadword (unsigned)
write only
by reference

I/O status block to receive the final completion status. The iosb argument is the
address of the quadword I/O status block.

When you specify the iosb argument, $GETSYI sets the quadword to 0 upon
request initiation. Upon request completion, a condition value is returned to the
first longword; the second longword is reserved for future use.

Th01;1gh this argument is optional, Digital strongly recommends that you specify
it, for the following reasons:

• If you are using an event flag to signal the completion of the service, you can
test the I/O status block for a condition value to be sure that the event flag
was not set by an event other than service completion.

• If you are using the $SYNCH service to synchronize completion of the service,
the I/O status block is a required argument for $SYNCH.

• The condition value returned in RO and the condition value returned in the
I/O status block provide information about different aspects of the call to the
$GETSYI service. The condition value returned in RO gives you information
about the success or failure of the service call itself; the condition value
returned in the I/O status block gives you information about the success or
failure of the service operation. Therefore, to accurately assess the success or
failure of the call to $GETSYI, you must check the condition values returned
in both RO and the I/O status block.

astadr
VMS Usage:
type:
access:
mechanism:

ast_procedure
procedure entry mask
call without stack unwinding
by reference

AST service routine to be executed when $GETSYI completes. The astadr
argument is the address of the entry mask of this routine.

If you specify astadr, the AST routine executes at the same access mode as the
caller of the $GETSYI service.

Item Codes

astprm
VMS Usage:
type:
access:
mechanism:

user_arg
longword (unsigned)
read only·
by value

System Service Descriptions
$GETS YI

AST parameter to be passed to the AST service routine specified by the astadr
argument. The astprm argument is the longword parameter.

SYl$_ACTIVECPU_ CNT
When you specify SYI$_ACTIVECPU_CNT, $GETSYI returns a count of the
CPUs actively participating in the current boot of the symmetric multiprocessing
(SMP) system. The $GETSYI service returns this information for the local node
only.

Because this number is a longword, the buffer length field in the item descriptor
should specify 4 bytes.

SYl$_AVAILCPU_CNT
When you specify SYI$_AVAILCPU_CNT, $GETSYI returns the number of CPUs
available in the current boot of the SMP system. The $GETSYI service returns
this information for the local node only.

Because this number is a longword, the buffer length field in the item descriptor
should specify 4 bytes.

SYl$_BOOTTIME
When you specify SYI$_BOOTTIME, $GETSYI returns the time when the node
was booted. The $GETSYI service returns this information only for the local
node.

Because the returned time is in the standard 64-bit absolute time format, the
buffer length field in the item descriptor should specify 8 bytes.

SYl$_CHARACTER_EMULATED
When you specify SYI$_CHARACTER_EMULATED, $GETSYI returns the
number 1 if the character string instructions are emulated on the CPU and the
value 0 if they are not. The $GETSYI service returns this information only for
the local node.

Because this number is a Boolean value (1 or 0), the buffer length field in the
item descriptor should specify 1 byte.

SYl$_ CLUSTER_EVOTES
When you specify SYI$_ CLUSTER_EVOTES, $GETSYI returns the number of
votes expected to be found in the VAXcluster. The VAXcluster determines this
value by selecting the highest number from all of the following: each node's
SYSGEN parameter EXPECTED_ VOTES, the sum of the votes currently in the
VAXcluster, and the previous value for the number of expected votes.

Because this number is a word in length, the buffer length field in the item
descriptor should specify 2 bytes.

SYl$_ CLUSTER_FSYSID
When you specify SYI$_CLUSTER_FSYSID, $GETSYI returns the system
identification of the founding node, which is the first node in the cluster to boot.

SYS-369

System Service Descriptions
$GETS YI

SYS-370

The cluster management software assigns this system identification to the node.
You can obtain this information by using the DCL command SHOW CLUSTER.
Because the system identification is a 6-byte hexadecimal number, the buffer
length field in the item descriptor should specify 6 bytes.

SYl$_ CLUSTER_FTIM E
When you specify SYI$_CLUSTER_FTIME, $GETSYI returns the time when the
founding node is booted. The founding node is the first node in the cluster to
boot.

Because the returned time is in the standard 64-bit absolute time format, the
buffer length field in the item descriptor should specify 8 bytes.

SYl$_CLUSTER_MEMBER
When you specify SYI$_CLUSTER_MEMBER, $GETSYI returns the membership
status of the node in the cluster. The membership status specifies whether the
node is currently a member of the cluster.

Because the membership status of a node is described in a 1-byte bit field, the
buffer length field in the item descriptor should specify 1 byte. If bit 0 in the
bit field is set, the node is a member of the cluster; if it is clear, then it is not a
member of the cluster.

SYl$_ CLUSTER_NODES
When you specify SYI$_CLUSTER_NODES, $GETSYI returns the number (in
decimal) of nodes currently in the cluster.

Because this number is a word in length, the buffer length field in the item
descriptor should specify 2 bytes.

SYl$_CLUSTER_QUORUM
When you specify SYI$_CLUSTER_QUORUM, $GETSYI returns the number (in
decimal) that is the total of the quorum values held by all nodes in the cluster.
Each node's quorum value is derived from its SYSGEN parameter EXPECTED_
VOTES.

Because this number is a word in length, the buffer length field in the item
descriptor should specify 2 bytes.

SYl$_CLUSTER_ VOTES
When you specify SYI$_CLUSTER_VOTES, $GETSYI returns the total number
of votes held by all nodes in the cluster. The number of votes held by any one
node is determined by that node's SYSGEN parameter VOTES.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 bytes.

SYl$_CONTIG_GBLPAGES
When you specify SYI$_CONTIG_GBLPAGES, $GETSYI returns the maximum
number of free, contiguous global pages. This number is the largest size global
section that can be created.

Because this number is a longword, the buffer length in the item descriptor
should specify 4 bytes.

SYl$_CPU
When you specify SYI$_CPU, $GETSYI returns the CPU processor type of the
node. The $GETSYI service returns this information only for the local node.

System Service Descriptions
$GETS VI

Because the processor type is a longword decimal number, the buffer length
field in the item descriptor should specify 4 bytes.

The $PRDEF macro defines the following symbols for the processor types.

Processor

VAX-111730

VAX-111750

VAX-11/780, 785

VAXstation II, II/GPX, and MicroVAX II

VAXstation 2000/MicroVAX 2000

VAX 8200, 8250, 8300, 8350

VAX 8530, 8550, 8810 (8700), and 8820-N
(8800)

VAX 8600, 8650

VAX 8820, 8830, 8840

VAXft 3000 Model 310

VAXstation, MicroVAX 3100 series

MicroVAX 3300, 3400, 3500, 3600, 3800,
3900

VAXstation 3520, 3540

VAX 4000-300

VAX 6000-200, 6000-300 series

VAX 6000-400 series

VAX 9000-200, 9000-400 series

Symbol

PR$_SID _ TYP730

PR$_SID_TYP750

PR$_SID_TYP780

PR$_SID_TYPUV2

PR$_SID_TYP410

PR$_SID _ TYP8SS

PR$_SID_TYP8NN

PR$_SID_TYP790

PR$_SID_TYP8PS

PR$_SID_TYP520

PR$_SID_TYP420

PR$_SID _ TYP650

PR$_SID_TYP60

PR$_SID_TYP670

PR$_SID_TYP9CC

PR$_SID_TYP9RR

PR$_SID_TYP9AQ

For information about extended processor type codes, see the description for the
SYI$_XCPU item code.

SYl$_DECIMAL_EMULATED
When you specify SYI$_DECIMAL_EMULATED, $GETSYI returns the number
1 if the decimal string instructions are emulated on the CPU and the value 0 if
they are not. The $GETSYI service returns this information only for the local
node.

Because this number is a Boolean value (1 or 0), the buffer length field in the
item descriptor should specify 1 byte.

SYl$_D_FLOAT _EMULATED
When you specify SYI$_D_FLOAT_EMULATED, $GETSYI returns the number 1
if the D _fioating instructions are emulated on the CPU and 0 if they are not. The
$GETSYI service returns this information only for the local node.

Because this number is a Boolean value (1 or 0), the buffer length field in the
item descriptor should specify 1 byte.

SYl$_ERRORLOGBUFFERS
When you specify SYI$_ERRORLOGBUFFERS, $GETSYI returns the number of
system pages in use as buffers for the Error Logger.

Because this number is a word in length, the buffer length field in the item
descriptor should specify 2 bytes.

SYS-371

System Service Descriptions
$GETS YI

SYS-372

SYl$_F _FLOAT _EMULATED
When you specify SYI$_F _FLOAT_EMULATED, $GETSYI returns the number 1
if the F _floating instructions are emulated on the CPU and 0 if they are not. The
$GETSYI service returns this information only for the local VAX node.

Because this number is a Boolean value (1 or 0), the buffer length field in the
item descriptor should specify 1 byte.

SYl$_FREE_GBLPAGES
When you specify SYI$_FREE_GBLPAGES, $GETSYI returns the current
number of free global pages. The SYSGEN parameter GBLPAGES sets the
number of global pages that can exist systemwide.

Because the current number is a longword, the buffer length in the item
descriptor should specify 4 bytes.

SYl$_FREE_ GBLSECTS
When you specify SYI$_FREE_GBLSECTS, $GETSYI returns the current number
of free global section table entries. The SYSGEN parameter GBLSECTIONS sets
the maximum number of global sections that can exist systemwide.

Because the current number is a longword, the buffer length in the item
descriptor should specify 4 bytes.

SYl$_ G_FLOAT _EMULATED
When you specify SYI$_G_FLOAT_EMULATED, $GETSYI returns the number
1 if the G_floating instructions are emulated on the CPU and the value 0 if they
are not. The $GETSYI service returns this information only for the local VAX
node.

Because this number is a Boolean value (1 or 0), the buffer length field in the
item descriptor should specify 1 byte.

SYl$_H_FLOAT _EMULATED
When you specify SYI$_H_FLOAT_EMULATED, $GETSYI returns the number
1 if the H_floating instructions are emulated on the CPU and the value 0 if they
are not. The $GETSYI service returns this information only for the local VAX
node.

Because this number is a Boolean value (1 or 0), the buffer length field in the
item descriptor should specify 1 byte.

SYl$_HW_MODEL
When you specify SYI$_HW_MODEL, $GETSYI returns a small integer that
can be used to identify the VAX model type of the node. The $VAXDEF macro
in SYS$LIBRARY:STARLET defines the model type integers. See the table
under SYI$_HW_NAME item code for the VAX model processor names and the
corresponding model types.

Because the HW _MODEL is a word, the buffer length field in the item descriptor
should specify 2 bytes.

SYl$_HW_NAME
When you specify SYI$_HW_NAME, $GETSYI returns the VAX model name
string of the node. The VAX model name is a character string that describes the
model of the VAX node (such as VAX 8800, MicroVAX II). The VAX model name
usually corresponds to the nameplate that appears on the outside of the CPU
cabinet.

System Service Descriptions
$GETS YI

Because the HW _NAME can include up to 31 characters, the buffer length field
in the item descriptor should specify 31 bytes.

The following table lists the VAX model processor names and the corresponding
model types.

VAX Model Processor Name

VAX-11/730

VAX-111750

VAX-11/780

VAX-11/785

MicroVAX II

VAXstation II

VAXstation II/GPX

VAXstation 2000

Micro VAX 2000

VAXstation 2000/GPX

VAX 8200

VAX 8250

VAX 8300

VAX 8350

VAX 8530

VAX 8550

VAX 8600

VAX 8650

VAX 8810 (8700)

VAX 8820-N (8800)

VAX 8820, 8830, or 8840 with one CPU
enabled

VAX 8820

VAX 8830

VAX 8840

V AXft 3000 Model 310

VAXstation 3520

VAXstation 3540

VAX 4000-300 timeshare

VAX 4000-300 server

VAX 6000-210 timeshare

VAX 6000-220 timeshare

VAX 6000-230 timeshare

VAX 6000-240 timeshare

VAX 6000-250 timeshare

VAX 6000-260 timeshare

VAX Model Type

VAX$K_V730

VAX$K_V750

VAX$K_V780

VAX$K_V785

VAX$K_VUV2

VAX$K_VWS2

VAX$K_VWSD

VAX$K_ VWS2000

VAX$K_ VUV2000

VAX$K_ VWSD2000

VAX$K_ V8200

VAX$K_ V8250

VAX$K_ V8300

VAX$K_ V8350

VAX$K_ V8500

VAX$K_ V8550

VAX$K_ V8600

VAX$K_ V8650

VAX$K_ V8700

VAX$K_ V8800

VAX$K_ V8810

VAX$K_ V8820

VAX$K_ V8830

VAX$K_ V8840

VAX$K_ V520FT

VAX$K_ V3520L

VAX$K_ V3540L

VAX$K_V670

VAX$K_ V670_S

VAX$K_ V6210_T

VAX$K_ V6220_T

VAX$K_ V6230_T

VAX$K_V6240_T

VAX$K_V6250_T

VAX$K_ V6260_T

SYS-373

System Service Descriptions
$GETS VI

SYS-374

VAX Model Processor Name

VAX 6000-210 server

VAX 6000-220 server

VAX 6000-310 timeshare

VAX 6000-320 timeshare

VAX 6000-330 timeshare

VAX 6000-340 timeshare

VAX 6000-350 timeshare

VAX 6000-360 timeshare

VAX 6000-310 server

VAX 6000-320 server

VAX 6000-410 timeshare

VAX 6000-420 timeshare

VAX 6000-430 timeshare

VAX 6000-440 timeshare

VAX 6000-450 timeshare

VAX 6000-460 timeshare

VAX 6000-410 server

VAX 6000-420 server

VAX 9000-210

VAX 9000-410

VAX 9000-420

VAX 9000-430

VAX 9000-440

SYl$_NODE_AREA

VAX Model Type

VAX$K_ V6210_S

VAX$K_V6220_S

VAX$K_ V6310_T

VAX$K_ V6320_T

VAX$K_V6330_T

VAX$K_V6340_T

VAX$K_ V6350_T

VAX$K_ V6360_T

VAX$K_ V6310_S

VAX$K_ V6320_S

VAX$K_V9RR10_T

VAX$K_V9RR20_T

VAX$K_V9RR30_T

VAX$K_ V9RR40_T

VAX$K_V9RR50_T

VAX$K_V9RR60_T

VAX$K_ V9RR10_S

VAX$K_ V9RR20_S

VAX$K_ V9AR10

VAX$K_ V9AQ10

VAX$K_ V9AQ20

VAX$K_ V9AQ30

VAX$K_ V9AQ40

When you specify SYI$_NODE_AREA, $GETSYI returns the DECNET area of
the node.

Because the DECNET area is a longword decimal number, the buffer length
field in the item descriptor should specify 4 bytes.

SYl$_NODE_CSID
When you specify SYI$_NODE_CSID, $GETSYI returns the cluster system ID
(CSID) of the VAX node. The CSID is a longword hexadecimal number assigned
to the node by the cluster management software.

Because the CSID is a longword, the buffer length field in the item descriptor
should specify 4 bytes.

SYl$_NODE_EVOTES
When you specify SYI$_NODE_EVOTES, $GETSYI returns the number of votes
the node expects to find in the VAX.cluster. This number is determined by the
SYSGEN parameter EXPECTED_ VOTES.

Because the number is a word in length, the buffer length field in the item
descriptor should specify 2 bytes.

SVl$_NODE_HWVERS

System Service Descriptions
$GETS YI

When you specify SYI$_NODE_HWVERS, $GETSYI returns the hardware
version of the node. The high word of the buffer length contains the VAX CPU
type. The $VAXDEF macro defines the VAX CPU type.

Because the hardware version is a 12-byte hexadecimal number, the buffer
length field in the item descriptor should specify 12 bytes.

SVl$_NODE_NUMBER
When you specify SYI$_NODE_NUMBER, $GETSYI returns the DECNET
number of the node.

Because the DECNET number is a longword decimal number, the buffer length
field in the item descriptor should specify 4 bytes.

SVl$_NODE_QUORUM
When you specify SYI$_NODE_ QUORUM, $GETSYI returns the value (in
decimal) of the quorum held by the node. This number is derived from the node's
SYSGEN parameter EXPECTED_ VOTES.

Because this number is a word in length, the buffer length field in the item
descriptor should specify 2 bytes.

SVl$_NODE_SWINCARN
When you specify SYI$_NODE_SWINCARN, $GETSYI returns the software
incarnation of the node.

Because the software incarnation of the node is an 8-byte hexadecimal number,
the buffer length field in the item descriptor should specify 8 bytes.

SVl$_NODE_SWTVPE
When you specify SYI$_NODE_SWTYPE, $GETSYI returns the software type of
the node. The software type indicates whether the node is a VMS system or an
HSC storage controller.

Because the software type is a 4-byte ASCII string, the buffer length field in the
item descriptor should specify 4 bytes.

SVl$_NODE_SWVERS
When you specify SYI$_NODE_SWVERS, $GETSYI returns the software version
of the node.

Because the software version is a 4-byte ASCII string, the buffer length field in
the item descriptor should specify 4 bytes.

SVl$_NODE_SVSTEMID
When you specify SYI$_NODE_SYSTEMID, $GETSYI returns the system
identification of the node.

The cluster management software assigns this system identification to the node.
You can obtain this information by using the DCL command SHOW CLUSTER.
Because the system identification is a 6-byte hexadecimal number, the buffer
length field in the item descriptor should specify 6 bytes.

SVl$_NODE_ VOTES
When you specify SYI$_NODE_ VOTES, $GETSYI returns the number (in
decimal) of votes held by the node. This number is determined by the node's
SYSGEN parameter VOTES.

SYS-375

System Service Descriptions
$GETS YI

SYS-376

Because this number is a word in length, the buffer length field in the item
descriptor should specify 2 bytes.

SYl$_NODENAME
When you specify SYI$_NODENAME, $GETSYI returns, as a character string,
the name of the node in the returned length area specified in the item list.

Because this name can include up to 15 characters, the buffer length field in the
item descriptor should specify 15 bytes.

SYl$_PAGEFILE_FREE
When you specify SYI$_PAGEFILE_FREE, $GETSYI returns the number of free
pages in the currently installed paging files. The $GETSYI service returns this
information only for the local VAX node.

Because this number is a longword, the buffer length field in the item descriptor
should specify 4 bytes.

SYl$_PAGEFILE_PAGE
When you specify SYI$_PAGEFILE_PAGE, $GETSYI returns the number of
pages in the currently installed paging files. The $GETSYI service returns this
information only for the local VAX node.

Because this number is a longword, the buffer length field in the item descriptor
should specify 4 bytes.

SYl$_SCS_EXISTS
When you specify SYI$_SCS_EXISTS, $GETSYI returns a longword value that is
interpreted as Boolean. If the value is 1, the System Communication Subsystem
(SCS) is currently loaded on the VAX node; if the value is 0, the SCS is not
currently loaded.

SYl$_SID
When you specify SYI$_SID, $GETSYI returns the contents of the system
identification register of the VAX node. The $GETSYI service returns this
information only for the local VAX node.

Because the value of this register is a longword hexadecimal number, the buffer
length field in the item descriptor should specify 4 bytes.

For more information about the meaning of the contents of the system
identification register, see the VAX Hardware Handbook.

SYl$_SWAPFILE_FREE
When you specify SYI$_SWAPFILE_FREE, $GETSYI returns the number of free
pages in the currently installed swapping files. The $GETSYI service returns this
information only for the local VAX node.

,..Because this number is a longword, the buffer length field in the item descriptor
should specify 4 bytes.

SYl$_SWAPFILE_PAGE
When you specify SYI$_SWAPFILE_PAGE, $GETSYI returns the number of
pages in the currently installed swapping files. The $GETSYI service returns this
information only for the local VAX node.

Because this number is a longword, the buffer length field in the item descriptor
should specify 4 bytes.

SYl$_SYSTEM_RIGHTS

System Service Descriptions
$GETS VI

When you specify SYI$_SYSTEM_RIGHTS, $GETSYI returns the system rights
list as an array of quadword identifiers. Each entry consists of a longword
identifier value and the following longword identifier attributes.

Symbolic Name

KGB$M_RESOURCE

KGB$M_DYNAMIC

Description

Resources can be charged to the identifier.

Identifier can be enabled or disabled.

Allocate a buffer that is sufficient to hold the system rights list because $GETSYI
returns only as much of the list as will fit in the buffer.

SYl$_ VERSION
When you specify SYI$_ VERSION, $GETSYI returns, as a character string, the
software version number of the VMS operating system running on the VAX node.
The $GETSYI service returns this information only for the local VAX node.

Because the version number is 8-byte blank-filled, the buffer length field in the
item descriptor should specify 8 bytes.

SYl$_ VECTOR_EMULATOR
When you specify SYI$_ VECTOR_EMULATOR, $GETSYI returns a byte, the low
order bit of which, when set, indicates the presence of the VAX vector instruction
emulator facility (VVIEF) in the system.

SYl$_VP _MASK
When you specify SYI$_ VP _MASK, $GETSYI returns a longword mask, the
bits of which, when set, indicate which processors in the system have vector
coprocessors.

SYl$_VP _NUMBER
When you specify SYI$_ VP _NUMBER, $GETSYI returns an unsigned longword
containing the number of vector processors in the system.

SYl$_XCPU
When you specify SYI$_XCPU, $GETSYI returns the extended CPU processor
type of the node. The $GETSYI service returns this information only for the local
VAX node.

You should obtain the general processor type value first by using the SYI$_
CPU item code. For some of the general processor types, extended processor
type information is provided by the item code, SYI$_XCPU. For other general
processor types, the value returned by the SYI$_XCPU item code is currently
undefined.

Because the processor type is a longword decimal number, the buffer length
field in the item descriptor should specify 4 bytes.

The $PRDEF macro defines the following symbols for the extended processor
types.

SYS-377

System Service Descriptions
$GETS YI

Description

SYS-378

VAX
Processor
Type Symbol

PR$_SID_TYPUV

PR$_SID_TYPCV

PR$_SID_TYP8NN

PR$_SID_TYPRV

SYl$_XSID

Extended
Processor
Type

MicroVAX II
VAXstation II

Micro VAX 2000
VAXstation 2000

MicroVAX 3300, 3400,
3500, 3600, 3800, 3900
series

VAX 6000-200, 6000-
300 series

VAXstation 3520, 3540

VAXstation 3100 series

VAXft 3000 Model 310

VAX 8530

VAX 8550

VAX 8810 (8700)

VAX 8820-N (8800)

VAX 4000-300

VAX 6000-400 series

Extended
Processor
Symbol

PR$_XSID_UV_UV2

PR$_XSID_UV _410

PR$_XSID_CV _650

PR$_XSID_CV _9CC

PR$_XSID _CV _60

PR$_XSID _CV_ 420

PR$_XSID _CV _520

PRS$_XSID _N8500

PRS$_XSID _N8550

PRS$_XSID_N8700

PRS$_XSID_N8800

PR$_XSID_RV _670

PR$_XSID_RV _9RR

When you specify SYI$_XSID, $GETSYI returns processor-specific information.
For the MicroVAX II system, this information is the contents of the system type
register of the VAX node. The system type register contains the full extended
information used in determining the extended system type codes. For other
processors, the data returned by SYI$_XSID is currently undefined.

Because the value of this register is a longword hexadecimal number, the buffer
length field in the item descriptor should specify 4 bytes.

SYl$_xxxx
When you specify SYI$_xxxx, $GETSYI returns the current value of the SYSGEN
parameter named xxxx for the VAX node. The $GETSYI service returns this
information only for the local VAX node.

The buffer must specify a longword into which $GETSYI writes the value of the
specified SYSGEN parameter. For a list and description of all system parameters,
refer to the VMS System Generation Utility Manual.

The Get Systemwide Information service returns information about the local VAX
system or about other VAX systems in a cluster.

Required Privileges
None

Required Quota
This service uses the process's AST limit quota (ASTLM).

Related Services

System Service Descriptions
$GETS VI

$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI,
$GETDVIW, $GETMSG, $GETQUI, $GETQUIW, $INIT_ VOL, $MOUNT,
$PUTMSG, $QIO, $QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM
SS$_EXASTLM

SS$_NOMORENODE

SS$_NOSUCHNODE

The service completed successfully.

The caller cannot read the item list, cannot write
to the buff er specified by the buffer address
field in an item descriptor, or cannot write to
the return length address field in an item
descriptor.

The item list contains an invalid item code.
The process has exceeded its AST limit quota.

You requested a wildcard operation, and
$GETSYI has returned information about all
available VAX nodes.

The specified VAX node does not exist or is not
currently a member of the VAXcluster.

Condition Values Returned in the 1/0 Status Block

Example
Same as those returned in RO.

! Declare system service related symbols
INTEGER*4 SYS$GETSYIW,
2 STATUS
! External declaration is an alternative to including $SYIDEF
EXTERNAL SYI$_VERSION,
2 SYI$_NODENAME

! Define item list structure
STRUCTURE /ITMLST/

UNION
MAP

INTEGER*2 BUFLEN
INTEGER*2 ITMCOD
INTEGER*4 BUFADR
INTEGER*4 RETADR

END MAP
MAP

INTEGER*4 END_LIST
END MAP

END UNION
END STRUCTURE

! Define I/0 status block structure
STRUCTURE /IOSBLK/
INTEGER*4 STS, RESERVED
END STRUCTURE

! Declare $GETSYIW item list and I/0 status block
RECORD /ITMLST/ GETSYI_LIST(3)
RECORD /IOSBLK/ IOSB

SVS-379

System Service Descriptions
$GETS VI

SYS-380

! Declare variables used in $GETSYIW item list
CHARACTER*8 VERSION
CHARACTER*15 NODENAME
INTEGER*2 VERSION_LEN,
2 NODENAME_LEN

! Initialize item list
GETSYI_LIST(l) .BUFLEN = 8
GETSYI_LIST(l) .ITMCOD = %LOC(SYI$_VERSION)
GETSYI_LIST(l) .BUFADR = %LOC(VERSION)
GETSYI_LIST(l) .RETADR = %LOC(VERSION_LEN)
GETSYI_LIST(2) .BUFLEN = 15
GETSYI_LIST(2) .ITMCOD = %LOC(SYI$_NODENAME)
GETSYI_LIST(2) .BUFADR = %LOC(NODENAME)
GETSYI_LIST(2) .RETADR = %LOC(NODENAME_LEN)
GETSYI_LIST(3) .END_LIST = 0

! Display the system version number string
STATUS= SYS$GETSYIW (, ,,GETSYI_LIST,IOSB, ,)
IF (STATUS) STATUS = IOSB.STS
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

TYPE*, 'System version is ', VERSION(l:VERSION_LEN)
END

This FORTRAN program demonstrates how to use the $GETSYIW service to
obtain the operating system version number string and the system's node name.

System Service Descriptions
$GETSYIW

$GETSYIW-Get Systemwide Information and Wait

Format

Returns information about the local VAX system or about other VAX systems in a
cluster.

The $GETSYIW service completes synchronously; that is, it returns to the caller
with the requested information. For asynchronous completion, you use the Get
Systemwide Information ($GETSYI) service; $GETSYI returns to the caller
after queuing the information request, without waiting for the information to be
returned. In all other respects these services are identical and you should refer to
the documentation about $GETSYI for information about the $GETSYIW service.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service and to the Introduction to VMS System Services.

SYS$GETSYIW [efn] ,[csidadr] ,[nodename] ,itmlst [,iosb] [,astadr] [,astprm]

You must specify either the csidadr or the nodename argument, but not both.
For wildcard operations, however, you must use the csidadr argument.

SYS-381

System Service Descriptions
$GETTIM

$GETTIM-Get Time

Format

Returns

Argument

Description

Returns the current system time in a 64-bit format.

SYS$GETTIM timadr

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

timadr
VMS Usage:
type:
access:
mechanism:

date_time
quadword (unsigned)
write only
by reference

Address of a quadword to receive the current time in 64-bit format.

The Get Time service returns the current system time in 64-bit format. System
time is updated every 10 milliseconds and it is returned in 100-nanosecond units
from the system base time.

Required Privileges
None

Required Quota
None

Related Services
$ASCTIM, $BINTIM, $CANTIM, $CANWAK, $NUMTIM, $SCHDWK, $SETIME,
$SETIMR

For additional information about the system time, see the Introduction to VMS
System Services.

Condition Values Returned

SYS-382

SS$_NORMAL

SS$_ACCVIO

The service completed successfully.

The quadword to receive the time cannot be
written by the caller.

System Service Descriptions
$GETUAI

$GETUAl-Get User Authorization Information

Format

Returns

Arguments

Returns authorization information about a specified user.

SYS$GETUAI [nullarg] ,[nullarg] ,usrnam ,itmlst ,[nullarg] ,[nullarg] ,[nullarg]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

nullarg
VMS Usage:
type:
access:
mechanism:

null_arg
longword (unsigned)
read only
by value

Placeholding argument reserved by Digital.

usrnam
VMS Usage:
type:
access:
mechanism:

char_string
character-coded text string
read only
by descriptor-fixed length string descriptor

Name of the user about whom $GETUAI returns authorization information. The
usrnam argument is the address of a descriptor pointing to a character text
string containing the user name. The user name string can contain a maximum
of 12 alphanumeric characters.

itmlst
VMS Usage:
type:
access:
mechanism:

item_list_3
longword (unsigned)
read only
by reference

Item list specifying which information from the specified user's user authorization
file (UAF) record is to be returned. The itmlst argument is the address of a list
of one or more item descriptors, each of which specifies an item code. The item
list is terminated by an item code value of 0 or by a longword value of 0. The
following diagram depicts the structure of a single item descriptor.

SYS-383

System Service Descriptions
$GETUAI

31 15 0

Item Code 1 Buffer Length

Buffer Address

Return Length Address

ZK-1705-GE

Item Descriptor Fields

buffer length

Item Codes

SYS-384

A word specifying the length (in bytes) of the buffer in which $GETUAI is to
write the information. The length of the buffer varies depending on the item
code specified in the item code field of the item descriptor and is given in the
description of each item code. If the value of the buffer length field is too small,
$GETUAI truncates the data.

item code
A word containing a user-supplied symbolic code specifying the item of
information that $GETUAI is to return. The $UAIDEF macro defines these
codes, which have the following format:

UAl$_code

buffer address
A longword containing the user-supplied address of the buffer in which $GETUAI
is to write the information.

return length address
A longword containing the user-supplied address of a word in which $GETUAI
writes the length in bytes of the information it actually returned.

See the Item Codes section for descriptions of the various $GETUAI item codes.

UAl$_ACCOUNT
When you specify UAI$_ACCOUNT, $GETUAI returns, as a blank-filled 32-
character string, the account name of the user.

An account name can include up to 8 characters. Because the account name is a
blank-filled string, however, the buffer length field of the item descriptor should
specify 32 (bytes).

UAl$_ASTLM
When you specify UAI$_ASTLM, $GETUAI returns the AST queue limit.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

System Service Descriptions
$GETUAI

UAl$_BATCH_ACCESS_P
When you specify UAI$_BATCH_ACCESS_P, $GETUAI returns, as a 3-byte
value, the range of times during which batch access is permitted for primary
days. Each bit set represents a 1-hour period, from bit 0 as midnight to 1 a.m. to
bit 23 as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_BATCH_ACCESS_S
When you specify UAI$_BATCH_ACCESS_S, $GETUAI returns, as a 3-byte
value, the range of times during which batch access is permitted for secondary
days. Each bit set represents a 1-hour period, from bit 0 as midnight to 1 a.m. to
bit 23 as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_BIOLM
When you specify UAI$_BIOLM, $GETUAI returns the buffered 1/0 count.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_BYTLM
When you specify UAI$_BYTLM, $GETUAI returns the buffered I/O byte limit.

Because the buffered 1/0 byte limit is a longword decimal number, the buffer
length field in the item descriptor should specify 4 (bytes).

UAl$_CLITABLES
When you specify UAI$_CLITABLES, $GETUAI returns, as a character string,
the name of the user-defined CLI table for the account, if any.

Because the CLI table name can include up to 31 characters in addition to a
size-byte prefix, the buffer length field of the item descriptor should specify 32
(bytes).

UAl$_CPUTIM
When you specify UAI$_CPUTIM, $GETUAI returns the maximum CPU time
limit (per session) for the process in 10-millisecond units.

Because the maximum CPU time limit is a longword decimal number, the buffer
length field in the item descriptor should specify 4 (bytes).

UAl$-'-DEFCLI
When you specify UAI$_DEFCLI, $GETUAI returns, as an RMS file name
component, the name of the command language interpreter used to execute the
specified batch job. The file specification returned assumes the device name and
directory SYS$SYSTEM and the file type EXE.

Because a file name can include up to 31 characters in addition to a size-byte
prefix, the buffer length field in the item descriptor should specify 32 (bytes).

UAl$_DEFDEV
When you specify UAl$_DEFDEV, $GETUAI returns, as a 1- to 31-character
string, the name of the default device.

Because the device name string can include up to 31 characters in addition to a
size-byte prefix, the buffer length field in the item descriptor should specify 32
(bytes).

SYS-385

System Service Descriptions
$GETUAI

SYS-386

UAl$_DEFDIR
When you specify UAI$_DEFDIR, $GETUAI returns, as a 1- to 63-character
string, the name of the default directory.

Because the directory name string can include up to 63 characters in addition to
a size-byte prefix, the buffer length field in the item descriptor should specify 64
(bytes).

UAl$_DEF _PRIV
When you specify UAI$_DEF _PRIV, $GETUAI returns the default privileges for
the user.

Because the default privileges are returned as a quadword value, the buffer
length field in the item descriptor should specify 8 (bytes).

UAl$_DFWSCNT
When you specify UAI$_DFWSCNT, $GETUAI returns the default working set
size.

Because the default working set size is a longword decimal number, the buffer
length field in the item descriptor should specify 4 (bytes).

UAl$_DIOLM
When you specify UAI$_DIOLM, $GETUAI returns the direct I/O count limit.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_DIALUP _ACCESS_P
When you specify UAI$_DIALUP _ACCESS_P, $GETUAI returns, as a 3-byte
value, the range of times during which dialup access is permitted for primary
days. Each bit set represents a 1-hour period, from bit 0 as midnight to 1 a.m. to
bit 23 as 11 p.m. to midnight. For each hour the bit is set to 0, access is allowed.
For each hour the bit is set to 1, access is denied.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_DIALUP _ACCESS_S
When you specify UAI$_DIALUP _ACCESS_S, $GETUAI returns, as a 3-byte
value, the range of times during which dialup access is permitted for secondary
days. Each bit set represents a 1-hour period, from bit 0 as midnight to 1 a.m. to
bit 23 as 11 p.m. to midnight. For each hour the bit is set to 0, access is allowed.
For each hour the bit is set to 1, access is denied.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_ENCRYPT
When you specify UAI$_ENCRYPT, $GETUAI returns one of the values shown
in the following table, identifying the encryption algorithm for the primary
password.

Because the encryption algorithm is a byte in length, the buffer length field in
the item descriptor should specify 1 byte.

Symbolic Name

UAI$C_AD_II

UAI$C_PURDY

UAI$C_PURDY_V

UAI$C_PURDY_S

UAl$_ENCRVPT2

Description

System Service Descriptions
$GETUAI

Uses a CRC algorithm and returns a longword hash
value. It was used in VMS releases prior to Version 2.0.

Uses a Purdy algorithm over salted input. It expects a
blank-padded user name and returns a quadword hash
value. This algorithm was used during VMS Version 2.0
field test.

Uses the Purdy algorithm over salted input. It expects a
variable-length user name and returns a quadword hash
value. This algorithm was used in VMS releases prior to
Version 5.4.

Uses the Purdy algorithm over salted input. It expects a
variable-length user name and returns a quadword hash
value. This is the current algorithm that VMS uses for
all new password changes.

When you specify UAI$_ENCRYPT2, $GETUAI returns one of the following
values identifying the encryption algorithm for the secondary password:

UAI$C_AD_II

UAI$C_PURDY

UAI$C_PURDY_ V

UAI$C_PURDY_S

Because the encryption algorithm is a byte in length, the buffer length field in
the item descriptor should specify 1 byte.

UAl$_ENQLM
When you specify UAI$_ENQLM, $GETUAI returns the lock queue limit.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_EXPIRATION
When you specify UAI$_EXPIRATION, $GETUAI returns, as a quadword
absolute time value, the expiration date and time of the account.

Because the absolute time value is a quadword in length, the buffer length field
in the item descriptor should specify 8 (bytes).

UAl$_FILLM
When you specify UAI$_FILLM, $GETUAI returns the open file limit.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_FLAGS
When you specify UAI$_FLAGS, $GETUAI returns, as a longword bit vector, the
various login flags set for the user.

SYS-387

System Service Descriptions
$GETUAI

Each flag is represented by a bit. The $UAIDEF macro defines the following
symbolic names for these flags.

Symbolic Name

UAl$V _AUDIT

UAI$V _AUTOLOGIN

UAI$V _CAPTIVE

UAl$V _DEFCLI

UAl$V _DISACNT

UAI$V _DISCTLY

UAI$V _DISFORCE_PWD_CHANGE

UAI$V _DISIMAGE

UAI$V _DISMAIL

UAI$V _DISPWDDIC

UAI$V _DISPWDHIS

UAI$V _DISRECONNECT

UAl$V _DISREPORT

UAI$V _DISWELCOME

UAI$V_GENPWD

UAI$V _LOCKPWD

UAI$V _NOMAIL

UAI$V _PWD_EXPIRED

UAI$V _PWD2_EXPIRED

UAI$V _RESTRICTED

UAl$_JTQUOTA

Description

All actions are audited.

User can only log in to terminals defined by the
automatic login facility (ALF).

User is restricted to captive account.

User is restricted to default command interpreter.

User account is disabled.

User cannot use Ctrl/Y.

User will not be forced to change expired passwords at
login.

User cannot issue the RUN or MCR commands or use
the foreign command mechanism in DCL.

Announcement of new mail is suppressed.

Automatic checking of user-selected passwords against
the system dictionary is disabled.

Automatic checking of user-selected passwords against
previously used passwords is disabled.

User cannot reconnect to existing processes.

User will not receive last login mesages.

User will not receive the login welcome message.

User is required to use generated passwords.

SET PASSWORD command is disabled.

Mail delivery to user is disabled.

Primary password is expired.

Secondary password is expired.

User is limited to operating under a restricted account.
(See the Guide to VMS System Security for a description
of restricted and captive accounts.)

When you specify UAI$_JTQUOTA, $GETUAI returns the initial byte quota with
which the jobwide logical name table is to be created.

SYS-388

Because this quota is a longword decimal number, the buffer length field in the
item descriptor should specify 4 (bytes).

UAl$_LASTLOGIN_I
When you specify UAI$_LASTLOGIN_I, $GETUAI returns, as a quadword
absolute time value, the date of the last interactive login.

UAl$_LASTLOGIN_N
When you specify UAI$_LASTLOGIN_N, $GETUAI returns, as a quadword
absolute time value, the date of the last noninteractive login.

System Service Descriptions
$GETUAI

UAl$_LGICMD
When you specify UAI$_LGICMD, $GETUAI returns, as an RMS file
specification, the name of the default login command file.

Because a file specification can include up to 63 characters in addition to a
size-byte prefix, the buffer length field of the item descriptor should specify 64
(bytes).

UAl$_LOCAL_ACCESS_P
When UAl$_LOCAL_ACCESS_P, $GETUAI returns, as a 3-byte value, the range
of times during which local interactive access is permitted for primary days. Each
bit set represents a 1-hour period, from bit 0 as midnight to 1 a.m. to bit 23 as
11 p.m. to midnight. For each hour the bit is set to 0, access is allowed. For each
hour the bit is set to 1, access is denied.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_LOCAL_ACCESS_S
When you specify UAI$_LOCAL_ACCESS_S, $GETUAI returns, as a 3-byte
value, the range of times during which batch access is permitted for secondary
days. Each bit set represents a 1-hour period, from bit 0 as midnight to 1 a.m. to
bit 23 as 11 p.m. to midnight. For each hour the bit is set to 0, access is allowed.
For each hour the bit is set to 1, access is denied.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_LOGFAILS
When you specify UAI$_LOGFAILS, $GETUAI returns the count of login failures.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_MAXACCT JOBS
When you specify UAI$_MAXACCTJOBS, $GETUAI returns the maximum
number of batch, interactive, and detached processes that can be active at one
time for all users of the same account. The value 0 represents an unlimited
number.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_MAXDETACH
When you specify UAl$_MAXDETACH, $GETUAI returns the detached process
limit. A value of 0 represents an unlimited number.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_MAXJOBS
When you specify UAI$_MAXJOBS, $GETUAI returns the active process limit. A
value of 0 represents an unlimited number.

Because this decimal number is a word in length, the buffer length field in the
item descri~tor should specify 2 (bytes).

UAl$_NETWORK_ACCESS_P
When you specify UAI$_NETWORK_ACCESS_P, $GETUAI returns, as a 3-byte
value, the range of times during which network access is permitted for primary
days. Each bit set represents a 1-hour period, from bit 0 as midnight to 1 a.m. to

SYS-389

,)

System Service Descriptions
$GETUAI

SYS-390

bit 23 as 11 p.m. to midnight. For each hour the bit is set to 0, access is allowed.
For each hour the bit is set to 1, access is denied.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_NETWORK_ACCESS_S
When you specify UAI$_NETWORK_ACCESS_S, $GETUAI returns, as a 3-byte
value, the range of times during which network access is permitted for secondary
days. Each bit set represents a 1-hour period, from bit 0 as midnight to 1 a.m. to
bit 23 as 11 p.m. to midnight. For each hour the bit is set to 0, access is allowed.
For each hour the bit is set to 1, access is denied.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_0WNER
When you specify UAI$_0WNER, $GETUAI returns, as a character string, the
name of the owner of the account.

Because the owner name can include up to 31 characters in addition to a size-byte
prefix, the buffer length field of the item descriptor should specify 32 (bytes).

UAl$_PBVTLM
When you specify UAI$_PBYTLM, $GETUAI returns the paged buffer I/O byte
count limit.

Because the paged buffer I/O byte count limit is a longword decimal number, the
buffer length field in the item descriptor should specify 4 (bytes).

UAl$_PGFLQUOTA
When you specify UAI$_PGFLQUOTA, $GETUAI returns the paging file quota.

Because the paging file quota is a longword decimal number, the buffer length
field in the item descriptor should specify 4 (bytes).

UAl$_PRCCNT
When you specify UAI$_PRCCNT, $GETUAI returns the subprocess creation
limit.

Because the subprocess creation limit is a longword decimal number, the buffer
length field in the item descriptor should specify 4 (bytes).

UAl$_PRI
When you specify UAI$_PRI, $GETUAI returns the default base priority in the
range 0 through 31.

Because this decimal number is a byte in length, the. buffer length field in the
item descriptor should specify 1 (byte).

UAl$_PRIMEDAYS
When you specify UAI$_PRIMEDAYS, $GETUAI returns, as a longword bit
vector, the primary and secondary days of the week.

Each bit represents a day of the week, with the bit clear representing a primary
day and the bit set representing a secondary day. The $UAIDEF macro defines
the following symbolic names for these bits:

UAI$V_MONDAY
UAI$V _TUESDAY
UAI$V _WEDNESDAY
UAI$V _THURSDAY

UAI$V _FRIDAY
UAI$V _SATURDAY
UAI$V _SUNDAY

UAl$_PRIV

System Service Descriptions
$GETUAI

When you specify UAI$_PRIV, $GETUAI returns, as a quadword value, the
names of the privileges the user holds.

Because this value is a quadword in length, the buffer length field in the item
descriptor should specify 8 (bytes).

UAl$_PWD
When you specify UAI$_PWD, $GETUAI returns, as a quadword value, the
hashed primary password of the user.

Because this value is a quadword in length, the buffer length field in the item
descriptor should specify 8 (bytes).

UAl$_PWD_DATE
When you specify UAI$_PWD_DATE, $GETUAI returns, as a quadword absolute
time value, the date of the last password change.

Because this value is a quadword in length, the buffer length field in the item
descriptor should specify 8 (bytes).

UAl$_PWD_LENGTH
When you specify UAI$_PWD_LENGTH, $GETUAI returns the minimum
password length.

Because this decimal number is a byte in length, the buffer length field in the
item descriptor should specify 1 (byte).

UAl$_PWD_LIFETIME
When you specify UAI$_PWD_LIFETIME, $GETUAI returns, as a quadword
delta time value, the password lifetime.

Because this value is a quadword in length, the buffer length field in the item
descriptor should specify 8 (bytes).

A quadword of 0 means that none of the password mechanisms will take effect.

UAl$_PWD2
When you specify UAI$_PWD2, $GETUAI returns, as a quadword value, the
hashed secondary password of the user.

Because this value is a quadword in length, the buffer length field in the item
descriptor should specify 8 (bytes).

UAl$_PWD2_DATE
When you specify UAI$_PWD2_DATE, $GETUAI returns, as a quadword absolute
time value, the last date the secondary password was changed.

Because this value is a quadword in length, the buffer length field in the item
descriptor should specify 8 (bytes).

UAl$_QUEPRI
When you specify UAI$_QUEPRI, $GETUAI returns the maximum job queue
priority.

SYS-391

System Service Descriptions
$GETUAI

SYS-392

Because this decimal number is a byte in length, the buffer length field in the
item descriptor should specify 1 (byte).

UAl$_REMOTE_ACCESS_P
When you specify UAI$_REMOTE_ACCESS_P, $GETUAI returns, as a 3-byte
value, the range of times during which remote interactive access is permitted for
primary days. Each bit set represents a 1-hour period, from bit 0 as midnight to
1 a.m. to bit 23 as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_REMOTE_ACCESS_S
When you specify UAI$_REMOTE_ACCESS_S, $GETUAI returns, as a 3-byte
value, the range of times during which remote interactive access is permitted for
secondary days. Each bit set represents a 1-hour period, from bit 0 as midnight
to 1 a.m. to bit 23 as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_SALT
When you specify UAI$_SALT, $GETUAI returns the random password salt.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_SHRFILLM
When you specify UAI$_SHRFILLM, $GETUAI returns the shared file limit.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_TQCNT
When you specify UAI$_TQCNT, $GETUAI returns the timer queue entry limit.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_UIC
When you specify UAI$_UIC, $GETUAI returns, as a longword, the user
identification code (UIC). For the format of the UIC, see Guide to VMS System
Security and Introduction to VMS System Services.

UAl$_USER_DATA
When you specify UAI$_USER_DATA, $GETUAI returns up to 255 bytes of
information from the user data area of the System User Authorization File
(SYSUAF).

You can read information written to the user data area from previous versions
of the VMS operating system as long as the information written adheres to the
guidelines described in the Guide to VMS System Security.

UAl$_WSEXTENT
When you specify UAI$_ WSEXTENT, $GETUAI returns the working set extent
for the user of the specified queue or job.

Because the working set extent is a longword decimal number, the buffer length
field in the item descriptor should specify 4 (bytes).

Description

UAl$_WSQUOTA

System Service Descriptions
$GETUAI

When you specify UAI$_WSQUOTA, $GETUAI returns the working set quota for
the specified user.

Because this quota is a longword decimal number, the buffer length field in the
item descriptor should specify 4 (bytes).

The Get User Authorization Information service returns authorization
information about a specified user.

Required Privileges
Use the following list to determine the privileges required to use the $GETUAI
service:

• BYPASS or SYSPRV-Allows access to any record in the user authorization
file (UAF)

• GRPPRV-Allows access to any record in the UAF whose UIC group matches
that of the requester

• No privilege-Allows access to any UAF record whose UIC matches that of
the requester

Required Quota
None

Related Services
$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CHANGE_ACL, $CHECK_
ACCESS, $CHKPRO, $CREATE_RDB, $ERAPAT, $FIND_HELD, $FIND_
HOLDER, $FINISH_RDB, $FORMAT_ACL, $FORMAT_AUDIT, $GRANTID,
$HASH_PASSWORD, $IDTOASC, $MOD_HOLDER, $MOD_IDENT,
$MTACCESS, $PARSE_ACL, $REM_HOLDER, $REM_IDENT, $REVOKID

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_NOGRPPRV

SS$_NOSYSPRV

The service completed successfully.

The item list or input buffer cannot be read by
the caller; or the return length buffer, output
buffer, or status block cannot be written by the
caller.

The function code is invalid; the item list
contains an invalid item code; a buffer descriptor
has an invalid length; or the reserved parameter
has a nonzero value.

The user does not have the privileges required to
examine the authorization information for other
members of the UIC group.

The user does not have the privileges required to
examine the authorization information associated
with the user or for users outside of the user's
UIC group.

SYS-393

System Service Descriptions
$GETUAI

SYS-394

This service can also return RMS status codes associated with operations on
indexed files. For example, an inquiry about a nonexistent account returns
RMS$_RNF, record not found status. For a description of RMS status codes
that are returned by this service, refer to the VMS Record Management Services
Manual.

System Service Descriptions
$GRANTID

$GRANTID-Grant Identifier to Process

Format

Returns

Arguments

Adds the specified identifier record to the rights list of the process or the system.

SYS$GRANTID [pidadr] ,[prcnam] ,[id] ,[name] ,[prvatr]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

pidadr
VMS Usage: process_id
type: longword (unsigned)
access: modify
mechanism: by reference

Process identification (PID) number of the process affected when $GRANTID
completes execution. The pidadr argument is the address of a longword
containing the PID of the process to be affected. You use -1 to indicate the
system rights list. When pidadr is passed, it is also returned; therefore, you
must pass it as a variable rather than a constant. If you specify neither pidadr
nor prcnam, your own process is used.

prcnam
VMS Usage:
type:
access:
mechanism:

process_name
character-coded text string
read only
by descriptor-fixed length string descriptor

Process name on which $GRANTID operates. The prcnam argument is the
address of a character string descriptor containing the process name. The
maximum length of the name is 15 characters. Because the UIC group number
is interpreted as part of the process name, you must use pidadr to specify the
rights list of a process in a different group. If you specify neither pidadr nor
prcnam, your own process is used.

id
VMS Usage:
type:
access:
mechanism:

rights_holder
quadword (unsigned)
modify
by reference

Identifier and attributes to be granted when $GRANTID completes execution.
The id argument is the address of a quadword containing the binary identifier
code to be granted in the first longword and the attributes in the second longword.

SYS-395

System Service Descriptions
$GRANTID

Description

SYS-396

Symbol values are offsets to the bits within the longword. You can also obtain
the values as masks with the appropriate bit set using the prefix KGB$M rather
than KGB$V. The following symbols for each bit position are defined in the macro
library ($KGBDEF).

Bit Position Meaning When Set

KGB$V _DYNAMIC Allows the unprivileged holder to add or remove the
identifier from the process rights list

KGB$V _RESOURCE Allows the holder to charge resources, such as disk
blocks, to the identifier

You must specify either id or name. Because the id argument is returned as
well as passed if you specify name, you must pass it as a variable rather than a
constant in this case.

name
VMS Usage:
type:
access:
mechanism:

char _string
character-coded text string
read only
by descriptor-fixed length string descriptor

Name of the identifier granted when $GRANTID completes execution. The name
argument is the address of a descriptor pointing to the name of the identifier. You
must specify either id or name.

prvatr
VMS Usage:
type:
access:
mechanism:

mask_longword
longword (unsigned)
write only
by reference

Previous attributes of the identifier. The prvatr argument is the address of a
longword used to store the attributes of the identifier if it was previously present
in the rights list. If you added rather than modified the identifier, prvatr is
ignored.

The Grant Identifier to Process service adds the specified identifier to the rights
list of the process or the system. If the identifier is already in the rights list,
its attributes are modified to those specified. This service is meant to be used
by a privileged subsystem to alter the access rights profile of a user, based on
installation policy. It is not meant to be used by the general system user.

The result of passing the pidadr or the prcnam argument or both to
SYS$GRANTID is summarized in the following table.

prcnam pidadr

Omitted Omitted

Omitted 0

Result

Current process ID is used; process ID is not
returned.

Current process ID is used; process ID is
returned.

prcnam

Omitted

Specified

Specified

Specified

pidadr

Specified

Omitted

0

Specified

Result

System Service Descriptions
$GRANTID

Specified process ID is used.

Specified process name is used; process ID is not
returned.

Specified process name is used; process ID is
returned.

Specified process ID is used and process name is
ignored.

The result of passing the name or the id argument or both to SYS$GRANTID is
summarized in the following table.

name

Omitted

Omitted

Specified

Specified

Specified

id

Omitted

Specified

Omitted

0

Specified

Result

Illegal. The INSFARG condition value is
returned.

Specified identifier value is used.

Specified identifier name is used; identifier value
is not returned.

Specified identifier name is used; identifier value
is returned.

Specified identifier value is used and identifier
name is ignored.

Note that a value of 0 in either of the preceding tables indicates that the contents
of the address specified by the argument is the value 0. The word omitted
indicates that the argument was not supplied.

Required Privileges
You need CMKRNL privilege to invoke this service. In addition, you need GROUP
privilege to modify the rights list of a process in the same group as the calling
process (unless the process has the same UIC as the calling process). You need
WORLD privilege to modify the rights list of a process outside the caller's group.
You need SYSNAM privilege to modify the system rights list.

Required Quota
None

Related Services
$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CHANGE_ACL, $CHECK_
ACCESS, $CHKPRO, $CREATE_RDB, $ERAPAT, $FIND_HELD, $FIND_
HOLDER, $FINISH_RDB, $FORMAT_ACL, $FORMAT_AUDIT, $HASH_
PASSWORD, $IDTOASC, $MOD_HOLDER, $MOD_IDENT, $MTACCESS,
$PARSE_ACL, $REM_HOLDER, $REM_IDENT, $REVOKID

SVS-397

System Service Descriptions
$GRANTID

Condition Values Returned

SYS-398

SS$_WASCLR

SS$_WASSET

SS$_ACCVIO

SS$_IVIDENT

SS$_INSFARG

SS$_INSFMEM

SS$_NOPRIV

SS$_NOSUCHID

SS$_RIGHTSFULL

SS$_NOSYSNAM

SS$_IVLOGNAM

SS$_NONEXPR

RMS$_PRV

The service completed successfully; the rights list
did not contain the specified identifier.

The service completed successfully; the rights list
already held the specified identifier.

The pidadr argument cannot be read or written;
prcnam cannot be read; id cannot be read or
written; the name cannot be read; or prvatr
cannot be written.

The specified identifier name is invalid; the
identifier name is longer than 31 characters,
contains an illegal character, or does not contain
at least one nonnumeric character.

You did not specify either the id or name
argument.

The process dynamic memory is insufficient for
opening the rights database.

The caller does not have CMKRNL privilege or
is not running in executive or kernel mode, or
the caller lacks GROUP, WORLD, or SYSNAM
privilege as required.

The specified identifier name does not exist
in the rights database. Note that the binary
identifier, if given, is not validated against the
rights database.

The rights list of the process or system is full.

The operation requires SYSNAM privilege.

You specified an invalid process name.

You specified a nonexistent process.

The user does not have read access to the rights
database.

Because the rights database is an indexed file accessed with VMS RMS, this
service can also return RMS status codes associated with operations on indexed
files. For descriptions of these status codes, refer to the VMS Record Management
Services Manual.

System Service Descriptions
$HASH_PASSWORD

$HASH_PASSWORD-Hash Password

Format

Returns

Arguments

Applies the hash algorithm you select to an ASCII password string and returns a
quadword hash value that represents the encrypted password.

SYS$HASH_PASSWORD pwd ,alg ,[salt] ,usrnam ,hash

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values returned by this
service are listed in the Condition Values Returned section.

pwd
VMS Usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

ASCII password string to be encrypted. The pwd argument is the address of a
character string descriptor pointing to the ASCII password. The password string
can contain between 1 and 32 characters and use the uppercase characters A
through Z, the numbers 0 through 9, the dollar sign ($),and the underscore(_).

alg
VMS Usage:
type:
access:
mechanism:

byte_unsigned
byte (unsigned)
read only
by value

Algorithm used to hash the ASCII password string. The alg argument is
an unsigned byte specifying the hash algorithm. The VMS operating system
recognizes the following algorithms.

Symbolic Name

UAI$C_AD_II

UAI$C_PURDY

Description

Uses a CRC algorithm and returns a longword hash
value. This algorithm was used in releases prior to
VMS Version 2.0.

Uses a Purdy algorithm over salted input. It expects a
blank-padded user name and returns a quadword hash
value. This algorithm was used during VMS Version
2.0 field test.

SYS-399

System Service Descriptions
$HASH_PASSWORD

SYS-400

Symbolic Name Description

UAI$C_PURDY_V Uses the Purdy algorithm over salted input. It expects
a variable-length user name and returns a quadword
hash value. This algorithm was used in releases prior
to VMS Version 5.4.

UAI$C_PURDY_S Uses the Purdy algorithm over salted input. It expects
a variable-length user name and returns a quadword
hash value. This algorithm is used to hash all new
passwords in VMS Version 5.4 and later.

UAI$C_PREFERED_
ALGORITHM1

Represents the latest encryption algorithm that
the VMS system uses to encrypt new passwords.
Currently, it equates to UAI$C_PURDY_S. Digital
recommends that you use this symbol in source
modules because it always equates with the most
recent VMS algorithm.

1 The value of this symbol might be changed in future releases if an additional algorithm is
introduced.

Values ranging from 128 to 255 are reserved for customer use; the constant
UAI$K_CUST_ALGORITHM defines the start of this range.

You can use the UAI$_ENCRYPT and UAI$_ENCRYPT2 item codes with the
$GETUAI system service to retrieve the primary and secondary password hash
algorithms for a user.

salt
VMS Usage:
type:
access:
mechanism:

word_ unsigned
word (unsigned)
read only
by value

Value used to increase the effectiveness of the hash. The salt argument is an
unsigned word containing 16 bits of data that is used by the hash algorithms
when encrypting a password for the associated user name. The $GETUAI item
code UAI$_SALT is used to retrieve the SALT value for a given user. If you do
not specify a SALT value, $HASH_PASSWORD uses the value of 0.

usrnam
VMS Usage:
type:
access:
mechanism:

char _string
character-coded text string
read only
by descriptor-fixed-length string descriptor

Name of the user associated with the password. The usrnam argument is the
address of a descriptor pointing to a character text string containing the user
name. The current VMS password encryption algorithm (UAI$K_PURDY_S)
folds the user name into the ASCII password string to ensure that different users
with the same password produce different hash values. This argument must be
supplied for all calls to $HASH_PASSWORD but is ignored when using the CRC
algorithm (UAI$K_AD_II).

Description

hash
VMS Usage:
type:
access:
mechanism:

quadword_ unsigned
quadword (unsigned)
write only
by reference

System Service Descriptions
$HASH_PASSWORD

Output hash value representing the encrypted password. The hash argument is
the address of an unsigned quadword to which $HASH_PASSWORD writes the
output of the hash. If you use the UAI$C_AD_II algorithm, the second longword
of the hash is always set to 0.

The Hash Password service applies the hash algorithm you select to an ASCII
password string and returns a quadword hash value that represents the
encrypted password.

Required Privileges
None

Required Quota
None

Related Services
$GETUAI and $SETUAI. Use $GETUAI to get the values for the salt and alg
arguments. Use $SETUAI to store the resulting hash using the item codes UAI$_
PWD and UAI$_PWD2.

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

The service completed successfully.

The input or output buffer descriptors cannot be
read or written to by the caller.

The specified hash algorithm is unknown or
invalid.

SYS-401

System Service Descriptions
$HIBER

$HIBER-Hibernate

Format

Returns

Arguments

Description

SYS-402

Allows a process to make itself inactive but to remain known to the system so
that it can be interrupted, for example, to receive ASTs.

SYS$HIBER

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

None.

The Hibernate service allows a process to make itself inactive but to remain
known to the system so that it can be interrupted, for example, to receive ASTs.
A hibernate request is a wait-for-wake-event request. When you call the Wake
Process from Hibernation ($WAKE) service or when the time specified with the
Schedule Wakeup ($SCHDWK) service occurs, the process continues execution at
the instruction following the Hibernate call.

In VAX MACRO, you can call the Hibernate service only by using the $name_S
macro.

A hibernating process can be swapped out of the balance set if it is not locked
into the balance set.

An AST can interrupt the wait state caused by $HIBER if the access mode at
which the AST is to execute is equal to or more privileged than the access mode
from which the hibernate request was issued and the process is enabled for ASTs
at that access mode.

When the AST service routine completes execution, the system reexecutes the
$HIBER service on behalf of the process. If a wakeup request has been issued
for the process during the execution of the AST service routine (either by itself
or another process), the process resumes execution. If a wakeup request has not
been issued, it continues to hibernate.

If one or more wakeup requests are issued for the process while it is not
hibernating, the next hibernate call returns immediately; that is, the process
does not hibernate. No count of outstanding wakeup requests is maintained.

Although this service has no arguments, a FORTRAN function reference must
use parentheses to indicate a null argument list, as in the following example:

ISTAT=SYS$HIBER()

Required Privileges
None

Required Quota
None

Related Services

System Service Descriptions
$HIBER

$CANEXH, $CREPRC, $DCLEXH, $DELPRC, $EXIT, $FORCEX, $GETJPI,
$GETJPIW, $PROCESS_SCAN, $RESUME, $SETPRI, $SETPRN, $SETPRV,
$SETRWM, $SUSPND, $WAKE

Condition Values Returned

SS$_NORMAL The service completed successfully.

SYS-403

System Service Descriptions
$1DTOASC

$1DTOASC-Translate Identifier to Identifier Name

Format

Returns

Arguments

SYS-404

Translates the specified identifier value to its identifier name.

SYS$1DTOASC id ,[namlen] ,[nambuf] ,[resid] ,[attrib] ,[contxt]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value .in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

id
VMS Usage:
type:
access:
mechanism:

rights_id
longword (unsigned)
read only
by value

Binary identifier value translated by $IDTOASC. The id argument is a longword
containing the binary value of the identifier. To determine the identifier names of
all identifiers in the rights database, you specify id as -1 and call SYS$IDTOASC
repeatedly until it returns the status code SS$_NOSUCHID. The identifiers are
returned in alphabetical order.

namlen
VMS Usage: word_ unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Number of characters in the identifier name translated by $IDTOASC. The
namlen argument is the address of a word containing the length of the identifier
name written to nambuf.

nambuf
VMS Usage:
type:
access:
mechanism:

char _string
character-coded text string
write only
by descriptor-fixed length string descriptor

Identifier name text string returned when $IDTOASC completes the translation.
The nambuf argument is the address of a descriptor pointing to the buffer in
which the identifier name is written.

Description

res id
VMS Usage:
type:
access:
mechanism:

rights_id
longword (unsigned)
write only
by reference

System Service Descriptions
$1DTOASC

Identifier value of the identifier name returned in nambuf. The resid argument
is the address of a longword containing the 32-bit code of the identifier.

attrib
VMS Usage:
type:
access:
mechanism:

mask_longword
longword (unsigned)
write only
by reference

Mask of attributes associated with the identifier returned in resid. The attrib
argument is the address of a longword containing the attribute mask.

Symbol values are offsets to the bits within the longword. You can also obtain the
values as masks with the appropriate bit set using the prefix KGB$M rather than
KGB$V. The following symbols for each bit position are defined in the system
macro library ($KGBDEF).

Bit Position Meaning When Set

KGB$V _DYNAMIC Allows the unprivileged holder to add or remove the
identifier from the process rights list

KGB$V _RESOURCE Allows the holder to charge resources, such as disk
blocks, to the identifier

contxt
VMS Usage:
type:
access:
mechanism:

context
longword (unsigned)
modify
by reference

Context value used when repeatedly calling $IDTOASC. The contxt argument
is the address of a longword used while $IDTOASC searches for all identifiers.
The context value must be initialized to the value 0, and the resulting context of
each call to $IDTOASC must be presented to each subsequent call. After contxt
is passed to $IDTOASC, you must not modify its value.

