
. VMS

digit a I VMS DCL Dictionary: Part I

Order Number: AA-PBKSA-TE

VMS DCL Dictionary :
Part I

Order Number: AA-PBK5A-TE

June 1990

This manual provides detailed reference information and examples for all VMS
DCL commands and lexical functions.

Revision/Update Information: This manual supersedes the VMS DCL
Dictionary, Version 5.3.

Software Version: VMS Version 5.4

digital equipment corporation
maynard, massachusetts

June 1990

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data
and Computer Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1990.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDA DEQNA MicroVAX VAX RMS
DDIF Desktop-VMS PrintServer 40 VAXserver
DEC DIGITAL Q-bus VAXstation
DECdtm GIGI ReGIS VMS
DECnet HSC ULTRIX VT
DECUS · LiveLink UNIBUS XUI
DECwindows LN03 VAX

mnmnama™ DECwriter MASS BUS VAXcluster

The following are third-party trademarks:

Adobe, Display Postscript, and Postscript are registered trademarks of Adobe
Systems Incorporated.

ZK9996

Production Note
This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by Digital. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format
the text, generate a table of contents and index, and paginate the entire
document. Writers can print the document on the terminal or line printer,
or they can use Digital-supported devices, such as the LN03 laser printer
and PostScript printers (PrintServer 40 or LN03R ScriptPrinter), to
produce a typeset-quality copy containing integrated graphics.

Contents

PARTI

PREFACE xiii

= (ASSIGNMENT STATEMENT) DCL1-1

:= (STRING ASSIGNMENT) DCL1-5

@ (EXECUTE PROCEDURE) DCL1-9

ACCOUNTING DCL1-14

ALLOCATE DCL1-15

ANALYZE/AUDIT DCL1-18

ANALYZE/CRASH_DUMP DCL1-19

ANALYZE/DISK_STRUCTURE DCL1-20

ANALYZE/ERROR_LOG DCL1-21

ANALYZE/IMAGE DCL1-22

ANALYZE/MEDIA DCL1-25

ANALYZE/OBJECT DCL1-26

ANALYZE/PROCESS_DUMP DCL1-30

ANALYZE/RMS_FILE DCL1-32

ANALYZE/SYSTEM DCL1-33

APPEND DCL1-34

ASSIGN DCL1-39

ASSIGN/MERGE DCL1-46

ASSIGN/QUEUE DCL1-47

ATTACH DCL1-49

BACKUP DCL1-51

CALL DCL1-52

CANCEL DCL1-56

CLOSE DCL1-58

CONNECT DCL1-60

CONTINUE DCL1-63

CONVERT DCL1-65

CONVERT/DOCUMENT DCL1-66

CONVERT/RECLAIM DCL1-73

COPY DCL1-74

CREATE DCL1-84

CREATE/DIRECTORY DCL1-89

CREATE/FOL DCL1-92

CREATE/NAME_ TABLE DCL1-93

v

Contents

CREATE/TERMINAL DCL1-97

DEALLOCATE DCL1-103

DEASSIGN DCL1-104

DEASSIGN/QUEUE DCL1-109
DEBUG DCL1-110

DECK DCL1-111

DEFINE DCL1-114

DEFINE/CHARACTERISTIC DCL1-120

DEFINE/FORM DCL1-122

DEFINE/KEY DCL1-126

DELETE DCL1-131

DELETE/CHARACTERISTIC DCL1-135

DELETE/ENTRY DCL1-136

DELETE/FORM DCL1-139

DELETE/INTRUSION_ RECORD DCL1-140
DELETE/KEY DCL1-141

DELETE/QUEUE DCL1-143

DELETE/SYMBOL DCL1-145

DEPOSIT DCL1-147
DIFFERENCES DCL1-151

DIRECTORY DCL1-159

DISCONNECT DCL1-168

DISMOUNT DCL1-170

DUMP DCL1-174

EDIT/ACL DCL1-179

EDIT/EDT DCL1-180

EDIT/FOL DCL1-184

EDIT/SUM DCL1-185

EDIT/TECO DCL1-186

EDIT/TPU DCL1-189

ENDSUBROUTINE DCL1-205

EOD DCL1-206

EOJ DCL1-208

EXAMINE DCL1-209

EXCHANGE DCL1-212

EXCHANGE/NETWORK DCL1-213

EXIT DCL1-222

FONT DCL1-226

GOSUB DCL1-227

GOTO DCL1-229

HELP DCL1-231

IF DCL1-237

vi

Contents

INITIALIZE DCL1-240

INITIALIZE/QUEUE DCL1-249

INQUIRE DCL1-262

INSTALL DCL1-265

JOB DCL1-266

LEXICAL FUNCTIONS DCL1-272
F$CONTEXT DCL1-275
F$CSID DCL1-280
F$CVSI DCL1-282
F$CVTIME DCL1-284
F$CVUI DCL1-286
F$DEVICE DCL1-287
F$DIRECTORY DCL1-289
F$EDIT DCL1-290
F$ELEMENT DCL1-292
F$ENVIRONMENT DCL1-294
F$EXTRACT DCL1-297
F$FAO DCL1-299
F$FILE_ATTRIBUTES DCL1-306
F$GETDVI DCL1-309
F$GETJPI DCL1-322
F$GETQUI DCL1-328
F$GETSYI DCL1-344
F$1DENTIFIER DCL1-349
F$1NTEGER DCL1-351
F$LENGTH DCL1-352
F$LOCATE DCL1-353
F$MESSAGE DCL1-355
F$MODE DCL1-356
F$PARSE DCL1-358
F$PID DCL1-361
F$PRIVILEGE DCL1-363
F$PROCESS DCL1-364
F$SEARCH DCL1-365
F$SETPRV DCL1-368
F$STRING DCL1-372
F$TIME DCL1-373
F$TRNLNM DCL1-374
F$TYPE DCL1-378
F$USER DCL1-380
F$VERIFY DCL1-381

LIBRARY DCL1-383

vii

Contents

LICENSE DCL1-384

LINK DCL1-385

LOGIN PROCEDURE DCL1-392

LOGOUT DCL1-396
MACRO DCL1-398

MAIL DCL1-404

MERGE DCL1-405

MESSAGE DCL1-406

MONITOR DCL1-407

MOUNT DCL1-408

INDEX

PARTll

PREFACE xiii

NCS DCL2-1

ON DCL2-2

OPEN DCL2-5

PASSWORD DCL2-9

PATCH DCL2-11

PHONE DCL2-12

PRINT DCL2-13

PSWRAP DCL2-23

PURGE DCL2-24

READ DCL2-28

RECALL DCL2-32

RENAME DCL2-34

REPLY DCL2-38

REQUEST DCL2-47

RETURN DCL2-49

RUN {IMAGE) DCL2-51

RUN {PROCESS) DCL2-53

RUNOFF DCL2-63

RUNOFF/CONTENTS DCL2-73

RUNOFF/INDEX DCL2-77

SEARCH DCL2-81

SET DCL2-88

SET ACCOUNTING DCL2-91

viii

Contents

SET ACL DCL2-93

SET AUDIT DCL2-100

SET BROADCAST DCL2-112

SET CARD_READER DCL2-114

SET CLUSTER/EXPECTED_ VOTES DCL2-115

SET COMMAND DCL2-117

SET CONTROL DCL2-118

SET DAY DCL2-120

SET DEFAULT DCL2-121

SET DEVICE DCL2-123

SET DEVICE/SERVED DCL2-125

SET DIRECTORY DCL2-126

SET DISPLAY DCL2-129

SET ENTRY DCL2-136

SET FILE DCL2-144

SET HOST DCL2-149

SET HOST/DTE DCL2-152
CLEAR DCL2-158
EXIT DCL2-159
QUIT DCL2-160
SAVE DCL2-161
SEND BREAK DCL2-162
SET DTE DCL2-163
SHOW DTE DCL2-168
SPAWN DCL2-169

SET HOST/DUP DCL2-171

SET HOST/HSC DCL2-173

SET KEV DCL2-175

SET LOGINS DCL2-176

SET MAGTAPE DCL2-177

SET MESSAGE DCL2-179

SETON DCL2-182

SET OUTPUT_RATE DCL2-183

SET PASSWORD DCL2-184

SET PRINTER DCL2-187

SET PROCESS DCL2-191

SET PROMPT DCL2-195

SET PROTECTION DCL2-196

SET PROTECTION/DEFAULT DCL2-199

SET PROTECTION/DEVICE DCL2-200

SET QUEUE DCL2-203

SET RESTART_ VALUE DCL2-210

SET RIGHTS_LIST DCL2-212

ix

Contents

SET RMS_DEFAULT DCL2-214

SET SYMBOL DCL2-218

SET TERMINAL DCL2-221

SET TIME DCL2-234

SET UIC DCL2-236

SET VERIFY DCL2-237

SET VOLUME DCL2-240

SET WORKING_SET DCL2-244

SHOW DCL2-246

SHOW ACCOUNTING DCL2-248

SHOW ACL DCL2-250

SHOW AUDIT DCL2-251

SHOW BROADCAST DCL2-255

SHOW CLUSTER DCL2-257

SHOW CPU DCL2-258
SHOW DEFAULT DCL2-262

SHOW DEVICES DCL2-264

SHOW DEVICES/SERVED DCL2-269

SHOW DISPLAY DCL2-272

SHOW ENTRY DCL2-275

SHOW ERROR DCL2-279

SHOW INTRUSION DCL2-280

SHOW KEY DCL2-283

SHOW LICENSE DCL2-285

SHOW LOGICAL DCL2-288

SHOW MEMORY DCL2-292

SHOW PRINTER DCL2-300

SHOW PROCESS DCL2-302

SHOW PROTECTION DCL2-308

SHOW QUEUE DCL2-309

SHOW QUEUE/CHARACTERISTICS DCL2-313

SHOW QUEUE/FORM DCL2-315

SHOW QUOTA DCL2-317

SHOW RMS_DEFAULT DCL2-318

SHOW STATUS DCL2-319

SHOW SYMBOL DCL2-320

SHOW SYSTEM DCL2-322

SHOW TERMINAL DCL2-326

SHOW TIME DCL2-328

SHOW TRANSLATION DCL2-329

SHOW USERS DCL2-331

SHOW WORKING_SET DCL2-335

x

INDEX

FIGURES
DCL2-1

DCL2-2

TABLES
DCL1-1

DCL1-2

DCL1-3

DCL1-4

DCL1-5

SHOW ZONE

SORT

SPAWN
START/CPU

START/QUEUE

START/QUEUE/MANAGER

START/ZONE

STOP

STOP/CPU

STOP/QUEUE

STOP/QUEUE/ ABORT

STOP/QUEUE/ENTRY

STOP/QUEUE/MANAGER

STOP/QUEUE/NEXT

STOP/QUEUE/REQUEUE

STOP/QUEUE/RESET

STOP/ZONE

SUBMIT
SUBROUTINE

SYNCHRONIZE

TYPE

UNLOCK

VIEW

WAIT

WRITE

Running Remote and Local Applications

Default Characteristics for Terminals

CPU Time Limit Specifications and Actions

Working Set Default, Extent, and Quota Decision

Summary of Lexical Functions

Summary of FAQ Directives

F$FILE_ATTRIBUTES Items

DCL2-336

DCL2-337

DCL2-338
DCL2-343

DCL2-345

DCL2-355

DCL2-357

DCL2-358

DCL2-361

DCL2-363

DCL2-365

DCL2-367

DCL2-369

DCL2-370

DCL2-371

DCL2-374

DCL2-375

DCL2-376

DCL2-386

DCL2-387

DCL2-389

DCL2-395

DCL2-396
DCL2-397

DCL2-399

Contents

DCL2-130

DCL2-222

DCL1-254

DCL1-261

DCL1-272

DCL1-301

DCL1-306

xi

Contents

DCL1-6 F$GETDVI Items DCL1-310

DCL1-7 Values Returned by the DEVCLASS Item DCL1-316

DCL1-8 Values Returned by the DEVTVPE Item DCL1-317

DCL1-9 F$GETJPI Items DCL1-323

DCL1-10 F$GETQUI Items DCL1-331

DCL1-11 F$GETSYI Items for the Local Node Only DCL1-345

DCL1-12 F$GETSVI Items for the Local Node or for Other Nodes in the
VAXCluster DCL1-346

DCL1-13 Context Symbol Types DCL1-378

DCL2-1 SET Command Options DCL2-88

DCL2-2 SET ACCOUNTING Keywords for Event Types DCL2-91

DCL2-3 SET ACCOUNTING Keywords for Process Types DCL2-92

DCL2-4 Working Set Default, Extent, and Quota Decision DCL2-209

DCL2-5 SHOW Command Options DCL2-246

DCL2-6 Working Set Default, Extent, and Quota Decision DCL2-354

xii

Preface

Intended Audience
This manual is intended for all users of the VMS operating system. It
includes descriptions of all Digital Command Language (DCL) commands
and lexical functions. If a command has any restrictions or requires
special privileges, they are noted in reference information for that
command.

Readers of this manual should be familiar with the material covered in
the VMS DCL Concepts Manual. Furthermore, while familiarity with the
Guide to Using VMS Command Procedures is not a requirement for using
this manual, it does help clarify some of the examples involving command
procedures.

Document Structure
This manual contains detailed descriptions of each command and
lexical function. The commands are listed in alphabetical order, with
the command name appearing at the top of every page. The lexical
functions are grouped under the heading "Lexical Functions" (after the
JOB command description) and are listed alphabetically within that
grouping; the lexical function name appears at the top of each page.

The VMS DCL Dictionary is a two-part manual. Part I contains commands
beginning with the letters A to M (including the lexical functions); Part II
contains commands beginning with the letters N to Z. The Table of
Contents and Index are comprehensive: they include both parts.

The commands that invoke language compilers and other VAX optional
software products are not included in this manual; they are included in
the documentation provided with those products.

Associated Documents
This manual is Part I of a two-part manual; it contains DCL commands
beginning with the letters A to M, as well as the lexical functions. For the
remaining commands, see Part II.

For an introduction to the VMS operating system and for information
on using DCL, see the Introduction to VMS. This manual is especially
recommended for novice users or users lacking experience with interactive
computer systems.

The VMS DCL Concepts Manual provides an overview of DCL command
language concepts.

The Guide to Using VMS Command Procedures defines and illustrates
good practices in constructing command procedures with DCL commands
and lexical functions.

xiii

Preface

Conventions

xiv

The various VMS utilities reference manuals document major VMS
utilities. These manuals describe the DCL commands that invoke the
various utilities, describe any commands that you can enter while running
a utility, and provide reference information. For all utilities documented in
these volumes, the VMS DCL Dictionary provides only a brief description
and format information.

The VMS System Messages and Recovery Procedures Reference Manual
explains what the messages mean and, where applicable, suggests actions
for you to take.

The Overview of VMS Documentation describes the new organization of
the VMS document set. This manual shows how the individual manuals
fit together and relate to each other.

The following conventions are used in this manual:

mouse

MB1, MB2, MB3

Ctrl/x

PF1 x

()

The term mouse is used to refer to any pointing
device, such as a mouse, a puck, or a stylus.

MB1 indicates the left mouse button, MB2 indicates
the middle mouse button, and MB3 indicates the right
mouse button. (The buttons can be redefined by the
user.)

A sequence such as Ctrl/x indicates that you must
hold down the key labeled Ctrl while you press
another key or a pointing device button.

A sequence such as PF1 x indicates that you must
first press and release the key labeled PF1 , then
press and release another key or a pointing device
button.

A key name is shown enclosed to indicate that you
press a key on the keyboard.

In examples, a horizontal ellipsis indicates one of the
following possibilities:

Additional optional arguments in a statement
have been omitted.

The preceding item or items can be repeated one
or more times.

Additional parameters, values, or other
information can be entered.

A vertical ellipsis indicates the omission of items from
a code example or command format; the items are
omitted because they are not important to the topic
being discussed.

In format descriptions, parentheses indicate that, if
you choose more than one option, you must enclose
the choices in parentheses.

[]

{}

red ink

boldface text

italic text

UPPERCASE TEXT

UPPERCASE TEXT

numbers

Preface

In format descriptions, brackets indicate that whatever
is enclosed is optional; you can select none, one, or
all of the choices.

In format descriptions, braces surround a required
choice of options; you must choose one of the options
listed.

Red ink indicates information that you must enter from
the keyboard or a screen object that you must choose
or click on. For online versions, user input is shown in
bold.

Boldface text represents the introduction of a new
term or the name of an argument, an attribute, or a
reason.

Italic text represents information that can vary
in system messages (for example, Internal error
numbet).

Uppercase letters indicate that you must enter a
command (for example, enter OPEN/READ).

Uppercase letters indicate the name of a routine, the
name of a file, the name of a file protection code, or
the abbreviation for a system privilege.

Hyphens in coding examples indicate that additional
arguments to the request are provided on the line that
follows.

Unless otherwise noted, all numbers in the text are
assumed to be decimal. Nondecimal radixes-binary,
octal, or hexadecimal-are explicitly indicated.

xv

= {Assignment Statement)

= (Assignment Statement)

FORMAT

Defines a symbolic name for a character string or integer value.

symbol-name=[=] expression

symbol-name[bit-position,size] =[=]
replacement-expression

PARAMETERS symbol-name
Specifies a string of 1 to 255 characters for the symbol name. The name
can contain any alphanumeric characters from the DEC Multinational
Character Set, the underscore (_), and the dollar sign ($). However,
the name must begin only with an alphabetic character (uppercase and
lowercase characters are equivalent), an underscore, or a dollar sign.
Using one equal sign (=) places the symbol name in the local symbol table
for the current command level. Using two equal signs (= =) places the
symbol name in the global symbol table.

expression
Names the value on the right-hand side of an assignment statement. This
parameter can consist of a character string, an integer, a symbol name,
a lexical function, or a combination of these entities. The components of
the expression are evaluated, and the result is assigned to the symbol.
All literal character strings must be enclosed in quotation marks (" "). If
the expression contains a symbol, the expression is evaluated using the
symbol's value.

The result of expression evaluation is either a character string or a signed
integer value. If the expression is evaluated as a string, the symbol is
assigned a string value. If the expression is evaluated as an integer, the
symbol is assigned an integer value. If the integer value exceeds the
capacity of the 4-byte buffer that holds it, no error message is issued.

For a summary of operators used in expressions, details on how to specify
expressions, and details on how expressions are evaluated, see the VMS
DCL Concepts Manual.

DCL uses a buffer that is 1024 bytes long to hold an assignment statement
and to evaluate the expression. The length of the symbol name, the
expression, and the expression's calculations cannot exceed
1024 bytes.

[bit-position,size]
States that a binary overlay is to be inserted in the current 32-bit value of
a symbol name. The current value of the symbol name is evaluated. Then,
the specified number of bits is replaced by the result of the replacement
expression. The bit position is the location relative to bit 0 at which the
overlay is to occur. If the symbol you are overlaying is an integer, then the
bit position must be less than 32. The sum of the bit position and the size
must be less than or equal to 32.

DCL1-1

= (Assignment Statement)

DESCRIPTION

EXAMPLES

If the symbol you are overlaying is a string, then the bit position must be
less than 6152. Because each character is represented using 8 bits, you
can begin an overlay at any character through the 768th character. (The
768th character starts in bit position 6144.) The sum of the bit position
and the size must be less than or equal to 6152.

The size is the number of bits to be overlaid. If you specify a size that is
greater than 32, DCL reduces the size to 32.

The brackets are required notation; no spaces are allowed between the
symbol name and the left bracket. Specify values for the bit position and
size as integers.

replacement-expression
Specifies the value that is used to overlay the symbol you are modifying.
Specify the replacement expression as an integer.

If the symbol you are modifying is an integer, the replacement expression
defines a bit pattern that is overlaid on the value assigned to the symbol.
If the symbol you are modifying is a character string, the result of the
replacement expression defines a bit pattern that is overlaid on the
specified bits of the character string. If the symbol you are modifying
is undefined, the result of the replacement expression is overlaid on a null
string.

Symbols defined using assignment statements allow you to extend the
command language. At the interactive· command level, you can use
symbols to define synonyms for commands or command lines. In command
procedure files, you can use symbols to provide for conditional execution
and substitution of variables.

The maximum number of symbols that can be defined at any time depends
on the following:

• The amount of space available to the command interpreter to contain
symbol tables and labels for the current process. The amount of
space is determined for each process by the SYSGEN parameter
CLISYMTBL.

• The size of the symbol names and their values. The command
interpreter allocates space for a symbol name and its value. In
addition, a few bytes of overhead are allocated for each symbol.

D $ LIST == "DIRECTORY"

DCL1-2

The assignment statement in this example assigns the user-defined
synonym LIST as a global symbol definition for the DCL command
DIRECTORY.

II $ COUNT = 0
$ LOOP:

= (Assignment Statement)

$ COUNT = COUNT + 1
$ IF P'COUNT' .EQS. THEN EXIT
$ APPEND/NEW &P'COUNT' SAVE.ALL
$ DELETE &P'COUNT' ;*
$ IF COUNT .LT. 8 THEN GOTO LOOP
$ EXIT

iJ $ A = 25

This command procedure, COPYDEL.COM, appends files (specified as
parameters) to a file called SAVE.ALL. After a file has been appended, the
command procedure deletes the file. Up to eight file names can be passed
to the command procedure. The file names are assigned to the symbols Pl,
P2, and so on.

The command procedure uses a counter to refer to parameters that
are passed to it. Each time through the loop, the procedure uses an IF
command to check whether the value of the current parameter is a null
string. When the IF command is scanned, the current value of the symbol
COUNT is concatenated with the letter P. The first time through the loop,
the IF command tests Pl; the second time through the loop it tests P2,
and so on. After the expression P1 COUNT' is evaluated, the substitution
of the file names that correspond to Pl, P2, and so on is automatic within
the context of the IF command.

The APPEND and DELETE commands do not perform any substitution
automatically, because they expect and require file specifications as input
parameters. The ampersand(&) precedes the P' COUNT' expression for
these commands to force the appropriate symbol substitution. When these
commands are initially scanned each time through the loop, COUNT is
substituted with its current value. Then, when the commands execute,
the ampersand causes another substitution: the first file specification is
substituted for Pl, the second file specification is substituted for P2, and
so on.

To invoke this procedure, use the following command:

$ @COPYDEL ALPHA.TXT BETA.DOC

The files ALPHA. TXT and BETA.DOC are each appended to the file
SAVE.ALL and are then deleted.

$ CODE = 4 + F $INTEGER (II 6 II) - A
$ SHOW SYMBOL CODE

CODE= -15 HEX= FFFFFFFl Octal = 1777761

This example contains two assignment statements. The first assignment
statement assigns the value 25 to the symbol A. The second assignment
statement evaluates an expression containing an integer (4), a lexical
function (F$INTEGER("6")), and the symbol A. The result of the
expression, -15, is assigned to the symbol CODE.

DCL1-3

= {Assignment Statement)

!J $ FILENAME = "JOBSEARCH" - "JOB"
$ FILE TYPE = ".OBJ"
$ FILESPEC = FILENAME + FILETYPE
$ TYPE 'FILESPEC'

The first command in this example assigns the symbol FILENAME the
value "SEARCH". Notice that the string "SEARCH" is the result of the
string reduction operation performed by the expression. The second
command assigns the symbol FILETYPE the character string 11 .0BJ11

•

The symbols FILENAME and FILETYPE are then added together in
an expression assigned to the symbol FILESPEC. Because the values of
the symbols FILENAME and FILETYPE are concatenated, the resultant
value assigned to FILESPEC is the character string "SEARCH.OBJ". The
symbol FILESPEC is then used as a parameter for the TYPE command.
The single quotation marks (' ') request the command interpreter to
replace the symbol FILESPEC with its value SEARCH.OBJ. Thus, the
TYPE command types the file named SEARCH.OBJ.

(i $ BELL[0,32] = %X07
$ SHOW SYMBOL BELL

BELL = ""

DCL1-4

In this example, the symbol BELL is created with an arithmetic overlay
assignment statement. Because the symbol BELL is previously undefined,
the hexadecimal value 7 is inserted over a null character string and is
interpreted as the ASCII code for the bell character on a terminal. When
you issue the command SHOW SYMBOL BELL, the terminal beeps.

If the symbol BELL had been previously defined with an integer value, the
result of displaying BELL would have been to show its new integer value.

:= (String Assignment)

··- (String Assignment)

FORMAT

Defines a symbolic name for a character string value.

symbol-name :==[==]string

symbol-name[offset,size] :==[==]replacement-string

PARAMETERS symbol-name
Specifies a string of 1 to 255 characters for the symbol name. The name
can contain any alphanumeric characters from the DEC Multinational
Character Set, the underscore (_), and the dollar sign ($). However, the
name must begin only with an alphabetic character, an underscore, or a
dollar sign. Using one equal sign(:=) places the symbol name in the local
symbol table for the current command level. Using two equal signs (:= =)
places the symbol name in the global symbol table.

string
Names the character string value to be equated to the symbol. The string
can contain any alphanumeric or special characters. DCL uses a buffer
that is 1024 bytes long to hold a string assignment statement. Therefore,
the length of the symbol name, the string, and any symbol substitution
within the string cannot exceed 1024 characters.

With the string assignment statement (:=), you do not need to enclose
a string literal in quotation marks (" "). String values are converted
to uppercase automatically. Also, any leading and trailing spaces and
tabs are removed, and multiple spaces and tabs between characters are
compressed to a single space.

It is easier to use the assignment statement(=) to create symbols with
string values because the assignment statement does not automatically
convert letters to uppercase and remove extra spaces. Also, the
assignment statement allows you to perform string operations in
expressions.

To prohibit uppercase conversion and to retain required space and tab
characters in a string, place quotation marks around the string. To use
quotation marks in a string, enclose the entire string within quotation
marks and use a double set of quotation marks within the string. For
example:

$ TEST : = "this is a ""test"" string"
$ SHOW SYMBOL TEST

TEST = "this is a "test" string"

In this example, the spaces, lowercase letters, and quotation marks are
preserved in the symbol definition.

To continue a symbol assignment on more than one line, use the
hyphen (-) as a continuation character. For example:

$ LONG STRING := THIS IS A VERY LONG-
_$ _SYMBOL_STRING - - - -

DCL1-5

== {String Assignment)

DCL1-6

To assign a null string to a symbol by using the string assignment
statement, do not specify a string. For example:

$ NULL :=

Specify the string as a string literal, or as a symbol or lexical function that
evaluates to a string literal. If you use symbols or lexical functions, place
single quotation marks (' ') around them to request symbol substitution.
See the VMS DCL Concepts Manual for more information on symbol
substitution.

You can also use the string assignment statement to define a foreign
command. See the VMS DCL Concepts Manual for more information
about foreign commands.

[offset, size]
Specifies that a portion of a symbol value is to be overlaid with a
replacement string. This form of the string assignment statement
evaluates the value assigned to a symbol and then replaces the portion
of the value (defined by the offset and size) with the replacement string.
The brackets are required notation, and no spaces are allowed between the
symbol name and the left bracket.

The offset specifies the character position relative to the beginning of the
symbol name's string value at which replacement is to begin. Offset values
start at 0.

If the offset is greater than the offset of the last character in the string
you are modifying, spaces are inserted between the end of the string and
the offset where the replacement string is added. The maximum offset
value you can specify is 768.

The size specifies the number of characters to replace. Size values start
at 1.

Specify the offset and size as integer expressions. See the VMS DCL
Concepts Manual for more information on integer expressions. The value
of the size plus the offset must not exceed 769.

replacement-string
Specifies the string that is used to overwrite the string you are modifying.
If the replacement string is shorter than the size argument, the
replacement string is filled with blanks on the right until it equals the
specified size. Then the replacement string overwrites the string assigned
to the symbol name. If the replacement string is longer than the size
argument, then the replacement string is truncated on the right to the
specified size.

You can specify the replacement string as a string literal, or as a symbol
or lexical function that evaluates to a string literal. If you use symbols or
lexical functions, place single quotation marks (' ') around them to request
symbol substitution. For more information on symbol substitution, see the
VMS DCL Concepts Manual.

:= (String Assignment)

EXAMPLES
D $ TIME : = SHOW TIME

$ TIME
19-APR-1990 11:55:44

In this example, the symbol TIME is equated to the command string
SHOW TIME. Because the symbol name appears as the first word in a
command string, the command interpreter automatically substitutes it
with its string value and executes the command SHOW TIME.

fr3 $ STAT · = $DBA1: [CRAMER] STAT
$ STAT

ll $
$

$
$

A= "this is
SHOW SYMBOL A

This example shows how to define STAT as a foreign command. The
symbol STAT is equated to a string that begins with a dollar sign followed
by a file specification. The command interpreter assumes that the file
specification is that of an executable image, that is, a file with a file type
of EXE. The symbol STAT in this example becomes a synonym for the
following command:

$ RUN DBAl: [CRAMER] STAT .EXE

When you subsequently type STAT, the command interpreter executes the
image.

a big space. II

A= "this is a big space. "
B ·= 'A'
SHOW SYMBOL B

B = "THIS IS A BIG SPACE. II

This example compares the assignment and the string assignment
statements. The symbol A is defined using the assignment statement,
so lowercase letters and multiple spaces are retained. The symbol B
is defined using the string assignment statement. Note that the single
quotation marks (' ') are required; otherwise, the symbol name B would
have been equated to the literal string A. However, when symbol N.s
value is assigned to symbol B, the letters are converted to uppercase and
multiple spaces are compressed.

!J $ FILE NAME : = MYF ILE
$ FILE_NAME [0, 2] := OL
$ SHOW SYMBOL FILE NAME

FILE NAME "OLFILE"

In this example, the substring expression in the assignment statement
overlays the first 2 characters of the string assigned to the symbol FILE_
NAME with the letters OL. The offset of 0 requests that the overlay
begin with the first character in the string, and the size specification of 2
indicates the number of characters to overlay.

DCL1-7

:= (String Assignment)

~ $ FILE NAME : = MYFILE
$ FILE TYPE := .TST
$ FILE_NAME[F$LENGTH(FILE_NAME),4] :='FILE TYPE'
$ SHOW SYMBOL FILE NAME

FILE NAME "MYFILE.TST"

DCL1-8

In this example, the symbol name FILE_NAME is equated to the string
MYFILE and the symbol name FILE_TYPE is equated to the string .TST.
The third assignment statement uses the lexical function F$LENGTH to
define the offset value where the overlay is to begin. The symbol name
FILE_TYPE is used to refer to the replacement string (.TST). Note that
you must use single quotation marks (' ') to request symbol substitution.

The F$LENGTH lexical function returns the length of the string equated
to the symbol FILE_NAME; this length is used as the offset. The
expression requests that 4 characters of the string currently equated
to the symbol FILE_TYPE be placed at the end of the string currently
equated to FILE_NAME. The resultant value of the symbol FILE_NAME
is MYFILE.TST.

@ (Execute Procedure)

@ (Execute Procedure)

FORMAT

Executes a command procedure or requests the command interpreter to read
subsequent command input from a specific file or device.

@ filespec [parameter[, ...]]

PARAMETERS filespec
Specifies either the input device or the file for the preceding command,
or the command procedure to be executed. The default file type is COM.
Wildcard characters are not allowed in the file specification.

parameter[, ...]
Specifies from one to eight optional parameters to pass to the command
procedure. The symbols (Pl, P2, ... PB) are assigned character string
values in the order of entry. The symbols are local to the specified
command procedure. Separate each parameter with one or more blanks.
Use two consecutive quotation marks (11 11

) to specify a null parameter.
You can specify a parameter with a character string value containing
alphanumeric or special characters, with the following restrictions:

• The command interpreter converts alphabetic characters to uppercase
and uses blanks to delimit each parameter. To pass a parameter
that contains embedded blanks or literal lowercase letters, place the
parameter in quotation marks.

• If the first parameter begins with a slash (I), you must enclose the
parameter in quotation marks (" ").

• To pass a parameter that contains literal quotation marks and spaces,
enclose the entire string in quotation marks and use two consecutive
quotation marks within the string. For example, the command
procedure TEST.COM contains the following line:

$ WRITE SYS$0UTPUT Pl

Enter the following at the DCL prompt ($):

$ @TEST "Never say '"'quit'""'

When the procedure TEST.COM executes, the parameter Pl is equated
to the following string:

Never say "quit"

If a string contains quotation marks and does not contain spaces, the
quotation marks are preserved in the string and the letters within the
quotation marks remain in lowercase. For example, enter the following
at the DCL prompt:

$ @TEST abc"def"ghi

DCL1-9

@ (Execute Procedure)

DESCRIPTION

DCL1-10

When the procedure TEST.COM executes, the parameter Pl is equated
to the following string:

ABC"def"GH I

To use a symbol as a parameter, enclose the symbol in single quotation
marks (' ')to force symbol substitution. For example:

$ NAME = "JOHNSON"
$ @INFO 'NAME'

The single quotation marks cause the value "JOHNSON" to be substituted
for the symbol NAME. Therefore, the parameter "JOHNSON" is passed as
Pl to INFO.COM.

Use the@ command to execute a command procedure that contains the
following:

• DCL command lines or data, or both

• Qualifiers or parameters, or both, for a specific command line

To execute a command procedure containing commands or data, or both,
place the @ command at the beginning of a command line and then specify
the name of the command procedure file. The command procedure can
contain DCL commands and input data for a command or program that
is currently executing. All DCL commands in a command procedure must
begin with a dollar sign ($). If a command is continued with a hyphen (-),
the subsequent lines must not begin with a dollar sign.

Any line in a command procedure that does not contain a dollar sign in
the first character position (and is not a continuation line) is treated as
input data for the command or program that is currently executing. The
DECK command allows you to specify that data contains dollar signs in
record position one.

A command procedure can also contain the @ command to execute another
command procedure. The maximum command level you can achieve by
nesting command procedures is 16, including the top-level command
procedure. Command procedures can also be queued for processing as
batch jobs, either by using the SUBMIT command or by placing a deck of
cards containing the command procedure in the system card reader.

To execute a command procedure that contains qualifiers or parameters,
or both, for a specific command line, place the @ command where the
qualifiers or parameters normally would be in the command line. Then
specify the name of the command procedure file containing the qualifiers
or parameters.

If the command procedure file begins with parameters for the command,
the @ command must be preceded by a space. For example:

$ CREATE TEST.COM
TIME
jctrl/ZI
$ SHOW @TEST

19-APR-1990 17:20:26

@ (Execute Procedure)

If the file begins with qualifiers for the command, do not precede the @
command with a space. For example:

$ CREATE TEST 2. COM
/SIZE -
ICtrl/ZI
$ DIR@TEST_2

Directory WORK$: [SCHEDULE]

JANUARY.TXT;8
FEBRUARY.TXT;7
MARCH.TXT;6

Total of 3 files.

19-APR-1990 15:47:45.57
19-APR-1990 15:43:16.20
19-APR-1990 11:11:45.74

If the file contains parameters or qualifiers, or both, do not begin the lines
in the file with dollar signs. Any additional data on the command line
following @filespec is treated as parameters for the procedure.

QUALIFIER /OUTPUT :filespec
Specifies the name of the file to which the command procedure output is
written. By default, the output is written to the current SYS$0UTPUT
device. The default output file type is LIS. Wildcard characters are not
allowed in the output file specification. System responses and error
messages are written to SYS$COMMAND as well as to the specified file.
The /OUTPUT qualifier must immediately follow the file specification
of the command procedure; otherwise, the qualifier is interpreted as a
parameter to pass to the command procedure.

You can also redefine SYS$0UTPUT to redirect the output from a
command procedure. If you place the following command as the first line
in a command procedure, output will be directed to the file you specify:

$ DEFINE SYS$0UTPUT filespec

When the procedure exits, SYS$0UTPUT will be restored to its original
equivalence string. This produces the same result as using the /OUTPUT
qualifier when you execute the command procedure.

EXAMPLES

II $ CREATE DOFOR.COM
$ ON WARNING THEN EXIT
$ IF Pl.EQS."" THEN INQUIRE Pl FILE
$ FORTRAN/LIST 'Pl'
$ LINK 'Pl'
$ RUN 'Pl'
$ PRINT 'Pl'
lctrl/zl
$ @DOFOR AVERAGE

This example shows a command procedure, named DOFOR.COM, that
executes the FORTRAN, LINK, and RUN commands to compile, link, and
execute a program. The ON command requests that the procedure not
continue if any of the commands result in warnings or errors.

DCL1-11

@ {Execute Procedure)

When you execute DOFOR.COM, you can pass the file specification of the
FORTRAN program as the parameter Pl. If you do not specify a value
for Pl when you execute the procedure, the INQUIRE command issues a
prompting message to the terminal and equates what you enter with the
symbol Pl. In this example, the file name AVERAGE is assigned to Pl.
The file type is not included because the commands FORTRAN, LINK,
RUN, and PRINT provide default file types.

~ $ @MASTER/ OUTPUT= MASTER. LOG

This command executes a procedure named MASTER. COM; all output is
written to the file MASTER.LOG.

i] $ CREATE FILES. COM
*.FOR, *.OBJ
jctrl/ZI
$ DIRECTORY @FILES

This example shows a command procedure, FILES.COM, that contains
parameters for a DCL command line. You can execute this procedure after
the DIRECTORY command to get a listing of all FORTRAN source and
object files in your current default directory.

EJ $ CREATE QUALIFIERS. COM
/DEBUG/SYMBOL TABLE/MAP/FULL/CROSS REFERENCE
jctrl/zl - -
$ LINK SYNAPSE@QUALIFIERS

This example shows a command procedure, QUALIFIERS.COM, that
contains qualifiers for the LINK command. When you enter the LINK
command, specify the command procedure immediately after the file
specification of the file you are linking. Do not type a space between the
file specification and the @ command.

~ $ CREATE SUBPROCES. COM
$ RUN 'Pl' -

/BUFFER LIMIT=1024 -
/FILE LIMIT=4 -
/PAGE-FILES=256 -
/QUEUE LIMIT=2 -
/SUBPROCESS_LIMIT=2 -
'P2' 'P3' 'P4' 'P5' 'P6' 'P7' 'P8'

jctrl/ZI
$ @SUBPROCES LIBRA /PROCESS_NAME=LIBRA

DCL1-12

This example shows a command procedure named SUBPROCES.COM.
This procedure issues the RUN command to create a subprocess to execute
an image and also contains qualifiers defining quotas for subprocess
creation. The name of the image to be run is passed as the parameter Pl.
Parameters P2 to PB can be used to specify additional qualifiers.

In this example, the file name LIBRA is equated to Pl; it is the name
of an image to execute in the subprocess. The qualifier /PROCESS_
NAME=LIBRA is equated to P2; it is an additional qualifier for the RUN
command.

@ {Execute Procedure)

@] $ CREATE EDOC. COM
$ ASSIGN SYS$COMMAND: SYS$INPUT
$ NEXT:
$ INQUIRE NAME "File name"
$ IF NAME.EQS."" THEN EXIT
$ EDIT/EDT 'NAME' .DOC
$ GOTO NEXT
lCtrl/ZI
$ @EDOC

This procedure, named EDOC.COM, invokes the EDT editor. When an edit
session is terminated, the procedure loops to the label NEXT. Each time
through the loop, the procedure requests another file name for the editor
and supplies the default file type of DOC. When a null line is entered in
response to the INQUIRE command, the procedure terminates with the.
EXIT command.

The ASSIGN command changes the equivalence name of SYS$INPUT for
the duration of the procedure. This change allows the EDT editor to read
input data from the terminal, rather than from the command procedure
file (the default input data stream if SYS$INPUT had not been changed).
When the command procedure exits, SYS$INPUT is reassigned to its
original value.

DCL1-13

ACCOUNTING

ACCOUNTING

FORMAT

DCL1-14

Invokes the Accounting Utility, which reports accounting data. For a complete
description of the Accounting Utility, see the VMS Accounting Utility Manual.

ACCOUNTING [filespec[, ...]]

ALLOCATE

FORMAT

ALLOCATE

Provides your process with exclusive access to a device until you deallocate
the device or terminate your process. Optionally associates a logical name
with the device.

ALLOCATE device-name[:][, ...] [logical-name[:]]

PARAMETERS device-name[:][, ...]

QUALIFIERS

Specifies the name of a physical device or a logical name that translates
to the name of a physical device. The device name can be generic: if no
controller or unit number is specified, any device that satisfies the specified
part of the name is allocated. If more than one device is specified, the first
available device is allocated.

logical-name[:]
Specifies a string of 1 to 255 alphanumeric characters. Enclose the string
in single quotation marks (' ') if it contains blanks. Trailing colons (:)
are not used. The name becomes a process logical name with the device
name as the equivalence name. The logical name remains defined until it
is explicitly deleted or your process terminates.

/GENERIC
/NOGENERIC (default)
Indicates that the first parameter is a device type rather than a device
name. Example device types are: RX50, RD52, TK50, RC25, RCF25, and
RL02. The first free, nonallocated device of the specified name and type is
allocated.

The /[NO]GENERIC qualifier is placed before the device-name parameter
in the ALLOCATE command line. For example, you can allocate an RK07
device by entering the following command at the DCL prompt($):

$ ALLOCATE/GENERIC RK07 DISK

The following table shows some device types that you can specify with the
/GENERIC qualifier:

Disk Devices Tape Devices

RA60/70/80/81 /90 TA78/79/81

RC25/RCF25 TK50/70

RK06/7 TS11

RL01/2 TU16

RM03/05/80 TU58

RP04/5/6/7 TU77 /78/79/80/81

DCL1-15

ALLOCATE

EXAMPLES

Disk Devices

RX01/2/4/33

RZ55

/LOG (default)
/NO LOG

Tape Devices

Displays a message indicating the name of the device allocated. If the
operation specifies a logical name that is currently assigned to another
device, then the superseded value is displayed.

D $ ALLOCATE DMB2 :
%DCL-I-ALLOC, DMB2: allocated

The ALLOCATE command in this example requests the allocation of a
specific RK06/RK07 disk drive, that is, unit 2 on controller B. The system
response indicates that the device was allocated successfully.

~ $ ALLOCATE MT,MF: TAPE:
%DCL-I-ALLOC, _MTB2: allocated

$ SHOW LOGICAL TAPE:
TAPE: = MTB2: (process)
$ DEALLOCATE 'I'APE:
$ DEASSIGN TAPE:

The ALLOCATE command in this example requests the allocation of
a tape device whose name begins with MT or MF and assigns it the
logical name TAPE. The ALLOCATE command locates an available tape
device whose name begins with MT, and responds with the name of the
device allocated. (If no tape device beginning with MT had been found,
the ALLOCATE command would have searched for a device beginning
with MF.) Subsequent references to the device TAPE in user programs or
command strings are translated to the device name MTB2.

When the tape device is no longer needed, the DEALLOCATE command
deallocates it and the DEASSIGN command deletes the logical name. Note
that the logical name TAPE was specified with a colon on the ALLOCATE
command, but that the logical name table entry does not have a colon.

I] $ ALLOCATE/GENERIC RL02 WORK
%DCL-I-ALLOC, _DLAl: allocated
%DCL-I-SUPERSEDE, previous value of WORK has been superseded

DCL1-16

The ALLOCATE command in this example requests the allocation of any
RL02 disk device and assigns the logical name WORK to the device. The
completion message identifies the allocated device and indicates that the
assignment of the logical name WORK supersedes a previous assignment
of that name.

m $ ALLOCATE $TAPE1
%DCL-I-ALLOC, MUAO: allocated

ALLOCATE

The ALLOCATE command in this example allocates the tape device
MUAO, which is associated with the logical name $TAPE1.

~ $ ALLOCATE /GENERIC RX50 ACCOUNTS

The ALLOCATE command in this example allocates the first free floppy
disk drive and makes its name equivalent to the process logical name
ACCOUNTS.

DCL1-17

ANALYZE/ AUDIT

ANALYZE/ AUDIT

FORMAT

DCL1-18

Invokes the Audit Analysis Utility, which selectively extracts and displays
information from security audit log files or security archive files. For a
complete description of the Audit Analysis Utility, see the VMS Audit Analysis
Utility Manual.

ANALYZE/ AUDIT [filespec}

ANALYZE/CRASH_DUMP

ANALYZE/CRASH DUMP

FORMAT

Invokes the System Dump Analyzer Utility, which analyzes a system dump
file. The /CRASH_DUMP qualifier is required. For a complete description of
the System Dump Analyzer Utility, see the VMS System Dump Analyzer Utility
Manual.

ANALYZE/CRASH_DUMP filespec

DCL1-19

ANALYZE/DISK_ STRUCTURE

ANALYZE/DISK STRUCTURE

FORMAT

DCL1-20

Invokes the Analyze/Disk_Structure Utility, which does the following:

Checks the readability and validity of Files-11 On-Disk Structure Level 1
and Files-11 On-Disk Structure Level 2 disk volumes.

Reports errors and inconsistencies.

The /DISK_STRUCTURE qualifier is required. For a complete description of
the Analyze/Disk_Structure Utility, see the VMS Analyze!Disk_Structure Utility
Manual.

ANALVZE/DISK_STRUCTURE device-name[.1

ANALYZE/ERROR_LOG

ANALYZE/ERROR LOG

FORMAT

Invokes the Errorlog Report Formatter, which reports selectively the contents
of an error log file. The /ERROR_LOG qualifier is required. For a complete
description of the Error Log Utility, see the VMS Error Log Utility Manual.

ANALYZE/ERROR LOG [filespec[, ... }]

DCL1-21

ANALYZE/IMAGE

ANALYZE/IMAGE

FORMAT

PARAMETER

Analyzes the contents of an executable image file or a shareable image
file and checks for obvious errors in the image file. The /IMAGE qualifier
is required. For general information about image files, see the description
of the linker in the VMS Linker Utility Manual. (Use the ANALYZE/OBJECT
command to analyze the contents of an object file.)

ANALYZE/IMAGE filespec[, ...]

filespec[, ... J
Specifies the name of one or more image files that you want analyzed.
You must specify at least one file name. If you specify more than one file,
separate the file specifications with either commas (,) or plus signs (+).
The default file type is EXE.

Wildcard characters (* and %) are allowed in the file specification.

DESCRIPTION The ANALYZE/IMAGE command provides a description of the components
of an executable image file or shareable image file. It also verifies that
the structure of the major parts of the image file is correct. However, the
ANALYZE/IMAGE command cannot ensure that program execution is
error free.

DCL1-22

If errors are found, the first error of the worst severity is returned. For
example, if a warning (A) and two errors (Band C) are found, the first
error (B) is returned as the image exit status. The image exit status is
placed in the DCL symbol $STATUS at image exit.

The ANALYZE/IMAGE command provides the following information:

• Image type-Identifies whether the image is executable or shareable.

• Image transfer addresses-Identify the addresses to which control is
passed at image execution time.

• Image version-Identifies the revision level of the image.

• Patch information-Indicates whether the image has been patched
(changed without having been recompiled or reassembled and
relinked). If a patch is present, the actual patch code can be displayed.

• Location of the debugger symbol table (DST)-Identifies the location
of the DST in the image file. DST information is present only in
executable images that have been linked with the /DEBUG or the
/TRACEBACK command qualifier.

• Location of the global symbol table (GST)-Identifies the location of the
GST in the image file. GST information is present only in shareable
image files.

QUALIFIERS

ANALYZE/IMAGE

• Image section descriptors (ISD)-Identify portions of the image binary
contents that are grouped in clusters according to their attributes.
An ISD contains information that the image activator needs when
it initializes the address space for an image. For example, an ISD
tells whether the ISD is shareable, whether it is readable or writable,
whether it is based or position independent, and how much memory
should be allocated.

• Fixup vectors-Contain information that the image activator needs to
ensure the position independence of shareable image references.

• System version categories-For an image that is linked against the
system symbol table, displays both the values of the system version
categories for which the image was linked originally and the values
for the system that is currently running. You can use these values to
identify changes in the system since the image was linked last.

The ANALYZE/IMAGE command has command qualifiers and positional
qualifiers. By default, if you do not specify any positional qualifiers (for
example, /GST or /HEADER), the entire image is analyzed. If you do
specify a positional qualifier, the analysis excludes all other positional
qualifiers except the /HEADER qualifier (which is always enabled) and
any qualifier that you request explicitly.

/FIXUP SECTION
Positional qualifier.

Specifies that the analysis should include all information in the fixup
section of the image.

If you specify the /FIXUP _SECTION qualifier after the ANALYZE/IMAGE
command, the fixup section of each image file in the parameter list is
analyzed.

If you specify the /FIXUP _SECTION qualifier after a file specification, only
the information in the fixup section of that image file is analyzed.

/GST
Positional qualifier.

Specifies that the analysis should include all global symbol table records.
This qualifier is valid only for shareable images.

If you specify the /GST qualifier after the ANALYZE/IMAGE command,
the global symbol table records of each image file in the parameter list are
analyzed.

If you specify the /GST qualifier after a file specification, only the global
symbol table records of that file are analyzed.

/HEADER
Positional qualifier.

Specifies that the analysis should include all header items and image
section descriptions. The image header items are analyzed always.

DCL1-23

--- ----- --·------------

ANALYZE/IMAGE

EXAMPLES

/INTERACTIVE
/NOINTERACTIVE (default)
Specifies whether the analysis is interactive. In interactive mode, as each
item is analyzed, the results are displayed on the screen and you are asked
whether you want to continue.

/OUTPUT =filespec
Identifies the output file for storing the results of the image analysis. No
wildcard characters are allowed in the file specification. If you specify a
file type and omit the file name,. the default file name ANALYZE is used.
The default file type is ANL. If you omit the qualifier, the results are
output to the current SYS$0UTPUT device.

/PATCH TEXT
Positional qualifier.

Specifies that the analysis include all patch text records. If you specify the
/PATCH_TEXT qualifier after the ANALYZE/IMAGE command, the patch
text records of each image file in the parameter list are analyzed.

If you specify the /PATCH_TEXT qualifier after a file specification, only
the patch text records of that file are analyzed.

D $ ANALYZE/IMAGE LINEDT

The ANALYZE/IMAGE command in this example produces a description
and an error analysis of the image LINEDT.EXE. Output is sent to the
current SYS$0UTPUT device. By default, the entire image is analyzed.

~ $ ANALYZE/IMAGE/OUTPUT=LIALPHEX/FIXUP_SECTION/PATCH_TEXT LINEDT, ALPHA

DCL1-24

The ANALYZE/IMAGE command in this example produces a description
and an error analysis of the fixup sections and patch text records of
LINEDT.EXE and ALPHA.EXE in file LIALPHEX.ANL. Output is sent to
the file LIALPHEX.ANL.

ANALYZE/MEDIA

ANALYZE/MEDIA

FORMAT

Invokes the Bad Block Locator Utility, which analyzes block-addressable
devices and records the location of blocks that cannot reliably store data.
For a complete description of the Bad Block Locator Utility, see the VMS Bad
Block Locator Utility Manual.

ANALYZE/MEDIA device

DCL1-25

ANALYZE/OBJECT

ANALYZE/OBJECT

FORMAT

Analyzes the contents of an object file and checks for any obvious errors.
The /OBJECT qualifier is required. (Use the ANALYZE/IMAGE command to
analyze the contents of an image file.)

ANALYZE/OBJECT filespec[, ...]

PARAMETER filespec[, ...]
Specifies the object files or object module libraries you want analyzed (the
default file type is OBJ). Use commas (,) or plus signs (+) to separate
file specifications. Wildcard characters (* and %) are allowed· in the file
specification.

DESCRIPTION The ANALYZE/OBJECT command describes the contents of one or more
object modules contained in one or more files. It also performs a partial
error analysis. This analysis determines whether the records in an object
module conform in content, format, and sequence to the specifications of
the VMS Object Language.

DCL1-26

ANALYZE/OBJECT is intended primarily for programmers of compilers,
debuggers, or other software involving VMS object modules. It checks
that the object language records generated by the object modules are
acceptable to the VMS Linker, and it identifies certain errors in the file. It
also provides a description of the records in the object file or object module
library. For more information on the VMS linker and on the VMS Object
Language, refer to the VMS Linker Utility Manual.

The ANALYZE/OBJECT command analyzes the object modules in order,
record by record, from the first to the last record in the object module.
Fields in each record are analyzed in order from the first to the last field
in the record. After the object module is analyzed, you should compare
the content and format of each type of record to the required content and
format of that record as described by the VMS Object Language. This
comparison is particularly important if the analysis output contains a
diagnostic message.

Linking an object module differs from analyzing an object module. Object
language commands are not executed in an analysis, but they are executed
in a linking operation. As a result, even if the analysis is error free, the
linking operation may not be. In particular, the analysis does not check
the following:

• That data arguments in TIR commands are in the correct format.

• That· "Store Data" TIR commands are storing within legal address
limits.

Therefore, as a final check, you should still link an object module whose
analysis is error free.

ANALYZE/OBJECT

If an error is found, however, the first error of the worst severity that is
discovered is returned. For example, if a warning (A) and two errors (B
and C) are signaled, then the first error (B) is returned as the image exit
status, which is placed in the DCL symbol $STATUS at image exit.

ANALYZE/OBJECT uses positional qualifiers; that is, qualifiers whose
function depends on their position in the command line. When a positional
qualifier precedes all of the input files in a command line, it affects all
input files. For example, the following command line requests that the
analysis include the global symbol directory records in files A, B, and C:

$ ANALYZE/OBJECT/GSD A,B,C

Conversely, when a positional qualifier is associated with only one file in
the parameter list, only that file is affected. For example, the following
command line requests that the analysis include the global symbol
directory records in file B only:

$ ANALYZE/OBJECT A,B/GSD,C

Typically, all records in an object module are analyzed. However, when the
/DBG, IEOM, /GSD, /LNK, /MHD, trBT, or trIR qualifier is specified, only
the record types indicated by the qualifiers are analyzed. All other record
types are ignored.

By default, the analysis includes all record types unless you explicitly
request a limited analysis using appropriate qualifiers.

Note: End-of-module (EOM) records and module header (MHD) records
are always analyzed, no matter which qualifiers you specify.

QUALIFIERS /DSG
Positional qualifier.

Specifies that the analysis should include all debugger information records.
If you want the analysis to include debugger information for all files
in the parameter list, insert the /DBG qualifier immediately following
the /OBJECT qualifier. If you want the analysis to include debugger
information selectively, insert the /DBG qualifier immediately following
each of the selected file specifications.

IEOM
Positional qualifier.

Specifies that the analysis should be limited to MHD records, EOM
records, and records explicitly specified by the command. If you want
this to apply to all files in the parameter list, insert the /EOM qualifier
immediately following the /OBJECT qualifier.

To make the /EOM qualifier applicable selectively, insert it immediately
following each of the selected file specifications.

Note: End-of-module records can be EOM or EOMW records. See the
VMS LinkerUtility Manual for more information.

DCL1-27

ANALYZE/OBJECT

DCL1-28

/GSD
Positional qualifier.

Specifies that the analysis should include all global symbol directory (GSD)
records.

If you want the analysis to include GSD records for each file in the
parameter list, specify the /GSD qualifier immediately following the
/OBJECT qualifier.

If you want the analysis to include GSD records selectively, insert
the /GSD qualifier immediately following each of the selected file
specifications.

/INCLUDE[=(module[, ...])]
When the specified file is an object module library, use this qualifier to list
selected object modules within the library for analysis. If you omit the list
or specify an asterisk (*), all modules are analyzed. If you specify only
one module, you can omit the parentheses.

/INTERACTIVE
/NOINTERACTIVE (default)
Controls whether the analysis occurs interactively. In interactive mode, as
each record is analyzed, the results are displayed on the screen, and you
are asked whether you want to continue.

/LNK
Positional qualifier.

Specifies that the analysis should include all link option specification
(LNK) records.

If you want the analysis to include LNK records for each file in the
parameter list, specify the /LNK qualifier immediately following the
/OBJECT qualifier.

If you want the analysis to include LNK records selectively, insert
the /LNK qualifier immediately following each of the selected file
specifications.

IMHO
Positional qualifier.

Specifies that the analysis should be limited to MHD records, EOM
records, and records explicitly specified by the command. If you want
this analysis to apply to all files in the parameter list, insert the /MHD
qualifier immediately following the /OBJECT qualifier.

To make the /MHD qualifier applicable selectively, insert immediately
following each of the selected file specifications.

/OUTPUT[=filespec]
Directs the output of the object analysis (the default is SYS$0UTPUT).
If you specify a file type and omit the file name, the default file name
ANALYZE is used. The default file type is ANL.

No wildcard characters are allowed in the file specification.

EXAMPLES

ANALYZE/OBJECT

nsT
Positional qualifier.

Specifies that the analysis should include all module traceback (TBT)
records.

If you want the analysis to include TBT records for each file in the
parameter list, specify the !I'BT qualifier immediately following the
/OBJECT qualifier.

If you want the analysis to include TBT records selectively, insert the !I'BT
qualifier immediately following each of the selected file specifications.

ff/R
Positional qualifier.

Specifies that the analysis should include all text information and
relocation (TIR) records.

If you want the analysis to include TIR records for each file in the
parameter list, specify the !I'IR qualifier immediately following the
/OBJECT qualifier.

If you want the analysis to include TIR records selectively, insert the !I'IR
qualifier immediately following the selected file specifications.

D $ ANALYZE/OBJECT/INTERACTIVE LINEDT

In this example, the ANALYZE/OBJECT command produces a description
and a partial error analysis of the object file LINEDT.OBJ. By default,
all types of records are analyzed. Output is to the terminal, because the
/INTERACTIVE qualifier has been used. As each item is analyzed, the
utility displays the results on the screen and asks if you want to continue.

~ $ ANALYZE/OBJECT/OUTPUT=LIOBJ/DBG LINEDT

In this example, the ANALYZE/OBJECT command analyzes only the
debugger information records of the file LINEDT.OBJ. Output is to the file
LIOBJ.ANL.

DCL1-29

ANALYZE/PROCESS_DUMP

ANALYZE/PROCESS DUMP

FORMAT

Invokes the VMS Debugger to analyze a process dump file that was created
when an image failed during execution. (Use the /DUMP qualifier with the
RUN or the SET PROCESS command to generate a dump file.) For a
complete description of the debugger (including information about the DEBUG
command), see the VMS Debugger Manual.

Requires read (R) access to the dump file.

ANALYZE/PROCESS_DUMP dump-file

PARAMETER dump-file
Specifies the dump file to be analyzed with the debugger.

DESCRIPTION The ANALYZE/PROCESS_DUMP command examines the duJnp file of
an image that failed during execution. The VMS Debugger is invoked
automatically. To cause a dump file to be created for a process, you
must use the /DUMP qualifier with the RUN command when invoking
the image, or you must use the SET PROCESS/DUMP command before
invoking the image.

QUALIFIERS /FULL

DCL1-30

Displays all known information about the failing process.

/IMAGE=image-name
/NO/MAGE
Specifies the image whose symbols are to be used in analyzing the dump.
If you use the /NOIMAGE qualifier, no symbols are taken from any image.
By default, symbols are taken from the image with the same name as the
image that was running at the time of the dump.

/INTERACTIVE
/NOINTERACTIVE (default)
Causes the display of information to pause when your terminal screen is
filled. Press the Return key to display additional information. By default,
the display is continuous.

/MISCELLANEOUS
Displays all the miscellaneous information in the dump.

/OUTPUT :filespec
Writes the information to the specified file. By default, the information is
written to the current SYS$0UTPUT device. No wildcard characters are
allowed in the file specification.

ANALYZE/PROCESS_DUMP

!RELOCATION
Displays the addresses to which data structures saved in the dump are
mapped in PO space. (Examples of such data structures are the stacks.)
The data structures in the dump must be mapped into PO space so that
the debugger can use those data structures in Pl space.

EXAMPLE

$ ANALYZE/PROCESS/FULL ZIPLIST

RO 00018292 Rl 8013DE20 R2 = 7FFE6A40 R3 = 7FFE6A98
R4 8013DE20 RS 00000000 R6 = 7FFE7B9A R7 = OOOOFOOO
RS 00000000 R9 00000000 RlO = 00000000 Rll = 00000000
SP 7FFAEF44 AP 7FFAEF48 FP = 7FFAEF84
FREE PO VA 00001600 FREE Pl VA 7FFAC600
Active ASTs 00 , Enabled ASTs OF
Current Privileges FFFFFF80 1010Cl00
Event Flags 00000000 EOOOOOOO
Buffered I/O count/limit 6/6
Direct I/O count/limit 6/6
File count/limit 27/30
Process count/limit 0/0
Timer queue count/limit 10/10
AST count/limit 6/6
Enqueue count/limit 30/30
Buffered I/O total 7 Direct I/O total 18
Link Date 27-DEC-1990 15:02:00.48 Patch Date 17-NOV-1990 00:01:53.71
ECO Level 0030008C 00540040 00000000 34303230
Kernel stack 00000000 pages at 00000000 moved to 00000000
Exec stack 00000000 pages at 00000000 moved to 00000000
Vector page 00000001 page at 7FFEFEOO moved to 00001600
PIO (RMS) area 00000005 pages at 7FFE1200 moved to 00001800
Image activator context 00000001 page at 7FFE3400 moved to 00002200
User writable context OOOOOOOA pages at 7FFE1COO moved to 00002400

Creating a subprocess
VAX DEBUG Version 5.4

DBG>

This example shows the output of the ANALYZE/PROCESS command
when used with the /FULL qualifier. The file specified, ZIPLIST, contains
the dump of a process that encountered a fatal error. The DBG> prompt
indicates that the debugger is ready to accept commands.

DCL1-31

ANALVZE/RMS_FILE

ANALYZE/RMS FILE

FORMAT

DCL1-32

Invokes the Analyze/RMS_File Utility, which is used to inspect and analyze
the internal structure of a VMS RMS file. The /RMS_FILE qualifier is required.
For a complete description of the Analyze/RMS_File Utility, see the VMS
Analyze!RMS_File Utility Manual.

ANALYZE/RMS FILE filespec[, ...]

ANALYZE/SYSTEM

ANALYZE/SYSTEM

FORMAT

Invokes the System Dump Analyzer Utility, which analyzes a running system.
The /SYSTEM qualifier is required. For a complete description of the System
Dump Analyzer Utility, see the VMS System Dump Analyzer Utility Manual.

ANALYZE/SYSTEM

DCL1-33

--- ----- -------~-~J~--------------------

APPEND

APPEND

FORMAT

Adds the contents of one or more specified input files to the end of the
specified output file.

APPEND input-filespec[, ...] output-filespec

PARAMETERS input-filespec[, ...]
Specifies the names of one or more input files to be appended. Multiple
input files are appended to the output file in the order specified. If you
specify more than one input file, separate the file specifications with either
commas (,) or plus signs (+).

Wildcard characters (* and %) are allowed in the input file specifications.

output-filespec
Specifies the name of the file to which the input files will be appended.

You must specify at least one field in the output file specification. If you
do not specify a device or directory, the APPEND command uses the
current default device and directory. Other unspecified fields default to the
corresponding fields of the first input file specification.

If you use the asterisk (*) wildcard character in any fields of the output
file specification, the APPEND command uses the corresponding field of
the input file specification. If you are appending more than one input file,
the APPEND command uses the corresponding fields from the first input
file.

DESCRIPTION The APPEND command is similar in syntax and function to the COPY
command. Normally, the APPEND command adds the contents of one or
more files to the end of an existing file without incrementing the version
number. The /NEW_ VERSION qualifier causes the APPEND command to
create a new output file if no file with that name exists.

Note that there are special considerations for using the APPEND
command with DECwindows compound documents. For more information,
see the Guide to VMS File Applications.

QUALIFIERS /ALLOCATION:number-of-blocks

DCL1-34

Forces the initial allocation of the output file to the specified number
of 512-byte blocks. If you do not specify the /ALLOCATION qualifier,
or if you specify it without the number-of-blocks parameter, the initial
allocation of the output file is determined by the size of the input file.

The allocation size is applied only if a new file is actually created by using
the /NEW_ VERSION qualifier.

APPEND

/BACKUP
Modifies the time value specified with the /BEFORE or the /SINCE
qualifier. The /BACKUP qualifier selects files according to the dates
of their most recent backups. This qualifier is incompatible with the
/CREATED, /EXPIRED, and /MODIFIED qualifiers, which also allow you
to select files according to time attributes. If you specify none of these four
time qualifiers, the default is the /CREATED qualifier.

IBEFORE[:time]
Selects only those files dated prior to the specified time. You can specify
time as an absolute time, as a combination of absolute and delta times,
or as one of the following keywords: TODAY (default), TOMORROW, or
YESTERDAY. Specify one of the following qualifiers with the /BEFORE
qualifier to indicate the time attribute to be used as the basis for selection:
/BACKUP, /CREATED (default), /EXPIRED, or /MODIFIED.

For complete information on specifying time values, see the VMS DCL
Concepts Manual.

/BY_ OWNER[:uic]
Selects only those files whose owner user identification code (UIC) matches
the specified owner UIC. The default UIC is that of the current process.

Specify the UIC by using standard UIC format as described in the VMS
DCL Concepts Manual.

/CONFIRM
INOCONFIRM (default)
Controls whether a request is issued before each append operation to
confirm that the operation should be performed on that file. The following
responses are valid:

YES

TRUE

NO

FALSE

0

l Return I

QUIT

Ctrl/Z

ALL

You can use any combination of uppercase and lowercase letters for word
responses. Word responses can be abbreviated to one or more letters
(for example, T, TR, or TRU for TRUE), but these abbreviations must be
unique. Affirmative answers are YES, TRUE, and 1. Negative answers
include: NO, FALSE, 0, and pressing the Return key. Entering QUIT or
pressing Ctrl/Z indicates that you want to stop processing the command at
that point. When you respond by entering ALL, the command continues
to process, but no further prompts are given. If you type a response other
than one of those in the list, DCL issues an error message and redisplays
the prompt.

/CONTIGUOUS
/NOCONTIGUOUS
Specifies that the output file must occupy physically contiguous disk
blocks. By default, the APPEND command creates an output file in the
same format as the corresponding input file and does not report an error
if not enough space exists for a contiguous allocation. This qualifier is
relevant only with the /NEW_ VERSION qualifier.

DCL1-35

APPEND

DCL1-36

If an input file is contiguous, the APPEND command attempts to create a
contiguous output file, but does not report an error if there is not enough
space. If you append multiple input files of different formats, the output
file may or may not be contiguous. Use the /CONTIGUOUS qualifier to
ensure that the output file is contiguous.

/CREATED (default)
Modifies the time value specified with the /BEFORE or the /SINCE
qualifier. The /CREATED qualifier selects files based on their dates of
creation. This qualifier is incompatible with the /BACKUP, /EXPIRED,
and /MODIFIED qualifiers, which also allow you to select files according
to time attributes. If you specify none of these four time qualifiers, the
default is the /CREATED qualifier.

IEXCLUDE=(filespec[, ...])
Excludes the specified files from the append operation. You can include
a directory but not a device in the file specification. Wildcard characters
(* and %) are allowed in the file specification. However, you cannot use
relative version numbers to exclude a specific version. If you specify only
one file, you can omit the parentheses.

/EXPIRED
Modifies the time value specified with the /BEFORE or the /SINCE
qualifier. The /EXPIRED qualifier selects files according to their expiration
dates. (The expiration date is set with the SET FILE/EXPIRATION_DATE
command.) The /EXPIRED qualifier is incompatible with the /BACKUP,
/CREATED, and /MODIFIED qualifiers, which also allow you to select
files according to time attributes. If you specify none of these four time
qualifiers, the default is the /CREATED qualifier.

IEXTENSION=number-of-blocks
Specifies the number of blocks to be added to the output file each time the
file is extended. When you specify the /EXTENSION qualifier, the /NEW_
VERSION qualifier is assumed and need not be typed on the command
line. This qualifier is relevant only with the /NEW_ VERSION qualifier.

The extension value is applied only if a new file is actually created.

/LOG
/NOLOG (default)
Controls whether the APPEND command displays the file specifications
of each file appended. If the /LOG qualifier is specified, the command
displays the file specifications of the input and output files as well as the
number of blocks or records appended after each append operation.

/MODIFIED
Modifies the time value specified with the /BEFORE or the /SINCE
qualifier. The /MODIFIED qualifier selects files according to the dates
on which they were last modified. This qualifier is incompatible with the
/BACKUP, /CREATED, and /EXPIRED qualifiers, which also allow you to
select files according to time attributes. If you specify none of these four
time modifiers, the default is the /CREATED qualifier.

EXAMPLES

APPEND

/NEW VERSION
/NONEW_ VERSION (default)
Controls whether the APPEND command creates a new output file if the
specified output file does not exist. (By default, the specified output file
already exists.) If the specified output file does not already exist, use the
/NEW_ VERSION qualifier to create a new output file. If the output file
does exist, the /NEW_ VERSION qualifier is ignored and the input file is
appended to the output file.

IPROTECTION=(ownership[:access}[, ... })
Specifies protection for the output file. Specify ownership as system (S),
owner (0), group (G), or world (W) and access as read (R), write (W),
execute (E), or delete (D). The default protection, including any protection
attributes not specified, is that of the existing output file. If no output file
exists, the current default protection applies. This qualifier is relevant
only with the /NEW_ VERSION qualifier.

For more information on specifying protection codes, see the VMS DCL
Concepts Manual.

/READ_CHECK
/NOREAD_CHECK (default)
Reads each record in the input files twice to verify that it has been read
correctly.

/SINCE[=time]
Selects only those files dated after the specified time. You can specify
time as an absolute time, as a combination of absolute and delta times,
or as one of the following keywords: TODAY (default), TOMORROW, or
YESTERDAY. Specify one of the following qualifiers with the /SINCE
qualifier to indicate the time attribute to be used as the basis for selection:
/BACKUP, /CREATED (default), /EXPIRED, or /MODIFIED.

For complete information on specifying time values, see the VMS DCL
Concepts Manual.

/WRITE CHECK
/NOWRITE_ CHECK (default)
Reads each record in the output file after the record is written to
verify that it was appended successfully and that the output file can
subsequently be read without error.

D $ APPEND TEST3. DAT TE STALL. DAT

The APPEND command appends the contents of the file TEST3.DAT from
the default disk and directory to the file TESTALL.DAT, also located on
the default disk and directory.

DCL1-37

APPEND

I $ APPEND/NEW_VERSION/LOG *.TXT MEM.SUM
%APPEND-I-CREATED, USE$: [MAL]MEM.SUM;l created
%APPEND-S-COPIED, USE$:[MAL]A.TXT;2 copied to USE$: [MAL]MEM.SUM;l (1 block)
%APPEND-S-APPENDED, USE$: [MAL]B.TXT;3 appended to USE$: [MAL]MEM.SUM;l (3 records)
%APPEND-S-APPENDED, USE$: [MAL)G.TXT;7 appended to USE$: [MAL)MEM.SUM;l (51 records)

The APPEND command appends all files with file types of TXT to a
file named MEM.SUM. The /LOG qualifier requests a display of the
specifications of each input file appended. If the file MEM.SUM does not
exist, the APPEND command creates it, as the output shows. The number
of blocks or records shown in the output refers to the source file and not to
the target file total.

li1 $ APPEND/LOG A.DAT, B.MEM C.*
%APPEND-S-APPENDED, USE$: [MAL)A.DAT;4 appended to USE$: [MAL)C.DAT;4 (2 records)
%APPEND-S-APPENDED, USE$: [MAL]B.MEM;5 appended to USE$: [MAL)C.DAT;4 (29 records)

The APPEND command appends the files A.DAT and B.MEM to the file
C.DAT, which must already exist.

El $ APPEND/LOG A.* B.*
%APPEND-S-APPENDED, USE$: [MAL)A.DAT;5 appended to USE$: [MAL]B.DAT;l (5 records)
%APPEND-S-APPENDED, USE$: [MAL)A.DOC;2 appended to USE$: [MAL)B.DAT;l (1 record)

Both the input and output file specifications contain wildcard characters
in the file type field. The APPEND command appends each file with a file
name of A to an existing file with B as its file name. The file type of the
first input file located determines the output file type.

m $ APPEND BOSTON"JOHN_SMITH YANKEE"::DEMOOl.DAT, DEM02.DAT
$ To: DALLAS::DISKl: [MODEL.TEST]TEST.DAT

DCL1-38

This APPEND command adds the contents of the files DEMOl.DAT and
DEM02.DAT at remote node BOSTON to the end of the file TEST.DAT at
remote node DALLAS.

ASSIGN

FORMAT

ASSIGN

Creates a logical name and assigns an equivalence string, or a list of strings,
to the specified logical name. If you specify an existing logical name, the new
equivalence name replaces the existing equivalence name.

ASSIGN equivalence-name{, ...] logical-name[:]

PARAMETERS equivalence-name[, ...]
Specifies a character string of 1 to 255 characters. Defines the equivalence
name, usually a file specification, device name, or other logical name, to
be associated with the logical name in the specified logical name table. If
the string contains other than uppercase alphanumeric, dollar sign ($),
or underscore (_) characters, enclose it in quotation marks (11 11

). Use
two consecutive quotation marks ("") to denote an actual quotation mark
within the string. Specifying more than one equivalence name for a logical
name creates a search list.

When you specify an equivalence name that will be used as a file
specification, you must include the punctuation marks (colons [:],brackets
[[]], and periods [.]) that would be required if the equivalence name were
used directly as a file specification. Therefore, if you specify a device name
as an equivalence name, terminate the device name with a colon.

The ASSIGN command allows you to assign the same logical name to more
than one equivalence name. When you specify more than one equivalence
name for a logical name, you create a search list. For more information on
search lists, see the VMS DCL Concepts Manual.

logical-name[:]
Specifies the logical name string, which is a character string containing up
to 255 characters. You choose a logical name to represent the equivalence
name in the specified logical name table.

If the string contains other than uppercase alphanumeric, dollar sign, or
underscore characters, enclose it in quotation marks. Use two consecutive
quotation marks to denote an actual quotation mark. If you terminate the
logical-name parameter with a colon, the system removes the colon before
placing the name in a logical name table. (This differs from the DEFINE
command, which saves the colon.) If the logical name is to be entered into
the process directory (LNM$PROCESS_DIRECTORY) or system directory
(LNM$SYSTEM_DIRECTORY) logical name tables, then the name may
only have from 1 to 31 alphanumeric characters (including the dollar sign
and underscore). By default, the logical name is placed in the process
logical name table.

If the logical name contains any characters other than alphanumeric
characters, the dollar sign, or the underscore, enclose the name in
quotation marks. If the logical name contains quotation marks, enclose
the name in quotation marks and use two consecutive quotation marks in
the places where you want one set of quotation marks to occur. Note that
if you enclose a name in quotation marks, the case of alphabetic characters
is preserved.

DCL1-39

ASSIGN

DESCRIPTION The ASSIGN command creates an entry in a logical name table by defining
a logical name to stand for one or more equivalence names. An equivalence
name can be a device name, another logical name, a file specification, or
any other string.

To specify the logical name table where you want to enter a logical
name, use the /PROCESS, /JOB, /GROUP, /SYSTEM, or /TABLE
qualifier. If you enter more than one of these qualifiers, only the last
one entered is accepted. If you do not specify a table, the default is
/TABLE=LNM$PROCESS (or /PROCESS).

To specify the access mode of the logical name you are creating, use the
/USER_MODE, the /SUPERVISOR_MODE, or the /EXECUTIVE_MODE
qualifier. If you enter more than one of these qualifiers, only the last
one entered is accepted. If you do not specify an access mode, then a
supervisor-mode name is created. You can create a logical name in the
same mode as the table in which you are placing the name or in an outer
mode. (User mode is the outermost mode; executive mode is the innermost
mode.)

You can enter more than one logical name with the same name in the
same logical name table, as long as each name has a different access
mode. (However, if an existing logical name within a table has the NO_
ALIAS attribute, you cannot use the same name to create a logical name
in an outer mode in this table.)

If you create a logical name with the same name, in the same table, and
in the same mode as an existing name, the new logical name assignment
replaces the existing assignment.

You can also use the DEFINE command to create logical names. To delete
a logical name from a table, use the DEASSIGN command.

Note: Avoid assigning a logical name that matches the file name of
an executable image in SYS$SYSTEM:. Such an assignment will
prohibit you from invoking that image.

For additional information on how to create and use logical names, see the
VMS DCL Concepts Manual.

QUALIFIERS /EXECUTIVE MODE

DCL1-40

Requires SYSNAM (system logical name) privilege.

Creates an executive-mode logical name. If you specify executive mode,
but do not have SYSNAM privilege, a supervisor-mode logical name is
created. The mode of the logical name must be the same as or external to
(less privileged than) the mode of the table in which you are placing the
name.

ASSIGN

/GROUP
Requires SYSPRV (system privilege) or GRPNAM (group logical
name) privilege.

Places the logical name in the group logical name table. Other users who
have the same group number in their user identification codes (UICs) can
access the logical name. The /GROUP qualifier is synonymous with the
/TABLE=LNM$GROUP qualifier.

/JOB
Places the logical name in the jobwide logical name table. All processes
within the same job tree as the process creating the logical name can
access the logical name. The /JOB qualifier is synonymous with the
/TABLE=LNM$JOB qualifier.

/LOG (default)
/NO LOG
Displays a message when a new logical name supersedes an existing
name.

/NAME_ATTRIBUTES[=(keyword[, ...])]
Specifies the attributes for a logical name. By default, no attributes are
set. You can specify the following keywords for attributes:

CONFINE

NO_ALIAS

Does not copy the logical name into a spawned subprocess; this
keyword is relevant only for logical names in a private table.

Prohibits creation of logical names with the same name in an outer
(less privileged) access mode within the specified table. If another
logical name with the same name and an outer access mode already
exists in this table, the name is deleted.

If you specify only one keyword, you can omit the parentheses. Only the
attributes you specify are set.

/PROCESS (default)
Places the logical name in the process logical name table. The /PROCESS
qualifier is synonymous with the frABLE=LNM$PROCESS qualifier.

/SUPERVISOR_MODE (default)
Creates a supervisor-mode logical name in the specified table.

/SYSTEM
Requires SYSNAM (system logical name) or SYSPRV (system
privilege) privilege.

Places the logical name in the system logical name table. All system users
can access the logical name. The /SYSTEM qualifier is synonymous with
the /TABLE=LNM$SYSTEM qualifier.

DCL1-41

ASSIGN

DCL1-42

/TABLE=name
Requires write (W) access to the table if the table is shareable.

Specifies the logical name table in which the logical name is to be entered.
You can use the trABLE qualifier to specify a user-defined logical name
table (created with the CREATE/NAME_TABLE command); to specify the
process, job, group, or system logical name tables; or to specify the process
or system logical name directory tables.

If you specify the table name using a logical name that has more
than one translation, the logical name is placed in the first table
found. For example, if you specify ASSIGNtrABLE=LNM$FILE_DEV
and LNM$FILE_DEV is equated to LNM$PROCESS, LNM$JOB,
LNM$GROUP, and LNM$SYSTEM, then the logical name is placed in
LNM$PROCESS.

If you do not explicitly specify the trABLE qualifier, the default is the
trABLE=LNM$PROCESS qualifier.

/TRANSLATION_ATTRIBUTES[=(keyword[, ...])]
Equivalence-name qualifier.

Specifies attributes of the equivalence-name parameter. Possible keywords
are as follows:

CONCEALED Indicates that the equivalence string is the name of a concealed
device.

When a concealed device name is defined, the system displays the
logical name, rather than the equivalence string, in messages that
refer to the device. If you specified the CONCEALED attribute, then
the equivalence string must be a physical device name.

TERMINAL Indicates that the equivalence string should not be translated
iteratively; logical name translation should terminate with the current
equivalence string.

If you specify only one keyword, you can omit the parentheses. Only the
attributes you specify are set.

Note that different equivalence strings of the same logical name can have
different translation attributes specified.

/USER_MODE
Creates a user-mode logical name in the specified table.

If you specify a user-mode logical name in the process logical name table,
that logical name is used for the execution of a single image only; user
mode entries are deleted from the logical name table when any image
executing in the process exits; that is, after any DCL command that
executes an image or user program completes execution.

ASSIGN

EXAMPLES

D $ ASSIGN $DISK1: [ACCOUNTS .MEMOS] MEMOSD

The ASSIGN command in this example equates the partial file
specification $DISK1:[ACCOUNTS.MEMOSJ to the logical name
MEMOSD.

m $ ASSIGN/USER_MODE $DISK1: [ACCOUNTS.MEMOS]WATER.TXT TMl

The ASSIGN command in this example equates the logical name TMl to a
file specification. After the next image runs, the logical name is deassigned
automatically.

i] $ ASSIGN XXXl: [CHARLES] CHARLIE
$ PRINT CHARLIE:TEST.DAT
Job 274 entered on queue SYS$PRINT

The ASSIGN command in this example associates the logical name
CHARLIE with the directory name [CHARLES] on the disk XXXl.
Subsequent references to the logical name CHARLIE result in the
correspondence between the logical name CH.ARLIE and the disk and
directory specified. The PRINT command queues a copy of the file
XXXl:[CHARLESJTEST.DAT to the system printer.

!I $ ASSIGN YYY2: TEMP:
$ SHOW LOGICAL TEMP

"TEMP" = "YYY2:" (LNM$PROCESS TABLE)
$ DEASSIGN TEMP -

The ASSIGN command in this example equates the logical name TEMP
to the device YYY2. TEMP is created in supervisor mode and placed in
the process logical name table. The SHOW LOGICAL command verifies
that the logical name assignment was made. Note that the logical name
TEMP was terminated with a colon in the ASSIGN command, but that
the command interpreter deleted the colon before placing the name in
the logical name table. Thus, you can specify TEMP without a colon in
the subsequent DEASSIGN command. You should omit the colon in the
SHOW LOGICAL command (for example, SHOW LOGICAL TEMP).

ji $ MOUNT TTTl: MASTER TAPE
$ ASSIGN TAPE:NAMES.DAT PAYROLL
$ RUN PAYROLL

The MOUNT command in this example establishes the logical name TAPE
for the device TTTl, which has the volume labeled MASTER mounted
on it. The ASSIGN command equates the logical name PAYROLL with
the file named NAMES.DAT on the logical device TAPE. Thus, an OPEN
request in a program referring to the logical name PAYROLL results
in the correspondence between the logical name PAYROLL and the file
NAMES.DAT on the tape whose volume label is MASTER.

DCL1-43

ASSIGN

$ CREATE/NAME TABLE TABLEl
$ ASSIGN/TABLE=LNM$PROCESS DIRECTORY TABLEl,-

$ LNM$PROCESS,LNM$JOB,LNM$GROUP,LNM$SYSTEM LNM$FILE DEV
$ ASSIGN/TABLE=TABLEl - -
_$ /TRANSLATION_ATTRIBUTES=CONCEALED DBAl: WORK DISK

The CREATE/NAME_TABLE command in this example creates the process
private logical name table TABLEl.

The first ASSIGN command ensures that TABLEl is searched first in any
logical name translation of a file specification or device name (because
TABLE 1 is the first item in the equivalence string for the logical name
LNM$FILE_DEV, which determines the default search sequence of logical
name tables whenever a device or file specification is translated).

The second ASSIGN command assigns the logical name WORK_DISK to
the physical device DBAl, and places the name in TABLEl. The logical
name has the concealed attribute. Therefore, the logical name WORK_
DISK will be displayed in system messages.

i $ ASSIGN/TABLE=LNM$PROCESS/TABLE=LNM$GROUP DBAO: SYSFILES
$ SHOW LOGICAL SYSFILES

"SYSFILES" = "DBAO:" (LNM$GROUP_000240)

The ASSIGN command in this example contains conflicting qualifiers.
When you specify conflicting qualifiers, the ASSIGN command uses the
last qualifier specified. The response from the SHOW LOGICAL command
indicates that the name was placed in the group logical name table.

[i) $ ASSIGN/TABLE=LNM$GROUP 'F$TRNLNM ("SYS$COMMAND")' TERMINAL
%DCL-I-SUPERSEDE, previous value of TERMINAL has been superseded

The ASSIGN command in this example uses the lexical function
F$TRNLNM to translate the logical name SYS$COMMAND and use
the result as the equivalence name for the logical name TERMINAL. The
message from the ASSIGN command indicates that an entry for the logical
name TERMINAL already existed in the group logical name table, and
that the new entry has replaced the previous one.

If this command is used in a LOGIN.COM file, the entry for TERMINAL
will be redefined at the beginning of each terminal session. The current
process and any subprocesses it creates can execute images that use the
logical name TERMINAL to write messages to the current terminal device.

[!] $ ASSIGN DALLAS: :DMAl: DATA

DCL1-44

The ASSIGN command in this example associates the logical name DATA
with the device specification DMAl on remote node DALLAS. Subsequent
references to the logical name DATA result in references to the disk on the
remote node.

ASSIGN

II] $ CREATE AVERAGE. COM
$ ASSIGN/USER MODE SYS$COMMAND: SYS$INPUT
$ EDIT/EDT AVERAGE.FOR
$ FORTRAN AVERAGE
$ LINK AVERAGE
$ RUN AVERAGE
87
80
90
9999
$ EXIT
I Ctrl/Z I
$ @AVERAGE. COM

The CREATE command in this example creates the command procedure
AVERAGE.COM. Then the command procedure is executed.

The command procedure uses the ASSIGN command with the /USER_
MODE qualifier to change temporarily the value of SYS$INPUT. When the
EDT editor is invoked, it accepts input from the terminal. This allows you
to create or modify the program AVERAGE.FOR interactively.

When you exit from EDT, SYS$INPUT is reassigned to its original value
(the input stream provided by the command procedure). Thus, when the
program AVERAGE.FOR is ready to accept input, it looks for that input in
the command procedure.

DCL1-45

ASSIGN/MERGE

ASSIGN/MERGE

FORMAT

Removes all jobs from one queue and merges them into another existing
queue. This command does not affect jobs that are executing.

Requires OPER (operator) privilege or execute {E) access to both
queues.

ASSIGN/MERGE target-queue[:] source-queue[:]

PARAMETERS target-Queue[:]
Specifies the name of the queue into which the jobs are being merged.

source-queue[:]
Specifies the name of the queue from which the jobs are being removed.

DESCRIPTION The ASSIGN/MERGE command removes the pending jobs in one queue
and places them in another queue. This command does not affect any
executing jobs in either the target queue or the source queue. Jobs
currently running in the source queue complete in that queue. This
command is generally used with printer queues, although it can be used
with batch queues.

EXAMPLE

The ASSIGN/MERGE command is particularly useful when a line printer
malfunctions. By entering the ASSIGN/MERGE command, you can
reroute existing jobs to a different printing device. To perform the merge
operation without losing or disrupting any jobs, stop the source queue
with the STOP/QUEUE/NEXT command. Then enter the STOP/QUEUE
/REQUEUE command to ensure that the current job on the source queue
is requeued for processing on the target queue. (If the STOP/QUEUE
/REQUEUE command fails to requeue the job, use the STOP/QUEUE
/RESET command to regain control of the queue.) Once you enter the
STOP commands, enter the ASSIGN/MERGE command.

$ STOP/QUEUE/NEXT LPBO
$ STOP/QUEUE/REQUEUE=LPAO LPBO
$ ASSIGN/MERGE LPAO LPBO

DCL1-46

In this example, the STOP/QUEUE/NEXT command prevents another job
from executing on queue LPBO. The STOP/QUEUE/REQUEUE command
requeues the current job running on LPBO to the target queue LPAO. The
ASSIGN/MERGE command removes the remaining jobs from the LPBO
printer queue and places them in the LPAO printer queue.

ASSIGN/QUEUE

ASSIGN/QUEUE

FORMAT

Assigns, or redirects, a logical queue to a single execution queue. The
ASSIGN/QUEUE command can be used only with printer or terminal queues.

Requires OPER {operator) privilege or execute (E) access to both
queues.

ASSIGN/QUEUE queue-name[.1
logical-queue-name[.1

PARAMETERS queue-name[:]
Specifies the name of the execution queue. The queue cannot be a logical
queue, a generic queue, or a batch queue.

logical-queue-name[:]
Specifies the name of the logical queue.

DESCRIPTION The ASSIGN/QUEUE command sets up a one-to-one correspondence
between a logical queue and an execution queue. Jobs submitted to the
logical queue are always queued to the specified execution queue for
eventual printing.

EXAMPLES

When you enter the ASSIGN/QUEUE command, the logical queue cannot
be running.

Once you initialize a logical queue, use the ASSIGN/QUEUE command to
associate the logical queue with an existing execution queue. You must
perform the following tasks to set up a logical queue:

1 Initialize the logical queue with the INITIALIZE/QUEUE command.
(Do not use the /START qualifier.)

2 Assign the logical queue name to an existing execution queue.

3 Start the logical queue with the START/QUEUE command.

After you enter the START/QUEUE command for the logical queue, jobs
can be sent to the logical queue for processing.

D $ INITIALIZE/QUEUE/DEFAULT=FLAG=ONE/START LPAO
$ INITIALIZE/QUEUE TEST QUEUE
$ ASSIGN/QUEUE LPAO TEST QUEUE
$ START/QUEUE TEST_QUEUE-

This example first initializes and starts the printer queue LPAO. The
LPAO queue is set to have a flag page precede each job. The second
INITIALIZE/QUEUE command creates the logical queue TEST_QUEUE.

DCL1-47

ASSIGN/QUEUE

The ASSIGN/QUEUE command assigns the logical queue TEST_QUEUE
to the printer queue LPAO. The START/QUEUE command starts the
logical queue.

~ $ INITIALIZE/QUEUE/START LPBO

DCL1-48

The ASSIGN/QUEUE command is not needed in this example because a
logical queue is not being initialized. A printer queue is being initialized;
LPBO is the name of a line printer. After you enter the INITIALIZE
/QUEUE/START command, jobs can be queued to LPBO for printing.

ATTACH

FORMAT

PARAMETER

DESCRIPTION

QUALIFIER

ATTACH

Transfers control from your current process (which then hibernates) to the
specified process.

The ATTACH and SPAWN commands cannot be used if your terminal has
an associated mailbox.

ATTACH [process-name]

process-name
Specifies the name of a parent process or spawned subprocess to which
control passes. The process must already exist, be part of your current job,
and share the same input stream as your current process. However, the
process cannot be your current process or a subprocess created with the
/NOWAIT qualifier.

Process names can contain from 1 to 15 alphanumeric characters. If a
connection to the specified process cannot be made, an error message is
displayed.

The process-name parameter is incompatible with the /IDENTIFICATION
qualifier.

The ATTACH command allows you to connect your input stream to another
process. You can use the ATTACH command to change control from one
subprocess to another subprocess or to the parent process.

When you enter the ATTACH command, the parent or "source" process is
put into hibernation, and your input stream is connected to the specified
destination process. You can use the ATTACH command to connect to a
subprocess that is part of a current job left hibernating as a result of the
SPAWN/WAIT command or another ATTACH command as long as the
connection is valid. (No connection can be made to the current process,
to a process that is not part of the current job, or to a process that does
not exist. If any of these connections are attempted, an error message is
displayed.)

You can also use the ATTACH command in conjunction with the SPAWN
/WAIT command to return to a parent process without terminating the
created subprocess. See the description of the SPAWN command for more
details.

/IDENTIFICATION:pid
Specifies the process identification (PID) of the process to which
terminal control will be transferred. Leading zeros can be omitted.
The /IDENTIFICATION qualifier is incompatible with the process-name
parameter.

DCL1-49

ATTACH

EXAMPLES

D $ ATTACH JONES 2

If you omit the /IDENTIFICATION qualifier, you must specify a process
name.

The ATTACH command transfers the terminal's control to the subprocess
JONES_2.

m $ ATTACH/IDENTIFICATION=30019

DCL1-50

The ATTACH command switches control from the current process
to a process having the PID 30019. Notice that because the
/IDENTIFICATION qualifier is specified, the process-name parameter
is omitted.

BACKUP

FORMAT

BACKUP

Invokes the Backup Utility (BACKUP) to perform one of the following BACKUP
operations:

Make copies of disk files.

Save disk files as data in a file created by BACKUP on disk or magnetic
tape. (Files created by BACKUP are called save sets.)

Restore disk files from a BACKUP save set.

Compare disk files or files in a BACKUP save set with other disk files.

• List information about files in a BACKUP save set to an output device or
file.

Note that standalone BACKUP cannot be invoked this way, but must be
bootstrapped in order to run. For a complete description of BACKUP and
information on standalone BACKUP, see the VMS Backup Utility Manual.