The Translate Identifier to Identifier Name service translates the specified
binary identifier value to an identifier name. While the primary purpose of this
service is to translate the specified identifier to its name, you can also use it to
find all identifiers in the rights database. To determine all the identifiers, call
$IDTOASC repeatedly until it returns the status code SS$_NOSUCHID. When
SS$_NOSUCHID is returned, $IDTOASC has returned all the identifiers, cleared
the context value, and deallocated the record stream.

If you complete your calls to $IDTOASC before SS$_NOSUCHID is returned, use
SYS$FINISH_RDB to clear the context value and deallocate the record stream.

When you use wildcards with this service, the records are returned in identifier
name order.

SYS-405

System Service Descriptions
$1DTOASC

Required Privileges
None

Required Quota
None

Related Services
$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CHANGE_ACL, $CHECK_
ACCESS, $CHKPRO, $CREATE_RDB, $ERAPAT, $FIND_HELD, $FIND_
HOLDER, $FINISH_RDB, $FORMAT_ACL, $FORMAT_AUDIT, $GRANTID,
$HASH_PASSWORD, $MOD_HOLDER, $MOD_IDENT, $MTACCESS, $PARSE_
ACL, $REM_HOLDER, $REM_IDENT, $REVOKID

Condition Values Returned

SYS-406

SS$_NORMAL

SS$_ACCVIO

SS$_INSFMEM

SS$_IVCHAN

SS$_IVIDENT

SS$_NOIOCHAN

SS$_NOSUCHID

RMS$_PRV

The service completed successfully.

The namlen, nambuf, resid, attrib, or contxt
argument cannot be written by the caller.

The process dynamic memory is insufficient for
opening the rights database.

The contents of the context longword are not
valid.

The specified identifier is of invalid format.

No more rights database context streams are
available.
The specified identifier name does not exist in
the rights database, or the entire rights database
has been searched if the ID is -1.

The user does not have read access to the rights
database.

Because the rights database is an indexed file that you access with VMS RMS,
this service can also return RMS status codes associated with operations on
indexed files. For descriptions of these status codes, refer to the VMS Record
Management Services Manual.

System Service Descriptions
$1NIT_VOL

$1NIT _VOL-Initialize Volume

Format

Returns

Arguments

Formats a disk or magnetic tape volume and writes a label on the volume. At the
end of initialization, the disk is empty except for the system files containing the
structure information. All former contents of the volume are lost.

SYS$1NIT _VOL devnam, volnam [,itmlst]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values returned by this
service are listed in the Condition Values Returned section.

devnam
VMS Usage:
type:
access:
mechanism:

char_string
character string
read only
by descriptor

Name of the device on which the volume is physically mounted. The descriptor
must point to the device name, a character string of 1 to 64 characters. The
device name can be a physical device name or a logical name; if it is a logical
name, it must translate to a physical name.

The device does not have to be currently allocated; however, allocating the device
before initializing it is recommended.

volnam
VMS Usage:
type:
access:
mechanism:

char _string
character string
read only
by descriptor

Identification to be encoded on the volume. The descriptor must point to the
volume name, a character string of 1 to 12 characters. For a disk volume name,
you can specify a maximum of 12 alphanumeric characters; for a magnetic tape
volume name, you can specify a maximum of 6 ANSI "a" characters. Any valid
ANSI "a" characters can be used; these include numbers, uppercase letters, and
any one of the following nonalphanumeric characters:

! "%'()*+,-. /: ;<=>

Nonalphanumeric characters are not allowed in the volume name on disk.

SYS-407

System Service Descriptions
$1NIT_VOL

itmlst
VMS Usage:
type:
access:
mechanism:

item_list_3
longword (unsigned)
read only
by reference

Item list specifying options that can be used when initializing the volume.
The itmlst argument is the address of a list of item descriptors, each of which
describes one option. The list of item descriptors is terminated by a longword of
0.

The following diagram depicts the format of a single item descriptor.

31 15 0

Item Code I Buffer Length

Buffer Address

Return Length Address

ZK-1705-GE

Item Descriptor Fields

buffer length

SYS-408

A word specifying the length, in bytes, of the buffer that supplies the information
$INIT_ VOL needs to process the specified item code. The length of the buffer
needed depends upon the item code specified in the item descriptor.

item code
A word containing an option for the initialize operation. These codes are defined
by the $INITDEF macro.

There are three types of item codes:

• Boolean item code. Boolean item codes specify a true or false value. The form
INIT$_code specifies a true value and the form INIT$_NO_code specifies a
false value. For Boolean item codes, the buffer length and buffer address
fields of the item descriptor must be 0.

• Symbolic value item code. Symbolic value item codes specify one of a specified
range of possible choices. The buffer length and buffer address fields of
the item descriptor must be 0.

• Input value item code. Input value item codes specify a value to be used
by $INIT_ VOL. The buffer length and buffer address fields of the item
descriptor must be nonzero.

Each item code is described after the argument descriptions.

buffer address
A longword containing the address of the buffer that supplies information to
$INIT_VOL.

return length address
This field is not used.

Item Codes

INIT$_ACCESSED

System Service Descriptions
$1NIT_VOL

An input item code that specifies the number of directories allowed in system
space on the volume.

You must specify an integer between 0 and 255 in the input buffer. The default
value is 3.

The INIT$_ACCESSED item code applies only to Files-11 On-Disk Structure
Level 1 disks.

INIT$_BADBLOCKS_LBN
An input item code that enables $INIT_ VOL to mark bad blocks on the volume;
no data is written to those faulty areas. INIT$_BADBLOCKS_LBN specifies
faulty areas on the volume by logical block number and block count.

The buffer from which $INIT_ VOL reads the option information contains an
array of quadwords containing information in the following format.

31 0

Logical Block Number

Count

ZK-1590A-GE

The following table describes the information to be specified for INIT$_
BADBLOCKS_LBN.

Field

Logical block
number

Count

Symbol Name

INIT$L_BADBLOCKS_LBN

INIT$L_BADBLOCKS_
COUNT

Description

Specifies the logical block
number of the first block to be
marked as allocated.

Specifies the number of
blocks to be allocated. This
range begins with the first
block, as specified in INIT$L_
BADBLOCKS_LBN.

For example, if the input buffer contains the values 5 and 3, INIT_ VOL starts at
logical block number 5 and allocates 3 blocks.

The number of entries in the buffer is determined by the buffer length field in
the item descriptor.

All media supplied by Digital and supported on the VMS operating system, except
disks and TU58 cartridges, are factory formatted and contain bad block data. The
Bad Block Locator Utility (BAD) or the diagnostic formatter EVRAC can be used
to refresh the bad block data or to construct it for the disks and TU58 cartridges.
The INIT$_BADBLOCKS_LBN item code is necessary only to enter bad blocks
that are not identified in the volume's bad block data. For more information, see
the VMS Bad Block Locator Utility Manual.

SYS-409

System Service Descriptions
$1NIT_VOL

SYS-410

The INIT$_BADBLOCKS_LBN item code applies only to disks.

INIT$_BADBLOCKS_SEC
An input item code that specifies faulty areas on the volume by sector, track,
cylinder, and block count. $INIT_ VOL marks the bad blocks as allocated; no data
is written to them.

The input buffer must contain an array of octawords containing information in
the following format.

31 0

Sector

Count

Track

Cylinder

ZK-1591A-GE

The following table describes the information to be specified for INIT$_
BADBLOCKS_LBN.

Field

Sector

Count

Track

Cylinder

Symbol Name

INIT$L_BADBLOCKS_
SECTOR

INIT$L_BADBLOCKS_
COUNT

INIT$L_BADBLOCKS_
TRACK

INIT$L_BADBLOCKS_
CYLINDER

Description

Specifies the sector number of
the first block to be marked as
allocated

Specifies the number of blocks
to be allocated

Specifies the track number of
the first block to be marked as
allocated

Specifies the cylinder number
of the first block to be marked
as allocated

For example, if the input buffer contains the values 12, 3, 1, and 2, INIT_ VOL
starts at sector 12, track 1, cylinder 2 and allocates 3 blocks.

The number of entries in the buffer is determined by the buffer length field in
the item descriptor.

All media supplied by Digital and supported on the VMS operating system, except
disks and TU58 cartridges, are factory formatted and contain bad block data. The
Bad Block Locator Utility (BAD) or the diagnostic formatter EVRAC can be used
to refresh the bad block data or to construct it for the disks and TU58 cartridges.
The INIT$_BADBLOCKS_SEC item code is necessary only to enter bad blocks
that are not identified in the volume's bad block data. For more information, see
the VMS Bad Block Locator Utility Manual.

The INIT$_BADBLOCKS_SEC item code applies only to disks.

System Service Descriptions
$1NIT_VOL

INIT$_CLUSTERSIZE
An input item code that specifies the minimum allocation unit in blocks. The
input buffer must contain a longword value. The maximum size that can be
specified for a volume is one-hundredth the size of the volume; the minimum size
is calculated with the following formula:

volume size in blocks

255 * 4096

The INIT$_CLUSTERSIZE item code applies only to Files-11 On-Disk Structure
Level 2 disks (for Files-11 On-Disk Structure Level 1 disks, the cluster size is 1).
For Files-11 On-Disk Structure Level 2 disks, the cluster size default depends on
the disk capacity.

• Disks that are 50,000 blocks or larger have a default cluster size of 3.

• Disks smaller than 50,000 blocks have a default value of 1.

I NIT$_ COMPACTION
INIT$_NO_COMPACTION-Default
A Boolean item code that specifies whether data compaction should be performed
when writing the volume.

The INIT$_COMPACTION item code applies only to TA90 drives.

INIT$_DENSITV
A symbolic item code that specifies the density value for magnetic tapes and
diskettes.

For magnetic tape volumes, the INIT$_DENSITY item code specifies the density
in bytes per inch (bpi) at which the magnetic tape is written. Possible symbolic
values for tapes are as follows:

• INIT$K_DENSITY_800_BPI

• INIT$K_DENSITY_1600_BPI

• INIT$K_DENSITY _6250_BPI

The specified density value must be supported by the drive. If you do not specify
a density item code for a blank magnetic tape, the system uses a default density
of the highest value allowed by the tape drive. If the drive allows 6250, 1600,
and 800 bpi operation, the default density is 6250. If the drive allows only 1600
and 800 bpi operation, the default density is 1600. If you do not specify a density
item code for a magnetic tape that has been previously written, the system uses
the previously set volume density.

For diskettes, the INIT$_DENSITY item code specifies how the diskette is to be
formatted. Possible symbolic values for diskettes are as follows:

• INIT$K_DENSITY_SINGLE_DISK

• INIT$K_DENSITY_DOUBLE_DISK

• INIT$K_DENSITY_DD_DISK

• INIT$K_DENSITY_HD_DISK

SYS-411

System Service Descriptions
$1NIT_VOL

SYS-412

For disk volumes that are to be initialized on RX02, RX23 or RX33 diskette
drives, the following values specify how the disk is to be formatted:

• INIT$K_DENSITY _SINGLE_DISK

• INIT$K_DENSITY_DOUBLE_DISK

• INIT$K_DENSITY_DD_DISK

• INIT$K_DENSITY_HD_DISK

Diskettes are initialized as follows:

• RX23 diskettes-DD or HD density

• RX33 diskettes-double density only

• RX02 dual-density diskette drives-single or double density

If you do not specify a density item code for a disk, the system leaves the volume
at the density at which it was last formatted. RX02 disks purchased from Digital
are formatted in single density.

Note ___________ _

Disks formatted in double density cannot be read or written by the
console block storage device (an RXOl drive) of a VAX-11/780 processor
until they have been reformatted in single density.

INIT$_DIRECTORIES
An input item code that specifies the number of entries to preallocate for user
directories. The input buffer must contain a longword value in the range of 16 to
16000. The default value is 16.

The INIT$_DIRECTORIES item code applies only to disks.

INIT$_ERASE
INIT$_NO_ERASE-Default
A Boolean item code that specifies whether deleted data should be physically
destroyed by performing the data security erase (DSE) operation on the volume
before initializing it. The INIT$_ERASE item code applies to the following
devices:

• ODS-2 disk volumes

• ANSI magnetic tape volumes on magnetic tape devices that support the
hardware erase function, for example, TU78 and MSCP magnetic tapes

For disk devices, this item code sets. the ERASE volume attribute, causing each
file on the volume to be erased when it is deleted.

INIT$_EXTENSION
An input item code that specifies, by the number of blocks, the default extension
size for all files on the volume. The extension default is used when a file increases
to a size greater than its initial default allocation during an update. For Files-11
On-Disk Structure Level 2 disks, the buffer must contain a longword value in the
range 0 to 65535. For Files-11 On-Disk Structure Level 1 disks, the input buffer
must contain a longword value in the range of 0 to 255. The default value is 5 for
both Structure Level 1 and Structure Level 2 disks.

System Service Descriptions
$1NIT_VOL

The default extension set by this item code is used only if the following conditions
are in effect:

• No default extension for the file has been set

• No default extension for the process has been set using the SET RMS
command

INIT$_FPROT
An input item code that specifies the default protection that is applied to all
files on the volume. The input buffer must contain a longword protection mask
that contains four 4-bit fields. Each field grants or denies read, write, execute,
and delete access to a category of users. Cleared bits grant access; set bits deny
access. The following diagram depicts the structure of the protection mask.

World Group Owner System

DEWRDEWRDEWRDEWR
151413121110 9 8 7 6 5 4 3 2 1 0

ZK-1592A-GE

The INIT$_FPROT item code applies only to Files-11 On-Disk Structure Level 1
disks and is ignored if it is used on a VMS system. VMS systems use the default
file extension set by the DCL command SET PROTECTION/DEFAULT.

INIT$_HEADERS
An input item code that specifies the number of file headers to be allocated for
the index file. The input buffer must contain a longword value within the range
of 16 to the value set by the INIT$_MAXFILES item code. The default value is
16.

The INIT$_HEADERS item code applies only to disks.

INIT$_HIGHWATER-Default
INIT$_NO_HIGHWATER
A Boolean item code that sets the file highwater mark (FHM) volume attribute,
which guarantees that a user cannot read data that he or she has not written.

INIT$_NO_HIGHWATER disables FHM for a volume.

The INIT$_HIGHWATER and INIT$_NO_HIGHWATER item codes apply only to
Files-11 On-Disk Structure Level 2 disks.

INIT$_1NDEX_BEGINNING
A symbolic item code that places the index file for the volume's directory structure
at the beginning of the volume. By default, the index is placed in the middle of
the volume.

This item code applies only to disks.

INIT$_1NDEX_BLOCK
An input item code that specifies the location of the index file for the volume's
directory structure by logical block number. The input buffer must contain a
longword value specifying the logical block number of the first block of the index
file. By default, the index is placed in the middle of the volume.

The INIT$_INDEX_BLOCK item code applies only to disks.

SYS-413

System Service Descriptions
$1NIT_VOL

SYS-414

INIT$_1NDEX_END
A symbolic item code that places the index file for the volume's directory structure
at the end of the volume. The default is to place the index in the middle of the
volume.

This item code applies only to disks.

INIT$_1NDEX_MIDDLE
A symbolic item code that places the index file for the volume's directory structure
in the middle of the volume. This is the default location for the index.

This item code applies only to disks.

INIT$_LABEL_ACCESS
An input item code that specifies the character to be written in the volume
accessibility field of the VMS ANSI volume label VOLl on an ANSI magnetic
tape. Any valid ANSI "a" characters can be used; these include numbers,
uppercase letters, and any one of the following nonalphanumeric characters:

! "%'()*+,-. /: ;<=>

By default, the VMS operating system provides a routine SYS$MTACCESS that
checks this field in the following manner:

• If the magnetic tape was created on a version of the VMS operating system
that conforms to Version 3 of ANSI, this item code is used to override any
character except an ASCII space.

• If the magnetic tape conforms to an ANSI standard that is later than
Version 3, this item code is used to override any character except an ASCII 1
character.

INIT$_LABEL_ VOLO
An input item code that specifies the text that is written in the owner identifier
field of the VMS ANSI volume label VOLl on an ANSI magnetic tape. The owner
identifier field can contain up to 14 valid ANSI "a" characters.

INIT$_MAXFILES
An input item code that restricts the maximum number of files that the volume
can contain. The input buffer must contain a longword value between 0 and a
value determined by the following calculation:

volume size in blocks
cluster factor + 1

Once initialized, the maximum number of files can be increased only by
reinitializing the volume.

The default maximum number of files is calculated as follows:

volume size in blocks

(cluster factor + 1) * 2

The INIT$_MAXFILES item code applies only to disks.

INIT$_0VR_ACCESS
INIT$_NO _ OVR_ACCESS-Default
A Boolean item code that specifies whether to override any character in the
accessibility field of the VMS ANSI volume label VOLl on an ANSI magnetic
tape. For more information, see the Guide to VMS Files and Devices.

System Service Descriptions
$1NIT_VOL

To specify INIT$_ OVR_ACCESS, the caller must either own the volume or have
VOLPRO privilege.

INIT$_0VR_EXP
INIT$_NO_OVR_EXP-Default
A Boolean item code that specifies whether the caller writes to a magnetic tape
that has not yet reached its expiration date. This item code applies only to the
magnetic tapes that were created before VMS Version 4.0 and that use the D%
format in the volume owner identifier field.

To specify INIT$_0VR_EXP, the caller must either own the volume or have
VOLPRO privilege.

INIT$_0VR_ VOLO
INIT$_NO_OVR_ VOLO-Default
A Boolean item code that allows the caller to override processing of the owner
identifier field of the VMS ANSI volume label VOLl on an ANSI magnetic tape.

To specify INIT$_0VR_VOLO, the caller must either own the volume or have
VOLPRO privilege.

INIT$_0WNER
An input item code that specifies the UIC that will own the volume. The input
buffer must contain a longword value, which is the UIC. The default is the UIC
of the caller.

For magnetic tapes, no UIC is written unless protection on the magnetic tape
is specified. If the INIT$_ VPROT item code is specified but the INIT$_0WNER
item code is not specified, the UIC of the caller is assigned ownership of the
volume.

INIT$_READCHECK
INIT$_NO_READCHECK-Default
A Boolean item code that specifies whether data checking should be performed for
all read operations on the volume. For more information about data checking, see
the VMS I I 0 User's Reference Manual: Part I.

The INIT$_READCHECK item code applies only to disks.

I NIT$_ SIZE
An input item code that specifies the number of blocks allocated for a RAM disk
with a device type of DT$_RAM_DISK. The input buffer must contain a longword
value.

INIT$_STRUCTURE_LEVEL_ 1
INIT$_STRUCTURE_LEVEL_2-Default
Symbolic item codes that specify whether the volume should be formatted in
Files-11 On-Disk Structure Level 1 or Structure Level 2. Structure Level 1 is
incompatible with the following item codes:

• INIT$_READCHECK

• INIT$_ WRITECHECK

• INIT$_CLUSTERSIZE

The default protection for a Structure Level 1 disk is full access to system, owner,
and group users, and read access to all other users.

The INIT$_STRUCTURE_LEVEL_l item code applies only to disks.

SYS-415

System Service Descriptions
$1NIT_VOL

SYS-416

INIT$_USER_NAME
An input item code that specifies the user name that is associated with
the volume. The input buffer must contain a character string from 1 to 12
alphanumeric characters, which is the user name. The default is the user name
of the caller.

INIT$_ VERIFIED
INIT$_NO_ VERIFIED
A Boolean item code that indicates whether the disk contains bad block data.
INIT$_NO_ VERIFIED indicates that any bad block data on the disk should be
ignored. For disks with 4096 blocks or more, the default is INIT$_ VERIFIED.

INIT$_NO_ VERIFIED is the default for the following:

• Disks with fewer than 4096 blocks

• DIGITAL Storage Architecture (DSA) devices

• Disks that are not last-track devices

The INIT$_ VERIFIED item codes apply only to disks.

INIT$_ VPROT
An input item code that specifies the protection that is assigned to the volume.
The input buffer must contain a longword protection mask that contains four
4-bit fields. Each field grants or denies read, write, execute, and delete access to
a category of users. Cleared bits grant access; set bits deny access. The following
diagram depicts the structure of the protection mask.

World Group Owner System

DEWRDEWRDEWRDEWR
151413121110 9 8 7 6 5 4 3 2 1 0

ZK-1592A-G E

The default is the default protection of the caller.

For magnetic tape, the protection code is written to a VMS-specific volume label.
The system applies only read and write access restrictions; execute and delete
access are ignored. Moreover, the system and the owner are always given read
and write access to magnetic tapes, regardless of the protection mask specified.

When you specify a protection mask for a disk volume, access type E (execute)
indicates Create Access.

INIT$_WINDOW
The INIT$_ WINDOW item code specifies the number of mapping pointers to be
allocated for file windows. The input buffer must contain a longword value in the
range 7 to 80. The default is 7.

When a file is opened, the file system uses the mapping pointers to access the
data in the file.

The INIT$_ WINDOW item code applies only to disks.

Description

INIT$_WRITECHECK
INIT$_NO_WRITECHECK-Default

System Service Descriptions
$1NIT_VOL

A Boolean item code that specifies whether data checking should be performed for
all read operations on the volume. For more information about data checking, see
the VMS I I 0 User's Reference Manual: Part I.

INIT$_ WRITECHECK item code applies only to disks.

The Initialize Volume system service formats a disk or magnetic tape volume and
writes a label on the volume. At the end of initialization, the disk is empty except
for the system files containing the structure information. All former contents of
the volume are lost.

A blank magnetic tape can sometimes cause unrecoverable errors when it is read.
$INIT_ VOL attempts to read the volume unless the following three conditions are
in effect:

• INIT$_0VR_ACCESS Boolean item code is specified.

• INIT$_0VR_EXP Boolean item code is specified.

• Caller has VOLPRO privilege.

If the caller has VOLPRO privilege, $INIT_ VOL initializes a disk without
reading the ownership information. Otherwise, the ownership of the volume
is checked.

A blank disk or a diskette with an incorrect format can sometimes cause a fatal
drive error. Such a diskette can be initialized successfully by specifying the
INIT$_DENSITY item code to format the diskette.

Required Privileges
To initialize a particular volume, the caller must either have volume protection
(VOLPRO) privilege or the volume must be one of the following:

• Blank disk or magnetic tape; that is, a volume that has never been written

• Disk that is owned by the caller's UIC or by the UIC [0,0]

• Magnetic tape that allows write access to the caller's UIC or that was not
protected when it was initialized

Required Quota
None

Related Services
$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI,
$GETDVIW, $GETMSG, $GETQUI, $GETQUIW, $MOUNT, $PUTMSG, $QIO,
$QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

The service completed successfully.

The item list or an address specified in the item
list cannot be accessed.

SYS-417

System Service Descriptions
$1NIT_VOL

SS$_BADPARAM

SS$_IVSSRQ

SS$_NOPRIV

SS$_NOSUCHDEV

A buffer length of 0 was specified with a nonzero
item code or an illegal item code was specified.
A concurrent call to SYS$INIT_ VOL is already
active for the process.

The caller does not have sufficient privilege to
initialize the volume.

The specified device does not exist on the host
system.

The $INIT_ VOL service can also return the following condition values, which are
specific to the Initialize Volume utility.

SYS-418

INIT$_ALLOCFAIL

INIT$_BADACCESSED

INIT$_BADBLOCKS

INIT$_BADCLUSTER

INIT$_BADDENS
INIT$_BADDIRECTORIES

INIT$_BADEXTENSION

INIT$_BADHEADERS

INIT$_BADMAXFILES

INIT$_BADOWNID

INIT$_BADRANGE

INIT$_BADVOL1

INIT$_BADVOLACC

INIT$_BADVOLLBL

INIT$_BADWINDOWS

INIT$_BLKZERO

INIT$_CLUSTER

INIT$_CONFQUAL

INIT$_DIAGPACK
INIT$_ERASEFAIL

INIT$_FACTBAD

INIT$_ILLOPT

INIT$_INDEX

INIT$_LARGECNT

Index file allocation failure.

Value for INIT$_ACCESSED item code out of
range.

Invalid syntax in bad block list.

Value for INIT$_CLUSTER_SIZE item code out
of range.

Invalid value for INIT$_DENSITY item code.

Value for INIT$_DIRECTORIES item code out of
range.

Value for INIT$_EXTENSION item code out of
range.

Value for INIT$_HEADER item code out of
range.

Value for INIT$_MAXFILES item code out of
range.

Invalid value for owner ID.

Bad block address not on volume.

Bad VOLl ANSI label.

Invalid value for INIT$_LABEL_ACCESS item
code.

Invalid value for ANSI tape volume label.

Value for INIT$_ WINDOWS item code out of
range.

Block 0 is bad-volume not bootable.

Unsuitable cluster factor.

Conflicting options were specified.
Disk is a diagnostic pack.

Volume not completely erased.

Cannot read factory bad block data.

Item codes not appropriate for the device were
specified.

Invalid index file position.

Disk too large to be supported.

INIT$_MAXBAD

INIT$_MTLBLLONG

INIT$_MTLBLNONA

INIT$_NOBADDATA
INIT$_NONLOCAL

INIT$_NOTRAN

INIT$_NOTSTRUC1

INIT$_UNKDEV

System Service Descriptions
$1NIT_VOL

Bad block table overflow.
Magnetic tape label specified is longer than 6
characters.
Magnetic tape label specified contains non-ANSI
"a" characters.

Bad block data not found on volume.
Device is not a local device.

Logical name cannot be translated.

Options not available with Files-11 On-Disk
Structure Level 1.

Unknown device type.

SYS-419

System Service Descriptions
$LCKPAG

$LCKPAG-Lock Pages in Memory

Format

Returns

Arguments

SYS-420

Locks a page or range of pages in memory. The specified virtual pages are forced
into the working set and then locked in memory. A locked page is not swapped
out of memory if the working set of the process is swapped out. These pages are
not candidates for page replacement and in this sense are locked in the working
set as well.

SYS$LCKPAG inadr ,[retadr] ,[acmode]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

inadr
VMS Usage:
type:
access:
mechanism:

address_range
longword (unsigned)
read only
by reference

Starting and ending virtual addresses of the range of pages to be locked. The
inadr argument is the address of a 2-longword array containing, in order, the
starting and ending process virtual addresses. Only the virtual page number
portion of each virtual address is used; the low-order nine bits are ignored.

If the starting and ending virtual addresses are the same, a single page is locked.

retadr
VMS Usage:
type:
access:
mechanism:

address_range
longword (unsigned)
write only
by reference-array reference or descriptor

Starting and ending process virtual addresses of the pages that $LCKPAG
actually locked. The retadr argument is the address of a 2-longword array
containing, in order, the starting and ending process virtual addresses.

acmode
VMS Usage:
type:
access:
mechanism:

access_mode
longword (unsigned)
read only
by value

Access mode to be associated with the pages to be locked. The acmode argument
is a longword containing the access mode. The $PSLDEF macro defines the four
access modes.

Description

System Service Descriptions
$LCKPAG

The most privileged access mode used is the access mode of the caller. For the
$LCKPAG service to complete successfully, the resultant access mode must be
equal to or more privileged than the access mode already associated with the
pages to be locked.

The Lock Pages in Memory service locks a page or range of pages in memory. The
specified virtual pages are forced into the working set and then locked in memory.
A locked page is not swapped out of memory if the working set of the process is
swapped out. These pages are not candidates for page replacement and in this
sense are locked in the working set as well.

If more than one page is being locked and you need to determine specifically
which pages were previously locked, the pages should be locked one at a time.

If an error occurs while the $LCKPAG service is locking pages, the return array,
if requested, indicates the pages that were successfully locked before the error
occurred. If no pages are locked, both longwords in the return address array
contain the value -1.

Required Privileges
The calling process must have PSWAPM privilege to lock pages into memory.

Required Quota
None

Related Services
You can unlock pages locked in memory with the Unlock Pages from Memory
($ULKPAG) service. Locked pages are automatically unlocked at image exit.

For more information, see the chapter on memory management in the
Introduction to VMS System Services.

Condition Values Returned

SS$_WASCLR

SS$_WASSET

SS$_ACCVIO

SS$_LCKPAGFUL

SS$_NOPRIV

The service completed successfully. All of the
specified pages were previously unlocked.

The service completed successfully. At least one
of the specified pages was previously locked.

The input array cannot be read by the caller; the
output array cannot be written by the caller; or a
page in the specified range is inaccessible or does
not exist.

The. system-defined maximum limit on the
number of pages that can be locked in memory
has been reached.

The process does not have the privilege to lock
pages in memory.

SYS-421

System Service Descriptions
$LKWSET

$LKWSET-Lock Pages in Working Set

Format

Returns

Arguments

SYS-422

Locks a range of pages in the working set; if the pages are not already in the
working set, it brings them in and locks them. A page locked in the working set
does not become a candidate for replacement.

SYS$LKWSET inadr ,[retadr] ,[acmode]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

inadr
VMS Usage:
type:
access:
mechanism:

address_range
longword (unsigned)
read only
by reference

Starting and ending virtual addresses of the range of pages to be locked in
the working set. The inadr argument is the address of a 2-longword array
containing, in order, the starting and ending process virtual addresses. Only the
virtual page number portion of each virtual address is used; the low-order nine
bits are ignored.

If the starting and ending virtual addresses are the same, a single page is locked.

retadr
VMS Usage:
type:
access:
mechanism:

address_range
longword (unsigned)
write only
by reference

Starting and ending process virtual addresses of the range of pages actually
locked by $LCKWSET. The retadr argument is the address of a 2-longword array
containing, in order, the starting and ending process virtual addresses.

acmode
VMS Usage:
type:
access:
mechanism:

access_mode
longword (unsigned)
read only
by value

Access mode to be associated with the pages to be locked. The acmode argument
is a longword containing the access mode. The $PSLDEF macro defines the four
access modes.

Description

System Service Descriptions
$LKWSET

The most privileged access mode used is the access mode of the caller. For the
$LKWSET service to complete successfully, the resultant access mode must be
equal to or more privileged than the access mode already associated with the
pages to be locked.

The Lock Pages in Working Set service locks a range of pages in the working set;
if the pages are not already in the working set, it brings them in and locks them.
A page locked in the working set does not become a candidate for replacement.

If more than one page is being locked and you need to determine specifically
which pages were previously locked, the pages should be locked one at a time.

If an error occurs while the $LKWSET service is locking pages, the return array,
if requested, indicates the pages that were successfully locked before the error
occurred. If no pages are locked, both longwords in the return address array
contain the value -1.

Global pages with write access cannot be locked into the working set.

Required Privileges
None

Required Quota
None

Related Services
You can unlock pages locked in the working set with the Unlock Page from
Working Set ($ULWSET) service.

For more information, see the chapter on memory management in the
Introduction to VMS System Services.

Condition Values Returned

SS$_WASCLR

SS$_WASSET

SS$_ACCVIO

SS$_LKWSETFUL

The service completed successfully. All of the
specified pages were previously unlocked.

The service completed successfully. At least one
of the specified pages was previously locked in
the working set.

The input address array cannot be read by
the caller; the output address array cannot be
written by the caller; or a page in the specified
range is inaccessible or nonexistent.

The locked working set is full. If any more pages
are locked, not enough dynamic pages will be
available to continue execution.

SYS-423

System Service Descriptions
$LKWSET

SS$_NOPRIV

SS$_PAGOWNVIO

SYS-424

A page in the specified range is in the system
address space, or a global page with write access
was specified.

The pages could not be locked because the access
mode associated with the call to $LKWSET was
less privileged than the access mode associated
with the pages that were to be locked.

System Service Descriptions
$MGBLSC

$MGBLSC-Map Global Section

Format

Returns

Arguments

Establishes a correspondence between pages (maps) in the virtual address space
of the process and physical pages occupied by a global section.

SYS$MGBLSC inadr ,[retadr] ,[acmode] ,[flags] ,gsdnam ,[ident] ,[relpag]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

inadr
VMS Usage:
type:
access:
mechanism:

address_range
longword (unsigned)
read only
by reference

Starting and ending virtual addresses in the virtual address space of the process
(either the PO or Pl regions) into which the section is to be mapped. The inadr
argument is the address of a 2-longword array containing, in order, the starting
and the ending process virtual addresses. Only the virtual page number portion
of each virtual address is used; the low-order nine bits are ignored.

If the starting and ending virtual addresses are the same, a single page is
mapped (except when the SEC$M_EXPREG bit is set in the flags argument).

If the SEC$M_EXPREG bit is set in the flags argument, the starting address
(first longword) specified in the inadr argument determines only whether the
section is mapped in the program (PO) region or control (Pl) region; the ending
address (second longword) is ignored.

retadr
VMS Usage:
type:
access:
mechanism:

address_range
longword (unsigned)
write only
by reference

Starting and ending process virtual addresses into which the section was actually
mapped by $MGBLSC. The retadr argument is the address of a 2-longword array
containing, in order, the starting and ending process virtual addresses.

SYS-425

System Service Descriptions
$MGBLSC

SYS-426

acmode
VMS Usage:
type:
access:
mechanism:

access_mode
longword (unsigned)
read only
by value

Access mode to be associated with the pages mapped into the process virtual
address space. The acmode argument is a longword containing the access mode.
The $PSLDEF macro defines symbols for the four access modes.

The most privileged access mode used is the access mode of the caller.

flags
VMS Usage:
type:
access:
mechanism:

mask_longword
longword (unsigned)
read only
by value

Flag mask specifying options for the operation. The flags argument is a longword
bit vector wherein a bit when set specifies the corresponding option.

The $SECDEF macro defines symbolic names for the flag bits. You construct
the flags argument by specifying the symbolic names of each desired option in a
logical OR operation. The following table describes each flag option.

Flag Option

SEC$M_WRT

Description

Map section with read/write access. By default, the section
is mapped with read-only access.

SEC$M_SYSGBL Map a system global section. By default, the section is a
group global section.

SEC$M_EXPREG Map the section in the first available virtual address range.
By default, the section is mapped into the range specified
by the inadr argument.

gsdnam
VMS Usage:
type:
access:
mechanism:

section_name
character-coded text string
read only
by descriptor-fixed length string descriptor

Name of the global section. The gsdnam argument is the address of a character
string descriptor pointing to this name string.

For group global sections, VMS interprets the group UIC as part of the global
section name; thus, the names of global sections are unique to UIC groups.
Further, all global section names are implicitly qualified by their identification
fields.

Description

ident
VMS Usage:
type:
access:
mechanism:

section_id
quadword (unsigned)
read only
by reference

System Service Descriptions
$MGBLSC

Identification value specifying the version number of a global section, and, for
processes mapping to an existing global section, the criteria for matching the
identification. The ident argument is the address of a quadword structure
containing three fields.

The first longword specifies, in the low-order three bits, the matching criteria.
Their valid values, the symbolic names by which they can be specified, and their
meanings are as follows.

Value/Name

0 SEC$K_MATALL

1 SEC$K_MATEQU

2 SEC$K_MATLEQ

Match Criteria

Match all versions of the section.

Match only if major and minor identifications match.

Match if the major identifications are equal and the
minor identification of the mapper is less than or equal
to the minor identification of the global section.

The version number is in the second longword and contains two fields: a minor
identification in the low-order 24 bits and a major identification in the high-order
8 bits.

If you do not specify ident or specify it as the value 0 (the default), the version
number and match control fields default to the value 0.

relpag
VMS Usage:
type:
access:
mechanism:

longword_ unsigned
longword (unsigned)
read only
by value

Relative page number within the section of the first page to be mapped. The
relpag argument is a longword containing this number.

If you do not specify relpag or specify it as the value 0 (the default), the global
section is mapped beginning with the first virtual block in the section.

The Map Global Section service establishes a correspondence between pages
(maps) in the virtual address space of the process and physical pages occupied by
a global section. The protection mask specified at the time the global section is
created determines the type of access (for example, read/write or read only) that a
particular process has to the section.

When $MGBLSC maps a global section, it adds pages to the virtual address
space of the process. The section is mapped from a low address to a high address,
whether the section is mapped in the program or control region.

SYS-427

System Service Descriptions
$MGBLSC

If an error occurs during the mapping of a global section, the return address
array, if specified, indicates the pages that were successfully mapped when the
error occurred. If no pages were mapped, both longwords of the return address
array contain the value -1.

Required Privileges
None

Required Quota
The working set limit quota (WSQUOTA) of the process must be sufficient to
accommodate the increased size of the virtual address space when the $MGBLSC
service maps a section.

If the section pages are copy-on-reference, the process must also have sufficient
paging file quota (PGFLQUOTA).

This system service causes the working set of the calling process to be adjusted to
the size specified by the working set quota (WSQUOTA). If the working set size
of the process is less than quota, the working set size is increased; if the working
set size of the process is greater than quota, the working set size is decreased.

Related Services
$ADJSTK, $ADJWSL, $CRETVA, $CRMPSC, $DELTVA, $DGBLSC, $EXPREG,
$LCKPAG, $LKWSET, $PURGWS, $SETPRT, $SETSTK, $SETSWM, $ULKPAG,
$ULWSET, $UPDSEC, $UPDSECW

For more information, see the chapter on memory management in the
Introduction to VMS System Services.

Condition Values Returned

SYS-428

SS$_NORMAL

SS$_ACCVIO

SS$_ENDOFFILE

SS$_EXQUOTA

SS$_INSFWSL

SS$_INTERLOCK

SS$_IVLOGNAM

SS$_IVSECFLG

SS$_IVSECIDCTL

The service completed successfully.

The input address array, the global section name
or name descriptor, or the section identification
field cannot be read by the caller; or the return
address array cannot be written by the caller.

The starting virtual block number specified is
beyond the logical end-of-file.

The process exceeded its paging file quota,
creating copy-on-reference pages.

The working set limit of the process is not large
enough to accommodate the increased virtual
address space.

The bit map lock for allocating global sections
from the specified shared memory is locked by
another process.

The global section name has a length of 0 or has
more than 15 characters.

You set a reserved flag.

The match control field of the global section
identification is invalid.

SS$_NOPRIV

SS$_NOSUCHSEC

SS$_PAGOWNVIO

SS$_SHMNOTCNCT

SS$_TOOMANYLNAM

88$_ VASFULL

System Service Descriptions
$MGBLSC

The file protection mask specified when the
global section was created prohibits the type of
access requested by the caller; or a page in the
input address range is in the system address
space.

The specified global section does not exist.

A page in the specified input address range is
owned by a more privileged access mode.

The shared memory named in the gsdnam
argument is not known to the system. This
error can be caused by a spelling error in the
string, an improperly assigned logical name, or
the failure to identify the memory as shared at
system generation time.

Logical name translation of the gsdnam string
exceeded the allowed depth.

The virtual address space of the process is full;
no space is available in the page tables for the
pages created to contain the mapped global
section.

SYS-429

System Service Descriptions
$MOD_HOLDER

$MOD_HOLDER-Modify Holder Record in Rights Database

Format

Returns

Arguments

SYS-430

Modifies the specified holder record of the target identifier in the rights database.

SYS$MOD_HOLDER id ,holder ,[set_attrib] ,[clr_attrib]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

id
VMS Usage:
type:
access:
mechanism:

rights_id
longword (unsigned)
read only
by value

Binary value of target identifier whose holder record is modified when $MOD_
HOLDER completes execution. The id argument is a longword containing the
identifier value.

holder
VMS Usage:
type:
access:
mechanism:

rights_holder
quadword (unsigned)
read only
by reference

Identifier of holder being modified when $MOD_HOLDER completes execution.
The holder argument is the address of a quadword containing the DIC identifier
of the holder in the first longword and the value of 0 in the second longword.

set_attrib
VMS Usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Bit mask of attributes to be enabled for the identifier when $MOD_HOLDER
completes execution. The set_attrib argument is a longword containing the
attribute mask.

The attributes actually enabled are the intersection of those specified and the
attributes of the identifier. If you specify the same attribute in set_attrib and
clr _attrib, the attribute is enabled.

Description

System Service Descriptions
$MOD_HOLDER

Symbol values are offsets to the bits within the longword. You can also obtain the
values as masks with the appropriate bit set using the prefix KGB$M rather than
KGB$V. The following symbols for each bit position are defined in the system
macro library ($KGBDEF).

Bit Position

KGB$V _DYNAMIC

KGB$V _RESOURCE

clr_attrib

Meaning When Set

Allows the unprivileged holder to add or remove the
identifier from the process rights list.

Allows the holder to charge resources, such as disk
blocks, to the identifier.

VMS Usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Bit mask of attributes to be disabled for the identifier when $MOD_HOLDER
completes execution. The clr_attrib argument is a longword containing the
attribute mask.

If you specify the same attribute in set_attrib and clr_attrib, the attribute is
enabled.

Symbol values are offsets to the bits within the longword. You can also obtain the
values as masks with the appropriate bit set using the prefix KGB$M rather than
KGB$V. The following symbols for each bit position are defined in the system
macro library ($KGBDEF).

Bit Position

KGB$V _DYNAMIC

KGB$V _RESOURCE

Meaning When Set

Allows the unprivileged holder to add or remove the
identifier from the process rights list.

Allows the holder to charge resources, such as disk
blocks, to the identifier.

The Modify Holder Record in Rights Database service modifies the specified
holder record in the rights database. Identifier attributes can be added or
removed, or both.

When you specify both the set_attrib and clr_attrib arguments, the attribute is
cleared first. Thus, if you specify the same attribute bit with each argument, the
result is that the bit is set.

Required Privileges
You need write access to the rights database to use this service. If the database is
in SYS$SYSTEM (the default), you need SYSPRV privilege to grant write access
to the database.

Required Quota
None

SYS-431

System Service Descriptions
$MOD_HOLDER

Related Services
$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CHANGE_ACL, $CHECK_
ACCESS, $CHKPRO, $CREATE_RDB, $ERAPAT, $FIND_HELD, $FIND_
HOLDER, $FINISH_RDB, $FORMAT_ACL, $FORMAT_AUDIT, $GRANTID,
$HASH_PASSWORD, $IDTOASC, $MOD_IDENT, $MTACCESS, $PARSE_ACL,
$REM_HOLDER, $REM_IDENT, $REVOKID

Condition Values Returned

SYS-432

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_INSFMEM

SS$_IVIDENT

SS$_NOSUCHID

RMS$_PRV

The service completed successfully.

The holder argument cannot be read by the
caller.

The specified attributes contain invalid attribute
flags.

The process dynamic memory is insufficient for
opening the rights database.

The specified identifier or holder identifier is of
invalid format.

The specified identifier does not exist in the
rights database, or the specified holder identifier
does not exist in the rights database.

The user does not have write access to the rights
database.

Because the rights database is an indexed file accessed with VMS RMS, this
service can also return RMS status codes associated with operations on indexed
files. For descriptions of these status codes, refer to the VMS Record Management
Services Manual.

System Service Descriptions
$MOD_IDENT

$MOD_IDENT-Modify Identifier in Rights Database

Format

Returns

Arguments

Modifies the specified identifier record in the rights database.

SYS$MOD_IDENT id ,[set_attrib] ,[clr_attrib] ,[new_name] ,[new_value]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

id
VMS Usage:
type:
access:
mechanism:

rights_id
longword (unsigned)
read only
by value

Binary value of identifier whose identifier record is modified when $MOD_IDENT
completes execution. The id argument is a longword containing the identifier
value.

set_attrib
VMS Usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Bit mask of attributes to be enabled for the identifier when $MOD_IDENT
completes execution. The set_attrib argument is a longword containing the
attribute mask.

The attributes actually enabled are the intersection of those specified and the
attributes of the identifier. If you specify the same attribute in set_attrib and
clr_attrib, the attribute is enabled.

Symbol values are offsets to the bits within the longword. You can also obtain the
values as masks with the appropriate bit set using the prefix KGB$M rather than
KGB$V. The following symbols for each bit position are defined in the system
macro library ($KGBDEF).

SYS-433

System Service Descriptions
$MOD_IDENT

SYS-434

Bit Position

KGB$V _DYNAMIC

KGB$V _RESOURCE

clr_attrib

Meaning When Set

Allows the unprivileged holder to add or remove the
identifier from the process rights list.

Allows the holder to charge resources, such as disk
blocks, to the identifier.

VMS Usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Bit mask of attributes to be disabled for the identifier when $MOD_IDENT
completes execution. The clr _attrib argument is a longword containing the
attribute mask.

If you specify the same attribute in set_attrib and clr_attrib, the attribute is
enabled.

Symbol values are offsets to the bits within the longword. You can also obtain the
values as masks with the appropriate bit set using the prefix KGB$M rather than
KGB$V. The following symbols for each bit position are defined in the system
macro library ($KGBDEF).

Bit Position Meaning When Set

KGB$V _DYNAMIC Allows the unprivileged holder to add or remove the
identifier from the process rights list.

KGB$V _RESOURCE Allows the holder to charge resources, such as disk
blocks, to the identifier.

new_name
VMS Usage:
type:
access:
mechanism:

char _string
character-coded text string
read only
by descriptor-fixed length string descriptor

New name to be given to the specified identifier. The new_name argument is the
address of the descriptor pointing to the identifier name string.

An identifier name consists of 1 to 31 alphanumeric characters including dollar
signs ($) and underscores (_), and must contain at least one nonnumeric
character. Any lowercase characters specified are automatically converted to
uppercase.

new_value
VMS Usage:
type:
access:
mechanism:

rights_id
longword (unsigned)
read only
by value

New value to be assigned to the specified identifier. The new_value argument
is a longword containing the binary value of the specified identifier. When the
identifier value is changed, $MOD_IDENT also changes the value of the identifier
in all of the holder records in which the specified identifier appears.

Description

System Service Descriptions
$MOD_IDENT

The Modify Identifier in Rights Database service modifies the specified identifier
record in the rights database. Identifier attributes can be added or removed. The
identifier name or value can be changed. When you specify both the set_attrib
and clr _attrib arguments, the attribute is cleared first. Thus, if you specify the
same attribute bit with each argument, the result is that the bit is set.

Required Privileges
You need write access to the rights database to use this service. If the database is
in SYS$SYSTEM (the default), you need SYSPRV privilege to grant write access
to the database.

Required Quota
None

Related Services
$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CHANGE_ACL, $CHECK_
ACCESS, $CHKPRO, $CREATE_RDB, $ERAPAT, $FIND_HELD, $FIND_
HOLDER, $FINISH_RDB, $FORMAT_ACL, $FORMAT_AUDIT, $GRANTID,
$HASH_PASSWORD, $IDTOASC, $MOD_HOLDER, $MTACCESS, $PARSE_
ACL, $REM_HOLDER, $REM_IDENT, $REVOKID

Condition Values Returned

SS$_NORMAL

SS$_NOSUCHID

SS$_BADPARAM

SS$_DUPIDENT

SS$_DUPLNAM

SS$_INSFMEM

SS$_IVIDENT

RMS$_PRV

The service completed successfully.

The specified identifier does not exist in the
rights database.

The specified attributes contain invalid attribute
flags.

The specified identifier value already exists.

The specified identifier name already exists in
the rights database.

The process dynamic memory is insufficient for
opening the rights database.

The specified identifier is of invalid format.

The user does not have write access to the rights
database.

Because the rights database is an indexed file accessed with VMS RMS, this
service can also return RMS status codes associated with operations on indexed
files. For descriptions of these status codes, refer to the VMS Record Management
Services Manual.

SYS-435

System Service Descriptions
$MOUNT

$MOUNT-Mount Volume

Format

Returns

Argument

Mounts a tape, disk volume, or volume set and specifies options for the mount
operation.

SYS$MOUNT itmlst

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

itmlst
VMS Usage:
type:
access:
mechanism:

item_list_3
longword (unsigned)
read only
by reference

Item list specifying options for the mount operation. The itmlst argument is
the address of a list of item descriptors, each of which specifies an option and
provides the information needed to perform the operation.

The item list must include at least one device item descriptor and is terminated
by a longword value of 0.

The following diagram depicts the format of a single item descriptor.

31 15 0

Item Code l Buffer Length

Buffer Address

Return Length Address

ZK-1705-GE

Item Descriptor Fields

buffer length

SYS-436

A word specifying the length (in bytes) of the buffer that supplies the information
$MOUNT needs to process the specified item code. The required length of
the buffer depends upon the item code specified in the item code field of the
item descriptor. If the value of the buffer length field is too small, $MOUNT
truncates the data.

Item Codes

item code

System Service Descriptions
$MOUNT

A word containing a user-supplied symbolic code that specifies an option for the
mount operation. The $MNTDEF macro defines these codes.

buffer address
A longword containing the address of the buffer that supplies information to
$MOUNT.

return length address
This field is not used.

MNT$_ACCESSED
The MNT$_ACCESSED item code specifies the number of directories that will be
in use, concurrently, on the volume. The buffer must contain a longword integer
value in the range 0 to 255. This value overrides the number of directories
specified when the volume was initialized. To specify MNT$_ACCESSED, the
caller must have OFER privilege. The MNT$_ACCESSED item code applies only
to disks.

MNT$_BLOCKSIZE
The MNT$_BLOCKSIZE item code specifies the default block size for tape
volumes. The buffer must contain a longword integer value in the range 20 to
65,532 bytes for VMS RMS operations or 10 to 65,534 bytes for operations that do
not use VMS RMS. The MNT$_BLOCKSIZE item code applies only to tapes.

If you do not specify MNT$_BLOCKSIZE, the default block size is 2048 bytes for
Files-11 tape volumes and 512 bytes for foreign and unlabeled tapes.

You must specify MNT$_BLOCKSIZE when mounting (1) tapes that do not have
ANSI HDR2 labels, (2) tapes to which data will be written from compatibility
mode, and (3) tapes that are to contain records whose size is larger than the
default value.

MNT$_COMMENT
The MNT$_COMMENT item code specifies text to be associated with an operator
request. The buffer must contain a character string of no more than 78
characters. This text will be printed on the operator's console if an operator
request is issued for the device being mounted.

MNT$_DENSITY
The MNT$_DENSITY item code specifies the density at which data is to be
written to a foreign or unlabeled tape. The buffer must contain a longword value
that specifies one of the following legal densities: 800, 1600, or 6250 bpi. The
MNT$_DENSITY item code applies only to tapes.

The specified density will be used only if (1) the tape is foreign or unlabeled and
(2) the first operation is a write.

MNT$_DEVNAM
The MNT$_DEVNAM item code specifies the name of the device to be mounted.
The buffer must contain a character string of from 1 to 64 characters, which is
the device name. The device name can be a physical device name or a logical
name; if it is a logical name, it must translate to a physical device name.

SYS-437

System Service Descriptions
$MOUNT

SYS-438

The MNT$_DEVNAM item code must appear at least once in an item list, and
it can appear more than once. It appears more than once when a volume set
is being mounted, because, in this case, one device is being mounted for each
volume in the volume set.

MNT$_EXTENSION
The MNT$_EXTENSION item code specifies the number of blocks by which files
will be extended. The buffer must contain a longword value in the range 0 to
65,535. The MNT$_EXTENSION item code applies only to disks.

MNT$_EXTENT
The MNT$_EXTENT item code specifies the size of the extent cache in units of
extent pointers. The buffer must contain a longword value, which specifies this
size. To specify MNT$_EXTENT, you need OPER privilege. The value 0 (the
default) disables caching. The MNT$_EXTENT item code applies only to disks.

MNT$_FILEID
The MNT$_FILEID item code specifies the size of the file-ID cache in units of file
numbers. The buffer must contain a longword value, which specifies this size. To
specify MNT$_FILEID, you need OPER privilege. The value 1 disables caching.
The MNT$_FILEID item code applies only to disks.

MNT$_FLAGS
The MNT$_FLAGS item code specifies a two longword bit vector wherein each bit
specifies an option for the mount operation. The buffer must contain a quadword,
which is the bit vector.

The $MNTDEF macro defines symbolic names for each option (bit) in the bit
vector. You construct the bit vector by specifying the symbolic names for the
desired options in a logical OR operation. In the first longword you logically
OR the MNT$M_ mask bits, and in the second longword you logically OR the
MNT2$M_ mask bits. The following table describes the symbolic names for each
option. The MNT2$M_ options are at the end of the table.

Option

MNT$M_FOREIGN

MNT$M_GROUP

Description

The volume is to be mounted as a foreign volume;
a foreign volume is not Files-11 structured. If you
specify MNT$M_FOREIGN, the following item codes
can each appear in the item list only once: MNT$_
DEVNAM, MNT$_ VOLNAM, and MNT$_LOGNAM.
To specify MNT$M_FOREIGN, the caller must
either own the volume or have VOLPRO privilege.

The logical name for the volume to be mounted
is entered in the group logical name table, and
the volume is made accessible to other users with
the same UIC group number as that of the calling
process. To specify MNT$M_GROUP, the caller
must have GRPNAM privilege. MNT$M_GROUP
applies only to disks.

Option

MNT$M_INCLUDE

MNT$M_MULTI_ VOL

MNT$M_NOASSIST

MNT$M_NOCOPY

Description

System Service Descriptions
$MOUNT

Automatically reconstructs a shadow set to the state
it was in before the shadow set was dissolved
(due to dismounting or system failure). Use
this option to mount a shadow set or a volume
set of shadow sets. You must specify the exact
name of the original virtual unit and the device
name of at least one of the shadow set members.
The shadowing software reads the shadow set
membership information from the named device to
determine the membership of the original shadow
set. You can include the MNT$M_INCLUDE
option in executable images to have a shadow set
reconstructed. Using MNT$M_INCLUDE prevents
your having to manually reinstate shadow sets after
they have been dismounted.
If you do not select this option, $MOUNT does not
automatically reconstruct the former shadow set.

Specifies, for foreign or unlabeled magnetic tapes,
that subsequent volumes can be processed by
overriding MOUNT's access checks. You can use
this option when a utility that supports multivolume
magnetic tape sets needs to process subsequent
volumes, and these volumes do not contain labels
that MOUNT can interpret. You need VOLPRO
privilege to specify the MNT$M_MULTI_ VOL
option. MNT$M_MULTI_ VOL can only be used
with the MNT$M_FOREIGN option.
Digital recommends the use of this qualifier
only when it is not possible to alter the utility
to explicitly perform MOUNT and DISMOUNT
operations on each reel in the set.

$MOUNT does not request operator assistance if
errors are encountered during the mount operation.
If not specified, $MOUNT requests operator
assistance to recover from some error conditions.

Disables full copy operations on all physical devices
being mounted or added to a shadow set. This
option provides you with the opportunity to confirm
the states of all of the devices or members of a
shadow set before proceeding with any full copy
operation. This prevents any accidental loss of data
that could occur if an unintended device is added to
the shadow set.
If you do not select this option, $MOUNT
automatically overwrites the data on shadow set
members that are not current. When you select
this option, a $MOUNT operation fails if any of the
specified potential shadow set members require full
copy operations.

SYS-439

System Service Descriptions
$MOUNT

Option

MNT$M_NODISKQ

MNT$M_NOHDR3

MNT$M_NOLABEL

MNT$M_NOREBUILD

MNT$M_NOUNLOAD

SYS-440

Description

Disk quotas are not to be enforced for the volume
to be mounted. If not specified, disk quotas are
enforced. To specify MNT$M_NODISKQ, the caller
must either own the volume or have VOLPRO
privilege. MNT$M_NODISKQ applies only to disks.

ANSI HDR3 and HDR4 labels are not to be written
to magnetic tapes as they are mounted. If not
specified, ANSI HDR3 and HDR4 labels are written
to all tapes.
Use MNT$M_NOHDR3 when writing to volumes
that will be read by a system, such as the RT-11
system, which does not process HDR3 and HDR4
labels correctly. MNT$M_NOHDR3 applies only to
tapes.

The volume is to be mounted as a foreign volume;
a foreign volume is not Files-11 structured. If you
specify MNT$M_NOLABEL, the following item
codes can each appear in the item list only once:
MNT$_DEVNAM, MNT$_ VOLNAM, and MNT$_
LOGNAM. To specify MNT$M_NOLABEL, the
caller must either own the volume or have VOLPRO
privilege.

The volume to be mounted should be returned
to active use immediately, without performing a
rebuild operation. This flag defers the disk rebuild
operation, so that the volume to be mounted is
returned to active use immediately. A rebuild
operation can consume a considerable amount
of time, depending on the number of files on the
volume and on the number of different file owners (if
quotas are in use). The volume can be rebuilt later
with the DCL command SET VOLUME/REBUILD
to recover the free space; for more information, see
the VMS DCL Dictionary.
If a disk volume is improperly dismounted, for
example, during a system failure, it must be rebuilt
to recover any caching limits that were enabled on
the volume at the time of the dismount. By default,
$MOUNT attempts to rebuild.
When mounting a volume set, you must mount all
members of the set to reclaim all available free
space.
MNT$M_NOREBUILD applies only to disks.

The volume to be mounted is not to be unloaded
when it is dismounted. Specifying MNT$M_
NOUNLOAD causes the volume to remain loaded
when it is dismounted unless the dismount explicitly
requests that the volume be unloaded.

Option

MNT$M_NOWRITE

MNT$M_OVR_ACCESS

MNT$M_OVR_EXP

MNT$M_OVR_IDENT

MNT$M_OVR_LOCK

MNT$M_OVR_SETID

Description

System Service Descriptions
$MOUNT

The volume to be mounted is software write locked.
If not specified, the volume is assumed to have read
and write access.

If the installation allows, this option overrides any
character in the accessibility field of the volume.
The necessity of this option is defined by the
installation. That is, each installation has the
option of specifying a routine that the magnetic tape
file system will use to process this field. By default,
VMS provides a routine that checks this field in the
following manner:

• If the magnetic tape was created on a version
of VMS that conforms to Version 3 of ANSI,
then you must use this option to override any
character other than an ASCII space.

• If a VMS protection is specified and that
magnetic tape conforms to an ANSI standard
that is higher than Version 3, then you must use
this option to override any character other than
an ASCII 1.

To specify MNT$M_ OVR_ACCESS, the caller must
either own the volume or have VOLPRO privilege.
MNT$M_ OVR_ACCESS applies only to tapes.

A tape that has not yet reached its expiration date
can be overwritten. To specify MNT$M_ OVR_EXP,
the caller must own the volume or have VOLPRO
privilege.

You can mount the volume without specifying the
volume name (by using the MNT$_VOLNAM item
code). If specified, the following options must not be
specified: MNTM_GROUP, MNTM_SHARE, and
MNT$M_SYSTEM.

The software write lock that occurs when a volume
has a corrupted storage bit mask can be overridden.

Checks on the volume set identification are not to be
performed when subsequent reels in the volume set
are mounted. MNT$M_OVR_SETID applies only to
tapes.

SYS-441

System Service Descriptions
$MOUNT

Option

MNT$M_ OVR_SHAMEM

MNT$M_READCHECK

MNT$M_SHARE

MNT$M_MESSAGE

MNT$M_SYSTEM

MNT$M_ WRITECHECK

MNT$M_ WRITETHRU

MNT$M_NOMNTVER

SYS-442

Description

Allows you to mount former shadow set members
outside of the shadow set. If you do not specify this
option, $MOUNT automatically mounts the volume
write-locked to prevent accidental deletion of data.
To specify this option, you must either own the
volume or have VOLPRO privilege.
When you use this option, the shadow set generation
number is erased from the volume. If you then
remount the volume in the former shadow set,
$MOUNT considers it an unrelated volume and
marks it for a full copy operation.

Read checks are to be performed following all read
operations.

Volume is to be mounted shared and is therefore
accessible to other users. MNT$M_SHARE applies
only to disks.
If the volume was previously mounted shared by
another user and MNT$M_SHARE is specified in
the current call, all other options specified in the
current call are ignored.
If the caller allocated the device and specified
MNT$M_SHARE in the call to $MOUNT, $MOUNT
will deallocate the device so that other users can
access the volume.

Messages will be sent to the caller's SYS$0UTPUT
device.

The logical name for the volume to be mounted
is entered in the system logical name table, and
the volume is made accessible to all other users,
provided that DIC-based protection allows access to
the volume. To specify MNT$M_SYSTEM, the caller
must have SYSNAM privilege. MNT$M_SYSTEM
applies only to disks.

Write checks are to be performed after all write
operations.

Write-back caching is disabled so that file headers
are written back to disk with every write operation.
If not specified, file headers are cached until
the file is closed. Caching file headers improves
performance at the risk of losing written data if the
system fails. MNT$M_ WRITETHRU applies only to
disks.

The volume is not marked as a candidate for
automatic mount verification. If not specified,
the volume is marked as a candidate for mount
verification.

Option

MNT$M_NOCACHE

MNT$M_NOAUTO

MNT$M_INIT_CONT

Description

System Service Descriptions
$MOUNT

All caching associated with the volume is turned
off. Specifying MNT$M_NOCACHE is equivalent
to (1) specifying MNT$M_ WRITETHRU, (2)
specifying a value of 1 for the item descriptor
MNT$_FILEID, and (3) specifying a value of 0
for the item descriptors MNT$M_EXTENT and
MNT$M_QUOTA. MNT$M_NOCACHE applies only
to disks.

Automatic volume labeling (AVL) and automatic
volume recognition (AVR) are to be disabled. If
MNT$M_NOAUTO is specified, the operator must
enter commands from the console to process each
additional volume in a volume set. When a volume
is finished processing, the operator specifies the
drive on which the next volume is loaded and the
label name of the next volume. You might want to
use MNT$M_NOAUTO to disable AVL and AVR
when not reading a volume set sequentially.
You can enable AVL and AVR by specifying
MNT$M_INIT_CONT. MNT$M_NOAUTO applies
only to magnetic tapes.

Additional volumes in the volume set are to be
initialized without operator intervention. $MOUNT
initializes new volumes with the protections
specified for the first magnetic tape of the volume
set and creates unique volume label names for up to
99 volumes in a volume set.

If MNT$M_INIT_CONT is specified, you must
allocate multiple magnetic tape drives to the volume
set. If $MOUNT switches to a drive that has no
magnetic tape loaded or has the wrong magnetic
tape loaded or if $MOUNT tries to read a magnetic
tape that is not loaded, it notifies the operator
to load the correct magnetic tape. $MOUNT will
dismount and unload volumes as soon as they have
been read or written. The operator can load the next
volume in the volume set before the current reel of
the volume set reaches the end of the magnetic tape.

If writing to the volume set, $MOUNT automatically
(1) switches to the next magnetic tape drive,
(2) initializes that magnetic tape with the same
volume name and protection as specified in the
volume labels of the first volume in the set, and (3)
notifies the operator that the switch has occurred.
If reading the volume set, $MOUNT generates the
label for the next volume in the volume set and
reads that volume.

SYS-443

System Service Descriptions
$MOUNT

Option

MNT$M_CLUSTER

MNT$M_OVR_ VOLO

SYS-444

Description

The label name that $MOUNT generates for each
additional volume in the volume set consists of six
characters: the first four characters are the same
as the first four characters of the label name of
the previous volume; the fifth and sixth characters
represent the number of the volume in the volume
set.
MNT$M_INIT_CONT applies only to magnetic
tapes.

The volume is to be mounted for clusterwide access;
that is, every node on the cluster can access the
volume. $MOUNT mounts the volume first on the
caller's node and then on every other node in the
existing V AXcluster.
Only system or group volumes can be mounted
clusterwide. If you do not specify MNT$M_
GROUP or MNT$M_SYSTEM, $MOUNT mounts
the volume as a system volume, provided the
caller has SYSNAM privilege. To mount a group
volume clusterwide, the caller must have GRPNAM
privilege. To mount a system volume clusterwide,
the caller must have SYSNAM privilege.
MNT$M_CLUSTER has no effect if the system is
not a member of a VAXcluster. MNT$M_CLUSTER
applies only to disks.