BACKUP input-specifier output-specifier

DCL1-51

CALL

CALL

FORMAT

PARAMETERS

DCL1-52

Transfers control to a labeled subroutine within a command procedure.

CALL label [parameter[, ...]]

label
Specifies a label of 1 to 255 alphanumeric characters that appears as the
first item on a command line. A label cannot contain embedded blanks.
When the CALL command is executed, control passes to the command
following the specified label.

The label can precede or follow the CALL statement in the current
command procedure. A label in a command procedure must be terminated
with a colon (:). Labels for subroutines must be unique.

Labels declared in inner procedure levels are inaccessible from outer
levels, as in the following example:

$CALL B
$SUBROUTINE A
$ B: SUBROUTINE
$ ENDSUBROUTINE
$ENDSUBROUTINE

In this example, the label Bin subroutine A is inaccessible from the outer
procedure level.

parameter[, ...]
Specifies from one to eight optional parameters to pass to the command
procedure. Use two consecutive quotation marks (fl fl) to specify a null
parameter. The parameters assign character string values to the symbols
named Pl, P2, and so on in the order of entry, to a maximum of eight.
The symbols are local to the specified command procedure. Separate each
parameter with one or more blanks.

You can specify a parameter with a character string value containing
alphanumeric or special characters, with the following restrictions:

• The command interpreter converts alphabetic characters to uppercase
and uses blanks to delimit each parameter. To pass a parameter that
contains embedded blanks or lowercase letters, enclose the parameter
in quotation marks (fl ").

• If the first parameter begins with a slash (I), you must enclose the
parameter in quotation marks.

• To pass a parameter that contains quotation marks and spaces, enclose
the entire string in quotation marks and use two consecutive quotation
marks within the string. For example:

$ CALL SUBl "Never say ""quit"""

DESCRIPTION

CALL

When control transfers to SUBl, the parameter Pl is equated to the
following string:

Never say "quit"

If a string contains quotation marks and does not contain spaces, the
quotation marks are preserved in the string and the letters within the
quotation marks remain in lowercase. For example:

$ CALL SUB2 abc"def"ghi

When control transfers to SUB2, the parameter Pl is equated to the
string:

ABCdefGHI

To use a symbol as a parameter, enclose the symbol in single quotation
marks (' ') to force symbol substitution. For example:

$ NAME = "JOHNSON"
$ CALL INFO 'NAME'

The single quotation marks cause the value "JOHNSON" to be substituted
for the symbol "NAlVIE". Therefore, the parameter "JOHNSON" is passed
as Pl to the subroutine INFO.

The CALL command transfers control to a labeled subroutine within a
command procedure. The CALL command is similar to the @ (execute
procedure) command in that it creates a new procedure level. The
advantage of the CALL command is that it does not require files to be
opened and closed to process the procedure. Using the CALL command
also makes managing a set of procedures easier because they can all exist
in one file rather than in several files.

When you use the CALL command to transfer control to a subroutine,
a new procedure level is created and the symbols Pl to PB are assigned
the values of the supplied arguments. Execution then proceeds until an
EXIT command is encountered. At this point, control is transferred to the
command line following the CALL command.

Procedures can be nested to a maximum of 32 levels, which includes any
combination of command procedure and subroutine calls. Local symbols
and labels defined within a nested subroutine structure are treated the
same way as if the routines had been invoked with the @ command; that
is, labels are valid only for the subroutine level in which they are defined.

Local symbols defined in an outer subroutine level are available to any
subroutine levels at an inner nesting level; that is, the local symbols can
be read, but they cannot be written to. If you assign a value to a symbol
that is local to an outer subroutine level, a new symbol is created at the
current subroutine level. However, the symbol in the outer procedure level
is not modified.

The SUBROUTINE and ENDSUBROUTINE commands define the
beginning and end of a subroutine. The label defining the entry point to
the subroutine must appear either immediately before the SUBROUTINE
command or on the same command line.

DCL1-53

CALL

QUALIFIER

DCL1-54

A subroutine can have only one entry point. The subroutine must begin
with the SUBROUTINE command as the first executable statement. If an
EXIT command is not specified in the procedure, the ENDSUBROUTINE
command functions as an EXIT command.

The SUBROUTINE command performs two different functions depending
on the context in which it is executed. If executed as the result of a
CALL command, it initiates a new procedure level, defines the parameters
Pl to PS as specified in the CALL statement, and begins execution of the
subroutine. If the SUBROUTINE verb is encountered in the execution
flow of the procedure without having been invoked by a CALL command,
all the commands following the SUBROUTINE command are skipped until
the corresponding ENDSUBROUTINE command is encountered.

Note: The SUBROUTINE and ENDSUBROUTINE commands cannot be
abbreviated to fewer than 4 characters.

/OUTPUT =filespec
Writes all output to the file or device specified. By default, the output
is written to the current SYS$0UTPUT device and the output file
type is LIS. System responses and error messages are written to
SYS$COMMAND as well as to the specified file. If you specify /OUTPUT,
the qualifier must immediately follow the CALL command. No wildcard
characters are allowed in the output file specification.

You can also redefine SYS$0UTPUT to redirect the output from a
command procedure. If you place the following command as the first line
in a command procedure, output will be directed to the file you specify:

$ DEFINE SYS$0UTPUT filespec

When the procedure exits, SYS$0UTPUT is restored to its original
equivalence string. This produces the same result as using the /OUTPUT
qualifier when you execute the command procedure.

EXAMPLE
$
$! CALL.COM
$
$! Define subroutine SUBl
$!
$ SUBl: SUBROUTINE

$ CALL SUB2 !Invoke SUB2 from within SUBl

$ @FILE !Invoke another procedure command file

$ EXIT
$ ENDSUBROUTINE !End of SUBl definition
$!
$! Define subroutine SUB2
$!
$ SUB2: SUBROUTINE

$ EXIT
$ ENDSUBROUTINE !End of SUB2 definition
$!
$! Start of main routine. At this point, both SUBl and SUB2
$! have been defined but none of the previous commands have
$! been executed.
$!
$ START:
$ CALL/OUTPUT=NAMES.LOG SUBl "THIS IS Pl"

$ CALL SUB2 "THIS IS Pl" "THIS IS P2"

$ EXIT !Exit this command procedure file

CALL

The command procedure in this example shows how to use the CALL
command to transfer control to labeled subroutines. The example also
shows that you can call a subroutine or another command file from
within a subroutine. The CALL command invokes the subroutine SUBl,
directing output to the file NAMES.LOG and allowing other users write
(W) access to the file. The subroutine SUB2 is called from within SUB 1.
The procedure executes SUB2 and then uses the@ (execute procedure)
command to invoke the command procedure FILE.COM. When all the
commands in SUBl have executed, the CALL command in the main
procedure calls SUB2 a second time. The procedure continues until SUB2
has executed.

DCL1-55

CANCEL

CANCEL

FORMAT

Cancels wakeup requests for a specified process, including wakeup requests
scheduled with either the RUN command or the $SCHDWK system service.

Requires one of the following:

• Ownership of the process.

GROUP privilege to cancel scheduled wakeup requests for
processes in the same group but not owned by you.

WORLD privilege to cancel scheduled wakeup requests for any
process in the system.

CANCEL [[node-name::]process-name]

PARAMETERS node-name::
The name of the node on which the specified process is running. The node
name can have as many as six alphanumeric characters. The two colons
(::)count for two additional characters, for a total of eight.

You cannot specify a node name on a different VAXcluster from the current
process.

process-name
The name of the process for which wakeup requests are to be canceled.
The process name can have up to 15 alphanumeric characters.

The specified process must be in the same group as the current process.

DESCRIPTION The CANCEL command cancels scheduled wakeup requests for the
specified process.

DCL1-56

The CANCEL command does not delete the specified process. If the
process is executing an image when the CANCEL command is issued for
it, the process hibernates instead of exiting after the image completes
execution.

To delete a hibernating process for which wakeup requests have been
canceled, use the STOP command. You can determine whether a
subprocess has been deleted by entering the SHOW PROCESS command
with the /SUBPROCESSES qualifier.

A local process name can look like a remote process name. Therefore,
if you specify ATHENS::SMITH, the system checks for a process named
ATHENS::SMITH on the local node before checking node ATHENS for a
process named SMITH.

QUALIFIER

EXAMPLES

CANCEL

You also can use the /IDENTIFICATION=pid qualifier to specify a process
name. If you use the /IDENTIFICATION qualifier and the process-name
parameter together, the qualifier overrides the parameter. If you do not
specify either the process-name parameter or the /IDENTIFICATION
qualifier, the CANCEL command cancels scheduled wakeup requests for
the current (that is, the issuing) process.

/IDENTIFICATION:pid
Identifies the process by its process identification (PID). You can omit
leading zeros when you specify the PID.

D $ CANCEL CALENDAR

The CANCEL command in this example cancels a wakeup request for
a process named CALENDAR (which continues to hibernate until it is
deleted with the STOP command).

I $ RUN/SCHEDULE=14: 00 STATUS
%RUN-S-PROC_ID, identification of created process is 0013012A

$ CANCEL/IDENTIFICATION=13012A

The RUN command in this example creates a process to execute the image
STATUS. The process hibernates and is scheduled to be awakened at
14:00. Before the process is awakened, the CANCEL command cancels the
wakeup request.

$ RUN/PROCESS_NAME=LIBRA/INTERVAL=l:OO LIBRA
%RUN-S-PROC_ID, identification of created process is 00130027

$ CANCEL LIBRA
$ STOP LIBRA

The RUN command in this example creates a subprocess named LIBRA to
execute the image LIBRA.EXE at hourly intervals.

Subsequently, the CANCEL command cancels the wakeup request. The
process continues to exist, but in a state of hibernation, until the STOP
command deletes it.

DCL1-57

CLOSE

CLOSE

FORMAT

Closes a file opened with the OPEN command and deassigns the associated
logical name.

CLOSE logical-name[.]

PARAMETER logical-name[:]
Specifies the logical name assigned to the file when it was opened with the
OPEN command.

DESCRIPTION Files that are opened for reading or writing at the command level
remain open until closed with the CLOSE command, or until the process
terminates. If a command procedure that opens a file terminates without
closing the open file, the file remains open; the command interpreter does
not automatically close it.

QUALIFIERS IERROR:label

DCL1-58

Specifies a label in the command procedure to receive control if the close
operation results in an error. Overrides any ON condition action specified.
If an error occurs and the target label is successfully given control, the
global symbol $STATUS retains the code for the error that caused the
error path to be taken.

/LOG (default)
/NO LOG
Generates a warning message when you attempt to close a file that was
not opened by DCL. If you specify the /ERROR qualifier, the /LOG qualifier
has no effect. If the file has not been opened by DCL, the error branch is
taken and no message is displayed.

CLOSE

EXAMPLES

D $ OPEN/READ INPUT_FILE TEST.DAT
$ READ LOOP:
$ READ/END_OF_FILE=NO_MORE INPUT FILE DATA LINE

$ GOTO READ LOOP
$ NO MORE:
$ CLOSE INPUT FILE

~ $ @READFILE
I Ctrl/Y I
$ STOP

The OPEN command in this example opens the file TEST.DAT and assigns
it the logical name ofINPUT_FILE. The /END_OF _FILE qualifier on the
READ command requests that, when the end-of-file (EOF) is reached,
the command interpreter should transfer control to the line at the label
NO_MORE. The CLOSE command closes the input file.

$ SHOW LOGICAL/PROCESS

"INFILE" = " DBl"
"OUTFILE" = " DBl"

$ CLOSE INFILE
$ CLOSE OUTFILE

In this example, pressing CtrW interrupts the execution of the command
procedure READFILE.COM. Then, the STOP command stops the
procedure. The SHOW LOGICAUPROCESS command displays the names
that currently exist in the process logical name table. Among the names
listed are the logical names INFILE and OUTFILE, assigned by OPEN
commands in the procedure READFILE.COM.

The CLOSE commands close these files and deassign the logical names.

DCL1-59

CONNECT

CONNECT

FORMAT

Connects your physical terminal to a virtual terminal that is connected to
another process.

You must connect to a virtual terminal that is connected to a process
with your user identification code {UIC). No other physical terminals may
be connected to the virtual terminal.

CONNECT virtual-terminal-name

PARAMETER virtual-terminal-name
Specifies the name of the virtual terminal to which you are connecting. A
virtual terminal name always begins with the letters VTA. To determine
the name of the virtual terminal that is connected to a process, enter the
SHOW USERS command.

DESCRIPTION The CONNECT command connects you to a separate process, as opposed
to the SPAWN and ATTACH commands, which create and attach
subprocesses.

DCL1-60

The CONNECT command is useful when you are logged in to the system
using telecommunications lines. If there is noise over the line and you
lose the carrier signal, your process does not terminate. After you log in
again, you can reconnect to the original process and log out of your second
process.

To use the CONNECT command, the virtual terminal feature must be
enabled for your system with the System Generation Utility (SYSGEN). If
virtual terminals are allowed on your system, then the SET TERMINAL
/DISCONNECT/PERMANENT command is used to enable the virtual
terminal characteristic for a particular physical terminal. When this
characteristic is enabled, a virtual terminal will be created when a user
logs in to the physical terminal. The physical terminal is connected to the
virtual terminal, which is in turn connected to the process.

When the connection between the physical terminal and the virtual
terminal is broken, you are logged out of your current process (and
any images that the process is executing stop running) unless you have
specified the /NOLOGOUT qualifier.

If you have specified the /NOLOGOUT qualifier, the process remains
connected to the virtual terminal. If the process is executing an image, it
continues until the process needs terminal input or attempts to write to
the terminal. At that point, the process waits until the physical terminal
is reconnected to the virtual terminal.

QUALIFIERS

EXAMPLES

D $ RUN AVERAGE
lctrl/YI

CONNECT

You can connect to a virtual terminal even if you are not currently using a
virtual terminal. However, to log out of your current process you must use
the CONNECT command with the /LOGOUT qualifier. If you connect to a
virtual terminal from another virtual terminal, you can save your current
process by using the /NOLOGOUT qualifier.

/CONTINUE
/NOCONTINUE (default)
Controls whether the CONTINUE command is executed in the current
process just before connecting to another process. This qualifier allows
an interrupted image to continue processing after you connect to another
process.

The /CONTINUE qualifier is incompatible with the /LOGOUT qualifier.

/LOGOUT (default)
!NO LOGOUT
Logs out your current process when you connect to another process using
a virtual terminal.

When you enter the CONNECT command from a process that is not
connected to a virtual terminal, you must specify the /LOGOUT qualifier.
Otherwise, DCL displays an error message.

The /LOGOUT qualifier is incompatible with the /CONTINUE qualifier.

$ CONNECT/CONTINUE VTA72

In this example, you use the RUN command to execute the image
AVERAGE.EXE. You enter this command from a terminal that is
connected to a virtual terminal. Next, you press Ctrl/Y to interrupt
the image. After you interrupt the image, enter the CONNECT command
with the /CONTINUE qualifier. This operation issues the CONTINUE
command, so the image continues to run and connects you to another
virtual terminal. You can reconnect to the process later.

DCL1-61

CONNECT

! $ SHOW USERS

Total
Username
REICH
GLASS
ADAMS
DUFAY
DUFAY

$ CONNECT
DUFAY

$

DCL1-62

VMS Interactive Users
19-APR-1990 15:25:30.75
number of interactive users = 5

Process Name PID Terminal
Steve 2040055C VTA267: TXC13:
Phil 20400560 VTA270: LTA102:
ADAMS 20400551 VTA261: TTC7:
DUFAY 20400560 VTA272: Disconnected

VTA273: 2040056E VTA273: TTB5:
VTA273

logged out at 19-APR-1990 15:26:56.53

This example shows how to reconnect to your original process after you
have lost the carrier signal. First, you must log in again and create a
new process. After you log in, enter the SHOW USERS command to
determine the virtual terminal name for your initial process. Then enter
the CONNECT command to connect to the virtual terminal associated with
your original process. The process from which you enter the CONNECT
command is logged out because you have not specified any qualifiers.

When you reconnect to the original process, you continue running the
image that you were running when you lost the carrier signal. In this
example, the user DUFAY was at interactive level when the connection
was broken.

CONTINUE

CONTINUE

Resumes execution of a DCL command, a program, or a command procedure
that was interrupted by pressing Ctrl/Y or Ctrl/C. You cannot resume execution
of the image if you have entered a command that executes another image or
if you have invoked a command procedure.

FORMAT CONTINUE

PARAMETERS None.

DESCRIPTION The CONTINUE command enables you to resume processing an image or
a command procedure that was interrupted by pressing Ctrl/Y or Ctrl/C.
You cannot resume execution of the image if you have entered a command
that executes another image or if you have invoked a command procedure.
However, you can use CONTINUE after commands that do not execute
separate images; for a list of these commands, see the VMS DCL Concepts
Manual.

You can abbreviate the CONTINUE command to a single letter, C.

The CONTINUE command serves as the target command of an IF or ON
command in a command procedure. The CONTINUE command is also
a target command when it follows a label that is the target of a GOTO
command. In addition, you can use the CONTINUE command to resume
processing of a program that has executed either a VAX FORTRAN PAUSE
statement or a VAX COBOL-74 STOP literal statement.

EXAMPLES

II $ RUN MYPROGRAM A
I Ctrl/Y I -
$ SHOW TIME

19-APR-1990 13:40:12
$ CONTINUE

In this example, the RUN command executes the program
MYPROGRAM_A. While the program is running, pressing Ctrl/Y
interrupts the image. The SHOW TIME command requests a display
of the current date and time. The CONTINUE command resumes the
image.

DCL1-63

CONTINUE

~ $ ON SEVERE ERROR THEN CONTINUE

DCL1-64

In this example, the command procedure statement requests the command
interpreter to continue executing the procedure if any warning, error, or
severe error status value is returned from the execution of a command or
program. This ON statement overrides the default action, which is to exit
from a procedure following errors or severe errors.

CONVERT

FORMAT

CONVERT

Invokes the Convert Utility, which copies records from one file to another and
changes the organization and format of the input file to those of the output
file. For a complete description of the Convert Utility, see the VMS Convert
and Convert/Reclaim Utility Manual.

CONVERT input-filespec[, ... } output-filespec

DCL1-65

CONVERT/DOCUMENT

CONVERT/DOCUMENT

FORMAT

Converts a revisable format file to another revisable or final form file.

You can use this command only if you have VMS DECwindows installed
on your system.

CONVERT/DOCUMENT input-filespec output-filespec

DESCRIPTION The CONVERT/DOCUMENT command invokes the CDA Converter to
convert a revisable format file to another revisable or final form file.

PARAMETERS input-filespec

QUALIFIERS

DCL1-66

Specifies the file to be converted. The default file type is DDIF.

output-filespec
Specifies the name of the converted file. The default file type is DDIF.

/FORMAT =format-name
Specifies the encoding format of the input or output file. The default
format is DDIF for both input and output.

Input formats bundled with the VMS operating system and their default
file extensions are as follows:

Input Format

DDIF

DTIF

TEXT

File Extension

.DDIF

.DTIF

.TXT

Output formats bundled with the VMS operating system and their default
file extensions are as follows:

Output Format File Extension

DDIF .DDIF

DTIF .DTIF

TEXT .TXT

PS .PS

ANALYSIS .CDA$ANALYSIS

Digital's CDA Converter Library is a layered product that provides
additional input and output formats. Independent software vendors
who write DDIF- and DTIF-conforming applications and front and back
ends also provide input and output formats that are layered on the VMS

CONVERT/DOCUMENT

operating system. Contact your system manager for a complete list of
input and output formats available on your system.

/OPTIONS:options-filename
Specifies a file that contains processing options for both input and output.
The default file extension for a VMS options file is .CDA$0PTIONS.

Creating the Options File

You can create an options file that contains all the input and output
processing options to be applied during the conversion of the input file
to the output file. These processing options affect how your input file is
processed and how your output file is created or displayed.

Each line of the options file specifies a format keyword (for example, PS
for PostScript) that can be followed optionally by _INPUT or _OUTPUT
to restrict the option to the front or back end. The second keyword is a
valid processing option preceded by one or more spaces, tabs, or a slash
(I) and can contain upper- and lowercase alphabetic characters (alphabetic
case is not significant), digits (0-9), dollar signs ($), and underscores (_).
If an option requires you to specify a value, the option keyword can be
separated from the value by one or more spaces or tabs, or by an equal
sign (=). Each line can be preceded optionally by spaces and tabs.

The following example is a typical entry in an options file:

PS PAPER HEIGHT 10

In this example, the extension _OUTPUT is not required for the format
keyword, since PostScript is available only as an output format. The value
specified for PAPER_HEIGHT is in inches by default.

To specify several options for the same input or output format, you must
specify each option on a separate line. The CDA Converter checks the
input format and the output format you specified on the command line
and, if the processing options in your options file are valid for the input or
output format, the options are applied during the conversion of your file.
If you specify an invalid option for an input or output format or an invalid
value for an option, the CDA Converter returns an error message. Each
input and output format that supports processing options specifies any
restrictions or special formats required when specifying processing options.

Processing options available for several of the file formats that are bundled
with VMS are listed in the following sections.

Text Back-End Processing Options

The text back-end converter supports the following options:

• ASCII_FALLBACK [ON,OFFJ

Causes the text back-end converter to output text in 7-bit ASCII. The
fallback representation of the characters is described in the ASCII
standard. If this option is not specified, the default is OFF; if this
option is specified without a value, the default is ON.

• CONTENT_MESSAGES [ON,OFFJ

Causes the text back-end converter to put a message in the output file
each time a nontext element is encountered in the in-memory CDA
structures. If this option is not specified, the default is OFF; if this
option is specified without a value, the default is ON.

DCL1-67

CONVERT/DOCUMENT

DCL1-68

• HEIGHT value

Specifies the maximum number of lines per page in your text output
file. If you specify zero, the number of lines per page will correspond
to the height specified in your document. If you additionally specify
OVERRIDE_FORMAT, or if the document has no inherent page size,
the document is formatted to the height value specified by this option.
The default height is 66 lines.

• OVERRIDE_FORMAT [ON,OFFJ

Causes the text back-end converter to ignore the document formatting
information included in your document, so that the text is formatted in
a single large galley per page that corresponds to the size of the page
as specified by the HEIGHT and WIDTH processing options. If this
option is not specified, the default is OFF; if this option is specified
without a value, the default is ON.

• SOFT_DIRECTNES [ON,OFFJ

Causes the text back-end converter to obey the soft directives
contained in the document when creating your text output file. If this
option is not specified, the default is OFF; if this option is specified
without a value, the default is ON.

• WIDTH value

Specifies the maximum number of columns of characters per page in
your text output file. If you specify zero, the number of columns per
page will correspond to the width specified in your document. If you
additionally specify OVERRIDE_FORMAT, or if the document has no
inherent page size, the document is formatted to the value specified by
this processing option. If any lines of text exceed this width value, the
additional columns are truncated. The default width is 80 characters.

Postscript Back-End Processing Options

The PostScript back-end converter supports the following processing
options:

• PAPER_SIZE size

Specifies the size of the paper to be used when formatting the resulting
PostScript output file. Valid values for the size argument are as
follows:

Keyword

AO
A1

A2

A3

A4

A

B

c

Size

841 x 1189 millimeters (33.13 x 46.85 inches)

594 x 841 millimeters (23.40 x 33.13 inches)

420 x 594 millimeters (16.55 x 23.40 inches)

297 x 420 millimeters (11.70 x 16.55 inches)

210 x 297 millimeters (8.27 x 11.70 inches)

8.5 x 11 inches

11 x 17 inches

17 x 22 inches

CONVERT/DOCUMENT

Keyword Size

D 22 x 34 inches

E 34 x 44 inches

LEDGER 11 x 17 inches

LEGAL 8.5 x 14 inches

LETTER 8.5 x 11 inches

LP 13.7 x 11 inches

VT 8 x 5 inches

The A paper size (8.5 x 11 inches) is the default.

• PAPER_HEIGHT height

Specifies a paper size other than one of the predefined values provided.
The default paper height is 11 inches.

• PAPER_ WIDTH width

Specifies a paper size other than one of the predefined sizes provided.
The default paper width is 8.5 inches.

• PAPER_TOP _MAllGIN top-margin

Specifies the width of the margin provided at the top of the page. The
default value is 0.25 inch.

• PAPER_BOTTOM_MAllGIN bottom-margin

Specifies the width of the margin provided at the bottom of the page.
The default value is 0.25 inch.

• PAPER_LEFT _MAllGIN left-margin

Specifies the width of the margin provided on the left-hand side of the
page. The default value is 0.25 inch.

• PAPER_RIGHT _MARGIN right-margin

Specifies the width of the margin provided on the right-hand side of
the page. The default value is 0.25 inch.

• PAPER_ORIENTATION orientation

Specifies the paper orientation to be used in the output PostScript file.
The valid values for the orientation argument are as follows:

Keyword

PORTRAIT

LANDSCAPE

Meaning

The page is oriented so that the larger dimension is
parallel to the vertical axis.

The page is oriented so that the larger dimension is
parallel to the horizontal axis.

The default is PORTRAIT.

• EIGHT_BIT_OUTPUT [ON,OFFJ

Specifies whether the PostScript back-end converter should use 8-bit
output. The default value is ON.

DCL1-69

CONVERT/DOCUMENT

DCL1-70

• LAYOUT [ON,OFFJ

Specifies whether the PostScript back-end converter processes the
layout specified in the DDIF document. The default value is ON.

• OUTPUT _BUFFER_SIZE output-buffer-size

Specifies the size of the output buffer. The value you specify must be
within the range 64 to 256. The default value is 132.

• PAGE_ WRAP [ON,OFFJ

Specifies whether the PostScript back-end converter performs page
wrapping of any text that would exceed the bottom margin. The
default value is ON.

• SOFT_DIRECTNES [ON,OFFJ

Specifies whether the PostScript back-end converter processes soft
directives in the DDIF file in order to format output. (Soft directives
specify such formatting commands as new line, new page, and tab.) If
the PostScript back-end converter processes soft directives, the output
file will look more like you intended. The default value is ON.

• WORD_WRAP [ON,OFFJ

Specifies whether the PostScript back-end converter performs word
wrapping of any text that would exceed the right margin. The default
value is ON. If you specify OFF, the PostScript back-end converter
allows text to exceed the right margin.

Analysis Back-End Processing Option

The analysis back-end converter produces an analysis of the CDA in
memory structure in the form of text output showing the named objects
and values stored in the document. This is useful for debugging DDIF
application programs.

The analysis back-end converter supports an INHERITANCE processing
option, which specifies that the analysis is shown with attribute
inheritance enabled. Inherited attributes are marked by "[default]" in
the output.

Domain Conversion Processing Options

When you are converting any table format to any document format, you
can specify the following processing options using a format name of DTIF _
TO_DDIF:

• COLUMN_TITLE

Displays the column titles as contained in the column attributes
centered at the top of the column.

• CURRENT _DATE

Displays the current date and time in the bottom left corner of the
page. The value is formatted according to the document's specification
for a default date and time.

CONVERT/DOCUMENT

• DOCUMENT _DATE

Displays the document date and time as contained in the document
header in the top left corner of the page. The value is formatted
according to the document's specification for a default date and time.

• DOCUMENT _TITLE

Displays the document title or titles as contained in the document
header centered at the top of the page, one string per line.

• PAGE_NUMBER

Displays the current page number in the top right corner of the page.

• PAPER_SIZE size

Specifies the size of the paper to be used when formatting the resulting
PostScript output file. The values are the same as those for the
PostScript back-end converter.

• PAPER_HEIGHT height

Specifies a paper size other than one of the predefined values provided.
The default paper height is 11 inches.

• PAPER_WIDTH width

Specifies a paper size other than one of the predefined sizes provided.
The default paper width is 8.5 inches.

• PAPER_TOP _MARGIN top-margin

Specifies the width of the margin provided at the top of the page. The
default value is 0.25 inch.

• PAPER_BOTTOM_MARGIN bottom-margin

Specifies the width of the margin provided at the bottom of the page.
The default value is 0.25 inch.

• PAPER_LEFT _MARGIN left-margin

Specifies the width of the margin provided on the left-hand side of the
page. The default value is 0.25 inch.

• PAPER_RIGHT _MARGIN right-margin

Specifies the width of the margin provided on the right-hand side of
the page. The default value is 0.25 inch.

• PAPER_ORIENTATION orientation

Specifies the paper orientation to be used in the output file. The values
are the same as those for the PostScript back-end converter.

DCL1-71

CONVERT/DOCUMENT

EXAMPLE

$ CONVERT /DOCUMENT -

_$ /OPTIONS=OPTIONS.CDA$0PTIONS -

$ FOOBAR. DTIF /FORMAT=DTIF -= $ MOOMAR. DD IF /FORMAT= DD IF

DCL1-72

This command converts an input file named FOOBAR.DTIF, which
has the DTIF format, to an output file named MOOMAR.DDIF,
which has the DDIF format. The specified options file is named
OPTIONS.CDA$0PTIONS.

CONVERT/RECLAIM

CONVERT/RECLAIM

FORMAT

Invokes the Convert/Reclaim Utility, which makes empty buckets in Prolog
3 indexed files available so that new records can be written in them. The
/RECLAIM qualifier is required. For a complete description of the Convert
/Reclaim Utility, see the VMS Convert and Convert/Reclaim Utility Manual.

CONVERT/RECLAIM fi/espec

DCL1-73

COPY

COPY

FORMAT

Creates a new file from one or more existing files. The COPY command can
do the following:

Copy an input file to an output file.

• Concatenate two or more input files into a single output file.

Copy a group of input files to a group of output files.

COPY input-filespec[, ...] output-filespec

PARAMETERS input-filespec[, ...]
Specifies the name of an existing file to be copied. Wildcard characters
(* and %) are allowed. If you do not specify the device or directory, the
COPY command uses your current default device and directory. If you
specify more than one file, separate the file specifications with either
commas (,) or plus signs (+).

output-filespec
Specifies the name of the output file into which the input is copied.

You must specify at least one field in the output file specification. If you do
not specify the device or directory, the COPY command uses your current
default device and directory. The COPY command replaces any other
missing fields (file name, file type, version number) with the corresponding
field of the input file specification. If you specify more than one input file,
the COPY command generally uses the fields from the first input file to
determine any missing fields in the output file.

You can use the asterisk (*) wildcard character in place of any two of the
following: the file name, the file type, or the version number. The COPY
command uses the corresponding field in the related input file to name the
output file.

DESCRIPTION The COPY command creates a new file from one or more existing files.

DCL1-74

If you do not specify the device or directory, the COPY command uses
your current default device and directory. The COPY command can do the
following:

• Copy an input file to an output file.

• Concatenate two or more input files into a single output file.

• Copy a group of input files to a group of output files.

The COPY command, by default, creates a single output file. When you
specify more than one input file, the first input file is copied to the output
file, and each subsequent input file is appended to the end of the output
file. If a field of the output file specification is missing or contains an
asterisk wildcard character, the COPY command uses the corresponding
field from the first, or only, input file to name the output file.

COPY

If you specify multiple input files with maximum record lengths, the
COPY command gives the output file the maximum record length of the
first input file. If the COPY command encounters a record in a subsequent
input file that is longer than the maximum record length of the output
file, it issues a message noting the incompatible file attributes and begins
copying the next file.

To create multiple output files, specify multiple input files and use at least
one of the following:

• An asterisk wildcard character in the output directory specification,
file name, file type, or version number field

• Only a node name, a device name, or a directory specification as the
output file specification

• The /NOCONCATENATE qualifier

When the COPY command creates multiple output files, it uses the
corresponding field from each input file in the output file name. You
also can use the wildcard character in the output file specification to have
COPY create more than one output file. For example:

$ COPY A.A;l, B.B;l *.C

This COPY command creates the files A.C;l and B.C;l in the current
default directory. When you specify multiple input and output files you
can use the /LOG qualifier to verify that the files were copied as you
intended.

Note that there are special considerations for using the COPY command
with DECwindows compound documents. For more information, see the
Guide to VMS File Applications.

Version Numbers

If you do not specify version numbers for input and output files, the COPY
command (by default) assigns a version number to the output files that is
either of the following:

• The version number of the input file

• A version number one greater than the highest version number of an
existing file with the same file name and file type

When you specify the output file version number by an asterisk wildcard
character, the COPY command uses the version numbers of the associated
input files as the version numbers of the output files.

If you specify the output file version number by an explicit version number,
the COPY command uses that number for the output file specification. If
a higher version of the output file exists, the COPY command issues a
warning message and copies the file. If an equal version of the output file
exists, the COPY command issues a message and does not copy the input
file.

DCL1-75

COPY

DCL1-76

File Protection and Creation/Revision Dates

The COPY command considers an output file to be new when you specify
any portion of the output file name explicitly. The COPY command sets
the creation date for a new file to the current time and date.

If you specify the output file by one or more wildcard characters, the COPY
command uses the creation date of the input file.

The COPY command always sets the revision date of the output file
to the current time and date; it sets the backup date to zero. The file
system assigns the output file a new expiration date. (The file system sets
expiration dates if retention is enabled; otherwise, it sets expiration dates
to zero.)

The protection and access control list (ACL) of the output file is determined
by the following parameters, in the following order:

• Protection of previously existing versions of the output file

• Default Protection and ACL of the output directory

• Process default file protection

(Note that the BACKUP command takes the creation and revision dates
as well as the file protection from the input file.)

Use the /PROTECTION qualifier to change the output file protection.

Normally, the owner of the output file will be the same as the creator of
the output file. However, if a user with extended privileges creates the
output file, the owner will be the owner of the parent directory or of a
previous version of the output file if one exists.

Extended privileges include any of the following:

• SYSPRV (system privilege) or BYPASS

• System user identification code (UIC)

• GRPPRV (group privilege) if the owner of the parent directory (or
previous version of the output file) is in the same group as the creator
of the new output file

• An identifier (with the resource attribute) representing the owner of
the parent directory (or the previous version of the output file)

Copying Directory Files

If you copy a file that is a directory, the COPY command creates a new
empty subdirectory of the named directory. The COPY command does
not copy any files from the named directory to the new subdirectory. For
example:

$ COPY [SMITH]CATS.DIR [JONES]

This COPY command creates the new empty subdirectory
[JONES]CATS.DIR. Once the COPY command creates the new
subdirectory [JONES]CATS.DIR, you can copy the files in the directory
[SMITH] CATS.DIR.

QUALIFIERS

COPY

/ALLOCATION:number-of-blocks
Forces the initial allocation of the output file to the specified number
of 512-byte blocks. If you do not specify the /ALLOCATION qualifier,
or if you specify it without the number-of-blocks parameter, the initial
allocation of the output file is determined by the size of the input file being
copied.

/BACKUP
Modifies the time value specified with the /BEFORE or the /SINCE
qualifier. The /BACKUP qualifier selects files according to the dates
of their most recent backups. This qualifier is incompatible with the
/CREATED, /EXPIRED, and /MODIFIED qualifiers, which also allow you
to select files according to time attributes. If you specify none of these four
time qualifiers, the default is the /CREATED qualifier.

/BEFORE[=time]
Selects only those files dated prior to the specified time. You can specify
time as an absolute time, as a combination of absolute and delta times,
or as one of the following keywords: TODAY (default), TOMORROW, or
YESTERDAY. Specify one of the following qualifiers with the /BEFORE
qualifier to indicate the time attribute to be used as the basis for selection:
/BACKUP, /CREATED (default), /EXPIRED, or /MODIFIED.

For complete information on specifying time values, see the VMS DCL
Concepts Manual.

IBY_OWNER[=uic]
Selects only those files whose owner user identification code (UIC) matches
the specified owner UIC. The default UIC is that of the current process.

Specify the UIC by using standard UIC format as described in the VMS
DCL Concepts Manual.

/CONCATENATE (default)
/NOCONCATENATE
Creates one output file from multiple input files when you do
not use wildcard characters in the output file specification. The
/NOCONCATENATE qualifier generates multiple output files. A wildcard
character in an input file specification results in a single output file
consisting of the concatenation of all input files matching the file
specification.

Files from Files-11 On-Disk Structure Level 2 disks are concatenated in
alphanumeric order; if you specify a wildcard in the file version field, files
are copied in descending order by version number. Files from Files-11
On-Disk Structure Level 1 disks are concatenated in random order.

/CONFIRM
/NOCONFIRM (default)
Controls whether a request is issued before each copy operation to confirm
that the operation should be performed on that file. The following

DCL1-77

COPY

DCL1-78

responses are valid:

YES NO QUIT

TRUE FALSE Ctrl/Z

0 ALL

I Return I
You can use any combination of uppercase and lowercase letters for word
responses. You can abbreviate word responses to one or more letters
(for example, T, TR, or TRU for TRUE), but these abbreviations must be
unique. Affirmative answers are YES, TRUE, and 1. Negative answers
include: NO, FALSE, 0, and pressing the Return key. Entering QUIT or
pressing Ctrl/Z indicates that you want to stop processing the command at
that point. When you respond by entering ALL, the command continues
to process but no further prompts are given. If you type a response other
than one of those in the list, DCL issues an error message and redisplays
the prompt.

!CONTIGUOUS
/NOCONTIGUOUS
Specifies that the output file must occupy contiguous physical disk blocks.
By default, the COPY command creates an output file in the same format
as the corresponding input file. Also, by default, if not enough space exists
for a contiguous allocation, the COPY command does not report an error.
If you copy multiple input files of different formats, the output file may
or may not be contiguous. You can use the /CONTIGUOUS qualifier to
ensure that files are copied contiguously.

The /CONTIGUOUS qualifier has no effect when you copy files to or from
tapes because the size of the file on tape cannot be determined until after
it is copied to the disk. If you copy a file from a tape and want the file to
be contiguous, use the COPY command twice: once to copy the file from
the tape, and a second time to create a contiguous file.

/CREATED (default)
Modifies the time value specified with the /BEFORE or the /SINCE
qualifier. The /CREATED qualifier selects files based on their dates of
creation. This qualifier is incompatible with the /BACKUP, /EXPIRED,
and /MODIFIED qualifiers, which also allow you to select files according
to time attributes. If you specify none of these four time qualifiers, the
default is the /CREATED qualifier.

/EXCLUDE:(filespec[, ...])
Excludes the specified files from the copy operation. You can include a
directory but not a device in the file specification. Wildcard characters
(* and %) are allowed in the file specification. However, you cannot use
relative version numbers to exclude a specific version. If you specify only
one file, you can omit the parentheses.

/EXPIRED
Modifies the time value specified with the /BEFORE or the /SINCE
qualifier. The /EXPIRED qualifier selects files according to their expiration
dates. (The expiration date is set with the SET FILE/EXPIRATION_DATE
command.) The /EXPIRED qualifier is incompatible with the /BACKUP,
/CREATED, and /MODIFIED qualifiers, which also allow you to select
files according to time attributes. If you specify none of these four time
qualifiers, the default is the /CREATED qualifier.

COPY

IEXTENSION:n
Specifies the number of blocks to be added to the output file each time
the file is extended. If you do not specify the /EXTENSION qualifier, the
extension attribute of the corresponding input file determines the default
extension attribute of the output file.

/LOG
/NOLOG (default)
Controls whether the COPY command displays the file specifications of
each file copied.

When you use the /LOG qualifier, the COPY command displays the
following for each copy operation:

• The file specifications of the input and output files

• The number of blocks or the number of records copied (depending on
whether the file is copied on a block-by-block or record-by-record basis)

• The total number of new files created

/MODIFIED
Modifies the time value specified with the /BEFORE or the /SINCE
qualifier. The /MODIFIED qualifier selects files according to the dates
on which they were last modified. This qualifier is incompatible with the
/BACKUP, /CREATED, and /EXPIRED qualifiers, which also allow you to
select files according to time attributes. If you specify none of these four
time modifiers, the default is the /CREATED qualifier.

/OVERLAY
/NOOVERLAY (default)
Requests that data in the input file be copied into the existing specified
file, overlaying the existing data, rather than allocating new space for the
file. The physical location of the file on disk does not change.

The /OVERLAY qualifier is ignored if the output file is written to a non
file-structured device.

/PROTECTION=(ownership[:access][, ... J)
Specifies protection for the output file. Specify the ownership parameter
as system (S), owner (0), group (G), or world (W) and the access parameter
as read (R), write (W), execute (E), or delete (D). The default protection,
including any protection attributes not specified, is that of the existing
output file. If no output file exists, the current default protection applies.

For more information on specifying protection codes, see the VMS DCL
Concepts Manual.

/READ_CHECK
/NOREAD_CHECK (default)
Reads each record in the input files twice to verify that it has been read
correctly.

DCL1-79

COPY

EXAMPLES

/REPLACE
/NOREPLACE (default)
Requests that, if a file exists with the same file specification as that
entered for the output file, the existing file is to be deleted. The COPY
command allocates new space for the output file. In general, when
you use the /REPLACE qualifier, include version numbers with the file
specifications. By default, the COPY command creates a new version
of a file if a file with that specification exists, incrementing the version
number. The /NOREPLACE qualifier signals an error when a conflict in
version numbers occurs.

/S/NCE[=time]
Selects only those files dated after the specified time. You can specify
time as an absolute time, as combination of absolute and delta times,
or as one of the following keywords: TODAY (default), TOMORROW, or
YESTERDAY Specify one of the following qualifiers with the /SINCE
qualifier to indicate the time attribute to be used as the basis for selection:
/BACKUP, /CREATED (default), /EXPIRED, or /MODIFIED.

For complete information on specifying time values, see the VMS DCL
Concepts Manual.

/TRUNCATE
/NOTRUNCATE (default)
Controls whether the COPY command truncates an output file at the end
of-file (EOF) when copying it. By default, the allocation of the input file
determines the size of the output file.

/VOLUME=n
Places the output file on the specified relative volume number of a
multivolume set. By default, the COPY command places the output
file arbitrarily in a multivolume set.

/WRITE_ CHECK
/NOWRITE_ CHECK (default)
Reads each record in the output file after it was written to verify that the
record was copied successfully and that the file can be read subsequently
without error.

D $ COPY TEST. DAT NEWTEST. DAT

DCL1-80

In this example, the COPY command copies the contents of the
file TEST.DAT from the default disk and directory to a file named
NEWTEST.DAT on the same disk and directory. If a file named
NEWTEST.DAT exists, the COPY command creates a new version of
the file.

I $ COPY ALPHA. TXT TMP
$ COPY ALPHA.TXT .TMP

COPY

In this example, the first COPY command copies the file ALPHA.TXT into
a file named TMP.TXT. The COPY command uses the file type of the input
file to complete the file specification for the output file. The second COPY
command creates a file named ALPHA.TMP. The COPY command uses the
file name of the input file to name the output file.

I $ COPY/LOG TEST.DAT NEW.DAT;l/REPLACE
%COPY-I-REPLACED, DBAO: [MAL]NEW.DAT;l being replaced
%COPY-S-COPIED, DBAO: [MAL]TEST.DAT;l copied to DBAO: [MAL]NEW.DAT;l (1 block)

In this example, the /REPLACE qualifier requests that the COPY
command replace an existing version of the output file with the new file.
The first message from the COPY command indicates that it is replacing
an existing file. The version number in the output file must be explicit;
otherwise, the COPY command creates a new version of the file NEW.DAT.

m $ COPY *.COM [MALCOLM.TESTFILES]

In this example, the COPY command copies the highest versions of files
in the current default directory with the file type COM to the subdirectory
MALCOLM.TESTFILES.

I $ COPY /LOG *. TXT *.OLD
%COPY-S-COPIED, DBAO:[MAL]A.TXT;2 copied to DBAO: [MAL]A.OLD;2 (1 block)
%COPY-S-COPIED, DBAO:[MAL]B.TXT;2 copied to DBAO: [MAL]B.OLD;2 (1 block)
%COPY-S-COPIED, DBAO: [MAL]G.TXT;2 copied to DBAO: [MAL]G.OLD;2 (4 blocks)
%COPY-S-NEWFILES, 3 files created

In this example, the COPY command copies the highest versions of files
with file types of TXT into new files. Each new file has the same file name
as an existing file, but a file type of OLD. The last message from the COPY
command indicates the number of new files that have been created.

~ $ COPY/LOG A.DAT,B.MEM C.*
%COPY-S-COPIED, DBAO: [MAL]A.DAT;S copied to DBAO: [MAL]C.DAT;ll (1 block)
%COPY-S-COPIED, DBAO: [MAL]B.MEM;2 copied to DBAO: [MAL]C.MEM;24 (58 records)
%COPY-S-NEWFILES, 2 files created

In this example, the two input file specifications are separated with a
comma. The asterisk wildcard character in the output file specification
indicates that two output files are to be created. For each copy operation,
the COPY command uses the file type of the input file to name the output
file.

DCL1-81

COPY

fj $ COPY /LOG *. TXT TXT. SAV
%COPY-S-COPIED, DBAO: [MAL]A.TXT;2 copied to DBAO: [MAL]TXT.SAV;l (1 block)
%COPY-S-APPENDED, DBAO: [MAL]B.TXT;2 appended to DBAO: [MAL]TXT.SAV;l (3 records)
%COPY-S-APPENDED, DBAO: [MAL]G.TXT;2 appended to DBAO: [MAL]TXT.SAV;l (51 records)
%COPY-S-NEWFILES, 1 file created

In this example, the COPY command copies the highest versions of all files
with the file type TXT to a single output file named TXT.SAV. After the
first input file is copied, the messages from the COPY command indicate
that subsequent files are being appended to the output file.

Note that, if you use the /NOCONCATENATE qualifier in this example,
the COPY command creates one TXT.SAV file for each input file. Each
TXT.SAV file has a different version number.

[fl $ COPY MASTER.DOC DBAl: [BACKUP]

In this example, the COPY command copies the highest version of the
file MASTER.DOC to the device DBAl. If no file named MASTER.DOC
exists in the directory [BACKUP], the COPY command assigns the version
number of the input file to the output file. You must have write (W) access
to the directory [BACKUP] on device DBAl for the command to work.

~ $ COPY SAMPLE.EXE DALLAS::DISK2: [000,000]SAMPLE.EXE/CONTIGUOUS

In this example, the COPY command copies the file SAMPLE.EXE on
the local node to a file with the same name at remote node DALLAS.
The /CONTIGUOUS qualifier indicates that the output file is to occupy
consecutive physical disk blocks. You must have write (W) access to the
device DISK2 on remote node DALLAS for the command to work.

ID] $ COPY * . * PRTLND: : *. *

In this example, the COPY command copies all files within the user
directory at the local node to the remote node PRTLND. The new files
have the same names as the input file. You must have write (W) access to
the default directory on remote node PRTLND for the command to work.

• $ COPY BOSTON: :DISK2:TEST.DAT;5
To: DALLAS"SAM SECReturn": :DISKO: [MODEL.TEST]TEST.DAT/ALLOCATION=50

DCL1-82

In this example, the COPY command copies the file TEST.DAT;5 on the
device DISK2 at node BOSTON to a new file named TEST.DAT at remote
node DALLAS. The /ALLOCATION qualifier initially allocates 50 blocks
for the new file TEST.DAT at node DALLAS. The access control string
SAM SECReturn is used to access the remote directory.

COPY

II $ MOUNT TAPEDl: VOL025 TAPE:
$ COPY TAPE:*.* *

II $ ALLOCATE CR :

In this example, the MOUNT command requests that the volume labeled
VOL025 be mounted on the magnetic tape device TAPED! and assigns the
logical name TAPE to the device.

The COPY command uses the logical name TAPE as the input file
specification, requesting that all files on the magnetic tape be copied
to the current default disk and directory. All the files copied retain their
file names and file types.

CRl: ALLOCATED
$ COPY CRl: CARDS. DAT
$ DEALLOCATE CRl:

In this example, the ALLOCATE command allocates a card reader for
exclusive use by the process. The response from the ALLOCATE command
indicates the device name of the card reader, CRl.

After the card reader is allocated, you can place a deck of cards in the
reader and enter the COPY command, specifying the card reader as the
input file. The COPY command reads the cards into the file CARDS.DAT.
The end-of-file (EOF) in the card deck must be indicated with an EOF card
(12-11-0-1-6-7-8-9 overpunch).

The DEALLOCATE command relinquishes use of the card reader.

DCL1-83

CREATE

CREATE

FORMAT

PARAMETER

DESCRIPTION

DCL1-84

Creates a sequential disk file (or files).

CREATE filespec[, ... }

f ilespec[, ... J
Specifies the name of one or more input files to be created. Wildcard
characters are not allowed. If you omit either the file name or the file
type, the CREATE command does not supply any defaults. The file name
or file type is null. If the specified file already exists, a new version is
created.

The CREATE command creates a new sequential disk file. In interactive
mode, each separate line that you enter after you enter the command line
becomes a record in the newly created file. To terminate the file input,
press Ctrl/Z.

When you enter the CREATE command from a command procedure file,
the system reads all subsequent records in the command procedure file
into the new file until it encounters a dollar sign ($) in the first position in
a record. Terminate the file input with a line with a dollar sign in column
1 (or with the end of the command procedure).

If you use an existing file specification with the CREATE command, the
newly created file has a higher version number than any existing files with
the same specification.

If you use the CREATE command to create a file in a logical name search
list, the file will only be created in the first directory produced by the
logical name translation.

Normally, the owner of the output file will be the same as the creator of
the output file. However, if a user with extended privileges creates the
output file, the owner will be the owner of the parent directory or any
previous versions of the output file.

Extended privileges include any of the following:

• SYSPRV (system privilege) or BYPASS

• System user identification code (UIC)

• GRPPRV (group privilege) if the owner of the parent directory (or
previous version of the output file) is in the same group as the creator
of the new output file

• An identifier (with the resource attribute) representing the owner of
the parent directory (or previous version of the output file)

QUALIFIERS

EXAMPLES

CREATE

/LOG
/NOLOG (default)
Displays the file specification of each new file created as the command
executes.

/OWNER U/C:uic
Requires SYSPRV (system privilege) privilege to specify a user
identification code (UIC) other than your own.

Specifies the UIC to be associated with the file being created. Specify the
UIC by using standard UIC format as described in the VMS DCL Concepts
Manual.

IPROTECTION=(ownership[:access][, ... J)
Specifies protection for the file. Specify the ownership parameter as
system (S), owner (0), group (G), or world (W) and the access parameter as
read (R), write (W), execute (E), or delete (D). If you do not specify a value
for each access category, or if you omit the /PROTECTION qualifier, the
CREATE command applies the following protection for each unspecified
category:

File Already
Exists?

Yes

No

Protection Applied

Protection of the existing file

Current default protection

For more information on specifying protection codes, see the VMS DCL
Concepts Manual.

/VOLUME:n
Places the file on the specified relative volume of a multivolume set. By
default, the file is placed arbitrarily in a multivolume set.

D $ CREATE MEET. TXT
John, Residents in the apartment complex will hold their annual meeting
this evening. We hope to see you there, Regards, Elwood
l§m]

The CREATE command in this example creates a text file named
MEET. TXT in your default directory. The text file MEET. TXT contains
the lines that follow until the Ctrl/Z.

DCL1-85

CREATE

I $ CREATE A.DAT, B.DAT
Input line one for A.DAT .. .
Input line two for A.DAT .. .

lctrl/ZI

Input line one for B.DAT .. .
Input line two for B.DAT .. .

After you enter the CREATE command from the terminal, the system
reads input lines into the sequential file A.DAT until Ctrl/Z terminates the
first input. The next set of input data is placed in the second file, B.DAT.
Again, Ctrl/Z terminates the input.

i] $ FILE = F$SEARCH ("MEET. TXT")
$ IF FILE .EQS. ""
$ THEN CREATE MEET.TXT

John, Residents in the apartment complex will hold their annual meeting
this evening. We hope to see you there, Regards, Elwood

$ ELSE TYPE MEET.TXT
$ ENDIF
$ EXIT

DCL1-86

In this example, the command procedure searches the default disk and
directory for the file MEET. TXT. If the command procedure determines
that the file does not exist it creates a file named MEET. TXT using the
CREATE command.

CREATE

... Input Data ...

$ RUN WEATHER

$ LINK WEATHER

$FORTRAN WEATHER

... Source Statements ...

$PASSWORD HENRY

$JOB HIGGINS

ZK-0781-GE

In this batch job example, the CREATE command creates a FORTRAN
source file WEATHER.FOR. Records are read into that file until the
system encounters a dollar sign in the first position of the record
$ FORTRAN WEATHER. The next commands compile, link, and run
the file just created. Input data follows the RUN command.

DCL1-87

CREATE

$EOJ

End of Input Stream -------------.....,.

Input Stream for
CREATE Command

Input Stream with
Dollar Signs Follows

DCL1-88

$JOB HIGGINS

ZK-0782-GE

This batch job example uses the CREATE command to create a command
procedure from data in the input stream. The DECK command is required
so that subsequent lines that begin with a dollar sign are not executed as
commands, but are accepted as input records. The EOD command signals
the end-of-file (EOF) for the data records. Then the WEATHER procedure
is executed with the@ (execute procedure) command.

CREATE/DIRECTORY

CREATE/DIRECTORY

FORMAT

PARAMETER

Creates one or more new directories or subdirectories. The /DIRECTORY
qualifier is required.

Requires write (W) access to the master file directory (MFD) to create
a first-level directory. On a system volume, generally only users with a
system user identification code (UIC) or the SVSPRV (system privilege)
or BYPASS user privileges have write (W) access to the MFD to create a
first-level directory.

Requires write (W) access to the lowest level directory that currently
exists to create a subdirectory.

CREATE/DIRECTORY directory-spec[, ... }

directory-spec[, •..]
Specifies the name of one or more directories or subdirectories to be
created. The directory specification optionally can be preceded by a device
name (and colon[:]). The default is the current default directory. Wildcard
characters are not allowed. When you create a subdirectory, separate the
names of the directory levels with periods (.).

Note that it is possible to create a series of nested subdirectories with
a single CREATE/DIRECTORY command. For example, [a.b.c] can be
created, even though neither [a.b] nor [a] exists at the time the command
is entered. Each subdirectory will be created, starting with the highest
level and proceeding downward.

DESCRIPTION The CREATE/DIRECTORY command creates new directories as well as
subdirectories. Special privileges are needed to create new first-level
directories. (See the restrictions noted above.) Generally, users have
sufficient privileges to create subdirectories in their own directories. Use
the SET DEFAULT command to move from one directory to another.

QUALIFIERS /LOG
/NOLOG (default)
Controls whether the CREATE/DIRECTORY command displays the
directory specification of each directory after creating it.

!OWNER_ UIC[=option]
Requires SYSPRV (system privilege) privilege for a user
identification code (UIC) other than your own.

Specifies the owner UIC for the directory. The default is your UIC. You
can specify the keyword PARENT in place of a UIC to mean the UIC of
the parent (next-higher-level) directory. If a user with privileges creates a
subdirectory, by default, the owner of the subdirectory will be the owner
of the parent directory (or the owner of the MFD, if creating a main level

DCL1-89

CREATE/DIRECTORY

EXAMPLES

directory). If you do not specifiy the /OWNER_UIC qualifier when creating
a directory, the command assigns ownership as follows: (1) if you specify
the directory name in either alphanumeric or subdirectory format, the
default is your UIC (unless you are privileged in which case the UIC
defaults to the parent directory); (2) if you specify the directory in UIC
format, the default is the specified UIC.

Specify the UIC by using standard UIC format as described in the VMS
DCL Concepts Manual.

IPROTECTION=(ownership[:access][, ...])
Specifies protection for the directory. Specify the ownership parameter as
system (S), owner (0), group (G), or world (W) and the access parameter as
read (R), write (W), execute (E), or delete (D). The default protection is the
protection of the parent directory (the next-higher level directory, or the
master directory for top-level directories) minus any delete (D) access.

If you are creating a first-level directory, then the next-higher-level
directory is the MFD. (The protection of the MFD is established by the
INITIALIZE command.)

For more information on specifying protection code, see the VMS DCL
Concepts Manual.

/VERSION_LIMIT=n
Specifies the number of versions of any one file that can exist in the
directory. If you exceed the limit, the system deletes the lowest numbered
version. A specification of 0 means no limit. The maximum number
of versions allowed is 32,767. The default is the limit for the parent
(next-higher-level) directory.

When you change the version limit setting, the new limit applies only to
files created after the setting was changed. New versions of files created
before the change are subject to the previous version limit.

/VOLUME=n
Requests that the directory file be placed on the specified relative volume
of a multivolume set. By default, the file is placed arbitrarily within the
multivolume set.

D $ CREATE/DIRECTORY/VERSION_LIMIT=2 $DISK1: [ACCOUNTS.MEMOS]

In this example, the CREATE/DIRECTORY command creates a
subdirectory named MEMOS in the ACCOUNTS directory on $DISK1.
No more than two versions of each file can exist in the directory.

i $ CREATE/DIRECTORY/PROTECTION=(SYSTEM:RWED,OWNER:RWED,GROUP,WORLD) -
_$ [MALCOLM.SUB.HLP]

DCL1-90

In this example, the CREATE/DIRECTORY command creates a
subdirectory named [MALCOLM.SUB.HLP]. The protection on the
subdirectory allows read (R), write (W), execute (E), and delete (D) access
for the system and owner categories, but prohibits all access for the group
or world categories.

CREATE/DIRECTORY

I] $ CREATE/DIRECTORY DISK2: [MALCOLM]

In this example, the CREATE/DIRECTORY command creates a directory
named [MALCOLM] on the device DISK2. Special privileges are required
to create a first-level directory.

IJ $ CREATE/DIRECTORY [MALCOLM. SUB]
$ SET DEFAULT [MALCOLM.SUB]

In this example, the CREATE/DIRECTORY command creates
a subdirectory named [MALCOLM.SUB]. This directory file is
placed in the directory named [MALCOLM]. The command SET
DEFAULT [MALCOLM.SUB] changes the current default directory
to this subdirectory. All files subsequently created are cataloged in
[MALCOLM.SUB].

~ $ CREATE/DIRECTORY [FRED.SUB1.SUB2.SUB3]

In this example, the CREATE/DIRECTORY command creates a top
level directory ([FRED]) and three subdirectories ([FRED.SUB!],
[FRED.SUB1.SUB2], and [FRED.SUB1.SUB2.SUB3]).

DCL1-91

CREATE/FOL

CREATE/FOL

FORMAT

DCL1-92

Invokes the Create/FOL Utility, which uses the specifications in a File
Definition Language (FDL) file to create a new, empty data file. The /FDL
qualifier is required. For a complete description of the Create/FOL Utility, see
the VMS File Definition Language Facility Manual.

CREATE/FDL=fd/-fi/espec [filespec]

CREATE/NAME_ TABLE

CREATE/NAME TABLE

Creates a new logical name table. The /NAME_ TABLE qualifier is required.

FORMAT CREATE/NAME TABLE table-name

PARAMETER table-name
Specifies a string of 1 to 31 characters that identifies the logical name
table you are creating. The string can include alphanumeric characters,
the dollar sign ($), and the underscore (_). This name is entered
as a logical name in either the process directory logical name table
(LNM$PROCESS_DIRECTORY) or the system directory logical name
table (LNM$SYSTEM_DIRECTORY).

DESCRIPTION The CREATE/NAME_TABLE command creates a new logical name
table. The name of the table is contained within the LNM$PROCESS_
DIRECTORY directory table if the table is process-private, and within the
LNM$SYSTEM_DIRECTORY directory table if the table is shareable.

Every new table has a parent table, which determines whether the new
table is process-private or shareable. To create a process-private table, use
the /PARENT_TABLE qualifier to specify the name of a process-private
table (the process directory table). To create a shareable table, specify the
parent as a shareable table.

If you do not explicitly provide a parent table, the CREATE/NAME_
TABLE command creates a process-private table whose parent is
LNM$PROCESS_DIRECTORY; that is, the name of the table is entered in
the process directory.

Every table has a size quota. The quota may either constrain the potential
growth of the table or indicate that the table's size can be virtually
unlimited. The description of the /QUOTA qualifier explains how to
specify a quota.

To specify an access mode for the table you are creating, use the /USER_
MODE, the /SUPERVISOR_MODE, or the /EXECUTIVE_MODE qualifier.
If you specify more than one of these qualifiers, only the last one entered
is accepted. If you do not specify an access mode, then a supervisor-mode
table is created.

To delete a logical name table, use the DEASSIGN command, specify the
name of the table you want to delete, and use the trABLE qualifier to
specify the directory table where the name of the table was entered.

DCL1-93

CREATE/NAME TABLE

QUALIFIERS

DCL1-94

I ATTRIBUTES[=(keyword[, ...])]
Specifies attributes for the logical name table. If you specify only one
keyword, you can omit the parentheses. If you do not specify the
/ATTRIBUTES qualifier, no attributes are set.

You can specify the following keywords for attributes:

CONFINE Does not copy the table name or the logical names contained in the
table into a spawned subprocess; used only when creating a private
logical name table. If a table is created with the CONFINE attribute,
all names subsequently entered into the table are also confined.

NO_ALIAS No identical names (either logical names or names of logical name
tables) may be created in an outer (less privileged) mode in the
current directory. If you do not specify the NO_ALIAS attribute, then
the table may be "aliased" by an identical name created in an outer
access mode. Deletes any previously created identical table names
in an outer access mode in the same logical name table directory.

SUPERSEDE Creates a new table that supersedes any previous (existing) table
that contains the name, access mode, and directory table that you
specify. The new table is created regardless of whether the previous
table exists. (If you do not specify the SUPERSEDE attribute, the
new table is not created if the previous table exists.)

If you specify or accept the default for the qualifier /LOG, you receive
a message indicating the result.

/EXECUTIVE MODE
Requires SYSNAM (system logical name) privilege.

Creates an executive-mode logical name table. If you specify executive
mode, but do not have SYSNAM privilege, a supervisor-mode logical name
table is created.

/LOG (default)
/NO LOG
Controls whether an informational message is generated when the
SUPERSEDE attribute is specified, or when the table already exists
but the SUPERSEDE attribute is not specified. The default is the /LOG
qualifier; that is, the informational message is displayed.

/PARENT_ TABLE:tab/e
Requires execute (E) access to the parent table and SYSPRV
(system privilege) privilege to create a shareable logical name
table.

Specifies the name of the parent table. The parent table determines
whether a table is private or shareable; it also determines the size quota
of the table. If you do not specify a parent table, the default table is
LNM$PROCESS_DIRECTORY. A shareable table has LNM$SYSTEM_
DIRECTORY as its parent table. The parent table must have the same
access mode or a higher level access mode than the one you are creating.

IPROTECTION=(ownership[:access][, ...])
Applies the specified protection to shareable name tables. Specify the
ownership parameter as system (S), owner (0), group (G), or world (W)
and the access parameter as read (R), write (W), execute (E), or delete (D).
The default protection is (S:RWED, O:RWED, G, W).

EXAMPLES

CREATE/NAME_ TABLE

For more information on specifying protection codes, see the VMS DCL
Concepts Manual.

The /PROTECTION qualifier affects only shareable logical name tables; it
does not affect process-private logical name tables.

/QUOTA:number-of-bytes
Specifies the size limit of the logical name table. The size of each logical
name entered in the new table is deducted from this size limit. The new
table's quota is statically subtracted from the parent table's quota holder.
The parent table's quota holder is the first logical name table· encountered
when working upward in the table hierarchy that has an explicit quota
and is therefore its own quota holder. If the /QUOTA qualifier is not
specified or the size limit is 0, the parent table's quota holder becomes
the new table's quota holder and space is dynamically withdrawn from it
whenever a logical name is entered in this new table. If you do not specify
the /QUOTA qualifier, or if you specify /QUOTA=O, the table has unlimited
quota.

!SUPERVISOR_MODE (default)
Creates a supervisor-mode logical name table. If you do not specify a
mode, a supervisor-mode logical name table is created.

/USER MODE
Creates auser-mode logical name table. If you do not explicitly specify a
mode, a supervisor-mode logical name table is created.

D $ CREATE/NAME TABLE TEST TAB
$ SHOW LOGICAL TEST TAB -
%SHOW-S-NOTRAN, no translation for logical name TEST_TAB
$ SHOW LOGICAL/TABLE=LNM$PROCESS_DIRECTORY TEST_TAB

In this example, the CREATE/NAME_TABLE command creates a new
table called TEST_TAB. By default, the name of the table is entered in
the process directory. The first SHOW LOGICAL command does not find
the name TEST_TAB because it does not, by default, search the process
directory table. You must use the trABLE qualifier to request that the
process directory be searched.

~ $ CREATE/NAME TABLE/ATTRIBUTES=CONFINE EXTRA
$ DEFINE/TABLE=EXTRA MYDISK DISK4:
$ DEFINE/TABLE=LNM$PROCESS DIRECTORY LNM$FILE DEV -
_$ EXTRA, LNM$PROCESS, LNM$JOB, LNM$GROUP, LNM$SYSTEM
$ TYPE MYDISK: [COHEN]EXAMPLEl.LIS

This example creates a new logical name table called EXTRA that is
created with the CONFINE attribute. Therefore, the EXTRA table and the
names it contains will not be copied to subprocesses.

DCL1-95

CREATE/NAME TABLE

DCL1-96

Next, the logical name MYDISK is placed into the table EXTRA. To use
the name MYDISK in file specifications, you must make sure that the
table EXTRA is searched when RMS parses file specifications. To do this,
you can define a process-private version of the logical name LNM$FILE_
DEV to include the name EXTRA as one of its equivalence strings. (The
system uses LNM$FILE_DEV to determine the tables to search during
logical name translation for device or file specifications, and will use the
process-private version of the logical name before using the default system
version.) After you define LNM$FILE_DEV, the system searches the
following tables during logical name translation: EXTRA, your process
table, your job table, your group table, and the system table. Now, you can
use the name MYDISK in a file specification and the equivalence string
DISK4 will be substituted.

CREATE/TERMINAL

CREATE/TERMINAL

FORMAT

The DCL command CREATE/TERMINAL creates a window that emulates
another terminal type.

Note: At present, only DECterm windows are available with this
command.

CREATE/TERMINAL [command-string]

PARAMETER command-string
Specifies a command string that is to be executed in the context of the
created subprocess. You cannot specify this parameter with the /DETACH
or the /NOPROCESS qualifier. The CREATEtrERMINAL command is
used in much the same way as the SPAWN command.

DESCRIPTION The CREATEtrERMINAL command creates a subprocess of your current
process. When the subprocess is created, the process-permanent open
files and any image or procedure context are not copied from the parent
process. The subprocess is set to command level 0 (DCL level with the
current prompt).

If you do not specify the /PROCESS qualifier, the name of this subprocess
is composed of the same base name as the parent process and a unique
number. For example, if the parent process name is SMITH, the
subprocess name can be SMITH_l, SMITH_2, and so on.

The LOGIN.COM file of the parent process is not executed for the
subprocess, because the context is copied separately, allowing quicker
initialization of the subprocess. When the /WAJ.T qualifier is in effect, the
parent process remains in hibernation until the subprocess terminates and
returns control to the parent by using the ATTACH command.

You should use the LOGOUT command to terminate the subprocess and
return to the parent process. You can also use the ATTACH command
to transfer control of the terminal to another process in the subprocess
tree, including the parent process. (The SHOW PROCESS/SUBPROCESS
command displays the process in the subprocess tree and points to the
current process.)

Note: Because a tree of subprocesses can be established using the
CREATE/TERMINAL command, you must be careful when
terminating any process in the tree. When a process is terminated,
all the subprocesses below that point in the tree are automatically
terminated. For example, the SPAWN/NOWAIT CREATE
/TERMINAL command creates a subprocess that exits as soon
as the DECterm window is created. Once this process exits, the
DECterm window disappears. Instead, use the SPAWN/NOWAIT
CREATE/TERMINAL/WAIT command to allow the process to
continue.

DCL1-97

CREATE/TERMINAL

QUALIFIERS

Qualifiers with the CREATE/TERMINAL command must directly follow
the command verb. The command-string parameter begins after the last
qualifier and continues to the end of the command line.

!APPLICATION KEYPAD
Sets the APPLICATION_KEYPAD terminal characteristic in the
created terminal window. If the /APPLICATION_KEYPAD or the
/NUMERIC_KEYPAD qualifier is not specified, the default is to inherit
the characteristic from the parent. (See also /NUMERIC_KEYPAD.)

!BIG FONT
Specifies that the big font (as specified in resource files) be selected when
the created terminal window is initialized. It is an error to specify the
/BIG_FONT qualifier in combination with the /LITTLE_FONT qualifier. If
you do not specify either the /BIG_FONT or the /LITTLE_FONT qualifier,
the initial font is the big font.

!BROADCAST
/NOBROADCAST
Determines whether the terminal window is created with broadcast
messages enabled. If neither qualifier is specified, the created terminal
window inherits the broadcast characteristic of the parent. ·

/CARRIAGE_ CONTROL
/NOCARRIAGE_ CONTROL
Determines whether carriage-return and line-feed characters are prefixed
to the subprocess's prompt string. By default, the CREATE/TERMINAL
command copies the current setting of the parent process. The
CARRIAGE_CONTROL qualifier is used only with the /NODETACH
qualifier.

!CLl=cli-file-spec
!NOCLI
Specifies the name of a command language interpreter (CLI) to be used by
the subprocess. The default CLI is the same as that of the parent process
(defined in SYSUAF). If you specify the /CLI qualifier, the attributes of the
parent process are copied to the subprocess. The CLI you specify must be
located in SYS$SYSTEM and have the file type EXE. This qualifier is used
only with the /NODETACH qualifier.

/CONTROLLER:filespec
Specifies the name of the terminal window controller image. This name
allows the CREATE/TERMINAL command to create a window on a variant
controller, such as for a language not supported by the base product. For a
DECterm window, the default is SYS$SYSTEM:DECW$TERMINAL.EXE.
The device and directory default to SYS$SYSTEM and the file type
defaults to EXE.

Note: The "name" field of the file name as returned by $PARSE

DCL1-98

is used to form the mailbox logical name. For example, if
the file "name" is DECW$TERMINAL, the mailbox logical
name will be DECW$TERMINAL_MAILBOX_node::O.O. For
backward compatibility, the controller also defines a logical

CREATE/TERMINAL

name DECW$DECTERM_MAILBOX_host::O.O to point to the same
mailbox.

/DEFINE_LOGICAL:({logname, TABLE:tablename}
[, ...])
Specifies one or more logical names that are set to the name of the created
pseudo-terminal device. Each element in the list is either a logical name
or TABLE= followed by the name of a logical name table in which all
subsequent logical names will be entered. The default is the process
logical name table.

/DETACH
/NODETACH (default)
Determines whether the created terminal process is detached or a
subprocess of the current process. The /DETACH qualifier cannot be
used with the command-string parameter.

/DISPLAY:display-name
Specifies the name of the display on which to create the terminal window.
If this parameter is omitted, the DECW$DISPLAY logical name is used.

/ESCAPE
/NOESCAPE
Sets or clears the ESCAPE characteristic of the created terminal window.
The default is to inherit the characteristic of the parent.

/FALLBACK
/NOFALLBACK
Sets or clears the FALLBACK characteristic of the created terminal
window. The default is to inherit the characteristic of the parent.

/HOSTSYNC (default)
/NOHOSTSYNC
Sets or clears the HOSTSYNC characteristic of the created terminal
window. The default is to inherit the characteristic of the parent.

/INPUT =filespec
Specifies an alternate input file or device to use as SYS$INPUT for the
new process. The default is to use the created terminal window for input.
This qualifier can be used with or without the /DETACH qualifier.

/INSERT
Creates the terminal window with insert mode as the default for line
editing. If the /INSERT or the /OVERSTRIKE qualifier is not specified,
the default is to inherit the characteristic from the parent. (See also
/OVERSTRIKE.)

/KEYPAD (default)
/NOKEYPAD
Determines whether keypad definitions and the current keypad state
are copied from the parent process. This qualifier is used only with the
/NODETACH qualifier.

DCL1-99

CREATE/TERMINAL

DCL1-100

/LINE_EDITING
/NOL/NE EDITING
Determines -;hether the terminal window is created with line editing
enabled. If neither qualifier is specified, the created terminal window
inherits the line editing characteristic of the parent.

/LITTLE FONT
Specifies that the little font (as specified in resource files) be selected when
the created terminal window is initialized. It is an error to specify the
/LITTLE_FONT qualifier in combination with the /BIG_FONT qualifier. If
you do not specify either the /BIG_FONT or the /LITTLE_FONT qualifier,
the initial font is the big font.

/LOGGED_IN (default)
/NOLOGGED IN
Determines whether a prompt for a user name and password are
supplied (/NOLOGGED_IN) or the created terminal window is logged
in automatically (/LOGGED_IN). This qualifier is used only with the
/DETACH qualifier.

/LOGICAL_NAMES (default)
/NOLOGICAL NAMES
Determines whether the created terminal window inherits the parent's
logical names. This qualifier is used only with the /NODETACH qualifier.

/NOTIFY
/NONOTIFY (default)
Determines whether a notification message is broadcast to the parent
when the created terminal window exits. This qualifier is used only with
the /NODETACH qualifier.

/NUMERIC KEYPAD
Sets the NUMERIC_KEYPAD terminal characteristic in the created
terminal window. If the /NUMERIC_KEYPAD or the /APPLICATION_
KEYPAD qualifier is not specified, the default is to inherit the
characteristic from the parent. (See also /APPLICATION_KEYPAD.)

/OVERSTRIKE
Creates the terminal window with overstrike mode as the default for line
editing. If the /OVERSTRIKE or the /INSERT qualifier is not specified,
the default is to inherit the characteristic from the parent. (See also
/INSERT.)

/PASTHRU
/NOPASTHRU
Sets or clears the PASTHRU characteristic in the created terminal window.
The default is to inherit the characteristic of the parent.

/PROCESS (default)
IPROCESS:process-name
/NOPROCESS

CREATE/TERMINAL

Specifies the name of the process or subprocess to be created. The
/NOPROCESS qualifier causes a window to be created without a process.
If you specify the /PROCESS qualifier without a process name, a unique
process name is assigned with the same base name as the parent process
and a unique number. The default process name format is username_n.
If you specify a process name that already exists, an error message
is displayed. This qualifier is used with either the /DETACH or the
/NODETACH qualifier.

/PROMPT :prompt
Specifies the prompt string of the created terminal window. This qualifier
is used only with the /NODETACH qualifier.

/READSYNC
/NOREADSYNC
Sets or clears the READSYNC terminal characteristic in the created
terminal window. The default is to inherit the characteristic from the
parent.

/RESOURCE_FILE:filespec
Specifies that the created terminal window use the resource file
"filespec" instead of the default resource file, DECW$USER_
DEFAULTS:DECW$TERMINAL_DEFAULT.DAT.

/SYMBOLS (default)
/NOSYMBOLS
Determines whether the subprocess inherits the parent's DCL symbols.
This qualifier is used only with the /NODETACH qualifier.

ITABLE=command-table
Specifies the name of an alternate command table to be used by the
subprocess. This qualifier is used only with the /NODETACH qualifier.

ITTSYNC
/NOTTSYNC
Sets or clears the TTSYNC terminal characteristic in the created terminal
window; the default is to inherit the characteristic of the parent.

/TYPE AHEAD
/NOTYPE AHEAD
Sets or clearsthe TYPE_AHEAD terminal characteristic in the created
terminal window. The default is to inherit the characteristic of the parent.

/WAIT
INOWAIT (default)
Requires that you wait for the subprocess to terminate before you enter
another DCL command. The /NOWAIT qualifier allows you to enter new
commands while the subprocess is running. This qualifier is used only
with the /NODETACH qualifier.

DCL1-101

CREATE/TERMINAL

/WINDOW_ATTRIBUTES:{parameter [, ...])
Specifies initial attributes for the created terminal window to override the
defaults read from the resource file. These parameters include:

EXAMPLE

Parameter

BACKGROUND

FOREGROUND

WIDTH

HEIGHT

X_POSITION

Y_POSITION

ROWS

COLUMNS

INITIAL_ STATE

TITLE

ICON_NAME

FONT

$ CREATE/TERMINAL=DECTERM -
$ /DISPLAY=MYNODE::O -

-$/WINDOW ATTRIBUTES=(-
- $ ROWS=3 ('" -
- $ COLUMNS=8 0,
-$ TITLE="REMOTE TERMINAL", -
=$ ICON_NAME="REMOTE TERMINAL"

Description

The background color.

The foreground color.

The width, in pixels.

The height, in pixels.

The x-position, in pixels.

The y-position, in pixels.

The number of rows in the window, in character cells. If the Auto
Resize Window option is enabled, the ROWS and COLUMNS
parameters override the size specified by the WIDTH and
HEIGHT parameters.

The number of columns in the window, in character cells. If
the Auto Resize Window option is enabled, the ROWS and
COLUMNS parameters override the size specified by the WIDTH
and HEIGHT parameters.

The initial state of the window, either ICON or WINDOW.

A character string specifying the window title.

A character string specifying the window icon name.

The name of the font to be used in the window. If you specify
the /LITTLE_FONT qualifier, or omit both the /LITTLE_FONT and
/BIG_FONT qualifiers, this overrides the name of the little font that
is set in the resource files; otherwise it overrides the name of the
big font. The font name can be a logical name, and it can be (but
does not have to be) the base font in a complete font set.

In this example, the command creates a detached process in a DECterm
window on node MYNODE:: that is 36 rows by 80 columns and has its
title and icon name set to "Remote terminal".

DCL1-102

DEALLOCATE

DEALLOCATE

FORMAT

PARAMETER

QUALIFIER

EXAMPLES

Makes an allocated device available to other processes (but does not
deassign any logical name associated with the device).

DEALLOCATE device-name[.]

device-name[:]
Name of the device to be deallocated. The device name can be a physical
device name or a logical name. On a physical device name, the controller
defaults to A and the unit to 0. This parameter is incompatible with the
I ALL qualifier.

/ALL
Deallocates all devices currently allocated by your process. This qualifier
is incompatible with the device-name parameter.

D $ DEALLOCATE DMBl :

In this example, the DEALLOCATE command deallocates unit 1 of the
RK06/RK07 devices on controller B.

~ $ ALLOCATE MT: TAPE
%DCL-I-ALLOC, MTBl: allocated

$ DEALLOCATE TAPE:

In this example, the ALLOCATE command requests that any magnetic
tape drive be allocated and assigns the logical name TAPE to the device.
The response to the ALLOCATE command indicates the successful
allocation of the device MTBl. The DEALLOCATE command specifies
the logical name TAPE to release the tape drive.

I] $ DEALLOCATE/ALL

In this example, the DEALLOCATE command deallocates all devices that
are currently allocated.

DCL1-103

DEASSIGN

DEASSIGN

FORMAT

PARAMETER

Cancels a logical name assignment that was made with one of the following
commands: ALLOCATE, ASSIGN, DEFINE, or MOUNT. The DEASSIGN
command also deletes a logical name table that was created with the CREATE
/NAME_ TABLE command.

DEASSIGN [/ogica/-name[.j]

logical-name[:]
Specifies the logical name to be deassigned. Logical names can have from
1 to 255 characters. If the logical name contains any characters other than
alphanumerics, dollar signs ($), or underscores (_), enclose it in quotation
marks (" "). The logical-name parameter is required unless you use the
I ALL qualifier.

If the logical-name parameter ends with a colon (:), the command
interpreter ignores the colon. (Note that the ASSIGN and ALLOCATE
commands remove a trailing colon, if present, from a logical name before
placing the name in a logical name table.) If a colon is present in the
logical name, you must type two colons in the logical-name parameter of
the DEASSIGN command (for example, DEASSIGN FILE::).

To delete a logical name table, specify the table name as the logical-name
parameter. You must also use the /TABLE qualifier to indicate the logical
name directory table where the table name is entered.

DESCRIPTION The DEASSIGN command cancels a logical name assignment that was
made with one of the following commands: ALLOCATE, ASSIGN,
DEFINE, or MOUNT. The DEASSIGN command also deletes a logical
name table that was created with the CREATE/NAME_TABLE command.
You can use the /ALL qualifier with DEASSIGN to cancel all logical names
in a specified table. If you use the I ALL qualifier and do not specify a
table, then all names in the process table (except names created by the
command interpreter) are deassigned; that is, all names entered at the
indicated access mode or an outer access mode are deassigned.

DCL1-104

To specify the logical name table from which you want to deassign a logical
name, use the /PROCESS, the /JOB, the /GROUP, the /SYSTEM, or the
/TABLE qualifier. If you enter more than one of these qualifiers, only the
last one entered is accepted. If entries exist for the specified logical name
in more than one logical name table, the name is deleted from only the
last logical name table specified on the command line. If you do not specify
a logical name table, the default is the /TABLE=LNM$PROCESS qualifier.

To specify the access mode of the logical name you want to deassign, use
the /USER_MODE, the /SUPERVISOR_MODE, or the /EXECUTIVE_
MODE qualifier. If you enter more than one of these qualifiers, only
the last one is accepted. If you do not specify a mode, the DEASSIGN
command deletes a supervisor-mode name. When you deassign a logical

QUALIFIERS

DEASSIGN

name, any identical names created with outer access modes in the same
logical name table are also deleted.

You must have SYSNAM (system logical name) privilege to deassign an
executive-mode logical name. If you specify the /EXECUTIVE_MODE
qualifier and you do not have SYSNAM privilege, then the DEASSIGN
command ignores the qualifier and attempts to deassign a supervisor-mode
logical name.

All process-private logical names and logical name tables are deleted when
you log out of the system. User-mode entries within the process logical
name table are deassigned when any image exits. The logical names in the
job table, and the job table itself, are deleted when you log off the system.

Names in all other shareable logical name tables remain there until they
are explicitly deassigned, regardless of whether they are user-, supervisor-,
or executive-mode names. You must have write (W) access to a shareable
logical name table to delete any name in that table.

If you delete a logical name table, all the logical names in the table
are also deleted. Also, any descendant tables are deleted. To delete a
shareable logical name table, you must have the user privilege SYSPRV
(system privilege) or you must have delete (D) access to the table.

/ALL
Deletes all logical names in the same or an outer (less privileged) access
mode. If no logical name table is specified, the default is the process table,
LNM$PROCESS. If you specify the I ALL qualifier, you cannot enter a
logical-name parameter.

IEXECUTIVE_MODE
Requires SYSNAM (system logical name) privilege to deassign
executive-mode logical names.

Deletes only entries that were created in the specified mode or an outer
(less privileged) mode. If you do not have SYSPRV (system privilege)
privilege for executive mode, a supervisor-mode operation is assumed.

/GROUP
Requires GRPNAM (group logical name) or SYSPRV privilege to
delete entries from the group logical name table.

Indicates that the specified logical name is in the group logical name table.
The /GROUP qualifier is synonymous with the /TABLE=LNM$GROUP
qualifier.

/JOB
Indicates that the specified logical name is in the jobwide logical name
table. The /JOB qualifier is synonymous with the /TABLE=LNM$JOB
qualifier. If you do not explicitly specify a logical name table, the default
is the /PROCESS qualifier.

You should not deassign jobwide logical name entries that were made
by the system at login time, for example, SYS$LOGIN, SYS$LOGIN.,..
DEVICE, and SYS$SCRATCH. However, if you assign new equivalence
names for these logical names (that is, create new logical names in outer
access modes), you can deassign the names you explicitly created.

DCL1-105

DEASSIGN

DCL1-106

/PROCESS (default)
Indicates that the specified logical name is in the process logical
name table. The /PROCESS qualifier is synonymous with the
/TABLE=LNM$PROCESS qualifier.

You cannot deassign logical name table entries that were made by the
command interpreter, for example, SYS$INPUT, SYS$0UTPUT, and
SYS$ERROR. However, if you assign new equivalence names for these
logical names (that is, you create new logical names in outer access
modes), you can deassign the names you explicitly created.

/SUPERVISOR_MODE (default)
Deletes entries in the specified logical name table that were created in
supervisor mode. If you specify the /SUPERVISOR_MODE qualifier, the
DEASSIGN command also deassigns user-mode entries with the same
name.

/SYSTEM
Requires SYSNAM (system logical name) or SYSPRV (system
privilege) privilege to delete entries from the system logical name
table.

Indicates that the specified logical name is in the system logical
name table. The /SYSTEM qualifier is synonymous with the
/TABLE=LNM$SYSTEM qualifier.

ITABLE:name
Requires write (W) access to the table to delete a shareable logical
name. Requires SYSPRV privilege or delete (D) access to delete a
shareable logical name table.

Specifies the table from which the logical name is to be deleted. Defaults
to LNM$PROCESS. The table can be the process, group, job, or system
table, one of the directory tables, or the name of a user-created table. (The
process, job, group, and system logical name tables should be referred to
by the logical names LNM$PROCESS, LNM$JOB, LNM$GROUP, and
LNM$SYSTEM, respectively.)

The /TABLE qualifier also can be used to delete a logical name table. To
delete a process-private table, enter the following command:

$ DEASSIGN/TABLE=LNM$PROCESS_DIRECTORY table-name

To delete a shareable table, enter the following command:

$ DEASSIGN/TABLE=LNM$SYSTEM_DIRECTORY table-name

To delete a shareable logical name table, you must have delete (D) access
to the table or write (W) access to the directory table in which the name of
the shareable table is cataloged.

If you do not explicitly specify the /TABLE qualifier, the default is the
/TABLE=LNM$PROCESS qualifier.

/USER_MODE
Deletes entries in the process logical name table that were created in
user mode. If you specify the /USER_MODE qualifier, the DEASSIGN
command can deassign only user-mode entries.

EXAMPLES

D $ DEASSIGN MEMO

~ $ DEASSIGN/ALL

DEASSIGN

The DEASSIGN command in this example deassigns the process logical
name MEMO.

The DEASSIGN command in this example deassigns all process logical
names that were created in user and supervisor mode. This command
does not, however, delete the names that were placed in the process
logical name table in executive mode by the command interpreter (for
example, SYS$INPUT, SYS$0UTPUT, SYS$ERROR, SYS$DISK, and
SYS$COMMAND).

I] $ DEASSIGN/TABLE=LNM$PROCESS_DIRECTORY TAX

The DEASSIGN command ih this example deletes the logical name table
TAX, and any descendant tables. When you delete a logical name table,
you must specify either the /TABLE=LNM$PROCESS_DIRECTORY or the
/TABLE=LNM$SYSTEM_DIRECTORY qualifier, because the names of all
tables are contained in these directories.

II $ ASSIGN USER DISK: COPY
$ DEASSIGN COPY

The ASSIGN command in this example equates the logical name COPY
with the device USER_DISK and places the names in the process logical
name table. The DEASSIGN command deletes the logical name.

I $ DEFINE SWITCH: TEMP
$ DEASSIGN SWITCH: :

The DEFINE command in this example places the logical name SWITCH:
in the process logical name table. The trailing colon is retained as part of
the logical name. Two colons are required on the DEASSIGN command to
delete this logical name because the DEASSIGN command removes one
trailing colon, and the other colon is needed to match the characters in the
logical name.

&] $ ASSIGN/TABLE=LNM$GROUP DBAl: GROUP DISK
$ DEASSIGN/PROCESS/GROUP GROUP_DISK -

The ASSIGN command in this example places the logical name GROUP_
DISK in the group logical name table. The DEASSIGN command specifies
conflicting qualifiers; because the /GROUP qualifier is last, the name is
successfully deassigned.

DCL1-107

DEASSIGN

I $ ASSIGN DALLAS: : USER DISK: DATA

$ DEASSIGN DATA

DCL1-108

The ASSIGN command in this example associates the logical name DATA
with the device specification USER_DISK on remote node DALLAS.
Subsequent references to the logical name DATA result in references to
the disk on the remote node. The DEASSIGN command cancels the logical
name assignment.

DEASSIGN/QUEUE

DEASSIGN/QUEUE

FORMAT

Deassigns a logical queue from a printer or terminal queue and stops the
logical queue.

Requires OPER (operator) privilege or execute (E) access to the queue.
Cannot be used with batch queues.

DEASSIGN/QUEUE logical-queue-name[.J

PARAMETER logical-queue-name[:]
Specifies the name of the logical queue that you want to deassign from a
specific printer or terminal queue.

DESCRIPTION Once you enter the DEASSIGN/QUEUE command, the jobs in the logical
queue remain pending until the queue is reassigned to another printer
queue or device with the ASSIGN/QUEUE command.

EXAMPLE
$ ASSIGN/QUEUE LPAO ASTER

$ DEASSIGN/QUEUE ASTER
$ ASSIGN/MERGE LPBO ASTER

The ASSIGN/QUEUE command in this example associates the logical
queue ASTER with the print queue LPAO. Later, you deassign the logical
queue with the DEASSIGN/QUEUE command. The ASSIGN/MERGE
command reassigns the jobs from ASTER to the print queue LPBO.

DCL1-109

DEBUG

DEBUG

FORMAT

DCL1-110

Invokes the VMS Debugger after program execution is interrupted by Ctrl/Y,
but only if the /NOTRACEBACK qualifier was not specified with the LINK
command when the program was linked. For a complete description of the
VMS Debugger, see the VMS Debugger Manual.

DEBUG

DECK

DECK

Marks the beginning of an input stream for a command or program. The
DECK command is required in command procedures when the first nonblank
character in any data record in the stream is a dollar sign ($).

Can be used only after a request to execute a command or program that
requires input data.

FORMAT DECK

DESCRIPTION The DECK command marks the data that follows it as input for a
command or program. This command is required in command procedures
when the first nonblank character in any data record in the input stream
is a dollar sign.

QUALIFIER

The DECK command must be preceded by a dollar sign; the dollar sign
must be in the first character position (column 1) of the input record.

The DECK command defines an end-of-file (EOF) indicator only for a
single data stream. Using the DECK command enables you to place data
records beginning with dollar signs in the input stream. You can place one
or more sets of data in the input stream following a DECK command, if
each is terminated by an EOF indicator.

After an EOF indicator specified with the /DOLLARS qualifier is
encountered, the EOF indicator is reset to the default, that is, to any
record beginning with a dollar sign. The default is also reset if an actual
EOF occurs for the current command level.

/DOLLARS[:string]
Sets the EOF indicator to the specified string of 1 to 15 characters. Specify
a string if the input data contains one or more records beginning with the
string $EOD. Enclose the string in quotation marks (" ") if it contains
literal lowercase letters, multiple blanks, or tabs. If you do not specify
/DOLLARS, or if you specify /DOLLARS without specifying a string, you
must use the EOD command to signal the end-of-file (EOF).

DCL1-111

DECK

EXAMPLES

D

DCL1-112

Input Stream
for
Program A

$ 86.42

$DECK

$AUNA

$LINK A

$FORTRANA

• • •

$EOJ

$PRINT SUMMARY.DAT
$EOD

• • •

ZK-0783-GE

In this example, the FORTRAN and LINK commands compile and link
program A. When the program is run, any data the program reads from
the logical device SYS$INPUT is read from the command stream. The
DECK command indicates that the input stream can contain dollar signs
in column 1 of the record. The EOD command signals end-of-file (EOF) for
the data.

,, ,, ,,
',

$ 99.50

$DECK
$ RUN READFILE

%

$EOJ

• • •

$ PRINT RUNTEST.OUT

$EOD

• • •

$ ASSIGN RUNTEST.OUT
OUTFILE

$ ASSIGN SYS$1NPUT
INFILE

DECK

', ,,
', $ DECK/DOLLARS="%"
$ CREATE TEST.COM

• • •

$JOB HIGGINS

G) Input stream for CREATE command.

® Input stream for program READFILE.

ZK-0784-GE

The CREATE command in this example creates the command procedure
file TEST.COM from lines entered into the input stream. The DECK
/DOLLARS command indicates that the percent sign (%) is the EOF
indicator for the CREATE command. This allows the string $EOD to
be read as an input record, signaling the end of the input for the RUN
command.

DCL1-113

DEFINE

DEFINE

FORMAT

Associates equivalence names with a logical name. If you specify an existing
logical name, the new equivalence names replace the existing equivalence
name.

DEFINE logical-name equivalence-name[, ...]

PARAMETERS logical-name

DCL1-114

Specifies the logical name string, which is a character string containing
from 1 to 255 characters. If the logical name is to be entered into the
process or system directory logical name tables (LNM$PROCESS_
DIRECTORY, LNM$SYSTEM_DIRECTORY), then the name can only
have from 1 to 31 alphanumeric characters (including the dollar sign [$]
and underscore [_]).

If you specify a colon (:) at the end of a logical name, the DEFINE
command saves the colon as part of the logical name. (This is in contrast
to the ASSIGN command, which removes the colon before placing the
name in a logical name table.) By default, the logical name is placed in
the process logical name table.

If the string contains any characters other than uppercase alphanumerics,
the dollar sign, or the underscore character, enclose the string in quotation
marks (" "). Use two consecutive quotation marks ("") to denote an
actual quotation mark. Note that if you enclose a name in quotation
marks, the case of alphabetic characters is preserved.

equivalence-name[, ...]
Specifies a character string containing from 1 to 255 characters. If the
string contains any characters other than uppercase alphanumerics,
the dollar sign, or the underscore character, enclose the string in quotation
marks. Use two consecutive quotation marks to denote an actual quotation
mark. Specifying more than one equivalence name for a logical name
creates a search list.

When you specify an equivalence name that will be used as a file
specification, you must include the punctuation marks (colons, brackets,
periods) that would be required if the equivalence name were used directly
as a file specification. Therefore, if you specify a device name as an
equivalence name, you must terminate the equivalence name with a colon.

The DEFINE command allows you to assign the same logical name to
more than one equivalence name. For example, you can use the same
logical name to access different directories on different disks, or to access
different files in different directories. When you specify more than one
equivalence name for a logical name, you create a search list. See the
VMS DCL Concepts Manual for more information on search lists.

DEFINE

DESCRIPTION The DEFINE command creates an entry in a logical name table by
defining a logical name to stand for one or more equivalence names.
An equivalence name can be a device name, another logical name, a file
specification, or any other string.

To specify the logical name table where you want to enter a logical name,
use the /PROCESS, the /GROUP, the /SYSTEM, the /JOB, or the trABLE
qualifier. If you enter more than one of these qualifiers, only the last
one entered is accepted. If you do not specify a table, the default is the
/TABLE=LNM$PROCESS qualifier.

To specify the access mode of the logical name you are creating, use the
/USER_MODE, the /SUPERVISOR_MODE, or the /EXECUTIVE_MODE
qualifier. If you enter more than one of these qualifiers, only the last one
entered is accepted. If you do not specify an access mode, a supervisor
mode name is created. You can create a logical name in the same mode as
the table in which you are placing the name, or in an outer mode. (User
mode is the outermost mode; executive mode is the innermost mode.)

You can enter more than one logical name with the same name in the
same table, as long as each name has a different access mode. (However,
if an existing logical name within a table has the NO_ALIAS attribute,
you cannot use the same name to create a logical name in an outer mode
in this table.)

If you create a logical name with the same name, in the same table, and
in the same mode as an existing name, the new logical name assignment
replaces the existing assignment.

You can also use the ASSIGN command to create logical names. To delete
a logical name from a table, use the DEASSIGN command.

Note: Avoid assigning a logical name that matches the file name of an
executable image in SYS$SYSTEM:. Such an assignment prohibits
you from invoking that image.

QUALIFIERS

For additional information on how to create and use logical names, see the
VMS DCL Concepts Manual.

/EXECUTIVE MODE
Requires SYSNAM (system logical name) privilege to create an
executive-mode logical name.

Creates an executive-mode logical name in the specified table.

If you specify the /EXECUTIVE_MODE qualifier and you do not have
SYSNAM privilege, the DEFINE command ignores the qualifier and
creates a supervisor-mode logical name. The mode of the logical name
must be the same or less privileged than the mode of the table in which
you are placing the name.

DCL1-115

DEFINE

DCL1-116

/GROUP
Requires GRPNAM (group logical name) or SYSPRV (system
privilege) privilege to place a name in the group logical name
table.

Places the logical name in the group logical name table. Other users who
have the same group number in their user identification codes (UICs) can
access the logical name. The /GROUP qualifier is synonymous with the
/TABLE=LNM$GROUP qualifier.

/JOB
Places the logical name in the jobwide logical name table. All processes
in the same job tree as the process that created the logical name can
access the logical name. The /JOB qualifier is synonymous with the
/TABLE=LNM$JOB qualifier.

!LOG (default)
/NO LOG
Displays a message when a new logical name supersedes an existing
name.

/NAME_A TTRIBUTES[=(keyword[, ...])]
Specifies attributes for a logical name. By default, no attributes are set.
Possible keywords are as follows:

CONFINE

NO_ALIAS

The logical name is not copied into a spawned subprocess. This
qualifier is relevant only for logical names in a private table.

The logical name inherits the CONFINE attribute from the logical
name table where it is entered; if the logical name table is "confined,"
then all names in the table are "confined."

A logical name cannot be duplicated in the specified table in a less
privileged access mode; any previously created identical names in
an outer (less privileged) access mode within the specified table are
deleted.

If you specify only one keyword, you can omit the parentheses. Only the
attributes you specify are set.

/PROCESS (default)
Places the logical name in the process logical name table. The /PROCESS
qualifier is synonymous with the /TABLE=LNM$PROCESS qualifier.

/SUPERVISOR_MODE (default)
Creates a supervisor-mode logical name in the specified table. The mode
of the logical name must be the same as or less privileged than the mode
of the table in which you are placing the name.

/SYSTEM
Requires SYSNAM (system logical name) or SYSPRV (system
privilege) privilege to place a name in the system logical name
table.

Places the logical name in the system logical name table. All system users
can access the logical name. The /SYSTEM qualifier is synonymous with
the /TABLE=LNM$SYSTEM qualifier.

EXAMPLES

DEFINE

ITABLE=name
Requires write (W) access to the table to specify the name of a
shareable logical name table.

Specifies the name of the logical name table in which the logical name is
to be entered. You can use the !l'ABLE qualifier to specify a user-defined
logical name table (created with the CREATE/NAME_TABLE command);
to specify the process, job, group, or system logical name tables; or to
specify the process or system logical name directory tables.

If you specify the table name using a logical name that has more
than one translation, the logical name is placed in the first table
found. For example, if you specify DEFINE/TABLE=LNM$FILE_
DEV and LNM$FILE_DEV is equated to LNM$PROCESS, LNM$JOB,
LNM$GROUP, and LNM$SYSTEM, then the logical name is placed in
LNM$PROCESS.

The default is the /TABLE=LNM$PROCESS qualifier.

/TRANSLATION_ ATTRIBUTES[=(keyword[, ...])]
Equivalence-name qualifier.

Specifies one or more attributes that modify an equivalence string of the
logical name. Possible keywords are as follows:

CONCEALED Indicates that the equivalence string is the name of a concealed
device. When a concealed device name is defined, the system
displays the logical name, rather than the equivalence string, in
messages that refer to the device.

TERMINAL Logical name translation should terminate with the current
equivalence string; indicates that the equivalence string should
not be translated iteratively.

If you specify only one keyword, you can omit the parentheses. Only the
attributes you specify are set.

Note that different equivalence strings of a logical name can have different
translation attributes.

/USER_MODE
Creates a user-mode logical name in the specified table.

User-mode logical names created within the process logical name tables
are used for the execution of a single image; for example, you can create
a user-mode logical name to allow an image executing in a command
procedure to redefine SYS$INPUT. User-mode entries are deleted from the
process logical name table when any image executing in the process exits
(that is, after a DCL command or user program that executes an image
completes execution).

D $ DEFINE/USER_MODE TMl $DISK1: [ACCOUNTS.MEMOS]WATER.TXT

In this example, the DEFINE command defines TMl as equivalent to
a file specification. After the next image runs, the logical name TMl is
automatically deassigned.

DCL1-117

DEFINE

~ $ DEFINE MEMO $DISK1: [ACCOUNTS .MEMO]

In this example, the DEFINE command defines the logical name MEMO as
equivalent to the partial file specification $DISK1:[ACCOUNTS.MEMO].

iJ $ DEFINE PROCESS NAME LIBRA
$ RUN WAKE

In this example, the DEFINE command places the logical name
PROCESS_NAME in the process logical name table with an equivalence
name of LIBRA. The logical name is created in supervisor mode. The
program WAKE translates the logical name PROCESS_NAME to perform
some special action on the process named LIBRA.

!] $ DEFINE TEMP: XXXl:

$ DEASSIGN TEMP::

In this example, the DEFINE command creates an equivalence name for
the logical name TEMP: and places the name in the process logical name
table. The colon is retained as part of the logical name. The DEASSIGN
command deletes the logical name. Note that two colons are required on
the logical name in the DEASSIGN command. One colon is deleted by the
DEASSIGN command. The other colon is kept as part of the logical name.

(i! $ DEFINE PORTLAND PRTLND:: YYYO: [DECNET .DEMO. COM]

In this example, the DEFINE command places the logical name
PORTLAND in the process logical name table with an equivalence name
of PRTLND::YYYO:[DECNET.DEMO.COM]. Subsequent references to the
logical name PORTLAND result in the correspondence between the logical
name PORTLAND and the node, disk, and subdirectory specified.

[i] $ DEFINE LOCAL "BOSTON'"' JOHN SMITH JKS""::"

In this example, the DEFINE command places the logical name LOCAL
in the process logical name table with a remote node equivalence name
of BOSTON 11JOHN_SMITH JKS 11

::. To satisfy conventions for local DCL
command string processing, you must use three sets of quotation marks.
The quotation marks ensure that access control information is enclosed in
one set of quotation marks in the equivalence name.

i $ DEFINE MYDISK XXXO: [MYDIR], YYYO: [TESTDIR]

DCL1-118

In this example, the DEFINE command places the logical name
MYDISK in the process logical name table with two equivalence names:
XXXO:[MYDIR] and YYYO:[TESTDIR].

$ CREATE/NAME TABLE TABLEl
$ DEFINE/TABLE=LNM$PROCESS DIRECTORY LNM$FILE DEV -

$ TABLE1,LNM$PROCESS,LNM$JOB,LNM$GROUP,LNM$SYSTEM
$ DEFINE/TABLE=TABLEl -
_$ /TRANSLATION ATTRIBUTES=CONCEALED WORK DISK DBAl:

DEFINE

In this example, the CREATE/NAME_TABLE command creates the
process private logical name table TABLEl.

The first DEFINE command ensures that TABLEl is searched first in any
logical name translation of a device or file specification (because TABLE 1
is the first item in the equivalence string for the logical name
LNM$FILE_DEV, which determines the default search sequence of logical
name tables whenever a device or file specification is translated).

The second DEFINE command assigns the logical name WORK_DISK to
the physical device DBAl and places the name in TABLE 1. The logical
name has the concealed attribute. Therefore, the logical name WORK_
DISK is displayed in system messages.

$ CREATE/NAME TABLE SPECIAL
$ DEFINE/TABLE=LNM$PROCESS DIRECTORY LNM$FILE DEV -

$ SPECIAL,LNM$PROCESS,LNM$JOB,LNM$GROUP,LNM$SYSTEM
$ DEFINE/TABLE=LNM$PROCESS DIRECTORY TAB SPECIAL
$ DEFINE/TABLE=TAB REPORT [CHELSEA] STORES
$ SHOW LOGICAL/TABLE=SPECIAL REPORT

"REPORT"= "[CHELSEA]STORES" (SPECIAL)

In this example, the CREATE/NAME_TABLE command is used to create
a new logical name table called SPECIAL. This table is defined in the
process directory, LNM$PROCESS_DIRECTORY.

The first DEFINE command ensures that SPECIAL is searched first
in any logical name translation of a device or file specification (because
SPECIAL is the first item in the equivalence string for the logical name
LNM$FILE_DEV, which determines the default search sequence of logical
name tables whenever a device or file specification is translated). The
logical name LNM$FILE_DEV is placed in the process directory,
LNM$PROCESS_DIRECTORY.

With the next DEFINE command, a new logical name, TAB, is defined.
TAB translates to the string SPECIAL, which identifies a logical name
table. You must define TAB in the process directory because it translates
iteratively to a logical name table.

Next, the logical name REPORT is placed into the logical name table TAB.
Because TAB translates to the table SPECIAL, the name REPORT is
entered into SPECIAL table. The SHOW LOGICAL command verifies that
the name REPORT has been entered into the table SPECIAL.

Note that you can redefine TAB so it translates to a different table.
Therefore, if you run different programs that use the name TAB as a table
name, you can change the actual tables where the names are entered or
referenced.

DCL1-119

DEFINE/CHARACTERISTIC

DEFINE/CHARACTERISTIC

FORMAT

Assigns a numeric value to a queue characteristic. The /CHARACTERISTIC
qualifier is required. If a value has been assigned to the characteristic, the
DEFINE/CHARACTERISTIC command alters the assignment of the existing
characteristic.

Requires OPER (operator) privilege.

DEFINE/CHARACTERISTIC characteristic-name
characteristic-number

PARAMETERS characteristic-name
Assigns a name to the characteristic being defined. The characteristic
name can be the name of an existing characteristic or a string of 1 to
31 characters that defines a new characteristic. The character string
can include any uppercase and lowercase letters, digits, the dollar sign
($), and the underscore (_), and must include at least one alphabetic
character.

characteristic-number
Assigns a number in the range 0 to 127 to the characteristic being defined.

DESCRIPTION The system manager or operator uses the DEFINE/CHARACTERISTIC
command to assign a name and number to a particular characteristic

DCL1-120

for queues in the system. Characteristics can refer to any attribute of a
print or batch job that is meaningful for your environment. The name and
number of a characteristic are arbitrary, but they must be unique for that
characteristic.

After characteristics have been defined, they can be associated with
print or batch jobs and execution queues. For information on specifying
characteristics with jobs, see the description of the /CHARACTERISTICS
qualifier of the PRINT and SUBMIT commands.

To find out what characteristics are currently defined for the system, use
the SHOW QUEUE/CHARACTERISTICS command. To find out which
characteristics have been specified for a particular queue, use the SHOW
QUEUE/FULL command. For information on associating characteristics
with queues, see the descriptions of the /CHARACTERISTICS qualifier of
the INITIALIZE/QUEUE, SET QUEUE, and START/QUEUE commands.

The DELETE/CHARACTERISTIC command deletes a previously defined
characteristic.

For more information on specifying queue characteristics, see the Guide to
Maintaining a VMS System.

DEFINE/CHARACTERISTIC

EXAMPLE

$ DEFINE/CHARACTERISTIC REDINK 3

The DEFINE/CHARACTERISTIC command in this example defines
the characteristic REDINK with the number 3. When a user enters
the command PRINT/CH.ARACTERISTICS=REDINK (or PRINT
/CHARACTERISTICS=3), the job is printed only if the printer queue
has been established with the REDINK or 3 characteristic.

DCL1-121

DEFINE/FORM

DEFINE/FORM

FORMAT

Assigns a numeric value and attributes to a print form name. The /FORM
qualifier is required. If a value has been assigned already to the form name,
the DEFINE/FORM command alters the definition of the existing form.

Requires OPER {operator) privilege.

DEFINE/FORM form-name form-number

PARAMETERS form-name
Assigns a name to the form being defined. The form name can be the
name of an existing form type or a string of 1 to 31 characters that defines
a new form type. The character string can include any uppercase and
lowercase letters, digits, the dollar sign ($), and the underscore (_), and
must include at least one alphabetic character.

form-number
Assigns a number in the range 0 to 2,147,483,647 to the form being
defined. The DEFAULT form, which is defined automatically when the
system is bootstrapped, is assigned number zero.

DESCRIPTION The system manager or operator uses the DEFINE/FORM command to
assign a name and number to a type of paper stock and printing area for
use with printer or terminal queues. When a new queue file is created, the
system defines a form named DEFAULT with a form number of zero and
all the default attributes.

DCL1-122

Some DEFINE/FORM qualifiers specify the area for printing. The LEFT
and RIGHT options of the /MARGIN qualifier and the /WIDTH qualifier
determine the number of characters per line. Using the RIGHT option
of the MARGIN qualifier and the /WIDTH qualifier, you can affect the
point at which lines of text wrap. (You cannot use the LEFT and RIGHT
options of the /MARGIN qualifier and the /WIDTH qualifier for filling or
formatting the text, however.)

You also can use the DEFINE/FORM command to specify different types
of paper stock. The /DESCRIPTION qualifier enables you to describe more
fully the form name.

After forms have been defined, they can be associated with print jobs and
output execution queues. For information on specifying forms with jobs,
see the description of the PRINT/FORM command.

To find out what forms have been defined for the system, use the SHOW
QUEUE/FORM command. To find out which form is mounted currently on
a particular queue and which form is specified as that queue's default
form, use the SHOW QUEUE/FULL command. For information on
associating forms with queues, see the descriptions of the /DEFAULT

QUALIFIERS

DEFINE/FORM

and /FORM_MOUNTED qualifiers of the INITIALIZE/QUEUE, SET
QUEUE, and START/QUEUE commands.

For more information on how to use forms to control print jobs, see the
Guide to Maintaining a VMS System.

/DESCRIPTION:string
A string of up to 255 characters used to provide operator information about
the form. The default string is the specified form name.

The string can be used to define the form type more specifically. For
example, if you have form names such as LETTER!, LETTER2, and
LETTER3, the /DESCRIPTION qualifier could be used to let the users
and operators know that LETTER! refers to the standard corporate
letterhead paper (8.5 inches x 11 inches), LETTER2 refers to the smaller
corporate letterhead paper (6 inches x 9 inches), and LETTER3 refers to
the president's personalized letterhead paper.

Enclose strings containing lowercase letters, blanks, or other
nonalphanumeric characters (including spaces) in quotation marks (11 11

).

/LENGTH:n
Specifies the physical length of a form page in lines. The default page
length is 66 lines, which assumes a standard page length of 11 inches
with 6 lines of print per inch. The parameter n must be a positive integer
greater than zero and not more than 255.

The print symbiont sets the page length of the device equal to the form
length. This enables the driver to compute the number of line feeds for
devices lacking mechanical form feed.

/MARGIN:(option[, ...])
Specifies one or more of the four margin options: BOTTOM, LEFT, RIGHT,
and TOP.

BOTTOM=n Specifies the number of blank lines between the end of the print image
area and the end of the physical page; the value of n must be between
0 and the value of the /LENGTH qualifier. The default value is 6, which
generally means a 1-inch bottom margin.

LEFT =n Specifies the number of blank columns between the leftmost printing
position and the print image area; the value of n must be between O and
the value of the /WIDTH qualifier. The default is 0, which means that
the print image area starts as far to the left of the paper as the printer
can go.

RIGHT =n Specifies the number of blank columns between the /WIDTH qualifier
and the image area; the value of n must be between 0 and the value of
the /WIDTH qualifier. When determining the value of the RIGHT option,
start at the /WIDTH value and count to the left. The default value is
0, which means that the print image extends as far to the right as the
/WIDTH value.

TOP=n Specifies the number of blank lines between the top of the physical
page and the top of the print image; the value of n must be between 0
and the value of the /LENGTH qualifier. The default value is 0, which
generally means that there is no top margin.

DCL1-123

DEFINE/FORM

DCL1-124

/PAGE_SETUP:(module[, ...])
/NOPAGE_SETUP (default)
Specifies one or more modules that set up the device at the start of each
page. The modules are located in the device control library. While the
form is mounted, the system extracts the specified module and copies it to
the printer before each page is printed.

/SETUP:(module[, ...])
Specifies one or more modules that set up the device at the start of each
file. The modules are located in the device control library. While the form
is mounted, the system extracts the specified module and copies it to the
printer before each file is printed.

/SHEET FEED
/NOSHEET_FEED (default)
Specifies that print jobs pause at the end of every physical page so that a
new sheet of paper can be inserted.

/STOCK:string
Specifies the type of paper stock to be associated with the form. The string
parameter can be a string of 1 to 31 characters, including the dollar sign,
underscore, and all alphanumeric characters. If you specify the /STOCK
qualifier you must specify the name of the stock to be associated with the
form. If you do not specify the /STOCK qualifier, the name of the stock
will be the same as the name of the form.

You can create any string that you want. However, when you are creating
forms with the same stock, be sure that the /STOCK string is identical in
all the DEFINE/FORM commands that refer to the same type of paper.

If you are defining a number of forms to provide different formatting
options, specify the same stock type for each form. If you specify the same
stock type for each form, jobs that request any of these forms will print on
the same queue.

/TRUNCATE (default)
INOTRUNCATE
Discards any characters that exceed the current line length (specified
by the /WIDTH and /MARGIN=RIGHT qualifiers). The trRUNCATE
qualifier is incompatible with the /WRAP qualifier. If you specify both
the /NOTRUNCATE and /NOWRAP qualifiers, the printer prints as many
characters on a line as possible. This combination of qualifiers is useful
for some types of graphics output.

/WIDTH=n
Specifies the physical width of the paper in terms of columns or character
positions. The parameter n must be an integer from 0 to 65,535; the
default value is 132.

Any lines exceeding this value wrap if the /WRAP qualifier is in effect
or are truncated if the trRUNCATE qualifier is in effect. (If both the
/NOTRUNCATE and /NOWRAP qualifiers are in effect, lines print as far
as possible.)

The !MARGIN=RIGHT qualifier overrides the /WIDTH qualifier when
determining when to wrap lines of text.

EXAMPLE

DEFINE/FORM

/WRAP
/NOWRAP (default)
Causes lines that exceed the current line length (specified by the /WIDTH
and IMARGIN=RIGHT qualifiers) to wrap onto the next line. The /WRAP
qualifier is incompatible with the /TRUNCATE qualifier. If you specify
both the /NOWRAP and /NOTRUNCATE qualifiers, the printer prints as
many characters on a line as possible. This combination of qualifiers is
useful for some types of graphics output.

$ DEFINE/FORM /MARGIN=(TOP=6,LEFT=10) CENTER 3

The DEFINE/FORM command in this example defines the form CENTER
to have a top margin of 6 and a left margin of 10. The defaults remain
in effect for both bottom margin (6) and right margin (0). The form is
assigned the number 3.

DCL1-125

DEFINE/KEY

DEFINE/KEY

FORMAT

Associates an equivalence string and a set of attributes with a key on the
terminal keyboard. The /KEY qualifier is required.

DEFINE/KEY key-name equivalence-string

PARAMETERS key-name

DCL1-126

Specifies the name of the key that you are defining. All definable keys
on VT52 terminals are located on the numeric keypad. On VTlOO-series
terminals, you can define the left and right arrow keys as well as all the
keys on the numeric keypad. On terminals with LK201 keyboards, the
following three types of keys can be defined:

• Keys on the numeric keypad

• Keys on the editing keypad (except the up and down arrow keys)

• Keys on the function key row across the top of the keyboard (except
keys Fl to F5)

The following table lists the key names in column one. The remaining
three columns indicate the key designations on the keyboards of the three
different types of terminals that allow key definitions.

Key Name

PF1

PF2

PF3

PF4

KPO, KP1, ... , KP9

Period

Comma

Minus

Enter

Left

Right

Find (E1)

Insert Here (E2)

Remove (E3)

Select (E4)

Prev Screen (ES)

LK201

PF1

PF2

PF3

PF4

0, 1, ... , 9

Enter

+--

~

Find

Insert Here

Remove

Select

Prev Screen

VT100-Series

PF1

PF2

PF3

PF4

0, 1, ... , 9

ENTER

+--

~

VT52

[blue]

[red]

[gray]

0, 1, ... , 9

n/a

n/a

ENTER

DEFINE/KEY

Key Name LK201 VT100-Series VT52

Next Screen (E6) Next Screen

Help Help

Do Do

F6, F7, ... , F20 F6, F7, ... , F20

Some definable keys are enabled for definition all the time. Others,
including KPO to KP9, Period, Comma, and Minus, must be enabled
for definition purposes. You must enter either the SET TERMINAL
/APPLICATION or the SET TERMINAL/NONUMERIC command before
using these keys.

On LK201 keyboards, you cannot define the up and down arrow keys or
function keys Fl to F5. The left and right arrow keys and the F6 to F14
keys are reserved for command line editing. You must enter the SET
TERMINAL/NOLINE_EDITING command before defining these keys. You
can also press CtrW to enable keys F7 to F14. Note that CtrW will not
enable the F6 key.

equivalence-string
Specifies the character string to be processed when you press the key.
Enclose the string in quotation marks (" ") to preserve spaces and
lowercase characters.

·DESCRIPTION The DEFINE/KEY command enables you to assign definitions to the
peripheral keys on certain terminals. The terminals include VT52s, the
VTlOO series, and terminals with LK201 keyboards .

. To define keys on the numeric keypads of these terminals, you must
first enter the SET TERMINAL/APPLICATION or SET TERMINAL
/NONUMERIC command. When your terminal has this setting, the
system interprets the keystrokes from keypad keys differently. For
example, with SET TERMINAL/NONUMERIC in effect, pressing the 1
key on the keypad does not send the character "1" to the system.

The equivalence string definition can contain different types of
information. Definitions often consist of DCL commands. For example,
you can assign SHOW TIME to the zero key. When you press 0, the
system displays the current date and time. Other definitions can consist
of text strings to be appended to command lines. When you define a key
to insert a text string, use the /NOTERMINATE qualifier so that you can
continue typing more data after the string has been inserted.

In most instances you will want to use the echo feature. The default
setting is /ECHO. With /ECHO set, the key definition is displayed on the
screen each time you press the key.

You can use the /STATE qualifier to increase the number of key definitions
available on your terminal. The same key can be assigned any number of
definitions, as long as each definition is associated with a different state.
State names can contain any alphanumeric characters, dollar signs, and
underscores. Be sure to create a state name that is easy to remember and
type and, if possible, one that might remind you of the types of definitions

DCL1-127

DEFINE/KEY

QUALIFIERS

DCL1-128

you created for that state. For example, you can create a state called
SETSHOW. The key definitions for this state might all refer to various
DCL SET and SHOW commands. If you are used to the EDT Editor, you
might define a state as GOLD. Then, using the /IF _STATE qualifier, you
can assign different definitions to keys used in combination with a key
defined as GOLD.

The SET KEY command changes the keypad state. Use the SHOW KEY
command to display key definitions and states.

/ECHO (default)
/NO ECHO
Displays the equivalence string on your screen after the key has
been pressed. You cannot use the /NOECHO qualifier with the
/NOTERMINATE qualifier.

/ERASE
/NOERASE (default)
Determines whether the current line is erased before the key translation
is inserted.

/IF_ STATE=(state-name, ...)
/NOIF STATE
Specifie~ a list of one or more states, one of which must be in effect for
the key definition to work. The /NOIF _STATE qualifier has the same
meaning as /IF _STATE=current_state. The state name is an alphanumeric
string. States are established with the /SET_STATE qualifier or the SET
KEY command. If you specify only one state name, you can omit the
parentheses. By including several state names, you can define a key to
have the same function in all the specified states.

/LOCK STATE
/NOLOCK_STATE (default)
Specifies that the state set by the /SET_STATE qualifier remain in effect
until explicitly changed. (By default, the /SET_STATE qualifier is in effect
only for the next definable key you press or the next read-terminating
character that you type.) This qualifier can be specified only with the
/SET _STATE qualifier.

/LOG (default)
/NO LOG
Displays a message indicating that the key definition has been successfully
created.

/SET_ STATE:state-name
/NOSET_STATE (default)
Causes the specified state-name to be set when the key is pressed. (By
default, the current locked state is reset when the key is pressed.) If you
have not included this qualifier with a key definition, you can use the SET
KEY command to change the current state. The state name can be any
alphanumeric string; specify the state as a character string enclosed in
quotation marks.

EXAMPLES

!TERMINATE
/NOTERMINATE (default)

DEFINE/KEY

Specifies whether the current equivalence string is to be processed
immediately when the key is pressed (equivalent to entering the string
and pressing the Return key). By default, you can press other keys before
the definition is processed. This allows you to create key definitions that
insert text into command lines, after prompts, or into other text that you
are entering.

D $ DEFINE/KEY PF3 "SHOW TIME" /TERMINATE
%DCL-I-DEFKEY, DEFAULT key PF3 has been defined
$ ~
$ SHOW TIME

19-APR-1990 14:43:59

In this example, the DEFINE/KEY command defines the PF3 key on the
keypad to perform the SHOW TIME command. DEFAULT refers to the
default state.

fa $ DEFINE/KEY PFl "SHOW " /SET STATE=GOLD/NOTERMINATE/ECHO
%DCL-I-DEFKEY, DEFAULT key PFl-has been defined
$ DEFINE/KEY PFl " DEFAULT" /TERMINATE/IF STATE=GOLD/ECHO
%DCL-I-DEFKEY, GOLD key PFl has been defined
$ ~
$ ~
$ SHOW DEFAULT
DISKl: [JOHN.TEST]

In this example, the first DEFINE/KEY command defines the PFl key to
be the string SHOW. The state is set to GOLD for the subsequent key. The
/NOTERMINATE qualifier instructs the system not to process the string
when the key is pressed. The second DEFINE/KEY command defines the
use of the PFl key when the keypad is in the GOLD state .. When the
keypad is in the GOLD state, pressing PFl causes the current read to be
terminated.

If you press the PFl key twice, the system displays and processes the
SHOW DEFAULT command.

The word DEFAULT in the second line of the example indicates that the
PFl key has been defined in the default state. Note the space before the
word DEFAULT in the second DEFINE/KEY command. If the space is
omitted, the system fails to recognize DEFAULT as the keyword for the
SHOW command.

DCL1-129

DEFINE/KEY

IJ $ SET KEY/ STATE=ONE
%DCL-I-SETKEY, keypad state has been set to ONE
$ DEFINE/KEY PFl "ONE II
%DCL-I-DEFKEY, ONE key PFl has been defined
$ DEFINE/KEY/IF STATE=ONE PFl "ONE"
%DCL-I-DEFKEY, ONE key PFl has been defined

DCL1-130

This example shows two ways to define the PFl key to be "ONE" for state
ONE.

The second DEFINE/KEY command shows the preferred method for
defining keys. This method eliminates the possibility of error by specifying
the state in the same command as the key definition.

DELETE

FORMAT

PARAMETER

QUALIFIERS

DELETE

Deletes one or more files from a mass storage disk volume.

DELETE filespec[, .. .}

filespec[, ...]
Specifies the names of one or more files to be deleted from a mass storage
disk volume. The first file specification must contain an explicit or
default directory specification plus an explicit file name, file type, and
version number. Subsequent file specifications need contain only a version
number; the defaults will come from the preceding specification. Wildcard
characters can be used in any of the file specification fields.

If you omit the directory specification or device name, the current default
device and directory are assumed.

If the file specification contains a null version number (a semicolon [;]
followed by no file version number), a version number of 0, or one or more
spaces in the version number, the latest version of the file is deleted.

To delete more than one file, separate the file specifications with either
commas (,) or plus signs (+).

!BACKUP
Modifies the time value specified with the /BEFORE or the /SINCE
qualifier. The /BACKUP qualifier selects files according to the dates
of their most recent backups. This qualifier is incompatible with the
/CREATED, /EXPIRED, and /MODIFIED qualifiers, which also allow you
to select files according to time attributes. If you specify none of these four
time qualifiers, the default is the /CREATED qualifier.

/BEFORE[=time]
Selects only those files dated prior to the specified time. You can specify
time as an absolute time, as a combination of absolute and delta times,
or as one of the following keywords: TODAY (default), TOMORROW, or
YESTERDAY. Specify one of the following qualifiers with the /BEFORE
qualifier to indicate the time attribute to be used as the basis for selection·:
/BACKUP, /CREATED (default), /EXPIRED, or /MODIFIED.

For complete information on specifying time values, see the VMS DCL
Concepts Manual.

/BY_OWNER[:uic]
Selects only those files whose owner user identification code (UIC) matches
the specified owner UIC. The default UIC is that of the current process.

Specify the UIC by using standard UIC format as described in the VMS
DCL Concepts Manual.

DCL1-131

DELETE

DCL1-132

/CONFIRM
/NOCONFIRM (default)
Controls whether a request is issued before each delete operation to
confirm that the operation should be performed on that file. The following
responses are valid:

YES

TRUE

NO

FALSE

0

I Return I

QUIT

Ctrl/Z

ALL

You can use any combination of uppercase and lowercase letters for word
responses. Word responses can be abbreviated to one or more letters
(for example, T, TR, or TRU for TRUE), but these abbreviations must be
unique. Affirmative answers are YES, TRUE, and 1. Negative answers
include: NO, FALSE, 0, and pressing the Return key. Entering QUIT or
pressing Ctrl/Z indicates that you want to stop processing the command at
that point. When you respond by entering ALL, the command continues
to process, but no further prompts are given. If you type a response other
than one of those in the list, DCL issues an error message and redisplays
the prompt.

/CREATED (default)
Modifies the time value specified with the /BEFORE or the /SINCE
qualifier. The /CREATED qualifier selects files based on their dates of
creation. This qualifier is incompatible with the /BACKUP, /EXPIRED,
and /MODIFIED qualifiers, which also allow you to select files according
to time attributes. If you specify none of these four time qualifiers, the
default is the /CREATED qualifier.

/ERASE
/NOERASE (default)
When you delete a file, the area in which the file was stored is returned to
the system for future use. The data that was stored in that location still
exists in the system until new data is written over it. When you specify
the /ERASE qualifier, the storage location is overwritten with a system
specified pattern so that the data no longer exists.

!EXCLUDE=(filespec[, ...])
Excludes the specified files from the delete operation. You can include a
directory but not a device in the file specification. Wildcard characters
(* and %) are allowed in the file specification. However, you cannot use
relative version numbers to exclude a specific version. If you specify only
one file, you can omit the parentheses.

/EXPIRED
Modifies the time value specified with the /BEFORE or the /SINCE
qualifier. The /EXPIRED qualifier selects files according to their expiration
dates. (The expiration date is set with the SET FILE/EXPIRATION_DATE
command.) The /EXPIRED qualifier is incompatible with the /BACKUP,
/CREATED, and /MODIFIED qualifiers, which also allow you to select
files according to time attributes. If you specify none of these four time
qualifiers, the default is the /CREATED qualifier.

EXAMPLES

DELETE

/LOG
INOLOG (default)
Controls whether the DELETE command displays the file specification of
each file after its deletion.

/MODIFIED
Modifies the time value specified with the /BEFORE or the /SINCE
qualifier. The /MODIFIED qualifier selects files according to the dates
on which they were last modified. This qualifier is incompatible with the
/BACKUP, /CREATED, and /EXPIRED qualifiers, which also allow you to
select files according to time attributes. If you specify none of these four
time modifiers, the default is the /CREATED qualifier.

/SINCE[=time]
Selects only those files dated after the specified time. You can specify
time as an absolute time, as a combination of absolute and delta times,
or as one of the following keywords: TODAY (default), TOMORROW, or
YESTERDAY. Specify one of the following qualifiers with the /SINCE
qualifier to indicate the time attribute to be used as the basis for selection:
/BACKUP, /CREATED (default), /EXPIRED, or /MODIFIED.

For complete information on specifying time values, see the VMS DCL
Concepts Manual.

D $ DELETE COMMON. SUM; 2

~ $ DELETE *.OLD;*

The DELETE command deletes the file COMMON.SUM;2 from the current
default disk and directory.

The DELETE command deletes all versions of files with file type OLD
from the default disk directory.

15l $ DELETE ALPHA. TXT; *, BETA;*, GAMMA;*

The DELETE command deletes all versions of the files ALPHA. TXT,
BETA.TXT, and GAMMA.TXT. The command uses the file type of the
first input file as a temporary default. Note, however, that some form of
version number (here specified as wildcards) must be included in each file
specification.

!J $ DELETE /BEFORE=15-APR/LOG *.DAT;*
%DELETE-I-FILDEL, DISK2: [MALCOLM]ASSIGN.DAT;l deleted (5 block)
%DELETE-I-FILDEL, DISK2: [MALCOLM]BATCHAVE.DAT;3 deleted (4 blocks)
%DELETE-I-FILDEL, DISK2: [MALCOLM]BATCHAVE.DAT;2 deleted (4 blocks)
%DELETE-I-FILDEL, DISK2: [MALCOLM]BATCHAVE.DAT;l deleted (4 blocks)
%DELETE-I-FILDEL, DISK2: [MALCOLM]CANCEL.DAT;l deleted (2 blocks)
%DELETE-I-FILDEL, DISK2: [MALCOLM]DEFINE.DAT;l deleted (3 blocks)
%DELETE-I-FILDEL, DISK2:[MALCOLM]EXIT.DAT;l deleted (1 block)
%DELETE-I-TOTAL, 7 files deleted (23 blocks)

The DELETE command deletes all versions of all files with file type DAT
that were either created or updated before April 15 of this year. The /LOG

DCL 1-133

DELETE

I $ DELETE A.B;

qualifier not only displays the name of each file deleted, but also the total
number of files deleted.

The DELETE command deletes the file A.B with the highest version
number.

I $ DELETE/CONFIRM/SINCE=TODAY [MALCOLM.TESTFILES]*.OBJ;*
DISKO: [MALCOLM.TESTFILES]AVERAG.OBJ;l, delete? [N] :Y
DISKO: [MALCOLM.TESTFILES]SCANLINE.OBJ;4, delete? [N] :N
DISKO: [MALCOLM.TESTFILES]SCANLINE.OBJ;3, delete? [N] :N
DISKO: [MALCOLM.TESTFILES]SCANLINE.OBJ;2, delete? [N] :N
DISKO: [MALCOLM.TESTFILES]WEATHER.OBJ;3, delete? [N] :Y

The DELETE command examines all versions of files with file type OBJ
in the subdirectory [MALCOLM.TESTFILES], and locates those that
were created or modified today. Before deleting each file, it requests
confirmation that the file should be deleted. The default response-N-is
given in brackets.

tJ $ DIRECTORY [.SUBTEST]
%DIRECT-W-NOFILES, no files found
$ SET PROTECTION SUBTEST.DIR/PROTECTION=OWNER:D
$ DELETE SUBTEST.DIR;l

Before the directory file SUBTEST.DIR is deleted, the DIRECTORY
command is used to verify that there are no files cataloged in the
directory. The SET PROTECTION command redefines the protection
for the directory file so that it can be deleted; then the DELETE command
deletes it.

fiJ $ DELETE DALLAS"THOMAS SECRET"::DISKO:[OOO,OOO]DECODE.LIS;l

This DELETE command deletes the file DECODE.LIS;! from the directory
[000,000] on device DISKO at remote node DALLAS. The user name and
password follow the remote node name.

I] $ DELETE QUEBEC:: "DISKl: DEAL. BIG"
$ DELETE QUEBEC::DISKl:DEAL.BIG;

DCL1-134

Either of these DELETE commands can be used to delete the file
DEAL.BIG on device ZZZl at remote node QUEBEC. Note that the
DELETE command requires an explicit version number in a .file
specification, but the file to be deleted is on a remote node whose file
syntax does not recognize version numbers. (QUEBEC is an RT-11 node.)
Therefore, the file specification must either be enclosed in quotation marks
(" ") or entered with a null version number (that is, a trailing semicolon
[;]).

DELETE/CHARACTERISTIC

DELETE/CHARACTERISTIC

FORMAT

Deletes the definition of a queue characteristic previously established with the
DEFINE/CHARACTERISTIC command. The /CHARACTERISTIC qualifier is
required.

Requires OPER (operator) privilege.

DELETE/CHARACTERISTIC characteristic-name

PARAMETER characteristic-name
Specifies the name of the characteristic to be deleted.

DESCRIPTION The DELETE/CHARACTERISTIC command deletes a characteristic from
the system characteristic table.

QUALIFIER

EXAMPLE

To change the number of an existing characteristic, you can use the
DEFINE/CHARACTERISTIC command. It is not necessary to delete the
characteristic before changing it.

/LOG
/NOLOG (default)
Controls whether the DELETE/CHARACTERISTIC command displays the
name of each characteristic after its deletion.

$ DEFINE/CHARACTERISTIC BLUE 7

$ DELETE/CHARACTERISTIC BLUE
$ DEFINE/CHARACTERISTIC BLUE_INK 7

The DEFINE/CHARACTERISTIC command in this example establishes
the characteristic BLUE, with number 7, to mean blue ink ribbons
for printers. To change the name of the characteristic, enter the
DELETE/CHARACTERISTIC command. Then enter another DEFINE
/CHARACTERISTIC command to rename the characteristic to BLUE_
INK, using the characteristic number 7.

DCL1-135

DELETE/ENTRY

DELETE/ENTRY

Deletes one or more print or batch jobs. The jobs can be in progress or
waiting in the queue. The /ENTRY qualifier is required.

Requires OPER {operator) privilege, execute {E) access to the queue, or
delete {D) access to the specified jobs.

FORMAT DELETE/ENTRY =(entry-number[, ...]) [queue-name[:]]

PARAMETERS entry-number[, ...]
Specifies the entry number (or a list of entry numbers) of jobs to
be deleted. If you specify only one entry number, you can omit the
parentheses. If you do not specify a queue name, you can delete entries
from multiple queues.

The system assigns a unique entry number to each queued print or batch
job in the system. By default, the PRINT and SUBMIT commands display
the entry number when they successfully queue a job for processing.
These commands also create or update the local symbol $ENTRY to reflect
the entry number of the most recently queued job. To find a job's entry
number, enter the SHOW ENTRY or SHOW QUEUE command.

queue-name[:]
Specifies the name of the queue where the jobs are located. The queue
name can refer either to the queue to which the job was submitted or
to the queue where the job is executing. The queue-name parameter is
optional syntax. However, when you specify a queue name, the VMS
operating system uses it to verify an entry in the specific queue before
deleting the entry.

DESCRIPTION The DELETE/ENTRY command deletes one or more jobs from a queue.

QUALIFIER

DCL1-136

If you specify a queue name and more than one entry number with a
DELETE/ENTRY command, all the jobs must be located in the same
queue.

You can delete jobs that are currently executing, as well as jobs that are
in other states. For example, DELETE/ENTRY can delete a job that is
currently in a holding or a pending state.

!LOG
/NOLOG (default)
Controls whether the DELETE/ENTRY command displays the entry
number of each batch or print job that it deletes.

DELETE/ENTRY

EXAMPLES

D $ PRINT/HOLD ALPHA. TXT
Job ALPHA (queue SYS$PRINT, entry 110) holding

$ DELETE/ENTRY=llO SYS$PRINT

The PRINT command in this example queues a copy of the file
ALPHA.TXT in a HOLD status, to defer its printing until a SET ENTRY
/RELEASE command is entered. The system displays the job name, the
entry number, the name of the queue in which the job was entered, and
the status. Later, the DELETE/ENTRY command requests that the entry
be deleted from the queue SYS$PRINT.

r!1 $ SUBMIT/AFTER=l8: 00 WEATHER
Job WEATHER (queue SYS$BATCH, entry 203) holding until 19-APR-1990 lS:OO
$ SUBMIT/HOLD/PARAMETERS=SCANLINE DOFOR
Job DOFOR (queue SYS$BATCH, entry 210) holding

$ DELETE/ENTRY=(203,210)/LOG
%DELETE-W-SEARCHFAIL, error searching for 203
-JBC-E-NOSUCHENT, no such entry
%DELETE-I-DELETED, entry 210 aborting or deleted

The SUBMIT commands in this example queue the command procedures
WEATHER.COM and DOFOR.COM for processing as batch jobs.
WEATHER.COM is queued for execution after 6:00 P.M. DOFOR.COM
is queued in a HOLD status and cannot execute until you enter a SET
ENTRY/RELEASE command. Later, the DELETE/ENTRY/LOG command
requests that the system delete both these entries from the queue and
display a message indicating that the entries have been deleted.

The job WEATHER (entry 203) has completed by the time the DELETE
/ENTRY/LOG command is entered. Thus, entry 203 no longer exists. Note
that a message indicates that there is no entry 203 in the queue. The job
DOFOR (entry 210) is in a HOLD status when the DELETE/ENTRY/LOG
command is entered. Thus, the system deletes entry 210 from the queue
and displays a message to that effect.

I] $ PRINT CHAPTERS .MEM
Job CHAPTERS (queue SYS$PRINT, entry 25) pending on queue SYS$PRINT

$ SHOW QUEUE SYS$PRINT
Printer queue SYS$PRINT, on PARROT::PARROT$LPAO, mounted form DEFAULT
Jobname Username Entry Blocks Status

CHAPTER7 SMITH
CHAPTERS SMITH
$ DELETE/ENTRY=25

24
25

274 Pending
976 Pending

The PRINT command in this example submits the file CHAPTER8.MEM

DCL1-137

DELETE/ENTRY

DCL1-138

to the printer queue SYS$PRINT. Later, user Smith needs to edit the
file again before printing it. Using the SHOW QUEUE command, Smith
verifies that the job is still pending and that the entry number for the job
is 25. Smith then enters the DELETE/ENTRY command to delete the job
from the queue.

DELETE/FORM

DELETE/FORM

FORMAT

Deletes a form (for printer or terminal queues) previously established with the
DEFINE/FORM command. The /FORM qualifier is required.

Requires OPER (operator) privilege.

DELETE/FORM form-name

PARAMETER form-name
Specifies the name of the form to be deleted.

DESCRIPTION The DELETE/FORM command deletes a form definition from the system
forms table. When you delete a form, there can be no outstanding
references to the form either in queues that have been mounted with
the form or by jobs requesting that form. To locate all references to the
form, use the SHOW QUEUE/FULL.command.

QUALIFIER

EXAMPLES

To change the number or attributes of an existing form, use the DEFINE
/FORM command. It is not necessary to delete a form before changing it.

/LOG
/NOLOG (default)
Controls whether the DELETE/FORM command displays the name of each
form after its deletion.

D $ DELETE/FORM CENTER

The DELETE/FORM command in this example deletes the form named
CENTER.

I $ DEFINE/FORM /DESCRIPTION=" letter size continuous form paper" CFLET 7

$ DELETE/FORM CFLET
$ DEFINE/FORM /DESCRIPTION="letter size continuous form paper" LETTER_CONT 7

The DEFINE/FORM command in this example establishes the form
CFLET with number 7 to mean continuous-form paper 8.5 inches by 11
inches. To change the name of the form, delete the form named CFLET
and define a new one named LETTER_CONT.

DCL1-139

DELETE/INTRUSION RECORD

DELETE/INTRUSION RECORD

Removes an entry from the break-in database.

Requires CMKRNL (change mode to kernel) and SECURITY privileges.

FORMAT DELETE/INTRUSION RECORD source

PARAMETER source
Specifies the source field of the entry to be removed from the break-in
database.

DESCRIPTION Use the DELETE/INTRUSION_RECORD command to remove an entry
from the break-in database. For example, if the user Hammer repeatedly
attempted to log in to terminal TTA24 with an expired password, the
SHOW INTRUSION command would display the following entry:

EXAMPLES

Intrusion Type Count Expiration Source

TERM USER INTRUDER 9 10:29:39.16 TTA24:HAMMER

The terminal is locked out of the system because the login failure limit
has been reached. When Hammer approaches you and you identify
the problem as an expired password, you can then use the DELETE
/INTRUSION command to remove the record from the break-in database.

D $ DELETE/INTRUSION_RECORD TTC2:

In this example, the DELETE/INTRUSION_RECORD command removes
all intrusion records generated by break-in attempts on TTC2. No
username is specified because none of the login failures occurred for
valid users.

~ $ DELETE/INTRUSION RECORD NODEl: :HAMMER

DCL1-140

This command removes all intrusion entries generated from node NODEl
for user HAMMER.

DELETE/KEV

FORMAT

PARAMETER

QUALIFIERS

EXAMPLES

DELETE/KEY

Deletes key definitions that have been established by the DEFINE/KEY
command. The /KEY qualifier is required.

DELETE/KEY [key-name]

key-name
Specifies the name of the key to be deleted. This parameter is
incompatible with the /ALL qualifier.

/ALL
Deletes all key definitions in the specified state; the default is the current
state. If you use the /ALL qualifier, do not specify a key name. Use the
/STATE qualifier to specify one or more states.

/LOG (default)
/NO LOG
Controls whether messages are displayed indicating that the specified key
definitions have been deleted.

/STATE=(state-name[, ...])
/NOSTATE (default)
Specifies the name of the state for which the specified key definition is
to be deleted. The default state is the current state. If you specify only
one state name, you can omit the parentheses. State names can be any
alphanumeric string.

D $ DELETE/KEY/ALL
%DCL-I-DELKEY, DEFAULT key PFl has been deleted
%DCL-I-DELKEY, DEFAULT key PF2 has been deleted
%DCL-I-DELKEY, DEFAULT key PF3 has been deleted
%DCL-I-DELKEY, DEFAULT key PF4 has been deleted
$

In this example, the user has defined keys PFl to PF4 in the default state.
The DELETE/KEY command deletes all key definitions in the current
state, which is the default state.

DCL1-141

DELETE/KEV

~ $ DEFINE/KEY PF3 "SHOW TIME" /TERMINATE
%DCL-I-DEFKEY, DEFAULT key PF3 has been defined
$ ~
$ SHOW TIME

19-APR-1990 14:43:59

$ DELETE/KEY PF3
%/DCL-I-DELKEY, DEFAULT key PF3 has been deleted
$ ~
$

DCL1-142

In this example, the DEFINE/KEY command defines the PF3 key on the
keypad as SHOW TIME. To delete the definition for the PF3 key, use the
DELETE/KEY command. When the user presses PF3, only the system
prompt is displayed.

DELETE/QUEUE

DELETE/QUEUE

FORMAT

Deletes a print or batch queue created by the INITIALIZE/QUEUE command,
and deletes all the jobs in the queue. The /QUEUE qualifier is required.

Requires OPER (operator) privilege.

DELETE/QUEUE queue-name[.}

PARAMETER queue-name[:]
Specifies the name of the queue to be deleted.

DESCRIPTION To delete a queue, use the following procedure:

QUALIFIER

1 Stop the specified queue by using the STOP/QUEUE/NEXT command.

The STOP/QUEUE/NEXT command stops the specified queue after all
executing jobs have completed processing. Wait for any executing jobs
to complete processing.

2 Make sure that there are no outstanding references to the specified
queue.

If a generic queue refers to the specified queue as a target execution
queue, you must remove the specified queue from the list of target
execution queues.

If a logical queue refers to the specified queue, you must deassign the
logical queue.

If the specified queue is a generic queue, jobs that were entered
initially on the generic queue and are executing on any of its target
queues count as references to the specified queue. Before you can
delete the specified queue, either you must delete any jobs that were
submitted originally to the specified queue and are executing on its
target queues, or you must wait until these jobs have completed
processing.

3 To move jobs from the specified queue to another queue, use the SET
ENTRY/REQUEUE or ASSIGN/MERGE commands. Any jobs that
remain in the specified queue are deleted when the queue is deleted.

4 Enter the DELETE/QUEUE command.

/LOG
/NOLOG (default)
Controls whether the DELETE/QUEUE command displays the name of
each queue after it is deleted.

DCL1-143

DELETE/QUEUE

EXAMPLE

$ INITIALIZE/QUEUE/DEFAULT=FLAG/START/ON=LPAO LPAO_QUEUE

$ STOP/QUEUE/NEXT LPAO QUEUE
$ DELETE/QUEUE LPAO_QUEUE

DCL1-144

In this example, the first command initializes and starts the printer queue
LPAO_QUEUE. The STOP/QUEUE/NEXT command stops the queue. The
DELETE/QUEUE command deletes the queue.

DELETE/SYMBOL

DELETE/SYMBOL

FORMAT

Deletes one or all symbol definitions from a local or global symbol table. The
/SYMBOL qualifier is required.

DELETE/SYMBOL [symbol-name]

PARAMETER symbol-name
Specifies the name of the symbol to be deleted. A name is required
unless the /ALL qualifier is specified. The symbol-name parameter is
incompatible with the /ALL qualifier. Symbol names can have from 1 to
255 characters. By default, the DELETE/SYMBOL command assumes
that the symbol is in the local symbol table for the current command
procedure.

DESCRIPTION The DELETE/SYMBOL command deletes a symbol definition from a
symbol table. If you do not specify either the global or local symbol
table, the symbol is deleted from the local table. If you specify both
the /GLOBAL and /LOCAL qualifiers, only the last specified qualifier is
accepted. The /SYMBOL qualifier must always immediately follow the
DELETE command name.

QUALIFIERS /ALL

EXAMPLES

Deletes all symbols from the specified table. If you do not specify either
the /LOCAL or the /GLOBAL qualifier, all symbols defined at the current
command level are deleted. The /ALL qualifier is incompatible with the
symbol-name parameter.

!GLOBAL
Deletes the symbol from the global symbol table of the current process.

/LOCAL (default)
Deletes the symbol from the local symbol table of the current process.

/LOG
!NOLOG (default)
Controls whether an informational message listing each symbol being
deleted is displayed.

D $ DELETE/SYMBOL/ALL

In this example, the DELETE/SYMBOL command deletes all symbol
definitions at the current command level.

DCL1-145

DELETE/SYMBOL

rl $ DELETE/SYMBOL/LOG FOO
%DCL-I-DELSYM, LOCAL symbol FOO has been deleted

In this example, the DELETE/SYMBOL command deletes the symbol
FOO from the local symbol table for the current process. In addition, the
/LOG qualifier causes an informational message, listing the symbol being
deleted, to be displayed.

! $ DELETE/SYMBOL/GLOBAL PDEL

DCL1-146

In this example, the DELETE/SYMBOL command deletes the symbol
named PDEL from the global symbol table for the current process.

DEPOSIT

FORMAT

DEPOSIT

Replaces the contents of the specified locations in virtual memory and
displays the new contents.

The DEPOSIT command, together with the EXAMINE command, aids in ,
debugging programs interactively. The DCL command DEPOSIT is similar to
the DEPOSIT command of the VMS Symbolic Debugger.

Requires user-mode read (R) and write (W) access to the virtual memory
location whose contents you wish to change.

DEPOSIT location=data[, ...]

PARAMETERS location
Specifies the starting virtual address or range of virtual addresses (where
the second address is larger than the first) whose contents are to be
changed. A location can be any valid integer expression containing an
integer value, a symbol name, a lexical function, or a combination of these
entities. Radix qualifiers determine the radix in which the address is
interpreted; hexadecimal is the initial default radix. Symbol names are
always interpreted in the radix in which they were defined. The radix
operators %X, %D, or %0 can precede the location. A hexadecimal value
must begin with a number (or be preceded by %X).

The specified location must be within the virtual address space of the
image currently running in the process.

The DEPOSIT and EXAMINE commands maintain a pointer to a current
memory location. The DEPOSIT command sets this pointer to the byte
following the last byte modified; you can refer to this pointer by using
a period (.) in subsequent EXAMINE and DEPOSIT commands. If the
DEPOSIT command cannot deposit the specified data, the pointer does
not change. The EXAMINE command does not change the value of the
pointer.

data[, ...]
Specifies the data to be deposited into the specified locations. By default,
the data is assumed to be in hexadecimal format; it is then converted to
binary format and is written into the specified location.

If you specify more than one item, separate the items with commas
(,). The DEPOSIT command writes the data in consecutive locations,
beginning with the address specified.

When non-ASCII data is deposited, you can specify each item of data using
any valid integer expression.

When ASCII data is deposited, only one item of data is allowed. All
characters to the right of the equal sign are considered to be part of a
single string. The characters are converted to uppercase, and all spaces
are compressed.

DCL1-147

DEPOSIT

DESCRIPTION

DCL1-148

When the DEPOSIT command completes, it displays both the virtual
memory address into which data is deposited and the new contents of the
location, as follows:

address: contents

If the specified address can be read from but not written to by the current
access mode, the DEPOSIT command displays the original contents of the
location. If the specified address can be neither read from nor written
to, the DEPOSIT command displays asterisks (*) in the data field. The
DEPOSIT command maintains a pointer at that location (at the byte
following the last byte modified).

If you specify a list of numeric values, some but not all of the values may
be successfully deposited before an access violation occurs. If an access
violation occurs while ASCII data is being deposited, nothing is deposited.

Radix Qualifiers: The radix default for a DEPOSIT or EXAMINE
command determines how the command interpreter interprets numeric
literals. The initial default radix is hexadecimal; all numeric literals in the
command line are assumed to be hexadecimal values. If a radix qualifier
modifies the command, that radix becomes the default for subsequent
EXAMINE and DEPOSIT commands, until another qualifier overrides it.
For example:

$ DEPOSIT/DECIMAL 900=256
00000384: 256

The DEPOSIT command interprets both the location 900 and the value
256 as decimal. All subsequent DEPOSIT and EXAMINE commands
assume that numbers you enter for addresses and data are decimal. Note
that the DEPOSIT command always displays the address location in
hexadecimal.

Symbol values defined by = (assignment statement) commands are always
interpreted in the radix in which they were defined.

Note that hexadecimal values entered as deposit locations or as data to be
deposited must begin with a numeric character (0 to 9). Otherwise, the
command interpreter assumes that you have entered a symbol name and
attempts symbol substitution.

You can use the radix operators %X, %D, or %0 to override the current
default when you enter the DEPOSIT command. For example:

$ DEPOSIT/DECIMAL %X900=10

This command deposits the decimal value 10 in the location specified as
hexadecimal 900.

Length Qualifiers: The initial default length unit for the DEPOSIT
command is a longword. If a list of data values is specified, the data is
deposited into consecutive longwords beginning at the specified location.
If a length qualifier modifies the command, that length becomes the
default for subsequent EXAMINE and DEPOSIT commands, until another
qualifier overrides it. If you specify data values that are longer than the
specified length, an error occurs.

Length qualifiers are ignored when ASCII values are deposited.

QUALIFIERS

EXAMPLES

D $ RUN MYPROG

jctrl/YI
$ EXAMINE 2780

DEPOSIT

Restriction on Placement of Qualifiers: The DEPOSIT command
analyzes expressions arithmetically. Therefore, qualifiers, which must
be preceded by a slash (I), must appear immediately after the command
name to be interpreted correctly.

/ASCII
Indicates that the specified data is ASCII.

Only one data item is allowed; all characters to the right of the equal sign
(=) are considered to be part of a single string. Unless they are enclosed
within quotation marks (" "), characters are converted to uppercase and
multiple spaces are compressed to a single space before the data is written
in memory.

The DEPOSIT command converts the data to its binary equivalent before
placing it in virtual memory. When you specify /ASCII, or when ASCII
mode is the default, the location you specify is assumed to be hexadecimal.

/BYTE
Requests that data be deposited 1 byte at a time.

/DECIMAL
Indicates that the data is decimal. The DEPOSIT command converts the
data to its binary equivalent before placing it in virtual memory.

/HEXADECIMAL
Indicates that the data is hexadecimal. The DEPOSIT command converts
the data to its binary equivalent before placing it in virtual memory.

!LONGWORD
Requests that data be deposited a longword at a time.

/OCTAL
Indicates that the data is octal. The DEPOSIT command converts the data
to its binary equivalent before placing it in virtual memory.

/WORD
Requests that the data be deposited one word at a time.

00002780: 1C50B344
$ DEPOSIT • =0
00002780: 00000000
$ CONTINUE

The RUN command executes the image MYPROG.EXE; subsequently,
CtrW interrupts the program. Assuming that the initial defaults of the

DCL1-149

DEPOSIT

/HEXADECIMAL and /LONGWORD qualifiers are in effect, the DEPOSIT
command places a longword of zeros in virtual memory location 2780.

Because the EXAMINE command sets up a pointer to the current memory
location, which in this case is virtual address 2780, you can refer to this
location with a period (.) in the DEPOSIT command.

The CONTINUE command resumes execution of the image.

~ $ DEPOSIT/ASCII 2COO=FILE: NAME: TYPE:
00002COO: FILE: NAME: TYPE: ...

In this example, the DEPOSIT command deposits character data at
hexadecimal location 2COO and displays the contents of the location
after modifying it. Because the current default length is a longword,
the response from the DEPOSIT command displays full longwords. The
ellipsis (. . .) indicates that the remainder of the last longword of data
contains information that was not modified by the DEPOSIT command.

$ EXAMINE 9CO
000009CO: 8C037DB3
$ DEPOSIT .=O
000009CO: 00000000
$ DEPOSIT/BYTE .=1
000009C4: 01

Look at Hex location 9CO

Deposit longword of 0

Put 1 byte at next location

$ DEPOSIT .+2=55
000009C7: 55

Deposit 55 next

$ DEPOSIT/LONG .=OC,OD,OE ! Deposit longwords
000009C8: OOOOOOOC OOOOOOOD OOOOOOOE

The sequence of DEPOSIT commands in the above example illustrates how
the DEPOSIT command changes the current position pointer. Note that
after you specify the /BYTE qualifier, all data is deposited and displayed
in bytes, until the /LONGWORD qualifier restores the system default.

m $ BASE=%X200 Define a base address
$ LIST=BASE+%X40 Define offset from base
$ DEPOSIT/DECIMAL LIST=l,22,333,4444
00000240: 00000001 00000022 00000333 00004444
$ EXAMINE/HEX LIST:LIST+OC ! Display results in hex
00000240: 00000001 00000016 0000014D 0000115C

DCL1-150

The assignment statements define a base address in hexadecimal and
a label at a hexadecimal offset from the base address. The DEPOSIT
command reads the list of values and deposits each value into a longword,
beginning at the specified location. The EXAMINE command requests a
hexadecimal display of these values.

DIFFERENCES

DIFFERENCES

FORMAT

Compares the contents of two disk files and displays a listing of the records
that do not match.

DIFFERENCES input1-fl'lespec [input2-filespec]

PARAMETERS input1-filespec
Specifies the first file to be compared. The file specification must include a
file name and a file type. Wildcard characters are not allowed.

input2-filespec
Specifies the second file to be compared. Unspecified fields default to the
corresponding fields in the inputl-filespec parameter. Wildcard characters
are not allowed.

If you do not specify a secondary input file, the DIFFERENCES command
uses the next lower version of the primary input file.

DESCRIPTION Use the DIFFERENCES command to determine whether two files are
identical and, if not, how they differ. The DIFFERENCES command
compares the two specified files on a record-by-record basis and produces
an output file that lists the DIFFERENCES, if any.

The qualifiers for the DIFFERENCES command can be categorized
according to their functions, as follows:

• Qualifiers that request the DIFFERENCES command to ignore data in
each record:

/COMMENT_DELIMITERS
/IGNORE

These qualifiers allow you to define characters that denote comments
or to designate characters or classes of characters to ignore when
comparing files. For example, you can have the DIFFERENCES
command ignore extra blank lines or extra spaces within lines.

By default, the DIFFERENCES command compares every character in
each record.

• Qualifiers that control the format of the information contained in the
list of differences:

/CHANGE_BAR
/IGNORE
/MERGED
/MODE
/PARALLEL

DCL1-151

DIFFERENCES

QUALIFIERS

DCL1-152

/SEPARATED
/SLP
/WIDTH

By default, the DIFFERENCES command merges the differences it
finds in the files being compared. It lists each record in the file that
has no match in the other input file and then lists the next record that
it finds that does have a match.

By default, the DIFFERENCES command also supplies a line number
with each listed record, and it lists the records with all designated
ignore characters deleted.

You can specify combinations of qualifiers to request an output listing
that includes the comparison in more than one format. Note that SLP
output is incompatible with all other types of output; parallel output
can be generated only in ASCII mode.

• Qualifiers that control the extent of the comparison:

/MATCH
/MAXIMUM_DIFFERENCES
/WINDOW

By default, the DIFFERENCES command reads every record in the
master input file and looks for a matching record in the revision
input file. A search for a match between the two input files continues
until either a match is found or the ends of the two files are reached.
Sections of the two files are considered a match only if three sequential
records are found to be identical in each file.

By default, DIFFERENCES command output is written to the current
SYS$0UTPUT device. Use the /OUTPUT qualifier to request that the
DIFFERENCES command write the output to an alternate file or device.

The DIFFERENCES command terminates with an exit status. The
following severity levels indicate the result of the comparison:

SUCCESS

INFORMATIONAL

WARNING

ERROR

Files are identical.

Files are different.

User-specified maximum number of DIFFERENCES has been
exceeded.

Insufficient virtual memory to complete comparison.

All severity levels other than SUCCESS indicate that the two input files
are different.

/CHANGE_BAR[=([change-char][,[NO]NUMBER])]
Marks with the specified character in the left margin each line in the
inputl file that differs from the corresponding line in the input2 file. If you
do not specify a change bar character, the default is an exclamation point
(!) for ASCII output. If you specify hexadecimal or octal output (see the
description of the /MODE qualifier), the change bar character is ignored
and differences are marked by a "***CHANGE***" string in the record
header. The keyword NONUMBER suppresses line numbers in the listing.
If neither the NUMBER nor the NONUMBER keyword is specified, the

DIFFERENCES

default is controlled by the /[NO]NUMBER command qualifier. If you
specify only one option, you can omit the parentheses. If you use an
exclamation point (!) as the specified character, you must enclose it in
quotation marks (11 11

); for example, /CHANGE_BAR=(11 !11 ,NUMBER).

/COMMENT_DELIMITER[=(character[, ...])]
Ignores lines starting with a specified comment character. If the comment
character is an exclamation point or semicolon (;), it can appear
anywhere in the line and characters to the right of the character are
ignored. If you specify just one character, you can omit the parentheses.
Lowercase characters are automatically converted to uppercase unless
they are enclosed in quotation marks. Nonalphanumeric characters (such
as ! and ,) must be enclosed in quotation marks. You can specify up to 32
comment characters by typing the character itself or one of the following
keywords. (Keywords can be abbreviated provided that the resultant
keyword is not ambiguous and has at least 2 characters; single letters are
treated as delimiters.)

Keyword Character

COLON Colon (:)

COMMA Comma(,)

EXCLAMATION Exclamation point (!)

FORM_FEED Form feed

LEFT Left bracket ([)

RIGHT Right bracket (])

SEMI_ COLON Semicolon (;)

SLASH Slash (/)

SPACE Space

TAB Tab

The /COMMENT_DELIMITER qualifier is used with or without the
/IGNORE=COMMENTS qualifier to indicate which comments are to be
ignored.

If both the uppercase and lowercase forms of a letter are to be used
as comment characters, the letter must be specified twice, once in
uppercase and once in lowercase. If you do not include either a comment
character or a keyword with the /COMMENT_DELIMITER qualifier, the
DIFFERENCES command assumes a default comment character based on
the file type. For some file types (COB and FOR), the default comment
characters are considered valid delimiters only if they appear in the first
column of a line. Multicharacter comment characters are not allowed.

The following characters are the default comment delimiters for files with
the specified file types:

File Type

B2S, B32, BAS, BU

CSL, CMD

Default Comment Character

! and;

DCL1-153

DIFFERENCES

DCL1-154

File Type

COB

COM,COR

FOR

HLP

MAC, MAR

R32, REQ

Default Comment Character

* or I in the first column

I anywhere and C, D, c, d in the first column

/IGNORE:(keyword[, ..•])
Inhibits the comparison of the specified characters, strings, or records;
also controls whether the comparison records are output to the listing
file as edited records or exactly as they appeared in the input file. If you
specify only one keyword, you can omit the parentheses. The keyword
parameter refers to either a character or a keyword. The first set of
keywords determines what, if anything, is ignored during file comparison;
the second set of keywords determines whether or not ignored characters
are included in the output. The following keywords are valid options for
the /IGNORE qualifier:

Keyword

BLANK_LINES

COMMENTS

FORM_FEEDS

HEADER[=n]

SPACING

TRAILING_ SPACES

Keyword

EDITED

EXACT

PRETTY

Item Ignored

Blank lines between data lines.

Data following a comment character. (Use the /COMMENT_
DELIMITER qualifier to designate one or more nondefault
comment delimiters.)

Form feed character.

First n records of the file, beginning with a record whose
first character is a form feed. The first record is not ignored
if the only character it contains is a form feed. (N indicates
the number of records and defaults to 2. A record with a
single form feed is not counted.)

Extra blank spaces or tabs within data lines.

Space and tab characters at the end of a data line.

Status of Ignored Items in Output

Omits ignored characters from the output records.

Includes ignored characters in the output records.

Formats output records.

Each data line is checked for COMMENTS, FORM_FEEDS, HEADER; and
SPACING before it is tested for TRAILING_SPACES and then BLANK_
LINES. Therefore, if you direct the DIFFERENCES command to ignore
COMMENTS, TRAILING_SPACES, and BLANK_LINES, it ignores a
record that contains several spaces or blank lines followed by a comment.

By default, the DIFFERENCES command compares every character in
each file and reports all differences. Also, by default, the DIFFERENCES
command lists records in the output file with all ignored characters
deleted.

DIFFERENCES

If you specify the /PARALLEL qualifier, output records are always
formatted. To format output records, specify the following characters:

Character

Tab (Ctrl/I)

Return (Ctrl/M)

Line feed (Ctrl/J)

Vertical tab (Ctrl/K)

Form feed (Ctrl/L)

Other nonprinting characters

/MATCH:size

Formatted Output

1-8 spaces

<CR>

<LF>

<VT>

<FF>

. (period)

Specifies the number of records that should indicate matching data after a
difference is found. By default, after the DIFFERENCES command finds
unmatched records, it assumes that the files once again match after it
finds three sequential records that match. Use the /MATCH qualifier to
override the default match size of 3.

You can increase the /MATCH qualifier value if you feel that the
DIFFERENCES command is incorrectly matching sections of the master
and revision input files after it has detected a difference.

/MAXIMUM_DIFFERENCES:n
Terminates the DIFFERENCES command after the specified number of
unmatched records (specified with the n parameter) is found.

The number of unmatched records is determined by finding the maximum
number of difference records for each difference section and adding them
together.

If the DIFFERENCES command reaches the maximum number of
differences that you specify, it will output only those records that were
detected before the maximum was reached. Also, it will output, at most,
one listing format and return a warning message.

By default, there is no maximum number of differences. All records in the
specified input files are compared.

/MERGED[=n]
Specifies that the output file contain a merged list of differences with the
specified number of matched records listed after each group of unmatched
records. The value of the parameter n must be less than or equal to the
number specified in the /MATCH qualifier. By default, the DIFFERENCES
command produces a merged listing with one matched record listed after
each set of unmatched records (that is, /MERGED=l). If the /MERGED,
the /SEPARATED, or the /PARALLEL qualifier is not specified, the
resulting output is merged, with one matched record following each
unmatched record.

Use the /MERGED qualifier to override the default value of the parameter
n, or to include a merged listing with other types of output.

DCL1-155

DIFFERENCES

DCL1-156

/MODE=(radix[, ...])
Specifies the format of the output. You can request that the output
be formatted in one or more radix modes by specifying the following
keywords, which may be abbreviated: ASCII (default), HEXADECIMAL,
or OCTAL. If you specify only one radix, you can omit the parentheses.

By default, the DIFFERENCES command writes the output file in ASCII.
If you specify more than one radix, the output listing contains the file
comparison in each specified radix. When you specify two or more radix
modes, separate them with commas.

If you specify the /PARALLEL or the /SLP qualifier, the /MODE qualifier
is ignored for that listing form.

/NUMBER (default)
/NON UMBER
Includes line numbers in the listing of DIFFERENCES.

!OUTPUT[=filespec]
Specifies an output file to receive the list of differences. By default, the
output is written to the current SYS$0UTPUT device. If the filespec
parameter is not specified, the output is directed to the first input file with
a file type of DIF. No wildcard characters are allowed.

When you specify the /OUTPUT qualifier, you can control the defaults
applied to the output file specification as described in the VMS DCL
Concepts Manual. The default output file type is DIF.

/PARALLEL[=n]
Lists the records with differences side by side. The value of the parameter
n specifies the number of matched records to merge after each unmatched
record; it must be a non-negative decimal number less than or equal to the
number specified in the /MATCH qualifier.

By default, the DIFFERENCES command does not list records after each
list of unmatched records. Also by default, the DIFFERENCES command
creates only a list of merged differences.

!SEPARATED[=(input1-filespec[,input2-filespec])]
Lists sequentially only the records from the specified file that contain
differences. If no files are specified, a separate listing is generated for each
file. If only one file is specified, you can omit the parentheses. To specify
the inputl-filespec parameter, use either the first input file specified as the
DIFFERENCES command parameter or the keyword MASTER. To specify
the input2-filespec parameter, use either the second input file specified as
the DIFFERENCES command parameter or the keyword REVISION.

By default, the DIFFERENCES command creates only a merged list of
differences.

/SLP
Requests that the DIFFERENCES command produce an output file
suitable for input to the SLP editor. If you use the /SLP qualifier, you
cannot specify any of the following output file qualifiers: /MERGED,
/PARALLEL, /SEPARATED, or /CHANGE_BAR.

EXAMPLES

DIFFERENCES

Use the output file produced by the SLP qualifier as input to SLP to
update the master input file, that is, to make the master input file match
the revision input file.

When you specify the /SLP qualifier and you do not specify the /OUTPUT
qualifier, the DIFFERENCES command writes the output file to a file with
the same file name as the master input file with the file type DIF.

/WIDTH=n
Specifies the width of the lines in the output file. The default is 132
characters. If output is written to the terminal, the /WIDTH qualifier is
ignored and the terminal line width is used.

Use the SET TERMINAL command to change the terminal line width.

/WINDOW=size
Searches the number of records specified by the size parameter, before
a record is declared as unmatched. By default, the DIFFERENCES
command searches to the ends of both input files before listing a record as
unmatched.

The window size is the minimum size of a differences section that will
cause the DIFFERENCES command to lose synchronization between the
two input files.

D $ DIFFERENCES EXAMPLE. TXT

File DISKl: [GEORGE.TEXT]EXAMPLE.TXT;2

1 DEMONSTRATION
2 OF V3.0 DIFFERENCES
3 UTILITY

File DISKl: [GEORGE.TEXT]EXAMPLE.TXT;l

1 DEMONSTRETION
2 OF VMS DIFFERENCES
3 UTILITY

Number of difference sections found: 1
Number of difference records found: 2
DIFFERENCES/MERGED=l-

DISKl: [GEORGE.TEXT]EXAMPLE.TXT;2
DISKl: [GEORGE.TEXT]EXAMPLE.TXT;l

In this example, the DIFFERENCES command compares the contents of
the two most recent versions of the file EXAMPLE.TXT in the current
default directory. The DIFFERENCES command compares every character
in every record and displays the results at the terminal.

DCL1-157

DIFFERENCES

~ $ DIFFERENCES/PARALLEL/WIDTH=80/COMMENT_DELIMITER="V" EXAMPLE. TXT

File DISKl: [GEORGE.TEXT]EXAMPLE.TXT;2 I File DISKl: [GEORGE.TEXT]EXAMPLE.TXT;l
------------------- 1 ------------------------------------- 1 -----------------
DEMONSTRATION I DEMONSTRETION

Number of difference sections found: 1
Number of difference records found: 1
DIFFERENCES/IGNORE=(COMMENTS)/COMMENT_DELIMITER=("V")/WIDTH=80/PARALLEL-

DISK1: [GEORGE.TEXT]EXAMPLE.TXT;2-
DISK1: [GEORGE.TEXT]EXAMPLE.TXT;l

The DIFFERENCES command compares the same files as in Example 1,
but ignores all comments following the. first "V'' encountered by the
DIFFERENCES command. The command also specifies that an 80-column
parallel list of differences be displayed.

I $ DIFFERENCES/WIDTH=80/MODE=(HEX,ASCII) EXAMPLE.TXT/CHANGE_BAR

File DISKl: [GEORGE.TEXT]EXAMPLE.TXT;2

1 DEMONSTRATION
2 ! OF V3.0 DIFFERENCES
3 UTILITY

File DISKl: [GEORGE.TEXT]EXAMPLE.TXT;2
RECORD NUMBER 1 (00000001) LENGTH 14 (OOOOOOOE) ***CHANGE***

204E 4F495441 5254534E 4F4D4544 DEMONSTRATION .. 000000
RECORD NUMBER 2 (00000002) LENGTH 19 (00000013) ***CHANGE***

4E455245 46464944 20302E33 5620464F OF V3.0 DIFFEREN 000000
534543 CES 000010

RECORD NUMBER 3 (00000003) LENGTH 7 (00000007)
595449 4C495455 UTILITY 000000

Number of difference sections found: 1
Number of difference records found: 2
DIFFERENCES /WIDTH=80/MODE=(HEX,ASCII)

DISK1:[GEORGE.TEXT]EXAMPLE.TXT;2/CHANGE_BAR
DISK1: [GEORGE.TEXT]EXAMPLE.TXT;l

The DIFFERENCES command compares the same files as in Example 1,
but lists the differences in both hexadecimal and ASCII formats.
The command also specifies that default change bars be used in the
output. The default change bar notation for the hexadecimal output is
CHANGE. For the ASCII output, the default change bar character
is the exclamation point.

EJ $ DIFFERENCES/OUTPUT BOSTON: :DISK2:TEST.DAT OMAHA: :DISKl: [PGM]TEST.DAT

DCL1-158

The DIFFERENCES command compares two remote files and displays any
differences found. The first file is TEST.DAT on remote node BOSTON.
The second file is also named TEST.DAT on remote node OMAHA. The
DIFFERENCES output is located in the file DISKl:[PGM]TEST.DIF.

DIRECTORY

FORMAT

PARAMETER

DIRECTORY

Provides a list of files or information about a file or group of files.

Requires read (R) access to the directories to obtain any information.
Requires read (R) access to the files to obtain information other than the
file name.

DIRECTORY [filespec[, ...]]

filespec[, ... J
Specifies one or more files to be listed. The syntax of a file specification
determines which files will be listed, as follows:

• If you do not enter a file specification, the DIRECTORY command lists
all versions of the files in the current default directory.

• If you specify only a device name, the DIRECTORY command uses
your default directory specification.

• Whenever the file specification does not include a file name, a file type,
and a version number, all versions of all files in the specified directory
are listed.

• If a file specification contains a file name or a file type, or both, and no
version number, the DIRECTORY command lists all versions.

• If a file specification contains only a file name, the DIRECTORY
command lists all files in the current default directory with that file
type, regardless of file type and version number.

• If a file specification contains only a file type, the DIRECTORY
command lists all files. in the current default directory with that
file type, regardless of file name and version number.

Wildcard characters can be used in the directory specification, file name,
file type, or version number fields of a file specification to list all files
that satisfy the components you specify. If you specify more than one file,
separate the file specifications with either commas (,) or plus signs (+).

DESCRIPTION The DIRECTORY command lists the files contained in a directory. When
you use certain qualifiers with the command, additional information is
displayed, along with the names of the files.

The output of the DIRECTORY command depends on certain formatting
qualifiers and their defaults. These qualifiers are as follows: /COLUMNS,
/DATE, /FULL, /OWNER, /PROTECTION, and /SIZE. However, the
files are always listed in alphabetical order, with the highest numbered
versions listed first.

DCL1-159

DIRECTORY

QUALIFIERS

DCL1-160

In studying the qualifiers and the capabilities they offer, watch for
qualifiers that work together and for qualifiers that override other
qualifiers. For example, if you specify the /FULL qualifier, the system
cannot display all the information in more than one column. Thus, if you
specify both the /COLUMNS and /FULL qualifiers, the number of columns
you request is ignored.

/ACL
Controls whether the access control list (ACL) is displayed for each file.
By default, the DIRECTORY command does not display the ACL for each
file. The /ACL qualifier overrides the /COLUMNS qualifier.

/BACKUP
Modifies the time value specified with the /BEFORE or the /SINCE
qualifier. The /BACKUP qualifier selects files according to the dates
of their most recent backups. This qualifier is incompatible with the
/CREATED, /EXPIRED, and /MODIFIED qualifiers, which also allow you
to select files according to time attributes. If you specify none of these four
time qualifiers, the default is the /CREATED qualifier.

/BEFORE[=time]
Selects only those files dated prior to the specified time. You can specify
time as an absolute time, as a combination of absolute and delta times,
or as one of the following keywords: TODAY (default), TOMORROW, or
YESTERDAY. Specify one of the following qualifiers with the /BEFORE
qualifier to indicate the time attribute to be used as the basis for selection:
/BACKUP, /CREATED (default), /EXPIRED, or /MODIFIED.

For complete information on specifying time values, see the VMS DCL
Concepts Manual.

/BRIEF (default)
Displays only a file's name, type, and version number. The brief format
lists the files in alphabetical order from left to right on each line, in
descending version number order. You can use the /ACL, /DATE, /FILE_
ID, /FULL, /NOHEADING,/OWNER, /PROTECTION, /SECURITY, and
/SIZE qualifiers to expand a brief display.

/BY_ OWNER[=uic]
Selects only those files whose owner user identification code (UIC) matches
the specified owner UIC. The default UIC is that of the current process.

Specify the UIC by using standard UIC format as described in the VMS
DCL Concepts Manual.

/COLUMNS:n
Specifies the number of columns in a brief display. The default is four.
However, you can request as many columns as you like, restricted by the
value of the /WIDTH qualifier. The /COLUMNS qualifier is incompatible
with the /ACL, /FULL, and /SECURITY qualifiers.

The number of columns actually displayed depends on the amount of
information requested for each column and the display value of the
/WIDTH qualifier. The system displays only as many columns as can
fit within the default or specified display width, regardless of how many
columns you specify with the /COLUMNS qualifier.

DIRECTORY

The DIRECTORY command truncates long file names only when you
have asked for additional information to be included in each column.
The default file name size is 19 characters. Use the /WIDTH qualifier to
change the default. When a file name is truncated, the system displays
one less character than the file name field size and inserts a vertical bar
in the last position. For example, if the file name is SHOW _QUEUE_
CHARACTERISTICS, and if you requested DIRECTORY to display both
file name and size in each column, the display for that file would be
SHOW_QUEUE_CHARACT I 120.

/CREATED (default)
Modifies the time value specified with the /BEFORE or the /SINCE
qualifier. The /CREATED qualifier selects files based on their dates of
creation. This qualifier is incompatible with the /BACKUP, /EXPIRED,
and /MODIFIED qualifiers, which also allow you to select files according
to time attributes. If you specify none of these four time qualifiers, the
default is the /CREATED qualifier.

IDATE[:option]
/NODATE (default)
Includes the backup, creation, expiration, or modification date for each
specified file; the default is the /NO DATE qualifier. If you use the /DATE
qualifier without an option, the creation date is provided. Possible options
are as follows:

ALL

BACKUP

CREATED

EXPIRED

MODIFIED

Specifies creation, expiration, backup, and last modification dates.

Specifies the last backup date.

Specifies the creation date.

Specifies the expiration date.

Specifies the last modification date.

/EXCLUDE:(filespec[, ...])
Excludes the specified files from the DIRECTORY command. You can
include a directory but not a device in the file specification. Wildcard
characters (* and %) are allowed in the file specification. However, you
cannot use relative version numbers to exclude a specific version. If you
specify only one file, you can omit the parentheses.

/EXPIRED
Modifies the time value specified with the /BEFORE or the /SINCE
qualifier. The /EXPIRED qualifier selects files according to their expiration
dates. (The expiration date is set with the SET FILE/EXPIRATION_DATE
command.) The /EXPIRED qualifier is incompatible with the /BACKUP,
/CREATED, and /MODIFIED qualifiers, which also allow you to select
files according to time attributes. If you specify none of these four time
qualifiers, the default is the /CREATED qualifier.

/FILE ID
Controls whether the file identification number (FID) is displayed. By
default, the FID is not displayed unless the /FULL qualifier is specified.

DCL1-161

DIRECTORY

DCL1;_162

/FULL
Displays the following information for each file:

File name
File type
Version number
Number of blocks used
Number of blocks allocated
Date of creation
Date last modified and revision number
Date of expiration
Date of last backup
File owner's user identification code (UIC)
File protection
File identification number (FID)
File organization
Journaling information
Other file attributes
Record attributes
Record format
Access control list (ACL)
Value of the stored semantics tag (where applicable)

/GRAND_ TOTAL
Displays only the totals for all files and directories that have been
specified. Suppresses both the per-directory total and individual file
information. (See the /TRAILING qualifier for information on displaying
directory totals.)

/HEADING
/NOH EA DING
Controls whether heading lines consisting of a device description and
directory specification are printed. The default output format provides
this heading. When the /NOHEADING qualifier is specified, the display
is in single-column format and the device and directory information
appears with each file name. The /NOHEADING qualifier overrides the
/COLUMNS qualifier.

The combination of the /NO HEADING and /NOTRAILING qualifiers is
useful in command procedures where you want to create a list of complete
file specifications for later operations.

/MODIFIED
Modifies the time value· specified with the /BEFORE or the /SINCE
qualifier. The /MODIFIED qualifier selects files according to the dates
on which they were last modified. This qualifier is incompatible with the
/BACKUP, /CREATED, and /EXPIRED qualifiers, which also allow you to
select files according to time attributes. If you specify none of these four
time modifiers, the default is the /CREATED qualifier.

/OUTPUT[=filespec]
/NOOUTPUT

DIRECTORY

Controls where the output of the command is sent. By default, the display
is written to the current SYS$0UTPUT device. No wildcard characters
are allowed.

If you enter the /OUTPUT qualifier with a partial file specification (for
example, /OUTPUT=[JONES]), DIRECTORY is the default file name and
LIS the default file type. If you enter the /NOOUTPUT qualifier, output is
suppressed.

If the output will be written to a file in the same directory, the output file
name will appear in the- directory listing.

/OWNER
/NOOWNER (default)
Controls whether the file owner's user identification code (UIC) is listed.

The default size of the owner field is 20 characters. If the file owner's UIC
exceeds the length of the owner field, the information will be truncated.
The size of this field can be altered by specifying /WIDTH=OWNER, along
with a value for the owner field. For more information, see the description
of the /WIDTH qualifier.

/PRINTER
Puts the display in a file and queues the file to SYS$PRINT for printing
under the name given by the /OUTPUT qualifier. If you do not specify
the /OUTPUT qualifier, output is directed to a temporary file named
DIRECTORY.LIS, which is queued for printing and then is deleted.

/PROTECTION
/NOPROTECTION (default)
Controls whether the file protection for each file is listed.

/SECURITY
Controls whether information about file security is displayed; using the
/SECURITY qualifier is equivalent to using the /ACL, /OWNER, and
/PROTECTION qualifiers together.

/SELECT =(keyword[, ...])
Allows you to select files for display according to size. Choose one of the
following keywords:

SIZE=MAXIMUM=n

SIZE=MINIMUM=n

SIZE=(MAXIMUM=n,MINIMUM=m)

Displays files that have fewer blocks than the
value of n, which defaults to 1,073, 7 41,823.
Use with MINIMUM=n to specify a size range
for files to be displayed.

Displays files that have blocks equal to or
greater than the value of n, which defaults to
0. Use with MAXIMUM=n to specify a size
range for files to be displayed.

Displays files whose block size falls within the
specified MAXIMUM and MINIMUM range.

By default, file selection is based on other criteria.

DCL1-163

DIRECTORY

DCL1-164

/SINCE[:time]
Selects only those files dated after the specified time. You can specify
time as an absolute time, as a combination of absolute and delta times,
or as one of the following keywords: TODAY (default), TOMORROW, or
YESTERDAY. Specify one of the following qualifiers with the /SINCE
qualifier to indicate the time attribute to be used as the basis for selection:
/BACKUP, /CREATED (default), /EXPIRED, or /MODIFIED.

For complete information on specifying time values, see the VMS DCL
Concepts Manual.

/SIZE[:option]
/NOSIZE (default)
Displays the size in blocks of each file. If you omit the option parameter,
the default lists the file size in blocks used (USED). Specify one of the
following options:

ALL

ALLOCATION

USED

Lists the file size both in blocks allocated and blocks used.

Lists the file size in blocks allocated.

Lists the file size in blocks used.

The size of this field can be altered by supplying the size value of the
/WIDTH qualifier.

/TOTAL
Displays only the directory name and total number of files.

By default, the output format is determined by the /BRIEF qualifier, which
gives this total but also lists all the file names, file types, and. their version
numbers.

/TRAILING
/NOTRAILING
Controls whether trailing lines that provide the following summary
information are displayed:

• Number of files listed

• Total number of blocks used per directory

• Total number of blocks allocated

• Total number of directories and total blocks used or allocated in all
directories (only if more than one directory is listed)

By default, the output format includes most of this summary information.
The /SIZE and /FULL qualifiers determine more precisely what summary
information is included.

When used alone, the /TRAILING qualifier lists the number of files in the
directory. When used with the /SIZE qualifier, the /TRAILING qualifier
lists the number of files and the number of blocks (displayed according
to the option of the /SIZE qualifier, FULL or ALLOCATION). When used
with the /FULL qualifier, the /TRAILING qualifier lists the number of
files as well as the number of blocks used and allocated. If more than one
directory is listed, the summary includes the total number of directories,
the total number of blocks used, and the total number of blocks allocated.

EXAMPLES

DIRECTORY

/VERSIONS:n
Specifies the number of versions of a file to be listed. The default is all
versions of each file. A value less than 1 is not allowed.

/WIDTH=(keyword[, ... })
Formats the width of the display. If you specify only one keyword, you can
omit the parentheses. Possible keywords are as follows:

DISPLAY=n Specifies the total width of the display as an integer in the range
1 to 256 and defaults to zero (setting the display width to the terminal
width}. If the total width of the display exceeds the terminal width,
the information will be truncated.

FILENAME=n Specifies the width of the file name field; defaults to 19 characters.
If you request another piece of information to be displayed along
with the file name in each column, file names that exceed the n
parameter cause the line to wrap after the file name field. (See the
/COLUMNS qualifier.}

OWNER=n Specifies the width of the owner field; defaults to 20 characters. If
the owner's user identification code (U IC} exceeds the length of the
owner field, the information will be truncated.

SIZE=n Specifies the width of the size field; defaults to 6 characters. If the
file size exceeds the length of the size field, the information will be
truncated.

D $ DIRECTORY AVERAGE.*

Directory DISK$DOCUMENT: [MALCOLM]

AVERAGE.EXE;6 AVERAGE.FOR;6 AVERAGE.LIS;4 AVERAGE.OBJ;12

Total of 4 files.

In this example, the DIRECTORY command lists all files with the file
name AVERAGE and any file type.

~ $ DIRECTORY/SIZE=USED/DATE=CREATED/VERSIONS=l/PROTECTION AVERAGE

Directory DISK$DOCUMENT: [MALCOLM]

AVERAGE.EXE;6
AVERAGE.FOR;6
AVERAGE.LIS;4
AVERAGE.OBJ;6

6
2
5
2

19-APR-1990 15:43:02.10 (RWED,RWED,RWED,RE)
19-APR-1990 10:29:53.37 (RWED,RWED,RWED,RE)
19-APR-1990 16:27:27.19 (RWED,RWED,RWED,RE)
19-APR-1990 16:27:44.23 (RWED,RWED,RWED,RE)

Total of 4 files, 15 blocks.

In this example, the DIRECTORY command lists the number of blocks
used, the creation date, and the file protection code for the highest version
number of all files named AVERAGE in the current directory.

DCL1-165

DIRECTORY

iJ $ DIRECTORY/FULL [JONES. ITALIA] PROJECTIONS. LIS

Directory WORK: [JONES.ITALIA]

PROJECTIONS. LIS; 1 File ID: (7449, 36222, 2)
Size: 21/21 Owner: [DOC, JONES]
Created: 5-MAY-1988 15:49:03.11
Revised: 5-MAY-1988 15:49:49.39 (2)
Expires: <None specified>
Backup: <No backup recorded>
File organization: Sequential
File attributes: Allocation: 21, Extend: O, Global buffer count: O,

No version limit
Record format: Variable length, maximum 80 bytes
Record attributes: Carriage return carriage control
RMS attributes: None
Journaling enabled: None
File protection: System:RWED, Owner:RWED, Group:RE, World:
Access Cntrl List: None

Total of 1 file, 21/21 blocks.

The DIRECTORY command in this example shows the date/time format
using the default language, English, and the default VMS format. You can
also select other languages and formats that have been defined on your
systems with international date/time formatting routines available in the
run-time library. See the VMS RTL Library (LIB$) Manual.

EJ $ DIRECTORY/VERSIONS=l/COLUMNS=l AVERAGE.*

The DIRECTORY command in this example lists only the highest version
of each file named AVERAGE in the current default directory. The format
is brief and restricted to one column. Heading and trailing lines are
provided.

~ $ DIRECTORY BLOCK%%%

The DIRECTORY command in this example locates all versions and types
of files in the default device and directory whose names begin with the
letters BLOCK and end with any three additional characters. The default
output format is brief, four columns, with heading and trailing lines.

[iJ $ DIRECTORY/EXCLUDE=(AVER.DAT;*,AVER.EXE;*) [* ...]AVER

The DIRECTORY command in this example lists and totals all versions
and types of files named AVER in all directories and subdirectories on the
default disk, except any files named AVER.DAT and AVER.EXE.

i $ DIRECTORY/SIZE=ALL FRESNO: :DISKl: [TAYLOR]*.COM

DCL1-166

The DIRECTORY command in this example lists all versions of all files
with the file type COM in the directory TAYLOR on node FRESNO and
device DISKl. The listing includes the file size both in blocks used and in
blocks allocated for each file.