The volume label's owner identifier field is not to
be processed. $MOUNT reads volume owner and
protection information from the volume owner
field of the volume labels.
VMS requires that you specify MNT$M_OVR_ VOLO
to process magnetic tapes when all of the following
conditions exist: (1) the volume was created on a
Digital operating system other than VMS; (2) the
volume was initialized with a protection specified;
and (3) the volume conforms to the Version 3 ANSI
label standard.
To specify MNT$M_OVR_VOLO, the caller must
either have VOLPRO privilege or own the volume.
MNT$M_OVR_ VOLO applies only to tapes.

Option

MNT$M_TAPE_DATA_
WRITE

MNT2$M_COMPACTION

MNT2$M_OVR_NOFE

MNT$_LIMIT

Description

System Service Descriptions
$MOUNT

Enables the tape controller's write cache for this
device. Enabling the write cache improves data
throughput for write operations. By default, the
tape controller's write cache is disabled for the
device.
This option applies only to tape systems that
support a write cache.

This bit mask enables data compaction for those
magnetic tapes that support data compaction.

This bit mask is set to override those SCSI devices
that do not support forced error functionality.
By overriding those SCSI devices not supporting
forced error capabilities, MNT2$M_OVR_NOFE
enables those devices to be mounted. Otherwise, the
shadowing code would report to $MOUNT that the
device does not support forced error, and the device
would not be mounted.

The MNT$_LIMIT item code specifies the maximum amount of free space in
the extent cache. The buffer must contain a longword value, which specifies the
amount of free space in units of tenths of a percent of the disk's total free space.
The MNT$_LIMIT item code applies only to disks.

MNT$_LOGNAM
The MNT$_LOGNAM item code specifies a logical name for the volume; this
logical name is equated to the device name specified by the first MNT$_DEVNAM
item code. The buffer must contain a character string from 1 to 64 characters,
which is the logical name.

Unless you specify MNT$M_GROUP or MNT$M_SYSTEM, the logical name is
entered in the process logical name table.

MNT$_0WNER
The MNT$_0WNER item code specifies the UIC to be assigned ownership of the
volume. The buffer must contain a longword octal value, which is the UIC. If
the volume is Files-11 structured, the specified value overrides the ownership
recorded on the volume. You need either VOLPRO privilege or ownership of the
volume to assign a UIC to a Files-11 structured volume.

MNT$_PROCESSOR
For magnetic tapes and Files-11 On-Disk Structure Level 1 disks, MNT$_
PROCESSOR specifies the name of the ancillary control process (ACP) that is to
process the volume. The specified ACP overrides the default ACP associated with
the device.

For Files-11 On-Disk Structure Level 2 disks, MNT$_PROCESSOR controls block
cache allocation.

To specify MNT$_PROCESSOR, the caller must have OPER privilege.

SYS-445

System Service Descriptions
$MOUNT

SYS-446

The buffer must contain a character string specifying either the string UNIQUE,
a device name, or a file specification. Following is a description of the action
taken for each of these cases.

String

UNIQUE

ddcu

file spec

MNT$_QUOTA

Description

For magnetic tapes and Files-11 Structure Level 1 disks,
UNIQUE specifies that $MOUNT create a new process to execute
a copy of the default ACP image associated with the device
specified by the MNT$_DEVNAM item code.
For Files-11 Structure Level 2 disks, UNIQUE allocates a
separate block cache.

For magnetic tapes and Files-11 Structure Level 1 disks, ddcu
specifies that $MOUNT use the ACP process currently being used
by the device ddcu. The device specified must be in the format
ddcu, for example, DRA3.
For Files-11 Structure Level 1 disks, ddcu specifies that
$MOUNT take the block allocation from the specified device.

Specifies that $MOUNT create a new process to execute the ACP
image with the file specification filespec. Wildcard characters are
not allowed in the file specification. The file must be in the disk
and directory specified by the logical name SYS$SYSTEM. This
operation requires CMKRNL privilege.

The MNT$_QUOTA item code specifies the size of the quota record cache in units
of quota records. The buffer must contain a longword value, which is this size. To
specify MNT$_QUOTA, you need OPER privilege. The value 0 disables caching.
The MNT$_ QUOTA item code applies only to disks.

MNT$_RECORDSIZ
The MNT$_RECORDSIZ item code specifies the number of characters in each
record and is used with MNT$_BLOCKSIZE to specify the data formats for
foreign volumes. The buffer must contain a longword value less than or equal to
the block size. The MNT$_RECORDSIZ item code applies only to tapes.

If you do not specify MNT$_RECORDSIZ, the record size is assumed to be equal
to the block size.

MNT$_SHAMEM
The MNT$_SHAMEM item code specifies the name of a physical device to be
added to the shadow set, represented by the virtual unit specified in the MNT$_
SHANAM item descriptor. The buffer is a 1- to 64-character string containing the
device name. The device name can be a physical device name or a logical name;
if it is a logical name, it must translate to a physical device name.

To be valid, an item list must contain at least one item descriptor specifying
a member. This item descriptor must appear after the MNT$_SHANAM item
descriptor.

MNT$_SHAMEM_COPY
The MNT$_SHAMEM_COPY item code specifies the name of a device to be
added to the shadow set represented by the virtual unit specified in the MNT$_
SHANAM item descriptor. The buffer is a 1- to 64-character string containing the

System Service Descriptions
$MOUNT

device name. The device name can be a physical device name or a logical name;
if it is a logical name, it must translate to a physical device name.

MNT$_SHAMEM_MGCOPY
The MNT$_SHAMEM_MGCOPY item code specifies the name of a device to be
added to the shadow set represented by the virtual unit specified in the MNT$_
SHANAM item descriptor. The buffer is a 1- to 64-character string containing the
device name. The device name may be a physical device name or a logical name;
if it is a logical name, it must translate to a physical device name.

MNT$_SHANAM
The MNT$_SHANAM item code specifies the name of the virtual unit to be
mounted. The buffer is a 1- to 64-character string containing the device name.
The virtual unit name may be a logical name; if it is a logical name, it must
translate to a virtual unit name.

Because every shadow set is represented by a virtual unit, you must include
at least one MNT$_SHANAM item descriptor in the item list that you pass to
$MOUNT to create and mount the shadow set. If you are mounting a volume set
containing more than one shadow set, you must include one MNT$_SHANAM
item descriptor for each virtual unit included in the volume set.

The relative position of the item descriptors in the item list determines the
membership of the shadow set. That is, it indicates which members should be
bound to a specific virtual unit to form the shadow set. You must first specify
the virtual unit by using the MNT$_SHANAM item code. Then, you can specify
any number of members that are to be represented by that virtual unit by using
one of the following item codes: MNT$_SHAMEM, ,MT$_SHAMEM_COPY, or
MNT$_SHAMEM_MGCOPY. If you specify one shadow set and want to specify
a second, specify a second virtual unit item descriptor. The members you specify
subsequently are bound to the shadow set represented by the virtual unit
specified in the second virtual unit item descriptor.

MNT$_VOLNAM
The MNT$_VOLNAM item code specifies the name of the volume to be mounted
on the device. The buffer must contain a character string from 1 to 12 characters,
which is the volume name.

The MNT$_ VOLNAM item code can appear more than once in an item list; it
appears more than once when a volume set is being mounted because, in this
case, one volume name is given to each volume in the volume set.

When a disk volume set is being mounted, you must specify MNT$_DEVNAM
and MNT$_ VOLNAM once for each volume of the volume set. The $MOUNT
service mounts the volume specified by the first MNT$_ VOLNAM item code on
the device specified by the first MNT$_DEVNAM item code in the item list; it
mounts the volume specified by the second MNT$_ VOLNAM code on the device
specified by the second MNT$_DEVNAM code, and so on for all specified volumes
and devices. Thus, there must be an equal number of these two item codes in the
item list.

When a tape volume set is being mounted, the number of MNT$_DEVNAM item
codes specified need not be equal to the number of MNT$_ VOLNAM item codes
specified, because more than one volume can be mounted on the same device.

SYS-447

System Service Descriptions
$MOUNT

Description

SYS-448

MNT$_VOLSET
The MNT$_VOLSET item code specifies the name of a volume set. The buffer
must contain a character string from 1 to 12 alphanumeric characters, which is
the volume set name.

When you specify MNT$_ VOLSET, volumes specified by the MNT$_ VOLNAM
item code are bound into a new volume set or added to an existing volume set,
depending on whether the name specified by MNT$_ VOLSET is a new or already
existing name.

When you specify MNT$_ VOLSET to add volumes to an existing volume set, the
root volume (RVNl) must either (1) already be mounted or (2) be specified first
(by the MNT$_DEVNAM and MNT$_ VOLNAM item codes) in the item list.

When you specify MNT$_ VOLSET to create a new volume set, the first volume
specified (by the MNT$_DEVNAM and MNT$_ VOLNAM item codes) in the item
list becomes the root volume.

MNT$_VPROT
The MNT$_ VPROT item code specifies the protection to be assigned to the
volume. The buffer must contain a longword protection mask, which specifies the
four types of access allowed to the four categories of user.

The protection mask consists of four 4-bit fields. Each field grants or denies
read, write, logical, and· physical access to a category of users. Cleared bits grant
access; set bits deny access. The following diagram depicts the structure of the
protection mask.

World Group Owner System

PLWRPLWRPLWRPLWR
151413121110 9 8 7 6 5 4 3 2 1 0

ZK-1715-GE

If you do not specify MNT$_ VPROT or specify it as the value 0, the volume
receives the protection that it was assigned when it was initialized. To specify
MNT$_ VPROT for a Files-11 structured volume, the caller must either own the
volume or have VOLPRO privilege.

MNT$_WINDOW
The MNT$_ WINDOW item code specifies the number of mapping pointers to be
allocated for file windows. The buffer must contain a longword value in the range
7 to 80. This value overrides the default value that was applied when the volume
was initialized. The MNT$_ WINDOW item code applies only to disks.

When a file is opened, the file system uses the mapping pointers to access the
data in the file. To specify MNT$_ WINDOW, you need OPER privilege.

The Mount Volume service mounts a tape, disk volume, or volume set and
specifies options for the mount operation.

When a subprocess mounts a private volume without explicitly allocating the
device, the master process of the job becomes the owner of this device. This
provision is necessary because the subprocess can be deleted and the volume
should remain privately mounted for this job.

System Service Descriptions
$MOUNT

When a subprocess explicitly allocates a device and then mounts a private volume
on this device, this subprocess retains the device ownership. In this case, only
subprocesses of the device owner, and processes with SHARE privilege, have
access to the device.

The $MOUNT service uses the following system resources to mount volumes with
group or systemwide access allowed:

• Nonpaged pool

• Paged pool

When $MOUNT mounts a disk volume, the logical name DISK$volume-label
is always created. If you specify a logical name in the mount request that is
different from DISK$volume-label, there will be two logical names associated
with the device.

If the logical name of a volume is in a process-private table, then the name is not
deleted when the volume is dismounted.

Required Privileges
To mount a particular volume, the caller must either own or have privilege to
access the specified volume or volumes. The privileges required depend on the
operation and are listed with the item codes that specify the operation.

The calling process must have TMPMBX or PRMMBX privilege to perform an
operator-assisted mount.

Required Quota
None

Related Services
$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI,
$GETDVIW, $GETMSG, $GETQUI, $GETQUIW, $INIT_ VOL, $PUTMSG, $QIO,
$QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_NOGRPNAM

SS$_NOOPER

SS$_NOPRIV

SS$_NOSUCHDEV

SS$_NOSYSNAM

The service completed successfully.

The item list or an address specified in the item
list cannot be accessed.

A buffer length of 0 was specified with a nonzero
item code; an illegal item code was specified; or
no device was specified.

The caller does not have GRPNAM privilege.

The caller does not have the required OPER
privilege.

The caller does not have sufficient privilege to
access a specified volume.

The specified device does not exist on the host
system.

The caller does not have SYSNAM privilege.

SYS-449

System Service Descriptions
$MOUNT

SYS-450

The $MOUNT service can also return a condition value that is specific to
the Mount Utility. The symbolic definition macro $MOUNDEF defines these
condition values. For information about how to obtain these symbolic codes, see
the Introduction to VMS System Services.

System Service Descriptions
$MTACCESS

$MTACCESS-Magnetic Tape Accessibility

Format

Returns

Arguments

Allows installations to provide their own routine to interpret and output the
accessibility field in the VOLl and HDRl labels of an ANSI labeled magnetic
tape.

SYS$MTACCESS lblnam ,[uic] ,[std_version] ,[access_char] ,[access_spec] ,type

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section. For the output of a
label, the value returned in the low byte in RO is the access_char to write to the
label.

lblnam
VMS Usage:
type:
access:
mechanism:

address
longword (unsigned)
read only
by reference

ANSI label to be processed. The lblnam argument is the address of a longword
containing the label. On input, the label passed is either the VOLl or HDRl
label read from the magnetic tape; on output oflabels, the value of this field is 0.
The type of label passed is determined by type.

uic
VMS Usage:
type:
access:
mechanism:

uic
longword (unsigned)
read only
by value

UIC of the user performing the operation. The uic argument is a longword
containing the UIC.

std_ version
VMS Usage:
type:
access:
mechanism:

longword_ unsigned
longword (unsigned)
read only
by value

Decimal equivalent of the ANSI standard version read from the VOLl label. The
std_ version argument is a longword containing the standard version number.

SYS-451

System Service Descriptions
$MTACCESS

Description

SVS-452

access_char
VMS Usage:
type:
access:
mechanism:

longword_ unsigned
longword (unsigned)
read only
by value

Accessibility character specified by the user. The access_char argument is a
byte containing the accessibility character used for the output of labels.

access_spec
VMS Usage:
type:
access:
mechanism:

longword_ unsigned
longword (unsigned)
read only
by value

Value specifying whether the accessibility character passed in access_char was
specified by the user. The access_spec argument is a byte containing one of the
following values.

Value

MTA$K_CHARVALID

MTA$K_NOCHAR

Meaning

Yes

No

This argument is used only for the output of labels.

type
VMS Usage:
type:
access:
mechanism:

longword_ unsigned
longword (unsigned)
read only
by value

Type of accessibility field to process. The type argument is a byte containing one
of the following values.

Value

MTA$K_INVOL1

MTA$K_INHDR1

MTA$K_OUTVOL1

MTA$K_OUTHDR1

Meaning

Input a VOLl label

Input a HDRl label

Output a VOLl label

Output a HDRl label

The $MTACCESS service allows installations to provide their own routine to
interpret and output the accessibility field in the VOLl and HDRl labels of
ANSI labeled magnetic tapes. The installation can override the default routine
by providing an MTACCESS.EXE executive loaded image. See the Introduction
to VMS System Services for the procedure for loading an installation-specific
executive loaded image.

The default installation routine first checks the ANSI standard version of the
label. For magnetic tapes with a version number of 3 or less, the routine outputs
either a blank or the character you specified. On input of these magnetic tapes,
the routine checks for a blank and returns the value SS$_FILACCERR if the field
is not blank.

System Service Descriptions
$MTACCESS

For magnetic tapes with a version number greater than 3, the routine outputs
either the character specified by the access_char argument or an ASCII 1 if no
character was specified. On input of these magnetic tapes, the routine checks
for a blank. If the field is blank, RO is set to 0. In that case, you are given full
access and VMS protection is not checked. If the field contains an ASCII 1, and
the VOLl Implementation Identifier field contains the VMS system code, RO is set
to SS$_NORMAL. In that case, the VMS protection is checked.

If the field is not blank and does not contain an ASCII 1, RO is set to SS$_
FILACCERR, which forces you to override accessibility checking and allows the
magnetic tape file system to check VMS protection.

The following summarizes the results of label input check.

Contents of RO

SS$_NORMAL

0

SS$_FILACCERR

Result

Check the VMS protection on the magnetic tape.

Give the user full access. VMS protection is not checked.

Check for explicit override, then check VMS protection.

Note that the default accessibility routine does not output SS$_NOVOLACC or
SS$_NOFILACC. These statuses are included for the installation's use, and the
magnetic file system handles these cases.

The magnetic tape file system calls $MTACCESS to process the accessibility field
in the VOLl and HDRl labels. After a call to the system service, the magnetic
tape file system checks to ensure that the installation did not move the magnetic
tape. If the magnetic tape was moved, the magnetic tape file system completes
the current operation with an SS$_TAPEPOSLOST error. Finally, it processes
the remainder of the label according to the status returned by $MTACCESS.

Required Privileges
Because accessibility is an installation-provided routine, VMS cannot determine
which users have the authority to override the processing of this field. However,
the magnetic tape file system allows only operator class users to deal with blank
magnetic tapes so that a user must have both OPER and VOLPRO privileges to
initialize or mount blank magnetic tapes.

Required Quota
None

Related Services
$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CHANGE_ACL, $CHECK_
ACCESS, $CHKPRO, $CREATE_RDB, $ERAPAT, $FIND_HELD, $FIND_
HOLDER, $FINISH_RDB, $FORMAT_ACL, $FORMAT_AUDIT, $GRANTID,
$HASH_PASSWORD, $IDTOASC, $MOD_HOLDER, $MOD_IDENT, $PARSE_
ACL, $REM_HOLDER, $REM_IDENT, $REVOKID

SYS-453

System Service Descriptions
$MTACCESS

Condition Values Returned

SYS-454

SS$_NORMAL

SS$_FILACCERR

SS$_NOFILACC

SS$_NOVOLACC

The service completed successfully.

The accessibility characteristic in the HDRl
label is not blank and you cannot access the file
without overriding the field.

The user has no access to the file.

The user has no access to the volume.

System Service Descriptions
$NUMTIM

$NUMTIM-Convert Binary Time to Numeric Time

Format

Returns

Arguments

Converts an absolute or delta time from 64-bit system time format to binary
integer date and time values.

SYS$NUMTIM timbuf ,[timadr]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

timbuf
VMS Usage: vector_word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Buffer into which $NUMTIM writes the converted date and time. The numtim
argument is the address of a 7-word structure. The following diagram depicts the
fields in this structure.

31 15 0

month of year year since O

hour of day day of month

second of minute minute of hour

hundredths of second

ZK-1716-GE

If the timadr argument specifies a delta time, $NUMTIM returns the value 0
in the year since 0 and month of year fields. It returns in the day of month
field the number of days specified by the delta time, which must be less than
10,000 days.

SYS-455

System Service Descriptions
$NUMTIM

timadr
VMS Usage:
type:
access:
mechanism:

date_time
quadword
read only
by reference

The 64-bit time value to be converted. The timadr argument is the address of
a quadword containing this time. A positive-time value represents an absolute
time, while a negative time value indicates a delta time.

If you do not specify timadr, $NUMTIM returns the current system time.

If timadr specifies the value 0, $NUMTIM returns the base date (November 17,
1858).

Condition Values Returned

SYS-456

SS$_NORMAL

SS$_ACCVIO

SS$_IVTIME

The service completed successfully.

The 64-bit time value cannot be read by the
caller, or the buffer cannot be written by the
caller.

The specified delta time is equal to or greater
than 10,000 days.

System Service Descriptions
$PARSE_ACL

$PARSE_ACL-Parse Access Control List Entry

Format

Returns

Arguments

Parses the specified text string and converts it into the binary representation for
an access control list entry (ACE).

SYS$PARSE_ACL aclstr ,aclent ,[errpos] ,[accnam] ,[nullarg]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

aclstr
VMS Usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Formatted ACE that is parsed when $PARSE_ACL completes execution. The
aclstr argument is the address of a string descriptor pointing to the text string to
be parsed.

aclent
VMS Usage:
type:
access:
mechanism:

char _string
character-coded text string
write only
by descriptor-fixed length string descriptor

Description of the ACE that is parsed when $PARSE_ACL completes execution.
The aclent argument is the address of a descriptor pointing to the buffer in
which the ACE is written. The first byte of the buffer contains the length of the
ACE; the second byte contains a value that identifies the type of ACE, which in
turn defines the format of the ACE. For information about the ACE types and
their associated formats, see $FORMAT_ACL.

errpos
VMS Usage:
type:
access:
mechanism:

word_ unsigned
word (unsigned)
write only
by reference

Number of characters from aclstr processed by $PARSE_ACL. The errpos
argument is the address of a word that receives the number of characters actually
processed by the service. If the service fails, this count points to the failing point
in the string.

SYS-457

System Service Descriptions
$PARSE_ACL

Description

SVS-458

accnam
VMS Usage: access_bit_names
type: longword (unsigned)
access: read only
mechanism: by reference

Names of the bits in the access mask when $PARSE_ACL is executing. The
accnam argument is the address of an array of 32 quadword descriptors that
define the names of the bits in the access mask. Each element points to the name
of a bit. The first element names bit 0, the second element names bit 1, and so
on. If you omit accnam, the following names are used.

Bit Name

Bit 0 READ

Bit 1 WRITE

Bit 2 EXECUTE

Bit 3 DELETE

Bit 4 CONTROL

Bit 5 BIT_5

Bit 6 BIT_6

Bit 31 BIT_31

nullarg
VMS Usage:
type:

null_arg
longword (unsigned)
read only access:

mechanism: by value

Placeholding argument reserved by Digital.

The Parse Access Control List Entry service parses the specified text string and
converts it into the binary representation for an access control list entry (ACE).

Required Privileges
None

Required· Quota
None

Related Services
$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CHANGE_ACL, $CHECK_
ACCESS, $CHKPRO, $CREATE_RDB, $ERAPAT, $FIND_HELD, $FIND_
HOLDER, $FINISH_RDB, $FORMAT_ACL, $FORMAT_AUDIT, $GRANTID,
$HASH_PASSWORD, $IDTOASC, $MOD_HOLDER, $MOD_IDENT,
$MTACCESS, $REM_HOLDER, $REM_IDENT, $REVOKID

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_IVACL

System Service Descriptions
$PARSE_ACL

The service completed successfully.

The string or its descriptor cannot be read by the
caller; the buffer descriptor cannot be read by the
caller; the buffer cannot be written by the caller;
or the buffer is too small to hold the ACL entry.

The format of the access control list entry is not
valid.

SYS-459

System Service Descriptions
$PROCESS_SCAN

$PROCESS_SCAN-Process Scan

Format

Returns

Arguments

SYS-460

Creates and initializes a process context that is used by $GETJPI to scan
processes on the local system or across the nodes in a VAX.cluster system.

SYS$PROCESS_SCAN pidctx [,itmlst]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

pidctx
VMS Usage:
type:
access:
mechanism:

process_id
longword (unsigned)
modify
by reference

Context value supplied by $PROCESS_SCAN to be used as the pidadr argument
of $GETJPI. The pidctx argument is the address of a longword that is to receive
the process context longword. This longword normally contains 0 or a previous
context. If it contains a previous context, the old context is deleted. If it contains
a value other than 0 or a previous context, the old value is ignored.

itmlst
VMS Usage:
type:
access:
mechanism:

item_list_3
longword (unsigned)
read only
by reference

Item list specifying selection criteria to be used by the scan or to control the scan.

The itmlst argument is the address of a list of item descriptors, each of which
describes one selection criterion or control option. Within each selection criterion
you can include several item entries. The list of item descriptors is terminated by
a longword of 0.

The information in the item list is passed to the item descriptor in one of two
ways. If the item descriptor can always hold the actual value of the selection
criterion, the value is placed in the second longword of the item descriptor and
the buffer length is specified as 0. If the item descriptor points to the actual
value of the selection criterion, the address of the value is placed in the second
longword of the item descriptor and you must specify the buffer length for the
selection criterion. Each item code description specifies whether the information
is passed by value or by reference.

System Service Descriptions
$PROCESS_ SCAN

The following diagram depicts the format of an item descriptor that passes the
selection criterion as a value.

31 15 0

Item Code l 0

Item Value

Item-Specific Flags

ZK-0949A-GE

The following diagram depicts the format of an item descriptor that passes the
selection criterion by reference.

31

Item Descriptor Fields

buffer length

Item Code

15

I
Buffer Address

Item-Specific Flags

0

Buffer Length

ZK-0948A-GE

Buffer length is specified in a different way for the two types of item descriptors:

• Character string or reference descriptors:

A word containing a user-supplied integer specifying the length (in bytes) of
the buffer from which $PROCESS_SCAN retrieves a selection criterion. The
length of the buffer needed depends on the item code specified in the item
descriptor.

• Immediate value descriptors:

The length of the buffer is always specified as 0.

item code
A word containing the selection criterion. These codes are defined by the
$PSCANDEF macro.

Each item code is described after this list of descriptor fields.

item value
A longword containing the actual value of the selection criterion. When you
specify an item code that is passed by value, $PROCESS_SCAN searches for the
actual value contained in the item list. See the description of the buffer address
field for information about item codes that are passed by reference.

SYS-461

System Service Descriptions
$PROCESS_SCAN

Item Codes

SYS-462

buffer address
A longword containing the user-supplied address of the buffer from which
$PROCESS_SCAN retrieves information needed by the scan. When you specify
an item code that is passed by reference, $PROCESS_SCAN uses the address
as a pointer to the actual value. See the description of the item value field for
information about item codes that are passed by value.

item-specific flags
A longword that contains flags to help control selection information. Item-specific
flags, for example EQL or NEQ, are used to specify how the value specified in the
item descriptor is compared to the process value.

These flags are defined by the $PSCANDEF macro. Some flags are common to
multiple item codes; other flags are specific to an individual item code. See the
description of each item code to determine which flags are used.

For item codes that describe bit masks or character strings, these flags control
how the bit mask or character string is compared with that in the process. By
default, they are compared for equality.

For item codes that describe integers, these flags specify an arithmetic
comparison of an integer item with the process attribute. For example, a
PSCAN$M_GTR selection specifying the value 4 for the item code PSCAN$_PRIB
finds only the processes with a base priority above 4. Without one of these flags,
the comparison is for equality.

PSCAN$_ACCOUNT
When you specify PSCAN$_ACCOUNT, $GETJPI returns information about
processes that match the account field.

If the string supplied in the item descriptor is shorter than the account field,
the string is blank-padded for the comparison unless the item-specific flag
PSCAN$M_PREFIX_MATCH is present.

Because the information is a character string, the selection value is passed
by reference. The length of the buffer is placed in the first word of the item
descriptor and the address of the buffer is placed in the second longword.

Although the current length of the account field is 8 bytes, the PSCAN$_
ACCOUNT buffer can be up to 64 bytes in length. If the buffer length is 0 or
greater than 64, the SS$_IVBUFLEN error is returned.

PSCAN$_AUTHPRI
When you specify PSCAN$_AUTHPRI, $GETJPI returns information about
processes that match the authorized base priority field.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS-12.

PSCAN$_CURPRIV
When you specify PSCAN$_CURPRIV, $GETJPI returns information about
processes that match the current privilege field. Privilege bits are defined by the
$PRVDEF macro.

System Service Descriptions
$PROCESS_ SCAN

Because the bit mask information is too long to be passed by value, the
information is passed by reference. The privilege buffer must be exactly 8
bytes, otherwise the SS$_IVBUFLEN error is returned.

The flags that can be used with this item code are listed in Table SYS-12.

PSCAN$_GET JPl_BUFFER_SIZE
When you specify PSCAN$_GETJPI_BUFFER_SIZE, you determine the size of a
buffer to be used by $GETJPI to process multiple requests in a single message.
Using this item code can greatly improve the performance of scans on remote
nodes, because fewer messages are needed. This item code is ignored during
scans on the local node.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0. The
buffer is allocated by $PROCESS_SCAN; you do not have to allocate a buffer.

If you use PSCAN$_GETJPI_BUFFER_SIZE with $PROCESS_SCAN, all calls to
$GETJPI using the context established by $PROCESS_SCAN must request the
same item code information. Because $GETJPI locates information for more than
one process at a time, it is not possible to change the item codes or the length of
the buffers used in the $GETJPI item list. $GETJPI checks each call and returns
the error SS$_BADPARAM if an attempt is made to change the item list during
a buffered process scan. However, the buffer addresses can be changed between
$GETJPI calls.

Because the locating and buffering of information by $GETJPI is transparent to a
calling program, you are not required to change the way $GETJPI is called when
you use this item code.

The $GETJPI buffer uses the process quota BYTLM. If the buffer is too large
for the process quota, $GETJPI (not $PROCESS_SCAN) returns the error SS$_
EXBYTLM. If the buffer specified is not large enough to contain the data for at
least one process, $GETJPI returns the error SS$_BADPARAM.

No item-specific flags are used with PSCAN$_GETJPI_BUFFER_SIZE.

PSCAN$_GRP
When you specify PSCAN$_GRP, $GETJPI returns information about processes
that match the UIC group number.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. Because the value of the group number is a
word, the high-order word of the value is ignored. The buffer length must be
specified as 0.

The flags that can be used with this item code are listed in Table SYS-12.

PSCAN$_HW_MODEL
When you specify PSCAN$_HW_MODEL, $GETJPI returns information about
processes that match the specified CPU hardware model number.

The hardware model number is an integer, such as VAX$K_ V8840. The VAX$
symbols are defined by the $VAXDEF macro.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS-12.

SYS-463

System Service Descriptions
$PROCESS_SCAN

SYS-464

PSCAN$_HW_NAME
When you specify PSCAN$_HW_NAME, $GETJPI returns information about
processes that match the specified CPU hardware name, such as VAX-11/780,
VAX 8800, or VAXstation II/GPX.

Because the information is a character string, the selection value is passed by
reference. The length of the selection value is placed in the first word of the item
descriptor and the address of the buffer is placed in the second longword.

The PSCAN$_HW_NAME buffer can be up to 128 bytes in length. If the buffer
length is 0 or greater than 128, the SS$_IVBUFLEN error is returned.

The flags that can be used with this item code are listed in Table SYS-12.

PSCAN$_JOBPRCCNT
When you specify PSCAN$_JOBPRCCNT, $GETJPI returns information
about processes that match the subprocess count for the job (the count of all
subprocesses in the job tree).

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS-12.

PSCAN$_JOBTYPE
When you specify PSCAN$_JOBTYPE, $GETJPI returns information about
processes that match the job type. The job type values include the following.

Value

JPI$K_LOCAL

JPI$K_DIALUP

JPI$K_REMOTE

JPI$K_BATCH

JPI$K_NETWORK

JPI$K_DETACHED

Description

Local interactive process

Interactive process accessed by a modem line

Interactive process accessed by using SET HOST

Batch process

N oninteractive network process

Detached process

These values are defined by the $JPIDEF macro. Note that values checked by
PSCAN$_JOBTYPE are similar to PSCAN$_MODE values.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS-12.

PSCAN$_MASTER_PID
When you specify PSCAN$_MASTER_PID, $GETJPI returns information about
processes that are descendants of the specified parent process. The master
process is the first process created in the job tree. The PSCAN$_0WNER item is
similar, but the owner process is the process that created the target process (the
owner process might itself be a subprocess). Although all jobs in a job tree must
have the same master, they can have different owners.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS-12.

PSCAN$_MEM

System Service Descriptions
$PROCESS_SCAN

When you specify PSCAN$_MEM, $GETJPI returns information about processes
that match the UIC member number.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. Because the value of the member number is a
word, the high-order word of the value is ignored. The buffer length must be
specified as 0.

The flags that can be used with this item code are listed in Table SYS-12.

PSCAN$_MODE
When you specify PSCAN$_MODE, $GETJPI returns information about processes
that match the specified mode. Mode values include the following.

Value

JPI$K_INTERACTIVE

JPl$K_BATCH

JPI$K_NETWORK

JPI$K_OTHER

Description

Interactive process

Batch job

Noninteractive network job

Detached and other process

These values are defined by the $JPIDEF macro. Note that values checked by
PSCAN$_MODE are similar to PSCAN$_JOBTYPE values.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS-12.

PSCAN$_NODE_ CSID
When you specify PSCAN$_NODE_CSID, $GETJPI returns information about
processes on the specified nodes. To scan all nodes in a VAX.cluster system, you
specify a CSID of 0 and the item-specific flag PSCAN$M_NEQ.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS-12.

PSCAN$_NODENAME
When you specify PSCAN$_NODENAME, $GETJPI returns information about
processes that match the specified node names.

To scan all of the nodes in a VAX.cluster system, specify the node name using an
asterisk wildcard (*) and the PSCAN$M_ WILDCARD item-specific flag.

Because the information is a character string, the selection value is passed by
reference. The length of the selection value is placed in the first word of the item
descriptor and the address of the buffer is placed in the second longword.

Although the current length of the node name is 6 bytes, the PSCAN$_
NODENAME buffer can be up to 64 bytes in length. If the buffer length is 0
or greater than 64, the SS$_IVBUFLEN error is returned.

The flags that can be used with this item code are listed in Table SYS-12.

SYS-465

System Service Descriptions
$PROCESS_SCAN

SYS-466

PSCAN$_0WNER
When you specify PSCAN$_0WNER, $GETJPI returns information about
processes that are immediate descendants of the specified process. The PSCAN$_
MASTER_PID item is similar, but the owner process is the process that created
the target process (the owner process might itself be a subprocess). Although all
jobs in a job tree must have the same master, they can have different owners.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS-12.

PSCAN$_PRCCNT
When you specify PSCAN$_PRCCNT, $GETJPI returns information about
processes that match the subprocess count (the count of all immediate
descendants of a given process). The PSCAN$_JOBPRCCNT item code is similar,
except that JOBPRCCNT is the count of all subprocesses in a job.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS-12.

PSCAN$_PRCNAM
When you specify PSCAN$_PRCNAM, $GETJPI returns information about
processes that match the specified process names.

The process name string is blank-padded for the comparison unless the item
specific flag PSCAN$M_PREFIX_MATCH is present.

Because the information is a character string, the selection value is passed by
reference. The length of the selection value is placed in the first word of the item
descriptor and the address of the buffer is placed in the second longword.

Although the current length of the process name field is 15 bytes, the PSCAN$_
PRCNAM buffer can be up to 64 bytes in length. If the buffer length is 0 or
greater than 64, the SS$_IVBUFLEN error is returned.

The flags that can be used with this item code are listed in Table SYS-12.

PSCAN$_PRI
When you specify PSCAN$_PRI, $GETJPI returns information about processes
that match current priority. Note that the current priority of a process can be
temporarily increased as a result of system events such as the completion of I/O.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS-12.

PSCAN$_PRIB
When you specify PSCAN$_PRIB, $GETJPI returns information about processes
that match base priority.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS-12.

PSCAN$_STATE

System Service Descriptions
$PROCESS_ SCAN

When you specify PSCAN$_STATE, $GETJPI returns information about processes
that match the specified process state. State values, for example SCH$C_COM
and SCH$C_PFW, are defined by the $STATEDEF macro.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS-12.

PSCAN$_STS
When you specify PSCAN$_,STS, $GETJPI returns information that matches the
current status mask. Without any item-specific flags, the match is for a process
mask that is equal to the pattern. Status bits, for example PCB$V _ASTPEN or
PCB$V _PSWAPM, are defined by the $PCBDEF macro.

This bit mask item code uses an immediate value descriptor; the selection value
is placed in the second longword of the item descriptor. The buffer length must
be specified as 0.

The flags that can be used with this item code are listed in Table SYS-12.

PSCAN$_ TERMINAL
When you specify PSCAN$_TERMINAL, $GETJPI returns information that
matches the specified terminal names. The terminal name string is blank-padded
for the comparison unless the item-specific flag PSCAN$M_PREFIX_MATCH is
present.

Because the information is a character string, the selection value is passed by
reference. The length of the selection value is placed in the first word of the item
descriptor and the address of the buffer is placed in the second longword.

Although the current length of the terminal name field is 8 bytes, the PSCAN$_
TERMINAL buffer can be up to 64 bytes in length. If the buffer length is 0 or
greater than 64, the SS$_IVBUFLEN error is returned.

The flags that can be used with this item code are listed in Table SYS-12.

PSCAN$_UIC
When you specify PSCAN$_UIC, $GETJPI returns information about processes
that match the UIC identifier. To convert an alphanumeric identifier name to the
internal identifier, use the $ASCTOID system service before calling $PROCESS_
SCAN.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS-12.

PSCAN$_USERNAME
When you specify PSCAN$_USERNAME, $GETJPI returns information about
processes that match the specified user name.

The user name string is blank-padded for the comparison unless the item-specific
flag PSCAN$M_PREFIX_MATCH is present.

Because the information is a character string, the selection value is passed by
reference. The length of the selection value is placed in the first word of the item
descriptor and the address of the buffer is placed in the second longword.

SYS-467

System Service Descriptions
$PROCESS_ SCAN

Although the current length of the user name field is 12 bytes, the PSCAN$_
USERNAME buffer can be up to 64 bytes in length. If the buffer length is 0 or
greater than 64, the SS$_IVBUFLEN error is returned.

Table SYS-12 lists the flags and the item codes that can be used together.

Table SYS-12 Flags Used with $PROCESS_SCAN

Item-Specific Flag

PSCAN$M_OR

PSCAN$M_EQL

PSCAN$M_NEQ

PSCAN$M_GEQ

PSCAN$M_GTR

PSCAN$M_LEQ

PSCAN$M_LSS

PSCAN$M_ CASE_
BLIND

PSCAN$M_PREFIX_
MATCH

PSCAN$M_
WILD CARD

PSCAN$M_BIT_ALL

PSCAN$M_BIT_ANY

Description

Match this value or the next value

Match value exactly (the default)

Match if value is not equal

Match if value is greater than or
equal to

Match if value is greater than

Match if value is less than or equal
to

Match if value is less than

Match without regard to case of
letters

Match on leading substring

Match a wildcard pattern

All bits set in pattern set in target

Any bit set in pattern set in target

Common to
the Following
$PROCESS_SCAN
Item Codes

All except
_BUFFER_SIZE

All except
_BUFFER_SIZE

All except
_BUFFER_SIZE

_AUTHPRI

_GRP

_JOBPRCCNT

_PRI

_PRIB

_ACCOUNT

_HW_NAME

_NODENAME
_PRCNAM
_TERMINAL
_USERNAME

_CURPRIV

_STS

Item-Specific Flags

PSCAN$M_BIT _ALL

SYS-468

If the PSCAN$M_BIT _ALL flag is used, all bits set in the pattern mask specified
by the item descriptor must also be set in the process mask. Other bits in the
process mask can also be set.

For item codes that describe bit masks, such as privilege masks and status words,
this flag controls how the pattern bit mask specified by the item descriptor is
compared with that in the process. By default, the bit masks are compared for
equality.

The PSCAN$M_BIT_ALL flag is used only with bit masks.

PSCAN$M_BIT _ANY
If the PSCAN$M_BIT_ANY flag is used, a match occurs if any bit in the pattern
mask is also set in the process mask.

System Service Descriptions
$PROCESS_SCAN

For item codes that describe bit masks, such as privilege masks and status words,
this flag controls how the pattern bit mask specified by the item descriptor is
compared with that in the process. By default, the bit masks are compared for
equality.

The PSCAN$M_BIT_ANY flag is used only with bit masks.

PSCAN$M_CASE_BLIND
When you specify PSCAN$M_CASE_BLIND to compare the character string
specified by the item descriptor with the character string value from the process,
$PROCESS_SCAN does not distinguish between uppercase and lowercase letters.

The PSCAN$M_CASE_BLIND flag is used only with character-string item codes.
The PSCAN$M_CASE_BLIND flag can be specified with either the PSCAN$M_
PREFIX_MATCH flag or the PSCAN$M_ WILDCARD flag.

PSCAN$M_EQL
When you specify PSCAN$M_EQL, $PROCESS_SCAN compares the value
specified by the item descriptor with the value from the process to see if there is
an exact match.

PSCAN$M_EQL and PSCAN$M_NEQ are used with bit masks, character strings,
and integers to control how the item is interpreted. Only one of the flags can
be specified; if more than one of these flags is used the SS$_IVSSRQ error is
returned. If you want to specify that bits not set in the pattern mask must not be
set in the process mask, use PSCAN$M_EQL.

PSCAN$M_GEQ
When you specify PSCAN$M_GEQ, $PROCESS_SCAN selects a process if the
value from the process is greater than or equal to the value specified by the item
descriptor.

PSCAN$M_GEQ, PSCAN$M_GTR, PSCAN$M_ LEQ and PSCAN$M_LSS are
used with integer item codes only. Only one of these four flags can be specified; if
more than one of these flags is used the SS$_IVSSRQ error is returned.

PSCAN$M_GTR
When you specify PSCAN$M_GTR, $PROCESS_SCAN selects a process if the
value from the process is greater than the value specified by the item descriptor.

PSCAN$M_GEQ, PSCAN$M_GTR, PSCAN$M_LEQ, and PSCAN$M_LSS are
used with integer item codes only. Only one of these four flags can be specified; if
more than one of these flags is used the SS$_IVSSRQ error is returned.

PSCAN$M_LEQ
When you specify PSCAN$M_LEQ, $PROCESS_SCAN selects a process if the
value from the process is less than or equal to the value specified by the item
descriptor.

PSCAN$M_GEQ, PSCAN$M_GTR, PSCAN$M_LEQ, and PSCAN$M_LSS are
used with integer item codes only. Only one of these four flags can be specified; if
more than one of these flags is used the SS$_IVSSRQ error is returned.

PSCAN$M_LSS
When you specify PSCAN$M_LSS, $PROCESS_SCAN selects a process if the
value from the process is less than the value specified by the item descriptor.

SYS-469

System Service Descriptions
$PROCESS_SCAN

SYS-470

PSCAN$M_GEQ, PSCAN$M_GTR, PSCAN$M_LEQ, and PSCAN$M_LSS are
used with integer item codes only. Only one of these four flags can be specified; if
more than one of these flags is used the SS$_IVSSRQ error is returned.

PSCAN$M_NEQ
When you specify PSCAN$M_NEQ, $PROCESS_SCAN selects a process if the
value from the process is not equal to the value specified by the item descriptor.

PSCAN$M_EQL and PSCAN$M_NEQ are used with bit masks, character strings,
and integers to control how the item is interpreted. Only one of the flags can
be specified; if more than one of these flags is used the SS$_IVSSRQ error is
returned.

PSCAN$M_OR
When you specify PSCAN$M_OR, $PROCESS_SCAN selects processes whose
values match the current item descriptor or the next item descriptor. The next
item descriptor must have the same item code as the item descriptor with the
PSCAN$M_OR flag. Multiple items are chained together; all except the last item
descriptor must have the PSCAN$M_OR flag.

The PSCAN$M_OR flag can be specified with any other flag and can be used
with bit masks, character strings, and integers. If the PSCAN$M_OR flag is used
between different item codes or if it is missing between identical item codes, the
SS$_IVSSRQ error is returned.

PSCAN$M_PREFIX_MATCH
When you specify PSCAN$M_PREFIX_MATCH, $PROCESS_SCAN compares the
character string specified in the item descriptor to the leading characters of the
requested process value.

For example, to find all process names that start with the letters AB, use
the string AB with the PSCAN$M_PREFIX_MATCH. If you do not specify
the PSCAN$M_PREFIX_MATCH flag, the search looks for a process with the
2-character process name AB.

The PSCAN$M_PREFIX_MATCH flag also allows either the PSCAN$M_EQL
or the PSCAN$M_NEQ flag to be specified. If you specify PSCAN$M_NEQ, the
service matches those names that do not begin with the specified character string.

The PSCAN$M_PREFIX_MATCH flag is used only with character string item
codes. The PSCAN$M_PREFIX_MATCH flag cannot be specified with the
PSCAN$M_ WILDCARD flag; if both of these flags are used, the SS$_1VSSRQ
error is returned.

PSCAN$M_WILDCARD
When you specify PSCAN$M_ WILDCARD, the character string specified by
the item descriptor is assumed to be a wildcard pattern. Acceptable wildcard
characters are the asterisk(*), which allows the match to substitute any number
of character in place of the asterisk, and the percent sign(%), which allows the
match to substitute any one character in place of the percent sign. For example,
if you want to search for all process names that begin with the letter A and
end with the string ER, use the string A*ER with the PSCAN$M_WILDCARD
flag. If the PSCAN$M_ WILDCARD flag is not specified, the search looks for the
4-character process name A* ER.

Description

System Service Descriptions
$PROCESS_SCAN

The PSCAN$M_ WILDCARD is used only with character string item codes. The
PSCAN$M_ WILDCARD flag cannot be specified with the PSCAN$M_PREFIX_
MATCH flag; if both of these flags are used the SS$_IVSSRQ error is returned.
The PSCAN$M_NEQ flag can be used with PSCAN$M_ WILDCARD to exclude
values during a wildcard search.

The Process Scan system service creates and initializes a process context that is
used by $GETJPI to scan processes on the local system or across the nodes in
a VAXcluster system. An item list is used to specify selection criteria to obtain
information about specific processes, for example, all processes owned by one user
or all batch processes.

The output of the $PROCESS_SCAN service is a process context longword
named pidctx. This process context is then provided to $GETJPI as the pidadr
argument. The process context provided by $PROCESS_SCAN enables $GETJPI
to search for processes across the nodes in a VAXcluster system and to select
processes that match certain selection criteria.

The process context consumes process dynamic memory. This memory is
deallocated when the end of the context is reached. For example, when the
$GETJPI service returns SS$_NOMOREPROC or when $PROCESS_SCAN is
called again with the same pidctx longword, the dynamic memory is deallocated.
If you anticipate that a scan might be interrupted before it runs out of processes,
$PROCESS_SCAN should be called a second time (without an itmlst argument)
to release the memory. Dynamic memory is automatically released when the
current image terminates.

$PROCESS_SCAN copies the item list and user buffers to the allocated dynamic
memory. This means that the item lists and user buffers can be deallocated or
reused immediately; they are not referenced during the calls to $GET JPI.

The item codes referenced by $PROCESS_SCAN are found in data structures
that are always resident in the system, primarily the process control block (PCB)
and the job information block (JIB). A scan of processes never forces a process
that is swapped out of memory to be brought into memory to read nonresident
information.

Required Privileges
None

Required Quota
See the description for the PSCAN$_GETJPl_BUFFER_SIZE item.

Related Services
$CANEXH, $CREPRC, $DCLEXH, $DELPRC, $EXIT, $FORCEX, $GETJPI,
$GETJPIW, $HIBER, $RESUME, $SETPRI, $SETPRN, $SETPRV, $SETRWM,
$SUSPND, $WAKE

SYS-471

System Service Descriptions
$PROCESS_SCAN

Condition Values Returned

SYS-472

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_IVBUFLEN

SS$_IVSSRQ

The service completed successfully.

The pidctx argument cannot be written by the
caller; the item list cannot be read by the caller;
or a buffer for a reference descriptor cannot be
read.

The item list contains an invalid item identifier,
or an invalid combination of item-specific flags is
present.

The buffer length field is invalid. For immediate
value descriptors, the buffer length must be
0. For reference descriptors, the buffer length
cannot be 0 or longer than the maximum for the
specified item code. This error is also returned if
the total length of the item list plus the length of
all of the buffer fields is too large to process.

The pidctx argument was not supplied, or the
item list is improperly formed (for example,
multiple occurrences of a given item code were
interspersed with other item codes).

System Service Descriptions
$PURGWS

$PURGWS-Purge Working Set

Format

Returns

Argument

Description

Removes a specified range of pages from the current working set of the calling
process to make room for pages required by a new program segment.

SYS$PURGWS inadr

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

inadr
VMS Usage: address_range
type: longword (unsigned)
access: read only
mechanism: by reference

Starting and ending virtual addresses of the range of pages to be purged. The
inadr argument is the address of a 2-longword array containing, in order, the
starting and ending process virtual addresses. Only the virtual page number
portion of each virtual address is used; the low-order nine bits are ignored.

The Purge Working Set service removes a specified range of pages from the
current working set of the calling process to make room for pages required by
a new program segment. However, the Adjust Working Set Limit ($ADJWSL)
service is the preferred mechanism for controlling a process's use of physical
memory resources.

The $PURGWS service locates pages within the specified range and removes
them if they are in the working set.

If the starting and ending virtual addresses are the same, only that single page is
purged.

To purge the entire working set, specify a range of pages from 0 through
7FFFFFFF; in this case, the image continues to execute and pages are faulted
back into the working set as they are needed.

Required Privileges
None

Required Quota
None

SYS-473

System Service Descriptions
$PURGWS

Related Services
$ADJSTK, $ADJWSL, $CRETVA, $CRMPSC, $DELTVA, $DGBLSC, $EXPREG,
$LCKPAG, $LKWSET, $MGBLSC, $SETPRT, $SETSTK, $SETSWM, $ULKPAG,
$ULWSET, $UPDSEC, $UPDSECW

Condition Values Returned

SYS-474

SS$_NORMAL

SS$_ACCVIO

The service completed successfully.

The input address array cannot be read by the
caller.

System Service Descriptions
$PUTMSG

$PUTMSG-Put Message

Format

Returns

Arguments

Writes informational and error messages to processes.

SYS$PUTMSG msgvec ,[actrtn] ,[facnam] ,[actprm]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

msgvec
VMS Usage:
type:
access:
mechanism:

cntrlblk
longword (unsigned)
read only
by reference

Message argument vector specifying the message or messages to be written
and options that $PUTMSG is to use in writing the message or messages. The
msgvec argument is the address of the message vector.

The message vector consists of one longword followed by one or more message
descriptors, one descriptor per message. The following diagram depicts the
contents of the first longword.

31 15 0

default message options argument count

ZK-1717-GE

Message Vector Fields

argument count
This word-length field specifies the total number of longwords in the message
vector, not including the first longword (of which it is a part).

default message options
This word-length field specifies which message component or components are
to be written. The default message options field is a word-length bit vector
wherein a bit, when set, specifies that the corresponding message component is to
be written. For a description of each of these components, refer to the Description
section.

SYS-475

System Service Descriptions
$PUTMSG

SYS-476

The following table shows the significant bit numbers. Note that the bit numbers
shown (0, 1, 2, 3) are the bit positions from the beginning of the word; however,
because the word is the second word in the longword, you should add the number
16 to each bit number to specify its exact offset within the longword.

Bit Value Description

0 1 Include message text
0 Do not include message text

1 1 Include mnemonic name for message text
0 Do not include mnemonic name for message text

2 1 Include severity level indicator
0 Do not include severity level indicator

3 1 Include facility prefix
0 Do not include facility prefix

Bits 4 through 15 must be 0.

You can override the default setting specified by the default message options
field for any or all messages by specifying different options in the new message
options field of any subsequent message descriptor. When you specify new
message options, the options it specifies become the new default settings for all
remaining messages until you specify new message options again.

The $PUTMSG service passes the default message options field to the
$GETMSG service as the flags argument.

If you specify the default message options field as 0, the default message
options for the process are used; you can set the process default message options
by using the DCL command SET MESSAGE.

The Description section shows the format that $PUTMSG uses to write these
message components.

Message Descriptors
Following the first longword of the message vector are one or more message
descriptors. A message descriptor can have one of four possible formats,
depending on the type of message it describes. There are four types of messages:

• User-supplied

• System

• VMS RMS

• System exception

The following diagrams depict the message descriptors for each type of message.

System Service Descriptions
$PUTMSG

31 15 0

Message Code

New Message Options l FAQ Parameter Count

First FAQ Parameter

Second FAQ Parameter

•
•
• •

ZK-1718-GE

Fields in Message Descriptor for User-Supplied Messages

message code
Longword value that uniquely identifies the message. The Description section
discusses the message code; the VMS Message Utility Manual explains how to
create message codes.

FAQ parameter count
Word-length value specifying the number of longword $FAO parameters that
follow in the message descriptor. The number of $FAO parameters needed
depends on the $FAO directives used in the message text; some $FAO directives
require one or more parameters, while some directives require none.

new message options
Word-length bit vector specifying new message options for the current message.
The contents and format of this field are identical to that of the default message
options field.

FAQ parameter
Longword value used by an $FAQ directive appearing in the message text. The
$FAO parameters listed in the message descriptor must appear in the order in
which they will be used by the $FAO directives in the message text.

31 0

message code

ZK-1719-GE

Fields in Message Descriptor for System Messages

message code
Longword value that uniquely identifies the message. The facility number
field in the message code identifies the facility associated with the message.
A system message has a facility number of 0. You cannot specify the FAO
parameter count, new message options, and FAO parameter fields. Each
longword following the message identification field in the message vector will
be interpreted as another message identification.

SYS-477

System Service Descriptions
$PUTMSG

31 0

Message Code

RMS status value (STV)

ZK-1720-GE

Fields in Message Descriptor for VMS RMS Messages

message code
Longword value that uniquely identifies the message. The facility number
field in the message code identifies the facility associated with the message.
An RMS message has a facility number of 1. You cannot specify the FAO
parameter count, new message options, and FAO parameter fields. The
longword following the message identification field in the message vector will
be interpreted as a standard value field (STV).

RMS status value
Longword containing an STV for use by an RMS message that has an associated
STV value. The $PUTMSG service uses the STV value as an $FAQ parameter
or as another message identification, depending on the RMS message identified
by the message identification field. If the RMS message does not have an
associated STV, $PUTMSG ignores the STV longword in the message descriptor.

31 0

Message Code

First FAO Parameter

Second FAO Parameter

•
•
• •

ZK-1721-GE

Fields in Message Descriptor for System Exception Messages

message code

SYS-478

Longword value that uniquely identifies the message. The facility number field
in the message code identifies the facility associated with the message. A system
exception message has a facility number of 0.

You cannot specify the FAO parameter count and new message options
fields. The longword or longwords following the message code field in the
message vector will be interpreted as $FAQ parameters.

Description

actrtn
VMS Usage:
type:
access:
mechanism:

procedure
procedure entry mask
call without stack unwinding
by reference

System Service Descriptions
$PUTMSG

User-supplied action routine to be executed during message processing. The
actrtn argument is the address of the entry mask of this routine.

Note that the first argument passed to the action routine is the address of a
character string descriptor pointing to the message text; the parameter specified
by actprm is the second.

The action routine receives control after a message is formatted but before it is
actually written to the user.

The completion code in general register RO from the action routine indicates
whether the message should be written. If the low-order bit of RO is set (1), then
the message will be written. If the low-order bit is cleared (0), then the message
will not be written.

If you do not specify actrtn or specify it as 0 (the default), no action routine
executes.

Because $PUTMSG writes messages only to SYS$ERROR and SYS$0UTPUT, an
action routine is useful when output must be directed to, for example, a file.

facnam
VMS Usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Facility prefix to be used in the first or only message written by $PUTMSG. The
facnam argument is the address of a character string descriptor pointing to this
facility prefix.

If you do not specify facnam, $PUTMSG uses the default facility prefix associated
with the message.

actprm
VMS Usage:
type:
access:
mechanism:

user_arg
longword (unsigned)
read only
by value

Parameter to be passed to the action routine. The actprm argument is a
longword value containing this parameter. If you do not specify actprm, no
parameter is passed.

In the VMS operating system, a message is identified by a longword value, which
is called the message code. To construct a message code, you specify values
for its four fields, using the Message Utility. The following diagram depicts the
longword message code.

SYS-479

System Service Descriptions
$PUTMSG

SYS-480

facility number message number

ZK-1722-GE

Thus, each message has a unique longword value associated with it: its message
code. You can give this longword value a symbolic name using the Message
Utility. Such a symbolic name is called the message symbol

The Message Utility describes how to construct a message symbol according to
the conventions for VMS messages. Basically, the message symbol has two parts:
(1) a facility prefix, which is an abbreviation of the name of the facility with
which the message is associated, and (2) a mnemonic name for the message text,
which serves to hint at the nature of the message. These two parts are separated
by an underscore character (_) in the case of a user-constructed message and by
a dollar sign/underscore ($_) in the case of system messages.

The message components written by $PUTMSG are derived both from the
message code and from the message symbol. For additional information about
both the message code and the message symbol, refer to the VMS Message Utility
Manual.

The $PUTMSG service writes the message components in the following format:

%FACILITY-L-IDENT, message text

where:

%

FACILITY

L

ID ENT

Is the prefix used for the first message written. The hyphen
(-)is the prefix used for the remaining messages.

Is the facility prefix taken from the message symbol. This
facility prefix can be overridden by a facility prefix specified in
the facnam argument in the call to $PUTMSG.

Is the severity level indicator. The severity level indicator is
taken from the message code.
Is a mnemonic name for the message text, taken from the
message symbol.

message text Is the message text specified in the message source file.

The $PUTMSG service does not check the length of the argument list and
therefore cannot return the SS$_INSFARG (insufficient arguments) condition
value. Be sure you specify the required number of arguments.

If an error occurs while $PUTMSG calls the Formatted ASCII Output ($FAO)
service, $FAQ parameters specified in the message vector do not appear in the
output.

You cannot call the $PUTMSG service from kernel mode.

Required Privileges
None

Required Quota
None

Related Services

System Service Descriptions
$PUTMSG

$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI,
$GETDVIW, $GETMSG, $GETQUI, $GETQUIW, $INIT_ VOL, $MOUNT, $QIO,
$QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

Example

SS$_NORMAL

INTEGER STATUS,
2 OLDHND

CHARACTER*5 NUM

INCLUDE I ($SSDEF) I

INCLUDE I ($LIBDEF) I

INTEGER LIB$GET_INPUT,
2 LIB$ESTABLISH,
2 SYS$GETJPI
EXTERNAL ERR

OPEN (UNIT = 1,
2 TYPE = 'NEW' I

2 CARRIAGECONTROL = 'LIST',
2 FILE= 'ERROR.LOG')

OLDHND = LIB$ESTABLISH (ERR)

The service completed successfully.

! This routine executes successfully
STATUS= LIB$GET_INPUT (NUM, 'NUM: ')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! This routine fails with insufficient arguments
STATUS = SYS$GETJPI(,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

INTEGER FUNCTION ERR (SIGARGS,
2 MECHARGS)

INTEGER SIGARGS (*),
2 MECHARGS (*)
INTEGER NEWSIGARGS(lO), !Must specify a length for

2 ELEMENT

INCLUDE I ($SSDEF) I

EXTERNAL PUT_LINE
INTEGER PUT_LINE

!array so choose one large enough
!to cover any eventuality

Get rid of last two elements in SIGARGS (the PC and PSL),
! then pad NEWSIGARGS with zeros.

SYS-481

System Service Descriptions
$PUTMSG

SYS-482

ELEMENT = 1
NEWSIGARGS (ELEMENT) = 10

NEWSIGARGW (ELEMENT) = MIN(SIGARGS(l)-2,10)
DO I = l, SIGARGS(l) - 2

ELEMENT = ELEMENT + 1
NEWSIGARGS (ELEMENT) = SIGARGS (ELEMENT)
END DO

DO I = ELEMENT + 1, 10
ELEMENT = ELEMENT + 1
NEWSIGARGS (ELEMENT) = 0
END DO

CALL SYS$PUTMSG (NEWSIGARGS, PUT_LINE,)
ERR = SS$_RESIGNAL

END

Could use CONTINUE and let $PUTMSG
! write the message

INTEGER FUNCTION PUT_LINE (LINE)

CHARACTER*(*) LINE

PUT_LINE = 0

\'{RITE (UNIT = 1,

Since you're resignalling, don't let
SYS$PUTMSG write the error

2 FMT = I (A) I) LINE
END

System Service Descriptions
$QIO

$QIO-Queue 1/0 Request

Format

Returns

Arguments

Queues an 1/0 request to a channel associated with a device. This service
completes asynchronously; for synchronous completion, use the Queue 1/0
Request and Wait ($QIOW) service.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service and to the Introduction to VMS System Services.

SYS$QIO [efn] ,chan ,func [,iosb] [,astadr] [,astprm] [,p1] [,p2] [,p3] [,p4] [,p5] [,p6]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

ef n
VMS Usage:
type:
access:
mechanism:

ef_number
longword (unsigned)
read only
by value

Event flag that $QIO is to set when the 1/0 operation completes. The efn
argument is a longword value containing the number of the event flag; however,
$QIO uses only the low-order byte.

If you do not specify efn, event flag 0 is set.

When $QIO begins execution, it clears the specified event flag or event flag 0 if
efn was not specified.

The specified event flag is set if the service terminates without queuing an 1/0
request.

ch an
VMS Usage:
type:
access:
mechanism:

channel
longword (unsigned)
read only
by value

1/0 channel assigned to the device to which the request is directed. The chan
argument is a longword value containing the number of the 1/0 channel; however,
$QIO uses only the low-order word.

SYS-483

System Service Descriptions
$QIO

func
VMS Usage:
type:
access:
mechanism:

function_ code
longword (unsigned)
read only
by value

Device-specific function codes and function modifiers specifying the operation to
be performed. The func argument is a longword containing the function code.

Each device has its own function codes and function modifiers. For complete
information about the function codes and function modifiers that apply to the
particular device to which the I/O operation is to be directed, refer to the VMS
I /0 User's Reference Volume.

iosb
VMS Usage:
type:
access:
mechanism:

io_status_block
quadword (unsigned)
write only
by reference

I/O status block to receive the final completion status of the I/O operation. The
iosb argument is the address of the quadword I/O status block. The following
diagram depicts the structure of the I/O status block.

31 15 0

transfer count l condition value

device-specific information

ZK-1723-GE

1/0 Status Block Fields

SYS-484

condition value
Word-length condition value that $QIO returns when the I/O operation actually
completes.

transfer count
Number of bytes of data transferred in the I/O operation. For information about
how specific devices handle this field of the I/O status block, refer to the VMS I I 0
User's Reference Volume.

device-specific information
Contents of this field vary depending on the specific device and on the specified
function code. For information on how specific devices handle this field of the I/O
status block, refer to the VMS I I 0 User's Reference Volume.

When $QIO begins execution, it clears the quadword I/O status block if the iosb
argument is specified.

Though this argument is optional, Digital strongly recommends that you specify
it, for the following reasons:

• If you are using an event flag to signal the completion of the service, you can
test the I/O status block for a condition value to be sure that the event flag
was not set by an event other than service completion.

Description

System Service Descriptions
$QIO

• If you are using the $SYNCH service to synchronize completion of the service,
the I/O status block is a required argument for $SYNCH.

• The condition value returned in RO and the condition value returned in the
I/O status block provide information about different aspects of the call to the
$QIO service. The condition value returned in RO gives you information about
the success or failure of the service call itself; the condition value returned in
the I/O status block gives you information aboU:t the success or failure of the
service operation. Therefore, to accurately assess the success or failure of the
call to $QIO, you must check the condition values returned in both RO and
the I/O status block.

astadr
VMS Usage: ast_procedure
type: procedure entry mask
access: call without stack unwinding
mechanism: by reference

AST service routine to be executed when the I/O completes. The astadr argument
is the address of a longword value that is the entry mask to the AST routine.

The AST routine executes at the access mode of the caller of $QIO.

astprm
VMS Usage:
type:
access:
mechanism:

user_arg
longword (unsigned)
read only
by value

AST parameter to be passed to the AST service routine. The astprm argument is
a longword value containing the AST parameter.

p1 to p6
VMS Usage:
type:
access:
mechanism:

varying_arg
longword (unsigned)
read only
by reference or by value depending on the 1/0 function

Optional device- and function-specific 1/0 request parameters.

For more information about these parameters, see the VMS I I 0 User's Reference
Volume.

The $QIO service operates only on assigned 1/0 channels and only from access
modes that are equal to or more privileged than the access mode from which the
original channel assignment was made.

The $QIO service uses system dynamic memory to construct a database to queue
the 1/0 request and may require additional memory depending on the queued
device.

For $QIO, you can synchronize completion (1) by specifying the astadr argument
to have an AST routine execute when the I/O completes or (2) by calling
the Synchronize ($SYNCH) service to await completion of the I/O operation.
The $QIOW service completes synchronously, and it is the best choice when
synchronous completion is required.

SYS-485

System Service Descriptions
$QIO

For information about how to use the $QIO service for network operations, refer
to the VMS Networking Manual.

Required Privileges
None

Required Quota
The $QIO service uses the following quotas:

• The process's quota for buffered I/O limit (BIOLM) or direct I/O limit (DIOLM)

• The process's buffered I/O byte count (BYTLM) quota

• The process's AST limit (ASTLM) quota, if an AST service routine is specified

Related Services
$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI,
$GETDVIW, $GETMSG, $GETQUI, $GETQUIW, $INIT_VOL, $MOUNT,
$PUTMSG, $QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SYS-486

SS$_NORMAL

SS$_ABORT

SS$_ACCVIO

SS$_CONNECFAIL

SS$_DEVOFFLINE

SS$_EXQUOTA

SS$_FILALRACC

SS$_ILLEFC

SS$_INSFMEM

SS$_INVLOGIN

SS$_IVCHAN

The service completed successfully. The I/O
request was successfully queued.

A network logical link was broken.

Either the I/O status block cannot be written by
the caller, or the parameters for device-dependent
function codes are specified incorrectly.

The connection to a network object timed out or
failed.

The specified device is off line and not currently
available for use.

The process has (1) exceeded its AST limit
(ASTLM) quota, (2) exceeded its buffered I/O
byte count (BYTLM) quota, (3) exceeded its
buffered I/O limit (BIOLM) quota, (4) exceeded
its direct I/O limit (DIOLM) quota, or (5)
requested a buffered I/O transfer smaller than
the buffered byte count quota limit (BYTLM), but
when added to other current buffer requests, the
buffered I/O byte count quota was exceeded.

A logical link is already accessed on the channel
(that is, a previous connect on the channel).

You specified an illegal event flag number.

The system dynamic memory is insufficient for
completing the service.

The access control information was invalid at the
remote node.

You specified an invalid channel number, that is,
a channel number of 0 or a number larger than
the number of channels available.

SS$_IVDEVNAM

SS$_LINKABORT

SS$_LINKDISCON

SS$_LINKEXIT

SS$_NOLINKS

SS$_NOPRIV

SS$_NOSUCHNODE

SS$_NOSUCHOBJ

SS$_NOSUCHUSER

SS$_PATHLOST

SS$_PROTOCOL

SS$_REJECT

SS$_REMRSRC

SS$_SHUT

SS$_ THIRD PARTY

SS$_TOOMUCHDATA

SS$_UNASEFC

SS$_UNREACHABLE

System Service Descriptions
$QIO

The NCB has an invalid format or content.

The network partner task aborted the logical
link.

The network partner task disconnected the
logical link.

The network partner task was started, but
exited before confirming the logical link (that is,
$ASSIGN to SYS$NET).

No logical links are available. The maximum
number of logical links as set for the executor
MAXIMUM LINKS parameter was exceeded.

The specified channel does not exist, was
assigned from a more privileged access mode,
or the process does not have the necessary
privileges to perform the specified functions on
the device associated with the specified channel.

The specified node is unknown.

The network object number is unknown at the
remote node; or for a TASK= connect, the named
DCL command procedure file cannot be found at
the remote node.

The remote node could not recognize the login
information supplied with the connection request.

The path to the network partner task node was
lost.

A network protocol error occurred. This error is
most likely due to a network software error.

The network object rejected the connection.

The link could not be established because system
resources at the remote node were insufficient.

The local or remote node is no longer accepting
connections.

The logical link was terminated by a third party
(for example, the system manager).

The task specified too much optional or interrupt
data.

The process is not associated with the cluster
containing the specified event flag.

The remote node is currently unreachable.

Condition Values Returned in the 1/0 Status Block

Device-specific condition values; the VMS I I 0 User's Reference Volume lists these
condition values for each device.

SYS-487

System Service Descriptions
$QIOW

$QIOW-Queue 1/0 Request and Wait

Format

SYS-488

The Queue I/O Request and Wait service queues an I/O request to a channel
associated with a device.

The $QIOW service completes synchronously; however, Digital recommends that
you use an IOSB with this service to avoid premature completion.

For asynchronous completion, use the Queue I/O Request ($QIO) service.

In all other respects, $QIOW is identical to $QIO. For all other information
$QIOW, refer to the documentation of $QIO.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service and to the Introduction to VMS System Services.

SYS$QIOW [efn] ,chan ,tune [,iosb] [,astadr] [,astprm] [,p1] [,p2] [,p3] [,p4] [,p5] [,p6]

System Service Descriptions
$READEF

$READEF-Read Event Flags

Format

Returns

Arguments

Returns the current status of all 32 event flags in a local or common event flag
cluster and indicates whether the specified event flag is set or clear.

SYS$READEF efn ,state

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

ef n
VMS Usage:
type:
access:
mechanism:

ef_number
longword (unsigned)
read only
by value

Number of any event flag in the cluster whose status is to be returned. The
efn argument is a longword containing this number; however, $READEF uses
only the low-order byte. Specifying an event flag within a cluster requests that
$READEF return the status of all event flags in that cluster.

There are two local event flag clusters, which are local to the process: cluster
0 and cluster 1. Cluster 0 contains event flag numbers 0 to 31, and cluster 1
contains event flag numbers 32 to 63.

There are two common event flag clusters: cluster 2 and cluster 3. Cluster 2
contains event flag numbers 64 to 95, and cluster 3 contains event flag numbers
96 to 127.

state
VMS Usage:
type:
access:
mechanism:

mask_longword
longword (unsigned)
write only
by reference

State of all event flags in the specified cluster. The state argument is the address
of a longword into which $READEF writes the state (set or clear) of the 32 event
flags in the cluster.

SYS-489

System Service Descriptions
$READEF

Condition Values Returned

SYS-490

SS$_WASCLR

SS$_WASSET

SS$_ACCVIO

SS$_ILLEFC

SS$_UNASEFC

The service completed successfully. The specified
event flag is clear.

The service completed successfully. The specified
event flag is set.

The longword that is to receive the current state
of all event flags in the cluster cannot be written
by the caller.

You specified an illegal event flag number.

The process is not associated with the cluster
containing the specified event flag.

System Service Descriptions
$RELEASE_ VP

$RELEASE_ VP-Release Vector Processor

Format

Returns

Arguments

Description

Terminates the current process's status as a vector consumer.

SYS$RELEASE_VP

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values returned by this
service are listed in the Condition Values Returned section.

None.

The Release Vector Processor service terminates the current process's status as
a vector consumer. $RELEASE_ VP waits for all pending vector instructions and
vector memory operations to complete. It then declares that the process no longer
needs a vector-present processor. As a result, the process relinquishes its use of
the processor's vector registers and can be scheduled on another processor in the
system.

In systems that do not have vector-present processors but do have the VAX
vector instruction emulation facility (VVIEF) in use, this service relinquishes
the process's use of VVIEF. The VVIEF remains mapped in the process's address
space.

Required Privileges
None

Required Quota
None

Related Services
$RESTORE_ VP _EXCEPTION, $RESTORE_ VP _STATE, $SAVE_ VP _EXCEPTION

Condition Values Returned

SS$_NORMAL The service completed successfully.

SYS-491

System Service Descriptions
$REM_HOLDER

$REM_HOLDER-Remove Holder Record from Rights Database

Format

Returns

Arguments

Description

SYS-492

Deletes the specified holder record from the target identifier's list of holders.

SYS$REM_HOLDER id ,holder

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

id
VMS Usage:
type:
access:
mechanism:

rights_id
longword (unsigned)
read only
by value

Binary value of target identifier whose holder is deleted when $REM_HOLDER
completes execution. The id argument is a longword containing the identifier
value.

holder
VMS Usage: rights_holder
type: quadword (unsigned)
access: read only
mechanism: by reference

Identifier of holder being deleted when $REM_HOLDER completes execution.
The holder argument is the address of a quadword containing the UIC identifier
of the holder in the first longword and the value of 0 in the second longword.

The Remove Holder Record from Rights Database service removes the specified
holder record from the target identifier's list of holders.

You need write access to the rights database to use this service.

Required Privileges
If the database is in SYS$SYSTEM (the default), you need SYSPRV privilege to
grant write access to the database.

Required Quota
None

Related Services

System Service Descriptions
$REM_HOLDER

$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CHANGE_ACL, $CHECK_
ACCESS, $CHKPRO, $CREATE_RDB, $ERAPAT, $FIND_HELD, $FIND_
HOLDER, $FINISH_RDB, $FORMAT_ACL, $FORMAT_AUDIT, $GRANTID,
$HASH_PASSWORD, $IDTOASC, $MOD_HOLDER, $MOD_IDENT,
$MTACCESS, $PARSE_ACL, $REM_IDENT, $REVOKID

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_INSFMEM

SS$_IVIDENT

SS$_NOSUCHID

RMS$_PRV

The service completed successfully.

The id or holder argument cannot be read by
the caller.

The process dynamic memory is insufficient for
opening the rights database.

The specified identifier or holder identifier is of
invalid format.

The specified identifier does not exist in the
rights database, or the specified holder identifier
does not exist in the rights database.

The user does not have write access to the rights
database.

Because the rights database is an indexed file accessed with VMS RMS, this
service can also return RMS status codes associated with operations on indexed
files. For descriptions of these status codes, refer to the VMS Record Management
Services Manual.

SYS-493

System Service Descriptions
$REM_IDENT

$REM_IDENT-Remove Identifier from Rights Database

Format

Returns

Argument

Description

SYS-494

Removes the specified identifier record and all its holder records (if any) from the
rights database.

SYS$REM_I DENT id

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

id
VMS Usage: rights_id
type: longword (unsigned)
access: read only
mechanism: by value

Binary value of identifier deleted from rights database when $REM_IDENT
completes execution. The id argument is a longword containing the identifier
value.

The Remove Identifier from Rights Database service removes from the rights
database the specified identifier record, all its holder records (if any), and all
records in identifiers that the deleted identifier held.

You need write access to the rights database to use this service.

Required Privileges
If the database is in SYS$SYSTEM (the default), you need SYSPRV privilege to
grant write access to the database.

Required Quota
None

Related Services
$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CHANGE_ACL, $CHECK_
ACCESS, $CHKPRO, $CREATE_RDB, $ERAPAT, $FIND_HELD, $FIND_
HOLDER, $FINISH_RDB, $FORMAT_ACL, $FORMAT_AUDIT, $GRANTID,
$HASH_PASSWORD, $IDTOASC, $MOD_HOLDER, $MOD_IDENT,
$MTACCESS, $PARSE_ACL, $REM_HOLDER, $REVOKID

Condition Values Returned

SS$_NORMAL

SS$_INSFMEM

SS$_IVIDENT

SS$_NOSUCHID

RMS$_PRV

System Service Descriptions
$REM_IDENT

The service completed successfully.

The process dynamic memory is insufficient for
opening the rights database.

The specified identifier is of invalid format.

The specified identifier does not exist in the
rights database.

The user does not have write access to the rights
database.

Because the rights database is an indexed file accessed with VMS RMS, this
service can also return RMS status codes associated with operations on indexed
files. For descriptions of these status codes, refer to the VMS Record Management
Services Manual.

SYS-495

System Service Descriptions
$RESTORE_ VP _EXCEPTION

$RESTORE_ VP _EXCEPTION-Restore Vector Processor Exception
State

Format

Returns

Argument

Description

SYS-496

Restores the saved exception state of the vector processor.

SYS$RESTORE_ VP _EXCEPTION excid

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values returned by this
service are listed in the Condition Values Returned section.

excid
VMS Usage:
type:
access:
mechanism:

context
longword (unsigned)
read only
by reference

Internal ID of the exception state saved by $SAVE_ VP _EXCEPTION. The excid
argument is the address of a longword containing this ID.

The Restore Vector Exception State service restores from memory the vector
exception state saved by a prior call to $SAVE_ VP _EXCEPTION. After a routine
invokes this service, the next vector instruction issued within the process causes
the restored vector exception to be reported.

By default, when an AST or condition handler interrupts the execution of a
mainline routine, the VMS operating system saves the mainline routine's vector
state, including its vector exception state. Any other routine that executes
synchronously with, or asynchronously to, currently executing vectorized code
and that performs vector operations itself must preserve the preempted routine's
vector exception state across its own execution. It does so by using the $SAVE_
VP _EXCEPTION and $RESTORE_ VP _EXCEPTION services.

Used together, these services ensure that vector exceptions occurring as a result
of activity in the original routine are serviced by existing condition handlers
within that routine.

In systems that do not have vector-present processors but do have the VAX vector
instruction emulation facility (VVIEF) in use, VVIEF emulates the function of
this service.

Required Privileges
None

Required Quota
BYTLM

Related Services

System Service Descriptions
$RESTORE_ VP _EXCEPTION

$RELEASE_ VP, $RESTORE_ VP _STATE, $SAVE_ VP _EXCEPTION

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_NOSAVPEXC

The service completed successfully. The service
also returns this status when executed in
a system that does not have vector-present
processors and that does not have the VAX vector
instruction emulation facility (VVIEF) loaded.

The caller cannot read the exception ID
longword.

No saved vector exception state exists for this
exception ID.

SYS-497

System Service Descriptions
$RESTORE_VP_STATE

$RESTORE_ VP _STATE-Restore Vector State

Format

Returns

Arguments

Description

SYS-498

Allows an AST routine or condition handler to restore the vector state of the
mainline routine.

SYS$RESTORE_VP_STATE

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values returned by this
service are listed in the Condition Values Returned section.

None.

The Restore Vector State service allows an AST routine or a condition handler to
restore the vector state of the process's mainline routine.

By default, when an asynchronous routine (AST routine or condition handler)
interrupts the execution of a mainline routine, the VMS operating system creates
a new vector state when the routine issues its first vector instruction. At this
point, the vector state of the mainline routine is inaccessible to the asynchronous
routine. If the asynchronous routine must manipulate the vector state of the
mainline routine, it first calls $RESTORE_ VP _STATE to restore the mainline's
vector state.

In systems that do not have vector-present processors but do have the VAX vector
instruction emulation facility (VVIEF) in use, VVIEF emulates the functions of
this service.

This service can be called only from a routine running in user mode.

Required Privileges
None

Required Quota
None

Related Services
$RELEASE_ VP, $RESTORE_ VP _EXCEPTION, $SAVE_ VP _EXCEPTION

Condition Values Returned

SS$_NORMAL

SS$_BADSTACK

SS$_BADCONTEXT

88$_ WRONGACMODE

System Service Descriptions
$RESTORE_VP_STATE

The service completed successfully. Vector
state of the mainline has been restored. The
service also returns this status when executed
in a system that does not have vector-present
processors and that does not have the VAX vector
instruction emulation facility (VVIEF) loaded.

Bad user stack encountered.
The mainline vector state is corrupt.

The system service was called from an access
mode other than user mode.

SYS-499

System Service Descriptions
$RESUME

$RESUME-Resume Process

Format

Returns

Arguments

SYS-500

Causes a process previously suspended by the Suspend Process ($SUSPND)
service to resume execution or cancels the effect of a subsequent suspend request.

SYS$RESUME [pidadr] ,[prcnam]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

pidadr
VMS Usage:
type:
access:
mechanism:

process_id
longword (unsigned)
modify
by reference

Process identification (PID) of the process to be resumed. The pidadr argument
is the address of a longword containing the PID. The pidadr argument can refer
to a process running on the local node or a process running on another node in
the cluster.

You must specify the pidadr argument to delete processes in other UIC groups.

prcnam
VMS Usage:
type:
access:
mechanism:

process...:...name
character-coded text string
read only
by descriptor-fixed length string descriptor

Name of the process to be resumed. The prcnam argliment is the address of a
character string descriptor pointing to the process name. A process running on
the local node can be identified with a 1- to 15-character string. To identify a
process on a particular node on a cluster, specify the full process name, which
includes the node name as well as the process name. The full process name can
contain up to 23 characters.

You can use the prcnam argument to resume only processes in the same UIC
group as the calling process, because process names are unique to UIC groups,
and the VMS operating system uses the UIC group number of the calling process
to interpret the process name specified by the prcnam argument. You must use
the pidadr argument to delete processes in other UIC groups.

Description

System Service Descriptions
$RESUME

The Resume Process service (1) causes a process previously suspended by the
Suspend Process ($SUSPND) service to resume execution or (2) cancels the effect
of a subsequent suspend request.

If you specify neither the pidadr nor prcnam argument, the resume request is
issued on behalf of the calling process.

If the longword value at address pidadr is 0, the PID of the target process is
returned.

If one or more resume requests are issued for a process that is not suspended, a
subsequent suspend request completes immediately; that is, the process is not
suspended. No count of outstanding resume requests is maintained.

Required Privileges
Depending on the operation, the calling process might need one of the following
privileges to use $RESUME:

• GROUP privilege to resume execution of a process in the same group unless
the process has the same UIC as the calling process

• WORLD privilege to resume execution of any process in the system

Required Quota
None

Related Services
$CANEXH, $CREPRC, $DCLEXH, $DELPRC, $EXIT, $FORCEX, $GETJPI,
$GETJPIW, $HIBER, $PROCESS_SCAN, $SETPRI, $SETPRN, $SETPRV,
$SETRWM, $SUSPND, $WAKE

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_INCOMPAT

SS$_IVLOGNAM

SS$_NONEXPR

SS$_NOPRIV

SS$_NOSUCHNODE

The service completed successfully.

The process name string or string descriptor
cannot be read by the caller, or the process
identification cannot be written by the caller.

The remote node is running a version of VMS
that is incompatible.

The specified process name has a length of 0 or
has more than 15 characters.

The specified process does not exist, or an invalid
process identification was specified.

The process does not have the privilege to resume
the execution of the specified process.

The process name refers to a node that is not
currently recognized as part of the VAXcluster.

SYS-501

System Service Descriptions
$RESUME

SS$_REMRSRC

SS$_ UNREACHABLE

SYS-502

The remote node has insufficient resources to
respond to the request. (Bring this error to the
attention of your system manager.)

The remote node is a member of the cluster but
is not accepting requests. (This is normal for a
brief period early in the system boot process.)

System Service Descriptions
$REVOKID

$REVOKID-Revoke Identifier from Process

Format

Returns

Arguments

Removes the specified identifier from the rights list of the process or the system.
If the identifier is listed as a holder of any other identifier, the appropriate holder
records are also deleted.

SYS$REVOKID [pidadr] ,[prcnam] ,[id] ,[name] ,[prvatr]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

pidadr
VMS Usage: process_id
type: longword (unsigned)
access: modify
mechanism: by reference

Process identification (PID) number of the process affected when $REVOKID
completes execution. The pidadr argument is the address of a longword
containing the PID of the process to be affected. You use -1 to indicate the
system rights list. When pidadr is passed, it is also returned; therefore, you
must pass it as a variable rather than a constant.

prcnam
VMS Usage:
type:
access:
mechanism:

process_name
character-coded text string
read only
by descriptor-fixed length string descriptor

Process name on which $REVOKID operates. The prcnam argument is the
address of a character string descriptor containing the process name. The
maximum length of the name is 15 characters. Because the UIC group number
is interpreted as part of the process name, you must use pidadr to specify the
rights list of a process in a different group.

id
VMS Usage: rights_id
type: quadword (unsigned)
access: modify
mechanism: by reference

Identifier and attributes to be removed when $REVOKID completes execution.
The id argument is the address of a quadword containing the binary identifier

SYS-503

System Service Descriptions
$REVOKID

Description

SYS-504

code to be removed in the first longword and the attributes in the second
longword.

Symbol values are offsets to the bits within the longword. You can also obtain the
values as masks with the appropriate bit set using the prefix KGB$M rather than
KGB$V. The following symbols for each bit position are defined in the system
macro library ($KGBDEF).

Symbol Meaning When Set

KGB$V _DYNAMIC Allows the unprivileged holder to add or remove the
identifier from the process rights list.

KGB$V _RESOURCE Allows the holder to charge resources, such as disk
blocks, to the identifier.

You must specify either id or name. Because the id argument is returned as
well as passed if you specify name, you must pass it as a variable rather than a
constant in this case.

name
VMS Usage:
type:
access:
mechanism:

char_string
character-coded text string
read only
by descriptor-fixed length string descriptor

Name of the identifier removed when $REVOKID completes execution. The name
argument is the address of a descriptor pointing to the name of the identifier.

prvatr
VMS Usage:
type:
access:
mechanism:

mask_longword
longword (unsigned)
write only
by reference

Attributes of the deleted identifier. The prvatr argument is the address of a
longword used to store the attributes of the identifier.

The Revoke Identifier from Process service removes the specified identifier from
the rights list of the process or the system. If the identifier is listed as a holder of
any other identifier, the appropriate holder records are also deleted.

The result of passing the pidadr or the prcnam argument or both to $REVOKID
is summarized in the following table.

Note that a value of 0 in either of the following tables indicates that the contents
of the address specified by the argument is the value 0. The word omitted
indicates that the argument was not supplied.

Required Privileges

prcnam pidadr

Omitted Omitted

Omitted 0

Omitted Specified

Specified Omitted

Specified 0

Specified Specified

Result

System Service Descriptions
$REVOKID

Current process ID is used; process ID is not
returned.

Current process ID is used; process ID is
returned.

Specified process ID is used.

Specified process name is used; process ID is not
returned.

Specified process name is used; process ID is
returned.

Specified process ID is used and process name is
ignored.

The result of passing either the name or the id argument or both to
SYS$REVOKID is summarized in the following table.

name id Result

Omitted Omitted Illegal. The INSFARG condition value is
returned.

Omitted Specified Specified identifier value is used.

Specified Omitted Specified identifier name is used; identifier value
is not returned.

Specified 0 Specified identifier name is used; identifier value
is returned.

Specified Specified Specified identifier value is used and identifier
name is ignored.

Because the Revoke Identifier from Process service removes the specified
identifier from the rights list of the process or the system, this service is meant
for use by a privileged subsystem to alter the access rights profile of a user, based
on installation policy. It is not meant for use by the general system user.

You need CMKRNL privilege to invoke this service. In addition, you need GROUP
privilege to modify the rights list of a process in the same group as the calling
process (unless the process has the same UIC as the calling process). You need
WORLD privilege to modify the rights list of a process outside the caller's group.
You need SYSNAM privilege to modify the system rights list.

Required Quota
None

Related Services
$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CHANGE_ACL, $CHECK_
ACCESS, $CHKPRO, $CREATE_RDB, $ERAPAT, $FIND_HELD, $FIND_
HOLDER, $FINISH_RDB, $FORMAT_ACL, $FORMAT_AUDIT, $GRANTID,
$HASH_PASSWORD, $IDTOASC, $MOD_HOLDER, $MOD_IDENT,
$MTACCESS, $PARSE_ACL, $REM_HOLDER, $REM_IDENT

SYS-505

System Service Descriptions
$REVOKID

Condition Values Returned

SYS-506

SS$_WASCLR

SS$_WASSET

SS$_ACCVIO

SS$_INSFARG

SS$_INSFMEM

SS$_IVIDENT

SS$_IVLOGNAM

SS$_NONEXPR

SS$_NOPRIV

SS$_NOSUCHID

SS$_NOSYSNAM

RMS$_PRV

SS$_RIGHTSFULL

The service completed successfully; the rights list
did not contain the specified identifier.

The service completed successfully; the rights list
already held the specified identifier.

The pidadr argument cannot be read or written;
prcnam cannot be read; id cannot be read or
written; name cannot be read; or prvatr cannot
be written.

You did not specify either the id or name
argument.

The process dynamic memory is insufficient for
opening the rights database.

The specified identifier name is invalid; the
identifier name is longer than 31 characters,
contains an illegal character, or does not contain
at least one nonnumeric character.

You specified an invalid process name.

You specified a nonexistent process.

The caller does not have CMKRNL privilege or is
not running in exec or kernel mode; or the caller
lacks GROUP, WORLD, or SYSNAM privilege as
required.

The specified identifier name does not exist
in the rights database. Note that the binary
identifier, if given, is not validated against the
rights database.

The operation requires SYSNAM privilege.

The user does not have read access to the rights
database.

The rights list of the process or system is full.

Because the rights database is an indexed file accessed with VMS RMS, this
service can also return RMS status codes associated with operations on indexed
files. For descriptions of these status codes, refer to the VMS Record Management
Services Manual.

System Service Descriptions
$SAVE_ VP _EXCEPTION

$SAVE_ VP _EXCEPTION-Save Vector Processor Exception State

Format

Returns

Argument

Description

Saves the pending exception state of the vector processor.

SYS$SAVE_ VP _EXCEPTION excid

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values returned by this
service are listed in the Condition Values Returned section.

excid
VMS Usage:
type:
access:
mechanism:

context
longword (unsigned)
read only
by reference

Internal ID of the exception state saved by $SAVE_ VP _EXCEPTION. The excid
argument is the address of a longword containing this ID.

The Save Vector Exception State service saves in memory any pending vector
exception state and clears the vector processor's current exception state.

By default, when an AST or condition handler interrupts the execution of a
mainline routine, the VMS operating system saves the mainline routine's vector
state, including its vector exception state. Any other routine that executes
synchronously with, or asynchronously to, currently executing vectorized code
and that performs vector operations itself must preserve the preempted routine's
vector exception state across its own execution. It does so by using the $SAVE_
VP _EXCEPTION and $RESTORE_ VP _EXCEPTION services. Used together,
these services ensure that vector exceptions occurring as a result of activity in the
original routine are serviced by existing condition handlers within that routine.

In systems that do not have vector-present processors but do have the VAX vector
instruction emulation facility (VVIEF) in use, VVIEF emulates the functions of
this service.

Required Privileges
None

Required Quota
None

Related Services
$RELEASE_ VP, $RESTORE_ VP _EXCEPTION, $RESTORE_ VP _STATE

SYS-507

System Service Descriptions
$SAVE_ VP _EXCEPTION

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_INSFMEM

SS$_WASSET

SYS-508

The service completed successfully. There were
no pending vector exceptions. The service also
returns this status when executed in a system
that does not have vector-present processors and
that does not have the VAX vector instruction
emulation facility (VVIEF) loaded.

The caller cannot write the exception ID
longword.

Insufficient system dynamic memory exists for
completing the service.

The service completed successfully. Pending
vector exception state has been ·saved.

System Service Descriptions
$SCHDWK

$SCHDWK-Schedule Wakeup

Format

Returns

Arguments

Schedules the awakening (restarting) of a process that has placed itself in a state
of hibernation with the Hibernate ($HIBER) service.

SYS$SCHDWK [pidadr] ,[prcnam] ,daytim ,[reptim]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

pidadr
VMS Usage:
type:
access:
mechanism:

process_id
longword (unsigned)
modify
by reference

Process identification (PID) of the process to be awakened. The pidadr argument
is the address of a longword containing the PID. The pidadr argument can refer
to a process running on the local node or a process running on another node in
the cluster.

You must specify the pidadr argument to awaken processes in other UIC groups.

prcnam
VMS Usage:
type:
access:
mechanism:

process_name
character-coded text string
read only
by descriptor-fixed length string descriptor

Name of the process to be awakened. The prcnam is the address of a character
string descriptor pointing to the process name. A process running on the local
node can be identified with a string of from 1 to 15 characters.

To identify a process on a particular node on a cluster, specify the full process
name, which includes the node name as well as the process name. The full
process name can contain up to 23 characters.

You can use the prcnam argument to awaken only processes in the same UIC
group as the calling process because process names are unique to UIC groups,
and VMS uses the UIC group number of the calling process to interpret the
process name specified by the prcnam argument. You must use the pidadr
argument to awaken processes in other UIC groups.

SYS-509

System Service Descriptions
$SCHDWK

Description

SYS-510

daytim
VMS Usage:
type:
access:
mechanism:

date_time
quadword (unsigned)
read only
by reference

Time at which the process is to be awakened. The daytim argument is the
address of a quadword containing this time in the system 64-bit time format. A
positive time value specifies an absolute time at which the specified process is
to be awakened. A negative time value specifies an offset (delta time) from the
current time.

reptim
VMS Usage:
type:
access:
mechanism:

date_time
quadword (unsigned)
read only
by reference

Time interval at which the wakeup request is to be repeated. The reptim
argument is the address of a quadword containing this time interval. The time
interval must be expressed in delta time format.

The time interval specified cannot be less than 10 milliseconds; if it is, $SCHDWK
automatically increases it to 10 milliseconds.

If you do not specify reptim, a default value of 0 is used, which specifies that the
wakeup request is not to be repeated.

The Schedule Wakeup service schedules the awakening of a process that has
placed itself in a state of hibernation with the Hibernate ($HIBER) service. A
wakeup can be scheduled for a specified absolute time or for a delta time and can
be repeated at fixed intervals.

If you specify neither the pidadr nor prcnam argument, the wakeup request is
issued on behalf of the calling process. If the longword value at address pidadr
is 0, the PID of the target process is returned.

$SCHDWK uses the system dynamic memory to allocate a timer queue entry.

If you issue one or more scheduled wakeup requests for a process that is not
hibernating, a subsequent hibernate request by the target process completes
immediately; that is, the process does not hibernate. No count of outstanding
wakeup requests is maintained.

You can cancel scheduled wakeup requests that have not yet been processed by
using the Cancel Wakeup ($CANWAK) service.

If a specified absolute time value has already passed and no repeat time is
specified, the timer expires at the next clock cycle (within 10 milliseconds).

Required Privileges

System Service Descriptions
$SCHDWK

Depending on the operation, the calling process might need one of the following
privileges to use $SCHDWK:

• GROUP privilege to schedule wakeup requests for a process in the same
group unless it has the same urc

• WORLD privilege to schedule wakeup requests for any other process in the
system

Required Quota
The AST limit (ASTLM) quota of the calling process to schedule a wakeup
request.

Related Services
$ASCTIM, $BINTIM, $CANTIM, $CANWAK, $GETTIM, $NUMTIM, $SETIME,
$SETIMR

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_EXQUOTA

SS$_INCOMPAT

SS$_INSFMEM

SS$_IVLOGNAM

SS$_IVTIME

SS$_NONEXPR

SS$_NOPRIV

SS$_NOSUCHNODE

SS$_REMRSRC

SS$_UNREACHABLE

The service completed successfully.

The expiration time, repeat time, process name
string, or string descriptor cannot be read by
the caller, or the process identification cannot be
written by the caller.

The process has exceeded its AST limit quota.

The remote node is running a version of VMS
that is incompatible.

The system dynamic memory is insufficient for
allocating a timer queue entry.

The process name string has a length of 0 or has
more than 15 characters.

The specified delta repeat time is a positive
value, or an absolute time plus delta repeat time
is less than the current time.

The specified process does not exist, or an invalid
process identification was specified.

The process does not have the privilege to
schedule a wakeup request for the specified
process.

The process name refers to a node that is not
currently recognized as part of the VA.Xcluster.

The remote node has insufficient resources to
respond to the request. (Bring this error to the
attention of your system manager.)

The remote node is a member of the cluster but
is not accepting requests. (This is normal for a
brief period early in the system boot process.)

SYS-511

System Service Descriptions
$SETAST

$SETAST-Set AST Enable

Format

Returns

Argument

Description

SYS-512

Enables or disables the delivery of ASTs for the access mode from which the
service call was issued.

SYS$SETAST enbflg

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

en bf lg
VMS Usage:
type:
access:
mechanism:

boolean
byte (unsigned)
read only
by value

Value specifying whether ASTs are to be enabled. The enbflg argument is a byte
containing this value. The value 1 enables AST delivery for the calling access
mode; the value 0 disables AST delivery.

The Set AST Enable service enables or disables the delivery of ASTs for the
access mode from which the service call was issued.

Required Privileges
When an image is executing in user mode, ASTs are always enabled for more
privileged access modes. If ASTs are disabled for a more privileged access mode,
the VMS operating system cannot deliver ASTs for less privileged access modes
until ASTs are enabled once again for the more privileged access mode. Therefore,
a process that has disabled ASTs for a more privileged access mode must reenable
ASTs for that mode before returning to a less privileged access mode.

Required Quota
None

Related Services
$DCLAST, $SETPRA

For more information, see the chapter on AST services in the Introduction to
VMS System Services.

Condition Values Returned

SS$_WASCLR

SS$_WASSET

System Service Descriptions
$SETAST

The service completed successfully. AST delivery
was previously disabled for the calling access
mode.

The service completed successfully. AST delivery
was previously enabled for the calling access
mode.

SYS-513

System Service Descriptions
$SETEF

$SETEF-Set Event Flag

Format

Returns

Argument

The Set Event Flag service sets an event flag in a local or common event flag
cluster. The condition value returned by $SETEF indicates whether the specified
flag was previously set or clear. After the event flag is set, processes waiting for
the event flag to be set resume execution.

SYS$SETEF efn

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

ef n
VMS Usage:
type:
access:
mechanism:

ef_number
longword (unsigned)
read only
by value

Number of the event flag to be set. The efn argument is a longword containing
this number; however, $SETEF uses only the low-order byte.

Two local event flag clusters are local to the process: cluster 0 and cluster 1.
Cluster 0 contains event flag numbers 0 to 31, and cluster 1 contains event flag
numbers 32 to 63.

·There are two common event flag clusters: cluster 2 and cluster 3. Cluster 2
contains event :flag numbers 64 to 95, and cluster 3 contains event flag numbers
96 to 127.

Condition Values Returned

SYS-514

SS$_WASCLR

SS$_WASSET

SS$_ILLEFC

SS$_UNASEFC

The service completed successfully. The specified
event flag was previously 0.

The service completed successfully. The specified
event flag was previously 1.

You specified an illegal event flag number.

The process is not associated with the cluster
containing the specified event flag.

System Service Descriptions
$SETEXV

$SETEXV-Set Exception Vector

Format

Returns

Arguments

Assigns a condition handler address to the primary, secondary, or last chance
exception vectors, or removes a previously assigned handler address from any of
these three vectors.

SYS$SETEXV [vector] ,[addres] ,[acmode] ,[prvhnd]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

vector
VMS Usage:
type:
access:
mechanism:

longword_ unsigned
longword (unsigned)
read only
by value

Vector for which a condition handler is to be established or removed. The vector
argument is a longword value. The value 0 (the default) specifies the primary
exception vector; the value 1, the secondary vector; and the value 2, the last
chance exception vector.

add res
VMS Usage:
type:
access:
mechanism:

procedure
procedure entry mask
call without stack unwinding
by reference

Condition handler address to be established for the exception vector specified by
the vector argument. The addres argument is a longword value containing the
address of the entry mask to the condition handler routine.

If you do not specify addres or specify it as the value 0, the condition handler
address already established for the specified vector is removed; that is, the
contents of the longword vector is set to 0.

acmode
VMS Usage:
type:
access:
mechanism:

access_mode
longword (unsigned)
read only
by value

Access mode for which the exception vector is to be modified. The acmode
argument is a longword containing the access mode. The $PSLDEF macro defines
symbols for the four access modes.

SYS-515

System Service Descriptions
$SETEXV

Description

The most privileged access mode used is the access mode of the caller. Exception
vectors for access modes more privileged than the caller's access mode cannot be
modified.

prvhnd
VMS Usage:
type:
access:
mechanism:

procedure
longword (unsigned)
write only
by reference

Previous condition handler address contained by the specified exception vector.
The prvhnd argument is the address of a longword into which $SETEXV writes
the handler address.

The Set Exception Vector service (1) assigns a condition handler address to the
primary, secondary, or last chance exception vectors or (2) removes a previously
assigned handler address from any of these three vectors. A process cannot
modify a vector associated with a more privileged access mode.

The VMS operating system provides two different methods for establishing
condition handlers:

• Using the call stack associated with each access mode. Each call frame
includes a longword to contain the address of a condition handler associated
with that frame. The RTL routine LIB$ESTABLISH establishes a condition
handler; the RTL routine LIB$REVERT removes a handler.

• Using the software exception vectors (by using $SETEXV) associated with
each access mode. These vectors are set aside in the control region (Pl space)
of the process.

The modular properties associated with the first method do not apply to the
second. The software exception vectors are intended primarily for performance
monitors and debuggers. For example, the primary exception vector and the last
chance exception vector are used by the VMS Debugger for user mode access, and
DCL uses the last chance exception vector for supervisor mode access.

User mode exception vectors are canceled at image exit.

Required Privileges
None

Required Quota
None

Related Services
$DCLCMH, $SETSFM, $UNWIND

Condition Values Returned

SYS-516

SS$_NORMAL

SS$_ACCVIO

The service completed successfully.

The longword to receive the previous contents of
the vector cannot be written by the caller.

System Service Descriptions
$SETI ME

$SETIME-Set System Time

Format

Returns

Argument

Description

Changes the value of, or recalibrates, the system time.

SYS$SETIME [timadr]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

timadr
VMS Usage:
type:
access:
mechanism:

date_time
quadword (unsigned)
read only
by reference

New absolute time value for the system time, specifying the number of 100-
nanosecond intervals since 00:00 o'clock, November 17, 1858. The timadr
argument is the address of a quadword containing the new system time value. A
negative (delta) time value is invalid.

If you do not specify the value of timadr or specify it as 0, $SETIME recalibrates
the system time using the time-of-year clock.

The Set System Time service (1) changes the value of or (2) recalibrates the
system time which is defined by a quadword value that specifies the number of
100-nanosecond intervals since 00:00 o'clock, November 17, 1858.

System time is the reference used for nearly all timer-related software activities
in the VMS operating system. After changing or recalibrating the system clock,
$SETIME updates the timer queue by adjusting each element in the timer queue
by the difference between the previous system time and the new system time.

The $SETIME service saves the new time (for future bootstrap operations) in the
system image SYS$SYSTEM:SYS.EXE. To save the time, the service assigns a
channel to the system boot device and calls $QIOW. You need the LOG_IO user
privilege to perform this operation.

Required Privileges
To set system time, the calling process must have OPER and LOG_IO privileges.

Required Quota
None

SYS-517

System Service Descriptions
$SETI ME

Related Services
$ASCTIM, $BINTIM, $CANTIM, $CANWAK, $GETTIM, $NUMTIM, $SCHDWK,
$SETIMR

Condition Values Returned

SYS-518

SS$_NORMAL

SS$_ACCVIO

SS$_IVTIME

SS$_NOIOCHAN

SS$_NOPRIV

The service completed successfully.

The quadword that contains the new system time
value cannot be read by the caller.

The caller specified no time value or a negative
time value and an invalid processor clock was
found.

No I/O channel is available for assignment.

The process does not have the privileges to set
the system time.

System Service Descriptions
$SETI MR

$SETIMR-Set Timer

Format

Returns

Arguments

Sets the timer to expire at a specified time.

SYS$SETIMR [efn] ,daytim ,[astadr] ,[reqidt] ,[flags]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

ef n
VMS Usage:
type:
access:
mechanism:

ef_number
longword (unsigned)
read only
by value

Event flag to be set when the timer expires. The efn argument is a longword
value containing the number of the event flag; however, $SETIMR uses only the
low-order byte. If you do not specify efn, event flag 0 is set.

When $SETIMR first executes, it clears the specified event flag or event flag 0.

daytim
VMS Usage:
type:
access:
mechanism:

date_time
quadword
read only
by reference

Time at which the timer expires. The daytim argument is the address of a
quadword time value. A positive time value specifies an absolute time at which
the timer expires; a negative time value specifies an offset (delta time) from the
current time.

If a specified absolute time value has already passed, the timer expires at the
next clock cycle, which is within 10 milliseconds.

The Convert ASCII String to Binary Time ($BINTIM) service converts an ASCII
string time value to the quadword time value required by $SETIMR.

astadr
VMS Usage:
type:
access:
mechanism:

ast_procedure
procedure entry mask
call without stack unwinding
by reference

SYS-519

System Service Descriptions
$SETI MR

Description

SYS-520

AST service routine that is to execute when the timer expires. The astadr
argument is the address of the entry mask of this routine. If you do not specify
the value of astadr or specify it as 0 (the default), no AST routine executes.

The AST routine, if specified, executes at the access mode of the caller.

reqidt
VMS Usage:
type:
access:
mechanism:

user_arg
longword (unsigned)
read only
by value

Identification of the timer request. The reqidt argument is a longword value
containing a number that uniquely identifies the timer request. If you do not
specify reqidt, the value 0 is used.

To cancel a timer request, the identification of the timer request (as specified by
reqidt in $SETIMR) is passed to the Cancel Timer ($CANTIM) service (as the
reqidt argument).

If you want to cancel specific timer requests but not all timer requests, be sure to
specify a nonzero value for reqidt in the $SETIMR call; $CANTIM interprets an
identification value of 0 as a request to cancel all timer requests.

You can specify unique values for reqidt for each timer request or give the same
value to related timer requests. This permits selective canceling of a single timer
request, a group of related timer requests, or all timer requests.

If you specify the astadr argument in the $SETIMR call, the value specified by
the reqidt argument is passed as a parameter to the AST routine. If the AST
routine requires more than one parameter, specify an address for the value of
reqidt; the AST routine can then interpret that address as the beginning of a list
of parameters.

flags
VMS Usage:
type:
access:
mechanism:

mask_longword
longword (unsigned)
read only
by value

Longword of bit flags for the set timer operation. Currently, only bit 0 is used for
the flags argument. When the low bit (bit 0) is set, it indicates that this timer
request should be in units of CPU time, rather than elapsed time. When bit 0 is
clear (the default), the timer request is in units of elapsed time.

The Set Timer service sets the timer to expire at a specified time. When the
timer expires, an event flag is set and (optionally) an AST routine executes. This
service requires dynamic memory and executes at the access mode of the caller,
as does the AST routine if one is specified.

Required Privileges
None

Required Quota
This service uses the process's timer queue entries (TQELM) quota. If you specify
an AST routine, the service uses the AST limit (ASTLM) quota of the process.

Related Services

System Service Descriptions
$SETI MR

$ASCTIM, $BINTIM, $CANTIM, $CANWAK, $GETTIM, $NUMTIM, $SCHDWK,
$SETIME

Condition Values Returned

SS$_NORMAL
SS$_ACCVIO

SS$_EXQUOTA

SS$_ILLEFC

SS$_INSFMEM

SS$_UNASEFC

The service completed successfully.
The expiration time cannot be read by the caller.

The process exceeded its quota for timer entries
or its AST limit quota; or the system dynamic
memory is insufficient for completing the request.
You specified an illegal event flag number.

The dynamic memory is insufficient for allocating
a timer queue entry.

The process is not associated with the cluster
containing the specified event flag.

SYS-521

System Service Descriptions
$SETPRA

$SETPRA-Set Power Recovery AST

Format

Returns

Arguments

Description

SYS-522

Establishes a routine to receive control after a power recovery is detected.

SYS$SETPRA astadr ,[acmode]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

astadr
VMS Usage:
type:
access:
mechanism:

ast_procedure
procedure entry mask
call without stack unwinding
by reference

Power recovery AST routine to receive control when a power recovery is detected.
The astadr argument is the address of the entry mask of this routine.

If you specify astadr as the value 0, an AST is not delivered to the process when
a power recovery is detected.

The system passes one parameter to the specified AST routine. This parameter is
a longword value containing the length of time that the power was off, expressed
as the number of l/lOOth-of-a-second intervals that have elapsed.

acmode
VMS Usage:
type:
access:
mechanism:

access_mode
longword (unsigned)
read only
by value

Access mode at which the power recovery AST routine is to execute. The acmode
argument is a longword containing the access mode. The $PSLDEF macro defines
symbols for the access modes.

The most privileged access mode used is the access mode of the caller.

The Set Power Recovery AST service establishes a routine to receive control after
a power recovery is detected.

You can specify only one power recovery AST routine for a process. The AST
entry point address is cleared at image exit.

System Service Descriptions
$SETPRA

The entry and exit conventions for the power recovery AST routine are the
same as for all AST service routines. These conventions are described in the
Introduction to VMS System Services.

Required Privileges
None

Required Quota
One unit of quota is deducted from the process's ASTLM.

Related Services
$DCLAST, $SETAST

For more information, see the chapter on AST services in the Introduction to
VMS System Services.

Condition Values Returned

SS$_NORMAL

SS$_EXQUOTA

The service completed successfully.

The process exceeded its quota for outstanding
AST requests.

SYS-523

System Service Descriptions
$SETPRI

$SETPRl-Set Priority

Format

Returns

Arguments

SYS-524

Changes the base priority of the process. The base priority is used to determine
the order in which executable processes are to run.

SYS$SETPRI [pidadr] ,[prcnam] ,pri ,[prvpri]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

pidadr
VMS Usage:
type:
access:
mechanism:

process_id
longword (unsigned)
modify
by reference

Process identification (PID) of the process whose priority is to be set. The pidadr
argument is the address of the PID. The pidadr argument can refer to a process
running on the local node or a process running on another node in the cluster.

prcnam
VMS Usage:
type:
access:
mechanism:

process_name
character-coded text string
read only
by descriptor-fixed length string descriptor

Process name of the process whose priority is to be changed. The prcnam
argument is the address of a character string descriptor pointing to the process
name. A process running on the local node can be identified with a 1- to 15-
character string. To identify a process on a particular node on a cluster, specify
the full process name, which includes the node name as well as the process name.
The full process name can contain up to 23 characters.

You can use the prcnam argument only on behalf of processes in the same DIC
group as the calling process. To set the priority for processes in other groups, you
must specify the pidadr argument.

pri
VMS Usage:
type:
access:
mechanism:

longword_ unsigned
longword (unsigned)
read only
by value

Description

System Service Descriptions
$SETPRI

New base priority to be established for the process. The pri argument is a
longword value containing the new priority. Priorities that are not real time are
in the range 0 through 15; real-time priorities are in the range 16 through 31.

If the specified priority is higher than the base priority of the target process, and
if the caller does not have ALTPRI privilege, then the base priority of the target
process is used.

prvpri
VMS Usage:
type:
access:
mechanism:

longword_ unsigned
longword (unsigned)
write only
by reference

Base priority of the process before the call to $SETPRI. The prvpri argument is
the address of a longword into which $SETPRI writes the previous base priority
of the process.

The Set Priority service changes the base priority of the process. The base
priority is used to determine the order in which executable processes are to run.
If you specify neither the pidadr nor prcnam argument, $SETPRI sets the base
priority of the calling process.

If the longword at address pidadr is the value 0, the PID of the target process is
returned.

The base priority of a process remains in effect until specifically changed or until
the process is deleted.

To determine the priority set by the $SETPRI service, use the Get Job/Process
Information ($GETJPI) service.

Required Privileges
Depending on the operation, the calling process may need one of the following
privileges to use $SETPRI:

• GROUP privilege to change the priority of a process in the same group, unless
the target process has the same UIC as the calling process.

• WORLD privilege to change the priority of any other process in the system.

• ALTPRI privilege to set any process's priority to a value greater than the
target process's initial base priority. If a process does not have ALTPRI
privilege and attempts to set a priority higher than the base priority of the
target process, the priority is set to the base priority of the target process,
and the status code SS$_NORMAL is returned.

Required Quota
None

Related Services
$CANEXH, $CREPRC, $DCLEXH, $DELPRC, $EXIT, $FORCEX, $GETJPI,
$GETJPIW, $HIBER, $PROCESS_SCAN, $RESUME, $SETPRN, $SETPRV,
$SETRWM, $SUSPND, $WAKE

SYS-525

System Service Descriptions
$SETPRI

Condition Values Returned

SVS-526

SS$_NORMAL

SS$_ACCVIO

SS$_INCOMPAT

SS$_IVLOGNAM

SS$_NONEXPR

SS$_NOPRIV

SS$_NOSUCHNODE

SS$_REMRSRC

SS$_UNREACHABLE

The service completed successfully.

The process name string or string descriptor
cannot be read by the caller, or the process
identification or previous priority longword
cannot be written by the caller.

The remote node is running a version of VMS
that is incompatible.

The process name string has a length of 0 or has
more than 15 characters.

The specified process does not exist, or an invalid
process identification was specified.

The process does not have the privilege to affect
other processes.

The process name refers to a node that is not
currently recognized as part of the VAXcluster.

The remote node has insufficient resources to
respond to the request. (Bring this error to the
attention of your system manager.)

The remote node is a member of the cluster but
is not accepting requests. (This is normal for a
brief period early in the system boot process.)

System Service Descriptions
$SETPRN

$SETPRN-Set Process Name

Format

Returns

Argument

Description

Allows a process to establish, or to change, its own process name.

SYS$SETPRN ~ronam]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

prcnam
VMS Usage:
type:
access:
mechanism:

process_name
character-coded text string
read only
by descriptor-fixed length string descriptor

Process name to be given to the calling process. The prcnam argument is the
address of a character string descriptor pointing to a 1- to 15-character process
name string. If you do not specify prcnam, the calling process is given no name.

The Set Process Name service allows a process to establish or to change its own
process name which remains in effect until you change it (using $SETPRN) or
until the process is deleted. Process names provide an identification mechanism
for processes executing with the same group number. A process can also be
identified by its process identification (PID).

Required Privileges
None

Required Quota
None

Related Services
$CANEXH, $CREPRC, $DCLEXH, $DELPRC, $EXIT, $FORCEX, $GETJPI,
$GETJPIW, $HIBER, $PROCESS_SCAN, $RESUME, $SETPRI, $SETPRV,
$SETRWM, $SUSPND, $WAKE

SYS-527

System Service Descriptions
$SETPRN

Condition Values Returned

SYS-528

SS$_NORMAL

SS$_ACCVIO

SS$_DUPLNAM

SS$_IVLOGNAM

The service completed successfully.

The process name string or string descriptor
cannot be read by the caller.

The specified process name duplicates one
already specified within that group.

The specified process name has a length of 0 or
has more than 15 characters.

System Service Descriptions
$SETPRT

$SETPRT-Set Protection on Pages

Format

Returns

Arguments

Allows a process to change the protection on a page or range of pages.

SYS$SETPRT inadr ,[retadr] ,[acmode] ,prot ,[prvprt]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

inadr
VMS Usage:
type:
access:
mechanism:

address_range
longword (unsigned)
read only
by reference

Starting and ending virtual addresses of the range of pages whose protection
is to be changed. The inadr argument is the address of a 2-longword array
containing, in order, the starting and ending process virtual addresses. Only the
virtual page number portion of each virtual address is used; the low-order nine
bi ts are ignored.

If the starting and ending virtual addresses are the same, the protection is
changed for a single page.

retadr
VMS Usage:
type:
access:
mechanism:

address_range
longword (unsigned)
write only
by reference-array reference or descriptor

Starting and ending virtual addresses of the range of pages whose protection
was actually changed by $SETPRT. The retadr argument is the address of a
2-longword array containing, in order, the starting and ending process virtual
addresses.

If an error occurs while the protection is being changed, $SETPRT writes into
retadr the range of pages that were successfully changed before the error
occurred. If no pages were affected before the error occurred, $SETPRT writes
the value -1 into each longword of the 2-longword array.

SYS-529

System Service Descriptions
$SETPRT

SYS-530

acmode
VMS Usage:
type:
access:
mechanism:

access_mode
longword (unsigned)
read only
by value

Access. mode associated with the call to $SETPRT. The acmode argument is a
longword containing the access mode. The $PSLDEF macro defines symbols for
the access modes.

The $SETPRT service uses whichever of the following two access modes is least
privileged: (1) the access mode specified by acmode or (2) the access mode
of the caller. To change the protection of any page in the specified range, the
resultant access mode must be equal to or more privileged than the access mode
of the owner of that page.

prot
VMS Usage:
type:
access:
mechanism:

page_protection
longword (unsigned)
read only
by value

Page protection to be assigned to the specified pages. The prot argument is a
longword value containing the protection code. Only bits 0 to 3 are used; bits 4 to
31 are ignored.

The $PRTDEF macro defines the following symbolic names for the protection
codes.

Symbol

PRT$C_NA

PRT$C_KR

PRT$C_KW

PRT$C_ER

PRT$C_EW

PRT$C_SR

PRT$C_SW

PRT$C_UR

PRT$C_UW

PRT$C_ERKW

PRT$C_SRKW

PRT$C_SREW

PRT$C_URKW

PRT$C_UREW

PRT$C_URSW

Description

No access

Kernel read only

Kernel write

Executive read only

Executive write

Supervisor read only

Supervisor write

User read only

User write

Executive read; kernel write

Supervisor read; kernel write

Supervisor read; executive write

User read; kernel write

User read; executive write

User read; supervisor write

If you specify the protection as the value 0, the protection defaults to kernel read
only.

Description

prvprt
VMS Usage:
type:
access:
mechanism:

page_protection
byte (unsigned)
write only
by reference

System Service Descriptions
$SETPRT

Protection previously assigned to the last page in the range. The prvprt
argument is the address of a byte into which $SETPRT writes the protection of
this page. The prvprt argument is useful only when protection for a single page
is being changed.

The Set Protection on Pages service allows a process to change the protection on
a page or range of pages.

Required Privileges
None

Required Quota
If a process changes the protection for any pages in a private section from read
only to read/write, $SETPRT uses the paging file (PGFLQUOTA) quota of the
process.

For pages in global sections, the new protection can alter only copy-on-reference
pages.

Related Services
$ADJSTK, $ADJWSL, $CRETVA, $CRMPSC, $DELTVA, $DGBLSC, $EXPREG,
$LCKPAG, $LKWSET, $MGBLSC, $PURGWS, $SETSTK, $SETSWM, $ULKPAG,
$ULWSET, $UPDSEC, $UPDSECW

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_EXQUOTA

SS$_IVPROTECT

SS$_LENVIO

The service completed successfully.

The input address array cannot be read by the
caller; the output address array or the byte to
receive the previous protection cannot be written
by the caller; or an attempt was made to change
the protection of a nonexistent page.

The process exceeded its paging file quota while
changing a page in a read-only private section to
a read/write page.

The specified protection code has a numeric value
of 1 or is greater than 15.

A page in the specified range is beyond the end
of the program or control region.

SYS-531

System Service Descriptions
$SETPRT

SS$_NOPRIV

SS$_PAGOWNVIO

SYS-532

A page is in the specified range in the system
address, space, or the range includes a PFN
mapped page, or the range includes a page
owned by a more privileged access mode.

The process attempted to change the protection
on a page owned by a more privileged access
mode.

System Service Descriptions
$SETPRV

$SETPRV-Set Privileges

Format

Returns

Arguments

Enables or disables specified privileges for the calling process.

SYS$SETPRV [enbflg] ,[prvadr] ,[prmflg] ,[prvprv]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

en bf lg
VMS Usage:
type:
access:
mechanism:

boolean
longword (unsigned)
read only
by value

Indicator specifying whether the specified privileges are to be enabled or disabled.
The enbflg argument is a longword value. The value 1 indicates that the
privileges specified in the prvadr argument are to be enabled. The value 0 (the
default) indicates that the privileges are to be disabled.

prvadr
VMS Usage:
type:
access:
mechanism:

mask_pri vileges
quadword (unsigned)
read only
by reference

Privileges to be enabled or disabled for the calling process. The prvadr argument
is the address of a quadword bit vector wherein each bit corresponds to a privilege
that is to be enabled or disabled.

Each bit has a symbolic name. The $PRVDEF macro defines these names. You
form the bit vector by specifying the symbolic name of each desired privilege in a
logical OR operation. Table SYS-13 provides the symbolic name and description
of each privilege.

SYS-533

System Service Descriptions
$SETPRV

Table SVS-13 User Privileges

Privilege Symbolic Name

ALLSPOOL PRV$M_ALLSPOOL

BUGCHK PRV$M_BUGCHK

BYPASS PRV$M_BYPASS

CMEXEC PRV$M_CMEXEC

CMKRNL PRV$M_CMKRNL

DETACH PRV$M_DETACH
DIAGNOSE PRV$M_DIAGNOSE

DOWNGRADE PRV$M_DOWNGRADE

EX QUOTA PRV$M_EXQUOTA

GROUP PRV$M_GROUP
GRPNAM PRV$M_GRPNAM

GRPPRV PRV$M_GRPPRV

LOG_IO PRV$M_LOG_IO

MOUNT PRV$M_MOUNT

NETMBX PRV$M_NETMBX

ACNT PRV$M_NOACNT

OPER PRV$M_OPER

PFNMAP PRV$M_PFNMAP

PHY_IO PRV$M_PHY_IO

PRMCEB PRV$M_PRMCEB

PRMGBL PRV$M_PRMGBL

PRMMBX PRV$M_PRMMBX

PSWAPM PRV$M_PSWAPM

READ ALL PRV$M_READALL

SECURITY PRV$M_SECURITY

ALTPRI PRV$M_SETPRI

SETPRV PRV$M_SETPRV

SHARE PRV$M_SHARE

SYS-534

Description

Allocate a spooled device

Make bugcheck error log
entries
Bypass UIC-based protection

Change mode to executive

Change mode to kernel

Create detached processes
May diagnose devices

May downgrade classification

May exceed quotas

Group process control
Place name in group logical
name table

Group access by means of
system protection field

Perform logical I/O operations

Issue mount volume QIO

Create a network device

Create processes for which no
accounting is done

All operator privileges

Map to section by physical
page frame number
Perform physical I/O
operations

Create permanent common
event flag clusters
Create permanent global
sections

Create permanent mailboxes

Change process swap mode

Possess read access to
everything

May perform security
functions
Set (alter) any process priority

Set any process privileges

May assign a channel to a
nonshared device

(continued on next page)

Table SYS-13 (Cont.) User Privileges

Privilege

SHMEM

SYSGBL

SYSLCK

SYSNAM

SYSPRV

TMPMBX

UPGRADE

VOLPRO

WORLD

Symbolic Name

PRV$M_SHMEM

PRV$M_SYSGBL

PRV$M_SYSLCK

PRV$M_SYSNAM

PRV$M_SYSPRV

PRV$M_TMPMBX

PRV$M_UPGRADE

PRV$M_VOLPRO

PRV$M_ WORLD

System Service Descriptions
$SETPRV

Description

Allocate structures in memory
shared by multiple processors

Create system global sections

Queue systemwide locks

Place name in system logical
name table

Access files and other
resources as if you have a
system UIC

Create temporary mailboxes

May upgrade classification

Override volume protection

World process control

Note that the privilege bits PRV$M_NOACNT and PRV$M_SETPRI correspond
to the names of the DCL privileges ACNT and ALTPRI respectively, yet have
different names.

If you do not specify prvadr or assign it the value 0, the privileges are not
altered.

prmflg
VMS Usage:
type:
access:
mechanism:

boolean
longword (unsigned)
read only
by value

Indicator specifying whether the privileges are to be affected permanently or
temporarily. The prmftg argument is a longword value. The value 1 specifies
that the privileges are to be affected permanently, that is, until you change
them again by using $SETPRV or until the process is deleted. The value 0 (the
default) specifies that the privileges are to be affected temporarily, that is, until
the current image exits (at which time the permanently enabled privileges of the
process will be restored).

prvprv
VMS Usage:
type:
access:
mechanism:

mask_privileges
quadword (unsigned)
write only
by reference

Privileges previously possessed by the calling process. The prvprv argument is
the address of a quadword bit vector wherein each bit corresponds to a privilege
that was previously either enabled or disabled. If you do not specify prvprv or
assign it the value 0, the previous privilege mask is not returned.

SYS-535

System Service Descriptions
$SETPRV

Description

SYS-536

The Set Privileges service enables or disables specified privileges for the calling
process.

VMS maintains four separate privilege masks for each process:

• AUTHPRIV-Privileges that the process is authorized to enable, as
designated by the system manager or the process creator. The AUTHPRIV
mask never changes during the life of the process.

• PROCPRIV-Privileges that are designated as permanently enabled for the
process. The PROCPRIV mask can be modified by $SETPRV.

• IMAGPRIV-Privileges with which the current image is installed.

• CURPRIV-Privileges that are currently enabled. The CURPRIV mask can
be modified by $SETPRV.

When a process is created, its AUTHPRIV, PROCPRIV, and CURPRIV masks
have the same contents. Whenever a system service (other than $SETPRV) must
check the process privileges, that service checks the CURPRIV mask.

When a process runs an installed image, the privileges with which that image
was installed are enabled in the CURPRIV mask. When the installed image
exits, the PROCPRIV mask is copied to the CURPRIV mask.

The $SETPRV service can set bits only in the CURPRIV and PROCPRIV mask,
but $SETPRV checks the AUTHPRIV mask to see whether a process can set
specified privilege bits in the CURPRIV or PROCPRIV masks. Consequently, a
process can give itself the SETPRV privilege only if this privilege is enabled in
the AUTHPRIV mask.

You can obtain each of a process's four privilege masks by calling the Get Job
/Process Information ($GETJPI) service and specifying the desired privilege mask
or masks as item codes in the itmlst argument. You construct the item code for
a privilege mask by prefixing the name of the privilege mask with the characters
JPI$_ (for example, JPI$_CURPRIV is the item code for the current privilege
mask).

The DCL command SET PROCESS/PRIVILEGES also enables or disables
specified privileges; refer to the VMS DCL Dictionary for details.

Required Privileges
To set a privilege permanently, the calling process must be authorized to set the
specified privilege, or the process must be executing in kernel or executive mode.

To set a privilege temporarily, one of the following three conditions must be true:

• The calling process must be authorized to set the specified privilege.

• The calling process must be executing in kernel or executive mode.

• The image currently executing must be one that was installed with the
specified privilege.

Required Quota
None

Related Services

System Service Descriptions
$SETPRV

$CANEXH, $CREPRC, $DCLEXH, $DELPRC, $EXIT, $FORCEX, $GETJPI,
$GETJPIW, $HIBER, $PROCESS_SCAN, $RESUME, $SETPRI, $SETPRN,
$SETRWM, $SUSPND, $WAKE

Condition Values Returned

SS$_NORMAL

SS$_NOTALLPRIV

SS$_ACCVIO

The service completed -Successfully. All privileges
were enabled or disabled as specified.

The service completed successfully. Not all
specified privileges were enabled; see the
Description section for details.

The privilege mask cannot be read or the
previous privilege mask cannot be written by
the caller.

SYS-537

System Service Descriptions
$SETRWM

$SETRWM-Set Resource Wait Mode

Format

Returns

Argument

Description

SYS-538

Allows a process to specify what action system services should take when system
resources required for their execution are unavailable.

SYS$SETRWM [watflg]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

watflg
VMS Usage:
type:
access:
mechanism:

longword_unsigned
longword (unsigned)
read only
by value

Indicator specifying whether system services should wait for required resources.
The watflg argument is a longword value. The value 0 (the default) specifies that
system services should wait until resources needed for their execution become
available. The value 1 specifies that system services should return failure status
immediately when resources needed for their execution are unavailable.

The VMS operating system enables resource wait mode for all processes. You can
disable resource wait mode only by calling $SETRWM.

If resource wait mode is disabled, it remains disabled until it is explicitly
reenabled or until the process is deleted.

The Set Resource Wait Mode service allows a process to specify what action
system services should take when system resources required for their execution
are unavailable. When resource wait mode is enabled, system services wait for
the required system resources to become available and then continue execution.
When resource wait mode is disabled, system services return to the caller when
required system resources are unavailable. The condition value returned by
$SETRWM indicates whether resource wait mode was previously enabled or
previously disabled.