DIRECTORY

[fl $ DIRECTORY-
$ /MODIFIED/SINCE=l9-APR-1990:01:30/SIZE=ALL/OWNER=$ /PROTECTION/OUTPUT=UPDATE/PRINTER [A*]

The DIRECTORY command in this example locates all files that have been
modified since 1:30 A.M. on April 19, 1990, and that reside on the default
disk in all directories whose names begin with the letter A. It formats the
output to include all versions, the size used and size allocated, the date
last modified, the owner, and the protection codes. The output is directed
to a file named UPDATE.LIS, which is queued automatically to the default
printer queue and then is deleted.

DCL1-167

DISCONNECT

DISCONNECT

Breaks the connection between a physical terminal and a virtual terminal.
After the physical terminal is disconnected, both the virtual terminal and the
process using it remain on the system.

Requires that your physical terminal is connected to a virtual terminal.

FORMAT DISCONNECT

PARAMETERS None.

DESCRIPTION Use the DISCONNECT command to disconnect a physical terminal from
a virtual terminal and its associated process. The virtual terminal

QUALIFIER

EXAMPLES

D $ DISCONNECT

DCL1-168

and the process remain on the system, so you can use the CONNECT
command to reconnect to the process later. (For more information about
virtual terminals and how to connect to them, see the description of the
CONNECT command.) To terminate a process connected to a virtual
terminal, use the LOGOUT command.

After you are disconnected from a virtual terminal, you can use the
physical terminal to log in again.

You can use the DISCONNECT command only if your physical terminal is
connected to a virtual terminal.

/CONTINUE
/NOCONTINUE (default)
Controls whether the CONTINUE command is executed in the current
process just before connecting to another process. This procedure permits
an interrupted image to continue processing after the disconnection until
the process needs terminal input or attempts to write to the terminal. At
that point, the process waits until the physical terminal is reconnected to
the virtual terminal.

This command disconnects a physical terminal from a virtual terminal,
but does not log the process out. Now you can use the physical terminal to
log in again.

~ $ RUN PAYROLL
lctrl/YI

DISCONNECT

$ DISCONNECT/CONTINUE

In this example, the RUN command is entered from a physical terminal
that is connected to a virtual terminal. After the image PAYROLL.EXE
is interrupted, the DISCONNECT command disconnects the physical and
the virtual terminals without logging out the process. The /CONTINUE
qualifier allows the image PAYROLL.EXE to continue to execute until the
process needs terminal input or attempts to write to the terminal. At that
point, the process waits until the physical terminal is reconnected to the
virtual terminal. However, you can use the physical terminal to log in
again and perform other work.

DCL1-169

DISMOUNT

DISMOUNT

FORMAT

PARAMETER

Closes a mounted disk or magnetic tape volume for further processing and
cancels the logical name associated with the device.

Requires the GRPNAM (group logical name) and SYSNAM (system
logical name) privileges to dismount group and system volumes.

DISMOUNT device-namef.1

device-name[:]
Name of the device containing the volume-either a logical name or a
physical name. If a physical name is specified, the controller defaults to A
and the unit defaults to 0.

If the volume currently mounted on the device is a member of a disk or
tape volume set, all volumes in the set are dismounted, unless the /UNIT
qualifier is specified.

DESCRIPTION The DISMOUNT command (which invokes the $DISMOU system service)
checks for conditions that prevent a Files-11 volume from dismounting.
The conditions fall into the following four categories:

DCL1-170

• Installed swap and page files

• Installed images

• Devices spooled to the volume

• Open user files (any files not falling into one of the first three
categories)

If the DISMOUNT command does not find any of these conditions, it
performs the following operations:

• Removes the volume from the user's list of mounted volumes, deletes
the logical name (if any) associated with the volume, and decrements
the mount count.

• If the mount count equals zero after being decremented, the
DISMOUNT command marks the volume for dismounting.

As soon as the volume is idle, that is, after the DISMOUNT command
has determined that no user has any open files on the volume, the
DISMOUNT command marks a Files-11 volume for dismounting, and
dismounts the volume soon ..

• If the mount count does not equal zero after being decremented,
the DISMOUNT command does not mark the volume for dismount
(because the volume must have been mounted shared). In this case,
the total effect for the issuing process is that the process is denied
access to the volume and the logical name is deleted.

QUALIFIERS

DISMOUNT

• After a volume is dismounted, nonpaged pool is returned to the system.
Paged pool is also returned if the volume was mounted using the
/GROUP or /SYSTEM qualifiers.

If the DISMOUNT command does find open files or any other condition
that prevents the volume from dismounting, it does not mark the volume
for dismounting. Instead, the DISMOUNT command displays a message
indicating that the volume cannot be dismounted, followed by messages
indicating the conditions that exist and the number of instances of each
condition.

The /OVERRIDE=CHECKS qualifier allows a volume to be marked for
dismounting despite open files or other conditions. For example, marking
a volume for dismounting prevents any new files from being opened. Also,
when a volume is marked for dismounting, file~system caches are flushed.
This activity is especially important when the system is shutting down
and the file-system caches must be written to the disk.

If a volume is part of a Files-11 volume set and the /UNIT qualifier is not
specified, the entire volume set will be dismounted.

If the volume was mounted with the /SHARE qualifier, it is not actually
dismounted until all users who mounted it dismount it or log out.
However, the DISMOUNT command deletes the logical name associated
with the device.

If the device was allocated with an ALLOCATE command, it remains
allocated after the volume is dismounted with the DISMOUNT command.
If the device was implicitly allocated by the MOUNT command, the
DISMOUNT command deallocates it.

If the volume was mounted with the /GROUP or the /SYSTEM qualifier, it
is dismounted even if other users are currently accessing it. The GRPNAM
and SYSNAM user privileges are required to dismount group and system
volumes, respectively.

/ABORT
Requires volume ownership or the user privilege VOLPRO
(volume protection) to use this qualifier with a volume that was
mounted with neither the /GROUP nor the /SYSTEM qualifier.
Additionally requires the user privilege SHARE if the volume is
mounted privately by a process other than the process issuing the
DISMOUNT command.

Specifies that the volume is to be dismounted, regardless of who mounted
it. The primary purpose of the /ABORT qualifier is to terminate mount
verification. The DISMOUNT/ABORT command also ·cancels any
outstanding I/O requests. If the volume was mounted with the /SHARE
qualifier, the /ABORT qualifier causes the volume to be dismounted for all
of the users who mounted it.

/CLUSTER
Dismounts a volume clusterwide. If you specify DISMOUNT/CLUSTER,
the DISMOUNT command checks for open files or other conditions that
will prevent a Files-11 volume on the local node from dismounting. If the
DISMOUNT command does not find any open files or other conditions, it

DCL1-171

DISMOUNT

EXAMPLES

checks for conditions on all other nodes in the cluster. If the DISMOUNT
command finds one of the conditions on any node, it displays an error
message identifying the device and the nodes on which the error occurred,
followed by an error message indicating open files or other conditions on
the volume.

After the DISMOUNT command successfully dismounts the volume on the
local node, it dismounts the volume on every other node in the existing
VAXcluster environment. If the system is not a member of a cluster, the
/CLUSTER qualifier has no effect.

/OVERRIDE:CHECKS
Marks a Files-11 volume for dismounting even if files are open on
the volume. If you specify DISMOUNT/OVERRIDE=CHECKS, the
DISMOUNT command displays messages indicating any open files or
other conditions that prevent dismounting, immediately followed by a
message indicating that the volume has been marked for dismounting.

A substantial amount of time can pass between the time you enter the
DISMOUNT/OVERRIDE=CHECKS command and the completion of the
dismount operation. Always wait for the dismount to complete before you
remove the volume. (To verify that the dismount has completed, enter
the SHOW DEVICES command.) Note that the final phase of volume
dismounting occurs in the file system, and all open files on the volume
must be closed before the actual dismount can be done. Note also that the
file system cannot dismount a volume while any known file lists associated
with it contain entries.

/UNIT
Dismounts only one volume of a volume set on the specified device. By
default, all volumes in a set are dismounted.

Note: Avoid dismounting the root volume of a volume set, because it
contains the master file directory (MFD). It may be impossible to
access files on a volume set if the MFD is not accessible.

/UNLOAD
/NOUN LOAD
Determines whether the device on which the volume is mounted is
physically unloaded. If you specify the DISMOUNT command without
the /UNLOAD or the /NOUNLOAD qualifier, the qualifier that you
specified with the MOUNT command (either /UNLOAD or /NOUNLOAD)
determines whether the volume is unloaded physically.

D $ MOUNT MTAO: PAYVOL TAPE

$ DISMOUNT TAPE

DCL1-172

The MOUNT command in this example mounts the tape whose volume
identification is PAYVOL on the device MTAO: and assigns the logical
name TAPE to the device. By default, the volume is not shareable. The

DISMOUNT

DISMOUNT command releases access to the volume, deallocates the
device, and deletes the logical name TAPE.

~ $ MOUNT/SHARE DBA3: DOC FILES

$ DISMOUNT DBA3:

The MOUNT command in this example mounts the volume labeled DOC_
FILES on the device DBA3. Other users can enter MOUNT commands
to access the device. The DISMOUNT command shown in this example
deaccesses the device for the process issuing the command. If other users
still have access to the volume, the volume remains mounted for their
process or processes.

m $ DISMOUNT/NOUNLOAD DMA2:

The DISMOUNT command in this example dismounts the volume; the
/NOUNLOAD qualifier requests that the volume remain in a ready state.

m $ MOUNT/BIND=PAYROLL DMA1:,DMA2: PAYROLL01,PAYROLL02

$ DISMOUNT/UNIT DMA2:

The MOUNT command in this example mounts PAYROLL, a two-volume
set. The DISMOUNT command dismounts only PAYROLL02, leaving
PAYROLLOl accessible. Note that because the master file directory (MFD)
for the volume set is on the root volume, you should not dismount the root
volume (in this case, PAYROLLOl) of the volume set.

~ $ DISMOUNT 10DJA100
%DISM-W-CANNOTDMT, 10DJA100: cannot be dismounted
%DISM-W-INSWPGFIL, 4 swap or page files installed on volume
%DISM-W-SPOOLEDEV, 3 devices spooled to volume
%DISM-W-INSTIMAGE, 7 images installed on volume
%DISM-W-USERFILES, 6 user files open on volume

The DISMOUNT command in this example displays the open files and
other conditions that prevent device 10DJA100 from dismounting.

I $ DISMOUNT/CLUSTER 10DJA100
%DISM-W-RMTDMTFAIL, 10DJA100: failed to dismount on node SALT
%DISM-W-FILESOPEN, volume has files open on remote node
%DISM-W-RMTDMTFAIL, 10DJA100: failed to dismount on node PEPPER
%DISM-W-FILESOPEN, volume has files open on remote node
%DISM-W-CANNOTDMT, 10DJA100: cannot be dismounted

The DISMOUNT command in this example displays messages identifying
device 10DJA100 and nodes SALT and PEPPER on which errors
occurred followed by messages indicating open files on the volume.

DCL1-173

DUMP

DUMP

FORMAT

PARAMETER

Displays the contents of a file, a disk volume, or a magnetic tape volume in
decimal, hexadecimal, or octal format, as well as the ASCII conversion.

DUMP filespec [, ...]

filespec [, ...]
Specifies the file or name of the device being dumped.

If the specified device is not a disk, a tape, or a network device, or if the
device is mounted with the /FOREIGN qualifier, the file specification must
contain only the device name.

If the specified device is a network device, a disk device, or a tape device
that is mounted without the /FOREIGN qualifier, the file specification can
contain wildcards.

DESCRIPTION By default, the DUMP command formats the output both in ASCII
characters and in hexadecimal longwords. You can specify another
format for the dump by using a radix qualifier (!OCTAL, /DECIMAL, or
/HEXADECIMAL) or a length qualifier (/BYTE, /WORD, or /LONGWORD).

DCL1-174

Dumping Files

If the input medium is a network device, a disk device, or a tape device
that is mounted without the /FOREIGN qualifier, the DUMP command
operates on files. You can dump files by either records or blocks. Wildcard
specifications can be used to select a group of files for processing.

Dumping Volumes

If the input medium is not a disk or a tape device, or if it is mounted
with the /FOREIGN qualifier, the DUMP command operates on the input
device as a non-file-structured (NFS) medium. Disk devices are dumped
by 512-byte logical blocks. Other devices are dumped by physical blocks.
No repositioning of the input medium occurs; therefore, consecutive blocks
on a tape can be dumped by a single DUMP command.

If you have LOG_IO (logical I/0) privilege, you can dump random blocks
on a Files-11 volume. For example, by using the /BLOCKS qualifier, you
could dump block 100 on the system disk.

Reading Dumps

The ASCII representation is read left to right. The hexadecimal, decimal,
and octal representations are read right to left.

QUALIFIERS

DUMP

Specifying Numeric Qualifier Values

The numeric values for the /BLOCKS, /RECORDS, and /NUMBER
qualifiers can be specified either as decimal numbers or with a leading %X,
%0, or %D to signify hexadecimal, octal, or decimal numbers respectively.
For example, the following are all valid ways to specify decimal value 24:

24
%X18
%030
%D24

/ALLOCATED
Includes in the dump all blocks allocated to the file. (By default, the dump
does not include blocks following the end-of-file [EOF].)

You can specify the I ALLOCATED qualifier if the input is a disk that
is mounted without the /FOREIGN qualifier. The /ALLOCATED and
/RECORDS qualifiers are mutually exclusive.

/BLOCKS[=(option[, ...])]
Dumps the specified blocks one block at a time, which is the default
method for all devices except network devices.

Block numbers are specified as integers relative to the beginning of the
file. Typically, blocks are numbered beginning with 1. If a disk device is
mounted using the /FOREIGN qualifier, blocks are numbered beginning
with zero. Select a range of blocks to be dumped by specifying one of the
following options:

START:n

END:n

COUNT:n

Specifies the number of the first block to be dumped; the default is
the first block.

Specifies the number of the last block to be dumped; the default is
the last block or the end-of-file (EOF) block, depending on whether
you have specified the /ALLOCATED qualifier.

Specifies the number of files to be dumped. The COUNT option
provides an alternative to the END option; you cannot specify both.

If you specify only one option, you can omit the parentheses.

The /BLOCKS and /RECORDS qualifiers are mutually exclusive.

Use the /BLOCKS qualifier to dump random blocks from Files-11 volumes.
This procedure requires LOG-IO (logical 1/0) privilege.

/BYTE
Formats the dump in bytes. The /BYTE, /LONGWORD, and /WORD
qualifiers are mutually exclusive. The default format is composed of
longwords.

/DECIMAL
Dumps the file in decimal radix. The /DECIMAL, /HEXADECIMAL
(default), and /OCTAL qualifiers are mutually exclusive.

/FILE HEADER
Dumps-each data block that is a valid Files-11 header in Files-11 header
format rather than in the selected radix and length formats.

DCL1-175

DUMP

DCL1-176

/FORMATTED (default)
/NOFORMATTED
Dumps the file header in Files-11 format; the /NOFORMATTED qualifier
dumps the file header in octal format. This qualifier is useful only when
the /HEADER qualifier is specified.

/HEADER
Dumps the file header and access control list (ACL). To dump only the file
header, and not the file contents, also specify /BLOCK=(COUNT:O). The
/HEADER qualifier is invalid for devices mounted using the /FOREIGN
qualifier.

Use the /FORMATTED qualifier to control the format of the display.

You can use the /FILE_HEADER qualifier with the /HEADER qualifier to
have Files-11 file headers printed in an interpreted representation.

By default, the file header is not displayed.

/HEXADECIMAL (default)
Dumps the file in hexadecimal radix. The /DECIMAL, /HEXADECIMAL
(default), and /OCTAL qualifiers are mutually exclusive.

/LONGWORD (default)
Formats the dump in longwords. The /BYTE, /LONGWORD, and /WORD
qualifiers ar~ mutually exclusive.

INUMBER[=n]
Specifies how byte offsets are assigned to the lines of output. If you specify
the /NUMBER qualifier, the byte offsets increase continuously through the
dump, beginning with n; if you omit the /NUMBER qualifier, the first byte
offset is zero. By default, the byte offset is reset to zero at the beginning
of each block or record.

/OCTAL
Dumps the file in octal radix. The /DECIMAL, /HEXADECIMAL (default),
and /OCTAL qualifiers are mutually exclusive.

/OUTPUT[:filespec]
Specifies the output file for the dump. If you do not specify a file
specification, the default is the file name of the file being dumped and
the file type DMP. If the /OUTPUT qualifier is not specified, the dump
goes to SYS$0UTPUT. No wildcard characters are allowed. The /OUTPUT
and /PRINTER qualifiers are mutually exclusive.

/PRINTER
Queues the dump to SYS$PRINT in a file named with the file name of
the file being dumped and the file type DMP. If the /PRINTER qualifier is
not specified, the dump goes to SYS$0UTPUT. No wildcard characters are
allowed. The /OUTPUT and /PRINTER qualifiers are mutually exclusive.

IRECORDS[:(option[, ...])]
Dumps the file a record at a time rather than a block at a time. (By
default, input is dumped one block at a time for all devices except network
devices.)

Blocks are numbered beginning with 1.

DUMP

Select a range of blocks to be dumped by specifying one of the following
options:

START:n Specifies the number of the first record to be dumped; the default is
the first record.

END:n Specifies the number of the last record to be dumped; the default is
the last record of the file.

COUNT:n Specifies the number of records to be dumped. The COUNT option
provides an alternative to the END option; you cannot specify both.

If you specify only one option, you can omit the parentheses.

If you specify the /RECORDS qualifier, you cannot specify the
/ALLOCATED or the /BLOCKS qualifier.

/WORD
Formats the dump in words. The /BYTE, /LONGWORD, and /WORD
qualifiers are mutually exclusive.

EXAMPLES

D $ DUMP TEST. DAT
Dump of file DISKO: [NORMAN]TEST.DAT;l on 19-APR-1990 15:43:26.08
File ID (3134,818,2) End of file block 1 I Allocated 3
Virtual block number 1 (00000001), 512 (0200) bytes

706D6173 20612073 69207369 68540033 3.This is a samp 000000
73752065 62206F74 20656C69 6620656C le file to be us 000010
61786520 504D5544 2061206E 69206465 ed in a DUMP exa 000020
00000000 00000000 0000002E 656C706D mple 000030
00000000 00000000 00000000 00000000 000040
00000000 00000000 00000000 00000000 000050
00000000 00000000 00000000 00000000 000060

00000000 00000000 00000000 00000000 OOOlEO
00000000 00000000 00000000 00000000 OOOlFO

The DUMP command displays the contents of TEST.DAT both in
hexadecimal longword format and in ASCII beginning with the first
block in the file.

DCL1-177

DUMP

I $ DUMP TEST. DAT /OCTAL/BYTE
Dump of file DISKO: [NORMAN]TEST.DAT;l on 19-APR-1990 15:45:33.58
File ID (74931,2,1) End of file block 1 I Allocated 3
Virtual block number 1 (00000001), 512 (0200) bytes

151 040 163 151 150 124 000 063 3.This i 000000
160 155 141 163 040 141 040 163 s a samp 000010
040 145 154 151 146 040 145 154 le file 000020
163 165 040 145 142 040 157 164 to be us 000030
040 141 040 156 151 040 144 145 ed in a 000040
141 170 145 040 120 115 125 104 DUMP exa 000050
377 377 000 056 145 154 160 155 mple 000060
000 000 000 000 000 000 000 000 ·······. 000070
000 000 000 000 000 000 000 000 000100
000 000 000 000 000 000 000 000 000110

000 000 000 000 000 000 000 000 000760
000 000 000 000 000 000 000 000 000770

The DUMP command displays the image of the file TEST.DAT, formatted
both in octal bytes and in ASCII characters beginning with the first block.

i] $ DUMP NODE3: : DISK2: [STATISTICS] RUNl. DAT

DCL1-178

This command line dumps the file RUNl.DAT that is located at remote
node NODE3. The default DUMP format will be used.

EDIT/ACL

FORMAT

EDIT/ACL

Invokes the Access Control List (ACL) Editor, which creates or modifies an
access control list for a specified object. The /ACL qualifier is required. For
a complete description of the ACL Editor, see the VMS Access Control List
Editor Manual.

EDIT/ACL object-spec

DCL1-179

EDIT/EDT

EDIT/EDT

FORMAT

PARAMETER

Invokes the DIGITAL Standard Editor (EDT) interactive text editor. The /EDT
qualifier is not required, because EDT is the VMS default editor.

EDIT filespec

files pee
Specifies the file to be created or edited using EDT. If the file does not
exist, it is created by EDT.

EDT does not provide a default file type when creating files; if you do not
include a file type, it is null. The file must be a disk file on a Files-11
formatted volume.

No wildcard characters are allowed in the file specification.

DESCRIPTION EDT creates or edits text files. You can use EDT to enter or edit text in
three modes: keypad, line, or nokeypad. Keypad editing, which is screen
oriented, is available on VT300-series, VT200-series, VTlOO, and VT52
terminals. A screen-oriented editor allows you to see several lines of text
at once and move the cursor throughout the text in any direction. Line
editing operates on all terminals. In fact, if you have a terminal other than
a VT300-series, VT200-series, VTlOO, or VT52, line editing is the only way
you can use EDT. You might prefer line editing if you are accustomed

QUALIFIERS

DCL1-180

to editing by numbered lines. N okeypad mode is a command-oriented
screen editor available on VT300-series, VT200-series, VTlOO, and VT52
terminals. You can use line mode and nokeypad mode to redefine keys for
use in keypad mode.

When you invoke EDT, you are in line mode by default. If you are editing
an existing file, EDT displays the line number and text for the first line of
the file. If you are creating a new file, EDT displays the following message:

Input file does not exist
[EOB]

In either case, EDT then displays the line mode prompt, which is the
asterisk (*).
For complete details on the EDT editor, see the VAX EDT Reference
Manual.

/COMMAND[:filespec]
/NOCOMMAND
Determines whether or not EDT uses a startup command file. The
/COMMAND file qualifier should be followed by an equal sign (=) and the
specification of the command file. The default file type for command files
is EDT. No wildcard characters are allowed in the file specification.

EDIT/EDT

The following command line invokes EDT to edit a file named MEMO.DAT
and specifies that EDT use a startup command file named XEDTINI.EDT:

$ EDIT/COMMAND=XEDTINI.EDT MEMO.DAT

If you do not include the /COMMAND=command file qualifier, EDT
looks for the EDTSYS logical name assignment. If EDTSYS is
not defined, EDT processes the systemwide startup command file
SYS$LIBRARY:EDTSYS.EDT. If this file does not exist, EDT looks for
the EDTINI logical name assignment. If EDTINI is not defined, EDT
looks for the file named EDTINI.EDT in your default directory. If none of
these files exists, EDT begins your editing session in the default state.

To prevent EDT from processing either the systemwide startup
command file or the EDTINI.EDT file in your default directory, use the
/NOCOMMAND qualifier as follows:

$ ED IT /NOCOMMAND MEMO. DAT

/CREATE (default)
/NOCREATE
Controls whether EDT creates a new file when the specified input file is
not found.

Normally, EDT creates a new file to match the input file specification if
it cannot find the requested file name in the specified directory. When
you use the /NOCREATE qualifier in the EDT command line and type a
specification for a file that does not exist, EDT displays an error message
and returns to the DCL command level as follows:

$ EDIT/NOCREATE NEWFILE.DAT
Input file does not exist
$

/JOURNAL[=journal-file]
/NOJOURNAL
Determines whether EDT keeps a journal during your editing session. A
journal contains a record of the keystrokes you enter during an editing
session. The default file name for the journal is the same as the input file
name. The default file type is JOU. The /JOURNAL qualifier enables you
to use a different file specification for the journal.

The following command line invokes EDT to edit a file named MEMO.DAT
and specifies the name SAVE.JOU for the journal:

$ EDIT/JOURNAL=SAVE MEMO.DAT

If you are editing a file from another directory and want the journal to be
located in that directory, you must use the /JOURNAL qualifier with a file
specification that includes the directory name. Otherwise, EDT creates the
journal in the default directory.

The directory that is to contain the journal should not be write-protected.

To prevent EDT from keeping a record of your editing session, use the
/NOJOURNAL qualifier in the EDT command line as follows:

$ EDIT/NOJOURNAL MEMO.DAT

DCL1-181

EDIT/EDT

DCL1-182

Once you have created a journal, enter the EDT/RECOVER command to
execute the commands in the journal. No wildcard characters are allowed
in the file specification.

/OUTPUT :output-file
/NOOUTPUT
Determines whether EDT creates an output file at the end of your editing
session. The default file specification for both the input file and the output
file is the same. Use the /OUTPUT qualifier to give the output file a
different file specification from the input file.

The following command line invokes EDT to edit a file named MEMO.DAT
and gives the resulting output file the name OUTMEM.DAT:

$ EDIT/OUTPUT=OUTMEM.DAT MEMO.DAT

You can include directory information as part of your output file
specification to send output to another directory as follows:

$ EDIT/OUTPUT=[BARRETT.MAIL]MEMO.DAT MEMO.DAT

The /NOOUTPUT qualifier suppresses the creation of an output file, but
not the creation of a journal. If you decide that you do not want an output
file, you can use the /NOOUTPUT qualifier as follows:

$ EDIT/NOOUTPUT MEMO.DAT

A system interruption does not prevent you from re-creating your editing
session because a journal is still being maintained. To save your editing
session, even when you specify /NOOUTPUT, use the line mode command
WRITE to put the text in an external file before you end the session.

No wildcard characters are allowed in the file specification.

/READ_ONLY
/NOREAD_ONLY (default)
Determines whether EDT keeps a journal and creates an output file. With
the /NOREAD_ONLY qualifier, EDT maintains the journal and creates
an output file when it processes the line mode command EXIT. Using
the /READ_ONLY qualifier has the same effect as specifying both the
/NOJOURNAL and /NOOUTPUT qualifiers.

The following command line invokes EDT to edit a file named
CALENDAR.DAT, but does not create a journal or an output file:

$ EDIT/READ_ONLY CALENDAR.DAT

Use the /READ_ONLY qualifier when you are searching a file and do not
intend to make any changes to it. To modify the file, use the line mode
command WRITE to save your changes. Remember, however, that you
have no journal.

/RECOVER
/NORECOVER (default)
Determines whether EDT reads a journal at the start of the editing
session.

EXAMPLES

EDIT/EDT

When you use the /RECOVER qualifier, EDT reads the appropriate journal
and processes whatever commands it contains. The appropriate syntax is
as follows:

$ EDIT/RECOVER MEMO.DAT

If the journal file type is not JOU or the file name is not the same as the
input file name, you must include both the /JOURNAL qualifier and the
/RECOVER qualifier as follows:

$ EDIT/RECOVER/JOURNAL=SAVE.XXX MEMO.DAT

Because the /NORECOVER qualifier is the default for EDT, you do not
need to specify it in a command line.

D $ EDIT /OUTPUT=NEWFILE. TXT OLDFILE. TXT

*
1 This is the first line of the file OLDFILE.TXT.

This EDIT command invokes EDT to edit the file OLDFILE.TXT.
EDT looks for the EDTSYS logical name assignment. If EDTSYS
is not defined, EDT processes the systemwide startup command file
SYS$LIBRARY:EDTSYS.EDT. If this file does not exist, EDT looks for the
EDTINI logical name assignment. If EDTINI is not defined, EDT looks
for the file named EDTINI.EDT in your default directory. If none of these
files exists, EDT begins your editing session in the default state. When
the session ends, the edited file has the name NEWFILE.TXT.

m $ EDIT/RECOVER OLDFILE. TXT

This EDIT command invokes EDT to recover from an abnormal exit during
a previous editing session. EDT opens the file OLDFILE.TXT, and then
processes the journal OLDFILE.JOU. Once the journal has been processed,
the user can resume interactive editing.

DCL1-183

EDIT/FOL

EDIT/FOL

FORMAT

DCL1-184

Invokes the VMS File Definition Language (FOL) Editor, which creates and
modifies FOL files. The /FOL qualifier is required. For a complete description
of the File Definition Language Facility, see the VMS File Definition Language
Facility Manual.

EDIT/FOL filespec

EDIT/SUM

FORMAT

EDIT/SUM

Invokes the SUMSLP Utility, a batch-oriented editor, to update a single input
file with multiple files of edit commands.

For a complete description of the SUMSLP Utility, see the VMS SUMSLP
Utility Manual.

EDIT/SUM input-file

DCL1-185

EDIT/TECO

EDIT/TECO

FORMAT

PARAMETER

Invokes the TECO interactive text editor. The /TECO qualifier is required.

EDIT/TECO [filespec]
EDIT/TECO/EXECUTE:command-file [argument]

filespec
Specifies the file to be created or edited using the TECO editor. If the file
does not exist, it is created by TECO, unless you specify the /NOCREATE
qualifier. No wildcard characters are allowed in the file specification.

If you specify the /MEMORY qualifier (default) without a file specification,
TECO edits the file identified by the logical name TEC$MEMORY. If
TEC$MEMORY has no equivalence string, or if the /NOMEMORY qualifier
is specified, TECO starts in command mode and does not edit an existing
file.

If you specify the /MEMORY qualifier and a file specification, the file
specification is equated to the logical name TEC$MEMORY.

DESCRIPTION The TECO editor creates or edits text files. For detailed information on
the use of TECO, see the PDP-11 TECO Editor Reference Manual.

QUALIFIERS /COMMAND[=filespec]

DCL1-186

/NOCOMMAND
Controls whether a startup command file is used. The /COMMAND file
qualifier may be followed by an equal sign (=) and the specification of the
command file. The default file type for command files is TEC.

The following command line invokes TECO to edit a file named
MEMO.DAT and specifies that TECO use a startup command :file named
XTECOINI.TEC:

$ EDIT/TECO/COMMAND=XTECOINI.TEC MEMO.DAT

If you do not include the /COMMAND qualifier, or if you enter
/COMMAND without specifying a command file, TECO looks for the
TEC$INIT logical name assignment. If TEC$INIT is not defined, no
startup commands are executed.

The logical name TEC$INIT can equate either to a string of TECO
commands or to a dollar sign ($) followed by a file specification. If
TEC$INIT translates to a string of TECO commands, the string is
executed; if it translates to a dollar sign followed by a file specification, the
contents of the file are executed as a TECO command string. For further
information, see the PDP-11 TECO Editor Reference Manual.

EDIT/TECO

To prevent TECO from using any startup command file, use the
/NOCOMMAND qualifier as follows:

$ EDIT/TECO/NOCOMMAND MEMO.DAT

No wildcards are allowed in the file specification.

/CREATE (default)
/NOCREATE
Creates a new file when the specified input file cannot be found. If the
/MEMORY qualifier is specified and no input file is specified, the file
created is the one specified by the logical name TEC$MEMORY. Normally,
TECO creates a new file to match the input file specification if it cannot
find the requested file name in the specified directory. When you use the
/NOCREATE qualifier in the TECO command line and type a specification
for a file that does not exist, TECO displays an error message and returns
you to the DCL command level. The /CREATE and /NOCREATE qualifiers
are incompatible with the /EXECUTE qualifier.

/EXECUTE=command-file [argument]
Invokes TECO and executes the TECO macro found in the command
file. The argument, if specified, appears in the text buffer when macro
execution starts. Blanks or special characters must be enclosed in
quotation marks (11 11

). For detailed information on the use of TECO
macros, see the PDP-11 TECO Editor Reference Manual.

The /EXECUTE qualifier is incompatible with the /CREATE and
/MEMORY qualifiers.

/MEMORY (default)
IN OM EMORY
Specifies that the last file you edited with TECO, identified by the
logical name TEC$MEMORY, will be the file edited if you omit the file
specification to the EDIT/TECO command.

/OUTPUT =output-file
INOOUTPUT (default)
Controls how the output file is named at the end of your editing session.
By default, the output file has the same name as the input file but is given
the next higher available version number. Use the /OUTPUT qualifier to
give the output file a file specification different from the input file.

The following command line invokes TECO to edit a file named
MEMO.DAT and gives the resulting output file the name OUTMEM.DAT:

$ EDIT/TECO/OUTPUT=OUTMEM.DAT MEMO.DAT

You can include directory information as part of your output file
specification to send output to another directory as follows:

$ EDIT/TECO/OUTPUT=[BARRRET.MAIL]MEMO.DAT MEMO.DAT

No wildcard characters are allowed in the file specification.

DCL1-187

EDIT/TECO

EXAMPLES

/READ_ONLY
/NOREAD_ONLY (default)
Controls whether an output file is created. By default, an output file is
created; the /READ_ONLY qualifier suppresses the creation of the output
file.

D $ EDIT/TECO/OUTPUT=NEWFILE.TXT OLDFILE.TXT

This EDIT command invokes the TECO editor to edit the file
OLDFILE.TXT. TECO looks for the TEC$INIT logical name assignment.
If TEC$INIT is not defined, TECO begins the editing session without
using a command file. When the session ends, the edited file has the name
NEWFILE.TXT.

~ $ EDIT /TECO/EXECUTE=FIND _DUPS "TEMP, ARGS, BLANK"

DCL1-188

In this example, the /EXECUTE qualifier causes the TECO macro
contained in the file FIND_DUPS.TEC to be executed, with the argument
string 11TEMP, ARGS, BLANK11 located in the text buffer.

EDIT/TPU

FORMAT

PARAMETER

EDIT/TPU

Invokes the VAX Text Processing Utility (VAXTPU). By default, this runs the
Extensible VAX Editor (EVE). VAXTPU provides a structured programming
language and other components for creating text editors and other
applications. EVE is a general-purpose text editor that runs on DECwindows
or character-cell terminals.

EDIT/TPU [input-file]

input-file
Specifies the text file you want to create or edit. The file must be a disk
file on a Files-11 formatted volume. There is no default file type-if you
do not not specify a file type, the file type is null. The way the input file
is processed depends on the VAXTPU application you are using. EVE
handles the input file as follows:

• EVE uses the input file name and file type for the buffer name. If the
input file exists, EVE copies it into the buffer in the main window.
EVE displays a message telling you the number of lines in the file. For
example, the following command edits a file named JABBER.TXT:

$ EDIT /TPU jabber. txt
24 lines read from DISK$1: [ALICE]JABBER.TXT;4

• If the input file does not exist-that is, if you are creating a new file
EVE creates an empty buffer, and displays a message that the file was
not found. You can then begin typing and editing.

• If you do not specify an input file, EVE creates an empty buffer named
Main. You can then begin typing and editing, or you can specify the
file you want to edit or create by using the GET FILE, the OPEN, or
the OPEN SELECTED command.

• EVE lets you use logical names and wildcards (* and %) to specify
the file-for example, *.TXT. You can create and edit more than one
file in an editing session, but you can specify only one input file on
the command line. If more than one file matches your request, EVE
displays a list of the matching files so you can choose the one you
want. For more information, see the EVE online help topic called
Choices Buffer.

• If the input file you specify is ambiguous, EVE delays applying the
following qualifiers (or their defaults) until after you resolve the
ambiguity:

/[NO]MODIFY
/[NO]OUTPUT
/[NO]READ_ONLY
/START_POSITION
/[NO]WRITE

DCL1-189

EDIT/TPU

DESCRIPTION

DCL1-190

• If you use a search list to specify the file or use wildcards for the
device or directory (such as [...]),EVE gets the first matching file in
the search list or directory tree. If none of the files in the search list
exists, EVE creates an empty buffer using the first file name in the
search list (unless you used the /NOCREATE qualifier).

The VAX Text Processing Utility (VAXTPU) provides a structured
programming language, with an interpreter, compiler, and other
components, for creating text editors and other applications. VAXTPU
has a callable interface so you can call editing functions from a program
written in BLISS, C, FORTRAN, or another language.

The Extensible VAX Editor (EVE) is a general-purpose text editor created
with VAXTPU by default. You can use EVE on DECwindows or character
cell terminals (VT300, VT200, or VTlOO series). EVE reads and writes
standard ASCII text files. Because VAXTPU and EVE are expressly
designed for the VMS operating system, they provide better performance
than EDT or other editors.

Using EVE, you can do the following:

• Perform basic text editing and formatting operations, such as case
change, copy, erase, fill, find, insert, paginate, and replace.

• Create or edit one or more files in an editing session.

• Use multiple buffers and windows to view and edit different files in
the same editing session.

• Define keys for editing operations, including learn sequences (to bind
several commands or keystrokes to a single key) and setting the EDT
or WPS keypad.

• Select boxes or linear ranges for cut-and-paste or other edits.

• Use either VMS-style wildcards or ULTRIX-style wildcards to search
for patterns of text.

• Execute DCL commands, such as DIRECTORY, from within the editor.

• Run DECspell to check selected text or an entire buffer.

• Spawn subprocesses or attach to other processes.

• Compile and execute VAXTPU procedures to extend EVE.

• Add or delete menu items for the DECwindows interface.

• Save procedures, menu definitions, key definitions, and other
customizations for future sessions.

• Use initialization files to set editing preferences at startup or during
an editing session.

• Recover your work in case of a system failure.

• Get comprehensive online help on EVE commands, keys, menu items,
and other topics, including VAXTPU built-in procedures.

QUALIFIERS

EDIT/TPU

You may want to create a symbol for invoking EVE, by putting the
following line in your LOGIN.COM file:

$ eve :== EDIT/TPU ! my symbol to invoke EVE

To enter EVE commands, press the Do key or PF4, type the command, and
press the Return key. To get a keypad diagram and help on defined keys,
press the Help key (on VTlOO terminals, press PF2). To exit from EVE,
press FlO or Ctrl/Z.

Generally, you use EVE as an interactive, screen-oriented editor, although
you can run EVE for batch jobs (using the /NODISPLAY qualifier and
either the /COMMAND or the /INITIALIZATION qualifier). You can
extend EVE to build your own VAXTPU application, effectively using EVE
as a run-time library of VAXTPU procedures. The EVE source files are
available in SYS$EXAMPLES. For a list of the EVE source files, use the
following command:

$ DIRECTORY SYS$EXAMPLES:EVE$*.TPU

For information on VAXTPU programming, see the VAX Text Processing
Utility Manual. For information about editing with EVE, see the VMS
EVE Reference Manual or the Guide to VMS Text Processing.

ICOMMAND[=command-file] (default)
INOCOMMAND
Determines the VAXTPU command file you want to use, if any. A
command file contains procedures and executable statements to extend
the editor. For example, you can use a command file to create additional
EVE commands, define keys and menu items, or set attributes. You can
also use a command file to set up a special text-processing environment for
creating your own application or for batch editing.

You cannot use wildcards to specify the command file. You can specify one
command file at a time. The default file type is TPU.

There are three ways to specify the command file you want to use:

• Name the command file TPU$COMMAND.TPU.

By default, VAXTPU looks for this command file in your
current default directory. Thus, you can have a different
TPU$COMMAND.TPU file for each directory.

• Define the logical name TPU$COMMAND to specify the command file.

This lets you use the same command file for all editing sessions,
including when you invoke VAXTPU within MAIL, and lets you keep
that command file in any convenient directory. Defining the logical
name overrides the default search for the TPU$COMMAND.TPU file.
You can put the definition in your LOGIN.COM file.

For example, the following commands define TPU$COMMAND as a
file named MYPROCS.TPU in your top-level, login directory, and then
invoke VAXPTU using that command file:

$ DEFINE TPU$COMMAND sys$login:myprocs
$ EDIT/TPU

DCL1-191

EDIT/TPU

DCL1-192

• Use the /COMMAND qualifier and specify the command file on the
command line.

This overrides any definition of the logical name TPU$COMMAND
and overrides the default search for a TPU$COMMAND.TPU file. For
example, the following command invokes VAXTPU, using a command
file named MYPROCS. TPU in the current directory:

$ EDIT/TPU/COMMAND=myprocs

If the command file you specify either with the /COMMAND qualifier or
by defining the logical name TPU$COMMAND is not found, the editing
session is aborted, returning you to the DCL (interactive) level.

If you do not want a command file executed-typically if you defined
the logical name TPU$COMMAND or created a TPU$COMMAND.TPU
file-use the /NOCOMMAND qualifier. Also, using the /NOCOMMAND
qualifier makes startup faster because VAXTPU then does not search for a
TPU$COMMAND.TPU file and does not have to compile and execute code
startup.

At startup, VAXTPU compiles and executes a command file after loading a
section file (if any) and before EVE executes an initialization file (if any).
Thus, procedures, settings, and key definitions in a command file override
those in the section file.

In EVE, you can use the SAVE ATTRIBUTES command to create or
update a command file, saving most global settings ("attributes") and
any menu definitions. For more information, see the VMS EVE Reference
Manual or use the online help in EVE and read the topic called Attributes.

For more information about VAXTPU command files, see the VAX Text
Processing Utility Manual, or use the online help in EVE and read the
topic called Command Files.

/CREATE (default)
/NOCREATE
Determines whether a buffer is created if the input file is not found. The
way this qualifier is processed depends on the VAXTPU application you
are using.

For EVE, the default is the /CREATE qualifier. If the input file does not
exist, EVE creates a buffer using the input file name and file type as the
buffer name; or, if you do not specify an input file, EVE creates an empty
buffer named Main.

Use the /NOCREATE qualifier to avoid invoking the editor in case you
mistype the input file specification, or to edit only an existing file. Thus,
if the input file is not found, the editing session is aborted, and you are
returned to the DCL (interactive) level, as in the following example:

$ EDIT/TPU old.dat/NOCREATE
Input file does not exist: OLD.DAT;
$

/DEBUG[:debug-file]
/NODEBUG (default)
Determines whether to run a VAXTPU debugger. This is useful to test
procedures for an application you are creating. VAXTPU compiles and

EDIT/TPU

executes the debugger file before executing the initialization procedure
TPU$INIT_PROCEDURE.

Using the /DEBUG qualifier (without specifying a debugger file) runs
the default VAXTPU debugger, TPU$DEBUG.TPU, which provides
commands to manipulate variables and to control program execution.
To start editing the code in the file you are debugging, use the GO
command. For more information about the debugger, read the comments
in the TPU$DEBUG.TPU source file in SYS$SHARE, see the VAX Text
Processing Utility Manual, or use the online help in EVE:

Conunand: HELP TPU Debugger

VAXTPU assumes the debugger file is in SYS$SHARE. If your debugger
file is stored elsewhere, specify the device (disk) and directory of the
debugger file. You cannot use wildcards to specify the debugger file. You
can use only one debugger file at a time. The default file type is TPU.

There are two ways to specify a debugger file of your own:

• Define the logical name TPU$DEBUG to specify the debugger file, and
then use the command EDIT/TPU/DEBUG.

Defining the logical name does not by itself run the debugger when you
invoke VAXTPU. It only specifies which debugger file is run when you
use the /DEBUG qualifier without specifying a debugger file. You can
put the definition in your LOGIN.COM file.

• Use the /DEBUG qualifier and specify the debugger file on the
command line.

This overrides any definition of the TPU$DEBUG logical name. For
example, the following command edits a file named MYPROCS.TPU,
using a debugger file named MYDEBUG.TPU:

$ EDIT/TPU myprocs.tpu/DEBUG=mydebug

/DISPLAY[= { CHARACTER_ CELL (default) }l
DECWINDOWS

/NOD/SPLAY
Determines the type of screen display, if any. The /DISPLAY qualifier is
the same as the /INTERFACE qualifier.

For example, the following command invokes VAXTPU with the
DECwindows interface:

$ EDIT/TPU/INTERFACE=DECWINDOWS

Then, if DECwindows is available, VAXTPU displays the editing session in
a separate window on your workstation screen and enables DECwindows
features-for example, the EVE screen layout then includes a menu bar
and scroll bars, and you can use MBl (on the mouse) to move the cursor
and select text. If DECwindows is not available, VAXTPU works as if on .a
character-cell terminal.

To specify your preferred display, you can define the logical name
TPU$DISPLAY_MANAGER to be either CHARACTER_CELL or
DECWINDOWS. However, as a general rule, do not define this logical
name to be DECWINDOWS, because VAXTPU should be initialized only
once using the DECwindows interface. Because of this restriction, utilities

DCL1-193

EDIT/TPU

DCL1-194

that call VAXTPU multiple times (such as using the editor within MAIL)
will fail.

Use the /NODISPLAY qualifier for batch jobs or when you are using an
unsupported terminal. You typically use a VAXTPU command file or EVE
initialization file for batch jobs, as in the following example, which uses a
command file named BATCH.TPU:

$ EDIT/TPU/NODISPLAY/COMMAND=batch

This batch file should comprise a complete editing session, including the
EXIT or the QUIT command. Note that some EVE commands cannot be
used in batch, because they prompt for a key press or other interactive
response.

/INITIALIZATION[=init-fi/e] (default)
/NOINITIALIZATION
Determines the initialization file you want to use, if any. The way this
qualifier is processed depends on the VAXTPU application you are using.
An EVE initialization file contains a list of commands you want executed,
typically to set margins, tab stops, and other attributes, or to define keys
that you do not otherwise save in a section file.

You cannot use wildcards to specify the initialization file. You can specify
only one initialization file at a time. The default file type is EVE.

There are three ways to specify the EVE initialization file you want to use:

• Name the initialization file EVE$INIT.EVE.

By default, EVE first looks for this initialization file in your current
default directory. If the file is not found there, EVE then looks for it
in SYS$LOGIN (your top-level, login directory). Thus, you can have
different initialization files for particular directories, and you can have
a "standard" initialization file in SYS$LOGIN for editing in directories
that do not have an EVE$INIT.EVE file.

• Define the logical name EVE$INIT to specify the initialization file.

This lets you use the same initialization file for all editing sessions,
including when you invoke EVE within MAIL, and lets you keep that
initialization file in any convenient directory. Defining the logical
name overrides the search for an EVE$INIT.EVE file. You can put the
definition in your LOGIN.COM file.

For example, the following commands define EVE$INIT to be a file
named MYINIT.EVE in your top-level, login directory, and then invoke
EVE using that initialization file:

$ DEFINE EVE$INIT sys$login:myinit
$ EDIT/TPU

• Use the /INITIALIZATION qualifier and specify an initialization file
on the command line.

This overrides any definition of the logical name EVE$INIT and
overrides the default search for an EVE$INIT.EVE file. For example,
the following command invokes EVE using an initialization file named
MYINIT.EVE named in your current default directory:

$ EDIT/TPU/INITIALIZATION=myinit

EDIT/TPU

If you do not want an initialization file executed-typically if you defined
the logical name EVE$INIT or created an EVE$INIT.EVE file-use the
/NOINITIALIZATION qualifier. Also, using /NOINITIALIZATION makes
startup faster because EVE then does not search for an EVE$INIT.EVE
file and does not parse commands at startup.

At startup, EVE executes an initialization file, if there is one, after
VAXTPU loads the section file and compiles a command file (if any).
Thus, settings and key definitions in an initialization file override those
in a section file or command file. When you invoke EVE, commands in
an initialization file for margins, tab stops, and other buffer settings
apply to the main (or first) buffer and to an EVE system buffer named
$DEFAULTS$. Buffers created during the session will have the same
settings as $DEFAULTS$. For more information, use the online help in
EVE and read the topic called Defaults.

If a command in an initialization file is incomplete-for example, if a
command requires a file name, search string, or other parameter
EVE prompts you for the required information before going on. You
can also execute an initialization file during an EVE session by using the
@ command (at sign). This is useful when you want to set attributes or
define keys for particular kinds of editing, or to execute a series of related
commands.

An initialization file is somewhat slower than a section file or command
file, depending on the number of commands to be executed. If you
want to define several keys, you should save them in a section file.
For more information about EVE initialization files, see the VMS EVE
Reference Manual, or use the online help in EVE and read the topic called
Initialization Files.

/INTERFACE[= { CHARACTER_ CELL (default) }l
DECWINDOWS

Determines the type of interface or screen display. The /INTERFACE
qualifier is the same as the /DISPLAY qualifier.

For example, the following command invokes VAXTPU with the
DECwindows interface:

$ EDIT/TPU/INTERFACE=DECWINDOWS

Then, if DECwindows is available, VAXTPU displays the editing session in
a separate window on your workstation screen and enables DECwindows
features-for example, the EVE screen layout includes a menu bar and
scroll bars, and you can use MBl (on the mouse) to move the cursor
and select text. If DECwindows is not available, VAXTPU works as
if on a character-cell terminal. For information about using EVE on
DECwindows, see the VMS DECwindows Desktop Applications Guide,
or use the online help in EVE and read the topic called DECwindows
Differences.

/JOURNAL[=journal-file] (default)
INOJOURNAL
Determines the type of journaling, if any. Journaling records your edits
so that if a system failure interrupts your editing session, you can recover
your work. The way this qualifier is processed depends on the VAXTPU
application you are using.

DCL1-195

EDIT/TPU

DCL1-196

Note: Journaling records information about the text you edit. Therefore,
if you are editing confidential data, make sure the journals, as well
as the text files, are secure.

There are two types of journaling, as follows:

• Buffer-change journaling creates a journal for each text buffer. This
is the EVE default. Buffer-change journaling works on DECwindows
or character-cell terminals. The journal name derives from the name
of the file or buffer being edited and the file type TPU$JOURNAL-for
example:

Text Buffer

MAIN

JABBER.TXT

GUMBO_RECIPE.RNO

NEW TEST DATA

SCRATCH

Buffer-Change Journal

MAIN.TPU$JOURNAL

JABBER_TX~TPU$JOURNAL

GUMBO_RECIPE_RNO.TPU$JOURNAL

NEW_ TEST _DATA.TPU$JOURNAL

__ SCRATCH __ .TPU$JOURNAL

Buffer-change journals are created in the directory defined by the
logical name TPU$JOURNAL. The default is SYS$SCRATCH, which
is usually your top-level, login directory. Because buffer-change
journals may be quite large-even larger than the files you edit
you may want to define the logical name TPU$JOURNAL as a disk
and directory other than SYS$SCRATCH.

Some editing operations may be slower because of buffer-change
journaling, depending on the extent or type of changes. For example,
including a large file into the buffer or pasting a large amount of
text from the DECwindows clipboard will be slower if you are using
buffer-change journaling.

• Keystroke journaling creates a single journal for the editing session,
regardless of the number of buffers you create. The journal records
every keystroke in the editing session, whether text or commands. To
enable keystroke journaling, use the /JOURNAL qualifier and specify
the journal you want created. You cannot use wildcards to specify the
journal. The default file type is TJL.

For example, the following command invokes VAXTPU, creating a
keystroke journal named MYSESSION.TJL in your current default
directory:

$ EDIT/TPU/JOURNAL=mysession

Keystroke journaling does not work on DECwindows and has other
restrictions. Keystroke journaling is useful to reproduce a problem
for example, if you want to submit a software performance report
(SPR)-or when you want to journal learn sequences and key
definitions to be done during the editing session.

If you enable keystroke journaling, EVE also creates a buffer-change
journal for each text buffer. This double journaling may slow performance,
depending on the kind of edits you make. To disable buffer-change
journaling during your editing session, use the TPU command SET
NOJOURNALING.

EDIT/TPU

Normally, journals are deleted when you exit or quit. If there is a system
failure during your editing session, such as a communications break
between your terminal and computer, the journals are saved. Your last
few keystrokes or changes may be lost. For information about recovering
your edits, see the description of the /RECOVER qualifier.

If you do not want any journaling, use the /NOJOURNAL qualifier,
which disables both keystroke journaling and buffer-change journaling.
This may make startup and some editing operations faster, but risks
losing your work if there is system failure during the editing session.
Typically, you use /NOJOURNAL with the /NOMODIFY, the /NOOUTPUT,
the /READ_ONLY, or the /NOWRITE qualifier to view a file without
making any changes. If you invoke EVE with /NOJOURNAL, you can
enable buffer-change journaling during your editing session by using SET
JOURNALING commands.

Note: Although journaling and recovery are quite reliable, the safest
way to protect your work against a system failure is to write out
your edits frequently-particularly during all-day editing sessions.

/MODIFY (default)
IN OMO DI FY
Determines whether you can modify the main (or first) buffer. This does
not affect other buffers you create during the editing session.

By default, VAXTPU allows the buffer to be modified-that is, you can edit
text in the buffer, and exiting writes out the buffer to a file if the buffer
has been modified (unless you used the /NOWRITE or /READ_ONLY
qualifier). Use the /NOMODIFY qualifier to view a file without making
any changes. You can then use cursor-movement commands, but cannot
change the text.

For EVE, using the /READ_ONLY or /NOWRITE qualifier makes the
buffer unmodifiable unless you also use the /MODIFY qualifier. For
example, the following command edits a file named PRACTICE.TXT,
making the buffer read-only and making it modifiable, so that you can
practice editing or test procedures without writing out a file:

$ EDIT/TPU practice.txt/MODIFY/READ_ONLY

In EVE, the status line shows whether the buffer is unmodifiable. If the
buffer is modifiable, the status line shows the mode (insert or overstrike).
You can change the modification attribute of the buffer during your editing
session by using the SET BUFFER command.

!OUTPUT[=output-file] (default)
/NOOUTPUT
Determines the output file specification, if any, for the main (or first)
buffer. This does not affect other buffers you create during the editing
session.

By default, the output file has the same specifications as the input file
with a version number one higher than the highest existing version of the
input file, or version 1 if you are creating a new file.

DCL1-197

EDIT/TPU

DCL1-198

Use the /OUTPUT qualifier and specify a file if you want the output file to
be written in a different directory or if you want the file to have a different
name or file type. For example, the following command edits a file named
ROUGH.LIS in your current, default directory and, on exiting, writes the
output file to FINAL.TXT in your top-level, login directory:

$ EDIT/TPU rough.lis/OUTPUT=sys$login:final.txt

You cannot use wildcards to specify the output file. If you omit parts of
the output file specification, such as the device (disk) or directory, VAXTPU
uses the corresponding parts of the input file specification, if there is one.

Using /OUTPUT and specifying an output file modifies the buffer, so that
even if you make no changes to the text, exiting writes out the buffer to a
file.

For EVE, using the /NOOUTPUT qualifier makes the main (or first) buffer
read-only (sometimes called write-locked), so that exiting does not write
that buffer to a file. This is useful to view a file without making any
changes. If you change your mind and want to write out the buffer before
exiting, use the WRITE FILE, the SAVE FILE, or the SAVE FILE AS
command. Also, you can change the read/write attribute of the buffer
during your editing session by using the SET BUFFER command.

/READ ONLY
/NOREAD _ONLY (default)
Determines whether exiting writes the main (or first) buffer to a file. This
does not affect other buffers you create during the editing session.

The /READ_ONLY qualifier is the same as the /NOWRITE qualifier. For
EVE, this makes the main (or first) buffer write-locked and also makes
it unmodifiable, unless you use the /MODIFY qualifier. Use /READ_
ONLY to view a file without making any edits. For example, the following
command lets you view a file named STAFFMEMO.TXT so you can use
cursor-movement commands but cannot change the text:

$ EDIT/TPU staffmemo.txt/READ_ONLY

The /NOREAD_ONLY qualifier is the same as the /WRITE qualifier. On
exiting, EVE writes out the main (or first) buffer to a file if the buffer has
been modified. If necessary, EVE prompts you for the output file name.

In EVE, the status line shows whether the buffer is read-only or write.
Also, you can change the read/write and modification attributes of the
buffer during your editing session by using the SET BUFFER command.

/RECOVER
/NORECOVER (default)
Determines whether V AX.TPU recovers your edits after a system failure by
reading a journal from the interrupted session. (See the description of the
/JOURNAL qualifier.)

There are two ways to recover your edits, depending on the type of
journaling you used:

• If you used buffer-change journaling, which is the EVE default,
you recover one buffer at time and can recover buffers from different
editing sessions. For example, the following command invokes EVE to
recover the text of the file JABBER. TXT:

EDIT/TPU

$ EDIT/TPU jabber.txt/RECOVER

This is the same as invoking EVE and using the following command:

Command: RECOVER BUFFER jabber.txt

If there is more than one buffer-change journal with the same name-
for example, you may have two or more MAIN.TPU$JOURNAL files
from different editing sessions-the recovery uses the highest version
number available. To recover several text buffers (one after another),
use the RECOVER BUFFER ALL command.

Recovery with a buffer-change journal restores only your text-it does
not restore settings, key definitions, and other customizations done
during the editing session, and it does not restore the contents of the
Insert Here buffer or other system buffers. The recovery is usually
quite fast. New text or other changes are then journaled.

The recovery does not re-create deleted files. If you deleted or renamed
the source file associated with a buffer-change journal, the recovery
fails. The source file is either the file initially read into the buffer (if
any), or the last version of the file written from the buffer before the
system failure.

• If you used keystroke journaling, you recover your editing session
by reissuing the command for the original, aborted editing session
including all qualifiers-and adding the /RECOVER qualifier. For
example, the following command recovers your edits using a keystroke
journal named MYSESSION.TJL:

$ EDIT/TPU/JOURNAL=mysession

*** system failure ***

$ EDIT/TPU/JOURNAL=mysession/RECOVER

EVE then recovers your editing session in a "player piano" fashion.
Typically, after the recovery you exit to save the recovered text.

Keystroke journaling does not work on DECwindows and has other
restrictions, as follows. These restrictions do not apply to buffer-change
journaling.

• To recover your edits with a keystroke journal, all relevant files
must be in the same state as at the start of the editing session being
recovered-including any files you wrote out (saved) before the system
failure. Therefore, before doing the recovery, you should rename the
saved versions or move them to a different directory, to ensure that the
recovery uses the original versions of the files.

• Check that logical names for your section file, command file, and
initialization file are defined as for the original editing session, and
that the recovery will use the correct version of these files.

• Check that the following terminal settings are the same as when you
began the original editing session, because they may affect how your
keystrokes are replayed:

Device_ Type

DCL1-199

EDIT/TPU

DCL1-200

Edit_mode
Eightbit
Page
Width

• Recovery with a keystroke journal may fail or may not work properly
if you pressed Ctrl/C during the original editing session, because
pressing Ctrl/C is not recorded in the keystroke journal. Therefore,
when you recover your edits, an operation that was canceled with
Ctrl/C is replayed without interruption; this is likely to affect how the
remaining keystrokes are replayed.

• If you used EVE as a "kept" editor, the keystroke journal records
ATTACH, DCL, and SPAWN commands in EVE, but does not record
operations done in the other process or subprocess. If these other
operations affected any files used in the original editing session-for
example, if you spawned a subprocess from EVE and then purged,
renamed, deleted, or modified any relevant files-the recovery may fail
or may not work properly.

• If you used the EVE command DCL, the recovery may fail or may
not work properly, particularly if you cut a file name from a directory
list in the DCL buffer and pasted it into an EVE command line. The
keystroke recovery replays the operations, but the directory list or the
file name or file version may not be the same as in the original session.

For more information about journaling and recovery, see the VMS EVE
Reference Manual, or use the online help in EVE and read the topic called
Journal Files.

Note: Although journaling and recovery are quite reliable, your last
few edits before the system failure may be lost. The safest way
to protect your work against a system failure is to write out your
edits frequently-particularly during all-day editing sessions.

!SECTION[=section-file] (default)
/NOSE CT/ON
Determines the section file you want to use, if any. A section file contains,
in binary form, key definitions, compiled procedures, global variables,
and so on. Effectively, the section file is the VAX.TPU application you
run-whether a customized version of EVE or an application you have
created.

VAX.TPU assumes the section file is in SYS$SHARE. If your section file is
stored elsewhere, specify the device (disk) and directory of the section file.
You cannot use wildcards to specify the section file. You use one section
file at a time. The default file type is TPU$SECTION.

The default section file is defined systemwide by the logical name
TPU$SECTION, which specifies the standard EVE section file
(EVE$SECTION.TPU$SECTION).

There are two ways to specify the section file you want to use:

• Define the logical name TPU$SECTION to specify the section file.

This lets you use the same section file for all editing sessions, including
when you invoke VAX.TPU within MAIL. Your definition of the logical
name overrides the systemwide default. You can put the definition in
your LOGIN.COM file.

EDIT/TPU

For example, the following commands define TPU$SECTION as a file
named MYSEC.TPU$SECTION in your top-level, login directory, and
then invoke VAXTPU using that section file instead of the standard
EVE section file:

$ DEFINE TPU$SECTION sys$login:mysec
$ EDIT/TPU

• Use the /SECTION qualifier and specify the section file on the
command line.

This overrides any definition of the TPU$SECTION logical name,
whether a definition of your own or the systemwide default. For
example, the following command invokes VAXTPU, using a section
file named MYSEC.TPU$SECTION in your top-level, login directory,
instead of the standard EVE section file:

$ EDIT/TPU/SECTION=sys$login:mysec

If you use the /NOSECTION qualifier, VAXTPU does not use any section
file. This prevents even the default EVE interface from being used.
VAXTPU will be virtually unusable unless you specify a command file
with procedures and executable statements that set up a text-processing
environment. Use /NOSECTION when you are creating your own
application without using EVE as a base, or with the /NODISPLAY
qualifier for batch editing. For example, the following command invokes
VAXTPU without a section file, using a VAXTPU command file named
USER_APPL.TPU:

$ EDIT/TPU/NOSECTION/COMMAND=user_appl/NODISPLAY

At startup, a section file, if one is being is used, is loaded before VAXTPU
compiles and executes a command file (if any) and before EVE executes an
initialization file (if any). Thus, procedures, settings, and key definitions
in a command file or initialization file override those in a section file.

To create a section file, do either of the following:

• In EVE, use the SAVE EXTENDED EVE command. For
example, the following command creates a section file named
MYSEC.TPU$SECTION in your current, default directory:

Command: SAVE EXTENDED EVE mysec
DISK$1: [USER]MYSEC.TPU$SECTION;l created
903 procedures, 1168 variables, 621 keys saved

• In a VAXTPU procedure or command file, use the SAVE built-
in procedure, usually at the end of a command file. For
example, the following statements create a section file named
MYSEC.TPU$SECTION in your top-level, login directory and then
exit from VAXTPU:

SAVE ("sys$login:mysec"); ! create the section file
EXIT; ! done -- end of command file

DCL1-201

EDIT/TPU

DCL1-202

A section file is cumulative: it saves the current key definitions and other
customizations, and those already in the section file you are using (if any).
In EVE, the section file saves the following:

Compiled procedures
Global settings ("attributes") .
Key definitions and learn sequences
Menu definitions for the DECwindows interface

A section file usually does not save the following:

Margins, tab stops, and other buffer settings
Width or number of windows
Contents of system buffers, such as the Insert Here buffer

For more information about creating section files, see the VAX Text
Processing Utility Manual or the VMS EVE Reference Manual, or use
the online help in EVE and read the topic called Section Files.

/START_POS/TION:(row[,column])
Determines the row and column where the cursor first appears in the
main (or first) buffer. The way this qualifier is processed depends on the
VAXTPU application you are running.

For EVE, the default start position is 1, 1, which is the upper left corner of
the main (or first) buffer-row 1, column 1. This does not affect the initial
cursor position when you create other buffers during the editing session,
and does not limit the buffer size.

Use the /START_POSITION qualifier to begin editing at a particular line
(or row) or at a particular character position (or column), such as when
you want to skip over a standard heading in a file. If a batch log file or
error message tells you there is an error on a given line of a program, you
can specify that line number as the starting row, so that when you edit the
program source file, the cursor moves directly to that line. For example,
the following command edits a file named TEST.COM, putting the cursor
on line 10, column 5:

$ EDIT/TPU test.com/START_POSITION=(l0,5)

If you simply want to start at a particular line in a file, you can omit the
second parameter (the column) and you need not use parentheses. If you
specify a line number greater than the number of lines in the file, EVE
puts the cursor at the bottom of the buffer.

!WORK[=work-file]
Determines the work file that VAXTPU uses to swap memory for editing
very large files. The work file is a temporary file, which is automatically
deleted when you exit. Also, the work file is invisible-that is, it does not
appear in the directory listing, although it does take up a file slot.

You cannot use wildcards to specify the work file. There is one work file
per editing session. The default file type is TPU$WORK.

By default, VAXTPU creates a work file named TPU$WORK.TPU$WORK
in SYS$SCRATCH, which is usually your top-level, login directory. There
are two ways to specify a different work file:

• Define the logical name TPU$WORK.

EXAMPLES

D $ EDIT/TPU

EDIT/TPU

This is useful if you want the work file created in an area other than
SYS$SCRATCH, such as on a larger disk. You can put the definition
in your LOGIN.COM file.

• Use the /WORK qualifier and specify the work file you want created.

This overrides any definition of the TPU$WORK logical name. For
example, the following commandinvokes VAXTPU, specifying the work
file to be MYWORK.TPU$WORK:

$ EDIT/TPU/WORK=mywork

To create the work file in an area other than SYS$SCRATCH, specify the
device (disk) and directory of the work file.

/WRITE (default)
/NO WRITE
Determines whether exiting writes the main (or first) buffer to a file. This
does not affect other buffers you create during the editing session.

The /WRITE qualifier is the same as the /NOREAD_ONLY qualifier. On
exiting, EVE writes out the main (or first) buffer to a file if the buffer has
been modified. If necessary, EVE prompts you for the output file name.

The /NOWRITE qualifier is the same as the /READ_ONLY qualifier. For
EVE, this makes the main (or first) buffer write-locked and also makes it
unmodifiable unless you use the /MODIFY qualifier. Use the /NOWRITE
qualifier to view a file without making any changes. For example, the
following command lets you view a file named STAFFMEMO.TXT so you
can use cursor-movement commands but cannot change the text:

$ EDIT/TPU staffmemo.txt/NOWRITE

In EVE, the status line shows whether the buffer is read-only or write.
Also, you can change the read/write and modification attributes of the
buffer during your editing session by using the SET BUFFER command.

This example invokes VAXTPU. By default, this runs EVE, creating an
empty buffer named Main. You can then begin typing and editing, or you
can specify the file you want to create or edit by using the GET FILE, the
OPEN, or the OPEN SELECTED command.

~ $ EDIT /TPU jabber. txt

This command allows you to edit a file named JABBER.TXT in your
current, default directory. If the file exists, EVE displays the text in the
main window; if you are creating a new file, the main window is empty.

DCL1-203

EDIT/TPU

i] $ EDIT /TPU *. txt

EVE lets you use logical names and wildcards to specify the input file. If
more than one file matches your request, EVE shows a list of the matching
files to choose from-in this case, a list of files with the type TXT in your
current, default directory. If no file matches, EVE creates an empty buffer
named Main.

m $ EDIT/TPU memo.txt/RECOVER

DCL1-204

This example recovers the text ofMEMO.TXT by using a buffer-change
journal named MEMO_TXT.TPU$JOURNAL.

ENDSUBROUTINE

ENDSUBROUTINE

FORMAT

Defines the end of a subroutine in a command procedure. For more
information about the ENDSUBROUTINE command, refer to the description of
the CALL command.

ENDSUBROUTINE

DCL1-205

EOD

EOD

Signals the end of a data stream when a command or program is reading
data from an input device other than an interactive terminal.

FORMAT $EOD

PARAMETERS None.

DESCRIPTION The EOD (end of deck) command in a command procedure or in a batch
job does the following:

EXAMPLES

• Terminates input data lines that begin with dollar signs ($). The
DECK command indicates that the following lines begin with dollar
signs and should be interpreted as data, not as commands; the EOD
command indicates the end of the data lines.

• Terminates an input file if multiple input files are contained in the
command stream without intervening commands. The program or
command reading the data receives an end-of-file (EOF) condition
when the EOD command is read.

The EOD command must be preceded by a dollar sign; the dollar sign
must be in the first character position (column 1) of the input record.

D $ CREATE WEATHER.COM
$ DECK
$ FORTRAN WEATHER
$ LINK WEATHER
$ RUN WEATHER
$ EOD
$ @WEATHER

DCL1-206

In this example, the command procedure creates a command procedure
called WEATHER.COM. The lines delimited by the DECK and EOD
commands are written to the file WEATHER.COM. Then the command
procedure executes WEATHER.COM.

EOD

$EOJ

$PRINT TESTDATA.OUT

... Second Input Data File ..

... First Input Data File ...

$RUN MYPROG

$ PASSWORD HENRY

$JOB HIGGINS

ZK-0785-GE

The program MYPROG requires two input files; these are read from the
logical device SYS$INPUT. The EOD command signals the end of the first
data file and the beginning of the second. The next line that begins with
a dollar sign (a PRINT command in this example) signals the end of the
second data file.

DCL1-207

EOJ

EOJ

Marks the end of a batch job submitted through a card reader.

FORMAT $EOJ

PARAMETERS None.

DESCRIPTION The EOJ (end of job) command marks the end of a batch job submitted
through a card reader. An EOJ card is not required; however, if present,
the first nonblank character in the command line must be a dollar sign

EXAMPLE

DCL1-208

($). If issued in any other context, the EOJ command logs the process out.
The EOJ command cannot be abbreviated.

The EOF card is equivalent to the EOJ card.

l$EOJ
J

~.Command Input Stream.~
J

_I:

l $ PASSWORD HENRY
!----'

$JOB HIGGINS
1-1-l

I-

""" 1-1-
1---'

ZK-0786-GE

The JOB and PASSWORD commands mark the beginning of a batch job
submitted through the card reader; the EOJ command marks the end of
the job.

EXAMINE

FORMAT

PARAMETER

EXAMINE

Displays the contents of virtual memory.

Requires user-mode read (R) and write (W) access to the virtual
memory location whose contents you want to examine.

EXAMINE location[:location]

location[:location]
Specifies a virtual address or a range of virtual addresses (where the
second address is larger than the first) whose contents you want to
examine. If you specify a range of addresses, separate the beginning
and ending addresses with a colon (:).

A location can be any valid arithmetic expression containing arithmetic
or logical operators or previously assigned symbols. Radix qualifiers
determine the radix in which the address is interpreted; hexadecimal is
the initial default radix. Symbol names are always interpreted in the
radix in which they were defined. The radix operators %X, %D, or %0 can
precede the location. A hexadecimal value must begin with a number (or
be preceded by %X).

The DEPOSIT and EXAMINE commands maintain a pointer to the
current memory location. The EXAMINE command sets this pointer to
the last location examined when you specify an EXAMINE command. You
can refer to this location using the period (..) in a subsequent EXAMINE
command or DEPOSIT command.

DESCRIPTION The EXAMINE command displays the contents of virtual memory. The
address is displayed in hexadecimal format and the contents are displayed
in the radix requested, as follows:

address: contents

If the address specified is not accessible to user mode, four asterisks (*)
are displayed in the contents field.

Radix Qualifiers: The radix default for a DEPOSIT command or an
EXAMINE command determines how the command interprets numeric
literals. The initial default radix is hexadecimal; all numeric literals in the
command line are assumed to be hexadecimal values. If a radix qualifier
modifies an EXAMINE command, that radix becomes the default for
subsequent EXAMINE and DEPOSIT commands, until another qualifier
overrides it. For example:

$ EXAMINE/DECIMAL 900
00000384: 0554389621

DCL1-209

EXAMINE

QUALIFIERS

DCL1-210

The EXAMINE command interprets the location 900 as a decimal number
and displays the contents of that location in decimal. All subsequent
DEPOSIT and EXAMINE commands assume that numbers you enter
for addresses and data are decimal. Note that the EXAMINE command
always displays the address location in hexadecimal format.

Symbol names defined by = (assignment statement) commands are always
interpreted in the radix in which they were defined.

Note that hexadecimal values entered as examine locations or as data to
be deposited must begin with a numeric character (0 to 9). Otherwise, the
command interpreter assumes that you have entered a symbol name, and
attempts symbol substitution.

You can use the radix operators %X, %D, or %0 to override the current
default when you enter the EXAMINE command. For example:

$ EXAMINE/DECIMAL %X900
00000900: 321446536

This command requests a decimal display of the data in the location
specified as hexadecimal 900.

Length Qualifiers: The initial default length unit for the EXAMINE
command is a longword. The EXAMINE command displays data, 1
longword at a time, with blanks between longwords. If a length qualifier
modifies the command, that length becomes the default length of a memory
location for subsequent EXAMINE and DEPOSIT commands, until another
qualifier overrides it.

Restriction on Placement of Qualifiers: The EXAMINE command
analyzes expressions arithmetically. Therefore, qualifiers are interpreted
correctly only when they appear immediately after the command name.

!ASCII
Displays the data at the specified location in ASCII format.

Binary values that do not have ASCII equivalents are displayed as
periods (.).

When you specify the I ASCII qualifier, or when ASCII mode is the default,
hexadecimal is used as the default radix for numeric literals that are
specified on the command line.

!BYTE
Displays data at the specified location 1 byte at a time.

!DECIMAL
Displays the contents of the specified location in decimal format.

!HEXADECIMAL
Displays the contents of the specified location in hexadecimal format.

!LONGWORD
Displays data at the specified location 1 longword at a time.

EXAMPLES

D $ RUN MYPROG
lctrl/YI
$ EXAMINE 2678

EXAMINE

/OCTAL
Displays the contents of the specified location in octal format.

/WORD
Displays data at the specified location 1 word at a time.

0002678: 1F4C5026
$ CONTINUE

~ $ BASE = %X1COO

In this example, the RUN command begins execution of the image
MYPROG.EXE. While MYPROG is running, pressing Ctrl/Y interrupts
its execution, and the EXAMINE command displays the contents of virtual
memory location 2678 (hexadecimal).

$ READBUF = BASE + %X50
$ ENDBUF = BASE + %XAO
$ RUN TEST
ICtrl/YI
$ EXAMINE/ASCII READBUF: ENDBUF
00001C50: BEGINNING OF FILE MAPPED TO GLOBAL SECTION

In this example, before executing the program TEST.EXE, symbolic names
are defined for the program's base address and for labels READBUF
and ENDBUF; all are expressed in hexadecimal format using the radix
operator %X. READBUF and ENDBUF define offsets from the program
base.

While the program is executing, pressing Ctrl/Y interrupts it, and the
EXAMINE command displays in ASCII format all data between the
specified memory locations.

DCL1-211

EXCHANGE

EXCHANGE

FORMAT

DCL1-212

Invokes the Exchange Utility (EXCHANGE), which manipulates mass storage
volumes that are written in formats other than those normally recognized by
the VMS operating system.

EXCHANGE allows you to perform any of the following tasks:

Create foreign volumes.

Transfer files to and from the volume.

• List directories of the volume.

For block-addressable devices, such as RT-11 disks, EXCHANGE performs
additional operations such as renaming and deleting files. EXCHANGE can
also manipulate Files-11 files that are images of foreign volumes; these files
are called virtual devices.

For a complete description of EXCHANGE, see the VMS Exchange Utility
Manual.

EXCHANGE [subcommand] [filespec] [filespec]

EXCHANGE/NETWORK

EXCHANGE/NETWORK

FORMAT

Enables the VMS operating system to transfer files to or from operating
systems that do not support VMS file organizations. The transfer occurs over
a DECnet network communications link that connects VMS and non-VMS
operating system nodes.

Using DECnet services, the EXCHANGE/NETWORK command can perform
any of the following tasks:

Transfer files between a VMS node and a non-VMS system node.

• Transfer a group of input files to a group of output files.

Transfer files between two non-VMS nodes, provided those nodes share
DECnet connections with the VMS node that issues the EXCHANGE
/NETWORK command.

EXCHANGE/NETWORK input-filespec[, ...]
output-filespec

PARAMETERS input-filespec[, ...]
Specifies the name of an existing file to be transferred. Wildcard
characters are allowed. If you specify more than one file, separate the
file specifications with commas (,).

output-filespec
Specifies the name of the output file into which the input is transferred.

You must specify at least one field in the output file specification. If you
omit the device or directory, your current default device and directory are
used. The EXCHANGE/NETWORK command replaces any other missing
fields (file name, file type, and version number) with the corresponding
field of the input file specification.

The EXCHANGE/NETWORK command creates a new output file for every
input file that you specify.

You can use the asterisk (*) wildcard character in place of the file name,
the file type, or the version number. The EXCHANGE/NETWORK
command uses the corresponding field in the related input file to name
the output file. You can also use the wildcard character in the output file
specification to direct EXCHANGE/NETWORK to create more than one
output file. For example:

$ EXCHANGE/NETWORK A.A,B.B MYPC::*.C

This EXCHANGE/NETWORK command creates the files A.C and B.C at
the non-VMS target node MYPC.

A more complete explanation of wildcard characters and version numbers
follows in the Description section.

DCL1-213

EXCHANGE/NETWORK

DESCRIPTION

DCL1-214

The EXCHANGE/NETWORK command imposes the following restrictions:

• Transfers of files can occur only between disk devices. (If a disk device
is not the desired permanent residence for the file, you must either
move the file to a disk before issuing the command or retrieve the file
from a disk after the command completes.)

• The remote system must have a block size of 512 bytes, where a byte
is 8 bits long.

• The nodes transferring files must support the DECnet Data Access
Protocol (DAP).

The VMS Record Management Services (RMS) facility provides VMS
access to records in VMS RMS files. To transfer VMS RMS files between
two nodes where both nodes are VMS nodes, use one of the other DCL
commands (such as COPY, APPEND, or CONVERT), as appropriate.
These commands recognize RMS file organizations and are designed to
ensure that RMS record structures are preserved as your files are moved.

Use the EXCHANGE/NETWORK command to transfer files between VMS
nodes and non-VMS nodes when the differences in the file organizations
would otherwise prevent the transfer or could lead to undesirable results.
While using the COPY command ensures that both the contents and the
attributes of a replicated file are preserved, the EXCHANGE/NETWORK
command has more advantages. The EXCHANGE/NETWORK command
offers you explicit control of your record attributes during file transfers,
with the opportunity to make a file usable on several different operating
systems.

The EXCHANGE/NETWORK command transfers files between VMS nodes
and non-VMS nodes connected to the same DECnet network. If the non
VMS system does not support VMS file organizations, the EXCHANGE
/NETWORK command can modify or discard file and record attributes
during the transfer. However, if the target system is a VMS node, you
have the option of applying new file and record attributes to the output
file by supplying a File Definition Language (FDL) file, as described later
in this section. The EXCHANGE/NETWORK command provides a number
of defaults to handle the majority of transfers properly. However, in some
situations, you need to know your file or record format requirements at
both nodes.

VMS File and Record Attributes

All RMS files in the VMS environment include stored information,
known as the file and record attributes, to describe the file and record
characteristics. File attributes consist of items such as file organization,
file protection, and file allocation information. Record attributes consist
of items such as the record format, record size, key definitions for indexed
files, and carriage control information. These attributes define the data
format and access methods for the VMS RMS facility.

EXCHANGE/NETWORK

Non-VMS operating systems that do not support VMS file organizations
have no means of storing file and record attributes with their files.
Transferring a VMS file to a non-VMS system that is unable to store
and handle file and record attributes can result in most of this information
being discarded. Removing these attributes from a file can render it
useless if it must be returned to the VMS system.

Transferring Files to VMS Nodes

When you transfer files to a VMS system from a non-VMS system, the
files typically assume default file and record attributes. However, you can
specify the attributes that you want the file to acquire in a File Definition
Language (FDL) file. If you specify an FDL file with the /FDL qualifier,
the FDL file determines the characteristics of the output file. This feature
is useful in establishing compatible file and record attributes when you
transfer a file from a non-VMS system to a VMS system. However, when
you use an FDL file, you also assume responsibility for determining the
required characteristics.

For more information on FDL files, see the VMS File Definition Language
Facility Manual.

Transferring Files to Non-VMS Nodes

The EXCHANGE/NETWORK command discards file and record attributes
associated with a VMS file during a transfer to a non-VMS system that
does not support VMS file organizations. Be aware that the loss of file
and record attributes in the transfer can render the output file useless for
many applications.

Selecting Transfer Modes

The EXCHANGE/NETWORK command has four transfer mode options:
AUTOMATIC, BLOCK, RECORD, and CONVERT. For most file transfers,
AUTOMATIC is sufficient. The AUTOMATIC transfer mode option allows
the EXCHANGE/NETWORK command to transfer files using either block
or record 1/0. The selection is based on the input file organization and the
operating systems involved.

Selecting the BLOCK transfer mode option forces the EXCHANGE
/NETWORK command to open both the input and output files for block 1/0
access. The input file is then transferred to the output file block by block.
Use this transfer mode when you transfer executable images. It is also
useful when you must preserve a file's content exactly, which is a common
requirement when you store files temporarily on another system or when
cooperating applications exist on the systems.

Selecting the RECORD transfer mode option forces the EXCHANGE
/NETWORK command to open both the input file and output file for record
1/0 access. The input file is then transferred to the output file record by
record. This transfer mode is primarily used for transferring text files.

Selecting the CONVERT transfer mode option forces the EXCHANGE
/NETWORK command to open the input file for RECORD access and the
output file for BLOCK access. Records are then read in from the input file,
packed into blocks, and are written to the output file. This transfer mode
is primarily used for transferring files with no implied carriage control.

DCL1-215

EXCHANGE/NETWORK

DCL1-216

For example, to transfer a file created with DIGITAL Standard Runoff
(DSR) to a DECnet-DOS system, you must use the CONVERT transfer
mode option. To transfer the resultant output file back to a VMS node, use
the AUTOMATIC transfer mode option.

Wildcard Characters

Wildcard characters are permitted in the file specifications and follow the
behavior typical of other VMS commands with respect to the VMS node.

When more than one input file is specified, but wildcards are not specified
in the output file specification, the first input file is copied to the output
file, and each subsequent input file is transferred and given a higher
version number of the same output file name. Note that the files are not
concatenated into a single output file. Also note that when you transfer
files to foreign systems that do not support version numbers, only one
output file results, and it is the last input file.

To create multiple output files, specify multiple input files and use at least
one of the following:

• An asterisk wildcard character in the output file name, file type, or
version number field

• Only a node name, a device name, or a directory specification as the
output file specification

When you create multiple output files, the EXCHANGE/NETWORK
command uses the corresponding field from each input file in the output
file name.

Use the /LOG qualifier when you specify multiple input and output files to
verify that the files were copied as you intended.

Version Numbers

The following guidelines apply when the target node file formats accept
version numbers.

If no version numbers are specified for input and output files, the
EXCHANGE/NETWORK command (by default) assigns a version number
to the output files that is either of the following:

• The version number of the input file

• A version number one greater than the highest version number of an
existing file with the same file name and file type

When the output file version number is specified by an asterisk wildcard
character, the EXCHANGE/NETWORK command uses the version
numbers of the associated input files as the version numbers of the output
files.

If the output file specification has an explicit version number, the
EXCHANGE/NETWORK command normally uses that number for the
output file specification. However, if an equal or higher version of the
output file already exists, no warning message is issued, the file is copied,
and the version number is set to a value one greater than the highest
version number already existing.

QUALIFIERS

EXCHANGE/NETWORK

File Protection and Creation/Revision Dates

The EXCHANGE/NETWORK command treats an output file as a new file
when any portion of the output file name is specified explicitly. When the
output node is a VMS system, the creation date for a new file is set to the
current time and date. However, if the output file specification consists
only of wildcard characters, the output file no longer qualifies as a new file,
and, therefore, the creation date of the input file is used. That is, if the
output file specification is one of the following, the creation date becomes
that of the input file: *,*.*,or*.*;*.

The revision date of the output file is always set to the current time and
date; the backup date is set to zero. The output file is assigned a new
expiration date. (Expiration dates are set by the file system if retention is
enabled; otherwise, they are set to zero.)

When the target node is a VMS node, the protection and access control list
(ACL) of the output file is determined by the following parameters, in the
following order:

1 Protection of previously existing versions of the output file

2 Default protection and ACL of the output directory

3 Process default file protection

For an introduction to ACLs, see the Guide to VMS System Security and
the VMS DCL Concepts Manual.

On VMS systems, the owner of the output file usually is the same as the
creator of the output file. However, if a user with extended privileges
creates the output file, the owner is either the owner of the parent
directory or the owner of a previous version of the output file, if one
exists.

Extended privileges include any of the following:

• SYSPRV (system privilege) or BYPASS

• System user identification code (UIC)

• GRPPRV (group privilege) if the owner of the parent directory (or
previous version of the output file) is in the same group as the creator
of the new output file

• An identifier (with the resource attribute) representing the owner of
the parent directory (or previous version of the output file)

!BACKUP
Modifies the time value specified with the /BEFORE or the /SINCE
qualifier. The /BACKUP qualifier selects files according to the dates
of their most recent backups. This qualifier is incompatible with the
/CREATED, /EXPIRED, and /MODIFIED qualifiers, which also allow you
to select files according to time attributes. If you do not specify any of
these four time qualifiers, the default is the /CREATED qualifier.

DCL1-217

EXCHANGE/NETWORK

DCL1-218

/BEFORE[=time]
Selects only those files dated prior to the specified time. You can specify
time as an absolute time, as a combination of absolute and delta times,
or as one of the following keywords: TODAY (default), TOMORROW, or
YESTERDAY. Specify one of the following qualifiers with the /BEFORE
qualifier to indicate the time attribute to be used as the basis for selection:
/BACKUP, /CREATED (default), /EXPIRED, or /MODIFIED.

For complete information about specifying time values, see the VMS DCL
Concepts Manual.

/BY_ OWNER[=uic]
Selects only those files whose owner user identification code (UIC) matches
the specified owner UIC. The default UIC is that of the current process.

Specify the UIC by using standard UIC format as described in the VMS
DCL Concepts Manual.

/CONFIRM
/NOCONFIRM (default)
Controls whether a request is issued before each file transfer operation to
confirm that the operation should be performed on that file. The following
responses are valid:

YES

TRUE

NO

FALSE

0

I Return I

QUIT

Ctrl/Z

ALL

You can use any combination of uppercase and lowercase letters for word
responses. Word responses can be abbreviated to one or more letters
(for example, T, TR, or TRU for TRUE), but these abbreviations must be
unique. Affirmative answers are YES, TRUE, and 1. Negative answers
include: NO, FALSE, 0, and pressing the Return key. Entering QUIT or
pressing Ctrl/Z indicates that you want to stop processing the command at
that point. When you respond by entering ALL, the command continues
to process, but no further prompts are given. If you type a response other
than one of those in the list, DCL issues an error message and redisplays
the prompt.

/CREATED (default)
Modifies the time value specified with the /BEFORE or the /SINCE
qualifier. The /CREATED qualifier selects files based on their dates of
creation. This qualifier is incompatible with the /BACKUP, /EXPIRED,
and /MODIFIED qualifiers, which also allow you to select files according
to time attributes. If you do not specify any of these four time qualifiers,
the default is the /CREATED qualifier.

/EXCLUDE=(filespec[, ...])
Excludes the specified files from the file transfer operation. You can
include a directory but not a device in the file specification. Wildcard
characters (* and %) are allowed in the file specification. However, you
cannot use relative version numbers to exclude a specific version. If you
specify only one file, you can omit the parentheses.

EXCHANGE/NETWORK

/EXPIRED
Modifies the time value specified with the /BEFORE or the /SINCE
qualifier. The /EXPIRED qualifier selects files according to their expiration
dates. (The expiration date is set with the SET FILE/EXPIRATION_DATE
command.) The /EXPIRED qualifier is incompatible with the /BACKUP,
/CREATED, and /MODIFIED qualifiers, which also allow you to select files
according to time attributes. If you do not specify any of these four time
qualifiers, the default is the /CREATED qualifier.

!FDL:fdl-filespec
Specifies that the output file characteristics are described in the File
Definition Language (FDL) file. Use this qualifier when you require
special output file characteristics. For more information about FDL files,
see the VMS File Definition Language Facility Manual.

Use of the /FDL qualifier implies that the transfer mode is block by block.
However, the transfer mode you specify with the /TRANSFER_MODE
qualifier prevails.

!LOG
!NOLOG (default)
Controls whether the EXCHANGE/NETWORK command displays the file
specifications of each file copied.

When you use the /LOG qualifier, the EXCHANGE/NETWORK command
displays the following for each copy operation:

• The file specifications of the input and output files

• The number of blocks or the number of records copied (depending on
whether the file is copied on a block-by-block or record-by-record basis)

!MODIFIED
Modifies the time value specified with the /BEFORE or the /SINCE
qualifier. The /MODIFIED qualifier selects files according to the date
on which they were last modified. This time qualifier is incompatible with
the /BACKUP, /CREATED, and /EXPIRED qualifiers, which also allow
you to select files according to time attributes. If you do not specify any of
these four time qualifiers, the default is the /CREATED qualifier.

!SINCE[=time]
Selects only those files dated after the specified time. You can specify
time as an absolute time, as a combination of absolute and delta times,
or as one of the following keywords: TODAY (default), TOMORROW, or
YESTERDAY. Specify one of the following time qualifiers with the /SINCE
qualifier to indicate the time attribute to be used as the basis for selection:
/BACKUP, /CREATED (default), /EXPIRED, or /MODIFIED.

For complete information about specifying time values, see the VMS DCL
Concepts Manual.

/TRANSFER_MODE:option
Specifies the 1/0 method to be used in the transfer. This qualifier is useful
for all file formats. You can specify any one of the following options:

DCL1-219

EXCHANGE/NETWORK

EXAMPLES

Option

AUTOMATIC

BLOCK

CONVERT[=option[, ...]]

RECORD

Function

Allows the EXCHANGE/NETWORK command to
determine the appropriate transfer mode. This is
the default transfer mode.

Opens both the input and output files for block
1/0 and transfers the files block by block.

Reads records from the input file, packs them into
blocks, and writes them to the output file in block
mode. The options listed in the following table
determine what additional information is inserted
during the transfer.

Opens both the input and output files for record
1/0 and transfers the files record by record. The
target system must support record operations,
and the input file must be record oriented.

The following four options are available with the CONVERT transfer mode
to control the insertion of special characters in the records:

Option

CARRIAGE_ CONTROL

COUNTED

FIXED_CONTROL

RECORD_
SEPARATOR=separator

Function

Any carriage control information in the input file
is interpreted, is expanded into actual characters,
and is included with each record.

The length of each record, in bytes, is included at
the beginning of the record. The length includes
all FIXED_CONTROL, CARRIAGE_CONTROL,
and RECORD_SEPARATOR information in each
record.

All variable length with fixed control record (VFC)
information is written to the output file as part
of the data. This information follows the record
length information, if the COUNTED option was
specified.

A 1- or 2-byte record separator is· inserted
between each record. Record separator
characters are the last characters in the record.
The three choices for separator characters are as
follows:

CR: Specifies carriage return only.

LF: Specifies line feed only.

CRLF: Specifies carriage return and line
feed.

D $ EXCHANGE/NETWORK VMS_FILE.DAT FOO: :FOREIGN_SYS.DAT

DCL1-220

In this example, the EXCHANGE/NETWORK command transfers the
file VMS_FILE.DAT located in the current default device and directory

EXCHANGE/NETWORK

to the file FOREIGN_SYS.DAT on the non-VMS node FOO. Because the
/TRANSFER_MODE qualifier was not explicitly specified, the EXCHANGE
/NETWORK command automatically determines whether the transfer
method should be block or record 1/0.

I $ EXCHANGE/NETWORK/TRANSFER MODE=BLOCK -
_$ FOO: :FOREIGN_SYS.DAT VM(~FILE.DAT

In this example, the EXCHANGE/NETWORK command transfers the
file FOREIGN_SYS.DAT from the non-VMS node FOO to the file VMS_
FILE.DAT in the current default device and directory. Block 1/0 is
specified for the transfer mode.

$ EXCHANGE/NETWORK/FDL=VMS FILE DEFINITION.FDL -
_$ FOO: :REMOTE_FILE.TXT VMS_FILE.DAT

In this example, the EXCHANGE/NETWORK command transfers the file
REMOTE_FILE.TXT on node FOO to the file VMS_FILE.DAT. The file
attributes for the output file VMS_FILE.DAT are obtained from the File
Definition Language (FDL) source file VMS_FILE_DEFINITION.FDL. For
more information about creating FDL files, see the VMS File Definition
Language Facility Manual. Because the qualifier /FDL is specified and the
/TRANSFER_MODE qualifier is omitted, the transfer mode uses block 1/0,
by default.

El $ EXCHANGE/NETWORK -
$ /TRANSFER_MODE=CONVERT=(CARRIAGE_CONTROL,COUNTED, -

-$ RECORD_SEPARATOR=CRLF,FIXED_CONTROL) -
~) PRINT FILE. TXT FOO: : *

In this example, the EXCHANGE/NETWORK command transfers the file
PRINT_FILE.TXT from the current default device and directory to the file
PRINT_FILE.TXT on the non-VMS node FOO. The use of the CONVERT
option with the /TRANSFER_MODE qualifier forces the input file to be
read in record by record, modified as specified by the CONVERT options
that follow, and written to the output file block by block. As many records
as will fit are packed into the output blocks.

The CONVERT option CARRIAGE_CONTROL specifies that carriage
control information is converted to ASCII characters and is inserted before
the data or is appended to the record, depending on whether prefix control
or postfix control, or both, are used. The CONVERT option FIXED_
CONTROL specifies that any fixed control information be translated
to ASCII characters and be inserted at the beginning of the record.
The CONVERT option RECORD_SEPARATOR=CRLF appends the two
specified characters, carriage return and line feed, to the end of the record.
The CONVERT option COUNTED specifies that the total length of the
record must be counted (once the impact of all the previous convert options
have been added), and the result is to be inserted at the beginning of the
record, in the first 2 bytes.

DCL1-221

EXIT

EXIT

FORMAT

PARAMETER

Terminates processing of a command procedure or subroutine and returns
control to the next higher command level-either an invoking command
procedure or interactive DCL. The EXIT command also terminates an image
normally after a user enters Ctrl/Y (executing another image has the same
effect).

EXIT [status-code]

status-code
Defines a numeric value for the reserved global symbol $STATUS. You
can specify the status-code parameter as an integer or an expression
equivalent to an integer value. The value can be tested by the next outer
command level. The low-order 3 bits of the value determine the value of
the global symbol $SEVERITY.

If you specify a status code, DCL interprets the code as a condition code.
Note that even numeric values produce warning, error, and fatal error
messages, and that odd numeric values produce either no message or a
success or informational message.

If you do not specify a status code, the current value of $STATUS is saved.
When control returns to the outer command level, $STATUS contains the
status of the most recently executed command or program.

DESCRIPTION The EXIT and STOP commands both provide a way to terminate the
execution of a procedure. The EXIT command terminates execution of the
current command procedure and returns control to the calling command
level. If you enter the EXIT command from a noninteractive process (such
as a batch job), at command level 0, then the process terminates.

DCL1-222

The STOP command returns control to command level 0, regardless of
the current command level. If you execute the STOP command from a
command procedure or from a noninteractive process (such as a batch job),
the process terminates.

When a DCL command, user program, or command procedure completes
execution, the command interpreter saves the condition code value in the
global symbol $STATUS. If an EXIT command does not explicitly set a
value for $STATUS, the command interpreter uses the current value of
$STATUS to determine the error status.

The low-order 3 bits of the status value contained in $STATUS represent
the severity of the condition. The reserved global symbol $SEVERITY
contains this portion of the condition code. Severity values range from
0 to 4, as follows:

EXAMPLES

D $ EXIT 1

EXIT

Value Severity

0 Warning

1 Success

2 Error

3 Information

4 Severe (fatal) error

Note that the success and information codes have odd numeric values, and
that warning and error codes have even numeric values.

When any command procedure exits and returns control to another level,
the command interpreter tests the current value of $STATUS. If $STATUS
contains an even numeric value and if its high-order bit is 0, the command
interpreter displays the system message associated with that status
code, if one exists. (If no message exists, the message NOMSG will be
displayed.) If the high-order bit is 1, the message is not displayed.

When a command procedure exits following a warning or error condition
that has already been displayed by a DCL command, the command
interpreter sets the high-order bit of $STATUS to 1, leaving the remainder
of the value intact. This ensures that error messages are not displayed by
both the command that caused the error, and by the command procedure.

The EXIT command, when used after you interrupt an image with Ctrl/Y,
causes a normal termination of the image that is currently executing. If
the image declared any exit-handling routines, they are given control. This
is in contrast to the STOP command, which does not execute exit-handling
routines. For this reason, the EXIT command is generally preferable to
the STOP command.

The EXIT command in this example exits to the next higher command
level, giving $STATUS and $SEVERITY a value of 1.

~ $ ON WARNING THEN EXIT
$ FORTRAN 'Pl'
$ LINK 'Pl'
$ RUN 'Pl'

The EXIT command in this example is used as the target of an ON
command; this statement ensures that the command procedure terminates
whenever any warnings or errors are issued by any command in the
procedure.

The procedure exits with the status value of the command or program that
caused the termination.

DCL1-223

EXIT

$ START:
$
$
$
$ TAPE:

IF (Pl .EQS. "TAPE") .OR. (Pl .EQS. "DISK") THEN GOTO 'Pl'
INQUIRE Pl "Enter device (TAPE or DISK)"
GOTO START

Process tape files

$ EXIT
$ DISK: ! Process disk files

$ EXIT

The command procedure in this example shows how to use the EXIT
command to terminate different command paths within the procedure.
To execute the procedure, you must enter either TAPE or DISK as a
parameter. The IF command uses a logical OR to test whether either
of these strings was entered. If the result is true, the GOTO command
branches to the corresponding label. If Pl was neither TAPE nor DISK,
the INQUIRE command prompts for a correct parameter.

The commands following each of the labels TAPE and DISK provide
different paths through the procedure. The EXIT command before the
label DISK ensures that the commands after the label DISK are executed
only if the procedure explicitly branches to DISK.

Note that the EXIT command at the end of the procedure is not required
because the end of the procedure causes an implicit EXIT command. Use
of the EXIT command, however, is recommended.

EJ $ IF Pl. EQS. "" THEN -
INQUIRE Pl "Enter filespec (null to exit)"

$ IF Pl .EQS. "" THEN EXIT
$ PRINT 'Pl' /AFTER=20:00/COPIES=50/FORMS=6

The command procedure in this example tests whether a parameter was
passed to it; if the parameter was not passed, the procedure prompts
for the required parameter. Then it retests the parameter Pl. If a null
string, indicated by a carriage return for a line with no data, is entered,
the procedure exits. Otherwise, it executes the PRINT command with the
current value of Pl as the input parameter.

iJ $ IF Pl .EQS. "" THEN INQUIRE Pl "Code"
$ CODE = %X'Pl'
$ EXIT CODE

DCL1-224

The command procedure in this example, E.COM, illustrates how to
determine the system message, if any, associated with a hexadecimal
system status code. The procedure requires a parameter and prompts if
none is entered. Then it prefixes the value with the radix operator %X
and assigns this string to the symbol CODE. Finally, it issues the EXIT
command with the hexadecimal value. The following example uses the
procedure E.COM:

$ @E lC
%SYSTEM-F-EXQUOTA, exceeded quota

I $ RUN MYPROG
lctrl/YI
$ EXIT

EXIT

When the procedure exits, the value of $STATUS is %XlC, which equates
to the EXQUOTA message. Note that you can also use the F$MESSAGE
lexical function to determine the message that corresponds to a status
code.

In this interactive example, the RUN command initiates execution of the
image MYPROG.EXE. Then pressing Ctrl/Y interrupts the execution. The
EXIT command that follows calls any exit handlers declared by the image
before terminating MYPROG.EXE.

DCL1-225

FONT

FONT

FORMAT

DCL1-226

Converts an ASCII bitmap distribution format (BDF) into binary server natural
form (SNF). The DECwindows server uses an SNF file to display a font. In
addition to converting the BDF file to binary form, the font compiler provides
statistical information about the font and the compilation process. For more
information about using the font compiler, refer to the VMS DECwindows Xlib
Programming Volume.

FONT filespec

GOSUB

FORMAT

PARAMETER

DESCRIPTION

GOSUB

Transfers control to a labeled subroutine in a command procedure without
creating a new procedure level.

GOSUB label

label
Specifies a label of 1 to 255 alphanumeric characters that appears as the
first item on a command line. A label may not contain embedded blanks.
When the GOSUB command is executed, control passes to the command
following the specified label.

The label can precede or follow the GOSUB statement in the current
command procedure. When you use a label in a command procedure, it
must be terminated with a colon (:). If you use duplicate labels, control is
always given to the label most recently read by DCL.

Use the GOSUB command in command procedures to transfer control to a
subroutine specified by the label. If the command stream is not being read
from a random-access device (that is, a disk device), the GOSUB command
performs no operation.

The RETURN command terminates the GOSUB subroutine procedure,
returning control to the command following the calling GOSUB statement.
The RETURN command accepts an optional status value.

The GOSUB command does not cause the creation of a new procedure
level. Therefore, it is referred to as a "local" subroutine call. Any labels
and local symbols defined in the current command procedure level are
available to a subroutine invoked with a GOSUB command. The GOSUB
command can be nested up to a maximum of 16 levels per procedure level.

When the command interpreter encounters a label, it enters the label in a
label table. This table is allocated from space available in the local symbol
table. If the command interpreter encounters a label that already exists
in the table, the new definition replaces the existing one. Therefore, if you
use duplicate labels, control is always given to the label most recently read
by DCL. The following rules apply:

• If duplicate labels precede and follow the GOSUB command, control is
given to the label preceding the command.

• If duplicate labels all precede the GOSUB command, control is given to
the most recent label, that is, the one nearest the GOSUB command.

• If duplicate labels all follow the GOSUB command, control is given to
the one nearest the GOSUB command.

If a label does not exist in the current command procedure, the procedure
cannot continue and is forced to exit.

DCL1-227

GOSUB

EXAMPLE

$!
$! GOSUB.COM
$!
$ SHOW TIME
$ GOSUB TESTl

Note that the amount of space available for labels is limited. If a command
procedure uses many symbols and contains many labels, the command
interpreter may run out of table space and issue an error message.

$ WRITE SYS$0UTPUT "success completion"
$ EXIT
$!
$! TESTl GOSUB definition
$!
$ TESTl:
$ WRITE SYS$0UTPUT "This is GOSUB level 1."
$ GOSUB TEST2
$ RETURN %Xl
$!
$! TEST2 GOSUB definition
$!
$ TEST2:
$ WRITE SYS$0UTPUT "This is GOSUB level 2."
$ GOSUB TEST3
$ RETURN
$!
$! TEST3 GOSUB definition
$!
$ TEST3:
$ WRITE SYS$0UTPUT "This is GOSUB level 3."
$ RETURN

DCL1-228

This sample command procedure shows how to use the GOSUB command
to transfer control to labeled subroutines. The GOSUB command transfers
control to the subroutine labeled TESTl. The procedure executes the
commands in subroutine TESTl, branching to the subroutine labeled
TEST2. The procedure then executes the commands in subroutine
TEST2, branching to the subroutine labeled TEST3. Each subroutine
is terminated by the RETURN command. After TEST3 is executed, the
RETURN command returns control back to the command line following
each calling GOSUB statement. At this point, the procedure has been
successfully executed.

GOTO

FORMAT

PARAMETER

GOTO

Transfers control to a labeled statement in a command procedure.

GOTO label

label
Specifies a label of 1 to 255 alphanumeric characters that appears as the
first item on a command line. A label cannot contain embedded blanks.
When the GOTO command is executed, control passes to the command
following the specified label.

When you use a label in a command procedure, it must be terminated with
a colon (:). If you use duplicate labels, control is always given to the label
most recently read by DCL.

DESCRIPTION Use the GOTO command in command procedures to transfer control to
a line that is not the next line in the procedure. The label can precede
or follow the GOTO statement in the current command procedure. If the
command stream is not being read from a random-access device (that is, a
disk device), the GOTO command performs no operation.

If the target label of a GOTO command is inside a separate IF-THEN
ELSE construct, an error message (DCL-W-USGOTO) is returned.

When the command interpreter encounters a label, it enters the label in a
label table. This table is allocated from space available in the local symbol
table. If the command interpreter encounters a label that already exists
in the table, the new definition replaces the existing one. Therefore, if you
use duplicate labels, control is always given to the label most recently read
by DCL. In general:

• If duplicate labels precede and follow the GOTO command, control is
given to the label preceding the command.

• If duplicate labels all precede the GOTO command, control is given to
the most recent label, that is, the one nearest the GOTO command.

• If duplicate labels all follow the GOTO command, control is given to
the one nearest the GOTO command.

If a label does not exist in the current command procedure, the procedure
cannot continue and is forced to exit.

Note that the amount of space available for labels is limited. If a command
procedure uses many symbols and contains many labels, the command
interpreter may run out of table space and issue an error message.

DCL1-229

GOTO

EXAMPLES

D $ IF Pl .EQS. "HELP" THEN GOTO TELL
$ IF Pl .EQS. 1111 THEN GOTO TELL

$ EXIT
$ TELL:
$ TYPE SYS$INPUT
To use this procedure, you must enter a value for Pl.

$ EXIT

In this example, the IF command checks the first parameter passed to
the command procedure; if this parameter is the string HELP or if the
parameter is not specified, the GOTO command is executed and control
is passed to the line labeled TELL. Otherwise, the procedure continues
executing until the EXIT command is encountered. At the label TELL, a
TYPE command displays data in the input stream that documents how to
use the procedure.

~ $ ON ERROR THEN GOTO CHECK

$ EXIT
$ CHECK:

$ END:
$ EXIT

DCL1-230

Error handling routine

The ON command establishes an error-handling routine. If any command
or procedure subsequently executed in the command procedure returns an
error or severe error, the GOTO command transfers control to the label
CHECK.

HELP

FORMAT

PARAMETER

HELP

Displays information concerning use of the system, including formats and
explanations of commands, parameters, and qualifiers.

HELP [keyword[, ...]]

keyword[, ...]
Specifies one or more keywords that refer to the topic or subtopic on which
you want information from a help library. To use the VMS HELP Facility
in its simplest form, enter the HELP command from your terminal. The
HELP Facility displays a list of topics at your terminal and the prompt
Topic?. To see information on one of the topics, type the topic name after
the prompt. The system displays information on that topic.

If the topic has subtopics, the HELP command lists the subtopics and
displays the Subtopic? prompt. To get information on one of the subtopics,
type the name after the prompt. To see information on another topic, press
the Return key. You can now ask for information on another topic when
the HELP Facility displays the Topic? prompt. Press the Return key to
exit the HELP Facility and return to DCL command level.

DESCRIPTION Information within help libraries is arranged in a hierarchical manner.
The levels are as follows:

1 None-If you do not specify a keyword, the HELP Facility describes
the HELP command and lists the topics that are documented in the
root library. Each item in the list is a keyword in the first level of the
hierarchy.

2 Topic-name-If you specify a keyword by naming a topic, the HELP
Facility describes the topic as it is documented in either the root
library or in one of the other enabled default libraries. Keywords for
additional information available on this topic are listed.

3 Topic-name subtopic-If you specify a subtopic following a topic, the
HELP Facility provides a description of the specified subtopic.

4 @filespec followed by any of the above-If you specify a help library
to replace the current root library, the HELP Facility searches that
library for a description of the topic or subtopic specified. The file
specification must take the same form as the file specification included
with the /LIBRARY command qualifier. However, if the specified
library is an enabled user-defined default library, the file specification
can be abbreviated to any unique leading substring of that default
library's logical name translation.

If you use an asterisk (*) in place of any keyword, the HELP command
displays all information available at the level that the asterisk replaces.
For example, HELP COPY * displays all the subtopics under the topic
COPY.

DCL1-231

HELP

QUALIFIERS

DCL1-232

If you use an ellipsis (. . .) immediately after any primary keyword,
the HELP Facility displays all the information on the specified topic
and all subtopics of that topic. For example, HELP COPY ... displays
information on the COPY topic as well as information on all the subtopics
under COPY. The ellipsis can only be used from the topic level; it cannot
be used from the subtopic level.

Wildcard characters (* and %) are allowed in the keyword.

/INSTRUCTIONS (default)
/NOINSTRUCTIONS
Displays an explanation of the HELP command along with the list of
topics (if no topic is specified). By default, the HELP command display
includes a description of the facility and the format, along with the list of
topics. If you specify the /NOINSTRUCTIONS qualifier, only the list of
topics is displayed.

IL/BL/ST (default)
/NOL/BL/ST
Displays any auxiliary help libraries.

/LIBRARY:filespec
/NOLIBRARY
Uses an alternate help library instead of the default system library,
SYS$HELP:HELPLIB.HLB. The specified library is used as the main
(root) help library, and is searched for HELP Facility information before
any user-defined default help libraries are checked.

If you omit the device and directory specification, the default is
SYS$HELP, the logical name of the location of the system help libraries.
The default file type is HLB.

The /NOLIBRARY qualifier excludes the default help library from the
library search order.

/OUTPUT[=filespec]
INOOUTPUT
Controls where the output of the command is sent. By default, the output
is sent to SYS$0UTPUT, the current process default output stream or
device.

If you enter the /OUTPUT qualifier with a partial file specification (for
example, /OUTPUT=[JONES]), HELP is the default file name and LIS is
the default file type. No wildcards are allowed.

If you enter the /NOOUTPUT qualifier, output is suppressed.

/PAGE (default)
/NOPAGE
Stops the display when the screen is full. You must press the Return key
to continue.

If you specify the /NOPAGE qualifer, output continues until the
information display ends or until you manually control the scrolling.

/PROMPT (default)
/NOPROMPT

HELP

Permits you to solicit further information interactively. If you specify the
/NOPROMPT qualifier, the HELP Facility returns you to DCL command
level after it displays the requested information.

If the /PROMPT qualifier is in effect, one of four different prompts is
displayed, requesting you to specify a particular help topic or subtopic.
Each prompt represents a different level in the hierarchy of help
information. The four prompt levels are as follows:

1 Topic?-The root library is the main library and you are not currently
examining the HELP Facility information for a particular topic.

2 [library-spec] Topic?-The root library is a library other than the
main library and you are not currently examining the HELP Facility
information for a particular topic.

3 [keyword] Subtopic?-The root library is the main library and you are
currently examining the HELP Facility information for a particular
topic (or subtopic).

4 A combination of 2 and 3.

When you encounter one of these prompts, you can enter any one of the
responses described in the following table:

Current
Prompt En-

Response vironment Action

keyword[...] 1,2 Searches all enabled libraries for the keyword.

3,4 Searches additional help libraries for the current topic
(or subtopic) for the keyword.

@file spec 1,2 Same as above, except that the library specified by
keyword[...] @filespec is now the root library. If the specified

library does not exist, the HELP Facility treats
@filespec as a normal keyword.

Displays a list of topics available in the root library.

3,4 Same as above; treats @filespec as a: normal
keyword.

Displays the list of subtopics of the current topic (or
subtopics) for which help exists.

l Return I Exits from the HELP Facility.

2 Changes root library to main library.

3,4 Prompts for a topic or subtopic at the next higher
level.

lCtrltZI 1,2,3,4 Exits from the HELP Facility.

DCL1-233

HELP

EXAMPLES

D $ HELP
HELP

/USERLIBRARY:(level[, ...])
/NOUSERLIBRARY
Names the levels of search for information in auxiliary libraries. The
levels are as follows:

PROCESS

GROUP

SYSTEM

ALL

NONE

Libraries defined at process level

Libraries defined at group level

Libraries defined at system level

All libraries (default)

No libraries (same as the /NOUSERLIBRARY qualifier)

Auxiliary help libraries are libraries defined with the logical names
HLP$LIBRARY, HLP$LIBRARY_l, HLP$LIBRARY_2, and so on.
Libraries are searched for information in this order: root (current) library,
main library (if not current), libraries defined at process level, libraries
defined at group level, libraries defined at system level, and the root
library. If the search fails, the root library is searched a second time so
that the context is returned to the· root library from which the search
was initiated. The default is the /USERLIBRARY =ALL qualifier. If you
specify only one level for the HELP Facility to search, you can omit the
parentheses.

(HELP message text and list of topics)

Topic?

DCL1-234

In this example, the HELP command is entered without any qualifiers or
parameters. This example produces a display of the help topics available
from the root help library, SYS$HELP:HELPLIB.HLB.

If you enter one of the listed topics in response to the Topic? prompt, the
HELP Facility displays information about that topic and a list of subtopics
(if there are any). If one or more subtopics exist, the HELP Facility
prompts you for a subtopic, as follows:

Topic? ASSIGN
ASSIGN

(HELP message text and subtopics)

ASSIGN Subtopic?

If you type a subtopic name, the HELP Facility displays information about
that subtopic, as follows:

ASSIGN Subtopic? Name
ASSIGN

Name

(HELP message text and subtopics, if any)

ASSIGN Subtopic?

HELP

If one or more sub-subtopics exist, the HELP Facility prompts you for a
sub-subtopic; otherwise, as in the previous example, the facility prompts
you for another subtopic of the topic you are currently inspecting.

Entering a question mark (?) redisplays the HELP Facility message and
options at your current level. Pressing the Return key does either of the
following:

• Moves you back to the previous help level if you are in a subtopic level.

• Terminates the HELP Facility if you are at the first level.

Pressing Ctrl/Z terminates the HELP Facility at any level.

~ $ HELP COPY ...

The HELP command in this example displays a description of the COPY
command and of the command's parameters and qualifiers. Note that the
ellipsis can be used only from the topic level; it cannot be used from the
subtopic level.

I $ HELP /NOPROMPT ASSIGN/GROUP

(ASSIGN/GROUP HELP message)

$
$ HELP/NOPROMPT/PAGE EDIT *

$

(HELP messages on all first-level EDIT subtopics)

The two HELP commands request help on specific topics. In each case, the
HELP command displays the help message you request and then returns
you to DCL command level and the dollar sign prompt ($).

The first command requests help on the /GROUP qualifier of the ASSIGN
command. The asterisk in the second example is a wildcard character. It
signals the HELP Facility to display information about all EDIT subtopics,
which are then displayed in alphabetical order. The /NOPROMPT qualifier
suppresses prompting in both sample commands. The /PAGE qualifier on
the second HELP command causes output to the screen to stop after each
screen of information is displayed.

!J $ HELP FILL
Sorry, no documentation on FILL
Additional information available:

(list of first-level topics)

Topic? @EDTHELP FILL
FILL

(FILL HELP message)

@EDTHELP Topic?

When you enter a request for help on a topic that is not in the default
help library, you can instruct the HELP Facility to search another
help library for the topic. In this example, entering the command

DCL1-235

HELP

@EDTHELP FILL instructs the HELP Facility to search the help library
SYS$HELP:EDTHELP.HLB for information on FILL, an EDT editor
command. The HELP Facility displays the message and prompts you
for another EDT editor topic.

~ $ SET DEFAULT SYS$HELP
$ DEFINE HLP$LIBRARY EDTHELP
$ DEFINE HLP$LIBRARY_l MAILHELP
$ DEFINE HLP$LIBRARY 2 BASIC
$ DEFINE HLP$LIBRARY=3 DISK2: [MALCOLM] FLIP
$ HELP REM

DCL1-236

You can use logical names to define libraries for the HELP Facility to
search automatically if it does not find the specified topic in the VMS
root help library. This sequence of commands instructs the HELP
Facility to search libraries in addition to the default root library,
SYS$HELP:HELPLIB.HLB.

The four DEFINE statements create logical names for the four user
defined help libraries that the HELP Facility is to search after it has
searched the root library. The first three entries are help libraries in
the current default directory. By default, the HELP Facility searches for
user-defined help libraries in the directory defined by the logical name
SYS$HELP. The fourth entry is the help library FLIP.HLB in the directory
DISK2:[MALCOLM]. Note that the logical names that you use to define
these help libraries must be numbered consecutively; that is, you cannot
skip any numbers.

The HELP Facility first searches the root library for REM. It then searches
the libraries HLP$LIBRARY, HLP$LIBRARY_l, HLP$LIBRARY_2, and
so on, until it finds REM or exhausts the libraries it knows it can search.
When it finds REM in the BASIC.HLB library, the HELP Facility displays
the appropriate help information and prompts you for a subtopic in that
library. If you request information on a topic not in the BASIC.HLB
library, the HELP Facility once again searches the help libraries you have
defined.

IF

FORMAT

Tests the value of an expression and, depending on the syntax specified,
executes the following:

One command following the THEN keyword if the expression is true

• Multiple commands following the $THEN command if the expression is
true

IF

One or more commands following the $ELSE command if the expression
is false

$ IF expression THEN[$] command

or

$IF expression

$THEN [command]

command

$ [ELSE] [command]

command

$ ENDIF

PARAMETERS expression
Defines the test to be performed. The expression can consist of one or more
numeric constants, string literals, symbolic names, or lexical functions
separated by logical, arithmetic, or string operators.

Expressions in IF commands are automatically evaluated during the
execution of the command. Character strings beginning with alphabetic
characters that are not enclosed in quotation marks (" ") are assumed to
be symbol names or lexical functions. The command language interpreter
(CLI) replaces these strings with their current values.

Symbol substitution in expressions in IF commands is not iterative;
that is, each symbol is replaced only once. However, if you want
iterative substitution, precede a symbol name with an apostrophe (')
or ampersand (&).

DCL1-237

IF

The command interpreter does not execute an IF command when it
contains an undefined symbol. Instead, the command interpreter issues a
warning message and executes the next command in the procedure.

For a summary of operators and details on how to specify expressions, see
the VMS DCL Concepts Manual.

command
Specifies the DCL command or commands to be executed, depending on
the syntax specified, when the result of the expression is true or false.

DESCRIPTION The IF command tests the value of an expression and executes a given
command if the result of the expression is true. The expression is true if
the result has an odd integer value, a character string value that begins
with the letters Y, y, ·T, or t, or an odd numeric string value.

EXAMPLES

D $ COUNT 0
$ LOOP:

The expression is false if the result has an even integer value, a character
string value that begins with any letter except Y, y, T, or t, or an even
numeric string value.

$ COUNT COUNT + 1

$ IF COUNT .LE. 10 THEN GOTO LOOP
$ EXIT

This example shows how to establish a loop in a command procedure,
using a symbol named COUNT and an IF statement. The IF statement
checks the value of COUNT and performs an EXIT command when the
value of COUNT is greater than 10.

I $ IF Pl .EQS. "" THEN GOTO DEFAULT
$ IF (Pl .EQS. "A") .OR. (Pl .EQS. "B") THEN GOTO 'Pl'
$WRITE SYS$0UTPUT "Unrecognized parameter option ''Pl' "
$ EXIT
$ A: Process option a

$ EXIT
$ B:

$ EXIT
$ DEFAULT:

$ EXIT

DCL1-238

Process option b

Default processing

I $ SET NOON

IF

This example shows a command procedure that tests whether a parameter
was passed. The GOTO command passes control to the label specified as
the parameter.

If the procedure is executed with a parameter, the procedure uses that
parameter to determine the label to branch to. For example:

@TESTCOM A

When the procedure executes, it determines that Pl is not null, and
branches to the label A. Note that the EXIT command causes an exit from
the procedure before the label B.

$ LINK CYGNUS,DRACO,SERVICE/LIBRARY
$ IF $STATUS
$ THEN
$ RUN CYGNUS
$ ELSE
$ WRITE SYS$0UTPUT "LINK FAILED"
$ ENDIF
$ EXIT

This command procedure uses the SET NOON command to disable error
checking by the command procedure. After the LINK command, the IF
command tests the value of the reserved global symbol $STATUS. If the
value of $STATUS indicates that the LINK command succeeded, then the
program CYGNUS is run. If the LINK command returns an error status
value, the command procedure issues a message and exits.

DCL1-239

INITIALIZE

INITIALIZE

FORMAT

Formats a disk or magnetic tape volume and writes a label on the volume. At
the end of initialization, the disk is empty except for the system files containing
the structure information. All former contents of the disk are lost.

Requires VOLPRO (volume protection) privilege for most INITIALIZE
command operations.

INITIALIZE device-name[.1 volume-label

PARAMETERS device-name[:]
Specifies the name of the device on which the volume to be initialized is
physically mounted.

The device does not have to be allocated currently; however, allocating the
device before initializing it is the recommended practice.

volume-label
Specifies the identification to be encoded on the volume. For a disk
volume, you can specify a maximum of 12 alphanumeric characters;
for a magnetic tape volume, you can specify a maximum of 6
alphanumeric characters. Letters are automatically changed to uppercase.
Nonalphanumeric characters are not allowed in the volume-label
specification on disk.

To use ANSI "a" characters on the volume label on magnetic tape,
you must enclose the volume name in quotation marks (" "). For an
explanation of ANSI "a" characters, see the description of the /LABEL
qualifier.

DESCRIPTION The default format for disk volumes in the VMS operating system is called
the Files-11 On-Disk Structure Level 2. The default for magnetic tape
volumes is based on Level 3 of the ANSI standard for magnetic tape labels
and file structure for informational interchange (ANSI X3.27-1978).

DCL1-240

The INITIALIZE command can also initialize disk volumes in the Files-11
On-Disk Structure Level 1 format.

You do not need special privileges to override logical protection on the
following devices:

• A blank disk or magnetic tape volume; that is, a volume that has never
been written

• A disk volume that is owned by your current user identification code
(UIC) or by the UIC [0,0]

• A magnetic tape volume that allows write (W) access to your current
UIC that was not protected when it was initialized

QUALIFIERS

INITIALIZE

In all other cases, you must have the VOLPRO privilege to initialize a
volume.

When the INITIALIZE command initializes a magnetic tape volume,
it always attempts to read the volume. A blank magnetic tape can
sometimes cause unrecoverable errors, such as the following:

• An invalid volume number error message:

%INIT-F-VOLINV, volume is invalid

• A runaway magnetic tape (this frequently occurs with new magnetic
tapes that have never been written or that have been run through
verifying machines). You can stop a runaway magnetic tape only by
setting the magnetic tape drive off line and by then putting it back on
line.

If this type of unrecoverable error occurs, you can initialize successfully
a magnetic tape by repeating the INITIALIZE command from an account
that has the VOLPRO (volume protection) privilege and by specifying the
following qualifier in the command:

/OVERRIDE=(ACCESSIBILITY,EXPIRATION)

This qualifier ensures that the INITIALIZE command does not attempt to
verify any labels on the magnetic tape.

If you have the VOLPRO privilege, the INITIALIZE command initializes
a disk without reading the ownership information. If you do not have
the VOLPRO privilege, the INITIALIZE command checks the ownership
of the volume before initializing the disk. A blank disk or a disk with
an incorrect format can sometimes cause a fatal drive error. If a blank
disk or a disk with an incorrect format causes this type of error, you can
initialize a disk successfully by repeating the INITIALIZE command with
the /DENSITY qualifier from an account that has the VOLPRO privilege.

Many of the INITIALIZE command qualifiers allow you to specify
parameters that can maximize input/output (I/0) efficiency.

I ACCESSED=number-of-directories
Affects Files-11 On-Disk Structure Level 1 disks only.

Specifies that, for disk volumes, the number of directories allowed in
system space must be a value from 0 to 255. The default value is 3.

/BADBLOCKS:(area[, ...])
Specifies, for disk volumes, faulty areas on the volume. The INITIALIZE
command marks the areas as allocated so that no data is written in them.

DCL1-241

INITIALIZE

DCL1-242

Possible formats for area are as follows:

lbn[:count]

sec.trk.cyl[:cnt]

Logical block number (LBN) of the first block and optionally
a block count beginning with the first block, to be marked
as allocated

Sector, track, and cylinder of the first block, and optionally
a block count beginning with the first block, to be marked
as allocated

All media supplied by Digital and supported on the VMS operating system,
except diskettes and TU58 cartridges, are factory formatted and contain
bad block data. The Bad Block Locator Utility (BAD) or the diagnostic
formatter EVRAC can be used to refresh the bad block data or to construct
it for the media exceptions above. The /BADBLOCKS qualifier is necessary
only to enter bad blocks that are not identified in the volume's bad block
data.

DIGITAL Storage Architecture (DSA) disks (for example, disks attached to
UDA-50 and HSC50 controllers) have bad blocks handled by the controller,
and appear logically perfect to the file system.

For information on how to run BAD, see the VMS Bad Block Locator
Utility Manual.

/CLUSTER_S/ZE:number-of-blocks
Defines, for disk volumes, the minimum allocation unit, in blocks. The
maximum size you can specify for a volume is one-hundredth the size
of the volume; the minimum size you can specify is calculated with the
following formula:

disk size(number of blocks)
255 * 4096

For Files-11 On-Disk Structure Level 2 disks, the cluster size default
depends on the disk capacity; disks that are 50,000 blocks or larger have
a default cluster size of 3, while those smaller than 50,000 blocks have a
default value of 1.

For Files-11 On-Disk Structure Level 1 disks, the cluster size must always
be 1.

/DATA_ CHECK[=(option[, ••.])]
Checks all read and write operations on the disk. By default, no data
checks are made. Specify one or both of the following options:

READ

WRITE

Checks all read operations.

Checks all write operations; default if only the /DATA_CHECK qualifier is
specified.

To override the checking you specify at initialization for disks, enter a
MOUNT command to mount the volume.

IDENSITY=density-value
The /DENSITY qualifier is not applicable to the TK50 tape device.

For diskette volumes that are to be initialized on RX02 or RX33 diskette
drives, specifies the density at which the diskette is to be formatted.

INITIALIZE

RX02 dual-density diskette drives allow diskettes to be initialized at single
or double density. RX33 diskette drives allow diskettes to be initialized
at double density only. To specify single-density formatting of a diskette,
specify the density value SINGLE. To specify double-density formatting of
a diskette, specify the density value DOUBLE.

If you do not specify a density value for a diskette being initialized on a
drive,, the system leaves the volume at the density to which the volume
was last formatted.

For magnetic tape volumes, specifies the density in bits per inch (bpi) at
which the magnetic tape is to be written.

For magnetic tape volumes, the density value specified can be 800 bpi,
1600 bpi, or 6250 bpi, as long as the density is supported by the magnetic
tape drive. If you do not specify a density value for a blank magnetic tape,
the system uses a default density of the highest value allowed by the tape
drive. If the drive allows 6250-, 1600-, and 800-bpi operation, the default
density is 6250 bpi. If you do not specify a density value for a magnetic
tape that has been previously written, the system uses the density of the
first record on the volume. If the record is unusually short, the density
value will not default.

Note: Diskettes formatted in double density cannot be read or written
by the console block storage device (an RXOl drive) of a VAX/780
until they have been reformatted in single density.

RX33 diskettes cannot be read from or written to by RX50 disk
drives. RX50 diskettes can be read from and written to by RX33
disk drives; they cannot be formatted by RX33 disk drives.

!DIRECTORIES=number-of-entries
Specifies, for disk volumes, the number of entries to preallocate for user
directories. The number of entries must be an integer between 16 and
16000. The default value is 16.

!ERASE
!NOERASE (default)
Physically destroys deleted data by writing over it. Controls the data
security erase (DSE) operation on the volume before initializing it. The
/ERASE qualifier applies to Files-11 On-Disk Structure Level 2 disk and
ANSI magnetic tape volumes, and is valid for magnetic tape devices that
support the hardware erase function, such as TU78 and MSCP magnetic
tapes.

If you specify the /ERASE qualifier, a DSE operation is performed on the
volume. For disk devices, the ERASE volume attribute is set. In effect,
each file on the volume is erased when it is deleted.

Note that the amount of time taken by the DSE operation depends on the
volume size; the INITIALIZE/ERASE command is always slower than the
INITIALIZE/NOERASE command.

DCL1-243

INITIALIZE

DCL1-244

!EXTENSION:number-of-blocks
Specifies, for disk volumes, the number of blocks to use as a default
extension size for all files on the volume. The extension default is used
when a file increases to a size greater than its initial default allocation
during an update. For Files-11 On-Disk Structure Level 2 disks, the
value for the number-of-blocks parameter can range from 0 to 65,535. The
default value is 5. For Files-11 On-Disk Structure Level 1 disks, the value
can range from 0 to 255.

In VMS, the default volume extension is used only if no different extension
has been set for the file and no default extension has been set for the
process by using the SET RMS_DEFAULT command.

!FILE_PROTECTION:code
Affects Files-11 On-Disk Structure Level 1 disks only.

Defines, for disk volumes, the default protection to be applied to all files
on the volume.

Specify the code according to the standard syntax rules described in the
VMS DCL Concepts Manual. Any attributes not specified are taken from
the current default protection.

Note that this attribute is not used when the volume is being used on a
VMS system, but is provided to control the process's use of the volume on
RSX-llM systems. VMS systems always use the default file protection.
Use the SET PROTECTION/DEFAULT command to change the default
file protection.

!GROUP
Defines a group volume. The /GROUP qualifier applies protection of
read (R), write (W), execute (E), and delete (D) access to all ownership
categories unless the /GROUP qualifier is specified with the /NOSHARE
qualifier, in which case the volume protection is RWED for all but the
world category. The owner user identification code (UIC) of the volume
defaults to your group number and a member number of 0.

!HEADERS=number-of-headers
Specifies, for disk volumes, the number of file headers to be allocated for
the index file. The minimum and default value is 16. The maximum is the
value set with the /MAXIMUM_FILES qualifier.

This qualifier is useful when you want to create a number of files and
want to streamline the process of allocating space for that number of file
headers. If you do not specify this qualifier, the file system dynamically
allocates space as it is needed for new headers on the volume.

/HIGHWATER (default)
/NOHIGHWATER
Affects Files-11 On-Disk Structure Level 2 disks only.

Sets the file highwater mark (FHM) volume attribute, which guarantees
that users cannot read data that they have not written. You cannot specify
the /NOHIGHWATER qualifier for magnetic tape.

The /NOHIGHWATER qualifier disables FHM for a disk volume.

INITIALIZE

llNDEX:position
Specifies the location of the index file for the volume's directory structure.
Possible positions are as follows:

BEGINNING

MIDDLE

END

BLOCK:n

Beginning of the volume

Middle of the volume (default)

End of the volume

Beginning of the logical block specified by n

ILABEL:option
Defines characteristics for the magnetic tape volume label, as directed by
the included option. The available options are as follows:

• OWNER_IDENTIFIER:"(14 ANSI characters)"

Allows you to specify the Owner Identifier field in the volume label.
The field specified can accept up to 14 ANSI characters.

• VOLUME_ACCESSIBILITY:"character"

Specifies the character to be written in the volume accessibility field
of the VMS ANSI volume label VOLl on an ANSI magnetic tape. The
character may be any valid ANSI "a" character. This set of characters
includes numeric characters, uppercase letters, and any one of the
following nonalphanumeric characters:

!"%' ()*+,-./:;<=>?

By default, the VMS operating system provides a routine that checks
this field in the following manner.

• If the magnetic tape was created on a version of the VMS operating
system that conforms to Version 3 of ANSI, then this option must
be used to override any character other than an ASCII space.

• If a VMS protection is specified and the magnetic tape conforms
to an ANSI standard that is later than Version 3, then this option
must be used to override any character other than an ASCII 1.

If you specify any character other than the default, you must specify
the /OVERRIDE=ACCESSIBILITY qualifier on the INITIALIZE and
MOUNT commands in order to access the magnetic tape.

/MAXIMUM FILES:n
Restricts the maximum number of files that the volume can contain.
The IMAXIMUM_FILES qualifier overrides the default value, which is
calculated as follows:

volume size in blocks

(cluster factor+ 1) * 2

The maximum size you can specify for any volume is as follows:

volume size in blocks

(cluster factor+ 1)

DCL1-245

INITIALIZE

DCL1-246

The minimum value is 0. Note that the maximum can be increased only
by reinitializing the volume.

Note: The MAXIMUM_FILES qualifier does not reserve or create space
for new file headers on a volume. The file system dynamically
allocates space as it is needed for new headers.

/MEDIA_FORMAT:[NO]COMPACTION
Controls whether data records are automatically compacted and blocked
together on a TA90E tape drive. Data compaction and record blocking
increase the amount of data that can be stored on a single tape cartridge.

Note that once data compaction or non-compaction has been selected for a
given cartridge, that same status applies to the entire cartridge.

!OVERRIDE:(option[, ...])
Requests the INITIALIZE command to ignore data on a magnetic tape
volume that protects it from being overwritten. You can specify one or
more of the following options:

ACCESSIBILITY (For magnetic tapes only.) If the installation allows, this
option overrides any character in the Accessibility field
of the volume. The necessity of this option is defined by
the installation. That is, each installation has the option
of specifying a routine that the magnetic tape file system
will use to process this field. By default, VMS provides a
routine that checks this field in the following manner. If
the magnetic tape was created on a version of VMS that
conforms to Version 3 of ANSI, this option must be used to
override any character other than an ASCII space. If a VMS
protection is specified and the magnetic tape conforms to
an ANSI standard that is higher than Version 3, this option
must be used to override any character other than an ASCII
1. To use the ACCESSIBILITY option, you must have the
user privilege VOLPRO or be the owner of the volume.

EXPIRATION (For magnetic tapes only.) Allows you to write to a tape that
has not yet reached its expiration date. You may need to
do this for magnetic tapes that were created before VMS
Version 4.0 on Digital operating systems using the 0%
format in the volume Owner Identifier field. You must have
the user privilege VOLPRO to override volume protection,
or your UIC must match the UIC written on the volume.

OWNER_IDENTIFIER Allows you to override the processing of the Owner Identifier
field of the volume label.

If you specify only one option, you can omit the parentheses.

To initialize a volume that was initialized previously with the
/PROTECTION qualifier, your UIC must match the UIC written on the
volume or you must have VOLPRO privilege.

!OWNER U/C:uic
Specifies an owner user identification code (UIC) for the volume. The
default is your default UIC. Specify the UIC using standard UIC format as
described in the VMS DCL Concepts Manual.

INITIALIZE

For magnetic tapes, no UIC is written unless protection on the magnetic
tape is specified. If protection is specified, but no owner UIC is specified,
your current UIC is assigned ownership of the volume.

IPROTECTION=(ownership[:access][, ...])
Applies the specified protection to the volume. Specify the ownership
parameter as system (S), owner (0), group (G), or world (W) and the
access parameter as read (R), write (W), execute (E), or delete (D). The
default is your default protection. Note that the /GROUP, /SHARE, and
/SYSTEM qualifiers can also be used to define protection for disk volumes.

For magnetic tape, the protection code is written to a VMS-specific volume
label. The system applies only read (R) and write (W) access restrictions;
execute (E) and delete (D) access are meaningless. Moreover, the system
and the owner are always given both read (R) and write (W) access to
magnetic tapes, regardless of the protection code you specify.

For more information on specifying protection code, see the VMS DCL
Concepts Manual. Any attributes not specified are taken from the current
default protection.

When you specify a protection code for an entire disk volume, the access
type E (execute) indicates create access.

/SHARE (default)
IN OSHA RE
Permits all categories of access by all categories of ownership. The
/NOSHARE qualifier denies access to group (unless the /GROUP qualifier
is also specified) and world processes.

/STRUCTURE:level
Specifies whether the volume should be formatted in Files-11 On-Disk
Structure Level 1 or 2 (the default). Structure Level 1 is incompatible
with the /DATA_CHECK and /CLUSTER_SIZE qualifiers. The default
protection for a Structure Level 1 disk is full access to system, owner, and
group, and read (R) access to all other users.

/SYSTEM
Requires a system UIC or SYSPRV (system privilege) privilege.

Defines a system volume. The owner UIC defaults to [1,1]. Protection
defaults to complete access by all ownership categories, except that only
system processes can create top-level directories.

/USER NAME:name
Specifies "i' user name to be associated with the volume. The name must
be 1 to 12 alphanumeric characters. The default is your user name.

/VERIFIED
/NO VERIFIED
Indicates whether the disk has bad block data on it. Use the
/NOVERIFIED qualifier to ignore bad block data on the disk. The default
is the NERIFIED qualifier for disks with 4096 blocks or more and the
/NOVERIFIED qualifier for disks with less than 4096 blocks.

DCL1-247

INITIALIZE

EXAMPLES

/WINDOWS:n
Specifies the number of mapping pointers (used to access data in the file)
to be allocated for file windows. The value can be an integer in the range
of 7 to 80. The default is 7.

D $ INITIALIZE/USER_NAME=CPA $FLOPPY1 ACCOUNTS

Initializes the volume on $FLOPPY!, labels the volume ACCOUNTS, and
gives the volume a user name of CPA.

~ $ ALLOCATE DMA2: TEMP
DMA2: ALLOCATED

$ INITIALIZE TEMP: BACK UP FILE
$ MOUNT TEMP: BACK UP FILE
%MOUNT-I-MOUNTED, BACK UP FILE mounted on DMA2:
$ CREATE/DIRECTORY TEMP ;-[ARCHIE]

lfl $ ALLOCATE MT:

The previous sequence of commands shows how to initialize an
RK06/RK07 volume. First, the device is allocated, to ensure that no
one else can access it. Then, when the volume is physically mounted on
the device, the INITIALIZE command initializes it. When the volume
is initialized, the MOUNT command makes the file structure available.
Before you can place any files on the volume, you must create a directory,
as shown by the CREATE/DIRECTORY command.

MTBl: ALLOCATED
$ -INITIALIZE MTBl: SOURCE
$ MOUNT MTBl : SOURCE
%MOUNT-I-MOUNTED, SOURCE mounted on MTBl:
$ COPY *.FOR MTBl:
$ DIRECTORY MTBl:

$ DISMOUNT MTBl:

These commands show the procedure necessary to initialize a magnetic
tape. After allocating a drive, the magnetic tape is loaded on the device,
and the INITIALIZE command writes the label SOURCE on it. Then, the
MOUNT command mounts the magnetic tape so that files can be written
on it.

E $ BACKUP filespec MUAO: ... /MEDIA_FORMAT=NOCOMPACTION
_$ /REWIND

DCL1-248

This example creates a BACKUP tape with compaction and record blocking
disabled.

INITIALIZE/QUEUE

INITIALIZE/QUEUE

FORMAT

Creates or initializes queues. You use this command to create queues and
to assign them names and attributes. The /QUEUE qualifier is required. The
/BATCH qualifier is required to create a batch queue.

Requires OPER (operator) privilege.

INITIALIZE/QUEUE queue-name[:]

PARAMETER queue-name[:]
Specifies the name of an execution queue or a generic queue. The queue
name may be a string of 1 to 31 characters. The character string can
include any uppercase and lowercase letters, digits, the dollar sign
($), and the underscore (_), and must include at least one alphabetic
character.

DESCRIPTION Initializing a Queue

You use the INITIALIZE/QUEUE command to create a queue or to change
the attributes of an existing queue that is stopped. Normally you create
output and batch queues by entering the necessary INITIALIZE/QUEUE
commands in a site-specific system startup command procedure. However,
once the system is running, you can use the INITIALIZE/QUEUE
command to create additional queues as they are needed. You can use
the INITIALIZE/QUEUE, START/QUEUE, and SET QUEUE commands
to change queue attributes; however, you only can use the INITIALIZE
and START commands on stopped queues.

To change attributes on a running queue, use the SET QUEUE command.
To change attributes on a queue that cannot be altered with the SET
QUEUE command, use the following procedure:

1 Stop the queue with the STOP/QUEUE/NEXT or the STOP/QUEUE
/RESET command.

2 Restart the queue with the START/QUEUE or the INITIALIZE
/QUEUE command.

To initialize an existing queue, use the following procedure:

1 Stop the queue with the STOP/QUEUE/NEXT command.

2 Initialize the queue.

3 Restart the queue.

Once a queue has been stopped, you can specify new qualifiers to replace
existing queue attributes. Any qualifiers that you do not specify remain as
they were when the queue was previously initialized, started, or set.

OCL1-249

INITIALIZE/QUEUE

DCL1-250

To initialize and start the queue at the same time, you can use the
INITIALIZE/QUEUE/START command. If you want to initialize the queue
only and start it at another time, you can enter only the INITIALIZE
/QUEUE command. Later you can enter the START/QUEUE command to
begin queue operations.

Note that initializing an existing queue does not delete any current jobs in
that queue. Any new queue settings established by the new INITIALIZE
/QUEUE command affect all jobs waiting in the queue or subsequently
entering the queue. Any jobs that are executing in the queue when it is
stopped complete their execution under the old settings.

The following qualifiers apply to generic and execution queues:

/OWNER_UIC
/PROTECTION
/[NO]RETAIN
/[NO]START

The following qualifiers apply to all types of execution queues:

/BASE_PRIORITY
/[NO]CHARACTERISTICS
/[NO]ENABLE_GENERIC
ION
/WSDEFAULT
/WSEXTENT
/WSQUOTA

Qualifiers that apply only to batch execution queues are as follows:

/CPUDEFAULT
/CPUMAXIMUM
/[NO]DISABLE_SWAPPING
/JOB_LIMIT

Qualifiers that apply only to printer, terminal, or server execution queues
are as follows:

/[NO]BLOCK_LIMIT
/[NO]DEFAULT
/FORM_MOUNTED
/[NO]LIBRARY
/[NO]PROCESSOR
/[NOJRECORD_BLOCKING
/[NO]SEPARATE

The /[NO]GENERIC qualifier distinguishes a generic queue from an
execution queue.

You can use the /TERMINAL qualifier only with generic terminal queues.

INITIALIZE/QUEUE

Types of Queues

There are several different types of queues on the system. In general,
queues can be divided into two major classes: generic and execution.
When a job is sent to an execution queue, it is executed in that queue. No
processing takes place in generic queues. Generic queues hold jobs that
will execute on an execution queue when one is available.

The following are several types of generic queues:

Generic batch queue Holds batch jobs for execution on batch execution queues.

Generic output queue Holds jobs for execution on output queues. There are three
types of generic output queues:

Generic printer queue

Generic server queue

Generic terminal
queue

Holds print jobs for printing on
output execution queues.

Holds jobs for processing on output
execution queues.

Holds print jobs for printing on
output execution queues.

The system manager or operator uses the /GENERIC qualifier to specify
which execution queues can be accessed by a generic queue. You can use
the /ENABLE_GENERIC qualifier when initializing an execution queue.
This qualifier enables a generic queue to place jobs in an execution queue
even if you did not specify that execution queue name with the /GENERIC
qualifier of the generic queue.

The following are several types of execution queues:

Batch execution
queue

Output execution
queue

Executes batch jobs.

Processes print output jobs. There are three types of output
execution queues:

Printer execution
queue

Server execution
queue

Terminal execution
queue

Invokes a symbiont to process print
jobs for a printer.

Invokes a customer-written symbiont
to process jobs.

invokes a symbiont to process print
jobs for a terminal printer.

Batch execution queues execute batch jobs. Batch jobs request the
execution of one or more command procedures in a batch process.

Output execution queues process print jobs. A print job requests the
processing of one or more files by a symbiont executing in a symbiont
process. The default system symbiont is designed to print files on
hardcopy devices (printers or terminals). Customer-written symbionts can
be designed for this or any other file processing activity. Server queues
process jobs using the server processor specified with the /PROCESSOR
qualifier. Server queue processors are written by the customer.

DCL1-251

INITIALIZE/QUEUE

QUALIFIERS

DCL1-252

Another type of queue is the logical queue. A logical queue is a special
type of generic queue that can place work only into the execution queue
specified in the ASSIGN/QUEUE command. The logical queue's relation
to an execution queue remains in effect until you enter a DEASSIGN
/QUEUE command to negate or change the assignment.

!BASE PRIORITY:n
Specifies the base process priority at which jobs are initiated from a batch
execution queue. By default, if you omit the qualifier, jobs are initiated at
the same priority as the base priority established by DEFPRI at system
generation (usually 4). The base priority specifier can be any decimal
value from 0 to 15.

You also can specify this qualifier for an output execution queue. In this
context the /BASE_PRIORITY qualifier establishes the base priority of the
symbiont process when the symbiont process is created.

/BATCH
/NOBATCH (default)
Specifies that you are initializing a batch queue. If you are reinitializing
an existing queue, you can use the /BATCH qualifier only if the queue was
created as a batch queue.

A batch queue is classified as either an execution queue or a generic
queue. By default, the /BATCH qualifier initializes an execution queue. To
specify a generic batch queue, use the /GENERIC qualifier together with
the /BATCH qualifier.

The /BATCH and /DEVICE qualifiers are mutually exclusive; the
/NOBATCH and /NODEVICE qualifiers cannot be used together.

/BLOCK_LIMIT =([lowlim,]uplim)
/NOBLOCK_LIMIT (default)
Limits the size of print jobs that can be processed on an output execution
queue. The /BLOCK_LIMIT qualifier allows you to reserve certain printers
for certain size jobs. You must specify at least one of the parameters.

The lowlim parameter is a decimal number referring to the minimum
number of blocks accepted by the queue for a print job. If a print job
is submitted that contains fewer blocks than the lowlim value, the job
remains pending until the block limit for the queue is changed. After the
block limit for the queue is decreased sufficiently, the job is processed.

The uplim parameter is a decimal number referring to the maximum
number of blocks that the queue accepts for a print job. If a print job
is submitted that exceeds this value, the job remains pending until the
block limit for the queue is changed. After the block limit for the queue is
increased sufficiently, the job is processed.

If you specify only an upper limit for jobs, you can omit the parentheses.
For example, /BLOCK_LIMIT=lOOO means that only jobs with 1000 blocks
or less are processed in the queue. To specify only a lower job limit, you
must use two consecutive quotation marks ("") to indicate the upper
specifier. For example, /BLOCK_LIMIT=(500," ") means any job with 500
or more blocks is processed in the queue. You can specify both a lower and
upper limit. For example, /BLOCK_LIMIT=(200,2000) means that jobs

INITIALIZE/QUEUE

with less than 200 blocks or more than 2000 blocks are not processed in
the queue.

The /NOBLOCK_LIMIT qualifier cancels the previous setting established
by the /BLOCK_LIMIT qualifier for that queue.

/CHARACTERISTICS:(characteristic[, ...])
/NOCHARACTERISTICS (default)
Specifies one or more characteristics for processing jobs on an execution
queue. If you specify only one characteristic, you can omit the
parentheses. If a queue does not have all the characteristics that have
been specified for a job, the job remains pending. Each time you specify
the /CHARACTERISTICS qualifier, all previously set characteristics
are cancelled. Only the characteristics specified with the qualifier are
established for the queue.

Queue characteristics are installation specific. The characteristic
parameter can be either a value from 0 to 127 or a characteristic name
that has been defined by the DEFINE/CHARACTERISTIC command.

The /NOCHARACTERISTICS qualifier cancels any settings previously
established by the /CHARACTERISTICS qualifier for that queue.

/CLOSE
Prevents jobs from being entered in the queue through PRINT or SUBMIT
commands or as a result of requeue operations. To allow jobs to be
entered, use the /OPEN qualifier. Whether a queue accepts or rejects
new job entries is independent of the queue's state (such as paused,
stopped, or stalled). When a queue is marked closed, jobs executing
continue to execute. Jobs pending in the queue continue to be candidates
for execution.

/CPUDEFAULT:time
Defines the default CPU time limit for all jobs in this batch execution
queue. You can specify time as delta time, 0, INFINITE, or NONE
(default). You can specify up to 497 days of delta time.

If the queue does not have a specified CPUMAXIMUM time limit and the
value established in the user authorization file (UAF) has a specified CPU
time limit of NONE, either the value 0 or the keyword INFINITE allows
unlimited CPU time. If you specify NONE, the CPU time value defaults
to the value specified either in the UAF or by the SUBMIT command (if
included). CPU time values must be greater than or equal to the number
specified by the SYSGEN parameter PQL_MCPULM. The time cannot
exceed the CPU time limit set by the /CPUMAXIMUM qualifier. For
information on specifying delta time, see the VMS DCL Concepts Manual
or the VMS User's Manual. For more information on specifying CPU time
limits, see Table DCLl-1.

/CPUMAXIMUM:time
Defines the maximum CPU time limit for all jobs in a batch execution
queue. You can specify time as delta time, 0, INFINITE, or NONE
(default). You can specify up to 497 days of delta time.

The /CPUMAXIMUM qualifier overrides the time limit specified in the
user authorization file (UAF) for any user submitting a job to the queue.
Either the value 0 or the keyword INFINITE allows unlimited CPU time.
If you specify NONE, the CPU time value defaults to the value specified

DCL1-253

INITIALIZE/QUEUE

DCL1-254

either in the UAF or by the SUBMIT command (if included). CPU time
values must be greater than or equal to the number specified by the
SYSGEN parameter PQL_MCPULM.

For information on specifying delta times, see the VMS DCL Concepts
Manual or the VMS User's Manual. For more information on specifying
CPU time limits, see Table DCLl-1.

A CPU time limit for processes is specified by each user record in the
system UAF. You also can specify the following: a default CPU time limit
or a maximum CPU time limit for all jobs in a given queue, or a default
CPU time limit for individual jobs in the queue. Table DCLl-1 shows
the action taken for each value specified and possible combinations of
specifications.

Table DCL 1-1 CPU Time Limit Specifications and Actions

CPU Time Limit Default CPU Maximum CPU
Specified by Time Limit Time Limit
the SUBMIT Specified for the Specified for the
Command? Queue? Queue? Action Taken

No No No Use the UAF
value.

Yes No No Use the smaller
of SUBMIT
command and
UAF values.

Yes Yes No Use the smaller
of SUBMIT
command and
UAF values.

Yes No Yes Use the smaller
of SUBMIT
command and
queue's maximum
values.

Yes Yes Yes Use the smaller
of SUBMIT
command and
queue's maximum
values.

No Yes Yes Use the smaller
of queue's default
and maximum
values.

No No Yes Use the maximum
value.

No Yes No Use the smaller of
UAF and queue's
default values.

INITIALIZE/QUEUE

/DEFAULT=(option[, ...])
/NODEFAULT
Establishes defaults for certain options of the PRINT command. Defaults
are specified by the list of options. If you specify only one option, you
can omit the parentheses. After you set an option for the queue with the
/DEFAULT qualifier, you do not have to specify that option in your PRINT
command. If you do specify these options in your PRINT command, the
values specified with the PRINT command override the values established
for the queue with the /DEFAULT qualifier.

You cannot use the /DEFAULT qualifier with the /GENERIC qualifier.

Possible options are as follows:

[NO] BU AST[=keyword]

[NO] FEED

[NO] FLAG[=keyword]

FORM=type

Controls whether two file flag pages with a burst bar
between them are printed preceding output. If you
specify the value ALL (default), these flag pages are
printed before each file in the job. If you specify the
value ONE, these flag pages are printed once before
the first file in the job.

Controls whether a form feed is inserted automatically
at the end of a page.

Controls whether a file flag page is printed preceding
output. If you specify the value ALL (default), a file
flag page is printed before each file in the job. If you
specify the value ONE, a file flag page is printed once
before the first file in the job.

Specifies the default form for an· output execution
queue. If a job is submitted without an explicit form
definition, this form is used to process the job. See
also the description of the /FORM_MOUNTED=type
qualifier.

[NO]TRAILER[=keyword] Controls whether a file trailer page is printed following
output. If you specify the value ALL (default), a file
trailer page is printed after each file in the job. If you
specify the value ONE, a trailer page is printed once
after the last file in the job.

When you specify the BURST option for a file, the [NOJFLAG option does
not add or subtract a flag page from the two flag pages that are printed
preceding the file.

For information on establishing mandatory queue attributes, see the
description of the /SEPARATE qualifier. For information on specifying
default queue attributes, see the Guide to Maintaining a VMS System.

/DESCRIPTION:string
/NODESCRIPTION (default)
Specifies a string of up to 255 characters used to provide operator-supplied
information about the queue.

Enclose strings containing lowercase letters, blanks, or other
nonalphanumeric characters (including spaces) in quotation marks (" ").

The /NODESCRIPTION qualifier removes any descriptive text that may
be associated with the queue.

DCL1-255

INITIALIZE/QUEUE

DCL1-256

/DEVICE[:option]
/NODEVICE
Specifies that you are initializing an output queue of a particular type. If
you are reinitializing an existing queue, you can use the /DEVICE qualifier
only if the queue was created as an output queue. Possible options are as
follows:

PRINTER

SERVER

TERMINAL

Indicates a printer queue.

Indicates a server queue. A server queue is controlled by
the user-modified or user-written symbiont specified with the
/PROCESSOR qualifier.

Indicates a terminal queue.

If you specify the /DEVICE qualifier without a queue type, the
/DEVICE=PRINTER qualifier is used by default.

An output queue is classified as either an execution or generic queue.
By default, the /DEVICE qualifier initializes an execution queue of the
designated type. To specify a generic printer, server, or terminal queue,
use the /GENERIC qualifier with the /DEVICE qualifier.

You specify the queue type with the /DEVICE qualifier for informational
purposes. When an output execution queue is started, the symbiont
associated with the queue determines the actual queue type. The standard
symbiont examines device characteristics to establish whether the queue
should be marked as printer or terminal. By convention, user-modified
and user-written symbionts mark the queue as a server queue. The device
type of a generic queue need not match the device type of its execution
queues.

The /DEVICE and /BATCH qualifiers are mutually exclusive; the
/NODEVICE and /NOBATCH qualifiers cannot be used together.

/DISABLE SWAPPING
/NODISABLE_SWAPPING (default)
Controls whether batch jobs executed from a queue can be swapped in and
out of memory.

!ENABLE_ GENERIC (default)
/NOENABLE GENERIC
Specifies whether files queued to a generic queue that does not specify
explicit queue names with the /GENERIC qualifier can be placed in this
execution queue for processing. For more information, see the description
of the /GENERIC qualifier.

!FORM_MOUNTED:type
Specifies the mounted form for an output execution queue. If the stock
of the mounted form does not match the stock of the default form, as
indicated by the /DEFAULT=FORM qualifier, all jobs submitted to this
queue without an explicit form definition enter a pending state. If a job is
submitted with an explicit form and the stock of the explicit form is not
identical to the stock of the mounted form, the job enters a pending state.
In both cases, jobs remain pending until the stock of the mounted form of
the queue is identical to the stock of the form associated with the job.

INITIALIZE/QUEUE

To specify the form type, use either a numeric value or a form name
that has been defined by the DEFINE/FORM command. Form types are
installation-specific. You cannot use the /FORM_MOUNTED qualifier with
the /GENERIC qualifier.

!GENER/Cf =(queue-name[, ...])]
/NOGENERIC (default)
Specifies a generic queue. Also specifies that jobs placed in this queue can
be moved for processing to compatible execution queues. The /GENERIC
qualifier optionally accepts a list of target execution queues that have been
previously defined. For a generic batch queue, these target queues must be
batch execution queues. For a generic output queue, these target queues
must be output execution queues, but can be of any type (printer, server,
or terminal). For example, a generic printer queue can feed a mixture of
printer and terminal execution queues.

If you do not specify any target execution queues with the /GENERIC
qualifier, jobs can be moved to any execution queue that (1) is initialized
with the /ENABLE_ GENERIC qualifier, and (2) is the same type (batch
or output) as the generic queue.

To define the queue as a generic batch or output queue, you use the
/GENERIC qualifier with either the /BATCH or the /DEVICE qualifier. If
you specify neither /BATCH nor /DEVICE on creation of a generic queue,
the queue becomes a generic printer queue by default.

/JOB_L/MIT:n
Indicates the number of batch jobs that can be executed concurrently from
the queue. Specify a number in the range 0 to 255. The job limit default
value for n is 1.

/LIBRARY:file-name
/NOLIBRARY
Specifies the file name for the device control library. When you initialize
an output execution queue, you can use the /LIBRARY qualifier to
specify an alternate device control library. The default library is
SYS$LIBRARY:SYSDEVCTL.TLB. You can use only a file name as the
parameter of the /LIBRARY qualifier. The system always assumes that
the file is located in SYS$LIBRARY and that the file type is TLB.

/ON:[node::]device[:] (printer, terminal, server
queue)
!ON:node:: (batch queue)
Specifies the node or device, or both, on which this execution queue is
located. For batch execution queues, you can specify only the node name.
For output execution queues, you can include both the node name and the
device name. By default, a queue executes on the same node from which
you start the queue. The default device parameter is the same as the
queue name.

The node name is used only in VAXcluster systems; it must match the
node name specified by the SYSGEN parameter SCSNODE for the VAX
computer on which the queue executes.

DCL1-257

INITIALIZE/QUEUE

DCL1-258

/OPEN (default)
Allows jobs to be entered in the queue through PRINT or SUBMIT
commands or as the result of requeue operations. To prevent jobs from
being entered in the queue, use the /CLOSE qualifier. Whether a queue
accepts or rejects new job entries is independent of the queue's state (such
as paused, stopped, or stalled).

/OWNER_ UIC:uic
Enables you to change the user identification code (UIC) of the queue.
Specify the UIC by using standard UIC format as described in the VMS
DCL Concepts Manual. The default UIC is [1,4].

/PROCESSOR:file-name
/NOPROCESSOR
Allows you to specify your own print symbiont for an output execution
queue. You can use any valid file name as a parameter of the
/PROCESSOR qualifier. The system supplies the device and directory
name SYS$SYSTEM and the file type EXE. If you use this qualifier for
an output queue, it specifies that the symbiont image to be executed is
SYS$SYSTEM:filename.EXE.

By default, SYS$SYSTEM:PRTSMB.EXE is the symbiont image associated
with an output execution queue.

The /NOPROCESSOR qualifier cancels any previous setting established
with the /PROCESSOR qualifier and causes SYS$SYSTEM:PRTSMB.EXE
to be used.

IPROTECTION:(ownership[:access], ...)
Specifies the protection of the queue. Specify the ownership parameter
as system (S), owner (0), group (G), or world (W) and the access
parameter as read (R), write (W), execute (E), or delete (D). A
null access specification means no access. The default protection is
(SYSTEM:E, OWNER:D, GROUP:R, WORLD:W). If you include only
one protection code, you can omit the parentheses. For more information
on specifying protection codes, see the VMS DCL Concepts Manual. For
more information on controlling queue operations through UIC-based
protection, see the Guide to Maintaining a VMS System.

/RECORD_BLOCKING (default)
/NORECORD BLOCKING
Determines whether the symbiont can concatenate (or block together)
output records for transmission to the output device. If you specify the
/NORECORD_BLOCKING qualifier, the symbiont sends each formatted
record in a separate I/O request to the output device. For the standard
VMS print symbiont, ·record blocking can have a significant performance
advantage over single-record mode.

/RETAIN[:option]
/NORETAIN (default)
Holds jobs in the queue in a retained status after they have executed.
The /NORETAIN qualifier enables you to reset the queue to .the default.
Possible options are as follows:

INITIALIZE/QUEUE

ALL (default)

ERROR

Holds all jobs in the queue after execution.

Holds in the queue only jobs that complete unsuccessfully.

/SCHEDULE=SIZE (default)
/SCHEDULE:NOSIZE
Specifies whether pending jobs in an output execution queue are scheduled
for printing based on the size of the job. When the default qualifier,
/SCHEDULE=SIZE, is in effect, shorter jobs print before longer ones.
When the /SCHEDULE=NOSIZE qualifier is in effect, jobs are printed in
the order they were submitted, regardless of size.

If you enter this command while there are pending jobs in any queue, its
effect on future jobs is unpredictable.

/SEPARATE:(option[, ...])
/NOSEPARATE (default)
Specifies the mandatory queue attributes, or job separation options, for an
output execution queue. Job separation options cannot be overridden by
the PRINT command.

You cannot use the /SEPARATE qualifier with the /GENERIC qualifier.

The job separation options are as follows:

[NO] BURST

[NO] FLAG

[NO]TRAILER

[NO] RESET =(module[, ...])

Specifies whether two job flag pages with a burst
bar between them are printed at the beginning of
each job.

Specifies whether a job flag page is printed at the
beginning of each job.

Specifies whether a job trailer page is printed at
the end of each job.

Specifies one or more device control library
modules that contain the job reset sequence
for the queue. The specified modules from
the queue's device control library (by default
SYS$LIBRARY:SYSDEVCTL) are used to reset the
device each time a job reset occurs. The RESET
sequence occurs after any file trailer and before
any job trailer. Thus, all job separation pages are
printed when the device is in its RESET state.

When you specify the /SEPARATE=BURST qualifier, the [NO]FLAG
separation option does not add or subtract a flag page from the two flag
pages that are printed preceding the job.

For information on establishing queue attributes that can be overridden,
see the description of the /DEFAULT qualifier.

For more information on specifying mandatory queue attributes, see the
Guide to Maintaining a VMS System.

/START
/NOSTART (default)
Starts the queue being initialized by the current INITIALIZE/QUEUE
command.

DCL1-259

INITIALIZE/QUEUE

DCL1-260

/WSDEFAULT:n
Defines for a batch job a working set default, the default number of
physical pages that the job can use.

The value set by this qualifier overrides the value defined in the user
authorization file (UAF) of any user submitting a job to the queue.

If you specify 0 or NONE, the working set default value defaults to the
value specified in the UAF or by the SUBMIT command (if included).

You also can specify this qualifier for an output execution queue. Used
in this context, the /WSDEFAULT qualifier establishes the working set
default of the symbiont process for an output execution queue when the
symbiont process is created.

For more information about the way a working set default affects batch
jobs, see Table DCLl-2.

/WSEXTENT :n
Defines for the batch job a working set extent, the maximum amount of
physical memory that the job can use. The job only uses the maximum
amount of physical memory when the system has excess free pages.
The value set by this qualifier overrides the value defined in the user
authorization file (UAF) of any user submitting a job to the queue.

If you specify 0 or NONE, the working set extent value defaults to the
value specified in the UAF or by the SUBMIT command (if included).

You also can specify this qualifier for an output execution queue. Used in
this context, the /WSEXTENT qualifier establishes the working set extent
of the symbiont process for an output execution queue when the symbiont
process is created.

For more information about the way a working set extent affects batch
jobs, see Table DCLl-2.

/WSQUOTA:n
Defines for a batch job a working set quota, the amount of physical
memory that is guaranteed to the job.

The value set by this qualifier overrides the value defined in the user
authorization file (UAF) of any user submitting a job to the queue. If
you specify 0 or NONE, the working set quota value defaults to the value
specified in the UAF or by the SUBMIT command (if included).

You also can specify this qualifier for an output execution queue. Used in
this context, the /WSQUOTA qualifier establishes the working set quota
of the symbiont process for an output execution queue when the symbiont
process is created.

Working set default, working set quota, and working set extent values are
included in each user record in the system UAF. You can specify working
set values for individual jobs or for all jobs in a given queue. The decision
table (Table DCLl-2) shows the action taken for different combinations of
specifications that involve working set values.

INITIALIZE/QUEUE

Table DCL 1-2 Working Set Default, Extent, and Quota Decision

Value Specified by
the SUBMIT
Command?

No

No

Yes

Yes

Value Specified
for the Queue?

No

Yes

Yes

No

Action Taken

Use the UAF value.

Use value for the queue.

Use smaller of the two values.

Compare specified value with
UAF value; use the smaller.

EXAMPLES

D $ INITIALIZE/QUEUE/START/BATCH/JOB LIMIT=3 SYS$BATCH
$ INITIALIZE/QUEUE/START/BATCH/JOB=LIMIT=l/WSEXTENT=2000 BIG BATCH

In this example, the first INITIALIZE/QUEUE command creates a batch
queue called SYS$BATCH that can be used for any batch job. The
/JOB_LIMIT qualifier allows three jobs to execute concurrently. The
second INITIALIZE/QUEUE command creates a second batch queue called
BIG_BATCH that is designed for large jobs. Only one job can execute at a
time. The working set extent can be as high as 2000 blocks.

$ INITIALIZE/QUEUE/START/DEFAULT={FLAG,TRAILER=ONE) /ON=LPAO: LPAO PRINT
$ INITIALIZE/QUEUE/START/DEFAULT=(FLAG,TRAILER=ONE)/BLOCK LIMIT=(lOOO,"")-

$ /ON=LPBO: LPBO PRINT -
$ INITIALIZE/QUEUE/START/GENERIC=(LPAO PRINT,LPBO PRINT) SYS$PRINT
$ INITIALIZE/QUEUE/START/FORM_MOUNTED=LETTER/BLOCK_LIMIT=50/0N=TXA5: LQP

In this example, the first three INITIALIZE/QUEUE commands set up
printer queues. Both queue LPAO_PRINT and LPBO_PRINT are set up to
put a flag page before each file within a job and a trailer page after only
the last page in a job. In addition, LPBO_PRINT has a minimum block
size of 1000. Thus only print jobs larger than 1000 blocks can execute on
that queue. SYS$PRINT is established as a generic queue that can direct
jobs to either LPAO_PRINT or LPBO_PRINT. Jobs that are too small to
run on LPBO_PRINT will be queued from SYS$PRINT to LPAO_PRINT.

The last INITIALIZE/QUEUE command sets up a terminal queue on
TXA5. A job queued with a form that has a stock type other than the
stock type of form LETTER remains pending in the queue until a form
with the same stock type is mounted on the queue, or until the entry is
deleted from the queue or moved to another queue. LETTER has been
established at this site to indicate special letterhead paper. The block size
limit is 50, indicating that this queue is reserved for jobs smaller than
51 blocks.

DCL1-261

INQUIRE

INQUIRE

FORMAT

Reads a value from SYS$COMMAND (usually the terminal in interactive mode
or the next line in the main command procedure) and assigns it to a symbol.

INQUIRE symbol-name [prompt-string]

PARAMETERS symbol-name
Specifies a symbol consisting of 1 to 255 alphanumeric characters.

prompt-string
Specifies the prompt to be displayed at the terminal when the INQUIRE
command is executed. String values are automatically converted to
uppercase. Also, any leading and trailing spaces and tabs are removed,
and multiple spaces and tabs between characters are compressed to a
single space.

Enclose the prompt in quotation marks (11 11
) if it contains lowercase

characters, punctuation, multiple blanks or tabs, or an at sign(@). To
denote an actual quotation mark in a prompt-string, enclose the entire
string in quotation marks and use two consecutive quotation marks (" 11

)

within the string.

When the system displays the prompt string at the terminal, it generally
places a colon (:) and a space at the end of the string. (See the
/PUNCTUATION qualifier.)

If you do not specify a prompt string, the command interpreter uses the
symbol name to prompt for a value.

DESCRIPTION The INQUIRE command displays the prompting message to and reads
the response from the input stream established when your process was
created. This means that when the INQUIRE command is executed in
a command procedure executed interactively, the prompting message
is always displayed on the terminal, regardless of the level of nesting
of command procedures. Note that input to the INQUIRE command in
command procedures will be placed in the RECALL buffer.

DCL1-262

When you enter a response to the prompt string, the value is assigned
as a character string to the specified symbol. Lowercase characters are
automatically converted to uppercase, leading and trailing spaces and
tabs are removed, and multiple spaces and tabs between characters are
compressed to a single space. To prohibit conversion to uppercase and
retain space and tab characters, place quotation marks around the string.

To use symbols or lexical functions when you enter a response to the
prompt string, use apostrophes (') to request symbol substitution.

QUALIFIERS

EXAMPLES

INQUIRE

Note that you can also use the READ command to obtain data
interactively from the terminal. The READ command accepts data
exactly as the user types it; characters are not automatically converted
to uppercase and spaces are not compressed. However, symbols and lexical
functions will not be translated even if you use apostrophes to request
symbol substitution.

When an INQUIRE command is entered in a batch job, the command
reads the response from the next line in the command procedure; if
procedures are nested, it reads the response from the first level command
procedure. If the next line in the batch job command procedure begins
with a dollar sign ($), the line is interpreted as a command, not as
a response to the INQUIRE command. The INQUIRE command then
assigns a null string to the specified symbol, and the batch job continues
processing with the cominand on the line following the INQUIRE
command.

/GLOBAL
Specifies that the symbol be placed in the global symbol table. If you do
not specify the /GLOBAL qualifier, the symbol is placed in the local symbol
table.

/LOCAL (default)
Specifies that the symbol be placed in the local symbol table for the current
command procedure.

/PUNCTUATION (default)
/NOPUNCTUATION
Inserts a colon and a space after the prompt when it is displayed
on the terminal. To suppress the colon and space, specify the
/NOPUNCTUATION qualifier.

D $ INQUIRE CHECK "Enter Y [ES] to continue"
$ IF .NOT. CHECK THEN EXIT

The INQUIRE command displays the following prompting message at the
terminal:

Enter Y[ES] to continue:

The INQUIRE command prompts for a value, which is assigned to the
symbol CHECK. The IF command tests the value assigned to the symbol
CHECK. If the value assigned to CHECK is true (that is, an odd numeric
value, a character string that begins with a T, t, Y, or y, or an odd numeric
character string), the procedure continues executing.

If the value assigned to CHECK is false (that is, an even numeric value, a
character string that begins with any letter except T, t, Y, or y, or an even
numeric character string), the procedure exits.

DCL1-263

INQUIRE

~ $ INQUIRE COUNT
$ IF COUNT .GT. 10 THEN GOTO SKIP

$ SKIP:

The INQUIRE command prompts for a count with the following message:

COUNT:

Then the command procedure uses the value of the symbol COUNT
to determine whether to execute the next sequence of commands or to
transfer control to the line labeled SKIP.

I] $ IF Pl .EQS. "" THEN INQUIRE Pl "FILE NAME"
$ FORTRAN 'Pl'

DCL1-264

The IF command checks whether a parameter was passed to the command
procedure by checking if the symbol Pl is null; if it is, it means that no
parameter was specified, and the INQUIRE command is issued to prompt
for the parameter. If Pl was specified, the INQUIRE command is not
executed, and the FORTRAN command compiles the name of the file
specified as a parameter.

INSTALL

FORMAT

INSTALL

Invokes the Install Utility, which enhances the performance of selected
executable and shareable images by making them "known" to the system
and assigning them appropriate attributes. For a complete description of the
Install Utility, see the VMS Install Utility Manual.

INSTALL [subcommand] [filespec]

DCL1-265

JOB

JOB

FORMAT

Identifies the beginning of a batch job submitted through a card reader. Each
batch job submitted through the system card reader must be preceded by a
JOB card.

JOB cannot be abbreviated.

$ JOB user-name

PARAMETER user-name
Identifies the user name under which the job is to be run. Specify the user
name as you would during the login procedure.

DESCRIPTION The JOB card identifies the user submitting the job and is followed by a
PASSWORD card giving the password. (Although the PASSWORD card is
required, you do not have to use a password on the card if the account has
a null password.)

QUALIFIERS

DCL1-266

The user name and password are validated by the system authorization
file in the same manner as they are validated in the login procedure. The
process that executes the batch job is assigned the disk and directory
defaults and privileges associated with the user account. If a LOGIN.COM
file exists for the specified user name, it is executed at the start of the job.

The end of a batch job is signaled by the EOJ command, by an EOF card
(12-11-0-1-6-7-8-9 overpunch), or by another JOB card.

/AFTER:time
Holds the job until the specified time. If the specified time has already
passed, the job is queued for immediate processing.

The time can be specified as either an absolute time or a combination of
absolute and delta times. For complete information on specifying time
values, see the VMS DCL Concepts Manual.

/CHARACTERISTICS:(characteristic[, ...])
Specifies one or more characteristics required for processing the job. If
you specify only one characteristic, you can omit the parentheses. Codes
for characteristics are installation-defined. Use the SHOW QUEUE
/CHARACTERISTICS command to see which characteristics are available
on your system.

All the characteristics specified for the job must also be specified for
the queue that will execute the job. If not, the job remains pending in
the queue until the queue characteristics are changed or the entry is
deleted with the DELETE/ENTRY command. Users need not specify every
characteristic of a queue with the JOB command as long as the ones they
specify are a subset of the characteristics set for that queue .. The job also
runs if no characteristics are specified.

JOB

!CLl=file-name
Specifies a different command language interpreter (CLI) with which
to process the job. The file-name parameter specifies that the CLI be
SYS$SYSTEM:filename.EXE. The default CLI is that defined in the user
authorization file (UAF).

/CPUTIME=n
Specifies a CPU time limit for the batch job. Time can be specified as delta
time, 0, NONE, or INFINITE. (For information on specifying time values,
see the VMS DCL Concepts Manual.)

When you need less CPU time than authorized, use the /CPUTIME
qualifier to override the base queue value established by the system
manager or the value authorized in your UAF. Specify 0 or INFINITE to
request an infinite amount of time. Specify NONE when you want the
CPU time to default to your UAF value or the limit specified on the queue.
Note that you cannot request more time than permitted by the base queue
limits or your UAF.

/DELETE (default)
!NO DELETE
Controls whether the batch input file is deleted after the job is processed.
If you specify the /NODELETE qualifier, the file is saved in the user's
default directory under the default name INPBATCH.COM. If you specify
the /NAME qualifier, the file name of the batch input file is the same as
the job name you supply with the /NAME qualifier.

!HOLD
/NOHOLD (default)
Controls whether or not the job is to be made available for immediate
processing.

If you specify the /HOLD qualifier, the job is not released for processing
until you specifically release it with the /NOHOLD or the /RELEASE
qualifier of the SET QUEUE/ENTRY command.

/KEEP
/NOKEEP (default)
Controls whether the log file is deleted after it is printed. The /NOKEEP
qualifier is the default unless you specify the /NOPRINTER qualifier.

!LOG_FILE=filespec
/NOLOG FILE
Controls whether a log file with the specified name is created for the job or
whether a log file is created.

When you use the /LOG_FILE qualifier, the system writes the log file to
the file you specify. If you use the /NOLOG_FILE qualifier, no log file is
created. If you specify neither form of the qualifier, the log file is written
to a file in your default directory that has the same file name as the first
command file in the job and a file type of LOG. Using neither the /LOG_
FILE nor the /NOLOG_FILE qualifier is the default.

DCL1-267

JOB

DCL1-268

You can use the /LOG_FILE qualifier to specify that the log file be written
to a different device. Logical names that occur in the file specification are
translated at the time the job is submitted. The process executing the
batch job must have access to the device on which the log file will reside.

If you omit the /LOG_FILE qualifier and specify the /NAME qualifier, the
log file is written to a file having the same file name as that specified by
the /NAME qualifier and the file type LOG.

/NAME: job-name
Specifies a string to be used as the job name and as the file name for
both the batch job log file and the command file. The job name must
be 1 to 39 alphanumeric characters and must be a valid file name. The
default log file name is INPBATCH.LOG; the default command file name
is INPBATCH.COM.

/NOTIFY
/NONOTIFY (default)
Controls whether a message is broadcast to any terminal at which you are
logged in, notifying you when your job completes or aborts.

IPARAMETERS:(parameter[, ...])
Specifies 1 to 8 optional parameters that can be passed to the command
procedure. The parameters define values to be equated to the symbols
Pl to PS in the batch job. The symbols are local to the specified command
procedure.

If you specify only one parameter, you can omit the parentheses.

The commas (,) delimit individual parameters. If the parameter contains
any spaces, special characters or delimiters, or lowercase characters,
enclose it in quotation marks (" "). Individual parameters cannot exceed
255 characters.

IPRINTER=queue-name
/NOPRINTER
Controls whether the job log file is queued to the specified queue for
printing when the job is complete. The default print queue for the log file
is SYS$PRINT.

If you specify the /NO PRINTER qualifier, the /KEEP qualifier is assumed.

IPRIORITY:n
Requires OPER (operator) or ALTPRI (alter priority) privilege
to raise the priority above the value of the SYSGEN parameter
MAXQUEPRI.

Specifies the job scheduling priority for the specified job. The value of n
is an integer from 0 to 255, where 0 is the lowest priority and 255 is the
highest.

The default value for the /PRIORITY qualifier is the value of the SYSGEN
parameter DEFQUEPRI. No privilege is needed to set the priority lower
than the MAXQUEPRI value.

The /PRIORITY qualifier has no effect on the process priority. The queue
establishes the process priority.

JOB

/QUEUE:queue-name[:]
Specifies the name of the batch queue in which the job is to be entered. If
you do not specify the /QUEUE qualifier, the job is placed in the default
system batch job queue, SYS$BATCH.

/RESTART
/NORESTART (default)
Specifies whether the job restarts after a system failure or a
STOP/QUEUE/REQUEUE command.

ITRAILING_BLANKS (default)
/NOTRAILING BLANKS
Controls whether input cards in the card deck are read in card image form
or input records are truncated at the last nonblank character. By default,
the system does not remove trailing blanks from records read through the
card reader. Use the /NOTRAILING_BLANKS qualifier to request that
input records be truncated.

/WSDEFAULT:n
Defines a working set default for the batch job; the /WSDEFAULT qualifier
overrides the working set size specified in the user authorization file
(UAF). The value n can be any integer from 1 to 65,535, 0, or the keyword
NONE.

Use this qualifier to impose a value lower than the base queue value
established by the system manager or lower than the value authorized in
your UAF. A value of 0 or the keyword NONE sets the default value to the
value specified either in your UAF or by the working set quota established
for the queue. You cannot request a value higher than your default.

/WSEXTENT:n
Defines a working set extent for the batch job; the /WSEXTENT qualifier
overrides the working set extent in the UAF. The value n can be any
integer from 1 to 65,535, 0, or the keyword NONE.

To impose a lower value, use this qualifier to override the base queue value
established by the system manager rather than the value authorized in
your UAF. A value of 0 or the keyword NONE sets the default value either
to the value specified in the UAF or working set extent established for the
queue. You cannot request a value higher than your default.

/WSQUOTA:n
Defines the maximum working set size (working set quota) for the batch
job; the /WSQUOTA qualifier overrides the value in the UAF. The value n
can be any integer from 1 to 65,535, 0, or the keyword NONE.

Use this qualifier to impose a value lower than the base queue value
established by the system manager or lower than the value authorized in
your UAF. Specify 0 or NONE if you want the working set quota defaulted
to either your UAF value or the working set quota specified on the queue.
You cannot request a value higher than your default.

DCL1-269

JOB

EXAMPLES

D

DCL1-270

$EOJ

$PRINT AVERAGE

... Input Data ...

$RUN AVERAGE

$ LINK AVERAGE

... Source Statements ...

$FORTRAN SYS$1NPUT:AVERAGE

$ON WARNING THEN EXIT

$ PASSWORD HENRY

$ JOB HIGGINS

ZK-0787-GE

The JOB and PASSWORD cards identify and authorize the user HIGGINS
to enter batch jobs. The command stream consists of a FORTRAN
command and FORTRAN source statements to be compiled. The file
name AVERAGE following the device name SYS$INPUT provides the
compiler with a file name for the object and listing files. The output files
are cataloged in user HIGGINS's default directory.

If the compilation is successful, the LINK command creates an executable
image and the RUN command executes it. Input for the program follows
the RUN command in the command stream. The last command in the job
prints the program listing. The last card in the deck contains the EOJ
(end of job) command.

JOB

$EOJ

... Command Input. ..

$ PASSWORD HENRY

/PARAMETERS= (A, TEST)

$JOB HIGGINS/NAME= BATCH1-

ZK-0788-GE

The /NAME qualifier on the JOB card specifies a name for the batch job.
When the job completes, the printed log file is identified as BATCHl.LOG.
The JOB command is continued onto a second card with the continuation
character (-). The /PARAMETERS qualifier defines Pl as A and P2 as
TEST. The last card in the deck contains the EOJ (end of job) command.

DCL1-271

Lexical Functions

Lexical Functions

A set of functions that return information about character strings and attributes
of the current process.

DESCRIPTION The command language includes constructs, called lexical functions, that
return information about the current process and about arithmetic and
string expressions. The functions are called lexical functions because the
command interpreter evaluates them during the command input scanning
(or lexical processing) phase of command processing.

DCL1-272

You can use lexical functions. in any context in which you normally
use symbols or expressions. In command procedures, you can use
lexical functions to translate logical names, to perform character string
manipulations, and to determine the current processing mode of the
procedure.

The general format of a lexical function is as follows:

F$function-name([args, ...])

where:

F$

function-name

Indicates that what follows is a lexical function.

A keyword specifying the function to be evaluated. Function
names can be truncated to any unique abbreviation.

() Enclose function arguments, if any. The parentheses are
required for all functions, including functions that do not
accept any arguments.

args,... Specify arguments for the function, if any, using integer or
character string expressions.

For more information on specifying expressions, see the VMS DCL
Concepts Manual.

Table DCLl-3 lists each lexical function and briefly describes the
information that each function returns. A detailed description of each
function, including examples, is given in the following pages.

Table DCL 1-3 Summary of Lexical Functions

Function

F$CONTEXT

F$CSID

F$CVSI

Description

Specifies selection criteria for use with the F$PID
function.

Returns a cluster identification number and updates
the context symbol to point to the current position in
the system's cluster node list.

Extracts bit fields from character string data and
converts the result, as a signed value, to an integer.

(continued on next page)

Lexical Functions

Table DCL 1-3 (Cont.) Summary of Lexical Functions

Function

F$CVTIME

F$CVUI

F$DEVICE

F$DIRECTORY

F$EDIT

F$ELEMENT

F$ENVIRONMENT

F$EXTRACT

F$FAO

F$FILE_ATTRIBUTES

F$GETDVI

F$GETJPI

F$GETQUI

F$GETSYI

F$1DENTIFIER

F$1NTEGER

F$LENGTH

F$LOCATE

F$MESSAGE

Description

Retrieves information about an absolute, combination,
or delta time string.

Extracts bit fields from character string data and
converts the result, as an unsigned value,· to an
integer.

Returns device names of all devices on a system that
meet the specified selection criteria.

Returns the current default directory name string.

Edits a character string based on the edits specified.

Extracts an element from a string in which the
elements are separated by a specified delimiter.

Obtains information about the DCL command
environment.

Extracts a substring from a character string
expression.

Invokes the $FAO system service to convert the
specified control string to a formatted ASCII output
string.

Returns attribute information for a specified file.

Invokes the $GETDVI system service to return a
specified item of information for a specified device.

Invokes the $GETJPI system service to return
accounting, status, and identification information
for a process.

Invokes the $GETQUI system service to return
information about queues, batch and print jobs
currently in those queues, form definitions, and
characteristic definitions kept in the system job queue
file.

Invokes the $GETSYI system service to return status
and identification information about the local system,
or about a node in the local cluster, if your system is
part of a cluster.

Converts an identifier in named format to its integer
equivalent, or vice versa.

Returns the integer equivalent of the result of the
specified expression.

Returns the length of a specified string.

Locates a character or character substring within a
string and refurns its offset within the string.

Returns the message text associated with a specified
system status code value.

(continued on next page)

DCL1-273

Lexical Functions

Table DCL 1-3 (Cont.) Summary of Lexical Functions

DCL1-274

Function

F$MODE

F$PARSE

F$PID

F$PRIVILEGE

F$PROCESS

F$SEARCH

F$SETPRV

F$STRING

F$TIME

F$TRNLNM

F$TYPE

F$USER

F$VERIFY

Description

Shows the mode in which a process is executing.

Invokes the $PARSE RMS service to parse a file
specification and return either the expanded file
specification or the particular file specification field
that you request.

For each invocation, returns the next process
identification number in sequence.

Returns a value of "TRUE" or "FALSE" depending
on whether your current process privileges match the
privileges listed in the argument.

Returns the current process name string.

Invokes the $SEARCH RMS service to search a
directory file, and returns the full file specification for a
file you name.

Sets the specified privileges and returns a list of
keywords indicating the previous state of these
privileges for the current process.

Returns the string equivalent of the result of the
specified expression.

Returns the current date and time of day, in the format
dd-mmm-yyyy hh:mm:ss.cc.

Translates a logical name and returns the equivalence
name string or the requested attributes of the logical
name.

Determines the data type of a symbol.

Returns the current user identification code (UIC).

Returns the integer 1 if command procedure
verification is set on; returns the integer O if command
procedure verification is set off. The F$VERIFY
function also can set new verification states.

F$CONTEXT

FORMAT

return value

ARGUMENTS

Lexical Functions
F$CONTEXT

Specifies selection criteria for use with the F$PID function. The F$CONTEXT
function enables the F$PID function to obtain information about processes
from any node in a VAXcluster.

F$CONTEXT(context-type, context-symbol,
selection-item, selection-value,
value-qualifier)

A null string (11 11
).

context-type
Specifies the type of context to be built. At present, the only context type
available is PROCESS, which is used in constructing selection criteria for
F$PID.

context-symbol
Specifies a symbol that DCL uses to refer to the context memory being
constructed by the F$CONTEXT function. The function F$PID uses this
context symbol to process the appropriate list of process identification
(PID) numbers.

Specify the context symbol by using a symbol. The first time you use
the F$CONTEXT function in a command procedure, use a symbol that is
either undefined or equated to the null string. The symbol created will be
a local symbol of type 11 PROCESS_CONTEXT 11

• When the context is no
longer valid-that is, when all PIDs have been retrieved by calls to the
F$PID function or an error occurs during one of these calls-the symbol
no longer has a type of 11 PROCESS_CONTEXT 11

• Then you can use the
F$TYPE function in the command procedure to find out if it is necessary
to cancel the context.