The following system resources and process quotas are affected by resource wait
mode:

• System dynamic memory

• UNIBUS adapter map registers

• Direct I/O limit (DIOLM) quota

System Service Descriptions
$SETRWM

• Buffered I/O limit (BIOLM) quota

• Buffered I/O byte count limit (BYTLM) quota

Required Privileges
None

Required Quota
None

Related Services
$CANEXH, $CREPRC, $DCLEXH, $DELPRC, $EXIT, $FORCEX, $GETJPI,
$GETJPIW, $HIBER, $PROCESS_SCAN, $RESUME, $SETPRI, $SETPRN,
$SETPRV, $SUSPND, $WAKE

Condition Values Returned

SS$_WASCLR

SS$_WASSET

The service completed successfully. Resource
wait mode was previously enabled.

The service completed successfully. Resource
wait mode was previously disabled.

SYS-539

System Service Descriptions
$SETSTK

$SETSTK-Set Stack Limits

Format

Returns

Arguments

SYS-540

Allows a process to change the size of its supervisor, executive, and kernel stacks
by altering the values in the stack limit and base arrays held in Pl (per-process)
space.

SYS$SETSTK inadr ,[retadr] ,[acmode]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

inadr
VMS Usage:
type:
access:
mechanism:

address_range
longword (unsigned)
read only
by reference

Range of addresses that express the stack's new limits. The inadr argument is
the address of a 2-longword array containing, in order, the address of the top of
the stack and the address of the base of the stack. Because stacks in Pl space
expand from high to low addresses, the address of the base of the stack must be
greater than the address of the top of the stack.

retadr
VMS Usage:
type:
access:
mechanism:

address_range
longword (unsigned)
write only
by reference

Range of addresses that express the stack's previous limits. The retadr
argument is the address of a 2-longword array into which $SETSTK writes,
in the first longword, the previous address of the top of the stack and, in the
second longword, the previous address of the base of the stack.

acmode
VMS Usage:
type:
access:
mechanism:

access_mode
longword (unsigned)
read only
by value

Access mode of the stack to be altered. The acmode argument is a longword
containing the access mode. The $PSLDEF macro defines symbols for the four
access modes. The most privileged access mode used is the access mode of the
caller.

Description

System Service Descriptions
$SETSTK

If acmode specifies user mode, $SETSTK performs no operation and returns the
SS$_NORMAL condition value.

The Set Stack Limits service allows a process to change the size of its supel'Visor,
executive, and kernel stacks by altering the values in the stack limit and base
arrays held in Pl (per-process) space.

Required Privileges
The calling process can adjust the size of stacks only for access modes that are
equal to or less privileged than the access mode of the calling process.

Required Quota
None

Related Services
$ADJSTK, $ADJWSL, $CRETVA, $CRMPSC, $DELTVA, $DGBLSC, $EXPREG,
$LCKPAG, $LKWSET, $MGBLSC, $PURGWS, $SETPRT, $SETSWM, $ULKPAG,
$ULWSET, $UPDSEC, $UPDSECW

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

The service completed successfully.

The input address array cannot be read by the
caller; the input range is invalid; or the return
address array cannot be written by the caller.

SYS-541

System Service Descriptions
$SETS WM

$SETSWM-Set Process Swap Mode

Format

Returns

Argument

Description

SYS-542

Allows a process to control whether it can be swapped out of the balance set.

SYS$SETSWM [swpflg]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

swpflg
VMS Usage:
type:
access:
mechanism:

longword_ unsigned
longword (unsigned)
read only
by value

Indicator specifying whether the process can be swapped. The swpflg argument
is a longword value. The value 0 (the default) enables process swap mode,
meaning the process can be swapped. The value 1 disables process swap mode,
meaning the process cannot be swapped.

The Set Process Swap Mode service allows a process to control whether it can be
swapped out of the balance set.

When the process swap mode is enabled, the process can be swapped out; when
disabled, the process remains in the balance set until (1) process swap mode is
reenabled or (2) the process is deleted.

The $SETSWM service returns a condition value indicating whether process swap
mode was enabled or disabled prior to the call to $SETSWM.

Required Privileges
To change its process swap mode, the calling process must have PSWAPM
privilege.

Required Quota
None

Related Services
$ADJSTK, $ADJWSL, $CRETVA, $CRMPSC, $DELTVA, $DGBLSC, $EXPREG,
$LCKPAG, $LKWSET, $MGBLSC, $PURGWS, $SETPRT, $SETSTK, $ULKPAG,
$ULWSET, $UPDSEC, $UPDSECW

To lock some but not necessarily all process pages into the balance set, use the
Lock Pages in Memory ($LCKPAG) service.

System Service Descriptions
$SETS WM

For more information, see the chapter on memory management in the
Introduction to VMS System Services.

Condition Values Returned

SS$_WASCLR

SS$_WASSET

SS$_NOPRIV

The service completed successfully. The process
was not previously locked in the balance set.

The service completed successfully. The process
was previously locked in the balance set.

The process does not have the necessary
PSWAPM privilege.

SYS-543

System Service Descriptions
$SETUAI

$SETUAI-. Set User Authorization Information

Format

Returns

Arguments

SYS-544

Modifies the user authorization file (UAF) record for a specified user.

SYS$SETUAI [nullarg] ,[nullarg] ,usrnam ,itmlst ,[nullarg] ,[nullarg] ,[nullarg]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only ·
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

nullarg
VMS Usage:
type:
access:
mechanism:

null_arg
longword (unsigned)
read only
by value

Placeholding argument reserved by Digital.

usrnam
VMS Usage:
type:
access:
mechanism:

char _string
character-coded text string
read only
by descriptor-fixed length string descriptor

Name of the user whose UAF record is modified. The usrnam argument is
the address of a descriptor pointing to a character text string containing the
user name. The user name string can contain a maximum of 12 alphanumeric
characters.

itmlst
VMS Usage:
type:
access:
mechanism:

item_list_3
longword (unsigned)
read only
by reference

Item list specifying which information from the specified UAF record is to be
modified. The itmlst argument is the address of a list of one or more item
descriptors, each of which specifies an item code. The item list is terminated by
the item code 0 or by the longword 0. The following diagram depicts the structure
of a single item descriptor.

31

Item Code

15

I
Buffer Address

System Service Descriptions
$SETUAI

0

Buffer Length

Return Length Address

ZK-1705-GE

Item Descriptor Fields

buffer length

Item Codes

A word specifying the length (in bytes) of the buffer in which $SETUAI is to
write the information. The length of the buffer varies depending on the item
code specified in the item code field of the item descriptor and is given in the
description of each item code. If the value of the buffer length field is too small,
$SETUAI truncates the data.

item code
A word containing a user-supplied symbolic code specifying the item of
information that $SETUAI is to set. The $UAIDEF macro defines these codes,
which· have the following format:

UAl$_code

buffer address
A longword address of the buffer that specifies the information to be set by
$SETUAI.

return length address
A longword containing the user-supplied address of a word in which $SETUAI
writes the length in bytes of the information it actually set.

UAl$_ACCOUNT
When you specify UAI$_ACCOUNT, $SETUAI sets, as a blank-filled 32-character
string, the account name of the user.

An account name can include up to 8 characters. Because the account name is a
blank-filled string, however, the buffer length field of the item descriptor should
specify 32 (bytes).

UAl$_ASTLM
When you specify UAI$_ASTLM, $SETUAI sets the AST queue limit.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_BATCH_ACCESS~P
When you specify UAI$_BATCH_ACCESS_P, $SETUAI sets, as a 3-byte value,
the range of times during which batch access is permitted for primary days. Each
bit set represents a 1-hour period, from bit 0 as midnight to 1 a.m., to bit 23 as
11 p.m. to midnight.

SYS-545

System Service Descriptions
$SETUAI

SYS-546

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_BATCH_ACCESS_S
When you specify UAI$_BATCH_ACCESS_S, $SETUAI sets, as a 3-byte value,
the range of times during which batch access is permitted for secondary days.
Each bit set represents a 1-hour period, from bit 0 as midnight to 1 a.m., to bit 23
as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_BIOLM
When you specify UAI$_BIOLM, $SETUAI sets the buffered I/O count limit.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_BYTLM
When you specify UAI$_BYTLM, $SETUAI sets the buffered I/O byte limit.

Because the buffered I/O count limit is a longword decimal number, the buffer
length field in the item descriptor should specify 4 (bytes).

UAl$_CLITABLES
When you specify UAI$_CLITABLES, $SETUAI sets, as a character string, the
name of the user-defined CLI table for the account, if any.

Because the CLI table name can include up to 31 characters plus a size-byte
prefix, the buffer length field of the item descriptor should specify 32 (bytes).

UAl$_CPUTIM
When you specify UAl$_CPUTIM, $SETUAI sets the maximum CPU time limit
(per session) for the process in 10-millisecond units.

Because the maximum CPU time limit is a longword decimal number, the buffer
length field in the item descriptor should specify 4 (bytes).

UAl$_DEFCLI
When you specify UAI$_DEFCLI, $SETUAI sets, as an RMS file name
component, the name of the command language interpreter used to execute
the specified batch job. The file specification set assumes the device name and
directory SYS$SYSTEM and the file type EXE.

Because a file name can include up to 31 characters plus a size-byte prefix, the
buffer length field in the item descriptor should specify 32 (bytes).

UAl$_DEFDEV
When you specify UAI$_DEFDEV, $SETUAI sets, as a 1- to 31-character string,
the name of the default device.

Because the device name string can include up to 31 characters plus a size-byte
prefix, the buffer length field in the item descriptor should specify 32 (bytes).

UAl$_DEFDIR
When you specify UAI$_DEFDIR, $SETUAI sets, as a 1- to 63-character string,
the name of the default directory.

Because the directory name string can include up to 63 characters plus a size-byte
prefix, the buffer length field in the item descriptor should specify 64 (bytes).

UAl$_DEF _PRIV

System Service Descriptions
$SETUAI

When you specify UAI$_DEF _PRIV, $SETUAI sets, as a quadword value, the
default privileges for the user.

Because the default privileges are set as a quadword value, the buffer length field
in the item descriptor should specify 8 (bytes).

UAl$_DFWSCNT
When you specify UAI$_DFWSCNT, $SETUAI sets the default working set size.

Because the default working set size is a longword decimal number, the buffer
length field in the item descriptor should specify 4 (bytes).

UAl$_DIOLM
When you specify UAI$_DIOLM, $SETUAI sets the direct I/O count limit.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_DIALUP _ACCESS_P
When you specify UAI$_DIALUP _ACCESS_P, $SETUAI sets, as a 3-byte value,
the range of times during which dialup access is permitted for primary days.
Each bit set represents a 1-hour period, from bit 0 as midnight to 1 a.m., to bit 23
as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_DIALUP _ACCESS_S
When you specify UAI$_DIALUP _ACCESS_S, $SETUAI sets, as a 3-byte value,
the range of times during which dialup access is permitted for secondary days.
Each bit set represents a 1-hour period, from bit 0 as midnight to 1 a.m., to bit 23
as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_ENCRVPT
When you specify UAI$_ENCRYPT, $SETUAI sets one of the values shown in the
following table to identify the encryption algorithm for the primary password.

Symbolic Name

UAI$C_AD_II

UAI$C_PURDY

UAI$C_PURDY_ V

Description

Uses a CRC algorithm and returns a longword hash
value. It was used in VMS releases prior to Version
2.0.

Uses a Purdy algorithm over salted input. It expects a
blank-padded user name and returns a quadword hash
value. This algorithm was used during VMS Version
2.0 field test.

Uses the Purdy algorithm over salted input. It expects
a variable length user name and returns a quadword
hash value. This algorithm was used in VMS releases
prior to Version 5.4.

SYS-547

System Service Descriptions
$SETUAI

SYS-548

Symbolic Name

UAI$C_PURDY_S

UAI$C_PREFERED_
ALGORITHM1

Description

Uses the Purdy algorithm over salted input. It expects
a variable length user name and returns a quadword
hash value. This is the current algorithm that VMS
uses for all new password changes.

Represents the latest encryption algorithm that
the VMS system uses to encrypt new passwords.
Currently, it equates to UAI$C_PURDY_S. Digital
recommends that you use this symbol in source
modules.

1 The value of this symbol can be changed in future releases if an additional algorithm is introduced.

Because the encryption algorithm is a byte in length, the buffer length field in
the item descriptor should specify 1 byte.

UAl$_ENCRYPT2
When you specify UAI$_ENCRYPT2, $SETUAI sets one of the following values,
indicating the encryption algorithm for the secondary password. Refer to the
UAI$_ENCRYPT item code for a description of the algorithms.

UAI$C_AD_II

UAI$C_PURDY

UAI$C_PURDY_V

UAI$C_PURDY_S

UAI$C_PREFERED_ALGORITHM

UAl$_ENQLM
When you specify UAI$_ENQLM, $SETUAI sets the lock queue limit.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_EXPIRATION
When you specify UAI$_EXPIRATION, $SETUAI sets, as a quadword absolute
time value, the expiration date and time of the account.

Because the absolute time value is a quadword in length, the buffer length field
in the item descriptor should specify 8 (bytes).

UAl$_FILLM
When you specify UAI$_FILLM, $SETUAI sets the open file limit.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_FLAGS
When you specify UAI$_FLAGS, $SETUAI sets, as a longword bit vector, the
various login flags set for the user.

System Service Descriptions
$SETUAI

Each flag is represented by a bit. The $UAIDEF macro defines the following
symbolic names for these flags.

Symbol

UAI$V _AUDIT

UAI$V _AUTOLOGIN

UAI$V _CAPTIVE

UAI$V _DEFCLI

UAI$V _DISACNT

UAI$V _DISCTLY

UAI$V _DISFORCE_PWD_
CHANGE

UAI$V _DISIMAGE

UAI$V _DISMAIL

UAI$V _DISPWDDIC

UAI$V _DISPWDHIS

UAI$V _DISRECONNECT

UAI$V _DISREPORT

UAI$V _DISWELCOME

UAI$V_GENPWD

UAI$V _LOCKPWD

UAI$V_NOMAIL

UAI$V _PWD_EXPIRED

UAI$V _PWD2_EXPIRED

UAI$V _RESTRICTED

UAl$_JTQUOTA

Description

All actions are audited.

User can only log in to terminals defined by the
automatic login facility (ALF).

User is restricted to captive account.

User is restricted to default command interpreter.

User account is disabled.

User cannot use CtrlN.

User will not be forced to change expired
passwords at login.

User cannot issue the RUN or MCR commands or
use the foreign command mechanism in DCL.

Announcement of new mail is suppressed.

Automatic checking of user-selected passwords
against the system dictionary is disabled.

Automatic checking of user-selected passwords
against previously used passwords is disabled.

User cannot reconnect to existing processes.

User will not receive last login messages.

User will not receive the login welcome message.

User is required to use generated passwords.

SET PASSWORD command is disabled.

Mail delivery to user is disabled.

Primary password is expired.

Secondary password is expired.

User. is limited to operating under a restricted
account. Clear the CAPTIVE flag (UAI$V _
CAPTIVE), if set, before setting the RESTRICTED
flag. (See the Guide to VMS System Security for a
description of restricted and captive accounts.)

When you specify UAI$_JTQUOTA, $SETUAI sets the initial byte quota with
which the jobwide logical name table is to be created.

Because this quota is a longword decimal number, the buffer length field in the
item descriptor should specify 4 (bytes).

UAl$_LGICMD
When you specify UAI$_LGICMD, $SETUAI sets, as an RMS file specification,
the name of the default login command file.

Because a file specification can include up to 63 characters plus a size-byte prefix,
the buffer length field of the item descriptor should specify 64 (bytes).

SYS-549

System Service Descriptions
$SETUAI

SYS-550

UAl$_LOCAL_ACCESS_P
When you specify UAI$_LOCAL_ACCESS_P, $SETUAI sets, as a 3-byte value,
the range of times during which local interactive access is permitted for primary
days. Each bit set represents a 1-hour period, from bit 0 as midnight to 1 a.m., to
bit 23 as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_LOCAL_ACCESS_S
When you specify UAI$_LOCAL_ACCESS_S, $SETUAI sets, as a 3-byte value,
the range of times during which local interactive access is permitted for secondary
days. Each bit set represents a 1-hour period, from bit 0 as midnight to 1 a.m., to
bit 23 as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_MAXACCT JOBS
When you specify UAI$_MAXACCTJOBS, $SETUAI sets the maximum number
of batch, interactive, and detached processes that can be active at one time for all
users of the same account. The value 0 represents an unlimited number.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_MAXDETACH
When you specify UAI$_MAXDETACH, $SETUAI sets the detached process limit.
The value 0 represents an unlimited number.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_MAXJOBS
When you specify UAl$_MAXJOBS, $SETUAI sets the active process limit. A
value of 0 represents an unlimited number.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_NETWORK_ACCESS_P
When you specify UAl$_NETWORK_ACCESS_P, $SETUAI sets, as a 3-byte
value, the range of times during which network access is permitted for primary
days. Each bit set represents a 1-hour period, from bit 0 as midnight to 1 a.m., to
bit 23 as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_NETWORK_ACCESS_S
When you specify UAI$_NETWORK_ACCESS_S, $SETUAI sets, as a 3-byte
value, the range of times during which network access is permitted for secondary
days. Each bit set represents a 1-hour period, from bit 0 as midnight to 1 a.m., to
bit 23 as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_0WNER
When you specify UAI$_0WNER, $SETUAI sets, as a character string, the name
of the owner of the account.

Because the owner name can include up to 31 characters plus a size-byte prefix,
the buffer length field of the item descriptor should specify 32 (bytes).

System Service Descriptions
$SETUAI

UAl$_PASSWORD
When you specify UAI$_PASSWORD, $SETUAI sets the specified plaintext string
as the primary password for the user and updates the primary password change
date. You must have SYSPRV privilege to set passwords for any user account
(including your own).

The UAI$_PASSWORD and UAI$_PASSWORD2 item codes provide the building
blocks for designing a site-specific SET PASSWORD utility. Note that if you
create such a utility, you should also set the LOCK.FWD bit in the User
Authorization File (UAF) to prevent users from using the SET PASSWORD
DCL command and to prevent the LOGINOUT process from forcing password
changes. If you create a site-specific SET PASSWORD utility, install the utility
with SYSPRV privilege.

You must adhere to the following guidelines when specifying a password
with UAI$_PASSWORD or UAI$_PASSWORD2: the password must meet the
minimum password length defined for the user account; the password cannot
exceed 32 characters in length; the password must be different from the previous
password.

To clear the primary password, specify the value 0 in the buffer length field.

UAl$_PASSWORD2
When you specify UAI$_PASSWORD2, $SETUAI sets the specified plaintext
string as the secondary password for the user and updates the secondary
password change date. You must have SYSPRV privilege to set passwords for any
user account (including your own).

To clear the secondary password, specify the value 0 in the buffer length field.

UAl$_PBVTLM
When you specify UAI$_PBYTLM, $SETUAI sets the paged buffer I/O byte count
limit.

Because the paged buffer I/O byte count limit is a longword decimal number, the
buffer length field in the item descriptor should specify 4 (bytes).

UAl$_PGFLQUOTA
When you specify UAI$_PGFLQUOTA, $SETUAI sets the paging file quota.

Because the paging file quota is a longword decimal number, the buffer length
field in the item descriptor should specify 4 (bytes).

UAl$_PRCCNT
When you specify UAI$_PRCCNT, $SETUAI sets the subprocess creation limit.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_PRI
When you specify UAI$_PRI, $SETUAI sets the default base priority.

Because this decimal number is a byte in length, the buffer length field in the
item descriptor should specify 1 (byte).

UAl$_PRIMEDAVS
When you specify UAI$_PRIMEDAYS, $SETUAI sets, as a longword bit vector,
the primary and secondary days of the week.

SYS-551

System Service Descriptions
$SETUAI

SYS-552

Each bit represents a day of the week, with the bit clear representing a primary
day and the bit set representing a secondary day. The $UAIDEF macro defines
the following symbolic names for these bits:

UAI$V _MONDAY
UAI$V _TUESDAY
UAI$V _WEDNESDAY
UAI$V _THURSDAY
UAI$V _FRIDAY
UAI$V _SATURDAY
UAI$V _SUNDAY

UAl$_PRIV
When you specify UAI$_PRIV, $SETUAI sets, as a quadword value, the names of
the privileges that the user holds.

Because the privileges are set as a quadword value, the buffer length field in the
item descriptor should specify 8 (bytes).

UAl$_PWD
When you specify UAI$_PWD, $SETUAI sets, as a quadword value, the hashed
primary password of the user.

Because the hashed primary password is set as a ·quadword value, the buffer
length field in the item descriptor should specify 8 (bytes).

UAl$_PWD_LENGTH
When you specify UAI$_PWD_LENGTH, $SETUAI sets the minimum password
length.

Because this decimal number is a byte in length, the buffer length field in the
item descriptor should specify 1 (byte).

UAl$_PWD_LIFETIME
When you specify UAI$_PWD_LIFETIME, $SETUAI sets, as a quadword delta
time value, the password lifetime.

Because this value is a quadword in length, the buffer length field in the item
descriptor should specify 8 (bytes).

A quadword of 0 means that none of the password mechanisms will take effect.

UAl$_PWD2
When you specify UAI$_PWD2, $SETUAI sets, as a quadword value, the hashed
secondary password of the user.

Because the hashed secondary password is set as a quadword value, the buffer
length field in the item descriptor should specify 8 (bytes).

UAl$_QUEPRI
When you specify UAI$_QUEPRI, $SETUAI sets the maximum job queue priority
in the range 0 through 31.

Because this decimal number is a byte in length, the buffer length field in the
item descriptor should specify 1 (byte).

System Service Descriptions
$SETUAI

UAl$_REMOTE_ACCESS_P
When you specify UAI$_REMOTE_ACCESS_P, $SETUAI sets, as a 3-byte value,
the range of times during which batch access is permitted for primary days. Each
bit set represents a 1-hour period, from bit 0 as midnight to 1 a.m., to bit 23 as
11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_REMOTE_ACCESS_S
When you specify UAI$_REMOTE_ACCESS_S, $SETUAI sets, as a 3-byte value,
the range of times during which batch access is permitted for secondary days.
Each bit set represents a 1-hour period, from bit 0 as midnight to 1 a.m., to bit 23
as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_SALT
When you specify UAI$_SALT, $SETUAI sets the salt field of the user's record
to the value you provide. The salt value is used in the VMS hash algorithm to
generate passwords. $SETUAI does not generate a new salt value for you.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 bytes.

By copying the item codes UAI$_SALT, UAI$_ENCRYPT, UAI$_PWD, UAI$_
PWD_DATE, and UAI$_FLAGS, a site-security administrator can construct a
utility that propagates password changes throughout the network. Note, however,
that Digital does not recommend using the same password on more than one node
in a network.

UAl$_SHRFILLM
When you specify UAI$_SHRFILLM, $SETUAI sets the shared file limit.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_TQCNT
When you specify UAI$_TQCNT, $SETUAI sets the timer queue entry limit.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_UIC
When you specify UAI$_UIC, $SETUAI sets, as a longword, the user
identification code (UIC). For the format of the UIC see the Guide to VMS
System Security and Introduction to VMS System Services.

UAl$_USER_DATA
When you specify UAI$_USER_DATA, $SETUAI sets up to 255 bytes of
information in the user data area of the System User Authorization File
(SYSUAF). This is the supported method for modifying the user data area of
the SYSUAF. Digital no longer supports direct user modification of the SYSUAF.

To clear all the information in the user data area of the SYSUAF, specify
$SETUAI with a buffer length field of 0.

UAl$_WSEXTENT
When you specify UAI$_WSEXTENT, $SETUAI sets the working set extent
specified for the specified job or queue.

SYS-553

System Service Descriptions
$SETUAI

Description

Because the working set extent is a longword decimal number, the buffer length
field in the item descriptor should specify 4 (bytes).

UAl$_WSQUOTA
When you specify UAI$_ WSQUOTA, $SETUAI sets the working set quota for the
specified user.

Because the working set quota is a longword decimal number, the buffer length
field in the item descriptor should specify 4 (bytes).

The Set User Authorization Information service is used to modify the user
authorization file (UAF) record for a specified user.

Required Privileges
The following list describes the privileges you need to use the $SETUAI service:

• BYPASS or SYSPRV-Allows modification of any record in the UAF (user
authorization file).

• GRPPRV-Allows modification of any record in the UAF whose UIC group
matches that of the requester. A group manager with GRPPRV privilege is
limited in the extent to which he can modify the UAF records of users in
the same group; values such as privileges and quotas can only be changed if
the modification does not exceed the values set in the group manager's UAF
record.

• No privilege-Does not allow access to any UAF record.

Required Quota
None

Related Services
$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CHANGE_ACL, $CHECK_
ACCESS, $CHKPRO, $CREATE_RDB, $ERAPAT, $FIND_HELD, $FIND_
HOLDER, $FINISH_RDB, $FORMAT_ACL, $FORMAT_AUDIT, $GRANTID,
$HASH_PASSWORD, $IDTOASC, $MOD_HOLDER, $MOD_IDENT,
$MTACCESS, $PARSE_ACL, $REM_HOLDER, $REM_IDENT, $REVOKID

Condition Values Returned

SYS-554

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_NOGRPPRV

The service completed successfully.

The item list or input buffer cannot be read by
the caller; or the return length buffer, output
buffer, or status block cannot be written by the
caller.

The function code is invalid; the item list
contains an invalid item code; a buffer descriptor
has an invalid length; or the reserved parameter
has a nonzero value.

The user does not have the privileges required
to modify the authorization information for other
members of the UIC group.

SS$_NOSYSPRV

System Service Descriptions
$SETUAI

The user does not have the privileges required to
modify the authorization information associated
with the user or for users outside of the user's
UIC group.

This service can also return RMS status codes associated with operations on
indexed files. For a description of RMS status codes that are returned by this
service, refer to the VMS Record Management Services Manual.

SVS-555

System Service Descriptions
$SN DERR

$SNDERR-Send Message to Error Logger

Format

Returns

Argument

Description

SYS-556

Writes a user-specified message to the system error log file, preceding it with the
date and time.

SYS$SNDERR msgbuf

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

msgbuf
VMS Usage:
type:
access:
mechanism:

char _string
character-coded text string
read only
by descriptor-fixed length string descriptor

Message to be written to the error log file. The msgbuf argument is the address
of a character string descriptor pointing to the message text.

The Send Message to Error Logger service writes a user-specified message to the
system error log file, preceding it with the date and time. The $SNDERR service
requires system dynamic memory.

Required Privileges
To send a message to the error log file, the calling process must have BUGCHK
privilege.

Required Quota
None

Related Services
$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI,
$GETDVIW, $GETMSG, $GETQUI, $GETQUIW, $INIT_ VOL, $MOUNT,
$PUTMSG, $QIO, $QIOW, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_INSFMEM

SS$_NOPRIV

System Service Descriptions
$SN DERR

The service completed successfully.

The message buffer or buff er descriptor cannot
be read by the caller.

The system dynamic memory is insufficient for
completing the service.

The process does not have the required BUGCHK
privilege.

SYS-557

System Service Descriptions
$SN DJ BC

$SNDJBC-Send to Job Controller

Format

Returns

Arguments

SYS-558

Creates, stops, and manages queues and the batch and print jobs in those queues.
The $SNDJBC service completes asynchronously; to synchronize the completion
of most operations, you use the Send to Job Controller and Wait ($SNDJBCW)
service.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service and to the Introduction to VMS System Services.

SYS$SNDJBC [efn] ,func [,nullarg] [,itmlst] [,iosb] [,astadr] [,astprm]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

ef n
VMS Usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag to be set when $SNDJBC completes. The efn argument
is a longword containing this number; however, $SNDJBC uses only the low-order
byte.

When you queue the request, $SNDJBC clears the specified event flag (or event
flag 0 if efn was not specified). Then, when the operation completes, $SNDJBC
sets the specified event flag (or event flag 0).

func
VMS Usage:
type:
access:
mechanism:

function_ code
word (unsigned)
read only
by value

Function code specifying the function that $SNDJBC is to perform. The func
argument is a word containing this function code. The $SJCDEF macro defines
the names of each function code.

You can specify only one function code in a single call to $SNDJBC. Most function
codes require or allow for additional information to be passed in the call. You
pass this information by using the itmlst argument, which specifies a list of
one or more item descriptors. Each item descriptor in turn specifies an item
code, which modifies, restricts, or otherwise affects the action designated by the
function code.

System Service Descriptions
$SN DJ BC

The following lists and describes each function code, and lists which item codes
are required and which are optional for each function code; descriptions of the
item codes appear in the description of the itmlst argument.

nullarg
VMS Usage:
type:
access:
mechanism:

null_arg
longword (unsigned)
read only
by value

Placeholding argument reserved by Digital.

itmlst
VMS Usage:
type:
access:
mechanism:

item_list_3
longword (unsigned)
read only
by reference

Item list supplying information to be used in performing the function specified
by the func argument. The itmlst argument is the address of the item list. The
item list consists of one or more item descriptors, each of which specifies an item
code. The item list is terminated by an item code of 0 or by a longword of 0. The
following diagram depicts the structure of a single item descriptor.

31

Item Descriptor Fields

buffer length

Item Code

15

l
Buffer Address

Return Length Address

0

Buffer Length

ZK-1705-GE

A word specifying the length of the buffer; the buffer either supplies information
to be used by $SNDJBC or receives information from $SNDJBC. The required
length of the buffer varies depending on the item code specified and is given in
the description of each item code.

item code
A word containing an item code, which identifies the nature of the information
supplied for use by $SNDJBC or received from $SNDJBC. Each item code has a
symbolic name. The $SJCDEF macro defines these symbolic names, which have
the following format:

SJC$_code

There are three types of item code:

• Boolean item code. Boolean item codes specify a true or false value: the form
SJC$_code specifies a true value; SJC$_NO_code specifies a false value. The
default value for the Boolean item codes is false. For all Boolean item codes,
the buffer length, buffer address, and return length fields of the item
descriptor must be 0.

SYS-559

System Service Descriptions
$SN DJ BC

SYS-560

• Input value item code. Input value item codes specify an input value to be
used by $SNDJBC. The buffer length and buffer address fields of the
item descriptor must be nonzero; the return length field must be 0. Specific
buffer length requirements are given in the description of each item code.

• Output value item code. Output value item codes specify a buffer for
information returned by $SNDJBC. The buffer length and buffer address
fields of the item descriptor must be nonzero; the return length field can be
0 or nonzero. Specific buffer length requirements are given in the description
of each item code.

Several item codes specify a queue name, form name, or characteristic name.
For these item codes, the buffer must specify a string containing from 1 to 31
characters, exclusive of spaces, tabs, and null characters, which are ignored.
Allowable characters in. the string are uppercase alphabetic characters, lowercase
alphabetic characters (which are converted to uppercase), numeric characters, the
dollar sign ($), and the underscore (_).

buffer address
A longword containing the address of the buffer that specifies or receives the
information.

return length address
A longword containing the address of a word to receive the length in bytes of
information returned by $SNDJBC. If you specify this address as 0, no length is
returned.

iosb
VMS Usage: io_status_block
type: quadword (unsigned)
access: write only
mechanism: by reference

I/O status block into which $SNDJBC writes the completion status after the
requested operation has completed. The iosb argument is the address of the I/O
status block. ,

At request initiation, $SNDJBC sets the value of the quadword I/O status block
to 0. When the requested operation completes, $SNDJBC writes a condition value
in the first longword of the I/O status block. It writes the value 0 into the second.
longword; this longword is unused and reserved for future use.

The condition values returned by $SNDJBC in the I/O status block are usually
condition values from the JBC facility. These condition values are defined by the
$JBCMSGDEF macro. In some cases, the condition value returned by $SNDJBC
can be an error return from a system service or an RMS service that is used in
executing the request. For the SJC$_SYNCHRONIZE_JOB request, the condition
value returned is the completion status of the requested job.

The condition values returned from the JBC facility are listed under the heading
Condition Values Returned in the I/O Status Block.

Though this argument is optional, Digital strongly recommends that you specify
it, for the following reasons:

• If you are using an event flag to signal the completion of the service, you can
test the I/O status block for a condition value to be sure that the event flag
was not set by an event other than service completion.

System Service Descriptions
$SN DJ BC

• If you are using the $SYNCH service to synchronize completion of the service,
the I/O status block is a required argument for $SYNCH.

• The condition value returned in RO and the condition value returned in the
I/O status block provide information about different aspects of the call to the
$SNDJBC service. The condition value returned in RO gives you information
about the success or failure of the service call itself; the condition value
returned in the I/O status block gives you information about the success or
failure of the service operation. Therefore, to accurately assess the success or
failure of the call to $SNDJBC, you must check the condition values returned
in both RO and the I/O status block.

astadr
VMS Usage: ast_procedure
type: procedure entry mask
access: call without stack unwinding
mechanism: by reference

AST service routine to be executed when $SNDJBC completes. The astadr
argument is the address of the entry mask of this routine.

If specified, the AST routine executes at the same access mode as the caller of
$SNDJBC.

astprm
VMS Usage:
type:
access:
mechanism:

user_arg
longword (unsigned)
read only
by value

AST parameter to be passed to the AST service routine specified by the astadr
argument. The astprm argument is this longword parameter.

Function Codes

This section describes the various function codes that are applicable to the
$SNDJBC system service.

SJC$_ABORT _JOB
This request aborts the execution of the current job from an output execution
queue or the job you specified from a batch queue. By default, the job is deleted.
However, for a restartable job, you can requeue it to the same queue or to another
queue.

You must specify the following input value item code:

SJC$_QUEUE

You must specify the following input value item code for batch jobs:

SJC$_ENTRY_NUMBER

You may specify the following optional input value or Boolean item codes:

SJC$_DESTINATION_QUEUE

SJC$_HOLD SJC$_NO_HOLD

SYS-561

System Service Descriptions
$SN DJ BC

SYS-562

SJC$_PRIORITY

SJC$_REQUEUE

SJC$_ADD_FILE
This request adds a file to the open job owned by the requesting process. You
use this operation as part of a sequence of calls to the $SNDJBC service to
create a job with one or more files. The first call in the sequence specifies the
SJC$_CREATE_JOB operation to create an open job. Each subsequent SJC$_
ADD_FILE request associates an additional file with the job. Finally, you make
a SJC$_CLOSE_JOB request to complete the batch or print job specification. To
create a job that contains only one file, you can make a single call to $SNDJBC
that specifies the SJC$_ENTER_FILE function code.

You must specify one of the following input value item codes:

SJC$_FILE_IDENTIFICATION
SJC$_FILE_SPECIFICATION

You may specify the following input value or Boolean item codes:

SJC$_DELETE_FILE

SJC$_DOUBLE_SPACE

SJC$_FILE_BURST

SJC$_FILE_COPIES

SJC$_FILE_FLAG

SJC$_FILE_SETUP _MODULES
SJC$_FILE_ TRAILER

SJC$_FIRST_PAGE

SJC$_LAST_PAGE

SJC$_PAGE_HEADER
SJC$_PAGINATE

SJC$_PASSALL

SJC$_ALTER_JOB

SJC$_NO_DELETE_FILE

SJC$_NO_DOUBLE_SPACE
SJC$_NO_FILE_BURST

SJC$_NO_FILE_FLAG

SJC$_NO_FILE_SETUP _MODULES

SJC$_NO _FILE_ TRAILER

SJC$_NO_FIRST_PAGE

SJC$_NO_LAST_PAGE

SJC$_NO_PAGE_HEADER
SJC$_NO_PAGINATE

SJC$_NO_PASSALL

This request alters the parameters of an existing job that is not currently
executing.

You must specify the following input value item code:

SJC$_ENTRY _NUMBER

You may specify the following input value or Boolean item codes:

SJC$_AFTER_TIME

SJC$_CHARACTERISTIC_NAME
SJC$_CHARACTERISTIC_NUMBER

SJC$_CLI

SJC$_CPU_LIMIT

SJC$_DESTINATION_QUEUE

SJC$_NO_AFTER_TIME

SJC$_NO_CHARACTERISTICS

SJC$_NO_CHECKPOINT_DATA

SJC$_NO_CLI

SJC$_NO_CPU_LIMIT
SJC$_NO _DELETE_FILE

SJC$_DOUBLE_SPACE

SJC$_FILE_BURST

SJC$_FILE_COPIES

SJC$_FILE_FLAG

SJC$_FILE_SETUP _MODULES
SJC$_FILE_TRAILER

SJC$_FIRST_PAGE

SJC$_FORM_NAME

SJC$_FORM_NUMBER
SJC$_HOLD

SJC$_JOB_COPIES

SJC$_JOB_DEFAULT_RETAIN

SJC$_JOB_ERROR_RETAIN
SJC$_JOB_NAME

SJC$_JOB_RETAIN

SJC$_JOB_RETAIN_ TIME

SJC$_LAST_PAGE
SJC$_LOG_DELETE

SJC$_LOG_QUEUE

SJC$_LOG_SPECIFICATION
SJC$_LOG_SPOOL

SJC$_LOWERCASE

SJC$_NOTE

SJC$_NOTIFY
SJC$_0PERATOR_REQUEST

SJC$_PAGE_HEADER

SJC$_PAGINATE

SJC$_PARAMETER_l through 8

SJC$_PASSALL
SJC$_PRIORITY

SJC$_QUEUE

SJC$_RESTART
SJC$_ WSDEFAULT

SJC$_ WSEXTENT

SJC$_ WSQUOTA

System Service Descriptions
$SN DJ BC

SJC$_NO_DOUBLE_SPACE

SJC$_NO _FILE_BURST

SJC$_NO_FILE_FLAG

SJC$_NO_FILE_SETUP _MODULES

SJC$_NO_FILE_TRAILER

SJC$_NO_FIRST_PAGE

SJC$_NO_HOLD

SJC$_NO_LAST_PAGE

SJC$_NO_LOG_DELETE

SJC$_NO_LOG_SPECIFICATION

SJC$_NO_LOG_SPOOL

SJC$_NO_LOWERCASE

SJC$_NO_NOTE

SJC$_NO_NOTIFY
SJC$_NO_OPERATOR_REQUEST

SJC$_NO_PAGE_HEADER

SJC$_NO_PAGINATE

SJC$_NO_PARAMETERS
SJC$_NO_PASSALL

SJC$_NO_RESTART

SJC$_NO_ WSDEFAULT

SJC$_NO_ WSEXTENT

SJC$_NO_ WSQUOTA

If you specify the SJC$_QUEUE item code, the $SNDJBC service verifies that
the selected job entry exists on the specified queue before modifying the job.

SJC$_ALTER_QUEUE
This request alters the parameters of a queue. The execution of current jobs is
unaffected.

You must specify the following input value item code:

SJC$_QUEUE

SYS-563

System Service Descriptions
$SN DJ BC

SYS-564

You may specify the following input value or Boolean item codes:

SJC$_BASE_PRIORITY
SJC$_CHARACTERISTIC_NAME

SJC$_CHARACTERISTIC_NUMBER

SJC$_CLOSE_QUEUE

SJC$_CPU_DEFAULT
SJC$_CPU_LIMIT

SJC$_DEFAULT_FORM_NAME

SJC$_DEFAULT_FORM_NUMBER
SJC$_FILE_BURST

SJC$_FILE_BURST_ONE

SJC$_FILE_FLAG

SJC$_FILE_FLAG_ONE

SJC$_FILE_ TRAILER

SJC$_FILE_ TRAILER_ ONE

SJC$_FORM_NAME

SJC$_FORM_NUMBER

SJC$_GENERIC_SELECTION

SJC$_JOB_BURST

SJC$_JOB_FLAG

SJC$_JOB_LIMIT

SJC$_JOB_RESET_MODULES
SJC$_JOB_SIZE_MAXIMUM

SJC$_JOB_SIZE_MINIMUM
SJC$_JOB_SIZE_SCHEDULING

SJC$_JOB_ TRAILER

SJC$_0PEN_QUEUE

SJC$_0WNER_UIC

SJC$_PAGINATE

SJC$_PROTECTION

SJC$_QUEUE_DESCRIPTION

SJC$_RECORD_BLOCKING

SJC$_RETAIN_ALL_JOBS

SJC$_RETAIN_ERROR_JOBS

SJC$_SWAP
SJC$_ WSDEFAULT

SJC$_ WSEXTENT

SJC$_ WSQUOTA

SJC$_ASSIGN_QUEUE

SJC$_NO_CHARACTERISTICS

SJC$_NO_CPU_DEFAULT
SJC$_NO _CPU _LIMIT

SJC$_NO _FILE_BURST

SJC$_NO_FILE_FLAG

SJC$_NO_FILE_TRAILER

SJC$_NO_GENERIC_SELECTION

SJC$_NO_JOB_BURST

SJC$_NO_JOB_FLAG

SJC$_NO_JOB_RESET_MODULES

SJC$_NO_JOB_SIZE_MAXIMUM

SJC$_NO_JOB_SIZE_MINIMUM
SJC$_NO_JOB_SIZE_
SCHEDULING
SJC$_NO_JOB_TRAILER

SJC$_NO_PAGINATE

SJC$_NO_QUEUE_DESCRIPTION
SJC$_NO_RECORD_BLOCKING

SJC$_NO_RETAIN_JOBS

SJC$_NO_SWAP
SJC$_NO_ WSDEFAULT

SJC$_NO _ WSEXTENT

SJC$_NO_ WSQUOTA

This request assigns a logical queue to an execution queue. The SJC$_QUEUE
item code specifies the logical queue; the SJC$_DESTINATION_QUEUE item
code specifies the execution queue.

System Service Descriptions
$SN DJ BC

You must specify the following input value item codes:

SJC$_QUEUE
SJC$_DESTINATION_QUEUE

SJC$_BATCH_ CHECKPOINT
This request establishes a checkpoint in a batch job. No operation is performed if
the requesting process is not a batch process.

You must specify the following input value item code:

SJC$_CHECKPOINT_DATA

SJC$_CLOSE_DELETE
This request deletes the open job owned by the requesting process. No item codes
are allowed.

SJC$_CLOSE_JOB
This request completes the specification of the open job owned by the requesting
process and places the job in the queue specified in the SJC$_CREATE_JOB
request that opened the job. If the SJC$_CLOSE_JOB request completes
successfully, the job is no longer an open job; it becomes a normal batch or
print job.

You may specify the following output value item code:

SJC$_JOB_STATUS_OUTPUT

SJC$_CREATE_JOB
This request creates an open job for the requesting process. If the process already
owns an open job, that job is deleted.

An open job is a batch or print job that has not yet been completely specified.
After you make the SJC$_CREATE_JOB request to open the job, you can make
subsequent calls to $SNDJBC using the SJC$_ADD_FILE function code to specify
the files associated with the job. Finally, you can complete the job specification
with an SJC$_CLOSE_JOB request. If the SJC$_CREATE_JOB operation
completes successfully, the open job created is given an entry number; the job is
not assigned to the queue specified in the SJC$_CREATE_JOB operation until
the SJC$_CLOSE_JOB completes successfully.

You must specify the following input value item code:

SJC$_QUEUE

You may specify the following input value or Boolean item codes:

SJC$_ACCOUNT_NAME

SJC$_AFTER_TIME

SJC$_CHARACTERISTIC_NAME

SJC$_CHARACTERISTIC_NUMBER

SJC$_CLI

SJC$_CPU_LIMIT

SJC$_FILE_BURST

SJC$_FILE_BURST_ONE

SJC$_FILE_FLAG

SJC$_NO_AFTER_TIME

SJC$_NO_CHARACTERISTICS

SJC$_NO_CLI

SJC$_NO _CPU _LIMIT

SJC$_NO_FILE_BURST

SJC$_NO_FILE_FLAG

SYS-565

System Service Descriptions
$SN DJ BC

SYS-566

SJC$_FILE_FLAG_ONE

SJC$_FILE_TRAILER

SJC$_FILE_TRAILER_ONE

SJC$_FIRST_PAGE

SJC$_FORM_NAME

SJC$_FORM_NUMBER

SJC$_HOLD

SJC$_JOB_COPIES

SJC$'-JOB_DEFAULT_RETAIN

SJC$_JOB_ERROR_RETAIN

SJC$_JOB_NAME

SJC$_JOB_RETAIN

SJC$_JOB_RETAIN_TIME

SJC$_LAST_PAGE

SJC$_LOG_DELETE

SJC$_LOG_QUEUE

SJC$_LOG_SPECIFICATION

SJC$_LOG_SPOOL

SJC$_LOWERCASE

SJC$_NOTE

SJC$_NOTIFY

SJC$_0PERATOR_REQUEST

SJC$_PARAMETER_l through 8

SJC$_PRIORITY

SJC$_RESTART

SJC$_UIC

SJC$_USERNAME

SJC$_ WSDEFAULT

SJC$_ WSEXTENT

SJC$_ WSQUOTA

SJC$_NO _FILE_ TRAILER

SJC$_NO_FIRST_PAGE

SJC$_NO_HOLD

SJC$_NO_LAST_PAGE

SJC$_NO_LOG_DELETE

SJC$_NO_LOG_SPECIFICATION

SJC$_NO_LOG_SPOOL

SJC$_NO_LOWERCASE

SJC$_NO_NOTE

SJC$_NO_NOTIFY

SJC$_NO_OPERATOR_REQUEST

SJC$_NO_PARAMETERS

SJC$_NO_RESTART

SJC$_NO_ WSDEFAULT

SJC$_NO _ WSEXTENT

SJC$_NO_ WSQUOTA

You may specify the following output value item code:

SJC$_ENTRY _NUMBER_ OUTPUT

SJC$_CREATE_QUEUE
This request creates a queue. If the queue already exists and is not stopped,
this request performs no operation. However, if the queue already exists and is
stopped, the request alters the parameters of the queue based on the item codes
specified in the request; if you specify the SJC$_CREATE_START item code, the
request starts the queue.

You must specify the following input value item code:

SJC$_QUEUE

System Service Descriptions
$SN DJ BC

You may specify the following input value or Boolean item codes:

SJC$_AUTOSTART_ON
SJC$_BASE_PRIORITY

SJC$_BATCH

SJC$_CHARACTERISTIC_NAME

SJC$_CHARACTERISTIC_NUMBER
SJC$_CLOSE_QUEUE

SJC$_CPU_DEFAULT
SJC$_CPU_LIMIT

SJC$_CREATE_START
SJC$_DEFAULT_FORM_NAME

SJC$_DEFAULT_FORM_NUMBER

SJC$_DEVICE_NAME
SJC$_FILE_BURST

SJC$_FILE_BURST _ONE

SJC$_FILE_FLAG

SJC$_FILE_FLAG_ONE
SJC$_FILE_ TRAILER

SJC$_FILE_ TRAILER_ ONE

SJC$_FORM_NAME

SJC$_FORM_NUMBER
SJC$_GENERIC_QUEUE

SJC$_GENERIC_SELECTION
SJC$_GENERIC_TARGET

SJC$_JOB_BURST

SJC$_JOB_FLAG

SJC$_JOB_LIMIT

SJC$_JOB_RESET_MODULES
SJC$_JOB_SIZE_MAXIMUM

SJC$_JOB_SIZE_MINIMUM

SJC$_JOB_SIZE_SCHEDULING

SJC$_JOB_TRAILER

SJC$_LIBRARY _SPECIFICATION

SJC$_0PEN_QUEUE

SJC$_0WNER_UIC

SJC$_PAGINATE

SJC$_PRINTER

SJC$_PROCESSOR
SJC$_PROTECTION

SJC$_QUEUE_DESCRIPTION

SJC$_NO_BATCH

SJC$_NO_CHARACTERISTICS

SJC$_NO_CPU_DEFAULT

SJC$_NO_CPU_LIMIT

SJC$_NO_FILE_BURST

SJC$_NO_FILE_FLAG

SJC$_NO _FILE_ TRAILER

SJC$_NO_GENERIC_QUEUE

SJC$_NO_GENERIC_SELECTION

SJC$_NO_JOB_BURST
SJC$_NO_JOB_FLAG

SJC$_NO_JOB_RESET_MODULES
SJC$_NO_JOB_SIZE_MAXIMUM
SJC$_NO_JOB_SIZE_MINIMUM

SJC$_NO _JOB_SIZE_
SCHEDULING
SJC$_NO_JOB_TRAILER

SJC$_NO_LIBRARY_
SPECIFICATION

SJC$_NO_PAGINATE

SJC$_NO_PROCESSOR

SJC$_NO_QUEUE_DESCRIPTION

SYS-567

System Service Descriptions
$SN DJ BC

SYS-568

SJC$_RECORD_BLOCKING

SJC$_RETAIN_ALL_JOBS

SJC$_RETAIN_ERROR_JOBS

SJC$_SCSNODE_NAME

SJC$_SERVER

SJC$_SWAP

SJC$_TERMINAL

SJC$_ WSDEFAULT

SJC$_ WSEXTENT

SJC$_ WSQUOTA

SJC$_DEASSIGN_ QUEUE

SJC$_NO_RECORD_BLOCKING

SJC$_NO_RETAIN_JOBS

SJC$_NO_SWAP

SJC$_NO_TERMINAL

SJC$_NO_ WSDEFAULT

SJC$_NO_ WSEXTENT

SJC$_NO_ WSQUOTA

This request deassigns a logical queue from an execution queue.

You must specify the following input value item code:

SJC$_QUEUE

SJC$_DEFINE_CHARACTERISTIC
This request defines a characteristic name and number and inserts this definition
in the queue file. The characteristic name can be up to 31 characters in length.
Each characteristic name must have a unique number in the range 0 to 127. If
the characteristic name is already defined, the request alters the definition of the
characteristic.

A job cannot execute on an execution queue unless the queue possesses all
the characteristics possessed by the job; the queue can possess additional
characteristics and the job will still execute.

You must specify the following input value item codes:

SJC$_CHARACTERISTIC_NAME
SJC$_CHARACTERISTIC_NUMBER

SJC$_DEFINE_FORM
This request defines a form name and number, as well as other physical attributes
of the paper stock used in printers, and inserts this definition into the system job
queue file. If the form name is already defined, this request alters the definition
of the form.

Forms are used only by output execution queues and print jobs. A print job
cannot execute unless the stock name of a form specified for the queue is the
same as the stock name specified for the job. The stock name of a form, which
you specify by using the SJC$_FORM_STOCK item code, specifies the paper stock
used by the printer. Other item codes specify printing parameters for a job such
as the margins, length of paper, and so on.

Each form must have a unique number. Numbers can range from 0 to 9999.
When a new queue file is created, the system supplies the definition of a form
named DEFAULT with number 0 and default characteristics.

You must specify the following input value item codes:

SJC$_FORM_NAME
SJC$_FORM_NUMBER

System Service Descriptions
$SN DJ BC

You may specify the following input value or Boolean item codes:

SJC$_FORM_DESCRIPTION
SJC$_FORM_LENGTH

SJC$_FORM_MARGIN_BOTTOM

SJC$_FORM_MARGIN _LEFT

SJC$_FORM_MARGIN_RIGHT
SJC$_FORM_MARGIN_TOP

SJC$_FORM_SETUP _MODULES SJC$_NO_FORM_SETUP _
MODULES

SJC$_FORM_SHEET_FEED
SJC$_FORM_STOCK

SJC$_FORM_TRUNCATE

SJC$_FORM_ WIDTH
SJC$_FORM_ WRAP

SJC$_PAGE_SETUP _MODULES

SJC$_NO_FORM_SHEET_FEED

SJC$_NO_FORM_TRUNCATE

SJC$_DELETE_CHARACTERISTIC

SJC$_NO_FORM_ WRAP
SJC$_NO_PAGE_SETUP _
MODULES

This request deletes the definition of a characteristic name.

You must specify the following input value item code:

SJC$_CHARACTERISTIC_NAME

SJC$_DELETE_FORM
This request deletes the definition of a form name. There must be no queues or
jobs that reference the form.

You must specify the following input value item code:

SJC$_FORM_NAME

SJC$_DELETE_JOB
This request deletes a job from the system job queue file. If the job is currently
executing, it is aborted. If you specify the SJC$_ QUEUE item code, the $SNDJBC
service verifies that the selected job entry exists on the specified queue before
deleting the job.

You must specify the following input value item code:

SJC$_ENTRY_NUMBER

You may specify the following input value item code:

SJC$_QUEUE

If you specify the SJC$_QUEUE item code, the $SNDJBC service verifies that
the selected job entry exists on the specified queue before deleting the job.

SJC$_DELETE_QUEUE
This request deletes a queue and all of the jobs in the queue. The queue must be
stopped, and there must be no other queues or jobs that reference the queue.

You must specify the following input value item code:

SJC$_QUEUE

SYS-569

System Service Descriptions
$SN DJ BC

SYS-570

SJC$_DISABLE_AUTOSTART
This request disables autostart on a node. By default, SJC$_DISABLE_
AUTOSTART affects the requesting node. To disable autostart on a node
other than the node from which the $SNDJBC request is sent, use the SJC$_
SCSNODE_NAME item code to specify the affected node.

Disabling autostart on a node forces the queue manager to perform these tasks:

• Prevent autostart queues from failing over to the node.

• Mark all autostart queues on the node as "stop pending" in preparation for
a planned shutdown, allowing jobs currently executing on the queues to
complete.

• Force all autostart queues with failover lists to fail over to the next available
node in its failover list on which autostart is enabled. Each queue fails over
when all jobs currently executing in the queue have completed.

You may specify the following input value item code:

SJC$_SCSNODE_NAME

For more information, see the Guide to Maintaining a VMS System.

SJC$_ENABLE_AUTOSTART
This request notifies the queue manager process that a node has progressed
sufficiently in its startup procedure that batch and print jobs should execute. By
default, SJC$_ENABLE_AUTOSTART affects the requesting node. To enable
autostart on a node other than the node from which the $SNDJBC request is
sent, use the SJC$_SCSNODE_NAME item code to specify the affected node.
Once autostart is enabled, the queue manager starts all autostart-active queues
on the appropriate node.

When a node reboots, autostart is disabled until the SJC$_ENABLE_
AUTOSTART request is entered.

You may specify the following input value item code:

SJC$_SCSNODE_NAME

For more information, see the Guide to Maintaining a VMS System.

SJC$_ENTER_FILE
This request creates a job containing one file and places the job in the specified
queue. To create a job with more than one file, you must make a sequence of calls
to the $SNDJBC service using the SJC$_CREATE_JOB, SJC$_ADD_FILE, and
SJC$_CLOSE_JOB function codes.

You must specify the following input value item code:

SJC$_QUEUE

You must specify one of the following input value item codes:

SJC$_FILE_IDENTIFICATION
SJC$_FILE_SPECIFICATION

You may specify the following input value or Boolean item codes:

SJC$_ACCOUNT_NAME

SJC$_AFTER_TIME SJC$_NO_AFTER_TIME

SJC$_CHARACTERISTIC_NAME

SJC$_CHARACTERISTIC_NUMBER
SJC$_CLI

SJC$_CPU_LIMIT

SJC$_DELETE_FILE
SJC$_DOUBLE_SPACE

SJC$_FILE_BURST

SJC$_FILE_COPIES
SJC$_FILE_FLAG

SJC$_FILE_SETUP _MODULES

SJC$_FILE_TRAILER

SJC$_FIRST_PAGE

SJC$_FORM_NAME
SJC$_FORM_NUMBER

SJC$_HOLD

SJC$_JOB_COPIES

SJC$_JOB_DEFAULT_RETAIN
SJC$_JOB_ERROR_RETAIN

SJC$_JOB_NAME

SJC$_JOB_RETAIN
SJC$_JOB_RETAIN_TIME

SJC$_LAST_PAGE

SJC$_LOG_DELETE

SJC$_LOG_QUEUE

SJC$_LOG_SPECIFICATION
SJC$_LOG_SPOOL

SJC$_LOWERCASE

SJC$_NOTE
SJC$_NOTIFY

SJC$_0PERATOR_REQUEST

SJC$_PAGE_HEADER

SJC$_PAGINATE
SJC$_PARAMETER_l through 8

SJC$_PASSALL

SJC$_PRIORITY
SJC$_RESTART

SJC$_UIC

SJC$_USERNAME

SJC$_ WSDEFAULT
SJC$_ WSEXTENT

SJC$_ WSQUOTA

System Service Descriptions
$SN DJ BC

SJC$_NO_CHARACTERISTICS

SJC$_NO_CLI
SJC$_NO_CPU_LIMIT

SJC$_NO_DELETE_FILE
SJC$_NO_DOUBLE_SPACE

SJC$_NO_FILE_BURST

SJC$_NO_FILE_FLAG
SJC$_NO_FILE_SETUP _MODULES

SJC$_NO _FILE_ TRAILER

SJC$_NO_FIRST_PAGE

SJC$_NO_HOLD

SJC$_NO_LAST_PAGE

SJC$_NO_LOG_DELETE

SJC$_NO_LOG_SPECIFICATION

SJC$_NO_LOG_SPOOL

SJC$_NO_LOWERCASE

SJC$_NO_NOTE
SJC$_NO_NOTIFY

SJC$_NO_OPERATOR_REQUEST

SJC$_NO_PAGE_HEADER

SJC$_NO_PAGINATE
SJC$_NO_PARAMETERS

SJC$_NO_PASSALL

SJC$_NO_RESTART

SJC$_NO_ WSDEFAULT

SJC$_NO_ WSEXTENT
SJC$_NO_ WSQUOTA

SYS-571

System Service Descriptions
$SN DJ BC

SYS-572

You may specify the following output value item codes:

SJC$_ENTRY_NUMBER_ OUTPUT
SJC$_JOB_STATUS_OUTPUT

SJC$_MERGE_QUEUE
This request requeues all jobs in the queue specified by the item code SJC$_
QUEUE to the queue specified by the item code SJC$_DESTINATION_QUEUE.
The execution of current jobs is unaffected.

You must specify the following input value item codes:

SJC$_QUEUE
SJC$_DESTINATION_QUEUE

SJC$_PAUSE_QUEUE
This request pauses the execution of current jobs in the specified queue and
prevents the starting of jobs in that queue.

You must specify the following input value item code:

SJC$_QUEUE

SJC$_RESET_QUEUE
This request resets the specified queue by (1) terminating and deleting each
executing job that is not restartable, (2) terminating and requeuing each
executing job that is restartable, and (3) stopping the queue.

You must specify the following input value item code:

SJC$_QUEUE

SJC$_START _ACCOUNTING
This request performs two functions. If you specify the SJC$_ACCOUNTING_
TYPES item code, the request enables recording of the specified types of
accounting records; if you do not specify SJC$_ACCOUNTING_TYPES, the
request starts the accounting manager and opens the system accounting file.

You may specify the following input value or Boolean item codes:

SJC$_ACCOUNTING_TYPES
SJC$_NEW _VERSION

SJC$_START _QUEUE
This request permits the starting of jobs in the specified queue. If the queue was
paused, current jobs are resumed.

You must specify the following input value item code:

SJC$_QUEUE

You may specify the following input value or Boolean item codes:

SJC$_ALIGNMENT_MASK

SJC$_ALIGNMENT_PAGES

SJC$_AUTOSTART_ON

SJC$_BASE_PRIORITY

SJC$_BATCH SJC$_NO _BATCH

SJC$_CHARACTERISTIC_NAME

SJC$_CHARACTERISTIC_NUMBER
SJC$_CLOSE_QUEUE

SJC$_CPU_DEFAULT

SJC$_CPU_LIMIT
SJC$_DEFAULT_FORM_NAME

SJC$_DEFAULT_FORM_NUMBER

SJC$_DEVICE_NAME

SJC$_FILE_BURST
SJC$_FILE_BURST_ONE

SJC$_FILE_FLAG

SJC$_FILE_FLAG_ONE

SJC$_FILE_ TRAILER
SJC$_FILE_TRAILER_ ONE

SJC$_FORM_NAME

SJC$_FORM_NUMBER

SJC$_GENERIC_QUEUE
SJC$_GENERIC_SELECTION

SJC$_GENERIC_TARGET

SJC$_JOB_BURST

SJC$_JOB_FLAG
SJC$_JOB_LIMIT

SJC$_JOB_RESET_MODULES

SJC$_JOB_SIZE_MAXIMUM

SJC$_JOB_SIZE_MINIMUM

SJC$_JOB_SIZE_SCHEDULING

SJC$_JOB_TRAILER
SJC$_LIBRARY _SPECIFICATION

SJC$_NEXTjOB
SJC$_0PEN_QUEUE

SJC$_0WNER_UIC

SJC$_PAGINATE

SJC$_PROCESSOR

SJC$_PROTECTION
SJC$_QUEUE_DESCRIPTION

SJC$_RECORD_BLOCKING

SJC$_RELATIVE_PAGE

SJC$_RETAIN_ALL_JOBS

SJC$_RETAIN_ERROR_JOBS

SJC$_SCSNODE_NAME

System Service Descriptions
$SN DJ BC

SJC$_NO_CHARACTERISTICS

SJC$_NO_CPU_DEFAULT

SJC$_NO _CPU _LIMIT

SJC$_NO_FILE_BURST

SJC$_NO_FILE_FLAG

SJC$_NO_FILE_ TRAILER

SJC$_NO_GENERIC_QUEUE

SJC$_NO_GENERIC_SELECTION

SJC$_NO_JOB_BURST

SJC$_NO_JOB_FLAG

SJC$_NO_JOB_RESET_MODULES

SJC$_NO_JOB_SIZE_MAXIMUM
SJC$_NO_JOB_SIZE_MINIMUM

SJC$_NO_JOB_SIZE_
SCHEDULING

SJC$_NO_JOB_TRAILER
SJC$_NO_LIBRARY_
SPECIFICATION

SJC$_NO_PAGINATE

SJC$_NO_PROCESSOR

SJC$_NO_QUEUE_DESCRIPTION

SJC$_NO_RECORD_BLOCKING

SJC$_NO_RETAIN_JOBS

SYS-573

System Service Descriptions
$SN DJ BC

SYS-574

SJC$_SEARCH_STRING

SJC$_SWAP

SJC$_TERMINAL

SJC$_TOP _OF _FILE

SJC$_ WSDEFAULT

SJC$_ WSEXTENT

SJC$_ WSQUOTA

SJC$_START_QUEUE_MANAGER

SJC$_NO_SWAP

SJC$_NO_TERMINAL

SJC$_NO_ WSDEFAULT

SJC$_NO_ WSEXTENT

SJC$_NO_ WSQUOTA

This request starts the clusterwide queue manager for the batch and print
queuing system. It also opens the queue database.

The SJC$_START_QUEUE_MANAGER request has the following four uses:

• To create a queue database and initially start the queue manager, issue a
SJC$_START_QUEUE_MANAGER request with the SJC$_NEW_VERSION
item code. See the description of the SJC$_NEW _VERSION item code
for more information. Once the queue manager has been started, it will
remain running unless it is explicitly stopped with a SJC$_STOP _QUEUE_
MANAGER request.

• If a SJC$_STOP _QUEUE_MANAGER request has been specified, issue a
SJC$_START_QUEUE_MANAGER request to restart the queue manager.

• In a VAXcluster, issue a SJC$_START_QUEUE_MANAGER request with the
SJC$_QUEUE_MANAGER_NODES item code to modify the list of preferred
nodes on which the queue manager can run. See the description of the SJC_
QUEUE_MANAGER_NODES item code for more information.

• In a VAXcluster, issue a SJC$_START_QUEUE_MANAGER request to ensure
that the queue manager process is executing on the most preferred, available
node. If the queue manager is not running on the most preferred, available
node, the queue manager will be moved to that node without interruption of
service. If you are using the default node list (*), the queue manager will
not move. For more information, see the description of the SJC$_QUEUE_
MANAGER_NODES item code.

You may specify the following input value or Boolean item codes:

SJC$_NEW _VERSION
SJC$_QUEUE_DIRECTORY
SJC$_QUEUE_MANAGER_NODES

SJC$_STOP _ACCOUNTING
This request performs two functions. If you specify the SJC$_ACCOUNTING_
TYPES item code, the request disables recording of the specified types of
accounting records. If you do not specify SJC$_ACCOUNTING_TYPES, the
request stops the accounting manager and closes the system accounting file.