After setting up the selection criteria, use this context symbol when calling
F$PID.

selection-item
Specifies a keyword that tells F$CONTEXT which selection criteria to use.
Use only one selection-item keyword per call to F$CONTEXT.

The following table shows valid selection-item keywords for the PROCESS
context type:

DCL1-275

Lexical Functions
F$CONTEXT

Selection
Item

ACCOUNT

AUTHPRI

CANCEL

CURPRIV

GRP

HW_MODEL

HW_NAME

JOBPRCCNT

JOBTYPE

MASTER_PID

MEM

MODE

NODE_CSID

NODENAME

OWNER

PR CC NT

PRCNAM

DCL1-276

Selection
Value

String

Integer

Keyword

String

Integer

String

Integer

Keyword

String

String or
Integer

Keyword

Integer

String

String

Integer

String

Value
Quallflers Comments

EQL, NEQ Valid account name or list of names.
Wildcard characters (*and %) are
allowed.

GEQ, GTR, Valid authorized base priority (0-31).
LEQ, LSS,
EQL, NEQ

Cancels the selection criteria for this
context.

ALL, ANY, Valid privilege name keyword or list of
EQL, NEQ keywords. For more information, see

the VMS DCL Concepts Manual.

GEQ, GTR, Group number or name.
LEQ, LSS,
EQL, NEQ

EQL, NEQ Valid hardware model number.

EQL, NEQ Valid hardware name or a list of
keywords. Wildcard characters
(* and %) are allowed.

GEQ, GTR, Subprocess count for entire job.
LEQ, LSS,
EQL, NEQ

EQL, NEQ Valid job-type keyword. Valid keywords
are DETACHED, NETWORK, BATCH,
LOCAL, DIALUP, and REMOTE. For
more information, see the VMS DCL
Concepts Manual.

EQL, NEQ PIO of master process.

GEQ, GTR, U IC member number or name.
LEQ, LSS,
EQL, NEQ

EQL, NEQ Valid process mode ke~ord. Valid
keywords are OTHER, NETWORK,
BATCH, and INTERACTIVE. For
more information, see the VMS DCL
Concepts Manual.

EQL, NEQ Node's cluster ID number.

EQL, NEQ Node name or list of node names.
Wildcard characters are allowed. The
default is your local node. To request
all nodes, use the value "*".

EQL, NEQ PIO of immediate parent process.

GEQ, GTR, Subprocess count of process.
LEQ, LSS,
EQL, NEQ

EQL, NEQ Process name or list of process names.
Wildcard characters are allowed.

Selection Selection
Item Value

PAI Integer

PRIB Integer

STATE Keyword

STS Keyword

TERMINAL String

UIC String

USERNAME String

selection-value

Value
Qualifiers

GEQ, GTR,
LEQ, LSS,
EQL, NEQ

GEQ, GTR,
LEO, LSS,
EQL, NEQ

EQL, NEQ

EQL, NEQ

EQL, NEQ

EQL, NEQ

EQL, NEQ

Lexical Functions
F$CONTEXT

Comments

Process priority level number (0-31).

Base process priority level number
(0-31).

Valid process state keyword. For more
information, see the description of the
$GETJPI service in the VMS System
Services Reference Manual.

Valid process status keyword. For
more information, see the description
of the $GETJPI service in the VMS
System Services Reference Manual.

Terminal name or list of names.
Wildcard characters are allowed.

User identification code (U IC) identifier
(that is, of the form "[group,member]").

User name or list of user names.
Wildcard characters (*and%) are
allowed.

Specifies the value of the selection criteria. For example, to process
all the processes running on node MYVAX, specify 11 MYVAX11 with the
11 NODENAME 11 keyword. For example:

$ X = F$CONTEXT ("PROCESS", ctx, "NODENAME", "MYVAX", "EQL")

Values that are lists are valid with some selection items. If you specify
more than one item, separate them with commas (,). The following
example specifies a list of the nodes MYVAX, HERVAX, and HISVAX:

$ X F$CONTEXT ("PROCESS", ctx, "NODENAME", "MYVAX, HERVAX, HISVAX", "EQL")

You can use wildcard characters (* and %) for some values. Using wildcard
characters for selection items is similar to using wildcard characters for
file names.

value-qualifier
Specifies qualifiers for selection values. You must qualify selection values.

You can qualify a number, for example, by requesting that the selection be
based on the process value less than (LSS), less than or equal to (LEQ),
greater than (GTR), greater than or equal to (GEQ), equal to (EQL), or not
equal to (NEQ) the value specified in the call to F$PID.

You can qualify some lists with the ALL, ANY, EQL, or NEQ keywords.
Such lists are usually masks such as the process privilege mask, which
consists of the set of enabled privileges. ALL requires that all items in
the list be· true for a process; ANY requests that any item in the list be
part of the attributes of a process; EQL means that the values must match

DCL1-277

Lexical Functions
F$CONTEXT

DESCRIPTION

EXAMPLE

exactly (that is, values not specified must not be true of the process); and
NEQ requires that the value must not match.

The difference between ALL and EQL is that the values specified with
ALL must exist, but other unspecified values can exist also. EQL
requires that all values specified must exist, and all others may not.
For example, to request those processes whose current privileges include
TMPMBX (temporary mailbox) and OPER (operator), but may include
other privileges, specify the ALL keyword. To request those processes
whose current privileges are TMPMBX and OPER exclusively, specify the
EQL keyword.

Use the F$CONTEXT function to set up selection criteria for the F$PID
function.

The F$CONTEXT function is called as many times as necessary to produce
the criteria needed; however, each call can specify only one selection item.
Lists of item values are allowed, where appropriate, and more than one
context can be operated upon at a time.

After establishing the selection criteria with appropriate calls to
F$CONTEXT, F$PID is called repeatedly to return all the process
identification (PID) numbers that meet the criteria specified in the
F$CONTEXT function. When there are no more such processes, the
F$PID function returns a null string.

After the F$PID function is called, the context symbol is considered
"frozen"; F$CONTEXT cannot be called again with the same context
symbol until the associated context selection criteria have been deleted. If
you attempt to set up additional selection criteria with the same context
symbol, an error message is displayed. However, the context and selection
criteria are not affected and calls to the F$PID function can continue.

The F$CONTEXT function uses process memory to store the selection
criteria. This memory is deleted under two circumstances. Memory
is deleted when the F$PID function is· called and a null string ("") is
returned-that is, when all processes that meet the selection criteria
have been returned. Memory also is deleted if the CANCEL selection
item keyword is used in a call to F$CONTEXT with an established
context. This type of call is appropriate for a CTRUY operation or another
condition handling routine.

$!Establish an error and CTRL/Y handler
$!
$ ON ERROR THEN GOTO error
$ ON CONTROL Y THEN GOTO error
$! -

$ ctx = ""
$temp= F$CONTEXT ("PROCESS", ctx, "NODENAME", "*","EQL")
$temp= F$CONTEXT ("PROCESS", ctx, "USERNAME", "M*,SYSTEM","EQL")
$ temp = F$CONTEXT ("PROCESS", ctx, "CURPRIV", "SYSPRV,OPER", "ALL")

DCL1-278

$!

Lexical Functions
F$CONTEXT

$!Loop over all processes that meet the selection criteria.
$!Print the PID and the name of the image for each process.
$!
$loop:
$ pid = F$PID(ctx)
$ IF pid .EQS. ""
$ THEN
$ GOTO endloop
$ ELSE
$ image= F$GETJPI(pid,"IMAGNAME")
$ SHOW SYMBOL pid
$ WRITE SYS$0UTPUT image
$ GOTO loop
$ ENDIF
$!The loop over the processes has ended.
$!
$endloop:
$!
$ EXIT
$!
$!Error handler. Clean up the context's memory with
$!the CANCEL selection item keyword.
$!
$error:
$ IF F$TYPE(ctx) .eqs. "PROCESS CONTEXT" THEN -
-$ temp= F$CONTEXT ("PROCESS",-ctx, "CANCEL")
$!
$ EXIT

In this example, F$CONTEXT is called three times to set up selection
criteria. The first call requests that the search take place on all nodes
in the cluster. The second call requests that only the processes whose
user name either starts with an "M" or is "SYSTEM" be processed. The
third call restricts the selection to those processes whose current privileges
include both SYSPRV (system privilege) and OPER (operator) and can
have other privileges set.

The command lines between the labels "loop" and "endloop" continually
call F$PID to obtain the processes that meet the criteria set up in the
F$CONTEXT calls. After retrieving each PID, F$GETJPI is called
to return the name of the image running in the process. Finally, the
procedure displays the name of the image.

In case of error or a CTRUY operation, control is passed to error and
the context is closed if necessary. In this example, note the check for the
symbol type PROCESS_ CONTEXT. If the symbol has this type, selection
criteria must be canceled by a call to F$CONTEXT. If the symbol is not of
the type PROCESS_CONTEXT, either selection criteria have not been set
up yet in F$CONTEXT, or the symbol was used with F$PID until an error
occurred or until the end of the process list was reached.

DCL1-279

Lexical Functions
F$CSID

F$CSID

FORMAT

return value

ARGUMENTS

Returns a cluster identification number and updates the context symbol to
point to the current position in the system's cluster node list.

F$CSID (context-symbol)

A character string containing the system cluster identification number in
the system's list of clustered nodes. If the current system is not a member
of a cluster, the first return value is null.

After the last system name is returned, the F$CSID function returns a
null string (" ").

context-symbol
Specifies a symbol that DCL uses to store a pointer into the system's list of
clustered nodes. The F$CSID function uses this pointer to return a cluster
node name.

Specify the context-symbol argument by using a symbol. The first time
you use the F$CSID function, use a symbol that is either undefined or
equated to the null string.

If the context-symbol argument is undefined or equated to a null string,
the F$CSID function returns the first system in the system's cluster node
list. Subsequent calls to the F$CSID function will return the rest of the
nodes in the cluster.

DESCRIPTION The F$CSID function returns a cluster identification number, and updates
the context symbol to point to the current position in the system's cluster
node list.

DCL1-280

If the current system is not a member of a cluster, the first return value is
null.

You can use the F$CSID function to obtain all of the cluster identification
numbers on the system. For each cluster identification returned, the
F$GETSYI function can be used to obtain information about the particular
system.

Once the context-symbol argument is initialized by the first call, each
subsequent F$CSID function call returns another node in the cluster.
(Note that the cluster identification numbers are returned in random
order.) After the last cluster system in the list is returned, the F$CSID
function returns a null string.

EXAMPLE

Lexical Functions
F$CSID

$ IF F$GETSYI("CLUSTER MEMBER") .EQS. "FALSE" THEN GOTO NOT CLUSTER
$ CONTEXT = "" -
$START:
$ id = F$CSID (CONTEXT)
$ IF id .EQS. "" THEN EXIT
$ nodename = F$GETSYI ("NODENAME",,id)
$ WRITE SYS$0UTPUT nodename
$ GOTO start
$NOT CLUSTER:
$ WRITE SYS$0UTPUT "Not a member of a cluster."
$ EXIT

This command procedure uses the F$CSID function to display a list of
cluster system names. The assignment statement declares the symbol
CONTEXT, which is used as the context-symbol argument for the
F$CSID function. Because CONTEXT is equated to a null string, the
F$CSID function will return the first cluster identification number in the
cluster node list.

If the F$CSID function returns a null value, then the command procedure
either is at the end of the list, or is attempting this operation on a non
clustered node. The call to F$GETSYI checks whether the current node is
a member of a cluster. The command procedure will exit on this condition.

If the F$CSID function does not return a null value, then the command
procedure uses the identification number as the third argument to the
F$GETSYI function to obtain the name of the system. The name is then
displayed using the WRITE command.

DCL1-281

Lexical Functions
F$CVSI

F$CVSI

FORMAT

return value

ARGUMENTS

EXAMPLES

D $ A[0,32] = %X2B
$ SHOW SYMBOL A

A= "+ ... "

Converts the specified bits in the specified character string to a signed
number.

F$CVSl(start-bit,number-of-bits,string)

The integer equivalent of the extracted bit field, converted as a signed
value.

start-bit
Specifies the offset of the first bit to be extracted. The low-order
(rightmost) bit of a string is position number 0 for determining the offset.
Specify the offset as an integer expression.

If you specify an expression with a negative value, or with a value
that exceeds the number of bits in the string, then DCL displays the
INVRANGE error message.

number-of-bits
Specifies the length of the bit string to be extracted, which must be less
than or equal to the number of bits in the string.

If you specify an expression with a negative value, or with a value that
is invalid when added to the bit position offset, then DCL displays the
INVRANGE error message.

string
Specifies the string from which the bits are taken. Specify the string as a
character string expression.

$ X = F $CVS I (0, 4, A)
$ SHOW SYMBOL X

x = -5 Hex = FFFFFFFB Octal = 37777777773

DCL1-282

This example uses an arithmetic overlay to assign the hexadecimal value
2B to all 32 bits of the symbol A. For more information on arithmetic
overlays, see the description of the assignment statement (=).

The symbol A has a string value after the overlay because it was
previously undefined. (If a symbol is undefined, it has a string value
as a result of an arithmetic overlay. If a symbol was previously defined, it
retains the same data type after the overlay.) The hexadecimal value 2B
corresponds to the ASCII value of the plus sign (+).

Lexical Functions
F$CVSI

Next, the F$CVSI function extracts the low-order 4 bits from the symbol A;
the low-order 4 bits contain the binary representation of the hexadecimal
value B. These bits are converted, as a signed value, to an integer. The
converted value, -5, is assigned to the symbol X.

~ $ SYM[O, 32] = %X2A
$ SHOW SYMBOL SYM

SYM = "* ... II
$ Y = F$CVSI(0,33,SYM)
%DCL-W-INVRANGE, field specification is out of bounds - check sign and size
$ SHOW SYMBOL Y
%DCL-W-UNDSYM, undefined symbol - check spelling

In this example, the width argument specified with the F$CVSI function is
too large. Therefore, DCL issues an error message and the symbol Y is not
assigned a value.

DCL1-283

Lexical Functions
F$CVTIME

F$CVTIME

FORMAT

return value

ARGUMENTS

DCL1-284

Converts an absolute or a combination time string to a string of the form yyyy
mm-dd hh:mm:ss.cc. The F$CVTIME function can also return information
about an absolute, combination, or delta time string.

F$CVTIME([inpuLtime] [,output_time_format]
[, outpuL field])

A character string containing the requested information.

input_ time
Specifies a string containing an absolute, a delta, or a combination time,
or TODAY, TOMORROW, or YESTERDAY. Specify the input time string
as a character string expression. If the input_time argument is omitted
or is specified as a null string (" "), the current system date and time, in
absolute format, is used. If parts of the date field are omitted, the missing
values default to the current date. If parts of the time field are omitted,
the missing values default to zero.

For more information on these time formats, see the VMS DCL Concepts
Manual.

If the input_time argument is a delta time, you must specify the
output_time_format argument as DELTA.

output_ time_format
Specifies the time format for the information you want returned. Specify
the output_time_format argument as one of the following character
string expressions:

ABSOLUTE

COMPARISON
(default)

DELTA

output_ field

The requested information should be returned in absolute time
format, which is dd-mmm-yyyy hh:mm:ss.cc.

The requested information should be returned in the form
yyyy-mm-dd hh:mm:ss.cc (used for comparing two times).

The requested information should be returned in delta format,
which is dddd-hh:mm:ss.cc. If you specify DELTA as the output_
time_format argument, then you must also provide a delta time
specification for the input_Jime argument.

Specifies a character string expression containing one of the following
(do not abbreviate): DATE, MONTH, DATETIME (default), SECOND,
DAY, TIME, HOUR, WEEKDAY, HUNDREDTH, YEAR, MINUTE. The
information is returned in the time format specified by the output_time_
format argument. If the input_ time argument is a delta time and the
output_time_format argument is DELTA, you cannot specify MONTH,
WEEKDAY, or YEAR.

When the weekday is returned, the first letter is in uppercase, and the
following letters are in lowercase.

Lexical Functions
F$CVTIME

DESCRIPTION When using the F$CVTIME function, you can omit optional arguments
that can be used to the right of the last argument you specify. However,
you must include commas (,) as placeholders if you omit optional
arguments to the left of the last argument you specify.

EXAMPLES

When specifying the input time argument in either absolute or
combination time format, you can specify ABSOLUTE or COMPARISON
as the output_time_format argument; you cannot specify DELTA.

When specifying the input_time argument in delta time format, you must
specify DELTA as the output_time_format argument.

D $ TIME = F$TIME ()
$ SHOW SYMBOL TIME

TIME = "19-APR-1990 10:56:23.10"
$ TIME= F$CVTIME(TIME)
$ SHOW SYMBOL TIME

TIME = "1990-04-19 10:56:23.10"

This example uses the F$TIME function to return the system time as
a character string and to assign the time to the symbol TIME. Then
the F$CVTIME function is used to convert the system time to an
alternate time format. Note that you do not need to place quotation
marks (" ") around the argument TIME because it is a symbol. Symbols
are automatically evaluated when they are used as arguments for lexical
functions.

You can use the resultant string to compare two dates (using .LTS. and
.GTS. operators). For example, you can use F$CVTIME to convert two
time strings and store the results in the symbols TIME_l and TIME_2.
You can compare the two values, and branch to a label, based on the
following results:

$ IF TIME_l .LTS. TIME_2 THEN GOTO FIRST

i $ NEXT = F$CVTIME ("TOMORROW",, "WEEKDAY")
$ SHOW SYMBOL NEXT

NEXT = "Tuesday"

In this example, the F$CVTIME returns the weekday that corresponds
to the absolute time keyword "TOMORROW". You must enclose the
arguments "TOMORROW" and "WEEKDAY'' in quotation marks because
they are character string expressions. Also, you must include a comma as
a placeholder for the output_time_format argument that is omitted.

DCL1-285

Lexical Functions
F$CVUI

F$CVUI

FORMAT

return value

ARGUMENTS

EXAMPLE

$ A[0,32] = %X2B
$ SHOW SYMBOL A

A= "+ ... II
$ X = F$CVUI(0,4,A)
$ SHOW SYMBOL X

Extracts bit fields from character string data and converts the result to an
unsigned number.

F$CVUI (start-bit,number-of-bits,string)

The integer equivalent of the extracted bit field, converted as an unsigned
value.

start-bit
Specifies the offset of the first bit to be extracted. The low-order
(rightmost) bit of a string is position number 0 for determining the offset.
Specify the offset as an integer expression.

If you specify an expression with a negative value, or with a value that
exceeds the number of bits in the string, DCL displays the INVRANGE
error message.

number-of-bits
Specifies the length of the bit string to be extracted, which must be less
than or equal to the number of bits in the string argument.

If you specify an expression with a negative value, or with a value
that is invalid when added to the bit position offset, DCL displays the
INVRANGE error message.

string
Specifies the character string to be edited.

X = 11 Hex = OOOOOOOB Octal = 00000000013

DCL1-286

This example uses an arithmetic overlay to assign the hexadecimal value
2B to all 32 bits of the symbol A. The symbol A has a string value after
the overlay because it was previously undefined. (If a symbol is undefined,
it has a string value as a result of an arithmetic overlay. If a symbol was
previously defined, it retains the same data type after the overlay.) The
hexadecimal value 2B corresponds to the ASCII character"+".

Next, the F$CVUI function extracts the low"."order 4 bits from the
symbol A; the low-order 4 bits contain the binary representation of the
hexadecimal value B. These bits are converted, as a signed value, to an
integer. The converted value, 11, is assigned to the symbol X.

F$DEVICE

FORMAT

return value

ARGUMENTS

Lexical Functions
F$DEVICE

Returns the device names of all devices on a system that meet the specified
selection criteria.

Note that the device names are returned in random order.

F$DEVICE([search_devnam],[devclass],[devtype],
[stream-id])

A character string containing the name of a device in the system's list of
devices.

After the last device name in the system's device list is returned, the
F$DEVICE function returns a null string (11 11

).

search devnam
Specifies the name of the device for which F$DEVICE is to search.
Wildcard characters(* and%) are allowed in the search_devnam
argument.

Specify the search_devnam argument as a character string expression.

devclass
Specifies the device class for which F$DEVICE is to search. Specify the
devclass argument as a character string expression that corresponds to a
valid device class name. See Table DCLl-7 under F$GETDVI.

devtype
Specifies the device type for which F$DEVICE is to search. Specify the
devtype argument as a character string expression that corresponds to a
valid type name. Valid type names can be found in Table DCLl-8 under
F$GETDVI.

Note: Specifying a device type without specifying a device class will
result in an error.

stream-id
A positive integer representing the search stream identification number.

The search stream identification number is used to maintain separate
search contexts when you use the F$DEVICE function more than once
and when you supply different search criteria. If you use the F$DEVICE
function more than once in a command procep.ure and if you also use
different search criteria, specify stream-id arguments to identify each
search separately.

If the search criteria are changed in a call before the device name list is
exhausted, the context will be reinitialized and the search will restart.

DCL1-287

Lexical Functions
F$DEVICE

If you omit the stream-id argument, the F$DEVICE function assumes
an implicit single search stream. That is, the F$DEVICE function starts
searching at the beginning each time you specify different search criteria.

DESCRIPTION The F$DEVICE function allows you to search for devices that meet certain
search criteria by using the $DEVICE_SCAN system service.

EXAMPLE
$ START:

The F$DEVICE function allows wildcard searches based on the device
name, the device class, or the device type.

You can use the F$DEVICE function in a loop in a command procedure
to return device names that match the specified selection criteria. Each
time the F$DEVICE function is executed, it returns the next device on the
system that matches the selection criteria. Note that devices are returned
in no particular order. After the last device name is returned, the next
F$DEVICE function returns a null string.

Note that you must maintain the context of the search string explicitly
(by specifying the stream-id argument) or implicitly (by omitting the
stream-id argument). In either case, you must specify the same selection
criteria each time you execute the F$DEVICE system service with the
same (explicit or implicit) stream.

$ DEVICE NAME= F$DEVICE("*0:","DISK","RA60")
$ IF DEVICE_NAME .EQS. "" THEN EXIT
$ SHOW SYMBOL DEVICE NAME
$ GOTO START

DCL1-288

This command procedure displays the device names of all the RA60s on a
unit numbered 0.

Because no stream-id argument is specified, F$DEVICE uses an implicit
search stream. Each subsequent use of the F$DEVICE function uses the
same search criteria to return the next device name. After the last device
name is displayed, the F$DEVICE function returns a null string and the
procedure exits.

Lexical Functions
F$DIRECTORY

F$DIRECTORY

Returns the current default directory name string. The F$DIRECTORY
function has no arguments, but must be followed by parentheses.

FORMAT F$DIRECTORV()

return value A character string for the current default directory name, including
brackets ([]). If you use the SET DEFAULT command and specify angle
brackets (<>) in a directory specification, the F$DIRECTORY function
returns angle brackets in the directory string.

ARGUMENTS None.

DESCRIPTION You can use the F$DIRECTORY function to save the name of the current
default directory in a command procedure, to change the default to another
directory to do work, and to later restore the original setting.

EXAMPLE
$ SAVE_DIR = F$DIRECTORY()
$ SET DEFAULT [MALCOLM.TESTFILES]

$ SET DEFAULT 'SAVE DIR'

This example shows an excerpt from a command procedure that uses the
F$DIRECTORY function to save the current default directory setting.
The assignment statement equates the symbol SAVE_DIR to the current
directory. Then the SET DEFAULT command establishes a new default
directory. Later, the symbol SAVE_DIR is used in the SET DEFAULT
command that restores the original default directory.

Note that you can use the F$ENVIRONMENT function with the
DEFAULT keyword to return the default disk and directory. You should
use the F$ENVIRONMENT function rather than the F$DIRECTORY
function in situations involving more than one disk.

DCL1-289

Lexical Functions
F$EDIT

F$EDIT

FORMAT

return value

ARGUMENTS

EXAMPLES

Edits the character string based on the edits specified in the edit-list
argument.

F$EDIT (string, edit-list)

A character string containing the specified edits.

string
Specifies a character string to be edited. Quoted sections of the string are
not edited.

edit-list
Specifies a character string containing one or more of the following
keywords which specify the types of edits to be made to the string:

Edit

COLLAPSE

COMPRESS

LOWERCASE

TRIM

UNCOMMENT

UPCASE

Action

Removes all spaces or tabs.

Replaces multiple spaces or tabs with a single space.

Changes all uppercase characters to lowercase.

Removes leading and trailing spaces or tabs.

Removes comments.

Changes all lowercase characters to uppercase.

If you specify more than one keyword, separate them with commas (,). Do
not abbreviate these keywords.

Edits are not applied to quoted sections of strings. Therefore, if a string
contains quotation marks (" "), the characters within the quotation marks
are not affected by the edits specified in the edit list.

D $ LINE = II THIS LINE CONTAINS A '"' QUOTED '"' WORD"
$ SHOW SYMBOL LINE

LINE = " THIS LINE CONTAINS A " QUOTED " WORD"
$ NEW_LINE = F$EDIT (LINE, "COMPRESS, TRIM")
$ SHOW SYMBOL NEW LINE

NEW LINE "THIS LINE CONTAINS A " QUOTED " WORD"

DCL1-290

This example uses the F$EDIT function to compress and trim a string by
replacing multiple blanks with a single blank, and by removing leading
and trailing blanks. The string LINE contains quotation marks around
the word QUOTED. (To enter quotation marks into a character string, use
double quotation marks in the assignment statement.)

fl $ LOOP:

Lexical Functions
F$EDIT

Note that the F$EDIT function does not compress the spaces in the quoted
section of the string; therefore, the spaces are retained around the word
QUOTED.

$ READ/END OF FILE = DONE INPUT FILE RECORD
$ RECORD = -F$EDIT (RECORD, "TRIM, UP CASE")
$ WRITE OUTPUT FILE RECORD
$ GOTO LOOP

This example sets up a loop to read records from a file, to edit them, and to
write them to an output file. The edited records have leading and trailing
blanks removed, and are converted .to uppercase.

DCL1-291

Lexical Functions
F$ELEMENT

F$ELEMENT

Extracts one element from a string of elements.

FORMAT F$ELEMENT (element-number, delimiter, string)

return value A character string containing the specified element.

ARGUMENTS element-number
Specifies the number of the element to extract (numbering begins with
zero). Specify the element-number argument as an integer expression.
If the element-number argument exceeds the number of elements in the
string, F$ELEMENT returns the delimiter.

delimiter
Specifies a character used to separate the elements in the string. Specify
the delimiter as a character string expression.

string
Specifies a string containing a delimited list of elements. Specify the
string as a character string expression.

EXAMPLES

D $ DAY LIST = "MON/TUE/WED/THU/FRI/SAT/SUN"
$INQUIRE DAY "ENTER DAY (MON TUE WED THU FRI SAT SUN)"
$ NUM = 0
$ LOOP:
$ LABEL= F$ELEMENT(NUM,"/",DAY LIST)
$ IF LABEL .EQS. "/" THEN GOTO END
$ IF DAY .EQS. LABEL THEN GOTO 'LABEL'
$ NUM = NUM +1
$ GOTO LOOP
$
$ MON:

This example sets up a loop to test an input value against the elements
in a list of values. If the value for DAY matches one of the elements
in DAY_LIST, control is passed to the corresponding label. If the value
returned by the F$ELEMENT function matches the delimiter, the value
DAY was not present in the DAY_LIST, and control is passed to the label
END.

DCL1-292

I $! INDEX.COM
$!

Lexical Functions
F$ELEMENT

$ CHAPTERS= "0,1,2,3,4,5,6,A,B,C"
$ NEXT = 0
$ LOOP:
$ NEXT = NEXT + 1
$ NUM = F$ELEMENT(NEXT,",",CHAPTERS)
$ IF (NUM . NES . II' II)
$ THEN
$ RUN INDEX CHAP'NUM'
$ GOTO LOOP
$ ENDIF

This example processes files named CHAPl, CHAP2, ... CHAP6, CHAPA,
CHAPB, and CHAPC, in that order. (Zero is included in the CHAPTERS
string to initialize the procedure logic.) NEXT is initialized to zero. The
procedure enters the loop. In the first iteration, NEXT is incremented to
1 and the result of the F$ELEMENT call is the string "l 11. The procedure
runs the index, chapter 1. In the second iteration, NEXT is incremented to
2 and the result of the F$ELEMENT call is the string 112 11

• The procedure
runs the index, chapter 2. Processing continues until the result of the
F$ELEMENT call is the delimiter specified in the call.

DCL1-293

Lexical Functions
F$ENVIRONMENT

F$ENVIRONMENT

FORMAT

return value

ARGUMENT

DCL1-294

Returns information about the current DCL command environment.

F$ENVIRONMENT (item)

Information that corresponds to the specified item. The return value can
be either an integer or a character string, depending on the specified item.

item
Specifies the type of information to be returned. Specify one of the
following keywords (do not abbreviate these keywords):

Item Data Type Information Returned

CAPTIVE String TRUE if you are logged in to a captive
account. The system manager can define
captive accounts in the user authorization
file (UAF) by using the Authorize Utility
(AUTHORIZE).

CONTROL String Control characters currently enabled with
SET CONTROL. Multiple characters
are separated by commas; if no control
characters are enabled, the null string (" ")
is returned.

DEFAULT String Current default device and directory name.
The returned string is the same as SHOW
DEFAULT output.

DEPTH Integer Current command procedure depth. The
command procedure depth is O when you
log in interactively and when you submit
a batch job. The command procedure
depth is 1 when you execute a command
procedure interactively or from within a
batch job. A nested command procedure
has a depth of 1 greater than the depth of
the command procedure from which the
nested procedure is executed.

DIS IMAGE String TRUE if you are logged in to an account
that does not allow the use of the RUN
and MCR commands or foreign commands.
The system manager can add or remove
the DISIMAGE attribute for accounts in the
UAF by using AUTHORIZE.

INTERACTIVE String TRUE if the process is executing
interactively.

Item Data Type

KEY_STATE String

MAX_DEPTH Integer

MESSAGE String

NOCONTROL String

ON_CONTROL_ Y String

ON_ SEVERITY String

OUTPUT _RATE String

PROCEDURE String

PROMPT String

PROMPT_CONTROL String

PROTECTION String

RESTRICTED String

SYMBOL_ SCOPE String

Lexical Functions
F$ENVIRONMENT

Information Returned

Current locked keypad state. See the
description of the DEFINE/KEY command
for more information on keypad states.

Maximum allowable command procedure
depth.

Current setting of SET MESSAGE
qualifiers. Each qualifier in the
string is prefaced by a slash
(/); therefore, the output from
F$ENVIRONMENT("MESSAGE") can be
appended to the SET MESSAGE command
to form a valid DCL command line.

Control characters currently disabled with
SET NOCONTROL. Multiple characters
are separated by commas (,);if no control
characters are disabled, the null string is
returned.

If issued from a command procedure,
returns TRUE if ON_CONTROL_Y is set.
ON_CONTROL_ Y always returns FALSE at
DCL command level.

If issued from a command procedure,
returns the severity level at which the
action specified with the ON command is
performed. ON_SEVERITY returns NONE
when SET NOON is in effect. or at DCL
command level.

Delta time string containing the default
output rate, which indicates how often data
is written to the batch job log file while the
batch job is executing. OUTPUT _RATE
returns a null string if used interactively.

File specification of the current command
procedure. PROCEDURE returns a null
string if used interactively.

Current DCL prompt.

TRUE if a carriage return and line feed
precede the prompt.

Current default file protection. The string
can be used with the SET PROTECTION
/DEFAULT command to form a valid DCL
command line.

TRUE if you are logged in to a restricted
account. The system manager can define
restricted accounts in the UAF by using
AUTHORIZE.

[NO]LOCAL, [NO]GLOBAL to indicate the
current symbol scoping state.

DCL1-295

Lexical Functions
F$ENVIRONMENT

Item

VERB_SCOPE

VERIFY _IMAGE

VERIFY _PROCEDURE

EXAMPLES

Data Type Information Returned

String [NO]LOCAL, [NO]GLOBAL to indicate the
current symbol scoping state for verbs.
(For more information, see the description
of the SET SYMBOL command.)

String TRUE if image verification (SET
VERIFY=IMAGE) is in effect. If image
verification is in effect, then the command
procedure echoes input data read by
images.

String TRUE if procedure verification
SET VERIFY=PROCEDURE is in effect.
If command verification is in effect, then
the command procedure echoes DCL
command lines.

I $ SAVE MESSAGE = F$ENVIRONMENT ("MESSAGE")
$ SET MESSAGE/NOFACILITY/NOIDENTIFICATION

$ SET MESSAGE' SAVE MESSAGE'

This example uses the F$ENVIRONMENT function to save the current
message setting before changing the setting. At the end of the command
procedure, the original message setting is restored. The single quotation
marks (' ') surrounding the symbol SAVE_MESSAGE indicate that the
value for the symbol should be substituted.

I $ MAX = F$ENVIRONMENT ("MAX_DEPTH")
$ SHOW SYMBOL MAX

MAX = 32 Hex = 00000020 Octal = 00000000040

This example uses the F$ENVIRONMENT function to determine the
maximum depth allowable within command procedures.

I $ SAVE_PROT = F$ENVIRONMENT ("PROTECTION")
$ SET PROTECTION= (SYSTEM:RWED, OWNER:RWED, GROUP, WORLD)/DEFAULT

$ SET PROTECTION= ('SAVE_PROT')/DEFAULT

DCL1-296

This example uses the F$ENVIRONMENT function to save the current
default protection before changing the protection. At the end of the
command procedure, the original protection is restored. You must place
single quotation marks around the symbol SAVE_PROT to request symbol
substitution.

F$EXTRACT

FORMAT

return value

ARGUMENTS

EXAMPLES

Lexical Functions
F$EXTRACT

Extracts the specified characters from the specified string.

F$EXTRACT (start, length, string)

A character string containing the characters delimited by the start and
length arguments.

start
Specifies the offset of the starting character of the string you want to
extract. Specify the start argument as an integer expression that is
greater than or equal to zero.

The offset is the relative position of a character or a substring with respect
to the beginning of the string. Offset positions begin with zero. The string
always begins with the leftmost character.

If you specify an offset that is greater than or equal to the length of the
string, F$EXTRACT returns a null string (" ").

length
Specifies the number of characters you want to extract; must be less
than or equal to the size of the string. Specify the length as an integer
expression that is greater than or equal to zero.

If you specify a length that exceeds the number of characters from the
offset to the end of the string, the F$EXTRACT function returns the
characters from the offset through the end of the string.

string
Specifies the character string to be edited. Specify the string as a
character string expression.

D $ NAME = "JOE SMITH"
$ FIRST= F$EXTRACT(0,3,NAME)
$ SHOW SYMBOL FIRST

FIRST = "JOE"

This portion of a command procedure uses the F$EXTRACT function to
extract the first 3 characters from the character string assigned to the
symbol NAME. The offset and length arguments are integers, and the
string argument is a symbol. You do not need to use quotation marks
(" ") around integers or symbols when they are used as arguments for
lexical functions.

DCL1-297

Lexical Functions
F$EXTRACT

m $ Pl = "MYFILE.DAT"
$FILENAME= F$EXTRACT(O,F$LOCATE(".",Pl),Pl)

This portion of a command procedure shows how to locate a character
within a string, and how to extract a substring ending at that location.

The lexical function F$LOCATE gives the numeric value representing the
offset position of a period in the character string value of Pl. (The offset
position of the period is equal to the length of the substring before the
period.)

This F$LOCATE function is used as an argument in the F$EXTRACT
function to specify the number of characters to extract from the string. If
a procedure is invoked with the parameter MYFILE.DAT, these statements
result in the symbol FILENAME being given the value MYFILE.

Note that the F$LOCATE function in the above example assumes that the
file specification does not contain a node name or a directory specification
containing a subdirectory name. To obtain the file name from a full file
specification, use the F$PARSE function.

i] $IF F$EXTRACT(l2,2,F$TIME()) .GES. "12" THEN GOTO AFTERNOON
$ MORNING:
$WRITE SYS$0UTPUT "Good morning!"
$ EXIT
$ AFTERNOON:
$WRITE SYS$0UTPUT "Good afternoon!"
$ EXIT

DCL1-298

This example shows a procedure that displays a different message,
depending on whether the current time is morning or afternoon. It first
obtains the current time of day by using the F$TIME function. The
F$TIME function returns a character string, which is the string argument
for the F$EXTRACT function. The F$TIME function is automatically
evaluated when it is used as an argument, so you do not need to use
quotation marks.

Next, the F$EXTRACT function extracts the hours from the date and
time string returned by F$TIME. The string returned by F$TIME always
contains the hours field beginning at an offset of 12 characters from the
start of the string.

The F$EXTRACT function extracts 2 characters from the string, beginning
at this offset, and compares the string value extracted with the string
value 12. If the comparison is true, then the procedure writes "Good
afternoon!". Otherwise, it writes "Good morning!".

Note that you can also use the F$CVTIME function to extract the hour
field from a time specification. This method is easier than the one shown
in the above example.

F$FAO

FORMAT

return value

ARGUMENTS

Lexical Functions
F$FAO

Converts character and numeric input to ASCII character strings. (FAQ stands
for formatted ASCII output.) By specifying formatting instructions, you oan use
the F$FAO function to convert integer values to character strings, to insert
carriage returns and form feeds, to insert text, and so on.

F$FAO (control-string[, argument[, ...]])

A character string containing formatted ASCII output. This output string
is created from the fixed text and FAO directives in the control string.

control-string
Specifies the fixed text of the output string, consisting of text and any
number of FAO directives. The control string may be any length. Specify
the control string as a character string expression.

The F$FAO function uses FAQ directives to modify or insert ASCII data
into the fixed text in the control string.

Table DCLl-4 lists the FAQ directives you can specify in a control string.

argument[, ...]
Specifies from 1to15 arguments required by the FAQ directives used in
the control string. Specify the arguments as integer or character string
expressions. Table DCLl-4 lists the argument types required by each FAQ
directive.

FAO directives may require one or more arguments. The order of the
arguments must correspond exactly with the order of the directives in the
control string. In most cases, an error message is not displayed if you
misplace an argument.

If you specify an argument whose type (integer or string) does not match
that of the corresponding directive, unpredictable results are returned.
You can use the F$INTEGER and F$STRING lexical functions to convert
arguments to the proper type.

If there are not enough arguments listed, F$FAQ continues reading past
the end of an argument list. Therefore, always be sure to include enough
arguments to satisfy the requirements of all the directives in a control
string.

If you specify an invalid parameter for any directive, you may see
unexpected errors, which indicate that the command did not succeed.
(These errors are passed through to you from the $FAQ system service.)

DCL1-299

Lexical Functions
F$FAO

DESCRIPTION

DCL1-300

The F$FAQ lexical function invokes the $FAQ system service to convert
character and numeric input to ASCII character strings. (FAQ stands for
formatted ASCII output.) By specifying formatting instructions, you can
use the F$FAQ function to convert integer values to character strings, to
insert carriage returns and form feeds, to insert text, and so on.

Specify an FAQ directive using any one of the following formats:

Format

!DD

!n(DD)

!length DD

!n(lengthDD)

Function

One directive

A directive repeated a specified number of times

A directive that places its output in a field of a specified length

A directive that is repeated a specified number of times and
generates output fields of a specified length

The exclamation point (!) indicates that the following character or
characters are to be interpreted as an FAQ directive. DD represents a
1- or 2-character uppercase code indicating the action that F$FAQ is to
perform. When specifying repeat counts, n is a decimal value specifying
the number of times the directive is to be repeated. The length value is
a decimal number that instructs F$FAQ to generate an output field of
"length" characters.

Repeat counts and output lengths may also be specified by using a number
sign (#) in place of an absolute numeric value. If you use a number
sign, you must specify the numeric value as an integer expression in the
corresponding place in the argument list.

When a variable output field is specified with a repeat count, only one
length parameter is required, because each output string has the specified
length.

The FAQ directives are grouped in the following categories:

• Character string insertion

• Zero-filled numeric conversion

• Blank-filled numeric conversion

• Special formatting

• Parameter interpretation

Table DCLl-4 summarizes the FAQ directives and shows the required
argument types. In addition, the following sections describe output strings
from directives that perform character string insertion, zero-filled numeric
conversion, and blank-filled numeric conversion.

Lexical Functions
F$FAO

Table DCL 1-4 Summary of FAO Directives

Directive Argument Type

Character string insertion:

!AS String

Zero-filled numeric conversion:

!OB Integer

IOW Integer

!OL Integer

!XB Integer

!XW Integer

!XL

!ZB

!ZW

Integer

Integer

Integer

!ZL Integer

Blank-filled numeric conversion:

. !UB Integer

!UW Integer

!UL Integer

!SB Integer

!SW Integer

!SL Integer

Special formatting:

!/ None

! None -
!" None

!! None

!%1 Integer

!%S None

Description

Inserts a character string as is.

Converts a byte to octal notation.

Converts a word to octal notation.

Converts a longword to octal notation.

Converts a byte to hexadecimal notation.

Converts a word to hexadecimal notation.

Converts a longword to hexadecimal
notation.

Converts a byte to decimal notation.

Converts a word to decimal notation.

Converts a longword to decimal notation.

Converts a byte to decimal notation
without adjusting for negative numbers.

Converts a word to decimal notation
without adjusting for negative numbers.

Converts a longword to decimal notation
without adjusting for negative numbers.

Converts a byte to decimal notation
with negative numbers converted properly.

Converts a word to decimal notation
with negative numbers converted properly.

Converts a longword to decimal notation
with negative numbers converted properly.

Inserts a carriage return and a line feed.

Inserts a tab.

Inserts a form feed.

Inserts an exclamation point (!).

Converts a longword integer to a named
UIC in the format
[group-identifier, member-identifier].

Inserts an "s" if the most recently
converted number is not 1 . (Not
recommended for use with multilingual
products.)

(continued on next page}

DCL1-301

Lexical Functions
F$FAO

DCL1-302

Table DCL 1-4 {Cont.) Summary of FAO Directives

Directive

1%U

ln< ... I>

ln*c

ln%C

1%E

1%F

1%T

1%0

Argument Type

Integer

None

None

String

String

None

Integer equal to O

Integer equal to O

Argument interpretation:

I

!+

None

None

Description

Converts a longword integer to a numeric·
UIC in the format [g,m], where g is the group
number and m is the member number.

The directive inserts the brackets and
the comma.

Left-justifies and blank-fills all data
represented by the instructions . . . in
fields n characters wide.

Repeats the character represented
by c for n times.

Inserts a character string when the most
recently evaluated argument has the value
n. (Recommended for use with multilingual
products.)

Inserts a character string when the value of
the most recently evaluated argument does
not match any preceding ln%C directives.
(Recommended for use with multilingual
products.)

Marks the end of a plurals statement.

Inserts the current time.

Inserts the current date/time.

Reuses the last argument.

Skips the next argument.

Output Strings from Character String Insertion

The !AS directive inserts a character string (specified as an argument for
the directive) into the control string. The field length of the character
string when it is inserted into the control string defaults to the length of
the character string. If the default length is shorter than an explicitly
stated field length, the string is left-justified and blank-filled. If the
default length is longer than an explicitly stated field length, the string is
truncated on the right.

Output Strings from Zero-Filled Numeric Conversion

Directives for zero-filled numeric conversion convert an integer (specified
as an argument for the directive) to decimal, octal, or hexadecimal
notation. The ASCII representation of the integer is inserted into the
control string. Default output field lengths for the converted argument are
determined as follows.

Directives that convert arguments to octal notation return 3 digits for
byte conversion, 6 digits for word conversion, and 11 digits for longword
conversion. Numbers are right-justified and zero-filled on the left.
Explicit-length fields longer than the default are blank-filled on the left.
Explicit-length fields shorter than the default are truncated on the left.

Lexical Functions
F$FAO

Directives that convert arguments to hexadecimal notation return
2 digits for byte conversion, 4 digits for word conversion, and 8 digits
for longword conversion. Numbers are right-justified and zero-filled on the
left. Explicit-length fields longer than the default are blank-filled on the
left. Explicit-length fields shorter than the default are truncated on the
left.

Directives that convert arguments to decimal notation return the required
number of characters for the decimal number. Explicit-length fields longer
than the default are zero-filled on the left. If an explicit-length field is
shorter than the number of characters required for the decimal number,
the output field is completely filled with asterisks (*).
For byte conversion, only the low-order 8 bits of the binary representation
of the argument are used. For word conversion, only the low-order 16 bits
of the binary representation of the argument are used. For longword
conversion, the entire 32-bit binary representation of the argument is
used.

Output Strings from Blank-Filled Numeric Conversion

Directives for blank-filled numeric conversion convert an integer (specified
as an argument for the directive) to decimal notation. These directives
can convert the integer as a signed or unsigned number. The ASCII
representation of the integer is inserted into the control string.

Output field lengths for the converted argument default to the required
number of characters. Values shorter than explicit-length fields are right
justified and blank-filled; values longer than explicit-length fields cause
the field to be filled with asterisks.

For byte conversion, only the low-order 8 bits of the binary representation
of the argument are used. For word conversion, only the low-order 16 bits
of the binary representation of the argument are used. For longword
conversion, the entire 32-bit binary representation of the argument is
used.

Output Strings from Special Formatting Directives

The !n%C and !%E directives insert an ASCII string (based on the value
of the most recently evaluated argument) into the output string. These
directives are useful for inserting irregular plural nouns and verbs.

If the most recently evaluated argument equals n, the text between one
directive and the next is inserted into the output string. If the most
recently evaluated argument does not equal n, the next !n%C directive is
processed.

If n must be a negative number, you must specify it as an argument and
use the number sign (#).

You can specify the !n%C and !%E directives with repeat counts. If you
specify repeat counts, the text between one directive and the next is copied
to the output string the specified number of times.

The %F directive marks the end of a plurals statement.

DCL1-303

Lexical Functions
F$FAO

EXAMPLES

I $ COUNT = 57

I

I

$ REPORT = F$FAO("NUMBER OF FORMS !SL",COUNT)
$ SHOW SYMBOL REPORT
$ REPORT = "NUMBER OF FORMS = 57"

In this command procedure, the FAO directive !SL is used in a control
string to convert the number equated to the symbol COUNT to a character
string. The converted string is inserted into the control string.

Note that COUNT is assigned an integer value of 57. The F$FAO function
returns the ASCII string, 11 NUMBER OF FORMS= 57 11

, and assigns the
string to the symbol REPORT.

$ A = "ERR"
$
$
$
$
$
$

B = "IS"
c = "HUM"
D = "AN"
PHRASE = F$FAO("TO !3(AS)",A,B,C+D)
SHOW SYMBOL PHRASE
PHRASE = "TO ERRISHUMAN"

In this command procedure, the !AS directive is used to insert the values
assigned to the symbols A, B, C, and D into the control string.

Because the specified repeat count for the !AS directive is 3, F$FAO looks
for three arguments. The arguments in this example include the symbol
A ("ERR"), the symbol B ("IS"), and the expression C+D ("HUMAN"). Note
that the values of these string arguments are concatenated to form the
string 11 ERRISHUMAN11

•

$ A = "ERR"
$
$
$
$
$

B = "IS"
C = "HUMAN"
PHRASE = F$FAO("TO !#(#AS)",3,6,A,B,C)
SHOW SYMBOL PHRASE
PHRASE = "TO ERR IS HUMAN II

In this command procedure, the F$FAO function is used with the
!AS directive to format a character string. The first number sign (#)
represents the repeat count given by the first argument, 3. The second
number sign represents the field size given by the second argument, 6.
The next three arguments (A,B,C) provide the strings that are placed into
the control string each time the !AS directive is repeated.

Each argument string is output to a field having a length of 6 characters.
Because each string is less than 6 characters, each field is left-justified and
padded with blank spaces. The resulting string is assigned to the symbol
PHRASE.

DCL1-304

II $ OFF SPRING = 1

Lexical Functions
F$FAO

$ REPORT = F$FAO -
-$ ("There !OUL!1%Cis!Eare!%F !-!UL !1%Cchild!%Echildren!%Fhere",'OFFSPRING')
$ SHOW SYMBOL REPORT
$ REPORT ="There is 1 child here"

In this command procedure, the !OUL directive evaluates the argument
OFFSPRING but does not insert the value in the output string. The !n%C
directive inserts the character string "is" into the output string because its
value and the value of the argument OFFSPRING match. The directives
!-!UL evaluate the argument a second time so that the correct character
string can be inserted in the proper place in the output string. The !%F
directive marks the end of each plurals statement. The F$FAO function
returns the ASCII string "There is 1 child here" and assigns the string to
the symbol REPORT.

DCL1-305

Lexical Functions
F$FILE_ATTRIBUTES

F$FILE_ATTRIBUTES

FORMAT

return value

ARGUMENTS

Returns attribute information for a specified file.

F$FILE_ATTRIBUTES (filespec,item)

Either an integer or a character string, depending on the item you request.
Table DCLl-5 shows the data types of the values returned for each item.

files pee
Specifies the name of the file about which you are requesting information.
You must specify the file name as a character string expression.

You can specify only one file name. Wildcard characters are not allowed.

item
Indicates which attribute of the file is to be returned. The item argument
must be specified as a character string expression, and can be any one of
the VMS RMS field names listed in Table DCLl-5.

DESCRIPTION Use the F$FILE_ATTRIBUTES lexical function in DCL assignment
statements and expressions to return file attribute information.

DCL1-306

Table DCLl-5 lists the items you can specify with the F$FILE_
ATTRIBUTES function, the information returned, and the data type of
this information.

Table DCL 1-5 F$FILE_ATTRIBUTES Items

Item

Al

ALQ

BOT

Bl

BKS

BLS

CBT

CDT

CTG

Return Type

String

Integer

String

String

Integer

Integer

String

String

String

Information Returned

TRUE if after-image (Al) journaling is enabled;
returns TRUE or FALSE

Allocation quantity

Backup date/time

TRUE if before-image (Bl) journaling is enabled;
returns TRUE or FALSE

Bucket size

Block size

TRUE if contiguous-best-try; returns TRUE or
FALSE

Creation date/time

TRUE if contiguous; returns TRUE or FALSE

(continued on next page)

Lexical Functions
F$FILE_ATTRIBUTES

Table DCL 1-5 (Cont.) F$FILE_ATTRIBUTES Items

Item Return Type Information Returned

DEQ Integer Default extension quantity

DID String Directory ID string

DVI String Device name string

EDT String Expiration date/time

EOF Integer Number of blocks used

ERASE String TRUE if a file's contents are erased before a file
is deleted; returns TRUE or FALSE

FFB Integer First free byte

FID String File ID string

FSZ Integer Fixed control area size

GBC Integer Global buffer count

e GAP Integer Owner group number

JOURNAL_FILE String TRUE if the file is a journal; returns TRUE or
FALSE

KNOWN String Known file; returns TRUE or FALSE to indicate
whether file is installed with the Install Utility
(INSTALL)

LOCKED String TRUE if a file is deaccessed-locked; returns
TRUE or FALSE

• MBM Integer Owner member number

MAN Integer Maximum record number

MRS Integer Maximum record size

NOA Integer Number of areas

NOBACKUP String FALSE if the file is marked for backup; TRUE if
the file is marked NOBACKUP

NOK Integer Number of keys

ORG String File organization; returns SEQ, REL, IDX

PRO String File protection string

PVN Integer Prolog version number

RAT String Record attributes; returns CR, PAN, FTN, 1111

ACK String TRUE if read check; returns TRUE, FALSE

ROT String Revision date/time

RFM String Record format string; returns the values VAR,
FIX, VFC, UDF, STM, STMLF, STMCR

RU String TRUE if recovery unit (RU) journaling is enabled;
returns TRUE or_ FALSE

(continued on next page)

DCL1-307

Lexical Functions
F$FILE_ATTRIBUTES

Table DCL 1-5 (Cont.) F$FILE_ATTRIBUTES Items

Item Return Type Information Returned

RVN Integer Revision number

STORED_ String ASCII string that represents stored semantics
SEMANTICS

UIC String Owner user identification code (U IC) string

WCK String TRUE if write check; returns TRUE, FALSE

File attributes are stored in the file header, which is created from
information in VMS RMS control blocks. For more information on VMS
RMS control blocks, see the VMS Record Management Services Manual.

EXAMPLES

D $ FILE ORG = F$FILE ATTRIBUTES ("QUEST. DAT", "ORG")
$ SHOW-SYMBOL FILE_ORG

FILE ORG = "SEQ"

This example uses the F$FILE_ATTRIBUTES function to assign the
value of the file organization type to the symbol FILE_ORG. The F$FILE_
ATTRIBUTES function returns the character string SEQ to show that
QUEST.DAT is a sequential file.

The QUEST.DAT and ORG arguments for the F$FILE_ATTRIBUTES
function are string literals and must be enclosed in quotation marks (" ")
when used in expressions.

~ $ RFM = F$FILE _ATTRIBUTES ("KANSAS: : USE$: [CARS] SALES. CMD", "RFM")
$ SHOW SYMBOL RFM

RFM = "VAR"

DCL1-308

This example uses the F$FILE_ATTRIBUTES function to return
information about a file on a remote node. The function returns the
record format string VAR, indicating that records are variable length.

F$GETDVI

FORMAT

return value

ARGUMENTS

Lexical Functions
F$GETDVI

Returns a specified item of information for a specified device.

F$GETDVI (device-name,item)

Either an integer or a character string, depending on the item you request.
Table DCLl-6 shows the data types of the values returned for each item.

device-name
Specifies a physical device name or a logical name equated to a physical
device name. Specify the device name as a character string expression.

After the device-name argument is evaluated, the F$GETDVI function
examines the first character of the name. If the first character is an
underscore (_), the name is considered a physical device name. Otherwise,
a single level of logical name translation is performed and the equivalence
name, if any, is used.

item
Specifies the type of device information to be returned. The item
argument must be specified as a character string expression and can
be any one of the items listed in Table DCLl-6.

DESCRIPTION The F$GETDVI lexical function invokes the $GETDVI system service
to return a specified item of information for a specified device. You can
obtain a list of devices on your current system by using the lexical function
F$DEVICE.

This lexical function allows a process to obtain information for a device to
which the process has not necessarily assigned a channel.

The F$GETDVI function returns information on all items that can be
specified with the $GETDVI system service. In addition to the items that
the $GETDVI system service allows, the F$GETDVI function allows you to
specify the item EXISTS.

Table DCLl-6 lists the items you can specify with the F$GETDVI
function, the type of information returned, and the data types of the return
values. In addition to the return information listed in Table DCLl-6, the
F$GETDVI lexical function returns any error messages generated by
the system service $GETDVI. Table DCLl-7 lists the values returned
by the DEVCLASS item. Table DCLl-8 lists the values returned by the
DEVTYPE item. For more information on the $GETDVI system service
and the items you can specify, see the VMS System Services Reference
Manual.

DCL1-309

Lexical Functions
F$GETDVI

Table DCL1-6 F$GETDVI Items

Item

ACPPID

ACPTYPE

ALL

ALLDEVNAM

ALLOCLASS

ALT_HOST_AVAIL

ALT _HOST _NAME

ALT _HOST_ TYPE

AVL

CCL

CLUSTER

CONCEALED

CYLINDERS

DEVBUFSIZ

DEV CHAR

DEVCHAR2

DEV CLASS

DEVDEPEND

DEVDEPEND2

DEVLOCKNAM

DEV NAM

DEVSTS

DEVTYPE

DFS_ACCESS

DIR

DMT

Return
Type

String

String

String

String

Longword
integer
between 0
and 255

String

String

String

String

String

Integer

String

Integer

Integer

Integer

Integer

Integer

Integer

Integer

String

String

Integer

Integer

String

String

String

Information Returnedt

Ancillary control process (ACP) identification.

ACP type code, as one of the following strings: F11 V1, F11 V2, JNL,
MTA, NET, REM, or ILLEGAL if the device is not mounted or is
mounted using the /FOREIGN qualifier.

TRUE or FALSE to indicate whether the device is allocated.

Allocation class device name.

Allocation class of the host.

TRUE or FALSE to indicate whether the host serving the alternate
path is available.

Name of the host serving the alternate path.

Hardware type of the host serving the alternate path.

TRUE or FALSE to indicate whether the device is available for use.

TRUE or FALSE to indicate whether the device is a carriage control
device.

Volume cluster size.

TRUE or FALSE to indicate whether the logical device name
translates to a concealed device.

Number of cylinders on the volume (disks only).

Device buffer size.

Device characteristics.

Additional device characteristics.

Device class. (See Table DCL 1-7 for a list of the values returned.)

Device-dependent information.

Additional device-dependent information.

A unique lock name for the device.

Device name.

Device-dependent status information.

Device type. (See Table DCL 1-8 for a list of the values returned.}

TRUE or FALSE to indicate whether the device is a virtual disk
connected to a remote Distributed File System (DFS) server.

TRUE or FALSE to indicate whether the device is directory
structured.

TRUE or FALSE to indicate whether the device is marked for
dismount.

tin addition to the return information listed, the F$GETDVI lexical function returns any error messages generated by the system
service $GETDVI.

(continued on next page)

DCL1-310

Lexical Functions
F$GETDVI

Table DCL 1-6 (Cont.) F$GETDVI Items

Return
Item Type Information Returnedt

DUA String TRUE or FALSE to indicate whether the device is a generic device.

ELG String TRUE or FALSE to indicate whether the device has error logging
enabled.

ERRCNT Integer Error count.

EXISTS String TRUE or FALSE to indicate whether the device exists on the system.

FOO String TRUE or FALSE to indicate whether the device is a files-oriented
device.

FOR String TRUE or FALSE to indicate whether the device is mounted using the
/FOREIGN qualifier.

FREEBLOCKS Integer Number of free blocks on the volume (disks only).

FULLDEVNAM String Fully qualified device name.

GEN String TRUE or FALSE to indicate whether the device is a generic device.

HOST_AVAIL String TRUE or FALSE to indicate whether the host serving the primary
path is available.

HOST_COUNT Integer Number of hosts that make the device available to other nodes in the
VAXcluster.

HOST_NAME String Name of the host serving the primary path.

HOST_TYPE String Hardware type of the host serving the primary path.

IDV String TRUE or FALSE to indicate whether the device is capable of
providing input.

LOCKID Integer Clusterwide lock identification.

LOGVOLNAM String Logical volume name.

MAXBLOCK Integer Number of logical blocks on the volume.

MAXFILES Integer Maximum number of files on the volume (disks only).

MBX String TRUE or FALSE to indicate whether the device is a mailbox.

MEDIA_ID String Nondecoded media ID.

MEDIA_NAME String Either the name of the disk or the tape type.

MEDIA_ TYPE String Device name prefix.

MNT String TRUE or FALSE to indicate whether the device is mounted.

MOUNTCNT Integer Mount count.

NET String TRUE or FALSE to indicate whether the device is a network device.

NEXTDEVNAM String Device name of the next volume in a volume set (disks only).

ODV String TRUE or FALSE to indicate whether the device is capable of
providing output.

OPCNT Integer Operation count.

QPR String TRUE or FALSE to indicate whether the device is an operator.

tin addition to the return information listed, the F$GETDVI lexical function returns any error messages generated by the system
service $GETDVI.

(continued on next page)

DCL1-311

Lexical Functions
F$GETDVI

Table DCL 1-6 (Cont.) F$GETDVI Items

Item

OWNUIC

PIO

RCK

RCT

REC

RECSIZ

REFCNT

REMOTE_DEVICE

RND

ROOTDEVNAM

RTM

SDI

SECTORS

SERIALNUM

SERVED _DEVICE

SET _HOST_ TERMINAL

SHDW_CATCHUP _
COPYING

SHDW_MASTER

SHDW_MASTER_NAME

SHDW_MEMBER

SHDW_MERGE_COPYING

Return
Type

String

String

String

String

String

Integer

Integer

String

String

String

String

String

Integer

Integer

String

String

String

String

String

String

String

Information Returnedt

User identification code (UIC) of the device owner.

Process identification number of the device owner.

TRUE or FALSE to indicate whether the device has read checking
enabled.

TRUE or FALSE to indicate whether the disk contains RCT.

TRUE or FALSE to indicate whether the device is record oriented.

Blocked record size.

Reference count of processes using the device.

TRUE or FALSE to indicate whether the device is a remote device.

TRUE or FALSE to indicate whether the device allows random
access.

Device name of the root volume in a volume set (disks only).

TRUE or FALSE to indicate whether the device is a real-time device.

TRUE or FALSE to indicate whether the device is single-directory
structured.

Number of sectors per track (disks only).

Volume serial number (disks only).

TRUE or FALSE to indicate whether the device is a served device.

TRUE or FALSE to indicate whether the device is a remote terminal
for a SET HOST session from a remote node.

TRUE or FALSE to indicate whether the device is a member that is
the target of a full copy operation.

TRUE or FALSE to indicate whether the device is a virtual unit.

Device name of the virtual unit that represents the shadow set of
which the specified device is a member. F$GETDVI returns a null
string (11 11

) if the specified device is not a member, or is itself a
virtual unit.

TRUE or FALSE to indicate whether the device is a shadow set
member.

TRUE or FALSE to indicate whether the device is a merge member
of the shadow set.

tin addition to the return information listed, the F$GETDVI lexical function returns any error messages generated by the system
service $GETDVI.

(continued on next page)

DCL1-312

Lexical Functions
F$GETDVI

Table DCL 1-6 (Cont.) F$GETDVI Items

Item

SHDW_NEXT_MBR_NAME

SHA

SPL

SPLDEVNAM

SQD

STS

SWL

TRACKS

TRANSCNT

TRM

TT _ACCPORNAM

TT_ALTYPEAHD

TT_ANSICRT

TT_APP_KEYPAD

TT _AUTOBAUD

TT_AVO

TT_BLOCK

TT _BRDCSTMBX

TT_CRFILL

Return
Type

String

String

String

String

String

Integer

String

Integer

Integer

String

String

String

String

String

String

String

String

String

String

Information Returnedt

Device name of the next member in the shadow set. If you specify
a virtual unit or a member, F$GETDVI returns the device name of
members in random order. If you specify the name of a device that is
neither a virtual unit nor a member, F$GETDVI returns a null string.

F$GETDVI returns the device name of the next member in the
shadow set even if the next member has been removed from the
shadow set.

The device name includes the allocation class if the allocation
class is not zero; otherwise it includes the device name of the disk
controller.

TRUE or FALSE to indicate whether the device is shareable.

TRUE or FALSE to indicate whether the device is being spooled.

Name of the device being spooled.

TRUE or FALSE to indicate whether the device is sequential block
oriented (that is, magnetic tape).

Status information.

TRUE or FALSE to indicate whether the device is software write
locked.

Number of tracks per cylinder (disks only).

Volume transaction count.

TRUE or FALSE to indicate whether the device is a terminal.

The terminal server name and port name.

TRUE or FALSE to indicate whether the terminal has an alternate
type-ahead buffer (terminals only).

TRUE or FALSE to indicate whether the terminal is an ANSI CRT
terminal (terminals only).

TRUE or FALSE to indicate whether the keypad is in applications
mode (terminals only).

TRUE or FALSE to indicate whether the terminal has automatic baud
rate detection (terminals only).

TRUE or FALSE to indicate whether the terminal has a VT100-family
terminal display (terminals only).

TRUE or FALSE to indicate whether the terminal has block mode
capability (terminals only).

TRUE or FALSE to indicate whether the terminal uses mailbox
broadcast messages (terminals only).

TRUE or FALSE to indicate whether the terminal requires fill after a
carriage return (terminals only).

tin addition to the return information listed, the F$GETDVI lexical function returns any error messages generated by the system
service $GETDVI.

(continued on next page)

DCL1-313

Lexical Functions
F$GETDVI

Table DCL 1-6 (Cont.) F$GETDVI Items

Return
Item Type Information Returnedt

TT_DECCRT String TRUE or FALSE to indicate whether the terminal is a Digital CRT
terminal (terminals only).

TT_DECCRT2 String TRUE or FALSE to indicate whether the terminal is a Digital CRT2
terminal (terminals only).

TT_DECCRT3 String TRUE or FALSE to indicate whether the terminal is a Digital CRT3
terminal (terminals only).

TT_DECCRT4 String TRUE or FALSE to indicate whether the terminal is a Digital CRT4
terminal (terminals only).

TT_DIALUP String TRUE or FALSE to indicate whether the terminal is connected to
dialup (terminals only).

TT_DISCONNECT String TRUE or FALSE to indicate whether the terminal can be
disconnected (terminals only).

TT_DMA String TRUE or FALSE to indicate whether the terminal has direct memory
access (OMA) mode (terminals only).

TT_DRCS String TRUE or FALSE to indicate whether the terminal supports loadable
character fonts (terminals only).

TT_EDIT String TRUE or FALSE to indicate whether the edit characteristic is set.

TT_EDITING String TRUE or FALSE to indicate whether advanced editing is enabled
(terminals only).

TT _EIGHTBIT String TRUE or FALSE to indicate whether the terminal uses the 8-bit ASCII
character set (terminals only).

TT_ESCAPE String TRUE or FALSE to indicate whether the terminal generates escape
sequences (terminals only).

TT _FALLBACK String TRUE or FALSE to indicate whether the terminal uses the
multinational tailback option (terminals only).

TT_HALFDUP String TRUE or FALSE to indicate whether the terminal is in half-duplex
mode (terminals only).

TT_HANGUP String TRUE or FALSE to indicate whether the hangup characteristic is set
(terminals only).

TT _HOSTSYNC String TRUE or FALSE to indicate whether the terminal has host/terminal
communication (terminals only).

TT_INSERT String TRUE or FALSE to indicate whether insert mode is the default line
editing mode (terminals only).

TT_LFFILL String TRUE or FALSE to indicate whether the terminal requires fill after a
line feed (terminals only).

TT _LOCALECHO String TRUE or FALSE to indicate whether the local echo characteristic is
set (terminals only).

TT_LOWER String TRUE or FALSE to indicate whether the terminal has the lowercase
characters set (terminals only).

tin addition to the return information listed, the F$GETDVI lexical function returns any error messages generated by the system
service $GETDVI.

(continued on next page)

DCL1-314

Lexical Functions
F$GETDVI

Table DCL 1-6 (Cont.) F$GETDVI Items

Return
Item Type

TI_MBXDSABL String

TI_MECHFORM String

TI_MECHTAB String

TI_MODEM String

TT_MODHANGUP String

TT_NOBRDCST String

TI_NOECHO String

TI _NOTYPEAHD String

TI_OPER String

TI_PAGE Integer

TT_PASTHRU String

TI_PHYDEVNAM String

TT_PRINTER String

TT_READSYNC String

TI_REGIS String

TT_REMOTE String

TI_SCOPE String

TT_SECURE String

TT_SETSPEED String

TI_SIXEL String

Information Returnedt

TRUE or FALSE to indicate whether mailboxes associated with the
terminal will receive unsolicited input notification or input notification
(terminals only).

TRUE or FALSE to indicate whether the terminal has mechanical
form feed (terminals only).

TRUE or FALSE to indicate whether the terminal has mechanical
tabs and is capable of tab expansion (terminals only).

TRUE or FALSE to indicate whether the terminal is connected to a
modem (terminals only).

TRUE or FALSE to indicate whether the modify hangup characteristic
is set (terminals only).

TRUE or FALSE to indicate whether the terminal will receive
broadcast messages (terminals only).

TRUE or FALSE to indicate whether the input characters are echoed.

TRUE or FALSE to indicate whether data must be solicited by a read
operation.

TRUE or FALSE to indicate whether the terminal is an operator
terminal (terminals only).

Terminal page length (terminals only).

TRUE or FALSE to indicate whether PASSALL mode with flow
control is available (terminals only).

Physical device name associated with a channel number or virtual
terminal.

TRUE or FALSE to indicate whether there is a printer port available
(terminals only).

TRUE or FALSE to indicate whether the terminal has read
synchronization (terminals only).

TRUE or FALSE to indicate whether the terminal has ReGIS graphics
(terminals only).

TRUE or FALSE to indicate whether the terminal has established
modem control (terminals only).

TRUE or FALSE to indicate whether the terminal is a video screen
display (terminals only).

TRUE or FALSE to indicate whether the terminal can recognize the
secure server (terminals only).

TRUE or FALSE to indicate whether you cannot set the speed on the
terminal line (terminals only).

TRUE or FALSE to indicate whether the sixel is supported (terminals
only).

tin addition to the return information listed, the F$GETDVI lexical function returns any error messages generated by the system
service $GETDVI.

(continued on next page)

DCL1-315

Lexical Functions
F$GETDVI

Table DCL 1-6 (Cont.) F$GETDVI Items

Item

TT_SYSPWD

TT_TTSYNC

TT_WRAP

UNIT

VOLCOUNT

VOLNAM

VOLNUMBER

VOLSETMEM

VPRO

WCK

Return
Type

String

String

String

Integer

Integer

String

Integer

String

String

String

Information Returnedt

TRUE or FALSE to indicate whether the system password is enabled
for a particular terminal.

TRUE or FALSE to indicate whether there is terminal/host
synchronization (terminals only).

TRUE or FALSE to indicate whether a new line should be inserted if
the cursor moves beyond the right margin.

The unit number.

The count of volumes in a volume set (disks only).

The volume name.

Number of the current volume in a volume set (disks only).

TRUE or FALSE to indicate whether the device is a volume set
(disks only).

The volume protection mask.

TRUE or FALSE to indicate whether the device has write checking
enabled.

tin addition to the return information listed, the F$GETDVI lexical function returns any error messages generated by the system
service $GETDVI.

Table DCLl-7 lists the values returned by the DEVCLASS item.

Table DCL 1-7 Values Returned by the DEVCLASS Item

Value Device Class Symbolic Name

Disk device DC$_DISK

2 Tape device DC$_ TAPE

32 Synchronous communications device DC$_SCOM

65 Card reader DC$_ CARD

66 Terminal DC$_ TERM

67 Line printer DC$_LP

70 Workstation DC$_WORKSTATION

96 Real-time DC$_REALTIME

97 DECvoice DC$_DECVOICE

128 Bus DC$_BUS

160 Mailbox DC$_ MAILBOX

161 Journal DC$_JOURNAL

170 Remote console storage DC$_REMCSL_STORAGE

200 Miscellaneous device DC$_MISC

DCL1-316

Lexical Functions
F$GETDVI

Table DCLl-8 lists the values returned by the DEVTYPE item.

Table DCL 1-8 Values Returned by the DEVTYPE Item

Value Device Type Value Device Type

Device Class: DC$_DISK

1 RK06 32 RD54

2 RK07 33 CRX50

3 RP04 33 RX50

4 RP05 34 RRD50

5 RP06 35 GENERIC_DU

6 RM03 36 RX33

7 RP07 37 RX18

8 RP07HT 38 RA70

9 RL01 39 RA90

10 RL02 40 RD32

11 RX02 41 DISK9

12 RX04 42 RX35

13 RM80 43 RF30

14 TU58 44 RF70

15 RM05 45 RD33

16 RX01 46 ESE20

17 ML11 47 TU56

18 RB02 48 RZ22

19 RB80 49 RZ23

20 RASO 50 RZ24

21 RA81 51 RZ55

22 RA60 52 RRD40

23 RC25 54 GENERIC_DK

23 RZ01 55 RX23

24 RZF01 129 FD1

25 RD51 130 FD2

26 RX50 131 FD3

27 RD52 132 FD4

28 RD53 133 FD5

29 RD26 134 FD6

30 RA82 135 FD7

31 RD31 136 FD8

(continued on next page)

DCL1-317

Lexical Functions
F$GETDVI

Table DCL 1-8 (Cont.)

Value Device Type

Device Class: DC$_ TAPE

TE16

2 TU45

3 TU77

4 TS11

5 TU78

6 TA78

7 TU80

8 TU81

9 TA81

10 TK50

11 MR_TU70

12 MR_TU72

13 MW_TSU05

Values Returned by the DEVTYPE Item

Value Device Type

14 MW_TSV05

15 TK70

16 RV20

16 RVSO

17 TK60

18 GENERIC_ TU

19 TA79

20 TAPE9

21 TA90

22 TF30

23 TF70

24 RV60

Device Class: DC$_SCOM

1 DMC11 18 YQ_3271

2 DMR11 19 YR_DDCMP

3 XK_3271 20 YS_SDLC

4 XJ_2780 21 UK_KTC32

5 NW_X25 22 DEQNA

6 NV_X29 23 DMV11

7 SB_ISB11 24 ES_LANCE

8 MX_MUX200 25 DE LUA

9 DMP11 26 NQ_3271

10 DMF32 27 DMB32

11 XV_3271 28 Yl_KMS11K

12 Cl 29 ET_DEBNT

13 NI 29 ET_DEBNA

14 UNA11 30 SJ_DSV11

14 DE UNA 31 SL_DSB32

15 YN_X25 32 ZS_DST32

16 YO_X25 33 XQ_DELQA

17 YP_ADCCP

(continued on next page)

DCL1-318

Lexical Functions
F$GETDVI

Table DCL 1-8 (Cont.) Values Returned by the DEVTVPE Item

Value Device Type Value Device Type

Device Class: DC$_CARD

CR11

Device Class: DC$_ TERM

0 TTYUNKN 37 LA24

1 VT05 37 LA100

2 VK100 38 LQP02

3 VT173 40 LA210

64 VT5X 41 LN03

10 TEK401X 42 LN01K

16 FT1 43 LASO

17 FT2 64 VT52

18 FT3 65 VT55

19 FT4 96 VT100

20 FTS 97 VT101

21 FT6 98 VT102

22 FT? 99 VT105

23 FT8 100 VT125

32 LAX 101 VT131

32 LA36 102 VT132

33 LA120 110 VT200_Series

34 LA34 111 Pro_Series

35 LA38 112 VT300_Series

36 LA12 113 VT400_Series

Device Class: DC$_LP

1 LP11 4 LC_DMF32

2 LA11 5 Ll_DMB32

3 LA180 6 PRTR9

Device Class: DC$_WORKSTATION

1 VAXstation 100 4 VAXstation virtual device

2 VAXstation 125 5 DECW output device

3 VAXstation 8200 6 DECW input device

(continued on next page)

DCL1-319

Lexical Functions
F$GETDVI

Table DCL 1-8 (Cont.) Values Returned by the DEVTYPE Item

Value Device Type Value Device Type

Device Class: DC$_REALTIME

LPA11 9 XP _PCL11B

2 DR780 10 IX_IEX11

3 DR750 11 FP_FEPCM

4 DR11W 12 TK_FCM

5 PCL11 R 13 Xl_DR11C

6 PCL11T 14 XA_DRV11WA

7 DR11C 15 DRB32

8 Xl_DR11C 16 HX_DRQ3B

Device Class: DC$_DECVOICE

VQ class driver 3 VM M3135 port driver

2 VX M7132 port driver 4 VN M3136 port driver

Device Class: DC$_BUS

1 CJ780 15 BCl750

2 Cl750 16 BCA

3 UQPORT 17 RQDX3

3 UDA50 18 NISCA

4 UDA50A 19 AIO

5 LESI 20 AIE

6 TU81P 20 DEBNT

7 RDRX 21 BSA

8 TK50P 21 KSB50

9 RUX50P 22 TK70P

10 RC26P 23 RV20P

11 QDA50 23 RV80P

11 KDA50 24 TK60P

12 BDASO 25 Sii

12 KDB50 26 KFSQSA

13 RRDSOP 27 SHAC

14 QDA25 28 CIXCA

14 KDA25 29 CIXCB

(continued on next page)

DCL1-320

EXAMPLE

Lexical Functions
F$GETDVI

Table DCL 1-8 (Cont.) Values Returned by the DEVTYPE Item

Value Device Type Value

Device Class: DC$_MAILBOX

1 MBX

2 SHRMBX

3 NULL

Device Class: DC$_JOURNAL

0 UNKNJNL 3

1 RUJNL 4

2 BIJNL 5

Device Class: DC$_REMCSL_STORAGE

OAP-
accessed
device

Device Class: DC$_MISC

1

2

DN11

PV

3

4

Device Type

AIJNL

ATJNL

CLJNL

SFUN9

USERS

$ ERR = F$GETDVI (11_DQAO II'
11 ERRCNT 11

)

$ SHOW SYMBOL ERR
ERR = 0 Hex = 00000000 Octal = 000000

This example shows how to use the F$GETDVI function to return an error
count for the device DQAO. You must place quotation marks (" 11

) around
the device name DQAO and the item ERRCNT because they are string
literals.

DCL1-321

Lexical Functions
F$GETJPI

F$GETJPI

FORMAT

return value

ARGUMENTS

Returns accounting, status, and identification information for the specified
process.

Requires GROUP privilege to obtain information on other processes in
the same group. Requires WORLD privilege to obtain information on any
other processes in the system.

F$GET JPl(pid,item)

Either an integer or a character string, depending on the item you request.
Table DCLl-9 shows the data types of the values returned for each item.

pid
Specifies the process identification (PID) number of the process for which
information is being reported. Specify the pid argument as a character
string expression. You can omit the leading zeros.

If you specify a null string (" "), the current PID number is used.

You cannot use a wildcard to specify the pid argument in the F$GETJPI
function, as you can with the $GETJPI system service. To get a list of
process identification numbers, use the F$PID function.

item
Indicates the type of process information to be returned. Specify the item
argument as a character string expression. You can specify any one of the
items listed in Table DCLl-9.

DESCRIPTION The F$GETJPI lexical function invokes the $GETJPI system service

DCL1-322

to return accounting, status, and identification information for the
specified process. The function returns information on all items that
can be specified with the $GETJPI system service. For more information
on the $GETJPI system service, see the VMS System Services Reference
Manual.

Table DCLl-9 lists the items you can specify with the F$GETJPI function,
the information returned, and the data type of this information.

Table DCL 1-9 F$GET JPI Items

Return
Item Type

ACCOUNT String

APTCNT Integer

ASTA CT Integer

ASTCNT Integer

A STEN Integer

ASTLM Integer

AUTHPRI Integer

AUTHPRIV String

BIOCNT Integer

BIOLM Integer

BUFIO Integer

BYTCNT Integer

BYTLM Integer

CLINAME String

CPULIM Integer

CPUTIM Integer

CREPRC_FLAGS Integer

CURPRIV String

DFPFC Integer

DFWSCNT Integer

DIOCNT Integer

DIOLM Integer

DIRIO Integer

EFCS Integer

EFCU Integer

EFWM Integer

ENQCNT Integer

ENQLM Integer

EXCVEC Integer

Lexical Functions
F$GETJPI

Information Returned

Account name string (8 characters filled with
trailing blanks).

Active page table count.

Access modes with active asynchronous
system traps (ASTs).

Remaining AST quota.

Access modes with ASTs enabled.

AST limit quota.

Maximum priority that a process without the
ALTPRI (alter priority) privilege can achieve
with the $SETPRI system service.

Privileges that a process is authorized to
enable.

Remaining buffered 1/0 quota.

Buffered 1/0 limit quota.

Count of process buffered 1/0 operations.

Remaining buffered 1/0 byte count quota.

Buffered 1/0 byte count limit quota.

Current command language interpreter;
always returns DCL.

Limit on process CPU time.

CPU time used in hundredths of a second.

Flags specified by the stsflg argument in the
$CREPRC call that created the process.

Current process privileges.

Default page fault cluster size.

Default working set size.

Remaining direct 1/0 quota.

Direct 1/0 limit quota.

Count of direct 1/0 operations for the
process.

Local event flags 0-31.

Local event flags 32-63.

Event flag wait mask.

Lock request quota remaining.

Lock request quota limit.

Address of a list of exception vectors.

(continued on next page)

DCL1-323

Lexical Functions
F$GETJPI

Table DCL 1-9 {Cont.)

Item

FAST_ VP _SWITCH

Fl LC NT

FILLM

FINALEXC

FREPOVA

FREP1VA

FREPTECNT

GPGCNT

GRP

IMAGECOUNT

I MAG NAME

IMAGPRIV

JOBPRCCNT

JOBTYPE

LAST_LOGIN_I

LAST_LOGIN_N

LOGIN_FAILURES

LOGIN_FLAGS

LOGINTIM

MASTER_PID

DCL1-324

F$GET JPI Items

Return
Type Information Returned

Integer Number of times this process has issued a
vector instruction that enabled an inactive
vector processor without the expense of a
vector context switch.

Integer Remaining open file quota.

Integer Open file quota.

Integer Address of a list of final exception vectors.

Integer First free page at end of program region (PO
space) (irrelevant if no image is running).

Integer First free page at end of control region (P1
space).

Integer Number of pages available for virtual memory
expansion.

Integer Global page count in working set.

Integer Group number of the user identification code
(UIC).

Integer Number of images that have been run down
for the process.

String File name of the current image.

String Privileges with which the current image was
installed.

Integer Number of subprocesses owned by the job.

Integer Execution mode of the process at the root of
the job tree.

String Time of your last interactive login (the value
that was reported when you logged in).

String Time of your last noninteractive login (the
value that was reported when you logged in).

Integer Number of login failures that occurred prior
to the start of the current session (the value
that was reported when you logged in).

Integer A longword bitmask that contains additional
information relating to the login sequence.
(For more information, see the description
of the $GET JPI system service in the VMS
System Services Reference Manual.)

String Process creation time.

String Process identification (PIO) number of
the process at the top of the current job's
process tree.

(continued on next page)

Table DCL 1-9 (Cont.)

Item

MAXDETACH

MAXJOBS

MEM

MODE

MSG MASK

OWNER

PAGEFLTS

PAGFILCNT

PAGFILLOC

PGFLQUOTA

PHO FLAGS

PIO

PPGCNT

PRCCNT

PRCLM

PRCNAM

PRI

PRIS

PROC_INDEX

PROCESS_RIGHTS

PROCPRIV

RIGHTSLIST

SHRFILLM

SITESPEC

Lexical Functions
F$GETJPI

F$GET JPI Items

Return
Type Information Returned

Integer Maximum number of detached processes
allowed the user who owns the process.

Integer Maximum number of active processes
allowed for the user who owns the process.

Integer Member number of the UIC.

String Current process mode (BATCH,
INTERACTIVE, NETWORK, or OTHER).

Integer Default message mask.

String Process identification number of process
owner.

Integer Count of page faults.

Integer Remaining paging file quota.

Integer Location of the paging file.

Integer Paging file quota (maximum virtual page
count).

Integer Flags word.

String Process identification number.

Integer Process page count.

Integer Number of subprocesses owned by the
process.

Integer Subprocess quota.

String Process name.

Integer Process's current priority.

Integer Process's base priority.

Integer Process's index number.

String The contents of the process's local rights
list, including your UIC. This item code
returns a list of identifier names separated by
commas(,).

String Process's default privileges.

String The contents of all of the process rights lists;
the equivalent of PROCESS_RIGHTS plus
SYSTEM_RIGHTS. This item code returns a
list of identifier names separated by commas.

Integer Maximum number of open shared files
allowed for the job to which the process
belongs.

Integer Per-process site-specific longword.

(continued on next page)

DCL1-325

Lexical Functions
F$GETJPI

Table DCL 1-9 (Cont.)

Item

SLOW_ VP _SWITCH

STATE

STS

SWPFILLOC

SYSTEM_RIGHTS

TABLENAME

TERMINAL

TMBU

TQCNT

TQLM

UAF_FLAGS

UIC

USERNAME

VIRTPEAK

VOLUMES

VP _CONSUMER

VP_CPUTIM

WSAUTH

WSAUTHEXT

WSEXTENT

WSPEAK

WSQUOTA

WSSIZE

DCL1-326

F$GET JPI Items

Return
Type Information Returned

Integer Number of times this process has issued a
vector instruction that enabled an inactive
vector processor with a full vector context
switch.

String Process state.

Integer Process status flags.

Integer Location of the swap file.

String The contents of the system rights list for
the process. This item code returns a list of
identifier names separated by commas.

String File specification of the process's current
command language interpreter (CLI) table.

String Login terminal name for interactive users
(1-7 characters).

Integer Termination mailbox unit number.

Integer Remaining timer queue entry quota.

Integer Timer queue entry quota.

Integer User authorization file (UAF) flags from
the UAF record of the user who owns the
process.

String Process's user identification code (UIC).

String User name string (12 characters filled with
trailing blanks).

Integer Peak virtual address size.

Integer Count of currently mounted volumes.

Boolean Flag indicating whether the process is a
vector consumer.

Integer Total amount of time the process has
accumulated as a vector customer.

Integer Maximum authorized working set size.

Integer Maximum authorized working set extent.

Integer Current working set extent.

Integer Working set peak.

Integer Working set size quota.

Integer Process's current working set size.

EXAMPLE

Lexical Functions
F$GETJPI

If you use the F$GETJPI function to request information on the null
process or the swapper process, you can specify any of the items in
Table DCLl-9 except the following:

ACCOUNT
BYTLM
EN QC NT
ENQLM
EX CV EC
Fl LC NT
FILM
FINALEXC
I MAG NAME
LOGINTIM
MSG MASK
PAGFILCNT

PGFLQUOTA
PRCCNT
PRCLM
PROCPRIV
SITESPEC
TQCNT
TQLM
USERNAME
VIRTPEAK
VOLUMES
WSPEAK

$ NAME = F$GETJPI ("3B0018", "USERNAME")
$ SHOW SYMBOL NAME

NAME = "JANE"

This example shows how to use the F$GETJPI function to return the user
name for the process number 3B0018. The user name is assigned to the
symbol NAME.

DCL1-327

Lexical Functions
F$GETQUI

F$GETQUI

FORMAT

return value

ARGUMENTS

Function

CANCEL_ OPERATION

Returns information about queues, batch and print jobs currently in those
queues, form definitions, and characteristic definitions kept in the system job
queue file.

Requires read (R) access to the job or SVSPRV (system privilege) or
OPER (operator) privilege to obtain job and file information.

F$GETQUl(function,[item],[object-id],[flags])

Either an integer or a character string, depending on the item you request.
For items that return a Boolean value, the string is TRUE or FALSE. If
the $GETQUI system service returns an error code, F$GETQUI returns a
null string (" ").

function
Specifies the action that the F$GETQUI lexical function is to perform.
F$GETQUI supports all functions that can be specified with the $GETQUI
system service. The following table lists these functions:

Description

Terminates any wildcard operation that may have been initiated by a previous
call to F$GETQUI.

DISPLAY _CHARACTERISTIC Returns information about a specific characteristic definition or the next
characteristic definition in a wildcard operation.

DISPLAY _ENTRY

DISPLAY _FILE

DISPLAY _FORM

DCL1-328

Returns information about a specific job entry or the next job entry that
matches the selection criteria in a wildcard operation. The DISPLAY _ENTRY
function code is similar to the DISPLAY _JOB function code in that both return
job information. DISPLAY _JOB, however, requires that a call be made to
establish queue context; DISPLAY_ENTRY does not require that queue
context be established.

Returns information about the next file defined for the current job context.
Before you make a call to F$GETQUI to request file information, you must
make a call to display queue and job information (with the DISPLAY_QUEUE
and DISPLAY _JOB function codes) or to display entry information (with the
DISPLAY _ENTRY function code).

Returns information about a specific form definition or the next form definition
in a wildcard operation.

Function

DISPLAY _JOB

DISPLAY _QUEUE

TRANSLATE_ QUEUE

Function

Description

Lexical Functions
F$GETQUI

Returns information about the next job defined for the current queue context.
Before you make a call to F$GETQUI to request job information, you must
make a call to display queue information (with the DISPLAY _QUEUE function
code). The DISPLAY_JOB function code is similar to the DISPLAY_ENTRY
function code in that both return job information. DISPLAY _JOB, however,
requires that a call be made to establish queue context; DISPLAY _ENTRY
does not require that queue context be established.

Returns information about a specific queue definition or the next queue
definition in a wildcard operation.

Translates a logical name for a queue to the equivalence name for the queue.

Some function arguments cannot be specified with the item-code, the ·
object-id, or the flags argument. The following table lists each function
argument and corresponding format line to show whether the item-code,
object-id and flags arguments are required, optional, or not applicable for
that specific function. In the following format lines, brackets ([]) denote
an optional argument. An omitted argument means the argument is not
applicable for that function. Note that two commas (,,)must be used as
placeholders to denote an omitted (whether optional or not applicable)
argument.

Format Line

CANCEL_ OPERATION

DISPLAY _CHARACTERISTIC

DISPLAY _ENTRY

F$GETQUl("CANCEL_OPERATION") or F$GETQUI("")

F$GETQU !("DISPLAY_ CHARACTERISTIC" ,[item],object-id,[flags])

F$G ETQU I ("DISPLAY _ENTRY" ,[item],[object-id],[flags])

DISPLAY _FILE

DISPLAY _FORM

DISPLAY _JOB

DISPLAY_QUEUE

TRANSLATE_ QUEUE

item

F$GETQU l("DISPLAY _FILE" ,[item],,[flags])

F$GETQU l("DISPLAY _FORM" ,[item],object-id,[flags])

F$GETQUl("DISPLAY_JOB",[item],,[flags])

F$GETQUl("DISPLAY_QUEUE",[item],object-id,[flags])

F$GETQUl("TRANSLATE_QUEUE",[item],object-id)

Corresponds to a $GETQUI system service output item code. The item
argument specifies the kind of information you want returned about a
particular queue, job, file, form, or characteristic. Table DCLl-10 lists
each item code and the data type of the value returned for each item code.

object-id
Corresponds to the $GETQUI system service QUI$SEARCH_NAME and
QUI$_SEARCH_NUMBER input item codes. The object-id argument
specifies either the name or the number of an object (for example, a
specific queue name or form number) about which F$GETQUI is to return
information. Wildcard characters (* and %) are allowed for the following
functions:

• DISPLAY_CHARACTERISTIC

• DISPLAY_ENTRY

DCL1-329

Lexical Functions
F$GETQUI

Keyword

ALL_JOBS

BATCH

EXECUTING_JOBS

FREEZE_ CONTEXT

GENERIC

HOLDING_JOBS

PENDING_JOBS

PRINTER

RETAINED_JOBS

SERVER

SYMBIONT

TERMINAL

DCL1-330

• DISPLAY_FORM

• DISPLAY_QUEUE

By specifying a wildcard as the object-id argument on successive calls,
you can get status information about one or more jobs in a specific queue
or about files within jobs in a specific queue. When a wildcard name is
used, each call returns information for the next object (queue, form, and so
on) in the list. A null string (" ") is returned when the end of the list is
reached. A wildcard can represent only object names, not object numbers.

flags
Specifies a list of keywords, separated by commas, that corresponds to the
flags defined for the $GETQUI system service QU1$_SEARCH_FLAGS
input item code. (These flags are used to define the scope of the object
search specified in the call to the $GETQUI system service.) Note that the
following keywords can be used only with certain function codes:

Valid Function Code Description

DISPLAY _JOB Requests that F$GETQUI search all jobs included in
the established queue context. If you do not specify
this flag, F$GETQUI returns information only about
jobs that have the same user name as the caller.

DISPLAY_QUEUE DISPLAY_ Selects batch queues.
ENTRY

DISPLAY_ENTRY DISPLAY_ Selects executing jobs.
JOB

DISPLAY_ When in wildcard mode, prevents advance of
CHARACTERISTIC wildcard context to the next object. If you do not
DISPLAY _ENTRY specify this flag, the context is advanced to the next
DISPLAY _FILE object.
DISPLAY _FORM
DISPLAY _JOB
DISPLAY _QUEUE

DISPLAY _QUEUE Selects generic queues for searching.

DISPLAY_ENTRY DISPLAY_ Selects jobs on unconditional hold.
JOB

DISPLAY_ENTRY DISPLAY_ Selects pending jobs.
JOB

DISPLAY _QUEUE DISPLAY_ Selects printer queues.
ENTRY

DISPLAY _ENTRY DISPLAY_ Selects jobs being retained.
JOB

DISPLAY _QUEUE DISPLAY_ Selects server queues.
ENTRY

DISPLAY _QUEUE DISPLAY_ Selects all output queues. Equivalent to specifying
ENTRY "PRINTER,SERVER,TERMINAL".

DISPLAY_QUEUE DISPLAY_ Selects terminal queues.
ENTRY

Keyword

THIS_JOB

TIMED _RELEASE_JOBS

WILDCARD

Valid Function Code

DISPLAY _FILE DISPLAY_
JOB DISPLAY _QUEUE

DISPLAY _ENTRY DISPLAY_
JOB

DISPLAY_
CHARACTERISTIC
DISPLAY _ENTRY
DISPLAY _FORM
DISPLAY _QUEUE

Description

Lexical Functions
F$GETQUI

Selects all job file information about the calling batch
job, the command file being executed, or the queue
associated with the calling batch job.

Selects jobs on hold until a specified time.

Establishes and saves a context. Because the
context is saved, the next operation can be
performed based on that context.

DESCRIPTION The F$GETQUI lexical function invokes the $GETQUI system service to
return information about queues, batch and print jobs currently in those
queues, form definitions, and characteristic definitions kept in the system
job queue file. The F$GETQUI lexical function provides all the features
of the $GETQUI system service, including wildcard and nested wildcard
operations. For example, in nested wildcard operations, $GETQUI returns
information about objects defined within another object. Specifically,
this mode allows you to query jobs contained in a selected queue or files
contained in a selected job in a sequence of calls. After each call, the
system saves the GQC (internal GETQUI context block) so that the GQC
can provide the queue or job context necessary for subsequent calls. For
more information, see the description of the $GETQUI system service in
the VMS System Services Reference Manual.

The F$GETQUI function returns information on all items that can be
specified with the $GETQUI system service. Table DCLl-10 lists the
items you can specify with the F$GETQUI function, the information
returned, and the data type of this information.

Table DCL1-10 F$GETQUI Items

Item

ACCOUNT _NAME

AFTER_ TIME

ASSIGNED_QUEUE_NAME

BASE_PRIORITY

CHARACTERISTICS

CHARACTERISTIC_NAME

CHARACTERISTIC_NUMBER

Return
Type

String

String

String

Integer

String

String

Integer

Information Returned

The account name of the owner of the specified job.

The system time at or after which the specified job can execute.

The name of the execution queue to which the logical queue
specified in the call to F$GETQUI is assigned.

The priority at which batch jobs are initiated from a batch
execution queue or the priority of a symbiont process that controls
output exec~tion queues.

The characteristics associated with the specified queue or job.

The name of the specified characteristic.

The number of the specified characteristic.

(continued on next page)

DCL1-331

Lexical Functions
F$GETQUI

Table DCL1-10 (Cont.) F$GETQUI Items

Item

CHECKPOINT _DATA

CLI

COMPLETED_BLOCKS

CONDITION_ VECTOR

CPU_DEFAULT

CPU_LIMIT

DEFAULT _FORM_NAME

DEFAULT_FORM_STOCK

DEVICE_NAME

ENTRY _NUMBER

EXECUTING_JOB_ COUNT

FILE_BURST

FILE_ CHECKPOINTED

FILE_ COPIES

FILE_COPIES_DONE

FILE_ DELETE

FILE_DOUBLE_SPACE

FILE_EXECUTING

DCL1-332

Return
Type

String

String

Integer

Integer

String

String

String

String

String

Integer

Integer

String

String

Integer

Integer

String

String

String

Information Returned

The value of the DCL symbol BATCH$RESTART when the
specified batch job is restarted.

The name of the command language interpreter (CLI) used to
execute the specified batch job. The file specification returned
assumes the device name SYS$SYSTEM and the file type EXE.

The number of blocks that the symbiont has processed for the
specified print job. This item code is applicable only to print jobs.

The completion status of the specified job.

The default CPU time limit specified for the queue in delta time.
This item code is applicable only to batch execution queues.

The maximum CPU time limit specified for the specified job or
queue in delta time. This item code is applicable only to batch
jobs and batch execution queues.

The name of the default form associated with the specified output
queue.

The name of the paper stock on which the specified default form
is to be printed.

The node and device (or both) on which the specified execution
queue is located. For output execution queues, only the device
name is returned. The node name is used only in VAXcluster
systems. The node name is specified by the SYSGEN parameter
SCSNODE for the processor on which the queue executes.

For batch execution queues, a null string ("") is returned. To get
the name of the node on which a batch queue is executing, use
the SCSNODE_NAME item.

The queue entry number of the specified job.

The number of jobs in the queue that are currently executing.

TRUE or FALSE to indicate whether burst and flag pages are to
be printed preceding a file.

TRUE or FALSE to indicate whether the specified file is
checkpointed.

The number of times the specified file is to be processed. This
item code is applicable only to output execution queues.

The number of times the specified file has been processed. This
item code is applicable only to output execution queues.

TRUE or FALSE to indicate whether the specified file is to be
deleted after execution of request.

TRUE or FALSE to indicate whether the symbiont formats the file
with double spacing.

TRUE or FALSE to indicate whether the specified file is being
processed.

(continued on next page)

Table DCL 1-10 (Cont.) F$GETQUI Items

Item

FILE_FLAG

FILE_FLAGS

FILE_IDENTIFICATION

FILE_PAGE_HEADER

FILE_PAGINATE

FILE_PASSALL

FILE_SETUP _MODULES

FILE_SPECIFICATION

FILE_STATUS

FILE_ TRAILER

FIRST_PAGE

Return
Type

String

Integer

String

String

String

String

String

String

Integer

String

Integer

Information Returned

Lexical Functions
F$GETQUI

TRUE or FALSE to indicate whether a flag page is to be printed
preceding a file.

The processing options that have been selected for the specified
file. The integer represents a bit field. To find the settings of
each bit in the field, use one of the following items in place of
FILE_ FLAGS:

FILE_ BURST

FILE_ DELETE

FILE_DOUBLE_SPACE

FILE_FLAG

FILE_PAGE_HEADER

FILE_PAGINATE

FILE_PASSALL

FILE_ TRAILER

The internal file-identification value that uniquely identifies the
selected file. This value specifies (in order) the following three
file-identification fields in the RMS NAM block:

NAM$T_DVI (16 bytes)

NAM$W_FID (6 bytes)

NAM$W_DID (6 bytes)

TRUE or FALSE to indicate whether a page header is to be
printed on each page of output.

TRUE or FALSE to indicate whether the symbiont paginates
output by inserting a form feed whenever output reaches the
bottom margin of the form.

TRUE or FALSE to indicate whether the symbiont prints the file in
PASSALL mode.

The names of the text modules that are to be extracted from
the device control library and copied to the printer before the
specified file is printed. This item code is meaningful only for
output execution queues.

The fully qualified RMS file specification of the file about which
F$GETQUI is returning information.

File status information. The integer represents a bit field. To find
the settings of each bit in the field, use one of the following items
in place of FILE_STATUS:

FILE_CHECKPOINTED

FILE_EXECUTING

TRUE or FALSE to indicate whether a trailer page is to be printed
following a file.

The page number at which the printing of the specified file is
to begin. This item code is applicable only to output execution
queues.

(continued on next page)

DCL1-333

Lexical Functions
F$GETQUI

Table DCL 1-10 (Cont.) F$GETQUI Items

Item

FORM_DESCRIPTION

FORM_FLAGS

FORM_LENGTH

FORM_MARGIN_BOTTOM

FORM_MARGIN_LEFT

FORM_MARGIN_RIGHT

FORM_MARGIN_ TOP

FORM_NAME

FORM_ NUMBER

FORM_SETUP_MODULES

FORM_ SHEET _FEED

FORM_ STOCK

FORM_ TRUNCATE

FORM_ WIDTH

FORM_ WRAP

GENERIC_TARGET

HOLDING_JOB_COUNT

INTERVENING_BLOCKS

DCL1-334

Return
Type

String

Integer

Integer

Integer

Integer

Integer

Integer

String

Integer

String

String

String

String

Integer

String

String

- Integer

Integer

Information Returned

The text string that describes the specified form to users and
operators.

The processing options that have been selected for the specified
form. The integer represents a bit field. To find the settings of
each bit in the field, use one of the following items in place of
FORM_FLAGS:

FORM_ SHEET _FEED

FORM_ TRUNCATE
FORM_ WRAP

The physical length of the specified form in lines. This item code
is applicable only to output execution queues.

The bottom margin of the specified form in lines.

The left margin of the specified form in characters.

The right margin of the specified form in characters.

The top margin of the specified form in lines.

The name of the specified form or the mounted form associated
with the specified job or queue.

The number of the specified form.

The names of the text modules that are to be extracted from the
device control library and copied to the printer before a file is
printed on the specified form. This item code is meaningful only
for output execution queues.

TRUE or FALSE to indicate whether the symbiont pauses at the
end of each physical page so that another sheet of paper can be
inserted.

The name of the paper stock on which the specified form is to be
printed.

TRUE or FALSE to indicate whether the printer discards any
characters that exceed the specified right margin.

The width of the specified form.

TRUE or FALSE to indicate whether the printer prints any
characters that exceed the specified right margin on the following
line.

The names of the execution queues that are enabled to accept
work from the specified generic queue. This item code is
meaningful only for generic queues.

The number of jobs in the queue being held until explicitly
released.

The number of blocks to be processed before the specified job
can begin to execute. This item code is meaningful only for output
execution queues.

(continued on next page)

Table DCL 1-10 (Cont.) F$GETQUI Items

Item

INTERVENING_JOBS

JOB_ABORTING

JOB_ COPIES

JOB_COPIES_DONE

JOB_CPU_LIMIT

JOB_EXECUTING

JOB_FILE_BURST

JOB_FILE_BURST _ONE

JOB_FILE_FLAG

JOB_FILE_FLAG_ONE

JOB_FILE_PAGINATE

JOB_FILE_ TRAILER

JOB_FILE_ TRAILER_ONE

JOB_FLAGS

Return
iype

Integer

String

Integer

Integer

String

String

String

String

String

String

String

String

String

Integer

Information Returned

Lexical Functions
F$GETQUI

The number of jobs that are to be processed before the specified
job can begin to execute. This item code is meaningful only for
output execution queues.

TRUE or FALSE to indicate whether the system is attempting to
abort the execution of a job.

The number of times the specified print job is to be repeated.

The number of times that the specified print job has been
repeated.

TRUE or FALSE to indicate whether a CPU time limit is specified
for the job.

TRUE or FALSE to indicate whether the specified job is executing
or printing.

TRUE or FALSE to indicate whether a burst page option is
explicitly specified for the job.

TRUE or FALSE to indicate whether burst and flag pages precede
only the first copy of the first file in the job.

TRUE or FALSE to indicate whether a flag page precedes each
file in the job.

TRUE or FALSE to indicate whether a flag page precedes only
the first copy of the first file in the job.

TRUE or FALSE to indicate whether a paginate option is explicitly
specified for the job.

TRUE or FALSE to indicate whether a trailer page follows each
file in the job.

TRUE or FALSE to indicate whether a trailer page follows only the
last copy of the last file in the job.

The processing options selected for the specified job. The integer
represents a bit field. To find the settings of each bit in the field,
use one of the following items in place of JOB_FLAGS:

JOB_CPU_LIMIT

JOB_FILE_BURST

JOB_FILE_BURST ONE

JOB_FILE_FLAG

JOB_FILE_FLAG_ONE

JOB_FILE_PAGINATE

JOB_FILE_ TRAILER

JOB_FILE_ TRAILER_ ONE

JOB_LOG_DELETE

JOB_LOG_NULL

JOB_LOG_SPOOL

JOB_LOWERCASE

JOB_NOTIFY

JOB_RESTART

JOB_WSDEFAULT

JOB_WSEXTENT

JOB_WSQUOTA

(continued on next page)

DCL1-335

Lexical Functions
F$GETQUI

Table DCL 1-10 {Cont.) F$GETQUI Items

Item

JOB_HOLDING

JOB_INACCESSIBLE

JOB_LIMIT

JOB_LOG_DELETE

JOB_LOG_NULL

JOB_LOG_SPOOL

JOB_LOWERCASE

JOB_NAME

JOB_NOTIFY

JOB_PENDING

JOB_PID

JOB_REFUSED

JOB_RESET_MODULES

JOB_RESTART

JOB_RETAINED

DCL1-336

Return
Type

String

String

Integer

String

String

String

String

String

String

String

String

String

String

String

String

Information Returned

TRUE or FALSE to indicate whether the job will be held until it is
explicitly released.

TRUE or FALSE to indicate whether the caller does not have
read access to the specific job and file information in the system
queue file. When FALSE, the DISPLAY_JOB and DISPLAY_FILE
operations can return information for only the following output
value item codes:

AFTER_ TIME

COMPLETED_BLOCKS

ENTRY _NUMBER

INTERVENING_BLOCKS

INTERVENING_JOBS

JOB_SIZE

JOB_ STATUS

The number of jobs that can execute simultaneously on the
specified queue. This item code is applicable only to batch
execution queues.

TRUE or FALSE to indicate whether the log file is deleted after it
is printed.

TRUE or FALSE to indicate whether a log file is not created.

TRUE or FALSE to indicate whether the job log file is queued for
printing when the job is complete.

TRUE or FALSE to indicate whether the job is to be printed on a
printer that can print both uppercase and lowercase letters.

The name of the specified job.

TRUE or FALSE to indicate whether a message is broadcast to a
terminal when a job completes or aborts.

TRUE or FALSE to indicate whether the job is pending.

The process identification (PIO) number of the executing batch
job.

TRUE or FALSE to indicate whether the job was refused by
the symbiont and is waiting for the symbiont to accept it for
processing.

The names of the text modules that are to be extracted from the
device control library and copied to the printer before each job in
the specified queue is printed. This item code is meaningful only
for output execution queues.

TRUE or FALSE to indicate whether the job will restart after a
system failure or can be requeued during execution.

TRUE or FALSE to indicate whether the job has completed, but is
being retained in the queue.

(continued on next page)

Table DCL1-10 (Cont.) F$GETQUI Items

Item

JOB_SIZE

JOB_SIZE_MAXIMUM

JOB_SIZE_MINIMUM

JOB_STARTING

JOB_STATUS

JOB_ SUSPENDED

JOB_ TIMED_RELEASE

JOB_WSDEFAULT

JOB_WSEXTENT

JOB_WSQUOTA

LAST_PAGE

LIBRARY _SPECIFICATION

LOG_ QUEUE

LOG_SPECIFICATION

Return
Type

Integer

Integer

Integer

String

Integer

String

String

String

String

String

Integer

String

String

String

Information Returned

Lexical Functions
F$GETQUI

The total number of blocks in the specified print job.

The maximum number of blocks that a print job initiated from the
specified queue can contain. This item code is applicable only to
output execution queues.

The minimum number of blocks that a print job initiated from the
specified queue can contain. This item code is applicable only to
output execution queues.

TRUE or FALSE to indicate whether the job controller is starting
to process the job and has begun communicating with an output
symbiont or a job controller on another node.

The specified job's status flags. The integer represents a bit field.
To find the settings of each bit in the field, use one of the following
items in place of JOB_STATUS:

ABORTING

JOB_EXECUTING

JOB_HOLDING

JOB_INACCESSIBLE

JOB_PENDING

JOB_REFUSED

JOB_RETAINED

JOB_ STARTING

JOB_ SUSPENDED

JOB_ TIMED_RELEASE

TRUE or FALSE to indicate whether the job is suspended.

TRUE or FALSE to indicate whether the job is waiting for a
specified time to execute.

TRUE or FALSE to indicate whether a default working set size is
specified for the job.

TRUE or FALSE to indicate whether a working set extent is
specified for the job.

TRUE or FALSE to indicate whether a working set quota is
specified for the job.

The page number at which the printing of the specified file should
end. This item code is applicable only to output execution queues.

The name of the device control library for the specified queue.
The library specification assumes the device and directory
name SYS$LIBRARY and a file type of TLB. This item code
is meaningful only for output execution queues.

The name of the queue into which the log file produced for the
specified batch job is to be entered for printing. This item code is
applicable only to batch jobs.

The name of the log file to be produced for the specified job. This
item code is meaningful only for batch jobs.

(continued on next page)

DCL1-337

Lexical Functions
F$GETQUI

Table DCL1-10 (Cont.) F$GETQUI Items

Item

NOTE

OPERATOR_REQUEST

OWNER_UIC

PAGE_SETUP_MODULES

PARAMETER_ 1 to
PARAMETER_ a
PENDING_JOB_BLOCK_
COUNT

PENDING_JOB_COUNT

PENDING_JOB_REASON

PEND_CHAR_MISMATCH

PEND_JOB_SIZE_MAX

PEND_JOB_SIZE_MIN

PEND_LOWERCASE_
MISMATCH

PEND_NO_ACCESS

PEND_QUEUE_BUSY

PEND_QUEUE_STATE

DCL1-338

Return
Type

String

String

String

String

String

Integer

Integer

Integer

String

String

String

String

String

String

String

Information Returned

The note that is to be printed on the job flag and file flag pages
of the specified job. This item code is meaningful only for output
execution queues.

The message that is to be sent to the queue operator before the
specified job begins to execute. This item code is meaningful only
for output execution queues.

The owner user identification code (UIC) of the specified queue.

The names of the text modules to be extracted from the device
control library and copied to the printer before each page of the
specified form is printed.

The value of the user-defined parameters that become the value
of the DCL symbols P1 to P8 respectively.

The total number of blocks for all pending jobs in the queue (valid
only for output execution queues).

The number of jobs in the queue in a pending state.

The reason that the job is in a pending state. The integer
represents a bit field. To find the settings of each bit in the
field, use one of the following items in place of PENDING_JOB_
REASON:

PEND_CHAR_MISMATCH

PEND_JOB_SIZE_MAX

PEND_JOB_SIZE_MIN

PEND_LOWERCASE_
MISMATCH

PEND_NO_ACCESS

PEND_QUEUE_BUSY

PEND_QUEUE_STATE

PEND_STOCK_
MISMATCH

TRUE or FALSE to indicate whether the job requires
characteristics that are not available on the execution queue.

TRUE or FALSE to indicate whether the block size of the job
exceeds the upper block limit of the execution queue.

TRUE or FALSE to indicate whether the block size of the job is
less than the lower limit of the execution queue.

TRUE or FALSE to indicate whether the job requires a lowercase
printer.

TRUE or FALSE to indicate whether the owner of the job does not
have access to the execution queue.

TRUE or FALSE to indicate whether the job is pending because
the number of jobs currently executing on the queue equals the
job limit for the queue.

TRUE or FALSE to indicate whether the job is pending because
the execution queue is not in a running open state.

(continued on next page)

Table DCL 1-10 (Cont.) F$GETQUI Items

Item

PEND_STOCK_MISMATCH

PRIORITY

PROCESSOR

PROTECTION

QUEUE_ACL_SPECIFIED

QUEUE_ALIGNING

QUEUE_BATCH

QUEUE_ CLOSED

QUEUE_CPU_DEFAULT

QUEUE_CPU_LIMIT

QUEUE_DESCRIPTION

QUEUE_FILE_BURST

QUEUE_FILE_BURST _ONE

QUEUE_FILE_FLAG

QUEUE_FILE_FLAG_ONE

QUEUE_FILE_PAGINATE

QUEUE_FILE_ TRAILER

QUEUE_FILE_ TRAILER_ONE

Return
Type

String

Integer

String

String

String

String

String

String

String

String

String

String

String

String

String

String

String

String

Lexical Functions
F$GETQUI

Information Returned

TRUE or FALSE to indicate whether the stock type required by
the job's form does not match the stock type of the form mounted
on the execution queue.

The scheduling priority of the specified job.

The name of the symbiont image that executes print jobs initiated
from the specified queue.

The specified queue's protection mask.

TRUE or FALSE to indicate whether an access control list has
been specified for the queue.

TRUE or FALSE to indicate whether the queue is currently
printing alignment pages. A queue prints alignment pages when
it is restarted from a paused state by using the command START
/QUEUE/ALIGN.

TRUE or FALSE to indicate whether the queue is a batch queue
or a generic batch queue.

TRUE or FALSE to indicate whether the queue is closed and will
not accept new jobs until the queue is put in an open state.

TRUE or FALSE to indicate whether a default CPU time limit has
been specified for all jobs in the queue.

TRUE or FALSE to indicate whether a maximum CPU time limit
has been specified for all jobs in the queue.

The description of the queue that was defined by using the
/DESCRIPTION qualifier with the INITIALIZE/QUEUE command.

TRUE or FALSE to indicate whether burst and flag pages precede
each file in each job initiated from the queue.

TRUE or FALSE to indicate whether burst and flag pages precede
only the first copy of the first file in each job initiated from the
queue.

TRUE or FALSE to indicate whether a flag page precedes each
file in each job initiated from the queue.

TRUE or FALSE to indicate whether a flag page precedes only
the first copy of the first file in each job initiated from the queue.

TRUE or FALSE to indicate whether the output symbiont
paginates output for each job initiated from this queue. The output
symbiont paginates output by inserting a form feed whenever
output reaches the bottom margin of the form.

TRUE or FALSE to indicate whether a trailer page follows each
file in each job initiated from the queue.

TRUE or FALSE to indicate whether a trailer page follows only the
last copy of the last file in each job initiated from the queue.

(continued on next page)

DCL1-339

Lexical Functions
F$GETQUI

Table DCL1-10 (Cont.) F$GETQUI Items

Item

QUEUE_FLAGS

QUEUE_GENERIC

QUEUE_ GENERIC_
SELECTION

QUEUE_IDLE

QUEUE_JOB_BURST

QUEUE_JOB_FLAG

QUEUE_JOB_SIZE_SCHED

QUEUE_JOB_ TRAILER

QUEUE_LOWERCASE

QUEUE_NAME

DCL1-340

Return
Type

Integer

String

String

String

String

String

String

String

String

String

Information Returned

The processing options that have been selected for the specified
queue. The integer represents a bit field. To find the settings of
each bit in the field, use one of the following items in place of
QUEUE_FLAGS:

QUEUE_ACL_SPECIFIED QUEUE_JOB_BURST
QUEUE_BATCH QUEUE_JOB_FLAG
QUEUE_CPU_DEFAULT QUEUE_JOB_SIZE_
QUEUE_CPU_LIMIT SCH ED

QUEUE_FILE_BURST QUEUE_JOB_ TRAILER

QUEUE_FILE_BURST _ QUEUE_PRINTER
ONE QUEUE_RECORD_
QUEUE_FILE_FLAG BLOCKING

QUEUE_FILE_FLAG_ONE QUEUE_RETAIN_ALL

QUEUE_FILE_PAGINATE QUEUE_RETAIN -
QUEUE_FILE_ TRAILER ERROR

QUEUE_FILE_ TRAILER_ QUEUE_ SWAP

ONE QUEUE_ TERMINAL

QUEUE_ GENERIC QUEUE_WSDEFAULT

QUEUE_ GENERIC_ QUEUE_WSEXTENT
SELECTION QUEUE_WSQUOTA

TRUE or FALSE to indicate whether the queue is a generic
queue.

TRUE or FALSE to indicate whether the queue is an execution
queue that can accept work from a generic queue.

TRUE or FALSE to indicate whether the queue contains no job
requests.

TRUE or FALSE to indicate whether burst and flag pages precede
each job initiated from the queue.

TRUE or FALSE to indicate whether a flag page precedes each
job initiated from the queue.

TRUE or FALSE to indicate whether jobs initiated from the queue
are scheduled according to size with the smallest job of a given
priority processed first. (Meaningful only for output queues.)

TRUE or FALSE to indicate whether a trailer page follows each
job initiated from the queue.

TRUE or FALSE to indicate whether queue is associated with a
printer that can print both uppercase and lowercase characters.

The name of the specified queue or the name of the queue that
contains the specified job.

(continued on next page)

Table DCL1-10 (Cont.) F$GETQUI Items

Item

QUEUE_PAUSED

QUEUE_PAUSING

QUEUE_PRINTER

QUEUE_RECORD_BLOCKING

QUEUE_REMOTE

QUEUE_RESETTING

QUEUE_RESUMING

QUEUE_RETAIN_ALL

QUEUE_RETAIN_ERROR

QUEUE_SERVER

QUEUE_ STALLED

QUEUE_STARTING

QUEUE_ STATUS

QUEUE_STOPPED

QUEUE_STOPPING

Return
Type

String

String

String

String

String

String

String

String

String

String

String

String

Integer

String

String

Information Returned

Lexical Functions
F$GETQUI

TRUE or FALSE to indicate whether execution of all current jobs
in the queue is temporarily halted.

TRUE or FALSE to indicate whether the queue is temporarily
halting execution. Currently executing jobs are completing;
temporarily, no new jobs can begin executing.

TRUE or FALSE to indicate whether the queue is a printer queue.

TRUE or FALSE to indicate whether the symbiont is permitted to
concatenate, or block together, the output records it sends to the
output device.

TRUE or FALSE to indicate whether the queue is assigned to a
physical device that is not connected to the local node.

TRUE or FALSE to indicate whether the queue is resetting and
stopping.

TRUE or FALSE to indicate whether the queue is restarting after
pausing.

TRUE or FALSE to indicate whether all jobs initiated from the
queue remain in the queue after they finish executing. Completed
jobs are marked with a completion status.

TRUE or FALSE to indicate whether only jobs that do not
complete successfully are retained in the queue.

TRUE or FALSE to indicate whether queue processing is directed
to a server symbiont.

TRUE or FALSE to indicate whether the physical device to which
the queue is assigned is stalled; that is, the device has not
completed the last 1/0 request submitted to it.

TRUE or FALSE to indicate whether the queue is starting.

The specified queue's status flags. The integer represents a bit
field. To find the settings of each bit in the field, use one of the
following items in place of QUEUE_STATUS:

QUEUE_ALIGNING

QUEUE_ CLOSED

QUEUE_IDLE

QUEUE_LOWERCASE

QUEUE_PAUSED

QUEUE_PAUSING

QUEUE_REMOTE

QUEUE_RESETTING

QUEUE_RESUMING

QUEUE_SERVER

QUEUE_ STALLED

QUEUE_STARTING

QUEUE_STOPPED

QUEUE_STOPPING

QUEUE_ UNAVAILABLE

TRUE or FALSE to indicate whether the queue is stopped.

TRUE or FALSE to indicate whether the queue is stopping.

(continued on next page)

DCL1-341

Lexical Functions
F$GETQUI

Table DCL 1-10 (Cont.) F$GETQUI Items

Item

QUEUE_ SWAP

QUEUE_ TERMINAL

QUEUE_ UNAVAILABLE

QUEUE_WSDEFAULT

QUEUE_WSEXTENT

QUEUE_WSQUOTA

REQUEUE_QUEUE_NAME

RESTART_QUEUE_NAME

RETAINED_JOB_COUNT

SCSNODE_NAME

SUBMISSION_ TIME

TIMED_RELEASE_JOB_
COUNT

UIC

USERNAME

WSDEFAULT

WSEXTENT

WSQUOTA

EXAMPLES

Return
Type

String

String

String

String

String

String

String

String

Integer

String

String

Integer

String

String

Integer

Integer

Integer

Information Returned

TRUE or FALSE to indicate whether jobs initiated from the queue
can be swapped.

TRUE or FALSE to indicate whether the queue is a terminal
queue.

TRUE or FALSE to indicate whether the physical device to which
queue is assigned is not available.

TRUE or FALSE to indicate whether a default working set size is
specified for each job initiated from the queue.

TRUE or FALSE to indicate whether a working set extent is
specified for each job initiated from the queue.

TRUE or FALSE to indicate whether a working set quota is
specified for each job initiated from the queue.

The name of the queue to which the specified job is reassigned.

The name of the queue in which the job will be placed if the job is
restarted.

The number of jobs in the queue retained after successful
completion plus those retained on error.

The 6-byte name of the VAX node on which jobs initiated from the
specified queue execute. The node name matches the value of
the SYSGEN parameter SCSNODE for the target node.

The time at which the specified job was submitted to the queue.

The number of jobs in the queue on hold until a specified time.

The user identification code (UIC) of the owner of the specified
job.

The user name of the owner of the specified· job.

The default working set size specified for the specified job or
queue. This value is meaningful only for batch jobs and execution
and output queues.

The working set extent specified for the specified job or queue.
This value is meaningful only for batch jobs and execution and
output queues.

The working set quota for the specified job or queue. This value is
meaningful only for batch jobs and execution and output queues.

I $ BLOCKS = F$GETQUI ("DISPLAY_ENTRY" "JOB_SIZE"' 1347)

DCL1-342

In this example, the F$GETQUI lexical function is used to obtain the size
in blocks of print job 134 7. The value returned reflects the total number of
blocks occupied by the files associated with the job.

Lexical Functions
F$GETQUI

~ $ IF F$GETQUI("DISPLAY_QUEUE", "QUEUE_STOPPED", "VAXl_BATCW') .EQS.
"TRUE" THEN GOTO 500

In this example, the F$GETQUI lexical function is used to return a value
of TRUE or FALSE depending on whether the queue VAXl_BATCH is in a
stopped state. IfVAXl_BATCH is not in the system, F$GETQUI returns a
null string (" ").

! This command procedure shows all queues and the jobs in them.
$ TEMP= F$GETQUI("")
$ QLOOP:
$ QNAME = F$GETQUI("DISPLAY_QUEUE","QUEUE_NAME","*")
$ IF QNAME .EQS. "" THEN EXIT
$ WRITE SYS$0UTPUT ""
$ WRITE SYS$0UTPUT "QUEUE: ", QNAME
$ JLOOP:
$ NOACCESS = F$GETQUI("DISPLAY_JOB","JOB_INACCESSIBLE",,"ALL_JOBS")
$ IF NOACCESS .EQS. "TRUE" THEN GOTO JLOOP
$ IF NOACCESS .EQS. "" THEN GOTO QLOOP
$ JNAME = F$GETQUI("DISPLAY JOB","JOB NAME",,"FREEZE CONTEXT,ALL JOBS")
$ WRITE SYS$0UTPUT " JOB-;-- ", JNAME - -
$ GOTO JLOOP

This sample command procedure displays all the queues in the system and
all the jobs to which the user has read access in the system. In the outer
loop a wildcard display queue operation is performed. No call is made
to establish the right to obtain information about the queue, because all
users have implicit read access to queue attributes. Because a wildcard
queue name is specified (" * "), wildcard queue context is maintained across
calls to F$GETQUI.

In the inner loop, to obtain information about all jobs, we enter nested
wildcard mode from wildcard display queue mode. In this loop, a call is
made to establish the right to obtain information about these jobs because
users do not have implicit read access to jobs. The FREEZE_ CONTEXT
keyword is used in the request for a job name to prevent the advance
of the wildcard context to the next object. After the job name has been
retrieved and displayed, the procedure loops back up for the next job. The
context is advanced because the procedure has not used the FREEZE_
CONTEXT keyword. The wildcard queue context is dissolved when the list
of matching queues is exhausted. Finally, F$GETQUI returns a null string
("") to denote that no more objects match the specified search criteria.

DCL1-343

Lexical Functions
F$GETSYI

F$GETSVI

FORMAT

return value

ARGUMENTS

DCL1-344

Returns status and identification information about the local system (or about
a node in the local VAXcluster, if your system is part of a VAXcluster).

F$GETSVl(item [,node-name] [,cluster-id])

Either an integer or a character string, depending on the item you request.

item
Indicates the type of information to be reported about the local node
(or about another node in your VAX.cluster, if your system is part of a
VAX.cluster). Specify the item as a character string expression.

You can specify the items in Table DCLl-11 only for your local node; you
cannot specify the node argument with these items. You· can specify these
items whether or not you are in a VAX.cluster.

You can specify the items in Table DCLl-12 for either your local node
or for another node in your VAX.cluster. The information in this table
is returned for your local node if you do not specify the node-name
argument; the information is returned for the specified node if you
include the node-name argument. Your system must be a member
of a VAX.cluster in order to specify the items in this table, except for
CLUSTER_MEMBER. You can specify CLUSTER_MEMBER whether or
not your system is a member of a VAX.cluster.

You can also specify any of the SYSGEN parameters listed in the VMS
System Generation Utility Manual. However, you can specify SYSGEN
parameters only for your local node; you cannot specify the node-name
argument with these items.

node-name
Specifies the node in your VAX.cluster for which information is to be
returned. Specify the node as a character string expression. You cannot
use wildcards to specify the node-name argument. (This argument can be
specified only if your system is part of a VAX.cluster.)

You can request information about another node in your VAX.cluster only
when you specify an item from Table DCLl-12. If you do not specify a
node, the default is the current node.

cluster-id
Specifies the cluster node identification number for which the information
is to be returned. (This argument can be specified only if your system is
part of a VAX.cluster.)

You can request information about another node in your VAX.cluster only
when you specify an item from Table DCLl-12. If you do not specify a
node, the default is the current node.

Lexical Functions
F$GETSYI

To get information for all the nodes in a cluster, use the F$CSID lexical
function to obtain each cluster system identification number and use the
cluster-id argument of F$GETSYI to gather information about each node.

DESCRIPTION The F$GETSYI lexical function invokes the $GETSYI system service
to return status and identification information about the local system
(or about a node in the local VAXcluster, if your system is part of a
VAXcluster). The F$GETSYI function returns information on the items
that can be specified with the $GETSYI system service. For more
information on the $GETSYI system service, see the VMS System Services
Reference Manual.

You can specify the node for which you want information by supplying
either the node-name or the cluster-id argument, but not both.

Table DCLl-11 lists the items you can specify with the F$GETSYI lexical
function to get information about your local node. Table DCLl-12 lists the
items you can specify to get information about either your local node or
another node in your VAXcluster.

Table DCL 1-11 F$GETSYI Items for the Local Node Only

Return
Item Type

ACTIVECPU_CNT Integer

ARCH FLAG String

AVAILCPU_CNT Integer

BOOTTIME String

CHARACTER_ String
EMULATED

CONTIG_GBLPAGES Integer

CPU Integer

DECIMAL_EMULATED String

D_FLOAT_EMULATED String

Information Returned

The count of CPUs actively participating
in the current boot of a symmetric
multiprocessing (SMP) system.

Architecture flags for the system.

The count of CPUs recognized in the
system.

The time the system was booted.

TRUE or FALSE to indicate whether the
character string instructions are emulated
on the CPU.

Total number of free, contiguous global
pages.

The processor type, as represented in
the processor's system identification
(SID) register. For example, the integer 1
represents a VAX-111780 and the integer
6 represents a VAX 8530, VAX 8550, VAX
8700, or VAX 8800.

TRUE or FALSE to indicate whether the
decimal string instructions are emulated on
the CPU.

TRUE or FALSE to indicate whether the
D_floatirig instructions are emulated on the
CPU.

(continued on next page)

DCL1-345

Lexical Functions
F$GETSYI

DCL1-346

Table DCL 1-11 (Cont.) F$GETSYI Items for the Local Node Only

Return
Item Type Information Returned

ERRORLOGBUFFERS Integer Number of system pages in use as buffers
for error logging.

F _FLOAT _EMULATED String TRUE or FALSE to indicate whether the
F _floating instructions are emulated on the
CPU.

FREE_GBLPAGES Integer Current count of free global pages.

FREE_GBLSECTS Integer Current cou!'lt of free global section table
entries.

G_FLOAT_EMULATED String TRUE or FALSE to indicate whether the
G_floating instructions are emulated on the
CPU.

PAGEFILE_FREE Integer Number of free pages in the currently
installed paging files.

PAGEFILE_PAGE Integer Number of pages in the currently installed
paging files.

SID Integer System identification register.

SWAPFILE_FREE Integer Number of free pages in the currently
installed swapping files.

SWAPFILE_PAGE Integer Number of pages in the currently installed
swapping files.

SYSTEM_RIGHTS String The contents of the system rights list on
the local system. If you specify a remote
system, a null string ("") is returned. This
item code returns a list of identifier names
separated by commas (,).

VERSION String Version of VMS in use (8-character string
filled with trailing blanks).

Table DCL1-12 F$GETSYI Items for the Local Node or for Other Nodes
in the VAXCluster

Return
Item Type

CLUSTER_FSYSID String

CLUSTER_FTIME String

CLUSTER_ String
MEMBER

Information Returned

System identification number for first node to
boot in the VAXcluster (the founding node).
This number is returned as a character string
containing a hexadecimal number.

The time when the first node in the VAXcluster
was booted.

TRUE or FALSE if the node is a member of the
local VAXcluster.

(continued on next page)

Lexical Functions
F$GETSYI

Table DCL1-12 (Cont.) F$GETSYI Items for the Local Node or for Other
Nodes in the VAXCluster

Return
Item Type Information Returned

CLUSTER_NODES Integer Total number of nodes in the VAXcluster, as an
integer.

CLUSTER_ Integer Total quorum for the VAXcluster.
QUORUM

CLUSTER_ VOTES Integer Total number of votes in the VAXcluster.

HW_MODEL Integer An integer that identifies the node's VAX model
type.

HW_NAME String The VAX model name.

NODENAME String Node name (does not include the following
double colon}.

NODE_AREA Integer The VAX DECnet area for the target node.

NODE_CSID String The CSID of the specified node, as a string
containing a hexadecimal number. The CSID is a
form of system identification.

NODE_HWTYPE String Hardware type of the specified node.

NODE_HWVERS String Hardware version of the specified node.

NODE_NUMBER Integer The VAX DECnet number for the specified node.

NODE_ QUORUM Integer Quorum that the node has.

NODE_SWINCARN String Software incarnation number for the specified
node. This number is returned as a string
containing a hexadecimal number.

NODE_SWTYPE String Type of operating system software used by the
specified node.

NODE_SWVERS String Software version of the specified node.

NODE_ SYSTEM ID String System identification number for the specified
node. This number is returned as a string
containing a hexadecimal number.

NODE_ VOTES Integer Number of votes allotted to the node.

SCS_EXISTS String TRUE or FALSE to indicate whether the system
communication subsystem (SCS} is currently
loaded on a VAX node.

VECTOR_ Boolean Flag indicating the presence of the VAX vector
EMULATOR instruction emulator facility (VVIEF} in the system.

VP_MASK Integer Mask indicating which processors in the system
have vector coprocessors.

VP_NUMBER Integer Number of vector processors in the system.

DCL1-347

Lexical Functions
F$GETSVI

EXAMPLES
D $ SYSID = F$GETSYI ("SID")

$ SHOW SYMBOL SYSID
SYSID = 19923201 Hex = 01300101 Octal = 000401

This example shows how to use the F$GETSYI function to return
the information in the system identification register. Use quotation
marks (" ") around the argument SID because it is a string literal. The
value returned by F$GETSYI is assigned to the symbol SYSID. Because a
node is not specified, information about your current node is returned.

~ $ MEM = F$GETSYI ("CLUSTER_MEMBER", "LONDON")
$ SHOW SYMBOL MEM

MEM = "TRUE"

This example uses the F$GETSYI function to determine whether the node
LONDON is a member of the local VAXcluster. The return value TRUE
indicates that the remote node LONDON is a member of the VAXcluster.

i] $ LIM = F$GETSYI ("BJOBLIM")
$ SHOW SYMBOL LIM

LIM = 16 Hex = 00000010 Octal = 00000000020

DCL1-348

This example uses the SYSGEN parameter BJOBLIM as an argument for
the F$GETSYI function. This argument returns the batch job limit for the
current system.

Lexical Functions
F$1DENTIFIER

F$1DENTIFIER

FORMAT

return value

ARGUMENTS

EXAMPLES

Converts an alphanumeric identifier to its integer equivalent, or converts an
integer identifier to its alphanumeric equivalent. An identifier is a name or
number that identifies a category of users of a data resource. The system
uses identifiers to determine a user's access to a resource.

F$1 D ENTI Fl ER (identifier, conversion-type)

An integer value if you are converting an identifier from a name to
an integer. The F$IDENTIFIER function returns a string if you are
converting an identifier from an integer to a name. If you specify an
identifier that is not valid, the F$IDENTIFIER function returns a null
string (11 11

) (if you are converting from number to name) or a zero (if you
are converting from name to number).

identifier
Specifies the identifier to be converted. Specify the identifier as an
integer expression if you are converting an integer to a name. Specify
the identifier as a character string expression if you are converting a name
to an integer.

conversion-type
Indicates the type of conversion to be performed. If the identifier
argument is alphanumeric, specify the conversion-type argument as a
character string containing 11 NAME_TO_NUMBER 11

• If the identifier
argument is numeric, specify the conversion-type argument as a
character string containing 11 NUMBER_TO _NAME II.

D $ UIC_INT= F$IDENTIFIER(11 SLOANE 11
I "NAME_TO_NUMBER")

$ SHOW SYMBOL UIC INT
UIC INT = 15728665 Hex = OOF00019 Octal = 00074000031

$ UIC = F$FAO (II! %U"' UIC_INT)
SHOW SYMBOL UIC

UIC = [360,031]

This example uses the F$IDENTIFIER to convert the member identifier
from the UIC [MANAGERS,SLOANE] to an integer. The F$IDENTIFIER
function shows that the member identifier SLOANE is equivalent to the
integer 15728665. Note that you must specify the identifier SLOANE
using uppercase letters.

To convert this octal number to a standard numeric user identification
code (UIC), use the F$FAO function with the !%U directive. (This directive
converts a longword to a UIC in named format.) In this example, the
member identifier SLOANE is equivalent to the numeric UIC [360,031].

DCL1-349

Lexical Functions
F$1DENTIFIER

$ UIC INT= (%031 + (%X10000 * %0360))
$ ur(~NAME = F$IDENTIFIER (UIC_INT, "NUMBER_TO_NAME")
$ SHOW SYMBOL UIC NAME

UIC NAME "ODONNELL"

DCL1-350

This example obtains the alphanumeric identifier associated with the
numeric UIC [360,031]. First, you must obtain the longword integer that
corresponds to the UIC [360,031]. To do this, place the member number
into the low-order word. Place the group number into the high order word.
Next, use the F$IDENTIFIER function to return the named identifier
associated with the integer.

F$1NTEGER

FORMAT

return value

ARGUMENT

EXAMPLE
$ A = "23"

Lexical Functions
F$1NTEGER

Returns the integer equivalent of the result of the specified expression.

F$1NTEGER (expression)

An integer value that is equivalent to the specified expression.

expression
Specifies the expression to be evaluated. Specify either an integer or a
character string expression.

If you specify an integer expression, the F$INTEGER function evaluates
the expression and returns the result. If you specify a string expression,
the F$INTEGER function evaluates the expression, converts the resulting
string to an integer, and returns the result.

After evaluating a string expression, the F$INTEGER function converts
the result to an integer in the following way. If the resulting string
contains characters that form a valid integer, the F$INTEGER function
returns the integer value. If the string contains characters that do not
form a valid integer, the F$INTEGER function returns the integer 1 if the
string begins with T, t, Y, or y. The function returns the integer 0 if the
string begins with any other character.

$ B = F$INTEGER("-9" + A)
$ SHOW SYMBOL B

B = -923 Hex=FFFFFC65 Octal=176145

This example shows how to use the F$INTEGER function to equate a
symbol to the integer value returned by the function. In the example,
the F$INTEGER function returns the integer equivalent of the string
expression ("-9" +A). First, the F$INTEGER function evaluates the string
expression by concatenating the string literal "-9" with the string literal
"23". Note that the value of the symbol A is substituted automatically in a
string expression. Also note that the plus sign (+) is a string concatenation
operator since both arguments are string literals.

After the string expression is evaluated, the F$INTEGER function
converts the resulting character string (" -923") to an integer, and returns
the value -923. This integer value is assigned to the symbol B.

DCL1-351

Lexical Functions
F$LENGTH

F$LENGTH

FORMAT

return value

ARGUMENT

EXAMPLE

Returns the length of the specified character string.

F$LENGTH(string)

An integer value for the length of the string.

string
Specifies the character string whose length is being determined. Specify
the string argument as a character string expression.

$ MESSAGE = F$MESSAGE (%X1C)
$ SHOW SYMBOL MESSAGE

MESSAGE = "%SYSTEM-F-EXQUOTA, exceeded quota"
$ STRING_LENGTH = F$LENGTH (MESSAGE)
$ SHOW SYMBOL STRING LENGTH

STRING LENGTH = 33 Hex = 00000021 Octal = 000041

DCL1-352

The first assignment statement uses the F$MESSAGE function to return
the message that corresponds to the hexadecimal value lC. The message
is returned as a character string and is assigned to the symbol MESSAGE.

The F$LENGTH function is then used to return the length of the character
string assigned to the symbol MESSAGE. You do not need to use quotation
marks (" ") when you use the symbol MESSAGE as an argument for the
F$LENGTH function. (Quotation marks are not used around symbols in
character string expressions.)

The F$LENGTH function returns the length of the character string and
assigns it to the symbol STRING_LENGTH. At the end of the example, the
symbol STRING_LENGTH has a value equal to the number of characters
in the value of the symbol named MESSAGE, that is, 33.

F$LOCATE

FORMAT

return value

ARGUMENTS

EXAMPLES

Lexical Functions
F$LOCATE

Locates a specified portion of a character string and returns as an integer the
offset of the first character. If the substring is not found, F$LOCATE returns
the length (the offset of the last character in the character string plus one) of
the searched string.

F$LOCATE(substring,string)

An integer value representing the offset of the substring argument. An
offset is the-position of a character or a substring relative to the beginning
of the string. The first character in a string is always offset position 0
from the beginning of the string (which always begins at the leftmost
character).

If the substring is not found, the F$LOCATE function returns an offset of
the last character in the character string plus 1. (This equals the length of
the string.)

substring
Specifies the character string that you want to locate within the string
specified in the string argument.

string
Specifies the character string to be edited by F$LOCATE.

D $ FILE_SPEC = "MYFILE.DAT;l"
$ NAME_LENGTH = F$LOCATE(".",FILE_SPEC)

The F$LOCATE function in this example returns the position of the period
(.) in the string with respect to the beginning of the string. The period
is in offset position 6, so the value 6 is assigned to the symbol NAME_
LENGTH. Note that NAME_LENGTH also equals the length of the file
name portion of the file specification MYFILE.DAT, that is, 6.

The substring argument, the period, is specified as a string literal and is
therefore enclosed in quotation marks (" "). The string argument FILE_
SPEC is a symbol, so it should not be placed within quotation marks. It
is automatically replaced by its current value during the processing of the
function.

DCL1-353

Lexical Functions
F$LOCATE

I $ INQUIRE TIME "Enter time"
$ IF F$LOCATE (":",TIME) .EQ. F$LENGTH (TIME) THEN -

GOTO NO COLON

DCL1-354

This section of a command procedure compares the results of the
F$LOCATE and F$LENGTH functions to see if they are equal. This
technique is commonly used to determine whether a character or substring
is contained in a string.

In the example, the INQUIRE command prompts for a time value and
assigns the user-supplied time to the symbol TIME. The IF command
checks for the presence of a colon (:) in the string entered in response to
the prompt. If the value returned by the F$LOCATE function equals the
value returned by the F$LENGTH function, the colon is not present. You
use the .EQ. operator (rather than .EQS.) because the F$LOCATE and
F$LENGTH functions return integer values.

Note that quotation marks are used around the substring argument, the
colon, because it is a string literal. However, the symbol TIME does not
require quotation marks because it is automatically evaluated as a string
expression.

F$MESSAGE

FORMAT

return value

ARGUMENT

EXAMPLE

Lexical Functions
F$MESSAGE

Returns as a character string the facility, severity, identification, and text
associated with the specified system status code.

F$MESSAGE (status-code)

A character string containing the system message that corresponds to the
argument you specify.

Note that, although each message in the system message file has a
numeric value or range of values associated with it, there are many
possible numeric values that do not have corresponding messages. If you
specify an argument that has no corresponding message, the F$MESSAGE
function returns a string containing the NOMSG error message.

For more information on system error messages, see the VMS System
Messages and Recovery Procedures Reference Manual.

status-code
Specifies the status code for which you are requesting error message text.
You must specify the status code as an integer expression.

$ ERROR_TEXT = F$MESSAGE (%X1C)
$ SHOW SYMBOL ERROR TEXT

ERROR TEXT = "%SYSTEM-F-EXQUOTA, exceeded quota"

This example shows how to use the F$MESSAGE function to determine
the message associated with the status code %X1C. The F$MESSAGE
function returns the message string, which is assigned to the symbol
ERROR_ TEXT.

DCL1-355

Lexical Functions
F$MODE

F$MODE

Returns a character string showing the mode in which a process is
executing. The F$MODE function has no arguments, but must be followed by
parentheses.

FORMAT F$MODE()

return value The character string INTERACTIVE for interactive processes. If the
process is noninteractive, the character string BATCH, NETWORK
or OTHER is returned. Note that the return string always contains
uppercase letters.

ARGUMENTS None.

DESCRIPTION The lexical function F$MODE returns a character string showing the mode
in which a process is executing. The F$MODE function has no arguments,
but must be followed by parentheses.

DCL1-356

The F$MODE function is useful in command procedures that must operate
differently when executed interactively and noninteractively. You should
include either the F$MODE function or the F$ENVIRONMENT function
in your login command file to execute different commands for interactive
terminal sessions and noninteractive sessions.

If you do not include the F$MODE function to test whether your login
command file is being executed from an interactive process, and the
login command file is executed from a noninteractive process (such as a
batch job), the process may terminate if the login command file contains
commands that are appropriate only for interactive processing.

A command procedure can use the F$MODE function to test whether the
procedure is being executed during an interactive terminal session. It can
direct the flow of execution according to the results of this test.

EXAMPLE

Lexical Functions
F$MODE

$ IF F$MODE() .NES. "INTERACTIVE" THEN GOTO NON INT DEF
$ INTDEF: Commands for interactive terminal sessions

$ EXIT
$ NON INT DEF: !Commands for noninteractive processes

This example shows the beginning of a login.com file that has two
sets of initialization commands: one for interactive mode and one for
noninteractive mode (including batch and network jobs). The IF command
compares the character string returned by F$MODE with the character
string INTERACTIVE; if they are not equal, control branches to the
label NON_INT_DEF. If the character strings are equal, the statements
following the label INTDEF are executed and the procedure exits before
the statements at NON_INT_DEF.

DCL1-357

Lexical Functions
F$PARSE

F$PARSE

FORMAT

return value

ARGUMENTS

DCL1-358

Parses a file specification and returns either the expanded file specification or
the particular file specification field that you request.

F$PARSE(fi/espec [,default-spec] [,related-spec] [,field]
[,parse-type]}

A character string containing the expanded file specification or the field
you specify. If you do not provide a complete file specification for the
filespec argument, the F$PARSE function supplies defaults in the return
string, as described in the Description section.

If an error is detected during the parse, the F$PARSE function returns a
null string (1111

), except when you specify a field name or the SYNTAX_
ONLY parse type.

filespec
Specifies a character string containing the file specification to be parsed.

The file specification can contain wildcard characters (* and %). If you
use a wildcard character, the file specification returned by the F$PARSE
function contains the wildcard.

default-spec
Specifies a character string containing the default file specification.

The fields in the default file specification are substituted in the output
string if a particular field in the filespec argument is missing. You
can make further substitutions in the filespec argument by using the
related-spec argument.

related-spec
Specifies a character string containing the related file specification.

The fields in the related file specification are substituted in the output
string if a particular field is missing from both the filespec and default
spec arguments.

field
Specifies a character string containing the name of a field in a file
specification. Specifying the field argument causes the F$PARSE function
to return a specific portion of a file specification.

Specify one of the following field names (do not abbreviate):

NODE

DEVICE

DIRECTORY

Node name

Device name

Directory name

NAME

TYPE
VERSION

parse-type

File name

File type

File version number

Lexical Functions
F$PARSE

Specifies the type of parsing to be performed. By default, the F$PARSE
function verifies that the directory in the file specification exists on the
device in the file specification. However, the existence of the directory
is not verified if you provide a field argument. Note that the device
and directory can be explicitly given in one of the arguments, or can be
provided by default.

Also, by default the F$PARSE function translates logical names if they are
provided in any of the arguments. The F$PARSE function stops iterative
translation when it encounters a logical name with the CONCEALED
attribute.

You can change how the F$PARSE function parses a file specification by
using one of the following keywords:

NO_CONCEAL

SYNTAX_ ONLY

Ignores the "conceal" attribute in the translation of a logical name
as part of the file specification; that is, logical name translation
does not end when a concealed logical name is encountered.

The syntax of the file specification is checked without verifying
that the specified directory exists on the specified device.

DESCRIPTION The F$PARSE function parses file specifications by using the RMS service
$PARSE. For more information on the $PARSE service, see the VMS
Record Management Services Manual.

When you use the F$PARSE function, you can omit those optional
arguments to the right of the last argument you specify. However, you
must include commas (,) as placeholders if you omit optional arguments
to the left of the last argument you specify.

If you omit the device and directory names in the filespec argument,
the F$PARSE function supplies defaults, first from the default-spec
argument and second from the related-spec argument. If names are not
provided by these arguments, the F$PARSE function uses your current
default disk and directory.

If you omit the node name, the file name, the file type, or the version
number, the F$PARSE function supplies defaults, first from the default
spec argument and second from the related-spec argument. If names
are not provided by these arguments, the F$PARSE function returns a
null specification for these fields.

DCL1-359

Lexical Functions
F$PARSE

EXAMPLES
D $ SET DEF DISK2: [FIRST]

$ SPEC = F$PARSE ("JAMES.MAR" I II [ROOT]" I I I "SYNTAX_ONLY")
$ SHOW SYMBOL SPEC

SPEC = "DISK2: [ROOT] JAMES .MAR;"

In this example, the F$PARSE function returns the expanded file
specification for the file JAMES.MAR. The example uses the SYNTAX_
ONLY keyword to request that F$PARSE check the syntax, but should not
verify that the [ROOT] directory exists on DISK2.

The default device and directory are DISK2:[FIRST]. Because the
directory name [ROOT] is specified as the default-spec argument in
the assignment statement, it is used as the directory name in the output
string. Note that the default device returned in the output string is
DISK2, and the default version number for the file is null. You must place
quotation marks (" ") around the arguments JAMES.MAR and ROOT
because they are string literals.

If you had not specified syntax-only parsing, and [ROOT] were not on
DISK2, a null string would have been returned.

~ $ SET DEFAULT DBl: [VARGO]
$ SPEC= F$PARSE("INFO.COM",,,"DIRECTORY")
$ SHOW SYMBOL SPEC

SPEC= "[VARGO]"

In this example the F$PARSE function returns the directory name of
the file INFO.COM. Note that because the default-spec and related
spec arguments are omitted from the argument list, commas (,) must be
inserted in their place.

11 $ SPEC= F$PARSE ("DENVER: :DBl: [PROD]RUN .DAT" I I I "TYPE")
$ SHOW SYMBOL SPEC

SPEC= ".DAT"

DCL1-360

In this example, the F$PARSE function is used to parse a file specification
containing a node name. The F$PARSE function returns the file type DAT
for the file RUN.DAT at the remote node DENVER.

F$PID

FORMAT

return value

ARGUMENT

Lexical Functions
F$PID

Returns a process identification (PIO) number and updates the context symbol
to point to the current position in the system's process list.

F$PID(context-symbol)

A character string containing the PID of a process in the system's list of
processes.

context-symbol
Specifies a symbol that DCL uses to store a pointer into the system's list
of processes. The F$PID function uses this pointer to return a PID.

Specify the context symbol by using a symbol. The first time you use the
F$PID function in a command procedure, you should use a symbol that
is either undefined or equated to the null string (" "), or a context symbol
that has been created by the F$CONTEXT function.

If the context symbol is undefined or equated to a null string, the F$PID
function returns the first PID in the system's process list that it has
the privilege to access. That is, if you have GROUP privilege and if the
context symbol is null or undefined, the F$PID function returns the PID of
the first process in your group. If you have WORLD privilege, the F$PID
function returns the PID of the first process in the list. If you have neither
GROUP nor WORLD privilege, the F$PID returns the first process that
you own. Subsequent calls to F$PID return the rest of the processes on
the system you are accessing.

If the context symbol has been created by the F$CONTEXT function, the
F$PID function returns the first process name in the system's process list
that fits the criteria specified in the F$CONTEXT calls. Subsequent calls
to F$PID return only the PIDs of those processes that meet the selection
criteria set up by the F$CONTEXT function and that are accessible to
your current privileges.

DESCRIPTION The F$PID function returns a process identification (PID) number and
updates the context symbol to point to the current position in the system's
process list. You can step through all the processes on a system, or use
the lexical function F$CONTEXT to specify selection criteria. The function
F$CONTEXT is not required.

The PIDs returned by the F$PID function depend on the privilege of your
process. If you have GROUP privilege, the F$PID function returns PIDs
of processes in your group. If you have WORLD privilege, the F$PID
function returns PIDs of all processes on the system. If you lack GROUP
or WORLD privilege, the F$PID function returns only those processes that
you own.

DCL1-361

Lexical Functions
F$PID

EXAMPLE

$ CONTEXT = ""
$ START:

The F$CONTEXT function enables the F$PID function to retrieve
processes from any node in a VAXcluster.

The first time you use the F$PID function, use a symbol that is either
undefined or equated to the null string or to a context symbol that has
been created by the F$CONTEXT function. This causes the F$PID
function to return the first PID in the system's process list that you
have the privilege to access. It also causes the F$PID function to initialize
the context-symbol argument.

Once the context-symbol argument is initialized, each subsequent F$PID
returns the next PID in sequence, using the selection criteria set up by the
F$CONTEXT function, if any, and updates the context symbol. After the
last PID in the process list is returned, the F$PID function returns a null
string.

$ PID = F$PID(CONTEXT)
$ IF PID .EQS. "" THEN EXIT
$ SHOW SYMBOL PID
$ GOTO START

DCL1-362

This command procedure uses the F$PID function to display a list of
PIDs. The assignment statement declares the symbol CONTEXT, which is
used as the context-symbol argument for the F$PID function. Because
CONTEXT is equated to a null string, the F$PID function returns the first
PID in the process list that it has the privilege to access.

The PIDs displayed by this command procedure depend on the privilege of
your process. When run with GROUP privilege, the PIDs of users in your
group are displayed. When run with WORLD privilege, the PIDs of all
users on the system are displayed. Without GROUP or WORLD privilege,
only those processes that you own are displayed.

Lexical Functions
F$PRIVILEGE

F$PRIVILEGE

Returns a string value of either TRUE or FALSE, depending on whether your
current process privileges match those specified in the argument. You can
specify either the positive or negative version of a privilege.

FORMAT F$PRIVILEGE(priv-states)

return value A character string containing the value TRUE or FALSE. The
F$PRIVILEGE function returns the string FALSE if any one of the
privileges in the priv-states argument list is false.

ARGUMENT pri~srams
Specifies a character string containing a privilege, or a list of privileges
separated by commas (,). For a list of process privileges, see the VMS
DCL Concepts Manual. Specify any one of the process privileges except
[NOJALL.

DESCRIPTION Use the F$PRIVILEGE function to identify your current process privileges.

EXAMPLE

If "NO" precedes the privilege, the privilege must be disabled in order
for the function to return a value of TRUE. The F$PRIVILEGE function
checks each of the keywords in the specified list, and if the result for any
one is false, the string FALSE is returned.

$ PROCPRIV = F$PRIVILEGE ("OPER, GROUP, TMPMBX, NONETMBX")
$ SHOW SYMBOL PROCPRIV

PROCPRIV = "FALSE"

The F$PRIVILEGE function is used to test whether the process has OPER,
USER, TMPMBX, and NETMBX privileges.

The process in this example has OPER (operator), GROUP, TMPMBX
(temporary mailbox), and NETMBX (network mailbox) privileges.
Therefore, a value of FALSE is returned because the process has NETMBX
privilege, but NONETMBX was specified in the priv-states list. Although
the Boolean result for the other three keywords is true, the entire
expression is declared false because the result for NONETMBX was
false.

DCL1-363

Lexical Functions
F$PROCESS

F$PROCESS

FORMAT

return value

ARGUMENTS

EXAMPLE
$ NAME= F$PROCESS()
$ SHOW SYMBOL NAME

NAME = "MARTIN"

DCL1-364

Obtains the current process name string. The F$PROCESS function has no
arguments, but must be followed by parentheses.

F$PROCESS()

A character string containing the current process name.

None.

In this example, the F$PROCESS function returns the current process
name and assigns it to the symbol NAME.

F$SEARCH

FORMAT

return value

ARGUMENTS

Lexical Functions
F$SEARCH

Searches a directory file and returns the full file specification for a file you
specify.

F$SEARCH (filespec[,stream-id])

A character string containing the expanded file specification for the
filespec argument. If the F$SEARCH function does not find the file
in the directory, the function returns a null string (" ").

files pee
Specifies a character string containing the file specification to be searched
for. If the device or directory names are omitted, the defaults from your
current default disk and directory are used. The F$SEARCH function
does not supply defaults for a file name or type. If the version is omitted,
the specification for the file with the highest version number is returned.
If the filespec argument contains wildcards, each time F$SEARCH is
called, the next file specification that agrees with the filespec argument
is returned. A null string is returned after the last file specification that
agrees with the filespec argument.

stream-id
Specifies a positive integer representing the search stream identification
number.

The search stream identification number is used to maintain separate
search contexts when you use the F$SEARCH function more than once and
when you supply different filespec arguments. If you use the F$SEARCH
function more than once in a command procedure and if you also use
different filespec arguments, specify stream-id arguments to identify
each search separately.

If you omit the stream-id argument, the F$SEARCH function assumes
an implicit single search stream. That is, the F$SEARCH function starts
searching at the beginning of the directory file each time you specify a
different filespec argument.

DESCRIPTION The lexical function F$SEARCH invokes the RMS service $SEARCH
to search a directory file and return the full file specification for a file
you specify. The F$SEARCH function allows you to search for files in a
directory by using the RMS service $SEARCH. For more information on
the $SEARCH routine, see the VMS Record Management Services Manual.

You can use the F$SEARCH function in a loop in a command procedure
to return file specifications for all files that match a filespec argument
containing a wildcard. Each time the F$SEARCH function is executed, it
returns the next file specification that matches the file specification that
contains a wildcard. After the last file specification is returned, the next

DCL1-365

Lexical Functions
F$SEARCH

EXAMPLES

D $ START:

F$SEARCH call returns a null string. When you use the F$SEARCH
function in a loop, you must inciude a wildcard character(* and%) in the
filespec argument. Otherwise, the F$SEARCH always returns the same
file specification.

Note that you must maintain the context of the search stream explicitly
(by stating a stream-id argument) or implicitly (by omitting the stream
id argument and by using the same filespec argument each time you
execute the F$SEARCH function).

Note: The lexical function F$SEARCH can return any file that matches
the s.election criteria you specify, and that exists in the directory
at some time between the beginning and the end of the search.
Files that are created, renamed, or deleted during the search may
or may not be returned.

$ FILE= F$SEARCH("SYS$SYSTEM:*.EXE")
$ IF FILE .EQS. "" THEN EXIT
$ SHOW SYMBOL FILE
$ GOTO START

fa $ START:

This command procedure displays the file specifications of the latest
version of all EXE files in the SYS$SYSTEM directory. (Only the latest
version is returned because a wildcard is not used as the version number.)
The filespec argument SYS$SYSTEM:* .EXE is surrounded by quotation
marks (" ") because it is a character string expression.

Because no stream-id argument is specified, the F$SEARCH function
uses a single search stream. Each subsequent F$SEARCH call uses the
same filespec argument to return the next file specification of an EXE file
from SYS$SYSTEM:. After the latest version of each EXE file has been
displayed, the F$SEARCH function returns a null string ("") and the
procedure exits.

$ COM= F$SEARCH ("*.COM;*",1)
$ DAT= F$SEARCH ("*.DAT;*",2)
$ SHOW SYMBOL COM
$ SHOW SYMBOL DAT
$ IF (COM.EQS. '"') .AND. (DAT.EQS. "") THEN EXIT
$ GOTO START

DCL1-366

This command procedure searches the default disk and directory for both
COM and DAT files. Note that the stream-id argument is specified for
each F$SEARCH call so that the context for each search is maintained.

The first F$SEARCH call starts searching from the top of the directory
file for a file with a type of COM. When it finds a COM file, a pointer is
set to maintain the search context. When the F$SEARCH function is used
the second time, it again starts searching from the top of the directory file
for a file with a type of DAT. When the procedure loops back to the label
START, the stream-id argument allows F$SEARCH to start searching in

Lexical Functions
F$SEARCH

the correct place in the directory file. After all versions of COM and DAT
files are returned, the procedure exits.

I $ FILESPEC = F$SEARCH ("TRNTO""SMITH SALLY"": :DBAl: [PROD]* .DAT")
$ SHOW SYMBOL FILESPEC

FILESPEC = "TRNTO"smith password"::DBAl: [PROD]CARS.DAT"

This example uses the F$SEARCH function to return a file specification for
a file at a remote node. The access control string is enclosed in quotation
marks because it is part of a character string expression when it is an
argument for the F$SEARCH function. To include quotation marks in a
character string expression, you must use two sets of quotation marks.

Note that, when the F$SEARCH function returns a node name containing
an access control string, it substitutes the word "password" for the actual
user password.

DCL1-367

Lexical Functions
F$SETPRV

F$SETPRV

FORMAT

return value

ARGUMENT

Enables or disables specified user privileges. The F$SETPRV function returns
a list of keywords indicating user privileges; this list shows the status of the
specified privileges before F$SETPRV was executed.

Your process must be authorized to set the specified privilege. For
detailed information on privilege restrictions, see the description of the
$SETPRV system service in the VMS System Services Reference Manual.

F$SETPRV (priv-states)

A character string containing keywords for the current process privileges
before they were changed by the F$SETPRV function.

priv-states
Specifies a character string defining a privilege, or a list of privileges
separated by commas (,).

For a list of process privileges, see the VMS DCL Concepts Manual.

DESCRIPTION The lexical function F$SETPRV invokes the $SETPRV system service
to enable or disable specified user privileges. The F$SETPRV function
returns a list of keywords indicating user privileges; this list shows the
status of the specified privileges before F$SETPRV was executed.

EXAMPLES

The F$SETPRV function returns keywords for your current privileges,
whether or not you are authorized to change the privileges listed in the
priv-states argument. However, the F$SETPRV function enables or
disables only the privileges you are authorized to change.

When you run programs or execute procedures that include the F$SETPRV
function, be sure that F$SETPRV restores your process to its proper
privileged state. For additional information, refer to the examples that
follow.

D $ OLDPRIV = F$SETPRV ("OPER, NOTMPMBX")
$ SHOW SYMBOL OLDPRIV

OLDPRIV = "NOOPER,TMPMBX"

DCL1-368

In this example, the process is authorized to change the OPER (operator)
and TMPMBX (temporary mailbox) privileges. The F$SETPRV function
enables the OPER privilege and disables the TMPMBX privilege. In
addition, the F$SETPRV function returns the keywords NOOPER and
TMPMBX, showing the state of these privileges before they were changed.

Lexical Functions
F$SETPRV

You must place quotation marks (11 11
) around the list of privilege

keywords because it is a string literal.

f; $ SHOW PROCESS/PRIVILEGE

19-APR-1990 15:55:09.60 RTAl: User: JACKSON

Process privileges:

Process rights identifiers:
INTERACTIVE
LOCAL

$ NEWPRIVS = F$SETPRV("ALL, NOOPER")
$ SHOW SYMBOL NEWPRIVS

NEWPRIVS = 11 NOCMKRNL,NOCMEXEC,NOSYSNAM,NOGRPNAM,NOALLSPOOL,NODETACH,
NODIAGNOSE,NOLOG_IO,NOGROUP,NOACNT,NOPRMCEB,NOPRMMBX,NOPSWAPM,
NOALTPRI,NOSETPRV,NOTMPMBX,NOWORLD,NOMOUNT,NOOPER,NOEXQUOTA1
NONETMBX,NOVOLPRO,NOPHY_IO,NOBUGCHK,NOPRMGBL,NOSYSGBL,NOPFNMAP,
NOSHMEM,NOSYSPRV,NOBYPASS,NOSYSLCK,NOSHARE,NOUPGRADE,NODOWNGRADE,
NOGRPPRV,NOREADALL,NOSECURITY,OPER 11

$ SHOW PROCESS/PRIVILEGE

19-APR-1990 15:59:19.30 RTAl: User: JACKSON

Process privileges:
CMKRNL
CMEXEC
SYSNAM
GRPNAM
ALLSPOOL
DETACH
DIAGNOSE
LOG IO
GROUP
ACNT
PRMCEB
PRMMBX
PSWAPM
ALTPRI
SETPRV
TMPMBX
WORLD
MOUNT
EXQUOTA
NETMBX
VO LP RO
PHY IO
BUGCHK
PRMGBL
SYSGBL
PFNMAP
SHMEM
SY SP RV
BYPASS
SYSLCK
SHARE
GRPPRV
READALL
SECURITY

may change mode to kernel
may change mode to exec
may insert in system logical name table
may insert in group logical name table
may allocate spooled device
may create detached processes
may diagnose devices
may do logical i/o
may affect other processes in same group
may suppress accounting message
may create permanent common event clusters
may create permanent mailbox
may change process swap mode
may set any priority value
may set any privilege bit
may create temporary mailbox
may affect other processes in the world
may execute mount acp function
may exceed quota
may create network device
may override volume protection
may do physical i/o
may make bug check log entries
may create permanent global sections
may create system wide global sections
may map to specific physical pages
may create/delete objects in shared memory
may access objects via system protection
bypasses UIC checking
may lock system wide resources
may assign channels to non-shared device
group access via system protection
may read anything as the owner
may perform security functions

Process rights identifiers:
INTERACTIVE
LOCAL

DCL1-369

Lexical Functions
F$SETPRV

$ NEWPRIVS = F$SETPRV(NEWPRIVS)
$ SHOW PROCESS/PRIVILEGE

19-APR-1990 16:05:07.23 RTAl: User: JACKSON

Process privileges:
OPER operator privilege

Process rights identifiers:
INTERACTIVE
LOCAL

In this example, the DCL command SHOW PROCESS/PRIVILEGE is used
to determine the current process privileges. Note that the process has no
privileges enabled.

The F$SETPRV function is then used to process the ALL keyword and
enable all privileges recording the previous state of each privilege in the
symbol NEWPRIVS. Next, F$SETPRV processes the NOOPER keyword
and disables the OPER (operator) privilege, recording the previous state
of OPER in NEWPRIVS. Note that the OPER privilege appears in the
returned string twice: first as NOOPER and then as OPER.

Entering the command SHOW PROCESS/PRIVILEGE now shows that the
current process has all privileges enabled except OPER.

If the returned string is used as the parameter to F$SETPRV, the process
has the OPER privilege enabled. This occurs because the OPER command
was present twice in the symbol NEWPRIVS. As a result, F$SETPRV
looked at the first keyword NOOPER and disabled the privilege. Finally,
after processing several other keywords in the NEWPRIVS string, the
OPER keyword is presented, allowing F$SETPRV to enable the OPER
privilege.

If you are using the ALL or NOALL keywords to save your current
privilege environment, Digital recommends that you perform the following
procedure to modify the process for a command procedure:

$ CURRENT PRIVS = F$SETPRV("ALL")
$ TEMP = F$SETPRV("NOOPER")

If you use this procedure, you can then specify the following command
statement at the end of your command procedure so that the original
privilege environment is restored:

$ TEMP = F$SETPRV(CURRENT_PRIVS)

i] $ SAVPRIV = F$SETPRV("NOGROUP")
$ SHOW SYMBOL SAVPRIV

SAVPRIV = "GROUP"
$ TEST = F$PRIVILEGE ("GROUP")
$ SHOW SYMBOL TEST

TEST = "TRUE"

DCL1-370

In this example, the process is not authorized to change the GROUP
privilege. However, the F$SETPRV function still returns the current
setting for the GROUP privilege.

Lexical Functions
F$SETPRV

The F$PRIVILEGE function is used to see whether the process has
GROUP privilege. The return string, TRUE, indicates that the process
has GROUP privilege, even though the F$SETPRV function attempted to
disable the privilege.

DCL1-371

Lexical Functions
F$STRING

F$STRING

FORMAT

return value

ARGUMENT

EXAMPLE
$ A = 5

Returns the string that is equivalent to the specified expression.

F$STRING (expression)

A character string equivalent to the specified expression.

expression
The integer or string expression to be evaluated.

If you specify an integer expression, the F$STRING function evaluates
the expression, converts the resulting integer to a string, and returns
the result. If you specify a string expression, the F$STRING function
evaluates the expression and returns the result.

When converting an integer to a string, the F$STRING ·function uses
decimal representation and omits leading zeros. When converting a
negative integer, the F$STRING function places a minus sign at the
beginning string representation of the integer.

$ B = F$STRING(-2 +A)
$ SHOW SYMBOL B

B = "3"

DCL1-372

The F$STRING function in this example converts the result of the integer
expression (-2 +A) to the numeric string, 11 3 11

• First, the F$STRING
function evaluates the expression (-2 +A). Note that 5, the value of
symbol A, is automatically substituted when the integer expression is
evaluated.

After the integer expression is evaluated, the F$STRING function converts
the resulting integer, 3, to the string 11 3 11

• This string is assigned to the
symbol B.

F$TIME

FORMAT

return value

ARGUMENTS

EXAMPLE

Lexical Functions
F$TIME

Returns the current date and time in absolute time format.

The F$TIME function has no arguments, but must be followed by parentheses.

F$TIME()

A character string containing the current date and time. The returned
string has the following fixed, 23-character format:

dd-mmm-yyyy hh:mm:ss.cc

When the current day of the month is any of the values 1 to 9, the first
character in the returned string is a blank character. The time portion of
the string is always in character position 13, at an offset of 12 characters
from the beginning of the string.

Note that you must use the assignment operator (=) to preserve the blank
character in the returned string. If you use the string assignment operator
(:=), the leading blank is dropped.

None.

$ OPEN/WRITE OUTFILE DATA.DAT
$ TIME_STAMP = F$TIME()
$ WRITE OUTFILE TIME_STAMP

This example shows how to use the F$TIME function to time-stamp a file
that you create from a command procedure. OUTFILE is the logical name
for the file DATA.DAT, which is opened for writing. The F$TIME function
returns the current date and time string, and assigns this string to the
symbol TIME_STAMP. The WRITE command writes the date and time
string to OUTFILE.

DCL1-373

Lexical Functions
F$TRNLNM

F$TRNLNM

FORMAT

return value

ARGUMENTS

DCL1-374

Translates a logical name and returns the equivalence name string or the
requested attributes of the logical name specified.

F$TRNLNM(/ogica/-name [,table] [,index] [,mode] [,case]
[,item])

The equivalence name or attribute of the specified logical name. The
return value can be a character string or an integer, depending on the
arguments you specify with the F$TRNLNM function. If no match is
found, a null string ("") is returned.

logical-name
Specifies a character string containing the logical name to be translated.

table
Specifies a character string containing the logical name table or tables
that the F$TRNLNM function should search to translate the logical name.
The table argument must be a logical name that translates to a logical
name table or to a list of table names.

If you do not specify a table, the default value is LNM$DCL_LOGICAL.
That is, the F$TRNLNM function searches the tables whose names are
equated to the logical name LNM$DCL_LOGICAL. Unless LNM$DCL_
LOGICAL has been redefined for your process, the F$TRNLNM function
searches the process, job, group, and system logical name tables, in that
order, and returns the equivalence name for the first match found.

index
Specifies the number of the equivalence name to be returned if the logical
name has more than one translation. The index refers to the equivalence
strings in the order the names were listed when the logical name was
defined.

The index begins with zero; that is, the first name in a list of equivalence
names is referenced by the index zero.

If you do not specify the index argument, the default is zero.

mode
Specifies a character string containing one of the following access modes
for the translation: USER (default), SUPERVISOR, EXECUTIVE, or
KERNEL.

The F$TRNLNM function starts by searching for a logical name created
with the access mode specified in the mode argument. If it does not find
a match, the F$TRNLNM function searches for the name created with
each inner access mode and returns the first match found. For example,
two logical names can have the same name, but one name can be created
with user access mode and the other name with executive access mode.

Lexical Functions
F$TRNLNM

If the mode argument is USER, the F$TRNLNM function returns the
equivalence string for the user-mode, not the executive-mode, logical
name.

case
Specifies the type of case translation to be performed. Specify the case
argument as either of the following character strings: CASE_BLIND
(default) or CASE_SENSITIVE.

If the translation is case blind, the F$TRNLNM function first searches
for a logical name with characters of the same case as the logical-name
argument. If no match is found, the F$TRNLNM function searches for an
uppercase version of the logical-name argument and the logical names it
is searching. The result of the first successful translation is returned.

If the translation is case sensitive, the F$TRNLNM function searches only
for a logical name with characters of the same case as the logical-name
argument. If no exact match is found, the F$TRNLNM function returns a
null string (" ").

item
Specifies a character string containing the type of information that
F$TRNLNM should return about the specified logical name. Specify
one of the following items:

Item

ACCESS_
MODE

CONCEALED

CONFINE

CRELOG

Return Type Information Returned

String One of the following access modes associated
with the logical name: USER, SUPERVISOR,
EXECUTIVE, KERNEL.

String TRUE or FALSE to indicate whether the
CONCEALED attribute was specified with the
/TRANSLATION_ATTRIBUTES qualifier when the
logical name was created. The CONCEALED
attribute is used to create a concealed logical
name.

String

String

TRUE or FALSE to indicate whether the
logical name is confined. If the logical name is
confined (TRUE), then the name is not copied to
subprocesses. If the logical name is not confined
(FALSE), then the name is copied to subprocesses.

TRUE or FALSE to indicate whether the logical
name was created with the $CRELOG system
service or with the $CRELNM system service,
using the CRELOG attribute.

If the logical name was created with the $CRELOG
system service or with the $CRELNM system
service, using the CRELOG attribute, then TRUE is
returned. Otherwise, FALSE is returned.

DCL1-375

Lexical Functions
F$TRNLNM

DESCRIPTION

DCL1-376

Item Return Type Information Returned

LENGTH Integer Length of the equivalence name associated with
the specified logical name. If the logical name has
more than one equivalence name, the F$TRNLNM
function returns the length of the name specified
by the index argument.

MAX_INDEX Integer The largest index defined for the logical name.
The index shows how many equivalence names
are associated with a logical name. The index is
zero based; that is, the index zero refers to the first
name in a list of equivalence names.

NO_ALIAS String TRUE or FALSE to indicate whether the logical
name has the NO_ALIAS attribute. The NO_ALIAS
attribute means that a logical name must be unique
within outer access mode.

TABLE String TRUE or FALSE to indicate whether the logical
name is the name of a logical name table.

TABLE_NAME String Name of the table where the logical name was
found.

TERMINAL String TRUE or FALSE to indicate whether the
TERMINAL attribute was specified with the
frRANSLATION_ATTRIBUTES qualifier when
the logical name was created. The TERMINAL
attribute indicates that the logical name is not a
candidate for iterative translation.

VALUE String Default. The equivalence name associated with
the specified logical name. If the logical name has
more than one equivalence name, the F$TRNLNM
function returns the name specified by the index
argument.

The lexical function F$TRNLNM uses the $TRNLNM system service to
translate a logical name and return the equivalence name string, or the
requested attributes of the logical name specified. The translation is not
iterative; the equivalence string is not checked to determine whether it is
a logical name.

When you use the F$TRNLNM function, you can omit optional arguments
that can be used to the right of the last argument you specify. However,
you must include commas (,) as placeholders if you omit optional
arguments to the left of the last argument that you specify.

You can use the F$TRNLNM function in command procedures to save the
current equivalence of a logical name and later restore it. You can also use
it to test whether logical names have been assigned.

EXAMPLES

Lexical Functions
F$TRNLNM

D $ SAVE_DIR = F$TRNLNM (II SYS$DISK") +F$DIRECTORY ()

$ SET DEFAULT 'SAVE DIR'

The assignment statement concatenates the values returned by the
F$DIRECTORY and F$TRNLNM functions, and assigns the resulting
string to the symbol SAVE_DIR. The symbol SAVE_DIR consists of a full
device and directory name string.

The argument SYS$DISK is enclosed in quotation marks (" ") because it
is a character string. (The command interpreter treats all arguments that
begin with alphabetic characters as symbols or lexical functions, unless
the arguments are enclosed in quotation marks.) None of the optional
arguments is specified, so the F$TRNLNM function uses the defaults.

At the end of the command procedure, the original default directory is
reset. When you reset the directory, you must place single quotation
marks (' ') around the symbol SAVE_DIR to force symbol substitution.

I $ DEFINE/TABLE=LNM$GROUP TERMINAL 'F$TRNLNM ("SYS$0UTPUT")'

This example shows a line from a command procedure that (1) uses the
F$TRNLNM function to determine the name of the current output device
and (2) creates a group logical name table entry based on the equivalence
string.

You must enclose the argument SYS$0UTPUT in quotation marks because
it is a character string.

Also, in this example you must enclose the F$TRNLNM function in
single quotation marks to force the lexical function to be evaluated.
Otherwise, the DEFINE command does not automatically evaluate the
lexical function.

i] $ RESULT= F$TRNLNM("INFILE","LNM$PROCESS",0,"SUPERVISOR",,"NO_ALIAS")
$ SHOW SYMBOL RESULT

RESULT = "FALSE"

In this example, the F$TRNLNM function searches the process logical
name table for the logical name INFILE. The function starts the search
by looking for the logical name INFILE created in supervisor mode. If no
match is found, the function looks for INFILE created in executive mode.

When a match is found, the F$TRNLNM function determines whether the
name INFILE was created with the NO_ALIAS attribute. In this case, the
NO_ALIAS attribute is not specified.

DCL1-377

Lexical Functions
F$TVPE

F$TVPE

FORMAT

return value

ARGUMENT

EXAMPLES

D $ NUM = "52"

Returns the data type of a symbol.

F$TVPE(symbol-name)

The string INTEGER is returned if the symbol is equated to an integer, or
if the symbol is equated to a string whose characters form a valid integer.

If the symbol has been produced by a call to the F$CONTEXT function
with a context type of PROCESS or by a call to the F$PID function, the
string returned is PROCESS_CONTEXT. A symbol retains this type until
F$CONTEXT is called with the symbol and the CANCEL keyword, or until
a null string (" ") is returned by a call to F$PID.

Similarly, the return value is the string CLUSTER_SYSTEM_CONTEXT
for symbols created by the F$CSID function.

If the symbol is a context symbol, then the return value will be one of the
types shown in Table DCLl-13.

Table DCL 1-13 Context Symbol Types

Symbol Type

PROCESS_CONTEXT

CLUSTER_ SYSTEM_
CONTEXT

Lexical Creating Symbol

F$PID or F$CONTEXT {with PROCESS context type)

F$CSID

The string STRING is returned if the symbol is equated to a character
string whose characters do not form a valid integer or whose type is not a
context.

If the symbol is undefined, a null string is returned.

symbol-name
Specifies the name of the symbol to be evaluated.

$ TYPE = F$TYPE (NUM)
$ SHOW SYMBOL TYPE

TYPE = "INTEGER"

DCL1-378

This example uses the F$TYPE function to determine the data type of the
symbol NUM. NUM is equated to the character string 11 52 11

• Because the
characters in the string form a valid integer, the F$TYPE function returns
the string INTEGER.

~ $ NUM = 52
$ TYPE= F$TYPE(NUMJ
$ SHOW SYMBOL TYPE

TYPE = "INTEGER"

Lexical Functions
F$TYPE

In this example, the symbol NUM is equated to the integer 52. The
F$TYPE function shows that the symbol has an integer data type.

!fl $ CHAR = "FIVE"
$ TYPE= F$TYPE(CHAR)
$ SHOW SYMBOL TYPE

TYPE = "STRING"

In this example, the symbol CHAR is equated to the character string
FIVE. Because the characters in this string do not form a valid integer,
the F$TYPE function shows that the symbol has a string value.

EJ $ x = F$CONTEXT ("PROCESS", CTX, "USERNAME", "SMITH")
$ TYPE = F$TYPE(CTX)
$ SHOW SYMBOL TYPE

TYPE = "PROCESS CONTEXT"
$ x = F$CONTEXT("PROCESS",CTX,"CANCEL")
$ TYPE = F$TYPE(CTX)
$ SHOW SYMBOL TYPE

TYPE = ""

In this example, the F$TYPE function returns the string PROCESS_
CONTEXT because the symbol has been produced by a call to the
F$CONTEXT function with a context type of PROCESS. The symbol
returns this type until F$CONTEXT is called with the symbol and the
selection-item argument value CANCEL.

DCL1-379

Lexical Functions
F$USER

F$USER

FORMAT

return value

ARGUMENTS

EXAMPLE

$ UIC = F$USER ()
$ SHOW SYMBOL UIC

Returns the current user identification code (UIC) in named format as a
character string. The F$USER function has no arguments, but must be
followed by parentheses.

F$USER()

A character string containing the current UIC, including brackets ([]).
The UIC is returned in the format [group-identifier, member-identifier].

None.

UIC = "[GROUP6,JENNIFER]"

DCL1-380

In this example the F$USER function returns the current user
identification code and assigns it to the symbol UIC.

F$VERIFY

FORMAT

return value

ARGUMENTS

Lexical Functions
F$VERIFY

Returns an integer value indicating whether the procedure verification setting
is currently on or off. If used with arguments, the F$VERIFY function can
turn the procedure and image verification settings on or off. You must include
the parentheses after the F$VERIFY function whether or not you specify
arguments.

F$VERIFY ([procedure-value] [,image-value])

The integer 0 if the procedure verification setting is off, or the integer 1 if
the procedure verification setting is on.

procedure-value
Specifies an integer expression with a value of 1 to turn procedure
verification on, or a value of 0 to turn procedure verification off.

When procedure verification is on, each DCL command line in the
command procedure is displayed on the output device. Procedure
verification allows you to verify that each command is executing correctly.

If you use the procedure-value argument, the function first returns the
current procedure verification setting. Then the command interpreter
turns the procedure verification on or off, as specified by the argument.

image-value
Specifies an integer expression with a value of 1 to turn image verification
on, or a value of 0 to turn image verification off.

When image verification is on, data lines in the command procedure are
displayed on the output device.

DESCRIPTION The lexical function F$VERIFY returns an integer value indicating
whether the procedure verification setting is currently on or off. If used
with arguments, the F$VERIFY function can turn the procedure and
image verification settings on or off. You must include the parentheses
after the F$VERIFY function whether or not you specify arguments.

Using the F$VERIFY function in command procedures allows you to
test the current procedure verification setting. For example, a command
procedure can save the current procedure verification setting before
changing it and then later restore the setting. In addition, you can
construct a procedure that does not display (or print) commands,
regardless of what the initial state of verification is.

When you use the F$VERIFY function, you can specify zero, one, or two
arguments. If you do not specify any arguments, neither of the verification
settings is changed. If you specify only the procedure-value argument,

DCL1-381

Lexical Functions
F$VERIFV

both procedure and image verification are turned on (if the value is 1) or
off (if the value is 0).

If you specify both arguments, procedure and image verification are turned
on or off independently. If you specify the image-value argument alone,
only image verification is turned on or off. If you specify the image-value
argument alone, you must precede the argument with a comma (,).

You can also use the F$ENVIRONMENT function with VERIFY_
PROCEDURE or VERIFY_IMAGE as the argument. With the
F$ENVIRONMENT function, you can determine either the procedure
or image verification setting; the F$VERIFY function determines only the
procedure verification setting.

DCL performs the F$VERIFY function even if it appears after a comment
character, if it is enclosed in single quotation marks (' '). This is the only
processing that DCL performs within a comment.

EXAMPLES

D $ SAVE PROC VERIFY= F$ENVIRONMENT("VERIFY PROCEDURE")
$ SAVE=IMAGE_VERIFY = F$ENVIRONMENT("VERIFY_IMAGE")
$ SET NOVERIFY

$ TEMP = F$VERIFY(SAVE_PROC_VERIFY, SAVE_IMAGE_VERIFY)

This example shows an excerpt from a command procedure. The first
assignment statement assigns the current procedure verification setting
to the symbol SAVE_PROC_VERIFY. The second assignment statement
assigns the current image verification setting to the symbol
SAVE_IMAGE_ VERIFY.

Then, the SET NOVERIFY command disables procedure and image
verification. Later, the F$VERIFY function resets the verification settings,
using the original values (equated to the symbols SAVE_PROC_ VERIFY
and SAVE_IMAGE_ VERIFY). The symbol TEMP contains the procedure
verification before it is changed with the F$VERIFY function. (In this
example the value of TEMP is not used.)

i $VERIFY= F$VERIFY(0)

$ IF VERIFY .EQ. 1 THEN SET VERIFY

DCL1-382

This example shows an excerpt from a command procedure that uses the
F$VERIFY function to save the current procedure verification setting
and to turn both procedure and image verification off. At the end of the
command procedure, if procedure verification was originally on, both the
procedure and image verification are turned on.

LIBRARY

FORMAT

LIBRARY

Invokes the Librarian Utility, which creates, modifies, or describes an object,
macro, help, text, or shareable image library. For a complete description of
the Librarian Utility, see the VMS Librarian Utility Manual.

LIBRARY library-filespec [input-filespec[, ... }}

DCL1-383

LICENSE

LICENSE

FORMAT

DCL1-384

Invokes the License Management Utility, which manages software licenses
on the VMS operating system. For a complete description of the License
Management Utility, see the VMS License Management Utility Manual.

LICENSE subcommand parameter

LINK

FORMAT

PARAMETER

LINK

Invokes the VMS Linker, which links one or more object modules into a
program image and defines execution characteristics of the image. For a
complete description of the linker, including more information about the LINK
command, see the VMS Linker Utility Manual.

LINK filespec[, ... }

filespec[, ...]
Specifies one or more input files (wildcard characters not allowed). Input
files can be object modules, libraries to be searched for external references
or from which specific modules are to be included, shareable images to be
included in the output image, or option files to be read by the linker. If
you specify more than one input file, separate the file specifications with
either commas (,)or plus signs (+). In either case, the linker creates a
single image file.

If you omit the file type in an input file specification, the linker supplies
default file types, based on the nature of the file. For object modules, the
file type OBJ is assumed.

DESCRIPTION Before a source-language program can run on the VMS operating system,
it must be translated into object code and then linked. The VMS Linker
binds the object modules, together with any other necessary information,
into an executable image.

To invoke the VMS Linker from DCL level, enter the LINK command and
the command parameter.

For an executable image, the command parameter specifies one or more
input files including object modules to be linked, libraries to be searched
for external references or from which specific modules are to be included,
and option files to be read by the linker. Note that you cannot specify a
shareable image input file from the command line; it can only be specified
from a statement within an options file that you name on the command
line.

If you name several input files on the command line, separate the file
specifications with commas or plus signs.

For a shareable image, the command parameter specifies the name of the
shareable image being created.

You can direct output to different types of files by using appropriate
qualifiers, such as /EXECUTABLE, /SHAREABLE, IMAP, and /SYMBOL_
TABLE. By default, linker output and messages are directed to the
SYS$0UTPUT device. Unless you specify otherwise, output files take
the name of the first input file in the command parameter.

DCL1-385

LINK

QUALIFIERS

DCL1-386

The command line can include qualifiers that either modify the command
itself, or modify a particular file in a list.

A command qualifier modifies the command itself and can be located
anywhere on the command line. Its position does not alter its function.

Positional qualifiers indicate which of the files in the command parameter
list are to be the object of the specified action. If you position the qualifier
next to the command, all listed files are affected. To affect one or more
files selectively, position the qualifier immediately after the appropriate
file specifications.

If you specify incompatible qualifiers, the linker either ignores
the command arid displays an error message or it may ignore the
incompatibility and permit the linking operation to continue.

/BRIEF
Requests the linker to produce a brief map (memory allocation) file; the
/BRIEF qualifier is valid only with the IMAP qualifier.

A brief form of the map contains the following information:

• A summary of the image characteristics

• A list of all object modules included in the image

• A summary of link-time performance statistics

/CONTIGUOUS
INOCONTIGUOUS (default)
Controls whether the output image file is contiguous.

/CROSS_REFERENCE
/NOCROSS_REFERENCE (default)
Controls whether the memory allocation listing (map) contains a symbol
cross-reference list with entries for each global symbol referenced in the
image, its value, and all modules in the image that refer to it.

IDEBUG[=filespec]
/NODEBUG (default)
Controls whether a debugger is included in the output image.

If the object module contains local symbol table or traceback information,
you can specify the /DEBUG qualifier to include the information in the
image as well. If the object module does not contain local symbol table
or traceback information, only global symbols are available for symbolic
debugging.

If you specify the /DEBUG qualifier, the VAX Symbolic Debugger is linked
with the image by default. However, you can use the filespec parameter to
specify an alternate debugger (wildcard characters are not allowed).

For information on using the VMS Debugger, see the VMS Debugger
Manual.

/EXECUTABLE[:filespec]
/NOEXECUTABLE
Controls whether the linker creates an executable image.

LINK

By default the linker creates an executable image with the same file name
as the first input file and a file type of EXE, but this qualifier gives you
the option of assigning the image a file specification. Wildcard characters
are not allowed.