You may specify the following input value item code:

SJC$_ACCOUNTING_TYPES

SJC$_STOP_ALL_QUEUES_ON_NODE
This request stops all queues on a specific node. By default, all queues on the
requesting node are stopped. To stop all queues on a node other than the node
from which the $SNDJBC request is sent, use the SJC$_SCSNODE_NAME item
code to specify the affected node.

Item Codes

System Service Descriptions
$SN DJ BC

Besides stopping all queues on a specific node, this request aborts each job that is
currently executing. Aborted jobs that are restartable are requeued. Queues for
which an autostart list has been specified fail over to the first available node in
the list for which autostart is enabled.

You may specify the following input value item code:

SJC$_SCSNODE_NAME

SJC$_STOP _QUEUE
This request prevents the starting of jobs in the specified queue. The execution of
current jobs is unaffected.

You must specify the following input value item code:

SJC$_QUEUE

SJC$_STOP_QUEUE_MANAGER
This request shuts down the queue manager. It stops all queues; aborts each job
that is currently executing, requeuing those jobs that are restartable; and closes
the files of the queue database. No item codes are allowed.

SJC$_SYNCHRONIZE_JOB
This request waits for the completion of a job, then sets the event flag, executes
the completion AST if you specified astadr, and returns the completion status of
the job to the I/O Status Block, provided you specified the iosb argument.

You must specify one of the following input value item codes:

SJC$_ENTRY_NUMBER
SJC$_QUEUE

If SJC$_QUEUE queue is specified then you must also specify one of the
following:

SJC$_ENTRY_NUMBER
SJC$_JOB_NAME

SJC$_ WRITE_ACCOUNTING
This request writes an accounting record.

You must specify the following input value item code:

SJC$_ACCOUNTING_MESSAGE

SJC$_ACCOUNT _NAME
The SJC$_ACCOUNT_NAME item code is an input value item code. It specifies
the account name of the user on behalf of whom the request is made. The buffer
must specify a string from 1 to 8 characters. By default, the account name for
batch and print jobs is taken from the requesting process.

You need CMKRNL privilege to use this item code.

(Valid for SJC$_CREATE_JOB, SJC$_ENTER_FILE function codes)

SJC$_ACCOUNTING_MESSAGE
The SJC$_ACCOUNTING_MESSAGE item code is an input value item code. It
causes the contents of the buffer to be placed in a "user message" accounting
record. The buffer must specify a string from 1 to 255 characters.

SYS-575

System Service Descriptions
$SN DJ BC

SYS-576

(Valid for SJC$_ WRITE_ACCOUNTING function code)

SJC$_ACCOUNTING_ TYPES
The SJC$_ACCOUNTING_TYPES item code is an input value item code. It
enables or disables accounting-record types. When an accounting-record type is
enabled, the event designated by that type will be recorded in the accounting
record. The buffer must contain a longword bit vector wherein each bit set
specifies an accounting-record type. Undefined bits must be 0.

The $SJCDEF macro defines the symbolic names for the accounting-record types.
Following is a list of each accounting-record type and the system event to which
it corresponds.

Accounting-Record Type

SJC$V _ACCT_IMAGE

SJC$V _ACCT_LOGIN_FAILURE

SJC$V _ACCT_MESSAGE

SJC$V_ACCT_PRINT

SJC$V_ACCT_PROCESS

Corresponding System Event

Image terminations

Login failures

User messages sent

Print job terminations

Process terminations

The following accounting-record types, when enabled, provide additional
information about image and process termination; specifically, they describe
the type of image or process that has terminated.

Accounting-Record Type

SJC$V_ACCT_BATCH

SJC$V _ACCT _DETACHED

SJC$V _ACCT _INTERACTIVE

SJC$V _ACCT_NETWORK

SJC$V_ACCT_SUBPROCESS

Type of Image or Process

Batch process

Detached process

Interactive process

Network process

Subprocess

(Valid for SJC$_START_ACCOUNTING, SJC$_STOP _ACCOUNTING function
codes)

SJC$_AFTER_ TIME
SJC$_NO_AFTER_ TIME
The SJC$_AFTER_TIME item code is an input value item code. It specifies
that the job can execute only if the system time is greater than or equal to the
quadword time value contained in the buffer. The buffer must contain either an
absolute time value or a delta time value; $SNDJBC converts delta time values to
absolute time values by adding the current system time. The time value specified
must be in the future, or it will be set to the current time.

The SJC$_NO_AFTER_TIME item code is a Boolean item code. It cancels the
effect of a SJC$_AFTER_TIME item code previously specified for the job; the job
can execute immediately. It is the default.

(Valid for SJC_ALTER_JOB, SJC_CREATE_JOB, SJC$_ENTER_FILE function
codes)

System Service Descriptions
$SN DJ BC

SJC$_ALIGNMENT _MASK
The SJC$_ALIGNMENT_MASK item code is a Boolean item code. It is
meaningful only for output execution queues and only when the SJC$_
ALIGNMENT_PAGES item code is also specified. The SJC$_ALIGNMENT_
MASK item code causes the data printed on form alignment pages to be masked:
all alphabetic characters are replaced with the letter X and all numeric characters
with the number 9.

(Valid for SJC$_START_QUEUE function code)

SJC$_ALIGNMENT _PAGES
The SJC$_ALIGNMENT_PAGES item code is an input value item code. It is
meaningful only for output execution queues. It specifies that the queue be
placed in form-alignment state and that a number of alignment pages be printed.
The buffer must contain a longword value in the range 1 to 20; this value specifies
how many alignment pages are to be printed.

(Valid for SJC$_START_QUEUE function code)

SJC$_AUTOSTART_ON
The SJC$_AUTOSTART_ON item code is an input value item code. For a batch
queue, it uses as its value a comma-separated list of the VAX nodes on which the
specified queue can be located. Each node name must be followed by a double
colon (::).

For an output queue, it uses as its value a comma-separated list of the names
of the VAX nodes and devices to which the specified queue's output can be sent.
Each node name must be followed by a double colon, and each device name may
be followed by the optional colon [:].

By specifying this item code, you designate a queue as an autostart queue. If you
specify more than one node name (within a VAXcluster environment), the queue
cah automatically fail over if the node on which the queue is running is removed
from the cluster.

This item code cannot be used with the SJC$_SCSNODE_NAME and SJC$_
DEVICE_NAME item codes.

For more information, see the Guide to Maintaining a VMS System.

(Valid for SJC$_CREATE_QUEUE, SJC$_START_QUEUE function codes)

SJC$_BASE_PRIORITY
The SJC$_BASE_PRIORITY item code is an input value item code. It is
meaningful only for execution queues. It specifies the base priority of batch
processes initiated from a batch execution queue or of a symbiont process
connected to an output execution queue. A symbiont process can control several
queues; however, the base priority of the symbiont process is established by the
first queue to which it is connected. The buffer must contain a longword value in
the range 0 to 15; this value specifies the base priority.

By default, the base priority is the value of the SYSGEN parameter DEFPRI.
If the value of DEFPRI is 0, the default base priority is the base priority of the
requesting process.

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE, SJC$_START_
QUEUE function codes)

SYS-577

System Service Descriptions
$SN DJ BC

SYS-578

SJC$_BATCH
SJC$_NO_BATCH
The SJC$_BATCH item code is a Boolean item code. It specifies that the queue
is a batch execution queue or a generic batch queue, and thus can process only
batch jobs.

The SJC$_BATCH, SJC$_PRINTER, SJC$_SERVER, and SJC$_TERMINAL
item codes are mutually exclusive. If none of these item codes are specified, the
default is SJC$_PRINTER.

The SJC$_NO_BATCH item code is a Boolean item code. It specifies that the
queue is not a batch queue but rather an output execution or generic output
queue, and thus can process only print jobs. It is the default.

For the SJC$_START_QUEUE function code, SJC$_BATCH and SJC$_NO_
BATCH are supported for compatibility with VAX VMS Version 4.n, but may not
be supported in the future.

(Valid for SJC$_CREATE_QUEUE, SJC$_START_QUEUE function codes)

SJC$_CHARACTERISTIC_NAME
SJC$_CHARACTERISTIC_NUMBER
SJC$_NO_CHARACTERISTICS
The SJC$_CHARACTERISTIC_NAME and SJC$_CHARACTERISTIC_NUMBER
item codes are both input value item codes. Both specify characteristics for
jobs or queues, and they may be used interchangeably. The characteristics are
user-defined.

The SJC$_DEFINE_CHARACTERISTIC and SJC$_DELETE_
CHARACTERISTIC function codes include and delete, respectively, a specified
characteristic from the system job queue file. A job cannot execute on an
execution queue unless the queue possesses all the characteristics possessed by
the job; the queue may possess additional characteristics and the job will still
execute.

The SJC$_CHARACTERISTIC_NAME and SJC$_CHARACTERISTIC_NUMBER
item codes may appear as many times as necessary in a single call to $SNDJBC;
the set of characteristics so defined in the call completely replaces the set of
characteristics defined by a prior call. The SJC$_NO_CHARACTERISTICS item
code cancels all defined characteristics for the job or queue. By default, a queue
or job has no defined characteristics.

The string may contain uppercase or lowercase characters (lowercase are
converted to uppercase), numeric characters, dollar signs ($), and underscores
(_). If the string is a logical name, SYS$SNDJBC translates it iteratively until
the equivalence string is found or the number of translations allowed by the
system has been performed. The maximum length of the final character string is
31 characters; spaces, tabs, and null characters are ignored.

For SJC$_CHARACTERISTIC_NUMBER, the buffer must contain a longword
value in the range 0 to 127. This number identifies a characteristic.

SJC$_NO_CHARACTERISTICS is a Boolean item code.

(The following function codes are valid for SJC_CHARACTERISTIC_NAME item
code:

SJC$_ALTER_JOB
SJC$_ALTER_QUEUE
SJC$_CREATE_JOB

SJC$_CREATE_QUEUE
SJC$_DEFINE_CHARACTERISTIC
SJC$_DELETE_CHARACTERISTIC
SJC$_ENTER_FILE
SJC$_START_QUEUE)

System Service Descriptions
$SN DJ BC

(The following function codes are valid for SJC$_CHARACTERISTIC_NUMBER
item code:

SJC$_ALTER_JOB
SJC$_ALTER_QUEUE
SJC$_CREATE_JOB
SJC$_CREATE_QUEUE
SJC$_DEFINE_CHARACTERISTIC
SJC$_ENTER_FILE
SJC$_START_QUEUE)

SJC$_CHECKPOINT_DATA
SJC$_NO_CHECKPOINT _DATA
The SJC$_CHECKPOINT_DATA item code is an input value item code. It
specifies the value of the DCL symbol BATCH$RESTART for a batch job that is
restarted. The buffer must contain a string no longer than 255 characters; this
string is the value of the symbol BATCH$RESTART.

The SJC$_NO_CHECKPOINT_DATA item code is a Boolean item code. It
cancels a previous specification of the BATCH$RESTART symbol; the SJC$_
NO_CHECKPOINT_DATA item code also cancels a checkpoint in a print job so
that the entire job is reprinted. By default, the BATCH$RESTART symbol is
undefined.

(Valid for SJC$_BATCH_CHECKPOINT function code)

SJC$_CLI
SJC$_NO_CLI
The SJC$_CLI item code is an input value item code. It is meaningful only for
batch jobs. It specifies that the command language interpreter to be executed
is SYS$SYSTEM:name.EXE, where name is a valid RMS file name. The buffer
must specify a name string from 1 to 39 characters.

The SJC$_NO_CLI item code is a Boolean item code. It specifies that the
command language interpreter to be executed is the one specified in the user
authorization file. It is the default.

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_ENTER_FILE function
codes)

SJC$_CLOSE_QUEUE
The SJC$_CLOSE_QUEUE item code is a Boolean item code. It specifies that
jobs cannot be entered in the queue. If the queue is closed, you can specify the
SJC$_0PEN_QUEUE item code to permit jobs to be entered in the queue. By
default, the queue is open.

Whether a queue is open or closed is independent of any other queue states (such
as paused, stalled, stopped).

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE, SJC$_START_
QUEUE function codes)

SYS-579

System Service Descriptions
$SN DJ BC

SYS-580

SJC$_CPU_DEFAULT
SJC$_NO_CPU_DEFAULT
The SJC$_CPU _DEFAULT item code is an input value item code. It is
meaningful only for batch execution queues. It specifies the default CPU time
limit in 10-millisecond units. The buffer contains this longword value. The value
0 specifies unlimited CPU time. You can specify a value that represents up to 497
days of CPU time.

The SJC$_NO_CPU_DEFAULT item code is a Boolean item code. It is meaningful
only for batch execution queues. It specifies that no default CPU time limit is to
apply to the job. It is the default.

A CPU time limit for the process is included in each user record in the system
user authorization file (UAF). You can also specify any or all of the following:
a CPU time limit for individual jobs, a default CPU time limit for all jobs in
a given queue, and a maximum CPU time limit for all jobs in a given queue.
Table SYS-14 shows the action taken when you specify a value for SJC$_CPU_
DEFAULT.

Table SYS-14 CPU Time Limit Decision Table

Maximum CPU
CPU Time Limit Default CPU Time Time Specified
Specified for Limit Specified for for
Job? Queue? Queue? Action Taken

No No No Use UAF value

Yes No No Use smaller of job's limit
and UAF value

Yes Yes No Use smaller of job's limit
and UAF value

Yes No Yes Use smaller of job's limit
and maximum

Yes Yes Yes Use smaller of job's limit
and maximum

No Yes Yes Use smaller of queue's
default and maximum

No No Yes Use maximum

No Yes No Use smaller of U AF
value and queue's
default

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE, SJC$_START_
QUEUE function codes)

SJC$_CPU_LIMIT
SJC$_NO_ CPU_LIMIT
The SJC$_CPU_LIMIT item code is an input value item code. It is meaningful
only for batch execution queues and batch jobs. It specifies the maximum CPU
time limit for batch jobs in 10-millisecond units. The buffer must contain this
longword value. The value 0 specifies unlimited CPU time. You can specify a
value that represents up to 497 days of CPU time.

System Service Descriptions
$SN DJ BC

The SJC$_NO_CPU_LIMIT item code is a Boolean item code. It is meaningful
only for batch execution queues and batch jobs. It specifies that no maximum
CPU time limit is to apply to the job. It is the default.

For information about the action taken when you specify a value for SJC$_CPU_
LIMIT, refer to the description of the SJC$_CPU_DEFAULT item code and to
Table SYS-14.

(Valid for SJC$_ALTER_JOB, SJC$_ALTER_QUEUE, SJC$_CREATE_JOB,
SJC$_CREATE_QUEUE, SJC$_ENTER_FILE, SJC$_START_QUEUE function
codes)

SJC$_CREATE_START
The SJC$_CREATE_START item code is a Boolean item code. It specifies that a
queue be started after it is created. By default, a queue remains stopped after it
is created.

(Valid for SJC$_CREATE_QUEUE function code)

SJC$_DEFAULT _FORM_NAME
SJC$_DEFAULT _FORM_NUMBER
The SJC$_DEFAULT_FORM_NAME and SJC$_DEFAULT_FORM_NUMBER
item codes are input value item codes. They specify the default form for a specific
output queue by name and by number, respectively.

When you specify a default form for an output queue, the queue uses the queue
specific default form, rather than the systemwide default form, to process any job
that does not explicitly specify a form.

For SJC$_DEFAULT_FORM_NAME, the buffer must specify a form name. The
string may contain uppercase or lowercase characters (lowercase are converted
to uppercase), numeric characters, dollar signs ($), and underscores (_). If
the string is a logical name, SYS$SNDJBC translates it iteratively until the
equivalence string is found or the number of translations allowed by the system
has been performed. The maximum length of the final character string is 31
characters; spaces, tabs, and null characters are ignored.

For SJC$_DEFAULT_FORM_NUMBER, the buffer must specify a longword
value. You should use only one of these item codes to identify a default form for
the queue.

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE, SJC$_START_
QUEUE function codes)

SJC$_DELETE_FILE
SJC$_NO _DELETE_FILE
The SJC$_DELETE_FILE item code is a Boolean item code. It specifies that
a file should be deleted after the job completes. The file that is deleted is the
batch or print file submitted for execution. You cannot specify this item code
with the SJC$_ALTER_JOB function code, which alters the parameters for an
already existing job; you can make a file deletion request only when a job is first
submitted to the queue.

The SJC$_NO_DELETE_FILE item code is a Boolean item code. It specifies that
a file should not be deleted after execution of the job. It is the default. You can
specify this item code with the SJC$_ALTER_JOB function code; this makes it
possible to cancel a file deletion request that was made when the job was first
submitted to the queue.

SYS-581

System Service Descriptions
$SN DJ BC

SYS-582

(Valid for SJC$_ADD_FILE, SJC$_ENTER_FILE function codes)

SJC$_DESTINATION_QUEUE
The SJC$_DESTINATION_QUEUE item code is an input value item code. When
you specify the SJC$_ASSIGN_QUEUE function code, SJC$_DESTINATION_
QUEUE specifies the name of the execution queue to which the logical queue
is assigned. When you specify the SJC$_ABORT_JOB, SJC$_ALTER_JOB, or
SJC$_MERGE_QUEUE function code, SJC$_DESTINATION_QUEUE specifies
the name of the queue into which jobs are placed. By default, jobs remain in the
original queue.

The string may contain uppercase or lowercase characters (lowercase are
converted to uppercase), numeric characters, dollar signs ($), and underscores
(_). If the string is a logical name, SYS$SNDJBC translates it iteratively until
the equivalence string is found or the number of translations allowed by the
system has been performed. The maximum length of the final character string is
31 characters; spaces, tabs, and null characters are ignored.

(Valid for SJC$_ABORT_JOB, SJC$_ALTER_JOB, SJC$_ASSIGN_QUEUE, and
SJC$_MERGE_ QUEUE function codes)

SJC$_DEVICE_NAME
The SJC$_DEVICE_NAME item code is an input value item code. It specifies
the name of the device managed by the output execution queue. The buffer
must specify a string from 1 to 31 characters. In a VAX.cluster environment, the
SJC$_SCSNODE_NAME item code is used to specify the name of the node on
which the device is located.

This item code cannot be used with the SJC$_AUTOSTART_ON item code.

(Valid for SJC$_CREATE_QUEUE, SJC$_START_QUEUE function codes)

SJC$_DOUBLE_SPACE
SJC$_NO_DOUBLE_SPACE
The SJC$_DOUBLE_SPACE item code is a Boolean item code. It is meaningful
only for output execution queues. It specifies that the symbiont should print the
file with double spacing.

The SJC$_NO_DOUBLE_SPACE item code is a Boolean item code. It specifies
that the symbiont should print the file with single spacing. It is the default.

(Valid for SJC$_ADD_FILE, SJC$_ALTER_JOB, SJC$_ENTER_FILE function
codes)

SJC$_ENTRY_NUMBER
The SJC$_ENTRY_NUMBER item code is an input value item code. It specifies
the entry number of the job on which to perform the function. The buffer must
contain this entry number.

(Valid for SJC$_ABORT_JOB, SJC$_ALTER_JOB, SJC$_DELETE_JOB, SJC$_
SYNCHRONIZE function codes)

SJC$_ENTRY_NUMBER_OUTPUT
The SJC$_ENTRY_NUMBER_OUTPUT item code is an output value item code.
The buffer must specify a longword into which $SNDJBC will write the entry
number of a created job.

(Valid for SJC$_CREATE_JOB, SJC$_ENTER_FILE function codes)

SJC$_FILE_BURST
SJC$_FILE_BURST _ONE
SJC$_NO_FILE_BURST

System Service Descriptions
$SN DJ BC

The SJC$_FILE_BURST item code is a Boolean item code. It is meaningful
only for output execution queues. It specifies that burst and flag pages are to be
printed preceding a file. If you specify SJC$_FILE_BURST for a job~ it specifies
the default for all files in the job; if you specify it for an output execution queue,
it specifies the default for all jobs executed from that queue.

The SJC$_FILE_BURST_ONE item code is a Boolean item code. It is meaningful
only for output execution queues. It specifies that a burst page is to be printed
preceding a file. If you specify SJC$_FILE_BURST_ONE for a job, this item code
specifies that a burst page is to be printed preceding only the first copy of the first
file in the job; if you specify SJC$_FILE_BURST_ONE for an output execution
queue, the item code specifies this behavior as the default for all jobs executed
from that queue.

The SJC$_NO_FILE_BURST item code is a Boolean item code. It is meaningful
only for output execution queues. It specifies that no burst page should be
printed. It is the default.

(The following function codes are valid for SJC$_FILE_BURST item code:

SJC$_ADD_FILE
SJC$_ALTER_JOB
SJC$_ALTER_QUEUE
SJC$_CREATE_JOB
SJC$_ CREATE_ QUEUE
SJC$_ENTER_FILE
SJC$_START_QUEUE)

(The following function codes are valid for SJC$_FILE_BURST_ONE item code:

SJC$_ALTER_QUEUE
SJC$_CREATE_JOB
SJC_CREATE_QUEUE
SJC_START_QUEUE)

SJC$_FILE_COPIES
The SJC$_FILE_COPIES item code is an input value item code. It is meaningful
only for output execution queues. It specifies the number of times a file is printed.
By default, a file is repeated once. The buffer must specify a longword value from
1 to 255; this value is the repeat count.

(Valid for SJC$_ADD_FILE, SJC$_ALTER_JOB, SJC$_ENTER_FILE function
codes)

SJC$_FILE_FLAG
SJC$_FILE_FLAG_ONE
SJC$_NO _FILE_FLAG
The SJC$_FILE_FLAG item code is a Boolean item code. It is meaningful only for
output execution queues. It specifies that a flag page is to be printed preceding
a file. If you specify SJC$_FILE_FLAG for a job, this item code indicates the
default for all files in the job; if you specify it for an output execution queue,
SJC$_FILE_FLAG indicates the default for all jobs executed from that queue.

SYS-583

System Service Descriptions
$SN DJ BC

SYS-584

The SJC$_FILE_FLAG_ONE item code is a Boolean item code. It is meaningful
only for output execution queues. It specifies that a flag page is to be printed
preceding a file. If you specify SJC$_FILE_FLAG_ONE for a job, this item code
specifies that a flag page is to be printed preceding only the first copy of the first
file in the job; if you specify SJC$_FILE_FLAG_ONE for an output execution
queue, it indicates this behavior as the default for all jobs executed from that
queue.

The SJC$_NO_FILE_FLAG item code is a Boolean item code. It is meaningful
only for output execution queues. It specifies that no flag page should be printed
by default for jobs within the queue.

(The following function codes are valid for SJC$_FILE_FLAG item code:

SJC$_ADD_FILE
SJC$_ALTER_JOB
SJC$_ALTER_QUEUE
SJC$_CREATE_JOB
SJC$_CREATE_QUEUE
SJC$_ENTER_FILE
SJC$_START_QUEUE)

(The following function codes are valid for SJC$_FLAG_ONE item code:

SJC$_ALTER_QUEUE
SJC$_CREATE_JOB
SJC$_ CREATE_ QUEUE
SJC$_START_QUEUE)

SJC$_FILE_IDENTIFICATION
The SJC$_FILE_IDENTIFICATION item code is an input value item code.
It specifies the file to be processed. The buffer contains a 28-byte value that
identifies the file to be processed. This value specifies (in order) the following
three file-identification fields in the RMS NAM block: the 16-byte NAM$T_DVI
field, the 6-byte NAM$W _FID field, and the 6-byte NAM$W _DID field. These
fields occur consecutively, in the NAM block.

If you specify SJC$_FILE_IDENTIFICATION, you must omit the SJC$_FILE_
SPECIFICATION item code.

(Valid for SJC$_ADD_FILE, SJC$_ENTER_FILE function codes)

SJC$_FILE_SETUP _MODULES
SJC$_NO_FILE_SETUP _MODULES
The SJC$_FILE_SETUP _MODULES item code is an input value item code. It
is meaningful only for output execution queues. It specifies that a list of text
modules should be extracted from the device control library and copied to the
printer before a file is printed. The buffer must contain a list of text module
names, with a comma separating each name.

The SJC$_NO_FILE_SETUP _MODULES item code is a Boolean item code. It is
meaningful only for output execution queues. It specifies that no text modules
should be copied before printing a file. It is the default.

(Valid for SJC$_ADD_FILE, SJC$_ALTER_JOB, SJC$_ENTER_FILE function
codes)

SJC$_FILE_SPECIFICATION

System Service Descriptions
$SN DJ BC

The SJC$_FILE_SPECIFICATION item code is an input value item code. It
identifies the file to be processed. The buffer must contain the file specification
of the file to be processed. The $SNDJBC service converts the file specification
to the corresponding file identification and proceeds as if the SJC$_FILE_
IDENTIFICATION item code had been specified. If you specify SJC$_FILE_
SPECIFICATION, you must omit the SJC$_FILE_IDENTIFICATION item code.

(Valid for SJC$_ADD_FILE, SJC$_ENTER_FILE function codes)

SJC$_FILE_ TRAILER
SJC$_FILE_ TRAILER_ONE
SJC$_NO_FILE_ TRAILER
The SJC$_FILE_TRAILER item code is a Boolean item code. It is meaningful
only for output execution queues. It specifies that a trailer page is to be printed
following a file. If you specify SJC$_FILE_ TRAILER for a job, this item code
indicates the default for all files in the job; if you specify it for an output
execution queue, SJC$_FILE_TRAILER specifies the default for all jobs executed
on that queue.

The SJC$_FILE_TRAILER_ONE item code is a Boolean item code. It is
meaningful only for output execution queues. It specifies that a trailer page
is to be printed following a file. If you specify SJC$_FILE_TRAILER_ONE for a
job, this item code indicates that a trailer page is to be printed following only the
last copy of the last file in the job; if you specify it for an output execution queue,
SJC$_FILE_TRAILER_ONE indicates this behavior as the default for all jobs
executed on that queue.

The SJC$_NO_FILE_TRAILER item code is a Boolean item code. It is meaningful
only for output execution queues. It specifies that no trailer page should be
printed. It is the default.

(The following function codes are valid for SJC$_FILE_TRAILER item code:

SJC$_ADD_FILE
SJC$_ALTER_JOB
SJC$_ALTER_QUEUE
SJC$_CREATE_JOB
SJC$_CREATE_QUEUE
SJC$_ENTER_FILE
SJC$_START_QUEUE)

(The following function codes are valid for SJC$_FILE_TRAILER_ONE item code:

SJC$_ALTER_QUEUE
SJC$_CREATE_JOB
SJC$_CREATE_QUEUE
SJC$_START_QUEUE)

SJC$_FIRST _PAGE
SJC$_NO_FIRST _PAGE
The SJC$_FIRST_PAGE item code is an input value item code. It is meaningful
only for jobs queued to output execution queues. It specifies the page number at
which printing should begin. The buffer must contain a nonzero longword value
specifying this page number.

The SJC$_NO_FIRST_PAGE item code is a Boolean item code. It is meaningful
only for jobs queued to output execution queues. It specifies that printing should
begin with the first page. It is the default.

SYS-585

System Service Descriptions
$SN DJ BC

SYS-586

(Valid for SJC$_ADD_FILE, SJC$_ALTER_JOB, SJC$_ENTER_FILE function
codes)

SJC$_FORM_DESCRIPTION
The SJC$_FORM_DESCRIPTION item code is an input value item code. It
provides operator-supplied information describing the form. By default, the form
name is used. The buffer must specify a string of no more than 255 characters.

(Valid for SJC$_DEFINE_FORM function code)

SJC$_FORM_LENGTH
The SJC$_FORM_LENGTH item code is an input value item code. It specifies the
physical length of the form in lines. The buffer must contain a nonzero longword
integer value. By default, the form length is 66 lines.

(Valid for SJC$_DEFINE_FORM function code)

SJC$_FORM_MARGIN_BOTTOM
The SJC$_FORM_MARGIN_BOTTOM item code is an input value item code. It
specifies the bottom margin of the form in lines. By default, the bottom margin is
6 lines.

(Valid for SJC$_DEFINE_FORM function code)

SJC$_FORM_MARGIN_LEFT
The SJC$_FORM_MARGIN_LEFT item code is an input value item code. It
specifies the width of the left margin of the form in characters. By default, the
left margin is 0. The buffer must specify a lo~gword value.

(Valid for SJC$_DEFINE_FORM function code)

SJC$_FORM_MARGIN_RIGHT
The SJC$_FORM_MARGIN_RIGHT item code is an input value item code. It
specifies the width of the right margin of the form in characters. By default, the
right margin is 0. The buffer must specify a longword value.

(Valid for SJC$_DEFINE_FORM function code)

SJC$_FORM_MARGIN_ TOP
The SJC$_FORM_MARGIN_TOP item code is an input value item code. It
specifies the top margin of the form in lines. By default, the top margin is 0.

(Valid for SJC$_DEFINE_FORM function code)

SJC$_FORM_NAME
SJC$_FORM_NUMBER
The SJC$_FORM_NAME and SJC$_FORM_NUMBER item codes are input value
item codes. They specify a mounted form for the queue by name and by number,
respectively. For SJC$_FORM_NAME, the buffer must specify a form name. For
SJC$_FORM_NUMBER, the buffer must specify a longword value. You should
use only one of these two item codes to identify a form in queue and job related
function codes.

The SJC$_DEFINE_FORM and SJC$_DELETE_FORM function codes include
and delete, respectively, a specified form name and number from the system job
queue file. The mounted form indicates the stock type of the output queue. A job
cannot execute on an output queue unless the stock type of the form specified
(by name or number) for the job item code is the same as the stock type of the

System Service Descriptions
$SN DJ BC

mounted form specified for the queue. For more information about how the stock
type of a form affects job processing, see the Guide to Maintaining a VMS System.

The string may contain uppercase or lowercase characters (lowercase are
converted to uppercase), numeric characters, dollar signs ($), and underscores
(_). If the string is a logical name, SYS$SNDJBC translates it iteratively until
the equivalence string is found or the number of translations allowed by the
system has been performed. The maximum length of the final character string is
31 characters; spaces, tabs, and null characters are ignored.

(The following function codes are valid for SJC$_FORM_NAME item code:

SJC$_ALTER_JOB
SJC$_ALTER_QUEUE
SJC$_CREATE_JOB
SJC$_CREATE_QUEUE
SJC$_DEFINE_FORM
SJC$_DELETE_FORM
SJC$_ENTER_FILE
SJC$_START_QUEUE)

(The following function codes are valid for SJC$_FORM_NUMBER item code:

SJC$_ALTER_JOB
SJC$_ALTER_QUEUE
SJC$_CREATE_JOB
SJC$_ CREATE_ QUEUE
SJC$_DEFINE_FORM
SJC$_ENTER_FILE
SJC$_START_QUEUE)

SJC$_FORM_SETUP _MODULES
SJC$_NO_FORM_SETUP_MODULES
The SJC$_FORM_SETUP _MODULES item code is an input value item code. The
buffer must specify one or more text module names, with a comma separating
each name. This item code specifies that these modules should be extracted from
the device control library and copied to the printer before each file that is printed
on the form.

The SJC$_NO_FORM_SETUP_MODULES item code is a Boolean item code. It
specifies that no device control modules should be copied. It is the default.

(Valid for SJC$_DEFINE_FORM function code)

SJC$_FORM_SHEET_FEED
SJC$_NO_FORM_SHEET_FEED
The SJC$_FORM_SHEET_FEED item code is a Boolean item code. It specifies
that the symbiont should pause at the end of each physical page so that a new
sheet may be inserted.

The SJC$_NO_FORM_SHEET_FEED item code is a Boolean item code. It
specifies that the output symbiont should not pause at the end of every physical
page. It is the default.

(Valid for SJC$_DEFINE_FORM function code)

SYS-587

System Service Descriptions
$SN DJ BC

SYS-588

SJC$_FORM_STOCK
The SJC$_FORM_STOCK item code is an input value item code. It specifies a
name for the paper stock. The buffer mt;ist contain a string of 1 to 31 characters.
By default, the name of the paper stock is the form name.

(Valid for SJC$_DEFINE_FORM function code)

SJC$_FORM_TRUNCATE
SJC$_NO_FORM_TRUNCATE
The SJC$_FORM_TRUNCATE item code is a Boolean item code. It specifies
that the symbiont should truncate lines that extend beyond the right margin.
Specifying SJC$_FORM_TRUNCATE cancels SJC$_FORM_ WRAP. The SJC$_
FORM_ TRUNCATE item code is the default.

The SJC$_NO_FORM_TRUNCATE item code is a Boolean item code. It specifies
that the output symbiont should not truncate lines that extend beyond the right
margin.

(Valid for SJC$_DEFINE_FORM function code)

SJC$_FORM_WIDTH
The SJC$_FORM_ WIDTH item code is an input value item code. It specifies
the physical width of the form in characters. The buffer must contain a nonzero
longword integer. By default, the form width is 132 characters.

SJC$_FORM_WRAP
SJC$_NO_FORM_WRAP
The SJC$_FORM_ WRAP item code is a Boolean item code. It specifies that the
symbiont should wrap lines that extend beyond the right margin. Specifying
SJC$_FORM_ WRAP cancels SJC$_FORM_TRUNCATE.

The SJC$_NO_FORM_ WRAP item code is a Boolean item code. It specifies that
the output symbiont should not wrap lines. It is the default.

(Valid for SJC$_DEFINE_FORM function code)

SJC$_GENERIC_QUEUE
SJC$_NO_GENERIC_QUEUE
The SJC$_GENERIC_QUEUE item code is a Boolean item code. It specifies that
a queue is a generic queue.

The SJC$_NO_GENERIC_QUEUE item code is a Boolean item code. It specifies
that a queue is not a generic queue. It is the default. By default, a queue is an
execution queue; see the Description section for a full discussion of the types of
queue.

(Valid for SJC$_CREATE_QUEUE, SJC$_START_QUEUE function codes)

SJC$_GENERIC_SELECTION
SJC$_NO_GENERIC_SELECTION
The SJC$_GENERIC_SELECTION item code is a Boolean item code. It specifies
that an execution queue can accept jobs from a generic queue. It is the default.
It is meaningful only for execution queues.

The SJC$_NO_GENERIC_SELECTION item code is a Boolean item code. It
specifies that an execution queue cannot accept jobs from a generic queue.

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE, SJC$_START_
QUEUE function codes)

SJC$_GENERIC_ TARGET

System Service Descriptions
$SN DJ BC

The SJC$_GENERIC_TARGET item code is an input value item code. The buffer
must specify a queue name. This queue name identifies an execution queue
that can accept jobs from a generic queue. This item code is meaningful only for
generic queues.

This item code can appear up to 124 times in a single call to $SNDJBC. The set
of queues defined in a single call completely replaces the set defined by a prior
call.

The string may contain uppercase or lowercase characters (lowercase are
converted to uppercase), numeric characters, dollar signs ($), and underscores
(_). If the string is a logical name, SYS$SNDJBC translates it iteratively until
the equivalence string is found or the number of translations allowed by the
system has been performed. The maximum length of the final character string is
31 characters; spaces, tabs, and null characters are ignored.

(Valid for SJC$_CREATE_QUEUE, SJC$_START_QUEUE function codes)

SJC$_HOLD
SJC$_NO_HOLD
The SJC$_HOLD item code is a Boolean item code. It specifies that a job cannot
execute and must enter a holding status.

The SJC$_NO _HOLD item code is a Boolean item code. It specifies that a job can
execute immediately when used with the SJC$_ALTER_JOB function code. It
makes the following types of job eligible for execution: (1) a job that is holding
because it was specified with the SJC$_HOLD item code, (2) a job that was
refused by the symbiont, and (3) a job that was retained after execution. It is
the default. SJC$_NO_HOLD does not release a job that is specified with the
SJC$_AFTER_TIME item code.

(Valid for SJC$_ABORT_JOB, SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_
ENTER_FILE function codes)

SJC$_JOB_BURST
SJC$_NO_JOB_BURST
The SJC$_JOB_BURST item code is a Boolean item code. It specifies that burst
and flag pages are to be printed preceding each job. It is meaningful only for
output execution queues.

The SJC$_NO _JOB_BURST item code is a Boolean item code. It specifies that
a burst page is not to be printed preceding each job. It is meaningful only for
output execution queues. It is the default.

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE, SJC$_START_
QUEUE function codes)

SJC$_JOB_COPIES
The SJC$_JOB_COPIES item code is an input value item code. It specifies the
number of times that the entire print job is to be repeated. The buffer must
contain this nonzero longword integer value. By default, the print job is repeated
once.

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_ENTER_FILE function
codes)

SYS-589

System Service Descriptions
$SN DJ BC

SYS-590

SJC$_JOB_DEFAULT _RETAIN
The SJC$_JOB_DEFAULT_RETAIN item code is a Boolean item code. It specifies
that you want the job to be held in the queue as specified by the. queue's retention
policy.

For more information about user-specified job retention, see the /RETAIN
qualifier for the PRINT or SUBMIT command in the VMS DCL Dictionary.

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_ENTER_FILE function
codes)

SJC$_JOB_ERROR_RETAIN
The SJC$_JOB_ERROR_RETAIN item code is a Boolean item code. It
specifies that you want the job to be retained in the queue if the job completes
unsuccessfully. However, the job might be held in the queue even if it completes
successfully if the queue is set to retain all jobs because the QUI$V _QUEUE_
RETAIN_ALL bit is set in the QUI$_ QUEUE_FLAGS item code.

For more information about user-specified job retention, see the /RETAIN
qualifier for the PRINT or SUBMIT command in the VMS DCL Dictionary.

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SCJ$_ENTER_FILE function
codes)

SJC$_JOB_FLAG
SJC$_NO_JOB_FLAG
The SJC$_JOB_FLAG item code is a Boolean item code. It specifies that a
flag page is to be printed preceding each job. It is meaningful only for output
execution queues.

The SJC$_NO_JOB_FLAG item code is a Boolean item code. It specifies that a
flag page is not to be printed preceding each job. It is meaningful only for output
execution queues. It is the default.

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE, SJC$_ START_
QUEUE function codes)

SJC$_JOB_LIMIT
The SJC$_JOB_LIMIT item code is an input value item code. It specifies the
maximum number of jobs that can execute simultaneously on a queue. The buffer
must contain a longword value in the range 1 to 255. It is meaningful only for
batch execution queues. By default, the job limit is 1.

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE, SJC$_START_
QUEUE function codes)

SJC$_JOB_NAME
The SJC$_JOB_NAME item code is an input value item code. It specifies the
name of a job. The buffer must specify a string from 1 to 39 characters.

For function codes SJC$_ENTER_FILE, SJC$_CREATE_JOB, and SJC$_ALTER_
JOB, SJC$_JOB_NAME specifies the identifying name of the job. By default, the
name used is the name of the first file in the job.

For function code SJC$_SYNCHRONIZE_JOB, SJC$_JOB_NAME specifies the
name of the job on which to operate. The job name is implicitly qualified by the
user name.

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_ENTER_FILE, SJC$_
SYNCHRONIZE function codes)

SJC$_JOB_RESET _MODULES
SJC$_NO_JOB_RESET_MODULES

System Service Descriptions
$SN DJ BC

The SJC$_JOB_RESET_MODULES item code is an input value item code. It is
meaningful only for output execution queues. The buffer must specify the names
of one or more text modules, with a comma separating each name. This item code
specifies that these modules are to be extracted from the device control library
and copied to the printer before each print job.

The SJC$_NO_JOB_RESET_MODULES item code is a Boolean item code. It
specifies that no text modules should be copied to the printer. It is the default.

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE, SJC$_START_
QUEUE function codes)

SJC$_JOB_RETAIN
The SJC$_JOB_RETAIN item code is a Boolean item code. It specifies that you
want the job to be retained in the queue after it has executed, regardless of the
job's completion status.

For more information about user-specified job retention, see the /RETAIN
qualifier for the PRINT or SUBMIT command in the VMS DCL Dictionary.

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_ENTER_FILE function
codes)

SJC$_JOB_RETAIN_ TIME
The SJC$_JOB_RETAIN_TIME item code is an input value item code. It specifies
a quadword time value representing the length of time you want the job to be
retained in the queue.

If a delta time is provided, the delta begins when the job completes. However,
depending on the queue's job retention policy, the job may be retained indefinitely.

For more information about user-specified job retention, see the /RETAIN
qualifier for the PRINT or SUBMIT command in the VMS DCL Dictionary.

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_ENTER_FILE function
codes)

SJC$_JOB_SIZE_MAXIMUM
SJC$_NO_JOB_SIZE_MAXIMUM
The SJC$_JOB_SIZE_MAXIMUM item code is an input value item code. It is
meaningful only for output execution queues. It specifies that a print job can
execute only if its total size in blocks is less than or equal to the specified value.
The buffer specifies this nonzero longword value.

The SJC$_NO_JOB_SIZE_MAXIMUM item code is a Boolean item code. It
specifies that a print job can execute immediately regardless of its size. It is the
default.

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE, SJC$_START_
QUEUE function codes)

SJC$_JOB_SIZE_MINIMUM
SJC$_NO_JOB_SIZE_MINIMUM
The SJC$_JOB_SIZE_MINIMUM item code is an input value item code. It is
meaningful only for output execution queues. It specifies that a print job can
execute only if its total size in blocks is greater than or equal to the specified
value. The buffer specifies this nonzero longword value.

SYS-591

System Service Descriptions
$SN DJ BC

SYS-592

The SJC$_NO_JOB_SIZE_MINIMUM item code is a Boolean item code. It
specifies that a print job can execute immediately regardless of its size. It is the
default.

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE, SJC$_START_
QUEUE function codes)

SJC$_JOB_SIZE_SCHEDULING
SJC$_NO_JOB_SIZE_SCHEDULING
The SJC$_JOB_SIZE_SCHEDULING item code is a Boolean item code. It
specifies that print jobs entered in an output queue should be scheduled according
to size, with the smallest job of a given priority processed first. It is the default.

The SJC$_NO_JOB_SIZE_SCHEDULING item code is a Boolean item code. It
specifies that print jobs of a given priority should not be scheduled according to
print size.

Changing the value of this item code for a queue while print jobs are pending on
any queue produces unpredictable results.

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE, SJC$_START_
QUEUE function codes)

SJC$_JOB_STATUS_OUTPUT
The SJC$_JOB_STATUS_OUTPUT item code is an output value item code.
When specified, $SNDJBC returns, as a character string, a textual message
describing the status of a submitted job. Because the message can include up to
255 characters, the buffer length field of the item descriptor should specify 255
(bytes).

(Valid for SJC$_CLOSE_JOB, SJC$_ENTER_FILE function codes)

SJC$_JOB_ TRAILER
SJC$_NO_JOB_ TRAILER
The SJC$_JOB_TRAILER item code is a Boolean item code. It is meaningful
only for output execution queues. It specifies that a trailer page is to be printed
following each job.

The SJC$_NO_JOB_TRAILER item code is a Boolean item code. It is meaningful
only for output execution queues. It specifies that a trailer page is not to be
printed following each job. It is the default.

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE, SJC$_START_
QUEUE function codes)

SJC$_LAST _PAGE
SJC$_NO_LAST_PAGE
The SJC$_LAST_PAGE item code is an input value item code. It is meaningful
only for jobs submitted to output execution queues. It specifies the page number
at which printing should end. The buffer specifies this nonzero longword value.

The SJC$_NO_LAST_PAGE item code is a Boolean item code. It specifies that
printing should end after the last page. It is the default.

(Valid for SJC$_ADD_FILE, SJC$_ALTER_JOB, SJC$_ENTER_FILE function
codes)

SJC$_LIBRARV _SPECIFICATION
SJC$_NO_LIBRARV _SPECIFICATION

System Service Descriptions
$SN DJ BC

The SJC$_LIBRARY_SPECIFICATION item code is an input value item code.
It is meaningful only for output execution queues. It specifies that the device
control library for the queue is SYS$LIBRARY:name. TLB, where name is a valid
RMS file name. The buffer must specify the RMS file name.

The SJC$_NO_LIBRARY_SPECIFICATION item code is a Boolean item code. It
specifies that the device control library is SYS$LIBRARY:SYSDEVCTL.TLB. It is
the default.

(Valid for SJC$_CREATE_QUEUE, SJC$_START_QUEUE function codes)

SJC$_LOG_DELETE
SJC$_NO_LOG_DELETE
The SJC$_LOG_DELETE item code is a Boolean item code. It specifies that the
log file produced for a batch job is to be deleted. It is meaningful only for batch
jobs. It is the default.

The SJC$_NO _LOG_DELETE item code is a Boolean item code. It specifies that
the log file produced for a batch job is not to be deleted.

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_ENTER_FILE function
codes)

SJC$_LOG_QUEUE
The SJC$_LOG_QUEUE item code is an input value item code. It is meaningful
only for batch jobs. It specifies the queue into which the log file produced for the
batch job is entered for printing. The buffer must specify the name of the queue.
By default, the log file is entered in queue SYS$PRINT.

The string may contain uppercase or lowercase characters (lowercase are
converted to uppercase), numeric characters, dollar signs ($), and underscores
(_). If the string is a logical name, SYS$SNDJBC translates it iteratively until
the equivalence string is found or the number of translations allowed by the
system has been performed. The maximum length of the final character string is
31 characters; spaces, tabs, and null characters are ignored.

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_ENTER_FILE function
codes)

SJC$_LOG_SPECIFICATION
SJC$_NO_LOG_SPECIFICATION
The SJC$_LOG_SPECIFICATION item code is an input value item code. It is
meaningful only for batch jobs. It specifies the file specification of the log file
produced for a batch job. The buffer must contain this RMS file specification.
Omitted fields in the file specification are supplied from the default file
specification SYS$LOGIN:name.LOG, where name is the job name. By default
a log file is produced using this default file specification to generate the log file
name.

The SJC$_NO_LOG_SPECIFICATION item code is a Boolean item code. It
specifies that no log file should be produced for the batch job.

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_ENTER_FILE function
codes)

SYS-593

System Service Descriptions
$SN DJ BC

SYS-594

SJC$_LOG_SPOOL
SJC$_NO_LOG_SPOOL
The SJC$_LOG_SPOOL item code is a Boolean item code. It specifies that the log
file produced for a batch job is to be printed. It is meaningful only for batch jobs.
It is the default.

The SJC$_NO _LOG_SPOOL item code is a Boolean item code. It specifies that
the log file for a batch job is not to be printed.

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_ENTER_FILE function
codes)

SJC$_LOWERCASE
SJC$_NO_LOWERCASE
The SJC$_LOWERCASE item code is a Boolean item code. It specifies that a
job can execute only on a device that has the LOWERCASE device-dependent
characteristic. It is meaningful only for jobs submitted to output execution
queues.

The SJC$_NO_LOWERCASE item code is a Boolean item code. It specifies
that a job can execute whether or not the output device has the LOWERCASE
device-dependent characteristic. It is the default.

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_ENTER_FILE function
codes)

SJC$_NEW _VERSION
The SJC$_NEW _VERSION item code is a Boolean item code. It specifies that a
new version of the system job queue database or system accounting file is to be
created, whether or not the files already exist. This item code is required when
initially creating and starting the queuing system. By default, the system job
queue file or accounting file is created only if it does not already exist.

If you specify. this item code and a queue database already exists, the new master
and queue files of the queue database supersede existing versions of those files.
The journal file of the queue database is deleted.

(Valid for SJC$_START_ACCOUNTING, SJC$_START_QUEUE_MANAGER
function codes)

SJC$_NEXT _JOB
The SJC$_NEXT_JOB item code is a Boolean item code. It is meaningful only
for paused output execution queues. It specifies that the current job should be
aborted and that printing should be resumed with the next job.

(Valid for SJC$_START_QUEUE function code)

SJC$_NOTE
SJC$_NO_NOTE
The SJC$_NOTE item code is an input value item code. It is meaningful only for
output execution queues. It specifies a string to be printed on the job flag and file
flag pages. The buff er must specify this string.

The SJC$_NO_NOTE item code is a Boolean item code. It specifies that no string
is to be printed on the job flag and file flag pages. It is the default.

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_ENTER_FILE function
codes)

SJC$_NOTIFY
SJC$_NO_NOTIFY

System Service Descriptions
$SN DJ BC

The SJC$_NOTIFY item code is a Boolean item code. It specifies that a message
is to be broadcast, at the time of job completion, to each logged-in terminal, of the
user who submitted the job.

The SJC$_NO_NOTIFY item code is a Boolean item code. It specifies that no
message is to be broadcast at the time of job completion. It is the default.

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_ENTER_FILE function
codes)

SJC$_0PEN_QUEUE
The SJC$_0PEN_QUEUE item code is a Boolean item code. It specifies that jobs
can be entered in the queue. To specify that jobs cannot be entered in the queue,
use the SJC$_CLOSE_QUEUE item code. By default, the queue is open.

Whether a queue is open or closed is independent of any other queue states (such
as paused, stalled, stopped).

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE, SJC$_START_
QUEUE function codes)

SJC$_0PERATOR_REQUEST
SJC$_NO_OPERATOR_REQUEST
The SJC$_0PERATOR_REQUEST item code is an input value item code. It is
meaningful only for output execution queues. The buffer must contain a text
string. This item code specifies that, when a job begins execution, the execution
queue is to be placed in the paused state and the specified text string is to be
included in a message to the queue operator requesting service.

The SJC$_NO_OPERATOR_REQUEST item code is a Boolean item code. It
specifies that no message is to be sent to the queue operator. It is the default.

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_ENTER_FILE function
codes)

SJC$_0WNER_UIC
The SJC$_0WNER_UIC item code is an input value item code. It specifies the
owner UIC of a queue. The buffer must specify the longword UIC. By default, the
owner UIC is [1,4].

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE, SJC$_START_
QUEUE function codes)

SJC$_PAGE_HEADER
SJC$_NO_PAGE_HEADER
The SJC$_PAGE_HEADER item code is a Boolean item code. It is meaningful
only for output execution queues. It specifies that a page heading is to be printed
on each page of output.

The SJC$_NO_PAGE_HEADER item code is a Boolean item code. It specifies
that no page heading is to be printed. It is the default.

(Valid for SJC$_ADD_FILE, SJC$_ALTER_JOB, SJC$_ENTER_FILE function
codes)

SYS-595

System Service Descriptions
$SN DJ BC

SYS-596

SJC$_PAGE_SETUP_MODULES
SJC$_NO_PAGE_SETUP_MODULES
The SJC$_PAGE_SETUP _MODULES item code is an input value item code .. The
buffer must specify one or more text module names, with a comma separating
each name. This item code specifies that these modules are to be extracted from
the device control library and copied to the printer before each page is printed.

The SJC$_NO_PAGE_SETUP _MODULES item code is a Boolean item code. It
specifies that no device control modules are to be copied. It is the default.

(Valid for SJC$_DEFINE_FORM function code)

SJC$_PAGINATE
SJC$_NO_PAGINATE
The SJC$_PAGINATE item code is a Boolean item code. It is meaningful only
for output execution queues and jobs submitted to output execution queues. It
specifies that the symbiont should paginate the output by inserting a form feed
whenever output reaches the bottom margin of the form. It is the default.

The SJC$_NO_PAGINATE item code is a Boolean item code. It specifies that the
symbiont should not paginate the output.

(Valid for SJC$_ADD_FILE, SJC$_ALTER_JOB, SJC$_ALTER_QUEUE, SJC$_
CREATE_QUEUE, SJC$_ENTER_FILE, SJC$_START_QUEUE function codes)

SJC$_PARAMETER_ 1 through SJC$_PARAMETER_8
SJC$_NO_PARAMETERS
The SJC$_PARAMETER_l through SJC$_PARAMETER_8 item codes are input
value item codes; the last digit of the item code name is a number from 1 through
8. For each item code specified, the buffer must specify a string of no more than
255 characters. For batch jobs, the string becomes the value of the DCL symbol
Pl through P8, respectively, within the outermost command procedure.

For print jobs, the system makes the string available to the symbiont, though the
standard VMS print symbiont does not use this information. By default, each of
the eight parameters specifies a null string.

For function code SJC$_ALTER_JOB, if any SJC$_PARAMETER item is specified,
the value of each unspecified item is the null string.

The SJC$_NO_PARAMETERS item code is a Boolean item code. It specifies that
none of the SJC$_PARAMETER items are to be passed in the batch or print job.
It is the default.

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_ENTER_FILE function
codes)

SJC$_PASSALL
SJC$_NO_PASSALL
The SJC$_PASSALL item code is a Boolean item code. It is meaningful only for
jobs submitted to output execution queues. It specifies that the symbiont is to
print the file in PASSALL mode.

The SJC$_NO_PASSALL item code is a Boolean item code. It specifies that the
symbiont is not to print the file in PASSALL mode. It is the default.

(Valid for SJC$_ADD_FILE, SJC$_ALTER_JOB, SJC$_ENTER_FILE function
codes)

SJC$_PRINTER

System Service Descriptions
$SN DJ BC

The SJC$_PRINTER item code is a Boolean item code. It is meaningful only for
output queues. It specifies that the queue being created is a printer queue. The
SJC$_BATCH, SJC$_PRINTER, SJC$_SERVER, and SJC$_TERMINAL item
codes are mutually exclusive. If none of these item codes are specified, the default
is SJC$_PRINTER.

(Valid for SJC$_CREATE_QUEUE function code)

SJC$_PRIORITY
The SJC$_PRIORITY item code is an input value item code. The buffer must
specify a longword value in the range 0 through 255. This value specifies the
scheduling priority of the job in a queue relative to the scheduling priority of
other jobs in the same queue.

By default, the scheduling priority of the job is the value of the SYSGEN
parameter DEFQUEPRI.

If you specify a value for SJC$_PRIORITY that is greater than the SYSGEN
parameter MAXQUEPRI and you do not have either ALTPRI or OPER privilege,
the system uses the greater of the following two values: DEFQUEPRI or
MAXQUEPRI. If you have either ALTPRI or OPER privilege, the system uses any
value you specify for SJC$_PRIORITY, even if it is included in the range between
MAXQUEPRI + 1 and 255.

(Valid for SJC$_ABORT_JOB, SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_
ENTER_FILE function codes)

SJC$_PROCESSOR
SJC$_NO_PROCESSOR
The SJC$_PROCESSOR item code is an input value item code. The buffer must
specify a valid RMS file name.

When specified for an output execution queue, SJC$_PROCESSOR specifies that
the symbiont image to be executed is SYS$SYSTEM:name.EXE, where name is
the RMS file name contained in the buffer.

When specified for a generic output queue, SJC$_PROCESSOR specifies that
the generic queue can place jobs only in server queues that are executing the
symbiont image SYS$SYSTEM:name.EXE, where name is the RMS file name
contained in the buffer.

The SJC$_NO_PROCESSOR item code is a Boolean item code. It specifies that
the symbiont image to be executed is SYS$SYSTEM:PRTSMB.EXE. It is the
default.

(Valid for SJC$_CREATE_QUEUE, SJC$_START_QUEUE function codes)

SJC$_PROTECTION
SJC$_PROTECTION is an input value item code. It specifies the protection of a
queue. The buffer must specify a longword in the format shown in the following
diagram.

SYS-597

System Service Descriptions
$SNDJBC

Value Change Enable Protection Value

World Group Owner System World Group Owner System

DEWRDEWRDEWRDEWRDEWRDEWRDEWRDEWR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 12 111 0 9 8 7 6 5 4 3 2 1 0

SYS-598

ZK-1724-GE

Bits 0 through 15 specify the protection value: the four types of access (read,
write, execute, delete) to be granted to the four categories of user (system, owner,
group, world). Set bits deny access and clear bits allow access.

Bits 16 through 31 specify the protection enable mask: they identify which part
of the protection value (bits 0 through 15) is to be applied to queue protection.
If all bits are set in the enable mask, it means that all of the protection values
are to be applied. A value other than a -1 in the protection enable mask means
that only those bits set will affect the corresponding bits in the protection value.
When a bit in the protection enable mask is clear, the corresponding bit in the
existing queue protection value is unchanged.

By default, the queue protection is (S:E,O:D,G:R,W:W).

Note that you can assign ACLs to queues using the $CHANGE_ACL system
service.

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE, SJC$_START_
QUEUE function codes)

SJC$_QUEUE
The SJC$_QUEUE item code is an input value item code. It specifies the queue
to which the operation is directed. The buffer must specify the name of the queue.

The string may contain uppercase or lowercase characters (lowercase are
converted to uppercase), numeric characters, dollar signs ($), and underscores
(_). If the string is a logical name, SYS$SNDJBC translates it iteratively until
the equivalence string is found or the maximum number of translations allowed
by the system has been performed. The maximum length of the final character
string is 31 characters; spaces, tabs, and null characters are ignored.

(The following function codes are valied for SJC$_QUEUE item code:

SJC$_ABORT_JOB
SJC$_ALTER_JOB
SJC$_ALTER_QUEUE
SJC$_CREATE_JOB
SJC$_CREATE_QUEUE
SJC$_DELETE_JOB
SJC$_DELETE_QUEUE
SJC$_ENTER_FILE
SJC$_START_QUEUE
SJC$_SYNCHRONIZE)

System Service Descriptions
$SN DJ BC

SJC$_QUEUE_DESCRIPTION
SJC$_NO_QUEUE_DESCRIPTION
The SJC$_QUEUE_DESCRIPTION item code is an input value item code. It
provides operator-supplied information about the queue. The buffer must specify
a string of no more than 255 characters.

The SJC$_NO_QUEUE_DESCRIPTION item code is a Boolean item code. It
specifies that no description is associated with the queue.

(Valid for SJC$_ALTER_ QUEUE, SJC$_ CREATE_ QUEUE, SJC$_START_
QUEUE function codes)

SJC$_QUEUE_DIRECTORY
The SJC$_ QUEUE_DIRECTORY item code is an input value item code. SJC$_
QUEUE_DIRECTORY specifies the directory location that contains the system
queue and journal files for the queue database. The queue file, SYS$QUEUE_
MANAGER.QMAN$QUEUES, contains queue definitions. The journal file,
SYS$QUEUE_MANAGER.QMAN$JOURNAL, contains job and other information
allowing the queue manager to return to its last known state should a system be
stopped unexpectedly. These files must reside together in the same directory.

The default location of the queue and journal files is SYS$COMMON:[SYSEXE].
The optional use of SJC$_QUEUE_DIRECTORY is for specifying an alternate
location for the queue and journal files. The specification must include at least
the device and directory name; wildcard characters are not allowed in the
directory specification. The directory specified must be available to all nodes that
can run the queue manager. If the directory specification is a concealed logical
name, it must be defined identically on all nodes in the cluster.

The location of the queue and journal files is stored in the master file of the queue
database. You do not have to respecify the directory location with subsequent use
of SJC$_QUEUE_DIRECTORY.

For more information, see the Guide to Maintaining a VMS System.

(Valid for SJC$_START_QUEUE_MANAGER function code)

SJC$_QUEUE_MANAGER_NODES
The SJC$_QUEUE_MANAGER_NODES item code is an input value item code.
In a VAXcluster, SJC$_QUEUE_MANAGER_NODES specifies a list of nodes that
can run the queue manager. It also gives the explicit order of failover if the node
running the queue manager exits the cluster. The specified node list is stored in
the queue database.

The default value for the node list is an asterisk (*); it specifies that all nodes
in the cluster are eligible to run the queue manager. The asterisk may also be
specified as an element of the list. For example, a list may be specified as nodes
A, B, C, *. If the node on which the queue manager is running leaves the cluster,
the queue manager automatically fails over to any available node in the cluster;
that is, if nodes A, B, and C are unavailable, then the queue manager may run
on any other node. When establishing the node list, there is no validation of the
individual nodes. If, for example, a node name is misspelled, there is no error
status returned.

Anytime the SJC$_START_QUEUE_MANAGER function code is used, the job
controller checks to see if the node list is other than the default (*). If the node
list is other than the default and the queue manager is running on a node other
than the first available node of those specified, then the queue manager process is
moved from its current node and restarted on the first available preferred node.

SYS-599

System Service Descriptions
$SN DJ BC

SYS-600

When a current call includes the SJC$_START_QUEUE_MANAGER item code,
the job controller will attempt to transition the queue manager process to the first
available preferred node. Despite this transition, queues on the running nodes
are not stopped, and all requests to the queuing system complete as expected.

Note that because the specified node list is saved in the database, it is used every
time the SJC$_START_QUEUE_MANAGER function code is used, unless the
node list has been changed by a more recent call to $SNDJBC with the SJC_
$QUEUE_MANAGER_NODES item code.

For more information, see the Guide to Maintaining a VMS System.

(Valid for SJC$_START_QUEUE_MANAGER function code)

SJC$_RECORD_BLOCKING
SJC$_NO_RECORD_BLOCKING
The SJC$_RECORD_BLOCKING item code is a Boolean item code. It is
meaninglful only for output execution queues. It specifies that the symbiont
can merge the output records it sends to the output device into a single I/O
request. For the standard VMS print symbiont, record blocking can have a
significant performance advantage over single-record mode. It is the default.

The SJC$_NO_RECORD_BLOCKING item code is a Boolean item code. It
specifies that the symbiont must send each record in a separate I/O request to the
output device.

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE, SJC$_START_
QUEUE function codes)

SJC$_RELATIVE_PAGE
The SJC$_RELATIVE_PAGE item code is an input value item code. It is
meaningful only for output execution queues. The buffer must specify a signed
longword integer. This item code specifies that printing should be resumed after
spacing forward (if the buffer value is positive) or backward (if the buffer value is
negative) the specified number of pages.

(Valid for SJC$_START_QUEUE function code)

SJC$_REQUEUE
The SJC$_REQUEUE item code is a Boolean item code. It specifies that a job is
to be requeued. By default, the job is deleted.

(Valid for SJC$_ABORT_JOB function code)

SJC$_RESTART
SJC$_NO_RESTART
The SJC$_RESTART item code is a Boolean item code. It specifies that a job
can restart after a system failure or can be requeued during execution. It is the
default for print jobs.

The SJC$_NO_RESTART item code is a Boolean item code. It specifies that a
job cannot restart after a system failure or after a requeue operation. It is the
default for batch jobs.

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_ENTER_FILE function
codes)

SJC$_RETAIN_ALL_JOBS
SJC$_RETAIN_ERROR_JOBS
SJC$_NO _RETAIN_JOBS

System Service Descriptions
$SN DJ BC

The SJC$_RETAIN_ALL_JOBS item code is a Boolean item code. It specifies that
jobs are to be retained in the queue with a completion status after they have been
executed.

The SJC$_RETAIN_ERROR_JOBS item code is a Boolean item code. It specifies
that jobs are to be retained only if the job completed unsuccessfully (the job's
completion status has the low bit clear).

The SJC$_NO_RETAIN_JOBS item code is a Boolean item code. It specifies
that jobs are not to be retained in the queue after they have completed. It is the
default.

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE, SJC$_START_
QUEUE function codes)

SJC$_SCSNODE_NAME
The SJC$_SCSNODE_NAME item code is an input value item code. It specifies
the name of the VAX node for which the command is to execute. The buffer
must specify a 1- to 6-character string that matches the value of the SYSGEN
parameter SCSNODE in effect on the target node.

When used with the function codes of SJC$_STOP _ALL_QUEUES_ON_NODE,
SJC$_DISABLE_AUTOSTART, and SJC$_ENABLE_AUTOSTART, this item code
requests a function on a node other than the node from which the $SNDJBC
request is sent.