The placement of the command qualifier determines the output file
specification defaults.

You can use the /NOEXECUTABLE or the /EXECUTABLE=NL: qualifier
to test a set of qualifiers, options, or input object modules without
creating an image file. However, it is recommended that you use the
/EXECUTABLE=NL: qualifier, because the linker will not process certain
other qualifiers if the /NO EXECUTABLE qualifier is used.

!FULL
Produces a full memory allocation (map) listing; the /FULL qualifier is
valid only with the /MAP qualifier.

A full listing contains the following information:

• All the information included in a brief listing (see the description of
the /BRIEF qualifier)

• Detailed descriptions of each program section and image section in the
image file

• Lists of global symbols by name and by value

/HEADER
Provides a system image header when used with the /SYSTEM qualifier.
All other images always have headers. However, by default, system images
do not have headers.

llNCLUDE=(module-name[, ... J)
Positional qualifier.

Selects modules from the associated object module library or image library
as input to the linking operation. No wildcard characters are allowed in
the module name specifications.

At least one module name must be specified. If you specify only one
module, you can omit the parentheses.

If you specify the /INCLUDE qualifier, you can also specify the /LIBRARY
qualifier; the library is then searched for unresolved references.

/LIBRARY
Positional qualifier.

Indicates that the associated input file is a library (default file type OLB)
whose modules should be searched to resolve undefined symbols. You are
not permitted to specify a library as the first input file unless you also
specify the /INCLUDE qualifier to indicate which modules in the library
are to be included in the input. If you use both the /INCLUDE and the
/LIBRARY qualifiers, the explicit inclusion of modules occurs first, then
the library is used to search for unresolved references.

DCL1-387

LINK

DCL1-388

IMAP[=filespec]
/NOMAP
Controls whether a memory allocation listing (map) is produced and gives
you the option of assigning it a file specification. In interactive mode, the
default qualifier is /NOMAP; in batch mode, the default qualifier is IMAP.

You can specify the map's contents using either the /BRIEF, the /FULL,
or the /CROSS_REFERENCE qualifier. If you do not specify any of these
qualifiers, the map contains the following information:

• All the information contained in a brief listing (see /BRIEF)

• A list of user-defined global symbols by name

• A list of user-defined program sections

When you specify the /MAP qualifier, you can control the defaults applied
to the output file specification, as described in the VMS DCL Concepts
Manual.

/OPTIONS
Positional qualifier.

Indicates that the associated input file (default file type OPT) contains a
list of linking options.

For complete details on the contents of an options file, see the VMS Linker
Utility Manual.

/PO/MAGE
Creates an image that is stored only in PO address space together with the
stack and the VMS RMS buffers that usually go in Pl address space. The
/POIMAGE qualifier is used to create executable images that modify Pl
address space. For a description of PO and Pl address space, see the VAX
Architecture Handbook.

!PROTECT
Creates a protected shareable image that can execute privileged
change-mode instructions even when it is linked to a nonprivileged
executable image. The /PROTECT qualifier must be used with the
/SHAREABLE qualifier.

/SELECTIVE_SEARCH
Positional qualifier.

Omits from the output image symbol table all symbols from the associated
input object module that are not needed to resolve outstanding references.
These symbols are also excluded from the symbol table file, if the
/SYMBOL_ TABLE qualifier is specified. The binary code in the object
module is always included.

/SHAREABLE[:filespec]
/NOSHAREABLE
Command qualifier.

Creates a shareable image file. By default, the linker creates an
executable image. Optionally, you can designate a name for the output
file; however, wildcard characters are not permitted.

LINK

Shareable images are not executable; however, they can be linked with
object modules to create executable images. If you specify both the
/EXECUTABLE and /SHAREABLE qualifiers, the /SHAREABLE qualifier
takes precedence.

When you specify the /SHAREABLE qualifier, you can control the defaults
applied to the output file specification by the placement of the qualifier in
the command.

To specify an input shareable image, the /SHAREABLE qualifier must be
used as an input file qualifier in an options file. See the description of the
linker in the VMS Linker Utility Manual.

/SHAREABLE
/SHAREABLE:NOCOPY
Positional qualifier. Use this positional qualifier only within an
options file.

Identifies an input file as a shareable image file. The keyword NOCOPY
tells the linker not to bind a private copy of the shareable image to the
executable image. The /SHAREABLE and /SHAREABLE=NOCOPY
qualifiers are equivalent.

/SYMBOL_ TABLE[=filespec]
INOSYMBOL_ TABLE (default)
Controls whether a symbol table object module file (default file type STB)
is created that contains symbol definitions for all global symbols in the
image being linked. The symbol table file can be subsequently specified in
LINK commands to provide the symbol definitions to other images.

If you specify the /DEBUG qualifier, the linker creates a separate symbol
table file and it includes within the image the global symbol definitions
that are used by the debugger.

When you specify the /SYMBOL_TABLE qualifier, you can control the
defaults applied to the output file specification. Optionally, you can
designate a name for the symbol table file, but you cannot use wildcard
characters.

/SYSLIB (default)
/NOSYSLIB
Controls whether
the default system libraries, SYS$LIBRARY:IMAGELIB.OLB and then
SYS$LIBRARY:STARLET.OLB, are automatically searched for unresolved
references in the input files.

/SYSSHR (default)
INOSYSSHR
Controls whether the default system shareable image library,
SYS$LIBRARY:IMAGELIB.OLB, is automatically searched for unresolved
references in the input files. By default, the linker automatically searches
the object module library SYS$LIBRARY:STARLET.OLB and then
SYS$LIBRARY:IMAGELIB.OLB when it cannot resolve references in
the input files.

DCL1-389

LINK

DCL1-390

!SYSTEM[=base-address]
!NOSYSTEM (default)
Controls whether a system image is produced. The /SYSTEM qualifier
produces a system image and optionally assigns it a base address. You
cannot use the /SYSTEM qualifier with either the /SHAREABLE qualifier
or the /DEBUG qualifier. A system image cannot be run with the RUN
command; it must be bootstrapped or otherwise loaded into memory.

The base address specifies where the image is to be loaded in virtual
memory. It can be expressed in decimal, hexadecimal, or octal format,
using the radix specifiers %D, %X, or %0, respectively. The default base
address is %X80000000.

System images are intended for special purposes, such as standalone
operating system diagnostics. When the linker creates a system image,
it orders the program sections in alphanumeric order and ignores all
program section attributes.

!TRACEBACK (default)
!NOTRACEBACK
Controls whether traceback information is included in the image file to
help the system trace the call stack when an error occurs.

If you specify the /DEBUG qualifier, the trRACEBACK qualifier is
assumed.

/USERLIBRARY[=(table[, ...])]
/USERLIBRARY:ALL (default)
!NOUSERLIBRARY
Specifies which user-defined default libraries (process, group, system
or, by default, all three) the linker searches after it has searched any
specified user libraries. (The discussion of the linker in the VMS Linker
Utility Manual explains user-defined default libraries.) You can specify the
following tables for the linker to search:

ALL

GROUP

NONE

PROCESS

SYSTEM

By default, the linker searches the process, group, and system logical
name tables for user-defined library definitions.

The linker searches the group logical name table for user-defined
library definitions.

The linker does not search any logical name table; this specification is
equivalent to using the /NOUSERLIBRARY qualifier.

The linker searches the process logical name table for user-defined
library definitions.

The linker searches the system logical name table for user-defined
library definitions.

The /NOUSERLIBRARY qualifier tells the linker not to search any user
defined default libraries.

EXAMPLES

D $ LINK ORION

LINK

The LINK command in this example links the object module in the file
ORION.OBJ and creates an executable image named ORION.EXE.

~ $ LINK/MAP /FULL DRACO, CYGNUS, LYRA

The LINK command in this example links the modules DRACO.OBJ,
CYGNUS.OBJ, and LYRA.OBJ and creates an executable image named
DRACO.EXE. The IMAP and /FULL qualifiers request a full map of the
image, with descriptions of each program section, lists of global symbols by
name and by value, and a summary of the image characteristics. The map
file is named DRACO.MAP.

I] $ LINK [SSTEST] SERVICE/INCLUDE=DRACO, -
_$ []CYGNUS/EXECUTABLE

The LINK command in this example links the object module DRACO
from the library SERVICE.OLB in the directory SSTEST with the module
CYGNUS. OBJ in the current default directory. The. executable image is
named CYGNUS.EXE. The placement of the /EXECUTABLE qualifier
provides the output file name default.

$ LINK/MAP/CROSS REFERENCE/EXECUTABLE=DBGWEATH -
$ /DEBUG - -

-$ WEATHER, MATHLIB/LIBRARY
$ RUN DBGWEATH

VAX DEBUG VS.4

%DEBUG-I-INITIAL, language is FORTRAN, module set to 'WEATHER'
DBG>

The LINK command in this example links the object module
WEATHER.OBJ with the debugger. If any unresolved references are
encountered, the linker searches the library MATHLIB.OLB before
searching the system library. The /CROSS_REFERENCE qualifier
requests a cross-reference listing in the map file; the map file is named,
by default, WEATHER.MAP. The /EXECUTABLE qualifier requests the
linker to name the output file DBGWEATH.EXE. The RUN command
executes the image; the message from the debugger indicates that it is
ready to accept debug commands.

DCL1-391

LOGIN Procedure

LOGIN Procedure

FORMAT

Initiates an interactive terminal session.

lctr11cl
lctrl!YI
I Return I

DESCRIPTION There is no LOGIN command. You signal your intention to access the
system by pressing Ctrl/C, Ctrl/Y, or the Return key on a terminal not
currently in use. The system prompts for your user name and your
password (and your secondary password, if you have one) and then
validates them.

QUALIFIERS

DCL1-392

Specify the optional qualifiers immediately after you type your user name;
then press the Return key to get the password prompts.

The login procedure performs the following functions:

• Validates your right to access the system by checking your user name
and passwords against the entries in the system's user authorization
file (UAF).

• Establishes the default characteristics of your terminal session based
on your user name entry in the UAF.

• Executes the command procedure file SYS$SYLOG IN. COM if one
exists.

• Executes either the command procedure file named LOGIN.COM if
one exists in your default directory, or the command file defined in the
UAF, if any.

Some systems are set up with a retry facility for users who are accessing
the system from remote or dialup locations. With these systems, when you
make a mistake typing your user name or password, the system allows
you to reenter the information. To reenter your login information, press
the Return key. The system displays the user name prompt again. Now
retype your user name and press the Return key to send the information
to the system. The system displays the password prompt. (There is both a
limit to the number of times you can retry to enter your login information
and a time limit between tries.)

ICLl=command-language-interpreter
Specifies the name of an alternate command language interpreter (CLI) to
override the default CLI listed in the UAF. The CLI you specify must be
located in SYS$SYSTEM and have the file type EXE.

If you do not specify a command interpreter by using the /CLI qualifier
and you do not have a default CLI listed in the UAF, the system supplies
the qualifier /CLl=DCL by default.

EXAMPLES

D ~

/COMMAND[=filespec] (default)
/NOCOMMAND

LOGIN Procedure

Controls whether to execute your default login command procedure when
you log in. Use the /COMMAND qualifier to specify the name of an
alternate login command procedure. If you specify a file name without a
file type, the default file type COM is used. If you specify the /COMMAND
qualifier and omit the file specification, your default login command
procedure is executed.

Use the /NOCOMMAND qualifier if you do not want your default login
command procedure to be executed.

IDISK:device-name[:]
Specifies the name of a disk device to be associated with the logical
device SYS$DISK for the terminal session. This specification overrides
the default SYS$DISK device established in the UAF.

/NEW_ PASSWORD
Requires that you change the account password before logging in (as if the
password had expired). Use this qualifier as a shortcut if you had intended
to change your password after login, or if you suspect that your password
has been detected.

!TABLES=(command-table[, ...])
ITABLES:DCLTABLES (default)
Specifies the name of an alternate CLI table to override the default listed
in the UAF. This table name is considered a file specification. The default
device and directory is SYS$SHARE and the default file type is EXE.

If a logical name is used, the table name specification must be defined in
the system logical name table.

If the /CLI qualifier is set to DCL or MCR, the /TABLES qualifier defaults
to the correct value. If the /TABLES qualifier is specified without the /CLI
qualifier, the CLI specified in the user's UAF will be used.

Username: SMITHSON
Password: <PASSWORD>

In this example, pressing Ctrl/Y allows you to access the operating system,
which immediately prompts for a user name. After validating the user
name, the system prompts for the password but does not echo it.

DCL1-393

LOGIN Procedure

~ I Return I
Username: HIGGINS/DISK=USER$
Password: <PASSWORD>

Welcome to VAX/VMS Version 5.4 on node JUPITER
Last interactive login on Tuesday, 24-APR-1990 09:16:47.08
Last non-interactive login on Monday, 23-APR-1990 17:32:34.27

$ SHOW DEFAULT
USER$: [HIGGINS]

il ~

In this example, the /DISK qualifier requests that the default disk for the
terminal session be DISK2. The SHOW DEFAULT command shows that
USER$ is the default disk.

Username: LIZA/CLI=MCR/COMMAND=ALTLOGIN.COM
Password: <PASSWORD>

>

!I I Return I

Welcome to VAX/VMS Version 5.4 on node JUPITER
Last interactive login on Tuesday, 24-APR-1990 09:16:47.08
Last non-interactive login on Monday, 23-APR-1990 17:32:34.27

In this example, the /CLI qualifier requests the alternate MCR command
interpreter. The /COMMAND qualifier indicates that the login command
file ALTLOGIN.COM is to be executed instead of the default login
command file.

The right angle-bracket prompt (>) indicates that MCR is active and
expects an MCR command.

Username: XENAKIS
Password: <PASSWORD>
Password: <PASSWORD>

$

~ I Return I

Welcome to VAX/VMS Version 5.4 on node JUPITER
Last interactive login on Tuesday, 24-APR-1990 09:16:47.08
Last non-interactive login on Monday, 23-APR-1990 17:32:34.27

In this example, the second password prompt indicates that the user has a
secondary password, which must be entered to access the system.

Username: JONES
Password: <PASSWORD>
User authorization failure
I Return I
Username: JONES
Password: <PASSWORD>

$

DCL1-394

Welcome to VAX/VMS Version 5.4 on node JUPITER
Last interactive login on Tuesday, 24-APR-1990 09:16:47.08
Last non-interactive login on Monday, 23-APR-1990 17:32:34.27
1 failure since last successful login.

This example shows the "User authorization failure" message, which
indicates that the password has been entered incorrectly. After you
successfully log in, a message is displayed showing the number of login
failures since your last successful login. This message is displayed only if

· login failures have occurred.

LOGIN Procedure

[i])Return)

Username: JOYCE
Password: <PASSWORD>

$

i l Return J

Welcome to VAX/VMS Version 5.4 on node JUPITER
Last interactive login on Tuesday, 24-APR-1990 09:16:47.08
Last non-interactive login on Monday, 23-APR-1990 17:32:34.27
WARNING - Primary password has expired; update immediately.

This example shows the WARNING message, which indicates that your
primary password has expired. You must use the SET PASSWORD
command to change your password before logging out, or you will be
unable to log in again.

For more information on changing your password, see the description of
the SET PASSWORD command in this manual.

Username: MIHALY/NEW PASSWORD
Password: <PASSWORD>
Password: <PASSWORD>

Welcome to VAX/VMS Version VS.4 on node JUPITER
Last interactive login on Tuesday, 24-APR-1990 09:16:47.08
Last non-interactive login on Monday, 23-APR-1990 17:32:34.27

Your password has expired; you must set a new password to log in.

Old password: <PASSWORD>

New password: <PASSWORD>

Verification: <PASSWORD>

In this example, the user enters the /NEW _PASSWORD qualifer after
the user name MIHALY. The system then forces the user to set a new
password immediately after login. The prompts are the same as those
provided when you enter the DCL command SET PASSWORD from the
command line.

DCL1-395

LOGOUT

LOGOUT

Terminates an interactive terminal session.

FORMAT LOGOUT

DESCRIPTION You must use the LOGOUT command to end a terminal session. Under
most circumstances, if you turn the power off at your terminal or hang
up your telephone connection without using the LOGOUT command, you
remain logged in.

QUALIFIERS

EXAMPLES

D $ LOGOUT
HIGGINS

DCL1-396

When you use the SET HOST command to log in to a remote processor,
you generally need to use the LOGOUT command to end the remote
session.

/BRIEF
Prints a brief logout message (process name, date, and time) or a full
logout message (a brief message plus accounting statistics).

/FULL
Requests the long form of the logout message. When you specify the
/FULL qualifier, the command interpreter displays a summary of
accounting information for the terminal session. The default qualifier
for a batch job is /FULL.

/HANGUP
/NOHANGUP
Determines, for dialup terminals, whether the phone hangs up whenever
you log out. By default, the setting of the /HANGUP qualifier for your
terminal port determines whether the line is disconnected. Your system
manager determines whether you are permitted to use this qualifier.

logged out at 19-APR-1990 17:48:56.73

In this example, the LOGOUT command uses the default brief message
form. No accounting information is displayed.

LOGOUT

~ $ LOGOUT /FULL
HIGGINS logged out at 19-APR-1990 14:23:45.30

Accounting information:
Buffered I/O count: 22 Peak working set size: 90
Direct I/O count: 10 Peak virtual size: 69
Page faults: 68 Mounted volumes: 0
Charged CPU time: 0 00:01:30.50 Elapsed time: 0 04:59:02.63
Charged vector CPU time: 0 00:00:21.62

In this example, the LOGOUT command with the /FULL qualifier displays
a summary of accounting statistics for the terminal session.

DCL1-397

MACRO

MACRO

FORMAT

PARAMETER

Invokes the VAX MACRO assembler to assemble one or more assembly
language source files.

MACRO filespec[, ...]

filespec[, ... J
Specifies a VAX MACRO assembly language source file to be assembled. If
you specify more than one file, separate the file specifications with either
commas (,) or plus signs (+). File specifications separated by commas
cause the MACRO assembler to produce an object file (and, if indicated,
a listing file) for each specified file. File specifications separated by plus
signs are concatenated into one input file and produce a single object file
(and listing file).

You cannot include a wildcard character in a file specification. For each file
specification, the MACRO command supplies a default file type of MAR.
The MACRO assembler creates output files of one version higher than the
highest version existing in the target directory.

DESCRIPTION The MACRO command invokes the VAX MACRO assembler to assemble
one or more assembly language source files.

QUALIFIERS

DCL1-398

The qualifiers to the MACRO command serve as either command (global)
qualifiers or positional qualifiers. A command qualifier affects all the
files specified in the MACRO command. A positional qualifier affects
only the file that it qualifies. All MACRO qualifiers except the /LIBRARY
and /UPDATE qualifiers are usable as either command or positional
qualifiers. The /LIBRARY and /UPDATE qualifiers are positional qualifiers
only.

See the qualifier descriptions for restrictions.

For a complete functional description of the VAX MACRO assembler
directives, see the VAX MACRO and Instruction Set Reference Manual.

I ANAL YS/S _DATA[:filespec]
/NOANALYSIS_DATA (default)
Controls whether the assembler creates an analysis data file for the VAX
Source Code Analyzer (SCA), and optionally provides the file specification.

By default, the assembler does not create an analysis data file. If you
specify the /ANALYSIS_DATA qualifier without a file specification, the
assembler creates a file with the same file name as the first input file
for the MACRO command. The default file type for analysis data files is
ANA. When you specify the /ANALYSIS_DATA qualifier, you can control
the defaults applied to the output file specification by the placement of the
qualifier in the command line.

MACRO

/CROSS_REFERENCE[=(function[, ...])]
/NOCROSS_REFERENCE (default)
Controls whether a listing is produced of the locations in the source file
where the specified function (or functions) is defined or referenced. If you
specify only one function, you can omit the parentheses.

You can specify the following functions:

ALL

DIRECTIVES

MACROS

OPCODES

Cross-references directives, macros, operation codes, registers,
and symbols

Cross-references directives

Cross-references macros

Cross-references operation codes

REGISTERS Cross-references registers

SYMBOLS Cross-references symbols

Because the assembler writes the cross-references to the listing file,
you must specify the /LIST qualifier with the /CROSS_REFERENCE
qualifier. If you specify no functions in the /CROSS_REFERENCE
qualifier, the assembler assumes the default value of /CROSS_
REFERENCE=(MACROS,SYMBOLS). The /NOCROSS_REFERENCE
qualifier excludes the cross-reference listing.

/DEBUG[:option]
/NODEBUG (default)
Includes or excludes local symbols in the symbol table or traceback
information in the object·module. You can replace the /ENABLE and
/DISABLE qualifiers with the /DEBUG and /NODEBUG qualifiers when
you use the appropriate DEBUG and TRACEBACK options. The /DEBUG
or the /NODEBUG qualifier overrides debugging characteristics set with
the .ENABLE or .DISABLE assembler directives.

You can specify one or more of the following options:

ALL

NONE

SYMBOLS

TRACEBACK

Includes in the object module all local symbols in the symbol
table, and provides all traceback information for the debugger.
This option is equivalent to /ENABLE=(DEBUG,TRACEBACK).

Makes local symbols and traceback information in the object
module unavailable to the debugger. This option is equivalent to
/DISABLE=(DEBUG, TRACEBACK).

Makes all local symbols in the object module available to the
debugger. Makes traceback information unavailable to the
debugger. This option is equivalent to /ENABLE=DEBUG and
/DISABLE= TRACEBACK together.

Makes traceback information in the object module available to
the debugger and local symbols unavailable to the debugger.
This option is equivalent to /ENABLE= TRACEBACK and
/DISABLE=DEBUG together.

If you specify no options to the /DEBUG qualifier, it assumes the default
value of /DEBUG=ALL.

DCL1-399

MACRO

DCL1-400

/DIAGNOSTICS[=filespec]
/NOD/AGNOSTICS (default)
Creates a file containing assembler messages and diagnostic information.
If you omit the file specification, the default file name is the same as the
source program; the default file type is DIA.

No wildcard characters are allowed in the file specification.

The diagnostics file is reserved for use with Digital layered products, such
as the VAX Language-Sensitive Editor (LSE).

/DISABLE:(function[, ...])
/NOD/SABLE
Provides initial settings for the functions disabled by the .DISABLE
assembler directive. You can specify one or more of the following functions:

ABSOLUTE

DEBUG

GLOBAL

SUPPRESSION

TRACEBACK

TRUNCATION

VECTOR

Assembles relative addresses as absolute addresses.

Includes local symbol table information in the object file for use
with the debugger.

Assumes undefined symbols to be external symbols.

Suppresses listing of unreferenced symbols in the symbol table.

Provides traceback information to the debugger.

Truncates floating-point numbers (if truncation is disabled,
numbers are rounded).

Enables the assembler to accept and correctly process vector
code.

If you specify only one function, you can omit the parentheses. If you
specify no functions in the /DISABLE qualifier, it assumes the default
value of /DISABLE=(ABSOLUTE,DEBUG, TRUNCATION, VECTOR).
The /NODISABLE qualifier has the same effect as not specifying the
/DISABLE qualifier, or negates the effects of any /DISABLE qualifiers
specified earlier in the command line.

/ENABLE:(function[, ... J)
/NO ENABLE
Provides initial settings for the functions controlled by the .ENABLE
assembler directive.

The /NOENABLE qualifier has the same effect as not specifying the
/ENABLE qualifier, or negates the effects of any /ENABLE qualifiers
specified earlier in the command line. You can specify one or more of
the functions listed in the description of the /DISABLE qualifier. If you
specify only one function, you can omit the parentheses. If you specify
no functions in the /DISABLE qualifier, it assumes the default value of
/ENABLE=(GLOBAL,TRACEBACK,SUPPRESSION).

/LIBRARY
/NOLIBRARY

MACRO

Positional qualifier. The /LIBRARY qualifier cannot be used with
the /UPDATE qualifier.

The associated input file to the /LIBRARY qualifier must be a macro
library. The default file type is MLB. The /NOLIBRARY qualifier has the
same effect as not specifying the /LIBRARY qualifier, or negates the effects
of any /LIBRARY qualifiers specified earlier in the command line.

The assembler can search up to 16 libraries, one of which is always
STARLET.MLB. This number applies to a particular assembly, not
necessarily to a particular MACRO command. If you enter the MACRO
command so that more than one source file is assembled, but the source
files are assembled separately, you can specify up to 16 macro libraries
for each separate assembly. More than one macro library in an assembly
causes the libraries to be searched in reverse order of their specification.

A macro call in a source program causes the assembler to begin the
following sequence of searches:

1 An initial search of the libraries specified with the .LIBRARY directive.
The assembler searches these libraries in the reverse order of that in
which they were declared.

2 If the macro definition is not found in any of the libraries specified
with the .LIBRARY directive, a search of the libraries specified in
the MACRO command line (in the reverse order in which they were
specified).

3 If the macro definition is not found in any of the libraries specified in
the command line, a search of STARLET.MLB.

/LIST[=filespec J
/NOL/ST
Creates or omits an output listing, and optionally provides an output
file specification for it. The default file type for the listing file is LIS. No
wildcard characters are allowed in the file specification.

An interactive MACRO command does not produce a listing file by default.
The /NOLIST qualifier, present either explicitly or by default, causes
errors to be reported on the current output device.

The /LIST qualifier is the default for a MACRO command in a batch job.
The /LIST qualifier allows you to control the defaults applied to the output
file specification by the placement of the qualifier in the command line.
For more information on entering output file qualifiers, see the VMS DCL
Concepts Manual.

/OBJECT[=filespec]
/NOOBJECT
Creates or omits an object module. It also defines the file specification. By
default, the assembler creates an object module with the same file name as
the first input file. The default file type for object files is OBJ; No wildcard
characters are allowed in the file specification.

DCL1-401

MACRO

DCL1-402

The /OBJECT qualifier controls the defaults applied to the output file
specification by the placement of the qualifier in the command line. For
more information on entering output file qualifiers, see the VMS DCL
Concepts Manual.

/SHOW[=(function[, ...])]
/NOS'710W[=(function[, ...])]
Provides initial settings for the functions controlled by the assembler
directives .SHOW and .NOSHOW.

You can specify one or more of the following functions:

CONDITIONALS Lists unsatisfied conditional code associated with .IF and .ENDC
MACRO directives.

CALLS Lists macro calls and repeat range expansions.

DEFINITIONS Lists macro definitions.

EXPANSIONS Lists macro expansions.

BINARY Lists binary code generated by the expansion of macro calls.

If you specify more than one function, separate each with a comma
and enclose the list in parentheses. If you specify no functions
in the /SHOW qualifier, it increments the listing level count; the
/NOSHOW qualifier decrements the count in similar circumstances.
Because these qualifiers contribute to the listing file, you must also
specify the /LIST qualifier when you use them. If you do not specify
the /SHOW qualifier, the MACRO command assumes a default of
/SHOW=(CONDITIONALS,CALLS,DEFINITIONS). If you specify only
one function, you can omit the parentheses.

/UPDATE[={update-filespec[, ...])J
/NOUPDATE
Positional qualifier. The /UPDATE qualifier cannot be used with
the /LIBRARY qualifier.

Updates the input file it qualifies by using the SUMSLP batch editor
and the specified update file or files. By default, the assembler assumes
that the update file has the same file name as the input source file and
a file type of UPD. You cannot include a wildcard character in the file
specifications. If it cannot find a specified update file, the assembler prints
an informational message and continues the assembly.

If you specify only one update file, you can omit the parentheses. If you
specify more than one update file, the assembler merges the contents into
a single list of updates before applying the updates to the source file.

The /NOUPDATE qualifier has the same effect as not specifying the
/UPDATE qualifier, or negates any /UPDATE qualifiers specified earlier in
the command line. The input source file and update files are not changed
by the update operation. The effects of the update appear in the compiled
output. If you specify the /LIST qualifier with the /UPDATE qualifier, the
assembler writes an audit trail of the changes to the listing file.

MACRO

EXAMPLES

D $ MACRO/LIST CYGNUS, LYRA/OBJECT=LYRAN + MYLIB/LIBRARY

~ $ MACRO ORION

In this example, the MACRO command requests two separate assemblies.
Using MAR as the default file type, MACRO assembles CYGNUS.MAR to
produce CYGNUS.LIS and CYGNUS.OBJ. Then it assembles LYRA.MAR
and creates a listing file named LYRA.LIS and an object module named
LYRAN.OBJ. The default output file type for a listing is LIS.

The command requests the search of the MYLIB library file in the current
directory for macro definitions.

MACRO assembles the file ORION.MAR and creates an object file named
ORION.OBJ. Executing the command in a batch job causes MACRO to
create a listing file named ORION.LIS.

m $ MACRO ALPHA/LIST+MYLIB/LIBRARY
_ $ + [TEST]OLDLIB/LIBRARY + []BETA
$ PRINT ALPHA

MACRO concatenates the files ALPHA.MAR and BETA.MAR to produce
an object file named ALPHA.OBJ and a listing file named ALPHA.LIS.
The command line requests the search of libraries MYLIB.MLB (in the
current default directory) and OLDLIB.MLB (in the directory [TEST])
for macro definitions. When macro calls are found in BETA.MAR,
MACRO searches the libraries OLDLIB, MYLIB, and the system library
STARLET.MLB, in that order, for the definitions.

The PRINT command prints the listing file ALPHA.LIS.

m $ MACRO DELTA+TESTLIB/LIBRARY, ALPHA+MYLIB/LIBRARY

MACRO requests two separate assemblies. MACRO searches
TESTLIB.MLB and the system library STARLET.MLB for macro
definitions when macro calls are found in DELTA.MAR, and searches
MYLIB.MLB and the system library STARLET.MLB for macro definitions
when macro calls are found in ALPHA.MAR.

DCL1-403

MAIL

MAIL

FORMAT

DCL1-404

Invokes the Mail Utility, which is used to send messages to other users of the
system. For a complete description of the Mail Utility, see the VMS Mail Utility
Manual.

MAIL [filespec] [recipient-name]

MERGE

FORMAT

MERGE

Invokes the Sort/Merge Utility, which combines 2 to 10 similarly sorted input
files and creates a single output file. Note that input files to be merged must
be in sorted order. For a complete description of the Sort/Merge Utility, see
the VMS Sort/Merge Utility Manual.

MERGE input-filespec1 ,input-filespec2[, ... }
output-filespec

DCL1-405

MESSAGE

MESSAGE

FORMAT

DCL1-406

Invokes the Message Utility, which compiles one or more files of message
definitions. For a complete description of the Message Utility, see the VMS
Message Utility Manual.

MESSAGE filespec[, ...]

MONITOR

FORMAT

MONITOR

Invokes the Monitor Utility, which monitors classes of systemwide performance
data at a specified interval. For a complete description of the Monitor Utility,
see the VMS Monitor Utility Manual.

MONITOR [class-name[, ...]]

DCL1-407

MOUNT

MOUNT

FORMAT

DCL1-408

Invokes the Mount Utility, which makes a disk or magnetic tape volume
available for processing. For a complete description of the Mount Utility, see
the VMS Mount Utility Manual.

MOUNT device-namef.1[, ...] [volume-label[, ...]]
[logical-name[}]

Index

A
Accessing restricted files • DCL2-236
Accounting

enabling or disabling logging • DCL2-91
of detached process • DCL2-55
of terminal session • DCL2-303

ACCOUNTING command• DCL 1-14
See also SET ACCOUNTING command

ALLOCATE command • DCL 1-15 to DCL 1-17
and DEASSIGN command• DCL1-104
and DISMOUNT command• DCL1-170

Allocating devices• DCL 1-15
Analysis

dump file• DCL 1-30
global symbol table • DCL 1-23
image file • DCL 1-22
image file fixup section • DCL 1-23
image file patch text records • DCL 1-24
object file • DCL 1-26

debugger information records • DCL 1-27
end-of-module records • DCL 1-27
global symbol directory records • DCL 1-27
link option specification records • DCL 1-28
module header records • DCL 1-28
module traceback records • DCL 1-28
relocation records • DCL 1-29
text • DCL 1-29

object module • DCL 1-26
patch text record • DCL 1-24
shareable image file • DCL 1-22

Analysis back-end converter• DCL1-70
ANALYZE/AUDIT command• DCL 1-18
ANALYZE/CRASH_DUMP command• DCL1-19
ANALYZE/DISK_ STRUCTURE command• DCL 1-20
ANALYZE/ERROR_LOG command• DCL1-21
ANALYZE/IMAGE command• DCL1-22 to DCL1-24
ANALYZE/MEDIA command• DCL1-25
ANALYZE/OBJECT command• DCL 1-26 to

DCL1-29
ANALYZE/PROCESS_DUMP command • DCL 1-30

to DCL1-31
ANALYZE/RMS_FILE command • DCL 1-32
ANALYZE/SYSTEM command • DCL 1-33
APPEND command• DCL 1-34 to DCL 1-38

APPEND command (Cont.)

using with DECwindows compound documents •
DCL1-34

Applications
running locally• DCL2-133
running remotely• DCL2-133

ASSIGN command• DCL 1-39 to DCL 1-45
and DEASSIGN command• DCL1-104

Assignment
of logical queue to an execution queue • DCL 1-4 7
of queue name • DCL 1-249
of symbols interactively • DCL 1-262

= (assignment statement) command • DCL 1-1 to
DCL1-4

ASSIGN/MERGE command• DCL 1-46
ASSIGN/QUEUE command• DCL 1-47 to DCL 1-48

and DEASSIGN/QUEUE command• DCL 1-109
AST (asynchronous system trap)

specifying quota • DCL2-55
AITACH command• DCL1-49 to DCL1-50
Attached processor

showing state • DCL2-258
starting • DCL2-343
stopping• DCL2-361

B
Back-end converter

analysis• DCL 1-70
Postscript • DCL 1-68
text • DCL 1-67

BACKUP command• DCL 1-51
Bad block data

on disks• DCL 1-247
Base address

defining for images • DCL 1-390
Base priority

establishing for batch job• DCL 1-252, DCL2-203
Batch editing

EVE• DCL 1-191, DCL 1-194
VAXTPU•DCL1-191, DCL1-194

Batch job
defining default working set• DCL 1-260,

DCL 1-269, DCL2-208, DCL2-353,
DCL2-383

defining maximum CPU time limit• DCL 1-267

lndex-1

Index

Batch job (Cont.}

defining working set extent• DCL 1-260,
DCL 1-269, DCL2-208, DCL2-353,
DCL2-383

defining working set quota • DCL 1-269,
DCL2-208, DCL2-353, DCL2-383

deleting files
after processing • DCL2-379

deleting log file • DCL 1-267, DCL2-380
end of job on cards • DCL 1-208
flushing output buffer• DCL2-183
holding • DCL 1-267, DCL2-380
keeping log file • DCL2-380
limiting CPU time of • DCL 1-267, DCL2-380
log file • DCL2-376
on remote network node • DCL2-382
passing parameters to • DCL2-381
password • DCL2-9
priority • DCL2-382
queue

changing entry • DCL2-136
displaying entries • DCL2-275, DCL2-309
entering command procedure in • DCL2-376
modifying characteristics of• DCL2-345
starting • DCL2-345

saving log file• DCL 1-267
stopping process • DCL2-358
submitting through cards • DCL 1-266
synchronizing with process • DCL2-387
working set

defining default• DCL 1-260, DCL 1-269,
DCL2-208, DCL2-353, DCL2-383

defining extent for • DCL 1-260, DCL 1-269,
DCL2-208, DCL2-353, DCL2-383

defining quota for• DCL 1-269, DCL2-208,
DCL2-353, DCL2-383

Batch-oriented editor • DCL 1-185
Batch queue

creating • DCL 1-249
defining default CPU time limit • DCL 1-253,

DCL2-204, DCL2-347
defining default working set• DCL 1-260,

DCL 1-269, DCL2-208, DCL2-353,
DCL2-383

defining maximum CPU time limit• DCL 1-253,
DCL2-205, DCL2-348

defining working set extent• DCL 1-260,
DCL 1-269, DCL2-208, DCL2-353,
DCL2-383

defining working set quota • DCL 1-269,
DCL2-208, DCL2-353, DCL2-383

deleting• DCL1-143

lndex-2

Batch queue (Cont.}

deleting entries • DCL 1-136
establishing base priority for jobs• DCL 1-252,

DCL2-203
initializing • DCL 1-249

Block
specifying cluster size on disk • DCL 1-242

Block size
for files• DCL 1-164

Byte dump • DCL 1-175

c
CALL command • DCL 1-52 to DCL 1-55
CANCEL command • DCL 1-56 to DCL 1-57
Cancellation

of detached process wakeup request• DCL2-55
of logical name assignments • DCL 1-104
of subprocess wakeup request • DCL2-55

Card
submitting batch job on • DCL 1-266

Card reader
end of batch job • DCL 1-208

Character string
finding in file• DCL2-81
specifying case for search• DCL2-81
symbol assignment • DCL 1-5

CLOSE command • DCL 1-58 to DCL 1-59
See also OPEN command

Cluster
dismounting volumes on• DCL1-171

Cluster size
specifying on disk • DCL 1-242

Clusterwide device
dismounting • DCL 1-171

Command Definition Utility (CDU}
invoking • DCL2-117

Command file
VAXTPU • DCL1-191

Command interpreter
controlling error checking of• DCL2-182
specifying alternate • DCL 1-392

Command procedure
continuing execution of • DCL 1-63
controlling error checking in• DCL2-182
delaying process of • DCL2-397
displaying command lines of • DCL2-237
displaying prompts of• DCL 1-262
executing • DCL 1-9
label• DCL 1-52, DCL 1-227, DCL 1-229

Command procedure (Cont.)

parameters for • DCL 1-9
passing symbol to interactively• DCL 1-262
resuming execution of• DCL 1-63
stopping

and returning to command level 0 • DCL2-358
submitting batch jobs • DCL2-376
terminating • DCL 1-222
testing expressions • DCL 1-237
transferring control within• DCL 1-52, DCL 1-227,

DCL1-229
Comparison

of characters in records• DCL 1-151
of files• DCL 1-151

Concatenating files• DCL 1-34, DCL 1-74
CONNECT command• DCL 1-60 to DCL 1-62
CONTINUE command• DCL1-63 to DCL1-64
CONVERT command • DCL 1-65
CONVERT/DOCUMENT command • DCL 1-66 to

DCL1-72
creating an options file• DCL 1-67

CONVERT/RECLAIM command• DCL1-73
COPY command• DCL 1-74 to DCL 1-83

using with DECwindows compound documents •
DCL1-75

CPU (central processing unit)
defining default time limit for batch jobs •

DCL 1-253, DCL2-204, DCL2-347
defining maximum time limit for batch jobs

• DCL 1-253, DCL 1-267, DCL2-205,
DCL2-348

displaying error count for • DCL2-279
limiting time for batch job • DCL2-138, DCL2-379
time used by current process• DCL2-319

CREATE command• DCL1-84 to DCL 1-88
CREATE/DIRECTORY command• DCL1-89 to

DCL1-91
CREATE/FOL command• DCL 1-92
CREATE/NAME_ TABLE command• DCL 1-93 to

DCL1-96
CREATE/TERMINAL command• DCL1-97 to

DCL1-102
Ctrl/C

and CONTINUE command• DCL1-63
continuing after • DCL 1-63
restriction with keystroke journaling• DCL 1-200

CTRL functions
enabling or disabling

CTRUC • DCL2-118
CTRL/T • DCL2-118
CTRUY • DCL2-118

Ctrl/O

See TYPE command
Ctrl/Q

See TYPE command
Ctrl/S

See TYPE command
Ctrl/Y

and CONTINUE command• DCL 1-63
and EXIT command • DCL 1-222
and login procedure • DCL 1-392
and ON command • DCL2-2
continuing after• DCL 1-63

D
Data check

changing default • DCL2-240
Data record compaction

TA90E support• DCL1-246, DCL2-177
Data stream

marking beginning of• DCL 1-111
marking end of • DCL 1-206

Date
changing system • DCL2-234
displaying • DCL2-328

Day
setting default type • DCL2-120

DCL commands
continuing execution of• DCL 1-63

Index

marking beginning of input stream • DCL 1-111
marking end of input stream • DCL 1-206
resuming execution of • DCL 1-63

DDIF (Digital Document ·Interchange Format)
analyzing files encoded in• DCL 1-70

DEALLOCATE command• DCL 1-103
and ALLOCATE command• DCL1-15, DCL1-103

Deallocating devices • DCL 1-103
DEASSIGN command• DCL 1-104 to DCL 1-108

and DEFINE command• DCL 1-114
DEASSIGN/QUEUE command• DCL1-109
DEBUG command • DCL 1-110
Debugger

and RUN (Image) command• DCL2-51
including in output image• DCL 1-386
information record analysis • DCL 1-27
invoking • DCL 1-30, DCL 1-110
using with DEPOSIT command• DCL1-147
using with EXAMINE command• DCL 1-209

Debugger information records
analyzing in object file• DCL 1-27

lndex-3

Index

Debugging
VAXTPU • DCL1-192

Decimal dump• DCL 1-175
DECK command• DCL1-111 to DCL 1-113

and EOD command• DCL 1-206
DECnet• DCL2-149, DCL2-171, DCL2-173

running DECwindows applications across •
DCL2-133

DECterm window
setting application keypad • DCL 1-98

DECW$DISP~AY • DCL2-129, DCL2-272
DECwindows

EVE• DCL 1-193, DCL1-195
VAXTPU • DCL 1-193, DCL 1-195

Default characteristics
modifying terminal • DCL2-221 to DCL2-233
setting for magnetic tape device • DCL2-177

Default device
displaying • DCL2-262
setting• DCL2-121

Default directory
displaying • DCL2-262
setting• DCL2-121

Default error checking
controlling• DCL2-182

Default libraries
displaying help • DCL 1-232

Default printer
displaying characteristics of • DCL2-300

Default protection
establishing • DCL2-199

Default UIC
changing • DCL2-236

Default working set
for batch job• DCL 1-260, DCL 1-269, DCL2-208,

DCL2-353, DCL2-383
modifying size • DCL2-244

DEFINE/CHARACTERISTIC command• DCL1-120
to DCL 1-121

DEFINE command• DCL1-114 to DCL1-119
and DEASSIGN command• DCL 1-104

DEFINE/FORM command•DCL1-122 to DCL1-125
DEFINE/KEY command• DCL1-126 to DCL 1-130
Delaying command processing • DCL2-397

See also Wait state
DELETE/CHARACTERISTIC command• DCL 1-135
DELETE command• DCL1-131 to DCL 1-134
DELETE/ENTRY command • DCL 1-136 to

DCL1-138
OELETE/FORM command• DCL 1-139

lndex-4

DELETE/INTRUSION_RECORD command •
DCL1-140

DELETE/KEY command • DCL 1-141
DELETE/QUEUE command• DCL1-143 to

DCL 1-144
DELETE/SYMBOL command• DCL1-145 to

DCL1-146
Deleting

batch job file after processing • DCL2-379
batch queue• DCL1-143
batch queue entries • DCL 1-136
files• DCL 1-131
logical names • DCL 1-104
logical name tables • DCL 1-104
multiple files• DCL 1-131
print queue • DCL 1-143
print queue entries • DCL 1-136
wakeup request • DCL2-55

DEPOSIT command• DCL1-147 to DCL1-150
and EXAMINE command• DCL1-209
length qualifiers • DCL 1-148
radix qualifiers• DCL 1-148

Detached process

See Process
Device driver image

patching • DCL2-11
Device name

assigning logical name to• DCL1-39, DCL1-114
Devices

access• DCL 1-15
allocation• DCL 1-15
assigning logical queue name to• DCL 1-47
creating • DCL2-129
deallocating • DCL 1-103
dismounting• DCL 1-170
displaying

default • DCL2-262
error count for • DCL2-279
information on • DCL2-246
mounted volumes • DCL2-266
queue entries • DCL2-275, DCL2-309
status of • DCL2-264

establishing as spooled• DCL2-123
establishing operational status for • DCL2-123
logical name assignment • DCL 1-15
magnetic tape

setting default characteristics for• DCL2-177
modifying• DCL2-129
modifying protection of • DCL2-200
unloading with DISMOUNT command• DCL1-172

DIFFERENCES command• DCL 1-151 to DCL 1-158

DIFFERENCES command {Cont.)

comment characters • DCL 1-153
comment delimiters • DCL 1-153
exit status • DCL 1-152
output formats • DCL 1-156

Digital Document Interchange Format

See DDIF
DIGITAL Standard Runoff

See DSR • DCL2-63
Directory

changing specification • DCL2-34
copying• DCL 1-74
creating • DCL 1-89
creating U IC • DCL 1-89
displaying contents of• DCL 1-159
displaying default • DCL2-262
file version limit

defining at creation • DCL 1-90
modifying• DCL2-126
modifying number in system space

for Files-11 volume • DCL2-240
protection

defining at creation • DCL 1-90
modifying • DCL2-196

ready access • DCL 1-241
space preallocation on disk • DCL 1-243

DIRECTORY command • DCL 1-159 to DCL 1-167
DISCONNECT command• DCL1-168 to DCL1-169
Disk

allocating mapping pointers • DCL 1-248
creating sequential files • DCL 1-84
defining shareable volume• DCL 1-247
defining structure level• DCL 1-247
directory space allocation • DCL 1-243
disabling operator status • DCL2-40
dismounting • DCL 1-170
dismounting volume set• DCL 1-172
displaying quota• DCL2-317
enabling operator status • DCL2-40
establishing operational status for • DCL2-123
files

comparing • DCL 1-151
deleting• DCL1-131

index file placement • DCL 1-245
indicating bad block data• DCL 1-247
modifying RMS defaults for file operations •

DCL2-214
renaming directory • DCL2-34
renaming file • DCL2-34
specifying cluster size • DCL 1-242
specifying default file extension size• DCL 1-244

Index

Disk {Cont.)

specifying density • DCL 1-242
specifying faulty areas • DCL 1-241
specifying maximum file number• DCL 1-245
volume initialization• DCL 1-240

Disk file protection
defining default • DCL 1-244

Disk quota
displaying• DCL2-317

Dismount
clusterwide • DCL 1-171
disk• DCL 1-170
magnetic tape • DCL 1-170
shared device • DCL 1-171

DISMOUNT command• DCL1-170 to DCL1-173
Display

allocated device • DCL2-265
command procedure • DCL2-237
date • DCL2-328
device status • DCL2-264
file at terminal • DCL2-389
file on current output device • DCL2-389
files opened by the system • DCL2-266
names of installed files • DCL2-265, DCL2-266
names of open files • DCL2-265
time • DCL2-328
working set limit• DCL2-335
working set quota• DCL2-335

Document conversion
output formats • DCL 1-66

Dollar sign {$)
and DECK command• DCL1-111
and EOD command • DCL 1-206
and EOJ command • DCL 1-208

DSR {DIGITAL Standard Runoff) • DCL2-63
invoking • DCL2-63

DTE commands • DCL2-158
CLEAR • DCL2-158
EXIT • DCL2-159
au IT • DCL2-160
SAVE• DCL2-161
SEND BREAK• DCL2-162
SET DTE • DCL2-163
SHOW DTE • DCL2-168
SPAWN. DCL2-169

Dump
format

byte• DCL 1-175
decimal • DCL 1-175
hexadecimal • DCL 1-176
longword • DCL 1-176
octal• DCL1-176

lndex-5

Index

Dump
format (Cont.)

word• DCL1-177
of files• DCL1-174
of volumes• DCL 1-174
reading• DCL1-174

DUMP command• DCL1-174 to DCL 1-178
Duplicate labels

command interpreter rules for• DCL 1-52,
DCL 1-227, DCL 1-229

E
EDIT/ACL command• DCL1-179
EDIT/EDT command• DCL1-180 to DCL1-183
EDIT/FOL command• DCL1-184
Editor

default• DCL1-180
invoking

EDT• DCL1-180
EVE• DCL1-189
SUMSLP • DCL1-185
TECO• DCL 1-186
VAXTPU • DCL1-189

screen oriented • DCL 1-180
EVE• DCL 1-189
VAXTPU • DCL1-189

EDIT/SUM command• DCL1-185
EDIT/TECO command• DCL 1-186 to DCL 1-188
EDIT/TPU command• DCL1-189 to DCL 1-204
EDT description • DCL 1-180
ELSE keyword

and IF command• DCL1-237
End of batch job on cards • DCL 1-208
End of data stream• DCL 1-206

See also EOD command
End-of-file condition• DCL 1-206
End-of-file indicator • DCL 1-111
End-of-module

record analysis • DCL 1-27
ENDSUBROUTINE command• DCL 1-53, DCL 1-54,

DCL1-205
EOD command• DCL 1-206 to DCL 1-207

and DECK command • DCL 1-111
EOJ command • DCL 1-208
Equivalence name

assigning to logical name • DCL 1-39, DCL 1-114
displaying for logical names • DCL2-329

lndex-6

Error
checking

controlling • DCL2-182
reporting

for image files • DCL 1-22
for object files • DCL 1-26

Error stream
defining for created process • DCL2-53

EVE$1NIT logical name• DCL1-194
EVE (Extensible VAX Editor)

batch editing•DCL1-191, DCL1-194
DECwindows interface• DCL1-193, DCL1-195
initialization file • DCL 1-194
input file• DCL 1-189; DCL 1-192
invoking • DCL 1-189
journaling • DCL 1-195, DCL 1-198
output file • DCL 1-197
recovery from system failure • DCL 1-198
section file • DCL 1-200
start position • DCL 1-202

EXAMINE command• DCL1-209 to DCL1-211
and DEPOSIT command• DCL1-147
length qualifier• DCL 1-210

EXCHANGE command • DCL 1-212
EXCHANGE/NETWORK command• DCL1-213 to

DCL1-221
creating files • DCL 1-217
protecting files• DCL 1-217
qualifiers • DCL 1-217
selecting transfer modes • DCL 1-215
transferring files • DCL 1-215
wildcard character• DCL 1-216

Executable image
creating• DCL 1-387
patching• DCL2-11

@ (execute procedure) command• DCL 1-9 to
DCL1-13

Executing SYS$LOGIN • DCL 1-392
Execution

of alternate login command procedure • DCL 1-393
of login command procedure • DCL 1-392
resuming

command procedure • DCL 1-63
DCL commands • DCL 1-63
program • DCL 1-63

Execution queue • DCL 1-251
/EXECUTIVE_MODE qualifier

ASSIGN command• DCL 1-40
EXIT command • DCL 1-222 to DCL 1-225

See also STOP command
Expression

value test • DCL 1-237

Extensible VAX Editor
See EVE

F
F$CONTEXT lexical function • DCL 1-272, DCL 1-275

to DCL1-279
F$CSID lexical function• DCL 1-272, DCL 1-280 to

DCL1-281
F$CVSI lexical function • DCL 1-272, DCL 1-282 to

DCL1-283
F$CVTIME lexical function • DCL 1-273, DCL 1-284

to DCL1-285
F$CVUI lexical function• DCL 1-273, DCL 1-286
F$DEVICE lexical function• DCL 1-273, DCL 1-287

to DCL1-288
use of • DCL 1-287
value returned • DCL 1-287

F$DIRECTORY lexical function• DCL 1-273,
DCL1-289

F$EDIT lexical function• DCL 1-273, DCL 1-290 to
DCL1-291

F$ELEMENT lexical function • DCL 1-273, DCL 1-292
to DCL1-293

F$ENVIRONMENT lexical function• DCL 1-273,
DCL 1-294 to DCL 1-296

F$EXTRACT lexical function • DCL 1-273, DCL 1-297
to DCL1-298

F$FAO lexical function • DCL 1-273, DCL 1-299 to
DCL1-305

F$FILE_ATTRIBUTES lexical function• DCL 1-273,
DCL 1-306 to DCL 1-308

F$GETDVI lexical function• DCL 1-273, DCL 1-309
to DCL1-321

item names • DCL 1-31 O
F$GET JPt lexical function • DCL 1-273, DCL 1-322

to DCL1-327
F$GETQUI lexical function• DCL 1-273, DCL 1-328

to DCL1-343
F$GETSYI lexical function• DCL 1-273, DCL 1-344

to DCL1-348
F$1DENTIFIER lexical function • DCL 1-273,

DCL 1-349 to DCL 1-350
F$1NTEGER lexical function• DCL 1-273, DCL 1-351
F$LENGTH lexical function • DCL 1-273, DCL 1-352
F$LOCATE lexical function • DCL 1-273, DCL 1-353

to DCL1-354
F$LOGICAL

See F$TRNLNM
F$MESSAGE lexical function• DCL 1-273, DCL 1-355

Index

F$MODE lexical function• DCL 1-274, DCL 1-356 to
DCL1-357

F$PARSE lexical function • DCL 1-27 4, DCL 1-358 to
DCL1-360

F$PID lexical function• DCL 1-274, DCL 1-361 to
DCL1-362

F$PRIVILEGE lexical function• DCL 1-274,
DCL1-363

F$PROCESS lexical function • DCL 1-27 4, DCL 1-364
F$SEARCH lexical function• DCL 1-274, DCL 1-365

to DCL1-367
F$SETPRV lexical function• DCL 1-274, DCL 1-368

to DCL1-371
F$STRING lexical function• DCL 1-274, DCL 1-372
F$TIME lexical function• DCL 1-274, DCL 1-373
F$TRNLNM lexical function• DCL 1-274, DCL 1-374

to DCL1-377
F$TYPE lexical function • DCL 1-378 to DCL 1-379
F$USER lexical function• DCL 1-274, DCL 1-380
F$VERIFY lexical function• DCL 1-274, DCL 1-381

to DCL1-382
False expression

and IF command• DCL1-237
FHM (file highwater mark) • DCL 1-244
File

formatting text

See DSR
File expiration date

specifying retention time values • DCL2-242
File extension size

changing default • DCL2-240
File highwater mark• DCL 1-244
File image

analyzing • DCL 1-22
fixup section analysis • DCL 1-23

File name
changing • DCL2-34

File object
analyzing • DCL 1-26
analyzing debugger information records • DCL 1-27
analyzing global symbol directory records •

DCL1-27
analyzing link option specification records •

DCL1-28
analyzing module header records • DCL 1-28
analyzing module traceback records • DCL 1-28
analyzing relocation records • DCL 1-29
analyzing text • DCL 1-29
identifying errors• DCL 1-26

File protection
changing default for volume • DCL2-240
defining at file creation • DCL 1-85

lndex-7

Index

File protection (Cont.)

defining default• DCL 1-244
establishing default• DCL2-199
modifying • DCL2-196
with EXCHANGE/NETWORK command•

DCL 1-217
Files

allocating headers • DCL 1-244
appending to • DCL 1-34
batch job

deleting after processing • DCL2-379
closing• DCL1-58
comparing• DCL 1-151
concatenating• DCL 1-74
copying• DCL1-74, DCL1-213
creating• DCL 1-74, DCL 1-84, DCL 1-213

with EDT editor • DCL 1-180
with EVE• DCL1-189, DCL1-192
with TECO editor • DCL 1-186
with VAXTPU • DCL 1-189, DCL 1-192

creating owner UIC • DCL 1.:..85
deassigning logical name • DCL 1-58
default extension size on disk • DCL 1-244
deleting• DCL 1-131
displaying

allocated blocks • DCL 1-164
at terminal • DCL2-389
backup date• DCL1-161
blocks used • DCL 1-164
creation date• DCL1-161
expiration date• DCL 1-161
files opened by the system • DCL2-266
help• DCL 1-231
latest version • DCL 1-165
modification date• DCL 1-161
names of installed files • DCL2-265,

DCL2-266
names of open files • DCL2-265
on current output device • DCL2-389
owner U IC • DCL 1-163
protection • DCL 1-163

dumping• DCL 1-174
editing

with EDT editor • DCL 1-180
with EVE• DCL 1-189, DCL 1-197
with SUMSLP editor• DCL 1-185
with TECO editor • DCL 1-186
with VAXTPU • DCL1-189, DCL 1-197

extending • DCL 1-36
ignoring characters in comparisons • DCL 1-154
ignoring records in comparisons • DCL 1-154
ignoring strings in comparisons • DCL 1-154

lndex-8

Files (Cont.)

input
EVE• DCL 1-189
VAXTPU • DCL1-189

installed
displaying names of• DCL2-266

list in directory • DCL 1-159
maximum number on disk • DCL 1-245
modifying

characteristics of • DCL2-144
queue entry for • DCL2-136
RMS defaults for file operations • DCL2-214

opening • DCL2-5
output

EVE • DCL 1-197, DCL 1-203
VAXTPU • DCL1-197, DCL1-203

printing • DCL2-13
purging • DCL2-24
reading records from • DCL2-28
renaming • DCL2-34
restricted

access to • DCL2-236
searching for character string• DCL2-81
transferring • DCL 1-213
unlocking • DCL2-395
updating

with SUMSLP editor• DCL 1-185
version limit

defining at directory creation • DCL 1-90
writing records to • DCL2-399

Files-11 disk
initializing • DCL 1-240

Files-11 On-Disk Structure Level 1 • DCL 1-240
Files-11 volume

modifying characteristics of • DCL2-240
File shareable image

analyzing • DCL 1-22
File system requests

responding to • DCL2-39
File type

changing • DCL2-34
File version number

changing • DCL2-34
File windows

mappi_ng pointer allocation • DCL 1-248
specifying mapping pointers • DCL2-242

Fixup section
analyzing• DCL 1-23

FONT command• DCL 1-226
Formatting

of DIFFERENCES output• DCL1-155

G
Generic device name • DCL 1-15
Generic queue • DCL 1-251

initializing• DCL 1-257, DCL2-350
Global symbol • DCL 1-1, DCL 1-5
Global symbol directory records

analyzing in object file • DCL 1-27
Global symbol table

analyzing• DCL 1-23
deleting symbols from • DCL 1-145
entering symbol in • DCL 1-263

GOSUB command• DCL 1-227 to DCL 1-228
GOTO command • DCL 1-229 to DCL 1-230
Group logical name table

canceling entries • DCL 1-105
including logical name • DCL 1-41 , DCL 1-116

H
Header allocation

on disk volumes • DCL 1-244
HELP command• DCL 1-231 to DCL 1-236
Help display

of default libraries • DCL 1-232
Help library

creating • DCL 1-231
user • DCL 1-234

Hexadecimal dump• DCL 1-176
Hibernation

and RUN command • DCL2-55

I
IF command• DCL 1-237 to DCL 1-239

and CONTINUE command• DCL1-63
Image

continuing execution of • DCL 1-63
defining base address • DCL 1-390
executing in detached process • DCL2-53
executing in subprocess • DCL2-53
resuming execution of• DCL 1-63
running• DCL2-51
system • DCL 1-389
terminating with EXIT command • DCL 1-222

Image file

See also PATCH command
analyzing• DCL 1-22
analyzing fixup section• DCL 1-23
analyzing patch text records• DCL 1-24
anayzing global symbol table • DCL 1-23
error analysis of • DCL 1-22
invoking • DCL2-11

Image hibernation
and RUN command • DCL2-55

Image size
specifying with RUN command• DCL2-57

Image wakeup
and RUN command • DCL2-55

Index
creating• DCL2-77
creating source file with DSR • DCL2-63

Index file
placing on disk • DCL 1-245

Initialization
tape

Index

using REPLY/BLANK_ TAPE• DCL2-40 ·
using REPLY/INITIALIZE_ TAPE• DCL2-40

volumes • DCL 1-240
Initialization file

EVE• DCL 1-194
INITIALIZE command• DCL1-240 to DCL 1-248
INITIALIZE/QUEUE command• DCL 1-249 to

DCL 1-261
Input data stream

marking beginning of• DCL 1-111
marking end of• DCL 1-206

Input file
EVE• DCL 1-189, DCL 1-192
VAXTPU • DCL1-189, DCL 1-192

Input stream
defining for created process • DCL2-53
switching control to other processes • DCL 1-49

INQUIRE command• DCL 1-262 to DCL 1-264
INSTALL command• DCL1-265
Installed files

displaying names of• DCL2-265
Interactive

assignment of symbols • DCL 1-262
help • DCL 1-233

lndex-9

Index

J
Job

defining default CPU time limit• DCL 1-253,
DCL2-204, DCL2-347

defining maximum CPU time limit • DCL 1-253,
DCL2-205, DCL2-348

deleting from queue• DCL1-136, DCL1-143
redirecting to another queue • DCL 1-46
removing from queue

with ASSIGN/MERGE command• DCL 1-46
Job batch card

end of • DCL 1-208
JOB card

password • DCL2-9
JOB command• DCL 1-266 to DCL 1-271
Job logical name table

canceling entries • DCL 1-105
including logical name • DCL 1-41, DCL 1-116

Journal
EVE• DCL 1-195, DCL 1-198
VAXTPU • DCL1-195, DCL1-198

K
Keypad

application
setting for DECterm • DCL 1-98

L
Label

command interpreter rules for • DCL 1-52,
DCL 1-227, DCL 1-229

in command procedure• DCL 1-52, DCL 1-227,
DCL1-229
syntax• DCL1-227, DCL1-229

specifying for volume • DCL2-241
volume header • DCL 1-240
writing on volume • DCL 1-240

Lexical functions • DCL 1-273, DCL 1-27 4
F$CONTEXT • DCL 1-275
F$CSID • DCL 1-280
F$CVSI • DCL 1-282
F$CVTIME • DCL 1-284

lndex-10

Lexical functions (Cont.)

F$CVU I • DCL 1-286
F$DEVICE • DCL 1-287
F$DIRECTORY • DCL 1-289
F$EDIT • DCL 1-290
F$ELEMENT • DCL 1-292
F$ENVIRONMENT • DCL 1-294
F$EXTRACT • DCL 1-297
F$FAO • DCL 1-299
F$FILE_ATTRIBUTES • DCL 1-306
F$GETDVI • DCL1-309
F$GET JPI • DCL1-322
F$GETQUI • DCL1-328
F$GETSYI • DCL1-344
F$1DENTIFIER • DCL1-349
F$1NTEGER • DCL1-351
F$LENGTH • DCL 1-352
F$LOCATE • DCL1-353
F$MESSAGE • DCL 1-355
F$MODE • DCL 1-356
F$PARSE • DCL 1-358
F$PID • DCL 1-361
F$PRIVILEGE • DCL 1-363
F$PROCESS • DCL 1-364
F$SEARCH • DCL 1-365
F$SETPRV • DCL 1-368
F$STRING • DCL1-372
F$TIME • DCL1-373
F$TRNLNM • DCL 1-374
F$TYPE • DCL1-378
F$USER • DCL 1-380
F$VERIFY • DCL 1-381
overview • DCL 1-272

Library
object module • DCL 1-28

LIBRARY command • DCL 1-383
LICENSE command • DCL 1-384
License Management Utility (LICENSE) • DCL2-285
Licenses

displaying active • DCL2-285
Limit working set

displaying • DCL2-335
LINK command• DCL1-385 to DCL 1-391
Linker

memory allocation file • DCL 1-386, DCL 1-387
Link option specification records

analyzing in object file • DCL 1-28
List files

in directory• DCL 1-159
Local symbol • DCL 1-1, DCL 1-5

Local symbol table

deleting symbols from • DCL 1-145
entering symbol in • DCL 1-263

Lock limit
specifying for detached process • DCL2-57
specifying for subprocess • DCL2-57

Logging in • DCL 1-392 to DCL 1-395
Logging out • DCL 1-396

and device access • DCL 1-15
Logical name

assigning• DCL 1-39, DCL 1-114
assigning to device • DCL 1-15
canceling • DCL 1-104
creating• DCL 1-39, DCL 1-114
creating a table • DCL 1-93
deassigning using CLOSE command • DCL 1-58
displaying

equivalence name for • DCL2-288, DCL2-329
translation of • DCL2-288, DCL2-329

EVE$1NIT• DCL1-194
process-permanent

defining equivalence name for detached
process • DCL2-53

defining equivalence name for subprocess •
DCL2-53

TPU$COMMAND • DCL 1-191
TPU$DEBUG • DCL1-193
TPU$DISPLAY_MANAGER • DCL 1-193
TPU$JOURNAL • DCL 1-196
TPU$SECTION • DCL 1-200
TPU$WORK • DCL 1-202

Logical name inclusion
in group logical name table • DCL 1-41, DCL 1-116
in job logical name table • DCL 1-41, DCL 1-116
in process logical name table • DCL 1-41,

DCL1-116
in system logical name table • DCL 1-41,

DCL1-116
Logical name table

creating • DCL 1-93
deleting • DCL 1-104
displaying • DCL2-288

Logical queue • DCL 1-252
deassigning• DCL 1-109

Login command procedure
executing • DCL 1-392
specifying alternate • DCL 1-393

LOGINOUT.EXE file
and detached process • DCL2-56

LOGOUT command • DCL 1-396 to DCL 1-397
message • DCL 1-396
multiple • DCL 1-396

Index

Longword dump• DCL 1-176

M
MACRO command • DCL 1-398 to DCL 1-403
Magnetic tape

device characteristics for• DCL2-177
dismounting• DCL 1-170
initializing • DCL 1-240
overriding overwrite protection on • DCL 1-246
runaway stop • DCL 1-241
specifying volume density • DCL 1-242

Mailbox
process termination• DCL2-58

MAIL command• DCL 1-404
Mail Utility (MAIL) • DCL 1-404
Mapping pointer allocation • DCL 1-248
Match size

specifying with DIFFERENCES command•
DCL1-155

/MEDIA_FORMAT qualifer
for INITIALIZE command• DCL1-246, DCL2-177

Memory
displaying

error count for • DCL2-279
displaying availability and use of

process balance slots • DCL2-292
process entry slots • DCL2-292

modifying• DCL1-147
replacing virtual contents • DCL 1-14 7
virtual examination of contents • DCL 1-209

Memory allocation file
brief format • DCL 1-386
cross-reference format • DCL 1-386
full format • DCL 1-387

MERGE command• DCL 1-405
Merging

of DIFFERENCES• DCL 1-155
of queues • DCL 1-46

Message
sending to terminal • DCL2-38

MESSAGE command • DCL 1-406
Message file

setting format• DCL2-179
Modes

of transferring files • DCL 1-215
Module header records

analyzing in object file• DCL 1-28

lndex-11

Index

Module object

analyzing • DCL 1-26
end-of-file records• DCL 1-27

Module traceback records
analyzing in object file • DCL 1-29

MONITOR command• DCL1-407
MOUNT command • DCL 1-408

and DEASSIGN command• DCL 1-104
and DISMOUNT command• DCL 1-170

N
Name

See also Logical name
detached process • DCL2-55
generic device• DCL 1-15
logical

canceling• DCL 1-104
deassigning • DCL 1-58

subprocess • DCL2-55
symbol definition• DCL 1-1, DCL 1-5

NCS command• DCL2-1
Network HSC node

connecting to a remote HSC • DCL2-173
connecting to a storage controller• DCL2-171

Network node
See also SET HOST command
See also SET HOST/DUP command
See also SET HOST/HSC command
and batch jobs • DCL2-382
connecting to a remote processor• DCL2-149

Node names
displaying • DCL2-331

Nonpaged dynamic memory
displaying availability and use of • DCL2-292

0
Object file

analyzing • DCL 1-26
identifying errors• DCL 1-26

Object module
analyzing• DCL 1-26

end-of-file records• DCL 1-27
Object module library • DCL 1-28
Octal dump • DCL 1-176
ON command • DCL2-2 to DCL2-4

and command procedure • DCL2-2

lndex-12

ON command (Cont.)

and CONTINUE command• DCL1-63
and Ctrl/Y • DCL2-2
error in command procedure • DCL2-2
interrupt of command procedure • DCL2-2

Online help• DCL 1-231
OP COM

enabling terminal to receive messages from •
DCL2-40

messages to users from• DCL2-47
Open

displaying
names of open files • DCL2-265

file • DCL2-5
OPEN command • DCL2-5 to DCL2-8

See also CLOSE command
See also READ command
See also WRITE command

Operator

See also REQUEST command
disabling status • DCL2-40
enabling status • DCL2-40
log file closing • DCL2-41
log file opening • DCL2-41
requesting reply from• DCL2-47
sending message to • DCL2-4 7

Options file
CONVERT/DOCUMENT command• DCL1-67

Output file
EVE• DCL 1-197
VAXTPU • DCL1-197

Output stream
defining for created process • DCL2-53

Overlaying files using the COPY command •
DCL1-79

Override
default command interpreter• DCL 1-392
magnetic tape overwrite protection • DCL 1-246
owner identification field • DCL 1-246

Overwrite protection
overriding on magnetic tape • DCL 1-246

Owner identifier field
writing characters to • DCL 1-245

Ownership
specifying for volume • DCL 1-246

p
PO image

creating• DCL 1-388

Paged dynamic memory
displaying availability and use of • DCL2-292

Parameter
passing to batch job• DCL2-381
passing to command procedure • DCL 1-9,

DCL1-52
specifying for command procedures • DCL 1-9

Password
changing• DCL2-184
setting at login• DCL 1-392

PASSWORD command • DCL2-9 to DCL2-1 O
PATCH command• DCL2-11
Patch text records

analyzing• DCL 1-24
Patch Utility (PATCH)

changing code in • DCL2-11
invoking • DCL2-11

PHONE command• DCL2-12
Physical memory

displaying availability and use of• DCL2-292
Port

displaying information• DCL2-331
Postscript back-end converter

processing options in • DCL 1-68
Print

command procedure in batch job log • DCL2-237
file • DCL2-13

PRINT command• DCL2-13 to DCL2-22
Printer, system

displaying default characteristics of • DCL2-300
Print queue

changing entry • DCL2-136
creating • DCL 1-249
deleting • DCL 1-143
deleting entries • DCL 1-136
displaying entries • DCL2-275, DCL2-309
establishing as spooled • DCL2-123
initializing • DCL 1-249
modifying characteristics of• DCL2-187,

DCL2-345
starting • DCL2-345

Priority
modifying process• DCL2-191
specifying for batch job • DCL2-382
specifying for detached process • DCL2-59
specifying for subprocess • DCL2-59

Privilege
displaying process • DCL2-304
displaying subprocess • DCL2-304
modifying process• DCL2-191

Index

Privileges

specifying for detached process • DCL2-59
specifying for subprocess • DCL2-59

Process
See also Subprocess
detached

accounting • DCL2-55
assigning resource quota to • DCL2-54
creating with RUN command • DCL2-53,

DCL2-61
defining attributes • DCL2-54
defining equivalence names for process-

permanent logical names • DCL2-53
image hibernation • DCL2-55
naming • DCL2-55
scheduling wakeup • DCL2-57
specifying quotas • DCL2-57
specifying working set• DCL2-61

displaying
buffered 1/0 count• DCL2-319
characteristics of • DCL2-302
CPU time used• DCL2-319
current physical memory occupied •

DCL2-319
current working set size • DCL2-319
information on • DCL2-246
names• DCL2-331
open file count• DCL2-319
page faults• DCL2-319
status• DCL2-319
updated information about • DCL2-303

hibernation
with ATTACH command• DCL1-49

identification
displaying • DCL2-303

image wakeup • DCL2-55
modifying characteristics of• DCL2-191
modifying working set default size • DCL2-244
name

for detached process • DCL2-59
for subprocess • DCL2-59

placing in wait state • DCL2-397
priority

for detached process • DCL2-59
for subprocess • DCL2-59

privilege
displaying • DCL2-304
specifying for detached process • DCL2-59
specifying for subprocess• DCL2-59

quotas
displaying• DCL2-304

setting default device and/or directory• DCL2-121

lndex-13

Index

Process (Cont.)

status
displaying current• DCL2-319

swap mode
enabling or disabling • DCL2-193

swapping
for created process • DCL2-60

switching control of input stream to• DCL 1-49
synchronizing with batch job • DCL2-387
system

displaying list of processes • DCL2-322
working set

displaying quota and limit • DCL2-335
Process dump

analysis of • DCL 1-30
Processing options

in Postscript back-end converter • DCL 1-68
in text back-end converter • DCL 1-67

Process logical name table
canceling entries • DCL 1-106
including logical name • DCL 1-41 , DCL 1-116

Program
continuing execution of• DCL 1-63
marking beginning of input stream • DCL 1-111
marking end of input stream• DCL 1-206
resuming execution of• DCL 1-63

Prompt
displaying in command procedure • DCL 1-262

Protection
default at disk initialization • DCL 1-244
defining at directory creation • DCL 1-90
defining at file creation • DCL 1-85
disk volumes • DCL 1-247
displaying default • DCL2-308
establishing default • DCL2-199
magnetic tape volumes• DCL 1-247
modifying • DCL2-196

directory • DCL2-196
file • DCL2-196

modifying for device • DCL2-200
of shareable images • DCL 1-388

PSWRAP command • DCL2-23
PURGE command • DCL2-24 to DCL2-27
Purging

See also Deleting
files • DCL2-24

lndex-14

Q
Queue

See also Batch queue

See also Print queue
assigning logical name to• DCL 1-47
assigning to devices• DCL 1-47
batch

modifying characteristics of • DCL2-345
batch job

displaying entries • DCL2-275, DCL2-309
entering command procedure in • DCL2-376
starting • DCL2-345

changing entry
for batch • DCL2-136
for printer • DCL2-136

deassigning • DCL 1-109
device

displaying entries • DCL2-275, DCL2-309
execution (type)• DCL 1-251
generic • DCL 1-251
initializing • DCL 1-249
logical • DCL 1-252
merging jobs • DCL 1-46
removing jobs from • DCL 1-46
server • DCL 1-251
starting• DCL2-345
stopping • DCL2-345
symbiont • DCL 1-251
types of • DCL 1-251

Quota
assigning to created process • DCL2-54
AST limit• DCL2-55
batch job

working set • DCL2-383
CPU

for created process • DCL2-60
of subprocesses process can create • DCL2-60
specifying for detached process • DCL2-58,

DCL2-59
specifying for subprocess • DCL2-58, DCL2-59
working set

for batch job • DCL2-383
modifying • DCL2-244

R
Read check

with APPEND command • DCL 1-37
with COPY command • DCL 1-79
with INITIALIZE command• DCL1-242

READ command• DCL2-28 to DCL2-31
See also OPEN command
See also WRITE command

Ready access
for directories on disk • DCL 1-241

RECALL command • DCL2-32 to DCL2-33
Record Management Services

See RMS
Records

analyzing
debugger information • DCL 1-27
end-of-file• DCL 1-27
global symbol directory • DCL 1-27
link option specification • DCL 1-28
module header • DCL 1-28
module traceback • DCL 1-28
patch text • DCL 1-24
relocation • DCL 1-29

comparing• DCL 1-151
reading • DCL2-28
writing to file • DCL2-399

Recover
for EDT• DCL 1-182

Recovery from system failure
EVE • DCL 1-198
VAXTPU • DCL 1-198

Relocation records
analyzing in object file • DCL 1-29

RENAME command• DCL2-34 to DCL2-37
REPLY command • DCL2-38 to DCL2-46

See also INITIALIZE command
See also MOUNT command
See also REQUEST command
disabling operator status • DCL2-40
enabling operator status • DCL2-40
responding to file system requests • DCL2-39
responding to user requests • DCL2-39

REQUEST command • DCL2-47 to DCL2-48
Resume execution

of command procedure • DCL 1-63
of DCL commands• DCL 1-63
of program • DCL 1-63

RETURN command• DCL2-49 to DCL2-50
Return key

pressing to log in • DCL 1-392
Rights list

modifying • DCL2-212
RMS (VMS Record Management Services)

displaying default block count • DCL2-318
modifying defaults for • DCL2-214

Index

RUN (Image) command• DCL2-51 to DCL2-52
abbreviating• DCL2-51
and debugger • DCL2-51

RUN (Process) command• DCL2-53 to DCL2-62

See also ATTACH command
See also SPAWN command
creating detached process• DCL2-61

Runaway magnetic tape
stopping • DCL 1-241

Runoff
See DSR

RUNOFF command • DCL2-63 to DCL2-72
RUNOFF/CONTENTS command• DCL2-73 to

DCL2-76
RUNOFF/INDEX command• DCL2-77 to DCL2-80

s
Screen-oriented editor • DCL 1-180

EVE• DCL 1-189
VAXTPU • DCL 1-189

SEARCH command• DCL2-81 to DCL2-87
Search list • DCL 1-39, DCL 1-114
Secondary processor

showing state • DCL2-258
starting • DCL2-343
stopping • DCL2-361

Server queue • DCL 1-251
SET ACCOUNTING command • DCL2-91 to

DCL2-92
See also ACCOUNTING command

SET ACL command • DCL2-93 to DCL2-99
SET AUDIT command• DCL2-100 to DCL2-111
SET BROADCAST command • DCL2-112 to

DCL2-113
SET CARD_READER command• DCL2-114
SET CLUSTER/EXPECTED_ VOTES command•

DCL2-115 to DCL2-116
SET command • DCL2-88 to DCL2-90

summary of options • DCL2-88
SET COMMAND command• DCL2-117
SET CONTROL command• DCL2-118 to DCL2-119

lndex-15

Index

SET DAY command• DCL2-120
SET DEFAULT command• DCL2-121 to DCL2-122
SET DEVICE command• DCL2-123 to DCL2-124
SET DEVICE/SERVED command• DCL2-125
SET DIRECTORY command• DCL2-126 to

DCL2-128
SET DISPLAY command• DCL2-129 to DCL2-135
SET ENTRY command• DCL2-136 to DCL2-143
SET FILE command• DCL2-144 to DCL2-148
SET HOST command • DCL2-149 to DCL2-151

See also Network node
SET HOST/DTE command• DCL2-152

DTE commands • DCL2-158
CLEAR • DCL2-158
EXIT• DCL2-159
QUIT• DCL2-160
SAVE• DCL2-161
SEND BREAK• DCL2-162
SET DTE• DCL2-163
SHOW DTE • DCL2-168
SPAWN• DCL2-169

SET HOST/DUP command• DCL2-171 to
DCL2-172

See also Network node
SET HOST/HSC command• DCL2-173 to

DCL2-174
See also Network node

SET KEY command • DCL2-175
SET LOGINS command• DCL2-176
SET MAGTAPE command• DCL2-177 to DCL2-178
SET MESSAGE command• DCL2-179 to DCL2-181
SET ON command• DCL2-182
SET OUTPUT _RATE command • DCL2-183
SET PASSWORD command• DCL2-184 to

DCL2-186
SET PRINTER command• DCL2-187 to DCL2-190
SET PROCESS command• DCL2-191 to DCL2-194
SET PROMPT command• DCL2-195
SET PROTECTION command • DCL2-196 to

DCL2-198
SET PROTECTION/DEFAULT command• DCL2-199
SET PROTECTION/DEVICE command • DCL2-200

to DCL2-202
SET QUEUE command• DCL2-203 to DCL2-209
SET RESTART_VALUE command• DCL2-210 to

DCL2-211
SET RIGHTS_LIST command• DCL2-212 to

DCL2-213
SET RMS_DEFAULT command• DCL2-214 to

DCL2-217
SET SYMBOL command • DCL2-218 to DCL2-220

lndex-16

SET TERMINAL command• DCL2-221 to
DCL2-233

See also SHOW TERMINAL command
SET TIME command • DCL2-234 to DCL2-235
SET U IC command • DCL2-236

See also Protection
SET VERIFY command• DCL2-237 to DCL2-239
SET VOLUME command• DCL2-240 to DCL2-243
SET WORKING_SET command• DCL2-244 to

DCL2-245
$SEVERITY• DCL2-182

changing • DCL 1-222, DCL2-49
Shareable image

file analysis • DCL 1-22
patching • DCL2-11

Shareable image file
analyzing• DCL 1-22
creating• DCL 1-388

Shareable volume
dismounting • DCL 1-170
initializing disk as• DCL 1-247

Shared device
dismounting • DCL 1-171

SHOW ACCOUNTING command • DCL2-248 to
DCL2-249

See also ACCOUNTING command
items enabled • DCL2-248

SHOW ACL command • DCL2-250
SHOW AUDIT command• DCL2-251 to DCL2-254
SHOW BROADCAST command • DCL2-255 to

DCL2-256
SHOW CLUSTER command • DCL2-257
SHOW command• DCL2-246 to DCL2-247

summary of options • DCL2-246
SHOW CPU command• DCL2-258 to DCL2-261
SHOW DEFAULT command • DCL2-262 to

DCL2-263
SHOW DEVICES command • DCL2-264 to

DCL2-268
SHOW DEVICES/SERVED command • DCL2-269 to

DCL2-271
SHOW DISPLAY command• DCL2-272 to

DCL2-274
See also SET DISPLAY command

SHOW ENTRY command • DCL2-275 to DCL2-278
SHOW ERROR command • DCL2-279
SHOW INTRUSION command • DCL2-280 to

DCL2-282
SHOW KEY command • DCL2-283 to DCL2-284
SHOW LICENSE command • DCL2-285
SHOW LOGICAL command• DCL2-288 to

DCL2-291

SHOW MEMORY command • DCL2-292 to
DCL2-299

SHOW PRINTER command • DCL2-300 to
DCL2-301

SHOW PROCESS command • DCL2-302 to
DCL2-307

SHOW PROTECTION command • DCL2-308
SHOW QUEUE/CHARACTERISTICS command•

DCL2-313 to DCL2-314
SHOW QUEUE command• DCL2-309 to DCL2-312
SHOW QUEUE/FORM command• DCL2-315 to

DCL2-316
SHOW QUOTA command • DCL2-317
SHOW RMS_DEFAULT command• DCL2-318
SHOW STATUS command• DCL2-319
SHOW SYMBOL command • DCL2-320 to

DCL2-321
SHOW SYSTEM command • DCL2-322 to

DCL2-325
SHOW TERMINAL command • DCL2-326 to

DCL2-327
See also SET TERMINAL command

SHOW TIME command • DCL2-328
SHOW TRANSLATION command • DCL2-329 to

DCL2-330
SHOW USERS command• DCL2-331 to DCL2-334
SHOW WORKING_SET command• DCL2-335
SHOW ZONE command• DCL2-336
SORT command • DCL2-337
SPAWN command• DCL2-338 to DCL2-342

and ATTACH command• DCL 1-49
START/CPU command • DCL2-343 to DCL2-344
START/QUEUE command• DCL2-345 to DCL2-354
START/QUEUE/MANAGER command• DCL2-355

to DCL2-356
START/ZONE command • QCL2-357
Status :,

displaying
current process • DCL2-319
device • DCL2-246, DCL2-264
process • DCL2-246
system • DCL2-246

$STATUS• DCL2-182
changing • DCL 1-222, DCL2-49

Status code
controlling command interpreter response to •

DCL2-182
STOP command • DCL2-358 to DCL2-360

See also Ctrl/C
See also Ctrl/Y
See also EXIT command
and detached process image • DCL2-55

STOP command (Cont.)

and subprocess image • DCL2-55
detached process • DCL2-358
process • DCL2-358
runaway magnetic tape • DCL 1-241
subprocess • DCL2-358

Index

STOP/CPU command• DCL2-361, DCL2-362
STOP/QUEUE/ABORT command• DCL2-365 to

DCL2-366
STOP/QUEUE command • DCL2-363 to DCL2-364
STOP/QUEUE/ENTRY command• DCL2-367 to

DCL2-368
STOP/QUEUE/MANAGER command• DCL2-369
STOP/QUEUE/NEXT command • DCL2-370

and DELETE/QUEUE command• DCL1-143
STOP/QUEUE/REQUEUE command• DCL2-371 to

DCL2-373
STOP/QUEUE/RESET command• DCL2-374
STOP/ZONE command• DCL2-375
:= (string assignment) command • DCL 1-5 to

DCL1-8
Structure level

defining for disks• DCL 1-247
Subdirectory

creating • DCL 1-89
SUBMIT command• DCL1-269, DCL2-376 to

DCL2-385
Subprocess

See also SPAWN command
accounting • DCL2-55
assigning resource quota to • DCL2-54
creating with RUN command • DCL2-53
creating with SPAWN command • DCL2-338
defining attributes • DCL2-54
defining equivalence names for process-

permanent logical names • DCL2-53
displaying characteristics of • DCL2-302
displaying quota • DCL2-304
image hibernation • DCL2-55
naming with RUN/PROCESS_NAME • DCL2-55
scheduling wakeup • DCL2-57
specifying default working set• DCL2-61
specifying quotas • DCL2-57
switching control of input stream to• DCL 1-49

Subroutine
termination of GOSUB • DCL2-49

SUBROUTINE command• DCL 1-53, DCL 1-54,
DCL2-386

SUMSLP description• DCL 1-185
Swapping

for created process • DCL2-60

lndex-17

Index

Swapping
process

enabling or disabling swap mode • DCL2-193
Symbol

assigning value with READ command • DCL2-28
binary overlay in • DCL 1-1
character overlays in • DCL 1-6
deleting

from global symbol table • DCL 1-145
from local symbol table • DCL 1-145

displaying • DCL2-320
general assignment • DCL 1-1
interactive assignment in command procedure •

DCL1-262
masking • DCL2-218
string assignment• DCL 1-5

Symbolic name
defining• DCL 1-1, DCL 1-5

SYNCHRONIZE command• DCL2-387 to
DCL2-388

SYS$ERROR
specifying equivalence name with RUN command

• DCL2-57
SYS$1NPUT

specifying equivalence name with RUN command
• DCL2-57

SYS$MANAGER:ACCOUNTING.DAT • DCL2-91
SYS$0UTPUT

displaying file on • DCL2-389
specifying equivalence name with RUN command

• DCL2-58
SYS$SYLOGIN

executing • DCL 1-392
SYSLOST directory • DCL2-146
System

accessing • DCL 1-392
changing

date • DCL2-234
password • DCL2-184
time • DCL2-234

displaying
information on • DCL2-246
status • DCL2-246

System help files • DCL 1-231
System image

creating • DCL 1-389
System logical name table

canceling entries • DCL 1-106
including logical name • DCL 1-41, DCL 1-116

System login image
and detached process • DCL2-56

lndex-18

System performance

displaying availability and use of
resources • DCL2-292

System processes
displaying list • DCL2-322

System time
changing • DCL2-234

T
TA90E tape drive

support for • DCL 1-246, DCL2-177
using /MEDIA_FORMAT qualifier• DCL 1-246,

DCL2-177
Table of contents

creating• DCL2-73
Tape

disabling operator status • DCL2-40
enabling operator status • DCL2-40
establishing operational status for• DCL2-123
modifying RMS defaults for file operations •

DCL2-214
Tape initializing

using REPLY/BLANK_ TAPE• DCL2-40
using REPLY/INITIALIZE_ TAPE• DCL2-40

TECO description • DCL 1-186
Terminal

See also SET TERMINAL command
See also SHOW TERMINAL command
default characteristics • DCL 1-392

See LOGIN Procedure command
displaying

characteristics of • DCL2-326
file at • DCL2-389

establishing as spooled • DCL2-123
modifying characteristics of• DCL2-221
sending message to • DCL2-38
virtual• DCL1-60, DCL1-168

Terminal emulator
creating • DCL 1-97

Terminal session
logging in• DCL 1-392
logging out• DCL 1-396

Termination
of command procedure • DCL 1-222
of GOSUB subroutine• DCL2-49
of terminal session • DCL 1-396

Testing
the value of an expression • DCL 1-237

Text

analyzing
in object file • DCL 1-29

Text back-end converter
processing options in • DCL 1-67

Text editor
EVE • DCL 1-189
VAXTPU • DCL1-189

Text file
formatting

See DSR • DCL2-63
THEN keyword

and IF command• DCL 1-237
Time

changing system • DCL2-234
CPU quota for created process • DCL2-60
CPU used by current process• DCL2-319
displaying • DCL2-328

TPU
See VAXTPU

TPU$COMMAND logical name • DCL 1-191
TPU$DEBUG logical name • DCL 1-193
TPU$DISPLAY _MANAGER logical name• DCL 1-193
TPU$JOURNAL logical name • DCL 1-196
TPU$SECTION logical name• DCL 1-200
TPU$WORK logical name • DCL 1-202
Transfer modes

EXCHANGE/NETWORK command• DCL1-215
True expression

and IF command• DCL1-237
TYPE command • DCL2-389 to DCL2-394

u
UAF (user authorization file)

and detached process • DCL2-56
UIC (user identification code)

changing default • DCL2-236
specifying for directory• DCL 1-89
specifying for files • DCL 1-85

Unloading device
with DISMOUNT command • DCL 1-172

UNLOCK command • DCL2-395
Unlocking files • DCL2-395
User

displaying
disk quota • DCL2-317
interactive terminal name• DCL2-331
process identification code (PIO)• DCL2-331
users on system• DCL2-331

Index

User (Cont.)

recording name on disk volume • DCL2-242
User library

help • DCL 1-234
User name

specifying at login • DCL 1-392
User password

setting • DCL2-184
User requests

responding to • DCL2-39

v
Value

test in expression • DCL 1-237
VAXTPU (VAX Text Processing Utility)

batch editing• DCL1-191, DCL1-194
command file • DCL 1-191
debugger • DCL 1-192
DECwindows interface• DCL1-193, DCL1-195
display mangager • DCL 1-193
inputfile•DCL1-189, DCL1-192
invoking• DCL1-189
journaling • DCL 1-195, DCL 1-198
output file • DCL 1-197
recovery from system failure • DCL 1-198
section file • DCL 1-200
start position • DCL 1-202
work file • DCL 1-202

Verification
modifying for command procedures • DCL2-237

Version limit
for files in directory • DCL 1-90

Version number
assigning to files • DCL 1-216

VIEW command • DCL2-396
Virtual memory

examining contents • DCL 1-209
replacing contents• DCL 1-147

Virtual terminal
connecting to • DCL 1-60
disconnecting from • DCL 1-168

VMS multiprocessing system
showing attached processor state • DCL2-258
starting attached processor• DCL2-343
stopping attached processor• DCL2-361

VMS NCS • DCL2-1
VMS RMS

See RMS

lndex-19

Index

Volume

deleting disk files• DCL1-131
dismounting disk and magnetic tape • DCL 1-170
displaying disk quota• DCL2-317
dumping• DCL 1-174
Files-11

modifying characteristics of• DCL2-240
recording name on • DCL2-242

initializing• DCL 1-240
label • DCL 1-240
protecting• DCL 1-247
specifying maximum file number• DCL 1-245
specifying ownership • DCL 1-246

Volume accessibility field
writing characters to• DCL 1-245

Volume set
dismounting • DCL 1-172

w
WAIT command • DCL2-397 to DCL2-398
Wait state

delaying command processing • DCL2-397
inducing to synchronize process with batch job •

DCL2-387
placing current process in • DCL2-397

Wakeup
canceling request• DCL 1-56, DCL2-55
scheduling with RUN command • DCL2-55

Windows
displaying count for open files • DCL2-266
displaying size for open files• DCL2-266

Word dump • DCL 1-177
Work file

VAXTPU • DCL1-202
Working set

batch job
defining default for• DCL 1-260, DCL 1-269,

DCL2-208, DCL2-353, DCL2-383
defining extent for• DCL 1-260, DCL 1-269,

DCL2-208, DCL2-353, DCL2-383
defining quota for• DCL 1-269, DCL2-208,

DCL2-353, DCL2-383
defining quota

for batch job• DCL2-61
displaying

limit for process • DCL2-335
quota for process • DCL2"'"'.'335

modifying default size • DCL2-244

lndex-20

Working set
specifying default

for detached process • DCL2-61
for subprocess• DCL2-61

specifying quotas • DCL2-58
Working set quota

displaying • DCL2-335
Write

record to file • DCL2-399
Write check

with APPEND command• DCL1-37
with COPY command• DCL1-80
with INITIALIZE command• DCL1-242

WRITE command • DCL2-399 to DCL2-401
See also CLOSE command
See also OPEN command
See also READ command

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040 before placing
your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using a 1200- or 2400-baud
modem. If you need assistance using the Electronic Store, call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location
Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internal1

Call
800-DIGITAL

809-754-7575

800-267-6215

Contact
Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontari~, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

USASSB Order Processing - WMO/E15
or
U.S. Area Software Supply Business
Digital Equipment Corporation
Westminster, Massachusetts 01473

1For internal orders, you must submit an Internal Software Order Form (EN-01740-07). '"

Reader's Comments VMS DCL Dictionary:
Part I

AA-PBK5A-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Namefl'itle

Company

MaiJing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

- Do Not Tear - Fold Here and Tape -------------------[lllr--------------
No Postage

~nmnoma™ ~:~=~=~y

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POST AGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 .. 1.1 .. 1 .. 1.1 ... 1.11 .. 1

in the
United States

·- Do Not Tear - Fold Here --

I
I
I
I
I