SJC$_SCSNODE_NAME is meaningful only for execution queues in a VAXcluster
environment. By default, the queue executes on the VAX node from which
the queue is first started. For an output execution queue, you use the SJC$_
DEVICE_NAME item code to specify the name of the device managed by the
queue.

(Valid for SJC$_CREATE_QUEUE, SJC$_DISABLE_AUTOSTART, SJC$_
ENABLE_AUTOSTART, SJC$_START_QUEUE, SJC$_STOP _ALL_ QUEUES_
ON_NODE function codes)

SJC$_SEARCH_STRING
The SJC$_SEARCH_STRING item code is an input value item code. It is
meaningful only for output execution queues. The buffer must specify a string of
no more than 63 characters. This item code specifies that printing is to resume at
the page containing the first occurrence of the specified string. The search for the
string proceeds in the forward direction.

(Valid for SJC$_START_QUEUE function code)

SJC$_SERVER
The SJC$_SERVER item code is a Boolean item code. It is meaningful only for
output queues. It specifies that the queue being created is a server queue. The
term server indicates that a user-modified or user-written symbiont process is
controlling an output execution queue, or a generic queue has server execution
queues as its targets.

The SJC$_BATCH, SJC$_PRINTER, SJC$_SERVER, and SJC$_TERMINAL
item codes are mutually exclusive. If none of these item codes are specified, the
default is SJC$_PRINTER.

SYS-601

System Service Descriptions
$SN DJ BC

SYS-602

(Valid for SJC$_CREATE_QUEUE function code)

SJC$_SWAP
SJC$_NO_SWAP
The SJC$_SWAP item code is a Boolean item code. It is meaningful only for batch
execution queues. It specifies that jobs initiated from a queue can be swapped. It
is the default.

The SJC$_NO_SWAP item code is a Boolean item code. It specifies that jobs in
this queue cannot be swapped.

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE, SJC$_START_
QUEUE function codes)

SJC$_ TERMINAL
SJC$_NO_ TERMINAL
The SJC$_TERMINAL item code is a Boolean item code. It is meaningful only
for output queues. It specifies that the queue being created is a terminal queue.

The SJC$_BATCH, SJC$_PRINTER, SJC$_SERVER, and SJC$_TERMINAL
item codes are mutually exclusive. If none of these item codes are specified, the
default is SJC$_PRINTER.

The SJC$_NO_TERMINAL item code is a Boolean item code. It designates the
queue type as printer rather than terminal. It is the default.

For the SJC$_START_QUEUE function code, SJC$_TERMINAL and SJC$_NO_
TERMINAL are supported for compatibility with VAX VMS Version 4.n, but
may not be supported in the future. For SJC$_CREATE_.QUEUE, SJC$_NO_
TERMINAL is supported for compatibility with VAX VMS Version 4.n, and may
not be supported in the future.

(Valid for SJC$_CREATE_QUEUE, SJC$_START_QUEUE function codes)

SJC$_TOP _OF _FILE
The SJC$_TOP _OF _FILE item code is a Boolean item code. It is meaningful only
for output queues. It specifies that printing is to be resumed at the beginning of
the file.

(Valid for SJC$_START_QUEUE function code)

SJC$_UIC
The SJC$_UIC item code is an input value item code. This value specifies the
4-byte UIC of the user on behalf of whom the request is made. By default, the
UIC is taken from the requesting process.

(Valid for SJC$_CREATE_JOB, SJC$_ENTER_FILE function codes)

SJC$_USERNAME
The SJC$_USERNAME item code is an input value item code. It specifies the
user name of the user on behalf of whom the request is made. The buffer must
specify a string from 1 to 12 characters. By default, the user name is taken from
the requesting process.

You need CMKRNL privilege to use this item code.

(Valid for SJC$_CREATE_JOB, SJC$_ENTER_FILE function codes)

SJC$_ WSDEFAULT
SJC$_NO _ WSDEFAU LT

System Service Descriptions
$SN DJ BC

The SJC$_ WSDEFAULT item code is an input value item code. It is meaningful
only for batch jobs and execution queues. It specifies the default working set
size for batch jobs or jobs initiated from a batch queue, or the default working
set size of a symbiont process connected to an output queue. A symbiont process
can control several output queues; however, the default working set size of the
symbiont process is established by the first queue to which it is connected. The
buffer must contain a longword integer value in the range 1 through 65,535.

The SJC$_NO_ WSDEFAULT item code is a Boolean item code. It specifies that
the system is to determine the working set default. It is the default.

For batch jobs, the default working set size, working set quota, and working
set extent (maximum size) are included in each user record in the system user
authorization file (UAF). You can specify values for these items for individual jobs
or for all jobs in a given queue, or for both. Table SYS-15 shows the action taken
when you specify a value for SJC$_ WSDEFAULT.

Table SYS-15 Working Set Decision Table

Value Specified
for Job?

No

No

Yes

Yes

Value Specified
for Queue?

No

Yes

Yes

No

Action Taken

Use UAF value

Use value for queue

Use lower of the two

Compare specified value with
UAF value; use lower

(Valid for SJC$_ALTER_JOB, SJC$_ALTER_QUEUE, SJC$_CREATE_JOB,
SJC$_CREATE_QUEUE, SJC$_ENTER_FILE, SJC$_START_QUEUE function
codes)

SJC$_WSEXTENT
SJC$_NO_WSEXTENT
The SJC$_ WSEXTENT item code is an input value item code. It is meaningful
only for batch jobs and execution queues. It specifies the working set extent for
batch jobs or jobs initiated from a batch queue, or the working set extent of a
symbiont process connected to an output queue. A symbiont process can control
several output queues; however, the working set extent of the symbiont process is
established by the first queue to which it is connected. The buffer must contain a
longword integer value in the range 1 through 65,535.

The SJC$_NO_ WSEXTENT item code is a Boolean item code. It specifies that
the system determine the working set extent. It is the default.

For information about the action taken when you specify a value for SJC$_
WSEXTENT for a batch job or batch queue, refer to the description of the SJC$_
WSDEFAULT item code and to Table SYS-15.

(Valid for SJC$_ALTER_JOB, SJC$_ALTER_QUEUE, SJC$_CREATE_JOB,
SJC$_CREATE_QUEUE, SJC$_ENTER_FILE, SJC$_START_QUEUE function
codes)

SYS-603

System Service Descriptions
$SN DJ BC

Description

SYS-604

SJC$_WSQUOTA
SJC$_NO_WSQUOTA
The SJC$_ WSQUOTA item code is an input value item code. It is meaningful
only for batch jobs and execution queues. It specifies the working set quota
for batch jobs or default WSQUOTA for jobs initiated from a batch queue, or
the working set quota of a symbiont process connected to an output queue. A
symbiont process can control several output queues; however, the working set
quota of the symbiont process is established by the first queue to which it is
connected. The buffer must contain a longword integer value in the range 1
through 65,535.

The SJC$_NO_ WSQUOTA item code is a Boolean item code. It specifies that the
system is to determine the working set quota. It is the default.

For information about the action taken when you specify a value for SJC$_
WSQUOTA for a batch job or batch queue, refer to the description of the SJC$_
WSDEFAULT item code and to Table SYS-15.

(Valid for SJC$_ALTER_JOB, SJC$_ALTER_QUEUE, SJC$_CREATE_JOB,
SJC$_CREATE_QUEUE, SJC$_ENTER_FILE, SJC$_START_QUEUE function
codes)

The Send to Job Controller service creates, stops, and manages queues and
the batch and print jobs in those queues. The $SNDJBC and $GETQUI (Get
Queue Information) services together provide the user interface to the VMS Job
Controller, which is the VMS queue and accounting manager.

$SNDJBC completes asynchronously; that is, it returns to the caller after queuing
the request, without waiting for the operation to complete.

To synchronize the completion of most operations, you use the Send to Job
Controller and Wait ($SNDJBCW) service. The $SNDJBCW service is identical
to $SNDJBC in every way except that $SNDJBCW returns to the caller after the
operation completes.

Types of Queues The VMS batch/print facility supports several types of queues,
which aid in the processing of batch and print jobs. The different types of
queues can be divided into three major categories according to the way the
system processes the jobs assigned to the queue. The three types of queues are
execution, generic, and logical. Execution queues schedule jobs for execution;
generic and logical queues transfer jobs to execution queues. Within these major
classifications, queue type is further defined by the kinds of job the queues can
accept for processing. Some types of execution and generic queues accept batch
jobs; other types accept print jobs. Logical queues are restricted to print jobs.

You create a queue by making a call to $SNDJBC specifying the SJC$_CREATE_
QUEUE function code. Item codes that you optionally specify in the call
determine the type of queue you create. The following list describes the various
types of execution, generic, and logical queues and indicates which item codes you
need to specify to create them:

• Execution queue. An execution queue schedules jobs for processing. In a
VAXcluster environment, jobs are processed on the node that manages the
execution queue. There are two types of execution queues:

Batch execution queue. A batch execution queue can schedule only
batch jobs for execution. A batch job executes as a detached process that

System Service Descriptions
$SN DJ BC

sequentially runs one or more command procedures; you define the list
of command procedures as part of the initial job description. You create
a batch execution queue by specifying the SJC$_BATCH item code in the
call to the $SNDJBC service.

Output execution queue. An output execution queue schedules print
jobs for processing by an independent symbiont process associated with
the queue. The job controller sends the symbiont a list of files to process;
you define this list of files as part of the initial job description. As the
symbiont processes each file, it produces output for the device, such as a
printer or terminal, that it controls.

The standard print symbiont image provided by the VMS operating
system is designed to print files on hardcopy devices. User-modified
or user-written symbionts also can be designed for this or any other
file processing activity managed by the VMS batch/print facility. The
symbiont image that executes jobs from an output queue is specified
by the SJC$_PROCESSOR item code. If you omit this item code, the
standard VMS print symbiont image, PRTSMB, is associated with the
queue.

There are three types of output execution queues:

a. Printer execution queue. This type of queue typically uses the
standard print symbiont to direct output to a line printer. You can
specify a user-provided symbiont in the SJC$_PROCESSOR item
code. You create a printer execution queue by specifying the SJC$_
PRINTER item code when you create the output execution queue. A
printer execution queue is the default type of output execution queue.

b. Terminal execution queue. This type of queue typically uses the
standard print symbiont to direct output to a terminal printer. You
can specify a user-provided symbiont in the SJC$_PROCESSOR item
code. You create a terminal execution queue by specifying the SJC$_
TERMINAL item code when you create the output execution queue.

c. Server execution queue. This type of queue uses the user-modified
or user-written symbiont you specify in the SJC$_PROCESSOR item
code to process the files that belong to jobs in the queue. You create
a server execution queue by specifying the SJC$_SERVER item code
when you create the output execution queue.

When you create an output execution queue, you can initially mark it
as either a printer, terminal, or server execution queue. However, when
the queue is started, the symbiont process associated with the queue
can change the queue type from the type designated at its creation to a
printer, terminal, or server execution queue, as follows:

a. When an output execution queue associated with the standard VMS
print symbiont is started, the symbiont determines whether it is
controlling a printer or terminal. It communicates this information
to the job controller. If necessary, the job controller then changes the
type designation of the output execution queue.

b. When an output execution queue associated with a user-modified
or user-written symbiont is started, the symbiont has the option
of identifying the queue to the job controller as a server queue. If
the user-written or user-modified symbiont does not notify the job
controller that it wants to change the queue type designation, the

SYS-605

System Service Descriptions
$SN DJ BC

SVS-606

output execution queue retains the queue type designation it received
when it was created.

• Generic queue. A generic queue holds a job until an appropriate execution
queue becomes available to initiate the job; the job controller then requeues
the job to the available execution queue. In a VAX.cluster environment, a
generic queue can direct jobs to execution queues that are located on other
nodes in the VAX.cluster.

You create a generic queue by specifying the SJC$_GENERIC_QUEUE item
code in the call to the $SNDJBC service. You designate each execution queue
to which the generic queue can direct jobs by specifying the SJC$_GENERIC_
TARGET item code. Because a generic queue can direct jobs to more than one
execution queue, you can specify the SJC$_GENERIC_TARGET item code up
to 124 times in a single call to $SNDJBC to define a complete set of execution
queues for any generic queue. If you do not specify the SJC$_GENERIC_
TARGET item code, the generic queue directs jobs to any execution queue
that is the same type of queue as the generic queue; that is, a generic batch
queue will direct a job to any available batch execution queue, and so on.
There is one exception-a generic queue will not direct work to any execution
queue that was created in a call to $SNDJBC that specified the SJC$_NO_
GENERIC_SELECTION item code.

There are two types of generic queue:

Generic batch queue. A generic batch queue can direct jobs only to
batch execution queues. You create a generic batch queue by specifying
both the SJC$_GENERIC_QUEUE and SJC$_BATCH item codes in the
call to the $SNDJBC service.

Generic output queue. A generic output queue can direct jobs to any
of the three types of output execution queue: printer, terminal, or server.
Creating a generic output queue that directs jobs to any combination of
the three types of output execution queue is possible. Typically, however,
when you create a generic output queue, you specify a list of type-specific
target queues. This way, the generic output queue directs jobs to a
single type of output execution queue. Thus, you can control whether
the jobs submitted to the generic output execution queue are output on
a line printer or a terminal printer or are sent to a server symbiont for
processing. You create a generic output queue by specifying the SJC$_
GENERIC_ QUEUE item code in the call to the $SNDJBC service.

• Logical queue. A logical queue performs the same function as a generic
output queue, except that a logical queue can direct jobs to only a single
printer, terminal, or server execution queue. A logical queue is only an output
queue that has been assigned to transfer its jobs to one execution queue.

To change an output queue into a logical queue, you make a call to the
$SNDJBC service while the output queue is in a stopped state. The call
must specify the SJC$_ASSIGN_QUEUE function code and the SJC$_
DESTINATION_QUEUE item code. You use the SJC$_DESTINATION_
QUEUE item code to specify the execution queue to which the logical queue
should direct jobs. When the logical queue is started, it automatically
requeues its jobs to the specified execution queue as that execution queue
becomes available. You can change a logical queue back to its original output
queue definition by specifying the SJC$_DEASSIGN_QUEUE function code in
a subsequent call to the $SNDJBC service.

System Service Descriptions
$SN DJ BC

Queue Protection This section describes UIC-based protection checking that is
performed by the $SNDJBC service to control access to queues. As an alternative
to this form of protection checking, you can associate ACLs with queues using
the appropriate security services. For example, the $CHANGE_ACL service
allows you to create or modify ACL identifiers and their protection masks. For a
complete discussion of access control lists, see the chapter on security services in
the Introduction to VMS System Services.

There are two aspects to UIC-based queue protection:

• When you create a queue, you assign it a UIC by using the SJC$_ OWNER_
UIC item code. If you do not specify this item code, the queue is given the
default UIC [1,4].

• You can assign a queue a protection mask by specifying the SJC$_
PROTECTION item code. This protection mask specifies read, write, execute,
and delete access for the four categories of user: owner, group, world, and
system.

In addition, certain queue operations require the caller of $SNDJBC to have
certain privileges. The function codes that require privileges are listed in the
Privileges and Restrictions section.

When a job is submitted to a queue, it is assigned a UIC that is the same as the
UIC of the process submitting the job, unless the SJC$_UIC item code is specified
to supply a different UIC.

For each requested operation, the $SNDJBC service checks the UIC and
privileges of the requesting process against the UIC of the queue, protection
specified for the queue, and the privileges, if any, required for the operation. This
checking is performed in a way similar to the way that the file system checks
access to a file by comparing the owner UIC and protection of the file with the
UIC and privileges of the requester.

Operations that apply to jobs are checked against read and delete protection
specified for the queue in which the job is entered and the owner UIC of the job.
In general, read access to a job allows you to determine that the job exists; delete
access to a job allows you to affect the job.

Operations that apply to queues are checked against the write and execute
protection specified for the queue and the owner UIC of the queue. In general,
write access to a queue allows you to submit jobs to the queue; execute access to
a queue allows you to act as an operator for the queue, including the ability to
affect jobs in the queue, to affect accounting, and to alter queues. OPER privilege
grants execute access to all queues.

Privileges and Restrictions To specify the following function codes, the caller
must have both OPER and SYSNAM privilege:

SJC$_START_QUEUE_MANAGER
SJC$_STOP _QUEUE_MANAGER

To specify the following function codes, the caller must have OPER privilege:

SJC$_CREATE_QUEUE .
SJC$_DEFINE_CHARACTERISTIC
SJC$_DEFINE_FORM
SJC$_DELETE_CHARACTERISTIC

SYS-607

System Service Descriptions
$SN DJ BC

SYS-608

SJC$_DELETE_FORM
SJC$_START_ACCOUNTING
SJC$_STOP _ACCOUNTING

To specify the following function code, the caller can have OPER privilege or
execute access:

SJC$_DELETE_QUEUE

To specify the following function code, the caller must have OPER privilege,
execute access to the queue containing the specified job, or read access to the
specified job:

SJC$_SYNCHRONIZE_JOB

To specify the following function codes, the caller must have OPER privilege,
execute access to the specified queue, or write access to the specified queue:

SJC$_ADD_FILE
SJC$_CLOSE_DELETE
SJC$_CLOSE_JOB
SJC$_CREATE_JOB
SJC$_ENTER_FILE

To specify the following function codes, the caller must have OPER privilege or
execute access to the specified queue or queues:

SJC$_ALTER_QUEUE
SJC$_ASSIGN_QUEUE
SJC$_DEASSIGN_QUEUE
SJC$_DISABLE_AUTOSTART
SJC$_ENABLE_AUTOSTART
SJC$_MERGE_QUEUE
SJC$_PAUSE_QUEUE
SJC$_RESET_QUEUE
SJC$_START_QUEUE
SJC$_STOP _ALL_QUEUES_ON_NODE
SJC$_STOP _QUEUE

To specify the following function codes, the caller must have OPER privilege,
execute access to the queue containing the specified job, or delete access to the
specified job:

SJC$_ABORT_JOB
SJC$_ALTER_JOB
SJC$_DELETE_JOB

To specify the following function codes, no privilege is required:

SJC$_BATCH_CHECKPOINT
SJC$_ WRITE_ACCOUNTING

To specify a base priority (using the SJC$_BASE_PRIORITY item code) higher
than the base priority of the requesting process, the caller needs OPER or
ALTPRI privilege.

To specify a scheduling priority (using the SJC$_PRIORITY item code) higher
than the value of the SYSGEN parameter MAXQUEPRI, the caller needs OPER
or ALTPRI privilege.

System Service Descriptions
$SN DJ BC

To specify the following item codes, the caller must have OPER privilege:

SJC$_PROTECTION
SJC$_0WNER_UIC

To specify the following item codes, the caller must have CMKRNL privilege:

SJC$_ACCOUNT_NAME
SJC$_UIC
SJC$_USERNAME

Required Quota
To specify the astadr argument, the process must have sufficient ASTLM quota.

Related Services
$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI,
$GETDVIW, $GETMSG, $GETQUI, $GETQUIW, $INIT_VOL, $MOUNT,
$PUTMSG, $QIO, $QIOW, $SNDERR, $SNDJBCW, $SNDOPR

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_DEVOFFLINE

SS$_EXASTLM

SS$_ILLEFC

SS$_INSFMEM

SS$_IVLOGNAM

SS$_MBFULL

SS$_MBTOOSML

SS$_UNASEFC

The service completed successfully.

The item list or input buffer cannot be read by
the caller; or the return length buffer, output
buffer, or status block cannot be written by the
caller.

The function code is invalid; the item list
contains an invalid item code; a buffer descriptor
has an invalid length; or the reserved parameter
has a nonzero value.

The job controller process is not running.

You specified the astadr argument, and the
process has exceeded its ASTLM quota.

The efn argument specifies an illegal event flag
number.

Insufficient space exists for completing the
request.

Queue form or characteristic name is not a valid
logical name.

The job controller mailbox is full.

The mailbox message is too large for the job
controller mailbox.

The efn argument specifies an unassociated
event flag cluster.

SYS-609

System Service Descriptions
$SN DJ BC

Condition Values Returned in the 1/0 Status Block

SYS-610

JBC$_NORMAL

JBC$_AUTONOTSTART

JBC$_BUFTOOSMALL

JBC$_DELACCESS

JBC$_DUPCHARNAME

JBC$_DUPCHARNUM

JBC$_DUPFORM

JBC$_DUPFORMNAME

JBC$_EMPTY JOB

JBC$_EXECUTING

JBC$_INCDSTQUE

JBC$_INCFORMPAR

JBC$_INCOMPLETE

JBC$_INCQUETYP

JBC$_INTERNALERROR

The service completed successfully.

The queue is autostart active, but not started.
You have tried to start an autostart queue when
none of its available nodes has autostart enabled.

The request could not be completely satisfied due
to limited buffer size. The amount of information
retrieved in response to the query exceeds the
amount of data the queue manager can return in
response to a single request.

The file protection of the specified file, which was
entered with the delete option, does not allow
delete access to the caller.

The command specified a duplicate characteristic
name. Each characteristic must have a unique
name.

The command specified a duplicate characteristic
number. Each characteristic must have a unique
number.

The specified form number is invalid because it
is already defined; each form must have a unique
form number.

The command specified a duplicate form name.
Each form must have a unique name.

The open job cannot be closed because it contains
no files.

The parameters of the specified job cannot be
modified because the job is currently executing.

The type of the specified destination queue is
inconsistent with the requested operation.

The specified length, width, and margin
parameters are inconsistent; the value of the
difference between the top and bottom margin
parameters must be less than the form length,
and the difference between the left and right
margin parameters must be less than the line
width.

The requested queue management operation
cannot be executed because a previously
requested queue management operation has
not yet completed.

The type of the specified queue is inconsistent
with the requested operation.

An internal error caused loss of process status. A
system error prevented the queue manager from
obtaining the completion status of a process.

JBC$_INVCHANAM

JBC$_INVDSTQUE

JBC$_INVFORNAM

JBC$_1NVFUNCOD

JBC$_INVITMCOD

JBC$_INVPARLEN

JBC$_INVPARVAL

JBC$_INVQUENAM

JBC$_1TMREMOVED

JBC$_JOBNOTEXEC

JBC$_JOBQUEDIS

JBC$_JOBQUEENA

JBC$_MISREQPAR

JBC$_NOAUTOSTART

JBC$_NODSTQUE

JBC$_NOOPENJOB

JBC$_NOPRIV

JBC$_NOQUESPACE

JBC$_NORESTART

JBC$_NOSUCHCHAR

JBC$_NOSUCHENT

JBC$_NOSUCHFORM

JBC$_NOSUCHJOB

JBC$_NOSUCHNODE

JBC$_NOSUCHQUE

JBC$_NOTALLREQUE

JBC$_NOTASSIGN

System Service Descriptions
$SN DJ BC

A specified characteristic name is not
syntactically valid.

The destination queue name is not syntactically
valid.

The form name is not syntactically valid.

The specified function code is invalid.

The item list contains an invalid item code.

The length of a specified string is outside the
valid range for that item code.

A parameter value specified for an item code is
outside the valid range for that item code.

The queue name is not syntactically valid.

The meaningless items were removed from the
request. One or more item codes not meaningful
to this command were specified. The command is
processed and the meaningless items are ignored.

The specified job is not executing.

The request cannot be executed because the
system job queue manager has not been started.

The system job queue manager cannot be started
because it is already running.

An item code that is required for the specified
function code has not been specified.

The node does not have the autostart feature
enabled.

The specified destination queue does not exist.

The requesting process did not open a job with
the SJC$_CREATE_JOB function.

The queue protection denies access to the queue
for the specified operation.

The system job queue file was full and could not
be extended.

The specified job cannot be requeued because it
was not defined as restartable.

The specified characteristic does not exist.

There is no job with the specified entry number.

The specified form does not exist.

The specified job does not exist.

The specified node does not exist.

The specified queue does not exist.

Not all jobs in the source queue could be
requeued to the target queue. Some of the
jobs specified were not suitable for execution on
the specified target queue.

The specified queue cannot be deassigned
because it is not assigned.

SYS-611

System Service Descriptions
$SN DJ BC

Example

SYS-612

JBC$_NOTMEANINGFUL

JBC$_NOTSUPPORTED

JBC$_PRIOSMALL

JBC$_QMANNOTSTARTED

JBC$_QUEDISABLED

JBC$_QUENOTMOD

JBC$_QUENOTSTOP

JBC$_REFERENCED

JBC$_STARTED

JBC$_STKNOTCHANGE

The specified item code is no longer meaningful.

The specified item code or function code is not
supported.

The scheduling priority has a smaller value than
requested. A user without ALTPRI or OFER
privilege specified a value for a job's priority
that exceeded the queue's maximum priority for
nonprivileged jobs. The job is entered in the
queue, but its scheduling priority is lower than
the value requested by the user.

The queue manager could not be started.

The disabled queue cannot be modified, nor can
jobs be submitted to it.

The modifications were not made because the
queue was not stopped.

The specified queue cannot be deleted because it
is not in a stopped state.

The specified queue cannot be deleted because of
existing references by other queues or jobs.

The specified queue cannot be started because it
is already running.

The stock associated with a form cannot be
changed.

JBC$_TOOMUCHINFO The size of data in request exceeds system
constraints. The amount of data specified for a
record within the queue manager's database is
too large.

When you use the SJC$_SYNCHRONIZE_JOB function code, the return value is
the exit status of the specified job.

When you start a symbiont queue with the SJC$_START_QUEUE function code
or the SJC$_CREATE_QUEUE function code with the SJC$_CREATE_START
item code, any error encountered by the symbiont process will be returned in the
IOSB.

! Declare system service related symbols
INTEGER*4 SYS$SNDJBCW,
2 STATUS
INCLUDE I ($SJCDEF) I

! Define item list structure
STRUCTURE /ITMLST/

UNION
MAP

INTEGER*2 BUFLEN, ITMCOD
INTEGER*4 BUFADR, RETADR

END MAP
MAP

INTEGER*4 END_LIST
END MAP

END UNION
END STRUCTURE

System Service Descriptions
$SN DJ BC

! Define I/0 status block structure
STRUCTURE /IOSBLK/
INTEGER*4 STS, ZEROED
END STRUCTURE

! Declare $SNDJBCW item list and I/0 status block
RECORD /ITMLST/ SUBMIT_LIST(6)
RECORD /IOSBLK/ IOSB
! Declare variables used in $SNDJBCW item list
CHARACTER*9 QUEUE /'SYS$BATCH' I
CHARACTER*23 FILE_SPECIFICATION /'$DISK1: [COMMON] TEST.COM' I
CHARACTER*12 USERNAME /'PROJ3036 '/
INTEGER*4 ENTRY_NUMBER

! Initialize item list for the enter file operation
SUBMIT_LIST(l) .BUFLEN = 9
SUBMIT_LIST(l) .ITMCOD = SJC$_QUEUE
SUBMIT_LIST(l) .BUFADR = %LOC(QUEUE)
SUBMIT_LIST(l) .RETADR = 0
SUBMIT_LIST(2) .BUFLEN = 23
SUBMIT_LIST(2) .ITMCOD = SJC$_FILE_SPECIFICATION
SUBMIT_LIST(2) .BUFADR = %LOC(FILE_SPECIFICATION)
SUBMIT_LIST(2) .RETADR = 0
SUBMIT_LIST(3) .BUFLEN = 12
SUBMIT_LIST(3) .ITMCOD = SJC$_USERNAME
SUBMIT_LIST(3) .BUFADR = %LOC(USERNAME)
SUBMIT_LIST(3) .RETADR = 0
SUBMIT_LIST(4) .BUFLEN = 0
SUBMIT_LIST(4) .ITMCOD = SJC$_NO_LOG_SPECIFICATION
SUBMIT_LIST(4) .BUFADR = 0
SUBMIT_LIST(4) .RETADR = 0
SUBMIT_LIST(5) .BUFLEN = 4
SUBMIT_LIST(5) .ITMCOD = SJC$_ENTRY_NUMBER_OUTPUT
SUBMIT_LIST(5) .BUFADR = %LOC(ENTRY_NUMBER)
SUBMIT_LIST(5) .RETADR = 0
SUBMIT_LIST(6) .END_LIST = 0

! Call $SNDJBCW service to submit the batch job
STATUS SYS$SNDJBCW (,
2 %VAL(SJC$_ENTER_FILE) I I

2 SUBMIT_LIST,
2 IOSB, I)

IF (STATUS) STATUS = IOSB.STS
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
END

This FORTRAN program demonstrates the use of the $SNDJBCW service to
submit a batch job that is to execute on behalf of another user. No log file is
produced for the batch job. This program saves the job's entry number. You need
CMKRNL privilege to run this program.

SYS-613

System Service Descriptions
$SNDJBCW

$SNDJBCW-Send to Job Controller and Wait for Completion

Format

SYS-614

The Send to Job Controller and Wait for Completion and $GETQUI services
together provide the user interface to the Job Controller (JBC) facility. The
$SNDJBW service allows you to create, stop, and manage queues and the jobs in
those queues. Queues can be generic, batch, execution, or output queues. Jobs
can be batch or print jobs.

The $SNDJBCW service queues a request to the Job Controller. For most
operations, $SNDJBCW completes synchronously; that is, it returns to the
caller after the operation completes. However, if the requested operation is a
pause queue, stop queue, or abort job operation, $SNDJBCW returns to the caller
after queuing the request. There is no way to synchronize completion of these
operations. Also, $SNDJBCW does not wait for a job to complete before it returns
to the caller. To synchronize completion of a job, the caller must specify the
SJC$_SYNCHRONIZE_JOB function code.

The $SNDJBCW service is identical to the Send to Job Controller ($SNDJBC)
service except that $SNDJBC completes asynchronously; the $SNDJBC service
returns to the caller immediately after queuing the request, without waiting for
the operation to complete.

For additional information about $SNDJBCW, refer to the documentation of
$SNDJBC.

The $SNDJBC and $SNDJBCW services supersede the Send Message to
Symbiont Manager ($SNDSMB) and Send Message to Accounting Manager
($SNDACC) services. You should write new programs using $SNDJBC or
$SNDJBCW, instead of $SNDSMB or $SNDACC. You should convert old
programs using $SNDSMB or $SNDACC to use $SNDJBC or $SNDJBCW, as
convenient.

SYS$SNDJBCW [efn] ,func [,nullarg] [,itmlst] [,iosb] [,astadr] [,astprm]

System Service Descriptions
$SN DO PR

$SNDOPR-Send Message to Operator

Format

Returns

Arguments

Performs the following functions:

• Sends a user request to operator terminals

• Sends a user cancellation request to operator terminals

• Sends an operator reply to a user terminal

• Enables an operator terminal

• Displays the status of an operator terminal

• Initializes the operator log file

SYS$SNDOPR msgbuf ,[chan]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

msgbuf
VMS Usage:
type:
access:
mechanism:

char _string
character-coded text string
read only
by descriptor-fixed length string descriptor

User buffer specifying the operation to be performed and the information needed
to perform that operation. The msgbuf argument is the address of a character
string descriptor pointing to the buffer.

The format and contents of the buffer vary with the requested operation; however,
the first byte in any buffer is the request code, which specifies the operation to be
performed. The $0PCMSG macro defines the symbolic names for these request
codes. The following table shows each operation that $SNDOPR performs and the
request code that specifies that operation.

Request Code

OPC$_RQ_RQST

Corresponding Operation

Sends a user request to operator terminals. This request
code is used to make an operator request. If you specify
a reply to the request (by using the chan argument),
the operator request is kept active until the operator
responds.

SYS-615

System Service Descriptions
$SN DO PR

SYS-616

Request Code

OPC$_RQ_CANCEL

OPC$_RQ_REPLY

OPC$_RQ_TERME

OPC$_RQ_STATUS

OPC$_RQ_LOGI

Corresponding Operation

Sends a user cancellation request to specified operator
terminals. You use this request code to notify one or
more operators that a previous request is to be canceled.
To specify OPC$_RQ_CANCEL, you must also specify
the chan argument.

Sends an operator reply to a user who has made a
request. Operators use this request code to report the
status of a user request. The format of the message
buffer for this request is the format of the reply found in
the user's mailbox after the call to $SNDOPR completes.
All functions of $SNDOPR that deliver a reply to a
mailbox do so in the format described for this request
code.

Enables an operator terminal. You use this request to
enable a specified terminal to receive operator messages.

Reports the status of an operator terminal. Operators
use this request to display the operator classes for
which the specified terminal is enabled and a list of
outstanding requests.

Initializes the operator log file.

The following diagrams depict the message buffer for each of these request codes.
Each field within a diagram has a symbolic name, which serves to identify the
field; in other words, these names specify offsets into the message buffer. The
list following each diagram shows each field name and what its contents can or
should be. The $0PCDEF macro defines the field names, as well as any other
symbolic name that can be specified as the contents of a field.

Message Buffer Format for OPC$_RQ_RQST

31

OPC$B_MS_TYPE

7 0

OPC$B_MS_ TARGET 1 OPC$B_MS_ TYPE

OPC$L_MS_RQSTID

OPC$L_MS_ TEXT

ZK-1725-GE

This 1-byte field contains the request code
OPC$_RQ_RQST.

OPC$B_MS_TARGET

OPC$L_MS_RQSTID

OPC$L_MS_TEXT

System Service Descriptions
$SNDOPR

This 3-byte field contains a 24-bit bit vector that
specifies which operator terminal types are to receive
the request. The $0PCDEF macro defines symbolic
names for the operator terminal types. You construct
the bit vector by specifying the desired symbolic
names in a logical OR operation. Following is the
symbolic name of each operator terminal type:

OPC$M_NM_CARDS

OPC$M_NM_CENTRL

OPC$M_NM_CLUSTER

OPC$M_NM_DEVICE

OPC$M_NM_DISKS

OPC$M_NM_NTWORK

OPC$M_NM_ TAPES

OPC$M_NM_PRINT

OPC$M_NM_SECURITY

Card device operator

Central operator

VAXcluster operator

Device status
information

Disk operator

Network operator

Tape operator

Printer operator

Security operator

OPC$M_NM_OPER1 System-manager-
through defined operator
OPC$M_NM_OPER12 functions

This longword field contains a user-supplied longword
message code.

This variable-length field contains an ASCII string
specifying text to be sent to the specified operator
terminals. The length of the string must be in the
range 0 to 255 bytes.

Message Buffer Format for OPC$_RQ_CANCEL

31 7 0
OPC$B_MS_TARGET lOPC$B_MS_ TYPE

OPC$B_MS_TYPE

OPC$L_MS_RQSTID

ZK-1726-GE

This 1-byte field contains the request code
OPC$_RQ_CANCEL.

SYS-617

System Service Descriptions
$SN DO PR

OPC$B_MS_TARGET

OPC$L_MS_RQSTID

This 3-byte field contains a 24-bit bit vector that
specifies which operator terminal types are to receive
the cancellation request. The $0PCDEF macro
defines symbolic names for the operator terminal
types. You construct the bit vector by specifying the
desired symbolic names in a logical OR operation.
Following is the symbolic name of each operator
terminal type:

OPC$M,....NM_CARDS Card device operator

OPC$M_NM_CENTRL Central operator

OPC$M_NM_SECURITY Security operator

OPC$M_NM_CLUSTER VAXcluster operator

OPC$M_NM_DEVICE Device status
information

OPC$M_NM_DISKS

OPC$M_NM_NTWORK

OPC$M_NM_TAPES

OPC$M_NM_PRINT

Disk opera tor

Network operator

Tape operator

Printer operator

OPC$M_NM_OPER1 System-manager-
through defined operator
OPC$M_NM_ OPER12 functions

This longword field contains a user-supplied longword
message code.

Message Buffer Format for OPC$_RQ_REPLV

31 15 7 0
OPC$W_MS_STATUS J Reserved joPC$B_MS_ TYPE

OPC$L_MS_RPL YID

~ OPC$W_MS_OUNIT

OPC$T _MS_ONAME

T
OPC$L_MS_OTEXT

T
ZK-1727-GE

SYS-618

OPC$B_MS_TYPE

Reserved

OPC$W _MS_STATUS

OPC$L_MS_RPLYID

OPC$W _MS_OUNIT

OPC$T_MS_ONAME

OPC$L_MS_OTEXT

System Service Descriptions
$SNDOPR

This 1-byte field contains the request code
OPC$_RQ_REPLY.

This 1-byte field is reserved for future use.

This 2-byte field contains the low-order word of the
longword condition value that $SNDOPR returns in
the mailbox specified by the chan argument. You
can find a list of these longword condition values
under Condition Values Returned in the Mailbox. To
test the completion status, you need to extract the
low-order word from the longword condition value
and compare it to the contents of the OPC$W _MS_
STATUS field.

This 4-byte field contains a user-supplied message
code.

This 2-byte field contains the unit number of the
terminal to which the operator reply is to be sent.
To obtain the unit number of the terminal, you can
call $GETDVI, specifying the DVI$_FULLDEVNAM
item code. The information returned will consist of
the node name and device name as a padded string.
Because the unit number is found on the tail end of
the string, you must parse the string. One way to do
this is, starting from the tail end, to search for the
first alphabetic character; the digits to the right of
this alphabetic character constitute the unit number.
After extracting the unit number, count the
remaining characters in the string. Then, construct
a counted ASCII string and use this for the following
field, OPC$T_MS_ONAME.

This variable-length field contains a counted ASCII
string specifying the device name of the terminal that
is to receive the operator reply. The maximum total
length of the string is 14 bytes. See the preceding
field description (OPC$W _MS_OUNIT) to learn how
to obtain the device name.

This variable-length field contains an ASCII string
specifying operator-written text to be sent to the user
terminal. The length of the string must be in the
range 0 to 255 bytes. This field is optional.

SYS-619

System Service Descriptions
$SN DO PR

Message Buffer Format for OPC$_RQ_ TERME

31

T

OPC$B_MS_TYPE

OPC$B_MS_ENAB

OPC$B_MS_MASK

SYS-620

15 7 0
OPC$B_MS_ENAB loPC$B_MS_ TYPE

OPC$L_MS_MASK

~. OPC$W_MS_OUNIT

..
OPC$T _MS_ONAME

J
ZK-1728-GE

This 1-byte field contains the request code
OPC$_RQ_TERME.

This 3-byte field contains a user-supplied value. The
value 0 indicates that the specified terminal is to
be disabled for the specified operator classes. Any
nonzero value indicates that the specified terminal is
to be enabled for the specified operator classes.

This 4-byte field contains a 4-byte bit vector that
specifies which operator terminal types are to be
enabled or disabled for the specified terminal. The
$0PCDEF macro defines symbolic names for the
operator terminal types. You construct the bit vector
by specifying the desired symbolic names in a logical
OR operation. Following is the symbolic name of each
operator terminal type:

OPC$M_NM_CARDS

OPC$M_NM_CENTRL

OPC$M_NM_SECURITY

OPC$M_NM_CLUSTER

OPC$M_NM_DEVICE

OPC$M_NM_DISKS

OPC$M_NM_NTWORK

OPC$M_NM_TAPES

OPC$M_NM_PRINT

OPC$M_NM_OPER1
through
OPC$M_NM_OPER12

Card device operator

Central operator

Security operator

VAXcluster operator

Device status
information

Disk operator

Network operator

Tape operator

Printer operator

System-manager
defined operator
functions

OPC$W _MS_OUNIT

OPC$T_MS_ONAME

System Service Descriptions
$SNDOPR

This 2-byte field contains the unit number of the
operator terminal to be enabled or disabled for the
specified operator terminal types. To obtain the unit
number of the terminal, you can call $GETDVI,
specifying the DVI$_FULLDEVNAM item code. The
information returned will consist of the node name
and device name as a padded string. Because the
unit number is found on the tail end of the string,
you must parse the string. One way to do this is,
starting from the tail end, to search for the first
alphabetic character; the digits to the right of this
alphabetic character constitute the unit number.
After extracting the unit number, count the
remaining characters in the string. Then, construct
a counted ASCII string and use this for the following
field, OPC$T_MS_ONAME.

This variable-length field contains a counted ASCII
string specifying the device name of the operator
terminal to be enabled or disabled for the specified
operator terminal types. The maximum total length
of the string is 16 bytes. See the preceding field
description (0PC$W_MS_OUNIT) to learn how to
obtain the device name.

Message Buffer Format for OPC$_RQ_STATUS

31

OPC$B_MS_TYPE

Reserved

Reserved

15 7 0

Reserved l OPC$B_MS_ TYPE

Reserved

l OPC$W_MS_OUNIT

OPC$T _MS_ONAME

ZK-1729-GE

This 1-byte field contains the request code
OPC$_RQ_STATUS.

This 3-byte field is reserved for future use.

This 4-byte field is reserved for future use.

SYS-621

System Service Descriptions
$SN DO PR

OPC$W _MS_OUNIT

OPC$T_MS_ONAME

This 2-byte field contains the unit number of the
operator terminal whose status is to be requested. To
obtain the unit number of the terminal, you can call
$GETDVI, specifying the DVI$_FULLDEVNAM item
code. The information returned will consist of the node
name and device name as a padded string. Because the
unit number is found on the tail end of the string, you
must parse the string. One way to do this is, starting
from the tail end, to search for the first alphabetic
character; the digits to the right of this alphabetic
character constitute the unit number.
After extracting the unit number, count the remaining
characters in the string. Then, construct a counted
ASCII string and use this for the following field,
OPC$T_MS_ONAME.

This variable-length field contains a counted ASCII
string specifying the device name of the operator
terminal whose status is requested. The maximum
total length of the string is 14 bytes. See the preceding
field description (0PC$W _MS_OUNIT) to learn how to
obtain the device name.

Message Buffer Format for OPC$_RQ_LOGI

31

~

T

OPC$B_MS_TYPE

SYS-622

15 7 0

Reserved loPC$B_MS_ TYPE

OPC$W_MS_OUNIT

l OPC$L_MS_RQSTID

OPC$T _MS_ONAME

ZK-1730-GE

This 1-byte field contains the request code
OPC$_RQ_LOGI.

OPC$B_MS_TARGET

OPC$L_MS_RQSTID

OPC$W _MS_OUNIT

System Service Descriptions
$SNDOPR

This 3-byte field contains a 24-bit bit vector that
specifies which operator terminal types are to receive
the cancellation request. The $0PCDEF macro defines
symbolic names for the operator terminal types. You
construct the bit vector by specifying the desired
symbolic names in a logical OR operation. Following is
the symbolic name of each operator terminal type:

OPC$M_NM_CARDS Card device operator

OPC$M_NM_CENTRL Central operator

OPC$M_NM_SECURITY Security operator

OPC$M_NM_CLUSTER VAX.cluster operator

OPC$M_NM_DEVICE Device status
information

OPC$M_NM_DISKS

OPC$M_NM_NTWORK

OPC$M_NM_TAPES

OPC$M_NM_PRINT

OPC$M_NM_OPER1
through
OPC$M_NM_OPER12

Disk operator

Network operator

Tape operator

Printer operator

System-manager
defined operator
functions

This longword field contains a user-supplied value.
The value 0 specifies that the current operator log file
is to be closed and a new log file opened with all classes
enabled (OPC$B_MS_TARGET is ignored).
The value 1 specifies that the current operator log file
is to be closed but no new log file is to be opened.
The value 2 specifies that the classes in OPC$B_MS_
TARGET are added to the current operator log file
classes. A log file is opened if necessary.
The value 3 specifies that the operator classes in
OPCB_MS_TARGET are to be removed from the
operator log file classes. If all classes are removed, the
log file is closed.

This 2-byte field contains the unit number of the
operator terminal that is making the initialization
request. To obtain the unit number of the
terminal, you can call $GETDVI, specifying the
DVI$_FULLDEVNAM item code. The information
returned will consist of the node name and device
name as a padded string. Because the unit number
is found on the tail end of the string, you must parse
the string. One way to do this is, starting from the
tail end, to search for the first alphabetic character;
the digits to the right of this alphabetic character
constitute the unit number.

SYS-623

System Service Descriptions
$SN DO PR

Description

SYS-624

After extracting the unit number, count the remaining
characters in the string. Then, construct a counted
ASCII string and use this for the following field,
OPC$T_MS_ONAME.

OPC$T_MS_ONAME This variable-length field contains a counted ASCII
string specifying the device name of the operator
terminal that is making the initialization request. The
maximum total length of the string is 14 bytes. See
the preceding field description (OPC$W _MS_OUNIT)
to learn how to obtain the device name.

ch an
VMS Usage:
type:
access:
mechanism:

channel
word (unsigned)
read only
by value

Channel assigned to the mailbox to which the reply is to be sent. The chan
argument is a longword value containing the number of the channel. If you do
not specify chan or specify it as the value 0 (the default), no reply is sent.

If a reply from the operator is desired, you must specify the chan argument.

The $SNDOPR service performs the following functions:

• Sends a user request to operator terminals

• Sends a user cancellation request to operator terminals

• Sends an operator reply to a user terminal

• Enables an operator terminal

• Displays the status of an operator terminal

• Initializes the operator log file

This system service requires system dynamic memory.

The general procedure for using this service is as follows:

1. Construct the message buffer and place its final length in the first word of the
buffer descriptor.

2. Call the $SNDOPR service.

3. Check the condition value returned in RO to make sure the request was
successfully made.

4. Issue a read request to the mailbox specified, if any.

5. When the read operation completes, check the 2-byte condition value in the
OPC$W '-MS_STATUS field to make sure that the operation was performed
successfully.

The format of messages displayed on operator terminals follows.

%%%%%%%%%%% OPCOM dd-rnrnrn-yyyy hh:mm:ss.cc
message specific information

System Service Descriptions
$SNDOPR

The following example shows the message displayed on a terminal as a result of
a request to enable that terminal as an operator terminal.

%%%%%%%%%%% OPCOM 30-DEC-1990 13:44:40.37
Operator _NODE$LTA5: has been enabled, username HOEBLE

The following example shows the message displayed on an operator terminal as a
result of a request to display the status of that operator terminal.

%%%%%%%%%%% OPCOM 30-DEC-1990 12:11:10.48
Operator status for operator _NODE$0PAO:
CENTRAL, PRINTER, TAPES, DISKS, DEVICES, CARDS, CLUSTER, SECURITY,
OPERl, OPER2, OPER3, OPER4, OPER5, OPER6, OPER7, OPER8, OPER9,
OPERlO, OPERll, OPER12

The following example shows the message displayed on an operator terminal as a
result of a user request.

%%%%%%%%%%% OPCOM 30-DEC-1990 12:57:32~25

Request 1285, from user ROSS on NODE_NAME
Please mount device _NODE$DMAO:

Required Privileges
Depending on the operation, the calling process might need to have OPER
privilege to use $SNDOPR for the following functions:

• Enable a terminal as an operator's terminal.

• Reply to or cancel a user's request.

• Initialize the operator communication log file.

In addition, the operator must have SECURITY privilege, as well as OPER
privilege to affect security functions.

Required Quota
None

Related Services
$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI,
$GETDVIW, $GETMSG, $GETQUI, $GETQUIW, $INIT_ VOL, $MOUNT,
$PUTMSG, $QIO, $QIOW, $SNDERR, $SNDJBC, $SNDJBCW

Condition Values Returned

SS$_MBFULL

SS$_NORMAL

SS$_NOOPER

SS$_ACCVIO

SS$_BADPARAM

The mailbox used to support communication is
full. Retry at a later time.

The service completed successfully.

SS$_NOOPER is defined as a successful status
code. However, in this case, it indicates that the
Operator Communication Manager (OPCOM) is
not running; the message will not be sent.

The message buffer or buffer descriptor cannot
be read by the caller.

The specified message has a length of 0 or has
more than 986 bytes.

SYS-625

System Service Descriptions
$SN DO PR

SS$_DEVNOTMBX

SS$_INSFMEM

SS$_IVCHAN

SS$_NOPRIV

The channel specified is not assigned to a
mailbox.

The system dynamic memory is insufficient for
completing the service.

You specified an invalid channel number. An
invalid channel number is one that is 0 or a
number larger than the number of channels
available.

The process does not have the privilege to reply
to or cancel a user's request; the process does
not have read/write access to the specified
mailbox; or the channel was assigned from a
more privileged access mode.

Condition Values Returned in the Mailbox

Examples

SYS-626

OPC$_BLANKTAPE

OPC$_INITAPE

OPC$_NOPERATOR

OPC$_RQSTCMPLTE

OPC$_RQSTPEND

OPC$_RQSTABORT

OPC$_RQSTCAN

1. i ++

The service completed successfully; the operator
responded with the DCL command REPLY
/BLANK_ TAPE=n.

The service completed successfully; the operator
responded with the DCL command REPLY
/INITIALIZE_TAPE=n.

The service completed successfully; no operator
terminal was enabled to receive the message.

The service completed successfully; the operator
completed the request.

The service completed successfully; the operator
will perform the request when possible.

The operator could not satisfy the request.

The caller canceled the request.

; Build and send an operator request.

$dscdef
$opcdef

$opcmsg

Local storage and data

bufsiz = <opc$l_ms_text+120>

rqstprmpt:

rqst:

.ascid /Request> I

.word 0

.byte dsc$k_dtype_t

.byte dsc$k_class_d

.long 0

Define descriptor off sets
Define OPCOM message offsets
and codes
Define message type codes

Maximum request buffer size

Prompt for user request

User request text
(dynamic string)

msgdsc:

msgbuf:

rqstid:

i +

.long bufsiz

.address msgbuf

.blkb buf siz

.long 0

.page

. sbttl Main routine

Prompt user for request text.

Build the request message.

Send the request to the operator .

System Service Descriptions
$SN DO PR

Descriptor of request
message buffer

Request message buff er

User request ID number

. entry oprexample,Am<r2,r3,r4,r5,r6,r7,r8,r9,rl0,rll>
I

; Prompt user for request text.

movaq
movaq

prompt: pushaq
pushaq
calls
blbs
ret

10$: tstw
beql
I

rqstprmpt,r2
rqst,r3
(r2)
(r3)
#2,gAlib$get_input
r0,10$

dsc$w_length(r3)
prompt

; Build the request message.
I

movab
movb

insv

moval
incl
movl
pus hr
moves

popr
movaq

addw3

msgbuf ,r4
#opc$_rq_rqst,
opc$b_ms_type(r4)
#opc$m_nm_disks,
#0,-
#24,
opc$b_ms_target(r4)
rqstid,r5
(r5) ;
(r5) ,opc$l_ms_rqstid(r4);
#Am<r2,r3,r4,r5>
dsc$w_length(r3) ,-

@dsc$a_pointer(r3) ,
#0,-
#120 f -

opc$l_ms_text(r4)
#Am<r2,r3,r4,r5>
msgdsc,r6

#opc$l_ms_text,
dsc$w_length(r3) ,
dsc$w_length (r6)

Get address of prompt string
Get address of result buffer desc.
Prompt string
Result buffer
Get the request text
Branch if success
Return error status
Check for text
Branch if none - try again

Get address
Insert message type

Insert target mask (disks)
starting at bit 0
continue for 24 bits
into the TARGET field

Get address of request id
Set to next request number
Insert request number
Save registers
Copy request text

to message buffer

Fill with zeros
Truncate to 120 characters

Restore registers
Get address of

message descriptor
Calculate message length

Send the request to the operator.
I

$sndopr_s msgdsc

ret
.end oprexample

Send request
(no reply expected)

Return to caller

SYS-627

System Service Descriptions
$SNDOPR

SYS-628

This MACRO example allows you to build an operator request and send the
request to the operator.

2. IMPLICIT NONE

! Symbol definitions
INCLUDE I ($DVIDEF) I

INCLUDE I ($0PCDEF) I

! Structures for SNDOPR
STRUCTURE /MESSAGE/

UNION
MAP

BYTE TYPE,
2 ENABLE(3)

INTEGER*4 MASK
INTEGER*2 OUNIT
CHARACTER*14 ONAME

END MAP
MAP

CHARACTER*24 STRING
END MAP

END UNION
END STRUCTURE
RECORD /MESSAGE/ MSGBUF
! Length of MSGBUF.ONAME
INTEGER*4 ONAME_LEN

! Status and routines
INTEGER*4 STATUS,
2 LIB$GETDVI,
2 SYS$SNDOPR

Type
MSGBUF.TYPE = OPC$_RQ_TERME
! Enable
MSGBUF.ENABLE(l) = 1
! Operator type
MSGBUF.MASK = OPC$M_NM_OPER1
! Terminal unit number
STATUS = LIB$GETDVI (DVI$_UNIT,
2
2
2

I

I SYS$0UTPUT I I

MSGBUF. OUNIT I I)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Terminal name
STATUS = LIB$GETDVI (DVI$_FULLDEVNAM,
2 I

2 I SYS$0UTPUT' I I

2 MSGBUF . ONAME I

2 ONAME_LEN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Remove unit number from ONAME and set up counted string
ONAME_LEN = ONAME_LEN - 3
MSGBUF.ONAME(2:0NAME_LEN+l) = MSGBUF.ONAME(l:ONAME_LEN)
MSGBUF.ONAME(l:l) = CHAR(ONAME_LEN)
! Call $SNDOPR
STATUS= SYS$SNDOPR (MSGBUF.STRING,)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
END

This VAX FORTRAN program enables the current terminal to receive OPERl
operator messages.

System Service Descriptions
$START_ TRANS

$START_ TRANS-Start Transaction

Format

Returns

Arguments

Starts a transaction by allocating a transaction identifier (TID) and establishing
the internal structures that define a transaction.

SYS$START _TRANS [efn] ,[flags] ,iosb [,[astadr] ,[astprm] ,[tid] ,[timout] ,[acmode]]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values returned by this
service are listed in the Condition Values Returned section.

ef n
VMS Usage:
type:
access:
mechanism:

ef_number
longword (unsigned)
read only
by value

Number of the event flag to be set. The efn argument is a longword containing
this number; however, $START_ TRANS uses only the low-order byte. If you do
not specify efn, $START_TRANS uses the default value 0.

flags
VMS Usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Flags specifying options for $START_TRANS. The flags argument is a longword
bit mask that is the logical OR of each bit set, in which each bit corresponds to
an option.

The $DDTMDEF macro defines a symbolic name for each flag bit. Table SYS-16
describes each flag.

Table SYS-16 $START_TRANS Option Flags

Flag

DDTM$M_
NONDEFAULT

Description

Indicates that this transaction is not the process default
transaction.

(continued on next page)

SYS-629

System Service Descriptions
$START_ TRANS

SYS-630

Table SYS-16 (Cont.) $START_TRANS Option Flags

Flag Description

DDTM$M_SYNC Indicates successful synchronous completion by
returning SS$_SYNCH. When synchronous completion is
successful, the completion AST address is not called, the
IOSB is not written, and the event flag is not set.

DDTM$M_PROCESS Indicates that the transaction might survive image
rundown. Caller must be in supervisor, executive, or
kernel mode.

iosb
VMS Usage:
type:
access:
mechanism:

io_status_block
quadword (unsigned)
write only
by reference

I/O status block (IOSB) to receive the final completion status of the request. The
iosb argument is the address of the quadword I/O status block.

The following diagram shows the structure of the I/O status block.

31 15 0

Reserved by Digital I Condition Value

astadr
VMS Usage:
type:
access:
mechanism:

Reserved by Digital

ast_procedure
procedure entry mask
call without stack unwinding
by reference

ZK-1224A-GE

AST service routine to be executed. The astadr argument is the address of the
entry mask of this routine.

If you specify astadr, the AST routine executes at the same access mode as the
caller of the $START_ TRANS service.

Note that the completion AST will not be called if SS$_SYNCH is returned in RO.

astprm
VMS Usage:
type:
access:
mechanism:

user_arg
longword (unsigned)
read only
by value

AST parameter passed to the AST service routine specified by the astadr
argument. The astprm argument is a longword.

Description

tid
VMS Usage:
type:
access:
mechanism:

transaction_id
octaword (unsigned)
write only
by reference

Pointer to the transaction identifier (TID).

timout
VMS Usage:
type:
access:
mechanism:

date_time
quadword (unsigned)
read only
by reference

System Service Descriptions
$START_ TRANS

The time at which the transaction should be aborted if it has not yet committed.
A positive time value specifies an absolute time; a negative time value specifies
an offset (delta time) from the current time.

acmode
VMS Usage:
type:
access:
mechanism:

access_mode
longword (unsigned)
read only
by value

The least privileged access mode that can end the transaction using
$END_TRANS. The acmode defaults to the caller's mode and is maximized
against it.

The Start Transaction service starts a transaction and allocates a unique
transaction identifier (TID) for it.

The DECdtm services maintain a concept of a default transaction for each
process. When a transaction is started using $START_TRANS, and the
DDTM$M_NONDEFAULT flag is not set, that transaction is the process default
transaction. If you do not set the DDTM$M_NONDEFAULT flag and the process
already has a default transaction, an error is returned. However, it is possible
to start a nondefault transaction while the default transaction is in progress by
specifying the NONDEFAULT flag.

If the timout argument has been specified when calling the Start Transaction
service, then the transaction will be aborted if the transaction exceeds the
specified time.

Required Privileges
None

Required Quota
$START_ TRANS uses the job's buffered byte count quota limit (BYTLM) and AST
quota limit (ASTLM).

Related Services
$ABORT_TRANS, $END_TRANS

For more information, see the chapter on DECdtm services in the Introduction to
VMS System Services.

SYS-631

System Service Descriptions
$START_ TRANS

Condition Values Returned

SS$_NORMAL

SS$_SYNCH

SS$_ABORT

SS$_ACCVIO

SS$_ALRCURTID

SS$_BADPARAM

SS$_EXASTLM

SS$_EXQUOTA

SS$_ILLEFC

SS$_INSFMEM

The operation was successfully queued.

The synchronous operation completed
successfully.

The local node does not have a transaction log
file or DECdtm services are disabled on that
node.

An argument was not accessible by the caller.

An attempt was made to start a default
transaction when the process already had a
default transaction.

The option flags are invalid.

The process has exceeded its AST limit quota.

The process quota was exceeded.

The efn argument specifies an illegal flag
number.

There is insufficient system dynamic memory for
the operation.

Condition Values Returned in the 1/0 Status Block

SYS-632

Same as those returned in RO. A value of SS$_NORMAL returned in the I/O
status block indicates that the service completed successfully.

System Service Descriptions
$START_ TRANSW

$START_ TRANSW-Start Transaction and Wait

Format

Starts a transaction. It allocates a transaction identifier and establishes the
internal structures that define a transaction.

$START_TRANSW completes synchronously; that is, it returns to the caller after
the request has completed.

For asynchronous completion, you use the Start Transaction ($START_TRANS)
service; $START_TRANS returns without waiting for the operation to complete.

In all other respects, $START_TRANSW is identical to $START_TRANS. For all
other information about the $START_TRANSW service, refer to the section on
$START_TRANS.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service and to the Introduction to VMS System Services.

SYS$START _ TRANSW [efn] ,[flags] ,iosb [,[astadr] ,[astprm] ,[tid] ,[timout]
,[acmode]]

SYS-633

System Service Descriptions
$SUSPND

$SUSPND-Suspend Process

Format

Returns

Arguments

SYS-634

Allows a process to suspend itself or another process.

SYS$SUSPND [pidadr] ,[prcnam] ,[flags]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

pidadr
VMS Usage:
type:
access:
mechanism:

process_id
longword (unsigned)
modify
by reference

Process identification (PID) of the process to be suspended. The pidadr argument
is the address of the longword PID. The pidadr argument can refer to a process
running on the local node or a process running on another node in the cluster.

You must specify the pidadr argument to suspend a process whose UIC group
number is different from that of the calling process.

prcnam
VMS Usage:
type:
access:
mechanism:

process_name
character-coded text string
read only
by descriptor-fixed length string descriptor

Name of the process to be suspended. The prcnam argument is the address of
a character string descriptor pointing to the process name. A process running
on the local node can be identified with a 1- to 15-character string. To identify
a process on a particular node on a cluster, specify the full process name, which
includes the node name as well as the process name. The full process name can
contain up to 23 characters.

A process name is implicitly qualified by its UIC group number. Because of this,
you can use the prcnam argument only to suspend processes in the same UIC
group as the calling process.

To suspend processes in other groups, you must specify the pidadr argument.

Description

System Service Descriptions
$SUSPND

flags
VMS Usage:
type:
access:
mechanism:

mask_longword
longword (unsigned)
read only
by value

Longword of bit flags specifying options for the suspend operation. Currently, only
bit 0 is used for the flags argument. When bit 0 is set, the process is suspended
at kernel mode and ASTs are not deliverable to the process.

To request a kernel mode suspend, the caller must be in either kernel mode or
executive mode. The default (bit 0 is clear) is to suspend the process at supervisor
mode, where executive or kernel mode ASTs can be delivered to the process. If
executive or kernel mode ASTs have been delivered to a process suspended at
supervisor mode, that process will return to its suspended state after the AST
routine executes.

The Suspend Process service allows a process to suspend itself or another process.

A suspended process can receive executive or kernel mode ASTs, unless it is
suspended at kernel mode. If a process is suspended at kernel mode, the process
cannot receive any ASTs or otherwise be executed until another process resumes
or deletes it. If you specify neither the pidadr nor prcnam argument, the caller
process is suspended.

If the longword value at address pidadr is 0, the PID of the target process is
returned.

The $SUSPND service requires system dynamic memory.

The $SUSPND service completes successfully if the target process is already
suspended.

Unless it has pages locked in the balance set, a suspended process can be removed
from the balance set to allow other processes to execute.

Note that a kernel mode suspend request can override a supervisor mode suspend
state, but a supervisor suspend request cannot override a kernel mode suspend
state.

The Resume Process ($RESUME) service allows a suspended process to continue.
If one or more resume requests are issued for a process that is not suspended, a
subsequent suspend request completes immediately; that is, the process is not
suspended. No count is maintained of outstanding resume requests.

Required Privileges
Depending on the operation, the calling process may need one of the following
privileges to use $SUSPND:

• GROUP privilege to suspend another process in the same group, unless the
process to be suspended has the same UIC as the calling process

• WORLD privilege to suspend any other process in the system

Required Quota
None

SYS-635

System Service Descriptions
$SUSPND

Related Services
$CANEXH, $CREPRC, $DCLEXH, $DELPRC, $EXIT, $FORCEX, $GETJPI,
$GETJPIW, $HIBER, $PROCESS_SCAN, $RESUME, $SETPRI, $SETPRN,
$SETPRV, $SETRWM, $WAKE

Condition Values Returned

SYS-636

SS$_NORMAL

SS$_ACCVIO

SS$_INCOMPAT

SS$_INSFMEM

SS$_IVLOGNAM

SS$_NONEXPR

SS$_NOPRIV

SS$_NOSUCHNODE

SS$_REMRSRC

SS$_UNREACHABLE

The service completed successfully.

The process name string or string descriptor
cannot be read by the caller, or the process
identification cannot be written by the caller.

The remote node is running a version of VMS
that is incompatible.

The system dynamic memory is insufficient for
completing the service.

The specified process name has a length of 0 or
has more than 15 characters.

The specified process does not exist, or an invalid
process identification was specified.

The target process was not created by the caller
and the calling process does not have GROUP or
WORLD privilege.

The process name refers to a node that is not
currently recognized as part of the VAXcluster.

The remote node has insufficient resources to
respond to the request. (Bring this error to the
attention of your system manager.)

The remote node is a member of the cluster but
is not accepting requests. (This is normal for a
brief period early in the system boot process.)

System Service Descriptions
$SYNCH

$SYNCH-Synchronize

Format

Returns

Arguments

Description

Checks the completion status of a system service that completes asynchronously.

Refer to the Introduction to VMS System Services for a complete discussion of
system service completion.

SYS$SYNCH [efn] ,[iosb]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

ef n
VMS Usage:
type:
access:
mechanism:

ef_number
longword (unsigned)
read only
by value

Number of the event flag specified in the call to the system service whose
completion status is to be checked by $SYNCH. The efn argument is a longword
containing this number; however, $SYNCH uses only the low-order byte.

iosb
VMS Usage:
type:
access:
mechanism:

io_status_block
quadword (unsigned)
write only
by reference

I/O status block specified in the call to the system service whose completion
status is to be checked by $SYNCH. The iosb argument is the address of this
quadword I/O status block.

The Synchronize service checks the completion status of a system service that
completes asynchronously. The service whose completion status is to be checked
must have been called with the efn and iosb arguments specified, because the
$SYNCH service uses the event flag and I/O status block of the service to be
checked.

This service performs a true test for the completion of an asynchronous service,
such as $GETJPI. $SYNCH operates in the following way:

1. When called, $SYNCH waits (by calling $WAITFR) for the event flag to be
set.

SYS-637

System Service Descriptions
$SYNCH

2. When the event flag is set, $SYNCH checks to see whether the 1/0 status
block is nonzero. If it is nonzero, then the asynchronous service has
completed, and $SYNCH returns to the caller.

3. If the I/O status block is the value 0, then the asynchronous service has not
yet completed and the event flag was set by the completion of an event not
associated with the completion of $GETJPI. In this case, $SYNCH clears the
event flag (by calling $CLREF) and waits again (by calling $WAITFR) for the
event flag to be set, repeating this cycle until the I/O status block is nonzero.

The $SYNCH service always sets the specified event flag when it returns to the
caller. This ensures that different program segments can use the same event flag
without conflicting. For example, assume that calls to $GETJPI and $GETSYI
both specify the same event flag and that $SYNCH is called to check for the
completion of $GETJPI. If $GETSYI sets the event flag, $SYNCH clears the flag
and waits for $GETJPI to set it. When $GETJPI sets the :flag, $SYNCH returns
to the caller and sets the event flag. In this way, the flag set by $GETSYI is not
lost, and another call to $SYNCH will show the completion of $GETSYI.

The $SYNCH service is useful when a program calls an asynchronous service
but must perform some other work before testing for the completion of the
asynchronous service. In this case, the program should call $SYNCH at that
point when it must know that the service has completed and when it is willing to
wait for the service to actually complete.

When a program calls an asynchronous service (for example, $QIO) and actually
waits in line (by calling $WAITFR) for its completion without performing any
other work, you could improve that program by calling the synchronous form of
that service (for example, $QIOW). The synchronous services such as $QIOW
execute code that checks for the true completion status in the same way that
$SYNCH does.

Required Privileges
None

Required Quota
None

Condition Values Returned

SS$_NORMAL

SYS-638

The service completed successfully. The
asynchronous service has completed, and
the I/O status block contains the condition
value describing the completion status of the
asynchronous service.

System Service Descriptions
SYS$RMSRUNDWN

SYS$RMSRUNDWN-RMS Rundown

Format

Returns

Arguments

Closes all files opened by RMS for the image or process and halts 1/0 activity.
This routine performs a $CLOSE service for each file opened for processing.

SYS$RMSRUNDWN buf-addr, type-value

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

buf-addr
VMS Usage:
type:
access:
mechanism:

char _string
character-coded text string
write only
by descriptor

A descriptor pointing to a 22-byte buffer that is to receive the device identification
(16 bytes) and the file identification (6 bytes) of an improperly closed output file.
The buf-addr argument is the address of the descriptor that points to the buffer.

type-value
VMS Usage:
type:
access:
mechanism:

byte_unsigned
byte (unsigned)
read only
by value

A single byte code that specifies the type of 1/0 rundown to be performed. The
type-value argument is the actual value used.

This type of code has the following values and meanings.

0 Rundown of image and indirect 1/0 for process permanent files.

1 Rundown of image and process permanent files. The caller's mode must
not be user.

2 Abort RMS 1/0. The caller's mode must be either executive or kernel
(the system calls the 1/0 rundown control routine with this argument
for process deletion).

SYS-639

System Service Descriptions
SYS$RMSRUNDWN

Description

The RMS Rundown service closes all files opened by RMS for the image or
process and halts I/O activity. This routine performs a $CLOSE service for
each file opened· for processing. In addition to closing all files and terminating
I/O activity, the I/O rundown control routine releases all locks held on records
in shared files, clears buffers, and returns other resources allocated for file
processing. You should continue to call the rundown control routine until you
receive the success completion status code of RMS$_NORMAL.

Note that, prior to the execution of the $CLOSE service, the rundown control
routine cancels all outstanding file operations specified in a File Access Block
(FAB) or any QIO requests related to file operations (an Open, Create, or Extend
service, for example). It also cancels any read/write requests to nondisk devices
such as terminals or mailboxes prior to the execution of the $CLOSE service,
resulting in possible loss of data. All read/write requests of disk I/O buffers,
however, are allowed to complete, which guarantees that none of the data written
to disk files will be lost.

There is no predefined macro of the form $RMSRUNDWN_G or
$RMSRUNDWN_S to call this service.

Required Privileges
None

Required Quota
None

Related Services
$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI,
$GETDVIW, $GETMSG, $GETQUI, $GETQUIW, $INIT_ VOL, $MOUNT,
$PUTMSG, $QIO, $QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR,
$SETDDIR, $SETDFPROT

Condition Values Returned

SYS-640

RMS$_NORMAL

RMS$_CCF

RMS$_IAL

The service completed successfully.

The I/O rundown routine cannot close the file.

The argument list is invalid. An output file could
not be closed successfully, and the user buffer
could not be written.

System Service Descriptions
SYS$SETDDIR

SYS$SETDDIR-Set Default Directory

Format

Returns

Arguments

Allows you to read and change the default directory string for the process.

SYS$SETDDIR [new-dir-addr] ,[length-addr] ,[cur-dir-addr]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

new-dir-addr
VMS Usage:
type:
access:
mechanism:

char _string
character-coded text string
read only
by descriptor-fixed-length string descriptor

A descriptor of the new default directory. The new-dir-addr argument is the
address of the descriptor that points to the buffer containing the new directory
specification that RMS will use to set the new process-default directory. If the
default directory is not to be changed, the value of the new-dir-addr argument
should be 0.

length-addr
VMS Usage:
type:
access:
mechanism:

word_ unsigned
word (unsigned)
write only
by reference

A word that is to receive the length of the current default directory. The length
addr argument is the address of the word that will receive the length. If you do
not want this value returned, specify the value 0.

cur-dir-addr
VMS Usage:
type:
access:
mechanism:

char _string
character-coded text string
write only
·by descriptor-fixed-length string descriptor

A descriptor of a buffer that is to receive the current default directory string. The
cur-dir-addr argument is the address of the descriptor that points to the buffer
area that is to receive the current directory string.

SYS-641

System Service Descriptions
SVS$SETDDIR

Description

The Set Default Directory service allows you to read and change the default
directory string for the process. You should restore the old default directory
string to its original status unless you want the changed default directory string
to last beyond the exit of your image. The new directory name string is checked
for correct syntax.

There is no predefined macro of the form $SETDDIR_G or $SETDDIR_S to call
this service.

Required Privileges
None

Required Quota
None

Related Services
$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI,
$GETDVIW, $GETMSG, $GETQUI, $GETQUIW, $INIT_ VOL, $MOUNT,
$PUTMSG, $QIO, $QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SYS-642

RMS$_NORMAL

RMS$_DIR

RMS$_IAL

The service completed successfully.

The directory name contains an error.

The argument list is invalid.

System Service Descriptions
SVS$SETDFPROT

SYS$SETDFPROT-Set Default File Protection

Format

Returns

Arguments

Description

Allows you to read and write the default file protection for the process.

SYS$SETDFPROT [new-def-prot-addr,] [cur-def-prot-addr]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

new-def-prot-add r
VMS Usage:. file_protection
type: word (unsigned)
access: read only
mechanism: by reference

A word that specifies the new default file protection specification. The new
def-prot-addr argument is the address of the word that specifies the desired
protection. If you do not want the process-default file protection to be changed,
specify the value 0.

cur-def-prot-addr
VMS Usage: file_protection
type: word (unsigned)
access: write only
mechanism: by reference

A word that is to receive the current default file protection specification. The
cur-def-prot-addr argument is the address of the word that receives the current
process-default protection. If you do not want the current default file protection,
specify the value 0.

The Set Default File Protection service allows you to read and write the default
file protection for the process. You should restore the old default file protection
specification unless you want the changed default to last beyond the exit of your
image.

There is no predefined macro of the form $SETDEFPROT_G or
$SETDEFPROT_S to call this service.

Required Privileges

None

SYS-643

System Service Descriptions
SYS$SETDFPROT

Required Quota
None

Related Services
$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI,
$GETDVIW, $GETMSG, $GETQUI, $GETQUIW, $INIT_ VOL, $MOUNT,
$PUTMSG, $QIO, $QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SYS-644

RMS$_NORMAL
RMS$_IAL

The service completed successfully.

The argument list is invalid.

System Service Descriptions
$TRNLNM

$TRNLNM-Translate Logical Name

Format

Returns

Arguments

Returns information about a logical name.

SYS$TRNLNM [attr] ,tabnam ,lognam ,[acmode] ,[itmlst]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

attr
VMS Usage:
type:
access:
mechanism:

mask_longword
longword (unsigned)
read only
by reference

Attributes controlling the search for the logical name. The attr argument is the
address of a longword bit mask specifying these attributes. Only bit 0 is used for
this argument.

Each bit in the longword corresponds to an attribute and has a symbolic name.
The $LNMDEF macro defines these symbolic names. To specify an attribute, use
its symbolic name or set its corresponding bit. All undefined bits in the longword
have the value 0.

If you do not specify this argument or specify it as the value 0 (no bits set), the
following attribute is not used.

Attribute Description

LNM$M_CASE_BLIND If set, $TRNLNM does not distinguish between
uppercase and lowercase letters in the logical name
to be translated.

tabnam
VMS Usage:
type:
access:
mechanism:

logical_name
character-coded text string
read only
by descriptor-fixed length string descriptor

Name of the table or name of a list of table names in which to search for the
logical name. The tabnam argument is the address of a descriptor pointing to
this name. This argument is required.

SYS-645

System Service Descriptions
$TRNLNM

SYS-646

If the table name is not the name of a logical name table, it is assumed to be a
logical name and is translated iteratively until either the name of a logical name
table is found or the number of translations allowed by the system have been
performed. If the table name translates to a list of logical name tables, the tables
are searched in the specified order.

lognam
VMS Usage:
type:
access:
mechanism:

logical_name
character-coded text string
read only
by descriptor-fixed length string descriptor

Logical name about which information is to be returned. The lognam argument
is the address of a descriptor pointing to the logical name string. This argument
is required.

acmode
VMS Usage:
type:
access:
mechanism:

access_mode
byte (unsigned)
read only
by reference

Access mode to be used in the translation. The acmode argument is the address
of a byte specifying the access mode. The $PSLDEF macro defines symbolic
names for the four access modes.

When you specify the acmode argument, $TRNLNM ignores all names (both
logical names and table names) at access modes less privileged than the specified
access mode. The specified access mode is not checked against that of the caller.

If you do not specify acmode, $TRNLNM performs the translation without regard
to access mode; however, the translation process proceeds from the outermost to
the innermost access modes. Thus, if two logical names with the same name but
at different access modes exist in the same table, $TRNLNM translates the name
with the outermost access mode.

itmlst
VMS Usage: item_list_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list describing the information that $TRNLNM is to return. The itmlst
argument is the address of a list of item descriptors, each of which specifies or
controls an item of information to be returned. The list of item descriptors is
terminated by a longword of 0.

The following diagram depicts a single item descriptor.

31

Item Code

15

l
Buffer Address

System Service Descriptions
$TRNLNM

0

Buffer Length

Return Length Address

ZK-1705-GE

Item Descriptor Fields

buffer length

Item Codes

A word specifying the number of bytes in the buffer pointed to by the buffer
address field.

item code
A word containing a symbolic code describing the nature of the information in the
buffer or to be returned to the buffer pointed to by the buffer address field.

buffer address
A longword containing the address of the buffer that specifies or receives the
information.

return length address
A longword containing the address of a word that specifies the actual length in
bytes of the information returned by $TRNLNM in the buffer pointed to by the
buffer address field.

LNM$_ACMODE
When you specify LNM$_ACMODE, $TRNLNM returns the access mode that was
associated with the logical name at the time of its creation. The buffer address
field in the item descriptor is the address of a byte in which $TRNLNM writes
the access mode.

LNM$_ATTRIBUTES
When you specify LNM$_ATTRIBUTES, $TRNLNM returns the attributes of
the logical name and the equivalence name associated with the current LNM$_
INDEX value.

The buffer address field of the item descriptor points to a longword bit mask
wherein each bit corresponds to an attribute. The $TRNLNM service sets the
corresponding bit for each attribute possessed by either the logical name or the
equivalence name.

The $LNMDEF macro defines the following symbolic names for these attributes.

SYS-647

System Service Descriptions
$TRNLNM

SYS-648

Attribute

LNM$M_CONCEALED

LNM$M_ CONFINE

LNM$M_CRELOG

LNM$M_EXISTS

LNM$M_NO_ALIAS

LNM$M_TABLE

LNM$M_TERMINAL

LNM$_CHAIN

Description

If $TRNLNM sets this bit, the equivalence name
at the current index value for the logical name is a
concealed logical name, as interpreted by RMS.

If $TRNLNM sets this bit, the logical name is
not copied from a process to any of its spawned
subprocesses. The DCL command SPAWN creates
subprocesses.

If $TRNLNM sets this bit, the logical name was
created using the $CRELOG system service.

If $TRNLNM sets this bit, an equivalence name with
the specified index does exist.

If $TRNLNM sets this bit, the name of the logical
name cannot be given to another logical name defined
in the same table at an outer access mode.

If $TRNLNM sets this bit, the logical name is the
name of a logical name table.

If $TRNLNM sets this bit, the equivalence name
for the logical name cannot be subjected to further
(recursive) logical name translation.

When you specify LNM$_CHAIN, $TRNLNM processes another item list
immediately following the current item list. The LNM$_CHAIN item code
must be the last one in the current item list. The buffer address field of the
item descriptor points to the next item list.

LNM$_1NDEX
When you specify LNM$_INDEX, $TRNLNM searches for an equivalence
name that has the specified index value. The buffer address field of the item
descriptor points to a longword containing a user-specified integer in the range 0
to 127.

If you do not specify this item code, the implied value of LNM$_INDEX is 0 and
$TRNLNM returns information about the equivalence name at index 0.

Because a logical name can have more than one equivalence name and each
equivalence name is identified by an index value, you should specify the LNM$_
INDEX item code first in the item list, before specifying LNM$_STRING, LNM$_
LENGTH, or LNM$_ATTRIBUTES. These item codes return information about
the equivalence name identified by the current index value, LNM$_INDEX.

LNM$_LENGTH
When you specify LNM$_LENGTH, $TRNLNM returns the length of the
equivalence name string corresponding to the current LNM$_INDEX value.
The buffer address field in the item descriptor is the address of the longword in
which $TRNLNM writes this length.

If an equivalence name does not exist at the current LNM$_INDEX value,
$TRNLNM returns the value 0 to the longword pointed to by the return length
field of the item descriptor.

Description

LNM$_MAX_INDEX

System Service Descriptions
$TRNLNM

Each equivalence name for the logical name has an index associated with it.
When you specify LNM$_MAX_INDEX, $TRNLNM returns a value equal to
the largest equivalence name index. The buffer address field in the item
descriptor is the address of a longword in which $TRNLNM writes this value. If
no equivalence names (and, therefore, no index values) exist, $TRNLNM returns
a value of -1.

LNM$_STRING
When you specify LNM$_STRING, $TRNLNM returns the equivalence name
string corresponding to the current LNM$_INDEX value. The buffer address
field of the item descriptor points to a buffer containing this string. The return
length address field of the item descriptor contains an address of a word
that contains the length of this string in bytes. The maximum length of the
equivalence name string is 255 characters.

If an equivalence name does not exist at the current LNM$_INDEX value,
$TRNLNM returns the value 0 in the return length address field of the item
descriptor.

LNM$_TABLE
When you specify LNM$_TABLE, $TRNLNM returns the name of the table
containing the logical name being translated. The buffer address field of the
item descriptor points to the buffer in which $TRNLNM returns this name. The
return length address field of the item descriptor specifies the address of a
word in which $TRNLNM writes the size of the table name. The maximum
length of the table name is 31 characters.

The Translate Logical Name service returns information about a logical name.
You need read access to a shareable logical name table to translate a logical name
located in that shareable logical name table.

Required Privileges
None

Required Quota
None

Related Services
$ADJSTK, $ADJWSL, $CRETVA, $CRMPSC, $DELTVA, $DGBLSC, $EXPREG,
$LCKPAG, $LKWSET, $MGBLSC, $PURGWS, $SETPRT, $SETSTK, $SETSWM,
$ULWSET, $UPDSEC, $UPDSECW

Condition Values Returned

SS$_ACCVIO

SS$_BADPARAM

The service cannot access the location or
locations specified by one or more arguments.

One or more arguments have an invalid value, or
a logical name table name or logical name was
not specified.

SYS-649

System Service Descriptions
$TRNLNM

SS$_BUFFEROVF

SS$_IVLOGNAM

SS$_IVLOGTAB

SS$_NOLOGNAM

SS$_NOPRIV

SS$_NORMAL

SS$_TOOMANYLNAM

SVS-650

The service completed successfully. The buffer
length field in an item descriptor specified an
insufficient value, so the buffer was not large
enough to hold the requested data.

The tabnam argument or lognam argument
specifies a string whose length is not in the
required range of 1 through 255 characters.

The tabnam argument does not specify a logical
name table.

The logical name was not found in the specified
logical name table or tables.

The caller lacks the necessary privilege to access
the specified name.

The service completed successfully. An
equivalence name for the logical name has been
found.

Logical name translation of the table name
exceeded the allowable depth (10 translations).

System Service Descriptions
$ULKPAG

$ULKPAG-Unlock Pages from Memory

Format

Returns

Arguments

Unlocks pages that were previously locked in memory by the Lock Pages in
Memory ($LCKPAG) service. Locked pages are automatically unlocked and
deleted at image exit.

SYS$ULKPAG inadr ,[retadr] ,[acmode]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

inadr
VMS Usage:
type:
access:
mechanism:

address_range
longword (unsigned)
read only
by reference

Starting and ending virtual addresses of the pages to be unlocked. The inadr
argument is the address of a 2-longword array containing, in order, the starting
and ending process virtual addresses. Only the virtual page number portion of
each virtual address is used; the low-order nine bits are ignored. If the starting
and ending virtual addresses are the same, a single page is unlocked.

If more than one page is being unlocked and you need to determine specifically
which pages had been previously unlocked, you should unlock the pages one at
a time, that is, one page per call to $ULWSET. The condition value returned by
$ULWSET indicates whether the page was previously unlocked.

retadr
VMS Usage:
type:
access:
mechanism:

address_range
longword (unsigned)
write only
by reference-array reference or descriptor

Starting and ending process virtual addresses of the pages actually unlocked by
$ULKPAG. The retadr argument is the address of a 2-longword array containing,
in order, the starting and ending process virtual addresses.

If an error occurs while multiple pages are being unlocked, retadr specifies those
pages that were successfully unlocked before the error occurred. If no pages were
successfully unlocked, both longwords in the retadr array contain the value -1.

SYS-651

System Service Descriptions
$ULKPAG

Description

acmode
VMS Usage:
type:
access:
mechanism:

access_mode
longword (unsigned)
read only
by value

Access mode on behalf of which the request is being made. The acmode
argument is a longword containing the access mode. The $PSLDEF macro
defines the symbols for the four access modes.

The most privileged access mode used is the access mode of the caller. To unlock
any specified page, the resultant access mode must be equal to or more privileged
than the access mode of the owner of that page.

The Unlock Pages from Memory service unlocks pages that were previously
locked in memory by the Lock Pages in Memory ($LCKPAG) service. Locked
pages are automatically unlocked and deleted at image exit.

Required Privileges
To call the $ULKPAG service, a process must have PSWAPM privilege.

Required Quota
None

Related Services
For more information, see the chapter on memory management in the
Introduction to VMS System Services.

Condition Values Returned

SS$_WASCLR

SS$_WASSET

SS$_ACCVIO

SYS-652

The service completed successfully. At least one
of the specified pages was previously unlocked.

The service completed successfully. All of the
specified pages were previously locked.

The input array cannot be read by the caller; the
output array cannot be written by the caller; or a
page in the specified range is inaccessible or does
not exist.

System Service Descriptions
$ULWSET

$ULWSET-Unlock Pages from Working Set

Format

Returns

Arguments

Unlocks pages that were previously locked in the working set by the Lock Pages
in Working Set ($LKWSET) service.

SYS$ULWSET inadr ,[retadr] ,[acmode]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

inadr
VMS Usage:
type:
access:
mechanism:

address_range
longword (unsigned)
read only
by reference-array reference or descriptor

Starting and ending virtual addresses of the pages to be unlocked. The inadr
argument is the address of a 2-longword array containing, in order, the starting
and ending process virtual addresses. Only the virtual page number portion of
each virtual address is used; the low-order nine bits are ignored. If the starting
and ending virtual address are the same, a single page is unlocked.

If more than one page is being unlocked and you need to determine specifically
which pages had been previously unlocked, you should unlock the pages one at
a time, that is, one page per call to $ULWSET. The condition value returned by
$ULWSET indicates whether the page was previously unlocked.

retadr
VMS Usage:
type:
access:
mechanism:

address_range
longword (unsigned)
write only
by reference-array reference or descriptor

Starting and ending process virtual addresses of the pages that were actually
unlocked by $CRMPSC. The retadr argument is the address of a 2-longword
array containing, in order, the starting and ending process virtual addresses.

If an error occurs while multiple pages are being unlocked, retadr specifies those
pages that were successfully unlocked before the error occurred. If no pages were
successfully unlocked, both longwords in the retadr array contain the value -1.

SYS-653

System Service Descriptions
$ULWSET

Description

acmode
VMS Usage:
type:
access:
mechanism:

access_mode
longword (unsigned)
read only
by value

Access mode on behalf of which the request is being made. The acmode
argument is a longword containing the access mode. The $PSLDEF macro
defines the symbols for the four access modes.

The most privileged access mode used is the access mode of the caller. To unlock
any specified page, the resultant access mode must be equal to or more privileged
than the access mode of the owner of that page.

The Unlock Pages from Working Set service unlocks pages that were previously
locked in the working set by the Lock Pages in Working Set ($LKWSET) service.
Unlocked pages become candidates for replacement within the working set of the
process.

Required Privileges
None

Required Quota
None

Related Services
$ADJSTK, $ADJWSL, $CRETVA, $CRMPSC, $DELTVA, $DGBLSC, $EXPREG,
$LCKPAG, $LKWSET, $MGBLSC, $PURGWS, $SETPRT, $SETSTK, $SETSWM,
$ULKPAG, $UPDSEC, $UPDSECW

Condition Values Returned

SS$_WASCLR

SS$_WASSET

SS$_ACCVIO

SS$_NOPRIV

SYS-654

The service completed successfully. At least one
of the specified pages was previously unlocked.

The service completed successfully. All of the
specified pages were previously locked in the
working set.

The inadr argument cannot be read by the
caller; the retadr argument cannot be written
by the caller; or a page in the specified range is
inaccessible or does not exist.

A page in the specified range is in the system
address space.

System Service Descriptions
$UNWIND

$UNWIND-Unwind Call Stack

Format

Returns

Arguments

Unwinds the procedure call stack.

SYS$UNWIND [depadr] ,[newpc]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

depadr
VMS Usage:
type:
access:
mechanism:

longword_ unsigned
longword (unsigned)
read only
by reference

Depth to which the procedure call stack is to be unwound. The depadr argument
is the address of a longword value. The value 0 specifies the call frame of the
procedure which was executing when the condition occurred (that is, no call
frames are unwound); the value 1 specifies the caller of that frame; the value 2
specifies the caller of the caller of that frame, and so on.

If depadr specifies the value 0, no unwind occurs and $UNWIND returns a
successful condition value in RO.

If you do not specify depadr, $UNWIND unwinds the stack to the call frame of
the procedure that called the procedure which established the condition handler
that is calling the $UNWIND service. This is the default and the normal method
of unwinding the procedure call stack.

newpc
VMS Usage:
type:
access:
mechanism:

address
longword (unsigned)
read only
by value

New value for the program counter (PC); this value replaces the current value
of the PC in the call frame of the procedure that receives control when the
unwinding operation is complete. The newpc argument is a longword value
containing the address at which execution is to resume.

Execution resumes at this address when the unwinding operation is complete.

If you do not specify newpc, execution resumes at the location specified by the
PC in the call frame of the procedure that receives control when the unwinding
operation is complete.

SYS-655

System Service Descriptions
$UNWIND

Description

The Unwind Call Stack service unwinds the procedure call stack; that is,
it removes a specified number of call frames from the stack. Optionally, it
can return control to a new program counter (PC) unwinding the stack. The
·$UNWIND service is intended to be called from within a condition-handling
routine.

The actual unwind is not performed immediately. Rather, the return addresses
in the call stack are modified so that, when the condition handler returns, the
unwind procedure is called from each frame being unwound.

During the actual unwinding of the call stack, $UNWIND examines each frame
in the call stack to see if a condition handler has been declared. If a handler
has been declared, $UNWIND calls the handler with the condition value 88$_
UNWIND (indicating that the call stack is being unwound) in the condition
name argument of the signal array. When you call a condition handler with
this condition value, that handler can perform any procedure-specific cleanup
operations that might be required. After the condition handler returns, the call
frame is removed from the stack.

Required Privileges
None

Required Quota
None

Related Services
$DCLCMH, $SETEXV, $SETSFM

Condition Values Returned

SYS-656

SS$_NORMAL

SS$_ACCVIO

SS$_INSFRAME

SS$_NOSIGNAL

SS$_UNWINDING

The service completed successfully.

The call stack is not accessible to the caller.
This condition is detected when the call stack is
scanned to modify the return address.

There are insufficient call frames to unwind to
the specified depth.

No signal is currently active for an exception
condition.

An unwind operation is already in progress.

System Service Descriptions
$UPDSEC

$UPDSEC-Update Section File on Disk

Format

Returns

Arguments

Writes all modified pages in an active private or global section back into the
section file on disk. One or more I/O requests are queued, based on the number
of pages that have been modified.

SYS$UPDSEC inadr ,[retadr] ,[acmode] ,[updflg] ,[efn] ,[iosb] ,[astadr] ,[astprm]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

inadr
VMS Usage:
type:
access:
mechanism:

address_range
longword (unsigned)
read only
by reference-array reference or descriptor

Starting and ending virtual addresses of the pages that are to be written to the
section file if they have been modified. The inadr argument is the address of a
2-longword array containing, in order, the starting and ending process virtual
addresses. Only the virtual page number portion of each virtual address is used;
the low-order nine bi ts are ignored.

$UPDSEC scans pages starting at the address contained in the first longword
specified by inadr and ending at the address contained in the second longword.
Within this range, $UPDSEC locates read/write pages that have been modified
and writes them (contiguously, if possible) to the section file on disk. Unmodified
pages are also written to disk if they share the same cluster with modified pages.

If the starting and ending virtual addresses are the same, a single page is written
to the section file if the page has been modified.

The address specified by the second longword might be smaller than the address
specified by the first longword.

retadr
VMS Usage:
type:
access:
mechanism:

address_range
longword (unsigned)
write only
by reference-array reference or descriptor

Addresses of the first and last pages that were actually queued for writing, in the
first $QIO request, back to the section file on disk. The retadr argument is the
address of a 2-longword array containing, in order, the addresses of the first and
last pages.

SYS-657

System Service Descriptions
$UPDSEC

SYS-658

If $UPDSEC returns an error condition value in RO, each longword specified by
retadr contains the value -1. In this case, an event flag is not set, no AST is
delivered, and the I/O status block is not written to.

acmode
VMS Usage:
type:
access:
mechanism:

access_mode
longword (unsigned)
read only
by value

Access mode on behalf of which the service is performed. The acmode argument
is a longword containing the access mode. The $PSLDEF macro defines the
symbols for the four access modes.

The most privileged access mode used is the access mode of the caller. A page
cannot be written to disk unless the access mode used by $UPDSEC is equal to or
more privileged than the access mode of the owner of the page to be written.

updflg
VMS Usage:
type:
access:
mechanism:

longword_ unsigned
longword (unsigned)
read only
by value

Update specifier for read/write global sections. The updflg argument is a
longword value. The value 0 (the default) specifies that all read/write pages in
the global section are to be written to the section file on disk, whether they have
been modified or not. The value 1 specifies that (1) the caller is the only process
actually writing the global section, and (2) only those pages that were actually
modified by the caller are to be written to the section file on disk.

ef n
VMS Usage:
type:
access:
mechanism:

ef_number
longword (unsigned)
read only
by value

Event flag to be set when the section file on disk is actually updated. The
efn argument is a longword specifying the number of the event flag; however,
$UPDSEC uses only the low-order byte.

If you do not specify efn, event flag 0 is used.

When you invoke $UPDSEC, the specified event flag or event flag 0 is cleared;
when the update operation is complete, the event flag is set.

iosb
VMS Usage:
type:
access:
mechanism:

io_status_block
quadword (unsigned)
write only
by reference

I/O status block to receive the final completion status of the updating operation.
The iosb argument is the address of the quadword I/O status block.

System Service Descriptions
$UPDSEC

When you invoke $UPDSEC, the I/O status block is cleared. After the update
operation is complete, that is, when all I/Oto the disk is complete, the I/O status
block is written as follows:

• The first word contains the condition value returned by $QIO, indicating the
final completion status.

• The first bit in the second word is set only if an error occurred during the I/O
operation and the error was a hardware write error.

• The second longword contains the virtual address of the first page that was
not written.

Though this argument is optional, Digital strongly recommends that you specify
it, for the following reasons:

• If you are using an event flag to signal the completion of the service, you can
test the I/O status block for a condition value to be sure that the event flag
was not set by an event other than service completion.

• If you are using $SYNCH to synchronize completion of the service, the I/O
status block is a required argument for $SYNCH.

• The condition value returned in RO and the condition value returned in the
I/O status block provide information about different aspects of the call to
$UPDSEC. The condition value returned in RO gives you information about
the success or failure of the service call itself; the condition value returned in
the I/O status block gives you information about the success or failure of the
service operation. Therefore, to accurately assess the success or failure of the
call to $UPDSEC, you must check the condition values returned in both RO
and the I/O status block.

astadr
VMS Usage:
type:
access:
mechanism:

ast_procedure
procedure entry mask
call without stack unwinding
by reference-procedure reference or descriptor

AST routine to be executed when the section file has been updated. The astadr
argument is the address of the entry mask of this routine.

If you specify astadr, the AST routine executes at the access mode from which
the section file update was requested.

astprm
VMS Usage:
type:
access:
mechanism:

user_arg
longword (unsigned)
read only
by value

AST parameter to be passed to the AST routine. The astprm argument is this
longword parameter.

SYS-659

System Service Descriptions
$UPDSEC

Description

The Update Section File on Disk service writes all modified pages in an active
private or global section back into the section file on disk. One or more I/O
requests are queued, based on the number of pages that have been modified.

Proper use of this service requires the caller to synchronize completion of the
update request. You do this by first checking the condition value returned in RO
by $UPDSEC. If SS$_NOTMODIFIED is returned, the caller can continue. If
SS$_NORMAL is returned, the caller should wait for the I/Oto complete and
then check the first word of the I/O status block for the final completion status.
You can use the Synchronize ($SYNCH) service to determine whether the I/O
operation has actually completed.

For a global section located in memory shared by multiple processors, only
processes running on the processor that created the section can specify that
global section in a call to $UPDSEC. Processes on another processor that attempt
to update the section file receive an error condition value indicating that the
request was not performed.

Required Privileges
None

Required Quota
$UPDSEC uses the calling process's direct I/O limit (DIRIO) quota in queuing the
I/O request and uses the calling process's AST limit (ASTLM) quota if the astadr
argument is specified.

Related Services
$ADJSTK, $ADJWSL, $CRETVA, $CRMPSC, $DELTVA, $DGBLSC, $EXPREG,
$LCKPAG, $LKWSET, $MGBLSC, $PURGWS, $SETPRT, $SETSTK, $SETSWM,
$ULKPAG, $ULWSET, $UPDSECW

Condition Values Returned

SYS-660

SS$_NORMAL

SS$_NOTMODIFIED

SS$_ACCVIO

SS$_EXQUOTA

SS$_ILLEFC

SS$_IVSECFLG

SS$_NOTCREATOR

SS$_NOPRIV

The service completed successfully. One or more
I/O requests were queued.

The service completed successfully. No pages in
the input address range were section pages that
had been modified. No I/O requests were queued.

The input address array cannot be read by the
caller, or the output address array cannot be
written by the caller.

The process has exceeded its AST limit quota.

You specified an illegal event flag number.

You specified an invalid flag.

The section is in memory shared by multiple
processors and was created by a process on
another processor.

A page in the specified range is in the system
address space.

SS$_PAGOWNVIO

SS$_SHMNOTCNCT

SS$_UNASCEFC

System Service Descriptions
$UPDSEC

A page in the specified range is owned by an
access mode more privileged than the access
mode of the caller.

The shared memory named in the name
argument is not known to the system. This
error can be caused by a spelling error in the
string, an improperly assigned logical name, or
the failure to identify the multiport memory as
shared at system generation time.

The process is not associated with the cluster
containing the specified event flag.

SYS-661

System Service Descriptions
$UPDSECW

$UPDSECW-Update Section File on Disk and Wait

Format

SYS-662

The Update Section File on Disk and Wait service writes all modified pages in an
active private or global section back into the section file on disk. One or more I/O
requests are queued, based on the number of pages that have been modified.

The $UPDSECW service completes synchronously; that is, it returns to the caller
after writing all updated pages.

For asynchronous completion, you use the Update Section File on Disk
($UPDSEC) service; $UPDSEC returns to the caller after queuing the update
request, without waiting for the pages to be updated.

In all other respects, $UPDSECW is identical to $UPDSEC. For all other
information about the $UPDSECW service, refer to the documentation of
$UPDSEC.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service and to the Introduction to VMS System Services.

SYS$UPDSECW inadr [,retadr] [,acmode] [,updflg] [,efn] [,iosb] [,astadr] [,astprm]

System Service Descriptions
$WAITFR

$WAITFR-Wait for Single Event Flag

Format

Returns

Argument

Description

Tests a specific event flag and returns immediately if the flag is set. Otherwise,
the process is placed in a wait state until the event flag is set.

SYS$WAITFR efn

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

ef n
VMS Usage:
type:
access:
mechanism:

ef_number
longword (unsigned)
read only
by value

Number of the event flag for which to wait. The efn argument is a longword
containing this number; however, $WAITFR uses only the low-order byte.

The Wait for Single Event Flag service tests a specific event flag and returns
immediately if the flag is set. Otherwise, the process is placed in a wait
state until the event flag is set. The wait state caused by this service can be
interrupted by an asynchronous system trap (AST) if (1) the access mode at
which the AST executes is equal to or more privileged than the access mode from
which the $WAITFR service was issued and (2) the process is enabled for ASTs
at that access mode.

When a wait state is interrupted by an AST and after the AST service routine
completes execution, the VMS operating system repeats the $WAITFR request
on behalf of the process. At this point, if the event flag has been set, the process
resumes execution.

Required Privileges
None

Required Quota
None

Related Services
$ASCEFC, $CLREF, $DACEFC, $DLCEFC, $READEF, $SETEF, $WFLAND,
$WFLOR

SYS-663

System Service Descriptions
$WAITFR

Condition Values Returned

SYS-664

SS$_NORMAL

SS$_ILLEFC

SS$_UNASEFC

The service completed successfully.

You specified an illegal event flag number.

The process is not associated with the cluster
containing the specified event flag.

System Service Descriptions
$WAKE

$WAKE-Wake Process from Hibernation

Format

Returns

Arguments

Activates a process that has placed itself in a state of hibernation with the
Hibernate ($HIBER) service.

SYS$WAKE [pidadr] ,[prcnam]

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

pidadr
VMS Usage:
type:
access:
mechanism:

process_id
longword (unsigned)
modify
by reference

Process identification (PID) of the process to be activated. The pidadr argument
is the address of a longword containing the PID. The pidadr argument can refer
to a process running on the local node or a process running on another node in
the cluster.

prcnam
VMS Usage:
type:
access:
mechanism:

process_name
character-coded text string
read only
by descriptor-fixed length string descriptor

Process name of the process to be activated. The prcnam argument is the
address of a character string descriptor pointing to the process name. A process
running on the local node can be identified with a 1- to 15-character string. To
identify a process on a particular node on a cluster, specify the full process name,
which includes the node name as well as the process name. The full process name
can contain up to 23 characters.

The process name is implicitly qualified by the UIC group number of the calling
process. For this reason, you can use the prcnam argument only if the process
to be activated is in the same UIC group as the calling process. To activate a
process in another UIC group, you must specify the pidadr argument.

SYS-665

System Service Descriptions
$WAKE

Description

The Wake Process from Hibernation service activates a process that has placed
itself in a state of hibernation with the Hibernate ($HIBER) service. If you
specify neither the pidadr nor the prcnam argument, the wake request is issued
for the calling process.

If the longword at address pidadr is the value 0, the PID of the target process is
returned.

If one or more wake requests are issued for a process not currently hibernating,
a subsequent hibernate request completes immediately; that is, the process does
not hibernate. No count is maintained of outstanding wakeup requests.

You can also activate a hibernating process with the Schedule Wakeup
($SCHDWK) service.

Required Privileges
Depending on the operation, the calling process may need one of the following
privileges to use $WAKE:

• GROUP privilege to wake another process in the same group, unless the
process has the same UIC as the calling process

• WORLD privilege to wake any other process in the system

Required Quota
None

Related Services
$CANEXH, $CREPRC, $DCLEXH, $DELPRC, $EXIT, $FORCEX, $GETJPI,
$GETJPIW, $HIBER, $PROCESS_SCAN, $RESUME, $SETPRI, $SETPRN,
$SETPRV, $SETRWM, $SUSPND

Condition Values Returned

SYS-666

SS$_NORMAL

SS$_ACCVIO

SS$_INCOMPAT

SS$_IVLOGNAM

SS$_NONEXPR

SS$_NOPRIV

SS$_NOSUCHNODE

The service completed successfully.

The process name string or string descriptor
cannot be read by the caller, or the process
identification cannot be written by the caller.

The remote node is running a version of VMS
that is incompatible.

The specified process name string has a length of
0 or has more than 15 characters.

The specified process does not exist, or you
specified an invalid process identification.

The process does not have the privilege to wake
the specified process.

The process name refers to a node that is not
currently recognized as part of the VAXcluster.

SS$_REMRSRC

SS$_UNREACHABLE

System Service Descriptions
$WAKE

The remote node has insufficient resources to
respond to the request. (Bring this error to the
attention of your system manager.)

The remote node is a member of the cluster but
is not accepting requests. (This is normal for a
brief period early in the system boot process.)

SYS-667

System Service Descriptions
$WFLAND

$WFLAND-Wait for Logical AND of Event Flags

Format

Returns

Arguments

Description

SYS-668

Allows a process to specify a set of event flags for which it wants to wait.

SYS$WFLAND efn ,mask

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

ef n
VMS Usage:
type:
access:
mechanism:

ef_number
longword (unsigned)
read only
by value

Number of any event flag within the event flag cluster to be used. The efn
argument is a longword containing this number; however, $WFLAND uses only
the low-order byte. Specifying the number of an event flag within the cluster
serves to identify the event flag cluster.

There are two local event flag clusters: cluster 0 and cluster 1. Cluster 0 contains
event flag numbers 0 to 31, and cluster 1 contains event flag numbers 32 to 63.

There are two common event flag clusters: cluster 2 and cluster 3. Cluster 2
·contains event flag numbers 64 to 95, and cluster 3 contains event flag numbers
96 to 127.

mask
VMS Usage:
type:
access:
mechanism:

mask_longword
longword (unsigned)
read only
by value

Event flags for which the process is to wait. The mask argument is a longword
bit vector wherein a bit, when set, selects the corresponding event flag for which
to wait.

The Wait for Logical AND of Event Flags service allows a process to specify a set
of event flags for which it wants to wait. The process is put in a wait state until
all specified event flags are set, at which time $WFLAND returns to the caller
and execution resumes.

System Service Descriptions
$WFLAND

The wait state caused by this service can be interrupted by an asynchronous
system trap (AST) if (1) the access mode at which the AST executes is equal to
or more privileged than the access mode from which the $WAITFR service was
issued and (2) the process is enabled for ASTs at that access mode.

When a wait state is interrupted by an AST and after the AST service routine
completes execution, the VMS operating system repeats the $WFLAND request
on behalf of the process. At this point, if all the specified event flags have been
set, the process resumes execution.

Required Privileges
None

Required Quota
None

Related Services
$ASCEFC, $CLREF, $DACEFC, $DLCEFC, $READEF, $SETEF, $WAITFR,
$WFLOR

Condition Values Returned

SS$_NORMAL

SS$_ILLEFC

SS$_UNASEFC

The service completed successfully.

You specified an illegal event flag number.

The process is not associated with the cluster
containing the specified event flag.

SYS-669

System Service Descriptions
$WFLOR

$WFLOR-Wait for Logical OR of Event Flags

Format

Returns

Arguments

Description

SYS-670

Allows a process to specify a set of event flags for which it wants to wait.

SYS$WFLOR efn ,mask

VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

ef n
VMS Usage:
type:
access:
mechanism:

ef_number
longword (unsigned)
read only
by value

Number of any event flag within the event flag cluster to be used. The efn
argument is a longword containing this number; however, $WFLOR uses only the
low-order byte. Specifying the number of an event flag within the cluster serves
to identify the event flag cluster.

There are two local event flag clusters: cluster 0 and cluster 1. Cluster 0 contains
event flag numbers 0 to 31, and cluster 1 contains event flag numbers 32 to 63.

There are two common event flag clusters: cluster 2 and cluster 3. Cluster 2
contains event flag numbers 64 to 95, and cluster 3 contains event flag numbers
96 to 127.

mask
VMS.Usage:
type:
access:
mechanism:

mask_longword
longword (unsigned)
read only
by value

Event flags for which the process is to wait. The mask argument is a longword
bit vector wherein a bit, when set, selects the corresponding event flag for which
to wait.

The Wait for Logical OR of Event Flags service allows a process to specify a set
of event flags for which it wants to wait. The process is put in a wait state until
any one of the specified event flags is set, at which time $WFLOR returns to the
caller and execution resumes.

System Service Descriptions
$WFLOR

The wait state caused by this service can be interrupted by an asynchronous
system trap (AST) if (1) the access mode at which the AST executes is equal to
or more privileged than the access mode from which the $WFLOR service was
issued and (2) the process is enabled for ASTs at that access mode.

When a wait state is interrupted by an AST and after the AST service routine
completes execution, the VMS operating system repeats the $WFLOR request on
behalf of the process. At this point, if any of the specified event flags has been
set, the process resumes execution.

Required Privileges
None

Required Quota
None

Related Services
$ASCEFC, $CLREF, $DACEFC, $DLCEFC, $READEF, $SETEF, $WAITFR,
$WFLAND

Condition Values Returned

SS$_NORMAL

SS$_ILLEFC

SS$_UNASEFC

The service completed successfully.

You specified an illegal event flag number.

The process is not associated with the cluster
containing the specified event flag.

SYS-671

A
Obsolete Services

The following table lists the obsolete system services and the current services
that have replaced them. For descriptions of the obsolete services, see the VMS
Obsolete Features Manual.

Obsolete Service

$BRDCST

$CNTREG

$CRELOG

$DELLOG

$GETCHN

$GETDEV

$INPUT

$OUTPUT

$SETSFM

$SETSSF

$SNDACC

$SNDSMB

$TRNLOG

Current Service

$BRKTHRU, $BRKTHRUW

$DELTVA

$CRELNM

$DELLNM

$GETDVI, $GETDVIW

$GETDVI, $GETDVIW

$QIO, $QIOW

$QIO, $QIOW

This service is still supported but its use is discouraged

This service is still supported but its use is discouraged

$SNDJBC, $SNDJBCW

$SNDJBC, $SNDJBCW

$TRNLNM

A-1

A
Aborting a transaction, SYS-3, SYS-5, SYS-7
Abort reason codes, SYS-4, SYS-5, SYS-197
Absolute time

as input to SYS$BINTIM, SYS-37
converting to numeric, SYS-455

Access mode
changing to executive, SYS-75
changing to kernel, SYS-77

Accounting message
format of, SYS-108

$ADJSTK, SYS-14
$ADJWSL, SYS-17
Allocation class, SYS-270
ASCII string

converting to binary, SYS-36
AST (asynchronous system trap)

declaring, SYS-133
disabling, SYS-512
enabling, SYS-512
setting for power recovery, SYS-522
setting timer for, SYS-519

ASTLM (AST limit) quota
effect of canceling wakeup on, SYS-54

Asynchronous system trap
See AST

Attribute

B

enumerating, SYS-173
modifying, SYS-176
reading, SYS-178
testing for one, SYS-181

Binary value
converting to ASCII string, SYS-221

Buffer
$GETJPI

using for multiple requests for information,
SYS-463

BYTLM quota
using with $GETJPI buffers, SYS-463

c
Call frame

removing from stack, SYS-655
Call stack

removing frame from, SYS-655
Change mode handler

declaring, SYS-135
Channel

assigning I/O, SYS-31
canceling I/O, SYS-48

Characteristic
getting information about

asynchronously, SYS-323
synchronously, SYS-365

Index

Committing a transaction, SYS-196, SYS-198,
SYS-201

Compatibility mode handler
declaring, SYS-135

Condition value, SYS-191
Control region

adding page to, SYS-218
deleting page from, SYS-147

Converting audit event message, SYS-262
Create and Map Section, SYS-117
$CREATE_RDB, SYS-79
$CRETVA, SYS-114

See also $EXPREG
$CRMPSC, SYS-117

D
$DCLAST, SYS-133
DECdns name

converting, SYS-176, SYS-178, SYS-180
converting full name, SYS-176

DECdns object
creating, SYS-171
deleting, SYS-172
enumerating, SYS-17 4

DECdns string name
converting to opaque, SYS-1 78

Default form, SYS-581
Delta time

as input to SYS$BINTIM, SYS-37
converting to numeric, SYS-455

lndex-1

$DELTVA, SYS-14 7
Detached process, SYS-111
Device

allocating, SYS-19
deallocating, SYS-129
dual-pathed, SYS-270
getting information about

asynchronously, SYS-266
synchronously, SYS-285

lock name, SYS-274
scanning of across the cluster, SYS-154
served, SYS-278

$DGBLSC, SYS-158
Directive

SYS$FAO, SYS-223
Directory in DNS

enumerating, SYS-173
Disk

initializing from within a program, SYS-407
$DNS function code, SYS-170

converting from opaque, SYS-176
converting opaque name, SYS-180
converting string name, SYS-178
creating an object, SYS-171
deleting an object, SYS-172
enumerating attributes, SYS-173
enumerating child directories, SYS-173
enumerating objects, SYS-174
enumerating soft links, SYS-17 5
modifying attribute, SYS-176
reading attribute, SYS-178
resolving soft link, SYS-180
testing a group, SYS-182
testing for attribute, SYS-181

$DNS system service, SYS-167
arguments, SYS-167
building item list, SYS-168
description, SYS-190
format, SYS-167, SYS-190
function codes, SYS-167
item code identifiers, SYS-190
qualifying status, SYS-169
returns, SYS-167
status block, SYS-167

$DNSW system service, SYS-195

E
Enumerate call

attributes, SYS-173
directories, SYS-173
objects, SYS-174
soft links, SYS-175

Equivalence name
specifying, SYS-81

Error logger
sending message to, SYS-556

Event flag, SYS-167

lndex-2

Event flag (Cont.)
clearing, SYS-74
getting current status, SYS-489
setting, SYS-514
waiting for entire set of, SYS-668
waiting for one of set, SYS-670
waiting for setting of, SYS-663

Event flag cluster
associating with a process, SYS-22
deleting, SYS-165
disassociating, SYS-127
getting current status, SYS-489

Exception vector
setting, SYS-515

Executive mode
changing to, SYS-75

Exit handler
canceling, SYS-50
control block, SYS-137

deleting, SYS-50
declaring, SYS-137

$EXPREG, SYS-218

F
File

getting information about
asynchronously, SYS-323
synchronously, SYS-365

File specification
parsing components of, SYS-236
searching string for, SYS-236

Form
getting information about

asynchronously, SYS-323
synchronously, SYS-365

Full name

G

converting to opaque, SYS-178
converting to string, SYS-176

$GETDVI, SYS-266
$GETQUI function codes, SYS-326
Global section

H

creating, SYS-117
deleting, SYS-158
mapping, SYS-117, SYS-425

Hashing passwords, SYS-399
Host, SYS-270

I/O channel
assigning, SYS-31
deassigning, SYS-131

I/O device
getting information about

asynchronously, SYS-266
synchronously, SYS-285

I/O request
canceling on channel, SYS-48
queuing

asynchronously, SYS-483
synchronously, SYS-488

Image exit, SYS-217
Image rundown

forcing, SYS-249
Initializing a volume

from within a program, SYS-407

J
Job

getting information about
asynchronously, SYS-286, SYS-323
synchronously, SYS-305, SYS-365

Job controller

K

major interface
asynchronous, SYS-558
synchronous, SYS-614

Kernel mode
changing to, SYS-77

L
$LCKPAG, SYS-420
$LKWSET, SYS-422
Lock

getting information about
asynchronously, SYS-306
synchronously, SYS-318

Lock database
in a VAXcluster, SYS-315

Lock request
dequeuing, SYS-149
queuing

asynchronously, SYS-202
synchronously, SYS-213

Lock status block, SYS-204
Lock value block, SYS-204
Logical name

creating, SYS-81
deleting, SYS-139
getting information about, SYS-645

Logical name (Cont.)
translating, SYS-645

Logical name table
creating, SYS-87
deleting, SYS-139

M
Magnetic tape

initializing from within a program, SYS-407
Mailbox

assigning channel to, SYS-93
creating, SYS-93
deleting

permanent, SYS-96, SYS-142
temporary, SYS-96

Memory
locking page into, SYS-420
unlocking page from, SYS-651

Message
formatting and outputting, SYS-4 75
obtaining text of, SYS-319
sending to error logger, SYS-556
sending to operator, SYS-615
writing to terminal, SYS-39, SYS-47

Messages
converting security message from binary to

ASCII, SYS-262
filtering sensitive information, SYS-262

Message symbol, SYS-480
$MGBLSC, SYS-425

0
Opaque name

converting to string, SYS-176, SYS-180
Operator

sending message, SYS-615
Output

formatting character string, SYS-221

p
Page

locking into memory, SYS-420
locking into working set, SYS-422
removing from working set, SYS-4 73
setting protection, SYS-529
unlocking from memory, SYS-651
unlocking from working set, SYS-653

Participant, SYS-198
Participant in a transaction, SYS-5
Password

return hash value, SYS-399
PID

using-1 wildcard as pidadr with $GETJPI,
SYS-286

lndex-3

PID (Cont.)
using with $GETJPI to return information

about a process, SYS-286
Power recovery

setting AST for, SYS-522
Priority

setting, SYS-524
Privilege

setting for process, SYS-533
Process

creating, SYS-100
deleting, SYS-144
getting information about

asynchronously, SYS-286
synchronously, SYS-305

hibernating, SYS-402
locating a subset of, SYS-460
resuming after suspension, SYS-500
scanning across the cluster, SYS-460
scheduling wakeup for, SYS-509
setting name of, SYS-527
setting priority of, SYS-524
setting privilege, SYS-533
setting swap mode for, SYS-542
suspending, SYS-634
waiting for entire set of event flags, SYS-668
waiting for event flag to be set, SYS-663
waiting for one of set of event flags, SYS-670
waking, SYS-665

Process index number, SYS-298
Process name

specifying processes by, SYS-466
specifying processes with node name, SYS-465

Process quota
symbolic names for (PQL$_xxxx), SYS-103

Process search, SYS-460
$PROCESS_SCAN, SYS-460

controlling selection information for $GETJPI,
SYS-462

item descriptor
buffer length, SYS-460
format, SYS-460

using item-specific flags, SYS-462
Program region

adding page to, SYS-218
deleting page from, SYS-14 7

Protection
queues, SYS-607
setting for page, SYS-529

$PURGWS, SYS-4 73
See also $ADJWSL

lndex-4

Q
Queues

R

creating and managing
asynchronously, SYS-558
synchronously, SYS-614

getting information about
asynchronously, SYS-323
synchronously, SYS-365

protection, SYS-607
types of, SYS-604

Remote node
establishing logical link with, SYS-31

Resource wait mode
setting, SYS-538

s
Section

creating, SYS-117
deleting global, SYS-158
mapping, SYS-117
writing modifications to disk, SYS-657,

SYS-662
Section file

updating, SYS-657, SYS-662
Security

converting message from binary to ASCII,
SYS-262

filtering sensitive message information,
SYS-262

hashing passwords, SYS-399
$SETAST, SYS-512
$SETPRA, SYS-522
$SETPRT, SYS-529
$SETSTK, SYS-540
$SETSWM, SYS-542
Simple name

converting to opaque, SYS-178
$SNDJBC, SYS-558
Soft link

enumerating, SYS-175
locating target, SYS-180

Stack limit
changing size of, SYS-540

Stack pointer
adjusting, SYS-14

Starting a transaction, SYS-629, SYS-631,
SYS-633

String
formatting output, SYS-221
searching for file specification in, SYS-236

Subprocess, SYS-111
SYS$ABORT_TRANS, SYS-3

SYS$ABORT_TRANSW, SYS-7
SYS$ADD_HOLDER, SYS-8
SYS$ADD_IDENT, SYS-11
SYS$ALLOC, SYS-19
SYS$ASCEFC, SYS-22
SYS$ASCTIM, SYS-26
SYS$ASCTOID, SYS-29
SYS$ASSIGN, SYS-31
SYS$BINTIM, SYS-36
SYS$BRKTHRU, SYS-39
SYS$BRKTHRUW, SYS-4 7
SYS$CANCEL, SYS-48
SYS$CANEXH, SYS-50
SYS$CANTIM, SYS-51
SYS$CANWAK, SYS-53
SYS$CHANGE_ACL, SYS-56
SYS$CHECK_ACCESS, SYS-62
SYS$CHKPRO, SYS-67
SYS$CLREF, SYS-7 4
SYS$CMEXEC, SYS-75
SYS$CMKRNL, SYS-77
SYS$CRELNM, SYS-81
SYS$CRELNT, SYS-87
SYS$CREMBX, SYS-93
SYS$CREPRC, SYS-100
SYS$DACEFC, SYS-127
SYS$DALLOC, SYS-129
SYS$DASSGN, SYS-131
SYS$DCLCMH, SYS-135
SYS$DCLEXH, SYS-137
SYS$DELLNM, SYS-139
SYS$DELMBX, SYS-142
SYS$DELPRC, SYS-144
SYS$DEQ, SYS-149
SYS$DEVICE_SCAN, SYS-154
SYS$DISMOU, SYS-161
SYS$DLCEFC, SYS-165
SYS$DNS system service

See $DNS system service
SYS$END_TRANS, SYS-196
SYS$END_TRANSW, SYS-201
SYS$ENQ, SYS-202
SYS$ENQW, SYS-213
SYS$ERAPAT, SYS-214
SYS$EXIT, SYS-217

issuing for specified process, SYS-249
SYS$FAO, SYS-221

directive
format of, SYS-223
list of, SYS-224

example, SYS-228, SYS-229
SYS$FAOL, SYS-221

example, SYS-231 ·
SYS$FILESCAN, SYS-236
SYS$FIND_HELD, SYS-241
SYS$FIND_HOLDER, SYS-244
SYS$FINISH_RDB, SYS-24 7
SYS$FORCEX, SYS-249

SYS$FORCEX (Cont.)
See also SYS$DELPRC

SYS$FORMAT_ACL, SYS-252
SYS$FORMAT_AUDIT, SYS-262
SYS$GETDVIW, SYS-285
SYS$GETJPI, SYS-286

example, SYS-303
SYS$GETJPIW, SYS-305
SYS$GETLKI, SYS-306
SYS$GETLKIW, SYS-318
SYS$GETMSG, SYS-319
SYS$GETQUI, SYS-323
SYS$GETQUIW, SYS-365
SYS$GETSYI, SYS-366
SYS$GETSYIW, SYS-381
SYS$GETTIM, SYS-382
SYS$GETUAI, SYS-383
SYS$GRANTID, SYS-395
SYS$HASH_PASSWORD, SYS-399
SYS$HIBER, SYS-402
SYS$IDTOASC, SYS-404
SYS$INIT_ VOL, SYS-407
SYS$MOD_HOLDER, SYS-430
SYS$MOD_IDENT, SYS-433
SYS$MOUNT, SYS-436
SYS$MTACCESS, SYS-451
SYS$NUMTIM, SYS-455
SYS$PARSE_ACL, SYS-457
SYS$PUTMSG, SYS-4 75
SYS$QIO, SYS-483
SYS$QIOW, SYS-488
SYS$READEF, SYS-489
SYS$RELEASE_ VP, SYS-491
SYS$REM_HOLDER, SYS-492
SYS$REM_IDENT, SYS-494
SYS$RESTORE_ VP _EXQEPTION, SYS-496
SYS$RESTORE_ VP _STATE, SYS-498
SYS$RESUME, SYS-500
SYS$REVOKID, SYS-503
SYS$RMSRUNDWN, SYS-639
SYS$SAVE_ VP _EXCEPTION, SYS-507
SYS$SCHDWK, SYS-509

converting time format for, SYS-36
SYS$SETDDIR, SYS-641
SYS$SETDFPROT, SYS-'643
SYS$SETEF, SYS-514
SYS$SETEXV, SYS-515
SYS$SETIME, SYS-517
SYS$SETIMR, SYS-519

converting time format for, SYS-36
SYS$SETPRI, SYS-524
SYS$SETPRN, SYS-527
SYS$SETPRV, SYS-533
SYS$SETRWM, SYS-538
SYS$SETUAI, SYS-544
SYS$SNDERR, SYS-556
SYS$SNDJBCW, SYS-614
SYS$SNDOPR, SYS-615

lndex-5

SYS$START_TRANS, SYS-629
SYS$START_TRANSW, SYS-633
SYS$SUSPND, SYS-634
SYS$SYNCH, SYS-637
SYS$TRNLNM, SYS-645
SYS$UPDSEC, SYS-657
SYS$UPDSECW, SYS-662
SYS$WAITFR, SYS-663
SYS$WAKE, SYS-665

See also SYS$HIBER
SYS$WFLAND, SYS-668
SYS$WFLOR, SYS-670
System

getting information about
asynchronously, SYS-366
synchronously, SYS-381

System services
Abort Transaction, SYS-3
Abort Transaction and Wait, SYS-7
Adjust Outer Mode Stack Pointer, SYS-14
Adjust Working Set Limit, SYS-17
checking completion status of, SYS-637
Create Virtual Address Space, SYS-114
Delete Global Section, SYS-158
Delete Virtual Address Space, SYS-147
End Transaction, SYS-196
End Transaction and Wait, SYS-201
Expand Program/Control Region, SYS-218
Format Security Audit Event Message,

SYS-262
Hash Password, SYS-399
Initialize Volume, SYS-407
Lock Pages in Memory, SYS-420
Lock Pages in Working Set, SYS-422
Map Global Section, SYS-425
Purge Working Set, SYS-4 73
Release Vector Processor, SYS-491
Restore Vector Processor Exception State,

SYS-496
Restore Vector State, SYS-498
Save Vector Processor Exception State,

SYS-507
Set Process Swap Mode, SYS-542
Set Protection on Pages, SYS-529
Set Stack Limits, SYS-540
Start Transaction, SYS-629
Start Transaction and Wait, SYS-633
Unlock Pages from Memory, SYS-651
Unlock Pages from Working Set, SYS-653
Unwind Call Stack, SYS-655
Update Section File on Disk, SYS-657

System time
setting, SYS-517

lndex-6

T
Tape

initializing from within a program, SYS-407
Termination message

format, SYS-108
Time

converting binary to ASCII string, SYS-26
converting binary to numeric, SYS-455
getting current system, SYS-382
setting system, SYS-51 7

Timer
setting, SYS-519

Timer request
canceling, SYS-51

TQELM (timer queue entry limit) quota
effect of canceling timer request, SYS-52

Transaction
aborting, SYS-3, SYS-5, SYS-7
abort reason codes, SYS-4, SYS-5, SYS-197
committing, SYS-196, SYS-198, SYS-201
current, SYS-631
participants, SYS-5, SYS-198
starting, SYS-629, SYS-631, SYS-633

Transaction identifier (TID), SYS-4, SYS-198,
SYS-629,SYS-630,SYS-631,SYS-633

u
UAF (user authorization file)

getting information about, SYS-383
modifying, SYS-544

$ULKPAG, SYS-651
$ULWSET, SYS-653
$UNWIND, SYS-655

v
Vector processor

releasing, SYS-491
restoring the exception state of, SYS-496
saving the exception state of, SYS-507

Vector state
restoring, SYS-498

Virtual address space
adding page to, SYS-114, SYS-218
creating, SYS-114
deleting page from, SYS-147

Virtual 1/0
canceling requests for, SYS-48

Volume
dismounting, SYS-161
getting information about

asynchronously, SYS-266
synchronously, SYS-285

initializing from within a program, SYS-407
mounting, SYS-436

w
Wakeup

canceling, SYS-53
Wildcard operation

using $GETJPI with $PROCESS_SCAN to
perform wildcard searches across the
cluster, SYS-286

using $GETJPI with $PROCESS_SCAN to
search for specific processes, SYS-286

using with $GETJPI to return information
about processes, SYS-286

Wildcard search
obtaining information about processes,

SYS-460
Working set

adjusting limit, SYS-17
locking page into, SYS-422
purging, SYS-4 73
unlocking page from, SYS-653

lndex-7

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040 before placing
your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using a 1200- or 2400-baud
modem. If you need assistance using the Electronic Store, call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internal1

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

USASSB Order Processing - WMO/E15
or
U.S. Area Software Supply Business
Digital Equipment Corporation
Westminster, Massachusetts 01473

1For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments VMS System Services
Reference Manual

AA-LA69B-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) 0
Completeness (enough information) 0
Clarity (easy to understand) 0
Organization (structure of subject matter) 0
Figures (useful) 0
Examples (useful) 0
Index (ability to find topic) 0
Page layout (easy to find information) 0

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Good Fair Poor

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

Dept.

Date

Phone

Do Not Tear - Fold Here and Tape

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
Corporate User Information Products
ZK01-3/J35
110 SPIT BROOK RD
NASHUA, NH 03062-9987

11111111II1II1111II111ii1II1I11I1I11I11I1I111I1II11 I

No Postage
Necessary
it Mailed

in the
United States

Do Not Tear-Fold Here ---

Reader's Comments VMS System Services
Reference Manual

AA-LA69B-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

Do Not Tear - Fold Here and Tape

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
Corporate User Information Products
ZK01-3/J35
110 SPIT BROOK RD
NASHUA, NH 03062-9987

11111111II1 I I 111 ii I 111 ii 1 I I 1I1ii1I11 I 11I1 I 111I1 I I 11 I

No Postage
Necessary
if Mailed

in the
United States

Do Not Tear - Fold Here ---

